
Microsoft	Word	Objects
			
Application	 AddIns

AddIn
AnswerWizard
Assistant
AutoCaptions
AutoCaption

AutoCorrect
Browser
CaptionLabels
CaptionLabel

COMAddIns
CommandBars
DefaultWebOptions
WebPageFonts
WebPageFont

Dialogs
Dialog

Dictionaries
Dictionary

Documents
Document

EmailOptions
EmailSignature
EmailSignatureEntries
EmailSignatureEntry

mk:@MSITStore:vbaof10.chm::/html/ofobjAnswerWizard.htm
mk:@MSITStore:vbaof10.chm::/html/ofobjAssistant.htm
mk:@MSITStore:vbaof10.chm::/html/ofobjCOMAddIns.htm
mk:@MSITStore:vbaof10.chm::/html/ofobjCommandBars.htm
mk:@MSITStore:vbaof10.chm::/html/ofobjWebPageFonts.htm
mk:@MSITStore:vbaof10.chm::/html/ofobjWebPageFont.htm


Style
FileConverters
FileConverter

FileDialog
FileSearch
FontNames
HangulHanjaConversionDictionaries
Dictionary

KeyBindings
KeyBinding

KeysBoundTo
KeyBinding

Languages
Language
Dictionary

LanguageSettings
ListGalleries
ListGallery
ListTemplates

MailingLabel
CustomLabels
CustomLabel

MailMessage
NewFile
Options
RecentFiles
RecentFile

Selection
SpellingSuggestions
SpellingSuggestion

mk:@MSITStore:vbaof10.chm::/html/ofobjFileDialog.htm
mk:@MSITStore:vbaof10.chm::/html/ofobjFileSearch.htm
mk:@MSITStore:vbaof10.chm::/html/ofobjLanguageSettings.htm
mk:@MSITStore:vbaof10.chm::/html/ofobjNewFile.htm


SynonymInfo
System
TaskPanes
TaskPane

Tasks
Task

Templates
Windows

Legend

		Object	and	collection
		Object	only

	Click	red	arrow	to	expand	chart



What's	New	for	Microsoft	Word	2002
Developers
			

Extensive	changes	have	been	made	to	the	Microsoft	Word	2002	Visual	Basic
object	model	to	support	new	and	improved	features	in	the	application.

Visit	the	Office	Developer	Center	at	MSDN	Online	for	the	latest	Microsoft	Word
development	information,	including	new	technical	articles,	downloads,	samples,
product	news,	and	more.

http://officeupdate.microsoft.com/office/redirect/10/Helplinks.asp?AppName=WORD&HelpLCID=1033&LinkNum=99000030&Version=0,


New	Language	Elements

The	following	topics	provide	lists	of	language	elements	that	are	new	in	Word
2002.

New	Objects

New	Properties	(by	Object)

New	Properties	(Alphabetic	List)

New	Methods	(by	Object)

New	Methods	(Alphabetic	List)

New	Events

Language-Specific	Properties	and	Methods



Hidden	Language	Elements

The	following	topic	provides	a	list	of	properties	that	have	been	hidden	in	Word
2002.

Hidden	Properties



Understanding	Objects,	Properties,
and	Methods
			

Objects	are	the	fundamental	building	block	of	Visual	Basic;	nearly	everything
you	do	in	Visual	Basic	involves	modifying	objects.	Every	element	of	Microsoft
Word	—	documents,	tables,	paragraphs,	bookmarks,	fields	and	so	on	—	can	be
represented	by	an	object	in	Visual	Basic.



What	are	objects	and	collections?

An	object	represents	an	element	of	Word,	such	as	a	document,	a	paragraph,	a
bookmark,	or	a	single	character.	A	collection	is	an	object	that	contains	several
other	objects,	usually	of	the	same	type;	for	example,	all	the	bookmark	objects	in
a	document	are	contained	in	a	single	collection	object.	Using	properties	and
methods,	you	can	modify	a	single	object	or	an	entire	collection	of	objects.



What	is	a	property?

A	property	is	an	attribute	of	an	object	or	an	aspect	of	its	behavior.	For	example,
properties	of	a	document	include	its	name,	its	content,	and	its	save	status,	as	well
as	whether	change	tracking	is	turned	on.	To	change	the	characteristics	of	an
object,	you	change	the	values	of	its	properties.

To	set	the	value	of	a	property,	follow	the	reference	to	an	object	with	a	period,	the
property	name,	an	equal	sign,	and	the	new	property	value.	The	following
example	turns	on	change	tracking	in	the	document	named	"MyDoc.doc."

Sub	TrackChanges()

				Documents("Sales.doc").TrackRevisions	=	True

End	Sub

In	this	example,	Documents	refers	to	the	collection	of	open	documents,	and	the
name	"Sales.doc"	identifies	a	single	document	in	the	collection.	The
TrackRevisions	property	is	set	for	that	single	document.

Some	properties	cannot	be	set.	The	Help	topic	for	a	property	indicates	whether
that	property	can	be	set	(read-write)	or	can	only	be	read	(read-only).

You	can	return	information	about	an	object	by	returning	the	value	of	one	of	its
properties.	The	following	example	returns	the	name	of	the	active	document.

