
Microsoft	Excel	Objects
			

Some	of	the	content	in	this	topic	may	not	be	applicable	to	some	languages.

Application

Workbooks	(Workbook)	 Worksheets	(Worksheet)
Charts	(Chart)
DocumentProperties	(DocumentProperty)
VBProject
CustomViews	(CustomView)
CommandBars	(CommandBar)
HTMLProject
PivotCaches	(PivotCache)
Styles	(Style)
Borders	(Border)
Font
Interior

Windows	(Window)
Panes	(Pane)

Names	(Name)
RoutingSlip
PublishObjects	(PublishObject)
SmartTagOptions

AddIns	(AddIn)
Answer
AutoCorrect
Assistant
AutoRecover
CellFormat
COMAddIns	(COMAddIn)
Debug
Dialogs	(Dialog)
CommandBars	(CommandBar)
ErrorCheckingOptions
LanguageSettings
Names	(Name)
Windows	(Window)
Panes	(Pane)

WorksheetFunction
RecentFiles	(RecentFile)
SmartTagRecognizers
SmartTagRecognizer

Speech
SpellingOptions
FileSearch

mk:@MSITStore:vbaof10.chm::/html/ofobjDocumentProperties.htm
mk:@MSITStore:vblr6.chm::/html/vaobjVBProject.htm
mk:@MSITStore:vbaof10.chm::/html/ofobjCommandBars.htm
mk:@MSITStore:vbaof10.chm::/html/ofobjHTMLProject.htm
mk:@MSITStore:vbaof10.chm::/html/ofobjAnswerWizard.htm
mk:@MSITStore:vbaof10.chm::/html/ofobjAssistant.htm
mk:@MSITStore:vbaof10.chm::/html/ofobjCOMAddins.htm
mk:@MSITStore:vblr6.chm::/html/vaobjDebug.htm
mk:@MSITStore:vbaof10.chm::/html/ofobjCommandBars.htm
mk:@MSITStore:vbaof10.chm::/html/ofobjLanguageSettings.htm
mk:@MSITStore:vbaof10.chm::/html/ofobjFileSearch.htm

WebOptions
	

Legend

		Object	and	collection
		Object	only

	Click	arrow	to	expand	chart

VBE
ODBCErrors	(ODBCError)
OLEDBErrors	(OLEDBError)
DefaultWebOptions
UsedObjects
Watches
Watch

IRtdServer

IRTDUpdateEvent

mk:@MSITStore:vblr6.chm::/html/vaobjVBE.htm

New	Objects
			

Objects	that	have	been	added	to	Visual	Basic	for	Applications	in	Microsoft
Excel	2002	are	listed	in	the	following	table.

Visit	the	Office	Developer	Center	at	MSDN	Online	for	the	latest	Microsoft
Excel	development	information,	including	new	technical	articles,	downloads,
samples,	product	news,	and	more.

Objects
AllowEditRange
AllowEditRanges
AutoRecover
CalculatedMember
CalculatedMembers
CellFormat
CustomProperties
CustomProperty
Diagram
DiagramNode
DiagramNodeChildren
DiagramNodes
Error
ErrorCheckingOptions
Errors
Graphic
IRtdServer
IRTDUpdateEvent
PivotCell
PivotItemList
Protection

http://officeupdate.microsoft.com/office/redirect/10/Helplinks.asp?AppName=EXCEL&HelpLCID=1033&LinkNum=99000030&Version=0,

RTD
SmartTag
SmartTagAction
SmartTagActions
SmartTagOptions
SmartTagRecognizer
SmartTagRecognizers
SmartTags
Speech
SpellingOptions
Tab
UsedObjects
UserAccess
UserAccessList
Watch
Watches

New	Events
			

The	following	new	events	have	been	added	to	Microsoft	Excel	2002.	These
events	are	listed	in	the	following	table.

Events
PivotTableCloseConnection
PivotTableOpenConnection
PivotTableUpdate
SheetPivotTableUpdate
WorkbookPivotTableCloseConnection
WorkbookPivotTableOpenConnection

New	Methods	(Alphabetic	List)
			

In	Microsoft	Excel	2002,	many	new	Visual	Basic	for	Applications	methods	have
been	added	to	existing	objects.	These	methods	are	listed	in	the	following	table
(sorted	alphabetically	by	method	name).

Methods
AddDataField
AddDiagram
AddMemberPropertyField
AddNode
AddPageItem
AddSet
BreakLink
CalculateFullRebuild
CanCheckIn
CanCheckOut
ChangePassword
CheckAbort
CheckIn
CheckOut
CloneNode
ConnectData
Convert
CreateCubeFile
DeleteAll
Dirty
DiscardConflict
Disconnect
DisconnectData

EndReview
Execute
GetPivotData
Heartbeat
MakeConnection
MoveNode
NextNode
OfflineConflict
OpenDatabase
OpenXML
PrevNode
RecheckSmartTags
RefreshData
ReplaceNode
ReplyWithChanges
RestartServers
RTD
SaveAsODC
SendForReview
ServerStart
ServerTerminate
SetCMYK
SetPasswordEncryptionOptions
Speak
SwapNode
TransferChildren
UpdateNotify

New	Methods	(by	Object)
			

In	Microsoft	Excel	2002,	many	new	Visual	Basic	for	Applications	methods	have
been	added	to	existing	objects.	These	methods	are	listed	in	the	following	table
(sorted	by	object	name).

Objects Methods
AllowEditRange ChangePassword

Application CalculateFullRebuild
CheckAbort

ColorFormat SetCMYK
CubeField AddMemberPropertyField
CubeFields AddSet
Diagram Convert

DiagramNode

AddNode
CloneNode
MoveNode
NextNode
PrevNode
ReplaceNode
SwapNode
TransferChildren

DiagramNodeChildren AddNode

IRtdServer

ConnectData
DisconnectData
Heartbeat
RefreshData
ServerStart
ServerTerminate

IRTDUpdateEvent Disconnect
UpdateNotify
MakeConnection

PivotCache SaveAsODC

PivotField AddPageItem

PivotTable
AddDataField
CreateCubeFile
GetPivotData

QueryTable SaveAsODC

Range Dirty
Speak

RTD RefreshData
RestartServers

Shapes AddDiagram
SmartTagAction Execute
Speech Speak
UserAccessList DeleteAll

Workbook

BreakLink
CanCheckIn
CheckIn
EndReview
RecheckSmartTags
ReplyWithChanges
SendForReview
SetPasswordEncryptionOptions

Workbooks

CanCheckOut
CheckOut
DiscardConflict
OfflineConflict
OpenDatabase
OpenXML

WorksheetFunction RTD

New	Properties	(Alphabetic	List)
			

In	Microsoft	Excel	2002,	many	new	Visual	Basic	for	Applications	properties
have	been	added	to	existing	objects.	These	properties	are	listed	in	the	following
table	(sorted	alphabetically	by	property	name).

Properties
ADOConnection
AllowDeletingColumns
AllowDeletingRows
AllowEdit
AllowEditRanges
AllowFiltering
AllowFormattingCells
AllowFormattingColumns
AllowFormattingRows
AllowInsertingColumns
AllowInsertingHyperlinks
AllowInsertingRows
AllowSorting
AllowUsingPivotTables
ArabicModes
AutoFormat
AutoFormatAsYouTypeReplaceHyperlinks
AutoLayout
AutomationSecurity
AutoRecover
AutoRepublish
BackgroundChecking
Black

CalculatedMembers
CalculationInterruptKey
CalculationState
CenterFooterPicture
CenterHeaderPicture
Child
Children
CLSID
ColumnItems
CurrentPageList
CustomProperties
CustomSubtotalFunction
Cyan
DatabaseSort
DataField
DataPivotField
DecimalSeparator
Diagram
DiagramNode
DictLang
Direction
DisplayAutoCorrectOptions
DisplayEmptyColumn
DisplayEmptyRow
DisplayFunctionToolTips
DisplayImmediateItems
DisplayInsertOptions
DisplayPasteOptions
DisplaySmartTags
DownloadURL
EditWebPage
EmbedSmartTags
EmptyCellReferences

EnableAutoRecover

EnableDataValueEditing
EnableFieldList
EnableItemSelection
EnableMultiplePageItems
ErrorCheckingOptions
Errors
EvaluateToError
FileDialog
FindFormat
FirstChild
FullNameURLEncoded
GenerateGetPivotData
GermanPostReform
HasDiagram
HasDiagramNode
HasMemberProperties
HeartbeatInterval
HebrewModes
HiddenItemsList
Hinstance
Hwnd
Ignore
IgnoreCaps
IgnoreFileNames
IgnoreMixedDigits
InconsistentFormula
IndicatorColorIndex
Ink
IsConnected
IsMemberProperty
IsValid
KoreanCombineAux

KoreanProcessCompound
KoreanUseAutoChangeList
LastChild
Layout
LeftFooterPicture
LeftHeaderPicture
Magenta
MailEnvelope
MapPaperSize
MDX
MissingItemsLimit
NewWorkbook
NumberAsText
OLAP
OmittedCells
OverPrint
ParentGroup
Password
PasswordEncryptionAlgorithm
PasswordEncryptionFileProperties
PasswordEncryptionKeyLength
PasswordEncryptionProvider
PivotCell
PivotCellType
PivotSelectionStandard
PrintErrors
Properties
PropertyOrder
PropertyParentField
Protection
Ready
Recognize
RemovePersonalInformation

ReplaceFormat
Reverse

RightFooterPicture
RightHeaderPicture
RobustConnect
Root
RowItems
RTD
SaveNewWebPagesAsWebArchives
Separator
ShowBubbleSize
ShowCategoryName
ShowCellBackgroundFromOLAP
ShowInFieldList
ShowPageMultipleItemLabel
ShowPercentage
ShowPivotTableFieldList
ShowSeriesName
ShowStartupDialog
ShowValue
SmartTagActions
SmartTagOptions
SmartTagRecognizers
SmartTags
SolveOrder
SourceConnectionFile
SourceDataFile
SourceNameStandard
SpeakCellOnEnter
Speech
SpellingOptions
StandardFormula
SuggestMainOnly

Tab
TargetBrowser

TextDate
TextFileTrailingMinusNumbers
TextShape
ThisCell
ThousandsSeparator
ThrottleInterval
Time
TintAndShade
UnlockedFormulaCells
UpdateLinks
UsedObjects
UserDict
Users
UseSystemSeparators
ViewCalculatedMembers
VisualTotals
Watches
WebDisableRedirections
WritePassword
XML
Yellow

New	Properties	(by	Object)
			

In	Microsoft	Excel	2002,	many	new	Visual	Basic	for	Applications	properties
have	been	added	to	existing	objects.	These	properties	are	listed	in	the	following
table	(sorted	by	object	name).

Objects Properties
AddIn CLSID
AllowEditRange Users

Application

AutoFormatAsYouTypeReplaceHyperlinks
AutomationSecurity
AutoRecover
CalculationInterruptKey
CalculationState
DecimalSeparator
DisplayFunctionToolTips
DisplayInsertOptions
DisplayPasteOptions
ErrorCheckingOptions
FileDialog
FindFormat
GenerateGetPivotData
Hinstance
Hwnd
MapPaperSize
NewWorkbook
Ready
ReplaceFormat
RTD
ShowStartupDialog
SmartTagRecognizers
Speech
SpellingOptions
ThisCell

ThousandsSeparator
UsedObjects
UseSystemSeparators
Watches

AutoCorrect DisplayAutoCorrectOptions
AutoRecover Time

CalculatedMember IsValid
SolveOrder

Chart MailEnvelope
Tab

ColorFormat

Black
Cyan
Ink
Magenta
OverPrint
TintAndShade
Yellow

CubeField
EnableMultiplePageItems
HasMemberProperties
ShowInFieldList

DataLabel

Separator
ShowBubbleSize
ShowCategoryName
ShowPercentage
ShowSeriesName
ShowValue

DataLabels

Separator
ShowBubbleSize
ShowCategoryName
ShowPercentage
ShowSeriesName
ShowValue

DefaultWebOptions SaveNewWebPagesAsWebArchives
TargetBrowser

Diagram
AutoFormat
AutoLayout
Reverse

DiagramNode

Children
Diagram
Layout
Root
TextShape

DiagramNodeChildren FirstChild
LastChild

Error Ignore

ErrorCheckingOptions

BackgroundChecking
EmptyCellReferences
EvaluateToError
InconsistentFormula
IndicatorColorIndex
NumberAsText
OmittedCells
TextDate
UnlockedFormulaCells

IRTDUpdateEvent HeartbeatInterval

PageSetup

CenterFooterPicture
CenterHeaderPicture
LeftFooterPicture
LeftHeaderPicture
PrintErrors
RightFooterPicture
RightHeaderPicture

PivotCache

ADOConnection
IsConnected
MissingItemsLimit
OLAP
RobustConnect
SourceConnectionFile
SourceDataFile

PivotCell

ColumnItems
CustomSubtotalFunction
DataField
PivotCellType
RowItems

PivotField

CurrentPageList
DatabaseSort
EnableItemSelection
HiddenItemsList
IsMemberProperty
PropertyOrder
PropertyParentField
StandardFormula

PivotFormula StandardFormula

PivotItem SourceNameStandard
StandardFormula

PivotTable

CalculatedMembers
DataPivotField
DisplayEmptyColumn
DisplayEmptyRow
DisplayImmediateItems
EnableDataValueEditing
EnableFieldList
MDX
PivotSelectionStandard
ShowCellBackgroundFromOLAP
ShowPageMultipleItemLabel
ViewCalculatedMembers
VisualTotals

Protection

AllowDeletingColumns
AllowDeletingRows
AllowEditRanges
AllowFiltering
AllowFormattingCells
AllowFormattingColumns
AllowFormattingRows
AllowInsertingColumns
AllowInsertingHyperlinks
AllowInsertingRows
AllowSorting
AllowUsingPivotTables

PublishObject AutoRepublish
EditWebPage

QueryTable

RobustConnect
SourceConnectionFile
SourceDataFile
TextFileTrailingMinusNumbers
WebDisableRedirections

Range

AllowEdit
Errors
PivotCell
SmartTags

RTD ThrottleInterval

Shape

Child
Diagram
DiagramNode
HasDiagram
HasDiagramNode
ParentGroup

ShapeRange

Child
Diagram
DiagramNode
HasDiagram
HasDiagramNode
ParentGroup

SmartTag

DownloadURL
Properties
SmartTagActions
XML

SmartTagOptions DisplaySmartTags
EmbedSmartTags

SmartTagRecognizers Recognize

Speech Direction
SpeakCellOnEnter
ArabicModes
DictLang
GermanPostReform
HebrewModes
IgnoreCaps
IgnoreFileNames

SpellingOptions IgnoreMixedDigits
KoreanCombineAux
KoreanProcessCompound
KoreanUseAutoChangeList
SuggestMainOnly
UserDict

UserAccess AllowEdit
WebOptions TargetBrowser

Workbook

EnableAutoRecover
FullNameURLEncoded
Password
PasswordEncryptionAlgorithm
PasswordEncryptionFileProperties
PasswordEncryptionKeyLength
PasswordEncryptionProvider
RemovePersonalInformation
ShowPivotTableFieldList
SmartTagOptions
UpdateLinks
WritePassword

Worksheet

CustomProperties
MailEnvelope
Protection
SmartTags
Tab

Saving	Documents	as	Web	Pages
			

In	Microsoft	Excel,	you	can	save	a	workbook,	worksheet,	chart,	range,	query
table,	PivotTable	report,	print	area,	or	AutoFilter	range	to	a	Web	page.	You	can
also	edit	HTML	files	directly	in	Excel.

Saving	a	Document	as	a	Web	Page

Saving	a	document	as	a	Web	page	is	the	process	of	creating	and	saving	an
HTML	file	and	any	supporting	files.	To	do	this,	use	the	SaveAs	method,	as
shown	in	the	following	example,	which	saves	the	active	workbook	as
C:\Reports\myfile.htm.

ActiveWorkbook.SaveAs	_

				Filename:="C:\Reports\myfile.htm",	_

				FileFormat:=xlHTML

Customizing	the	Web	Page

You	can	customize	the	appearance,	content,	browser	support,	editing	support,
graphics	formats,	screen	resolution,	file	organization,	and	encoding	of	the
HTML	document	by	setting	properties	of	the	DefaultWebOptions	object	and
the	WebOptions	object.	The	DefaultWebOptions	object	contains	application-
level	properties.	These	settings	are	overridden	by	any	workbook-level	property
settings	that	have	the	same	names	(these	are	contained	in	the	WebOptions
object).

After	setting	the	attributes,	you	can	use	the	Publish	method	to	save	the
workbook,	worksheet,	chart,	range,	query	table,	PivotTable	report,	print	area,	or
AutoFilter	range	to	a	Web	page.	The	following	example	sets	various	application-
level	properties	and	then	sets	the	AllowPNG	property	of	the	active	workbook,
overriding	the	application-level	default	setting.	Finally,	the	example	saves	the
range	as	"C:\Reports\1998_Q1.htm."

With	Application.DefaultWebOptions

				.RelyonVML	=	True

				.AllowPNG	=	True

				.PixelsPerInch	=	96

End	With

With	ActiveWorkbook

				.WebOptions.AllowPNG	=	False

				With	.PublishObjects(1)

								.FileName	=	"C:\Reports\1998_Q1.htm"

								.Publish

				End	With

End	With

You	can	also	save	the	files	directly	to	a	Web	server.	The	following	example
saves	a	range	to	a	Web	server,	giving	the	Web	page	the	URL	address
http://example.homepage.com/annualreport.htm.

With	ActiveWorkbook

				With	.WebOptions

								.RelyonVML	=	True

								.PixelsPerInch	=	96

				End	With

				With	.PublishObjects(1)

								.FileName	=	_

								"http://example.homepage.com/annualreport.htm"

								.Publish

				End	With

End	With

Opening	an	HTML	Document	in	Microsoft	Excel

To	edit	an	HTML	document	in	Excel,	first	open	the	document	by	using	the	Open
method.	The	following	example	opens	the	file	"C:\Reports\1997_Q4.htm"	for
editing.

Workbooks.Open	Filename:="C:\Reports\1997_Q4.htm"

After	opening	the	file,	you	can	customize	the	appearance,	content,	browser
support,	editing	support,	graphics	formats,	screen	resolution,	file	organization,
and	encoding	of	the	HTML	document	by	setting	properties	of	the
DefaultWebOptions	and	WebOptions	objects.

Using	Microsoft	Office	Web
Components	on	Forms
			

You	can	add	Microsoft	Office	Web	Components	to	a	form	in	Visual	Basic	or
Visual	Basic	for	Applications	the	same	way	you’d	add	any	other	ActiveX	control
to	a	user	form.	Note	that	although	you	can	use	the	Property	Toolbox	when
you’re	designing	a	form,	you	cannot	display	the	Property	Toolbox	from	a
Microsoft	Office	Web	Component	on	a	modal	form	or	in	a	dialog	box	at	run
time.	This	is	also	true	for	modal	forms	created	in	design	environments	other	than
Visual	Basic	or	Visual	Basic	for	Applications.

Using	Events	with	Microsoft	Excel
Objects
			

You	can	write	event	procedures	in	Microsoft	Excel	at	the	worksheet,	chart,	query
table,	workbook,	or	application	level.	For	example,	the	Activate	event	occurs	at
the	sheet	level,	and	the	SheetActivate	event	is	available	at	both	the	workbook
and	application	levels.	The	SheetActivate	event	for	a	workbook	occurs	when	any
sheet	in	the	workbook	is	activated.	At	the	application	level,	the	SheetActivate
event	occurs	when	any	sheet	in	any	open	workbook	is	activated.

Worksheet,	chart	sheet,	and	workbook	event	procedures	are	available	for	any
open	sheet	or	workbook.	To	write	event	procedures	for	an	embedded	chart,
QueryTable	object,	or	Application	object,	you	must	create	a	new	object	using
the	WithEvents	keyword	in	a	class	module.

Use	the	EnableEvents	property	to	enable	or	disable	events.	For	example,	using
the	Save	method	to	save	a	workbook	causes	the	BeforeSave	event	to	occur.	You
can	prevent	this	by	setting	the	EnableEvents	property	to	False	before	you	call
the	Save	method.

Application.EnableEvents	=	False

ActiveWorkbook.Save

Application.EnableEvents	=	True

Working	with	Shapes	(Drawing
Objects)
			

Shapes,	or	drawing	objects,	are	represented	by	three	different	objects:	the
Shapes	collection,	the	ShapeRange	collection,	and	the	Shape	object.	In	general,
you	use	the	Shapes	collection	to	create	shapes	and	to	iterate	through	all	the
shapes	on	a	given	worksheet;	you	use	the	Shape	object	to	format	or	modify	a
single	shape;	and	you	use	the	ShapeRange	collection	to	modify	multiple	shapes
the	same	way	you	work	with	multiple	shapes	in	the	user	interface.

Setting	Properties	for	a	Shape

Many	formatting	properties	of	shapes	aren't	set	by	properties	that	apply	directly
to	the	Shape	or	ShapeRange	object.	Instead,	related	shape	attributes	are
grouped	under	secondary	objects,	such	as	the	FillFormat	object,	which	contains
all	the	properties	that	relate	to	the	shape's	fill,	or	the	LinkFormat	object,	which
contains	all	the	properties	that	are	unique	to	linked	OLE	objects.	To	set
properties	for	a	shape,	you	must	first	return	the	object	that	represents	the	set	of
related	shape	attributes	and	then	set	properties	of	that	returned	object.	For
example,	you	use	the	Fill	property	to	return	the	FillFormat	object,	and	then	you
set	the	ForeColor	property	of	the	FillFormat	object	to	set	the	fill	foreground
color	for	the	specified	shape,	as	shown	in	the	following	example.

Worksheets(1).Shapes(1).Fill.ForeColor.RGB	=	RGB(255,	0,	0)

Applying	a	Property	or	Method	to	Several	Shapes	at
the	Same	Time

In	the	user	interface,	there	are	some	operations	you	can	perform	with	several
shapes	selected;	for	example,	you	can	select	several	shapes	and	set	all	their
individual	fills	at	once.	There	are	other	operations	you	can	only	perform	with	a
single	shape	selected;	for	example,	you	can	only	edit	the	text	in	a	shape	if	a
single	shape	is	selected.

In	Visual	Basic,	there	are	two	ways	to	apply	properties	and	methods	to	a	set	of
shapes.	These	two	ways	allow	you	to	perform	any	operation	that	you	can
perform	on	a	single	shape	on	a	range	of	shapes,	whether	or	not	you	can	perform
the	same	operation	in	the	user	interface.

If	the	operation	works	on	a	multiple	selected	shapes	in	the	user	interface,
you	can	perform	the	same	operation	in	Visual	Basic	by	constructing	a
ShapeRange	collection	that	contains	the	shapes	you	want	to	work	with,	and
applying	the	appropriate	properties	and	methods	directly	to	the
ShapeRange	collection.
If	the	operation	doesn't	work	on	multiple	selected	shapes	in	the	user
interface,	you	can	still	perform	the	operation	in	Visual	Basic	by	looping
through	the	Shapes	collection	or	through	a	ShapeRange	collection	that
contains	the	shapes	you	want	to	work	with,	and	applying	the	appropriate
properties	and	methods	to	the	individual	Shape	objects	in	the	collection.

Many	properties	and	methods	that	apply	to	the	Shape	object	and	ShapeRange
collection	fail	if	applied	to	certain	kinds	of	shapes.	For	example,	the	TextFrame
property	fails	if	applied	to	a	shape	that	cannot	contain	text.	If	you	are	not
positive	that	each	the	shapes	in	a	ShapeRange	collection	can	have	a	certain
property	or	method	applied	to	it,	don't	apply	the	property	or	method	to	the
ShapeRange	collection.	If	you	want	to	apply	one	of	these	properties	or	methods
to	a	collection	of	shapes,	you	must	loop	through	the	collection	and	test	each
individual	shape	to	make	sure	it’s	an	appropriate	type	of	shape	before	applying
to	property	or	method	to	it.

Creating	a	ShapeRange	Collection	that	Contains	All
Shapes	on	a	Sheet

You	can	create	a	ShapeRange	object	that	contains	all	the	Shape	objects	on	a
sheet	by	selecting	the	shapes	and	then	using	the	ShapeRange	property	to	return
a	ShapeRange	object	containing	the	selected	shapes.

Worksheets(1).Shapes.Select

Set	sr	=	Selection.ShapeRange

In	Microsoft	Excel,	the	Index	argument	isn’t	optional	for	the	Range	property	of
the	Shapes	collection,	so	you	cannot	use	this	property	without	an	argument	to
create	a	ShapeRange	object	containing	all	shapes	in	a	Shapes	collection.

Applying	a	Property	or	Method	to	a	ShapeRange
Collection

If	you	can	perform	an	operation	on	multiple	selected	shapes	in	the	user	interface
at	the	same	time,	you	can	do	the	programmatic	equivalent	by	constructing	a
ShapeRange	collection	and	then	applying	the	appropriate	properties	or	methods
to	it.	The	following	example	constructs	a	shape	range	that	contains	the	shapes
named	"Big	Star"	and	"Little	Star"	on	myDocument	and	applies	a	gradient	fill	to
them.

Set	myDocument	=	Worksheets(1)

Set	myRange	=	myDocument.Shapes.Range(Array("Big	Star",	_

				"Little	Star"))

myRange.Fill.PresetGradient	_

				msoGradientHorizontal,	1,	msoGradientBrass

The	following	are	general	guidelines	for	how	properties	and	methods	behave
when	they're	applied	to	a	ShapeRange	collection.

Applying	a	method	to	the	collection	is	equivalent	to	applying	the	method	to
each	individual	Shape	object	in	that	collection.
Setting	the	value	of	a	property	of	the	collection	is	equivalent	to	setting	the
value	of	the	property	of	each	individual	shape	in	that	range.
A	property	of	the	collection	that	returns	a	constant	returns	the	value	of	the
property	for	an	individual	shape	in	the	collection	if	all	shapes	in	the
collection	have	the	same	value	for	that	property.	If	not	all	shapes	in	the
collection	have	the	same	value	for	the	property,	it	returns	the	"mixed"
constant.
A	property	of	the	collection	that	returns	a	simple	data	type	(such	as	Long,
Single,	or	String)	returns	the	value	of	the	property	for	an	individual	shape
if	all	shapes	in	the	collection	have	the	same	value	for	that	property.
The	value	of	some	properties	can	be	returned	or	set	only	if	there's	exactly
one	shape	in	the	collection.	If	there's	more	than	one	shape	in	the	collection,
a	run-time	error	occurs.	This	is	generally	the	case	for	returning	or	setting
properties	when	the	equivalent	action	in	the	user	interface	is	possible	only
with	a	single	shape	(actions	such	as	editing	text	in	a	shape	or	editing	the
points	of	a	freeform).

The	preceding	guidelines	also	apply	when	you	are	setting	properties	of	shapes
that	are	grouped	under	secondary	objects	of	the	ShapeRange	collection,	such	as
the	FillFormat	object.	If	the	secondary	object	represents	operations	that	can	be
performed	on	multiple	selected	objects	in	the	user	interface,	you	will	be	able	to
return	the	object	from	a	ShapeRange	collection	and	set	its	properties.	For
example,	you	can	use	the	Fill	property	to	return	the	FillFormat	object	that
represents	the	fills	of	all	the	shapes	in	the	ShapeRange	collection.	Setting	the
properties	of	this	FillFormat	object	will	set	the	same	properties	for	all	the
individual	shapes	in	the	ShapeRange	collection.

Looping	Through	a	Shapes	or	ShapeRange	Collection

Even	if	you	cannot	perform	an	operation	on	several	shapes	in	the	user	interface
at	the	same	time	by	selecting	them	and	then	using	a	command,	you	can	perform
the	equivalent	action	programmatically	by	looping	through	a	Shapes	or
ShapeRange	collection	that	contains	the	shapes	you	want	to	work	with,
applying	the	appropriate	properties	and	methods	to	the	individual	Shape	objects
in	the	collection.	The	following	example	loops	through	all	the	shapes	on
myDocument	and	changes	the	foreground	color	for	each	shape	that’s	an
AutoShape.

Set	myDocument	=	Worksheets(1)

For	Each	sh	In	myDocument.Shapes

				If	sh.Type	=	msoAutoShape	Then

								sh.Fill.ForeColor.RGB	=	RGB(255,	0,	0)

				End	If

Next

The	following	example	constructs	a	ShapeRange	collection	that	contains	all	the
currently	selected	shapes	in	the	active	window	and	sets	the	foreground	color	for
each	selected	shape.

For	Each	sh	in	ActiveWindow.Selection.ShapeRange

				sh.Fill.ForeColor.RGB	=	RGB(255,	0,	0)

Next

Aligning,	Distributing,	and	Grouping	Shapes	in	a
Shape	Range

Use	the	Align	and	Distribute	methods	to	position	a	set	of	shapes	relative	to	one
another	or	relative	to	the	document	that	contains	them.	Use	the	Group	method
or	the	Regroup	method	to	form	a	single	grouped	shape	from	a	set	of	shapes.

OLE	Programmatic	Identifiers
			

You	can	use	an	OLE	programmatic	identifier	(sometimes	called	a	ProgID)	to
create	an	Automation	object.	The	following	tables	list	OLE	programmatic
identifiers	for	ActiveX	controls,	Microsoft	Office	applications,	and	Microsoft
Office	Web	Components.

ActiveX	Controls

Microsoft	Access

Microsoft	Excel

Microsoft	Graph

Microsoft	Office	Web	Components

Microsoft	Outlook

Microsoft	PowerPoint

Microsoft	Word

ActiveX	Controls

To	create	the	ActiveX	controls	listed	in	the	following	table,	use	the
corresponding	OLE	programmatic	identifier.

To	create	this	control Use	this	identifier
CheckBox Forms.CheckBox.1
ComboBox Forms.ComboBox.1
CommandButton Forms.CommandButton.1
Frame Forms.Frame.1
Image Forms.Image.1
Label Forms.Label.1
ListBox Forms.ListBox.1
MultiPage Forms.MultiPage.1
OptionButton Forms.OptionButton.1
ScrollBar Forms.ScrollBar.1
SpinButton Forms.SpinButton.1
TabStrip Forms.TabStrip.1
TextBox Forms.TextBox.1
ToggleButton Forms.ToggleButton.1

Microsoft	Access

To	create	the	Microsoft	Access	objects	listed	in	the	following	table,	use	one	of
the	corresponding	OLE	programmatic	identifiers.	If	you	use	an	identifier	without
a	version	number	suffix,	you	create	an	object	in	the	most	recent	version	of
Access	available	on	the	machine	where	the	macro	is	running.

To	create	this	object Use	one	of	these	identifiers
Application Access.Application,	Access.Application
CurrentData Access.CodeData,	Access.CurrentData
CurrentProject Access.CodeProject,	Access.CurrentProject
DefaultWebOptions Access.DefaultWebOptions

Microsoft	Excel

To	create	the	Microsoft	Excel	objects	listed	in	the	following	table,	use	one	of	the
corresponding	OLE	programmatic	identifiers.	If	you	use	an	identifier	without	a
version	number	suffix,	you	create	an	object	in	the	most	recent	version	of	Excel
available	on	the	machine	where	the	macro	is	running.

To	create	this	object Use	one	of	these
identifiers Comments

Application Excel.Application,
Excel.Application 	

Workbook Excel.AddIn 	

Workbook Excel.Chart,
Excel.Chart

Returns	a	workbook
containing	two	worksheets;
one	for	the	chart	and	one	for
its	data.	The	chart	worksheet
is	the	active	worksheet.

Workbook Excel.Sheet,
Excel.Sheet

Returns	a	workbook	with	one
worksheet.

Microsoft	Graph

To	create	the	Microsoft	Graph	objects	listed	in	the	following	table,	use	one	of	the
corresponding	OLE	programmatic	identifiers.	If	you	use	an	identifier	without	a
version	number	suffix,	you	create	an	object	in	the	most	recent	version	of	Graph
available	on	the	machine	where	the	macro	is	running.

To	create	this	object Use	one	of	these	identifiers

Application MSGraph.Application,
MSGraph.Application

Chart MSGraph.Chart,	MSGraph.Chart

Microsoft	Office	Web	Components

To	create	the	Microsoft	Office	Web	Components	objects	listed	in	the	following
table,	use	one	of	the	corresponding	OLE	programmatic	identifiers.	If	you	use	an
identifier	without	a	version	number	suffix,	you	create	an	object	in	the	most
recent	version	of	Microsoft	Office	Web	Components	available	on	the	machine
where	the	macro	is	running.

To	create	this	object Use	this	identifiers
ChartSpace OWC10.Chart
DataSourceControl OWC10.DataSourceControl
ExpandControl OWC.ExpandControl
PivotTable OWC10.PivotTable
RecordNavigationControl OWC10.RecordNavigationControl
Spreadsheet OWC10.Spreadsheet

Microsoft	Outlook

To	create	the	Microsoft	Outlook	objects	listed	in	the	following	table,	use	one	of
the	corresponding	OLE	programmatic	identifiers.	If	you	use	an	identifier	without
a	version	number	suffix,	you	create	an	object	in	the	most	recent	version	of
Outlook	available	on	the	machine	where	the	macro	is	running.

To	create	this	object Use	one	of	these	identifiers

Application Outlook.Application,
Outlook.Application

Microsoft	PowerPoint

To	create	the	Microsoft	PowerPoint	objects	listed	in	the	following	table,	use	one
of	the	corresponding	OLE	programmatic	identifiers.	If	you	use	an	identifier
without	a	version	number	suffix,	you	create	an	object	in	the	most	recent	version
of	PowerPoint	available	on	the	machine	where	the	macro	is	running.

To	create	this	object Use	one	of	these	identifiers

Application PowerPoint.Application,
PowerPoint.Application

Microsoft	Word

To	create	the	Microsoft	Word	objects	listed	in	the	following	table,	use	one	of	the
corresponding	OLE	programmatic	identifiers.	If	you	use	an	identifier	without	a
version	number	suffix,	you	create	an	object	in	the	most	recent	version	of	Word
available	on	the	machine	where	the	macro	is	running.

To	create	this	object Use	one	of	these	identifiers
Application Word.Application,	Word.Application

Document Word.Document,	Word.Document,
Word.Template

Global Word.Global

AddIn	Object
									
Application	 AddIns	(AddIn)

Represents	a	single	add-in,	either	installed	or	not	installed.	The	AddIn	object	is
a	member	of	the	AddIns	collection.	The	AddIns	collection	contains	a	list	of	all
the	add-ins	available	to	Microsoft	Excel,	regardless	of	whether	they’re	installed.
This	list	corresponds	to	the	list	of	add-ins	displayed	in	the	Add-Ins	dialog	box
(Tools	menu).

Using	the	Addin	Object

Use	AddIns(index),	where	index	is	the	add-in	title	or	index	number,	to	return	a
single	AddIn	object.	The	following	example	installs	the	Analysis	Toolpak	add-
in.

AddIns("analysis	toolpak").Installed	=	True

Don’t	confuse	the	add-in	title,	which	appears	in	the	Add-Ins	dialog	box,	with	the
add-in	name,	which	is	the	file	name	of	the	add-in.	You	must	spell	the	add-in	title
exactly	as	it’s	spelled	in	the	Add-Ins	dialog	box,	but	the	capitalization	doesn’t
have	to	match.

The	index	number	represents	the	position	of	the	add-in	in	the	Add-ins	available
box	in	the	Add-Ins	dialog	box.	The	following	example	creates	a	list	that
contains	specified	properties	of	the	available	add-ins.

With	Worksheets("sheet1")

				.Rows(1).Font.Bold	=	True

				.Range("a1:d1").Value	=	_

								Array("Name",	"Full	Name",	"Title",	"Installed")

				For	i	=	1	To	AddIns.Count

								.Cells(i	+	1,	1)	=	AddIns(i).Name

								.Cells(i	+	1,	2)	=	AddIns(i).FullName

								.Cells(i	+	1,	3)	=	AddIns(i).Title

								.Cells(i	+	1,	4)	=	AddIns(i).Installed

				Next

				.Range("a1").CurrentRegion.Columns.AutoFit

End	With

Remarks

The	Add	method	adds	an	add-in	to	the	list	of	available	add-ins	but	doesn’t	install
the	add-in.	Set	the	Installed	property	of	the	add-in	to	True	to	install	the	add-in.
To	install	an	add-in	that	doesn’t	appear	in	the	list	of	available	add-ins,	you	must
first	use	the	Add	method	and	then	set	the	Installed	property.	This	can	be	done	in
a	single	step,	as	shown	in	the	following	example	(note	that	you	use	the	name	of
the	add-in,	not	its	title,	with	the	Add	method).

AddIns.Add("generic.xll").Installed	=	True

Use	Workbooks(index)	where	index	is	the	add-in	filename	(not	title)	to	return	a
reference	to	the	workbook	corresponding	to	a	loaded	add-in.	You	must	use	the
file	name	because	loaded	add-ins	don’t	normally	appear	in	the	Workbooks
collection.	This	example	sets	the	wb	variable	to	the	workbook	for	Myaddin.xla.

Set	wb	=	Workbooks("myaddin.xla")

The	following	example	sets	the	wb	variable	to	the	workbook	for	the	Analysis
Toolpak	add-in.

Set	wb	=	Workbooks(AddIns("analysis	toolpak").Name)

If	the	Installed	property	returns	True,	but	calls	to	functions	in	the	add-in	still
fail,	the	add-in	may	not	actually	be	loaded.	This	is	because	the	Addin	object
represents	the	existence	and	installed	state	of	the	add-in	but	doesn't	represent	the
actual	contents	of	the	add-in	workbook.To	guarantee	that	an	installed	add-in	is
loaded,	you	should	open	the	add-in	workbook.	The	following	example	opens	the
workbook	for	the	add-in	named	"My	Addin"	if	the	add-in	isn’t	already	present	in
the	Workbooks	collection.

On	Error	Resume	Next				'	turn	off	error	checking

Set	wbMyAddin	=	Workbooks(Addins("My	Addin").Name)

lastError	=	Err

On	Error	Goto	0								'	restore	error	checking

If	lastError	<>	0	Then

				'	the	add-in	workbook	isn't	currently	open.	Manually	open	it.

				Set	wbMyAddin	=	Workbooks.Open(Addins("My	Addin").FullName)

End	If

AddIns	Collection	Object
									
Application	 AddIns	(AddIn)

A	collection	of	AddIn	objects	that	represents	all	the	add-ins	available	to
Microsoft	Excel,	regardless	of	whether	they’re	installed.	This	list	corresponds	to
the	list	of	add-ins	displayed	in	the	Add-Ins	dialog	box	(Tools	menu).

Using	the	Addins	Collection

Use	the	AddIns	method	to	return	the	AddIns	collection.	The	following	example
creates	a	list	that	contains	the	names	and	installed	states	of	all	the	available	add-
ins.

Sub	DisplayAddIns()

				Worksheets("Sheet1").Activate

				rw	=	1

				For	Each	ad	In	Application.AddIns

								Worksheets("Sheet1").Cells(rw,	1)	=	ad.Name

								Worksheets("Sheet1").Cells(rw,	2)	=	ad.Installed

								rw	=	rw	+	1

				Next

End	Sub

Use	the	Add	method	to	add	an	add-in	to	the	list	of	available	add-ins.	The	Add
method	adds	an	add-in	to	the	list	but	doesn’t	install	the	add-in.	Set	the	Installed
property	of	the	add-in	to	True	to	install	the	add-in.	To	install	an	add-in	that
doesn’t	appear	in	the	list	of	available	add-ins,	you	must	first	use	the	Add	method
and	then	set	the	Installed	property.	This	can	be	done	in	a	single	step,	as	shown
in	the	following	example	(note	that	you	use	the	name	of	the	add-in,	not	its	title,
with	the	Add	method).

AddIns.Add("generic.xll").Installed	=	True

Use	AddIns(index)	where	index	is	the	add-in	title	or	index	number	to	return	a
single	AddIn	object.	The	following	example	installs	the	Analysis	Toolpak	add-
in.

AddIns("analysis	toolpak").Installed	=	True

Don’t	confuse	the	add-in	title,	which	appears	in	the	Add-Ins	dialog	box,	with	the
add-in	name,	which	is	the	file	name	of	the	add-in.	You	must	spell	the	add-in	title
exactly	as	it’s	spelled	in	the	Add-Ins	dialog	box,	but	the	capitalization	doesn’t
have	to	match.

Adjustments	Object
									

Shapes	(Shape)	 Adjustments

Contains	a	collection	of	adjustment	values	for	the	specified	AutoShape,	WordArt
object,	or	connector.	Each	adjustment	value	represents	one	way	an	adjustment
handle	can	be	adjusted.	Because	some	adjustment	handles	can	be	adjusted	in	two
ways	—	for	instance,	some	handles	can	be	adjusted	both	horizontally	and
vertically	—	a	shape	can	have	more	adjustment	values	than	it	has	adjustment
handles.	A	shape	can	have	up	to	eight	adjustments.

Using	the	Adjustments	Object

Use	the	Adjustments	property	to	return	an	Adjustments	object.	Use
Adjustments(index),	where	index	is	the	adjustment	value’s	index	number,	to
return	a	single	adjustment	value.

Different	shapes	have	different	numbers	of	adjustment	values,	different	kinds	of
adjustments	change	the	geometry	of	a	shape	in	different	ways,	and	different
kinds	of	adjustments	have	different	ranges	of	valid	values.	For	example,	the
following	illustration	shows	what	each	of	the	four	adjustment	values	for	a	right-
arrow	callout	contributes	to	the	definition	of	the	callout’s	geometry.

Note			Because	each	adjustable	shape	has	a	different	set	of	adjustments,	the	best
way	to	verify	the	adjustment	behavior	for	a	specific	shape	is	to	manually	create
an	instance	of	the	shape,	make	adjustments	with	the	macro	recorder	turned	on,
and	then	examine	the	recorded	code.

The	following	table	summarizes	the	ranges	of	valid	adjustment	values	for
different	types	of	adjustments.	In	most	cases,	if	you	specify	a	value	that’s	beyond
the	range	of	valid	values,	the	closest	valid	value	will	be	assigned	to	the
adjustment.

Type	of	adjustment Valid	values

Linear	(horizontal	or

Generally	the	value	0.0	represents	the	left	or	top	edge
of	the	shape	and	the	value	1.0	represents	the	right	or
bottom	edge	of	the	shape.	Valid	values	correspond	to
valid	adjustments	you	can	make	to	the	shape	manually.
For	example,	if	you	can	only	pull	an	adjustment	handle
half	way	across	the	shape	manually,	the	maximum

vertical) value	for	the	corresponding	adjustment	will	be	0.5.	For
shapes	such	as	connectors	and	callouts,	where	the
values	0.0	and	1.0	represent	the	limits	of	the	rectangle
defined	by	the	starting	and	ending	points	of	the
connector	or	callout	line,	negative	numbers	and
numbers	greater	than	1.0	are	valid	values.

Radial
An	adjustment	value	of	1.0	corresponds	to	the	width	of
the	shape.	The	maximum	value	is	0.5,	or	half	way
across	the	shape.

Angle
Values	are	expressed	in	degrees.	If	you	specify	a	value
outside	the	range		–	180	to	180,	it	will	be	normalized	to
be	within	that	range.

The	following	example	adds	a	right-arrow	callout	to	myDocument	and	sets
adjustment	values	for	the	callout.	Note	that	although	the	shape	has	only	three
adjustment	handles,	it	has	four	adjustments.	Adjustments	three	and	four	both
correspond	to	the	handle	between	the	head	and	neck	of	the	arrow.

Set	myDocument	=	Worksheets(1)

Set	rac	=	myDocument.Shapes.AddShape(msoShapeRightArrowCallout,	_

				10,	10,	250,	190)

With	rac.Adjustments

				.Item(1)	=	0.5				'adjusts	width	of	text	box

				.Item(2)	=	0.15			'adjusts	width	of	arrow	head

				.Item(3)	=	0.8				'adjusts	length	of	arrow	head

				.Item(4)	=	0.4				'adjusts	width	of	arrow	neck

End	With

AllowEditRange	Object
									
AllowEditRanges	 AllowEditRange

Multiple	objects

Represents	the	cells	that	can	be	edited	on	a	protected	worksheet.

Using	the	AllowEditRange	Object

Use	the	Add	method	or	the	Item	property	of	the	AllowEditRanges	collection	to
return	an	AllowEditRange	object.

Once	an	AllowEditRange	object	has	been	returned,	you	can	use	the
ChangePassword	method	to	change	the	password	to	access	a	range	that	can	be
edited	on	a	protected	worksheet.

In	this	example,	Microsoft	Excel	allows	edits	to	range	"A1:A4"	on	the	active
worksheet,	notifies	the	user,	then	changes	the	password	for	this	specified	range
and	notifies	the	user	of	this	change.

Sub	UseChangePassword()

				Dim	wksOne	As	Worksheet

				Set	wksOne	=	Application.ActiveSheet

				'	Establish	a	range	that	can	allow	edits

				'	on	the	protected	worksheet.

				wksOne.Protection.AllowEditRanges.Add	_

								Title:="Classified",	_

								Range:=Range("A1:A4"),	_

								Password:="secret"

				MsgBox	"Cells	A1	to	A4	can	be	edited	on	the	protected	worksheet."

				'	Change	the	password.

				wksOne.Protection.AllowEditRanges(1).ChangePassword	_

								Password:="moresecret"

				MsgBox	"The	password	for	these	cells	has	been	changed."

End	Sub

AllowEditRanges	Collection
									
Protection	 AllowEditRanges

AllowEditRange

A	collection	of	all	the	AllowEditRanges	objects	that	represent	the	cells	that	can
be	edited	on	a	protected	worksheet.

Using	the	AllowEditRanges	Collection

Use	the	AllowEditRanges	property	of	the	Protection	object	to	return	an
AllowEditRanges	collection.

Once	an	AllowEditRanges	collection	has	been	returned,	you	can	use	the	Add
method	to	add	a	range	that	can	be	edited	on	a	protected	worksheet.

In	this	example,	Microsoft	Excel	allows	edits	to	range	"A1:A4"	on	the	active
worksheet	and	notifies	the	user	of	the	title	and	address	of	the	specified	range.

Sub	UseAllowEditRanges()

				Dim	wksOne	As	Worksheet

				Set	wksOne	=	Application.ActiveSheet

				'	Unprotect	worksheet.

				wksOne.Unprotect

				'	Establish	a	range	that	can	allow	edits

				'	on	the	protected	worksheet.

				wksOne.Protection.AllowEditRanges.Add	_

								Title:="Classified",	_

								Range:=Range("A1:A4"),	_

								Password:="secret"

				'	Notify	the	user

				'	the	title	and	address	of	the	range.

				With	wksOne.Protection.AllowEditRanges.Item(1)

								MsgBox	"Title	of	range:	"	&	.Title

								MsgBox	"Address	of	range:	"	&	.Range.Address

				End	With

End	Sub

Application	Object
									
Application	 Multiple	objects

Represents	the	entire	Microsoft	Excel	application.	The	Application	object
contains:

Application-wide	settings	and	options	(many	of	the	options	in	the	Options
dialog	box	(Tools	menu),	for	example).
Methods	that	return	top-level	objects,	such	as	ActiveCell,	ActiveSheet,	and
so	on.

Using	the	Application	Object

Use	the	Application	property	to	return	the	Application	object.	The	following
example	applies	the	Windows	property	to	the	Application	object.

Application.Windows("book1.xls").Activate

The	following	example	creates	a	Microsoft	Excel	workbook	object	in	another
application	and	then	opens	a	workbook	in	Microsoft	Excel.

Set	xl	=	CreateObject("Excel.Sheet")

xl.Application.Workbooks.Open	"newbook.xls"

Remarks

Many	of	the	properties	and	methods	that	return	the	most	common	user-interface
objects,	such	as	the	active	cell	(ActiveCell	property),	can	be	used	without	the
Application	object	qualifier.	For	example,	instead	of	writing
Application.ActiveCell.Font.Bold	=	True,	you	can	write
ActiveCell.Font.Bold	=	True.

Areas	Collection
									
Range	 Areas

Range

A	collection	of	the	areas,	or	contiguous	blocks	of	cells,	within	a	selection.
There’s	no	singular	Area	object;	individual	members	of	the	Areas	collection	are
Range	objects.	The	Areas	collection	contains	one	Range	object	for	each
discrete,	contiguous	range	of	cells	within	the	selection.	If	the	selection	contains
only	one	area,	the	Areas	collection	contains	a	single	Range	object	that
corresponds	to	that	selection.

Using	the	Areas	Collection

Use	the	Areas	property	to	return	the	Areas	collection.	The	following	example
clears	the	current	selection	if	it	contains	more	than	one	area.

If	Selection.Areas.Count	<>	1	Then	Selection.Clear

Use	Areas(index),	where	index	is	the	area	index	number,	to	return	a	single
Range	object	from	the	collection.	The	index	numbers	correspond	to	the	order	in
which	the	areas	were	selected.	The	following	example	clears	the	first	area	in	the
current	selection	if	the	selection	contains	more	than	one	area.

If	Selection.Areas.Count	<>	1	Then

				Selection.Areas(1).Clear

End	If

Some	operations	cannot	be	performed	on	more	than	one	area	in	a	selection	at	the
same	time;	you	must	loop	through	the	individual	areas	in	the	selection	and
perform	the	operations	on	each	area	separately.	The	following	example	performs
the	operation	named	"myOperation"	on	the	selected	range	if	the	selection
contains	only	one	area;	if	the	selection	contains	multiple	areas,	the	example
performs	myOperation	on	each	individual	area	in	the	selection.

Set	rangeToUse	=	Selection

If	rangeToUse.Areas.Count	=	1	Then

				myOperation	rangeToUse

Else

				For	Each	singleArea	in	rangeToUse.Areas

								myOperation	singleArea

				Next

End	If

AutoCorrect	Object
									
Application	 AutoCorrect

Contains	Microsoft	Excel	AutoCorrect	attributes	(capitalization	of	names	of
days,	correction	of	two	initial	capital	letters,	automatic	correction	list,	and	so
on).

Using	the	AutoCorrect	Object

Use	the	AutoCorrect	property	to	return	the	AutoCorrect	object.	The	following
example	sets	Microsoft	Excel	to	correct	words	that	begin	with	two	initial	capital
letters.

With	Application.AutoCorrect

				.TwoInitialCapitals	=	True

				.ReplaceText	=	True

End	With

AutoFilter	Object
									
Worksheets	(Worksheet)	 AutoFilter

Filters	(Filter)

Represents	autofiltering	for	the	specified	worksheet.

Using	the	AutoFilter	Object

Use	the	AutoFilter	property	to	return	the	AutoFilter	object.	Use	the	Filters
method	to	return	a	collection	of	individual	column	filters.	Use	the	Range
method	to	return	the	Range	object	that	represents	the	entire	filtered	range.	The
following	example	stores	the	address	and	filtering	criteria	for	the	current
filtering	and	then	applies	new	filters.

Dim	w	As	Worksheet

Dim	filterArray()

Dim	currentFiltRange	As	String

Sub	ChangeFilters()

Set	w	=	Worksheets("Crew")

With	w.AutoFilter

				currentFiltRange	=	.Range.Address

				With	.Filters

								ReDim	filterArray(1	To	.Count,	1	To	3)

								For	f	=	1	To	.Count

												With	.Item(f)

																If	.On	Then

																				filterArray(f,	1)	=	.Criteria1

																				If	.Operator	Then

																								filterArray(f,	2)	=	.Operator

																								filterArray(f,	3)	=	.Criteria2

																				End	If

																End	If

												End	With

								Next

				End	With

End	With

w.AutoFilterMode	=	False

w.Range("A1").AutoFilter	field:=1,	Criteria1:="S"

End	Sub

To	create	an	AutoFilter	object	for	a	worksheet,	you	must	turn	autofiltering	on
for	a	range	on	the	worksheet	either	manually	or	using	the	AutoFilter	method	of
the	Range	object.	The	following	example	uses	the	values	stored	in	module-level
variables	in	the	previous	example	to	restore	the	original	autofiltering	to	the	Crew

worksheet.

Sub	RestoreFilters()

Set	w	=	Worksheets("Crew")

w.AutoFilterMode	=	False

For	col	=	1	To	UBound(filterArray(),	1)

				If	Not	IsEmpty(filterArray(col,	1))	Then

								If	filterArray(col,	2)	Then

												w.Range(currentFiltRange).AutoFilter	field:=col,	_

																Criteria1:=filterArray(col,	1),	_

																				Operator:=filterArray(col,	2),	_

																Criteria2:=filterArray(col,	3)

								Else

												w.Range(currentFiltRange).AutoFilter	field:=col,	_

																Criteria1:=filterArray(col,	1)

								End	If

				End	If

Next

End	Sub

AutoRecover	Object
									
Application	 AutoRecover

Represents	the	automatic	recovery	features	of	a	workbook.	Properties	for	the
AutoRecover	object	determine	the	path	and	time	interval	for	backing	up	all
files.

Using	the	AutoRecover	object

Use	the	AutoRecover	property	of	the	Application	object	to	return	an
AutoRecover	object.	

Use	the	Path	property	of	the	AutoRecover	object	to	set	the	path	for	where	the
AutoRecover	file	will	be	saved.	The	following	example	sets	the	path	of	the
AutoRecover	file	to	drive	C.

Sub	SetPath()

				Application.AutoRecover.Path	=	"C:\"

End	Sub

Use	the	Time	property	of	the	AutoRecover	object	to	set	the	time	interval	for
backing	up	all	files.

Note			Units	for	the	Time	property	are	in	minutes.

Sub	SetTime()

				Application.AutoRecover.Time	=	5

End	Sub

Axes	Collection	Object
									
Charts	(Chart)	 Axes	(Axis)

AxisTitle
Border
Gridlines
TickLabels

A	collection	of	all	the	Axis	objects	in	the	specified	chart.

Using	the	Axes	Collection

Use	the	Axes	method	to	return	the	Axes	collection.	The	following	example
displays	the	number	of	axes	on	embedded	chart	one	on	worksheet	one.

With	Worksheets(1).ChartObjects(1).Chart

				MsgBox	.Axes.Count

End	With

Use	Axes(type,	group),	where	type	is	the	axis	type	and	group	is	the	axis	group,
to	return	a	single	Axis	object.	Type	can	be	one	of	the	following	XlAxisType
constants:	xlCategory,	xlSeries,	or	xlValue.	Group	can	be	one	of	the	following
XlAxisGroup	constants:	xlPrimary	or	xlSecondary.	For	more	information,	see
the	Axes	method.

The	following	example	sets	the	category	axis	title	text	on	the	chart	sheet	named
"Chart1."

With	Charts("chart1").Axes(xlCategory)

				.HasTitle	=	True

				.AxisTitle.Caption	=	"1994"

End	With

Axis	Object
									
Charts	(Chart)	 Axes	(Axis)

AxisTitle
Border
DisplayUnitLabel
Gridlines
TickLabels

Represents	a	single	axis	in	a	chart.	The	Axis	object	is	a	member	of	the	Axes
collection.

Using	the	Axis	Object

Use	Axes(type,	group)	where	type	is	the	axis	type	and	group	is	the	axis	group	to
return	a	single	Axis	object.	Type	can	be	one	of	the	following	XlAxisType
constants:	xlCategory,	xlSeries,	or	xlValue.	Group	can	be	one	of	the	following
XlAxisGroup	constants:	xlPrimary	or	xlSecondary.	For	more	information,	see
the	Axes	method.

The	following	example	sets	the	category	axis	title	text	on	the	chart	sheet	named
"Chart1."

With	Charts("chart1").Axes(xlCategory)

				.HasTitle	=	True

				.AxisTitle.Caption	=	"1994"

End	With

AxisTitle	Object
									
Axis	 AxisTitle

Multiple	objects

Represents	a	chart	axis	title.

Using	the	AxisTitle	Object

Use	the	AxisTitle	property	to	return	an	AxisTitle	object.	The	following	example
activates	embedded	chart	one,	sets	the	value	axis	title	text,	sets	the	font	to
Bookman	10	point,	and	formats	the	word	millions	as	italic.

Worksheets("sheet1").ChartObjects(1).Activate

With	ActiveChart.Axes(xlValue)

				.HasTitle	=	True

				With	.AxisTitle

								.Caption	=	"Revenue	(millions)"

								.Font.Name	=	"bookman"

								.Font.Size	=	10

								.Characters(10,	8).Font.Italic	=	True

				End	With

End	With

Remarks

The	AxisTitle	object	doesn’t	exist	and	cannot	be	used	unless	the	HasTitle
property	for	the	axis	is	True.

Border	Object
									
Multiple	objects	 Border

Represents	the	border	of	an	object.

Using	the	Border	Object

Most	bordered	objects	(all	except	for	the	Range	and	Style	objects)	have	a	border
that’s	treated	as	a	single	entity,	regardless	of	how	many	sides	it	has.	The	entire
border	must	be	returned	as	a	unit.	Use	the	Border	property	to	return	the	Border
object	for	this	kind	of	object.	The	following	example	activates	the	chart	sheet
named	Chart1	places	a	dashed	border	around	the	chart	area	for	the	active	chart
and	places	a	dotted	border	around	the	plot	area.

Charts("chart1").Activate

With	ActiveChart

				.ChartArea.Border.LineStyle	=	xlDash

				.PlotArea.Border.LineStyle	=	xlDot

End	With

Range	and	Style	objects	have	four	discrete	borders	—	left,	right,	top,	and
bottom	—	which	can	be	returned	individually	or	as	a	group.	Use	the	Borders
property	to	return	the	Borders	collection,	which	contains	all	four	borders	and
treats	the	borders	as	a	unit.	The	following	example	adds	a	double	border	to	cell
A1	on	worksheet	one.

Worksheets(1).Range("A1").Borders.LineStyle	=	xlDouble

Use	Borders(index),	where	index	identifies	the	border,	to	return	a	single	Border
object.	The	following	example	sets	the	color	of	the	bottom	border	of	cells
A1:G1.

Worksheets("Sheet1").Range("A1:G1").	_

				Borders(xlEdgeBottom).Color	=	RGB(255,	0,	0)

Index	can	be	one	of	the	following	XlBordersIndex	constants:	xlDiagonalDown,
xlDiagonalUp,	xlEdgeBottom,	xlEdgeLeft,	xlEdgeRight,	xlEdgeTop,
xlInsideHorizontal,	or	xlInsideVertical.

Borders	Collection
									
Multiple	objects	 Borders

Border

A	collection	of	four	Border	objects	that	represent	the	four	borders	of	a	Range	or
Style	object.

Using	the	Borders	Collection

Use	the	Borders	property	to	return	the	Borders	collection,	which	contains	all
four	borders.	The	following	example	adds	a	double	border	to	cell	A1	on
worksheet	one.

Worksheets(1).Range("A1").Borders.LineStyle	=	xlDouble

Use	Borders(index),	where	index	identifies	the	border,	to	return	a	single	Border
object.	The	following	example	sets	the	color	of	the	bottom	border	of	cells	A1:G1
to	red.

Worksheets("Sheet1").Range("A1:G1").	_

				Borders(xlEdgeBottom).Color	=	RGB(255,	0,	0)

Index	can	be	one	of	the	following	XlBordersIndex	constants:	xlDiagonalDown,
xlDiagonalUp,	xlEdgeBottom,	xlEdgeLeft,	xlEdgeRight,	or	xlEdgeTop,
xlInsideHorizontal,	or	xlInsideVertical.

Remarks

You	can	set	border	properties	for	an	individual	border	only	with	Range	and
Style	objects.	Other	bordered	objects,	such	as	check	boxes	and	chart	areas,	have
a	border	that’s	treated	as	a	single	entity,	regardless	of	how	many	sides	it	has.	For
these	objects,	you	must	return	and	set	properties	for	the	entire	border	as	a	unit.
For	more	information,	see	the	Border	object.

Show	All

CalculatedFields	Collection	Object
									
PivotTables	(PivotTable)	 CalculatedFields	(PivotField)

A	collection	of	PivotField	objects	that	represents	all	the	calculated	fields	in	the
specified	PivotTable	report.	For	example,	a	report	that	contains	Revenue	and
Expense	fields	could	have	a	calculated	field	named	“Profit”	defined	as	the
amount	in	the	Revenue	field	minus	the	amount	in	the	Expense	field.

Remarks

For	OLAP	data	sources,	you	cannot	set	this	collection,	and	it	always	returns
Nothing.

Using	the	CalculatedFields	Collection

Use	the	CalculatedFields	method	to	return	the	CalculatedFields	collection	The
following	example	deletes	the	calculated	fields	from	the	PivotTable	report
named	“Pivot1”.

For	Each	fld	in	_

								Worksheets(1).PivotTables("Pivot1").CalculatedFields

				fld.Delete

Next

Use	CalculatedFields(index),	where	index	is	specified	field’s	name	or	index
number,	to	return	a	single	PivotField	object	from	the	CalculatedFields
collection.

CalculatedItems	Collection	Object
									
PivotTables	(PivotTable)	 CalculatedItems	(PivotItem)

A	collection	of	PivotItem	objects	that	represent	all	the	calculated	items	in	the
specified	PivotTable	report.	For	example,	a	PivotTable	report	that	contains
January,	February,	and	March	items	could	have	a	calculated	item	named
“FirstQuarter”	defined	as	the	sum	of	the	amounts	in	January,	February,	and
March.

Using	the	CalculatedItems	Collection

Use	the	CalculatedItems	method	to	return	the	CalculatedItems	collection	The
following	example	creates	a	list	of	the	calculated	items	in	the	first	PivotTable
report	on	worksheet	one,	along	with	their	formulas.

Set	pt	=	Worksheets(1).PivotTables(1)

For	Each	ci	In	pt.PivotFields("Sales").CalculatedItems

				r	=	r	+	1

				With	Worksheets(2)

								.Cells(r,	1).Value	=	ci.Name

								.Cells(r,	2).Value	=	ci.Formula

				End	With

Next

Use	CalculatedFields(index),	where	index	is	the	name	or	index	number	of	the
field,	to	return	a	single	PivotField	object	from	the	CalculatedFields	collection.

Show	All

CalculatedMember	Object
									
CalculatedMembers	 CalculatedMember

Represents	the	calculated	fields	and	calculated	items	for	PivotTables	with	Online
Analytical	Processing	(OLAP)	data	sources.

Using	the	CalculatedMember	object

Use	the	Add	method	or	the	Item	property	of	the	CalculatedMembers	collection
to	return	a	CalculatedMember	object.

With	a	CalculatedMember	object	you	can	check	the	validity	of	a	calculated
field	or	item	in	a	PivotTable	using	the	IsValid	property.

Note			The	IsValid	property	will	return	True	if	the	PivotTable	is	not	currently
connected	to	the	data	source.	Use	the	MakeConnection	method	before	testing
the	IsValid	property.

The	following	example	notifies	the	user	if	the	calculated	member	is	valid	or	not.
This	example	assumes	a	PivotTable	exists	on	the	active	worksheet	that	contains
either	a	valid	or	invalid	calculated	member.

Sub	CheckValidity()

				Dim	pvtTable	As	PivotTable

				Dim	pvtCache	As	PivotCache

				Set	pvtTable	=	ActiveSheet.PivotTables(1)

				Set	pvtCache	=	Application.ActiveWorkbook.PivotCaches.Item(1)

				'	Handle	run-time	error	if	external	source	is	not	an	OLEDB	data	source.

				On	Error	GoTo	Not_OLEDB

				'	Check	connection	setting	and	make	connection	if	necessary.

				If	pvtCache.IsConnected	=	False	Then

								pvtCache.MakeConnection

				End	If

				'	Check	if	calculated	member	is	valid.

				If	pvtTable.CalculatedMembers.Item(1).IsValid	=	True	Then

								MsgBox	"The	calculated	member	is	valid."

				Else

								MsgBox	"The	calculated	member	is	not	valid."

				End	If

End	Sub

Show	All

CalculatedMembers	Collection
									
CalculatedMembers	 CalculatedMember

A	collection	of	all	the	CalculatedMember	objects	on	the	specified	PivotTable.
Each	CalculatedMember	object	represents	a	calculated	field	or	calculated	item.

Using	the	CalculatedMembers	collection

Use	the	CalculatedMembers	property	of	the	PivotTable	object	to	return	a
CalculatedMembers	collection.	The	following	example	adds	a	set	to	a
PivotTable,	assuming	a	PivotTable	exists	on	the	active	worksheet.

Sub	UseCalculatedMember()

				Dim	pvtTable	As	PivotTable

				Set	pvtTable	=	ActiveSheet.PivotTables(1)

				pvtTable.CalculatedMembers.Add	Name:="[Beef]",	_

								Formula:="'{[Product].[All	Products].Children}'",	_

								Type:=xlCalculatedSet

End	Sub

Note			For	the	Add	method	in	the	previous	example,	the	Formula	argument
must	have	a	valid	MDX	syntax	statement.	The	Name	argument	has	to	be
acceptable	to	the	Online	Analytical	Processing	(OLAP)	provider	and	the	Type
argument	has	to	be	defined.

CalloutFormat	Object
									
Shapes	(Shape)	 CalloutFormat

Contains	properties	and	methods	that	apply	to	line	callouts.

Using	the	CalloutFormat	Object

Use	the	Callout	property	to	return	a	CalloutFormat	object.	The	following
example	specifies	the	following	attributes	of	shape	three	(a	line	callout)	on
myDocument:	the	callout	will	have	a	vertical	accent	bar	that	separates	the	text
from	the	callout	line;	the	angle	between	the	callout	line	and	the	side	of	the
callout	text	box	will	be	30	degrees;	there	will	be	no	border	around	the	callout
text;	the	callout	line	will	be	attached	to	the	top	of	the	callout	text	box;	and	the
callout	line	will	contain	two	segments.	For	this	example	to	work,	shape	three
must	be	a	callout.

Set	myDocument	=	Worksheets(1)

With	myDocument.Shapes(3).Callout

				.Accent	=	True

				.Angle	=	msoCalloutAngle30

				.Border	=	False

				.PresetDrop	msoCalloutDropTop

				.Type	=	msoCalloutThree

End	With

CellFormat	Object
									
Application	 CellFormat

Multiple	objects

Represents	the	search	criteria	for	the	cell	format.

Using	the	CellFormat	object

Use	the	FindFormat	or	ReplaceFormat	properties	of	the	Application	object	to
return	a	CellFormat	object.

With	a	CellFormat	object,	you	can	use	the	Borders,	Font,	or	Interior
properties	of	the	CellFormat	object,	to	define	the	search	criteria	for	the	cell
format.	The	following	example	sets	the	search	criteria	for	the	interior	of	the	cell
format.	In	this	scenario,	the	interior	of	cell	A1	is	set	to	yellow,	which	is	then
found	and	replaced	with	a	green	interior.

Sub	ChangeCellFormat()

				'	Set	the	interior	of	cell	A1	to	yellow.

				Range("A1").Select

				Selection.Interior.ColorIndex	=	36

				MsgBox	"The	cell	format	for	cell	A1	is	a	yellow	interior."

				'	Set	the	CellFormat	object	to	replace	yellow	with	green.

				With	Application

								.FindFormat.Interior.ColorIndex	=	36

								.ReplaceFormat.Interior.ColorIndex	=	35

				End	With

				'	Find	and	replace	cell	A1's	yellow	interior	with	green.

				ActiveCell.Replace	What:="",	Replacement:="",	LookAt:=xlPart,	_

								SearchOrder:=xlByRows,	MatchCase:=False,	SearchFormat:=True,	_

								ReplaceFormat:=True

				MsgBox	"The	cell	format	for	cell	A1	is	replaced	with	a	green	interior."

End	Sub

Characters	Object
									
Multiple	objects	 Characters

Font

Represents	characters	in	an	object	that	contains	text.	The	Characters	object	lets
you	modify	any	sequence	of	characters	contained	in	the	full	text	string.

Using	the	Characters	Object

Use	Characters(start,	length),	where	start	is	the	start	character	number	and
length	is	the	number	of	characters,	to	return	a	Characters	object.	The	following
example	adds	text	to	cell	B1	and	then	makes	the	second	word	bold.

With	Worksheets("Sheet1").Range("B1")

				.Value	=	"New	Title"

				.Characters(5,	5).Font.Bold	=	True

End	With

Remarks

The	Characters	method	is	necessary	only	when	you	need	to	change	some	of	an
object’s	text	without	affecting	the	rest	(you	cannot	use	the	Characters	method	to
format	a	portion	of	the	text	if	the	object	doesn’t	support	rich	text).	To	change	all
the	text	at	the	same	time,	you	can	usually	apply	the	appropriate	method	or
property	directly	to	the	object.	The	following	example	formats	the	contents	of
cell	A5	as	italic.

Worksheets("Sheet1").Range("A5").Font.Italic	=	True

Chart	Object
									
Multiple	objects	 Chart

Multiple	objects

Represents	a	chart	in	a	workbook.	The	chart	can	be	either	an	embedded	chart
(contained	in	a	ChartObject)	or	a	separate	chart	sheet.

Using	the	Chart	Object

The	following	properties	and	methods	for	returning	a	Chart	object	are	described
in	this	section:

Chart	property
Charts	method
ActiveChart	property
ActiveSheet	property

Chart	Property

Use	the	Chart	property	to	return	a	Chart	object	that	represents	the	chart
contained	in	a	ChartObject	object.	The	following	example	sets	the	pattern	for
the	chart	area	in	embedded	chart	one	on	the	worksheet	named	"Sheet1."

Worksheets("Sheet1").ChartObjects(1).Chart.	_

				ChartArea.Interior.Pattern	=	xlLightDown

Charts	Method

The	Charts	collection	contains	a	Chart	object	for	each	chart	sheet	in	a
workbook.	Use	Charts(index),	where	index	is	the	chart-sheet	index	number	or
name,	to	return	a	single	Chart	object.	The	following	example	changes	the	color
of	series	one	on	chart	sheet	one.

Charts(1).SeriesCollection(1).Interior.Color	=	RGB(255,	0,	0)

The	chart	index	number	represents	the	position	of	the	chart	sheet	on	the
workbook	tab	bar.	Charts(1)	is	the	first	(leftmost)	chart	in	the	workbook;
Charts(Charts.Count)	is	the	last	(rightmost).	All	chart	sheets	are	included	in
the	index	count,	even	if	they’re	hidden.	The	chart-sheet	name	is	shown	on	the
workbook	tab	for	the	chart.	You	can	use	the	Name	property	to	set	or	return	the
chart	name.

The	following	example	moves	the	chart	named	Sales	to	the	end	of	the	active
workbook.

Charts("Sales").Move	after:=Sheets(Sheets.Count)

The	Chart	object	is	also	a	member	of	the	Sheets	collection.	The	Sheets
collection	contains	all	the	sheets	in	the	workbook	(both	chart	sheets	and
worksheets).	Use	Sheets(index),	where	index	is	the	sheet	index	number	or	name,
to	return	a	single	sheet.

ActiveChart	Property

When	a	chart	is	the	active	object,	you	can	use	the	ActiveChart	property	to	refer
to	it.	A	chart	sheet	is	active	if	the	user	has	selected	it	or	it’s	been	activated	with
the	Activate	method.	The	following	example	activates	chart	sheet	one	and	then
sets	the	chart	type	and	title.

Charts(1).Activate

With	ActiveChart

				.Type	=	xlLine

				.HasTitle	=	True

				.ChartTitle.Text	=	"January	Sales"

End	With

An	embedded	chart	is	active	if	the	user	has	selected	it	or	the	ChartObject	object
that	it’s	contained	in	has	been	activated	with	the	Activate	method.	The	following
example	activates	embedded	chart	one	on	worksheet	one	and	then	sets	the	chart
type	and	title.	Notice	that	after	the	embedded	chart	has	been	activated,	the	code
in	this	example	is	the	same	as	that	in	the	previous	example.	Using	the
ActiveChart	property	allows	you	to	write	Visual	Basic	code	that	can	refer	to
either	an	embedded	chart	or	a	chart	sheet	(whichever	is	active).

Worksheets(1).ChartObjects(1).Activate

ActiveChart.Type	=	xlLine

ActiveChart.HasTitle	=	True

ActiveChart.ChartTitle.Text	=	"January	Sales"

ActiveSheet	Property

When	a	chart	sheet	is	the	active	sheet,	you	can	use	the	ActiveSheet	property	to
refer	to	it.	The	following	example	uses	the	Activate	method	to	activate	the	chart
sheet	named	Chart1	and	then	sets	the	interior	color	for	series	one	in	the	chart	to
blue.

Charts("chart1").Activate

ActiveSheet.SeriesCollection(1).Interior.ColorIndex	=	5

ChartArea	Object
									
Charts	(Chart)	 ChartArea

Border
Font
Interior

Represents	the	chart	area	of	a	chart.	The	chart	area	on	a	2-D	chart	contains	the
axes,	the	chart	title,	the	axis	titles,	and	the	legend.	The	chart	area	on	a	3-D	chart
contains	the	chart	title	and	the	legend;	it	doesn’t	include	the	plot	area	(the	area
within	the	chart	area	where	the	data	is	plotted).	For	information	about	formatting
the	plot	area,	see	the	PlotArea	object.

Using	the	ChartArea	Object

Use	the	ChartArea	property	to	return	the	ChartArea	object.	The	following
example	sets	the	pattern	for	the	chart	area	in	embedded	chart	one	on	the
worksheet	named	"Sheet1."

Worksheets("sheet1").ChartObjects(1).Chart.	_

				ChartArea.Interior.Pattern	=	xlLightDown

ChartColorFormat	Object
									

ChartFillFormat	 ChartColorFormat

Used	only	with	charts.	Represents	the	color	of	a	one-color	object	or	the
foreground	or	background	color	of	an	object	with	a	gradient	or	patterned	fill.

Using	the	ChartColorFormat	Object

Use	one	of	the	properties	listed	in	the	following	table	to	return	a
ChartColorFormat	object.

To	return	a	ChartColorFormat	object	that
represents	this

Use	this
property With	this	object

Background	fill	color	(used	in	a	shaded	or
patterned	fill) BackColor ChartFillFormat

Foreground	fill	color	(or	just	the	fill	color	for
a	solid	fill) ForeColor ChartFillFormat

ChartFillFormat	Object
									
Multiple	objects	 ChartFillFormat

ChartColorFormat

Used	only	with	charts.	Represents	fill	formatting	for	chart	elements.

Using	the	ChartFillFormat	Object

Use	the	Fill	property	to	return	a	ChartFillFormat	object.	The	following
example	sets	the	foreground	color,	background	color,	and	gradient	for	the	chart
area	fill	on	chart	one.

With	Charts(1).ChartArea.Fill

				.Visible	=	True

				.ForeColor.SchemeColor	=	15

				.BackColor.SchemeColor	=	17

				.TwoColorGradient	Style:=msoGradientHorizontal,	Variant:=1

End	With

ChartGroup	Object
									
Multiple	objects	 ChartGroup

Multiple	objects

Represents	one	or	more	series	plotted	in	a	chart	with	the	same	format.	A	chart
contains	one	or	more	chart	groups,	each	chart	group	contains	one	or	more	series,
and	each	series	contains	one	or	more	points.	For	example,	a	single	chart	might
contain	both	a	line	chart	group,	containing	all	the	series	plotted	with	the	line
chart	format,	and	a	bar	chart	group,	containing	all	the	series	plotted	with	the	bar
chart	format.	The	ChartGroup	object	is	a	member	of	the	ChartGroups
collection.

Using	the	ChartGroup	Object

Use	ChartGroups(index),	where	index	is	the	chart-group	index	number,	to
return	a	single	ChartGroup	object.	The	following	example	adds	drop	lines	to
chart	group	one	on	chart	sheet	one.

Charts(1).ChartGroups(1).HasDropLines	=	True

If	the	chart	has	been	activated,	you	can	use	the	ActiveChart	property.

Charts(1).Activate

ActiveChart.ChartGroups(1).HasDropLines	=	True

Because	the	index	number	for	a	particular	chart	group	can	change	if	the	chart
format	used	for	that	group	is	changed,	it	may	be	easier	to	use	one	of	the	named
chart	group	shortcut	methods	to	return	a	particular	chart	group.	The	PieGroups
method	returns	the	collection	of	pie	chart	groups	in	a	chart,	the	LineGroups
method	returns	the	collection	of	line	chart	groups,	and	so	on.	Each	of	these
methods	can	be	used	with	an	index	number	to	return	a	single	ChartGroup
object,	or	without	an	index	number	to	return	a	ChartGroups	collection.	The
following	chart	group	methods	are	available:

AreaGroups	method
BarGroups	method
ColumnGroups	method
DoughnutGroups	method
LineGroups	method
PieGroups	method

ChartGroups	Collection
									
Chart	 ChartGroups

ChartGroup

A	collection	of	all	the	ChartGroup	objects	in	the	specified	chart.	Each
ChartGroup	object	represents	one	or	more	series	plotted	in	a	chart	with	the
same	format.	A	chart	contains	one	or	more	chart	groups,	each	chart	group
contains	one	or	more	series,	and	each	series	contains	one	or	more	points.	For
example,	a	single	chart	might	contain	both	a	line	chart	group,	containing	all	the
series	plotted	with	the	line	chart	format,	and	a	bar	chart	group,	containing	all	the
series	plotted	with	the	bar	chart	format.

Using	the	ChartGroups	Collection

Use	the	ChartGroups	method	to	return	the	ChartGroups	collection.	The
following	example	displays	the	number	of	chart	groups	on	embedded	chart	one
on	worksheet	one.

MsgBox	Worksheets(1).ChartObjects(1).Chart.ChartGroups.Count

Use	ChartGroups(index),	where	index	is	the	chart-group	index	number,	to
return	a	single	ChartGroup	object.	The	following	example	adds	drop	lines	to
chart	group	one	on	chart	sheet	one.

Charts(1).ChartGroups(1).HasDropLines	=	True

If	the	chart	has	been	activated,	you	can	use	ActiveChart:

Charts(1).Activate

ActiveChart.ChartGroups(1).HasDropLines	=	True

Because	the	index	number	for	a	particular	chart	group	can	change	if	the	chart
format	used	for	that	group	is	changed,	it	may	be	easier	to	use	one	of	the	named
chart	group	shortcut	methods	to	return	a	particular	chart	group.	The	PieGroups
method	returns	the	collection	of	pie	chart	groups	in	a	chart,	the	LineGroups
method	returns	the	collection	of	line	chart	groups,	and	so	on.	Each	of	these
methods	can	be	used	with	an	index	number	to	return	a	single	ChartGroup
object,	or	without	an	index	number	to	return	a	ChartGroups	collection.	The
following	chart	group	methods	are	available:

AreaGroups	method
BarGroups	method
ColumnGroups	method
DoughnutGroups	method
LineGroups	method
PieGroups	method

ChartObject	Object
									
Worksheets	(Worksheet)	 ChartObjects	(ChartObject)

Border
Chart
Interior
PivotLayout

Represents	an	embedded	chart	on	a	worksheet.	The	ChartObject	object	acts	as
a	container	for	a	Chart	object.	Properties	and	methods	for	the	ChartObject
object	control	the	appearance	and	size	of	the	embedded	chart	on	the	worksheet.
The	ChartObject	object	is	a	member	of	the	ChartObjects	collection.	The
ChartObjects	collection	contains	all	the	embedded	charts	on	a	single	sheet.

Using	the	ChartObject	Object

Use	ChartObjects(index),	where	index	is	the	embedded	chart	index	number	or
name,	to	return	a	single	ChartObject	object.	The	following	example	sets	the
pattern	for	the	chart	area	in	embedded	chart	one	on	the	worksheet	named
"Sheet1."

Worksheets("Sheet1").ChartObjects(1).Chart.	_

				ChartArea.Interior.Pattern	=	xlLightDown

The	embedded	chart	name	is	shown	in	the	Name	box	when	the	embedded	chart
is	selected.	Use	the	Name	property	to	set	or	return	the	name	of	the	ChartObject
object.	The	following	example	puts	rounded	corners	on	the	embedded	chart
named	"Chart	1"	on	the	worksheet	named	"Sheet1."

Worksheets("sheet1").ChartObjects("chart	1").RoundedCorners	=	True

ChartObjects	Collection	Object
									
Worksheets	(Worksheet)	 ChartObjects	(ChartObject)

Border
Chart
Interior
PivotLayout

A	collection	of	all	the	ChartObject	objects	on	the	specified	chart	sheet,	dialog
sheet,	or	worksheet.	Each	ChartObject	object	represents	an	embedded	chart.
The	ChartObject	object	acts	as	a	container	for	a	Chart	object.	Properties	and
methods	for	the	ChartObject	object	control	the	appearance	and	size	of	the
embedded	chart	on	the	sheet.

Using	the	ChartObjects	Collection

Use	the	ChartObjects	method	to	return	the	ChartObjects	collection.	The
following	example	deletes	all	the	embedded	charts	on	the	worksheet	named
"Sheet1."

Worksheets("sheet1").ChartObjects.Delete

Use	the	Add	method	to	create	a	new,	empty	embedded	chart	and	add	it	to	the
collection.	Use	the	ChartWizard	method	to	add	data	and	format	the	new	chart.
The	following	example	creates	a	new	embedded	chart	and	then	adds	the	data
from	cells	A1:A20	as	a	line	chart.

Dim	ch	As	ChartObject

Set	ch	=	Worksheets("sheet1").ChartObjects.Add(100,	30,	400,	250)

ch.Chart.ChartWizard	source:=Worksheets("sheet1").Range("a1:a20"),	_

				gallery:=xlLine,	title:="New	Chart"

Use	ChartObjects(index),	where	index	is	the	embedded	chart	index	number	or
name,	to	return	a	single	ChartObject	object.	The	following	example	sets	the
pattern	for	the	chart	area	in	embedded	chart	one	on	the	worksheet	named
"Sheet1."

Worksheets("Sheet1").ChartObjects(1).Chart.	_

				ChartArea.Interior.Pattern	=	xlLightDown

Charts	Collection
									
Charts	 Multiple	objects

A	collection	of	all	the	chart	sheets	in	the	specified	or	active	workbook.	Each
chart	sheet	is	represented	by	a	Chart	object.	This	doesn’t	include	charts
embedded	on	worksheets	or	dialog	sheets.	For	information	about	embedded
charts,	see	the	Chart	or	ChartObject	object.

Using	the	Charts	Collection

Use	the	Charts	property	to	return	the	Charts	collection.	The	following	example
prints	all	chart	sheets	in	the	active	workbook.

Charts.PrintOut

Use	the	Add	method	to	create	a	new	chart	sheet	and	add	it	to	the	workbook.	The
following	example	adds	a	new	chart	sheet	to	the	active	workbook	and	places	the
new	chart	sheet	immediately	after	the	worksheet	named	Sheet1.

Charts.Add	After:=Worksheets("Sheet1")

You	can	combine	the	Add	method	with	the	ChartWizard	method	to	add	a	new
chart	that	contains	data	from	a	worksheet.	The	following	example	adds	a	new
line	chart	based	on	data	in	cells	A1:A20	on	the	worksheet	named	Sheet1.

With	Charts.Add

				.ChartWizard	source:=Worksheets("Sheet1").Range("A1:A20"),	_

								Gallery:=xlLine,	Title:="February	Data"

End	With

Use	Charts(index),	where	index	is	the	chart-sheet	index	number	or	name,	to
return	a	single	Chart	object.	The	following	example	changes	the	color	of	series
one	on	chart	sheet	one	to	red.

Charts(1).SeriesCollection(1).Interior.Color	=	RGB(255,	0,	0)

The	Sheets	collection	contains	all	the	sheets	in	the	workbook	(both	chart	sheets
and	worksheets).	Use	Sheets(index),	where	index	is	the	sheet	name	or	number,	to
return	a	single	sheet.

ChartTitle	Object
									
Chart	 ChartTitle

Border
Characters
Font
Interior

Represents	the	chart	title.

Using	the	ChartTitle	Object

Use	the	ChartTitle	property	to	return	the	ChartTitle	object.	The	following
example	adds	a	title	to	embedded	chart	one	on	the	worksheet	named	"Sheet1."

With	Worksheets("sheet1").ChartObjects(1).Chart

				.HasTitle	=	True

				.ChartTitle.Text	=	"February	Sales"

End	With

Remarks

The	ChartTitle	object	doesn’t	exist	and	cannot	be	used	unless	the	HasTitle
property	for	the	chart	is	True.

ColorFormat	Object
									

Multiple	objects	 ColorFormat

Represents	the	color	of	a	one-color	object,	the	foreground	or	background	color
of	an	object	with	a	gradient	or	patterned	fill,	or	the	pointer	color.	You	can	set
colors	to	an	explicit	red-green-blue	value	(by	using	the	RGB	property)	or	to	a
color	in	the	color	scheme	(by	using	the	SchemeColor	property).

Using	the	ColorFormat	Object

Use	one	of	the	properties	listed	in	the	following	table	to	return	a	ColorFormat
object.

Use	this	property With	this	object To	return	a	ColorFormat	object
that	represents	this

BackColor FillFormat The	background	fill	color	(used	in	a
shaded	or	patterned	fill)

ForeColor FillFormat The	foreground	fill	color	(or	simply
the	fill	color	for	a	solid	fill)

BackColor LineFormat The	background	line	color	(used	in	a
patterned	line)

ForeColor LineFormat The	foreground	line	color	(or	just	the
line	color	for	a	solid	line)

ForeColor ShadowFormat The	shadow	color

ExtrusionColor ThreeDFormat The	color	of	the	sides	of	an	extruded
object

Use	the	RGB	property	to	set	a	color	to	an	explicit	red-green-blue	value.	The
following	example	adds	a	rectangle	to	myDocument	and	then	sets	the
foreground	color,	background	color,	and	gradient	for	the	rectangle's	fill.

Set	myDocument	=	Worksheets(1)

With	myDocument.Shapes.AddShape(msoShapeRectangle,	_

								90,	90,	90,	50).Fill

				.ForeColor.RGB	=	RGB(128,	0,	0)

				.BackColor.RGB	=	RGB(170,	170,	170)

				.TwoColorGradient	msoGradientHorizontal,	1

End	With

Comment	Object
									
Range	 Comments	(Comment)

Represents	a	cell	comment.	The	Comment	object	is	a	member	of	the
Comments	collection.

Using	the	Comment	Object

Use	the	Comment	property	to	return	a	Comment	object.	The	following	example
changes	the	text	in	the	comment	in	cell	E5.

Worksheets(1).Range("E5").Comment.Text	"reviewed	on	"	&	Date

Use	Comments(index),	where	index	is	the	comment	number,	to	return	a	single
comment	from	the	Comments	collection.	The	following	example	hides
comment	two	on	worksheet	one.

Worksheets(1).Comments(2).Visible	=	False

Use	the	AddComment	method	to	add	a	comment	to	a	range.	The	following
example	adds	a	comment	to	cell	E5	on	worksheet	one.

With	Worksheets(1).Range("e5").AddComment

				.Visible	=	False

				.Text	"reviewed	on	"	&	Date

End	With

Comments	Collection	Object
									
Range	 Comments	(Comment)

A	collection	of	cell	comments.	Each	comment	is	represented	by	a	Comment
object.

Using	the	Comments	Collection

Use	the	Comments	property	to	return	the	Comments	collection.	The	following
example	hides	all	the	comments	on	worksheet	one.

Set	cmt	=	Worksheets(1).Comments

For	Each	c	In	cmt

				c.Visible	=	False

Next

Use	the	AddComment	method	to	add	a	comment	to	a	range.	The	following
example	adds	a	comment	to	cell	E5	on	worksheet	one.

With	Worksheets(1).Range("e5").AddComment

				.Visible	=	False

				.Text	"reviewed	on	"	&	Date

End	With

Use	Comments(index),	where	index	is	the	comment	number,	to	return	a	single
comment	from	the	Comments	collection.	The	following	example	hides
comment	two	on	worksheet	one.

Worksheets(1).Comments(2).Visible	=	False

ConnectorFormat	Object
									

Shapes	(Shape)	 ConnectorFormat

Contains	properties	and	methods	that	apply	to	connectors.	A	connector	is	a	line
that	attaches	two	other	shapes	at	points	called	connection	sites.	If	you	rearrange
shapes	that	are	connected,	the	geometry	of	the	connector	will	be	automatically
adjusted	so	that	the	shapes	remain	connected.

Using	the	ConnectorFormat	Object

Use	the	ConnectorFormat	property	to	return	a	ConnectorFormat	object.	Use
the	BeginConnect	and	EndConnect	methods	to	attach	the	ends	of	the	connector
to	other	shapes	in	the	document.	Use	the	RerouteConnections	method	to
automatically	find	the	shortest	path	between	the	two	shapes	connected	by	the
connector.	Use	the	Connector	property	to	see	whether	a	shape	is	a	connector.

Note	that	you	assign	a	size	and	a	position	when	you	add	a	connector	to	the
Shapes	collection,	but	the	size	and	position	are	automatically	adjusted	when	you
attach	the	beginning	and	end	of	the	connector	to	other	shapes	in	the	collection.
Therefore,	if	you	intend	to	attach	a	connector	to	other	shapes,	the	initial	size	and
position	you	specify	are	irrelevant.	Likewise,	you	specify	which	connection	sites
on	a	shape	to	attach	the	connector	to	when	you	attach	the	connector,	but	using
the	RerouteConnections	method	after	the	connector	is	attached	may	change
which	connection	sites	the	connector	attaches	to,	making	your	original	choice	of
connection	sites	irrelevant.

The	following	example	adds	two	rectangles	to	myDocument	and	connects	them
with	a	curved	connector.

Set	myDocument	=	Worksheets(1)

Set	s	=	myDocument.Shapes

Set	firstRect	=	s.AddShape(msoShapeRectangle,	100,	50,	200,	100)

Set	secondRect	=	s.AddShape(msoShapeRectangle,	300,	300,	200,	100)

Setc	c	=	s.AddConnector(msoConnectorCurve,	0,	0,	0,	0)

With	c.ConnectorFormat

				.BeginConnect	ConnectedShape:=firstRect,	ConnectionSite:=1

				.EndConnect	ConnectedShape:=secondRect,	ConnectionSite:=1

				c.RerouteConnections

End	With

Remarks

Connection	sites	are	generally	numbered	according	to	the	rules	presented	in	the
following	table.

Shape	type Connection	site	numbering	scheme
AutoShapes,
WordArt,	pictures,
and	OLE	objects

The	connection	sites	are	numbered	starting	at	the	top	and
proceeding	counterclockwise.

Freeforms The	connection	sites	are	the	vertices,	and	they
correspond	to	the	vertex	numbers.

To	figure	out	which	number	corresponds	to	which	connection	site	on	a	complex
shape,	you	can	experiment	with	the	shape	while	the	macro	recorder	is	turned	on
and	then	examine	the	recorded	code;	or	you	can	create	a	shape,	select	it,	and
then	run	the	following	example.	This	code	will	number	each	connection	site	and
attach	a	connector	to	it.

Set	mainshape	=	ActiveWindow.Selection.ShapeRange(1)

With	mainshape

				bx	=	.Left	+	.Width	+	50

				by	=	.Top	+	.Height	+	50

End	With

With	ActiveSheet

				For	j	=	1	To	mainshape.ConnectionSiteCount

								With	.Shapes.AddConnector(msoConnectorStraight,	_

																bx,	by,	bx	+	50,	by	+	50)

												.ConnectorFormat.EndConnect	mainshape,	j

												.ConnectorFormat.Type	=	msoConnectorElbow

												.Line.ForeColor.RGB	=	RGB(255,	0,	0)

												l	=	.Left

												t	=	.Top

								End	With

								With	.Shapes.AddTextbox(msoTextOrientationHorizontal,	_

																l,	t,	36,	14)

												.Fill.Visible	=	False

												.Line.Visible	=	False

												.TextFrame.Characters.Text	=	j

								End	With

				Next	j

End	With

Show	All

ControlFormat	Object
									
Shape	 ControlFormat

Contains	Microsoft	Excel	control	properties.

Using	the	ControlFormat	Object

Use	the	ControlFormat	property	to	return	a	ControlFormat	object.	The
following	example	sets	the	fill	range	for	a	list	box	control	on	worksheet	one.

Worksheets(1).Shapes(1).ControlFormat.ListFillRange	=	"A1:A10"

If	the	shape	isn’t	a	control,	the	ControlFormat	property	fails;	and	if	the	control
isn’t	a	list	box,	the	ListFillRange	property	fails.

Corners	Object
									
Chart	 Corners

Represents	the	corners	of	a	3-D	chart.	This	object	isn’t	a	collection.

Using	the	Corners	Object

Use	the	Corners	property	to	return	the	Corners	object.	The	following	example
selects	the	corners	of	chart	one.

Charts(1).Corners.Select

If	the	chart	isn’t	a	3-D	chart,	the	Corners	property	fails.

Show	All

CubeField	Object
									
Multiple	objects	 CubeField

Multiple	objects

Represents	a	hierarchy	or	measure	field	from	an	OLAP	cube.	In	a	PivotTable
report,	the	CubeField	object	is	a	member	of	the	CubeFields	collection.

Using	the	CubeField	Object

Use	the	CubeField	property	to	return	the	CubeField	object.	This	example
creates	a	list	of	the	cube	field	names	for	all	the	hierarchy	fields	in	the	first
OLAP-based	PivotTable	report	on	Sheet1.

Set	objNewSheet	=	Worksheets.Add

objNewSheet.Activate

intRow	=	1

For	Each	objPF	in	_

				Worksheets("Sheet1").PivotTables(1).PivotFields

				If	objPF.CubeField.CubeFieldType	=	xlHierarchy	Then

								objNewSheet.Cells(intRow,	1).Value	=	objPF.Name

								intRow	=	intRow	+	1

				End	If

Next	objPF

Use	CubeFields(index),	where	index	is	the	cube	field’s	index	number,	to	return	a
single	CubeField	object.	The	following	example	determines	the	name	of	the
second	cube	field	in	the	first	PivotTable	report	on	the	active	worksheet.

strAlphaName	=	_

				ActiveSheet.PivotTables(1).CubeFields(2).Name

Show	All

CubeFields	Collection	Object
									
Worksheets	(Worksheet)	 PivotTables	(PivotTable)

CubeFields	(CubeField)

A	collection	of	all	CubeField	objects	in	a	PivotTable	report	that	is	based	on	an
OLAP	cube.	Each	CubeField	object	represents	a	hierarchy	or	measure	field
from	the	cube.

Using	the	CubeFields	Collection

Use	the	CubeFields	property	to	return	the	CubeFields	collection.	The	following
example	creates	a	list	of	cube	field	names	of	the	data	fields	in	the	first	OLAP-
based	PivotTable	report	on	Sheet1.

Set	objNewSheet	=	Worksheets.Add

intRow	=	1

For	Each	objCubeFld	In	_

				Worksheets("Sheet1").PivotTables(1).CubeFields

				If	objCubeFld.Orientation	=	xlDataField	Then

								objNewSheet.Cells(intRow,	1).Value	=	objCubeFld.Name

								intRow	=	intRow	+	1

				End	If

Next	objCubeFld

Use	CubeFields(index),	where	index	is	the	cube	field’s	index	number,	to	return	a
single	CubeField	object.	The	following	example	determines	the	name	of	the
second	cube	field	in	the	first	PivotTable	report	on	the	active	worksheet.

strAlphaName	=	_

				ActiveSheet.PivotTables(1).CubeFields(2).Name

CustomProperties	Collection
									
Multiple	objects	 CustomProperties

CustomProperty

A	collection	of	CustomProperty	objects	that	represent	additional	information.
The	information	can	be	used	as	metadata	for	XML.

Using	the	CustomProperties	collection

Use	the	Properties	property	of	the	SmartTag	object,	or	the	CustomProperties
property	of	the	Worksheet	object,	to	return	a	CustomProperties	collection.

Once	a	CustomProperties	collection	is	returned,	you	can	add	metadata	to
worksheets	and	smart	tags	depending	on	which	you	choose	to	work	with.

To	add	metadata	to	a	worksheet,	use	the	CustomProperties	property	with	the
Add	method.

The	following	example	demonstrates	this	feature.	In	this	example,	Microsoft
Excel	adds	identifier	information	to	the	active	worksheet	and	returns	the	name
and	value	to	the	user.

Sub	CheckCustomProperties()

				Dim	wksSheet1	As	Worksheet

				Set	wksSheet1	=	Application.ActiveSheet

				'	Add	metadata	to	worksheet.

				wksSheet1.CustomProperties.Add	_

								Name:="Market",	Value:="Nasdaq"

				'	Display	metadata.

				With	wksSheet1.CustomProperties.Item(1)

								MsgBox	.Name	&	vbTab	&	.Value

				End	With

End	Sub

To	add	metadata	to	a	smart	tag,	use	the	Properties	property	with	the	Add
method.

The	following	example	demonstrates	this	feature.	In	this	example,	Microsoft
Excel	adds	a	smart	tag	titled	"MSFT"	to	cell	A1,	then	adds	extra	metadata	called
"Market"	with	the	value	of	"Nasdaq"	to	the	smart	tag	and	then	returns	the	value
of	the	property	to	the	user.	This	example	assumes	the	host	system	is	connected	to
the	Internet	when	running	this	code	sample	and	the	checked	recognizer	called
"Stock	Ticker	Symbol	Recognizer"	is	enabled	for	Microsoft	Excel.

Sub	UseProperties()

				Dim	strLink	As	String

				Dim	strType	As	String

				'	Define	smart	tag	variables.

				strLink	=	"urn:schemas-microsoft-com:smarttags#stocktickerSymbol"

				strType	=	"stockview"

				Range("A1").Formula	=	"MSFT"

				'	Add	a	property	for	MSFT	smart	tag	and	define	its	value.

				Range("A1").SmartTags.Add(strLink).Properties.Add	_

								Name:="Market",	Value:="Nasdaq"

				'	Notify	the	user	of	the	smart	tag's	value.

				MsgBox	Range("A1").SmartTags.Add(strLink).Properties("Market").Value

End	Sub

CustomProperty	Object
									
CustomProperties	 CustomProperty

Represents	identifier	information.	Identifier	information	can	be	used	as	metadata
for	XML.

Using	the	CustomProperty	object

Use	the	Add	method	or	the	Item	property	of	the	CustomProperties	collection
to	return	a	CustomProperty	object.

Once	a	CustomProperty	object	is	returned,	you	can	add	metadata	to	worksheets
using	the	CustomProperties	property	with	the	Add	method.

The	following	example	demonstrates	this	feature.	In	this	example,	Microsoft
Excel	adds	identifier	information	to	the	active	worksheet	and	returns	the	name
and	value	to	the	user.

Sub	CheckCustomProperties()

				Dim	wksSheet1	As	Worksheet

				Set	wksSheet1	=	Application.ActiveSheet

				'	Add	metadata	to	worksheet.

				wksSheet1.CustomProperties.Add	_

								Name:="Market",	Value:="Nasdaq"

				'	Display	metadata.

				With	wksSheet1.CustomProperties.Item(1)

								MsgBox	.Name	&	vbTab	&	.Value

				End	With

End	Sub

CustomView	Object
									
Workbooks	(Workbook)	 CustomViews	(CustomView)

Represents	a	custom	workbook	view.	The	CustomView	object	is	a	member	of
the	CustomViews	collection.

Using	the	CustomView	Object

Use	CustomViews(index),	where	index	is	the	name	or	index	number	of	the
custom	view,	to	return	a	CustomView	object.	The	following	example	shows	the
custom	view	named	"Current	Inventory."

ThisWorkbook.CustomViews("Current	Inventory").Show

CustomViews	Collection	Object
									
Workbooks	(Workbook)	 CustomViews	(CustomView)

A	collection	of	custom	workbook	views.	Each	view	is	represented	by	a
CustomView	object.

Using	the	CustomViews	Collection

Use	the	CustomViews	property	to	return	the	CustomViews	collection.	Use	the
Add	method	to	create	a	new	custom	view	and	add	it	to	the	CustomViews
collection.	The	following	example	creates	a	new	custom	view	named
"Summary."

ActiveWorkbook.CustomViews.Add	"Summary",	True,	True

DataLabel	Object
									
Charts	(Chart)	 SeriesCollection	(Series)

DataLabels	(DataLabel)
Points	(Point)
DataLabel

Trendlines	(Trendline)
DataLabel

Represents	the	data	label	on	a	chart	point	or	trendline.	On	a	series,	the
DataLabel	object	is	a	member	of	the	DataLabels	collection.	The	DataLabels
collection	contains	a	DataLabel	object	for	each	point.	For	a	series	without
definable	points	(such	as	an	area	series),	the	DataLabels	collection	contains	a
single	DataLabel	object.

Using	the	DataLabel	Object

Use	DataLabels(index),	where	index	is	the	data-label	index	number,	to	return	a
single	DataLabel	object.	The	following	example	sets	the	number	format	for	the
fifth	data	label	in	series	one	in	embedded	chart	one	on	worksheet	one.

Worksheets(1).ChartObjects(1).Chart	_

				.SeriesCollection(1).DataLabels(5).NumberFormat	=	"0.000"

Use	the	DataLabel	property	to	return	the	DataLabel	object	for	a	single	point.
The	following	example	turns	on	the	data	label	for	the	second	point	in	series	one
on	the	chart	sheet	named	"Chart1"	and	sets	the	data	label	text	to	"Saturday."

With	Charts("chart1")

				With	.SeriesCollection(1).Points(2)

								.HasDataLabel	=	True

								.DataLabel.Text	=	"Saturday"

				End	With

End	With

On	a	trendline,	the	DataLabel	property	returns	the	text	shown	with	the	trendline.
This	can	be	the	equation,	the	R-squared	value,	or	both	(if	both	are	showing).	The
following	example	sets	the	trendline	text	to	show	only	the	equation	and	then
places	the	data	label	text	in	cell	A1	on	the	worksheet	named	"Sheet1."

With	Charts("chart1").SeriesCollection(1).Trendlines(1)

				.DisplayRSquared	=	False

				.DisplayEquation	=	True

				Worksheets("sheet1").Range("a1").Value	=	.DataLabel.Text

End	With

DataLabels	Collection	Object
									
Chart	 SeriesCollection	(Series)

DataLabels	(DataLabel)
Points	(Point)
DataLabel

Trendlines	(Trendline)
DataLabel

A	collection	of	all	the	DataLabel	objects	for	the	specified	series.	Each
DataLabel	object	represents	a	data	label	for	a	point	or	trendline.	For	a	series
without	definable	points	(such	as	an	area	series),	the	DataLabels	collection
contains	a	single	data	label.

Using	the	Datalabels	Collection

Use	the	DataLabels	method	to	return	the	DataLabels	collection.	The	following
example	sets	the	number	format	for	data	labels	on	series	one	on	chart	sheet	one.

With	Charts(1).SeriesCollection(1)

				.HasDataLabels	=	True

				.DataLabels.NumberFormat	=	"##.##"

End	With

Use	DataLabels(index),	where	index	is	the	data-label	index	number,	to	return	a
single	DataLabel	object.	The	following	example	sets	the	number	format	for	the
fifth	data	label	in	series	one	in	embedded	chart	one	on	worksheet	one.

Worksheets(1).ChartObjects(1).Chart	_

				.SeriesCollection(1).DataLabels(5).NumberFormat	=	"0.000"

DataTable	Object
									
Charts	(Chart)	 DataTable

Border

Represents	a	chart	data	table.

Using	the	DataTable	Object

Use	the	DataTable	property	to	return	a	DataTable	object.	The	following
example	adds	a	data	table	with	an	outline	border	to	embedded	chart	one.

With	Worksheets(1).ChartObjects(1).Chart

				.HasDataTable	=	True

				.DataTable.HasBorderOutline	=	True

End	With

DefaultWebOptions	Object
									
Application	 DefaultWebOptions

Contains	global	application-level	attributes	used	by	Microsoft	Excel	when	you
save	a	document	as	a	Web	page	or	open	a	Web	page.	You	can	return	or	set
attributes	either	at	the	application	(global)	level	or	at	the	workbook	level.	(Note
that	attribute	values	can	be	different	from	one	workbook	to	another,	depending
on	the	attribute	value	at	the	time	the	workbook	was	saved.)	Workbook-level
attribute	settings	override	application-level	attribute	settings.	Workbook-level
attributes	are	contained	in	the	WebOptions	object.

Using	the	DefaultWebOptions	Object

Use	the	DefaultWebOptions	property	to	return	the	DefaultWebOptions	object.
The	following	example	checks	to	see	whether	PNG	(Portable	Network	Graphics)
is	allowed	as	an	image	format	and	sets	the	strImageFileType	variable
accordingly.

Set	objAppWebOptions	=	Application.DefaultWebOptions

With	objAppWebOptions

				If	.AllowPNG	=	True	Then

								strImageFileType	=	"PNG"

				Else

								strImageFileType	=	"JPG"

				End	If

End	With

Diagram	Object
									
Multiple	objects	 Diagram

DiagramNodes

Represents	a	diagram.

Using	the	Diagram	object

Use	the	Diagram	property	of	the	Shape	object	or	ShapeRange	collection	to	a
return	a	Diagram	object.	The	following	example	adds	a	radial	diagram	to	the
active	worksheet.

Sub	NewDiagram()

				Dim	wksActiveSheet	As	Worksheet

				Dim	shDiagram	As	Shape

				Set	wksActiveSheet	=	ActiveSheet

				Set	shDiagram	=	wksActiveSheet.Shapes.AddDiagram(_

								Type:=msoDiagramRadial,	_

								Left:=20,	Top:=40,	_

								Width:=400,	Height:=200)

				'	Fill	the	diagram	to	make	it	visible	to	the	user

				shDiagram.Fill.Visible	=	msoTrue

End	Sub

You	can	also	convert	the	current	diagram	to	a	different	diagram	by	using	the
Convert	method.	Note	If	the	current	diagram	is	an	organization	chart
(msoDiagramOrgChart)	a	run-time	error	will	occur.	In	this	example,	a	radial
diagram	is	converted	into	a	target	diagram.

Sub	NewDiagram()

				Dim	wksActiveSheet	As	Worksheet

				Dim	shDiagram	As	Shape

				Set	wksActiveSheet	=	ActiveSheet

				Set	shDiagram	=	wksActiveSheet.Shapes.AddDiagram(_

								Type:=msoDiagramRadial,	_

								Left:=20,	Top:=40,	_

								Width:=400,	Height:=200)

				'	Fill	the	diagram	to	make	it	visible	to	the	user

				shDiagram.Fill.Visible	=	msoTrue

				'	Convert	the	diagram.

				shDiagram.Diagram.Convert	Type:=msoDiagramTarget

End	Sub

There	are	several	types	of	diagrams	to	chose	from	when	working	with	the
Diagram	object.	Refer	to	the	AddDiagram	method	to	view	a	list	of	available
diagram	types.

DiagramNode	Object
									
Multiple	objects	 DiagramNode

Multiple	objects

Represents	a	node	in	a	diagram.

Using	the	DiagramNode	object

Use	the	AddNode	method	to	add	a	node	to	a	diagram	or	to	a	diagram	node.	This
example	assumes	the	third	shape	in	the	active	worksheet	is	a	diagram	and	adds	a
node	to	it.

Sub	AddDiagramNode()

				ActiveSheet.Shapes(3).DiagramNode.Children.AddNode

End	Sub

Use	the	Delete	method	to	remove	a	node	from	a	diagram	or	diagram	node.	This
example	assumes	the	second	shape	in	the	active	worksheet	is	a	diagram	and
removes	the	first	node	from	it.

Sub	DeleteDiagramNode()

				ActiveSheet.Shapes(2).DiagramNode.Children(1).Delete

End	Sub

To	return	a	DiagramNode	object,	use	one	of	the	following:

The	DiagramNode	object's	AddNode,	CloneNode,	NextNode	or
PrevNode	methods,	or	Root	property
The	DiagramNodeChildren	collection's	AddNode	or	Item	methods,	or
FirstChild	or	LastChild	properties

The	DiagramNodes	collection's	Item	method
The	Shape	object's	or	ShapeRange	collection's	DiagramNode	property

A	diagram	node	can	terminate,	or	contain	other	child	diagrams,	child	diagram
nodes,	or	child	shapes:

To	refer	to	a	child	diagram,	use	the	Diagram	property.
To	refer	to	an	individual	child	diagram	node,	use	the	AddNode,
CloneNode,	NextNode	or	PrevNode	methods,	or	Root	property.
To	refer	to	a	collection	of	child	diagram	nodes,	use	the	Children	property.
To	refer	to	a	shape,	use	the	Shape	or	TextShape	properties.

DiagramNodeChildren	Collection
									
DiagramNode	 DiagramNodeChildren

DiagramNode

A	collection	of	DiagramNode	objects	that	represents	child	nodes	in	a	diagram.

Using	the	DiagramNodeChildren	collection

Use	the	Children	property	of	the	DiagramNode	object	to	return	a
DiagamNodeChildren	collection.	To	add	an	individual	child	diagram	node	to
the	collection,	use	the	AddNode	method.	To	return	individual	child	diagram
nodes	in	the	collection,	use	the	FirstChild	or	LastChild	properties,	or	the	Item
method.

This	example	deletes	the	first	child	of	the	second	node	in	the	first	diagram	in	the
worksheet.	This	example	assumes	that	the	first	shape	in	the	active	worksheet	is	a
diagram	with	at	least	two	nodes,	one	with	child	nodes.

Sub	DiagramNodeChild()

				ActiveSheet.Shapes(1).Diagram.Nodes.Item(2)	_

								.Children.FirstChild.Delete

End	Sub

DiagramNodes	Collection
									
Diagram	 DiagramNodes

DiagramNode

A	collection	of	DiagramNode	objects	that	represents	all	the	nodes	in	a	diagram.

Using	the	DiagramNodes	collection

Use	the	Nodes	property	of	the	Diagram	object	to	return	a	DiagramNodes
collection.	Use	the	Item	method	to	select	and	work	with	a	single	diagram	node
in	a	diagram.	This	example	assumes	the	first	shape	in	the	active	worksheet	is	a
diagram,	selects	the	first	node,	and	deletes	it.

Sub	FillDiagramNode()

				ActiveSheet.Shapes(1).Diagram.Nodes.Item(1).Delete

End	Sub

Use	the	SelectAll	method	to	select	and	work	with	all	nodes	in	a	diagram.	This
example	assumes	the	first	shape	in	the	active	worksheet	is	a	diagram,	selects	all
nodes,	and	fills	them	with	the	specified	pattern.

Sub	FillDiagramNodes()

				ActiveSheet.Shapes(1).Diagram.Nodes.SelectAll

				Selection.ShapeRange.Fill.Patterned	msoPatternSmallConfetti

End	Sub

Dialog	Object
									
Application	 Dialogs	(Dialog)

Represents	a	built-in	Microsoft	Excel	dialog	box.	The	Dialog	object	is	a	member
of	the	Dialogs	collection.	The	Dialogs	collection	contains	all	the	built-in	dialog
boxes	in	Microsoft	Excel.	You	cannot	create	a	new	built-in	dialog	box	or	add
one	to	the	collection.	The	only	useful	thing	you	can	do	with	a	Dialog	object	is
use	it	with	the	Show	method	to	display	the	corresponding	dialog	box.

Using	the	Dialog	Object

Use	Dialogs(index),	where	index	is	a	built-in	constant	identifying	the	dialog	box,
to	return	a	single	Dialog	object.	The	following	example	runs	the	built-in	Open
dialog	box	(File	menu).	The	Show	method	returns	True	if	Microsoft	Excel
successfully	opens	a	file;	it	returns	False	if	the	user	cancels	the	dialog	box.

dlgAnswer	=	Application.Dialogs(xlDialogOpen).Show

The	Microsoft	Excel	Visual	Basic	object	library	includes	built-in	constants	for
many	of	the	built-in	dialog	boxes.	Each	constant	is	formed	from	the	prefix
"xlDialog"	followed	by	the	name	of	the	dialog	box.	For	example,	the	Apply
Names	dialog	box	constant	is	xlDialogApplyNames,	and	the	Find	File	dialog
box	constant	is	xlDialogFindFile.	These	constants	are	members	of	the
XlBuiltinDialog	enumerated	type.	For	more	information	about	the	available
constants,	see	Built-in	Dialog	Box	Argument	Lists.

Dialogs	Collection	Object
									
Application	 Dialogs	(Dialog)

A	collection	of	all	the	Dialog	objects	in	Microsoft	Excel.	Each	Dialog	object
represents	a	built-in	dialog	box.	You	cannot	create	a	new	built-in	dialog	box	or
add	one	to	the	collection.	The	only	useful	thing	you	can	do	with	a	Dialog	object
is	use	it	with	the	Show	method	to	display	the	dialog	corresponding	dialog	box.

Using	the	Dialogs	Collection

Use	the	Dialogs	property	to	return	the	Dialogs	collection.	The	following
example	displays	the	number	of	available	built-in	Microsoft	Excel	dialog	boxes.

MsgBox	Application.Dialogs.Count

Use	Dialogs(index),	where	index	is	a	built-in	constant	identifying	the	dialog	box,
to	return	a	single	Dialog	object.	The	following	example	runs	the	built-in	File
Open	dialog	box.

dlgAnswer	=	Application.Dialogs(xlDialogOpen).Show

The	Microsoft	Excel	Visual	Basic	object	library	includes	built-in	constants	for
many	of	the	built-in	dialog	boxes.	Each	constant	is	formed	from	the	prefix
"xlDialog"	followed	by	the	name	of	the	dialog	box.	For	example,	the	Apply
Names	dialog	box	constant	is	xlDialogApplyNames,	and	the	Find	File	dialog
box	constant	is	xlDialogFindFile.	These	constants	are	members	of	the
XlBuiltinDialog	enumerated	type.	For	more	information	about	the	available
constants,	see	Built-in	Dialog	Box	Argument	Lists.

DisplayUnitLabel	Object
									
Axes	(Axis)	 DisplayUnitLabel

Represents	a	unit	label	on	an	axis	in	the	specified	chart.	Unit	labels	are	useful	for
charting	large	values—for	example,	in	the	millions	or	billions.	You	can	make	the
chart	more	readable	by	using	a	single	unit	label	instead	of	large	numbers	at	each
tick	mark.

Using	the	DisplayUnitLabel	Object

Use	the	DisplayUnitLabel	property	to	return	the	DisplayUnitLabel	object.	The
following	example	sets	the	display	label	caption	to	"Millions"	on	the	value	axis
in	Chart1,	and	then	it	turns	off	automatic	font	scaling.

With	Charts("Chart1").Axes(xlValue).DisplayUnitLabel

				.Caption	=	"Millions"

				.AutoScaleFont	=	False

End	With

DownBars	Object
									
Charts	(Chart)	 ChartGroups	(ChartGroup)

DownBars
Border
Interior

Represents	the	down	bars	in	a	chart	group.	Down	bars	connect	points	on	the	first
series	in	the	chart	group	with	lower	values	on	the	last	series	(the	lines	go	down
from	the	first	series).	Only	2-D	line	groups	that	contain	at	least	two	series	can
have	down	bars.	This	object	isn’t	a	collection.	There’s	no	object	that	represents	a
single	down	bar;	you	either	have	up	bars	and	down	bars	turned	on	for	all	points
in	a	chart	group	or	you	have	them	turned	off.

Using	the	DownBars	Object

Use	the	DownBars	property	to	return	the	DownBars	object.	The	following
example	turns	on	up	and	down	bars	for	chart	group	one	in	embedded	chart	one
on	the	worksheet	named	"Sheet5."	The	example	then	sets	the	up	bar	color	to	blue
and	the	down	bar	color	to	red.

With	Worksheets("sheet5").ChartObjects(1).Chart.ChartGroups(1)

				.HasUpDownBars	=	True

				.UpBars.Interior.Color	=	RGB(0,	0,	255)

				.DownBars.Interior.Color	=	RGB(255,	0,	0)

End	With

Remarks

If	the	HasUpDownBars	property	is	False,	most	properties	of	the	DownBars
object	are	disabled.

DropLines	Object
									
Charts	(Chart)	 ChartGroups	(ChartGroup)

DropLines
Border

Represents	the	drop	lines	in	a	chart	group.	Drop	lines	connect	the	points	in	the
chart	with	the	x-axis.	Only	line	and	area	chart	groups	can	have	drop	lines.	This
object	isn’t	a	collection.	There’s	no	object	that	represents	a	single	drop	line;	you
either	have	drop	lines	turned	on	for	all	points	in	a	chart	group	or	you	have	them
turned	off.

Using	the	DropLines	Object

Use	the	DropLines	property	to	return	the	DropLines	object.	The	following
example	turns	on	drop	lines	for	chart	group	one	in	embedded	chart	one	and	then
sets	the	drop	line	color	to	red.

Worksheets("sheet1").ChartObjects(1).Activate

ActiveChart.ChartGroups(1).HasDropLines	=	True

ActiveChart.ChartGroups(1).DropLines.Border.ColorIndex	=	3

Remarks

If	the	HasDropLines	property	is	False,	most	properties	of	the	DropLines	object
are	disabled.

Error	Object
									
Errors	 Error

Represents	a	spreadsheet	error	for	a	range.

Using	the	Error	object

Use	the	Item	property	of	the	Errors	object	to	return	an	Error	object.

Once	an	Error	object	is	returned,	you	can	use	the	Value	property,	in	conjunction
with	the	Errors	property	to	check	whether	a	particular	error	checking	option	is
enabled.	

The	following	example	creates	a	formula	in	cell	A1	referencing	empty	cells,	and
then	it	uses	Item(index),	where	index	identifies	the	error	type,	to	display	a
message	stating	the	situation.

Sub	CheckEmptyCells()

				Dim	rngFormula	As	Range

				Set	rngFormula	=	Application.Range("A1")

				'	Place	a	formula	referencing	empty	cells.

				Range("A1").Formula	=	"=A2+A3"

				Application.ErrorCheckingOptions.EmptyCellReferences	=	True

				'	Perform	check	to	see	if	EmptyCellReferences	check	is	on.

				If	rngFormula.Errors.Item(xlEmptyCellReferences).Value	=	True	Then

								MsgBox	"The	empty	cell	references	error	checking	feature	is	enabled."

				Else

								MsgBox	"The	empty	cell	references	error	checking	feature	is	not	on."

				End	If

End	Sub

Note:	Be	careful	not	to	confuse	the	Error	object	with	error	handling	features	of
Visual	Basic.

ErrorBars	Object
									
Charts	(Chart)	 ChartGroups	(ChartGroup)

SeriesCollection	(Series)
ErrorBars
Border

Represents	the	error	bars	on	a	chart	series.	Error	bars	indicate	the	degree	of
uncertainty	for	chart	data.	Only	series	in	area,	bar,	column,	line,	and	scatter
groups	on	a	2-D	chart	can	have	error	bars.	Only	series	in	scatter	groups	can	have
x	and	y	error	bars.	This	object	isn’t	a	collection.	There’s	no	object	that	represents
a	single	error	bar;	you	either	have	x	error	bars	or	y	error	bars	turned	on	for	all
points	in	a	series	or	you	have	them	turned	off.

Using	the	ErrorBars	Object

Use	the	ErrorBars	property	to	return	the	ErrorBars	object.	The	following
example	turns	on	error	bars	for	series	one	in	embedded	chart	one	and	then	sets
the	end	style	for	the	error	bars.

Worksheets("sheet1").ChartObjects(1).Activate

ActiveChart.SeriesCollection(1).HasErrorBars	=	True

ActiveChart.SeriesCollection(1).ErrorBars.EndStyle	=	xlNoCap

Remarks

The	ErrorBar	method	changes	the	error	bar	format	and	type.

ErrorCheckingOptions	Object
									
Application	 ErrorCheckingOptions

Represents	the	error-checking	options	for	an	application.

Using	the	ErrorCheckingOptions	Object

Use	the	ErrorCheckingOptions	property	of	the	Application	object	to	return	an
ErrorCheckingOptions	object.

Reference	the	Item	property	of	the	Errors	object	to	view	a	list	of	index	values
associated	with	error-checking	options.

Once	an	ErrorCheckingOptions	object	is	returned,	you	can	use	the	following
properties,	which	are	members	of	the	ErrorCheckingOptions	object,	to	set	or
return	error	checking	options.

BackgroundChecking
EmptyCellReferences
EvaluateToError
InconsistentFormula
IndicatorColorIndex
NumberAsText
OmittedCells
TextDate
UnlockedFormulaCells

The	following	example	uses	the	TextDate	property	to	enable	error	checking	for
two-digit-year	text	dates	and	notifies	the	user.

Sub	CheckTextDates()

				Dim	rngFormula	As	Range

				Set	rngFormula	=	Application.Range("A1")

				Range("A1").Formula	=	"'April	23,	00"

				Application.ErrorCheckingOptions.TextDate	=	True

				'	Perform	check	to	see	if	2	digit	year	TextDate	check	is	on.

				If	rngFormula.Errors.Item(xlTextDate).Value	=	True	Then

								MsgBox	"The	text	date	error	checking	feature	is	enabled."

				Else

								MsgBox	"The	text	date	error	checking	feature	is	not	on."

				End	If

End	Sub

	

Errors	Object
									
Range	 Errors

Error

Represents	the	various	spreadsheet	errors	for	a	range.

Using	the	Errors	object

Use	the	Errors	property	of	the	Range	collection	to	return	an	Errors	object.

Once	an	Errors	object	is	returned,	you	can	use	the	Value	property	of	the	Error
object	to	check	for	particular	error-checking	conditions.		The	following	example
places	a	number	as	text	in	cell	A1	and	then	notifies	the	user	when	the	value	of
cell	A1	contains	a	number	as	text.

Sub	ErrorValue()

				'	Place	a	number	written	as	text	in	cell	A1.

				Range("A1").Formula	=	"'1"

				If	Range("A1").Errors.Item(xlNumberAsText).Value	=	True	Then

								MsgBox	"Cell	A1	has	a	number	as	text."

				Else

								MsgBox	"Cell	A1	is	a	number."

				End	If

End	Sub

FillFormat	Object
									
Shapes	(Shape)	 FillFormat

ColorFormat

Represents	fill	formatting	for	a	shape.	A	shape	can	have	a	solid,	gradient,
texture,	pattern,	picture,	or	semi-transparent	fill.

Using	the	FillFormat	Object

Use	the	Fill	property	to	return	a	FillFormat	object.	The	following	example	adds
a	rectangle	to	myDocument	and	then	sets	the	gradient	and	color	for	the	rectangle's
fill.

Set	myDocument	=	Worksheets(1)

With	myDocument.Shapes.AddShape(msoShapeRectangle,	_

								90,	90,	90,	80).Fill

				.ForeColor.RGB	=	RGB(0,	128,	128)

				.OneColorGradient	msoGradientHorizontal,	1,	1

End	With

Remarks

Many	of	the	properties	of	the	FillFormat	object	are	read-only.	To	set	one	of
these	properties,	you	have	to	apply	the	corresponding	method.

Filter	Object
									
Worksheets	(Worksheet)	 AutoFilter

Filters	(Filter)

Represents	a	filter	for	a	single	column.	The	Filter	object	is	a	member	of	the
Filters	collection.	The	Filters	collection	contains	all	the	filters	in	an	autofiltered
range.

Using	the	Filter	Object

Use	Filters(index),	where	index	is	the	filter	title	or	index	number,	to	return	a
single	Filter	object.	The	following	example	sets	a	variable	to	the	value	of	the
On	property	of	the	filter	for	the	first	column	in	the	filtered	range	on	the	Crew
worksheet.

Set	w	=	Worksheets("Crew")

If	w.AutoFilterMode	Then

				filterIsOn	=	w.AutoFilter.Filters(1).On

End	If

Note	that	all	the	properties	of	the	Filter	object	are	read-only.	To	set	these
properties,	apply	autofiltering	manually	or	using	the	AutoFilter	method	of	the
Range	object,	as	shown	in	the	following	example.

Set	w	=	Worksheets("Crew")

w.Cells.AutoFilter	field:=2,	Criteria1:="Crucial",	_

				Operator:=xlOr,	Criteria2:="Important"

Filters	Collection	Object
									
Worksheets	(Worksheet)	 AutoFilter

Filters	(Filter)

A	collection	of	Filter	objects	that	represents	all	the	filters	in	an	autofiltered
range.

Using	the	Filters	Collection

Use	the	Filters	method	to	return	the	Filters	collection.	The	following	example
creates	a	list	that	contains	the	criteria	and	operators	for	the	filters	in	the
autofiltered	range	on	the	Crew	worksheet.

Dim	f	As	Filter

Dim	w	As	Worksheet

Const	ns	As	String	=	"Not	set"

Set	w	=	Worksheets("Crew")

Set	w2	=	Worksheets("FilterData")

rw	=	1

For	Each	f	In	w.AutoFilter.Filters

				If	f.On	Then

								c1	=	Right(f.Criteria1,	Len(f.Criteria1)	-	1)

								If	f.Operator	Then

												op	=	f.Operator

												c2	=	Right(f.Criteria2,	Len(f.Criteria2)	-	1)

								Else

												op	=	ns

												c2	=	ns

								End	If

				Else

								c1	=	ns

								op	=	ns

								c2	=	ns

				End	If

				w2.Cells(rw,	1)	=	c1

				w2.Cells(rw,	2)	=	op

				w2.Cells(rw,	3)	=	c2

				rw	=	rw	+	1

Next

Use	Filters(index),	where	index	is	the	filter	title	or	index	number,	to	return	a
single	Filter	object.	The	following	example	sets	a	variable	to	the	value	of	the
On	property	of	the	filter	for	the	first	column	in	the	filtered	range	on	the	Crew
worksheet.

Set	w	=	Worksheets("Crew")

If	w.AutoFilterMode	Then

				filterIsOn	=	w.AutoFilter.Filters(1).On

End	If

Floor	Object
									
Charts	(Chart)	 Floor

Border
Interior

Represents	the	floor	of	a	3-D	chart

Using	the	Floor	Object

Use	the	Floor	property	to	return	the	Floor	object.	The	following	example	sets
the	floor	color	for	embedded	chart	one	to	cyan.	The	example	will	fail	if	the	chart
isn’t	a	3-D	chart.

Worksheets("sheet1").ChartObjects(1).Activate

ActiveChart.Floor.Interior.Color	=	RGB(0,	255,	255)

Font	Object
									
Multiple	objects	 Font

Contains	the	font	attributes	(font	name,	font	size,	color,	and	so	on)	for	an	object.

Using	the	Font	Object

Use	the	Font	property	to	return	the	Font	object.	The	following	example	formats
cells	A1:C5	as	bold.

Worksheets("Sheet1").Range("A1:C5").Font.Bold	=	True

If	you	don’t	want	to	format	all	the	text	in	a	cell	or	graphic	the	same	way,	use	the
Characters	property	to	return	a	subset	of	the	text.

FormatCondition	Object
									

Range	 FormatConditions	(FormatCondition)
Borders	(Border)
Font
Interior

Represents	a	conditional	format.	The	FormatCondition	object	is	a	member	of
the	FormatConditions	collection.	The	FormatConditions	collection	can
contain	up	to	three	conditional	formats	for	a	given	range.

Using	the	FormatCondition	Object

Use	FormatConditions(index),	where	index	is	the	index	number	of	the
conditional	format,	to	return	a	FormatCondition	object.	The	following	example
sets	format	properties	for	an	existing	conditional	format	for	cells	E1:E10.

With	Worksheets(1).Range("e1:e10").FormatConditions(1)

				With	.Borders

								.LineStyle	=	xlContinuous

								.Weight	=	xlThin

								.ColorIndex	=	6

				End	With

				With	.Font

								.Bold	=	True

								.ColorIndex	=	3

				End	With

End	With

Remarks

Use	the	Add	method	to	create	a	new	conditional	format.	If	you	try	to	create
more	than	three	conditional	formats	for	a	single	range,	the	Add	method	fails.	If	a
range	has	three	formats,	you	can	use	the	Modify	method	to	change	one	of	the
formats,	or	you	can	use	the	Delete	method	to	delete	a	format	and	then	use	the
Add	method	to	create	a	new	format.

Use	the	Font,	Border,	and	Interior	properties	of	the	FormatCondition	object
to	control	the	appearance	of	formatted	cells.	Some	properties	of	these	objects
aren’t	supported	by	the	conditional	format	object	model.	The	properties	that	can
be	used	with	conditional	formatting	are	listed	in	the	following	table.

Object Properties

Font

Bold

Color

ColorIndex

FontStyle

Italic

Strikethrough

Underline

The	accounting	underline	styles	cannot	be	used.

Bottom

Color

Left

Right

Border

Style

The	following	border	styles	can	be	used	(all	others	aren’t
supported):	xlNone,	xlSolid,	xlDash,	xlDot,	xlDashDot,
xlDashDotDot,	xlGray50,	xlGray75,	and	xlGray25.

Top

Weight

The	following	border	weights	can	be	used	(all	others	aren’t
supported):	xlWeightHairline	and	xlWeightThin.

Interior

Color

ColorIndex

Pattern

PatternColorIndex

FormatConditions	Collection	Object
									
Range	 FormatConditions	(FormatCondition)

Borders	(Border)
Font
Interior

Represents	the	collection	of	conditional	formats	for	a	single	range.	The
FormatConditions	collection	can	contain	up	to	three	conditional	formats.	Each
format	is	represented	by	a	FormatCondition	object.

Using	the	FormatConditions	Collection

Use	the	FormatConditions	property	to	return	a	FormatConditions	object.	Use
the	Add	method	to	create	a	new	conditional	format,	and	use	the	Modify	method
to	change	an	existing	conditional	format.

The	following	example	adds	a	conditional	format	to	cells	E1:E10.

With	Worksheets(1).Range("e1:e10").FormatConditions	_

								.Add(xlCellValue,	xlGreater,	"=a1")

				With	.Borders

								.LineStyle	=	xlContinuous

								.Weight	=	xlThin

								.ColorIndex	=	6

				End	With

				With	.Font

								.Bold	=	True

								.ColorIndex	=	3

				End	With

End	With

Remarks

If	you	try	to	create	more	than	three	conditional	formats	for	a	single	range,	the
Add	method	fails.	If	a	range	has	three	formats,	you	can	use	the	Modify	method
to	change	one	of	the	formats,	or	you	can	use	the	Delete	method	to	delete	a
format	and	then	use	the	Add	method	to	create	a	new	format.

For	more	information	about	conditional	formats,	see	the	FormatCondition
object.

FreeformBuilder	Object
									
Shapes	(Shape)	 FreeformBuilder

Represents	the	geometry	of	a	freeform	while	it’s	being	built.

Using	the	FreeformBuilder	Object

Use	the	BuildFreeform	method	to	return	a	FreeformBuilder	object.	Use	the
AddNodes	method	to	add	nodes	to	the	freefrom.	Use	the	ConvertToShape
method	to	create	the	shape	defined	in	the	FreeformBuilder	object	and	add	it	to
the	Shapes	collection.	The	following	example	adds	a	freeform	with	four
segments	to	myDocument.

Set	myDocument	=	Worksheets(1)

With	myDocument.Shapes.BuildFreeform(msoEditingCorner,	360,	200)

				.AddNodes	msoSegmentCurve,	msoEditingCorner,	_

								380,	230,	400,	250,	450,	300

				.AddNodes	msoSegmentCurve,	msoEditingAuto,	480,	200

				.AddNodes	msoSegmentLine,	msoEditingAuto,	480,	400

				.AddNodes	msoSegmentLine,	msoEditingAuto,	360,	200

				.ConvertToShape

End	With

Graphic	Object
									
PageSetup	 Graphic

Contains	properties	that	apply	to	header	and	footer	picture	objects.

Using	the	Graphic	object

There	are	several	properties	of	the	PageSetup	object	that	return	the	Graphic
object.

Use	the	CenterFooterPicture,	CenterHeaderPicture,	LeftFooterPicture,
LeftHeaderPicture,	RightFooterPicture,	or	RightHeaderPicture	properties	to
return	a	Graphic	object.

The	following	example	adds	a	picture	titled:	Sample.jpg	from	the	C:\	drive	to	the
left	section	of	the	footer.	This	example	assumes	that	a	file	called	Sample.jpg
exists	on	the	C:\	drive.

Sub	InsertPicture()

				With	ActiveSheet.PageSetup.LeftFooterPicture

								.FileName	=	"C:\Sample.jpg"

								.Height	=	275.25

								.Width	=	463.5

								.Brightness	=	0.36

								.ColorType	=	msoPictureGrayscale

								.Contrast	=	0.39

								.CropBottom	=	-14.4

								.CropLeft	=	-28.8

								.CropRight	=	-14.4

								.CropTop	=	21.6

				End	With

				'	Enable	the	image	to	show	up	in	the	left	footer.

				ActiveSheet.PageSetup.LeftFooter	=	"&G"

End	Sub

Note			It	is	required	that	"&G"	is	a	part	of	the	LeftFooter	string	in	order	for	the
image	to	show	up	in	the	left	footer.

Gridlines	Object
									
Charts	(Chart)	 Axes	(Axis)

Gridlines
Border

Represents	major	or	minor	gridlines	on	a	chart	axis.	Gridlines	extend	the	tick
marks	on	a	chart	axis	to	make	it	easier	to	see	the	values	associated	with	the	data
markers.	This	object	isn’t	a	collection.	There’s	no	object	that	represents	a	single
gridline;	you	either	have	all	gridlines	for	an	axis	turned	on	or	all	of	them	turned
off.

Using	the	Gridlines	Object

Use	the	MajorGridlines	property	to	return	the	GridLines	object	that	represents
the	major	gridlines	for	the	axis.	Use	the	MinorGridlines	property	to	return	the
GridLines	object	that	represents	the	minor	gridlines.	It’s	possible	to	return	both
major	and	minor	gridlines	at	the	same	time.

The	following	example	turns	on	major	gridlines	for	the	category	axis	on	the
chart	sheet	named	"Chart1"	and	then	formats	the	gridlines	to	be	blue	dashed
lines.

With	Charts("chart1").Axes(xlCategory)

				.HasMajorGridlines	=	True

				.MajorGridlines.Border.Color	=	RGB(0,	0,	255)

				.MajorGridlines.Border.LineStyle	=	xlDash

End	With

GroupShapes	Collection	Object
									
Shapes	(Shape)	 GroupShapes	(Shape)

Represents	the	individual	shapes	within	a	grouped	shape.	Each	shape	is
represented	by	a	Shape	object.	Using	the	Item	method	with	this	object,	you	can
work	with	single	shapes	within	a	group	without	having	to	ungroup	them.

Using	The	GroupShapes	Collection

Use	the	GroupItems	property	to	return	the	GroupShapes	collection.	Use
GroupItems(index),	where	index	is	the	number	of	the	individual	shape	within
the	grouped	shape,	to	return	a	single	shape	from	the	the	GroupShapes
collection.	The	following	example	adds	three	triangles	to	myDocument,	groups
them,	sets	a	color	for	the	entire	group,	and	then	changes	the	color	for	the	second
triangle	only.

Set	myDocument	=	Worksheets(1)

With	myDocument.Shapes

				.AddShape(msoShapeIsoscelesTriangle,	_

								10,	10,	100,	100).Name	=	"shpOne"

				.AddShape(msoShapeIsoscelesTriangle,	_

								150,	10,	100,	100).Name	=	"shpTwo"

				.AddShape(msoShapeIsoscelesTriangle,	_

								300,	10,	100,	100).Name	=	"shpThree"

				With	.Range(Array("shpOne",	"shpTwo",	"shpThree")).Group

								.Fill.PresetTextured	msoTextureBlueTissuePaper

								.GroupItems(2).Fill.PresetTextured	msoTextureGreenMarble

				End	With

End	With

HiLoLines	Object
									
Charts	(Chart)	 ChartGroups	(ChartGroup)

HiLoLines
Border

Represents	the	high-low	lines	in	a	chart	group.	High-low	lines	connect	the
highest	point	with	the	lowest	point	in	every	category	in	the	chart	group.	Only	2-
D	line	groups	can	have	high-low	lines.	This	object	isn’t	a	collection.	There’s	no
object	that	represents	a	single	high-low	line;	you	either	have	high-low	lines
turned	on	for	all	points	in	a	chart	group	or	you	have	them	turned	off.

Using	the	HiLoLines	Object

Use	the	HiLoLines	property	to	return	the	HiLoLines	object.	The	following
example	uses	the	AutoFormat	method	to	create	a	high-low-close	stock	chart	in
embedded	chart	one	(the	chart	must	contain	three	series)	on	worksheet	one.	The
example	then	makes	the	high-low	lines	blue.

Worksheets(1).ChartObjects(1).Activate

ActiveChart.AutoFormat	gallery:=xlLine,	format:=8

ActiveChart.ChartGroups(1).HiLoLines.Border.Color	=	RGB(0,	0,	255)

Remarks

If	the	HasHiLoLines	property	is	False,	most	properties	of	the	HiLoLines	object
are	disabled.

HPageBreak	Object
									
Sheets	 HPageBreaks	(HPageBreak)

Represents	a	horizontal	page	break.	The	HPageBreak	object	is	a	member	of	the
HPageBreaks	collection.

Using	the	HPageBreak	Object

Use	HPageBreaks(index),	where	index	is	the	index	number	of	the	page	break,	to
return	an	HPageBreak	object.	The	following	example	changes	the	location	of
horizontal	page	break	one.

Worksheets(1).HPageBreaks(1).Location	=	Worksheets(1).Range("e5")

Note			There	is	a	limit	of	1026	horizontal	page	breaks	per	sheet.

HPageBreaks	Collection	Object
									
Sheets	 HPageBreaks	(HPageBreak)

The	collection	of	horizontal	page	breaks	within	the	print	area.	Each	horizontal
page	break	is	represented	by	an	HPageBreak	object.

Using	the	HPageBreaks	Collection

Use	the	HPageBreaks	property	to	return	the	HPageBreaks	collection.	Use	the
Add	method	to	add	a	horizontal	page	break.	The	following	example	adds	a
horizontal	page	break	above	the	active	cell.

ActiveSheet.HPageBreaks.Add	Before:=ActiveCell

If	you	add	a	page	break	that	does	not	intersect	the	print	area,	then	the	newly-
added	HPageBreak	object	will	not	appear	in	the	HPageBreaks	collection	for
the	print	area.	The	contents	of	the	collection	may	change	if	the	print	area	is
resized	or	redefined.

When	the	Application	property,	Count	property,	Creator	property,	Item
property,	Parent	property	or	Add	method	is	used	in	conjunction	with	the
HPageBreaks	property:

For	an	automatic	print	area,	the	HPageBreaks	property	applies	only	to	the
page	breaks	within	the	print	area.
For	a	user-defined	print	area	of	the	same	range,	the	HPageBreaks	property
applies	to	all	of	the	page	breaks.

Note			There	is	a	limit	of	1026	horizontal	page	breaks	per	sheet.

Hyperlink	Object
									
Multiple	objects	 Hyperlink

Multiple	objects

Represents	a	hyperlink.	The	Hyperlink	object	is	a	member	of	the	Hyperlinks
collection.

Using	the	Hyperlink	Object

Use	the	Hyperlink	property	to	return	the	hyperlink	for	a	shape	(a	shape	can	have
only	one	hyperlink).	The	following	example	activates	the	hyperlink	for	shape
one.

Worksheets(1).Shapes(1).Hyperlink.Follow	NewWindow:=True

A	range	or	worksheet	can	have	more	than	one	hyperlink.	Use
Hyperlinks(index),	where	index	is	the	hyperlink	number,	to	return	a	single
Hyperlink	object.	The	folllowing	example	activates	hyperlink	two	in	the	range
A1:B2.

Worksheets(1).Range("A1:B2").Hyperlinks(2).Follow

Hyperlinks	Collection
									
Multiple	objects	 Hyperlinks

Hyperlink

Represents	the	collection	of	hyperlinks	for	a	worksheet	or	range.	Each	hyperlink
is	represented	by	a	Hyperlink	object.

Using	the	Hyperlinks	Collection

Use	the	Hyperlinks	property	to	return	the	Hyperlinks	collection.	The	following
example	checks	the	hyperlinks	on	worksheet	one	for	a	link	that	contains	the
word	Microsoft.

For	Each	h	in	Worksheets(1).Hyperlinks

				If	Instr(h.Name,	"Microsoft")	<>	0	Then	h.Follow

Next

Use	the	Add	method	to	create	a	hyperlink	and	add	it	to	the	Hyperlinks
collection.	The	following	example	creates	a	new	hyperlink	for	cell	E5.

With	Worksheets(1)

				.Hyperlinks.Add	.Range("E5"),	"http://example.microsoft.com"

End	With

Interior	Object
									
Multiple	objects	 Interior

Represents	the	interior	of	an	object.

Using	the	Interior	Object

Use	the	Interior	property	to	return	the	Interior	object.	The	following	example
sets	the	color	for	the	interior	of	cell	A1	to	red.

Worksheets("Sheet1").Range("A1").Interior.ColorIndex	=	3

IRtdServer	Object
									
IRtdServer

Represents	an	interface	for	a	real-time	data	server.

Using	the	IRtdServer	object

The	IRTDServer	object	can	only	be	instantiated	or	created	by	implementing	the
IRTDServer	interface	using	the	Implements	keyword.

IRTDUpdateEvent	Object
									
IRTDUpdateEvent

Represents	real-time	data	update	events.

Using	the	IRTDUpdateEvent	object

To	instantiate	or	to	return	an	IRTDUpdateEvent	object,	declare	a	variable	as	an
IRTDUpdateEvent	object,	then	use	that	variable	as	a	callback	object.

LeaderLines	Object
									
SeriesCollection	(Series)	 LeaderLines

Border

Represents	leader	lines	on	a	chart.	Leader	lines	connect	data	labels	to	data
points.	This	object	isn’t	a	collection;	there’s	no	object	that	represents	a	single
leader	line.

Using	the	LeaderLines	Object

Use	the	LeaderLines	property	to	return	the	LeaderLines	object.	The	following
example	adds	data	labels	and	blue	leader	lines	to	series	one	on	chart	one.

With	Worksheets(1).ChartObjects(1).Chart.SeriesCollection(1)

				.HasDataLabels	=	True

				.DataLabels.Position	=	xlLabelPositionBestFit

				.HasLeaderLines	=	True

				.LeaderLines.Border.ColorIndex	=	5

End	With

Legend	Object
									
Charts	(Chart)	 Legend

Font
Border
Interior
LegendEntries	(LegendEntry)
LegendKey

Represents	the	legend	in	a	chart.	Each	chart	can	have	only	one	legend.	The
Legend	object	contains	one	or	more	LegendEntry	objects;	each	LegendEntry
object	contains	a	LegendKey	object.

Using	the	Legend	Object

Use	the	Legend	property	to	return	the	Legend	object.	The	following	example
sets	the	font	style	for	the	legend	in	embedded	chart	one	on	worksheet	one	to
bold.

Worksheets(1).ChartObjects(1).Chart.Legend.Font.Bold	=	True

Remarks

The	chart	legend	isn’t	visible	unless	the	HasLegend	property	is	True.	If	this
property	is	False,	properties	and	methods	of	the	Legend	object	will	fail.

LegendEntries	Collection	Object
									
Charts	(Chart)	 Legend

LegendEntries	(LegendEntry)
Font
LegendKey

A	collection	of	all	the	LegendEntry	objects	in	the	specified	chart	legend.	Each
legend	entry	has	two	parts:	the	text	of	the	entry,	which	is	the	name	of	the	series
or	trendline	associated	with	the	legend	entry;	and	the	entry	marker,	which
visually	links	the	legend	entry	with	its	associated	series	or	trendline	in	the	chart.
The	formatting	properties	for	the	entry	marker	and	its	associated	series	or
trendline	are	contained	in	the	LegendKey	object.

Using	the	LegendEntries	Collection

Use	the	LegendEntries	method	to	return	the	LegendEntries	collection.	The
following	example	loops	through	the	collection	of	legend	entries	in	embedded
chart	one	and	changes	their	font	color.

With	Worksheets("sheet1").ChartObjects(1).Chart.Legend

				For	i	=	1	To	.LegendEntries.Count

								.LegendEntries(i).Font.ColorIndex	=	5

				Next

End	With

Use	LegendEntries(index),	where	index	is	the	legend	entry	index	number,	to
return	a	single	LegendEntry	object.	You	cannot	return	legend	entries	by	name.

The	index	number	represents	the	position	of	the	legend	entry	in	the	legend.
LegendEntries(1)	is	at	the	top	of	the	legend;
LegendEntries(LegendEntries.Count)	is	at	the	bottom.	The	following
example	changes	the	font	style	for	the	text	of	the	legend	entry	at	the	top	of	the
legend	(this	is	usually	the	legend	for	series	one)	in	embedded	chart	one	to	italic.

Worksheets("sheet1").ChartObjects(1).Chart	_

				.Legend.LegendEntries(1).Font.Italic	=	True

LegendEntry	Object
									
Charts	(Chart)	 Legend

LegendEntries	(LegendEntry)
Font
LegendKey

Represents	a	legend	entry	in	a	chart	legend.	The	LegendEntry	object	is	a
member	of	the	LegendEntries	collection.	The	LegendEntries	collection
contains	all	the	LegendEntry	objects	in	the	legend.

Each	legend	entry	has	two	parts:	the	text	of	the	entry,	which	is	the	name	of	the
series	associated	with	the	legend	entry;	and	an	entry	marker,	which	visually	links
the	legend	entry	with	its	associated	series	or	trendline	in	the	chart.	Formatting
properties	for	the	entry	marker	and	its	associated	series	or	trendline	are
contained	in	the	LegendKey	object.

The	text	of	a	legend	entry	cannot	be	changed.	LegendEntry	objects	support	font
formatting,	and	they	can	be	deleted.	No	pattern	formatting	is	supported	for
legend	entries.	The	position	and	size	of	entries	is	fixed.

Using	the	LegendEntry	Object

Use	LegendEntries(index),	where	index	is	the	legend	entry	index	number,	to
return	a	single	LegendEntry	object.	You	cannot	return	legend	entries	by	name.

The	index	number	represents	the	position	of	the	legend	entry	in	the	legend.
LegendEntries(1)	is	at	the	top	of	the	legend,	and
LegendEntries(LegendEntries.Count)	is	at	the	bottom.	The	following
example	changes	the	font	for	the	text	of	the	legend	entry	at	the	top	of	the	legend
(this	is	usually	the	legend	for	series	one)	in	embedded	chart	one	on	the
worksheet	named	"Sheet1."

Worksheets("sheet1").ChartObjects(1).Chart	_

				.Legend.LegendEntries(1).Font.Italic	=	True

Remarks

There’s	no	direct	way	to	return	the	series	or	trendline	corresponding	to	the
legend	entry.

After	legend	entries	have	been	deleted,	the	only	way	to	restore	them	is	to	remove
and	recreate	the	legend	that	contained	them	by	setting	the	HasLegend	property
for	the	chart	to	False	and	then	back	to	True.

LegendKey	Object
									
Charts	(Chart)	 Legend

LegendEntries	(LegendEntry)
Font
LegendKey
Border
Interior

Represents	a	legend	key	in	a	chart	legend.	Each	legend	key	is	a	graphic	that
visually	links	a	legend	entry	with	its	associated	series	or	trendline	in	the	chart.
The	legend	key	is	linked	to	its	associated	series	or	trendline	in	such	a	way	that
changing	the	formatting	of	one	simultaneously	changes	the	formatting	of	the
other.

Using	the	LegendKey	Object

Use	the	LegendKey	property	to	return	the	LegendKey	object.	The	following
example	changes	the	marker	background	color	for	the	legend	entry	at	the	top	of
the	legend	for	embedded	chart	one	on	the	worksheet	named	"Sheet1."	This
simultaneously	changes	the	format	of	every	point	in	the	series	associated	with
this	legend	entry.	The	associated	series	must	support	data	markers.

Worksheets("sheet1").ChartObjects(1).Chart	_

				.Legend.LegendEntries(1).LegendKey.MarkerBackgroundColorIndex	=	5

LineFormat	Object
									
Shapes	(Shape)	 LineFormat

ColorFormat

Represents	line	and	arrowhead	formatting.	For	a	line,	the	LineFormat	object
contains	formatting	information	for	the	line	itself;	for	a	shape	with	a	border,	this
object	contains	formatting	information	for	the	shape's	border.

Using	the	LineFormat	Object

Use	the	Line	property	to	return	a	LineFormat	object.	The	following	example
adds	a	blue,	dashed	line	to	myDocument.	There’s	a	short,	narrow	oval	at	the	line's
starting	point	and	a	long,	wide	triangle	at	its	end	point.

Set	myDocument	=	Worksheets(1)

With	myDocument.Shapes.AddLine(100,	100,	200,	300).Line

				.DashStyle	=	msoLineDashDotDot

				.ForeColor.RGB	=	RGB(50,	0,	128)

				.BeginArrowheadLength	=	msoArrowheadShort

				.BeginArrowheadStyle	=	msoArrowheadOval

				.BeginArrowheadWidth	=	msoArrowheadNarrow

				.EndArrowheadLength	=	msoArrowheadLong

				.EndArrowheadStyle	=	msoArrowheadTriangle

				.EndArrowheadWidth	=	msoArrowheadWide

End	With

LinkFormat	Object
									
Shape	 LinkFormat

Contains	linked	OLE	object	properties.

Using	the	LinkFormat	Object

Use	the	LinkFormat	property	to	return	the	LinkFormat	object.	The	following
example	updates	an	OLE	object	in	the	Shapes	collection.

Worksheets(1).Shapes(1).LinkFormat.Update

If	the	Shape	object	doesn’t	represent	a	linked	object,	the	LinkFormat	property
fails.

Name	Object
									
Application	 Workbooks	(Workbook)

Names	(Name)
Worksheets	(Worksheet)
Range
Name

Represents	a	defined	name	for	a	range	of	cells.	Names	can	be	either	built-in
names	—	such	as	Database,	Print_Area,	and	Auto_Open	—	or	custom	names.

Application,	Workbook,	and	Worksheet	Objects

The	Name	object	is	a	member	of	the	Names	collection	for	the
Application,Workbook,	and	Worksheet	objects.	Use	Names(index),	where
index	is	the	name	index	number	or	defined	name,	to	return	a	single	Name	object.

The	index	number	indicates	the	position	of	the	name	within	the	collection.
Names	are	placed	in	alphabetic	order,	from	a	to	z,	and	are	not	case-sensitive	(this
is	the	same	order	as	is	displayed	in	the	Define	Name	and	Apply	Names	dialog
boxes,	returned	by	clicking	the	Name	command	on	the	Insert	menu).	The
following	example	displays	the	cell	reference	for	the	first	name	in	the
application	collection.

MsgBox	Names(1).RefersTo

The	following	example	deletes	the	name	"mySortRange"	from	the	active
workbook.

ActiveWorkbook.Names("mySortRange").Delete

Use	the	Name	property	to	return	or	set	the	text	of	the	name	itself.	The	following
example	changes	the	name	of	the	first	Name	object	in	the	active	workbook.

Names(1).Name	=	"stock_values"

Range	Objects

Although	a	Range	object	can	have	more	than	one	name,	there’s	no	Names
collection	for	the	Range	object.	Use	Name	with	a	Range	object	to	return	the
first	name	from	the	list	of	names	(sorted	alphabetically)	assigned	to	the	range.
The	following	example	sets	the	Visible	property	for	the	first	name	assigned	to
cells	A1:B1	on	worksheet	one.

Worksheets(1).Range("a1:b1").Name.Visible	=	False

Names	Collection	Object
									
Application	 Workbooks	(Workbook)

Names	(Name)
Worksheets	(Worksheet)
Names	(Name)
Range
Name

A	collection	of	all	the	Name	objects	in	the	application	or	workbook.	Each	Name
object	represents	a	defined	name	for	a	range	of	cells.	Names	can	be	either	built-
in	names	—	such	as	Database,	Print_Area,	and	Auto_Open	—	or	custom	names.

Using	the	Names	Collection

Use	the	Names	property	to	return	the	Names	collection.	The	following	example
creates	a	list	of	all	the	names	in	the	active	workbook,	plus	the	addresses	they
refer	to.

Set	nms	=	ActiveWorkbook.Names

Set	wks	=	Worksheets(1)

For	r	=	1	To	nms.Count

				wks.Cells(r,	2).Value	=	nms(r).Name

				wks.Cells(r,	3).Value	=	nms(r).RefersToRange.Address

Next

Use	the	Add	method	to	create	a	name	and	add	it	to	the	collection.The	following
example	creates	a	new	name	that	refers	to	cells	A1:C20	on	the	worksheet	named
"Sheet1."

Names.Add	Name:="test",	RefersTo:="=sheet1!a1:c20"

The	RefersTo	argument	must	be	specified	in	A1-style	notation,	including	dollar
signs	($)	where	appropriate.	For	example,	if	cell	A10	is	selected	on	Sheet1	and
you	define	a	name	by	using	the	RefersTo	argument	"=sheet1!A1:B1",	the	new
name	actually	refers	to	cells	A10:B10	(because	you	specified	a	relative
reference).	To	specify	an	absolute	reference,	use	"=sheet1!A1:B1".

Use	Names(index),	where	index	is	the	name	index	number	or	defined	name,	to
return	a	single	Name	object.The	following	example	deletes	the	name
"mySortRange"	from	the	active	workbook.

ActiveWorkbook.Names("mySortRange").Delete

ODBCError	Object
									
Application	 ODBCErrors	(ODBCError)

Represents	an	ODBC	error	generated	by	the	most	recent	ODBC	query.	The
ODBCError	object	is	a	member	of	the	ODBCErrors	collection.	If	the	specified
ODBC	query	runs	without	error,	the	ODBCErrors	collection	is	empty.	The
errors	in	the	collection	are	indexed	in	the	order	in	which	they’re	generated	by	the
ODBC	data	source.

Using	the	ODBCError	Object

Use	ODBCErrors(index),	where	index	is	the	index	number	of	the	error,	to
return	a	single	ODBCError	object.	The	following	example	refreshes	query	table
one	and	displays	the	first	ODBC	error	that	occurs.

With	Worksheets(1).QueryTables(1)

				.Refresh

				If	Application.ODBCErrors.Count	>	0	Then

								Set	er	=	Application.ODBCErrors(1)

								MsgBox	"The	following	error	occurred:"	&

												er.ErrorString	&	"	:	"	&	er.SqlState

				Else

								MsgBox	"Query	complete:	all	records	returned."

				End	If

End	With

ODBCErrors	Collection	Object
									
Application	 ODBCErrors	(ODBCError)

A	collection	of	ODBCError	objects.	Each	ODBCError	object	represents	an
error	returned	by	the	most	recent	ODBC	query.	If	the	specified	ODBC	query
runs	without	error,	the	ODBCErrors	collection	is	empty.	The	errors	in	the
collection	are	indexed	in	the	order	in	which	they’re	generated	by	the	ODBC	data
source.	You	cannot	add	members	to	the	collection.

Using	the	ODBCErrors	Collection

Use	the	ODBCErrors	property	to	return	the	ODBCErrors	collection.	The
following	example	refreshes	query	table	one	and	displays	any	ODBC	errors	that
occur.

With	Worksheets(1).QueryTables(1)

				.Refresh

				Set	errs	=	Application.ODBCErrors

				If	errs.Count	>	0	Then

								Set	r	=	.Destination.Cells(1)

								r.Value	=	"The	following	errors	occurred:"

								c	=	0

								For	Each	er	In	errs

												c	=	c	+	1

												r.offset(c,	0).value	=	er.ErrorString

												r.offset(c,	1).value	=	er.SqlState

								Next

				Else

								MsgBox	"Query	complete:	all	records	returned."

				End	If

End	With

OLEDBError	Object
									
Application	 OLEDBErrors	(OLEDBError)

Represents	an	OLE	DB	error	returned	by	the	most	recent	OLE	DB	query.	The
OLEDBError	object	is	a	member	of	the	OLEDBErrors	collection.	If	the
specified	OLE	DB	query	runs	without	error,	the	OLEDBErrors	collection	is
empty.	The	errors	in	the	collection	are	indexed	in	the	order	in	which	they're
generated	by	the	OLE	DB	provider.

Using	the	OLEDBError	Object

Use	OLEDBErrors(index),	where	index	is	the	index	number	of	the	OLE	DB
error,	to	return	a	single	OLEDBError	object.	The	following	example	displays
the	error	description	and	the	SqlState	property’s	value	for	the	first	error	returned
by	the	most	recent	OLE	DB	query.

Set	objEr	=	Application.OLEDBErrors(1)

MsgBox	"The	following	error	occurred:"	&	_

				objEr.ErrorString	&	"	:	"	&	objEr.SqlState

OLEDBErrors	Collection	Object
									
Application	 OLEDBErrors	(OLEDBError)

A	collection	of	OLEDBError	objects.	Each	OLEDBError	object	represents	an
error	returned	by	the	most	recent	OLE	DB	query.	If	the	specified	OLE	DB	query
runs	without	error,	the	OLEDBErrors	collection	is	empty.	The	errors	in	the
collection	are	indexed	in	the	order	in	which	they're	generated	by	the	OLE	DB
provider.	You	cannot	add	members	to	the	collection.

Using	the	OLEDBErrors	Collection

Use	the	OLEDBErrors	property	to	return	the	OLEDBErrors	collection.	The
following	example	displays	the	error	description	and	the	SqlState	property’s
value	for	each	OLE	DB	error	in	the	collection.

For	Each	objEr	in	Application.OLEDBErrors

				MsgBox	"The	following	error	occurred:"	&	_

								objEr.ErrorString	&	"	:	"	&	objEr.SqlState

Next	objEr

Use	OLEDBErrors(index),	where	index	is	the	index	number	of	the	OLE	DB
error,	to	return	a	single	OLEDBError	object.	The	following	example	displays
the	error	description	and	the	SqlState	property’s	value	for	the	first	error	returned
by	the	most	recent	OLE	DB	query.

Set	objEr	=	Application.OLEDBErrors(1)

MsgBox	"The	following	error	occurred:"	&	_

				objEr.ErrorString	&	"	:	"	&	objEr.SqlState

OLEFormat	Object
									
Shape	 OLEFormat

Contains	OLE	object	properties.

Using	the	OLEFormat	Object

Use	the	OLEFormat	property	to	return	the	OLEFormat	object.	The	following
example	activates	an	OLE	object	in	the	Shapes	collection.

Worksheets(1).Shapes(1).OLEFormat.Activate

If	the	Shape	object	doesn’t	represent	a	linked	or	embedded	object,	the
OLEFormat	property	fails.

OLEObject	Object
									
Sheets	 OLEObjects	(OLEObject)

Borders	(Border)
Interior

Represents	an	ActiveX	control	or	a	linked	or	embedded	OLE	object	on	a
worksheet.	The	OLEObject	object	is	a	member	of	the	OLEObjects	collection.
The	OLEObjects	collection	contains	all	the	OLE	objects	on	a	single	worksheet.

Using	the	OLEObject	Object

Use	OLEObjects(index),	where	index	is	the	name	or	number	of	the	object,	to
return	an	OLEObject	object.	The	following	example	deletes	OLE	object	one	on
Sheet1.

Worksheets("sheet1").OLEObjects(1).Delete

The	following	example	deletes	the	OLE	object	named	“ListBox1.”

Worksheets("sheet1").OLEObjects("ListBox1").Delete

Remarks

The	properties	and	methods	of	the	OLEObject	object	are	duplicated	on	each
ActiveX	control	on	a	worksheet.	This	enables	Visual	Basic	code	to	gain	access
to	these	properties	by	using	the	control’s	name.	The	following	example	selects
the	check	box	control	named	"MyCheckBox,"	aligns	it	with	the	active	cell,	and
then	activates	the	control.

With	MyCheckBox

				.Value	=	True

				.Top	=	ActiveCell.Top

				.Activate

End	With

For	more	information,	see	Using	ActiveX	controls	on	sheets.

OLEObjects	Collection	Object
									
Sheets	 OLEObjects	(OLEObject)

Borders	(Border)
Interior

A	collection	of	all	the	OLEObject	objects	on	the	specified	worksheet.	Each
OLEObject	object	represents	an	ActiveX	control	or	a	linked	or	embedded	OLE
object.

Using	the	OLEObjects	Collection

Use	the	OLEObjects	method	to	return	the	OLEObjects	collection.	The
following	example	hides	all	the	OLE	objects	on	worksheet	one.

Worksheets(1).OLEObjects.Visible	=	False

Use	the	Add	method	to	create	a	new	OLE	object	and	add	it	to	the	OLEObjects
collection.	The	following	example	creates	a	new	OLE	object	representing	the
bitmap	file	Arcade.bmp	and	adds	it	to	worksheet	one.

Worksheets(1).OLEObjects.Add	FileName:="arcade.gif"

The	following	example	creates	a	new	ActiveX	control	(a	list	box)	and	adds	it	to
worksheet	one.

Worksheets(1).OLEObjects.Add	ClassType:="Forms.ListBox.1"

For	more	information,	see	Using	ActiveX	controls	on	sheets.

Remarks

An	ActiveX	control	on	a	sheet	has	two	names:	the	name	of	the	shape	that
contains	the	control,	which	you	can	see	in	the	Name	box	when	you	view	the
sheet,	and	the	code	name	for	the	control,	which	you	can	see	in	the	cell	to	the
right	of	(Name)	in	the	Properties	window.	When	you	first	add	a	control	to	a
sheet,	the	shape	name	and	code	name	match.	However,	if	you	change	either	the
shape	name	or	code	name,	the	other	is	not	automatically	changed	to	match.

You	use	the	code	name	of	a	control	in	the	names	of	its	event	procedures.
However,	when	you	return	a	control	from	the	Shapes	or	OLEObjects	collection
for	a	sheet,	you	must	use	the	shape	name,	not	the	code	name,	to	refer	to	the
control	by	name.	For	example,	assume	that	you	add	a	check	box	to	a	sheet	and
that	both	the	default	shape	name	and	the	default	code	name	are	CheckBox1.	If
you	then	change	the	control	code	name	by	typing	chkFinished	next	to	(Name)	in
the	Properties	window,	you	must	use	chkFinished	in	event	procedures	names,
but	you	still	have	to	use	CheckBox1	to	return	the	control	from	the	Shapes	or
OLEObject	collection,	as	shown	in	the	following	example.

Private	Sub	chkFinished_Click()

				ActiveSheet.OLEObjects("CheckBox1").Object.Value	=	1

End	Sub

Outline	Object
									
Workbooks	(Workbook)	 Worksheets	(Worksheet)

Outline

Represents	an	outline	on	a	worksheet.

Using	the	Outline	Object

Use	the	Outline	property	to	return	an	Outline	object.	The	following	example
sets	the	outline	on	Sheet4	so	that	only	the	first	outline	level	is	shown.

Worksheets("sheet4").Outline.ShowLevels	1

PageSetup	Object
									
Multiple	objects	 PageSetup

Represents	the	page	setup	description.	The	PageSetup	object	contains	all	page
setup	attributes	(left	margin,	bottom	margin,	paper	size,	and	so	on)	as	properties.

Using	the	PageSetup	Object

Use	the	PageSetup	property	to	return	a	PageSetup	object.	The	following
example	sets	the	orientation	to	landscape	mode	and	then	prints	the	worksheet.

With	Worksheets("Sheet1")

				.PageSetup.Orientation	=	xlLandscape

				.PrintOut

End	With

The	With	statement	makes	it	easier	and	faster	to	set	several	properties	at	the
same	time.	The	following	example	sets	all	the	margins	for	worksheet	one.

With	Worksheets(1).PageSetup

				.LeftMargin	=	Application.InchesToPoints(0.5)

				.RightMargin	=	Application.InchesToPoints(0.75)

				.TopMargin	=	Application.InchesToPoints(1.5)

				.BottomMargin	=	Application.InchesToPoints(1)

				.HeaderMargin	=	Application.InchesToPoints(0.5)

				.FooterMargin	=	Application.InchesToPoints(0.5)

End	With

Pane	Object
									
Windows	(Window)	 Panes	(Pane)

Represents	a	pane	of	a	window.	Pane	objects	exist	only	for	worksheets	and
Microsoft	Excel	4.0	macro	sheets.	The	Pane	object	is	a	member	of	the	Panes
collection.	The	Panes	collection	contains	all	of	the	panes	shown	in	a	single
window.

Using	the	Pane	Object

Use	Panes(index),	where	index	is	the	pane	index	number,	to	return	a	single	Pane
object.	The	following	example	splits	the	window	in	which	worksheet	one	is
displayed	and	then	scrolls	through	the	pane	in	the	lower-left	corner	until	row	five
is	at	the	top	of	the	pane.

Worksheets(1).Activate

ActiveWindow.Split	=	True

ActiveWindow.Panes(3).ScrollRow	=	5

Panes	Collection	Object
									
Windows	(Window)	 Panes	(Pane)

A	collection	of	all	the	Pane	objects	shown	in	the	specified	window.	Pane	objects
exist	only	for	worksheets	and	Microsoft	Excel	4.0	macro	sheets.

Using	the	Panes	Collection

Use	the	Panes	property	to	return	the	Panes	collection.	The	following	example
freezes	panes	in	the	active	window	if	the	window	contains	more	than	one	pane.

If	ActiveWindow.Panes.Count	>	1	Then	_

				ActiveWindow.FreezePanes	=	True

Use	Panes(index),	where	index	is	the	pane	index	number,	to	return	a	single	Pane
object.	The	following	example	scrolls	through	the	upper-left	pane	of	the	window
in	which	Sheet1	is	displayed.

Worksheets("sheet1").Activate

Windows(1).Panes(1).LargeScroll	down:=1

Parameter	Object
									
Worksheets	(Worksheet)	 QueryTables	(QueryTable)

Parameters	(Parameter)

Represents	a	single	parameter	used	in	a	parameter	query.	The	Parameter	object
is	a	member	of	the	Parameters	collection.

Using	the	Parameter	Object

Use	Parameters(index),	where	index	is	the	index	number	of	the	parameter,	to
return	a	single	Parameter	object.	The	following	example	modifies	the	prompt
string	for	parameter	one.

With	Worksheets(1).QueryTables(1).Parameters(1)

				.SetParam	xlPrompt,	"Please	"	&	.PromptString

End	With

Parameters	Collection	Object
									
Worksheets	(Worksheet)	 QueryTables	(QueryTable)

Parameters	(Parameter)

A	collection	of	Parameter	objects	for	the	specified	query	table.	Each
Parameter	object	represents	a	single	query	parameter.	Every	query	table
contains	a	Parameters	collection,	but	the	collection	is	empty	unless	the	query
table	is	using	a	parameter	query.

Using	the	Parameters	Collection

Use	the	Parameters	property	to	return	the	Parameters	collection.	The
following	example	displays	the	number	of	parameters	in	query	table	one.

MsgBox	Workbooks(1).ActiveSheet.QueryTables(1).Parameters.Count

Use	the	Add	method	to	create	a	new	parameter	for	a	query	table.	The	following
example	changes	the	SQL	statement	for	query	table	one.	The	clause	“(city=?)”
indicates	that	the	query	is	a	parameter	query,	and	the	value	of	city	is	set	to	the
constant	“Oakland.”

Set	qt	=	Sheets("sheet1").QueryTables(1)

qt.Sql	=	"SELECT	*	FROM	authors		WHERE	(city=?)"

Set	param1	=	qt.Parameters.Add("City	Parameter",	_

				xlParamTypeVarChar)

param1.SetParam	xlConstant,	"Oakland"

qt.Refresh

You	cannot	use	the	Add	method	on	a	URL	connection	query	table.	For	URL
connection	query	tables,	Microsoft	Excel	creates	the	parameters	based	on	the
Connection	and	PostText	properties.

Phonetic	Object
									
Range	 Phonetics	(Phonetic)

Contains	information	about	a	specific	phonetic	text	string	in	a	cell.	In	Microsoft
Excel	97,	this	object	contained	the	formatting	attributes	for	any	phonetic	text	in
the	specified	range.

Using	the	Phonetic	Object

Use	Phonetics(index),	where	index	is	the	index	number	of	the	phonetic	text,	to
return	a	single	Phonetic	object.	The	following	example	sets	the	first	phonetic
text	string	in	the	active	cell	to	" ".

ActiveCell.Phonetics(1).Text	=	" "

The	Phonetic	property	provides	compatibility	with	earlier	versions	of	Microsoft
Excel.	You	should	use	Phonetics(index),	where	index	is	the	index	number	of	the
phonetic	text,	to	return	a	single	Phonetic	object.	To	demonstrate	compatibility
with	earlier	versions	of	Microsoft	Excel,	the	following	example	adds	Furigana
characters	to	the	range	A1:C4.	If	you	add	Furigana	characters	to	a	range,	a	new
Phonetic	object	is	automatically	created.

With	Range("A1:C4").Phonetic

				.CharacterType	=	xlHiragana

				.Alignment	=	xlPhoneticAlignCenter

				.Font.Name	=	"MS	P "

				.Font.FontStyle	=	" "

				.Font.Size	=	6

				.Font.Strikethrough	=	False

				.Font.Underline	=	xlUnderlineStyleNone

				.Font.ColorIndex	=	xlAutomatic

				.Visible	=	True

End	With

Phonetics	Collection	Object
									
Range	 Phonetics	(Phonetic)

A	collection	of	all	the	Phonetic	objects	in	the	specified	range.	Each	Phonetic
object	contains	information	about	a	specific	phonetic	text	string.

Using	the	Phonetics	Collection

Use	the	Phonetics	property	to	return	the	Phonetics	collection.	The	following
example	makes	all	phonetic	text	in	the	range	A1:C4	visible.

Range("A1:C4").Phonetics.Visible	=	True

Use	Phonetics(index),	where	index	is	the	index	number	of	the	phonetic	text,	to
return	a	single	Phonetic	object.	The	following	example	sets	the	first	phonetic
text	string	in	the	active	cell	to	" ".

ActiveCell.Phonetics(1).Text	=	" "

PictureFormat	Object
									
Shapes	(Shape)	 PictureFormat

Contains	properties	and	methods	that	apply	to	pictures	and	OLE	objects.	The
LinkFormat	object	contains	properties	and	methods	that	apply	to	linked	OLE
objects	only.	The	OLEFormat	object	contains	properties	and	methods	that	apply
to	OLE	objects	whether	or	not	they’re	linked.

Using	the	PictureFormat	Object

Use	the	PictureFormat	property	to	return	a	PictureFormat	object.	The
following	example	sets	the	brightness,	contrast,	and	color	transformation	for
shape	one	on	myDocument	and	crops	18	points	off	the	bottom	of	the	shape.	For
this	example	to	work,	shape	one	must	be	either	a	picture	or	an	OLE	object.

Set	myDocument	=	Worksheets(1)

With	myDocument.Shapes(1).PictureFormat

				.Brightness	=	0.3

				.Contrast	=	0.7

				.ColorType	=	msoPictureGrayScale

				.CropBottom	=	18

PivotCache	Object
									
Multiple	objects	 PivotCache

PivotTable

Represents	the	memory	cache	for	a	PivotTable	report.	The	PivotCache	object	is
a	member	of	the	PivotCaches	collection.

Using	the	PivotCache	Object

Use	the	PivotCache	method	to	return	a	PivotCache	object	for	a	PivotTable
report	(each	report	has	only	one	cache).	The	following	example	causes	the	first
PivotTable	report	on	the	first	worksheet	to	refresh	itself	whenever	its	file	is
opened.

Worksheets(1).PivotTables(1).PivotCache.RefreshOnFileOpen	=	True

Use	PivotCaches(index),	where	index	is	the	PivotTable	cache	number,	to	return
a	single	PivotCache	object	from	the	PivotCaches	collection	for	a	workbook.
The	following	example	refreshes	cache	one.

ActiveWorkbook.PivotCaches(1).Refresh

PivotCaches	Collection	Object
									
Workbooks	(Workbook)	 PivotCaches	(PivotCache)

Represents	the	collection	of	memory	caches	from	the	PivotTable	reports	in	a
workbook.	Each	memory	cache	is	represented	by	a	PivotCache	object.

Using	the	PivotCaches	Collection

Use	the	PivotCaches	method	to	return	the	PivotCaches	collection.	The
following	example	sets	the	RefreshOnFileOpen	property	for	all	memory	caches
in	the	active	workbook.

For	Each	pc	In	ActiveWorkbook.PivotCaches

				pc.RefreshOnFileOpen	=	True

Next

PivotCell	Object
									
Range	 PivotCell

Multiple	objects

Represents	a	cell	in	a	PivotTable	report.

Using	the	PivotCell	object

Use	the	PivotCell	property	of	the	Range	collection	to	return	a	PivotCell	object.

Once	a	PivotCell	object	is	returned,	you	can	use	the	PivotCellType	property	to
determine	what	type	of	cell	a	particular	range	is.	The	following	example
determines	if	cell	A5	in	the	PivotTable	is	a	data	item	and	notifies	the	user.	This
example	assumes	that	a	PivotTable	exists	on	the	active	worksheet	and	that	cell
A5	is	contained	in	the	PivotTable.	If	cell	A5	is	not	in	the	PivotTable,	the
example	handles	the	run-time	error.

Sub	CheckPivotCellType()

				On	Error	GoTo	Not_In_PivotTable

				'	Determine	if	cell	A5	is	a	data	item	in	the	PivotTable.

				If	Application.Range("A5").PivotCell.PivotCellType	=	xlPivotCellValue	Then

								MsgBox	"The	PivotCell	at	A5	is	a	data	item."

				Else

								MsgBox	"The	PivotCell	at	A5	is	not	a	data	item."

				End	If

				Exit	Sub

Not_In_PivotTable:

				MsgBox	"The	chosen	cell	is	not	in	a	PivotTable."

End	Sub

Once	a	PivotCell	object	is	returned,	you	can	use	the	ColumnItems	or
RowItems	property	to	determine	the	PivotItems	collection	that	corresponds	to
the	items	on	the	column	or	row	axis	that	represents	the	selected	number.	The
following	example	uses	the	ColumnItems	property	of	the	PivotCell	object	to
return	a	PivotItemList	collection.

This	example	determines	the	column	field	that	the	data	item	of	cell	B5	is	in.	It
then	determines	if	the	column	field	title	matches	"Inventory"	and	notifies	the
user.	The	example	assumes	that	a	PivotTable	exists	on	the	active	worksheet	and
that	column	B	of	the	worksheet	contains	a	column	field	of	the	PivotTable.

Sub	CheckColumnItems()

				'	Determine	if	there	is	a	match	between	the	item	and	column	field.

				If	Application.Range("B5").PivotCell.ColumnItems.Item(1)	=	"Inventory"	Then

								MsgBox	"Item	in	B5	is	a	member	of	the	'Inventory'	column	field."

				Else

								MsgBox	"Item	in	B5	is	not	a	member	of	the	'Inventory'	column	field."

				End	If

End	Sub

PivotField	Object
									
Multiple	objects	 PivotField

Multiple	objects

Represents	a	field	in	a	PivotTable	report.	The	PivotField	object	is	a	member	of
the	PivotFields	collection.	The	PivotFields	collection	contains	all	the	fields	in	a
PivotTable	report,	including	hidden	fields.

Using	the	PivotField	Object

Use	PivotFields(index),	where	index	is	the	field	name	or	index	number,	to	return
a	single	PivotField	object.	The	following	example	makes	the	Year	field	a	row
field	in	the	first	PivotTable	report	on	Sheet3.

Worksheets("sheet3").PivotTables(1)	_

				.PivotFields("year").Orientation	=	xlRowField

In	some	cases,	it	may	be	easier	to	use	one	of	the	properties	that	returns	a	subset
of	the	PivotTable	fields.	The	following	properties	are	available:

ColumnFields	property
DataFields	property
HiddenFields	property
PageFields	property
RowFields	property
VisibleFields	property

PivotFields	Collection	Object
									
Multiple	objects	 PivotFields

PivotField

A	collection	of	all	the	PivotField	objects	in	a	PivotTable	report.

Using	the	PivotFields	Collection

Use	the	PivotFields	method	of	the	PivotTable	object	to	return	the	PivotFields
collection.	The	following	example	enumerates	the	field	names	in	the	first
PivotTable	report	on	Sheet3.

With	Worksheets("sheet3").PivotTables(1)

				For	i	=	1	To	.PivotFields.Count

								MsgBox	.PivotFields(i).Name

				Next

End	With

Use	PivotFields(index),	where	index	is	the	field	name	or	index	number,	to	return
a	single	PivotField	object.	The	following	example	makes	the	Year	field	a	row
field	in	the	first	PivotTable	report	on	Sheet3.

Worksheets("sheet3").PivotTables(1)	_

				.PivotFields("year").Orientation	=	xlRowField

In	some	cases,	it	may	be	easier	to	use	one	of	the	properties	that	returns	a	subset
of	the	PivotTable	fields.	The	following	accessor	methods	are	available:

ColumnFields	property
DataFields	property
HiddenFields	property
PageFields	property
RowFields	property
VisibleFields	property

Show	All

PivotFormula	Object
									
PivotTables	(PivotTable)	 PivotFormulas	(PivotFormula)

Represents	a	formula	used	to	calculate	results	in	a	PivotTable	report.

Remarks

This	object	and	its	associated	properties	and	methods	aren’t	available	for	OLAP
data	sources	because	calculated	fields	and	items	aren’t	supported.

Using	the	PivotFormula	Object

Use	PivotFormulas(index),	where	index	is	the	formula	number	or	string	on	the
left	side	of	the	formula,	to	return	the	PivotFormula	object.	The	following
example	changes	the	index	number	for	formula	one	in	the	first	PivotTable	report
on	the	first	worksheet	so	that	this	formula	will	be	solved	after	formula	two.

Worksheets(1).PivotTables(1).PivotFormulas(1).Index	=	2

Show	All

PivotFormulas	Collection	Object
									
PivotTables	(PivotTable)	 PivotFormulas	(PivotFormula)

Represents	the	collection	of	formulas	for	a	PivotTable	report.	Each	formula	is
represented	by	a	PivotFormula	object.

Remarks

This	object	and	its	associated	properties	and	methods	aren’t	available	for	OLAP
data	sources	because	calculated	fields	and	items	aren’t	supported.

Using	the	PivotFormulas	Collection

Use	the	PivotFormulas	method	to	return	the	PivotFormulas	collection.	The
following	example	creates	a	list	of	PivotTable	formulas	for	the	first	PivotTable
report	on	the	active	worksheet.

For	Each	pf	in	ActiveSheet.PivotTables(1).PivotFormulas

				Cells(r,	1).Value	=	pf.Formula

				r	=	r	+	1

Next

PivotItem	Object
									
PivotTables	(PivotTable)	 Pivot

PivotItems	(PivotItem)

Represents	an	item	in	a	PivotTable	field.	The	items	are	the	individual	data
entries	in	a	field	category.	The	PivotItem	object	is	a	member	of	the	PivotItems
collection.	The	PivotItems	collection	contains	all	the	items	in	a	PivotField
object.

Using	the	PivotItem	Object

Use	PivotItems(index),	where	index	is	the	item	index	number	or	name,	to	return
a	single	PivotItem	object.	The	following	example	hides	all	entries	in	the	first
PivotTable	report	on	Sheet3	that	contain	"1998"	in	the	Year	field.

Worksheets("sheet3").PivotTables(1)	_

				.PivotFields("year").PivotItems("1998").Visible	=	False

PivotItemList	Collection
									
PivotCell	 PivotItemList

PivotItem

A	collection	of	all	the	PivotItem	objects	in	the	specified	PivotTable.	Each
PivotItem	represents	an	item	in	a	PivotTable	field.

Using	the	PivotItemList	collection

Use	the	RowItems	or	ColumnItems	property	of	the	PivotCell	object	to	return	a
PivotItemList	collection.

Once	a	PivotItemList	collection	is	returned,	you	can	use	the	Item	method	to
identify	a	particular	PivotItem	list.	The	following	example	displays	the
PivotItem	list	associated	with	cell	B5	to	the	user.	This	example	assumes	a
PivotTable	exists	on	the	active	worksheet.

Sub	CheckPivotItemList()

				'	Identify	contents	associated	with	PivotItemList.

				MsgBox	"Contents	associated	with	cell	B5:	"	&	_

								Application.Range("B5").PivotCell.RowItems.Item(1)

End	Sub

PivotItems	Collection	Object
									
PivotTables	(PivotTable)	 Pivot

PivotItems	(PivotItem)

A	collection	of	all	the	PivotItem	objects	in	a	PivotTable	field.	The	items	are	the
individual	data	entries	in	a	field	category.

Using	the	PivotItems	Collection

Use	the	PivotItems	method	to	return	the	PivotItems	collection.	The	following
example	creates	an	enumerated	list	of	field	names	and	the	items	contained	in
those	fields	for	the	first	PivotTable	report	on	Sheet4.

Worksheets("sheet4").Activate

With	Worksheets("sheet3").PivotTables(1)

				c	=	1

				For	i	=	1	To	.PivotFields.Count

								r	=	1

								Cells(r,	c)	=	.PivotFields(i).Name

								r	=	r	+	1

								For	x	=	1	To	.PivotFields(i).PivotItems.Count

												Cells(r,	c)	=	.PivotFields(i).PivotItems(x).Name

												r	=	r	+	1

								Next

								c	=	c	+	1

				Next

End	With

Use	PivotItems(index),	where	index	is	the	item	index	number	or	name,	to	return
a	single	PivotItem	object.	The	following	example	hides	all	entries	in	the	first
PivotTable	report	on	Sheet3	that	contain	"1998"	in	the	Year	field.

Worksheets("sheet3").PivotTables(1)	_

				.PivotFields("year").PivotItems("1998").Visible	=	False

PivotLayout	Object
									
Chart	 PivotLayout

Multiple	objects

Represents	the	placement	of	fields	in	a	PivotChart	report.

Using	the	PivotLayout	Object

Use	the	PivotLayout	property	to	return	a	PivotLayout	object.	The	following
example	creates	a	list	of	PivotTable	field	names	used	in	the	first	PivotChart
report.

Sub	ListFieldNames

			Dim	objNewSheet	As	Worksheet	

			Dim	intRow	As	Integer	

			Dim	objPF	As	PivotField

			Set	objNewSheet	=	Worksheets.Add

			intRow	=	1

			For	Each	objPF	In	_

											Charts("Chart1").PivotLayout.PivotFields

											

						objNewSheet.Cells(intRow,	1).Value	=	objPF.Caption

						

						intRow	=	intRow	+	1

			Next	objPF

			

End	Sub

PivotTable	Object
									
Multiple	objects	 PivotTable

Multiple	objects

Represents	a	PivotTable	report	on	a	worksheet.	The	PivotTable	object	is	a
member	of	the	PivotTables	collection.	The	PivotTables	collection	contains	all
the	PivotTable	objects	on	a	single	worksheet.

Using	the	PivotTable	Object

Use	PivotTables(index),	where	index	is	the	PivotTable	index	number	or	name,	to
return	a	single	PivotTable	object.	The	following	example	makes	the	field	named
year	a	row	field	in	the	first	PivotTable	report	on	Sheet3.

Worksheets("Sheet3").PivotTables(1)	_

				.PivotFields("Year").Orientation	=	xlRowField

Remarks

Because	PivotTable	report	programming	can	be	complex,	it’s	generally	easiest	to
record	PivotTable	report	actions	and	then	revise	the	recorded	code.	To	record	a
macro,	point	to	Macro	on	the	Tools	menu	and	then	click	Record	New	Macro.

PivotTables	Collection	Object
									
Worksheets	(Worksheet)	 PivotTables	(PivotTable)

CubeField
CubeFields	(CubeField)
Pivot

A	collection	of	all	the	PivotTable	objects	on	the	specified	worksheet.

Using	the	PivotTables	Collection

Use	the	PivotTables	method	to	return	the	PivotTables	collection.	The	following
example	displays	the	number	of	PivotTable	reports	on	Sheet3.

MsgBox	Worksheets("sheet3").PivotTables.Count

Use	the	PivotTableWizard	method	to	create	a	new	PivotTable	report	and	add	it
to	the	collection.	The	following	example	creates	a	new	PivotTable	report	from	a
Microsoft	Excel	database	(contained	in	the	range	A1:C100).

ActiveSheet.PivotTableWizard	xlDatabase,	Range("A1:C100")

Use	PivotTables(index),	where	index	is	the	PivotTable	index	number	or	name,	to
return	a	single	PivotTable	object.	The	following	example	makes	the	Year	field	a
row	field	in	the	first	PivotTable	report	on	Sheet3.

Worksheets("sheet3").PivotTables(1)	_

				.PivotFields("year").Orientation	=	xlRowField

Remarks

Because	PivotTable	report	programming	can	be	complex,	it’s	generally	easiest	to
record	PivotTable	report	actions	and	then	revise	the	recorded	code.	To	record	a
macro,	point	to	Macro	on	the	Tools	menu	and	click	Record	New	Macro.

PlotArea	Object
									
Charts	(Chart)	 PlotArea

Border
Interior

Represents	the	plot	area	of	a	chart.	This	is	the	area	where	your	chart	data	is
plotted.	The	plot	area	on	a	2-D	chart	contains	the	data	markers,	gridlines,	data
labels,	trendlines,	and	optional	chart	items	placed	in	the	chart	area.	The	plot	area
on	a	3-D	chart	contains	all	the	above	items	plus	the	walls,	floor,	axes,	axis	titles,
and	tick-mark	labels	in	the	chart.

The	plot	area	is	surrounded	by	the	chart	area.	The	chart	area	on	a	2-D	chart
contains	the	axes,	the	chart	title,	the	axis	titles,	and	the	legend.	The	chart	area	on
a	3-D	chart	contains	the	chart	title	and	the	legend.	For	information	about
formatting	the	chart	area,	see	the	ChartArea	object.

Using	the	PlotArea	Object

Use	the	PlotArea	property	to	return	a	PlotArea	object.	The	following	example
activates	the	chart	sheet	named	"Chart1,"	places	a	dashed	border	around	the
chart	area	of	the	active	chart,	and	places	a	dotted	border	around	the	plot	area.

Charts("Chart1").Activate

With	ActiveChart

				.ChartArea.Border.LineStyle	=	xlDash

				.PlotArea.Border.LineStyle	=	xlDot

End	With

Point	Object
									
Charts	(Chart)	 ChartGroups	(ChartGroup)

SeriesCollection	(Series)
Points	(Point)
Border
DataLabel
Interior

Represents	a	single	point	in	a	series	in	a	chart.	The	Point	object	is	a	member	of
the	Points	collection.	The	Points	collection	contains	all	the	points	in	one	series.

Using	the	Point	Object

Use	Points(index),	where	index	is	the	point	index	number,	to	return	a	single
Point	object.	Points	are	numbered	from	left	to	right	on	the	series.	Points(1)	is
the	leftmost	point,	and	Points(Points.Count)	is	the	rightmost	point.	The
following	example	sets	the	marker	style	for	the	third	point	in	series	one	in
embedded	chart	one	on	worksheet	one.	The	specified	series	must	be	a	2-D	line,
scatter,	or	radar	series.

Worksheets(1).ChartObjects(1).Chart.	_

				SeriesCollection(1).Points(3).MarkerStyle	=	xlDiamond

Points	Collection	Object
									
Charts	(Chart)	 ChartGroups	(ChartGroup)

SeriesCollection	(Series)
Points	(Point)
Border
DataLabel
Interior

A	collection	of	all	the	Point	objects	in	the	specified	series	in	a	chart.

Using	the	Points	Collection

Use	the	Points	method	to	return	the	Points	collection.	The	following	example
adds	a	data	label	to	the	last	point	on	series	one	in	embedded	chart	one	on
worksheet	one.

Dim	pts	As	Points

Set	pts	=	Worksheets(1).ChartObjects(1).Chart.	_

				SeriesCollection(1).Points

pts(pts.Count).ApplyDataLabels	type:=xlShowValue

Use	Points(index),	where	index	is	the	point	index	number,	to	return	a	single
Point	object.	Points	are	numbered	from	left	to	right	on	the	series.	Points(1)	is
the	leftmost	point,	and	Points(Points.Count)	is	the	rightmost	point.	The
following	example	sets	the	marker	style	for	the	third	point	in	series	one	in
embedded	chart	one	on	worksheet	one.	The	specified	series	must	be	a	2-D	line,
scatter,	or	radar	series.

Worksheets(1).ChartObjects(1).Chart.	_

				SeriesCollection(1).Points(3).MarkerStyle	=	xlDiamond

Protection	Object
									
Worksheet	 Protection

AllowEditRanges

Represents	the	various	types	of	protection	options	available	for	a	worksheet.

Using	the	Protection	object

Use	the	Protection	property	of	the	Worksheet	object	to	return	a	Protection
object.

Once	a	Protection	object	is	returned,	you	can	use	its	following	properties,	to	set
or	return	protection	options.

AllowDeletingColumns
AllowDeletingRows
AllowFiltering
AllowFormattingCells
AllowFormattingColumns
AllowFormattingRows
AllowInsertingColumns
AllowInsertingHyperlinks
AllowInsertingRows
AllowSorting
AllowUsingPivotTables

The	following	example	demonstrates	how	to	use	the	AllowInsertingColumns
property	of	the	Protection	object,	placing	three	numbers	in	the	top	row	and
protecting	the	worksheet.	Then	this	example	checks	to	see	if	the	protection
setting	for	allowing	the	insertion	of	columns	is	False	and	sets	it	to	True,	if
necessary.	Finally,	it	notifies	the	user	to	insert	a	column.

Sub	SetProtection()

				Range("A1").Formula	=	"1"

				Range("B1").Formula	=	"3"

				Range("C1").Formula	=	"4"

				ActiveSheet.Protect

				'	Check	the	protection	setting	of	the	worksheet	and	act	accordingly.

				If	ActiveSheet.Protection.AllowInsertingColumns	=	False	Then

								ActiveSheet.Protect	AllowInsertingColumns:=True

								MsgBox	"Insert	a	column	between	1	and	3"

				Else

								MsgBox	"Insert	a	column	between	1	and	3"

				End	If

End	Sub

PublishObject	Object
									
Application	 Workbooks	(Workbook)

PublishObjects	(PublishObject)

Represents	an	item	in	a	workbook	that	has	been	saved	to	a	Web	page	and	can	be
refreshed	according	to	values	specified	by	the	properties	and	methods	of	the
PublishObject	object.	The	PublishObject	object	is	a	member	of	the
PublishObjects	collection.

Using	the	PublishObject	Object

Use	PublishObjects(index),	where	index	is	the	index	number	of	the	specified
item	in	the	workbook,	to	return	a	single	PublishObject	object.	The	following
example	sets	the	location	where	the	first	item	in	workbook	three	is	saved.

Workbooks(3).PublishObjects(1).FileName	=	_

				"\\myserver\public\finacct\statemnt.htm"

PublishObjects	Collection	Object
									
Application	 Workbooks	(Workbook)

PublishObjects	(PublishObject)

A	collection	of	all	PublishObject	objects	in	the	workbook.	Each	PublishObject
object	represents	an	item	in	a	workbook	that	has	been	saved	to	a	Web	page	and
can	be	refreshed	according	to	values	specified	by	the	properties	and	methods	of
the	object.

Using	the	PublishObjects	Collection

Use	the	PublishObjects	property	to	return	the	PublishObjects	collection.	The
following	example	saves	all	static	PublishObject	objects	in	the	active	workbook
to	the	Web	page.

Set	objPObjs	=	ActiveWorkbook.PublishObjects

For	Each	objPO	in	objPObjs

				If	objPO.HtmlType	=	xlHTMLStatic	Then

								objPO.Publish

				End	If

Next	objPO

Use	PublishObjects(index),	where	index	is	the	index	number	of	the	specified
item	in	the	workbook,	to	return	a	single	PublishObject	object.	The	following
example	sets	the	location	where	the	first	item	in	workbook	three	is	saved.

Workbooks(3).PublishObjects(1).FileName	=	_

				"\\myserver\public\finacct\statemnt.htm"

QueryTable	Object
									
Worksheets	(Worksheet)	 QueryTables	(QueryTable)

Parameters	(Parameter)

Represents	a	worksheet	table	built	from	data	returned	from	an	external	data
source,	such	as	an	SQL	server	or	a	Microsoft	Access	database.	The	QueryTable
object	is	a	member	of	the	QueryTables	collection.

Using	the	QueryTable	Object

Use	QueryTables(index),	where	index	is	the	index	number	of	the	query	table,	to
return	a	single	QueryTable	object.	The	following	example	sets	query	table	one
so	that	formulas	to	the	right	of	it	are	automatically	updated	whenever	it’s
refreshed.

Sheets("sheet1").QueryTables(1).FillAdjacentFormulas	=	True

QueryTables	Collection	Object
									
Worksheets	(Worksheet)	 QueryTables	(QueryTable)

Parameters	(Parameter)

A	collection	of	QueryTable	objects.	Each	QueryTable	object	represents	a
worksheet	table	built	from	data	returned	from	an	external	data	source.

Using	the	QueryTables	Collection

Use	the	QueryTables	property	to	return	the	QueryTables	collection.	The
following	example	displays	the	number	of	query	tables	on	the	active	worksheet.

MsgBox	ActiveSheet.QueryTables.Count

Use	the	Add	method	to	create	a	new	query	table	and	add	it	to	the	QueryTables
collection.	The	following	example	creates	a	new	query	table.

Dim	qt	As	QueryTable

sqlstring	=	"select	96Sales.totals	from	96Sales	where	profit	<	5"

connstring	=	_

				"ODBC;DSN=96SalesData;UID=Rep21;PWD=NUyHwYQI;Database=96Sales"

With	ActiveSheet.QueryTables.Add(Connection:=connstring,	_

								Destination:=Range("B1"),	Sql:=sqlstring)

				.Refresh

End	With

Range	Collection
									
Multiple	objects	 Range

Multiple	objects

Represents	a	cell,	a	row,	a	column,	a	selection	of	cells	containing	one	or	more
contiguous	blocks	of	cells,	or	a	3-D	range.

Using	the	Range	Collection

The	following	properties	and	methods	for	returning	a	Range	object	are
described	in	this	section:

Range	property
Cells	property
Range	and	Cells
Offset	property
Union	method

Range	Property

Use	Range(arg),	where	arg	names	the	range,	to	return	a	Range	object	that
represents	a	single	cell	or	a	range	of	cells.	The	following	example	places	the
value	of	cell	A1	in	cell	A5.

Worksheets("Sheet1").Range("A5").Value	=	_

				Worksheets("Sheet1").Range("A1").Value

The	following	example	fills	the	range	A1:H8	with	random	numbers	by	setting
the	formula	for	each	cell	in	the	range.	When	it’s	used	without	an	object	qualifier
(an	object	to	the	left	of	the	period),	the	Range	property	returns	a	range	on	the
active	sheet.	If	the	active	sheet	isn’t	a	worksheet,	the	method	fails.	Use	the
Activate	method	to	activate	a	worksheet	before	you	use	the	Range	property
without	an	explicit	object	qualifier.

Worksheets("Sheet1").Activate

Range("A1:H8").Formula	=	"=Rand()"				'Range	is	on	the	active	sheet

The	following	example	clears	the	contents	of	the	range	named	Criteria.

Worksheets(1).Range("Criteria").ClearContents

If	you	use	a	text	argument	for	the	range	address,	you	must	specify	the	address	in
A1-style	notation	(you	cannot	use	R1C1-style	notation).

Cells	Property

Use	Cells(row,	column)	where	row	is	the	row	index	and	column	is	the	column
index,	to	return	a	single	cell.	The	following	example	sets	the	value	of	cell	A1	to
24.

Worksheets(1).Cells(1,	1).Value	=	24

The	following	example	sets	the	formula	for	cell	A2.

ActiveSheet.Cells(2,	1).Formula	=	"=Sum(B1:B5)"

Although	you	can	also	use	Range("A1")	to	return	cell	A1,	there	may	be	times
when	the	Cells	property	is	more	convenient	because	you	can	use	a	variable	for
the	row	or	column.	The	following	example	creates	column	and	row	headings	on
Sheet1.	Notice	that	after	the	worksheet	has	been	activated,	the	Cells	property	can
be	used	without	an	explicit	sheet	declaration	(it	returns	a	cell	on	the	active
sheet).

Sub	SetUpTable()

Worksheets("Sheet1").Activate

For	TheYear	=	1	To	5

				Cells(1,	TheYear	+	1).Value	=	1990	+	TheYear

Next	TheYear

For	TheQuarter	=	1	To	4

				Cells(TheQuarter	+	1,	1).Value	=	"Q"	&	TheQuarter

Next	TheQuarter

End	Sub

Although	you	could	use	Visual	Basic	string	functions	to	alter	A1-style
references,	it's	much	easier	(and	much	better	programming	practice)	to	use	the
Cells(1,	1)	notation.

Use	expression.Cells(row,	column)	,	where	expression	is	an	expression	that
returns	a	Range	object,	and	row	and	column	are	relative	to	the	upper-left	corner
of	the	range,	to	return	part	of	a	range.	The	following	example	sets	the	formula
for	cell	C5.

Worksheets(1).Range("C5:C10").Cells(1,	1).Formula	=	"=Rand()"

Range	and	Cells

Use	Range(cell1,	cell2),	where	cell1	and	cell2	are	Range	objects	that	specify	the
start	and	end	cells,	to	return	a	Range	object.	The	following	example	sets	the
border	line	style	for	cells	A1:J10.

With	Worksheets(1)

				.Range(.Cells(1,	1),	_

								.Cells(10,	10)).Borders.LineStyle	=	xlThick

End	With

Notice	the	period	in	front	of	each	occurrence	of	the	Cells	property.	The	period	is
required	if	the	result	of	the	preceding	With	statement	is	to	be	applied	to	the
Cells	property	—	in	this	case,	to	indicate	that	the	cells	are	on	worksheet	one
(without	the	period,	the	Cells	property	would	return	cells	on	the	active	sheet).

Offset	Property

Use	Offset(row,	column),	where	row	and	column	are	the	row	and	column	offsets,
to	return	a	range	at	a	specified	offset	to	another	range.	The	following	example
selects	the	cell	three	rows	down	from	and	one	column	to	the	right	of	the	cell	in
the	upper-left	corner	of	the	current	selection.	You	cannot	select	a	cell	that	isn’t
on	the	active	sheet,	so	you	must	first	activate	the	worksheet.

Worksheets("Sheet1").Activate

		'Can't	select	unless	the	sheet	is	active

Selection.Offset(3,	1).Range("A1").Select

Union	Method

Use	Union(range1,	range2,	...)	to	return	multiple-area	ranges	—	that	is,	ranges
composed	of	two	or	more	contiguous	blocks	of	cells.	The	following	example
creates	an	object	defined	as	the	union	of	ranges	A1:B2	and	C3:D4,	and	then
selects	the	defined	range.

Dim	r1	As	Range,	r2	As	Range,	myMultiAreaRange	As	Range

Worksheets("sheet1").Activate

Set	r1	=	Range("A1:B2")

Set	r2	=	Range("C3:D4")

Set	myMultiAreaRange	=	Union(r1,	r2)

myMultiAreaRange.Select

If	you	work	with	selections	that	contain	more	than	one	area,	the	Areas	property
is	very	useful.	It	divides	a	multiple-area	selection	into	individual	Range	objects
and	then	returns	the	objects	as	a	collection.	You	can	use	the	Count	property	on
the	returned	collection	to	check	for	a	selection	that	contains	more	than	one	area,
as	shown	in	the	following	example.

Sub	NoMultiAreaSelection()

				NumberOfSelectedAreas	=	Selection.Areas.Count

				If	NumberOfSelectedAreas	>	1	Then

								MsgBox	"You	cannot	carry	out	this	command	"	&	_

												"on	multi-area	selections"

				End	If

End	Sub

RecentFile	Object
									
Application	 RecentFiles	(RecentFile)

Represents	a	file	in	the	list	of	recently	used	files.	The	RecentFile	object	is	a
member	of	the	RecentFiles	collection.

Using	the	RecentFile	Object

Use	RecentFiles(index),	where	index	is	the	file	number,	to	return	a	RecentFile
object.	The	following	example	opens	file	two	in	the	list	of	recently	used	files.

Application.RecentFiles(2).Open

RecentFiles	Collection	Object
									
Application	 RecentFiles	(RecentFile)

Represents	the	list	of	recently	used	files.	Each	file	is	represented	by	a
RecentFile	object.

Using	the	RecentFiles	Collection

Use	the	RecentFiles	property	to	return	the	RecentFiles	collection.	The
following	example	sets	the	maximum	number	of	files	in	the	list	of	recently	used
files.

Application.RecentFiles.Maximum	=	6

RoutingSlip	Object
									
Workbooks	(Workbook)	 RoutingSlip

Represents	the	routing	slip	for	a	workbook.	The	routing	slip	is	used	to	send	a
workbook	through	the	electronic	mail	system.

Using	the	RoutingSlip	Object

Use	the	RoutingSlip	property	to	return	the	RoutingSlip	object.	The	following
example	sets	the	delivery	style	for	the	routing	slip	attached	to	the	active
workbook.	For	a	more	detailed	example,	see	the	RoutingSlip	property.

ActiveWorkbook.HasRoutingSlip	=	True

ActiveWorkbook.RoutingSlip.Delivery	=	xlOneAfterAnother

Remarks

The	RoutingSlip	object	doesn’t	exist	and	cannot	be	returned	unless	the
HasRoutingSlip	property	for	the	workbook	is	True.

RTD	Object
									
Application	 RTD

Represents	a	real-time	data	object.

Using	the	RTD	object

Use	the	RTD	property	of	the	Application	object	to	return	a	RTD	object.

Scenario	Object
									
Worksheets	(Worksheet)	 Scenarios	(Scenario)

Represents	a	scenario	on	a	worksheet.	A	scenario	is	a	group	of	input	values
(called	changing	cells)	that’s	named	and	saved.	The	Scenario	object	is	a
member	of	the	Scenarios	collection.	The	Scenarios	collection	contains	all	the
defined	scenarios	for	a	worksheet.

Using	the	Scenario	Object

Use	Scenarios(index),	where	index	is	the	scenario	name	or	index	number,	to
return	a	single	Scenario	object.	The	following	example	shows	the	scenario
named	"Typical"	on	the	worksheet	named	"Options."

Worksheets("options").Scenarios("typical").Show

Scenarios	Collection	Object
									
Worksheets	(Worksheet)	 Scenarios	(Scenario)

A	collection	of	all	the	Scenario	objects	on	the	specified	worksheet.	A	scenario	is
a	group	of	input	values	(called	changing	cells)	that’s	named	and	saved.

Using	the	Scenarios	Collection

Use	the	Scenarios	method	to	return	the	Scenarios	collection.	The	following
example	creates	a	summary	for	the	scenarios	on	the	worksheet	named	"Options,"
using	cells	J10	and	J20	as	the	result	cells.

Worksheets("options").Scenarios.CreateSummary	_

				resultCells:=Worksheets("options").Range("j10,j20")

Use	the	Add	method	to	create	a	new	scenario	and	add	it	to	the	collection.	The
following	example	adds	a	new	scenario	named	"Typical"	to	the	worksheet
named	"Options."	The	new	scenario	has	two	changing	cells,	A2	and	A12,	with
the	respective	values	55	and	60.

Worksheets("options").Scenarios.Add	name:="Typical",	_

				changingCells:=Worksheets("options").Range("A2,A12"),	_

				values:=Array("55",	"60")

Use	Scenarios(index),	where	index	is	the	scenario	name	or	index	number,	to
return	a	single	Scenario	object.	The	following	example	shows	the	scenario
named	"Typical"	on	the	worksheet	named	“Options.”

Worksheets("options").Scenarios("typical").Show

Series	Object
									
Charts	(Chart)	 ChartGroups	(ChartGroup)

SeriesCollection	(Series)
Border
Points	(Point)
Interior

Represents	a	series	in	a	chart.	The	Series	object	is	a	member	of	the
SeriesCollection	collection.

Using	the	Series	Object

Use	SeriesCollection(index),	where	index	is	the	series	index	number	or	name,	to
return	a	single	Series	object.	The	following	example	sets	the	color	of	the	interior
for	the	first	series	in	embedded	chart	one	on	Sheet1.

Worksheets("sheet1").ChartObjects(1).Chart.	_

				SeriesCollection(1).Interior.Color	=	RGB(255,	0,	0)

The	series	index	number	indicates	the	order	in	which	the	series	were	added	to
the	chart.	SeriesCollection(1)	is	the	first	series	added	to	the	chart,	and
SeriesCollection(SeriesCollection.Count)	is	the	last	one	added.

SeriesCollection	Collection	Object
									
Charts	(Chart)	 ChartGroups	(ChartGroup)

SeriesCollection	(Series)
Border
Points	(Point)
Interior

A	collection	of	all	the	Series	objects	in	the	specified	chart	or	chart	group.

Using	the	SeriesCollection	Collection

Use	the	SeriesCollection	method	to	return	the	SeriesCollection	collection.	The
following	example	adds	the	data	in	cells	C1:C10	on	worksheet	one	to	an	existing
series	in	the	series	collection	in	embedded	chart	one.

Worksheets(1).ChartObjects(1).Chart.	_

				SeriesCollection.Extend	Worksheets(1).Range("c1:c10")

Use	the	Add	method	to	create	a	new	series	and	add	it	to	the	chart.	The	following
example	adds	the	data	from	cells	A1:A19	as	a	new	series	on	the	chart	sheet
named	"Chart1."

Charts("chart1").SeriesCollection.Add	_

				source:=Worksheets("sheet1").Range("a1:a19")

Use	SeriesCollection(index),	where	index	is	the	series	index	number	or	name,	to
return	a	single	Series	object.	The	following	example	sets	the	color	of	the	interior
for	the	first	series	in	embedded	chart	one	on	Sheet1.

Worksheets("sheet1").ChartObjects(1).Chart.	_

				SeriesCollection(1).Interior.Color	=	RGB(255,	0,	0)

SeriesLines	Object
									
Charts	(Chart)	 ChartGroups	(ChartGroup)

SeriesLines
Border

Represents	series	lines	in	a	chart	group.	Series	lines	connect	the	data	values	from
each	series.	Only	2-D	stacked	bar	or	column	chart	groups	can	have	series	lines.
This	object	isn’t	a	collection.	There’s	no	object	that	represents	a	single	series
line;	you	either	have	series	lines	turned	on	for	all	points	in	a	chart	group	or	you
have	them	turned	off.

Using	the	SeriesLines	Object

Use	the	SeriesLines	property	to	return	a	SeriesLines	object.	The	following
example	adds	series	lines	to	chart	group	one	in	embedded	chart	one	on
worksheet	one	(the	chart	must	be	a	2-D	stacked	bar	or	column	chart).

With	Worksheets(1).ChartObjects(1).Chart.ChartGroups(1)

				.HasSeriesLines	=	True

				.SeriesLines.Border.Color	=	RGB(0,	0,	255)

End	With

Remarks

If	the	HasSeriesLines	property	is	False,	most	properties	of	the	SeriesLines
object	are	disabled.

ShadowFormat	Object
									
Shapes	(Shape)	 ShadowFormat

ColorFormat

Represents	shadow	formatting	for	a	shape.

Using	the	ShadowFormat	Object

Use	the	Shadow	property	to	return	a	ShadowFormat	object.	The	following
example	adds	a	shadowed	rectangle	to	myDocument.	The	semitransparent,	blue
shadow	is	offset	5	points	to	the	right	of	the	rectangle	and	3	points	above	it.

Set	myDocument	=	Worksheets(1)

With	myDocument.Shapes.AddShape(msoShapeRectangle,	_

								50,	50,	100,	200).Shadow

				.ForeColor.RGB	=	RGB(0,	0,	128)

				.OffsetX	=	5

				.OffsetY	=	-3

				.Transparency	=	0.5

				.Visible	=	True

End	With

Shape	Object
									
Multiple	objects	 Shape

Multiple	objects

Represents	an	object	in	the	drawing	layer,	such	as	an	AutoShape,	freeform,	OLE
object,	or	picture.	The	Shape	object	is	a	member	of	the	Shapes	collection.	The
Shapes	collection	contains	all	the	shapes	on	a	slide.

Note			There	are	three	objects	that	represent	shapes:	the	Shapes	collection,
which	represents	all	the	shapes	on	a	document;	the	ShapeRange	collection,
which	represents	a	specified	subset	of	the	shapes	on	a	document	(for	example,	a
ShapeRange	object	could	represent	shapes	one	and	four	on	the	document,	or	it
could	represent	all	the	selected	shapes	on	the	document);	and	the	Shape	object,
which	represents	a	single	shape	on	a	document.	If	you	want	to	work	with	several
shapes	at	the	same	time	or	with	shapes	within	the	selection,	use	a	ShapeRange
collection.	For	an	overview	of	how	to	work	with	either	a	single	shape	or	with
more	than	one	shape	at	a	time,	see	Working	with	Shapes	(Drawing	Objects).

Using	the	Shape	Object

This	section	describes	how	to:

Return	an	existing	shape.
Return	a	shape	within	the	selection.
Return	the	shapes	attached	to	the	ends	of	a	connector.
Return	a	newly	created	freeform.
Return	a	single	shape	from	within	a	group.
Return	a	newly	formed	group	of	shapes.

Returning	an	Existing	Shape

Use	Shapes(index),	where	index	is	the	shape	name	or	the	index	number,	to
return	a	Shape	object	that	represents	a	shape.	The	following	example
horizontally	flips	shape	one	and	the	shape	named	Rectangle	1	on	myDocument.

Set	myDocument	=	Worksheets(1)

myDocument.Shapes(1).Flip	msoFlipHorizontal

myDocument.Shapes("Rectangle	1").Flip	msoFlipHorizontal

Each	shape	is	assigned	a	default	name	when	you	add	it	to	the	Shapes	collection.
To	give	the	shape	a	more	meaningful	name,	use	the	Name	property.	The
following	example	adds	a	rectangle	to	myDocument,	gives	it	the	name	Red
Square,	and	then	sets	its	foreground	color	and	line	style.

Set	myDocument	=	Worksheets(1)

With	myDocument.Shapes.AddShape(msoShapeRectangle,	_

								144,	144,	72,	72)

				.Name	=	"Red	Square"

				.Fill.ForeColor.RGB	=	RGB(255,	0,	0)

				.Line.DashStyle	=	msoLineDashDot

End	With

Returning	a	Shape	Within	the	Selection

Use	Selection.ShapeRange(index),	where	index	is	the	shape	name	or	the	index
number,	to	return	a	Shape	object	that	represents	a	shape	within	the	selection.
The	following	example	sets	the	fill	for	the	first	shape	in	the	selection	in	the
active	window,	assuming	that	there’s	at	least	one	shape	in	the	selection.

ActiveWindow.Selection.ShapeRange(1).Fill.ForeColor.RGB	=	_

				RGB(255,	0,	0)

Returning	the	Shapes	Attached	to	the	Ends	of	a
Connector

To	return	a	Shape	object	that	represents	one	of	the	shapes	attached	by	a
connector,	use	the	BeginConnectedShape	or	EndConnectedShape	property.

Returning	a	newly	created	freeform

Use	the	BuildFreeform	and	AddNodes	methods	to	define	the	geometry	of	a
new	freeform,	and	use	the	ConvertToShape	method	to	create	the	freeform	and
return	the	Shape	object	that	represents	it.

Returning	a	Single	Shape	from	Within	a	Group

Use	GroupItems(index),	where	index	is	the	shape	name	or	the	index	number
within	the	group,	to	return	a	Shape	object	that	represents	a	single	shape	in	a
grouped	shape.

Returning	a	Newly	Formed	Group	of	Shapes

Use	the	Group	or	Regroup	method	to	group	a	range	of	shapes	and	return	a
single	Shape	object	that	represents	the	newly	formed	group.	After	a	group	has
been	formed,	you	can	work	with	the	group	the	same	way	you	work	with	any
other	shape.

ShapeNode	Object
									
Shapes	(Shape)	 ShapeNodes	(ShapeNode)

Represents	the	geometry	and	the	geometry-editing	properties	of	the	nodes	in	a
user-defined	freeform.	Nodes	include	the	vertices	between	the	segments	of	the
freeform	and	the	control	points	for	curved	segments.	The	ShapeNode	object	is	a
member	of	the	ShapeNodes	collection.	The	ShapeNodes	collection	contains	all
the	nodes	in	a	freeform.

Using	the	ShapeNode	Object

Use	Nodes(index),	where	index	is	the	node	index	number,	to	return	a	single
ShapeNode	object.	If	node	one	in	shape	three	on	myDocument	is	a	corner	point,
the	following	example	makes	it	a	smooth	point.	For	this	example	to	work,	shape
three	must	be	a	freeform.

Set	myDocument	=	Worksheets(1)

With	myDocument.Shapes(3)

				If	.Nodes(1).EditingType	=	msoEditingCorner	Then

								.Nodes.SetEditingType	1,	msoEditingSmooth

				End	If

End	With

ShapeNodes	Collection	Object
									
Shapes	(Shape)	 ShapeNodes	(ShapeNode)

A	collection	of	all	the	ShapeNode	objects	in	the	specified	freeform.	Each
ShapeNode	object	represents	either	a	node	between	segments	in	a	freeform	or	a
control	point	for	a	curved	segment	of	a	freeform.	You	can	create	a	freeform
manually	or	by	using	the	BuildFreeform	and	ConvertToShape	methods.

Using	the	ShapeNodes	Collection

Use	the	Nodes	property	to	return	the	ShapeNodes	collection.	The	following
example	deletes	node	four	in	shape	three	on	myDocument.	For	this	example	to
work,	shape	three	must	be	a	freeform	with	at	least	four	nodes.

Set	myDocument	=	Worksheets(1)

myDocument.Shapes(3).Nodes.Delete	4

Use	the	Insert	method	to	create	a	new	node	and	add	it	to	the	ShapeNodes
collection.	The	following	example	adds	a	smooth	node	with	a	curved	segment
after	node	four	in	shape	three	on	myDocument.	For	this	example	to	work,	shape
three	must	be	a	freeform	with	at	least	four	nodes.

Set	myDocument	=	Worksheets(1)

With	myDocument.Shapes(3).Nodes

				.Insert	4,	msoSegmentCurve,	msoEditingSmooth,	210,	100

End	With

Use	Nodes(index),	where	index	is	the	node	index	number,	to	return	a	single
ShapeNode	object.	If	node	one	in	shape	three	on	myDocument	is	a	corner	point,
the	following	example	makes	it	a	smooth	point.	For	this	example	to	work,	shape
three	must	be	a	freeform.

Set	myDocument	=	Worksheets(1)

With	myDocument.Shapes(3)

				If	.Nodes(1).EditingType	=	msoEditingCorner	Then

								.Nodes.SetEditingType	1,	msoEditingSmooth

				End	If

End	With

ShapeRange	Collection
									
Multiple	objects	 ShapeRange

Multiple	objects

Represents	a	shape	range,	which	is	a	set	of	shapes	on	a	document.	A	shape	range
can	contain	as	few	as	a	single	shape	or	as	many	as	all	the	shapes	on	the
document.	You	can	include	whichever	shapes	you	want	—	chosen	from	among
all	the	shapes	on	the	document	or	all	the	shapes	in	the	selection	—	to	construct	a
shape	range.	For	example,	you	could	construct	a	ShapeRange	collection	that
contains	the	first	three	shapes	on	a	document,	all	the	selected	shapes	on	a
document,	or	all	the	freeforms	on	a	document.

For	an	overview	of	how	to	work	with	either	a	single	shape	or	with	more	than	one
shape	at	a	time,	see	Working	with	Shapes	(Drawing	Objects).

Using	the	ShapeRange	Collection

This	section	describes	how	to:

Return	a	set	of	shapes	you	specify	by	name	or	index	number.
Return	all	or	some	of	the	selected	shapes	on	a	document.

Returning	a	Set	of	Shapes	You	Specify	by	Name	or
Index	Number

Use	Shapes.Range(index),	where	index	is	the	name	or	index	number	of	the
shape	or	an	array	that	contains	either	names	or	index	numbers	of	shapes,	to
return	a	ShapeRange	collection	that	represents	a	set	of	shapes	on	a	document.
You	can	use	the	Array	function	to	construct	an	array	of	names	or	index
numbers.	The	following	example	sets	the	fill	pattern	for	shapes	one	and	three	on
myDocument.

Set	myDocument	=	Worksheets(1)

myDocument.Shapes.Range(Array(1,	3)).Fill.Patterned	_

				msoPatternHorizontalBrick

The	following	example	sets	the	fill	pattern	for	the	shapes	named	Oval	4	and
Rectangle	5	on	myDocument.

Set	myDocument	=	Worksheets(1)

Set	myRange	=	myDocument.Shapes.Range(Array("Oval	4",	_

				"Rectangle	5"))

myRange.Fill.Patterned	msoPatternHorizontalBrick

Although	you	can	use	the	Range	property	to	return	any	number	of	shapes	or
slides,	it's	simpler	to	use	the	Item	method	if	you	want	to	return	only	a	single
member	of	the	collection.	For	example,	Shapes(1)	is	simpler	than
Shapes.Range(1).

Returning	All	or	Some	of	the	Selected	Shapes	on	a
Document

Use	the	ShapeRange	property	of	the	Selection	object	to	return	all	the	shapes	in
the	selection.	The	following	example	sets	the	fill	foreground	color	for	all	the
shapes	in	the	selection	in	window	one,	assuming	that	there’s	at	least	one	shape	in
the	selection.

Windows(1).Selection.ShapeRange.Fill.ForeColor.RGB	=	_

				RGB(255,	0,	255)

Use	Selection.ShapeRange(index),	where	index	is	the	shape	name	or	the	index
number,	to	return	a	single	shape	within	the	selection.	The	following	example	sets
the	fill	foreground	color	for	shape	two	in	the	collection	of	selected	shapes	in
window	one,	assuming	that	there	are	at	least	two	shapes	in	the	selection.

Windows(1).Selection.ShapeRange(2).Fill.ForeColor.RGB	=	_

				RGB(255,	0,	255)

Shapes	Collection
									
Multiple	objects	 Shapes

Multiple	objects

A	collection	of	all	the	Shape	objects	on	the	specified	sheet.	Each	Shape	object
represents	an	object	in	the	drawing	layer,	such	as	an	AutoShape,	freeform,	OLE
object,	or	picture.

Note			If	you	want	to	work	with	a	subset	of	the	shapes	on	a	document	—	for
example,	to	do	something	to	only	the	AutoShapes	on	the	document	or	to	only	the
selected	shapes	—	you	must	construct	a	ShapeRange	collection	that	contains
the	shapes	you	want	to	work	with.	For	an	overview	of	how	to	work	either	with	a
single	shape	or	with	more	than	one	shape	at	a	time,	see	Working	with	Shapes
(Drawing	Objects).

Using	the	Shapes	Collection

Use	the	Shapes	property	to	return	the	Shapes	collection.The	following	example
selects	all	the	shapes	on	myDocument.

Set	myDocument	=	Worksheets(1)

myDocument.Shapes.SelectAll

Note			If	you	want	to	do	something	(like	delete	or	set	a	property)	to	all	the
shapes	on	a	sheet	at	the	same	time,	select	all	the	shapes	and	then	use	the
ShapeRange	property	on	the	selection	to	create	a	ShapeRange	object	that
contains	all	the	shapes	on	the	sheet,	and	then	apply	the	appropriate	property	or
method	to	the	ShapeRange	object.

Use	Shapes(index),	where	index	is	the	shape’s	name	or	index	number,	to	return	a
single	Shape	object.	The	following	example	sets	the	fill	to	a	preset	shade	for
shape	one	on	myDocument.

Set	myDocument	=	Worksheets(1)

myDocument.Shapes(1).Fill.PresetGradient	_

				msoGradientHorizontal,	1,	msoGradientBrass

Use	Shapes.Range(index),	where	index	is	the	shape’s	name	or	index	number	or
an	array	of	shape	names	or	index	numbers,	to	return	a	ShapeRange	collection
that	represents	a	subset	of	the	Shapes	collection.	The	following	example	sets	the
fill	pattern	for	shapes	one	and	three	on	myDocument.

Set	myDocument	=	Worksheets(1)

myDocument.Shapes.Range(Array(1,	3)).Fill.Patterned	_

				msoPatternHorizontalBrick

Remarks

An	ActiveX	control	on	a	sheet	has	two	names:	the	name	of	the	shape	that
contains	the	control,	which	you	can	see	in	the	Name	box	when	you	view	the
sheet,	and	the	code	name	for	the	control,	which	you	can	see	in	the	cell	to	the
right	of	(Name)	in	the	Properties	window.	When	you	first	add	a	control	to	a
sheet,	the	shape	name	and	code	name	match.	However,	if	you	change	either	the
shape	name	or	code	name,	the	other	isn’t	automatically	changed	to	match.

You	use	the	code	name	of	a	control	in	the	names	of	its	event	procedures.
However,	when	you	return	a	control	from	the	Shapes	or	OLEObjects	collection
for	a	sheet,	you	must	use	the	shape	name,	not	the	code	name,	to	refer	to	the
control	by	name.	For	example,	assume	that	you	add	a	check	box	to	a	sheet	and
that	both	the	default	shape	name	and	the	default	code	name	are	CheckBox1.	If
you	then	change	the	control	code	name	by	typing	chkFinished	next	to	(Name)	in
the	Properties	window,	you	must	use	chkFinished	in	event	procedures	names,
but	you	still	have	to	use	CheckBox1	to	return	the	control	from	the	Shapes	or
OLEObject	collection,	as	shown	in	the	following	example.

Private	Sub	chkFinished_Click()

				ActiveSheet.OLEObjects("CheckBox1").Object.Value	=	1

End	Sub

Sheets	Collection	Object
									
Application	 Workbooks	(Workbook)

Sheets

A	collection	of	all	the	sheets	in	the	specified	or	active	workbook.	The	Sheets
collection	can	contain	Chart	or	Worksheet	objects.

The	Sheets	collection	is	useful	when	you	want	to	return	sheets	of	any	type.	If
you	need	to	work	with	sheets	of	only	one	type,	see	the	object	topic	for	that	sheet
type.

Using	the	Sheets	Collection

Use	the	Sheets	property	to	return	the	Sheets	collection.	The	following	example
prints	all	sheets	in	the	active	workbook.

Sheets.PrintOut

Use	the	Add	method	to	create	a	new	sheet	and	add	it	to	the	collection.	The
following	example	adds	two	chart	sheets	to	the	active	workbook,	placing	them
after	sheet	two	in	the	workbook.

Sheets.Add	type:=xlChart,	count:=2,	after:=Sheets(2)

Use	Sheets(index),	where	index	is	the	sheet	name	or	index	number,	to	return	a
single	Chart	or	Worksheet	object.	The	following	example	activates	the	sheet
named	"sheet1."

Sheets("sheet1").Activate

Use	Sheets(array)	to	specify	more	than	one	sheet.	The	following	example
moves	the	sheets	named	"Sheet4"	and	"Sheet5"	to	the	beginning	of	the
workbook.

Sheets(Array("Sheet4",	"Sheet5")).Move	before:=Sheets(1)

SmartTag	Object
									
SmartTags	 SmartTag

Multiple	objects

Represents	an	identifier	that	is	assigned	to	a	cell.

Using	the	SmartTag	object

Use	the	Add	method	of	the	SmartTags	collection	to	return	a	SmartTag	object.

Once	a	SmartTag	object	is	returned,	you	can	store	extra	metadata	to	a	smart	tag
by	using	the	Add	method	with	the	Properties	property.

See	the	following	example	for	a	demonstration	of	this	feature.	This	example
adds	a	smart	tag	titled	"MSFT"	to	cell	A1,	then	adds	extra	metadata	called
"Market"	with	the	value	of	"Nasdaq"	to	the	smart	tag	and	then	returns	the	value
of	the	property	to	the	user.	This	example	assumes	the	host	system	is	connected	to
the	Internet.

Sub	UseProperties()

				Dim	strLink	As	String

				Dim	strType	As	String

				'	Define	SmartTag	variables.

				strLink	=	"urn:schemas-microsoft-com:smarttags#StockTickerSymbol"

				strType	=	"stockview"

				'	Enable	smart	tags	to	be	embedded	and	recognized.

				ActiveWorkbook.SmartTagOptions.EmbedSmartTags	=	True

				Application.SmartTagRecognizers.Recognize	=	True

				Range("A1").Formula	=	"MSFT"

				'	Add	a	property	for	MSFT	smart	tag	and	define	its	value.

				Range("A1").SmartTags.Add(strLink).Properties.Add	_

								Name:="Market",	Value:="Nasdaq"

				'	Notify	the	user	of	the	smart	tag's	value.

				MsgBox	Range("A1").SmartTags.Add(strLink).Properties("Market").Value

End	Sub

To	view	the	extra	metadata,	use	the	XML	property	of	the	SmartTag	object.	This
example,	which	builds	upon	the	previous	example,	displays	the	extra	metadata
that	was	added	to	the	smart	tag	in	cell	A1.	The	metadata	for	this	smart	tag
represents	the	XML	that	would	be	passed	to	the	action	handler.	This	example
assumes	the	host	system	is	connected	to	the	Internet.

Sub	CheckXML()

				Dim	strLink	As	String

				Dim	strType	As	String

				'	Define	SmartTag	variables.

				strLink	=	"urn:schemas-microsoft-com:smarttags#StockTickerSymbol"

				strType	=	"stockview"

				'	Enable	smart	tags	to	be	embedded	and	recognized.

				ActiveWorkbook.SmartTagOptions.EmbedSmartTags	=	True

				Application.SmartTagRecognizers.Recognize	=	True

				Range("A1").Formula	=	"MSFT"

				'	Display	the	sample	of	the	XML.

				MsgBox	Range("A1").SmartTags.Add(strLink).XML

End	Sub

SmartTagAction	Object
									
SmartTagActions	 SmartTagAction

Represents	the	actions	that	can	be	performed	with	smart	tags.

Using	the	SmartTagAction	object

Use	the	Item	property	of	the	SmartTagActions	collection	to	return	a
SmartTagAction	object.

Once	a	SmartTagAction	object	has	been	returned,	you	can	activate	a	smart	tag
to	automatically	annotate	data	using	the	Execute	method.	This	example	inserts	a
refreshable	stock	quote	for	the	ticker	symbol	"MSFT"	and	it	assumes	the	host
system	is	connected	to	the	Internet.

Sub	ExecuteASmartTag()

				Dim	strAction	As	String

				strAction	=	"Insert	refreshable	stock	price"

				'	Enable	smart	tags	to	be	embedded	and	recognized.

				ActiveWorkbook.SmartTagOptions.EmbedSmartTags	=	True

				Application.SmartTagRecognizers.Recognize	=	True

				'	Invoke	a	smart	tag	for	the	Microsoft	ticker	symbol.

				With	Range("A1")

								.Formula	=	"MSFT"

								.SmartTags(_

												"urn:schemas-microsoft-com:office:smarttags#stockticker")	_

												.SmartTagActions(strAction).Execute

				End	With

End	Sub

SmartTagActions	Collection
									
SmartTag	 SmartTagActions

SmartTagAction

A	collection	of	SmartTagAction	objects	that	represent	the	actions	that	can	be
performed	with	smart	tags.

Using	the	SmartTagActions	collection

Use	the	SmartTagActions	property	of	the	SmartTag	object	to	return	a
SmartTagActions	collection.

This	example	inserts	a	refreshable	stock	quote	for	the	ticker	symbol	"MSFT"	and
it	assumes	the	host	system	is	connected	to	the	Internet.

Sub	ExecuteASmartTag()

				Dim	strAction	As	String

				strAction	=	"Insert	refreshable	stock	price"

				'	Enable	smart	tags	to	be	embedded	and	recognized.

				ActiveWorkbook.SmartTagOptions.EmbedSmartTags	=	True

				Application.SmartTagRecognizers.Recognize	=	True

				'	Invoke	a	smart	tag	for	the	Microsoft	ticker	symbol.

				With	Range("A1")

								.Formula	=	"MSFT"

								.SmartTags(_

												"urn:schemas-microsoft-com:office:smarttags#stockticker")	_

												.SmartTagActions(strAction).Execute

				End	With

End	Sub

SmartTagOptions	Object
									
Workbook	 SmartTagOptions

Represents	the	options	that	can	be	performed	with	smart	tags.

Using	the	SmartTagOptions	object

Use	the	SmartTagOptions	property	of	the	Workbook	object	to	return	a
SmartTagOptions	object.

Once	a	SmartTagOptions	object	is	returned,	you	can	use	the	following
properties		to	determine	the	display	options	of	smart	tags	and	whether	or	not	to
have	smart	tags	be	embedded	on	the	active	workbook.

EmbedSmartTags
DisplaySmartTags

This	example	enables	the	ability	to	embed	smart	tags	on	the	active	workbook
and	then	checks	the	display	settings	for	smart	tags.

Sub	CheckDisplayOptions()

				'Enable	SmartTags	to	be	embedded	on	the	active	workbook.

				ActiveWorkbook.SmartTagOptions.EmbedSmartTags	=	True

				'	Check	the	display	options	for	smart	tags.

				Select	Case	ActiveWorkbook.SmartTagOptions.DisplaySmartTags

								Case	xlButtonOnly

												MsgBox	"The	button	for	smart	tags	will	only	be	displayed."

								Case	xlDisplayNone

												MsgBox	"Nothing	will	be	displayed	for	smart	tags."

								Case	xlIndicatorAndButton

												MsgBox	"The	button	and	indicator	will	be	displayed	for	smart	tags."

				End	Select

End	Sub

SmartTagRecognizer	Object
									
SmartTagRecognizers	 SmartTagRecognizer

Represents	recognition	engines	which	label	data	with	types	of	information	as
you	work	in	Microsoft	Excel.

Using	the	SmartTagRecognizer	object

Use	the	Item(index)	property	of	the	SmartTagRecognizers	collection	to	return	a
single	SmartTagRecognizer	object.

Once	a	SmartTagRecognizer	object	is	returned,	you	can	determine	if	smart	tag
recognizers	are	enabled	for	the	application.	This	example	determines	if	smart	tag
recognizers	are	enabled	and	notifies	the	user.

Sub	Check_SmartTagRecognizers()

				'	Determine	if	smart	tag	recognizers	are	enabled.

				If	Application.SmartTagRecognizers.Item(1).Enabled	=	True	Then

								MsgBox	"Smart	tag	recognizers	are	enabled."

				Else

					 MsgBox	"Smart	tag	recognizers	are	not	enabled."

				End	If

End	Sub

SmartTagRecognizers	Collection
									
Application	 SmartTagRecognizers

SmartTagRecognizer

A	collection	of	SmartTagRecognizer	objects	that	represent	recognition	engines
which	label	data	with	types	of	information	as	you	work	in	Microsoft	Excel.

Using	the	SmartTagRecognizers	collection

Use	the	SmartTagRecognizers	property	of	the	Application	object	to	return	a
SmartTagRecognizers	collection.

This	example	displays	the	first	smart	tag	recognizer	item	available	for	the
application	or	displays	a	message	that	none	exist.

Sub	CheckforSmartTagRecognizers()

				'	Handle	run-time	error	if	no	smart	tag	recognizers	exist.

				On	Error	Goto	No_SmartTag_Recognizers_In_List

				'	Notify	the	user	of	the	first	smart	tag	recognizer	item.

				MsgBox	"The	first	smart	tag	recognizer	is:	"	&	_

								Application.SmartTagRecognizers.Item(1)

				Exit	Sub

No_SmartTag_Recognizers_In_List:

				MsgBox	"No	smart	tag	recognizers	exist	in	list."

End	Sub

SmartTags	Collection
									
Multiple	objects	 SmartTags

SmartTag

A	collection	of	SmartTag	objects	that	represent	the	identifiers	assigned	to	each
cell.

Using	the	SmartTags	collection

Use	the	SmartTags	property	of	the	Range	collection	or	Worksheet	object,	to
return	a	SmartTag	collection.	The	following	example	demonstrates	the	use	of
the	SmartTags	property	with	the	Add	method.

This	example	adds	a	smart	tag	titled	"MSFT"	to	cell	A1,	then	adds	extra
metadata	called	"Market"	with	the	value	of	"Nasdaq"	to	the	smart	tag	and	then
returns	the	value	of	the	property	to	the	user.	This	example	assumes	the	host
system	is	connected	to	the	Internet.

Sub	UseProperties()

				Dim	strLink	As	String

				Dim	strType	As	String

				'	Define	smart	tag	variables.

				strLink	=	"urn:schemas-microsoft-com:smarttags#StockTickerSymbol"

				strType	=	"stockview"

				'	Enable	smart	tags	to	be	embedded	and	recognized.

				ActiveWorkbook.SmartTagOptions.EmbedSmartTags	=	True

				Application.SmartTagRecognizers.Recognize	=	True

				Range("A1").Formula	=	"MSFT"

				'	Add	a	property	for	MSFT	smart	tag	and	define	it's	value.

				Range("A1").SmartTags.Add(strLink).Properties.Add	_

								Name:="Market",	Value:="Nasdaq"

				'	Notify	the	user	of	the	smart	tag's	value.

				MsgBox	Range("A1").SmartTags.Add(strLink).Properties("Market").Value

End	Sub

SoundNote	Object
									

This	object	should	not	be	used.	Sound	notes	have	been	removed	from	Microsoft
Excel.

Speech	Object
									
Application	 Speech

Contains	methods	and	properties	that	pertain	to	speech.

Using	the	Speech	object

Use	the	Speech	property	of	the	Application	object	to	return	a	Speech	object.

Once	a	Speech	object	is	returned,	you	can	use	the	Speak	method	of	Speech
object	to	play	back	the	contents	of	a	string.	In	the	following	example,	Microsoft
Excel	plays	back	"Hello".	This	example	assumes	speech	features	have	been
installed	on	the	host	system.

Sub	UseSpeech()

				Application.Speech.Speak	"Hello"

End	Sub()

Note			There	is	a	speech	feature	in	the	setup	tree	that	pertains	to	Dictation	and
Command	&	Control	that	does	not	have	to	be	installed.

SpellingOptions	Object
									
Application	 SpellingOptions

Represents	the	various	spell	checking	options	for	a	worksheet.

Using	the	SpellingOptions	object

Use	the	SpellingOptions	property	of	the	Application	object	to	return	a
SpellingOptions	object.

Once	a	SpellingOptions	object	is	returned,	you	can	use	its	following	properties
to	set	or	return	various	spell	checking	options.

ArabicModes
DictLang
GermanPostReform
HebrewModes
IgnoreCaps
IgnoreFileNames
IgnoreMixedDigits
KoreanCombineAux
KoreanProcessCompound
KoreanUseAutoChangeList
SuggestMainOnly
UserDict

The	following	example	uses	the	IgnoreCaps	property	to	disable	spell	checking
for	words	that	have	all	capitalized	letters.	In	this	example,	"Testt",	but	not
"TESTT",	is	identified	by	the	spell	checker.

Sub	IgnoreAllCAPS()

				'	Place	mispelled	versions	of	the	same	word	in	all	caps	and	mixed	case.

				Range("A1").Formula	=	"Testt"

				Range("A2").Formula	=	"TESTT"

				With	Application.SpellingOptions

								.SuggestMainOnly	=	True

								.IgnoreCaps	=	True

				End	With

				'	Run	a	spell	check.

				Cells.CheckSpelling

End	Sub

Style	Object
									
Styles	 Style

Multiple	objects

Represents	a	style	description	for	a	range.	The	Style	object	contains	all	style
attributes	(font,	number	format,	alignment,	and	so	on)	as	properties.	There	are
several	built-in	styles,	including	Normal,	Currency,	and	Percent.	Using	the	Style
object	is	a	fast	and	efficient	way	to	change	several	cell-formatting	properties	on
multiple	cells	at	the	same	time.

For	the	Workbook	object,	the	Style	object	is	a	member	of	the	Styles	collection.
The	Styles	collection	contains	all	the	defined	styles	for	the	workbook.

Using	the	Style	Object

Use	the	Style	property	to	return	the	Style	object	used	with	a	Range	object.	The
following	example	applies	the	Percent	style	to	cells	A1:A10	on	Sheet1.

Worksheets("Sheet1").Range("A1:A10").Style.Name	=	"Percent"

You	can	change	the	appearance	of	a	cell	by	changing	properties	of	the	style
applied	to	that	cell.	Keep	in	mind,	however,	that	changing	a	style	property	will
affect	all	cells	already	formatted	with	that	style.

Use	Styles(index),	where	index	is	the	style	index	number	or	name,	to	return	a
single	Style	object	from	the	workbook	Styles	collection.	The	following	example
changes	the	Normal	style	for	the	active	workbook	by	setting	the	style’s	Bold
property.

ActiveWorkbook.Styles("Normal").Font.Bold	=	True

Styles	are	sorted	alphabetically	by	style	name.	The	style	index	number	denotes
the	position	of	the	specified	style	in	the	sorted	list	of	style	names.	Styles(1)	is
the	first	style	in	the	alphabetic	list,	and	Styles(Styles.Count)	is	the	last	one	in
the	list.

For	more	information	about	creating	and	modifying	a	style,	see	the	Styles	object.

Styles	Collection
									
Workbook	 Styles

Style

A	collection	of	all	the	Style	objects	in	the	specified	or	active	workbook.	Each
Style	object	represents	a	style	description	for	a	range.	The	Style	object	contains
all	style	attributes	(font,	number	format,	alignment,	and	so	on)	as	properties.
There	are	several	built-in	styles	—	including	Normal,	Currency,	and	Percent	—
which	are	listed	in	the	Style	name	box	in	the	Style	dialog	box	(Format	menu).

Using	the	Styles	Collection

Use	the	Styles	property	to	return	the	Styles	collection.	The	following	example
creates	a	list	of	style	names	on	worksheet	one	in	the	active	workbook.

For	i	=	1	To	ActiveWorkbook.Styles.Count

				Worksheets(1).Cells(i,	1)	=	ActiveWorkbook.Styles(i).Name

Next

Use	the	Add	method	to	create	a	new	style	and	add	it	to	the	collection.	The
following	example	creates	a	new	style	based	on	the	Normal	style,	modifies	the
border	and	font,	and	then	applies	the	new	style	to	cells	A25:A30.

With	ActiveWorkbook.Styles.Add(Name:="Bookman	Top	Border")

				.Borders(xlTop).LineStyle	=	xlDouble

				.Font.Bold	=	True

				.Font.Name	=	"Bookman"

End	With

Worksheets(1).Range("A25:A30").Style	=	"Bookman	Top	Border"

Use	Styles(index),	where	index	is	the	style	index	number	or	name,	to	return	a
single	Style	object	from	the	workbook	Styles	collection.	The	following	example
changes	the	Normal	style	for	the	active	workbook	by	setting	its	Bold	property.

ActiveWorkbook.Styles("Normal").Font.Bold	=	True

Tab	Object
									
Multiple	objects	 Tab

Represents	a	tab	in	a	chart	or	a	worksheet.

Using	the	Tab	object

Use	the	Tab	property	of	the	Chart	object	or	Worksheet	object	to	return	a	Tab
object.

Once	a	Tab	object	is	returned,	you	can	use	the	ColorIndex	property	determine
the	settings	of	a	tab	for	a	chart	or	worksheet.

In	the	following	example,	Microsoft	Excel	determines	if	the	worksheet's	first	tab
color	index	is	set	to	none	and	notifies	the	user.

Sub	CheckTab()

				'	Determine	if	color	index	of	1st	tab	is	set	to	none.

				If	Worksheets(1).Tab.ColorIndex	=	xlColorIndexNone	Then

								MsgBox	"The	color	index	is	set	to	none	for	the	first	"	&	_

												"worksheet	tab."

				Else

								MsgBox	"The	color	index	for	the	tab	of	the	first	worksheet	"	&	_

												"is	not	set	none."

				End	If

End	Sub

TextEffectFormat	Object
									
Shapes	(Shape)	 TextEffectFormat

Contains	properties	and	methods	that	apply	to	WordArt	objects.

Using	the	TextEffectFormat	Object

Use	the	TextEffect	property	to	return	a	TextEffectFormat	object.	The	following
example	sets	the	font	name	and	formatting	for	shape	one	on	myDocument.	For
this	example	to	work,	shape	one	must	be	a	WordArt	object.

Set	myDocument	=	Worksheets(1)

With	myDocument.Shapes(1).TextEffect

				.FontName	=	"Courier	New"

				.FontBold	=	True

				.FontItalic	=	True

End	With

TextFrame	Object
									
Shapes	(Shape)	 TextFrame

Characters

Represents	the	text	frame	in	a	Shape	object.	Contains	the	text	in	the	text	frame
as	well	as	the	properties	and	methods	that	control	the	alignment	and	anchoring
of	the	text	frame.

Using	the	TextFrame	Object

Use	the	TextFrame	property	to	return	a	TextFrame	object.	The	following
example	adds	a	rectangle	to	myDocument,	adds	text	to	the	rectangle,	and	then	sets
the	margins	for	the	text	frame.

Set	myDocument	=	Worksheets(1)

With	myDocument.Shapes.AddShape(msoShapeRectangle,	_

								0,	0,	250,	140).TextFrame

				.Characters.Text	=	"Here	is	some	test	text"

				.MarginBottom	=	10

				.MarginLeft	=	10

				.MarginRight	=	10

				.MarginTop	=	10

End	With

ThreeDFormat	Object
									
Shapes	(Shape)	 ThreeDFormat

ColorFormat

Represents	a	shape's	three-dimensional	formatting.

Using	The	ThreeDFormat	Object

Use	the	ThreeD	property	to	return	a	ThreeDFormat	object.	The	following
example	adds	an	oval	to	myDocument	and	then	specifies	that	the	oval	be	extruded
to	a	depth	of	50	points	and	that	the	extrusion	be	purple.

Set	myDocument	=	Worksheets(1)

Set	myShape	=	myDocument.Shapes.AddShape(msoShapeOval,	_

				90,	90,	90,	40)

With	myShape.ThreeD

				.Visible	=	True

				.Depth	=	50

				.ExtrusionColor.RGB	=	RGB(255,	100,	255)

				'	RGB	value	for	purple

End	With

Remarks

You	cannot	apply	three-dimensional	formatting	to	some	kinds	of	shapes,	such	as
beveled	shapes	or	multiple-disjoint	paths.	Most	of	the	properties	and	methods	of
the	ThreeDFormat	object	for	such	a	shape	will	fail.

TickLabels	Object
									
Charts	(Chart)	 Axes	(Axis)

TickLabels
Font

Represents	the	tick-mark	labels	associated	with	tick	marks	on	a	chart	axis.	This
object	isn’t	a	collection.	There’s	no	object	that	represents	a	single	tick-mark
label;	you	must	return	all	the	tick-mark	labels	as	a	unit.

Tick-mark	label	text	for	the	category	axis	comes	from	the	name	of	the	associated
category	in	the	chart.	The	default	tick-mark	label	text	for	the	category	axis	is	the
number	that	indicates	the	position	of	the	category	relative	to	the	left	end	of	this
axis.	To	change	the	number	of	unlabeled	tick	marks	between	tick-mark	labels,
you	must	change	the	TickLabelSpacing	property	for	the	category	axis.

Tick-mark	label	text	for	the	value	axis	is	calculated	based	on	the	MajorUnit,
MinimumScale,	and	MaximumScale	properties	of	the	value	axis.	To	change
the	tick-mark	label	text	for	the	value	axis,	you	must	change	thte	values	of	these
properties.

Using	the	TickLabels	Object

Use	the	TickLabels	property	to	return	the	TickLabels	object.	The	following
example	sets	the	number	format	for	the	tick-mark	labels	on	the	value	axis	in
embedded	chart	one	on	Sheet1.

Worksheets("sheet1").ChartObjects(1).Chart	_

				.Axes(xlValue).TickLabels.NumberFormat	=	"0.00"

Show	All

TreeviewControl	Object
									

Represents	the	hierarchical	member-selection	control	of	a	cube	field.	You	use
this	object	primarily	for	macro	recording;	it	is	not	intended	for	any	other	use.

Using	the	TreeviewControl	Object

Use	the	TreeviewControl	property	to	return	the	TreeviewControl	object.	The
following	example	sets	the	control	to	its	“drilled”	(expanded,	or	visible)	status
for	the	states	of	California	and	Maryland	in	the	second	PivotTable	report	on	the
active	worksheet.

ActiveSheet.PivotTables("PivotTable2")	_

				.CubeFields(1).TreeviewControl.Drilled	=	_

								Array(Array("",	""),	_

								Array("[state].[states].[CA]",	_

												"[state].[states].[MD]"))

Trendline	Object
									
SeriesCollection	(Series)	 Trendlines	(Trendline)

Border
DataLabel

Represents	a	trendline	in	a	chart.	A	trendline	shows	the	trend,	or	direction,	of
data	in	a	series.	The	Trendline	object	is	a	member	of	the	Trendlines	collection.
The	Trendlines	collection	contains	all	the	Trendline	objects	for	a	single	series.

Using	the	Trendline	Object

Use	Trendlines(index),	where	index	is	the	trendline	index	number,	to	return	a
single	Trendline	object.	The	following	example	changes	the	trendline	type	for
the	first	series	in	embedded	chart	one	on	worksheet	one.	If	the	series	has	no
trendline,	this	example	will	fail.

Worksheets(1).ChartObjects(1).Chart.	_

				SeriesCollection(1).Trendlines(1).Type	=	xlMovingAvg

The	index	number	denotes	the	order	in	which	the	trendlines	were	added	to	the
series.	Trendlines(1)	is	the	first	trendline	added	to	the	series,	and
Trendlines(Trendlines.Count)	is	the	last	one	added.

Trendlines	Collection	Object
									
SeriesCollection	(Series)	 Trendlines	(Trendline)

Border
DataLabel

A	collection	of	all	the	Trendline	objects	for	the	specified	series.	Each	Trendline
object	represents	a	trendline	in	a	chart.	A	trendline	shows	the	trend,	or	direction,
of	data	in	a	series.

Using	the	Trendlines	Collection

Use	the	Trendlines	method	to	return	the	Trendlines	collection.	The	following
example	displays	the	number	of	trendlines	for	series	one	in	Chart1.

MsgBox	Charts(1).SeriesCollection(1).Trendlines.Count

Use	the	Add	method	to	create	a	new	trendline	and	add	it	to	the	series.	The
following	example	adds	a	linear	trendline	to	the	first	series	in	embedded	chart
one	on	Sheet1.

Worksheets("sheet1").ChartObjects(1).Chart.SeriesCollection(1)	_

				.Trendlines.Add	type:=xlLinear,	name:="Linear	Trend"

Use	Trendlines(index),	where	index	is	the	trendline	index	number,	to	return	a
single	TrendLine	object.	The	following	example	changes	the	trendline	type	for
the	first	series	in	embedded	chart	one	on	worksheet	one.	If	the	series	has	no
trendline,	this	example	will	fail.

Worksheets(1).ChartObjects(1).Chart.	_

				SeriesCollection(1).Trendlines(1).Type	=	xlMovingAvg

The	index	number	denotes	the	order	in	which	the	trendlines	were	added	to	the
series.	Trendlines(1)	is	the	first	trendline	added	to	the	series,	and
Trendlines(Trendlines.Count)	is	the	last	one	added.

UpBars	Object
									
Charts	(Chart)	 ChartGroups	(ChartGroup)

UpBars
Border
Interior

Represents	the	up	bars	in	a	chart	group.	Up	bars	connect	points	on	series	one
with	higher	values	on	the	last	series	in	the	chart	group	(the	lines	go	up	from
series	one).	Only	2-D	line	groups	that	contain	at	least	two	series	can	have	up
bars.	This	object	isn’t	a	collection.	There’s	no	object	that	represents	a	single	up
bar;	you	either	have	up	bars	turned	on	for	all	points	in	a	chart	group	or	you	have
them	turned	off.

Using	the	UpBars	Object

Use	the	UpBars	property	to	return	the	UpBars	object.	The	following	example
turns	on	up	and	down	bars	for	chart	group	one	in	embedded	chart	one	on	Sheet5.
The	example	then	sets	the	up	bar	color	to	blue	and	sets	the	down	bar	color	to	red.

With	Worksheets("sheet5").ChartObjects(1).Chart.ChartGroups(1)

				.HasUpDownBars	=	True

				.UpBars.Interior.Color	=	RGB(0,	0,	255)

				.DownBars.Interior.Color	=	RGB(255,	0,	0)

End	With

Remarks

If	the	HasUpDownBars	property	is	False,	most	properties	of	the	UpBars	object
are	disabled.

UsedObjects	Collection
									
Application	 UsedObjects

Represents	objects	that	have	been	allocated	in	a	workbook.

Using	the	UsedObjects	collection

Use	the	UsedObjects	property	of	the	Application	object	to	return	a
UsedObjects	collection.

Once	a	UsedObjects	collection	is	returned,	you	can	determine	the	quantity	of
used	objects	in	a	Microsoft	Excel	application	using	the	Count	property.

In	this	example,	Microsoft	Excel	determines	the	quantity	of	objects	that	have
been	allocated	and	notifies	the	user.	This	example	assumes	a	recalculation	was
performed	in	the	application	and	was	interrupted	before	finishing.

Sub	CountUsedObjects()

				MsgBox	"The	number	of	used	objects	in	this	application	is:	"	&	_

								Application.UsedObjects.Count

End	Sub

UserAccess	Object
									
UserAccessList	 UserAccess

Represents	the	user	access	for	a	protected	range.

Using	the	UserAccess	object

Use	the	Add	method	or	the	Item	property	of	the	UserAccessList	collection	to
return	a	UserAccess	object.

Once	a	UserAccess	object	is	returned,	you	can	determine	if	access	is	allowed	for
a	particular	range	in	an	worksheet,	using	the	AllowEdit	property.	The	following
example	adds	a	range	that	can	be	edited	on	a	protected	worksheet	and	notifies
the	user	the	title	of	that	range.

Sub	UseAllowEditRanges()

				Dim	wksSheet	As	Worksheet

				Set	wksSheet	=	Application.ActiveSheet

				'	Add	a	range	that	can	be	edited	on	the	protected	worksheet.

				wksSheet.Protection.AllowEditRanges.Add	"Test",	Range("A1")

				'	Notify	the	user	the	title	of	the	range	that	can	be	edited.

				MsgBox	wksSheet.Protection.AllowEditRanges(1).Title

End	Sub

UserAccessList	Collection
									
AllowEditRange	 UserAccessList

UserAccess

A	collection	of	UserAccess	objects	that	represent	the	user	access	for	protected
ranges.

Using	the	UserAccessList	Collection

Use	the	Users	property	of	the	ProtectedRange	object	to	return	a
UserAccessList	collection.

Once	a	UserAccessList	collection	is	returned	you	can	use	the	Count	property	to
determine	the	number	of	users	that	have	access	to	a	protected	range.	In	the
following	example,	Microsoft	Excel	notifies	the	user	the	numbers	users	that	have
access	to	the	first	protected	range.	This	example	assumes	that	a	protected	range
exists	on	the	active	worksheet.

Sub	UseDeleteAll()

				Dim	wksSheet	As	Worksheet

				Set	wksSheet	=	Application.ActiveSheet

				'	Notify	the	user	the	number	of	users	that	can	access	the	protected	range.

				MsgBox	wksSheet.Protection.AllowEditRanges(1).Users.Count

End	Sub

Validation	Object
									
Range	 Validation

Represents	data	validation	for	a	worksheet	range.

Using	the	Validation	Object

Use	the	Validation	property	to	return	the	Validation	object.	The	following
example	changes	the	data	validation	for	cell	E5.

Range("e5").Validation	_

				.Modify	xlValidateList,	xlValidAlertStop,	"=A1:A10"

Use	the	Add	method	to	add	data	validation	to	a	range	and	create	a	new
Validation	object.	The	following	example	adds	data	validation	to	cell	E5.

With	Range("e5").Validation

				.Add	Type:=xlValidateWholeNumber,	_

								AlertStyle:=xlValidAlertInformation,	_

								Minimum:="5",	Maximum:="10"

				.InputTitle	=	"Integers"

				.ErrorTitle	=	"Integers"

				.InputMessage	=	"Enter	an	integer	from	five	to	ten"

				.ErrorMessage	=	"You	must	enter	a	number	from	five	to	ten"

End	With

VPageBreak	Object
									
Sheets	 VPageBreaks	(VPageBreak)

Represents	a	vertical	page	break.	The	VPageBreak	object	is	a	member	of	the
VPageBreaks	collection.

Using	the	VPageBreak	Object

Use	VPageBreaks(index),	where	index	is	the	page	break	index	number	of	the
page	break,	to	return	a	VPageBreak	object.	The	following	example	changes	the
location	of	vertical	page	break	one.

Worksheets(1).VPageBreaks(1).Location	=	Worksheets(1).Range("e5")

VPageBreaks	Collection	Object
									
Sheets	 VPageBreaks	(VPageBreak)

A	collection	of	vertical	page	breaks	within	the	print	area.	Each	vertical	page
break	is	represented	by	a	VPageBreak	object.

Using	the	VPageBreaks	Collection

Use	the	VPageBreaks	property	to	return	the	VPageBreaks	collection.	Use	the
Add	method	to	add	a	vertical	page	break.	The	following	example	adds	a	vertical
page	break	to	the	left	of	the	active	cell.

ActiveSheet.VPageBreaks.Add	Before:=ActiveCell

If	you	add	a	page	break	that	does	not	intersect	the	print	area,	then	the	newly-
added	VPageBreak	object	will	not	appear	in	the	VPageBreaks	collection	for
the	print	area.	The	contents	of	the	collection	may	change	if	the	print	area	is
resized	or	redefined.

When	the	Application	property,	Count	property,	Creator	property,	Item
property,	Parent	property	or	Add	method	is	used	in	conjunction	with	the
VPageBreaks	property:

For	an	automatic	print	area,	the	VPageBreaks	property	applies	only	to	the
page	breaks	within	the	print	area.
For	a	user-defined	print	area	of	the	same	range,	the	VPageBreaks	property
applies	to	all	of	the	page	breaks.

Walls	Object
									
Charts	(Chart)	 Walls

Border
Interior

Represents	the	walls	of	a	3-D	chart.	This	object	isn’t	a	collection.	There’s	no
object	that	represents	a	single	wall;	you	must	return	all	the	walls	as	a	unit.

Using	the	Walls	Object

Use	the	Walls	property	to	return	the	Walls	object.	The	following	example	sets
the	pattern	on	the	walls	for	embedded	chart	one	on	Sheet1.	If	the	chart	isn’t	a	3-
D	chart,	this	example	will	fail.

Worksheets("Sheet1").ChartObjects(1).Chart	_

				.Walls.Interior.Pattern	=	xlGray75

Watch	Object
									
Watches	 Watch

Represents	a	range	which	is	tracked	when	the	worksheet	is	recalculated.	The
Watch	object	allows	users	to	verify	the	accuracy	of	their	models	and	debug
problems	they	encounter.	The	Watch	object	is	a	member	of	the	Watches
collection.

Using	the	Watch	object

Use	the	use	the	Add	method	or	the	Item	property	of	the	Watches	collection	to
return	a	Watch	object.

In	the	following	example,	Microsoft	Excel	creates	a	new	Watch	object	using	the
Add	method.		This	example	creates	a	summation	formula	in	cell	A3,	and	then
adds	this	cell	to	the	watch	facility.

Sub	AddWatch()

				With	Application

								.Range("A1").Formula	=	1

								.Range("A2").Formula	=	2

								.Range("A3").Formula	=	"=Sum(A1:A2)"

								.Range("A3").Select

								.Watches.Add	Source:=ActiveCell

				End	With

End	Sub

You	can	specify	to	remove	individual	cells	from	the	watch	facility	by	using	the
Delete	method	of	the	Watches	collection.	This	example	deletes	cell	A3	on
worksheet	1	of	book	1	from	the	Watch	Window.	This	example	assumes	you	have
added	the	cell	A3	on	sheet	1	of	book	1	(using	the	previous	example	to	add	a
Watch	object).

Sub	DeleteAWatch()

				Application.Watches(Workbooks("Book1").Sheets("Sheet1").Range("A3")).Delete

End	Sub

You	can	also	specify	to	remove	all	cells	from	the	Watch	Window,	by	using	the
Delete	method	of	the	Watches	collection.	This	example	deletes	all	cells	from	the
Watch	Window.

Sub	DeleteAllWatches()

				Application.Watches.Delete

End	Sub

	

	

Watches	Collection
									
Application	 Watches

Watch

A	collection	of	all	the	Watch	objects	in	a	specified	application.

Using	the	Watches	collection

Use	the	Watches	property	of	the	Application	object	to	return	a	Watches
collection.

In	the	following	example,	Microsoft	Excel	creates	a	new	Watch	object	using	the
Add	method.	This	example	creates	a	summation	formula	in	cell	A3,	and	then
adds	this	cell	to	the	watch	facility.

Sub	AddWatch()

				With	Application

								.Range("A1").Formula	=	1

								.Range("A2").Formula	=	2

								.Range("A3").Formula	=	"=Sum(A1:A2)"

								.Range("A3").Select

								.Watches.Add	Source:=ActiveCell

				End	With

End	Sub

You	can	specify	to	remove	individual	cells	from	the	watch	facility	by	using	the
Delete	method	of	the	Watches	collection.	This	example	deletes	cell	A3	on
worksheet	1	of	book	1	from	the	Watch	Window.	This	example	assumes	you	have
added	the	cell	A3	on	sheet	1	of	book	1	(using	the	previous	example	to	add	a
Watch	object).

Sub	DeleteAWatch()

				Application.Watches(Workbooks("Book1").Sheets("Sheet1").Range("A3")).Delete

End	Sub

You	can	also	specify	to	remove	all	cells	from	the	Watch	Window,	by	using	the
Delete	method	of	the	Watches	collection.	This	example	deletes	all	cells	from	the
Watch	Window.

Sub	DeleteAllWatches()

				Application.Watches.Delete

End	Sub

WebOptions	Object
									
Workbooks	(Workbook)	 WebOptions

Contains	workbook-level	attributes	used	by	Microsoft	Excel	when	you	save	a
document	as	a	Web	page	or	open	a	Web	page.	You	can	return	or	set	attributes
either	at	the	application	(global)	level	or	at	the	workbook	level.	(Note	that
attribute	values	can	be	different	from	one	workbook	to	another,	depending	on	the
attribute	value	at	the	time	the	workbook	was	saved.)	Workbook-level	attribute
settings	override	application-level	attribute	settings.	Application-level	attributes
are	contained	in	the	DefaultWebOptions	object.

Using	the	WebOptions	Object

Use	the	WebOptions	property	to	return	the	WebOptions	object.	The	following
example	checks	to	see	whether	PNG	(Portable	Network	Graphics)	is	allowed	as
an	image	format	and	then	sets	the	strImageFileType	variable	accordingly.

Set	objAppWebOptions	=	Workbooks(1).WebOptions

With	objAppWebOptions

				If	.AllowPNG	=	True	Then

								strImageFileType	=	"PNG"

				Else

								strImageFileType	=	"JPG"

				End	If

End	With

Window	Object
									
Application	 Workbooks	(Workbook)

Windows	(Window)
Panes	(Pane)

Represents	a	window.	Many	worksheet	characteristics,	such	as	scroll	bars	and
gridlines,	are	actually	properties	of	the	window.	The	Window	object	is	a
member	of	the	Windows	collection.	The	Windows	collection	for	the
Application	object	contains	all	the	windows	in	the	application,	whereas	the
Windows	collection	for	the	Workbook	object	contains	only	the	windows	in	the
specified	workbook.

Using	the	Window	Object

Use	Windows(index),	where	index	is	the	window	name	or	index	number,	to
return	a	single	Window	object.	The	following	example	maximizes	the	active
window.

Windows(1).WindowState	=	xlMaximized

Note	that	the	active	window	is	always	Windows(1).

The	window	caption	is	the	text	shown	in	the	title	bar	at	the	top	of	the	window
when	the	window	isn’t	maximized.	The	caption	is	also	shown	in	the	list	of	open
files	on	the	bottom	of	the	Windows	menu.	Use	the	Caption	property	to	set	or
return	the	window	caption.	Changing	the	window	caption	doesn’t	change	the
name	of	the	workbook.	The	following	example	turns	off	cell	gridlines	for	the
worksheet	shown	in	the	Book1.xls:1	window.

Windows("book1.xls":1).DisplayGridlines	=	False

Windows	Collection	Object
									
Application	 Workbooks	(Workbook)

Windows	(Window)
Panes	(Pane)

A	collection	of	all	the	Window	objects	in	Microsoft	Excel.	The	Windows
collection	for	the	Application	object	contains	all	the	windows	in	the	application,
whereas	the	Windows	collection	for	the	Workbook	object	contains	only	the
windows	in	the	specified	workbook.

Using	the	Windows	Collection

Use	the	Windows	property	to	return	the	Windows	collection.	The	following
example	cascades	all	the	windows	that	are	currently	displayed	in	Microsoft
Excel.

Windows.Arrange	arrangeStyle:=xlCascade

Use	the	NewWindow	method	to	create	a	new	window	and	add	it	to	the
collection.	The	following	example	creates	a	new	window	for	the	active
workbook.

ActiveWorkbook.NewWindow

Use	Windows(index),	where	index	is	the	window	name	or	index	number,	to
return	a	single	Window	object.	The	following	example	maximizes	the	active
window.

Windows(1).WindowState	=	xlMaximized

Note	that	the	active	window	is	always	Windows(1).

Workbook	Object
									
Multiple	objects	 Workbook

Multiple	objects

Represents	a	Microsoft	Excel	workbook.	The	Workbook	object	is	a	member	of
the	Workbooks	collection.	The	Workbooks	collection	contains	all	the
Workbook	objects	currently	open	in	Microsoft	Excel.

Using	the	Workbook	Object

The	following	properties	for	returning	a	Workbook	object	are	described	in	this
section:

Workbooks	property
ActiveWorkbook	property
ThisWorkbook	property

Workbooks	Property

Use	Workbooks(index),	where	index	is	the	workbook	name	or	index	number,	to
return	a	single	Workbook	object.	The	following	example	activates	workbook
one.

Workbooks(1).Activate

The	index	number	denotes	the	order	in	which	the	workbooks	were	opened	or
created.	Workbooks(1)	is	the	first	workbook	created,	and
Workbooks(Workbooks.Count)	is	the	last	one	created.	Activating	a	workbook
doesn’t	change	its	index	number.	All	workbooks	are	included	in	the	index	count,
even	if	they’re	hidden.

The	Name	property	returns	the	workbook	name.	You	cannot	set	the	name	by
using	this	property;	if	you	need	to	change	the	name,	use	the	SaveAs	method	to
save	the	workbook	under	a	different	name.	The	following	example	activates
Sheet1	in	the	workbook	named	Cogs.xls	(the	workbook	must	already	be	open	in
Microsoft	Excel).

Workbooks("Cogs.xls").Worksheets("Sheet1").Activate

ActiveWorkbook	Property

The	ActiveWorkbook	property	returns	the	workbook	that’s	currently	active.	The
following	example	sets	the	name	of	the	author	for	the	active	workbook.

ActiveWorkbook.Author	=	"Jean	Selva"

ThisWorkbook	Property

The	ThisWorkbook	property	returns	the	workbook	where	the	Visual	Basic	code
is	running.	In	most	cases,	this	is	the	same	as	the	active	workbook.	However,	if
the	Visual	Basic	code	is	part	of	an	add-in,	the	ThisWorkbook	property	won’t
return	the	active	workbook.	In	this	case,	the	active	workbook	is	the	workbook
calling	the	add-in,	whereas	the	ThisWorkbook	property	returns	the	add-in
workbook.

If	you’ll	be	creating	an	add-in	from	your	Visual	Basic	code,	you	should	use	the
ThisWorkbook	property	to	qualify	any	statement	that	must	be	run	on	the
workbook	you	compile	into	the	add-in.

Workbooks	Collection
									
Application	 Workbooks

Workbook

A	collection	of	all	the	Workbook	objects	that	are	currently	open	in	the
Microsoft	Excel	application.

Using	the	Workbooks	Collection

Use	the	Workbooks	property	to	return	the	Workbooks	collection.	The
following	example	closes	all	open	workbooks.

Workbooks.Close

Use	the	Add	method	to	create	a	new,	empty	workbook	and	add	it	to	the
collection.	The	following	example	adds	a	new,	empty	workbook	to	Microsoft
Excel.

Workbooks.Add

Use	the	Open	method	to	open	a	file.	This	creates	a	new	workbook	for	the
opened	file.	The	following	example	opens	the	file	Array.xls	as	a	read-only
workbook.

Workbooks.Open	FileName:="Array.xls",	ReadOnly:=True

For	more	information	about	using	a	single	Workbook	object,	see	the	Workbook
object.

Worksheet	Object
									
Multiple	objects	 Worksheet

Multiple	objects

Represents	a	worksheet.	The	Worksheet	object	is	a	member	of	the	Worksheets
collection.	The	Worksheets	collection	contains	all	the	Worksheet	objects	in	a
workbook.

Using	the	Worksheet	Object

The	following	properties	for	returning	a	Worksheet	object	are	described	in	this
section:

Worksheets	property
ActiveSheet	property

Worksheets	Property

Use	Worksheets(index),	where	index	is	the	worksheet	index	number	or	name,	to
return	a	single	Worksheet	object.	The	following	example	hides	worksheet	one
in	the	active	workbook.

Worksheets(1).Visible	=	False

The	worksheet	index	number	denotes	the	position	of	the	worksheet	on	the
workbook’s	tab	bar.	Worksheets(1)	is	the	first	(leftmost)	worksheet	in	the
workbook,	and	Worksheets(Worksheets.Count)	is	the	last	one.	All	worksheets
are	included	in	the	index	count,	even	if	they’re	hidden.

The	worksheet	name	is	shown	on	the	tab	for	the	worksheet.	Use	the	Name
property	to	set	or	return	the	worksheet	name.	The	following	example	protects	the
scenarios	on	Sheet1.

Worksheets("Sheet1").Protect	password:="secret",	scenarios:=True

The	Worksheet	object	is	also	a	member	of	the	Sheets	collection.	The	Sheets
collection	contains	all	the	sheets	in	the	workbook	(both	chart	sheets	and
worksheets).

ActiveSheet	Property

When	a	worksheet	is	the	active	sheet,	you	can	use	the	ActiveSheet	property	to
refer	to	it.	The	following	example	uses	the	Activate	method	to	activate	Sheet1,
sets	the	page	orientation	to	landscape	mode,	and	then	prints	the	worksheet.

Worksheets("Sheet1").Activate

ActiveSheet.PageSetup.Orientation	=	xlLandscape

ActiveSheet.PrintOut

WorksheetFunction	Object
									
Application	 WorksheetFunction

Used	as	a	container	for	Microsoft	Excel	worksheet	functions	that	can	be	called
from	Visual	Basic.

Using	the	WorksheetFunction	Object

Use	the	WorksheetFunction	property	to	return	the	WorksheetFunction	object.
The	following	example	displays	the	result	of	applying	the	Min	worksheet
function	to	the	range	A1:A10.

Set	myRange	=	Worksheets("Sheet1").Range("A1:C10")

answer	=	Application.WorksheetFunction.Min(myRange)

MsgBox	answer

Worksheets	Collection
									
Worksheets	 Multiple	objects

A	collection	of	all	the	Worksheet	objects	in	the	specified	or	active	workbook.
Each	Worksheet	object	represents	a	worksheet.

Using	the	Worksheets	Collection

Use	the	Worksheets	property	to	return	the	Worksheets	collection.The	following
example	moves	all	the	worksheets	to	the	end	of	the	workbook.

Worksheets.Move	After:=Sheets(Sheets.Count)

Use	the	Add	method	to	create	a	new	worksheet	and	add	it	to	the	collection.	The
following	example	adds	two	new	worksheets	before	sheet	one	of	the	active
workbook.

Worksheets.Add	Count:=2,	Before:=Sheets(1)

Use	Worksheets(index),	where	index	is	the	worksheet	index	number	or	name,	to
return	a	single	Worksheet	object.	The	following	example	hides	worksheet	one
in	the	active	workbook.

Worksheets(1).Visible	=	False

The	Worksheet	object	is	also	a	member	of	the	Sheets	collection.	The	Sheets
collection	contains	all	the	sheets	in	the	workbook	(both	chart	sheets	and
worksheets).

AcceptAllChanges	Method
							

Accepts	all	changes	in	the	specified	shared	workbook.

expression.AcceptAllChanges(When,	Who,	Where)

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

When		Optional	Variant.	Specifies	when	all	the	changes	are	accepted.

Who		Optional	Variant.	Specifies	by	whom	all	the	changes	are	accepted.

Where		Optional	Variant.	Specifies	where	all	the	changes	are	accepted.

Example

This	example	accepts	all	changes	in	the	active	workbook.

ActiveWorkbook.AcceptAllChanges

Show	All

Activate	Method
							

Activate	method	as	it	applies	to	the	Chart	and	ChartObject	object.

Makes	the	current	chart	the	active	chart.

expression.Activate

expression			Required.	An	expression	that	returns	one	of	the	above	objects.

	

Activate	method	as	it	applies	to	the	Worksheet	object.

Makes	the	current	sheet	the	active	sheet.	Equivalent	to	clicking	the	sheet's	tab.

expression.Activate

expression			Required.	An	expression	that	returns	one	of	the	above	objects.

	

Activate	method	as	it	applies	to	the	OLEObject	object.

Activates	the	object.

expression.Activate

expression			Required.	An	expression	that	returns	one	of	the	above	objects.

	

Activate	method	as	it	applies	to	the	Pane	object.

Activates	the	pane.	If	the	pane	isn't	in	the	active	window,	the	window	that	the
pane	belongs	to	will	also	be	activated.	You	cannot	activate	a	frozen	pane.

expression.Activate

expression			Required.	An	expression	that	returns	one	of	the	above	objects.

	

Activate	method	as	it	applies	to	the	Range	object.

Activates	a	single	cell,	which	must	be	inside	the	current	selection.	To	select	a
range	of	cells,	use	the	Select	method.

expression.Activate

expression			Required.	An	expression	that	returns	one	of	the	above	objects.

	

Activate	method	as	it	applies	to	the	Window	object.

Brings	the	window	to	the	front	of	the	z-order.	This	won't	run	any	Auto_Activate
or	Auto_Deactivate	macros	that	might	be	attached	to	the	workbook	(use	the
RunAutoMacros	method	to	run	those	macros).

expression.Activate

expression			Required.	An	expression	that	returns	one	of	the	above	objects.

	

Activate	method	as	it	applies	to	the	Workbook	object.

Activates	the	first	window	associated	with	the	workbook.	This	won't	run	any
Auto_Activate	or	Auto_Deactivate	macros	that	might	be	attached	to	the
workbook	(use	the	RunAutoMacros	method	to	run	those	macros).

expression.Activate

expression			Required.	An	expression	that	returns	one	of	the	above	objects.

Example

As	it	applies	to	the	Worksheet	object.

This	example	activates	Sheet1.

Worksheets("Sheet1").Activate

As	it	applies	to	the	Range	object.

This	example	selects	cells	A1:C3	on	Sheet1	and	then	makes	cell	B2	the	active
cell.

Worksheets("Sheet1").Activate

Range("A1:C3").Select

Range("B2").Activate

As	it	applies	to	the	Workbook	object.

This	example	activates	Book4.xls.	If	Book4.xls	has	multiple	windows,	the
example	activates	the	first	window,	Book4.xls:1.

Workbooks("BOOK4.XLS").Activate

ActivateMicrosoftApp	Method
							

Activates	a	Microsoft	application.	If	the	application	is	already	running,	this
method	activates	the	running	application.	If	the	application	isn't	running,	this
method	starts	a	new	instance	of	the	application.

expression.ActivateMicrosoftApp(index)

expression			Required.	An	expression	that	returns	an	Application	object.

index		Required	XlMSApplication.	Specifies	the	Microsoft	application	to
activate.

XlMSApplication	can	be	one	of	these	XlMSApplication	constants.
xlMicrosoftWord
xlMicrosoftPowerPoint
xlMicrosoftMail
xlMicrosoftAccess
xlMicrosoftFoxPro
xlMicrosoftProject
xlMicrosoftSchedulePlus

Example

This	example	starts	and	activates	Word.

Application.ActivateMicrosoftApp	xlMicrosoftWord

ActivateNext	Method
							

Activates	the	specified	window	and	then	sends	it	to	the	back	of	the	window	z-
order.

expression.ActivateNext

expression			Required.	An	expression	that	returns	a	Window	object.

Example

This	example	sends	the	active	window	to	the	back	of	the	z-order.

ActiveWindow.ActivateNext

ActivatePrevious	Method
							

Activates	the	specified	window	and	then	activates	the	window	at	the	back	of	the
window	z-order.

expression.ActivatePrevious

expression			Required.	An	expression	that	returns	a	Window	object.

Example

This	example	activates	the	window	at	the	back	of	the	z-order.

ActiveWindow.ActivatePrevious

Show	All

Add	Method
							

Add	method	as	it	applies	to	the	AddIns	object.

Adds	a	new	add-in	file	to	the	list	of	add-ins.	Returns	an	AddIn	object.

expression.Add(FileName,	CopyFile)

expression			Required.	An	expression	that	returns	an	AddIns	object.

Filename			Required	String.	The	name	of	the	file	that	contains	the	add-in	you
want	to	add	to	the	list	in	the	add-in	manager.

CopyFile			Optional	Variant.	Ignored	if	the	add-in	file	is	on	a	hard	disk.	True	to
copy	the	add-in	to	your	hard	disk,	if	the	add-in	is	on	a	removable	medium	(a
floppy	disk	or	compact	disc).	False	to	have	the	add-in	remain	on	the	removable
medium.	If	this	argument	is	omitted,	Microsoft	Excel	displays	a	dialog	box	and
asks	you	to	choose.

Remarks

This	method	doesn’t	install	the	new	add-in.	You	must	set	the	Installed	property
to	install	the	add-in.

Add	method	as	it	applies	to	the	AllowEditRanges	object.

Adds	a	range	that	can	be	edited	on	a	protected	worksheet.	Returns	a
AllowEditRange	object.

expression.Add(Title,	Range,	Password)

expression			Required.	An	expression	that	returns	an	AllowEditRanges	object.

Title		Required	String.	The	title	of	range.

Range		Required	Range	object.	The	range	allowed	to	be	edited.

Password		Optional	Variant.	The	password	for	the	range.

Add	method	as	it	applies	to	the	CalculatedFields	object.

Creates	a	new	calculated	field.	Returns	a	PivotField	object.

expression.Add(Name,	Formula,	UseStandardFormula)

expression			Required.	An	expression	that	returns	a	CalculatedFields	object.

Name		Required	String.	The	name	of	the	field.

Formula		Required	String.	The	formula	for	the	field.

UseStandardFormula		Optional	Variant.	False	(default)	for	upward
compatibility.	True	for	strings	contained	in	any	arguments	that	are	field	names,
will	be	interpreted	as	having	been	formatted	in	standard	U.S.	English	instead	of
local	settings.

Add	method	as	it	applies	to	the	CalculatedItems	object.

Creates	a	new	calculated	item.	Returns	a	PivotItem	object.

expression.Add(Name,	Formula,	UseStandardFormula)

expression			Required.	An	expression	that	returns	a	CalculatedItems	object.

Name		Required	String.	The	name	of	the	item.

Formula		Required	String.	The	formula	for	the	item.

UseStandardFormula		Optional	Variant.	False	(default)	for	upward
compatibility.	True	for	strings	contained	in	any	arguments	that	are	item	names,
will	be	interpreted	as	having	been	formatted	in	standard	U.S.	English	instead	of
local	settings.

Add	method	as	it	applies	to	the	CalculatedMembers	object.

Adds	a	calculated	field	or	calculated	item	to	a	PivotTable.	Returns	a
CalculatedMember	object.

expression.Add(Name,	Formula,	SolveOrder,	Type)

expression			Required.	An	expression	that	returns	a	CalculatedMembers	object.

Name		Required	String.	The	name	of	the	calculated	member.

Formula		Required	String.	The	formula	of	the	calculated	member.

SolveOrder		Optional	Variant.	The	solve	order	for	the	calculated	member.

Type		Optional	Variant.	The	type	of	calculated	member.

Remarks

The	Formula	argument	must	have	a	valid	MDX	(Multidimensional	Expression)
syntax	statement.	The	Name	argument	has	to	be	acceptable	to	the	Online
Analytical	Processing	(OLAP)	provider	and	the	Type	argument	has	to	be
defined.

If	you	set	the	Type	argument	of	this	method	to	xlCalculatedSet,	then	you	must
call	the	AddSet	method	to	make	the	new	field	set	visible	in	the	PivotTable.

Add	method	as	it	applies	to	the	ChartObjects	object.

Creates	a	new	embedded	chart.	Returns	a	ChartObject	object.

expression.Add(Left,	Top,	Width,	Height)

expression			Required.	An	expression	that	returns	a	ChartObjects	object.

Left,	Top		Required	Double.	The	initial	coordinates	of	the	new	object	(in	points),
relative	to	the	upper-left	corner	of	cell	A1	on	a	worksheet	or	to	the	upper-left
corner	of	a	chart.

Width,	Height		Required	Double.	The	initial	size	of	the	new	object,	in	points.

Add	method	as	it	applies	to	the	Charts	object.

Creates	a	new	chart	sheet.	Returns	a	Chart	object.

expression.Add(Before,	After,	Count)

expression			Required.	An	expression	that	returns	a	Charts	object.

Before		Optional	Variant.	An	object	that	specifies	the	sheet	before	which	the
new	sheet	is	added.

After		Optional	Variant.	An	object	that	specifies	the	sheet	after	which	the	new
sheet	is	added.

Count		Optional	Variant.	The	number	of	sheets	to	be	added.	The	default	value	is

one.

Remarks

If	Before	and	After	are	both	omitted,	the	new	chart	is	inserted	before	the	active
sheet.

Add	method	as	it	applies	to	the	CustomProperties	object.

Adds	custom	property	information.	Returns	a	CustomProperty	object.

expression.Add(Name,	Value)

expression			Required.	An	expression	that	returns	a	CustomProperties	object.

Name		Required	String.	The	name	of	the	custom	property.

Value		Required	Variant.	The	value	of	the	custom	property.

Add	method	as	it	applies	to	the	CustomViews	object.

Creates	a	new	custom	view.	Returns	a	CustomView	object	that	represents	the
new	view.

expression.Add(ViewName,	PrintSettings,	RowColSettings)

expression			Required.	An	expression	that	returns	a	CustomViews	object.

ViewName		Required	String.	The	name	of	the	new	view.

PrintSettings		Optional	Variant.	True	to	include	print	settings	in	the	custom
view.

RowColSettings		Optional	Variant.	True	to	include	settings	for	hidden	rows	and
columns	(including	filter	information)	in	the	custom	view.

Add	method	as	it	applies	to	the	FormatConditions	object.

Adds	a	new	conditional	format.	Returns	a	FormatCondition	object	that
represents	the	new	conditional	format.

expression.Add(Type,	Operator,	Formula1,	Formula2)

expression			Required.	An	expression	that	returns	a	FormatConditions	object.

Type		Required	XlFormatConditionType.	Specifies	whether	the	conditional
format	is	based	on	a	cell	value	or	an	expression.

XlFormatConditionType	can	be	one	of	these	XlFormatConditionType	constants.
xlCellValue	The	conditional	format	is	based	on	a	cell	value.
xlExpression	The	conditional	format	is	based	on	an	expression.

Operator		Optional	Variant.	The	conditional	format	operator.	Can	be	one	of	the
following	XlFormatConditionOperator	constants:	xlBetween,	xlEqual,
xlGreater,	xlGreaterEqual,	xlLess,	xlLessEqual,	xlNotBetween,	or
xlNotEqual.	If	Type	is	xlExpression,	the	Operator	argument	is	ignored.

Formula1		Optional	Variant.	The	value	or	expression	associated	with	the
conditional	format.	Can	be	a	constant	value,	a	string	value,	a	cell	reference,	or	a
formula.

Formula2		Optional	Variant.	The	value	or	expression	associated	with	the
second	part	of	the	conditional	format	when	Operator	is	xlBetween	or
xlNotBetween	(otherwise,	this	argument	is	ignored).	Can	be	a	constant	value,	a
string	value,	a	cell	reference,	or	a	formula.

Remarks

You	cannot	define	more	than	three	conditional	formats	for	a	range.	Use	the
Modify	method	to	modify	an	existing	conditional	format,	or	use	the	Delete
method	to	delete	an	existing	format	before	adding	a	new	one.

Add	method	as	it	applies	to	the	HPageBreaks	object.

Adds	a	horizontal	page	break.	Returns	an	HPageBreak	object.

expression.Add(Before)

expression			Required.	An	expression	that	returns	an	HPageBreaks	object.

Before		Required	Object.	A	Range	object.	The	range	above	which	the	new	page
break	will	be	added.

Add	method	as	it	applies	to	the	Hyperlinks	object.

Adds	a	hyperlink	to	the	specified	range	or	shape.	Returns	a	Hyperlink	object.

expression.Add(Anchor,	Address,	SubAddress,	ScreenTip,	TextToDisplay)

expression			Required.	An	expression	that	returns	a	Hyperlinks	object.

Anchor			Required	Object.	The	anchor	for	the	hyperlink.	Can	be	either	a	Range
or	Shape	object.

Address		Required	String.	The	address	of	the	hyperlink.

SubAddress		Optional	Variant.	The	subaddress	of	the	hyperlink.

ScreenTip			Optional	Variant.	The	screen	tip	to	be	displayed	when	the	mouse
pointer	is	paused	over	the	hyperlink.

TextToDisplay		Optional	Variant.	The	text	to	be	displayed	for	the	hyperlink.

Remarks

When	you	specify	the	TextToDisplay	argument,	the	text	must	be	a	string.

Add	method	as	it	applies	to	the	Names	object.

Defines	a	new	name.	Returns	a	Name	object.

expression.Add(Name,	RefersTo,	Visible,	MacroType,	ShortcutKey,	Category,
NameLocal,	RefersToLocal,	CategoryLocal,	RefersToR1C1,
RefersToR1C1Local)

expression			Required.	An	expression	that	returns	a	Names	object.

Name		Optional	Variant.	Required	if	NameLocal	isn’t	specified.	The	text	to	use
as	the	name	(in	the	language	of	the	macro).	Names	cannot	include	spaces	and
cannot	look	like	cell	references.

RefersTo		Optional	Variant.	Required	unless	one	of	the	other	RefersTo
arguments	is	specified.	Describes	what	the	name	refers	to	(in	the	language	of	the
macro,	using	A1-style	notation).	Note		Nothing	is	returned	if	the	reference	does
not	exist.

Visible		Optional	Variant.	True	to	define	the	name	normally.	False	to	define	the
name	as	a	hidden	name	(that	is,	it	doesn’t	appear	in	either	the	Define	Name,
Paste	Name,	or	Goto	dialog	box).	The	default	value	is	True.

MacroType		Optional	Variant.	The	macro	type,	as	shown	in	the	following	table.

Value Meaning
1 User-defined	function	(Function	procedure)
2 Macro	(also	known	as	Sub	procedure)

3	or	omitted None	(that	is,	the	name	doesn’t	refer	to	a	user-defined
function	or	macro)

ShortcutKey		Optional	Variant.	The	macro	shortcut	key.	Must	be	a	single	letter,
such	as	"z"	or	"Z".	Applies	only	for	command	macros.

Category		Optional	Variant.	The	category	of	the	macro	or	function	if
MacroType	is	1	or	2.	The	category	is	used	in	the	Function	Wizard.	Existing
categories	can	be	referred	to	either	by	number	(starting	at	1)	or	by	name	(in	the
language	of	the	macro).	Microsoft	Excel	creates	a	new	category	if	the	specified
category	doesn’t	already	exist.

NameLocal		Optional	Variant.	Required	if	Name	isn’t	specified.	The	text	to	use
as	the	name	(in	the	language	of	the	user).	Names	cannot	include	spaces	and
cannot	look	like	cell	references.

RefersToLocal			Optional	Variant.	Required	unless	one	of	the	other	RefersTo
arguments	is	specified.	Describes	what	the	name	refers	to	(in	the	language	of	the
user,	using	A1-style	notation).

CategoryLocal			Optional	Variant.	Required	if	Category	isn’t	specified.	Text
identifying	the	category	of	a	custom	function	in	the	language	of	the	user.

RefersToR1C1			Optional	Variant.	Required	unless	one	of	the	other	RefersTo
arguments	is	specified.	Describes	what	the	name	refers	to	(in	the	language	of	the
macro,	using	R1C1-style	notation).

RefersToR1C1Local			Optional	Variant.	Required	unless	one	of	the	other
RefersTo	arguments	is	specified.	Describes	what	the	name	refers	to	(in	the
language	of	the	user,	using	R1C1-style	notation).

Add	method	as	it	applies	to	the	OLEObjects	object.

Adds	a	new	OLE	object	to	a	sheet.	Returns	an	OLEObject	object.

expression.Add(ClassType,	FileName,	Link,	DisplayAsIcon,	IconFileName,
IconIndex,	IconLabel,	Left,	Top,	Width,	Height)

expression			Required.	An	expression	that	returns	an	OLEObjects	object.

ClassType		Optional	Variant.	(you	must	specify	either	ClassType	or	FileName).
A	string	that	contains	the	programmatic	identifier	for	the	object	to	be	created.	If
ClassType	is	specified,	FileName	and	Link	are	ignored.

FileName		Optional	Variant.	(you	must	specify	either	ClassType	or	FileName).
A	string	that	specifies	the	file	to	be	used	to	create	the	OLE	object.

Link		Optional	Variant.	True	to	have	the	new	OLE	object	based	on	FileName
be	linked	to	that	file.	If	the	object	isn’t	linked,	the	object	is	created	as	a	copy	of
the	file.	The	default	value	is	False.

DisplayAsIcon		Optional	Variant.	True	to	display	the	new	OLE	object	either	as
an	icon	or	as	its	regular	picture.	If	this	argument	is	True,	IconFileName	and
IconIndex	can	be	used	to	specify	an	icon.

IconFileName		Optional	Variant.	A	string	that	specifies	the	file	that	contains
the	icon	to	be	displayed.	This	argument	is	used	only	if	DisplayAsIcon	is	True.	If
this	argument	isn’t	specified	or	the	file	contains	no	icons,	the	default	icon	for	the
OLE	class	is	used.

IconIndex		Optional	Variant.	The	number	of	the	icon	in	the	icon	file.	This	is
used	only	if	DisplayAsIcon	is	True	and	IconFileName	refers	to	a	valid	file	that
contains	icons.	If	an	icon	with	the	given	index	number	doesn’t	exist	in	the	file
specified	by	IconFileName,	the	first	icon	in	the	file	is	used.

IconLabel		Optional	Variant.	A	string	that	specifies	a	label	to	display	beneath
the	icon.	This	is	used	only	if	DisplayAsIcon	is	True.	If	this	argument	is	omitted
or	is	an	empty	string	(""),	no	caption	is	displayed.

Left,	Top		Optional	Variant.	The	initial	coordinates	of	the	new	object,	in	points,
relative	to	the	upper-left	corner	of	cell	A1	on	a	worksheet,	or	to	the	upper-left
corner	of	a	chart.

Width,	Height		Optional	Variant.	The	initial	size	of	the	new	object,	in	points.

Add	method	as	it	applies	to	the	Parameters	object.

Creates	a	new	query	parameter.	Returns	a	Parameter	object.

expression.Add(Name,	iDataType)

expression			Required.	An	expression	that	returns	a	Parameters	object.

Name		Required	String.	The	name	of	the	specified	parameter.	The	parameter
name	should	match	the	parameter	clause	in	the	SQL	statement.

iDataType			Optional	Variant.	The	data	type	of	the	parameter.	Can	be	any

XlParameterDataType	constant:

xlParamTypeBigInt

xlParamTypeBinary

xlParamTypeBit

xlParamTypeChar

xlParamTypeDate

xlParamTypeDecimal

xlParamTypeDouble

xlParamTypeFloat

xlParamTypeInteger

xlParamTypeLongVarBinary

xlParamTypeWChar

xlParamTypeNumeric

xlParamTypeLongVarChar

xlParamTypeReal

xlParamTypeSmallInt

xlParamTypeTime

xlParamTypeTimeStamp

xlParamTypeTinyInt

xlParamTypeUnknown

xlParamTypeVarBinary

xlParamTypeVarChar

These	values	correspond	to	ODBC	data	types.	They	indicate	the	type	of	value
the	ODBC	driver	is	expecting	to	receive.	Microsoft	Excel	and	the	ODBC	driver
manager	will	coerce	the	parameter	value	given	in	Microsoft	Excel	into	the
correct	data	type	for	the	driver.

Add	method	as	it	applies	to	the	Phonetics	object.

Adds	phonetic	text	to	the	specified	cellt.

expression.Add(Start,	Length,	Text)

expression			Required.	An	expression	that	returns	a	Phonetics	object.

Start		Required	Long.	The	position	that	represents	the	first	character	in	the
specified	cell.

Length		Required	Long.	The	number	of	characters	from	the	Start	position	to	the
end	of	the	text	in	the	cell.

Text			Required	String.	Collectively,	the	characters	that	represent	the	phonetic
text	in	the	cell.

Add	method	as	it	applies	to	the	PivotCaches	object.

Adds	a	new	PivotTable	cache	to	a	PivotCaches	collection.	Returns	a
PivotCache	object.

expression.Add(SourceType,	SourceData)

expression			Required.	An	expression	that	returns	a	PivotCaches	object.

SourceType		Required	XlPivotTableSourceType.	The	source	of	the	PivotTable
cache	data.

XlPivotTableSourceType	can	be	one	of	these	XlPivotTableSourceType
constants.
xlConsolidation
xlDatabase
xlExternal
xlPivotTable
xlScenario

SourceData		Optional	Variant.	The	data	for	the	new	PivotTable	cache.	This
argument	is	required	if	SourceType	isn’t	xlExternal.	Can	be	a	Range	object,	an
array	of	ranges,	or	a	text	constant	that	represents	the	name	of	an	existing
PivotTable	report.	For	an	external	database,	this	is	a	two-element	array.	The	first
element	is	the	connection	string	specifying	the	provider	of	the	data.	The	second
element	is	the	SQL	query	string	used	to	get	the	data.	If	you	specify	this
argument,	you	must	also	specify	SourceType.

Remarks

If	the	PivotTable	cache	isn’t	referenced	by	a	PivotTable	object,	the	PivotTable
cache	is	automatically	deleted	before	the	workbook	is	saved.

Add	method	as	it	applies	to	the	PivotFormulas	object.

Creates	a	new	PivotTable	formula.	Returns	a	PivotFormula	object.

expression.Add(Formula,	UseStandardFormula)

expression			Required.	An	expression	that	returns	one	of	the	above	objects.

Formula		Required	String.	The	new	PivotTable	formula.

UseStandardFormula		Optional	Variant.	A	standard	PivotTable	formula.

Add	method	as	it	applies	to	the	PivotItems	object.

Creates	a	new	PivotTable	item.

expression.Add(Name)

expression			Required.	An	expression	that	returns	a	PivotItems	object.

Name		Required	String.	The	name	of	the	new	PivotTable	item.

Add	method	as	it	applies	to	the	PivotTables	object.

Adds	a	new	PivotTable	report.	Returns	a	PivotTable	object.

expression.Add(PivotCache,	TableDestination,	TableName,	ReadData,
DefaultVersion)

expression			Required.	An	expression	that	returns	a	PivotTables	object.

PivotCache	Required	PivotCache.	The	PivotTable	cache	on	which	the	new
PivotTable	report	is	based.	The	cache	provides	data	for	the	report.

TableDestination		Required	Variant.	The	cell	in	the	upper-left	corner	of	the
PivotTable	report’s	destination	range	(the	range	on	the	worksheet	where	the
resulting	report	will	be	placed).	You	must	specify	a	destination	range	on	the
worksheet	that	contains	the	PivotTables	object	specified	by	expression.

TableName		Optional	Variant.	The	name	of	the	new	PivotTable	report.

ReadData		Optional	Variant.	True	to	create	a	PivotTable	cache	that	contains	all
records	from	the	external	database;	this	cache	can	be	very	large.	False	to	enable
setting	some	of	the	fields	as	server-based	page	fields	before	the	data	is	actually
read.

DefaultVersion		Optional	Variant.	The	version	of	Microsoft	Excel	the
PivotTable	was	originally	created	in.

Add	method	as	it	applies	to	the	PublishObjects	object.

Creates	an	object	that	represents	an	item	in	a	document	saved	to	a	Web	page.
Such	objects	facilitate	subsequent	updates	to	the	Web	page	while	automated
changes	are	being	made	to	the	document	in	Microsoft	Excel.	Returns	a
PublishObject	object.

expression.Add(SourceType,	FileName,	Sheet,	Source,	HtmlType,	DivID,
Title)

expression			Required.	An	expression	that	returns	a	PublishObjects	object.

SourceType		Required	XlSourceType.	The	source	type.

XlSourceType	can	be	one	of	these	XlSourceType	constants.	Identifies	the
source	object.
xlSourceAutoFilter		An	AutoFilter	range.
xlSourceChart		A	chart.
xlSourcePivotTable		A	PivotTable	report.
xlSourcePrintArea		A	range	of	cells	selected	for	printing.
xlSourceQuery		A	query	table	(external	data	range).
xlSourceRange		A	range	of	cells.
xlSourceSheet		An	entire	worksheet.

xlSourceWorkbook		A	workbook.

FileName		Required	String.	The	URL	(on	the	intranet	or	the	Web)	or	path	(local
or	network)	to	which	the	source	object	was	saved.

Sheet		Optional	Variant.	The	name	of	the	worksheet	that	was	saved	as	a	Web
page.

Source		Optional	Variant.	A	unique	name	used	to	identify	items	that	have	one	of
the	following	constants	as	their	SourceType	argument:	xlSourceAutoFilter,
xlSourceChart,	xlSourcePivotTable,	xlSourcePrintArea,	xlSourceQuery,	or
xlSourceRange.	If	SourceType	is	xlSourceRange,	Source	specifies	a	range,
which	can	be	a	defined	name.	If	SourceType	is	xlSourceChart,
xlSourcePivotTable,	or	xlSourceQuery,	Source	specifies	the	name	of	a	chart,
PivotTable	report,	or	query	table.

HtmlType		Optional	Variant.	Specifies	whether	the	item	is	saved	as	an
interactive	Microsoft	Office	Web	component	or	as	static	text	and	images.	Can	be
one	of	the	XlHTMLType	constants	listed	in	the	following	table.

Constant Description
xlSourceAutoFilter An	AutoFilter	range
xlSourceChart A	chart
xlSourcePivotTable A	PivotTable	report
xlSourcePrintArea A	range	of	cells	selected	for	printing
xlSourceQuery A	query	table	(external	data	range)
xlSourceRange A	range	of	cells
xlSourceSheet An	entire	worksheet

DivID		Optional	Variant.	The	unique	identifier	used	in	the	HTML	DIV	tag	to
identify	the	item	on	the	Web	page.

Title		Optional	Variant.	The	title	of	the	Web	page.

Add	method	as	it	applies	to	the	QueryTables	object.

Creates	a	new	query	table.	Returns	a	QueryTable	object	that	represents	the	new
query	table.

expression.Add(Connection,	Destination,	Sql)

expression			Required.	An	expression	that	returns	a	QueryTables	object.

Connection		Required	Variant.	The	data	source	for	the	query	table.	Can	be	one
of	the	following:

A	string	containing	an	OLE	DB	or	ODBC	connection	string.	The	ODBC
connection	string	has	the	form	"ODBC;<connection	string>".
A	QueryTable	object	from	which	the	query	information	is	initially	copied,
including	the	connection	string	and	the	SQL	text,	but	not	including	the
Destination	range.	Specifying	a	QueryTable	object	causes	the	Sql
argument	to	be	ignored.
An	ADO	or	DAO	Recordset	object.	Data	is	read	from	the	ADO	or	DAO
recordset.	Microsoft	Excel	retains	the	recordset	until	the	query	table	is
deleted	or	the	connection	is	changed.	The	resulting	query	table	cannot	be
edited.
A	Web	query.	A	string	in	the	form	“URL;<url>“,	where	“URL;”	is	required
but	not	localized	and	the	rest	of	the	string	is	used	for	the	URL	of	the	Web
query.
Data	Finder.	A	string	in	the	form	“FINDER;<data	finder	file	path>“	where
“FINDER;”	is	required	but	not	localized.	The	rest	of	the	string	is	the	path
and	file	name	of	a	Data	Finder	file	(*.dqy	or	*.iqy).	The	file	is	read	when
the	Add	method	is	run;	subsequent	calls	to	the	Connection	property	of	the
query	table	will	return	strings	beginning	with	“ODBC;”	or	“URL;”	as
appropriate.
A	text	file.	A	string	in	the	form	"TEXT;<text	file	path	and	name>",	where
TEXT	is	required	but	not	localized.

Destination		Required	Range.	The	cell	in	the	upper-left	corner	of	the	query	table
destination	range	(the	range	where	the	resulting	query	table	will	be	placed).	The
destination	range	must	be	on	the	worksheet	that	contains	the	QueryTables
object	specified	by	expression.

Sql		Optional	Variant.	The	SQL	query	string	to	be	run	on	the	ODBC	data
source.	This	argument	is	optional	when	you’re	using	an	ODBC	data	source	(if
you	don’t	specify	it	here,	you	should	set	it	by	using	the	Sql	property	of	the	query
table	before	the	table	is	refreshed).	You	cannot	use	this	argument	when	a
QueryTable	object,	text	file,	or	ADO	or	DAO	Recordset	object	is	specified	as

the	data	source.

Remarks

A	query	created	by	this	method	isn’t	run	until	the	Refresh	method	is	called.

Add	method	as	it	applies	to	the	RecentFiles	object.

Adds	a	file	to	the	list	of	recently	used	files.	Returns	a	RecentFile	object.

expression.Add(Name)

expression			Required.	An	expression	that	returns	a	RecentFiles	object.

Name		Required	String.	The	file	name.

Add	method	as	it	applies	to	the	Scenarios	object.

Creates	a	new	scenario	and	adds	it	to	the	list	of	scenarios	that	are	available	for
the	current	worksheet.	Returns	a	Scenario	object.

expression.Add(Name,	ChangingCells,	Values,	Comment,	Locked,	Hidden)

expression			Required.	An	expression	that	returns	a	Scenarios	object.

Name		Required	String.	The	scenario	name.

ChangingCells		Required	Variant.	A	Range	object	that	refers	to	the	changing
cells	for	the	scenario.

Values		Optional	Variant.	An	array	that	contains	the	scenario	values	for	the	cells
in	ChangingCells.	If	this	argument	is	omitted,	the	scenario	values	are	assumed
to	be	the	current	values	in	the	cells	inChangingCells.

Comment		Optional	Variant.	A	string	that	specifies	comment	text	for	the
scenario.	When	a	new	scenario	is	added,	the	author's	name	and	date	are
automatically	added	at	the	beginning	of	the	comment	text.

Locked		Optional	Variant.	True	to	lock	the	scenario	to	prevent	changes.	The
default	value	is	True.

Hidden		Optional	Variant.	True	to	hide	the	scenario.	The	default	value	is	False.

Remarks

A	scenario	name	must	be	unique;	Microsoft	Excel	generates	an	error	if	you	try	to
create	a	scenario	with	a	name	that’s	already	in	use.

Add	method	as	it	applies	to	the	SeriesCollection	object.

Adds	one	or	more	new	series	to	the	SeriesCollection	collection.

expression.Add(Source,	Rowcol,	SeriesLabels,	CategoryLabels,	Replace)

expression			Required.	An	expression	that	returns	a	SeriesCollection	object.

Source		Required	Variant.	The	new	data,	either	as	a	Range	object	or	an	array	of
data	points.

Rowcol		Optional	XlRowCol.	Specifies	whether	the	new	values	are	in	the	rows
or	columns	of	the	specified	range.

XlRowCol	can	be	one	of	these	XlRowCol	constants.
xlColumns	default
xlRows

SeriesLabels		Optional	Variant.	Ignored	if	Source	is	an	array.	True	if	the	first
row	or	column	contains	the	name	of	the	data	series.	False	if	the	first	row	or
column	contains	the	first	data	point	of	the	series.	If	this	argument	is	omitted,
Microsoft	Excel	attempts	to	determine	the	location	of	the	series	name	from	the
contents	of	the	first	row	or	column.

CategoryLabels		Optional	Variant.	Ignored	if	Source	is	an	array.	True	if	the
first	row	or	column	contains	the	name	of	the	category	labels.	False	if	the	first
row	or	column	contains	the	first	data	point	of	the	series.	If	this	argument	is
omitted,	Microsoft	Excel	attempts	to	determine	the	location	of	the	category	label
from	the	contents	of	the	first	row	or	column.

Replace		Optional	Variant.	If	CategoryLabels	is	True	and	Replace	is	True,	the
specified	categories	replace	the	categories	that	currently	exist	for	the	series.	If
Replace	is	False,	the	existing	categories	will	not	be	replaced.	The	default	value

is	False.

Remarks

This	method	is	not	available	for	PivotChart	reports.

Add	method	as	it	applies	to	the	Sheets	and	Worksheets	objects.

Creates	a	new	worksheet,	chart,	or	macro	sheet.	The	new	worksheet	becomes	the
active	sheet.

expression.Add(Before,	After,	Count,	Type)

expression			Required.	An	expression	that	returns	one	of	the	above	objects.

Before		Optional	Variant.	An	object	that	specifies	the	sheet	before	which	the
new	sheet	is	added.

After		Optional	Variant.	An	object	that	specifies	the	sheet	after	which	the	new
sheet	is	added.

Count		Optional	Variant.	The	number	of	sheets	to	be	added.	The	default	value	is
one.

Type		Optional	Variant.	Specifies	the	sheet	type.	Can	be	one	of	the	following
XlSheetType	constants:	xlWorksheet,	xlChart,	xlExcel4MacroSheet,	or
xlExcel4IntlMacroSheet.	The	default	value	is	xlWorksheet.

Remarks

If	Before	and	After	are	both	omitted,	the	new	sheet	is	inserted	before	the	active
sheet.

Add	method	as	it	applies	to	the	SmartTags	object.

Adds	a	smart	tag.	Returns	a	SmartTag	object.

expression.Add(SmartTagType)

expression			Required.	An	expression	that	returns	a	SmartTags	object.

SmartTagType		Required	String.	The	type	of	smart	tag.

Add	method	as	it	applies	to	the	Styles	object.

Creates	a	new	style	and	adds	it	to	the	list	of	styles	that	are	available	for	the
current	workbook.	Returns	a	Style	object.

expression.Add(Name,	BasedOn)

expression			Required.	An	expression	that	returns	a	Styles	object.

Name		Required	String.	The	new	style	name.

BasedOn		Optional	Variant.	A	Range	object	that	refers	to	a	cell	that’s	used	as
the	basis	for	the	new	style.	If	this	argument	is	omitted,	the	newly	created	style	is
based	on	the	Normal	style.

Remarks

If	a	style	with	the	specified	name	already	exists,	this	method	redefines	the
existing	style	based	on	the	cell	specified	in	BasedOn.	The	following	example
redefines	the	Normal	style	based	on	the	active	cell.

ActiveWorkbook.Styles.Add	Name	:=	"Normal",	_

				BasedOn	:=	ActiveCell

Add	method	as	it	applies	to	the	Trendlines	object.

Creates	a	new	trendline.	Returns	a	Trendline	object.

expression.Add(Type,	Order,	Period,	Forward,	Backward,	Intercept,
DisplayEquation,	DisplayRSquared,	Name)

expression			Required.	An	expression	that	returns	a	Trendlines	object.

Type		Optional	XlTrendlineType.	The	trendline	type.

XlTrendlineType	can	be	one	of	these	XlTrendlineType	constants.
xlExponential
xlLinear	default
xlLogarithmic
xlMovingAvg
xlPolynomial
xlPower

Order		Optional	Variant.	Optional	Variant.	Required	if	Type	is	xlPolynomial.
The	trendline	order.	Must	be	an	integer	from	2	to	6,	inclusive.

Period		Optional	Variant.	Required	if	Type	is	xlMovingAvg.	The	trendline
period.	Must	be	an	integer	greater	than	1	and	less	than	the	number	of	data	points
in	the	series	you’re	adding	a	trendline	to.

Forward		Optional	Variant.	The	number	of	periods	(or	units	on	a	scatter	chart)
that	the	trendline	extends	forward.

Backward		Optional	Variant.	The	number	of	periods	(or	units	on	a	scatter	chart)
that	the	trendline	extends	backward.

Intercept		Optional	Variant.	The	trendline	intercept.	If	this	argument	is	omitted,
the	intercept	is	automatically	set	by	the	regression.

DisplayEquation		Optional	Variant.	True	to	display	the	equation	of	the
trendline	on	the	chart	(in	the	same	data	label	as	the	R-squared	value).	The
default	value	is	False.

DisplayRSquared		Optional	Variant.	True	to	display	the	R-squared	value	of	the
trendline	on	the	chart	(in	the	same	data	label	as	the	equation).	The	default	value
is	False.

Name		Optional	Variant.	The	name	of	the	trendline	as	text.	If	this	argument	is
omitted,	Microsoft	Excel	generates	a	name.

Add	method	as	it	applies	to	the	UserAccessList	object.

Adds	a	user	access	list.	Returns	a	UserAccess	object.

expression.Add(Name,	AllowEdit)

expression			Required.	An	expression	that	returns	a	UserAccessList	object.

Name		Required	String.	The	name	of	the	user	access	list.

AllowEdit		Required	Boolean.	True	allows	users	on	the	access	list	to	edit	the
editable	ranges	on	a	protected	worksheet.

Add	method	as	it	applies	to	the	Validation	object.

Adds	data	validation	to	the	specified	range.

expression.Add(Type,	AlertStyle,	Operator,	Formula1,	Formula2)

expression			Required.	An	expression	that	returns	a	Validation	object.

Type		Required	XlDVType.	The	validation	type.

XlDVType	can	be	one	of	these	XlDVType	constants.

xlValidateCustom
xlValidateDate
xlValidateDecimal
xlValidateInputOnly
xlValidateList
xlValidateTextLength
xlValidateTime
xlValidateWholeNumber

AlertStyle		Optional	Variant.	The	validation	alert	style.	Can	be	one	of	the
following	XlDVAlertStyle	constants:	xlValidAlertInformation,
xlValidAlertStop,	or	xlValidAlertWarning.

Operator		Optional	Variant.	The	data	validation	operator.	Can	be	one	of	the
following	XlFormatConditionOperator	constants:	xlBetween,	xlEqual,
xlGreater,	xlGreaterEqual,	xlLess,	xlLessEqual,	xlNotBetween,	or
xlNotEqual.

Formula1		Optional	Variant.	The	first	part	of	the	data	validation	equation.

Formula2		Optional	Variant.	The	second	part	of	the	data	validation	when
Operator	is	xlBetween	or	xlNotBetween	(otherwise,	this	argument	is	ignored).

Remarks

The	Add	method	requires	different	arguments,	depending	on	the	validation	type,
as	shown	in	the	following	table.

Validation	type Arguments

xlValidateCustom

Formula1	is	required,	Formula2	is	ignored.
Formula1	must	contain	an	expression	that
evaluates	to	True	when	data	entry	is	valid	and
False	when	data	entry	is	invalid.

xlInputOnly AlertStyle,	Formula1,	or	Formula2	are	used.

xlValidateList

Formula1	is	required,	Formula2	is	ignored.
Formula1	must	contain	either	a	comma-
delimited	list	of	values	or	a	worksheet
reference	to	this	list.

xlValidateWholeNumber,
xlValidateDate,
xlValidateDecimal,
xlValidateTextLength,	or
xlValidateTime

One	of	either	Formula1	or	Formula2	must	be
specified,	or	both	may	be	specified.

Add	method	as	it	applies	to	the	VPageBreaks	object.

Adds	a	vertical	page	break.	Returns	a	VPageBreak	object.

expression.Add(Before)

expression			Required.	An	expression	that	returns	a	VPageBreaks	object.

Before		Required	Object.	A	Range	object.	The	range	to	the	left	of	which	the
new	page	break	will	be	added.

Add	method	as	it	applies	to	the	Watches	object.

Adds	a	range	which	is	tracked	when	the	worksheet	is	recalculated.	Returns	a
Watch	object.

expression.Add(Source)

expression			Required.	An	expression	that	returns	a	Watches	object.

Source		Required	Variant.	The	source	for	the	range.

Add	method	as	it	applies	to	the	Workbooks	object.

Creates	a	new	workbook.	The	new	workbook	becomes	the	active	workbook.
Returns	a	Workbook	object.

expression.Add(Template)

expression			Required.	An	expression	that	returns	a	Workbooks	object.

Template		Optional	Variant.	Determines	how	the	new	workbook	is	created.	If
this	argument	is	a	string	specifying	the	name	of	an	existing	Microsoft	Excel	file,
the	new	workbook	is	created	with	the	specified	file	as	a	template.	If	this
argument	is	a	constant,	the	new	workbook	contains	a	single	sheet	of	the
specified	type.	Can	be	one	of	the	following	XlWBATemplate	constants:
xlWBATChart,	xlWBATExcel4IntlMacroSheet,
xlWBATExcel4MacroSheet,	or	xlWBATWorksheet.	If	this	argument	is
omitted,	Microsoft	Excel	creates	a	new	workbook	with	a	number	of	blank	sheets
(the	number	of	sheets	is	set	by	the	SheetsInNewWorkbook	property).

Remarks

If	the	Template	argument	specifies	a	file,	the	file	name	can	include	a	path.

Example

As	it	applies	to	the	AddIns	object.

This	example	inserts	the	add-in	Myaddin.xla	from	drive	A.	When	you	run	this
example,	Microsoft	Excel	copies	the	file	A:\Myaddin.xla	to	the	Library	folder	on
your	hard	disk	and	adds	the	add-in	title	to	the	list	in	the	Add-Ins	dialog	box.

UseAddIn()

				Set	myAddIn	=	AddIns.Add(Filename:="A:\MYADDIN.XLA",	_

								CopyFile:=True)

				MsgBox	myAddIn.Title	&	"	has	been	added	to	the	list"

End	Sub

As	it	applies	to	the	AllowEditRanges	object.

This	example	allows	edits	to	range	"A1:A4"	on	the	active	worksheet,	notifies	the
user,	then	changes	the	password	for	this	specified	range	and	notifies	the	user	of
this	change.

Sub	UseChangePassword()

				Dim	wksOne	As	Worksheet

				Set	wksOne	=	Application.ActiveSheet

				'	Protect	the	worksheet.

				wksOne.Protect

				'	Establish	a	range	that	can	allow	edits

				'	on	the	protected	worksheet.

				wksOne.Protection.AllowEditRanges.Add	_

								Title:="Classified",	_

								Range:=Range("A1:A4"),	_

								Password:="secret"

				MsgBox	"Cells	A1	to	A4	can	be	edited	on	the	protected	worksheet."

				'	Change	the	password.

				wksOne.Protection.AllowEditRanges(1).ChangePassword	_

								Password:="moresecret"

				MsgBox	"The	password	for	these	cells	has	been	changed."

End	Sub

As	it	applies	to	the	CalculatedFields	object.

This	example	adds	a	calculated	field	to	the	first	PivotTable	report	on	worksheet
one.

Worksheets(1).PivotTables(1).CalculatedFields.Add	"PxS",	_

				"=	Product	*	Sales"

As	it	applies	to	the	CalculatedMembers	object.

The	following	example	adds	a	set	to	a	PivotTable,	assuming	a	PivotTable	exists
on	the	active	worksheet.

Sub	UseAddSet()

				Dim	pvtOne	As	PivotTable

				Dim	strAdd	As	String

				Dim	strFormula	As	String

				Dim	cbfOne	As	CubeField

				Set	pvtOne	=	ActiveSheet.PivotTables(1)

				strAdd	=	"[MySet]"

				strFormula	=	"'{[Product].[All	Products].[Food].children}'"

				'	Establish	connection	with	data	source	if	necessary.

				If	Not	pvtOne.PivotCache.IsConnected	Then	pvtOne.PivotCache.MakeConnection

				'	Add	a	calculated	member	titled	"[MySet]"

				pvtOne.CalculatedMembers.Add	Name:=strAdd,	_

								Formula:=strFormula,	Type:=xlCalculatedSet

				'	Add	a	set	to	the	CubeField	object.

				Set	cbfOne	=	pvtOne.CubeFields.AddSet(Name:="[MySet]",	_

								Caption:="My	Set")

End	Sub

As	it	applies	to	the	ChartObjects	object.

This	example	creates	a	new	embedded	chart..

Set	co	=	Sheets("Sheet1").ChartObjects.Add(50,	40,	200,	100)

co.Chart.ChartWizard	Source:=Worksheets("Sheet1").Range("A1:B2"),	_

				Gallery:=xlColumn,	Format:=6,	PlotBy:=xlColumns,	_

				CategoryLabels:=1,	SeriesLabels:=0,	HasLegend:=1

As	it	applies	to	the	Charts	object.

This	example	creates	an	empty	chart	sheet	and	inserts	it	before	the	last
worksheet.

ActiveWorkbook.Charts.Add	Before:=Worksheets(Worksheets.Count)

As	it	applies	to	the	CustomProperties	object.

This	example	adds	identifier	information	to	the	active	worksheet	and	returns	the
name	and	value	to	the	user.

Sub	CheckCustomProperties()

				Dim	wksSheet1	As	Worksheet

				Set	wksSheet1	=	Application.ActiveSheet

				'	Add	metadata	to	worksheet.

				wksSheet1.CustomProperties.Add	_

								Name:="Market",	Value:="Nasdaq"

				'	Display	metadata.

				With	wksSheet1.CustomProperties.Item(1)

								MsgBox	.Name	&	vbTab	&	.Value

				End	With

End	Sub

As	it	applies	to	the	CustomViews	object.

This	example	creates	a	new	custom	view	named	"Summary"	in	the	active
workbook.

ActiveWorkbook.CustomViews.Add	"Summary",	True,	True

As	it	applies	to	the	FormatConditions	object.

This	example	adds	a	conditional	format	to	cells	E1:E10.

With	Worksheets(1).Range("e1:e10").FormatConditions	_

				.Add(xlCellValue,	xlGreater,	"=a1")

				With	.Borders

								.LineStyle	=	xlContinuous

								.Weight	=	xlThin

								.ColorIndex	=	6

				End	With

				With	.Font

								.Bold	=	True

								.ColorIndex	=	3

				End	With

End	With

As	it	applies	to	the	HPageBreaks	object.

This	example	adds	a	horizontal	page	break	above	cell	F25	and	adds	a	vertical
page	break	to	the	left	of	this	cell.

With	Worksheets(1)

				.HPageBreaks.Add	.Range("F25")

				.VPageBreaks.Add	.Range("F25")

End	With

As	it	applies	to	the	Hyperlinks	object.

This	example	adds	a	hyperlink	to	cell	A5.

With	Worksheets(1)

				.Hyperlinks.Add	Anchor:=.Range("a5"),	_

								Address:="http://example.microsoft.com",	_

								ScreenTip:="Microsoft	Web	Site",	_

								TextToDisplay:="Microsoft"

End	With

This	example	adds	an	email	hyperlink	to	cell	A5.

With	Worksheets(1)

				.Hyperlinks.Add	Anchor:=.Range("a5"),	_

								Address:="mailto:someone@microsoft.com?subject=hello",	_

								ScreenTip:="Write	us	today",	_

								TextToDisplay:="Support"

End	With

As	it	applies	to	the	Names	object.

This	example	defines	a	new	name	for	the	range	A1:D3	on	Sheet1	in	the	active
workbook.	Note		Nothing	is	returned	if	Sheet1	does	not	exist.

Sub	MakeRange()

				ActiveWorkbook.Names.Add	_

								Name:="tempRange",	_

								RefersTo:="=Sheet1!A1:D3"

End	Sub

As	it	applies	to	the	OLEObjects	object.

This	example	creates	a	new	Microsoft	Word	OLE	object	on	Sheet1.

ActiveWorkbook.Worksheets("Sheet1").OLEObjects.Add	_

				ClassType:="Word.Document"

This	example	adds	a	command	button	to	sheet	one.

Worksheets(1).OLEObjects.Add	ClassType:="Forms.CommandButton.1",	_

				Link:=False,	DisplayAsIcon:=False,	Left:=40,	Top:=40,	_

				Width:=150,	Height:=10

As	it	applies	to	the	Parameters	object.

This	example	changes	the	SQL	statement	for	query	table	one.	The	clause
“(city=?)”	indicates	that	the	query	is	a	parameter	query,	and	the	value	of	city	is
set	to	the	constant	“Oakland.”

Set	qt	=	Sheets("sheet1").QueryTables(1)

qt.Sql	=	"SELECT	*	FROM	authors		WHERE	(city=?)"

Set	param1	=	qt.Parameters.Add("City	Parameter",	_

				xlParamTypeVarChar)

param1.SetParam	xlConstant,	"Oakland"

qt.Refresh

As	it	applies	to	the	Phonetics	object.

This	example	adds	three	phonetic	text	strings	to	the	active	cell.	The	example
then	sets	the	character	type	to	Hiragana,	sets	the	font	color	to	blue,	and	sets	the

text	to	visible.

ActiveCell.FormulaR1C1	=	" "

ActiveCell.Phonetics.Add	Start:=1,	Length:=3,	Text:=" "

ActiveCell.Phonetics.Add	Start:=4,	Length:=3,	Text:=" "

ActiveCell.Phonetics.CharacterType	=	xlHiragana

ActiveCell.Phonetics.Font.Color	=	vbBlue

ActiveCell.Phonetics.Visible	=	True

As	it	applies	to	the	PivotCaches	object.

This	example	creates	a	new	PivotTable	cache	based	on	an	OLAP	provider	and
then	it	creates	a	new	PivotTable	report	based	on	the	cache,	at	cell	A3	on	the
active	worksheet.

Dim	cnnConn	As	ADODB.Connection

Dim	rstRecordset	As	ADODB.Recordset

Dim	cmdCommand	As	ADODB.Command

'	Open	the	connection.

Set	cnnConn	=	New	ADODB.Connection

With	cnnConn

				.ConnectionString	=	_

								"Provider=Microsoft.Jet.OLEDB.4.0"

				.Open	"C:\perfdate\record.mdb"

End	With

'	Set	the	command	text.

Set	cmdCommand	=	New	ADODB.Command

Set	cmdCommand.ActiveConnection	=	cnnConn

With	cmdCommand

				.CommandText	=	"Select	Speed,	Pressure,	Time	From	DynoRun"

				.CommandType	=	adCmdText

				.Execute

End	With

'	Open	the	recordset.

Set	rstRecordset	=	New	ADODB.Recordset

Set	rstRecordset.ActiveConnection	=	cnnConn

rstRecordset.Open	cmdCommand

'	Create	a	PivotTable	cache	and	report.

Set	objPivotCache	=	ActiveWorkbook.PivotCaches.Add(_

				SourceType:=xlExternal)

Set	objPivotCache.Recordset	=	rstRecordset

With	objPivotCache

				.CreatePivotTable	TableDestination:=Range("A3"),	_

								TableName:="Performance"

End	With

With	ActiveSheet.PivotTables("Performance")

				.SmallGrid	=	False

				With	.PivotFields("Pressure")

								.Orientation	=	xlRowField

								.Position	=	1

				End	With

				With	.PivotFields("Speed")

								.Orientation	=	xlColumnField

								.Position	=	1

				End	With

				With	.PivotFields("Time")

								.Orientation	=	xlDataField

								.Position	=	1

				End	With

End	With

'	Close	the	connections	and	clean	up.

cnnConn.Close

Set	cmdCommand	=	Nothing

Set	rstRecordSet	=	Nothing

Set	cnnConn	=	Nothing

As	it	applies	to	the	PivotFormulas	object.

This	example	creates	a	new	PivotTable	formula	for	the	first	PivotTable	report	on
worksheet	one.

Worksheets(1).PivotTables(1).PivotFormulas	_

				.Add	"Year['1998']	Apples	=	(Year['1997']	Apples)	*	2"

As	it	applies	to	the	PivotItems	object.

This	example	creates	a	new	PivotTable	item	in	the	first	PivotTable	report	on
worksheet	one.

Worksheets(1).PivotTables(1).PivotItems("Year").Add	"1998"

As	it	applies	to	the	PivotTables	object.

This	example	creates	a	new	PivotTable	cache	based	on	an	OLAP	provider,	and

then	it	creates	a	new	PivotTable	report	based	on	the	cache,	at	cell	A1	on	the	first
worksheet.

Dim	cnnConn	As	ADODB.Connection

Dim	rstRecordset	As	ADODB.Recordset

Dim	cmdCommand	As	ADODB.Command

'	Open	the	connection.

Set	cnnConn	=	New	ADODB.Connection

With	cnnConn

				.ConnectionString	=	_

								"Provider=Microsoft.Jet.OLEDB.4.0"

				.Open	"C:\perfdate\record.mdb"

End	With

'	Set	the	command	text.

Set	cmdCommand	=	New	ADODB.Command

Set	cmdCommand.ActiveConnection	=	cnnConn

With	cmdCommand

				.CommandText	=	"Select	Speed,	Pressure,	Time	From	DynoRun"

				.CommandType	=	adCmdText

				.Execute

End	With

'	Open	the	recordset.

Set	rstRecordset	=	New	ADODB.Recordset

Set	rstRecordset.ActiveConnection	=	cnnConn

rstRecordset.Open	cmdCommand

'	Create	PivotTable	cache	and	report.

Set	objPivotCache	=	ActiveWorkbook.PivotCaches.Add(_

				SourceType:=xlExternal)

Set	objPivotCache.Recordset	=	rstRecordset

ActiveSheet.PivotTables.Add	_

				PivotCache:=objPivotCache,	_

				TableDestination:=Range("A3"),	_

				TableName:="Performance"

With	ActiveSheet.PivotTables("Performance")

				.SmallGrid	=	False

				With	.PivotFields("Pressure")

								.Orientation	=	xlRowField

								.Position	=	1

				End	With

				With	.PivotFields("Speed")

								.Orientation	=	xlColumnField

								.Position	=	1

				End	With

				With	.PivotFields("Time")

								.Orientation	=	xlDataField

								.Position	=	1

				End	With

End	With

'	Close	the	connections	and	clean	up.

cnnConn.Close

Set	cmdCommand	=	Nothing

Set	rstRecordSet	=	Nothing

Set	cnnConn	=	Nothing

As	it	applies	to	the	PublishObjects	object.

This	example	saves	the	range	D5:D9	on	the	First	Quarter	worksheet	in	the	active
workbook	to	a	Web	page	called	Stockreport.htm.	You	use	the	Spreadsheet
component	to	add	interactivity	to	the	Web	page.

ActiveWorkbook.PublishObjects.Add(_

				SourceType:=xlSourceRange,	_

				Filename:="\\Server2\Q1\Stockreport.htm",	_

				Sheet:="First	Quarter",	_

				Source:="D5:D9",	_

				HTMLType:=xlHTMLCalc).Publish

As	it	applies	to	the	QueryTables	object.

This	example	creates	a	query	table	based	on	an	ADO	recordset.	The	example
preserves	the	existing	column	sorting	and	filtering	settings	and	layout
information	for	backward	compatibility.

Dim	cnnConnect	As	ADODB.Connection

Dim	rstRecordset	As	ADODB.Recordset

Set	cnnConnect	=	New	ADODB.Connection

cnnConnect.Open	"Provider=SQLOLEDB;"	&	_

				"Data	Source=srvdata;"	&	_

				"User	ID=testac;Password=4me2no;"

Set	rstRecordset	=	New	ADODB.Recordset

rstRecordset.Open	_

				Source:="Select	Name,	Quantity,	Price	From	Products",	_

				ActiveConnection:=cnnConnect,	_

				CursorType:=adOpenDynamic,	_

				LockType:=adLockReadOnly,	_

				Options:=adCmdText

With	ActiveSheet.QueryTables.Add(_

								Connection:=rstRecordset,	_

								Destination:=Range("A1"))

				.Name	=	"Contact	List"

				.FieldNames	=	True

				.RowNumbers	=	False

				.FillAdjacentFormulas	=	False

				.PreserveFormatting	=	True

				.RefreshOnFileOpen	=	False

				.BackgroundQuery	=	True

				.RefreshStyle	=	xlInsertDeleteCells

				.SavePassword	=	True

				.SaveData	=	True

				.AdjustColumnWidth	=	True

				.RefreshPeriod	=	0

				.PreserveColumnInfo	=	True

				.Refresh	BackgroundQuery:=False

End	With

This	example	imports	a	fixed	width	text	file	into	a	new	query	table.	The	first
column	in	the	text	file	is	five	characters	wide	and	is	imported	as	text.	The	second
column	is	four	characters	wide	and	is	skipped.	The	remainder	of	the	text	file	is
imported	into	the	third	column	and	has	the	General	format	applied	to	it.

Set	shFirstQtr	=	Workbooks(1).Worksheets(1)

Set	qtQtrResults	=	shFirstQtr.QueryTables.Add(_

				Connection	:=	"TEXT;C:\My	Documents\19980331.txt",

				Destination	:=	shFirstQtr.Cells(1,1))

With	qtQtrResults

				.TextFileParsingType	=	xlFixedWidth

				.TextFileFixedColumnWidths	:=	Array(5,4)

				.TextFileColumnDataTypes	:=	_

								Array(xlTextFormat,	xlSkipColumn,	xlGeneralFormat)

				.Refresh

End	With

This	example	creates	a	new	query	table	on	the	active	worksheet.

sqlstring	=	"select	96Sales.totals	from	96Sales	where	profit	<	5"

connstring	=	_

				"ODBC;DSN=96SalesData;UID=Rep21;PWD=NUyHwYQI;Database=96Sales"

With	ActiveSheet.QueryTables.Add(Connection:=connstring,	_

								Destination:=Range("B1"),	Sql:=sqlstring)

				.Refresh

End	With

As	it	applies	to	the	RecentFiles	object.

This	example	adds	Oscar.xls	to	the	list	of	recently	used	files.

Application.RecentFiles.Add	Name:="Oscar.xls"

As	it	applies	to	the	Scenarios	object.

This	example	adds	a	new	scenario	to	Sheet1.

Worksheets("Sheet1").Scenarios.Add	Name:="Best	Case",	_

				ChangingCells:=Worksheets("Sheet1").Range("A1:A4"),	_

				Values:=Array(23,	5,	6,	21),	_

				Comment:="Most	favorable	outcome."

As	it	applies	to	the	SeriesCollection	object.

This	example	creates	a	new	series	in	Chart1.	The	data	source	for	the	new	series
is	range	B1:B10	on	Sheet1.

Charts("Chart1").SeriesCollection.Add	_

				Source:=ActiveWorkbook.Worksheets("Sheet1").Range("B1:B10")

This	example	creates	a	new	series	on	the	embedded	chart	on	Sheet1.

Worksheets("Sheet1").ChartObjects(1).Activate

ActiveChart.SeriesCollection.Add	_

				Source:=Worksheets("Sheet1").Range("B1:B10")

As	it	applies	to	the	Sheets	and	WorkSheets	objects.

This	example	inserts	a	new	worksheet	before	the	last	worksheet	in	the	active
workbook.

ActiveWorkbook.Sheets.Add	Before:=Worksheets(Worksheets.Count)

As	it	applies	to	the	SmartTags	object.

This	example	adds	a	smart	tag	titled	MSFT	to	cell	A1,	then	adds	extra	metadata
called	Market	with	the	value	of	Nasdaq	to	the	smart	tag	and	then	returns	the
value	of	the	property	to	the	user.	This	example	assumes	the	host	system	is
connected	to	the	Internet.

Sub	UseProperties()

				Dim	strLink	As	String

				Dim	strType	As	String

				'	Define	smart	tag	variables.

				strLink	=	"urn:schemas-microsoft-com:smarttags#stocktickerSymbol"

				strType	=	"stockview"

				Range("A1").Formula	=	"MSFT"

				'	Add	a	property	for	MSFT	smart	tag	and	define	its	value.

				Range("A1").SmartTags.Add(strLink).Properties.Add	_

								Name:="Market",	Value:="Nasdaq"

				'	Notify	the	user	of	the	smart	tag's	value.

				MsgBox	Range("A1").SmartTags.Add(strLink).Properties("Market").Value

End	Sub

As	it	applies	to	the	Styles	object.

This	example	defines	a	new	style	based	on	cell	A1	on	Sheet1.

With	ActiveWorkbook.Styles.Add(Name:="theNewStyle")

				.IncludeNumber	=	False

				.IncludeFont	=	True

				.IncludeAlignment	=	False

				.IncludeBorder	=	False

				.IncludePatterns	=	False

				.IncludeProtection	=	False

				.Font.Name	=	"Arial"

				.Font.Size	=	18

End	With

As	it	applies	to	the	Trendlines	object.

This	example	creates	a	new	linear	trendline	in	Chart1.

ActiveWorkbook.Charts("Chart1").SeriesCollection(1).Trendlines.Add

As	it	applies	to	the	Validation	object.

This	example	adds	data	validation	to	cell	E5.

With	Range("e5").Validation

				.Add	Type:=xlValidateWholeNumber,	_

								AlertStyle:=	xlValidAlertStop,	_

								Operator:=xlBetween,	Formula1:="5",	Formula2:="10"

				.InputTitle	=	"Integers"

				.ErrorTitle	=	"Integers"

				.InputMessage	=	"Enter	an	integer	from	five	to	ten"

				.ErrorMessage	=	"You	must	enter	a	number	from	five	to	ten"

End	With

As	it	applies	to	the	VPageBreaks	object.

This	example	adds	a	horizontal	page	break	above	cell	F25	and	adds	a	vertical
page	break	to	the	left	of	this	cell.

With	Worksheets(1)

				.HPageBreaks.Add	.Range("F25")

				.VPageBreaks.Add	.Range("F25")

End	With

As	it	applies	to	the	Watches	object.

This	example	creates	a	summation	formula	in	cell	A3	and	then	adds	this	cell	to
the	watch	facility.

Sub	AddWatch()

				With	Application

								.Range("A1").Formula	=	1

								.Range("A2").Formula	=	2

								.Range("A3").Formula	=	"=Sum(A1:A2)"

								.Range("A3").Select

								.Watches.Add	Source:=ActiveCell

				End	With

End	Sub

As	it	applies	to	the	WorkBooks	object.

This	example	creates	a	new	workbook.

Workbooks.Add

Show	All

AddCallout	Method
							

Creates	a	borderless	line	callout.	Returns	a	Shape	object	that	represents	the	new
callout.

expression.AddCallout(Type,	Left,	Top,	Width,	Height)

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	to	List.

Type		Required	MsoCalloutType.		The	type	of	callout	line.

MsoCalloutType	can	be	one	of	these	MsoCalloutType	constants.
msoCalloutOne.	A	single-segment	callout	line	that	can	be	either	horizontal	or
vertical.
msoCalloutTwo.	A	single-segment	callout	line	that	rotates	freely.
msoCalloutMixed.
msoCalloutThree.	A	two-segment	line.
msoCalloutFour.	A	three-segment	line.

Left		Required	Single.	The	position	(in	points)	of	the	upper-left	corner	of	the
callout's	bounding	box	relative	to	the	upper-left	corner	of	the	document.

Top		Required	Single.	The	position	(in	points)	of	the	upper-left	corner	of	the
callout's	bounding	box	relative	to	the	upper-left	corner	of	the	document.

Width		Required	Single.	The	width	of	the	callout's	bounding	box,	in	points.

Height		Required	Single.	The	height	of	the	callout's	bounding	box,	in	points.

Remarks

You	can	insert	a	greater	variety	of	callouts	by	using	the	AddShape	method.

Example

This	example	adds	a	borderless	callout	with	a	freely	rotating	one-segment
callout	line	to	myDocument	and	then	sets	the	callout	angle	to	30	degrees.

Set	myDocument	=	Worksheets(1)

myDocument.Shapes.AddCallout(Type:=msoCalloutTwo,	_

				Left:=50,	Top:=50,	Width:=200,	Height:=100)	_

				.Callout.Angle	=	msoCalloutAngle30

AddChartAutoFormat	Method
							

Adds	a	custom	chart	autoformat	to	the	list	of	available	chart	autoformats.

expression.AddChartAutoFormat(Chart,	Name,	Description)

expression			Required.	An	expression	that	returns	an	Application	object.

Chart			Required	Chart.	A	chart	that	contains	the	format	that	will	be	applied
when	the	new	chart	autoformat	is	applied.

Name			Required	String.	The	name	of	the	autoformat.

Description			Optional	String.	A	description	of	the	custom	autoformat.

Example

This	example	adds	a	new	autoformat	based	on	Chart1.

Application.AddChartAutoFormat	_

				Chart:=Charts("Chart1"),	Name:="Presentation	Chart"

AddComment	Method
							

Adds	a	comment	to	the	range.

expression.AddComment(Text)

expression			Required.	An	expression	that	returns	a	Range	object.

Text			Optional	Variant.	The	comment	text.

Example

This	example	adds	a	comment	to	cell	E5	on	worksheet	one.

Worksheets(1).Range("E5").AddComment	"Current	Sales"

Show	All

AddConnector	Method
							

Creates	a	connector.	Returns	a	Shape	object	that	represents	the	new	connector.
When	a	connector	is	added,	it's	not	connected	to	anything.	Use	the
BeginConnect	and	EndConnect	methods	to	attach	the	beginning	and	end	of	a
connector	to	other	shapes	in	the	document.

expression.AddConnector(Type,	BeginX,	BeginY,	EndX,	EndY)

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

Type		Required	MsoConnectorType.	The	connector	type	to	add.

MsoConnectorType	can	be	one	of	these	MsoConnectorType	constants.
msoConnectorElbow
msoConnectorTypeMixed
msoConnectorCurve
msoConnectorStraight

BeginX		Required	Single.	The	horizontal	position	(in	points)	of	the	connector's
starting	point	relative	to	the	upper-left	corner	of	the	document.

BeginY		Required	Single.	The	vertical	position	(in	points)	of	the	connector's
starting	point	relative	to	the	upper-left	corner	of	the	document.

EndX		Required	Single.	The	horizontal	position	(in	points)	of	the	connector's
end	point	relative	to	the	upper-left	corner	of	the	document.

EndY		Required	Single.	The	veritcal	position	(in	points)	of	the	connector's	end
point	relative	to	the	upper-left	corner	of	the	document.

Remarks

When	you	attach	a	connector	to	a	shape,	the	size	and	position	of	the	connector
are	automatically	adjusted,	if	necessary.	Therefore,	if	you’re	going	to	attach	a
connector	to	other	shapes,	the	position	and	dimensions	you	specify	when	adding
the	connector	are	irrelevant.

Example

The	following	example	adds	a	curved	connector	to	a	new	canvas	in	a	new
worksheet.

Sub	AddCanvasConnector()

				Dim	wksNew	As	Worksheet

				Dim	shpCanvas	As	Shape

				Set	wksNew	=	Worksheets.Add

				'Add	drawing	canvas	to	new	worksheet

				Set	shpCanvas	=	wksNew.Shapes.AddCanvas(_

								Left:=150,	Top:=150,	Width:=200,	Height:=300)

				'Add	connector	to	the	drawing	canvas

				shpCanvas.CanvasItems.AddConnector	_

								Type:=msoConnectorStraight,	BeginX:=150,	_

								BeginY:=150,	EndX:=200,	EndY:=200

End	Sub

Show	All

AddCurve	Method
							

As	it	applies	to	the	Shapes	object,	returns	a	Shape	object	that	represents	a
Bézier	curve	in	a	worksheet.	As	it	applies	to	the	CanvasShapes	object,	returns	a
Shape	object	that	represents	a	Bézier	curve	in	a	drawing	canvas.

expression.AddCurve(SafeArrayOfPoints)

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

SafeArrayOfPoints			Required	Variant.	An	array	of	coordinate	pairs	that
specifies	the	vertices	and	control	points	of	the	curve.	The	first	point	you	specify
is	the	starting	vertex,	and	the	next	two	points	are	control	points	for	the	first
Bézier	segment.	Then,	for	each	additional	segment	of	the	curve,	you	specify	a
vertex	and	two	control	points.	The	last	point	you	specify	is	the	ending	vertex	for
the	curve.	Note	that	you	must	always	specify	3n	+	1	points,	where	n	is	the
number	of	segments	in	the	curve.

Example

The	following	example	adds	a	two-segment	Bézier	curve	to	myDocument.

Dim	pts(1	To	7,	1	To	2)	As	Single

pts(1,	1)	=	0

pts(1,	2)	=	0

pts(2,	1)	=	72

pts(2,	2)	=	72

pts(3,	1)	=	100

pts(3,	2)	=	40

pts(4,	1)	=	20

pts(4,	2)	=	50

pts(5,	1)	=	90

pts(5,	2)	=	120

pts(6,	1)	=	60

pts(6,	2)	=	30

pts(7,	1)	=	150

pts(7,	2)	=	90

Set	myDocument	=	Worksheets(1)

myDocument.Shapes.AddCurve	SafeArrayOfPoints:=pts

AddCustomList	Method
							

Adds	a	custom	list	for	custom	autofill	and/or	custom	sort.

expression.AddCustomList(ListArray,	ByRow)

expression			Required.	An	expression	that	returns	an	Application	object.

ListArray			Required	Variant.	Specifies	the	source	data,	as	either	an	array	of
strings	or	a	Range	object.

ByRow			Optional	Variant.	Only	used	if	ListArray	is	a	Range	object.	True	to
create	a	custom	list	from	each	row	in	the	range.	False	to	create	a	custom	list
from	each	column	in	the	range.	If	this	argument	is	omitted	and	there	are	more
rows	than	columns	(or	an	equal	number	of	rows	and	columns)	in	the	range,
Microsoft	Excel	creates	a	custom	list	from	each	column	in	the	range.	If	this
argument	is	omitted	and	there	are	more	columns	than	rows	in	the	range,
Microsoft	Excel	creates	a	custom	list	from	each	row	in	the	range.

Remarks

If	the	list	you're	trying	to	add	already	exists,	this	method	does	nothing.

Example

This	example	adds	an	array	of	strings	as	a	custom	list.

Application.AddCustomList	Array("cogs",	"sprockets",	_

				"widgets",	"gizmos")

Show	All

AddDataField	Method
							

Adds	a	data	field	to	a	PivotTable	report.	Returns	a	PivotField	object	that
represents	the	new	data	field.

expression.AddDataField(Field,	Caption,	Function)

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

Field		Required	Object.		The	unique	field	on	the	server.	If	the	source	data	is
Online	Analytical	Processing	(OLAP),	the	unique	field	is	a	cube	field.	If	the
source	data	is	non-OLAP	(non-OLAP	source	data),	the	unique	field	is	a
PivotTable	field.

Caption		Optional	Variant.		The	label	used	in	the	PivotTable	report	to	identify
this	data	field.

Function		Optional	Variant.		The	function	performed	in	the	added	data	field.

Example

This	example	adds	a	data	field	titled	"Total	Score"	to	a	pivot	table	called
"PivotTable1".

Note:	This	example	assumes	a	table	exists	in	which	one	of	the	columns	contains
a	column	titled	"Score".

Sub	AddMoreFields()

				With	ActiveSheet.PivotTables("PivotTable1")

								.AddDataField	ActiveSheet.PivotTables(_

												"PivotTable1").PivotFields("Score"),	"Total	Score"

				End	With

End	Sub

Show	All

AddDiagram	Method
							

Creates	a	diagram.	Returns	a	Shape	object	that	represents	the	new	diagram.

expression.AddDiagram(Type,	Left,	Top,	Width,	Height)

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

Type		Required	MsoDiagramType.	The	type	of	diagram.

MsoDiagramType	can	be	one	of	these	MsoDiagramType	constants.
msoDiagramCycle		A	process	diagram	with	a	continuous	cycle	diagram	type.
msoDiagramMixed		A	mixed	diagram	type.
msoDiagramOrgChart		A	hierarchical	relationship	diagram	type.
msoDiagramPyramid		A	foundation	based	relationships	diagram	type.
msoDiagramRadial		A	diagram	type	showing	relationships	of	a	core	element.
msoDiagramTarget	A	diagram	type	showing	steps	toward	a	goal.
msoDiagramVenn		A	diagram	type	showing	areas	of	overlap	between
elements.

Left		Required	Single.	The	position	(in	points)	of	the	upper-left	corner	of	the
diagram	relative	to	the	upper-left	corner	of	the	worksheet.

Top		Required	Single.	The	position	(in	points)	of	the	upper-left	top	of	the
diagram	relative	to	the	upper-left	corner	of	the	worksheet.

Width		Required	Single.	The	width	of	the	diagram,	in	points.

Height		Required	Single.	The	height	of	the	diagram,	in	points.

Example

This	example	adds	a	pyramid	diagram	to	the	active	sheet.

Sub	CreatePyramidDiagram()

				Dim	dgnNode	As	DiagramNode

				Dim	shpDiagram	As	Shape

				Dim	intCount	As	Integer

				'Add	pyramid	diagram	to	current	document

				Set	shpDiagram	=	ActiveSheet.Shapes.AddDiagram	_

								(Type:=msoDiagramPyramid,	Left:=10,	_

								Top:=15,	Width:=400,	Height:=475)

				'Add	first	diagram	node	child	to	pyramid	diagram

				Set	dgnNode	=	shpDiagram.DiagramNode.Children.AddNode

				'Add	three	more	diagram	node	children	to	the	pyramid	diagram

				For	intCount	=	1	To	3

								dgnNode.AddNode

				Next	intCount

End	Sub

Show	All

AddFields	Method
							

Adds	row,	column,	and	page	fields	to	a	PivotTable	report	or	PivotChart	report.

expression.AddFields(RowFields,	ColumnFields,	PageFields,	AddToTable,
AppendField)

expression			Required.	An	expression	that	returns	a	PivotTable	object.

RowFields			Optional	Variant.	Specifies	a	field	name	(or	an	array	of	field
names)	to	be	added	as	rows,	or	to	be	added	to	the	category	axis.

ColumnFields			Optional	Variant.	Specifies	a	field	name	(or	an	array	of	field
names)	to	be	added	as	columns,	or	to	be	added	to	the	series	axis.

PageFields			Optional	Variant.	Specifies	a	field	name	(or	an	array	of	field
names)	to	be	added	as	pages,	or	to	be	added	to	the	page	area.

AddToTable			Optional	Variant.	Applies	only	to	PivotTable	reports.	True	to	add
the	specified	fields	to	the	report	(none	of	the	existing	fields	are	replaced).	False
to	replace	existing	fields	with	the	new	fields.	The	default	value	is	False.

AppendField			Optional	Boolean.	Applies	only	to	PivotChart	reports.	True	to
add	the	specified	fields	to	the	report	(none	of	the	existing	fields	are	replaced).
False	to	replace	existing	fields	with	the	new	fields.	The	default	value	is	False.

Remarks

You	must	specify	one	of	the	field	arguments.

Field	names	specify	the	unique	name	returned	by	the	SourceName	property	of
the	PivotField	object.

This	method	is	not	available	for	OLAP	data	sources.

Example

This	example	replaces	the	existing	column	fields	in	the	first	PivotTable	report	on
Sheet1	with	the	Status	and	Closed_By	fields.

Worksheets("Sheet1").PivotTables(1).AddFields	_

				ColumnFields:=Array("Status",	"Closed_By")

Show	All

AddFormControl	Method
							

Creates	a	Microsoft	Excel	control.	Returns	a	Shape	object	that	represents	the
new	control.

expression.AddFormControl(Type,	Left,	Top,	Width,	Height)

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

Type		Required	XlFormControl.		The	Microsoft	Excel	control	type.	You	cannot
create	an	edit	box	on	a	worksheet.

XlFormControl	can	be	one	of	these	XlFormControl	constants.
xlButtonControl
xlCheckBox
xlDropDown
xlEditBox
xlGroupBox
xlLabel
xlListBox
xlOptionButton
xlScrollBar
xlSpinner

Left		Required	Long.	The	initial	coordinates	of	the	new	object	(in	points)
relative	to	the	upper-left	corner	of	cell	A1	on	a	worksheet	or	to	the	upper-left
corner	of	a	chart.

Top		Required	Long.	The	initial	coordinates	of	the	new	object	(in	points)	relative
to	the	upper-left	corner	of	cell	A1	on	a	worksheet	or	to	the	upper-left	corner	of	a
chart.

Width		Required	Long.	The	initial	size	of	the	new	object,	in	points.

Height		Required	Long.	The	initial	size	of	the	new	object,	in	points.

Remarks

Use	the	AddOLEObject	method	or	the	Add	method	of	the	OLEObjects
collection	to	create	an	ActiveX	control.

Example

This	example	adds	a	list	box	to	worksheet	one	and	sets	the	fill	range	for	the	list
box.

With	Worksheets(1)

				Set	lb	=	.Shapes.AddFormControl(xlListBox,	100,	10,	100,	100)

				lb.ControlFormat.ListFillRange	=	"A1:A10"

End	With

AddItem	Method
							

Adds	an	item	to	a	list	box	or	a	combo	box.

expression.AddItem(Text,	Index)

expression			Required.	An	expression	that	returns	a	ControlFormat	object.

Text			Required	String.	The	text	to	be	added

Index			Optional	Variant.	The	position	of	the	new	entry.	If	the	list	has	fewer
entries	than	the	specified	index,	blank	items	from	the	end	of	the	list	are	added	to
the	specified	position.	If	this	argument	is	omitted,	the	item	is	appended	to	the
existing	list.

Remarks

Using	this	method	clears	any	range	specified	by	the	ListFillRange	property.

Example

This	example	creates	a	list	box	and	fills	it	with	integers	from	1	to	10.

With	Worksheets(1)

				Set	lb	=	.Shapes.AddFormControl(xlListBox,	100,	10,	100,	100)

				For	x	=	1	To	10

								lb.ControlFormat.AddItem	x

				Next

End	With

Show	All

AddLabel	Method
							

Creates	a	label.	Returns	a	Shape	object	that	represents	the	new	label.

expression.AddLabel(Orientation,	Left,	Top,	Width,	Height)

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

Orientation		Required	MsoTextOrientation.		The	text	orientation	within	the
label.

MsoTextOrientation	can	be	one	of	these	MsoTextOrientation	constants.
msoTextOrientationDownward
msoTextOrientationHorizontal
msoTextOrientationHorizontalRotatedFarEast
msoTextOrientationMixed
msoTextOrientationUpward
msoTextOrientationVertical
msoTextOrientationVerticalFarEast

Some	of	these	constants	may	not	be	available	to	you,	depending	on	the
language	support	(U.S.	English,	for	example)	that	you’ve	selected	or	installed.

Left		Required	Single.	The	position	(in	points)	of	the	upper-left	corner	of	the
label	relative	to	the	upper-left	corner	of	the	document.

Top		Required	Single.	The	position	(in	points)	of	the	upper-left	corner	of	the
label	relative	to	the	top	corner	of	the	document.

Width		Required	Single.	The	width	of	the	label,	in	points.

Height		Required	Single.	The	height	of	the	label,	in	points.

Example

This	example	adds	a	vertical	label	that	contains	the	text	"Test	Label"	to
myDocument.

Set	myDocument	=	Worksheets(1)

myDocument.Shapes.AddLabel(msoTextOrientationVertical,	_

				100,	100,	60,	150)	_

				.TextFrame.Characters.Text	=	"Test	Label"

AddLine	Method
							

As	it	applies	to	the	Shapes	object,	returns	a	Shape	object	that	represents	the	new
line	in	a	worksheet.	As	it	applies	to	the	CanvasShapes	object,	returns	a	Shape
object	that	represents	the	new	line	in	a	drawing	canvas.

expression.AddLine(BeginX,	Beginy,	EndX,	EndY)

expression			Required.	An	expression	that	returns	a	Shapes	object.

BeginX,	BeginY			Required	Single.	The	position	(in	points)	of	the	line's	starting
point	relative	to	the	upper-left	corner	of	the	document.

EndX,	EndY			Required	Single.	The	position	(in	points)	of	the	line's	end	point
relative	to	the	upper-left	corner	of	the	document.

Example

This	example	adds	a	blue	dashed	line	to	myDocument.

Set	myDocument	=	Worksheets(1)

With	myDocument.Shapes.AddLine(10,	10,	250,	250).Line

				.DashStyle	=	msoLineDashDotDot

				.ForeColor.RGB	=	RGB(50,	0,	128)

End	With

AddMemberPropertyField	Method
							

Adds	a	member	property	field	to	the	display	for	the	cube	field.

expression.AddMemberPropertyField(Property,	PropertyOrder)

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

Property		Required	String.	The	unique	name	of	the	member	property.	For
balanced	hierarchies,	a	unique	name	can	be	created	by	appending	the	"quoted"
member	property	name	to	the	unique	name	of	the	level	the	member	property	is
associated	with.		For	unbalanced	hierarchies,	a	unique	name	can	be	created	by
appending	the	"quoted"	member	property	name	to	the	unique	name	of	the
hierarchy.

PropertyOrder		Optional	Variant.		Sets	the	PropertyOrder	property	value	for	a
CubeField	object.	The	actual	position	in	the	collection	will	be	immediately
before	the	PivotTable	field	that	currently	has	the	same	PropertyOrder	value
that	is	given	in	the	argument.	If	no	field	has	the	given	property	order	value,	the
range	of	acceptable	values	is	1	to	the	number	of	member	properties	already
showing	for	the	hierarchy	plus	one.	This	argument	is	one-based.	If	omitted,	the
property	goes	to	the	end	of	the	list.

Remarks

The	property	field	specified	will	not	be	viewable	if	the	PivotTable	view	has	no
fields.

To	delete	member	properties,	use	the	Delete	method	to	delete	the	PivotField
object	from	the	PivotFields	collection.	

Example

In	this	example,	Microsoft	Excel	adds	a	member	property	field	titled
"Description"	to	the	PivotTable	report	view.	This	example	assumes	that	a
PivotTable	exists	on	the	active	worksheet	and	that	"Country",	"Area"		and
"Description"	are	items	in	the	report.

Sub	UseAddMemberPropertyField()

				Dim	pvtTable	As	PivotTable

				Set	pvtTable	=	ActiveSheet.PivotTables(1)

				With	pvtTable

								.ManualUpdate	=	True

								.CubeFields("[Country]").LayoutForm	=	xlOutline

								.CubeFields("[Country]").AddMemberPropertyField	_

												Property:="[Country].[Area].[Description]"

								.ManualUpdate	=	False

				End	With

End	Sub

Show	All

AddNode	Method
							

AddNode	method	as	it	applies	to	the	DiagramNodeChildren	object.

Creates	a	diagram	node.	Returns	a	DiagramNode	object	that	represents	the	new
node.

expression.AddNode(Index,	nodeType)

expression			Required.	An	expression	that	returns	a	DiagramNodeChildren
object

Index		Optional	Variant.	The	position	of	the	node.

nodeType		Optional	MsoDiagramNodeType.	The	type	of	node.

MsoDiagramNodeType	can	be	one	of	these	MsoDiagramNodeType	constants.
msoDiagramAssistant
msoDiagramNode	default

AddNode	method	as	it	applies	to	the	DiagramNode	object.

Creates	a	diagram	node.	Returns	a	DiagramNode	object	that	represents	the	new
node.	DiagramNode	object.

expression.AddNode(pos,	nodeType)

expression			Required.	An	expression	that	returns	a	DiagramNode	object.

pos		Optional	MsoRelativeNodePosition.	Where	the	node	will	be	added,
relative	to	another	node.

MsoRelativeNodePosition	can	be	one	of	these	MsoRelativeNodePosition
constants.
msoAfterLastSibling

msoAfterNode	default
msoBeforeFirstSibling
msoBeforeNode

nodeType		Optional	MsoDiagramNodeType.	The	type	of	node.

MsoDiagramNodeType	can	be	one	of	these	MsoDiagramNodeType	constants.
msoDiagramAssistant
msoDiagramNode	default

Example

This	example	adds	a	node	to	a	diagram	node	on	the	active	sheet.

Sub	DiagramNodeOBJ()

								Dim	nodDiagNode	As	DiagramNode

								Dim	shDiagram	As	Shape

								Set	shDiagram	=	ActiveSheet.Shapes.AddDiagram	_

												(Type:=msoDiagramOrgChart,	_

												Left:=10,	_

												Top:=15,	_

												Width:=400,	_

												Height:=475)

								Set	nodDiagNode	=	shDiagram.DiagramNode

								'Add	a	root	node	to	the	diagram.

								nodDiagNode.Children.AddNode

End	Sub

AddNodes	Method
							

expression.AddNodes(SegmentType,	EditingType,	X1,	Y1,	X2,	Y2,	X3,	Y3)

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

SegmentType		Required	MsoSegmentType.		The	type	of	segment	to	be	added.

MsoSegmentType	can	be	one	of	these	MsoSegmentType	constants.
msoSegmentLine
msoSegmentCurve

EditingType		Required	MsoEditingType.	The	editing	property	of	the	vertex.

MsoEditingType	can	be	one	of	these	MsoEditingType	constants.
msoEditingAuto
msoEditingCorner
Cannot	be	msoEditingSmooth	or	msoEditingSymmetric

If	SegmentType	is	msoSegmentLine,	EditingType	must	be	msoEditingAuto.

X1		Required	Single.

If	the	EditingType	of	the	new	segment	is	msoEditingAuto,	this	argument
specifies	the	horizontal	distance	(in	points)	from	the	upper-left	corner	of	the
document	to	the	end	point	of	the	new	segment.

If	the	EditingType	of	the	new	node	is	msoEditingCorner,	this	argument
specifies	the	horizontal	distance	(in	points)	from	the	upper-left	corner	of	the
document	to	the	first	control	point	for	the	new	segment.

Y1		Required	Single.

If	the	EditingType	of	the	new	segment	is	msoEditingAuto,	this	argument
specifies	the	horizontal	distance	(in	points)	from	the	upper-left	corner	of	the
document	to	the	end	point	of	the	new	segment.

If	the	EditingType	of	the	new	node	is	msoEditingCorner,	this	argument
specifies	the	horizontal	distance	(in	points)	from	the	upper-left	corner	of	the
document	to	the	first	control	point	for	the	new	segment.

X2		Optional	Variant.

If	the	EditingType	of	the	new	segment	is	msoEditingCorner,	this	argument
specifies	the	horizontal	distance	(in	points)	from	the	upper-left	corner	of	the
document	to	the	second	control	point	for	the	new	segment.

If	the	EditingType	of	the	new	segment	is	msoEditingAuto,	don't	specify	a
value	for	this	argument.

Y2		Optional	Variant.

If	the	EditingType	of	the	new	segment	is	msoEditingCorner,	this	argument
specifies	the	horizontal	distance	(in	points)	from	the	upper-left	corner	of	the
document	to	the	second	control	point	for	the	new	segment.

If	the	EditingType	of	the	new	segment	is	msoEditingAuto,	don't	specify	a
value	for	this	argument.

X3		Optional	Variant.

If	the	EditingType	of	the	new	segment	is	msoEditingCorner,	this	argument
specifies	the	horizontal	distance	(in	points)	from	the	upper-left	corner	of	the
document	to	the	end	point	of	the	new	segment.

If	the	EditingType	of	the	new	segment	is	msoEditingAuto,	don't	specify	a
value	for	this	argument.

Y3		Optional	Variant.

If	the	EditingType	of	the	new	segment	is	msoEditingCorner,	this	argument
specifies	the	vertical	distance	(in	points)	from	the	upper-left	corner	of	the
document	to	the	end	point	of	the	new	segment.

If	the	EditingType	of	the	new	segment	is	msoEditingAuto,	don't	specify	a
value	for	this	argument.

Example

This	example	adds	a	freeform	with	four	segments	to	myDocument.

Set	myDocument	=	Worksheets(1)

With	myDocument.Shapes.BuildFreeform(msoEditingCorner,	360,	200)

				.AddNodes	msoSegmentCurve,	msoEditingCorner,	_

								380,	230,	400,	250,	450,	300

				.AddNodes	msoSegmentCurve,	msoEditingAuto,	480,	200

				.AddNodes	msoSegmentLine,	msoEditingAuto,	480,	400

				.AddNodes	msoSegmentLine,	msoEditingAuto,	360,	200

				.ConvertToShape

End	With

Show	All

AddPageItem	Method
							

Adds	an	additional	item	to	a	multiple	item	page	field.

expression.AddPageItem(Item,	ClearList)

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

Item		Required	String.		Source	name	of	a	PivotItem	object,	corresponding	to
the	specific	Online	Analytical	Processing	(OLAP)	member	unique	name.

ClearList		Optional	Variant.	If	False	(default),	adds	a	page	item	to	the	existing
list.	If	True,	deletes	all	current	items	and	adds	Item.

Remarks

To	avoid	run-time	errors,	the	data	source	must	be	an	OLAP	source,	the	field
chosen	must	currently	be	in	the	page	position,	and	the
EnableMultiplePageItems	property	must	be	set	to	True.

Example

In	this	example,	Microsoft	Excel	adds	a	page	item	with	a	source	name	titled	"
[Product].[All	Products].[Food].[Eggs]".	This	example	assumes	an	OLAP
PivotTable	exists	on	the	active	worksheet.

Sub	UseAddPageItem()

				'	The	source	is	an	OLAP	database	and	you	can	manually	reorder	items.

				ActiveSheet.PivotTables(1).CubeFields("[Product]").	_

								EnableMultiplePageItems	=	True

				'	Add	the	page	item	titled	"[Product].[All	Products].[Food].[Eggs]".

				ActiveSheet.PivotTables(1).PivotFields("[Product]").AddPageItem	(_

								"[Product].[All	Products].[Food].[Eggs]")

End	Sub

Show	All

AddPicture	Method
							

Creates	a	picture	from	an	existing	file.	Returns	a	Shape	object	that	represents	the
new	picture.

expression.AddPicture(FileName,	LinkToFile,	SaveWithDocument,	Left,	Top,
Width,	Height)

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

FileName		Required	String.	The	file	from	which	the	OLE	object	is	to	be
created.

LinkToFile		Required	MsoTriState.	The	file	to	link	to.

MsoTriState	can	be	one	of	these	MsoTriState	constants.
msoCTrue
msoFalse		To	make	the	picture	an	independent	copy	of	the	file.
msoTriStateMixed
msoTriStateToggle
msoTrue	To	link	the	picture	to	the	file	from	which	it	was	created.

SaveWithDocument		Required	MsoTriState.	To	save	the	picture	with	the
document.

MsoTriState	can	be	one	of	these	MsoTriState	constants.
msoCTrue
msoFalse	To	store	only	the	link	information	in	the	document.
msoTriStateMixed
msoTriStateToggle
msoTrue	To	save	the	linked	picture	with	the	document	into	which	it’s	inserted.
This	argument	must	be	msoTrue	if	LinkToFile	is	msoFalse.

Left		Required	Single.	The	position	(in	points)	of	the	upper-left	corner	of	the
picture	relative	to	the	upper-left	corner	of	the	document.

Top		Required	Single.	The	position	(in	points)	of	the	upper-left	corner	of	the
picture	relative	to	the	top	of	the	document.

Width		Required	Single.	The	width	of	the	picture,	in	points.

Height		Required	Single.	The	height	of	the	picture,	in	points.

Example

This	example	adds	a	picture	created	from	the	file	Music.bmp	to	myDocument.	The
inserted	picture	is	linked	to	the	file	from	which	it	was	created	and	is	saved	with
myDocument.

Set	myDocument	=	Worksheets(1)

myDocument.Shapes.AddPicture	_

				"c:\microsoft	office\clipart\music.bmp",	_

				True,	True,	100,	100,	70,	70

Show	All

AddPolyline	Method
							

Creates	an	open	polyline	or	a	closed	polygon	drawing.	Returns	a	Shape	object
that	represents	the	new	polyline	or	polygon.

expression.AddPolyline(SafeArrayOfPoints)

expression			Required.	An	expression	that	returns	a	Shapes	object.

SafeArrayOfPoints			Required	Variant.	An	array	of	coordinate	pairs	that
specifies	the	polyline	drawing's	vertices.

Remarks

To	form	a	closed	polygon,	assign	the	same	coordinates	to	the	first	and	last
vertices	in	the	polyline	drawing.

Example

This	example	adds	a	triangle	to	myDocument.	Because	the	first	and	last	points
have	the	same	coordinates,	the	polygon	is	closed	and	filled.	The	color	of	the
triangle's	interior	will	be	the	same	as	the	default	shape's	fill	color.

Dim	triArray(1	To	4,	1	To	2)	As	Single

triArray(1,	1)	=	25

triArray(1,	2)	=	100

triArray(2,	1)	=	100

triArray(2,	2)	=	150

triArray(3,	1)	=	150

triArray(3,	2)	=	50

triArray(4,	1)	=	25					'	Last	point	has	same	coordinates	as	first

triArray(4,	2)	=	100

Set	myDocument	=	Worksheets(1)

myDocument.Shapes.AddPolyline	triArray

AddReplacement	Method
							

Adds	an	entry	to	the	array	of	AutoCorrect	replacements.

expression.AddReplacement(What,	Replacement)

expression			Required.	An	expression	that	returns	an	AutoCorrect	object.

What			Required	String.	The	text	to	be	replaced.	If	this	string	already	exists	in
the	array	of	AutoCorrect	replacements,	the	existing	substitute	text	is	replaced	by
the	new	text.

Replacement			Required	String.	The	replacement	text.

Example

This	example	substitutes	the	word	"Temp."	for	the	word	"Temperature"	in	the
array	of	AutoCorrect	replacements.

With	Application.AutoCorrect

				.AddReplacement	"Temperature",	"Temp."

End	With

Show	All

AddSet	Method
							

Adds	a	new	CubeField	object	to	the	CubeFields	collection.	The	CubeField
object	corresponds	to	a	set	defined	on	the	Online	Analytical	Processing	(OLAP)
provider	for	the	cube.

expression.AddSet(Name,	Caption)

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

Name		Required	String.	A	valid	name	in	the	SETS	schema	rowset.

Caption		Required	String.	A	string	representing	the	field	that	will	be	displayed
in	the	PivotTable	view.

Remarks

If	a	set	with	the	name	given	in	the	argument	Name	does	not	exist,	the	AddSet
method	will	return	a	run-time	error.

Example

In	this	example,	Microsoft	Excel	adds	a	set	titled	"My	Set"	to	the	CubeField
object.	This	example	assumes	an	OLAP	PivotTable	report	exists	on	the	active
worksheet.	Also,	this	example	assumes	a	field	titled	"Product"	exists.

Sub	UseAddSet()

				Dim	pvtOne	As	PivotTable

				Dim	strAdd	As	String

				Dim	strFormula	As	String

				Dim	cbfOne	As	CubeField

				Set	pvtOne	=	Sheet1.PivotTables(1)

				strAdd	=	"[MySet]"

				strFormula	=	"'{[Product].[All	Products].[Food].children}'"

				'	Establish	connection	with	data	source	if	necessary.

				If	Not	pvtOne.PivotCache.IsConnected	Then	pvtOne.PivotCache.MakeConnection

				'	Add	a	calculated	member	titled	"[MySet]"

				pvtOne.CalculatedMembers.Add	Name:=strAdd,	_

								Formula:=strFormula,	Type:=xlCalculatedSet

				'	Add	a	set	to	the	CubeField	object.

				Set	cbfOne	=	pvtOne.CubeFields.AddSet(Name:="[MySet]",	_

								Caption:="My	Set")

End	Sub

Show	All

AddShape	Method
							

As	it	applies	to	the	Shapes	object,	returns	a	Shape	object	that	represents	the	new
AutoShape	in	a	worksheet.	As	it	applies	to	the	CanvasShapes	object,	returns	a
Shape	object	that	represents	the	new	AutoShape	in	a	drawing	canvas.

expression.AddShape(Type,	Left,	Top,	Width,	Height)

expression			Required.	An	expression	that	returns	a	Shapes	object.

Type		Required	MsoAutoShapeType.	Specifies	the	type	of	AutoShape	to	create.

MsoAutoShapeType	can	be	one	of	these	MsoAutoShapeType	constants.
msoShape16pointStar
msoShape24pointStar
msoShape32pointStar
msoShape4pointStar
msoShape5pointStar
msoShape8pointStar
msoShapeActionButtonBackorPrevious
msoShapeActionButtonBeginning
msoShapeActionButtonCustom
msoShapeActionButtonDocument
msoShapeActionButtonEnd
msoShapeActionButtonForwardorNext
msoShapeActionButtonHelp
msoShapeActionButtonHome
msoShapeActionButtonInformation
msoShapeActionButtonMovie
msoShapeActionButtonReturn
msoShapeActionButtonSound

msoShapeArc
msoShapeBalloon
msoShapeBentArrow
msoShapeBentUpArrow
msoShapeBevel
msoShapeBlockArc
msoShapeCan
msoShapeChevron
msoShapeCircularArrow
msoShapeCloudCallout
msoShapeCross
msoShapeCube
msoShapeCurvedDownArrow
msoShapeCurvedDownRibbon
msoShapeCurvedLeftArrow
msoShapeCurvedRightArrow
msoShapeCurvedUpArrow
msoShapeCurvedUpRibbon
msoShapeDiamond
msoShapeDonut
msoShapeDoubleBrace
msoShapeDoubleBracket
msoShapeDoubleWave
msoShapeDownArrow
msoShapeDownArrowCallout
msoShapeDownRibbon
msoShapeExplosion1
msoShapeExplosion2
msoShapeFlowchartAlternateProcess
msoShapeFlowchartCard
msoShapeFlowchartCollate
msoShapeFlowchartConnector
msoShapeFlowchartData

msoShapeFlowchartDecision
msoShapeFlowchartDelay
msoShapeFlowchartDirectAccessStorage
msoShapeFlowchartDisplay
msoShapeFlowchartDocument
msoShapeFlowchartExtract
msoShapeFlowchartInternalStorage
msoShapeFlowchartMagneticDisk
msoShapeFlowchartManualInput
msoShapeFlowchartManualOperation
msoShapeFlowchartMerge
msoShapeFlowchartMultidocument
msoShapeFlowchartOffpageConnector
msoShapeFlowchartOr
msoShapeFlowchartPredefinedProcess
msoShapeFlowchartPreparation
msoShapeFlowchartProcess
msoShapeFlowchartPunchedTape
msoShapeFlowchartSequentialAccessStorage
msoShapeFlowchartSort
msoShapeFlowchartStoredData
msoShapeFlowchartSummingJunction
msoShapeFlowchartTerminator
msoShapeFoldedCorner
msoShapeHeart
msoShapeHexagon
msoShapeHorizontalScroll
msoShapeIsoscelesTriangle
msoShapeLeftArrow
msoShapeLeftArrowCallout
msoShapeLeftBrace
msoShapeLeftBracket
msoShapeLeftRightArrow

msoShapeLeftRightArrowCallout
msoShapeLeftRightUpArrow
msoShapeLeftUpArrow
msoShapeLightningBolt
msoShapeLineCallout1
msoShapeLineCallout1AccentBar
msoShapeLineCallout1BorderandAccentBar
msoShapeLineCallout1NoBorder
msoShapeLineCallout2
msoShapeLineCallout2AccentBar
msoShapeLineCallout2BorderandAccentBar
msoShapeLineCallout2NoBorder
msoShapeLineCallout3
msoShapeLineCallout3AccentBar
msoShapeLineCallout3BorderandAccentBar
msoShapeLineCallout3NoBorder
msoShapeLineCallout4
msoShapeLineCallout4AccentBar
msoShapeLineCallout4BorderandAccentBar
msoShapeLineCallout4NoBorder
msoShapeMixed
msoShapeMoon
msoShapeNoSymbol
msoShapeNotchedRightArrow
msoShapeNotPrimitive
msoShapeOctagon
msoShapeOval
msoShapeOvalCallout
msoShapeParallelogram
msoShapePentagon
msoShapePlaque
msoShapeQuadArrow
msoShapeQuadArrowCallout

msoShapeRectangle
msoShapeRectangularCallout
msoShapeRegularPentagon
msoShapeRightArrow
msoShapeRightArrowCallout
msoShapeRightBrace
msoShapeRightBracket
msoShapeRightTriangle
msoShapeRoundedRectangle
msoShapeRoundedRectangularCallout
msoShapeSmileyFace
msoShapeStripedRightArrow
msoShapeSun
msoShapeTrapezoid
msoShapeUpArrow
msoShapeUpArrowCallout
msoShapeUpDownArrow
msoShapeUpDownArrowCallout
msoShapeUpRibbon
msoShapeUTurnArrow
msoShapeVerticalScroll
msoShapeWave

Left,	Top			Required	Single.	The	position	(in	points)	of	the	upper-left	corner	of
the	AutoShape's	bounding	box	relative	to	the	upper-left	corner	of	the	document.

Width,	Height			Required	Single.	The	width	and	height	of	the	AutoShape's
bounding	box,	in	points.

Remarks

To	change	the	type	of	an	AutoShape	that	you’ve	added,	set	the	AutoShapeType
property.

Example

This	example	adds	a	rectangle	to	myDocument.

Set	myDocument	=	Worksheets(1)

myDocument.Shapes.AddShape	msoShapeRectangle,	50,	50,	100,	200

Show	All

AddTextbox	Method
							

Creates	a	text	box.	Returns	a	Shape	object	that	represents	the	new	text	box.

expression.AddTextbox(Orientation,	Left,	Top,	Width,	Height)

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

Orientation		Required	MsoTextOrientation.	The	orientation	of	the	textbox.

MsoTextOrientation	can	be	one	of	these	MsoTextOrientation	constants.
msoTextOrientationDownward
msoTextOrientationHorizontal
msoTextOrientationHorizontalRotatedFarEast
msoTextOrientationMixed
msoTextOrientationUpward
msoTextOrientationVertical
msoTextOrientationVerticalFarEast

Some	of	these	constants	may	not	be	available	to	you,	depending	on	the
language	support	(U.S.	English,	for	example)	that	you’ve	selected	or	installed.

Left		Required	Single.	The	position	(in	points)	of	the	upper-left	corner	of	the	text
box	relative	to	the	upper-left	corner	of	the	document.

Top		Required	Single.	The	position	(in	points)	of	the	upper-left	corner	of	the	text
box	relative	to	the	top	of	the	document.

Width			Required	Single.	The	width	of	the	text	box,	in	points.

Height			Required	Single.	The	height	of	the	text	box,	in	points.

Example

This	example	adds	a	text	box	that	contains	the	text	"Test	Box"	to	myDocument.

Set	myDocument	=	Worksheets(1)

myDocument.Shapes.AddTextbox(msoTextOrientationHorizontal,	_

				100,	100,	200,	50)	_

				.TextFrame.Characters.Text	=	"Test	Box"

Show	All

AddTextEffect	Method
							

Creates	a	WordArt	object.	Returns	a	Shape	object	that	represents	the	new
WordArt	object.

expression.AddTextEffect(PresetTextEffect,	Text,	FontName,	FontSize,
FontBold,	FontItalic,	Left,	Top)

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

PresetTextEffect		Required	MsoPresetTextEffect.		The	preset	text	effect.

MsoPresetTextEffect	can	be	one	of	these	MsoPresetTextEffect	constants.
msoTextEffect1
msoTextEffect2
msoTextEffect3
msoTextEffect4
msoTextEffect5
msoTextEffect6
msoTextEffect7
msoTextEffect8
msoTextEffect9
msoTextEffect10
msoTextEffect11
msoTextEffect12
msoTextEffect13
msoTextEffect14
msoTextEffect15
msoTextEffect16
msoTextEffect17
msoTextEffect18

msoTextEffect19
msoTextEffect20
msoTextEffect21
msoTextEffect22
msoTextEffect23
msoTextEffect24
msoTextEffect25
msoTextEffect26
msoTextEffect27
msoTextEffect28
msoTextEffect29
msoTextEffect30
msoTextEffectMixed

Text			Required	String.	The	text	in	the	WordArt.

FontName			Required	String.	The	name	of	the	font	used	in	the	WordArt.

FontSize			Required	Single.	The	size	(in	points)	of	the	font	used	in	the	WordArt.

FontBold		Required	MsoTriState.		The	font	used	in	the	WordArt	to	bold.

MsoTriState	can	be	one	of	these	MsoTriState	constants.
msoCTrue
msoFalse
msoTriStateMixed
msoTriStateToggle
msoTrue

FontItalic		Required	MsoTriState.		The	font	used	in	the	WordArt	to	italic.

MsoTriState	can	be	one	of	these	MsoTriState	constants.
msoCTrue
msoFalse
msoTriStateMixed

msoTriStateToggle
msoTrue

Left			Required	Single.	The	position	(in	points)	of	the	upper-left	corner	of	the
WordArt's	bounding	box	relative	to	the	upper-left	corner	of	the	document.

Top			Required	Single.	The	position	(in	points)	of	the	upper-left	corner	of	the
WordArt's	bounding	box	relative	to	the	top	of	the	document.

Remarks

When	you	add	WordArt	to	a	document,	the	height	and	width	of	the	WordArt	are
automatically	set	based	on	the	size	and	amount	of	text	you	specify.

Example

This	example	adds	WordArt	that	contains	the	text	"Test"	to	myDocument.

Set	myDocument	=	Worksheets(1)

Set	newWordArt	=	myDocument.Shapes.AddTextEffect(_

				PresetTextEffect:=msoTextEffect1,	Text:="Test",	_

				FontName:="Arial	Black",	FontSize:=36,	_

				FontBold:=msoFalse,	FontItalic:=msoFalse,	Left:=10,	_

				Top:=10)

AddToFavorites	Method
							

Adds	a	shortcut	to	the	workbook	or	hyperlink	to	the	Favorites	folder.

expression.AddToFavorites

expression			Required.	An	expression	that	returns	a	Workbook	or	Hyperlink
object.

Example

This	example	adds	a	shortcut	to	the	active	workbook	to	the	Favorites	folder.

ActiveWorkbook.AddToFavorites

AdvancedFilter	Method
							

Filters	or	copies	data	from	a	list	based	on	a	criteria	range.	If	the	initial	selection
is	a	single	cell,	that	cell's	current	region	is	used.		Variant.

expression.AdvancedFilter(Action,	CriteriaRange,	CopyToRange,	Unique)

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

Action		Required	XlFilterAction.

XlFilterAction	can	be	one	of	these	XlFilterAction	constants.
xlFilterCopy
xlFilterInPlace

CriteriaRange			Optional	Variant.	The	criteria	range.	If	this	argument	is
omitted,	there	are	no	criteria.

CopyToRange			Optional	Variant.	The	destination	range	for	the	copied	rows	if
Action	is	xlFilterCopy.	Otherwise,	this	argument	is	ignored.

Unique			Optional	Variant.	True	to	filter	unique	records	only.	False	to	filter	all
records	that	meet	the	criteria.	The	default	value	is	False.

Example

This	example	filters	a	database	(named	"Database")	based	on	a	criteria	range
named	"Criteria."

Range("Database").AdvancedFilter	_

				Action:=xlFilterInPlace,	_

				CriteriaRange:=Range("Criteria")

Align	Method
							

Aligns	the	shapes	in	the	specified	range	of	shapes.

expression.Align(AlignCmd,	RelativeTo)

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

AlignCmd		Required	MsoAlignCmd.		Specifies	the	way	the	shapes	in	the
specified	shape	range	are	to	be	aligned.

MsoAlignCmd	can	be	one	of	these	MsoAlignCmd	constants.
msoAlignCenters
msoAlignMiddles
msoAlignTops
msoAlignBottoms
msoAlignLefts
msoAlignRights

RelativeTo		Required	MsoTriState.	Not	used	in	Microsoft	Excel.	Must	be	False.

MsoTriState	can	be	one	of	these	MsoTriState	constants.
msoCTrue
msoFalse
msoTriStateMixed
msoTriStateToggle
msoTrue

Example

This	example	aligns	the	left	edges	of	all	the	shapes	in	the	specified	range	in
myDocument	with	the	left	edge	of	the	leftmost	shape	in	the	range.

Set	myDocument	=	Worksheets(1)

myDocument.Shapes.SelectAll

Selection.ShapeRange.Align	msoAlignLefts,	False

Apply	Method
							

Applies	to	the	specified	shape	formatting	that’s	been	copied	by	using	the	PickUp
method.

expression.Apply

expression			Required.	An	expression	that	returns	a	Shape	or	ShapeRange
object.

Example

This	example	copies	the	formatting	of	shape	one	on	myDocument	and	then
applies	the	copied	formatting	to	shape	two.

Set	myDocument	=	Worksheets(1)

With	myDocument

				.Shapes(1).PickUp

				.Shapes(2).Apply

End	With

Show	All

ApplyCustomType	Method
							

ApplyCustomType	method	as	it	applies	to	the	Series	object.

Applies	a	standard	or	custom	chart	type	to	a	series.

expression.ApplyCustomType(ChartType)

expression			Required.	An	expression	that	returns	one	of	the	above	objects.

ChartType		Required	XlChartType.		A	standard	chart	type.

XlChartType	can	be	one	of	these	XlChartType	constants.
xlLine
xlLineMarkersStacked
xlLineStacked
xlPie
xlPieOfPie
xlPyramidBarStacked
xlPyramidCol
xlPyramidColClustered
xlPyramidColStacked
xlPyramidColStacked100
xlRadar
xlRadarFilled
xlRadarMarkers
xlStockHLC
xlStockOHLC
xlStockVHLC
xlStockVOHLC
xlSurface
xlSurfaceTopView

xlSurfaceTopViewWireframe
xlSurfaceWireframe
xlXYScatter
xlXYScatterLines
xlXYScatterLinesNoMarkers
xlXYScatterSmooth
xlXYScatterSmoothNoMarkers
xl3DArea
xl3DAreaStacked
xl3DAreaStacked100
xl3DBarClustered
xl3DBarStacked
xl3DBarStacked100
xl3DColumn
xl3DColumnClustered
xl3DColumnStacked
xl3DColumnStacked100
xl3DLine
xl3DPie
xl3DPieExploded
xlArea
xlAreaStacked
xlAreaStacked100
xlBarClustered
xlBarOfPie
xlBarStacked
xlBarStacked100
xlBubble
xlBubble3DEffect
xlColumnClustered
xlColumnStacked
xlColumnStacked100
xlConeBarClustered

xlConeBarStacked
xlConeBarStacked100
xlConeCol
xlConeColClustered
xlConeColStacked
xlConeColStacked100
xlCylinderBarClustered
xlCylinderBarStacked
xlCylinderBarStacked100
xlCylinderCol
xlCylinderColClustered
xlCylinderColStacked
xlCylinderColStacked100
xlDoughnut
xlDoughnutExploded
xlLineMarkers
xlLineMarkersStacked100
xlLineStacked100
xlPieExploded
xlPyramidBarClustered
xlPyramidBarStacked100

ApplyCustomType	method	as	it	applies	to	the	Chart	object.

Applies	a	standard	or	custom	chart	type	to	a	chart.

expression.ApplyCustomType(ChartType,	TypeName)

expression			Required.	An	expression	that	returns	one	of	the	above	objects.

Chart	Type		Required	XlChartType.		A	standard	chart	type.

XlChartType	can	be	one	of	these	XlChartType	constants.
xlLine
xlLineMarkersStacked

xlLineStacked
xlPie
xlPieOfPie
xlPyramidBarStacked
xlPyramidCol
xlPyramidColClustered
xlPyramidColStacked
xlPyramidColStacked100
xlRadar
xlRadarFilled
xlRadarMarkers
xlStockHLC
xlStockOHLC
xlStockVHLC
xlStockVOHLC
xlSurface
xlSurfaceTopView
xlSurfaceTopViewWireframe
xlSurfaceWireframe
xlXYScatter
xlXYScatterLines
xlXYScatterLinesNoMarkers
xlXYScatterSmooth
xlXYScatterSmoothNoMarkers
xl3DArea
xl3DAreaStacked
xl3DAreaStacked100
xl3DBarClustered
xl3DBarStacked
xl3DBarStacked100
xl3DColumn
xl3DColumnClustered
xl3DColumnStacked

xl3DColumnStacked100
xl3DLine
xl3DPie
xl3DPieExploded
xlArea
xlAreaStacked
xlAreaStacked100
xlBarClustered
xlBarOfPie
xlBarStacked
xlBarStacked100
xlBubble
xlBubble3DEffect
xlColumnClustered
xlColumnStacked
xlColumnStacked100
xlConeBarClustered
xlConeBarStacked
xlConeBarStacked100
xlConeCol
xlConeColClustered
xlConeColStacked
xlConeColStacked100
xlCylinderBarClustered
xlCylinderBarStacked
xlCylinderBarStacked100
xlCylinderCol
xlCylinderColClustered
xlCylinderColStacked
xlCylinderColStacked100
xlDoughnut
xlDoughnutExploded
xlLineMarkers

xlLineMarkersStacked100
xlLineStacked100
xlPieExploded
xlPyramidBarClustered
xlPyramidBarStacked100

TypeName		Optional	Variant	(used	only	with	a	Chart	object).	The	name	of	the
custom	chart	type	if	ChartType	specifies	a	custom	chart	gallery.

Example

This	example	applies	the	“Line	with	Data	Markers"	chart	type	to	chart	one.

Charts(1).ApplyCustomType	xlLineMarkers

Show	All

ApplyDataLabels	Method
							

Applies	data	labels	to	a	point,	a	series,	or	all	the	series	in	a	chart.

expression.ApplyDataLabels(Type,	LegendKey,	AutoText,	HasLeaderLines,
ShowSeriesName,	ShowCategoryName,	ShowValue,	ShowPercentage,
ShowBubbleSize,	Separator)

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

Type		Optional	XlDataLabelsType.	The	type	of	data	label	to	apply.

XlDataLabelsType	can	be	one	of	these	XlDataLabelsType	constants.
xlDataLabelsShowBubbleSizes
xlDataLabelsShowLabelAndPercent.		Percentage	of	the	total,	and	category
for	the	point.	Available	only	for	pie	charts	and	doughnut	charts.
xlDataLabelsShowPercent.		Percentage	of	the	total.	Available	only	for	pie
charts	and	doughnut	charts.
xlDataLabelsShowLabel.	Category	for	the	point.
xlDataLabelsShowNone.	No	data	labels.
xlDataLabelsShowValue.	default.	Value	for	the	point	(assumed	if	this
argument	isn't	specified).

LegendKey		Optional	Variant.	True	to	show	the	legend	key	next	to	the	point.
The	default	value	is	False.

AutoText		Optional	Variant.	True	if	the	object	automatically	generates
appropriate	text	based	on	content.

HasLeaderLines		Optional	Variant.		For	the	Chart	and	Series	objects,	True	if
the	series	has	leader	lines.

ShowSeriesName		Optional	Variant.		The	series	name	for	the	data	label.

ShowCategoryName		Optional	Variant.		The	category	name	for	the	data	label.

ShowValue		Optional	Variant.		The	value	for	the	data	label.

ShowPercentage		Optional	Variant.		The	percentage	for	the	data	label.

ShowBubbleSize		Optional	Variant.		The	bubble	size	for	the	data	label.

Separator		Optional	Variant.		The	separator	for	the	data	label.

Example

This	example	applies	category	labels	to	series	one	in	Chart1.

Charts("Chart1").SeriesCollection(1).	_

				ApplyDataLabels	Type:=xlDataLabelsShowLabel

ApplyNames	Method
							

Applies	names	to	the	cells	in	the	specified	range.

expression.ApplyNames(Names,	IgnoreRelativeAbsolute,
UseRowColumnNames,	OmitColumn,	OmitRow,	Order,	AppendLast)

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

Names			Optional	Variant.	An	array	of	the	names	to	be	applied.	If	this	argument
is	omitted,	all	names	on	the	sheet	are	applied	to	the	range.

IgnoreRelativeAbsolute			Optional	Variant.	True	to	replace	references	with
names,	regardless	of	the	reference	types	of	either	the	names	or	references.	False
to	replace	absolute	references	only	with	absolute	names,	relative	references	only
with	relative	names,	and	mixed	references	only	with	mixed	names.	The	default
value	is	True.

UseRowColumnNames			Optional	Variant.	True	to	use	the	names	of	row	and
column	ranges	that	contain	the	specified	range	if	names	for	the	range	cannot	be
found.	False	to	ignore	the	OmitColumn	and	OmitRow	arguments.	The	default
value	is	True.

OmitColumn			Optional	Variant.	True	to	replace	the	entire	reference	with	the
row-oriented	name.	The	column-oriented	name	can	be	omitted	only	if	the
referenced	cell	is	in	the	same	column	as	the	formula	and	is	within	a	row-oriented
named	range.	The	default	value	is	True.

OmitRow			Optional	Variant.	True	to	replace	the	entire	reference	with	the
column-oriented	name.	The	row-oriented	name	can	be	omitted	only	if	the
referenced	cell	is	in	the	same	row	as	the	formula	and	is	within	a	column-oriented
named	range.	The	default	value	is	True.

Order		Optional	XlApplyNamesOrder.		Determines	which	range	name	is	listed

first	when	a	cell	reference	is	replaced	by	a	row-oriented	and	column-oriented
range	name.

XlApplyNamesOrder	can	be	one	of	these	XlApplyNamesOrder	constants.
xlColumnThenRow
xlRowThenColumn	default

AppendLast			Optional	Variant.	True	to	replace	the	definitions	of	the	names	in
Names	and	also	replace	the	definitions	of	the	last	names	that	were	defined.	False
to	replace	the	definitions	of	the	names	in	Names	only.	The	default	value	is	False.

Remarks

You	can	use	the	Array	function	to	create	the	list	of	names	for	the	Names
argument.

If	you	want	to	apply	names	to	the	entire	sheet,	use	Cells.ApplyNames.

You	cannot	"unapply"	names;	to	delete	names,	use	the	Delete	method.

Example

This	example	applies	names	to	the	entire	sheet.

Cells.ApplyNames	Names:=Array("Sales",	"Profits")

ApplyOutlineStyles	Method
							

Applies	outlining	styles	to	the	specified	range.

expression.ApplyOutlineStyles

expression			Required.	An	expression	that	returns	a	Range	object.

Example

The	following	example	applies	automatic	outlining	styles	to	the	selection.	The
selection	must	include	the	entire	outline	range	on	a	worksheet.

Selection.ApplyOutlineStyles

AreaGroups	Method
							

On	a	2-D	chart,	returns	an	object	that	represents	either	a	single	area	chart	group
(a	ChartGroup	object)	or	a	collection	of	the	area	chart	groups	(a	ChartGroups
collection).

expression.AreaGroups(Index)

expression			Required.	An	expression	that	returns	a	Chart	object.

Index			Optional	Variant.	The	chart	group	number.

Example

This	example	turns	on	drop	lines	for	the	2-D	area	chart	group.

Charts(1).AreaGroups(1).HasDropLines	=	True

Arrange	Method
							

Arranges	the	windows	on	the	screen.	Varint.

expression.Arrange(ArrangeStyle,	ActiveWorkbook,	SyncHorizontal,
SyncVertical)

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list

ArrangeStyle		Optional	XlArrangeStyle.

XlArrangeStyle	can	be	one	of	these	XlArrangeStyle	constants.
xlArrangeStyleCascade.	Windows	are	cascaded.
xlArrangeStyleTiled	default.		Windows	are	tiled
xlArrangeStyleHorizontal.		Windows	are	arranged	horizontally.
xlArrangeStyleVertical.	Windows	are	arranged	vertically.

ActiveWorkbook			Optional	Variant.	True	to	arrange	only	the	visible	windows
of	the	active	workbook.	False	to	arrange	all	windows.	The	default	value	is	False.

SyncHorizontal			Optional	Variant.	Ignored	if	ActiveWorkbook	is	False	or
omitted.	True	to	synchronize	the	windows	of	the	active	workbook	when
scrolling	horizontally.	False	to	not	synchronize	the	windows.	The	default	value
is	False.

SyncVertical			Optional	Variant.	Ignored	if	ActiveWorkbook	is	False	or	omitted.
True	to	synchronize	the	windows	of	the	active	workbook	when	scrolling
vertically.	False	to	not	synchronize	the	windows.	The	default	value	is	False.

Example

This	example	tiles	all	the	windows	in	the	application.

Application.Windows.Arrange	ArrangeStyle:=xlArrangeStyleTiled

AutoComplete	Method
							

Returns	an	AutoComplete	match	from	the	list.	If	there’s	no	AutoComplete	match
or	if	more	than	one	entry	in	the	list	matches	the	string	to	complete,	this	method
returns	an	empty	string.

expression.AutoComplete(String)

expression			Required.	An	expression	that	returns	a	Range	object	(must	be	a
single	cell).

String			Required	String.	The	string	to	complete.

Remarks

This	method	works	even	if	the	AutoComplete	feature	is	disabled.

Example

This	example	returns	the	AutoComplete	match	for	the	string	segment	“Ap."	An
AutoComplete	match	is	made	if	the	column	containing	cell	A5	contains	a
contiguous	list	and	one	of	the	entries	in	the	list	contains	a	match	for	the	string.

s	=	Worksheets(1).Range("A5").AutoComplete("Ap")

If	Len(s)	>	0	Then

				MsgBox	"Completes	to	"	&	s

Else

				MsgBox	"Has	no	completion"

End	If

AutoFill	Method
							

Performs	an	autofill	on	the	cells	in	the	specified	range.	Variant.

expression.AutoFill(Destination,	Type)

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

Destination			Required	Range	object.	The	cells	to	be	filled.	The	destination	must
include	the	source	range.

Type		Optional	XlAutoFillType.	Specifies	the	fill	type.

XlAutoFillType	can	be	one	of	these	XlAutoFillType	constants.
xlFillDays
xlFillFormats
xlFillSeries
xlFillWeekdays
xlGrowthTrend
xlFillCopy
xlFillDefault	default
xlFillMonths
xlFillValues
xlFillYears
xlLinearTrend
If	this	argument	is	xlFillDefault	or	omitted,	Microsoft	Excel	selects	the	most
appropriate	fill	type,	based	on	the	source	range.

Example

This	example	performs	an	autofill	on	cells	A1:A20	on	Sheet1,	based	on	the
source	range	A1:A2	on	Sheet1.	Before	running	this	example,	type	1	in	cell	A1
and	type	2	in	cell	A2.

Set	sourceRange	=	Worksheets("Sheet1").Range("A1:A2")

Set	fillRange	=	Worksheets("Sheet1").Range("A1:A20")

sourceRange.AutoFill	Destination:=fillRange

AutoFilter	Method
							

Filters	a	list	using	the	AutoFilter.	Variant.

Note			Apply	the	AutoFilter	property	to	a	Worksheet	object	to	return	an
AutoFilter	object.

expression.AutoFilter(Field,	Criteria1,	Operator,	Criteria2,	VisibleDropDown)

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

Field			Optional	Variant.	The	integer	offset	of	the	field	on	which	you	want	to
base	the	filter	(from	the	left	of	the	list;	the	leftmost	field	is	field	one).

Criteria1			Optional	Variant.	The	criteria	(a	string;	for	example,	"101").	Use	"="
to	find	blank	fields,	or	use	"<>"	to	find	nonblank	fields.	If	this	argument	is
omitted,	the	criteria	is	All.	If	Operator	is	xlTop10Items,	Criteria1	specifies	the
number	of	items	(for	example,	"10").

Operator		Optional	XlAutoFilterOperator.

XlAutoFilterOperator	can	be	one	of	these	XlAutoFilterOperator	constants.
xlAnd	default
xlBottom10Items
xlBottom10Percent
xlOr
xlTop10Items
xlTop10Percent
Use	xlAnd	and	xlOr	with	Criteria1	and	Criteria2	to	construct	compound
criteria.

Criteria2			Optional	Variant.	The	second	criteria	(a	string).	Used	with	Criteria1
and	Operator	to	construct	compound	criteria.

VisibleDropDown			Optional	Variant.	True	to	display	the	AutoFilter	drop-down
arrow	for	the	filtered	field.	False	to	hide	the	AutoFilter	drop-down	arrow	for	the
filtered	field.	True	by	default.

Remarks

If	you	omit	all	the	arguments,	this	method	simply	toggles	the	display	of	the
AutoFilter	drop-down	arrows	in	the	specified	range.

Example

This	example	filters	a	list	starting	in	cell	A1	on	Sheet1	to	display	only	the	entries
in	which	field	one	is	equal	to	the	string	"Otis".	The	drop-down	arrow	for	field
one	will	be	hidden.

Worksheets("Sheet1").Range("A1").AutoFilter	_

				field:=1,	_

				Criteria1:="Otis"

				VisibleDropDown:=False

AutoFit	Method
							

Changes	the	width	of	the	columns	in	the	range	or	the	height	of	the	rows	in	the
range	to	achieve	the	best	fit.

expression.AutoFit

expression			Required.	An	expression	that	returns	a	Range	object.	Must	be	a	row
or	a	range	of	rows,	or	a	column	or	a	range	of	columns.	Otherwise,	this	method
generates	an	error.

Remarks

One	unit	of	column	width	is	equal	to	the	width	of	one	character	in	the	Normal
style.

Example

This	example	changes	the	width	of	columns	A	through	I	on	Sheet1	to	achieve	the
best	fit.

Worksheets("Sheet1").Columns("A:I").AutoFit

This	example	changes	the	width	of	columns	A	through	E	on	Sheet1	to	achieve
the	best	fit,	based	only	on	the	contents	of	cells	A1:E1.

Worksheets("Sheet1").Range("A1:E1").Columns.AutoFit

Show	All

AutoFormat	Method
							

AutoFormat	method	as	it	applies	to	the	Range	object.

Automatically	formats	the	specified	range,	using	a	predefined	format.

expression.AutoFormat(Format,	Number,	Font,	Alignment,	Border,	Pattern,
Width)

expression			Required.	An	expression	that	returns	one	of	the	above	objects.

Format		Optional	XlRangeAutoFormat.	The	specified	AutoFormat.

XlRangeAutoFormat	can	be	one	of	these	XlRangeAutoFormat	constants.
xlRangeAutoFormat3DEffects1
xlRangeAutoFormat3DEffects2
xlRangeAutoFormatAccounting1
xlRangeAutoFormatAccounting2
xlRangeAutoFormatAccounting3
xlRangeAutoFormatAccounting4
xlRangeAutoFormatClassic1	default
xlRangeAutoFormatClassic2
xlRangeAutoFormatClassic3
xlRangeAutoFormatClassicPivotTable
xlRangeAutoFormatColor1
xlRangeAutoFormatColor2
xlRangeAutoFormatColor3
xlRangeAutoFormatList1
xlRangeAutoFormatList2
xlRangeAutoFormatList3
xlRangeAutoFormatLocalFormat1
xlRangeAutoFormatLocalFormat2

xlRangeAutoFormatLocalFormat3
xlRangeAutoFormatLocalFormat4
xlRangeAutoFormatNone
xlRangeAutoFormatPTNone
xlRangeAutoFormatReport1
xlRangeAutoFormatReport10
xlRangeAutoFormatReport2
xlRangeAutoFormatReport3
xlRangeAutoFormatReport4
xlRangeAutoFormatReport5
xlRangeAutoFormatReport6
xlRangeAutoFormatReport7
xlRangeAutoFormatReport8
xlRangeAutoFormatReport9
xlRangeAutoFormatSimple
xlRangeAutoFormatTable1
xlRangeAutoFormatTable10
xlRangeAutoFormatTable2
xlRangeAutoFormatTable3
xlRangeAutoFormatTable4
xlRangeAutoFormatTable5
xlRangeAutoFormatTable6
xlRangeAutoFormatTable7
xlRangeAutoFormatTable8
xlRangeAutoFormatTable9

The	default	constant	is	xlRangeAutoFormatClassic1.	Some	of	these	constants
may	not	be	available	to	you,	depending	on	the	language	support	(U.S.	English,
for	example)	that	you’ve	selected	or	installed.

Number		Optional	Variant.	True	to	include	number	formats	in	the	AutoFormat.
The	default	value	is	True.

Font		Optional	Variant.	True	to	include	font	formats	in	the	AutoFormat.	The

default	value	is	True.

Alignment		Optional	Variant.	True	to	include	alignment	in	the	AutoFormat.
The	default	value	is	True.

Border		Optional	Variant.	True	to	include	border	formats	in	the	AutoFormat.
The	default	value	is	True.

Pattern		Optional	Variant.	True	to	include	pattern	formats	in	the	AutoFormat.
The	default	value	is	True.

Width		Optional	Variant.	True	to	include	column	width	and	row	height	in	the
AutoFormat.	The	default	value	is	True.

AutoFormat	method	as	it	applies	to	the	Chart	object.

Automatically	formats	the	specified	chart.

expression.AutoFormat(Gallery,	Format)

expression			Required.	An	expression	that	returns	one	of	the	above	objects.

Gallery		Required	Long.	The	specified	Gallery.

Format		Optional	Variant.	The	specified	AutoFormat.

Remarks

If	the	range	is	a	single	cell,	this	method	also	formats	the	active	region
surrounding	the	cell.	In	other	words,	the	following	two	statements	are
equivalent:

Cells("A1").AutoFormat

Cells("A1").CurrentRegion.AutoFormat

Example

This	example	formats	cells	A1:D8	on	Sheet1,	using	a	predefined	format.

Worksheets("Sheet1").Range("A1:D8").	_

				AutoFormat	Format:=xlRangeAutoFormatClassic1

AutomaticLength	Method
							

Specifies	that	the	first	segment	of	the	callout	line	(the	segment	attached	to	the
text	callout	box)	be	scaled	automatically	when	the	callout	is	moved.	Use	the
CustomLength	method	to	specify	that	the	first	segment	of	the	callout	line	retain
the	fixed	length	returned	by	the	Length	property	whenever	the	callout	is	moved.
Applies	only	to	callouts	whose	lines	consist	of	more	than	one	segment	(types
msoCalloutThree	and	msoCalloutFour).

expression.AutomaticLength

expression			Required.	An	expression	that	returns	a	CalloutFormat	object.

Remarks

Applying	this	method	sets	the	AutoLength	property	to	True.

Example

This	example	toggles	between	an	automatically	scaling	first	segment	and	one
with	a	fixed	length	for	the	callout	line	for	shape	one	on	myDocument.	For	the
example	to	work,	shape	one	must	be	a	callout.

Set	myDocument	=	Worksheets(1)

With	myDocument.Shapes(1).Callout

				If	.AutoLength	Then

								.CustomLength	50

				Else

								.AutomaticLength

				End	If

End	With

AutoOutline	Method
							

Automatically	creates	an	outline	for	the	specified	range.	If	the	range	is	a	single
cell,	Microsoft	Excel	creates	an	outline	for	the	entire	sheet.	The	new	outline
replaces	any	existing	outline.

expression.AutoOutline

expression			Required.	An	expression	that	returns	a	Range	object.

Example

This	example	creates	an	outline	for	the	range	A1:G37	on	Sheet1.	The	range	must
contain	either	a	summary	row	or	a	summary	column.

Worksheets("Sheet1").Range("A1:G37").AutoOutline

AutoShow	Method
							

Displays	the	number	of	top	or	bottom	items	for	a	row,	page,	or	column	field	in
the	specified	PivotTable	report.

expression.AutoShow(Type,	Range,	Count,	Field)

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list

Type			Required	Long.	Use	xlAutomatic	to	cause	the	specified	PivotTable	report
to	show	the	items	that	match	the	specified	criteria.	Use	xlManual	to	disable	this
feature.

Range			Required	Long.	The	location	at	which	to	start	showing	items.	Can	be
either	of	the	following	constants:	xlTop	or	xlBottom.

Count			Required	Long.	The	number	of	items	to	be	shown.

Field			Required	String.	The	name	of	the	base	data	field.	You	must	specify	the
unique	name	(as	returned	from	the	SourceName	property),	and	not	the	displayed
name.

Example

This	example	shows	only	the	top	two	companies,	based	on	the	sum	of	sales:

ActiveSheet.PivotTables("Pivot1").PivotFields("Company")	_

				.AutoShow		xlAutomatic,	xlTop,	2,	"Sum	of	Sales"

AutoSort	Method
							

Establishes	automatic	field-sorting	rules	for	PivotTable	reports.

expression.AutoSort(Order,	Field)

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

Order		Required	XlSortOrder.		The	sort	order.

XlSortOrder	can	be	one	of	these	XlSortOrder	constants.
xlAscending
xlDescending
xlManual.	To	disable	automatic	sorting.

Field			Required	String.	The	name	of	the	sort	key	field.	You	must	specify	the
unique	name	(as	returned	from	the	SourceName	property),	and	not	the	displayed
name.

Example

This	example	sorts	the	Company	field	in	descending	order,	based	on	the	sum	of
sales.

ActiveSheet.PivotTables(1).PivotField("Company")	_

				.AutoSort	xlDescending,	"Sum	of	Sales"

Show	All

Axes	Method
							

Returns	an	object	that	represents	either	a	single	axis	or	a	collection	of	the	axes
on	the	chart.

expression.Axes(Type,	AxisGroup)

expression			Required.	An	expression	that	returns	a	Chart	object.

Type			Optional	Variant.	Specifies	the	axis	to	return.	Can	be	one	of	the
following	XlAxisType	constants:	xlValue,	xlCategory,	or	xlSeriesAxis
(xlSeriesAxis	is	valid	only	for	3-D	charts).

AxisGroup		Optional	XlAxisGroup.	Specifies	the	axis	group.	If	this	argument	is
omitted,	the	primary	group	is	used.	3-D	charts	have	only	one	axis	group.

XlAxisGroup	can	be	one	of	these	XlAxisGroup	constants.
xlPrimary	default
xlSecondary

Example

This	example	adds	an	axis	label	to	the	category	axis	in	Chart1.

With	Charts("Chart1").Axes(xlCategory)

				.HasTitle	=	True

				.AxisTitle.Text	=	"July	Sales"

End	With

This	example	turns	off	major	gridlines	for	the	category	axis	in	Chart1.

Charts("Chart1").Axes(xlCategory).HasMajorGridlines	=	False

This	example	turns	off	all	gridlines	for	all	axes	in	Chart1.

For	Each	a	In	Charts("Chart1").Axes

				a.HasMajorGridlines	=	False

				a.HasMinorGridlines	=	False

Next	a

BarGroups	Method
							

On	a	2-D	chart,	returns	an	object	that	represents	either	a	single	bar	chart	group	(a
ChartGroup	object)	or	a	collection	of	the	bar	chart	groups	(a	ChartGroups
collection).

expression.BarGroups(Index)

expression			Required.	An	expression	that	returns	a	Chart	object.

Index			Optional	Variant.	Specifies	the	chart	group.

Example

This	example	sets	the	space	between	bar	clusters	in	the	2-D	bar	chart	group	to	be
50	percent	of	the	bar	width.

Charts(1).BarGroups(1).GapWidth	=	50

BeginConnect	Method
							

Attaches	the	beginning	of	the	specified	connector	to	a	specified	shape.	If	there’s
already	a	connection	between	the	beginning	of	the	connector	and	another	shape,
that	connection	is	broken.	If	the	beginning	of	the	connector	isn’t	already
positioned	at	the	specified	connecting	site,	this	method	moves	the	beginning	of
the	connector	to	the	connecting	site	and	adjusts	the	size	and	position	of	the
connector.	Use	the	EndConnect	method	to	attach	the	end	of	the	connector	to	a
shape.

expression.BeginConnect(ConnectedShape,	ConnectionSite)

expression			Required.	An	expression	that	returns	a	ConnectorFormat	object.

ConnectedShape			Required	Shape	object.	The	shape	to	attach	the	beginning	of
the	connector	to.	The	specified	Shape	object	must	be	in	the	same	Shapes
collection	as	the	connector.

ConnectionSite			Required	Long.	A	connection	site	on	the	shape	specified	by
ConnectedShape.	Must	be	an	integer	between	1	and	the	integer	returned	by	the
ConnectionSiteCount	property	of	the	specified	shape.	If	you	want	the
connector	to	automatically	find	the	shortest	path	between	the	two	shapes	it
connects,	specify	any	valid	integer	for	this	argument	and	then	use	the
RerouteConnections	method	after	the	connector	is	attached	to	shapes	at	both
ends.

Remarks

When	you	attach	a	connector	to	an	object,	the	size	and	position	of	the	connector
are	automatically	adjusted,	if	necessary.

Example

This	example	adds	two	rectangles	to	myDocument	and	connects	them	with	a
curved	connector.	Notice	that	the	RerouteConnections	method	makes	it
irrelevant	what	values	you	supply	for	the	ConnectionSite	arguments	used	with
the	BeginConnect	and	EndConnect	methods.

Set	myDocument	=	Worksheets(1)

Set	s	=	myDocument.Shapes

Set	firstRect	=	s.AddShape(msoShapeRectangle,	100,	50,	200,	100)

Set	secondRect	=	s.AddShape(msoShapeRectangle,	300,	300,	200,	100)

Set	c	=	s.AddConnector(msoConnectorCurve,	0,	0,	100,	100)

with	c.ConnectorFormat

				.BeginConnect	ConnectedShape:=firstRect,	ConnectionSite:=1

				.EndConnect	ConnectedShape:=secondRect,	ConnectionSite:=1

				c.RerouteConnections

End	With

BeginDisconnect	Method
							

Detaches	the	beginning	of	the	specified	connector	from	the	shape	it’s	attached
to.	This	method	doesn’t	alter	the	size	or	position	of	the	connector:	the	beginning
of	the	connector	remains	positioned	at	a	connection	site	but	is	no	longer
connected.	Use	the	EndDisconnect	method	to	detach	the	end	of	the	connector
from	a	shape.

expression.BeginDisconnect

expression			Required.	An	expression	that	returns	a	ConnectorFormat	object.

Example

This	example	adds	two	rectangles	to	myDocument,	attaches	them	with	a
connector,	automatically	reroutes	the	connector	along	the	shortest	path,	and	then
detaches	the	connector	from	the	rectangles.

Set	myDocument	=	Worksheets(1)

Set	s	=	myDocument.Shapes

Set	firstRect	=	s.AddShape(msoShapeRectangle,	100,	50,	200,	100)

Set	secondRect	=	s.AddShape(msoShapeRectangle,	300,	300,	200,	100)

Set	c	=	s.AddConnector(msoConnectorCurve,	0,	0,	0,	0)

With	c.ConnectorFormat

				.BeginConnect	firstRect,	1

				.EndConnect	secondRect,	1

				c.RerouteConnections

				.BeginDisconnect

				.EndDisconnect

End	With

BorderAround	Method
							

Adds	a	border	to	a	range	and	sets	the	Color,	LineStyle,	and	Weight	properties
for	the	new	border.	Variant.

expression.BorderAround(LineStyle,	Weight,	ColorIndex,	Color)

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

LineStyle		Optional	XlLineStyle.		The	line	style	for	the	border.

XlLineStyle	can	be	one	of	these	XlLineStyle	constants.
xlContinuous	default.
xlDash
xlDashDot
xlDashDotDot
xlDot
xlDouble
xlLineStlyeNone
xlSlantDashDot
xlLineStlyeNone

Weight		Optional	XlBorderWeight.		The	border	weight.

XlBorderWeight	can	be	one	of	these	XlBorderWeight	constants.
xlHairline
xlMedium
xlThick
xlThin	default

ColorIndex		Optional	XlColorIndex.		The	border	color,	as	an	index	into	the

current	color	palette	or	as	a	XlColorIndex	constant.

XlColorIndex	can	be	one	of	these	XlColorIndex	constants.
xlColorIndexAutomatic	default
xlColorIndexNone

Color		Optional	Variant.		The	border	color,	as	an	RGB	value.

Remarks

You	must	specify	either	ColorIndex	or	Color,	but	not	both.

You	can	specify	either	LineStyle	or	Weight,	but	not	both.	If	you	don't	specify
either	argument,	Microsoft	Excel	uses	the	default	line	style	and	weight.

This	method	outlines	the	entire	range	without	filling	it	in.	To	set	the	borders	of
all	the	cells,	you	must	set	the	Color,	LineStyle,	and	Weight	properties	for	the
Borders	collection.	To	clear	the	border,	you	must	set	the	LineStyle	property	to
xlLineStyleNone	for	all	the	cells	in	the	range.

Example

This	example	adds	a	thick	red	border	around	the	range	A1:D4	on	Sheet1.

Worksheets("Sheet1").Range("A1:D4").BorderAround	_

								ColorIndex:=3,	Weight:=xlThick

Show	All

BreakLink	Method
							

Converts	formulas	linked	to	other	Microsoft	Excel	sources	or	OLE	sources	to
values.

expression.BreakLink(Name,	Type)

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

Name		Required	String.	The	name	of	the	link.

Type		Required	XlLinkType.	The	type	of	link.

XlLinkType	can	be	one	of	these	XlLinkType	constants.
xlLinkTypeExcelLinks		A	link	to	a	Microsoft	Excel	souce.
xlLinkTypeOLELinks		A	link	to	an	OLE	source.

Example

In	this	example,	Microsoft	Excel	converts	the	first	link	(an	Excel	link	type)	in
the	active	workbook.	This	example	assumes	at	least	one	formula	exists	in	the
active	workbook	that	links	to	another	Excel	source.

Sub	UseBreakLink()

				Dim	astrLinks	As	Variant

				'	Define	variable	as	an	Excel	link	type.

				astrLinks	=	ActiveWorkbook.LinkSources(Type:=xlLinkTypeExcelLinks)

				'	Break	the	first	link	in	the	active	workbook.

				ActiveWorkbook.BreakLink	_

								Name:=astrLinks(1),	_

								Type:=xlLinkTypeExcelLinks

End	Sub

BringToFront	Method
							

Brings	the	object	to	the	front	of	the	z-order.

expression.BringToFront

expression			Required.	An	expression	that	returns	an	object	in	the	Applies	To	list.

Example

This	example	brings	embedded	chart	one	on	Sheet1	to	the	front	of	the	z-order.

Worksheets("Sheet1").ChartObjects(1).BringToFront

Show	All

BuildFreeform	Method
							

Builds	a	freeform	object.	Returns	a	FreeformBuilder	object	that	represents	the
freeform	as	it	is	being	built.	Use	the	AddNodes	method	to	add	segments	to	the
freeform.	After	you	have	added	at	least	one	segment	to	the	freeform,	you	can	use
the	ConvertToShape	method	to	convert	the	FreeformBuilder	object	into	a
Shape	object	that	has	the	geometric	description	you’ve	defined	in	the
FreeformBuilder	object.

expression.BuildFreeform(EditingType,	X1,	Y1)

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

EditingType		Required	MsoEditingType.		The	editing	property	of	the	first	node.

MsoEditingType	can	be	one	of	these	MsoEditingType	constants.
msoEditingAuto
msoEditingCorner
Cannot	be	msoEditingSmooth	or	msoEditingSymmetric.

X1		Required	Single.		The	position	(in	points)	of	the	first	node	in	the	freeform
drawing	relative	to	the	upper-left	corner	of	the	document.

Y1		Required	Single.		The	position	(in	points)	of	the	first	node	in	the	freeform
drawing	relative	to	the	upper-left	corner	of	the	document.

Example

This	example	adds	a	freeform	with	five	vertices	to	myDocument.

Set	myDocument	=	Worksheets(1)

With	myDocument.Shapes.BuildFreeform(msoEditingCorner,	360,	200)

				.AddNodes	msoSegmentCurve,	msoEditingCorner,	_

								380,	230,	400,	250,	450,	300

				.AddNodes	msoSegmentCurve,	msoEditingAuto,	480,	200

				.AddNodes	msoSegmentLine,	msoEditingAuto,	480,	400

				.AddNodes	msoSegmentLine,	msoEditingAuto,	360,	200

				.ConvertToShape

End	With

Calculate	Method
							

Calculates	all	open	workbooks,	a	specific	worksheet	in	a	workbook,	or	a
specified	range	of	cells	on	a	worksheet,	as	shown	in	the	following	table.

To	calculate Follow	this	example
All	open	workbooks Application.Calculate	(or	just	Calculate)
A	specific	worksheet Worksheets(1).Calculate
A	specified	range Worksheets(1).Rows(2).Calculate

expression.Calculate

expression			Optional	for	Application,	required	for	Worksheet	and	Range.	An
expression	that	returns	an	object	in	the	Applies	To	list.

Example

This	example	calculates	the	formulas	in	columns	A,	B,	and	C	in	the	used	range
on	Sheet1.

Worksheets("Sheet1").UsedRange.Columns("A:C").Calculate

CalculatedFields	Method
							

Returns	a	CalculatedFields	collection	that	represents	all	the	calculated	fields	in
the	specified	PivotTable	report.	Read-only.

expression.CalculatedFields

expression			Required.	An	expression	that	returns	a	PivotTable	object.

Example

This	example	prevents	the	calculated	fields	from	being	dragged	to	the	row
position.

For	Each	fld	in	_

								Worksheets(1).PivotTables("Pivot1")	_

								.CalculatedFields

				fld.DragToRow	=	False

Next

Show	All

CalculatedItems	Method
							

Returns	a	CalculatedItems	collection	that	represents	all	the	calculated	items	in
the	specified	PivotTable	report.	Read-only.

expression.CalculatedItems

expression			Required.	An	expression	that	returns	a	PivotField	object.

Remarks

For	OLAP	data	sources,	this	method	returns	a	zero-length	collection.

Example

This	example	creates	a	list	of	calculated	items	and	their	formulas.

Set	pt	=	Worksheets(1).PivotTables(1)

For	Each	ci	In	pt.PivotFields("Sales").CalculatedItems

				r	=	r	+	1

				With	Worksheets(2)

								.Cells(r,	1).Value	=	ci.Name

								.Cells(r,	2).Value	=	ci.Formula

				End	With

Next

CalculateFull	Method
							

Forces	a	full	calculation	of	the	data	in	all	open	workbooks.

expression.CalculateFull

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

Example

This	example	compares	the	version	of	Microsoft	Excel	with	the	version	of	Excel
that	the	workbook	was	last	calculated	in.	If	the	two	version	numbers	are
different,	a	full	calculation	of	the	data	in	all	open	workbooks	is	performed.

If	Application.CalculationVersion	<>	_

				Workbooks(1).CalculationVersion	Then

				Application.CalculateFull

End	If

CalculateFullRebuild	Method
							

For	all	open	workbooks,	forces	a	full	calculation	of	the	data	and	rebuilds	the
dependencies.

expression.CalculateFullRebuild

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

Remarks

Dependencies	are	the	formulas	that	depend	on	other	cells.	For	example,	the
formula	"=A1"	depends	on	cell	A1.	The	CalculateFullRebuild	method	is
similar	to	re-entering	all	formulas.

Example

This	example	compares	the	version	of	Microsoft	Excel	with	the	version	of	Excel
in	which	the	workbook	was	last	calculated.	If	the	two	version	numbers	are
different,	a	full	calculation	of	the	data	in	all	open	workbooks	is	performed	and
the	dependencies	are	rebuilt.

Sub	UseCalculateFullRebuild()

				If	Application.CalculationVersion	<>	_

								Workbooks(1).CalculationVersion	Then

								Application.CalculateFullRebuild

				End	If

End	Sub

CancelRefresh	Method
							

Cancels	all	background	queries	for	the	specified	query	table.	Use	the	Refreshing
property	to	determine	whether	a	background	query	is	currently	in	progress.

expression.CancelRefresh

expression			Required.	An	expression	that	returns	a	QueryTable	object.

Example

This	example	cancels	a	query	table	refresh	operation.

With	Worksheets(1).QueryTables(1)

				If	.Refreshing	Then	.CancelRefresh

End	With

CanCheckIn	Method
							

True	if	Microsoft	Excel	can	check	in	a	specified	workbook	to	a	server.
Read/write	Boolean.

expression.CanCheckIn

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

Example

This	example	checks	the	server	to	see	if	the	specified	workbook	can	be	checked
in.	If	it	can	be,	it	saves	and	closes	the	workbook	and	checks	it	back	into	the
server.

Sub	CheckInOut(strWkbCheckIn	As	String)

				'	Determine	if	workbook	can	be	checked	in.

				If	Workbooks(strWkbCheckIn).CanCheckIn	=	True	Then

								Workbooks(strWkbCheckIn).CheckIn

								MsgBox	strWkbCheckIn	&	"	has	been	checked	in."

				Else

								MsgBox	"This	file	cannot	be	checked	in	"	&	_

												"at	this	time.		Please	try	again	later."

				End	If

End	Sub

CanCheckOut	Method
							

True	if	Microsoft	Excel	can	check	out	a	specified	workbook	from	a	server.
Read/write	Boolean.

expression.CanCheckOut(FileName)

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

FileName		Required	String.	The	name	of	the	file	to	check	out.

Example

This	example	verifies	that	a	workbook	is	not	checked	out	by	another	user	and
can	be	checked	out.	If	the	workbook	can	be	checked	out,	it	copies	the	workbook
to	the	local	computer	for	editing.

Sub	UseCanCheckOut(docCheckOut	As	String)

				'	Determine	if	workbook	can	be	checked	out.

				If	Workbooks.CanCheckOut(Filename:=docCheckOut)	=	True	Then

								Workbooks.CheckOut	(Filename:=docCheckOut)

				Else

								MsgBox	"You	are	unable	to	check	out	this	document	at	this	time."

				End	If

End	Sub

CentimetersToPoints	Method
							

Converts	a	measurement	from	centimeters	to	points	(one	point	equals	0.035
centimeters).

expression.CentimetersToPoints(Centimeters)

expression			Required.	An	expression	that	returns	an	Application	object.

Centimeters			Required	Double.	Specifies	the	centimeter	value	to	be	converted
to	points.

Example

This	example	sets	the	left	margin	of	Sheet1	to	5	centimeters.

Worksheets("Sheet1").PageSetup.LeftMargin	=	_

								Application.CentimetersToPoints(5)

ChangeFileAccess	Method
							

Changes	the	access	permissions	for	the	workbook.	This	may	require	an	updated
version	to	be	loaded	from	the	disk.

expression.ChangeFileAccess(Mode,	WritePassword,	Notify)

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

Mode		Required	XlFileAccess.		Specifies	the	new	access	mode.

XlFileAccess	can	be	one	of	these	XlFileAccess	constants.
xlReadWrite	
xlReadOnly

WritePassword		Optional	Variant.		Specifies	the	write-reserved	password	if	the
file	is	write	reserved	and	Mode	is	xlReadWrite.	Ignored	if	there's	no	password
for	the	file	or	if	Mode	is	xlReadOnly.

Notify		Optional	Variant.		True	(or	omitted)	to	notify	the	user	if	the	file	cannot
be	immediately	accessed.

Remarks

If	you	have	a	file	open	in	read-only	mode,	you	don't	have	exclusive	access	to	the
file.	If	you	change	a	file	from	read-only	to	read/write,	Microsoft	Excel	must	load
a	new	copy	of	the	file	to	ensure	that	no	changes	were	made	while	you	had	the
file	open	as	read-only.

Example

This	example	sets	the	active	workbook	to	read-only.

ActiveWorkbook.ChangeFileAccess	Mode:=xlReadOnly

ChangeLink	Method
							

Changes	a	link	from	one	document	to	another.

expression.ChangeLink(Name,	NewName,	Type)

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

Name		Required	String.		The	name	of	the	Microsoft	Excel	or	DDE/OLE	link	to
be	changed,	as	it	was	returned	from	the	LinkSources	method.

NewName		Required	String.		The	new	name	of	the	link.

Type		Optional	XlLinkType.		The	link	type.

XlLinkType	can	be	one	of	these	XlLinkType	constants.
xlLinkTypeExcelLinks	default
xlLinkTypeOLELinks.	Use	for	both	DDE	and	OLE	links.

Example

This	example	changes	a	Microsoft	Excel	link.

ActiveWorkbook.ChangeLink	"c:\excel\book1.xls",	_

				"c:\excel\book2.xls",	xlExcelLinks

ChangePassword	Method
							

Changes	the	password	for	a	range	that	can	be	edited	on	a	protected	worksheet.

expression.ChangePassword(Password)

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

Password		Required	String.	The	name	of	the	password.

Example

In	this	example,	Microsoft	Excel	allows	edits	to	range	"A1:A4"	on	the	active
worksheet,	notifies	the	user,	changes	the	password	for	this	specified	range,	and
notifies	the	user	of	the	change.

Sub	UseChangePassword()

				Dim	wksOne	As	Worksheet

				Set	wksOne	=	Application.ActiveSheet

				'	Establish	a	range	that	can	allow	edits

				'	on	the	protected	worksheet.

				wksOne.Protection.AllowEditRanges.Add	_

								Title:="Classified",	_

								Range:=Range("A1:A4"),	_

								Password:="secret"

				MsgBox	"Cells	A1	to	A4	can	be	edited	on	the	protected	worksheet."

				'	Change	the	password.

				wksOne.Protection.AllowEditRanges(1).ChangePassword	_

								Password:="moresecret"

				MsgBox	"The	password	for	these	cells	has	been	changed."

End	Sub

ChangeScenario	Method
							

Changes	the	scenario	to	have	a	new	set	of	changing	cells	and	(optionally)
scenario	values.

expression.ChangeScenario(ChangingCells,	Values)

expression			Required.	An	expression	that	returns	a	Scenario	object.

ChangingCells			Required	Variant.	A	Range	object	that	specifies	the	new	set	of
changing	cells	for	the	scenario.	The	changing	cells	must	be	on	the	same	sheet	as
the	scenario.

Values			Optional	Variant.	An	array	that	contains	the	new	scenario	values	for	the
changing	cells.	If	this	argument	is	omitted,	the	scenario	values	are	assumed	to	be
the	current	values	in	the	changing	cells.

Remarks

If	you	specify	Values,	the	array	must	contain	an	element	for	each	cell	in	the
ChangingCells	range;	otherwise,	Microsoft	Excel	generates	an	error.

Example

This	example	sets	the	changing	cells	for	scenario	one	to	the	range	A1:A10	on
Sheet1.

Worksheets("Sheet1").Scenarios(1).ChangeScenario	_

				Worksheets("Sheet1").Range("A1:A10")

Characters	Method
							

Returns	a	Characters	object	that	represents	a	range	of	characters	within	a
shape’s	text	frame.	You	can	use	the	Characters	object	to	add	and	format
characters	within	the	text	frame.

expression.Characters(Start,	Length)

expression			Required.	An	expression	that	returns	a	Characters	object	in	the
specified	text	frame.

Start			Optional	Variant.	The	first	character	to	be	returned.	If	this	argument	is
either	set	to	1	or	omitted,	the	Characters	method	returns	a	range	of	characters
starting	with	the	first	character.

Length			Optional	Variant.	The	number	of	characters	to	be	returned.	If	this
argument	is	omitted,	the	Characters	method	returns	the	remainder	of	the	string
(everything	after	the	character	that	was	set	as	the	Start	argument).

Remarks

The	Characters	object	isn't	a	collection.

Example

This	example	formats	as	bold	the	third	character	in	the	first	shape’s	text	frame	on
the	active	worksheet.

With	ActiveSheet.Shapes(1).TextFrame

				.Characters.Text	=	"abcdefg"

				.Characters(3,	1).Font.Bold	=	True

End	With

ChartGroups	Method
							

Returns	an	object	that	represents	either	a	single	chart	group	(a	ChartGroup
object)	or	a	collection	of	all	the	chart	groups	in	the	chart	(a	ChartGroups
object).	The	returned	collection	includes	every	type	of	group.

expression.ChartGroups(Index)

expression			Required.	An	expression	that	returns	a	Chart	object.

Index			Optional	Variant.	The	chart	group	number.

Example

This	example	turns	on	up	and	down	bars	for	chart	group	one	on	Chart1	and	then
sets	their	colors.	The	example	should	be	run	on	a	2-D	line	chart	containing	two
series	that	intersect	at	one	or	more	data	points.

With	Charts("Chart1").ChartGroups(1)

				.HasUpDownBars	=	True

				.DownBars.Interior.ColorIndex	=	3

				.UpBars.Interior.ColorIndex	=	5

End	With

ChartObjects	Method
							

Returns	an	object	that	represents	either	a	single	embedded	chart	(a	ChartObject
object)	or	a	collection	of	all	the	embedded	charts	(a	ChartObjects	object)	on	the
sheet.

expression.ChartObjects(Index)

expression			Required.	An	expression	that	returns	an	object	in	the	Applies	To	list.
If	you	specify	a	Chart	object,	it	must	be	a	chart	sheet	(it	cannot	be	an	embedded
chart).

Index			Optional	Variant.	The	name	or	number	of	the	chart.	This	argument	can
be	an	array,	to	specify	more	than	one	chart.

Remarks

This	method	isn't	equivalent	to	the	Charts	property.	This	method	returns
embedded	charts;	the	Charts	property	returns	chart	sheets.	Use	the	Chart
property	to	return	the	Chart	object	for	an	embedded	chart.

Example

This	example	adds	a	title	to	embedded	chart	one	on	Sheet1.

With	Worksheets("Sheet1").ChartObjects(1).Chart

				.HasTitle	=	True

				.ChartTitle.Text	=	"1995	Rainfall	Totals	by	Month"

End	With

This	example	creates	a	new	series	in	embedded	chart	one	on	Sheet1.	The	data
source	for	the	new	series	is	the	range	B1:B10	on	Sheet1.

Worksheets("Sheet1").ChartObjects(1).Activate

ActiveChart.SeriesCollection.Add	_

				source:=Worksheets("Sheet1").Range("B1:B10")

This	example	clears	the	formatting	of	embedded	chart	one	on	Sheet1.

Worksheets("Sheet1").ChartObjects(1).Chart.ChartArea.ClearFormats

ChartWizard	Method
							

Modifies	the	properties	of	the	given	chart.You	can	use	this	method	to	quickly
format	a	chart	without	setting	all	the	individual	properties.	This	method	is	non-
interactive,	and	it	changes	only	the	specified	properties.

expression.ChartWizard(Source,	Gallery,	Format,	PlotBy,	CategoryLabels,
SeriesLabels,	HasLegend,	Title,	CategoryTitle,	ValueTitle,	ExtraTitle)

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

Source		Optional	Variant.		The	range	that	contains	the	source	data	for	the	new
chart.	If	this	argument	is	omitted,	Microsoft	Excel	edits	the	active	chart	sheet	or
the	selected	chart	on	the	active	worksheet.

Gallery		Optional	XlChartType.		The	chart	type.

XlChartType	can	be	one	of	these	XlChartType	constants.
xlArea
xlBar
xlColumn

xlLine

xlPie

xlRadar

xlXYScatter

xlCombination

xl3DArea

xl3DBar

xl3DColumn

xl3DLine

xl3DPie

xl3DSurface

xlDoughnut

xlDefaultAutoFormat

Format		Optional	Variant.		The	option	number	for	the	built-in	autoformats.	Can
be	a	number	from	1	through	10,	depending	on	the	gallery	type.	If	this	argument
is	omitted,	Microsoft	Excel	chooses	a	default	value	based	on	the	gallery	type	and
data	source.

PlotBy		Optional	Variant.		Specifies	whether	the	data	for	each	series	is	in	rows
or	columns.	Can	be	one	of	the	following	XlRowCol	constants:	xlRows	or
xlColumns.

CategoryLabels		Optional	Variant.		An	integer	specifying	the	number	of	rows	or
columns	within	the	source	range	that	contain	category	labels.	Legal	values	are
from	0	(zero)	through	one	less	than	the	maximum	number	of	the	corresponding
categories	or	series.

SeriesLabels		Optional	Variant.		An	integer	specifying	the	number	of	rows	or
columns	within	the	source	range	that	contain	series	labels.	Legal	values	are	from
0	(zero)	through	one	less	than	the	maximum	number	of	the	corresponding
categories	or	series.

HasLegend		Optional	Variant.		True	to	include	a	legend.

Title		Optional	Variant.		The	chart	title	text.

CategoryTitle		Optional	Variant.		The	category	axis	title	text.

ValueTitle		Optional	Variant.		.	The	value	axis	title	text

ExtraTitle		Optional	Variant.		The	series	axis	title	for	3-D	charts	or	the	second
value	axis	title	for	2-D	charts.

Remarks

If	Source	is	omitted	and	either	the	selection	isn't	an	embedded	chart	on	the
active	worksheet	or	the	active	sheet	isn't	an	existing	chart,	this	method	fails	and
an	error	occurs.

Example

This	example	reformats	Chart1	as	a	line	chart,	adds	a	legend,	and	adds	category
and	value	axis	titles.

Charts("Chart1").ChartWizard	_

				Gallery:=xlLine,	_

				HasLegend:=True,	CategoryTitle:="Year",	ValueTitle:="Sales"

CheckAbort	Method
							

Stops	recalculation	in	a	Microsoft	Excel	application.

expression.CheckAbort(KeepAbort)

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

KeepAbort		Optional	Variant.	Allows	recalculation	to	be	performed	for	a
Range.

Example

In	this	example,	Microsoft	Excel	stops	recalculation	in	the	application	except	for
cell	A10.	In	order	to	see	results	from	this	example,	it	is	assumed	that	other
calculations	exist	in	the	application	which	will	allow	the	user	to	see	the
differences	between	the	chosen	cell	and	the	cells	not	chosen.

Sub	UseCheckAbort()

				Dim	rngSubtotal	As	Variant

				Set	rngSubtotal	=	Application.Range("A10")

				'	Stop	recalculation	except	for	designated	cell.

				Application.CheckAbort	(KeepAbort:=rngSubtotal)

End	Sub

CheckIn	Method
							

Performs	a	check-in	(with	or	without	publish)	or	undo-check-out	of	the	working
copy	on	the	server.	Read/write.

expression.CheckIn(SaveChanges,	Comments,	MakePublic)

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

SaveChanges		Optional	Variant.	True	saves	changes	and	checks	in	the
document.	False	returns	the	document	to	a	checked-in	status	without	saving	a
new	revision.

Comments		Optional	Variant.	Allows	the	user	to	enter	check-in	comments	for
the	revision	of	the	document	being	checked	in	(only	applies	if	SaveChanges
equals	True).

MakePublic		Optional	Variant.	Allows	the	user	to	perform	a	publish	on	the
document	after	being	checked	in.	This	submits	the	document	for	the	approval
process,	which	can	eventually	result	in	a	version	of	the	document	being
published	to	users	with	read-only	rights	to	the	workspace	(only	applies	if
SaveChanges	equals	True).

Example

This	example	checks	the	server	to	see	if	the	specified	workbook	can	be	checked
in.	If	it	can	be,	it	saves	and	closes	the	workbook	and	checks	it	back	into	the
server.

Sub	CheckInOut(strWkbCheckIn	As	String)

				'	Determine	if	workbook	can	be	checked	in.

				If	Workbooks(strWkbCheckIn).CanCheckIn	=	True	Then

								Workbooks(strWkbCheckIn).CheckIn

								MsgBox	strWkbCheckIn	&	"	has	been	checked	in."

				Else

								MsgBox	"This	file	cannot	be	checked	in	"	&	_

												"at	this	time.		Please	try	again	later."

				End	If

End	Sub

CheckOut	Method
							

Returns	a	String	representing	a	specified	workbook	from	a	server	to	a	local
computer	for	editing.

expression.CheckOut(FileName)

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

FileName		Required	String.	The	name	of	the	file	to	check	out.

Example

This	example	verifies	that	a	workbook	is	not	checked	out	by	another	user	and
can	be	checked	out.	If	the	workbook	can	be	checked	out,	it	copies	the	workbook
to	the	local	computer	for	editing.

Sub	UseCheckOut(docCheckOut	As	String)

				'	Determine	if	workbook	can	be	checked	out.

				If	Workbooks.CanCheckOut(docCheckOut)	=	True	Then

								Workbooks.CheckOut	docCheckOut

				Else

								MsgBox	"Unable	to	check	out	this	document	at	this	time."

				End	If

End	Sub

Show	All

CheckSpelling	Method
							

CheckSpelling	method	as	it	applies	to	the	Application	object.

Checks	the	spelling	of	a	single	word.	Returns	True	if	the	word	is	found	in	one	of
the	dictionaries;	returns	False	if	the	word	isn't	found.	Boolean.

expression.CheckSpelling(Word,	CustomDictionary,	IgnoreUppercase)

expression			Required.	An	expression	that	returns	one	of	the	above	objects.

Word		Required	String	(used	only	with	Application	object).	The	word	you	want
to	check.

CustomDictionary		Optional	Variant.		A	string	that	indicates	the	file	name	of
the	custom	dictionary	to	be	examined	if	the	word	isn't	found	in	the	main
dictionary.	If	this	argument	is	omitted,	the	currently	specified	dictionary	is	used.

IgnoreUppercase		Optional	Variant.		True	to	have	Microsoft	Excel	ignore
words	that	are	all	uppercase.	False	to	have	Microsoft	Excel	check	words	that	are
all	uppercase.	If	this	argument	is	omitted,	the	current	setting	will	be	used.

	

CheckSpelling	method	as	it	applies	to	the	Range	object.

Checks	the	spelling	of	an	object.	This	form	has	no	return	value;	Microsoft	Excel
displays	the	Spelling	dialog	box	Variant.

expression.CheckSpelling(CustomDictionary,	IgnoreUppercase,
AlwaysSuggest,	SpellLang)

expression			Required.	An	expression	that	returns	one	of	the	above	objects.

CustomDictionary		Optional	Variant.	A	string	that	indicates	the	file	name	of	the
custom	dictionary	to	be	examined	if	the	word	isn't	found	in	the	main	dictionary.

If	this	argument	is	omitted,	the	currently	specified	dictionary	is	used.

IgnoreUppercase	Optional	Variant.	True	to	have	Microsoft	Excel	ignore	words
that	are	all	uppercase.	False	to	have	Microsoft	Excel	check	words	that	are	all
uppercase.	If	this	argument	is	omitted,	the	current	setting	will	be	used.

AlwaysSuggest		Optional	Variant.	True	to	have	Microsoft	Excel	display	a	list	of
suggested	alternate	spellings	when	an	incorrect	spelling	is	found.	False	to	have
Microsoft	Excel	wait	for	you	to	input	the	correct	spelling.	If	this	argument	is
omitted,	the	current	setting	will	be	used.

SpellLang		Optional	Variant.	The	language	of	the	dictionary	being	used.	Can	be
one	of	the	MsoLanguageID	values	used	by	the	LanguageID	property.

	

CheckSpelling	method	as	it	applies	to	the	Chart	and	Worksheet	objects.

Checks	the	spelling	of	an	object.	This	form	has	no	return	value;	Microsoft	Excel
displays	the	Spelling	dialog	box

expression.CheckSpelling(CustomDictionary,	IgnoreUppercase,
AlwaysSuggest,	SpellLang)

expression			Required.	An	expression	that	returns	one	of	the	above	objects.

CustomDictionary		Optional	Variant.	A	string	that	indicates	the	file	name	of	the
custom	dictionary	to	be	examined	if	the	word	isn't	found	in	the	main	dictionary.
If	this	argument	is	omitted,	the	currently	specified	dictionary	is	used.

IgnoreUppercase	Optional	Variant.	True	to	have	Microsoft	Excel	ignore	words
that	are	all	uppercase.	False	to	have	Microsoft	Excel	check	words	that	are	all
uppercase.	If	this	argument	is	omitted,	the	current	setting	will	be	used.

AlwaysSuggest		Optional	Variant.	True	to	have	Microsoft	Excel	display	a	list	of
suggested	alternate	spellings	when	an	incorrect	spelling	is	found.	False	to	have
Microsoft	Excel	wait	for	you	to	input	the	correct	spelling.	If	this	argument	is
omitted,	the	current	setting	will	be	used.

SpellLang		Optional	Variant.	The	language	of	the	dictionary	being	used.	Can	be

mk:@MSITStore:vbaof10.chm::/html/ofproLanguageId.htm

one	of	the	MsoLanguageID	values	used	by	the	LanguageID	property.

	

mk:@MSITStore:vbaof10.chm::/html/ofproLanguageId.htm

Remarks

To	check	headers,	footers,	and	objects	on	a	worksheet,	use	this	method	on	a
Worksheet	object.

To	check	only	cells	and	notes,	use	this	method	with	the	object	returned	by	the
Cells	method.

Example

This	example	checks	the	spelling	on	Sheet1.

Worksheets("Sheet1").CheckSpelling

CircleInvalid	Method
							

Circles	invalid	entries	on	the	worksheet.

expression.CircleInvalid

expression			Required.	An	expression	that	returns	a	Worksheet	object.

Example

This	example	circles	invalid	entries	on	worksheet	one.

Worksheets(1).CircleInvalid

Show	All

Clear	Method
							

Clear	method	as	it	applies	to	the	ChartArea,	Legend,	and	Range	objects.

Clears	the	entire	object.

expression.Clear

expression			Required.	An	expression	that	returns	one	of	the	above	objects.

Clear	method	as	it	applies	to	the	CellFormat	object.

Clears	the	criterias	set	in	the	FindFormat	and	ReplaceFormat	properties.

expression.Clear

expression			Required.	An	expression	that	returns	a	CellFormat	object.

Example

This	example	clears	the	formulas	and	formatting	in	cells	A1:G37	on	Sheet1.

Worksheets("Sheet1").Range("A1:G37").Clear

This	example	clears	the	chart	area	(the	chart	data	and	formatting)	of	Chart1.

Charts("Chart1").ChartArea.Clear

ClearArrows	Method
							

Clears	the	tracer	arrows	from	the	worksheet.	Tracer	arrows	are	added	by	using
the	auditing	feature.

expression.ClearArrows

expression			Required.	An	expression	that	returns	a	Worksheet	object.

Example

This	example	clears	tracer	arrows	from	Sheet1.

Worksheets("Sheet1").ClearArrows

ClearCircles	Method
							

Clears	circles	from	invalid	entries	on	the	worksheet.

expression.ClearCircles

expression			Required.	An	expression	that	returns	a	Worksheet	object.

Remarks

Use	the	CircleInvalid	method	to	circle	cells	that	contain	invalid	data.

Example

This	example	clears	circles	from	invalid	entries	on	worksheet	one.

Worksheets(1).ClearCircles

ClearComments	Method
							

Clears	all	cell	comments	from	the	specified	range.

expression.ClearComments

expression			Required.	An	expression	that	returns	a	Range	object.

Example

This	example	clears	all	comments	from	cell	E5.

Worksheets(1).Range("e5").ClearComments

ClearContents	Method
							

Clears	the	formulas	from	the	range.	Clears	the	data	from	a	chart	but	leaves	the
formatting.

expression.ClearContents

expression			Required.	An	expression	that	returns	a	ChartArea	or	Range	object.

Example

This	example	clears	the	formulas	from	cells	A1:G37	on	Sheet1	but	leaves	the
formatting	intact.

Worksheets("Sheet1").Range("A1:G37").ClearContents

This	example	clears	the	chart	data	from	Chart1	but	leaves	the	formatting	intact.

Charts("Chart1").ChartArea.ClearContents

ClearFormats	Method
							

Clears	the	formatting	of	the	object.

expression.ClearFormats

expression			Required.	An	expression	that	returns	an	object	in	the	Applies	To	list.

Example

This	example	clears	all	formatting	from	cells	A1:G37	on	Sheet1.

Worksheets("Sheet1").Range("A1:G37").ClearFormats

This	example	clears	the	formatting	from	embedded	chart	one	on	Sheet1.

Worksheets("Sheet1").ChartObjects(1).Chart.ChartArea.ClearFormats

ClearNotes	Method
							

Clears	notes	and	sound	notes	from	all	the	cells	in	the	specified	range.

expression.ClearNotes

expression			Required.	An	expression	that	returns	a	Range	object.

Example

This	example	clears	all	notes	and	sound	notes	from	columns	A	through	C	on
Sheet1.

Worksheets("Sheet1").Columns("A:C").ClearNotes

ClearOutline	Method
							

Clears	the	outline	for	the	specified	range.

expression.ClearOutline

expression			Required.	An	expression	that	returns	a	Range	object.

Example

This	example	clears	the	outline	for	the	range	A1:G37	on	Sheet1.

Worksheets("Sheet1").Range("A1:G37").ClearOutline

Show	All

CloneNode	Method
							

Clones	a	diagram	node.	Returns	a	DiagramNode	object	representing	the	cloned
node.

expression.CloneNode(copyChildren,	pTargetNode,	pos)

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

copyChildren		Required	Boolean.	True	to	clone	the	diagram	nodes	children	as
well.

pTargetNode		Optional	DiagramNode	object.	An	expression	that	returns	a
DiagramNode	object	that	represents	the	node	where	the	new	node	will	be
placed.

pos		Optional	MsoRelativeNodePosition.	If	pTargetNode	is	specified,	indicates
where	the	node	will	be	added	relative	to	pTargetNode.

MsoRelativeNodePosition	can	be	one	of	these	MsoRelativeNodePosition
constants.
msoAfterLastSibling
msoAfterNode	default
msoBeforeFirstSibling
msoBeforeNode

Example

The	following	example	creates	a	diagram	and	clones	the	newest-created	node.

Sub	CloneANode()

				Dim	nodRoot	As	DiagramNode

				Dim	shpDiagram	As	Shape

				Dim	nodFourthNode	As	DiagramNode

				Dim	nodDuplicate	As	DiagramNode

				Dim	intCount	As	Integer

				Set	shpDiagram	=	ActiveSheet.Shapes.AddDiagram(_

								Type:=msoDiagramOrgChart,	Left:=10,	_

								Top:=15,	Width:=400,	Height:=475)

				Set	nodRoot	=	shpDiagram.DiagramNode.Children.AddNode

				'	Add	subordinate	nodes	to	the	root	node

				For	intCount	=	1	To	4

								nodRoot.Children.AddNode

				Next

				Set	nodFourthNode	=	nodRoot.Children.Item(4)

				'Clone	the	most	recently	created	child	node

				Set	nodDuplicate	=	nodRoot.Children.Item(1).CloneNode(copyChildren:=True,	_

								pTargetNode:=nodFourthNode,	pos:=msoAfterNode)

End	Sub

Show	All

Close	Method
							

Close	method	as	it	applies	to	the	Window	object.

Closes	the	object.	Boolean.

expression.Close(SaveChanges,	Filename,	RouteWorkbook)

expression			Required.	An	expression	that	returns	one	of	the	above	objects.

SaveChanges		Optional	Variant.	If	there	are	no	changes	to	the	workbook,	this
argument	is	ignored.	If	there	are	changes	to	the	workbook	and	the	workbook
appears	in	other	open	windows,	this	argument	is	ignored.	If	there	are	changes	to
the	workbook	but	the	workbook	doesn't	appear	in	any	other	open	windows,	this
argument	specifies	whether	changes	should	be	saved,	as	shown	in	the	following
table.

Value Action

True
Saves	the	changes	to	the	workbook.	If	there	is	not	yet	a	file
name	associated	with	the	workbook,	then	FileName	is	used.	If
FileName	is	omitted,	the	user	is	asked	to	supply	a	file	name.

False Does	not	save	the	changes	to	this	file.

Omitted Displays	a	dialog	box	asking	the	user	whether	or	not	to	save
changes.

FileName			Optional	Variant.	Save	changes	under	this	file	name.

RouteWorkbook		Optional	Variant.	If	the	workbook	doesn't	need	to	be	routed	to
the	next	recipient	(if	it	has	no	routing	slip	or	has	already	been	routed),	this
argument	is	ignored.	Otherwise,	Microsoft	Excel	routes	the	workbook	as	shown
in	the	following	table.

Value Meaning
True Sends	the	workbook	to	the	next	recipient.

False Doesn't	send	the	workbook.

Omitted Displays	a	dialog	box	asking	the	user	whether	the	workbook
should	be	sent.

	

Close	method	as	it	applies	to	the	Workbooks	object.

Closes	the	object.

expression.Close

expression			Required.	An	expression	that	returns	one	of	the	above	objects.

	

Close	method	as	it	applies	to	the	Workbook	object.

Closes	the	object.

expression.Close(SaveChanges,	Filename,	RouteWorkbook)

expression			Required.	An	expression	that	returns	one	of	the	above	objects.

SaveChanges		Optional	Variant.	If	there	are	no	changes	to	the	workbook,	this
argument	is	ignored.	If	there	are	changes	to	the	workbook	and	the	workbook
appears	in	other	open	windows,	this	argument	is	ignored.	If	there	are	changes	to
the	workbook	but	the	workbook	doesn't	appear	in	any	other	open	windows,	this
argument	specifies	whether	changes	should	be	saved,	as	shown	in	the	following
table.

Value Action

True
Saves	the	changes	to	the	workbook.	If	there	is	not	yet	a	file
name	associated	with	the	workbook,	then	FileName	is	used.	If
FileName	is	omitted,	the	user	is	asked	to	supply	a	file	name.

False Does	not	save	the	changes	to	this	file.

Omitted Displays	a	dialog	box	asking	the	user	whether	or	not	to	save
changes.

FileName			Optional	Variant.	Save	changes	under	this	file	name.

RouteWorkbook		Optional	Variant.	If	the	workbook	doesn't	need	to	be	routed	to
the	next	recipient	(if	it	has	no	routing	slip	or	has	already	been	routed),	this
argument	is	ignored.	Otherwise,	Microsoft	Excel	routes	the	workbook	as	shown
in	the	following	table.

Value Meaning
True Sends	the	workbook	to	the	next	recipient.
False Doesn't	send	the	workbook.

Omitted Displays	a	dialog	box	asking	the	user	whether	the	workbook
should	be	sent.

Remarks

Closing	a	workbook	from	Visual	Basic	doesn't	run	any	Auto_Close	macros	in
the	workbook.	Use	the	RunAutoMacros	method	to	run	the	auto	close	macros.

Example

This	example	closes	Book1.xls	and	discards	any	changes	that	have	been	made	to
it.

Workbooks("BOOK1.XLS").Close	SaveChanges:=False

This	example	closes	all	open	workbooks.	If	there	are	changes	in	any	open
workbook,	Microsoft	Excel	displays	the	appropriate	prompts	and	dialog	boxes
for	saving	changes.

Workbooks.Close

ColumnDifferences	Method
							

Returns	a	Range	object	that	represents	all	the	cells	whose	contents	are	different
from	the	comparison	cell	in	each	column.

expression.ColumnDifferences(Comparison)

expression			Required.	An	expression	that	returns	a	Range	object	containing	the
cells	to	compare.

Comparison			Required	Variant.	A	single	cell	to	compare	to	the	specified	range.

Example

This	example	selects	the	cells	in	column	A	on	Sheet1	whose	contents	are
different	from	cell	A4.

Worksheets("Sheet1").Activate

Set	r1	=	ActiveSheet.Columns("A").ColumnDifferences(_

				Comparison:=ActiveSheet.Range("A4"))

r1.Select

ColumnGroups	Method
							

On	a	2-D	chart,	returns	an	object	that	represents	either	a	single	column	chart
group	(a	ChartGroup	object)	or	a	collection	of	the	column	chart	groups	(a
ChartGroups	collection).

expression.ColumnGroups(Index)

expression			Required.	An	expression	that	returns	a	Chart	object.

Index			Optional	Variant.	Specifies	the	chart	group.

Example

This	example	sets	the	space	between	column	clusters	in	the	2-D	column	chart
group	to	be	50	percent	of	the	column	width.

Charts(1).ColumnGroups(1).GapWidth	=	50

ConnectData	Method
							

Adds	new	topics	from	a	real-time	data	server.	The	ConnectData	method	is
called	when	a	file	is	opened	that	contains	real-time	data	functions	or	when	a	user
types	in	a	new	formula	which	contains	the	RTD	function.

expression.ConnectData(TopicID,	Strings,	GetNewValues)

expression			Required.	An	expression	that	returns	an	IRtdServer	object.

TopicID		Required	Long.	A	unique	value,	assigned	by	Microsoft	Excel,	which
identifies	the	topic.

Strings		Required	Variant.	A	single-dimensional	array	of	strings	identifying	the
topic.

GetNewValues		Required	Boolean.	True	to	determine	if	new	values	are	to	be
acquired.

Consolidate	Method
							

Consolidates	data	from	multiple	ranges	on	multiple	worksheets	into	a	single
range	on	a	single	worksheet.	Variant.

expression.Consolidate(Sources,	Function,	TopRow,	LeftColumn,
CreateLinks)

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

Sources		Optional	Variant.		The	sources	of	the	consolidation	as	an	array	of	text
reference	strings	in	R1C1-style	notation.	The	references	must	include	the	full
path	of	sheets	to	be	consolidated.

Function		Optional	XlConsolidationFunction.

XlConsilidationFunction	can	be	one	of	these	XlConsilidationFunction
constants.
xlAverage	default.
xlCount
xlCountNums

xlMax

xlMin

xlProduct

xlStDev

xlStDevP

xlSum

xlVar

xlVarP

TopRow		Optional	Variant.		True	to	consolidate	data	based	on	column	titles	in
the	top	row	of	the	consolidation	ranges.	False	to	consolidate	data	by	position.
The	default	value	is	False.

LeftColumn		Optional	Variant.		True	to	consolidate	data	based	on	row	titles	in
the	left	column	of	the	consolidation	ranges.	False	to	consolidate	data	by
position.	The	default	value	is	False.

CreateLinks		Optional	Variant.		True	to	have	the	consolidation	use	worksheet
links.	False	to	have	the	consolidation	copy	the	data.	The	default	value	is	False.

Example

This	example	consolidates	data	from	Sheet2	and	Sheet3	onto	Sheet1,	using	the
SUM	function.

Worksheets("Sheet1").Range("A1").Consolidate	_

				Sources:=Array("Sheet2!R1C1:R37C6",	"Sheet3!R1C1:R37C6"),	_

				Function:=xlSum

Show	All

Convert	Method
							

Converts	the	current	diagram	to	a	different	diagram.

expression.Convert(Type)

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

Type		Required	MsoDiagramType.	The	type	of	diagram	to	convert	to.

MsoDiagramType	can	be	one	of	these	MsoDiagramType	constants.
msoDiagramCycle		A	process	diagram	with	a	continuous	cycle	diagram	type.
msoDiagramMixed		A	mixed	diagram	type.
msoDiagramOrgChart		A	hierarchical	relationship	diagram	type.
msoDiagramPyramid		A	foundation	based	relationships	diagram	type.
msoDiagramRadial		A	diagram	type	showing	relationships	of	a	core	element.
msoDiagramTarget	A	diagram	type	showing	steps	toward	a	goal.
msoDiagramVenn		A	diagram	type	showing	areas	of	overlap	between
elements.

Example

This	example	adds	a	radial	diagram	to	the	active	worksheet	and	then	converts	it
to	a	target	diagram.

Sub	ConvertDiagram()

				Dim	wksSheet	As	Worksheet

				Dim	shDiagram	As	Shape

				Set	wksSheet	=	ActiveSheet

				Set	shDiagram	=	wksSheet.Shapes.AddDiagram(_

								Type:=msoDiagramRadial,	_

								Left:=20,	Top:=40,	_

								Width:=400,	Height:=200)

				'	Fill	the	diagram	to	make	it	visible	to	the	user

				shDiagram.Fill.Visible	=	msoTrue

				'	Convert	the	diagram.

				shDiagram.Diagram.Convert	Type:=msoDiagramTarget

End	Sub

ConvertFormula	Method
							

Converts	cell	references	in	a	formula	between	the	A1	and	R1C1	reference	styles,
between	relative	and	absolute	references,	or	both.	Variant.

expression.ConvertFormula(Formula,	FromReferenceStyle,
ToReferenceStyle,	ToAbsolute,	RelativeTo)

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

Formula		Required	Variant.		A	string	that	containis	the	formula	you	want	to
convert.	This	must	be	a	valid	formula,	and	it	must	begin	with	an	equal	sign.

FromReferenceStyle		Required	XlReferenceStyle.		The	reference	style	of	the
formula.

XlReferenceStyle	can	be	one	of	these	XlReferenceStyle	constants.
xlA1
xlR1C1

ToReferenceStyle		Optional	XlReferenceStyle.		The	reference	style	you	want
returned.	If	this	argument	is	omitted,	the	reference	style	isn't	changed;	the
formula	stays	in	the	style	specified	by	FromReferenceStyle.

XlReferenceStyle	can	be	one	of	these	XlReferenceStyle	constants.
xlA1
xlR1C1

ToAbsolute		Optional	XlReferenceStyle.		Specifies	the	converted	reference
type.	If	this	argument	is	omitted,	the	reference	type	isn't	changed.

XlReferenceStyle	can	be	one	of	these	XlReferenceStyle	constants.
xlAbsolute

xlAbsRowRelColumn

xlRelRowAbsColumn

xlRelative

RelativeTo		Optional	Variant.		Optional	Variant.	A	Range	object	that	contains
one	cell.	Relative	references	relate	to	this	cell.

Example

This	example	converts	a	SUM	formula	that	contains	R1C1-style	references	to	an
equivalent	formula	that	contains	A1-style	references,	and	then	it	displays	the
result.

inputFormula	=	"=SUM(R10C2:R15C2)"

MsgBox	Application.ConvertFormula(_

				formula:=inputFormula,	_

				fromReferenceStyle:=xlR1C1,	_

				toReferenceStyle:=xlA1)

ConvertToShape	Method
							

Creates	a	shape	that	has	the	geometric	characteristics	of	the	specified
FreeformBuilder	object.	Returns	a	Shape	object	that	represents	the	new	shape.

Note			You	must	apply	the	AddNodes	method	to	a	FreeformBuilder	object	at
least	once	before	you	use	the	ConvertToShape	method.

expression.ConvertToShape

expression			Required.	An	expression	that	returns	a	FreeformBuilder	object.

Example

This	example	adds	a	freeform	with	five	vertices	to	myDocument.

Set	myDocument	=	Worksheets(1)

With	myDocument.Shapes.BuildFreeform(msoEditingCorner,	360,	200)

				.AddNodes	msoSegmentCurve,	msoEditingCorner,	_

								380,	230,	400,	250,	450,	300

				.AddNodes	msoSegmentCurve,	msoEditingAuto,	480,	200

				.AddNodes	msoSegmentLine,	msoEditingAuto,	480,	400

				.AddNodes	msoSegmentLine,	msoEditingAuto,	360,	200

				.ConvertToShape

End	With

Show	All

Copy	Method
							

Copy	method	as	it	applies	to	the	Range	object.

Copies	the	range	to	the	specified	range	or	to	the	Clipboard.

expression.Copy(Destination)

expression			Required.	An	expression	that	returns	a	Range	object.

Destination		Optional	Variant.	Specifies	the	new	range	to	which	the	specified
range	will	be	copied.	If	this	argument	is	omitted,	Microsoft	Excel	copies	the
range	to	the	Clipboard.

Copy	method	as	it	applies	to	the	ChartArea,	ChartObject,	ChartObjects,
OLEObject,	OLEObjects,	Point,	and	Series	objects.

Copies	the	object	to	the	Clipboard.	Copies	a	picture	of	the	point	or	series	to	the
Clipboard.

expression.Copy

expression			Required.	An	expression	that	returns	one	of	the	above	objects.

Copy	method	as	it	applies	to	the	Chart,	Charts,	Sheets,	Worksheet,	and
Worksheets	objects.

Copies	the	sheet	to	another	location	in	the	workbook.

expression.Copy(Before,	After)

expression			Required.	An	expression	that	returns	one	of	the	above	objects.

Before		Optional	Variant.	The	sheet	before	which	the	copied	sheet	will	be
placed.	You	cannot	specify	Before	if	you	specify	After.

After		Optional	Variant.	The	sheet	after	which	the	copied	sheet	will	be	placed.
You	cannot	specify	After	if	you	specify	Before.

Remarks

If	you	don't	specify	either	Before	or	After,	Microsoft	Excel	creates	a	new
workbook	that	contains	the	copied	sheet.

Copy	method	as	it	applies	to	the	Shape	object.

Copies	the	object	to	the	Clipboard.

expression.Copy

expression			Required.	An	expression	that	returns	a	Shape	object.

Example

Copy	method	as	it	applies	to	the	Range	object.

This	example	copies	the	formulas	in	cells	A1:D4	on	Sheet1	into	cells	E5:H8	on
Sheet2.

Worksheets("Sheet1").Range("A1:D4").Copy	_

				destination:=Worksheets("Sheet2").Range("E5")

Copy	method	as	it	applies	to	the	Chart,	Charts,	Sheets,	Worksheet,	and
Worksheets	objects.

This	example	copies	Sheet1,	placing	the	copy	after	Sheet3.

Worksheets("Sheet1").Copy	After:=Worksheets("Sheet3")

CopyFromRecordset	Method
							

Copies	the	contents	of	an	ADO	or	DAO	Recordset	object	onto	a	worksheet,
beginning	at	the	upper-left	corner	of	the	specified	range.	If	the	Recordset	object
contains	fields	with	OLE	objects	in	them,	this	method	fails.

expression.CopyFromRecordset(Data,	MaxRows,	MaxColumns)

expression			Required.	An	expression	that	returns	a	Range	object.

Data			Required	Variant.	The	Recordset	object	to	copy	into	the	range.

MaxRows			Optional	Variant.	The	maximum	number	of	records	to	copy	onto
the	worksheet.	If	this	argument	is	omitted,	all	the	records	in	the	Recordset
object	are	copied.

MaxColumns			Optional	Variant.	The	maximum	number	of	fields	to	copy	onto
the	worksheet.	If	this	argument	is	omitted,	all	the	fields	in	the	Recordset	object
are	copied.

Remarks

Copying	begins	at	the	current	row	of	the	Recordset	object.	After	copying	is
completed,	the	EOF	property	of	the	Recordset	object	is	True.

Example

This	example	copies	the	field	names	from	a	DAO	Recordset	object	into	the	first
row	of	a	worksheet	and	formats	the	names	as	bold.	The	example	then	copies	the
recordset	onto	the	worksheet,	beginning	at	cell	A2.

For	iCols	=	0	to	rs.Fields.Count	-	1

				ws.Cells(1,	iCols	+	1).Value	=	rs.Fields(iCols).Name

Next

ws.Range(ws.Cells(1,	1),		_

				ws.Cells(1,	rs.Fields.Count)).Font.Bold	=	True

ws.Range("A2").CopyFromRecordset	rs

Show	All

CopyPicture	Method
							

CopyPicture	method	as	it	applies	to	the	Range	object.

Copies	the	selected	object	to	the	Clipboard	as	a	picture.	Variant.

expression.CopyPicture(Appearance,	Format)

expression			Required.	An	expression	that	returns	one	of	the	above	objects.

Appearance		Optional	XlPictureAppearance.	Specifies	how	the	picture	should
be	copied.

XlPictureAppearance	can	be	one	of	these	XlPictureAppearance	constants.
xlPrinter.	The	picture	is	copied	as	it	will	look	when	it's	printed.
xlScreen	default.	The	picture	is	copied	to	resemble	its	display	on	the	screen	as
closely	as	possible

Format		Optional	XlCopyPictureFormat.	The	format	of	the	picture.

XlCopyPictureFormat	can	be	one	of	these	XlCopyPictureFormat	constants.
xlBitmap
xlPicture	default

	

CopyPicture	method	as	it	applies	to	the	ChartObject,	ChartObjects,
OLEObject,	and	OLEObjects	objects.

Copies	the	selected	object	to	the	Clipboard	as	a	picture.	Variant.

expression.CopyPicture(Appearance,	Format)>

expression			Required.	An	expression	that	returns	one	of	the	above	objects.

Appearance		Optional	XlPictureAppearance.	Specifies	how	the	picture	should
be	copied.

XlPictureAppearance	can	be	one	of	these	XlPictureAppearance	constants.
xlPrinter.	The	picture	is	copied	as	it	will	look	when	it's	printed.
xlScreen	default.	The	picture	is	copied	to	resemble	its	display	on	the	screen	as
closely	as	possible

Format		Optional	XlCopyPictureFormat.	The	format	of	the	picture.

XlCopyPictureFormat	can	be	one	of	these	XlCopyPictureFormat	constants.
xlBitmap
xlPicture	default

	

CopyPicture	method	as	it	applies	to	the	Chart	object.

Copies	the	selected	object	to	the	Clipboard	as	a	picture.

expression.CopyPicture(Appearance,	Format,	Size)

expression			Required.	An	expression	that	returns	one	of	the	above	objects.

Appearance		Optional	XlPictureAppearance.	Specifies	how	the	picture	should
be	copied.

XlPictureAppearance	can	be	one	of	these	XlPictureAppearance	constants.
xlPrinter.	The	picture	is	copied	as	it	will	look	when	it's	printed.
xlScreen	default.	The	picture	is	copied	to	resemble	its	display	on	the	screen	as
closely	as	possible

Format		Optional	XlCopyPictureFormat.	The	format	of	the	picture.

XlCopyPictureFormat	can	be	one	of	these	XlCopyPictureFormat	constants.
xlBitmap
xlPicture	default

Size		Optional	XlPictureAppearance.	The	size	of	the	copied	picture	when	the
object	is	a	chart	on	a	chart	sheet	(not	embedded	on	a	worksheet).

XlPictureAppearance	can	be	one	of	these	XlPictureAppearance	constants.
xlPrinter	default.	The	picture	is	copied	to	match	its	printed	size	as	closely	as
possible.
xlScreen.	The	picture	is	copied	to	match	the	size	of	its	display	on	the	screen	as
closely	as	possible.

CopyPicture	method	as	it	applies	to	the	Shape	object.

Copies	the	selected	object	to	the	Clipboard	as	a	picture.

expression.CopyPicture(Appearance,	Format)

expression			Required.	An	expression	that	returns	one	of	the	above	objects.

Appearance		Optional	XlPictureAppearance.	Specifies	how	the	picture	should
be	copied.

XlPictureAppearance	can	be	one	of	these	XlPictureAppearance	constants.
xlPrinter.	The	picture	is	copied	as	it	will	look	when	it's	printed.
xlScreen	default.	The	picture	is	copied	to	resemble	its	display	on	the	screen	as
closely	as	possible

Format		Optional	XlCopyPictureFormat.	The	format	of	the	picture.

XlCopyPictureFormat	can	be	one	of	these	XlCopyPictureFormat	constants.
xlBitmap
xlPicture	default

	

Remarks

If	you	copy	a	range,	it	must	be	made	up	of	adjacent	cells.

Example

This	example	copies	a	screen	image	of	cells	A1:D4	on	Sheet1	to	the	Clipboard,
and	then	it	pastes	the	bitmap	to	another	location	on	Sheet1.

Worksheets("Sheet1").Range("A1:D4").CopyPicture	xlScreen,	xlBitmap

Worksheets("Sheet1").Paste	_

				Destination:=Worksheets("Sheet1").Range("E6")

Show	All

CreateCubeFile	Method
							

Creates	a	cube	file	from	a	PivotTable	report	connected	to	an	Online	Analytical
Processing	(OLAP)	data	source.

expression.CreateCubeFile(File,	Measures,	Levels,	Members,	Properties)

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

File		Required	String.	The	name	of	the	cube	file	to	be	created.	It	will	overwrite
the	file	if	it	already	exists.

Measures		Optional	Variant.	An	array	of	unique	names	of	measures	that	are	to
be	part	of	the	slice.

Levels		Optional	Variant.	An	array	of	strings.	Each	array	item	is	a	unique	level
name.	It	represents	the	lowest	level	of	a	hierarchy	that	is	in	the	slice.

Members		Optional	Variant.	An	array	of	string	arrays.	The	elements	correspond,
in	order,	to	the	hierarchies	represented	in	the	Levels	array.	Each	element	is	an
array	of	string	arrays	that	consists	of	the	unique	names	of	the	top	level	members
in	the	dimension	that	are	to	be	included	in	the	slice.

Properties		Optional	Boolean.	False	results	in	no	member	properties	being
included	in	the	slice.	The	default	value	is	True.

Example

This	example	creates	a	cube	file	titled	"CustomCubeFile"	on	drive	C:\	with	no
member	properties	to	be	included	in	the	slice.	With	the	Measures,	Levels,	and
Members	arguments	omitted	from	this	example,	the	cube	file	will	end	up
matching	the	view	of	the	PivotTable	report.	This	example	assumes	a	PivotTable
report	connected	to	an	OLAP	data	source	exists	on	the	active	worksheet.

Sub	UseCreateCubeFile()

				ActiveSheet.PivotTables(1).CreateCubeFile	_

								File:="C:\CustomCubeFile",	Properties:=False

End	Sub

CreateNames	Method
							

Creates	names	in	the	specified	range,	based	on	text	labels	in	the	sheet.

expression.CreateNames(Top,	Left,	Bottom,	Right)

expression			Required.	An	expression	that	returns	a	Range	object.

Top			Optional	Variant.	True	to	create	names	by	using	labels	in	the	top	row.	The
default	value	is	False.

Left			Optional	Variant.	True	to	create	names	by	using	labels	in	the	left	column.
The	default	value	is	False.

Bottom			Optional	Variant.True	to	create	names	by	using	labels	in	the	bottom
row.	The	default	value	is	False.

Right			Optional	Variant.True	to	create	names	by	using	labels	in	the	right
column.	The	default	value	is	False.

Remarks

If	you	don’t	specify	one	of	Top,	Left,	Bottom,	or	Right,	Microsoft	Excel	guesses
the	location	of	the	text	labels,	based	on	the	shape	of	the	specified	range.

Example

This	example	creates	names	for	cells	B1:B3	based	on	the	text	in	cells	A1:A3.
Note	that	you	must	include	the	cells	that	contain	the	names	in	the	range,	even
though	the	names	are	created	only	for	cells	B1:B3.

Set	rangeToName	=	Worksheets("Sheet1").Range("A1:B3")

rangeToName.CreateNames	Left:=True

CreateNewDocument	Method
							

Creates	a	new	document	linked	to	the	specified	hyperlink.

expression.CreateNewDocument(Filename,	EditNow,	Overwrite)

expression			An	expression	that	returns	a	Hyperlink	object.

Filename			Required	String.	The	file	name	of	the	specified	document.

EditNow			Required	Boolean.	True	to	have	the	specified	document	open
immediately	in	its	associated	editing	environment..	The	default	value	is	True.

Overwrite			Required	Boolean.	True	to	overwrite	any	existing	file	of	the	same
name	in	the	same	folder.	False	if	any	existing	file	of	the	same	name	is	preserved
and	the	Filename	argument	specifies	a	new	file	name.	The	default	value	is
False.

Example

This	example	creates	a	new	document	based	on	the	new	hyperlink	in	the	first
worksheet	and	then	loads	the	document	into	Microsoft	Excel	for	editing.	The
document	is	called	“Report.xls,”	and	it	overwrites	any	file	of	the	same	name	in
the	\\Server1\Annual	folder.

With	Worksheets(1)

				Set	objHyper	=	_

								.Hyperlinks.Add(Anchor:=.Range("A10"),	_

												Address:="\\Server1\Annual\Report.xls")

				objHyper.CreateNewDocument	_

								FileName:="\\Server1\Annual\Report.xls",	_

								EditNow:=True,	Overwrite:=True

End	With

Show	All

CreatePivotTable	Method
							

Creates	a	PivotTable	report	based	on	a	PivotCache	object.	Returns	a	PivotTable
object.

expression.CreatePivotTable(TableDestination,	TableName,	ReadData,
DefaultVersion)

expression			An	expression	that	returns	a	PivotCache	object.

TableDestination			Required	Variant.	The	cell	in	the	upper-left	corner	of	the
PivotTable	report’s	destination	range	(the	range	on	the	worksheet	where	the
resulting	PivotTable	report	will	be	placed).	The	destination	range	must	be	on	a
worksheet	in	the	workbook	that	contains	the	PivotCache	object	specified	by
expression.

TableName			Optional	Variant.	The	name	of	the	new	PivotTable	report.

ReadData			Optional	Variant.	True	to	create	a	PivotTable	cache	that	contains	all
of	the	records	from	the	external	database;	this	cache	can	be	very	large.	False	to
enable	setting	some	of	the	fields	as	server-based	page	fields	before	the	data	is
actually	read.

DefaultVersion			Optional	Variant.	The	default	version	of	the	PivotTable	report.

Remarks

For	an	alternative	way	to	create	a	PivotTable	report	based	on	a	PivotTable	cache,
see	the	Add	method	of	the	PivotTable	object.

Example

This	example	creates	a	new	PivotTable	cache	based	on	an	OLAP	provider,	and
then	it	creates	a	new	PivotTable	report	based	on	the	cache,	at	cell	A3	on	the
active	worksheet.