Sub	GetDocumentName()

				Dim	strDocName	As	String

				strDocName	=	ActiveDocument.Name

				MsgBox	strDocName

End	Sub

In	this	example,	ActiveDocument	refers	to	the	document	in	the	active	window	in
Word.	The	name	of	that	document	is	assigned	to	the	variable	strDocName.

Remarks

The	Help	topic	for	each	property	indicates	whether	you	can	set	that	property
(read-write),	only	read	the	property	(read-only),	or	only	write	the	property
(write-only).	Also	the	Object	Browser	in	the	Visual	Basic	Editor	displays	the
read-write	status	at	the	bottom	of	the	browser	window	when	the	property	is



selected.



What	is	a	method?

A	method	is	an	action	that	an	object	can	perform.	For	example,	just	as	a
document	can	be	printed,	the	Document	object	has	a	PrintOut	method.
Methods	often	have	arguments	that	qualify	how	the	action	is	performed.	The
following	example	prints	the	first	three	pages	of	the	active	document.

Sub	PrintThreePages()

				ActiveDocument.PrintOut	Range:=wdPrintRangeOfPages,	Pages:="1-3"

End	Sub

In	most	cases,	methods	are	actions	and	properties	are	qualities.	Using	a	method
causes	something	to	happen	to	an	object,	while	using	a	property	returns
information	about	the	object	or	it	causes	a	quality	about	the	object	to	change.



Returning	an	object

Most	objects	are	returned	by	returning	a	single	object	from	the	collection.	For
example,	the	Documents	collection	contains	the	open	Word	documents.	You	use
the	Documents	property	of	the	Application	object	(the	object	at	the	top	of	the
Word	object	hierarchy)	to	return	the	Documents	collection.

After	you've	accessed	the	collection,	you	can	return	a	single	object	by	using	an
index	value	in	parentheses	(this	is	similar	to	how	you	work	with	arrays).	The
index	value	is	usually	a	number	or	a	name.	For	more	information,	see	Returning
an	Object	from	a	Collection.

The	following	example	uses	the	Documents	property	to	access	the	Documents
collection.	The	index	number	is	used	to	return	the	first	document	in	the
Documents	collection.	The	Close	method	is	then	applied	to	the	Document
object	to	close	the	first	document	in	the	Documents	collection.

Sub	CloseDocument()

				Documents(1).Close

End	Sub

The	following	example	uses	a	name	(specified	as	a	string)	to	identify	a
Document	object	within	the	Documents	collection.

Sub	CloseSalesDoc()

				Documents("Sales.doc").Close

End	Sub

Collection	objects	often	have	methods	and	properties	which	you	can	use	to
modify	the	entire	collection	of	objects.	The	Documents	object	has	a	Save
method	that	saves	all	the	documents	in	the	collection.	The	following	example
saves	the	open	documents	by	applying	the	Save	method.

Sub	SaveAllOpenDocuments()

				Documents.Save

End	Sub

The	Document	object	also	has	a	Save	method	available	for	saving	a	single
document.	The	following	example	saves	the	document	named	Sales.doc.



Sub	SaveSalesDoc()

				Documents("Sales.doc").Save

End	Sub

To	return	an	object	that	is	further	down	in	the	Word	object	hierarchy,	you	must
"drill	down"	to	it	by	using	properties	and	methods	to	return	objects.

To	see	how	this	is	done,	open	the	Visual	Basic	Editor	and	click	Object	Browser
on	the	View	menu.	Click	Application	in	the	Classes	list	on	the	left.	Then	click
ActiveDocument	from	the	list	of	members	on	the	right.	The	text	at	bottom	of
the	Object	Browser	indicates	that	ActiveDocument	is	a	read-only	property	that
returns	a	Document	object.	Click	Document	at	the	bottom	of	the	Object
Browser;	the	Document	object	is	automatically	selected	in	the	Classes	list,	and
the	Members	list	displays	the	members	of	the	Document	object.	Scroll	through
the	list	of	members	until	you	find	Close.	Click	the	Close	method.	The	text	at	the
bottom	of	the	Object	Browser	window	shows	the	syntax	for	the	method.	For
more	information	about	the	method,	press	F1	or	click	the	Help	button	to	jump	to
the	Close	method	Help	topic.

Given	this	information,	you	can	write	the	following	instruction	to	close	the
active	document.

Sub	CloseDocSaveChanges()

				ActiveDocument.Close	SaveChanges:=wdSaveChanges

End	Sub

The	following	example	maximizes	the	active	document	window.

Sub	MaximizeDocumentWindow()

				ActiveDocument.ActiveWindow.WindowState	=	wdWindowStateMaximize

End	Sub

The	ActiveWindow	property	returns	a	Window	object	that	represents	the	active
window.	The	WindowState	property	is	set	to	the	maximize	constant
(wdWindowStateMaximize).

The	following	example	creates	a	new	document	and	displays	the	Save	As	dialog
box	so	that	a	name	can	be	provided	for	the	document.

Sub	CreateSaveNewDocument()

				Documents.Add.Save

End	Sub



The	Documents	property	returns	the	Documents	collection.	The	Add	method
creates	a	new	document	and	returns	a	Document	object.	The	Save	method	is
then	applied	to	the	Document	object.