With	ActiveWorkbook.PivotCaches.Add(SourceType:=xlExternal)

				.Connection	=	_

								"OLEDB;Provider=MSOLAP;Location=srvdata;Initial	Catalog=National"

			.CommandType	=	xlCmdCube

			.CommandText	=	Array("Sales")	

			.MaintainConnection	=	True

				.CreatePivotTable	TableDestination:=Range("A3"),	_

								TableName:=	"PivotTable1"

End	With

With	ActiveSheet.PivotTables("PivotTable1")

				.SmallGrid	=	False

				.PivotCache.RefreshPeriod	=	0

				With	.CubeFields("[state]")

								.Orientation	=	xlColumnField

								.Position	=	1

				End	With

				With	.CubeFields("[Measures].[Count	Of	au_id]")

								.Orientation	=	xlDataField

								.Position	=	1

				End	With

End	With

This	example	creates	a	new	PivotTable	cache	using	an	ADO	connection	to
Microsoft	Jet,	and	then	it	creates	a	new	PivotTable	report	based	on	the	cache,	at
cell	A3	on	the	active	worksheet.

Dim	cnnConn	As	ADODB.Connection

Dim	rstRecordset	As	ADODB.Recordset

Dim	cmdCommand	As	ADODB.Command

'	Open	the	connection.

Set	cnnConn	=	New	ADODB.Connection

With	cnnConn

				.ConnectionString	=	_

								"Provider=Microsoft.Jet.OLEDB.4.0"

				.Open	"C:\perfdate\record.mdb"

End	With

'	Set	the	command	text.

Set	cmdCommand	=	New	ADODB.Command

Set	cmdCommand.ActiveConnection	=	cnnConn

With	cmdCommand

				.CommandText	=	"Select	Speed,	Pressure,	Time	From	DynoRun"

				.CommandType	=	adCmdText

				.Execute

End	With

'	Open	the	recordset.

Set	rstRecordset	=	New	ADODB.Recordset

Set	rstRecordset.ActiveConnection	=	cnnConn

rstRecordset.Open	cmdCommand

'	Create	a	PivotTable	cache	and	report.

Set	objPivotCache	=	ActiveWorkbook.PivotCaches.Add(_

				SourceType:=xlExternal)

Set	objPivotCache.Recordset	=	rstRecordset

With	objPivotCache

				.CreatePivotTable	TableDestination:=Range("A3"),	_

								TableName:="Performance"

End	With

With	ActiveSheet.PivotTables("Performance")

				.SmallGrid	=	False

				With	.PivotFields("Pressure")

								.Orientation	=	xlRowField

								.Position	=	1

				End	With

				With	.PivotFields("Speed")

								.Orientation	=	xlColumnField

								.Position	=	1

				End	With

				With	.PivotFields("Time")

								.Orientation	=	xlDataField

								.Position	=	1

				End	With

End	With

'	Close	the	connections	and	clean	up.

cnnConn.Close

Set	cmdCommand	=	Nothing

Set	rstRecordSet	=	Nothing

Set	cnnConn	=	Nothing

CreateSummary	Method
							

Creates	a	new	worksheet	that	contains	a	summary	report	for	the	scenarios	on	the
specified	worksheet.	Variant.

expression.CreateSummary(ReportType,	ResultCells)

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

ReportType		Optional	XlSummaryReportType.

XlSummaryReportType	can	be	one	of	these	XlSummaryReportType	constants.
xlSummaryPivotTable
xlStandardSummary	default

ResultCells		Optional	Variant.		A	Range	object	that	represents	the	result	cells
on	the	specified	worksheet.	Normally,	this	range	refers	to	one	or	more	cells
containing	the	formulas	that	depend	on	the	changing	cell	values	for	your
model	—	that	is,	the	cells	that	show	the	results	of	a	particular	scenario.	If	this
argument	is	omitted,	there	are	no	result	cells	included	in	the	report.

Example

This	example	creates	a	summary	of	the	scenarios	on	Sheet1,	with	result	cells	in
the	range	C4:C9	on	Sheet1.

Worksheets("Sheet1").Scenarios.CreateSummary	_

				ResultCells	:=	Worksheets("Sheet1").Range("C4:C9")

CustomDrop	Method
							

Sets	the	vertical	distance	(in	points)	from	the	edge	of	the	text	bounding	box	to
the	place	where	the	callout	line	attaches	to	the	text	box.	This	distance	is
measured	from	the	top	of	the	text	box	unless	the	AutoAttach	property	is	set	to
True	and	the	text	box	is	to	the	left	of	the	origin	of	the	callout	line	(the	place	that
the	callout	points	to),	in	which	case	the	drop	distance	is	measured	from	the
bottom	of	the	text	box.

expression.CustomDrop(Drop)

expression			Required.	An	expression	that	returns	a	CalloutFormat	object.

Drop			Required	Single.	The	drop	distance,	in	points.

Example

This	example	sets	the	custom	drop	distance	to	14	points,	and	specifies	that	the
drop	distance	always	be	measured	from	the	top.	For	the	example	to	work,	shape
three	must	be	a	callout.

Set	myDocument	=	Worksheets(1)

With	myDocument.Shapes(3).Callout

				.CustomDrop	14

				.AutoAttach	=	False

End	With

CustomLength	Method
							

Specifies	that	the	first	segment	of	the	callout	line	(the	segment	attached	to	the
text	callout	box)	retain	a	fixed	length	whenever	the	callout	is	moved.	Use	the
AutomaticLength	method	to	specify	that	the	first	segment	of	the	callout	line	be
scaled	automatically	whenever	the	callout	is	moved.	Applies	only	to	callouts
whose	lines	consist	of	more	than	one	segment	(types	msoCalloutThree	and
msoCalloutFour).

expression.CustomLength(Length)

expression			Required.	An	expression	that	returns	a	CalloutFormat	object.

Length			Required	Single.	The	length	of	the	first	segment	of	the	callout,	in
points.

Remarks

Applying	this	method	sets	the	AutoLength	property	to	False	and	sets	the
Length	property	to	the	value	specified	for	the	Length	argument.

Example

This	example	toggles	between	an	automatically	scaling	first	segment	and	one
with	a	fixed	length	for	the	callout	line	for	shape	one	on	myDocument.	For	the
example	to	work,	shape	one	must	be	a	callout.

Set	myDocument	=	Worksheets(1)

With	myDocument.Shapes(1).Callout

				If	.AutoLength	Then

								.CustomLength	50

				Else

								.AutomaticLength

				End	If

End	With

Cut	Method
							

Cuts	the	object	to	the	Clipboard	or	pastes	it	into	a	specified	destination.

expression.Cut(Destination)

expression			Required.	An	expression	that	returns	an	object	in	the	Applies	To	list.

Destination			Optional	Variant.	Used	only	with	Range	objects.	The	range	where
the	object	should	be	pasted.	If	this	argument	is	omitted,	the	object	is	cut	to	the
Clipboard.

Remarks

The	cut	range	must	be	made	up	of	adjacent	cells.

Only	embedded	charts	can	be	cut.

Example

This	example	cuts	the	range	A1:G37	on	Sheet1	and	places	it	on	the	Clipboard.

Worksheets("Sheet1").Range("A1:G37").Cut

DataLabels	Method
							

Returns	an	object	that	represents	either	a	single	data	label	(a	DataLabel	object)
or	a	collection	of	all	the	data	labels	for	the	series	(a	DataLabels	collection).

expression.DataLabels(Index)

expression			Required.	An	expression	that	returns	a	Series	object.

Index			Optional	Variant.	The	number	of	the	data	label.

Remarks

If	the	series	has	the	Show	Value	option	turned	on	for	the	data	labels,	the	returned
collection	can	contain	up	to	one	label	for	each	point.	Data	labels	can	be	turned
on	or	off	for	individual	points	in	the	series.

If	the	series	is	on	an	area	chart	and	has	the	Show	Label	option	turned	on	for	the
data	labels,	the	returned	collection	contains	only	a	single	label,	which	is	the	label
for	the	area	series.

Example

This	example	sets	the	data	labels	for	series	one	in	Chart1	to	show	their	key,
assuming	that	their	values	are	visible	when	the	example	runs.

With	Charts("Chart1").SeriesCollection(1)

				.HasDataLabels	=	True

				With	.DataLabels

								.ShowLegendKey	=	True

								.Type	=	xlValue

				End	With

End	With

DataSeries	Method
							

Creates	a	data	series	in	the	specified	range.	Variant.

expression.DataSeries(Rowcol,	Type,	Date,	Step,	Stop,	Trend)

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

Rowcol		Optional	Variant.		Can	be	the	xlRows	or	xlColumns	constant	to	have
the	data	series	entered	in	rows	or	columns,	respectively.	If	this	argument	is
omitted,	the	size	and	shape	of	the	range	is	used.

Type		Optional	XlDataSeriesType.

XlDataSeriesType	can	be	one	of	these	XlDataSeriesType	constants.
xlAutoFill
xlDataSeriesLinear	default
xlChronological
xlGrowth

Date		Optional	XlDataSeriesDate.		If	the	Type	argument	is	xlChronological,
the	Date	argument	indicates	the	step	date	unit.

XlDataSeriesDate	can	be	one	of	these	XlDataSeriesDate	constants.
xlDay	default
xlWeekday
xlMonth
xlYear

Step		Optional	Variant.	The	step	value	for	the	series.	The	default	value	is	1.

Stop		Optional	Variant.	The	stop	value	for	the	series.	If	this	argument	is	omitted,
Microsoft	Excel	fills	to	the	end	of	the	range.

Trend		Optional	Variant.	True	to	create	a	linear	trend	or	growth	trend.	False	to
create	a	standard	data	series.	The	default	value	is	False.

Example

This	example	creates	a	series	of	12	dates.	The	series	contains	the	last	day	of
every	month	in	1996	and	is	created	in	the	range	A1:A12	on	Sheet1.

Set	dateRange	=	Worksheets("Sheet1").Range("A1:A12")

Worksheets("Sheet1").Range("A1").Formula	=	"31-JAN-1996"

dateRange.DataSeries	Type:=xlChronological,	Date:=xlMonth

DDEExecute	Method
							

Runs	a	command	or	performs	some	other	action	or	actions	in	another	application
by	way	of	the	specified	DDE	channel.

expression.DDEExecute(Channel,	String)

expression			Optional.	An	expression	that	returns	an	Application	object.

Channel			Required	Long.	The	channel	number	returned	by	the	DDEInitiate
method.

String			Required	String.	The	message	defined	in	the	receiving	application.

Remarks

The	DDEExecute	method	is	designed	to	send	commands	to	another	application.
You	can	also	use	it	to	send	keystrokes	to	another	application,	although	the
SendKeys	method	is	the	preferred	way	to	send	keystrokes.	The	String	argument
can	specify	any	single	key	combined	with	ALT,	CTRL,	or	SHIFT,	or	any
combination	of	those	keys.	Each	key	is	represented	by	one	or	more	characters,
such	as	"a"	for	the	character	a,	or	"{ENTER}"	for	the	ENTER	key.

To	specify	characters	that	aren't	displayed	when	you	press	the	corresponding	key
(for	example,	ENTER	or	TAB),	use	the	codes	listed	in	the	following	table.	Each
code	in	the	table	represents	one	key	on	the	keyboard.

Key Code
BACKSPACE {BACKSPACE}	or	{BS}
BREAK {BREAK}

CAPS	LOCK {CAPSLOCK}

CLEAR {CLEAR}

DELETE	or	DEL {DELETE}	or	{DEL}
DOWN	ARROW {DOWN}

END {END}

ENTER	(numeric	keypad) {ENTER}
ENTER ~	(tilde)
ESC {ESCAPE}	or	{ESC}
HELP {HELP}

HOME {HOME}

INS {INSERT}

LEFT	ARROW {LEFT}

NUM	LOCK {NUMLOCK}

PAGE	DOWN {PGDN}

PAGE	UP {PGUP}

RETURN {RETURN}

RIGHT	ARROW {RIGHT}

SCROLL	LOCK {SCROLLLOCK}

TAB {TAB}

UP	ARROW {UP}

F1	through	F15 {F1}	through	{F15}

You	can	also	specify	keys	combined	with	SHIFT	and/or	CTRL	and/or	ALT.	To
specify	a	key	combined	with	one	or	more	of	the	keys	just	mentioned,	use	the
following	table.

To	combine	a	key	with Precede	the	key	code	with
SHIFT +	(plus	sign)
CTRL ^	(caret)
ALT %	(percent	sign)

Example

This	example	opens	a	channel	to	Word,	opens	the	Word	document	Formletr.doc,
and	then	sends	the	FilePrint	command	to	WordBasic.

channelNumber	=	Application.DDEInitiate(_

				app:="WinWord",	_

				topic:="C:\WINWORD\FORMLETR.DOC")

Application.DDEExecute	channelNumber,	"[FILEPRINT]"

Application.DDETerminate	channelNumber

DDEInitiate	Method
							

Opens	a	DDE	channel	to	an	application.

expression.DDEInitiate(App,	Topic)

expression			Optional.	An	expression	that	returns	an	Application	object.

App			Required	String.	The	application	name.

Topic			Required	String.	Describes	something	in	the	application	to	which	you're
opening	a	channel	—	usually	a	document	of	that	application.

Remarks

If	successful,	the	DDEInitiate	method	returns	the	number	of	the	open	channel.
All	subsequent	DDE	functions	use	this	number	to	specify	the	channel.

Example

This	example	opens	a	channel	to	Word,	opens	the	Word	document	Formletr.doc,
and	then	sends	the	FilePrint	command	to	WordBasic.

channelNumber	=	Application.DDEInitiate(_

				app:="WinWord",	_

				topic:="C:\WINWORD\FORMLETR.DOC")

Application.DDEExecute	channelNumber,	"[FILEPRINT]"

Application.DDETerminate	channelNumber

DDEPoke	Method
							

Sends	data	to	an	application.

expression.DDEPoke(Channel,	Item,	Data)

expression			Optional.	An	expression	that	returns	an	Application	object.

Channel			Required	Long.	The	channel	number	returned	by	the	DDEInitiate
method.

Item			Required	Variant.	The	item	to	which	the	data	is	to	be	sent.

Data			Required	Variant.	The	data	to	be	sent	to	the	application.

Remarks

An	error	occurs	if	the	method	call	doesn't	succeed.

Example

This	example	opens	a	channel	to	Word,	opens	the	Word	document	Sales.doc,	and
then	inserts	the	contents	of	cell	A1	(on	Sheet1)	at	the	beginning	of	the	document.

channelNumber	=	Application.DDEInitiate(_

				app:="WinWord",	_

				topic:="C:\WINWORD\SALES.DOC")

Set	rangeToPoke	=	Worksheets("Sheet1").Range("A1")

Application.DDEPoke	channelNumber,	"\StartOfDoc",	rangeToPoke

Application.DDETerminate	channelNumber

DDERequest	Method
							

Requests	information	from	the	specified	application.	This	method	always	returns
an	array;	for	more	information,	see	the	example.

expression.DDERequest(Channel,	Item)

expression			Optional.	An	expression	that	returns	an	Application	object.

Channel			Required	Long.	The	channel	number	returned	by	the	DDEInitiate
method.

Item			Required	String.	The	item	to	be	requested.

Example

This	example	opens	a	channel	to	the	System	topic	in	Word	and	then	uses	the
Topics	item	to	return	a	list	of	all	open	documents.	The	list	is	returned	in	column
A	on	Sheet1.

channelNumber	=	Application.DDEInitiate(_

				app:="WinWord",	_

				topic:="System")

returnList	=	Application.DDERequest(channelNumber,	"Topics")

For	i	=	LBound(returnList)	To	UBound(returnList)

				Worksheets("Sheet1").Cells(i,	1).Formula	=	returnList(i)

Next	i

Application.DDETerminate	channelNumber

DDETerminate	Method
							

Closes	a	channel	to	another	application.

expression.DDETerminate(Channel)

expression			Optional.	An	expression	that	returns	an	Application	object.

Channel			Required	Long.	The	channel	number	returned	by	the	DDEInitiate
method.

Example

This	example	opens	a	channel	to	Word,	opens	the	Word	document	Formletr.doc,
and	then	sends	the	FilePrint	command	to	WordBasic.

channelNumber	=	Application.DDEInitiate(_

				app:="WinWord",	_

				topic:="C:\WINWORD\FORMLETR.DOC")

Application.DDEExecute	channelNumber,	"[FILEPRINT]"

Application.DDETerminate	channelNumber

Show	All

Delete	Method
							

Delete	method	as	it	applies	to	the	Range	object.

Deletes	the	object.

expression.Delete(Shift)

expression			Required.	An	expression	that	returns	one	of	the	above	objects.

Shift		Optional	Variant.		Used	only	with	Range	objects.	Specifies	how	to	shift
cells	to	replace	deleted	cells.	Can	be	one	of	the	following
XlDeleteShiftDirection	constants:	xlShiftToLeft	or	xlShiftUp.	If	this	argument
is	omitted,	Microsoft	Excel	decides	based	on	the	shape	of	the	range.

Delete	method	as	it	applies	to	the	ShapeNodes	object.

Deletes	the	object.

expression.Delete(Index)

expression			Required.	An	expression	that	returns	one	of	the	above	objects.

Index		Required	Integer.

Delete	method	as	it	applies	to	all	other	objects	in	the	Applies	To	list.

Deletes	the	object.

expression.Delete

expression			Required.	An	expression	that	returns	one	of	the	above	objects.

Remarks

Deleting	a	Point	or	LegendKey	object	deletes	the	entire	series.

You	can	delete	custom	document	properties,	but	you	cannot	delete	a	built-in
document	property.

Example

This	example	deletes	cells	A1:D10	on	Sheet1	and	shifts	the	remaining	cells	to
the	left.

Worksheets("Sheet1").Range("A1:D10").Delete	Shift:=xlShiftToLeft

This	example	deletes	Sheet3	in	the	active	workbook	without	displaying	the
confirmation	dialog	box.

Application.DisplayAlerts	=	False

Worksheets("Sheet3").Delete

Application.DisplayAlerts	=	True

This	example	sorts	the	data	in	the	first	column	on	Sheet1	and	then	deletes	rows
that	contain	duplicate	data.

Worksheets("Sheet1").Range("A1").Sort	_

								key1:=Worksheets("Sheet1").Range("A1")

Set	currentCell	=	Worksheets("Sheet1").Range("A1")

Do	While	Not	IsEmpty(currentCell)

				Set	nextCell	=	currentCell.Offset(1,	0)

				If	nextCell.Value	=	currentCell.Value	Then

								currentCell.EntireRow.Delete

				End	If

				Set	currentCell	=	nextCell

Loop

DeleteAll	Method
							

Removes	all	users	associated	with	access	to	a		protected	range	on	a	worksheet.

expression.DeleteAll

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

Example

In	this	example,	Microsoft	Excel	removes	all	users	associated	with	access	to	the
first	protected	range	on	the	active	worksheet.	This	example	assumes	the
worksheet	is	not	protected.

Sub	UseDeleteAll()

				Dim	wksSheet	As	Worksheet

				Set	wksSheet	=	Application.ActiveSheet

				'	Remove	all	users	associated	with	access	to	the	first	protected	range.

				wksSheet.Protection.AllowEditRanges(1).Users.DeleteAll

End	Sub

DeleteChartAutoFormat	Method
							

Removes	a	custom	chart	autoformat	from	the	list	of	available	chart	autoformats.

expression.DeleteChartAutoFormat(Name)

expression			Required.	An	expression	that	returns	an	Application	object.

Name			Required	String.	The	name	of	the	custom	autoformat	to	be	removed.

Example

This	example	deletes	the	custom	autoformat	named	"Presentation	Chart."

Application.DeleteChartAutoFormat	name:="Presentation	Chart"

DeleteCustomList	Method
							

Deletes	a	custom	list.

expression.DeleteCustomList(ListNum)

expression			Required.	An	expression	that	returns	an	Application	object.

ListNum			Required	Long.	The	custom	list	number.	This	number	must	be	greater
than	or	equal	to	5	(Microsoft	Excel	has	four	built-in	custom	lists	that	cannot	be
deleted).

Remarks

This	method	generates	an	error	if	the	list	number	is	less	than	5	or	if	there's	no
matching	custom	list.

Example

This	example	deletes	a	custom	list.

n	=	Application.GetCustomListNum(Array("cogs",	"sprockets",	_

				"widgets",	"gizmos"))

Application.DeleteCustomList	n

DeleteNumberFormat	Method
							

Deletes	a	custom	number	format	from	the	workbook.

expression.DeleteNumberFormat(NumberFormat)

expression			Required.	An	expression	that	returns	a	Workbook	object.

NumberFormat			Required	String.	Names	the	number	format	to	be	deleted.

Example

This	example	deletes	the	number	format	"000-00-0000"	from	the	active
workbook.

ActiveWorkbook.DeleteNumberFormat("000-00-0000")

DeleteReplacement	Method
							

Deletes	an	entry	from	the	array	of	AutoCorrect	replacements.

expression.DeleteReplacement(What)

expression			Required.	An	expression	that	returns	an	AutoCorrect	object.

What			Required	String.	The	text	to	be	replaced,	as	it	appears	in	the	row	to	be
deleted	from	the	array	of	AutoCorrect	replacements.	If	this	string	doesn't	exist	in
the	array	of	AutoCorrect	replacements,	this	method	fails.

Example

This	example	removes	the	word	"Temperature"	from	the	array	of	AutoCorrect
replacements.

With	Application.AutoCorrect

				.DeleteReplacement	"Temperature"

End	With

Deselect	Method
							

Cancels	the	selection	for	the	specified	chart.

expression.Deselect

expression			Required.	An	expression	that	returns	a	Chart	object.

Example

This	example	is	equivalent	to	pressing	ESC	while	working	on	the	active	chart.
The	example	should	be	run	on	a	chart	that	has	a	component	(such	as	an	axis)
selected.

ActiveChart.Deselect

DialogBox	Method
							

Displays	a	dialog	box	defined	by	a	dialog	box	definition	table	on	a	Microsoft
Excel	4.0	macro	sheet.	Returns	the	number	of	the	chosen	control,	or	returns
False	if	the	user	clicks	the	Cancel	button.

expression.DialogBox

expression			Required.	An	expression	that	returns	a	Range	object.	The	Range
must	refer	to	a	dialog	box	definition	table	on	a	Microsoft	Excel	4.0	macro	sheet.

Example

This	example	runs	a	Microsoft	Excel	4.0	dialog	box	and	then	displays	the	return
value	in	a	message	box.	The	dialogRange	variable	refers	to	the	dialog	box
definition	table	on	the	Microsoft	Excel	4.0	macro	sheet	named	“Macro1.”

Set	dialogRange	=	Excel4MacroSheets("Macro1").Range("myDialogBox")

result	=	dialogRange.DialogBox

MsgBox	result

Dirty	Method
							

Designates	a	range	to	be	recalculated	when	the	next	recalculation	occurs.

expression.Dirty

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

Remarks

The	Calculate	method	forces	the	specified	range	to	be	recalculated,	for	cells	that
Microsoft	Excel	understands	as	needing	recalculation.

If	the	application	is	in	manual	calculation	mode,	using	the	Dirty	method
instructs	Excel	to	identify	the	specified	cell	to	be	recalculated.	If	the	application
is	in	automatic	calculation	mode,	using	the	Dirty	method	instructs	Excel	to
perform	a	recalculation.

Example

In	this	example,	Microsoft	Excel	enters	a	formula	in	cell	A3,	saves	the	changes,
and	then	recalculates	cell	A3.

Sub	UseDirtyMethod()

				MsgBox	"Two	values	and	a	formula	will	be	entered."

				Range("A1").Value	=	1

				Range("A2").Value	=	2

				Range("A3").Formula	=	"=A1+A2"

				'	Save	the	changes	made	to	the	worksheet.

				Application.DisplayAlerts	=	False

				Application.Save

				MsgBox	"Changes	saved."

				'	Force	a	recalculation	of	range	A3.

				Application.Range("A3").Dirty

				MsgBox	"Try	to	close	the	file	without	saving	and	a	dialog	box	will	appear."

End	Sub

This	keyword	is	not	implemented.	It	is	reserved	for	future	use.

Disconnect	Method
							

Instructs	the	real-time	data	server	to	disconnect	from	the	specified
IRTDUpdateEvent	object.

expression.Disconnect

expression			Required.	An	expression	that	returns	an	IRTDUpdateEvent	object.

DisconnectData	Method
							

Notifies	the	RTD	server	application	that	a	topic	is	no	longer	in	use.

expression.DisconnectData(TopicID)

expression			Required.	An	expression	that	returns	an	IRtdServer	object.

TopicID		Required	Long.	A	unique	value	of	the	topic	assigned	by	Microsoft
Excel.

Distribute	Method
							

Horizontally	or	vertically	distributes	the	shapes	in	the	specified	range	of	shapes.

expression.Distribute(DistributeCmd,	RelativeTo)

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

DistributeCmd		Required	MsoDistributeCmd.		Specifies	whether	shapes	in	the
range	are	to	be	distributed	horizontally	or	vertically.

MsoDistributeCmd	can	be	one	of	these	MsoDistributeCmd	constants.
msoDistributeHorizontally
msoDistributeVertically

RelativeTo		Required	MsoTriState.		Not	used	in	Microsoft	Excel.	Must	be
False.

MsoTriState	can	be	one	of	these	MsoTriState	constants.
msoCTrue
msoFalse
msoTriStateMixed
msoTriStateToggle
msoTrue

Example

This	example	defines	a	shape	range	that	contains	all	the	AutoShapes	on
myDocument	and	then	horizontally	distributes	the	shapes	in	this	range.	The
leftmost	shape	retains	its	position.

Set	myDocument	=	Worksheets(1)

With	myDocument.Shapes

				numShapes	=	.Count

				If	numShapes	>	1	Then

								numAutoShapes	=	0

								ReDim	autoShpArray(1	To	numShapes)

								For	i	=	1	To	numShapes

												If	.Item(i).Type	=	msoAutoShape	Then

																numAutoShapes	=	numAutoShapes	+	1

																autoShpArray(numAutoShapes)	=	.Item(i).Name

												End	If

								Next

								If	numAutoShapes	>	1	Then

												ReDim	Preserve	autoShpArray(1	To	numAutoShapes)

												Set	asRange	=	.Range(autoShpArray)

												asRange.Distribute	msoDistributeHorizontally,	False

								End	If

				End	If

End	With

DoubleClick	Method
							

Equivalent	to	double-clicking	the	active	cell.

expression.DoubleClick

expression			Required.	An	expression	that	returns	an	Application	object.

Example

This	example	double-clicks	the	active	cell	on	Sheet1.

Worksheets("Sheet1").Activate

Application.DoubleClick

DoughnutGroups	Method
							

On	a	2-D	chart,	returns	an	object	that	represents	either	a	single	doughnut	chart
group	(a	ChartGroup	object)	or	a	collection	of	the	doughnut	chart	groups	(a
ChartGroups	collection).

expression.DoughnutGroups(Index)

expression			Required.	An	expression	that	returns	a	Chart	object.

Index			Optional	Variant.	Specifies	the	chart	group.

Example

This	example	sets	the	starting	angle	for	doughnut	group	one	in	Chart1.

Charts("Chart1").DoughnutGroups(1).FirstSliceAngle	=	45	

DragOff	Method
							

Drags	a	page	break	out	of	the	print	area.

expression.DragOff(Direction,	RegionIndex)

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

Direction		Required	XlDirection.		The	direction	in	which	the	page	break	is
dragged.

XlDirection	can	be	one	of	these	XlDirection	constants.
xlDown
xlToRight
xlToLeft
xlUp

RegionIndex		Required	Long.		The	print-area	region	index	for	the	page	break
(the	region	where	the	mouse	pointer	is	located	when	the	mouse	button	is	pressed
if	the	user	drags	the	page	break).	If	the	print	area	is	contiguous,	there’s	only	one
print	region.	If	the	print	area	is	discontiguous,	there’s	more	than	one	print	region.

Remarks

This	method	exists	primarily	for	the	macro	recorder.	You	can	use	the	Delete
method	to	delete	a	page	break	in	Visual	Basic.

Example

This	example	deletes	vertical	page	break	one	from	the	active	sheet	by	dragging	it
off	the	right	edge	of	print	region	one.

ActiveSheet.VPageBreaks(1).DragOff	xlToRight,	1

Duplicate	Method
							

Duplicates	the	object	and	returns	a	reference	to	the	new	copy.

expression.Duplicate

expression			Required.	An	expression	that	returns	an	object	in	the	Applies	To	list.

Example

This	example	duplicates	embedded	chart	one	on	Sheet1	and	then	selects	the
copy.

Set	dChart	=	Worksheets("Sheet1").ChartObjects(1).Duplicate

dChart.Select

EndConnect	Method
							

Attaches	the	end	of	the	specified	connector	to	a	specified	shape.	If	there’s
already	a	connection	between	the	end	of	the	connector	and	another	shape,	that
connection	is	broken.	If	the	end	of	the	connector	isn’t	already	positioned	at	the
specified	connecting	site,	this	method	moves	the	end	of	the	connector	to	the
connecting	site	and	adjusts	the	size	and	position	of	the	connector.	Use	the
BeginConnect	method	to	attach	the	beginning	of	the	connector	to	a	shape.

expression.EndConnect(ConnectedShape,	ConnectionSite)

expression			Required.	An	expression	that	returns	a	ConnectorFormat	object.

ConnectedShape			Required	Shape	object.	The	shape	to	attach	the	end	of	the
connector	to.	The	specified	Shape	object	must	be	in	the	same	Shapes	collection
as	the	connector.

ConnectionSite			Required	Long.	A	connection	site	on	the	shape	specified	by
ConnectedShape.	Must	be	an	integer	between	1	and	the	integer	returned	by	the
ConnectionSiteCount	property	of	the	specified	shape.	If	you	want	the
connector	to	automatically	find	the	shortest	path	between	the	two	shapes	it
connects,	specify	any	valid	integer	for	this	argument	and	then	use	the
RerouteConnections	method	after	the	connector	is	attached	to	shapes	at	both
ends.

Remarks

When	you	attach	a	connector	to	an	object,	the	size	and	position	of	the	connector
are	automatically	adjusted,	if	necessary.

Example

This	example	adds	two	rectangles	to	myDocument	and	connects	them	with	a
curved	connector.	Notice	that	the	RerouteConnections	method	makes	it
irrelevant	what	values	you	supply	for	the	ConnectionSite	arguments	used	with
the	BeginConnect	and	EndConnect	methods.

Set	myDocument	=	Worksheets(1)

Set	s	=	myDocument.Shapes

Set	firstRect	=	s.AddShape(msoShapeRectangle,	100,	50,	200,	100)

Set	secondRect	=	s.AddShape(msoShapeRectangle,	300,	300,	200,	100)

Set	c	=	s.AddConnector(msoConnectorCurve,	0,	0,	100,	100)

With	c.ConnectorFormat

				.BeginConnect	ConnectedShape:=firstRect,	ConnectionSite:=1

				.EndConnect	ConnectedShape:=secondRect,	ConnectionSite:=1

				c.RerouteConnections

End	With

EndDisconnect	Method
							

Detaches	the	end	of	the	specified	connector	from	the	shape	it’s	attached	to.	This
method	doesn’t	alter	the	size	or	position	of	the	connector:	the	end	of	the
connector	remains	positioned	at	a	connection	site	but	is	no	longer	connected.
Use	the	BeginDisconnect	method	to	detach	the	beginning	of	the	connector	from
a	shape.

expression.EndDisconnect

expression			Required.	An	expression	that	returns	a	ConnectorFormat	object.

Example

This	example	adds	two	rectangles	to	myDocument,	attaches	them	with	a
connector,	automatically	reroutes	the	connector	along	the	shortest	path,	and	then
detaches	the	connector	from	the	rectangles.

Set	myDocument	=	Worksheets(1)

Set	s	=	myDocument.Shapes

Set	firstRect	=	s.AddShape(msoShapeRectangle,	100,	50,	200,	100)

Set	secondRect	=	s.AddShape(msoShapeRectangle,	300,	300,	200,	100)

set	c	=	s.AddConnector(msoConnectorCurve,	0,	0,	0,	0)

with	c.ConnectorFormat

				.BeginConnect	firstRect,	1

				.EndConnect	secondRect,	1

				c.RerouteConnections

				.BeginDisconnect

				.EndDisconnect

End	With

EndReview	Method
							

Terminates	a	review	of	a	file	that	has	been	sent	for	review	using	the
SendForReview	method.

expression.EndReview

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

Example

This	example	terminates	the	review	of	the	active	workbook.	When	executed,	this
procedure	displays	a	message	asking	if	you	want	to	end	the	review.		This
example	assumes	the	active	workbook	has	been	sent	for	review.

Sub	EndWorkbookRev()

				ActiveWorkbook.EndReview

End	Sub

ErrorBar	Method
							

Applies	error	bars	to	the	series.	Variant.

expression.ErrorBar(Direction,	Include,	Type,	Amount,	MinusValues)

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

Direction		Required	XlErrorBarDirection.		The	error	bar	direction.

XlErrorBarDirection	can	be	one	of	these	XlErrorBarDirection	constants.
xlX
xlY	default

Include		Required	XlErrorBarInclude.		The	error	bar	parts	to	include.

XlErrorBarInclude	can	be	one	of	these	XlErrorBarInclude	constants.
xlErrorBarIncludeBoth	default
xlErrorBarIncludeNone
xlErrorBarIncludeMinusValues
xlErrorBarIncludePlusValues

Type		Required	XlErrorBarType.		The	error	bar	type.

XlErrorBarType	can	be	one	of	these	XlErrorBarType	constants.
xlErrorBarTypeCustom
xlErrorBarTypePercent
xlErrorBarTypeStError
xlErrorBarTypeFixedValue
xlErrorBarTypeStDev

Amount		Optional	Variant.		The	error	amount.	Used	for	only	the	positive	error

amount	when	Type	is	xlErrorBarTypeCustom.

MinusValues		Optional	Variant.		The	negative	error	amount	when	Type	is
xlErrorBarTypeCustom.

Example

This	example	applies	standard	error	bars	in	the	Y	direction	for	series	one	in
Chart1.	The	error	bars	are	applied	in	the	positive	and	negative	directions.	The
example	should	be	run	on	a	2-D	line	chart.

Charts("Chart1").SeriesCollection(1).ErrorBar	_

				Direction:=xlY,	Include:=xlErrorBarIncludeBoth,	_

				Type:=xlErrorBarTypeStError

Evaluate	Method
							

Converts	a	Microsoft	Excel	name	to	an	object	or	a	value.

expression.Evaluate(Name)

expression			Optional	for	Application,	required	for	Chart,	DialogSheet,	and
Worksheet.	An	expression	that	returns	an	object	in	the	Applies	To	list.

Name			Required	String.	The	name	of	the	object,	using	the	naming	convention
of	Microsoft	Excel.

Remarks

The	following	types	of	names	in	Microsoft	Excel	can	be	used	with	this	method:

A1-style	references.	You	can	use	any	reference	to	a	single	cell	in	A1-style
notation.	All	references	are	considered	to	be	absolute	references.
Ranges.	You	can	use	the	range,	intersect,	and	union	operators	(colon,	space,
and	comma,	respectively)	with	references.
Defined	names.	You	can	specify	any	name	in	the	language	of	the	macro.
External	references.	You	can	use	the	!	operator	to	refer	to	a	cell	or	to	a
name	defined	in	another	workbook	—	for	example,	Evaluate("
[BOOK1.XLS]Sheet1!A1").

Note			Using	square	brackets	(for	example,	"[A1:C5]")	is	identical	to	calling	the
Evaluate	method	with	a	string	argument.	For	example,	the	following	expression
pairs	are	equivalent.

[a1].Value	=	25

Evaluate("A1").Value	=	25

trigVariable	=	[SIN(45)]

trigVariable	=	Evaluate("SIN(45)")

Set	firstCellInSheet	=	Workbooks("BOOK1.XLS").Sheets(4).[A1]

Set	firstCellInSheet	=	_

				Workbooks("BOOK1.XLS").Sheets(4).Evaluate("A1")

The	advantage	of	using	square	brackets	is	that	the	code	is	shorter.	The	advantage
of	using	Evaluate	is	that	the	argument	is	a	string,	so	you	can	either	construct	the
string	in	your	code	or	use	a	Visual	Basic	variable.

Example

This	example	turns	on	bold	formatting	in	cell	A1	on	Sheet1.

Worksheets("Sheet1").Activate

boldCell	=	"A1"

Application.Evaluate(boldCell).Font.Bold	=	True

ExclusiveAccess	Method
							

Assigns	the	current	user	exclusive	access	to	the	workbook	that's	open	as	a	shared
list.

expression.ExclusiveAccess

expression			Required.	An	expression	that	returns	a	Workbook	object.

Remarks

The	ExclusiveAccess	method	saves	any	changes	you've	made	to	the	workbook
and	requires	other	users	who	have	the	workbook	open	to	save	their	changes	to	a
different	file.

If	the	specified	workbook	isn't	open	as	a	shared	list,	this	method	fails.	To
determine	whether	a	workbook	is	open	as	a	shared	list,	use	the
MultiUserEditing	property.

Example

This	example	determines	whether	the	active	workbook	is	open	as	a	shared	list.	If
it	is,	the	example	gives	the	current	user	exclusive	access.

If	ActiveWorkbook.MultiUserEditing	Then

				ActiveWorkbook.ExclusiveAccess

End	If

Execute	Method
							

Activates	a	smart	tag	action	that	is	associated	with	the	smart	tag	type	on	a	cell.

expression.Execute

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

Example

This	example	inserts	a	refreshable	stock	quote	for	the	ticker	symbol	"MSFT"	and
it	assumes	the	host	system	is	connected	to	the	Internet.

Sub	ExecuteASmartTag()

				Dim	strAction	As	String

				strAction	=	"Insert	refreshable	stock	price"

				'	Enable	smart	tags	to	be	embedded	and	recognized.

				ActiveWorkbook.SmartTagOptions.EmbedSmartTags	=	True

				Application.SmartTagRecognizers.Recognize	=	True

				'	Invoke	a	smart	tag	for	the	Microsoft	ticker	symbol.

				With	Range("A1")

								.Formula	=	"MSFT"

								.SmartTags(_

												"urn:schemas-microsoft-com:office:smarttags#stockticker")	_

												.SmartTagActions(strAction).Execute

				End	With

End	Sub

ExecuteExcel4Macro	Method
							

Runs	a	Microsoft	Excel	4.0	macro	function	and	then	returns	the	result	of	the
function.	The	return	type	depends	on	the	function.

expression.ExecuteExcel4Macro(String)

expression			Optional.	An	expression	that	returns	an	Application	object.

String			Required	String.	A	Microsoft	Excel	4.0	macro	language	function
without	the	equal	sign.	All	references	must	be	given	as	R1C1	strings.	If	String
contains	embedded	double	quotation	marks,	you	must	double	them.	For
example,	to	run	the	macro	function	=MID("sometext",1,4),	String	would	have	to
be	"MID(""sometext"",1,4)".

Remarks

The	Microsoft	Excel	4.0	macro	isn't	evaluated	in	the	context	of	the	current
workbook	or	sheet.	This	means	that	any	references	should	be	external	and
should	specify	an	explicit	workbook	name.	For	example,	to	run	the	Microsoft
Excel	4.0	macro	"My_Macro"	in	Book1	you	must	use	"Book1!My_Macro()".	If
you	don't	specify	the	workbook	name,	this	method	fails.

Example

This	example	runs	the	GET.CELL(42)	macro	function	on	cell	C3	on	Sheet1	and
then	displays	the	result	in	a	message	box.	The	GET.CELL(42)	macro	function
returns	the	horizontal	distance	from	the	left	edge	of	the	active	window	to	the	left
edge	of	the	active	cell.	This	macro	function	has	no	direct	Visual	Basic
equivalent.

Worksheets("Sheet1").Activate

Range("C3").Select

MsgBox	ExecuteExcel4Macro("GET.CELL(42)")

Export	Method
							

Exports	the	chart	in	a	graphic	format.

expression.Export(FileName,	FilterName,	Interactive)

expression			Required.	An	expression	that	returns	a	Chart	object.

FileName			Required	String.	The	name	of	the	exported	file.

FilterName			Optional	Variant.	The	language-independent	name	of	the	graphic
filter	as	it	appears	in	the	registry.

Interactive			Optional	Variant.	True	to	display	the	dialog	box	that	contains	the
filter-specific	options.	If	this	argument	is	False,	Microsoft	Excel	uses	the	default
values	for	the	filter.	The	default	value	is	False.

Example

This	example	exports	chart	one	as	a	GIF	file.

Worksheets("Sheet1").ChartObjects(1)	_

.Chart.Export	_

				FileName:="current_sales.gif",	FilterName:="GIF"

Extend	Method
							

Adds	new	data	points	to	an	existing	series	collection.	Variant

expression.Extend(Source,	Rowcol,	CategoryLabels)

expression			Required.	An	expression	that	returns	a	SeriesCollection	object.

Source			Required	Variant.	The	new	data	to	be	added	to	the	SeriesCollection
object,	either	as	a	Range	object	or	an	array	of	data	points.

Rowcol			Optional	Variant.	Ignored	if	Source	is	an	array.	Specifies	whether	the
new	values	are	in	the	rows	or	columns	of	the	given	range	source.	Can	be	one	of
the	following	XlRowCol	constants:	xlRows	or	xlColumns.	If	this	argument	is
omitted,	Microsoft	Excel	attempts	to	determine	where	the	values	are	by	the	size
and	orientation	of	the	selected	range	or	by	the	dimensions	of	the	array.

CategoryLabels			Optional	Variant.	Ignored	if	Source	is	an	array.	True	to	have
the	first	row	or	column	contain	the	name	of	the	category	labels.	False	to	have	the
first	row	or	column	contain	the	first	data	point	of	the	series.	If	this	argument	is
omitted,	Microsoft	Excel	attempts	to	determine	the	location	of	the	category	label
from	the	contents	of	the	first	row	or	column.

Remarks

This	method	is	not	available	for	PivotChart	reports.

Example

This	example	extends	the	series	on	Chart1	by	adding	the	data	in	cells	B1:B6	on
Sheet1.

Charts("Chart1").SeriesCollection.Extend	_

								Source:=Worksheets("Sheet1").Range("B1:B6")

FillAcrossSheets	Method
							

Copies	a	range	to	the	same	area	on	all	other	worksheets	in	a	collection.

expression.FillAcrossSheets(Range,	Type)

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

Range		Required	Range	object.		The	range	to	fill	on	all	the	worksheets	in	the
collection.	The	range	must	be	from	a	worksheet	within	the	collection.

Type		Optional	XlFillWith.		Specifies	how	to	copy	the	range.

XlFillWith	can	be	one	of	these	XlFillWith	constants.
xlFillWithAll	default
xlFillWithContents
xlFillWithFormats

Example

This	example	fills	the	range	A1:C5	on	Sheet1,	Sheet5,	and	Sheet7	with	the
contents	of	the	same	range	on	Sheet1.

x	=	Array("Sheet1",	"Sheet5",	"Sheet7")

Sheets(x).FillAcrossSheets	_

				Worksheets("Sheet1").Range("A1:C5")

FillDown	Method
							

Fills	down	from	the	top	cell	or	cells	in	the	specified	range	to	the	bottom	of	the
range.	The	contents	and	formatting	of	the	cell	or	cells	in	the	top	row	of	a	range
are	copied	into	the	rest	of	the	rows	in	the	range.

expression.FillDown

expression			Required.	An	expression	that	returns	a	Range	object.

Example

This	example	fills	the	range	A1:A10	on	Sheet1,	based	on	the	contents	of	cell	A1.

Worksheets("Sheet1").Range("A1:A10").FillDown

FillLeft	Method
							

Fills	left	from	the	rightmost	cell	or	cells	in	the	specified	range.	The	contents	and
formatting	of	the	cell	or	cells	in	the	rightmost	column	of	a	range	are	copied	into
the	rest	of	the	columns	in	the	range.

expression.FillLeft

expression			Required.	An	expression	that	returns	a	Range	object.

Example

This	example	fills	the	range	A1:M1	on	Sheet1,	based	on	the	contents	of	cell	M1.

Worksheets("Sheet1").Range("A1:M1").FillLeft

FillRight	Method
							

Fills	right	from	the	leftmost	cell	or	cells	in	the	specified	range.	The	contents	and
formatting	of	the	cell	or	cells	in	the	leftmost	column	of	a	range	are	copied	into
the	rest	of	the	columns	in	the	range.

expression.FillRight

expression			Required.	An	expression	that	returns	a	Range	object.

Example

This	example	fills	the	range	A1:M1	on	Sheet1,	based	on	the	contents	of	cell	A1.

Worksheets("Sheet1").Range("A1:M1").FillRight

FillUp	Method
							

Fills	up	from	the	bottom	cell	or	cells	in	the	specified	range	to	the	top	of	the
range.	The	contents	and	formatting	of	the	cell	or	cells	in	the	bottom	row	of	a
range	are	copied	into	the	rest	of	the	rows	in	the	range.

expression.FillUp

expression			Required.	An	expression	that	returns	a	Range	object.

Example

This	example	fills	the	range	A1:A10	on	Sheet1,	based	on	the	contents	of	cell
A10.

Worksheets("Sheet1").Range("A1:A10").FillUp

Show	All

Find	Method
							

Find	method	as	it	applies	to	the	WorksheetFunction	object.

Finds	specific	information	in	a	worksheet.

expression.Find(Arg1,	Arg2,	Arg3)

expression			Required.	An	expression	that	returns	a	WorksheetFunction	object.

Arg1		Required	String.	The	name	of	the	worksheet.

Arg2		Required	String.	The	name	of	the	range.

Arg3		Optional	Variant.	The	name	of	an	argument	to	refine	the	search.

Find	method	as	it	applies	to	the	Range	object.

Finds	specific	information	in	a	range,	and	returns	a	Range	object	that	represents
the	first	cell	where	that	information	is	found.	Returns	Nothing	if	no	match	is
found.	Doesn’t	affect	the	selection	or	the	active	cell.

For	information	about	using	the	Find	worksheet	function	in	Visual	Basic,	see
Using	Worksheet	Functions	in	Visual	Basic.

expression.Find(What,	After,	LookIn,	LookAt,	SearchOrder,	SearchDirection,
MatchCase,	MatchByte,	SearchFormat)

expression			Required.	An	expression	that	returns	a	Range		object.

What		Required	Variant.		The	data	to	search	for.	Can	be	a	string	or	any
Microsoft	Excel	data	type.

After		Optional	Variant.		The	cell	after	which	you	want	the	search	to	begin.	This
corresponds	to	the	position	of	the	active	cell	when	a	search	is	done	from	the	user
interface.	Note	that	After	must	be	a	single	cell	in	the	range.	Remember	that	the

search	begins	after	this	cell;	the	specified	cell	isn’t	searched	until	the	method
wraps	back	around	to	this	cell.	If	you	don’t	specify	this	argument,	the	search
starts	after	the	cell	in	the	upper-left	corner	of	the	range.

LookIn		Optional	Variant.	The	type	of	information.

LookAt			Optional	Variant.	Can	be	one	of	the	following	XlLookAt	constants:
xlWhole	or	xlPart.

SearchOrder			Optional	Variant.	Can	be	one	of	the	following	XlSearchOrder
constants:	xlByRows	or	xlByColumns.

SearchDirection		Optional	XlSearchDirection.	The	search	direction.

XlSearchDirection	can	be	one	of	these	XlSearchDirection	constants.
xlNext	default
xlPrevious

MatchCase		Optional	Variant.		True	to	make	the	search	case	sensitive.	The
default	value	is	False.

MatchByte		Optional	Variant.		Used	only	if	you’ve	selected	or	installed	double-
byte	language	support.	True	to	have	double-byte	characters	match	only	double-
byte	characters.	False	to	have	double-byte	characters	match	their	single-byte
equivalents.

SearchFormat		Optional	Variant.	The	search	format.

Remarks

The	settings	for	LookIn,	LookAt,	SearchOrder,	and	MatchByte	are	saved	each
time	you	use	this	method.	If	you	don’t	specify	values	for	these	arguments	the
next	time	you	call	the	method,	the	saved	values	are	used.	Setting	these
arguments	changes	the	settings	in	the	Find	dialog	box,	and	changing	the	settings
in	the	Find	dialog	box	changes	the	saved	values	that	are	used	if	you	omit	the
arguments.	To	avoid	problems,	set	these	arguments	explicitly	each	time	you	use
this	method.

You	can	use	the	FindNext	and	FindPrevious	methods	to	repeat	the	search.

When	the	search	reaches	the	end	of	the	specified	search	range,	it	wraps	around
to	the	beginning	of	the	range.	To	stop	a	search	when	this	wraparound	occurs,
save	the	address	of	the	first	found	cell,	and	then	test	each	successive	found-cell
address	against	this	saved	address.

To	find	cells	that	match	more	complicated	patterns,	use	a	For	Each...Next
statement	with	the	Like	operator.	For	example,	the	following	code	searches	for
all	cells	in	the	range	A1:C5	that	use	a	font	whose	name	starts	with	the	letters
Cour.	When	Microsoft	Excel	finds	a	match,	it	changes	the	font	to	Times	New
Roman.

For	Each	c	In	[A1:C5]

				If	c.Font.Name	Like	"Cour*"	Then

								c.Font.Name	=	"Times	New	Roman"

				End	If

Next

Example

This	example	finds	all	cells	in	the	range	A1:A500	on	worksheet	one	that	contain
the	value	2	and	changes	it	to	5.

With	Worksheets(1).Range("a1:a500")

				Set	c	=	.Find(2,	lookin:=xlValues)

				If	Not	c	Is	Nothing	Then

								firstAddress	=	c.Address

								Do

												c.Value	=	5

												Set	c	=	.FindNext(c)

								Loop	While	Not	c	Is	Nothing	And	c.Address	<>	firstAddress

				End	If

End	With

FindFile	Method
							

Displays	the	Open	dialog	box.

expression.FindFile

expression			Required.	An	expression	that	returns	an	Application	object.

Remarks

This	method	displays	the	Open	dialog	box	and	allows	the	user	to	open	a	file.	If	a
new	file	is	opened	successfully,	this	method	returns	True.	If	the	user	cancels	the
dialog	box,	this	method	returns	False.

Example

This	example	displays	the	Open	dialog	box.

Application.FindFile

FindNext	Method
							

Continues	a	search	that	was	begun	with	the	Find	method.	Finds	the	next	cell	that
matches	those	same	conditions	and	returns	a	Range	object	that	represents	that
cell.	Doesn’t	affect	the	selection	or	the	active	cell.

expression.FindNext(After)

expression			Required.	An	expression	that	returns	a	Range	object.

After			Optional	Variant.	The	cell	after	which	you	want	to	search.	This
corresponds	to	the	position	of	the	active	cell	when	a	search	is	done	from	the	user
interface.	Note	that	After	must	be	a	single	cell	in	the	range.	Remember	that	the
search	begins	after	this	cell;	the	specified	cell	isn’t	searched	until	the	method
wraps	back	around	to	this	cell.	If	this	argument	isn’t	specified,	the	search	starts
after	the	cell	in	the	upper-left	corner	of	the	range.

Remarks

When	the	search	reaches	the	end	of	the	specified	search	range,	it	wraps	around
to	the	beginning	of	the	range.	To	stop	a	search	when	this	wraparound	occurs,
save	the	address	of	the	first	found	cell,	and	then	test	each	successive	found-cell
address	against	this	saved	address.

Example

This	example	finds	all	cells	in	the	range	A1:A500	that	contain	the	value	2	and
changes	their	values	to	5.

With	Worksheets(1).Range("a1:a500")

				Set	c	=	.Find(2,	lookin:=xlValues)

				If	Not	c	Is	Nothing	Then

								firstAddress	=	c.Address

								Do

												c.Value	=	5

												Set	c	=	.FindNext(c)

								Loop	While	Not	c	Is	Nothing	And	c.Address	<>	firstAddress

				End	If

End	With

FindPrevious	Method
							

Continues	a	search	that	was	begun	with	the	Find	method.	Finds	the	previous	cell
that	matches	those	same	conditions	and	returns	a	Range	object	that	represents
that	cell.	Doesn’t	affect	the	selection	or	the	active	cell.

expression.FindPrevious(After)

expression			Required.	An	expression	that	returns	a	Range	object.

After			Optional	Variant.	The	cell	before	which	you	want	to	search.	This
corresponds	to	the	position	of	the	active	cell	when	a	search	is	done	from	the	user
interface.	Note	that	After	must	be	a	single	cell	in	the	range.	Remember	that	the
search	begins	before	this	cell;	the	specified	cell	isn’t	searched	until	the	method
wraps	back	around	to	this	cell.	If	this	argument	isn’t	specified,	the	search	starts
before	the	upper-	left	cell	in	the	range.

Remarks

When	the	search	reaches	the	beginning	of	the	specified	search	range,	it	wraps
around	to	the	end	of	the	range.	To	stop	a	search	when	this	wraparound	occurs,
save	the	address	of	the	first	found	cell,	and	then	test	each	successive	found-cell
address	against	this	saved	address.

Example

This	example	shows	how	the	FindPrevious	method	is	used	with	the	Find	and
FindNext	methods.	Before	running	this	example,	make	sure	that	Sheet1	contains
at	least	two	occurrences	of	the	word	“Phoenix”	in	column	B.

Set	fc	=	Worksheets("Sheet1").Columns("B").Find(what:="Phoenix")

				MsgBox	"The	first	occurrence	is	in	cell	"	&	fc.Address

Set	fc	=	Worksheets("Sheet1").Columns("B").FindNext(after:=fc)

				MsgBox	"The	next	occurrence	is	in	cell	"	&	fc.Address

Set	fc	=	Worksheets("Sheet1").Columns("B").FindPrevious(after:=fc)

				MsgBox	"The	previous	occurrence	is	in	cell	"	&	fc.Address

Flip	Method
							

Flips	the	specified	shape	around	its	horizontal	or	vertical	axis.

expression.Flip(FlipCmd)

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

FlipCmd		Required	MsoFlipCmd.		Specifies	whether	the	shape	is	to	be	flipped
horizontally	or	vertically

MsoFlipCmd	can	be	one	of	these	MsoFlipCmd	constants.
msoFlipHorizontal
msoFlipVertical

Example

This	example	adds	a	triangle	to	myDocument,	duplicates	the	triangle,	and	then
flips	the	duplicate	triangle	vertically	and	makes	it	red.

Set	myDocument	=	Worksheets(1)

With	myDocument.Shapes.AddShape(msoShapeRightTriangle,	_

								10,	10,	50,	50).Duplicate

				.Fill.ForeColor.RGB	=	RGB(255,	0,	0)

				.Flip	msoFlipVertical

End	With

Follow	Method
							

Displays	a	cached	document,	if	it’s	already	been	downloaded.	Otherwise,	this
method	resolves	the	hyperlink,	downloads	the	target	document,	and	displays	the
document	in	the	appropriate	application.

expression.Follow(NewWindow,	AddHistory,	ExtraInfo,	Method,	HeaderInfo)

expression			Required.	An	expression	that	returns	a	Hyperlink	object.

NewWindow			Optional	Variant.	True	to	display	the	target	application	in	a	new
window.	The	default	value	is	False.

AddHistory			Optional	Variant.	Not	used.	Reserved	for	future	use.

ExtraInfo			Optional	Variant.	A	String	or	byte	array	that	specifies	additional
information	for	HTTP	to	use	to	resolve	the	hyperlink.	For	example,	you	can	use
ExtraInfo	to	specify	the	coordinates	of	an	image	map,	the	contents	of	a	form,	or
a	FAT	file	name.

Method			Optional	Variant.	Specifies	the	way	ExtraInfo	is	attached.	Can	be	one
of	the	following	MsoExtraInfoMethod	constants.

Constant Description

msoMethodGet ExtraInfo	is	a	String	that’s	appended	to	the
address.

msoMethodPost ExtraInfo	is	posted	as	a	String	or	byte	array.

HeaderInfo			Optional	Variant.	A	String	that	specifies	header	information	for
the	HTTP	request.	The	defaut	value	is	an	empty	string.

Example

This	example	loads	the	document	attached	to	the	hyperlink	on	shape	one	on
worksheet	one.

Worksheets(1).Shapes(1).Hyperlink.Follow	NewWindow:=True

FollowHyperlink	Method
							

Displays	a	cached	document,	if	it’s	already	been	downloaded.	Otherwise,	this
method	resolves	the	hyperlink,	downloads	the	target	document,	and	displays	the
document	in	the	appropriate	application.

expression.FollowHyperlink(Address,	SubAddress,	NewWindow,	AddHistory,
ExtraInfo,	Method,	HeaderInfo)

expression			Required.	An	expression	that	returns	a	Workbook	object.

Address			Required	String.	The	address	of	the	target	document.

SubAddress			Optional	Variant.	The	location	within	the	target	document.	The
default	value	is	the	empty	string.

NewWindow			Optional	Variant.	True	to	display	the	target	application	in	a	new
window.	The	default	value	is	False.

AddHistory			Optional	Variant.	Not	used.	Reserved	for	future	use.

ExtraInfo			Optional	Variant.	A	String	or	byte	array	that	specifies	additional
information	for	HTTP	to	use	to	resolve	the	hyperlink.	For	example,	you	can	use
ExtraInfo	to	specify	the	coordinates	of	an	image	map,	the	contents	of	a	form,	or
a	FAT	file	name.

Method			Optional	Variant.	Specifies	the	way	ExtraInfo	is	attached.		Can	be
one	of	the	following	MsoExtraInfoMethod	constants.

MsoExtraInfoMethod	type	can	be	one	of	these	MsoExtraInfoMethod	constants.
msoMethodGet.	ExtraInfo	is	a	String	that’s	appended	to	the	address.
msoMethodPost.	ExtraInfo	is	posted	as	a	String	or	byte	array.

HeaderInfo			Optional	Variant.	A	String	that	specifies	header	information	for
the	HTTP	request.	The	defaut	value	is	an	empty	string.

Example

This	example	loads	the	document	at	example.microsoft.com	in	a	new	window
and	adds	it	to	the	History	folder.

ActiveWorkbook.FollowHyperlink	Address:="http://example.microsoft.com",	_

				NewWindow:=True

Format	Method
							

Sets	a	PivotTable	report	to	one	of	the	predefined	indented,	nonindented,	or	cross-
tabulated	formats.

expression.Format(Format)

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

Format		Required	XlPivotFormatType.		Specifies	the	type	of	report	formatting
to	be	applied	to	the	specified	PivotTable	report.

XlPivotFormatType	can	be	one	of	these	XlPivotFormatType	constants.
xlPTClassic
xlPTNone
xlReport1
xlReport10
xlReport2
xlReport3
xlReport4
xlReport5
xlReport6
xlReport7
xlReport8
xlReport9
xlTable1
xlTable10
xlTable2
xlTable3
xlTable4
xlTable5

xlTable6
xlTable7
xlTable8
xlTable9

Example

This	example	applies	the	xlReport4	indented	format	to	the	fourth	PivotTable
report	on	the	active	worksheet.

ActiveSheet.PivotTables("PivotTable4").Format	xlReport4

FunctionWizard	Method
							

Starts	the	Function	Wizard	for	the	upper-left	cell	of	the	range.

expression.FunctionWizard

expression			Required.	An	expression	that	returns	a	Range	object.

Example

This	example	starts	the	Function	Wizard	for	the	active	cell	on	Sheet1.

Worksheets("Sheet1").Activate

ActiveCell.FunctionWizard

GetChartElement	Method
							

Returns	information	about	the	chart	element	at	specified	X	and	Y	coordinates.
This	method	is	unusual	in	that	you	specify	values	for	only	the	first	two
arguments.	Microsoft	Excel	fills	in	the	other	arguments,	and	your	code	should
examine	those	values	when	the	method	returns.

expression.GetChartElement(X,	Y,	ElementID,	Arg1,	Arg2)

expression			Required.	An	expression	that	returns	a	Chart	object.

X			Required	Long.	The	X	coordinate	of	the	chart	element.

Y			Required	Long.	The	Y	coordinate	of	the	chart	element.

ElementID			Required	Long.	When	the	method	returns,	this	argument	contains
the	XLChartItem	value	of	the	chart	element	at	the	specified	coordinates.	For
more	information,	see	the	“Remarks”	section.

Arg1			Required	Long.	When	the	method	returns,	this	argument	contains
information	related	to	the	chart	element.	For	more	information,	see	the
“Remarks”	section.

Arg2			Required	Long.	When	the	method	returns,	this	argument	contains
information	related	to	the	chart	element.	For	more	information,	see	the
“Remarks”	section.

Remarks

The	value	of	ElementID	after	the	method	returns	determines	whether	Arg1	and
Arg2	contain	any	information,	as	shown	in	the	following	table.

ElementID Arg1 Arg2
xlAxis AxisIndex AxisType
xlAxisTitle AxisIndex AxisType
xlDisplayUnitLabel AxisIndex AxisType
xlMajorGridlines AxisIndex AxisType
xlMinorGridlines AxisIndex AxisType
xlPivotChartDropZone DropZoneType None
xlPivotChartFieldButton DropZoneType PivotFieldIndex
xlDownBars GroupIndex None
xlDropLines GroupIndex None
xlHiLoLines GroupIndex None
xlRadarAxisLabels GroupIndex None
xlSeriesLines GroupIndex None
xlUpBars GroupIndex None
xlChartArea None None
xlChartTitle None None
xlCorners None None
xlDataTable None None
xlFloor None None
xlLegend None None
xlNothing None None
xlPlotArea None None
xlWalls None None
xlDataLabel SeriesIndex PointIndex
xlErrorBars SeriesIndex None
xlLegendEntry SeriesIndex None
xlLegendKey SeriesIndex None

xlSeries SeriesIndex PointIndex
xlShape ShapeIndex None
xlTrendline SeriesIndex TrendLineIndex
xlXErrorBars SeriesIndex None
xlYErrorBars SeriesIndex None

The	following	table	describes	the	meaning	of	Arg1	and	Arg2	after	the	method
returns.

Argument Description

AxisIndex
Specifies	whether	the	axis	is	primary	or	secondary.	Can
be	one	of	the	following	XlAxisGroup	constants:
xlPrimary	or	xlSecondary.

AxisType
Specifies	the	axis	type.	Can	be	one	of	the	following
XlAxisType	constants:	xlCategory,	xlSeriesAxis,	or
xlValue.

DropZoneType

Specifies	the	drop	zone	type:	column,	data,	page,	or	row
field.	Can	be	one	of	the	following
XlPivotFieldOrientation	constants:	xlColumnField,
xlDataField,	xlPageField,	or	xlRowField.	The	column
and	row	field	constants	specify	the	series	and	category
fields,	respectively.

GroupIndex Specifies	the	offset	within	the	ChartGroups	collection
for	a	specific	chart	group.

PivotFieldIndex
Specifies	the	offset	within	the	PivotFields	collection	for
a	specific	column	(series),	data,	page,	or	row	(category)
field.	-1	if	the	drop	zone	type	is	xlDataField.

PointIndex
Specifies	the	offset	within	the	Points	collection	for	a
specific	point	within	a	series.	A	value	of		–	1	indicates
that	all	data	points	are	selected.

SeriesIndex Specifies	the	offset	within	the	Series	collection	for	a
specific	series.

ShapeIndex Specifies	the	offset	within	the	Shapes	collection	for	a
specific	shape.

TrendlineIndex Specifies	the	offset	within	the	Trendlines	collection	for	a
specific	trendline	within	a	series.

Example

This	example	warns	the	user	if	she	moves	the	mouse	over	the	chart	legend.

Private	Sub	Chart_MouseMove(ByVal	Button	As	Long,	_

								ByVal	Shift	As	Long,	ByVal	X	As	Long,	ByVal	Y	As	Long)

				Dim	IDNum	As	Long

				Dim	a	As	Long

				Dim	b	As	Long

				

				ActiveChart.GetChartElement	X,	Y,	IDNum,	a,	b

				If	IDNum	=	xlLegendEntry	Then	_

								MsgBox	"WARNING:	Move	away	from	the	legend"

End	Sub

GetCustomListContents	Method
							

Returns	a	custom	list	(an	array	of	strings).

expression.GetCustomListContents(ListNum)

expression			Required.	An	expression	that	returns	an	Application	object.

ListNum			Required	Long.	The	list	number.

Example

This	example	writes	the	elements	of	the	first	custom	list	in	column	one	on
Sheet1.

listArray	=	Application.GetCustomListContents(1)

For	i	=	LBound(listArray,	1)	To	UBound(listArray,	1)

				Worksheets("sheet1").Cells(i,	1).Value	=	listArray(i)

Next	i

GetCustomListNum	Method
							

Returns	the	custom	list	number	for	an	array	of	strings.	You	can	use	this	method
to	match	both	built-in	lists	and	custom-defined	lists.

expression.GetCustomListNum(ListArray)

expression			Required.	An	expression	that	returns	an	Application	object.

ListArray			Required	Variant.	An	array	of	strings.

Remarks

This	method	generates	an	error	if	there's	no	corresponding	list.

Example

This	example	deletes	a	custom	list.

n	=	Application.GetCustomListNum(Array("cogs",	"sprockets",	_

				"widgets",	"gizmos"))

Application.DeleteCustomList	n

GetData	Method
							

expression.GetData(Name)

expression			Required.	An	expression	that	returns	a	PivotTable	object.

Name			Required	String.	Describes	a	single	cell	in	the	PivotTable	report,	using
syntax	similar	to	the	PivotSelect	method	or	the	PivotTable	report	references	in
calculated	item	formulas.

Example

This	example	shows	the	sum	of	revenues	for	apples	in	January	(Data	field	=
Revenue,	Product	=	Apples,	Month	=	January).

Msgbox	ActiveSheet.PivotTables(1)	_

				.GetData("'Sum	of	Revenue'	Apples	January")

GetOpenFilename	Method
							

Displays	the	standard	Open	dialog	box	and	gets	a	file	name	from	the	user
without	actually	opening	any	files.

expression.GetOpenFilename(FileFilter,	FilterIndex,	Title,	ButtonText,
MultiSelect)

expression			Required.	An	expression	that	returns	an	Application	object.

FileFilter			Optional	Variant.	A	string	specifying	file	filtering	criteria.

This	string	consists	of	pairs	of	file	filter	strings	followed	by	the	MS-DOS
wildcard	file	filter	specification,	with	each	part	and	each	pair	separated	by
commas.	Each	separate	pair	is	listed	in	the	Files	of	type	drop-down	list	box.	For
example,	the	following	string	specifies	two	file	filters—text	and	addin:	"Text
Files	(*.txt),*.txt,Add-In	Files	(*.xla),*.xla".

To	use	multiple	MS-DOS	wildcard	expressions	for	a	single	file	filter	type,
separate	the	wildcard	expressions	with	semicolons;	for	example,	"Visual	Basic
Files	(*.bas;	*.txt),*.bas;*.txt".

If	omitted,	this	argument	defaults	to	"All	Files	(*.*),*.*".

FilterIndex			Optional	Variant.	Specifies	the	index	numbers	of	the	default	file
filtering	criteria,	from	1	to	the	number	of	filters	specified	in	FileFilter.	If	this
argument	is	omitted	or	greater	than	the	number	of	filters	present,	the	first	file
filter	is	used.

Title			Optional	Variant.	Specifies	the	title	of	the	dialog	box.	If	this	argument	is
omitted,	the	title	is	"Open."

ButtonText			Optional	Variant.	Macintosh	only.

MultiSelect			Optional	Variant.	True	to	allow	multiple	file	names	to	be	selected.
False	to	allow	only	one	file	name	to	be	selected.	The	default	value	is	False

Remarks

This	method	returns	the	selected	file	name	or	the	name	entered	by	the	user.	The
returned	name	may	include	a	path	specification.	If	MultiSelect	is	True,	the
return	value	is	an	array	of	the	selected	file	names	(even	if	only	one	filename	is
selected).	Returns	False	if	the	user	cancels	the	dialog	box.

This	method	may	change	the	current	drive	or	folder.

Example

This	example	displays	the	Open	dialog	box,	with	the	file	filter	set	to	text	files.	If
the	user	chooses	a	file	name,	the	code	displays	that	file	name	in	a	message	box.

fileToOpen	=	Application	_

				.GetOpenFilename("Text	Files	(*.txt),	*.txt")

If	fileToOpen	<>	False	Then

				MsgBox	"Open	"	&	fileToOpen

End	If

GetPhonetic	Method
							

Returns	the	Japanese	phonetic	text	of	the	specified	text	string.	This	method	is
available	to	you	only	if	you	have	selected	or	installed	Japanese	language	support
for	Microsoft	Office.

expression.GetPhonetic(Text)

expression			An	expression	that	returns	an	Application	object.

Text			Optional	Variant.	Specifies	the	text	to	be	converted	to	phonetic	text.	If
you	omit	this	argument,	the	next	possible	phonetic	text	string	(if	any)	of	the
previously	specified	Text	is	returned.	If	there	are	no	more	possible	phonetic	text
strings,	an	empty	string	is	returned.

Example

This	example	displays	all	of	the	possible	phonetic	text	strings	from	the	specified
string.

strPhoText	=	Application.GetPhonetic(" ")

While	strPhoText	<>	""

				MsgBox	strPhoText

				strPhoText	=	Application.GetPhonetic()

Wend

GetPivotData	Method
							

Returns	a	Range	object	with	information	about	a	data	item	in	a	PivotTable
report.

expression.GetPivotData(DataField,	Field1,	Item1,	Field2,	Item2,	Field3,
Item3,	Field4,	Item4,	Field5,	Item5,	Field6,	Item6,	Field7,	Item7,	Field8,
Item8,	Field9,	Item9,	Field10,	Item10,	Field11,	Item11,	Field12,	Item12,
Field13,	Item13,	Field14,	Item14,	Field15)

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

DataField		Optional	Variant.	The	name	of	the	field	containing	the	data	for	the
PivotTable.

Field1		Optional	Variant.	The	name	of	a	column	or	row	field	in	the	PivotTable
report.

Item1		Optional	Variant.	The	name	of	an	item	in	Field1.

Field2		Optional	Variant.	The	name	of	a	column	or	row	field	in	the	PivotTable
report.

Item2		Optional	Variant.	The	name	of	an	item	in	Field2.

Field3		Optional	Variant.	The	name	of	a	column	or	row	field	in	the	PivotTable
report.

Item3		Optional	Variant.	The	name	of	an	item	in	Field3.

Field4		Optional	Variant.	The	name	of	a	column	or	row	field	in	the	PivotTable
report.

Item4		Optional	Variant.	The	name	of	an	item	in	Field4.

Field5		Optional	Variant.	The	name	of	a	column	or	row	field	in	the	PivotTable
report.

Item5		Optional	Variant.	The	name	of	an	item	in	Field5.

Field6		Optional	Variant.	The	name	of	a	column	or	row	field	in	the	PivotTable
report.

Item6		Optional	Variant.	The	name	of	an	item	in	Field6.

Field7		Optional	Variant.	The	name	of	a	column	or	row	field	in	the	PivotTable
report.

Item7		Optional	Variant.	The	name	of	an	item	in	Field7.

Field8		Optional	Variant.	The	name	of	a	column	or	row	field	in	the	PivotTable
report.

Item8		Optional	Variant.	The	name	of	an	item	in	Field8.

Field9		Optional	Variant.	The	name	of	a	column	or	row	field	in	the	PivotTable
report.

Item9		Optional	Variant.	The	name	of	an	item	in	Field9.

Field10		Optional	Variant.	The	name	of	a	column	or	row	field	in	the	PivotTable
report.

Item10		Optional	Variant.	The	name	of	an	item	in	Field10.

Field11		Optional	Variant.	The	name	of	a	column	or	row	field	in	the	PivotTable
report.

Item11		Optional	Variant.	The	name	of	an	item	in	Field11.

Field12		Optional	Variant.	The	name	of	a	column	or	row	field	in	the	PivotTable
report.

Item12		Optional	Variant.	The	name	of	an	item	in	Field12.

Field13		Optional	Variant.	The	name	of	a	column	or	row	field	in	the	PivotTable

report.

Item13		Optional	Variant.	The	name	of	an	item	in	Field13.

Field14		Optional	Variant.	The	name	of	a	column	or	row	field	in	the	PivotTable
report.

Item14		Optional	Variant.	The	name	of	an	item	in	Field14.

Field15		Optional	Variant.	The	name	of	a	column	or	row	field	in	the	PivotTable
report.

Example

In	this	example,	Microsoft	Excel	returns	the	quantity	of	chairs	in	the	warehouse
to	the	user.	This	example	assumes	a	PivotTable	report	exists	on	the	active
worksheet.	Also,	this	example	assumes	that,	in	the	report,	the	title	of	the	data
field	is	"Quantity",	a	field	titled	"Warehouse"	exists,	and	a	data	item	titled
"Chairs"	exists	in	the	Warehouse	field.

Sub	UseGetPivotData()

				Dim	rngTableItem	As	Range

				'	Get	PivotData	for	the	quantity	of	chairs	in	the	warehouse.

				Set	rngTableItem	=	ActiveCell.	_

								PivotTable.GetPivotData("Quantity",	"Warehouse",	"Chairs")

				MsgBox	"The	quantity	of	chairs	in	the	warehouse	is:	"	&	rngTableItem.Value

End	Sub

GetSaveAsFilename	Method
							

Displays	the	standard	Save	As	dialog	box	and	gets	a	file	name	from	the	user
without	actually	saving	any	files.

expression.GetSaveAsFilename(InitialFilename,	FileFilter,	FilterIndex,	Title,
ButtonText)

expression			Required.	An	expression	that	returns	an	Application	object.

InitialFilename			Optional	Variant.	Specifies	the	suggested	file	name.	If	this
argument	is	omitted,	Microsoft	Excel	uses	the	active	workbook's	name.

FileFilter			Optional	Variant.	A	string	specifying	file	filtering	criteria.

This	string	consists	of	pairs	of	file	filter	strings	followed	by	the	MS-DOS
wildcard	file	filter	specification,	with	each	part	and	each	pair	separated	by
commas.	Each	separate	pair	is	listed	in	the	Files	of	type	drop-down	list	box.	For
example,	the	following	string	specifies	two	file	filters,	text	and	addin:	"Text	Files
(*.txt),	*.txt,	Add-In	Files	(*.xla),	*.xla".

To	use	multiple	MS-DOS	wildcard	expressions	for	a	single	file	filter	type,
separate	the	wildcard	expressions	with	semicolons;	for	example,	"Visual	Basic
Files	(*.bas;	*.txt),*.bas;*.txt".

If	omitted,	this	argument	defaults	to	"All	Files	(*.*),*.*".

FilterIndex			Optional	Variant.	Specifies	the	index	number	of	the	default	file
filtering	criteria,	from	1	to	the	number	of	filters	specified	in	FileFilter.	If	this
argument	is	omitted	or	greater	than	the	number	of	filters	present,	the	first	file
filter	is	used.

Title			Optional	Variant.	Specifies	the	title	of	the	dialog	box.	If	this	argument	is
omitted,	the	default	title	is	used.

ButtonText			Optional	Variant.	Macintosh	only.

Remarks

This	method	returns	the	selected	file	name	or	the	name	entered	by	the	user.	The
returned	name	may	include	a	path	specification.	Returns	False	if	the	user	cancels
the	dialog	box.

This	method	may	change	the	current	drive	or	folder.

Example

This	example	displays	the	Save	As	dialog	box,	with	the	file	filter	set	to	text	files.
If	the	user	chooses	a	file	name,	the	example	displays	that	file	name	in	a	message
box.

fileSaveName	=	Application.GetSaveAsFilename(_

				fileFilter:="Text	Files	(*.txt),	*.txt")

If	fileSaveName	<>	False	Then

				MsgBox	"Save	as	"	&	fileSaveName

End	If

GoalSeek	Method
							

Calculates	the	values	necessary	to	achieve	a	specific	goal.	If	the	goal	is	an
amount	returned	by	a	formula,	this	calculates	a	value	that,	when	supplied	to	your
formula,	causes	the	formula	to	return	the	number	you	want.	Returns	True	if	the
goal	seek	is	successful.

expression.GoalSeek(Goal,	ChangingCell)

expression			Required.	An	expression	that	returns	a	Range	object.	Must	be	a
single	cell.

Goal			Required	Variant.	The	value	you	want	returned	in	this	cell.

ChangingCell			Required	Range.	Specifies	which	cell	should	be	changed	to
achieve	the	target	value.

Example

This	example	assumes	that	Sheet1	has	a	cell	named	"Polynomial"	that	contains
the	formula	=(X^3)+(3*X^2)+6	and	another	cell	named	"X"	that’s	empty.	The
example	finds	a	value	for	X	so	that	Polynomial	contains	the	value	15.

Worksheets("Sheet1").Range("Polynomial").GoalSeek	_

				Goal:=15,	_

				ChangingCell:=Worksheets("Sheet1").Range("X")

Goto	Method
							

Selects	any	range	or	Visual	Basic	procedure	in	any	workbook,	and	activates	that
workbook	if	it’s	not	already	active.

expression.Goto(Reference,	Scroll)

expression			Required.	An	expression	that	returns	an	Application	object.

Reference			Optional	Variant.	The	destination.	Can	be	a	Range	object,	a	string
that	contains	a	cell	reference	in	R1C1-style	notation,	or	a	string	that	contains	a
Visual	Basic	procedure	name.	If	this	argument	is	omitted,	the	destination	is	the
last	range	you	used	the	Goto	method	to	select.

Scroll			Optional	Variant.	True	to	scroll	through	the	window	so	that	the	upper-
left	corner	of	the	range	appears	in	the	upper-left	corner	of	the	window.	False	to
not	scroll	through	the	window.	The	default	is	False.

Remarks

This	method	differs	from	the	Select	method	in	the	following	ways:

If	you	specify	a	range	on	a	sheet	that’s	not	on	top,	Microsoft	Excel	will
switch	to	that	sheet	before	selecting.	(If	you	use	Select	with	a	range	on	a
sheet	that’s	not	on	top,	the	range	will	be	selected	but	the	sheet	won’t	be
activated).
This	method	has	a	Scroll	argument	that	lets	you	scroll	through	the
destination	window.
When	you	use	the	Goto	method,	the	previous	selection	(before	the	Goto
method	runs)	is	added	to	the	array	of	previous	selections	(for	more
information,	see	the	PreviousSelections	property).	You	can	use	this	feature
to	quickly	jump	between	as	many	as	four	selections.
The	Select	method	has	a	Replace	argument;	the	Goto	method	doesn’t.

Example

This	example	selects	cell	A154	on	Sheet1	and	then	scrolls	through	the	worksheet
to	display	the	range.

Application.Goto	Reference:=Worksheets("Sheet1").Range("A154"),	_

				scroll:=True

	Show	All

Group	Method
							

Group	method	as	it	applies	to	the	ShapeRange	object.

Groups	the	shapes	in	the	specified	range.	Returns	the	grouped	shapes	as	a	single
Shape	object.

expression.Group

expression			Required.	An	expression	that	returns	a	ShapeRange	object.

Group	method	as	it	applies	to	the	Range	object.

When	the	Range	object	represents	a	single	cell	in	a	PivotTable	field’s	data
range,	the	Group	method	performs	numeric	or	date-based	grouping	in	that	field.

expression.Group(Start,	End,	By,	Periods)

expression			Required.	An	expression	that	returns	a	Range	object.

Start		Optional	Variant.	The	first	value	to	be	grouped.	If	this	argument	is
omitted	or	True,	the	first	value	in	the	field	is	used.

End		Optional	Variant.	The	last	value	to	be	grouped.	If	this	argument	is	omitted
or	True,	the	last	value	in	the	field	is	used.

By		Optional	Variant.	If	the	field	is	numeric,	this	argument	specifies	the	size	of
each	group.	If	the	field	is	a	date,	this	argument	specifies	the	number	of	days	in
each	group	if	element	4	in	the	Periods	array	is	True	and	all	the	other	elements
are	False.	Otherwise,	this	argument	is	ignored.	If	this	argument	is	omitted,
Microsoft	Excel	automatically	chooses	a	default	group	size.

Periods		Optional	Variant.	An	array	of	Boolean	values	that	specify	the	period
for	the	group,	as	shown	in	the	following	table.

Array	element Period

1 Seconds
2 Minutes
3 Hours
4 Days
5 Months
6 Quarters
7 Years

If	an	element	in	the	array	is	True,	a	group	is	created	for	the	corresponding	time;
if	the	element	is	False,	no	group	is	created.	If	the	field	isn’t	a	date	field,	this
argument	is	ignored.

Remarks

Because	a	group	of	shapes	is	treated	as	a	single	shape,	grouping	and	ungrouping
shapes	changes	the	number	of	items	in	the	Shapes	collection	and	changes	the
index	numbers	of	items	that	come	after	the	affected	items	in	the	collection.

The	Range	object	must	be	a	single	cell	in	the	PivotTable	field’s	data	range.	If
you	attempt	to	apply	this	method	to	more	than	one	cell,	it	will	fail	(without
displaying	an	error	message).

Example

This	example	groups	the	field	named	ORDER_DATE	by	10-day	periods.

Set	pvtTable	=	Worksheets("Sheet1").Range("A3").PivotTable

Set	groupRange	=	pvtTable.PivotFields("ORDER_DATE").DataRange

groupRange.Cells(1).Group	by:=10,	_

				periods:=Array(False,	False,	False,	_

								True,	False,	False,	False)

Heartbeat	Method
							

Determines	if	the	real-time	data	server	is	still	active.	Returns	a	Long;	zero	or
negative	number	indicates	failure;	positive	number	indicates	success.

expression.Heartbeat

expression			Required.	An	expression	that	returns	an	IRtdServer	object.

Remarks

The	Heartbeat	method	is	called	by	Microsoft	Excel	if	the	HeartbeatInterval
property	has	elapsed	since	the	last	time	Excel	was	called	with	the	UpdateNotify
method.

Help	Method
							

Displays	a	Help	topic.

expression.Help(HelpFile,	HelpContextID)

expression			Required.	An	expression	that	returns	an	Application	object.

helpFile			Optional	Variant.	The	name	of	the	online	Help	file	you	want	to
display.	If	this	argument	isn't	specified,	Microsoft	Excel	Help	is	used.

helpContextID			Optional	Variant.	Specifies	the	context	ID	number	for	the	Help
topic.	If	this	argument	isn't	specified,	the	Help	Topics	dialog	box	is	displayed.

Example

This	example	displays	topic	number	65527	in	the	Help	file	Otisapp.hlp.

Application.Help	"OTISAPP.HLP",	65527

HighlightChangesOptions	Method
							

Controls	how	changes	are	shown	in	a	shared	workbook.

expression.HighlightChangesOptions(When,	Who,	Where)

expression			Required.	An	expression	that	returns	a	Workbook	object.

When			Optional	Variant.	The	changes	that	are	shown.	Can	be	one	of	the
following	XlHighlightChangesTime	constants:	xlSinceMyLastSave,
xlAllChanges,	or	xlNotYetReviewed.

Who			Optional	Variant.	The	user	or	users	whose	changes	are	shown.	Can	be
"Everyone,"	"Everyone	but	Me,"	or	the	name	of	one	of	the	users	of	the	shared
workbook.

Where			Optional	Variant.	An	A1-style	range	reference	that	specifies	the	area	to
check	for	changes.

Example

This	example	shows	changes	to	the	shared	workbook	on	a	separate	worksheet.

With	ActiveWorkbook

				.HighlightChangesOptions	_

								When:=xlSinceMyLastSave,	_

								Who:="Everyone"

				.ListChangesOnNewSheet	=	True

End	With

Import	Method
							

This	method	should	not	be	used.	Sound	notes	have	been	removed	from
Microsoft	Excel.

Show	All

InchesToPoints	Method
							

Converts	a	measurement	from	inches	to	points.

expression.InchesToPoints(Inches)

expression			Required.	An	expression	that	returns	an	Application	object.

Inches			Required	Double.	Specifies	the	inch	value	to	be	converted	to	points.

Example

This	example	sets	the	left	margin	of	Sheet1	to	2.5	inches.

Worksheets("Sheet1").PageSetup.LeftMargin	=	_

								Application.InchesToPoints(2.5)

IncrementBrightness	Method
							

Changes	the	brightness	of	the	picture	by	the	specified	amount.	Use	the
Brightness	property	to	set	the	absolute	brightness	of	the	picture.

expression.IncrementBrightness(Increment)

expression			Required.	An	expression	that	returns	a	PictureFormat	object.

Increment			Required	Single.	Specifies	how	much	to	change	the	value	of	the
Brightness	property	for	the	picture.	A	positive	value	makes	the	picture	brighter;
a	negative	value	makes	the	picture	darker.

Remarks

You	cannot	adjust	the	brightness	of	a	picture	past	the	upper	or	lower	limit	for	the
Brightness	property.	For	example,	if	the	Brightness	property	is	initially	set	to
0.9	and	you	specify	0.3	for	the	Increment	argument,	the	resulting	brightness
level	will	be	1.0,	which	is	the	upper	limit	for	the	Brightness	property,	instead	of
1.2.

Example

This	example	creates	a	duplicate	of	shape	one	on	myDocument	and	then	moves
and	darkens	the	duplicate.	For	the	example	to	work,	shape	one	must	be	either	a
picture	or	an	OLE	object.

Set	myDocument	=	Worksheets(1)

With	myDocument.Shapes(1).Duplicate

				.PictureFormat.IncrementBrightness	-0.2

				.IncrementLeft	50

				.IncrementTop	50

End	With

IncrementContrast	Method
							

Changes	the	contrast	of	the	picture	by	the	specified	amount.	Use	the	Contrast
property	to	set	the	absolute	contrast	for	the	picture.

expression.IncrementContrast(Increment)

expression			Required.	An	expression	that	returns	a	PictureFormat	object.

Increment			Required	Single.	Specifies	how	much	to	change	the	value	of	the
Contrast	property	for	the	picture.	A	positive	value	increases	the	contrast;	a
negative	value	decreases	the	contrast.

Remarks

You	cannot	adjust	the	contrast	of	a	picture	past	the	upper	or	lower	limit	for	the
Contrast	property.	For	example,	if	the	Contrast	property	is	initially	set	to	0.9
and	you	specify	0.3	for	the	Increment	argument,	the	resulting	contrast	level	will
be	1.0,	which	is	the	upper	limit	for	the	Contrast	property,	instead	of	1.2.

Example

This	example	increases	the	contrast	for	all	pictures	on	myDocument	that	aren’t
already	set	to	maximum	contrast.

Set	myDocument	=	Worksheets(1)

For	Each	s	In	myDocument.Shapes

				If	s.Type	=	msoPicture	Or	s.Type	=	msoLinkedPicture	Then

								s.PictureFormat.IncrementContrast	0.1

				End	If

Next

IncrementLeft	Method
							

Moves	the	specified	shape	horizontally	by	the	specified	number	of	points.

expression.IncrementLeft(Increment)

expression			Required.	An	expression	that	returns	a	Shape	object.

Increment			Required	Single.	Specifies	how	far	the	shape	is	to	be	moved
horizontally,	in	points.	A	positive	value	moves	the	shape	to	the	right;	a	negative
value	moves	it	to	the	left.

Example

This	example	duplicates	shape	one	on	myDocument,	sets	the	fill	for	the	duplicate,
moves	it	70	points	to	the	right	and	50	points	up,	and	rotates	it	30	degrees
clockwise.

Set	myDocument	=	Worksheets(1)

With	myDocument.Shapes(1).Duplicate

				.Fill.PresetTextured	msoTextureGranite

				.IncrementLeft	70

				.IncrementTop	-50

				.IncrementRotation	30

End	With

IncrementOffsetX	Method
							

Changes	the	horizontal	offset	of	the	shadow	by	the	specified	number	of	points.
Use	the	OffsetX	property	to	set	the	absolute	horizontal	shadow	offset.

expression.IncrementOffsetX(Increment)

expression			Required.	An	expression	that	returns	a	ShadowFormat	object.

Increment			Required	Single.	Specifies	how	far	the	shadow	offset	is	to	be	moved
horizontally,	in	points.	A	positive	value	moves	the	shadow	to	the	right;	a
negative	value	moves	it	to	the	left.

Example

This	example	moves	the	shadow	on	shape	three	on	myDocument	to	the	left	by	3
points.

Set	myDocument	=	Worksheets(1)

myDocument.Shapes(3).Shadow.IncrementOffsetX	-3

IncrementOffsetY	Method
							

Changes	the	vertical	offset	of	the	shadow	by	the	specified	number	of	points.	Use
the	OffsetY	property	to	set	the	absolute	vertical	shadow	offset.

expression.IncrementOffsetY(Increment)

expression			Required.	An	expression	that	returns	a	ShadowFormat	object.

Increment			Required	Single.	Specifies	how	far	the	shadow	offset	is	to	be	moved
vertically,	in	points.	A	positive	value	moves	the	shadow	down;	a	negative	value
moves	it	up.

Example

This	example	moves	the	shadow	on	shape	three	on	myDocument	up	by	3	points.

Set	myDocument	=	Worksheets(1)

myDocument.Shapes(3).Shadow.IncrementOffsetY	-3

IncrementRotation	Method
							

Changes	the	rotation	of	the	specified	shape	around	the	z-axis	by	the	specified
number	of	degrees.	Use	the	Rotation	property	to	set	the	absolute	rotation	of	the
shape.

expression.IncrementRotation(Increment)

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

Increment			Required	Single.	Specifies	how	far	the	shape	is	to	be	rotated
horizontally,	in	degrees.	A	positive	value	rotates	the	shape	clockwise;	a	negative
value	rotates	it	counterclockwise.

Remarks

To	rotate	a	three-dimensional	shape	around	the	x-axis	or	the	y-axis,	use	the
IncrementRotationX	method	or	the	IncrementRotationY	method.

Example

This	example	duplicates	shape	one	on	myDocument,	sets	the	fill	for	the	duplicate,
moves	it	70	points	to	the	right	and	50	points	up,	and	rotates	it	30	degrees
clockwise.

Set	myDocument	=	Worksheets(1)

With	myDocument.Shapes(1).Duplicate

				.Fill.PresetTextured	msoTextureGranite

				.IncrementLeft	70

				.IncrementTop	-50

				.IncrementRotation	30

End	With

IncrementRotationX	Method
							

Changes	the	rotation	of	the	specified	shape	around	the	x-axis	by	the	specified
number	of	degrees.	Use	the	RotationX	property	to	set	the	absolute	rotation	of
the	shape	around	the	x-axis.

expression.IncrementRotationX(Increment)

expression			Required.	An	expression	that	returns	a	ThreeDFormat	object.

Increment			Required	Single.	Specifies	how	much	(in	degrees)	the	rotation	of
the	shape	around	the	x-axis	is	to	be	changed.	Can	be	a	value	from		–	90	through
90.	A	positive	value	tilts	the	shape	up;	a	negative	value	tilts	it	down.

Remarks

You	cannot	adjust	the	specified	shape's	rotation	around	the	x-axis	past	the	upper
or	lower	limit	for	the	RotationX	property	(90	degrees	to		–	90	degrees).	For
example,	if	the	RotationX	property	is	initially	set	to	80	and	you	specify	40	for
the	Increment	argument,	the	resulting	rotation	will	be	90	(the	upper	limit	for	the
RotationX	property)	instead	of	120.

To	change	the	rotation	of	a	shape	around	the	y-axis,	use	the
IncrementRotationY	method.	To	change	the	rotation	around	the	z-axis,	use	the
IncrementRotation	method.

Example

This	example	tilts	shape	one	on	myDocument	up	10	degrees.	Shape	one	must	be
an	extruded	shape	for	you	to	see	the	effect	of	this	code.

Set	myDocument	=	Worksheets(1)

myDocument.Shapes(1).ThreeD.IncrementRotationX	10

IncrementRotationY	Method
							

Changes	the	rotation	of	the	specified	shape	around	the	y-axis	by	the	specified
number	of	degrees.	Use	the	RotationY	property	to	set	the	absolute	rotation	of
the	shape	around	the	y-axis.

expression.IncrementRotationY(Increment)

expression			Required.	An	expression	that	returns	a	ThreeDFormat	object.

Increment			Required	Single.	Specifies	how	much	(in	degrees)	the	rotation	of
the	shape	around	the	y-axis	is	to	be	changed.	Can	be	a	value	from		–	90	through
90.	A	positive	value	tilts	the	shape	to	the	left;	a	negative	value	tilts	it	to	the	right.

Remarks

To	change	the	rotation	of	a	shape	around	the	x-axis,	use	the
IncrementRotationX	method.	To	change	the	rotation	around	the	z-axis,	use	the
IncrementRotation	method.

You	cannot	adjust	the	specified	shape's	rotation	around	the	y-axis	shape	past	the
upper	or	lower	limit	for	the	RotationY	property	(90	degrees	to		–	90	degrees).
For	example,	if	the	RotationY	property	is	initially	set	to	80	and	you	specify	40
for	the	Increment	argument,	the	resulting	rotation	will	be	90	(the	upper	limit	for
the	RotationY	property)	instead	of	120.

Example

This	example	tilts	shape	one	on	myDocument	10	degrees	to	the	right.	Shape	one
must	be	an	extruded	shape	for	you	to	see	the	effect	of	this	code.

Set	myDocument	=	Worksheets(1)

myDocument.Shapes(1).ThreeD.IncrementRotationY	-10

IncrementTop	Method
							

Moves	the	specified	shape	vertically	by	the	specified	number	of	points.

expression.IncrementTop(Increment)

expression			Required.	An	expression	that	returns	a	Shape	object.

Increment			Required	Single.	Specifies	how	far	the	shape	object	is	to	be	moved
vertically,	in	points.	A	positive	value	moves	the	shape	down;	a	negative	value
moves	it	up.

Example

This	example	duplicates	shape	one	on	myDocument,	sets	the	fill	for	the	duplicate,
moves	it	70	points	to	the	right	and	50	points	up,	and	rotates	it	30	degrees
clockwise.

Set	myDocument	=	Worksheets(1)

With	myDocument.Shapes(1).Duplicate

				.Fill.PresetTextured	msoTextureGranite

				.IncrementLeft	70

				.IncrementTop	-50

				.IncrementRotation	30

End	With

Show	All

InputBox	Method
							

Displays	a	dialog	box	for	user	input.	Returns	the	information	entered	in	the
dialog	box.

expression.InputBox(Prompt,	Title,	Default,	Left,	Top,	HelpFile,
HelpContextId,	Type)

expression			Required.	An	expression	that	returns	an	Application	object.

Prompt			Required	String.	The	message	to	be	displayed	in	the	dialog	box.	This
can	be	a	string,	a	number,	a	date,	or	a	Boolean	value	(Microsoft	Excel
automatically	coerces	the	value	to	a	String	before	it's	displayed).

Title			Optional	Variant.	The	title	for	the	input	box.	If	this	argument	is	omitted,
the	default	title	is	"Input."

Default			Optional	Variant.	Specifies	a	value	that	will	appear	in	the	text	box
when	the	dialog	box	is	initially	displayed.	If	this	argument	is	omitted,	the	text
box	is	left	empty.	This	value	can	be	a	Range	object.

Left			Optional	Variant.	Specifies	an	x	position	for	the	dialog	box	in	relation	to
the	upper-left	corner	of	the	screen,	in	points.

Top			Optional	Variant.	Specifies	a	y	position	for	the	dialog	box	in	relation	to
the	upper-left	corner	of	the	screen,	in	points.

HelpFile			Optional	Variant.	The	name	of	the	Help	file	for	this	input	box.	If	the
HelpFile	and	HelpContextID	arguments	are	present,	a	Help	button	will	appear
in	the	dialog	box.

HelpContextId			Optional	Variant.	The	context	ID	number	of	the	Help	topic	in
HelpFile.

Type			Optional	Variant.	Specifies	the	return	data	type.	If	this	argument	is
omitted,	the	dialog	box	returns	text.	Can	be	one	or	a	sum	of	the	following	values.

Value Meaning
0 A	formula
1 A	number
2 Text	(a	string)
4 A	logical	value	(True	or	False)
8 A	cell	reference,	as	a	Range	object
16 An	error	value,	such	as	#N/A
64 An	array	of	values

You	can	use	the	sum	of	the	allowable	values	for	Type.	For	example,	for	an	input
box	that	can	accept	both	text	and	numbers,	set	Type	to	1	+	2.

Remarks

Use	InputBox	to	display	a	simple	dialog	box	so	that	you	can	enter	information
to	be	used	in	a	macro.	The	dialog	box	has	an	OK	button	and	a	Cancel	button.	If
you	choose	the	OK	button,	InputBox	returns	the	value	entered	in	the	dialog
box.	If	you	click	the	Cancel	button,	InputBox	returns	False.

If	Type	is	0,	InputBox	returns	the	formula	in	the	form	of	text	—	for	example,
"=2*PI()/360".	If	there	are	any	references	in	the	formula,	they	are	returned	as
A1-style	references.	(Use	ConvertFormula	to	convert	between	reference
styles.)

If	Type	is	8,	InputBox	returns	a	Range	object.	You	must	use	the	Set	statement
to	assign	the	result	to	a	Range	object,	as	shown	in	the	following	example.

Set	myRange	=	Application.InputBox(prompt	:=	"Sample",	type	:=	8)

If	you	don't	use	the	Set	statement,	the	variable	is	set	to	the	value	in	the	range,
rather	than	the	Range	object	itself.

If	you	use	the	InputBox	method	to	ask	the	user	for	a	formula,	you	must	use	the
FormulaLocal	property	to	assign	the	formula	to	a	Range	object.	The	input
formula	will	be	in	the	user's	language.

The	InputBox	method	differs	from	the	InputBox	function	in	that	it	allows
selective	validation	of	the	user's	input,	and	it	can	be	used	with	Microsoft	Excel
objects,	error	values,	and	formulas.	Note	that	Application.InputBox	calls	the
InputBox	method;	InputBox	with	no	object	qualifier	calls	the	InputBox
function.

Example

This	example	prompts	the	user	for	a	number.

myNum	=	Application.InputBox("Enter	a	number")

This	example	prompts	the	user	to	select	a	cell	on	Sheet1.	The	example	uses	the
Type	argument	to	ensure	that	the	return	value	is	a	valid	cell	reference	(a	Range
object).

Worksheets("Sheet1").Activate

Set	myCell	=	Application.InputBox(_

				prompt:="Select	a	cell",	Type:=8)

Show	All

Insert	Method
							

Insert	method	as	it	applies	to	the	Range	object.

Inserts	a	cell	or	a	range	of	cells	into	the	worksheet	or	macro	sheet	and	shifts
other	cells	away	to	make	space.

expression.Insert(Shift,	CopyOrigin)

expression			Required.	An	expression	that	returns	a	Range	object.

Shift		Optional	Variant.		Specifies	which	way	to	shift	the	cells.	Can	be	one	of
the	following	XlInsertShiftDirection	constants:	xlShiftToRight	or
xlShiftDown.	If	this	argument	is	omitted,	Microsoft	Excel	decides	based	on	the
shape	of	the	range.

CopyOrigin		Optional	Variant.	The	copy	origin.

Insert	method	as	it	applies	to	the	Characters	object.

Inserts	a	string	preceding	the	selected	characters.

expression.Insert(String)

expression			Required.	An	expression	that	returns	a	Characters	object.

String		Required	String.		The	string	to	insert.

Insert	method	as	it	applies	to	the	ShapeNodes	object.

Inserts	a	node	into	a	freeform	shape.

expression.Insert(Index,	SegmentType,	EditingType,	X1,	Y1,	X2,	Y2,	X3,	Y3)

expression			Required.	An	expression	that	returns	a	ShapeNodes	object.

Index		Required	Long.	The	number	of	the	shape	node	after	which	to	insert	a
new	node.

SegmentType		Required	MsoSegmentType.	The	segment	type.

MsoSegmentType	can	be	one	of	these	MsoSegmentType	constants.
msoSegmentCurve
msoSegmentLine

EditingType		Required	MsoEditingType.	The	editing	type.

MsoEditingType	can	be	one	of	these	MsoEditingType	constants.
msoEditingAuto
msoEditingCorner
msoEditingSmooth
msoEditingSymmetric

X1			Required	Single.	If	the	EditingType	of	the	new	segment	is
msoEditingAuto,	this	argument	specifies	the	horizontal	distance,	measured	in
points,	from	the	upper-left	corner	of	the	document	to	the	end	point	of	the	new
segment.	If	the	EditingType	of	the	new	node	is	msoEditingCorner,	this
argument	specifies	the	horizontal	distance,	measured	in	points,	from	the	upper-
left	corner	of	the	document	to	the	first	control	point	for	the	new	segment.

Y1			Required	Single.	If	the	EditingType	of	the	new	segment	is
msoEditingAuto,	this	argument	specifies	the	vertical	distance,	measured	in
points,	from	the	upper-left	corner	of	the	document	to	the	end	point	of	the	new
segment.	If	the	EditingType	of	the	new	node	is	msoEditingCorner,	this
argument	specifies	the	vertical	distance,	measured	in	points,	from	the	upper-left
corner	of	the	document	to	the	first	control	point	for	the	new	segment.

X2			Optional	Single.	If	the	EditingType	of	the	new	segment	is
msoEditingCorner,	this	argument	specifies	the	horizontal	distance,	measured	in
points,	from	the	upper-left	corner	of	the	document	to	the	second	control	point	for
the	new	segment.	If	the	EditingType	of	the	new	segment	is	msoEditingAuto,
don't	specify	a	value	for	this	argument.

Y2			Optional	Single.	If	the	EditingType	of	the	new	segment	is

msoEditingCorner,	this	argument	specifies	the	vertical	distance,	measured	in
points,	from	the	upper-left	corner	of	the	document	to	the	second	control	point	for
the	new	segment.	If	the	EditingType	of	the	new	segment	is	msoEditingAuto,
don't	specify	a	value	for	this	argument.

X3			Optional	Single.	If	the	EditingType	of	the	new	segment	is
msoEditingCorner,	this	argument	specifies	the	horizontal	distance,	measured	in
points,	from	the	upper-left	corner	of	the	document	to	the	end	point	of	the	new
segment.	If	the	EditingType	of	the	new	segment	is	msoEditingAuto,	don't
specify	a	value	for	this	argument.

Y3			Optional	Single.	If	the	EditingType	of	the	new	segment	is
msoEditingCorner,	this	argument	specifies	the	vertical	distance,	measured	in
points,	from	the	upper-left	corner	of	the	document	to	the	end	point	of	the	new
segment.	If	the	EditingType	of	the	new	segment	is	msoEditingAuto,	don't
specify	a	value	for	this	argument.

Example

This	example	selects	the	third	shape	in	the	active	document,	checks	whether	the
shape	is	a	Freeform	object,	and	if	it	is,	inserts	a	node.	This	example	assumes
three	shapes	exist	on	the	active	worksheet.

Sub	InsertShapeNode()

				ActiveSheet.Shapes(3).Select

				With	Selection.ShapeRange

								If	.Type	=	msoFreeform	Then

												.Nodes.Insert	_

																Index:=3,	SegmentType:=msoSegmentCurve,	_

																EditingType:=msoEditingSymmetric,	X1:=35,	Y1:=100

												.Fill.ForeColor.RGB	=	RGB(0,	0,	200)

												.Fill.Visible	=	msoTrue

								Else

												MsgBox	"This	shape	is	not	a	Freeform	object."

								End	If

				End	With

End	Sub

InsertIndent	Method
							

Adds	an	indent	to	the	specified	range.

expression.InsertIndent(InsertAmount)

expression			Required.	An	expression	that	returns	a	Range	object.

InsertAmount			Required	Long.	The	amount	to	be	added	to	the	current	indent.

Remarks

Using	this	method	to	set	the	indent	level	to	a	number	less	than	0	(zero)	or	greater
than	15	causes	an	error.

Use	the	IndentLevel	property	to	return	the	indent	level	for	a	range.

Example

This	example	decreases	the	indent	level	in	cell	A10.

With	Range("a10")

				.InsertIndent	-1

End	With

Intersect	Method
							

Returns	a	Range	object	that	represents	the	rectangular	intersection	of	two	or
more	ranges.

expression.Intersect(Arg1,	Arg2,	...)

expression			Optional.	An	expression	that	returns	an	Application	object.

Arg1,	Arg2,	...			Required	Range.	The	intersecting	ranges.	At	least	two	Range
objects	must	be	specified.

Example

This	example	selects	the	intersection	of	two	named	ranges,	rg1	and	rg2,	on
Sheet1.	If	the	ranges	don't	intersect,	the	example	displays	a	message.

Worksheets("Sheet1").Activate

Set	isect	=	Application.Intersect(Range("rg1"),	Range("rg2"))

If	isect	Is	Nothing	Then

				MsgBox	"Ranges	do	not	intersect"

Else

				isect.Select

End	If

Show	All

Item	Method
							

Item	method	as	it	applies	to	the	Axes	object.

Returns	a	single	Axis	object	from	an	Axes	collection.

expression.Item(Type,	AxisGroup)

expression			Required.	An	expression	that	returns	an	Axes	collection.

Type		Required	XlAxisType.	The	axis	type.

XlAxisType	can	be	one	of	these	XlAxisType	constants.
xlCategory
xlSeriesAxis	Valid	only	for	3-D	charts.
xlValue

AxisGroup		Optional	XlAxisGroup.	The	axis.

XlAxisGroup	can	be	one	of	these	XlAxisGroup	constants.
xlPrimary	default
xlSecondary

Item	method	as	it	applies	to	the	Names	object.

Returns	a	single	Name	object	from	a	Names	collection.

expression.Item(Index,	IndexLocal,	RefersTo)

expression			Required.	An	expression	that	returns	a	Names	collection.

Index		Optional	Variant.	The	name	or	number	of	the	defined	name	to	be
returned.

IndexLocal		Optional	Variant.	The	name	of	the	defined	name,	in	the	language

of	the	user.	No	names	will	be	translated	if	you	use	this	argument.

RefersTo		Optional	Variant.	What	the	name	refers	to.	You	use	this	argument	to
identify	a	name	by	what	it	refers	to.

Remarks

You	must	specify	one,	and	only	one,	of	these	three	arguments.

Item	method	as	it	applies	to	the	Comments,	ODBCErrors,	OLEDBErrors
and	Points	objects.

Returns	a	single	object	from	a	collection.

expression.Item(Index)

expression			Required.	An	expression	that	returns	one	of	the	above	objects.

Index		Required	Long.	The	index	number	for	the	object.

Item	method	as	it	applies	to	all	other	objects	in	the	Applies	To	list.

Returns	a	single	object	from	a	collection.

expression.Item(Index)

expression			Required.	An	expression	that	returns	all	other	objects	in	the	Applies
To	list.

Index		Required	Variant.	The	name	or	index	number	for	the	object.

Remarks

The	text	name	of	the	object	is	the	value	of	the	Name	and	Value	properties.	For
an	Online	Analytical	Processing	(OLAP)	data	source,	the	value	is	equal	to	the
value	of	the	SourceName	property,	and	for	other	data	sources,	the	value	is	equal
to	the	value	of	the	Caption	property.

Example

As	it	applies	to	the	Axes	object.

This	example	sets	the	title	text	for	the	category	axis	on	Chart1.

With	Charts("chart1").Axes.Item(xlCategory)

				.HasTitle	=	True

				.AxisTitle.Caption	=	"1994"

End	With

As	it	applies	to	the	CalculatedFields	object.

This	example	sets	the	formula	for	calculated	field	one.

Worksheets(1).PivotTables(1).CalculatedFields.Item(1)	_

				.Formula	=	"=Revenue	-	Cost"

As	it	applies	to	the	CalculatedItems	and	PivotItemList	objects.

This	example	hides	calculated	item	one.

Worksheets(1).PivotTables(1).PivotFields("year")	_

				.CalculatedItems.Item(1).Visible	=	False

As	it	applies	to	the	CanvasShapes,	GroupShapes,	and	ShapeRange	objects.

This	example	sets	the	OnAction	property	for	shape	two	in	a	shape	range.	If	the
sr	variable	doesn’t	represent	a	ShapeRange	object,	this	example	fails.

Dim	sr	As	Shape

sr.Item(2).OnAction	=	"ShapeAction"

As	it	applies	to	the	ChartGroups	object.

This	example	adds	drop	lines	to	chart	group	one	on	chart	sheet	one.

Charts(1).ChartGroups.Item(1).HasDropLines	=	True

As	it	applies	to	the	ChartObjects	object.

This	example	activates	embedded	chart	one.

Worksheets("sheet1").ChartObjects.Item(1).Activate

As	it	applies	to	the	Comments	object.

This	example	hides	comment	two.

Worksheets(1).Comments.Item(2).Visible	=	False

As	it	applies	to	the	CustomViews	object.

This	example	includes	print	settings	in	the	custom	view	named	Current
Inventory.

ThisWorkbook.CustomViews.Item("Current	Inventory")	_

				.PrintSettings	=	True

As	it	applies	to	the	DataLabels	object.

This	example	sets	the	number	format	for	the	fifth	data	label	in	series	one	in
embedded	chart	one	on	worksheet	one.

Worksheets(1).ChartObjects(1).Chart	_

				.SeriesCollection(1).DataLabels.Item(5).NumberFormat	=	"0.000"

As	it	applies	to	the	FormatConditions	object.

This	example	sets	format	properties	for	an	existing	conditional	format	for	cells
E1:E10.

With	Worksheets(1).Range("e1:e10").FormatConditions.Item(1)

				With	.Borders

								.LineStyle	=	xlContinuous

								.Weight	=	xlThin

								.ColorIndex	=	6

				End	With

End	With

As	it	applies	to	the	LegendEntries	object.

This	example	changes	the	font	for	the	text	of	the	legend	entry	at	the	top	of	the
legend	(this	is	usually	the	legend	for	series	one)	in	embedded	chart	one	on

Sheet1.

Worksheets("sheet1").ChartObjects(1).Chart	_

				.Legend.LegendEntries.Item(1).Font.Italic	=	True

As	it	applies	to	the	Names	object.

This	example	deletes	the	name	mySortRange	from	the	active	workbook.

ActiveWorkbook.Names.Item("mySortRange").Delete

As	it	applies	to	the	ODBCErrors	object.

This	example	displays	an	ODBC	error.

Set	er	=	Application.ODBCErrors.Item(1)

MsgBox	"The	following	error	occurred:"	&

				er.ErrorString	&	"	:	"	&	er.SqlState

As	it	applies	to	the	OLEDBErrors	object.

This	example	displays	an	OLE	DB	error.

Set	objEr	=	Application.OLEDBErrors.Item(1)

MsgBox	"The	following	error	occurred:"	&	_

				objEr.ErrorString	&	"	:	"	&	objEr.SqlState

As	it	applies	to	the	OLEObjects	object.

This	example	deletes	OLE	object	one	from	Sheet1.

Worksheets("sheet1").OLEObjects.Item(1).Delete

As	it	applies	to	the	Parameters	object.

This	example	modifies	the	parameter	prompt	string.

With	Worksheets(1).QueryTables(1).Parameters.Item(1)

				.SetParam	xlPrompt,	"Please	"	&	.PromptString

End	With

As	it	applies	to	the	PivotCaches	object.

This	example	refreshes	cache	one.

ActiveWorkbook.PivotCaches.Item(1).Refresh

As	it	applies	to	the	PivotFields	object.

This	example	makes	the	Year	field	a	row	field	in	the	first	PivotTable	report	on
Sheet3.

Worksheets("sheet3").PivotTables(1)	_

				.PivotFields.Item("year").Orientation	=	xlRowField

As	it	applies	to	the	PivotFormulas	object.

This	example	displays	the	first	formula	for	PivotTable	one	on	worksheet	one.

MsgBox	Worksheets(1).PivotTables(1).PivotFormulas.Item(1).Formula

As	it	applies	to	the	PivotItems	object.

This	example	hides	the	1998	item	in	the	first	PivotTable	report	on	Sheet3.

Worksheets("sheet3").PivotTables(1)	_

				.PivotFields("year").PivotItems.Item("1998").Visible	=	False

As	it	applies	to	the	PivotTables	object.

This	example	makes	the	Year	field	a	row	field	in	the	first	PivotTable	report	on
Sheet3.

Worksheets("sheet3").PivotTables.Item(1)	_

				.PivotFields("year").Orientation	=	xlRowField

As	it	applies	to	the	Points	object.

This	example	sets	the	marker	style	for	the	third	point	in	series	one	in	embedded
chart	one	on	worksheet	one.	The	specified	series	must	be	a	2-D	line,	scatter,	or
radar	series.

Worksheets(1).ChartObjects(1).Chart.	_

				SeriesCollection(1).Points.Item(3).MarkerStyle	=	xlDiamond

As	it	applies	to	the	QueryTables	object.

This	example	sets	a	query	table	so	that	formulas	to	the	right	of	the	query	table
are	automatically	updated	whenever	it’s	refreshed.

Sheets("sheet1").QueryTables.Item(1).FillAdjacentFormulas	=	True

As	it	applies	to	the	Scenarios	object.

This	example	shows	the	scenario	named	Typical	on	the	worksheet	named
Options.

Worksheets("options").Scenarios.Item("typical").Show

As	it	applies	to	the	SeriesCollection	object.

This	example	sets	the	number	of	units	that	the	trendline	on	Chart1	extends
forward	and	backward.	The	example	should	be	run	on	a	2-D	column	chart	that
contains	a	single	series	with	a	trendline.

With	Charts("Chart1").SeriesCollection.Item(1).Trendlines.Item(1)

				.Forward	=	5

				.Backward	=	.5

End	With

As	it	applies	to	the	Shapes	object.

This	example	sets	the	OnAction	property	for	shape	two	in	a	Shapes	collection.
If	the	ss	variable	doesn’t	represent	a	Shapes	object,	this	example	fails.

Dim	ss	As	Shape

ss.Item(2).OnAction	=	"ShapeAction"

As	it	applies	to	the	Trendlines	object.

This	example	sets	the	number	of	units	that	the	trendline	on	Chart1	extends
forward	and	backward.	The	example	should	be	run	on	a	2-D	column	chart	that
contains	a	single	series	with	a	trendline.

With	Charts("Chart1").SeriesCollection(1).Trendlines.Item(1)

				.Forward	=	5

				.Backward	=	.5

End	With

Justify	Method
							

Rearranges	the	text	in	a	range	so	that	it	fills	the	range	evenly.

expression.Justify

expression			Required.	An	expression	that	returns	a	Range	object.

Remarks

If	the	range	isn’t	large	enough,	Microsoft	Excel	displays	a	message	telling	you
that	text	will	extend	below	the	range.	If	you	click	the	OK	button,	justified	text
will	replace	the	contents	in	cells	that	extend	beyond	the	selected	range.	To
prevent	this	message	from	appearing,	set	the	DisplayAlerts	property	to	False.
After	you	set	this	property,	text	will	always	replace	the	contents	in	cells	below
the	range.

Example

This	example	justifies	the	text	in	cell	A1	on	Sheet1.

Worksheets("Sheet1").Range("A1").Justify

LargeScroll	Method
							

Scrolls	the	contents	of	the	window	by	pages.

expression.LargeScroll(Down,	Up,	ToRight,	ToLeft)

expression			Required.	An	expression	that	returns	a	Window	object.

Down			Optional	Variant.	The	number	of	pages	to	scroll	the	contents	down.

Up			Optional	Variant.	The	number	of	pages	to	scroll	the	contents	up.

ToRight			Optional	Variant.	The	number	of	pages	to	scroll	the	contents	to	the
right.

ToLeft			Optional	Variant.	The	number	of	pages	to	scroll	the	contents	to	the	left.

Remarks

If	Down	and	Up	are	both	specified,	the	contents	of	the	window	are	scrolled	by
the	difference	of	the	arguments.	For	example,	if	Down	is	3	and	Up	is	6,	the
contents	are	scrolled	up	three	pages.

If	ToLeft	and	ToRight	are	both	specified,	the	contents	of	the	window	are	scrolled
by	the	difference	of	the	arguments.	For	example,	if	ToLeft	is	3	and	ToRight	is	6,
the	contents	are	scrolled	to	the	right	three	pages.

Any	of	the	arguments	can	be	a	negative	number.

Example

This	example	scrolls	the	contents	of	the	active	window	of	Sheet1	down	three
pages.

Worksheets("Sheet1").Activate

ActiveWindow.LargeScroll	down:=3

LegendEntries	Method
							

Returns	an	object	that	represents	either	a	single	legend	entry	(a	LegendEntry
object)	or	a	collection	of	legend	entries	(a	LegendEntries	object)	for	the	legend.

expression.LegendEntries(Index)

expression			Required.	An	expression	that	returns	a	Legend	object.

Index			Optional	Variant.	The	number	of	the	legend	entry.

Example

This	example	sets	the	font	for	legend	entry	one	on	Chart1.

Charts("Chart1").Legend.LegendEntries(1).Font.Name	=	"Arial"

LineGroups	Method
							

On	a	2-D	chart,	returns	an	object	that	represents	either	a	single	line	chart	group
(a	ChartGroup	object)	or	a	collection	of	the	line	chart	groups	(a	ChartGroups
collection).

expression.LineGroups(Index)

expression			Required.	An	expression	that	returns	a	Chart	object.

Index			Optional	Variant.	Specifies	the	chart	group.

Example

This	example	sets	line	group	one	in	Chart1	to	use	a	different	color	for	each	data
marker.	The	example	should	be	run	on	a	2-D	chart.

Charts("Chart1").LineGroups(1).VaryByCategories	=	True

LinkInfo	Method
							

Returns	the	link	date	and	update	status.	Variant.

expression.LinkInfo(Name,	LinkInfo,	Type,	EditionRef)

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

Name		Optional	String.

LinkInfo		Required	XlLinkInfo.		The	type	of	information	to	be	returned.

XlLinkInfo	can	be	one	of	these	XlLinkInfo	constants.
xlEditionDate
xlLinkInfoStatus
xlUpdateState		This	method	returns	1	if	the	link	updates	automatically,	or	it
returns	2	if	the	link	must	be	updated	manually.

Type		Optional	XlLinkInfoType.		The	type	of	link	to	return.

XlLinkInfoType	can	be	one	of	these	XlLinkInfoType	constants.
xlLinkInfoOLELinks		(also	handles	DDE	links)
xlLinkInfoPublishers
xlLinkInfoSubscribers

EditionRef		Optional	Variant.		If	the	link	is	an	edition,	this	argument	specifies
the	edition	reference	as	a	string	in	R1C1	style.	This	argument	is	required	if
there's	more	than	one	publisher	or	subscriber	with	the	same	name	in	the
workbook.

Example

This	example	displays	a	message	box	if	the	link	is	updated	automatically.

If	ActiveWorkbook.LinkInfo(_

								"Word.Document|Document1!'!DDE_LINK1",	xlUpdateState,	_

												xlOLELinks)	=	1	Then

				MsgBox	"Link	updates	automatically"

End	If

LinkSources	Method
							

Returns	an	array	of	links	in	the	workbook.	The	names	in	the	array	are	the	names
of	the	linked	documents,	editions,	or	DDE	or	OLE	servers.	Returns	Empty	if
there	are	no	links.	Variant.

expression.LinkSources(Type)

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

Type		Optional	XlLink.		The	type	of	link	to	return.

XlLink	can	be	one	of	these	XlLink	constants.
xlExcelLinks
xlOLELinks	(also	handles	DDE	links)

xlPublishers

xlSubscribers

Remarks

The	format	of	the	array	is	a	one-dimensional	array	for	all	types	but	publisher	and
subscriber.	The	returned	strings	contain	the	name	of	the	link	source,	in	the
appropriate	notation	for	the	link	type.	For	example,	DDE	links	use	the
"Server|Document!Item"	syntax.

For	publisher	and	subscriber	links,	the	returned	array	is	two-dimensional.	The
first	column	of	the	array	contains	the	names	of	the	edition,	and	the	second
column	contains	the	references	of	the	editions	as	text.

Example

This	example	displays	a	list	of	OLE	and	DDE	links	in	the	active	workbook.	The
example	should	be	run	on	a	workbook	that	contains	one	or	more	linked	Word
objects.

aLinks	=	ActiveWorkbook.LinkSources(xlOLELinks)

If	Not	IsEmpty(aLinks)	Then

				For	i	=	1	To	UBound(aLinks)

								MsgBox	"Link	"	&	i	&	":"	&	Chr(13)	&	aLinks(i)

				Next	i

End	If

List	Method
							

Returns	or	sets	the	text	entries	in	the	specified	list	box	or	a	combo	box,	as	an
array	of	strings,	or	returns	or	sets	a	single	text	entry.	An	error	occurs	if	there	are
no	entries	in	the	list.

expression.List(Index)

expression			Required.	An	expression	that	returns	a	ControlFormat	object.

Index			Optional	Variant.	The	index	number	of	a	single	text	entry	to	be	set	or
returned.	If	this	argument	is	omitted,	the	entire	list	is	returned	or	set	as	an	array
of	strings.

Remarks

Setting	this	property	clears	any	range	specified	by	the	ListFillRange	property.

Example

This	example	sets	the	entries	in	a	list	box	on	worksheet	one.	If	Shapes(2)
doesn’t	represent	a	list	box,	this	example	fails.

Worksheets(1).Shapes(2).ControlFormat.List	=	_

				Array("cogs",	"widgets",	"sprockets",	"gizmos")

This	example	sets	entry	four	in	a	list	box	on	worksheet	one.	If	Shapes(2)
doesn’t	represent	a	list	box,	this	example	fails.

Worksheets(1).Shapes(2).ControlFormat.List(4)	=	"gadgets"

Show	All

ListFormulas	Method
							

Creates	a	list	of	calculated	PivotTable	items	and	fields	on	a	separate	worksheet.

expression.ListFormulas

expression			Required.	An	expression	that	returns	a	PivotTable	object.

Remarks

This	method	isn’t	available	for	OLAP	data	sources.

Example

This	example	creates	a	list	of	calculated	items	and	fields	for	the	first	PivotTable
report	on	worksheet	one.

Worksheets(1).PivotTables(1).ListFormulas

ListNames	Method
							

Pastes	a	list	of	all	nonhidden	names	onto	the	worksheet,	beginning	with	the	first
cell	in	the	range.

expression.ListNames

expression			Required.	An	expression	that	returns	a	Worksheet	object.

Remarks

Use	the	Names	property	to	return	a	collection	of	all	the	names	on	a	worksheet.

Example

This	example	pastes	a	list	of	defined	names	into	cell	A1	on	Sheet1.	The	example
pastes	both	workbook-level	names	and	sheet-level	names	defined	on	Sheet1.

Worksheets("Sheet1").Range("A1").ListNames

Location	Method
							

Moves	the	chart	to	a	new	location.	Chart	object.

expression.Location(Where,	Name)

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

Where		Required	XlChartLocation.	Where	to	move	the	chart.

XlChartLocation	can	be	one	of	these	XlChartLocation	constants.
xlLocationAsNewSheet
xlLocationAsObject
xlLocationAutomatic

Name		Optional	Variant;	required	if	Where	is	xlLocationAsObject.	The	name
of	the	sheet	where	the	chart	will	be	embedded	if	Where	is	xlLocationAsObject
or	the	name	of	the	new	sheet	if	Where	is	xlLocationAsNewSheet.

Example

This	example	moves	the	embedded	chart	to	a	new	chart	sheet	named	"Monthly
Sales."

Worksheets(1).ChartObjects(1).Chart	_

				.Location	xlLocationAsNewSheet,	"Monthly	Sales"

MacroOptions	Method
							

Corresponds	to	options	in	the	Macro	Options	dialog	box.

expression.MacroOptions(Macro,	Description,	HasMenu,	MenuText,
HasShortcutKey,	ShortcutKey,	Category,	StatusBar,	HelpContextID,
HelpFile)

expression			Required.	An	expression	that	returns	an	Application	object.

Macro			Optional	Variant.	The	macro	name.

Description			Optional	Variant.	The	macro	description.

HasMenu			Optional	Variant.	This	argument	is	ignored.

MenuText			Optional	Variant.	This	argument	is	ignored.

HasShortcutKey			Optional	Variant.	True	to	assign	a	shortcut	key	to	the	macro
(ShortcutKey	must	also	be	specified).	If	this	argument	is	False,	no	shortcut	key
is	assigned	to	the	macro.	If	the	macro	already	has	a	shortcut	key,	setting	this
argument	to	False	removes	the	shortcut	key.	The	default	value	is	False.

ShortcutKey			Optional	Variant.	Required	if	HasShortcutKey	is	True;	ignored
otherwise.	The	shortcut	key.

Category			Optional	Variant.	An	integer	that	specifies	the	macro	function
category	(Financial,	Date	&	Time,	or	User	Defined,	for	example).

StatusBar			Optional	Variant.	The	status	bar	text	for	the	macro.

HelpContextId			Optional	Variant.	An	integer	that	specifies	the	context	ID	for
the	Help	topic	assigned	to	the	macro.

HelpFile			Optional	Variant.	The	name	of	the	Help	file	that	contains	the	Help
topic	defined	by	HelpContextId.

Example

This	example	adds	a	shortcut	key	for	the	DoRand	macro.

Application.MacroOptions	Macro:="DoRand",	_

				HasShortcutKey:=True,	ShortcutKey:="Z"

MailLogoff	Method
							

Closes	a	MAPI	mail	session	established	by	Microsoft	Excel.

expression.MailLogoff

expression			Required.	An	expression	that	returns	an	Application	object.

Remarks

You	cannot	use	this	method	to	close	or	log	off	Microsoft	Mail.

Example

This	example	closes	the	established	mail	session,	if	there	is	one.

If	Not	IsNull(Application.MailSession)	Then	Application.MailLogoff

MailLogon	Method
							

Logs	in	to	MAPI	Mail	or	Microsoft	Exchange	and	establishes	a	mail	session.	If
Microsoft	Mail	isn't	already	running,	you	must	use	this	method	to	establish	a
mail	session	before	mail	or	document	routing	functions	can	be	used.

expression.MailLogon(Name,	Password,	DownloadNewMail)

expression			Required.	An	expression	that	returns	an	Application	object.

Name			Optional	Variant.	The	mail	account	name	or	Microsoft	Exchange	profile
name.	If	this	argument	is	omitted,	the	default	mail	account	name	is	used.

Password			Optional	Variant.	The	mail	account	password.	This	argument	is
ignored	in	Microsoft	Exchange.

DownloadNewMail			Optional	Variant.	True	to	download	new	mail
immediately.

Remarks

Microsoft	Excel	logs	off	any	mail	sessions	it	previously	established	before
attempting	to	establish	the	new	session.

To	piggyback	on	the	system	default	mail	session,	omit	both	the	name	and
password	parameters.

Example

This	example	logs	in	to	mail	and	downloads	any	new	mail	immediately.

If	IsNull(Application.MailSession)	Then

				Application.MailLogon	"oscarx",	"mypassword",	True

End	If

MakeConnection	Method
							

Establishes	a	connection	for	the	specified	PivotTable	cache.

expression.MakeConnection

expression			Required.	An	expression	that	returns	a	PivotCache	object.

Remarks

The	MakeConnection	method	can	be	used	after	the	cache	drops	a	connection
and	the	user	wants	to	re-establish	the	connection.

Various	objects	and	methods	might	return	a	run-time	error	if	the	cache	is	not
connected.	Use	of	this	method	assures	a	connection	before	executing	other
objects	or	methods.

This	method	will	result	in	a	run-time	error	if	the	MaintainConnection	property
of	the	specified	PivotTable	cache	has	been	set	to	False	or	the	SourceType
property	of	the	specified	PivotTable	cache	has	been	set	to	xlExternal.

Note			Microsoft	Excel	might	drop	a	connection	temporarily	in	the	course	of	a
session	(unknown	to	the	VBA	programmer),	so	this	method	proves	useful.

Example

The	following	example	determines	if	the	cache	is	connected	to	its	source	and
makes	a	connection	to	the	source	if	necessary.	This	example	assumes	a
PivotTable	cache	exists	on	the	active	worksheet.

Sub	UseMakeConnection()

				Dim	pvtCache	As	PivotCache

				Set	pvtCache	=	Application.ActiveWorkbook.PivotCaches.Item(1)

				'	Handle	run-time	error	if	external	source	is	not	an	OLEDB	data	source.

				On	Error	GoTo	Not_OLEDB

				'	Check	connection	setting	and	make	connection	if	necessary.

				If	pvtCache.IsConnected	=	True	Then

								MsgBox	"The	MakeConnection	method	is	not	needed."

				Else

								pvtCache.MakeConnection

								MsgBox	"A	connection	has	been	made."

				End	If

				Exit	Sub

Not_OLEDB:

				MsgBox	"The	data	source	is	not	an	OLEDB	data	source"

End	Sub

Show	All

Merge	Method
							

Merge	method	as	it	applies	to	the	Scenarios	object.

Merges	the	scenarios	from	another	sheet	into	the	Scenarios	collection.

expression.Merge(Source)

expression			Required.	An	expression	that	returns	the	Scenarios	object.

Source		Required	Variant.	The	name	of	the	sheet	that	contains	scenarios	to	be
merged,	or	a	Worksheet	object	that	represents	that	sheet.

Merge	method	as	it	applies	to	the	Styles	object.

Merges	the	styles	from	another	workbook	into	the	Styles	collection.

expression.Merge(Workbook)

expression			Required.	An	expression	that	returns	the	Styles	object.

Workbook		Required	Variant.	A	Workbook	object	that	represents	the	workbook
containing	styles	to	be	merged.

Merge	method	as	it	applies	to	the	Range	object.

Creates	a	merged	cell	from	the	specified	Range	object.

expression.Merge(Across)

expression			Required.	An	expression	that	returns	the	Range	object.

Across		Optional	Variant.	True	to	merge	cells	in	each	row	of	the	specified	range
as	separate	merged	cells.	The	default	value	is	False.

Remarks

The	value	of	a	merged	range	is	specified	in	the	cell	of	the	range's	upper-left
corner.

Example

This	example	merges	the	styles	from	the	workbook	Template.xls	into	the	active
workbook.

ActiveWorkbook.Styles.Merge	Workbook:=Workbooks("TEMPLATE.XLS")

MergeWorkbook	Method
							

Merges	changes	from	one	workbook	into	an	open	workbook.

expression.MergeWorkbook(Filename)

expression			Required.	An	expression	that	returns	a	Workbook	object.

Filename			Required	String.	The	file	name	of	the	workbook	that	contains	the
changes	to	be	merged	into	the	open	workbook.

Example

This	example	merges	changes	from	Book1.xls	into	the	active	workbook.

ActiveWorkbook.MergeWorkbook	"Book1.xls"

Modify	Method
							

Modifies	the	data	validation	or	conditional	format.	For	more	information,	click
the	object	you	want	to	modify.

FormatCondition

Validation

Move	Method
							

Moves	the	sheet	to	another	location	in	the	workbook.

expression.Move(Before,	After)

expression			Required.	An	expression	that	returns	an	object	in	the	Applies	To	list.

Before			Optional	Variant.	The	sheet	before	which	the	moved	sheet	will	be
placed.	You	cannot	specify	Before	if	you	specify	After.

After			Optional	Variant.	The	sheet	after	which	the	moved	sheet	will	be	placed.
You	cannot	specify	After	if	you	specify	Before.

Remarks

If	you	don't	specify	either	Before	or	After,	Microsoft	Excel	creates	a	new
workbook	that	contains	the	moved	sheet.

Example

This	example	moves	Sheet1	after	Sheet3	in	the	active	workbook.

Worksheets("Sheet1").Move	_

				after:=Worksheets("Sheet3")

Show	All

MoveNode	Method
							

Moves	a	diagram	node	and	any	of	its	child	nodes,	within	a	diagram.

expression.MoveNode(pTargetNode,	pos)

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

pTargetNode		Required	DiagramNode	object.	The	diagram	node	where	the
specified	node	will	be	moved.

pos		Required	MsoRelativeNodePosition.	The	position	to	move	the	node,
relative	to	TargetNode.

MsoRelativeNodePosition	can	be	one	of	these	MsoRelativeNodePosition
constants.
msoAfterLastSibling
msoAfterNode
msoBeforeFirstSibling
msoBeforeNode

Example

The	following	example	moves	the	second	diagram	node	of	a	newly-created
diagram	to	the	last	node.

Sub	MoveDiagramNode()

				Dim	dgnNode	As	DiagramNode

				Dim	shpDiagram	As	Shape

				Dim	intCount	As	Integer

				'Add	pyramid	diagram	to	the	current	document

				Set	shpDiagram	=	ActiveSheet.Shapes.AddDiagram(_

								Type:=msoDiagramPyramid,	Left:=10,	_

								Top:=15,	Width:=400,	Height:=475)

				'Add	four	child	nodes	to	the	pyramid	diagram

				Set	dgnNode	=	shpDiagram.DiagramNode.Children.AddNode

				For	intCount	=	1	To	3

								dgnNode.AddNode

				Next	intCount

				'Move	the	second	node	to	after	where	the

				'fourth	node	is	currently	located.

				dgnNode.Diagram.Nodes(2).MoveNode	_

								pTargetNode:=dgnNode.Diagram.Nodes(4),	_

								Pos:=msoAfterLastSibling

End	Sub

NavigateArrow	Method
							

Navigates	a	tracer	arrow	for	the	specified	range	to	the	precedent,	dependent,	or
error-causing	cell	or	cells.	Selects	the	precedent,	dependent,	or	error	cells	and
returns	a	Range	object	that	represents	the	new	selection.	This	method	causes	an
error	if	it's	applied	to	a	cell	without	visible	tracer	arrows.

expression.NavigateArrow(TowardPrecedent,	ArrowNumber,	LinkNumber)

expression			Required.	An	expression	that	returns	a	Range	object.

TowardPrecedent			Optional	Variant.	Specifies	the	direction	to	navigate:	True
to	navigate	toward	precedents,	False	to	navigate	toward	dependent.

ArrowNumber			Optional	Variant.	Specifies	the	arrow	number	to	navigate;
corresponds	to	the	numbered	reference	in	the	cell's	formula.

LinkNumber			Optional	Variant.	If	the	arrow	is	an	external	reference	arrow,	this
argument	indicates	which	external	reference	to	follow.	If	this	argument	is
omitted,	the	first	external	reference	is	followed.

Example

This	example	navigates	along	the	first	tracer	arrow	from	cell	A1	on	Sheet1
toward	the	precedent	cell.	The	example	should	be	run	on	a	worksheet	containing
a	formula	in	cell	A1	that	includes	references	to	cells	D1,	D2,	and	D3	(for
example,	the	formula	=D1*D2*D3).	Before	running	the	example,	display	the
Auditing	toolbar,	select	cell	A1,	and	click	the	Trace	Precedents	button.

Worksheets("Sheet1").Activate

Range("A1").Select

ActiveCell.NavigateArrow	True,	1

NewSeries	Method
							

Creates	a	new	series.	Returns	a	Series	object	that	represents	the	new	series.

expression.NewSeries()

expression			Required.	An	expression	that	returns	a	SeriesCollection	object.

Remarks

This	method	isn’t	available	for	PivotChart	reports.

Example

This	example	adds	a	new	series	to	chart	one.

Set	ns	=	Charts(1).SeriesCollection.NewSeries

NewWindow	Method
							

Creates	a	new	window	or	a	copy	of	the	specified	window.

expression.NewWindow

expression			Required.	An	expression	that	returns	a	Window	or	Workbook
object.

Example

This	example	creates	a	new	window	for	the	active	workbook.

ActiveWorkbook.NewWindow

Next	Method
							

Returns	a	Comment	object	that	represents	the	next	comment.

expression.Next

expression			Required.	An	expression	that	returns	a	Comment	object.

Remarks

This	method	works	only	on	one	sheet.	Using	this	method	on	the	last	comment	on
a	sheet	returns	Null	(not	the	next	comment	on	the	next	sheet).

Example

This	example	hides	the	next	comment.

Range("a1").Comment.Next.Visible	=	False

NextNode	Method
							

Selects	the	next	diagram	node	in	a	series	of	nodes.	Returns	a	DiagramNode
object	representing	the	newly-selected	node.

expression.NextNode

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

Example

This	example	creates	an	organization	chart,	and	adds	child	nodes	to	the	middle
diagram	node.

Sub	AddChildrenToMiddle()

				Dim	dgnRoot	As	DiagramNode

				Dim	shpDiagram	As	Shape

				Dim	dgnNext	As	DiagramNode

				Dim	intCount	As	Integer

				'Add	organization	chart	to	current	document

				Set	shpDiagram	=	ActiveSheet.Shapes.AddDiagram(_

								Type:=msoDiagramOrgChart,	Left:=10,	_

								Top:=15,	Width:=400,	Height:=475)

				'Add	three	child	nodes	to	organization	chart

				Set	dgnRoot	=	shpDiagram.DiagramNode.Children.AddNode

				For	intCount	=	1	To	3

								dgnRoot.Children.AddNode

				Next

				'Access	the	node	immediately	following

				'the	first	diagram	node

				Set	dgnNext	=	dgnRoot.Children.Item(1).NextNode

				'Add	three	child	nodes	to	the	node	immediately

				'following	the	first	diagram	node

				For	intCount	=	1	To	3

								dgnNext.Children.AddNode

				Next	intCount

End	Sub

NoteText	Method
							

Returns	or	sets	the	cell	note	associated	with	the	cell	in	the	upper-left	corner	of
the	range.	Read/write	String.

Cell	notes	have	been	replaced	by	range	comments.	For	more	information,	see	the
Comment	object.

expression.NoteText(Text,	Start,	Length)

expression			Required.	An	expression	that	returns	a	Range	object.

Text			Optional	Variant.	The	text	to	add	to	the	note	(up	to	255	characters).	The
text	is	inserted	starting	at	position	Start,	replacing	Length	characters	of	the
existing	note.	If	this	argument	is	omitted,	this	method	returns	the	current	text	of
the	note	starting	at	position	Start,	for	Length	characters.

Start			Optional	Variant.	The	starting	position	for	the	text	that’s	set	or	returned.
If	this	argument	is	omitted,	this	method	starts	at	the	first	character.	To	append
text	to	the	note,	specify	a	number	larger	than	the	number	of	characters	in	the
existing	note.

Length			Optional	Variant.	The	number	of	characters	to	be	set	or	returned.	If
this	argument	is	omitted,	Microsoft	Excel	sets	or	returns	characters	from	the
starting	position	to	the	end	of	the	note	(up	to	255	characters).	If	there	are	more
than	255	characters	from	Start	to	the	end	of	the	note,	this	method	returns	only
255	characters.

Remarks

To	add	a	note	that	contains	more	than	255	characters,	use	this	method	once	to
specify	the	first	255	characters,	and	then	use	it	again	to	append	the	remainder	of
the	note	(no	more	than	255	characters	at	a	time).

Example

This	example	sets	the	cell	note	text	for	cell	A1	on	Sheet1.

Worksheets("Sheet1").Range("A1").NoteText	"This	may	change!"

This	keyword	is	not	implemented.	It	is	reserved	for	future	use.

OLEObjects	Method
							

Returns	an	object	that	represents	either	a	single	OLE	object	(an	OLEObject)	or
a	collection	of	all	OLE	objects	(an	OLEObjects	collection)	on	the	chart	or
sheet.	Read-only.

expression.OLEObjects(Index)

expression			Required.	An	expression	that	returns	a	Chart	or	Worksheet	object.

Index			Optional	Variant.	The	name	or	number	of	the	OLE	object.

Example

This	example	creates	a	list	of	link	types	for	OLE	objects	on	Sheet1.	The	list
appears	on	a	new	worksheet	created	by	the	example.

Set	newSheet	=	Worksheets.Add

i	=	2

newSheet.Range("A1").Value	=	"Name"

newSheet.Range("B1").Value	=	"Link	Type"

For	Each	obj	In	Worksheets("Sheet1").OLEObjects

				newSheet.Cells(i,	1).Value	=	obj.Name

				If	obj.OLEType	=	xlOLELink	Then

								newSheet.Cells(i,	2)	=	"Linked"

				Else

								newSheet.Cells(i,	2)	=	"Embedded"

				End	If

				i	=	i	+	1

Next

Show	All

OneColorGradient	Method
							

OneColorGradient	method	as	it	applies	to	the	FillFormat	object.

Sets	the	specified	fill	to	a	one-color	gradient.

expression.OneColorGradient(Style,	Variant,	Degree)

expression			Required.	An	expression	that	returns	one	of	the	above	objects.

Style		Required	MsoGradientStyle.

MsoGradientStyle	can	be	one	of	these	MsoGradientStyle	constants.
msoGradientDiagonalDown
msoGradientDiagonalUp
msoGradientFromCenter
msoGradientFromCorner
msoGradientFromTitle
msoGradientHorizontal
msoGradientMixed
msoGradientVertical

Variant		Required	Integer.		The	gradient	variant.	Can	be	a	value	from	1	through
4,	corresponding	to	one	of	the	four	variants	on	the	Gradient	tab	in	the	Fill
Effects	dialog	box.	If	GradientStyle	is	msoGradientFromCenter,	the	Variant
argument	can	only	be	1	or	2.

Degree		Required	Single.		The	gradient	degree.	Can	be	a	value	from	0.0	(dark)
through	1.0	(light).

	

OneColorGradient	method	as	it	applies	to	the	ChartFillFormat	object.

Sets	the	specified	fill	to	a	one-color	gradient.

expression.OneColorGradient(Style,	Variant,	Degree)

expression			Required.	An	expression	that	returns	one	of	the	above	objects.

Style		Required	MsoGradientStyle.

MsoGradientStyle	can	be	one	of	these	MsoGradientStyle	constants.
msoGradientDiagonalDown
msoGradientDiagonalUp
msoGradientFromCenter
msoGradientFromCorner
msoGradientFromTitle
msoGradientHorizontal
msoGradientMixed
msoGradientVertical

Variant		Required	Long.		The	gradient	variant.	Can	be	a	value	from	1	through	4,
corresponding	to	one	of	the	four	variants	on	the	Gradient	tab	in	the	Fill	Effects
dialog	box.	If	GradientStyle	is	msoGradientFromCenter,	the	Variant	argument
can	only	be	1	or	2.

Degree		Required	Single.		The	gradient	degree.	Can	be	a	value	from	0.0	(dark)
through	1.0	(light).

	

Example

This	example	sets	the	fill	format	for	chart	two	to	the	same	style	used	for	chart
one.

Set	c1f	=	Charts(1).ChartArea.Fill

If	c1f.Type	=	msoFillGradient	And	_

								c1f.GradientColorType	=	msoGradientOneColor	Then

				With	Charts(2).ChartArea.Fill

								.Visible	=	True

								.OneColorGradient	c1f.GradientStyle,	_

												c1f.GradientVariant,	c1f.GradientDegree

				End	With

End	If

OnKey	Method
							

Runs	a	specified	procedure	when	a	particular	key	or	key	combination	is	pressed.

expression.OnKey(Key,	Procedure)

expression			Required.	An	expression	that	returns	an	Application	object.

Key			Required	String.	A	string	indicating	the	key	to	be	pressed.

Procedure			Optional	Variant.	A	string	indicating	the	name	of	the	procedure	to
be	run.	If	Procedure	is	""	(empty	text),	nothing	happens	when	Key	is	pressed.
This	form	of	OnKey	changes	the	normal	result	of	keystrokes	in	Microsoft	Excel.
If	Procedure	is	omitted,	Key	reverts	to	its	normal	result	in	Microsoft	Excel,	and
any	special	key	assignments	made	with	previous	OnKey	methods	are	cleared.

Remarks

The	Key	argument	can	specify	any	single	key	combined	with	ALT,	CTRL,	or
SHIFT,	or	any	combination	of	these	keys.	Each	key	is	represented	by	one	or
more	characters,	such	as	"a"	for	the	character	a,	or	"{ENTER}"	for	the	ENTER
key.

To	specify	characters	that	aren't	displayed	when	you	press	the	corresponding	key
(ENTER	or	TAB,	for	example),	use	the	codes	listed	in	the	following	table.	Each
code	in	the	table	represents	one	key	on	the	keyboard.

Key Code
BACKSPACE {BACKSPACE}	or	{BS}
BREAK {BREAK}

CAPS	LOCK {CAPSLOCK}

CLEAR {CLEAR}

DELETE	or	DEL {DELETE}	or	{DEL}
DOWN	ARROW {DOWN}

END {END}

ENTER	(numeric	keypad) {ENTER}
ENTER ~	(tilde)
ESC {ESCAPE}	or	{ESC}
HELP {HELP}

HOME {HOME}

INS {INSERT}

LEFT	ARROW {LEFT}

NUM	LOCK {NUMLOCK}

PAGE	DOWN {PGDN}

PAGE	UP {PGUP}

RETURN {RETURN}

RIGHT	ARROW {RIGHT}

SCROLL	LOCK {SCROLLLOCK}

TAB {TAB}

{UP}

UP	ARROW
F1	through	F15 {F1}	through	{F15}

You	can	also	specify	keys	combined	with	SHIFT	and/or	CTRL	and/or	ALT.	To
specify	a	key	combined	with	another	key	or	keys,	use	the	following	table.

To	combine	keys	with Precede	the	key	code	by
SHIFT +	(plus	sign)
CTRL ^	(caret)
ALT %	(percent	sign)

To	assign	a	procedure	to	one	of	the	special	characters	(+,	^,	%,	and	so	on),
enclose	the	character	in	braces.	For	details,	see	the	example.

Example

This	example	assigns	"InsertProc"	to	the	key	sequence	CTRL+PLUS	SIGN	and
assigns	"SpecialPrintProc"	to	the	key	sequence	SHIFT+CTRL+RIGHT
ARROW.

Application.OnKey	"^{+}",	"InsertProc"

Application.OnKey	"+^{RIGHT}",	"SpecialPrintProc"

This	example	returns	SHIFT+CTRL+RIGHT	ARROW	to	its	normal	meaning.

Application.OnKey	"+^{RIGHT}"

This	example	disables	the	SHIFT+CTRL+RIGHT	ARROW	key	sequence.

Application.OnKey	"+^{RIGHT}",	""

OnRepeat	Method
							

Sets	the	Repeat	menu	item	and	the	name	of	the	procedure	that	will	run	if	you
choose	the	Repeat	command	(Edit	menu)	after	running	the	procedure	that	sets
this	property.

expression.OnRepeat(Text,	Procedure)

expression			Required.	An	expression	that	returns	an	Application	object.

Text			Required	String.	The	text	that	appears	with	the	Repeat	command	(Edit
menu).

Procedure			Required	String.	The	name	of	the	procedure	that	will	be	run	when
you	choose	the	Repeat	command	(Edit	menu).

Remarks

If	a	procedure	doesn’t	use	the	OnRepeat	method,	the	Repeat	command	repeats
procedure	that	was	run	most	recently.

The	procedure	must	use	the	OnRepeat	and	OnUndo	methods	last,	to	prevent
the	repeat	and	undo	procedures	from	being	overwritten	by	subsequent	actions	in
the	procedure.

Example

This	example	sets	the	repeat	and	undo	procedures.

Application.OnRepeat	"Repeat	VB	Procedure",	_

				"Book1.xls!My_Repeat_Sub"

Application.OnUndo	"Undo	VB	Procedure",	_

				"Book1.xls!My_Undo_Sub"

OnTime	Method
							

Schedules	a	procedure	to	be	run	at	a	specified	time	in	the	future	(either	at	a
specific	time	of	day	or	after	a	specific	amount	of	time	has	passed).

expression.OnTime(EarliestTime,	Procedure,	LatestTime,	Schedule)

expression			Required.	An	expression	that	returns	an	Application	object.

EarliestTime			Required	Variant.	The	time	when	you	want	this	procedure	to	be
run.

Procedure			Required	String.	The	name	of	the	procedure	to	be	run.

LatestTime			Optional	Variant.	The	latest	time	at	which	the	procedure	can	be
run.	For	example,	if	LatestTime	is	set	to	EarliestTime	+	30	and	Microsoft	Excel
is	not	in	Ready,	Copy,	Cut,	or	Find	mode	at	EarliestTime	because	another
procedure	is	running,	Microsoft	Excel	will	wait	30	seconds	for	the	first
procedure	to	complete.	If	Microsoft	Excel	is	not	in	Ready	mode	within	30
seconds,	the	procedure	won’t	be	run.	If	this	argument	is	omitted,	Microsoft
Excel	will	wait	until	the	procedure	can	be	run.

Schedule			Optional	Variant.	True	to	schedule	a	new	OnTime	procedure.	False
to	clear	a	previously	set	procedure.	The	default	value	is	True.

Remarks

Use	Now	+	TimeValue(time)	to	schedule	something	to	be	run	when	a	specific
amount	of	time	(counting	from	now)	has	elapsed.	Use	TimeValue(time)	to
schedule	something	to	be	run	a	specific	time.

Example

This	example	runs	my_Procedure	15	seconds	from	now.

Application.OnTime	Now	+	TimeValue("00:00:15"),	"my_Procedure"

This	example	runs	my_Procedure	at	5	P.M.

Application.OnTime	TimeValue("17:00:00"),	"my_Procedure"

This	example	cancels	the	OnTime	setting	from	the	previous	example.

Application.OnTime	EarliestTime:=TimeValue("17:00:00"),	_

				Procedure:="my_Procedure",	Schedule:=False

OnUndo	Method
							

Sets	the	text	of	the	Undo	and	the	name	of	the	procedure	that’s	run	if	you	choose
the	Undo	command	(Edit	menu)	after	running	the	procedure	that	sets	this
property.

expression.OnUndo(Text,	Procedure)

expression			Required.	An	expression	that	returns	an	Application	object.

Text			Required	String.	The	text	that	appears	with	the	Undo	command	(Edit
menu).

Procedure			Required	String.	The	name	of	the	procedure	that’s	run	when	you
choose	the	Undo	command	(Edit	menu).

Remarks

If	a	procedure	doesn’t	use	the	OnUndo	method,	the	Undo	command	is	disabled.

The	procedure	must	use	the	OnRepeat	and	OnUndo	methods	last,	to	prevent
the	repeat	and	undo	procedures	from	being	overwritten	by	subsequent	actions	in
the	procedure.

Example

This	example	sets	the	repeat	and	undo	procedures.

Application.OnRepeat	"Repeat	VB	Procedure",	_

				"Book1.xls!My_Repeat_Sub"

Application.OnUndo	"Undo	VB	Procedure",	_

				"Book1.xls!My_Undo_Sub"

Show	All

Open	Method
							

Open	method	as	it	applies	to	the	Workbooks	object.

Opens	a	workbook.

expression.Open(FileName,	UpdateLinks,	ReadOnly,	Format,	Password,
WriteResPassword,	IgnoreReadOnlyRecommended,	Origin,	Delimiter,
Editable,	Notify,	Converter,	AddToMru,	Local,	CorruptLoad,
OpenConflictDocument)

expression			Required.	An	expression	that	returns	the	Workbooks	object.

FileName		Required	String.		The	file	name	of	the	workbook	to	be	opened.

UpdateLinks		Optional	Variant.	Specifies	the	way	links	in	the	file	are	updated.
If	this	argument	is	omitted,	the	user	is	prompted	to	specify	how	links	will	be
updated.	Otherwise,	this	argument	is	one	of	the	values	listed	in	the	following
table.

Value Meaning
0 Doesn't	update	any	references
1 Updates	external	references	but	not	remote	references
2 Updates	remote	references	but	not	external	references
3 Updates	both	remote	and	external	references

If	Microsoft	Excel	is	opening	a	file	in	the	WKS,	WK1,	or	WK3	format	and	the
UpdateLinks	argument	is	2,	Microsoft	Excel	generates	charts	from	the	graphs
attached	to	the	file.	If	the	argument	is	0,	no	charts	are	created.

ReadOnly		Optional	Variant.		True	to	open	the	workbook	in	read-only	mode.

Format		Optional	Variant.		If	Microsoft	Excel	is	opening	a	text	file,	this
argument	specifies	the	delimiter	character,	as	shown	in	the	following	table.	If
this	argument	is	omitted,	the	current	delimiter	is	used.

Value Delimiter
1 Tabs
2 Commas
3 Spaces
4 Semicolons
5 Nothing
6 Custom	character	(see	the	Delimiter	argument)

Password		Optional	Variant.		A	string	that	contains	the	password	required	to
open	a	protected	workbook.	If	this	argument	is	omitted	and	the	workbook
requires	a	password,	the	user	is	prompted	for	the	password.

WriteResPassword		Optional	Variant.		A	string	that	contains	the	password
required	to	write	to	a	write-reserved	workbook.	If	this	argument	is	omitted	and
the	workbook	requires	a	password,	the	user	will	be	prompted	for	the	password.

IgnoreReadOnlyRecommended		Optional	Variant.		True	to	have	Microsoft
Excel	not	display	the	read-only	recommended	message	(if	the	workbook	was
saved	with	the	Read-Only	Recommended	option).

Origin		Optional	Variant.		If	the	file	is	a	text	file,	this	argument	indicates	where
it	originated	(so	that	code	pages	and	Carriage	Return/Line	Feed	(CR/LF)	can	be
mapped	correctly).	Can	be	one	of	the	following	XlPlatform	constants:
xlMacintosh,	xlWindows,	or	xlMSDOS.	If	this	argument	is	omitted,	the	current
operating	system	is	used.

Delimiter		Optional	Variant.		If	the	file	is	a	text	file	and	the	Format	argument	is
6,	this	argument	is	a	string	that	specifies	the	character	to	be	used	as	the	delimiter.
For	example,	use	Chr(9)	for	tabs,	use	","	for	commas,	use	";"	for	semicolons,	or
use	a	custom	character.	Only	the	first	character	of	the	string	is	used.

Editable		Optional	Variant.		If	the	file	is	a	Microsoft	Excel	4.0	add-in,	this
argument	is	True	to	open	the	add-in	so	that	it’s	a	visible	window.	If	this
argument	is	False	or	omitted,	the	add-in	is	opened	as	hidden,	and	it	cannot	be
unhidden.	This	option	doesn't	apply	to	add-ins	created	in	Microsoft	Excel	5.0	or
later.	If	the	file	is	an	Excel	template,	True	to	open	the	specified	template	for
editing.	False	to	open	a	new	workbook	based	on	the	specified	template.	The
default	value	is	False.

Notify		Optional	Variant.		If	the	file	cannot	be	opened	in	read/write	mode,	this
argument	is	True	to	add	the	file	to	the	file	notification	list.	Microsoft	Excel	will
open	the	file	as	read-only,	poll	the	file	notification	list,	and	then	notify	the	user
when	the	file	becomes	available.	If	this	argument	is	False	or	omitted,	no
notification	is	requested,	and	any	attempts	to	open	an	unavailable	file	will	fail.

Converter		Optional	Variant.		The	index	of	the	first	file	converter	to	try	when
opening	the	file.	The	specified	file	converter	is	tried	first;	if	this	converter
doesn’t	recognize	the	file,	all	other	converters	are	tried.	The	converter	index
consists	of	the	row	numbers	of	the	converters	returned	by	the	FileConverters
property.

AddToMru		Optional	Variant.		True	to	add	this	workbook	to	the	list	of	recently
used	files.	The	default	value	is	False.

Local		Optional	Variant.	True	saves	files	against	the	language	of	Microsoft
Excel	(including	control	panel	settings).	False	(default)	saves	files	against	the
language	of	Visual	Basic	for	Applications	(VBA)	(which	is	typically	US	English
unless	the	VBA	project	where	Workbooks.Open	is	run	from	is	an	old
internationalized	XL5/95	VBA	project).

CorruptLoad		Optional	Variant.	Can	be	one	of	the	following	constants:
xlNormalLoad,	xlRepairFile	and	xlExtractData.	The	Default	behavior	if	no
value	is	specified	is	usually	normal	but	may	be	safe	load	or	data	recovery,	if
Excel	has	already	attempted	to	open	the	file.	The	first	attempt	is	normal.	If	Excel
stops	operating	while	opening	the	file	the	second	attempt	is	safe	load.	If	Excel
again	stops	operating	the	next	attempt	is	data	recovery.

OpenConflictDocument		Optional	Variant.	True	to	open	the	local	conflict
document.	Default	is	False.

Open	method	as	it	applies	to	the	RecentFile	object.

Opens	a	recent	workbook.

expression.Open

expression			Required.	An	expression	that	returns	the	RecentFile	object.

Example

This	example	opens	the	workbook	Analysis.xls	and	then	runs	its	Auto_Open
macro.

Workbooks.Open	"ANALYSIS.XLS"

ActiveWorkbook.RunAutoMacros	xlAutoOpen

OpenDatabase	Method
							

Returns	a	Workbook	object	representing	a	database.

expression.OpenDatabase(FileName,	CommandText,	CommandType,
BackgroundQuery,	ImportDataAs)

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

FileName		Required	String.	The	connection	string.

CommandText		Optional	Variant.	The	command	text	of	the	query.

CommandType		Optional	Variant.	The	command	type	of	the	query.	The
following	command	types	are	available:	Default,	SQL,	and	Table.

BackgroundQuery		Optional	Variant.	The	background	of	the	query.

ImportDataAs		Optional	Variant.	Determines	the	format	of	the	query.

Example

In	this	example,	Microsoft	Excel	opens	the	"northwind.mdb"	file.	This	example
assumes	a	file	called	"northwind.mdb	file"	exists	on	the	C:\	drive.

Sub	UseOpenDatabase()

				'	Open	the	Northwind	database.

				Workbooks.OpenDatabase	_

								FileName:="C:\northwind.mdb"

End	Sub

OpenLinks	Method
							

Opens	the	supporting	documents	for	a	link	or	links.

expression.OpenLinks(Name,	ReadOnly,	Type)

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

Name		Required	String.		The	name	of	the	Microsoft	Excel	or	DDE/OLE	link,	as
returned	from	the	LinkSources	method.

ReadOnly		Optional	Variant.		True	to	open	documents	as	read-only.	The	default
value	is	False.

Type		Optional	XlLink.		The	link	type.

XlLink	can	be	one	of	these	XlLink	constants.
xlExcelLinks
xlOLELinks	(also	handles	DDE	links)

xlPublishers

xlSubscribers

Example

This	example	opens	OLE	link	one	in	the	active	workbook.

linkArray	=	ActiveWorkbook.LinkSources(xlOLELinks)

ActiveWorkbook.OpenLinks	linkArray(1)

This	example	opens	all	supporting	Microsoft	Excel	documents	for	the	active
workbook.

Sub	OpenAllLinks()

				Dim	arLinks	As	Variant

				Dim	intIndex	As	Integer

				arLinks	=	ActiveWorkbook.LinkSources(xlExcelLinks)

			

				If	Not	IsEmpty(arLinks)	Then

								For	intIndex	=	LBound(arLinks)	To	UBound(arLinks)

												ActiveWorkbook.OpenLinks	arLinks(intIndex)

								Next	intIndex

				Else

								MsgBox	"The	active	workbook	contains	no	external	links."

				End	If

End	Sub

Show	All

OpenText	Method
							

Loads	and	parses	a	text	file	as	a	new	workbook	with	a	single	sheet	that	contains
the	parsed	text-file	data.

expression.OpenText(FileName,	Origin,	StartRow,	DataType,	TextQualifier,
ConsecutiveDelimiter,	Tab,	Semicolon,	Comma,	Space,	Other,	OtherChar,
FieldInfo,	TextVisualLayout,	DecimalSeparator,	ThousandsSeparator,
TrailingMinusNumbers,	Local)

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

FileName		Required	String.		Specifies	the	file	name	of	the	text	file	to	be	opened
and	parsed.

Origin		Optional	Variant.		Specifies	the	origin	of	the	text	file.	Can	be	one	of	the
following	XlPlatform	constants:	xlMacintosh,	xlWindows,	or	xlMSDOS.	If
this	argument	is	omitted,	the	method	uses	the	current	setting	of	the	File	Origin
option	in	the	Text	Import	Wizard.

StartRow		Optional	Variant.		The	row	number	at	which	to	start	parsing	text.	The
default	value	is	1.

DataType		Optional	Variant.		Specifies	the	column	format	of	the	data	in	the	file.
Can	be	one	of	the	following	XlTextParsingType	constants:	xlDelimited	or
xlFixedWidth.	If	this	argument	is	not	specified,	Microsoft	Excel	attempts	to
determine	the	column	format	when	it	opens	the	file.

TextQualifier		Optional	XlTextQualifier.		Specifies	the	text	qualifier.

XlTextQualifier	can	be	one	of	these	XlTextQualifier	constants.
xlTextQualifierDoubleQuote	default
xlTextQualifierNone
xlTextQualifierSingleQuote

ConsecutiveDelimiter		Optional	Variant.		True	to	have	consecutive	delimiters
considered	one	delimiter.	The	default	is	False.

Tab		Optional	Variant.		True	to	have	the	tab	character	be	the	delimiter
(DataType	must	be	xlDelimited).	The	default	value	is	False.

Semicolon		Optional	Variant.		True	to	have	the	semicolon	character	be	the
delimiter	(DataType	must	be	xlDelimited).	The	default	value	is	False.

Comma		Optional	Variant.		True	to	have	the	comma	character	be	the	delimiter
(DataType	must	be	xlDelimited).	The	default	value	is	False.

Space		Optional	Variant.		True	to	have	the	space	character	be	the	delimiter
(DataType	must	be	xlDelimited).	The	default	value	is	False.

Other		Optional	Variant.		True	to	have	the	character	specified	by	the
OtherChar	argument	be	the	delimiter	(DataType	must	be	xlDelimited).	The
default	value	is	False.

OtherChar		Optional	Variant	(required	if	Other	is	True).	Specifies	the	delimiter
character	when	Other	is	True.	If	more	than	one	character	is	specified,	only	the
first	character	of	the	string	is	used;	the	remaining	characters	are	ignored.

FieldInfo		Optional	xlColumnDataType.		An	array	containing	parse
information	for	individual	columns	of	data.	The	interpretation	depends	on	the
value	of	DataType.	When	the	data	is	delimited,	this	argument	is	an	array	of	two-
element	arrays,	with	each	two-element	array	specifying	the	conversion	options
for	a	particular	column.	The	first	element	is	the	column	number	(1-based),	and
the	second	element	is	one	of	the	XlColumnDataType	constants	specifying	how
the	column	is	parsed.

XlColumnDataType	can	be	one	of	these	XlColumnDataType	constants.
xlGeneralFormat		General
xlTextFormat		Text

xlMDYFormat		MDY	date

xlDMYFormat		DMY	date

xlYMDFormat		YMD	date

xlMYDFormat		MYD	date

xlDYMFormat		DYM	date

xlYDMFormat		YDM	date

xlEMDFormat		EMD	date

xlSkipColumn		Skip	Column

You	can	use	xlEMDFormat	only	if	you	have	installed	and	selected	Taiwanese
language	support.	The	xlEMDFormat	constant	specifies	that	Taiwanese	era
dates	are	being	used.

The	column	specifiers	can	be	in	any	order.	If	there's	no	column	specifier	for	a
particular	column	in	the	input	data,	the	column	is	parsed	with	the	General
setting.	This	example	causes	the	third	column	to	be	skipped,	the	first	column	to
be	parsed	as	text,	and	the	remaining	columns	in	the	source	data	to	be	parsed	with
the	General	setting.

Array(Array(3,	9),	Array(1,	2))

If	the	source	data	has	fixed-width	columns,	the	first	element	in	each	two-element
array	specifies	the	position	of	the	starting	character	in	the	column	(as	an	integer;
character	0	(zero)	is	the	first	character).	The	second	element	in	the	two-element
array	specifies	the	parse	option	for	the	column	as	a	number	between	1	and	9,	as
listed	in	the	preceding	table.

The	following	example	parses	two	columns	from	a	fixed-width	text	file.	The
first	column	includes	characters	1	through	10.	Characters	11,	12,	13,	14,	and	15
are	skipped.	The	second	column	includes	character	16	through	the	last	character
in	the	line.

Array(Array(0,	1),	Array(10,	9),	Array(15,	1))

TextVisualLayout		Optional	Variant.		The	visual	layout	of	the	text.

DecimalSeparator		Optional	Variant.		The	decimal	separator	that	Microsoft
Excel	uses	when	recognizing	numbers.	The	default	setting	is	the	system	setting.

ThousandsSeparator		Optional	Variant.		The	thousands	separator	that	Excel
uses	when	recognizing	numbers.	The	default	setting	is	the	system	setting.

The	following	table	shows	the	results	of	importing	text	into	Excel	for	various
import	settings.	Numeric	results	are	displayed	in	the	rightmost	column.

System
decimal
separator

System
thousands
separator

Decimal
separator
value

Thousands
separator
value

Text
imported

Cell	value
(data	type)

Period Comma Comma Period 123.123,45 123,123.45
(numeric)

Period Comma Comma Comma 123.123,45 123.123,45
(text)

Comma Period Comma Period 123,123.45 123,123.45
(numeric)

Period Comma Period Comma 123	123.45 123	123.45
(text)

Period Comma Period Space 123	123.45 123,123.45
(numeric)

TrailingMinusNumbers		Optional	Variant.

Local		Optional	Variant.

Example

This	example	opens	the	file	Data.txt	and	uses	tab	delimiters	to	parse	the	text	file
into	a	worksheet.

Workbooks.OpenText	filename:="DATA.TXT",	_

				dataType:=xlDelimited,	tab:=True

OpenXML	Method
							

Returns	a	Workbook	object	representing	an	XML	file	in	Microsoft	Excel.

expression.OpenXML(FileName,	Stylesheets)

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

FileName		Required	String.	The	name	of	the	file	to	open.

Stylesheets		Optional	Variant.	Either	a	single	value	or	an	array	of	values
specifying	which	XSLT	stylesheet	processing	instructions	to	apply.

Example

In	this	example,	Microsoft	Excel	loads	the	XML	file	"customers.xml"	and
applies	the	first	XSLT	stylesheet.	If	the	resulting	file	is	XML,	it	will	apply	the
second	XSLT	stylesheet	processing	instruction	in	the	newly	transformed	file.
Finally,	if	the	resulting	file	is	again	XML,	it	will	apply	the	fifth	XSLT	stylesheet
processing	instruction.	The	results	are	then	loaded	into	Excel	and	become	either
an	XML-Spreadsheet	or	a	flattened	XML.	This	example	assumes	the
"customers.xml"	file	exists.

Sub	UseOpenXML()

				Application.Workbooks.OpenXML	_

								Filename:="customers.xml",	Stylesheets:=Array(1,	2,	5)

End	Sub

Parse	Method
							

Parses	a	range	of	data	and	breaks	it	into	multiple	cells.	Distributes	the	contents
of	the	range	to	fill	several	adjacent	columns;	the	range	can	be	no	more	than	one
column	wide.

expression.Parse(ParseLine,	Destination)

expression			Required.	An	expression	that	returns	a	Range	object.

ParseLine			Optional	Variant.	A	string	that	contains	left	and	right	brackets	to
indicate	where	the	cells	should	be	split.	For	example,	"[xxx][xxx]"	would	insert
the	first	three	characters	into	the	first	column	of	the	destination	range,	and	it
would	insert	the	next	three	characters	into	the	second	column.	If	this	argument	is
omitted,	Microsoft	Excel	guesses	where	to	split	the	columns	based	on	the
spacing	of	the	top	left	cell	in	the	range.	If	you	want	to	use	a	different	range	to
guess	the	parse	line,	use	a	Range	object	as	the	ParseLine	argument.	That	range
must	be	one	of	the	cells	that's	being	parsed.	The	ParseLine	argument	cannot	be
longer	than	255	characters,	including	the	brackets	and	spaces.

Destination			Optional	Variant.	A	Range	object	that	represents	the	upper-left
corner	of	the	destination	range	for	the	parsed	data.	If	this	argument	is	omitted,
Microsoft	Excel	parses	in	place.

Example

This	example	divides	telephone	numbers	of	the	form	206-555-1212	into	two
columns.	The	first	column	contains	only	the	area	code,	and	the	second	column
contains	the	seven-digit	telephone	number	with	the	embedded	hyphen.

Worksheets("Sheet1").Columns("A").Parse	_

				parseLine:="[xxx]	[xxxxxxxx]",	_

				destination:=Worksheets("Sheet1").Range("B1")

Show	All

Paste	Method
							

Paste	method	as	it	applies	to	the	Chart	object.

Pastes	chart	data	from	the	Clipboard	into	the	specified	chart.

expression.Paste(Type)

expression			Required.	An	expression	that	returns	a	Chart	object

Type		Optional	Variant.	Specifies	the	chart	information	to	paste	if	a	chart	is	on
the	Clipboard.	Can	be	one	of	the	following	XlPasteType	constants:	xlFormats,
xlFormulas,	or	xlAll.	The	default	value	is	xlAll.	If	there’s	data	other	than	a	chart
on	the	Clipboard,	this	argument	cannot	be	used.

Remark

This	method	changes	the	current	selection.

Paste	method	as	it	applies	to	the	Floor,	Point,	Series,	and	Walls	objects.

For	Floor	and	Walls	objects,	paste	a	picture	from	the	Clipboard	on	the	floor	or
walls	of	the	specified	chart.	For	Point	and	Series	objects,	pastes	a	picture	from
the	Clipboard	as	the	marker	on	the	selected	point	or	series.	This	method	can	be
used	on	column,	bar,	line,	or	radar	charts,	and	it	sets	the	MarkerStyle	property
to	xlMarkerStylePicture.

expression.Paste

expression			Required.	An	expression	that	returns	one	of	the	above	objects.

Paste	method	as	it	applies	to	the	SeriesCollection	object.

Pastes	data	from	the	Clipboard	into	the	specified	series	collection.

expression.Paste(Rowcol,	SeriesLabels,	CategoryLabels,	Replace,	NewSeries)

expression			Required.	An	expression	that	returns	a	SeriesCollection	object.

Rowcol		Optional	XlRowCol.	Specifies	whether	the	values	corresponding	to	a
particular	data	series	are	in	rows	or	columns.

XlRowCol	can	be	one	of	these	XlRowCol	constants.
xlColumns	default
xlRows

SeriesLabels		Optional	Variant.	True	to	use	the	contents	of	the	cell	in	the	first
column	of	each	row	(or	the	first	row	of	each	column)	as	the	name	of	the	data
series	in	that	row	(or	column).	False	to	use	the	contents	of	the	cell	in	the	first
column	of	each	row	(or	the	first	row	of	each	column)	as	the	first	data	point	in	the
data	series.	The	default	value	is	False.

CategoryLabels		Optional	Variant.	True	to	use	the	contents	of	the	first	row	(or

column)	of	the	selection	as	the	categories	for	the	chart.	False	to	use	the	contents
of	the	first	row	(or	column)	as	the	first	data	series	in	the	chart.	The	default	value
is	False.

Replace		Optional	Variant.	True	to	apply	categories	while	replacing	existing
categories	with	information	from	the	copied	range.	False	to	insert	new
categories	without	replacing	any	old	ones.	The	default	value	is	True.

NewSeries		Optional	Variant.	True	to	paste	the	data	as	a	new	series.	False	to
paste	the	data	as	new	points	in	an	existing	series.	The	default	value	is	True.

Paste	method	as	it	applies	to	the	Worksheet	object.

Pastes	the	contents	of	the	Clipboard	onto	the	sheet.

expression.Paste(Destination,	Link)

expression			Required.	An	expression	that	returns	a	Worksheet	object.

Destination		Optional	Variant.	A	Range	object	that	specifies	where	the
Clipboard	contents	should	be	pasted.	If	this	argument	is	omitted,	the	current
selection	is	used.	This	argument	can	be	specified	only	if	the	contents	of	the
Clipboard	can	be	pasted	into	a	range.	If	this	argument	is	specified,	the	Link
argument	cannot	be	used.

Link		Optional	Variant.	True	to	establish	a	link	to	the	source	of	the	pasted	data.
If	this	argument	is	specified,	the	Destination	argument	cannot	be	used.	The
default	value	is	False.

Remarks

If	you	don’t	specify	the	Destination	argument,	you	must	select	the	destination
range	before	you	use	this	method.

This	method	may	modify	the	sheet	selection,	depending	on	the	contents	of	the
Clipboard.

Example

As	it	applies	to	the	Chart	object.

This	example	pastes	data	from	the	range	B1:B5	on	Sheet1	into	Chart1.

Worksheets("Sheet1").Range("B1:B5").Copy

Charts("Chart1").Paste

As	it	applies	to	the	Point	or	Series	objects.

This	example	pastes	a	picture	from	the	Clipboard	into	series	one	in	Chart1.

Charts("Chart1").SeriesCollection(1).Paste

As	it	applies	to	the	SeriesCollection	object.

This	example	pastes	a	picture	from	the	Clipboard	into	series	one	in	Chart1.

Worksheets("Sheet1").Range("C1:C5").Copy

Charts("Chart1").SeriesCollection.Paste

As	it	applies	to	the	Worksheet	object.

This	example	copies	data	from	cells	C1:C5	on	Sheet1	to	cells	D1:D5	on	Sheet1.

Worksheets("Sheet1").Range("C1:C5").Copy

ActiveSheet.Paste	Destination:=Worksheets("Sheet1").Range("D1:D5")

Show	All

PasteSpecial	Method
							

PasteSpecial	method	as	it	applies	to	the	Range	object.

Pastes	a	Range	from	the	Clipboard	into	the	specified	range.

expression.PasteSpecial(Paste,	Operation,	SkipBlanks,	Transpose)

expression			Required.	An	expression	that	returns	a	Range	object.

Paste		Optional	XlPasteType.	The	part	of	the	range	to	be	pasted.

XlPasteType	can	be	one	of	these	XlPasteType	constants.
xlPasteAll	default
xlPasteAllExceptBorders
xlPasteColumnWidths
xlPasteComments
xlPasteFormats
xlPasteFormulas
xlPasteFormulasAndNumberFormats
xlPasteValidation
xlPasteValues
xlPasteValuesAndNumberFormats

Operation		Optional	XlPasteSpecialOperation.	The	paste	operation.

XlPasteSpecialOperation	can	be	one	of	these	XlPasteSpecialOperation
constants.
xlPasteSpecialOperationAdd
xlPasteSpecialOperationDivide
xlPasteSpecialOperationMultiply
xlPasteSpecialOperationNone	default

xlPasteSpecialOperationSubtract

SkipBlanks		Optional	Variant.	True	to	have	blank	cells	in	the	range	on	the
Clipboard	not	be	pasted	into	the	destination	range.	The	default	value	is	False.

Transpose		Optional	Variant.	True	to	transpose	rows	and	columns	when	the
range	is	pasted.The	default	value	is	False.

PasteSpecial	method	as	it	applies	to	the	Worksheet	object.

Pastes	the	contents	of	the	Clipboard	onto	the	sheet,	using	a	specified	format.	Use
this	method	to	paste	data	from	other	applications	or	to	paste	data	in	a	specific
format.

expression.PasteSpecial(Format,	Link,	DisplayAsIcon,	IconFileName,
IconIndex,	IconLabel,	NoHTMLFormatting)

expression			Required.	An	expression	that	returns	a	Worksheet	object.

Format		Optional	Variant.	A	string	that	specifies	the	Clipboard	format	of	the
data.

Link		Optional	Variant.	True	to	establish	a	link	to	the	source	of	the	pasted	data.
If	the	source	data	isn’t	suitable	for	linking	or	the	source	application	doesn't
support	linking,	this	parameter	is	ignored.	The	default	value	is	False.

DisplayAsIcon		Optional	Variant.	True	to	display	the	pasted	as	an	icon.	The
default	value	is	False.

IconFileName		Optional	Variant.	The	name	of	the	file	that	contains	the	icon	to
use	if	DisplayAsIcon	is	True.

IconIndex		Optional	Variant.	The	index	number	of	the	icon	within	the	icon	file.

IconLabel		Optional	Variant.	The	text	label	of	the	icon.

NoHTMLFormatting		Optional	Variant.	True	to	remove	all	formatting,
hyperlinks,	and	images	from	HTML.		False	to	paste	HTML	as	is.	The	default
value	is	False.

Remarks

Note			NoHTMLFormatting	will	only	matter	when	Format	=	“HTML”.		In	all
other	cases,	NoHTMLFormatting	will	be	ignored.

You	must	select	the	destination	range	before	you	use	this	method.

This	method	may	modify	the	sheet	selection,	depending	on	the	contents	of	the
Clipboard.

Example

As	it	applies	to	the	Range	object.

This	example	replaces	the	data	in	cells	D1:D5	on	Sheet1	with	the	sum	of	the
existing	contents	and	cells	C1:C5	on	Sheet1.

With	Worksheets("Sheet1")

				.Range("C1:C5").Copy

				.Range("D1:D5").PasteSpecial	_

								Operation:=xlPasteSpecialOperationAdd

End	With

As	it	applies	to	the	Worksheet	object.

This	example	pastes	a	Microsoft	Word	document	object	from	the	Clipboard	to
cell	D1	on	Sheet1.

Worksheets("Sheet1").Range("D1").Select

ActiveSheet.PasteSpecial	format:=	_

				"Microsoft	Word	8.0	Document	Object"

This	example	pastes	the	same	Microsoft	Word	document	object	and	displays	it
as	an	icon.

Worksheets("Sheet1").Range("F5").Select

ActiveSheet.PasteSpecial	_

								Format:="Microsoft	Word	8.0	Document	Object",	_

								DisplayAsIcon:=True

Patterned	Method
							

Sets	the	specified	fill	to	a	pattern.

expression.Patterned(Pattern)

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

Pattern		Required	MsoPatternType.

MsoPatternType	can	be	one	of	these	MsoPatternType	constants.
msoPattern10Percent
msoPattern20Percent
msoPattern25Percent
msoPattern30Percent
msoPattern40Percent
msoPattern50Percent
msoPattern5Percent
msoPattern60Percent
msoPattern70Percent
msoPattern75Percent
msoPattern80Percent
msoPattern90Percent
msoPatternDarkDownwardDiagonal
msoPatternDarkHorizontal
msoPatternDarkUpwardDiagonal
msoPatternDarkVertical
msoPatternDashedDownwardDiagonal
msoPatternDashedHorizontal
msoPatternDashedUpwardDiagonal

msoPatternDashedVertical
msoPatternDiagonalBrick
msoPatternDivot
msoPatternDottedDiamond
msoPatternDottedGrid
msoPatternHorizontalBrick
msoPatternLargeCheckerBoard
msoPatternLargeConfetti
msoPatternLargeGrid
msoPatternLightDownwardDiagonal
msoPatternLightHorizontal
msoPatternLightUpwardDiagonal
msoPatternLightVertical
msoPatternMixed
msoPatternNarrowHorizontal
msoPatternNarrowVertical
msoPatternOutlinedDiamond
msoPatternPlaid
msoPatternShingle
msoPatternSmallCheckerBoard
msoPatternSmallConfetti
msoPatternSmallGrid
msoPatternSolidDiamond
msoPatternSphere
msoPatternTrellis
msoPatternWave
msoPatternWeave
msoPatternWideDownwardDiagonal
msoPatternWideUpwardDiagonal
msoPatternZigZag

Example

This	example	sets	the	fill	pattern	for	chart	one.

With	Charts(1).ChartArea.Fill

				.Patterned	msoPatternDiagonalBrick

				.Visible	=	True

End	With

PickUp	Method
							

Copies	the	formatting	of	the	specified	shape.	Use	the	Apply	method	to	apply	the
copied	formatting	to	another	shape.

expression.PickUp

expression			Required.	An	expression	that	returns	a	Shape	or	ShapeRange
object.

Example

This	example	copies	the	formatting	of	shape	one	on	myDocument	and	then
applies	the	copied	formatting	to	shape	two.

Set	myDocument	=	Worksheets(1)

With	myDocument

				.Shapes(1).PickUp

				.Shapes(2).Apply

End	With

PieGroups	Method
							

On	a	2-D	chart,	returns	an	object	that	represents	either	a	single	pie	chart	group	(a
ChartGroup	object)	or	a	collection	of	the	pie	chart	groups	(a	ChartGroups
collection).

expression.PieGroups(Index)

expression			Required.	An	expression	that	returns	a	Chart	object.

Index			Optional	Variant.	Specifies	the	chart	group.

Example

This	example	sets	pie	group	one	in	Chart1	to	use	a	different	color	for	each	data
marker.	The	example	should	be	run	on	a	2-D	chart.

Charts("Chart1").PieGroups(1).VaryByCategories	=	True

PivotCache	Method
							

Returns	a	PivotCache	object	that	represents	the	cache	for	the	specified
PivotTable	report.	Read-only.

expression.PivotCache

expression			Required.	An	expression	that	returns	a	PivotTable	object.

Example

This	example	causes	the	PivotTable	cache	for	the	first	PivotTable	report	on
worksheet	one	to	be	optimized	when	it’s	constructed.

Worksheets(1).PivotTables("Pivot1")	_

				.PivotCache.OptimizeCache	=	True

PivotCaches	Method
							

Returns	a	PivotCaches	collection	that	represents	all	the	PivotTable	caches	in	the
specified	workbook.	Read-only.

expression.PivotCaches

expression			Required.	An	expression	that	returns	a	Workbook	object.

Example

This	example	causes	the	PivotTable	cache	to	update	automatically	each	time	the
workbook	is	opened.

ActiveWorkbook.PivotCaches(1).RefreshOnFileOpen	=	True

Show	All

PivotFields	Method
							

Returns	an	object	that	represents	either	a	single	PivotTable	field	(a	PivotField
object)	or	a	collection	of	both	the	visible	and	hidden	fields	(a	PivotFields	object)
in	the	PivotTable	report.	Read-only.

expression.PivotFields(Index)

expression			Required.	An	expression	that	returns	a	PivotTable	object.

Index			Optional	Variant.	The	name	or	number	of	the	field	to	be	returned.

Remarks

For	OLAP	data	sources,	there	are	no	hidden	fields,	and	the	object	or	collection
that’s	returned	reflects	what’s	currently	visible.

Example

This	example	adds	the	PivotTable	report’s	field	names	to	a	list	on	a	new
worksheet.

Set	nwSheet	=	Worksheets.Add

nwSheet.Activate

Set	pvtTable	=	Worksheets("Sheet2").Range("A1").PivotTable

rw	=	0

For	Each	pvtField	In	pvtTable.PivotFields

				rw	=	rw	+	1

				nwSheet.Cells(rw,	1).Value	=	pvtField.Name

Next	pvtField

Show	All

PivotItems	Method
							

Returns	an	object	that	represents	either	a	single	PivotTable	item	(a	PivotItem
object)	or	a	collection	of	all	the	visible	and	hidden	items	(a	PivotItems	object)	in
the	specified	field.	Read-only.

expression.PivotItems(Index)

expression			Required.	An	expression	that	returns	a	PivotField	object.

Index			Optional	Variant.	The	name	or	number	of	the	item	to	be	returned.

Remarks

For	OLAP	data	sources,	the	collection	is	indexed	by	the	unique	name	(the	name
returned	by	the	SourceName	property),	not	by	the	display	name.

Example

This	example	adds	the	names	of	all	items	in	the	field	named	"product"	to	a	list
on	a	new	worksheet.

Set	nwSheet	=	Worksheets.Add

nwSheet.Activate

Set	pvtTable	=	Worksheets("Sheet2").Range("A1").PivotTable

rw	=	0

For	Each	pvtitem	In	pvtTable.PivotFields("product").PivotItems

				rw	=	rw	+	1

				nwSheet.Cells(rw,	1).Value	=	pvtitem.Name

Next

Show	All

PivotSelect	Method
							

Selects	part	of	a	PivotTable	report.

expression.PivotSelect(Name,	Mode,	UseStandardName)

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

Name		Required	String.		The	selection,	in	standard	PivotTable	report	selection
format.

Mode		Optional	XlPTSelectionMode.		Specifies	the	structured	selection	mode.

XlPTSelectionMode	can	be	one	of	these	XlPTSelectionMode	constants.
xlBlanks
xlButton
xlDataAndLabel	default
xlDataOnly
xlFirstRow
xlLabelOnly
xlOrigin

UseStandardName		Optional	Variant.	True	for	recorded	macros	that	will	play
back	in	other	locales.

Remarks

You	can	use	the	specified	mode	only	to	select	the	corresponding	item	in	the
PivotTable	report.	For	example,	you	cannot	select	data	and	labels	by	using
xlButton	mode;	likewise,	you	cannot	select	buttons	by	using	xlDataOnly	mode.

Example

This	example	selects	all	date	labels	in	the	first	PivotTable	report	on	worksheet
one.

Worksheets(1).PivotTables(1).PivotSelect	"date[All]",	xlLabelOnly

PivotTables	Method
							

Returns	an	object	that	represents	either	a	single	PivotTable	report	(a	PivotTable
object)	or	a	collection	of	all	the	PivotTable	reports	(a	PivotTables	object)	on	a
worksheet.	Read-only.

expression.PivotTables(Index)

expression			Required.	An	expression	that	returns	a	Worksheet	object.

Index			Optional	Variant.	The	name	or	number	of	the	report.

Example

This	example	sets	the	Sum	of	1994	field	in	the	first	PivotTable	report	on	the
active	sheet	to	use	the	SUM	function.

ActiveSheet.PivotTables("PivotTable1").	_

				PivotFields("Sum	of	1994").Function	=	xlSum

Show	All

PivotTableWizard	Method
							

	PivotTableWizard	method	as	it	applies	to	the	Worksheet	object.

Creates	a	PivotTable	object.	This	method	doesn’t	display	the	PivotTable	Wizard.
This	method	isn’t	available	for	OLE	DB	data	sources.	Use	the	Add	method	to
add	a	PivotTable	cache,	and	then	create	a	PivotTable	report	based	on	the	cache.
PivotTable	object.

expression.PivotTableWizard(SourceType,	SourceData,	TableDestination,
TableName,	RowGrand,	ColumnGrand,	SaveData,	HasAutoFormat,
AutoPage,	Reserved,	BackgroundQuery,	OptimizeCache,	PageFieldOrder,
PageFieldWrapCount,	ReadData,	Connection)

expression			Required.	An	expression	that	returns	one	of	the	above	objects.

SourceType			Optional	XlPivotTableSourceType.	The	source	of	the	report	data.

XlPivotTableSourceType	can	be	one	of	these	XlPivotTableSourceType
constants.
xlConsolidation.	Multiple	consolidation	ranges
xlDatabase.	Microsoft	Excel	list	or	database
xlExternal.	Data	from	another	application

xlPivotTable.	Same	source	as	another	PivotTable	report

If	you	specify	this	argument,	you	must	also	specify	SourceData.	If	SourceType
and	SourceData	are	omitted,	Microsoft	Excel	assumes	that	the	source	type	is
xlDatabase,	and	the	source	data	comes	from	the	named	range	"Database."	If
this	named	range	doesn’t	exist,	Microsoft	Excel	uses	the	current	region	if	the
current	selection	is	in	a	range	of	more	than	10	cells	that	contain	data.	If	this	isn’t
true,	this	method	will	fail.

SourceData			Optional	Variant.	The	data	for	the	new	report.	Can	be	a	Range

object,	an	array	of	ranges,	or	a	text	constant	that	represents	the	name	of	another
report.	For	an	external	database,	SourceData	is	an	array	of	strings	containing	the
SQL	query	string,	where	each	element	is	up	to	255	characters	in	length.	You
should	use	the	Connection	argument	to	specify	the	ODBC	connection	string.	For
compatibility	with	earlier	versions	of	Excel,	SourceData	can	be	a	two-element
array.	The	first	element	is	the	connection	string	specifying	the	ODBC	source	for
the	data.	The	second	element	is	the	SQL	query	string	used	to	get	the	data.	If	you
specify	SourceData,	you	must	also	specify	SourceType.	If	the	active	cell	is
inside	the	SourceData	range,	you	must	specify	TableDestination	as	well.

TableDestination			Optional	Variant.	A	Range	object	specifying	where	the
report	should	be	placed	on	the	worksheet.	If	this	argument	is	omitted,	the	report
is	placed	at	the	active	cell.

TableName			Optional	Variant.	A	string	that	specifies	the	name	of	the	new
report.

RowGrand			Optional	Variant.	True	to	show	grand	totals	for	rows	in	the	report.

ColumnGrand			Optional	Variant.	True	to	show	grand	totals	for	columns	in	the
report.

SaveData			Optional	Variant.	True	to	save	data	with	the	report.	False	to	save
only	the	report	definition.

HasAutoFormat			Optional	Variant.	True	to	have	Microsoft	Excel
automatically	format	the	report	when	it’s	refreshed	or	when	fields	are	moved.

AutoPage			Optional	Variant.	Valid	only	if	SourceType	is	xlConsolidation.
True	to	have	Microsoft	Excel	create	a	page	field	for	the	consolidation.	If
AutoPage	is	False,	you	must	create	the	page	field	or	fields.

Reserved			Optional	Variant.	Not	used	by	Microsoft	Excel.

BackgroundQuery			Optional	Variant.	True	to	have	Excel	perform	queries	for
the	report	asynchronously	(in	the	background).	The	default	value	is	False.

OptimizeCache			Optional	Variant.	True	to	optimize	the	PivotTable	cache	when
it's	constructed.	The	default	value	is	False.

PageFieldOrder			Optional	Variant.	The	order	in	which	page	fields	are	added	to
the	PivotTable	report’s	layout.	Can	be	one	of	the	following	XlOrder	constants:
xlDownThenOver	or	xlOverThenDown.	The	default	value	is
xlDownThenOver.

PageFieldWrapCount			Optional	Variant.	The	number	of	page	fields	in	each
column	or	row	in	the	PivotTable	report.	The	default	value	is	0	(zero).

ReadData			Optional	Variant.	True	to	create	a	PivotTable	cache	that	contains	all
records	from	the	external	database;	this	cache	can	be	very	large.	If	ReadData	is
False,	you	can	set	some	of	the	fields	asserver-based	page	fields	before	the	data	is
actually	read.

Connection			Optional	Variant.	A	string	that	contains	ODBC	settings	that	allow
Excel	to	connect	to	an	ODBC	data	source.	The	connection	string	has	the	form
"ODBC;<connection	string>".	This	argument	overrides	any	previous	setting	for
the	PivotCache	object’s	Connection	property.

	

	PivotTableWizard	method	as	it	applies	to	the	PivotTable	and	Workbook
objects.

Creates	a	PivotTable	object.	This	method	doesn’t	display	the	PivotTable	Wizard.
This	method	isn’t	available	for	OLE	DB	data	sources.	Use	the	Add	method	to
add	a	PivotTable	cache,	and	then	create	a	PivotTable	report	based	on	the	cache.

expression.PivotTableWizard(SourceType,	SourceData,	TableDestination,
TableName,	RowGrand,	ColumnGrand,	SaveData,	HasAutoFormat,
AutoPage,	Reserved,	BackgroundQuery,	OptimizeCache,	PageFieldOrder,
PageFieldWrapCount,	ReadData,	Connection)

expression			Required.	An	expression	that	returns	one	of	the	above	objects.

SourceType			Optional	XlPivotTableSourceType.	The	source	of	the	report	data.

XlPivotTableSourceType	can	be	one	of	these	XlPivotTableSourceType
constants.
xlConsolidation.	Multiple	consolidation	ranges

xlDatabase.	Microsoft	Excel	list	or	database
xlExternal.	Data	from	another	application

xlPivotTable.	Same	source	as	another	PivotTable	report

If	you	specify	this	argument,	you	must	also	specify	SourceData.	If	SourceType
and	SourceData	are	omitted,	Microsoft	Excel	assumes	that	the	source	type	is
xlDatabase,	and	the	source	data	comes	from	the	named	range	"Database."	If
this	named	range	doesn’t	exist,	Microsoft	Excel	uses	the	current	region	if	the
current	selection	is	in	a	range	of	more	than	10	cells	that	contain	data.	If	this	isn’t
true,	this	method	will	fail.

SourceData			Optional	Variant.	The	data	for	the	new	report.	Can	be	a	Range
object,	an	array	of	ranges,	or	a	text	constant	that	represents	the	name	of	another
report.	For	an	external	database,	SourceData	is	an	array	of	strings	containing	the
SQL	query	string,	where	each	element	is	up	to	255	characters	in	length.	You
should	use	the	Connection	argument	to	specify	the	ODBC	connection	string.	For
compatibility	with	earlier	versions	of	Excel,	SourceData	can	be	a	two-element
array.	The	first	element	is	the	connection	string	specifying	the	ODBC	source	for
the	data.	The	second	element	is	the	SQL	query	string	used	to	get	the	data.	If	you
specify	SourceData,	you	must	also	specify	SourceType.	If	the	active	cell	is
inside	the	SourceData	range,	you	must	specify	TableDestination	as	well.

TableDestination			Optional	Variant.	A	Range	object	specifying	where	the
report	should	be	placed	on	the	worksheet.	If	this	argument	is	omitted,	the	report
is	placed	at	the	active	cell.

TableName			Optional	Variant.	A	string	that	specifies	the	name	of	the	new
report.

RowGrand			Optional	Variant.	True	to	show	grand	totals	for	rows	in	the	report.

ColumnGrand			Optional	Variant.	True	to	show	grand	totals	for	columns	in	the
report.

SaveData			Optional	Variant.	True	to	save	data	with	the	report.	False	to	save
only	the	report	definition.

HasAutoFormat			Optional	Variant.	True	to	have	Microsoft	Excel

automatically	format	the	report	when	it’s	refreshed	or	when	fields	are	moved.

AutoPage			Optional	Variant.	Valid	only	if	SourceType	is	xlConsolidation.
True	to	have	Microsoft	Excel	create	a	page	field	for	the	consolidation.	If
AutoPage	is	False,	you	must	create	the	page	field	or	fields.

Reserved			Optional	Variant.	Not	used	by	Microsoft	Excel.

BackgroundQuery			Optional	Variant.	True	to	have	Excel	perform	queries	for
the	report	asynchronously	(in	the	background).	The	default	value	is	False.

OptimizeCache			Optional	Variant.	True	to	optimize	the	PivotTable	cache	when
it's	constructed.	The	default	value	is	False.

PageFieldOrder			Optional	Variant.	The	order	in	which	page	fields	are	added	to
the	PivotTable	report’s	layout.	Can	be	one	of	the	following	XlOrder	constants:
xlDownThenOver	or	xlOverThenDown.	The	default	value	is
xlDownThenOver.

PageFieldWrapCount			Optional	Variant.	The	number	of	page	fields	in	each
column	or	row	in	the	PivotTable	report.	The	default	value	is	0	(zero).

ReadData			Optional	Variant.	True	to	create	a	PivotTable	cache	that	contains	all
records	from	the	external	database;	this	cache	can	be	very	large.	If	ReadData	is
False,	you	can	set	some	of	the	fields	asserver-based	page	fields	before	the	data	is
actually	read.

Connection			Optional	Variant.	A	string	that	contains	ODBC	settings	that	allow
Excel	to	connect	to	an	ODBC	data	source.	The	connection	string	has	the	form
"ODBC;<connection	string>".	This	argument	overrides	any	previous	setting	for
the	PivotCache	object’s	Connection	property.

Example

This	example	creates	a	new	PivotTable	report	from	a	Microsoft	Excel	database
(contained	in	the	range	A1:C100).

ActiveSheet.PivotTableWizard	xlDatabase,	Range("A1:C100")

Play	Method
							

This	method	should	not	be	used.	Sound	notes	have	been	removed	from
Microsoft	Excel.

Points	Method
							

Returns	an	object	that	represents	a	single	point	(a	Point	object)	or	a	collection	of
all	the	points	(a	Points	collection)	in	the	series.	Read-only.

expression.Points(Index)

expression			Required.	An	expression	that	returns	a	Series	object.

Index			Optional	Variant.	The	name	or	number	of	the	point.

Example

This	example	applies	a	data	label	to	point	one	in	series	one	in	Chart1.

Charts("Chart1").SeriesCollection(1).Points(1).ApplyDataLabels

PointsToScreenPixelsX	Method
							

Converts	a	horizontal	measurement	from	points	(document	coordinates)	to
screen	pixels	(screen	coordinates).	Returns	the	converted	measurement	as	a
Long	value.

expression.PointsToScreenPixelsX(Points)

expression			An	expression	that	returns	a	Window	object.

Points			Required	Long.	The	number	of	points	horizontally	along	the	top	of	the
document	window,	starting	from	the	left.

Example

This	example	determines	the	height	and	width	(in	pixels)	of	the	selected	cells	in
the	active	window	and	returns	the	values	in	the	lWinWidth	and	lWinHeight
variables.

With	ActiveWindow

				lWinWidth	=	_

								.PointsToScreenPixelsX(.Selection.Width)

				lWinHeight	=	_

								.PointsToScreenPixelsY(.Selection.Height)

End	With

PointsToScreenPixelsY	Method
							

Converts	a	vertical	measurement	from	points	(document	coordinates)	to	screen
pixels	(screen	coordinates).	Returns	the	converted	measurement	as	a	Long	value.

expression.PointsToScreenPixelsY(Points)

expression			An	expression	that	returns	a	Window	object.

Points			Required	Long.	The	number	of	points	vertically	along	the	left	edge	of
the	document	window,	starting	from	the	top.

Example

This	example	determines	the	height	and	width	(in	pixels)	of	the	selected	cells	in
the	active	window	and	returns	the	values	in	the	lWinWidth	and	lWinHeight
variables.

With	ActiveWindow

				lWinWidth	=	_

								.PointsToScreenPixelsX(.Selection.Width)

				lWinHeight	=	_

								.PointsToScreenPixelsY(.Selection.Height)

End	With

Post	Method
							

Posts	the	specified	workbook	to	a	public	folder.	This	method	works	only	with	a
Microsoft	Exchange	client	connected	to	a	Microsoft	Exchange	server.

expression.Post(DestName)

expression			Required.	An	expression	that	returns	a	Workbook	object.

DestName			Optional	Variant.	This	argument	is	ignored.	The	Post	method
prompts	the	user	to	specify	the	destination	for	the	workbook.

Example

This	example	posts	the	active	workbook.

ActiveWorkbook.Post

PresetDrop	Method
							

Specifies	whether	the	callout	line	attaches	to	the	top,	bottom,	or	center	of	the
callout	text	box	or	whether	it	attaches	at	a	point	that’s	a	specified	distance	from
the	top	or	bottom	of	the	text	box.

expression.PresetDrop(DropType)

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

DropType		Required	MsoCalloutDropType.		The	starting	position	of	the	callout
line	relative	to	the	text	bounding	box

MsoCalloutDropType	can	be	one	of	these	MsoCalloutDropType	constants.
msoCalloutDropBottom
msoCalloutDropCenter
msoCalloutDropCustom		Specifying	msoCalloutDropCustom	for	this
argument	will	cause	your	code	to	fail.
msoCalloutDropMixed
msoCalloutDropTop

Example

This	example	specifies	that	the	callout	line	attach	to	the	top	of	the	text	bounding
box	for	shape	one	on	myDocument.	For	the	example	to	work,	shape	one	must	be	a
callout.

Set	myDocument	=	Worksheets(1)

myDocument.Shapes(1).Callout.PresetDrop	msoCalloutDropTop

This	example	toggles	between	two	preset	drops	for	shape	one	on	myDocument.
For	the	example	to	work,	shape	one	must	be	a	callout.

Set	myDocument	=	Worksheets(1)

With	myDocument.Shapes(1).Callout

				If	.DropType	=	msoCalloutDropTop	Then

								.PresetDrop	msoCalloutDropBottom

				ElseIf	.DropType	=	msoCalloutDropBottom	Then

								.PresetDrop	msoCalloutDropTop

				End	If

End	With

Show	All

PresetGradient	Method
							

PresetGradient	method	as	it	applies	to	the	FillFormat	object.

Sets	the	specified	fill	to	a	preset	gradient.

expression.PresetGradient(Style,	Variant,	PresetGradientType)

expression			Required.	An	expression	that	returns	one	of	the	above	objects.

Style		Required	MsoGradientStyle.

MsoGradientStyle	can	be	one	of	these	MsoGradientStyle	constants.
msoGradientDiagonalDown
msoGradientDiagonalUp
msoGradientFromCenter
msoGradientFromCorner
msoGradientFromTitle
msoGradientHorizontal
msoGradientMixed
msoGradientVertical

Variant		Required	Integer.	The	gradient	variant.	Can	be	a	value	from	1	through
4,	corresponding	to	one	of	the	four	variants	on	the	Gradient	tab	in	the	Fill
Effects	dialog	box.	If	GradientStyle	is	msoGradientFromCenter,	the	Variant
argument	can	only	be	1	or	2.

PresetGradientType		Required	MsoPresetGradientType.

MsoPresetGradientType	can	be	one	of	these	MsoPresetGradientType	constants.
msoGradientRainbow
msoGradientBrass
msoGradientCalmWater

msoGradientChrome
msoGradientChromeII
msoGradientDaybreak
msoGradientDesert
msoGradientEarlySunset
msoGradientFire
msoGradientFog
msoGradientGold
msoGradientGoldII
msoGradientHorizon
msoGradientLateSunset
msoGradientMahogany
msoGradientMoss
msoGradientNightfall
msoGradientOcean
msoGradientParchment
msoGradientPeacock
msoGradientRainbowII
msoGradientSapphire
msoGradientSilver
msoGradientWheat
msoPresetGradientMixed

	

PresetGradient	method	as	it	applies	to	the	ChartFillFormat	object.

Sets	the	specified	fill	to	a	preset	gradient.

expression.PresetGradient(Style,	Variant,	PresetGradientType)

expression			Required.	An	expression	that	returns	one	of	the	above	objects.

Style		Required	MsoGradientStyle.

MsoGradientStyle	can	be	one	of	these	MsoGradientStyle	constants.
msoGradientDiagonalDown
msoGradientDiagonalUp
msoGradientFromCenter
msoGradientFromCorner
msoGradientFromTitle
msoGradientHorizontal
msoGradientMixed
msoGradientVertical

Variant		Required	Long.	The	gradient	variant.	Can	be	a	value	from	1	through	4,
corresponding	to	one	of	the	four	variants	on	the	Gradient	tab	in	the	Fill	Effects
dialog	box.	If	GradientStyle	is	msoGradientFromCenter,	the	Variant	argument
can	only	be	1	or	2.

PresetGradientType		Required	MsoPresetGradientType.

MsoPresetGradientType	can	be	one	of	these	MsoPresetGradientType	constants.
msoGradientRainbow
msoGradientBrass
msoGradientCalmWater
msoGradientChrome
msoGradientChromeII
msoGradientDaybreak
msoGradientDesert
msoGradientEarlySunset
msoGradientFire
msoGradientFog
msoGradientGold
msoGradientGoldII
msoGradientHorizon
msoGradientLateSunset
msoGradientMahogany
msoGradientMoss

msoGradientNightfall
msoGradientOcean
msoGradientParchment
msoGradientPeacock
msoGradientRainbowII
msoGradientSapphire
msoGradientSilver
msoGradientWheat
msoPresetGradientMixed

	

Example

This	example	sets	the	fill	format	for	chart	two	to	the	same	style	used	for	chart
one.

Set	c1f	=	Charts(1).ChartArea.Fill

If	c1f.Type	=	msoFillGradient	Then

				With	Charts(2).ChartArea.Fill

								.Visible	=	True

								.PresetGradient	c1f.GradientStyle,	_

												c1f.GradientVariant,	c1f.PresetGradientType

				End	With

End	If

PresetTextured	Method
							

Sets	the	specified	fill	format	to	a	preset	texture.

expression.PresetTextured(PresetTexture)

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

PresetTexture		Required	MsoPresetTexture.

MsoPresetTexture	can	be	one	of	these	MsoPresetTexture	constants.
msoPresetTextureMixed
msoTextureBlueTissuePaper
msoTextureBouquet
msoTextureBrownMarble
msoTextureCanvas
msoTextureCork
msoTextureDenim
msoTextureFishFossil
msoTextureGranite
msoTextureGreenMarble
msoTextureMediumWood
msoTextureNewsprint
msoTextureOak
msoTexturePaperBag
msoTexturePapyrus
msoTextureParchment
msoTexturePinkTissuePaper
msoTexturePurpleMesh
msoTextureRecycledPaper

msoTextureSand
msoTextureStationery
msoTextureWalnut
msoTextureWaterDroplets
msoTextureWhiteMarble
msoTextureWovenMat

Example

This	example	sets	the	fill	format	for	chart	two	to	the	same	style	used	for	chart
one.

Set	c1f	=	Charts(1).ChartArea.Fill

If	c1f.Type	=	msoFillTextured	Then

				With	Charts(2).ChartArea.Fill

								.Visible	=	True

								If	c1f.TextureType	=	msoTexturePreset	Then

												.PresetTextured	c1f.PresetTexture

								Else

												.UserTextured	c1f.TextureName

								End	If

				End	With

End	If

Previous	Method
							

Returns	a	Comment	object	that	represents	the	previous	comment.

expression.Previous

expression			Required.	An	expression	that	returns	a	Comment	object.

Remarks

This	method	works	only	on	one	sheet.	Using	this	method	on	the	first	comment
on	a	sheet	returns	Null	(not	the	last	comment	on	the	previous	sheet).

Example

This	example	hides	the	previous	comment.

Range("a1").Comment.Previous.Visible	=	False

PrevNode	Method
							

Returns	a	DiagramNode	object	that	represents	the	previous	diagram	node	in	a
collection	of	diagram	nodes.

expression.PrevNode

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

Example

This	example	adds	additional	child	nodes	to	the	first	child	node	in	a	newly-
created	diagram.

Sub	AddToPrevNode()

				Dim	dgnRoot	As	DiagramNode

				Dim	shpDiagram	As	Shape

				Dim	dgnPrev	As	DiagramNode

				Dim	intCount	As	Integer

				'Add	organizational	chart	to	the	current	document

				Set	shpDiagram	=	ActiveSheet.Shapes.AddDiagram(_

								Type:=msoDiagramOrgChart,	_

								Left:=10,	_

								Top:=15,	_

								Width:=400,	_

								Height:=475)

				'Add	first	diagram	node

				Set	dgnRoot	=	shpDiagram.DiagramNode.Children.AddNode

				'Add	three	child	nodes	off	the	first	diagram	node

				For	intCount	=	1	To	3

								dgnRoot.Children.AddNode

				Next	intCount

				'Access	the	node	immediately	preceeding

				'the	second	diagram	node

				Set	dgnPrev	=	dgnRoot.Children.Item(2).PrevNode

				'Add	three	child	nodes	to	the	node	immediately

				'preceeding	the	second	node

				For	intCount	=	1	To	3

								dgnPrev.Children.AddNode

				Next	intCount

End	Sub

PrintOut	Method
							

Prints	the	object.

expression.PrintOut(From,	To,	Copies,	Preview,	ActivePrinter,	PrintToFile,
Collate,	PrToFileName)

expression			Required.	An	expression	that	returns	an	object	in	the	Applies	To	list.

From			Optional	Variant.	The	number	of	the	page	at	which	to	start	printing.	If
this	argument	is	omitted,	printing	starts	at	the	beginning.

To			Optional	Variant.	The	number	of	the	last	page	to	print.	If	this	argument	is
omitted,	printing	ends	with	the	last	page.

Copies			Optional	Variant.	The	number	of	copies	to	print.	If	this	argument	is
omitted,	one	copy	is	printed.

Preview			Optional	Variant.	True	to	have	Microsoft	Excel	invoke	print	preview
before	printing	the	object.	False	(or	omitted)	to	print	the	object	immediately.

ActivePrinter			Optional	Variant.	Sets	the	name	of	the	active	printer.

PrintToFile			Optional	Variant.	True	to	print	to	a	file.	If	PrToFileName	is	not
specified,	Microsoft	Excel	prompts	the	user	to	enter	the	name	of	the	output	file.

Collate			Optional	Variant.	True	to	collate	multiple	copies.

PrToFileName			Optional	Variant.	If	PrintToFile	is	set	to	True,	this	argument
specifies	the	name	of	the	file	you	want	to	print	to.

Remarks

"Pages"	in	the	descriptions	of	From	and	To	refers	to	printed	pages	—	not	overall
pages	in	the	sheet	or	workbook.

Example

This	example	prints	the	active	sheet.

ActiveSheet.PrintOut

PrintPreview	Method
							

Shows	a	preview	of	the	object	as	it	would	look	when	printed.

expression.PrintPreview

expression			Required.	An	expression	that	returns	an	object	in	the	Applies	To	list.

Example

This	example	displays	Sheet1	in	print	preview.

Worksheets("Sheet1").PrintPreview

Show	All

Protect	Method
							

Protect	method	as	it	applies	to	the	Chart	object.

Protects	a	chart	so	that	it	cannot	be	modified.

expression.Protect(Password,	DrawingObjects,	Contents,	Scenarios,
UserInterfaceOnly)

expression			Required.	An	expression	that	returns	a	Chart	object.

Password		Optional	Variant.		A	string	that	specifies	a	case-sensitive	password
for	the	worksheet	or	workbook.	If	this	argument	is	omitted,	you	can	unprotect
the	worksheet	or	workbook	without	using	a	password.	Otherwise,	you	must
specify	the	password	to	unprotect	the	worksheet	or	workbook.	If	you	forget	the
password,	you	cannot	unprotect	the	worksheet	or	workbook.	It's	a	good	idea	to
keep	a	list	of	your	passwords	and	their	corresponding	document	names	in	a	safe
place.

DrawingObjects		Optional	Variant.	True	to	protect	shapes.	The	default	value	is
False.

Contents		Optional	Variant.	True	to	protect	contents.	For	a	chart,	this	protects
the	entire	chart.	For	a	worksheet,	this	protects	the	locked	cells.	The	default	value
is	True.

Scenarios		Optional	Variant.	True	to	protect	scenarios.	This	argument	is	valid
only	for	worksheets.	The	default	value	is	True.

UserInterfaceOnly		Optional	Variant.	True	to	protect	the	user	interface,	but	not
macros.	If	this	argument	is	omitted,	protection	applies	both	to	macros	and	to	the
user	interface.

Protect	method	as	it	applies	to	the	Worksheet	object.

Protects	a	worksheet	so	that	it	cannot	be	modified.

expression.Protect(Password,	DrawingObjects,	Contents,	Scenarios,
UserInterfaceOnly,	AllowFormattingCells,	AllowFormattingColumns,
AllowFormattingRows,	AllowInsertingColumns,	AllowInsertingRows,
AllowInsertingHyperlinks,	AllowDeletingColumns,	AllowDeletingRows,
AllowSorting,	AllowFiltering,	AllowUsingPivotTables)

expression			Required.	An	expression	that	returns	a	Worksheet	object.

Password		Optional	Variant.		A	string	that	specifies	a	case-sensitive	password
for	the	worksheet	or	workbook.	If	this	argument	is	omitted,	you	can	unprotect
the	worksheet	or	workbook	without	using	a	password.	Otherwise,	you	must
specify	the	password	to	unprotect	the	worksheet	or	workbook.	If	you	forget	the
password,	you	cannot	unprotect	the	worksheet	or	workbook.	It's	a	good	idea	to
keep	a	list	of	your	passwords	and	their	corresponding	document	names	in	a	safe
place.

DrawingObjects		Optional	Variant.	True	to	protect	shapes.	The	default	value	is
False.

Contents		Optional	Variant.	True	to	protect	contents.	For	a	chart,	this	protects
the	entire	chart.	For	a	worksheet,	this	protects	the	locked	cells.	The	default	value
is	True.

Scenarios		Optional	Variant.	True	to	protect	scenarios.	This	argument	is	valid
only	for	worksheets.	The	default	value	is	True.

UserInterfaceOnly		Optional	Variant.	True	to	protect	the	user	interface,	but	not
macros.	If	this	argument	is	omitted,	protection	applies	both	to	macros	and	to	the
user	interface.

AllowFormattingCells		Optional	Variant.	True	allows	the	user	to	format	any
cell	on	a	protected	worksheet.	The	default	value	is	False.

AllowFormattingColumns		Optional	Variant.	True	allows	the	user	to	format
any	column	on	a	protected	worksheet.	The	default	value	is	False.

AllowFormattingRows		Optional	Variant.	True	allows	the	user	to	format	any
row	on	a	protected.	The	default	value	is	False.

AllowInsertingColumns		Optional	Variant.	True	allows	the	user	to	insert

columns	on	the	protected	worksheet.	The	default	value	is	False.

AllowInsertingRows		Optional	Variant.	True	allows	the	user	to	insert	rows	on
the	protected	worksheet.	The	default	value	is	False.

AllowInsertingHyperlinks		Optional	Variant.	True	allows	the	user	to	insert
hyperlinks	on	the	worksheet.	The	default	value	is	False.

AllowDeletingColumns		Optional	Variant.	True	allows	the	user	to	delete
columns	on	the	protected	worksheet,	where	every	cell	in	the	column	to	be
deleted	is	unlocked.	The	default	value	is	False.

AllowDeletingRows		Optional	Variant.	True	allows	the	user	to	delete	rows	on
the	protected	worksheet,	where	every	cell	in	the	row	to	be	deleted	is	unlocked.
The	default	value	is	False.

AllowSorting		Optional	Variant.	True	allows	the	user	to	sort	on	the	protected
worksheet.	Every	cell	in	the	sort	range	must	be	unlocked	or	unprotected.	The
default	value	is	False.

AllowFiltering		Optional	Variant.	True	allows	the	user	to	set	filters	on	the
protected	worksheet.	Users	can	change	filter	criteria	but	can	not	enable	or
disable	an	auto	filter.	Users	can	set	filters	on	an	existing	auto	filter.	The	default
value	is	False.

AllowUsingPivotTables		Optional	Variant.		True	allows	the	user	to	use	pivot
table	reports	on	the	protected	worksheet.	The	default	value	is	False.

Remarks

If	you	apply	the	Protect	method	with	the	UserInterfaceOnly	argument	set	to
True	to	a	worksheet	and	then	save	the	workbook,	the	entire	worksheet	(not	just
the	interface)	will	be	fully	protected	when	you	reopen	the	workbook.	To	re-
enable	the	user	interface	protection	after	the	workbook	is	opened,	you	must
again	apply	the	Protect	method	with	UserInterfaceOnly	set	to	True.

If	changes	wanted	to	be	made	to	a	protected	worksheet,	it	is	possible	to	use	the
Protect	method	on	a	protected	worksheet	if	the	password	is	supplied.	Also,
another	method	would	be	to	unprotect	the	worksheet,	make	the	necessary
changes,	and	then	protect	the	worksheet	again.

Note			'Unprotected'	means	the	cell	may	be	locked	(Format	Cells	dialog)	but	is
included	in	a	range	defined	in	the	Allow	Users	to	Edit	Ranges	dialog,	and	the
user	has	unprotected	the	range	with	a	password	or	been	validated	via	NT
permissions.

Protect	method	as	it	applies	to	the	Workbook	object.

Protects	a	workbook	so	that	it	cannot	be	modified.

expression.Protect(Password,	Structure,	Windows)

expression			Required.	An	expression	that	returns	a	Workbook	object.

Password		Optional	Variant.		A	string	that	specifies	a	case-sensitive	password
for	the	worksheet	or	workbook.	If	this	argument	is	omitted,	you	can	unprotect
the	worksheet	or	workbook	without	using	a	password.	Otherwise,	you	must
specify	the	password	to	unprotect	the	worksheet	or	workbook.	If	you	forget	the
password,	you	cannot	unprotect	the	worksheet	or	workbook.	It's	a	good	idea	to
keep	a	list	of	your	passwords	and	their	corresponding	document	names	in	a	safe
place.

Structure		Optional	Variant.	True	to	protect	the	structure	of	the	workbook	(the
relative	position	of	the	sheets).	The	default	value	is	False.

Windows		Optional	Variant.	True	to	protect	the	workbook	windows.	If	this

argument	is	omitted,	the	windows	aren’t	protected.

Example

As	it	applies	to	the	Chart	and	Worksheet	objects.

This	example	protects	the	active	worksheet.	You	can	verify	the	worksheet	is
protected,	by	attempting	to	enter	a	value	into	any	cell,	on	the	active	worksheet.

Sub	ProtectSheet()

				ActiveSheet.Protect	Scenarios:=True,	UserInterfaceOnly:=True

End	Sub

This	example	protects	the	active	chart.	You	can	verify	the	chart	is	protected,	by
attempting	to	enter	a	value	into	any	cell,	on	the	active	worksheet.	This	example
assumes	a	chart	exists	in	the	application.

Sub	ProtectChart()

				ActiveChart.Protect	Scenarios:=True,	UserInterfaceOnly:=True

End	Sub

ProtectSharing	Method
							

Saves	the	workbook	and	protects	it	for	sharing.

expression.ProtectSharing(Filename,	Password,	WriteResPassword,
ReadOnlyRecommended,	CreateBackup,	SharingPassword)

expression			An	expression	that	returns	a	Workbook	object.

Filename			Optional	Variant.	A	string	indicating	the	name	of	the	saved	file.	You
can	include	a	full	path;	if	you	don’t,	Microsoft	Excel	saves	the	file	in	the	current
folder.

Password			Optional	Variant.	A	case-sensitive	string	indicating	the	protection
password	to	be	given	to	the	file.	Should	be	no	longer	than	15	characters.

WriteResPassword			Optional	Variant.	A	string	indicating	the	write-reservation
password	for	this	file.	If	a	file	is	saved	with	the	password	and	the	password	isn’t
supplied	when	the	file	is	opened,	the	file	is	opened	read-only.

ReadOnlyRecommended			Optional	Variant.	True	to	display	a	message	when
the	file	is	opened,	recommending	that	the	file	be	opened	read-only.

CreateBackup			Optional	Variant.	True	to	create	a	backup	file.

SharingPassword			Optional	Variant.	A	string	indicating	the	password	to	be
used	to	protect	the	file	for	sharing.

Example

This	example	saves	workbook	one	and	protects	it	for	sharing.

Workbooks(1).ProtectSharing	Password:="drowssap",	_

				SharingPassword:="gnirahs"

Publish	Method
							

Saves	an	item	or	a	collection	of	items	in	a	document	to	a	Web	page.

expression.Publish(Create)

expression			An	expression	that	returns	a	PublishObject	object	or	a
PublishObjects	collection.

Create			Optional	Variant.	This	argument	is	used	only	with	a	PublishObject
object.	If	the	HTML	file	exists,	setting	this	argument	to	True	replaces	the	file,
and	setting	this	argument	to	False	inserts	the	item	or	items	at	the	end	of	the	file.
If	the	file	does	not	exist,	then	the	file	is	created	regardless	of	the	value	of	the
Create	argument.

Remarks

The	FileName	property	returns	or	sets	the	location	and	name	of	the	HTML	file.

Example

This	example	saves	the	range	D5:D9	on	the	First	Quarter	worksheet	in	the	active
workbook	to	a	Web	page	called	“stockreport.htm.”	The	Spreadsheet	component
is	used	to	add	interactivity	to	the	Web	page.

ActiveWorkbook.PublishObjects.Add(_

				SourceType:=xlSourceRange,	_

				Filename:="\\Server2\Q1\stockreport.htm",	_

				Sheet:="First	Quarter",	_

				Source:="D5:D9",	_

				HTMLType:=xlHTMLCalc).Publish

PurgeChangeHistoryNow	Method
							

Removes	entries	from	the	change	log	for	the	specified	workbook.

expression.PurgeChangeHistoryNow(Days,	SharingPassword)

expression			An	expression	that	returns	a	Workbook	object.

Days			Required	Long.	The	number	of	days	that	changes	in	the	change	log	are	to
be	retained.

SharingPassword			Optional	Variant.	The	password	that	unprotects	the
workbook	for	sharing.	If	the	workbook	is	protected	for	sharing	with	a	password
and	this	argument	is	omitted,	the	user	is	prompted	for	the	password.

Example

This	example	removes	all	changes	that	are	more	than	one	day	old	from	the
change	log	for	the	active	workbook.

ActiveWorkbook.PurgeChangeHistoryNow	Days:=1

Quit	Method
							

Quits	Microsoft	Excel.

expression.Quit

expression			Required.	An	expression	that	returns	an	Application	object.

Remarks

If	unsaved	workbooks	are	open	when	you	use	this	method,	Microsoft	Excel
displays	a	dialog	box	asking	whether	you	want	to	save	the	changes.	You	can
prevent	this	by	saving	all	workbooks	before	using	the	Quit	method	or	by	setting
the	DisplayAlerts	property	to	False.	When	this	property	is	False,	Microsoft
Excel	doesn’t	display	the	dialog	box	when	you	quit	with	unsaved	workbooks;	it
quits	without	saving	them.

If	you	set	the	Saved	property	for	a	workbook	to	True	without	saving	the
workbook	to	the	disk,	Microsoft	Excel	will	quit	without	asking	you	to	save	the
workbook.

Example

This	example	saves	all	open	workbooks	and	then	quits	Microsoft	Excel.

For	Each	w	In	Application.Workbooks

				w.Save

Next	w

Application.Quit

RadarGroups	Method
							

On	a	2-D	chart,	returns	an	object	that	represents	either	a	single	radar	chart	group
(a	ChartGroup	object)	or	a	collection	of	the	radar	chart	groups	(a	ChartGroups
collection).

expression.RadarGroups(Index)

expression			Required.	An	expression	that	returns	a	Chart	object.

Index			Optional	Variant.	Specifies	the	chart	group.

Example

This	example	sets	radar	group	one	in	Chart1	to	use	a	different	color	for	each	data
marker.	The	example	should	be	run	on	a	2-D	chart.

Charts("Chart1").RadarGroups(1).VaryByCategories	=	True

RangeFromPoint	Method
							

Returns	the	Shape	or	Range	object	that	is	positioned	at	the	specified	pair	of
screen	coordinates.	If	there	isn’t	a	shape	located	at	the	specified	coordinates,	this
method	returns	Nothing.

expression.RangeFromPoint(x,	y)

expression			An	expression	that	returns	a	Window	object.

x			Required	Long.	The	value	(in	pixels)	that	represents	the	horizontal	distance
from	the	left	edge	of	the	screen,	starting	at	the	top.

y			Required	Long.	The	value	(in	pixels)	that	represents	the	vertical	distance
from	the	top	of	the	screen,	starting	on	the	left.

Example

This	example	returns	the	alternative	text	for	the	shape	immediately	below	the
mouse	pointer	if	the	shape	is	a	chart,	line,	or	picture.

Private	Function	AltText(ByVal	intMouseX	As	Integer,	_

								ByVal	intMouseY	as	Integer)	As	String

				Set	objShape	=	ActiveWindow.RangeFromPoint	_

								(x:=intMouseX,	y:=intMouseY)

				If	Not	objShape	Is	Nothing	Then

								With	objShape

												Select	Case	.Type

																Case	msoChart,	msoLine,	msoPicture:

																				AltText	=	.AlternativeText

																Case	Else:

																				AltText	=	""

												End	Select

								End	With

				Else

								AltText	=	""

				End	If

End	Function

RecheckSmartTags	Method
							

Causes	a	foreground	smart	tag	check	to	occur	automatically	annotating	data	that
was	not	annotated	before.

expression.RecheckSmartTags

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

Example

This	example	rechecks	smart	tags	on	the	active	workbook	in	the	foreground.

Sub	UseRecheckSmartTags()

				ActiveWorkbook.RecheckSmartTags

End	Sub

Record	Method
							

This	method	should	not	be	used.	Sound	notes	have	been	removed	from
Microsoft	Excel.

RecordMacro	Method
							

Records	code	if	the	macro	recorder	is	on.

expression.RecordMacro(BasicCode,	XlmCode)

expression			Required.	An	expression	that	returns	an	Application	object.

BasicCode			Optional	Variant.	A	string	that	specifies	the	Visual	Basic	code	that
will	be	recorded	if	the	macro	recorder	is	recording	into	a	Visual	Basic	module.
The	string	will	be	recorded	on	one	line.	If	the	string	contains	a	carriage	return
(ASCII	character	10,	or	Chr$(10)	in	code),	it	will	be	recorded	on	more	than	one
line.

XlmCode			Optional	Variant.	This	argument	is	ignored.

Remarks

The	RecordMacro	method	cannot	record	into	the	active	module	(the	module	in
which	the	RecordMacro	method	exists).

If	BasicCode	is	omitted	and	the	application	is	recording	into	Visual	Basic,
Microsoft	Excel	will	record	a	suitable	Application.Run	statement.

To	prevent	recording	(for	example,	if	the	user	cancels	your	dialog	box),	call	this
function	with	two	empty	strings.

Example

This	example	records	Visual	Basic	code.

Application.RecordMacro	BasicCode:="Application.Run	""MySub""	"

Show	All

Refresh	Method
							

Refresh	method	as	it	applies	to	the	QueryTable	object.

Updates	the	query	table.	Boolean.

expression.Refresh(BackgroundQuery)

expression			Required.	An	expression	that	returns	one	of	the	above	objects.

BackgroundQuery		Optional	Variant.		Used	only	with	query	tables	based	on	the
results	of	an	SQL	query.	True	to	return	control	to	the	procedure	as	soon	as	a
database	connection	is	made	and	the	the	query	is	submitted	(the	query	is	updated
in	the	background).	False	to	return	control	to	the	procedure	only	after	all	data
has	been	fetched	to	the	worksheet.	If	this	argument	isn't	specified,	the	setting	of
the	BackgroundQuery	property	determines	the	query	mode.

	

Refresh	method	as	it	applies	to	the	Chart	and	PivotCache	objects.

Updates	the	Chart	and	PivotTable	cache.

expression.Refresh

expression			Required.	An	expression	that	returns	one	of	the	above	objects.	For
the	PivotCache	object,	the	cache	must	have	at	least	one	PivotTable	report
associated	with	it.

Remarks

Remarks	as	it	applies	to	the	QueryTable	object.

The	following	remarks	apply	to	QueryTable	objects	based	on	the	results	of	a
SQL	query.

The	Refresh	method	causes	Microsoft	Excel	to	connect	to	the	query	table's	data
source,	execute	the	SQL	query,	and	return	data	to	the	query	table	destination
range.	Until	this	method	is	called,	the	query	table	doesn't	communicate	with	the
data	source.

When	making	the	connection	to	the	OLE	DB	or	ODBC	data	source,	Microsoft
Excel	uses	the	connection	string	specified	by	the	Connection	property.	If	the
specified	connection	string	is	missing	required	values,	the	data	access	driver
manager	or	the	driver	(or	both)	will	display	modal	dialog	boxes	to	prompt	the
user	for	the	required	information.	If	the	DisplayAlerts	property	is	False,	dialog
boxes	aren't	displayed	and	the	Refresh	method	fails	with	the	Insufficient
Connection	Information	exception.

After	Microsoft	Excel	makes	a	successful	connection,	it	stores	the	completed
connection	string	so	that	prompts	won't	be	displayed	for	subsequent	calls	to	the
Refresh	method	during	the	same	editing	session.	You	can	obtain	the	completed
connection	string	by	examining	the	value	of	the	Connection	property.

After	the	database	connection	is	made,	the	SQL	query	is	validated.	If	the	query
isn't	valid,	the	Refresh	method	fails	with	the	SQL	Syntax	Error	exception.

If	the	query	requires	parameters,	the	Parameters	collection	must	have	been
initialized	with	parameter	binding	information.	If	not	enough	parameters	have
been	bound,	the	Refresh	method	fails	with	the	Parameter	Error	exception.	If
parameters	are	set	to	prompt	for	their	values,	dialog	boxes	are	displayed	to	the
user	regardless	of	the	setting	of	the	DisplayAlerts	property.	If	the	user	cancels	a
parameter	dialog	box,	the	Refresh	method	halts	and	returns	False.	If	there	are
extra	parameters	bound	with	the	Parameters	collection,	the	extra	parameters	are
ignored.

The	Refresh	method	returns	True	if	the	query	is	successfully	completed	or

started;	it	returns	False	if	the	user	cancels	a	connection	or	parameter	dialog	box.

To	see	whether	the	number	of	fetched	rows	exceeded	the	number	of	available
rows	on	the	worksheet,	examine	the	FetchedRowOverflow	property.	This
property	is	initialized	every	time	the	Refresh	method	is	called.

Example

This	example	refreshes	the	PivotTable	cache	for	the	first	PivotTable	report	on
worksheet	one.

Worksheets(1).PivotTables(1).PivotCache.Refresh

RefreshAll	Method
							

Refreshes	all	external	data	ranges	and	PivotTable	reports	in	the	specified
workbook.

expression.RefreshAll

expression			Required.	An	expression	that	returns	a	Workbook	object.

Remarks

Objects	that	have	the	BackgroundQuery	property	set	to	True	are	refreshed	in
the	background.

Example

This	example	refreshes	all	external	data	ranges	and	PivotTable	reports	in	the
third	workbook.

Workbooks(3).RefreshAll

Show	All

RefreshData	Method
							

RefreshData	method	as	it	applies	to	the	IRtdServer	object.

This	method	is	called	by	Microsoft	Excel	to	get	new	data.	This	method	call	only
takes	place	after	being	notified	by	the	real-time	data	server	that	there	is	new	data.

expression.RefreshData(ByRef	TopicCount	As	Long)

expression			Required.	An	expression	that	returns	an	IRtdServer	object.

TopicCount		Required	Long.	The	RTD	server	must	change	the	value	of	the
TopicCount	to	the	number	of	elements	in	the	array	returned.

Remarks

The	data	returned	to	Microsoft	Excel	is	a	Variant	containing	a	two-dimensional
array.	The	first	dimension	represents	the	list	of	topic	IDs.	The	second	dimension
represents	the	values	associated	with	the	topic	IDs.

RefreshData	method	as	it	applies	to	the	RTD	object.

Requests	an	update	of	real-time	data	from	the	real-time	data	server.

expression.RefreshData

expression			Required.	An	expression	that	returns	an	RTD	object.

Remarks

Using	the	RefreshData	method	during	recalculation	will	fail,	so	it	should	not	be
used	within	user-defined	functions.

RefreshTable	Method
							

Refreshes	the	PivotTable	report	from	the	source	data.	Returns	True	if	it’s
successful.

expression.RefreshTable

expression			Required.	An	expression	that	returns	a	PivotTable	object.

Example

This	example	refreshes	the	PivotTable	report.

Set	pvtTable	=	Worksheets("Sheet1").Range("A3").PivotTable

pvtTable.RefreshTable

RegisterXLL	Method
							

Loads	an	XLL	code	resource	and	automatically	registers	the	functions	and
commands	contained	in	the	resource.

expression.RegisterXLL(Filename)

expression			Required.	An	expression	that	returns	an	Application	object.

Filename			Required	String.	Specifies	the	name	of	the	XLL	to	be	loaded.

Remarks

This	method	returns	True	if	the	code	resource	is	successfully	loaded;	otherwise,
the	method	returns	False.

Example

This	example	loads	an	XLL	file	and	registers	the	functions	and	commands	in	the
file.

Application.RegisterXLL	"XLMAPI.XLL"

Regroup	Method
							

Regroups	the	group	that	the	specified	shape	range	belonged	to	previously.
Returns	the	regrouped	shapes	as	a	single	Shape	object.

expression.Regroup

expression			Required.	An	expression	that	returns	a	ShapeRange	object.

Remarks

The	Regroup	method	only	restores	the	group	for	the	first	previously	grouped
shape	it	finds	in	the	specified	ShapeRange	collection.	Therefore,	if	the	specified
shape	range	contains	shapes	that	previously	belonged	to	different	groups,	only
one	of	the	groups	will	be	restored.

Note	that	because	a	group	of	shapes	is	treated	as	a	single	shape,	grouping	and
ungrouping	shapes	changes	the	number	of	items	in	the	Shapes	collection	and
changes	the	index	numbers	of	items	that	come	after	the	affected	items	in	the
collection.

Example

This	example	regroups	the	shapes	in	the	selection	in	the	active	window.	If	the
shapes	haven’t	been	previously	grouped	and	ungrouped,	this	example	will	fail.

ActiveWindow.Selection.ShapeRange.Regroup

RejectAllChanges	Method
							

Rejects	all	changes	in	the	specified	shared	workbook.

expression.AcceptAllChanges(When,	Who,	Where)

expression			Required.	An	expression	that	returns	a	Workbook	object

When		Optional	Variant.	Specifies	when	all	the	changes	are	rejected.

Who		Optional	Variant.	Specifies	by	whom	all	the	changes	are	rejected.

Where		Optional	Variant.	Specifies	where	all	the	changes	are	rejected.

Example

This	example	rejects	all	changes	in	the	active	workbook.

ActiveWorkbook.RejectAllChanges

ReloadAs	Method
							

Reloads	a	workbook	based	on	an	HTML	document,	using	the	specified
document	encoding.

expression.ReloadAs(Encoding)

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

Encoding		Required	MsoEncoding.