As	you	can	see,	you	use	methods	or	properties	to	drill	down	to	an	object.	That	is,
you	return	an	object	by	applying	a	method	or	property	to	an	object	above	it	in
the	object	hierarchy.	After	you	return	the	object	you	want,	you	can	apply	the
methods	and	control	the	properties	of	that	object.	To	review	the	hierarchy	of
objects,	see	Microsoft	Word	Objects.



Getting	Help	on	objects,	methods,	and	properties

Until	you	become	familiar	with	the	Word	object	model,	there	are	a	few	tools	you
can	use	to	help	you	to	drill	down	through	the	hierarchy.

Auto	List	Members.	When	you	type	a	period	(.)	after	an	object	in	the
Visual	Basic	Editor,	a	list	of	available	properties	and	methods	is	displayed.
For	example,	if	you	type	Application.,	a	drop-down	list	of	methods	and
properties	of	the	Application	object	is	displayed.
Help.	You	can	also	use	Help	to	find	out	which	properties	and	methods	can
be	used	with	an	object.	Each	object	topic	in	Help	includes	a	See	Also	jump
that	displays	a	list	of	properties	and	methods	for	the	object.	Press	F1	in	the
Object	Browser	or	a	module	to	jump	to	the	appropriate	Help	topic.
Microsoft	Word	Objects.	This	topic	illustrates	how	Word	objects	are
arranged	in	the	hierarchy.	Click	an	object	in	the	graphic	to	display	the
corresponding	Help	topic.
Object	Browser.	The	Object	Browser	in	the	Visual	Basic	Editor	displays
the	members	(properties	and	methods)	of	the	Word	objects.



Frequently	Asked	Visual	Basic
Questions
			



General	questions

How	do	I	convert	my	WordBasic	macros	to	Visual	Basic?

How	do	I	find	out	the	Visual	Basic	equivalent	for	a	WordBasic	command	or
function?

How	do	I	record	macros?

What	are	objects,	properties	and	methods?

How	do	I	find	out	which	property	or	method	I	need?

How	do	I	return	a	single	object	from	a	collection?



Questions	about	Word	features

How	do	I	refer	to	the	active	element	(for	example,	paragraph,	table,	field)?

What	is	a	Range	object?

How	do	I	refer	to	words,	sentences,	paragraphs,	or	sections	in	a	document?

I	keep	getting	the	"object	doesn't	support	this	property	or	method"	error;	how
can	I	avoid	it?

How	do	I	create,	open,	save	and	close	documents?

How	do	I	select	text	in	a	document?

How	do	I	insert	text	into	a	document?

I	keep	getting	the	"requested	member	of	the	collection	does	not	exist"	error;	how
can	I	avoid	it?

How	do	I	loop	on	a	collection?

How	do	I	prompt	for	information	from	the	user?

How	do	I	return	text	from	a	document?

How	do	I	know	if	the	Application	property	is	needed	before	a	top	level	property
or	method?

How	do	I	display	a	built-in	Microsoft	Word	dialog	box?

I	keep	getting	an	error	when	I	try	to	access	a	table	row	or	column?





Automating	Common	Word	Tasks
			

This	topic	includes	some	common	Microsoft	Word	tasks	and	the	Visual	Basic
code	needed	to	accomplish	the	tasks.

Applying	formatting	to	text

Editing	text

Finding	and	replacing	text	or	formatting

Miscellaneous	tasks

Working	with	tables

Working	with	documents



Referring	to	the	Active	Document
Element
			

To	refer	to	the	active	paragraph,	table,	field,	or	other	document	element,	use	the
Selection	property	to	return	a	Selection	object.	From	the	Selection	object,	you
can	access	all	paragraphs	in	the	selection	or	the	first	paragraph	in	the	selection.
The	following	example	applies	a	border	around	the	first	paragraph	in	the
selection.

Sub	BorderAroundFirstParagraph()

				Selection.Paragraphs(1).Borders.Enable	=	True

End	Sub

The	following	example	applies	a	border	around	each	paragraph	in	the	selection.

Sub	BorderAroundSelection()

				Selection.Paragraphs.Borders.Enable	=	True

End	Sub

The	following	example	applies	shading	to	the	first	row	of	the	first	table	in	the
selection.

Sub	ShadeTableRow()

				Selection.Tables(1).Rows(1).Shading.Texture	=	wdTexture10Percent

End	Sub

An	error	occurs	if	the	selection	doesn't	include	a	table.	Use	the	Count	property
to	determine	if	the	selection	includes	a	table.	The	following	example	applies
shading	to	the	first	row	of	the	first	table	in	the	selection.

Sub	ShadeTableRow()

				If	Selection.Tables.Count	>=	1	Then

								Selection.Tables(1).Rows(1).Shading.Texture	=	wdTexture25Percent

				Else

								MsgBox	"Selection	doesn't	include	a	table"

				End	If

End	Sub



The	following	example	applies	shading	to	the	first	row	of	every	table	in	the
selection.	The	For	Each...Next	loop	is	used	to	step	through	the	individual	tables
in	the	selection.

Sub	ShadeAllFirstRowsInTables()

				Dim	tblTable	As	Table

				If	Selection.Tables.Count	>=	1	Then

								For	Each	tblTable	In	Selection.Tables

												tblTable.Rows(1).Shading.Texture	=	wdTexture30Percent

								Next	tblTable

				End	If

End	Sub



Storing	Values	When	a	Macro	Ends
			

When	a	macro	ends,	the	values	stored	in	its	variables	aren't	automatically	saved
to	disk.	If	a	macro	needs	to	preserve	a	value,	it	must	store	that	value	outside
itself	before	the	macro	execution	is	completed.	This	topic	describes	five
locations	where	macro	values	can	be	easily	stored	and	retrieved.



Document	variables

Document	variables	allow	you	to	store	values	as	part	of	a	document	or	a
template.	For	example,	you	might	store	macro	values	in	the	document	or
template	where	the	macro	resides.	You	can	add	variables	to	a	document	or
template	using	the	Add	method	of	the	Variables	collection.	The	following
example	saves	a	document	variable	in	the	same	location	as	the	macro	that	is
running	(document	or	template)	using	the	ThisDocument	property.

Sub	AddDocumentVariable()

				ThisDocument.Variables.Add	Name:="Age",	Value:=12

End	Sub

The	following	example	uses	the	Value	property	with	a	Variable	object	to	return
the	value	of	a	document	variable.

Sub	UseDocumentVariable()

				Dim	intAge	As	Integer

				intAge	=	ThisDocument.Variables("Age").Value

End	Sub

Remarks

You	can	use	the	DOCVARIABLE	field	to	insert	a	document	variable	into	a
document.



Document	properties

Like	document	variables,	document	properties	allow	you	to	store	values	as	part
of	a	document	or	a	template.	Document	properties	can	be	viewed	in	the
Properties	dialog	box	(File	menu).

The	Word	object	model	breaks	document	properties	into	two	groups:	built-in	and
custom.	Custom	document	properties	include	the	properties	shown	on	the
Custom	tab	in	the	Properties	dialog	box.	Built-in	document	properties	include
the	properties	on	all	the	tabs	in	the	Properties	dialog	box	except	the	Custom
tab.

To	access	built-in	properties,	use	the	BuiltInDocumentProperties	property	to
return	a	DocumentProperties	collection	that	includes	the	built-in	document
properties.	Use	the	CustomDocumentProperties	property	to	return	a
DocumentProperties	collection	that	includes	the	custom	document	properties.
The	following	example	creates	a	custom	document	property	named	"YourName"
in	the	same	location	as	the	macro	that	is	running	(document	or	template).

Sub	AddCustomDocumentProperties()

				ThisDocument.CustomDocumentProperties.Add	Name:="YourName",	_

								LinkToContent:=False,	Value:="Joe",	Type:=msoPropertyTypeString

End	Sub

Built-in	document	properties	cannot	be	added	to	the	DocumentProperties
collection	returned	by	the	BuiltInDocumentProperties	property.	You	can,
however,	retrieve	the	contents	of	a	built-in	document	property	or	change	the
value	of	a	read/write	built-in	document	property.

Remarks

You	can	use	the	DOCPROPERTY	field	to	insert	document	properties	into	a
document.

mk:@MSITStore:vbaof10.chm::/html/ofobjDocumentProperties.htm


AutoText	entries

AutoText	entries	can	be	used	to	store	information	in	a	template.	Unlike	a
document	variable	or	property,	AutoText	entries	can	include	items	beyond	macro
variables	such	as	formatted	text	or	a	graphic.	Use	the	Add	method	with	the
AutoTextEntries	collection	to	create	a	new	AutoText	entry.	The	following
example	creates	an	AutoText	entry	named	"MyText"	that	contains	the	contents
of	the	selection.	If	the	following	instruction	is	part	of	a	template	macro,	the	new
AutoText	entry	is	stored	in	the	template,	otherwise,	the	AutoText	entry	is	stored
in	the	template	attached	to	the	document	where	the	instruction	resides.

Sub	AddAutoTextEntry()

				ThisDocument.AttachedTemplate.AutoTextEntries.Add	Name:="MyText",	_

								Range:=Selection.Range

End	Sub

Use	the	Value	property	with	an	AutoTextEntry	object	to	retrieve	the	contents	of
an	AutoText	entry	object.



Settings	files

You	can	set	and	retrieve	information	from	a	settings	file	using	the
PrivateProfileString	property.	The	structure	of	a	Windows	settings	file	is	the
same	as	the	Windows	3.1	WIN.INI	file.	The	following	example	sets	the
DocNum	key	to	1	under	the	DocTracker	section	in	the	Macro.ini	file.

Sub	MacroSystemFile()

				System.PrivateProfileString(	_

								FileName:="C:\My	Documents\Macro.ini",	_

								Section:="DocTracker",	Key:="DocNum")	=	1

End	Sub

After	running	the	above	instruction,	the	Macro.ini	file	includes	the	following
text.

[DocTracker]

DocNum=1

The	PrivateProfileString	property	has	three	arguments:	FileName,	Section,	and
Key.	The	FileName	argument	is	used	to	specify	a	settings	file	path	and	file
name.	The	Section	argument	specifies	the	section	name	that	appears	between
brackets	before	the	associated	keys	(don't	include	the	brackets	with	section
name).	The	Key	argument	specifies	the	key	name	which	is	followed	by	an	equal
sign	(=)	and	the	setting.

Use	the	same	PrivateProfileString	property	to	retrieve	a	setting	from	a	settings
file.	The	following	example	retrieves	the	DocNum	setting	under	the	DocTracker
section	in	the	Macro.ini	file.