MsoEncoding	can	be	one	of	these	MsoEncoding	constants.
msoEncodingEBCDICArabic
msoEncodingArabic
msoEncodingArabicASMO
msoEncodingArabicAutoDetect
msoEncodingArabicTransparentASMO
msoEncodingAutoDetect
msoEncodingBaltic
msoEncodingCentralEuropean
msoEncodingCyrillic
msoEncodingCyrillicAutoDetect
msoEncodingEBCDICDenmarkNorway
msoEncodingEBCDICFinlandSweden
msoEncodingEBCDICFrance
msoEncodingEBCDICGermany
msoEncodingEBCDICGreek
msoEncodingEBCDICGreekModern
msoEncodingEBCDICHebrew
msoEncodingEBCDICIcelandic

msoEncodingEBCDICInternational
msoEncodingEBCDICItaly
msoEncodingEBCDICJapaneseKatakanaExtended
msoEncodingEBCDICJapaneseKatakanaExtendedAndJapanese
msoEncodingEBCDICJapaneseLatinExtendedAndJapanese
msoEncodingEBCDICKoreanExtended
msoEncodingEBCDICKoreanExtendedAndKorean
msoEncodingEBCDICLatinAmericaSpain
msoEncodingEBCDICMultilingualROECELatin2
msoEncodingEBCDICRussian
msoEncodingEBCDICSerbianBulgarian
msoEncodingEBCDICSimplifiedChineseExtendedAndSimplifiedChinese
msoEncodingEBCDICThai
msoEncodingEBCDICTurkish
msoEncodingEBCDICTurkishLatin5
msoEncodingEBCDICUnitedKingdom
msoEncodingEBCDICUSCanada
msoEncodingEBCDICUSCanadaAndJapanese
msoEncodingEBCDICUSCanadaAndTraditionalChinese
msoEncodingEUCChineseSimplifiedChinese
msoEncodingEUCJapanese
msoEncodingEUCKorean
msoEncodingEUCTaiwaneseTraditionalChinese
msoEncodingEuropa3
msoEncodingExtAlphaLowercase
msoEncodingGreek
msoEncodingGreekAutoDetect
msoEncodingHebrew
msoEncodingHZGBSimplifiedChinese
msoEncodingIA5German
msoEncodingIA5IRV
msoEncodingIA5Norwegian
msoEncodingIA5Swedish

msoEncodingISO2022CNSimplifiedChinese
msoEncodingISO2022CNTraditionalChinese
msoEncodingISO2022JPJISX02011989
msoEncodingISO2022JPJISX02021984
msoEncodingISO2022JPNoHalfwidthKatakana
msoEncodingISO2022KR
msoEncodingISO6937NonSpacingAccent
msoEncodingISO885915Latin9
msoEncodingISO88591Latin1
msoEncodingISO88592CentralEurope
msoEncodingISO88593Latin3
msoEncodingISO88594Baltic
msoEncodingISO88595Cyrillic
msoEncodingISO88596Arabic
msoEncodingISO88597Greek
msoEncodingISO88598Hebrew
msoEncodingISO88599Turkish
msoEncodingJapaneseAutoDetect
msoEncodingJapaneseShiftJIS
msoEncodingKOI8R
msoEncodingKOI8U
msoEncodingKorean
msoEncodingKoreanAutoDetect
msoEncodingKoreanJohab
msoEncodingMacArabic
msoEncodingMacCroatia
msoEncodingMacCyrillic
msoEncodingMacGreek1
msoEncodingMacHebrew
msoEncodingMacIcelandic
msoEncodingMacJapanese
msoEncodingMacKorean
msoEncodingMacLatin2

msoEncodingMacRoman
msoEncodingMacRomania
msoEncodingMacSimplifiedChineseGB2312
msoEncodingMacTraditionalChineseBig5
msoEncodingMacTurkish
msoEncodingMacUkraine
msoEncodingOEMArabic
msoEncodingOEMBaltic
msoEncodingOEMCanadianFrench
msoEncodingOEMCyrillic
msoEncodingOEMCyrillicII
msoEncodingOEMGreek437G
msoEncodingOEMHebrew
msoEncodingOEMIcelandic
msoEncodingOEMModernGreek
msoEncodingOEMMultilingualLatinI
msoEncodingOEMMultilingualLatinII
msoEncodingOEMNordic
msoEncodingOEMPortuguese
msoEncodingOEMTurkish
msoEncodingOEMUnitedStates
msoEncodingSimplifiedChineseAutoDetect
msoEncodingSimplifiedChineseGBK
msoEncodingT61
msoEncodingTaiwanCNS
msoEncodingTaiwanEten
msoEncodingTaiwanIBM5550
msoEncodingTaiwanTCA
msoEncodingTaiwanTeleText
msoEncodingTaiwanWang
msoEncodingThai
msoEncodingTraditionalChineseAutoDetect
msoEncodingTraditionalChineseBig5

msoEncodingTurkish
msoEncodingUnicodeBigEndian
msoEncodingUnicodeLittleEndian
msoEncodingUSASCII
msoEncodingUTF7
msoEncodingUTF8
msoEncodingVietnamese
msoEncodingWestern

Example

This	example	reloads	the	first	workbook,	using	Western	document	encoding.

Workbooks(1).ReloadAs	Encoding:=msoEncodingWestern

RemoveAllItems	Method
							

Removes	all	entries	from	a	Microsoft	Excel	list	box	or	combo	box.	Use	the
Clear	method	to	remove	all	items	from	an	ActiveX	list	box	or	combo	box.

expression.RemoveAllItems

expression			Required.	An	expression	that	returns	a	ControlFormat	object.

mk:@MSITStore:fm20.chm::/html/f3mthClear.htm

Example

This	example	removes	all	items	from	a	list	box.	If	Shapes(2)	doesn’t	represent	a
list	box,	this	example	fails.

Worksheets(1).Shapes(2).ControlFormat.RemoveAllItems

RemoveItem	Method
							

Removes	one	or	more	items	from	a	list	box	or	combo	box.

expression.RemoveItem(Index,	Count)

expression			An	expression	that	returns	a	ControlFormat	object.

Index			Required	Long.	The	number	of	the	first	item	to	be	removed.	Valid	values
are	from	1	to	the	number	of	items	in	the	list	(returned	by	the	ListCount
property).

Count			Optional	Variant.	The	number	of	items	to	be	removed,	starting	at	item
Index.	If	this	argument	is	omitted,	one	item	is	removed.	If	Index	+	Count
exceeds	the	number	of	items	in	the	list,	all	items	from	Index	through	the	end	of
the	list	are	removed	without	an	error.

Remarks

If	the	specified	object	has	a	fill	range	defined	for	it,	this	method	fails.

Use	the	RemoveAllItems	method	to	remove	all	entries	from	a	Microsoft	Excel
list	box	or	combo	box.	Use	the	Clear	method	to	remove	all	items	from	an
ActiveX	list	box	or	combo	box.

mk:@MSITStore:fm20.chm::/html/f3mthClear.htm

Example

This	example	removes	the	selected	item	from	a	list	box.	If	Shapes(2)	doesn’t
represent	a	list	box,	this	example	fails.

Set	lbcf	=	Worksheets(1).Shapes(2).ControlFormat

lbcf.RemoveItem	lbcf.ListIndex

RemoveSubtotal	Method
							

Removes	subtotals	from	a	list.

expression.RemoveSubtotal

expression			Required.	An	expression	that	returns	a	Range	object.

Example

This	example	removes	subtotals	from	the	range	A1:G37	on	Sheet1.	The	example
should	be	run	on	a	list	that	has	subtotals.

Worksheets("Sheet1").Range("A1:G37").RemoveSubtotal

RemoveUser	Method
							

Disconnects	the	specified	user	from	the	shared	workbook.

expression.RemoveUser(Index)

expression			Required.	An	expression	that	returns	a	Workbook	object.

Index			Required	Long.	The	user	index.

Example

This	example	disconnects	user	two	from	the	shared	workbook.

Workbooks(2).RemoveUser	2

Repeat	Method
							

Repeats	the	last	user-interface	action.

expression.Repeat

expression			Required.	An	expression	that	returns	an	Application	object.

Remarks

This	method	repeats	only	the	last	action	taken	by	the	user	before	running	the
macro,	and	it	must	be	the	first	line	in	the	macro.	It	cannot	be	used	to	repeat
Visual	Basic	commands.

Example

This	example	repeats	the	last	user-interface	command.	The	example	must	be	the
first	line	in	a	macro.

Application.Repeat

Show	All

Replace	Method
							

Replace	method	as	it	applies	to	the	Range	object.

Returns	a	Boolean	indicating	characters	in	cells	within	the	specified	range.
Using	this	method	doesn’t	change	either	the	selection	or	the	active	cell.

expression.Replace(What,	Replacement,	LookAt,	SearchOrder,	MatchCase,
MatchByte,	SearchFormat,	ReplaceFormat)

expression			Required.	An	expression	that	returns	a	Range	object.

What		Required	Variant.	The	string	you	want	Microsoft	Excel	to	search	for.

Replacement		Required	Variant.		The	replacement	string.

LookAt			Optional	Variant.	Can	be	one	of	the	following	XlLookAt	constants:
xlWhole	or	xlPart.

SearchOrder			Optional	Variant.	Can	be	one	of	the	following	XlSearchOrder
constants:	xlByRows	or	xlByColumns.

MatchCase			Optional	Variant.	True	to	make	the	search	case	sensitive.

MatchByte			Optional	Variant.	You	can	use	this	argument	only	if	you’ve
selected	or	installed	double-byte	language	support	in	Microsoft	Excel.	True	to
have	double-byte	characters	match	only	double-byte	characters.	False	to	have
double-byte	characters	match	their	single-byte	equivalents.

SearchFormat		Optional	Variant.	The	search	format	for	the	method.

ReplaceFormat		Optional	Variant.	The	replace	format	for	the	method.

Remarks

The	settings	for	LookAt,	SearchOrder,	MatchCase,	and	MatchByte	are	saved
each	time	you	use	this	method.	If	you	don’t	specify	values	for	these	arguments
the	next	time	you	call	the	method,	the	saved	values	are	used.	Setting	these
arguments	changes	the	settings	in	the	Find	dialog	box,	and	changing	the	settings
in	the	Find	dialog	box	changes	the	saved	values	that	are	used	if	you	omit	the
arguments.	To	avoid	problems,	set	these	arguments	explicitly	each	time	you	use
this	method.

Replace	method	as	it	applies	to	the	WorksheetFunction	object.

Replaces	part	of	a	text	string,	based	on	the	number	of	characters	you	specify,
with	a	different	text	string.

expression.Replace(Arg1,	Arg2,	Arg3,	Arg4)

expression			Required.	An	expression	that	returns	a	WorksheetFunction	object.

Arg1		Required	String.	Text	in	which	you	want	to	replace	some	characters.

Arg2		Required	Double.	The	position	of	the	character	in	Arg1	that	you	want	to
replace	with	Arg4.

Arg3		Required	Double.	The	number	of	characters	in	Arg1	that	you	want	the
Replace	method	to	replace	with	Arg4.

Arg4		Required	String.	Text	that	will	replace	characters	in	Arg1.

Example

As	it	applies	to	the	Range	object.

This	example	replaces	every	occurrence	of	the	trigonometric	function	SIN	with
the	function	COS.	The	replacement	range	is	column	A	on	Sheet1.

Worksheets("Sheet1").Columns("A").Replace	_

				What:="SIN",	Replacement:="COS",	_

				SearchOrder:=xlByColumns,	MatchCase:=True

As	it	applies	to	the	WorksheetFunction	object.

This	example	replaces	abcdef	with	ac-ef	and	notifies	the	user	during	this
process.

Sub	UseReplace()

				Dim	strCurrent	As	String

				Dim	strReplaced	As	String

				strCurrent	=	"abcdef"

				'	Notify	user	and	display	current	string.

				MsgBox	"The	current	string	is:	"	&	strCurrent

				'	Replace	"cd"	with	"-".

				strReplaced	=	Application.WorksheetFunction.Replace	_

								(Arg1:=strCurrent,	Arg2:=3,	_

								Arg3:=2,	Arg4:="-")

				'	Notify	user	and	display	replaced	string.

				MsgBox	"The	replaced	string	is:	"	&	strReplaced

End	Sub

ReplaceNode	Method
							

Replaces	a	target	diagram	node	with	the	source	diagram	node.	The	target
diagram	node	is	deleted,	and	the	source	diagram	node,	including	any	of	its	child
nodes,	are	moved	to	where	the	target	diagram	node	was.

expression.ReplaceNode(pTargetNode)

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

pTargetNode		Required	DiagramNode	object.	The	target	diagram	node	to	be
replaced.

Example

The	following	example	replaces	the	last	diagram	node	of	a	newly-created
diagram	with	the	second	node.

Sub	ReplaceNode()

				Dim	nodRoot	As	DiagramNode

				Dim	nodPrev	As	DiagramNode

				Dim	shDiagram	As	Shape

				Dim	intCount	As	Integer

				Set	shDiagram	=	ActiveSheet.Shapes.AddDiagram	_

								(Type:=msoDiagramRadial,	Left:=10,	Top:=15,	_

								Width:=400,	Height:=475)

				Set	nodRoot	=	shDiagram.DiagramNode.Children.AddNode

				'	Add	3	child	nodes	to	the	root	node.

				For	intCount	=	1	To	3

								nodRoot.Children.AddNode

				Next

				'	The	second	node	will	replace	the	last	node.

				nodRoot.Children.Item(2).ReplaceNode	pTargetNode:=nodRoot.Diagram.Nodes(4)

				'	The	count	will	be	3	since	the	replaced	node	was	deleted.

				MsgBox	nodRoot.Diagram.Nodes.Count

End	Sub

ReplyWithChanges	Method
							

Sends	an	e-mail	message	to	the	author	of	a	workbook	that	has	been	sent	out	for
review,	notifying	them	that	a	reviewer	has	completed	review	of	the	workbook.

expression.ReplyWithChanges(ShowMessage)

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

ShowMessage		Optional	Variant.	False	does	not	display	the	message.	True
displays	the	message.

Remarks

Use	the	SendForReview	method	to	start	a	collaborative	review	of	a	workbook.
If	the	ReplyWithChanges	method	is	executed	on	a	workbook	that	is	not	part	of
a	collaborative	review	cycle,	the	user	will	receive	an	error.

Example

This	example	automatically	sends	a	notification	to	the	author	of	a	review
workbook	that	a	reviewer	has	completed	a	review,	without	first	displaying	the	e-
mail	message	to	the	reviewer.	This	example	assumes	that	the	active	workbook	is
part	of	a	collaborative	review	cycle.

Sub	ReplyMsg()

				ActiveWorkbook.ReplyWithChanges	ShowMessage:=False

End	Sub

RerouteConnections	Method
							

Reroutes	connectors	so	that	they	take	the	shortest	possible	path	between	the
shapes	they	connect.	To	do	this,	the	RerouteConnections	method	may	detach
the	ends	of	a	connector	and	reattach	them	to	different	connecting	sites	on	the
connected	shapes.

This	method	reroutes	all	connectors	attached	to	the	specified	shape;	if	the
specified	shape	is	a	connector,	it’s	rerouted.

expression.RerouteConnections

expression			Required.	An	expression	that	returns	a	Shape	or	ShapeRange
object.

Remarks

If	this	method	is	applied	to	a	connector,	only	that	connector	will	be	rerouted.	If
this	method	is	applied	to	a	connected	shape,	all	connectors	to	that	shape	will	be
rerouted.

Example

This	example	adds	two	rectangles	to	myDocument,	connects	them	with	a	curved
connector,	and	then	reroutes	the	connector	so	that	it	takes	the	shortest	possible
path	between	the	two	rectangles.	Note	that	the	RerouteConnections	method
adjusts	the	size	and	position	of	the	connector	and	determines	which	connecting
sites	it	attaches	to,	so	the	values	you	initially	specify	for	the	ConnectionSite
arguments	used	with	the	BeginConnect	and	EndConnect	methods	are
irrelevant.

Set	myDocument	=	Worksheets(1)

Set	s	=	myDocument.Shapes

Set	firstRect	=	s.AddShape(msoShapeRectangle,	_

				100,	50,	200,	100)

Set	secondRect	=	s.AddShape(msoShapeRectangle,	_

				300,	300,	200,	100)

Set	newConnector	=	s.AddConnector(msoConnectorCurve,	_

				0,	0,	100,	100)

With	newConnector.ConnectorFormat

				.BeginConnect	firstRect,	1

				.EndConnect	secondRect,	1

End	With

newConnector.RerouteConnections

Reset	Method
							

Resets	the	routing	slip	so	that	a	new	routing	can	be	initiated	with	the	same	slip
(using	the	same	recipient	list	and	delivery	information).	The	routing	must	be
completed	before	you	use	this	method.	Using	this	method	at	other	times	causes
an	error.

expression.Reset

expression			Required.	An	expression	that	returns	a	RoutingSlip	object.

Example

This	example	resets	the	routing	slip	for	Book1.xls	if	routing	has	been	completed.

With	Workbooks("BOOK1.XLS").RoutingSlip

				If	.Status	=	xlRoutingComplete	Then

								.Reset

				Else

								MsgBox	"Cannot	reset	routing;	not	yet	complete"

				End	If

End	With

ResetAllPageBreaks	Method
							

Resets	all	page	breaks	on	the	specified	worksheet.

expression.ResetAllPageBreaks()

expression			Required.	An	expression	that	returns	a	Worksheet	object.

Example

This	example	resets	all	page	breaks	on	worksheet	one.

Worksheets(1).ResetAllPageBreaks

ResetColors	Method
							

Resets	the	color	palette	to	the	default	colors.

expression.ResetColors

expression			Required.	An	expression	that	returns	a	Workbook	object.

Example

This	example	resets	the	color	palette	in	the	active	workbook.

ActiveWorkbook.ResetColors

ResetRotation	Method
							

Resets	the	extrusion	rotation	around	the	x-axis	and	the	y-axis	to	0	(zero)	so	that
the	front	of	the	extrusion	faces	forward.	This	method	doesn’t	reset	the	rotation
around	the	z-axis.

expression.ResetRotation

expression			Required.	An	expression	that	returns	a	ThreeDFormat	object.

Remarks

To	set	the	extrusion	rotation	around	the	x-axis	and	the	y-axis	to	anything	other
than	0	(zero),	use	the	RotationX	and	RotationY	properties	of	the
ThreeDFormat	object.	To	set	the	extrusion	rotation	around	the	z-axis,	use	the
Rotation	property	of	the	Shape	object	that	represents	the	extruded	shape.

Example

This	example	resets	the	rotation	around	the	x-axis	and	the	y-axis	to	0	(zero)	for
the	extrusion	of	shape	one	on	myDocument.

Set	myDocument	=	Worksheets(1)

myDocument.Shapes(1).ThreeD.ResetRotation

ResetTimer	Method
							

Resets	the	refresh	timer	for	the	specified	query	table	or	PivotTable	report	to	the
last	interval	you	set	using	the	RefreshPeriod	property.

expression.ResetTimer

expression			An	expression	that	returns	a	PivotCache	or	QueryTable	object.

Example

This	example	resets	the	refresh	timer	for	the	first	query	table	on	the	active
worksheet.

ActiveSheet.QueryTables(1).ResetTimer

RestartServers	Method
							

Reconnects	to	servers	for	real-time	data.

expression.RestartServers

expression			Required.	An	expression	that	returns	an	RTD	object.

Remarks

Pressing	F2+ENTER	will	not	attempt	to	restart	a	server	when	disconnected.

Route	Method
							

Routes	the	workbook,	using	the	workbook's	current	routing	slip.

expression.Route

expression			Required.	An	expression	that	returns	a	Workbook	object.

Remarks

Routing	a	workbook	sets	the	Routed	property	to	True.

Example

This	example	creates	a	routing	slip	for	Book1.xls	and	then	sends	the	workbook
to	three	recipients,	one	after	another.

Workbooks("BOOK1.XLS").HasRoutingSlip	=	True

With	Workbooks("BOOK1.XLS").RoutingSlip

				.Delivery	=	xlOneAfterAnother

				.Recipients	=	Array("Adam	Bendel",	_

								"Jean	Selva",	"Bernard	Gabor")

				.Subject	=	"Here	is	BOOK1.XLS"

				.Message	=	"Here	is	the	workbook.	What	do	you	think?"

End	With

Workbooks("BOOK1.XLS").Route

RowDifferences	Method
							

Returns	a	Range	object	that	represents	all	the	cells	whose	contents	are	different
from	those	of	the	comparison	cell	in	each	row.

expression.RowDifferences(Comparison)

expression			Required.	An	expression	that	returns	a	range	containing	the	cells	to
be	compared.

Comparison			Required	Variant.	A	single	cell	to	compare	with	the	specified
range.

Example

This	example	selects	the	cells	in	row	one	on	Sheet1	whose	contents	are	different
from	those	of	cell	D1.

Worksheets("Sheet1").Activate

Set	c1	=	ActiveSheet.Rows(1).RowDifferences(_

				comparison:=ActiveSheet.Range("D1"))

c1.Select

Show	All

RTD	Method

							

This	method	connects	to	a	source	to	receive	real-time	data.

expression.RTD	(progID,	server,	topic1,	topic2,	topic3,	topic4,	topic5,	topic6,	topic7,	topic8,
topic9,	topic10,	topic11,	topic12,	topic13,	topic14,	topic15,	topic16,	topic17,	topic18,
topic19,	topic20,	topic21,	topic22,	topic23,	topic24,	topic25,	topic26,	topic27,	topic28)

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the	Applies	To	list.

progID		Required	Variant.	A	string	representing	the	real-time	server	programmatic	identifier.

server		Required	Variant.	A	server	name,	Null	string	or	vbNullString	constant.

topic1		Required	Variant.	A	String	representing	a	topic.

topic2-topic28		Optional	Variant.	A	String	representing	a	topic.

Remarks

The	server	argument	is	required	in	Visual	Basic	for	Applications	(VBA),	even	though	it	can	be
omitted	within	a	worksheet.

Show	All

Run	Method
							

Run	method	as	it	applies	to	the	Range	object.

Runs	the	Microsoft	Excel	macro	at	this	location.	The	range	must	be	on	a	macro
sheet.

expression.Run(Arg1,	Arg2,	Arg3,	Arg4,	Arg5,	Arg6,	Arg7,	Arg8,	Arg9,	Arg10,
Arg11,	Arg12,	Arg13,	Arg14,	Arg15,	Arg16,	Arg17,	Arg18,	Arg19,	Arg20,
Arg21,	Arg22,	Arg23,	Arg24,	Arg25,	Arg26,	Arg27,	Arg28,	Arg29,	Arg30)

expression			Required.	An	expression	that	returns	a	Range	object.

Arg1-Arg30		Optional	Variant.	The	arguments	that	should	be	passed	to	the
function.

Run	method	as	it	applies	to	the	Application	object.

Runs	a	macro	or	calls	a	function.	This	can	be	used	to	run	a	macro	written	in
Visual	Basic	or	the	Microsoft	Excel	macro	language,	or	to	run	a	function	in	a
DLL	or	XLL.

expression.Run(Macro,	Arg1,	Arg2,	Arg3,	Arg4,	Arg5,	Arg6,	Arg7,	Arg8,
Arg9,	Arg10,	Arg11,	Arg12,	Arg13,	Arg14,	Arg15,	Arg16,	Arg17,	Arg18,
Arg19,	Arg20,	Arg21,	Arg22,	Arg23,	Arg24,	Arg25,	Arg26,	Arg27,	Arg28,
Arg29,	Arg30)

expression			Required.	An	expression	that	returns	an	Application	object.

Macro		Optional	Variant.	The	macro	to	run.	This	can	be	either	a	string	with	the
macro	name,	a	Range	object	indicating	where	the	function	is,	or	a	register	ID	for
a	registered	DLL	(XLL)	function.	If	a	string	is	used,	the	string	will	be	evaluated
in	the	context	of	the	active	sheet.

Arg1-Arg30		Optional	Variant.	The	arguments	that	should	be	passed	to	the
function.

Remarks

You	cannot	use	named	arguments	with	this	method.	Arguments	must	be	passed
by	position.

The	Run	method	returns	whatever	the	called	macro	returns.	Objects	passed	as
arguments	to	the	macro	are	converted	to	values	(by	applying	the	Value	property
to	the	object).	This	means	that	you	cannot	pass	objects	to	macros	by	using	the
Run	method.

Example

This	example	shows	how	to	call	the	function	macro	My_Func_Sum,	which	is
defined	on	the	macro	sheet	Mycustom.xlm	(the	macro	sheet	must	be	open).	The
function	takes	two	numeric	arguments	(1	and	5,	in	this	example).

mySum	=	Application.Run("MYCUSTOM.XLM!My_Func_Sum",	1,	5)

MsgBox	"Macro	result:	"	&	mySum

RunAutoMacros	Method
							

Runs	the	Auto_Open,	Auto_Close,	Auto_Activate,	or	Auto_Deactivate	macro
attached	to	the	workbook.	This	method	is	included	for	backward	compatibility.
For	new	Visual	Basic	code,	you	should	use	the	Open,	Close,	Activate	and
Deactivate	events	instead	of	these	macros.

expression.RunAutoMacros(Which)

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

Which		Required	XlRunAutoMacro.

XlRunAutoMacro	can	be	one	of	these	XlRunAutoMacro	constants.
xlAutoActivate.	Auto_Activate	macros
xlAutoClose.	Auto_Close	macros
xlAutoDeactivate.	Auto_Deactivate	macros
xlAutoOpen.	Auto_Open	macros

Example

This	example	opens	the	workbook	Analysis.xls	and	then	runs	its	Auto_Open
macro.

Workbooks.Open	"ANALYSIS.XLS"

ActiveWorkbook.RunAutoMacros	xlAutoOpen

This	example	runs	the	Auto_Close	macro	for	the	active	workbook	and	then
closes	the	workbook.

With	ActiveWorkbook

				.RunAutoMacros	xlAutoClose

				.Close

End	With

Save	Method
							

Saves	changes	to	the	specified	workbook.

expression.Save

expression			Required.	An	expression	that	returns	a	Workbook	object.

Remarks

To	open	a	workbook	file,	use	the	Open	method.

To	mark	a	workbook	as	saved	without	writing	it	to	a	disk,	set	its	Saved	property
to	True.

The	first	time	you	save	a	workbook,	use	the	SaveAs	method	to	specify	a	name
for	the	file.

Example

This	example	saves	the	active	workbook.

ActiveWorkbook.Save

This	example	saves	all	open	workbooks	and	then	closes	Microsoft	Excel.

For	Each	w	In	Application.Workbooks

				w.Save

Next	w

Application.Quit

Show	All

SaveAs	Method
							

SaveAs	method	as	it	applies	to	the	Chart	and	Worksheet	objects.

Saves	changes	to	the	chart	or	worksheet	in	a	different	file.

expression.SaveAs(FileName,	FileFormat,	Password,	WriteResPassword,
ReadOnlyRecommended,	CreateBackup,	AddToMru,	TextCodepage,
TextVisualLayout,	Local)

expression			Required.	An	expression	that	returns	one	of	the	above	objects.

Filename			Optional	Variant.	A	string	that	indicates	the	name	of	the	file	to	be
saved.	You	can	include	a	full	path;	if	you	don't,	Microsoft	Excel	saves	the	file	in
the	current	folder.

FileFormat			Optional	Variant.	The	file	format	to	use	when	you	save	the	file.
For	a	list	of	valid	choices,	see	the	FileFormat	property.	For	an	existing	file,	the
default	format	is	the	last	file	format	specified;	for	a	new	file,	the	default	is	the
format	of	the	version	of	Excel	being	used.

Password			Optional	Variant.	A	case-sensitive	string	(no	more	than	15
characters)	that	indicates	the	protection	password	to	be	given	to	the	file.

WriteResPassword			Optional	Variant.	A	string	that	indicates	the	write-
reservation	password	for	this	file.	If	a	file	is	saved	with	the	password	and	the
password	isn't	supplied	when	the	file	is	opened,	the	file	is	opened	as	read-only.

ReadOnlyRecommended			Optional	Variant.	True	to	display	a	message	when
the	file	is	opened,	recommending	that	the	file	be	opened	as	read-only.

CreateBackup			Optional	Variant.	True	to	create	a	backup	file.

AddToMru			Optional	Variant.	True	to	add	this	workbook	to	the	list	of	recently
used	files.	The	default	value	is	False.

TextCodePage			Optional	Variant.	Not	used	in	U.S.	English	Microsoft	Excel.

TextVisualLayout			Optional	Variant.	Not	used	in	U.S.	English	Microsoft	Excel.

Local		Optional	Variant.	True	saves	files	against	the	language	of	Microsoft
Excel	(including	control	panel	settings).	False	(default)	saves	files	against	the
language	of	Visual	Basic	for	Applications	(VBA)	(which	is	typically	US	English
unless	the	VBA	project	where	Workbooks.Open	is	run	from	is	an	old
internationalized	XL5/95	VBA	project).

	

SaveAs	method	as	it	applies	to	the	Workbook	object.

Saves	changes	to	the	workbook	in	a	different	file.

expression.SaveAs(FileName,	FileFormat,	Password,	WriteResPassword,
ReadOnlyRecommended,	CreateBackup,	AccessMode,	ConflictResolution,
AddToMru,	TextCodepage,	TextVisualLayout,	Local)

expression			Required.	An	expression	that	returns	one	of	the	above	objects.

Filename			Optional	Variant.	A	string	that	indicates	the	name	of	the	file	to	be
saved.	You	can	include	a	full	path;	if	you	don't,	Microsoft	Excel	saves	the	file	in
the	current	folder.

FileFormat			Optional	Variant.	The	file	format	to	use	when	you	save	the	file.
For	a	list	of	valid	choices,	see	the	FileFormat	property.	For	an	existing	file,	the
default	format	is	the	last	file	format	specified;	for	a	new	file,	the	default	is	the
format	of	the	version	of	Excel	being	used.

Password			Optional	Variant.	A	case-sensitive	string	(no	more	than	15
characters)	that	indicates	the	protection	password	to	be	given	to	the	file.

WriteResPassword			Optional	Variant.	A	string	that	indicates	the	write-
reservation	password	for	this	file.	If	a	file	is	saved	with	the	password	and	the
password	isn't	supplied	when	the	file	is	opened,	the	file	is	opened	as	read-only.

ReadOnlyRecommended			Optional	Variant.	True	to	display	a	message	when
the	file	is	opened,	recommending	that	the	file	be	opened	as	read-only.

CreateBackup			Optional	Variant.	True	to	create	a	backup	file.

AccessMode		Optional	XlSaveAsAccessMode.

XlSaveAsAccessMode	can	be	one	of	these	XlSaveAsAccessMode	constants.
xlExclusive		(exclusive	mode)
xlNoChange	default		(don't	change	the	access	mode)
xlShared		(share	list)

If	this	argument	is	omitted,	the	access	mode	isn't	changed.	This	argument	is
ignored	if	you	save	a	shared	list	without	changing	the	file	name.	To	change	the
access	mode,	use	the	ExclusiveAccess	method.

ConflictResolution			Optional	XlSaveConflictResolution.

XlSaveConflictResolution	can	be	one	of	these	XlSaveConflictResolution
constants.
xlUserResolution		(display	the	conflict-resolution	dialog	box)
xlLocalSessionChanges	(automatically	accept	the	local	user's	changes)
xlOtherSessionChanges		(accept	other	changes	instead	of	the	local	user's
changes)

If	this	argument	is	omitted,	the	conflict-resolution	dialog	box	is	displayed.

AddToMru			Optional	Variant.	True	to	add	this	workbook	to	the	list	of	recently
used	files.	The	default	value	is	False.

TextCodePage			Optional	Variant.	Not	used	in	U.S.	English	Microsoft	Excel.

TextVisualLayout			Optional	Variant.	Not	used	in	U.S.	English	Microsoft	Excel.

Local		Optional	Variant.	True	saves	files	against	the	language	of	Microsoft
Excel	(including	control	panel	settings).	False	(default)	saves	files	against	the
language	of	Visual	Basic	for	Applications	(VBA)	(which	is	typically	US	English
unless	the	VBA	project	where	Workbooks.Open	is	run	from	is	an	old
internationalized	XL5/95	VBA	project).

Example

This	example	creates	a	new	workbook,	prompts	the	user	for	a	file	name,	and
then	saves	the	workbook.

Set	NewBook	=	Workbooks.Add

Do

				fName	=	Application.GetSaveAsFilename

Loop	Until	fName	<>	False

NewBook.SaveAs	Filename:=fName

SaveAsODC	Method
							

Saves	the	PivotTable	cache	source	as	an	Microsoft	Office	Data	Connection	file.

expression.SaveAsODC(ODCFileName,	Description,	Keywords)

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

ODCFileName		Required	String.	Location	to	save	the	file.

Description		Optional	Variant.	Description	that	will	be	saved	in	the	file.

Keywords		Optional	Variant.	Space-separated	keywords	that	can	be	used	to
search	for	this	file.

Example

The	following	example	saves	the	cache	source	as	an	ODC	file	titled	"ODCFile".
This	example	assumes	a	PivotTable	cache	exists	on	the	active	worksheet.

Sub	UseSaveAsODC()

				Application.ActiveWorkbook.PivotCaches.Item(1).SaveAsODC	("ODCFile")

End	Sub

SaveCopyAs	Method
							

Saves	a	copy	of	the	workbook	to	a	file	but	doesn't	modify	the	open	workbook	in
memory.

expression.SaveCopyAs(Filename)

expression			Required.	An	expression	that	returns	a	Workbook	object.

Filename			Required.	Specifies	the	file	name	for	the	copy.

Example

This	example	saves	a	copy	of	the	active	workbook.

ActiveWorkbook.SaveCopyAs	"C:\TEMP\XXXX.XLS"

SaveWorkspace	Method
							

Saves	the	current	workspace.

expression.SaveWorkspace(Filename)

expression			Required.	An	expression	that	returns	an	Application	object.

Filename			Optional	Variant.	The	saved	file	name.

Example

This	example	saves	the	current	workspace	as	"saved	workspace.xlw".

Application.SaveWorkspace	"saved	workspace"

Show	All

ScaleHeight	Method
							

Scales	the	height	of	the	shape	by	a	specified	factor.	For	pictures	and	OLE
objects,	you	can	indicate	whether	you	want	to	scale	the	shape	relative	to	the
original	or	the	current	size.	Shapes	other	than	pictures	and	OLE	objects	are
always	scaled	relative	to	their	current	height.

expression.ScaleHeight(Factor,	RelativeToOriginalSize,	Scale)

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

Factor		Required	Single.	Specifies	the	ratio	between	the	height	of	the	shape	after
you	resize	it	and	the	current	or	original	height.	For	example,	to	make	a	rectangle
50	percent	larger,	specify	1.5	for	this	argument.

RelativeToOriginalSize		Required	MsoTriState.	msoTrue	to	scale	the	shape
relative	to	its	original	size.	msoFalse	to	scale	it	relative	to	its	current	size.	You
can	specify	msoTrue	for	this	argument	only	if	the	specified	shape	is	a	picture	or
an	OLE	object.

MsoTriState	can	be	one	of	these	MsoTriState	constants.
msoCTrue		Does	not	apply	to	this	property.
msoFalse		Scale	the	shape	relative	to	its	current	size.
msoTriStateMixed		Does	not	apply	to	this	property.
msoTriStateToggle		Does	not	apply	to	this	property.
msoTrue		Scale	the	shape	relative	to	its	original	size.

Scale		Optional	MsoScaleFrom.	Specifies	which	part	of	the	shape	retains	its
position	when	the	shape	is	scaled.

MsoScaleFrom	can	be	one	of	these	MsoScaleFrom	constants.
msoScaleFromBottomRight
msoScaleFromMiddle

msomsoScaleFromTopLeft		default

Example

This	example	scales	all	pictures	and	OLE	objects	on	myDocument	to	175	percent
of	their	original	height	and	width,	and	it	scales	all	other	shapes	to	175	percent	of
their	current	height	and	width.

Set	myDocument	=	Worksheets(1)

For	Each	s	In	myDocument.Shapes

				Select	Case	s.Type

				Case	msoEmbeddedOLEObject,	_

												msoLinkedOLEObject,	_

												msoOLEControlObject,	_

												msoLinkedPicture,	msoPicture

								s.ScaleHeight	1.75,	msoTrue

								s.ScaleWidth	1.75,	msoTrue

				Case	Else

								s.ScaleHeight	1.75,	msoFalse

								s.ScaleWidth	1.75,	msoFalse

				End	Select

Next

Show	All

ScaleWidth	Method
							

Scales	the	width	of	the	shape	by	a	specified	factor.	For	pictures	and	OLE	objects,
you	can	indicate	whether	you	want	to	scale	the	shape	relative	to	the	original	or
the	current	size.	Shapes	other	than	pictures	and	OLE	objects	are	always	scaled
relative	to	their	current	width.

expression.ScaleWidth(Factor,	RelativeToOriginalSize,	Scale)

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

Factor		Required	Single.	Specifies	the	ratio	between	the	width	of	the	shape	after
you	resize	it	and	the	current	or	original	width.	For	example,	to	make	a	rectangle
50	percent	larger,	specify	1.5	for	this	argument.

RelativeToOriginalSize		Required	MsoTriState.		False	to	scale	it	relative	to	its
current	size.	You	can	specify	True	for	this	argument	only	if	the	specified	shape
is	a	picture	or	an	OLE	object.

MsoTriState	can	be	one	of	these	MsoTriState	constants.
msoCTrue		Does	not	apply	to	this	property.
msoFalse		To	scale	it	relative	to	its	current	size.
msoTriStateMixed		Does	not	apply	to	this	property.
msoTriStateToggle		Does	not	apply	to	this	property.
msoTrue		Can	only	use	this	argument	if	the	specified	shape	is	a	picture	or	an
OLE	object.

Scale			Optional	MsoScaleFrom.		Specifies	which	part	of	the	shape	retains	its
position	when	the	shape	is	scaled.

MsoScaleFrom	can	be	one	of	these	MsoScaleFrom	constants.
msoScaleFromBottomRight
msoScaleFromMiddle

msoScaleFromTopLeft		default

Example

This	example	scales	all	pictures	and	OLE	objects	on	myDocument	to	175	percent
of	their	original	height	and	width,	and	it	scales	all	other	shapes	to	175	percent	of
their	current	height	and	width.

Set	myDocument	=	Worksheets(1)

For	Each	s	In	myDocument.Shapes

				Select	Case	s.Type

				Case	msoEmbeddedOLEObject,	_

												msoLinkedOLEObject,	_

												msoOLEControlObject,	_

												msoLinkedPicture,	msoPicture

								s.ScaleHeight	1.75,	msoTrue

								s.ScaleWidth	1.75,	,msoTrue

				Case	Else

								s.ScaleHeight	1.75,	msoFalse

								s.ScaleWidth	1.75,	msoFalse

				End	Select

Next

Scenarios	Method
							

Returns	an	object	that	represents	either	a	single	scenario	(a	Scenario	object)	or	a
collection	of	scenarios	(a	Scenarios	object)	on	the	worksheet.

expression.Scenarios(Index)

expression			Required.	An	expression	that	returns	a	Worksheet	object.

Index			Optional	Variant.	The	name	or	number	of	the	scenario.	Use	an	array	to
specify	more	than	one	scenario.

Example

This	example	sets	the	comment	for	the	first	scenario	on	Sheet1.

Worksheets("Sheet1").Scenarios(1).Comment	=	_

				"Worst-case	July	1993	sales"

ScrollIntoView	Method
							

Scrolls	the	document	window	so	that	the	contents	of	a	specified	rectangular	area
are	displayed	in	either	the	upper-left	or	lower-right	corner	of	the	document
window	or	pane	(depending	on	the	value	of	the	Start	argument).

expression.ScrollIntoView(Left,	Top,	Width,	Height,	Start)

expression			An	expression	that	returns	a	Pane	or	Window	object.

Left			Required	Long.	The	horizontal	position	of	the	rectangle	(in	points)	from
the	left	edge	of	the	document	window	or	pane.

Top			Required	Long.	The	vertical	position	of	the	rectangle	(in	points)	from	the
top	of	the	document	window	or	pane.

Width			Required	Long.	The	width	of	the	rectangle,	in	points.

Height			Required	Long.	The	height	of	the	rectangle,	in	points.

Start			Optional	Variant.	True	to	have	the	upper-left	corner	of	the	rectangle
appear	in	the	upper-left	corner	of	the	document	window	or	pane.	False	to	have
the	lower-right	corner	of	the	rectangle	appear	in	the	lower-right	corner	of	the
document	window	or	pane.	The	default	value	is	True.

Remarks

The	Start	argument	is	useful	for	orienting	the	screen	display	when	the	rectangle
is	larger	than	the	document	window	or	pane.

Example

This	example	defines	a	100-by-200-pixel	rectangle	in	the	active	document
window,	positioned	20	pixels	from	the	top	of	the	window	and	50	pixels	from	the
left	edge	of	the	window.The	example	then	scrolls	the	document	up	and	to	the	left
so	that	the	upper-left	corner	of	the	rectangle	is	aligned	with	the	upper-left	corner
of	the	window.

ActiveWindow.ScrollIntoView	_

				Left:=50,	Top:=20,	_

				Width:=100,	Height:=200

ScrollWorkbookTabs	Method
							

Scrolls	through	the	workbook	tabs	at	the	bottom	of	the	window.	Doesn't	affect
the	active	sheet	in	the	workbook.

expression.ScrollWorkbookTabs(Sheets,	Position)

expression			Required.	An	expression	that	returns	a	Window	object.

Sheets			Optional	Variant.	The	number	of	sheets	to	scroll	by.	Use	a	positive
number	to	scroll	forward,	a	negative	number	to	scroll	backward,	or	0	(zero)	to
not	scroll	at	all.	You	must	specify	Sheets	if	you	don't	specify	Position.

Position			Optional	Variant.	Use	xlFirst	to	scroll	to	the	first	sheet,	or	use	xlLast
to	scroll	to	the	last	sheet.	You	must	specify	Position	if	you	don't	specify	Sheets.

Example

This	example	scrolls	through	the	workbook	tabs	to	the	last	sheet	in	the
workbook.

ActiveWindow.ScrollWorkbookTabs	position:=xlLast

Show	All

Select	Method
							

Select	method	as	it	applies	to	the	ChartObject,	ChartObjects,	OLEObject,
and	OLEObjects	objects.

Selects	the	object.

expression.Select(Replace)

expression			Required.	An	expression	that	returns	one	of	the	above	objects.

Replace		Optional	Variant.	True	to	replace	the	current	selection	with	the
specified	object.	False	to	extend	the	current	selection	to	include	any	previously
selected	objects	and	the	specified	object.

Select	method	as	it	applies	to	the	DataTable	and	LeaderLines	objects.

Selects	the	object.

expression.Select

expression			Required.	An	expression	that	returns	one	of	the	above	objects.

Select	method	as	it	applies	to	the	Chart,	Charts,	Shape,	ShapeRange,
Sheets,	Worksheet,	and	Worksheets	objects.

Selects	the	object.

expression.Select(Replace)

expression			Required.	An	expression	that	returns	one	of	the	above	objects.

Replace		Optional	Variant.	The	object	to	replace.

Select	method	as	it	applies	to	all	other	objects	in	the	Applies	To	list.

Selects	the	object.

expression.Select

expression			Required.	An	expression	that	returns	all	other	objects	in	the	Applies
To	list.

Remarks

To	select	a	cell	or	a	range	of	cells,	use	the	Select	method.	To	make	a	single	cell
the	active	cell,	use	the	Activate	method.

Example

This	example	selects	cells	A1:B3	on	Sheet1.

Worksheets("Sheet1").Activate

Range("A1:B3").Select

SelectAll	Method
							

Selects	all	the	shapes	in	the	specified	CanvasShapes,	DiagramNodeChildren,
DiagramNodes,	or	Shapes	collection.

expression.SelectAll

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

Example

This	example	selects	all	the	shapes	on	myDocument	and	creates	a	ShapeRange
collection	containing	all	the	shapes.

Set	myDocument	=	Worksheets(1)

myDocument.Shapes.SelectAll

Set	sr	=	Selection.ShapeRange

SendForReview	Method
							

Sends	a	workbook	in	an	e-mail	message	for	review	to	the	specified	recipients.

expression.SendForReview(Recipients,	Subject,	ShowMessage,
IncludeAttachment)

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

Recipients		Optional	Variant.	A	string	that	lists	the	people	to	whom	to	send	the
message.	These	can	be	unresolved	names	and	aliases	in	an	e-mail	phone	book	or
full	e-mail	addresses.	Separate	multiple	recipients	with	a	semicolon	(;).	If	left
blank	and	ShowMessage	is	False,	you	will	receive	an	error	message,	and	the
message	will	not	be	sent.

Subject		Optional	Variant.	A	string	for	the	subject	of	the	message.	If	left	blank,
the	subject	will	be:		Please	review	"filename".

ShowMessage		Optional	Variant.	A	Boolean	value	that	indicates	whether	the
message	should	be	displayed	when	the	method	is	executed.	The	default	value	is
True.	If	set	to	False,	the	message	is	automatically	sent	to	the	recipients	without
first	showing	the	message	to	the	sender.

IncludeAttachment		Optional	Variant.	A	Boolean	value	that	indicates	whether
the	message	should	include	an	attachment	or	a	link	to	a	server	location.	The
default	value	is	True.	If	set	to	False,	the	document	must	be	stored	at	a	shared
location.

Remarks

The	SendForReview	method	starts	a	collaborative	review	cycle.		Use	the
EndReview	method	to	end	a	review	cycle.

Example

This	example	automatically	sends	the	active	workbook	as	an	attachment	in	an	e-
mail	message	to	the	specified	recipients.

Sub	WebReview()

				ActiveWorkbook.SendForReview	_

								Recipients:="someone@microsoft.com;	amy	jones;	lewjudy",	_

								Subject:="Please	review	this	document.",	_

								ShowMessage:=False,	_

								IncludeAttachment:=True

End	Sub

SendKeys	Method
							

Sends	keystrokes	to	the	active	application.

expression.SendKeys(Keys,	Wait)

expression			Optional.	An	expression	that	returns	an	Application	object.

Keys			Required	Variant.	The	key	or	key	combination	you	want	to	send	to	the
application,	as	text.

Wait			Optional	Variant.	True	to	have	Microsoft	Excel	wait	for	the	keys	to	be
processed	before	returning	control	to	the	macro.	False	(or	omitted)	to	continue
running	the	macro	without	waiting	for	the	keys	to	be	processed.

Remarks

This	method	places	keystrokes	in	a	key	buffer.	In	some	cases,	you	must	call	this
method	before	you	call	the	method	that	will	use	the	keystrokes.	For	example,	to
send	a	password	to	a	dialog	box,	you	must	call	the	SendKeys	method	before	you
display	the	dialog	box.

The	Keys	argument	can	specify	any	single	key	or	any	key	combined	with	ALT,
CTRL,	or	SHIFT	(or	any	combination	of	those	keys).	Each	key	is	represented	by
one	or	more	characters,	such	as	"a"	for	the	character	a,	or	"{ENTER}"	for	the
ENTER	key.

To	specify	characters	that	aren't	displayed	when	you	press	the	corresponding	key
(for	example,	ENTER	or	TAB),	use	the	codes	listed	in	the	following	table.	Each
code	in	the	table	represents	one	key	on	the	keyboard.

Key Code
BACKSPACE {BACKSPACE}	or	{BS}
BREAK {BREAK}

CAPS	LOCK {CAPSLOCK}

CLEAR {CLEAR}

DELETE	or	DEL {DELETE}	or	{DEL}
DOWN	ARROW {DOWN}

END {END}

ENTER	(numeric	keypad) {ENTER}
ENTER ~	(tilde)
ESC {ESCAPE}	or	{ESC}
HELP {HELP}

HOME {HOME}

INS {INSERT}

LEFT	ARROW {LEFT}

NUM	LOCK {NUMLOCK}

PAGE	DOWN {PGDN}

PAGE	UP {PGUP}

RETURN {RETURN}

RIGHT	ARROW {RIGHT}

SCROLL	LOCK {SCROLLLOCK}

TAB {TAB}

UP	ARROW {UP}

F1	through	F15 {F1}	through	{F15}

You	can	also	specify	keys	combined	with	SHIFT	and/or	CTRL	and/or	ALT.	To
specify	a	key	combined	with	another	key	or	keys,	use	the	following	table.

To	combine	a	key	with Precede	the	key	code	with
SHIFT +	(plus	sign)
CTRL ^	(caret)
ALT %	(percent	sign)

Example

This	example	uses	the	SendKeys	method	to	quit	Microsoft	Excel.

Application.SendKeys("%fx")

SendMail	Method
							

Sends	the	workbook	by	using	the	installed	mail	system.

expression.SendMail(Recipients,	Subject,	ReturnReceipt)

expression			Required.	An	expression	that	returns	a	Workbook	object.

Recipients			Required	Variant.	Specifies	the	name	of	the	recipient	as	text,	or	as
an	array	of	text	strings	if	there	are	multiple	recipients.	At	least	one	recipient
must	be	specified,	and	all	recipients	are	added	as	To	recipients.

Subject			Optional	Variant.	Specifies	the	subject	of	the	message.	If	this
argument	is	omitted,	the	document	name	is	used.

ReturnReceipt			Optional	Variant.	True	to	request	a	return	receipt.	False	to	not
request	a	return	receipt.	The	default	value	is	False.

Example

This	example	sends	the	active	workbook	to	a	single	recipient.

ActiveWorkbook.SendMail	recipients:="Jean	Selva"

SendToBack	Method
							

Sends	the	object	to	the	back	of	the	z-order.

expression.SendToBack

expression			Required.	An	expression	that	returns	an	object	in	the	Applies	To	list.

Example

This	example	sends	embedded	chart	one	on	Sheet1	to	the	back	of	the	z-order.

Worksheets("Sheet1").ChartObjects(1).SendToBack

SeriesCollection	Method
							

Returns	an	object	that	represents	either	a	single	series	(a	Series	object)	or	a
collection	of	all	the	series	(a	SeriesCollection	collection)	in	the	chart	or	chart
group.

expression.SeriesCollection(Index)

expression			Required.	An	expression	that	returns	a	Chart	or	ChartGroup
object.

Index			Optional	Variant.	The	name	or	number	of	the	series.

Example

This	example	turns	on	data	labels	for	series	one	in	Chart1.

Charts("Chart1").SeriesCollection(1).HasDataLabels	=	True

ServerStart	Method
							

The	ServerStart	method	is	called	immediately	after	a	real-time	data	server	is
instantiated.	Returns	a	Long;	negative	value	or	zero	indicates	failure	to	start	the
server;	positive	value	indicates	success.

expression.ServerStart(CallbackObject)

expression			Required.	An	expression	that	returns	an	IRtdServer	object.

CallbackObject		Required	IRTDUpdateEvent	object.	The	callback	object.

ServerTerminate	Method
							

Terminates	the	connection	to	the	real-time	data	server.

expression.ServerTerminate

expression			Required.	An	expression	that	returns	an	IRtdServer	object.

SetBackgroundPicture	Method
							

Sets	the	background	graphic	for	a	worksheet	or	chart.

expression.SetBackgroundPicture(FileName)

expression			Required.	An	expression	that	returns	a	Worksheet	or	Chart	object.

FileName			Required	String.	The	name	of	the	graphic	file.

Example

This	example	sets	the	background	graphic	for	worksheet	one.

Worksheets(1).SetBackgroundPicture	"c:\graphics\watermark.gif"

This	keyword	is	not	implemented.	It	is	reserved	for	future	use.

SetDefaultChart	Method
							

Specifies	the	name	of	the	chart	template	that	Microsoft	Excel	will	use	when
creating	new	charts.

expression.SetDefaultChart(FormatName)

expression			Required.	An	expression	that	returns	an	Application	object.

FormatName				Optional	Variant.	Specifies	the	name	of	a	custom	autoformat.
This	name	can	be	a	string	naming	a	custom	autoformat,	or	it	can	be	the	special
constant	xlBuiltIn	to	specify	the	built-in	chart	template.

Example

This	example	sets	the	default	chart	template	to	the	custom	autoformat	named
"Monthly	Sales."

Application.SetDefaultChart	FormatName:="Monthly	Sales"

SetEditingType	Method
							

Sets	the	editing	type	of	the	node	specified	by	Index.	If	the	node	is	a	control	point
for	a	curved	segment,	this	method	sets	the	editing	type	of	the	node	adjacent	to	it
that	joins	two	segments.	Note	that,	depending	on	the	editing	type,	this	method
may	affect	the	position	of	adjacent	nodes.

expression.SetEditingType(Index,	EditingType)

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

Index		Required	Integer.		The	node	whose	editing	type	is	to	be	set.

EditingType		Required	MsoEditingType.		The	editing	property	of	the	vertex.

MsoEditingType	can	be	one	of	these	MsoEditingType	constants.
msoEditingAuto
msoEditingCorner
msoEditingSmooth
msoEditingSymmetric

Example

This	example	changes	all	corner	nodes	to	smooth	nodes	in	shape	three	on
myDocument.	Shape	three	must	be	a	freeform	drawing.

Set	myDocument	=	Worksheets(1)

With	myDocument.Shapes(3).Nodes

				For	n	=	1	to	.Count

								If	.Item(n).EditingType	=	msoEditingCorner	Then

												.SetEditingType	n,	msoEditingSmooth

								End	If

				Next

End	With

SetExtrusionDirection	Method
							

Sets	the	direction	that	the	extrusion's	sweep	path	takes	away	from	the	extruded
shape.

expression.SetExtrusionDirection(PresetExtrusionDirection)

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

PresetExtrusionDirection		Required	MsoPresetExtrusionDirection.	Specifies
the	extrusion	direction.

MsoPresetExtrusionDirection	can	be	one	of	these	MsoPresetExtrusionDirection
constants.
msoExtrusionBottom
msoExtrusionBottomLeft
msoExtrusionBottomRight
msoExtrusionLeft
msoExtrusionNone
msoExtrusionRight
msoExtrusionTop
msoExtrusionTopLeft
msoExtrusionTopRight
msoPresetExtrusionDirectionMixed

Remarks

This	method	sets	the	PresetExtrusionDirection	property	to	the	direction
specified	by	the	PresetExtrusionDirection	argument.

Example

This	example	specifies	that	the	extrusion	for	shape	one	on	myDocument	extend
toward	the	top	of	the	shape	and	that	the	lighting	for	the	extrusion	come	from	the
left.

Set	myDocument	=	Worksheets(1)

With	myDocument.Shapes(1).ThreeD

				.Visible	=	True

				.SetExtrusionDirection	msoExtrusionTop

				.PresetLightingDirection	=	msoLightingLeft

End	With

SetLinkOnData	Method
							

Sets	the	name	of	a	procedure	that	runs	whenever	a	DDE	link	is	updated.

expression.SetLinkOnData(Name,	Procedure)

expression			Required.	An	expression	that	returns	a	Workbook	object.

Name			Required	String.	The	name	of	the	DDE/OLE	link,	as	returned	from	the
LinkSources	method.

Procedure			Required	String.	The	name	of	the	procedure	to	be	run	when	the	link
is	updated.	This	can	be	either	a	Microsoft	Excel	4.0	macro	or	a	Visual	Basic
procedure.	Set	this	argument	to	an	empty	string	("")	to	indicate	that	no	procedure
should	run	when	the	link	is	updated.

Example

This	example	sets	the	name	of	the	procedure	that	runs	whenever	the	DDE	link	is
updated.

ActiveWorkbook.SetLinkOnData	_

				"WinWord|'C:\MSGFILE.DOC'!DDE_LINK1",	_

				"my_Link_Update_Macro"

SetParam	Method
							

Defines	a	parameter	for	the	specified	query	table.

expression.SetParam(Type,	Value)

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

Type		Required	XlParameterType.

XlParameterType	can	be	one	of	these	XlParameterType	constants.
xlConstant.	Uses	the	value	specified	by	the	Value	argument.
xlPrompt.	Displays	a	dialog	box	that	prompts	the	user	for	the	value.	The	Value
argument	specifies	the	text	shown	in	the	dialog	box.
xlRange.	Uses	the	value	of	the	cell	in	the	upper-left	corner	of	the	range.	The
Value	argument	specifies	a	Range	object

Value		Required	Variant.	The	value	of	the	specified	parameter,	as	shown	in	the
description	of	the	Type	argument.

Example

This	example	changes	the	SQL	statement	for	query	table	one.	The	clause
“(city=?)”	indicates	that	the	query	is	a	parameter	query,	and	the	example	sets	the
value	of	city	to	the	constant	“Oakland.”

Set	qt	=	Sheets("sheet1").QueryTables(1)

qt.Sql	=	"SELECT	*	FROM	authors		WHERE	(city=?)"

Set	param1	=	qt.Parameters.Add("City	Parameter",	_

				xlParamTypeVarChar)

param1.SetParam	xlConstant,	"Oakland"

qt.Refresh

This	example	sets	the	value	of	city	to	the	value	of	cell	A2	on	worksheet	two.

Set	qt	=	Sheets("sheet1").QueryTables(1)

qt.Sql	=	"SELECT	*	FROM	authors		WHERE	(city=?)"

Set	param1	=	qt.Parameters.Add("City	Parameter",	_

				xlParamTypeVarChar)

param1.SetParam	xlRange,	Range("sheet2!a1")

qt.Refresh

SetPasswordEncryptionOptions
Method
							

Sets	the	options	for	encrypting	workbooks	using	passwords.

expression.SetPasswordEncryptionOptions(PasswordEncryptionProvider,
PasswordEncryptionAlgorithm,	PasswordEncryptionKeyLength,
PasswordEncryptionFileProperties)

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

PasswordEncryptionProvider		Optional	Variant.	A	case	sensitive	string	of	the
encryption	provider.

PasswordEncryptionAlgorithm		Optional	Variant.	A	case	sensitive	string	of	the
algorithmic	short	name	(i.e.	"RC4").

PasswordEncryptionKeyLength		Optional	Variant.	The	encryption	key	length
which	is	a	multiple	of	8	(40	or	greater).

PasswordEncryptionFileProperties		Optional	Variant.	True	(default)	to	encrypt
file	properties.

Remarks

The	PasswordEncryptionProvider,	PasswordEncryptionAlgorithm,	and
PasswordEncryptionKeyLength	arguments	are	not	independent	of	each	other.	A
selected	encryption	provider	limits	the	set	of	algorithms	and	key	length	that	can
be	chosen.

For	the	PasswordEncryptionKeyLength	argument	there	is	no	inherent	limit	on
the	range	of	the	key	length.	The	range	is	determined	by	the	Cryptographic
Service	Provider	which	also	determines	the	cryptographic	algorithm.

Example

This	example	sets	the	password	encryption	options	for	the	active	workbook.

Sub	SetPasswordOptions()

				ActiveWorkbook.SetPasswordEncryptionOptions	_

								PasswordEncryptionProvider:="Microsoft	RSA	SChannel	Cryptographic	Provider",	_

								PasswordEncryptionAlgorithm:="RC4",	_

								PasswordEncryptionKeyLength:=56,	_

								PasswordEncryptionFileProperties:=True

End	Sub

SetPhonetic	Method
							

Creates	Phonetic	objects	for	all	the	cells	in	the	specified	range.

expression.SetPhonetic

expression			An	expression	that	returns	a	Range	object.

Remarks

Any	existing	Phonetic	objects	in	the	specified	range	are	automatically
overwritten	(deleted)	by	the	new	objects	you	add	using	this	method.

Example

This	example	creates	a	Phonetic	object	for	each	cell	in	the	range	A1:A10	on	the
active	worksheet.

ActiveSheet.Range("A1:A10").SetPhonetic

SetPosition	Method
							

Sets	the	location	of	the	node	specified	by	Index.	Note	that,	depending	on	the
editing	type	of	the	node,	this	method	may	affect	the	position	of	adjacent	nodes.

expression.SetPosition(Index,	X1,	Y1)

expression			Required.	An	expression	that	returns	a	ShapeNodes	object.

Index			Required	Long.	The	node	whose	position	is	to	be	set.

X1,	Y1			Required	Single.	The	position	(in	points)	of	the	new	node	relative	to
the	upper-left	corner	of	the	document.

Example

This	example	moves	node	two	in	shape	three	on	myDocument	to	the	right	200
points	and	down	300	points.	Shape	three	must	be	a	freeform	drawing.

Set	myDocument	=	Worksheets(1)

With	myDocument.Shapes(3).Nodes

				pointsArray	=	.Item(2).Points

				currXvalue	=	pointsArray(0,	0)

				currYvalue	=	pointsArray(0,	1)

				.SetPosition	2,	currXvalue	+	200,	currYvalue	+	300

End	With

SetSegmentType	Method
							

Sets	the	segment	type	of	the	segment	that	follows	the	node	specified	by	Index.	If
the	node	is	a	control	point	for	a	curved	segment,	this	method	sets	the	segment
type	for	that	curve.	Note	that	this	may	affect	the	total	number	of	nodes	by
inserting	or	deleting	adjacent	nodes.

expression.SetSegmentType(Index,	SegmentType)

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

Index		Required	Integer.	The	node	whose	segment	type	is	to	be	set.

SegmentType		Required	MsoSegmentType.	Specifies	if	the	segment	is	straight
or	curved.

MsoSegmentType	can	be	one	of	these	MsoSegmentType	constants.
msoSegmentCurve
msoSegmentLine

Example

This	example	changes	all	straight	segments	to	curved	segments	in	shape	three	on
myDocument.	Shape	three	must	be	a	freeform	drawing.

Set	myDocument	=	Worksheets(1)

With	myDocument.Shapes(3).Nodes

				n	=	1

				While	n	<=	.Count

								If	.Item(n).SegmentType	=	msoSegmentLine	Then

												.SetSegmentType	n,	msoSegmentCurve

								End	If

								n	=	n	+	1

				Wend

End	With

SetShapesDefaultProperties	Method
							

Makes	the	formatting	of	the	specified	shape	the	default	formatting	for	the	shape.

expression.SetShapesDefaultProperties

expression			Required.	An	expression	that	returns	a	Shape	object	or
ShapeRange	collection.

Example

This	example	adds	a	rectangle	to	myDocument,	formats	the	rectangle's	fill,	sets
the	rectangle's	formatting	as	the	default	shape	formatting,	and	then	adds	another
smaller	rectangle	to	the	document.	The	second	rectangle	has	the	same	fill	as	the
first	one.

Set	myDocument	=	Worksheets(1)

With	myDocument.Shapes

				With	.AddShape(msoShapeRectangle,	5,	5,	80,	60)

								With	.Fill

												.ForeColor.RGB	=	RGB(0,	0,	255)

												.BackColor.RGB	=	RGB(0,	204,	255)

												.Patterned	msoPatternHorizontalBrick

								End	With

								'	Set	formatting	as	default	formatting

								.SetShapesDefaultProperties

				End	With

				'	Create	new	shape	with	default	formatting

				.AddShape	msoShapeRectangle,	90,	90,	40,	30

End	With

SetSourceData	Method
							

Sets	the	source	data	range	for	the	chart.

expression.SetSourceData(Source,	PlotBy)

expression			Required.	An	expression	that	returns	a	Chart	object.

Source			Required	Range.	The	range	that	contains	the	source	data.

PlotBy			Optional	Variant.	Specifies	the	way	the	data	is	to	be	plotted.	Can	be
either	of	the	following	XlRowCol	constants:	xlColumns	or	xlRows.

Example

This	example	sets	the	source	data	range	for	chart	one.

Charts(1).SetSourceData	Source:=Sheets(1).Range("a1:a10"),	_

				PlotBy:=xlColumns

SetThreeDFormat	Method
							

Sets	the	preset	extrusion	format.	Each	preset	extrusion	format	contains	a	set	of
preset	values	for	the	various	properties	of	the	extrusion.

expression.SetThreeDFormat(PresetThreeDFormat)

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

PresetThreeDFormat		Required	MsoPresetThreeDFormat.	Specifies	a	preset
extrusion	format	that	corresponds	to	one	of	the	options	(numbered	from	left	to
right,	from	top	to	bottom)	displayed	when	you	click	the	3-D	button	on	the
Drawing	toolbar.

MsoPresetThreeDFormat	can	be	one	of	these	MsoPresetThreeDFormat
constants.
msoPresetThreeDFormatMixed
msoThreeD1
msoThreeD10
msoThreeD11
msoThreeD12
msoThreeD13
msoThreeD14
msoThreeD15
msoThreeD16
msoThreeD17
msoThreeD18
msoThreeD19
msoThreeD2
msoThreeD20
msoThreeD3

msoThreeD4
msoThreeD5
msoThreeD6
msoThreeD7
msoThreeD8
msoThreeD9

Remarks

This	method	sets	the	PresetThreeDFormat	property	to	the	format	specified	by
the	PresetThreeDFormat	argument.

Example

This	example	adds	an	oval	to	myDocument	and	sets	its	extrusion	format	to	3D
Style	12.

Set	myDocument	=	Worksheets(1)

With	myDocument.Shapes.AddShape(msoShapeOval,	_

								30,	30,	50,	25).ThreeD

				.Visible	=	True

				.SetThreeDFormat	msoThreeD12

End	With

Show	All

Show	Method
							

Show	method	as	it	applies	to	the	Dialog	object.

Displays	the	built-in	dialog	box	and	waits	for	the	user	to	input	data.	Boolean.

expression.Show(Arg1,	Arg2,	Arg3,	Arg4,	Arg5,	Arg6,	Arg7,	Arg8,	Arg9,
Arg10,	Arg11,	Arg12,	Arg13,	Arg14,	Arg15,	Arg16,	Arg17,	Arg18,	Arg19,
Arg20,	Arg21,	Arg22,	Arg23,	Arg24,	Arg25,	Arg26,	Arg27,	Arg28,	Arg29,
Arg30)

expression			Required.	An	expression	that	returns	one	of	the	above	objects.

arg1,	arg2,	...,	arg30			Optional	Variant.	For	built-in	dialog	boxes	only,	the
initial	arguments	for	the	command.	For	more	information,	see	the	"Remarks"
section.

Arg1		Optional	Variant.

Arg2		Optional	Variant.

Arg3		Optional	Variant.

Arg4		Optional	Variant.

Arg5		Optional	Variant.

Arg6		Optional	Variant.

Arg7		Optional	Variant.

Arg8		Optional	Variant.

Arg9		Optional	Variant.

Arg10		Optional	Variant.

Arg11		Optional	Variant.

Arg12		Optional	Variant.

Arg13		Optional	Variant.

Arg14		Optional	Variant.

Arg15		Optional	Variant.

Arg16		Optional	Variant.

Arg17		Optional	Variant.

Arg18		Optional	Variant.

Arg19		Optional	Variant.

Arg20		Optional	Variant.

Arg21		Optional	Variant.

Arg22		Optional	Variant.

Arg23		Optional	Variant.

Arg24		Optional	Variant.

Arg25		Optional	Variant.

Arg26		Optional	Variant.

Arg27		Optional	Variant.

Arg28		Optional	Variant.

Arg29		Optional	Variant.

Arg30		Optional	Variant.

	

Show	method	as	it	applies	to	the	Range	and	Scenario	objects.

For	Range	objects,	scrolls	through	the	contents	of	the	active	window	to	move
the	range	into	view.	The	range	must	consist	of	a	single	cell	in	the	active
document.	For	Scenario	objects,	shows	the	scenario	by	inserting	its	values	on
the	worksheet.	The	affected	cells	are	the	changing	cells	of	the	scenario.	Variant.

expression.Show

expression			Required.	An	expression	that	returns	one	of	the	above	objects.

	

Show	method	as	it	applies	to	the	CustomView	object.

Displays	the	custom	view.

expression.Show

expression			Required.	An	expression	that	returns	one	of	the	above	objects.

Remarks

For	built	in	dialog	boxes,	this	method	returns	True	if	the	user	clicks	OK,	or	it
returns	False	if	the	user	clicks	Cancel.

You	can	use	a	single	dialog	box	to	change	many	properties	at	the	same	time.	For
example,	you	can	use	the	Format	Cells	dialog	box	to	change	all	the	properties
of	the	Font	object.

For	some	built-in	dialog	boxes	(the	Open	dialog	box,	for	example),	you	can	set
initial	values	using	arg1,	arg2,	...,	arg30.	To	find	the	arguments	to	set,	locate	the
corresponding	dialog	box	constant	in	Built-In	Dialog	Box	Argument	Lists.	For
example,	search	for	the	xlDialogOpen	constant	to	find	the	arguments	for	the
Open	dialog	box.	For	more	information	about	built-in	dialog	boxes,	see	the
Dialogs	collection.

Example

This	example	displays	the	Open	dialog	box.

Application.Dialogs(xlDialogOpen).Show

ShowAllData	Method
							

Makes	all	rows	of	the	currently	filtered	list	visible.	If	AutoFilter	is	in	use,	this
method	changes	the	arrows	to	"All."

expression.ShowAllData

expression			Required.	An	expression	that	returns	a	Worksheet	object.

Example

This	example	makes	all	data	on	Sheet1	visible.	The	example	should	be	run	on	a
worksheet	that	contains	a	list	you	filtered	using	the	AutoFilter	command.

Worksheets("Sheet1").ShowAllData

ShowDataForm	Method
							

Displays	the	data	form	associated	with	the	worksheet.

expression.ShowDataForm

expression			Required.	An	expression	that	returns	a	Worksheet	object.

Remarks

The	macro	pauses	while	you’re	using	the	data	form.	When	you	close	the	data
form,	the	macro	resumes	at	the	line	following	the	ShowDataForm	method.

This	method	runs	the	custom	data	form,	if	one	exists.

Example

This	example	displays	the	data	form	for	Sheet1.

Worksheets(1).ShowDataForm

ShowDependents	Method
							

Draws	tracer	arrows	to	the	direct	dependents	of	the	range.

expression.ShowDependents(Remove)

expression			Required.	An	expression	that	returns	a	Range	object.	Must	be	a
single	cell.

Remove			Optional	Variant.	True	to	remove	one	level	of	tracer	arrows	to	direct
dependents.	False	to	expand	one	level	of	tracer	arrows.	The	default	value	is
False.

Example

This	example	draws	tracer	arrows	to	dependents	of	the	active	cell	on	Sheet1.

Worksheets("Sheet1").Activate

ActiveCell.ShowDependents

This	example	removes	the	tracer	arrow	for	one	level	of	dependents	of	the	active
cell	on	Sheet1.

Worksheets("Sheet1").Activate

ActiveCell.ShowDependents	Remove:=True

ShowErrors	Method
							

Draws	tracer	arrows	through	the	precedents	tree	to	the	cell	that’s	the	source	of
the	error,	and	returns	the	range	that	contains	that	cell.

expression.ShowErrors

expression			Required.	An	expression	that	returns	a	Range	object.

Example

This	example	displays	a	red	tracer	arrow	if	there’s	an	error	in	the	active	cell	on
Sheet1.

Worksheets("Sheet1").Activate

If	IsError(ActiveCell.Value)	Then

				ActiveCell.ShowErrors

End	If

ShowLevels	Method
							

Displays	the	specified	number	of	row	and/or	column	levels	of	an	outline.

expression.ShowLevels(RowLevels,	ColumnLevels)

expression			Required.	An	expression	that	returns	an	Outline	object.

RowLevels			Optional	Variant.	Specifies	the	number	of	row	levels	of	an	outline
to	display.	If	the	outline	has	fewer	levels	than	the	number	specified,	Microsoft
Excel	displays	all	the	levels.	If	this	argument	is	0	(zero)	or	is	omitted,	no	action
is	taken	on	rows.

ColumnLevels			Optional	Variant.	Specifies	the	number	of	column	levels	of	an
outline	to	display.	If	the	outline	has	fewer	levels	than	the	number	specified,
Microsoft	Excel	displays	all	the	levels.	If	this	argument	is	0	(zero)	or	is	omitted,
no	action	is	taken	on	columns.

Remarks

You	must	specify	at	least	one	argument.

Example

This	example	displays	row	levels	one	through	three	and	column	level	one	of	the
outline	on	Sheet1.

Worksheets("Sheet1").Outline	_

				.ShowLevels	rowLevels:=3,	columnLevels:=1

Show	All

ShowPages	Method
							

Creates	a	new	PivotTable	report	for	each	item	in	the	page	field.	Each	new	report
is	created	on	a	new	worksheet.

expression.ShowPages(PageField)

expression			Required.	An	expression	that	returns	a	PivotTable	object.

PageField			Optional	Variant.	A	string	that	names	a	single	page	field	in	the
report.

Remarks

This	method	isn’t	available	for	OLAP	data	sources.

Example

This	example	creates	a	new	PivotTable	report	for	each	item	in	the	page	field,
which	is	the	field	named	“Country.”

Set	pvtTable	=	Worksheets("Sheet1").Range("A3").PivotTable

pvtTable.ShowPages	"Country"

ShowPrecedents	Method
							

Draws	tracer	arrows	to	the	direct	precedents	of	the	range.

expression.ShowPrecedents(Remove)

expression			Required.	An	expression	that	returns	a	Range	object.	Must	be	a
single	cell.

Remove			Optional	Variant.	True	to	remove	one	level	of	tracer	arrows	to	direct
precedents.	False	to	expand	one	level	of	tracer	arrows.	The	default	value	is
False.

Example

This	example	draws	tracer	arrows	to	the	precedents	of	the	active	cell	on	Sheet1.

Worksheets("Sheet1").Activate

ActiveCell.ShowPrecedents

This	example	removes	the	tracer	arrow	for	one	level	of	precedents	of	the	active
cell	on	Sheet1.

Worksheets("Sheet1").Activate

ActiveCell.ShowPrecedents	remove:=True

SmallScroll	Method
							

Scrolls	the	contents	of	the	window	by	rows	or	columns.

expression.SmallScroll(Down,	Up,	ToRight,	ToLeft)

expression			Required.	An	expression	that	returns	a	Window	object.

Down			Optional	Variant.	The	number	of	rows	to	scroll	the	contents	down.

Up			Optional	Variant.	The	number	of	rows	to	scroll	the	contents	up.

ToRight			Optional	Variant.	The	number	of	columns	to	scroll	the	contents	to	the
right.

ToLeft			Optional	Variant.	The	number	of	columns	to	scroll	the	contents	to	the
left.

Remarks

If	Down	and	Up	are	both	specified,	the	contents	of	the	window	are	scrolled	by
the	difference	of	the	arguments.	For	example,	if	Down	is	3	and	Up	is	6,	the	the
contents	are	scrolled	up	three	rows.

If	ToLeft	and	ToRight	are	both	specified,	the	contents	of	the	window	are	scrolled
by	the	difference	of	the	arguments.	For	example,	if	ToLeft	is	3	and	ToRight	is	6,
the	contents	are	scrolled	to	the	right	three	columns.

Any	of	these	arguments	can	be	a	negative	number.

Example

This	example	scrolls	the	contents	of	the	active	window	of	Sheet1	down	three
rows.

Worksheets("Sheet1").Activate

ActiveWindow.SmallScroll	down:=3

Solid	Method
							

Sets	the	specified	fill	to	a	uniform	color.	Use	this	method	to	convert	a	gradient,
textured,	patterned,	or	background	fill	back	to	a	solid	fill.

expression.Solid

expression			Required.	An	expression	that	returns	a	FillFormat	object.

Example

This	example	converts	all	fills	on	myDocument	to	uniform	red	fills.

Set	myDocument	=	Worksheets(1)

For	Each	s	In	myDocument.Shapes

				With	s.Fill

								.Solid

								.ForeColor.RGB	=	RGB(255,	0,	0)

				End	With

Next

Show	All

Sort	Method
							

Sorts	a	PivotTable	report,	a	range,	or	the	active	region	if	the	specified	range
contains	only	one	cell.

expression.Sort(Key1,	Order1,	Key2,	Type,	Order2,	Key3,	Order3,	Header,
OrderCustom,	MatchCase,	Orientation,	SortMethod,	DataOption1,
DataOption2,	DataOption3)

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

Key1		Optional	Variant.	The	first	sort	field,	as	either	text	(a	PivotTable	field	or
range	name)	or	a	Range	object	("Dept"	or	Cells(1,	1),	for	example).

Order1		Optional	XlSortOrder.	The	sort	order	for	the	field	or	range	specified	in
Key1.

XlSortOrder	can	be	one	of	these	XlSortOrder	constants.
xlDescending.	Sorts	Key1	in	descending	order.
xlAscending	default.	Sorts	Key1	in	ascending	order.

Key2		Optional	Variant.	The	second	sort	field,	as	either	text	(a	PivotTable	field
or	range	name)	or	a	Range	object.	If	you	omit	this	argument,	there’s	no	second
sort	field.		Cannot	be	used	when	sorting	Pivot	Table	reports.

Type		Optional	Variant.	Specifies	which	elements	are	to	be	sorted.	Use	this
argument	only	when	sorting	PivotTable	reports.

XlSortType	can	be	one	of	these	XlSortType	constants.
xlSortLabels.	Sorts	the	PivotTable	report	by	labels.
xlSortValues.	Sorts	the	PivotTable	report	by	values.

Order2		Optional	XlSortOrder.		The	sort	order	for	the	field	or	range	specified

in	Key2.	Cannot	be	used	when	sorting	PivotTable	reports.

XlSortOrder	can	be	one	of	these	XlSortOrder	constants.
xlDescending.	Sorts	Key2	in	descending	order.
xlAscending	default.	Sorts	Key2	in	ascending	order.

Key3		Optional	Variant.	The	third	sort	field,	as	either	text	(a	range	name)	or	a
Range	object.	If	you	omit	this	argument,	there’s	no	third	sort	field.		Cannot	be
used	when	sorting	PivotTable	reports.

Order3		Optional	XlSortOrder.		The	sort	order	for	the	field	or	range	specified
in	Key3.	Cannot	be	used	when	sorting	PivotTable	reports.

XlSortOrder	can	be	one	of	these	XlSortOrder	constants.
xlDescending.	Sorts	Key3	in	descending	order.
xlAscending	default.	Sorts	Key3	in	ascending	order.

Header		Optional	XlYesNoGuess.		Specifies	whether	or	not	the	first	row
contains	headers.	Cannot	be	used	when	sorting	PivotTable	reports.

XlYesNoGuess	can	be	one	of	these	XlYesNoGuess	constants.
xlGuess.	Let	Microsoft	Excel	determine	whether	there’s	a	header,	and	to
determine	where	it	is,	if	there	is	one.
xlNo	default.	(The	entire	range	should	be	sorted).
xlYes.	(The	entire	range	should	not	be	sorted).

OrderCustom		Optional	Variant.	This	argument	is	a	one-based	integer	offset	to
the	list	of	custom	sort	orders.	If	you	omit	OrderCustom,	a	normal	sort	is	used.

MatchCase		Optional	Variant.	True	to	do	a	case-sensitive	sort;	False	to	do	a
sort	that’s	not	case	sensitive.	Cannot	be	used	when	sorting	PivotTable	reports.

Orientation		Optional	XlSortOrientation.			The	sort	orientation.

XlSortOrientation	can	be	one	of	these	XlSortOrientation	constants.
xlSortRows	default.	Sorts	by	row.
xlSortColumns.	Sorts	by	column.

SortMethod		Optional	XlSortMethod.		The	type	of	sort.	Some	of	these
constants	may	not	be	available	to	you,	depending	on	the	language	support	(U.S.
English,	for	example)	that	you’ve	selected	or	installed.

XlSortMethod	can	be	one	of	these	XlSortMethod	constants.
xlStroke	Sorting	by	the	quantity	of	strokes	in	each	character.
xlPinYin	default.	Phonetic	Chinese	sort	order	for	characters.

DataOption1		Optional	XlSortDataOption.	Specifies	how	to	sort	text	in	key	1.
Cannot	be	used	when	sorting	PivotTable	reports.

XlSortDataOption	can	be	one	of	these	XlSortDataOption	constants.
xlSortTextAsNumbers.	Treat	text	as	numeric	data	for	the	sort.
xlSortNormal	default.	Sorts	numeric	and	text	data	separately.

DataOption2		Optional	XlSortDataOption.	Specifies	how	to	sort	text	in	key	2.
Cannot	be	used	when	sorting	PivotTable	reports.

XlSortDataOption	can	be	one	of	these	XlSortDataOption	constants.
xlSortTextAsNumbers.	Treats	text	as	numeric	data	for	the	sort.
xlSortNormal	default.	Sorts	numeric	and	text	data	separately.

DataOption3		Optional	XlSortDataOption.	Specifies	how	to	sort	text	in	key	3.
Cannot	be	used	when	sorting	PivotTable	reports.

XlSortDataOption	can	be	one	of	these	XlSortDataOption	constants.
xlSortTextAsNumbers.	Treats	text	as	numeric	data	for	the	sort.
xlSortNormal	default.	Sorts	numeric	and	text	data	separately.

Remarks

The	settings	for	Header,	Order1,	Order2,	Order3,	OrderCustom,	and
Orientation	are	saved,	for	the	particular	worksheet,	each	time	you	use	this
method.	If	you	don’t	specify	values	for	these	arguments	the	next	time	you	call
the	method,	the	saved	values	are	used.		Set	these	arguments	explicitly	each	time
you	use	Sort	method,	if	you	choose	not	to	use	the	saved	values.

Text	strings	which	are	not	convertible	to	numeric	data	are	sorted	normally.

Note			If	no	arguments	are	defined	with	the	Sort	method,	Microsoft	Excel	will
sort	the	selection,	chosen	to	be	sorted,	in	ascending	order.

Example

This	example	sorts	the	range	A1:C20	on	Sheet1,	using	cell	A1	as	the	first	sort
key	and	cell	B1	as	the	second	sort	key.	The	sort	is	done	in	ascending	order	by
row,	and	there	are	no	headers.		This	example	assumes	there	is	data	in	the	range
A1:C20.

Sub	SortRange1()

				Worksheets("Sheet1").Range("A1:C20").Sort	_

								Key1:=Worksheets("Sheet1").Range("A1"),	_

								Key2:=Worksheets("Sheet1").Range("B1")

End	Sub

This	example	sorts	the	region	that	contains	cell	A1	(the	active	region)	on	Sheet1,
sorting	by	the	data	in	the	first	column	and	automatically	using	a	header	row	if
one	exists.	This	example	assumes	there	is	data	in	the	active	region,	which
includes	cell	A1.	The	Sort	method	determines	the	active	region	automatically.

Sub	SortRange2()

				Worksheets("Sheet1").Range("A1").Sort	_

								Key1:=Worksheets("Sheet1").Columns("A"),	_

								Header:=xlGuess

End	Sub

Show	All

SortSpecial	Method
							

Uses	East	Asian	sorting	methods	to	sort	the	range,	a	PivotTable	report,	or	uses
the	method	for	the	active	region	if	the	range	contains	only	one	cell.	For	example,
Japanese	sorts	in	the	order	of	the	Kana	syllabary.	For	more	information,	see	the
argument	list.

expression.SortSpecial(SortMethod,	Key1,	Order1,	Type,	Key2,	Order2,	Key3,
Order3,	Header,	OrderCustom,	MatchCase,	Orientation,	DataOption1,
DataOption2,	DataOption3)

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

SortMethod		Optional	XlSortMethod.		The	type	of	sort.	Some	of	these
constants	may	not	be	available	to	you,	depending	on	the	language	support	(U.S.
English,	for	example)	that	you’ve	selected	or	installed.

XlSortMethod	can	be	one	of	these	XlSortMethod	constants.
xlStroke.	Sorting	by	the	quantity	of	strokes	in	each	character.
xlPinYin	default.		Phonetic	Chinese	sort	order	for	characters.

Key1		Optional	Variant.	The	first	sort	field,	as	either	text	(a	PivotTable	field	or
range	name)	or	a	Range	object	("Dept"	or	Cells(1,	1),	for	example).

Order1		Optional	XlSortOrder.	The	sort	order	for	the	field	or	range	specified	in
the	Key1	argument.

XlSortOrder	can	be	one	of	these	XlSortOrder	constants.
xlDescending.	Sorts	Key1	in	descending	order.
xlAscending	default.	Sorts	Key1	in	ascending	order.

Type		Optional	Variant.	Specifies	which	elements	are	to	be	sorted.	Use	this
argument	only	when	sorting	PivotTable	reports.

Key2		Optional	Variant.	The	second	sort	field,	as	either	text	(a	PivotTable	field
or	range	name)	or	a	Range	object.	If	you	omit	this	argument,	there’s	no	second
sort	field.		Cannot	be	used	when	sorting	PivotTable	reports.

XlSortType	can	be	one	of	these	XlSortType	constants.
xlSortLabels.	Sorts	the	PivotTable	report	by	labels.
xlSortValues.	Sorts	the	PivotTable	report	by	values.

Order2		Optional	XlSortOrder.		The	sort	order	for	the	field	or	range	specified
in	the	Key2	argument.	Cannot	be	used	when	sorting	PivotTable	reports.

XlSortOrder	can	be	one	of	these	XlSortOrder	constants.
xlDescending.	Sorts	Key2	in	descending	order.
xlAscending	default.	Sorts	Key2	in	ascending	order.

Key3		Optional	Variant.	The	third	sort	field,	as	either	text	(a	range	name)	or	a
Range	object.	If	you	omit	this	argument,	there’s	no	third	sort	field.		Cannot	be
used	when	sorting	PivotTable	reports.

Order3		Optional	XlSortOrder.		The	sort	order	for	the	field	or	range	specified
in	the	Key3	argument.	Cannot	be	used	when	sorting	PivotTable	reports.

XlSortOrder	can	be	one	of	these	XlSortOrder	constants.
xlDescending.	Sorts	Key3	in	descending	order.
xlAscending	default.	Sorts	Key3	in	ascending	order.

Header		Optional	XlYesNoGuess.		Specifies	whether	or	not	the	first	row
contains	headers.	Cannot	be	used	when	sorting	PivotTable	reports.

XlYesNoGuess	can	be	one	of	these	XlYesNoGuess	constants.
xlGuess.	Lets	Microsoft	Excel	determine	whether	there’s	a	header,	and	to
determine	where	it	is,	if	there	is	one.
xlNo	default.	The	entire	range	should	be	sorted.
xlYes.	The	entire	range	should	not	be	sorted.

OrderCustom		Optional	Variant.	This	argument	is	a	one-based	integer	offset	to
the	list	of	custom	sort	orders.	If	you	omit	OrderCustom,	(normal	sort	order)	is

used.

MatchCase		Optional	Variant.	True	to	do	a	case-sensitive	sort;	False	to	do	a
sort	that’s	not	case	sensitive.		Cannot	be	used	when	sorting	PivotTable	reports.

Orientation		Optional	XlSortOrientation.	The	sort	orientation.

XlSortOrientation	can	be	one	of	these	XlSortOrientation	constants.
xlSortRows	default.	The	sort	is	done	by	row.
xlSortColumns.	The	sort	is	done	by	column.

	DataOption1		Optional	XlSortDataOption.	Specifies	how	to	sort	text	in	key1.
Cannot	be	used	when	sorting	PivotTable	reports.

XlSortDataOption	can	be	one	of	these	XlSortDataOption	constants.
xlSortTextAsNumbers.	Treats	text	as	numeric	data	for	the	sort.
xlSortNormal	default.	Sorts	numeric	and	text	data	separately.

DataOption2		Optional	XlSortDataOption.	Specifies	how	to	sort	text	in	key	2.
Cannot	be	used	when	sorting	PivotTable	reports.

XlSortDataOption	can	be	one	of	these	XlSortDataOption	constants.
xlSortTextAsNumbers.	Treats	text	as		numeric	data	for	the	sort.
xlSortNormal	default.	Sorts	numeric	and	text	data	separately.

DataOption3		Optional	XlSortDataOption.	Specifies	how	to	sort	text	in	key	3.
Cannot	be	used	when	sorting	PivotTable	reports.

XlSortDataOption	can	be	one	of	these	XlSortDataOption	constants.
xlSortTextAsNumbers.	Treats	text		numeric	data	for	the	sort.
xlSortNormal	default.	Sorts	numeric	and	text	data	separately.

Remarks

Note:	If	no	arguments	are	defined	with	the	Sort	method,	Microsoft	Excel	will
sort	the	selection,	chosen	to	be	sorted,	in	ascending	order.

Example

This	example	sorts	the	range	A1:A5	using	Pin	Yin	(phonetic	Chinese	sort	order
for	characters).	In	order	to	sort	Chinese	characters,	this	example	assumes	the
user	has	Chinese	language	support	for	Microsoft	Excel.	Even	without	Chinese
language	support,	Excel	will	default	to	sorting	any	numbers	placed	within	the
specified	range	for	this	example.		This	example	assumes	there	is	data	contained
in	the	range	A1:A5.

Sub	SpecialSort()

				Application.Range("A1:A5").SortSpecial	SortMethod:=xlPinYin

End	Sub

Show	All

Speak	Method
							

Speak	method	as	it	applies	to	the	Range	object.

Causes	the	cells	of	the	range	to	be	spoken	in	row	order	or	column	order.

expression.Speak(SpeakDirection,	SpeakFormulas)

expression			Required.	An	expression	that	returns	a	Range	object.

SpeakDirection		Optional	Variant.	The	speak	direction,	by	rows	or	columns.

SpeakFormulas		Optional	Variant.	True	will	cause	formulas	to	be	sent	to	the
Text-To-Speech	(TTS)	engine	for	cells	that	have	formulas.		The	value	is	sent	if
the	cells	do	not	have	formulas.		False	(default)	will	cause	values	to	always	be
sent	to	the	TTS	engine.

Speak	method	as	it	applies	to	the	Speech	object.

Microsoft	Excel	plays	back	the	text	string	that	is	passed	as	an	argument.

expression.Speak(Text,	SpeakAsync,	SpeakXML,	Purge)

expression			Required.	An	expression	that	returns	a	Speech	object.

Text		Required	String.	The	text	to	be	spoken.

SpeakAsync		Optional	Variant.	True	will	cause	the	Text	to	be	spoken
asynchronously	(the	method	will	not	wait	of	the	Text	to	be	spoken).		False	will
cause	the	Text	to	be	spoken	synchronously	(the	method	waits	for	the	Text	to	be
spoken	before	continuing).		The	default	is	False.

SpeakXML		Optional	Boolean.	True	will	cause	the	Text	to	be	interpreted	as
XML.	False	will	cause	the	Text	to	not	be	interpreted	as	XML,	so	any	XML	tags
will	be	read	and	not	interpreted.	The	default	is	False.

Purge		Optional	Variant.	True	will	cause	current	speech	to	be	terminated	and
any	buffered	text	to	be	purged	before	Text	is	spoken.	False	will	not	cause	the
current	speech	to	be	terminated	and	will	not	purge	the	buffered	text	before	Text
is	spoken.	The	default	is	False.

Example

In	this	example,	Microsoft	Excel	speaks	"Hello".

Sub	UseSpeech()

				Application.Speech.Speak	"Hello"

End	Sub

SpecialCells	Method
							

Returns	a	Range	object	that	represents	all	the	cells	that	match	the	specified	type
and	value.	Range	object.

expression.SpecialCells(Type,	Value)

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

Type		Required	XlCellType.	The	cells	to	include.

XlCellType	can	be	one	of	these	XlCellType	constants.
xlCellTypeAllFormatConditions.		Cells	of	any	format
xlCellTypeAllValidation.	Cells	having	validation	criteria
xlCellTypeBlanks.	Empty	cells
xlCellTypeComments.	Cells	containing	notes
xlCellTypeConstants.	Cells	containing	constants
xlCellTypeFormulas.	Cells	containing	formulas
xlCellTypeLastCell.	The	last	cell	in	the	used	range
xlCellTypeSameFormatConditions.		Cells	having	the	same	format
xlCellTypeSameValidation.		Cells	having	the	same	validation	criteria
xlCellTypeVisible.	All	visible	cells

Value		Optional	Variant.	If	Type	is	either	xlCellTypeConstants	or
xlCellTypeFormulas,	this	argument	is	used	to	determine	which	types	of	cells	to
include	in	the	result.	These	values	can	be	added	together	to	return	more	than	one
type.	The	default	is	to	select	all	constants	or	formulas,	no	matter	what	the	type.
Can	be	one	of	the	following	XlSpecialCellsValue	constants:

XlSpecialCellsValue	can	be	one	of	these	XlSpecialCellsValue	constants.
xlErrors
xlLogical

xlNumbers

xlTextValues

Example

This	example	selects	the	last	cell	in	the	used	range	of	Sheet1.

Worksheets("Sheet1").Activate

ActiveSheet.Cells.SpecialCells(xlCellTypeLastCell).Activate

Show	All

Subtotal	Method
							

Subtotal	method	as	it	applies	to	the	WorksheetFunction	object.

Creates	subtotals.	For	information	about	using	the	Subtotal	worksheet	function
in	Visual	Basic,	see	Using	Worksheet	Functions	in	Visual	Basic.

expression.Subtotal(Arg1,	Arg2,	Arg3,	Arg4,	Arg5,	Arg6,	Arg7,	Arg8,	Arg9,
Arg10,	Arg11,	Arg12,	Arg13,	Arg14,	Arg15,	Arg16,	Arg17,	Arg18,	Arg19,
Arg20,	Arg21,	Arg22,	Arg23,	Arg24,	Arg25,	Arg26,	Arg27,	Arg28,	Arg29,
Arg30)

expression			Required.	An	expression	that	returns	a	WorksheetFunction	object.

Arg1		Required	Double.

Arg2		Required	Range	object.

Arg3-Arg30		Optional	Variant.

Subtotal	method	as	it	applies	to	the	Range	object.

Creates	subtotals	for	the	range	(or	the	current	region,	if	the	range	is	a	single
cell).

For	information	about	using	the	Subtotal	worksheet	function	in	Visual	Basic,
see	Using	Worksheet	Functions	in	Visual	Basic.

expression.Subtotal(GroupBy,	Function,	TotalList,	Replace,	PageBreaks,
SummaryBelowData)

expression			Required.	An	expression	that	returns	a	Range	object.

GroupBy			Required	Long.	The	field	to	group	by,	as	a	one-based	integer	offset.
For	more	information,	see	the	example.

Function		Required	XlConsolidationFunction.	The	subtotal	function.

XlConsolidationFunction	can	be	one	of	these	XlConsolidationFunction
constants.
xlAverage
xlCount
xlCountNums
xlMax
xlMin
xlProduct
xlStDev
xlStDevP
xlSum
xlUnknown
xlVar
xlVarP

TotalList			Required	Variant.	An	array	of	1-based	field	offsets,	indicating	the
fields	to	which	the	subtotals	are	added.	For	more	information,	see	the	example.

Replace			Optional	Variant.	True	to	replace	existing	subtotals.	The	default	value
is	False.

PageBreaks			Optional	Variant.	True	to	add	page	breaks	after	each	group.	The
default	value	is	False.

SummaryBelowData		Optional	XlSummaryRow.	Places	the	summary	data
relative	to	the	subtotal.

XlSummaryRow	can	be	one	of	these	XlSummaryRow	constants.
xlSummaryAbove
xlSummaryBelow	default

Example

This	example	creates	subtotals	for	the	selection	on	Sheet1.	The	subtotals	are
sums	grouped	by	each	change	in	field	one,	with	the	subtotals	added	to	fields	two
and	three.

Worksheets("Sheet1").Activate

Selection.Subtotal	GroupBy:=1,	Function:=xlSum,	_

				TotalList:=Array(2,	3)

SwapNode	Method
							

Swaps	the	source	diagram	node	with	a	target	diagram	node.

expression.SwapNode(pTargetNode,	swapChildren)

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

pTargetNode		Required	DiagramNode	object.	The	target	diagram	node	to	be
replaced.

swapChildren		Optional	Boolean.		The	child	nodes	of	the	target	and	source
nodes	being	swapped.		Any	child	diagram	nodes	are	moved	along	with	their
corresponding	root	nodes.	Default	is	True,	which	swaps	the	child	nodes.

Example

The	following	example	swaps	the	second	diagram	node	of	a	newly-created
diagram	with	the	last	node.

Sub	SwapNode()

				Dim	nodRoot	As	DiagramNode

				Dim	nodPrev	As	DiagramNode

				Dim	shDiagram	As	Shape

				Dim	intCount	As	Integer

				Set	shDiagram	=	ActiveSheet.Shapes.AddDiagram	_

								(Type:=msoDiagramRadial,	Left:=10,	Top:=15,	_

								Width:=400,	Height:=475)

				Set	nodRoot	=	shDiagram.DiagramNode.Children.AddNode

				'	Add	3	child	nodes	to	the	root	node.

				For	intCount	=	1	To	3

								nodRoot.Children.AddNode

				Next

				'	Swap	the	second	node	with	the	fourth	node.

				nodRoot.Children.Item(2).SwapNode	_

								pTargetNode:=nodRoot.Diagram.Nodes(4),	_

								swapChildren:=True

End	Sub

Table	Method
							

Creates	a	data	table	based	on	input	values	and	formulas	that	you	define	on	a
worksheet.

expression.Table(RowInput,	ColumnInput)

expression			Required.	An	expression	that	returns	an	object	in	the	Applies	To	list.

RowInput			Optional	Variant.	A	single	cell	to	use	as	the	row	input	for	your
table.

ColumnInput			Optional	Variant.	A	single	cell	to	use	as	the	column	input	for
your	table.

Remarks

Use	data	tables	to	perform	a	what-if	analysis	by	changing	certain	constant	values
on	your	worksheet	to	see	how	values	in	other	cells	are	affected.

Example

This	example	creates	a	formatted	multiplication	table	in	cells	A1:K11	on	Sheet1.

Set	dataTableRange	=	Worksheets("Sheet1").Range("A1:K11")

Set	rowInputCell	=	Worksheets("Sheet1").Range("A12")

Set	columnInputCell	=	Worksheets("Sheet1").Range("A13")

Worksheets("Sheet1").Range("A1").Formula	=	"=A12*A13"

For	i	=	2	To	11

				Worksheets("Sheet1").Cells(i,	1)	=	i	-	1

				Worksheets("Sheet1").Cells(1,	i)	=	i	-	1

Next	i

dataTableRange.Table	rowInputCell,	columnInputCell

With	Worksheets("Sheet1").Range("A1").CurrentRegion

				.Rows(1).Font.Bold	=	True

				.Columns(1).Font.Bold	=	True

				.Columns.AutoFit

End	With

Show	All

Text	Method
							

Text	method	as	it	applies	to	the	WorksheetFunction	object.

Converts	a	value	to	text	in	a	specific	number	format.

expression.Text(Arg1,	Arg2)

expression			Required.	An	expression	that	returns	one	of	the	above	objects.

Arg1		Required	Variant.	A	numeric	value,	a	formula	that	evaluates	to	a	numeric
value,	or	a	reference	to	a	cell	containing	a	numeric	value.

Arg2		Required	String.	A	number	format	in	text	form	in	the	Category	box	on
the	Number	tab	in	the	Format	Cells	dialog	box.

	

Text	method	as	it	applies	to	the	Comment	object.

Sets	comment	text.

expression.Text(Text,	Start,	Overwrite)

expression			Required.	An	expression	that	returns	one	of	the	above	objects.

Text		Optional	Variant.	The	text	to	be	added.

Start		Optional	Variant.	The	character	number	where	the	added	text	will	be
placed.	If	this	argument	is	omitted,	any	existing	text	in	the	comment	is	deleted.

Overwrite		Optional	Variant.	True	to	overwrite	the	existing	text.	The	default
value	is	False	(text	is	inserted).

	

Example

This	example	adds	a	comment	to	cell	E5	on	sheet	one.

With	Worksheets(1).Range("e5").AddComment

				.Visible	=	False

				.Text	"reviewed	on	"	&	Date

End	With

Show	All

TextToColumns	Method
							

Parses	a	column	of	cells	that	contain	text	into	several	columns.

expression.TextToColumns(Destination,	DataType,	TextQualifier,
ConsecutiveDelimiter,	Tab,	Semicolon,	Comma,	Space,	Other,	OtherChar,
FieldInfo,	DecimalSeparator,	ThousandsSeparator,	TrailingMinusNumbers)

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

Destination			Optional	Variant.	A	Range	object	that	specifies	where	Microsoft
Excel	will	place	the	results.	If	the	range	is	larger	than	a	single	cell,	the	top	left
cell	is	used.

DataType		Optional	XlTextParsingType.	The	format	of	the	text	to	be	split	into
columns.

XlTextParsingType	can	be	one	of	these	XlTextParsingType	constants.
xlDelimited	default
xlFixedWidth

TextQualifier		Optional	XlTextQualifier.

XlTextQualifier	can	be	one	of	these	XlTextQualifier	constants.
xlTextQualifierDoubleQuote	default
xlTextQualifierNone
xlTextQualifierSingleQuote

ConsecutiveDelimiter			Optional	Variant.	True	to	have	Microsoft	Excel
consider	consecutive	delimiters	as	one	delimiter.	The	default	value	is	False.

Tab			Optional	Variant.	True	to	have	DataType	be	xlDelimited	and	to	have	the
tab	character	be	a	delimiter.	The	default	value	is	False.

Semicolon			Optional	Variant.	True	to	have	DataType	be	xlDelimited	and	to
have	the	semicolon	be	a	delimiter.	The	default	value	is	False.

Comma			Optional	Variant.	True	to	have	DataType	be	xlDelimited	and	to	have
the	comma	be	a	delimiter.	The	default	value	is	False.

Space			Optional	Variant.	True	to	have	DataType	be	xlDelimited	and	to	have
the	space	character	be	a	delimiter.	The	default	value	is	False.

Other			Optional	Variant.	True	to	have	DataType	be	xlDelimited	and	to	have
the	character	specified	by	the	OtherChar	argument	be	a	delimiter.	The	default
value	is	False.

OtherChar			Optional	Variant	(required	if	Other	is	True).	The	delimiter
character	when	Other	is	True.	If	more	than	one	character	is	specified,	only	the
first	character	of	the	string	is	used;	the	remaining	characters	are	ignored.

FieldInfo			Optional	Variant.	An	array	containing	parse	information	for	the
individual	columns	of	data.	The	interpretation	depends	on	the	value	of
DataType.	When	the	data	is	delimited,	this	argument	is	an	array	of	two-element
arrays,	with	each	two-element	array	specifying	the	conversion	options	for	a
particular	column.	The	first	element	is	the	column	number	(1-based),	and	the
second	element	is	one	of	the	xlColumnDataType	constants	specifying	how	the
column	is	parsed.

XlColumnDataType	can	be	one	of	these	XlColumnDataType	constants.
xlGeneralFormat.	General
xlTextFormat.	Text

xlMDYFormat.	MDY	Date

xlDMYFormat.	DMY	Date

xlYMDFormat.	YMD	Date

xlMYDFormat.	MYD	Date

xlDYMFormat.	DYM	Date

xlYDMFormat.	YDM	Date

xlEMDFormat.	EMD	Date

xlSkipColumn.	Skip	Column

You	can	use	xlEMDFormat	only	if	Taiwanese	language	support	is	installed	and
selected.	The	xlEMDFormat	constant	specifies	that	Taiwanese	era	dates	are
being	used.

The	column	specifiers	can	be	in	any	order.	If	a	given	column	specifier	is	not
present	for	a	particular	column	in	the	input	data,	the	column	is	parsed	with	the
General	setting.	This	example	causes	the	third	column	to	be	skipped,	the	first
column	to	be	parsed	as	text,	and	the	remaining	columns	in	the	source	data	to	be
parsed	with	the	General	setting.

Array(Array(3,	9),	Array(1,	2))

If	the	source	data	has	fixed-width	columns,	the	first	element	of	each	two-element
array	specifies	the	starting	character	position	in	the	column	(as	an	integer;	0
(zero)	is	the	first	character).	The	second	element	of	the	two-element	array
specifies	the	parse	option	for	the	column	as	a	number	from	1	through	9,	as	listed
above.

The	following	example	parses	two	columns	from	a	fixed-width	file,	with	the	first
column	starting	at	the	beginning	of	the	line	and	extending	for	10	characters.	The
second	column	starts	at	position	15	and	goes	to	the	end	of	the	line.	To	avoid
including	the	characters	between	position	10	and	position	15,	Microsoft	Excel
adds	a	skipped	column	entry.

Array(Array(0,	1),	Array(10,	9),	Array(15,	1))

DecimalSeparator			Optional	String.	The	decimal	separator	that	Microsoft
Excel	uses	when	recognizing	numbers.	The	default	setting	is	the	system	setting.

ThousandsSeparator			Optional	String.	The	thousands	separator	that	Excel	uses
when	recognizing	numbers.	The	default	setting	is	the	system	setting.

TrailingMinusNumbers		Optional	Variant.		Numbers	that	begin	with	a	minus
character.

The	following	table	shows	the	results	of	importing	text	into	Excel	for	various
import	settings.	Numeric	results	are	displayed	in	the	rightmost	column.

System
decimal
separator

System
thousands
separator

Decimal
separator
value

Thousands
separator
value

Original
text

Cell	value
(data	type)

Period Comma Comma Period 123.123,45 123,123.45
(numeric)

Period Comma Comma Comma 123.123,45 123.123,45
(text)

Comma Period Comma Period 123,123.45 123,123.45
(numeric)

Period Comma Period Comma 123	123.45 123	123.45
(text)

Period Comma Period Space 123	123.45 123,123.45
(numeric)

Example

This	example	converts	the	contents	of	the	Clipboard,	which	contains	a	space-
delimited	text	table,	into	separate	columns	on	Sheet1.	You	can	create	a	simple
space-delimited	table	in	Notepad	or	WordPad	(or	another	text	editor),	copy	the
text	table	to	the	Clipboard,	switch	to	Microsoft	Excel,	and	then	run	this	example.

Worksheets("Sheet1").Activate

ActiveSheet.Paste

Selection.TextToColumns	DataType:=xlDelimited,	_

				ConsecutiveDelimiter:=True,	Space:=True

ToggleVerticalText	Method
							

Switches	the	text	flow	in	the	specified	WordArt	from	horizontal	to	vertical,	or
vice	versa.

expression.ToggleVerticalText

expression			Required.	An	expression	that	returns	a	TextEffectFormat	object.

Remarks

Using	the	ToggleVerticalText	method	swaps	the	values	of	the	Width	and
Height	properties	of	the	Shape	object	that	represents	the	WordArt	and	leaves	the
Left	and	Top	properties	unchanged.

The	Flip	method	and	Rotation	property	of	the	Shape	object	and	the
RotatedChars	property	and	ToggleVerticalText	method	of	the
TextEffectFormat	object	all	affect	the	character	orientation	and	the	direction	of
text	flow	in	a	Shape	object	that	represents	WordArt.	You	may	have	to
experiment	to	find	out	how	to	combine	the	effects	of	these	properties	and
methods	to	get	the	result	you	want.

Example

This	example	adds	WordArt	that	contains	the	text	"Test"	to	myDocument	and
switches	from	horizontal	text	flow	(the	default	for	the	specified	WordArt	style,
msoTextEffect1)	to	vertical	text	flow.

Set	myDocument	=	Worksheets(1)

Set	newWordArt	=	myDocument.Shapes.AddTextEffect(_

				PresetTextEffect:=msoTextEffect1,	Text:="Test",	_

				FontName:="Arial	Black",	FontSize:=36,	_

				FontBold:=False,	FontItalic:=False,	Left:=100,	_

				Top:=100)

newWordArt.TextEffect.ToggleVerticalText

TransferChildren	Method
							

Transfers	the	child	nodes	of	a	source	diagram	node	to	a	receiving	diagram	node.

expression.TransferChildren(pReceivingNode)

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

pReceivingNode		Required	DiagramNode	object.	The	diagram	node	receiving
the	child	nodes	being	transferred	from	the	node	signified	in	expression.

Example

The	following	example	transfers	the	child	nodes	of	a	newly-created	diagram
from	one	node	to	another.

Sub	TransferChildNodes()

				Dim	dgnNode	As	DiagramNode

				Dim	shpDiagram	As	Shape

				Dim	intCount	As	Integer

				'Add	organizational	chart	to	current	document

				Set	shpDiagram	=	ActiveSheet.Shapes.AddDiagram	_

								(Type:=msoDiagramOrgChart,	Left:=10,	_

								Top:=15,	Width:=400,	Height:=475)

				'Add	first	node	to	organizational	chart

				Set	dgnNode	=	shpDiagram.DiagramNode.Children.AddNode

				'Add	three	child	nodes	to	first	node

				For	intCount	=	1	To	3

								dgnNode.Children.AddNode

				Next	intCount

				'Add	three	child	nodes	to	the	first	child	node

				'of	the	first	node

				For	intCount	=	1	To	3

								dgnNode.Children.Item(1).Children.AddNode

				Next	intCount

				'Moves	the	child	nodes	of	the	first	child	node

				'so	they	become	child	nodes	of	the	third	child	node

				dgnNode.Children.Item(1).TransferChildren	_

								pReceivingNode:=dgnNode.Children.Item(3)

End	Sub

Trendlines	Method
							

Returns	an	object	that	represents	a	single	trendline	(a	Trendline	object)	or	a
collection	of	all	the	trendlines	(a	Trendlines	collection)	for	the	series.

object.Trendlines(Index)

object			Required.	The	Series	object.

Index			Optional	Variant.	The	name	or	number	of	the	trendline.

Example

This	example	adds	a	linear	trendline	to	series	one	in	Chart1.

Charts("Chart1").SeriesCollection(1).Trendlines.Add	Type:=xlLinear

Show	All

TwoColorGradient	Method
							

TwoColorGradient	method	as	it	applies	to	the	FillFormat	object.

Sets	the	specified	fill	to	a	two-color	gradient.

expression.TwoColorGradient(Style,	Variant)

expression			Required.	An	expression	that	returns	one	of	the	above	objects.

Style		Required	MsoGradientStyle.

MsoGradientStyle	can	be	one	of	these	MsoGradientStyle	constants.
msoGradientDiagonalDown
msoGradientDiagonalUp
msoGradientFromCenter
msoGradientFromCorner
msoGradientFromTitle
msoGradientHorizontal
msoGradientMixed
msoGradientVertical

Variant		Required	Integer.	The	gradient	variant.	Can	be	a	value	from	1	through
4,	corresponding	to	one	of	the	four	variants	on	the	Gradient	tab	in	the	Fill
Effects	dialog	box.	If	Style	is	msoGradientFromCenter,	the	Variant	argument
can	only	be	1	or	2.

	

TwoColorGradient	method	as	it	applies	to	the	ChartFillFormat	object.

Sets	the	specified	fill	to	a	two-color	gradient.

expression.TwoColorGradient(Style,	Variant)

expression			Required.	An	expression	that	returns	one	of	the	above	objects.

Style		Required	MsoGradientStyle.

MsoGradientStyle	can	be	one	of	these	MsoGradientStyle	constants.
msoGradientDiagonalDown
msoGradientDiagonalUp
msoGradientFromCenter
msoGradientFromCorner
msoGradientFromTitle
msoGradientHorizontal
msoGradientMixed
msoGradientVertical

Variant		Required	Long.	The	gradient	variant.	Can	be	a	value	from	1	through	4,
corresponding	to	one	of	the	four	variants	on	the	Gradient	tab	in	the	Fill	Effects
dialog	box.	If	Style	is	msoGradientFromCenter,	the	Variant	argument	can	only
be	1	or	2.

	

Example

This	example	sets	the	foreground	color,	background	color,	and	gradient	for	the
chart	area	fill	on	chart	one.

With	Charts(1).ChartArea.Fill

				.Visible	=	True

				.ForeColor.SchemeColor	=	15

				.BackColor.SchemeColor	=	17

				.TwoColorGradient	msoGradientHorizontal,	1

End	With

Undo	Method
							

Cancels	the	last	user-interface	action.

expression.Undo

expression			Required.	An	expression	that	returns	an	Application	object.

Remarks

This	method	undoes	only	the	last	action	taken	by	the	user	before	running	the
macro,	and	it	must	be	the	first	line	in	the	macro.	It	cannot	be	used	to	undo	Visual
Basic	commands.

Example

This	example	cancels	the	last	user-interface	action.	The	example	must	be	the
first	line	in	a	macro.

Application.Undo

Show	All

Ungroup	Method
							

Ungroup	method	as	it	applies	to	the	Range	object.

Promotes	a	range	in	an	outline	(that	is,	decreases	its	outline	level).	The	specified
range	must	be	a	row	or	column,	or	a	range	of	rows	or	columns.	If	the	range	is	in
a	PivotTable	report,	this	method	ungroups	the	items	contained	in	the	range.

expression.Ungroup

expression			Required.	An	expression	that	returns	a	Range	object.

Remarks

If	the	active	cell	is	in	a	field	header	of	a	parent	field,	all	the	groups	in	that	field
are	ungrouped	and	the	field	is	removed	from	the	PivotTable	report.	When	the
last	group	in	a	parent	field	is	ungrouped,	the	entire	field	is	removed	from	the
report.

Ungroup	method	as	it	applies	to	the	Shape	and	ShapeRange	objects.

Ungroups	any	grouped	shapes	in	the	specified	shape	or	range	of	shapes.
Disassembles	pictures	and	OLE	objects	within	the	specified	shape	or	range	of
shapes.	Returns	the	ungrouped	shapes	as	a	single	ShapeRange	object.

expression.Ungroup

expression			Required.	An	expression	that	returns	one	of	the	above	objects.

Remarks

Because	a	group	of	shapes	is	treated	as	a	single	object,	grouping	and	ungrouping
shapes	changes	the	number	of	items	in	the	Shapes	collection	and	changes	the
index	numbers	of	items	that	come	after	the	affected	items	in	the	collection.

Example

As	it	applies	to	the	Range	object.

This	example	ungroups	the	ORDER_DATE	field.

Set	pvtTable	=	Worksheets("Sheet1").Range("A3").PivotTable

Set	groupRange	=	pvtTable.PivotFields("ORDER_DATE").DataRange

groupRange.Cells(1).Ungroup

As	it	applies	to	the	Shape	and	ShapeRange	objects.

This	example	ungroups	any	grouped	shapes	and	disassembles	any	pictures	or
OLE	objects	on	myDocument.

Set	myDocument	=	Worksheets(1)

For	Each	s	In	myDocument.Shapes

				s.Ungroup

Next

This	example	ungroups	any	grouped	shapes	on	myDocument	without
disassembling	pictures	or	OLE	objects	on	the	document.

Set	myDocument	=	Worksheets(1)

For	Each	s	In	myDocument.Shapes

				If	s.Type	=	msoGroup	Then	s.Ungroup

Union	Method
							

Returns	the	union	of	two	or	more	ranges.

expression.Union(Arg1,	Arg2,	...)

expression			Optional.	An	expression	that	returns	an	Application	object.

Arg1,	Arg2,	...			Required	Range.	At	least	two	Range	objects	must	be	specified.

Example

This	example	fills	the	union	of	two	named	ranges,	Range1	and	Range2,	with	the
formula	=RAND().

Worksheets("Sheet1").Activate

Set	bigRange	=	Application.Union(Range("Range1"),	Range("Range2"))

bigRange.Formula	=	"=RAND()"

UnMerge	Method
							

Separates	a	merged	area	into	individual	cells.

expression.UnMerge

expression			Required.	An	expression	that	returns	a	Range	object.

Example

This	example	separates	the	merged	range	that	contains	cell	A3.

With	Range("a3")

				If	.MergeCells	Then

								.MergeArea.UnMerge

				Else

								MsgBox	"not	merged"

				End	If

End	With

Unprotect	Method
							

Removes	protection	from	a	sheet	or	workbook.	This	method	has	no	effect	if	the
sheet	or	workbook	isn't	protected.

expression.Unprotect(Password)

expression			Required.	An	expression	that	returns	a	Chart,	Workbook,	or
Worksheet	object.

Password			Optional	Variant.	A	string	that	denotes	the	case-sensitive	password
to	use	to	unprotect	the	sheet	or	workbook.	If	the	sheet	or	workbook	isn't
protected	with	a	password,	this	argument	is	ignored.	If	you	omit	this	argument
for	a	sheet	that's	protected	with	a	password,	you'll	be	prompted	for	the	password.
If	you	omit	this	argument	for	a	workbook	that's	protected	with	a	password,	the
method	fails.

Remarks

If	you	forget	the	password,	you	cannot	unprotect	the	sheet	or	workbook.	It's	a
good	idea	to	keep	a	list	of	your	passwords	and	their	corresponding	document
names	in	a	safe	place.

Example

This	example	removes	protection	from	the	active	workbook.

ActiveWorkbook.Unprotect

UnprotectSharing	Method
							

Turns	off	protection	for	sharing	and	saves	the	workbook.

expression.UnprotectSharing(SharingPassword)

expression			Required.	An	expression	that	returns	a	Workbook	object.

SharingPassword			Optional	Variant.	The	workbook	password.

Example

This	example	turns	off	protection	for	sharing	and	saves	the	active	workbook.

ActiveWorkbook.UnprotectSharing	Password:="drowssap"

Update	Method
							

Updates	the	link	or	PivotTable	report.

expression.Update

expression			Required.	An	expression	that	returns	an	OLEObject	or	PivotTable
object.

Example

This	example	updates	the	link	to	OLE	object	one	on	Sheet1.

Worksheets("Sheet1").OLEObjects(1).Update

UpdateFromFile	Method
							

Updates	a	read-only	workbook	from	the	saved	disk	version	of	the	workbook	if
the	disk	version	is	more	recent	than	the	copy	of	the	workbook	that	is	loaded	in
memory.	If	the	disk	copy	hasn't	changed	since	the	workbook	was	loaded,	the	in-
memory	copy	of	the	workbook	isn't	reloaded.

expression.UpdateFromFile

expression			Required.	An	expression	that	returns	a	Workbook	object.

Remarks

This	method	is	useful	when	a	workbook	is	opened	as	read-only	by	user	A	and
opened	as	read/write	by	user	B.	If	user	B	saves	a	newer	version	of	the	workbook
to	disk	while	user	A	still	has	the	workbook	open,	user	A	cannot	get	the	updated
copy	without	closing	and	reopening	the	workbook	and	losing	view	settings.	The
UpdateFromFile	method	updates	the	in-memory	copy	of	the	workbook	from
the	disk	file.

Example

This	example	updates	the	active	workbook	from	the	disk	version	of	the	file.

ActiveWorkbook.UpdateFromFile

UpdateLink	Method
							

Updates	a	Microsoft	Excel,	DDE,	or	OLE	link	(or	links).

expression.UpdateLink(Name,	Type)

expression			Required.	An	expression	that	returns	a	Workbook	object.

Name			Optional	String.	The	name	of	the	Microsoft	Excel	or	DDE/OLE	link	to
be	updated,	as	returned	from	the	LinkSources	method.

Type			Optional	XlLinkType.

XlReferenceStyle	can	be	one	of	these	XlReferenceStyle	constants.
xlLinkTypeExcelLinks	default.
xlLinkTypeOLELinks		(also	used	for	DDE	links)

Remark

Note		When	the	UpdateLink	method	is	called	without	any	parameters,	Excel
defaults	to	updating	all	worksheet	links.

Example

This	example	updates	all	links	in	the	active	workbook.

ActiveWorkbook.UpdateLink	Name:=ActiveWorkbook.LinkSources

UpdateNotify	Method
							

The	RTD	server	informs	Microsoft	Excel	that	new	data	has	been	received.

expression.UpdateNotify

expression			Required.	An	expression	that	returns	an	IRTDUpdateEvent	object.

UseDefaultFolderSuffix	Method
							

Sets	the	folder	suffix	for	the	specified	document	to	the	default	suffix	for	the
language	support	you	have	selected	or	installed.

expression.UseDefaultFolderSuffix

expression			An	expression	that	returns	a	WebOptions	object.

Remarks

Microsoft	Excel	uses	the	folder	suffix	when	you	save	a	document	as	a	Web	page,
use	long	file	names,	and	choose	to	save	supporting	files	in	a	separate	folder	(that
is,	if	the	UseLongFileNames	and	OrganizeInFolder	properties	are	set	to	True).

The	suffix	appears	in	the	folder	name	after	the	document	name.	For	example,	if
the	document	is	called	"Book1"	and	the	language	is	English,	the	folder	name	is
Book1_files.	The	available	folder	suffixes	are	listed	in	the	FolderSuffix	property
topic.

Example

This	example	sets	the	folder	suffix	for	the	first	workbook	to	the	default	suffix.

Workbooks(1).WebOptions.UseDefaultFolderSuffix

Show	All

UserPicture	Method
							

UserPicture	method	as	it	applies	to	the	FillFormat	object.

Fills	the	specified	shape	with	an	image.

expression.UserPicture(PictureFile)

expression			Required.	An	expression	that	returns	one	of	the	above	objects.

PictureFile		Required	String.	The	name	of	the	picture	file.

	

UserPicture	method	as	it	applies	to	the	ChartFillFormat	object.

Fills	the	specified	shape	with	an	image.

expression.UserPicture(PictureFile,	PictureFormat,	PictureStackUnit,
PicturePlacement)

expression			Required.	An	expression	that	returns	one	of	the	above	objects.

PictureFile		Optional	Variant.

PictureFormat			Required	XlChartPictureType.

XlChartPictureType	can	be	one	of	these	XlChartPictureType	constants.
xlStack
xlStackScale

xlStretch

PictureStackUnit			Required	Long.	The	picture	stack	or	scale	unit	(depends	on
the	PictureFormat	argument).

PicturePlacement			Required	XlChartPicturePlacement.

XlChartPicturePlacement	can	be	one	of	these	XlChartPicturePlacement
constants.
xlAllFaces
xlEnd

xlEndSides

xlFront

xlFrontEnd

xlFrontSides

xlSides

Example

This	example	sets	the	fill	format	for	chart	two.

Charts(2).ChartArea.Fill.UserPicture	"brick.gif"

UserTextured	Method
							

Fills	the	specified	shape	with	small	tiles	of	an	image.	If	you	want	to	fill	the
shape	with	one	large	image,	use	the	UserPicture	method.

expression.UserTextured(TextureFile)

expression			Required.	An	expression	that	returns	a	FillFormat	object.

TextureFile			Required	String.	The	name	of	the	picture	file.

Example

This	example	sets	the	fill	format	for	chart	two.

Charts(2).ChartArea.Fill.UserTextured	"brick.gif"

Verb	Method
							

Sends	a	verb	to	the	server	of	the	specified	OLE	object.

expression.Verb(Verb)

expression			Required.	An	expression	that	returns	an	OLEObject	object.

Verb			Optional	Variant.	The	verb	that	the	server	of	the	OLE	object	should	act
on.	If	this	argument	is	omitted,	the	default	verb	is	sent.	The	available	verbs	are
determined	by	the	object's	source	application.	Typical	verbs	for	an	OLE	object
are	Open	and	Primary	(represented	by	the	XlOLEVerb	constants	xlOpen	and
xlPrimary).

Example

This	example	sends	the	default	verb	to	the	server	for	OLE	object	one	on	Sheet1.

Worksheets("Sheet1").OLEObjects(1).Verb

Volatile	Method
							

Marks	a	user-defined	function	as	volatile.	A	volatile	function	must	be
recalculated	whenever	calculation	occurs	in	any	cells	on	the	worksheet.	A
nonvolatile	function	is	recalculated	only	when	the	input	variables	change.	This
method	has	no	effect	if	it's	not	inside	a	user-defined	function	used	to	calculate	a
worksheet	cell.

expression.Volatile(Volatile)

expression			Required.	An	expression	that	returns	an	Application	object.

Volatile			Optional	Variant.	True	to	mark	the	function	as	volatile.	False	to	mark
the	function	as	nonvolatile.	The	default	value	is	True

Example

This	example	marks	the	user-defined	function	"My_Func"	as	volatile.	The
function	will	be	recalculated	whenever	calculation	occurs	in	any	cells	on	the
worksheet	on	which	this	function	appears.

Function	My_Func()

				Application.Volatile

				'	

				'				Remainder	of	the	function

				">

End	Function

Wait	Method
							

Pauses	a	running	macro	until	a	specified	time.	Returns	True	if	the	specified	time
has	arrived.

Important			The	Wait	method	suspends	all	Microsoft	Excel	activity	and	may
prevent	you	from	performing	other	operations	on	your	computer	while	Wait	is	in
effect.	However,	background	processes	such	as	printing	and	recalculation
continue.

expression.Wait(Time)

expression			Required.	An	expression	that	returns	an	Application	object.

Time			Required	Variant.	The	time	at	which	you	want	the	macro	to	resume,	in
Microsoft	Excel	date	format.

Example

This	example	pauses	a	running	macro	until	6:23	P.M.	today.

Application.Wait	"18:23:00"

This	example	pauses	a	running	macro	for	approximately	10	seconds.

newHour	=	Hour(Now())

newMinute	=	Minute(Now())

newSecond	=	Second(Now())	+	10

waitTime	=	TimeSerial(newHour,	newMinute,	newSecond)

Application.Wait	waitTime

This	example	displays	a	message	indicating	whether	10	seconds	have	passed.

If	Application.Wait(Now	+	TimeValue("0:00:10"))	Then

				MsgBox	"Time	expired"

End	If

WebPagePreview	Method
							

Displays	a	preview	of	the	specified	workbook	as	it	would	look	if	saved	as	a	Web
page.

expression.WebPagePreview

expression			An	expression	that	returns	a	Workbook	object.

Example

This	example	displays	a	preview	of	the	first	workbook	as	a	Web	page.

Workbooks(1).WebPagePreview

XYGroups	Method
							

On	a	2-D	chart,	returns	an	object	that	represents	either	a	single	scatter	chart
group	(a	ChartGroup	object)	or	a	collection	of	the	scatter	chart	groups	(a
ChartGroups	collection).

expression.XYGroups(Index)

expression			Required.	An	expression	that	returns	a	Chart	object.

Index			Optional	Variant.	Specifies	the	chart	group.

Example

This	example	sets	X-Y	group	(scatter	group)	one	to	use	a	different	color	for	each
data	marker.	The	example	should	be	run	on	a	2-D	chart.

Charts("Chart1").XYGroups(1).VaryByCategories	=	True

ZOrder	Method
							

Moves	the	specified	shape	in	front	of	or	behind	other	shapes	in	the	collection
(that	is,	changes	the	shape's	position	in	the	z-order).

expression.ZOrder(ZOrderCmd)

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

ZOrderCmd		Required	MsoZOrderCmd.	Specifies	where	to	move	the	specified
shape	relative	to	the	other	shapes.

MsoZOrderCmd	can	be	one	of	these	MsoZOrderCmd	constants.
msoBringForward
msoBringInFrontOfText.		Used	only	in	Microsoft	Word.
msoBringToFront
msoSendBackward
msoSendBehindText.		Used	only	in	Microsoft	Word.
msoSendToBack

Remarks

Use	the	ZOrderPosition	property	to	determine	a	shape's	current	position	in	the
z-order.

Example

This	example	adds	an	oval	to	myDocument	and	then	places	the	oval	second	from
the	back	in	the	z-order	if	there	is	at	least	one	other	shape	on	the	document.

Set	myDocument	=	Worksheets(1)

With	myDocument.Shapes.AddShape(msoShapeOval,	100,	100,	100,	300)

				While	.ZOrderPosition	>	2

								.ZOrder	msoSendBackward

				Wend

End	With

Accent	Property
							

Allows	the	user	to	place	a	vertical	accent	bar	to	separate	the	callout	text	from	the
callout	line.	Read/write	MsoTriState.

MsoTriState	can	be	one	of	these	MsoTriState	constants.
msoCTrue
msoFalse
msoTriStateMixed
msoTriStateToggle
msoTrue	A	vertical	accent	bar	separates	the	callout	text	from	the	callout	line.

expression.Accent

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

Example

This	example	adds	to	myDocument	an	oval	and	a	callout	that	points	to	the	oval.
The	callout	text	won’t	have	a	border,	but	it	will	have	a	vertical	accent	bar	that
separates	the	text	from	the	callout	line.

Set	myDocument	=	Worksheets(1)

With	myDocument.Shapes

				.AddShape	msoShapeOval,	180,	200,	280,	130

				With	.AddCallout(msoCalloutTwo,	420,	170,	170,	40)

								.TextFrame.Characters.Text	=	"My	oval"

								With	.Callout

												.Accent	=	msoTrue

												.Border	=	False

								End	With

				End	With

End	With

AcceptLabelsInFormulas	Property
							

True	if	labels	can	be	used	in	worksheet	formulas.	The	default	value	is	True.
Read/write	Boolean.

expression.AcceptLabelsInFormula

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

Example

This	example	sets	the	AcceptLabelsInFormulas	property	for	the	active
workbook	and	then	sets	cells	B1:D1	on	worksheet	one	to	be	column	labels.

ActiveWorkbook.AcceptLabelsInFormulas	=	True

Worksheets(1).Range("b1:d1").FormulaLabel	=	xlColumnLabels

ActiveCell	Property
							

Returns	a	Range	object	that	represents	the	active	cell	in	the	active	window	(the
window	on	top)	or	in	the	specified	window.	If	the	window	isn't	displaying	a
worksheet,	this	property	fails.	Read-only.

Remarks

If	you	don't	specify	an	object	qualifier,	this	property	returns	the	active	cell	in	the
active	window.

Be	careful	to	distinguish	between	the	active	cell	and	the	selection.	The	active
cell	is	a	single	cell	inside	the	current	selection.	The	selection	may	contain	more
than	one	cell,	but	only	one	is	the	active	cell.

The	following	expressions	all	return	the	active	cell,	and	are	all	equivalent.

ActiveCell

Application.ActiveCell

ActiveWindow.ActiveCell

Application.ActiveWindow.ActiveCell

Example

This	example	uses	a	message	box	to	display	the	value	in	the	active	cell.	Because
the	ActiveCell	property	fails	if	the	active	sheet	isn't	a	worksheet,	the	example
activates	Sheet1	before	using	the	ActiveCell	property.

Worksheets("Sheet1").Activate

MsgBox	ActiveCell.Value

This	example	changes	the	font	formatting	for	the	active	cell.

Worksheets("Sheet1").Activate

With	ActiveCell.Font

				.Bold	=	True

				.Italic	=	True

End	With

ActiveChart	Property
							

Returns	a	Chart	object	that	represents	the	active	chart	(either	an	embedded	chart
or	a	chart	sheet).	An	embedded	chart	is	considered	active	when	it's	either
selected	or	activated.	When	no	chart	is	active,	this	property	returns	Nothing.
Read-only.

Remarks

If	you	don't	specify	an	object	qualifier,	this	property	returns	the	active	chart	in
the	active	workbook.

Example

This	example	turns	on	the	legend	for	the	active	chart.

ActiveChart.HasLegend	=	True

ActivePane	Property
							

Returns	a	Pane	object	that	represents	the	active	pane	in	the	window.	Read-only.

Remarks

This	property	can	be	used	only	on	worksheets	and	macro	sheets.

This	property	returns	a	Pane	object.	You	must	use	the	Index	property	to	obtain
the	index	of	the	active	pane.

Example

This	example	activates	the	next	pane	of	the	active	window	in	Book1.xls.	You
cannot	activate	the	next	pane	if	the	panes	are	frozen.	The	example	must	be	run
from	a	workbook	other	than	Book1.xls.	Before	running	the	example,	make	sure
that	Book1.xls	has	either	two	or	four	panes	in	the	active	worksheet.

Workbooks("BOOK1.XLS").Activate

If	not	ActiveWindow.FreezePanes	Then

				With	ActiveWindow

								i	=	.ActivePane.Index

								If	i	=	.Panes.Count	Then

												.Panes(1).Activate

								Else

												.Panes(i+1).Activate

								End	If

				End	With

End	If

ActivePrinter	Property
							

Returns	or	sets	the	name	of	the	active	printer.	Read/write	String.

Example

This	example	displays	the	name	of	the	active	printer.

MsgBox	"The	name	of	the	active	printer	is	"	&	_

				Application.ActivePrinter

ActiveSheet	Property
							

Returns	an	object	that	represents	the	active	sheet	(the	sheet	on	top)	in	the	active
workbook	or	in	the	specified	window	or	workbook.	Returns	Nothing	if	no	sheet
is	active.	Read-only.

Remarks

If	you	don’t	specify	an	object	qualifier,	this	property	returns	the	active	sheet	in
the	active	workbook.

If	a	workbook	appears	in	more	than	one	window,	the	ActiveSheet	property	may
be	different	in	different	windows.

Example

This	example	displays	the	name	of	the	active	sheet.

MsgBox	"The	name	of	the	active	sheet	is	"	&	ActiveSheet.Name

ActiveWindow	Property
							

Returns	a	Window	object	that	represents	the	active	window	(the	window	on
top).	Read-only.	Returns	Nothing	if	there	are	no	windows	open.

Example

This	example	displays	the	name	(Caption	property)	of	the	active	window.

MsgBox	"The	name	of	the	active	window	is	"	&	ActiveWindow.Caption

ActiveWorkbook	Property
							

Returns	a	Workbook	object	that	represents	the	workbook	in	the	active	window
(the	window	on	top).	Read-only.	Returns	Nothing	if	there	are	no	windows	open
or	if	either	the	Info	window	or	the	Clipboard	window	is	the	active	window.

Example

This	example	displays	the	name	of	the	active	workbook.

MsgBox	"The	name	of	the	active	workbook	is	"	&	ActiveWorkbook.Name

Show	All

AddIndent	Property
							

AddIndent	property	as	it	applies	to	the	Style	object.

True	if	text	is	automatically	indented	when	the	text	alignment	in	a	cell	is	set	to
equal	distribution	either	horizontally	or	vertically.	Read/write	Boolean.

expression.AddIndent

expression			Required.	An	expression	that	returns	a	Style	object.

AddIndent	property	as	it	applies	to	the	CellFormat	and	Range	objects.

True	if	text	is	automatically	indented	when	the	text	alignment	in	a	cell	is	set	to
equal	distribution	either	horizontally	or	vertically.	Read/write	Variant.

expression.AddIndent

expression			Required.	An	expression	that	returns	one	of	the	above	objects.

Remarks

To	set	text	alignment	to	equal	distribution,	you	can	set	the	VerticalAlignment
property	to	xlVAlignDistributed	when	the	value	of	the	Orientation	property	is
xlVertical,	and	you	can	set	the	HorizontalAlignment	property	to
xlHAlignDistributed	when	the	value	of	the	Orientation	property	is
xlHorizontal.

Example

This	example	sets	the	horizontal	alignment	for	text	in	cell	A1	on	Sheet1	to	equal
distribution	and	then	indents	the	text.

With	Worksheets("Sheet1").Range("A1")

				.HorizontalAlignment	=	xlHAlignDistributed

				.AddIndent	=	True

End	With

AddIns	Property
							

Returns	an	AddIns	collection	that	represents	all	the	add-ins	listed	in	the	Add-
Ins	dialog	box	(Tools	menu).	Read-only.

For	information	about	returning	a	single	member	of	a	collection,	see	Returning
an	Object	from	a	Collection.

Remarks

Using	this	method	without	an	object	qualifier	is	equivalent	to
Application.Addins.

Example

This	example	displays	the	status	of	the	Analysis	ToolPak	add-in.	Note	that	the
string	used	as	the	index	to	the	AddIns	collection	is	the	title	of	the	add-in,	not	the
add-in’s	file	name.

If	AddIns("Analysis	ToolPak").Installed	=	True	Then

				MsgBox	"Analysis	ToolPak	add-in	is	installed"

Else

				MsgBox	"Analysis	ToolPak	add-in	is	not	installed"

End	If

Show	All

Address	Property
							

Address	property	as	it	applies	to	the	Hyperlink	object.

Returns	or	sets	the	address	of	the	target	document.	Read/write	String.

expression.Address

expression			Required.	An	expression	that	returns	one	of	the	above	objects.

	

Address	property	as	it	applies	to	the	Range	object.

Returns	the	range	reference	in	the	language	of	the	macro.	Read-only	String.

expression.Address(RowAbsolute,	ColumnAbsolute,	ReferenceStyle,	External,
RelativeTo)

expression			Required.	An	expression	that	returns	one	of	the	above	objects.

RowAbsolute		Optional	Variant.		True	to	return	the	row	part	of	the	reference	as
an	absolute	reference.	The	default	value	is	True.

ColumnAbsolute		Optional	Variant.		True	to	return	the	column	part	of	the
reference	as	an	absolute	reference.	The	default	value	is	True.

ReferenceStyle		Optional	XlReferenceStyle.

XlReferenceStyle	can	be	one	of	these	XlReferenceStyle	constants.
xlA1	default.		Use	xlA1	to	return	an	A1-style	reference.
xlR1C1.	Use	xlR1C1	to	return	an	R1C1-style	reference.

External		Optional	Variant.		True	to	return	an	external	reference.	False	to
return	a	local	reference.	The	default	value	is	False.

RelativeTo		Optional	Variant.		If	RowAbsolute	and	ColumnAbsolute	are	False,
and	ReferenceStyle	is	xlR1C1,	you	must	include	a	starting	point	for	the	relative
reference.	This	argument	is	a	Range	object	that	defines	the	starting	point.

Remarks

If	the	reference	contains	more	than	one	cell,	RowAbsolute	and	ColumnAbsolute
apply	to	all	rows	and	columns.

Example

The	following	example	displays	four	different	representations	of	the	same	cell
address	on	Sheet1.	The	comments	in	the	example	are	the	addresses	that	will	be
displayed	in	the	message	boxes.

Set	mc	=	Worksheets("Sheet1").Cells(1,	1)

MsgBox	mc.Address()																														'	A1

MsgBox	mc.Address(RowAbsolute:=False)												'	$A1

MsgBox	mc.Address(ReferenceStyle:=xlR1C1)								'	R1C1

MsgBox	mc.Address(ReferenceStyle:=xlR1C1,	_

				RowAbsolute:=False,					_

				ColumnAbsolute:=False,		_

				RelativeTo:=Worksheets(1).Cells(3,	3))								'	R[-2]C[-2]

AddressLocal	Property
							

Returns	the	range	reference	for	the	specified	range	in	the	language	of	the	user.
Read-only	String.

expression.AddressLocal(RowAbsolute,	ColumnAbsolute,	ReferenceStyle,
External,	RelativeTo)

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

RowAbsolute		Optional	Variant.		True	to	return	the	row	part	of	the	reference	as
an	absolute	reference.	The	default	value	is	True.

ColumnAbsolute		Optional	Variant.		True	to	return	the	column	part	of	the
reference	as	an	absolute	reference.	The	default	value	is	True.

ReferenceStyle		Optional	XlReferenceStyle.

XlReferenceStyle	can	be	one	of	these	XlReferenceStyle	constants.
xlA1	default.	Use	xlA1	to	return	an	A1-style	reference
xlR1C1.	Use	xlR1C1	to	return	an	R1C1-style	reference.

External			Optional	Variant.	True	to	return	an	external	reference.	False	to
return	a	local	reference.	The	default	value	is	False.

RelativeTo			Optional	Variant.	If	RowAbsolute	and	ColumnAbsolute	are	both
set	to	False	and	ReferenceStyle	is	set	to	xlR1C1,	you	must	include	a	starting
point	for	the	relative	reference.	This	argument	is	a	Range	object	that	defines	the
starting	point	for	the	reference.

Remarks

If	the	reference	contains	more	than	one	cell,	RowAbsolute	and	ColumnAbsolute
apply	to	all	rows	and	all	columns,	respectively.

Example

Assume	that	this	example	was	created	using	U.S.	English	language	support	and
was	then	run	in	using	German	language	support.	The	example	displays	the	text
shown	in	the	comments.

Set	mc	=	Worksheets(1).Cells(1,	1)

MsgBox	mc.AddressLocal()																									'	A1

MsgBox	mc.AddressLocal(RowAbsolute:=False)							'	$A1

MsgBox	mc.AddressLocal(ReferenceStyle:=xlR1C1)			'	Z1S1

MsgBox	mc.AddressLocal(ReferenceStyle:=xlR1C1,	_

				RowAbsolute:=False,	_

				ColumnAbsolute:=False,	_

				RelativeTo:=Worksheets(1).Cells(3,	3))							'	Z(-2)S(-2)

AdjustColumnWidth	Property
							

True	if	the	column	widths	are	automatically	adjusted	for	the	best	fit	each	time
you	refresh	a	query	table.	False	if	the	column	widths	aren’t	automatically
adjusted	with	each	refresh.	The	default	value	is	True.	Read/write	Boolean.

Remarks

The	maximum	column	width	is	two-thirds	the	width	of	the	screen.

Example

This	example	turns	off	automatic	column-width	adjustment	for	the	newly	added
query	table	on	the	first	worksheet	in	the	first	workbook.

With	Workbooks(1).Worksheets(1).QueryTables	_

				.Add(Connection:=	varDBConnStr,	_

								Destination:=Range("B1"),	_

								Sql:="Select	Price	From	CurrentStocks	"	&	_

												"Where	Symbol	=	'MSFT'")

				.AdjustColumnWidth	=	False

				.Refresh

End	With

Adjustments	Property
							

Returns	an	Adjustments	object	that	contains	adjustment	values	for	all	the
adjustments	in	the	specified	shape.	Applies	to	any	Shape	or	ShapeRange	object
that	represents	an	AutoShape,	WordArt,	or	a	connector.	Read-only.

Example

This	example	sets	to	0.25	the	value	of	adjustment	one	on	shape	one	on
myDocument.

Set	myDocument	=	Worksheets(1)

myDocument.Shapes(1).Adjustments(1)	=	0.25

ADOConnection	Property
							

Returns	an	ADO	connection	object	if	the	PivotTable	cache	is	connected	to	an
OLE	DB	data	source.	The	ADOConnection	property	exposes	Microsoft	Excel's
connection	to	the	data	provider	allowing	the	user	to	write	code	within	the
context	of	the	same	session	that	Excel	is	using	with	ADO	(relational	source)	or
ADOMD	(OLAP	source).	Read-only.

expression.ADOConnection

expression			Required.	An	expression	that	returns	one	a	PivotCache	object.

Remarks

The	ADOConnection	property	is	available	only	for	sessions	where	the	data
source	is	an	OLE	DB	data	source.	When	there	is	no	ADO	session	the	query	will
result	in	a	run-time	error.

The	ADOConnection	property	can	be	used	for	any	OLEDB-based	cache	with
ADO.	The	ADO	connection	object	can	be	used	with	ADOMD	for	finding
information	about	OLAP	Cubes	on	which	the	cache	is	based.

Example

This	example	sets	an	ADODB	Connection	object	to	the	ADOConnection
property	of	the	PivotTable	cache.	The	example	assumes	a	PivotTable	report
exists	on	the	active	worksheet.

Sub	UseADOConnection()

				Dim	ptOne	As	PivotTable

				Dim	cmdOne	As	New	ADODB.Command

				Dim	cfOne	As	CubeField

				Set	ptOne	=	Sheet1.PivotTables(1)

				ptOne.PivotCache.MaintainConnection	=	True

				Set	cmdOne.ActiveConnection	=	ptOne.PivotCache.ADOConnection

				ptOne.PivotCache.MakeConnection

				'	Create	a	set.

				cmdOne.CommandText	=	"Create	Set	[Warehouse].[My	Set]	as	'{[Product].[All	Products].Children}'"

				cmdOne.CommandType	=	adCmdUnknown

				cmdOne.Execute

				'	Add	a	set	to	the	CubeField.

				Set	cfOne	=	ptOne.CubeFields.AddSet("My	Set",	"My	Set")

End	Sub

This	example	adds	a	calculated	member,	assuming	a	PivotTable	report	exists	on
the	active	worksheet.

Sub	AddMember()

				Dim	cmd	As	New	ADODB.Command

				If	Not	ActiveSheet.PivotTables(1).PivotCache.IsConnected	Then

								ActiveSheet.PivotTables(1).PivotCache.MakeConnection

				End	If

				Set	cmd.ActiveConnection	=	ActiveSheet.PivotTables(1).PivotCache.

				'	Add	a	calculated	member.

				cmd.CommandText	=	"CREATE	MEMBER	[Warehouse].[Product].[All	Products].[Drink	and	Non-Consumable]	AS	'[Product].[All	Products].[Drink]	+	[Product].[All	Products].[Non-Consumable]'"

				cmd.CommandType	=	adCmdUnknown

				cmd.Execute

				ActiveSheet.PivotTables(1).PivotCache.Refresh

End	Sub

AlertBeforeOverwriting	Property
							

True	if	Microsoft	Excel	displays	a	message	before	overwriting	nonblank	cells
during	a	drag-and-drop	editing	operation.	Read/write	Boolean.

Example

This	example	causes	Microsoft	Excel	to	display	an	alert	before	overwriting
nonblank	cells	during	drag-and-drop	editing.

Application.AlertBeforeOverwriting	=	True

AlertStyle	Property
							

Returns	the	validation	alert	style.	Read-only	XlDVAlertStyle.

XlDVAlertStyle	can	be	one	of	these	XlDVAlertStyle	constants.
xlValidAlertInformation
xlValidAlertStop
xlValidAlertWarning

expression.AlertStyle

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

Remarks

Use	the	Add	method	to	set	the	alert	style	for	a	range.	If	the	range	already	has
data	validation,	use	the	Modify	method	to	change	the	alert	style.

Example

This	example	displays	the	alert	style	for	cell	E5.

MsgBox	Range("e5").Validation.AlertStyle

Show	All

Alignment	Property
							

Alignment	property	as	it	applies	to	the	TextEffectFormat	object.

Returns	or	sets	the	alignment	for	WordArt.	Read/write
MsoTextEffectAlignment.

MsoTextEffectAlignment	can	be	one	of	these	MsoTextEffectAlignment
constants.
msoTextEffectAlignmentCentered
msoTextEffectAlignmentLeft
msoTextEffectAlignmentLetterJustify
msoTextEffectAlignmentMixed
msoTextEffectAlignmentRight
msoTextEffectAlignmentStretchJustify
msoTextEffectAlignmentWordJustify

expression.Alignment

expression			Required.	An	expression	that	returns	one	of	the	above	objects.

	

Alignment	property	as	it	applies	to	the	Phonetic,	Phonetics,	and	TickLabels
objects.

Returns	or	sets	the	alignment	for	the	specified	phonetic	text	or	tick	label.
Read/write	Long.

expression.Alignment

expression			Required.	An	expression	that	returns	one	of	the	above	objects.

Phoentic	or	Phonetics	can	be	one	of	these	XlPhoneticAlignment	constants.

XlPhoneticAlignCenter
XlPhoneticAlignDistributed
XlPhoneticAlignLeft
XlPhoneticAlignNoControl
TickLabels	can	be	one	of	these	XlHAlign	constants.
XlHAlignCenter
XlHAlignLeft
XlHAlignRight

Example

This	example	adds	a	WordArt	object	to	worksheet	one	and	then	right	aligns	the
WordArt.

Set	mySh	=	Worksheets(1).Shapes

Set	myTE	=	mySh.AddTextEffect(PresetTextEffect:=msoTextEffect1,	_

				Text:="Test	Text",	FontName:="Palatino",	FontSize:=54,	_

				FontBold:=True,	FontItalic:=False,	Left:=100,	Top:=50)

myTE.TextEffect.Alignment	=	msoTextEffectAlignmentRight

AllowDeletingColumns	Property
							

Returns	True	if	the	deletion	of	columns	is	allowed	on	a	protected	worksheet.
Read-only	Boolean.

expression.AllowDeletingColumns

expression			Required.	An	expression	that	returns	a	Protection	object.

Remarks

The	AllowDeletingColumns	property	can	be	set	by	using	the	Protect	method
arguments.

The	columns	containing	the	cells	to	be	deleted	must	be	unlocked	when	the	sheet
is	protected.

Example

This	example	unlocks	column	A	then	allows	the	user	to	delete	column	A	on	the
protected	worksheet	and	notifies	the	user.

Sub	ProtectionOptions()

				ActiveSheet.Unprotect

				'Unlock	column	A.

				Columns("A:A").Locked	=	False

				'	Allow	column	A	to	be	deleted	on	a	protected	worksheet.

				If	ActiveSheet.Protection.AllowDeletingColumns	=	False	Then

								ActiveSheet.Protect	AllowDeletingColumns:=True

				End	If

				MsgBox	"Column	A	can	be	deleted	on	this	protected	worksheet."

End	Sub

AllowDeletingRows	Property
							

Returns	True	if	the	deletion	of	rows	is	allowed	on	a	protected	worksheet.	Read-
only	Boolean.

expression.AllowDeletingRows

expression			Required.	An	expression	that	returns	a	Protection	object.

Remarks

The	AllowDeletingRows	property	can	be	set	by	using	the	Protect	method
arguments.

The	rows	containing	the	cells	to	be	deleted	must	be	unlocked	when	the	sheet	is
protected.

Example

This	example	unlocks	row	1	then	allows	the	user	to	delete	row	1	on	the	protected
worksheet	and	notifies	the	user.

Sub	ProtectionOptions()

				ActiveSheet.Unprotect

				'Unlock	row	1.

				Rows("1:1").Locked	=	False

				'	Allow	row	1	to	be	deleted	on	a	protected	worksheet.

				If	ActiveSheet.Protection.AllowDeletingRows	=	False	Then

								ActiveSheet.Protect	AllowDeletingRows:=True

				End	If

				MsgBox	"Row	1	can	be	deleted	on	this	protected	worksheet."

End	Sub

Show	All

AllowEdit	Property
							

AllowEdit	property	as	it	applies	to	the	UserAccess	object.

True	if	the	user	is	allowed	access	to	the	specified	range	on	a	protected
worksheet.	Read/write	Boolean.

expression.AllowEdit

expression			Required.	An	expression	that	returns	a	UserAccess	object.

AllowEdit	property	as	it	applies	to	the	Range	object.

True	if	the	range	can	be	edited	on	a	protected	worksheet.	Read-only	Boolean.

expression.AllowEdit

expression			Required.	An	expression	that	returns	a	Range	object.

Example

As	it	applies	to	the	Range	object.

In	this	example,	Microsoft	Excel	notifies	the	user	if	cell	A1	can	be	edited	or	not
on	a	protected	worksheet.

Sub	UseAllowEdit()

				Dim	wksOne	As	Worksheet

				Set	wksOne	=	Application.ActiveSheet

				'	Protect	the	worksheet

				wksOne.Protect

				'	Notify	the	user	about	editing	cell	A1.

				If	wksOne.Range("A1").AllowEdit	=	True	Then

								MsgBox	"Cell	A1	can	be	edited."

				Else

								Msgbox	"Cell	A1	cannot	be	edited."

				End	If

End	Sub

AllowEditRanges	Property
							

Returns	an	AllowEditRanges	object.

expression.AllowEditRanges

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

Example

In	this	example,	Microsoft	Excel	allows	edits	to	range	A1:A4	on	the	active
worksheet	and	notifies	the	user	of	the	title	and	address	of	the	specified	range.

Sub	UseAllowEditRanges()

				Dim	wksOne	As	Worksheet

				Set	wksOne	=	Application.ActiveSheet

				'	Unprotect	worksheet.

				wksOne.Unprotect

				'	Establish	a	range	that	can	allow	edits

				'	on	the	protected	worksheet.

				wksOne.Protection.AllowEditRanges.Add	_

								Title:="Classified",	_

								Range:=Range("A1:A4"),	_

								Password:="secret"

				'	Notify	the	user

				'	the	title	and	address	of	the	range.

				With	wksOne.Protection.AllowEditRanges.Item(1)

								MsgBox	"Title	of	range:	"	&	.Title

								MsgBox	"Address	of	range:	"	&	.Range.Address

				End	With

End	Sub

AllowFiltering	Property
							

Returns	True	if	the	user	is	allowed	to	make	use	of	an	AutoFilter	that	was	created
before	the	sheet	was	protected.	Read-only	Boolean.

expression.AllowFiltering

expression			Required.	An	expression	that	returns	a	Protection	object.

Remarks

The	AllowFiltering	property	can	be	set	by	using	the	Protect	method	arguments.

The	AllowFiltering	property	allows	the	user	to	change	filter	criteria	on	an
existing	AutoFilter.	The	user	cannot	create	or	remove	an	AutoFilter	on	a
protected	worksheet.

The	cells	to	be	filtered	must	be	unlocked	when	the	sheet	is	protected.

Example

This	example	allows	the	user	to	filter	row	1	on	the	protected	worksheet	and
notifies	the	user.

Sub	ProtectionOptions()

				ActiveSheet.Unprotect

				'	Unlock	row	1.

				Rows("1:1").Locked	=	False

				'	Allow	row	1	to	be	filtered	on	a	protected	worksheet.

				If	ActiveSheet.Protection.AllowFiltering	=	False	Then

								ActiveSheet.Protect	AllowFiltering:=True

				End	If

				MsgBox	"Row	1	can	be	filtered	on	this	protected	worksheet."

End	Sub

AllowFormattingCells	Property
							

Returns	True	if	the	formatting	of	cells	is	allowed	on	a	protected	worksheet.
Read-only	Boolean.

expression.AllowFormattingCells

expression			Required.	An	expression	that	returns	a	Protection	object.

Remarks

The	AllowFormattingCells	property	can	be	set	by	using	the	Protect	method
arguments.

Use	of	this	property	disables	the	protection	tab,	allowing	the	user	to	change	all
formats,	but	not	to	unlock	or	unhide	ranges.

Example

This	example	allows	the	user	to	format	cells	on	the	protected	worksheet	and
notifies	the	user.

Sub	ProtectionOptions()

				ActiveSheet.Unprotect

				'	Allow	cells	to	be	formatted	on	a	protected	worksheet.

				If	ActiveSheet.Protection.AllowFormattingCells	=	False	Then

								ActiveSheet.Protect	AllowFormattingCells:=True

				End	If

				MsgBox	"Cells	can	be	formatted	on	this	protected	worksheet."

End	Sub

AllowFormattingColumns	Property
							

Returns	True	if	the	formatting	of	columns	is	allowed	on	a	protected	worksheet.
Read-only	Boolean.

expression.AllowFormattingColumns

expression			Required.	An	expression	that	returns	a	Protection	object.

Remarks

The	AllowFormattingColumns	property	can	be	set	by	using	the	Protect
method	arguments.

Example

This	example	allows	the	user	to	format	columns	on	the	protected	worksheet	and
notifies	the	user.

Sub	ProtectionOptions()

				ActiveSheet.Unprotect

				'	Allow	columns	to	be	formatted	on	a	protected	worksheet.

				If	ActiveSheet.Protection.AllowFormattingColumns	=	False	Then

								ActiveSheet.Protect	AllowFormattingColumns:=True

				End	If

				MsgBox	"Columns	can	be	formatted	on	this	protected	worksheet."

End	Sub

AllowFormattingRows	Property
							

Returns	True	if	the	formatting	of	rows	is	allowed	on	a	protected	worksheet.
Read-only	Boolean.

expression.AllowFormattingRows

expression			Required.	An	expression	that	returns	a	Protection	object.

Remarks

The	AllowFormattingRows	property	can	be	set	by	using	the	Protect	method
arguments.

Example

This	example	allows	the	user	to	format	the	rows	on	the	protected	worksheet	and
notifies	the	user.

Sub	ProtectionOptions()

				ActiveSheet.Unprotect

				'	Allow	rows	to	be	formatted	on	a	protected	worksheet.

				If	ActiveSheet.Protection.AllowFormattingRows	=	False	Then

								ActiveSheet.Protect	AllowFormattingRows:=True

				End	If

				MsgBox	"Rows	can	be	formatted	on	this	protected	worksheet."

End	Sub

AllowInsertingColumns	Property
							

Returns	True	if	the	insertion	of	columns	is	allowed	on	a	protected	worksheet.
Read-only	Boolean.

expression.AllowInsertingColumns

expression			Required.	An	expression	that	returns	a	Protection	object.

Remarks

An	inserted	column	inherits	its	formatting	(by	default)	from	the	column	to	its
left,	which	means	that	it	may	have	locked	cells.	In	other	words,	users	may	not	be
able	to	delete	columns	that	they	have	inserted.

The	AllowInsertingColumns	property	can	be	set	by	using	the	Protect	method
arguments.

Example

This	example	allows	the	user	to	insert	columns	on	the	protected	worksheet	and
notifies	the	user.

Sub	ProtectionOptions()

				ActiveSheet.Unprotect

				'	Allow	columns	to	be	inserted	on	a	protected	worksheet.

				If	ActiveSheet.Protection.AllowInsertingColumns	=	False	Then

								ActiveSheet.Protect	AllowInsertingColumns:=True

				End	If

				MsgBox	"Columns	can	be	inserted	on	this	protected	worksheet."

End	Sub

AllowInsertingHyperlinks	Property
							

Returns	True	if	the	insertion	of	hyperlinks	is	allowed	on	a	protected	worksheet.
Read-only	Boolean.

expression.AllowInsertingHyperlinks

expression			Required.	An	expression	that	returns	a	Protection	object.

Remarks

Hyperlinks	can	only	be	inserted	in	unlocked	or	unprotected	cells	on	a	protected
worksheet.

The	AllowInsertingHyperlinks	property	can	be	set	by	using	the	Protect
method	arguments.

Example

This	example	allows	the	user	to	insert	a	hyperlink	in	cell	A1	on	the	protected
worksheet	and	notifies	the	user.

Sub	ProtectionOptions()

				ActiveSheet.Unprotect

				'	Unlock	cell	A1.

				Range("A1").Locked	=	False

				'	Allow	hyperlinks	to	be	inserted	on	a	protected	worksheet.

				If	ActiveSheet.Protection.AllowInsertingHyperlinks	=	False	Then

								ActiveSheet.Protect	AllowInsertingHyperlinks:=True

				End	If

				MsgBox	"Hyperlinks	can	be	inserted	on	this	protected	worksheet."

End	Sub

AllowInsertingRows	Property
							

Returns	True	if	the	insertion	of	rows	is	allowed	on	a	protected	worksheet.	Read-
only	Boolean.

expression.AllowInsertingRows

expression			Required.	An	expression	that	returns	a	Protection	object.

Remarks

The	AllowInsertingRows	property	can	be	set	by	using	the	Protect	method
arguments.

Example

This	example	allows	the	user	to	insert	rows	on	the	protected	worksheet	and
notifies	the	user.

Sub	ProtectionOptions()

				ActiveSheet.Unprotect

				'	Allow	rows	to	be	inserted	on	a	protected	worksheet.

				If	ActiveSheet.Protection.AllowInsertingRows	=	False	Then

								ActiveSheet.Protect	AllowInsertingRows:=True

				End	If

				MsgBox	"Rows	can	be	inserted	on	this	protected	worksheet."

End	Sub

AllowPNG	Property
							

True	if	PNG	(Portable	Network	Graphics)	is	allowed	as	an	image	format	when
you	save	documents	as	a	Web	page.	False	if	PNG	is	not	allowed	as	an	output
format.	The	default	value	is	False.	Read/write	Boolean.

Remarks

If	you	save	images	in	the	PNG	format	as	opposed	to	any	other	file	format,	you
might	improve	the	image	quality	or	reduce	the	size	of	those	image	files,	and
therefore	decrease	the	download	time,	assuming	that	the	Web	browsers	you	are
targeting	support	the	PNG	format.

Example

This	example	enables	PNG	as	an	output	format	for	the	first	workbook.

Application.Workbooks(1).WebOptions.AllowPNG	=	True

Alternatively,	PNG	can	be	enabled	as	the	global	default	for	the	application	for
newly	created	documents.

Application.DefaultWebOptions.AllowPNG	=	True

AllowSorting	Property
							

Returns	True	if	the	sorting	option	is	allowed	on	a	protected	worksheet.	Read-
only	Boolean.

expression.AllowSorting

expression			Required.	An	expression	that	returns	a	Protection	object.

Remarks

Sorting	can	only	be	performed	on	unlocked	or	unprotected	cells	in	a	protected
worksheet.

The	AllowSorting	property	can	be	set	by	using	the	Protect	method	arguments.

Example

This	example	allows	the	user	to	sort	unlocked	or	unprotected	cells	on	the
protected	worksheet	and	notifies	the	user.

Sub	ProtectionOptions()

				ActiveSheet.Unprotect

				'	Unlock	cells	A1	through	B5.

				Range("A1:B5").Locked	=	False

				'	Allow	sorting	to	be	performed	on	the	protected	worksheet.

				If	ActiveSheet.Protection.AllowSorting	=	False	Then

								ActiveSheet.Protect	AllowSorting:=True

				End	If

				MsgBox	"For	cells	A1	through	B5,	sorting	can	be	performed	on	the	protected	worksheet."

End	Sub

Show	All

AllowUsingPivotTables	Property
							

Returns	True	if	the	user	is	allowed	to	manipulate	pivot	tables	on	a	protected
worksheet.	Read-only	Boolean.

expression.AllowUsingPivotTables

expression			Required.	An	expression	that	returns	a	Protection	object.

Remarks

The	AllowUsingPivotTables	property	applies	to	non-OLAP	source	data.

The	AllowUsingPivotTables	property	can	be	set	by	using	the	Protect	method
arguments.

Example

This	example	allows	the	user	to	access	the	PivotTable	report	and	notifies	the
user.	It	assumes	a	non-OLAP	Pivot	Table	report	exists	on	the	active	worksheet.

Sub	ProtectionOptions()

				ActiveSheet.Unprotect

				'	Allow	pivot	tables	to	be	manipulated	on	a	protected	worksheet.

				If	ActiveSheet.Protection.Allow	UsingPivotTables	=	False	Then

								ActiveSheet.Protect	AllowUsingPivotTables:=True

				End	If

				MsgBox	"Pivot	tables	can	be	manipulated	on	the	protected	worksheet."

End	Sub

AlternativeText	Property
							

Returns	or	sets	the	descriptive	(alternative)	text	string	for	a	Shape	or
ShapeRange	object	when	the	object	is	saved	to	a	Web	page.	Read/write	String.

Remarks

The	alternative	text	can	be	displayed	either	in	place	of	the	shape’s	image	in	the
Web	browser	,	or	directly	over	the	image	when	the	mouse	pointer	hovers	over
the	image	(in	browsers	that	support	these	features).

Example

This	example	sets	the	alternative	text	for	the	first	shape	on	the	first	worksheet	to
a	description	of	the	shape.

Worksheets(1).Shapes(1).AlternativeText	=	"Concentric	circles"

AltStartupPath	Property
							

Returns	or	sets	the	name	of	the	alternate	startup	folder.	Read/write	String.

Example

This	example	sets	the	alternate	startup	folder.

Application.AltStartupPath	=	"C:\EXCEL\MACROS"

AlwaysSaveInDefaultEncoding
Property
							

True	if	the	default	encoding	is	used	when	you	save	a	Web	page	or	plain	text
document,	independent	of	the	file's	original	encoding	when	opened.	False	if	the
original	encoding	of	the	file	is	used.	The	default	value	is	False.	Read/write
Boolean.

Remarks

The	Encoding	property	can	be	used	to	set	the	default	encoding.

Example

This	example	sets	the	encoding	to	the	default	encoding.	The	encoding	is	used
when	you	save	the	document	as	a	Web	page.

Application.DefaultWebOptions.AlwaysSaveInDefaultEncoding	=	True

Angle	Property
							

Returns	or	sets	the	angle	of	the	callout	line.	If	the	callout	line	contains	more	than
one	line	segment,	this	property	returns	or	sets	the	angle	of	the	segment	that	is
farthest	from	the	callout	text	box.	Read/write	MsoCalloutAngleType.

MsoCalloutAngleType	can	be	one	of	these	MsoCalloutAngleType	constants.
msoCalloutAngle30
msoCalloutAngle45
msoCalloutAngle60
msoCalloutAngle90
msoCalloutAngleAutomatic
msoCalloutAngleMixed

expression.Angle

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

Remarks

If	you	set	the	value	of	this	property	to	anything	other	than
msoCalloutAngleAutomatic,	the	callout	line	maintains	a	fixed	angle	as	you
drag	the	callout.

Example

This	example	sets	to	90	degrees	the	callout	angle	for	a	callout	named	"callout1"
on	myDocument.

Set	myDocument	=	Worksheets(1)

myDocument.Shapes("callout1").Callout.Angle	=	msoCalloutAngle90

AnswerWizard	Property
							

Some	of	the	content	in	this	topic	may	not	be	applicable	to	some	languages.

Returns	the	AnswerWizard	object	for	Microsoft	Excel.	Read-only.

mk:@MSITStore:vbaof10.chm::/html/ofobjAnswerWizard.htm

Example

This	example	resets	the	Answer	Wizard	file	list.

Application.AnswerWizard.ResetFileList

Application	Property
							

Used	without	an	object	qualifier,	this	property	returns	an	Application	object	that
represents	the	Microsoft	Excel	application.	Used	with	an	object	qualifier,	this
property	returns	an	Application	object	that	represents	the	creator	of	the
specified	object	(you	can	use	this	property	with	an	OLE	Automation	object	to
return	that	object's	application).	Read-only.

expression.Application

expression			Required.	An	expression	that	returns	one	of	the	above	objects.

Example

This	example	displays	a	message	about	the	application	that	created	myObject.

Set	myObject	=	ActiveWorkbook

If	myObject.Application.Value	=	"Microsoft	Excel"	Then

				MsgBox	"This	is	a	Microsoft	Excel	object"

Else

				MsgBox	"This	is	not	a	Microsoft	Excel	object"

End	If

ApplyPictToEnd	Property
							

True	if	a	picture	is	applied	to	the	end	of	the	point	or	all	points	in	the	series.
Read/write	Boolean.

Example

This	example	applies	pictures	to	the	end	of	all	points	in	series	one.	The	series
must	already	have	pictures	applied	to	it	(setting	this	property	changes	the	picture
orientation).

Charts(1).SeriesCollection(1).ApplyPictToEnd	=	True

ApplyPictToFront	Property
							

True	if	a	picture	is	applied	to	the	front	of	the	point	or	all	points	in	the	series.
Read/write	Boolean.

Example

This	example	applies	pictures	to	the	front	of	all	points	in	series	one.	The	series
must	already	have	pictures	applied	to	it	(setting	this	property	changes	the	picture
orientation).

Charts(1).SeriesCollection(1).ApplyPictToFront	=	True

ApplyPictToSides	Property
							

True	if	a	picture	is	applied	to	the	sides	of	the	point	or	all	points	in	the	series.
Read/write	Boolean.

Example

This	example	applies	pictures	to	the	sides	of	all	points	in	series	one.	The	series
must	already	have	pictures	applied	to	it	(setting	this	property	changes	the	picture
orientation).

Charts(1).SeriesCollection(1).ApplyPictToSides	=	True

Show	All

ArabicModes	Property
							

Returns	or	sets	the	mode	for	the	Arabic	spelling	checker.	Read/write
XlArabicModes.

XlArabicModes	can	be	one	of	these	XlArabicModes	constants.
xlArabicNone		The	spelling	checker	ignores	spelling	rules	regarding	either
Arabic	words	ending	with	the	letter	yaa	or	Arabic	words	beginning	with	an	alef
hamza.
xlArabicBothStrict		The	spelling	checker	uses	spelling	rules	regarding	both
Arabic	words	ending	with	the	letter	yaa	and	Arabic	words	beginning	with	an
alef	hamza.
xlArabicStrictAlefHamza		The	spelling	checker	uses	spelling	rules	regarding
Arabic	words	beginning	with	an	alef	hamza.
xlArabicStrictFinalYaa		The	spelling	checker	uses	spelling	rules	regarding
Arabic	words	ending	with	the	letter	yaa.

expression.ArabicModes

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

Example

In	this	example,	Microsoft	Excel	checks	the	setting	for	the	spell	checking	option
for	Arabic	mode	and	sets	it	to	check	for	words	ending	with	the	letter	yaa	and
words	beginning	with	an	alef	hamza,	if	the	Arabic	mode	is	not	set	to	this	already.
Before	running	this	code	example,	the	Arabic	modes	option	must	be	enabled	in
the	spelling	options.

Sub	SpellCheck()

				If	Application.SpellingOptions.ArabicModes	<>	xlArabicBothStrict	Then

								Application.SpellingOptions.ArabicModes	=	xlArabicBothStrict

								MsgBox	"Spell	checking	for	Arabic	mode	has	been	changed	to	a	strict	setting."

				Else

								MsgBox	"Spell	checking	for	Arabic	mode	is	already	in	a	strict	setting."

				End	If

End	Sub

Area3DGroup	Property
							

Returns	a	ChartGroup	object	that	represents	the	area	chart	group	on	a	3-D
chart.	Read-only.

Example

This	example	turns	on	drop	lines	for	the	3-D	area	chart	group.

Charts(1).Area3DGroup.HasDropLines	=	True

Areas	Property
							

Returns	an	Areas	collection	that	represents	all	the	ranges	in	a	multiple-area
selection.	Read-only.

For	information	about	returning	a	single	member	of	a	collection,	see	Returning
an	Object	from	a	Collection.

Remarks

For	a	single	selection,	the	Areas	property	returns	a	collection	that	contains	one
object	—	the	original	Range	object	itself.	For	a	multiple-area	selection,	the
Areas	property	returns	a	collection	that	contains	one	object	for	each	selected
area.

Example

This	example	displays	a	message	if	the	user	tries	to	carry	out	a	command	when
more	than	one	area	is	selected.	This	example	must	be	run	from	a	worksheet.

If	Selection.Areas.Count	>	1	Then

				MsgBox	"Cannot	do	this	to	a	multi-area	selection."

End	If

AskToUpdateLinks	Property
							

True	if	Microsoft	Excel	asks	the	user	to	update	links	when	opening	files	with
links.	False	if	links	are	automatically	updated	with	no	dialog	box.	Read/write
Boolean.

Example

This	example	sets	Microsoft	Excel	to	ask	the	user	to	update	links	whenever	a	file
that	contains	links	is	opened.

Application.AskToUpdateLinks	=	True

Assistant	Property
							

Some	of	the	content	in	this	topic	may	not	be	applicable	to	some	languages.

Returns	an	Assistant	object	for	Microsoft	Excel.

mk:@MSITStore:vbaof10.chm::/html/ofobjAssistant.htm

Remarks

Using	this	property	without	an	object	qualifier	is	equivalent	to	using
Application.Assistant.

Example

This	example	makes	the	Office	Assistant	visible.

Assistant.Visible	=	True

Author	Property
							

Returns	or	sets	the	author	of	the	comment.	Read-only	String.

Example

This	example	deletes	all	comments	added	by	Jean	Selva	on	the	active	sheet.

For	Each	c	in	ActiveSheet.Comments

				If	c.Author	=	"Jean	Selva"	Then	c.Delete

Next

AutoAttach	Property
							

True	if	the	place	where	the	callout	line	attaches	to	the	callout	text	box	changes
depending	on	whether	the	origin	of	the	callout	line	(where	the	callout	points	to)
is	to	the	left	or	right	of	the	callout	text	box.	Read/write	MsoTriState.

MsoTriState	can	be	one	of	these	MsoTriState	constants.
msoCTrue
msoFalse
msoTriStateMixed
msoTriStateToggle
msoTrue	The	place	where	the	callout	line	attaches	to	the	callout	text	box
changes	depending	on	whether	the	origin	of	the	callout	line	(where	the	callout
points	to)	is	to	the	left	or	right	of	the	callout	text	box.

Remarks

When	the	value	of	this	property	is	True,	the	drop	value	(the	vertical	distance
from	the	edge	of	the	callout	text	box	to	the	place	where	the	callout	line	attaches)
is	measured	from	the	top	of	the	text	box	when	the	text	box	is	to	the	right	of	the
origin,	and	it’s	measured	from	the	bottom	of	the	text	box	when	the	text	box	is	to
the	left	of	the	origin.	When	the	value	of	this	property	is	False,	the	drop	value	is
always	measured	from	the	top	of	the	text	box,	regardless	of	the	relative	positions
of	the	text	box	and	the	origin.	Use	the	CustomDrop	method	to	set	the	drop
value,	and	use	the	Drop	property	to	return	the	drop	value.

Setting	this	property	affects	a	callout	only	if	it	has	an	explicitly	set	drop	value	—
that	is,	if	the	value	of	the	DropType	property	is	msoCalloutDropCustom.	By
default,	callouts	have	explicitly	set	drop	values	when	they’re	created.

Example

This	example	adds	two	callouts	to	myDocument.	If	you	drag	the	text	box	for	each
of	these	callouts	to	the	left	of	the	callout	line	origin,	the	place	on	the	text	box
where	the	callout	line	attaches	will	change	for	the	automatically	attached	callout.

Set	myDocument	=	Worksheets(1)

With	myDocument.Shapes

				With	.AddCallout(msoCalloutTwo,	420,	170,	200,	50)

								.TextFrame.Characters.Text	=	"auto-attached"

								.Callout.AutoAttach	=	True

				End	With

				With	.AddCallout(msoCalloutTwo,	420,	350,	200,	50)

								.TextFrame.Characters.Text	=	"not	auto-attached"

								.Callout.AutoAttach	=	False

				End	With

End	With

AutoCorrect	Property
							

Returns	an	AutoCorrect	object	that	represents	the	Microsoft	Excel	AutoCorrect
attributes.	Read-only.

Example

This	example	substitutes	the	word	"Temp."	for	the	word	"Temperature"	in	the
array	of	AutoCorrect	replacements.

With	Application.AutoCorrect

				.AddReplacement	"Temperature",	"Temp."

End	With

AutoFilter	Property
							

Returns	an	AutoFilter	object	if	filtering	is	on.	Returns	Nothing	if	filtering	is	off.
Read-only.

Remarks

To	create	an	AutoFilter	object	for	a	worksheet,	you	must	turn	autofiltering	on
for	a	range	on	the	worksheet	either	manually	or	using	the	AutoFilter	method	of
the	Range	object.

Example

The	following	example	sets	a	variable	to	the	value	of	the	Criteria1	property	of
the	filter	for	the	first	column	in	the	filtered	range	on	the	Crew	worksheet.

With	Worksheets("Crew")

				If	.AutoFilterMode	Then

								With	.AutoFilter.Filters(1)

												If	.On	Then	c1	=	.Criteria1

								End	With

				End	If

End	With

AutoFilterMode	Property
							

True	if	the	AutoFilter	drop-down	arrows	are	currently	displayed	on	the	sheet.
This	property	is	independent	of	the	FilterMode	property.	Read/write	Boolean.

Remarks

This	property	returns	True	if	the	drop-down	arrows	are	currently	displayed.	You
can	set	this	property	to	False	to	remove	the	arrows,	but	you	cannot	set	it	to	True.
Use	the	AutoFilter	method	to	filter	a	list	and	display	the	drop-down	arrows.

Example

This	example	displays	the	current	status	of	the	AutoFilterMode	property	on
Sheet1.

If	Worksheets("Sheet1").AutoFilterMode	Then

				isOn	=	"On"

Else

				isOn	=	"Off"

End	If

MsgBox	"AutoFilterMode	is	"	&	isOn

Show	All

AutoFormat	Property
							

Sets	or	returns	an	MsoTriState	constant	indicating	the	automatic	formatting
state	for	a	diagram.	Read/write.

MsoTriState	can	be	one	of	these	MsoTriState	constants.
msoCTrue	Does	not	apply	to	this	property.
msoFalse	Disables	automatic	formatting	for	the	diagram.
msoTriStateMixed	Does	not	apply	to	this	property.
msoTriStateToggle	Does	not	apply	to	this	property.
msoTrue		Enables	automatic	formatting	for	the	diagram.

expression.AutoFormat

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

Example

This	example	creates	a	diagram	in	the	current	document	and	turns	on	the
automatic	format	for	the	diagram.

Sub	CreatePyramidDiagram()

				Dim	dgnNode	As	DiagramNode

				Dim	shpDiagram	As	Shape

				Dim	intCount	As	Integer

				'Add	a	pyramid	diagram	to	current	document

				Set	shpDiagram	=	ActiveSheet.Shapes.AddDiagram(_

								Type:=msoDiagramPyramid,	_

								Left:=10,	_

								Top:=15,	_

								Width:=400,	_

								Height:=475)

				'Add	first	child	node

				Set	dgnNode	=	shpDiagram.DiagramNode.Children.AddNode

				'Add	three	more	child	nodes

				For	intCount	=	1	To	3

								dgnNode.AddNode

				Next	intCount

				'Enable	automatic	formatting	for	the	diagram	and	convert

				'it	to	a	radial	diagram

				With	dgnNode.Diagram

								.AutoFormat	=	msoTrue

								.Convert	Type:=msoDiagramRadial

				End	With

End	Sub

AutoFormatAsYouTypeReplaceHyperlinks
Property
							

True	(default)	if	Microsoft	Excel	automatically	formats	hyperlinks	as	you	type.
False	if	Excel	does	not	automatically	format	hyperlinks	as	you	type.	Read/write
Boolean.

expression.AutoFormatAsYouTypeReplaceHyperlinks

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

Example

In	this	example,	Microsoft	Excel	determines	if	the	ability	to	automatically
format	hyperlinks	as	they	are	typed	in	is	enabled	and	notifies	the	user.

Sub	CheckHyperlinks()

				'	Determine	if	automatic	formatting	is	enabled	and	notify	user.

				If	Application.AutoFormatAsYouTypeReplaceHyperlinks	=	True	Then

								MsgBox	"Automatic	formatting	for	typing	in	hyperlinks	is	enabled."

				Else

								MsgBox	"Automatic	formatting	for	typing	in	hyperlinks	is	not	enabled."

				End	If

End	Sub

Show	All

AutoLayout	Property
							

Returns	or	sets	an	MsoTriState	constant	which	determines	the	automatic
positioning	of	the	nodes	and	connectors	in	a	diagram.	Read/write.

MsoTriState	can	be	one	of	these	MsoTriState	constants.
msoCTrue	Does	not	apply	to	this	property.
msoFalse	Disables	automatic	formatting	for	the	diagram.
msoTriStateMixed	Does	not	apply	to	this	property.
msoTriStateToggle	Does	not	apply	to	this	property.
msoTrue		Enables	automatic	formatting	for	the	diagram.

expression.AutoLayout

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

Example

This	example	creates	a	diagram	in	the	current	document	and	automatically
positions	the	nodes	and	connectors.

Sub	CreatePyramidDiagram()

				Dim	dgnNode	As	DiagramNode

				Dim	shpDiagram	As	Shape

				Dim	intCount	As	Integer

				Set	shpDiagram	=	ActiveSheet.Shapes.AddDiagram(_

								Type:=msoDiagramPyramid,	_

								Left:=10,	_

								Top:=15,	_

								Width:=400,	_

								Height:=475)

				Set	dgnNode	=	shpDiagram.DiagramNode.Children.AddNode

				For	intCount	=	1	To	3

								dgnNode.AddNode

				Next	intCount

				With	dgnNode.Diagram

								.AutoLayout	=	msoTrue

								.Convert	Type:=msoDiagramRadial

				End	With

End	Sub

AutoLength	Property
							

Applies	only	to	callouts	whose	lines	consist	of	more	than	one	segment	(types
msoCalloutThree	and	msoCalloutFour).	Read/write	MsoTriState.

MsoTriState	can	be	one	of	these	MsoTriState	constants.
msoCTrue
msoFalse	The	first	segment	of	the	callout	retains	the	fixed	length	specified	by
the	Length	property	whenever	the	callout	is	moved.
msoTriStateMixed
msoTriStateToggle
msoTrue	The	first	segment	of	the	callout	line	(the	segment	attached	to	the	text
callout	box)	is	scaled	automatically	whenever	the	callout	is	moved.	

Remarks

This	property	is	read-only.	Use	the	AutomaticLength	method	to	set	this
property	to	msoTrue,	and	use	the	CustomLength	method	to	set	this	property	to
mosFalse.

Example

This	example	toggles	between	an	automatically	scaling	first	segment	and	one
with	a	fixed	length	for	the	callout	line	for	shape	one	on	myDocument.	For	the
example	to	work,	shape	one	must	be	a	callout.

Set	myDocument	=	Worksheets(1)

With	myDocument.Shapes(1).Callout

				If	.AutoLength	Then

								.CustomLength	50

				Else

								.AutomaticLength

				End	If

End	With

AutoLoad	Property
							

True	if	the	OLE	object	is	automatically	loaded	when	the	workbook	that	contains
it	is	opened.	Read/write	Boolean.

Remarks

This	property	is	ignored	by	ActiveX	controls.	ActiveX	controls	are	always
loaded	when	a	workbook	is	opened.

For	most	OLE	object	types,	this	property	shouldn’t	be	set	to	True.	By	default,
the	AutoLoad	property	is	set	to	False	for	new	OLE	objects;	this	saves	time	and
memory	when	Microsoft	Excel	is	loading	workbooks.	The	benefit	of
automatically	loading	OLE	objects	is	that,	for	objects	that	represent	volatile	data,
links	to	source	data	can	be	reestablished	immediately	and	the	objects	can	be
rendered	again,	if	necessary.

Example

This	example	sets	the	AutoLoad	property	for	OLE	object	one	on	the	active
sheet.

ActiveSheet.OLEObjects(1).AutoLoad	=	False

AutoMargins	Property
							

True	if	Microsoft	Excel	automatically	calculates	text	frame	margins.	Read/write
Boolean.

Remarks

When	this	property	is	True,	the	MarginLeft,	MarginRight,	MarginTop,	and
MaginBottom	properties	are	ignored.

Example

This	example	causes	Microsoft	Excel	to	automatically	calculate	text	frame
margins	for	text	in	shape	one.

Worksheets(1).Shapes(1).TextFrame.AutoMargins	=	True

AutomaticStyles	Property
							

True	if	the	outline	uses	automatic	styles.	Read/write	Boolean.

Example

This	example	sets	the	outline	on	Sheet1	to	use	automatic	styles.

Worksheets("Sheet1").Outline.AutomaticStyles	=	True

Show	All

AutomationSecurity	Property
							

Returns	or	sets	an	MsoAutomationSecurity	constant	that	represents	the	security
mode	Microsoft	Excel	uses	when	programmatically	opening	files.	This	property
is	automatically	set	to	msoAutomationSecurityLow	when	the	application	is
started.	Therefore,	to	avoid	breaking	solutions	that	rely	on	the	default	setting,
you	should	be	careful	to	reset	this	property	to	msoAutomationSecurityLow
after	programmatically	opening	a	file.	Also,	this	property	should	be	set
immediately	before	and	after	opening	a	file	programmatically	to	avoid	malicious
subversion.	Read/write.

MsoAutomationSecurity	can	be	one	of	these	MsoAutomationSecurity	constants.
msoAutomationSecurityByUI		Uses	the	security	setting	specified	in	the
Security	dialog	box.
msoAutomationSecurityForceDisable		Disables	all	macros	in	all	files	opened
programmatically	without	showing	any	security	alerts.
msoAutomationSecurityLow		Enables	all	macros.	This	is	the	default	value
when	the	application	is	started.

expression.AutomationSecurity

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

Remarks

Setting	ScreenUpdating	to	False	does	not	affect	alerts	and	will	not	affect
security	warnings.	The	DisplayAlerts	setting	will	not	apply	to	security
warnings.	For	example,	if	the	user	sets	DisplayAlerts	equal	to	False	and
AutomationSecurity	to	msoAutomationSecurityByUI,	while	the	user	is	on
Medium	security	level,	then	there	will	be	security	warnings	while	the	macro	is
running.	This	allows	the	macro	to	trap	file	open	errors,	while	still	showing	the
security	warning	if	the	file	open	succeeds.

Example

This	example	captures	the	current	automation	security	setting,	changes	the
setting	to	disable	macros,	displays	the	Open	dialog	box,	and	after	opening	the
selected	document,	sets	the	automation	security	back	to	its	original	setting.

Sub	Security()

				Dim	secAutomation	As	MsoAutomationSecurity

				secAutomation	=	Application.AutomationSecurity

				Application.AutomationSecurity	=	msoAutomationSecurityForceDisable

				Application.FileDialog(msoFileDialogOpen).Show

				Application.AutomationSecurity	=	secAutomation

End	Sub

AutoPercentEntry	Property
							

True	if	entries	in	cells	formatted	as	percentages	aren’t	automatically	multiplied
by	100	as	soon	as	they	are	entered.	Read/write	Boolean.

Example

This	example	enables	automatic	multiplication	by	100	for	subsequent	entries	in
cells	formatted	as	percentages.

Application.AutoPercentEntry	=	False

AutoRecover	Property
							

Returns	an	AutoRecover	object,	which	backs	up	all	file	formats	on	a	timed
interval.

expression.AutoRecover

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

Remarks

Valid	time	intervals	are	whole	numbers	from	1	to	120.

Example

In	this	example,	the	Time	property	is	used	in	conjunction	with	the	AutoRecover
property	to	set	the	time	interval	for	Microsoft	Excel	to	wait	before	saving
another	copy	to	5	minutes.

Sub	UseAutoRecover()

				Application.AutoRecover.Time	=	5

				MsgBox	"The	time	that	will	elapse	between	each	automatic	"	&	_

								"save	has	been	set	to	"	&	_

								Application.AutoRecover.Time	&	"	minutes."

End	Sub

AutoRepublish	Property
							

When	a	workbook	is	saved,	Microsoft	Excel	determines	if	any	item	in	the
PublishObjects	collection	has	the	AutoRepublish	property	set	to	True	and,	if
so	republishes	it.	The	default	value	is	False.	Read/write	Boolean.

expression.AutoRepublish

expression			Required.	An	expression	that	returns	a	PublishObject	object.

Example

This	example	publishes	a	range	on	a	worksheet	to	an	HTML	file	on	drive	C.
When	the	user	saves	the	workbook	containing	the	worksheet,	Excel	will
automatically	republish	the	range	to	the	same	HTML	file.	This	example	assumes
that	the	user	has	read/write	access	to	the	web	page	and	that	cells	A1	through	D10
in	the	worksheet	have	values	in	them.

Sub	PublishToWeb()

				With	ActiveWorkbook.PublishObjects.Add(_

								SourceType:=	xlSourceRange,	_

								Filename:="C:\Work.htm",	_

								Sheet:="Sheet1",	_

								Source:="A1:D10",	_

								HtmlType:=xlHtmlStatic,	_

								DivID:="Book1.xls_130489")

								.Publish

								.AutoRepublish	=	True

				End	With

End	Sub

AutoScaleFont	Property
							

True	if	the	text	in	the	object	changes	font	size	when	the	object	size	changes.	The
default	value	is	True.	Read/write	Variant.

Example

This	example	adds	a	title	to	embedded	chart	one	on	the	active	worksheet,	and	it
causes	the	title	font	to	remain	the	same	size	whenever	the	chart	size	changes.

With	ActiveSheet.ChartObjects(1).Chart

				.HasTitle	=	True

				.ChartTitle.Text	=	"1996	sales"

				.ChartTitle.AutoScaleFont	=	False

End	With

AutoScaling	Property
							

True	if	Microsoft	Excel	scales	a	3-D	chart	so	that	it's	closer	in	size	to	the
equivalent	2-D	chart.	The	RightAngleAxes	property	must	be	True.	Read/write
Boolean.

Example

This	example	automatically	scales	Chart1.	The	example	should	be	run	on	a	3-D
chart.

With	Charts("Chart1")

				.RightAngleAxes	=	True

				.AutoScaling	=	True

End	With

AutoShapeType	Property
							

Returns	or	sets	the	shape	type	for	the	specified	Shape	or	ShapeRange	object,
which	must	represent	an	AutoShape	other	than	a	line,	freeform	drawing,	or
connector.	Read/write	MsoAutoShapeType.

Note			When	you	change	the	type	of	a	shape,	the	shape	retains	its	size,	color,	and
other	attributes.

MsoAutoShapeType	can	be	one	of	these	MsoAutoShapeType	constants.
msoShape24pointStar
msoShape4pointStar
msoShape8pointStar
msoShapeActionButtonBeginning
msoShapeActionButtonDocument
msoShapeActionButtonForwardorNext
msoShapeActionButtonHome
msoShapeActionButtonMovie
msoShapeActionButtonSound
msoShapeBalloon
msoShapeBentUpArrow
msoShapeBlockArc
msoShapeChevron
msoShapeCloudCallout
msoShapeCube
msoShapeCurvedDownRibbon
msoShapeCurvedRightArrow
msoShapeCurvedUpRibbon
msoShapeDonut
msoShapeDoubleBracket
msoShapeDownArrow

msoShapeDownRibbon
msoShapeExplosion2
msoShapeFlowchartCard
msoShapeFlowchartConnector
msoShapeFlowchartDecision
msoShapeFlowchartDirectAccessStorage
msoShapeFlowchartDisplay
msoShapeFlowchartDocument
msoShapeFlowchartExtract
msoShapeFlowchartInternalStorage
msoShapeFlowchartMagneticDisk
msoShapeFlowchartManualInput
msoShapeFlowchartManualOperation
msoShapeFlowchartMerge
msoShapeFlowchartMultidocument
msoShapeFlowchartOffpageConnector
msoShapeFlowchartOr
msoShapeFlowchartPredefinedProcess
msoShapeFlowchartPreparation
msoShapeFlowchartProcess
msoShapeFlowchartPunchedTape
msoShapeFlowchartSequentialAccessStorage
msoShapeFlowchartSort
msoShapeFlowchartStoredData
msoShapeFlowchartSummingJunction
msoShapeFlowchartTerminator
msoShapeFoldedCorner
msoShapeHeart
msoShapeHexagon
msoShapeHorizontalScroll
msoShapeIsoscelesTriangle
msoShapeLeftArrow
msoShapeLeftArrowCallout

msoShapeLeftBrace
msoShapeLeftBracket
msoShapeLeftRightArrow
msoShapeLeftRightArrowCallout
msoShapeLeftRightUpArrow
msoShapeLeftUpArrow
msoShapeLightningBolt
msoShapeLineCallout1
msoShapeLineCallout1AccentBar
msoShapeLineCallout1BorderandAccentBar
msoShapeLineCallout1NoBorder
msoShapeLineCallout2
msoShapeLineCallout2AccentBar
msoShapeLineCallout2BorderandAccentBar
msoShapeLineCallout2NoBorder
msoShapeLineCallout3
msoShapeLineCallout3AccentBar
msoShapeLineCallout3BorderandAccentBar
msoShapeLineCallout3NoBorder
msoShapeLineCallout4
msoShapeLineCallout4AccentBar
msoShapeLineCallout4BorderandAccentBar
msoShapeLineCallout4NoBorder
msoShapeMixed
msoShapeMoon
msoShapeNoSymbol
msoShapeNotchedRightArrow
msoShapeNotPrimitive
msoShapeOctagon
msoShapeOval
msoShapeOvalCallout
msoShapeParallelogram
msoShapePentagon

msoShapePlaque
msoShapeQuadArrowCallout
msoShapeRectangularCallout
msoShapeRightArrow
msoShapeRightBrace
msoShapeRightTriangle
msoShapeRoundedRectangularCallout
msoShapeStripedRightArrow
msoShapeTrapezoid
msoShapeUpArrowCallout
msoShapeUpDownArrowCallout
msoShapeUTurnArrow
msoShapeWave
msoShape16pointStar
msoShape32pointStar
msoShape5pointStar
msoShapeActionButtonBackorPrevious
msoShapeActionButtonCustom
msoShapeActionButtonEnd
msoShapeActionButtonHelp
msoShapeActionButtonInformation
msoShapeActionButtonReturn
msoShapeArc
msoShapeBentArrow
msoShapeBevel
msoShapeCan
msoShapeCircularArrow
msoShapeCross
msoShapeCurvedDownArrow
msoShapeCurvedLeftArrow
msoShapeCurvedUpArrow
msoShapeDiamond
msoShapeDoubleBrace

msoShapeDoubleWave
msoShapeDownArrowCallout
msoShapeExplosion1
msoShapeFlowchartAlternateProcess
msoShapeFlowchartCollate
msoShapeFlowchartData
msoShapeFlowchartDelay
msoShapeQuadArrow
msoShapeRectangle
msoShapeRegularPentagon
msoShapeRightArrowCallout
msoShapeRightBracket
msoShapeRoundedRectangle
msoShapeSmileyFace
msoShapeSun
msoShapeUpArrow
msoShapeUpDownArrow
msoShapeUpRibbon
msoShapeVerticalScroll

expression.AutoShapeType

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

Remarks

Use	the	Type	property	of	the	ConnectorFormat	object	to	set	or	return	the
connector	type.

Example

This	example	replaces	all	16-point	stars	with	32-point	stars	in	myDocument.

Set	myDocument	=	Worksheets(1)

For	Each	s	In	myDocument.Shapes

				If	s.AutoShapeType	=	msoShape16pointStar	Then

								s.AutoShapeType	=	msoShape32pointStar

				End	If

Next

AutoShowCount	Property
							

Returns	the	number	of	top	or	bottom	items	that	are	automatically	shown	in	the
specified	PivotTable	field.	Read-only	Long.

Example

This	example	displays	a	message	box	showing	the	AutoShow	parameters	for	the
Salesman	field.

With	Worksheets(1).PivotTables(1).PivotFields("salesman")

				If	.AutoShowType	=	xlAutomatic	Then

								r	=	.AutoShowRange

								If	r	=	xlTop	Then

												rn	=	"top"

								Else

												rn	=	"bottom"

								End	If

								MsgBox	"PivotTable	report	is	showing	"	&	rn	&	"	"	&	_

												.AutoShowCount	&	"	items	in	"	&	.Name	&	_

												"	field	by	"	&	.AutoShowField

				Else

								MsgBox	"PivotTable	report	is	not	using	AutoShow	for	this	field"

				End	If

End	With

AutoShowField	Property
							

Returns	the	name	of	the	data	field	used	to	determine	the	top	or	bottom	items	that
are	automatically	shown	in	the	specified	PivotTable	field.	Read-only	String.

Example

This	example	displays	a	message	box	showing	the	AutoShow	parameters	for	the
Salesman	field.

With	Worksheets(1).PivotTables(1).PivotFields("salesman")

				If	.AutoShowType	=	xlAutomatic	Then

								r	=	.AutoShowRange

								If	r	=	xlTop	Then

												rn	=	"top"

								Else

												rn	=	"bottom"

								End	If

								MsgBox	"PivotTable	report	is	showing	"	&	rn	&	"	"	&	_

												.AutoShowCount	&	"	items	in	"	&	.Name	&	_

												"	field	by	"	&	.AutoShowField

				Else

								MsgBox	"PivotTable	report	is	not	using	AutoShow	for	this	field"

				End	If

End	With

AutoShowRange	Property
							

Returns	xlTop	if	the	top	items	are	shown	automatically	in	the	specified
PivotTable	field;	returns	xlBottom	if	the	bottom	items	are	shown.	Read-only
Long.

Example

This	example	displays	a	message	box	showing	the	AutoShow	parameters	for	the
Salesman	field.

With	Worksheets(1).PivotTables(1).PivotFields("salesman")

				If	.AutoShowType	=	xlAutomatic	Then

								r	=	.AutoShowRange

								If	r	=	xlTop	Then

												rn	=	"top"

								Else

												rn	=	"bottom"

								End	If

								MsgBox	"PivotTable	report	is	showing	"	&	rn	&	"	"	&	_

												.AutoShowCount	&	"	items	in	"	&	.Name	&	_

												"	field	by	"	&	.AutoShowField

				Else

								MsgBox	"PivotTable	report	is	not	using	AutoShow	for	this	field"

				End	If

End	With

AutoShowType	Property
							

Returns	xlAutomatic	if	AutoShow	is	enabled	for	the	specified	PivotTable	field;
returns	xlManual	if	AutoShow	is	disabled.	Read-only	Long.

Example

This	example	displays	a	message	box	showing	the	AutoShow	parameters	for	the
Salesman	field.

With	Worksheets(1).PivotTables(1).PivotFields("salesman")

				If	.AutoShowType	=	xlAutomatic	Then

								r	=	.AutoShowRange

								If	r	=	xlTop	Then

												rn	=	"top"

								Else

												rn	=	"bottom"

								End	If

								MsgBox	"PivotTable	report	is	showing	"	&	rn	&	"	"	&	_

												.AutoShowCount	&	"	items	in	"	&	.Name	&	_

												"	field	by	"	&	.AutoShowField

				Else

								MsgBox	"PivotTable	report	is	not	using	AutoShow	for	this	field"

				End	If

End	With

AutoSize	Property
							

True	if	the	size	of	the	specified	object	is	changed	automatically	to	fit	text	within
its	boundaries.	Read/write	Boolean.

Example

This	example	adjusts	the	size	of	the	text	frame	on	shape	one	to	fit	its	text.

Worksheets(1).Shapes(1).TextFrame.AutoSize	=	True

AutoSortField	Property
							

Returns	the	name	of	the	data	field	used	to	sort	the	specified	PivotTable	field
automatically.	Read-only	String.

Example

This	example	displays	a	message	box	showing	the	AutoSort	parameters	for	the
Product	field.

With	Worksheets(1).PivotTables(1).PivotFields("product")

				Select	Case	.AutoSortOrder

								Case	xlManual

												aso	=	"manual"

								Case	xlAscending

												aso	=	"ascending"

								Case	xlDescending

												aso	=	"descending"

				End	Select

				MsgBox	"	sorted	in	"	&	aso	&	_

								"	order	by	"	&	.AutoSortField

End	With

AutoSortOrder	Property
							

Returns	the	order	used	to	sort	the	specified	PivotTable	field	automatically.	Can
be	one	of	the	following	XlSortOrder	constants.	Read-only	Long.

XlSortOder	can	be	one	of	these	XlSortOrder	constants.
XlAscending
XlDescending
XlManual.	If	auotmatic	sorting	is	disabled.

expression.AutoSortOrder

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

Example

This	example	displays	a	message	box	showing	the	AutoSort	parameters	for	the
Product	field.

With	Worksheets(1).PivotTables(1).PivotFields("product")

				Select	Case	.AutoSortOrder

								Case	xlManual

												aso	=	"manual"

								Case	xlAscending

												aso	=	"ascending"

								Case	xlDescending

												aso	=	"descending"

				End	Select

				MsgBox	"	sorted	in	"	&	aso	&	_

								"	order	by	"	&	.AutoSortField

End	With

AutoText	Property
							

True	if	the	object	automatically	generates	appropriate	text	based	on	context.
Read/write	Boolean.

Example

This	example	sets	the	data	labels	for	series	one	in	Chart1	to	automatically
generate	appropriate	text.

Charts("Chart1").SeriesCollection(1).DataLabels.AutoText	=	True

AutoUpdate	Property
							

True	if	the	OLE	object	is	updated	automatically	when	the	source	changes.	Valid
only	if	the	object	is	linked	(its	OLEType	property	must	be	xlOLELink).	Read-
only	Boolean.

Example

This	example	displays	the	status	of	automatic	updating	for	all	OLE	objects	on
Sheet1.

Worksheets("Sheet1").Activate

Range("A1").Value	=	"Name"

Range("B1").Value	=	"Link	Status"

Range("C1").Value	=	"AutoUpdate	Status"

i	=	2

For	Each	obj	In	ActiveSheet.OLEObjects

				Cells(i,	1)	=	obj.Name

				If	obj.OLEType	=	xlOLELink	Then

								Cells(i,	2)	=	"Linked"

								Cells(i,	3)	=	obj.AutoUpdate

				Else

								Cells(i,	2)	=	"Embedded"

				End	If

				i	=	i	+	1

Next

AutoUpdateFrequency	Property
							

Returns	or	sets	the	number	of	minutes	between	automatic	updates	to	the	shared
workbook.	If	this	property	is	set	to	zero	(0),	updates	occur	only	when	the
workbook	is	saved.	Read/write	Long.

Example

This	example	causes	the	shared	workbook	to	be	automatically	updated	every
three	minutes.

ActiveWorkbook.AutoUpdateFrequency	=	3

AutoUpdateSaveChanges	Property
							

True	if	current	changes	to	the	shared	workbook	are	posted	to	other	users
whenever	the	workbook	is	automatically	updated.	False	if	changes	aren’t	posted
(this	workbook	is	still	synchronized	with	changes	made	by	other	users).	The
default	value	is	True.	Read/write	Boolean.

Remarks

The	AutoUpdateFrequency	property	must	be	set	to	a	value	from	5	to	1440	for
this	property	to	take	effect.

Example

This	example	causes	changes	to	the	shared	workbook	to	be	posted	to	other	users
whenever	the	workbook	is	automatically	updated.

ActiveWorkbook.AutoUpdateSaveChanges	=	True

AxisBetweenCategories	Property
							

True	if	the	value	axis	crosses	the	category	axis	between	categories.	Read/write
Boolean.

Remarks

This	property	applies	only	to	category	axes,	and	it	doesn't	apply	to	3-D	charts.

Example

This	example	causes	the	value	axis	in	Chart1	to	cross	the	category	axis	between
categories.

Charts("Chart1").Axes(xlCategory).AxisBetweenCategories	=	True

Show	All

AxisGroup	Property
							

AxisGroup	property	as	it	applies	to	the	ChartGroup	and	Series	objects.

Returns	the	group	for	the	specified	chart	group	or	series.	Read/write
XlAxisGroup.

XlAxisGroup	can	be	one	of	these	XlAxisGroup	constants.
xlPrimary
xlSecondary

expression.AxisGroup

expression			Required.	An	expression	that	returns	one	of	the	above	objects.

	

AxisGroup	property	as	it	applies	to	the	Axis	object.

Returns	the	group	for	the	specified	axis.	Read-only	XlAxisGroup.

XlAxisGroup	can	be	one	of	these	XlAxisGroup	constants.
xlPrimary
xlSecondary

expression.AxisGroup

expression			Required.	An	expression	that	returns	one	of	the	above	objects.

	

Remarks

For	3-D	charts,	only	xlPrimary	is	valid.

Example

This	example	deletes	the	value	axis	in	Chart1	if	the	axis	is	in	the	secondary
group.

With	Charts("Chart1").Axes(xlValue)

				If	.AxisGroup	=	xlSecondary	Then	.Delete

End	With

AxisTitle	Property
							

Returns	an	AxisTitle	object	that	represents	the	title	of	the	specified	axis.	Read-
only.

Example

This	example	adds	an	axis	label	to	the	category	axis	in	Chart1.

With	Charts("Chart1").Axes(xlCategory)

				.HasTitle	=	True

				.AxisTitle.Text	=	"July	Sales"

End	With

Show	All

BackColor	Property
							

BackColor	property	as	it	applies	to	the	ChartFillFormat	object.

Returns	a	ChartColorFormat	object	that	represents	the	specified	fill
background	color.	Read-only	ChartColorFormat	object.

expression.BackColor

expression			Required.	An	expression	that	returns	one	of	the	above	objects.

	

BackColor	property	as	it	applies	to	the	FillFormat	and	LineFormat	objects.

Returns	a	ColorFormat	object	that	represents	the	specified	fill	background
color.	Read/write	ColorFormat	object.

expression.BackColor

expression			Required.	An	expression	that	returns	one	of	the	above	objects.

	

Example

This	example	sets	the	foreground	color,	background	color,	and	gradient	for	the
chart	area	fill	on	chart	one.

With	Charts(1).ChartArea.Fill

				.Visible	=	True

				.ForeColor.SchemeColor	=	15

				.BackColor.SchemeColor	=	17

				.TwoColorGradient	msoGradientHorizontal,	1

End	With

Show	All

Background	Property
							

Background	property	as	it	applies	to	the	CanvasShapes	object.

Returns	a	Shape	object	that	represents	the	background	image	for	the	specified
document.	Read-only.

expression.Background

expression			Required.	An	expression	that	returns	a	CanvasShapes	object.

Background	property	as	it	applies	to	the	Font	object.

Returns	or	sets	the	text	background	type.	This	property	is	used	for	text	on	charts.
Read/write	Variant.

expression.Background

expression			Required.	An	expression	that	returns	a	Font	object.

Remarks

The	following	constants	can	be	used	with	the	Background	property	as	it	applies
to	the	Font	object:	xlBackgroundAutomatic,	xlBackgroundOpaque,
xlBackgroundTransparent.

Example

This	example	adds	a	chart	title	to	embedded	chart	one	on	the	first	worksheet	and
then	sets	the	font	size	and	background	type	for	the	title.	This	example	assumes	a
chart	exists	on	the	first	worksheet.

Sub	UseBackground()

				With	Worksheets(1).ChartObjects(1).Chart

								.HasTitle	=	True

								.ChartTitle.Text	=	"Rainfall	Totals	by	Month"

								With	.ChartTitle.Font

												.Size	=	10

												.Background	=	xlBackgroundTransparent

								End	With

				End	With

End	Sub

BackgroundChecking	Property
							

Alerts	the	user	for	all	cells	that	violate	enabled	error	checking	rules.	When	this
property	is	set	to	True	(default),	the	AutoCorrect	Options	button	appears	next
to	all	cells	that	violate	enabled	errors.	False	disables	background	checking	for
errors.	Read/write	Boolean.

expression.BackgroundChecking

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

Remarks

Refer	to	the	ErrorCheckingOptions	object	to	view	a	list	of	its	members	that
can	be	enabled.

Example

In	the	following	example,	when	the	user	selects	cell	A1	(which	contains	a
formula	referring	to	empty	cells),	the	AutoCorrect	Options	button	appears.

Sub	CheckBackground()

				'	Simulate	an	error	by	referring	to	empty	cells.

				Application.ErrorCheckingOptions.BackgroundChecking	=	True

				Range("A1").Select

				ActiveCell.Formula	=	"=A2+A3"

End	Sub

Show	All

BackgroundQuery	Property
							

True	if	queries	for	the	PivotTable	report	or	query	table	are	performed
asynchronously	(in	the	background).	Read/write	Boolean.

Remarks

For	OLAP	data	sources,	this	property	is	read-only	and	always	returns	False.

Example

This	example	causes	queries	for	the	first	PivotTable	report	on	worksheet	one	to
be	performed	in	the	background.

Worksheets(1).PivotTables("Pivot1")	_

				.PivotCache.BackgroundQuery	=	True

Backward	Property
							

Returns	or	sets	the	number	of	periods	(or	units	on	a	scatter	chart)	that	the
trendline	extends	backward.	Read/write	Long

Example

This	example	sets	the	number	of	units	that	the	trendline	on	Chart1	extends
forward	and	backward.	The	example	should	be	run	on	a	2-D	column	chart	that
contains	a	single	series	with	a	trendline.

With	Charts("Chart1").SeriesCollection(1).Trendlines(1)

				.Forward	=	5

				.Backward	=	.5

End	With

Bar3DGroup	Property
							

Returns	a	ChartGroup	object	that	represents	the	bar	chart	group	on	a	3-D	chart.
Read-only.

Example

This	example	sets	the	space	between	bar	clusters	in	the	3-D	bar	chart	group	to	be
50	percent	of	the	bar	width.

Charts(1).BarGroup3DGroup.GapWidth	=	50

BarShape	Property
							

Returns	or	sets	the	shape	used	with	the	3-D	bar	or	column	chart.	Read/write
XlBarShape.

XlBarShape	can	be	one	of	these	XlBarShape	constants.
xlBox
xlConeToPoint
xlPyramidToMax
xlConeToMax
xlCylinder
xlPyramidToPoint

expression.BarShape

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

Example

This	example	sets	the	shape	used	with	series	one	on	chart	one.

Charts(1).SeriesCollection(1).BarShape	=	xlConeToPoint

Show	All

BaseField	Property
							

Returns	or	sets	the	base	field	for	a	custom	calculation.	This	property	is	valid
only	for	data	fields.	Read/write	Variant.

Remarks

This	property	is	not	available	for	OLAP	data	sources.

Example

This	example	sets	the	data	field	in	the	PivotTable	report	on	Sheet1	to	calculate
the	difference	from	the	base	field,	sets	the	base	field	to	the	field	named
"ORDER_DATE,"	and	then	sets	the	base	item	to	the	item	named	"5/16/89."

With	Worksheets("Sheet1").Range("A3").PivotField

				.Calculation	=	xlDifferenceFrom

				.BaseField	=	"ORDER_DATE"

				.BaseItem	=	"5/16/89"

End	With

Show	All

BaseItem	Property
							

Returns	or	sets	the	item	in	the	base	field	for	a	custom	calculation.	Valid	only	for
data	fields.	Read/write	Variant.

Remarks

This	property	is	not	available	for	OLAP	data	sources.

Example

This	example	sets	the	data	field	in	the	PivotTable	report	on	Sheet1	to	calculate
the	difference	from	the	base	field,	sets	the	base	field	to	the	field	named
"ORDER_DATE,"	and	then	sets	the	base	item	to	the	item	named	"5/16/89."

With	Worksheets("Sheet1").Range("A3").PivotField

				.Calculation	=	xlDifferenceFrom

				.BaseField	=	"ORDER_DATE"

				.BaseItem	=	"5/16/89"

End	With

BaseUnit	Property
							

Returns	or	sets	the	base	unit	for	the	specified	category	axis.	Read/write
XlTimeUnit.

XlTimeUnit	can	be	one	of	these	XlTimeUnit	constants.
xlMonths
xlDays
xlYears

expression.BaseUnit

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

Remarks

Setting	this	property	has	no	visible	effect	if	the	CategoryType	property	for	the
specified	axis	is	set	to	xlCategoryScale.	The	set	value	is	retained,	however,	and
takes	effect	when	the	CategoryType	property	is	set	to	xlTimeScale.

You	cannot	set	this	property	for	a	value	axis.

Example

This	example	sets	the	category	axis	in	embedded	chart	one	on	worksheet	one	to
use	a	time	scale,	with	months	as	the	base	unit.

With	Worksheets(1).ChartObjects(1).Chart

				With	.Axes(xlCategory)

								.CategoryType	=	xlTimeScale

								.BaseUnit	=	xlMonths

				End	With

End	With

BaseUnitIsAuto	Property
							

True	if	Microsoft	Excel	chooses	appropriate	base	units	for	the	specified	category
axis.	The	default	value	is	True.	Read/write	Boolean.

Remarks

You	cannot	set	this	property	for	a	value	axis.

Example

This	example	sets	the	category	axis	in	embedded	chart	one	on	worksheet	one	to
use	a	time	scale	with	automatic	base	units.

With	Worksheets(1).ChartObjects(1).Chart

				With	.Axes(xlCategory)

								.CategoryType	=	xlTimeScale

								.BaseUnitIsAuto	=	True

				End	With

End	With

BeginArrowheadLength	Property
							

Returns	or	sets	the	length	of	the	arrowhead	at	the	beginning	of	the	specified	line.
Read/write	MsoArrowheadLength.

MsoArrowheadLength	can	be	one	of	these	MsoArrowheadLength	constants.
msoArrowheadLengthMixed
msoArrowheadShort
msoArrowheadLengthMedium
msoArrowheadLong

expression.BeginArrowheadLength

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

Example

This	example	adds	a	line	to	myDocument.	There’s	a	short,	narrow	oval	on	the
line's	starting	point	and	a	long,	wide	triangle	on	its	end	point.

Set	myDocument	=	Worksheets(1)

With	myDocument.Shapes.AddLine(100,	100,	200,	300).Line

				.BeginArrowheadLength	=	msoArrowheadShort

				.BeginArrowheadStyle	=	msoArrowheadOval

				.BeginArrowheadWidth	=	msoArrowheadNarrow

				.EndArrowheadLength	=	msoArrowheadLong

				.EndArrowheadStyle	=	msoArrowheadTriangle

				.EndArrowheadWidth	=	msoArrowheadWide

End	With

BeginArrowheadStyle	Property
							

Returns	or	sets	the	style	of	the	arrowhead	at	the	beginning	of	the	specified	line.
Read/write	MsoArrowheadStyle.

MsoArrowheadStyle	can	be	one	of	these	MsoArrowheadStyle	constants.
msoArrowheadNone
msoArrowheadOval
msoArrowheadStyleMixed
msoArrowheadDiamond
msoArrowheadOpen
msoArrowheadStealth
msoArrowheadTriangle

expression.BeginArrowheadStyle

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

Example

This	example	adds	a	line	to	myDocument.	There’s	a	short,	narrow	oval	on	the
line's	starting	point	and	a	long,	wide	triangle	on	its	end	point.

Set	myDocument	=	Worksheets(1)

With	myDocument.Shapes.AddLine(100,	100,	200,	300).Line

				.BeginArrowheadLength	=	msoArrowheadShort

				.BeginArrowheadStyle	=	msoArrowheadOval

				.BeginArrowheadWidth	=	msoArrowheadNarrow

				.EndArrowheadLength	=	msoArrowheadLong

				.EndArrowheadStyle	=	msoArrowheadTriangle

				.EndArrowheadWidth	=	msoArrowheadWide

End	With

BeginArrowheadWidth	Property
							

Returns	or	sets	the	width	of	the	arrowhead	at	the	beginning	of	the	specified	line.
Read/write	MsoArrowheadWidth.

MsoArrowheadWidth	can	be	one	of	these	MsoArrowheadWidth	constants.
msoArrowheadNarrow
msoArrowheadWidthMedium
msoArrowheadWide
msoArrowheadWidthMixed

expression.BeginArrowheadWidth

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

Example

This	example	adds	a	line	to	myDocument.	There’s	a	short,	narrow	oval	on	the
line's	starting	point	and	a	long,	wide	triangle	on	its	end	point.

Set	myDocument	=	Worksheets(1)

With	myDocument.Shapes.AddLine(100,	100,	200,	300).Line

				.BeginArrowheadLength	=	msoArrowheadShort

				.BeginArrowheadStyle	=	msoArrowheadOval

				.BeginArrowheadWidth	=	msoArrowheadNarrow

				.EndArrowheadLength	=	msoArrowheadLong

				.EndArrowheadStyle	=	msoArrowheadTriangle

				.EndArrowheadWidth	=	msoArrowheadWide

End	With

BeginConnected	Property
							

True	if	the	beginning	of	the	specified	connector	is	connected	to	a	shape.	Read-
only	MsoTriState.

MsoTriState	can	be	one	of	these	MsoTriState	constants.
msoCTrue
msoFalse
msoTriStateMixed
msoTriStateToggle
msoTrue	The	beginning	of	the	specified	connector	is	connected	to	a	shape.	

expression.BeginConnected

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

Example

If	shape	three	on	myDocument	is	a	connector	whose	beginning	is	connected	to	a
shape,	this	example	stores	the	connection	site	number	in	the	variable
oldBeginConnSite,	stores	a	reference	to	the	connected	shape	in	the	object
variable	oldBeginConnShape,	and	then	disconnects	the	beginning	of	the
connector	from	the	shape.

Set	myDocument	=	Worksheets(1)

With	myDocument.Shapes(3)

				If	.Connector	Then

								With	.ConnectorFormat

												If	.BeginConnected	Then

																oldBeginConnSite	=	.BeginConnectionSite

																Set	oldBeginConnShape	=	.BeginConnectedShape

																.BeginDisconnect

												End	If

								End	With

				End	If

End	With

BeginConnectedShape	Property
							

Returns	a	Shape	object	that	represents	the	shape	that	the	beginning	of	the
specified	connector	is	attached	to.	Read-only.

Note			If	the	beginning	of	the	specified	connector	isn’t	attached	to	a	shape,	this
property	generates	an	error.

Example

This	example	assumes	that	myDocument	already	contains	two	shapes	attached	by
a	connector	named	"Conn1To2."	The	code	adds	a	rectangle	and	a	connector	to
myDocument.	The	beginning	of	the	new	connector	will	be	attached	to	the	same
connection	site	as	the	beginning	of	the	connector	named	"Conn1To2,"	and	the
end	of	the	new	connector	will	be	attached	to	connection	site	one	on	the	new
rectangle.

Set	myDocument	=	Worksheets(1)

With	myDocument.Shapes

				Set	r3	=	.AddShape(msoShapeRectangle,	450,	190,	200,	100)

				.AddConnector(msoConnectorCurve,	0,	0,	10,	10).Name	=	_

								"Conn1To3"

				With	.Item("Conn1To2").ConnectorFormat

								beginConnSite1	=	.BeginConnectionSite

								Set	beginConnShape1	=	.BeginConnectedShape

				End	With

				With	.Item("Conn1To3").ConnectorFormat

								.BeginConnect	beginConnShape1,	beginConnSite1

								.EndConnect	r3,	1

				End	With

End	With

BeginConnectionSite	Property
							

Returns	an	integer	that	specifies	the	connection	site	that	the	beginning	of	a
connector	is	connected	to.	Read-only	Long.

Note			If	the	beginning	of	the	specified	connector	isn’t	attached	to	a	shape,	this
property	generates	an	error.

Example

This	example	assumes	that	myDocument	already	contains	two	shapes	attached	by
a	connector	named	"Conn1To2."	The	code	adds	a	rectangle	and	a	connector	to
myDocument.	The	beginning	of	the	new	connector	will	be	attached	to	the	same
connection	site	as	the	beginning	of	the	connector	named	"Conn1To2,"	and	the
end	of	the	new	connector	will	be	attached	to	connection	site	one	on	the	new
rectangle.

Set	myDocument	=	Worksheets(1)

With	myDocument.Shapes

				Set	r3	=	.AddShape(msoShapeRectangle,	450,	190,	200,	100)

				.AddConnector(msoConnectorCurve,	0,	0,	10,	10).Name	=	_

								"Conn1To3"

				With	.Item("Conn1To2").ConnectorFormat

								beginConnSite1	=	.BeginConnectionSite

								Set	beginConnShape1	=	.BeginConnectedShape

				End	With

				With	.Item("Conn1To3").ConnectorFormat

								.BeginConnect	beginConnShape1,	beginConnSite1

								.EndConnect	r3,	1

				End	With

End	With

This	keyword	is	not	implemented.	It	is	reserved	for	future	use.

BlackAndWhite	Property
							

True	if	elements	of	the	document	will	be	printed	in	black	and	white.	Read/write
Boolean.

Remarks

This	property	applies	only	to	worksheet	pages.

Example

This	example	causes	Sheet1	to	be	printed	in	black	and	white.

Worksheets("Sheet1").PageSetup.BlackAndWhite	=	True

Show	All

BlackWhiteMode	Property
							

Returns	or	sets	a	value	that	indicates	how	the	specified	shape	appears	when	the
presentation	is	viewed	in	black-and-white	mode.	Read/write
MsoBlackWhiteMode.

MsoBlackWhiteMode	can	be	one	of	these	MsoBlackWhiteMode	constants.
msoBlackWhiteAutomatic
msoBlackWhiteBlack
msoBlackWhiteBlackTextAndLine
msoBlackWhiteDontShow
msoBlackWhiteGrayOutline
msoBlackWhiteGrayScale
msoBlackWhiteHighContrast
msoBlackWhiteInverseGrayScale
msoBlackWhiteLightGrayScale
msoBlackWhiteMixed
msoBlackWhiteWhite

expression.BlackWhiteMode

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

Example

This	example	sets	shape	one	on	wksOne	to	appear	in	black-and-white	mode.
When	you	view	the	presentation	in	black-and-white	mode,	shape	one	will	appear
black	regardless	of	what	color	it	is	in	color	mode.

Sub	UseBlackWhiteMode()

				Dim	wksOne	As	Worksheet

				Set	wksOne	=	Application.Worksheets(1)

				wksOne.Shapes(1).BlackWhiteMode	=	msoBlackWhiteGrayOutline

End	Sub

Bold	Property
							

True	if	the	font	is	bold.	Read/write	Variant.

Example

This	example	sets	the	font	to	bold	for	the	range	A1:A5	on	Sheet1.

Worksheets("Sheet1").Range("A1:A5").Font.Bold	=	True

Show	All

Border	Property
							

Border	property	as	it	applies	to	the	CalloutFormat	object.

Represents	the	visibility	options	for	the	border	of	the	object.	Read/write
MsoTriState.

MsoTriState	can	be	one	of	these	MsoTriState	constants.
msoCTrue		Does	not	apply	to	this	object.
msoFalse		Sets	the	border	invisible.
msoTriStateMixed		Does	not	apply	to	this	object.
msoTriStateToggle		Allows	the	user	to	switch	the	border	from	visible	to
invisible	and	vice	versa.
msoTrue	default.	Sets	the	border	visible.

expression.Border

expression			Required.	An	expression	that	returns	a	CallFormat	object.

Border	property	as	it	applies	to	all	other	objects	in	the	Applies	To	list.

Returns	a	Border	object	that	represents	the	border	of	the	object.

expression.Border

expression			Required.	An	expression	that	returns	all	other	objects	in	the	Applies
To	list.

Example

This	example	sets	the	color	of	the	chart	area	border	of	Chart1	to	red.

Charts("Chart1").ChartArea.Border.ColorIndex	=	3

Show	All

Borders	Property
							

Borders	property	as	it	applies	to	the	CellFormat	object.

Allows	the	user	to	set	or	return	the	search	criteria	based	on	the	cell's	border
format.

expression.Borders

expression			Required.	An	expression	that	returns	a	CellFormat	object.

Borders	property	as	it	applies	to	the	FormatCondition,	Range,	and	Style
objects.

Returns	a		Borders	collection	that	represents	the	borders	of	a	style	or	a	range	of
cells	(including	a	range	defined	as	part	of	a	conditional	format).

expression.Borders

expression			Required.	An	expression	that	returns	one	of	the	above	objects.

Remarks

For	information	about	returning	a	single	member	of	a	collection,	see	Returning
an	Object	from	a	Collection.

Example

As	it	applies	to	the	CellFormat	object.

This	example	sets	the	search	criteria	to	identify	the	borders	of	cells	that	have	a
continuous	and	thick	style	bottom-edge,	creates	a	cell	with	this	condition,	finds
this	cell,	and	notifies	the	user.	Note:	The	default	color	of	the	border	is	used	in
this	example,	therefore	the	color	index	is	not	changed.

Sub	SearchCellFormat()

				'	Set	the	search	criteria	for	the	border	of	the	cell	format.

				With	Application.FindFormat.Borders(xlEdgeBottom)

								.LineStyle	=	xlContinuous

								.Weight	=	xlThick

				End	With

				'	Create	a	continuous	thick	bottom-edge	border	for	cell	A5.

				Range("A5").Select

				With	Selection.Borders(xlEdgeBottom)

								.LineStyle	=	xlContinuous

								.Weight	=	xlThick

				End	With

				Range("A1").Select

				MsgBox	"Cell	A5	has	a	continuous	thick	bottom-edge	border"

				'	Find	the	cells	based	on	the	search	criteria.

				Cells.Find(What:="",	After:=ActiveCell,	LookIn:=xlFormulas,	LookAt:=	_

								xlPart,	SearchOrder:=xlByRows,	SearchDirection:=xlNext,	MatchCase:=False	_

								,	SearchFormat:=True).Activate

				MsgBox	"Microsoft	Excel	has	found	this	cell	matching	the	search	criteria."

End	Sub

As	it	applies	to	the	FormatCondition,	Range,	and	Style	objects.

This	example	sets	the	color	of	the	bottom	border	of	cell	B2	on	Sheet1	to	a	thin
red	border.

Sub	SetRangeBorder()

				With	Worksheets("Sheet1").Range("B2").Borders(xlEdgeBottom)

								.LineStyle	=	xlContinuous

								.Weight	=	xlThin

								.ColorIndex	=	3

				End	With

End	Sub

Show	All

BottomMargin	Property
							

Returns	or	sets	the	size	of	the	bottom	margin,	in	points.	Read/write	Double.

Remarks

Margins	are	set	or	returned	in	points.	Use	either	the	InchesToPoints	method	or
the	CentimetersToPoints	method	to	do	the	conversion.

Example

These	two	examples	set	the	bottom	margin	of	Sheet1	to	0.5	inch	(36	points).

Worksheets("Sheet1").PageSetup.BottomMargin	=	_

								Application.InchesToPoints(0.5)

Worksheets("Sheet1").PageSetup.BottomMargin	=	36

This	example	displays	the	current	setting	for	the	bottom	margin	on	Sheet1.

marginInches	=	Worksheets("Sheet1").PageSetup.BottomMargin	/	_

				Application.InchesToPoints(1)

MsgBox	"The	current	bottom	margin	is	"	&	marginInches	&	"	inches"

BottomRightCell	Property
							

Returns	a	Range	object	that	represents	the	cell	that	lies	under	the	lower-right
corner	of	the	object.	Read-only.

Example

This	example	displays	the	address	of	the	cell	beneath	the	lower-right	corner	of
embedded	chart	one	on	Sheet1.

MsgBox	"The	bottom	right	corner	is	over	cell	"	&	_

				Worksheets("Sheet1").ChartObjects(1).BottomRightCell.Address

Brightness	Property
							

Returns	or	sets	the	brightness	of	the	specified	picture	or	OLE	object.	The	value
for	this	property	must	be	a	number	from	0.0	(dimmest)	to	1.0	(brightest).
Read/write	Single.

expression.Brightness

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

Example

This	example	sets	the	brightness	for	shape	one	on	myDocument.	Shape	one	must
be	either	a	picture	or	an	OLE	object.

Set	myDocument	=	Worksheets(1)

myDocument.Shapes(1).PictureFormat.Brightness	=	0.3

BubbleScale	Property
							

Returns	or	sets	the	scale	factor	for	bubbles	in	the	specified	chart	group.	Can	be
an	integer	value	from	0	(zero)	to	300,	corresponding	to	a	percentage	of	the
default	size.	Applies	only	to	bubble	charts.	Read/write	Long.

Example

This	example	sets	the	bubble	size	in	chart	group	one	to	200%	of	the	default	size.

With	Worksheets(1).ChartObjects(1).Chart

				.ChartGroups(1).BubbleScale	=	200

End	With

BubbleSizes	Property
							

Returns	or	sets	a	string	in	A1-style	notation	that	refers	to	the	worksheet	cells
containing	the	size	data	for	the	bubble	chart.	Applies	only	to	bubble	charts.
Read/write	Variant.

Example

This	example	displays	the	cell	reference	for	the	cells	that	contain	the	bubble
chart	size	data.

MsgBox	Worksheets(1).ChartObjects(1).Chart	_

				.SeriesCollection(1).BubbleSizes

Build	Property
							

Returns	the	Microsoft	Excel	build	number.	Read-only	Long.

Remarks

It’s	usually	safer	to	test	the	Version	property,	unless	you’re	sure	you	need	to
know	the	build	number.

Example

This	example	tests	the	Build	property.

If	Application.Build	>	2500	Then

				'	build-dependent	code	here

End	If

BuiltIn	Property
							

True	if	the	style	is	a	built-in	style.	Read-only	Boolean.

Example

This	example	creates	a	list	on	worksheet	one	that	contains	the	names	and	built-in
status	of	all	the	styles	in	the	active	workbook.

r	=	0

Worksheets(1).Activate

For	Each	s	In	ActiveWorkbook.Styles

				r	=	r	+	1

				Cells(r,	1).Value	=	s.Name

				Cells(r,	2).Value	=	s.BuiltIn

Next

BuiltinDocumentProperties	Property
							

Returns	a	DocumentProperties	collection	that	represents	all	the	built-in
document	properties	for	the	specified	workbook.	Read-only.

mk:@MSITStore:vbaof10.chm::/html/ofobjDocumentProperties.htm

Remarks

This	property	returns	the	entire	collection	of	built-in	document	properties.	Use
the	Item	method	to	return	a	single	member	of	the	collection	(a
DocumentProperty	object)	by	specifying	either	the	name	of	the	property	or	the
collection	index	(as	a	number).

You	can	refer	to	document	properties	either	by	index	value	or	by	name.	The
following	list	shows	the	available	built-in	document	property	names:

Title

Subject

Author

Keywords

Comments

Template

Last	Author

Revision	Number

Application	Name

Last	Print	Date

Creation	Date

Last	Save	Time

Total	Editing	Time

Number	of	Pages

Number	of	Words

Number	of	Characters

Security

Category

Format

Manager

Company

Number	of	Bytes

Number	of	Lines

Number	of	Paragraphs

Number	of	Slides

Number	of	Notes

Number	of	Hidden	Slides

Number	of	Multimedia	Clips

Hyperlink	Base

Number	of	Characters	(with
spaces)

Container	applications	aren’t	required	to	define	values	for	every	built-in
document	property.	If	Microsoft	Excel	doesn’t	define	a	value	for	one	of	the
built-in	document	properties,	reading	the	Value	property	for	that	document
property	causes	an	error.

Because	the	Item	method	is	the	default	method	for	the	DocumentProperties
collection,	the	following	statements	are	identical:

BuiltinDocumentProperties.Item(1)

BuiltinDocumentProperties(1)

Use	the	CustomDocumentProperties	property	to	return	the	collection	of
custom	document	properties.

Example

This	example	displays	the	names	of	the	built-in	document	properties	as	a	list	on
worksheet	one.

rw	=	1

Worksheets(1).Activate

For	Each	p	In	ActiveWorkbook.BuiltinDocumentProperties

				Cells(rw,	1).Value	=	p.Name

				rw	=	rw	+	1

Next

CacheIndex	Property
							

Returns	or	sets	the	index	number	of	the	PivotTable	cache.	Read/write	Long.

Remarks

If	you	set	the	CacheIndex	property	so	that	one	PivotTable	report	uses	the	cache
for	a	second	PivotTable	report,	the	first	report’s	fields	must	be	a	valid	subset	of
the	fields	in	the	second	report.

Example

This	example	sets	the	cache	for	the	PivotTable	report	named	"Pivot1"	to	the
cache	of	the	PivotTable	report	named	"Pivot2."

Worksheets(1).PivotTables("Pivot1").CacheIndex	=	_

				Worksheets(1).PivotTables("Pivot2").CacheIndex

CalculateBeforeSave	Property
							

True	if	workbooks	are	calculated	before	they're	saved	to	disk	(if	the	Calculation
property	is	set	to	xlManual).	This	property	is	preserved	even	if	you	change	the
Calculation	property.	Read/write	Boolean.

Example

This	example	sets	Microsoft	Excel	to	calculate	workbooks	before	they're	saved
to	disk.

Application.Calculation	=	xlManual

Application.CalculateBeforeSave	=	True

Show	All

CalculatedMembers	Property
							

Returns	a	CalculatedMembers	collection	representing	all	the	calculated	fields
and	calculated	items	for	an	OLAP	PivotTable.

expression.CalculatedMembers

expression			Required.	An	expression	that	returns	a	PivotTable	object.

Remarks

This	property	is	used	for	Online	Analytical	Processing	(OLAP)	sources;	a	non-
OLAP	source	will	return	a	run-time	error.

Example

This	example	adds	a	set	to	the	PivotTable.	It	assumes	a	PivotTable	exists	on	the
active	worksheet	that	is	connected	to	an	OLAP	data	source	which	contains	a
field	titled	"[Product].[All	Products]".

Sub	UseCalculatedMember()

				Dim	pvtTable	As	PivotTable

				Set	pvtTable	=	ActiveSheet.PivotTables(1)

				'	Add	the	calculated	member.

				pvtTable.CalculatedMembers.Add	Name:="[Beef]",	_

								Formula:="'{[Product].[All	Products].Children}'",	_

								Type:=xlCalculatedSet

End	Sub

Show	All

Calculation	Property
							

Calculation	property	as	it	applies	to	the	Application	object.

Returns	or	sets	the	calculation	mode.	Read/write	XlCalculation.

XlCalculation	can	be	one	of	these	XlCalculation	constants.
xlCalculationAutomatic
xlCalculationManual
xlCalculationSemiautomatic

expression.Calculation

expression			Required.	An	expression	that	returns	one	of	the	above	objects.

	

Calculation	property	as	it	applies	to	the	PivotField	object.

Returns	or	sets	the	type	of	calculation	performed	by	the	specified	field.	This
property	is	valid	only	for	data	fields.	Read/write	XlPivotFieldCalculation.

XlPivotFieldCalculation	can	be	one	of	these	XlPivotFieldCalculation	constants.
xlDifferenceFrom
xlIndex
xlNoAdditionalCalculation
xlPercentDifferenceFrom
xlPercentOf
xlPercentOfColumn
xlPercentOfRow
xlPercentOfTotal
xlRunningTotal

expression.Calculation

expression			Required.	An	expression	that	returns	one	of	the	above	objects.

	

Remarks

For	OLAP	data	sources,	this	property	can	only	return	or	be	set	to	xlNormal.

Example

This	example	causes	Microsoft	Excel	to	calculate	workbooks	before	they	are
saved	to	disk.

Application.Calculation	=	xlCalculateManual

Application.CalculateBeforeSave	=	True

This	example	sets	the	data	field	in	the	PivotTable	report	on	Sheet1	to	calculate
the	difference	from	the	base	field,	sets	the	base	field	to	the	field	named
"ORDER_DATE,"	and	then	sets	the	base	item	to	the	item	named	"5/16/89."

With	Worksheets("Sheet1").Range("A3").PivotField

				.Calculation	=	xlDifferenceFrom

				.BaseField	=	"ORDER_DATE"

				.BaseItem	=	"5/16/89"

End	With

Show	All

CalculationInterruptKey	Property
							

Sets	or	returns	an	XlCalculationInterruptKey	constant	that	specifies	the	key
that	can	interrupt	Microsoft	Excel	when	performing	calculations.	Read/write.

XlCalculationInterruptKey	can	be	one	of	these	XlCalculationInterruptKey
constants.
xlAnyKey
xlEscKey
xlNoKey

expression.CalculationInterruptKey

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

Example

In	this	example,	Microsoft	Excel	determines	the	setting	for	the	calculation
interrupt	key	and	notifies	the	user.

Sub	CheckInterruptKey()

				'	Determine	the	calculation	interrupt	key	and	notify	the	user.

				Select	Case	Application.CalculationInterruptKey

								Case	xlAnyKey

												MsgBox	"The	calcuation	interrupt	key	is	set	to	any	key."

								Case	xlEscKey

												MsgBox	"The	calcuation	interrupt	key	is	set	to	'Escape'"

								Case	xlNoKey

												MsgBox	"The	calcuation	interrupt	key	is	set	to	no	key."

				End	Select

End	Sub

Show	All

CalculationState	Property
							

Returns	an	XlCalculationState	constant	that	indicates	the	calculation	state	of
the	application,	for	any	calculations	that	are	being	performed	in	Microsoft	Excel.
Read-only.

XlCalculationState	can	be	one	of	these	XlCalculationState	constants.
xlCalculating
xlDone
xlPending

expression.CalculationState

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

Example

In	this	example,	Microsoft	Excel	checks	to	see	if	any	calculations	are	being
performed.	If	no	calculations	are	being	performed,	a	message		displays	the
calculation	state	as	"Done".	Otherwise,	a	message	displays	the	calculation	state
as	"Not	Done".

Sub	StillCalculating()

				If	Application.CalculationState	=	xlDone	Then

								MsgBox	"Done"

				Else

								MsgBox	"Not	Done"

				End	If

End	Sub

CalculationVersion	Property
							

Returns	a	number	whose	rightmost	four	digits	are	the	minor	calculation	engine
version	number,	and	whose	other	digits	(on	the	left)	are	the	major	version	of
Microsoft	Excel.	For	a	Workbook	object,	this	property	returns	the	information
about	the	version	of	Excel	that	the	workbook	was	last	fully	recalculated	by.
Read-only	Long.

expression.CalculationVersion

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

Remarks

If	the	workbook	was	saved	in	an	earlier	version	of	Excel	and	if	the	workbook
hasn't	been	fully	recalculated,	then	this	property	returns	0.

Example

This	example	compares	the	version	of	Microsoft	Excel	with	the	version	of	Excel
that	the	workbook	was	last	calculated	in.	If	the	two	version	numbers	are
different,	the	example	sets	the	blnFullCalc	variable	to	True.

If	Application.CalculationVersion	<>	_

				Workbooks(1).CalculationVersion	Then

				blnFullCalc	=	True

Else

				blnFullCalc	=	False

End	If

Caller	Property
							

Returns	information	about	how	Visual	Basic	was	called	(for	more	information,
see	the	Remarks	section).

expression.Caller(Index)

expression			Required.	An	expression	that	returns	an	Application	object.

Index			Optional	Variant.	An	index	to	the	array.	This	argument	is	used	only
when	the	property	returns	an	array	(for	more	information,	see	the	Remarks
section).

Remarks

This	property	returns	information	about	how	Visual	Basic	was	called,	as	shown
in	the	following	table.

Caller Return	value
A	custom	function	entered	in	a	single
cell A	Range	object	specifying	that	cell

A	custom	function	that	is	part	of	an
array	formula	in	a	range	of	cells

A	Range	object	specifying	that	range
of	cells

An	Auto_Open,	Auto_Close,
Auto_Activate,	or	Auto_Deactivate
macro

The	name	of	the	document	as	text

A	macro	set	by	either	the
OnDoubleClick	or	OnEntry	property

The	name	of	the	chart	object	identifier
or	cell	reference	(if	applicable)	to
which	the	macro	applies

The	Macro	dialog	box	(Tools	menu),	or
any	caller	not	described	above The	#REF!	error	value

Example

This	example	displays	information	about	how	Visual	Basic	was	called.