Sub	GetSystemFileInfo()

				Dim	intDocNum	As	Integer

				intDocNum	=	System.PrivateProfileString(	_

								FileName:="C:\My	Documents\Macro.ini",	_

								Section:="DocTracker",	Key:="DocNum")

				MsgBox	"DocNum	is	"	&	intDocNum

End	Sub



Windows	registry

You	can	set	and	retrieve	information	from	the	Windows	registry	using	the
PrivateProfileString	property.	The	following	example	retrieves	the	Microsoft
Word	2002	program	directory	from	the	Windows	registry.

Sub	GetRegistryInfo()

				Dim	strSection	As	String

				Dim	strPgmDir	As	String

				strSection	=	"HKEY_CURRENT_USER\Software\Microsoft"	_

								&	"\Office\10.0\Word\Options"

				strPgmDir	=	System.PrivateProfileString(FileName:="",	_

								Section:=strSection,	Key:="PROGRAMDIR")

				MsgBox	"The	directory	for	Word	is	-	"	&	strPgmDir

End	Sub

The	PrivateProfileString	property	has	three	arguments:	FileName,	Section,	and
Key.	To	return	or	set	a	value	for	a	registry	entry,	specify	an	empty	string	("")	for
the	FileName	argument.	The	Section	argument	should	be	the	complete	path	to
the	registry	subkey.	The	Key	argument	should	be	the	name	of	an	entry	in	the
subkey	specified	by	Section.

You	can	also	set	information	in	the	Windows	registry	using	the	following
PrivateProfileString	syntax.

System.PrivateProfileString(FileName,	Section,	Key)	=	value

The	following	example	sets	the	DOC-PATH	entry	to	“C:\My	Documents”	in	the
Options	subkey	for	Word	2002	in	the	Windows	registry.

Sub	SetDocumentDirectory()

				Dim	strDocDirectory	As	String

				strDocDirectory	=	"HKEY_CURRENT_USER\Software\Microsoft"	_

								&	"\Office\10.0\Word\Options"

				System.PrivateProfileString(FileName:="",	_

								Section:=strDocDirectory,	Key:="DOC-PATH")	=	"C:\My	Documents"

End	Sub





Built-in	Dialog	Box	Argument	Lists
			

Many	of	the	built-in	dialog	boxes	in	Microsoft	Word	have	options	that	you	may
want	to	set.	To	set	or	return	the	properties	associated	with	a	Word	dialog	box,
use	the	equivalent	Visual	Basic	properties	and	methods.	For	example,	if	you
want	to	print	a	document,	use	the	Word	Visual	Basic	for	Applications	PrintOut
method.	The	following	code	prints	the	current	document	using	the	Print	dialog
box	default	settings.	However,	if	you	don't	want	to	use	the	default	setting	in	the
print	dialog,	you	can	use	the	arguments	associated	with	the	PrintOut	method.

Sub	PrintCurrentDocument()

				ThisDocument.PrintOut

End	Sub

Although	you	are	encouraged	to	use	VBA	keywords	to	get	or	set	the	value	of
dialog	box	options,	many	of	the	built-in	Word	dialog	boxes	have	arguments	that
you	can	also	use	to	set	or	get	values	from	a	dialog	box.	For	more	information,
see	Displaying	built-in	Word	dialog	boxes.

WdWordDialog	constant Argument	list(s)
wdDialogConnect Drive,	Path,	Password
wdDialogConsistencyChecker (none)
wdDialogControlRun Application

wdDialogConvertObject
IconNumber,	ActivateAs,
IconFileName,	Caption,	Class
DisplayIcon,	Floating

wdDialogCopyFile FileName,	Directory
wdDialogCreateAutoText (none)
wdDialogCSSLinks (none)

wdDialogDocumentStatistics

FileName,	Directory,	Template
Created,	LastSaved,	LastSavedBy
Revision,	Time,	Printed,	Pages
Characters,	Paragraphs,	Lines

wdDialogDrawAlign Horizontal,	Vertical,	RelativeTo



wdDialogDrawSnapToGrid

SnapToGrid,	XGrid,	YGrid,	XOrigin
YOrigin,	SnapToShapes,	XGridDisplay
YGridDisplay,	FollowMargins
ViewGridLines,
DefineLineBasedOnGrid

wdDialogEditAutoText
Name,	Context,	InsertAs,	Insert
Define,	InsertAsText,	Delete,
CompleteAT

wdDialogEditCreatePublisher

(For	information	about	this	constant,
consult	the	language	reference	Help
included	with	Microsoft	Office
Macintosh	Edition.)

wdDialogEditFind

Find,	Replace,	Direction,	MatchCase
WholeWord,	PatternMatch,
SoundsLike,	FindNext,	ReplaceOne
ReplaceAll,	Format,	Wrap,
FindAllWordForms,	MatchByte
FuzzyFind,	Destination,	CorrectEnd
MatchKashida,	MatchDiacritics
MatchAlefHamza,	MatchControl

wdDialogEditFrame WidthRule,	LockAnchor,	HeightRule

wdDialogEditGoTo

Find,	Replace,	Direction,	MatchCase
WholeWord,	PatternMatch,
SoundsLike,	FindNext,	ReplaceOne
ReplaceAll,	Format,	Wrap,
FindAllWordForms,	MatchByte
FuzzyFind,	Destination,	CorrectEnd
MatchKashida,	MatchDiacritics
MatchAlefHamza,	MatchControl

wdDialogEditGoToOld (none)

wdDialogEditLinks

UpdateMode,	Locked,
SavePictureInDoc,	UpdateNow
OpenSource,	KillLink,	Link,
Application,	Item,	FileName

wdDialogEditObject Verb

wdDialogEditPasteSpecial
IconNumber,	Link,	DisplayIcon
DataType,	IconFileName,	Caption



Floating

wdDialogEditPublishOptions

(For	information	about	this	constant,
consult	the	language	reference	Help
included	with	Microsoft	Office
Macintosh	Edition.)

wdDialogEditReplace

Find,	Replace,	Direction,	MatchCase
WholeWord,	PatternMatch,
SoundsLike,	FindNext,	ReplaceOne
ReplaceAll,	Format,	Wrap,
FindAllWordForms,	MatchByte
FuzzyFind,	Destination,	CorrectEnd
MatchKashida,	MatchDiacritics
MatchAlefHamza,	MatchControl

wdDialogEditStyle (none)

wdDialogEditSubscribeOptions

(For	information	about	this	constant,
consult	the	language	reference	Help
included	with	Microsoft	Office
Macintosh	Edition.)

wdDialogEditSubscribeTo

(For	information	about	this	constant,
consult	the	language	reference	Help
included	with	Microsoft	Office
Macintosh	Edition.)

wdDialogEditTOACategory Category,	CategoryName
wdDialogEmailOptions (none)

wdDialogFileDocumentLayout

Tab,	PaperSize,	TopMargin,
BottomMargin,	LeftMargin,
RightMargin,	Gutter,	PageWidth
PageHeight,	Orientation,	FirstPage
OtherPages,	VertAlign,	ApplyPropsTo
Default,	FacingPages,	HeaderDistance
FooterDistance,	SectionStart,
OddAndEvenPages,
DifferentFirstPage,	Endnotes,
LineNum,	StartingNum,	FromText
CountBy,	NumMode,	TwoOnOne
GutterPosition,	LayoutMode,
CharsLine,	LinesPage,	CharPitch



LinePitch,	DocFontName,
DocFontSize,	PageColumns,	TextFlow
FirstPageOnLeft,	SectionType
RTLAlignment

wdDialogFileFind

SearchName,	SearchPath,	Name
SubDir,	Title,	Author,	Keywords
Subject,	Options,	MatchCase,	
PatternMatch,	DateSavedFrom
DateSavedTo,	SavedBy,
DateCreatedFrom,	DateCreatedTo
View,	SortBy,	ListBy,	SelectedFile
Delete,	ShowFolders,	MatchByte

wdDialogFileMacPageSetup

(For	information	about	this	constant,
consult	the	language	reference	Help
included	with	Microsoft	Office
Macintosh	Edition.)

wdDialogFileNew Template,	NewTemplate,
DocumentType,	Visible

wdDialogFileOpen

Name,	ConfirmConversions,	ReadOnly
LinkToSource,	AddToMru,
PasswordDoc,	PasswordDot,	Revert
WritePasswordDoc,	WritePasswordDot
Connection,	SQLStatement,
SQLStatement1,	Format,	Encoding
Visible

wdDialogFilePageSetup

Tab,	PaperSize,	TopMargin,
BottomMargin,	LeftMargin,
RightMargin,	Gutter,	PageWidth
PageHeight,	Orientation,	FirstPage
OtherPages,	VertAlign,	ApplyPropsTo
Default,	FacingPages,	HeaderDistance
FooterDistance,	SectionStart,
OddAndEvenPages,
DifferentFirstPage,	Endnotes,
LineNum,	StartingNum,	FromText
CountBy,	NumMode,	TwoOnOne
GutterPosition,	LayoutMode,
CharsLine,	LinesPage,	CharPitch



LinePitch,	DocFontName,
DocFontSize,	PageColumns,	TextFlow
FirstPageOnLeft,	SectionType
RTLAlignment

wdDialogFilePrint

Background,	AppendPrFile,	Range
PrToFileName,	From,	To,	Type
NumCopies,	Pages,	Order,	PrintToFile
Collate,	FileName,	Printer,
OutputPrinter,	DuplexPrint,
PrintZoomColumn,	PrintZoomRow
PrintZoomPaperWidth,
PrintZoomPaperHeight

wdDialogFilePrintOneCopy

(For	information	about	this	constant,
consult	the	language	reference	Help
included	with	Microsoft	Office
Macintosh	Edition.)