Select	Case	TypeName(Application.Caller)

				Case	"Range"

								v	=	Application.Caller.Address

				Case	"String"

								v	=	Application.Caller

				Case	"Error"

								v	=	"Error"

				Case	Else

								v	=	"unknown"

End	Select

MsgBox	"caller	=	"	&	v

Callout	Property
							

Returns	a	CalloutFormat	object	that	contains	callout	formatting	properties	for
the	specified	shape.	Applies	to	Shape	or	ShapeRange	objects	that	represent	line
callouts.	Read-only.

Example

This	example	adds	to	myDocument	an	oval	and	a	callout	that	points	to	the	oval.
The	callout	text	won’t	have	a	border,	but	it	will	have	a	vertical	accent	bar	that
separates	the	text	from	the	callout	line.

Set	myDocument	=	Worksheets(1)

With	myDocument.Shapes

				.AddShape	msoShapeOval,	180,	200,	280,	130

				With	.AddCallout(msoCalloutTwo,	420,	170,	170,	40)

								.TextFrame.Characters.Text	=	"My	oval"

								With	.Callout

												.Accent	=	True

												.Border	=	False

								End	With

				End	With

End	With

CanPlaySounds	Property
							

This	property	should	not	be	used.	Sound	notes	have	been	removed	from
Microsoft	Excel.

CanRecordSounds	Property
							

This	property	should	not	be	used.	Sound	notes	have	been	removed	from
Microsoft	Excel.

CapitalizeNamesOfDays	Property
							

True	if	the	first	letter	of	day	names	is	capitalized	automatically.	Read/write
Boolean.

Example

This	example	sets	Microsoft	Excel	to	capitalize	the	first	letter	of	the	names	of
days.

With	Application.AutoCorrect

				.CapitalizeNamesOfDays	=	True

				.ReplaceText	=	True

End	With

Show	All

Caption	Property
							

Caption	property	as	it	applies	to	the	Application	objects.

The	name	that	appears	in	the	title	bar	of	the	main	Microsoft	Excel	window.	If
you	don't	set	a	name,	or	if	you	set	the	name	to	Empty,	this	property	returns
"Microsoft	Excel".	Read/write	String.

expression.Caption

expression			Required.	An	expression	that	returns	one	of	the	above	objects.

	

Caption	property	as	it	applies	to	the	AxisTitle	objects.

The	axis	title	text.	Read/write	String.

expression.Caption

expression			Required.	An	expression	that	returns	one	of	the	above	objects.

	

Caption	property	as	it	applies	to	the	Characters	object.

The	text	of	this	range	of	characters.	Read-only	String.

expression.Caption

expression			Required.	An	expression	that	returns	one	of	the	above	objects.

	

Caption	property	as	it	applies	to	the	ChartTitle	object.

The	chart	title	text.	Read-only	String.

expression.Caption

expression			Required.	An	expression	that	returns	one	of	the	above	objects.

	

Caption	property	as	it	applies	to	the	DataLabel	object.

The	data	label	text.	Read-only	String.

expression.Caption

expression			Required.	An	expression	that	returns	one	of	the	above	objects.

	

Caption	property	as	it	applies	to	the	DisplayUnitLabel	object.

The	display	unit	label	text.	Read-only	String.

expression.Caption

expression			Required.	An	expression	that	returns	one	of	the	above	objects.

	

Caption	property	as	it	applies	to	the	PivotField	object.

The	label	text	for	the	pivot	field.	Read-only	String.

expression.Caption

expression			Required.	An	expression	that	returns	one	of	the	above	objects.

	

Caption	property	as	it	applies	to	the	PivotItem	object.

The	label	text	for	the	pivot	item.	Read-only	String.

expression.Caption

expression			Required.	An	expression	that	returns	one	of	the	above	objects.

	

Caption	property	as	it	applies	to	the	CubeField	object.

The	label	text	for	the	cube	field.	Read-only	String.

expression.Caption

expression			Required.	An	expression	that	returns	one	of	the	above	objects.

	

Caption	property	as	it	applies	to	the	Window	object.

The	name	that	appears	in	the	title	bar	of	the	document	window.	When	you	set	the
name,	you	can	use	that	name	as	the	index	to	the	Windows	property	(see	the
second	example).	Read/write	Variant.

expression.Caption

expression			Required.	An	expression	that	returns	one	of	the	above	objects.

	

Remarks

The	following	table	shows	example	values	of	the	Caption	property	and	related
properties,	given	an	OLAP	data	source	with	the	unique	name	"[Europe].
[France].[Paris]"	and	a	non-OLAP	data	source	with	the	item	name	"Paris".

Property Value	(OLAP	data	source) Value	(non-OLAP	data	source)
Caption Paris Paris

Name [Europe].[France].[Paris]
(read-only) Paris

SourceName [Europe].[France].[Paris]
(read-only)

(Same	as	the	SQL	property
value;	read-only)

Value [Europe].[France].[Paris]
(read-only) Paris

When	specifying	an	index	into	the	PivotItems	collection,	you	can	use	the	syntax
shown	in	the	following	table.

Syntax	(OLAP	data	source) Syntax	(non-OLAP	data
source)

expression.PivotItems("[Europe].[France].
[Paris]") expression.PivotItems("Paris")

When	using	the	Item	property	to	reference	a	specific	member	of	a	collection,
you	can	use	the	text	index	names	shown	in	the	following	table.

Name	(OLAP	data	source) Name	(non-OLAP	data
source)

[Europe].[France].[Paris] Paris

Example

This	example	sets	the	name	that	appears	in	the	title	bar	of	the	main	Microsoft
Excel	window	to	be	a	custom	name.

Application.Caption	=	"Blue	Sky	Airlines	Reservation	System"

This	example	sets	the	name	of	the	first	window	in	the	active	workbook	to	be
"Consolidated	Balance	Sheet."	This	name	is	then	used	as	the	index	to	the
Windows	property.

ActiveWorkbook.Windows(1).Caption	=	"Consolidated	Balance	Sheet"

ActiveWorkbook.Windows("Consolidated	Balance	Sheet")	_

				.ActiveSheet.Calculate

Category	Property
							

Returns	or	sets	the	category	for	the	specified	name	in	the	language	of	the	macro.
The	name	must	refer	to	a	custom	function	or	command.	Read/write	String.

Example

This	example	assumes	that	you	created	a	custom	function	or	command	on	a
Microsoft	Excel	4.0	macro	sheet.	The	example	displays	the	function	category	in
the	language	of	the	macro.	It	assumes	that	the	name	of	the	custom	function	or
command	is	the	only	name	in	the	workbook.

With	ActiveWorkbook.Names(1)

				If	.MacroType	<>	xlNone	Then

								MsgBox	"The	category	for	this	name	is	"	&	.Category

				Else

								MsgBox	"This	name	does	not	refer	to"	&	_

												"	a	custom	function	or	command."

				End	If

End	With

CategoryLocal	Property
							

Returns	or	sets	the	category	for	the	specified	name,	in	the	language	of	the	user,	if
the	name	refers	to	a	custom	function	or	command.	Read/write	String.

Example

This	example	displays,	in	the	language	of	the	user,	the	function	category	of
either	a	custom	function	or	a	command	created	on	a	Microsoft	Excel	4.0	macro
sheet.	The	example	assumes	that	the	custom	function	name	or	command	name	is
the	only	name	in	the	workbook.

With	ActiveWorkbook.Names(1)

				If	.MacroType	<>	xlNone	Then

								MsgBox	"The	category	for	this	name	is	"	&	.CategoryLocal

				Else

								MsgBox	"This	name	does	not	refer	to"	&	_

												"	a	custom	function	or	command."

				End	If

End	With

CategoryNames	Property
							

Returns	or	sets	all	the	category	names	for	the	specified	axis,	as	a	text	array.
When	you	set	this	property,	you	can	set	it	to	either	an	array	or	a	Range	object
that	contains	the	category	names.	Read/write	Variant.

Remarks

Category	names	are	really	a	property	of	the	"special"	series	in	an	axis	grouping.
Deleting	or	modifying	that	special	series	will	change	the	category	names	for	all
series	using	the	axis.

Example

This	example	sets	the	category	names	for	Chart1	to	the	values	in	cells	B1:B5	on
Sheet1.

Set	Charts("Chart1").Axes(xlCategory).CategoryNames	=	_

				Worksheets("Sheet1").Range("B1:B5")

This	example	uses	an	array	to	set	individual	category	names	for	Chart1.

Charts("Chart1").Axes(xlCategory).CategoryNames	=	_

				Array	("1985",	"1986",	"1987",	"1988",	"1989")

CategoryType	Property
							

Returns	or	sets	the	category	axis	type.	Read/write	XlCategoryType.

XlCategoryType	can	be	one	of	these	XlCategoryType	constants.
xlCategoryScale
xlAutomaticScale
xlTimeScale

expression.CategoryType

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

Remarks

You	cannot	set	this	property	for	a	value	axis.

Example

This	example	sets	the	category	axis	in	embedded	chart	one	on	worksheet	one	to
use	a	time	scale,	with	months	as	the	base	unit.

With	Worksheets(1).ChartObjects(1).Chart

				With	.Axes(xlCategory)

								.CategoryType	=	xlTimeScale

								.BaseUnit	=	xlMonths

				End	With

End	With

CellDragAndDrop	Property
							

True	if	dragging	and	dropping	cells	is	enabled.	Read/write	Boolean.

Example

This	example	enables	dragging	and	dropping	cells.

Application.CellDragAndDrop	=	True

Show	All

Cells	Property
							

Cells	Property	as	it	applies	to	the	Application	object.

Returns	a	Range	object	that	represents	all	the	cells	on	the	active	worksheet.	If
the	active	document	isn’t	a	worksheet,	this	property	fails.	Read-only.

expression.Cells

expression			Required.	An	expression	that	returns	an	Application	object.

Cells	Property	as	it	applies	to	the	Range	object.

Returns	a	Range	object	that	represents	the	cells	in	the	specified	range.	Read-
only.

expression.Cells

expression			Required.	An	expression	that	returns	a	Range	object.

Cells	Property	as	it	applies	to	the	Worksheet	object.

Returns	a	Range	object	that	represents	all	the	cells	on	the	worksheet	(not	just	the
cells	that	are	currently	in	use).		Read-only.

expression.Cells

expression			Required.	An	expression	that	returns	a	Worksheet	object.

Remarks

Because	the	Item	property	is	the	default	property	for	the	Range	object,	you	can
specify	the	row	and	column	index	immediately	after	the	Cells	keyword.	For
more	information,	see	the	Item	property	and	the	examples	for	this	topic.

Using	this	property	without	an	object	qualifier	returns	a	Range	object	that
represents	all	the	cells	on	the	active	worksheet.

Example

This	example	sets	the	font	size	for	cell	C5	on	Sheet1	to	14	points.

Worksheets("Sheet1").Cells(5,	3).Font.Size	=	14

This	example	clears	the	formula	in	cell	one	on	Sheet1.

Worksheets("Sheet1").Cells(1).ClearContents

This	example	sets	the	font	and	font	size	for	every	cell	on	Sheet1	to	8-point	Arial.

With	Worksheets("Sheet1").Cells.Font

				.Name	=	"Arial"

				.Size	=	8

End	With

This	example	loops	through	cells	A1:J4	on	Sheet1.	If	a	cell	contains	a	value	less
than	0.001,	the	example	replaces	that	value	with	0	(zero).

For	rwIndex	=	1	to	4

				For	colIndex	=	1	to	10

								With	Worksheets("Sheet1").Cells(rwIndex,	colIndex)

												If	.Value	<	.001	Then	.Value	=	0

								End	With

				Next	colIndex

Next	rwIndex

This	example	sets	the	font	style	for	cells	A1:C5	on	Sheet1	to	italic.

Worksheets("Sheet1").Activate

Range(Cells(1,	1),	Cells(5,	3)).Font.Italic	=	True

This	example	scans	a	column	of	data	named	"myRange."	If	a	cell	has	the	same
value	as	the	cell	immediately	above	it,	the	example	displays	the	address	of	the
cell	that	contains	the	duplicate	data.

Set	r	=	Range("myRange")

For	n	=	1	To	r.Rows.Count

				If	r.Cells(n,	1)	=	r.Cells(n	+	1,	1)	Then

								MsgBox	"Duplicate	data	in	"	&	r.Cells(n	+	1,	1).Address

				End	If

Next	n

CenterFooter	Property
							

Returns	or	sets	the	center	part	of	the	footer.	Read/write	String.

Remarks

Special	format	codes	can	be	used	in	the	footer	text.

Example

This	example	prints	the	workbook	name	and	page	number	at	the	bottom	of	each
page.

Worksheets("Sheet1").PageSetup.CenterFooter	=	"&F	page	&P"

CenterFooterPicture	Property
							

Returns	a	Graphic	object	that	represents	the	picture	for	the	center	section	of	the
footer.	Used	to	set	attributes	about	the	picture.

expression.CenterFooterPicture

expression			Required.	An	expression	that	returns	a	PageSetup	object.

Remarks

The	CenterFooterPicture	property	is	read-only,	but	the	properties	on	it	are	not
all	read-only.

Example

The	following	example	adds	a	picture	titled:	Sample.jpg	from	the	C:\	drive	to	the
center	section	of	the	footer.	This	example	assumes	that	a	file	called	Sample.jpg
exists	on	the	C:\	drive.

Sub	InsertPicture()

				With	ActiveSheet.PageSetup.CentertFooterPicture

								.FileName	=	"C:\Sample.jpg"

								.Height	=	275.25

								.Width	=	463.5

								.Brightness	=	0.36

								.ColorType	=	msoPictureGrayscale

								.Contrast	=	0.39

								.CropBottom	=	-14.4

								.CropLeft	=	-28.8

								.CropRight	=	-14.4

								.CropTop	=	21.6

				End	With

				'	Enable	the	image	to	show	up	in	the	center	footer.

				ActiveSheet.PageSetup.CenterFooter	=	"&G"

End	Sub

Note			It	is	required	that	"&G"	is	a	part	of	the	CenterFooter	property	string	in
order	for	the	image	to	show	up	in	the	center	footer.

CenterHeader	Property
							

Returns	or	sets	the	center	part	of	the	header.	Read/write	String.

Remarks

Special	format	codes	can	be	used	in	the	header	text.

Example

This	example	prints	the	date	and	page	number	at	the	top	of	each	page.

Worksheets("Sheet1").PageSetup.CenterHeader	=	"&D	page	&P	of	&N"

CenterHeaderPicture	Property
							

Returns	a	Graphic	object	that	represents	the	picture	for	the	center	section	of	the
header.	Used	to	set	attributes	about	the	picture.

expression.CenterHeaderPicture

expression			Required.	An	expression	that	returns	a	PageSetup	object.

Remarks

The	CenterHeaderPicture	property	is	read-only,	but	the	properties	on	it	are	not
all	read-only.

Example

The	following	example	adds	a	picture	titled:	Sample.jpg	from	the	C:\	drive	to	the
center	section	of	the	header.	This	example	assumes	that	a	file	called	Sample.jpg
exists	on	the	C:\	drive.

Sub	InsertPicture()

				With	ActiveSheet.PageSetup.CentertHeaderPicture

								.FileName	=	"C:\Sample.jpg"

								.Height	=	275.25

								.Width	=	463.5

								.Brightness	=	0.36

								.ColorType	=	msoPictureGrayscale

								.Contrast	=	0.39

								.CropBottom	=	-14.4

								.CropLeft	=	-28.8

								.CropRight	=	-14.4

								.CropTop	=	21.6

				End	With

				'	Enable	the	image	to	show	up	in	the	center	header.

				ActiveSheet.PageSetup.CenterHeader	=	"&G"

End	Sub

Note			It	is	required	that	"&G"	is	a	part	of	the	CenterHeader	property	string	in
order	for	the	image	to	show	up	in	the	center	header.

CenterHorizontally	Property
							

True	if	the	sheet	is	centered	horizontally	on	the	page	when	it's	printed.
Read/write	Boolean.

Example

This	example	centers	Sheet1	horizontally	when	it's	printed.

Worksheets("Sheet1").PageSetup.CenterHorizontally	=	True

CenterVertically	Property
							

True	if	the	sheet	is	centered	vertically	on	the	page	when	it's	printed.	Read/write
Boolean.

Example

This	example	centers	Sheet1	vertically	when	it's	printed.

Worksheets("Sheet1").PageSetup.CenterVertically	=	True

ChangeHistoryDuration	Property
							

Returns	or	sets	the	number	of	days	shown	in	the	shared	workbook's	change
history.	Read/write	Long.

Remarks

Any	changes	in	the	change	history	older	than	the	setting	for	this	property	are
removed	when	the	workbook	is	closed.

Example

This	example	sets	the	number	of	days	shown	in	the	change	history	for	the	active
workbook	if	change	tracking	is	enabled.	Any	changes	in	the	change	history	older
than	the	setting	for	this	property	are	removed	when	the	workbook	is	closed.

With	ActiveWorkbook

				If	.KeepChangeHistory	Then

								.ChangeHistoryDuration	=	7

				End	If

End	With

ChangingCells	Property
							

Returns	a	Range	object	that	represents	the	changing	cells	for	a	scenario.	Read-
only.

Example

This	example	selects	the	changing	cells	for	scenario	one	on	Sheet1.

Worksheets("Sheet1").Activate

ActiveSheet.Scenarios(1).ChangingCells.Select

Characters	Property
							

Returns	a	Characters	object	that	represents	a	range	of	characters	within	the
object	text.	You	can	use	the	Characters	object	to	format	characters	within	a	text
string.

expression.Characters(Start,	Length)

expression			Required.	An	expression	that	returns	an	object	in	the	Applies	To	list.

Start			Optional	Variant.	The	first	character	to	be	returned.	If	this	argument	is
either	1	or	omitted,	this	property	returns	a	range	of	characters	starting	with	the
first	character.

Length			Optional	Variant.	The	number	of	characters	to	be	returned.	If	this
argument	is	omitted,	this	property	returns	the	remainder	of	the	string	(everything
after	the	Start	character).

Remarks

The	Characters	object	isn't	a	collection.

For	the	TextFrame	object,	Characters	is	a	method.

Example

This	example	formats	the	third	character	in	cell	A1	on	Sheet1	as	bold.

With	Worksheets("Sheet1").Range("A1")

				.Value	=	"abcdefg"

				.Characters(3,	1).Font.Bold	=	True

End	With

CharacterType	Property
							

Returns	or	sets	the	type	of	phonetic	text	in	the	specified	cell.	Read/write
XlPhoneticCharacterType.

XlPhoneticCharacterType	can	be	one	of	these	XlPhoneticCharacterType
constants.
xlHiragana
xlKatakana
xlKatakanaHalf
xlNoConversion

expression.CharacterType

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

Example

This	example	changes	the	first	phonetic	text	string	in	the	active	cell	from
Furigana	to	Hiragana.

ActiveCell.Phonetics(1).CharacterType	=	xlHiragana

Chart	Property
							

Returns	a	Chart	object	that	represents	the	chart	contained	in	the	object.	Read-
only.

Example

This	example	adds	a	title	to	the	first	embedded	chart	on	Sheet1.

With	Worksheets("Sheet1").ChartObjects(1).Chart

				.HasTitle	=	True

				.ChartTitle.Text	=	"1995	Rainfall	Totals	by	Month"

End	With

ChartArea	Property
							

Returns	a	ChartArea	object	that	represents	the	complete	chart	area	for	the	chart.
Read-only.

Example

This	example	sets	the	chart	area	interior	color	of	Chart1	to	red	and	sets	the
border	color	to	blue.

With	Charts("Chart1").ChartArea

				.Interior.ColorIndex	=	3

				.Border.ColorIndex	=	5

End	With

Show	All

Charts	Property
							

Charts	Property	as	it	applies	to	the	Application	object.

Returns	a	Sheets	collection	that	represents	all	the	chart	sheets	in	the	active
workbook.	Read-only.

expression.Charts

expression			Required.	An	expression	that	returns	an	object	in	the	Applies	To
List.

Using	this	property	without	an	object	qualifier	returns	all	chart	sheets	in	the
active	workbook.

For	information	about	returning	a	single	member	of	a	collection,	see	Returning
an	Object	from	a	Collection.

	

Charts	Property	as	it	applies	to	the	Workbook	object.

Returns	a	Sheets	collection	that	represents	all	the	chart	sheets	in	the	specified
workbook.	Read-only.

expression.Charts

expression			Required.	An	expression	that	returns	an	object	in	the	Applies	To
List.

Using	this	property	without	an	object	qualifier	returns	all	chart	sheets	in	the
active	workbook.

For	information	about	returning	a	single	member	of	a	collection,	see	Returning
an	Object	from	a	Collection.

	

Example

This	example	sets	the	text	for	the	title	of	Chart1.

With	Charts("Chart1")

				.HasTitle	=	True

				.ChartTitle.Text	=	"First	Quarter	Sales"

End	With

This	example	deletes	every	chart	sheet	in	the	active	workbook.

ActiveWorkbook.Charts.Delete

This	example	hides	Chart1,	Chart3,	and	Chart5.

Charts(Array("Chart1",	"Chart3",	"Chart5")).Visible	=	False

ChartSize	Property
							

Returns	or	sets	the	way	a	chart	is	scaled	to	fit	on	a	page.	Read/write
XlObjectSize.

XlObjectSize	can	be	one	of	these	XlObjectSize	constants.
xlFitToPage.	Print	the	chart	as	large	as	possible,	while	retaining	the	chart's
height-to-width	ratio	as	shown	on	the	screen
xlFullPage.	Print	the	chart	to	fit	the	page,	adjusting	the	height-to-width	ratio	as
necessary.
xlScreenSize.	Print	the	chart	the	same	size	as	it	appears	on	the	screen.

expression.ChartSize

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

Remarks

This	property	applies	only	to	chart	sheets	(it	cannot	be	used	with	embedded
charts).

Example

This	example	scales	the	first	chart	in	the	active	workbook	to	fit	a	full	page.

ActiveWorkbook.Charts(1).PageSetup.ChartSize	=	xlFullPage

ChartTitle	Property
							

Returns	a	ChartTitle	object	that	represents	the	title	of	the	specified	chart.	Read-
only.

Example

This	example	sets	the	text	for	the	title	of	Chart1.

With	Charts("Chart1")

				.HasTitle	=	True

				.ChartTitle.Text	=	"First	Quarter	Sales"

End	With

ChartType	Property
							

Returns	or	sets	the	chart	type.	Read/write	XlChartType.

XlChartType	can	be	one	of	these	XlChartType	constants.
xlLine.	Line
xlLineMarkersStacked.	Stacked	Line	with	Markers
xlLineStacked.	Stacked	Line
xlPie.	Pie
xlPieOfPie.	Pie	of	Pie
xlPyramidBarStacked.	Stacked	Pyramid	Bar
xlPyramidCol.	3D	Pyramid	Column
xlPyramidColClustered.		Clustered	Pyramid	Column
xlPyramidColStacked.	Stacked	Pyramid	Column
xlPyramidColStacked100.	100%	Stacked	Pyramid	Column
xlRadar.	Radar
xlRadarFilled.	Filled	Radar
xlRadarMarkers.	Radar	with	Data	Markers
xlStockHLC.	High-Low-Close
xlStockOHLC.		Open-High-Low-Close
xlStockVHLC.		Volume-High-Low-Close
xlStockVOHLC.		Volume-Open-High-Low-Close
xlSurface.	3D	Surface
xlSurfaceTopView.	Surface	(Top	View)
xlSurfaceTopViewWireframe.		Surface	(Top	View	wireframe)
xlSurfaceWireframe.	3D	Surface	(wireframe)
xlXYScatter.	Scatter
xlXYScatterLines.	Scatter	with	Lines.
xlXYScatterLinesNoMarkers.		Scatter	with	Lines	and	No	Data	Markers
xlXYScatterSmooth.	Scatter	with	Smoothed	Lines

xlXYScatterSmoothNoMarkers.		Scatter	with	Smoothed	Lines	and	No	Data
Markers
xl3DArea.	3D	Area
xl3DAreaStacked.	3D	Stacked	Area
xl3DAreaStacked100.	100%	Stacked	Area
xl3DBarClustered.	3D	Clustered	Bar
xl3DBarStacked.	3D	Stacked	Bar
xl3DBarStacked100.	3D	100%	Stacked	Bar
xl3DColumn.	3D	Column
xl3DColumnClustered.	3D	Clustered	Column
xl3DColumnStacked.	3D	Stacked	Column	
xl3DColumnStacked100.	3D	100%	Stacked	Column
xl3DLine.	3D	Line
xl3DPie.	3D	Pie
xl3DPieExploded.	Exploded	3D	Pie
xlArea.	Area
xlAreaStacked.	Stacked	Area
xlAreaStacked100.	100%	Stacked	Area
xlBarClustered.	Clustered	Bar
xlBarOfPie.	Bar	of	Pie
xlBarStacked.	Stacked	Bar
xlBarStacked100.	100%	Stacked	Bar
xlBubble.	Bubble
xlBubble3DEffect.	Bubble	with	3D	effects
xlColumnClustered.	Clustered	Column
xlColumnStacked.	Stacked	Column
xlColumnStacked100.	100%	Stacked	Column
xlConeBarClustered.	Clustered	Cone	Bar
xlConeBarStacked.	Stacked	Cone	Bar
xlConeBarStacked100.	100%	Stacked	Cone	Bar
xlConeCol.	3D	Cone	Column
xlConeColClustered.	Clustered	Cone	Column
xlConeColStacked.	Stacked	Cone	Column

xlConeColStacked100.	100%	Stacked	Cone	Column

xlCylinderBarClustered.		Clustered	Cylinder	Bar
xlCylinderBarStacked.	Stacked	Cylinder	Bar
xlCylinderBarStacked100.	100%	Stacked	Cylinder	Bar
xlCylinderCol.	3D	Cylinder	Column
xlCylinderColClustered.		Clustered	Cone	Column
xlCylinderColStacked.	Stacked	Cone	Column
xlCylinderColStacked100.	100%	Stacked	Cylinder	Column
xlDoughnut.	Doughnut
xlDoughnutExploded.	Exploded	Doughnut
xlLineMarkers.	Line	with	Markers
xlLineMarkersStacked100.	100%	Stacked	Line	with	Markers
xlLineStacked100.	100%	Stacked	Line
xlPieExploded.	Exploded	Pie
xlPyramidBarClustered.		Clustered	Pyramid	Bar
xlPyramidBarStacked100.	100%	Stacked	Pyramid	Bar

expression.ChartType

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

Remarks

Some	chart	types	aren’t	available	for	PivotChart	reports.

Example

This	example	sets	the	bubble	size	in	chart	group	one	to	200%	of	the	default	size
if	the	chart	is	a	2D	bubble	chart.

With	Worksheets(1).ChartObjects(1).Chart

				If	.ChartType	=	xlBubble	Then

								.ChartGroups(1).BubbleScale	=	200

				End	If

End	With

CheckIfOfficeIsHTMLEditor
Property
							

True	if	Microsoft	Excel	checks	to	see	whether	an	Office	application	is	the
default	HTML	editor	when	you	start	Excel.	False	if	Excel	does	not	perform	this
check.	The	default	value	is	True.	Read/write	Boolean.

Remarks

This	property	is	used	only	if	the	Web	browser	you	are	using	supports	HTML
editing	and	HTML	editors.

To	use	a	different	HTML	editor,	you	must	set	this	property	to	False	and	then
register	the	editor	as	the	default	system	HTML	editor.

Example

This	example	causes	Microsoft	Excel	not	to	check	to	see	whether	it	is	the	default
HTML	editor.

Application.DefaultWebOptions.CheckIfOfficeIsHTMLEditor	=	False

Show	All

Child	Property
							

Returns	msoTrue	if	the	specified	shape	is	a	child	shape	or	if	all	shapes	in	a
shape	range	are	child	shapes	of	the	same	parent.	Read-only	MsoTriState.

MsoTriState	can	be	one	of	these	MsoTriState	constants.
msoCTrue	Does	not	apply	to	this	property.
msoFalse	If	the	selected	shape	is	not	a	child	shape.
msoTriStateMixed	If	only	some	of	the	selected	shapes	are	child	shapes.
msoTriStateToggle	Does	not	apply	to	this	property.
msoTrue	If	the	selected	shape	is	a	child	shape.

expression.Child

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

Example

This	example	selects	the	first	shape	in	the	canvas,	and	if	the	selected	shape	is	a
child	shape,	fills	the	shape	with	the	specified	color.	This	example	assumes	that	a
drawing	canvas	contains	multiple	shapes	on	the	active	worksheet.

Sub	FillChildShape()

				'Select	the	first	shape	in	the	drawing	canvas

				ActiveSheet.Shapes(1).CanvasItems(1).Select

				'Fill	selected	shape	if	it	is	a	child	shape

				If	Selection.ShapeRange.Child	=	msoTrue	Then

								Selection.ShapeRange.Fill.ForeColor.RGB	=	RGB(100,	0,	200)

				Else

								MsgBox	"This	shape	is	not	a	child	shape."

				End	If

End	Sub

Show	All

ChildField	Property
							

Returns	a	PivotField	object	that	represents	the	child	field	for	the	specified	field
(if	the	field	is	grouped	and	has	a	child	field).	Read-only.

Remarks

If	the	specified	field	has	no	child	field,	this	property	causes	an	error.

This	property	is	not	available	for	OLAP	data	sources.

Example

This	example	displays	the	name	of	the	child	field	for	the	field	named
"REGION2."

Set	pvtTable	=	Worksheets("Sheet1").Range("A3").PivotTable

MsgBox	"The	name	of	the	child	field	is	"	&	_

				pvtTable.PivotFields("REGION2").ChildField.Name

Show	All

ChildItems	Property
							

Returns	an	object	that	represents	either	a	single	PivotTable	item	(a	PivotItem
object)	or	a	collection	of	all	the	items	(a	PivotItems	object)	that	are	group
children	in	the	specified	field,	or	children	of	the	specified	item.	Read-only.

expression.ChildItems(Index)

expression			Required.	An	expression	that	returns	a	PivotField	or	PivotItem
object.

Index			Optional	Variant.	The	item	name	or	number	(can	be	an	array	to	specify
more	than	one	item).

Remarks

This	property	is	not	available	for	OLAP	data	sources.

Example

This	example	adds	the	names	of	all	the	child	items	of	the	item	named
"vegetables"	to	a	list	on	a	new	worksheet.

Set	nwSheet	=	Worksheets.Add

nwSheet.Activate

Set	pvtTable	=	Worksheets("Sheet2").Range("A1").PivotTable

rw	=	0

For	Each	pvtItem	In	_

								pvtTable.PivotFields("product")

								.PivotItems("vegetables").ChildItems

				rw	=	rw	+	1

				nwSheet.Cells(rw,	1).Value	=	pvtItem.Name

Next	pvtItem

Children	Property
							

	Returns	a	DiagramNodeChildren	object,	representing	the	collection	of	child
nodes	of	a	particular	node.

expression.Children

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

Example

The	following	example	creates	a	diagram	and	adds	child	nodes	to	it.

Sub	CreatePyramidDiagram()

				Dim	dgnNode	As	DiagramNode

				Dim	shpDiagram	As	Shape

				Dim	intCount	As	Integer

				'Add	pyramid	diagram	to	current	document

				Set	shpDiagram	=	ActiveSheet.Shapes.AddDiagram(_

								Type:=msoDiagramPyramid,	Left:=10,	_

								Top:=15,	Width:=400,	Height:=475)

				'Add	first	child	diagram	node

				Set	dgnNode	=	shpDiagram.DiagramNode.Children.AddNode

				'Add	three	more	nodes

				For	intCount	=	1	To	3

								dgnNode.AddNode

				Next	intCount

End	Sub

CircularReference	Property
							

Returns	a	Range	object	that	represents	the	range	containing	the	first	circular
reference	on	the	sheet,	or	returns	Nothing	if	there's	no	circular	reference	on	the
sheet.	The	circular	reference	must	be	removed	before	calculation	can	proceed.
Read-only.

Example

This	example	selects	the	first	cell	in	the	first	circular	reference	on	Sheet1.

Worksheets("Sheet1").CircularReference.Select

ClipboardFormats	Property
							

Returns	the	formats	that	are	currently	on	the	Clipboard,	as	an	array	of	numeric
values.	To	determine	whether	a	particular	format	is	on	the	Clipboard,	compare
each	element	in	the	array	with	the	appropriate	constant	listed	in	the	Remarks
section.	Read-only	Variant.

expression.ClipboardFormats(Index)

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

Index		Optional	Variant.		The	array	element	to	be	returned.	If	this	argument	is
omitted,	the	property	returns	the	entire	array	of	formats	that	are	currently	on	the
Clipboard.	For	more	information,	see	the	Remarks	section.

Remarks

This	property	returns	an	array	of	numeric	values.	To	determine	whether	a
particular	format	is	on	the	Clipboard	compare	each	element	of	the	array	with	one
of	the	following	XlClipboardFormat	constants:

xlClipboardFormatBIFF

xlClipboardFormatBIFF2

xlClipboardFormatBIFF3

xlClipboardFormatBIFF4

xlClipboardFormatBinary

xlClipboardFormatBitmap

xlClipboardFormatCGM

xlClipboardFormatCSV

xlClipboardFormatDIF

xlClipboardFormatDspText

xlClipboardFormatEmbeddedObject

xlClipboardFormatEmbedSource

xlClipboardFormatLink

xlClipboardFormatLinkSource

xlClipboardFormatLinkSourceDesc

xlClipboardFormatMovie

xlClipboardFormatNative

xlClipboardFormatObjectDesc

xlClipboardFormatObjectLink

xlClipboardFormatOwnerLink

xlClipboardFormatPICT

xlClipboardFormatPrintPICT

xlClipboardFormatRTF

xlClipboardFormatScreenPICT

xlClipboardFormatStandardFont

xlClipboardFormatStandardScale

xlClipboardFormatSYLK

xlClipboardFormatTable

xlClipboardFormatText

xlClipboardFormatToolFace

xlClipboardFormatToolFacePICT

xlClipboardFormatVALU

xlClipboardFormatWK1

Example

This	example	displays	a	message	box	if	the	Clipboard	contains	a	rich-text	format
(RTF)	object.	You	can	create	an	RTF	object	by	copying	text	from	a	Word
document.

aFmts	=	Application.ClipboardFormats

For	Each	fmt	In	aFmts

				If	fmt	=	xlClipboardFormatRTF	Then

								MsgBox	"Clipboard	contains	rich	text"

				End	If

Next

CLSID	Property
							

Returns	a	read-only	unique	identifier,	or	CLSID	identifying	an	object,	as	a
String.

expression.CLSID

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

Example

This	example	returns	the	CLSID	of	an	add-in	titled	"Analysis	ToolPak".		This
example	assumes	the	"Analysis	ToolPak"	has	been	installed.

Sub	FindCLSID()

				MsgBox	Application.AddIns("Analysis	ToolPak").CLSID

End	Sub

CodeName	Property
							

Returns	the	code	name	for	the	object.	Read-only	String.

Note			The	value	that	you	see	in	the	cell	to	the	right	of	(Name)	in	the	Properties
window	is	the	code	name	of	the	selected	object.	At	design	time,	you	can	change
the	code	name	of	an	object	by	changing	this	value.	You	cannot	programmatically
change	this	property	at	run	time.

Remarks

The	code	name	for	an	object	can	be	used	in	place	of	an	expression	that	returns
the	object.	For	example,	if	the	code	name	for	worksheet	one	is	"Sheet1",	the
following	expressions	are	identical:

Worksheets(1).Range("a1")

Sheet1.Range("a1")

It’s	possible	for	the	sheet	name	to	be	different	from	the	code	name.	When	you
create	a	sheet,	the	sheet	name	and	code	name	are	the	same,	but	changing	the
sheet	name	doesn’t	change	the	code	name,	and	changing	the	code	name	(using
the	Properties	window	in	the	Visual	Basic	Editor)	doesn’t	change	the	sheet
name.

Example

This	example	displays	the	code	name	for	worksheet	one.

MsgBox	Worksheets(1).CodeName

Color	Property
							

Returns	or	sets	the	primary	color	of	the	object,	as	shown	in	the	following	table.
Use	the	RGB	function	to	create	a	color	value.	Read/write	Variant.

Object Color
Border The	color	of	the	border.

Borders The	color	of	all	four	borders	of	a	range.	If	they're	not	all	the
same	color,	Color	returns	0	(zero).

Font The	color	of	the	font.
Interior The	cell	shading	color	or	the	drawing	object	fill	color.

expression.Color

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

Example

This	example	sets	the	color	of	the	tick-mark	labels	on	the	value	axis	in	Chart1.

Charts("Chart1").Axes(xlValue).TickLabels.Font.Color	=	_

				RGB(0,	255,	0)

Show	All

ColorIndex	Property
							

ColorIndex	Property	as	it	applies	to	the	Border	object.

Returns	or	sets	the	color	of	the	border.	The	color	is	specified	as	an	index	value
into	the	current	color	palette,	or	as	one	of	the	following	XlColorIndex	constants.
Read/write	Variant.

XlColorIndex	can	be	one	of	these	XlColorIndex	constants.
xlColorIndexAutomatic
xlColorIndexNone

expression.ColorIndex

expression			Required.	An	expression	that	returns	an	object	in	the	Applies	To
List.

	

ColorIndex	Property	as	it	applies	to	the	Borders	object.

Returns	or	sets	the	color	of	all	four	borders.	Returns	Null	if	all	four	borders
aren't	the	same	color.	The	color	is	specified	as	an	index	value	into	the	current
color	palette,	or	as	one	of	the	following	XlColorIndex	constants.	Read/write
Variant.

XlColorIndex	can	be	one	of	these	XlColorIndex	constants.
xlColorIndexAutomatic
xlColorIndexNone

expression.ColorIndex

expression			Required.	An	expression	that	returns	an	object	in	the	Applies	To
List.

	

ColorIndex	Property	as	it	applies	to	the	Font	object.

Returns	or	sets	the	color	of	the	font.	The	color	is	specified	as	an	index	value	into
the	current	color	palette,	or	as	one	of	the	following	XlColorIndex	constants.
Read/write	Variant.

XlColorIndex	can	be	one	of	these	XlColorIndex	constants.
xlColorIndexAutomatic.		Use	to	specify	automatic	color.
xlColorIndexNone.		

expression.ColorIndex

expression			Required.	An	expression	that	returns	an	object	in	the	Applies	To
List.

	

ColorIndex	Property	as	it	applies	to	the	Interior	object.

Returns	or	sets	the	color	of	the	interior.	The	color	is	specified	as	an	index	value
into	the	current	color	palette,	or	as	one	of	the	following	XlColorIndex	constants.
Read/write	Variant.

XlColorIndex	can	be	one	of	these	XlColorIndex	constants.
xlColorIndexAutomatic.		Use	to	specify	the	automatic	fill,	for	drawing
objects.
xlColorIndexNone.	Use	to	specify	no	interior	fill.

expression.ColorIndex

expression			Required.	An	expression	that	returns	an	object	in	the	Applies	To
List.

Example

The	following	examples	assume	that	you're	using	the	default	color	palette.

Example	as	it	applies	to	the	Border	object.

This	example	sets	the	color	of	the	major	gridlines	for	the	value	axis	in	Chart1.

With	Charts("Chart1").Axes(xlValue)

				If	.HasMajorGridlines	Then

								.MajorGridlines.Border.ColorIndex	=	5				'set	color	to	blue

				End	If

End	With

Example	as	it	applies	to	the	Font	object.

This	example	changes	the	font	color	in	cell	A1	on	Sheet1	to	red.

Worksheets("Sheet1").Range("A1").Font.ColorIndex	=	3	

Example	as	it	applies	to	the	Interior	and	Border	objects.

This	example	sets	the	color	of	the	chart	area	interior	of	Chart1	to	red	and	sets	the
border	color	to	blue.

With	Charts("Chart1").ChartArea

				.Interior.ColorIndex	=	3

				.Border.ColorIndex	=	5

End	With

Colors	Property
							

Returns	or	sets	colors	in	the	palette	for	the	workbook.	The	palette	has	56	entries,
each	represented	by	an	RGB	value.	Read/write	Variant.

expression.Colors(Index)

expression			Required.	An	expression	that	returns	a	Workbook	object.

Index			Optional	Variant.	The	color	number	(from	1	to	56).	If	this	argument
isn’t	specified,	this	method	returns	an	array	that	contains	all	56	of	the	colors	in
the	palette.

Example

This	example	sets	the	color	palette	for	the	active	workbook	to	be	the	same	as	the
palette	for	Book2.xls.

ActiveWorkbook.Colors	=	Workbooks("BOOK2.XLS").Colors

This	example	sets	color	five	in	the	color	palette	for	the	active	workbook.

ActiveWorkbook.Colors(5)	=	RGB(255,	0,	0)

ColorType	Property
							

Returns	or	sets	the	type	of	color	transformation	applied	to	the	specified	picture
or	OLE	object.	Read/write	MsoPictureColorType.

MsoPictureColorType	can	be	one	of	these	MsoPictureColorType	constants.
msoPictureAutomatic
msoPictureBlackAndWhite
msoPictureGrayscale
msoPictureMixed
msoPictureWatermark

expression.ColorType

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

Example

This	example	sets	the	color	transformation	to	grayscale	for	shape	one	on
myDocument.	Shape	one	must	be	either	a	picture	or	an	OLE	object.

Set	myDocument	=	Worksheets(1)

myDocument.Shapes(1).PictureFormat.ColorType	=	msoPictureGrayScale

Column	Property
							

Returns	the	number	of	the	first	column	in	the	first	area	in	the	specified	range.
Read-only	Long.

Remarks

Column	A	returns	1,	column	B	returns	2,	and	so	on.

To	return	the	number	of	the	last	column	in	the	range,	use	the	following
expression.

myRange.Columns(myRange.Columns.Count).Column

Example

This	example	sets	the	column	width	of	every	other	column	on	Sheet1	to	4	points.

For	Each	col	In	Worksheets("Sheet1").Columns

				If	col.Column	Mod	2	=	0	Then

								col.ColumnWidth	=	4

				End	If

Next	col

Column3DGroup	Property
							

Returns	a	ChartGroup	object	that	represents	the	column	chart	group	on	a	3-D
chart.	Read-only.

Example

This	example	sets	the	space	between	column	clusters	in	the	3-D	column	chart
group	to	be	50	percent	of	the	column	width.

Charts(1).Column3DGroup.GapWidth	=	50

ColumnFields	Property
							

Returns	an	object	that	represents	either	a	single	PivotTable	field	(a	PivotField
object)	or	a	collection	of	all	the	fields	(a	PivotFields	object)	that	are	currently
shown	as	column	fields.	Read-only.

expression.ColumnFields(Index)

expression			Required.	An	expression	that	returns	a	PivotTable	object.

Index			Optional	Variant.	The	field	name	or	number	(can	be	an	array	to	specify
more	than	one	field).

Example

This	example	adds	the	field	names	of	the	PivotTable	report	columns	to	a	list	on	a
new	worksheet.

Set	nwSheet	=	Worksheets.Add

nwSheet.Activate

Set	pvtTable	=	Worksheets("Sheet2").Range("A1").PivotTable

rw	=	0

For	Each	pvtField	In	pvtTable.ColumnFields

				rw	=	rw	+	1

				nwSheet.Cells(rw,	1).Value	=	pvtField.Name

Next	pvtField

ColumnGrand	Property
							

True	if	the	PivotTable	report	shows	grand	totals	for	columns.	Read/write
Boolean.

Example

This	example	sets	the	PivotTable	report	to	show	grand	totals	for	columns.

Set	pvtTable	=	Worksheets("Sheet1").Range("A3").PivotTable

pvtTable.ColumnGrand	=	True

ColumnItems	Property
							

Returns	a	PivotItemList	collection	that	corresponds	to	the	items	on	the	column
axis	that	represent	the	selected	range.

expression.ColumnItems

expression			Required.	An	expression	that	returns	a	PivotCell	object.

Example

This	example	determines	if	the	data	item	in	cell	B5	is	under	the	Inventory	item
in	the	first	column	field	and	notifies	the	user.	The	example	assumes	that	a
PivotTable	exists	on	the	active	worksheet	and	that	column	B	contains	a	column
field	of	the	PivotTable.

Sub	CheckColumnItems()

				'	Determine	if	there	is	a	match	between	the	item	and	column	field.

				If	Application.Range("B5").PivotCell.ColumnItems.Item(1)	=	"Inventory"	Then

								MsgBox	"Item	in	B5	is	a	member	of	the	'Inventory'	column	field."

				Else

								MsgBox	"Item	in	B5	is	not	a	member	of	the	'Inventory'	column	field."

				End	If

End	Sub

ColumnRange	Property
							

Returns	a	Range	object	that	represents	the	range	that	contains	the	column	area	in
the	PivotTable	report.	Read-only.

Example

This	example	selects	the	column	headers	for	the	PivotTable	report.

Worksheets("Sheet1").Activate

Range("A3").Select

ActiveCell.PivotTable.ColumnRange.Select

Show	All

Columns	Property
							

Columns	property	as	it	applies	to	the	Application	object.

Returns	a	Range	object	that	represents	all	the	columns	on	the	active	worksheet.
If	the	active	document	isn't	a	worksheet,	the	Columns	property	fails.	Read-only.

expression.Columns

expression			Required.	An	expression	that	returns	an	object	in	the	Applies	To
List.

	

Columns	property	as	it	applies	to	the	Range	object.

Returns	a	Range	object	that	represents	the	columns	in	the	specified	range.	Read-
only.

expression.Columns

expression			Required.	An	expression	that	returns	an	object	in	the	Applies	To
List.

	

Columns	property	as	it	applies	to	the	WorkSheet	object.

Returns	a	Range	object	that	represents	all	the	columns	on	the	specified
worksheet.	Read-only.

expression.Columns

expression			Required.	An	expression	that	returns	an	object	in	the	Applies	To
List.

	

For	information	about	returning	a	single	member	of	a	collection,	see	Returning
an	Object	from	a	Collection.

Remarks

Using	this	property	without	an	object	qualifier	is	equivalent	to	using
ActiveSheet.Columns.

When	applied	to	a	Range	object	that's	a	multiple-area	selection,	this	property
returns	columns	from	only	the	first	area	of	the	range.	For	example,	if	the	Range
object	has	two	areas	—	A1:B2	and	C3:D4	—	Selection.Columns.Count	returns
2,	not	4.	To	use	this	property	on	a	range	that	may	contain	a	multiple-area
selection,	test	Areas.Count	to	determine	whether	the	range	contains	more	than
one	area.	If	it	does,	loop	over	each	area	in	the	range.

Example

This	example	formats	the	font	of	column	one	(column	A)	on	Sheet1	as	bold.

Worksheets("Sheet1").Columns(1).Font.Bold	=	True

This	example	sets	the	value	of	every	cell	in	column	one	in	the	range	named
"myRange"	to	0	(zero).

Range("myRange").Columns(1).Value	=	0

This	example	displays	the	number	of	columns	in	the	selection	on	Sheet1.	If	more
than	one	area	is	selected,	the	example	loops	through	each	area.

Worksheets("Sheet1").Activate

areaCount	=	Selection.Areas.Count

If	areaCount	<=	1	Then

				MsgBox	"The	selection	contains	"	&	_

								Selection.Columns.Count	&	"	columns."

Else

				For	i	=	1	To	areaCount

								MsgBox	"Area	"	&	i	&	"	of	the	selection	contains	"	&	_

												Selection.Areas(i).Columns.Count	&	"	columns."

				Next	i

End	If

ColumnWidth	Property
							

Returns	or	sets	the	width	of	all	columns	in	the	specified	range.	Read/write
Variant.

Remarks

One	unit	of	column	width	is	equal	to	the	width	of	one	character	in	the	Normal
style.	For	proportional	fonts,	the	width	of	the	character	0	(zero)	is	used.

Use	the	Width	property	to	return	the	width	of	a	column	in	points.

If	all	columns	in	the	range	have	the	same	width,	the	ColumnWidth	property
returns	the	width.	If	columns	in	the	range	have	different	widths,	this	property
returns	Null.

Example

This	example	doubles	the	width	of	column	A	on	Sheet1.

With	Worksheets("Sheet1").Columns("A")

				.ColumnWidth	=	.ColumnWidth	*	2

End	With

COMAddIns	Property
							

Returns	the	COMAddIns	collection	for	Microsoft	Excel,	which	represents	the
currently	installed	COM	add-ins.	Read-only.

mk:@MSITStore:vbaof10.chm::/html/ofobjCOMAddIns.htm

Example

This	example	displays	the	number	of	COM	add-ins	that	are	currently	installed.

Set	objAI	=	Application.COMAddIns

MsgBox	"Number	of	COM	add-ins	available:"	&	_

				objAI.Count

CommandBars	Property
							

Returns	a	CommandBars	object	that	represents	the	Microsoft	Excel	command
bars.	Read-only.

mk:@MSITStore:vbaof10.chm::/html/ofobjCommandBars.htm

Remarks

Used	with	the	Application	object,	this	property	returns	the	set	of	built-in	and
custom	command	bars	available	to	the	application.

When	a	workbook	is	embedded	in	another	application	and	activated	by	the	user
by	double-clicking	the	workbook,	using	this	property	with	a	Workbook	object
returns	the	set	of	Microsoft	Excel	command	bars	available	within	the	other
application.	At	all	other	times,	using	this	property	with	a	Workbook	object
returns	Nothing.

There	is	no	programmatic	way	to	return	the	set	of	command	bars	attached	to	a
workbook.

Example

This	example	deletes	all	custom	command	bars	that	aren’t	visible.

For	Each	bar	In	Application.CommandBars

				If	Not	bar.BuiltIn	And	Not	bar.Visible	Then	bar.Delete

Next

CommandText	Property
							

Returns	or	sets	the	command	string	for	the	specified	data	source.	Read/write
Variant.

Remarks

You	should	use	the	CommandText	property	instead	of	the	SQL	property,	which
now	exists	primarily	for	compatibility	with	earlier	versions	of	Microsoft	Excel.
If	you	use	both	properties,	the	CommandText	property’s	value	takes
precedence.

For	OLE	DB	sources,	the	CommandType	property	describes	the	value	of	the
CommandText	property.

For	ODBC	sources,	the	CommandText	property	functions	exactly	like	the	SQL
property,	and	setting	the	property	causes	the	data	to	be	refreshed.

Example

This	example	sets	the	command	string	for	the	first	query	table’s	ODBC	data
source.	Note	that	the	command	string	is	an	SQL	statement.

Set	qtQtrResults	=	_

				Workbooks(1).Worksheets(1).QueryTables(1)

With	qtQtrResults

				.CommandType	=	xlCmdSQL

				.CommandText	=	_

								"Select	ProductID	From	Products	Where	ProductID	<	10"

				.Refresh

End	With

Show	All

CommandType	Property
							

Returns	or	sets	one	of	the	XlCmdType	constants	listed	in	the	following	table.
The	constant	that	is	returned	or	set	describes	the	value	of	the	CommandText
property.	The	default	value	is	xlCmdSQL.	Read/write	XlCmdType.

XlCmdType	can	be	one	of	these	XlCmdType	constants.
xlCmdCube.	Contains	a	cube	name	for	an	OLAP	data	source.
xlCmdDefault.	Contains	command	text	that	the	OLE	DB	provider	understands.
xlCmdSql.	Contains	an	SQL	statement.
xlCmdTable.	Contains	a	table	name	for	accessing	OLE	DB	data	sources.

expression.CommandType

Remarks

You	can	set	the	CommandType	property	only	if	the	value	of	the	QueryType
property	for	the	query	table	or	PivotTable	cache	is	xlOLEDBQuery.

If	the	value	of	the	CommandType	property	is	xlCmdCube,	you	cannot	change
this	value	if	there	is	a	PivotTable	report	associated	with	the	query	table.

Example

This	example	sets	the	command	string	for	the	first	query	table’s	ODBC	data
source.	The	command	string	is	an	SQL	statement.

Set	qtQtrResults	=	_

				Workbooks(1).Worksheets(1).QueryTables(1)

With	qtQtrResults

				.CommandType	=	xlCmdSQL

				.CommandText	=	_

								"Select	ProductID	From	Products	Where	ProductID	<	10"

				.Refresh

End	With

CommandUnderlines	Property
							

Returns	or	sets	the	state	of	the	command	underlines	in	Microsoft	Excel	for	the
Macintosh.	Can	be	one	of	the	following	XlCommandUnderlines	constants.
Read/write	Long.

XlCommandUnderlines	can	be	one	of	these	XlCommandUnderlines	constants.
xlCommandUnderlinesOn
xlCommandUnderlinesOff

xlCommandUnderlinesAutomatic

expression.C	ommandUnderlines

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

Remarks

In	Microsoft	Excel	for	Windows,	reading	this	property	always	returns
xlCommandUnderlinesOn,	and	setting	this	property	to	anything	other	than
xlCommandUnderlinesOn	is	an	error.

Example

This	example	turns	off	command	underlines	in	Microsoft	Excel	for	the
Macintosh.

Application.CommandUnderlines	=	xlCommandUnderlinesOff

Show	All

Comment	Property
							

Comment	property	as	it	applies	to	the	Range	object.

Returns	a	Comment	object	that	represents	the	comment	associated	with	the	cell
in	the	upper-left	corner	of	the	range.	Read-only	Comment	object.

expression.Comment

expression			Required.	An	expression	that	returns	a	Range	object.

Comment	property	as	it	applies	to	the	Scenario	object.

Returns	or	sets	the	comment	associated	with	the	scenario.	The	comment	text
cannot	exceed	255	characters.	Read/write	String.

expression.Comment

expression			Required.	An	expression	that	returns	a	Scenario	object.

Example

This	example	sets	the	comment	for	scenario	one	on	Sheet1.

Worksheets("Sheet1").Scenarios(1).Comment	=	_

				"Worst	case	July	1993	sales"

Comments	Property
							

Returns	a	Comments	collection	that	represents	all	the	comments	for	the
specified	worksheet.	Read-only.

For	information	about	returning	a	single	member	of	a	collection,	see	Returning
an	Object	from	a	Collection.

Example

This	example	deletes	all	comments	added	by	Jean	Selva	on	the	active	sheet.

For	Each	c	in	ActiveSheet.Comments

				If	c.Author	=	"Jean	Selva"	Then	c.Delete

Next

ConflictResolution	Property

							

Returns	or	sets	the	way	conflicts	are	to	be	resolved	whenever	a	shared	workbook	is	updated.
Read/write	XlSaveConflictResolution.

expression.ConflictResolution

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the	Applies	To	list.

Example

This	example	causes	the	local	user's	changes	to	be	accepted	whenever	there’s	a	conflict	in	the
shared	workbook.

ActiveWorkbook.ConflictResolution	=	xlLocalSessionChanges

Show	All

Connection	Property
							

Returns	or	sets	a	string	that	contains	one	of	the	following:	OLE	DB	settings	that
enable	Microsoft	Excel	to	connect	to	an	OLE	DB	data	source;	ODBC	settings
that	enable	Microsoft	Excel	to	connect	to	an	ODBC	data	source;	a	URL	that
enables	Microsoft	Excel	to	connect	to	a	Web	data	source;	the	path	to	and	file
name	of	a	text	file,	or	the	path	to	and	file	name	of	a	file	that	specifies	a	database
or	Web	query.	Read/write	Variant.

Remarks

Setting	the	Connection	property	doesn’t	immediately	initiate	the	connection	to
the	data	source.	You	must	use	the	Refresh	method	to	make	the	connection	and
retrieve	the	data.

When	using	an	offline	cube	file,	set	the	UseLocalConnection	property	to	True
and	use	the	LocalConnection	property	instead	of	the	Connection	property.

For	more	information	about	the	connection	string	syntax,	see	the	Add	method	of
the	QueryTables	collection	and	the	Add	method	of	the	PivotCaches	collection.

Alternatively,	you	may	choose	to	access	a	data	source	directly	by	using	the
Microsoft	ActiveX	Data	Objects	(ADO)	library	instead.

Example

This	example	creates	a	new	PivotTable	cache	based	on	an	OLAP	provider,	and
then	it	creates	a	new	PivotTable	report	based	on	the	cache,	at	cell	A3	on	the
active	worksheet.

With	ActiveWorkbook.PivotCaches.Add(SourceType:=xlExternal)

				.Connection	=	_

								"OLEDB;Provider=MSOLAP;Location=srvdata;Initial	Catalog=National"

				.MaintainConnection	=	True

				.CreatePivotTable	TableDestination:=Range("A3"),	_

								TableName:=	"PivotTable1"

End	With

With	ActiveSheet.PivotTables("PivotTable1")

				.SmallGrid	=	False

				.PivotCache.RefreshPeriod	=	0

				With	.CubeFields("[state]")

								.Orientation	=	xlColumnField

								.Position	=	0

				End	With

				With	.CubeFields("[Measures].[Count	Of	au_id]")

								.Orientation	=	xlDataField

								.Position	=	0

				End	With

End	With

This	example	supplies	new	ODBC	connection	information	for	the	first	query
table	on	the	first	worksheet.

Worksheets(1).QueryTables(1)	_

				.Connection:="ODBC;DSN=96SalesData;UID=Rep21;PWD=NUyHwYQI;"

This	example	specifies	a	text	file.

Worksheets(1).QueryTables(1)	_

				Connection	:=	"TEXT;C:\My	Documents\19980331.txt"

ConnectionSiteCount	Property
							

Returns	the	number	of	connection	sites	on	the	specified	shape.	Read-only	Long.

Example

This	example	adds	two	rectangles	to	myDocument	and	joins	them	with	two
connectors.	The	beginnings	of	both	connectors	attach	to	connection	site	one	on
the	first	rectangle;	the	ends	of	the	connectors	attach	to	the	first	and	last
connection	sites	of	the	second	rectangle.

Set	myDocument	=	Worksheets(1)

Set	s	=	myDocument.Shapes

Set	firstRect	=	s.AddShape(msoShapeRectangle,	_

				100,	50,	200,	100)

Set	secondRect	=	s.AddShape(msoShapeRectangle,	_

				300,	300,	200,	100)

lastsite	=	secondRect.ConnectionSiteCount

With	s.AddConnector(msoConnectorCurve,	_

								0,	0,	100,	100).ConnectorFormat

				.BeginConnect	ConnectedShape:=firstRect,	_

								ConnectionSite:=1

				.EndConnect	ConnectedShape:=secondRect,	_

								ConnectionSite:=1

End	With

With	s.AddConnector(msoConnectorCurve,	_

								0,	0,	100,	100).ConnectorFormat

				.BeginConnect	ConnectedShape:=firstRect,	_

								ConnectionSite:=1

				.EndConnect	ConnectedShape:=secondRect,	_

								ConnectionSite:=lastsite

End	With

Connector	Property
							

True	if	the	specified	shape	is	a	connector.	Read-only	MsoTriState.

MsoTriState	can	be	one	of	these	MsoTriState	constants.
msoCTrue
msoFalse
msoTriStateMixed
msoTriStateToggle
msoTrue	The	specified	shape	is	a	connector.

Example

This	example	deletes	all	connectors	on	myDocument.

Set	myDocument	=	Worksheets(1)

With	myDocument.Shapes

				For	i	=	.Count	To	1	Step	-1

								With	.Item(i)

												If	.Connector	Then	.Delete

								End	With

				Next

End	With

ConnectorFormat	Property
							

Returns	a	ConnectorFormat	object	that	contains	connector	formatting
properties.	Applies	to	Shape	or	ShapeRange	objects	that	represent	connectors.
Read-only.

Example

This	example	adds	two	rectangles	to	myDocument,	attaches	them	with	a
connector,	automatically	reroutes	the	connector	along	the	shortest	path,	and	then
detaches	the	connector	from	the	rectangles.

Set	myDocument	=	Worksheets(1)

Set	s	=	myDocument.Shapes

Set	firstRect	=	s.AddShape(msoShapeRectangle,	100,	50,	200,	100)

Set	secondRect	=	s.AddShape(msoShapeRectangle,	300,	300,	200,	100)

Set	c	=	s.AddConnector(msoConnectorCurve,	0,	0,	0,	0)

with	c.ConnectorFormat

				.BeginConnect	firstRect,	1

				.EndConnect	secondRect,	1

				c.RerouteConnections

				.BeginDisconnect

				.EndDisconnect

End	With

ConsolidationFunction	Property
							

Returns	the	function	code	used	for	the	current	consolidation.	Can	be	one	of	the
following	XlConsolidationFunction.	Read-only	Long.

XlConsolidationFunction	can	be	one	of	these	XlConsolidationFunction
constants.
xlAverage
xlCount
xlCountNums

xlMax

xlMin

xlProduct

xlStDev

xlStDevP

xlSum

xlUnknown

xlVar

xlVarP

Example

This	example	displays	a	message	box	if	the	current	consolidation	is	using	the
SUM	function.

If	Worksheets("Sheet1").ConsolidationFunction	=	xlSum	Then

				MsgBox	"Sheet1	uses	the	SUM	function	for	consolidation."

End	If

ConsolidationOptions	Property
							

Returns	a	three-element	array	of	consolidation	options,	as	shown	in	the
following	table.	If	the	element	is	True,	that	option	is	set.	Read-only	Variant.

Element Meaning
1 Use	labels	in	top	row
2 Use	labels	in	left	column
3 Create	links	to	source	data

Example

This	example	displays	the	consolidation	options	for	Sheet1.	The	list	appears	on	a
new	worksheet	created	by	the	example.

Set	newSheet	=	Worksheets.Add

aOptions	=	Worksheets("Sheet1").ConsolidationOptions

newSheet.Range("A1").Value	=	"Use	labels	in	top	row"

newSheet.Range("A2").Value	=	"Use	labels	in	left	column"

newSheet.Range("A3").Value	=	"Create	links	to	source	data"

For	i	=	1	To	3

				If	aOptions(i)	=	True	Then

								newSheet.Cells(i,	2).Value	=	"True"

				Else

								newSheet.Cells(i,	2).Value	=	"False"

				End	If

Next	i

newSheet.Columns("A:B").AutoFit

ConsolidationSources	Property
							

Returns	an	array	of	string	values	that	name	the	source	sheets	for	the	worksheet's
current	consolidation.	Returns	Empty	if	there's	no	consolidation	on	the	sheet.
Read-only	Variant.

Example

This	example	displays	the	names	of	the	source	ranges	for	the	consolidation	on
Sheet1.	The	list	appears	on	a	new	worksheet	created	by	the	example.

Set	newSheet	=	Worksheets.Add

newSheet.Range("A1").Value	=	"Consolidation	Sources"

aSources	=	Worksheets("Sheet1").ConsolidationSources

If	IsEmpty(aSources)	Then

				newSheet.Range("A2").Value	=	"none"

Else

				For	i	=	1	To	UBound(aSources)

								newSheet.Cells(i	+	1,	1).Value	=	aSources(i)

				Next	i

End	If

newSheet.Columns("A:B").AutoFit

ConstrainNumeric	Property
							

True	if	handwriting	recognition	is	limited	to	numbers	and	punctuation	only.
Read/write	Boolean.

Note			This	property	is	available	only	if	you're	using	Microsoft	Windows	for	Pen
Computing.	If	you	try	to	set	this	property	under	any	other	operating	system,	an
error	occurs.

Example

This	example	limits	handwriting	recognition	to	numbers	and	punctuation	only	if
Microsoft	Windows	for	Pen	Computing	is	running.

If	Application.WindowsForPens	Then

				Application.ConstrainNumeric	=	True

End	If

Container	Property
							

Returns	the	object	that	contains	the	specified	embedded	workbook.	Read-only
Object.

Remarks

Use	this	property	with	a	contained	workbook	to	return	the	container	object.	If	the
container	doesn’t	support	OLE	Automation	or	the	workbook	isn’t	embedded,
this	property	fails.

Example

This	example	hides	the	second	section	in	the	binder	that	contains	the	active
Microsoft	Excel	workbook	and	then	sets	the	value	of	cell	A1	to	345.67.	In	this
example,	the	binder	is	Binder1.obd.

Set	myBinder	=	GetObject("Binder1.obd",	"Office.Binder")

Set	myWorkbook	=	myBinder.Sections(1).Object

With	myWorkbook

				.Container.Sections(2).Visible	=	False

				.Sheets(1).Cells(1,	1).Value	=	345.67

End	With

Contrast	Property
							

Returns	or	sets	the	contrast	for	the	specified	picture	or	OLE	object.	The	value	for
this	property	must	be	a	number	from	0.0	(the	least	contrast)	to	1.0	(the	greatest
contrast).	Read/write	Single.

expression.Contrast

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

Example

This	example	sets	the	contrast	for	shape	one	on	myDocument.	Shape	one	must	be
either	a	picture	or	an	OLE	object.

Set	myDocument	=	Worksheets(1)

myDocument.Shapes(1).PictureFormat.Contrast	=	0.8

ControlCharacters	Property
							

True	if	Microsoft	Excel	displays	control	characters	for	right-to-left	languages.
Read/write	Boolean.

Remarks

This	property	can	be	set	only	when	right	to	left	language	support	has	been
installed	and	selected.

Example

This	example	sets	Microsoft	Excel	to	interpret	control	characters.

Application.ControlCharacters	=	True

Show	All

ControlFormat	Property
							

Returns	a	ControlFormat	object	that	contains	Microsoft	Excel	control
properties.	Read-only.

Example

This	example	removes	the	selected	item	from	a	list	box.	If	Shapes(2)	doesn’t
represent	a	list	box,	this	example	fails.

Set	lbcf	=	Worksheets(1).Shapes(2).ControlFormat

lbcf.RemoveItem	lbcf.ListIndex

CopyObjectsWithCells	Property
							

True	if	objects	are	cut,	copied,	extracted,	and	sorted	with	cells.	Read/write
Boolean.

Example

This	example	sets	Microsoft	Excel	to	cut,	copy,	extract,	and	sort	objects	with
cells.

Application.CopyObjectsWithCells	=	True

Corners	Property
							

Returns	a	Corners	object	that	represents	the	corners	of	a	3-D	chart.	Read-only.

Example

This	example	selects	the	corners	of	Chart1.	The	example	should	be	run	on	a	3-D
chart	(the	Select	method	fails	on	any	other	chart	type).

With	Charts("Chart1")

				.Activate

				.Corners.Select

End	With

CorrectCapsLock	Property
							

True	if	Microsoft	Excel	automatically	corrects	accidental	use	of	the	CAPS
LOCK	key.	Read/write	Boolean.

Example

This	example	enables	Microsoft	Excel	to	automatically	correct	accidental	use	of
the	CAPS	LOCK	key.

Application.AutoCorrect.CorrectCapsLock	=	True

CorrectSentenceCap	Property
							

True	if	Microsoft	Excel	automatically	corrects	sentence	(first	word)
capitalization.	Read/write	Boolean.

Example

This	example	enables	Microsoft	Excel	to	automatically	correct	sentence
capitalization.

Application.AutoCorrect.CorrectSentenceCap	=	True

Show	All

Count	Property
							

Count	property	as	it	applies	to	the	Adjustments,	CanvasShapes,
DiagramNodeChildren,	DiagramNodes,	and	ShapeNodes	objects.

Returns	the	number	of	objects	in	the	collection.	Read-only	Integer.

expression.Count

expression			Required.	An	expression	that	returns	one	of	the	above	objects.

Count	property	as	it	applies	to	all	other	objects	in	the	Applies	To	list.

Returns	the	number	of	objects	in	the	collection.	Read-only	Long.

expression.Count

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

Example

This	example	displays	the	number	of	columns	in	the	selection	on	Sheet1.	The
code	also	tests	for	a	multiple-area	selection;	if	one	exists,	the	code	loops	on	the
areas	of	the	multiple-area	selection.

Worksheets("Sheet1").Activate

areaCount	=	Selection.Areas.Count

If	areaCount	<=	1	Then

				MsgBox	"The	selection	contains	"	&	_

								Selection.Columns.Count	&	"	columns."

Else

				For	i	=	1	To	areaCount

								MsgBox	"Area	"	&	i	&	"	of	the	selection	contains	"	&	_

												Selection.Areas(i).Columns.Count	&	"	columns."

				Next	i

End	If

This	example	makes	the	last	character	in	cell	A1	a	superscript	character.

n	=	Worksheets("Sheet1").Range("A1").Characters.Count

Worksheets("Sheet1").Range("A1").Characters(n,	1)	_

				.Font.Superscript	=	True

CreateBackup	Property
							

True	if	a	backup	file	is	created	when	this	file	is	saved.	Read-only	Boolean.

Example

This	example	displays	a	message	if	a	backup	file	is	created	when	the	active
workbook	is	saved.

If	ActiveWorkbook.CreateBackup	=	True	Then

				MsgBox	"Remember,	there	is	a	backup	copy	of	this	workbook"

End	If

Show	All

Creator	Property
							

Creator	property	as	it	applies	to	the	Adjustments,	CalloutFormat,
ColorFormat,	DiagramNode,	DiagramNodeChildren,	DiagramNodes,
FillFormat,	LineFormat,	PictureFormat,	ShadowFormat,	ShapeNode,
ShapeNodes,	TextEffectFormat,	and	ThreeDFormat	objects.

Returns	a	32-bit	integer	that	indicates	the	application	in	which	this	object	was
created.	If	the	object	was	created	in	Microsoft	Excel,	this	property	returns	the
string	XCEL,	which	is	equivalent	to	the	hexadecimal	number	5843454C.	Read-
only	Long.

expression.Creator

expression			Required.	An	expression	that	returns	one	of	the	above	objects.

Creator	property	as	it	applies	to	all	other	objects	in	the	Applies	To	list.

Returns	a	32-bit	integer	that	indicates	the	application	in	which	this	object	was
created.	If	the	object	was	created	in	Microsoft	Excel,	this	property	returns	the
string	XCEL,	which	is	equivalent	to	the	hexadecimal	number	5843454C.	Read-
only	xlCreatorCode.

expression.Creator

expression			Required.	An	expression	that	returns	all	other	objects	in	the	Applies
To	list.

Remarks

The	Creator	property	is	designed	to	be	used	in	Microsoft	Excel	for	the
Macintosh,	where	each	application	has	a	four-character	creator	code.	For
example,	Microsoft	Excel	has	the	creator	code	XCEL.

Example

This	example	displays	a	message	about	the	creator	of	myObject.

Set	myObject	=	ActiveWorkbook

If	myObject.Creator	=	&h5843454c	Then

				MsgBox	"This	is	a	Microsoft	Excel	object"

Else

				MsgBox	"This	is	not	a	Microsoft	Excel	object"

End	If

Criteria1	Property
							

Returns	the	first	filtered	value	for	the	specified	column	in	a	filtered	range.	Read-
only	Variant.

Example

The	following	example	sets	a	variable	to	the	value	of	the	Criteria1	property	of
the	filter	for	the	first	column	in	the	filtered	range	on	the	Crew	worksheet.

With	Worksheets("Crew")

				If	.AutoFilterMode	Then

								With	.AutoFilter.Filters(1)

												If	.On	Then	c1	=	.Criteria1

								End	With

				End	If

End	With

Criteria2	Property
							

Returns	the	second	filtered	value	for	the	specified	column	in	a	filtered	range.
Read-only	Variant.

Remarks

If	you	try	to	access	the	Criteria2	property	for	a	filter	that	does	not	use	two
criteria,	an	error	will	occur.	Check	that	the	Operator	property	of	a	Filter	object
doesn’t	equal	zero	(0)	before	trying	to	access	the	Criteria2	property.

Example

The	following	example	sets	a	variable	to	the	value	of	the	Criteria2	property	of
the	filter	for	the	first	column	in	the	filtered	range	on	the	Crew	worksheet.

With	Worksheets("Crew")

				If	.AutoFilterMode	Then

								With	.AutoFilter.Filters(1)

												If	.On	And	.Operator	Then

																c2	=	.Criteria2

												Else

																c2	=	"Not	set"

												End	If

								End	With

				End	If

End	With

CropBottom	Property
							

Returns	or	sets	the	number	of	points	that	are	cropped	off	the	bottom	of	the
specified	picture	or	OLE	object.	Read/write	Single.

expression.CropBottom

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

Remarks

Cropping	is	calculated	relative	to	the	original	size	of	the	picture.	For	example,	if
you	insert	a	picture	that	is	originally	100	points	high,	rescale	it	so	that	it’s	200
points	high,	and	then	set	the	CropBottom	property	to	50,	100	points	(not	50)
will	be	cropped	off	the	bottom	of	your	picture.

Example

This	example	crops	20	points	off	the	bottom	of	shape	three	on	myDocument.	For
the	example	to	work,	shape	three	must	be	either	a	picture	or	an	OLE	object.

Set	myDocument	=	Worksheets(1)

myDocument.Shapes(3).PictureFormat.CropBottom	=	20

Using	this	example,	you	can	specify	the	percentage	you	want	to	crop	off	the
bottom	of	the	selected	shape,	regardless	of	whether	the	shape	has	been	scaled.
For	the	example	to	work,	the	selected	shape	must	be	either	a	picture	or	an	OLE
object.

percentToCrop	=	InputBox(_

				"What	percentage	do	you	want	to	crop	off"	&	_

				"	the	bottom	of	this	picture?")

Set	shapeToCrop	=	ActiveWindow.Selection.ShapeRange(1)

With	shapeToCrop.Duplicate

				.ScaleHeight	1,	True

				origHeight	=	.Height

				.Delete

End	With

cropPoints	=	origHeight	*	percentToCrop	/	100

shapeToCrop.PictureFormat.CropBottom	=	cropPoints

CropLeft	Property
							

Returns	or	sets	the	number	of	points	that	are	cropped	off	the	left	side	of	the
specified	picture	or	OLE	object.	Read/write	Single.

expression.CropLeft

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

Remarks

Cropping	is	calculated	relative	to	the	original	size	of	the	picture.	For	example,	if
you	insert	a	picture	that	is	originally	100	points	wide,	rescale	it	so	that	it’s	200
points	wide,	and	then	set	the	CropLeft	property	to	50,	100	points	(not	50)	will
be	cropped	off	the	left	side	of	your	picture.

Example

This	example	crops	20	points	off	the	left	side	of	shape	three	on	myDocument.	For
the	example	to	work,	shape	three	must	be	either	a	picture	or	an	OLE	object.

Set	myDocument	=	Worksheets(1)

myDocument.Shapes(3).PictureFormat.CropLeft	=	20

Using	this	example,	you	can	specify	the	percentage	you	want	to	crop	off	the	left
side	of	the	selected	shape,	regardless	of	whether	the	shape	has	been	scaled.	For
the	example	to	work,	the	selected	shape	must	be	either	a	picture	or	an	OLE
object.

percentToCrop	=	InputBox(_

				"What	percentage	do	you	want	to	crop"	&	_

				"	off	the	left	of	this	picture?")

Set	shapeToCrop	=	ActiveWindow.Selection.ShapeRange(1)

With	shapeToCrop.Duplicate

				.ScaleWidth	1,	True

				origWidth	=	.Width

				.Delete

End	With

cropPoints	=	origWidth	*	percentToCrop	/	100

shapeToCrop.PictureFormat.CropLeft	=	cropPoints

CropRight	Property
							

Returns	or	sets	the	number	of	points	that	are	cropped	off	the	right	side	of	the
specified	picture	or	OLE	object.	Read/write	Single.

expression.CropRight

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

Remarks

Cropping	is	calculated	relative	to	the	original	size	of	the	picture.	For	example,	if
you	insert	a	picture	that	is	originally	100	points	wide,	rescale	it	so	that	it’s	200
points	wide,	and	then	set	the	CropRight	property	to	50,	100	points	(not	50)	will
be	cropped	off	the	right	side	of	your	picture.

Example

This	example	crops	20	points	off	the	right	side	of	shape	three	on	myDocument.
For	this	example	to	work,	shape	three	must	be	either	a	picture	or	an	OLE	object.

Set	myDocument	=	Worksheets(1)

myDocument.Shapes(3).PictureFormat.CropRight	=	20

Using	this	example,	you	can	specify	the	percentage	you	want	to	cropp	off	the
right	side	of	the	selected	shape,	regardless	of	whether	the	shape	has	been	scaled.
For	the	example	to	work,	the	selected	shape	must	be	either	a	picture	or	an	OLE
object.

percentToCrop	=	InputBox(_

				"What	percentage	do	you	want	to	crop"	&	_

				"	off	the	right	of	this	picture?")

Set	shapeToCrop	=	ActiveWindow.Selection.ShapeRange(1)

With	shapeToCrop.Duplicate

				.ScaleWidth	1,	True

				origWidth	=	.Width

				.Delete

End	With

cropPoints	=	origWidth	*	percentToCrop	/	100

shapeToCrop.PictureFormat.CropRight	=	cropPoints

CropTop	Property
							

Returns	or	sets	the	number	of	points	that	are	cropped	off	the	top	of	the	specified
picture	or	OLE	object.	Read/write	Single.

expression.CropTop

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

Remarks

Cropping	is	calculated	relative	to	the	original	size	of	the	picture.	For	example,	if
you	insert	a	picture	that	is	originally	100	points	high,	rescale	it	so	that	it’s	200
points	high,	and	then	set	the	CropTop	property	to	50,	100	points	(not	50)	will	be
cropped	off	the	top	of	your	picture.

Example

This	example	crops	20	points	off	the	top	of	shape	three	on	myDocument.	For	the
example	to	work,	shape	three	must	be	either	a	picture	or	an	OLE	object.

Set	myDocument	=	Worksheets(1)

myDocument.Shapes(3).PictureFormat.CropTop	=	20

This	example	allows	you	to	specify	the	percentage	you	want	to	crop	off	the	top
of	the	selected	shape,	regardless	of	whether	the	shape	has	been	scaled.	For	the
example	to	work,	the	selected	shape	must	be	either	a	picture	or	an	OLE	object.

percentToCrop	=	InputBox(_

				"What	percentage	do	you	want	to	crop"	&	_

				"	off	the	top	of	this	picture?")

Set	shapeToCrop	=	ActiveWindow.Selection.ShapeRange(1)

With	shapeToCrop.Duplicate

				.ScaleHeight	1,	True

				origHeight	=	.Height

				.Delete

End	With

cropPoints	=	origHeight	*	percentToCrop	/	100

shapeToCrop.PictureFormat.CropTop	=	cropPoints

Crosses	Property
							

Returns	or	sets	the	point	on	the	specified	axis	where	the	other	axis	crosses.
Read/write	Long.

Can	be	one	of	the	XlAxisCrosses	constants	listed	in	the	following	table.

Constant Meaning
xlAxisCrossesAutomatic Microsoft	Excel	sets	the	axis	crossing	point.
xlMinimum The	axis	crosses	at	the	minimum	value.
xlMaximum The	axis	crosses	at	the	maximum	value.

xlAxisCrossesCustom The	CrossesAt	property	specifies	the	axis
crossing	point.

Remarks

This	property	isn't	available	for	radar	charts.	For	3-D	charts,	this	property
indicates	where	the	plane	defined	by	the	category	axes	crosses	the	value	axis.

This	property	can	be	used	for	both	category	and	value	axes.	On	the	category
axis,	xlMinimum	sets	the	value	axis	to	cross	at	the	first	category,	and
xlMaximum	sets	the	value	axis	to	cross	at	the	last	category.

Note	that	xlMinimum	and	xlMaximum	can	have	different	meanings,	depending
on	the	axis.

Example

This	example	sets	the	value	axis	in	Chart1	to	cross	the	category	axis	at	the
maximum	x	value.

Charts("Chart1").Axes(xlCategory).Crosses	=	xlMaximum

CrossesAt	Property
							

Returns	or	sets	the	point	on	the	value	axis	where	the	category	axis	crosses	it.
Applies	only	to	the	value	axis.	Read/write	Double.

expression.CrossesAt

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

Remarks

Setting	this	property	causes	the	Crosses	property	to	change	to
xlAxisCrossesCustom.

This	property	cannot	be	used	on	radar	charts.	For	3-D	charts,	this	property
indicates	where	the	plane	defined	by	the	category	axes	crosses	the	value	axis.

Example

This	example	sets	the	category	axis	in	the	active	chart	to	cross	the	value	axis	at
value	3.

Sub	Chart()

					

				'	Create	a	sample	source	of	data.

				Range("A1")	=	"2"

				Range("A2")	=	"4"

				Range("A3")	=	"6"

				Range("A4")	=	"3"

				'	Create	a	chart	based	on	the	sample	source	of	data.

				Charts.Add

				With	ActiveChart

								.ChartType	=	xlLineMarkersStacked

								.SetSourceData	Source:=Sheets("Sheet1").Range("A1:A4"),	PlotBy:=	xlColumns

								.Location	Where:=xlLocationAsObject,	Name:="Sheet1"

				End	With

				'	Set	the	category	axis	to	cross	the	value	axis	at	value	3.

				ActiveChart.Axes(xlValue).Select

				Selection.CrossesAt	=	3

End	Sub

Show	All

CubeField	Property
							

Returns	the	CubeField	object	from	which	the	specified	PivotTable	field	is
descended.	Read-only.

expression.CubeField

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

Example

This	example	creates	a	list	of	the	cube	field	names	for	all	the	hierarchy	fields	in
the	first	Online	Analytical	Processing	(OLAP)-based	PivotTable	report	on	the
first	worksheet.	This	example	assumes	a	PivotTable	report	exists	in	the	first
worksheet.

Sub	UseCubeField()

				Dim	objNewSheet	As	Worksheet

				Set	objNewSheet	=	Worksheets.Add

				objNewSheet.Activate

				intRow	=	1

				For	Each	objPF	in	_

								Worksheets(1).PivotTables(1).PivotFields

								If	objPF.CubeField.CubeFieldType	=	xlHierarchy	Then

												objNewSheet.Cells(intRow,	1).Value	=	objPF.Name

												intRow	=	intRow	+	1

								End	If

				Next	objPF

End	Sub

Show	All

CubeFields	Property
							

Returns	the	CubeFields	collection.	Each	CubeField	object	contains	the
properties	of	the	cube	field	element.	Read-only.

Example

This	example	creates	a	list	of	cube	field	names	for	the	data	fields	in	the	first
OLAP-based	PivotTable	report	on	Sheet1.

Set	objNewSheet	=	Worksheets.Add

objNewSheet.Activate

intRow	=	1

For	Each	objCubeFld	In	Worksheets("Sheet1").PivotTables(1).CubeFields

				If	objCubeFld.Orientation	=	xlDataField	Then

								objNewSheet.Cells(intRow,	1).Value	=	objCubeFld.Name

								intRow	=	intRow	+	1

				End	If

Next	objCubeFld

Show	All

CubeFieldType	Property
							

Indicates	whether	the	OLAP	cube	field	is	a	hierarchy	field	or	a	measure	field.
Can	be	one	of	the	following	XlCubeFieldType	constants:	xlHierarchy	or
xlMeasure.	Read-only	XlCubeFieldType.

Example

This	example	creates	a	list	of	cube	field	names	for	the	measure	fields	in	the	first
OLAP-based	PivotTable	report	on	Sheet1.

Set	objNewSheet	=	Worksheets.Add

objNewSheet.Activate

intRow	=	1

For	Each	objCubeFld	in	Worksheets("Sheet1").PivotTables(1).CubeFields

				If	objCubeFld.CubeFieldType	=	xlMeasure	Then

								objNewSheet.Cells(intRow,	1).Value	=	objCubeFld.Name

								intRow	=	intRow	+	1

				End	If

Next	objCubeFld

CurrentArray	Property
							

If	the	specified	cell	is	part	of	an	array,	returns	a	Range	object	that	represents	the
entire	array.	Read-only.

Example

This	example	assumes	that	cell	A1	on	Sheet1	is	the	active	cell	and	that	the	active
cell	is	part	of	an	array	that	includes	cells	A1:A10.	The	example	selects	cells
A1:A10	on	Sheet1.

ActiveCell.CurrentArray.Select

CurrentPage	Property
							

Returns	or	sets	the	current	page	showing	for	the	page	field	(valid	only	for	page
fields).	Read/write	PivotItem.

expression.CurrentPage

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

Example

This	example	returns	the	current	page	name	for	the	PivotTable	report	on	Sheet1
in	the	string	variable	strPgName.

Set	pvtTable	=	Worksheets("Sheet1").Range("A3").PivotTable

strPgName	=	pvtTable.PivotFields("Country").CurrentPage.Name

CurrentPageList	Property
							

Returns	or	sets	an	array	of	strings	corresponding	to	the	list	of	items	included	in	a
multiple-item	page	field	of	a	PivotTable	report.	Read/write	Variant.

expression.CurrentPageList

expression			Required.	An	expression	that	returns	a	PivotField	object.

Remarks

To	avoid	run-time	errors,	the	data	source	must	be	an	OLAP	source,	the	field
chosen	must	currently	be	in	the	Page	position,	and	the
EnableMultiplePageItems	property	must	be	set	to	True.

Example

This	example	sets	the	page	field	to	list	the	"Food"	items	of	the	PivotTable	report.
It	assumes	a	PivotTable	exists	on	the	active	worksheet.

Sub	UseCurrentPageList()

				Dim	pvtTable	As	PivotTable

				Dim	pvtField	As	PivotField

				Set	pvtTable	=	ActiveSheet.PivotTables(1)

				Set	pvtField	=	pvtTable.PivotFields("[Product]")

				'	To	avoid	run-time	errors	set	the	following	property	to	True.

				pvtTable.CubeFields("[Product]").EnableMultiplePageItems	=	True

				'	Set	the	page	list	to	"Food".

				pvtField.CurrentPageList	=	"[Product].[All	Products].[Food]"

End	Sub

CurrentPageName	Property
							

Returns	or	sets	the	currently	displayed	page	of	the	specified	PivotTable	report.
The	name	of	the	page	appears	in	the	page	field.	Note	that	this	property	works
only	if	the	currently	displayed	page	already	exists.	Read/write	String.

Remarks

This	property	applies	to	PivotTables	that	are	connected	to	an	OLAP	data	source.
Attempting	to	return	or	set	this	property	with	a	PivotTable	that	is	not	connected
to	an	OLAP	data	source	will	result	in	a	run-time	error.

Example

This	example	sets	the	name	of	the	currently	displayed	page	of	the	first
PivotTable	report	on	the	active	worksheet	to	"USA."

ActiveSheet.PivotTables("PivotTable1")	_

				.PivotFields("[Customers]").CurrentPageName	=	_

								"[Customers].[All	Customers].[USA]"

CurrentRegion	Property
							

Returns	a	Range	object	that	represents	the	current	region.	The	current	region	is	a
range	bounded	by	any	combination	of	blank	rows	and	blank	columns.	Read-
only.

Remarks

This	property	is	useful	for	many	operations	that	automatically	expand	the
selection	to	include	the	entire	current	region,	such	as	the	AutoFormat	method.

This	property	cannot	be	used	on	a	protected	worksheet.

Example

This	example	selects	the	current	region	on	Sheet1.

Worksheets("Sheet1").Activate

ActiveCell.CurrentRegion.Select

This	example	assumes	that	you	have	a	table	on	Sheet1	that	has	a	header	row.	The
example	selects	the	table,	without	selecting	the	header	row.	The	active	cell	must
be	somewhere	in	the	table	before	you	run	the	example.

Set	tbl	=	ActiveCell.CurrentRegion

tbl.Offset(1,	0).Resize(tbl.Rows.Count	-	1,	_

				tbl.Columns.Count).Select

Show	All

Cursor	Property
							

Returns	or	sets	the	appearance	of	the	mouse	pointer	in	Microsoft	Excel.
Read/write	XlMousePointer.

XlMousePointer	can	be	one	of	these	XlMousePointer	constants.
xlDefault		The	default	pointer.
xlIBeam		The	I-beam	pointer.
xlNorthwestArrow		The	northwest-arrow	pointer.
xlWait		The	hourglass	pointer.

expression.Cursor

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

Remarks

The	Cursor	property	isn't	reset	automatically	when	the	macro	stops	running.
You	should	reset	the	pointer	to	xlDefault	before	your	macro	stops	running.

Example

This	example	changes	the	mouse	pointer	to	an	I-beam,	pauses,	and	then	changes
it	to	the	default	pointer.

Sub	ChangeCursor()

				Application.Cursor	=	xlIBeam

				For	x	=	1	To	1000

								For	y	=	1	to	1000

								Next	y

				Next	x

				Application.Cursor	=	xlDefault

End	Sub

CursorMovement	Property
							

Returns	or	sets	a	value	that	indicates	whether	a	visual	cursor	or	a	logical	cursor
is	used.	Can	be	one	of	the	following	constants:	xlVisualCursor	or
xlLogicalCursor.	Read/write	Long.

Remarks

These	constants	may	not	be	available	to	you,	depending	on	the	language	support
(U.S.	English,	for	example)	that	you’ve	selected	or	installed.

Example

This	example	sets	Microsoft	Excel	to	use	the	visual	cursor.

Application.CursorMovement	=	xlVisualCursor

CustomDocumentProperties	Property
							

Returns	or	sets	a	DocumentProperties	collection	that	represents	all	the	custom
document	properties	for	the	specified	workbook.

expression.CustomDocumentProperties

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

mk:@MSITStore:vbaof10.chm::/html/ofobjDocumentProperties.htm

Remarks

This	property	returns	the	entire	collection	of	custom	document	properties.	Use
the	Item	method	to	return	a	single	member	of	the	collection	(a
DocumentProperty	object)	by	specifying	either	the	name	of	the	property	or	the
collection	index	(as	a	number).

Because	the	Item	method	is	the	default	method	for	the	DocumentProperties
collection,	the	following	statements	are	identical:

CustomDocumentProperties.Item("Complete")

CustomDocumentProperties("Complete")

Use	the	BuiltinDocumentProperties	property	to	return	the	collection	of	built-in
document	properties.

Example

This	example	displays	the	names	and	values	of	the	custom	document	properties
as	a	list	on	worksheet	one.

rw	=	1

Worksheets(1).Activate

For	Each	p	In	ActiveWorkbook.CustomDocumentProperties

				Cells(rw,	1).Value	=	p.Name

				Cells(rw,	2).Value	=	p.Value

				rw	=	rw	+	1

Next

CustomListCount	Property
							

Returns	the	number	of	defined	custom	lists	(including	built-in	lists).	Read-only
Long.

Example

This	example	displays	the	number	of	custom	lists	that	are	currently	defined.

MsgBox	"There	are	currently	"	&	Application.CustomListCount	&	_

				"	defined	custom	lists."

CustomProperties	Property
							

Returns	a	CustomProperties	object	representing	the	identifier	information
associated	with	a	worksheet.

expression.CustomProperties

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

Remarks

For	the	CustomProperties	property,	identifier	information	for	a	worksheet	can
represent	metadata	for	XML.

Example

In	this	example,	Microsoft	Excel	adds	identifier	information	to	the	active
worksheet	and	returns	the	name	and	value	to	the	user.

Sub	CheckCustomProperties()

				Dim	wksSheet1	As	Worksheet

				Set	wksSheet1	=	Application.ActiveSheet

				'	Add	metadata	to	worksheet.

				wksSheet1.CustomProperties.Add	_

								Name:="Market",	Value:="Nasdaq"

				'	Display	metadata.

				With	wksSheet1.CustomProperties.Item(1)

								MsgBox	.Name	&	vbTab	&	.Value

				End	With

End	Sub

Show	All

CustomSubtotalFunction	Property
							

Returns	the	custom	subtotal	function	field	setting	of	a	PivotCell	object.	Read-
only	XlConsolidationFunction.

XlConsolidationFunction	can	be	one	of	these	XlConsolidationFunction
constants.
xlAverage
xlCount
xlCountNums
xlMax
xlMin
xlProduct
xlStDev
xlStDevP
xlSum
xlUnknown
xlVar
xlVarP

expression.CustomSubtotalFunction

expression			Required.	An	expression	that	returns	a	PivotCell	object.

Remarks

The	CustomSubtotalFunction	property	will	return	an	error	if	the	PivotCell
object	type	is	not	a	custom	subtotal.	This	property	applies	only	to	non-OLAP
source	data.

Example

This	example	determines	if	cell	C20	contains	a	custom	subtotal	function	that
uses	a	consolidation	function	of	count	and	then	it	notifies	the	user.		The	example
assumes	a	PivotTable	exists	on	the	active	worksheet.

Sub	UseCustomSubtotalFunction()

				On	Error	GoTo	Not_A_Function

				'	Determine	if	custom	subtotal	function	is	a	count	function.

				If	Application.Range("C20").PivotCell.CustomSubtotalFunction	=	xlCount	Then

								MsgBox	"The	custom	subtotal	function	is	a	Count"

				Else

								MsgBox	"The	custom	subtotal	function	is	not	a	Count"

				End	If

				Exit	Sub

Not_A_Function:

				MsgBox	"The	selected	cell	is	not	a	custom	subtotal	function."

End	Sub

CustomViews	Property
							

Returns	a	CustomViews	collection	that	represents	all	the	custom	views	for	the
workbook.

For	more	information	about	returning	a	single	object	from	a	collection,	see
Returning	an	Object	from	a	Collection.

Example

This	example	creates	a	new	custom	view	named	"Summary"	in	the	active
workbook.

ActiveWorkbook.CustomViews.Add	"Summary",	True,	True

CutCopyMode	Property
							

Returns	or	sets	the	status	of	Cut	or	Copy	mode.	Can	be	True,	False,	or	an
XLCutCopyMode	constant,	as	shown	in	the	following	tables.	Read/write	Long.

Return	value Description
False Not	in	Cut	or	Copy	mode
xlCopy In	Copy	mode
xlCut In	Cut	mode

Set	value Description

False Cancels	Cut	or	Copy	mode	and	removes	the	moving
border.

True Cancels	Cut	or	Copy	mode	and	removes	the	moving
border.

Example

This	example	uses	a	message	box	to	display	the	status	of	Cut	or	Copy	mode.

Select	Case	Application.CutCopyMode

				Case	Is	=	False

								MsgBox	"Not	in	Cut	or	Copy	mode"

				Case	Is	=	xlCopy

								MsgBox	"In	Copy	mode"

				Case	Is	=	xlCut

								MsgBox	"In	Cut	mode"

End	Select

This	keyword	is	not	implemented.	It	is	reserved	for	future	use.

Show	All

DashStyle	Property
							

Returns	or	sets	the	dash	style	for	the	specified	line.	Can	be	one	of	the
MsoLineDashStyle	contants.	Read/write	Long.

MsoLineDashStyle	can	be	one	of	these	MsoLineDashStyle	constants.
msoLineDash
msoLineDashDot
msoLineDashDotDot
msoLineDashStyleMixed
msoLineDashLongDash
msoLineDashLongDashDot
msoLineRoundDot
msoLineSolid
msoLineSquareDot

expression.DashStyle

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

Example

This	example	adds	a	blue	dashed	line	to	myDocument.

Set	myDocument	=	Worksheets(1)

With	myDocument.Shapes.AddLine(10,	10,	250,	250).Line

				.DashStyle	=	msoLineDashDotDot

				.ForeColor.RGB	=	RGB(50,	0,	128)

End	With

Show	All

DatabaseSort	Property
							

When	set	to	True,	manual	repositioning	of	items	in	a	PivotTable	field	is
allowed.	Returns	True,	if	the	field	has	no	manually	positioned	items.	Read/write
Boolean.

expression.DatabaseSort

expression			Required.	An	expression	that	returns	a	PivotField	object.

Remarks

The	DatabaseSort	property	returns	False	if	the	data	source	is	not	an	Online
Analytical	Processing	(OLAP)	data	source.

This	property	returns	True	if	the	data	source	is	OLAP	and	neither	custom
ordering	nor	automatic	sorting	has	been	applied	to	the	field.

Setting	the	DatabaseSort	property	to	True,	for	an	OLAP	PivotTable,	will
remove	any	custom	ordering	or	automatic	sort	applied	to	the	field	(in	other
words,	the	PivotTable	reverts	to	the	default	behavior	when	the	connection	was
made).

Setting	the	DatabaseSort	property	to	False	will	cause	the	sort	order	to	be	the
current	order	of	the	items,	if	no	automatic	sort	is	applied.

Setting	the	DatabaseSort	property	to	either	True	or	False	causes	an	Update.

Setting	the	DatabaseSort	property	to	True	for	a	non-OLAP	source	or	an	OLAP
data	field	causes	a	run-time	error.

Example

The	following	example	determines	if	the	data	source	is	an	OLAP	data	source	and
notifies	the	user.	This	example	assumes	an	OLAP	PivotTable	exists	on	the	active
worksheet.

Sub	UseDatabaseSort()

				Dim	pvtTable	As	PivotTable

				Dim	pvtField	As	PivotField

				Set	pvtTable	=	ActiveSheet.PivotTables(1)

				Set	pvtField	=	pvtTable.PivotFields("[Product].[Product	Family]")

				'	Determine	source	type	for	the	PivotTable	report.

				If	pvtField.DatabaseSort	=	True	Then

								MsgBox	"The	source	is	OLAP;	you	can	manually	reorder	items."

				Else

								MsgBox	"The	data	source	might	not	be	OLAP."

				End	If

End	Sub

DataBodyRange	Property
							

Returns	a	Range	object	that	represents	the	range	that	contains	the	data	area	in
the	PivotTable	report.	Read-only.

Example

This	example	selects	the	active	data	range	in	the	PivotTable	report.

Worksheets("Sheet1").Activate

Range("A3").Select

ActiveCell.PivotTable.DataBodyRange.Select

DataEntryMode	Property
							

Returns	or	sets	Data	Entry	mode,	as	shown	in	the	following	table.	When	in	Data
Entry	mode,	you	can	enter	data	only	in	the	unlocked	cells	in	the	currently
selected	range.	Read/write	Long.

Value Meaning
xlOn Data	Entry	mode	is	turned	on.
xlOff Data	Entry	mode	is	turned	off.

xlStrict Data	Entry	mode	is	turned	on,	and	pressing	ESC	won't
turn	it	off.

Example

This	example	turns	off	Data	Entry	mode	if	it's	on.

If	(Application.DataEntryMode	=	xlOn)	Or	_

				(Application.DataEntryMode	=	xlStrict)	Then

								Application.DataEntryMode	=	xlOff

End	If

DataField	Property
							

Returns	a	PivotField	object	that	corresponds	to	the	selected	data	field.

expression.DataField

expression			Required.	An	expression	that	returns	a	PivotCell	object.

Remarks

This	property	will	return	an	error	if	the	PivotCell	object	is	not	one	of	the
allowed	types:	XlPivotCellTypeValue,	XlPivotCellTypeDataField,
XlPivotCellTypeSubtotal,	XlPivotCellTypeGrandTotal.

Example

This	example	determines	if	cell	L10	is	in	the	data	field	of	the	PivotTable	and
either	returns	the	PivotTable	field	that	corresponds	to	the	cell	by	notifying	the
user,	or	handles	the	run-time	error.	The	example	assumes	a	PivotTable	exists	in
the	active	worksheet.

Sub	CheckDataField()

				On	Error	GoTo	Not_In_DataField

				MsgBox	Application.Range("L10").PivotCell.DataField

				Exit	Sub

Not_In_DataField:

				MsgBox	"The	selected	range	is	not	in	the	data	field	of	the	PivotTable."

End	Sub

DataFields	Property
							

Returns	an	object	that	represents	either	a	single	PivotTable	field	(a	PivotField
object)	or	a	collection	of	all	the	fields	(a	PivotFields	object)	that	are	currently
shown	as	data	fields.	Read-only.

expression.DataFields(Index)

expression			Required.	An	expression	that	returns	a	PivotTable	object.

Index			Optional	Variant.	The	field	name	or	number	(can	be	an	array	to	specify
more	than	one	field).

Example

This	example	adds	the	names	for	the	PivotTable	data	fields	to	a	list	on	a	new
worksheet.

Set	nwSheet	=	Worksheets.Add

nwSheet.Activate

Set	pvtTable	=	Worksheets("Sheet2").Range("A1").PivotTable

rw	=	0

For	Each	pvtField	In	pvtTable.DataFields

				rw	=	rw	+	1

				nwSheet.Cells(rw,	1).Value	=	pvtField.Name

Next	pvtField

DataLabel	Property
							

Returns	a	DataLabel	object	that	represents	the	data	label	associated	with	the
point	or	trendline.	Read-only.

Example

This	example	turns	on	the	data	label	for	point	seven	in	series	three	in	Chart1,	and
then	it	sets	the	data	label	color	to	blue.

With	Charts("Chart1").SeriesCollection(3).Points(7)

				.HasDataLabel	=	True

				.ApplyDataLabels	type:=xlValue

				.DataLabel.Font.ColorIndex	=	5

End	With	

DataLabelRange	Property
							

Returns	a	Range	object	that	represents	the	range	that	contains	the	labels	for	the
data	fields	in	the	PivotTable	report.	Read-only.

Example

This	example	selects	the	data	field	labels	in	the	PivotTable	report.

Worksheets("Sheet1").Activate

Range("A3").Select

ActiveCell.PivotTable.DataLabelRange.Select

DataPivotField	Property
							

Returns	a	PivotField	object	that	represents	all	the	data	fields	in	a	PivotTable.
Read-only.

expression.DataPivotField

expression			Required.	An	expression	that	returns	a	PivotTable	object.

Example

This	example	moves	the	second	PivotItem	object	to	the	first	position.	It	assumes
a	PivotTable	exists	on	the	active	worksheet	and	that	the	PivotTable	contains	data
fields.

Sub	UseDataPivotField()

				Dim	pvtTable	As	PivotTable

				Set	pvtTable	=	ActiveSheet.PivotTables(1)

				'	Move	second	PivotItem	to	the	first	position	in	PivotTable.

				pvtTable.DataPivotField.PivotItems(2).Position	=	1

End	Sub

DataRange	Property
							

Returns	a	Range	object	as	shown	in	the	following	table.	Read-only.

Object Data	range
Data	field Data	contained	in	the	field
Row,	column,	or	page	field Items	in	the	field
Item Data	qualified	by	the	item

Example

This	example	selects	the	PivotTable	items	in	the	field	named	"REGION."

Set	pvtTable	=	Worksheets("Sheet1").Range("A3").PivotTable

Worksheets("Sheet1").Activate

pvtTable.PivotFields("REGION").DataRange.Select

DataTable	Property
							

Returns	a	DataTable	object	that	represents	the	chart	data	table.	Read-only.

Example

This	example	adds	a	data	table	with	an	outline	border	to	the	embedded	chart.

With	Worksheets(1).ChartObjects(1).Chart

				.HasDataTable	=	True

				.DataTable.HasBorderOutline	=	True

End	With

Show	All

DataType	Property
							

DataType	property	as	it	applies	to	the	Parameter	object.

Returns	or	sets	the	data	type	of	the	specified	query	parameter.			Read/write
XlParameterDataType.

XlParameterDataType	can	be	one	of	these	XlParameterDataType	constants.
xlParamTypeBinary
xlParamTypeChar
xlParamTypeDecimal
xlParamTypeFloat
xlParamTypeLongVarBinary
xlParamTypeNumeric
xlParamTypeSmallInt
xlParamTypeTimestamp
xlParamTypeUnknown
xlParamTypeVarChar
xlParamTypeBigInt
xlParamTypeBit
xlParamTypeDate
xlParamTypeDouble
xlParamTypeInteger
xlParamTypeLongVarChar
xlParamTypeReal
xlParamTypeTime
xlParamTypeTinyInt
xlParamTypeVarBinary
xlParamTypeWChar

expression.DataType

expression			Required.	An	expression	that	returns	one	of	the	above	objects.

	

DataType	property	as	it	applies	to	the	PivotField	object.

Returns	a	constant	describing	the	type	of	data	in	the	PivotTable	field.			Read-
only	XlPivotFieldDataType.

XlPivotFieldDataType	can	be	one	of	these	XlPivotFieldDataType	constants.
xlDate
xlNumber
xlText

expression.DataType

expression			Required.	An	expression	that	returns	one	of	the	above	objects.

	

Example

This	example	displays	the	data	type	of	the	field	named	"ORDER_DATE."

Set	pvtTable	=	Worksheets("Sheet1").Range("A3").PivotTable

Select	Case	pvtTable.PivotFields("ORDER_DATE").DataType

				Case	Is	=	xlText

								MsgBox	"The	field	contains	text	data"

				Case	Is	=	xlNumber

								MsgBox	"The	field	contains	numeric	data"

				Case	Is	=	xlDate

								MsgBox	"The	field	contains	date	data"

End	Select

Date1904	Property
							

True	if	the	workbook	uses	the	1904	date	system.	Read/write	Boolean.

Example

This	example	causes	Microsoft	Excel	to	use	the	1904	date	system	for	the	active
workbook.

ActiveWorkbook.Date1904	=	True

DDEAppReturnCode	Property
							

Returns	the	application-specific	DDE	return	code	that	was	contained	in	the	last
DDE	acknowledge	message	received	by	Microsoft	Excel.	Read-only	Long.

Example

This	example	sets	the	variable	appErrorCode	to	the	DDE	return	code.

appErrorCode	=	Application.DDEAppReturnCode

DecimalSeparator	Property
							

Sets	or	returns	the	character	used	for	the	decimal	separator	as	a	String.
Read/write.

expression.DecimalSeparator

expression			Required.	An	expression	that	returns	an	Application	object.

Example

This	example	places	"1,234,567.89"	in	cell	A1	then	changes	the	system
separators	to	dashes	for	the	decimals	and	thousands	separators.

Sub	ChangeSystemSeparators()

				Range("A1").Formula	=	"1,234,567.89"

				MsgBox	"The	system	separators	will	now	change."

				'	Define	separators	and	apply.

				Application.DecimalSeparator	=	"-"

				Application.ThousandsSeparator	=	"-"

				Application.UseSystemSeparators	=	False

End	Sub

DefaultFilePath	Property
							

Returns	or	sets	the	default	path	that	Microsoft	Excel	uses	when	it	opens	files.
Read/write	String.

Example

This	example	displays	the	current	default	file	path.

MsgBox	"The	current	default	file	path	is	"	&	_

				Application.DefaultFilePath

DefaultSaveFormat	Property
							

Returns	or	sets	the	default	format	for	saving	files.	For	a	list	of	valid	constants,
see	the	FileFormat	property.	Read/write	Long.

Example

This	example	sets	the	default	format	for	saving	files.

Application.DefaultSaveFormat	=	xlExcel4Workbook

DefaultSheetDirection	Property
							

Returns	or	sets	the	default	direction	in	which	Microsoft	Excel	displays	new
windows	and	worksheets.	Can	be	one	of	the	following	constants:	xlRTL	(right
to	left)	or	xlLTR	(left	to	right).	Read/write	Long.

Remarks

Some	of	these	constants	may	not	be	available	to	you,	depending	on	the	language
support	(U.S.	English,	for	example)	that	you’ve	selected	or	installed.

Example

This	example	sets	right	to	left	as	the	default	direction.

Application.DefaultSheetDirection	=	xlRTL

DefaultWebOptions	Property
							

Returns	the	DefaultWebOptions	object	that	contains	global	application-level
attributes	used	by	Microsoft	Excel	whenever	you	save	a	document	as	a	Web
page	or	open	a	Web	page.	Read-only.

Example

This	example	checks	to	see	whether	the	default	setting	for	document	encoding	is
Western,	and	then	it	sets	the	string	strDocEncoding	accordingly.

If	Application.DefaultWebOptions.Encoding	=	msoEncodingWestern	Then

				strDocEncoding	=	"Western"

Else

				strDocEncoding	=	"Other"

End	If

Delivery	Property
							

Returns	or	sets	the	routing	delivery	method.	Can	be	one	of	the	following
XlRoutingSlipDelivery	constants:	xlOneAfterAnother	or	xlAllAtOnce.
Read/write	Long.

Remarks

You	cannot	set	this	property	if	routing	is	in	progress

Example

This	example	sends	Book1.xls	to	three	recipients,	one	after	another.

Workbooks("BOOK1.XLS").HasRoutingSlip	=	True

With	Workbooks("BOOK1.XLS").RoutingSlip

				.Delivery	=	xlOneAfterAnother

				.Recipients	=	Array("Adam	Bendel",	_

								"Jean	Selva",	"Bernard	Gabor")

				.Subject	=	"Here	is	BOOK1.XLS"

				.Message	=	"Here	is	the	workbook.	What	do	you	think?"

End	With

Workbooks("BOOK1.XLS").Route

Dependents	Property
							

Returns	a	Range	object	that	represents	the	range	containing	all	the	dependents	of
a	cell.	This	can	be	a	multiple	selection	(a	union	of	Range	objects)	if	there’s	more
than	one	dependent.	Read-only	Range	object.

expression.Dependents

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

Remark

Note		The	Dependents	property	only	works	on	the	active	sheet	and	can	not	trace
remote	references.

Example

This	example	selects	the	dependents	of	cell	A1	on	Sheet1.

Worksheets("Sheet1").Activate

Range("A1").Dependents.Select

Show	All

Depth	Property
							

Depth	property	as	it	applies	to	the	ThreeDFormat	object.

For	the	ThreeDFormat	object,	returns	or	sets	the	depth	of	the	shape's	extrusion.
Can	be	a	value	from		–	600	through	9600	(positive	values	produce	an	extrusion
whose	front	face	is	the	original	shape;	negative	values	produce	an	extrusion
whose	back	face	is	the	original	shape).	Read/write	Single.

expression.Depth

expression			Required.	An	expression	that	returns	a	ThreeDFormat	object.

Depth	property	as	it	applies	to	the	TickLabels	object.

For	the	TickLabels	object,	returns	the	number	of	levels	of	category	tick	labels.
Read-only	Long.

expression.Depth

expression			Required.	An	expression	that	returns	a	TickLabels	object.

Example

This	example	adds	an	oval	to	myDocument	and	then	specifies	that	the	oval	be
extruded	to	a	depth	of	50	points	and	that	the	extrusion	be	purple.

Set	myDocument	=	Worksheets(1)

Set	myShape	=	myDocument.Shapes.AddShape(msoShapeOval,	_

				90,	90,	90,	40)

With	myShape.ThreeD

				.Visible	=	True

				.Depth	=	50

				'	RGB	value	for	purple

				.ExtrusionColor.RGB	=	RGB(255,	100,	255)

End	With

DepthPercent	Property
							

Returns	or	sets	the	depth	of	a	3-D	chart	as	a	percentage	of	the	chart	width
(between	20	and	2000	percent).	Read/write	Long.

Example

This	example	sets	the	depth	of	Chart1	to	be	50	percent	of	its	width.	The	example
should	be	run	on	a	3-D	chart	(the	DepthPercent	property	fails	on	2-D	charts).

Charts("Chart1").DepthPercent	=	50

Destination	Property
							

Returns	the	cell	in	the	upper-left	corner	of	the	query	table	destination	range	(the
range	where	the	resulting	query	table	will	be	placed).	The	destination	range	must
be	on	the	worksheet	that	contains	the	QueryTable	object.	Read-only	Range.

Example

This	example	scrolls	through	the	active	window	until	the	upper-left	corner	of
query	table	one	is	in	the	upper-left	corner	of	the	window.

Set	d	=	Worksheets(1).QueryTables(1).Destination

With	ActiveWindow

				.ScrollColumn	=	d.Column

				.ScrollRow	=	d.Row

End	With

Diagram	Property
							

Returns	a	Diagram	object	representing	a	diagram.

expression.Diagram

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

Example

In	this	example,	an	Organization	chart	diagram	is	added	to	the	active	worksheet.
Microsoft	Excel	then	displays	a	message	with	the	number	of	nodes	added	to	the
diagram.

Sub	UseDiagram()

				Dim	wksOne	As	Worksheet

				Set	wksOne	=	ActiveSheet

				ActiveSheet.Shapes.AddDiagram(_

								Type:=msoDiagramOrgChart,	Top:=10,	_

								Left:=15,	Width:=400,	Height:=475)

				'Notify	user	the	number	of	nodes	added	to	the	diagram.

				MsgBox	wksOne.Shapes(1).Diagram.Nodes.Count

End	Sub

DiagramNode	Property
							

Returns	a	DiagramNode	object	that	represents	a	node	in	a	diagram.

expression.DiagramNode

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

Example

This	example	adds	a	pyramid	chart	to	the	active	worksheet	and	then	adds	four
diagram	nodes.

Sub	CreatePyramidDiagram()

				Dim	dgnNode	As	DiagramNode

				Dim	shpDiagram	As	Shape

				Dim	intCount	As	Integer

				'Add	pyramid	diagram	to	current	document

				Set	shpDiagram	=	ActiveSheet.Shapes.AddDiagram(_

								Type:=msoDiagramPyramid,	Left:=10,	_

								Top:=15,	Width:=400,	Height:=475)

				'Add	first	diagram	node	child

				Set	dgnNode	=	shpDiagram.DiagramNode.Children.AddNode

				'Add	three	more	diagram	child	nodes.

				For	intCount	=	1	To	3

								dgnNode.AddNode

				Next	intCount

End	Sub

Dialogs	Property
							

Returns	a	Dialogs	collection	that	represents	all	built-in	dialog	boxes.	Read-only.

For	information	about	returning	a	single	member	of	a	collection,	see	Returning
an	Object	from	a	Collection.

Example

This	example	displays	the	Open	dialog	box	(File	menu).

Application.Dialogs(xlDialogOpen).Show

DictLang	Property
							

Selects	the	dictionary	language	used,	when	Microsoft	Excel	performs	spelling
checks.	Read/write	Long.

expression.DictLang

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

Example

This	example	sets	the	Excel	dictionary	to	use	the	English	(United	States)
language.

Sub	LanguageSpellCheck()

				With	Application.SpellingOptions

								.DictLang	=	1033					'	United	States	English	language	number.

								.UserDict	=	"CUSTOM.DIC"

				End	With

End	Sub

DirectDependents	Property
							

Returns	a	Range	object	that	represents	the	range	containing	all	the	direct
dependents	of	a	cell.	This	can	be	a	multiple	selection	(a	union	of	Range	objects)
if	there’s	more	than	one	dependent.	Read-only	Range	object.

expression.DirectDependents

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

Remark

Note		The	Direct	Dependents	property	only	works	on	the	active	sheet	and	can
not	trace	remote	references.

Example

This	example	selects	the	direct	dependents	of	cell	A1	on	Sheet1.

Worksheets("Sheet1").Activate

Range("A1").DirectDependents.Select

Show	All

Direction	Property
							

Returns	or	sets	the	order	in	which	the	cells	will	be	spoken.		The	value	of	the
Direction	property	is	an	XlSpeakDirection	constant.	Read/write.

XlSpeakDirection	can	be	one	of	these	XlSpeakDirection	constants.
xlSpeakByColumns
xlSpeakByRows

expression.Direction

expression			Required.	An	expression	that	returns	a	Speech	object.

Example

In	this	example,	Microsoft	Excel	determines	the	speech	direction	and	notifies	the
user.

Sub	CheckSpeechDirection()

				'	Notify	user	of	speech	direction.

				If	Application.Speech.Direction	=	xlSpeakByColumns	Then

								MsgBox	"The	speech	direction	is	set	to	speak	by	columns."

				Else

								MsgBox	"The	speech	direction	is	set	to	speak	by	rows."

				End	If

End	Sub

DirectPrecedents	Property
							

Returns	a	Range	object	that	represents	the	range	containing	all	the	direct
precedents	of	a	cell.	This	can	be	a	multiple	selection	(a	union	of	Range	objects)
if	there’s	more	than	one	precedent.	Read-only	Range	object.

expression.DirectPrecedents

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

Remark

Note		The	DirectPrecedents	property	only	works	on	the	active	sheet	and	can	not
trace	remote	references.

Example

This	example	selects	the	direct	precedents	of	cell	A1	on	Sheet1.

Worksheets("Sheet1").Activate

Range("A1").DirectPrecedents.Select

DisplayAlerts	Property
							

True	if	Microsoft	Excel	displays	certain	alerts	and	messages	while	a	macro	is
running.	Read/write	Boolean.

Remarks

The	default	value	is	True.	Set	this	property	to	False	if	you	don’t	want	to	be
disturbed	by	prompts	and	alert	messages	while	a	macro	is	running;	any	time	a
message	requires	a	response,	Microsoft	Excel	chooses	the	default	response.

If	you	set	this	property	to	False,	Micorosoft	Excel	sets	this	property	to	True
when	the	code	is	finished,	unless	you	are	running	cross	process	code.

When	using	the	SaveAs	method	for	workbooks	to	overwrite	an	existing	file,	the
'Overwrite'	alert	has	a	default	of	'No',	while	the	'Yes'	response	is	selected	by
Excel	when	the	DisplayAlerts	property	is	set	equal	to	True.

Example

This	example	closes	the	workbook	Book1.xls	and	doesn’t	prompt	the	user	to
save	changes.	Any	changes	to	Book1.xls	aren’t	saved.

Application.DisplayAlerts	=	False

Workbooks("BOOK1.XLS").Close

Application.DisplayAlerts	=	True

This	example	suppresses	the	message	that	otherwise	appears	when	you	initiate	a
DDE	channel	to	an	application	that’s	not	running.

Application.DisplayAlerts	=	False

channelNumber	=	Application.DDEInitiate(_

				app:="WinWord",	_

				topic:="C:\WINWORD\FORMLETR.DOC")

Application.DisplayAlerts	=	True

Application.DDEExecute	channelNumber,	"[FILEPRINT]"

Application.DDETerminate	channelNumber

Application.DisplayAlerts	=	True

DisplayAutoCorrectOptions	Property
							

Allows	the	user	to	display	or	hide	the	AutoCorrect	Options	button.	The	default
value	is	True.	Read/write	Boolean.

expression.DisplayAutoCorrectOptions

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

Remarks

The	DisplayAutoCorrectOptions	property	is	a	Microsoft	Office-wide	setting.
Changing	this	property	in	Microsoft	Excel	will	affect	the	other	Office
applications	also.

In	Excel	the	AutoCorrect	Options	button	only	appears	when	a	hyperlink	is
automatically	created.

Example

This	example	determines	if	the	AutoCorrect	Options	button	can	be	displayed
and	notifies	the	user.

Sub	CheckDisplaySetting()

				'Determine	setting	and	notify	user.

				If	Application.AutoCorrect.DisplayAutoCorrectOptions	=	True	Then

								MsgBox	"The	AutoCorrect	Options	button	can	be	displayed."

				Else

								MsgBox	"The	AutoCorrect	Options	button	cannot	be	displayed."

				End	If

End	Sub

DisplayBlanksAs	Property
							

Returns	or	sets	the	way	that	blank	cells	are	plotted	on	a	chart.	Can	be	one	of	the
following	XlDisplayBlanksAs	constants:	xlNotPlotted,	xlInterpolated,	or
xlZero.	Read/write	Long.

Example

This	example	sets	Microsoft	Excel	to	not	plot	blank	cells	in	Chart1.

Charts("Chart1").DisplayBlanksAs	=	xlNotPlotted

DisplayClipboardWindow	Property
							

Returns	True	if	the	Microsoft	Office	Clipboard	can	be	displayed.	Read/write
Boolean.

expression.DisplayClipboardWindow

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

Example

In	this	example,	Microsoft	Excel	determines	if	the	Office	Clipboard	can	be
displayed	and	notifies	the	user.

Sub	SeeClipboard()

				'	Determine	if	Office	Clipboard	can	be	displayed.

				If	Application.DisplayClipboardWindow	=	True	Then

								MsgBox	"Office	Clipboard	can	be	displayed."

				Else

								MsgBox	"Office	Clipboard	cannot	be	displayed."

				End	If

End	Sub

DisplayCommentIndicator	Property
							

Returns	or	sets	the	way	cells	display	comments	and	indicators.	Can	be	one	of	the
following	XlCommentDisplayMode	constants:	xlNoIndicator,
xlCommentIndicatorOnly,	or	xlCommentAndIndicator.	Read/write	Long.

Example

This	example	hides	cell	tips	but	retains	comment	indicators.

Application.DisplayCommentIndicator	=	xlCommentIndicatorOnly

DisplayDrawingObjects	Property
							

Returns	or	sets	how	shapes	are	displayed.	Read/write	Long.

Can	be	one	of	the	following	XlDisplayDrawingObjects	constants.

Constant Description
xlDisplayShapes Show	all	shapes.
xlPlaceholders Show	only	placeholders.
xlHide Hide	all	shapes.

Example

This	example	hides	all	the	shapes	in	the	active	workbook.

ActiveWorkbook.DisplayDrawingObjects	=	xlHide

Show	All

DisplayEmptyColumn	Property
							

Returns	True	when	the	non-empty	MDX	keyword	is	included	in	the	query	to	the
OLAP	provider	for	the	value	axis.	The	OLAP	provider	will	not	return	empty
columns	in	the	result	set.	Returns	False	when	the	non-empty	keyword	is	omitted.
Read/write	Boolean.

expression.DisplayEmptyColumn

expression			Required.	An	expression	that	returns	a	PivotTable	object.

Remarks

The	PivotTable	must	be	connected	to	an	Online	Analytical	Processing	(OLAP)
data	source	to	avoid	a	run-time	error.

Example

This	example	determines	the	display	settings	for	empty	columns	in	a
PivotTable.	It	assumes	a	PivotTable	connected	to	an	OLAP	data	source	exists	on
the	active	worksheet.

Sub	CheckSetting()

				Dim	pvtTable	As	PivotTable

				Set	pvtTable	=	ActiveSheet.PivotTables(1)

				'	Determine	display	setting	for	empty	columns.

				If	pvtTable.DisplayEmptyColumn	=	False	Then

								MsgBox	"Empty	columns	will	not	be	displayed."

				Else

								MsgBox	"Empty	columns	will	be	displayed."

				End	If

End	Sub

Show	All

DisplayEmptyRow	Property
							

Returns	True	when	the	non-empty	MDX	keyword	is	included	in	the	query	to	the
OLAP	provider	for	the	category	axis.	The	OLAP	provider	will	not	return	empty
rows	in	the	result	set.	Returns	False	when	the	non-empty	keyword	is	omitted.
Read/write	Boolean.

expression.DisplayEmptyRow

expression			Required.	An	expression	that	returns	a	PivotTable	object.

Remarks

The	PivotTable	must	be	connected	to	an	Online	Analytical	Processing	(OLAP)
data	source	to	avoid	a	run-time	error.

Example

This	example	determines	the	display	settings	for	empty	rows	in	a	PivotTable.	It
assumes	a	PivotTable	connected	to	an	OLAP	data	source	exists	on	the	active
worksheet.

Sub	CheckSetting()

				Dim	pvtTable	As	PivotTable

				Set	pvtTable	=	ActiveSheet.PivotTables(1)

				'	Determine	display	setting	for	empty	rows.

				If	pvtTable.DisplayEmptyRow	=	False	Then

								MsgBox	"Empty	rows	will	not	be	displayed."

				Else

								MsgBox	"Empty	rows	will	be	displayed."

				End	If

End	Sub

DisplayEquation	Property
							

True	if	the	equation	for	the	trendline	is	displayed	on	the	chart	(in	the	same	data
label	as	the	R-squared	value).	Setting	this	property	to	True	automatically	turns
on	data	labels.	Read/write	Boolean.

Example

This	example	displays	the	R-squared	value	and	equation	for	trendline	one	in
Chart1.	The	example	should	be	run	on	a	2-D	column	chart	that	has	a	trendline
for	the	first	series.

With	Charts("Chart1").SeriesCollection(1).Trendlines(1)

				.DisplayRSquared	=	True

				.DisplayEquation	=	True

End	With

DisplayErrorString	Property
							

True	if	the	PivotTable	report	displays	a	custom	error	string	in	cells	that	contain
errors.	The	default	value	is	False.	Read/write	Boolean.

Remarks

Use	the	ErrorString	property	to	set	the	custom	error	string.

This	property	is	particularly	useful	for	suppressing	divide-by-zero	errors	when
calculated	fields	are	pivoted.

Example

This	example	causes	the	PivotTable	report	to	display	a	hyphen	in	cells	that
contain	errors.

With	Worksheets(1).PivotTables("Pivot1")

				.ErrorString	=	"-"

				.DisplayErrorString	=	True

End	With

DisplayExcel4Menus	Property
							

True	if	Microsoft	Excel	displays	version	4.0	menu	bars.	Read/write	Boolean.

Example

This	example	switches	the	display	to	Microsoft	Excel	version	4.0	menus.

Application.DisplayExcel4Menus	=	True

DisplayFormulaBar	Property
							

True	if	the	formula	bar	is	displayed.	Read/write	Boolean.

Example

This	example	hides	the	formula	bar.

Application.DisplayFormulaBar	=	False

DisplayFormulas	Property
							

True	if	the	window	is	displaying	formulas,	False	if	the	window	is	displaying
values.	Read/write	Boolean.

Remarks

This	property	applies	only	to	worksheets	and	macro	sheets.

Example

This	example	changes	the	active	window	in	Book1.xls	to	display	formulas.

Workbooks("BOOK1.XLS").Worksheets("Sheet1").Activate

ActiveWindow.DisplayFormulas	=	True

DisplayFullScreen	Property
							

True	if	Microsoft	Excel	is	in	full-screen	mode.	Read/write	Boolean.

Remarks

Full-screen	mode	maximizes	the	application	window	so	that	it	fills	the	entire
screen	and	hides	the	application	title	bar.	Toolbars,	the	status	bar,	and	the
formula	bar	maintain	separate	display	settings	for	full-screen	mode	and	normal
mode.

Example

This	example	sets	Microsoft	Excel	to	be	displayed	in	full-screen	mode.

Application.DisplayFullScreen	=	True

DisplayFunctionToolTips	Property
							

True	if	function	ToolTips	can	be	displayed.	Read/write	Boolean.

expression.DisplayFunctionToolTips

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

Example

In	this	example,	Microsoft	Excel	notifies	the	user	the	status	of	displaying
function	Tool	Tips.

Sub	CheckToolTip()

				'	Notify	the	user	of	the	ability	to	display	function	ToolTips.

				If	Application.DisplayFunctionToolTips	=	True	Then

								MsgBox	"The	ability	to	display	function	ToolTips	is	on."

				Else

								MsgBox	"The	ability	to	display	function	ToolTips	is	off."

				End	If

End	Sub

DisplayGridlines	Property
							

True	if	gridlines	are	displayed.	Read/write	Boolean.

Remarks

This	property	applies	only	to	worksheets	and	macro	sheets.

This	property	affects	only	displayed	gridlines.	Use	the	PrintGridlines	property
to	control	the	printing	of	gridlines.

Example

This	example	toggles	the	display	of	gridlines	in	the	active	window	in	Book1.xls.

Workbooks("BOOK1.XLS").Worksheets("Sheet1").Activate

ActiveWindow.DisplayGridlines	=	Not(ActiveWindow.DisplayGridlines)

DisplayHeadings	Property
							

True	if	both	row	and	column	headings	are	displayed,	False	if	there	are	no
headings	displayed.	Read/write	Boolean.

Remarks

This	property	applies	only	to	worksheets	and	macro	sheets.

This	property	affects	only	displayed	headings.	Use	the	PrintHeadings	property
to	control	the	printing	of	headings.

Example

This	example	turns	off	the	display	of	row	and	column	headings	in	the	active
window	in	Book1.xls.

Workbooks("BOOK1.XLS").Worksheets("Sheet1").Activate

ActiveWindow.DisplayHeadings	=	False

DisplayHorizontalScrollBar	Property
							

True	if	the	horizontal	scroll	bar	is	displayed.	Read/write	Boolean.

Example

This	example	turns	on	the	horizontal	scroll	bar	for	the	active	window.

ActiveWindow.DisplayHorizontalScrollBar	=	True

DisplayImmediateItems	Property
							

Returns	or	sets	a	Boolean	that	indicates	whether	items	in	the	row	and	column
areas	are	visible	when	the	data	area	of	the	PivotTable	is	empty.	Set	this	property
to	False	to	hide	the	items	in	the	row	and	column	areas	when	the	data	area	of	the
PivotTable	is	empty.	The	default	value	is	True.

expression.DisplayImmediateItems

expression			Required.	An	expression	that	returns	a	PivotTable	object.

Example

This	example	determines	how	the	PivotTable	was	created	and	notifies	the	user.	It
assumes	a	PivotTable	exists	on	the	active	worksheet.

Sub	CheckItemsDisplayed()

				Dim	pvtTable	As	PivotTable

				Set	pvtTable	=	ActiveSheet.PivotTables(1)

				'	Determine	how	the	PivotTable	was	created.

				If	pvtTable.DisplayImmediateItems	=	True	Then

								MsgBox	"Fields	have	been	added	to	the	row	or	column	areas	for	the	PivotTable	report."

				Else

								MsgBox	"The	PivotTable	was	created	by	using	object-model	calls."

				End	If

End	Sub

DisplayInsertOptions	Property
							

True	if	the	Insert	Options	button	should	be	displayed.	Read/write	Boolean.

expression.DisplayInsertOptions

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

Example

In	this	example,	Microsoft	Excel	notifies	the	user	the	status	of	displaying	the
Insert	Options	button.

Sub	SettingToolTip()

				'	Notify	the	user	of	the	ToolTip	status.

				If	Application.DisplayInsertOptions	=	True	Then

								MsgBox	"The	ability	to	display	the	Insert	Options	button	is	on."

				Else

								MsgBox	"The	ability	to	display	the	Insert	Options	button	is	off."

				End	If

End	Sub

DisplayNoteIndicator	Property
							

True	if	cells	containing	notes	display	cell	tips	and	contain	note	indicators	(small
dots	in	their	upper-right	corners).	Read/write	Boolean.

Example

This	example	hides	note	indicators.

Application.DisplayNoteIndicator	=	False

DisplayNullString	Property
							

True	if	the	PivotTable	report	displays	a	custom	string	in	cells	that	contain	null
values.	The	default	value	is	True.	Read/write	Boolean.

Remarks

Use	the	NullString	property	to	set	the	custom	null	string.

Example

This	example	causes	the	PivotTable	report	to	display	"NA"	in	cells	that	contain
null	values.

With	Worksheets(1).PivotTables("Pivot1")

				.NullString	=	"NA"

				.DisplayNullString	=	True

End	With

This	example	causes	the	PivotTable	report	to	display	0	(zero)	in	cells	that
contain	null	values.

Worksheets(1).PivotTables("Pivot1").DisplayNullString	=	False

DisplayOutline	Property
							

True	if	outline	symbols	are	displayed.	Read/write	Boolean.

Remarks

This	property	applies	only	to	worksheets	and	macro	sheets.

Example

This	example	displays	outline	symbols	for	the	active	window	in	Book1.xls.

Workbooks("BOOK1.XLS").Worksheets("Sheet1").Activate

ActiveWindow.DisplayOutline	=	True

DisplayPageBreaks	Property
							

True	if	page	breaks	(both	automatic	and	manual)	on	the	specified	worksheet	are
displayed.	Read/write	Boolean.

Remarks

You	can't	set	this	property	if	you	don't	have	a	printer	installed.

Example

This	example	causes	Sheet1	to	display	page	breaks.

Worksheets("Sheet1").DisplayPageBreaks	=	True

DisplayPasteOptions	Property
							

True	if	the	Paste	Options	button	can	be	displayed.	Read/write	Boolean.

expression.DisplayPasteOptions

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

Remarks

This	is	a	Microsoft	Office-wide	setting.		This	setting	affects	all	other	Microsoft
Office	applications.	Setting	the	DisplayPasteOptions	property	to	True	turns	off
the	Auto	Fill	Options	button	in	Microsoft	Excel.	The	Auto	Fill	Options	button
is	only	in	Excel,	but	the	Paste	Options	button	is	in	all	the	other	Microsoft	Office
applications.

Example

In	this	example,	Microsoft	Excel	notifies	the	user	the	status	of	displaying	the
Paste	Options	button.

Sub	CheckDisplayFeature()

				'	Check	if	the	options	button	can	be	displayed.

				If	Application.DisplayPasteOptions	=	True	Then

								MsgBox	"The	ability	to	display	the	Paste	Options	button	is	on."

				Else

								MsgBox	"The	ability	to	display	the	Paste	Options	button	is	off."

				End	If

End	Sub

DisplayRecentFiles	Property
							

True	if	the	list	of	recently	used	files	is	displayed	on	the	File	menu.	Read/write
Boolean.

Example

This	example	turns	off	the	list	of	recently	used	files.

Application.DisplayRecentFiles	=	False

DisplayRightToLeft	Property
							

True	if	the	specified	window	or	worksheet	is	displayed	from	right	to	left	instead
of	from	left	to	right.	False	if	the	object	is	displayed	from	left	to	right.	Read/write
Boolean.

Remarks

This	property	can	be	set	only	when	right	to	left	language	support	has	been
installed	and	selected.

Example

This	example	sets	window	one	in	the	active	workbook	to	be	displayed	from	right
to	left.

ActiveWorkbook.Windows(1).DisplayRightToLeft	=	True

DisplayRSquared	Property
							

True	if	the	R-squared	value	of	the	trendline	is	displayed	on	the	chart	(in	the
same	data	label	as	the	equation).	Setting	this	property	to	True	automatically
turns	on	data	labels.	Read/write	Boolean.

Example

This	example	displays	the	R-squared	value	and	equation	for	trendline	one	in
Chart1.	The	example	should	be	run	on	a	2-D	column	chart	that	has	a	trendline
for	the	first	series.

With	Charts("Chart1").SeriesCollection(1).Trendlines(1)

				.DisplayRSquared	=	True

				.DisplayEquation	=	True

End	With

DisplayScrollBars	Property
							

True	if	scroll	bars	are	visible	for	all	workbooks.	Read/write	Boolean.

Example

This	example	turns	off	scroll	bars	for	all	workbooks.

Application.DisplayScrollBars	=	False

Show	All

DisplaySmartTags	Property
							

Returns	or	sets	an	XlSmartTagDisplayMode	constant	indicating	the	display
features	for	smart	tags.	Read/write.

XlSmartTagDisplayMode	can	be	one	of	these	XlSmartTagDisplayMode
constants.
xlButtonOnly		Displays	only	the	button	for	smart	tags.
xlDisplayNone		Nothing	is	displayed	for	smart	tags.
xlIndicatorAndButton		Display	the	indicator	and	button	for	smart	tags.

expression.DisplaySmartTags

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

Example

In	this	example,	Microsoft	Excel	determines	the	setting	for	displaying	smart	tags
and	notifies	the	user.

Sub	CheckDisplayOptions()

				'	Check	the	display	options	for	smart	tags.

				Select	Case	ActiveWorkbook.SmartTagOptions.DisplaySmartTags

								Case	xlButtonOnly

												MsgBox	"The	button	for	smart	tags	will	only	be	displayed."

								Case	xlDisplayNone

												MsgBox	"Nothing	will	be	displayed	for	smart	tags."

								Case	xlIndicatorAndButton

												MsgBox	"The	button	and	indicator	will	be	displayed	for	smart	tags."

				End	Select

End	Sub

DisplayStatusBar	Property
							

True	if	the	status	bar	is	displayed.	Read/write	Boolean.

Example

This	example	saves	the	current	state	of	the	DisplayStatusBar	property	and	then
sets	the	property	to	True	so	that	the	status	bar	is	visible.

saveStatusBar	=	Application.DisplayStatusBar

Application.DisplayStatusBar	=	True

DisplayUnit	Property
							

Returns	or	sets	the	unit	label	for	the	specified	axis.		Read/write	XlDisplayUnit.

XlDisplayUnit	can	be	one	of	these	XlDisplayUnit	constants.
xlHundredMillions
xlHundredThousands
xlMillions
xlTenThousands
xlThousands
xlHundreds
xlMillionMillions
xlTenMillions
xlThousandMillions

expression.DisplayUnit

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

Remarks

Using	unit	labels	when	charting	large	values	makes	your	tick	mark	labels	easier
to	read.	For	example,	if	you	label	your	value	axis	in	units	of	hundreds,
thousands,	or	millions,	you	can	use	smaller	numeric	values	at	the	tick	marks	on
the	axis.

Example

This	example	sets	the	units	displayed	on	the	value	axis	in	Chart1	to	hundreds.

With	Charts("Chart1").Axes(xlValue)

				.DisplayUnit	=	xlHundreds

				.HasTitle	=	True

				.AxisTitle.Caption	=	"Rebate	Amounts"

End	With

DisplayUnitCustom	Property
							

If	the	value	of	the	DisplayUnit	property	is	xlCustom,	the	DisplayUnitCustom
property	returns	or	sets	the	value	of	the	displayed	units.	The	value	must	be	from
0	through	10E307.	Read/write	Double.

Remarks

Using	unit	labels	when	charting	large	values	makes	your	tick	mark	labels	easier
to	read.	For	example,	if	you	label	your	value	axis	in	units	of	hundreds,
thousands,	or	millions,	you	can	use	smaller	numeric	values	at	the	tick	marks	on
the	axis.

Example

This	example	sets	the	units	displayed	on	the	value	axis	in	Chart1	to	increments
of	500.

With	Charts("Chart1").Axes(xlValue)

				.DisplayUnit	=	xlCustom

				.DisplayUnitCustom	=	500

				.HasTitle	=	True

				.AxisTitle.Caption	=	"Rebate	Amounts"

End	With

DisplayUnitLabel	Property
							

Returns	the	DisplayUnitLabel	object	for	the	specified	axis.	Returns	Null	if	the
HasDisplayUnitLabel	property	is	set	to	False.	Read-only.

Example

This	example	sets	the	label	caption	to	"Millions"	for	the	value	axis	in	Chart1,
and	then	it	turns	off	automatic	font	scaling.

With	Charts("Chart1").Axes(xlValue).DisplayUnitLabel

				.Caption	=	"Millions"

				.AutoScaleFont	=	False

End	With

DisplayVerticalScrollBar	Property
							

True	if	the	vertical	scroll	bar	is	displayed.	Read/write	Boolean.

Example

This	example	turns	on	the	vertical	scroll	bar	for	the	active	window.

ActiveWindow.DisplayVerticalScrollBar	=	True

DisplayWorkbookTabs	Property
							

True	if	the	workbook	tabs	are	displayed.	Read/write	Boolean.

Example

This	example	turns	on	the	workbook	tabs.

ActiveWindow.DisplayWorkbookTabs	=	True

DisplayZeros	Property
							

True	if	zero	values	are	displayed.	Read/write	Boolean.

Remarks

This	property	applies	only	to	worksheets	and	macro	sheets.

Example

This	example	sets	the	active	window	in	Book1.xls	to	display	zero	values.

Workbooks("BOOK1.XLS").Worksheets("Sheet1").Activate

ActiveWindow.DisplayZeros	=	True

DivID	Property
							

Returns	the	unique	identifier	used	for	identifying	an	HTML	<DIV>	tag	on	a	Web
page.	The	tag	is	associated	with	an	item	in	a	document	that	you	have	saved	to	a
Web	page.	An	item	can	be	an	entire	workbook,	a	worksheet,	a	selected	print
range,	an	AutoFilter	range,	a	range	of	cells,	a	chart,	a	PivotTable	report,	or	a
query	table.	Read-only	String.

Example

This	example	saves	a	range	of	cells	to	a	Web	page,	and	then	it	obtains	the
identifier	from	the	<DIV>	tag	of	this	item	and	finds	the	line	on	the	saved	Web
page	(q198.htm).	The	example	also	creates	a	copy	of	the	Web	page	(newq1.htm)
and	inserts	a	comment	line	before	the	<DIV>	tag	in	the	copy	of	the	file.

Set	objPO	=	ActiveWorkbook.PublishObjects.Add(_

				SourceType:=xlSourceRange,	_

				Filename:="\\Server1\Reports\q198.htm",	_

				Sheet:="Sheet1",	_

				Source:="C2:D6",	_

				HtmlType:=xlHtmlCalc)

objPO.Publish

strTargetDivID	=	objPO.DivID

Open	"\\Server1\Reports\q198.htm"	For	Input	As	#1

Open	"\\Server1\Reports\newq1.htm"	For	Output	As	#2

While	Not	EOF(1)

				Line	Input	#1,	strFileLine

				If	InStr(strFileLine,	strTargetDivID)	>	0	And	_

								InStr(strFileLine,	"<div")	>	0	Then

												Print	#2,	"<!--Saved	item-->"

				End	If

				Print	#2,	strFileLine

Wend

Close	#2

Close	#1

DoughnutHoleSize	Property
							

Returns	or	sets	the	size	of	the	hole	in	a	doughnut	chart	group.	The	hole	size	is
expressed	as	a	percentage	of	the	chart	size,	between	10	and	90	percent.
Read/write	Long.

Example

This	example	sets	the	hole	size	for	doughnut	group	one	in	Chart1.	The	example
should	be	run	on	a	2-D	doughnut	chart.

Charts("Chart1").DoughnutGroups(1).DoughnutHoleSize	=	10

DownBars	Property
							

Returns	a	DownBars	object	that	represents	the	down	bars	on	a	line	chart.
Applies	only	to	line	charts.	Read-only.

Example

This	example	turns	on	up	bars	and	down	bars	for	chart	group	one	in	Chart1	and
then	sets	their	colors.	The	example	should	be	run	on	a	2-D	line	chart	that	has	two
series	that	cross	each	other	at	one	or	more	data	points.

With	Charts("Chart1").ChartGroups(1)

				.HasUpDownBars	=	True

				.DownBars.Interior.ColorIndex	=	3

				.UpBars.Interior.ColorIndex	=	5

End	With

DownloadComponents	Property
							

True	if	the	necessary	Microsoft	Office	Web	components	are	downloaded	when
you	view	the	saved	document	in	a	Web	browser,	but	only	if	the	components	are
not	already	installed.	False	if	the	components	are	not	downloaded.	The	default
value	is	False.	Read/write	Boolean.

Remarks

You	can	set	the	LocationOfComponents	property	to	a	central	URL	(on	the
intranet	or	Web)	or	path	(local	or	network)	to	a	location	from	which	authorized
users	can	download	components	when	viewing	your	saved	document.	The	path
must	be	valid	and	must	point	to	a	location	that	contains	the	necessary
components,	and	the	user	must	have	a	valid	Microsoft	Office	2000	license.

Office	Web	components	add	interactivity	to	documents	that	you	save	as	Web
pages.	If	you	view	a	Web	page	in	a	browser	on	a	computer	that	does	not	have	the
components	installed,	the	interactive	portions	of	the	page	will	be	static.

Example

This	example	allows	the	Office	Web	components	to	be	downloaded	with	the
specified	Web	page,	if	they	are	not	already	installed.

Application.DefaultWebOptions.DownloadComponents	=	True

Application.DefaultWebOptions.LocationOfComponents	=	_

				Application.Path	&	Application.PathSeparator	&	"foo"

Show	All

DownloadURL	Property
							

Returns	a	String	representing	a	Uniform	Resource	Locator	(URL)	to	save	along
with	the	corresponding	smart	tag.	Read-only.

expression.DownloadURL

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

Example

This	example	adds	"MSFT"	to	cell	A1	and	then	displays	the	URL	for	the	smart
tag.	This	example	assumes	the	host	system	is	connected	to	the	Internet.

Sub	UseDownLoadURL()

				Dim	strLink	As	String

				Dim	strType	As	String

				'	Define	smart	tag	variables.

				strLink	=	"urn:schemas-microsoft-com:smarttags#StockTickerSymbol"

				strType	=	"stockview"

				'	Enable	smart	tags	to	be	embedded	and	recognized.

				ActiveWorkbook.SmartTagOptions.EmbedSmartTags	=	True

				Application.SmartTagRecognizers.Recognize	=	True

				Range("A1").Formula	=	"MSFT"

				'	Display	URL	for	the	smart	tag.

				MsgBox	Range("A1").SmartTags.Add(strLink).DownloadURL

End	Sub

Draft	Property
							

True	if	the	sheet	will	be	printed	without	graphics.	Read/write	Boolean.

Remarks

Setting	this	property	to	True	makes	printing	faster	(at	the	expense	of	not	printing
graphics).

Example

This	example	turns	off	graphics	printing	for	Sheet1.

Worksheets("Sheet1").PageSetup.Draft	=	True

Show	All

DragToColumn	Property
							

True	if	the	specified	field	can	be	dragged	to	the	column	position.	The	default
value	is	True.	Read/write	Boolean.

Remarks

For	OLAP	data	sources,	the	value	is	False	for	measure	fields.

Example

This	example	prevents	the	Year	field	in	the	first	PivotTable	report	on	worksheet
one	from	being	dragged	to	the	column	position.

Worksheets(1).PivotTables("Pivot1")	_

				.PivotFields("Year").DragToColumn	=	False

Show	All

DragToData	Property
							

True	if	the	specified	field	can	be	dragged	to	the	data	position.	The	default	value
is	True.	Read/write	Boolean.

Remarks

For	OLAP	data	sources,	the	value	is	False	for	measure	fields.

Example

This	example	prevents	the	Year	field	from	being	dragged	to	the	data	position	in
the	first	PivotTable	report	on	the	first	worksheet.

Worksheets(1).PivotTables("Pivot1")	_

				.PivotFields("Year").DragToData	=	False

DragToHide	Property
							

True	if	the	field	can	be	hidden	by	being	dragged	off	the	PivotTable	report.	The
default	value	is	True.	Read/write	Boolean.

Example

This	example	prevents	the	Year	field	in	the	first	PivotTable	report	on	worksheet
one	from	being	dragged	off	the	report.

Worksheets(1).PivotTables("Pivot1")	_

				.PivotFields("Year").DragToHide	=	False

Show	All

DragToPage	Property
							

True	if	the	field	can	be	dragged	to	the	page	position.	The	default	value	is	True.
Read/write	Boolean.

Remarks

For	OLAP	data	sources,	the	value	is	False	for	measure	fields.

Example

This	example	prevents	the	Year	field	in	the	PivotTable	report	on	worksheet	one
from	being	dragged	to	the	page	position.

Worksheets(1).PivotTables("Pivot1")	_

				.PivotFields("Year").DragToPage	=	False

Show	All

DragToRow	Property
							

True	if	the	field	can	be	dragged	to	the	row	position.	The	default	value	is	True.
Read/write	Boolean.

Remarks

For	OLAP	data	sources,	the	value	is	False	for	measure	fields.

Example

This	example	prevents	the	Year	field	in	the	first	PivotTable	report	on	worksheet
one	from	being	dragged	to	the	row	position.

Worksheets(1).PivotTables("Pivot1")	_

				.PivotFields("Year").DragToRow	=	False

Show	All

Drilled	Property
							

Returns	or	sets	the	"drilled"	(expanded,	or	visible)	status	of	the	cube	field
members	in	the	hierarchical	member-selection	control	of	a	cube	field.	This
property	is	used	primarily	for	macro	recording	and	isn’t	intended	for	any	other
use.	Read/write.

Remarks

The	Drilled	property	returns	or	sets	an	array.	Each	element	of	the	array
corresponds	to	a	level	of	the	cube	field	that	has	been	expanded.	The	maximum
number	of	elements	is	the	number	of	levels	in	the	cube	field.	Each	element	of	the
array	is	an	array	of	type	String,	containing	unique	member	names	that	are
visible	(expanded)	at	the	corresponding	level	of	the	control.	See	the
TreeviewControl	object’s	Hidden	property	to	determine	when	members	are
explicitly	hidden	in	an	expanded	view.

Example

This	example	expands	the	second-level	members	of	the	first	cube	field	in	the
first	PivotTable	report	on	the	active	worksheet.

ActiveSheet.PivotTables("PivotTable1").CubeFields(1)	_

				.TreeviewControl.Drilled	=	_

								Array(Array("",	"",	"",	"",	"",	"",	"",	"",	_

								"",	"",	"",	""),	_

								Array("[state].[states].[AB]",	_

								"[state].[states].[CA]",	_

								"[state].[states].[IN]",	_

								"[state].[states].[KS]",	_

								"[state].[states].[KY]",	_

								"[state].[states].[MD]",	_

								"[state].[states].[MI]",	_

								"[state].[states].[OH]",	_

								"[state].[states].[OR]",	_

								"[state].[states].[TN]",	_

								"[state].[states].[UT]",	_

								"[state].[states].[WA]"))

Show	All

DrilledDown	Property
							

True	if	the	flag	for	the	specified	PivotTable	field	or	PivotTable	item	is	set	to
"drilled"	(expanded,	or	visible).	Read/write	Boolean.

Remarks

You	can	use	this	property	only	for	OLAP	data	sources.

You	cannot	set	this	property	if	the	field	or	item	is	hidden.

Example

This	example	sets	the	flags	to	“not	drilled”	for	all	items	in	the	state	field	in	the
third	PivotTable	report	on	the	active	worksheet.

ActiveSheet.PivotTables("PivotTable3")	_

				.PivotFields("state").DrilledDown	=	False

Drop	Property
							

For	callouts	with	an	explicitly	set	drop	value,	this	property	returns	the	vertical
distance	(in	points)	from	the	edge	of	the	text	bounding	box	to	the	place	where
the	callout	line	attaches	to	the	text	box.	This	distance	is	measured	from	the	top	of
the	text	box	unless	the	AutoAttach	property	is	set	to	True	and	the	text	box	is	to
the	left	of	the	origin	of	the	callout	line	(the	place	that	the	callout	points	to),	in
which	case	the	drop	distance	is	measured	from	the	bottom	of	the	text	box.	Read-
only	Single.

Remarks

Use	the	CustomDrop	method	to	set	the	value	of	this	property.

The	value	of	this	property	accurately	reflects	the	position	of	the	callout	line
attachment	to	the	text	box	only	if	the	callout	has	an	explicitly	set	drop	value	—
that	is,	if	the	value	of	the	DropType	property	is	msoCalloutDropCustom.

Example

This	example	replaces	the	custom	drop	for	shape	one	on	myDocument	with	one	of
two	preset	drops,	depending	on	whether	the	custom	drop	value	is	greater	than	or
less	than	half	the	height	of	the	callout	text	box.	For	the	example	to	work,	shape
one	must	be	a	callout.

Set	myDocument	=	Worksheets(1)

With	myDocument.Shapes(1).Callout

				If	.DropType	=	msoCalloutDropCustom	Then

								If	.Drop	<	.Parent.Height	/	2	Then

												.PresetDrop	msoCalloutDropTop

								Else

												.PresetDrop	msoCalloutDropBottom

								End	If

				End	If

End	With

DropDownLines	Property
							

Returns	or	sets	the	number	of	list	lines	displayed	in	the	drop-down	portion	of	a
combo	box.	Read/write	Long.

Example

This	example	creates	a	combo	box	with	10	list	lines.

With	Worksheets(1).Shapes.AddFormControl(xlDropDown,	_

								Left:=10,	Top:=10,	Width:=100,	Height:=10)

				.ControlFormat.DropDownLines	=	10

End	With

DropLines	Property
							

Returns	a	DropLines	object	that	represents	the	drop	lines	for	a	series	on	a	line
chart	or	area	chart.	Applies	only	to	line	charts	or	area	charts.	Read-only.

Example

This	example	turns	on	drop	lines	for	chart	group	one	in	Chart1	and	then	sets
their	line	style,	weight,	and	color.	The	example	should	be	run	on	a	2-D	line	chart
that	has	one	series.

With	Charts("Chart1").ChartGroups(1)

				.HasDropLines	=	True

				With	.DropLines.Border

								.LineStyle	=	xlThin

								.Weight	=	xlMedium

								.ColorIndex	=	3

				End	With

End	With

DropType	Property
							

Returns	a	value	that	indicates	where	the	callout	line	attaches	to	the	callout	text
box.	Read-only	MsoCalloutDropType.

MsoCalloutDropType	can	be	one	of	these	MsoCalloutDropType	constants.
msoCalloutDropCenter
msoCalloutDropMixed
msoCalloutDropBottom
msoCalloutDropCustom
msoCalloutDropTop

expression.DropType

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

Remarks

If	the	callout	drop	type	is	msoCalloutDropCustom,	the	values	of	the	Drop	and
AutoAttach	properties	and	the	relative	positions	of	the	callout	text	box	and
callout	line	origin	(the	place	that	the	callout	points	to)	are	used	to	determine
where	the	callout	line	attaches	to	the	text	box.

This	property	is	read-only.	Use	the	PresetDrop	method	to	set	the	value	of	this
property.

Example

This	example	replaces	the	custom	drop	for	shape	one	on	myDocument	with	one	of
two	preset	drops,	depending	on	whether	the	custom	drop	value	is	greater	than	or
less	than	half	the	height	of	the	callout	text	box.	For	the	example	to	work,	shape
one	must	be	a	callout.

Set	myDocument	=	Worksheets(1)

With	myDocument.Shapes(1).Callout

				If	.DropType	=	msoCalloutDropCustom	Then

								If	.Drop	<	.Parent.Height	/	2	Then

												.PresetDrop	msoCalloutDropTop

								Else

												.PresetDrop	msoCalloutDropBottom

								End	If

				End	If

End	With

EditDirectlyInCell	Property
							

True	if	Microsoft	Excel	allows	editing	in	cells.	Read/write	Boolean.

Example

This	example	enables	editing	in	cells.

Application.EditDirectlyInCell	=	True

EditingType	Property
							

If	the	specified	node	is	a	vertex,	this	property	returns	a	value	that	indicates	how
changes	made	to	the	node	affect	the	two	segments	connected	to	the	node.	Read-
only	MsoEditingType.

MsoEditingType	can	be	one	of	these	MsoEditingType	constants.
msoEditingAuto
msoEditingCorner
msoEditingSmooth
msoEditingSymmetric

expression.EditingType

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

Remarks

This	property	is	read-only.	Use	the	SetEditingType	method	to	set	the	value	of
this	property.

Example

This	example	changes	all	corner	nodes	to	smooth	nodes	in	shape	three	on
myDocument.	Shape	three	must	be	a	freeform	drawing.

Set	myDocument	=	Worksheets(1)

With	myDocument.Shapes(3).Nodes

				For	n	=	1	to	.Count

								If	.Item(n).EditingType	=	msoEditingCorner	Then

												.SetEditingType	n,	msoEditingSmooth

								End	If

				Next

End	With

Show	All

EditWebPage	Property
							

Returns	or	sets	the	web	page	Uniform	Resource	Locator	(URL)	for	a	web	query.
Read/write	Variant.

expression.EditWebPage

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

Remarks

The	EditWebPage	property	returns	Null	if	not	set.	The	EditWebPage	property
is	only	meaningful	if	the	query	type	is	Web	or	OLE.

If	the	EditWebPage	is	not	null	then	ignore	the	WebTables	property	for
refreshing.	As	a	result	an	XML	query	and	the	WebTable	property	refers	to	the
table	in	the	original	Web	page	and	should	only	be	used	in	the	edit	case	to	pre-
populate	the	Web	Query	dialog	box.

Example

In	this	example,	Microsoft	Excel	notifies	the	user	a	web	page	URL.	This
example	assumes	a	QueryTable	object	in	cell	A1	exists	in	the	active	worksheet
and	that	file	called	"MyHomepage.htm"	exists	on	the	C:\	drive.

Sub	ReturnURL()

				'	Set	the	EditWebPage	property	to	a	source.

				Range("A1").QueryTable.EditWebPage	=	"C:\MyHomepage.htm"

				'	Display	the	source	to	the	user.

				MsgBox	Range("A1").QueryTable.EditWebPage

End	Sub

Elevation	Property
							

Returns	or	sets	the	elevation	of	the	3-D	chart	view,	in	degrees.	Read/write	Long.

Remarks

The	chart	elevation	is	the	height	at	which	you	view	the	chart,	in	degrees.	The
default	is	15	for	most	chart	types.	The	value	of	this	property	must	be	between
-90	and	90,	except	for	3-D	bar	charts,	where	it	must	be	between	0	and	44.

Example

This	example	sets	the	chart	elevation	of	Chart1	to	34	degrees.	The	example
should	be	run	on	a	3-D	chart	(the	Elevation	property	fails	on	2-D	charts).

Charts("Chart1").Elevation	=	34

EmailSubject	Property
							

Returns	or	sets	the	text	string	of	the	specified	hyperlink’s	e-mail	subject	line.
The	subject	line	is	appended	to	the	hyperlink’s	address.	Read/write	String.

Remarks

This	property	is	usually	used	with	e-mail	hyperlinks.

The	value	of	this	property	takes	precedence	over	any	e-mail	subject	line	you
have	specified	by	using	the	Address	property	of	the	same	Hyperlink	object.

Example

This	example	sets	the	e-mail	subject	line	for	the	first	hyperlink	in	the	first
worksheet.

Worksheets(1).Hyperlinks(1).EmailSubject	=	"Quote	Request"

EmbedSmartTags	Property
							

True	to	embed	smart	tags	on	the	specified	workbook.	Read/write	Boolean.

expression.EmbedSmartTags

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

Example

In	this	example,	Microsoft	Excel	determines	if	smart	tags	are	enabled	for	the
active	workbook	and	notifies	the	user.

Sub	UseSmartTags()

				'	Determine	if	smart	tags	are	enabled	for	this	workbook.

				If	ActiveWorkbook.SmartTagOptions.EmbedSmartTags	=	True	Then

								MsgBox	"Smart	tags	can	be	embedded	in	this	workbook."

				Else

					 MsgBox	"Smart	tags	can	not	be	embedded	in	this	workbook."

				End	If

End	Sub

EmptyCellReferences	Property
							

When	set	to	True	(default),	Microsoft	Excel	identifies,	with	an	AutoCorrect
Options	button,	selected	cells	containing	formulas	that	refer	to	empty	cells.
False	disables	empty	cell	reference	checking.	Read/write	Boolean.

expression.EmptyCellReferences

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

Example

In	the	following	example,	the	AutoCorrect	Options	button	appears	for	cell	A1
which	contains	a	formula	that	references	empty	cells.

Sub	CheckEmptyCells()

				Application.ErrorCheckingOptions.EmptyCellReferences	=	True

				Range("A1").Formula	=	"=A2+A3"

End	Sub

EnableAnimations	Property
							

True	if	animated	insertion	and	deletion	is	enabled.	Read/write	Boolean.

Remarks

When	animation	is	enabled,	inserted	worksheet	rows	and	columns	appear	slowly,
and	deleted	worksheet	rows	and	columns	disappear	slowly.

Example

This	example	turns	off	animated	insertion	and	deletion.

Application.EnableAnimations	=	False

EnableAutoComplete	Property
							

True	if	the	AutoComplete	feature	is	enabled.	Read/write	Boolean.

Example

This	example	enables	the	AutoComplete	feature.

Application.EnableAutoComplete	=	True

EnableAutoFilter	Property
							

True	if	AutoFilter	arrows	are	enabled	when	user-interface-only	protection	is
turned	on.	Read/write	Boolean.

Remarks

This	property	applies	to	each	worksheet	and	isn't	saved	with	the	worksheet	or
session.

Example

This	example	enables	the	AutoFilter	arrows	on	a	protected	worksheet.

ActiveSheet.EnableAutoFilter	=	True

ActiveSheet.Protect	contents:=True,	userInterfaceOnly:=True

EnableAutoRecover	Property
							

Saves	changed	files,	of	all	formats,	on	a	timed	interval.	If	Microsoft	Excel	fails,
the	system	fails,	or	if	the	system	is	improperly	shut	down	(not	allowing	Excel	to
save	the	changed	files),	the	backed	up	files	are	opened	and	the	user	has	an
opportunity	to	save	changes	that	otherwise	would	have	been	lost.	When	the	user
restarts	Excel,	a	document	recovery	window	opens,	giving	the	user	an	option	to
recover	the	files	they	were	working	on.	Setting	this	property	to	True	(default)
enables	this	feature.	Read/write	Boolean.

expression.EnableAutoRecover

expression			Required.	An	expression	that	returns	a	Workbook	object.

Example

The	following	example	checks	the	setting	of	the	AutoRecover	feature	and	if	not
enabled,	Excel	enables	it	and	then	notifies	the	user.

Sub	UseAutoRecover()

				'	Check	to	see	if	the	feature	is	enabled,	if	not,	enable	it.

				If	ActiveWorkbook.EnableAutoRecover	=	False	Then

								ActiveWorkbook.EnableAutoRecover	=	True

								MsgBox	"The	AutoRecover	feature	has	been	enabled."

				Else

								MsgBox	"The	AutoRecover	feature	is	already	enabled."

				End	If

End	Sub

EnableCalculation	Property
							

True	if	Microsoft	Excel	automatically	recalculates	the	worksheet	when
necessary.	False	if	Excel	doesn't	recalculate	the	sheet.	Read/write	Boolean.

Remarks

When	the	value	of	this	property	is	False,	you	cannot	request	a	recalculation.
When	you	change	the	value	from	False	to	True,	Excel	recalculates	the
worksheet.

Example

This	example	sets	Microsoft	Excel	to	not	recalculate	worksheet	one
automatically.

Worksheets(1).EnableCalculation	=	False

EnableCancelKey	Property
							

Controls	how	Microsoft	Excel	handles	CTRL+BREAK	(or	ESC	or
COMMAND+PERIOD)	user	interruptions	to	the	running	procedure.	Read/write
XlEnableCancelKey.

XlEnableCancelKey	can	be	one	of	these	XlEnableCancelKey	constants.
xlDisabled.	Cancel	key	trapping	is	completely	disabled.
xlErrorHandler.	The	interrupt	is	sent	to	the	running	procedure	as	an	error,
trappable	by	an	error	handler	set	up	with	an	On	Error	GoTo	statement.	The
trappable	error	code	is	18.
xlInterrupt.	The	current	procedure	is	interrupted,	and	the	user	can	debug	or
end	the	procedure.

expression.EnableCancelKey

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

Remarks

Use	this	property	very	carefully.	If	you	use	xlDisabled,	there's	no	way	to
interrupt	a	runaway	loop	or	other	non	–	self-terminating	code.	Likewise,	if	you
use	xlErrorHandler	but	your	error	handler	always	returns	using	the	Resume
statement,	there's	no	way	to	stop	runaway	code.

The	EnableCancelKey	property	is	always	reset	to	xlInterrupt	whenever
Microsoft	Excel	returns	to	the	idle	state	and	there's	no	code	running.	To	trap	or
disable	cancellation	in	your	procedure,	you	must	explicitly	change	the
EnableCancelKey	property	every	time	the	procedure	is	called.

Example

This	example	shows	how	you	can	use	the	EnableCancelKey	property	to	set	up	a
custom	cancellation	handler.

On	Error	GoTo	handleCancel

Application.EnableCancelKey	=	xlErrorHandler

MsgBox	"This	may	take	a	long	time:	press	ESC	to	cancel"

For	x	=	1	To	1000000				'	Do	something	1,000,000	times	(long!)

				'	do	something	here

Next	x

handleCancel:

If	Err	=	18	Then

				MsgBox	"You	cancelled"

End	If

Enabled	Property
							

True	if	the	object	is	enabled.	Read/write	Boolean.

Example

This	example	disables	embedded	chart	one	on	worksheet	one.

Worksheets(1).ChartObjects(1).Enabled	=	False

EnableDataValueEditing	Property
							

True	to	disable	the	alert	for	when	the	user	overwrites	values	in	the	data	area	of
the	PivotTable.	True	also	allows	the	user	to	change	data	values	that	previously
could	not	be	changed.	The	default	value	is	False.	Read/write	Boolean.

expression.EnableDataValueEditing

expression			Required.	An	expression	that	returns	a	PivotTable	object.

Remarks

Any	editing	performed	on	data	values	is	lost	upon	refresh.

Example

This	example	determines	the	alert	setting	for	overwriting	values	in	the	data	area
and	notifies	the	user.	The	example	assumes	a	PivotTable	exists	on	the	active
worksheet.

Sub	CheckAlertSetting()

				Dim	pvtTable	As	PivotTable

				Set	pvtTable	=	ActiveSheet.PivotTables(1)

				'	Determine	alert	setting.

				If	pvtTable.EnableDataValueEditing	=	False	Then

								MsgBox	"Alert	is	enabled."

				Else

								MsgBox	"Alert	is	disabled."

				End	If

End	Sub

Show	All

EnableDrilldown	Property
							

True	if	drilldown	is	enabled.	The	default	value	is	True.	Read/write	Boolean.

Remarks

Setting	this	property	for	a	PivotTable	report	sets	it	for	all	fields	in	that	report.

For	OLAP	data	sources,	the	value	is	always	True.

Example

This	example	disables	drilldown	for	all	fields	in	the	the	first	PivotTable	report	on
worksheet	one/.

Worksheets(1).PivotTables("Pivot1").EnableDrilldown	=	False

EnableEditing	Property
							

True	if	the	user	can	edit	the	specified	query	table.	False	if	the	user	can	only
refresh	the	query	table.	Read/write	Boolean.

Example

This	example	sets	query	table	one	so	that	the	user	cannot	edit	it.

Worksheets(1).QueryTables(1).EnableEditing	=	False

EnableEvents	Property
							

True	if	events	are	enabled	for	the	specified	object.	Read/write	Boolean.

Example

This	example	disables	events	before	a	file	is	saved	so	that	the	BeforeSave	event
doesn’t	occur.

Application.EnableEvents	=	False

ActiveWorkbook.Save

Application.EnableEvents	=	True

EnableFieldDialog	Property
							

True	if	the	PivotTable	Field	dialog	box	is	available	when	the	user	double-clicks
the	PivotTable	field.	The	default	value	is	True.	Read/write	Boolean.

Remarks

Setting	this	property	for	a	PivotTable	report	sets	it	for	all	fields	in	thatreport.

Example

This	example	disables	the	PivotTable	Field	dialog	box	for	the	Year	field.

Worksheets(1).PivotTables("Pivot1")	_

				.PivotFields("Year").EnableFieldDialog	=	False

EnableFieldList	Property
							

False	to	disable	the	ability	to	display	the	field	well	for	the	PivotTable.	If	the	field
list	was	already	being	displayed	it	disappears.	The	default	value	is	True.
Read/write	Boolean.

expression.EnableFieldList

expression			Required.	An	expression	that	returns	a	PivotTable	object.

Example

This	example	determines	the	the	viewing	status	of	the	field	well	for	the
PivotTable	and	notifies	the	user.	The	example	assumes	that	a	PivotTable	exists
on	the	active	worksheet.

Sub	CheckFieldWell()

				Dim	pvtTable	As	PivotTable

				Set	pvtTable	=	ActiveSheet.PivotTables(1)

				'	Determine	if	field	well	can	be	seen.

				If	pvtTable.EnableFieldList	=	True	Then

								MsgBox	"The	field	well	for	the	PivotTable	can	be	displayed."

				Else

								MsgBox	"The	field	well	for	the	PivotTable	cannot	be	displayed."

				End	If

End	Sub

EnableItemSelection	Property
							

When	set	to	False,	disables	the	ability	to	use	the	field	dropdown	in	the	user
interface.	The	default	value	is	True.	Read/write	Boolean.

expression.EnableItemSelection

expression			Required.	An	expression	that	returns	a	PivotField	object.

Remarks

A	run-time	error	will	occur	if	the	OLAP	PivotTable	field	is	not	the	highest	level
for	the	hierarchy.

Example

This	example	determines	the	setting	for	selecting	items	using	the	field	dropdown
and	enables	the	feature,	if	necessary.	The	example	assumes	a	PivotTable	exists
on	the	active	worksheet.

Sub	UseEnableItemSelection()

				Dim	pvtTable	As	PivotTable

				Dim	pvtField	As	PivotField

				Set	pvtTable	=	ActiveSheet.PivotTables(1)

				Set	pvtField	=	pvtTable.RowFields(1)

				'	Determine	setting	for	property	and	enable	if	necessary.

				If	pvtField.EnableItemSelection	=	False	Then

								pvtField.EnableItemSelection	=	True

								MsgBox	"Item	selection	enabled	for	fields."

				Else

								MsgBox	"Item	selection	is	already	enabled	for	fields."

				End	If

End	Sub

Show	All

EnableMultiplePageItems	Property
							

True	to	allow	multiple	items	in	the	page	field	area	for	OLAP	PivotTables	to	be
selected.	The	default	value	is	False.	Read/write	Boolean.

expression.EnableMultiplePageItems

expression			Required.	An	expression	that	returns	a	CubeField	object.

Remarks

This	property	only	applies	to	Online	Analytical	Processing	(OLAP)	PivotTables.
Querying	or	setting	a	non-OLAP	PivotTable	will	result	in	a	run-time	error.

Example

This	example	determines	if	multiple	page	items	are	enabled	for	the	cube	field
and	notifies	the	user.	The	example	assumes	that	an	OLAP	PivotTable	exists	on
the	active	worksheet.

Sub	UseMultiplePageItems()

				Dim	pvtTable	As	PivotTable

				Dim	cbeField	As	CubeField

				Set	pvtTable	=	ActiveSheet.PivotTables(1)

				Set	cbeField	=	pvtTable.CubeFields("[Country]")

				'	Determine	setting	for	mulitple	page	items.

				If	cbeField.EnableMultiplePageItems	=	False	Then

								MsgBox	"Mulitple	page	items	cannot	be	selected."

				Else

								MsgBox	"Multiple	page	items	can	be	selected."

				End	If

End	Sub

EnableOutlining	Property
							

True	if	outlining	symbols	are	enabled	when	user-interface-only	protection	is
turned	on.	Read/write	Boolean.

Remarks

This	property	applies	to	each	worksheet	and	isn't	saved	with	the	worksheet	or
session.

Example

This	example	enables	outlining	symbols	on	a	protected	worksheet.

ActiveSheet.EnableOutlining	=	True

ActiveSheet.Protect	contents:=True,	userInterfaceOnly:=True

EnablePivotTable	Property
							

True	if	PivotTable	controls	and	actions	are	enabled	when	user-interface-only
protection	is	turned	on.	Read/write	Boolean.

Remarks

This	property	applies	to	each	worksheet	and	isn't	saved	with	the	worksheet	or
session.

There	must	be	a	sufficient	number	of	unlocked	cells	below	and	to	the	right	of	the
PivotTable	report	for	Microsoft	Excel	to	recalculate	and	display	the	PivotTable
report.

Example

This	example	enables	PivotTable	controls	on	a	protected	worksheet.

ActiveSheet.EnablePivotTable	=	True

ActiveSheet.Protect	contents:=True,	userInterfaceOnly:=True

Show	All

EnableRefresh	Property
							

True	if	the	PivotTable	cache	or	query	table	can	be	refreshed	by	the	user.	The
default	value	is	True.	Read/write	Boolean.

Remarks

The	RefreshOnFileOpen	property	is	ignored	if	the	EnableRefresh	property	is
set	to	False.

For	OLAP	data	sources,	setting	this	property	to	False	disables	updates.

Example

This	example	sets	the	first	PivotTable	report	on	worksheet	one	so	that	it	cannot
be	refreshed.

Worksheets(1).PivotTables("Pivot1")	_

				.PivotCache.EnableRefresh	=	False

EnableResize	Property
							

True	if	the	window	can	be	resized.	Read/write	Boolean.

Example

This	example	sets	the	active	window	so	that	it	cannot	be	resized.

ActiveWindow.EnableResize	=	False

EnableSelection	Property
							

Returns	or	sets	what	can	be	selected	on	the	sheet.		Read/write
XlEnableSelection.

XlEnableSelection	can	be	one	of	these	XlEnableSelection	constants.
xlNoSelection
xlNoRestrictions
xlUnlockedCells

expression.EnableSelection

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

Remarks

This	property	takes	effect	only	when	the	worksheet	is	protected:	xlNoSelection
prevents	any	selection	on	the	sheet,	xlUnlockedCells	allows	only	those	cells
whose	Locked	property	is	False	to	be	selected,	and	xlNoRestrictions	allows
any	cell	to	be	selected.

Example

This	example	sets	worksheet	one	so	that	nothing	on	it	can	be	selected.

With	Worksheets(1)

				.EnableSelection	=	xlNoSelection

				.Protect	Contents:=True,	UserInterfaceOnly:=True

End	With

EnableSound	Property
							

True	if	sound	is	enabled	for	Microsoft	Office.	Read/write	Boolean.

Example

This	example	disables	sound	feedback.

Application.EnableSound	=	False

EnableWizard	Property
							

True	if	the	PivotTable	Wizard	is	available.	The	default	value	is	True.	Read/write
Boolean.

Remarks

When	this	property	is	set,	the	field	wells	aren’t	displayed	on	the	worksheet.

Example

This	example	disables	the	PivotTable	Wizard	for	the	first	PivotTable	report	on
worksheet	one.

Worksheets(1).PivotTables("Pivot1").EnableWizard	=	False

Encoding	Property
							

Returns	or	sets	the	document	encoding	(code	page	or	character	set)	to	be	used	by
the	Web	browser	when	you	view	the	saved	document.		The	default	is	the	system
code	page.	Read/write	MsoEncoding.

MsoEncoding	can	be	one	of	these	MsoEncoding	constants.
msoEncodingOEMMultilingualLatinI
msoEncodingOEMNordic
msoEncodingOEMTurkish
msoEncodingSimplifiedChineseAutoDetect
msoEncodingT61
msoEncodingTaiwanEten
msoEncodingTaiwanTCA
msoEncodingTaiwanWang
msoEncodingTraditionalChineseAutoDetect
msoEncodingTurkish
msoEncodingUnicodeLittleEndian
msoEncodingUTF7
msoEncodingVietnamese
msoEncodingEBCDICJapaneseKatakanaExtended
msoEncodingEBCDICJapaneseLatinExtendedAndJapanese
msoEncodingEBCDICKoreanExtendedAndKorean
msoEncodingEBCDICMultilingualROECELatin2
msoEncodingEBCDICSerbianBulgarian
msoEncodingEBCDICThai
msoEncodingEBCDICTurkishLatin5
msoEncodingEBCDICUSCanada
msoEncodingEBCDICUSCanadaAndTraditionalChinese
msoEncodingOEMModernGreek

msoEncodingOEMMultilingualLatinII
msoEncodingOEMPortuguese
msoEncodingOEMUnitedStates
msoEncodingSimplifiedChineseGBK
msoEncodingTaiwanCNS
msoEncodingTaiwanIBM5550
msoEncodingTaiwanTeleText
msoEncodingThai
msoEncodingTraditionalChineseBig5
msoEncodingUnicodeBigEndian
msoEncodingUSASCII
msoEncodingUTF8
msoEncodingWestern
msoEncodingArabic
msoEncodingArabicASMO
msoEncodingArabicAutoDetect
msoEncodingArabicTransparentASMO
msoEncodingAutoDetect
msoEncodingBaltic
msoEncodingCentralEuropean
msoEncodingCyrillic
msoEncodingCyrillicAutoDetect
msoEncodingEBCDICArabic
msoEncodingEBCDICDenmarkNorway
msoEncodingEBCDICFinlandSweden
msoEncodingEBCDICFrance
msoEncodingEBCDICGermany
msoEncodingEBCDICGreek
msoEncodingEBCDICGreekModern
msoEncodingEBCDICHebrew
msoEncodingEBCDICIcelandic
msoEncodingEBCDICInternational
msoEncodingEBCDICItaly

msoEncodingEBCDICJapaneseKatakanaExtendedAndJapanese
msoEncodingEBCDICKoreanExtended
msoEncodingEBCDICLatinAmericaSpain
msoEncodingEBCDICRussian
msoEncodingEBCDICSimplifiedChineseExtendedAndSimplifiedChinese
msoEncodingEBCDICTurkish
msoEncodingEBCDICUnitedKingdom
msoEncodingEBCDICUSCanadaAndJapanese
msoEncodingEUCChineseSimplifiedChinese
msoEncodingEUCJapanese
msoEncodingEUCKorean
msoEncodingEUCTaiwaneseTraditionalChinese
msoEncodingEuropa3
msoEncodingExtAlphaLowercase
msoEncodingGreek
msoEncodingGreekAutoDetect
msoEncodingHebrew
msoEncodingHZGBSimplifiedChinese
msoEncodingIA5German
msoEncodingIA5IRV
msoEncodingIA5Norwegian
msoEncodingIA5Swedish
msoEncodingISO2022CNSimplifiedChinese
msoEncodingISO2022CNTraditionalChinese
msoEncodingISO2022JPJISX02011989
msoEncodingISO2022JPJISX02021984
msoEncodingISO2022JPNoHalfwidthKatakana
msoEncodingISO2022KR
msoEncodingISO6937NonSpacingAccent
msoEncodingISO885915Latin9
msoEncodingISO88591Latin1
msoEncodingISO88592CentralEurope
msoEncodingISO88593Latin3

msoEncodingISO88594Baltic
msoEncodingISO88595Cyrillic
msoEncodingISO88596Arabic
msoEncodingISO88597Greek
msoEncodingISO88598Hebrew
msoEncodingISO88599Turkish
msoEncodingJapaneseAutoDetect
msoEncodingJapaneseShiftJIS
msoEncodingKOI8R
msoEncodingKOI8U
msoEncodingKorean
msoEncodingKoreanAutoDetect
msoEncodingKoreanJohab
msoEncodingMacArabic
msoEncodingMacCroatia
msoEncodingMacCyrillic
msoEncodingMacGreek1
msoEncodingMacHebrew
msoEncodingMacIcelandic
msoEncodingMacJapanese
msoEncodingMacKorean
msoEncodingMacLatin2
msoEncodingMacRoman
msoEncodingMacRomania
msoEncodingMacSimplifiedChineseGB2312
msoEncodingMacTraditionalChineseBig5
msoEncodingMacTurkish
msoEncodingMacUkraine
msoEncodingOEMArabic
msoEncodingOEMBaltic
msoEncodingOEMCanadianFrench
msoEncodingOEMCyrillic
msoEncodingOEMCyrillicII

msoEncodingOEMGreek437G
msoEncodingOEMHebrew
msoEncodingOEMIcelandic

expression.Encoding

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

Remarks

You	cannot	use	any	of	the	constants	that	have	the	suffix	AutoDetect.	These
constants	are	used	by	the	ReloadAs	method.

Example

This	example	checks	to	see	whether	the	default	document	encoding	is	Western,
and	then	it	sets	the	string	strDocEncoding	accordingly.

If	Application.DefaultWebOptions.Encoding	=	msoEncodingWestern	Then

				strDocEncoding	=	"Western"

Else

				strDocEncoding	=	"Other"

End	If

End	Property
							

Returns	a	Range	object	that	represents	the	cell	at	the	end	of	the	region	that
contains	the	source	range.	Equivalent	to	pressing	END+UP	ARROW,
END+DOWN	ARROW,	END+LEFT	ARROW,	or	END+RIGHT	ARROW.
Read-only	Range	object.

expression.End(Direction)

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

Direction		Required	XlDirection.		The	direction	in	which	to	move.

XlDirection	can	be	one	of	these	XlDirection	constants.
xlDown
xlToRight
xlToLeft
xlUp

Example

This	example	selects	the	cell	at	the	top	of	column	B	in	the	region	that	contains
cell	B4.

Range("B4").End(xlUp).Select

This	example	selects	the	cell	at	the	end	of	row	4	in	the	region	that	contains	cell
B4.

Range("B4").End(xlToRight).Select

This	example	extends	the	selection	from	cell	B4	to	the	last	cell	in	row	four	that
contains	data.

Worksheets("Sheet1").Activate

Range("B4",	Range("B4").End(xlToRight)).Select

EndArrowheadLength	Property
							

Returns	or	sets	the	length	of	the	arrowhead	at	the	end	of	the	specified	line.
Read/write	MsoArrowheadLength.

MsoArrowheadLength	can	be	one	of	these	MsoArrowheadLength	constants.
msoArrowheadLengthMixed
msoArrowheadShort
msoArrowheadLengthMedium
msoArrowheadLong

expression.EndArrowheadLength

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

Example

This	example	adds	a	line	to	myDocument.	There’s	a	short,	narrow	oval	on	the
line's	starting	point	and	a	long,	wide	triangle	on	its	end	point.

Set	myDocument	=	Worksheets(1)

With	myDocument.Shapes.AddLine(100,	100,	200,	300).Line

				.BeginArrowheadLength	=	msoArrowheadShort

				.BeginArrowheadStyle	=	msoArrowheadOval

				.BeginArrowheadWidth	=	msoArrowheadNarrow

				.EndArrowheadLength	=	msoArrowheadLong

				.EndArrowheadStyle	=	msoArrowheadTriangle

				.EndArrowheadWidth	=	msoArrowheadWide

End	With

EndArrowheadStyle	Property
							

Returns	or	sets	the	style	of	the	arrowhead	at	the	end	of	the	specified	line.
Read/write	MsoArrowheadStyle.

MsoArrowheadStyle	can	be	one	of	these	MsoArrowheadStyle	constants.
msoArrowheadNone
msoArrowheadOval
msoArrowheadStyleMixed
msoArrowheadDiamond
msoArrowheadOpen
msoArrowheadStealth
msoArrowheadTriangle

expression.EndArrowheadStyle

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

Example

This	example	adds	a	line	to	myDocument.	There’s	a	short,	narrow	oval	on	the
line's	starting	point	and	a	long,	wide	triangle	on	its	end	point.

Set	myDocument	=	Worksheets(1)

With	myDocument.Shapes.AddLine(100,	100,	200,	300).Line

				.BeginArrowheadLength	=	msoArrowheadShort

				.BeginArrowheadStyle	=	msoArrowheadOval

				.BeginArrowheadWidth	=	msoArrowheadNarrow

				.EndArrowheadLength	=	msoArrowheadLong

				.EndArrowheadStyle	=	msoArrowheadTriangle

				.EndArrowheadWidth	=	msoArrowheadWide

End	With

EndArrowheadWidth	Property
							

Returns	or	sets	the	width	of	the	arrowhead	at	the	end	of	the	specified	line.
Read/write	MsoArrowheadWidth.

MsoArrowheadWidth	can	be	one	of	these	MsoArrowheadWidth	constants.
msoArrowheadNarrow
msoArrowheadWidthMedium
msoArrowheadWide
msoArrowheadWidthMixed

expression.EndArrowheadWidth

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

Example

This	example	adds	a	line	to	myDocument.	There’s	a	short,	narrow	oval	on	the
line's	starting	point	and	a	long,	wide	triangle	on	its	end	point.

Set	myDocument	=	Worksheets(1)

With	myDocument.Shapes.AddLine(100,	100,	200,	300).Line

				.BeginArrowheadLength	=	msoArrowheadShort

				.BeginArrowheadStyle	=	msoArrowheadOval

				.BeginArrowheadWidth	=	msoArrowheadNarrow

				.EndArrowheadLength	=	msoArrowheadLong

				.EndArrowheadStyle	=	msoArrowheadTriangle

				.EndArrowheadWidth	=	msoArrowheadWide

End	With

Show	All

EndConnected	Property
							

msoTrue	if	the	end	of	the	specified	connector	is	connected	to	a	shape.	Read-
only	MsoTriState.

MsoTriState	can	be	one	of	these	MsoTriState	constants.
msoCTrue		Does	not	apply	to	this	property.
msoFalse			The	end	of	the	specified	connector	is	not	connected	to	a	shape.
msoTriStateMixed			Does	not	apply	to	this	property.
msoTriStateToggle		Does	not	apply	to	this	property.
msoTrue		The	end	of	the	specified	connector	is	connected	to	a	shape.

expression.EndConnected

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

Example

If	the	end	of	the	connector	represented	by	shape	three	on	myDocument	is
connected	to	a	shape,	this	example	stores	the	connection	site	number	in	the
variable	oldEndConnSite,	stores	a	reference	to	the	connected	shape	in	the	object
variable	oldEndConnShape,	and	then	disconnects	the	end	of	the	connector	from
the	shape.

Set	myDocument	=	Worksheets(1)

With	myDocument.Shapes(3)

				If	.Connector	Then

								With	.ConnectorFormat

												If	.EndConnected	Then

																oldEndConnSite	=	.EndConnectionSite

																Set	oldEndConnShape	=	.EndConnectedShape

																.EndDisconnect

												End	If

								End	With

				End	If

End	With

EndConnectedShape	Property
							

Returns	a	Shape	object	that	represents	the	shape	that	the	end	of	the	specified
connector	is	attached	to.	Read-only.

Note			If	the	end	of	the	specified	connector	isn’t	attached	to	a	shape,	this
property	generates	an	error.

Example

This	example	assumes	that	myDocument	already	contains	two	shapes	attached	by
a	connector	named	"Conn1To2."	The	code	adds	a	rectangle	and	a	connector	to
myDocument.	The	end	of	the	new	connector	will	be	attached	to	the	same
connection	site	as	the	end	of	the	connector	named	"Conn1To2,"	and	the
beginning	of	the	new	connector	will	be	attached	to	connection	site	one	on	the
new	rectangle.

Set	myDocument	=	Worksheets(1)

With	myDocument.Shapes

				Set	r3	=	.AddShape(msoShapeRectangle,	_

								100,	420,	200,	100)

				With	.Item("Conn1To2").ConnectorFormat

								endConnSite1	=	.EndConnectionSite

								Set	endConnShape1	=	.EndConnectedShape

				End	With

				With	.AddConnector(msoConnectorCurve,	_

												0,	0,	10,	10).ConnectorFormat

								.BeginConnect	r3,	1

								.EndConnect	endConnShape1,	endConnSite1

				End	With

End	With

EndConnectionSite	Property
							

Returns	an	integer	that	specifies	the	connection	site	that	the	end	of	a	connector	is
connected	to.	Read-only	Long.

Note			If	the	end	of	the	specified	connector	isn’t	attached	to	a	shape,	this
property	generates	an	error.

Example

This	example	assumes	that	myDocument	already	contains	two	shapes	attached	by
a	connector	named	"Conn1To2."	The	code	adds	a	rectangle	and	a	connector	to
myDocument.	The	end	of	the	new	connector	will	be	attached	to	the	same
connection	site	as	the	end	of	the	connector	named	"Conn1To2,"	and	the
beginning	of	the	new	connector	will	be	attached	to	connection	site	one	on	the
new	rectangle.

Set	myDocument	=	Worksheets(1)

With	myDocument.Shapes

				Set	r3	=	.AddShape(msoShapeRectangle,	_

								100,	420,	200,	100)

				With	.Item("Conn1To2").ConnectorFormat

								endConnSite1	=	.EndConnectionSite

								Set	endConnShape1	=	.EndConnectedShape

				End	With

				With	.AddConnector(msoConnectorCurve,	_

												0,	0,	10,	10).ConnectorFormat

								.BeginConnect	r3,	1

								.EndConnect	endConnShape1,	endConnSite1

				End	With

End	With

EndStyle	Property
							

Returns	or	sets	the	end	style	for	the	error	bars.	Can	be	one	of	the	following
XlEndStyleCap	constants:	xlCap	or	xlNoCap.	Read/write	Long.

Example

This	example	sets	the	end	style	for	the	error	bars	for	series	one	in	Chart1.	The
example	should	be	run	on	a	2-D	line	chart	that	has	Y	error	bars	for	the	first
series.

Charts("Chart1").SeriesCollection(1).ErrorBars.EndStyle	=	xlCap

EntireColumn	Property
							

Returns	a	Range	object	that	represents	the	entire	column	(or	columns)	that
contains	the	specified	range.	Read-only.

Example

This	example	sets	the	value	of	the	first	cell	in	the	column	that	contains	the	active
cell.	The	example	must	be	run	from	a	worksheet.

ActiveCell.EntireColumn.Cells(1,	1).Value	=	5

EntireRow	Property
							

Returns	a	Range	object	that	represents	the	entire	row	(or	rows)	that	contains	the
specified	range.	Read-only.

Example

This	example	sets	the	value	of	the	first	cell	in	the	row	that	contains	the	active
cell.	The	example	must	be	run	from	a	worksheet.

ActiveCell.EntireRow.Cells(1,	1).Value	=	5

EnvelopeVisible	Property
							

True	if	the	e-mail	composition	header	and	the	envelope	toolbar	are	both	visible.
Read/write	Boolean.

Example

This	example	checks	to	see	whether	the	e-mail	composition	header	and	the
envelope	toolbar	are	visible	in	the	first	workbook.	If	they	are	visible,	the
example	then	sets	the	variable	strSubject	to	the	text	of	the	e-mail	subject	line.

If	Workbooks(1).EnvelopeVisible	=	True	Then

				strSubject	=	"Please	read:	Review	immediately"

End	If

ErrorBars	Property
							

Returns	an	ErrorBars	object	that	represents	the	error	bars	for	the	series.	Read-
only.

Example

This	example	sets	the	error	bar	color	for	series	one	in	Chart1.	The	example
should	be	run	on	a	2-D	line	chart	that	has	error	bars	for	series	one.

With	Charts("Chart1").SeriesCollection(1)

				.ErrorBars.Border.ColorIndex	=	8

End	With

ErrorCheckingOptions	Property
							

Returns	an	ErrorCheckingOptions	object,	which	represents	the	error	checking
options	for	an	application.	

expression.ErrorCheckingOptions

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

Example

In	this	example,	the	TextDate	property	is	used	in	conjunction	with	the
ErrorCheckingOptions	property.	When	the	user	selects	a	cell	containing	a	two-
digit	year	in	the	date,	the	AutoCorrect	Options	button	appears.

Sub	CheckTextDate()

				'	Enable	Microsoft	Excel	to	identify	dates	written	as	text.

				Application.ErrorCheckingOptions.TextDate	=	True

				Range("A1").Formula	=	"'April	23,	00"

End	Sub

ErrorMessage	Property
							

Returns	or	sets	the	data	validation	error	message.	Read/write	String.

Example

This	example	adds	data	validation	to	cell	E5	and	specifies	both	the	input	and
error	messages.

With	Range("e5").Validation

				.Add	Type:=xlValidateWholeNumber,	_

								AlertStyle:=	xlValidAlertStop,	_

								Operator:=xlBetween,	Formula1:="5",	Formula2:="10"

				.InputTitle	=	"Integers"

				.ErrorTitle	=	"Integers"

				.InputMessage	=	"Enter	an	integer	from	five	to	ten"

				.ErrorMessage	=	"You	must	enter	a	number	from	five	to	ten"

End	With

Errors	Property
							

Allows	the	user	to	to	access	error	checking	options.

expression.Errors

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

Remarks

Reference	the	Errors	object	to	view	a	list	of	index	values	associated	with	error
checking	options.

Example

In	this	example,	a	number	written	as	text	is	placed	in	cell	A1.		Microsoft	Excel
then	determines	if	the	number	is	written	as	text	in	cell	A1	and	notifies	the	user
accordingly.

Sub	CheckForErrors()

				Range("A1").Formula	=	"'12"

				If	Range("A1").Errors.Item(xlNumberAsText).Value	=	True	Then

								MsgBox	"The	number	is	written	as	text."

				Else

								MsgBox	"The	number	is	not	written	as	text."

				End	If

End	Sub

Show	All

ErrorString	Property
							

ErrorString	property	as	it	applies	to	the	PivotTable	object.

Returns	or	sets	the	string	displayed	in	cells	that	contain	errors	when	the
DisplayErrorString	property	is	True.	The	default	value	is	an	empty	string	("").
Read/write	String.

expression.ErrorString

expression			Required.	An	expression	that	returns	one	of	the	above	objects.

	

ErrorString	property	as	it	applies	to	the	ODBCError	and	OLEDBError
objects.

Returns	the	ODBC	error	string.	Read-only	String.

expression.ErrorString

expression			Required.	An	expression	that	returns	one	of	the	above	objects.

	

Example

This	example	displays	a	hyphen	in	cells	in	the	specified	PivotTable	report	that
contain	errors.

With	Worksheets(1).PivotTables("Pivot1")

				.ErrorString	=	"-"

				.DisplayErrorString	=	True

End	With

ErrorTitle	Property
							

Returns	or	sets	the	title	of	the	data-validation	error	dialog	box.	Read/write
String.

Example

This	example	adds	data	validation	to	cell	E5.

With	Range("e5").Validation

				.Add	xlValidateWholeNumber,	_

								xlValidAlertInformation,	xlBetween,	"5",	"10"

				.InputTitle	=	"Integers"

				.ErrorTitle	=	"Integers"

				.InputMessage	=	"Enter	an	integer	from	five	to	ten"

				.ErrorMessage	=	"You	must	enter	a	number	from	five	to	ten"

End	With

EvaluateToError	Property
							

When	set	to	True	(default),	Microsoft	Excel	identifies,	with	an	AutoCorrect
Options	button,	selected	cells	that	contain	formulas	evaluating	to	an	error.	False
disables	error	checking	for	cells	that	evaluate	to	an	error	value.	Read/write
Boolean.

expression.EvaluateToError

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

Example

In	the	following	example,	the	AutoCorrect	Options	button	appears	for	cell	A3,
which	contains	a	divide-by-zero	error.

Sub	CheckEvaluationError()

				'	Simulate	a	divide-by-zero	error.

				Application.ErrorCheckingOptions.EvaluateToError	=	True

				Range("A1").Value	=	1

				Range("A2").Value	=	0

				Range("A3").Formula	=	"=A1/A2"

End	Sub

Excel4IntlMacroSheets	Property
							

Returns	a	Sheets	collection	that	represents	all	the	Microsoft	Excel	4.0
international	macro	sheets	in	the	specified	workbook.	Read-only.

For	information	about	returning	a	single	member	of	a	collection,	see	Returning
an	Object	from	a	Collection.

Remarks

Using	this	property	with	the	Application	object	or	without	an	object	qualifier	is
equivalent	to	using	ActiveWorkbook.Excel4IntlMacroSheets.

Example

This	example	displays	the	number	of	Microsoft	Excel	4.0	international	macro
sheets	in	the	active	workbook.

MsgBox	"There	are	"	&	_

				ActiveWorkbook.Excel4IntlMacroSheets.Count	&	_

				"	Microsoft	Excel	4.0	international	macro	sheets"	&	_

				"	in	this	workbook."

Excel4MacroSheets	Property
							

Returns	a	Sheets	collection	that	represents	all	the	Microsoft	Excel	4.0	macro
sheets	in	the	specified	workbook.	Read-only.

For	information	about	returning	a	single	member	of	a	collection,	see	Returning
an	Object	from	a	Collection.

Remarks

Using	this	property	with	the	Application	object	or	without	an	object	qualifier	is
equivalent	to	using	ActiveWorkbook.Excel4MacroSheets.

Example

This	example	displays	the	number	of	Microsoft	Excel	4.0	macro	sheets	in	the
active	workbook.

MsgBox	"There	are	"	&	ActiveWorkbook.Excel4MacroSheets.Count	&	_

				"	Microsoft	Excel	4.0	macro	sheets	in	this	workbook."

Explosion	Property
							

Returns	or	sets	the	explosion	value	for	a	pie-chart	or	doughnut-chart	slice.
Returns	0	(zero)	if	there's	no	explosion	(the	tip	of	the	slice	is	in	the	center	of	the
pie).	Read/write	Long.

Example

This	example	sets	the	explosion	value	for	point	two	in	Chart1.	The	example
should	be	run	on	a	pie	chart.

Charts("Chart1").SeriesCollection(1).Points(2).Explosion	=	20

ExtendList	Property
							

True	if	Microsoft	Excel	automatically	extends	formatting	and	formulas	to	new
data	that	is	added	to	a	list.	Read/write	Boolean.

Remarks

To	be	extended,	formats	and	formulas	must	appear	in	at	least	three	of	the	five	list
rows	or	columns	preceding	the	new	row	or	column,	and	you	must	add	the	data	to
the	bottom	or	to	the	right-hand	side	of	the	list.

Example

This	example	sets	Excel	to	not	apply	formatting	and	formulas	to	data
subsequently	added	to	an	existing	list.

Application.ExtendList	=	False

Extent	Property
							

Returns	the	type	of	the	specified	page	break:	full-screen	or	only	within	a	print
area.	Can	be	either	of	the	following	XlPageBreakExtent	constants:
xlPageBreakFull	or	xlPageBreakPartial.	Read-only	Long.

Example

This	example	displays	the	total	number	of	full-screen	and	print-area	horizontal
page	breaks.

For	Each	pb	in	Worksheets(1).HPageBreaks

				If	pb.Extent	=	xlPageBreakFull	Then

								cFull	=	cFull	+	1

				Else

								cPartial	=	cPartial	+	1

				End	If

Next

MsgBox	cFull	&	"	full-screen	page	breaks,	"	&	cPartial	&	_

				"	print-area	page	breaks"

ExtrusionColor	Property
							

Returns	a	ColorFormat	object	that	represents	the	color	of	the	shape's	extrusion.
Read-only.

Example

This	example	adds	an	oval	to	myDocument	and	then	specifies	that	the	oval	be
extruded	to	a	depth	of	50	points	and	that	the	extrusion	be	purple.

Set	myDocument	=	Worksheets(1)

Set	myShape	=	myDocument.Shapes.AddShape(msoShapeOval,	_

				90,	90,	90,	40)

With	myShape.ThreeD

				.Visible	=	True

				.Depth	=	50

				.ExtrusionColor.RGB	=	RGB(255,	100,	255)

				'	RGB	value	for	purple

End	With

ExtrusionColorType	Property
							

Returns	or	sets	a	value	that	indicates	whether	the	extrusion	color	is	based	on	the
extruded	shape’s	fill	(the	front	face	of	the	extrusion)	and	automatically	changes
when	the	shape’s	fill	changes,	or	whether	the	extrusion	color	is	independent	of
the	shape’s	fill.	Read/write	MsoExtrusionColorType.

MsoExtrusionColorType	can	be	one	of	these	MsoExtrusionColorType
constants.
msoExtrusionColorAutomatic.	Extrusion	color	based	on	shape	fill.
msoExtrusionColorTypeMixed
msoExtrusionColorCustom.	Extrusion	color	independent	of	shape	fill.

expression.ExtrusionColorType

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

Example

If	shape	one	on	myDocument	has	an	automatic	extrusion	color,	this	example	gives
the	extrusion	a	custom	yellow	color.

Set	myDocument	=	Worksheets(1)

With	myDocument.Shapes(1).ThreeD

				If	.ExtrusionColorType	=	msoExtrusionColorAutomatic	Then

								.ExtrusionColor.RGB	=	RGB(240,	235,	16)

				End	If

End	With

FeatureInstall	Property
							

Returns	or	sets	a	value	(constant)	that	specifies	how	Microsoft	Excel	handles
calls	to	methods	and	properties	that	require	features	that	aren’t	yet	installed.	Can
be	one	of	the	MsoFeatureInstall	constants	listed	in	the	following	table.
Read/write	MsoFeatureInstall.

MsoFeatureInstall	can	be	one	of	these	MsoFeatureInstall	constants.
msoFeatureInstallNone.	Generates	a	generic	Automation	error	at	run	time
when	uninstalled	features	are	called.	This	is	the	default	constant	
msoFeatureInstallOnDemand.	Prompts	the	user	to	install	new	features
msoFeatureInstallOnDemandWithUI.	Displays	a	progress	meter	during
installation;	doesn’t	prompt	the	user	to	install	new	features.

expression.FeatureInstall

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

Remarks

You	can	use	the	msoFeatureInstallOnDemandWithUI	constant	to	prevent
users	from	thinking	that	the	application	isn't	responding	while	a	feature	is	being
installed.	Use	the	msoFeatureInstallNone	constant	if	you	want	the	developer	to
be	the	only	one	who	can	install	features.

If	you	have	the	DisplayAlerts	property	set	to	False,	users	won’t	be	prompted	to
install	new	features	even	if	the	FeatureInstall	property	is	set	to
msoFeatureInstallOnDemand.	If	the	DisplayAlerts	property	is	set	to	True,	an
installation	progress	meter	will	appear	if	the	FeatureInstall	property	is	set	to
msoFeatureInstallOnDemand.

Example

This	example	activates	a	new	instance	of	Microsoft	Word	and	checks	the	value
of	the	FeatureInstall	property.	Be	sure	to	set	a	reference	to	the	Microsoft	Word
object	library.	If	the	FeatureInstallproperty	is	set	to	msoFeatureInstallNone,
the	code	displays	a	message	box	that	asks	the	user	whether	they	want	to	change
the	property	setting.	If	the	user	responds	Yes,	the	property	is	set	to
msoFeatureInstallOnDemand.

Dim	WordApp	As	New	Word.Application,	Reply	As	Integer

Application.ActivateMicrosoftApp	xlMicrosoftWord	With	WordApp

				If	.FeatureInstall	=	msoFeatureInstallNone	Then

								Reply	=	MsgBox("Uninstalled	features	for	this	"	_

												&	"application	"	&	vbCrLf	_

												&	"may	cause	a	run-time	error	when	called."	&	vbCrLf	_

												&	vbCrLf	_

												&	"Would	you	like	to	change	this	setting"	&	vbCrLf	_

												&	"to	automatically	install	missing	features?"	_

												,	52,	"Feature	Install	Setting")

								If	Reply	=	6	Then

												.FeatureInstall	=	msoFeatureInstallOnDemand

								End	If

				End	If

End	With

FetchedRowOverflow	Property
							

True	if	the	number	of	rows	returned	by	the	last	use	of	the	Refresh	method	is
greater	than	the	number	of	rows	available	on	the	worksheet.	Read-only	Boolean.

Example

This	example	refreshes	query	table	one.	If	the	number	of	rows	returned	by	the
query	exceeds	the	number	of	rows	available	on	the	worksheet,	an	error	message
is	displayed.

With	Worksheets(1).QueryTables(1)

				.Refresh

				If	.FetchedRowOverflow	Then

								MsgBox	"Query	too	large:	please	redefine."

				End	If

End	With

FieldNames	Property
							

True	if	field	names	from	the	data	source	appear	as	column	headings	for	the
returned	data.	The	default	value	is	True.	Read/write	Boolean.

Example

This	example	sets	query	table	one	so	that	the	field	names	don’t	appear	in	it.

Worksheets(1).QueryTables(1).FieldNames	=	False

FileConverters	Property
							

Returns	information	about	installed	file	converters.	Returns	Null	if	there	are	no
converters	installed.	Read-only	Variant.

expression.FileConverters(Index1,	Index2)

expression			Required.	An	expression	that	returns	an	Application	object.

Index1			Optional	Variant.	The	long	name	of	the	converter,	including	the	file-
type	search	string	in	Windows	(for	example,	"Lotus	1-2-3	Files	(*.wk*)").

Index2			Optional	Variant.	The	path	of	the	converter	DLL	or	code	resource.

Remarks

If	you	don’t	specify	the	index	arguments,	this	property	returns	an	array	that
containing	information	about	all	the	installed	file	converters.	Each	row	in	the
array	contains	information	about	a	single	file	converter,	as	shown	in	the
following	table.

Column Contents
1 The	long	name	of	the	converter

2 The	path	of	the	converter	DLL	or	code
resource

3 The	file-extension	search	string

Example

This	example	displays	a	message	if	the	Multiplan	file	converter	is	installed.

installedCvts	=	Application.FileConverters

foundMultiplan	=	False

If	Not	IsNull(installedCvts)	Then

				For	arrayRow	=	1	To	UBound(installedCvts,	1)

								If	installedCvts(arrayRow,	1)	Like	"*Multiplan*"	Then

												foundMultiplan	=	True

												Exit	For

								End	If

				Next	arrayRow

End	If

If	foundMultiplan	=	True	Then

				MsgBox	"Multiplan	converter	is	installed"

Else

				MsgBox	"Multiplan	converter	is	not	installed"

End	If

Show	All

FileDialog	Property
							

Returns	a	FileDialog	object	representing	an	instance	of	the	file	dialog.

expression.FileDialog(fileDialogType)

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

fileDialogType		Required	MsoFileDialogType.	The	type	of	file	dialog.

MsoFileDialogType	can	be	one	of	these	MsoFileDialogType	constants.
msoFileDialogFilePicker		Allows	user	to	select	a	file.
msoFileDialogFolderPicker		Allows	user	to	select	a	folder.
msoFileDialogOpen		Allows	user	to	open	a	file.
msoFileDialogSaveAs		Allows	user	to	save	a	file.

mk:@MSITStore:vbaof10.chm::/html/ofobjFileDialog.htm

Example

In	this	example,	Microsoft	Excel	opens	the	file	dialog	allowing	the	user	to	select
one	or	more	files.	Once	these	files	are	selected,	Excel	displays	the	path	for	each
file	in	a	separate	message.

Sub	UseFileDialogOpen()

				Dim	lngCount	As	Long

				'	Open	the	file	dialog

				With	Application.FileDialog(msoFileDialogOpen)

								.AllowMultiSelect	=	True

								.Show

								'	Display	paths	of	each	file	selected

								For	lngCount	=	1	To	.SelectedItems.Count

												MsgBox	.SelectedItems(lngCount)

								Next	lngCount

				End	With

End	Sub

FileFormat	Property
							

Returns	the	file	format	and/or	type	of	the	workbook.		Read-only	XlFileFormat.

XlFileFormat	can	be	one	of	these	XlFileFormat	constants.
xlCSV
xlCSVMSDOS
xlCurrentPlatformText
xlDBF3
xlDIF
xlExcel2FarEast
xlExcel4
xlAddIn
xlCSVMac
xlCSVWindows
xlDBF2
xlDBF4
xlExcel2
xlExcel3
xlExcel4Workbook
xlExcel5
xlExcel7
xlExcel9795
xlHtml
xlIntlAddIn
xlIntlMacro
xlSYLK
xlTemplate
xlTextMac
xlTextMSDOS

xlTextPrinter
xlTextWindows
xlUnicodeText
xlWebArchive
xlWJ2WD1
xlWJ3
xlWJ3FJ3
xlWK1
xlWK1ALL
xlWK1FMT
xlWK3
xlWK3FM3
xlWK4
xlWKS
xlWorkbookNormal
xlWorks2FarEast
xlWQ1
xlXMLSpreadsheet

expression.FileFormat

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

Remarks

Some	of	these	constants	may	not	be	available	to	you,	depending	on	the	language
support	(U.S.	English,	for	example)	that	you’ve	selected	or	installed.

Example

This	example	saves	the	active	workbook	in	Normal	file	format	if	its	current	file
format	is	WK3.

If	ActiveWorkbook.FileFormat	=	xlWK3	Then

				ActiveWorkbook.SaveAs	fileFormat:=xlNormal

End	If

FileName	Property
							

Returns	or	sets	the	URL	(on	the	intranet	or	the	Web)	or	path	(local	or	network)	to
the	location	where	the	specified	source	object	was	saved.	Read/write	String.

Remarks

The	FileName	property	generates	an	error	if	a	folder	in	the	specified	path
doesn’t	exist.

Example

This	example	sets	the	location	where	the	first	item	in	the	active	workbook	is	to
be	saved.

ActiveWorkbook.PublishObjects(1).FileName	=	_

				"\\Server2\Q1\StockReport.htm"

FileSearch	Property
							

Returns	a	FileSearch	object	for	use	with	file	searches.	This	property	is	available
only	in	Microsoft	Windows.

mk:@MSITStore:vbaof10.chm::/html/ofobjFileSearch.htm

Example

This	example	creates	a	FoundFiles	object	that	represents	all	the	Microsoft	Excel
workbooks	in	the	My	Documents	folder.

With	Application.FileSearch

				.LookIn	=	"c:\my	documents"

				.FileType	=	msoFileTypeExcelWorkbooks

				.Execute

End	With

Fill	Property
							

Returns	a	FillFormat	object	that	contains	fill	formatting	properties	for	the
specified	chart	or	shape.	Read-only.

Example

This	example	adds	a	rectangle	to	myDocument	and	then	sets	the	foreground	color,
background	color,	and	gradient	for	the	rectangle's	fill.

Set	myDocument	=	Worksheets(1)

With	myDocument.Shapes.AddShape(msoShapeRectangle,	_

								90,	90,	90,	50).Fill

				.ForeColor.RGB	=	RGB(128,	0,	0)

				.BackColor.RGB	=	RGB(170,	170,	170)

				.TwoColorGradient	msoGradientHorizontal,	1

End	With

FillAdjacentFormulas	Property
							

True	if	formulas	to	the	right	of	the	specified	query	table	are	automatically
updated	whenever	the	query	table	is	refreshed.	Read/write	Boolean.

Example

This	example	sets	query	table	one	so	that	formulas	to	the	right	of	it	are
automatically	updated	whenever	the	query	table	is	refreshed.

Sheets("sheet1").QueryTables(1).FillAdjacentFormulas	=	True

FilterMode	Property
							

True	if	the	worksheet	is	in	filter	mode.	Read-only	Boolean.

Remarks

This	property	is	True	if	the	worksheet	contains	a	filtered	list	in	which	there	are
hidden	rows.

Example

This	example	displays	the	filter	status	of	Sheet1	in	a	message	box.

If	Worksheets("Sheet1").FilterMode	=	True	Then

				MsgBox	"Filter	mode	is	on"

Else

				MsgBox	"Filter	mode	is	off"

End	If

Filters	Property
							

Returns	a	Filters	collection	that	represents	all	the	filters	in	an	autofiltered	range.
Read-only.

Example

The	following	example	sets	a	variable	to	the	value	of	the	Criteria1	property	of
the	filter	for	the	first	column	in	the	filtered	range	on	the	Crew	worksheet.

With	Worksheets("Crew")

				If	.AutoFilterMode	Then

								With	.AutoFilter.Filters(1)

												If	.On	Then	c1	=	.Criteria1

								End	With

				End	If

End	With

FindFormat	Property
							

Sets	or	returns	the	search	criteria	for	the	type	of	cell	formats	to	find.

expression.FindFormat

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

Example

In	this	example,	the	search	criteria	is	set	to	look	for	Arial,	Regular,	Size	10	font
cells	and	the	user	is	notified.

Sub	UseFindFormat()

				'	Establish	search	criteria.

				With	Application.FindFormat.Font

								.Name	=	"Arial"

								.FontStyle	=	"Regular"

								.Size	=	10

				End	With

				'	Notify	user.

				With	Application.FindFormat.Font

								MsgBox	.Name	&	"-"	&	.FontStyle	&	"-"	&	.Size	&	_

												"	font	is	what	the	search	criteria	is	set	to."

				End	With

End	Sub

FirstChild	Property
							

Returns	a	DiagramNode	object	that	represents	the	first	child	node	of	a	parent
node.

expression.FirstChild

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

Example

This	example	adds	an	organization	chart	diagram	to	the	current	worksheet,	adds
three	nodes,	and	assigns	the	first	and	last	child	nodes	to	variables.

Sub	FirstChild()

				Dim	shpDiagram	As	Shape

				Dim	dgnRoot	As	DiagramNode

				Dim	dgnFirstChild	As	DiagramNode

				Dim	dgnLastChild	As	DiagramNode

				Dim	intCount	As	Integer

				'Add	organizational	chart	diagram	to	the	current	document

				Set	shpDiagram	=	ActiveSheet.Shapes.AddDiagram(_

								Type:=msoDiagramOrgChart,	Left:=10,	_

								Top:=15,	Width:=400,	Height:=475)

				'Add	the	first	node	to	the	diagram

				Set	dgnRoot	=	shpDiagram.DiagramNode.Children.AddNode

				'Add	three	child	nodes

				For	intCount	=	1	To	3

								dgnRoot.Children.AddNode

				Next	intCount

				'Assign	the	first	and	last	child	nodes	to	variables

				Set	dgnFirstChild	=	dgnRoot.Children.FirstChild

				Set	dgnLastChild	=	dgnRoot.Children.LastChild

End	Sub

FirstPageNumber	Property
							

Returns	or	sets	the	first	page	number	that	will	be	used	when	this	sheet	is	printed.
If	xlAutomatic,	Microsoft	Excel	chooses	the	first	page	number.	The	default	is
xlAutomatic.	Read/write	Long.

Example

This	example	sets	the	first	page	number	of	Sheet1	to	100.

Worksheets("Sheet1").PageSetup.FirstPageNumber	=	100

FirstSliceAngle	Property
							

Returns	or	sets	the	angle	of	the	first	pie-chart	or	doughnut-chart	slice,	in	degrees
(clockwise	from	vertical).	Applies	only	to	pie,	3-D	pie,	and	doughnut	charts.
Read/write	Long.

Example

This	example	sets	the	angle	for	the	first	slice	in	chart	group	one	in	Chart1.	The
example	should	be	run	on	a	2-D	pie	chart.

Charts("Chart1").ChartGroups(1).FirstSliceAngle	=	15

FitToPagesTall	Property
							

Returns	or	sets	the	number	of	pages	tall	the	worksheet	will	be	scaled	to	when	it's
printed.	Applies	only	to	worksheets.	Read/write	Variant.

Remarks

If	this	property	is	False,	Microsoft	Excel	scales	the	worksheet	according	to	the
FitToPagesWide	property.

If	the	Zoom	property	is	True,	the	FitToPagesTall	property	is	ignored.

Example

This	example	causes	Microsoft	Excel	to	print	Sheet1	exactly	one	page	tall	and
wide.

With	Worksheets("Sheet1").PageSetup

				.Zoom	=	False

				.FitToPagesTall	=	1

				.FitToPagesWide	=	1

End	With

FitToPagesWide	Property
							

Returns	or	sets	the	number	of	pages	wide	the	worksheet	will	be	scaled	to	when
it's	printed.	Applies	only	to	worksheets.	Read/write	Variant.

Remarks

If	this	property	is	False,	Microsoft	Excel	scales	the	worksheet	according	to	the
FitToPagesTall	property.

If	the	Zoom	property	is	True,	the	FitToPagesWide	property	is	ignored.

Example

This	example	causes	Microsoft	Excel	to	print	Sheet1	exactly	one	page	wide	and
tall.

With	Worksheets("Sheet1").PageSetup

				.Zoom	=	False

				.FitToPagesTall	=	1

				.FitToPagesWide	=	1

End	With

FixedDecimal	Property
							

All	data	entered	after	this	property	is	set	to	True	will	be	formatted	with	the
number	of	fixed	decimal	places	set	by	the	FixedDecimalPlaces	property.
Read/write	Boolean.

Example

This	example	sets	the	FixedDecimal	property	to	True	and	then	sets	the
FixedDecimalPlaces	property	to	4.	Entering	"30000"	after	running	this	example
produces	"3"	on	the	worksheet,	and	entering	"12500"	produces	"1.25."

Application.FixedDecimal	=	True

Application.FixedDecimalPlaces	=	4

FixedDecimalPlaces	Property
							

Returns	or	sets	the	number	of	fixed	decimal	places	used	when	the	FixedDecimal
property	is	set	to	True.	Read/write	Long.

Example

This	example	sets	the	FixedDecimal	property	to	True	and	then	sets	the
FixedDecimalPlaces	property	to	4.	Entering	"30000"	after	running	this	example
produces	"3"	on	the	worksheet,	and	entering	"12500"	produces	"1.25."

Application.FixedDecimal	=	True

Application.FixedDecimalPlaces	=	4

Floor	Property
							

Returns	a	Floor	object	that	represents	the	floor	of	the	3-D	chart.	Read-only.

For	information	about	using	the	Floor	worksheet	function	in	Visual	Basic,	see
Using	Worksheet	Functions	in	Visual	Basic.

Example

This	example	sets	the	floor	color	of	Chart1	to	blue.	The	example	should	be	run
on	a	3-D	chart	(the	Floor	property	fails	on	2-D	charts).

Charts("Chart1").Floor.Interior.ColorIndex	=	5

FolderSuffix	Property
							

Returns	the	folder	suffix	that	Microsoft	Excel	uses	when	you	save	a	document	as
a	Web	page,	use	long	file	names,	and	choose	to	save	supporting	files	in	a
separate	folder	(that	is,	if	the	UseLongFileNames	and	OrganizeInFolder
properties	are	set	to	True).	Read-only	String.

expression.FolderSuffix

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

Remarks

Newly	created	documents	use	the	suffix	returned	by	the	FolderSuffix	property
of	the	DefaultWebOptions	object.	The	value	of	the	FolderSuffix	property	of
the	WebOptions	object	may	differ	from	that	of	the	DefaultWebOptions	object
if	the	document	was	previously	edited	in	a	different	language	version	of
Microsoft	Excel.	You	can	use	the	UseDefaultFolderSuffix	method	to	change	the
suffix	to	the	language	you	are	currently	using	in	Microsoft	Office.

By	default,	the	name	of	the	supporting	folder	is	the	name	of	the	Web	page	plus
an	underscore	(_),	a	period	(.),	or	a	hyphen	(-)	and	the	word	"files"	(appearing	in
the	language	of	the	version	of	Excel	in	which	the	file	was	saved	as	a	Web	page).
For	example,	suppose	that	you	use	the	Dutch	language	version	of	Excel	to	save	a
file	called	"Page1"	as	a	Web	page.	The	default	name	of	the	supporting	folder	is
Page1_bestanden.

The	following	table	lists	each	language	version	of	Office,	and	gives	its
corresponding	LanguageID	property	value	and	folder	suffix.	For	the	languages
that	are	not	listed	in	the	table,	the	suffix	".files"	is	used.

Language LanguageID Folder	suffix
Arabic 1025 .files
Basque 1069 _fitxategiak
Brazilian 1046 _arquivos
Bulgarian 1026 .files
Catalan 1027 _fitxers
Chinese	-	Simplified 2052 .files
Chinese	-	Traditional 1028 .files
Croatian 1050 _datoteke
Czech 1029 _soubory
Danish 1030 -filer
Dutch 1043 _bestanden
English 1033 _files
Estonian 1061 _failid
Finnish 1035 _tiedostot

French 1036 _fichiers
German 1031 -Dateien
Greek 1032 .files
Hebrew 1037 .files
Hungarian 1038 _elemei
Italian 1040 -file
Japanese 1041 .files
Korean 1042 .files
Latvian 1062 _fails
Lithuanian 1063 _bylos
Norwegian 1044 -filer
Polish 1045 _pliki
Portuguese 2070 _ficheiros
Romanian 1048 .files
Russian 1049 .files
Serbian	(Cyrillic) 3098 .files
Serbian	(Latin) 2074 _fajlovi
Slovakian 1051 .files
Slovenian 1060 _datoteke
Spanish 3082 _archivos
Swedish 1053 -filer
Thai 1054 .files
Turkish 1055 _dosyalar
Ukranian 1058 .files
Vietnamese 1066 .files

Example

This	example	returns	the	folder	suffix	used	by	the	first	workbook.	The	suffix	is
returned	in	the	string	variable	strFolderSuffix.

strFolderSuffix	=	Workbooks(1).WebOptions.FolderSuffix

Show	All

Font	Property
							

Font	property	as	it	applies	to	the	CellFormat	object.

Returns	a	Font	object,	allowing	the	user	to	set	or	return	the	search	criteria	based
on	the	cell's	font	format.

expression.Font

expression			Required.	An	expression	that	returns	one	of	the	above	objects.

Font	property	as	it	applies	to	all	other	objects	in	the	Applies	To	list.

Returns	a	Font	object	that	represents	the	font	of	the	specified	object.

expression.Font

expression			Required.	An	expression	that	returns	one	of	the	above	objects.

Example

As	it	applies	to	the	CellFormat	object.

This	example	sets	the	search	criteria	to	identify	cells	that	contain	red	font,
creates	a	cell	with	this	condition,	finds	this	cell,	and	notifies	the	user.

Sub	SearchCellFormat()

				'	Set	the	search	criteria	for	the	font	of	the	cell	format.

				Application.FindFormat.Font.ColorIndex	=	3

				'	Set	the	color	index	of	the	font	for	cell	A5	to	red.

				Range("A5").Font.ColorIndex	=	3

				Range("A5").Formula	=	"Red	font"

				Range("A1").Select

				MsgBox	"Cell	A5	has	red	font"

				'	Find	the	cells	based	on	the	search	criteria.

				Cells.Find(What:="",	After:=ActiveCell,	LookIn:=xlFormulas,	LookAt:=	_

								xlPart,	SearchOrder:=xlByRows,	SearchDirection:=xlNext,	MatchCase:=False	_

								,	SearchFormat:=True).Activate

				MsgBox	"Microsoft	Excel	has	found	this	cell	matching	the	search	criteria."

End	Sub

As	it	applies	to	all	other	objects	in	the	Applies	To	list.

This	example	determines	the	if	the	font	name	for	cell	A1	is	Arial	and	notifies	the
user.

Sub	CheckFont()

				Range("A1").Select

				'	Determine	if	the	font	name	for	selected	cell	is	Arial.

				If	Range("A1").Font.Name	=	"Arial"	Then

								MsgBox	"The	font	name	for	this	cell	is	'Arial'"

				Else

								MsgBox	"The	font	name	for	this	cell	is	not	'Arial'"

				End	If

End	Sub

FontBold	Property
							

True	if	the	font	in	the	specified	WordArt	is	bold.	Read/write	MsoTriState.

MsoTriState	can	be	one	of	these	MsoTriState	constants.
msoCTrue
msoFalse
msoTriStateMixed
msoTriStateToggle
msoTrue	The	specified	WordArt	is	bold.

expression.FontBold

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

Example

This	example	sets	the	font	to	bold	for	shape	three	on	myDocument	if	the	shape	is
WordArt.

Set	myDocument	=	Worksheets(1)

With	myDocument.Shapes(3)

				If	.Type	=	msoTextEffect	Then

								.TextEffect.FontBold	=	msoTrue

				End	If

End	With

Show	All

FontItalic	Property
							

Returns	msoTrue	if	the	font	in	the	specified	WordArt	is	italic.	Read/write
MsoTriState.

MsoTriState	can	be	one	of	these	MsoTriState	constants.
msoCTrue		Does	not	apply	to	this	property.
msoFalse	The	specified	WordArt	is	not	italic.
msoTriStateMixed			Does	not	apply	to	this	property.
msoTriStateToggle		Does	not	apply	to	this	property.
msoTrue	The	specified	WordArt	is	italic.

expression.FontBold

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

Example

This	example	sets	the	font	to	italic	for	the	shape	named	"WordArt	4"	in
myDocument.

Set	myDocument	=	Worksheets(1)

myDocument.Shapes("WordArt	4").TextEffect.FontItalic	=	msoTrue

FontName	Property
							

Returns	or	sets	the	name	of	the	font	in	the	specified	WordArt.	Read/write	String.

Example

This	example	sets	the	font	name	to	"Courier	New"	for	shape	three	on
myDocument	if	the	shape	is	WordArt.

Set	myDocument	=	Worksheets(1)

With	myDocument.Shapes(3)

				If	.Type	=	msoTextEffect	Then

								.TextEffect.FontName	=	"Courier	New"

				End	If

End	With

Fonts	Property
							

Returns	the	WebPageFonts	collection	representing	the	set	of	fonts	Microsoft
Excel	uses	when	you	open	a	Web	page	in	Excel	and	there	is	either	no	font
information	specified	in	the	Web	page,	or	the	current	default	font	can't	display
the	character	set	in	the	Web	page.	Read-only.

mk:@MSITStore:vbaof10.chm::/html/ofobjWebPageFonts.htm

Example

This	example	sets	the	default	fixed-width	font	for	the	English/Western
European/Other	Latin	Script	character	set	to	Courier	New,	14	points.

With	Application.DefaultWebOptions	_

				.Fonts(msoCharacterSetEnglishWesternEuropeanOtherLatinScript)

								.FixedWidthFont	=	"Courier	New"

								.FixedWidthFontSize	=	14

End	With

FontSize	Property
							

Returns	or	sets	the	font	size	for	the	specified	WordArt,	in	points.	Read/write
Single.

Example

This	example	sets	the	font	size	to	16	points	for	the	shape	named	"WordArt	4"	in
myDocument.

Set	myDocument	=	Worksheets(1)

myDocument.Shapes("WordArt	4").TextEffect.FontSize	=	16

FontStyle	Property
							

Returns	or	sets	the	font	style.	Read/write	String.

Remarks

Changing	this	property	may	affect	other	Font	properties	(such	as	Bold	and
Italic).

Example

This	example	sets	the	font	style	for	cell	A1	on	Sheet1	to	bold	and	italic.

Worksheets("Sheet1").Range("A1").Font.FontStyle	=	"Bold	Italic"

Show	All

FooterMargin	Property
							

Returns	or	sets	the	distance	from	the	bottom	of	the	page	to	the	footer,	in	points.
Read/write	Double.

Example

This	example	sets	the	footer	margin	of	Sheet1	to	0.5	inch.

Worksheets("Sheet1").PageSetup.FooterMargin	=	_

								Application.InchesToPoints(0.5)

Show	All

ForeColor	Property
							

ForeColor	property	as	it	applies	to	the	ChartFillFormat	object.

Returns	a	ChartColorFormat	object	that	represents	the	specified	foreground	fill
or	solid	color.	Read-only	ChartColorFormat	object.

expression.ForeColor

expression			Required.	An	expression	that	returns	one	of	the	above	objects.

	

ForeColor	property	as	it	applies	to	the	FillFormat,	LineFormat,	and
ShadowFormat	objects.

Returns	a	ColorFormat	object	that	represents	the	specified	foreground	fill	or
solid	color.	Read/write	ColorFormat	object.

expression.ForeColor

expression			Required.	An	expression	that	returns	one	of	the	above	objects.

	

Example

This	example	sets	the	foreground	color,	background	color,	and	gradient	for	the
chart	area	fill	on	chart	one.

With	Charts(1).ChartArea.Fill

				.Visible	=	True

				.ForeColor.SchemeColor	=	15

				.BackColor.SchemeColor	=	17

				.TwoColorGradient	msoGradientHorizontal,	1

End	With

FormatConditions	Property
							

Returns	a	FormatConditions	collection	that	represents	all	the	conditional
formats	for	the	specified	range.	Read-only.

For	more	information	about	returning	an	individual	member	of	a	collection,	see
Returning	an	Object	from	a	Collection.

Example

This	example	modifies	an	existing	conditional	format	for	cells	E1:E10.

Worksheets(1).Range("e1:e10").FormatConditions(1)	_

				.Modify	xlCellValue,	xlLess,	"=a1"

Show	All

FormControlType	Property
							

Returns	the	Microsoft	Excel	control	type.	Read-only	XlFormControl.

XlFormControl	can	be	one	of	these	XlFormControl	constants.
xlButtonControl
xlCheckBox
xlDropDown
xlEditBox
xlGroupBox
xlLabel
xlListBox
xlOptionButton
xlScrollBar
xlSpinner

expression.FormControlType

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

Remarks

You	cannot	use	this	property	with	ActiveX	controls	(the	Type	property	for	the
Shape	object	must	return	msoFormControl).

Example

This	example	clears	all	the	Microsoft	Excel	check	boxes	on	worksheet	one.

For	Each	s	In	Worksheets(1).Shapes

				If	s.Type	=	msoFormControl	Then

								If	s.FormControlType	=	xlCheckBox	Then	_

												s.ControlFormat.Value	=	False

				End	If

Next

Show	All

Formula	Property
							

Formula	property	as	it	applies	to	the	PivotField,	PivotFormula,	PivotItem,
and	Series	objects.

Returns	or	sets	the	object's	formula	in	A1-style	notation	and	in	the	language	of
the	macro.	Read/write	String.

expression.Formula

expression			Required.	An	expression	that	returns	one	of	the	above	objects.

Formula	property	as	it	applies	to	the	CalculatedMember	object.

Returns	the	member's	formula	in	multidimensional	expressions	(MDX)	syntax.
Read-only	String.

expression.Formula

expression			Required.	An	expression	that	returns	a	CalculatedMember	object.

Formula	property	as	it	applies	to	the	Range	object.

Returns	or	sets	the	object's	formula	in	A1-style	notation	and	in	the	language	of
the	macro.	Read/write	Variant.

expression.Formula

expression			Required.	An	expression	that	returns	a	Range	object.

Remarks

This	property	is	not	available	for	OLAP	data	sources.

If	the	cell	contains	a	constant,	this	property	returns	the	constant.	If	the	cell	is
empty,	this	Formula	property	returns	an	empty	string.	If	the	cell	contains	a
formula,	the	Formula	property	returns	the	formula	as	a	string	in	the	same	format
that	would	be	displayed	in	the	formula	bar	(including	the	equal	sign).

If	you	set	the	value	or	formula	of	a	cell	to	a	date,	Microsoft	Excel	checks	to	see
whether	that	cell	is	already	formatted	with	one	of	the	date	or	time	number
formats.	If	not,	Microsoft	Excel	changes	the	number	format	to	the	default	short
date	number	format.

If	the	range	is	a	one-	or	two-dimensional	range,	you	can	set	the	formula	to	a
Visual	Basic	array	of	the	same	dimensions.	Similarly,	you	can	put	the	formula
into	a	Visual	Basic	array.

Setting	the	formula	for	a	multiple-cell	range	fills	all	cells	in	the	range	with	the
formula.

Example

As	it	applies	to	the	Range	object.

This	example	sets	the	formula	for	cell	A1	on	Sheet1.

Worksheets("Sheet1").Range("A1").Formula	=	"=A4+A10"

Formula1	Property
							

Returns	the	value	or	expression	associated	with	the	conditional	format	or	data
validation.	Can	be	a	constant	value,	a	string	value,	a	cell	reference,	or	a	formula.
Read-only	String.

Example

This	example	changes	the	formula	for	conditional	format	one	for	cells	E1:E10	if
the	formula	specifies	“less	than	5.”

With	Worksheets(1).Range("e1:e10").FormatConditions(1)

				If	.Operator	=	xlLess	And	.Formula1	=	"5"	Then

								.Modify	xlCellValue,	xlLess,	"10"

				End	If

End	With

Formula2	Property
							

Returns	the	value	or	expression	associated	with	the	second	part	of	a	conditional
format	or	data	validation.	Used	only	when	the	data	validation	conditional	format
Operator	property	is	xlBetween	or	xlNotBetween.	Can	be	a	constant	value,	a
string	value,	a	cell	reference,	or	a	formula.	Read-only	String.

Example

This	example	changes	the	formula	for	conditional	format	one	for	cells	E1:E10	if
the	formula	specifies	“between	5	and	10"

With	Worksheets(1).Range("e1:e10").FormatConditions(1)

				If	.Operator	=	xlBetween	And	_

												.Formula1	=	"5"	And	_

												.Formula2	=	"10"	Then

								.Modify	xlCellValue,	xlLess,	"10"

				End	If

End	With

FormulaArray	Property
							

Returns	or	sets	the	array	formula	of	a	range.	Returns	(or	can	be	set	to)	a	single
formula	or	a	Visual	Basic	array.	If	the	specified	range	doesn't	contain	an	array
formula,	this	property	returns	Null.	Read/write	Variant.

Remarks

If	you	use	this	property	to	enter	an	array	formula,	the	formula	must	use	the	R1C1
reference	style,	not	the	A1	reference	style	(see	the	second	example).

Example

This	example	enters	the	number	3	as	an	array	constant	in	cells	A1:C5	on	Sheet1.

Worksheets("Sheet1").Range("A1:C5").FormulaArray	=	"=3"

This	example	enters	the	array	formula	=SUM(R1C1:R3C3)	in	cells	E1:E3	on
Sheet1.

Worksheets("Sheet1").Range("E1:E3").FormulaArray	=	_

				"=Sum(R1C1:R3C3)"

Show	All

FormulaHidden	Property
							

FormulaHidden	property	as	it	applies	to	the	Style	object.

True	if	the	formula	will	be	hidden	when	the	worksheet	is	protected.	Read/write
Boolean.

expression.FormulaHidden

expression			Required.	An	expression	that	returns	a	Style	object.

FormulaHidden	property	as	it	applies	to	the	CellFormat	and	Range	objects.

True	if	the	formula	will	be	hidden	when	the	worksheet	is	protected.	Returns
Null	if	the	specified	range	contains	some	cells	with	FormulaHidden	equal	to
True	and	some	cells	with	FormulaHidden	equal	to	False.	Read/write	Variant.

expression.FormulaHidden

expression			Required.	An	expression	that	returns	one	of	the	above	obects.

Remarks

Don’t	confuse	this	property	with	the	Hidden	property.	The	formula	will	not	be
hidden	if	the	workbook	is	protected	and	the	worksheet	is	not,	but	only	if	the
worksheet	is	protected.

Example

As	it	applies	to	the	CellFormat	and	Range	objects.

This	example	hides	the	formulas	in		cells	A1	and	B1	on	Sheet1	when	the
worksheet	is	protected.

Sub	HideFormulas()

				Worksheets("Sheet1").Range("A1:B1").FormulaHidden	=	True

End	Sub

FormulaLabel	Property
							

Returns	or	sets	the	formula	label	type	for	the	specified	range.	Can	be	xlNone	if
the	range	contains	no	labels,	or	one	of	the	following	XlFormulaLabel	constants.
Read/write	XlFormulaLabel.

XlFormulaLabel	can	be	one	of	these	XlFormulaLabel	constants.
xlColumnLabels
xlMixedLabels
xlNoLabels
xlRowLabels

expression.FormulaLabel

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

Example

This	example	topic	sets	the	AcceptLabelsInFormulas	property	and	then	sets
cells	B1:D1	to	be	column	labels.

ActiveWorkbook.AcceptLabelsInFormulas	=	True

Worksheets(1).Range("b1:d1").FormulaLabel	=	xlColumnLabels

FormulaLocal	Property
							

Returns	or	sets	the	formula	for	the	object,	using	A1-style	references	in	the
language	of	the	user.	Read/write	Variant	for	Range	objects,	read/write	String
for	Series	objects.

Remarks

If	the	cell	contains	a	constant,	this	property	returns	that	constant.	If	the	cell	is
empty,	the	property	returns	an	empty	string.	If	the	cell	contains	a	formula,	the
property	returns	the	formula	as	a	string,	in	the	same	format	in	which	it	would	be
displayed	in	the	formula	bar	(including	the	equal	sign).

If	you	set	the	value	or	formula	of	a	cell	to	a	date,	Microsoft	Excel	checks	to	see
whether	that	cell	is	already	formatted	with	one	of	the	date	or	time	number
formats.	If	not,	the	number	format	is	changed	to	the	default	short	date	number
format.

If	the	range	is	a	one-	or	two-dimensional	range,	you	can	set	the	formula	to	a
Visual	Basic	array	of	the	same	dimensions.	Similarly,	you	can	put	the	formula
into	a	Visual	Basic	array.

Setting	the	formula	of	a	multiple-cell	range	fills	all	cells	in	the	range	with	the
formula.

Example

Assume	that	you	enter	the	formula	=SUM(A1:A10)	in	cell	A11	on	worksheet
one,	using	the	American	English	version	of	Microsoft	Excel.	If	you	then	open
the	workbook	on	a	computer	that's	running	the	German	version	and	run	the
following	example,	the	example	displays	the	formula	=SUMME(A1:A10)	in	a
message	box.

MsgBox	Worksheets(1).Range(A11).FormulaLocal

FormulaR1C1	Property
							

Returns	or	sets	the	formula	for	the	object,	using	R1C1-style	notation	in	the
language	of	the	macro.	Read/write	Variant	for	Range	objects,	read/write	String
for	Series	objects.

Remarks

If	the	cell	contains	a	constant,	this	property	returns	the	constant.	If	the	cell	is
empty,	the	property	returns	an	empty	string.	If	the	cell	contains	a	formula,	the
property	returns	the	formula	as	a	string,	in	the	same	format	in	which	it	would	be
displayed	in	the	formula	bar	(including	the	equal	sign).

If	you	set	the	value	or	formula	of	a	cell	to	a	date,	Microsoft	Excel	checks	to	see
whether	that	cell	is	already	formatted	with	one	of	the	date	or	time	number
formats.	If	not,	the	number	format	is	changed	to	the	default	short	date	number
format.

If	the	range	is	a	one-	or	two-dimensional	range,	you	can	set	the	formula	to	a
Visual	Basic	array	of	the	same	dimensions.	Similarly,	you	can	put	the	formula
into	a	Visual	Basic	array.

Setting	the	formula	of	a	multiple-cell	range	fills	all	cells	in	the	range	with	the
formula.

Example

This	example	sets	the	formula	for	cell	B1	on	Sheet1.

Worksheets("Sheet1").Range("B1").FormulaR1C1	=	"=SQRT(R1C1)"

FormulaR1C1Local	Property
							

Returns	or	sets	the	formula	for	the	object,	using	R1C1-style	notation	in	the
language	of	the	user.	Read/write	Variant	for	Range	objects,	read/write	String
for	Series	objects.

Remarks

If	the	cell	contains	a	constant,	this	property	returns	that	constant.	If	the	cell	is
empty,	the	property	returns	an	empty	string.	If	the	cell	contains	a	formula,	the
property	returns	the	formula	as	a	string,	in	the	same	format	in	which	it	would	be
displayed	in	the	formula	bar	(including	the	equal	sign).

If	you	set	the	value	or	formula	of	a	cell	to	a	date,	Microsoft	Excel	checks	to	see
whether	that	cell	is	already	formatted	with	one	of	the	date	or	time	number
formats.	If	not,	the	number	format	is	changed	to	the	default	short	date	number
format.

If	the	range	is	a	one-	or	two-dimensional	range,	you	can	set	the	formula	to	a
Visual	Basic	array	of	the	same	dimensions.	Similarly,	you	can	put	the	formula
into	a	Visual	Basic	array.

Setting	the	formula	of	a	multiple-cell	range	fills	all	cells	in	the	range	with	the
formula.

Example

Assume	that	you	enter	the	formula	=SUM(A1:A10)	in	cell	A11	on	worksheet
one,	using	the	American	English	version	of	Microsoft	Excel.	If	you	then	open
the	workbook	on	a	computer	that's	running	the	German	version	and	run	the
following	example,	the	example	displays	the	formula	=SUMME(Z1S1:Z10S1)
in	a	message	box.

MsgBox	Worksheets(1).Range("A11").FormulaR1C1Local

Forward	Property
							

Returns	or	sets	the	number	of	periods	(or	units	on	a	scatter	chart)	that	the
trendline	extends	forward.	Read/write	Long.

Example

This	example	sets	the	number	of	units	that	the	trendline	on	Chart1	extends
forward	and	backward.	The	example	should	be	run	on	a	2-D	column	chart	that
contains	a	single	series	with	a	trendline.

With	Charts("Chart1").SeriesCollection(1).Trendlines(1)

				.Forward	=	5

				.Backward	=	.5

End	With

FreezePanes	Property
							

True	if	split	panes	are	frozen.	Read/write	Boolean.

Remarks

It’s	possible	for	FreezePanes	to	be	True	and	Split	to	be	False,	or	vice	versa.

This	property	applies	only	to	worksheets	and	macro	sheets.

Example

This	example	freezes	split	panes	in	the	active	window	in	Book1.xls.

Workbooks("BOOK1.XLS").Worksheets("Sheet1").Activate

ActiveWindow.FreezePanes	=	True

FullName	Property
							

Returns	the	name	of	the	object,	including	its	path	on	disk,	as	a	string.	Read-only
String.

Remarks

This	property	is	equivalent	to	the	Path	property,	followed	by	the	current	file
system	separator,	followed	by	the	Name	property.

Example

This	example	displays	the	path	and	file	name	of	every	available	add-in.

For	Each	a	In	AddIns

				MsgBox	a.FullName

Next	a

This	example	displays	the	path	and	file	name	of	the	active	workbook	(assuming
that	the	workbook	has	been	saved).

MsgBox	ActiveWorkbook.FullName

FullNameURLEncoded	Property
							

Returns	a	String	indicating	the	name	of	the	object,	including	its	path	on	disk,	as
a	string.	Read-only.

expression.FullNameURLEncoded

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

Example

In	this	example,	Microsoft	Excel	displays	the	path	and	file	name	of	the	active
workbook	to	the	user.

Sub	UseCanonical()

				'	Display	the	full	path	to	user.

				MsgBox	ActiveWorkbook.FullNameURLEncoded

End	Sub

Show	All

Function	Property
							

Returns	or	sets	the	function	used	to	summarize	the	PivotTable	field	(data	fields
only).	Read/write	XlConsolidationFunction.

XlConsolidationFunction	can	be	one	of	these	XlConsolidationFunction
constants.
xlAverage
xlCountNums
xlMin
xlStDev
xlSum
xlVar
xlCount
xlMax
xlProduct
xlStDevP
xlUnknown
xlVarP

expression.Function

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

Remarks

For	OLAP	data	sources,	this	property	is	read-only	and	always	returns
xlUnknown.	For	other	data	sources,	this	property	cannot	be	set	to	xlUnknown.

Example

This	example	sets	the	Sum	of	1994	field	in	the	first	PivotTable	report	on	the
active	sheet	to	use	the	SUM	function.

ActiveSheet.PivotTables("PivotTable1")	_

				.PivotFields("Sum	of	1994").Function	=	xlSum

Gap	Property
							

Returns	or	sets	the	horizontal	distance	(in	points)	between	the	end	of	the	callout
line	and	the	text	bounding	box.	Read/write	Single.

Example

This	example	sets	the	distance	between	the	callout	line	and	the	text	bounding
box	to	3	points	for	shape	one	on	myDocument.	For	the	example	to	work,	shape
one	must	be	a	callout.

Set	myDocument	=	Worksheets(1)

myDocument.Shapes(1).Callout.Gap	=	3

GapDepth	Property
							

Returns	or	sets	the	distance	between	the	data	series	in	a	3-D	chart,	as	a
percentage	of	the	marker	width.	The	value	of	this	property	must	be	between	0
and	500.	Read/write	Long.

Example

This	example	sets	the	distance	between	the	data	series	in	Chart1	to	200	percent
of	the	marker	width.	The	example	should	be	run	on	a	3-D	chart	(the	GapDepth
property	fails	on	2-D	charts).

Charts("Chart1").GapDepth	=	200

GapWidth	Property
							

Bar	and	Column	charts:	Returns	or	sets	the	space	between	bar	or	column
clusters,	as	a	percentage	of	the	bar	or	column	width.	The	value	of	this	property
must	be	between	0	and	500.	Read/write	Long.

Pie	of	Pie	and	Bar	of	Pie	charts:	Returns	or	sets	the	space	between	the	primary
and	secondary	sections	of	the	chart.	The	value	of	this	property	must	be	between
5	and	200.	Read/write	Long.

Example

This	example	sets	the	space	between	column	clusters	in	Chart1	to	be	50	percent
of	the	column	width.

Charts("Chart1").ChartGroups(1).GapWidth	=	50

GenerateGetPivotData	Property
							

Returns	True	when	Microsoft	Excel	can	get	PivotTable	report	data.	Read/write
Boolean.

expression.GenerateGetPivotData

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

Example

In	the	following	example,	Microsoft	Excel	determines	the	status	of	getting
PivotTable	report	data	and	notifies	the	user.	This	example	assumes	a	PivotTable
report	exists	on	the	active	worksheet.

Sub	PivotTableInfo()

				'	Determine	the	ability	to	get	PivotTable	report	data	and	notify	user.

				If	Application.GenerateGetPivotData	=	True	Then

								MsgBox	"The	ability	to	get	PivotTable	report	data	is	enabled."

				Else

								Msgbox	"The	ability	to	get	PivotTable	report	data	is	disabled."

				End	If

End	Sub

GermanPostReform	Property
							

True	to	check	the	spelling	of	words	using	the	German	post-reform	rules.	False
cancels	this	feature.	Read/write	Boolean.

expression.GermanPostReform

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

Example

In	this	example,	Microsoft	Excel	determines	if	the	checking	of	spelling	for
German	words	is	using	post-reform	rules	and	enables	this	feature	if	it's	not
enabled,	and	then	notifies	the	user	on	the	status.

Sub	SpellingCheck()

				'	Determine	if	spelling	check	for	German	words	is	using	post-reform	rules.

				If	Application.SpellingOptions.GermanPostReform	=	False	Then

								Application.SpellingOptions.GermanPostReform	=	True

								MsgBox	"German	words	will	now	use	post-reform	rules."

				Else

								MsgBox	"German	words	using	post-reform	rules	has	already	been	set."

				End	If

End	Sub

GradientColorType	Property
							

Returns	the	gradient	color	type	for	the	specified	fill.	Read-only
MsoGradientColorType.

MsoGradientColorType	can	be	one	of	these	MsoGradientColorType	constants.
msoGradientColorMixed
msoGradientOneColor
msoGradientPresetColors
msoGradientTwoColors

expression.GradientColorType

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

Example

This	example	sets	the	fill	format	for	chart	two	to	the	same	style	used	for	chart
one.

Set	c1f	=	Charts(1).ChartArea.Fill

If	c1f.Type	=	msoFillGradient	And	_

								c1f.GradientColorType	=	msoGradientOneColor	Then

				With	Charts(2).ChartArea.Fill

								.Visible	=	True

								.OneColorGradient	c1f.GradientStyle,	_

												c1f.GradientVariant,	c1f.GradientDegree

				End	With

End	If

GradientDegree	Property
							

Returns	the	gradient	degree	of	the	specified	one-color	shaded	fill	as	a	floating-
point	value	from	0.0	(dark)	through	1.0	(light).	Read-only	Single.

This	property	is	read-only.	Use	the	OneColorGradient	method	to	set	the
gradient	degree	for	the	fill.

Example

This	example	sets	the	fill	format	for	chart	two	to	the	same	style	used	for	chart
one.

Set	c1f	=	Charts(1).ChartArea.Fill

If	c1f.Type	=	msoFillGradient	And	_

								c1f.GradientColorType	=	msoGradientOneColor	Then

				With	Charts(2).ChartArea.Fill

								.Visible	=	True

								.OneColorGradient	c1f.GradientStyle,	_

												c1f.GradientVariant,	c1f.GradientDegree

				End	With

End	If

GradientVariant	Property
							

Returns	the	shade	variant	for	the	specified	fill	as	an	integer	value	from	1	through
4.	The	values	for	this	property	correspond	to	the	gradient	variants	(numbered
from	left	to	right	and	from	top	to	bottom)	on	the	Gradient	tab	in	the	Fill	Effects
dialog	box.	Read-only	Long.

This	property	is	read-only.	Use	the	OneColorGradient	or	TwoColorGradient
method	to	set	the	gradient	variant	for	the	fill.

Example

This	example	sets	the	fill	format	for	chart	two	to	the	same	style	used	for	chart
one.

Set	c1f	=	Charts(1).ChartArea.Fill

If	c1f.Type	=	msoFillGradient	And	_

								c1f.GradientColorType	=	msoGradientOneColor	Then

				With	Charts(2).ChartArea.Fill

								.Visible	=	True

								.OneColorGradient	c1f.GradientStyle,	_

												c1f.GradientVariant,	c1f.GradientDegree

				End	With

End	If

GrandTotalName	Property
							

Returns	or	sets	the	text	string	label	that	is	displayed	in	the	grand	total	column	or
row	heading	in	the	specified	PivotTable	report.	The	default	value	is	the	string
"Grand	Total".	Read/write	String.

Example

This	example	sets	the	grand	total	heading	label	to	"Regional	Total"	in	the	second
PivotTable	report	on	the	active	worksheet.

ActiveSheet.PivotTables("PivotTable2").GrandTotalName	=	"Regional	Total"

GridlineColor	Property
							

Returns	or	sets	the	gridline	color	as	an	RGB	value.	Read/write	Long.

Example

This	example	sets	the	gridline	color	in	the	active	window	in	Book1.xls	to	red.

Workbooks("BOOK1.XLS").Worksheets("Sheet1").Activate

ActiveWindow.GridlineColor	=	RGB(255,0,0)

Show	All

GridlineColorIndex	Property
							

Returns	or	sets	the	gridline	color	as	an	index	into	the	current	color	palette	or	as
the	following	XlColorIndex	constant.

XlColorIndex	can	be	the	following	XlColorIndex	constant.
xlColorIndexAutomatic

expression.GridlineColorIndex

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

Remarks

Set	this	property	to	xlColorIndexAutomatic	to	specify	the	automatic	color.

The	following	illustration	shows	the	color-index	values	in	the	default	color
palette.

Example

This	example	sets	the	gridline	color	in	the	active	window	to	blue.

ActiveWindow.GridlineColorIndex	=	5

GroupItems	Property
							

Returns	a	GroupShapes	object	that	represents	the	individual	shapes	in	the
specified	group.	Use	the	Item	method	of	the	GroupShapes	object	to	return	a
single	shape	from	the	group.	Applies	to	Shape	or	ShapeRange	objects	that
represent	grouped	shapes.	Read-only.

Example

This	example	adds	three	triangles	to	myDocument,	groups	them,	sets	a	color	for
the	entire	group,	and	then	changes	the	color	for	the	second	triangle	only.

Set	myDocument	=	Worksheets(1)

With	myDocument.Shapes

				.AddShape(msoShapeIsoscelesTriangle,	_

								10,	10,	100,	100).Name	=	"shpOne"

				.AddShape(msoShapeIsoscelesTriangle,	_

								150,	10,	100,	100).Name	=	"shpTwo"

				.AddShape(msoShapeIsoscelesTriangle,	_

								300,	10,	100,	100).Name	=	"shpThree"

				With	.Range(Array("shpOne",	"shpTwo",	"shpThree")).Group

								.Fill.PresetTextured	msoTextureBlueTissuePaper

								.GroupItems(2).Fill.PresetTextured	msoTextureGreenMarble

				End	With

End	With

Show	All

GroupLevel	Property
							

Returns	the	placement	of	the	specified	field	within	a	group	of	fields	(if	the	field
is	a	member	of	a	grouped	set	of	fields).	Read-only.

Remarks

This	property	is	not	available	for	OLAP	data	sources.

The	highest-level	parent	field	(leftmost	parent	field)	is	level	one,	its	child	is	level
two,	and	so	on.

Example

This	example	displays	a	message	box	if	the	field	that	contains	the	active	cell	is
the	highest-level	parent	field.

Worksheets("Sheet1").Activate

If	ActiveCell.PivotField.GroupLevel	=	1	Then

				MsgBox	"This	is	the	highest-level	parent	field."

End	If

Has3DEffect	Property
							

True	if	the	series	has	a	three-dimensional	appearance.	Applies	only	to	bubble
charts.	Read/write	Boolean.

Example

This	example	gives	series	one	on	the	embedded	bubble	chart	a	three-dimensional
appearance.

With	Worksheets(1).ChartObjects(1).Chart

				.SeriesCollection(1).Has3DEffect	=	True

End	With

Has3DShading	Property
							

True	if	the	chart	group	has	three-dimensional	shading.	Read/write	Boolean.

Example

This	example	adds	three-dimensional	shading	to	chart	group	one	on	chart	one.

Charts(1).ChartGroups(1).Has3DShading	=	True

HasArray	Property
							

True	if	the	specified	cell	is	part	of	an	array	formula.	Read-only	Variant.

Example

This	example	displays	a	message	if	the	active	cell	on	Sheet1	is	part	of	an	array.

Worksheets("Sheet1").Activate

If	ActiveCell.HasArray	=True	Then

				MsgBox	"The	active	cell	is	part	of	an	array"

End	If

HasAutoFormat	Property
							

True	if	the	PivotTable	report	is	automatically	formatted	when	it’s	refreshed	or
when	fields	are	moved.	Read/write	Boolean.

Example

This	example	causes	the	PivotTable	report	to	be	automatically	reformatted	when
it’s	refreshed	or	when	fields	are	moved.

Set	pvtTable	=	Worksheets("Sheet1").Range("A3").PivotTable

pvtTable.HasAutoFormat	=	True

Show	All

HasAxis	Property
							

Returns	or	sets	which	axes	exist	on	the	chart.	Read/write	Variant.

expression.HasAxis(Index1,	Index2)

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

Index1		Optional	Variant.	The	axis	type.	Series	axes	apply	only	to	3-D	charts.
Can	be	one	of	the	XlAxisType	constants.

XlAxisType	can	be	one	of	the	following	XlAxisType	constants.
xlCategory
xlValue
xlSeriesAxis

Index2		Optional	Variant.	The	axis	group.	3-D	charts	have	only	one	set	of	axes.
Can	be	one	of	the	XlAxisGroup	constants.

XlAxisGroup	can	be	one	of	the	following	XlAxisGroup	constants.
xlPrimary
xlSecondary

Remarks

Microsoft	Excel	may	create	or	delete	axes	if	you	change	the	chart	type	or	the
AxisGroup	property.

Example

This	example	turns	on	the	primary	value	axis	for	Chart1.

Charts("Chart1").HasAxis(xlValue,	xlPrimary)	=	True

HasBorderHorizontal	Property
							

True	if	the	chart	data	table	has	horizontal	cell	borders.	Read/write	Boolean.

Example

This	example	causes	the	embedded	chart	data	table	to	be	displayed	with	an
outline	border	and	no	cell	borders.

With	Worksheets(1).ChartObjects(1).Chart

				.HasDataTable	=	True

				With	.DataTable

								.HasBorderHorizontal	=	False

								.HasBorderVertical	=	False

								.HasBorderOutline	=	True

				End	With

End	With

HasBorderOutline	Property
							

True	if	the	chart	data	table	has	outline	borders.	Read/write	Boolean.

Example

This	example	causes	the	embedded	chart	data	table	to	be	displayed	with	an
outline	border	and	no	cell	borders.

With	Worksheets(1).ChartObjects(1).Chart

				.HasDataTable	=	True

				With	.DataTable

								.HasBorderHorizontal	=	False

								.HasBorderVertical	=	False

								.HasBorderOutline	=	True

				End	With

End	With

HasBorderVertical	Property
							

True	if	the	chart	data	table	has	vertical	cell	borders.	Read/write	Boolean.

Example

This	example	causes	the	embedded	chart	data	table	to	be	displayed	with	an
outline	border	and	no	cell	borders.

With	Worksheets(1).ChartObjects(1).Chart

				.HasDataTable	=	True

				With	.DataTable

								.HasBorderHorizontal	=	False

								.HasBorderVertical	=	False

								.HasBorderOutline	=	True

				End	With

End	With

HasDataLabel	Property
							

True	if	the	point	has	a	data	label.	Read/write	Boolean.

Example

This	example	turns	on	the	data	label	for	point	seven	in	series	three	in	Chart1,	and
then	it	sets	the	data	label	color	to	blue.

With	Charts("Chart1").SeriesCollection(3).Points(7)

				.HasDataLabel	=	True

				.ApplyDataLabels	Type:=xlValue

				.DataLabel.Font.ColorIndex	=	5

End	With	

HasDataLabels	Property
							

True	if	the	series	has	data	labels.	Read/write	Boolean.

Example

This	example	turns	on	data	labels	for	series	three	in	Chart1.

With	Charts("Chart1").SeriesCollection(3)

				.HasDataLabels	=	True

				.ApplyDataLabels	Type:=xlValue

End	With

HasDataTable	Property
							

True	if	the	chart	has	a	data	table.	Read/write	Boolean.

Example

This	example	causes	the	embedded	chart	data	table	to	be	displayed	with	an
outline	border	and	no	cell	borders.

With	Worksheets(1).ChartObjects(1).Chart

				.HasDataTable	=	True

				With	.DataTable

								.HasBorderHorizontal	=	False

								.HasBorderVertical	=	False

								.HasBorderOutline	=	True

				End	With

End	With

Show	All

HasDiagram	Property
							

	Returns	whether	a	shape	or	shape	range	contains	a	diagram.	Read-only
MsoTriState.

MsoTriState	can	be	one	of	these	MsoTriState	constants.
msoCTrue		Not	used	for	this	property.
msoFalse		Returned	if	a	shape	is	not	a	diagram.
msoTriStateMixed		Not	used	for	this	property.
msoTriStateToggle		Not	used	for	this	property.
msoTrue		Returned	if	a	shape	is	a	diagram.

expression.HasDiagram

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

Example

The	following	example	places	a	diagram	in	the	active	worksheet	and	then
displays	a	message	as	to	whether	the	diagram	was	successfully	created.

Sub	CheckforDiagram()

				Dim	shDiagram	As	Shape

				Set	shDiagram	=	ActiveSheet.Shapes.AddDiagram(_

								Type:=msoDiagramOrgChart,	Top:=10,	Left:=15,	_

								Width:=400,	Height:=475)

				'	Notify	user	about	diagram.

				If	shDiagram.HasDiagram	=	msoTrue	Then

								MsgBox	"Diagram	present"

				Else

								MsgBox	"No	diagram	present"

				End	If

End	Sub

Show	All

HasDiagramNode	Property
							

Returns	whether	a	diagram	node	exists	in	a	given	shape	or	shape	range.	Read-
only	MsoTriState.

MsoTriState	can	be	one	of	these	MsoTriState	constants.
msoCTrue		Not	used	for	this	property.
msoFalse		Returns	if	a	shape	is	not	a	diagram	node.
msoTriStateMixed		Not	used	for	this	property.
msoTriStateToggle		Not	used	for	this	property.
msoTrue		Returns	if	a	shape	is	a	diagram	node.

expression.HasDiagramNode

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

Example

The	following	example	places	a	diagram	node	in	the	active	worksheet	and	then
displays	a	message	as	to	whether	or	not	the	node	was	successfully	created.

Sub	IsDiagram()

				Dim	shDiagram	As	Shape

				Dim	nodItem	As	DiagramNode

				Set	shDiagram	=	ActiveSheet.Shapes.AddDiagram(_

								Type:=msoDiagramOrgChart,	Top:=10,	_

								Left:=15,	Width:=400,	Height:=475)

				Set	nodItem	=	shDiagram.DiagramNode

				'Add	a	root	node	to	the	diagram.

				nodItem.Children.AddNode

				'	Notify	user	about	diagram.

				If	shDiagram.HasDiagramNode	=	msoTrue	Then

								MsgBox	"Diagram	node	present"

				Else

								MsgBox	"No	diagram	node	present"

				End	If

End	Sub

HasDisplayUnitLabel	Property
							

True	if	the	label	specified	by	the	DisplayUnit	or	DisplayUnitCustom	property
is	displayed	on	the	specified	axis.	The	default	value	is	True.	Read/write
Boolean.

Example

This	example	sets	the	units	on	the	value	axis	in	Chart1	to	increments	of	500	but
keeps	the	unit	label	hidden.

With	Charts("Chart1").Axes(xlValue)

				.DisplayUnit	=	xlCustom

				.DisplayUnitCustom	=	500

				.AxisTitle.Caption	=	"Rebate	Amounts"

				.HasDisplayUnitLabel	=	False

End	With

HasDropLines	Property
							

True	if	the	line	chart	or	area	chart	has	drop	lines.	Applies	only	to	line	and	area
charts.	Read/write	Boolean.

Example

This	example	turns	on	drop	lines	for	chart	group	one	in	Chart1	and	then	sets
their	line	style,	weight,	and	color.	The	example	should	be	run	on	a	2-D	line	chart
that	has	one	series.

With	Charts("Chart1").ChartGroups(1)

				.HasDropLines	=	True

				With	.DropLines.Border

								.LineStyle	=	xlThin

								.Weight	=	xlMedium

								.ColorIndex	=	3

				End	With

End	With

HasErrorBars	Property
							

True	if	the	series	has	error	bars.	This	property	isn’t	available	for	3-D	charts.
Read/write	Boolean.

Example

This	example	removes	error	bars	from	series	one	in	Chart1.	The	example	should
be	run	on	a	2-D	line	chart	that	has	error	bars	for	series	one.

Charts("Chart1").SeriesCollection(1).HasErrorBars	=	False

HasFormula	Property
							

True	if	all	cells	in	the	range	contain	formulas;	False	if	none	of	the	cells	in	the
range	contains	a	formula;	Null	otherwise.	Read-only	Variant.

Example

This	example	prompts	the	user	to	select	a	range	on	Sheet1.	If	every	cell	in	the
selected	range	contains	a	formula,	the	example	displays	a	message.

Worksheets("Sheet1").Activate

Set	rr	=	Application.InputBox(_

				prompt:="Select	a	range	on	this	worksheet",	_

				Type:=8)

If	rr.HasFormula	=	True	Then

				MsgBox	"Every	cell	in	the	selection	contains	a	formula"

End	If

HasHiLoLines	Property
							

True	if	the	line	chart	has	high-low	lines.	Applies	only	to	line	charts.	Read/write
Boolean.

Example

This	example	turns	on	high-low	lines	for	chart	group	one	in	Chart1	and	then	sets
line	style,	weight,	and	color.	The	example	should	be	run	on	a	2-D	line	chart	that
has	three	series	of	stock-quote-like	data	(high-low-close).

With	Charts("Chart1").ChartGroups(1)

				.HasHiLoLines	=	True

				With	.HiLoLines.Border

								.LineStyle	=	xlThin

								.Weight	=	xlMedium

								.ColorIndex	=	3

				End	With

End	With

HasLeaderLines	Property
							

True	if	the	series	has	leader	lines.	Read/write	Boolean.

Example

This	example	adds	data	labels	and	blue	leader	lines	to	series	one	on	the	pie	chart.

With	Worksheets(1).ChartObjects(1).Chart.SeriesCollection(1)

				.HasDataLabels	=	True

				.DataLabels.Position	=	xlLabelPositionBestFit

				.HasLeaderLines	=	True

				.LeaderLines.Border.ColorIndex	=	5

End	With

HasLegend	Property
							

True	if	the	chart	has	a	legend.	Read/write	Boolean.

Example

This	example	turns	on	the	legend	for	Chart1	and	then	sets	the	legend	font	color
to	blue.

With	Charts("Chart1")

				.HasLegend	=	True

				.Legend.Font.ColorIndex	=	5

End	With

HasMajorGridlines	Property
							

True	if	the	axis	has	major	gridlines.	Only	axes	in	the	primary	axis	group	can
have	gridlines.	Read/write	Boolean.

Example

This	example	sets	the	color	of	the	major	gridlines	for	the	value	axis	in	Chart1.

With	Charts("Chart1").Axes(xlValue)

				If	.HasMajorGridlines	Then

								.MajorGridlines.Border.ColorIndex	=	3				'set	color	to	red

				End	If

End	With

HasMemberProperties	Property
							

Returns	True	when	there	are	member	properties	specified	to	be	displayed	for	the
cube	field.	Read-only	Boolean.

expression.HasMemberProperties

expression			Required.	An	expression	that	returns	a	CubeField	object.

Example

The	example	determines	if	there	are	member	properties	to	be	displayed	for	the
cube	field	and	notifies	the	user.	The	example	assumes	a	PivotTable	exists	on	the
active	worksheet.

Sub	UseHasMemberProperties()

				Dim	pvtTable	As	PivotTable

				Dim	cbeField	As	CubeField

				Set	pvtTable	=	ActiveSheet.PivotTables(1)

				Set	cbeField	=	pvtTable.CubeFields("[Country]")

				'	Determine	if	there	are	member	properties	to	be	displayed.

				If	cbeField.HasMemberProperties	=	True	Then

								MsgBox	"There	are	member	properties	to	be	displayed."

				Else

								MsgBox	"There	are	no	member	properties	to	be	displayed."

				End	If

End	Sub

HasMinorGridlines	Property
							

True	if	the	axis	has	minor	gridlines.	Only	axes	in	the	primary	axis	group	can
have	gridlines.	Read/write	Boolean.

Example

This	example	sets	the	color	of	the	minor	gridlines	for	the	value	axis	in	Chart1.

With	Charts("Chart1").Axes(xlValue)

				If	.HasMinorGridlines	Then

								.MinorGridlines.Border.ColorIndex	=	4

												'set	color	to	green

				End	If

End	With

HasPassword	Property
							

True	if	the	workbook	has	a	protection	password.	Read-only	Boolean.

Remarks

You	can	assign	a	protection	password	to	a	workbook	by	using	the	SaveAs
method.

Example

This	example	displays	a	message	if	the	active	workbook	has	a	protection
password.

If	ActiveWorkbook.HasPassword	=	True	Then

				MsgBox	"Remember	to	obtain	the	workbook	password"	&	Chr(13)	&	_

								"	from	the	Network	Administrator."

End	If

HasPivotFields	Property
							

True	if	the	PivotChart	controls	are	displayed	on	the	specified	PivotChart	report.
The	default	value	is	True.	For	a	regular	chart,	this	property	always	returns	False
and	cannot	be	set.	Read/write	Boolean.

Example

This	example	disables	the	PivotChart	controls	on	the	Sales	chart	in	the	1996
Report	workbook.

Workbooks("1996	Report").Charts("Sales")	_

				.PivotLayout.HasPivotFields	=	False

HasRadarAxisLabels	Property
							

True	if	a	radar	chart	has	axis	labels.	Applies	only	to	radar	charts.	Read/write
Boolean.

Example

This	example	turns	on	radar	axis	labels	for	chart	group	one	in	Chart1	and	sets
their	color.	The	example	should	be	run	on	a	radar	chart.

With	Charts("Chart1").ChartGroups(1)

				.HasRadarAxisLabels	=	True

				.RadarAxisLabels.Font.ColorIndex	=	3

End	With

HasRoutingSlip	Property
							

True	if	the	workbook	has	a	routing	slip.	Read/write	Boolean.

Remarks

Setting	this	property	to	True	creates	a	routing	slip	with	default	values.	Setting
the	property	to	False	deletes	the	routing	slip.

Example

This	example	creates	a	routing	slip	for	Book1.xls	and	then	sends	the	workbook
to	three	recipients,	one	after	another.

Workbooks("BOOK1.XLS").HasRoutingSlip	=	True

With	Workbooks("BOOK1.XLS").RoutingSlip

				.Delivery	=	xlOneAfterAnother

				.Recipients	=	Array("Adam	Bendel",	_

								"Jean	Selva",	"Bernard	Gabor")

				.Subject	=	"Here	is	BOOK1.XLS"

				.Message	=	"Here	is	the	workbook.	What	do	you	think?"

End	With

Workbooks("BOOK1.XLS").Route

HasSeriesLines	Property
							

True	if	a	stacked	column	chart	or	bar	chart	has	series	lines	or	if	a	Pie	of	Pie	chart
or	Bar	of	Pie	chart	has	connector	lines	between	the	two	sections.	Applies	only	to
stacked	column	charts,	bar	charts,	Pie	of	Pie	charts,	or	Bar	of	Pie	charts.
Read/write	Boolean.

Example

This	example	turns	on	series	lines	for	chart	group	one	in	Chart1	and	then	sets
their	line	style,	weight,	and	color.	The	example	should	be	run	on	a	2-D	stacked
column	chart	that	has	two	or	more	series.

With	Charts("Chart1").ChartGroups(1)

				.HasSeriesLines	=	True

				With	.SeriesLines.Border

								.LineStyle	=	xlThin

								.Weight	=	xlMedium

								.ColorIndex	=	3

				End	With

End	With

HasTitle	Property
							

True	if	the	axis	or	chart	has	a	visible	title.	Read/write	Boolean.

Remarks

An	axis	title	is	represented	by	an	AxisTitle	object.

A	chart	title	is	represented	by	a	ChartTitle	object.

Example

This	example	adds	an	axis	label	to	the	category	axis	in	Chart1.

With	Charts("Chart1").Axes(xlCategory)

				.HasTitle	=	True

				.AxisTitle.Text	=	"July	Sales"

End	With

HasUpDownBars	Property
							

True	if	a	line	chart	has	up	and	down	bars.	Applies	only	to	line	charts.	Read/write
Boolean.

Example

This	example	turns	on	up	and	down	bars	for	chart	group	one	in	Chart1	and	then
sets	their	colors.	The	example	should	be	run	on	a	2-D	line	chart	containing	two
series	that	cross	each	other	at	one	or	more	data	points.

With	Charts("Chart1").ChartGroups(1)

				.HasUpDownBars	=	True

				.DownBars.Interior.ColorIndex	=	3

				.UpBars.Interior.ColorIndex	=	5

End	With

Show	All

HeaderMargin	Property
							

Returns	or	sets	the	distance	from	the	top	of	the	page	to	the	header,	in	points.
Read/write	Double.

Remarks

Margins	are	set	or	returned	in	points.	Use	the	InchesToPoints	method	or	the
CentimetersToPoints	method	to	convert	measurements	from	inches	or
centimeters.

Example

This	example	sets	the	header	margin	of	Sheet1	to	0.5	inch.

Worksheets("Sheet1").PageSetup.HeaderMargin	=	_

								Application.InchesToPoints(0.5)

HeartbeatInterval	Property
							

Returns	or	sets	a	Long	for	the	interval	between	updates	for	real-time	data.
Read/write.

expression.HeartbeatInterval

expression			Required.	An	expression	that	returns	an	IRTDUpdateEvent	object.

Remarks

Setting	the	HearbeatInterval	property	to	-1	will	result	in	the	Heartbeat	method
not	being	called.

Note			The	heartbeat	interval	cannot	be	set	below	15,000	milliseconds,	due	to	the
standard	15-second	time	out.

Show	All

HebrewModes	Property
							

Returns	or	sets	the	mode	for	the	Hebrew	spelling	checker.	Read/write
XlHebrewModes.

XlHebrewModes	can	be	one	of	these	XlHebrewModes	constants.
xlHebrewFullScript	(default)		The	conventional	script	type	as	required	by	the
Hebrew	Language	Academy	when	writing	non-diacritisized	text.
xlHebrewMixedAuthorizedScript		The	Hebrew	traditional	script.
xlHebrewMixedScript		In	this	mode	the	speller	accepts	any	word	recognized
as	Hebrew,	whether	in	Full	Script,	Partial	Script,	or	any	non-conventional
spelling	variation	that	is	known	to	the	speller.
xlHebrewPartialScript		In	this	mode	the	speller	accepts	words	both	in	Full
Script	and	Partial	Script.	Some	words	will	be	flagged	since	this	spelling	is	not
authorized	in	either	Full	script	or	Partial	script.

expression.HebrewModes

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

Remarks

A	legitimate	Hebrew	word	can	be	a	basic	dictionary	entry	or	any	inflection.

Example

In	this	example,	Microsoft	Excel	determines	the	setting	for	the	Hebrew	spelling
mode	and	notifies	the	user.

Sub	CheckHebrewMode()

				'	Determine	the	Hebrew	spelling	mode	setting	and	notify	user.

				Select	Case	Application.SpellingOptions.HebrewModes

								Case	xlHebrewFullScript

												MsgBox	"The	Hebrew	spelling	mode	setting	is	Full	Script."

								Case	xlHebrewMixedAuthorizedScript

												MsgBox	"The	Hebrew	spelling	mode	setting	is	Mixed	Authorized	Script."

								Case	xlHebrewMixedScript

												MsgBox	"The	Hebrew	spelling	mode	setting	is	Mixed	Script."

								Case	xlHebrewPartialScript

												MsgBox	"The	Hebrew	spelling	mode	setting	is	Partial	Script."

				End	Select

End	Sub

Show	All

Height	Property
							

Height	property	as	it	applies	to	the	Application	object.

The	height	of	the	main	application	window.	If	the	window	is	minimized,	this
property	is	read-only	and	refers	to	the	height	of	the	icon.	If	the	window	is
maximized,	this	property	cannot	be	set.	Use	the	WindowState	property	to
determine	the	window	state.	Read/write	Double.

expression.Height

expression			Required.	An	expression	that	returns	an	Application	object.

Height	property	as	it	applies	to	the	Window	object.

The	height	of	the	window.	Use	the	UsableHeight	property	to	determine	the
maximum	size	for	the	window.	You	cannot	set	this	property	if	the	window	is
maximized	or	minimized.	Use	the	WindowState	property	to	determine	the
window	state.	Read/write	Double.

expression.Height

expression			Required.	An	expression	that	returns	a	Window	object.

Height	property	as	it	applies	to	the	ChartArea,	ChartObject,	ChartObjects,
Legend,	OLEObject,	OLEObjects,	and	PlotArea	objects.

The	height	of	the	object.	Read/write	Double.

expression.Height

expression			Required.	An	expression	that	returns	one	of	the	above	objects.

Height	property	as	it	applies	to	the	Axis,	LegendEntry,	and	LegendKey
objects.

The	height	of	the	object.	Read-only	Double.

expression.Height

expression			Required.	An	expression	that	returns	one	of	the	above	objects.

Height	property	as	it	applies	to	the	Graphic,	Shape,	and	ShapeRange	objects.

The	height	of	the	object.	Read/write	Single.

expression.Height

expression			Required.	An	expression	that	returns	one	of	the	above	objects.

Height	property	as	it	applies	to	the	Range	object.

The	height	of	the	range.	Read-only	Variant.

expression.Height

expression			Required.	An	expression	that	returns	a	Range	object.

Example

This	example	sets	the	height	of	the	embedded	chart.

Worksheets("Sheet1").ChartObjects(1).Height	=	288

HeightPercent	Property
							

Returns	or	sets	the	height	of	a	3-D	chart	as	a	percentage	of	the	chart	width
(between	5	and	500	percent).	Read/write	Long.

Example

This	example	sets	the	height	of	Chart1	to	80	percent	of	its	width.	The	example
should	be	run	on	a	3-D	chart.

Charts("Chart1").HeightPercent	=	80

Show	All

Hidden	Property
							

Hidden	property	as	it	applies	to	the	Range	object.

True	if	the	rows	or	columns	are	hidden.	The	specified	range	must	span	an	entire
column	or	row.	Read/write	Variant.

expression.Hidden

expression			Required.	An	expression	that	returns	one	of	the	above	objects.

	

Hidden	property	as	it	applies	to	the	Scenario	object.

True	if	the	scenario	is	hidden.	The	default	value	is	False.	Read/write	Boolean.

expression.Hidden

expression			Required.	An	expression	that	returns	one	of	the	above	objects.

	

Hidden	property	as	it	applies	to	the	TreeviewControl	object.

Returns	or	sets	the	hidden	status	of	the	cube	field	members	in	the	hierarchical
member	selection	control	of	a	cube	field.	Read/write	Variant.

expression.Hidden

expression			Required.	An	expression	that	returns	one	of	the	above	objects.

	

Remarks

Don't	confuse	this	property	with	the	FormulaHidden	property.

TreeviewControl	object:	The	Hidden	property	returns	or	sets	an	array.	Each
element	of	the	array	corresponds	to	a	level	of	the	cube	field	that	is	hidden.	The
maximum	number	of	elements	is	the	number	of	levels	in	the	cube	field.	Each
element	of	the	array	is	an	array	of	type	String,	containing	unique	member	names
that	are	hidden	at	the	corresponding	level	of	the	control.	See	the	DrilledDown
property	of	the	PivotItem	object	to	determine	when	members	are	visible
(expanded)	in	the	control.

Example

This	example	hides	column	C	on	Sheet1.

Worksheets("Sheet1").Columns("C").Hidden	=	True

This	example	hides	the	second	level	member	[state].[states].[CA].
[Covelo]	of	the	first	cube	field	in	the	first	PivotTable	report.

ActiveSheet.PivotTables("PivotTable1").CubeFields(1)	_

				.TreeviewControl.Hidden	=	_

								Array(Array(""),	Array(""),	_

								Array("[state].[states].[CA].[Covelo]"))

Show	All

HiddenFields	Property
							

Returns	an	object	that	represents	either	a	single	PivotTable	field	(a	PivotField
object)	or	a	collection	of	all	the	fields	(a	PivotFields	object)	that	are	currently
not	shown	as	row,	column,	page,	or	data	fields.	Read-only.

expression.HiddenFields(Index)

expression			Required.	An	expression	that	returns	a	PivotTable	object.

Index			Optional	Variant.	The	name	or	number	of	the	field	to	be	returned	(can
be	an	array	to	specify	more	than	one	field).

Remarks

For	OLAP	data	sources,	this	property	always	returns	an	empty	collection.

Example

This	example	adds	the	hidden	field	names	to	a	list	on	a	new	worksheet.

Set	nwSheet	=	Worksheets.Add

nwSheet.Activate

Set	pvtTable	=	Worksheets("Sheet2").Range("A1").PivotTable

rw	=	0

For	Each	pvtField	In	pvtTable.HiddenFields

				rw	=	rw	+	1

				nwSheet.Cells(rw,	1).Value	=	pvtField.Name

Next	pvtField

Show	All

HiddenItems	Property
							

Returns	an	object	that	represents	either	a	single	hidden	PivotTable	item	(a
PivotItem	object)	or	a	collection	of	all	the	hidden	items	(a	PivotItems	object)	in
the	specified	field.	Read-only.

expression.HiddenItems(Index)

expression			Required.	An	expression	that	returns	a	PivotField	object.

Index			Optional	Variant.	The	number	or	name	of	the	item	to	be	returned	(can
be	an	array	to	specify	more	than	one	item).

Remarks

For	OLAP	data	sources,	this	property	always	returns	an	empty	collection.

Example

This	example	adds	the	names	of	all	the	hidden	items	in	the	field	named
"product"	to	a	list	on	a	new	worksheet.

Set	nwSheet	=	Worksheets.Add

nwSheet.Activate

Set	pvtTable	=	Worksheets("Sheet2").Range("A1").PivotTable

rw	=	0

For	Each	pvtItem	In	pvtTable.PivotFields("product").HiddenItems

				rw	=	rw	+	1

				nwSheet.Cells(rw,	1).Value	=	pvtItem.Name

Next	pvtItem

Show	All

HiddenItemsList	Property
							

Returns	or	sets	a	Variant	specifying	an	array	of	strings	that	are	hidden	items	for
a	PivotTable	field.	Read/write.

expression.HiddenItemsList

expression			Required.	An	expression	that	returns	a	PivotField	object.

Remarks

The	HiddenItemsList	property	is	only	valid	for	Online	Analytical	Processing
(OLAP)	data	sources;	using	this	property	on	non-OLAP	data	sources	will	return
a	run-time	error.

Example

The	example	sets	the	item	list	so	that	only	certain	items	are	displayed.	It	assumes
an	OLAP	PivotTable	exists	on	the	active	worksheet.

Sub	UseHiddenItemsList()

				ActiveSheet.PivotTables(1).PivotFields(1).HiddenItemsList	=	_

								Array("[Product].[All	Products].[Food]",	_

								"[Product].[All	Products].[Drink]")

End	Sub

Show	All

HiddenLevels	Property
							

Returns	or	sets	the	top	levels	of	the	specified	hierarchy	that	are	hidden.	The
default	value	is	0	(zero),	indicating	that	no	levels	are	hidden.	Read/write
Integer.

Remarks

To	set	the	value	of	this	property	to	an	integer	greater	than	0,	you	must	first	set
the	value	to	0.

Example

This	example	hides	the	top	two	levels	of	the	hierarchy	in	the	second	cube	field	in
the	first	PivotTable	report	on	the	active	worksheet.

ActiveSheet.PivotTables(1).CubeFields(2).HiddenLevels	=	2

HighlightChangesOnScreen	Property
							

True	if	changes	to	the	shared	workbook	are	highlighted	on-screen.	Read/write
Boolean.

Example

This	example	highlights	changes	to	the	shared	workbook.

ThisWorkbook.HighlightChangesOnScreen

HiLoLines	Property
							

Returns	a	HiLoLines	object	that	represents	the	high-low	lines	for	a	series	on	a
line	chart.	Applies	only	to	line	charts.	Read-only.

Example

This	example	turns	on	high-low	lines	for	chart	group	one	in	Chart1	and	then	sets
their	line	style,	weight,	and	color.	The	example	should	be	run	on	a	2-D	line	chart
that	has	three	series	of	stock-quote-like	data	(high-low-close).

With	Charts("Chart1").ChartGroups(1)

				.HasHiLoLines	=	True

				With	.HiLoLines.Border

								.LineStyle	=	xlThin

								.Weight	=	xlMedium

								.ColorIndex	=	3

				End	With

End	With

Hinstance	Property
							

Returns	the	instance	handle	of	the	instance	that	is	calling	Microsoft	Excel.	Read-
only	Long.

expression.Hinstance

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

Example

In	this	example,	Microsoft	Excel	notifies	the	user	about	the	instance	handle	of
the	instance	that	is	calling	Excel.

Sub	CheckHinstance()

				MsgBox	Application.Hinstance

End	Sub

Show	All

HorizontalAlignment	Property
							

HorizontalAlignment	property	as	it	applies	to	the	Style	and	TextFrame
objects.

Returns	or	sets	the	horizontal	alignment	for	the	specified	object.	For	all	objects,
this	can	be	one	of	the	following	XlHAlign	constants.	Read/write	XlHAlign.

XlHAlign	can	be	one	of	these	XlHAlign	constants.
xlHAlignCenter
xlHAlignCenterAcrossSelection
xlHAlignDistributed
xlHAlignFill
xlHAlignGeneral
xlHAlignJustify
xlHAlignLeft
xlHAlignRight

expression.HorizontalAlignment

expression			Required.	An	expression	that	returns	one	of	the	above	objects.

	

HorizontalAlignment	property	as	it	applies	to	the	AxisTitle,	CellFormat,
ChartTitle,	DataLabel,	DataLabels,	DisplayUnitLabel,	and	Range	objects.

Returns	or	sets	the	horizontal	alignment	for	the	specified	object.	Read/write
Variant.

expression.HorizontalAlignment

expression			Required.	An	expression	that	returns	one	of	the	above	objects.

	

Remarks

Some	of	these	constants	may	not	be	available	to	you,	depending	on	the	language
support	(U.S.	English,	for	example)	that	you've	selected	or	installed.

Example

This	example	left	aligns	the	range	A1:A5	on	Sheet1.

Worksheets("Sheet1").Range("A1:A5").HorizontalAlignment	=	xlLeft

HorizontalFlip	Property
							

True	if	the	specified	shape	is	flipped	around	the	horizontal	axis.	Read-only
MsoTriState.

MsoTriState	can	be	one	of	these	MsoTriState	constants.
msoCTrue
msoFalse
msoTriStateMixed
msoTriStateToggle
msoTrue	The	specified	shape	is	flipped	around	the	horizontal	axis.

expression.HorizontalFlip

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

Example

This	example	restores	each	shape	on	myDocument	to	its	original	state	if	it’s	been
flipped	horizontally	or	vertically.

Set	myDocument	=	Worksheets(1)

For	Each	s	In	myDocument.Shapes

				If	s.HorizontalFlip	Then	s.Flip	msoFlipHorizontal

				If	s.VerticalFlip	Then	s.Flip	msoFlipVertical

Next

HPageBreaks	Property
							

Returns	an	HPageBreaks	collection	that	represents	the	horizontal	page	breaks
on	the	sheet.	Read-only.

For	information	about	returning	a	single	member	of	a	collection,	see	Returning
an	Object	from	a	Collection.

Remarks

Note			There	is	a	limit	of	1026	horizontal	page	breaks	per	sheet.

Example

This	example	displays	the	number	of	full-screen	and	print-area	horizontal	page
breaks.

For	Each	pb	in	Worksheets(1).HPageBreaks

				If	pb.Extent	=	xlPageBreakFull	Then

								cFull	=	cFull	+	1

				Else

								cPartial	=	cPartial	+	1

				End	If

Next

MsgBox	cFull	&	"	full-screen	page	breaks,	"	&	cPartial	&	_

				"	print-area	page	breaks"

HTMLProject	Property
							

Returns	the	HTMLProject	object	in	the	specified	workbook,	which	represents	a
top-level	project	branch,	as	in	the	Project	Explorer	in	the	Microsoft	Script	Editor.
Read-only.

mk:@MSITStore:vbaof10.chm::/html/ofobjHTMLProject.htm

Example

This	example	refreshes	the	HTML	project	in	the	active	workbook.

ActiveWorkbook.HTMLProject.RefreshProject

HtmlType	Property
							

Returns	or	sets	the	type	of	HTML	generated	by	Microsoft	Excel	when	you	save
the	specified	item	to	a	Web	page.	Can	be	one	of	the	XlHtmlType	constants
listed	in	the	following	table,	specifying	whether	the	item	is	static	or	interactive	in
the	Web	page.	The	default	value	is	xlHtmlStatic.		Read/write	XlHtmlType.

XlHtmlType	can	be	one	of	these	XlHtmlType	constants.
xlHtmlCalc.	Use	the	Spreadsheet	component.
xlHtmlChart.	Use	the	Chart	component.
xlHtmlList.	Use	the	PivotTable	component.
xlHtmlStatic.	Use	static	(noninteractive)	HTML	for	viewing	only.

expression.HtmlType

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

Example

This	example	saves	the	range	D5:D9	on	the	First	Quarter	worksheet	in	the	active
workbook	to	a	Web	page	called	“stockreport.htm.”	You	use	the	Spreadsheet
component	to	add	interactivity	to	the	Web	page.

ActiveWorkbook.PublishObjects.Add(_

				SourceType:=xlSourceRange,	_

				Filename:="\\Server2\Q1\stockreport.htm",	_

				Sheet:="First	Quarter",	_

				Source:="D5:D9",	_

				HtmlType:=xlHTMLCalc).Publish

Hwnd	Property
							

Returns	a	Long	indicating	the	top-level	window	handle	of	the	Microsoft	Excel
window.	Read-only.

expression.Hwnd

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

Example

In	this	example,	Microsoft	Excel	notifies	the	user	of	the	top-level	window
handle	of	the	Excel	window.

Sub	CheckHwnd()

				MsgBox	"The	top-level	window	handle	is:	"	&	_

								Application.Hwnd

End	Sub

Hyperlink	Property
							

Returns	a	Hyperlink	object	that	represents	the	hyperlink	for	the	shape.

Example

This	example	loads	the	document	attached	to	the	hyperlink	on	shape	one.

Worksheets(1).Shapes(1).Hyperlink.Follow	NewWindow:=True

Hyperlinks	Property
							

Returns	a	Hyperlinks	collection	that	represents	the	hyperlinks	for	the	range	or
worksheet.

For	more	information	about	returning	an	object	from	a	collection,	see	Returning
an	Object	from	a	Collection.

Example

This	example	checks	to	see	whether	any	of	the	hyperlinks	on	worksheet	one
contain	the	word	“Microsoft.”

For	Each	h	in	Worksheets(1).Hyperlinks

				If	Instr(h.Name,	"Microsoft")	<>	0	Then	h.Follow

Next

Show	All

ID	Property
							

ID	property	as	it	applies	to	the	Shape	and	ShapeRange	objects.

Returns	the	type	for	the	specified	object.	Read-only	Long.

expression.ID

expression			Required.	An	expression	that	returns	one	of	the	above	objects.

ID	property	as	it	applies	to	the	Range	object.

Returns	or	sets	the	identifying	label	for	the	specified	cell	when	the	page	is	saved
as	a	Web	page.	Read/write	String.

expression.ID

expression			Required.	An	expression	that	returns	a	Range	object.

Remarks

You	can	use	an	ID	label	as	a	hyperlink	reference	in	other	HTML	documents	or
on	the	same	Web	page.

Example

This	example	sets	the	ID	of	cell	A1	on	the	active	worksheet	to	"target".

ActiveSheet.Range("A1").ID	=	"target"

Later,	the	document	is	saved	as	a	Web	page,	and	the	following	line	of	HTML	is
added	to	the	Web	page.

Quarterly	earnings

When	the	user	then	views	the	page	in	a	Web	browser	and	clicks	the	hyperlink,
the	browser	displays	the	cell.

Ignore	Property
							

Allows	the	user	to	set	or	return	the	state	of	an	error	checking	option	for	a	range.
False	enables	an	error	checking	option	for	a	range.	True	disables	an	error
checking	option	for	a	range.	Read/write	Boolean.

expression.Ignore

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

Remarks

Reference	the	ErrorCheckingOptions	object	to	view	a	list	of	index	values
associated	with	error	checking	options.

Example

This	example	disables	the	ignore	flag	in	cell	A1	for	checking	empty	cell
references.

Sub	IgnoreChecking()

				Range("A1").Select

				'	Determine	if	empty	cell	references	error	checking	is	on,	if	not	turn	it	on.

				If	Application.Range("A1").Errors(xlEmptyCellReferences).Ignore	=	True	Then

								Application.Range("A1").Errors(xlEmptyCellReferences).Ignore	

								MsgBox	"Empty	cell	references	error	checking	has	been	enabled	for	cell	A1."

				Else

								MsgBox	"Empty	cell	references	error	checking	is	already	enabled	for	cell	A1."

				End	If

End	Sub

IgnoreBlank	Property
							

True	if	blank	values	are	permitted	by	the	range	data	validation.	Read/write
Boolean.

Remarks

If	the	IgnoreBlank	property	is	True,	cell	data	is	considered	valid	if	the	cell	is
blank,	or	if	a	cell	referenced	by	either	the	MinVal	or	MaxVal	property	is	blank.

Example

This	example	causes	data	validation	for	cell	E5	to	allow	blank	values.

Range("e5").Validation.IgnoreBlank	=	True

IgnoreCaps	Property
							

False	instructs	Microsoft	Excel	to	check	for	uppercase	words,	True	instructs
Excel	to	ignore	words	in	uppercase	when	using	the	spelling	checker.	Read/write
Boolean.

expression.IgnoreCaps

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

Example

In	this	example,	Microsoft	Excel	determines	what	the	setting	is	for	checking	the
spelling	of	uppercase	words	and	notifies	the	user.

Sub	SpellingOptionsCheck()

				If	Application.SpellingOptions.IgnoreCaps	=	True	Then

								MsgBox	"Spelling	options	for	checking	uppercase	words	is	disabled."

				Else

								MsgBox	"Spelling	options	for	checking	uppercase	words	is	enabled."

				End	If

End	Sub

IgnoreFileNames	Property
							

False	instructs	Microsoft	Excel	to	check	for	Internet	and	file	addresses,	True
instructs	Excel	to	ignore	Internet	and	file	addresses	when	using	the	spell	checker.
Read/write	Boolean.

expression.IgnoreFileNames

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

Example

In	this	example,	Microsoft	Excel	determines	what	the	setting	is	for	checking
spelling	of	Internet	and	file	addresses	and	notifies	the	user.

Sub	SpellingOptionsCheck()

				If	Application.SpellingOptions.IgnoreFileNames	=	True	Then

								MsgBox	"Spelling	options	for	checking	Internet	and	file	addresses	is	disabled."

				Else

								MsgBox	"Spelling	options	for	checking	Internet	and	file	addresses	is	enabled."

				End	If

End	Sub

IgnoreMixedDigits	Property
							

False	instructs	Microsoft	Excel	to	check	for	mixed	digits,	True	instructs	Excel
to	ignore	mixed	digits	when	checking	spelling.	Read/write	Boolean.

expression.IgnoreMixedDigits

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

Example

In	this	example,	Microsoft	Excel	determines	what	the	setting	is	for	the	checking
of	spelling	for	mixed	digits	and	notifies	the	user.

Sub	SpellingOptionsCheck()

				If	Application.SpellingOptions.IgnoreMixedDigits	=	True	Then

								MsgBox	"Spelling	options	for	checking	mixed	digits	is	disabled."

				Else

								MsgBox	"Spelling	options	for	checking	mixed	digits	is	enabled."

				End	If

End	Sub

IgnoreRemoteRequests	Property
							

True	if	remote	DDE	requests	are	ignored.	Read/write	Boolean.

Example

This	example	sets	the	IgnoreRemoteRequests	property	to	True	so	that	remote
DDE	requests	are	ignored.

Application.IgnoreRemoteRequests	=	True

IMEMode	Property
							

Returns	or	sets	the	description	of	the	Japanese	input	rules.	Can	be	one	of	the
XlIMEMode	constants	listed	in	the	following	table.	Read/write	Long.

expression.IMEMode

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

Constant Description
xlIMEModeAlpha Half-width	alphanumeric
xlIMEModeAlphaFull Full-width	alphanumeric
xlIMEModeDisable Disable
xlIMEModeHiragana Hiragana
xlIMEModeKatakana Katakana
xlIMEModeKatakanaHalf Katakana	(half-width)
xlIMEModeNoControl No	control
xlIMEModeOff Off	(English	mode)
xlIMEModeOn On

Remarks

Note	that	this	property	can	be	set	only	when	Japanese	language	support	has	been
installed	and	selected.

Example

This	example	sets	the	data	input	rule	for	cell	E5.

With	Range("E5").Validation

				.Add	Type:=xlValidateWholeNumber,	_

								AlertStyle:=	xlValidAlertStop,	_

								Operator:=xlBetween,	Formula1:="5",	Formula2:="10"

				.InputTitle	=	" "

				.ErrorTitle	=	" "

				.InputMessage	=	"5	 	10	 "

				.ErrorMessage	=	" 	5	 	10	 "

				.IMEMode	=	xlIMEModeAlpha

End	With

InCellDropdown	Property
							

True	if	data	validation	displays	a	drop-down	list	that	contains	acceptable	values.
Read/write	Boolean.

Remarks

This	property	is	ignored	if	the	validation	type	isn’t	xlValidateList.

Use	the	Minimum	argument	of	the	Add	or	Modify	method	of	the	Validation
object	to	specify	the	range	that	contains	valid	data.

Example

This	example	adds	data	validation	to	cell	E5.	The	range	A1:A10	contains	the
acceptable	values	for	the	cell	and	the	cell	displays	a	drop-down	list	that	contains
those	values.

With	Range("e5").Validation

				.Add	xlValidateList,	xlValidAlertStop,	xlBetween,	"=A1:A10"

				.InCellDropdown	=	True

End	With

IncludeAlignment	Property
							

True	if	the	style	includes	the	AddIndent,	HorizontalAlignment,
VerticalAlignment,	WrapText,	and	Orientation	properties.	Read/write
Boolean.

Example

This	example	sets	the	style	attached	to	cell	A1	on	Sheet1	to	include	alignment
format.

Worksheets("Sheet1").Range("A1").Style.IncludeAlignment	=	True

IncludeBorder	Property
							

True	if	the	style	includes	the	Color,	ColorIndex,	LineStyle,	and	Weight	border
properties.	Read/write	Boolean.

Example

This	example	sets	the	style	attached	to	cell	A1	on	Sheet1	to	include	border
format.

Worksheets("Sheet1").Range("A1").Style.IncludeBorder	=	True

IncludeFont	Property
							

True	if	the	style	includes	the	Background,	Bold,	Color,	ColorIndex,
FontStyle,	Italic,	Name,	OutlineFont,	Shadow,	Size,	Strikethrough,
Subscript,	Superscript,	and	Underline	font	properties.	Read/write	Boolean.

Example

This	example	sets	the	style	attached	to	cell	A1	on	Sheet1	to	include	font	format.

Worksheets("Sheet1").Range("A1").Style.IncludeFont	=	True

IncludeNumber	Property
							

True	if	the	style	includes	the	NumberFormat	property.	Read/write	Boolean

Example

This	example	sets	the	style	attached	to	cell	A1	on	Sheet1	to	include	number
format.

Worksheets("Sheet1").Range("A1").Style.IncludeNumber	=	True

IncludePatterns	Property
							

True	if	the	style	includes	the	Color,	ColorIndex,	InvertIfNegative,	Pattern,
PatternColor,	and	PatternColorIndex	interior	properties.	Read/write	Boolean.

Example

This	example	sets	the	style	attached	to	cell	A1	on	Sheet1	to	include	pattern
format.

Worksheets("Sheet1").Range("A1").Style.IncludePatterns	=	True

IncludeProtection	Property
							

True	if	the	style	includes	the	FormulaHidden	and	Locked	protection
properties.	Read/write	Boolean.

Example

This	example	sets	the	style	attached	to	cell	A1	on	Sheet1	to	include	protection
format.

Worksheets("Sheet1").Range("A1").Style.IncludeProtection	=	True

InconsistentFormula	Property
							

When	set	to	True	(default),	Microsoft	Excel	identifies	cells	containing	an
inconsistent	formula	in	a	region.	False	disables	the	inconsistent	formula	check.
Read/write	Boolean.

expression.InconsistentFormula

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

Remarks

Consistent	formulas	in	the	region	must	reside	to	the	left	and	right	or	above	and
below	the	cell	containing	the	inconsistent	formula	for	the	InconsistentFormula
property	to	work	properly.

Example

In	the	following	example,	when	the	user	selects	cell	B4	(which	contains	an
inconsistent	formula),	the	AutoCorrect	Options	button	appears.	

Sub	CheckFormula()

				Application.ErrorCheckingOptions.InconsistentFormula	=	True

				Range("A1:A3").Value	=	1

				Range("B1:B3").Value	=	2

				Range("C1:C3").Value	=	3

				Range("A4").Formula	=	"=SUM(A1:A3)"		'	Consistent	formula.

				Range("B4").Formula	=	"=SUM(B1:B2)"		'	Inconsistent	formula.

				Range("C4").Formula	=	"=SUM(C1:C3)"		'	Consistent	formula.

End	Sub

Show	All

IndentLevel	Property
							

IndentLevel	property	as	it	applies	to	the	Style	object.

Returns	or	sets	the	indent	level	for	the	style.	Read/write	Long.

expression.IndentLevel

expression			Required.	An	expression	that	returns	a	Style	object.

IndentLevel	property	as	it	applies	to	the	CellFormat	and	Range	objects.

Returns	or	sets	the	indent	level	for	the	cell	or	range.	Can	be	an	integer	from	0	to
15.	Read/write	Variant.

expression.IndentLevel

expression			Required.	An	expression	that	returns	one	of	the	above	objects.

Remarks

Using	this	property	to	set	the	indent	level	to	a	number	less	than	0	(zero)	or
greater	than	15	causes	an	error.

Example

As	it	applies	to	the	CellFormat	and	Range	objects.

This	example	increases	the	indent	level	to	15	in	cell	A10.

With	Range("A10")

				.IndentLevel	=	15

End	With

Show	All

Index	Property
							

Index	property	as	it	applies	to	the	PivotFormula	object.

For	the	PivotFormula	object,	returns	or	sets	the	index	number	of	the	object
within	the	PivotFormulas	collection.	Read/write	Long.

expression.Index

expression			Required.	An	expression	that	returns	one	of	the	above	objects.

	

Index	property	as	it	applies	to	all	other	obejcts	in	the	Applies	To	list.

Returns	the	index	number	of	the	object	within	the	collection	of	similar	objects.
Read-only	Long.

expression.Index

expression			Required.	An	expression	that	returns	one	of	the	above	objects.

	

For	information	about	using	the	Index	worksheet	function	in	Visual	Basic,	see
Using	Worksheet	Functions	in	Visual	Basic.

Example

This	example	displays	the	tab	number	of	the	sheet	name	that	you	type.	For
example,	if	Chart1	is	the	third	tab	in	the	active	workbook,	the	example	displays
"3"	in	a	message	box.

sheetname	=	InputBox("Type	a	sheet	name,	such	as	Sheet12")

MsgBox	"This	sheet	is	tab	number	"	&	Sheets(sheetname).Index

Show	All

IndicatorColorIndex	Property
							

Returns	or	sets	the	color	of	the	indicator	for	error	checking	options.	Read/write
XlColorIndex.

XlColorIndex	can	be	one	of	these	XlColorIndex	constants.
xlColorIndexAutomatic		The	default	system	color.
xlColorIndexNone		Not	used	with	this	property.

expression.IndicatorColorIndex

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

Remarks

You	can	specify	a	particular	color	for	the	indicator	by	entering	the	corresponding
index	value.	You	can	use	the	Colors	property	to	return	the	current	color	palette.

The	following	illustration	shows	the	color-index	values	in	the	default	color
palette.

Example

In	the	following	example,	Microsoft	Excel	checks	to	see	if	the	indicator	color	for
error	checking	is	set	to	the	default	system	color	and	notifies	the	user	accordingly.

Sub	CheckIndexColor()

				If	Application.ErrorCheckingOptions.IndicatorColorIndex	=	xlColorIndexAutomatic	Then

								MsgBox	"Your	indicator	color	for	error	checking	is	set	to	the	default	system	color."

				Else

								MsgBox	"Your	indicator	color	for	error	checking	is	not	set	to	the	default	system	color."

				End	If

End	Sub

This	keyword	is	not	implemented.	It	is	reserved	for	future	use.

Show	All

InnerDetail	Property
							

Returns	or	sets	the	name	of	the	field	that	will	be	shown	as	detail	when	the
ShowDetail	property	is	True	for	the	innermost	row	or	column	field.	Read/write
String.

Remarks

This	property	isn’t	available	for	OLAP	data	sources.

Example

This	example	displays	the	name	of	the	field	that	will	be	shown	as	detail	when
the	ShowDetail	property	is	True	for	the	innermost	row	field	or	column	field.

Set	pvtTable	=	Worksheets("Sheet1").Range("A3").PivotTable

MsgBox	pvtTable.InnerDetail

InputMessage	Property
							

Returns	or	sets	the	data	validation	input	message.	Read/write	String.

Example

This	example	adds	data	validation	to	cell	E5	and	specifies	both	the	input	and
error	messages.

With	Range("e5").Validation

				.Add	Type:=xlValidateWholeNumber,	_

								AlertStyle:=	xlValidAlertStop,	_

								Operator:=xlBetween,	Formula1:="5",	Formula2:="10"

				.InputTitle	=	"Integers"

				.ErrorTitle	=	"Integers"

				.InputMessage	=	"Enter	an	integer	from	five	to	ten"

				.ErrorMessage	=	"You	must	enter	a	number	from	five	to	ten"

End	With

InputTitle	Property
							

Returns	or	sets	the	title	of	the	data-validation	input	dialog	box.	Read/write
String.

Example

This	example	turns	on	data	validation	for	cell	E5.

With	Range("e5").Validation

				.Add	xlValidateWholeNumber,	_

								xlValidAlertInformation,	xlBetween,	"5",	"10"

				.InputTitle	=	"Integers"

				.ErrorTitle	=	"Integers"

				.InputMessage	=	"Enter	an	integer	from	five	to	ten"

				.ErrorMessage	=	"You	must	enter	a	number	from	five	to	ten"

End	With

Show	All

InsideHeight	Property
							

Returns	the	inside	height	of	the	plot	area,	in	points.	Read-only	Double.

Remarks

The	plot	area	used	for	this	measurement	doesn’t	include	the	axis	labels.	The
Height	property	for	the	plot	area	uses	the	bounding	rectangle	that	includes	the
axis	labels.

Example

This	example	draws	a	dotted	rectangle	around	the	inside	of	the	plot	area	in
Chart1.

With	Charts("chart1")

				Set	pa	=	.PlotArea

				With	.Shapes.AddShape(msoShapeRectangle,	_

												pa.InsideLeft,	pa.InsideTop,	_

												pa.InsideWidth,	pa.InsideHeight)

								.Fill.Transparency	=	1

								.Line.DashStyle	=	msoLineDashDot

				End	With

End	With

Show	All

InsideLeft	Property
							

Returns	the	distance	from	the	chart	edge	to	the	inside	left	edge	of	the	plot	area,
in	points.	Read-only	Double.

Remarks

The	plot	area	used	for	this	measurement	doesn’t	include	the	axis	labels.	The	Left
property	for	the	plot	area	uses	the	bounding	rectangle	that	includes	the	axis
labels.

Example

This	example	draws	a	dotted	rectangle	around	the	inside	of	the	plot	area	in
Chart1.

With	Charts("chart1")

				Set	pa	=	.PlotArea

				With	.Shapes.AddShape(msoShapeRectangle,	_

												pa.InsideLeft,	pa.InsideTop,	_

												pa.InsideWidth,	pa.InsideHeight)

								.Fill.Transparency	=	1

								.Line.DashStyle	=	msoLineDashDot

				End	With

End	With

Show	All

InsideTop	Property
							

Returns	the	distance	from	the	chart	edge	to	the	inside	top	edge	of	the	plot	area,
in	points.	Read-only	Double.

Remarks

The	plot	area	used	for	this	measurement	doesn’t	include	the	axis	labels.	The	Top
property	for	the	plot	area	uses	the	bounding	rectangle	that	includes	the	axis
labels.

Example

This	example	draws	a	dotted	rectangle	around	the	inside	of	the	plot	area	in
Chart1.

With	Charts("chart1")

				Set	pa	=	.PlotArea

				With	.Shapes.AddShape(msoShapeRectangle,	_

												pa.InsideLeft,	pa.InsideTop,	_

												pa.InsideWidth,	pa.InsideHeight)

								.Fill.Transparency	=	1

								.Line.DashStyle	=	msoLineDashDot

				End	With

End	With

Show	All

InsideWidth	Property
							

Returns	the	inside	width	of	the	plot	area,	in	points.	Read-only	Double.

Remarks

The	plot	area	used	for	this	measurement	doesn’t	include	the	axis	labels.	The
Width	property	for	the	plot	area	uses	the	bounding	rectangle	that	includes	the
axis	labels.

Example

This	example	draws	a	dotted	rectangle	around	the	inside	of	the	plot	area	in
Chart1.

With	Charts("chart1")

				Set	pa	=	.PlotArea

				With	.Shapes.AddShape(msoShapeRectangle,	_

												pa.InsideLeft,	pa.InsideTop,	_

												pa.InsideWidth,	pa.InsideHeight)

								.Fill.Transparency	=	1

								.Line.DashStyle	=	msoLineDashDot

				End	With

End	With

Installed	Property
							

True	if	the	add-in	is	installed.	Read/write	Boolean.

Remarks

Setting	this	property	to	True	installs	the	add-in	and	calls	its	Auto_Add	functions.
Setting	this	property	to	False	removes	the	add-in	and	calls	its	Auto_Remove
functions.

Example

This	example	uses	a	message	box	to	display	the	installation	status	of	the	Solver
add-in.

Set	a	=	AddIns("Solver	Add-In")

If	a.Installed	=	True	Then

				MsgBox	"The	Solver	add-in	is	installed"

Else

				MsgBox	"The	Solver	add-in	is	not	installed"

End	If

Interactive	Property
							

True	if	Microsoft	Excel	is	in	interactive	mode;	this	property	is	usually	True.	If
you	set	the	this	property	to	False,	Microsoft	Excel	will	block	all	input	from	the
keyboard	and	mouse	(except	input	to	dialog	boxes	that	are	displayed	by	your
code).	Blocking	user	input	will	prevent	the	user	from	interfering	with	the	macro
as	it	moves	or	activates	Microsoft	Excel	objects.	Read/write	Boolean.

Remarks

This	property	is	useful	if	you're	using	DDE	or	OLE	Automation	to	communicate
with	Microsoft	Excel	from	another	application.

If	you	set	this	property	to	False,	don't	forget	to	set	it	back	to	True.	Microsoft
Excel	won't	automatically	set	this	property	back	to	True	when	your	macro	stops
running.

Example

This	example	sets	the	Interactive	property	to	False	while	it's	using	DDE	in
Windows	and	then	sets	this	property	back	to	True	when	it's	finished.	This
prevents	the	user	from	interfering	with	the	macro.

Application.Interactive	=	False

Application.DisplayAlerts	=	False

channelNumber	=	Application.DDEInitiate(_

				app:="WinWord",	_

				topic:="C:\WINWORD\FORMLETR.DOC")

Application.DDEExecute	channelNumber,	"[FILEPRINT]"

Application.DDETerminate	channelNumber

Application.DisplayAlerts	=	True

Application.Interactive	=	True

Intercept	Property
							

Returns	or	sets	the	point	where	the	trendline	crosses	the	value	axis.	Read/write
Double.

For	information	about	using	the	Intercept	worksheet	function	in	Visual	Basic,
see	Using	Worksheet	Functions	in	Visual	Basic.

Remarks

Setting	this	property	sets	the	InterceptIsAuto	property	to	False.

Example

This	example	sets	trendline	one	in	Chart1	to	cross	the	value	axis	at	5.	The
example	should	be	run	on	a	2-D	column	chart	that	contains	a	single	series	with	a
trendline.

Charts("Chart1").SeriesCollection(1).Trendlines(1).Intercept	=	5

InterceptIsAuto	Property
							

True	if	the	point	where	the	trendline	crosses	the	value	axis	is	automatically
determined	by	the	regression.	Read/write	Boolean.

Remarks

Setting	the	Intercept	property	sets	this	property	to	False.

Example

This	example	sets	Microsoft	Excel	to	automatically	determine	the	trendline
intercept	point	for	Chart1.	The	example	should	be	run	on	a	2-D	column	chart
that	contains	a	single	series	with	a	trendline.

Charts("Chart1").SeriesCollection(1).Trendlines(1)	_

				.InterceptIsAuto	=	True

Show	All

Interior	Property
							

Interior	property	as	it	applies	to	the	CellFormat	object.

Returns	an	Interior	object	allowing	the	user	to	set	or	return	the	search	criteria
based	on	the	cell's	interior	format.

expression.Interior

expression			Required.	An	expression	that	returns	one	of	the	above	objects.

Interior	property	as	it	applies	to	all	other	objects	in	the	Applies	To	list.

Returns	an	Interior	object	that	represents	the	interior	of	the	specified	object.

expression.Interior

expression			Required.	An	expression	that	returns	one	of	the	above	objects.

Example

As	it	applies	to	the	CellFormat	object.

This	example	sets	the	search	criteria	to	identify	cells	that	contain	a	solid	yellow
interior,	creates	a	cell	with	this	condition,	finds	this	cell,	and	notifies	the	user.

Sub	SearchCellFormat()

				'	Set	the	search	criteria	for	the	interior	of	the	cell	format.

				With	Application.FindFormat.Interior

								.ColorIndex	=	6

								.Pattern	=	xlSolid

								.PatternColorIndex	=	xlAutomatic

				End	With

				'	Create	a	yellow	interior	for	cell	A5.

				Range("A5").Select

				With	Selection.Interior

								.ColorIndex	=	6

								.Pattern	=	xlSolid

								.PatternColorIndex	=	xlAutomatic

				End	With

				Range("A1").Select

				MsgBox	"Cell	A5	has	a	yellow	interior."

				'	Find	the	cells	based	on	the	search	criteria.

				Cells.Find(What:="",	After:=ActiveCell,	LookIn:=xlFormulas,	LookAt:=	_

								xlPart,	SearchOrder:=xlByRows,	SearchDirection:=xlNext,	MatchCase:=False	_

								,	SearchFormat:=True).Activate

				MsgBox	"Microsoft	Excel	has	found	this	cell	matching	the	search	criteria."

End	Sub

As	it	applies	to	all	other	objects	in	the	Applies	To	list.

This	example	sets	the	interior	color	for	cell	A1	on	Sheet1	to	cyan.

Sub	SetColor()

				Worksheets("Sheet1").Range("A1").Interior.ColorIndex	=	8		'	Cyan

End	Sub

International	Property
							

Returns	information	about	the	current	country/region	and	international	settings.
Read-only	Variant.

expression.International(Index)

Elements

expression			Required.	An	expression	that	returns	an	Application	object.

Index			Required	Long.	The	setting	to	be	returned.	Can	be	one	of	the
XlApplicationInternational	constants	listed	in	the	following	tables.

Brackets	and	Braces

Index Type Meaning

xlLeftBrace String Character	used	instead	of	the	left	brace	({)in	array	literals.

xlLeftBracket String Character	used	instead	of	the	left	bracket([)	in	R1C1-style	relative	references.
xlLowerCaseColumnLetter String Lowercase	column	letter.
xlLowerCaseRowLetter String Lowercase	row	letter.

xlRightBrace String Character	used	instead	of	the	right	brace(})	in	array	literals.

xlRightBracket String Character	used	instead	of	the	right	bracket(])	in	R1C1-style	references.
xlUpperCaseColumnLetter String Uppercase	column	letter.

xlUpperCaseRowLetter String Uppercase	row	letter	(for	R1C1-stylereferences).

Country/Region	Settings

Index Type Meaning
xlCountryCode Long Country/Region	version	of	Microsoft	Excel.

xlCountrySetting Long Current	country/region	setting	in	the	Windows
Control	Panel.

xlGeneralFormatName String Name	of	the	General	number	format.

Currency

Index Type Meaning

xlCurrencyBefore Boolean True	if	the	currency	symbol	precedes	thecurrency	values;	False	if	it	follows	them.
xlCurrencyCode String Currency	symbol.

xlCurrencyDigits Long Number	of	decimal	digits	to	be	used	in
currency	formats.

xlCurrencyLeadingZeros Boolean True	if	leading	zeros	are	displayed	for	zerocurrency	values.

xlCurrencyMinusSign Boolean
True	if	you’re	using	a	minus	sign	for
negative	numbers;	False	if	you’re	using
parentheses.

xlCurrencyNegative Long

Currency	format	for	negative	currency
values:
0	=	(symbolx)	or	(xsymbol)
1	=	-symbolx	or	-xsymbol
2	=	symbol-x	or	x-symbol
3	=	symbolx-	or	xsymbol-
where	symbol	is	the	currency	symbol	of	the
country	or	region.	Note	that	the	position	of
the	currency	symbol	is	determined	by
xlCurrencyBefore.

xlCurrencySpaceBefore Boolean True	if	a	space	is	added	before	thecurrency	symbol.

xlCurrencyTrailingZeros Boolean True	if	trailing	zeros	are	displayed	for	zerocurrency	values.

xlNoncurrencyDigits Long Number	of	decimal	digits	to	be	used	in
noncurrency	formats.

Date	and	Time

Index Type Meaning

xl24HourClock Boolean True	if	you’re	using	24-hour	time;	False	ifyou’re	using	12-hour	time.

xl4DigitYears Boolean True	if	you’re	using	four-digit	years;	False	ifyou’re	using	two-digit	years.
Order	of	date	elements:

xlDateOrder Long 0	=	month-day-year
1	=	day-month-year
2	=	year-month-day

xlDateSeparator String Date	separator	(/).
xlDayCode String Day	symbol	(d).
xlDayLeadingZero Boolean True	if	a	leading	zero	is	displayed	in	days.
xlHourCode String Hour	symbol	(h).

xlMDY Boolean
True	if	the	date	order	is	month-day-year	for
dates	displayed	in	the	long	form;	False	if	the
date	order	is	day-month-year.

xlMinuteCode String Minute	symbol	(m).
xlMonthCode String Month	symbol	(m).

xlMonthLeadingZero Boolean True	if	a	leading	zero	is	displayed	in	months(when	months	are	displayed	as	numbers).

xlMonthNameChars Long

Always	returns	three	characters	for	backward
compatibility.	Abbreviated	month	names	are
read	from	Microsoft	Windows	and	can	be	any
length.

xlSecondCode String Second	symbol	(s).
xlTimeSeparator String Time	separator	(:).
xlTimeLeadingZero Boolean True	if	a	leading	zero	is	displayed	in	times.

xlWeekdayNameChars Long

Always	returns	three	characters	for	backward
compatibility.	Abbreviated	weekday	names
are	read	from	Microsoft	Windows	and	can	be
any	length.

xlYearCode String Year	symbol	in	number	formats	(y).

Measurement	Systems

Index Type Meaning

xlMetric Boolean
True	if	you’re	using	the	metric	system;	False
if	you’re	using	the	English	measurement
system.

xlNonEnglishFunctions Boolean True	if	you’re	not	displaying	functions	inEnglish.

Separators

Index Type Meaning

xlAlternateArraySeparator String
Alternate	array	item	separator	to	be	used	if
the	current	array	separator	is	the	same	as
the	decimal	separator.

xlColumnSeparator String Character	used	to	separate	columns	inarray	literals.
xlDecimalSeparator String Decimal	separator.
xlListSeparator String List	separator.

xlRowSeparator String Character	used	to	separate	rows	in	arrayliterals.
xlThousandsSeparator String Zero	or	thousands	separator.

Remarks

Symbols,	separators,	and	currency	formats	shown	in	the	preceding	table	may
differ	from	those	used	in	your	language	or	geographic	location	and	may	not	be
available	to	you,	depending	on	the	language	support	(U.S.	English,	for	example)
that	you’ve	selected	or	installed.

Example

This	example	displays	the	international	decimal	separator.

MsgBox	"The	decimal	separator	is	"	&	_

				Application.International(xlDecimalSeparator)

InvertIfNegative	Property
							

True	if	Microsoft	Excel	inverts	the	pattern	in	the	item	when	it	corresponds	to	a
negative	number.	Read/write	Variant	for	the	Interior	object,	read/write	Boolean
for	all	other	objects.

Example

This	example	inverts	the	pattern	for	negative	values	in	series	one	in	Chart1.	The
example	should	be	run	on	a	2-D	column	chart.

Charts("Chart1").SeriesCollection(1).InvertIfNegative	=	True

IsAddin	Property
							

True	if	the	workbook	is	running	as	an	add-in.	Read/write	Boolean.

Remarks

When	you	set	this	property	to	True,	the	workbook	has	the	following
characteristics:

You	won’t	be	prompted	to	save	the	workbook	if	changes	are	made	while	the
workbook	is	open.
The	workbook	window	won’t	be	visible.
Any	macros	in	the	workbook	won’t	be	visible	in	the	Macro	dialog	box
(displayed	by	pointing	to	Macro	on	the	Tools	menu	and	clicking	Macros).
Macros	in	the	workbook	can	still	be	run	from	the	Macro	dialog	box	even
though	they’re	not	visible.	In	addition,	macro	names	don’t	need	to	be
qualified	with	the	workbook	name.
Holding	down	the	SHIFT	key	when	you	open	the	workbook	has	no	effect.

Example

This	example	runs	a	section	of	code	if	the	workbook	is	an	add-in.

If	ThisWorkbook.IsAddin	Then

				'	this	code	runs	when	the	workbook	is	an	add-in

End	If

Show	All

IsCalculated	Property
							

True	if	the	PivotTable	field	or	PivotTable	item	is	a	calculated	field	or	item.
Read-only	Boolean.

Remarks

For	OLAP	data	sources,	this	property	always	returns	False.

Example

This	example	disables	the	PivotTable	Field	dialog	box	if	the	specified
PivotTable	report	contains	any	calculated	fields.

set	pt	=	Worksheets(1).PivotTables("Pivot1")

For	Each	fld	in	pt.PivotFields

				If	fld.IsCalculated	Then	pt.EnableFieldDialog	=	False

Next

IsConnected	Property
							

Returns	True	if	the	MaintainConnection	property	is	True	and	the	PivotTable
cache	is	currently	connected	to	its	source.	Returns	False	if	it	is	not	currently
connected	to	its	source.	Read-only	Boolean.

expression.IsConnected

expression			Required.	An	expression	that	returns	a	PivotCache	object.

Remarks

The	IsConnected	property	does	not	check	to	see	if	the	connection	is	connected.
Even	if	this	property	returns	True,	sending	commands	to	the	provider	could
result	in	an	error	if	the	connection	is	no	longer	valid.

Requires	that	the	cache	source	type	is	external	and	that	it	is	an	OLE	DB	data
source.

Example

The	following	example	determines	if	the	cache	is	connected	to	its	source	and
notifies	the	user.	This	example	assumes	a	PivotTable	exists	on	the	active
worksheet.

Sub	CheckIsConnected()

				'	Handle	run-time	error	if	external	source	is	not	an	OLEDB.

				On	Error	GoTo	Not_OLEDB

				'	Check	connection	setting	and	notify	the	user	accordingly.

				If	Application.ActiveWorkbook.PivotCaches.Item(1).IsConnected	=	True	Then

								MsgBox	"The	PivotCache	is	currently	connected	to	its	source."

				Else

								MsgBox	"The	PivotCache	is	not	currently	connected	to	its	source."

				End	If

				Exit	Sub

Not_OLEDB:

				MsgBox	"The	data	source	is	not	an	OLEDB	data	source."

End	Sub

IsInPlace	Property
							

True	if	the	specified	workbook	is	being	edited	in	place.	False	if	the	workbook
has	been	opened	in	Microsoft	Excel	for	editing.	Read-only	Boolean.

Example

This	example	indicates	whether	the	workbook	was	opened	for	editing	in	place	or
in	Microsoft	Excel.

Private	Sub	Workbook_Open()

				If	ThisWorkbook.IsInPlace	=	True	Then

								MsgBox	"Editing	in	place"

				Else

								MsgBox	"Editing	in	Microsoft	Excel"

				End	If

End	Sub

Show	All

IsMemberProperty	Property
							

Returns	True	when	the	PivotField	contains	member	properties.	Read-only
Boolean.

expression.IsMemberProperty

expression			Required.	An	expression	that	returns	a	PivotField	object.

Remarks

This	property	will	return	a	run-time	error	if	an	Online	Analytical	Processing
(OLAP)	data	source	is	not	used.

Example

This	example	determines	if	the	PivotTable	field	contains	member	properties	and
notifies	the	user.	It	assumes	that	a	PivotTable	exists	on	the	active	worksheet	and
that	it	is	connected	to	an	OLAP	data	source.

Sub	CheckForMembers()

				Dim	pvtTable	As	PivotTable

				Dim	pvtField	As	PivotField

				Set	pvtTable	=	ActiveSheet.PivotTables(1)

				Set	pvtField	=	pvtTable.PivotFields(1)

				'	Determine	if	member	properties	exist	and	notify	user.

				If	pvtField.IsMemberProperty	=	True	Then

								MsgBox	"The	PivotField	contains	member	properties."

				Else

								MsgBox	"The	PivotField	does	not	contain	member	properties."

				End	If

End	Sub

IsValid	Property
							

Returns	a	Boolean	that	indicates	whether	the	specified	calculated	member	has
been	successfully	instantiated	with	the	OLAP	provider	during	the	current
session.

expression.IsValid

expression			Required.	An	expression	that	returns	a	CalculatedMember	object.

Remarks

This	property	returns	True	even	if	the	PivotTable	is	not	connected	to	its	data
source.	Make	sure	that	the	PivotTable	is	connected	before	querying	the	value	of
the	IsValid	Property.

Example

This	example	notifies	the	user	about	whether	the	calculated	member	is	valid	or
not.	It	assumes	a	PivotTable	exists	on	the	active	worksheet.

Sub	CheckValidity()

				Dim	pvtTable	As	PivotTable

				Dim	pvtCache	As	PivotCache

				Set	pvtTable	=	ActiveSheet.PivotTables(1)

				Set	pvtCache	=	Application.ActiveWorkbook.PivotCaches.Item(1)

				'	Make	connection	for	PivotTable	before	testing	IsValid	property.

				pvtCache.MakeConnection

				'	Check	if	calculated	member	is	valid.

				If	pvtTable.CalculatedMembers.Item(1).IsValid	=	True	Then

								MsgBox	"The	calculated	member	is	valid."

				Else

								MsgBox	"The	calculated	member	is	not	valid."

				End	If

End	Sub

Italic	Property
							

True	if	the	font	style	is	italic.	Read/write	Boolean.

Example

This	example	sets	the	font	style	to	italic	for	the	range	A1:A5	on	Sheet1.

Worksheets("Sheet1").Range("A1:A5").Font.Italic	=	True

Show	All

Item	Property
			

Item	property	as	it	applies	to	the	Adjustments	object.

Returns	or	sets	the	adjustment	value	specified	by	the	Index	argument.	For	linear
adjustments,	an	adjustment	value	of	0.0	generally	corresponds	to	the	left	or	top
edge	of	the	shape,	and	a	value	of	1.0	generally	corresponds	to	the	right	or	bottom
edge	of	the	shape.	However,	adjustments	can	pass	beyond	shape	boundaries	for
some	shapes.	For	radial	adjustments,	an	adjustment	value	of	1.0	corresponds	to
the	width	of	the	shape.	For	angular	adjustments,	the	adjustment	value	is
specified	in	degrees.	The	Item	property	applies	only	to	shapes	that	have
adjustments.	Read/write	Single.

expression.Item(Index)

expression			Required.	An	expression	that	returns	an	Adjustments	object.

Index		Required	Long.	The	index	number	of	the	adjustment.

Remarks

AutoShapes,	connectors,	and	WordArt	objects	can	have	up	to	eight	adjustments.

Item	property	as	it	applies	to	the	Areas,	Filters,	HPageBreaks,	Panes,
Phonetics,	RecentFiles,	and	VPageBreaks	objects.

Returns	a	single	object	from	a	collection.

expression.Item(Index)

expression			Required.	An	expression	that	returns	one	of	the	above	objects.

Index		Required	Long.	The	index	number	of	the	object.

Item	property	as	it	applies	to	the	Borders	object.

Returns	a	Border	object	that	represents	one	of	the	borders	of	either	a	range	of
cells	or	a	style.

expression.Item(Index)

expression			Required.	An	expression	that	returns	a	Borders	collection.

Index		Required	XlBordersIndex.

XlBordersIndex	can	be	one	of	these	XlBordersIndex	constants.
xlDiagonalDown
xlDiagonalUp
xlEdgeBottom
xlEdgeLeft
xlEdgeRight
xlEdgeTop
xlInsideHorizontal
xlInsideVertical

Item	property	as	it	applies	to	the	Dialogs	object.

Returns	a	Dialog	object	that	represents	a	single	built-in	dialog	box.

expression.Item(Index)

expression			Required.	An	expression	that	returns	a	Dialogs	object.

Index		Required	XlBuiltInDialog.

XlBuiltInDialog	can	be	one	of	these	XlBuiltInDialog	constants.
_xlDialogChartSourceData
_xlDialogPhonetic
xlDialogActivate
xlDialogActiveCellFont
xlDialogAddChartAutoformat
xlDialogAddinManager
xlDialogAlignment
xlDialogApplyNames
xlDialogApplyStyle
xlDialogAppMove
xlDialogAppSize
xlDialogArrangeAll
xlDialogAssignToObject
xlDialogAssignToTool
xlDialogAttachText
xlDialogAttachToolbars
xlDialogAutoCorrect
xlDialogAxes
xlDialogBorder
xlDialogCalculation
xlDialogCellProtection
xlDialogChangeLink
xlDialogChartAddData
xlDialogChartLocation
xlDialogChartOptionsDataLabelMultiple
xlDialogChartOptionsDataLabels

xlDialogChartOptionsDataTable
xlDialogChartSourceData
xlDialogChartTrend
xlDialogChartType
xlDialogChartWizard
xlDialogCheckboxProperties
xlDialogClear
xlDialogColorPalette
xlDialogColumnWidth
xlDialogCombination
xlDialogConditionalFormatting
xlDialogConsolidate
xlDialogCopyChart
xlDialogCopyPicture
xlDialogCreateNames
xlDialogCreatePublisher
xlDialogCustomizeToolbar
xlDialogCustomViews
xlDialogDataDelete
xlDialogDataLabel
xlDialogDataLabelMultiple
xlDialogDataSeries
xlDialogDataValidation
xlDialogDefineName
xlDialogDefineStyle
xlDialogDeleteFormat
xlDialogDeleteName
xlDialogDemote
xlDialogDisplay
xlDialogEditboxProperties
xlDialogEditColor
xlDialogEditDelete
xlDialogEditionOptions

xlDialogEditSeries
xlDialogErrorbarX
xlDialogErrorbarY
xlDialogErrorChecking
xlDialogEvaluateFormula
xlDialogExternalDataProperties
xlDialogExtract
xlDialogFileDelete
xlDialogFileSharing
xlDialogFillGroup
xlDialogFillWorkgroup
xlDialogFilter
xlDialogFilterAdvanced
xlDialogFindFile
xlDialogFont
xlDialogFontProperties
xlDialogFormatAuto
xlDialogFormatChart
xlDialogFormatCharttype
xlDialogFormatFont
xlDialogFormatLegend
xlDialogFormatMain
xlDialogFormatMove
xlDialogFormatNumber
xlDialogFormatOverlay
xlDialogFormatSize
xlDialogFormatText
xlDialogFormulaFind
xlDialogFormulaGoto
xlDialogFormulaReplace
xlDialogFunctionWizard
xlDialogGallery3dArea
xlDialogGallery3dBar

xlDialogGallery3dColumn
xlDialogGallery3dLine
xlDialogGallery3dPie
xlDialogGallery3dSurface
xlDialogGalleryArea
xlDialogGalleryBar
xlDialogGalleryColumn
xlDialogGalleryCustom
xlDialogGalleryDoughnut
xlDialogGalleryLine
xlDialogGalleryPie
xlDialogGalleryRadar
xlDialogGalleryScatter
xlDialogGoalSeek
xlDialogGridlines
xlDialogImportTextFile
xlDialogInsert
xlDialogInsertHyperlink
xlDialogInsertNameLabel
xlDialogInsertObject
xlDialogInsertPicture
xlDialogInsertTitle
xlDialogItemProperties
xlDialogLabelProperties
xlDialogListboxProperties
xlDialogMacroOptions
xlDialogMailEditMailer
xlDialogMailLogon
xlDialogMailNextLetter
xlDialogMainChart
xlDialogMainChartType
xlDialogMenuEditor
xlDialogMove

xlDialogNew
xlDialogNewWebQuery
xlDialogNote
xlDialogObjectProperties
xlDialogObjectProtection
xlDialogOpen
xlDialogOpenLinks
xlDialogOpenMail
xlDialogOpenText
xlDialogOptionsCalculation
xlDialogOptionsChart
xlDialogOptionsEdit
xlDialogOptionsGeneral
xlDialogOptionsListsAdd
xlDialogOptionsME
xlDialogOptionsTransition
xlDialogOptionsView
xlDialogOutline
xlDialogOverlay
xlDialogOverlayChartType
xlDialogPageSetup
xlDialogParse
xlDialogPasteNames
xlDialogPasteSpecial
xlDialogPatterns
xlDialogPhonetic
xlDialogPivotCalculatedField
xlDialogPivotCalculatedItem
xlDialogPivotClientServerSet
xlDialogPivotFieldGroup
xlDialogPivotFieldProperties
xlDialogPivotFieldUngroup
xlDialogPivotShowPages

xlDialogPivotSolveOrder
xlDialogPivotTableOptions
xlDialogPivotTableWizard
xlDialogPlacement
xlDialogPrint
xlDialogPrinterSetup
xlDialogPrintPreview
xlDialogPromote
xlDialogProperties
xlDialogProtectDocument
xlDialogProtectSharing
xlDialogPublishAsWebPage
xlDialogPushbuttonProperties
xlDialogReplaceFont
xlDialogRoutingSlip
xlDialogRowHeight
xlDialogRun
xlDialogSaveAs
xlDialogSaveCopyAs
xlDialogSaveNewObject
xlDialogSaveWorkbook
xlDialogSaveWorkspace
xlDialogScale
xlDialogScenarioAdd
xlDialogScenarioCells
xlDialogScenarioEdit
xlDialogScenarioMerge
xlDialogScenarioSummary
xlDialogScrollbarProperties
xlDialogSearch
xlDialogSelectSpecial
xlDialogSendMail
xlDialogSeriesAxes

xlDialogSeriesOptions
xlDialogSeriesOrder
xlDialogSeriesShape
xlDialogSeriesX
xlDialogSeriesY
xlDialogSetBackgroundPicture
xlDialogSetPrintTitles
xlDialogSetUpdateStatus
xlDialogShowDetail
xlDialogShowToolbar
xlDialogSize
xlDialogSort
xlDialogSortSpecial
xlDialogSplit
xlDialogStandardFont
xlDialogStandardWidth
xlDialogStyle
xlDialogSubscribeTo
xlDialogSubtotalCreate
xlDialogSummaryInfo
xlDialogTable
xlDialogTabOrder
xlDialogTextToColumns
xlDialogUnhide
xlDialogUpdateLink
xlDialogVbaInsertFile
xlDialogVbaMakeAddin
xlDialogVbaProcedureDefinition
xlDialogView3d
xlDialogWebOptionsBrowsers
xlDialogWebOptionsEncoding
xlDialogWebOptionsFiles
xlDialogWebOptionsFonts

xlDialogWebOptionsGeneral
xlDialogWebOptionsPictures
xlDialogWindowMove
xlDialogWindowSize
xlDialogWorkbookAdd
xlDialogWorkbookCopy
xlDialogWorkbookInsert
xlDialogWorkbookMove
xlDialogWorkbookName
xlDialogWorkbookNew
xlDialogWorkbookOptions
xlDialogWorkbookProtect
xlDialogWorkbookTabSplit
xlDialogWorkbookUnhide
xlDialogWorkgroup
xlDialogWorkspace
xlDialogZoom

Remarks

Using	the	Item	property	of	the	Dialogs	collection	and	the	Show	method,	you
can	display	approximately	200	built-in	dialog	boxes.	Each	dialog	box	has	a
constant	assigned	to	it;	these	constants	all	begin	with	"xlDialog."

For	a	table	of	the	available	constants	and	their	corresponding	argument	lists,	see
Built-In	Dialog	Box	Argument	Lists.

The	Item	property	of	the	Dialogs	collection	may	fail	if	you	try	to	show	a	dialog
box	in	an	incorrect	context.	For	example,	to	display	the	Data	Labels	dialog	box
(using	the	Visual	Basic	expression
Application.Dialogs(xlDialogDataLabel).Show),	the	active	sheet	must	be	a
chart;	otherwise,	the	property	fails.

Item	property	as	it	applies	to	the	Errors	object.

Returns	a	single	member	of	the	Error	object.

expression.Item(Index)

expression			Required.	An	expression	that	returns	an	Errors	object.

Index		Required	Variant.		The	Index	can	also	be	one	these	constants.

xlEvaluateToError		The	cell	evaluates	to	an	error	value.
xlTextDate		The	cell	contains	a	text	date	with	2	digit	years.
xlNumberAsText		The	cell	contains	a	number	stored	as	text.
xlInconsistentFormula		The	cell	contains	an	inconsistent	formula	for	a	region.
xlOmittedCells		The	cell	contains	a	formula	omitting	a	cell	for	a	region.
xlUnlockedFormulaCells		The	cell	which	is	unlocked	contains	a	formula.
xlEmptyCellReferences		The	cell	contains	a	formula	referring	to	empty	cells.

Item	property	as	it	applies	to	the	Range	object.

Returns	a	Range	object	that	represents	a	range	at	an	offset	to	the	specified	range.

expression.Item(RowIndex,	ColumnIndex)

expression			Required.	An	expression	that	returns	a	Range	object.

RowIndex		Required	Variant.	The	index	number	of	the	cell	you	want	to	access,
in	order	from	left	to	right,	then	down.	Range.Item(1)	returns	the	upper-left	cell
in	the	range;	Range.Item(2)	returns	the	cell	immediately	to	the	right	of	the
upper-left	cell.

ColumnIndex		Optional	Variant.	A	number	or	string	that	indicates	the	column
number	of	the	cell	you	want	to	access,	starting	with	either	1	or	"A"	for	the	first
column	in	the	range.

Remarks

Syntax	1	uses	a	row	number	and	a	column	number	or	letter	as	index	arguments.
For	more	information	about	this	syntax,	see	the	Range	object.	The	RowIndex
and	ColumnIndex	arguments	are	relative	offsets.	In	other	words,	specifying	a
RowIndex	of	1	returns	cells	in	the	first	row	of	the	range,	not	the	first	row	of	the
worksheet.	For	example,	if	the	selection	is	cell	C3,	Selection.Cells(2,	2)
returns	cell	D4	(you	can	use	the	Item	property	to	index	outside	the	original
range).

Item	property	as	it	applies	to	all	other	objects	in	the	Applies	To	list.

Returns	a	single	object	from	a	collection.

expression.Item(Index)

expression			Required.	An	expression	that	returns	one	of	the	above	objects.

Index		Required	Variant.	The	name	or	index	number	of	the	object.

Remarks

For	more	information	about	returning	a	single	member	of	a	collection,	see
Returning	an	Object	from	a	Collection.

Example

As	it	applies	to	the	AddIns	object.

This	example	displays	the	status	of	the	Analysis	ToolPak	add-in.	Note	that	the
string	used	as	the	index	to	the	AddIns	method	is	the	Title	property	of	the	AddIn
object.

If	AddIns.Item("Analysis	ToolPak").Installed	=	True	Then

				MsgBox	"Analysis	ToolPak	add-in	is	installed"

Else

				MsgBox	"Analysis	ToolPak	add-in	is	not	installed"

End	If

As	it	applies	to	the	AllowEditRanges	object.

This	example	allows	edits	to	range	("A1:A4")	on	the	active	worksheet,	notifies
the	user,	then	changes	the	password	for	this	specified	range	and	notifies	the	user
of	this	change.

Sub	UseChangePassword()

				Dim	wksOne	As	Worksheet

				Set	wksOne	=	Application.ActiveSheet

				'	Establish	a	range	that	can	allow	edits

				'	on	the	protected	worksheet.

				wksOne.Protection.AllowEditRanges.Add	_

								Title:="Classified",	_

								Range:=Range("A1:A4"),	_

								Password:="secret"

				MsgBox	"Cells	A1	to	A4	can	be	edited	on	the	protected	worksheet."

				'	Change	the	password.

				wksOne.Protection.AllowEditRanges.Item(1).ChangePassword	_

								Password:="moresecret"

				MsgBox	"The	password	for	these	cells	has	been	changed."

End	Sub

As	it	applies	to	the	Areas	object.

This	example	clears	the	first	area	in	the	current	selection	if	the	selection	contains
more	than	one	area.

If	Selection.Areas.Count	<>	1	Then

				Selection.Areas.Item(1).Clear

End	If

As	it	applies	to	the	Borders	object.

This	following	example	sets	the	color	of	the	bottom	border	of	cells	A1:G1.

Worksheets("Sheet1").Range("a1:g1").	_

				Borders.Item(xlEdgeBottom).Color	=	RGB(255,	0,	0)

As	it	applies	to	the	CalculatedMembers	object.

The	following	example	notifies	the	user	if	the	calculated	member	is	valid	or	not.
This	example	assumes	a	PivotTable	exists	on	the	active	worksheet	that	contains
either	a	valid	or	invalid	calculated	member.

Sub	CheckValidity()

				Dim	pvtTable	As	PivotTable

				Dim	pvtCache	As	PivotCache

				Set	pvtTable	=	ActiveSheet.PivotTables(1)

				Set	pvtCache	=	Application.ActiveWorkbook.PivotCaches.Item(1)

				'	Handle	run-time	error	if	external	source	is	not	an	OLEDB	data	source.

				On	Error	GoTo	Not_OLEDB

				'	Check	connection	setting	and	make	connection	if	necessary.

				If	pvtCache.IsConnected	=	False	Then

								pvtCache.MakeConnection

				End	If

				'	Check	if	calculated	member	is	valid.

				If	pvtTable.CalculatedMembers.Item(1).IsValid	=	True	Then

								MsgBox	"The	calculated	member	is	valid."

				Else

								MsgBox	"The	calculated	member	is	not	valid."

				End	If

End	Sub

As	it	applies	to	the	Charts	object.

This	example	sets	the	number	of	units	that	the	trendline	on	Chart1	extends
forward	and	backward.	The	example	should	be	run	on	a	2-D	column	chart	that
contains	a	single	series	with	a	trendline.

With	Charts.Item("Chart1").SeriesCollection(1).Trendlines(1)

				.Forward	=	5

				.Backward	=	.5

End	With

As	it	applies	to	the	CubeFields	object.

This	example	finds	the	first	PivotTable	report	whose	first	cube	field	name
contains	the	string	“Paris”.	The	Boolean	variable	blnFoundName	is	set	to	True	if
the	name	is	found.

blnFoundName	=	False

For	Each	objPT	in	ActiveSheet.PivotTables

				Set	objCubeField	=	_

								objPT.CubeFields.Item(1)

				If	instr(1,objCubeField.Name,	"Paris")	<>	0	Then

								blnFoundName	=	True

								Exit	For

				End	If

Next	objPT

As	it	applies	to	the	CustomProperties	object.

The	following	example	demonstrates	this	feature.	In	this	example,	Microsoft
Excel	adds	identifier	information	to	the	active	worksheet	and	returns	the	name
and	value	to	the	user.

Sub	CheckCustomProperties()

				Dim	wksSheet1	As	Worksheet

				Set	wksSheet1	=	Application.ActiveSheet

				'	Add	metadata	to	worksheet.

				wksSheet1.CustomProperties.Add	_

								Name:="Market",	Value:="Nasdaq"

				'	Display	metadata.

				With	wksSheet1.CustomProperties.Item(1)

								MsgBox	.Name	&	vbTab	&	.Value

				End	With

End	Sub

As	it	applies	to	the	Dialogs	object.

This	example	displays	the	Open	dialog	box	and	selects	the	Read-Only	option.

Application.Dialogs.Item(xlDialogOpen).Show	arg3:=True

As	it	applies	to	the	Filters	object.

The	following	example	sets	a	variable	to	the	value	of	the	On	property	of	the
filter	for	the	first	column	in	the	filtered	range	on	the	Crew	worksheet.

Set	w	=	Worksheets("Crew")

If	w.AutoFilterMode	Then

				filterIsOn	=	w.AutoFilter.Filters.Item(1).On

End	If

As	it	applies	to	the	HPageBreaks	object.

This	example	changes	the	location	of	horizontal	page	break	one.

Worksheets(1).HPageBreaks.Item(1).Location	=	.Range("e5")

As	it	applies	to	the	Hyperlinks	object.

The	following	example	activates	hyperlink	one	on	cell	E5.

Worksheets(1).Range("E5").Hyperlinks.Item(1).Follow

As	it	applies	to	the	Panes	object.

This	example	splits	the	window	in	which	worksheet	one	is	displayed	and	then
scrolls	through	the	pane	in	the	lower-left	corner	of	the	window	until	row	five	is
at	the	top	of	the	pane.

Worksheets(1).Activate

ActiveWindow.Split	=	True

ActiveWindow.Panes.Item(3).ScrollRow	=	5

As	it	applies	to	the	Phonetics	object.

This	example	makes	the	first	phonetic	text	string	in	the	active	cell	visible.

ActiveCell.Phonetics.Item(1).Visible	=	True

As	it	applies	to	the	PublishObjects	object.

This	example	obtains	the	identifier	from	a	<DIV>	tag	and	finds	the	line	in	a	Web
page	(q198.htm)	that	you	saved	from	a	workbook.	The	example	then	creates	a
copy	of	the	Web	page	(newq1.htm)	and	inserts	a	comment	line	before	the	<DIV>
tag	in	the	copy	of	the	file.

strTargetDivID	=	ActiveWorkbook.PublishObjects.Item(1).DivID

Open	"\\server1\reports\q198.htm"	For	Input	As	#1

Open	"\\server1\reports\newq1.htm"	For	Output	As	#2

While	Not	EOF(1)

				Line	Input	#1,	strFileLine

				If	InStr(strFileLine,	strTargetDivID)	>	0	And	_

								InStr(strFileLine,	"<div")	>	0	Then

												Print	#2,	"<!--Saved	item-->"

				End	If

				Print	#2,	strFileLine

Wend

Close	#2

Close	#1

As	it	applies	to	the	Range	object.

This	example	fills	the	range	A1:A10	on	Sheet1,	based	on	the	contents	of	cell	A1.

Worksheets("Sheet1").Range.Item("A1:A10").FillDown

As	it	applies	to	the	RecentFiles	object.

This	example	opens	file	two	in	the	list	of	recently	used	files.

Application.RecentFiles.Item(2).Open

As	it	applies	to	the	Sheets	object.

This	example	activates	Sheet1.

Sheets.Item("sheet1").Activate

As	it	applies	to	the	SmartTagRecognizer	object.

This	example	notifies	the	user	the	full	name	of	the	first	smart	tag	recognizer.

MsgBox	Application.SmartTagRecognizers.Item(1).FullName

As	it	applies	to	the	Styles	object.

This	example	changes	the	Normal	style	for	the	active	workbook	by	setting	the
style's	Bold	property.

ActiveWorkbook.Styles.Item("Normal").Font.Bold	=	True

As	it	applies	to	the	VPageBreaks	object.

This	example	changes	the	location	of	vertical	page	break	one.

Worksheets(1).VPageBreaks.Item(1).Location	=	.Range("e5")

As	it	applies	to	the	Windows	object.

This	example	maximizes	the	active	window.

Windows.Item(1).WindowState	=	xlMaximized

As	it	applies	to	the	Workbooks	object.

This	example	sets	the	wb	variable	to	the	workbook	for	Myaddin.xla.

Set	wb	=	Workbooks.Item("myaddin.xla")

As	it	applies	to	the	Worksheets	object.

Item	is	the	default	member	for	a	collection.	For	example,	the	following	two
lines	of	code	are	equivalent.

ActiveWorkbook.Worksheets.Item(1)

ActiveWorkbook.Worksheets(1)

Iteration	Property
							

True	if	Microsoft	Excel	will	use	iteration	to	resolve	circular	references.
Read/write	Boolean.

Example

This	example	sets	the	Iteration	property	to	True	so	that	circular	references	will
be	resolved	by	iteration.

Application.Iteration	=	True

KeepChangeHistory	Property
							

True	if	change	tracking	is	enabled	for	the	shared	workbook.	Read/write
Boolean.

Example

This	example	sets	the	number	of	days	shown	in	the	change	history	for	the	active
workbook	if	change	tracking	is	enabled.

With	ActiveWorkbook

				If	.KeepChangeHistory	Then

								.ChangeHistoryDuration	=	7

				End	If

End	With

KernedPairs	Property
							

True	if	character	pairs	in	the	specified	WordArt	are	kerned.	Read/write
MsoTriState.

MsoTriState	can	be	one	of	these	MsoTriState	constants.
msoCTrue
msoFalse
msoTriStateMixed
msoTriStateToggle
msoTrue	Character	pairs	in	the	specified	WordArt	are	kerned.

expression.KernedPairs

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

Example

This	example	turns	on	character	pair	kerning	for	shape	three	on	myDocument	if
the	shape	is	WordArt.

Set	myDocument	=	Worksheets(1)

With	myDocument.Shapes(3)

				If	.Type	=	msoTextEffect	Then

								.TextEffect.KernedPairs	=	msoTrue

				End	If

End	With

KoreanCombineAux	Property
							

When	set	to	True,	this	enables	Microsoft	Excel	to	combine	Korean	auxiliary
verbs	and	adjectives	when	using	the	spelling	checker.	Read/write	Boolean.

expression.KoreanCombineAux

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

Example

In	this	example,	Microsoft	Excel	checks	to	see	if	the	spell	checking	option	to
combine	Korean	auxiliary	verbs	and	adjectives	is	on	or	off	and	notifies	the	user
accordingly.

Sub	KoreanSpellCheck()

				If	Application.SpellingOptions.KoreanCombineAux	=	True	Then

								MsgBox	"The	spell	checking	feature	to	combine	Korean	auxiliary	verbs	and	adjectives	is	on."

				Else

								MsgBox	"The	spell	checking	feature	to	combine	Korean	auxiliary	verbs	and	adjectives	is	off."

				End	If

End	Sub

KoreanProcessCompound	Property
							

When	set	to	True,	this	enables	Microsoft	Excel	to	process	Korean	compound
nouns	when	using	the	spelling	checker.	Read/write	Boolean.

expression.KoreanProcessCompound

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

Example

In	this	example,	Microsoft	Excel	checks	to	see	if	the	spell	checking	option	to
process	Korean	compound	nouns	is	on	or	off	and	notifies	the	user	accordingly.

Sub	KoreanSpellCheck()

				If	Application.SpellingOptions.KoreanProcessCompound	=	True	Then

								MsgBox	"The	spell	checking	feature	to	process	Korean	compound	nouns	is	on."

				Else

								MsgBox	"The	spell	checking	feature	to	process	Korean	compound	nouns	is	off."

				End	If

End	Sub

KoreanUseAutoChangeList	Property
							

When	set	to	True,	this	enables	Microsoft	Excel	to	use	the	auto-change	list	for
Korean	words	when	using	the	spelling	checker.	Read/write	Boolean.

expression.KoreanUseAutoChangeList

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

Example

In	this	example,	Microsoft	Excel	checks	to	see	if	the	spell	checking	option	to
auto-change	Korean	words	is	on	or	off	and	notifies	the	user	accordingly.

Sub	KoreanSpellCheck()

				If	Application.SpellingOptions.KoreanUseAutoChangeList	=	True	Then

								MsgBox	"The	spell	checking	feature	to	auto-change	Korean	words	is	on."

				Else

								MsgBox	"The	spell	checking	feature	to	auto-change	Korean	words	is	off."

				End	If

End	Sub

LabelRange	Property
							

For	a	PivotField	object,	returns	a	Range	object	that	represents	the	cell	(or	cells)
that	contain	the	field	label.	For	a	PivotItem	object,	returns	a	Range	object	that
represents	all	the	cells	in	the	PivotTable	report	that	contain	the	item.	Read-only.

Example

This	example	selects	the	field	button	for	the	field	named	"ORDER_DATE."

Set	pvtTable	=	Worksheets("Sheet1").Range("A3").PivotTable

Set	pvtField	=	pvtTable.PivotFields("ORDER_DATE")

Worksheets("Sheet1").Activate

pvtField.LabelRange.Select

LanguageSettings	Property
							

Returns	the	LanguageSettings	object,	which	contains	information	about	the
language	settings	in	Microsoft	Excel.	Read-only.

expression.LanguageSettings

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

mk:@MSITStore:vbaof10.chm::/html/ofobjLanguageSettings.htm

Example

This	example	returns	the	language	identifier	for	the	language	you	selected	when
you	installed	Microsoft	Excel.

Set	objLangSet	=	Application.LanguageSettings

MsgBox	objLangSet.LanguageID(msoLanguageIDInstall)

LargeChange	Property
							

Returns	or	sets	the	amount	that	the	scroll	box	increments	or	decrements	for	a
page	scroll	(when	the	user	clicks	in	the	scroll	bar	body	region).	Read/write	Long

Example

This	example	creates	a	scroll	bar	and	sets	its	linked	cell,	minimum,	maximum,
large	change,	and	small	change	values.

Set	sb	=	Worksheets(1).Shapes.AddFormControl(xlScrollBar,	_

				Left:=10,	Top:=10,	Width:=10,	Height:=200)

With	sb.ControlFormat

				.LinkedCell	=	"D1"

				.Max	=	100

				.Min	=	0

				.LargeChange	=	10

				.SmallChange	=	2

End	With

LastChild	Property
							

Returns	a	DiagramNode	object	that	represents	the	last	child	node	of	a	parent
node.

expression.LastChild

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

Example

The	following	example	adds	a	child	node	to	the	last	child	diagram	node	in	a
newly-created	diagram.

Sub	LastChildNode()

				Dim	nodDiagram	As	DiagramNode

				Dim	nodLast	As	DiagramNode

				Dim	shDiagram	As	Shape

				Dim	intCount	As	Integer

				Set	shDiagram	=	ActiveSheet.Shapes.AddDiagram	_

								(Type:=msoDiagramOrgChart,	Left:=10,	Top:=15,	_

								Width:=400,	Height:=475)

				Set	nodDiagram	=	shDiagram.DiagramNode.Children.AddNode

				'	Add	three	diagram	child	nodes	under	the	first	diagram	node

				For	intCount	=	1	To	3

								nodDiagram.Children.AddNode

				Next	intCount

				'	Assign	the	last	child	node	to	a	variable

				Set	nodLast	=	nodDiagram.Children.LastChild

				'	Add	a	node	to	the	last	child	node.

				nodLast.Children.AddNode

End	Sub

Show	All

Layout	Property
							

Returns	or	sets	an	MsoOrgChartLayoutType	constant	to	indicate	the
formatting	of	the	child	nodes	of	an	organization	chart.	Read/write.

MsoOrgChartLayoutType	can	be	one	of	these	MsoOrgChartLayoutType
constants.
msoOrgChartLayoutAssistant		Places	child	nodes	as	assistants.
msoOrgChartLayoutBothHanging		Places	child	nodes	vertically	from	the
parent	node	on	both	the	left	and	the	right	side.
msoOrgChartLayoutLeftHanging		Places	child	nodes	vertically	from	the
parent	node	on	the	left	side.
msoOrgChartLayoutMixed		Return	value	for	a	parent	node	that	has	children
formatted	using	more	than	one	MsoOrgChartLayoutType.
msoOrgChartLayoutRightHanging		Places	child	nodes	vertically	from	the
parent	node	on	the	right	side.
msoOrgChartLayoutStandard		Places	child	nodes	horizontally	below	the
parent	node.

expression.Layout

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

Example

In	this	example,	an	organization	chart's	layout	is	modified	to	display	as	right-
hanging	instead	of	standard.

Sub	Layout()

				Dim	nodRoot	As	DiagramNode

				Dim	shDiagram	As	Shape

				Dim	intCount	As	Integer

				Set	shDiagram	=	ActiveSheet.Shapes.AddDiagram(_

								Type:=msoDiagramOrgChart,	Top:=10,	_

								Left:=15,	Width:=400,	Height:=475)

				Set	nodRoot	=	shDiagram.DiagramNode.Children.AddNode

				'	Add	three	mode	nodes.

				For	intCount	=	1	To	3

								nodRoot.Children.AddNode

				Next

				'	Change	the	layout	to	right-hanging.

				nodRoot.Layout	=	msoOrgChartLayoutRightHanging

End	Sub

Show	All

LayoutBlankLine	Property
							

True	if	a	blank	row	is	inserted	after	the	specified	row	field	in	a	PivotTable
report.	The	default	value	is	False.	Read/write	Boolean.

Remarks

You	can	set	this	property	for	any	PivotTable	field;	however,	the	blank	row
appears	only	if	the	specified	field	is	a	row	field	other	than	the	innermost	(lowest-
level)	row	field.	For	non-OLAP	data	sources,	the	value	of	this	property	doesn’t
change	when	the	field	is	rearranged	or	added	to	the	PivotTable	report.

You	cannot	enter	data	in	the	blank	row	in	the	PivotTable	report.

Example

This	example	adds	a	blank	line	after	the	state	field	in	the	first	PivotTable	report
on	the	active	worksheet.

With	ActiveSheet.PivotTables("PivotTable1")	_

								.PivotFields("state")

				.LayoutBlankLine	=	True

End	With

Show	All

LayoutForm	Property
							

Returns	or	sets	the	way	the	specified	PivotTable	items	appear—in	table	format
or	in	outline	format.	Read/write	XlLayoutFormType.

XlLayoutFormType	can	be	one	of	these	XlLayoutFormType	constants.
xlTabular	Default.	
xlOutline	The	LayoutSubtotalLocation	property	specifies	where	the	subtotal
appears	in	the	PivotTable	report.

expression.LayoutForm

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

Remarks

You	can	set	this	property	for	any	PivotTable	field;	however,	the	formatting
appears	only	if	the	specified	field	is	a	row	field	other	than	the	innermost	(lowest-
level)	row	field.	For	non-OLAP	data	sources,	the	value	of	this	property	doesn’t
change	when	the	field	is	rearranged	or	when	it	is	added	to	or	removed	from	the
PivotTable	report.

Example

This	example	displays	the	state	field	in	the	first	PivotTable	report	on	the	active
worksheet	in	outline	format,	and	it	displays	the	subtotals	at	the	top	of	the	field.

With	ActiveSheet.PivotTables("PivotTable1")	_

								.PivotFields("state")

				.LayoutForm	=	xlOutline

				.LayoutSubtotalLocation	=	xlTop

End	With

Show	All

LayoutPageBreak	Property
							

True	if	a	page	break	is	inserted	after	each	field.	The	default	value	is	False.
Read/write	Boolean.

Remarks

Although	you	can	set	this	property	for	any	PivotTable	field,	the	print	option
appears	only	if	the	specified	field	is	a	row	field	other	than	the	innermost	(lowest-
level)	row	field.	For	non-OLAP	data	sources,	the	value	of	this	property	doesn’t
change	when	the	field	is	rearranged	or	when	it	is	added	to	or	removed	from	the
PivotTable	report.

Example

This	example	adds	a	page	break	after	the	state	field	in	the	first	PivotTable	report
on	the	active	worksheet.

With	ActiveSheet.PivotTables("PivotTable1")	_

								.PivotFields("state")

				.LayoutPageBreak	=	True

End	With

Show	All

LayoutSubtotalLocation	Property
							

Returns	or	sets	the	position	of	the	PivotTable	field	subtotals	in	relation	to	(either
above	or	below)	the	specified	field.		Read/write	XlSubtototalLocationType.

XlSubtototalLocationType	can	be	one	of	these	XlSubtototalLocationType
constants.
xlAtTop
xlAtBottom	default

expression.LayoutSubtotalLocation

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

Remarks

You	can	set	this	property	for	any	PivotTable	field	in	outline	format;	however,	the
formatting	appears	only	if	the	specified	field	is	a	row	field	other	than	the
innermost	(lowest	level)	row	field.	For	non-	OLAP	data	sources,	the	value	of
this	property	doesn’t	change	when	the	field	is	rearranged	or	when	it	is	added	to
or	from	removed	from	the	report.

The	LayoutForm	property	determines	whether	the	report	appears	in	table
format	or	in	outline	format.

Example

This	example	displays	the	state	field	in	the	first	PivotTable	report	on	the	active
worksheet	in	outline	format,	and	it	displays	the	subtotals	at	the	top	of	the	field.

With	ActiveSheet.PivotTables("PivotTable1")	_

								.PivotFields("state")

				.LayoutForm	=	xlOutline

				.LayoutSubtotalLocation	=	xlAtTop

End	With

LeaderLines	Property
							

Returns	a	LeaderLines	object	that	represents	the	leader	lines	for	the	series.
Read-only.

Example

This	example	adds	data	labels	and	blue	leader	lines	to	series	one	on	the	pie	chart.

With	Worksheets(1).ChartObjects(1).Chart.SeriesCollection(1)

				.HasDataLabels	=	True

				.DataLabels.Position	=	xlLabelPositionBestFit

				.HasLeaderLines	=	True

				.LeaderLines.Border.ColorIndex	=	5

End	With

Show	All

Left	Property
							

Left	property	as	it	applies	to	the	Application	object.

The	distance	from	the	left	edge	of	the	screen	to	the	left	edge	of	the	main
Microsoft	Excel	window.	Read/write	Double.

expression.Left

expression			Required.	An	expression	that	returns	one	of	the	above	objects.

	

Left	property	as	it	applies	to	the	Window	object.

The	distance	from	the	left	edge	of	the	client	area	to	the	left	edge	of	the	window.
Read/write	Double.

expression.Left

expression			Required.	An	expression	that	returns	one	of	the	above	objects.

	

Left	property	as	it	applies	to	the	AxisTitle,	ChartArea,	ChartObject,
ChartObjects,	ChartTitle,	DataLabel,	DisplayUnitLabel,	Legend,
OLEObject,	OLEObjects,	and	PlotArea	objects.

The	distance	from	the	left	edge	of	the	object	to	the	left	edge	of	column	A	(on	a
worksheet)	or	the	left	edge	of	the	chart	area	(on	a	chart).	Read/write	Double.

expression.Left

expression			Required.	An	expression	that	returns	one	of	the	above	objects.

	

	Left	property	as	it	applies	to	the	Axis,	LegendEntry,	and	LegendKey	objects.

The	distance	from	the	left	edge	of	the	object	to	the	left	edge	of	the	chart	area.
Read-only	Double.

expression.Left

expression			Required.	An	expression	that	returns	one	of	the	above	objects.

	

Left	property	as	it	applies	to	the	Shape	and	ShapeRange	objects.

The	distance	from	the	left	edge	of	the	object	to	the	left	edge	of	column	A	(on	a
worksheet)	or	the	left	edge	of	the	chart	area	(on	a	chart).	Read/write	Single.

expression.Left

expression			Required.	An	expression	that	returns	one	of	the	above	objects.

	

Left	property	as	it	applies	to	the	Range	object.

The	distance	from	the	left	edge	of	column	A	to	the	left	edge	of	the	range.	If	the
range	is	discontinuous,	the	first	area	is	used.	If	the	range	is	more	than	one
column	wide,	the	leftmost	column	in	the	range	is	used.	Read-only	Variant.

expression.Left

expression			Required.	An	expression	that	returns	one	of	the	above	objects.

	

If	the	window	is	maximized,	Application.Left	returns	a	negative	number	that
varies	based	on	the	width	of	the	window	border.	Setting	Application.Left	to	0
(zero)	will	make	the	window	a	tiny	bit	smaller	than	it	would	be	if	the	application
window	were	maximized.	In	other	words,	if	Application.Left	is	0	(zero),	the
left	border	of	the	main	Microsoft	Excel	window	will	just	barely	be	visible	on	the
screen.

Example

This	example	aligns	the	left	edge	of	the	embedded	chart	with	the	left	edge	of
column	B.

With	Worksheets("Sheet1")

				.ChartObjects(1).Left	=	.Columns("B").Left

End	With

LeftFooter	Property
							

Returns	or	sets	the	left	part	of	the	footer.	Read/write	String.

Remarks

Special	format	codes	can	be	used	in	the	footer	text.

Example

This	example	prints	the	page	number	in	the	lower-left	corner	of	every	page.

Worksheets("Sheet1").PageSetup.LeftFooter	=	"&P"

LeftFooterPicture	Property
							

Returns	a	Graphic	object	that	represents	the	picture	for	the	left	section	of	the
footer.	Used	to	set	attributes	about	the	picture.

expression.LeftFooterPicture

expression			Required.	An	expression	that	returns	a	PageSetup	object.

Remarks

The	LeftFooterPicture	property	is	read-only,	but	the	properties	on	it	are	not	all
read-only.

Example

The	following	example	adds	a	picture	titled:	Sample.jpg	from	the	C:\	drive	to	the
left	section	of	the	footer.	This	example	assumes	that	a	file	called	Sample.jpg
exists	on	the	C:\	drive.

Sub	InsertPicture()

				With	ActiveSheet.PageSetup.LeftFooterPicture

								.FileName	=	"C:\Sample.jpg"

								.Height	=	275.25

								.Width	=	463.5

								.Brightness	=	0.36

								.ColorType	=	msoPictureGrayscale

								.Contrast	=	0.39

								.CropBottom	=	-14.4

								.CropLeft	=	-28.8

								.CropRight	=	-14.4

								.CropTop	=	21.6

				End	With

				'	Enable	the	image	to	show	up	in	the	left	footer.

				ActiveSheet.PageSetup.LeftFooter	=	"&G"

End	Sub

Note			It	is	required	that	"&G"	is	a	part	of	the	LeftFooter	property	string	in
order	for	the	image	to	show	up	in	the	left	footer.

LeftHeader	Property
							

Returns	or	sets	the	left	part	of	the	header.	Read/write	String.

Remarks

Special	format	codes	can	be	used	in	the	header	text.

Example

This	example	prints	the	date	in	the	upper-left	corner	of	every	page.

Worksheets("Sheet1").PageSetup.LeftHeader	=	"&D"

LeftHeaderPicture	Property
							

Returns	a	Graphic	object	that	represents	the	picture	for	the	left	section	of	the
header.	Used	to	set	attributes	about	the	picture.

expression.LeftHeaderPicture

expression			Required.	An	expression	that	returns	a	PageSetup	object.

Remarks

The	LeftHeaderPicture	property	is	read-only,	but	the	properties	on	it	are	not	all
read-only.

Example

The	following	example	adds	a	picture	titled:	Sample.jpg	from	the	C:\	drive	to	the
left	section	of	the	header.	This	example	assumes	that	a	file	called	Sample.jpg
exists	on	the	C:\	drive.

Sub	InsertPicture()

				With	ActiveSheet.PageSetup.LeftHeaderPicture

								.FileName	=	"C:\Sample.jpg"

								.Height	=	275.25

								.Width	=	463.5

								.Brightness	=	0.36

								.ColorType	=	msoPictureGrayscale

								.Contrast	=	0.39

								.CropBottom	=	-14.4

								.CropLeft	=	-28.8

								.CropRight	=	-14.4

								.CropTop	=	21.6

				End	With

				'	Enable	the	image	to	show	up	in	the	left	header.

				ActiveSheet.PageSetup.LeftHeader	=	"&G"

End	Sub

Note			It	is	required	that	"&G"	is	a	part	of	the	LeftHeader	property	string	in
order	for	the	image	to	show	up	in	the	left	header.

Show	All

LeftMargin	Property
							

Returns	or	sets	the	size	of	the	left	margin,	in	points.	Read/write	Double.

Remarks

Margins	are	set	or	returned	in	points.	Use	the	InchesToPoints	method	or	the
CentimetersToPoints	method	to	convert	measurements	from	inches	or
centimeters.

Example

This	example	sets	the	left	margin	of	Sheet1	to	1.5	inches.

Worksheets("Sheet1").PageSetup.LeftMargin	=	_

								Application.InchesToPoints(1.5)

This	example	sets	the	left	margin	of	Sheet1	to	2	centimeters.

Worksheets("Sheet1").PageSetup.LeftMargin	=	_

								Application.CentimetersToPoints(2)

This	example	displays	the	current	left-margin	setting	for	Sheet1.

marginInches	=	Worksheets("Sheet1").PageSetup.LeftMargin	/	_

				Application.InchesToPoints(1)

MsgBox	"The	current	left	margin	is	"	&	marginInches	&	"	inches"

Legend	Property
							

Returns	a	Legend	object	that	represents	the	legend	for	the	chart.	Read-only.

Example

This	example	turns	on	the	legend	for	Chart1	and	then	sets	the	legend	font	color
to	blue.

Charts("Chart1").HasLegend	=	True

Charts("Chart1").Legend.Font.ColorIndex	=	5

LegendKey	Property
							

Returns	a	LegendKey	object	that	represents	the	legend	key	associated	with	the
entry.

Example

This	example	sets	the	legend	key	for	legend	entry	one	on	Chart1	to	be	a	triangle.
The	example	should	be	run	on	a	2-D	line	chart.

Charts("Chart1").Legend.LegendEntries(1).LegendKey	_

				.MarkerStyle	=	xlMarkerStyleTriangle

Show	All

Length	Property
							

Length	property	as	it	applies	to	the	CalloutFormat	object.

For	a	CalloutFormat	object,	when	the	AutoLength	property	of	the	specified
callout	is	set	to	False,	the	Length	property	returns	the	length	(in	points)	of	the
first	segment	of	the	callout	line	(the	segment	attached	to	the	text	callout	box).
Applies	only	to	callouts	whose	lines	consist	of	more	than	one	segment	(types
msoCalloutThree	and	msoCalloutFour).	Read-only	Single.

expression.Length

expression			Required.	An	expression	that	returns	one	of	the	above	objects.

	

Length	property	as	it	applies	to	the	Phonetics	object.

For	a	Phonetic	object,	the	Length	property	returns	the	number	of	characters	of
phonetic	text	from	the	position	you've	specified	with	the	Start	property.	Read-
only	Long.

expression.Length

expression			Required.	An	expression	that	returns	one	of	the	above	objects.

	

Remarks

This	property	is	read-only.	Use	the	CustomLength	method	to	set	the	value	of
this	property	for	a	CalloutFormat	object.

Example

If	the	first	line	segment	in	the	callout	named	"callout1"	has	a	fixed	length,	this
example	specifies	that	the	length	of	the	first	line	segment	in	the	callout	named
"callout2"	on	worksheet	one	will	also	be	fixed	at	that	length.	For	the	example	to
work,	both	callouts	must	have	multiple-segment	lines.

Set	myDocument	=	Worksheets(1)

With	myDocument.Shapes

				With	.Item("callout1").Callout

								If	Not	.AutoLength	Then	len1	=	.Length

				End	With

				If	len1	Then	.Item("callout2").Callout.CustomLength	len1

End	With

This	example	returns	the	length	of	the	second	phonetic	text	string	in	the	active
cell.

ActiveCell.FormulaR1C1	=	" "

ActiveCell.Phonetics.Add	Start:=1,	Length:=3,	Text:=" "

ActiveCell.Phonetics.Add	Start:=4,	Length:=3,	Text:=" "

MsgBox	ActiveCell.Phonetics(2).Length

LibraryPath	Property
							

Returns	the	path	to	the	Library	folder,	but	without	the	final	separator.	Read-only
String.

Example

This	example	opens	the	file	Oscar.xla	in	the	Library	folder.

pathSep	=	Application.PathSeparator

f	=	Application.LibraryPath	&	pathSep	&	"Oscar.Xla"

Workbooks.Open	filename:=f

Line	Property
							

Returns	a	LineFormat	object	that	contains	line	formatting	properties	for	the
specified	shape.	(For	a	line,	the	LineFormat	object	represents	the	line	itself;	for
a	shape	with	a	border,	the	LineFormat	object	represents	the	border.)	Read-only.

Example

This	example	adds	a	blue	dashed	line	to	myDocument.

Set	myDocument	=	Worksheets(1)

With	myDocument.Shapes.AddLine(10,	10,	250,	250).Line

				.DashStyle	=	msoLineDashDotDot

				.ForeColor.RGB	=	RGB(50,	0,	128)

End	With

This	example	adds	a	cross	to	myDocument	and	then	sets	its	border	to	be	8	points
thick	and	red.

Set	myDocument	=	Worksheets(1)

With	myDocument.Shapes.AddShape(msoShapeCross,	10,	10,	50,	70).Line

				.Weight	=	8

				.ForeColor.RGB	=	RGB(255,	0,	0)

End	With

Line3DGroup	Property
							

Returns	a	ChartGroup	object	that	represents	the	line	chart	group	on	a	3-D	chart.
Read-only.

Example

This	example	sets	the	3-D	line	group	in	Chart1	to	use	a	different	color	for	each
data	marker.

Charts("Chart1").Line3DGroup.VaryByCategories	=	True

LineStyle	Property
							

Returns	or	sets	the	line	style	for	the	border.	Read/write	XlLineStyle.

XlLineStyle	can	be	one	of	these	XlLineStyle	constants.
xlContinuous
xlDash
xlDashDot
xlDashDotDot
xlDot
xlDouble
xlSlantDashDot
xlLineStyleNone

expression.LineStyle

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

Example

This	example	puts	a	border	around	the	chart	area	and	the	plot	area	of	Chart1.

With	Charts("Chart1")

				.ChartArea.Border.LineStyle	=	xlDashDot

				With	.PlotArea.Border

								.LineStyle	=	xlDashDotDot

								.Weight	=	xlThick

				End	With

End	With

LinkedCell	Property
							

Returns	or	sets	the	worksheet	range	linked	to	the	control's	value.	If	you	place	a
value	in	the	cell,	the	control	takes	this	value.	Likewise,	if	you	change	the	value
of	the	control,	that	value	is	also	placed	in	the	cell.	Read/write	String.

Remarks

You	cannot	use	this	property	with	multiselect	list	boxes.

Example

This	example	adds	a	check	box	to	worksheet	one	and	links	the	check	box	value
to	cell	A1.

With	Worksheets(1)

				Set	cb	=	.Shapes.AddFormControl(xlCheckBox,	10,	10,	100,	10)

				cb.ControlFormat.LinkedCell	=	"A1"

End	With

LinkFormat	Property
							

Returns	a	LinkFormat	object	that	contains	linked	OLE	object	properties.	Read-
only.

Example

This	example	updates	all	linked	OLE	objects	on	worksheet	one.

For	Each	s	In	Worksheets(1).Shapes

				If	s.Type	=	msoLinkedOLEObject	Then	s.LinkFormat.Update

Next

ListChangesOnNewSheet	Property
							

True	if	changes	to	the	shared	workbook	are	shown	on	a	separate	worksheet.
Read/write	Boolean.

Example

This	example	shows	changes	to	the	shared	workbook	on	a	separate	worksheet.

With	ActiveWorkbook

				.HighlightChangesOptions	_

								When:=xlSinceMyLastSave,	_

								Who:="Everyone"

				.ListChangesOnNewSheet	=	True

End	With

ListCount	Property
							

Returns	the	number	of	entries	in	a	list	box	or	combo	box.	Returns	0	(zero)	if
there	are	no	entries	in	the	list.	Read-only	Long.

Example

This	example	adjusts	a	combo	box	to	display	all	entries	in	its	list.	If	Shapes(1)
does	not	represent	a	combo	box,	this	example	fails.

Set	cf	=	Worksheets(1).Shapes(1).ControlFormat

cf.DropDownLines	=	cf.ListCount

ListFillRange	Property
							

Returns	or	sets	the	worksheet	range	used	to	fill	the	specified	list	box.	Setting	this
property	destroys	any	existing	list	in	the	list	box.	Read/write	String.

Remarks

Microsoft	Excel	reads	the	contents	of	every	cell	in	the	range	and	inserts	the	cell
values	into	the	list	box.	The	list	tracks	changes	in	the	range’s	cells.

If	the	list	in	the	list	box	was	created	with	the	AddItem	method,	this	property
returns	an	empty	string	("").

Example

This	example	adds	a	list	box	to	worksheet	one	and	sets	the	fill	range	for	the	list
box.

With	Worksheets(1)

				Set	lb	=	.Shapes.AddFormControl(xlListBox,	100,	10,	100,	100)

				lb.ControlFormat.ListFillRange	=	"A1:A10"

End	With

ListHeaderRows	Property
							

Returns	the	number	of	header	rows	for	the	specified	range.	Read-only	Long.

Remarks

Before	you	use	this	property,	use	the	CurrentRegion	property	to	find	the
boundaries	of	the	range.

Example

This	example	sets	the	rTbl	variable	to	the	range	represented	by	the	current
region	for	the	active	cell,	not	including	any	header	rows.

Set	rTbl	=	ActiveCell.CurrentRegion

'	remove	the	headers	from	the	range

iHdrRows	=	rTbl.ListHeaderRows

If	iHdrRows	>	0	Then

				'	resize	the	range	minus	n	rows

				Set	rTbl	=	rTbl.Resize(rTbl.Rows.Count	-	iHdrRows)

				'	and	then	move	the	resized	range	down	to

				'	get	to	the	first	non-header	row

				Set	rTbl	=	rTbl.Offset(iHdrRows)

End	If

ListIndex	Property
							

Returns	or	sets	the	index	number	of	the	currently	selected	item	in	a	list	box	or
combo	box.	Read/write	Long.

Remarks

You	cannot	use	this	property	with	multiselect	list	boxes.

Example

This	example	removes	the	selected	item	from	a	list	box.	If	Shapes(2)	doesn’t
represent	a	list	box,	this	example	fails.

Set	lbcf	=	Worksheets(1).Shapes(2).ControlFormat

lbcf.RemoveItem	lbcf.ListIndex

LoadPictures	Property
							

True	if	images	are	loaded	when	you	open	a	document	in	Microsoft	Excel,
usually	when	the	images	and	document	were	not	created	in	Microsoft	Excel.
False	if	the	images	are	not	loaded.	The	default	value	is	True.	Read/write
Boolean.

Example

This	example	causes	images	to	load	when	the	document	is	opened	in	Excel.

Application.DefaultWebOptions.LoadPictures	=	True

Show	All

LocalConnection	Property
							

Returns	or	sets	the	connection	string	to	an	offline	cube	file.	Read/write	String.

Remarks

For	a	non-OLAP	data	source,	the	value	of	the	LocalConnection	property	is	an
empty	string,	and	the	UseLocalConnection	property	is	set	to	False.

Setting	the	LocalConnection	property	doesn’t	immediately	initiate	the
connection	to	the	data	source.	You	must	first	use	the	Refresh	method	to	make
the	connection	and	retrieve	the	data.

The	value	of	the	LocalConnection	property	is	used	if	the	UseLocalConnection
property	is	set	to	True.	If	the	UseLocalConnection	property	is	set	to	False,	the
Connection	property	specifies	the	connection	string	for	query	tables	based	on
sources	other	than	local	cube	files.

For	more	information	about	the	syntax	for	connection	strings,	see	the	Help	topic
for	the	Add	method	of	the	PivotTables	collection.

Example

This	example	sets	the	connection	string	of	the	first	PivotTable	cache	to	reference
an	offline	cube	file.

With	ActiveWorkbook.PivotCaches(1)

				.LocalConnection	=	_

								"OLEDB;Provider=MSOLAP;Data	Source=C:\Data\DataCube.cub"

				.UseLocalConnection	=	True

End	With

Location	Property
							

For	the	HPageBreak	and	VPageBreak	objects,	this	property	returns	or	sets	the
cell	(a	Range	object)	that	defines	the	page-break	location.	Horizontal	page
breaks	are	aligned	with	the	top	edge	of	the	location	cell;	vertical	page	breaks	are
aligned	with	the	left	edge	of	the	location	cell.	Read/write	Range.

Example

This	example	moves	the	horizontal	page-break	location.

Worksheets(1).HPageBreaks(1).Location	=	Worksheets(1).Range("e5")

LocationInTable	Property
							

Returns	a	constant	that	describes	the	part	of	the	PivotTable	report	that	contains
the	upper-left	corner	of	the	specified	range.	Can	be	one	of	the	following
XlLocationInTable.	constants.	Read-only	Long.

XlLocationInTable	can	be	one	of	these	XlLocationInTable	constants.
xlRowHeader
xlColumnHeader
xlPageHeader

xlDataHeader

xlRowItem

xlColumnItem

xlPageItem

xlDataItem

xlTableBody

Example

This	example	displays	a	message	box	that	describes	the	location	of	the	active
cell	within	the	PivotTable	report.

Worksheets("Sheet1").Activate

Select	Case	ActiveCell.LocationInTable

Case	Is	=	xlRowHeader

				MsgBox	"Active	cell	is	part	of	a	row	header"

Case	Is	=	xlColumnHeader

				MsgBox	"Active	cell	is	part	of	a	column	header"

Case	Is	=	xlPageHeader

				MsgBox	"Active	cell	is	part	of	a	page	header"

Case	Is	=	xlDataHeader

				MsgBox	"Active	cell	is	part	of	a	data	header"

Case	Is	=	xlRowItem

				MsgBox	"Active	cell	is	part	of	a	row	item"

Case	Is	=	xlColumnItem

				MsgBox	"Active	cell	is	part	of	a	column	item"

Case	Is	=	xlPageItem

				MsgBox	"Active	cell	is	part	of	a	page	item"

Case	Is	=	xlDataItem

				MsgBox	"Active	cell	is	part	of	a	data	item"

Case	Is	=	xlTableBody

				MsgBox	"Active	cell	is	part	of	the	table	body"

End	Select

LocationOfComponents	Property
							

Returns	or	sets	the	central	URL	(on	the	intranet	or	Web)	or	path	(local	or
network)	to	the	location	from	which	authorized	users	can	download	Microsoft
Office	Web	components	when	viewing	your	saved	document.	The	default	value
is	the	local	or	network	installation	path	for	Microsoft	Office.	Read/write	String.

Remarks

Office	Web	components	are	automatically	downloaded	with	the	specified	Web
page	if	the	DownloadComponents	property	is	is	set	to	True,	the	components
are	not	already	installed,	the	path	is	valid	and	points	to	a	location	that	contains
the	necessary	components,	and	the	user	has	a	valid	Microsoft	Office	2000
license.

Example

This	example	sets	the	path	to	the	location	from	which	users	can	download
Microsoft	Office	Web	components.

Application.DefaultWebOptions.DownloadComponents	=	True

Application.DefaultWebOptions.LocationOfComponents	=	_

				Application.Path	&	Application.PathSeparator	&	"foo"

LockAspectRatio	Property
							

True	if	the	specified	shape	retains	its	original	proportions	when	you	resize	it.
False	if	you	can	change	the	height	and	width	of	the	shape	independently	of	one
another	when	you	resize	it.	Read/write	MsoTriState.

MsoTriState	can	be	one	of	these	MsoTriState	constants.
msoCTrue
msoFalse	You	can	change	the	height	and	width	of	the	shape	independently	of
one	another	when	you	resize	it.
msoTriStateMixed
msoTriStateToggle
msoTrue	The	specified	shape	retains	its	original	proportions	when	you	resize	it.

expression.LockAspectRatio

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

Example

This	example	adds	a	cube	to	myDocument.	The	cube	can	be	moved	and	resized,
but	not	reproportioned.

Set	myDocument	=	Worksheets(1)

myDocument.Shapes.AddShape(msoShapeCube,	_

				50,	50,	100,	200).LockAspectRatio	=	msoTrue

Show	All

Locked	Property
							

Locked	property	as	it	applies	to	the	ChartObject,	ChartObjects,
LinkFormat,	OLEObject,	OLEObjects,	Scenario,	Shape,	and	Style	objects.

True	if	the	object	is	locked,	False	if	the	object	can	be	modified	when	the	sheet	is
protected.	Read/write	Boolean.

expression.Locked

expression			Required.	An	expression	that	returns	one	of	the	above	objects.

Locked	property	as	it	applies	to	the	CellFormat	and	Range	objects.

True	if	the	object	is	locked,	False	if	the	object	can	be	modified	when	the	sheet	is
protected.	Returns	Null	if	the	specified	range	contains	both	locked	and	unlocked
cells.	Read/write	Variant.

expression.Locked

expression			Required.	An	expression	that	returns	one	of	the	above	objects.

Example

As	it	applies	to	the	CellFormat	and	Range	objects.

This	example	unlocks	cells	A1:G37	on	Sheet1	so	that	they	can	be	modified
when	the	sheet	is	protected.

Worksheets("Sheet1").Range("A1:G37").Locked	=	False

Worksheets("Sheet1").Protect

LockedText	Property
							

True	if	the	text	in	the	specified	object	will	be	locked	to	prevent	changes	when
the	workbook	is	protected.	Read/write	Boolean.

Example

This	example	locks	text	in	embedded	chart	one	when	the	workbook	is	protected.

Worksheets(1).ChartObjects(1).LockedText	=	True

MacroType	Property
							

Returns	or	sets	what	the	name	refers	to.	Read/write	XlXLMMacroType.

XlXLMMacroType	can	be	one	of	these	XlXLMMacroType	constants.
xlCommand.	The	name	refers	to	a	user-defined	macro.
xlFunction.	The	name	refers	to	a	user-defined	function.
xlNotXLM.	The	name	doesn't	refer	to	a	function	or	macro.

expression.MacroType

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

Example

This	example	assumes	that	you	created	a	custom	function	or	command	on	a
Microsoft	Excel	version	4.0	macro	sheet.	The	example	displays	the	function
category,	in	the	language	of	the	macro.	It	assumes	that	the	name	of	the	custom
function	or	command	is	the	only	name	in	the	workbook.

With	ActiveWorkbook.Names(1)

				If	.MacroType	<>	xlNotXLM	Then

								MsgBox	"The	category	for	this	name	is	"	&	.Category

				Else

								MsgBox	"This	name	does	not	refer	to"	&	_

												"	a	custom	function	or	command."

				End	If

End	With

This	keyword	is	not	implemented.	It	is	reserved	for	future	use.

MailEnvelope	Property
							

Rrepresents	an	e-mail	header	for	a	document.

expression.MailEnvelope

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

Example

This	example	sets	the	comments	for	the	header	of	the	active	worksheet.

Sub	HeaderComments()

				ActiveSheet.MailEnvelope.Introduction	=	"To	Whom	It	May	Concern:	"

End	Sub

MailSession	Property
							

Returns	the	MAPI	mail	session	number	as	a	hexadecimal	string	(if	there's	an
active	session),	or	returns	Null	if	there's	no	session.	Read-only	Variant.

Remarks

This	property	applies	only	to	mail	sessions	created	by	Microsoft	Excel	(it	doesn't
return	a	mail	session	number	for	Microsoft	Mail).

This	property	isn't	used	on	PowerTalk	mail	systems.

Example

This	example	closes	the	established	mail	session,	if	there	is	one.

If	Not	IsNull(Application.MailSession)	Then	Application.MailLogoff

MailSystem	Property
							

Returns	the	mail	system	that's	installed	on	the	host	machine.	Read-only
XlMailSystem.

XlMailSystem	can	be	one	of	these	XlMailSystem	constants.
xlMAPI
xlNoMailSystem
xlPowerTalk

expression.MailSystem

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

Example

This	example	displays	the	name	of	the	mail	system	that's	installed	on	the
computer.

Select	Case	Application.MailSystem

				Case	xlMAPI

								MsgBox	"Mail	system	is	Microsoft	Mail"

				Case	xlPowerTalk

								MsgBox	"Mail	system	is	PowerTalk"

				Case	xlNoMailSystem

								MsgBox	"No	mail	system	installed"

End	Select

Show	All

MaintainConnection	Property
							

True	if	the	connection	to	the	specified	data	source	is	maintained	after	the	refresh
and	until	the	workbook	is	closed.	The	default	value	is	True.	Read/write
Boolean.

Remarks

You	can	set	the	MaintainConnection	property	only	if	the	QueryType	property
of	the	query	table	or	PivotTable	cache	is	set	to	xlOLEDBQuery.

If	you	anticipate	frequent	queries	to	a	server,	setting	this	property	to	True	might
improve	performance	by	reducing	reconnection	time.	Setting	the	property	to
False	causes	an	open	connection	to	be	closed.

Example

This	example	creates	a	new	PivotTable	cache	based	on	an	OLAP	provider,	and
then	it	creates	a	new	PivotTable	report	based	on	the	cache,	at	cell	A3	on	the
active	worksheet.	The	example	terminates	the	connection	after	the	initial	refresh.

With	ActiveWorkbook.PivotCaches.Add(SourceType:=xlExternal)

				.Connection	=	_

								"OLEDB;Provider=MSOLAP;Location=srvdata;Initial	Catalog=National"

				.MaintainConnection	=	False

				.CreatePivotTable	TableDestination:=Range("A3"),	_

								TableName:=	"PivotTable1"

End	With

With	ActiveSheet.PivotTables("PivotTable1")

				.SmallGrid	=	False

				.PivotCache.RefreshPeriod	=	0

				With	.CubeFields("[state]")

								.Orientation	=	xlColumnField

								.Position	=	0

				End	With

				With	.CubeFields("[Measures].[Count	Of	au_id]")

								.Orientation	=	xlDataField

								.Position	=	0

				End	With

End	With

MajorGridlines	Property
							

Returns	a	Gridlines	object	that	represents	the	major	gridlines	for	the	specified
axis.	Only	axes	in	the	primary	axis	group	can	have	gridlines.	Read-only.

Example

This	example	sets	the	color	of	the	major	gridlines	for	the	value	axis	in	Chart1.

With	Charts("Chart1").Axes(xlValue)

				If	.HasMajorGridlines	Then

								.MajorGridlines.Border.ColorIndex	=	5				'set	color	to	blue

				End	If

End	With

MajorTickMark	Property
							

Returns	or	sets	the	type	of	major	tick	mark	for	the	specified	axis.	Read/write
XlTickMark.

XlTickMark	can	be	one	of	these	XlTickMark	constants.
xlTickMarkInside
xlTickMarkOutside
xlTickMarkCross
xlTickMarkNone

expression.MajorTickMark

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

Example

This	example	sets	the	major	tick	marks	for	the	value	axis	in	Chart1	to	be	outside
the	axis.

Charts("Chart1").Axes(xlValue).MajorTickMark	=	xlTickMarkOutside

MajorUnit	Property
							

Returns	or	sets	the	major	units	for	the	axis.	Read/write	Double.

Remarks

Setting	this	property	sets	the	MajorUnitIsAuto	property	to	False.

Use	the	TickMarkSpacing	property	to	set	tick	mark	spacing	on	the	category
axis.

Example

This	example	sets	the	major	and	minor	units	for	the	value	axis	in	Chart1.

With	Charts("Chart1").Axes(xlValue)

				.MajorUnit	=	100

				.MinorUnit	=	20

End	With

MajorUnitIsAuto	Property
							

True	if	Microsoft	Excel	calculates	the	major	units	for	the	axis.	Read/write
Boolean.

Remarks

Setting	the	MajorUnit	property	sets	this	property	to	False.

Example

This	example	automatically	sets	the	major	and	minor	units	for	the	value	axis	in
Chart1.

With	Charts("Chart1").Axes(xlValue)

				.MajorUnitIsAuto	=	True

				.MinorUnitIsAuto	=	True

End	With

MajorUnitScale	Property
							

Returns	or	sets	the	major	unit	scale	value	for	the	category	axis	when	the
CategoryType	property	is	set	to	xlTimeScale.		Read/write	XlTimeUnit.

XlTimeUnit	can	be	one	of	these	XlTimeUnit	constants.
xlMonths
xlDays
xlYears

expression.MajorUnitScale

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

Example

This	example	sets	the	category	axis	to	use	a	time	scale	and	sets	the	major	and
minor	units.

With	Charts(1).Axes(xlCategory)

				.CategoryType	=	xlTimeScale

				.MajorUnit	=	5

				.MajorUnitScale	=	xlDays

				.MinorUnit	=	1

				.MinorUnitScale	=	xlDays

End	With

ManualUpdate	Property
							

True	if	the	PivotTable	report	is	recalculated	only	at	the	user's	request.	The
default	value	is	False.	Read/write	Boolean.

expression.ManualUpdate

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

Remarks

This	property	is	set	to	False	immediately	after	your	program	terminates	and	after
you	execute	the	statement	in	the	Immediate	window	of	the	Microsoft	Visual
Basic	Editor.

Example

This	example	causes	the	PivotTable	report	to	be	recalculated	only	at	the	user's
request.

Worksheets(1).PivotTables("Pivot1").ManualUpdate	=	True

MapPaperSize	Property
							

True	if	documents	formatted	for	another	country's/region's	standard	paper	size
(for	example,	A4)	are	automatically	adjusted	so	that	they're	printed	correctly	on
your	country's/region's	standard	paper	size	(for	example,	Letter).	Read/write
Boolean.

expression.MapPaperSize

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

Example

This	example	determines	if	Microsoft	Excel	can	adjust	the	paper	size	according
to	the	country/region	setting	and	notifies	the	user.

Sub	UseMapPaperSize()

				'	Determine	setting	and	notify	user.

				If	Application.MapPaperSize	=	True	Then

								MsgBox	"Microsoft	Excel	automatically	"	&	_

												"adjusts	the	paper	size	according	to	the	country/region	setting."

				Else

								MsgBox	"Microsoft	Excel	does	not	"	&	_

												"automatically	adjusts	the	paper	size	according	to	the	country/region	setting."

				End	If

End	Sub

MarginBottom	Property
							

Returns	or	sets	the	distance	(in	points)	between	the	bottom	of	the	text	frame	and
the	bottom	of	the	inscribed	rectangle	of	the	shape	that	contains	the	text.
Read/write	Single.

Example

This	example	adds	a	rectangle	to	myDocument,	adds	text	to	the	rectangle,	and
then	sets	the	margins	for	the	text	frame.

Set	myDocument	=	Worksheets(1)

With	myDocument.Shapes.AddShape(msoShapeRectangle,	_

								0,	0,	250,	140).TextFrame

				.AutoMargins	=	False

				.Characters.Text	=	"Here	is	some	test	text"

				.MarginBottom	=	0

				.MarginLeft	=	100

				.MarginRight	=	0

				.MarginTop	=	20

End	With

MarginLeft	Property
							

Returns	or	sets	the	distance	(in	points)	between	the	left	edge	of	the	text	frame
and	the	left	edge	of	the	inscribed	rectangle	of	the	shape	that	contains	the	text.
Read/write	Single.

Example

This	example	adds	a	rectangle	to	myDocument,	adds	text	to	the	rectangle,	and
then	sets	the	margins	for	the	text	frame.

Set	myDocument	=	Worksheets(1)

With	myDocument.Shapes.AddShape(msoShapeRectangle,	_

								0,	0,	250,	140).TextFrame

				.AutoMargins	=	False

				.Characters.Text	=	"Here	is	some	test	text"

				.MarginBottom	=	0

				.MarginLeft	=	100

				.MarginRight	=	0

				.MarginTop	=	20

End	With

MarginRight	Property
							

Returns	or	sets	the	distance	(in	points)	between	the	right	edge	of	the	text	frame
and	the	right	edge	of	the	inscribed	rectangle	of	the	shape	that	contains	the	text.
Read/write	Single.

Example
Set	myDocument	=	Worksheets(1)

With	myDocument.Shapes.AddShape(msoShapeRectangle,	_

								0,	0,	250,	140).TextFrame

				.AutoMargins	=	False

				.Characters.Text	=	"Here	is	some	test	text"

				.MarginBottom	=	0

				.MarginLeft	=	100

				.MarginRight	=	0

				.MarginTop	=	20

End	With

MarginTop	Property
							

Returns	or	sets	the	distance	(in	points)	between	the	top	of	the	text	frame	and	the
top	of	the	inscribed	rectangle	of	the	shape	that	contains	the	text.	Read/write
Single.

Example

This	example	adds	a	rectangle	to	myDocument,	adds	text	to	the	rectangle,	and
then	sets	the	margins	for	the	text	frame.

Set	myDocument	=	Worksheets(1)

With	myDocument.Shapes.AddShape(msoShapeRectangle,	_

								0,	0,	250,	140).TextFrame

				.AutoMargins	=	False

				.Characters.Text	=	"Here	is	some	test	text"

				.MarginBottom	=	0

				.MarginLeft	=	100

				.MarginRight	=	0

				.MarginTop	=	20

End	With

MarkerBackgroundColor	Property
							

Returns	or	sets	the	marker	background	color	as	an	RGB	value.	Applies	only	to
line,	scatter,	and	radar	charts.	Read/write	Long.

Example

This	example	sets	the	marker	background	and	foreground	colors	for	the	second
point	in	series	one	in	Chart1.

With	Charts("Chart1").SeriesCollection(1).Points(2)

				.MarkerBackgroundColor	=	RGB(0,255,0)				'	green

				.MarkerForegroundColor	=	RGB(255,0,0)				'	red

End	With

MarkerBackgroundColorIndex
Property
							

Returns	or	sets	the	marker	background	color	as	an	index	into	the	current	color
palette,	or	as	one	of	the	following	XlColorIndex	constants:
xlColorIndexAutomatic	or	xlColorIndexNone.	Applies	only	to	line,	scatter,
and	radar	charts.	Read/write	Long.

Remarks

The	following	illustration	shows	the	color-index	values	in	the	default	color
palette.

Example

This	example	sets	the	marker	background	and	foreground	colors	for	the	second
point	in	series	one	in	Chart1.

With	Charts("Chart1").SeriesCollection(1).Points(2)

				.MarkerBackgroundColorIndex	=	4				'green

				.MarkerForegroundColorIndex	=	3				'red

End	With

MarkerForegroundColor	Property
							

Returns	or	sets	the	foreground	color	of	the	marker	as	an	RGB	value.	Applies
only	to	line,	scatter,	and	radar	charts.	Read/write	Long.

Example

This	example	sets	the	marker	background	and	foreground	colors	for	the	second
point	in	series	one	in	Chart1.

With	Charts("Chart1").SeriesCollection(1).Points(2)

				.MarkerBackgroundColor	=	RGB(0,255,0)				'	green

				.MarkerForegroundColor	=	RGB(255,0,0)				'	red

End	With

MarkerForegroundColorIndex
Property
							

Returns	or	sets	the	marker	foreground	color	as	an	index	into	the	current	color
palette,	or	as	one	of	the	following	XlColorIndex	constants:
xlColorIndexAutomatic	or	xlColorIndexNone.	Applies	only	to	line,	scatter,
and	radar	charts.	Read/write	Long.

Remarks

The	following	illustration	shows	the	color-index	values	in	the	default	color
palette.

Example

This	example	sets	the	marker	background	and	foreground	colors	for	the	second
point	in	series	one	in	Chart1.

With	Charts("Chart1").SeriesCollection(1).Points(2)

				.MarkerBackgroundColorIndex	=	4				'green

				.MarkerForegroundColorIndex	=	3				'red

End	With

Show	All

MarkerSize	Property
							

Returns	or	sets	the	data-marker	size,	in	points.	Read/write	Long.

Example

This	example	sets	the	data-marker	size	for	all	data	markers	on	series	one.

Worksheets(1).ChartObjects(1).Chart	_

				.SeriesCollection(1).MarkerSize	=	10

MarkerStyle	Property
							

Returns	or	sets	the	marker	style	for	a	point	or	series	in	a	line	chart,	scatter	chart,
or	radar	chart.	Read/write	XlMarkerStyle.

XlMarkerStyle	can	be	one	of	these	XlMarkerStyle	constants.
xlMarkerStyleAutomatic.	Automatic	markers
xlMarkerStyleCircle.	Circular	markers
xlMarkerStyleDash.	Long	bar	markers
xlMarkerStyleDiamond.	Diamond-shaped	markers
xlMarkerStyleDot.	Short	bar	markers
xlMarkerStyleNone.	No	markers
xlMarkerStylePicture.	Picture	markers
xlMarkerStylePlus.	Square	markers	with	a	plus	sign
xlMarkerStyleSquare.	Square	markers
xlMarkerStyleStar.	Square	markers	with	an	asterisk
xlMarkerStyleTriangle.	Triangular	markers
xlMarkerStyleX.	Square	markers	with	an	X

expression.MarkerStyle

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

Example

This	example	sets	the	marker	style	for	series	one	in	Chart1.	The	example	should
be	run	on	a	2-D	line	chart.

Charts("Chart1").SeriesCollection(1)	_

				.MarkerStyle	=	xlMarkerStyleCircle

MathCoprocessorAvailable	Property
							

True	if	a	math	coprocessor	is	available.	Read-only	Boolean.

Example

This	example	displays	a	message	box	if	a	math	coprocessor	isn't	available.

If	Not	Application.MathCoprocessorAvailable	Then

				MsgBox	"This	macro	requires	a	math	coprocessor"

End	If

Max	Property
							

Returns	or	sets	the	maximum	value	of	a	scroll	bar	or	spinner	range.	The	scroll
bar	or	spinner	won’t	take	on	values	greater	than	this	maximum	value.	Read/write
Long.

For	information	about	using	the	Max	worksheet	function	in	Visual	Basic,	see
Using	Worksheet	Functions	in	Visual	Basic.

Remarks

The	value	of	the	Max	property	must	be	greater	than	the	value	of	the	Min
property.

Example

This	example	creates	a	scroll	bar	and	sets	its	linked	cell,	minimum,	maximum,
large	change,	and	small	change	values.

Set	sb	=	Worksheets(1).Shapes.AddFormControl(xlScrollBar,	_

				Left:=10,	Top:=10,	Width:=10,	Height:=200)

With	sb.ControlFormat

				.LinkedCell	=	"D1"

				.Max	=	100

				.Min	=	0

				.LargeChange	=	10

				.SmallChange	=	2

End	With

MaxChange	Property
							

Returns	or	sets	the	maximum	amount	of	change	between	each	iteration	as
Microsoft	Excel	resolves	circular	references.	Read/write	Double.

Remarks

The	MaxIterations	property	sets	the	maximum	number	of	iterations	that
Microsoft	Excel	can	use	when	resolving	circular	references.

Example

This	example	sets	the	maximum	amount	of	change	for	each	iteration	to	0.1.

Application.MaxChange	=	0.1

Maximum	Property
							

Returns	or	sets	the	maximum	number	of	files	in	the	list	of	recently	used	files.
Can	be	a	value	from	0	(zero)	through	9.	Read/write	Long.

Example

This	example	sets	the	maximum	number	of	files	in	the	list	of	recently	used	files
to	6.

Application.RecentFiles.Maximum	=	6

MaximumScale	Property
							

Returns	or	sets	the	maximum	value	on	the	axis.	Read/write	Double.

Remarks

Setting	this	property	sets	the	MaximumScaleIsAuto	property	to	False.

Example

This	example	sets	the	minimum	and	maximum	values	for	the	value	axis	in
Chart1.

With	Charts("Chart1").Axes(xlValue)

				.MinimumScale	=	10

				.MaximumScale	=	120

End	With

MaximumScaleIsAuto	Property
							

True	if	Microsoft	Excel	calculates	the	maximum	value	for	the	axis.	Read/write
Boolean.

Remarks

Setting	the	MaximumScale	property	sets	this	property	to	False.

Example

This	example	automatically	calculates	the	minimum	scale	and	the	maximum
scale	for	the	value	axis	in	Chart1.

With	Charts("Chart1").Axes(xlValue)

				.MinimumScaleIsAuto	=	True

				.MaximumScaleIsAuto	=	True

End	With

MaxIterations	Property
							

Returns	or	sets	the	maximum	number	of	iterations	that	Microsoft	Excel	can	use
to	resolve	a	circular	reference.	Read/write	Long.

Remarks

The	MaxChange	property	sets	the	maximum	amount	of	change	between	each
iteration	when	Microsoft	Excel	is	resolving	circular	references.

Example

This	example	sets	the	maximum	number	of	iterations	at	1000.

Application.MaxIterations	=	1000

Show	All

MDX	Property
							

Returns	a	String	indicating	the	MDX	(Multidimensional	Expression)	that	would
be	sent	to	the	provider	to	populate	the	current	PivotTable	view.	Read-only.

expression.MDX

expression			Required.	An	expression	that	returns	a	PivotTable	object.

Remarks

Querying	this	value	for	a	non-Online	Analytical	Processing	(OLAP)	PivotTable,
or	when	there	is	no	PivotTable	view	(no	data	items),	will	return	a	run-time	error.

Example

This	example	returns	the	MDX	string	for	the	PivotTable.	It	assumes	a	PivotTable
exists	on	the	active	worksheet.

Sub	CheckMDX()

				Dim	pvtTable	As	PivotTable

				Set	pvtTable	=	ActiveSheet.PivotTables(1)

				MsgBox	"The	MDX	string	for	the	PivotTable	is:	"	&	_

								pvtTable.MDX

End	Sub

MemoryFree	Property
							

Returns	the	amount	of	memory	that's	still	available	for	Microsoft	Excel	to	use,	in
bytes.	Read-only	Long.

Example

This	example	displays	a	message	box	showing	the	number	of	free	bytes.

MsgBox	"Microsoft	Excel	has	"	&	_

				Application.MemoryFree	&	"	bytes	free"

MemoryTotal	Property
							

Returns	the	total	amount	of	memory	(in	bytes)	that's	available	to	Microsoft
Excel,	including	memory	already	in	use.	Read-only	Long.

Remarks

MemoryTotal	is	equal	to	MemoryUsed	+	MemoryFree.

Example

This	example	displays	a	message	box	showing	the	total	number	of	available
bytes.

MsgBox	"Microsoft	Excel	has	"	&	Application.MemoryTotal	&	_

				"	total	bytes	available"

MemoryUsed	Property
							

Application	object:	Returns	the	amount	of	memory	that	Microsoft	Excel	is
currently	using,	in	bytes.	Read-only	Long.

PivotCache	or	PivotField	object:	Returns	the	amount	of	memory	currently
being	used	by	the	object,	in	bytes.	Read-only	Long.

Remarks

For	PivotCache	objects,	this	property	reflects	the	transient	state	of	the	cache	at
the	time	that	it’s	queried.

If	the	PivotCache	object	has	no	PivotTable	report	attached	to	it,	this	property
returns	0	(zero).

Example

This	example	displays	a	message	box	showing	the	number	of	bytes	that
Microsoft	Excel	is	currently	using.

MsgBox	"Microsoft	Excel	is	currently	using	"	&	_

				Application.MemoryUsed	&	"	bytes"

MergeArea	Property
							

Returns	a	Range	object	that	represents	the	merged	range	containing	the	specified
cell.	If	the	specified	cell	isn’t	in	a	merged	range,	this	property	returns	the
specified	cell.	Read-only	Variant.

expression.MergeArea

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

Remarks

The	MergeArea	property	only	works	on	a	single-cell	range.

Example

This	example	sets	the	value	of	the	merged	range	that	contains	cell	A3.

Set	ma	=	Range("a3").MergeArea

If	ma.Address	=	"A3"	Then

				MsgBox	"not	merged"

Else

				ma.Cells(1,	1).Value	=	"42"

End	If

MergeCells	Property
							

True	if	the	range	or	style	contains	merged	cells.	Read/write	Variant.

Remarks

When	you	select	a	range	that	contains	merged	cells,	the	resulting	selection	may
be	different	from	the	intended	selection.	Use	the	Address	property	to	check	the
address	of	the	selected	range.

Example

This	example	sets	the	value	of	the	merged	range	that	contains	cell	A3.

Set	ma	=	Range("a3").MergeArea

If	Range("a3").MergeCells	Then

				ma.Cells(1,	1).Value	=	"42"

End	If

MergeLabels	Property
							

True	if	the	specified	PivotTable	report’s	outer-row	item,	column	item,	subtotal,
and	grand	total	labels	use	merged	cells.	Read/write	Boolean.

Example

This	example	causes	the	first	PivotTable	report	on	worksheet	one	to	use	merged-
cell	outer-row	item,	column	item,	subtotal,	and	grand	total	labels.

Worksheets(1).PivotTables(1).MergeLabels	=	True

Message	Property
							

Returns	or	sets	the	message	text	for	the	routing	slip.	This	text	is	used	as	the	body
text	of	mail	messages	that	are	used	to	route	the	workbook.	Read/write	String.

Example

This	example	sends	Book1.xls	to	three	recipients,	one	after	another.

Workbooks("BOOK1.XLS").HasRoutingSlip	=	True

With	Workbooks("BOOK1.XLS").RoutingSlip

				.Delivery	=	xlOneAfterAnother

				.Recipients	=	Array("Adam	Bendel",	_

								"Jean	Selva",	"Bernard	Gabor")

				.Subject	=	"Here	is	BOOK1.XLS"

				.Message	=	"Here	is	the	workbook.	What	do	you	think?"

End	With

Workbooks("BOOK1.XLS").Route

Min	Property
							

Returns	or	sets	the	minimum	value	of	a	scroll	bar	or	spinner	range.	The	scroll
bar	or	spinner	won’t	take	on	values	less	than	this	minimum	value.	Read/write
Long.

For	information	about	using	the	Min	worksheet	function	in	Visual	Basic,	see
Using	Worksheet	Functions	in	Visual	Basic.

Remarks

The	value	of	the	Min	property	must	be	less	than	the	value	of	the	Max	property.

Example

This	example	creates	a	scroll	bar	and	sets	its	linked	cell,	minimum,	maximum,
large	change,	and	small	change	values.

Set	sb	=	Worksheets(1).Shapes.AddFormControl(xlScrollBar,	_

				Left:=10,	Top:=10,	Width:=10,	Height:=200)

With	sb.ControlFormat

				.LinkedCell	=	"D1"

				.Max	=	100

				.Min	=	0

				.LargeChange	=	10

				.SmallChange	=	2

End	With

MinimumScale	Property
							

Returns	or	sets	the	minimum	value	on	the	axis.	Read/write	Double.

Remarks

Setting	this	property	sets	the	MinimumScaleIsAuto	property	to	False.

Example

This	example	sets	the	minimum	and	maximum	values	for	the	value	axis	in
Chart1.

With	Charts("Chart1").Axes(xlValue)

				.MinimumScale	=	10

				.MaximumScale	=	120

End	With

MinimumScaleIsAuto	Property
							

True	if	Microsoft	Excel	calculates	the	minimum	value	for	the	axis.	Read/write
Boolean.

Remarks

Setting	the	MinimumScale	property	sets	this	property	to	False.

Example

This	example	automatically	calculates	the	minimum	scale	and	the	maximum
scale	for	the	value	axis	in	Chart1.

With	Charts("Chart1").Axes(xlValue)

				.MinimumScaleIsAuto	=	True

				.MaximumScaleIsAuto	=	True

End	With

MinorGridlines	Property
							

Returns	a	Gridlines	object	that	represents	the	minor	gridlines	for	the	specified
axis.	Only	axes	in	the	primary	axis	group	can	have	gridlines.	Read-only.

Example

This	example	sets	the	color	of	the	minor	gridlines	for	the	value	axis	in	Chart1.

With	Charts("Chart1").Axes(xlValue)

				If	.HasMinorGridlines	Then

								.MinorGridlines.Border.ColorIndex	=	5				'set	color	to	blue

				End	If

End	With

MinorTickMark	Property
							

Returns	or	sets	the	type	of	minor	tick	mark	for	the	specified	axis.	Read/write
XlTickMark.

XlTickMark	can	be	one	of	these	XlTickMark	constants.
xlTickMarkInside
xlTickMarkOutside
xlTickMarkCross
xlTickMarkNone

expression.MinorTickMark

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

Example

This	example	sets	the	minor	tick	marks	for	the	value	axis	in	Chart1	to	be	inside
the	axis.

Charts("Chart1").Axes(xlValue).MinorTickMark	=	xlTickMarkInside

MinorUnit	Property
							

Returns	or	sets	the	minor	units	on	the	axis.	Read/write	Double.

Remarks

Setting	this	property	sets	the	MinorUnitIsAuto	property	to	False.

Use	the	TickMarkSpacing	property	to	set	tick	mark	spacing	on	the	category
axis.

Example

This	example	sets	the	major	and	minor	units	for	the	value	axis	in	Chart1.

With	Charts("Chart1").Axes(xlValue)

				.MajorUnit	=	100

				.MinorUnit	=	20

End	With

MinorUnitIsAuto	Property
							

True	if	Microsoft	Excel	calculates	minor	units	for	the	axis.	Read/write	Boolean.

Remarks

Setting	the	MinorUnit	property	sets	this	property	to	False.

Example

This	example	automatically	calculates	major	and	minor	units	for	the	value	axis
in	Chart1.

With	Charts("Chart1").Axes(xlValue)

				.MajorUnitIsAuto	=	True

				.MinorUnitIsAuto	=	True

End	With

MinorUnitScale	Property
							

Returns	or	sets	the	minor	unit	scale	value	for	the	category	axis	when	the
CategoryType	property	is	set	to	xlTimeScale.		Read/write	XlTimeUnit.

XlTimeUnit	can	be	one	of	these	XlTimeUnit	constants.
xlMonths
xlDays
xlYears

expression.MinorUnitScale

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

Example

This	example	sets	the	category	axis	to	use	a	time	scale	and	sets	the	major	and
minor	units.

With	Charts(1).Axes(xlCategory)

				.CategoryType	=	xlTimeScale

				.MajorUnit	=	5

				.MajorUnitScale	=	xlDays

				.MinorUnit	=	1

				.MinorUnitScale	=	xlDays

End	With

Show	All

MissingItemsLimit	Property
							

Returns	or	sets	the	maximum	quantity	of	unique	items	per	PivotTable	field	that
are	retained	even	when	they	have	no	supporting	data	in	the	cache	records.
Read/write	XlPivotTableMissingItems.

XlPivotTableMissingItems	can	be	one	of	these	XlPivotTableMissingItems
constants.
xlMissingItemsDefault		The	default	number	of	unique	items	per	PivotField
allowed.
xlMissingItemsMax		The	maximum	number	of	unique	items	per	PivotField
allowed	(32,500).
xlMissingItemsNone		No	unique	items	per	PivotField	allowed	(zero).

expression.MissingItemsLimit

expression			Required.	An	expression	that	returns	a	PivotCache	object.

Remarks

This	property	can	be	set	to	a	value	between	0	and	32500.	If	an	integer	less	than
zero	is	specified,	this	is	equivalent	to	specifying	xlMissingItemsDefault.
Integers	greater	than	32,500	can	be	specified	but	will	have	the	same	effect	as
specifying	xlMissingItemsMax.

The	MissingItemsLimit	property	only	works	for	non-OLAP	PivotTables;
otherwise,	a	run-time	error	can	occur.

Example

This	example	determines	the	maximum	quantity	of	unique	items	per	field	and
notifies	the	user.	The	example	assumes	a	PivotTable	exists	on	the	active
worksheet.

Sub	CheckMissingItemsList()

				Dim	pvtCache	As	PivotCache

	

				Set	pvtCache	=	Application.ActiveWorkbook.PivotCaches.Item(1)

				'	Determine	the	maximum	number	of	unique	items	allowed	per	PivotField	and	notify	the	user.

				Select	Case	pvtCache.MissingItemsLimit

								Case	xlMissingItemsDefault

												MsgBox	"The	default	value	of	unique	items	per	PivotField	is	allowed."

								Case	xlMissingItemsMax

												MsgBox	"The	maximum	value	of	unique	items	per	PivotField	is	allowed."

								Case	xlMissingItemsNone

												MsgBox	"No	unique	items	per	PivotField	are	allowed."

				End	Select

End	Sub

MouseAvailable	Property
							

True	if	a	mouse	is	available.	Read-only	Boolean.

Example

This	example	displays	a	message	if	a	mouse	isn't	available.

If	Application.MouseAvailable	=	False	Then

				MsgBox	"Your	system	does	not	have	a	mouse"

End	If

MoveAfterReturn	Property
							

True	if	the	active	cell	will	be	moved	as	soon	as	the	ENTER	(RETURN)	key	is
pressed.	Read/write	Boolean.

Remarks

Use	the	MoveAfterReturnDirection	property	to	specify	the	direction	in	which
the	active	cell	is	to	be	moved.

Example

This	example	sets	the	MoveAfterReturn	property	to	True.

Application.MoveAfterReturn	=	True

MoveAfterReturnDirection	Property
							

Returns	or	sets	the	direction	in	which	the	active	cell	is	moved	when	the	user
presses	ENTER.	Read/write	XlDirection.

XlDirection	can	be	one	of	these	XlDirection	constants.
xlDown
xlToLeft
xlToRight
xlUp

expression.MoveAfterReturnDirection

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

Remarks

If	the	MoveAfterReturn	property	is	False,	the	selection	doesn’t	move	at	all,
regardless	of	how	the	MoveAfterReturnDirection	property	is	set.

Example

This	example	causes	the	active	cell	to	move	to	the	right	when	the	user	presses
ENTER.

Application.MoveAfterReturn	=	True

Application.MoveAfterReturnDirection	=	xlToRight

MultiSelect	Property
							

Returns	or	sets	the	selection	mode	of	the	specified	list	box.	Can	be	one	of	the
following	constants:	xlNone,	xlSimple,	or	xlExtended.	Read/write	Long.

Remarks

Single	select	(xlNone)	allows	only	one	item	at	a	time	to	be	selected.	Clicking	the
mouse	or	pressing	the	SPACEBAR	cancels	the	selection	and	selects	the	clicked
item.

Simple	multiselect	(xlSimple)	toggles	the	selection	on	an	item	in	the	list	when
click	it	with	the	mouse	or	press	the	SPACEBAR	when	the	focus	is	on	the	item.
This	mode	is	appropriate	for	pick	lists,	in	which	there	are	often	multiple	items
selected.

Extended	multiselect	(xlExtended)	usually	acts	like	a	single-selection	list	box,
so	when	you	click	an	item,	you	cancel	all	other	selections.	When	you	hold	down
SHIFT	while	clicking	the	mouse	or	pressing	an	arrow	key,	you	select	items
sequentially	from	the	current	item.	When	you	hold	down	CTRL	while	clicking
the	mouse,	you	add	single	items	to	the	list.	This	mode	is	appropriate	when
multiple	items	are	allowed	but	not	often	used.

You	can	use	the	Value	or	ListIndex	property	to	return	and	set	the	selected	item
in	a	single-select	list	box.

You	cannot	link	multiselect	list	boxes	by	using	the	LinkedCell	property.

Example

This	example	creates	a	simple	multiselect	list	box.

Set	lb	=	Worksheets(1).Shapes.AddFormControl(xlListBox,	_

				Left:=10,	Top:=10,	Height:=100,	Width:100)

lb.ControlFormat.MultiSelect	=	xlSimple

MultiUserEditing	Property
							

True	if	the	workbook	is	open	as	a	shared	list.	Read-only	Boolean.

Remarks

To	save	a	workbook	as	a	shared	list,	use	the	SaveAs	method.	To	switch	the
workbook	from	shared	mode	to	exclusive	mode,	use	the	ExclusiveAccess
method.

Example

This	example	determines	whether	the	active	workbook	is	open	in	exclusive
mode.	If	it	is,	the	example	saves	the	workbook	as	a	shared	list.

If	Not	ActiveWorkbook.MultiUserEditing	Then

				ActiveWorkbook.SaveAs	fileName:=ActiveWorkbook.FullName,	_

								accessMode:=xlShared

End	If

Show	All

Name	Property
							

Name	property	as	it	applies	to	the	Chart,	ChartObject,	ColorFormat,
CustomProperty,	Name,	OLEObject,	Parameter,	PivotField,	PivotItem,
PivotTable,	QueryTable,	Scenario,	Series,	Shape,	ShapeRange,	Trendline,
and	Worksheet	objects.

Returns	or	sets	the	name	of	the	object.	Read/write	String.

expression.Name

expression			Required.	An	expression	that	returns	one	of	the	above	objects.

Name	property	as	it	applies	to	the	AddIn,	Application,	AxisTitle,
CalculatedMember,	ChartArea,	ChartTitle,	Corners,	CubeField,
CustomView,	DataLabel,	DataLabels,	DisplayUnitLabel,	DownBars,
DropLines,	ErrorBars,	Factoid,	FactoidAction,	Floor,	Gridlines,	HiLoLines,
Hyperlink,	Legend,	PlotArea,	RecentFile,	SeriesLines,	Style,	TickLabels,
UpBars,	Walls,	and	Workbook	objects.

Returns	or	sets	the	name	of	the	object.	Read-only	String.

expression.Name

expression			Required.	An	expression	that	returns	one	of	the	above	objects.

Name	property	as	it	applies	to	the	Font	and	Range	objects.

Returns	or	sets	the	name	of	the	object.	The	name	of	a	Range	object	is	a	Name
object.	For	every	other	type	of	object,	the	name	is	a	string.	Read/write	Variant.

expression.Name

expression			Required.	An	expression	that	returns	one	of	the	above	objects.

Remarks

The	following	table	shows	example	values	of	the	Name	property	and	related
properties	given	an	OLAP	data	source	with	the	unique	name	"[Europe].[France].
[Paris]"	and	a	non-OLAP	data	source	with	the	item	name	"Paris".

Property Value	(OLAP	data	source) Value	(non-OLAP	data	source)
Caption Paris Paris

Name [Europe].[France].[Paris]
(read-only) Paris

SourceName [Europe].[France].[Paris]
(read-only)

(Same	as	SQL	property	value,
read-only)

Value [Europe].[France].[Paris]
(read-only) Paris

When	specifying	an	index	into	the	PivotItems	collection,	you	can	use	the	syntax
shown	in	the	following	table.

Syntax	(OLAP	data	source) Syntax	(non-OLAP	data
source)

expression.PivotItems("[Europe].[France].
[Paris]") expression.PivotItems("Paris")

When	using	the	Item	property	to	reference	a	specific	member	of	a	collection,
you	can	use	the	text	index	name	as	shown	in	the	following	table.

Name	(OLAP	data	source) Name	(non-OLAP	data
source)

[Europe].[France].[Paris] Paris

Example

This	example	displays	the	name	of	style	one	in	the	active	workbook,	first	in	the
language	of	the	macro	and	then	in	the	language	of	the	user.

With	ActiveWorkbook.Styles(1)

				MsgBox	"The	name	of	the	style	is	"	&	.Name

				MsgBox	"The	localized	name	of	the	style	is	"	&	.NameLocal

End	With

NameIsAuto	Property
							

True	if	Microsoft	Excel	automatically	determines	the	name	of	the	trendline.
Read/write	Boolean.

Example

This	example	sets	Microsoft	Excel	to	automatically	determine	the	name	for
trendline	one	in	Chart1.	The	example	should	be	run	on	a	2-D	column	chart	that
contains	a	single	series	with	a	trendline.

Charts("Chart1").SeriesCollection(1)	_

				.Trendlines(1).NameIsAuto	=	True

NameLocal	Property
							

Returns	or	sets	the	name	of	the	object,	in	the	language	of	the	user.	Read/write
String	for	Name,	read-only	String	for	Style.

Remarks

If	the	style	is	a	built-in	style,	this	property	returns	the	name	of	the	style	in	the
language	of	the	current	locale.

Example

This	example	displays	the	name	and	localized	name	of	style	one	in	the	active
workbook.

With	ActiveWorkbook.Styles(1)

				MsgBox	"The	name	of	the	style	is	"	&	.Name

				MsgBox	"The	localized	name	of	the	style	is	"	&	.NameLocal

End	With

Names	Property

							

For	an	Application	object,	returns	a	Names	collection	that	represents	all	the	names	in	the	active
workbook.	For	a	Workbook	object,	returns	a	Names	collection	that	represents	all	the	names	in
the	specified	workbook	(including	all	worksheet-specific	names).	For	a	Worksheet	object,	returns
a	Names	collection	that	represents	all	the	worksheet-specific	names	(names	defined	with	the
"WorksheetName!"	prefix).	Read-only	Names	object.

expression.Names

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the	Applies	To	list.

Remarks

For	information	about	returning	a	single	member	of	a	collection,	see	Returning	an	Object	from	a
Collection.

Using	this	property	without	an	object	qualifier	is	equivalent	to	using	ActiveWorkbook.Names.

Example

This	example	defines	the	name	"myName"	for	cell	A1	on	Sheet1.

ActiveWorkbook.Names.Add	Name:="myName",	RefersToR1C1:=	_
				"=Sheet1!R1C1"

Native	Property
							

Returns	a	provider-specific	numeric	value	that	specifies	an	error.	The	error
number	corresponds	to	an	error	condition	that	resulted	after	the	most	recent	OLE
DB	query.	Read-only	Long.

Example

This	example	displays	the	native	error	number	and	other	error	information
returned	by	the	most	recent	OLE	DB	query.

Set	objEr	=	Application.OLEDBErrors(1)

MsgBox	"The	following	error	occurred:"	&	_

				objEr.Number	&	",	"	&	objEr.Native	&	",	"	&	_

				objEr.ErrorString	&	"	:	"	&	objEr.SqlState

NetworkTemplatesPath	Property
							

Returns	the	network	path	where	templates	are	stored.	If	the	network	path	doesn’t
exist,	this	property	returns	an	empty	string.	Read-only	String.

Example

This	example	displays	the	network	path	where	templates	are	stored.

Msgbox	Application.NetworkTemplatesPath

NewWorkbook	Property
							

Returns	a	StartWorking	object.

expression.NewWorkbook

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

mk:@MSITStore:vbaof10.chm::/html/ofobjStartWorking.htm

Example

In	this	example,	Microsoft	Excel	sets	the	variable	wkbOne	to	a	StartWorking
object.

Sub	SetStartWorking()

				Dim	wkbOne	As	StartWorking

				'	Create	a	reference	to	an	instance	of	the	StartWorking	object

				Set	wkbOne	=	Application.NewWorkbook

End	Sub

Next	Property
							

Returns	a	Chart,	Range,	or	Worksheet	object	that	represents	the	next	sheet	or
cell.	Read-only.

Remarks

If	the	object	is	a	range,	this	property	emulates	the	TAB	key,	although	the
property	returns	the	next	cell	without	selecting	it.

On	a	protected	sheet,	this	property	returns	the	next	unlocked	cell.	On	an
unprotected	sheet,	this	property	always	returns	the	cell	immediately	to	the	right
of	the	specified	cell.

Example

This	example	selects	the	next	unlocked	cell	on	Sheet1.	If	Sheet1	is	unprotected,
this	is	the	cell	immediately	to	the	right	of	the	active	cell.

Worksheets("Sheet1").Activate

ActiveCell.Next.Select

Show	All

Nodes	Property
							

Nodes	property	as	it	applies	to	the	Diagram	object.

Returns	a	DiagramNodes	object	that	contains	a	flat	list	of	all	the	nodes	in	the
specified	diagram.

expression.Nodes

expression			Required.	An	expression	that	returns	a	Diagram	object.

Nodes	property	as	it	applies	to	the	Shape	and	ShapeRange	objects.

Returns	a	ShapeNodes	collection	that	represents	the	geometric	description	of	the
specified	shape.	Applies	to	Shape	or	ShapeRange	objects	that	represent
freeform	drawings.

expression.Nodes

expression			Required.	An	expression	that	returns	one	of	the	above	objects.

Example

As	it	applies	to	the	Shape	and	ShapeRange	objects.

This	example	adds	a	smooth	node	with	a	curved	segment	after	node	four	in
shape	three	on	myDocument.	Shape	three	must	be	a	freeform	drawing	with	at	least
four	nodes.

Set	myDocument	=	Worksheets(1)

With	myDocument.Shapes(3).Nodes

				.Insert	4,	msoSegmentCurve,	msoEditingSmooth,	210,	100

End	With

NormalizedHeight	Property
							

True	if	all	characters	(both	uppercase	and	lowercase)	in	the	specified	WordArt
are	the	same	height.	Read/write	MsoTriState.

MsoTriState	can	be	one	of	these	MsoTriState	constants.
msoCTrue
msoFalse
msoTriStateMixed
msoTriStateToggle
msoTrue	All	characters	(both	uppercase	and	lowercase)	in	the	specified
WordArt	are	the	same	height.

expression.NormalizedHeight

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

Example

This	example	adds	WordArt	that	contains	the	text	"Test	Effect"	to	myDocument
and	gives	the	new	WordArt	the	name	"texteff1."	The	code	then	makes	all
characters	in	the	shape	named	“texteff1”	the	same	height.

Set	myDocument	=	Worksheets(1)

myDocument.Shapes.AddTextEffect(_

				PresetTextEffect:=msoTextEffect1,	_

				Text:="Test	Effect",	FontName:="Courier	New",	_

				FontSize:=44,	FontBold:=True,	_

				FontItalic:=False,	Left:=10,	Top:=10).Name	=	"texteff1"

myDocument.Shapes("texteff1").TextEffect.NormalizedHeight	=	msoTrue

NullString	Property
							

Returns	or	sets	the	string	displayed	in	cells	that	contain	null	values	when	the
DisplayNullString	property	is	True.	The	default	value	is	an	empty	string	("").
Read/write	String.

Example

This	example	causes	the	PivotTable	report	to	display	"NA"	in	cells	that	contain
null	values.

With	Worksheets(1).PivotTables("Pivot1")

				.NullString	=	"NA"

				.DisplayNullString	=	True

End	With

Number	Property
							

Returns	a	numeric	value	that	specifies	an	error.	The	error	number	corresponds	to
a	unique	trap	number	corresponding	to	an	error	condition	that	resulted	after	the
most	recent	OLE	DB	query.	Read-only	Long.

Example

This	example	displays	the	error	number	and	other	error	information	returned	by
the	most	recent	OLE	DB	query.

Set	objEr	=	Application.OLEDBErrors(1)

MsgBox	"The	following	error	occurred:"	&	_

				objEr.Number	&	",	"	&	objEr.Native	&	",	"	&	_

				objEr.ErrorString	&	"	:	"	&	objEr.SqlState

NumberAsText	Property
							

When	set	to	True	(default),	Microsoft	Excel	identifies,	with	an	AutoCorrect
Options	button,	selected	cells	that	contain	numbers	written	as	text.	False
disables	error	checking	for	numbers	written	as	text.	Read/write	Boolean.

expression.NumberAsText

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

Example

In	the	following	example,	the	AutoCorrect	Options	button	appears	for	cell	A1,
which	contains	a	number	stored	as	text.

Sub	CheckNumberAsText()

				'	Simulate	an	error	by	referencing	a	number	stored	as	text.

				Application.ErrorCheckingOptions.NumberAsText	=	True

				Range("A1").Value	=	"'1"

End	Sub

Show	All

NumberFormat	Property
							

NumberFormat	property	as	it	applies	to	the	DataLabel,	DataLabels,
PivotField,	Style,	and	TickLabels	objects.

Returns	or	sets	the	format	code	for	the	object.	Read/write	String.

expression.NumberFormat

expression			Required.	An	expression	that	returns	one	of	the	above	objects.

	

NumberFormat	property	as	it	applies	to	the	CellFormat	and	Range	objects.

Returns	or	sets	the	format	code	for	the	object.	Returns	Null	if	all	cells	in	the
specified	range	don't	have	the	same	number	format.	Read/write	Variant.

expression.NumberFormat

expression			Required.	An	expression	that	returns	one	of	the	above	objects.

Remarks

For	the	PivotField	object,	you	can	set	the	NumberFormat	property	only	for	a
data	field.

The	format	code	is	the	same	string	as	the	Format	Codes	option	in	the	Format
Cells	dialog	box.	The	Format	function	uses	different	format	code	strings	than
do	the	NumberFormat	and	NumberFormatLocal	properties.

Example

These	examples	set	the	number	format	for	cell	A17,	row	one,	and	column	C
(respectively)	on	Sheet1.

Worksheets("Sheet1").Range("A17").NumberFormat	=	"General"

Worksheets("Sheet1").Rows(1).NumberFormat	=	"hh:mm:ss"

Worksheets("Sheet1").Columns("C").	_

				NumberFormat	=	"$#,##0.00_);[Red]($#,##0.00)"

NumberFormatLinked	Property
							

True	if	the	number	format	is	linked	to	the	cells	(so	that	the	number	format
changes	in	the	labels	when	it	changes	in	the	cells).	Read/write	Boolean.

Example

This	example	links	the	number	format	for	tick-mark	labels	to	its	cells	for	the
value	axis	in	Chart1.

Charts("Chart1").Axes(xlValue).TickLabels.NumberFormatLinked	=	True

Show	All

NumberFormatLocal	Property
							

NumberFormatLocal	property	as	it	applies	to	the	Style	object.

Returns	or	sets	the	format	code	for	the	object	as	a	string	in	the	language	of	the
user.	Read/write	String.

expression.NumberFormatLocal

expression			Required.	An	expression	that	returns	a	Style	object.

NumberFormatLocal	property	as	it	applies	to	the	CellFormat,	DataLabel,
DataLabels,	Range,	and	TickLabels	objects.

Returns	or	sets	the	format	code	for	the	object	as	a	string	in	the	language	of	the
user.	Read/write	Variant.

expression.NumberFormatLocal

expression			Required.	An	expression	that	returns	one	of	the	above	objects.

Remarks

The	Format	function	uses	different	format	code	strings	than	do	the
NumberFormat	and	NumberFormatLocal	properties.

Example

As	it	applies	to	the	CellFormat,	DataLabel,	DataLabels,	Range,	and
TickLabels	objects.

This	example	displays	the	number	format	for	cell	A1	on	Sheet1	in	the	language
of	the	user.

MsgBox	"The	number	format	for	cell	A1	is	"	&	_

				Worksheets("Sheet1").Range("A1").NumberFormatLocal

Object	Property
							

Returns	the	OLE	Automation	object	associated	with	this	OLE	object.	Read-only
Object.

Example

This	example	inserts	text	at	the	beginning	of	an	embedded	Word	document
object	on	Sheet1.	Note	that	the	three	statements	in	the	With	control	structure	are
WordBasic	statements.

Set	wordObj	=	Worksheets("Sheet1").OLEObjects(1)

wordObj.Activate

With	wordObj.Object.Application.WordBasic

				.StartOfDocument

				.Insert	"This	is	the	beginning"

				.InsertPara

End	With

Obscured	Property
							

True	if	the	shadow	of	the	specified	shape	appears	filled	in	and	is	obscured	by	the
shape,	even	if	the	shape	has	no	fill.	False	if	the	shadow	has	no	fill	and	the
outline	of	the	shadow	is	visible	through	the	shape	if	the	shape	has	no	fill.
Read/write	MsoTriState.

MsoTriState	can	be	one	of	these	MsoTriState	constants.
msoCTrue
msoFalse	The	shadow	has	no	fill	and	the	outline	of	the	shadow	is	visible
through	the	shape	if	the	shape	has	no	fill.
msoTriStateMixed
msoTriStateToggle
msoTrue	The	shadow	of	the	specified	shape	appears	filled	in	and	is	obscured
by	the	shape,	even	if	the	shape	has	no	fill.

expression.Obscured

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

Example

This	example	sets	the	horizontal	and	vertical	offsets	for	the	shadow	of	shape
three	on	myDocument.	The	shadow	is	offset	5	points	to	the	right	of	the	shape	and
3	points	above	it.	If	the	shape	doesn't	already	have	a	shadow,	this	example	adds
one	to	it.	The	shadow	will	be	filled	in	and	obscured	by	the	shape,	even	if	the
shape	has	no	fill.

Set	myDocument	=	Worksheets(1)

With	myDocument.Shapes(3).Shadow

				.Visible	=	True

				.OffsetX	=	5

				.OffsetY	=	-3

				.Obscured	=	msoTrue

End	With

ODBCErrors	Property
							

Returns	an	ODBCErrors	collection	that	contains	all	the	ODBC	errors	generated
by	the	most	recent	query	table	or	PivotTable	report	operation.	Read-only.

For	more	information	about	returning	a	single	object	from	a	collection,	see
Returning	an	Object	from	a	Collection.

Remarks

If	there’s	more	than	one	query	running	at	the	same	time,	the	ODBCErrors
collection	contains	the	ODBC	errors	from	the	query	that’s	finished	last.

Example

This	example	refreshes	query	table	one	and	displays	any	ODBC	errors	that
occur.

With	Worksheets(1).QueryTables(1)

				.Refresh

				Set	errs	=	Application.ODBCErrors

				If	errs.Count	>	0	Then

								Set	r	=	.Destination.Cells(1)

								r.Value	=	"The	following	errors	occurred:"

								c	=	0

								For	Each	er	In	errs

												c	=	c	+	1

												r.offset(c,	0).value	=	er.ErrorString

												r.offset(c,	1).value	=	er.SqlState

								Next

				Else

								MsgBox	"Query	complete:	all	records	returned."

				End	If

End	With

ODBCTimeout	Property
							

Returns	or	sets	the	ODBC	query	time	limit,	in	seconds.	The	default	value	is	45
seconds.	Read/write	Long.

Remarks

The	value	0	(zero)	indicates	an	indefinite	time	limit.

Example

This	example	sets	the	ODBC	query	time	limit	to	15	seconds.

Application.ODBCTimeout	=	15

Show	All

Offset	Property
							

Offset	property	as	it	applies	to	the	Range	object.

Returns	a	Range	object	that	represents	a	range	that’s	offset	from	the	specified
range.	Read-only.

expression.Offset(RowOffset,	ColumnOffset)

expression			Required.	An	expression	that	returns	a	Range	object.

RowOffset		Optional	Variant.	The	number	of	rows	(positive,	negative,	or	0
(zero))	by	which	the	range	is	to	be	offset.	Positive	values	are	offset	downward,
and	negative	values	are	offset	upward.	The	default	value	is	0.

ColumnOffset		Optional	Variant.	The	number	of	columns	(positive,	negative,	or
0	(zero))	by	which	the	range	is	to	be	offset.	Positive	values	are	offset	to	the	right,
and	negative	values	are	offset	to	the	left.	The	default	value	is	0.

Offset	property	as	it	applies	to	the	TickLabels	object.

Returns	or	sets	the	distance	between	the	levels	of	labels,	and	the	distance
between	the	first	level	and	the	axis	line.	The	default	distance	is	100	percent,
which	represents	the	default	spacing	between	the	axis	labels	and	the	axis	line.
The	value	can	be	an	integer	percentage	from	0	through	1000,	relative	to	the	axis
label’s	font	size.	Read/write	Long.

expression.Offset

expression			Required.	An	expression	that	returns	a	TickLabels	object.

Example

As	it	applies	to	the	Range	object.

This	example	activates	the	cell	three	columns	to	the	right	of	and	three	rows
down	from	the	active	cell	on	Sheet1.

Worksheets("Sheet1").Activate

ActiveCell.Offset(rowOffset:=3,	columnOffset:=3).Activate

This	example	assumes	that	Sheet1	contains	a	table	that	has	a	header	row.	The
example	selects	the	table,	without	selecting	the	header	row.	The	active	cell	must
be	somewhere	in	the	table	before	the	example	is	run.

Set	tbl	=	ActiveCell.CurrentRegion

tbl.Offset(1,	0).Resize(tbl.Rows.Count	-	1,	_

				tbl.Columns.Count).Select

As	it	applies	to	the	TickLabels	object.

This	example	sets	the	label	spacing	of	the	value	axis	in	Chart1	to	twice	the
current	setting,	if	the	offset	is	less	than	500.

With	Charts("Chart1").Axes(xlValue).TickLabels

				If	.Offset	<	500	then

								.Offset	=	.Offset	*	2

				End	If

End	With

OffsetX	Property
							

Returns	or	sets	the	horizontal	offset	of	the	shadow	from	the	specified	shape,	in
points.	A	positive	value	offsets	the	shadow	to	the	right	of	the	shape;	a	negative
value	offsets	it	to	the	left.	Read/write	Single.

expression.OffsetX

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

Remarks

If	you	want	to	nudge	a	shadow	horizontally	or	vertically	from	its	current	position
without	having	to	specify	an	absolute	position,	use	the	IncrementOffsetX
method	or	the	IncrementOffsetY	method.

Example

This	example	sets	the	horizontal	and	vertical	offsets	for	the	shadow	of	shape
three	on	myDocument.	The	shadow	is	offset	5	points	to	the	right	of	the	shape	and
3	points	above	it.	If	the	shape	doesn't	already	have	a	shadow,	this	example	adds
one	to	it.

Set	myDocument	=	Worksheets(1)

With	myDocument.Shapes(3).Shadow

				.Visible	=	True

				.OffsetX	=	5

				.OffsetY	=	-3

End	With

OffsetY	Property
							

Returns	or	sets	the	vertical	offset	of	the	shadow	from	the	specified	shape,	in
points.	A	positive	value	offsets	the	shadow	to	the	right	of	the	shape;	a	negative
value	offsets	it	to	the	left.	Read/write	Single.

Remarks

If	you	want	to	nudge	a	shadow	horizontally	or	vertically	from	its	current	position
without	having	to	specify	an	absolute	position,	use	the	IncrementOffsetX
method	or	the	IncrementOffsetY	method.

Example

This	example	sets	the	horizontal	and	vertical	offsets	for	the	shadow	of	shape
three	on	myDocument.	The	shadow	is	offset	5	points	to	the	right	of	the	shape	and
3	points	above	it.	If	the	shape	doesn't	already	have	a	shadow,	this	example	adds
one	to	it.

Set	myDocument	=	Worksheets(1)

With	myDocument.Shapes(3).Shadow

				.Visible	=	True

				.OffsetX	=	5

				.OffsetY	=	-3

End	With

Show	All

OLAP	Property
							

Returns	True	if	the	PivotTable	cache	is	connected	to	an	Online	Analytical
Processing	(OLAP)	server.	Read-only	Boolean.

expression.OLAP

expression			Required.	An	expression	that	returns	a	PivotCache	object.

Example

This	example	determines	if	the	cache	connection	is	to	an	OLAP	server	or	not.
The	example	assumes	a	PivotTable	exists	on	the	active	worksheet.

Sub	CheckPivotCache()

				'	Determine	if	PivotCache	has	OLAP	connection.

				If	Application.ActiveWorkbook.PivotCaches.Item(1).OLAP	=	True	Then

								MsgBox	"The	PivotCache	is	connected	to	an	OLAP	server"

				Else

								MsgBox	"The	PivotCache	is	not	connected	to	an	OLAP	server."

				End	If

End	Sub

OLEDBErrors	Property
							

Returns	the	OLEDBErrors	collection,	which	represents	the	error	information
returned	by	the	most	recent	OLE	DB	query.	Read-only.

Example

This	example	displays	the	error	description	and	SqlState	property	value	for	an
OLE	DB	error	returned	by	the	most	recent	OLE	DB	query.

Set	objEr	=	Application.OLEDBErrors.Item(1)

MsgBox	"The	following	error	occurred:"	&	_

				objEr.ErrorString	&	"	:	"	&	objEr.SqlState

OLEFormat	Property
							

Returns	an	OLEFormat	object	that	contains	OLE	object	properties.	Read-only.

Example

This	example	activates	an	OLE	object.	If	Shapes(1)	doesn’t	represent	an
embedded	OLE	object,	this	example	fails..

Worksheets(1).Shapes(1).OLEFormat.Activate

OLEType	Property
							

Returns	the	OLE	object	type.	Can	be	one	of	the	following	XlOLEType
constants:	xlOLELink	or	xlOLEEmbed.	Returns	xlOLELink	if	the	object	is
linked	(it	exists	outside	of	the	file),	or	returns	xlOLEEmbed	if	the	object	is
embedded	(it's	entirely	contained	within	the	file).	Read-only	Long.

Example

This	example	creates	a	list	of	link	types	for	OLE	objects	on	Sheet1.	The	list
appears	on	a	new	worksheet	created	by	the	example.

Set	newSheet	=	Worksheets.Add

i	=	2

newSheet.Range("A1").Value	=	"Name"

newSheet.Range("B1").Value	=	"Link	Type"

For	Each	obj	In	Worksheets("Sheet1").OLEObjects

				newSheet.Cells(i,	1).Value	=	obj.Name

				If	obj.OLEType	=	xlOLELink	Then

								newSheet.Cells(i,	2)	=	"Linked"

				Else

								newSheet.Cells(i,	2)	=	"Embedded"

				End	If

				i	=	i	+	1

Next

OmittedCells	Property
							

When	set	to	True	(default),	Microsoft	Excel	identifies,	with	an	AutoCorrect
Options	button,	the	selected	cells	that	contain	formulas	referring	to	a	range	that
omits	adjacent	cells	that	could	be	included.	False	disables	error	checking	for
omitted	cells.	Read/write	Boolean.

expression.OmittedCells

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

Example

In	the	following	example,	the	AutoCorrect	Options	button	appears	for	cell	A4,
which	contains	a	formula.

Sub	CheckOmittedCells()

				Application.ErrorCheckingOptions.OmittedCells	=	True

				Range("A1").Value	=	1

				Range("A2").Value	=	2

				Range("A3").Value	=	3

				Range("A4").Formula	=	"=Sum(A1:A2)"

End	Sub

On	Property
							

True	if	the	specified	filter	is	on.	Read-only	Boolean.

Example

The	following	example	sets	a	variable	to	the	value	of	the	Criteria1	property	of
the	filter	for	the	first	column	in	the	filtered	range	on	the	Crew	worksheet.

With	Worksheets("Crew")

				If	.AutoFilterMode	Then

								With	.AutoFilter.Filters(1)

												If	.On	Then	c1	=	.Criteria1

								End	With

				End	If

End	With

OnAction	Property
							

Returns	or	sets	the	name	of	a	macro	that’s	run	when	the	specified	object	is
clicked.	Read/write	String.

Remarks

Setting	this	property	for	a	menu	item	overrides	any	custom	help	information	set
up	for	the	menu	item	with	the	information	set	up	for	the	assigned	macro.

Example

This	example	causes	Microsoft	Excel	to	run	the	ShapeClick	procedure	whenever
shape	one	is	clicked.

Worksheets(1).Shapes(1).OnAction	=	"ShapeClick"

OnWindow	Property
							

Returns	or	sets	the	name	of	the	procedure	that’s	run	whenever	you	activate	a
window.	Read/write	String.

Remarks

The	procedure	specified	by	this	property	isn’t	run	when	other	procedures	switch
to	the	window	or	when	a	command	to	switch	to	a	window	is	received	through	a
DDE	channel.	Instead,	the	procedure	responds	to	the	user's	actions,	such	as
clicking	a	window	with	the	mouse,	clicking	Go	To	on	the	Edit	menu,	and	so	on.

If	a	worksheet	or	macro	sheet	has	an	Auto_Activate	or	Auto_Deactivate	macro
defined	for	it,	those	macros	will	be	run	after	the	procedure	specified	by	the
OnWindow	property.

Example

This	example	causes	the	WindowActivate	procedure	to	be	run	whenever	window
one	is	activated.

ThisWorkbook.Windows(1).OnWindow	=	"WindowActivate"

OperatingSystem	Property
							

Returns	the	name	and	version	number	of	the	current	operating	system	—	for
example,	"Windows	(32-bit)	4.00"	or	"Macintosh	7.00".	Read-only	String.

Example

This	example	displays	the	name	of	the	operating	system.

MsgBox	"Microsoft	Excel	is	using	"	&	Application.OperatingSystem

Show	All

Operator	Property
							

Operator	property	as	it	applies	to	the	Filter	object.

Returns	the	operator	that	associates	the	two	criteria	applied	by	the	specified
filter.	Read-only	XlAutoFilterOperator.

XlAutoFilterOperator	can	be	one	of	these	XlAutoFilterOperator	constants.
xlAnd
xlBottom10Percent
xlTop10Items
xlBottom10Items
xlOr
xlTop10Percent

expression.Operator

expression			Required.	An	expression	that	returns	one	of	the	above	objects.

	

Operator	property	as	it	applies	to	the	FormatCondition	and	Validation
objects.

Returns	the	operator	for	the	conditional	format	or	data	validation.	Read-only
Long.

expression.Operator

expression			Required.	An	expression	that	returns	one	of	the	above	objects.

	

Example

	As	it	applies	to	the	FormatCondition	object.

This	example	changes	the	formula	for	conditional	format	one,	for	cells	E1:E10	if
the	formula	specifies	"less	than	5."

With	Worksheets(1).Range("e1:e10").FormatConditions(1)

				If	.Operator	=	xlLess	And	.Formula1	=	"5"	Then

								.Modify	xlCellValue,	xlBetween,	"5",	"15"

				End	If

End	With

OptimizeCache	Property
							

True	if	the	PivotTable	cache	is	optimized	when	it’s	constructed.	The	default
value	is	False.	Read/write	Boolean.

Remarks

Cache	optimization	results	in	additional	queries	and	degrades	initial	performance
of	the	PivotTable	report.

For	OLE	DB	data	sources,	this	property	is	read-only	and	always	returns	False.

Example

This	example	causes	the	PivotTable	cache	for	the	first	PivotTable	report	on
worksheet	one	to	be	optimized	when	it’s	constructed.

Worksheets(1).PivotTables("Pivot1")	_

				.PivotCache.OptimizeCache	=	True

Show	All

Order	Property
							

Order	property	as	it	applies	to	the	PageSetup	object.

Returns	or	sets	the	order	that	Microsoft	Excel	uses	to	number	pages	when
printing	a	large	worksheet.	Read/write	XlOrder.

XlOrder	can	be	one	of	these	XlOrder	constants.
xlDownThenOver
xlOverThenDown

expression.Order

expression			Required.	An	expression	that	returns	one	of	the	above	objects.

	

Order	property	as	it	applies	to	the	Trendline	object.

Returns	or	sets	the	trendline	order	(an	integer	greater	than	1)	when	the	trendline
type	is	xlPolynomial.	Read/write	Long.

expression.Order

expression			Required.	An	expression	that	returns	one	of	the	above	objects.

	

Example

This	example	breaks	Sheet1	into	pages	when	the	worksheet	is	printed.
Numbering	and	printing	proceed	from	the	first	page	to	the	pages	to	the	right,	and
then	move	down	and	continue	printing	across	the	sheet.

Worksheets("Sheet1").PageSetup.Order	=	xlOverThenDown

OrganizationName	Property
							

Returns	the	registered	organization	name.	Read-only	String.

Example

This	example	displays	the	registered	organization	name.

MsgBox	"The	registered	organization	is	"	&	_

				Application.OrganizationName

OrganizeInFolder	Property
							

True	if	all	supporting	files,	such	as	background	textures	and	graphics,	are
organized	in	a	separate	folder	when	you	save	the	specified	document	as	a	Web
page.	False	if	supporting	files	are	saved	in	the	same	folder	as	the	Web	page.	The
default	value	is	True.	Read/write	Boolean.

Remarks

The	new	folder	is	created	in	the	folder	where	you	have	saved	the	Web	page,	and
is	named	after	the	document.	If	long	file	names	are	used,	a	suffix	is	added	to	the
folder	name.	The	FolderSuffix	property	returns	the	folder	suffix	for	the
language	support	you	have	selected	or	installed,	or	the	default	folder	suffix.

If	you	save	a	document	that	was	previously	saved	with	the	OrganizeInFolder
property	set	to	a	different	value,	Microsoft	Excel	automatically	moves	the
supporting	files	into	or	out	of	the	folder,	as	appropriate.

If	you	don't	use	long	file	names	(that	is,	if	the	UseLongFileNames	property	is
set	to	False),	Microsoft	Excel	automatically	saves	any	supporting	files	in	a
separate	folder.	The	files	cannot	be	saved	in	the	same	folder	as	the	Web	page.

Example

This	example	specifies	that	all	supporting	files	are	saved	in	the	same	folder
when	the	document	is	saved	as	a	Web	page.

Application.DefaultWebOptions.OrganizeInFolder	=	False

Show	All

Orientation	Property
							

Orientation	property	as	it	applies	to	the	TextFrame	object.

The	text	frame	orientation.	Can	be	an	integer	value	from		–	90	to	90	degrees	or
one	of	the	MsoTextOrientation	constants.	Read/write	MsoTextOrientation.

MsoTextOrientation	can	be	one	of	these	MsoTextOrientation	constants.
msoTextOrientationDownward
msoTextOrientationHorizontal
msoTextOrientationHorizontalRotatedFarEast
msoTextOrientationMixed
msoTextOrientationUpward
msoTextOrientationVertical
msoTextOrientationVerticalFarEast

expression.Orientation

expression			Required.	An	expression	that	returns	a	TextFrame	object.

Orientation	property	as	it	applies	to	the	Style	object.

The	text	orientation.	Can	be	an	integer	value	from		–	90	to	90	degrees	or	one	of
the	XlOrientation	constants.	Read/write	XlOrientation.

XlOrientation	can	be	one	of	these	XlOrientation	constants.
xlDownward
xlUpward
xlHorizontal
xlVertical

expression.Orientation

expression			Required.	An	expression	that	returns	a	Style	object.

Orientation	property	as	it	applies	to	the	PageSetup	object.

Portrait	or	landscape	printing	mode.	Read/write	XlPageOrientation.

XlPageOrientation	can	be	one	of	these	XlPageOrientation	constants.
xlPortrait
xlLandscape

expression.Orientation

expression			Required.	An	expression	that	returns	a	PageSetup	object.

Orientation	property	as	it	applies	to	the	CubeField	and	PivotField	objects.

The	location	of	the	field	in	the	specified	PivotTable	report.	Read/write
XlPivotFieldOrientation.

XlPivotFieldOrientation	can	be	one	of	these	XlPivotFieldOrientation	constants.
xlColumnField
xlDataField
xlHidden
xlPageField
xlRowField

expression.Orientation

expression			Required.	An	expression	that	returns	one	of	the	above	objects.

Orientation	property	as	it	applies	to	the	TickLabels	object.

The	text	orientation.	Can	be	an	integer	value	from		–	90	to	90	degrees	or	one	of
the	XlTickLabelOrientation	constants.	Read/write	XlTickLabelOrientation.

XlTickLabelOrientation	can	be	one	of	these	XlTickLabelOrientation	constants.
xlTickLabelOrientationAutomatic
xlTickLabelOrientationHorizontal

xlTickLabelOrientationVertical
xlTickLabelOrientationDownward
xlTickLabelOrientationUpward

expression.Orientation

expression			Required.	An	expression	that	returns	a	TickLabels	object.

Orientation	property	as	it	applies	to	the	AxisTitle,	CellFormat,	ChartTitle,
DataLabel,	DataLabels,	DisplayUnitLabel,	and	Range	objects.

The	text	orientation.	Can	be	an	integer	value	from		–	90	to	90	degrees.
Read/write	Variant.

expression.Orientation

expression			Required.	An	expression	that	returns	one	of	the	above	objects.

Remarks

For	OLAP	data	sources,	setting	this	property	for	one	field	in	a	hierarchy	sets	the
orientation	for	the	other	fields	in	the	same	hierarchy.	Dimension	fields	can	only
be	oriented	in	the	row,	column,	and	page	field	areas	of	the	PivotTable	report.
Measure	fields	can	only	be	oriented	in	the	data	area.	Setting	a	hierarchy	or	data
field	to	xlHidden	removes	the	hierarchy	or	field	from	the	PivotTable	report.

Example

As	it	applies	to	the	PivotField	object.

This	example	displays	the	orientation	for	the	ORDER_DATE	field.

Set	pvtTable	=	Worksheets("Sheet1").Range("A3").PivotTable

Set	pvtField	=	pvtTable.PivotFields("ORDER_DATE")

Select	Case	pvtField.Orientation

				Case	xlHidden

								MsgBox	"Hidden	field"

				Case	xlRowField

								MsgBox	"Row	field"

				Case	xlColumnField

								MsgBox	"Column	field"

				Case	xlPageField

								MsgBox	"Page	field"

				Case	xlDataField

								MsgBox	"Data	field"

End	Select

As	it	applies	to	the	PageSetup	object.

This	example	sets	Sheet1	to	be	printed	in	landscape	orientation.

Worksheets("Sheet1").PageSetup.Orientation	=	xlLandscape

Outline	Property
							

Returns	an	Outline	object	that	represents	the	outline	for	the	specified	worksheet.
Read-only.

Example

This	example	sets	the	outline	on	Sheet1	to	use	automatic	styles.

Worksheets("Sheet1").Outline.AutomaticStyles	=	True

OutlineFont	Property
							

True	if	the	font	is	an	outline	font.	Read/write	Boolean.

Remarks

This	property	has	no	effect	in	Windows,	but	its	value	is	retained	(it	can	be	set
and	returned).

Example

This	example	sets	the	font	for	cell	A1	on	Sheet1	to	an	outline	font.

Worksheets("Sheet1").Range("A1").Font.OutlineFont	=	True

OutlineLevel	Property
							

Returns	or	sets	the	current	outline	level	of	the	specified	row	or	column.
Read/write	Variant.

Remarks

Level	one	is	the	outermost	summary	level.

Example

This	example	sets	the	outline	level	for	row	two	on	Sheet1.

Worksheets("Sheet1").Rows(2).OutlineLevel	=	1

Overlap	Property
							

Specifies	how	bars	and	columns	are	positioned.	Can	be	a	value	between		–	100
and	100.	Applies	only	to	2-D	bar	and	2-D	column	charts.	Read/write	Long.

Remarks

If	this	property	is	set	to		–	100,	bars	are	positioned	so	that	there's	one	bar	width
between	them.	If	the	overlap	is	0	(zero),	there's	no	space	between	bars	(one	bar
starts	immediately	after	the	preceding	bar).	If	the	overlap	is	100,	bars	are
positioned	on	top	of	each	other.

Example

This	example	sets	the	overlap	for	chart	group	one	to		–	50.	The	example	should
be	run	on	a	2-D	column	chart	that	has	two	or	more	series.

Charts("Chart1").ChartGroups(1).Overlap	=	-50

This	keyword	is	not	implemented.	It	is	reserved	for	future	use.

PageBreak	Property
							

Returns	or	sets	the	location	of	a	page	break.	Can	be	one	of	the	following
XlPageBreak	constants:	xlPageBreakAutomatic,	xlPageBreakManual,	or
xlPageBreakNone.	Read/write	Long.

Remarks

This	property	can	return	the	location	of	either	automatic	or	manual	page	breaks,
but	it	can	only	set	the	location	of	manual	breaks	(it	can	only	be	set	to
xlPageBreakManual	or	xlPageBreakNone).

To	remove	all	manual	page	breaks	on	a	worksheet,	set	Cells.PageBreak	to
xlPageBreakNone.

Example

This	example	sets	a	manual	page	break	above	row	25	on	Sheet1.

Worksheets("Sheet1").Rows(25).PageBreak	=	xlPageBreakManual

This	example	sets	a	manual	page	break	to	the	left	of	column	J	on	Sheet1.

Worksheets("Sheet1").Columns("J").PageBreak	=	xlPageBreakManual

This	example	deletes	the	two	page	breaks	that	were	set	in	the	preceding
examples.

Worksheets("Sheet1").Rows(25).PageBreak	=	xlPageBreakNone

Worksheets("Sheet1").Columns("J").PageBreak	=	xlNone

PageFieldOrder	Property
							

Returns	or	sets	the	order	in	which	page	fields	are	added	to	the	PivotTable
report’s	layout.	Can	be	one	of	the	following	XlOrder	constants:
xlDownThenOver	or	xlOverThenDown.	The	default	constant	is
xlDownThenOver.	Read/write	Long.

Example

This	example	causes	the	PivotTable	report	to	draw	three	page	fields	in	a	row
before	starting	a	new	row.

With	Worksheets(1).PivotTables("Pivot1")

				.PageFieldOrder	=	xlOverThenDown

				.PageFieldWrapCount	=	3

End	With

PageFields	Property
							

Returns	an	object	that	represents	either	a	single	PivotTable	field	(a	PivotField
object)	or	a	collection	of	all	the	fields	(a	PivotFields	object)	that	are	currently
showing	as	page	fields.	Read-only.

expression.PageFields(Index)

expression			Required.	An	expression	that	returns	a	PivotTable	object.

Index			Optional	Variant.	The	name	or	number	of	the	field	to	be	returned	(can
be	an	array	to	specify	more	than	one	field).

Remarks

A	hierarchy	can	contain	only	one	page	field.

For	a	PivotTable	report	based	on	a	PivotTable	cache,	the	collection	of	PivotTable
fields	that’s	returned	reflects	what’s	currently	in	the	cache.

Example

This	example	adds	the	page	field	names	to	a	list	on	a	new	worksheet.

Set	nwSheet	=	Worksheets.Add

nwSheet.Activate

Set	pvtTable	=	Worksheets("Sheet2").Range("A1").PivotTable

rw	=	0

For	Each	pvtField	In	pvtTable.PageFields

				rw	=	rw	+	1

				nwSheet.Cells(rw,	1).Value	=	pvtField.Name

Next	pvtField

PageFieldStyle	Property
							

Returns	or	sets	the	style	used	in	the	bound	page	field	area.	The	default	value	is	a
null	string	(no	style	is	applied	by	default).	Read/write	String.

Remarks

This	style	is	used	as	the	default	style	for	the	background	area,	and	it’s	applied
before	any	user	formatting.	Cells	vacated	when	a	field	is	pivoted	from	the	page
field	area	to	another	location	retain	this	style.

Example

This	example	sets	the	page	field	area	of	the	first	PivotTable	report	on	worksheet
one	to	the	PurpleAndGold	style.

Worksheets(1).PivotTables("Pivot1")	_

				.PageFieldStyle	=	"PurpleAndGold"

PageFieldWrapCount	Property
							

Returns	or	sets	the	number	of	page	fields	in	each	column	or	row	in	the
PivotTable	report.	Read/write	Long.

Example

This	example	causes	the	PivotTable	report	to	draw	three	page	fields	in	a	row
before	starting	a	new	row.

With	Worksheets(1).PivotTables("Pivot1")

				.PageFieldOrder	=	xlOverThenDown

				.PageFieldWrapCount	=	3

End	With

PageRange	Property
							

Returns	a	Range	object	that	represents	the	range	that	contains	the	page	area	in
the	PivotTable	report.	Read-only.

Example

This	example	selects	the	page	headers	in	the	PivotTable	report.

Worksheets("Sheet1").Activate

Range("A3").Select

ActiveCell.PivotTable.PageRange.Select

PageRangeCells	Property
							

Returns	a	Range	object	that	represents	only	the	cells	in	the	specified	PivotTable
report	that	contain	the	page	fields	and	item	drop-down	lists.

Example

This	example	selects	only	the	cells	in	the	PivotTable	report	that	contain	page
fields	and	item	drop-down	lists.

Worksheets(1).PivotTables(1).PageRangeCells.Select

PageSetup	Property
							

Returns	a	PageSetup	object	that	contains	all	the	page	setup	settings	for	the
specified	object.	Read-only.

Example

This	example	sets	the	center	header	text	for	Chart1.

Charts("Chart1").PageSetup.CenterHeader	=	"December	Sales"

Panes	Property
							

Returns	a	Panes	collection	that	represents	all	the	panes	in	the	specified	window.
Read-only.

For	information	about	returning	a	single	member	of	a	collection,	see	Returning
an	Object	from	a	Collection.

Remarks

This	property	is	available	for	a	window	only	if	the	window’s	Split	property	can
be	set	to	True.

Example

This	example	displays	the	number	of	panes	in	the	active	window	in	Book1.xls.

Workbooks("BOOK1.XLS").Worksheets("Sheet1").Activate

MsgBox	"There	are	"	&	ActiveWindow.Panes.Count	&	_

				"	panes	in	the	active	window"

This	example	activates	the	pane	in	the	upper-left	corner	of	the	active	window	in
Book1.xls.

Workbooks("BOOK1.XLS").Worksheets("Sheet1").Activate

ActiveWindow.Panes(1).Activate

PaperSize	Property
							

Returns	or	sets	the	size	of	the	paper.	Read/write	XlPaperSize.

XlPaperSize	can	be	one	of	these	XlPaperSize	constants.
xlPaper11x17.	11	in.	x	17	in.
xlPaperA4.	A4	(210	mm	x	297	mm)		
xlPaperA5.	A5	(148	mm	x	210	mm)
xlPaperB5.	A5	(148	mm	x	210	mm)
xlPaperDsheet.	D	size	sheet
xlPaperEnvelope11.	Envelope	#11	(4-1/2	in.	x	10-3/8	in.)
xlPaperEnvelope14.	Envelope	#14	(5	in.	x	11-1/2	in.)
xlPaperEnvelopeB4.	Envelope	B4	(250	mm	x	353	mm)
xlPaperEnvelopeB6.	Envelope	B6	(176	mm	x	125	mm)
xlPaperEnvelopeC4.	Envelope	C4	(229	mm	x	324	mm)
xlPaperEnvelopeC6.	Envelope	C6	(114	mm	x	162	mm)
xlPaperEnvelopeDL.	Envelope	DL	(110	mm	x	220	mm)
xlPaperEnvelopeMonarch.	Envelope	Monarch	(3-7/8	in.	x	7-1/2	in.)
xlPaperEsheet.	E	size	sheet
xlPaperFanfoldLegalGerman.	German	Legal	Fanfold	(8-1/2	in.	x	13	in.)
xlPaperFanfoldUS.	U.S.	Standard	Fanfold	(14-7/8	in.	x	11	in.)
xlPaperLedger.	Ledger	(17	in.	x	11	in.)
xlPaperLetter.	Letter	(8-1/2	in.	x	11	in.)
xlPaperNote.	Note	(8-1/2	in.	x	11	in.)
xlPaperStatement.	Statement	(5-1/2	in.	x	8-1/2	in.)
xlPaperUser.	User-defined
xlPaper10x14.	10	in.	x	14	in.
xlPaperA3.	A3	(297	mm	x	420	mm)
xlPaperA4Small.	A4	Small	(210	mm	x	297	mm)
xlPaperB4.	B4	(250	mm	x	354	mm)

xlPaperCsheet.	C	size	sheet
xlPaperEnvelope10.	Envelope	#10	(4-1/8	in.	x	9-1/2	in.)
xlPaperEnvelope12.	Envelope	#12	(4-1/2	in.	x	11	in.)
xlPaperEnvelope9.	Envelope	#9	(3-7/8	in.	x	8-7/8	in.)
xlPaperEnvelopeB5.	Envelope	B5	(176	mm	x	250	mm)
xlPaperEnvelopeC3.	Envelope	C3	(324	mm	x	458	mm)
xlPaperEnvelopeC5.	Envelope	C5	(162	mm	x	229	mm)
xlPaperEnvelopeC65.	Envelope	C65	(114	mm	x	229	mm)
xlPaperEnvelopeItaly.	Envelope	(110	mm	x	230	mm)
xlPaperEnvelopePersonal.	Envelope	(3-5/8	in.	x	6-1/2	in.)
xlPaperExecutive.	Executive	(7-1/2	in.	x	10-1/2	in.)
xlPaperFanfoldStdGerman.	German	Legal	Fanfold	(8-1/2	in.	x	13	in.)
xlPaperFolio.	Folio	(8-1/2	in.	x	13	in.)
xlPaperLegal.	Legal	(8-1/2	in.	x	14	in.)
xlPaperLetterSmall.	Letter	Small	(8-1/2	in.	x	11	in.)
xlPaperQuarto.	Quarto	(215	mm	x	275	mm)
xlPaperTabloid.	Tabloid	(11	in.	x	17	in.)

Note		Some	printers	may	not	support	all	of	these	paper	sizes.

expression.PaperSize

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

Example

This	example	sets	the	paper	size	to	legal	for	Sheet1.

Worksheets("Sheet1").PageSetup.PaperSize	=	xlPaperLegal

Parameters	Property
							

Returns	a	Parameters	collection	that	represents	the	query	table	parameters.
Read-only.

For	more	information	about	returning	a	single	object	from	a	collection,	see
Returning	an	Object	from	a	Collection.

Example

This	example	returns	the	Parameters	collection	from	an	existing	parameter
query.	If	the	first	parameter	uses	the	character	data	type,	the	user	is	instructed	to
enter	characters	only	in	the	prompt	dialog	box.

With	Sheets("sheet1").QueryTables(1).Parameters(1)

				If	.DataType	=	xlParamTypeVarChar	Then

								.SetParam	xlPrompt,	"Enter	a	character	only"

				End	If

End	With

Parent	Property
							

Returns	the	parent	object	for	the	specified	object.

expression.Parent

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

Example

This	example	displays	the	name	of	the	chart	that	contains	myAxis.

Set	myAxis	=	Charts(1).Axes(xlValue)

MsgBox	myAxis.Parent.Name

Show	All

ParentField	Property
							

Returns	a	PivotField	object	that	represents	the	PivotTable	field	that’s	the	group
parent	of	the	specified	object.	The	field	must	be	grouped	and	must	have	a	parent
field.	Read-only.

Remarks

This	property	isn’t	available	for	OLAP	data	sources.

Example

This	example	displays	the	name	of	the	field	that’s	the	group	parent	of	the	field
that	contains	the	active	cell.

Worksheets("Sheet1").Activate

MsgBox	"The	active	field	is	a	child	of	the	field	"	&	_

				ActiveCell.PivotField.ParentField.Name

ParentGroup	Property
							

Returns	a	Shape	object	that	represents	the	common	parent	shape	of	a	child	shape
or	a	range	of	child	shapes.

expression.ParentGroup

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

Example

In	this	example,	Microsoft	Excel	adds	two	shapes	to	the	active	worksheet	and
then	removes	both	shapes	by	deleting	the	parent	shape	of	the	group.

Sub	ParentGroup()

				Dim	pgShape	As	Shape

				With	ActiveSheet.Shapes

								.AddShape	Type:=1,	Left:=10,	Top:=10,	_

												Width:=100,	Height:=100

								.AddShape	Type:=2,	Left:=110,	Top:=120,	_

												Width:=100,	Height:=100

								.Range(Array(1,	2)).Group

				End	With

				'	Using	the	child	shape	in	the	group	get	the	Parent	shape.

				Set	pgShape	=	ActiveSheet.Shapes(1).GroupItems(1).ParentGroup

				MsgBox	"The	two	shapes	will	now	be	deleted."

				'	Delete	the	parent	shape.

				pgShape.Delete

End	Sub

Show	All

ParentItem	Property
							

Returns	a	PivotItem	object	that	represents	the	parent	PivotTable	item	in	the
parent	PivotField	object	(the	field	must	be	grouped	so	that	it	has	a	parent).
Read-only.

Remarks

This	property	isn’t	available	for	OLAP	data	sources.

Example

This	example	displays	the	name	of	the	parent	item	for	the	item	that	contains	the
active	cell.

Worksheets("Sheet1").Activate

MsgBox	"This	item	is	a	subitem	of	"	&	_

				ActiveCell.PivotItem.ParentItem.Name

Show	All

ParentItems	Property
							

Returns	an	object	that	represents	either	a	single	PivotTable	item	(a	PivotItem
object)	or	a	collection	of	all	the	items	(a	PivotItems	object)	that	are	group
parents	in	the	specified	field.	The	specified	field	must	be	a	group	parent	of
another	field.	Read-only.

expression.ParentItems(Index)

expression			Required.	An	expression	that	returns	a	PivotField	object.

Index			Optional	Variant.	The	number	or	name	of	the	item	to	be	returned	(can
be	an	array	to	specify	more	than	one	item).

Remarks

This	property	isn’t	available	for	OLAP	data	sources.

Example

This	example	creates	a	list	containing	the	names	of	all	the	items	that	are	group
parents	in	the	field	named	"product".

Set	nwSheet	=	Worksheets.Add

nwSheet.Activate

Set	pvtTable	=	Worksheets("Sheet2").Range("A1").PivotTable

rw	=	0

For	Each	pvtItem	In	pvtTable.PivotFields("product").ParentItems

				rw	=	rw	+	1

				nwSheet.Cells(rw,	1).Value	=	pvtItem.Name

Next	pvtItem

Show	All

ParentShowDetail	Property
							

True	if	the	specified	item	is	showing	because	one	of	its	parents	is	showing
detail.	False	if	the	specified	item	isn’t	showing	because	one	of	its	parents	is
hiding	detail.	This	property	is	available	only	if	the	item	is	grouped.	Read-only
Boolean.

Remarks

This	property	isn’t	available	for	OLAP	data	sources.

Example

This	example	displays	a	message	if	the	item	that	contains	the	active	cell	is
visible	because	its	parent	item	is	showing	detail.

Worksheets("Sheet1").Activate

Set	pvtItem	=	ActiveCell.PivotItem

If	pvtItem.ParentShowDetail	=	True	Then

				MsgBox	"Parent	item	is	showing	detail"

End	If

Password	Property
							

Returns	or	sets	the	password	that	must	be	supplied	to	open	the	specified
workbook.	Read/write	String.

expression.Password

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

Example

In	this	example,	Microsoft	Excel	opens	a	workbook	named	Password.xls,	sets	a
password	for	it,	and	then	closes	the	workbook.	This	example	assumes	a	file
named	"Password.xls"	exists	on	the	C:\	drive.

Sub	UsePassword()

				Dim	wkbOne	As	Workbook

				Set	wkbOne	=	Application.Workbooks.Open("C:\Password.xls")

				wkbOne.Password	=	"secret"

				wkbOne.Close

End	Sub

Note			The	Password	property	is	readable	and	returns	"********".

PasswordEncryptionAlgorithm
Property
							

Returns	a	String	indicating	the	algorithm	Microsoft	Excel	uses	to	encrypt
passwords	for	the	specified	workbook.	Read-only.

expression.PasswordEncryptionAlgorithm

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

Remarks

Use	the	SetPasswordEncryptionOptions	method	to	specify	whether	Excel
encrypts	file	properties	for	password-protected	workbooks.

Example

This	example	sets	the	password	encryption	options	for	the	active	workbook.