wdDialogFilePrintSetup Printer,	Options,	Network,
DoNotSetAsSysDefault

wdDialogFileRoutingSlip

Subject,	Message,	AllAtOnce,
ReturnWhenDone,	TrackStatus
Protect,	AddSlip,	RouteDocument
AddRecipient,	OldRecipient,	ResetSlip
ClearSlip,	ClearRecipients,	Address

wdDialogFileSaveAs

Name,	Format,	LockAnnot,	Password
AddToMru,	WritePassword,
RecommendReadOnly,	EmbedFonts
NativePictureFormat,	FormsData
SaveAsAOCELetter,	WriteVersion
VersionDesc

wdDialogFileSaveVersion (none)

wdDialogFileSummaryInfo

Title,	Subject,	Author,	Keywords
Comments,	FileName,	Directory
Template,	CreateDate,	LastSavedDate
LastSavedBy,	RevisionNumber
EditTime,	LastPrintedDate,	NumPages
NumWords,	NumChars,	NumParas
NumLines,	Update,	FileSize



wdDialogFileVersions AutoVersion,	VersionDesc
wdDialogFitText FitTextWidth
wdDialogFontSubstitution UnavailableFont,	SubstituteFont

wdDialogFormatAddrFonts

Points,	Underline,	Color,
StrikeThrough,	Superscript,	Subscript
Hidden,	SmallCaps,	AllCaps,	
Position,	Kerning,	KerningMin
Default,	Tab,	Font,	Bold,	Italic
DoubleStrikeThrough,	Shadow
Outline,	Emboss,	Engrave,	Scale
Animations,	CharAccent,	FontMajor
FontLowAnsi,	FontHighAnsi,
CharacterWidthGrid,	ColorRGB
UnderlineColor,	PointsBi,	ColorBi
FontNameBi,	BoldBi,	ItalicBi
DiacColor

wdDialogFormatBordersAndShading

ApplyTo,	Shadow,	TopBorder,
LeftBorder,	BottomBorder,
RightBorder,	HorizBorder,	VertBorder
TopColor,	LeftColor,	BottomColor
RightColor,	HorizColor,	VertColor
FromText,	Shading,	Foreground
Background,	Tab,	FineShading
TopStyle,	LeftStyle,	BottomStyle
RightStyle,	HorizStyle,	VertStyle
TopWeight,	LeftWeight,	BottomWeight
RightWeight,	HorizWeight,	VertWeight
BorderObjectType,	BorderArtWeight
BorderArt,	FromTextTop,
FromTextBottom,	FromTextLeft
FromTextRight,	OffsetFrom,	InFront
SurroundHeader,	SurroundFooter
JoinBorder,	LineColor,	WhichPages
TL2BRBorder,	TR2BLBorder
TL2BRColor,	TR2BLColor,
TL2BRStyle,	TR2BLStyle,
TL2BRWeight,	TR2BLWeight
ForegroundRGB,	BackgroundRGB



TopColorRGB,	LeftColorRGB
BottomColorRGB,	RightColorRGB
HorizColorRGB,	VertColorRGB
TL2BRColorRGB,	TR2BLColorRGB
LineColorRGB

wdDialogFormatBulletsAndNumbering (none)

wdDialogFormatCallout Type,	Gap,	Angle,	Drop,	Length
Border,	AutoAttach,	Accent

wdDialogFormatChangeCase Type

wdDialogFormatColumns

Columns,	ColumnNo,	ColumnWidth
ColumnSpacing,	EvenlySpaced
ApplyColsTo,	ColLine,	StartNewCol
FlowColumnsRtl

wdDialogFormatDefineStyleBorders

ApplyTo,	Shadow,	TopBorder,
LeftBorder,	BottomBorder,
RightBorder,	HorizBorder,	VertBorder
TopColor,	LeftColor,	BottomColor
RightColor,	HorizColor,	VertColor
FromText,	Shading,	Foreground
Background,	Tab,	FineShading
TopStyle,	LeftStyle,	BottomStyle
RightStyle,	HorizStyle,	VertStyle
TopWeight,	LeftWeight,	BottomWeight
RightWeight,	HorizWeight,	VertWeight
BorderObjectType,	BorderArtWeight
BorderArt,	FromTextTop,
FromTextBottom,	FromTextLeft
FromTextRight,	OffsetFrom,	InFront
SurroundHeader,	SurroundFooter
JoinBorder,	LineColor,	WhichPages
TL2BRBorder,	TR2BLBorder
TL2BRColor,	TR2BLColor,
TL2BRStyle,	TR2BLStyle,
TL2BRWeight,	TR2BLWeight
ForegroundRGB,	BackgroundRGB
TopColorRGB,	LeftColorRGB
BottomColorRGB,	RightColorRGB
HorizColorRGB,	VertColorRGB



TL2BRColorRGB,	TR2BLColorRGB
LineColorRGB

wdDialogFormatDefineStyleFont

Points,	Underline,	Color,
StrikeThrough,	Superscript,	Subscript
Hidden,	SmallCaps,	AllCaps,	
Position,	Kerning,	KerningMin
Default,	Tab,	Font,	Bold,	Italic
DoubleStrikeThrough,	Shadow
Outline,	Emboss,	Engrave,	Scale
Animations,	CharAccent,	FontMajor
FontLowAnsi,	FontHighAnsi,
CharacterWidthGrid,	ColorRGB
UnderlineColor,	PointsBi,	ColorBi
FontNameBi,	BoldBi,	ItalicBi
DiacColor

wdDialogFormatDefineStyleFrame

Wrap,	WidthRule,	FixedWidth
HeightRule,	FixedHeight,
PositionHorz,	PositionHorzRel
DistFromText,	PositionVert,
PositionVertRel,	DistVertFromText
MoveWithText,	LockAnchor,
RemoveFrame