Sub	SetPasswordOptions()

				ActiveWorkbook.SetPasswordEncryptionOptions	_

								PasswordEncryptionProvider:="Microsoft	RSA	SChannel	Cryptographic	Provider",	_

								PasswordEncryptionAlgorithm:="RC4",	_

								PasswordEncryptionKeyLength:=56,	_

								PasswordEncryptionFileProperties:=True

End	Sub

PasswordEncryptionFileProperties
Property
							

True	if	Microsoft	Excel	encrypts	file	properties	for	the	specified	password-
protected	workbook.	Read-only	Boolean.

expression.PasswordEncryptionFileProperties

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

Remarks

Use	the	SetPasswordEncryptionOptions	method	to	specify	whether	Excel
encrypts	file	properties	for	the	specified	password-protected	workbook.

Example

This	example	sets	the	password	encryption	options	if	the	file	properties	are	not
encrypted	for	password-protected	workbooks.

Sub	SetPasswordOptions()

				With	ActiveWorkbook

								If	.PasswordEncryptionFileProperties	=	False	Then

												.SetPasswordEncryptionOptions	_

																PasswordEncryptionProvider:="Microsoft	RSA	SChannel	Cryptographic	Provider",	_

																PasswordEncryptionAlgorithm:="RC4",	_

																PasswordEncryptionKeyLength:=56,	_

																PasswordEncryptionFileProperties:=True

								End	If

				End	With

End	Sub

PasswordEncryptionKeyLength
Property
							

Returns	a	Long	indicating	the	key	length	of	the	algorithm	Microsoft	Excel	uses
when	encrypting	passwords	for	the	specified	workbook.	Read-only.

expression.PasswordEncryptionKeyLength

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

Remarks

Use	the	SetPasswordEncryptionOptions	method	to	specify	whether	Excel
encrypts	file	properties	for	the	specified	password-protected	workbook.

Example

This	example	sets	the	password	encryption	options	for	the	specified	workbook,
if	the	password	encryption	key	length	is	less	than	56.

Sub	SetPasswordOptions()

				With	ActiveWorkbook

								If	.PasswordEncryptionKeyLength	<	56	Then

												.SetPasswordEncryptionOptions	_

																PasswordEncryptionProvider:="Microsoft	RSA	SChannel	Cryptographic	Provider",	_

																PasswordEncryptionAlgorithm:="RC4",	_

																PasswordEncryptionKeyLength:=56,	_

																PasswordEncryptionFileProperties:=True

								End	If

				End	With

End	Sub

PasswordEncryptionProvider
Property
							

Returns	a	String	specifying	the	name	of	the	algorithm	encryption	provider	that
Microsoft	Excel	uses	when	encrypting	passwords	for	the	specified	workbook.
Read-only.

expression.PasswordEncryptionProvider

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

Example

This	example	sets	the	password	encryption	options	for	the	specified	workbook,
if	the	file	properties	are	not	encrypted	for	password-protected	workbooks.

Sub	SetPasswordOptions()

				With	ActiveWorkbook

								If	.PasswordEncryptionProvider	<>	"Microsoft	RSA	SChannel	Cryptographic	Provider"	Then

												.SetPasswordEncryptionOptions	_

																PasswordEncryptionProvider:="Microsoft	RSA	SChannel	Cryptographic	Provider",	_

																PasswordEncryptionAlgorithm:="RC4",	_

																PasswordEncryptionKeyLength:=56,	_

																PasswordEncryptionFileProperties:=True

								End	If

				End	With

End	Sub

Show	All

Path	Property
							

Path	property	as	it	applies	to	the	AutoRecover	object.

Sets	or	returns	the	complete	path	to	where	Microsoft	Excel	will	store	the
AutoRecover	temporary	files.	Read/write	String.

expression.Path

expression			Required.	An	expression	that	returns	an	AutoRecover	object.

Path	property	as	it	applies	to	the	AddIn,	Application,	RecentFile,	and
Workbook	objects.

Returns	the	complete	path	to	the	application,	excluding	the	final	separator	and
name	of	the	application.	Read-only	String.

expression.Path

expression			Required.	An	expression	that	returns	one	of	the	above	objects.

Example

As	it	applies	to	the	AutoRecover	object.

This	example	sets	the	path	of	the	AutoRecover	file	to	drive	C.

Sub	SetPath()

				Application.AutoRecover.Path	=	"C:\"

End	Sub

As	it	applies	to	the	AddIn,	Application,	RecentFile,	and	Workbook	objects.

This	example	displays	the	complete	path	to	Microsoft	Excel.

Sub	TotalPath()

				MsgBox	"The	path	is	"	&	Application.Path

End	Sub

PathSeparator	Property
							

Returns	the	path	separator	character	("\").	Read-only	String.

Example

This	example	displays	the	current	path	separator.

MsgBox	"The	path	separator	character	is	"	&	_

				Application.PathSeparator

Show	All

Pattern	Property
							

Pattern	property	as	it	applies	to	the	LineFormat	object.

Returns	or	sets	the	fill	pattern.	Read/write	MsoPatternType.

MsoPatternType	can	be	one	of	these	MsoPatternType	constants.
msoPattern10Percent
msoPattern20Percent
msoPattern25Percent
msoPattern30Percent
msoPattern40Percent
msoPattern50Percent
msoPattern5Percent
msoPattern60Percent
msoPattern70Percent
msoPattern75Percent
msoPattern80Percent
msoPattern90Percent
msoPatternDarkDownwardDiagonal
msoPatternDarkHorizontal
msoPatternDarkUpwardDiagonal
msoPatternDarkVertical
msoPatternDashedDownwardDiagonal
msoPatternDashedHorizontal
msoPatternDashedUpwardDiagonal
msoPatternDashedVertical
msoPatternDiagonalBrick
msoPatternDivot
msoPatternDottedDiamond

msoPatternDottedGrid
msoPatternHorizontalBrick
msoPatternLargeCheckerBoard
msoPatternLargeConfetti
msoPatternLargeGrid
msoPatternLightDownwardDiagonal
msoPatternLightHorizontal
msoPatternLightUpwardDiagonal
msoPatternLightVertical
msoPatternMixed
msoPatternNarrowHorizontal
msoPatternNarrowVertical
msoPatternOutlinedDiamond
msoPatternPlaid
msoPatternShingle
msoPatternSmallCheckerBoard
msoPatternSmallConfetti
msoPatternSmallGrid
msoPatternSolidDiamond
msoPatternSphere
msoPatternTrellis
msoPatternWave
msoPatternWeave
msoPatternWideDownwardDiagonal
msoPatternWideUpwardDiagonal
msoPatternZigZag

expression.Pattern

expression			Required.	An	expression	that	returns	one	of	the	above	objects.

	

Pattern	property	as	it	applies	to	the	ChartFillFormat	and	FillFormat	objects.

Returns	or	sets	the	fill	pattern.	Read-only	MsoPatternType.

MsoPatternType	can	be	one	of	these	MsoPatternType	constants.
msoPattern10Percent
msoPattern20Percent
msoPattern25Percent
msoPattern30Percent
msoPattern40Percent
msoPattern50Percent
msoPattern5Percent
msoPattern60Percent
msoPattern70Percent
msoPattern75Percent
msoPattern80Percent
msoPattern90Percent
msoPatternDarkDownwardDiagonal
msoPatternDarkHorizontal
msoPatternDarkUpwardDiagonal
msoPatternDarkVertical
msoPatternDashedDownwardDiagonal
msoPatternDashedHorizontal
msoPatternDashedUpwardDiagonal
msoPatternDashedVertical
msoPatternDiagonalBrick
msoPatternDivot
msoPatternDottedDiamond
msoPatternDottedGrid
msoPatternHorizontalBrick
msoPatternLargeCheckerBoard
msoPatternLargeConfetti
msoPatternLargeGrid
msoPatternLightDownwardDiagonal
msoPatternLightHorizontal

msoPatternLightUpwardDiagonal
msoPatternLightVertical
msoPatternMixed
msoPatternNarrowHorizontal
msoPatternNarrowVertical
msoPatternOutlinedDiamond
msoPatternPlaid
msoPatternShingle
msoPatternSmallCheckerBoard
msoPatternSmallConfetti
msoPatternSmallGrid
msoPatternSolidDiamond
msoPatternSphere
msoPatternTrellis
msoPatternWave
msoPatternWeave
msoPatternWideDownwardDiagonal
msoPatternWideUpwardDiagonal
msoPatternZigZag

expression.Pattern

expression			Required.	An	expression	that	returns	one	of	the	above	objects.

	

Pattern	property	as	it	applies	to	the	Interior	object.

Returns	or	sets	the	interior	pattern.	Read/write	Variant.

expression.Pattern

expression			Required.	An	expression	that	returns	one	of	the	above	objects.

	

Example

This	example	adds	a	crisscross	pattern	to	the	interior	of	cell	A1	on	Sheet1.

Worksheets("Sheet1").Range("A1").	_

				Interior.Pattern	=	xlPatternCrissCross

PatternColor	Property
							

Returns	or	sets	the	color	of	the	interior	pattern	as	an	RGB	value.	Read/write
Variant.

Example

This	example	sets	the	color	of	the	interior	pattern	for	rectangle	one	on	Sheet1.

With	Worksheets("Sheet1").Rectangles(1).Interior

				.Pattern	=	xlGrid

				.PatternColor	=	RGB(255,0,0)

End	With

PatternColorIndex	Property
							

Returns	or	sets	the	color	of	the	interior	pattern	as	an	index	into	the	current	color
palette,	or	as	one	of	the	following	XlColorIndex	constants:
xlColorIndexAutomatic	or	xlColorIndexNone.	Read/write	Long.

Remarks

Set	this	property	to	xlColorIndexAutomatic	to	specify	the	automatic	pattern	for
cells	or	the	automatic	fill	style	for	drawing	objects.	Set	this	property	to
xlColorIndexNone	to	specify	that	you	don't	want	a	pattern	(this	is	the	same	as
setting	the	Pattern	property	of	the	Interior	object	to	xlPatternNone).

Remarks

The	following	illustration	shows	the	color-index	values	in	the	default	color
palette.

Example

This	example	sets	the	color	of	the	interior	pattern	for	rectangle	one	on	Sheet1.

With	Worksheets("Sheet1").Rectangles(1).Interior

				.Pattern	=	xlChecker

				.PatternColorIndex	=	5

End	With

Period	Property
							

Returns	or	sets	the	period	for	the	moving-average	trendline.	Read/write	Long.

Example

This	example	sets	the	period	for	the	moving-average	trendline	on	Chart1.	The
example	should	be	run	on	a	2-D	column	chart	with	a	single	series	that	contains
10	data	points	and	a	moving-average	trendline.

With	Charts("Chart1").SeriesCollection(1).Trendlines(1)

				If	.Type	=	xlMovingAvg	Then	.Period	=	5

End	With

PersonalViewListSettings	Property
							

True	if	filter	and	sort	settings	for	lists	are	included	in	the	user's	personal	view	of
the	shared	workbook.	Read/write	Boolean.

Example

This	example	removes	print	settings	and	filter	and	sort	settings	from	the	user's
personal	view	of	workbook	two.

With	Workbooks(2)

				.PersonalViewListSettings	=	False

				.PersonalViewPrintSettings	=	False

End	With

PersonalViewPrintSettings	Property
							

True	if	print	settings	are	included	in	the	user's	personal	view	of	the	shared
workbook.	Read-write	Boolean.

Example

This	example	removes	print	settings	and	filter	and	sort	settings	from	the	user's
personal	view	of	workbook	two.

With	Workbooks(2)

				.PersonalViewListSettings	=	False

				.PersonalViewPrintSettings	=	False

End	With

Show	All

Perspective	Property
							

Perspective	property	as	it	applies	to	the	ThreeDFormat	object.

Determines	whether	the	extrusion	appears	in	perspective.	Read/write
MsoTriState.

MsoTriState	can	be	one	of	these	MsoTriState	constants.
msoCTrue	Does	not	apply	to	this	property.
msoFalse	The	extrusion	is	a	parallel,	or	orthographic,	projection—that	is,	the
walls	don't	narrow	toward	a	vanishing	point.	
msoTriStateMixed
msoTriStateToggle
msoTrue	The	extrusion	appears	in	perspective—that	is,	the	walls	of	the
extrusion	narrow	toward	a	vanishing	point.	

expression.Perspective

expression			Required.	An	expression	that	returns	a	ThreeDFormat	object.

Perspective	property	as	it	applies	to	the	Chart	object.

Returns	or	sets	the	perspective	for	the	3-D	chart	view.	Must	be	between	0	and
100.	This	property	is	ignored	if	the	RightAngleAxes	property	is	True.
Read/write	Long.

expression.Perspective

expression			Required.	An	expression	that	returns	a	Chart	object.

Example

As	it	applies	to	the	Chart	object.

This	example	sets	the	perspective	of	Chart1	to	70.	The	example	should	be	run	on
a	3-D	chart.

Charts("Chart1").RightAngleAxes	=	False

Charts("Chart1").Perspective	=	70

Phonetic	Property
							

Returns	the	Phonetic	object,	which	contains	information	about	a	specific
phonetic	text	string	in	a	cell.

Remarks

This	property	provides	compatibility	with	earlier	versions	of	Microsoft	Excel.
You	should	use	Phonetics(index),	where	index	is	the	index	number	of	the
phonetic	text,	to	return	a	single	Phonetic	object.

For	information	about	using	phonetic	worksheet	functions	in	Microsoft	Visual
Basic,	see	Using	Microsoft	Excel	Worksheet	Functions	in	Visual	Basic.

Example

This	example	sets	the	first	phonetic	text	string	in	the	active	cell	to	" ".

ActiveCell.Phonetics(1).Text	=	" "

To	demonstrate	compatibility	with	earlier	versions	of	Microsoft	Excel,	this
example	hides	the	Furigana	characters	in	cell	C5.

Range("C5").Phonetic.Visible	=	False

PhoneticCharacters	Property
							

Returns	or	sets	the	phonetic	text	in	the	specified	Characters	object.	Read/write
String.

Remarks

Instead	of	using	this	property,	you	should	use	the	Add	method	of	the	Phonetics
collection	to	add	phonetic	information	to	a	cell,	and	use	the	Text	property	of	the
Phonetic	object	to	return	or	set	the	phonetic	text	strings	in	a	cell.

You	can	use	this	property	only	with	Characters	objects	that	are	based	on	a
single	cell.

Example

This	example	replaces	the	fourth	character	from	the	beginning	of	the	text	in	the
active	cell	with	Furigana	characters.

ActiveCell.Characters(1,3).PhoneticCharacters	=	" "

Phonetics	Property
							

Returns	the	Phonetics	collection	of	the	range.	Read	only	Phonetics.

Example

This	example	displays	all	of	the	Phonetic	objects	in	the	active	cell.

Set	objPhon	=	ActiveCell.Phonetics

With	objPhon

				For	Each	objPhonItem	in	objPhon

								MsgBox	"Phonetic	object:	"	&	.Text

				Next

End	With

PictureFormat	Property
							

Returns	a	PictureFormat	object	that	contains	picture	formatting	properties	for
the	specified	shape.	Applies	to	Shape	or	ShapeRange	objects	that	represent
pictures	or	OLE	objects.	Read-only.

Example

This	example	sets	the	brightness	and	contrast	for	shape	one	on	myDocument.
Shape	one	must	be	a	picture	or	an	OLE	object.

Set	myDocument	=	Worksheets(1)

With	myDocument.Shapes(1).PictureFormat

				.Brightness	=	0.3

				.Contrast	=	.75

End	With

Show	All

PictureType	Property
							

PictureType	property	as	it	applies	to	the	Point	and	Series	objects.

Returns	or	sets	the	way	pictures	are	displayed	on	a	column	or	bar	picture	chart.
Read/write	XlChartPictureType.

XlChartPictureType	can	be	one	of	these	XlChartPictureType	constants.
xlStack
xlStackScale
xlStretch

expression.PictureType

expression			Required.	An	expression	that	returns	one	of	the	above	objects.

	

PictureType	property	as	it	applies	to	the	LegendKey	object.

Returns	or	sets	the	way	pictures	are	displayed	on	a	legend	key.	Read/write	Long.

expression.PictureType

expression			Required.	An	expression	that	returns	one	of	the	above	objects.

	

PictureType	property	as	it	applies	to	the	Floor	and	Walls	objects.

Returns	or	sets	the	way	pictures	are	displayed	on	the	walls	and	faces	of	a	3-D
chart.	Read/write	Variant.

expression.PictureType

expression			Required.	An	expression	that	returns	one	of	the	above	objects.

	

Example

This	example	sets	series	one	in	Chart1	to	stretch	pictures.	The	example	should
be	run	on	a	2-D	column	chart	with	picture	data	markers.

Charts("Chart1").SeriesCollection(1).PictureType	=	xlStretch

PictureUnit	Property
							

Returns	or	sets	the	unit	for	each	picture	on	the	chart	if	the	PictureType	property
is	set	to	xlScale	(if	not,	this	property	is	ignored).	Read/write	Long.

Example

This	example	sets	series	one	in	Chart1	to	stack	pictures	and	uses	each	picture	to
represent	five	units.	The	example	should	be	run	on	a	2-D	column	chart	with
picture	data	markers.

With	Charts("Chart1").SeriesCollection(1)

				.PictureType	=	xlScale

				.PictureUnit	=	5

End	With

Pie3DGroup	Property
							

Returns	a	ChartGroup	object	that	represents	the	pie	chart	group	on	a	3-D	chart.
Read-only.

Example

This	example	sets	the	3-D	pie	group	in	Chart1	to	use	a	different	color	for	each
data	marker.

Charts("Chart1").Pie3DGroup.VaryByCategories	=	True

PivotCell	Property
							

Returns	a	PivotCell	object	that	represents	a	cell	in	a	PivotTable	report.

expression.PivotCell

expression			Required.	An	expression	that	returns	a	Range	object.

Example

This	example	determines	the	name	of	the	PivotTable	the	PivotCell	object	is
located	in	and	notifies	the	user.	The	example	assumes	that	a	PivotTable	exists	on
the	active	worksheet	and	that	cell	A3	is	located	in	the	PivotTable.

Sub	CheckPivotCell()

				'Determine	the	name	of	the	PivotTable	the	PivotCell	is	located	in.

				MsgBox	"Cell	A3	is	located	in	PivotTable:	"	&

								_	Application.Range("A3").PivotCell.Parent

End	Sub

Show	All

PivotCellType	Property
							

Returns	one	of	the	XlPivotCellType	constants	that	identifies	the	PivotTable
entity	the	cell	corresponds	to.	Read-only.

XlPivotCellType	can	be	one	of	these	XlPivotCellType	constants.
xlPivotCellBlankCell		A	structural	blank	cell	in	the	PivotTable.
xlPivotCellCustomSubtotal		A	cell	in	the	row	or	column	area	that	is	a	custom
subtotal.
xlPivotCellDataField		A	data	field	label	(not	the	Data	button).
xlPivotCellDataPivotField		The	Data	button.
xlPivotCellGrandTotal		A	cell	in	a	row	or	column	area	which	is	a	grand	total.
xlPivotCellPageFieldItem		The	cell	that	shows	the	selected	item	of	a	Page
field.
xlPivotCellPivotField		The	button	for	a	field	(not	the	Data	button).
xlPivotCellPivotItem		A	cell	in	the	row	or	column	area	which	is	not	a	subtotal,
grand	total,	custom	subtotal,	or	blank	line.
xlPivotCellSubtotal		A	cell	in	the	row	or	column	area	which	is	a	subtotal.
xlPivotCellValue		Any	cell	in	the	data	area	(except	a	blank	row).

expression.PivotCellType

expression			Required.	An	expression	that	returns	a	PivotCell	object.

Example

This	example	determines	if	cell	A5	in	the	PivotTable	is	a	data	item	and	notifies
the	user.	The	example	assumes	a	PivotTable	exists	on	the	active	worksheet	and
cell	A5	is	contained	in	the	PivotTable.	If	cell	A5	is	not	in	the	PivotTable,	the
example	handles	the	run-time	error.

Sub	CheckPivotCellType()

				On	Error	GoTo	Not_In_PivotTable

				'	Determine	if	cell	A5	is	a	data	item	in	the	PivotTable.

				If	Application.Range("A5").PivotCell.PivotCellType	=	xlPivotCellValue	Then

								MsgBox	"The	cell	at	A5	is	a	data	item."

				Else

								MsgBox	"The	cell	at	A5	is	not	a	data	item."

				End	If

				Exit	Sub

Not_In_PivotTable:

				MsgBox	"The	chosen	cell	is	not	in	a	PivotTable."

End	Sub

PivotField	Property
							

Returns	a	PivotField	object	that	represents	the	PivotTable	field	containing	the
upper-left	corner	of	the	specified	range.

expression.PivotField

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

Example

This	example	displays	the	name	of	the	PivotTable	field	that	contains	the	active
cell.

Worksheets("Sheet1").Activate

MsgBox	"The	active	cell	is	in	the	field	"	&	_

				ActiveCell.PivotField.Name

Show	All

PivotFields	Property
							

Returns	the	PivotFields	collection.	This	collection	contains	all	PivotTable	fields,
including	those	that	aren’t	currently	visible	on-screen.	Read-only	PivotFields
object.

expression.PivotFields

expression			Required.	An	expression	that	returns	a	CubeField	object.

Remarks

For	Online	Analytical	Processing	(OLAP)	data	sources,	there	are	no	hidden
fields,	and	the	object	or	collection	that’s	returned	reflects	what’s	currently
visible.

Example

This	example	creates	a	list	of	all	the	PivotTable	field	names	used	in	the	first
PivotChart	report.

Set	objNewSheet	=	Worksheets.Add

objNewSheet.Activate

intRow	=	1

For	Each	objPF	In	_

				Charts("Chart1").PivotLayout.PivotFields

				objNewSheet.Cells(intRow,	1).Value	=	objPF.Caption

				intRow	=	intRow	+	1

Next	objPF

Show	All

PivotFormulas	Property
							

Returns	a	PivotFormulas	object	that	represents	the	collection	of	formulas	for
the	specified	PivotTable	report.	Read-only.

expression.PivotFormulas

expression			Required.	An	expression	that	returns	a	PivotTable	object.

Remarks

For	OLAP	data	sources,	this	property	returns	an	empty	collection.

Example

This	example	creates	a	list	of	formulas	for	PivotTable	one.

For	Each	pf	in	ActiveSheet.PivotTables(1).PivotFormulas

				r	=	r	+	1

				Cells(r,	1).Value	=	pf.Formula

Next

PivotItem	Property
							

Returns	a	PivotItem	object	that	represents	the	PivotTable	item	containing	the
upper-left	corner	of	the	specified	range.

expression.PivotItem

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

Example

This	example	displays	the	name	of	the	PivotTable	item	that	contains	the	active
cell	on	Sheet1.

Worksheets("Sheet1").Activate

MsgBox	"The	active	cell	is	in	the	item	"	&	_

				ActiveCell.PivotItem.Name

PivotLayout	Property
							

Returns	a	PivotLayout	object	that	represents	the	placement	of	fields	in	a
PivotTable	report	and	the	placement	of	axes	in	a	PivotChart	report.	Read-only.

Remarks

If	the	chart	you	specify	isn’t	a	PivotChart	report,	the	value	of	this	property	is
Nothing.

Example

This	example	creates	a	list	of	all	the	PivotTable	field	names	used	in	the	first
PivotChart	report.

Set	objNewSheet	=	Worksheets.Add

objNewSheet.Activate

intRow	=	1

For	Each	objPF	In	_

				Charts("Chart1").PivotLayout.PivotFields

				objNewSheet.Cells(intRow,	1).Value	=	objPF.Caption

				intRow	=	intRow	+	1

Next	objPF

PivotSelection	Property
							

Returns	or	sets	the	PivotTable	selection	in	standard	PivotTable	report	selection
format.	Read/write	String.

expression.PivotSelection

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

Remarks

Setting	this	property	is	equivalent	to	calling	the	PivotSelect	method	with	the
Mode	argument	set	to	xlDataAndLabel.

Example

This	example	selects	the	data	and	label	for	the	salesperson	named	Bob	in	the
first	PivotTable	report	on	worksheet	one.

Worksheets(1).PivotTables(1).PivotSelection	=	"Salesman[Bob]"

Show	All

PivotSelectionStandard	Property
							

Returns	or	sets	a	String	indicating	the	PivotTable	selection	in	standard
PivotTable	report	format	using	English	(United	States)	settings.	Read/write.

expression.PivotSelectionStandard

expression			Required.	An	expression	that	returns	a	PivotTable	object.

Remarks

The	PivotSelectionStandard	property	is	"international-friendly"	whereas	the
PivotSelection	method	is	not.

Example

This	example	selects	a	field	titled	"1.57"	in	the	PivotTable	and	inserts	a	blank
column	field	before	it.	The	example	assumes	a	PivotTable	exists	on	the	active
worksheet	that	contains	a	column	field	titled	"1.57".

Sub	CheckPivotSelectionStandard()

				Dim	pvtTable	As	PivotTable

				Set	pvtTable	=	ActiveSheet.PivotTables(1)

				pvtTable.PivotSelectionStandard	=	"1.57"

				Selection.Insert

End	Sub

PivotTable	Property
							

Returns	a	PivotTable	object	that	represents	the	PivotTable	report	containing	the
upper-left	corner	of	the	specified	range,	or	the	PivotTable	report	associated	with
the	PivotChart	report.

expression.PivotTable

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

Example

This	example	sets	the	current	page	for	the	PivotTable	report	on	Sheet1	to	the
page	named	"Canada."

Set	pvtTable	=	Worksheets("Sheet1").Range("A3").PivotTable

pvtTable.PivotFields("Country").CurrentPage	=	"Canada"

This	example	determines	the	PivotTable	report	associated	with	the	Sales	chart	on
the	active	worksheet,	and	then	it	sets	the	page	named	"Oregon"	as	the	current
page	for	the	PivotTable	report.

Set	objPT	=	_

				ActiveSheet.Charts("Sales").PivotLayout.PivotTable

objPT.PivotFields("State").CurrentPageName	=	"Oregon"

PivotTableSelection	Property
							

True	if	PivotTable	reports	use	structured	selection.	Read/write	Boolean.

Example

This	example	enables	structured	selection	mode	and	then	sets	the	first	PivotTable
report	on	worksheet	one	to	allow	only	data	to	be	selected.

Application.PivotTableSelection	=	True

Worksheets(1).PivotTables(1).SelectionMode	=	xlDataOnly

PixelsPerInch	Property
							

Returns	or	sets	the	density	(pixels	per	inch)	of	graphics	images	and	table	cells	on
a	Web	page.	The	range	of	settings	is	usually	from	19	to	480,	and	common
settings	for	popular	screen	sizes	are	72,	96,	and	120.	The	default	setting	is	96.
Read/write	Long.

Remarks

This	property	determines	the	size	of	the	images	and	cells	on	the	specified	Web
page	relative	to	the	size	of	text	whenever	you	view	the	saved	document	in	a	Web
browser.	The	physical	dimensions	of	the	resulting	image	or	cell	are	the	result	of
the	original	dimensions	(in	inches)	multiplied	by	the	number	of	pixels	per	inch.

You	use	the	ScreenSize	property	to	set	the	optimum	screen	size	for	the	targeted
Web	browsers.

Example

This	example	sets	the	pixel	density	depending	on	the	target	screen	size	of	the
browser.	For	800x600	pixel	screens,	the	density	is	72	pixels	per	inch.	For
1024x768	pixel	screens,	the	density	is	96	pixels	per	inch.	For	all	other	cases,	use
a	density	of	120	pixels	per	inch.

With	Application.DefaultWebOptions

				Select	Case	.ScreenSize

								Case	msoScreenSize800x600

												.PixelsPerInch	=	72

								Case	msoScreenSize1024x768

												.PixelsPerInch	=	96

								Case	Else

												.PixelsPerInch	=	120

				End	Select

End	With

Show	All

Placement	Property
							

Placement	property	as	it	applies	to	the	Shape	object.

Returns	or	sets	the	way	the	object	is	attached	to	the	cells	below	it.	Read/write
XlPlacement.

XlPlacement	can	be	one	of	these	XlPlacement	constants.
xlFreeFloating
xlMove
xlMoveAndSize

expression.Placement

expression			Required.	An	expression	that	returns	one	of	the	above	objects.

	

Placement	property	as	it	applies	to	the	ChartObject,	ChartObjects,
OLEObject,	and	OLEObjects	objects.

Returns	or	sets	the	way	the	object	is	attached	to	the	cells	below	it.	Read/write
Variant.

expression.Placement

expression			Required.	An	expression	that	returns	one	of	the	above	objects.

	

Example

This	example	sets	embedded	chart	one	on	Sheet1	to	be	free-floating	(it	neither
moves	nor	is	sized	with	its	underlying	cells).

Worksheets("Sheet1").ChartObjects(1).Placement	=	xlFreeFloating

PlotArea	Property
							

Returns	a	PlotArea	object	that	represents	the	plot	area	of	a	chart.	Read-only.

Example

This	example	sets	the	color	of	the	plot	area	interior	of	Chart1	to	cyan.

Charts("Chart1").PlotArea.Interior.ColorIndex	=	8

PlotBy	Property
							

Returns	or	sets	the	way	columns	or	rows	are	used	as	data	series	on	the	chart.	Can
be	one	of	the	following	XlRowCol	constants:	xlColumns	or	xlRows.	Read/write
Long.	For	PivotChart	reports,	this	property	is	read-only	and	always	returns
xlColumns.

Example

This	example	causes	the	embedded	chart	to	plot	data	by	columns.

Worksheets(1).ChartObjects(1).Chart.PlotBy	=	xlColumns

PlotOrder	Property
							

Returns	or	sets	the	plot	order	for	the	selected	series	within	the	chart	group.
Read/write	Long.

Remarks

You	can	set	plot	order	only	within	a	chart	group	(you	cannot	set	the	plot	order
for	the	entire	chart	if	you	have	more	than	one	chart	type).	A	chart	group	is	a
collection	of	series	with	the	same	chart	type.

Changing	the	plot	order	of	one	series	will	cause	the	plot	orders	of	the	other
series	in	the	chart	group	to	be	adjusted,	as	necessary.

Example

This	example	makes	series	two	in	Chart1	appear	third	in	the	plot	order.	The
example	should	be	run	on	a	2-D	column	chart	that	contains	three	or	more	series.

Charts("Chart1").ChartGroups(1).SeriesCollection(2).PlotOrder	=	3

PlotVisibleOnly	Property
							

True	if	only	visible	cells	are	plotted.	False	if	both	visible	and	hidden	cells	are
plotted.	Read/write	Boolean.

Example

This	example	causes	Microsoft	Excel	to	plot	only	visible	cells	in	Chart1.

Charts("Chart1").PlotVisibleOnly	=	True

Show	All

Points	Property
							

Returns	the	position	of	the	specified	node	as	a	coordinate	pair.	Each	coordinate
is	expressed	in	points.	Read-only	Variant.

Remarks

This	property	is	read-only.	Use	the	SetPosition	method	to	set	the	value	of	this
property.

Example

This	example	moves	node	two	in	shape	three	on	myDocument	to	the	right	200
points	and	down	300	points.	Shape	three	must	be	a	freeform	drawing.

Set	myDocument	=	Worksheets(1)

With	myDocument.Shapes(3).Nodes

				pointsArray	=	.Item(2).Points

				currXvalue	=	pointsArray(1,	1)

				currYvalue	=	pointsArray(1,	2)

				.SetPosition	2,	currXvalue	+	200,	currYvalue	+	300

End	With

Show	All

Position	Property
							

Position	property	as	it	applies	to	the	DataLabel	and	DataLabels	objects.

Returns	or	sets	the	position	of	the	data	label.			Read/write	XlDataLabelPosition.

XlDataLabelPosition	can	be	one	of	these	XlDataLabelPosition	constants.
xlLabelPositionAbove
xlLabelPositionBestFit
xlLabelPositionCustom
xlLabelPositionInsideEnd
xlLabelPositionMixed
xlLabelPositionRight
xlLabelPositionBelow
xlLabelPositionCenter
xlLabelPositionInsideBase
xlLabelPositionLeft
xlLabelPositionOutsideEnd

expression.Position

expression			Required.	An	expression	that	returns	one	of	the	above	objects.

	

Position	property	as	it	applies	to	the	Legend	object.

Returns	or	sets	the	position	of	the	legend	on	the	chart.	Read/write
XlLegendPosition.

XlLegendPosition	can	be	one	of	these	XlLegendPosition	constants.
xlLegendPositionCorner
xlLegendPositionRight

xlLegendPositionTop
xlLegendPositionBottom
xlLegendPositionLeft

expression.Position

expression			Required.	An	expression	that	returns	one	of	the	above	objects.

	

Position	property	as	it	applies	to	the	CubeField	and	PivotItem	objects.

Position	of	the	item	in	its	field,	if	the	item	is	currently	showing.	For	a
CubeFields	collection,	this	is	the	position	of	the	hierarchy	field	on	the
PivotTable	report	when	it’s	dragged	from	the	field	well.	Read/write	Long.

expression.Position

expression			Required.	An	expression	that	returns	one	of	the	above	objects.

	

Position	property	as	it	applies	to	the	PivotField	object.

Position	of	the	field	(first,	second,	third,	and	so	on)	among	all	the	fields	in	its
orientation	(Rows,	Columns,	Pages,	Data).	Read/write	Variant.

expression.Position

expression			Required.	An	expression	that	returns	one	of	the	above	objects.

	

Example

This	example	moves	the	chart	legend	to	the	bottom	of	the	chart.

Charts(1).Legend.Position	=	xlLegendPositionBottom

This	example	displays	the	position	number	of	the	PivotTable	item	that	contains
the	active	cell.

Worksheets("Sheet1").Activate

MsgBox	"The	active	item	is	in	position	number	"	&	_

				ActiveCell.PivotItem.Position

PostText	Property
							

Some	of	the	content	in	this	topic	may	not	be	applicable	to	some	languages.

Returns	or	sets	the	string	used	with	the	post	method	of	inputting	data	into	a	Web
server	to	return	data	from	a	Web	query.	Read/write	String.

Remarks

Microsoft	Excel	includes	sample	Web	queries	that	you	can	modify	by	changing
the	HTML	code	by	using	WordPad	or	another	text	editor.	You	can	find	these
samples	in	the	Queries	folder	where	you	installed	Microsoft	Office.

Precedents	Property
							

Returns	a	Range	object	that	represents	all	the	precedents	of	a	cell.	This	can	be	a
multiple	selection	(a	union	of	Range	objects)	if	there's	more	than	one	precedent.
Read-only.

Example

This	example	selects	the	precedents	of	cell	A1	on	Sheet1.

Worksheets("Sheet1").Activate

Range("A1").Precedents.Select

PrecisionAsDisplayed	Property
							

True	if	calculations	in	this	workbook	will	be	done	using	only	the	precision	of
the	numbers	as	they’re	displayed.	Read/write	Boolean.

Example

This	example	causes	calculations	in	the	active	workbook	to	use	only	the
precision	of	the	numbers	as	they’re	displayed.

ActiveWorkbook.PrecisionAsDisplayed	=	True

PrefixCharacter	Property
							

Returns	the	prefix	character	for	the	cell.	Read-only	Variant.

Remarks

If	the	TransitionNavigKeys	property	is	False,	this	prefix	character	will	be	'	for	a
text	label,	or	blank.	If	the	TransitionNavigKeys	property	is	True,	this	character
will	be	'	for	a	left-justified	label,	"	for	a	right-justified	label,	^	for	a	centered
label,	\	for	a	repeated	label,	or	blank.

Example

This	example	displays	the	prefix	character	for	cell	A1	on	Sheet1.

MsgBox	"The	prefix	character	is	"	&	_

				Worksheets("Sheet1").Range("A1").PrefixCharacter

PreserveColumnInfo	Property
							

True	if	column	sorting,	filtering,	and	layout	information	is	preserved	whenever	a
query	table	is	refreshed.	The	default	value	is	False.	Read/write	Boolean.

Remarks

This	property	has	an	effect	only	when	the	query	table	is	using	a	database
connection.

You	can	set	this	property	to	False	for	compatibility	with	earlier	versions	of
Microsoft	Excel.

Example

This	example	preserves	column	sorting,	filtering,	and	layout	information	for
compatibility	with	earlier	versions	of	Microsoft	Excel.

Dim	cnnConnect	As	ADODB.Connection

Dim	rstRecordset	As	ADODB.Recordset

Set	cnnConnect	=	New	ADODB.Connection

cnnConnect.Open	"Provider=SQLOLEDB;"	&	_

				"Data	Source=srvdata;"	&	_

				"User	ID=wadet;Password=4me2no;"

Set	rstRecordset	=	New	ADODB.Recordset

rstRecordset.Open	_

				Source:="Select	Name,	Quantity,	Price	From	Products",	_

				ActiveConnection:=cnnConnect,	_

				CursorType:=adOpenDynamic,	_

				LockType:=adLockReadOnly,	_

				Options:=adCmdText

With	ActiveSheet.QueryTables.Add(_

								Connection:=rstRecordset,	_

								Destination:=Range("A1"))

				.Name	=	"Contact	List"

				.FieldNames	=	True

				.RowNumbers	=	False

				.FillAdjacentFormulas	=	False

				.PreserveFormatting	=	True

				.RefreshOnFileOpen	=	False

				.BackgroundQuery	=	True

				.RefreshStyle	=	xlInsertDeleteCells

				.SavePassword	=	True

				.SaveData	=	True

				.AdjustColumnWidth	=	True

				.RefreshPeriod	=	0

				.PreserveColumnInfo	=	True

				.Refresh	BackgroundQuery:=False

End	With

PreserveFormatting	Property
							

For	PivotTable	reports,	this	property	is	True	if	formatting	is	preserved	when	the
report	is	refreshed	or	recalculated	by	operations	such	as	pivoting,	sorting,	or
changing	page	field	items.

For	query	tables,	this	property	is	True	if	any	formatting	common	to	the	first	five
rows	of	data	are	applied	to	new	rows	of	data	in	the	query	table.	Unused	cells
aren’t	formatted.	The	property	is	False	if	the	last	AutoFormat	applied	to	the
query	table	is	applied	to	new	rows	of	data.	The	default	value	is	True	(unless	the
query	table	was	created	in	Microsoft	Excel	97	and	the	HasAutoFormat	property
is	True,	in	which	case	PreserveFormatting	is	False).

Read/write	Boolean.

Remarks

For	database	query	tables,	the	default	formatting	setting	is	xlSimple.

The	new	AutoFormat	style	is	applied	to	the	query	table	when	the	table	is
refreshed.	The	AutoFormat	is	reset	to	None	whenever	PreserveFormatting	is
set	to	False.	As	a	result,	any	AutoFormat	that’s	set	before	PreserveFormatting
is	set	to	False	and	before	the	query	table	is	refreshed	doesn’t	take	effect,	and	the
resulting	query	table	has	no	formatting	applied	to	it.

Example

This	example	preserves	the	formatting	of	the	first	PivotTable	report	on
worksheet	one.

Worksheets(1).PivotTables("Pivot1").PreserveFormatting	=	True

This	example	demonstrates	how	setting	PreserveFormatting	to	False	causes	the
AutoFormat	to	be	set	to	xlRangeAutoFormatNone	instead	of	the	specified
xlRangeAutoFormatColor1	format.

With	Workbooks(1).Worksheets(1).QueryTables(1)

				.Range.AutoFormat	=	xlRangeAutoFormatColor1

				.PreserveFormatting	=	False

				.Refresh

End	With

PresetExtrusionDirection	Property
							

Returns	the	direction	that	the	extrusion's	sweep	path	takes	away	from	the
extruded	shape	(the	front	face	of	the	extrusion).	Read-only
MsoPresetExtrusionDirection.

MsoPresetExtrusionDirection	can	be	one	of	these	MsoPresetExtrusionDirection
constants.
msoExtrusionTop
msoExtrusionTopRight
msoExtrusionBottom
msoExtrusionBottomLeft
msoExtrusionBottomRight
msoExtrusionLeft
msoExtrusionNone
msoExtrusionRight
msoExtrusionTopLeft
msoPresetExtrusionDirectionMixed

expression.PresetExtrusionDirection

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

Remarks

This	property	is	read-only.	To	set	the	value	of	this	property,	use	the
SetExtrusionDirection	method.

Example

This	example	changes	each	extrusion	on	myDocument	that	extends	toward	the
upper-left	corner	of	the	extrusion’s	front	face	to	an	extrusion	that	extends	toward
the	lower-right	corner	of	the	front	face.

Set	myDocument	=	Worksheets(1)

For	Each	s	In	myDocument.Shapes

				With	s.ThreeD

								If	.PresetExtrusionDirection	=	msoExtrusionTopLeft	Then

												.SetExtrusionDirection	msoExtrusionBottomRight

								End	If

				End	With

Next

PresetGradientType	Property
							

Returns	the	preset	gradient	type	for	the	specified	fill.	Read-only
MsoPresetGradientType.

MsoPresetGradientType	can	be	one	of	these	MsoPresetGradientType	constants.
msoGradientBrass
msoGradientChrome
msoGradientDaybreak
msoGradientEarlySunset
msoGradientFog
msoGradientGoldII
msoGradientLateSunset
msoGradientMoss
msoGradientOcean
msoGradientPeacock
msoGradientRainbowII
msoGradientSilver
msoGradientWheat
msoPresetGradientMixed
msoGradientCalmWater
msoGradientChromeII
msoGradientDesert
msoGradientFire
msoGradientGold
msoGradientHorizon
msoGradientMahogany
msoGradientNightfall
msoGradientParchment
msoGradientRainbow

msoGradientSapphire

expression.PresetGradientType

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

Use	the	PresetGradient	method	to	set	the	preset	gradient	type	for	the	fill.

Example

This	example	sets	the	fill	format	for	chart	two	to	the	same	style	used	for	chart
one.

Set	c1f	=	Charts(1).ChartArea.Fill

If	c1f.Type	=	msoFillGradient	Then

				With	Charts(2).ChartArea.Fill

								.Visible	=	True

								.PresetGradient	c1f.GradientStyle,	_

												c1f.GradientVariant,	c1f.PresetGradientType

				End	With

End	If

PresetLightingDirection	Property
							

Returns	or	sets	the	position	of	the	light	source	relative	to	the	extrusion.
Read/write	MsoPresetLightingDirection.

MsoPresetLightingDirection	can	be	one	of	these	MsoPresetLightingDirection
constants.
msoLightingBottom
msoLightingBottomLeft
msoLightingBottomRight
msoLightingLeft
msoLightingNone
msoLightingRight
msoLightingTop
msoLightingTopLeft
msoLightingTopRight
msoPresetLightingDirectionMixed

expression.PresetLightingDirection

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

Note			You	won't	see	the	lighting	effects	you	set	if	the	extrusion	has	a	wire	frame
surface.

Example

This	example	specifies	that	the	extrusion	for	shape	one	on	myDocument	extend
toward	the	top	of	the	shape	and	that	the	lighting	for	the	extrusion	come	from	the
left.

Set	myDocument	=	Worksheets(1)

With	myDocument.Shapes(1).ThreeD

				.Visible	=	True

				.SetExtrusionDirection	msoExtrusionTop

				.PresetLightingDirection	=	msoLightingLeft

End	With

PresetLightingSoftness	Property
							

Returns	or	sets	the	intensity	of	the	extrusion	lighting.	Read/write
MsoPresetLightingSoftness.

MsoPresetLightingSoftness	can	be	one	of	these	MsoPresetLightingSoftness
constants.
msoLightingBright
msoLightingDim
msoLightingNormal
msoPresetLightingSoftnessMixed

expression.PresetLightingSoftness

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

Example

This	example	specifies	that	the	extrusion	for	shape	one	on	myDocument	be	lit
brightly	from	the	left.

Set	myDocument	=	Worksheets(1)

With	myDocument.Shapes(1).ThreeD

				.Visible	=	True

				.PresetLightingSoftness	=	msoLightingBright

				.PresetLightingDirection	=	msoLightingLeft

End	With

PresetMaterial	Property
							

Returns	or	sets	the	extrusion	surface	material.	Read/write	MsoPresetMaterial.

MsoPresetMaterial	can	be	one	of	these	MsoPresetMaterial	constants.
msoMaterialMatte
msoMaterialMetal
msoMaterialPlastic
msoMaterialWireFrame
msoPresetMaterialMixed

expression.PresetMaterial

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

Example

This	example	specifies	that	the	extrusion	surface	for	shape	one	in	myDocument	be
wire	frame.

Set	myDocument	=	Worksheets(1)

With	myDocument.Shapes(1).ThreeD

				.Visible	=	True

				.PresetMaterial	=	msoMaterialWireFrame

End	With

PresetShape	Property
							

Returns	or	sets	the	shape	of	the	specified	WordArt.		Read/write
MsoPresetTextEffectShape.

MsoPresetTextEffectShape	can	be	one	of	these	MsoPresetTextEffectShape
constants.
msoTextEffectShapeArchDownCurve
msoTextEffectShapeArchDownPour
msoTextEffectShapeArchUpCurve
msoTextEffectShapeArchUpPour
msoTextEffectShapeButtonCurve
msoTextEffectShapeButtonPour
msoTextEffectShapeCanDown
msoTextEffectShapeCanUp
msoTextEffectShapeCascadeDown
msoTextEffectShapeCascadeUp
msoTextEffectShapeChevronDown
msoTextEffectShapeChevronUp
msoTextEffectShapeCircleCurve
msoTextEffectShapeCirclePour
msoTextEffectShapeCurveDown
msoTextEffectShapeCurveUp
msoTextEffectShapeDeflate
msoTextEffectShapeDeflateBottom
msoTextEffectShapeDeflateInflateDeflate
msoTextEffectShapeDoubleWave1
msoTextEffectShapeFadeDown
msoTextEffectShapeFadeRight
msoTextEffectShapeInflate

msoTextEffectShapeInflateTop
msoTextEffectShapePlainText
msoTextEffectShapeRingOutside
msoTextEffectShapeSlantUp
msoTextEffectShapeTriangleDown
msoTextEffectShapeWave1
msoTextEffectShapeDeflateInflate
msoTextEffectShapeDeflateTop
msoTextEffectShapeDoubleWave2
msoTextEffectShapeFadeLeft
msoTextEffectShapeFadeUp
msoTextEffectShapeInflateBottom
msoTextEffectShapeMixed
msoTextEffectShapeRingInside
msoTextEffectShapeSlantDown
msoTextEffectShapeStop
msoTextEffectShapeTriangleUp
msoTextEffectShapeWave2

expression.PresetShape

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

Remarks

Setting	the	PresetTextEffect	property	automatically	sets	the	PresetShape
property.

Example

This	example	sets	the	shape	of	all	WordArt	on	myDocument	to	a	chevron	whose
center	points	down.

Set	myDocument	=	Worksheets(1)

For	Each	s	In	myDocument.Shapes

				If	s.Type	=	msoTextEffect	Then

								s.TextEffect.PresetShape	=	msoTextEffectShapeChevronDown

				End	If

Next

PresetTextEffect	Property
							

Returns	or	sets	the	style	of	the	specified	WordArt.	The	values	for	this	property
correspond	to	the	formats	in	the	WordArt	Gallery	dialog	box	(numbered	from
left	to	right,	top	to	bottom).	Read/write	MsoPresetTextEffect.

MsoPresetTextEffect	can	be	one	of	these	MsoPresetTextEffect	constants.
msoTextEffect1
msoTextEffect10
msoTextEffect11
msoTextEffect12
msoTextEffect13
msoTextEffect14
msoTextEffect15
msoTextEffect16
msoTextEffect17
msoTextEffect18
msoTextEffect19
msoTextEffect2
msoTextEffect20
msoTextEffect21
msoTextEffect22
msoTextEffect23
msoTextEffect24
msoTextEffect25
msoTextEffect26
msoTextEffect27
msoTextEffect28
msoTextEffect29
msoTextEffect3

msoTextEffect30
msoTextEffect4
msoTextEffect5
msoTextEffect6
msoTextEffect7
msoTextEffect8
msoTextEffect9
msoTextEffectMixed

expression.PresetTextEffect

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

Remarks

Setting	the	PresetTextEffect	property	automatically	sets	many	other	formatting
properties	of	the	specified	shape.

Example

This	example	sets	the	style	for	all	WordArt	on	myDocument	to	the	first	style	listed
in	the	WordArt	Gallery	dialog	box.

Set	myDocument	=	Worksheets(1)

For	Each	s	In	myDocument.Shapes

				If	s.Type	=	msoTextEffect	Then

								s.TextEffect.PresetTextEffect	=	msoTextEffect1

				End	If

Next

PresetTexture	Property
							

Returns	the	preset	texture	for	the	specified	fill.		Read-only	MsoPresetTexture.

MsoPresetTexture	can	be	one	of	these	MsoPresetTexture	constants.
msoPresetTextureMixed
msoTextureBouquet
msoTextureCanvas
msoTextureDenim
msoTextureGranite
msoTextureMediumWood
msoTextureOak
msoTexturePapyrus
msoTexturePinkTissuePaper
msoTextureRecycledPaper
msoTextureStationery
msoTextureWaterDroplets
msoTextureWovenMat
msoTextureBlueTissuePaper
msoTextureBrownMarble
msoTextureCork
msoTextureFishFossil
msoTextureGreenMarble
msoTextureNewsprint
msoTexturePaperBag
msoTextureParchment
msoTexturePurpleMesh
msoTextureSand
msoTextureWalnut
msoTextureWhiteMarble

expression.PresetTexture

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

Use	the	PresetTextured	method	to	set	the	preset	texture	for	the	fill.

Example

This	example	sets	the	fill	format	for	chart	two	to	the	same	style	used	for	chart
one.

Set	c1f	=	Charts(1).ChartArea.Fill

If	c1f.Type	=	msoFillTextured	Then

				With	Charts(2).ChartArea.Fill

								.Visible	=	True

								If	c1f.TextureType	=	msoTexturePreset	Then

												.PresetTextured	c1f.PresetTexture

								Else

												.UserTextured	c1f.TextureName

								End	If

				End	With

End	If

PresetThreeDFormat	Property
							

Returns	the	preset	extrusion	format.	Each	preset	extrusion	format	contains	a	set
of	preset	values	for	the	various	properties	of	the	extrusion.	If	the	extrusion	has	a
custom	format	rather	than	a	preset	format,	this	property	returns
msoPresetThreeDFormatMixed.	The	values	for	this	property	correspond	to	the
options	(numbered	from	left	to	right,	top	to	bottom)	displayed	when	you	click
the	3-D	button	on	the	Drawing	toolbar.	Read-only	MsoPresetThreeDFormat.

MsoPresetThreeDFormat	can	be	one	of	these	MsoPresetThreeDFormat
constants.
msoThreeD1
msoThreeD11
msoThreeD13
msoThreeD15
msoThreeD17
msoThreeD19
msoThreeD20
msoThreeD4
msoThreeD6
msoThreeD8
msoPresetThreeDFormatMixed
msoThreeD10
msoThreeD12
msoThreeD14
msoThreeD16
msoThreeD18
msoThreeD2
msoThreeD3
msoThreeD5
msoThreeD7

msoThreeD9

expression.PresetThreeDFormat

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

Remarks

This	property	is	read-only.	To	set	the	preset	extrusion	format,	use	the
SetThreeDFormat	method.

Example

This	example	sets	the	extrusion	format	for	shape	one	on	myDocument	to	3D	Style
12	if	the	shape	initially	has	a	custom	extrusion	format.

Set	myDocument	=	Worksheets(1)

With	myDocument.Shapes(1).ThreeD

				If	.PresetThreeDFormat	=	msoPresetThreeDFormatMixed	Then

								.SetThreeDFormat	msoThreeD12

				End	If

End	With

Previous	Property
							

Returns	a	Chart,	Range,	or	Worksheet	object	that	represents	the	previous	sheet
or	cell.	Read-only.

Remarks

If	the	object	is	a	range,	this	property	emulates	pressing	SHIFT+TAB;	unlike	the
key	combination,	however,	the	property	returns	the	previous	cell	without
selecting	it.

On	a	protected	sheet,	this	property	returns	the	previous	unlocked	cell.	On	an
unprotected	sheet,	this	property	always	returns	the	cell	immediately	to	the	left	of
the	specified	cell.

Example

This	example	selects	the	previous	unlocked	cell	on	Sheet1.	If	Sheet1	is
unprotected,	this	is	the	cell	immediately	to	the	left	of	the	active	cell.

Worksheets("Sheet1").Activate

ActiveCell.Previous.Select

PreviousSelections	Property
							

Returns	an	array	of	the	last	four	ranges	or	names	selected.	Each	element	in	the
array	is	a	Range	object.	Read-only	Variant.

expression.PreviousSelections(Index)

expression			Optional.	An	expression	that	returns	an	Application	object.

Index			Optional	Variant.	The	index	number	(from	1	to	4)	of	the	previous	range
or	name.

Remarks

Each	time	you	go	to	a	range	or	cell	by	using	the	Name	box	or	the	Go	To
command	(Edit	menu),	or	each	time	a	macro	calls	the	Goto	method,	the
previous	range	is	added	to	this	array	as	element	number	1,	and	the	other	items	in
the	array	are	moved	down.

Example

This	example	displays	the	cell	addresses	of	all	items	in	the	array	of	previous
selections.	If	there	are	no	previous	selections,	the	LBound	function	returns	an
error.	This	error	is	trapped,	and	a	message	box	appears.

On	Error	GoTo	noSelections

For	i	=	LBound(Application.PreviousSelections)	To	_

												UBound(Application.PreviousSelections)

				MsgBox	Application.PreviousSelections(i).Address

Next	i

Exit	Sub

On	Error	GoTo	0

noSelections:

				MsgBox	"There	are	no	previous	selections"

PrintArea	Property
							

Returns	or	sets	the	range	to	be	printed,	as	a	string	using	A1-style	references	in
the	language	of	the	macro.	Read/write	String.

Remarks

Set	this	property	to	False	or	to	the	empty	string	("")	to	set	the	print	area	to	the
entire	sheet.

This	property	applies	only	to	worksheet	pages.

Example

This	example	sets	the	print	area	to	cells	A1:C5	on	Sheet1.

Worksheets("Sheet1").PageSetup.PrintArea	=	"A1:C5"

This	example	sets	the	print	area	to	the	current	region	on	Sheet1.	Note	that	you
use	the	Address	property	to	return	an	A1-style	address.

Worksheets("Sheet1").Activate

ActiveSheet.PageSetup.PrintArea	=	_

				ActiveCell.CurrentRegion.Address

PrintComments	Property
							

Returns	or	sets	the	way	comments	are	printed	with	the	sheet.	Read/write
XlPrintLocation.

XlPrintLocation	can	be	one	of	these	XlPrintLocation	constants.
xlPrintInPlace
xlPrintNoComments
xlPrintSheetEnd

expression.PrintComments

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

Example

This	example	causes	comments	to	be	printed	as	end	notes	when	worksheet	one	is
printed.

Worksheets(1).PageSetup.PrintComments	=	xlPrintSheetEnd

Show	All

PrintErrors	Property
							

Sets	or	returns	an	XlPrintErrors	contstant	specifying	the	type	of	print	error
displayed.	This	feature	allows	users	to	suppress	the	display	of	error	values	when
printing	a	worksheet.	Read/write	.

XlPrintErrors	can	be	one	of	these	XlPrintErrors	constants.
xlPrintErrorsBlank
xlPrintErrorsDash
xlPrintErrorsDisplayed
xlPrintErrorsNA

expression.PrintErrors

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

Example

In	this	example,	Microsoft	Excel	uses	a	formula	that	returns	an	error	in	the
active	worksheet.	The	PrintErrors	property	is	set	to	display	dashes.	A	Print
Preview	window	displays	the	dashes	for	the	print	error.	This	example	assumes	a
printer	driver	has	been	installed.

Sub	UsePrintErrors()

				Dim	wksOne	As	Worksheet

				Set	wksOne	=	Application.ActiveSheet

				'	Create	a	formula	that	returns	an	error	value.

				Range("A1").Value	=	1

				Range("A2").Value	=	0

				Range("A3").Formula	=	"=A1/A2"

				'	Change	print	errors	to	display	dashes.

				wksOne.PageSetup.PrintErrors	=	xlPrintErrorsDash

				'	Use	the	Print	Preview	window	to	see	the	dashes	used	for	print	errors.

				ActiveWindow.SelectedSheets.PrintPreview

End	Sub

PrintGridlines	Property
							

True	if	cell	gridlines	are	printed	on	the	page.	Applies	only	to	worksheets.
Read/write	Boolean.

Example

This	example	prints	cell	gridlines	when	Sheet1	is	printed.

Worksheets("Sheet1").PageSetup.PrintGridlines	=	True

PrintHeadings	Property
							

True	if	row	and	column	headings	are	printed	with	this	page.	Applies	only	to
worksheets.	Read/write	Boolean.

Remarks

The	DisplayHeadings	property	controls	the	on-screen	display	of	headings.

Example

This	example	turns	off	the	printing	of	headings	for	Sheet1.

Worksheets("Sheet1").PageSetup.PrintHeadings	=	False

PrintNotes	Property
							

True	if	cell	notes	are	printed	as	end	notes	with	the	sheet.	Applies	only	to
worksheets.	Read/write	Boolean.

Remarks

Use	the	PrintComments	property	to	print	comments	as	text	boxes	or	end	notes.

Example

This	example	turns	off	the	printing	of	notes.

Worksheets("Sheet1").PageSetup.PrintNotes	=	False

PrintObject	Property
							

True	if	the	object	will	be	printed	when	the	document	is	printed.	Read/write
Boolean.

Example

This	example	sets	embedded	chart	one	on	Sheet1	to	be	printed	with	the
worksheet.

Worksheets("Sheet1").ChartObjects(1).PrintObject	=	True

PrintQuality	Property
							

Returns	or	sets	the	print	quality.	Read/write	Variant.

expression.PrintQuality(Index)

expression			Required.	An	expression	that	returns	a	PageSetup	object.

Index		Optional	Variant.	Horizontal	print	quality	(1)	or	vertical	print	quality	(2).
Some	printers	may	not	support	vertical	print	quality.	If	you	don’t	specify	this
argument,	the	PrintQuality	property	returns	(or	can	be	set	to)	a	two-element
array	that	contains	both	horizontal	and	vertical	print	quality.

Example

This	example	sets	the	print	quality	on	a	printer	with	non-square	pixels.	The	array
specifies	both	horizontal	and	vertical	print	quality.	This	example	may	cause	an
error,	depending	on	the	printer	driver	you’re	using.

Worksheets("Sheet1").PageSetup.PrintQuality	=	Array(240,	140)

This	example	displays	the	current	setting	for	horizontal	print	quality.

MsgBox	"Horizontal	Print	Quality	is	"	&	_

				Worksheets("Sheet1").PageSetup.PrintQuality(1)

PrintSettings	Property
							

True	if	print	settings	are	included	in	the	custom	view.	Read-only	Boolean.

Example

This	example	creates	a	list	of	the	custom	views	in	the	active	workbook	and	their
print	settings	and	row	and	column	settings.

With	Worksheets(1)

				.Cells(1,1).Value	=	"Name"

				.Cells(1,2).Value	=	"Print	Settings"

				.Cells(1,3).Value	=	"RowColSettings"

				rw	=	0

				For	Each	v	In	ActiveWorkbook.CustomViews

								rw	=	rw	+	1

								.Cells(rw,	1).Value	=	v.Name

								.Cells(rw,	2).Value	=	v.PrintSettings

								.Cells(rw,	3).Value	=	v.RowColSettings

				Next

End	With

PrintTitleColumns	Property
							

Returns	or	sets	the	columns	that	contain	the	cells	to	be	repeated	on	the	left	side
of	each	page,	as	a	string	in	A1-style	notation	in	the	language	of	the	macro.
Read/write	String.

Remarks

If	you	specify	only	part	of	a	column	or	columns,	Microsoft	Excel	expands	the
range	to	full	columns.

Set	this	property	to	False	or	to	the	empty	string	("")	to	turn	off	title	columns.

This	property	applies	only	to	worksheet	pages.

Example

This	example	defines	row	three	as	the	title	row,	and	it	defines	columns	one
through	three	as	the	title	columns.

Worksheets("Sheet1").Activate

ActiveSheet.PageSetup.PrintTitleRows	=	ActiveSheet.Rows(3).Address

ActiveSheet.PageSetup.PrintTitleColumns	=	_

								ActiveSheet.Columns("A:C").Address

PrintTitleRows	Property
							

Returns	or	sets	the	rows	that	contain	the	cells	to	be	repeated	at	the	top	of	each
page,	as	a	string	in	A1-style	notation	in	the	language	of	the	macro.	Read/write
String.

Remarks

If	you	specify	only	part	of	a	row	or	rows,	Microsoft	Excel	expands	the	range	to
full	rows.

Set	this	property	to	False	or	to	the	empty	string	("")	to	turn	off	title	rows.

This	property	applies	only	to	worksheet	pages.

Example

This	example	defines	row	three	as	the	title	row,	and	it	defines	columns	one
through	three	as	the	title	columns.

Worksheets("Sheet1").Activate

ActiveSheet.PageSetup.PrintTitleRows	=	ActiveSheet.Rows(3).Address

ActiveSheet.PageSetup.PrintTitleColumns	=	_

								ActiveSheet.Columns("A:C").Address

PrintTitles	Property
							

True	if	the	print	titles	for	the	worksheet	are	set	based	on	the	PivotTable	report.
The	row	print	titles	are	set	to	the	rows	that	contain	the	PivotTable	report’s
column	field	items.	The	column	print	titles	are	set	to	the	columns	that	contain
the	row	items.	False	if	the	print	titles	for	the	worksheet	are	used.	The	default
value	is	False.	Read/write	Boolean.

Remarks

The	PivotTable	report	must	be	the	only	one	in	the	print	area.	To	set	an	indented
format	for	a	PivotTable	report,	use	the	Format	method.

Example

This	example	specifies	that	the	print	title	set	for	the	worksheet	is	printed	when
the	fourth	PivotTable	report	on	the	active	worksheet	is	printed.

ActiveSheet.PivotTables("PivotTable4").PrintTitles	=	True

ProductCode	Property
							

Returns	the	globally	unique	identifier	(GUID)	for	Microsoft	Excel.	Read-only
String.

Example

This	example	displays	the	globally	unique	identifier	(GUID)	for	Microsoft
Excel.

MsgBox	Application.ProductCode

ProgId	Property
							

Returns	the	programmatic	identifiers	for	the	object.	Read-only	String.

expression.ProgId

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

Remarks

For	more	information	about	programmatic	identifiers,	see	OLE	Programmatic
Identifiers.

Example

This	example	creates	a	list	of	the	programmatic	identifiers	for	the	OLE	objects
on	worksheet	one.

rw	=	0

For	Each	o	in	Worksheets(1).OLEObjects

				With	Worksheets(2)

								rw	=	rw	+	1

								.cells(rw,	1).Value	=	o.ProgId

				End	With

Next

PromptForSummaryInfo	Property
							

True	if	Microsoft	Excel	asks	for	summary	information	when	files	are	first	saved.
Read/write	Boolean.

Example

This	example	displays	a	prompt	that	asks	for	summary	information	when	files
are	first	saved.

Application.PromptForSummaryInfo	=	True

PromptString	Property
							

Returns	the	phrase	that	prompts	the	user	for	a	parameter	value	in	a	parameter
query.	Read-only	String.

Example

This	example	modifies	the	parameter	prompt	string	for	query	table	one.

With	Worksheets(1).QueryTables(1).Parameters(1)

				.SetParam	xlPrompt,	"Please	"	&	.PromptString

End	With

Properties	Property
							

Returns	a	CustomProperties	object	representing	the	properties	for	a	smart	tag.

expression.Properties

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

Remarks

Use	the	Add	Method	with	the	Properties	property	to	store	extra	metadata	for	a
smart	tag.

Example

This	example	adds	a	smart	tag	to	cell	A1,	then	adds	extra	metadata	called
"Market"	with	the	value	of	"Nasdaq"	to	the	SmartTag	and	then	returns	the	value
of	the	property	to	the	user.	This	example	assumes	the	host	system	is	connected	to
the	Internet.

Sub	UseProperties()

				Dim	strLink	As	String

				Dim	strType	As	String

				'	Define	smart	tag	variables.

				strLink	=	"urn:schemas-microsoft-com:smarttags#StockTickerSymbol"

				strType	=	"stockview"

				'	Enable	smart	tags	to	be	embedded	and	recognized.

				ActiveWorkbook.SmartTagOptions.EmbedSmartTags	=	True

				Application.SmartTagRecognizers.Recognize	=	True

				'	Add	a	property	for	MSFT	smart	tag	and	define	it's	value.

				Range("A1").SmartTags.Add(strLink).Properties.Add	_

								Name:="Market",	Value:="Nasdaq"

				'	Notify	the	user	of	the	smart	tag's	value.

				MsgBox	Range("A1").SmartTags.Add(strLink).Properties("Market").Value

End	Sub

Show	All

PropertyOrder	Property
							

Valid	only	for	PivotTable	fields	that	are	member	property	fields.	Returns	a	Long
indicating	the	display	position	of	the	member	property	within	the	cube	field	to
which	it	belongs.	Setting	this	property	will	rearrange	the	order	of	the	properties
for	this	cube	field.	This	property	is	one-based.	The	allowable	range	is	from	one
to	the	maximum	number	of	member	property	fields	being	displayed	for	the
hierarchy.	Read/write.

expression.PropertyOrder

expression			Required.	An	expression	that	returns	a	PivotField	object.

Remarks

If	the	IsMemberProperty	property	is	False,	using	the	PropertyOrder	property
will	create	a	run-time	error.

Example

This	example	determines	if	there	are	member	properties	in	the	fourth	field	and,	if
there	are,	displays	the	position	of	the	member	properties.	Depending	on	the
findings,	Excel	notifies	the	user.	This	example	assumes	that	a	PivotTable	exists
on	the	active	worksheet	and	that	it	is	based	on	an	Online	Analytical	Processing
(OLAP)	data	source.

Sub	CheckPropertyOrder()

				Dim	pvtTable	As	PivotTable

				Dim	pvtField	As	PivotField

				Set	pvtTable	=	ActiveSheet.PivotTables(1)

				Set	pvtField	=	pvtTable.PivotFields(4)

				'	Check	for	member	properties	and	notify	user.

				If	pvtField.IsMemberProperty	=	False	Then

								MsgBox	"No	member	properties	present."

				Else

								MsgBox	"The	property	order	of	the	members	is:	"	&	_

												pvtField.PropertyOrder

				End	If

End	Sub

Show	All

PropertyParentField	Property
							

Returns	a	PivotField	object	representing	the	field	to	which	the	properties	in	this
field	pertain.

expression.PropertyParentField

expression			Required.	An	expression	that	returns	a	PivotField	object.

Remarks

Valid	only	for	fields	that	are	member	property	fields.

If	the	IsMemberProperty	property	is	False,	using	the	PropertyParentField
property	will	return	a	run-time	error.

Example

This	example	determines	if	there	are	member	properties	in	the	fourth	field	and,	if
there	are,	which	fields	the	properties	pertain	to.	Depending	on	the	findings,
Excel	notifies	the	user.	This	example	assumes	that	a	PivotTable	exists	on	the
active	worksheet	and	that	it	is	based	on	an	Online	Analytical	Processing	(OLAP)
data	source.

Sub	CheckParentField()

				Dim	pvtTable	As	PivotTable

				Dim	pvtField	As	PivotField

				Set	pvtTable	=	ActiveSheet.PivotTables(1)

				Set	pvtField	=	pvtTable.PivotFields(4)

				'	Check	for	member	properties	and	notify	user.

				If	pvtField.IsMemberProperty	=	False	Then

								MsgBox	"No	member	properties	present."

				Else

								MsgBox	"The	parent	field	of	the	members	is:	"	&	_

												pvtField.PropertyParentField

				End	If

End	Sub

ProtectChartObject	Property
							

True	if	the	embedded	chart	frame	cannot	be	moved,	resized,	or	deleted.
Read/write	Boolean.

Example

This	example	protects	embedded	chart	one	on	worksheet	one.

Worksheets(1).ChartObjects(1).ProtectChartObject	=	True

ProtectContents	Property
							

True	if	the	contents	of	the	sheet	are	protected.	For	a	chart,	this	protects	the	entire
chart.	For	a	worksheet,	this	protects	the	individual	cells.	Read-only	Boolean.

Example

This	example	displays	a	message	box	if	the	contents	of	Sheet1	are	protected.

If	Worksheets("Sheet1").ProtectContents	=	True	Then

				MsgBox	"The	contents	of	Sheet1	are	protected."

End	If

ProtectData	Property
							

True	if	series	formulas	cannot	be	modified	by	the	user.	Read/write	Boolean.

Example

This	example	protects	the	data	on	embedded	chart	one	on	worksheet	one.

Worksheets(1).ChartObjects(1).Chart.ProtectData	=	True

ProtectDrawingObjects	Property
							

True	if	shapes	are	protected.	Read-only	Boolean.

Example

This	example	displays	a	message	box	if	the	shapes	on	Sheet1	are	protected.

If	Worksheets("Sheet1").ProtectDrawingObjects	=	True	Then

				MsgBox	"The	shapes	on	Sheet1	are	protected."

End	If

ProtectFormatting	Property
							

True	if	chart	formatting	cannot	be	modified	by	the	user.	Read/write	Boolean.

Remarks

When	this	property	is	True,	the	Object	command	on	the	Format	menu	is
disabled	and	chart	elements	cannot	be	added,	moved,	resized,	or	deleted.

Example

This	example	protects	the	formatting	of	embedded	chart	one	on	worksheet	one.

Worksheets(1).ChartObjects(1).Chart.ProtectFormatting	=	True

ProtectGoalSeek	Property
							

True	if	the	user	cannot	modify	chart	data	points	with	mouse	actions.	Read/write
Boolean.

Example

This	example	protects	the	data	points	on	embedded	chart	one	on	worksheet	one.

Worksheets(1).ChartObjects(1).Chart.ProtectGoalSeek	=	True

Protection	Property
							

Returns	a	Protection	object	that	represents	the	protection	options	of	the
worksheet.

expression.Protection

expression			Required.	An	expression	that	returns	a	Worksheet	object.

Example

This	example	protects	the	active	worksheet	and	then	determines	if	columns	can
be	inserted	on	the	protected	worksheet,	notifying	the	user	of	this	status.

Sub	CheckProtection()

				ActiveSheet.Protect

				'	Check	the	ability	to	insert	columns	on	a	protected	sheet.

				'	Notify	the	user	of	this	status.

				If	ActiveSheet.Protection.AllowInsertingColumns	=	True	Then

								MsgBox	"The	insertion	of	columns	is	allowed	on	this	protected	worksheet."

				Else

								MsgBox	"The	insertion	of	columns	is	not	allowed	on	this	protected	worksheet."

				End	If

End	Sub

ProtectionMode	Property
							

True	if	user-interface-only	protection	is	turned	on.	To	turn	on	user	interface
protection,	use	the	Protect	method	with	the	UserInterfaceOnly	argument	set	to
True.	Read-only	Boolean.

Example

This	example	displays	the	status	of	the	ProtectionMode	property.

MsgBox	ActiveSheet.ProtectionMode

ProtectScenarios	Property
							

True	if	the	worksheet	scenarios	are	protected.	Read-only	Boolean.

Example

This	example	displays	a	message	box	if	scenarios	are	protected	on	Sheet1.

If	Worksheets("Sheet1").ProtectScenarios	Then	_

				MsgBox	"Scenarios	are	protected	on	this	worksheet."

ProtectSelection	Property
							

True	if	chart	elements	cannot	be	selected.	Read/write	Boolean.

Remarks

When	this	property	is	True,	shapes	cannot	be	added	to	the	chart,	and	the	Click
and	DoubleClick	events	for	chart	elements	don’t	occur.

Example

This	example	prevents	chart	elements	from	being	selected	on	embedded	chart
one	on	worksheet	one.

Worksheets(1).ChartObjects(1).Chart.ProtectSelection	=	True

ProtectStructure	Property
							

True	if	the	order	of	the	sheets	in	the	workbook	is	protected.	Read-only	Boolean.

Example

This	example	displays	a	message	if	the	order	of	the	sheets	in	the	active
workbook	is	protected.

If	ActiveWorkbook.ProtectStructure	=	True	Then

				MsgBox	"Remember,	you	cannot	delete,	add,	or	change	"	&	_

								Chr(13)	&	_

								"the	location	of	any	sheets	in	this	workbook."

End	If

ProtectWindows	Property
							

True	if	the	windows	of	the	workbook	are	protected.	Read-only	Boolean.

Example

This	example	displays	a	message	if	the	windows	in	the	active	workbook	are
protected.

If	ActiveWorkbook.ProtectWindows	=	True	Then

				MsgBox	"Remember,	you	cannot	rearrange	any"	&	_

								"	window	in	this	workbook."

End	If

PublishObjects	Property
							

Returns	the	PublishObjects	collection.	Read-only.

Example

This	example	publishes	all	static	PublishObject	objects	in	the	active	workbook
to	the	Web	page.

Set	objPObjs	=	ActiveWorkbook.PublishObjects

For	Each	objPO	in	objPObjs

				If	objPO.HtmlType	=	xlHTMLStatic	Then

								objPO.Publish

				End	If

Next	objPO

QueryTable	Property
							

Returns	a	QueryTable	object	that	represents	the	query	table	that	intersects	the
specified	range.	Read-only.

Example

This	example	refreshes	the	query	table	that	intersects	cell	A10	on	worksheet	one.

Worksheets(1).Range("a10").QueryTable.Refresh

QueryTables	Property
							

Returns	the	QueryTables	collection	that	represents	all	the	query	tables	on	the
specified	worksheet.	Read-only.

For	more	information	about	returning	a	single	object	from	a	collection,	see
Returning	an	Object	from	a	Collection.

Example

This	example	refreshes	all	query	tables	on	worksheet	one.

For	Each	qt	in	Worksheets(1).QueryTables

				qt.Refresh

Next

This	example	sets	query	table	one	so	that	formulas	to	the	right	of	it	are
automatically	updated	whenever	it’s	refreshed.

Sheets("sheet1").QueryTables(1).FillAdjacentFormulas	=	True

Show	All

QueryType	Property
							

Indicates	the	type	of	query	used	by	Microsoft	Excel	to	populate	the	query	table
or	PivotTable	cache.	Read-only	XlQueryType.

XlQueryType	can	be	one	of	these	XlQueryType	constants.
xlTextImport.	Based	on	a	text	file,	for	query	tables	only
xlOLEDBQuery.	Based	on	an	OLE	DB	query,	including	OLAP	data	sources
xlWebQuery.	Based	on	a	Web	page,	for	query	tables	only
xlADORecordset.	Based	on	an	ADO	recordset	query
xlDAORecordSet.	Based	on	a	DAO	recordset	query,	for	query	tables	only
xlODBCQuery.	Based	on	an	ODBC	data	source

expression.QueryType

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

Remarks

You	specify	the	data	source	in	the	prefix	for	the	Connection	property’s	value.

Example

This	example	refreshes	the	first	query	table	on	the	first	worksheet	if	the	table	is
based	on	a	Web	page.

Set	qtQtrResults	=	_

				Workbooks(1).Worksheets(1).QueryTables(1)

With	qtQtrResults

				if	.QueryType	=	xlWebQuery	Then

								.Refresh

				End	If

End	With

RadarAxisLabels	Property
							

Returns	a	TickLabels	object	that	represents	the	radar	axis	labels	for	the
specified	chart	group.	Read-only.

Example

This	example	turns	on	radar	axis	labels	for	chart	group	one	in	Chart1	and	then
sets	the	color	for	the	labels.	The	example	should	be	run	on	a	radar	chart.

With	Charts("Chart1").ChartGroups(1)

				.HasRadarAxisLabels	=	True

				.RadarAxisLabels.Font.ColorIndex	=	3

End	With

Show	All

Range	Property
							

Range	property	as	it	applies	to	the	AllowEditRange	object.

Returns	a	Range	object	that	represents	a	subset	of	the	ranges	that	can	be	edited
edited	on	a	protected	worksheet.

expression.Range

expression			Required.	An	expression	that	returns	an	AllowEditRange	object.

Range	property	as	it	applies	to	the	Application,	Range,	and	Worksheet
objects.

Returns	a	Range	object	that	represents	a	cell	or	a	range	of	cells.

expression.Range(Cell1,	Cell2)

expression			Required.	An	expression	that	returns	one	of	the	above	objects.

Cell1		Required	Variant.	The	name	of	the	range.	This	must	be	an	A1-style
reference	in	the	language	of	the	macro.	It	can	include	the	range	operator	(a
colon),	the	intersection	operator	(a	space),	or	the	union	operator	(a	comma).	It
can	also	include	dollar	signs,	but	they’re	ignored.	You	can	use	a	local	defined
name	in	any	part	of	the	range.	If	you	use	a	name,	the	name	is	assumed	to	be	in
the	language	of	the	macro.

Cell2		Optional	Variant.	The	cell	in	the	upper-left	and	lower-right	corner	of	the
range.	Can	be	a	Range	object	that	contains	a	single	cell,	an	entire	column,	or
entire	row,	or	it	can	be	a	string	that	names	a	single	cell	in	the	language	of	the
macro.

Remarks

When	used	without	an	object	qualifier,	this	property	is	a	shortcut	for
ActiveSheet.Range	(it	returns	a	range	from	the	active	sheet;	if	the	active	sheet
isn’t	a	worksheet,	the	property	fails).

When	applied	to	a	Range	object,	the	property	is	relative	to	the	Range	object.
For	example,	if	the	selection	is	cell	C3,	then	Selection.Range("B1")	returns
cell	D3	because	it’s	relative	to	the	Range	object	returned	by	the	Selection
property.	On	the	other	hand,	the	code	ActiveSheet.Range("B1")	always	returns
cell	B1.

Range	property	as	it	applies	to	the	AutoFilter,	Hyperlink,	PivotCell,	and
SmartTag	objects.

For	an	AutoFilter	object,	returns	a	Range	object	that	represents	the	range	to
which	the	specified	AutoFilter	applies.	For	a	Hyperlink	object,	returns	a	Range
object	that	represents	the	range	the	specified	hyperlink	is	attached	to.	For	a
PivotCell	object,	returns	a	Range	object	that	represents	the	range	the	specified
PivotCell	applies	to.	For	a	SmartTag	object,	returns	a	Range	object	that
represents	the	range	the	specified	smart	tag	applies	to.

expression.Range

expression			Required.	An	expression	that	returns	one	of	the	above	objects.

Range	property	as	it	applies	to	the	GroupShapes	and	Shapes	objects.

Returns	a	ShapeRange	object	that	represents	a	subset	of	the	shapes	in	a	Shapes
collection.

expression.Range(Index)

expression			Required.	An	expression	that	returns	one	of	the	above	objects.

Index		Required	Variant.	The	individual	shapes	to	be	included	in	the	range.	Can
be	an	integer	that	specifies	the	index	number	of	the	shape,	a	string	that	specifies
the	name	of	the	shape,	or	an	array	that	contains	either	integers	or	strings.

Remarks

Although	you	can	use	the	Range	property	to	return	any	number	of	shapes,	it's
simpler	to	use	the	Item	method	if	you	only	want	to	return	a	single	member	of	the
collection.	For	example,	Shapes(1)	is	simpler	than	Shapes.Range(1).

To	specify	an	array	of	integers	or	strings	for	Index,	you	can	use	the	Array
function.	For	example,	the	following	instruction	returns	two	shapes	specified	by
name.

Dim	arShapes()	As	Variant

Dim	objRange	As	Object

arShapes	=	Array("Oval	4",	"Rectangle	5")

Set	objRange	=	ActiveSheet.Shapes.Range(arShapes)

In	Microsoft	Excel,	you	cannot	use	this	property	to	return	a	ShapeRange	object
containing	all	the	Shape	objects	on	a	worksheet.	Instead,	use	the	following	code:

Worksheets(1).Shapes.Select								'	select	all	shapes

set	sr	=	Selection.ShapeRange				'	create	ShapeRange

Example

As	it	applies	to	the	Application,	Range,	and	Worksheet	objects.

This	example	sets	the	value	of	cell	A1	on	Sheet1	to	3.14159.

Worksheets("Sheet1").Range("A1").Value	=	3.14159

This	example	creates	a	formula	in	cell	A1	on	Sheet1.

Worksheets("Sheet1").Range("A1").Formula	=	"=10*RAND()"

This	example	loops	on	cells	A1:D10	on	Sheet1.	If	one	of	the	cells	has	a	value
less	than	0.001,	the	code	replaces	that	value	with	0	(zero).

For	Each	c	in	Worksheets("Sheet1").Range("A1:D10")

				If	c.Value	<	.001	Then

								c.Value	=	0

				End	If

Next	c

This	example	loops	on	the	range	named	"TestRange"	and	displays	the	number	of
empty	cells	in	the	range.

numBlanks	=	0

For	Each	c	In	Range("TestRange")

				If	c.Value	=	""	Then

								numBlanks	=	numBlanks	+	1

				End	If

Next	c

MsgBox	"There	are	"	&	numBlanks	&	"	empty	cells	in	this	range"

This	example	sets	the	font	style	in	cells	A1:C5	on	Sheet1	to	italic.	The	example
uses	Syntax	2	of	the	Range	property.

Worksheets("Sheet1").Range(Cells(1,	1),	Cells(5,	3)).	_

				Font.Italic	=	True

As	it	applies	to	the	AutoFilter,	Hyperlink,	PivotCell,	and	SmartTag	objects.

The	following	example	stores	in	a	variable	the	address	for	the	AutoFilter	applied

to	the	Crew	worksheet.

rAddress	=	Worksheets("Crew").AutoFilter.Range.Address

This	example	scrolls	through	the	workbook	window	until	the	hyperlink	range	is
in	the	upper-left	corner	of	the	active	window.

Workbooks(1).Activate

Set	hr	=	ActiveSheet.Hyperlinks(1).Range

ActiveWindow.ScrollRow	=	hr.Row

ActiveWindow.ScrollColumn	=	hr.Column

As	it	applies	to	the	GroupShapes	and	Shapes	objects.

This	example	sets	the	fill	pattern	for	shapes	one	and	three	on	myDocument.

Set	myDocument	=	Worksheets(1)

myDocument.Shapes.Range(Array(1,	3))	_

				.Fill.Patterned	msoPatternHorizontalBrick

This	example	sets	the	fill	pattern	for	the	shapes	named	"Oval	4"	and	"Rectangle
5"	on	myDocument.

Dim	arShapes()	As	Variant

Dim	objRange	As	Object

Set	myDocument	=	Worksheets(1)

arShapes	=	Array("Oval	4",	"Rectangle	5")

Set	objRange	=	myDocument.Shapes.Range(arShapes)

objRange.Fill.Patterned	msoPatternHorizontalBrick

This	example	sets	the	fill	pattern	for	shape	one	on	myDocument.

Set	myDocument	=	Worksheets(1)

Set	myRange	=	myDocument.Shapes.Range(1)

myRange.Fill.Patterned	msoPatternHorizontalBrick

This	example	creates	an	array	that	contains	all	the	AutoShapes	on	myDocument,
uses	that	array	to	define	a	shape	range,	and	then	distributes	all	the	shapes	in	that
range	horizontally.

Set	myDocument	=	Worksheets(1)

With	myDocument.Shapes

				numShapes	=	.Count

				If	numShapes	>	1	Then

								numAutoShapes	=	1

								ReDim	autoShpArray(1	To	numShapes)

								For	i	=	1	To	numShapes

												If	.Item(i).Type	=	msoAutoShape	Then

																autoShpArray(numAutoShapes)	=	.Item(i).Name

																numAutoShapes	=	numAutoShapes	+	1

												End	If

								Next

								If	numAutoShapes	>	1	Then

												ReDim	Preserve	autoShpArray(1	To	numAutoShapes)

												Set	asRange	=	.Range(autoShpArray)

												asRange.Distribute	msoDistributeHorizontally,	False

								End	If

				End	If

End	With

RangeSelection	Property
							

Returns	a	Range	object	that	represents	the	selected	cells	on	the	worksheet	in	the
specified	window	even	if	a	graphic	object	is	active	or	selected	on	the	worksheet.
Read-only.

Remarks

When	a	graphic	object	is	selected	on	a	worksheet,	the	Selection	property	returns
the	graphic	object	instead	of	a	Range	object;	the	RangeSelection	property
returns	the	range	of	cells	that	was	selected	before	the	graphic	object	was
selected.

This	property	and	the	Selection	property	return	identical	values	when	a	range
(not	a	graphic	object)	is	selected	on	the	worksheet.

If	the	active	sheet	in	the	specified	window	isn’t	a	worksheet,	this	property	fails.

Example

This	example	displays	the	address	of	the	selected	cells	on	the	worksheet	in	the
active	window.

MsgBox	ActiveWindow.RangeSelection.Address

ReadingOrder	Property
							

Returns	or	sets	the	reading	order	for	the	specified	object.	Can	be	one	of	the
following	constants:	xlRTL	(right-to-left),	xlLTR	(left-to-right),	or	xlContext.
Read/write	Long.

Remarks

Some	of	these	constants	may	not	be	available	to	you,	depending	on	the	language
support	(U.S.	English,	for	example)	that	you've	selected	or	installed.

Example

This	example	sets	the	reading	order	to	right-to-left	for	the	chart	title	of	Chart1.

Charts("Chart1").ChartTitle.ReadingOrder	=	xlRTL

ReadOnly	Property
							

True	if	the	workbook	has	been	opened	as	read-only.	Read-only	Boolean.

Example

If	the	active	workbook	is	read-only,	this	example	saves	it	as	Newfile.xls.

If	ActiveWorkbook.ReadOnly	Then

				ActiveWorkbook.SaveAs	fileName:="NEWFILE.XLS"

End	If

ReadOnlyRecommended	Property
							

True	if	the	workbook	was	saved	as	read-only	recommended.	Read-only
Boolean.

Remarks

When	you	open	a	workbook	that	was	saved	as	read-only	recommended,
Microsoft	Excel	displays	a	message	recommending	that	you	open	the	workbook
as	read-only.

Use	the	SaveAs	method	to	change	this	property.

Example

This	example	displays	a	message	if	the	active	workbook	is	saved	as	read-only
recommended.

If	ActiveWorkbook.ReadOnlyRecommended	=	True	Then	

				MsgBox	"This	workbook	is	saved	as	read-only	recommended"

End	If

Ready	Property
							

Returns	True	when	the	Microsoft	Excel	application	is	ready;	False	when	the
Excel	application	is	not	ready.	Read-only	Boolean.

expression.Ready

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

Example

In	this	example,	Microsoft	Excel	checks	to	see	if	the	Ready	property	is	set	to
True,	and	if	so,	a	message	displays	"Application	is	ready."		Otherwise,	Excel
displays	the	message	"Application	is	not	ready."

Sub	UseReady()

				If	Application.Ready	=	True	Then

								MsgBox	"Application	is	ready."

				Else

								MsgBox	"Application	is	not	ready."

				End	If

End	Sub

RecentFiles	Property
							

Returns	a	RecentFiles	collection	that	represents	the	list	of	recently	used	files.

For	information	about	returning	a	single	object	from	a	collection,	see	Returning
an	Object	from	a	Collection.

Example

This	example	sets	the	maximum	number	of	files	in	the	list	of	recently	used	files
to	6.

Application.RecentFiles.Maximum	=	6

Recipients	Property
							

Returns	or	sets	the	recipients	on	the	routing	slip.

expression.Recipients(Index)

expression			Required.	An	expression	that	returns	a	RoutingSlip	object.

Index			Optional	Variant.	The	recipient.	If	this	argument	isn’t	specified,	the
Recipients	property	returns	(or	can	be	set	to)	an	array	that	contains	all
recipients.

Remarks

The	order	of	the	recipient	list	defines	the	delivery	order	if	the	routing	delivery
option	is	xlOneAfterAnother.

If	a	routing	slip	is	in	progress,	only	those	recipients	who	haven’t	already
received	and	routed	the	document	are	returned	or	set.

Example

This	example	sends	the	open	workbook	to	three	recipients,	one	after	the	other.

With	ThisWorkbook

				.HasRoutingSlip	=	True

				With	.RoutingSlip

								.Delivery	=	xlOneAfterAnother

								.Recipients	=	Array("Adam	Bendel",	_

												"Jean	Selva",	"Bernard	Gabor")

								.Subject	=	"Here	is	the	workbook"

								.Message	=	"Here	is	the	workbook.	What	do	you	think?"

								.ReturnWhenDone	=	True

End	With

				.Route

End	With

Recognize	Property
							

Returns	True	when	data	can	be	labeled	as	a	smart	tag.	Read/write	Boolean.

expression.Recognize

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

Example

In	this	example,	Microsoft	Excel	determines	if	the	ability	to	label	data	as	smart
tags	is	enabled	and	notifies	the	user.

Sub	CheckSmartTagRecognition()

				'	Determine	if	data	can	be	labeled	as	SmartTags.

				If	Application.SmartTagRecognizers.Recognize	=	True	Then

								MsgBox	"Background	smart	tag	recognition	is	turned	on."

				Else

								MsgBox	"Background	smart	tag	recognition	is	turned	off."

				End	If

End	Sub

RecordCount	Property
							

Returns	the	number	of	records	in	the	PivotTable	cache	or	the	number	of	cache
records	that	contain	the	specified	item.	Read-only	Long.

Remarks

This	property	reflects	the	transient	state	of	the	cache	at	the	time	that	it’s	queried.
The	cache	can	change	between	queries.

Example

This	example	displays	the	number	of	cache	records	that	contain	"Kiwi"	in	the
"Products"	field.

MsgBox	Worksheets(1).PivotTables("Pivot1")	_

				.PivotFields("Product").PivotItems("Kiwi").RecordCount

RecordRelative	Property
							

True	if	macros	are	recorded	using	relative	references;	False	if	recording	is
absolute.	Read-only	Boolean.

Example

This	example	displays	the	address	of	the	active	cell	on	Sheet1	in	A1	style	if
RecordRelative	is	False;	otherwise,	it	displays	the	address	in	R1C1	style.

Worksheets("Sheet1").Activate

If	Application.RecordRelative	=	False	Then

				MsgBox	ActiveCell.Address(ReferenceStyle:=xlA1)

Else

				MsgBox	ActiveCell.Address(ReferenceStyle:=xlR1C1)

End	If

Recordset	Property
							

Returns	or	sets	a	Recordset	object	that’s	used	as	the	data	source	for	the	specified
query	table	or	PivotTable	cache.	Read/write.

Remarks

If	this	property	is	used	to	overwrite	an	existing	recordset,	the	change	takes	effect
when	the	Refresh	method	is	run.

Example

This	example	changes	the	Recordset	object	used	with	the	first	query	table	on	the
first	worksheet	and	then	refreshes	the	query	table.

With	Worksheets(1).QueryTables(1)

				.Recordset	=	_

								OpenDatabase("c:\Nwind.mdb")	_

								.OpenRecordset("employees")

				.Refresh

End	With

This	example	creates	a	new	PivotTable	cache	using	an	ADO	connection	to
Microsoft	Jet,	and	then	it	creates	a	new	PivotTable	report	based	on	the	cache,	at
cell	A3	on	the	active	worksheet.

Dim	cnnConn	As	ADODB.Connection

Dim	rstRecordset	As	ADODB.Recordset

Dim	cmdCommand	As	ADODB.Command

'	Open	the	connection.

Set	cnnConn	=	New	ADODB.Connection

With	cnnConn

				.ConnectionString	=	_

								"Provider=Microsoft.Jet.OLEDB.4.0"

				.Open	"C:\perfdate\record.mdb"

End	With

'	Set	the	command	text.

Set	cmdCommand	=	New	ADODB.Command

Set	cmdCommand.ActiveConnection	=	cnnConn

With	cmdCommand

				.CommandText	=	"Select	Speed,	Pressure,	Time	From	DynoRun"

				.CommandType	=	adCmdText

				.Execute

End	With

'	Open	the	recordset.

Set	rstRecordset	=	New	ADODB.Recordset

Set	rstRecordset.ActiveConnection	=	cnnConn

rstRecordset.Open	cmdCommand

'	Create	a	PivotTable	cache	and	report.

Set	objPivotCache	=	ActiveWorkbook.PivotCaches.Add(_

				SourceType:=xlExternal)

Set	objPivotCache.Recordset	=	rstRecordset

With	objPivotCache

				.CreatePivotTable	TableDestination:=Range("A3"),	_

								TableName:="Performance"

End	With

With	ActiveSheet.PivotTables("Performance")

				.SmallGrid	=	False

				With	.PivotFields("Pressure")

								.Orientation	=	xlRowField

								.Position	=	1

				End	With

				With	.PivotFields("Speed")

								.Orientation	=	xlColumnField

								.Position	=	1

				End	With

				With	.PivotFields("Time")

								.Orientation	=	xlDataField

								.Position	=	1

				End	With

End	With

'	Close	the	connections	and	clean	up.

cnnConn.Close

Set	cmdCommand	=	Nothing

Set	rstRecordSet	=	Nothing

Set	cnnConn	=	Nothing

ReferenceStyle	Property
							

Returns	or	sets	how	Microsoft	Excel	displays	cell	references	and	row	and
column	headings	in	either	A1	or	R1C1	reference	style.		Read/write
XlReferenceStyle.

XlReferenceStyle	can	be	one	of	these	XlReferenceStyle	constants.
xlA1
xlR1C1

expression.ReferenceStyle

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

Example

This	example	displays	the	current	reference	style.

If	Application.ReferenceStyle	=	xlR1C1	Then

				MsgBox	("Microsoft	Excel	is	using	R1C1	references")

Else

				MsgBox	("Microsoft	Excel	is	using	A1	references")

End	If

RefersTo	Property
							

Returns	or	sets	the	formula	that	the	name	is	defined	to	refer	to,	in	the	language
of	the	macro	and	in	A1-style	notation,	beginning	with	an	equal	sign.	Read/write
String.

Example

This	example	creates	a	list	of	all	the	names	in	the	active	workbook,	and	it	shows
their	formulas	in	A1-style	notation	in	the	language	of	the	macro.	The	list	appears
on	a	new	worksheet	created	by	the	example.

Set	newSheet	=	Worksheets.Add

i	=	1

For	Each	nm	In	ActiveWorkbook.Names

				newSheet.Cells(i,	1).Value	=	nm.Name

				newSheet.Cells(i,	2).Value	=	"'"	&	nm.RefersTo

				i	=	i	+	1

Next

newSheet.Columns("A:B").AutoFit

RefersToLocal	Property
							

Returns	or	sets	the	formula	that	the	name	refers	to.	The	formula	is	in	the
language	of	the	user,	and	it's	in	A1-style	notation,	beginning	with	an	equal	sign.
Read/write	String.

Example

This	example	creates	a	new	worksheet	and	then	inserts	a	list	of	all	the	names	in
the	active	workbook,	including	their	formulas	(in	A1-style	notation	and	in	the
language	of	the	user).

Set	newSheet	=	ActiveWorkbook.Worksheets.Add

i	=	1

For	Each	nm	In	ActiveWorkbook.Names

				newSheet.Cells(i,	1).Value	=	nm.NameLocal

				newSheet.Cells(i,	2).Value	=	"'"	&	nm.RefersToLocal

				i	=	i	+	1

Next

RefersToR1C1	Property
							

Returns	or	sets	the	formula	that	the	name	refers	to.	The	formula	is	in	the
language	of	the	macro,	and	it's	in	R1C1-style	notation,	beginning	with	an	equal
sign.	Read/write	String.

Example

This	example	creates	a	new	worksheet	and	then	inserts	a	list	of	all	the	names	in
the	active	workbook,	including	their	formulas	(in	R1C1-style	notation	and	in	the
language	of	the	macro).

Set	newSheet	=	ActiveWorkbook.Worksheets.Add

i	=	1

For	Each	nm	In	ActiveWorkbook.Names

				newSheet.Cells(i,	1).Value	=	nm.Name

				newSheet.Cells(i,	2).Value	=	"'"	&	nm.RefersToR1C1

				i	=	i	+	1

Next

RefersToR1C1Local	Property
							

Returns	or	sets	the	formula	that	the	name	refers	to.	This	formula	is	in	the
language	of	the	user,	and	it's	in	R1C1-style	notation,	beginning	with	an	equal
sign.	Read/write	String.

Example

This	example	creates	a	new	worksheet	and	then	inserts	a	list	of	all	the	names	in
the	active	workbook,	including	their	formulas	(in	R1C1-style	notation	and	in	the
language	of	the	user).

Set	newSheet	=	ActiveWorkbook.Worksheets.Add

i	=	1

For	Each	nm	In	ActiveWorkbook.Names

				newSheet.Cells(i,	1).Value	=	nm.NameLocal

				newSheet.Cells(i,	2).Value	=	"'"	&	nm.RefersToR1C1Local

				i	=	i	+	1

Next

RefersToRange	Property
							

Returns	the	Range	object	referred	to	by	a	Name	object.	Read-only.

Remarks

If	the	Name	object	doesn't	refer	to	a	range	(for	example,	if	it	refers	to	a	constant
or	a	formula),	this	property	fails.

To	change	the	range	that	a	name	refers	to,	use	the	RefersTo	property.

Example

This	example	displays	the	number	of	rows	and	columns	in	the	print	area	on	the
active	worksheet.

p	=	Names("Print_Area").RefersToRange.Value

MsgBox	"Print_Area:	"	&	UBound(p,	1)	&	"	rows,	"	&	_

				UBound(p,	2)	&	"	columns"

Show	All

RefreshDate	Property
							

Returns	the	date	on	which	the	PivotTable	report	or	cache	was	last	refreshed.
Read-only	Date.

Remarks

For	PivotCache	objects,	the	cache	must	have	at	least	one	PivotTable	report
associated	with	it.

For	OLAP	data	sources,	this	property	is	updated	after	each	query.

Example

This	example	displays	the	date	on	which	the	PivotTable	report	was	last
refreshed.

Set	pvtTable	=	Worksheets("Sheet1").Range("A3").PivotTable

dateString	=	Format(pvtTable.RefreshDate,	"Long	Date")

MsgBox	"The	data	was	last	refreshed	on	"	&	dateString

Refreshing	Property
							

True	if	there’s	a	background	query	in	progress	for	the	specified	query	table.
Read/write	Boolean.

Remarks

Use	the	CancelRefresh	method	to	cancel	background	queries.

Example

This	example	displays	a	message	box	if	there’s	a	background	query	in	progress
for	query	table	one.

With	Worksheets(1).QueryTables(1)

				If	.Refreshing	Then

								MsgBox	"Query	is	currently	refreshing:	please	wait"

				Else

								.Refresh	BackgroundQuery	:=	False

								.ResultRange.Select

				End	If

End	With

Show	All

RefreshName	Property
							

Returns	the	name	of	the	person	who	last	refreshed	the	PivotTable	report	data	or
the	PivotTable	cache.	Read-only	String.

Remarks

For	OLAP	data	sources,	this	property	is	updated	after	each	query.

Example

This	example	displays	the	name	of	the	person	who	last	refreshed	the	PivotTable
report.

Set	pvtTable	=	Worksheets("Sheet1").Range("A3").PivotTable

MsgBox	"The	data	was	last	refreshed	by	"	&	pvtTable.RefreshName

RefreshOnChange	Property
							

True	if	the	specified	query	table	is	refreshed	whenever	you	change	the
parameter	value	of	a	parameter	query.	Read/write	Boolean.

Remarks

You	can	set	this	property	to	True	only	if	you	use	parameters	of	type	xlRange
and	if	the	referenced	parameter	value	is	in	a	single	cell.	The	refresh	occurs	when
you	change	the	value	of	the	cell.

Example

This	example	changes	the	SQL	statement	for	the	first	query	table	on	Sheet1.	The
clause	"(ContactTitle=?)"	indicates	that	the	query	is	a	parameter	query,	and	the
value	of	the	title	is	set	to	the	value	of	cell	D4.	The	query	table	will	be
automatically	refreshed	whenever	the	value	of	this	cell	changes.

Set	objQT	=	Worksheets("Sheet1").QueryTables(1)

objQT.CommandText	=	"Select	*	From	Customers	Where	(ContactTitle=?)"

Set	objParam1	=	objQT.Parameters	_

				.Add("Contact	Title",	xlParamTypeVarChar)

objParam1.RefreshOnChange	=	True

objParam1.SetParam	xlRange,	Range("D4")

RefreshOnFileOpen	Property
							

True	if	the	PivotTable	cache	or	query	table	is	automatically	updated	each	time
the	workbook	is	opened.	The	default	value	is	False.	Read/write	Boolean.

Remarks

Query	tables	and	PivotTable	reports	are	not	automatically	refreshed	when	you
open	the	workbook	by	using	the	Open	method	in	Visual	Basic.	Use	the	Refresh
method	to	refresh	the	data	after	the	workbook	is	open.

Example

This	example	causes	the	PivotTable	cache	to	automatically	update	each	time	the
workbook	is	opened.

ActiveWorkbook.PivotCaches(1).RefreshOnFileOpen	=	True

RefreshPeriod	Property
							

Returns	or	sets	the	number	of	minutes	between	refreshes.	Read/write	Long.

Remarks

Setting	the	period	to	0	(zero)	disables	automatic	timed	refreshes	and	is
equivalent	to	setting	this	property	to	Null.

The	value	of	the	RefreshPeriod	property	can	be	an	integer	from	0	through
32767.

Example

This	example	sets	the	refresh	period	for	the	PivotTable	cache	(PivotTable3)	to	15
minutes.

Set	objPC	=	Worksheets("Sheet1").PivotTables("PivotTable3").PivotCache

objPC.RefreshPeriod	=	15

RefreshStyle	Property
							

Returns	or	sets	the	way	rows	on	the	specified	worksheet	are	added	or	deleted	to
accommodate	the	number	of	rows	in	a	recordset	returned	by	a	query.	Read/write
XlCellInsertionMode.

XlCellInsertionMode	can	be	one	of	these	XlCellInsertionMode	constants.
xlInsertDeleteCells.	Partial	rows	are	inserted	or	deleted	to	match	the	exact
number	of	rows	required	for	the	new	recordset.
xlOverwriteCells.	No	new	cells	or	rows	are	added	to	the	worksheet.	Data	in
surrounding	cells	is	overwritten	to	accommodate	any	overflow.
xlInsertEntireRows.	Entire	rows	are	inserted,	if	necessary,	to	accommodate
any	overflow.	No	cells	or	rows	are	deleted	from	the	worksheet.

expression.RefreshStyle

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

Example

This	example	adds	a	query	table	to	Sheet1.	The	RefreshStyle	property	adds
rows	to	the	worksheet	as	needed,	to	hold	the	data	results.

Dim	qt	As	QueryTable

Set	qt	=	Sheets("sheet1").QueryTables	_

				.Add(Connection:="Finder;c:\myfile.dqy",	_

								Destination:=Range("sheet1!a1"))

With	qt

				.RefreshStyle	=	xlInsertEntireRows

				.Refresh

End	With

RegisteredFunctions	Property
							

Returns	information	about	functions	in	either	dynamic-link	libraries	(DLLs)	or
code	resources	that	were	registered	with	the	REGISTER	or	REGISTER.ID
macro	functions.	Read-only	Variant.

expression.RegisteredFunctions(Index1,	Index2)

expression			Required.	An	expression	that	returns	an	Application	object.

Index1			Optional	Variant.	The	name	of	the	DLL	or	code	resource.

Index2			Optional	Variant.	The	name	of	the	function.

Remarks

If	you	don’t	specify	the	index	arguments,	this	property	returns	an	array	that
contains	a	list	of	all	registered	functions.	Each	row	in	the	array	contains
information	about	a	single	function,	as	shown	in	the	following	table.

Column Contents
1 The	name	of	the	DLL	or	code	resource
2 The	name	of	the	procedure	in	the	DLL	or	code	resource

3 Strings	specifying	the	data	types	of	the	return	values,	and	the
number	and	data	types	of	the	arguments

If	there	are	no	registered	functions,	this	property	returns	Null.

Example

This	example	creates	a	list	of	registered	functions,	placing	one	registered
function	in	each	row	on	Sheet1.	Column	A	contains	the	full	path	and	file	name
of	the	DLL	or	code	resource,	column	B	contains	the	function	name,	and	column
C	contains	the	argument	data	type	code.

theArray	=	Application.RegisteredFunctions

If	IsNull(theArray)	Then

				MsgBox	"No	registered	functions"

Else

				For	i	=	LBound(theArray)	To	UBound(theArray)

								For	j	=	1	To	3

												Worksheets("Sheet1").Cells(i,	j).	_

																Formula	=	theArray(i,	j)

								Next	j

				Next	i

End	If

RelyOnCSS	Property
							

True	if	cascading	style	sheets	(CSS)	are	used	for	font	formatting	when	you	view
a	saved	document	in	a	Web	browser.	Microsoft	Excel	creates	a	cascading	style
sheet	file	and	saves	it	either	to	the	specified	folder	or	to	the	same	folder	as	your
Web	page,	depending	on	the	value	of	the	OrganizeInFolder	property.	False	if
HTML		tags	and	cascading	style	sheets	are	used.	The	default	value	is
True.	Read/write	Boolean.

Remarks

You	should	set	this	property	to	True	if	your	Web	browser	supports	cascading
style	sheets,	as	this	will	give	you	more	precise	layout	and	formatting	control	on
your	Web	page	and	make	it	look	more	like	your	document	(as	it	appears	in
Microsoft	Excel).

Example

This	example	enables	the	use	of	cascading	style	sheets	as	the	global	default	for
the	application.

Application.DefaultWebOptions.RelyOnCSS	=	True

RelyOnVML	Property
							

True	if	image	files	are	not	generated	from	drawing	objects	when	you	save	a
document	as	a	Web	page.	False	if	images	are	generated.	The	default	value	is
False.	Read/write	Boolean.

Remarks

You	can	reduce	file	sizes	by	not	generating	images	for	drawing	objects,	if	your
Web	browser	supports	Vector	Markup	Language	(VML).	For	example,	Microsoft
Internet	Explorer	5	supports	this	feature,	and	you	should	set	the	RelyOnVML
property	to	True	if	you	are	targeting	this	browser.	For	browsers	that	do	not
support	VML,	the	image	will	not	appear	when	you	view	a	Web	page	saved	with
this	property	enabled.

For	example,	you	should	not	generate	images	if	your	Web	page	uses	image	files
that	you	have	generated	earlier,	and	if	the	location	where	you	save	the	document
is	different	from	the	final	location	of	the	page	on	the	Web	server.

Example

This	example	specifies	that	images	are	generated	when	saving	the	worksheet	to	a
Web	page.

Workbooks(1).WebOptions.RelyOnVML	=	False

RemovePersonalInformation
Property
							

True	if	personal	information	can	be	removed	from	the	specified	workbook.	The
default	value	is	False.	Read/write	Boolean.

expression.RemovePersonalInformation

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

Example

In	this	example,	Microsoft	Excel	determines	if	personal	information	can	be
removed	from	the	specified	workbook	and	notifies	the	user.

Sub	UsePersonalInformation()

				Dim	wkbOne	As	Workbook

				Set	wkbOne	=	Application.ActiveWorkbook

				'	Determine	settings	and	notify	user.

				If	wkbOne.RemovePersonalInformation	=	True	Then

								MsgBox	"Personal	information	can	be	removed."

				Else

								MsgBox	"Personal	information	cannot	be	removed."

				End	If

End	Sub

RepeatItemsOnEachPrintedPage
Property
							

True	if	row,	column,	and	item	labels	appear	on	the	first	row	of	each	page	when
the	specified	PivotTable	report	is	printed.	False	if	labels	are	printed	only	on	the
first	page.	The	default	value	is	True.	Read/write	Boolean.

Remarks

The	PivotTable	report	must	be	the	only	one	in	the	print	area.	To	set	an	indented
format	for	a	PivotTable	report,	use	the	Format	method.

Microsoft	Excel	prints	row	and	column	labels	in	place	of	any	print	titles	set	for
the	worksheet.	Use	the	PrintTitles	property	to	determine	whether	print	titles	are
set	for	the	PivotTable	report.

Example

This	example	sets	Microsoft	Excel	to	repeat	the	labels	on	each	page	when	the
fourth	PivotTable	report	on	the	active	worksheet	is	printed.

ActiveSheet.PivotTables("PivotTable4")	_

				.RepeatItemsOnEachPrintedPage	=	True

ReplaceFormat	Property
							

Sets	the	replacement	criteria	to	use	in	replacing	cell	formats.

expression.ReplaceFormat

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

Example

The	following	example	sets	the	search	criteria	to	find	cells	containing	Arial,
Regular,	Size	10	font,	replaces	their	formats	with	Arial,	Bold,	Size	8	font,	and
then	notifies	the	user.

Sub	MakeBold()

				'	Establish	search	criteria.

				With	Application.FindFormat.Font

								.Name	=	"Arial"

								.FontStyle	=	"Regular"

								.Size	=	10

				End	With

				'	Establish	replacement	criteria.

				With	Application.ReplaceFormat.Font

								.Name	=	"Arial"

								.FontStyle	=	"Bold"

								.Size	=	8

				End	With

				'	Notify	user.

				With	Application.ReplaceFormat.Font

								MsgBox	.Name	&	"-"	&	.FontStyle	&	"-"	&	.Size	&	_

												"	font	is	what	the	search	criteria	will	replace	cell	formats	with."

				End	With

End	Sub

ReplacementList	Property
							

Returns	the	array	of	AutoCorrect	replacements.

expression.ReplacementList(Index)

expression			Required.	An	expression	that	returns	an	AutoCorrect	object.

Index			Optional	Variant.	The	row	index	of	the	array	of	AutoCorrect
replacements	to	be	returned.	The	row	is	returned	as	a	one-dimensional	array	with
two	elements:	The	first	element	is	the	text	in	column	1,	and	the	second	element
is	the	text	in	column	2.

Remarks

If	Index	is	not	specified,	this	method	returns	a	two-dimensional	array.	Each	row
in	the	array	contains	one	replacement,	as	shown	in	the	following	table.

Column Contents
1 The	text	to	be	replaced
2 The	replacement	text

Use	the	AddReplacement	method	to	add	an	entry	to	the	replacement	list.

Example

This	example	searches	the	replacement	list	for	"Temperature"	and	displays	the
replacement	entry	if	it	exists.

repl	=	Application.AutoCorrect.ReplacementList

For	x	=	1	To	UBound(repl)

				If	repl(x,	1)	=	"Temperature"	Then	MsgBox	repl(x,	2)

Next

ReplaceText	Property
							

True	if	text	in	the	list	of	AutoCorrect	replacements	is	replaced	automatically.
Read/write	Boolean.

Example

This	example	turns	off	automatic	text	replacement.

With	Application.AutoCorrect

				.CapitalizeNamesOfDays	=	True

				.ReplaceText	=	False

End	With

Resize	Property
							

Resizes	the	specified	range.	Returns	a	Range	object	that	represents	the	resized
range.

expression.Resize(RowSize,	ColumnSize)

expression			Required.	An	expression	that	returns	a	Range	object	to	be	resized.

RowSize			Optional	Variant.	The	number	of	rows	in	the	new	range.	If	this
argument	is	omitted,	the	number	of	rows	in	the	range	remains	the	same.

ColumnSize			Optional	Variant.	The	number	of	columns	in	the	new	range.	If
this	argument	is	omitted,	the	number	of	columns	in	the	range	remains	the	same.

Example

This	example	resizes	the	selection	on	Sheet1	to	extend	it	by	one	row	and	one
column.

Worksheets("Sheet1").Activate

numRows	=	Selection.Rows.Count

numColumns	=	Selection.Columns.Count

Selection.Resize(numRows	+	1,	numColumns	+	1).Select

This	example	assumes	that	you	have	a	table	on	Sheet1	that	has	a	header	row.	The
example	selects	the	table,	without	selecting	the	header	row.	The	active	cell	must
be	somewhere	in	the	table	before	you	run	the	example.

Set	tbl	=	ActiveCell.CurrentRegion

tbl.Offset(1,	0).Resize(tbl.Rows.Count	-	1,	_

				tbl.Columns.Count).Select

ResultRange	Property
							

Returns	a	Range	object	that	represents	the	area	of	the	worksheet	occupied	by	the
specified	query	table.	Read-only.

Remarks

The	range	doesn’t	include	the	field	name	row	or	the	row	number	column.

Example

This	example	sums	the	data	in	the	first	column	of	query	table	one.	The	sum	of
the	first	column	is	displayed	below	the	data	range.

Set	c1	=	Sheets("sheet1").QueryTables(1).ResultRange.Columns(1)

c1.Name	=	"Column1"

c1.End(xlDown).Offset(2,	0).Formula	=	"=sum(Column1)"

ReturnWhenDone	Property
							

True	if	the	workbook	is	returned	to	the	sender	when	routing	is	finished.
Read/write	Boolean.

Remarks

You	cannot	set	this	property	if	routing	is	in	progress

Example

This	example	sends	Book1.xls	to	three	recipients,	one	after	another,	and	then	it
returns	the	workbook	to	the	sender	when	routing	has	been	completed.

Workbooks("BOOK1.XLS").HasRoutingSlip	=	True

With	Workbooks("BOOK1.XLS").RoutingSlip

				.Delivery	=	xlOneAfterAnother

				.Recipients	=	Array("Adam	Bendel",	_

								"Jean	Selva",	"Bernard	Gabor")

				.Subject	=	"Here	is	BOOK1.XLS"

				.Message	=	"Here	is	the	workbook.	What	do	you	think?"

				.ReturnWhenDone	=	True

End	With

Workbooks("BOOK1.XLS").Route

Show	All

Reverse	Property
							

MsoTrue	reverses	the	nodes	in	a	diagram.	Read/write	MsoTriState.

MsoTriState	can	be	one	of	these	MsoTriState	constants.
msoCTrue		Not	used	with	this	property.
msoFalse		Leaves	the	diagram	nodes	as	they	are.
msoTriStateMixed		Not	used	with	this	property.
msoTriStateToggle		Not	used	with	this	property.
msoTrue		Reverses	the	nodes	in	a	diagram.

expression.Reverse

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

Example

The	following	example	creates	a	pyramid	diagram,	and	reverses	the	nodes	so
that	the	node	that	was	on	the	bottom	of	the	pyramid	is	on	the	top,	and	the	node
that	was	on	the	top	is	on	the	bottom.

Sub	CreatePyramidDiagram()

				Dim	shpDiagram	As	Shape

				Dim	dgnNode	As	DiagramNode

				Dim	intCount	As	Integer

				'Add	pyramid	diagram	to	the	current	document

				Set	shpDiagram	=	ActiveSheet.Shapes.AddDiagram(_

								Type:=msoDiagramPyramid,	Left:=10,	_

								Top:=15,	Width:=400,	Height:=475)

				'Add	first	child	node	to	the	diagram

				Set	dgnNode	=	shpDiagram.DiagramNode.Children.AddNode

				'Add	three	child	nodes

				For	intCount	=	1	To	3

								dgnNode.AddNode

				Next	intCount

				With	dgnNode.Diagram

								'Enable	automatic	formatting

								.AutoFormat	=	msoTrue

								'Reverse	the	order	of	the	nodes

								.Reverse	=	msoTrue

				End	With

End	Sub

ReversePlotOrder	Property
							

True	if	Microsoft	Excel	plots	data	points	from	last	to	first.	Read/write	Boolean.

Remarks

This	property	cannot	be	used	on	radar	charts.

Example

This	example	plots	data	points	from	last	to	first	on	the	value	axis	on	Chart1.

Charts("Chart1").Axes(xlValue).ReversePlotOrder	=	True

RevisionNumber	Property
							

Returns	the	number	of	times	the	workbook	has	been	saved	while	open	as	a
shared	list.	If	the	workbook	is	open	in	exclusive	mode,	this	property	returns	0
(zero).	Read-only	Long.

Remarks

The	RevisionNumber	property	is	updated	only	when	the	local	copy	of	the
workbook	is	saved,	not	when	remote	copies	are	saved.

Example

This	example	uses	the	revision	number	to	determine	whether	the	active
workbook	is	open	in	exclusive	mode.	If	it	is,	the	example	saves	the	workbook	as
a	shared	list.

If	ActiveWorkbook.RevisionNumber	=	0	Then

				ActiveWorkbook.SaveAs	_

								filename:=ActiveWorkbook.FullName,	_

								accessMode:=xlShared,	_

								conflictResolution:=	_

												xlOtherSessionChanges

End	If

Show	All

RGB	Property
							

RGB	property	as	it	applies	to	the	ChartColorFormat	object.

Returns	the	red-green-blue	value	of	the	specified	color.	Read-only	Long.

expression.RGB

expression			Required.	An	expression	that	returns	one	of	the	above	objects.

	

RGB	property	as	it	applies	to	the	ColorFormat	object.

Returns	or	sets	the	red-green-blue	value	of	the	specified	color.	Read/write	Long.

expression.RGB

expression			Required.	An	expression	that	returns	one	of	the	above	objects.

	

Example

This	example	sets	the	interior	color	of	the	range	A1:A10	to	the	chart	area
foreground	fill	color	on	chart	one.

Worksheets(1).Range("A1:A10").Interior.Color	=	_

				Charts(1).ChartArea.Fill.ForeColor.RGB

RightAngleAxes	Property
							

True	if	the	chart	axes	are	at	right	angles,	independent	of	chart	rotation	or
elevation.	Applies	only	to	3-D	line,	column,	and	bar	charts.	Read/write	Boolean.

Remarks

If	this	property	is	True,	the	Perspective	property	is	ignored.

Example

This	example	sets	the	axes	in	Chart1	to	intersect	at	right	angles.	The	example
should	be	run	on	a	3-D	chart.

Charts("Chart1").RightAngleAxes	=	True

RightFooter	Property
							

Returns	or	sets	the	right	part	of	the	footer.	Read/write	String.

Remarks

Special	format	codes	can	be	used	in	the	footer	text.

Example

This	example	prints	the	page	number	in	the	lower-right	corner	of	every	page.

Worksheets("Sheet1").PageSetup.RightFooter	=	"&P"

RightFooterPicture	Property
							

Returns	a	Graphic	object	that	represents	the	picture	for	the	right	section	of	the
footer.	Used	to	set	attributes	about	the	picture.

expression.RightFooterPicture

expression			Required.	An	expression	that	returns	a	PageSetup	object.

Remarks

The	RighFooterPicture	property	is	read-only,	but	the	properties	on	it	are	not	all
read-only.

Example

The	following	example	adds	a	picture	titled:	Sample.jpg	from	the	C:\	drive	to	the
right	section	of	the	footer.	This	example	assumes	that	a	file	called	Sample.jpg
exists	on	the	C:\	drive.

Sub	InsertPicture()

				With	ActiveSheet.PageSetup.RightFooterPicture

								.FileName	=	"C:\Sample.jpg"

								.Height	=	275.25

								.Width	=	463.5

								.Brightness	=	0.36

								.ColorType	=	msoPictureGrayscale

								.Contrast	=	0.39

								.CropBottom	=	-14.4

								.CropLeft	=	-28.8

								.CropRight	=	-14.4

								.CropTop	=	21.6

				End	With

				'	Enable	the	image	to	show	up	in	the	right	footer.

				ActiveSheet.PageSetup.RightFooter	=	"&G"

End	Sub

Note			It	is	required	that	"&G"	is	a	part	of	the	RightFooter	property	string	in
order	for	the	image	to	show	up	in	the	right	footer.

RightHeader	Property
							

Returns	or	sets	the	right	part	of	the	header.	Read/write	String.

Remarks

Special	format	codes	can	be	used	in	the	header	text.

Example

This	example	prints	the	filename	in	the	upper-right	corner	of	every	page.

Worksheets("Sheet1").PageSetup.RightHeader	=	"&F"

RightHeaderPicture	Property
							

Returns	a	Graphic	object	that	represents	the	picture	for	the	right	section	of	the
header.	Used	to	set	attributes	about	the	picture.

expression.RightHeaderPicture

expression			Required.	An	expression	that	returns	a	PageSetup	object.

Remarks

The	RightHeaderPicture	property	is	read-only,	but	the	properties	on	it	are	not
all	read-only.

Example

The	following	example	adds	a	picture	titled:	Sample.jpg	from	the	C:\	drive	to	the
right	section	of	the	header.	This	example	assumes	that	a	file	called	Sample.jpg
exists	on	the	C:\	drive.

Sub	InsertPicture()

				With	ActiveSheet.PageSetup.RightHeaderPicture

								.FileName	=	"C:\Sample.jpg"

								.Height	=	275.25

								.Width	=	463.5

								.Brightness	=	0.36

								.ColorType	=	msoPictureGrayscale

								.Contrast	=	0.39

								.CropBottom	=	-14.4

								.CropLeft	=	-28.8

								.CropRight	=	-14.4

								.CropTop	=	21.6

				End	With

				'	Enable	the	image	to	show	up	in	the	right	header.

				ActiveSheet.PageSetup.RightHeader	=	"&G"

End	Sub

Note			It	is	required	that	"&G"	is	a	part	of	the	RightHeader	property	string	in
order	for	the	image	to	show	up	in	the	right	header.

Show	All

RightMargin	Property
							

Returns	or	sets	the	size	of	the	right	margin,	in	points.	Read/write	Double.

Remarks

Margins	are	set	or	returned	in	points.	Use	the	InchesToPoints	method	or	the
CentimetersToPoints	method	to	convert	measurements	from	inches	or
centimeters.

Example

This	example	sets	the	right	margin	of	Sheet1	to	1.5	inches.

Worksheets("Sheet1").PageSetup.RightMargin	=	_

								Application.InchesToPoints(1.5)

This	example	sets	the	right	margin	of	Sheet1	to	2	centimeters.

Worksheets("Sheet1").PageSetup.RightMargin	=	_

								Application.CentimetersToPoints(2)

This	example	displays	the	current	right-margin	setting	for	Sheet1.

marginInches	=	Worksheets("Sheet1").PageSetup.RightMargin	/	_

				Application.InchesToPoints(1)

MsgBox	"The	current	right	margin	is	"	&	marginInches	&	"	inches"

Show	All

RobustConnect	Property
							

Returns	or	sets	how	the	PivotTable	cache	connects	to	its	data	source.	Read/write
XlRobustConnect.

XlRobustConnect	can	be	one	of	these	XlRobustConnect	constants.
xlAlways		The	cache	always	uses	external	source	information	(as	defined	by	the
SourceConnectionFile	or	SourceDataFile	property)	to	reconnect.
xlAsRequired		The	cache	uses	external	source	info	to	reconnect	using	the
Connection	property.
xlNever		The	cache	never	uses	source	info	to	reconnect.

expression.RobustConnect

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

Example

The	following	example	determines	the	setting	for	the	cache	connection	and
notifies	the	user.	The	example	assumes	a	PivotTable	exists	on	the	active
worksheet.

Sub	CheckRobustConnect()

				Dim	pvtCache	As	PivotCache

				Set	pvtCache	=	Application.ActiveWorkbook.PivotCaches.Item(1)

				'	Determine	the	connection	robustness	and	notify	user.

				Select	Case	pvtCache.RobustConnect

								Case	xlAlways

												MsgBox	"The	PivotTable	cache	is	always	connected	to	its	source."

								Case	xlAsRequired

												MsgBox	"The	PivotTable	cache	is	connected	to	its	source	as	required."

								Case	xlNever

												MsgBox	"The	PivotTable	cache	is	never	connected	to	its	source."

				End	Select

End	Sub

RollZoom	Property
							

True	if	the	IntelliMouse	zooms	instead	of	scrolling.	Read/write	Boolean.

Example

This	example	enables	the	IntelliMouse	to	zoom	instead	of	scroll.

Application.RollZoom	=	True

Root	Property
							

Returns	the	root	DiagramNode	object	which	the	root	diagram	node	belongs.

expression.Root

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

Example

The	following	example	creates	an	organization	chart	and	adds	child	nodes	to	the
root	diagram	node.

Sub	AddChildNodesToRoot()

				Dim	nodDiagram	As	DiagramNode

				Dim	shDiagram	As	Shape

				Dim	intCount	As	Integer

				Set	shDiagram	=	ActiveSheet.Shapes.AddDiagram	_

								(Type:=msoDiagramOrgChart,	Left:=10,	Top:=15,	_

								Width:=400,	Height:=475)

				'	Add	the	first	node	to	the	diagram.

				shDiagram.DiagramNode.Children.AddNode

				'	Establish	the	first	node	as	the	root.

				Set	nodDiagram	=	shDiagram.DiagramNode.Root

				'	Add	three	modes	to	the	diagram.

				For	intCount	=	1	To	3

								nodDiagram.Children.AddNode

				Next	intCount

End	Sub

RotatedChars	Property
							

True	if	characters	in	the	specified	WordArt	are	rotated	90	degrees	relative	to	the
WordArt's	bounding	shape.	False	if	characters	in	the	specified	WordArt	retain
their	original	orientation	relative	to	the	bounding	shape.	Read/write
MsoTriState.

MsoTriState	can	be	one	of	these	MsoTriState	constants.
msoCTrue
msoFalse	Characters	in	the	specified	WordArt	retain	their	original	orientation
relative	to	the	bounding	shape.
msoTriStateMixed
msoTriStateToggle
msoTrue	Characters	in	the	specified	WordArt	are	rotated	90	degrees	relative	to
the	WordArt's	bounding	shape.	

expression.RotatedChars

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

Remarks

If	the	WordArt	has	horizontal	text,	setting	the	RotatedChars	property	to
msoTrue	rotates	the	characters	90	degrees	counterclockwise.	If	the	WordArt	has
vertical	text,	setting	the	RotatedChars	property	to	msoFalse	rotates	the
characters	90	degrees	clockwise.	Use	the	ToggleVerticalText	method	to	switch
between	horizontal	and	vertical	text	flow.

The	Flip	method	and	Rotation	property	of	the	Shape	object	and	the
RotatedChars	property	and	ToggleVerticalText	method	of	the
TextEffectFormat	object	all	affect	the	character	orientation	and	direction	of	text
flow	in	a	Shape	object	that	represents	WordArt.	You	may	have	to	experiment	to
find	out	how	to	combine	the	effects	of	these	properties	and	methods	to	get	the
result	you	want.

Example

This	example	adds	WordArt	that	contains	the	text	"Test"	to	myDocument	and
rotates	the	characters	90	degrees	counterclockwise.

Set	myDocument	=	Worksheets(1)

Set	newWordArt	=	myDocument.Shapes.AddTextEffect(_

				PresetTextEffect:=msoTextEffect1,	Text:="Test",	_

				FontName:="Arial	Black",	FontSize:=36,	_

				FontBold:=False,	FontItalic:=False,	Left:=10,	_

				Top:=10)

newWordArt.TextEffect.RotatedChars	=	msoTrue

Rotation	Property
							

Chart	object:	Returns	or	sets	the	rotation	of	the	3-D	chart	view	(the	rotation	of
the	plot	area	around	the	z-axis,	in	degrees).	The	value	of	this	property	must	be
from	0	to	360,	except	for	3-D	bar	charts,	where	the	value	must	be	from	0	to	44.
The	default	value	is	20.	Applies	only	to	3-D	charts.	Read/write	Variant.

Shape	or	ShapeRange	object:	Returns	or	sets	the	rotation	of	the	shape,	in
degrees.	Read/write	Single.

Example

This	example	sets	the	rotation	of	Chart1	to	30	degrees.	The	example	should	be
run	on	a	3-D	chart.

Charts("Chart1").Rotation	=	30

RotationY	Property
							

Returns	or	sets	the	rotation	of	the	extruded	shape	around	the	y-axis	in	degrees.
Can	be	a	value	from		–	90	through	90.	A	positive	value	indicates	rotation	to	the
left;	a	negative	value	indicates	rotation	to	the	right.	Read/write	Single.

expression.RotationY

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

Remarks

To	set	the	rotation	of	the	extruded	shape	around	the	x-axis,	use	the	RotationX
property	of	the	ThreeDFormat	object.	To	set	the	rotation	of	the	extruded	shape
around	the	z-axis,	use	the	Rotation	property	of	the	Shape	object.	To	change	the
direction	of	the	extrusion’s	sweep	path	without	rotating	the	front	face	of	the
extrusion,	use	the	SetExtrusionDirection	method.

Example

This	example	adds	three	identical	extruded	ovals	to	myDocument	and	sets	their
rotation	around	the	y-axis	to		–	30,	0,	and	30	degrees,	respectively.

Set	myDocument	=	Worksheets(1)

With	myDocument.Shapes

				With	.AddShape(msoShapeOval,	30,	30,	50,	25).ThreeD

								.Visible	=	True

								.RotationY	=	-30

				End	With

				With	.AddShape(msoShapeOval,	30,	70,	50,	25).ThreeD

								.Visible	=	True

								.RotationY	=	0

				End	With

				With	.AddShape(msoShapeOval,	30,	110,	50,	25).ThreeD

								.Visible	=	True

								.RotationY	=	30

				End	With

End	With

RoundedCorners	Property
							

True	if	the	embedded	chart	has	rounded	corners.	Read/write	Boolean.

Example

This	example	adds	rounded	corners	to	embedded	chart	one	on	Sheet1.

Worksheets("Sheet1").ChartObjects(1).RoundedCorners	=	True

Routed	Property
							

True	if	the	workbook	has	been	routed	to	the	next	recipient.	False	if	the
workbook	needs	to	be	routed.	Read-only	Boolean.

Remarks

If	the	workbook	wasn't	routed	to	the	current	recipient,	this	property	is	always
False	(for	example,	if	the	document	has	no	routing	slip,	or	if	a	routing	slip	was
just	created).

Example

This	example	sends	the	workbook	to	the	next	recipient.

If	ActiveWorkbook.HasRoutingSlip	And	_

				Not	ActiveWorkbook.Routed	Then

								ActiveWorkbook.Route

End	If

RoutingSlip	Property
							

Returns	a	RoutingSlip	object	that	represents	the	routing	slip	for	the	workbook.
Reading	this	property	if	there's	no	routing	slip	causes	an	error	(check	the
HasRoutingSlip	property	first).	Read-only.

Example

This	example	creates	a	routing	slip	for	Book1.xls	and	then	sends	the	workbook
to	three	recipients,	one	after	another.

Workbooks("BOOK1.XLS").HasRoutingSlip	=	True

With	Workbooks("BOOK1.XLS").RoutingSlip

				.Delivery	=	xlOneAfterAnother

				.Recipients	=	Array("Adam	Bendel",	_

								"Jean	Selva",	"Bernard	Gabor")

				.Subject	=	"Here	is	BOOK1.XLS"

				.Message	=	"Here	is	the	workbook.	What	do	you	think?"

End	With

Workbooks("BOOK1.XLS").Route

Row	Property
							

Returns	the	number	of	the	first	row	of	the	first	area	in	the	range.	Read-only
Long.

Example

This	example	sets	the	row	height	of	every	other	row	on	Sheet1	to	4	points.

For	Each	rw	In	Worksheets("Sheet1").Rows

				If	rw.Row	Mod	2	=	0	Then

								rw.RowHeight	=	4

				End	If

Next	rw

RowColSettings	Property
							

True	if	the	custom	view	includes	settings	for	hidden	rows	and	columns
(including	filter	information).	Read-only	Boolean.

Example

This	example	creates	a	list	of	the	custom	views	in	the	active	workbook	and	their
print	settings	and	row	and	column	settings.

With	Worksheets(1)

				.Cells(1,1).Value	=	"Name"

				.Cells(1,2).Value	=	"Print	Settings"

				.Cells(1,3).Value	=	"RowColSettings"

				rw	=	0

				For	Each	v	In	ActiveWorkbook.CustomViews

								rw	=	rw	+	1

								.Cells(rw,	1).Value	=	v.Name

								.Cells(rw,	2).Value	=	v.PrintSettings

								.Cells(rw,	3).Value	=	v.RowColSettings

				Next

End	With

RowFields	Property
							

Returns	an	object	that	represents	either	a	single	field	in	a	PivotTable	report	(a
PivotField	object)	or	a	collection	of	all	the	fields	(a	PivotFields	object)	that	are
currently	showing	as	row	fields.	Read-only.

expression.RowFields(Index)

expression			Required.	An	expression	that	returns	a	PivotTable	object.

Index			Optional	Variant.	The	name	or	number	of	the	field	to	be	returned	(can
be	an	array	to	specify	more	than	one	field).

Example

This	example	adds	the	PivotTable	report’s	row	field	names	to	a	list	on	a	new
worksheet.

Set	nwSheet	=	Worksheets.Add

nwSheet.Activate

Set	pvtTable	=	Worksheets("Sheet2").Range("A1").PivotTable

rw	=	0

For	Each	pvtField	In	pvtTable.RowFields

				rw	=	rw	+	1

				nwSheet.Cells(rw,	1).Value	=	pvtField.Name

Next	pvtField

RowGrand	Property
							

True	if	the	PivotTable	report	shows	grand	totals	for	rows.	Read/write	Boolean.

Example

This	example	sets	the	PivotTable	report	to	show	grand	totals	for	rows.

Set	pvtTable	=	Worksheets("Sheet1").Range("A3").PivotTable

pvtTable.RowGrand	=	True

Show	All

RowHeight	Property
							

Returns	the	height	of	all	the	rows	in	the	range	specified,	measured	in	points.
Returns	Null	if	the	rows	in	the	specified	range	aren’t	all	the	same	height.
Read/write	Variant.

Remarks

For	a	single	row,	the	value	of	the	Height	property	is	equal	to	the	value	of	the
RowHeight	property.	However,	you	can	also	use	the	Height	property	to	return
the	total	height	of	a	range	of	cells.

Other	differences	between	RowHeight	and	Height	include	the	following:

Height	is	read-only.
If	you	return	the	RowHeight	property	of	several	rows,	you	will	either	get
the	row	height	of	each	of	the	rows	(if	all	the	rows	are	the	same	height)	or
Null	(if	they’re	different	heights).	If	you	return	the	Height	property	of
several	rows,	you	will	get	the	total	height	of	all	the	rows.

Example

This	example	doubles	the	height	of	row	one	on	Sheet1.

With	Worksheets("Sheet1").Rows(1)

				.RowHeight	=	.RowHeight	*	2

End	With

RowItems	Property
							

Returns	a	PivotItemList	collection	that	correspond	to	the	items	on	the	category
axis	that	represent	the	selected	cell.

expression.RowItems

expression			Required.	An	expression	that	returns	a	PivotCell	object.

Example

This	example	determines	if	the	data	item	in	cell	B5	is	under	the	Inventory	item
in	the	first	row	field	and	notifies	the	user.	The	example	assumes	a	PivotTable
exists	on	the	active	worksheet	and	that	column	B	of	the	worksheet	contains	a
row	item	of	the	PivotTable.

Sub	CheckRowItems()

				'	Determine	if	there	is	a	match	between	the	item	and	row	field.

				If	Application.Range("B5").PivotCell.RowItems.Item(1)	=	"Inventory"	Then

								MsgBox	"Cell	B5	is	a	member	of	the	'Inventory'	row	field.

				Else

								MsgBox	"Cell	B5	is	not	a	member	of	the	'Inventory'	row	field.

				End	If

End	Sub

RowNumbers	Property
							

True	if	row	numbers	are	added	as	the	first	column	of	the	specified	query	table.
Read/write	Boolean.

Remarks

Setting	this	property	to	True	doesn’t	immediately	cause	row	numbers	to	appear.
The	row	numbers	appear	the	next	time	the	query	table	is	refreshed,	and	they’re
reconfigured	every	time	the	query	table	is	refreshed.

Example

This	example	adds	row	numbers	and	field	names	to	the	query	table.

With	Worksheets(1).QueryTables("ExternalData1")

				.RowNumbers	=	True

				.FieldNames	=	True

				.Refresh

End	With

RowRange	Property
							

Returns	a	Range	object	that	represents	the	range	including	the	row	area	on	the
PivotTable	report.	Read-only.

Example

This	example	selects	the	row	headers	on	the	PivotTable	report.

Worksheets("Sheet1").Activate

Range("A3").Select

ActiveCell.PivotTable.RowRange.Select

Rows	Property
							

For	an	Application	object,	returns	a	Range	object	that	represents	all	the	rows	on
the	active	worksheet.	If	the	active	document	isn’t	a	worksheet,	the	Rows
property	fails.	For	a	Range	object,	returns	a	Range	object	that	represents	the
rows	in	the	specified	range.	For	a	Worksheet	object,	returns	a	Range	object	that
represents	all	the	rows	on	the	specified	worksheet.	Read-only	Range	object.

Remarks

For	information	about	returning	a	single	member	of	a	collection,	see	Returning
an	Object	from	a	Collection.

Using	this	property	without	an	object	qualifier	is	equivalent	to	using
ActiveSheet.Rows.

When	applied	to	a	Range	object	that’s	a	multiple	selection,	this	property	returns
rows	from	only	the	first	area	of	the	range.	For	example,	if	the	Range	object	has
two	areas	—	A1:B2	and	C3:D4	—	Selection.Rows.Count	returns	2,	not	4.	To
use	this	property	on	a	range	that	may	contain	a	multiple	selection,	test
Areas.Count	to	determine	whether	the	range	is	a	multiple	selection.	If	it	is,	loop
over	each	area	in	the	range,	as	shown	in	the	third	example.

Example

This	example	deletes	row	three	on	Sheet1.

Worksheets("Sheet1").Rows(3).Delete

This	example	deletes	rows	in	the	current	region	on	worksheet	one	where	the
value	of	cell	one	in	the	row	is	the	same	as	the	value	in	cell	one	in	the	previous
row.

For	Each	rw	In	Worksheets(1).Cells(1,	1).CurrentRegion.Rows

				this	=	rw.Cells(1,	1).Value

				If	this	=	last	Then	rw.Delete

				last	=	this

Next

This	example	displays	the	number	of	rows	in	the	selection	on	Sheet1.	If	more
than	one	area	is	selected,	the	example	loops	through	each	area.

Worksheets("Sheet1").Activate

areaCount	=	Selection.Areas.Count

If	areaCount	<=	1	Then

				MsgBox	"The	selection	contains	"	&	_

								Selection.Rows.Count	&	"	rows."

Else

				i	=	1

				For	Each	a	In	Selection.Areas

								MsgBox	"Area	"	&	i	&	"	of	the	selection	contains	"	&	_

												a.Rows.Count	&	"	rows."

								i	=	i	+	1

				Next	a

End	If

RTD	Property
							

Returns	an	RTD	object.

expression.RTD

expression			Required.	An	expression	that	returns	an	Application	object.

Saved	Property
							

True	if	no	changes	have	been	made	to	the	specified	workbook	since	it	was	last
saved.	Read/write	Boolean.

Remarks

If	a	workbook	has	never	been	saved,	its	Path	property	returns	an	empty	string
("").

You	can	set	this	property	to	True	if	you	want	to	close	a	modified	workbook
without	either	saving	it	or	being	prompted	to	save	it.

Example

This	example	displays	a	message	if	the	active	workbook	contains	unsaved
changes.

If	Not	ActiveWorkbook.Saved	Then

				MsgBox	"This	workbook	contains	unsaved	changes."

End	If

This	example	closes	the	workbook	that	contains	the	example	code	and	discards
any	changes	to	the	workbook	by	setting	the	Saved	property	to	True.

ThisWorkbook.Saved	=	True

ThisWorkbook.Close

Show	All

SaveData	Property
							

True	if	data	for	the	PivotTable	report	is	saved	with	the	workbook.	False	if	only
the	report	definition	is	saved.	Read/write	Boolean.

Remarks

For	OLAP	data	sources,	this	property	is	always	set	to	False.

Example

This	example	sets	the	PivotTable	report	to	save	data	with	the	workbook.

Set	pvtTable	=	Worksheets("Sheet1").Range("A3").PivotTable

pvtTable.SaveData	=	True

SaveHiddenData	Property
							

True	if	data	outside	of	the	specified	range	is	saved	when	you	save	the	document
as	a	Web	page.	This	data	may	be	necessary	for	maintaining	formulas.	False	if
data	outside	of	the	specified	range	is	not	saved	with	the	Web	page.	The	default
value	is	True.	Read/write	Boolean.

Remarks

If	you	choose	not	to	save	data	outside	of	the	specified	range,	references	to	that
data	in	the	formula	are	converted	to	static	values.	If	the	data	is	in	another	sheet
or	workbook,	the	result	of	the	formula	is	saved	as	a	static	value.

Example

This	example	prevents	hidden	data	from	being	saved	with	Web	pages.

Application.DefaultWebOptions.SaveHiddenData	=	False

SaveLinkValues	Property
							

True	if	Microsoft	Excel	saves	external	link	values	with	the	workbook.
Read/write	Boolean.

Example

This	example	causes	Microsoft	Excel	to	save	external	link	values	with	the	active
workbook.

ActiveWorkbook.SaveLinkValues	=	True

SaveNewWebPagesAsWebArchives
Property
							

True	if	new	Web	pages	can	be	saved	as	Web	archives.	Read/write	Boolean.

expression.SaveNewWebPagesAsWebArchives

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

Example

In	this	example,	Microsoft	Excel	determines	the	settings	for	saving	new	Web
pages	as	Web	archives	and	notifies	the	user.

Sub	DetermineSettings()

				'	Determine	settings	and	notify	user.

				If	Application.DefaultWebOptions.SaveNewWebPagesAsWebArchives	=	True	Then

								MsgBox	"New	Web	pages	will	be	saved	as	Web	archives."

				Else

								MsgBox	"New	Web	pages	will	not	be	saved	as	Web	archives."

				End	If

End	Sub

SavePassword	Property
							

True	if	password	information	in	an	ODBC	connection	string	is	saved	with	the
specified	query.	False	if	the	password	is	removed.	Read/write	Boolean.

Remarks

This	property	affects	only	ODBC	queries.

Example

This	example	causes	password	information	to	be	removed	from	the	ODBC
connection	string	whenever	query	table	one	is	saved.

Worksheets(1).QueryTables(1).SavePassword	=	False

ScaleType	Property
							

Returns	or	sets	the	value	axis	scale	type.	Read/write	XlScaleType.

XlScaleType	can	be	one	of	these	XlScaleType	constants.
xlScaleLinear
xlScaleLogarithmic

expression.ScaleType

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

Remarks

A	logarithmic	scale	uses	base	10	logarithms.

Example

This	example	sets	the	value	axis	in	Chart1	to	use	a	logarithmic	scale.

Charts("Chart1").Axes(xlValue).ScaleType	=	xlScaleLogarithmic

Show	All

SchemeColor	Property
							

SchemeColor	property	as	it	applies	to	the	ColorFormat	object.

Returns	or	sets	the	color	of	a	Color	object	as	an	index	in	the	current	color
scheme.	Read/write	Integer.

expression.SchemeColor

expression			Required.	An	expression	that	returns	one	of	the	above	objects.

	

SchemeColor	property	as	it	applies	to	the	ChartColorFormat	object.

Returns	or	sets	the	color	of	a	Color	object	as	an	index	in	the	current	color
scheme.	Read/write	Long.

expression.SchemeColor

expression			Required.	An	expression	that	returns	one	of	the	above	objects.

	

Example

This	example	sets	the	foreground	color,	background	color,	and	gradient	for	the
chart	area	fill	on	chart	one.

With	Charts(1).ChartArea.Fill

				.Visible	=	True

				.ForeColor.SchemeColor	=	15

				.BackColor.SchemeColor	=	17

				.TwoColorGradient	msoGradientHorizontal,	1

End	With

ScreenSize	Property
							

Returns	or	sets	the	ideal	minimum	screen	size	(width	by	height,	in	pixels)	that
you	should	use	when	viewing	the	saved	document	in	a	Web	browser.	Can	be	one
of	the	MsoScreenSize	constants	listed	below.	The	default	constant	is
msoScreenSize800x600.	Read/write	MsoScreenSize.

MsoScreenSize	can	be	one	of	these	MsoScreenSize	constants.
msoScreenSize1152x882
msoScreenSize1280x1024
msoScreenSize1800x1440
msoScreenSize544x376
msoScreenSize720x512
msoScreenSize1024x768
msoScreenSize1152x900
msoScreenSize1600x1200
msoScreenSize1920x1200
msoScreenSize640x480
msoScreenSize800x600

expression.ScreenSize

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

Example

This	example	sets	the	target	screen	size	at	800x600	pixels.

Application.DefaultWebOptions.ScreenSize	=	_

				msoScreenSize800x600

ScreenTip	Property
							

Returns	or	sets	the	ScreenTip	text	for	the	specified	hyperlink.	Read/write	String.

Remarks

After	the	document	has	been	saved	to	a	Web	page,	the	ScreenTip	text	may
appear	(for	example)	when	the	mouse	pointer	is	positioned	over	the	hyperlink
while	the	document	is	being	viewed	in	a	Web	browser.	Some	Web	browsers	may
not	support	ScreenTips.

Example

This	example	sets	the	screen	tip	for	the	first	hyperlink	on	the	active	worksheet.

ActiveSheet.Hyperlinks(1).ScreenTip	=	"Return	to	the	home	page"

ScreenUpdating	Property
							

True	if	screen	updating	is	turned	on.	Read/write	Boolean.

Remarks

Turn	screen	updating	off	to	speed	up	your	macro	code.	You	won't	be	able	to	see
what	the	macro	is	doing,	but	it	will	run	faster.

Remember	to	set	the	ScreenUpdating	property	back	to	True	when	your	macro
ends.

Example

This	example	demonstrates	how	turning	off	screen	updating	can	make	your	code
run	faster.	The	example	hides	every	other	column	on	Sheet1,	while	keeping	track
of	the	time	it	takes	to	do	so.	The	first	time	the	example	hides	the	columns,	screen
updating	is	turned	on;	the	second	time,	screen	updating	is	turned	off.	When	you
run	this	example,	you	can	compare	the	respective	running	times,	which	are
displayed	in	the	message	box.

Dim	elapsedTime(2)

Application.ScreenUpdating	=	True

For	i	=	1	To	2

				If	i	=	2	Then	Application.ScreenUpdating	=	False

				startTime	=	Time

				Worksheets("Sheet1").Activate

				For	Each	c	In	ActiveSheet.Columns

								If	c.Column	Mod	2	=	0	Then

												c.Hidden	=	True

								End	If

				Next	c

				stopTime	=	Time

				elapsedTime(i)	=	(stopTime	-	startTime)	*	24	*	60	*	60

Next	i

Application.ScreenUpdating	=	True

MsgBox	"Elapsed	time,	screen	updating	on:	"	&	elapsedTime(1)	&	_

								"	sec."	&	Chr(13)	&	_

								"Elapsed	time,	screen	updating	off:	"	&	elapsedTime(2)	&	_

								"	sec."

Script	Property
							

Returns	the	Script	object,	which	represents	a	block	of	script	or	code	on	the
specified	Web	page.	If	the	page	contains	no	script,	nothing	is	returned.

expression.Script

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

Example

This	example	displays	the	type	of	scripting	language	used	in	the	first	shape	on
the	active	worksheet.

Set	objScr	=	ActiveSheet.Shapes(1).Script

If	Not	(objScr	Is	Nothing)	Then

				Select	Case	objScr.Language

								Case	msoScriptLanguageVisualBasic

												MsgBox	"VBScript"

								Case	msoScriptLanguageJava

												MsgBox	"JavaScript"

								Case	msoScriptLanguageASP

												MsgBox	"Active	Server	Pages"

								Case	Else

												Msgbox	"Other	scripting	language"

				End	Select

End	If

Scripts	Property
							

Returns	the	Scripts	collection,	which	contains	Script	objects	representing
blocks	of	script	or	code	in	the	specified	document	when	it’s	saved	as	a	Web
page.

expression.Scripts

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

Example

This	example	adds	a	new	VBScript	block	to	the	Scripts	collection	on	the	active
worksheet.

Set	objScrs	=	ActiveSheet.Scripts

Set	objNewScr	=	objScrs.Add

objNewScr.Language	=	msoScriptLanguageVisualBasic

ScrollArea	Property
							

Returns	or	sets	the	range	where	scrolling	is	allowed,	as	an	A1-style	range
reference.	Cells	outside	the	scroll	area	cannot	be	selected.	Read/write	String.

Remarks

Set	this	property	to	the	empty	string	("")	to	enable	cell	selection	for	the	entire
sheet.

Example

This	example	sets	the	scroll	area	for	worksheet	one.

Worksheets(1).ScrollArea	=	"a1:f10"

ScrollColumn	Property
							

Returns	or	sets	the	number	of	the	leftmost	column	in	the	pane	or	window.
Read/write	Long.

Remarks

If	the	window	is	split,	the	ScrollColumn	property	of	the	Window	object	refers
to	the	upper-left	pane.	If	the	panes	are	frozen,	the	ScrollColumn	property	of	the
Window	object	excludes	the	frozen	areas.

Example

This	example	moves	column	three	so	that	it's	the	leftmost	column	in	the	window.

Worksheets("Sheet1").Activate

ActiveWindow.ScrollColumn	=	3

ScrollRow	Property
							

Returns	or	sets	the	number	of	the	row	that	appears	at	the	top	of	the	pane	or
window.	Read/write	Long.

Remarks

If	the	window	is	split,	the	ScrollRow	property	of	the	Window	object	refers	to
the	upper-left	pane.	If	the	panes	are	frozen,	the	ScrollRow	property	of	the
Window	object	excludes	the	frozen	areas.

Example

This	example	moves	row	ten	to	the	top	of	the	window.

Worksheets("Sheet1").Activate

ActiveWindow.ScrollRow	=	10

SecondaryPlot	Property
							

True	if	the	point	is	in	the	secondary	section	of	either	a	pie	of	pie	chart	or	a	bar	of
pie	chart.	Applies	only	to	points	on	pie	of	pie	charts	or	bar	of	pie	charts.
Read/write	Boolean.

Example

This	example	must	be	run	on	either	a	pie	of	pie	chart	or	a	bar	of	pie	chart.	The
example	moves	point	four	to	the	secondary	section	of	the	chart.

With	Worksheets(1).ChartObjects(1).Chart.SeriesCollection(1)

				.Points(4).SecondaryPlot	=	True

End	With

SecondPlotSize	Property
							

Returns	or	sets	the	size	of	the	secondary	section	of	either	a	pie	of	pie	chart	or	a
bar	of	pie	chart,	as	a	percentage	of	the	size	of	the	primary	pie.	Can	be	a	value
from	5	to	200.	Read/write	Long.

Example

This	example	must	be	run	on	either	a	pie	of	pie	chart	or	a	bar	of	pie	chart.	The
example	splits	the	two	sections	of	the	chart	by	value,	combining	all	values	under
10	in	the	primary	pie	and	displaying	them	in	the	secondary	section.	The
secondary	section	is	50	percent	of	the	size	of	the	primary	pie.

With	Worksheets(1).ChartObjects(1).Chart.ChartGroups(1)

				.SplitType	=	xlSplitByValue

				.SplitValue	=	10

				.VaryByCategories	=	True

				.SecondPlotSize	=	50

End	With

Show	All

SegmentType	Property
							

Returns	a	value	that	indicates	whether	the	segment	associated	with	the	specified
node	is	straight	or	curved.	If	the	specified	node	is	a	control	point	for	a	curved
segment,	this	property	returns	msoSegmentCurve.	Read-only
MsoSegmentType.

MsoSegmentType	can	be	one	of	these	MsoSegmentType	constants.
msoSegmentCurve
msoSegmentLine

expression.SegmentType

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

Remarks

Use	the	SetSegmentType	method	to	set	the	value	of	this	property.

Example

This	example	changes	all	straight	segments	to	curved	segments	in	shape	three	on
myDocument.	Shape	three	must	be	a	freeform	drawing.

Set	myDocument	=	Worksheets(1)

With	myDocument.Shapes(3).Nodes

				n	=	1

				While	n	<=	.Count

								If	.Item(n).SegmentType	=	msoSegmentLine	Then

												.SetSegmentType	n,	msoSegmentCurve

								End	If

								n	=	n	+	1

				Wend

End	With

SelectedSheets	Property
							

Returns	a	Sheets	collection	that	represents	all	the	selected	sheets	in	the	specified
window.	Read-only.

For	information	about	returning	a	single	member	of	a	collection,	see	Returning
an	Object	from	a	Collection.

Example

This	example	displays	a	message	if	Sheet1	is	selected	in	Book1.xls.

For	Each	sh	In	Workbooks("BOOK1.XLS").Windows(1).SelectedSheets

				If	sh.Name	=	"Sheet1"	Then

								MsgBox	"Sheet1	is	selected"

								Exit	For

				End	If

Next

Selection	Property
							

Returns	the	selected	object	in	the	active	window,	for	an	Application	object,	and
a	specified	window,	for	a	Windows	object.

Remarks

The	returned	object	type	depends	on	the	current	selection	(for	example,	if	a	cell
is	selected,	this	property	returns	a	Range	object).	The	Selection	property	returns
Nothing	if	nothing	is	selected.

Using	this	property	with	no	object	qualifier	is	equivalent	to	using
Application.Selection.

Example

This	example	clears	the	selection	on	Sheet1	(assuming	that	the	selection	is	a
range	of	cells).

Worksheets("Sheet1").Activate

Selection.Clear

This	example	displays	the	Visual	Basic	object	type	of	the	selection.

Worksheets("Sheet1").Activate

MsgBox	"The	selection	object	type	is	"	&	TypeName(Selection)

SelectionMode	Property
							

Returns	or	sets	the	PivotTable	report	structured	selection	mode.	Read/write
XlPTSelectionMode.

XlPTSelectionMode	can	be	one	of	these	XlPTSelectionMode	constants.
xlBlanks
xlButton
xlDataAndLabel
xlDataOnly
xlFirstRow
xlLabelOnly
xlOrigin

expression.SelectionMode

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

Remarks

If	the	PivotTable	field	isn’t	in	outline	form,	specifying	the	sum	of	any	of	the
constants	and	xlFirstRow	is	equivalent	to	specifying	the	constant	alone.

Example

This	example	enables	structured	selection	mode	and	then	sets	the	first	PivotTable
report	on	worksheet	one	to	allow	only	data	to	be	selected.

Application.PivotTableSelection	=	True

Worksheets(1).PivotTables(1).SelectionMode	=	xlDataOnly

In	this	example,	the	PivotTable	report	is	in	outline	form.

Application.PivotTableSelection	=	True

Worksheets(1).PivotTables(1).SelectionMode	=	_

				xlDataOnly	+	xlFirstRow

Separator	Property
							

Sets	or	returns	a	Variant	representing	the	separator	used	for	the	data	labels	on	a
chart.	Read/write.

expression.Separator

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

Remarks

The	chart	must	first	be	active	before	you	can	access	the	data	labels
programmatically	otherwise	a	run-time	error	occurs.

Example

This	example	sets	the	data	label	separator	for	the	first	series	on	the	first	chart	to	a
semicolon.	This	example	assumes	a	chart	exists	on	the	active	worksheet.

Sub	ChangeSeparator()

				ActiveSheet.ChartObjects(1).Activate

				ActiveChart.SeriesCollection(1)	_

								.DataLabels.Separator	=	";"

End	Sub

SeriesLines	Property
							

Returns	a	SeriesLines	object	that	represents	the	series	lines	for	a	stacked	bar
chart	or	a	stacked	column	chart.	Applies	only	to	stacked	bar	and	stacked	column
charts.	Read-only.

Example

This	example	turns	on	series	lines	for	chart	group	one	in	Chart1	and	then	sets
their	line	style,	weight,	and	color.	The	example	should	be	run	on	a	2-D	stacked
column	chart	that	has	two	or	more	series.

With	Charts("Chart1").ChartGroups(1)

				.HasSeriesLines	=	True

				With	.SeriesLines.Border

								.LineStyle	=	xlThin

								.Weight	=	xlMedium

								.ColorIndex	=	3

				End	With

End	With

Show	All

ServerBased	Property
							

True	if	the	data	source	for	the	specified	PivotTable	report	is	external	and	only
the	items	matching	the	page	field	selection	are	retrieved.	Read/write	Boolean.

This	property	doesn’t	apply	to	OLAP	data	sources	and	is	always	False.

When	this	property	is	True,	only	records	in	the	database	that	match	the	selected
page	field	item	are	retrieved.	From	then	on,	whenever	the	user	changes	the	page
field	selection,	the	newly	selected	page	field	item	is	passed	to	the	query	as	a
parameter,	and	the	cache	is	refreshed.

This	property	cannot	be	set	if	any	of	the	following	conditions	are	true:

The	field	is	grouped.
The	data	source	isn’t	external.
The	cache	is	shared	by	two	or	more	PivotTable	reports.
The	field	is	a	data	type	that	cannot	be	server	based	(a	memo	field	or	an
OLE	object).

Example

This	example	lists	all	the	server-based	page	fields.

For	Each	fld	in	ActiveSheet.PivotTables(1).PageFields

				If	fld.ServerBased	=	True	Then

								r	=	r	+	1

								Worksheets(2).Cells(r,	1).Value	=	fld.Name

				End	If

Next

Shadow	Property
							

True	if	the	font	is	a	shadow	font	or	if	the	object	has	a	shadow.	Read/write
Boolean.

Remarks

For	the	Font	object,	this	property	has	no	effect	in	Microsoft	Windows,	but	its
value	is	retained	(it	can	be	set	and	returned).

Example

This	example	adds	a	shadow	to	the	title	of	myChart.

Charts("Chart1").ChartTitle.Shadow	=	True

Shape	Property
							

Returns	a	Shape	object	that	represents	the	shape	attached	to	the	specified
comment,	diagram	node,	or	hyperlink.

expression.Shape

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

Example

This	example	selects	comment	two	on	the	active	sheet.

ActiveSheet.Comments(2).Shape.Select

ShapeRange	Property
							

Returns	a	ShapeRange	object	that	represents	the	specified	object	or	objects.
Read-only.

Example

This	example	creates	a	shape	range	that	represents	the	embedded	charts	on
worksheet	one.

Set	sr	=	Worksheets(1).ChartObjects.ShapeRange

Shapes	Property
							

Returns	a	Shapes	object	that	represents	all	the	shapes	on	the	worksheet	or	chart
sheet.	Read-only.

For	information	about	returning	a	single	member	of	a	collection,	see	Returning
an	Object	from	a	Collection.

Example

This	example	adds	a	blue	dashed	line	to	worksheet	one.

With	Worksheets(1).Shapes.AddLine(10,	10,	250,	250).Line

				.DashStyle	=	msoLineDashDotDot

				.ForeColor.RGB	=	RGB(50,	0,	128)

End	With

Sheet	Property
							

Returns	the	sheet	name	for	the	specified	PublishObject	object.	Read-only
String.

Example

This	example	determines	the	name	of	the	worksheet	that	contains	the	first
PublishObject	object	that	is	saved	as	static	HTML	in	the	Web	page.	The
example	then	sets	the	Boolean	variable	blnSheetFound	to	True.	If	no	items	in
the	document	have	been	saved	as	static	HTML,	blnSheetFound	is	False.

blnSheetFound	=	False

For	Each	objPO	In	Workbooks(1).PublishObjects

				If	objPO.HtmlType	=	xlHTMLStatic	Then

								strFirstPO	=	objPO.Sheet

								blnSheetFound	=	True

								Exit	For

				End	If

Next	objPO

Sheets	Property
							

Returns	a	Sheets	collection	that	represents	all	the	sheets	in	the	active	workbook,
for	an	Application	object.	Returns	a	Sheets	collection	that	represents	all	the
sheets	in	the	specified	workbook,	for	a	Workbook	object.	Read-only	Sheets
object.

Remarks

For	information	about	returning	a	single	member	of	a	collection,	see	Returning
an	Object	from	a	Collection.

Using	this	property	without	an	object	qualifier	is	equivalent	to	using
ActiveWorkbook.Sheets.

Example

This	example	creates	a	new	worksheet	and	then	places	a	list	of	the	active
workbook's	sheet	names	in	the	first	column.

Set	newSheet	=	Sheets.Add(Type:=xlWorksheet)

For	i	=	1	To	Sheets.Count

				newSheet.Cells(i,	1).Value	=	Sheets(i).Name

Next	i

SheetsInNewWorkbook	Property
							

Returns	or	sets	the	number	of	sheets	that	Microsoft	Excel	automatically	inserts
into	new	workbooks.	Read/write	Long.

Example

This	example	displays	the	number	of	sheets	automatically	inserted	into	new
workbooks.

MsgBox	"Microsoft	Excel	inserts	"	&	_

				Application.SheetsInNewWorkbook	&	_

				"	sheet(s)	in	each	new	workbook"

ShortcutKey	Property
							

Returns	or	sets	the	shortcut	key	for	a	name	defined	as	a	custom	Microsoft	Excel
4.0	macro	command.	Read/write	String.

Example

This	example	sets	the	shortcut	key	for	name	one	in	the	active	workbook.	The
example	should	be	run	on	a	workbook	in	which	name	one	refers	to	a	Microsoft
Excel	4.0	command	macro.

ActiveWorkbook.Names(1).ShortcutKey	=	"K"

Show	All

ShowAllItems	Property
							

True	if	all	items	in	the	PivotTable	report	are	displayed,	even	if	they	don’t
contain	summary	data.	The	default	value	is	False.	Read/write	Boolean.

Remarks

For	OLAP	data	sources,	the	value	is	always	False.

Example

This	example	displays	all	rows	for	the	Month	field	in	the	first	PivotTable	report
on	worksheet	one,	including	months	for	which	there’s	no	data.

Worksheets(1).PivotTables("Pivot1")	_

				.PivotFields("Month").ShowAllItems	=	True

ShowBubbleSize	Property
							

True	to	show	the	bubble	size	for	the	data	labels	on	a	chart.	False	to	hide.
Read/write	Boolean.

expression.ShowBubbleSize

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

Remarks

The	chart	must	first	be	active	before	you	can	access	the	data	labels
programmatically	or	a	run-time	error	will	occur.

Example

This	example	shows	the	bubble	size	for	the	data	labels	of	the	first	series	on	the
first	chart.	This	example	assumes	a	chart	exists	on	the	active	worksheet.

Sub	UseBubbleSize()

				ActiveSheet.ChartObjects(1).Activate

				ActiveChart.SeriesCollection(1)	_

								.DataLabels.ShowBubbleSize	=	True

End	Sub

ShowCategoryName	Property
							

True	to	display	the	category	name	for	the	data	labels	on	a	chart.	False	to	hide.
Read/write	Boolean.

expression.ShowCategoryName

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

Remarks

The	chart	must	first	be	active	before	you	can	access	the	data	labels
programmatically	or	a	run-time	error	will	occur.

Example

This	example	shows	the	category	name	for	the	data	labels	of	the	first	series	on
the	first	chart.	This	example	assumes	a	chart	exists	on	the	active	worksheet.

Sub	UseCategoryName()

				ActiveSheet.ChartObjects(1).Activate

				ActiveChart.SeriesCollection(1)	_

								.DataLabels.ShowCategoryName	=	True

End	Sub

ShowChartTipNames	Property
							

True	if	charts	show	chart	tip	names.	The	default	value	is	True.	Read/write
Boolean.

Example

This	example	turns	off	chart	tip	names	and	values.

With	Application

				.ShowChartTipNames	=	False

				.ShowChartTipValue	=	False

End	With

ShowChartTipValues	Property
							

True	if	charts	show	chart	tip	values.	The	default	value	is	True.	Read/write
Boolean.

Example

This	example	turns	off	chart	tip	names	and	values.

With	Application

				.ShowChartTipNames	=	False

				.ShowChartTipValue	=	False

End	With

ShowConflictHistory	Property
							

True	if	the	Conflict	History	worksheet	is	visible	in	the	workbook	that's	open	as	a
shared	list.	Read/write	Boolean.

Remarks

If	the	specified	workbook	isn't	open	as	a	shared	list,	this	property	fails.	To
determine	whether	a	workbook	is	open	as	a	shared	list,	use	the
MultiUserEditing	property.

Example

This	example	determines	whether	the	active	workbook	is	open	as	a	shared	list.	If
it	is,	the	example	displays	the	Conflict	History	worksheet.

If	ActiveWorkbook.MultiUserEditing	Then

				ActiveWorkbook.ShowConflictHistory	=	True

End	If

Show	All

ShowDetail	Property
							

True	if	the	outline	is	expanded	for	the	specified	range	(so	that	the	detail	of	the
column	or	row	is	visible).	The	specified	range	must	be	a	single	summary	column
or	row	in	an	outline.	Read/write	Variant.

For	the	PivotItem	object	(or	the	Range	object	if	the	range	is	in	a	PivotTable
report),	this	property	is	set	to	True	if	the	item	is	showing	detail.

Remarks

This	property	isn’t	available	for	OLAP	data	sources.

If	the	specified	range	isn’t	in	a	PivotTable	report,	the	following	statements	are
true:

The	range	must	be	in	a	single	summary	row	or	column.
This	property	returns	False	if	any	of	the	children	of	the	row	or	column	are
hidden.
Setting	this	property	to	True	is	equivalent	to	unhiding	all	the	children	of	the
summary	row	or	column.
Setting	this	property	to	False	is	equivalent	to	hiding	all	the	children	of	the
summary	row	or	column.

If	the	specified	range	is	in	a	PivotTable	report,	it’s	possible	to	set	this	property
for	more	than	one	cell	at	a	time	if	the	range	is	contiguous.	This	property	can	be
returned	only	if	the	range	is	a	single	cell.

Example

This	example	shows	detail	for	the	summary	row	of	an	outline	on	Sheet1.	Before
running	this	example,	create	a	simple	outline	that	contains	a	single	summary
row,	and	then	collapse	the	outline	so	that	only	the	summary	row	is	showing.
Select	one	of	the	cells	in	the	summary	row,	and	then	run	the	example.

Worksheets("Sheet1").Activate

Set	myRange	=	ActiveCell.CurrentRegion

lastRow	=	myRange.Rows.Count

myRange.Rows(lastRow).ShowDetail	=	True

ShowError	Property
							

True	if	the	data	validation	error	message	will	be	displayed	whenever	the	user
enters	invalid	data.	Read/write	Boolean.

Example

This	example	adds	data	validation	to	cell	A10	on	worksheet	one.	The	input	value
must	be	from	5	through	10;	if	the	user	types	invalid	data,	an	error	message	is
displayed	but	no	input	message	is	displayed.

With	Worksheets(1).Range("A10").Validation

				.Add	Type:=xlValidateWholeNumber,	_

								AlertStyle:=xlValidAlertStop,	_

								Operator:=xlBetween,	Formula1:="5",	_

								Formula2:="10"

				.ErrorMessage	=	"value	must	be	between	5	and	10"

				.ShowInput	=	False

				.ShowError	=	True

End	With

ShowInFieldList	Property
							

When	set	to	True	(default),	a	CubeField	object	will	be	shown	in	the	field	list.
Read/write	Boolean.

expression.ShowInFieldList

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

Example

In	this	example,	Microsoft	Excel	determines	if	a	CubeField	object	can	be	shown
in	the	Field	list	and	notifies	the	user.	This	example	assumes	a	PivotTable	report
exists	on	the	active	worksheet	and	a	CubeField	object	exists.

Sub	IsCubeFieldInList()

				Dim	pvtTable	As	PivotTable

				Dim	cbeField	As	CubeField

				Set	pvtTable	=	ActiveSheet.PivotTables(1)

				Set	cbeField	=	pvtTable.CubeFields("[Country]")

				'	Determine	if	a	CubeField	can	be	seen.

				If	cbeField.ShowInFieldList	=	True	Then

								MsgBox	"The	CubeField	object	can	be	seen	in	the	field	list."

				Else

								MsgBox	"The	CubeField	object	cannot	be	seen	in	the	field	list."

				End	If

End	Sub

ShowInput	Property
							

True	if	the	data	validation	input	message	will	be	displayed	whenever	the	user
selects	a	cell	in	the	data	validation	range.	Read/write	Boolean.

Example

This	example	adds	data	validation	to	cell	A10.	The	input	value	must	be	from	5
through	10;	if	the	user	types	invalid	data,	an	error	message	is	displayed	but	no
input	message	is	displayed.

With	Worksheets(1).Range("A10").Validation

				.Add	Type:=xlValidateWholeNumber,	_

								AlertStyle:=xlValidAlertStop,	_

								Operator:=xlBetween,	Formula1:="5",	_

								Formula2:="10"

				.ErrorMessage	=	"value	must	be	between	5	and	10"

				.ShowInput	=	False

				.ShowError	=	True

End	With

ShowLegendKey	Property
							

True	if	the	data	label	legend	key	is	visible.	Read/write	Boolean.

Example

This	example	sets	the	data	labels	for	series	one	in	Chart1	to	show	values	and	the
legend	key.

With	Charts("Chart1").SeriesCollection(1).DataLabels

				.ShowLegendKey	=	True

				.Type	=	xlShowValue

End	With

ShowNegativeBubbles	Property
							

True	if	negative	bubbles	are	shown	for	the	chart	group.	Valid	only	for	bubble
charts.	Read/write	Boolean.

Example

This	example	makes	negative	bubbles	visible	for	chart	group	one.

Worksheets(1).ChartObjects(1).Chart	_

				.ChartGroups(1).ShowNegativeBubbles	=	True

ShowPageMultipleItemLabel
Property
							

When	set	to	True	(default),	"(Multiple	Items)"	will	appear	in	the	PivotTable	cell
on	the	worksheet	whenever	items	are	hidden	and	an	aggregate	of	non-hidden
items	is	shown	in	the	PivotTable	view.	Read/write	Boolean.

expression.ShowPageMultipleItemLabel

expression			Required.	An	expression	that	returns	a	PivotTable	object.

Example

This	example	determines	if	"(Multiple	Items)"	will	be	displayed	in	the
PivotTable	cell	and	notifies	the	user.		The	example	assumes	that	a	PivotTable
exists	on	the	active	worksheet.

Sub	UseShowPageMultipleItemLabel()

				Dim	pvtTable	As	PivotTable

				Set	pvtTable	=	ActiveSheet.PivotTables(1)

				'	Determine	if	multiple	items	are	allowed.

				If	pvtTable.ShowPageMultipleItemLabel	=	True	Then

								MsgBox	"The	words	'Multiple	Items'	can	be	displayed."

				Else

								MsgBox	"The	words	'Multiple	Items'	cannot	be	displayed."

				End	If

End	Sub

ShowPercentage	Property
							

True	to	display	the	percentage	value	for	the	data	labels	on	a	chart.	False	to	hide.
Read/write	Boolean.

expression.ShowPercentage

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

Remarks

The	chart	must	first	be	active	before	you	can	access	the	data	labels
programmatically	or	a	run-time	error	will	occur.

Example

This	example	enables	the	percentage	value	to	be	shown	for	the	data	labels	of	the
first	series	on	the	first	chart.	This	example	assumes	a	chart	exists	on	the	active
worksheet.

Sub	UsePercentage()

				ActiveSheet.ChartObjects(1).Activate

				ActiveChart.SeriesCollection(1)	_

								.DataLabels.ShowPercentage	=	True

End	Sub

ShowPivotTableFieldList	Property
							

True	(default)	if	the	PivotTable	field	list	can	be	shown.	Read/write	Boolean.

expression.ShowPivotTableFieldList

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

Example

In	this	example,	Microsoft	Excel	determines	if	the	PivotTable	field	list	can	be
shown	and	notifies	the	user.

Sub	UseShowPivotTableFieldList()

				Dim	wkbOne	As	Workbook

				Set	wkbOne	=	Application.ActiveWorkbook

				'Determine	PivotTable	field	list	setting.

				If	wkbOne.ShowPivotTableFieldList	=	True	Then

								MsgBox	"The	PivotTable	field	list	can	be	viewed."

				Else

								MsgBox	"The	PivotTable	field	list	cannot	be	viewed."

				End	If

End	Sub

ShowSeriesName	Property
							

Returns	or	sets	a	Boolean	to	indicate	the	series	name	display	behavior	for	the
data	labels	on	a	chart.	True	to	show	the	series	name.	False	to	hide.	Read/write.

expression.ShowSeriesName

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

Remarks

The	chart	must	first	be	active	before	you	can	access	the	data	labels
programmatically	or	a	run-time	error	will	occur.

Example

This	example	enables	the	series	name	to	be	shown	for	the	data	labels	of	the	first
series	on	the	first	chart.	This	example	assumes	a	chart	exists	on	the	active
worksheet.

Sub	UseSeriesName()

				ActiveSheet.ChartObjects(1).Activate

				ActiveChart.SeriesCollection(1)	_

								.DataLabels.ShowSeriesName	=	True

End	Sub

ShowStartupDialog	Property
							

Returns	True	(default)	when	the	New	Workbook	task	pane	appears	for	a
Microsoft	Excel	application.	Read/write	Boolean.

expression.ShowStartupDialog

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

Example

In	this	example,	Microsoft	Excel	determines	if	the	New	Workbook	task	pane
appears	and	notifies	the	user.

Sub	CheckStartupDialog()

				'	Determine	if	the	New	Workbook	task	pane	is	enabled.

				If	Application.ShowStartupDialog	=	False	Then

								MsgBox	"ShowStartupDialog	is	set	to	False."

				Else

								MsgBox	"ShowStartupDialog	is	set	to	True."

				End	If

End	Sub

ShowToolTips	Property
							

True	if	ToolTips	are	turned	on.	Read/write	Boolean.

Example

This	example	causes	Microsoft	Excel	to	display	ToolTips.

Application.ShowToolTips	=	True

ShowValue	Property
							

Returns	or	sets	a	Boolean	corresponding	to	a	specified	chart's	data	label	values
display	behavior.	True	displays	the	values.	False	to	hide.	Read/write.

expression.ShowValue

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

Remarks

The	specified	chart	must	first	be	active	before	you	can	access	the	data	labels
programmatically	or	a	run-time	error	will	occur.

Example

This	example	enables	the	value	to	be	shown	for	the	data	labels	of	the	first	series,
on	the	first	chart.	This	example	assumes	a	chart	exists	on	the	active	worksheet.

Sub	UseValue()

				ActiveSheet.ChartObjects(1).Activate

				ActiveChart.SeriesCollection(1)	_

								.DataLabels.ShowValue	=	True

End	Sub

ShowWindow	Property
							

True	if	the	embedded	chart	is	displayed	in	a	separate	window.	The	Chart	object
used	with	this	property	must	refer	to	an	embedded	chart.	Read/write	Boolean.

Example

This	example	causes	the	embedded	chart	to	be	displayed	in	a	separate	window.

Worksheets(1).ChartObjects(1).Chart.ShowWindow	=	True

ShowWindowsInTaskbar	Property
							

True	if	there’s	a	separate	Windows	taskbar	button	for	each	open	workbook.	The
default	value	is	True.	Read/write	Boolean.

expression.ShowWindowsInTaskbar

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

Remarks

When	set	to	True,	this	property	simulates	the	look	of	a	single-document
interface	(SDI),	which	makes	it	easier	to	navigate	among	open	workbooks.
However,	if	you	work	with	multiple	workbooks	while	other	applications	are
open,	you	may	want	to	set	this	property	to	False	to	avoid	filling	your	taskbar
with	unnecessary	buttons.

Example

This	example	specifies	that	each	open	workbook	won’t	have	a	separate	Windows
taskbar	button.

Application.ShowWindowsInTaskbar	=	False

Show	All

ShrinkToFit	Property
							

ShrinkToFit	property	as	it	applies	to	the	Style	object.

True	if	text	automatically	shrinks	to	fit	in	the	available	column	width.
Read/write	Boolean.

expression.ShrinkToFit

expression			Required.	An	expression	that	returns	a	Style	object.

ShrinkToFit	property	as	it	applies	to	the	CellFormat	and	Range	objects.

True	if	text	automatically	shrinks	to	fit	in	the	available	column	width.	Returns
Null	if	this	property	isn’t	set	to	the	same	value	for	all	cells	in	the	specified	range.
Read/write	Variant.

expression.ShrinkToFit

expression			Required.	An	expression	that	returns	one	of	the	above	objects.

Example

This	example	causes	text	in	row	one	to	automatically	shrink	to	fit	in	the
available	column	width.

Rows(1).ShrinkToFit	=	True

Size	Property
							

Returns	or	sets	the	size	of	the	font.	Read/write	Variant.

Example

This	example	sets	the	font	size	for	cells	A1:D10	on	Sheet1	to	12	points.

With	Worksheets("Sheet1").Range("A1:D10")

				.Value	=	"Test"

				.Font.Size	=	12

End	With

SizeRepresents	Property
							

Returns	or	sets	what	the	bubble	size	represents	on	a	bubble	chart.	Can	be	either
of	the	following	XlSizeRepresents	constants:	xlSizeIsArea	or	xlSizeIsWidth.
Read/write	Long.

Example

This	example	sets	what	the	bubble	size	represents	for	chart	group	one.

Charts(1).ChartGroups(1).SizeRepresents	=	xlSizeIsWidth

SizeWithWindow	Property
							

True	if	Microsoft	Excel	resizes	the	chart	to	match	the	size	of	the	chart	sheet
window.	False	if	the	chart	size	isn't	attached	to	the	window	size.	Applies	only	to
chart	sheets	(doesn't	apply	to	embedded	charts).	Read/write	Boolean.

Example

This	example	sets	Chart1	to	be	sized	to	its	window.

Charts("Chart1").SizeWithWindow	=	True

SmallChange	Property
							

Returns	or	sets	the	amount	that	the	scroll	bar	or	spinner	is	incremented	or
decremented	for	a	line	scroll	(when	the	user	clicks	an	arrow).	Read/write	Long.

Example

This	example	creates	a	scroll	bar	and	sets	its	linked	cell,	minimum,	maximum,
large	change,	and	small	change	values.

Set	sb	=	Worksheets(1).Shapes.AddFormControl(xlScrollBar,	_

				Left:=10,	Top:=10,	Width:=10,	Height:=200)

With	sb.ControlFormat

				.LinkedCell	=	"D1"

				.Max	=	100

				.Min	=	0

				.LargeChange	=	10

				.SmallChange	=	2

End	With

Show	All

SmallGrid	Property
							

True	if	Microsoft	Excel	uses	a	grid	that’s	two	cells	wide	and	two	cells	deep	for	a
newly	created	PivotTable	report.	False	if	Excel	uses	a	blank	stencil	outline.
Read/write	Boolean.

Remarks

You	should	use	the	stencil	outline.	The	grid	is	provided	only	because	it	enables
compatibility	with	earlier	versions	of	Excel.

Example

This	example	creates	a	new	PivotTable	cache	based	on	an	OLAP	provider,	and
then	it	creates	a	new	PivotTable	report	based	on	this	cache,	at	cell	A3	on	the
active	worksheet.	The	example	uses	the	stencil	outline	instead	of	the	cell	grid.

With	ActiveWorkbook.PivotCaches.Add(SourceType:=xlExternal)

				.Connection	=	_

								"OLEDB;Provider=MSOLAP;Location=srvdata;Initial	Catalog=National"

				.MaintainConnection	=	True

				.CreatePivotTable	TableDestination:=Range("A3"),	_

								TableName:=	"PivotTable1"

End	With

With	ActiveSheet.PivotTables("PivotTable1")

				.SmallGrid	=	False

				.PivotCache.RefreshPeriod	=	0

				With	.CubeFields("[state]")

								.Orientation	=	xlColumnField

								.Position	=	0

				End	With

				With	.CubeFields("[Measures].[Count	Of	au_id]")

								.Orientation	=	xlDataField

								.Position	=	0

				End	With

End	With

SmartTagActions	Property
							

Returns	a	SmartTagActions	object	the	type	of	action	for	a	selected	smart	tag.

expression.SmartTagActions

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

Remarks

An	unrecognized	smart	tag	action	item	will	return	a	run-time	error.

Example

This	example,	Microsoft	Excel	places	a	smart	tag	titled	"MSFT"	in	cell	A1	and
then	notifies	the	user	the	smart	tag	action	related	to	that	smart	tag.	This	example
assumes	the	host	system	is	connected	to	the	Internet.

Sub	UseSmartTagActions()

				Dim	strLink	As	String

				strLink	=	"urn:schemas-microsoft-com:smarttags#StockTickerSymbol"

				'	Enable	smart	tags	to	be	embedded	and	recognized.

				ActiveWorkbook.SmartTagOptions.EmbedSmartTags	=	True

				Application.SmartTagRecognizers.Recognize	=	True

				Range("A1").Formula	=	"MSFT"

				MsgBox	Range("A1").SmartTags.Add(strLink).SmartTagActions.Item("stockview")

End	Sub

SmartTagOptions	Property
							

Returns	a	SmartTagOptions	object	representing	the	options	that	can	be
performed	with	a	smart	tag.

expression.SmartTagOptions

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

Example

In	this	example,	Microsoft	Excel	notifies	the	user	of	the	display	settings	for	the
smart	tag	options.

Sub	CheckSmartTagOptions()

				'	Check	the	display	options	for	smart	tags.

				Select	Case	ActiveWorkbook.SmartTagOptions.DisplaySmartTags

								Case	xlButtonOnly

												MsgBox	"The	button	for	smart	tags	will	only	be	displayed."

								Case	xlDisplayNone

												MsgBox	"Nothing	will	be	displayed	for	smart	tags."

								Case	xlIndicatorAndButton

												MsgBox	"The	button	and	indicator	will	be	displayed	for	smart	tags."

				End	Select

End	Sub

SmartTagRecognizers	Property
							

Returns	a	SmartTagRecognizers	collection	for	an	application.

expression.SmartTagRecognizers

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

Example

In	this	example,	Microsoft	Excel	displays	the	first	smart	tag	recognizer	item
available	for	the	application,	or	displays	a	message	that	none	exist.

Sub	CheckforSmartTagRecognizers()

				'	Handle	run-time	error	if	no	smart	tag	recognizers	exist.

				On	Error	Goto	No_SmartTag_Recognizers_In_List

				'	Notify	the	user	of	the	first	smart	tag	recognizer	item.

				MsgBox	"The	first	smart	tag	recognizer	is:	"	&	_

								Application.SmartTagRecognizers.Item(1)

				Exit	Sub

No_SmartTag_Recognizers_In_List:

				MsgBox	"No	smart	tag	recognizers	exist	in	list."

End	Sub

SmartTags	Property
							

Returns	a	SmartTags	object	representing	the	identifier	for	the	specified	cell.

expression.SmartTags

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

Example

This	example	places	a	smart	tag	in	cell	A1	then	notifies	the	user	the	parent	of	the
identifier	for	cell	A1,	which	is	"MSFT".	This	example	assumes	the	host	system
is	connected	to	the	Internet.

Sub	ReturnSmartTag()

				Dim	strLink	As	String

				Dim	strType	As	String

				'	Define	SmartTag	variables.

				strLink	=	"urn:schemas-microsoft-com:smarttags#StockTickerSymbol"

				strType	=	"stockview"

				'	Enable	smart	tags	to	be	embedded	and	recognized.

				ActiveWorkbook.SmartTagOptions.EmbedSmartTags	=	True

				Application.SmartTagRecognizers.Recognize	=	True

				Range("A1").Formula	=	"MSFT"

				MsgBox	Range("A1").SmartTags.Parent

End	Sub

Smooth	Property
							

True	if	curve	smoothing	is	turned	on	for	the	line	chart	or	scatter	chart.	Applies
only	to	line	and	scatter	charts.	Read/write.

Example

This	example	turns	on	curve	smoothing	for	series	one	in	Chart1.	The	example
should	be	run	on	a	2-D	line	chart.

Charts("Chart1").SeriesCollection(1).Smooth	=	True

SolveOrder	Property
							

Returns	a	Long	specifying	the	value	of	the	calculated	member's	solve	order
MDX	(Mulitdimensional	Expression)	argument.	The	default	value	is	zero.	Read-
only.

expression.SolveOrder

expression			Required.	An	expression	that	returns	a	CalculatedMember	object.

Example

This	example	determines	the	solve	order	for	a	calculated	member	and	notifies
the	user.	The	example	assumes	a	PivotTable	exists	on	the	active	worksheet.

Sub	CheckSolveOrder()

				Dim	pvtTable	As	PivotTable

				Set	pvtTable	=	ActiveSheet.PivotTables(1)

				'	Determine	solve	order	and	notify	user.

				If	pvtTable.CalculatedMembers.Item(1).SolveOrder	=	0	Then

								MsgBox	"The	solve	order	is	set	to	the	default	value."

				Else

								MsgBox	"The	solve	order	is	not	set	to	the	default	value."

				End	If

End	Sub

SoundNote	Property
							

This	property	should	not	be	used.	Sound	notes	have	been	removed	from
Microsoft	Excel.

Show	All

Source	Property
							

Source	property	as	it	applies	to	the	PublishObject	object.

Returns	the	unique	name	that	identifies	items	that	have	a	SourceType	property
value	of	xlSourceRange,	xlSourceChart,	xlSourcePrintArea,
xlSourceAutoFilter,	xlSourcePivotTable,	or	xlSourceQuery.	If	the
SourceType	property	is	set	to	xlSourceRange,	this	property	returns	a	range,
which	can	be	a	defined	name.	If	the	SourceType	property	is	set	to
xlSourceChart,	xlSourcePivotTable,	or	xlSourceQuery,	this	property	returns
the	name	of	the	object,	such	as	a	chart	name,	a	PivotTable	report	name,	or	a
query	table	name.	Read-only	String.

expression.Source

expression			Required.	An	expression	that	returns	a	PublishObject	object.

Source	property	as	it	applies	to	the	Watch	object.

Returns	the	unique	name	that	identifies	items	that	have	a	SourceType	property
value	of	xlSourceRange,	xlSourceChart,	xlSourcePrintArea,
xlSourceAutoFilter,	xlSourcePivotTable,	or	xlSourceQuery.	If	the
SourceType	property	is	set	to	xlSourceRange,	this	property	returns	a	range,
which	can	be	a	defined	name.	If	the	SourceType	property	is	set	to
xlSourceChart,	xlSourcePivotTable,	or	xlSourceQuery,	this	property	returns
the	name	of	the	object,	such	as	a	chart	name,	a	PivotTable	report	name,	or	a
query	table	name.	Read-only	Variant.

expression.Source

expression			Required.	An	expression	that	returns	a	Watch	object.

Example

This	example	determines	the	unique	name	of	the	first	chart	(in	the	first
workbook)	saved	as	a	Web	page.	and	then	it	sets	the	Boolean	variable
blnChartFound	to	True.	If	no	items	in	the	document	have	been	saved	as	Chart
components,	blnChartFound	is	False.

blnChartFound	=	False

For	Each	objPO	In	Workbooks(1).PublishObjects

				If	objPO.SourceType	=	xlSourceChart	Then

								strFirstPO	=	objPO.Source

								blnChartFound	=	True

								Exit	For

				End	If

Next	objPO

SourceConnectionFile	Property
							

Returns	or	sets	a	String	indicating	the	Microsoft	Office	Data	Connection	file	or
similar	file	that	was	used	to	create	the	PivotTable.	Read/write.

expression.SourceConnectionFile

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

Example

This	example	determines	if	a	connection	exists	for	the	PivotTable	cache	and,	if
there	is	a	connection,	displays	the	file	name.	If	no	connection	exists,	the	code
handles	the	run-time	error	and	notifies	the	user.		This	example	assumes	a
PivotTable	exists	on	the	active	worksheet.

Sub	CheckSourceConnection()

				Dim	pvtCache	As	PivotCache

				Set	pvtCache	=	Application.ActiveWorkbook.PivotCaches.Item(1)

				On	Error	GoTo	No_Connection

				MsgBox	"The	source	connection	is:	"	&	pvtCache.SourceConnectionFile

				Exit	Sub

No_Connection:

				MsgBox	"PivotCache	source	can	not	be	determined."

End	Sub

SourceData	Property
							

Returns	the	data	source	for	the	PivotTable	report,	as	shown	in	the	following
table.	Read-write	Variant.

Data	source Return	value
Microsoft	Excel	list	or	database The	cell	reference,	as	text.

External	data	source

An	array.	Each	row	consists	of	an	SQL
connection	string	with	the	remaining
elements	as	the	query	string,	broken	down
into	255-character	segments.

Multiple	consolidation	ranges
A	two-dimensional	array.	Each	row	consists
of	a	reference	and	its	associated	page	field
items.

Another	PivotTable	report One	of	the	above	three	kinds	of	information.

Remarks

This	property	is	not	available	for	OLE	DB	data	sources.

Example

Assume	that	you	used	an	external	data	source	to	create	a	PivotTable	report	on
Sheet1.	This	example	inserts	the	SQL	connection	string	and	query	string	into	a
new	worksheet.

Set	newSheet	=	ActiveWorkbook.Worksheets.Add

sdArray	=	Worksheets("Sheet1").UsedRange.PivotTable.SourceData

For	i	=	LBound(sdArray)	To	UBound(sdArray)

				newSheet.Cells(i,	1)	=	sdArray(i)

Next	i

Show	All

SourceDataFile	Property
							

SourceDataFile	property	as	it	applies	to	the	PivotCache	object.

Returns	a	String	indicating	the	source	data	file	for	the	cache	of	the	PivotTable.

expression.SourceDataFile

expression			Required.	An	expression	that	returns	a	PivotCache	object.

SourceDataFile	property	as	it	applies	to	the	QueryTable	object.

Returns	or	sets	a	String	indicating	the	source	data	file	for	a	query	table.

expression.SourceDataFile

expression			Required.	An	expression	that	returns	a	QueryTable	object.

Remarks

For	file-based	data	sources	(e.g.	Access)	the	SourceDataFile	property	contains	a
fully	qualified	path	to	the	source	data	file.	It	is	null	for	server-based	data	sources
(e.g.	SQL	Server).	The	SourceDataFile	property	is	set	to	null	if	the	Connection
property	is	changed	programmatically.

Example

This	example	determines	if	a	connection	exists	for	the	cache	and,	if	there	is	a
connection,	displays	the	data	source	file	name.	If	no	connection	exists,	the	code
handles	the	run-time	error	and	notifies	the	user.	This	example	assumes	a
PivotTable	exists	on	the	active	worksheet.

Sub	CheckSourceConnection()

				Dim	pvtCache	As	PivotCache

				Set	pvtCache	=	Application.ActiveWorkbook.PivotCaches.Item(1)

				On	Error	GoTo	No_Connection

				MsgBox	"The	data	source	connection	is:	"	&	_

								pvtCache.SourceDataFile

				Exit	Sub

No_Connection:

				MsgBox	"PivotCache	source	cannot	be	determined."

End	Sub

Show	All

SourceName	Property
							

SourceName	property	as	it	applies	to	the	OLEObject	and	OLEObjects
objects.

Returns	or	sets	the	specified	object's	link	source	name.		Read/write	String.

expression.SourceName

expression			Required.	An	expression	that	returns	one	of	the	above	objects.

SourceName	property	as	it	applies	to	the	CalculatedMember	and	PivotField
objects.

Returns	the	specified	object’s	name	as	it	appears	in	the	original	source	data	for
the	specified	PivotTable	report.	This	might	be	different	from	the	current	item
name	if	the	user	renamed	the	item	after	creating	the	PivotTable	report.	Read-only
String.

expression.SourceName

expression			Required.	An	expression	that	returns	one	of	the	above	objects.

SourceName	property	as	it	applies	to	the	PivotItem	object.

Returns	the	specified	object’s	name	as	it	appears	in	the	original	source	data	for
the	specified	PivotTable	report.	This	might	be	different	from	the	current	item
name	if	the	user	renamed	the	item	after	creating	the	PivotTable	report.	Read-only
Variant.

expression.SourceName

expression			Required.	An	expression	that	returns	a	PivotItem	object.

Remarks

The	following	table	shows	example	values	of	the	SourceName	property	and
related	properties,	given	an	OLAP	data	source	with	the	unique	name	"[Europe].
[France].[Paris]"	and	a	non-OLAP	data	source	with	the	item	name	"Paris".

Property Value	(OLAP	data	source) Value	(non-OLAP	data
source)

Caption Paris Paris

Name [Europe].[France].[Paris]	(read-
only) Paris

SourceName [Europe].[France].[Paris]	(read-
only)

(same	as	SQL	property	value,
read-only)

Value [Europe].[France].[Paris]	(read-
only) Paris

When	specifying	an	index	into	the	PivotItems	collection,	you	can	use	the	syntax
shown	in	the	following	table.

Syntax	(OLAP	data	source) Syntax	(non-OLAP	data
source)

expression.PivotItems("[Europe].[France].
[Paris]") expression.PivotItems("Paris")

When	using	the	Item	property	to	reference	a	specific	member	of	a	collection,
you	can	use	the	text	index	names,	as	shown	in	the	following	table.

Name	(OLAP	data	source) Name	(non-OLAP	data
source)

[Europe].[France].[Paris] Paris

Example

As	it	applies	to	the	PivotItem	object.

This	example	displays	the	original	name	(the	name	from	the	source	database)	of
the	item	that	contains	the	active	cell.

Worksheets("Sheet1").Activate

ActiveSheet.PivotTables(1).PivotSelect	"1998",	xlDataAndLabel

MsgBox	"The	original	item	name	is	"	&	_

				ActiveCell.PivotItem.SourceName

SourceNameStandard	Property
							

Returns	a	String	that	represents	the	PivotTable	items'	source	name	in	standard
English	(United	States)	format	settings.	Read-only.

expression.SourceNameStandard

expression			Required.	An	expression	that	returns	one	a	PivotItem	object.

Remarks

This	property	is	used	when	an	item	has	a	localized	version	and	its
SourceNameStandard	property	value	differs	from	the	SourceName	property
value,	such	as	with	date	formatting.

Example

This	example	displays	the	source	name	for	the	sixth	item	on	the	fifth	field	of	the
active	PivotTable.	The	example	assumes	that	a	PivotTable	exists	on	the	active
worksheet	and	that	the	data	source	contains	at	least	five	fields	and	six	items	per
field.

Sub	CheckSourceNameStandard()

				Dim	pvtTable	As	PivotTable

				Dim	pvtField	As	PivotField

				Dim	pvtItem	As	PivotItem

				Set	pvtTable	=	ActiveSheet.PivotTables(1)

				Set	pvtField	=	pvtTable.PivotFields(5)

				Set	pvtItem	=	pvtField.PivotItems(6)

				'	Display	source	name.

				MsgBox	"The	source	name	is:	"	&	pvtItem.SourceNameStandard

End	Sub

SourceRange	Property
							

Returns	a	Range	object	that	represents	the	cell	that	contains	the	value	of	the
specified	query	parameter.	Read-only.

Example

This	example	changes	the	value	of	the	cell	used	as	the	source	range	for	the
query.

Set	qt	=	Sheets("sheet1").QueryTables(1)

Set	param1	=	qt.Parameters(1)

Set	r	=	param1.SourceRange

r.Value	=	"New	York"

qt.Refresh

Show	All

SourceType	Property
							

SourceType	property	as	it	applies	to	the	PivotCache	object.

Returns	a	value	that	identifies	the	type	of	item	being	published.	Read-only
XlPivotTableSourceType.

XlPivotTableSourceType	can	be	one	of	these	XlPivotTableSourceType
constants.
xlConsolidation
xlDatabase
xlExternal
xlPivotTable
xlScenario

expression.SourceType

expression			Required.	An	expression	that	returns	a	PivotCache	object.

SourceType	property	as	it	applies	to	the	PublishObject	object.

Returns	a	value	that	identifies	the	type	of	item	being	published.	Read-only
XlSourceType.

XlSourceType	can	be	one	of	these	XlSourceType	constants.
xlSourceChart
xlSourcePrintArea
xlSourceRange
xlSourceWorkbook
xlSourceAutoFilter
xlSourcePivotTable
xlSourceQuery
xlSourceSheet

expression.SourceType

expression			Required.	An	expression	that	returns	a	PublishObject	object.

Example

This	example	determines	the	unique	name	of	the	first	chart	(in	the	first
workbook)	saved	as	a	Web	page,	and	then	it	sets	the	Boolean	variable
blnChartFound	to	True.	If	no	items	in	the	document	have	been	saved	as	Chart
components,	blnChartFound	is	False.

blnChartFound	=	False

For	Each	objPO	In	Workbooks(1).PublishObjects

				If	objPO.SourceType	=	xlSourceChart	Then

								strFirstPO	=	objPO.Source

								blnChartFound	=	True

								Exit	For

				End	If

Next	objPO

SpeakCellOnEnter	Property
							

Microsoft	Excel	supports	a	mode	where	the	active	cell	will	be	spoken	when	the
ENTER	key	is	pressed	or	when	the	active	cell	is	finished	being	edited.		Setting
the	SpeakCellOnEnter	property	to	True	will	turn	this	mode	on.		False	turns
this	mode	off.	Read/write	Boolean.

expression.SpeakCellOnEnter

expression			Required.	An	expression	that	returns	a	Speech	object.

Example

This	example	determines	if	the	active	cell	will	be	spoken	when	the	ENTER	key
is	pressed	or	the	active	cell	is	done	being	edited,	and	notifies	the	user.

Sub	SpeechCheck()

				'	Determine	mode	setting	and	notify	user.

				If	Application.Speech.SpeakCellOnEnter	=	True	Then

								MsgBox	"The	Speak	On	Enter	mode	is	turned	on.	"	&	_

												"The	active	cell	will	be	spoken	when	the	ENTER	"&	_

												"key	is	pressed	or	it	is	done	being	edited."

				Else

								MsgBox	"The	Speaker	On	Enter	mode	is	turned	off."

				EndIf

End	Sub

Speech	Property
							

Returns	a	Speech	object.

expression.Speech

expression			Required.	An	expression	that	returns	an	Application	object.

Example

In	the	following	example,	Microsoft	Excel	plays	back	"Hello".	This	example
assumes	speech	features	have	been	installed	on	the	host	system.

Sub	UseSpeech()

				Application.Speech.Speak	"Hello"

End	Sub

Note			There	is	a	speech	feature	in	the	setup	tree	that	pertains	to	Dictation	and
Command	&	Control	that	does	not	have	to	be	installed.

SpellingOptions	Property
							

Returns	a	SpellingOptions	object	that	represents	the	spelling	options	of	the
application.

expression.SpellingOptions

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

Example

In	this	example,	Microsoft	Excel	checks	the	setting	on	the	spelling	options	for
ignoring	mixed	digits,	and	notifies	the	user	of	its	status.

Sub	MixedDigitCheck()

				'	Determine	the	setting	on	spell	checking	for	mixed	digits.

				If	Application.SpellingOptions.IgnoreMixedDigits	=	True	Then

								MsgBox	"The	spelling	options	are	set	to	ignore	mixed	digits."

				Else

								MsgBox	"The	spelling	options	are	set	to	check	for	mixed	digits."

				End	If

End	Sub

Split	Property
							

True	if	the	window	is	split.	Read/write	Boolean.

Remarks

It’s	possible	for	FreezePanes	to	be	True	and	Split	to	be	False,	or	vice	versa.

This	property	applies	only	to	worksheets	and	macro	sheets.

Example

This	example	splits	the	active	window	in	Book1.xls	at	cell	B2,	without	freezing
panes.	This	causes	the	Split	property	to	return	True.

Workbooks("BOOK1.XLS").Worksheets("Sheet1").Activate

With	ActiveWindow

				.SplitColumn	=	2

				.SplitRow	=	2

End	With

This	example	illustrates	two	ways	of	removing	the	split	added	by	the	preceding
example.

Workbooks("BOOK1.XLS").Worksheets("Sheet1").Activate

ActiveWindow.Split	=	False												'method	one

Workbooks("BOOK1.XLS").Worksheets("Sheet1").Activate

ActiveWindow.SplitColumn	=	0								'method	two

ActiveWindow.SplitRow	=	0

This	example	removes	the	window	split.	Before	you	can	remove	the	split,	you
must	set	FreezePanes	to	False	to	remove	frozen	panes.

Workbooks("BOOK1.XLS").Worksheets("Sheet1").Activate

With	ActiveWindow

				.FreezePanes	=	False

				.Split	=	False

End	With

SplitColumn	Property
							

Returns	or	sets	the	column	number	where	the	window	is	split	into	panes	(the
number	of	columns	to	the	left	of	the	split	line).	Read/write	Long.

Example

This	example	splits	the	window	and	leaves	1.5	columns	to	the	left	of	the	split
line.

Workbooks("BOOK1.XLS").Worksheets("Sheet1").Activate

ActiveWindow.SplitColumn	=	1.5

Show	All

SplitHorizontal	Property
							

Returns	or	sets	the	location	of	the	horizontal	window	split,	in	points.	Read/write
Double.

Example

This	example	sets	the	horizontal	split	for	the	active	window	to	216	points	(3
inches).

Workbooks("BOOK1.XLS").Worksheets("Sheet1").Activate

ActiveWindow.SplitHorizontal	=	216

SplitRow	Property
							

Returns	or	sets	the	row	number	where	the	window	is	split	into	panes	(the	number
of	rows	above	the	split).	Read/write	Long.

Example

This	example	splits	the	active	window	so	that	there	are	10	rows	above	the	split
line.

Workbooks("BOOK1.XLS").Worksheets("Sheet1").Activate

ActiveWindow.SplitRow	=	10

SplitType	Property
							

Returns	or	sets	the	way	the	two	sections	of	either	a	pie	of	pie	chart	or	a	bar	of	pie
chart	are	split.	Read/write	XlChartSplitType.

XlChartSplitType	can	be	one	of	these	XlChartSplitType	constants.
xlSplitByCustomSplit
xlSplitByPercentValue
xlSplitByPosition
xlSplitByValue

expression.SplitType

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

Example

This	example	must	be	run	on	either	a	pie	of	pie	chart	or	a	bar	of	pie	chart.	The
example	splits	the	two	sections	of	the	chart	by	value,	combining	all	values	under
10	in	the	primary	pie	and	displaying	them	in	the	secondary	section.

With	Worksheets(1).ChartObjects(1).Chart.ChartGroups(1)

				.SplitType	=	xlSplitByValue

				.SplitValue	=	10

				.VaryByCategories	=	True

End	With

SplitValue	Property
							

Returns	or	sets	the	threshold	value	separating	the	two	sections	of	either	a	pie	of
pie	chart	or	a	bar	of	pie	chart.	Read/write	Variant.

Example

This	example	must	be	run	on	either	a	pie	of	pie	chart	or	a	bar	of	pie	chart.	The
example	splits	the	two	sections	of	the	chart	by	value,	combining	all	values	under
10	in	the	primary	pie	and	displaying	them	in	the	secondary	section.

With	Worksheets(1).ChartObjects(1).Chart.ChartGroups(1)

				.SplitType	=	xlSplitByValue

				.SplitValue	=	10

				.VaryByCategories	=	True

End	With

Show	All

SplitVertical	Property
							

Returns	or	sets	the	location	of	the	vertical	window	split,	in	points.	Read/write
Double.

Example

This	example	sets	the	vertical	split	for	the	active	window	to	216	points	(3
inches).

Workbooks("BOOK1.XLS").Worksheets("Sheet1").Activate

ActiveWindow.SplitVertical	=	216

SqlState	Property
							

Returns	the	SQL	state	error.	Read-only	String.

Remarks

For	an	explanation	of	the	specific	error,	see	you	SQL	documentation.

Example

This	example	refreshes	query	table	one	and	displays	any	ODBC	errors	that
occur.

With	Worksheets(1).QueryTables(1)

				.Refresh

				Set	errs	=	Application.ODBCErrors

				If	errs.Count	>	0	Then

								Set	r	=	.Destination.Cells(1)

								r.Value	=	"The	following	errors	occurred:"

								c	=	0

								For	Each	er	In	errs

												c	=	c	+	1

												r.offset(c,	0).value	=	er.ErrorString

												r.offset(c,	1).value	=	er.SqlState

								Next

				Else

								MsgBox	"Query	complete:	all	records	returned."

				End	If

End	With

Stage	Property
							

Returns	a	numeric	value	specifying	the	stage	of	an	error	that	resulted	after	the
most	recent	OLE	DB	query.	Read-only	Long.

Example

This	example	displays	the	error	numbers,	stage,	and	other	error	information
returned	by	the	most	recent	OLE	DB	query.

Set	objEr	=	Application.OLEDBErrors(1)

MsgBox	"The	following	error	occurred:"	&	_

				objEr.Number	&	",	"	&	objEr.Native	&	",	"	&	_

				objEr.Stage	&	",	"	&	_

				objEr.ErrorString	&	"	:	"	&	objEr.SqlState

StandardFont	Property
							

Returns	or	sets	the	name	of	the	standard	font.	Read/write	String.

Remarks

If	you	change	the	standard	font	by	using	this	property,	the	change	doesn't	take
effect	until	you	restart	Microsoft	Excel.

Example

This	example	sets	the	standard	font	to	Geneva	(on	the	Macintosh)	or	Arial	(in
Windows).

If	Application.OperatingSystem	Like	"*Macintosh*"	Then

				Application.StandardFont	=	"Geneva"

Else

				Application.StandardFont	=	"Arial"

End	If

Show	All

StandardFontSize	Property
							

Returns	or	sets	the	standard	font	size,	in	points.	Read/write	Long.

Remarks

If	you	change	the	standard	font	size	by	using	this	property,	the	change	doesn't
take	effect	until	you	restart	Microsoft	Excel.

Example

This	example	sets	the	standard	font	size	to	12	points.

Application.StandardFontSize	=	12

StandardFormula	Property
							

Returns	or	sets	a	String	specifying	formulas	with	standard	English	(United
States)	formatting.	Read/write.

expression.StandardFormula

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

Remarks

The	StandardFormula	property	primarily	affects	item	names	with	date	or
number	formatting.	It	provides	a	way	to	specify	or	query	a	formula	for	a	given
calculated	item.

The	StandardFormula	property	is	"international-friendly"	whereas	the
Formula	property	is	not.

Example

This	example	adds	10	to	the	Decimals	field	and	displays	it	as	a	calculated	item
in	the	data	field.	The	example	assumes	that	a	PivotTable	exists	on	the	active
worksheet	and	that	a	field	titled	"Decimals"	exists	in	the	data	table.

Sub	UseStandardFomula()

				Dim	pvtTable	As	PivotTable

				Set	pvtTable	=	ActiveSheet.PivotTables(1)

				'	Change	calculated	field	of	decimals	by	adding	'10'.

				pvtTable.CalculatedFields.Item(1).StandardFormula	=	"Decimals	+	10"

End	Sub

Show	All

StandardHeight	Property
							

Returns	the	standard	(default)	height	of	all	the	rows	in	the	worksheet,	in	points.
Read-only	Double.

Example

This	example	sets	the	height	of	row	one	on	Sheet1	to	the	standard	height.

Worksheets("Sheet1").Rows(1).RowHeight	=	_

				Worksheets("Sheet1").StandardHeight

StandardWidth	Property
							

Returns	or	sets	the	standard	(default)	width	of	all	the	columns	in	the	worksheet.
Read/write	Double.

Remarks

One	unit	of	column	width	is	equal	to	the	width	of	one	character	in	the	Normal
style.	For	proportional	fonts,	the	width	of	the	character	0	(zero)	is	used.

Example

This	example	sets	the	width	of	column	one	on	Sheet1	to	the	standard	width.

Worksheets("Sheet1").Columns(1).ColumnWidth	=	_

				Worksheets("Sheet1").StandardWidth

Start	Property
							

Returns	the	position	that	represents	the	first	character	of	a	phonetic	text	string	in
the	specified	cell.	Read-only	Long.

Example

This	example	returns	the	starting	position	of	the	second	phonetic	text	string	in
the	active	cell.

ActiveCell.FormulaR1C1	=	" "

ActiveCell.Phonetics.Add	Start:=1,	Length:=3,	Text:=" "

ActiveCell.Phonetics.Add	Start:=4,	Length:=3,	Text:=" "

MsgBox	ActiveCell.Phonetics(2).Start

StartupPath	Property
							

Returns	the	complete	path	of	the	startup	folder,	excluding	the	final	separator.
Read-only	String.

Example

This	example	displays	the	full	path	to	the	Microsoft	Excel	startup	folder.

MsgBox	Application.StartupPath

Status	Property
							

Indicates	the	status	of	the	routing	slip.	Read-only	XlRoutingSlipStatus.

XlRoutingSlipStatus	can	be	one	of	these	XlRoutingSlipStatus	constants.
xlNotYetRouted
xlRoutingComplete
xlRoutingInProgress

expression.Status

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

Example

This	example	resets	the	routing	slip	for	Book1.xls	if	routing	has	been	completed.

With	Workbooks("BOOK1.XLS").RoutingSlip

				If	.Status	=	xlRoutingComplete	Then

								.Reset

				Else

								MsgBox	"Cannot	reset	routing;	not	yet	complete."

				End	If

End	With

StatusBar	Property
							

Returns	or	sets	the	text	in	the	status	bar.	Read/write	String.

Remarks

This	property	returns	False	if	Microsoft	Excel	has	control	of	the	status	bar.	To
restore	the	default	status	bar	text,	set	the	property	to	False;	this	works	even	if	the
status	bar	is	hidden.

Example

This	example	sets	the	status	bar	text	to	"Please	be	patient..."	before	it	opens	the
workbook	Large.xls,	and	then	it	restores	the	default	text.

oldStatusBar	=	Application.DisplayStatusBar

Application.DisplayStatusBar	=	True

Application.StatusBar	=	"Please	be	patient..."

Workbooks.Open	filename:="LARGE.XLS"

Application.StatusBar	=	False

Application.DisplayStatusBar	=	oldStatusBar

Strikethrough	Property
							

True	if	the	font	is	struck	through	with	a	horizontal	line.	Read/write	Boolean.

Example

This	example	sets	the	font	in	the	active	cell	on	Sheet1	to	strikethrough.

Worksheets("Sheet1").Activate

ActiveCell.Font.Strikethrough	=	True

Show	All

Style	Property
							

	Style	property	as	it	applies	to	the	LineFormat	object.

Returns	a	Style	object	that	represents	the	style	of	the	specified	range.	Read/write
MsoLineStyle.

MsoLineStyle	can	be	one	of	these	MsoLineStyle	constants.
msoLineSingle
msoLineThickBetweenThin
msoLineThinThick
msoLineStyleMixed
msoLineThickThin
msoLineThinThin

expression.Style

expression			Required.	An	expression	that	returns	one	of	the	above	objects.

	

	Style	property	as	it	applies	to	the	Range	object.

Returns	a	Style	object	that	represents	the	style	of	the	specified	range.	Read/write
Variant.

expression.Style

expression			Required.	An	expression	that	returns	one	of	the	above	objects.

Example

As	it	applies	to	the	Range	object.

This	example	applies	the	Normal	style	to	cell	A1	on	Sheet1.

Worksheets("Sheet1").Range("A1").Style.Name	=	"Normal"

If	cell	B4	on	Sheet1	currently	has	the	Normal	style	applied,	this	example	applies
the	Percent	style.

If	Worksheets("Sheet1").Range("B4").Style.Name	=	"Normal"	Then

				Worksheets("Sheet1").Range("B4").Style.Name	=	"Percent"

End	If

Styles	Property
							

Returns	a	Styles	collection	that	represents	all	the	styles	in	the	specified
workbook.	Read-only.

For	information	about	returning	a	single	member	of	a	collection,	see	Returning
an	Object	from	a	Collection.

Example

This	example	deletes	the	user-defined	style	"Stock	Quote	Style"	from	the	active
workbook.

ActiveWorkbook.Styles("Stock	Quote	Style").Delete

SubAddress	Property
							

Returns	or	sets	the	location	within	the	document	associated	with	the	hyperlink.
Read/write	String.

Example

This	example	topic	adds	a	range	location	to	the	hyperlink	for	shape	one.

Worksheets(1).Shapes(1).Hyperlink.SubAddress	=	"A1:B10"

Subject	Property
							

Returns	or	sets	the	subject	for	the	mailer	or	routing	slip.	Read/write	String.

Remarks

The	subject	for	the	RoutingSlip	object	is	used	as	the	subject	for	mail	messages
used	to	route	the	workbook.

Example

This	example	sets	the	subject	for	a	routing	slip	for	the	open	workbook.	To	run
this	example,	you	must	have	Microsoft	Exchange	installed.

With	ThisWorkbook

				.HasRoutingSlip	=	True

				With	.RoutingSlip

								.Delivery	=	xlOneAfterAnother

								.Recipients	=	Array("Adam	Bendel",	_

												"Jean	Selva",	"Bernard	Gabor")

								.Subject	=	"Here	is	the	workbook"

								.Message	=	"Here	is	the	workbook.	What	do	you	think?"

								.ReturnWhenDone	=	True

End	With

				.Route

End	With

Subscript	Property
							

True	if	the	font	is	formatted	as	subscript.	False	by	default.	Read/write	Variant.

Example

This	example	makes	the	second	character	in	cell	A1	a	subscript	character.

Worksheets("Sheet1").Range("A1")	_

				.Characters(2,	1).Font.Subscript	=	True

Show	All

SubtotalHiddenPageItems	Property
							

True	if	hidden	page	field	items	in	the	PivotTable	report	are	included	in	row	and
column	subtotals,	block	totals,	and	grand	totals.	The	default	value	is	False.
Read/write	Boolean.

Remarks

For	OLAP	data	sources,	the	value	is	always	True.

Example

This	example	sets	the	first	PivotTable	report	on	worksheet	one	to	exclude	hidden
page	field	items	in	subtotals.

Worksheets(1).PivotTables("Pivot1").SubtotalHiddenPageItems	=	True

SubtotalName	Property
							

Returns	or	sets	the	text	string	label	displayed	in	the	subtotal	column	or	row
heading	in	the	specified	PivotTable	report.	The	default	value	is	the	string
"Subtotal".	Read/write	String.

Example

This	example	sets	the	subtotal	label	to	"Regional	Subtotal"	(instead	of	the
default	string	"Subtotal")	in	the	state	field	in	the	second	PivotTable	report	on	the
active	worksheet.

ActiveSheet.PivotTables("PivotTable2")	_

				.PivotFields("state").SubtotalName	=	"Regional	Subtotal"

Show	All

Subtotals	Property
							

Returns	or	sets	subtotals	displayed	with	the	specified	field.	Valid	only	for
nondata	fields.	Read/write	Variant.

expression.Subtotals(Index)

expression			Required.	An	expression	that	returns	a	PivotField	object.

Index			Optional	Variant.	A	subtotal	index,	as	shown	in	the	following	table.	If
this	argument	is	omitted,	the	Subtotals	method	returns	an	array	that	contains	a
Boolean	value	for	each	subtotal.

Index Meaning
1 Automatic
2 Sum
3 Count
4 Average
5 Max
6 Min
7 Product
8 Count	Nums
9 StdDev
10 StdDevp
11 Var
12 Varp

If	an	index	is	True,	the	field	shows	that	subtotal.	If	index	1	(Automatic)	is	True,
all	other	values	are	set	to	False.

Remarks

For	OLAP	data	sources,	Index	can	only	return	or	be	set	to	1	(Automatic).	The
returned	array	always	contains	True	or	False	for	the	first	array	element,	and	it
contains	False	for	all	other	elements.	An	array	of	element	values	that	are	all
False	indicates	that	there	are	no	subtotals.

Example

This	example	sets	the	field	that	contains	the	active	cell	to	show	Sum	subtotals.

Worksheets("Sheet1").Activate

ActiveCell.PivotField.Subtotals(2)	=	True

SuggestMainOnly	Property
							

When	set	to	True,	instructs	Microsoft	Excel	to	suggest	words	from	only	the
main	dictionary,	for	using	the	spelling	checker.	False	removes	the	limits	of
suggesting	words	from	only	the	main	dictionary,	for	using	the	spelling	checker.
Read/write	Boolean.

expression.SuggestMainOnly

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

Example

In	this	example,	Microsoft	Excel	checks	the	spell	checking	options	for
suggesting	words	only	from	the	main	dictionary	and	reports	the	status	to	the
user.

Sub	UsingMainDictionary()

				'	Check	the	setting	of	suggesting	words	only	from	the	main	dictionary.

				If	Application.SpellingOptions.SuggestMainOnly	=	True	Then

								MsgBox	"Spell	checking	option	suggestions	will	only	come	from	the	main	dictionary."

				Else

								MsgBox	"Spell	checking	option	suggestions	are	not	limited	to	the	main	dictionary."

				End	If

End	Sub

Summary	Property
							

True	if	the	range	is	an	outlining	summary	row	or	column.	The	range	should	be	a
row	or	a	column.	Read-only	Variant.

Example

This	example	formats	row	four	on	Sheet1	as	bold	and	italic	if	it’s	an	outlining
summary	column.

With	Worksheets("Sheet1").Rows(4)

				If	.Summary	=	True	Then

								.Font.Bold	=	True

								.Font.Italic	=	True

				End	If

End	With

SummaryColumn	Property
							

Returns	or	sets	the	location	of	the	summary	columns	in	the	outline.			Read/write
XlSummaryColumn.

XlSummaryColumn	can	be	one	of	these	XlSummaryColumn	constants.
xlSummaryOnRight.	The	summary	column	will	be	positioned	to	the	right	of
the	detail	columns	in	the	outline.
xlSummaryOnLeft.	The	summary	column	will	be	positioned	to	the	left	of	the
detail	columns	in	the	outline.

expression.SummaryColumn

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

Example

This	example	creates	an	outline	with	automatic	styles,	with	the	summary	row
above	the	detail	rows,	and	with	the	summary	column	to	the	right	of	the	detail
columns.

Worksheets("Sheet1").Activate

Selection.AutoOutline

With	ActiveSheet.Outline

				.SummaryRow	=	xlAbove

				.SummaryColumn	=	xlRight

				.AutomaticStyles	=	True

End	With

SummaryRow	Property
							

Returns	or	sets	the	location	of	the	summary	rows	in	the	outline.			Read/write
XlSummaryRow.

XlSummaryRow	can	be	one	of	these	XlSummaryRow	constants.
xlSummaryBelow.	The	summary	row	will	be	positioned	below	the	detail	rows
in	the	outline.
xlSummaryAbove.	The	summary	row	will	be	positioned	above	the	detail	rows
in	the	outline.

expression.SummaryRow

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

Remarks

Set	SummaryRow	to	xlAbove	for	Microsoft	Word-style	outlines,	where
category	headers	are	above	the	detailed	information.	Set	SummaryRow	to
xlBelow	for	accounting-style	outlines,	where	summations	are	below	the	detailed
information.

Example

This	example	creates	an	outline	with	automatic	styles,	with	the	summary	row
above	the	detail	rows,	and	with	the	summary	column	to	the	right	of	the	detail
columns.

Worksheets("Sheet1").Activate

Selection.AutoOutline

With	ActiveSheet.Outline

				.SummaryRow	=	xlAbove

				.SummaryColumn	=	xlRight

				.AutomaticStyles	=	True

End	With

Superscript	Property
							

True	if	the	font	is	formatted	as	superscript;	False	by	default.	Read/write
Variant.

Example

This	example	makes	the	last	character	in	cell	A1	a	superscript	character.

n	=	Worksheets("Sheet1").Range("A1").Characters.Count

Worksheets("Sheet1").Range("A1")	_

				.Characters(n,	1).Font.Superscript	=	True

SurfaceGroup	Property
							

Returns	a	ChartGroup	object	that	represents	the	surface	chart	group	of	a	3-D
chart.	Read-only.

Example

This	example	sets	the	3-D	surface	group	in	Chart1	to	use	a	different	color	for
each	data	marker.	The	example	should	be	run	on	a	3-D	chart.

Charts("Chart1").SurfaceGroup.VaryByCategories	=	True

Tab	Property
							

Returns	a	Tab	object	for	a	chart	or	a	worksheet.

expression.Tab

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

Example

In	this	example,	Microsoft	Excel	determines	if	the	worksheet's	first	tab	color
index	is	set	to	none	and	notifies	the	user.

Sub	CheckTab()

				'	Determine	if	color	index	of	1st	tab	is	set	to	none.

				If	Worksheets(1).Tab.ColorIndex	=	xlColorIndexNone	Then

								MsgBox	"The	color	index	is	set	to	none	for	the	1st	"	&	_

												"worksheet	tab."

				Else

								MsgBox	"The	color	index	for	the	tab	of	the	1st	worksheet	"	&	_

												"is	not	set	none."

				End	If

End	Sub

TableRange1	Property
							

Returns	a	Range	object	that	represents	the	range	containing	the	entire	PivotTable
report,	but	doesn’t	include	page	fields.	Read-only.

Remarks

The	TableRange2	property	includes	page	fields.

Example

This	example	selects	all	of	the	PivotTable	report	except	its	page	fields.

Worksheets("Sheet1").Activate

Range("A3").PivotTable.TableRange1.Select

TableRange2	Property
							

Returns	a	Range	object	that	represents	the	range	containing	the	entire	PivotTable
report,	including	page	fields.	Read-only.

Remarks

The	TableRange1	property	doesn’t	include	page	fields.

Example

This	example	selects	the	entire	PivotTable	report,	including	its	page	fields.

Worksheets("Sheet1").Activate

Range("A3").PivotTable.TableRange2.Select

TableStyle	Property
							

Returns	or	sets	the	style	used	in	the	body	of	the	PivotTable	report.	The	default
value	is	a	null	string	(no	style	is	applied	by	default).	Read/write	String.

Remarks

This	style	is	used	as	the	default	style	for	the	background	area,	and	it’s	applied
before	any	user	formatting.

Example

This	example	sets	the	body	of	the	PivotTable	report	to	the	PurpleAndGold	style.

Worksheets(1).PivotTables("Pivot1").TableStyle	=	"PurpleAndGold"

TabRatio	Property
							

Returns	or	sets	the	ratio	of	the	width	of	the	workbook's	tab	area	to	the	width	of
the	window's	horizontal	scroll	bar	(as	a	number	between	0	(zero)	and	1;	the
default	value	is	0.6).	Read/write	Double.

Remarks

This	property	has	no	effect	when	DisplayWorkbookTabs	is	set	to	False	(its
value	is	retained,	but	it	has	no	effect	on	the	display).

Example

This	example	makes	the	workbook	tabs	half	the	width	of	the	horizontal	scroll
bar.

ActiveWindow.TabRatio	=	0.5

Tag	Property
							

Returns	or	sets	a	string	saved	with	the	PivotTable	report.	Read/write	String.

Example

This	example	sets	the	PivotTable	report’s	Tag	property.

Worksheets(1).PivotTables("Pivot1").Tag	=	"Product	Sales	by	Region"

Show	All

TargetBrowser	Property
							

Returns	or	sets	an	MsoTargetBrowser	constant	indicating	the	browser	version.
Read/write.

MsoTargetBrowser	can	be	one	of	these	MsoTargetBrowser	constants.
msoTargetBrowserIE4		Microsoft	Internet	Explorer	4.0	or	later.
msoTargetBrowserIE5		Microsoft	Internet	Explorer	5.0	or	later.
msoTargetBrowserIE6		Microsoft	Internet	Explorer	6.0	or	later.
msoTargetBrowserV3		Microsoft	Internet	Explorer	3.0,	Netscape	Navigator
3.0,	or	later.
msoTargetBrowserV4		Microsoft	Internet	Explorer	4.0,	Netscape	Navigator
4.0,	or	later.

	

expression.TargetBrowser

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

Example

In	this	example,	Microsoft	Excel	determines	if	the	browser	version	for	Web
options	is	IE5	and	notifies	the	user.

Sub	CheckWebOptions()

				Dim	wkbOne	As	Workbook

				Set	wkbOne	=	Application.Workbooks(1)

				'	Determine	if	IE5	is	the	target	browser.

				If	wkbOne.WebOptions.TargetBrowser	=	msoTargetBrowserIE5	Then

								MsgBox	"The	target	browser	is	IE5	or	later."

				Else

								MsgBox	"The	target	browser	is	not	IE5	or	later."

				End	If

End	Sub

TemplateRemoveExtData	Property
							

True	if	external	data	references	are	removed	when	the	workbook	is	saved	as	a
template.	Read/write	Boolean.

Example

This	example	saves	the	workbook	as	a	template	that	contains	no	external	data.

With	ThisWorkbook

				.TemplateRemoveExtData	=	True

				.SaveAs	"current",	xlTemplate

				.TemplateRemoveExtData	=	False

End	With

TemplatesPath	Property
							

Returns	the	local	path	where	templates	are	stored.	Read-only	String.

Example

This	example	returns	the	local	path	where	templates	are	stored.

Msgbox	Application.TemplatesPath

Text	Property
							

Returns	or	sets	the	text	for	the	specified	object.	Read-only	String	for	the	Range
object,	read/write	String	for	all	other	objects.

For	information	about	using	the	Text	worksheet	function	in	Visual	Basic,	see
Using	Worksheet	Functions	in	Visual	Basic.

Remarks

For	the	Phonetic	object,	this	property	returns	or	sets	its	phonetic	text.	You
cannot	set	this	property	to	Null.

Example

This	example	sets	the	text	for	the	chart	title	of	Chart1.

With	Charts("Chart1")

				.HasTitle	=	True

				.ChartTitle.Text	=	"First	Quarter	Sales"

End	With

This	example	sets	the	axis	title	text	for	the	category	axis	in	Chart1.

With	Charts("Chart1").Axes(xlCategory)

				.HasTitle	=	True

				.AxisTitle.Text	=	"Month"

End	With

This	example	illustrates	the	difference	between	the	Text	and	Value	properties	of
cells	that	contain	formatted	numbers.

Set	c	=	Worksheets("Sheet1").Range("B14")

c.Value	=	1198.3

c.NumberFormat	=	"$#,##0_);($#,##0)"

MsgBox	c.Value

MsgBox	c.Text

TextDate	Property
							

When	set	to	True	(default),	Microsoft	Excel	identifies,	with	an	AutoCorrect
Options	button,	cells	that	contain	a	text	date	with	a	two-digit	year.	False
disables	error	checking	for	cells	containing	a	text	date	with	a	two-digit	year.
Read/write	Boolean.

expression.TextDate

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

Example

In	the	following	example,	the	AutoCorrect	Options	button	appears	for	cell	A1,
which	contains	a	text	date	with	a	two-digit	year.

Sub	CheckTextDate()

				'	Simulate	an	error	by	referencing	a	text	date	with	a	two-digit	year.

				Application.ErrorCheckingOptions.TextDate	=	True

				Range("A1").Formula	=	"'April	23,	00"

End	Sub

TextEffect	Property
							

Returns	a	TextEffectFormat	object	that	contains	text-effect	formatting
properties	for	the	specified	shape.	Applies	to	Shape	or	ShapeRange	objects	that
represent	WordArt.	Read-only.

Example

This	example	sets	the	font	style	to	bold	for	shape	three	on	myDocument	if	the
shape	is	WordArt.

Set	myDocument	=	Worksheets(1)

With	myDocument.Shapes(3)

				If	.Type	=	msoTextEffect	Then

								.TextEffect.FontBold	=	True

				End	If

End	With

TextFileColumnDataTypes	Property
							

Returns	or	sets	an	ordered	array	of	constants	that	specify	the	data	types	applied
to	the	corresponding	columns	in	the	text	file	that	you’re	importing	into	a	query
table.	The	default	constant	for	each	column	is	xlGeneral.	Read/write	Variant.

You	can	use	the	xlColumnDataType	constants	listed	in	the	following	table	to
specify	the	column	data	types	used	or	the	actions	taken	during	the	data	import.

Constant Description
xlGeneralFormatGeneral
xlTextFormat Text
xlSkipColumn Skip	column
xlDMYFormat Day-Month-Year	date	format
xlDYMFormat Day-Year-Month	date	format
xlEMDFormat EMD	date
xlMDYFormat Month-Day-Year	date	format
xlMYDFormat Month-Year-Day	date	format
xlYDMFormat Year-Day-Month	date	format
xlYMDFormat Year-Month-Day	date	format

Remarks

Use	this	property	only	when	your	query	table	is	based	on	data	from	a	text	file
(with	the	QueryType	property	set	to	xlTextImport).

If	you	specify	more	elements	in	the	array	that	there	are	columns,	those	values	are
ignored.

You	can	use	xlEMDFormat	only	if	Taiwanese	language	support	is	installed	and
selected.	The	xlEMDFormat	constant	specifies	that	Taiwanese	era	dates	are
being	used.

Example

This	example	imports	a	fixed-width	text	file	into	a	new	query	table	on	the	first
worksheet	in	the	first	workbook.	The	first	column	in	the	text	file	is	five
characters	wide	and	is	imported	as	text.	The	second	column	is	four	characters
wide	and	is	skipped.	The	remainder	of	the	text	file	is	imported	into	the	third
column	and	has	the	General	format	applied	to	it.

Set	shFirstQtr	=	Workbooks(1).Worksheets(1)	

Set	qtQtrResults	=	shFirstQtr.QueryTables	_

								.Add(Connection	:=	"TEXT;C:\My	Documents\19980331.txt",	_

								Destination	:=	shFirstQtr.Cells(1,	1))

With	qtQtrResults

				.TextFileParseType	=	xlFixedWidth

				.TextFileFixedColumnWidths	=	Array(5,	4)

				.TextFileColumnDataTypes	=	_

								Array(xlTextFormat,	xlSkipColumn,	xlGeneralFormat)

				.Refresh

End	With

TextFileCommaDelimiter	Property
							

True	if	the	comma	is	the	delimiter	when	you	import	a	text	file	into	a	query	table.
False	if	you	want	to	use	some	other	character	as	the	delimiter.	The	default	value
is	False.	Read/write	Boolean.

Remarks

Use	this	property	only	when	your	query	table	is	based	on	data	from	a	text	file
(with	the	QueryType	property	set	to	xlTextImport),	and	only	if	the	value	of	the
TextFileParseType	property	is	xlDelimited.

Example

This	example	sets	the	comma	to	be	the	delimiter	in	the	query	table	on	the	first
worksheet	in	the	first	workbook,	and	then	it	refreshes	the	query	table.

Set	shFirstQtr	=	Workbooks(1).Worksheets(1)	

Set	qtQtrResults	=	shFirstQtr.QueryTables	_

				.Add(Connection	:=	"TEXT;C:\My	Documents\19980331.txt",	_

								Destination	:=	shFirstQtr.Cells(1,	1))

With	qtQtrResults

				.TextFileParseType	=	xlDelimited

				.TextFileCommaDelimiter	=	True

				.Refresh

End	With

TextFileConsecutiveDelimiter
Property
							

True	if	consecutive	delimiters	are	treated	as	a	single	delimiter	when	you	import
a	text	file	into	a	query	table.	The	default	value	is	False.	Read/write	Boolean.

Remarks

Use	this	property	is	only	when	your	query	table	is	based	on	data	from	a	text	file
(with	the	QueryType	property	set	to	xlTextImport),	and	only	if	the	value	of	the
TextFileParseType	property	is	xlDelimited.

Example

This	example	sets	the	space	character	to	be	the	delimiter	in	the	query	table	on
the	first	worksheet	in	the	first	workbook,	and	then	it	refreshes	the	query	table.
Consecutive	spaces	are	treated	as	a	single	delimiter.

Set	shFirstQtr	=	Workbooks(1).Worksheets(1)	

Set	qtQtrResults	=	shFirstQtr.QueryTables	_

				.Add(Connection	:=	"TEXT;C:\My	Documents\19980331.txt",	_

								Destination	:=	shFirstQtr.Cells(1,	1))

With	qtQtrResults

				.TextFileParseType	=	xlDelimited

				.TextFileSpaceDelimiter	=	True

				.TextFileConsecutiveDelimiter	=	True

				.Refresh

End	With

TextFileDecimalSeparator	Property
							

Returns	or	sets	the	decimal	separator	character	that	Microsoft	Excel	uses	when
you	import	a	text	file	into	a	query	table.	The	default	is	the	system	decimal
separator	character.	Read/write	String.

Remarks

Use	this	property	only	when	your	query	table	is	based	on	data	from	a	text	file
(with	the	QueryType	property	set	to	xlTextImport),	when	the	file	contains
decimal	and	thousands	separators	that	are	different	from	those	used	on	the
computer,	due	to	a	different	language	setting	being	used.

The	following	table	shows	the	results	when	you	import	text	into	Microsoft	Excel
using	various	separators.	Numeric	results	are	displayed	in	the	rightmost	column.

System
decimal
separator

System
thousands
separator

TextFileDecimalSeparator
value

TextFileThousandsSeparator
value

Period Comma Comma Period

Period Comma Comma Comma

Comma Period Comma Period

Period Comma Period Comma

Period Comma Period Space

Example

This	example	saves	the	original	decimal	separator	and	sets	it	to	a	comma	for	the
first	query	table	on	Sheet1,	in	preparation	for	importing	a	French	text	file	(for
example)	into	the	U.S.	English	version	of	Microsoft	Excel.

strDecSep	=	Worksheets("Sheet1").QueryTables(1)	_

				.TextFileDecimalSeparator

Worksheets("Sheet1").QueryTables(1)	_

				.TextFileDecimalSeparator	=	","

TextFileFixedColumnWidths
Property
							

Returns	or	sets	an	array	of	integers	that	correspond	to	the	widths	of	the	columns
(in	characters)	in	the	text	file	that	you’re	importing	into	a	query	table.	Valid
widths	are	from	1	through	32767	characters.	Read/write	Variant.

Remarks

Use	this	property	only	when	your	query	table	is	based	on	data	from	a	text	file
(with	the	QueryType	property	set	to	xlTextImport),	and	only	if	the	value	of	the
TextFileParseType	property	is	xlFixedWidth.

You	must	specify	a	valid,	nonnegative	column	width.	If	you	specify	columns	that
exceed	the	width	of	the	text	file,	those	values	are	ignored.	If	the	width	of	the	text
file	is	greater	than	the	total	width	of	columns	you	specify,	the	balance	of	the	text
file	is	imported	into	an	additional	column.

Example

This	example	imports	a	fixed-width	text	file	into	a	new	query	table	on	the	first
worksheet	in	the	first	workbook.	The	first	column	in	the	text	file	is	five
characters	wide	and	is	imported	as	text.	The	second	column	is	four	characters
wide	and	is	skipped.	The	remainder	of	the	text	file	is	imported	into	the	third
column	and	has	the	General	format	applied	to	it.

Set	shFirstQtr	=	Workbooks(1).Worksheets(1)	

Set	qtQtrResults	=	shFirstQtr.QueryTables	_

				.Add(Connection	:=	"TEXT;C:\My	Documents\19980331.txt",	_

								Destination	:=	shFirstQtr.Cells(1,	1))

With	qtQtrResults

				.TextFileParseType	=	xlFixedWidth

				.TextFileFixedColumnWidths	=	Array(5,	4)	

				.TextFileColumnDataTypes	=	_

								Array(xlTextFormat,	xlSkipColumn,	xlGeneralFormat)	

				.Refresh

End	With

TextFileOtherDelimiter	Property
							

Returns	or	sets	the	character	used	as	the	delimiter	when	you	import	a	text	file
into	a	query	table.	The	default	value	is	Null.	Read/write	String.

Remarks

Use	this	property	only	when	your	query	table	is	based	on	data	from	a	text	file
(with	the	QueryType	property	set	to	xlTextImport),	and	only	if	the	value	of	the
TextFileParseType	property	is	xlDelimited.

If	you	specify	more	than	one	character	in	the	string,	only	the	first	character	is
used.

Example

This	example	sets	the	pound	character	(#)	to	be	the	delimiter	for	the	query	table
on	the	first	worksheet	in	the	first	workbook,	and	then	it	refreshes	the	query	table.

Set	shFirstQtr	=	Workbooks(1).Worksheets(1)	

Set	qtQtrResults	=	shFirstQtr.QueryTables	_

				.Add(Connection	:=	"TEXT;C:\My	Documents\19980331.txt",	_

								Destination	:=	shFirstQtr.Cells(1,1))

With	qtQtrResults

				.TextFileParseType	=	xlDelimited

				.TextFileOtherDelimiter	=	"#"

				.Refresh

End	With

TextFileParseType	Property
							

Returns	or	sets	the	column	format	for	the	data	in	the	text	file	that	you’re
importing	into	a	query	table.	Read/write	XlTextParsingType.

XlTextParsingType	can	be	one	of	these	XlTextParsingType	constants.
xlFixedWidth.	Indicates	that	the	data	in	the	file	is	arranged	in	columns	of	fixed
widths.
xlDelimited	default.	Iindicates	the	file	is	delimited	by	delimiter	characters

expression.TextFileParseType

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

Remarks

Use	this	property	only	when	your	query	table	is	based	on	data	from	a	text	file
(with	the	QueryType	property	set	to	xlTextImport).

Example

This	example	imports	a	fixed-width	text	file	into	a	new	query	table	on	the	first
worksheet	in	the	first	workbook.	The	first	column	in	the	text	file	is	five
characters	wide	and	is	imported	as	text.	The	second	column	is	four	characters
wide	and	is	skipped.	The	remainder	of	the	text	file	is	imported	into	the	third
column	and	has	the	General	format	applied	to	it.

Set	shFirstQtr	=	Workbooks(1).Worksheets(1)	

Set	qtQtrResults	=	shFirstQtr.QueryTables	_

				.Add(Connection	:=	"TEXT;C:\My	Documents\19980331.txt",	_

								Destination	:=	shFirstQtr.Cells(1,	1))

With	qtQtrResults

				.TextFileParseType	=	xlFixedWidth

				.TextFileFixedColumnWidths	=	Array(5,	4)	

				.TextFileColumnDataTypes	=	_

								Array(xlTextFormat,	xlSkipColumn,	xlGeneralFormat)	

				.Refresh

End	With

TextFilePlatform	Property
							

Returns	or	sets	the	origin	of	the	text	file	you’re	importing	into	the	query	table.
This	property	determines	which	code	page	is	used	during	the	data	import.	The
default	value	is	the	current	setting	of	the	File	Origin	option	in	the	Text	File
Import	Wizard.	Read/write	XlPlatform.

XlPlatform	can	be	one	of	these	XlPlatform	constants.
xlMacintosh
xlMSDOS
xlWindows

expression.TextFilePlatform

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

Remarks

Use	this	property	only	when	your	query	table	is	based	on	data	from	a	text	file
(with	the	QueryType	property	set	to	xlTextImport).

Example

This	example	imports	an	MS-DOS	text	file	into	the	query	table	on	the	first
worksheet	in	the	first	workbook,	and	then	it	refreshes	the	query	table.

Set	shFirstQtr	=	Workbooks(1).Worksheets(1)	

Set	qtQtrResults	=	shFirstQtr.QueryTables	_

				.Add(Connection	:=	"TEXT;C:\My	Documents\19980331.txt",	_

								Destination	:=	shFirstQtr.Cells(1,1))

With	qtQtrResults

				.TextFilePlatform	=	xlMSDOS

				.TextFileParseType	=	xlDelimited

				.TextFileTabDelimiter	=	True

				.Refresh

End	With

TextFilePromptOnRefresh	Property
							

True	if	you	want	to	specify	the	name	of	the	imported	text	file	each	time	the
query	table	is	refreshed.	The	Import	Text	File	dialog	box	allows	you	to	specify
the	path	and	file	name.	The	default	value	is	False.	Read/write	Boolean.

Remarks

Use	this	property	only	when	your	query	table	is	based	on	data	from	a	text	file
(with	the	QueryType	property	set	to	xlTextImport).

If	the	value	of	this	property	is	True,	the	dialog	box	doesn’t	appear	the	first	time
a	query	table	is	refreshed.

The	default	value	is	True	in	the	user	interface.

Example

This	example	prompts	the	user	for	the	name	of	the	text	file	whenever	the	query
table	on	the	first	worksheet	in	the	first	workbook	is	refreshed.

Set	shFirstQtr	=	Workbooks(1).Worksheets(1)	

Set	qtQtrResults	=	shFirstQtr.QueryTables	_

				.Add(Connection	:=	"TEXT;C:\My	Documents\19980331.txt",	_

								Destination	:=	shFirstQtr.Cells(1,1))

With	qtQtrResults

				.TextFileParseType	=	xlDelimited

				.TextFilePromptOnRefresh	=	True

				.TextFileTabDelimiter	=	True

				.Refresh

End	With

TextFileSemicolonDelimiter	Property
							

True	if	the	semicolon	is	the	delimiter	when	you	import	a	text	file	into	a	query
table,	and	if	the	value	of	the	TextFileParseType	property	is	xlDelimited.	The
default	value	is	False.	Read/write	Boolean.

Remarks

Use	this	property	only	when	your	query	table	is	based	on	data	from	a	text	file
(with	the	QueryType	property	set	to	xlTextImport).

Example

This	example	sets	the	semicolon	to	be	the	delimiter	in	the	query	table	on	the	first
worksheet	in	the	first	workbook	and	then	refreshes	the	query	table.

Set	shFirstQtr	=	Workbooks(1).Worksheets(1)	

Set	qtQtrResults	=	shFirstQtr.QueryTables	_

				.Add(Connection	:=	"TEXT;C:\My	Documents\19980331.txt",	_

								Destination	:=	shFirstQtr.Cells(1,1))

With	qtQtrResults

				.TextFileParseType	=	xlDelimited

				.TextFileSemicolonDelimiter	=	True

				.Refresh

End	With

TextFileSpaceDelimiter	Property
							

True	if	the	space	character	is	the	delimiter	when	you	import	a	text	file	into	a
query	table.	The	default	value	is	False.	Read/write	Boolean.

Remarks

Use	this	property	only	when	your	query	table	is	based	on	data	from	a	text	file
(with	the	QueryType	property	set	to	xlTextImport),	and	only	if	the	value	of	the
TextFileParseType	property	is	xlDelimited.

Example

This	example	sets	the	space	character	to	be	the	delimiter	in	the	query	table	on
the	first	worksheet	in	the	first	workbook	and	then	refreshes	the	query	table.

Set	shFirstQtr	=	Workbooks(1).Worksheets(1)	

Set	qtQtrResults	=	shFirstQtr.QueryTables	_

				.Add(Connection	:=	"TEXT;C:\My	Documents\19980331.txt",	_

								Destination	:=	shFirstQtr.Cells(1,1))

With	qtQtrResults

				.TextFileParseType	=	xlDelimited

				.TextFileSpaceDelimiter	=	True

				.Refresh

End	With

TextFileStartRow	Property
							

Returns	or	sets	the	row	number	at	which	text	parsing	will	begin	when	you	import
a	text	file	into	a	query	table.	Valid	values	are	integers	from	1	through	32767.	The
default	value	is	1.	Read/write	Long.

Remarks

Use	this	property	only	when	your	query	table	is	based	on	data	from	a	text	file
(with	the	QueryType	property	set	to	xlTextImport).

Example

This	example	sets	row	5	as	the	starting	row	for	text	parsing	in	the	query	table	on
the	first	worksheet	in	the	first	workbook,	and	then	it	refreshes	the	query	table.

Set	shFirstQtr	=	Workbooks(1).Worksheets(1)	

Set	qtQtrResults	=	shFirstQtr.QueryTables	_

				.Add(Connection	:=	"TEXT;C:\My	Documents\19980331.txt",	_

								Destination	:=	shFirstQtr.Cells(1,1))

With	qtQtrResults

				.TextFileParseType	=	xlDelimited

				.TextFileStartRow	=	5

				.TextFileTabDelimiter	=	True

				.Refresh

End	With

TextFileTabDelimiter	Property
							

True	if	the	tab	character	is	the	delimiter	when	you	import	a	text	file	into	a	query
table.	The	default	value	is	False.	Read/write	Boolean.

Remarks

Use	this	property	only	when	your	query	table	is	based	on	data	from	a	text	file
(with	the	QueryType	property	set	to	xlTextImport),	and	only	if	the	value	of	the
TextFileParseType	property	is	xlDelimited.

Example

This	example	sets	the	tab	character	to	be	the	delimiter	in	the	query	table	on	the
first	worksheet	in	the	first	workbook,	and	then	it	refreshes	the	query	table.

Set	shFirstQtr	=	Workbooks(1).Worksheets(1)	

Set	qtQtrResults	=	shFirstQtr.QueryTables	_

				.Add(Connection	:=	"TEXT;C:\My	Documents\19980331.txt",	_

								Destination	:=	shFirstQtr.Cells(1,1))

With	qtQtrResults

				.TextFileParseType	=	xlDelimited

				.TextFileTabDelimiter	=	True

				.Refresh

End	With

TextFileTextQualifier	Property
							

Returns	or	sets	the	text	qualifier	when	you	import	a	text	file	into	a	query	table.
The	text	qualifier	specifies	that	the	enclosed	data	is	in	text	format.	Read/write
XlTextQualifier.

XlTextQualifier	can	be	one	of	these	XlTextQualifier	constants.
xlTextQualifierNone
xlTextQualifierDoubleQuote	default.
xlTextQualifierSingleQuote

expression.TextFileTextQualifier

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

Remarks

Use	this	property	only	when	your	query	table	is	based	on	data	from	a	text	file
(with	the	QueryType	property	set	to	xlTextImport).

Example

This	example	sets	the	single	quotation	mark	character	as	the	text	qualifier	for	the
query	table	on	the	first	worksheet	in	the	first	workbook.

Set	shFirstQtr	=	Workbooks(1).Worksheets(1)	

Set	qtQtrResults	=	shFirstQtr.QueryTables	_

				.Add(Connection	:=	"TEXT;C:\My	Documents\19980331.txt",	_

								Destination	:=	shFirstQtr.Cells(1,1))

With	qtQtrResults

				.TextFileParseType	=	xlDelimited

				.TextFileTextQualifier	=	xlTextQualifierSingleQuote

				.Refresh

End	With

TextFileThousandsSeparator
Property
							

Returns	or	sets	the	thousands	separator	character	thatMicrosoft	Excel	uses	when
you	import	a	text	file	into	a	query	table.	The	default	is	the	system	thousands
separator	character.	Read/write	String.

Remarks

Use	this	property	only	when	your	query	table	is	based	on	data	from	a	text	file
(with	the	QueryType	property	set	to	xlTextImport),	especially	when	the	file
contains	decimal	and	thousands	separators	that	are	different	from	those	used	on
the	computer,	due	to	a	different	language	setting	being	used.

The	following	table	shows	the	results	when	you	import	text	into	Microsoft	Excel
using	various	separators.	Numeric	results	are	displayed	in	the	rightmost	column.

System
decimal
separator

System
thousands
separator

TextFileDecimalSeparator
value

TextFileThousandsSeparator
value

Period Comma Comma Period

Period Comma Comma Comma

Comma Period Comma Period

Period Comma Period Comma

Period Comma Period Space

Example

This	example	saves	the	original	thousands	separator	and	sets	it	to	a	period	for	the
first	query	table	on	Sheet1,	in	preparation	for	importing	a	French	text	file	(for
example)	into	the	U.S.	English	version	of	Microsoft	Excel.

strDecSep	=	Worksheets("Sheet1").QueryTables(1)	_

				.TextFileThousandsSeparator

Worksheets("Sheet1").QueryTables(1)	_

				.TextFileThousandsSeparator	=	"."

TextFileTrailingMinusNumbers
Property
							

True	for	Microsoft	Excel	to	treat	numbers	imported	as	text	that	begin	with	a	"-"
symbol	as	a	negative	symbol.	False	for	Excel	to	treat	numbers	imported	as	text
that	begin	with	a	"-"	symbol	as	text.	Read/write	Boolean.

expression.TextFileTrailingMinusNumbers

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

Example

In	this	example,	Microsoft	Excel	determines	the	setting	for	cell	A1,	treating
numbers	imported	as	text	that	begin	with	a	"-"	symbol.	This	example	assumes	a
QueryTable	object	exists	on	the	active	worksheet.

Sub	CheckQueryTableSetting()

				'	Determine	setting	for	TextFileTrailingMinusNumbers

				If	Range("A1").QueryTable.TextFileTrailingMinusNumbers	=	True	Then

								MsgBox	"Numbers	imported	as	text	that	begin	with	a	'-'	symbol	"	&	_

												"will	be	treated	as	a	negative	symbol."

				Else

								MsgBox	"Numbers	imported	as	text	that	begin	with	a	'-'	symbol	"	&	_

												"will	not	be	treated	as	a	negative	symbol."

				End	If

End	Sub

TextFrame	Property
							

Returns	a	TextFrame	object	that	contains	the	alignment	and	anchoring
properties	for	the	specified	shape.	Read-only.

Example

This	example	causes	text	in	the	text	frame	in	shape	one	to	be	justified.	If	shape
one	doesn’t	have	a	text	frame,	this	example	fails.

Worksheets(1).Shapes(1).TextFrame	_

				.HorizontalAlignment	=	xlHAlignJustify

TextShape	Property
							

Returns	a	Shape	object	representing	the	shape	of	the	text	box	associated	with	a
diagram	node.

expression.TextShape

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

Example

The	following	example	adds	child	nodes	to	a	parent	node,	and	displays	text	in
the	parent	node	indicating	the	number	of	child	nodes	created.

Sub	CountChildNodes()

				Dim	nodRoot	As	DiagramNode

				Dim	shDiagram	As	Shape

				Dim	intCount	As	Integer

				Dim	shText	As	Shape

				Set	shDiagram	=	ActiveSheet.Shapes.AddDiagram	_

								(Type:=msoDiagramRadial,	Left:=10,	Top:=15,	_

								Width:=400,	Height:=475)

				Set	nodRoot	=	shDiagram.DiagramNode.Children.AddNode

				'	Add	3	child	nodes	to	the	root	node.

				For	intCount	=	1	To	3

								nodRoot.Children.AddNode

				Next

				'	Change	text	in	node.

				For	intCount	=	1	To	4

								Set	shText	=	shDiagram.DiagramNode.Children.Item(1).TextShape

								shText.TextFrame.Characters.Text	=	Str(intcount)

				Next	intCount

End	Sub

TextToDisplay	Property
							

Returns	or	sets	the	text	to	be	displayed	for	the	specified	hyperlink.	The	default
value	is	the	address	of	the	hyperlink.	Read/write	String.

Example

This	example	sets	the	text	to	be	displayed	for	the	first	hyperlink	on	the	active
worksheet.

ActiveSheet.Hyperlinks(1).TextToDisplay	=	_

				"Company	Home	Page"

TextureName	Property
							

Returns	the	name	of	the	custom	texture	file	for	the	specified	fill.	Read-only
String.

Use	the	UserPicture	or	UserTextured	method	to	set	the	texture	file	for	the	fill.

Example

This	example	sets	the	fill	format	for	chart	two	to	the	same	style	used	for	chart
one.

Set	c1f	=	Charts(1).ChartArea.Fill

If	c1f.Type	=	msoFillTextured	Then

				With	Charts(2).ChartArea.Fill

								.Visible	=	True

								If	c1f.TextureType	=	msoTexturePreset	Then

												.PresetTextured	c1f.PresetTexture

								Else

												.UserTextured	c1f.TextureName

								End	If

				End	With

End	If

TextureType	Property
							

Returns	the	texture	type	for	the	specified	fill.			Read-only	MsoTextureType.

MsoTextureType	can	be	one	of	these	MsoTextureType	constants.
msoTexturePreset
msoTextureTypeMixed
msoTextureUserDefined

expression.TextureType

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

Use	the	UserTextured	method	to	set	the	texture	type	for	the	fill.

Example

This	example	sets	the	fill	format	for	chart	two	to	the	same	style	used	for	chart
one.

Set	c1f	=	Charts(1).ChartArea.Fill

If	c1f.Type	=	msoFillTextured	Then

				With	Charts(2).ChartArea.Fill

								.Visible	=	True

								If	c1f.TextureType	=	msoTexturePreset	Then

												.PresetTextured	c1f.PresetTexture

								Else

												.UserTextured	c1f.TextureName

								End	If

				End	With

End	If

ThisCell	Property
							

Returns	the	cell	in	which	the	user-defined	function	is	being	called	from	as	a
Range	object.

expression.ThisCell

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

Remarks

Users	should	not	access	properties	or	methods	on	the	Range	object	when	inside
the	user-defined	function.	Users	can	cache	the	Range	object	for	later	use	and
perform	additional	actions	when	the	recalculation	is	finished.

Example

In	this	example,	a	function	called	"UseThisCell"	contains	the	ThisCell	property
to	notify	the	user	of	the	cell	address.

Function	UseThisCell()

				MsgBox	"The	cell	address	is:	"	&	_

								Application.ThisCell.Address

End	Function

ThisWorkbook	Property
							

Returns	a	Workbook	object	that	represents	the	workbook	where	the	current
macro	code	is	running.	Read-only.

Remarks

Use	this	property	to	refer	to	the	workbook	that	contains	your	macro	code.
ThisWorkbook	is	the	only	way	to	refer	to	an	add-in	workbook	from	inside	the
add-in	itself.	The	ActiveWorkbook	property	doesn't	return	the	add-in
workbook;	it	returns	the	workbook	that's	calling	the	add-in.The	Workbooks
property	may	fail,	as	the	workbook	name	probably	changed	when	you	created
the	add-in.	ThisWorkbook	always	returns	the	workbook	in	which	the	code	is
running.

For	example,	use	code	such	as	the	following	to	activate	a	dialog	sheet	stored	in
your	add-in	workbook.

ThisWorkbook.DialogSheets(1).Show

This	property	can	be	used	only	from	inside	Microsoft	Excel.	You	cannot	use	it	to
access	a	workbook	from	any	other	application.

Example

This	example	closes	the	workbook	that	contains	the	example	code.	Changes	to
the	workbook,	if	any,	aren't	saved.

ThisWorkbook.Close	SaveChanges:=False

ThousandsSeparator	Property
							

Sets	or	returns	the	character	used	for	the	thousands	separator	as	a	String.
Read/write.

expression.ThousandsSeparator

expression			Required.	An	expression	that	returns	an	Application	object.

Example

This	example	places	"1,234,567.89"	in	cell	A1	then	changes	the	system
separators	to	dashes	for	the	decimals	and	thousands	separators.

Sub	ChangeSystemSeparators()

				Range("A1").Formula	=	"1,234,567.89"

				MsgBox	"The	system	separators	will	now	change."

				'	Define	separators	and	apply.

				Application.DecimalSeparator	=	"-"

				Application.ThousandsSeparator	=	"-"

				Application.UseSystemSeparators	=	False

End	Sub

ThreeD	Property
							

Returns	a	ThreeDFormat	object	that	contains	3-D	–	effect	formatting	properties
for	the	specified	shape.	Read-only.

Example

This	example	sets	the	depth,	extrusion	color,	extrusion	direction,	and	lighting
direction	for	the	3-D	effects	applied	to	shape	one	on	myDocument.

Set	myDocument	=	Worksheets(1)

With	myDocument.Shapes(1).ThreeD

				.Visible	=	True

				.Depth	=	50

				.ExtrusionColor.RGB	=	RGB(255,	100,	255)

				'	RGB	value	for	purple

				.SetExtrusionDirection	msoExtrusionTop

				.PresetLightingDirection	=	msoLightingLeft

End	With

ThrottleInterval	Property
							

Returns	or	sets	a	Long	indicating	the	time	interval	between	updates.	Read/write.

expression.ThrottleInterval

expression			Required.	An	expression	that	returns	an	RTD	object.

Remarks

The	default	value	is	2000	milliseconds.		If	this	value	is	changed,	the	new	value
will	persist	when	Microsoft	Excel	is	restarted.

TickLabelPosition	Property
							

Describes	the	position	of	tick-mark	labels	on	the	specified	axis.	Read/write
XlTickLabelPosition.

XlTickLabelPosition	can	be	one	of	these	XlTickLabelPosition	constants.
xlTickLabelPositionLow
xlTickLabelPositionNone
xlTickLabelPositionHigh
xlTickLabelPositionNextToAxis

expression.TickLabelPosition

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

Example

This	example	sets	tick-mark	labels	on	the	category	axis	in	Chart1	to	the	high
position	(above	the	chart).

Charts("Chart1").Axes(xlCategory)	_

				.TickLabelPosition	=	xlTickLabelPositionHigh

TickLabels	Property
							

Returns	a	TickLabels	object	that	represents	the	tick-mark	labels	for	the	specified
axis.	Read-only.

Example

This	example	sets	the	color	of	the	tick-mark	label	font	for	the	value	axis	in
Chart1.

Charts("Chart1").Axes(xlValue).TickLabels.Font.ColorIndex	=	3

TickLabelSpacing	Property
							

Returns	or	sets	the	number	of	categories	or	series	between	tick-mark	labels.
Applies	only	to	category	and	series	axes.	Read/write	Long.

Remarks

Tick-mark	label	spacing	on	the	value	axis	is	always	calculated	by	Microsoft
Excel.

Example

This	example	sets	the	number	of	categories	between	tick-mark	labels	on	the
category	axis	in	Chart1.

Charts("Chart1").Axes(xlCategory).TickLabelSpacing	=	10

TickMarkSpacing	Property
							

Returns	or	sets	the	number	of	categories	or	series	between	tick	marks.	Applies
only	to	category	and	series	axes.	Read/write	Long.

Remarks

Use	the	MajorUnit	and	MinorUnit	properties	to	set	tick-mark	spacing	on	the
value	axis.

Example

This	example	sets	the	number	of	categories	between	tick	marks	on	the	category
axis	in	Chart1.

Charts("Chart1").Axes(xlCategory).TickMarkSpacing	=	10

Time	Property
							

Sets	or	returns	the	time	interval	for	the	AutoRecover	object.	Permissible	values
are	integers	from	1	to	120	minutes.	The	default	value	is	10	minutes.	Read/write
Long.

expression.Time

expression			Required.	An	expression	that	returns	an	AutoRecover	object.

Remarks

Entering	a	decimal	value	will	round	to	the	nearest	whole	number.	For	example,
entering	a	value	of	5.5	is	the	equivalent	of	6.

Anytime	values	outside	the	valid	range	are	entered,	Microsoft	Excel	will	revert
to	the	previous	time	value	used.

Example

The	following	example	sets	the	AutoRecover	time	interval	to	5	minutes	and
notifies	the	user.

Sub	SetTimeValue()

				Application.AutoRecover.Time	=	5

				MsgBox	"The	AutoRecover	time	interval	is	set	at	"	&	_

								Application.AutoRecover.Time	&	"	minutes."

End	Sub

TintAndShade	Property
							

Returns	or	sets	a	Single	that	lightens	or	darkens	the	color	of	a	specified	shape.
Read/write.

expression.TintAndShade

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

Remarks

You	can	enter	a	number	from	-1	(darkest)	to	1	(lightest)	for	the	TintAndShade
property,	0	(zero)	being	neutral.

Example

This	example	creates	a	new	shape	in	the	active	document,	sets	the	fill	color,	and
lightens	the	color	shade.

Sub	PrinterPlate()

				Dim	s	As	Shape

				Set	s	=	ActiveSheet.Shapes.AddShape(_

								Type:=msoShapeHeart,	Left:=150,	_

								Top:=150,	Width:=250,	Height:=250)

				With	s.Fill.ForeColor

								.CMYK	=	16111872

								.TintAndShade	=	0.3

								.OverPrint	=	msoTrue

								.Ink(Index:=1)	=	0

								.Ink(Index:=2)	=	1

								.Ink(Index:=3)	=	1

								.Ink(Index:=4)	=	0

				End	With

End	Sub

Title	Property
							

Returns	or	sets	the	title	of	the	Web	page	when	the	document	is	saved	as	a	Web
page.	Read/write	String.

Remarks

The	title	is	usually	displayed	in	the	window	title	bar	when	the	document	is
viewed	in	the	Web	browser.

Example

This	example	sets	the	Web	page	title	to	"Sales	Forecast"	when	the	first	item	in
the	first	workbook	is	saved	as	a	Web	page.

Workbooks(1).PublishObjects(1).Title	=	"Sales	Forecast"

Show	All

Top	Property
							

Top	property	as	it	applies	to	the	Application	object.

The	distance	from	the	top	edge	of	the	screen	to	the	top	edge	of	the	main
Microsoft	Excel	window.	If	the	application	window	is	minimized,	this	property
controls	the	position	of	the	window	icon	(anywhere	on	the	screen).	Read/write
Double.

expression.Top

expression			Required.	An	expression	that	returns	an	Application	object.

Top	property	as	it	applies	to	the	Window	object.

The	distance	from	the	top	edge	of	the	window	to	the	top	edge	of	the	usable	area
(below	the	menus,	any	toolbars	docked	at	the	top,	and	the	formula	bar).	You
cannot	set	this	property	for	a	maximized	window.	Use	the	WindowState
property	to	return	or	set	the	state	of	the	window.	Read/write	Double.

expression.Top

expression			Required.	An	expression	that	returns	a	Window	object.

Top	property	as	it	applies	to	the	AxisTitle,	ChartArea,	ChartObject,
ChartObjects,	ChartTitle,	DataLabel,	DisplayUnitLabel,	Legend,
OLEObject,	OLEObjects,	PlotArea,	and	Window	objects.

The	distance	from	the	top	edge	of	the	object	to	the	top	of	row	1	(on	a	worksheet)
or	the	top	of	the	chart	area	(on	a	chart).	Read/write	Double.

expression.Top

expression			Required.	An	expression	that	returns	one	of	the	above	objects.

Top	property	as	it	applies	to	the	Axis,	LegendEntry,	and	LegendKey	objects.

The	distance	from	the	top	edge	of	the	object	to	the	top	of	row	1	(on	a	worksheet)
or	the	top	of	the	chart	area	(on	a	chart).	Read-only	Double.

expression.Top

expression			Required.	An	expression	that	returns	one	of	the	above	objects.

Top	property	as	it	applies	to	the	Shape	and	ShapeRange	objects.

The	distance	from	the	top	edge	of	the	topmost	shape	in	the	shape	range	to	the	top
edge	of	the	worksheet.	Read/write	Single.

expression.Top

expression			Required.	An	expression	that	returns	one	of	the	above	objects.

Top	property	as	it	applies	to	the	Range	object.

The	distance	from	the	top	edge	of	row	1	to	the	top	edge	of	the	range.	If	the	range
is	discontinuous,	the	first	area	is	used.	If	the	range	is	more	than	one	row	high,
the	top	(lowest	numbered)	row	in	the	range	is	used.	Read-only	Variant.

expression.Top

expression			Required.	An	expression	that	returns	a	Range	object.

Example

This	example	arranges	windows	one	and	two	horizontally;	in	other	words,	each
window	occupies	half	the	available	vertical	space	and	all	the	available	horizontal
space	in	the	application	window's	client	area.	For	this	example	to	work,	there
must	be	only	two	worksheet	windows	open.

Windows.Arrange	xlArrangeTiled

ah	=	Windows(1).Height																						'	available	height

aw	=	Windows(1).Width	+	Windows(2).Width				'	available	width

With	Windows(1)

				.Width	=	aw

				.Height	=	ah	/	2

				.Left	=	0

End	With

With	Windows(2)

				.Width	=	aw

				.Height	=	ah	/	2

				.Top	=	ah	/	2

				.Left	=	0

End	With

TopLeftCell	Property
							

Returns	a	Range	object	that	represents	the	cell	that	lies	under	the	upper-left
corner	of	the	specified	object.	Read-only.

Example

This	example	displays	the	address	of	the	cell	beneath	the	upper-left	corner	of
embedded	chart	one	on	Sheet1.

MsgBox	"The	top	left	corner	is	over	cell	"	&	_

				Worksheets("Sheet1").ChartObjects(1).TopLeftCell.Address

Show	All

TopMargin	Property
							

Returns	or	sets	the	size	of	the	top	margin,	in	points.	Read/write	Double.

Remarks

Margins	are	set	or	returned	in	points.	Use	the	InchesToPoints	method	or	the
CentimetersToPoints	method	to	convert	measurements	from	inches	or
centimeters.

Example

These	two	examples	set	the	top	margin	of	Sheet1	to	0.5	inch	(36	points).

Worksheets("Sheet1").PageSetup.TopMargin	=	_

								Application.InchesToPoints(0.5)

Worksheets("Sheet1").PageSetup.TopMargin	=	36

This	example	displays	the	current	top-margin	setting.

marginInches	=	ActiveSheet.PageSetup.TopMargin	/	_

				Application.InchesToPoints(1)

MsgBox	"The	current	top	margin	is	"	&	marginInches	&	"	inches"

Show	All

TotalLevels	Property
							

Returns	the	total	number	of	fields	in	the	current	field	group.	If	the	field	isn’t
grouped,	or	if	the	data	source	is	OLAP-based,	TotalLevels	returns	the	value	1.
Read-only	Long.

Remarks

All	fields	in	a	set	of	grouped	fields	have	the	same	TotalLevels	value.

Example

This	example	displays	the	total	number	of	fields	in	the	group	that	contains	the
active	cell.

Worksheets("Sheet1").Activate

MsgBox	"This	group	has	"	&	_

				ActiveCell.PivotField.TotalLevels	&	"	levels."

TotalsAnnotation	Property
							

True	if	an	asterisk	(*)	is	displayed	next	to	each	subtotal	and	grand	total	value	in
the	specified	PivotTable	report	if	the	report	is	based	on	an	OLAP	data	source.
The	default	value	is	True.	Read/write	Boolean.

Remarks

When	this	property	is	set	to	True,	the	asterisk	indicates	that	hidden	items	are
included	in	the	total.	The	asterisk	appears	regardless	of	whether	any	items	in	the
report	have	been	hidden.

For	non-OLAP	data	sources,	the	value	of	this	property	is	always	False.

Example

This	example	turns	off	the	asterisks	in	the	first	PivotTable	report	on	the	active
worksheet.

ActiveSheet.PivotTables(1).TotalsAnnotation	=	False

Tracking	Property
							

Returns	or	sets	the	ratio	of	the	horizontal	space	allotted	to	each	character	in	the
specified	WordArt	to	the	width	of	the	character.	Can	be	a	value	from	0	(zero)
through	5.	(Large	values	for	this	property	specify	ample	space	between
characters;	values	less	than	1	can	produce	character	overlap.)	Read/write	Single.

The	following	table	gives	the	values	of	the	Tracking	property	that	correspond	to
the	settings	available	in	the	user	interface.

User	interface	setting Equivalent	Tracking	property	value
Very	Tight 0.8
Tight 0.9
Normal 1.0
Loose 1.2
Very	Loose 1.5

Example

This	example	adds	WordArt	that	contains	the	text	"Test"	to	myDocument	and
specifies	that	the	characters	be	very	tightly	spaced.

Set	myDocument	=	Worksheets(1)

Set	newWordArt	=	myDocument.Shapes.AddTextEffect(_

				PresetTextEffect:=msoTextEffect1,	Text:="Test",	_

				FontName:="Arial	Black",	FontSize:=36,	_

				FontBold:=False,	FontItalic:=False,	Left:=100,	_

				Top:=100)

newWordArt.TextEffect.Tracking	=0.8

TrackStatus	Property
							

True	if	status	tracking	is	enabled	for	the	routing	slip.	Read/write	Boolean.

Remarks

You	cannot	set	this	property	if	routing	is	in	progress

Example

This	example	sends	Book1.xls	to	three	recipients,	with	status	tracking	enabled.

Workbooks("BOOK1.XLS").HasRoutingSlip	=	True

With	Workbooks("BOOK1.XLS").RoutingSlip

				.Delivery	=	xlOneAfterAnother

				.Recipients	=	Array("Adam	Bendel",	_

								"Jean	Selva",	"Bernard	Gabor")

				.Subject	=	"Here	is	BOOK1.XLS"

				.Message	=	"Here	is	the	workbook.	What	do	you	think?"

				.ReturnWhenDone	=	True

				.TrackStatus	=	True

End	With

Workbooks("BOOK1.XLS").Route

TransitionExpEval	Property
							

True	if	Microsoft	Excel	uses	Lotus	1-2-3	expression	evaluation	rules	for	the
worksheet.	Read/write	Boolean.

Example

This	example	causes	Microsoft	Excel	to	use	Lotus	1-2-3	expression	evaluation
rules	for	Sheet1.

Worksheets("Sheet1").TransitionExpEval	=	True

TransitionFormEntry	Property
							

True	if	Microsoft	Excel	uses	Lotus	1-2-3	formula	entry	rules	for	the	worksheet.
Read/write	Boolean.

Example

This	example	causes	Microsoft	Excel	to	use	Lotus	1-2-3	formula	entry	rules	for
Sheet1.

Worksheets("Sheet1").TransitionFormEntry	=	True

TransitionMenuKey	Property
							

Returns	or	sets	the	Microsoft	Excel	menu	or	help	key,	which	is	usually	"/".
Read/write	String.

Example

This	example	sets	the	transition	menu	key	to	"/"	(which	is	the	default).

Application.TransitionMenuKey	=	"/"

TransitionMenuKeyAction	Property
							

Returns	or	sets	the	action	taken	when	the	Microsoft	Excel	menu	key	is	pressed.
Can	be	either	xlExcelMenus	or	xlLotusHelp.	Read/write	Long.

Example

This	example	sets	the	Microsoft	Excel	menu	key	to	run	Lotus	1-2-3	Help	when	it
is	pressed.

Application.TransitionMenuKeyAction	=	xlLotusHelp

TransitionNavigKeys	Property
							

True	if	transition	navigation	keys	are	active.	Read/write	Boolean.

Example

This	example	displays	the	current	state	of	the	Transition	navigation	keys
option.

If	Application.TransitionNavigKeys	Then

				keyState	=	"On"

Else

				keyState	=	"Off"

End	If

MsgBox	"The	Transition	Navigation	Keys	option	is	"	&	keyState

Transparency	Property
							

Returns	or	sets	the	degree	of	transparency	of	the	specified	fill	as	a	value	from	0.0
(opaque)	through	1.0	(clear).	Read/write	Double.

Remarks

The	value	of	this	property	affects	the	appearance	of	solid-colored	fills	and	lines
only;	it	has	no	effect	on	the	appearance	of	patterned	lines	or	patterned,	gradient,
picture,	or	textured	fills.

Example

This	example	sets	the	shadow	of	shape	three	on	worksheet	one	to
semitransparent	red.	If	the	shape	doesn't	already	have	a	shadow,	this	example
adds	one	to	it.

With	Worksheets(1).Shapes(3).Shadow

				.Visible	=	True

				.ForeColor.RGB	=	RGB(255,	0,	0)

				.Transparency	=	0.5

End	With

TransparencyColor	Property
							

Returns	or	sets	the	transparent	color	for	the	specified	picture	as	a	red-green-blue
(RGB)	value.	For	this	property	to	take	effect,	the	TransparentBackground
property	must	be	set	to	True.	Applies	to	bitmaps	only.	Read/write	Long.

expression.TransparencyColor

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

Remarks

If	you	want	to	be	able	to	see	through	the	transparent	parts	of	the	picture	all	the
way	to	the	objects	behind	the	picture,	you	must	set	the	Visible	property	of	the
picture's	FillFormat	object	to	False.	If	your	picture	has	a	transparent	color	and
the	Visible	property	of	the	picture's	FillFormat	object	is	set	to	True,	the
picture's	fill	will	be	visible	through	the	transparent	color,	but	objects	behind	the
picture	will	be	obscured.

Example

This	example	sets	the	color	that	has	the	RGB	value	returned	by	the	function
RGB(0,	0,	255)	as	the	transparent	color	for	shape	one	on	myDocument.	For	the
example	to	work,	shape	one	must	be	a	bitmap.

blueScreen	=	RGB(0,	0,	255)

Set	myDocument	=	Worksheets(1)

With	myDocument.Shapes(1)

				With	.PictureFormat

								.TransparentBackground	=	True

								.TransparencyColor	=	blueScreen

				End	With

				.Fill.Visible	=	False

End	With

TransparentBackground	Property
							

Use	the	TransparencyColor	property	to	set	the	transparent	color.	Applies	to
bitmaps	only.	Read/write	MsoTriState.

MsoTriState	can	be	one	of	these	MsoTriState	constants.
msoCTrue
msoFalse
msoTriStateMixed
msoTriStateToggle
msoTrue	The	parts	of	the	picture	that	are	the	color	defined	as	the	transparent
color	appear	transparent.	

Remarks

If	you	want	to	be	able	to	see	through	the	transparent	parts	of	the	picture	all	the
way	to	the	objects	behind	the	picture,	you	must	set	the	Visible	property	of	the
picture's	FillFormat	object	to	False.	If	your	picture	has	a	transparent	color	and
the	Visible	property	of	the	picture's	FillFormat	object	is	set	to	True,	the
picture's	fill	will	be	visible	through	the	transparent	color,	but	objects	behind	the
picture	will	be	obscured.

Example

This	example	sets	the	color	that	has	the	RGB	value	returned	by	the	function
RGB(0,	24,	240)	as	the	transparent	color	for	shape	one	on	myDocument.	For	the
example	to	work,	shape	one	must	be	a	bitmap.

blueScreen	=	RGB(0,	0,	255)

Set	myDocument	=	Worksheets(1)

With	myDocument.Shapes(1)

				With	.PictureFormat

								.TransparentBackground	=	True

								.TransparencyColor	=	blueScreen

				End	With

				.Fill.Visible	=	False

End	With

Show	All

TreeviewControl	Property
							

Returns	the	TreeviewControl	object	of	the	CubeField	object,	representing	the
cube	manipulation	control	of	an	OLAP-based	PivotTable	report.	Read-only.

Remarks

This	property	is	available	only	when	the	control	is	visible.

Example

This	example	sets	the	first	cube	field	control	to	“drilled”	for	the	states	of
California	and	Maryland	in	the	second	PivotTable	report	on	the	active
worksheet.

ActiveSheet.PivotTables("PivotTable2")	_

				.CubeFields(1).TreeviewControl.Drilled	=	_

								Array(Array("",	""),	_

								Array("[state].[states].[CA]",	_

												"[state].[states].[MD]"))

TwoInitialCapitals	Property
							

True	if	words	that	begin	with	two	capital	letters	are	corrected	automatically.
Read/write	Boolean.

Example

This	example	sets	Microsoft	Excel	to	correct	words	that	begin	with	two	capital
letters.

With	Application.AutoCorrect

				.TwoInitialCapitals	=	True

				.ReplaceText	=	True

End	With

Show	All

Type	Property
							

Type	property	as	it	applies	to	the	Axis	object.

Returns	or	sets	the	Axis	type.	Read/write	XlAxisType.

XlAxisType	can	be	one	of	these	XlAxisType	constants.
xlCategory
xlSeriesAxis
xlValue

expression.Type

expression			Required.	An	expression	that	returns	an	Axis	object.

Type	property	as	it	applies	to	the	CalculatedMember	object.

Returns	the	calculated	member	type.	Read-only	XlCalculatedMemberType.

XlCalculatedMemberType	can	be	one	of	these	XlCalculatedMemberType
constants.
xlCalculatedMember
xlCalculatedSet

expression.Type

expression			Required.	An	expression	that	returns	a	CalculatedMember	object.

Type	property	as	it	applies	to	the	CalloutFormat	object.

Returns	or	sets	the	callout	format	type.	Read/write	MsoCalloutType.

MsoCalloutType	can	be	one	of	these	MsoCalloutType	constants.
msoCalloutFour

msoCalloutMixed
msoCalloutOne
msoCalloutThree
msoCalloutTwo

expression.Type

expression			Required.	An	expression	that	returns	a	CalloutFormat	object.

Type	property	as	it	applies	to	the	Chart,	ChartGroup,	and	Series	objects.

Returns	or	sets	the	chart	or	series	type.	Read/write	Long.

expression.Type

expression			Required.	An	expression	that	returns	one	of	the	above	objects.

Type	property	as	it	applies	to	the	ChartColorFormat,	FormatCondition,
Hyperlink,	and	Validation	objects.

Returns	or	sets	the	object	type.	Read-only	Long.

expression.Type

expression			Required.	An	expression	that	returns	one	of	the	above	objects.

Type	property	as	it	applies	to	the	ChartFillFormat	and	FillFormat	objects.

Returns	or	sets	the	the	fill	type.	Read-only	MsoFillType.

MsoFillType	can	be	one	of	these	MsoFillType	constants.
msoFillBackground		This	constant	is	not	used	in	Microsoft	Excel.
msoFillGradient
msoFillMixed
msoFillPatterned
msoFillPicture
msoFillSolid
msoFillTextured

expression.Type

expression			Required.	An	expression	that	returns	one	of	the	above	objects.

Type	property	as	it	applies	to	the	ColorFormat	object.

Returns	or	sets	the	color	format	type.	Read-only	MsoColorType.

MsoColorType	can	be	one	of	these	MsoColorType	constants.
msoColorTypeCMS
msoColorTypeCMYK
msoColorTypeInk
msoColorTypeMixed
msoColorTypeRGB
msoColorTypeScheme

expression.Type

expression			Required.	An	expression	that	returns	a	ColorFormat	object.

Type	property	as	it	applies	to	the	ConnectorFormat	object.

Returns	or	sets	the	connector	format	type.	Read/write	MsoConnectorType.

MsoConnectorType	can	be	one	of	these	MsoConnectorType	constants.
msoConnectorCurve
msoConnectorElbow
msoConnectorStraight
msoConnectorTypeMixed

expression.Type

expression			Required.	An	expression	that	returns	a	ConnectorFormat	object.

Type	property	as	it	applies	to	the	DataLabel	and	DataLabels	objects.

Returns	or	sets	the	label	type.	Read/write	Variant.

expression.Type

expression			Required.	An	expression	that	returns	one	of	the	above	objects.

Type	property	as	it	applies	to	the	Diagram	object.

Returns	or	sets	the	diagram	type.	Read-only	MsoDiagramType.

MsoDiagramType	can	be	one	of	these	MsoDiagramType	constants.
msoDiagramCycle
msoDiagramMixed
msoDiagramOrgChart
msoDiagramPyramid
msoDiagramRadial
msoDiagramTarget
msoDiagramVenn

expression.Type

expression			Required.	An	expression	that	returns	a	Diagram	object.

Type	property	as	it	applies	to	the	HPageBreak	and	VPageBreak	objects.

Returns	or	sets	the	page	break	type.	Read/write	XlPageBreak.

XlPageBreak	can	be	one	of	these	XlPageBreak	constants.
xlPageBreakAutomatic
xlPageBreakManual
xlPageBreakNone

expression.Type

expression			Required.	An	expression	that	returns	one	of	the	above	objects.

Type	property	as	it	applies	to	the	Parameter	object.

Returns	or	sets	the	parameter	type.	Read-only	XlParameterType.

XlParameterType	can	be	one	of	these	XlParameterType	constants.
xlConstant
xlPrompt
xlRange

expression.Type

expression			Required.	An	expression	that	returns	a	Parameter	object.

Type	property	as	it	applies	to	the	ShadowFormat	object.

Returns	or	sets	the	shadow	format	type.	Read/write	MsoShadowType.

MsoShadowType	can	be	one	of	these	MsoShadowType	constants.
msoShadow1
msoShadow10
msoShadow11
msoShadow12
msoShadow13
msoShadow14
msoShadow15
msoShadow16
msoShadow17
msoShadow18
msoShadow19
msoShadow2
msoShadow20
msoShadow3
msoShadow4
msoShadow5
msoShadow6
msoShadow7
msoShadow8
msoShadow9
msoShadowMixed

expression.Type

expression			Required.	An	expression	that	returns	a	ShadowFormat	object.

Type	property	as	it	applies	to	the	Shape	and	ShapeRange	objects.

Returns	or	sets	the	shape	type.	Read-only	MsoShapeType.

MsoShapeType	can	be	one	of	these	MsoShapeType	constants.
msoAutoShape
msoCallout
msoCanvas
msoChart
msoComment
msoDiagram
msoEmbeddedOLEObject
msoFormControl
msoFreeform
msoGroup
msoLine
msoLinkedOLEObject
msoLinkedPicture
msoMedia		Can	not	be	used	with	this	property.	This	constant	is	used	with
shapes	in	other	Microsoft	Office	applications.
msoOLEControlObject
msoPicture
msoPlaceholder		Can	not	be	used	with	this	property.	This	constant	is	used	with
shapes	in	other	Microsoft	Office	applications.
msoScriptAnchor
msoShapeTypeMixed
msoTable
msoTextBox
msoTextEffect

expression.Type

expression			Required.	An	expression	that	returns	one	of	the	above	objects.

Type	property	as	it	applies	to	the	Trendline	object.

Returns	or	sets	the	trendline	type.	Read/write	XlTrendlineType.

XlTrendlineType	can	be	one	of	these	XlTrendlineType	constants.
xlExponential
xlLinear
xlLogarithmic
xlMovingAvg
xlPolynomial
xlPower

expression.Type

expression			Required.	An	expression	that	returns	a	Trendline	object.

Type	property	as	it	applies	to	the	Window	object.

Returns	or	sets	the	window	type.	Read-only	XlWindowType.

XlWindowType	can	be	one	of	these	XlWindowType	constants.
xlChartAsWindow
xlChartInPlace
xlClipboard
xlInfo
xlWorkbook

expression.Type

expression			Required.	An	expression	that	returns	a	Window	object.

Type	property	as	it	applies	to	the	Worksheet	object.

Returns	or	sets	the	worksheet	type.	Read-only	XlSheetType.

XlSheetType	can	be	one	of	these	XlSheetType	constants.

xlChart
xlDialogSheet
xlExcel4IntlMacroSheet
xlExcel4MacroSheet
xlWorksheet

expression.Type

expression			Required.	An	expression	that	returns	a	Worksheet	object.

Example

As	it	applies	to	the	Trendline	object.

This	example	changes	the	trendline	type	for	the	first	series	in	embedded	chart
one	on	worksheet	one.	If	the	series	has	no	trendline,	this	example	fails.

Worksheets(1).ChartObjects(1).Chart	_

				.SeriesCollection(1).Trendlines(1).Type	=	xlMovingAvg

Underline	Property
							

Returns	or	sets	the	type	of	underline	applied	to	the	font.	Can	be	one	of	the
following	XlUnderlineStyle	constants.	Read/write	Variant.

XlUnderlineStyle	can	be	one	of	these	XlUnderlineStyle	constants.
xlUnderlineStyleNone
xlUnderlineStyleSingle

xlUnderlineStyleDouble

xlUnderlineStyleSingleAccounting

xlUnderlineStyleDoubleAccounting

expression.Underline

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

Example

This	example	sets	the	font	in	the	active	cell	on	Sheet1	to	single	underline.

Worksheets("Sheet1").Activate

ActiveCell.Font.Underline	=	xlUnderlineStyleSingle

UnlockedFormulaCells	Property
							

When	set	to	True	(default),	Microsoft	Excel	identifies	selected	cells	that	are
unlocked	and	contain	a	formula.	False	disables	error	checking	for	unlocked	cells
that	contain	formulas.	Read/write	Boolean.

expression.UnlockedFormulaCells

expression		Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

Example

In	the	following	example,	the	AutoCorrect	Options	button	appears	for	cell	A3,
an	unlocked	cell	containing	a	formula.

Sub	CheckUnlockedCell()

				Application.ErrorCheckingOptions.UnlockedFormulaCells	=	True

				Range("A1").Value	=	1

				Range("A2").Value	=	2

				Range("A3").Formula	=	"=A1+A2"

				Range("A3").Locked	=	False

End	Sub

UpBars	Property
							

Returns	an	UpBars	object	that	represents	the	up	bars	on	a	line	chart.	Applies
only	to	line	charts.	Read-only.

Example

This	example	turns	on	up	and	down	bars	for	chart	group	one	in	Chart1	and	then
sets	their	colors.	The	example	should	be	run	on	a	2-D	line	chart	containing	two
series	that	cross	each	other	at	one	or	more	data	points.

With	Charts("Chart1").ChartGroups(1)

				.HasUpDownBars	=	True

				.DownBars.Interior.ColorIndex	=	3

				.UpBars.Interior.ColorIndex	=	5

End	With

Show	All

UpdateLinks	Property
							

Returns	or	sets	an	XlUpdateLink	constant	indicating	a	workbook's	setting	for
updating	embedded	OLE	links.	Read/write.

XlUpdateLinks	can	be	one	of	these	XlUpdateLinks	constants.
xlUpdateLinksAlways	Embedded	OLE	links	are	always	updated	for	the
specified	workbook.
xlUpdateLinksNever	Embedded	OLE	links	are	never	updated	for	the	specified
workbook.
xlUpdateLinksUserSetting		Embedded	OLE	links	are	updated	according	to	the
user's	settings	for	the	specified	workbook.

expression.UpdateLinks

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

Example

In	this	example,	Microsoft	Excel	determines	the	setting	for	updating	links	and
notifies	the	user.

Sub	UseUpdateLinks()

				Dim	wkbOne	As	Workbook

				Set	wkbOne	=	Application.Workbooks(1)

				Select	Case	wkbOne.UpdateLinks

								Case	xlUpdateLinksAlways

												MsgBox	"Links	will	always	be	updated	&	_

																for	the	specified	workbook."

								Case	xlUpdateLinksNever

												MsgBox	"Links	will	never	be	updated	&	_

																for	the	specified	workbook."

								Case	xlUpdateLinksUserSetting

												MsgBox	"Links	will	update	according	&	_

																to	user	settting	for	the	specified	workbook."

				End	Select

End	Sub

UpdateLinksOnSave	Property
							

True	if	hyperlinks	and	paths	to	all	supporting	files	are	automatically	updated
before	you	save	the	document	as	a	Web	page,	ensuring	that	the	links	are	up-to-
date	at	the	time	the	document	is	saved.	False	if	the	links	are	not	updated.	The
default	value	is	True.	Read/write	Boolean.

Remarks

You	should	set	this	property	to	False	if	the	location	where	the	document	is	saved
is	different	from	the	final	location	on	the	Web	server	and	the	supporting	files	are
not	available	at	the	first	location.

Example

This	example	specifies	that	links	are	not	updated	before	the	document	is	saved.

Application.DefaultWebOptions.UpdateLinksOnSave	=	False

UpdateRemoteReferences	Property
							

True	if	Microsoft	Excel	updates	remote	references	in	for	the	workbook.
Read/write	Boolean.

Example

This	example	causes	remote	references	to	be	updated	in	the	active	workbook.

ActiveWorkbook.UpdateRemoteReferences	=	True

Show	All

UsableHeight	Property
							

Returns	the	maximum	height	of	the	space	that	a	window	can	occupy	in	the
application	window	area,	in	points.	Read-only	Double.

Example

This	example	expands	the	active	window	to	the	maximum	size	available
(assuming	that	the	window	isn't	already	maximized).

With	ActiveWindow

				.WindowState	=	xlNormal

				.Top	=	1

				.Left	=	1

				.Height	=	Application.UsableHeight

				.Width	=	Application.UsableWidth

End	With

Show	All

UsableWidth	Property
							

Returns	the	maximum	width	of	the	space	that	a	window	can	occupy	in	the
application	window	area,	in	points.	Read-only	Double.

Example

This	example	expands	the	active	window	to	the	maximum	size	available
(assuming	that	the	window	isn't	already	maximized).

With	ActiveWindow

				.WindowState	=	xlNormal

				.Top	=	1

				.Left	=	1

				.Height	=	Application.UsableHeight

				.Width	=	Application.UsableWidth

End	With

UsedObjects	Property
							

Returns	a	UsedObjects	object	representing	objects	allocated	in	a	workbook.

expression.UsedObjects

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

Example

In	this	example,	Microsoft	Excel	determines	the	quantity	of	objects	that	have
been	allocated	and	notifies	the	user.	This	example	assumes	a	recalculation	was
performed	in	the	application	and	was	interrupted	before	finishing.

Sub	CountUsedObjects()

				MsgBox	"The	number	of	used	objects	in	this	application	is:	"	&	_

								Application.UsedObjects.Count

End	Sub

UsedRange	Property
							

Returns	a	Range	object	that	represents	the	used	range	on	the	specified
worksheet.	Read-only.

Example

This	example	selects	the	used	range	on	Sheet1.

Worksheets("Sheet1").Activate

ActiveSheet.UsedRange.Select

Show	All

UseLocalConnection	Property
							

True	if	the	LocalConnection	property	is	used	to	specify	the	string	that	enables
Microsoft	Excel	to	connect	to	a	data	source.	False	if	the	connection	string
specified	by	the	Connection	property	is	used.	Read/write	Boolean.

Example

This	example	sets	the	connection	string	of	the	first	PivotTable	cache	to	reference
an	offline	cube	file.

With	ActiveWorkbook.PivotCaches(1)

				.LocalConnection	=	_

								"OLEDB;Provider=MSOLAP;Data	Source=C:\Data\DataCube.cub"

				.UseLocalConnection	=	True

End	With

UseLongFileNames	Property
							

True	if	long	file	names	are	used	when	you	save	the	document	as	a	Web	page.
False	if	long	file	names	are	not	used	and	the	DOS	file	name	format	(8.3)	is	used.
The	default	value	is	True.	Read/write	Boolean.

Remarks

If	you	don't	use	long	file	names	and	your	document	has	supporting	files,
Microsoft	Excel	automatically	organizes	those	files	in	a	separate	folder.
Otherwise,	use	the	OrganizeInFolder	property	to	determine	whether	supporting
files	are	organized	in	a	separate	folder.

Example

This	example	disallows	the	use	of	long	file	names	as	the	global	default	for	the
application.

Application.DefaultWebOptions.UseLongFileNames	=	False

UserControl	Property
							

True	if	the	application	is	visible	or	if	it	was	created	or	started	by	the	user.	False
if	you	created	or	started	the	application	programmatically	by	using	the
CreateObject	or	GetObject	functions,	and	the	application	is	hidden.	Read/write
Boolean.

Remarks

When	the	UserControl	property	is	False	for	an	object,	that	object	is	released
when	the	last	programmatic	reference	to	the	object	is	released.	If	this	property	is
False,	Microsoft	Excel	quits	when	the	last	object	in	the	session	is	released.

Example

This	example	displays	the	status	of	the	UserControl	property.

If	Application.UserControl	Then

				MsgBox	"This	workbook	was	created	by	the	user"

Else

				MsgBox	"This	workbook	was	created	programmatically"

End	If

UserDict	Property
							

Instructs	Microsoft	Excel	to	create	a	custom	dictionary	to	which	new	words	can
be	added	to,	when	performing	spelling	checks	on	a	worksheet.	Read/write
String.

expression.UserDict

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

Example

This	example	instructs	Microsoft	Excel	to	create	custom	dictionary	called
"Custom1.dic"	in	the	spelling	options	feature	and	notifies	the	user.

Sub	SpecialWord()

				Application.SpellingOptions.UserDict	=	"Custom1.dic"

				MsgBox	"The	custom	dictionary	is	currently	set	to:	"	_

								&	Application.SpellingOptions.UserDict

End	Sub

UserLibraryPath	Property
							

Returns	the	path	to	the	location	on	the	user’s	computer	where	the	COM	add-ins
are	installed.	Read-only	String.

Example

This	example	determines	where	the	COM	add-ins	are	installed	on	the	user’s
computer	and	assigns	the	string	to	the	variable	strLibPath.

strLibPath	=	Application.UserLibraryPath

UserName	Property
							

Returns	or	sets	the	name	of	the	current	user.	Read/write	String.

Example

This	example	displays	the	name	of	the	current	user.

MsgBox	"Current	user	is	"	&	Application.UserName

Users	Property
							

Returns	a	UserAccessList	object	for	the	protected	range	on	a	worksheet.

expression.Users

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

Example

In	this	example,	Microsoft	Excel	displays	the	name	of	the	first	user	allowed
access	to	the	first	protected	range	on	the	active	worksheet.	This	example
assumes	that	a	range	has	been	chosen	to	be	protected	and	that	a	particular	user
has	been	given	access	to	this	range.

Sub	DisplayUserName()

				Dim	wksSheet	As	Worksheet

				Set	wksSheet	=	Application.ActiveSheet

				'	Display	name	of	user	with	access	to	protected	range.

				MsgBox	wksSheet.Protection.AllowEditRanges(1).Users(1).Name

End	Sub

UserStatus	Property
							

Returns	a	1-based,	two-dimensional	array	that	provides	information	about	each
user	who	has	the	workbook	open	as	a	shared	list.	The	first	element	of	the	second
dimension	is	the	name	of	the	user,	the	second	element	is	the	date	and	time	when
the	user	last	opened	the	workbook,	and	the	third	element	is	a	number	indicating
the	type	of	list	(1	indicates	exclusive,	and	2	indicates	shared).	Read-only
Variant.

Remarks

The	UserStatus	property	doesn't	return	information	about	users	who	have	the
specified	workbook	open	as	read-only.

Example

This	example	creates	a	new	workbook	and	inserts	into	it	information	about	all
users	who	have	the	active	workbook	open	as	a	shared	list.

users	=	ActiveWorkbook.UserStatus

With	Workbooks.Add.Sheets(1)

				For	row	=	1	To	UBound(users,	1)

								.Cells(row,	1)	=	users(row,	1)

								.Cells(row,	2)	=	users(row,	2)

								Select	Case	users(row,	3)

												Case	1

																.Cells(row,	3).Value	=	"Exclusive"

												Case	2

																.Cells(row,	3).Value	=	"Shared"

								End	Select

				Next

End	With

UseStandardHeight	Property
							

True	if	the	row	height	of	the	Range	object	equals	the	standard	height	of	the
sheet.	Returns	Null	if	the	range	contains	more	than	one	row	and	the	rows	aren’t
all	the	same	height.	Read/write	Variant.

Example

This	example	sets	the	height	of	row	one	on	Sheet1	to	the	standard	height.

Worksheets("Sheet1").Rows(1).UseStandardHeight	=	True

UseStandardWidth	Property
							

True	if	the	column	width	of	the	Range	object	equals	the	standard	width	of	the
sheet.	Returns	Null	if	the	range	contains	more	than	one	column	and	the	columns
aren’t	all	the	same	width.	Read/write	Variant.

Example

This	example	sets	the	width	of	column	A	on	Sheet1	to	the	standard	width.

Worksheets("Sheet1").Columns("A").UseStandardWidth	=	True

UseSystemSeparators	Property
							

True	(default)	if	the	system	separators	of	Microsoft	Excel	are	enabled.
Read/write	Boolean.

expression.UseSystemSeparators

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

Example

In	this	example,	"1,234,567.89"	is	placed	in	cell	A1.	The	system	separators	are
then	changed	to	dashes	for	the	decimals	and	thousands	separators.

Sub	ChangeSystemSeparators()

				Range("A1").Formula	=	"1,234,567.89"

				MsgBox	"The	system	separators	will	now	change."

				'	Define	separators	and	apply.

				Application.DecimalSeparator	=	"-"

				Application.ThousandsSeparator	=	"-"

				Application.UseSystemSeparators	=	False

End	Sub

VacatedStyle	Property
							

Returns	or	sets	the	style	applied	to	cells	vacated	when	the	PivotTable	report	is
refreshed.	The	default	value	is	a	null	string	(no	style	is	applied	by	default).
Read/write	String.

Example

This	example	sets	the	vacated	cells	in	the	PivotTable	report	to	the	BlackAndBlue
style.

Worksheets(1).PivotTables("Pivot1").VacatedStyle	=	"BlackAndBlue"

Validation	Property
							

Returns	the	Validation	object	that	represents	data	validation	for	the	specified
range.	Read-only.

Example

This	example	causes	data	validation	for	cell	E5	to	allow	blank	values.

Range("e5").Validation.IgnoreBlank	=	True

Show	All

Value	Property
							

Value	property	as	it	applies	to	the	Application,	CubeField,	and	Style	objects.

For	the	Application	object,	always	returns	"Microsoft	Excel".	For	the
CubeField	object,	the	name	of	the	specified	field.	For	the	Style	object,	the	name
of	the	specified	style.	Read-only	String.

expression.Value

expression			Required.	An	expression	that	returns	one	of	the	above	objects.

Value	property	as	it	applies	to	the	Borders	and	CustomProperty	objects.

Synonym	for	Borders.LineStyle.	Read/write	Variant.

expression.Value

expression			Required.	An	expression	that	returns	one	of	the	above	objects.

Value	property	as	it	applies	to	the	ControlFormat	object.

The	name	of	specified	control	format.	Read/write	Long.

expression.Value

expression			Required.	An	expression	that	returns	a	ControlFormat	object.

Value	property	as	it	applies	to	the	Error	and	Validation	objects.

True	if	all	the	validation	criteria	are	met	(that	is,	if	the	range	contains	valid
data).	Read-only	Boolean.

expression.Value

expression			Required.	An	expression	that	returns	one	of	the	above	objects.

Value	property	as	it	applies	to	the	Name,	PivotField,	PivotFormula,
PivotItem,	and	PivotTable	objects.

For	the	Name	object,	a	string	containing	the	formula	that	the	name	is	defined	to
refer	to.	The	string	is	in	A1-style	notation	in	the	language	of	the	macro,	and	it
begins	with	an	equal	sign.	For	the	PivotField	object,	the	name	of	the	specified
field	in	the	PivotTable	report.	For	the	PivotFormula	object,	the	name	of	the
specified	formula	in	the	PivotTable	formula.	For	the	PivotItem	object,	the	name
of	the	specified	item	in	the	PivotTable	field.	For	the	PivotTable	object,	the	name
of	the	PivotTable	report.	Read/write	String.

expression.Value

expression			Required.	An	expression	that	returns	one	of	the	above	objects.

Value	property	as	it	applies	to	the	Parameter	object.

The	parameter	value.	For	more	information,	see	the	Parameter	object.	Read-
only	Variant.

expression.Value

expression			Required.	An	expression	that	returns	a	Parameter	object.

Value	property	as	it	applies	to	the	Range	object.

Returns	or	sets	the	value	of	the	specified	range.	Read/write	Variant.

expression.Value(RangeValueDataType)

expression			Required.	An	expression	that	returns	a	Range	object.

RangeValueDataType		Optional	Variant.	The	range	value	data	type.	Can	be	a
xlRangeValueDataType	constant.

xlRangeValueDataType	can	be	one	of	these	xlRangeValueDataType	constants.
xlRangeValueDefault			default	If	the	specified	Range	object	is	empty,	returns
the	value	Empty	(use	the	IsEmpty	function	to	test	for	this	case).	If	the	Range
object	contains	more	than	one	cell,	returns	an	array	of	values	(use	the	IsArray
function	to	test	for	this	case).

xlRangeValueMSPersistXML			Returns	the	recordset	representation	of	the
specified	Range	object	in	an	XML	format.
xlRangeValueXMLSpreadsheet			Returns	the	values,	formatting,	formulas	and
names	of	the	specified	Range	object	in	the	XML	Spreadsheet	format.

Remarks

When	setting	a	range	of	cells	with	the	contents	of	an	XML	spreadsheet	file,	only
values	of	the	first	sheet	in	the	workbook	are	used.	You	cannot	set	or	get	a
discontiguous	range	of	cells	in	the	XML	spreadsheet	format.

Example

As	it	applies	to	the	Range	object.

This	example	sets	the	value	of	cell	A1	on	Sheet1	to	3.14159.

Worksheets("Sheet1").Range("A1").Value	=	3.14159

This	example	loops	on	cells	A1:D10	on	Sheet1.	If	one	of	the	cells	has	a	value
less	than	0.001,	the	code	replaces	the	value	with	0	(zero).

For	Each	c	in	Worksheets("Sheet1").Range("A1:D10")

				If	c.Value	<	.001	Then

								c.Value	=	0

				End	If

Next	c

Value2	Property
							

Returns	or	sets	the	cell	value.	Read/write	Variant.

Remarks

The	only	difference	between	this	property	and	the	Value	property	is	that	the
Value2	property	doesn’t	use	the	Currency	and	Date	data	types.	You	can	return
values	formatted	with	these	data	types	as	floating-point	numbers	by	using	the
Double	data	type.

Example

This	example	uses	the	Value2	property	to	add	the	values	of	two	cells.

Range("a1").Value2	=	Range("b1").Value2	+	Range("c1").Value2

Show	All

Values	Property
							

Values	property	as	it	applies	to	the	Scenario	object.

Returns	an	array	that	contains	the	current	values	of	the	changing	cells	for	the
scenario.	Read-only	Variant.

expression.Values(Index)

expression			Required.	An	expression	that	returns	one	of	the	above	objects.

Index		Optional	Variant.	The	position	of	the	value.

Values	property	as	it	applies	to	the	Series	object.

Returns	or	sets	a	collection	of	all	the	values	in	the	series.	This	can	be	a	range	on
a	worksheet	or	an	array	of	constant	values,	but	not	a	combination	of	both.	See
the	examples	for	details.	Read/write	Variant.

expression.Values

expression			Required.	An	expression	that	returns	one	of	the	above	objects.

Remark

For	PivotChart	reports,	this	property	is	read-only.

Example

This	example	sets	the	series	values	from	a	range.

Charts("Chart1").SeriesCollection(1).Values	=	_

				Worksheets("Sheet1").Range("C5:T5")

To	assign	a	constant	value	to	each	individual	data	point,	you	must	use	an	array.

Charts("Chart1").SeriesCollection(1).Values	=	_

				Array(1,	3,	5,	7,	11,	13,	17,	19)

VaryByCategories	Property
							

True	if	Microsoft	Excel	assigns	a	different	color	or	pattern	to	each	data	marker.
The	chart	must	contain	only	one	series.	Read/write	Boolean.

Example

This	example	assigns	a	different	color	or	pattern	to	each	data	marker	in	chart
group	one.	The	example	should	be	run	on	a	2-D	line	chart	that	has	data	markers
on	a	series.

Charts("Chart1").ChartGroups(1).VaryByCategories	=	True

VBASigned	Property
							

True	if	the	Visual	Basic	for	Applications	project	for	the	specified	workbook	has
been	digitally	signed.	Read-only	Boolean.

Example

This	example	loads	a	workbook	named	“mybook.xls”	and	then	tests	to	see
whether	its	Visual	Basic	for	Applications	project	has	a	digital	signature.	If
there’s	no	digital	signature,	the	example	displays	a	warning	message.

Workbooks.Open	FileName:="c:\My	Documents\mybook.xls",	_

				ReadOnly:=False

If	Workbook.VBASigned	=	False	Then

				MsgBox	"Warning!	The	project	"	_

				"has	not	been	digitally	signed."	_

				,	vbCritical,	"Digital	Signature	Warning"

End	If

VBE	Property
							

Returns	a	VBE	object	that	represents	the	Visual	Basic	Editor.	Read-only.

Example

This	example	changes	the	name	of	the	active	Visual	Basic	project.

Application.VBE.ActiveVBProject.Name	=	"TestProject"

VBProject	Property
							

Returns	a	VBProject	object	that	represents	the	Visual	Basic	project	in	the
specified	workbook.	Read-only.

Example

This	example	changes	the	name	of	the	Visual	Basic	project	in	the	workbook.

ThisWorkbook.VBProject.Name	=	"TestProject"

Show	All

Version	Property
							

	Version	property	as	it	applies	to	the	PivotTable	object.

Returns	the	Microsoft	Excel	version	number.	Read-only
XlPivotTableVersionList.

XlPivotTableVersionList	can	be	one	of	these	XlPivotTableVersionList
constants.
xlPivotTableVersion10
xlPivotTableVersion2000
xlPivotTableVersionCurrent

expression.Version

expression			Required.	An	expression	that	returns	one	of	the	above	objects.

	

Version	property	as	it	applies	to	the	Application	object.

Returns	the	Microsoft	Excel	version	number.	Read-only	String.

expression.Version

expression			Required.	An	expression	that	returns	one	of	the	above	objects.

Example

As	it	applies	to	the	Application	object.

This	example	displays	a	message	box	that	contains	the	Microsoft	Excel	version
number	and	the	name	of	the	operating	system.

MsgBox	"Welcome	to	Microsoft	Excel	version	"	&	_	

				Application.Version	&	"	running	on	"	&	_

				Application.OperatingSystem	&	"!"

Show	All

VerticalAlignment	Property
							

VerticalAlignment	property	as	it	applies	to	the	Style	and	TextFrame	objects.

Returns	or	sets	the	vertical	alignment	of	the	specified	object.	Read/write
XlVAlign.

XlVAlign	can	be	one	of	these	XlVAlign	constants.
xlVAlignCenter
xlVAlignJustify
xlVAlignBottom
xlVAlignDistributed
xlVAlignTop

expression.VerticalAlignment

expression			Required.	An	expression	that	returns	one	of	the	above	objects.

Remarks

Some	of	these	constants	may	not	be	available	to	you,	depending	on	the	language
support	(U.S.	English,	for	example)	that	you've	selected	or	installed.

VerticalAlignment	property	as	it	applies	to	the	AxisTitle,	CellFormat,
ChartTitle,	DataLabel,	DataLabels,	DisplayUnitLabel,	and	Range	objects.

Returns	or	sets	the	vertical	alignment	of	the	specified	object.	Read/write
Variant.

expression.VerticalAlignment

expression			Required.	An	expression	that	returns	one	of	the	above	objects.

Example

As	it	applies	to	the	CellFormat	object.

This	example	sets	the	height	of	row	2	on	Sheet1	to	twice	the	standard	height	and
then	centers	the	contents	of	the	row	vertically.

Worksheets("Sheet1").Rows(2).RowHeight	=	_

				2	*	Worksheets("Sheet1").StandardHeight

Worksheets("Sheet1").Rows(2).VerticalAlignment	=	xlVAlignCenter

VerticalFlip	Property
							

True	if	the	specified	shape	is	flipped	around	the	vertical	axis.	Read-only
MsoTriState.

MsoTriState	can	be	one	of	these	MsoTriState	constants.
msoCTrue
msoFalse
msoTriStateMixed
msoTriStateToggle
msoTrue	The	specified	shape	is	flipped	around	the	vertical	axis.

expression.VerticalFlip

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

Example

This	example	restores	each	shape	on	myDocument	to	its	original	state	if	it’s	been
flipped	horizontally	or	vertically.

Set	myDocument	=	Worksheets(1)

For	Each	s	In	myDocument.Shapes

				If	s.HorizontalFlip	Then	s.Flip	msoFlipHorizontal

				If	s.VerticalFlip	Then	s.Flip	msoFlipVertical

Next

Show	All

Vertices	Property
							

Returns	the	coordinates	of	the	specified	freeform	drawing's	vertices	(and	control
points	for	Bézier	curves)	as	a	series	of	coordinate	pairs.	You	can	use	the	array
returned	by	this	property	as	an	argument	to	the	AddCurve	method	or
AddPolyLine	method.	Read-only	Variant.

The	following	table	shows	how	the	Vertices	property	associates	the	values	in	the
array	vertArray()	with	the	coordinates	of	a	triangle's	vertices.

vertArray	element Contains

vertArray(1,	1)
The	horizontal	distance	from	the	first	vertex	to	the	left
side	of	the	document

vertArray(1,	2)
The	vertical	distance	from	the	first	vertex	to	the	top	of
the	document

vertArray(2,	1)
The	horizontal	distance	from	the	second	vertex	to	the
left	side	of	the	document

vertArray(2,	2)
The	vertical	distance	from	the	second	vertex	to	the	top
of	the	document

vertArray(3,	1)
The	horizontal	distance	from	the	third	vertex	to	the	left
side	of	the	document

vertArray(3,	2)
The	vertical	distance	from	the	third	vertex	to	the	top	of
the	document

Example

This	example	assigns	the	vertex	coordinates	for	shape	one	on	myDocument	to	the
array	variable	vertArray()	and	displays	the	coordinates	for	the	first	vertex.

Set	myDocument	=	Worksheets(1)

With	myDocument.Shapes(1)

				vertArray	=	.Vertices

				x1	=	vertArray(1,	1)

				y1	=	vertArray(1,	2)

				MsgBox	"First	vertex	coordinates:	"	&	x1	&	",	"	&	y1

End	With

This	example	creates	a	curve	that	has	the	same	geometric	description	as	shape
one	on	myDocument.	Shape	one	must	contain	3n+1	vertices	for	this	example	to
succeed.

Set	myDocument	=	Worksheets(1)

With	myDocument.Shapes

				.AddCurve	.Item(1).Vertices

End	With

View	Property
							

Returns	or	sets	the	view	showing	in	the	window.	Read/write	XlWindowView.

XlWindowView	can	be	one	of	these	XlWindowView	constants.
xlNormalView
xlPageBreakPreview

expression.View

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

Example

This	example	switches	the	view	in	the	active	window	to	page	break	preview.

ActiveWindow.View	=	xlPageBreakPreview

Show	All

ViewCalculatedMembers	Property
							

When	set	to	True	(default),	calculated	members	for	Online	Analytical
Processing	(OLAP)	PivotTables	can	be	viewed.	Read/write	Boolean.

expression.ViewCalculatedMembers

expression			Required.	An	expression	that	returns	a	PivotTable	object.

Example

This	example	determines	if	calculated	members	can	be	viewed	on	the	PivotTable
and	notifies	the	user.	It	assumes	that	a	PivotTable	exists	on	the	active	worksheet.

Sub	CheckViewCalculatedMembers()

				Dim	pvtTable	As	PivotTable

				Set	pvtTable	=	ActiveSheet.PivotTables(1)

				'	Determine	if	calculated	members	can	be	viewed.

				If	pvtTable.ViewCalculatedMembers	=	True	Then

								MsgBox	"Calculated	members	can	be	viewed."

				Else

								MsgBox	"Calculated	members	cannot	be	viewed."

				End	If

End	Sub

Show	All

Visible	Property
							

Visible	property	as	it	applies	to	the	ChartFillFormat,	FillFormat,
LineFormat,	ShadowFormat,	Shape,	ShapeRange,	and	ThreeDFormat
objects.

Determines	whether	the	object	is	visible.	Read/write	MsoTriState.

MsoTriState	can	be	one	of	these	MsoTriState	constants.
msoCTrue
msoFalse
msoTriStateMixed
msoTriStateToggle
msoTrue	The	object	is	visible.

expression.Visible

expression			Required.	An	expression	that	returns	one	of	the	above	objects.

	

Visible	property	as	it	applies	to	the	Chart	and	Worksheet	objects.

Determines	whether	the	object	is	visible.	Read/write	XlSheetVisibility.

XlSheetVisibility	can	be	one	of	these	XlSheetVisibility	constants.
xlSheetHidden
xlSheetVisible
xlSheetVeryHidden	Hides	the	object	so	that	the	only	way	for	you	to	make	it
visible	again	is	by	setting	this	property	to	True	(the	user	cannot	make	the	object
visible).

expression.Visible

expression			Required.	An	expression	that	returns	one	of	the	above	objects.

	

Visible	property	as	it	applies	to	the	Application,	ChartObject,	ChartObjects,
Comment,	Name,	OLEObject,	OLEObjects,	Phonetic,	Phonetics,	PivotItem,
and	Window	objects.

Determines	whether	the	object	is	visible.	Read/write	Boolean.

expression.Visible

expression			Required.	An	expression	that	returns	one	of	the	above	objects.

	

Visible	property	as	it	applies	to	the	Charts,	Sheets,	and	Worksheets	objects.

Determines	whether	the	object	is	visible.	Read/write	Variant.

expression.Visible

expression			Required.	An	expression	that	returns	one	of	the	above	objects.

	

Remarks

The	Visible	property	for	a	PivotTable	item	is	True	if	the	item	is	currently	visible
in	the	table.

If	you	set	the	Visible	property	for	a	name	to	False,	the	name	won't	appear	in	the
Define	Name	dialog	box.

Example

As	it	applies	to	the	Charts,	Sheets,	and	Worksheets	objects.

This	example	hides	Sheet1.

Worksheets("Sheet1").Visible	=	False

This	example	makes	Sheet1	visible.

Worksheets("Sheet1").Visible	=	True

This	example	makes	every	sheet	in	the	active	workbook	visible.

For	Each	sh	In	Sheets

	sh.Visible	=	True

Next	sh

This	example	creates	a	new	worksheet	and	then	sets	its	Visible	property	to
xlVeryHidden.	To	refer	to	the	sheet,	use	its	object	variable,	newSheet,	as	shown
in	the	last	line	of	the	example.	To	use	the	newSheet	object	variable	in	another
procedure,	you	must	declare	it	as	a	public	variable	(Public	newSheet	As
Object)	in	the	first	line	of	the	module	preceding	any	Sub	or	Function
procedure.

Set	newSheet	=	Worksheets.Add

newSheet.Visible	=	xlVeryHidden

newSheet.Range("A1:D4").Formula	=	"=RAND()"

Show	All

VisibleFields	Property
							

Returns	an	object	that	represents	either	a	single	field	in	a	PivotTable	report	(a
PivotField	object)	or	a	collection	of	all	the	visible	fields	(a	PivotFields	object).
Visible	fields	are	shown	as	row,	column,	page	or	data	fields.	Read-only.

expression.VisibleFields(Index)

expression			Required.	An	expression	that	returns	a	PivotTable	object.

Index			Optional	Variant.	The	name	or	number	of	the	field	to	be	returned	(can
be	an	array	to	specify	more	than	one	field).

Remarks

For	OLAP	data	sources,	there	are	no	hidden	fields,	and	this	property	returns	all
the	fields	in	the	PivotTable	cache.

Example

This	example	adds	the	visible	field	names	to	a	list	on	a	new	worksheet.

Set	nwSheet	=	Worksheets.Add

nwSheet.Activate

Set	pvtTable	=	Worksheets("Sheet2").Range("A1").PivotTable

rw	=	0

For	Each	pvtField	In	pvtTable.VisibleFields

				rw	=	rw	+	1

				nwSheet.Cells(rw,	1).Value	=	pvtField.Name

Next	pvtField

Show	All

VisibleItems	Property
							

Returns	an	object	that	represents	either	a	single	visible	PivotTable	item	(a
PivotItem	object)	or	a	collection	of	all	the	visible	items	(a	PivotItems	object)	in
the	specified	field.	Read-only.

expression.VisibleItems(Index)

expression			Required.	An	expression	that	returns	a	PivotField	object.

Index			Optional	Variant.	The	number	or	name	of	the	item	to	be	returned	(can
be	an	array	to	specify	more	than	one	item).

Remarks

For	OLAP	data	sources,	this	property	is	read-only	and	always	returns	True.
There	are	no	hidden	items.

Example

This	example	adds	the	names	of	all	visible	items	in	the	field	named	"Product"	to
a	list	on	a	new	worksheet.

Set	nwSheet	=	Worksheets.Add

nwSheet.Activate

Set	pvtTable	=	Worksheets("Sheet2").Range("A1").PivotTable

rw	=	0

For	Each	pvtItem	In	pvtTable.PivotFields("Product").VisibleItems

				rw	=	rw	+	1

				nwSheet.Cells(rw,	1).Value	=	pvtItem.Name

Next

VisibleRange	Property
							

Returns	a	Range	object	that	represents	the	range	of	cells	that	are	visible	in	the
window	or	pane.	If	a	column	or	row	is	partially	visible,	it's	included	in	the	range.
Read-only.

Example

This	example	displays	the	number	of	cells	visible	on	Sheet1.

Worksheets("Sheet1").Activate

MsgBox	"There	are	"	&	Windows(1).VisibleRange.Cells.Count	_

				&	"	cells	visible"

Show	All

VisualTotals	Property
							

True	(default)	to	enable	Online	Analytical	Processing	(OLAP)	PivotTables	to
retotal	after	an	item	has	been	hidden	from	view.	Read/write	Boolean.

expression.VisualTotals

expression			Required.	An	expression	that	returns	a	PivotTable	object.

Remarks

In	non-OLAP	PivotTables,	if	you	hide	an	item,	the	total	is	recomputed	to	reflect
only	the	items	that	remain	visible	in	the	PivotTable.	In	an	OLAP	PivotTable,	the
total	is	computed	on	the	server	and	is	therefore	unaffected	by	whether	any	items
are	hidden	in	the	PivotTable	view.	However,	if	the	VisualTotals	property	is	set
to	False	for	an	OLAP	PivotTable,	then	the	results	of	the	OLAP	PivotTable	will
match	those	of	the	non-OLAP	PivotTable.

For	OLAP	PivotTables,	a	VisualTotals	property	setting	of	True	(default)	works
the	same	way	as	described	for	non-OLAP	PivotTables.

The	VisualTotals	property	returns	True	for	all	new	PivotTables.	However,	if
you	open	a	workbook	in	the	current	version	of	Microsoft	Excel	and	the
PivotTable	had	been	created	in	a	previous	version	of	Excel,	then	the
VisualTotals	property	will	return	False.

Note			All	previously	created	PivotTables	will	have	the	VisualTotals	property
set	to	False	by	default,	unless	the	user	changes	it,	but	for	all	newly	created	ones
the	VisualTotals	property	is	set	to	True.

Example

This	example	determines	if	the	ability	to	re-total	after	an	item	has	been	hidden
from	view	is	available	for	OLAP	PivotTables	and	notifies	the	user.	The	example
assumes	a	PivotTable	exists	on	the	active	worksheet.

Sub	CheckVisualTotals()

				Dim	pvtTable	As	PivotTable

				Set	pvtTable	=	ActiveSheet.PivotTables(1)

				'	Determine	if	visual	totals	is	enabled	for	OLAP	PivotTables.

				If	pvtTable.VisualTotals	=	True	Then

								MsgBox	"Ability	enabled	to	re-total	after	an	item	"	&	_

												"has	been	hidden	from	view."

				Else

								MsgBox	"Unable	to	re-total	items	not	hidden	from	view."

				End	If

End	Sub

VPageBreaks	Property
							

Returns	a	VPageBreaks	collection	that	represents	the	vertical	page	breaks	on	the
sheet.	Read-only.

For	information	about	returning	a	single	member	of	a	collection,	see	Returning
an	Object	from	a	Collection.

Example

This	example	displays	the	total	number	of	full-screen	and	print-area	vertical
page	breaks.

For	Each	pb	in	Worksheets(1).VPageBreaks

				If	pb.Extent	=	xlPageBreakFull	Then

								cFull	=	cFull	+	1

				Else

								cPartial	=	cPartial	+	1

				End	If

Next

MsgBox	cFull	&	"	full-screen	page	breaks,	"	&	cPartial	&	_

				"	print-area	page	breaks"

Walls	Property
							

Returns	a	Walls	object	that	represents	the	walls	of	the	3-D	chart.	Read-only.

Remarks

This	property	doesn't	apply	to	3-D	pie	charts.

Example

This	example	sets	the	color	of	the	wall	border	of	Chart1	to	red.	The	example
should	be	run	on	a	3-D	chart.

Charts("Chart1").Walls.Border.ColorIndex	=	3

WallsAndGridlines2D	Property
							

True	if	gridlines	are	drawn	two-dimensionally	on	a	3-D	chart.	Read/write
Boolean.

Example

This	example	causes	Microsoft	Excel	to	draw	2-D	gridlines	on	Chart1.

Charts("Chart1").WallsAndGridlines2D	=	True

Watches	Property
							

Returns	a	Watches	object	representing	a	range	which	is	tracked	when	the
worksheet	is	recalculated.

expression.Watches

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

Example

This	example	creates	a	summation	formula	in	cell	A3,	and	then	adds	this	cell	to
the	Watch	Window.

Sub	AddWatch()

				With	Application

								.Range("A1").Formula	=	1

								.Range("A2").Formula	=	2

								.Range("A3").Formula	=	"=Sum(A1:A2)"

								.Range("A3").Select

								.Watches.Add	Source:=ActiveCell

				End	With

End	Sub

WebConsecutiveDelimitersAsOne
Property
							

True	if	consecutive	delimiters	are	treated	as	a	single	delimiter	when	you	import
data	from	HTML	<PRE>	tags	in	a	Web	page	into	a	query	table,	and	if	the	data	is
to	be	parsed	into	columns.	False	if	you	want	to	treat	consecutive	delimiters	as
multiple	delimiters.	The	default	value	is	True.	Read/write	Boolean.

Remarks

Use	this	property	only	when	the	query	table’s	QueryType	property	is	set	to
xlWebQuery,	the	query	returns	an	HTML	document,	and	the
WebPreFormattedTextToColumns	property	is	set	to	True.

Example

This	example	sets	the	space	character	to	be	the	delimiter	in	the	query	table	on
the	first	worksheet	in	the	first	workbook,	and	then	it	refreshes	the	query	table.
Consecutive	spaces	are	treated	as	a	single	space.

Set	shFirstQtr	=	Workbooks(1).Worksheets(1)	

Set	qtQtrResults	=	shFirstQtr.QueryTables	_

				.Add(Connection	:=	"URL;http://datasvr/98q1/19980331.htm",	_

								Destination	:=	shFirstQtr.Cells(1,1))

With	qtQtrResults

				.WebConsecutiveDelimitersAsOne	=	True

				.Refresh

End	With

WebDisableDateRecognition
Property
							

True	if	data	that	resembles	dates	is	parsed	as	text	when	you	import	a	Web	page
into	a	query	table.	False	if	date	recognition	is	used.	The	default	value	is	False.
Read/write	Boolean.

Remarks

Use	this	property	only	when	the	query	table’s	QueryType	property	is	set	to
xlWebQuery	and	the	query	returns	an	HTML	document.

Example

This	example	turns	off	date	recognition	so	that	Web	page	data	that	resembles
dates	is	imported	as	text.	The	example	then	refreshes	the	query	table.

Set	shFirstQtr	=	Workbooks(1).Worksheets(1)	

Set	qtQtrResults	=	shFirstQtr.QueryTables	_

				.Add(Connection	:=	"URL;http://datasvr/98q1/19980331.htm",	_

								Destination	:=	shFirstQtr.Cells(1,1))

With	qtQtrResults

				.WebDisableDateRecognition	=	True

				.Refresh

End	With

WebDisableRedirections	Property
							

True	if	Web	query	redirections	are	disabled	for	a	QueryTable	object.	The
default	value	is	False.	Read/write	Boolean.

expression.WebDisableRedirections

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

Example

In	this	example,	Microsoft	Excel	determines	the	settings	Web	query	redirections
for	the	first	worksheet	in	the	workbook.	This	example	assumes	a	QueryTable
object	exists	on	the	first	worksheet,	otherwise	a	run-time	error	will	occur.

Sub	CheckWebQuerySetting()

				Dim	wksSheet	As	Worksheet

				Set	wksSheet	=	Application.ActiveSheet

				MsgBox	wksSheet.QueryTables(1).WebDisableRedirections

End	Sub

WebFormatting	Property
							

Returns	or	sets	a	value	that	determines	how	much	formatting	from	a	Web	page,
if	any,	is	applied	when	you	import	the	page	into	a	query	table.	Read/write
XlWebFormatting.

XlWebFormatting	can	be	one	of	these	XlWebFormatting	constants.
xlWebFormattingAll
xlWebFormattingRTF
xlWebFormattingNone	default.

expression.WebFormatting

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

Remarks

Use	this	property	only	when	the	query	table’s	QueryType	property	is	set	to
xlWebQuery	and	the	query	returns	an	HTML	document.

Example

This	example	adds	a	new	Web	query	table	to	the	first	worksheet	in	the	first
workbook,	imports	all	of	the	Web	page	formatting	applied	to	the	data,	and	then
refreshes	the	query	table.

Set	shFirstQtr	=	Workbooks(1).Worksheets(1)	

Set	qtQtrResults	=	shFirstQtr.QueryTables	_

				.Add(Connection	:=	"URL;http://datasvr/98q1/19980331.htm",	_

								Destination	:=	shFirstQtr.Cells(1,1))

With	qtQtrResults

				.WebFormatting	=	xlAll

				.Refresh

End	With

WebOptions	Property
							

Returns	the	WebOptions	collection,	which	contains	workbook-level	attributes
used	by	Microsoft	Excel	when	you	save	a	document	as	a	Web	page	or	open	a
Web	page.	Read-only.

Example

This	example	specifies	that	cascading	style	sheets	and	Western	document
encoding	be	used	when	items	in	the	first	workbook	are	saved	to	a	Web	page.

Set	objWO	=	Workbooks(1).WebOptions

objWO.RelyOnCSS	=	True

objWO.Encoding	=	msoEncodingWestern

WebPreFormattedTextToColumns
Property
							

Returns	or	sets	whether	data	contained	within	HTML	<PRE>	tags	in	the	Web
page	is	parsed	into	columns	when	you	import	the	page	into	a	query	table.	The
default	is	True.	Read/write	Boolean.

Remarks

This	property	is	used	only	when	the	QueryType	property	of	the	query	table	is
xlWebQuery	and	the	query	returns	a	HTML	document.

Example

This	example	adds	a	new	Web	query	table	to	the	first	worksheet	in	the	first
workbook.	Note	that	the	example	doesn’t	parse	into	columns	any	data	located
between	the	HTML	<PRE>	tags.

Set	shFirstQtr	=	Workbooks(1).Worksheets(1)	

Set	qtQtrResults	=	shFirstQtr.QueryTables	_

				.Add(Connection	:=	"URL;http://datasvr/98q1/19980331.htm",	_

								Destination	:=	shFirstQtr.Cells(1,1))

With	qtQtrResults

				.WebFormatting	=	xlNone

				.WebPreFormattedTextToColumns	=	False

				.Refresh

End	With

WebSelectionType	Property
							

Returns	or	sets	a	value	that	determines	whether	an	entire	Web	page,	all	tables	on
the	Web	page,	or	only	specific	tables	on	the	Web	page	are	imported	into	a	query
table.	Read/write	XlWebSelectionType.

XlWebSelectionType	can	be	one	of	these	XlWebSelectionType	constants.
xlEntirePage
xlAllTables	default.
xlSpecifiedTables

expression.WebSelectionType

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

Remarks

Use	this	property	only	when	the	query	table’s	QueryType	property	is	set	to
xlWebQuery	and	the	query	returns	an	HTML	document.

If	the	value	of	this	property	is	xlSpecifiedTables,	you	can	use	the	WebTables
property	to	specify	the	tables	to	be	imported.

Example

This	example	adds	a	new	Web	query	table	to	the	first	worksheet	in	the	first
workbook	and	then	imports	data	from	the	first	and	second	tables	in	the	Web
page.

Set	shFirstQtr	=	Workbooks(1).Worksheets(1)	

Set	qtQtrResults	=	shFirstQtr.QueryTables	_

				.Add(Connection	:=	"URL;http://datasvr/98q1/19980331.htm",	_

								Destination	:=	shFirstQtr.Cells(1,1))

With	qtQtrResults

				.WebFormatting	=	xlNone

				.WebSelectionType	=	xlSpecifiedTables

				.WebTables	=	"1,2"

				.Refresh

End	With

WebSingleBlockTextImport	Property
							

True	if	data	from	the	HTML	<PRE>	tags	in	the	specified	Web	page	is	processed
all	at	once	when	you	import	the	page	into	a	query	table.	False	if	the	data	is
imported	in	blocks	of	contiguous	rows	so	that	header	rows	will	be	recognized	as
such.	The	default	value	is	False.	Read/write	Boolean.

Remarks

Use	this	property	only	when	the	query	table’s	QueryType	property	is	set	to
xlWebQuery	and	the	query	returns	an	HTML	document.

Example

This	example	adds	a	new	Web	query	table	to	the	first	worksheet	in	the	first
workbook	and	and	then	imports	all	of	the	HTML	<PRE>	tag	data	all	at	once.

Set	shFirstQtr	=	Workbooks(1).Worksheets(1)	

Set	qtQtrResults	=	shFirstQtr.QueryTables	_

				.Add(Connection	:=	"URL;http://datasvr/98q1/19980331.htm",	_

								Destination	:=	shFirstQtr.Cells(1,1))

With	qtQtrResults

				.WebSingleBlockTextImport	=	True

				.Refresh

End	With

WebTables	Property
							

Returns	or	sets	a	comma-delimited	list	of	table	names	or	table	index	numbers
when	you	import	a	Web	page	into	a	query	table.	Read/write	String.

Remarks

Use	this	property	only	when	the	query	table’s	QueryType	property	is	set	to
xlWebQuery,	the	query	returns	an	HTML	document,	and	the	value	of	the
WebSelectionType	property	is	xlSpecifiedTables.

Example

This	example	adds	a	new	Web	query	table	to	the	first	worksheet	in	the	first
workbook	and	then	imports	data	from	the	first	and	second	tables	in	the	Web
page.

Set	shFirstQtr	=	Workbooks(1).Worksheets(1)	

Set	qtQtrResults	=	shFirstQtr.QueryTables	_

				.Add(Connection	:=	"URL;http://datasvr/98q1/19980331.htm",	_

								Destination	:=	shFirstQtr.Cells(1,1))

With	qtQtrResults

				.WebFormatting	=	xlNone

				.WebSelectionType	=	xlSpecifiedTables

				.WebTables	=	"1,2"

				.Refresh

End	With

Show	All

Weight	Property
							

	Weight	property	as	it	applies	to	the	LineFormat	object.

Returns	or	sets	the	weight	of	the	line.	Read/write	Single.

expression.Weight

expression			Required.	An	expression	that	returns	one	of	the	above	objects.

	

Weight	property	as	it	applies	to	the	Border	and	Borders	objects.

Returns	or	sets	the	weight	of	the	border.	Read/write	XlBorderWeight.

XlBorderWeight	can	be	one	of	these	XlBorderWeight	constants.
xlHairline
xlThin
xlMedium

xlThick

expression.Weight

expression			Required.	An	expression	that	returns	one	of	the	objects.	

Example

This	example	sets	the	border	weight	for	oval	one	on	Sheet1.

Worksheets("Sheet1").Ovals(1).Border.Weight	=	xlMedium

Show	All

Width	Property
							

Width	property	as	it	applies	to	the	Application	object.

The	distance	from	the	left	edge	of	the	application	window	to	its	right	edge.	If	the
window	is	minimized,	Application.Width	is	read-only	and	returns	the	width	of
the	window	icon.	Read/write	Double.

expression.Width

expression			Required.	An	expression	that	returns	an	Application	object.

Width	property	as	it	applies	to	the	Window	object.

The	width	of	the	window.	Use	the	UsableWidth	property	to	determine	the
maximum	size	for	the	window.	You	cannot	set	this	property	if	the	window	is
maximized	or	minimized.	Use	the	WindowState	property	to	determine	the
window	state.	Read/write	Double.

expression.Width

expression			Required.	An	expression	that	returns	a	Window	object.

Width	property	as	it	applies	to	the	ChartArea,	ChartObject,	ChartObjects,
Legend,	OLEObject,	OLEObjects,	and	PlotArea	objects.

The	width	of	the	object.	Read/write	Double.

expression.Width

expression			Required.	An	expression	that	returns	one	of	the	above	objects.

Width	property	as	it	applies	to	the	Axis,	LegendEntry,	and	LegendKey
objects.

The	width	of	the	object.	Read-only	Double.

expression.Width

expression			Required.	An	expression	that	returns	one	of	the	above	objects.

Width	property	as	it	applies	to	the	Graphic,	Shape,	and	ShapeRange	objects.

The	width	of	the	object.	Read/write	Single.

expression.Width

expression			Required.	An	expression	that	returns	one	of	the	above	objects.

Width	property	as	it	applies	to	the	Range	object.

The	width	of	the	range.	Read-only	Variant.

expression.Width

expression			Required.	An	expression	that	returns	a	Range	object.

Example

As	it	applies	to	the	Application	object.

This	example	expands	the	active	window	to	the	maximum	size	available
(assuming	that	the	window	isn’t	maximized).

With	ActiveWindow

				.WindowState	=	xlNormal

				.Top	=	1

				.Left	=	1

				.Height	=	Application.UsableHeight

				.Width	=	Application.UsableWidth

End	With

As	it	applies	to	the	ChartArea,	ChartObject,	ChartObjects,	Legend,
OLEObject,	OLEObjects,	and	PlotArea	objects.

This	example	sets	the	width	of	the	embedded	chart.

Worksheets("Sheet1").ChartObjects(1).Width	=	360

WindowNumber	Property
							

Returns	the	window	number.	For	example,	a	window	named	"Book1.xls:2"	has	2
as	its	window	number.	Most	windows	have	the	window	number	1.	Read-only
Long.

Remarks

The	window	number	isn't	the	same	as	the	window	index	(the	return	value	of	the
Index	property),	which	is	the	position	of	the	window	within	the	Windows
collection.

Example

This	example	creates	a	new	window	of	the	active	window	and	then	displays	the
window	number	of	the	new	window.

ActiveWindow.NewWindow

MsgBox	ActiveWindow.WindowNumber

Windows	Property
							

For	an	Application	object,	returns	a	Windows	collection	that	represents	all	the
windows	in	all	the	workbooks.	For	a	Workbook	object,	returns	a	Windows
collection	that	represents	all	the	windows	in	the	specified	workbook.	Read-only
Windows	object.

Remarks

For	information	about	returning	a	single	member	of	a	collection,	see	Returning
an	Object	from	a	Collection.

Using	this	property	without	an	object	qualifier	is	equivalent	to	using
Application.Windows.

This	property	returns	a	collection	of	both	visible	and	hidden	windows.

Example

This	example	closes	the	first	open	or	hidden	window	in	Microsoft	Excel.

Application.Windows(1).Close

This	example	names	window	one	in	the	active	workbook	"Consolidated	Balance
Sheet."	This	name	is	then	used	as	the	index	to	the	Windows	collection.

ActiveWorkbook.Windows(1).Caption	=	"Consolidated	Balance	Sheet"

ActiveWorkbook.Windows("Consolidated	Balance	Sheet")	_

				.ActiveSheet.Calculate

WindowsForPens	Property
							

True	if	the	computer	is	running	under	Microsoft	Windows	for	Pen	Computing.
Read-only	Boolean.

Example

This	example	shows	how	to	limit	handwriting	recognition	to	numbers	and
punctuation	only	if	Microsoft	Windows	for	Pen	Computing	is	running.

If	Application.WindowsForPens	Then

				Application.ConstrainNumeric	=	True

End	If

WindowState	Property
							

Returns	or	sets	the	state	of	the	window.	Read/write	XlWindowState.

XlWindowState	can	be	one	of	these	XlWindowState	constants.
xlMaximized
xlNormal
xlMinimized

expression.WindowState

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

Example

This	example	maximizes	the	application	window	in	Microsoft	Excel.

Application.WindowState	=	xlMaximized

This	example	expands	the	active	window	to	the	maximum	size	available
(assuming	that	the	window	isn't	already	maximized).

With	ActiveWindow

				.WindowState	=	xlNormal

				.Top	=	1

				.Left	=	1

				.Height	=	Application.UsableHeight

				.Width	=	Application.UsableWidth

End	With

Workbooks	Property
							

Returns	a	Workbooks	collection	that	represents	all	the	open	workbooks.	Read-
only.

For	information	about	returning	a	single	member	of	a	collection,	see	Returning
an	Object	from	a	Collection.

Remarks

Using	this	property	without	an	object	qualifier	is	equivalent	to	using
Application.Workbooks.

The	collection	returned	by	the	Workbooks	property	doesn’t	include	open	add-
ins,	which	are	a	special	kind	of	hidden	workbook.	You	can,	however,	return	a
single	open	add-in	if	you	know	the	file	name.	For	example,
Workbooks("Oscar.xla")	will	return	the	open	add-in	named	"Oscar.xla"	as	a
Workbook	object.

Example

This	example	activates	the	workbook	Book1.xls.

Workbooks("BOOK1").Activate

This	example	opens	the	workbook	Large.xls.

Workbooks.Open	filename:="LARGE.XLS"

This	example	saves	changes	to	and	closes	all	workbooks	except	the	one	that’s
running	the	example.

For	Each	w	In	Workbooks

				If	w.Name	<>	ThisWorkbook.Name	Then

								w.Close	savechanges:=True

				End	If

Next	w

Worksheet	Property
							

Returns	a	Worksheet	object	that	represents	the	worksheet	containing	the
specified	range.	Read-only.

Example

This	example	displays	the	name	of	the	worksheet	that	contains	the	active	cell.
The	example	must	be	run	from	a	worksheet.

MsgBox	ActiveCell.Worksheet.Name

This	example	displays	the	name	of	the	worksheet	that	contains	the	range	named
"testRange."

MsgBox	Range("testRange").Worksheet.Name

WorksheetFunction	Property
							

Returns	the	WorksheetFunction	object.	Read-only.

Example

This	example	displays	the	result	of	applying	the	Min	worksheet	function	to	the
range	A1:A10.

Set	myRange	=	Worksheets("Sheet1").Range("A1:C10")

answer	=	Application.WorksheetFunction.Min(myRange)

MsgBox	answer

Worksheets	Property
							

For	an	Application	object,	returns	a	Sheets	collection	that	represents	all	the
worksheets	in	the	active	workbook.	For	a	Workbook	object,	returns	a	Sheets
collection	that	represents	all	the	worksheets	in	the	specified	workbook.	Read-
only	Sheets	object.

Remarks

For	information	about	returning	a	single	member	of	a	collection,	see	Returning
an	Object	from	a	Collection.

Using	this	property	without	an	object	qualifier	returns	all	the	worksheets	in	the
active	workbook.

This	property	doesn’t	return	macro	sheets;	use	the	Excel4MacroSheets	property
or	the	Excel4IntlMacroSheets	property	to	return	those	sheets.

Example

This	example	displays	the	value	in	cell	A1	on	Sheet1	in	the	active	workbook.

MsgBox	Worksheets("Sheet1").Range("A1").Value

This	example	displays	the	name	of	each	worksheet	in	the	active	workbook.

For	Each	ws	In	Worksheets

				MsgBox	ws.Name

Next	ws

This	example	adds	a	new	worksheet	to	the	active	workbook	and	then	sets	the
name	of	the	worksheet.

Set	newSheet	=	Worksheets.Add

newSheet.Name	=	"current	Budget"

Show	All

WrapText	Property
							

WrapText	property	as	it	applies	to	the	Style	object.

True	if	Microsoft	Excel	wraps	the	text	in	the	object.	Read/write	Boolean.

expression.WrapText

expression			Required.	An	expression	that	returns	one	of	the	above	objects.

WrapText	property	as	it	applies	to	the	CellFormat	and	Range	objects.

True	if	Microsoft	Excel	wraps	the	text	in	the	object.	Returns	Null	if	the
specified	range	contains	some	cells	that	wrap	text	and	other	cells	that	don’t.
Read/write	Variant.

expression.WrapText

expression			Required.	An	expression	that	returns	one	of	the	above	objects.

Remarks

Microsoft	Excel	will	change	the	row	height	of	the	range,	if	necessary,	to
accommodate	the	text	in	the	range.

Example

As	it	applies	to	the	Range	object.

This	example	formats	cell	B2	on	Sheet1	so	that	the	text	wraps	within	the	cell.

Worksheets("Sheet1").Range("B2").Value	=	_

				"This	text	should	wrap	in	a	cell."

Worksheets("Sheet1").Range("B2").WrapText	=	True

WritePassword	Property
							

Returns	or	sets	a	String	for	the	write	password	of	a	workbook.	Read/write.

expression.WritePassword

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

Example

In	this	example,	if	the	active	workbook	is	not	protected	against	saving	changes,
Microsoft	Excel	sets	the	password	to	a	string	as	the	write	password	for	the	active
workbook.

Sub	UseWritePassword()

				Dim	strPassword	As	String

				strPassword	=	"secret"

				'	Set	password	to	a	string	if	allowed.

				If	ActiveWorkbook.WriteReserved	=	False	Then

								ActiveWorkbook.WritePassword	=	strPassword

				End	If

End	Sub

Note			The	WritePassword	property	is	readable	and	returns	"********".

WriteReserved	Property
							

True	if	the	workbook	is	write-reserved.	Read-only	Boolean.

Remarks

Use	the	SaveAs	method	to	set	this	property.

Example

If	the	active	workbook	is	write-reserved,	this	example	displays	a	message	that
contains	the	name	of	the	user	who	saved	the	workbook	as	write-reserved.

With	ActiveWorkbook

				If	.WriteReserved	=	True	Then

								MsgBox	"Please	contact	"	&	.WriteReservedBy	&	Chr(13)	&	_

												"	if	you	need	to	insert	data	in	this	workbook."

				End	If

End	With

WriteReservedBy	Property
							

Returns	the	name	of	the	user	who	currently	has	write	permission	for	the
workbook.	Read-only	String.

Example

If	the	active	workbook	is	write-reserved,	this	example	displays	a	message	that
contains	the	name	of	the	user	who	saved	the	workbook	as	write-reserved.

With	ActiveWorkbook

				If	.WriteReserved	=	True	Then

								MsgBox	"Please	contact	"	&	.WriteReservedBy	&	Chr(13)	&	_

												"	if	you	need	to	insert	data	in	this	workbook."

				End	If

End	With

XML	Property
							

Returns	a	String	representing	a	sample	of	the	XML	that	would	be	passed	to	the
action	handler.	Read-only.

expression.XML

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

Example

This	example	adds	a	smart	tag	to	cell	A1	and	then	displays	the	XML	that	would
be	passed	to	the	action	handler.	This	example	assumes	the	host	system	is
connected	to	the	Internet.

Sub	CheckXML()

				Dim	strLink	As	String

				Dim	strType	As	String

				'	Define	SmartTag	variables.

				strLink	=	"urn:schemas-microsoft-com:smarttags#StockTickerSymbol"

				strType	=	"stockview"

				'	Enable	smart	tags	to	be	embedded	and	recognized.

				ActiveWorkbook.SmartTagOptions.EmbedSmartTags	=	True

				Application.SmartTagRecognizers.Recognize	=	True

				Range("A1").Formula	=	"MSFT"

				'	Display	the	sample	of	the	XML.

				MsgBox	Range("A1").SmartTags.Add(strLink).XML

End	Sub

XValues	Property
							

Returns	or	sets	an	array	of	x	values	for	a	chart	series.	The	XValues	property	can
be	set	to	a	range	on	a	worksheet	or	to	an	array	of	values,	but	it	cannot	be	a
combination	of	both.	Read/write	Variant.

For	PivotChart	reports,	this	property	is	read-only.

Example

This	example	sets	the	x	values	for	series	one	in	Chart1	to	the	range	B1:B5	on
Sheet1.

Charts("Chart1").SeriesCollection(1).XValues	=	_

								Worksheets("Sheet1").Range("B1:B5")

This	example	uses	an	array	to	set	values	for	the	individual	points	in	series	one	in
Chart1.

Charts("Chart1").SeriesCollection(1).XValues	=	_

								Array(5.0,	6.3,	12.6,	28,	50)

This	keyword	is	not	implemented.	It	is	reserved	for	future	use.

Show	All

Zoom	Property
							

Zoom	property	as	it	applies	to	the	PageSetup	object.

Returns	or	sets	a	percentage	(between	10	and	400	percent)	by	which	Microsoft
Excel	will	scale	the	worksheet	for	printing.	Applies	only	to	worksheets.
Read/write	Variant.

expression.Zoom

expression			Required.	An	expression	that	returns	a	PageSetup	object.

Remarks

If	this	property	is	False,	the	FitToPagesWide	and	FitToPagesTall	properties
control	how	the	worksheet	is	scaled.

All	scaling	retains	the	aspect	ratio	of	the	original	document.

Zoom	property	as	it	applies	to	the	Window	object.

Returns	or	sets	the	display	size	of	the	window,	as	a	percentage	(100	equals
normal	size,	200	equals	double	size,	and	so	on).	Read/write	Variant.

expression.Zoom

expression			Required.	An	expression	that	returns	a	Window	object.

Remarks

You	can	also	set	this	property	to	True	to	make	the	window	size	fit	the	current
selection.

This	function	affects	only	the	sheet	that's	currently	active	in	the	window.	To	use
this	property	on	other	sheets,	you	must	first	activate	them.

Example

As	it	applies	to	the	PageSetup	object.

This	example	scales	Sheet1	by	150	percent	when	the	worksheet	is	printed.

Worksheets("Sheet1").PageSetup.Zoom	=	150

ZOrder	Property
							

Returns	the	z-order	position	of	the	object.	Read-only	Long.

Remarks

In	any	collection	of	objects,	the	object	at	the	back	of	the	z-order	is	collection(1),
and	the	object	at	the	front	of	the	z-order	is	collection(collection.Count).	For
example,	if	there	are	embedded	charts	on	the	active	sheet,	the	chart	at	the	back
of	the	z-order	is	ActiveSheet.ChartObjects(1),	and	the	chart	at	the	front	of	the
z-order	is	ActiveSheet.ChartObjects(ActiveSheet.ChartObjects.Count).

Example

This	example	displays	the	z-order	position	of	embedded	chart	one	on	Sheet1.

MsgBox	"The	chart's	z-order	position	is	"	&	_

				Worksheets("Sheet1").ChartObjects(1).ZOrder

Activate	Event
							

Occurs	when	a	workbook,	worksheet,	chart	sheet,	or	embedded	chart	is
activated.

Private	Sub	object_Activate()

object			Chart,	Workbook,	or	Worksheet.	For	information	about	using	events
with	the	Chart	object,	see	Using	Events	with	the	Chart	Object.

Remarks

When	you	switch	between	two	windows	showing	the	same	workbook,	the
WindowActivate	event	occurs,	but	the	Activate	event	for	the	workbook	doesn't
occur.

This	event	doesn't	occur	when	you	create	a	new	window.

Example

This	example	sorts	the	range	A1:A10	when	the	worksheet	is	activated.

Private	Sub	Worksheet_Activate()

				Range("a1:a10").Sort	Key1:=Range("a1"),	Order:=xlAscending

End	Sub

AddinInstall	Event
							

Occurs	when	the	workbook	is	installed	as	an	add-in

Private	Sub	Workbook_AddinInstall()

Example

This	example	adds	a	control	to	the	standard	toolbar	when	the	workbook	is
installed	as	an	add-in.

Private	Sub	Workbook_AddinInstall()

				With	Application.Commandbars("Standard").Controls.Add

								.Caption	=	"The	AddIn's	menu	item"

								.OnAction	=	"'ThisAddin.xls'!Amacro"

				End	With	End	Sub

End	Sub

AddinUninstall	Event
							

Occurs	when	the	workbook	is	uninstalled	as	an	add-in.

Private	Sub	Workbook_AddinUninstall()

Remarks

The	add-in	doesn't	automatically	close	when	it's	uninstalled.

Example

This	example	minimizes	Microsoft	Excel	when	the	workbook	is	uninstalled	as
an	add-in.

Private	Sub	Workbook_AddinUninstall()

				Application.WindowState	=	xlMinimized

End	Sub

AfterRefresh	Event
							

Occurs	after	a	query	is	completed	or	canceled.

Private	Sub	QueryTable_AfterRefresh(Success	As	Boolean)

Success			True	if	the	query	was	completed	successfully.

Example

This	example	uses	the	Success	argument	to	determine	which	section	of	code	to
run.

Private	Sub	QueryTable_AfterRefresh(Success	As	Boolean)

				If	Success

								'	Query	completed	successfully

				Else

								'	Query	failed	or	was	cancelled

				End	If

End	Sub

BeforeClose	Event
							

Occurs	before	the	workbook	closes.	If	the	workbook	has	been	changed,	this
event	occurs	before	the	user	is	asked	to	save	changes.

Private	Sub	Workbook_BeforeClose(Cancel	As	Boolean)

Cancel			False	when	the	event	occurs.	If	the	event	procedure	sets	this	argument
to	True,	the	close	operation	stops	and	the	workbook	is	left	open.

Example

This	example	always	saves	the	workbook	if	it's	been	changed.

Private	Sub	Workbook_BeforeClose(Cancel	as	Boolean)

				If	Me.Saved	=	False	Then	Me.Save

End	Sub

Show	All

BeforeDoubleClick	Event
							

Activate	method	as	it	applies	to	the	Worksheet	object.

Occurs	when	a	worksheet	is	double-clicked,	before	the	default	double-click
action.

Private	Sub	expression_BeforeDoubleClick(ByVal	Target	As	Range,	Cancel
As	Boolean)

expression			A	variable	which	references	an	object	of	type	Worksheet	declared
with	events	in	a	class	module.

Target			Required.	The	cell	nearest	to	the	mouse	pointer	when	the	double-click
occurs.

Cancel			Optional.	False	when	the	event	occurs.	If	the	event	procedure	sets	this
argument	to	True,	the	default	double-click	action	isn't	performed	when	the
procedure	is	finished.

Activate	method	as	it	applies	to	the	Chart	object.

Occurs	when	an	embedded	chart	is	double-clicked,	before	the	default	double-
click	action.

Private	Sub	expression_BeforeDoubleClick(ByVal	ElementID	As	Long,
ByVal	Arg1	As	Long,	ByVal	Arg2	As	Long,	Cancel	As	Boolean)

expression			A	variable	which	references	an	object	of	type	Chart	declared	with
events	in	a	class	module.

Cancel			Optional.	False	when	the	event	occurs.	If	the	event	procedure	sets	this
argument	to	True,	the	default	double-click	action	isn't	performed	when	the
procedure	is	finished.

ElementID		Required.	The	double-clicked	object	The	meaning	of	Arg1	and

Arg2	depends	on	the	ElementID	value,	as	shown	in	the	following	table.

ElementID Arg1 Arg2
xlAxis AxisIndex AxisType
xlAxisTitle AxisIndex AxisType
xlDisplayUnitLabel AxisIndex AxisType
xlMajorGridlines AxisIndex AxisType
xlMinorGridlines AxisIndex AxisType
xlPivotChartDropZone DropZoneType None
xlPivotChartFieldButton DropZoneType PivotFieldIndex
xlDownBars GroupIndex None
xlDropLines GroupIndex None
xlHiLoLines GroupIndex None
xlRadarAxisLabels GroupIndex None
xlSeriesLines GroupIndex None
xlUpBars GroupIndex None
xlChartArea None None
xlChartTitle None None
xlCorners None None
xlDataTable None None
xlFloor None None
xlLegend None None
xlNothing None None
xlPlotArea None None
xlWalls None None
xlDataLabel SeriesIndex PointIndex
xlErrorBars SeriesIndex None
xlLegendEntry SeriesIndex None
xlLegendKey SeriesIndex None
xlSeries SeriesIndex PointIndex
xlTrendline SeriesIndex TrendLineIndex
xlXErrorBars SeriesIndex None
xlYErrorBars SeriesIndex None

xlShape ShapeIndex None

The	following	table	describes	the	meaning	of	the	arguments.

Argument Description

AxisIndex
Specifies	whether	the	axis	is	primary	or	secondary.	Can
be	one	of	the	following	XlAxisGroup	constants:
xlPrimary	or	xlSecondary.

AxisType
Specifies	the	axis	type.	Can	be	one	of	the	following
XlAxisType	constants:	xlCategory,	xlSeriesAxis,	or
xlValue.

DropZoneType

Specifies	the	drop	zone	type:	column,	data,	page,	or	row
field.	Can	be	one	of	the	following
XlPivotFieldOrientation	constants:	xlColumnField,
xlDataField,	xlPageField,	or	xlRowField.	The	column
and	row	field	constants	specify	the	series	and	category
fields,	respectively.

GroupIndex Specifies	the	offset	within	the	ChartGroups	collection
for	a	specific	chart	group.

PivotFieldIndex
Specifies	the	offset	within	the	PivotFields	collection	for	a
specific	column	(series),	data,	page,	or	row	(category)
field.

PointIndex
Specifies	the	offset	within	the	Points	collection	for	a
specific	point	within	a	series.	The	value		–	1	indicates	that
all	data	points	are	selected.

SeriesIndex Specifies	the	offset	within	the	Series	collection	for	a
specific	series.

ShapeIndex Specifies	the	offset	within	the	Shapes	collection	for	a
specific	shape.

TrendlineIndex Specifies	the	offset	within	the	Trendlines	collection	for	a
specific	trendline	within	a	series.

Remarks

The	DoubleClick	method	doesn't	cause	this	event	to	occur.

This	event	doesn't	occur	when	the	user	double-clicks	the	border	of	a	cell.

Example

As	it	applies	to	the	Chart	object.

This	example	overrides	the	default	double-click	behavior	for	the	chart	floor.

Private	Sub	Chart_BeforeDoubleClick(ByVal	ElementID	As	Long,	_

				ByVal	Arg1	As	Long,	ByVal	Arg2	As	Long,	Cancel	As	Boolean)

				If	ElementID	=	xlFloor	Then

								Cancel	=	True

								MsgBox	"Chart	formatting	for	this	item	is	restricted."

				End	If

End	Sub

BeforePrint	Event
							

Occurs	before	the	workbook	(or	anything	in	it)	is	printed.

Private	Sub	Workbook_BeforePrint(Cancel	As	Boolean)

Cancel			False	when	the	event	occurs.	If	the	event	procedure	sets	this	argument
to	True,	the	workbook	isn't	printed	when	the	procedure	is	finished.

Example

This	example	recalculates	all	worksheets	in	the	active	workbook	before	printing
anything.

Private	Sub	Workbook_BeforePrint(Cancel	As	Boolean)

				For	Each	wk	in	Worksheets

								wk.Calculate

				Next

End	Sub

BeforeRefresh	Event
							

Occurs	before	any	refreshes	of	the	query	table.	This	includes	refreshes	resulting
from	calling	the	Refresh	method,	from	the	user's	actions	in	the	product,	and
from	opening	the	workbook	containing	the	query	table.

Private	Sub	QueryTable_BeforeRefresh(Cancel	As	Boolean)

Cancel			False	when	the	event	occurs.	If	the	event	procedure	sets	this	argument
to	True,	the	refresh	doesn't	occur	when	the	procedure	is	finished.

Example

This	example	runs	before	the	query	table	is	refreshed.

Private	Sub	QueryTable_BeforeRefresh(Cancel	As	Boolean)

				a	=	MsgBox("Refresh	Now?",	vbYesNoCancel)

				If	a	=	vbNo	Then	Cancel	=	True

				MsgBox	Cancel

End	Sub

Show	All

BeforeRightClick	Event
							

Activate	method	as	it	applies	to	the	Worksheet	object.

Occurs	when	a	worksheet	is	right-clicked,	before	the	default	right-click	action.

Private	Sub	expression_BeforeRightClick(ByVal	Target	As	Range,	Cancel	As
Boolean)

expression			A	variable	which	references	an	object	of	type	Worksheet	declared
with	events	in	a	class	module.

Target		Required.	The	cell	nearest	to	the	mouse	pointer	when	the	right-click
occurs.

Cancel		Optional.	False	when	the	event	occurs.	If	the	event	procedure	sets	this
argument	to	True,	the	default	right-click	action	doesn't	occur	when	the
procedure	is	finished.

Activate	method	as	it	applies	to	the	Chart	object.

Occurs	when	an	embedded	chart	is	right-clicked,	before	the	default	right-click
action.

Private	Sub	expression_BeforeRightClick(Cancel	As	Boolean)

expression		A	variable	which	references	an	object	of	type	Chart	declared	with
events	in	a	class	module.

Cancel		Required.	False	when	the	event	occurs.	If	the	event	procedure	sets	this
argument	to	True,	the	default	right-click	action	isn't	performed	when	the
procedure	is	finished.

Remarks

Like	other	worksheet	events,	this	event	doesn't	occur	if	you	right-click	while	the
pointer	is	on	a	shape	or	a	command	bar	(a	toolbar	or	menu	bar).

Example

As	it	applies	to	the	Worksheet	object.

This	example	adds	a	new	menu	item	to	the	shortcut	menu	for	cells	B1:B10.

Private	Sub	Worksheet_BeforeRightClick(ByVal	Target	As	Range,	_

								Cancel	As	Boolean)

				Dim	icbc	As	Object

				For	Each	icbc	In	Application.CommandBars("cell").Controls

								If	icbc.Tag	=	"brccm"	Then	icbc.Delete

				Next	icbc

				If	Not	Application.Intersect(Target,	Range("b1:b10"))	_

								Is	Nothing	Then

												With	Application.CommandBars("cell").Controls	_

																.Add(Type:=msoControlButton,	before:=6,	_

																temporary:=True)

											.Caption	=	"New	Context	Menu	Item"

											.OnAction	=	"MyMacro"

											.Tag	=	"brccm"

								End	With

				End	If

End	Sub

BeforeSave	Event
							

Occurs	before	the	workbook	is	saved.

Private	Sub	Workbook_BeforeSave(ByVal	SaveAsUi	As	Boolean,	Cancel	As
Boolean)

SaveAsUi			True	if	the	Save	As	dialog	box	will	be	displayed.

Cancel			False	when	the	event	occurs.	If	the	event	procedure	sets	this	argument
to	True,	the	workbook	isn't	saved	when	the	procedure	is	finished.

Example

This	example	prompts	the	user	for	a	yes	or	no	response	before	saving	the
workbook.

Private	Sub	Workbook_BeforeSave(ByVal	SaveAsUI	As	Boolean,	_

								Cancel	as	Boolean)

				a	=	MsgBox("Do	you	really	want	to	save	the	workbook?",	vbYesNo)

				If	a	=	vbNo	Then	Cancel	=	True

End	Sub

Calculate	Event
							

Occurs	after	the	chart	plots	new	or	changed	data,	for	the	Chart	object.	Occurs
after	the	worksheet	is	recalculated,	for	the	Worksheet	object.

Private	Sub	object_Calculate()

object		Chart	or	Worksheet.	For	information	about	using	events	with	the	Chart
object,	see	Using	Events	with	the	Chart	Object.

Example

This	example	adjusts	the	size	of	columns	A	through	F	whenever	the	worksheet	is
recalculated.

Private	Sub	Worksheet_Calculate()

				Columns("A:F").AutoFit

End	Sub

Change	Event
							

Occurs	when	cells	on	the	worksheet	are	changed	by	the	user	or	by	an	external
link.

Private	Sub	Worksheet_Change(ByVal	Target	As	Range)

Target			The	changed	range.	Can	be	more	than	one	cell.

Remarks

This	event	doesn't	occur	when	cells	change	during	a	recalculation.	Use	the
Calculate	event	to	trap	a	sheet	recalculation.

Example

This	example	changes	the	color	of	changed	cells	to	blue.

Private	Sub	Worksheet_Change(ByVal	Target	as	Range)

				Target.Font.ColorIndex	=	5

End	Sub

Deactivate	Event
							

Occurs	when	the	chart,	worksheet,	or	workbook	is	deactivated.

Private	Sub	object_Deactivate()

object			Chart,	Workbook,	or	Worksheet.	For	information	about	using	events
with	the	Chart	object,	see	Using	Events	with	the	Chart	Object.

Example

This	example	arranges	all	open	windows	when	the	workbook	is	deactivated.

Private	Sub	Workbook_Deactivate()

				Application.Windows.Arrange	xlArrangeStyleTiled

End	Sub

DragOver	Event
							

Occurs	when	a	range	of	cells	is	dragged	over	a	chart.

Private	Sub	object_DragOver()

object			An	object	of	type	Chart	declared	with	events	in	a	class	module.	For
more	information,	see	Using	Events	with	the	Chart	Object.

Example

This	example	displays	the	address	of	a	range	of	cells	dragged	over	a	chart.

Private	Sub	Chart_DragOver()

				MsgBox	Selection.Address

End	Sub

DragPlot	Event
							

Occurs	when	a	range	of	cells	is	dragged	and	dropped	on	a	chart.

Private	Sub	object_DragPlot()

object			An	object	of	type	Chart	declared	with	events	in	a	class	module.	For
more	information,	see	Using	Events	with	the	Chart	Object.

Example

This	example	changes	the	chart	type	when	a	range	of	cells	is	dragged	and
dropped	on	a	chart.

Private	Sub	Chart_DragPlot()

				Me.ChartType	=	xlLine

End	Sub

FollowHyperlink	Event
							

Occurs	when	you	click	any	hyperlink	on	a	worksheet.	For	application-	and
workbook-level	events,	see	the	SheetFollowHyperlink	event.

Private	Sub	Worksheet_FollowHyperlink(ByVal	Target	As	Hyperlink)

Target			Required	Hyperlink.	A	Hyperlink	object	that	represents	the	destination
of	the	hyperlink.

Example

This	example	keeps	a	list,	or	history,	of	all	the	links	that	have	been	visited	from
the	active	worksheet.

Private	Sub	Worksheet_FollowHyperlink(ByVal	Target	As	Hyperlink)

				With	UserForm1

								.ListBox1.AddItem	Target.Address

								.Show

				End	With

End	Sub

GotFocus	Event
							

Occurs	when	an	ActiveX	control	gets	input	focus.

Private	Sub	object_GotFocus()

object			The	name	of	an	ActiveX	control.

Example

This	example	runs	when	ListBox1	gets	the	focus.

Private	Sub	ListBox1_GotFocus()

				'	runs	when	list	box	gets	the	focus

End	Sub

LostFocus	Event
							

Occurs	when	an	ActiveX	control	loses	input	focus.

Private	Sub	object_LostFocus()

object			The	name	of	an	ActiveX	control.

Example

This	example	runs	when	ListBox1	loses	the	focus.

Private	Sub	ListBox1_LostFocus()

				'	runs	when	list	box	loses	the	focus

End	Sub

MouseDown	Event
							

Occurs	when	a	mouse	button	is	pressed	while	the	pointer	is	over	a	chart.

Private	Sub	object_MouseDown(ByVal	Button	As	Long,	ByVal	Shift	As	Long,
ByVal	X	As	Long,	ByVal	Y	As	Long)

object			An	object	of	type	Chart	declared	with	events	in	a	class	module.	For
more	information,	see	Using	Events	with	the	Chart	Object.

Button			The	mouse	button	that	was	pressed.	Can	be	one	of	the	following
XlMouseButton	constants:	xlNoButton,	xlPrimaryButton,
xlSecondaryButton,	or	xlMiddleButton.

Shift			The	state	of	the	SHIFT,	CTRL,	and	ALT	keys	when	the	event	occurred.
Can	be	one	of	or	a	sum	of	the	following	values.

Value Meaning
0	(zero) No	keys
1 SHIFT	key
2 CTRL	key
4 ALT	key

X			The	X	coordinate	of	the	mouse	pointer	in	chart	object	client	coordinates.

Y			The	Y	coordinate	of	the	mouse	pointer	in	chart	object	client	coordinates.

Example

This	example	runs	when	a	mouse	button	is	pressed	while	the	pointer	is	over	a
chart.

Private	Sub	Chart_MouseDown(ByVal	Button	As	Long,	_

								ByVal	Shift	As	Long,	ByVal	X	As	Long,	ByVal	Y	As	Long)

				MsgBox	"Button	=	"	&	Button	&	chr$(13)	&	_

								"Shift	=	"	&	Shift	&	chr$(13)	&	_	

								"X	=	"	&	X	&	"	Y	=	"	&	Y

End	Sub

MouseMove	Event
							

Occurs	when	the	position	of	the	mouse	pointer	changes	over	a	chart.

Private	Sub	object_MouseMove(ByVal	Button	As	Long,	ByVal	Shift	As	Long,
ByVal	X	As	Long,	ByVal	Y	As	Long)

object			An	object	of	type	Chart	declared	with	events	in	a	class	module.	For
more	information,	see	Using	Events	with	the	Chart	Object.

Button			The	mouse	button	that	was	pressed.	Can	be	one	of	the	following
XlMouseButton	constants:	xlNoButton,	xlPrimaryButton,
xlSecondaryButton,	or	xlMiddleButton.

Shift			The	state	of	the	SHIFT,	CTRL,	and	ALT	keys	when	the	event	occurred.
Can	be	one	of	or	a	sum	of	the	following	values.

Value Meaning
0	(zero) No	keys
1 SHIFT	key
2 CTRL	key
4 ALT	key

X			The	X	coordinate	of	the	mouse	pointer	in	chart	object	client	coordinates.

Y			The	Y	coordinate	of	the	mouse	pointer	in	chart	object	client	coordinates.

Example

This	example	runs	when	the	position	of	the	mouse	pointer	changes	over	a	chart.

Private	Sub	Chart_MouseMove(ByVal	Button	As	Long,	ByVal	Shift	As	Long,	ByVal	X	As	Long,	ByVal	Y	As	Long)

				MsgBox	"X	=	"	&	X	&	"	Y	=	"	&	Y

End	Sub

MouseUp	Event
							

Occurs	when	a	mouse	button	is	released	while	the	pointer	is	over	a	chart.

Private	Sub	object_MouseUp(ByVal	Button	As	Long,	ByVal	Shift	As	Long,
ByVal	X	As	Long,	ByVal	Y	As	Long)

object			An	object	of	type	Chart	declared	with	events	in	a	class	module.	For
more	information,	see	Using	Events	with	the	Chart	Object.

Button			The	mouse	button	that	was	released.	Can	be	one	of	the	following
XlMouseButton	constants:	xlNoButton,	xlPrimaryButton,
xlSecondaryButton,	or	xlMiddleButton.

Shift			The	state	of	the	SHIFT,	CTRL,	and	ALT	keys	when	the	event	occurred.
Can	be	one	of	or	a	sum	of	the	following	values.

Value Meaning
0	(zero) No	keys
1 SHIFT	key
2 CTRL	key
4 ALT	key

X			The	X	coordinate	of	the	mouse	pointer	in	chart	object	client	coordinates.

Y			The	Y	coordinate	of	the	mouse	pointer	in	chart	object	client	coordinates.

Example

This	example	runs	when	a	mouse	button	is	released	over	a	chart.

Private	Sub	Chart_MouseUp(ByVal	Button	As	Long,	_

								ByVal	Shift	As	Long,	ByVal	X	As	Long,	ByVal	Y	As	Long)

				MsgBox	"Button	=	"	&	Button	&	chr$(13)	&	_

								"Shift	=	"	&	Shift	&	chr$(13)	&	_	

								"X	=	"	&	X	&	"	Y	=	"	&	Y

End	Sub

NewSheet	Event
							

Occurs	when	a	new	sheet	is	created	in	the	workbook.

Private	Sub	Workbook_NewSheet(ByVal	Sh	As	Object)

Sh			The	new	sheet.	Can	be	a	Worksheet	or	Chart	object.

Example

This	example	moves	new	sheets	to	the	end	of	the	workbook.

Private	Sub	Workbook_NewSheet(ByVal	Sh	as	Object)

				Sh.Move	After:=	Sheets(Sheets.Count)

End	Sub

NewWorkbook	Event
							

Occurs	when	a	new	workbook	is	created.

Private	Sub	object_NewWorkbook(ByVal	Wb	As	Workbook)

object			An	object	of	type	Application	declared	with	events	in	a	class	module.
For	more	information,	see	Using	Events	with	the	Application	Object.

Wb			The	new	workbook.

Example

This	example	arranges	open	windows	when	a	new	workbook	is	created.

Private	Sub	App_NewWorkbook(ByVal	Wb	As	Workbook)

				Application.Windows.Arrange	xlArrangeStyleTiled

End	Sub

Open	Event
							

Occurs	when	the	workbook	is	opened.

Private	Sub	Workbook_Open()

Example

This	example	maximizes	Microsoft	Excel	whenever	the	workbook	is	opened.

Private	Sub	Workbook_Open()

				Application.WindowState	=	xlMaximized

End	Sub

PivotTableCloseConnection	Event
							

Occurs	after	a	PivotTable	report	closes	the	connection	to	its	data	source.

Private	Sub	expression_PivotTableCloseConnection(ByVal	Target	As
PivotTable)

expression			A	variable	which	references	an	object	of	type	Workbook	declared
with	events	in	a	class	module.

Target			Required.	The	selected	PivotTable	report.

Example

This	example	displays	a	message	stating	that	the	PivotTable	report's	connection
to	its	source	has	been	closed.	This	example	assumes	you	have	declared	an	object
of	type	Workbook	with	events	in	a	class	module.

Private	Sub	ConnectionApp_PivotTableCloseConnection(ByVal	Target	As	PivotTable)

				MsgBox	"The	PivotTable	connection	has	been	closed."

End	Sub

PivotTableOpenConnection	Event
							

Occurs	after	a	PivotTable	report	opens	the	connection	to	its	data	source.

Private	Sub	expression_PivotTableOpenConnection(ByVal	Target	As
PivotTable)

expression			A	variable	which	references	an	object	of	type	Workbook	declared
with	events	in	a	class	module.

Target		Required.	The	selected	PivotTable	report.

Example

This	example	displays	a	message	stating	that	the	PivotTable	report's	connection
to	its	source	has	been	opened.	This	example	assumes	you	have	declared	an
object	of	type	Workbook	with	events	in	a	class	module.

Private	Sub	ConnectionApp_PivotTableOpenConnection(ByVal	Target	As	PivotTable)

				MsgBox	"The	PivotTable	connection	has	been	opened."

End	Sub

PivotTableUpdate	Event
							

Occurs	after	a	PivotTable	report	is	updated	on	a	worksheet.

Private	Sub	expression_PivotTableUpdate(ByVal	Target	As	PivotTable)

expression			A	variable	which	references	an	object	of	type	Worksheet	declared
with	events	in	a	class	module.

Target		Required.	The	selected	PivotTable	report.

Example

This	example	displays	a	message	stating	that	the	PivotTable	report	has	been
updated.	This	example	assumes	you	have	declared	an	object	of	type	Worksheet
with	events	in	a	class	module.

Private	Sub	Worksheet_PivotTableUpdate(ByVal	Target	As	PivotTable)

				MsgBox	"The	PivotTable	connection	has	been	updated."

End	Sub

Resize	Event
							

Occurs	when	the	chart	is	resized.

Private	Sub	object_Resize()

object			Chart	or	an	object	of	type	Chart	declared	with	events	in	a	class	module.
For	more	information,	see	Using	Events	with	Embedded	Charts.

Example

This	example	keeps	the	upper-left	corner	of	the	chart	at	the	same	location	when
the	chart	is	resized.

Private	Sub	myChartClass_Resize()

				With	ActiveChart.Parent

								.Left	=	100

								.Top	=	150

				End	With

End	Sub

Select	Event
							

Occurs	when	a	chart	element	is	selected.

Private	Sub	object_Select(ByVal	ElementID	As	Long,	ByVal	Arg1	As	Long,
ByVal	Arg2	As	Long)

object			Chart	or	an	object	of	type	Chart	declared	with	events	in	a	class	module.
For	more	information,	see	Using	Events	with	Embedded	Charts.

ElementID,	Arg1,	Arg2			The	selected	chart	element.	For	more	information	about
these	arguments,	see	the	BeforeDoubleClick	event.

Example

This	example	displays	a	message	box	if	the	user	selects	the	chart	title.

Private	Sub	Chart_Select(ByVal	ElementID	As	Long,	_

								ByVal	Arg1	As	Long,	ByVal	Arg2	As	Long)

				If	ElementId	=	xlChartTitle	Then

								MsgBox	"please	don't	change	the	chart	title"

				End	If

End	Sub

SelectionChange	Event
							

Occurs	when	the	selection	changes	on	a	worksheet.

Private	Sub	Worksheet_SelectionChange(ByVal	Target	As	Excel.Range)

Target			The	new	selected	range.

Example

This	example	scrolls	through	the	workbook	window	until	the	selection	is	in	the
upper-left	corner	of	the	window.

Private	Sub	Worksheet_SelectionChange(ByVal	Target	As	Range)

				With	ActiveWindow

								.ScrollRow	=	Target.Row

								.ScrollColumn	=	Target.Column

				End	With

End	Sub

SeriesChange	Event
							

Occurs	when	the	user	changes	the	value	of	a	chart	data	point.

Private	Sub	object_SeriesChange(ByVal	SeriesIndex	As	Long,	ByVal
PointIndex	As	Long)

object			An	object	of	type	Chart	declared	with	events	in	a	class	module.	For
more	information,	see	Using	Events	with	the	Chart	Object.

SeriesIndex			The	offset	within	the	Series	collection	for	the	changed	series.

PointIndex			The	offset	within	the	Points	collection	for	the	changed	point.

Example

This	example	changes	the	point's	border	color	when	the	user	changes	the	point
value.

Private	Sub	Chart_SeriesChange(ByVal	SeriesIndex	As	Long,	_

								ByVal	PointIndex	As	Long)

				Set	p	=	Me.SeriesCollection(SeriesIndex).Points(PointIndex)

				p.Border.ColorIndex	=	3

End	Sub

SheetActivate	Event
							

Occurs	when	any	sheet	is	activated.

Private	Sub	object_SheetActivate(ByVal	Sh	As	Object)

object			Application	or	Workbook.

Sh			The	activated	sheet.	Can	be	a	Chart	or	Worksheet	object.

Example

This	example	displays	the	name	of	each	activated	sheet.

Private	Sub	Workbook_SheetActivate(ByVal	Sh	As	Object)

				MsgBox	Sh.Name

End	Sub

SheetBeforeDoubleClick	Event
							

Occurs	when	any	worksheet	is	double-clicked,	before	the	default	double-click
action.

Private	Sub	object_SheetBeforeDoubleClick(ByVal	Sh	As	Object,	ByVal
Target	As	Range,	ByVal	Cancel	As	Boolean)

object			Application	or	Workbook.	For	more	information	about	using	events
with	the	Application	object,	see	Using	Events	with	the	Application	Object.

Sh			A	Worksheet	object	that	represents	the	sheet.

Target			The	cell	nearest	to	the	mouse	pointer	when	the	double-click	occurred.

Cancel			False	when	the	event	occurs.	If	the	event	procedure	sets	this	argument
to	True,	the	default	double-click	action	isn't	performed	when	the	procedure	is
finished.

Remarks

This	event	doesn't	occur	on	chart	sheets.

Example

This	example	disables	the	default	double-click	action.

Private	Sub	Workbook_SheetBeforeDoubleClick(ByVal	Sh	As	Object,	_

								ByVal	Target	As	Range,	ByVal	Cancel	As	Boolean)

				Cancel	=	True

End	Sub

SheetBeforeRightClick	Event
							

Occurs	when	any	worksheet	is	right-clicked,	before	the	default	right-click	action.

Private	Sub	object_SheetBeforeRightClick(ByVal	Sh	As	Object,	ByVal
Target	As	Range,	ByVal	Cancel	As	Boolean)

object			Application	or	Workbook.	For	more	information	about	using	events
with	the	Application	object,	see	Using	Events	with	the	Application	Object.

Sh			A	Worksheet	object	that	represents	the	sheet.

Target			The	cell	nearest	to	the	mouse	pointer	when	the	right-click	occurred.

Cancel			False	when	the	event	occurs.	If	the	event	procedure	sets	this	argument
to	True,	the	default	right-click	action	isn't	performed	when	the	procedure	is
finished.

Remarks

This	event	doesn't	occur	on	chart	sheets.

Example

This	example	disables	the	default	right-click	action.	For	another	example,	see
the	BeforeRightClick	event	example.

Private	Sub	Workbook_SheetBeforeRightClick(ByVal	Sh	As	Object,	_

								ByVal	Target	As	Range,	ByVal	Cancel	As	Boolean)

				Cancel	=	True

End	Sub

SheetCalculate	Event
							

Occurs	after	any	worksheet	is	recalculated	or	after	any	changed	data	is	plotted
on	a	chart.

Private	Sub	object_SheetCalculate(ByVal	Sh	As	Object)

object			Application	or	Workbook.	For	more	information	about	using	events
with	the	Application	object,	see	Using	Events	with	the	Application	Object.

Sh			The	sheet.	Can	be	a	Chart	or	Worksheet	object.

Example

This	example	sorts	the	range	A1:A100	on	worksheet	one	when	any	sheet	in	the
workbook	is	calculated.

Private	Sub	Workbook_SheetCalculate(ByVal	Sh	As	Object)

				With	Worksheets(1)

								.Range("a1:a100").Sort	Key1:=.Range("a1")

				End	With

End	Sub

SheetChange	Event
							

Occurs	when	cells	in	any	worksheet	are	changed	by	the	user	or	by	an	external
link.

Private	Sub	object_SheetChange(ByVal	Sh	As	Object,	ByVal	Source	As
Range)

object			Application	or	Workbook.	For	more	information	about	using	events
with	the	Application	object,	see	Using	Events	with	the	Application	Object.

Sh			A	Worksheet	object	that	represents	the	sheet.

Source			The	changed	range.

Remarks

This	event	doesn't	occur	on	chart	sheets.

Example

This	example	runs	when	any	worksheet	is	changed.

Private	Sub	Workbook_SheetChange(ByVal	Sh	As	Object,	_

								ByVal	Source	As	Range)

				'	runs	when	a	sheet	is	changed

End	Sub

SheetDeactivate	Event
							

Occurs	when	any	sheet	is	deactivated.

Private	Sub	object_SheetDeactivate(ByVal	Sh	As	Object)

object			Application	or	Workbook.

Sh			The	sheet.	Can	be	a	Chart	or	Worksheet	object.

Example

This	example	displays	the	name	of	each	deactivated	sheet.

Private	Sub	Workbook_SheetDeactivate(ByVal	Sh	As	Object)

				MsgBox	Sh.Name

End	Sub

SheetFollowHyperlink	Event
							

Occurs	when	you	click	any	hyperlink	in	Microsoft	Excel.	For	worksheet-level
events,	see	the	Help	topic	for	the	FollowHyperlink	event.

Private	Sub	Workbook_SheetFollowHyperlink(ByVal	Sh	As	Object,	ByVal
Target	As	Hyperlink)

Sh			Required	Object.	The	Worksheet	object	that	contains	the	hyperlink.

Target			Required	Hyperlink.	The	Hyperlink	object	that	represents	the
destination	of	the	hyperlink.

Example

This	example	keeps	a	list,	or	history,	of	all	the	hyperlinks	in	the	current
workbook	that	have	been	clicked,	plus	the	names	of	the	worksheets	that	contain
these	hyperlinks.

Private	Sub	Workbook_SheetFollowHyperlink(ByVal	Sh	as	Object,	_

				ByVal	Target	As	Hyperlink)

				UserForm1.ListBox1.AddItem	Sh.Name	&	":"	&	Target.Address

				UserForm1.Show

End	Sub

SheetPivotTableUpdate	Event
							

Occurs	after	the	sheet	of	the	PivotTable	report	has	been	updated.

Private	Sub	expression_SheetPivotTableUpdate(ByVal	Sh	As	Object,	Target
As	PivotTable)

expression			A	variable	which	references	an	object	of	type	Application	or
Workbook	declared	with	events	in	a	class	module.

Sh			Required.	The	selected	sheet.

Target			Required.	The	selected	PivotTable	report.

Example

This	example	displays	a	message	stating	that	the	sheet	of	the	PivotTable	report
has	been	updated.	This	example	assumes	you	have	declared	an	object	of	type
Application	or	Workbook	with	events	in	a	class	module.

Private	Sub	ConnectionApp_SheetPivotTableUpdate(ByVal	shOne	As	Object,	Target	As	PivotTable)

				MsgBox	"The	SheetPivotTable	connection	has	been	updated."

End	Sub

SheetSelectionChange	Event
							

Occurs	when	the	selection	changes	on	any	worksheet	(doesn't	occur	if	the
selection	is	on	a	chart	sheet).

Private	Sub	object_SheetSelectionChange(ByVal	Sh	As	Object,	ByVal	Target
As	Excel.Range)

object			Application	or	Workbook.	For	more	information	about	using	events
with	the	Application	object,	see	Using	Events	with	the	Application	Object.

Sh			The	worksheet	that	contains	the	new	selection.

Target			The	new	selected	range.

Example

This	example	displays	the	sheet	name	and	address	of	the	selected	range	in	the
status	bar.

Private	Sub	Workbook_SheetSelectionChange(ByVal	Sh	As	Object,	_

								ByVal	Target	As	Excel.Range)

				Application.StatusBar	=	Sh.Name	&	":"	&	Target.Address

End	Sub

WindowActivate	Event
							

Occurs	when	any	workbook	window	is	activated.

Private	Sub	object_WindowActivate(ByVal	Wb	As	Excel.Workbook,	ByVal
Wn	As	Excel.Window)

object			Application	or	Workbook.	For	more	information	about	using	events
with	the	Application	object,	see	Using	Events	with	the	Application	Object.

Wb			Used	only	with	the	Application	object.	The	workbook	displayed	in	the
activated	window.

Wn			The	activated	window.

Example

This	example	maximizes	any	workbook	window	when	it's	activated.

Private	Sub	Workbook_WindowActivate(ByVal	Wn	As	Excel.Window)

				Wn.WindowState	=	xlMaximized

End	Sub

WindowDeactivate	Event
							

Occurs	when	any	workbook	window	is	deactivated.

Private	Sub	object_WindowDeactivate(ByVal	Wb	As	Excel.Workbook,
ByVal	Wn	As	Excel.Window)

object			Application	or	Workbook.	For	more	information	about	using	events
with	the	Application	object,	see	Using	Events	with	the	Application	Object.

Wb			Used	only	with	the	Application	object.	The	workbook	displayed	in	the
deactivated	window.

Wn			The	deactivated	window.

Example

This	example	minimizes	any	workbook	window	when	it's	deactivated.

Private	Sub	Workbook_WindowDeactivate(ByVal	Wn	As	Excel.Window)

				Wn.WindowState	=	xlMinimized

End	Sub

WindowResize	Event
							

Occurs	when	any	workbook	window	is	resized.

Private	Sub	object_WindowResize(ByVal	Wb	As	Excel.Workbook,	ByVal	Wn
As	Excel.Window)

object			Application	or	Workbook.	For	more	information	about	using	events
with	the	Application	object,	see	Using	Events	with	the	Application	Object.

Wb			Used	only	with	the	Application	object.	The	workbook	displayed	in	the
resized	window.

Wn			The	resized	window.

Example

This	example	runs	when	any	workbook	window	is	resized.

Private	Sub	Workbook_WindowResize(ByVal	Wn	As	Excel.Window)

				Application.StatusBar	=	Wn.Caption	&	"	resized"

End	Sub

WorkbookActivate	Event
							

Occurs	when	any	workbook	is	activated.

Private	Sub	app_WorkbookActivate(ByVal	Wb	As	Workbook)

app			An	object	of	type	Application	declared	with	events	in	a	class	module.	For
more	information,	see	Using	Events	with	the	Application	Object.

Wb			The	activated	workbook.

Example

This	example	arranges	open	windows	when	a	workbook	is	activated.

Private	Sub	App_WorkbookActivate(ByVal	Wb	As	Workbook)

				Application.Windows.Arrange	xlArrangeStyleTiled

End	Sub

WorkbookAddinInstall	Event
							

Occurs	when	a	workbook	is	installed	as	an	add-in.

Private	Sub	object_WorkbookAddinInstall(ByVal	Wb	As	Workbook)

object			An	object	of	type	Application	declared	with	events	in	a	class	module.
For	more	information,	see	Using	Events	with	the	Application	Object.

Wb			The	installed	workbook.

Example

This	example	maximizes	the	Microsoft	Excel	window	when	a	workbook	is
installed	as	an	add-in.

Private	Sub	App_WorkbookAddinInstall(ByVal	Wb	As	Workbook)

				Application.WindowState	=	xlMaximized

End	Sub

WorkbookAddinUninstall	Event
							

Occurs	when	any	add-in	workbook	is	uninstalled.

Private	Sub	object_WorkbookAddinUninstall(ByVal	Wb	As	Workbook)

object			An	object	of	type	Application	declared	with	events	in	a	class	module.
For	more	information,	see	Using	Events	with	the	Application	Object.

Wb			The	uninstalled	workbook.

Example

This	example	minimizes	the	Microsoft	Excel	window	when	a	workbook	is
installed	as	an	add-in.

Private	Sub	App_WorkbookAddinUninstall(ByVal	Wb	As	Workbook)

				Application.WindowState	=	xlMinimized

End	Sub

WorkbookBeforeClose	Event
							

Occurs	immediately	before	any	open	workbook	closes.

Private	Sub	object_WorkbookBeforeClose(ByVal	Wb	As	Workbook,	ByVal
Cancel	As	Boolean)

object			An	object	of	type	Application	declared	with	events	in	a	class	module.
For	more	information,	see	Using	Events	with	the	Application	Object.

Wb			The	workbook	that's	being	closed.

Cancel			False	when	the	event	occurs.	If	the	event	procedure	sets	this	argument
to	True,	the	workbook	doesn't	close	when	the	procedure	is	finished.

Example

This	example	prompts	the	user	for	a	yes	or	no	response	before	closing	any
workbook.

Private	Sub	App_WorkbookBeforeClose(ByVal	Wb	as	Workbook,	_

								Cancel	as	Boolean)

				a	=	MsgBox("Do	you	really	want	to	close	the	workbook?",	_

								vbYesNo)

				If	a	=	vbNo	Then	Cancel	=	True

End	Sub

WorkbookBeforePrint	Event
							

Occurs	before	any	open	workbook	is	printed.

Private	Sub	object_WorkbookBeforePrint(ByVal	Wb	As	Workbook,	ByVal
Cancel	As	Boolean)

object			An	object	of	type	Application	declared	with	events	in	a	class	module.
For	more	information,	see	Using	Events	with	the	Application	Object.

Wb			The	workbook.

Cancel			False	when	the	event	occurs.	If	the	event	procedure	sets	this	argument
to	True,	the	workbook	isn't	printed	when	the	procedure	is	finished.

Example

This	example	recalculates	all	worksheets	in	the	workbook	before	printing
anything.

Private	Sub	App_WorkbookBeforePrint(ByVal	Wb	As	Workbook,	_

								Cancel	As	Boolean)

				For	Each	wk	in	Wb.Worksheets

								wk.Calculate

				Next

End	Sub

WorkbookBeforeSave	Event
							

Occurs	before	any	open	workbook	is	saved.

Private	Sub	object_WorkbookBeforeSave(ByVal	Wb	As	Workbook,	ByVal
SaveAsUi	As	Boolean,	ByVal	Cancel	As	Boolean)

object			An	object	of	type	Application	declared	with	events	in	a	class	module.
For	more	information,	see	Using	Events	with	the	Application	Object.

Wb			The	workbook.

SaveAsUi			True	if	the	Save	As	dialog	box	will	be	displayed.

Cancel			False	when	the	event	occurs.	If	the	event	procedure	sets	this	argument
to	True,	the	workbook	isn't	saved	when	the	procedure	is	finished.

Example

This	example	prompts	the	user	for	a	yes	or	no	response	before	saving	any
workbook.

Private	Sub	App_WorkbookBeforeSave(ByVal	Wb	As	Workbook,	_

								ByVal	SaveAsUI	As	Boolean,	Cancel	as	Boolean)

				a	=	MsgBox("Do	you	really	want	to	save	the	workbook?",	vbYesNo)

				If	a	=	vbNo	Then	Cancel	=	True

End	Sub

WorkbookDeactivate	Event
							

Occurs	when	any	open	workbook	is	deactivated.

Private	Sub	object_WorkbookDeactivate(ByVal	Wb	As	Workbook)

object			An	object	of	type	Application	declared	with	events	in	a	class	module.
For	more	information,	see	Using	Events	with	the	Application	Object.

Wb			The	workbook.

Example

This	example	arranges	all	open	windows	when	a	workbook	is	deactivated.

Private	Sub	App_WorkbookDeactivate(ByVal	Wb	As	Workbook)

				Application.Windows.Arrange	xlArrangeStyleTiled

End	Sub

WorkbookNewSheet	Event
							

Occurs	when	a	new	sheet	is	created	in	any	open	workbook.

Private	Sub	object_WorkbookNewSheet(ByVal	Wb	As	Workbook,	ByVal	Sh
As	Object)

object			An	object	of	type	Application	declared	with	events	in	a	class	module.
For	more	information,	see	Using	Events	with	the	Application	Object.

Wb			The	workbook.

Sh			The	new	sheet.

Example

This	example	moves	the	new	sheet	to	the	end	of	the	workbook.

Private	Sub	App_WorkbookNewSheet(ByVal	Wb	As	Workbook,	_

								ByVal	Sh	As	Object)

				Sh.Move	After:=Wb.Sheets(Wb.Sheets.Count)

End	Sub

WorkbookOpen	Event
							

Occurs	when	a	workbook	is	opened.

Private	Sub	object_WorkbookOpen(ByVal	Wb	As	Workbook)

object			An	object	of	type	Application	declared	with	events	in	a	class	module.
For	more	information,	see	Using	Events	with	the	Application	Object.

Wb			The	workbook.

Example

This	example	arranges	all	open	windows	when	a	workbook	is	opened.

Private	Sub		App_WorkbookOpen(ByVal	Wb	As	Workbook)

				Application.Windows.Arrange	xlArrangeStyleTiled

End	Sub

WorkbookPivotTableCloseConnection
Event
							

Occurs	after	a	PivotTable	report	connection	has	been	closed.

Private	Sub	expression_WorkbookPivotTableCloseConnection(ByVal	Wb	As
Workbook,	Target	As	PivotTable)

expression			A	variable	which	references	an	object	of	type	Application	declared
with	events	in	a	class	module.

Wb		Required.	The	selected	workbook.

Target		Required.	The	selected	PivotTable	report.

Example

This	example	displays	a	message	stating	that	the	PivotTable	report's	connection
to	its	source	has	been	closed.	This	example	assumes	you	have	declared	an	object
of	type	Workbook	with	events	in	a	class	module.

Private	Sub	ConnectionApp_WorkbookPivotTableCloseConnection(ByVal	wbOne	As	Workbook,	Target	As	PivotTable)

				MsgBox	"The	PivotTable	connection	has	been	closed."

End	Sub

WorkbookPivotTableOpenConnection
Event
							

Occurs	after	a	PivotTable	report	connection	has	been	opened.

Private	Sub	expression_WorkbookPivotTableOpenConnection(ByVal	Wb	As
Workbook,	Target	As	PivotTable)

expression			A	variable	which	references	an	object	of	type	Application	declared
with	events	in	a	class	module.

Wb			Required.	The	selected	workbook.

Target			Required.	The	selected	PivotTable	report.

Example

This	example	displays	a	message	stating	that	the	PivotTable	report's	connection
to	its	source	has	been	opened.	This	example	assumes	you	have	declared	an
object	of	type	Workbook	with	events	in	a	class	module.

Private	Sub	ConnectionApp_WorkbookPivotTableOpenConnection(ByVal	wbOne	As	Workbook,	Target	As	PivotTable)

				MsgBox	"The	PivotTable	connection	has	been	opened."

End	Sub

Microsoft	Excel	Objects	(Worksheet)
			
Worksheets	(Worksheet)

Names	(Name)	 Range
Areas
Borders	(Border)
Errors

Error
Font
Interior
Characters
Font

Name
Style
Borders	(Border)
Font
Interior

FormatConditions	(FormatCondition)
Hyperlinks	(Hyperlink)
Validation
Comment
Phonetics	(Phonetic)
Shapes	(Shape)
SmartTags
SmartTag
CustomProperties
CustomProperty

Comments	(Comment)
CustomProperties
CustomProperty

HPageBreaks	(HPageBreak)
VPageBreaks	(VPageBreak)
Hyperlinks	(Hyperlink)
Scenarios	(Scenario)
OLEObjects	(OLEObject)
Outline
PageSetup
Graphic

QueryTables	(QueryTable)
Parameters	(Parameter)

PivotTables	(PivotTable)
CalculatedFields
CalculatedMembers
CalculatedMember	

CubeFields
CubeField
TreeviewControl	

PivotCache	
PivotFields

SmartTagActions
SmartTagAction

Protection
AllowEditRanges
AllowEditRange
UserAccessList
UserAccess

Legend

		Object	and	collection
		Object	only

	Click	arrow	to	expand	chart

PivotFormulas	(PivotFormula)
PivotItems	(PivotItem)
CubeFields	(CubeField)

OLEObjects	(OLEObject)
ChartObjects	(ChartObject)
Chart
PivotLayout

AutoFilter
Filters	(Filter)

Tab

Microsoft	Excel	Objects	(Charts)
			
Charts	(Chart)

ChartArea	 PlotArea
Floor
Walls
Corners
PageSetup
ChartTitle
SeriesCollection	(Series)
Trendlines	(Trendline)

Axes	(Axis)
AxisTitle
DisplayUnitLabel
Gridlines
TickLabels

DataTable
Border
Font

Legend
LegendEntries	(LegendEntry)
LegendKey

Shapes	(Shape)
Scripts	(Script)
ChartGroups	(ChartGroup)
PivotLayout

Legend

		Object	and	collection
		Object	only

	Click	arrow	to	expand	chart

mk:@MSITStore:vbaof10.chm::/html/ofobjScripts.htm

ActiveX	Controls
			

For	more	information	on	a	specific	control,	select	an	object	from	the	following
list.	For	information	about	events,	select	a	control	and	click	Events	at	the	top	of
the	topic.

CheckBox

ComboBox

CommandButton

Image

Label

ListBox

OptionButton

ScrollBar

SpinButton

TextBox

ToggleButton

mk:@MSITStore:fm20.chm::/html/f3objCheckBox.htm
mk:@MSITStore:fm20.chm::/html/f3objComboBox.htm
mk:@MSITStore:fm20.chm::/html/f3objCommandButton.htm
mk:@MSITStore:fm20.chm::/html/f3objImage.htm
mk:@MSITStore:fm20.chm::/html/f3objLabel.htm
mk:@MSITStore:fm20.chm::/html/f3objListBox.htm
mk:@MSITStore:fm20.chm::/html/f3objOptionButton.htm
mk:@MSITStore:fm20.chm::/html/f3objScrollBar.htm
mk:@MSITStore:fm20.chm::/html/f3objSpinButton.htm
mk:@MSITStore:fm20.chm::/html/f3objTextBox.htm
mk:@MSITStore:fm20.chm::/html/f3objToggleButton.htm

Worksheet	Object	Events
			

Events	on	sheets	are	enabled	by	default.	To	view	the	event	procedures	for	a
sheet,	right-click	the	sheet	tab	and	click	View	Code	on	the	shortcut	menu.	Select
the	event	name	from	the	Procedure	drop-down	list	box.

Activate

BeforeDoubleClick

BeforeRightClick

Calculate

Change

Deactivate

FollowHyperlink

PivotTableUpdate

SelectionChange

Worksheet-level	events	occur	when	a	worksheet	is	activated,	the	user	changes	a
worksheet	cell,	or	when	PivotTable	is	changes.	The	following	example	adjusts
the	size	of	columns	A	through	F	whenever	the	worksheet	is	recalculated.

Private	Sub	Worksheet_Calculate()

				Columns("A:F").AutoFit

End	Sub

Some	events	can	be	used	to	substitute	an	action	for	the	default	application
behavior,	or	to	make	a	small	change	to	the	default	behavior.	The	following
example	traps	the	right-click	event	and	adds	a	new	menu	item	to	the	shortcut
menu	for	cells	B1:B10.

Private	Sub	Worksheet_BeforeRightClick(ByVal	Target	As	Range,	_

								Cancel	As	Boolean)

				For	Each	icbc	In	Application.CommandBars("cell").Controls

								If	icbc.Tag	=	"brccm"	Then	icbc.Delete

				Next	icbc

				If	Not	Application.Intersect(Target,	Range("b1:b10"))	_

												Is	Nothing	Then

								With	Application.CommandBars("cell").Controls	_

												.Add(Type:=msoControlButton,	before:=6,	_

																temporary:=True)

											.Caption	=	"New	Context	Menu	Item"

											.OnAction	=	"MyMacro"

											.Tag	=	"brccm"

								End	With

				End	If

End	Sub

Chart	Object	Events
			

Chart	events	occur	when	the	user	activates	or	changes	a	chart.	Events	on	chart
sheets	are	enabled	by	default.	To	view	the	event	procedures	for	a	sheet,	right-
click	the	sheet	tab	and	select	View	Code	from	the	shortcut	menu.	Select	the
event	name	from	the	Procedure	drop-down	list	box.

Activate

BeforeDoubleClick

BeforeRightClick

Calculate

Deactivate

DragOver

DragPlot

MouseDown

MouseMove

MouseUp

Resize

Select

SeriesChange

Note			To	write	event	procedures	for	an	embedded	chart,	you	must	create	a	new
object	using	the	WithEvents	keyword	in	a	class	module.	For	more	information,
see	Using	Events	with	Embedded	Charts.

This	example	changes	a	point's	border	color	when	the	user	changes	the	point
value.

Private	Sub	Chart_SeriesChange(ByVal	SeriesIndex	As	Long,	_

								ByVal	PointIndex	As	Long)

				Set	p	=	ActiveChart.SeriesCollection(SeriesIndex).	_

								Points(PointIndex)

				p.Border.ColorIndex	=	3

End	Sub

Workbook	Object	Events
			

Workbook	events	occur	when	the	workbook	changes,	when	any	sheet	in	the
workbook	changes,	when	add-ins	change,	or	when	PivotTables	change.	Events
on	workbooks	are	enabled	by	default.	To	view	the	event	procedures	for	a
workbook,	right-click	the	title	bar	of	a	restored	or	minimized	workbook	window
and	click	View	Code	on	the	shortcut	menu.	Select	the	event	name	from	the
Procedure	drop-down	list	box.

Activate

AddinInstall

AddinUninstall

BeforeClose

BeforePrint

BeforeSave

Deactivate

NewSheet

Open

PivotTableCloseConnection

PivotTableOpenConnection

SheetActivate

SheetBeforeDoubleClick

SheetBeforeRightClick

SheetCalculate

SheetChange

SheetDeactivate

SheetFollowHyperlink

SheetPivotTableUpdate

SheetSelectionChange

WindowActivate

WindowDeactivate

WindowResize

This	example	maximizes	Microsoft	Excel	when	the	workbook	is	opened

Sub	Workbook_Open()

				Application.WindowState	=	xlMaximized

End	Sub

QueryTable	Object	Events
			

QueryTable	object	events	occur	when	a	QueryTable	object	is	refreshed.	These
events	are	enabled	by	default.	To	view	the	event	procedures	available	for	a
particular	sheet,	right-click	the	sheet	tab	and	then	click	View	Code	on	the
shortcut	menu.	In	the	Procedure	drop-down	list	box	in	the	Code	window,	click
the	name	of	the	event	you	want	to	use.

AfterRefresh
BeforeRefresh

Note			To	write	event	procedures	for	a	QueryTable	object,	you	must	first	create
a	new	object	by	using	the	WithEvents	keyword	in	a	class	module.	For	more
information,	see	Using	Events	with	the	QueryTable	Object.

Application	Object	Events
			

Application	events	occur	when	a	workbook	is	created	or	opened,	when	any	sheet
in	any	open	workbook	changes	or	when	any	PivotTable	is	created	or	opened.	To
write	event	procedures	for	the	Application	object,	you	must	create	a	new	object
using	the	WithEvents	keyword	in	a	class	module.	For	more	information,	see
Using	Events	with	the	Application	Object.

NewWorkbook

SheetActivate

SheetBeforeDoubleClick

SheetBeforeRightClick

SheetCalculate

SheetChange

SheetDeactivate

SheetFollowHyperlink

SheetSelectionChange

SheetPivotTableUpdate

WindowActivate

WindowDeactivate

WindowResize

WorkbookActivate

WorkbookAddinInstall

WorkbookAddinUninstall

WorkbookBeforeClose

WorkbookBeforePrint

WorkbookBeforeSave

WorkbookDeactivate

WorkbookNewSheet

WorkbookOpen

WorkbookPivotTableCloseConnection

WorkbookPivotTableOpenConnection

Built-In	Dialog	Box	Argument	Lists
			

Dialog	box	constant Argument	list(s)
xlDialogActivate window_text,	pane_num

xlDialogActiveCellFont

font,	font_style,	size,	strikethrough,
superscript,	subscript,	outline,	shadow,
underline,	color,	normal,	background,
start_char,	char_count

xlDialogAddChartAutoformat name_text,	desc_text

xlDialogAddinManager operation_num,	addinname_text,
copy_logical

xlDialogAlignment horiz_align,	wrap,	vert_align,	orientation,
add_indent

xlDialogApplyNames name_array,	ignore,	use_rowcol,	omit_col,
omit_row,	order_num,	append_last

xlDialogApplyStyle style_text
xlDialogAppMove x_num,	y_num
xlDialogAppSize x_num,	y_num

xlDialogArrangeAll arrange_num,	active_doc,	sync_horiz,
sync_vert

xlDialogAssignToObject macro_ref
xlDialogAssignToTool bar_id,	position,	macro_ref
xlDialogAttachText attach_to_num,	series_num,	point_num
xlDialogAttachToolbars 	
xlDialogAutoCorrect correct_initial_caps,	capitalize_days

xlDialogAxes x_primary,	y_primary,	x_secondary,
y_secondary

xlDialogAxes x_primary,	y_primary,	z_primary

xlDialogBorder
outline,	left,	right,	top,	bottom,	shade,
outline_color,	left_color,	right_color,
top_color,	bottom_color
type_num,	iter,	max_num,	max_change,

xlDialogCalculation update,	precision,	date_1904,	calc_save,
save_values,	alt_exp,	alt_form

xlDialogCellProtection locked,	hidden
xlDialogChangeLink old_text,	new_text,	type_of_link
xlDialogChartAddData ref,	rowcol,	titles,	categories,	replace,	series
xlDialogChartLocation 	
xlDialogChartOptionsDataLabels 	
xlDialogChartOptionsDataTable 	
xlDialogChartSourceData 	

xlDialogChartTrend type,	ord_per,	forecast,	backcast,	intercept,
equation,	r_squared,	name

xlDialogChartType 	

xlDialogChartWizard
long,	ref,	gallery_num,	type_num,	plot_by,
categories,	ser_titles,	legend,	title,	x_title,
y_title,	z_title,	number_cats,	number_titles

xlDialogCheckboxProperties value,	link,	accel_text,	accel2_text,
3d_shading

xlDialogClear type_num
xlDialogColorPalette file_text

xlDialogColumnWidth width_num,	reference,	standard,	type_num,
standard_num

xlDialogCombination type_num
xlDialogConditionalFormatting 	

xlDialogConsolidate source_refs,	function_num,	top_row,	left_col,
create_links

xlDialogCopyChart size_num
xlDialogCopyPicture appearance_num,	size_num,	type_num
xlDialogCreateNames top,	left,	bottom,	right
xlDialogCreatePublisher file_text,	appearance,	size,	formats
xlDialogCustomizeToolbar category
xlDialogCustomViews 	
xlDialogDataDelete 	
xlDialogDataLabel show_option,	auto_text,	show_key

rowcol,	type_num,	date_num,	step_value,

xlDialogDataSeries stop_value,	trend

xlDialogDataValidation 	

xlDialogDefineName name_text,	refers_to,	macro_type,
shortcut_text,	hidden,	category,	local

xlDialogDefineStyle style_text,	number,	font,	alignment,	border,
pattern,	protection

xlDialogDefineStyle style_text,	attribute_num,
additional_def_args,	...

xlDialogDeleteFormat format_text
xlDialogDeleteName name_text
xlDialogDemote row_col

xlDialogDisplay
formulas,	gridlines,	headings,	zeros,
color_num,	reserved,	outline,	page_breaks,
object_num

xlDialogDisplay cell,	formula,	value,	format,	protection,
names,	precedents,	dependents,	note

xlDialogEditboxProperties validation_num,	multiline_logical,
vscroll_logical,	password_logical

xlDialogEditColor color_num,	red_value,	green_value,
blue_value

xlDialogEditDelete shift_num

xlDialogEditionOptions edition_type,	edition_name,	reference,	option,
appearance,	size,	formats

xlDialogEditSeries series_num,	name_ref,	x_ref,	y_ref,	z_ref,
plot_order

xlDialogErrorbarX include,	type,	amount,	minus
xlDialogErrorbarY include,	type,	amount,	minus
xlDialogExternalDataProperties 	
xlDialogExtract unique
xlDialogFileDelete file_text
xlDialogFileSharing 	
xlDialogFillGroup type_num
xlDialogFillWorkgroup type_num
xlDialogFilter 	

xlDialogFilterAdvanced
operation,	list_ref,	criteria_ref,	copy_ref,
unique

xlDialogFindFile 	
xlDialogFont name_text,	size_num

xlDialogFontProperties

font,	font_style,	size,	strikethrough,
superscript,	subscript,	outline,	shadow,
underline,	color,	normal,	background,
start_char,	char_count

xlDialogFormatAuto format_num,	number,	font,	alignment,	border,
pattern,	width

xlDialogFormatChart

layer_num,	view,	overlap,	angle,	gap_width,
gap_depth,	chart_depth,	doughnut_size,
axis_num,	drop,	hilo,	up_down,	series_line,
labels,	vary

xlDialogFormatCharttype apply_to,	group_num,	dimension,	type_num

xlDialogFormatFont
color,	backgd,	apply,	name_text,	size_num,
bold,	italic,	underline,	strike,	outline,	shadow,
object_id,	start_num,	char_num

xlDialogFormatFont name_text,	size_num,	bold,	italic,	underline,
strike,	color,	outline,	shadow

xlDialogFormatFont
name_text,	size_num,	bold,	italic,	underline,
strike,	color,	outline,	shadow,	object_id_text,
start_num,	char_num

xlDialogFormatLegend position_num

xlDialogFormatMain
type_num,	view,	overlap,	gap_width,	vary,
drop,	hilo,	angle,	gap_depth,	chart_depth,
up_down,	series_line,	labels,	doughnut_size

xlDialogFormatMove x_offset,	y_offset,	reference
xlDialogFormatMove x_pos,	y_pos
xlDialogFormatMove explosion_num
xlDialogFormatNumber format_text

xlDialogFormatOverlay
type_num,	view,	overlap,	gap_width,	vary,
drop,	hilo,	angle,	series_dist,	series_num,
up_down,	series_line,	labels,	doughnut_size

xlDialogFormatSize width,	height

xlDialogFormatSize x_off,	y_off,	reference

xlDialogFormatText x_align,	y_align,	orient_num,	auto_text,
auto_size,	show_key,	show_value,	add_indent

xlDialogFormulaFind text,	in_num,	at_num,	by_num,	dir_num,
match_case,	match_byte

xlDialogFormulaGoto reference,	corner

xlDialogFormulaReplace find_text,	replace_text,	look_at,	look_by,
active_cell,	match_case,	match_byte

xlDialogFunctionWizard 	
xlDialogGallery3dArea type_num
xlDialogGallery3dBar type_num
xlDialogGallery3dColumn type_num
xlDialogGallery3dLine type_num
xlDialogGallery3dPie type_num
xlDialogGallery3dSurface type_num
xlDialogGalleryArea type_num,	delete_overlay
xlDialogGalleryBar type_num,	delete_overlay
xlDialogGalleryColumn type_num,	delete_overlay
xlDialogGalleryCustom name_text
xlDialogGalleryDoughnut type_num,	delete_overlay
xlDialogGalleryLine type_num,	delete_overlay
xlDialogGalleryPie type_num,	delete_overlay
xlDialogGalleryRadar type_num,	delete_overlay
xlDialogGalleryScatter type_num,	delete_overlay
xlDialogGoalSeek target_cell,	target_value,	variable_cell

xlDialogGridlines x_major,	x_minor,	y_major,	y_minor,
z_major,	z_minor,	2D_effect

xlDialogImportTextFile 	
xlDialogInsert shift_num
xlDialogInsertHyperlink 	
xlDialogInsertNameLabel 	

xlDialogInsertObject
object_class,	file_name,	link_logical,
display_icon_logical,	icon_file,	icon_number,

icon_label
xlDialogInsertPicture file_name,	filter_number

xlDialogInsertTitle
chart,	y_primary,	x_primary,	y_secondary,
x_secondary

xlDialogLabelProperties accel_text,	accel2_text,	3d_shading

xlDialogListboxProperties range,	link,	drop_size,	multi_select,
3d_shading

xlDialogMacroOptions

macro_name,	description,	menu_on,
menu_text,	shortcut_on,	shortcut_key,
function_category,	status_bar_text,	help_id,
help_file

xlDialogMailEditMailer to_recipients,	cc_recipients,	bcc_recipients,
subject,	enclosures,	which_address

xlDialogMailLogon name_text,	password_text,	download_logical
xlDialogMailNextLetter 	

xlDialogMainChart type_num,	stack,	100,	vary,	overlap,	drop,
hilo,	overlap%,	cluster,	angle

xlDialogMainChartType type_num
xlDialogMenuEditor 	
xlDialogMove x_pos,	y_pos,	window_text
xlDialogNew type_num,	xy_series,	add_logical
xlDialogNewWebQuery 	
xlDialogNote add_text,	cell_ref,	start_char,	num_chars
xlDialogObjectProperties placement_type,	print_object
xlDialogObjectProtection locked,	lock_text

xlDialogOpen

file_text,	update_links,	read_only,	format,
prot_pwd,	write_res_pwd,	ignore_rorec,
file_origin,	custom_delimit,	add_logical,
editable,	file_access,	notify_logical,	converter

xlDialogOpenLinks document_text1,	document_text2,	...,
read_only,	type_of_link

xlDialogOpenMail subject,	comments

xlDialogOpenText

file_name,	file_origin,	start_row,	file_type,
text_qualifier,	consecutive_delim,	tab,

semicolon,	comma,	space,	other,	other_char,
field_info

xlDialogOptionsCalculation
type_num,	iter,	max_num,	max_change,
update,	precision,	date_1904,	calc_save,
save_values

xlDialogOptionsChart display_blanks,	plot_visible,
size_with_window

xlDialogOptionsEdit
incell_edit,	drag_drop,	alert,	entermove,
fixed,	decimals,	copy_objects,	update_links,
move_direction,	autocomplete,	animations

xlDialogOptionsGeneral

R1C1_mode,	dde_on,	sum_info,	tips,
recent_files,	old_menus,	user_info,
font_name,	font_size,	default_location,
alternate_location,	sheet_num,	enable_under

xlDialogOptionsListsAdd string_array
xlDialogOptionsListsAdd import_ref,	by_row

xlDialogOptionsME def_rtl_sheet,	crsr_mvmt,	show_ctrl_char,
gui_lang

xlDialogOptionsTransition menu_key,	menu_key_action,	nav_keys,
trans_eval,	trans_entry

xlDialogOptionsView

formula,	status,	notes,	show_info,
object_num,	page_breaks,	formulas,	gridlines,
color_num,	headers,	outline,	zeros,
hor_scroll,	vert_scroll,	sheet_tabs

xlDialogOutline auto_styles,	row_dir,	col_dir,	create_apply

xlDialogOverlay
type_num,	stack,	100,	vary,	overlap,	drop,
hilo,	overlap%,	cluster,	angle,	series_num,
auto

xlDialogOverlayChartType type_num

xlDialogPageSetup

head,	foot,	left,	right,	top,	bot,	hdng,	grid,
h_cntr,	v_cntr,	orient,	paper_size,	scale,
pg_num,	pg_order,	bw_cells,	quality,
head_margin,	foot_margin,	notes,	draft

xlDialogPageSetup

head,	foot,	left,	right,	top,	bot,	size,	h_cntr,
v_cntr,	orient,	paper_size,	scale,	pg_num,
bw_chart,	quality,	head_margin,	foot_margin,

draft

xlDialogPageSetup
head,	foot,	left,	right,	top,	bot,	orient,
paper_size,	scale,	quality,	head_margin,
foot_margin,	pg_num

xlDialogParse parse_text,	destination_ref
xlDialogPasteNames 	

xlDialogPasteSpecial paste_num,	operation_num,	skip_blanks,
transpose

xlDialogPasteSpecial rowcol,	titles,	categories,	replace,	series
xlDialogPasteSpecial paste_num

xlDialogPasteSpecial
format_text,	pastelink_logical,
display_icon_logical,	icon_file,	icon_number,
icon_label

xlDialogPatterns apattern,	afore,	aback,	newui

xlDialogPatterns lauto,	lstyle,	lcolor,	lwt,	hwidth,	hlength,
htype

xlDialogPatterns bauto,	bstyle,	bcolor,	bwt,	shadow,	aauto,
apattern,	afore,	aback,	rounded,	newui

xlDialogPatterns bauto,	bstyle,	bcolor,	bwt,	shadow,	aauto,
apattern,	afore,	aback,	invert,	apply,	newfill

xlDialogPatterns lauto,	lstyle,	lcolor,	lwt,	tmajor,	tminor,	tlabel
xlDialogPatterns lauto,	lstyle,	lcolor,	lwt,	apply,	smooth

xlDialogPatterns lauto,	lstyle,	lcolor,	lwt,	mauto,	mstyle,	mfore,
mback,	apply,	smooth

xlDialogPatterns type,	picture_units,	apply
xlDialogPhonetic 	
xlDialogPivotCalculatedField 	
xlDialogPivotCalculatedItem 	
xlDialogPivotClientServerSet 	
xlDialogPivotFieldGroup start,	end,	by,	periods

xlDialogPivotFieldProperties name,	pivot_field_name,	new_name,
orientation,	function,	formats

xlDialogPivotFieldUngroup 	
xlDialogPivotShowPages name,	page_field

xlDialogPivotSolveOrder 	
xlDialogPivotTableOptions 	

xlDialogPivotTableWizard
type,	source,	destination,	name,	row_grand,
col_grand,	save_data,	apply_auto_format,
auto_page,	reserved

xlDialogPlacement placement_type

xlDialogPrint
range_num,	from,	to,	copies,	draft,	preview,
print_what,	color,	feed,	quality,	y_resolution,
selection,	printer_text,	print_to_file,	collate

xlDialogPrinterSetup printer_text
xlDialogPrintPreview 	
xlDialogPromote rowcol
xlDialogProperties title,	subject,	author,	keywords,	comments

xlDialogProtectDocument contents,	windows,	password,	objects,
scenarios

xlDialogProtectSharing 	
xlDialogPublishAsWebPage 	

xlDialogPushbuttonProperties
default_logical,	cancel_logical,
dismiss_logical,	help_logical,	accel_text,
accel_text2

xlDialogReplaceFont font_num,	name_text,	size_num,	bold,	italic,
underline,	strike,	color,	outline,	shadow

xlDialogRoutingSlip recipients,	subject,	message,	route_num,
return_logical,	status_logical

xlDialogRowHeight height_num,	reference,	standard_height,
type_num

xlDialogRun reference,	step

xlDialogSaveAs document_text,	type_num,	prot_pwd,	backup,
write_res_pwd,	read_only_rec

xlDialogSaveCopyAs document_text
xlDialogSaveNewObject 	

xlDialogSaveWorkbook document_text,	type_num,	prot_pwd,	backup,
write_res_pwd,	read_only_rec

xlDialogSaveWorkspace name_text
cross,	cat_labels,	cat_marks,	between,	max,

xlDialogScale reverse

xlDialogScale min_num,	max_num,	major,	minor,	cross,
logarithmic,	reverse,	max

xlDialogScale cat_labels,	cat_marks,	reverse,	between
xlDialogScale series_labels,	series_marks,	reverse

xlDialogScale min_num,	max_num,	major,	minor,	cross,
logarithmic,	reverse,	min

xlDialogScenarioAdd scen_name,	value_array,	changing_ref,
scen_comment,	locked,	hidden

xlDialogScenarioCells changing_ref

xlDialogScenarioEdit scen_name,	new_scenname,	value_array,
changing_ref,	scen_comment,	locked,	hidden

xlDialogScenarioMerge source_file
xlDialogScenarioSummary result_ref,	report_type
xlDialogScrollbarProperties value,	min,	max,	inc,	page,	link,	3d_shading
xlDialogSelectSpecial type_num,	value_type,	levels
xlDialogSendMail recipients,	subject,	return_receipt
xlDialogSeriesAxes axis_num
xlDialogSeriesOptions 	
xlDialogSeriesOrder chart_num,	old_series_num,	new_series_num
xlDialogSeriesShape 	
xlDialogSeriesX x_ref
xlDialogSeriesY name_ref,	y_ref
xlDialogSetBackgroundPicture 	
xlDialogSetPrintTitles titles_for_cols_ref,	titles_for_rows_ref
xlDialogSetUpdateStatus link_text,	status,	type_of_link
xlDialogShowDetail rowcol,	rowcol_num,	expand,	show_field

xlDialogShowToolbar
bar_id,	visible,	dock,	x_pos,	y_pos,	width,
protect,	tool_tips,	large_buttons,
color_buttons

xlDialogSize width,	height,	window_text

xlDialogSort orientation,	key1,	order1,	key2,	order2,	key3,
order3,	header,	custom,	case

xlDialogSort orientation,	key1,	order1,	type,	custom

xlDialogSortSpecial sort_by,	method,	key1,	order1,	key2,	order2,
key3,	order3,	header,	order,	case

xlDialogSplit col_split,	row_split

xlDialogStandardFont name_text,	size_num,	bold,	italic,	underline,
strike,	color,	outline,	shadow

xlDialogStandardWidth standard_num
xlDialogStyle bold,	italic
xlDialogSubscribeTo file_text,	format_num

xlDialogSubtotalCreate at_change_in,	function_num,	total,	replace,
pagebreaks,	summary_below

xlDialogSummaryInfo title,	subject,	author,	keywords,	comments
xlDialogTable row_ref,	column_ref
xlDialogTabOrder 	

xlDialogTextToColumns
destination_ref,	data_type,	text_delim,
consecutive_delim,	tab,	semicolon,	comma,
space,	other,	other_char,	field_info

xlDialogUnhide window_text
xlDialogUpdateLink link_text,	type_of_link
xlDialogVbaInsertFile filename_text
xlDialogVbaMakeAddIn 	
xlDialogVbaProcedureDefinition 	

xlDialogView3d elevation,	perspective,	rotation,	axes,
height%,	autoscale

xlDialogWebOptionsEncoding 	
xlDialogWebOptionsFiles 	
xlDialogWebOptionsFonts 	
xlDialogWebOptionsGeneral 	
xlDialogWebOptionsPictures 	
xlDialogWindowMove x_pos,	y_pos,	window_text
xlDialogWindowSize width,	height,	window_text
xlDialogWorkbookAdd name_array,	dest_book,	position_num
xlDialogWorkbookCopy name_array,	dest_book,	position_num
xlDialogWorkbookInsert type_num

xlDialogWorkbookMove name_array,	dest_book,	position_num
xlDialogWorkbookName oldname_text,	newname_text
xlDialogWorkbookNew 	
xlDialogWorkbookOptions sheet_name,	bound_logical,	new_name
xlDialogWorkbookProtect structure,	windows,	password
xlDialogWorkbookTabSplit ratio_num
xlDialogWorkbookUnhide sheet_text
xlDialogWorkgroup name_array

xlDialogWorkspace

fixed,	decimals,	r1c1,	scroll,	status,	formula,
menu_key,	remote,	entermove,	underlines,
tools,	notes,	nav_keys,	menu_key_action,
drag_drop,	show_info

xlDialogZoom magnification

Using	ActiveX	Controls	on	Sheets
			

This	topic	covers	specific	information	about	using	ActiveX	controls	on
worksheets	and	chart	sheets.	For	general	information	on	adding	and	working
with	controls,	see	Using	ActiveX	Controls	on	a	Document	and	Creating	a
Custom	Dialog	box.

Keep	the	following	points	in	mind	when	you	are	working	with	controls	on
sheets.

In	addition	to	the	standard	properties	available	for	ActiveX	controls,	the
following	properties	can	be	used	with	ActiveX	controls	in	Microsoft	Excel:
BottomRightCell,	LinkedCell,	ListFillRange,	Placement,	PrintObject,
TopLeftCell,	and	ZOrder.

These	properties	can	be	set	and	returned	using	the	ActiveX	control	name.
The	following	example	scrolls	the	workbook	window	so	CommandButton1
is	in	the	upper-left	corner.

Set	t	=	Sheet1.CommandButton1.TopLeftCell

With	ActiveWindow

				.ScrollRow	=	t.Row

				.ScrollColumn	=	t.Column

End	With

Some	Microsoft	Excel	Visual	Basic	methods	and	properties	are	disabled
when	an	ActiveX	control	is	activated.	For	example,	the	Sort	method	cannot
be	used	when	a	control	is	active,	so	the	following	code	fails	in	a	button
click	event	procedure	(because	the	control	is	still	active	after	the	user	clicks
it).

Private	Sub	CommandButton1.Click

				Range("a1:a10").Sort	Key1:=Range("a1")

End	Sub

You	can	work	around	this	problem	by	activating	some	other	element	on	the	sheet
before	you	use	the	property	or	method	that	failed.	For	example,	the	following

code	sorts	the	range:

Private	Sub	CommandButton1.Click

				Range("a1").Activate

				Range("a1:a10").Sort	Key1:=Range("a1")

				CommandButton1.Activate

End	Sub

Controls	on	a	Microsoft	Excel	workbook	embedded	in	a	document	in
another	application	will	not	work	if	the	user	double	clicks	the	workbook	to
edit	it.	The	controls	will	work	if	the	user	right	clicks	the	workbook	and
selects	the	Open	command	from	the	shortcut	menu.
When	a	Microsoft	Excel	workbook	is	saved	using	the	Microsoft	Excel
5.0/95	Workbook	file	format,	ActiveX	control	information	is	lost.
The	Me	keyword	in	an	event	procedure	for	an	ActiveX	control	on	a	sheet
refers	to	the	sheet,	not	to	the	control.

Adding	Controls	with	Visual	Basic

In	Microsoft	Excel,	ActiveX	controls	are	represented	by	OLEObject	objects	in
the	OLEObjects	collection	(all	OLEObject	objects	are	also	in	the	Shapes
collection).	To	programmatically	add	an	ActiveX	control	to	a	sheet,	use	the	Add
method	of	the	OLEObjects	collection.	The	following	example	adds	a	command
button	to	worksheet	one.

Worksheets(1).OLEObjects.Add	"Forms.CommandButton.1",	_

				Left:=10,	Top:=10,	Height:=20,	Width:=100

Using	Control	Properties	with	Visual	Basic

Most	often,	your	Visual	Basic	code	will	refer	to	ActiveX	controls	by	name.	The
following	example	changes	the	caption	on	the	control	named
"CommandButton1."

Sheet1.CommandButton1.Caption	=	"Run"

Note	that	when	you	use	a	control	name	outside	the	class	module	for	the	sheet
containing	the	control,	you	must	qualify	the	control	name	with	the	sheet	name.

To	change	the	control	name	you	use	in	Visual	Basic	code,	select	the	control	and
set	the	(Name)	property	in	the	Properties	window.

Because	ActiveX	controls	are	also	represented	by	OLEObject	objects	in	the
OLEObjects	collection,	you	can	set	control	properties	using	the	objects	in	the
collection.	The	following	example	sets	the	left	position	of	the	control	named
"CommandButton1."

Worksheets(1).OLEObjects("CommandButton1").Left	=	10

Control	properties	that	are	not	shown	as	properties	of	the	OLEObject	object	can
be	set	by	returning	the	actual	control	object	using	the	Object	property.	The
following	example	sets	the	caption	for	CommandButton1.

Worksheets(1).OLEObjects("CommandButton1").	_

				Object.Caption	=	"run	me"

Because	all	OLE	objects	are	also	members	of	the	Shapes	collection,	you	can	use
the	collection	to	set	properties	for	several	controls.	The	following	example	aligns
the	left	edge	of	all	controls	on	worksheet	one.

For	Each	s	In	Worksheets(1).Shapes

				If	s.Type	=	msoOLEControlObject	Then	s.Left	=	10

Next

Using	Control	Names	with	the	Shapes	and
OLEObjects	Collections

An	ActiveX	control	on	a	sheet	has	two	names:	the	name	of	the	shape	that
contains	the	control,	which	you	can	see	in	the	Name	box	when	you	view	the
sheet,	and	the	code	name	for	the	control,	which	you	can	see	in	the	cell	to	the
right	of	(Name)	in	the	Properties	window.	When	you	first	add	a	control	to	a
sheet,	the	shape	name	and	code	name	match.	However,	if	you	change	either	the
shape	name	or	code	name,	the	other	isn’t	automatically	changed	to	match.

You	use	the	code	name	of	a	control	in	the	names	of	its	event	procedures.
However,	when	you	return	a	control	from	the	Shapes	or	OLEObjects	collection
for	a	sheet,	you	must	use	the	shape	name,	not	the	code	name,	to	refer	to	the
control	by	name.	For	example,	assume	that	you	add	a	check	box	to	a	sheet	and
that	both	the	default	shape	name	and	the	default	code	name	are	CheckBox1.	If
you	then	change	the	control	code	name	by	typing	chkFinished	next	to	(Name)
in	the	Properties	window,	you	must	use	chkFinished	in	event	procedures	names,
but	you	still	have	to	use	CheckBox1	to	return	the	control	from	the	Shapes	or
OLEObject	collection,	as	shown	in	the	following	example.

Private	Sub	chkFinished_Click()

				ActiveSheet.OLEObjects("CheckBox1").Object.Value	=	1

End	Sub

Group	Method	(ShapeRange	Object)
							

Groups	the	shapes	in	the	specified	range.	Returns	the	grouped	shapes	as	a	single
Shape	object.

expression.Group

expression			Required.	An	expression	that	returns	a	ShapeRange	object.

Remarks

Because	a	group	of	shapes	is	treated	as	a	single	shape,	grouping	and	ungrouping
shapes	changes	the	number	of	items	in	the	Shapes	collection	and	changes	the
index	numbers	of	items	that	come	after	the	affected	items	in	the	collection.

Example

This	example	adds	two	shapes	to	myDocument,	groups	the	two	new	shapes,	sets
the	fill	for	the	group,	rotates	the	group,	and	sends	the	group	to	the	back	of	the
drawing	layer.

Set	myDocument	=	Worksheets(1)

With	myDocument.Shapes

				.AddShape(msoShapeCan,	50,	10,	100,	200).Name	=	"shpOne"

				.AddShape(msoShapeCube,	150,	250,	100,	200).Name	=	"shpTwo"

				With	.Range(Array("shpOne",	"shpTwo")).Group

								.Fill.PresetTextured	msoTextureBlueTissuePaper

								.Rotation	=	45

								.ZOrder	msoSendToBack

				End	With

End	With

Using	Microsoft	Excel	Worksheet
Functions	in	Visual	Basic
					

You	can	use	most	Microsoft	Excel	worksheet	functions	in	your	Visual	Basic
statements.	To	see	a	list	of	the	worksheet	functions	you	can	use,	see	List	of
Worksheet	Functions	Available	to	Visual	Basic.

Note			Some	worksheet	functions	aren’t	useful	in	Visual	Basic.	For	example,	the
Concatenate	function	isn’t	needed	because	in	Visual	Basic	you	can	use	the	&
operator	to	join	multiple	text	values.

Calling	a	Worksheet	Function	from	Visual	Basic

In	Visual	Basic,	the	Microsoft	Excel	worksheet	functions	are	available	through
the	WorksheetFunction	object.

The	following	Sub	procedure	uses	the	Min	worksheet	function	to	determine	the
smallest	value	in	a	range	of	cells.	First,	the	variable	myRange	is	declared	as	a
Range	object,	and	then	it’s	set	to	range	A1:C10	on	Sheet1.	Another	variable,
answer,	is	assigned	the	result	of	applying	the	Min	function	to	myRange.	Finally,
the	value	of	answer	is	displayed	in	a	message	box.

Sub	UseFunction()

				Dim	myRange	As	Range

				Set	myRange	=	Worksheets("Sheet1").Range("A1:C10")

				answer	=	Application.WorksheetFunction.Min(myRange)

				MsgBox	answer

End	Sub

If	you	use	a	worksheet	function	that	requires	a	range	reference	as	an	argument,
you	must	specify	a	Range	object.	For	example,	you	can	use	the	Match
worksheet	function	to	search	a	range	of	cells.	In	a	worksheet	cell,	you	would
enter	a	formula	such	as	=MATCH(9,A1:A10,0).	However,	in	a	Visual	Basic
procedure,	you	would	specify	a	Range	object	to	get	the	same	result.

Sub	FindFirst()

				myVar	=	Application.WorksheetFunction	_

								.Match(9,	Worksheets(1).Range("A1:A10"),	0)

				MsgBox	myVar

End	Sub

Note			Visual	Basic	functions	don’t	use	the	WorksheetFunction	qualifier.	A
function	may	have	the	same	name	as	a	Microsoft	Excel	function	and	yet	work
differently.	For	example,	Application.WorksheetFunction.Log	and	Log	will
return	different	values.

Inserting	a	Worksheet	Function	into	a	Cell

To	insert	a	worksheet	function	into	a	cell,	you	specify	the	function	as	the	value
of	the	Formula	property	of	the	corresponding	Range	object.	In	the	following
example,	the	RAND	worksheet	function	(which	generates	a	random	number)	is
assigned	to	the	Formula	property	of	range	A1:B3	on	Sheet1	in	the	active
workbook.

Sub	InsertFormula()

				Worksheets("Sheet1").Range("A1:B3").Formula	=	"=RAND()"

End	Sub

Example

This	example	uses	the	worksheet	function	Pmt	to	calculate	a	home	mortgage
loan	payment.	Notice	that	this	example	uses	the	InputBox	method	instead	of	the
InputBox	function	so	that	the	method	can	perform	type	checking.	The	Static
statements	cause	Visual	Basic	to	retain	the	values	of	the	three	variables;	these	are
displayed	as	default	values	the	next	time	you	run	the	program.

Static	loanAmt

Static	loanInt

Static	loanTerm

loanAmt	=	Application.InputBox	_

				(Prompt:="Loan	amount	(100,000	for	example)",	_

								Default:=loanAmt,	Type:=1)

loanInt	=	Application.InputBox	_

				(Prompt:="Annual	interest	rate	(8.75	for	example)",	_

								Default:=loanInt,	Type:=1)

loanTerm	=	Application.InputBox	_

				(Prompt:="Term	in	years	(30	for	example)",	_

								Default:=loanTerm,	Type:=1)

payment	=	Application.WorksheetFunction	_

				.Pmt(loanInt	/	1200,	loanTerm	*	12,	loanAmt)

MsgBox	"Monthly	payment	is	"	&	Format(payment,	"Currency")

RotationX	Property
							

Returns	or	sets	the	rotation	of	the	extruded	shape	around	the	x-axis	in	degrees.
Can	be	a	value	from		–	90	through	90.	A	positive	value	indicates	upward
rotation;	a	negative	value	indicates	downward	rotation.	Read/write	Single.

expression.RotationX

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

Remarks

To	set	the	rotation	of	the	extruded	shape	around	the	y-axis,	use	the	RotationY
property	of	the	ThreeDFormat	object.	To	set	the	rotation	of	the	extruded	shape
around	the	z-axis,	use	the	Rotation	property	of	the	Shape	object.	To	change	the
direction	of	the	extrusion’s	sweep	path	without	rotating	the	front	face	of	the
extrusion,	use	the	SetExtrusionDirection	method.

Example

This	example	adds	three	identical	extruded	ovals	to	myDocument	and	sets	their
rotation	around	the	x-axis	to		–	30,	0,	and	30	degrees,	respectively.

Set	myDocument	=	Worksheets(1)

With	myDocument.Shapes

				With	.AddShape(msoShapeOval,	30,	30,	50,	25).ThreeD

								.Visible	=	True

								.RotationX	=	-30

				End	With

				With	.AddShape(msoShapeOval,	30,	70,	50,	25).ThreeD

								.Visible	=	True

								.RotationX	=	0

				End	With

				With	.AddShape(msoShapeOval,	30,	110,	50,	25).ThreeD

								.Visible	=	True

								.RotationX	=	30

				End	With

End	With

Modify	Method	(FormatCondition
Object)
							

Modifies	an	existing	conditional	format.

expression.Modify(Type,	Operator,	Formula1,	Formula2)

expression			Required.	An	expression	that	returns	a	FormatCondition	object.

Type		Required	XlFormatCondition.		Specifies	whether	the	conditional	format
is	based	on	a	cell	value	or	an	expression.

XlFormatCondition	can	be	one	of	these	XlFormatCondition	constants.
xlCellValue
xlExpression

Operator		Optional	XlFormatConditionOperator.		The	conditional	format
operator.

XlFormatConditionOperator	can	be	one	of	these	XlFormatConditionOperator
constants.
xlBetween
xlEqual

xlGreater

xlGreaterEqual

xlLess

xlLessEqual

xlNotBetween

xlNotEqual

If	Type,	is	xlExpression,	the	Operator	argument	is	ignored.

Formula1			Optional	Variant.	The	value	or	expression	associated	with	the
conditional	format.	Can	be	a	constant	value,	a	string	value,	a	cell	reference,	or	a
formula.

Formula2			Optional	Variant.	The	value	or	expression	associated	with	the
conditional	format.	Can	be	a	constant	value,	a	string	value,	a	cell	reference,	or	a
formula..

Example

This	example	modifies	an	existing	conditional	format	for	cells	E1:E10.

Worksheets(1).Range("e1:e10").FormatConditions(1)	_

				.Modify	xlCellValue,	xlLess,	"=a1"

Modify	Method	(Validation	Object)
							

Modifies	data	validation	for	a	range.

expression.Modify(Type,	AlertStyle,	Operator,	Formula1,	Formula2)

expression			Required.	An	expression	that	returns	a	Validation	object.

Type		Required	XlDVType.		The	validation	type.

XlDVType	can	be	one	of	these	XlDVType	constants.
xlValidateCustom
xlValidateDate

xlValidateDecimal

xlValidateInputOnly

xlValidateList

xlValidateTextLength

xlValidateTime

xlValidateWholeNumber

AlertStyle		Optional	XlDVAlertStyle.		The	validation	alert	style.

XlDVAlertStyle	can	be	one	of	these	XlDVAlertStyle	constants.
xlValidAlertInformation
xlValidAlertStop

xlValidAlertWarning

Operator		Optional	XlFormatConditionOperator.		The	data	validation
operator.

XlFormatConditionOperator	can	be	one	of	these	XlFormatConditionOperator
constants.
xlBetween
xlEqual

xlGreater

xlGreaterEqual

xlLess

xlLessEqual

xlNotBetween

xlNotEqual

Formula1			Optional	Variant.	The	first	part	of	the	data	validation	equation.

Formula2			Optional	Variant.	The	second	part	of	the	data	validation	when
Operator	is	xlBetween	or	xlNotBetween	(otherwise,	this	argument	is	ignored).

Remarks

The	Modify	method	requires	different	arguments,	depending	on	the	validation
type,	as	shown	in	the	following	table.

Validation	type Arguments

xlInputOnly AlertStyle,	Formula1,	and	Formula2	are	not
used.

xlValidateCustom

Formula1	is	required;	Formula2	is	ignored.
Formula1	must	contain	an	expression	that
evaluates	to	True	when	data	entry	is	valid	and
False	when	data	entry	is	invalid.

xlValidateList

Formula1	is	required;	Formula2	is	ignored.
Formula1	must	contain	either	a	comma-
delimited	list	of	values	or	a	worksheet
reference	to	the	list.

xlValidateDate,
xlValidateDecimal,
xlValidateTextLength,
xlValidateTime,	or
xlValidateWholeNumber

Formula1	or	Formula2,	or	both,	must	be
specified.

Example

This	example	changes	data	validation	for	cell	E5.

Range("e5").Validation	_

				.Modify	xlValidateList,	xlValidAlertStop,	_

				xlBetween,	"=A1:A10"

ZOrderPosition	Property
							

Returns	the	position	of	the	specified	shape	in	the	z-order.	Read-only	Long.

	

Remarks

To	set	the	shape's	position	in	the	z-order,	use	the	ZOrder	method.

A	shape's	position	in	the	z-order	corresponds	to	the	shape's	index	number	in	the
Shapes	collection.	For	example,	if	there	are	four	shapes	on	myDocument,	the
expression	myDocument.Shapes(1)	returns	the	shape	at	the	back	of	the	z-order,
and	the	expression	myDocument.Shapes(4)	returns	the	shape	at	the	front	of	the
z-order.

Whenever	you	add	a	new	shape	to	a	collection,	it’s	added	to	the	front	of	the	z-
order	by	default.

Example

This	example	adds	an	oval	to	myDocument	and	then	places	the	oval	second	from
the	back	in	the	z-order	if	there	is	at	least	one	other	shape	on	the	document.

Set	myDocument	=	Worksheets(1)

With	myDocument.Shapes.AddShape(msoShapeOval,	100,	100,	100,	300)

				While	.ZOrderPosition	>	2

								.ZOrder	msoSendBackward

				Wend

End	With

Show	All

Returning	an	Object	from	a
Collection
			

The	Item	property	returns	a	single	object	from	a	collection.	The	following
example	sets	the	firstBook	variable	to	a	Workbook	object	that	represents
workbook	one.

Set	FirstBook	=	Workbooks.Item(1)

The	Item	property	is	the	default	property	for	most	collections,	so	you	can	write
the	same	statement	more	concisely	by	omitting	the	Item	keyword.

Set	FirstBook	=	Workbooks(1)

For	more	information	about	a	specific	collection,	see	the	Help	topic	for	that
collection	or	the	Item	property	for	the	collection.

Named	Objects

Although	you	can	usually	specify	an	integer	value	with	the	Item	property,	it	may
be	more	convenient	to	return	an	object	by	name.	Before	you	can	use	a	name	with
the	Item	property,	you	must	name	the	object.	Most	often,	this	is	done	by	setting
the	object's	Name	property.	The	following	example	creates	a	named	worksheet
in	the	active	workbook	and	then	refers	to	the	worksheet	by	name.

ActiveWorkbook.Worksheets.Add.Name	=	"A	New	Sheet"

With	Worksheets("A	New	Sheet")

				.Range("A5:A10").Formula	=	"=RAND()"

End	With

Predefined	Index	Values

Some	collections	have	predefined	index	values	you	can	use	to	return	single
objects.	Each	predefined	index	value	is	represented	by	a	constant.	For	example,
you	specify	an	XlBordersIndex	constant	with	the	Item	property	of	the	Borders
collection	to	return	a	single	border.

The	following	example	sets	the	bottom	border	of	cells	A1:G1	on	Sheet1	to	a
double	line.

Worksheets("Sheet1").Range("A1:A1").	_

				Borders.Item(xlEdgeBottom).LineStyle	=	xlDouble

Formatting	Codes	for	Headers	and
Footers
			

The	following	special	formatting	codes	can	be	included	as	a	part	of	the	header
and	footer	properties	(LeftHeader,	CenterHeader,	RightHeader,	LeftFooter,
CenterFooter,	RightFooter).

Format	code Description
&L Left	aligns	the	characters	that	follow.
&C Centers	the	characters	that	follow.
&R Right	aligns	the	characters	that	follow.
&E Turns	double-underline	printing	on	or	off.
&X Turns	superscript	printing	on	or	off.
&Y Turns	subscript	printing	on	or	off.
&B Turns	bold	printing	on	or	off.
&I Turns	italic	printing	on	or	off.
&U Turns	underline	printing	on	or	off.
&S Turns	strikethrough	printing	on	or	off.
&D Prints	the	current	date.
&T Prints	the	current	time.
&F Prints	the	name	of	the	document.
&A Prints	the	name	of	the	workbook	tab.
&P Prints	the	page	number.
&P+number Prints	the	page	number	plus	the	specified	number.
&P-number Prints	the	page	number	minus	the	specified	number.
&& Prints	a	single	ampersand.

&	"fontname" Prints	the	characters	that	follow	in	the	specified	font.	Be
sure	to	include	the	double	quotation	marks.

&nn Prints	the	characters	that	follow	in	the	specified	font	size.
Use	a	two-digit	number	to	specify	a	size	in	points.

&N Prints	the	total	number	of	pages	in	the	document.

Using	Events	with	Embedded	Charts
			

Events	are	enabled	for	chart	sheets	by	default.	Before	you	can	use	events	with	a
Chart	object	that	represents	an	embedded	chart,	you	must	create	a	new	class
module	and	declare	an	object	of	type	Chart	with	events.	For	example,	assume
that	a	new	class	module	is	created	and	named	EventClassModule.	The	new	class
module	contains	the	following	code.

Public	WithEvents	myChartClass	As	Chart

After	the	new	object	has	been	declared	with	events,	it	appears	in	the	Object
drop-down	list	box	in	the	class	module,	and	you	can	write	event	procedures	for
this	object.	(When	you	select	the	new	object	in	the	Object	box,	the	valid	events
for	that	object	are	listed	in	the	Procedure	drop-down	list	box.)

Before	your	procedures	will	run,	however,	you	must	connect	the	declared	object
in	the	class	module	with	the	embedded	chart.	You	can	do	this	by	using	the
following	code	from	any	module.

Dim	myClassModule	As	New	EventClassModule

Sub	InitializeChart()

				Set	myClassModule.myChartClass	=	_

								Worksheets(1).ChartObjects(1).Chart

End	Sub

After	you	run	the	InitializeChart	procedure,	the	myChartClass	object	in	the	class
module	points	to	embedded	chart	one	on	worksheet	one,	and	the	event
procedures	in	the	class	module	will	run	when	the	events	occur.

Using	Events	with	the	Application
Object
			

Before	you	can	use	events	with	the	Application	object,	you	must	create	a	new
class	module	and	declare	an	object	of	type	Application	with	events.	For
example,	assume	that	a	new	class	module	is	created	and	called
EventClassModule.	The	new	class	module	contains	the	following	code.

Public	WithEvents	App	As	Application

After	the	new	object	has	been	declared	with	events,	it	appears	in	the	Object
drop-down	list	box	in	the	class	module,	and	you	can	write	event	procedures	for
the	new	object.	(When	you	select	the	new	object	in	the	Object	box,	the	valid
events	for	that	object	are	listed	in	the	Procedure	drop-down	list	box.)

Before	the	procedures	will	run,	however,	you	must	connect	the	declared	object	in
the	class	module	with	the	Application	object.	You	can	do	this	with	the	following
code	from	any	module.

Dim	X	As	New	EventClassModule

Sub	InitializeApp()

				Set	X.App	=	Application

End	Sub

After	you	run	the	InitializeApp	procedure,	the	App	object	in	the	class	module
points	to	the	Microsoft	Excel	Application	object,	and	the	event	procedures	in
the	class	module	will	run	when	the	events	occur.

Microsoft	Excel	Objects	(Shapes)
			
Shapes	(Shape)	 LinkFormat
OLEFormat
Hyperlink
FillFormat
ControlFormat
ConnectorFormat
TextFrame
Diagram
DiagramNodes
DiagramNode
DiagramNodeChildren

Adjustments
LineFormat
PictureFormat
ShadowFormat
TextEffectFormat
Scripts	(Script)

	

Legend

		Object	and	collection
		Object	only

mk:@MSITStore:vbaof10.chm::/html/ofobjScripts.htm

Microsoft	Excel	Objects
(ChartGroups)
			
ChartGroups	(ChartGroup)

DownBars	 UpBars
HiLoLines
SeriesLines
DropLines
TickLabels

Legend

		Object	and	collection
		Object	only

SeriesCollection	(Series)
ErrorBars
Border
DataLabels	(DataLabel)
ChartFillFormat
Interior
LeaderLines
Points	(Point)
DataLabel

Trendlines	(Trendline)

Using	Events	with	the	QueryTable
Object
			

Before	you	can	use	events	with	the	QueryTable	object,	you	must	first	create	a
new	class	module	and	declare	a	QueryTable	object	with	events.	For	example,
assume	that	you’ve	created	a	new	class	module	and	named	it	ClsModQT.	This
module	contains	the	following	code:

Public	WithEvents	qtQueryTable	As	QueryTable

After	you’ve	declared	the	new	object	by	using	events,	it	appears	in	the	Object
drop-down	list	box	in	the	class	module.

Before	the	procedures	will	run,	however,	you	must	connect	the	declared	object	in
the	class	module	to	the	specified	QueryTable	object.	You	can	do	this	by
entering	the	following	code	in	the	class	module:

Sub	InitQueryEvent(QT	as	Object)

				Set	qtQueryTable	=	QT

End	Sub

After	you	run	this	initialization	procedure,	the	object	you	declared	in	the	class
module	points	to	the	specified	QueryTable	object.	You	can	initialize	the	event	in
a	module	by	calling	the	event.	In	this	example,	the	first	query	table	on	the	active
worksheet	is	connected	to	the	qtQueryTable	object.

Dim	clsQueryTable	as	New	ClsModQT

Sub	RunInitQTEvent

				clsQueryTable.InitQueryEvent	_

								QT:=ActiveSheet.QueryTables(1)

End	Sub

You	can	write	other	event	procedures	in	the	object’s	class.	When	you	click	the
new	object	in	the	Object	box,	the	valid	events	for	that	object	are	displayed	in	the
Procedure	drop-down	list	box.

Using	ActiveX	Controls	on	a
Document
			

Just	as	you	can	add	ActiveX	controls	to	custom	dialog	boxes,	you	can	add
controls	directly	to	a	document	when	you	want	to	provide	a	sophisticated	way
for	the	user	to	interact	directly	with	your	macro	without	the	distraction	of	dialog
boxes.	Use	the	following	procedure	to	add	ActiveX	controls	to	your	document.
For	more	specific	information	about	using	ActiveX	controls	in	Microsoft	Excel,
see	Using	ActiveX	Controls	on	Sheets.

1.	 Add	controls	to	the	document

Display	the	Control	Toolbox,	click	the	control	you	want	to	add,	and	then
click	the	document.

2.	 Set	control	properties

Right-click	a	control	in	design	mode	and	click	Properties	to	display	the
Properties	window.

3.	 Initialize	the	controls

You	can	initialize	controls	in	a	procedure.

4.	 Write	event	procedures

All	controls	have	a	predefined	set	of	events.	For	example,	a	command
button	has	a	Click	event	that	occurs	when	the	user	clicks	the	command
button.	You	can	write	event	procedures	that	run	when	the	events	occur.

5.	 Use	control	values	while	code	is	running

Some	properties	can	be	set	at	run	time.

Creating	a	Custom	Dialog	Box
			

Use	the	following	procedure	to	create	a	custom	dialog	box:

1.	 Create	a	UserForm

On	the	Insert	menu	in	the	Visual	Basic	Editor,	click	UserForm.

2.	 Add	controls	to	the	UserForm

Find	the	control	you	want	to	add	in	the	Toolbox	and	drag	the	control	onto
the	form.

3.	 Set	control	properties

Right-click	a	control	in	design	mode	and	click	Properties	to	display	the
Properties	window.

4.	 Initialize	the	controls

You	can	initialize	controls	in	a	procedure	before	you	show	a	form,	or	you
can	add	code	to	the	Initialize	event	of	the	form.

5.	 Write	event	procedures

All	controls	have	a	predefined	set	of	events.	For	example,	a	command
button	has	a	Click	event	that	occurs	when	the	user	clicks	the	command
button.	You	can	write	event	procedures	that	run	when	the	events	occur.

6.	 Show	the	dialog	box

Use	the	Show	method	to	display	a	UserForm.

7.	 Use	control	values	while	code	is	running

Some	properties	can	be	set	at	run	time.	Changes	made	to	the	dialog	box	by

the	user	are	lost	when	the	dialog	box	is	closed.

List	of	Worksheet	Functions
Available	to	Visual	Basic
			

	 	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	 	

A

Acos

Acosh

And

Asin

Asinh

Atan2

Atanh

AveDev

Average

B

BetaDist

BetaInv

BinomDist

C

Ceiling

ChiDist

ChiInv

ChiTest

Choose

mk:@MSITStore:xlmain10.chm::/html/xlfctAcos.htm
mk:@MSITStore:xlmain10.chm::/html/xlfctAcosh.htm
mk:@MSITStore:xlmain10.chm::/html/xlfctAnd.htm
mk:@MSITStore:xlmain10.chm::/html/xlfctAsin.htm
mk:@MSITStore:xlmain10.chm::/html/xlfctAsinh.htm
mk:@MSITStore:xlmain10.chm::/html/xlfctAtan2.htm
mk:@MSITStore:xlmain10.chm::/html/xlfctAtanh.htm
mk:@MSITStore:xlmain10.chm::/html/xlfctAveDev.htm
mk:@MSITStore:xlmain10.chm::/html/xlfctAverage.htm
mk:@MSITStore:xlmain10.chm::/html/xlfctBetaDist.htm
mk:@MSITStore:xlmain10.chm::/html/xlfctBetaInv.htm
mk:@MSITStore:xlmain10.chm::/html/xlfctBinomDist.htm
mk:@MSITStore:xlmain9.chm::/html/xlfctCeiling.htm
mk:@MSITStore:xlmain10.chm::/html/xlfctChiDist.htm
mk:@MSITStore:xlmain10.chm::/html/xlfctChiInv.htm
mk:@MSITStore:xlmain10.chm::/html/xlfctChiTest.htm
mk:@MSITStore:xlmain10.chm::/html/xlfctChoose.htm

Clean

Combin

Confidence

Correl

Cosh

Count

CountA

CountBlank

CountIf

Covar

CritBinom

D

DAverage

Days360

Db

DCount

DCountA

Ddb

Degrees

DevSq

DGet

mk:@MSITStore:xlmain10.chm::/html/xlfctClean.htm
mk:@MSITStore:xlmain10.chm::/html/xlfctCombin.htm
mk:@MSITStore:xlmain10.chm::/html/xlfctConfidence.htm
mk:@MSITStore:xlmain10.chm::/html/xlfctCorrel.htm
mk:@MSITStore:xlmain10.chm::/html/xlfctCosh.htm
mk:@MSITStore:xlmain10.chm::/html/xlfctCount.htm
mk:@MSITStore:xlmain10.chm::/html/xlfctCountA.htm
mk:@MSITStore:xlmain10.chm::/html/xlfctCountBlank.htm
mk:@MSITStore:xlmain10.chm::/html/xlfctCountIf.htm
mk:@MSITStore:xlmain10.chm::/html/xlfctCovar.htm
mk:@MSITStore:xlmain10.chm::/html/xlfctCritBinom.htm
mk:@MSITStore:xlmain10.chm::/html/xlfctDAverage.htm
mk:@MSITStore:xlmain10.chm::/html/xlfctDays360.htm
mk:@MSITStore:xlmain10.chm::/html/xlfctDb.htm
mk:@MSITStore:xlmain10.chm::/html/xlfctDCount.htm
mk:@MSITStore:xlmain10.chm::/html/xlfctDCountA.htm
mk:@MSITStore:xlmain10.chm::/html/xlfctDdb.htm
mk:@MSITStore:xlmain10.chm::/html/xlfctDegrees.htm
mk:@MSITStore:xlmain10.chm::/html/xlfctDevSq.htm
mk:@MSITStore:xlmain10.chm::/html/xlfctDGet.htm

DMax

DMin

Dollar

DProduct

DStDev

DStDevP

DSum

DVar

DVarP

E

Even

ExponDist

F

Fact

FDist

Find

FindB

FInv

Fisher

FisherInv

Fixed

mk:@MSITStore:xlmain10.chm::/html/xlfctDMax.htm
mk:@MSITStore:xlmain10.chm::/html/xlfctDMin.htm
mk:@MSITStore:xlmain10.chm::/html/xlfctDollar.htm
mk:@MSITStore:xlmain10.chm::/html/xlfctDProduct.htm
mk:@MSITStore:xlmain10.chm::/html/xlfctDStDev.htm
mk:@MSITStore:xlmain10.chm::/html/xlfctDStDevP.htm
mk:@MSITStore:xlmain10.chm::/html/xlfctDSum.htm
mk:@MSITStore:xlmain10.chm::/html/xlfctDVar.htm
mk:@MSITStore:xlmain10.chm::/html/xlfctDVarP.htm
mk:@MSITStore:xlmain10.chm::/html/xlfctEven.htm
mk:@MSITStore:xlmain10.chm::/html/xlfctExponDist.htm
mk:@MSITStore:xlmain10.chm::/html/xlfctFact.htm
mk:@MSITStore:xlmain10.chm::/html/xlfctFDist.htm
mk:@MSITStore:xlmain10.chm::/html/xlfctFind.htm
mk:@MSITStore:xlmain10.chm::/html/xlfctFind.htm
mk:@MSITStore:xlmain10.chm::/html/xlfctFInv.htm
mk:@MSITStore:xlmain10.chm::/html/xlfctFisher.htm
mk:@MSITStore:xlmain10.chm::/html/xlfctFisherInv.htm
mk:@MSITStore:xlmain10.chm::/html/xlfctFixed.htm

Floor

Forecast

Frequency

FTest

Fv

G

GammaDist

GammaInv

GammaLn

GeoMean

Growth

H

HarMean

HLookup

HypGeomDist

I

Index

Intercept

Ipmt

Irr

IsErr

mk:@MSITStore:xlmain10.chm::/html/xlfctFloor.htm
mk:@MSITStore:xlmain10.chm::/html/xlfctForecast.htm
mk:@MSITStore:xlmain10.chm::/html/xlfctFrequency.htm
mk:@MSITStore:xlmain10.chm::/html/xlfctFTest.htm
mk:@MSITStore:xlmain10.chm::/html/xlfctFv.htm
mk:@MSITStore:xlmain9.chm::/html/xlfctGammaDist.htm
mk:@MSITStore:xlmain10.chm::/html/xlfctGammaInv.htm
mk:@MSITStore:xlmain10.chm::/html/xlfctGammaLn.htm
mk:@MSITStore:xlmain10.chm::/html/xlfctGeoMean.htm
mk:@MSITStore:xlmain10.chm::/html/xlfctGrowth.htm
mk:@MSITStore:xlmain10.chm::/html/xlfctHarMean.htm
mk:@MSITStore:xlmain10.chm::/html/xlfctHLookup.htm
mk:@MSITStore:xlmain10.chm::/html/xlfctHypGeomDist.htm
mk:@MSITStore:xlmain10.chm::/html/xlfctIndex.htm
mk:@MSITStore:xlmain10.chm::/html/xlfctIntercept.htm
mk:@MSITStore:xlmain10.chm::/html/xlfctIpmt.htm
mk:@MSITStore:xlmain10.chm::/html/xlfctIrr.htm
mk:@MSITStore:xlmain10.chm::/html/xlfctISFunctions.htm

IsError

IsLogical

IsNA

IsNonText

IsNumber

Ispmt

IsText

J

mk:@MSITStore:xlmain10.chm::/html/xlfctISFunctions.htm
mk:@MSITStore:xlmain10.chm::/html/xlfctISFunctions.htm
mk:@MSITStore:xlmain10.chm::/html/xlfctISFunctions.htm
mk:@MSITStore:xlmain10.chm::/html/xlfctISFunctions.htm
mk:@MSITStore:xlmain10.chm::/html/xlfctISFunctions.htm
mk:@MSITStore:xlmain10.chm::/html/xlfctISFunctions.htm
mk:@MSITStore:xlmain10.chm::/html/xlfctISFunctions.htm

K

Kurt

L

Large

LinEst

Ln

Log

Log10

LogEst

LogInv

LogNormDist

Lookup

M

Match

Max

MDeterm

Median

Min

MInverse

MIrr

mk:@MSITStore:xlmain10.chm::/html/xlfctKurt.htm
mk:@MSITStore:xlmain10.chm::/html/xlfctLarge.htm
mk:@MSITStore:xlmain10.chm::/html/xlfctLinEst.htm
mk:@MSITStore:xlmain10.chm::/html/xlfctLn.htm
mk:@MSITStore:xlmain10.chm::/html/xlfctLog.htm
mk:@MSITStore:xlmain10.chm::/html/xlfctLog10.htm
mk:@MSITStore:xlmain10.chm::/html/xlfctLogEst.htm
mk:@MSITStore:xlmain10.chm::/html/xlfctLogInv.htm
mk:@MSITStore:xlmain10.chm::/html/xlfctLogNormDist.htm
mk:@MSITStore:xlmain10.chm::/html/xlfctLookup.htm
mk:@MSITStore:xlmain10.chm::/html/xlfctMatch.htm
mk:@MSITStore:xlmain10.chm::/html/xlfctMax.htm
mk:@MSITStore:xlmain10.chm::/html/xlfctMDeterm.htm
mk:@MSITStore:xlmain10.chm::/html/xlfctMedian.htm
mk:@MSITStore:xlmain10.chm::/html/xlfctMin.htm
mk:@MSITStore:xlmain10.chm::/html/xlfctMInverse.htm
mk:@MSITStore:xlmain10.chm::/html/xlfctMIrr.htm

MMult

Mode

N

NegBinomDist

NormDist

NormInv

NormSDist

NormSInv

NPer

Npv

O

Odd

Or

P

Pearson

Percentile

PercentRank

Permut

Phonetic

Pi

Pmt

mk:@MSITStore:xlmain10.chm::/html/xlfctMMult.htm
mk:@MSITStore:xlmain10.chm::/html/xlfctMode.htm
mk:@MSITStore:xlmain10.chm::/html/xlfctNegBinomDist.htm
mk:@MSITStore:xlmain10.chm::/html/xlfctNormDist.htm
mk:@MSITStore:xlmain10.chm::/html/xlfctNormInv.htm
mk:@MSITStore:xlmain10.chm::/html/xlfctNormSDist.htm
mk:@MSITStore:xlmain10.chm::/html/xlfctNormSInv.htm
mk:@MSITStore:xlmain10.chm::/html/xlfctNPer.htm
mk:@MSITStore:xlmain10.chm::/html/xlfctNpv.htm
mk:@MSITStore:xlmain10.chm::/html/xlfctOdd.htm
mk:@MSITStore:xlmain10.chm::/html/xlfctOr.htm
mk:@MSITStore:xlmain10.chm::/html/xlfctPearson.htm
mk:@MSITStore:xlmain10.chm::/html/xlfctPercentile.htm
mk:@MSITStore:xlmain10.chm::/html/xlfctPercentRank.htm
mk:@MSITStore:xlmain10.chm::/html/xlfctPermut.htm
mk:@MSITStore:xlmain10.chm::/html/xlfctPhonetic.htm
mk:@MSITStore:xlmain10.chm::/html/xlfctPi.htm
mk:@MSITStore:xlmain10.chm::/html/xlfctPmt.htm

Poisson

Power

Ppmt

Prob

Product

Proper

Pv

Q

Quartile

R

Radians

Rank

Rate

Replace

ReplaceB

Rept

Roman

Round

RoundDown

RoundUp

RSq

mk:@MSITStore:xlmain10.chm::/html/xlfctPoisson.htm
mk:@MSITStore:xlmain10.chm::/html/xlfctPower.htm
mk:@MSITStore:xlmain10.chm::/html/xlfctPpmt.htm
mk:@MSITStore:xlmain10.chm::/html/xlfctProb.htm
mk:@MSITStore:xlmain10.chm::/html/xlfctProduct.htm
mk:@MSITStore:xlmain10.chm::/html/xlfctProper.htm
mk:@MSITStore:xlmain10.chm::/html/xlfctPv.htm
mk:@MSITStore:xlmain10.chm::/html/xlfctQuartile.htm
mk:@MSITStore:xlmain10.chm::/html/xlfctRadians.htm
mk:@MSITStore:xlmain10.chm::/html/xlfctRank.htm
mk:@MSITStore:xlmain10.chm::/html/xlfctRate.htm
mk:@MSITStore:xlmain10.chm::/html/xlfctReplace.htm
mk:@MSITStore:xlmain10.chm::/html/xlfctReplace.htm
mk:@MSITStore:xlmain10.chm::/html/xlfctRept.htm
mk:@MSITStore:xlmain10.chm::/html/xlfctRoman.htm
mk:@MSITStore:xlmain10.chm::/html/xlfctRound.htm
mk:@MSITStore:xlmain10.chm::/html/xlfctRoundDown.htm
mk:@MSITStore:xlmain10.chm::/html/xlfctRoundUp.htm
mk:@MSITStore:xlmain10.chm::/html/xlfctRSq.htm

RTD

S

Search

SearchB

Sinh

Skew

Sln

Slope

Small

Standardize

StDev

StDevP

StEyx

Substitute

Subtotal

Sum

SumIf

SumProduct

SumSq

SumX2MY2

SumX2PY2

mk:@MSITStore:xlmain10.chm::/html/xlfctSearch.htm
mk:@MSITStore:xlmain10.chm::/html/xlfctSearch.htm
mk:@MSITStore:xlmain10.chm::/html/xlfctSinh.htm
mk:@MSITStore:xlmain10.chm::/html/xlfctSkew.htm
mk:@MSITStore:xlmain10.chm::/html/xlfctSln.htm
mk:@MSITStore:xlmain10.chm::/html/xlfctSlope.htm
mk:@MSITStore:xlmain10.chm::/html/xlfctSmall.htm
mk:@MSITStore:xlmain10.chm::/html/xlfctStandardize.htm
mk:@MSITStore:xlmain10.chm::/html/xlfctStDev.htm
mk:@MSITStore:xlmain10.chm::/html/xlfctStDevP.htm
mk:@MSITStore:xlmain10.chm::/html/xlfctStEyx.htm
mk:@MSITStore:xlmain10.chm::/html/xlfctSubstitute.htm
mk:@MSITStore:xlmain10.chm::/html/xlfctSubtotal.htm
mk:@MSITStore:xlmain10.chm::/html/xlfctSum.htm
mk:@MSITStore:xlmain10.chm::/html/xlfctSumIf.htm
mk:@MSITStore:xlmain10.chm::/html/xlfctSumProduct.htm
mk:@MSITStore:xlmain10.chm::/html/xlfctSumSq.htm
mk:@MSITStore:xlmain10.chm::/html/xlfctSumX2MY2.htm
mk:@MSITStore:xlmain10.chm::/html/xlfctSumX2PY2.htm

SumXMY2

Syd

T

Tanh

TDist

Text

TInv

Transpose

Trend

Trim

TrimMean

TTest

U

USDollar

V

Var

VarP

Vdb

VLookup

W

Weekday

mk:@MSITStore:xlmain10.chm::/html/xlfctSumXMY2.htm
mk:@MSITStore:xlmain10.chm::/html/xlfctSyd.htm
mk:@MSITStore:xlmain10.chm::/html/xlfctTanh.htm
mk:@MSITStore:xlmain10.chm::/html/xlfctTDist.htm
mk:@MSITStore:xlmain10.chm::/html/xlfctText.htm
mk:@MSITStore:xlmain10.chm::/html/xlfctTInv.htm
mk:@MSITStore:xlmain10.chm::/html/xlfctTranspose.htm
mk:@MSITStore:xlmain10.chm::/html/xlfctTrend.htm
mk:@MSITStore:xlmain10.chm::/html/xlfctTrim.htm
mk:@MSITStore:xlmain10.chm::/html/xlfctTrimMean.htm
mk:@MSITStore:xlmain10.chm::/html/xlfctTTest.htm
mk:@MSITStore:xlmain10.chm::/html/xlfctDollar.htm
mk:@MSITStore:xlmain10.chm::/html/xlfctVar.htm
mk:@MSITStore:xlmain10.chm::/html/xlfctVarP.htm
mk:@MSITStore:xlmain10.chm::/html/xlfctVdb.htm
mk:@MSITStore:xlmain10.chm::/html/xlfctVLookup.htm
mk:@MSITStore:xlmain10.chm::/html/xlfctWeekday.htm

Weibull

X

mk:@MSITStore:xlmain10.chm::/html/xlfctWeibull.htm

Y

Z

ZTest

mk:@MSITStore:xlmain10.chm::/html/xlfctZTest.htm

Adding	Controls	to	a	Document
			

To	add	controls	to	a	document,	display	the	Control	Toolbox,	click	the	control
you	want	to	add,	and	then	click	on	the	document.	Drag	an	adjustment	handle	of
the	control	until	the	control's	outline	is	the	size	and	shape	you	want.

Note			Dragging	a	control	(or	a	number	of	"grouped"	controls)	from	the	form
back	to	the	Control	Toolbox	creates	a	template	of	that	control,	which	can	be
reused.	This	is	a	useful	feature	for	implementing	a	standard	interface	for	your
applications.

Setting	Control	Properties
			

You	can	set	some	control	properties	at	design	time	(before	any	macro	is
running).	In	design	mode,	right-click	a	control	and	click	Properties	to	display
the	Properties	window.	Property	names	are	shown	in	the	left	column	in	the
window,	property	values	in	the	right	column.	You	set	a	property	value	by
entering	the	new	value	to	the	right	of	the	property	name.

Initializing	Control	Properties
			

You	can	initialize	controls	at	run	time	by	using	Visual	Basic	code	in	a	macro.	For
example,	you	could	fill	a	list	box,	set	text	values,	or	set	option	buttons.

The	following	example	uses	the	AddItem	method	to	add	data	to	a	list	box.	Then
it	sets	the	value	of	a	text	box	and	displays	the	form.

Private	Sub	GetUserName()

				With	UserForm1

								.lstRegions.AddItem	"North"

								.lstRegions.AddItem	"South"

								.lstRegions.AddItem	"East"

								.lstRegions.AddItem	"West"

								.txtSalesPersonID.Text	=	"00000"

								.Show

								'	...

				End	With

End	Sub

You	can	also	use	code	in	the	Intialize	event	of	a	form	to	set	initial	values	for
controls	on	the	form.	An	advantage	to	setting	initial	control	values	in	the
Initialize	event	is	that	the	initialization	code	stays	with	the	form.	You	can	copy
the	form	to	another	project,	and	when	you	run	the	Show	method	to	display	the
dialog	box,	the	controls	will	be	initialized.

Private	Sub	UserForm_Initialize()

				UserForm1.lstNames.AddItem	"Test	One"

				UserForm1.lstNames.AddItem	"Test	Two"

				UserForm1.txtUserName.Text	=	"Default	Name"

End	Sub

Control	and	Dialog	Box	Events
			

After	you	have	added	controls	to	your	dialog	box	or	document,	you	add	event
procedures	to	determine	how	the	controls	respond	to	user	actions.

User	forms	and	controls	have	a	predefined	set	of	events.	For	example,	a
command	button	has	a	Click	event	that	occurs	when	the	user	clicks	the
command	button,	and	UserForms	have	an	Initialize	event	that	runs	when	the
form	is	loaded.

To	write	a	control	or	form	event	procedure,	open	a	module	by	double-clicking
the	form	or	control,	and	select	the	event	from	the	Procedure	drop-down	list	box.

Event	procedures	include	the	name	of	the	control.	For	example,	the	name	of	the
Click	event	procedure	for	a	command	button	named	Command1	is
Command1_Click.

If	you	add	code	to	an	event	procedure	and	then	change	the	name	of	the	control,
your	code	remains	in	procedures	with	the	previous	name.

For	example,	assume	you	add	code	to	the	Click	event	for	Commmand1	and	then
rename	the	control	to	Command2.	When	you	double-click	Command2,	you	will
not	see	any	code	in	the	Click	event	procedure.	You	will	need	to	move	code	from
Command1_Click	to	Command2_Click.

To	simplify	development,	it’s	a	good	practice	to	name	your	controls	before
writing	code.

Using	Control	Values	While	Code	Is
Running
			

Some	control	properties	can	be	set	and	returned	while	Visual	Basic	code	is
running.	The	following	example	sets	the	Text	property	of	a	text	box	to	"Hello."

TextBox1.Text	=	"Hello"

The	data	entered	on	a	form	by	a	user	is	lost	when	the	form	is	closed.	If	you
return	the	values	of	controls	on	a	form	after	the	form	has	been	unloaded,	you	get
the	initial	values	for	the	controls	rather	than	the	values	the	user	entered.

If	you	want	to	save	the	data	entered	on	a	form,	you	can	save	the	information	to
module-level	variables	while	the	form	is	still	running.	The	following	example
displays	a	form	and	saves	the	form	data.

'	Code	in	module	to	declare	public	variables.

Public	strRegion	As	String

Public	intSalesPersonID	As	Integer

Public	blnCancelled	As	Boolean

'	Code	in	form.

Private	Sub	cmdCancel_Click()

				Module1.blnCancelled	=	True

				Unload	Me

End	Sub

Private	Sub	cmdOK_Click()

				'	Save	data.

				intSalesPersonID	=	txtSalesPersonID.Text

				strRegion	=	lstRegions.List(lstRegions.ListIndex)

				Module1.blnCancelled	=	False

				Unload	Me

End	Sub

Private	Sub	UserForm_Initialize()

				Module1.blnCancelled	=	True

End	Sub

'	Code	in	module	to	display	form.

Sub	LaunchSalesPersonForm()

				frmSalesPeople.Show

				If	blnCancelled	=	True	Then

								MsgBox	"Operation	Cancelled!",	vbExclamation

				Else

								MsgBox	"The	Salesperson's	ID	is:	"	&

												intSalesPersonID	&	_

												"The	Region	is:	"	&	strRegion

				End	If

End	Sub

Creating	a	User	Form
			

To	create	a	custom	dialog	box,	you	must	create	a	UserForm.	To	create	a
UserForm,	click	UserForm	on	the	Insert	menu	in	the	Visual	Basic	Editor.

Use	the	Properties	window	to	change	the	name,	behavior,	and	appearance	of	the
form.	For	example,	to	change	the	caption	on	a	form,	set	the	Caption	property.

Adding	Controls	to	a	User	Form
			

To	add	controls	to	a	user	form,	find	the	control	you	want	to	add	in	the	ToolBox,
drag	the	control	onto	the	form,	and	then	drag	an	adjustment	handle	on	the
control	until	the	control's	outline	is	the	size	and	shape	you	want.

Note			Dragging	a	control	(or	a	number	of	"grouped"	controls)	from	the	form
back	to	the	Toolbox	creates	a	template	of	that	control,	which	can	be	reused.	This
is	a	useful	feature	for	implementing	a	standard	interface	for	your	applications.

When	you've	added	controls	to	the	form,	use	the	commands	on	the	Format
menu	in	the	Visual	Basic	Editor	to	adjust	the	control	alignment	and	spacing.

Displaying	a	Custom	Dialog	Box
			

To	test	your	dialog	box	in	the	Visual	Basic	Editor,	click	Run	Sub/UserForm	on
the	Run	menu	in	the	Visual	Basic	Editor.

To	display	a	dialog	box	from	Visual	Basic,	use	the	Show	method.	The	following
example	displays	the	dialog	box	named	UserForm1.

Private	Sub	GetUserName()

				UserForm1.Show

End	Sub