wdDialogFormatDefineStyleLang Language,	CheckLanguage,	Default
NoProof

wdDialogFormatDefineStylePara

LeftIndent,	RightIndent,	Before
LineSpacingRule,	LineSpacing
Alignment,	WidowControl,
KeepWithNext,	KeepTogether,
PageBreak,	NoLineNum,	DontHyphen
Tab,	FirstIndent,	OutlineLevel
Kinsoku,	WordWrap,	OverflowPunct
TopLinePunct,	AutoSpaceDE,
LineHeightGrid,	AutoSpaceDN
CharAlign,	CharacterUnitLeftIndent
AdjustRight,	CharacterUnitFirstIndent
CharacterUnitRightIndent,
LineUnitBefore,	LineUnitAfter
OrientationBi



wdDialogFormatDefineStyleTabs Position,	DefTabs,	Align,	Leader
Clear,	ClearAll

wdDialogFormatDrawingObject

Left,	PositionHorzRel,	Top,
PositionVertRel,	LockAnchor,
FloatOverText,	WrapSide,
TopDistanceFromText,
BottomDistanceFromText,
LeftDistanceFromText,
RightDistanceFromText,	Wrap
HRWidthType,	HRHeight,	HRNoshade
HRAlign,	Text,	AllowOverlap,
HorizRule

wdDialogFormatDropCap Position,	Font,	DropHeight,
DistFromText

wdDialogFormatEncloseCharacters Style,	Text,	Enclosure

wdDialogFormatFont

Points,	Underline,	Color,
StrikeThrough,	Superscript,	Subscript
Hidden,	SmallCaps,	AllCaps,	
Position,	Kerning,	KerningMin
Default,	Tab,	Font,	Bold,	Italic
DoubleStrikeThrough,	Shadow
Outline,	Emboss,	Engrave,	Scale
Animations,	CharAccent,	FontMajor
FontLowAnsi,	FontHighAnsi,
CharacterWidthGrid,	ColorRGB
UnderlineColor,	PointsBi,	ColorBi
FontNameBi,	BoldBi,	ItalicBi
DiacColor

wdDialogFormatFrame

Wrap,	WidthRule,	FixedWidth
HeightRule,	FixedHeight,
PositionHorz,	PositionHorzRel
DistFromText,	PositionVert,
PositionVertRel,	DistVertFromText
MoveWithText,	LockAnchor,
RemoveFrame

wdDialogFormatPageNumber

ChapterNumber,	NumRestart,
NumFormat,	StartingNum,	Level
Separator,	DoubleQuote,



PgNumberingStyle

wdDialogFormatParagraph

LeftIndent,	RightIndent,	Before
LineSpacingRule,	LineSpacing
Alignment,	WidowControl,
KeepWithNext,	KeepTogether,
PageBreak,	NoLineNum,	DontHyphen
Tab,	FirstIndent,	OutlineLevel
Kinsoku,	WordWrap,	OverflowPunct
TopLinePunct,	AutoSpaceDE,
LineHeightGrid,	AutoSpaceDN
CharAlign,	CharacterUnitLeftIndent
AdjustRight,	CharacterUnitFirstIndent
CharacterUnitRightIndent,
LineUnitBefore,	LineUnitAfter
OrientationBi

wdDialogFormatPicture
SetSize,	CropLeft,	CropRight,	
CropBottom,	ScaleX,	ScaleY,	
SizeY

wdDialogFormatRetAddrFonts

Points,	Underline,	Color,
StrikeThrough,	Superscript,	Subscript
Hidden,	SmallCaps,	AllCaps,	
Position,	Kerning,	KerningMin
Default,	Tab,	Font,	Bold,	Italic
DoubleStrikeThrough,	Shadow
Outline,	Emboss,	Engrave,	Scale
Animations,	CharAccent,	FontMajor
FontLowAnsi,	FontHighAnsi,
CharacterWidthGrid,	ColorRGB
UnderlineColor,	PointsBi,	ColorBi
FontNameBi,	BoldBi,	ItalicBi
DiacColor

wdDialogFormatSectionLayout
SectionStart,	VertAlign,	Endnotes
LineNum,	StartingNum,	FromText
CountBy,	NumMode,	SectionType

wdDialogFormatStyle

Name,	Delete,	Merge,	NewName
BasedOn,	NextStyle,	Type,	FileName
Source,	AddToTemplate,	Define
Rename,	Apply,	New



wdDialogFormatStyleGallery Template,	Preview
wdDialogFormatStylesCustom (none)

wdDialogFormatTabs Position,	DefTabs,	Align,	Leader
Clear,	ClearAll

wdDialogFormatTheme (none)
wdDialogFormFieldHelp (none)

wdDialogFormFieldOptions

Entry,	Exit,	Name,	Enable,	TextType
TextWidth,	TextDefault,	TextFormat
CheckSize,	CheckWidth,	CheckDefault
Type,	OwnHelp,	HelpText,	OwnStat
StatText,	Calculate

wdDialogFrameSetProperties (none)

wdDialogHelpAbout

APPNAME,	APPCOPYRIGHT
APPUSERNAME,
APPORGANIZATION,
APPSERIALNUMBER

wdDialogHelpWordPerfectHelp WPCommand,	HelpText,
DemoGuidance

wdDialogHelpWordPerfectHelpOptions
CommandKeyHelp,	DocNavKeys
MouseSimulation,	DemoGuidance
DemoSpeed,	HelpType

wdDialogHorizontalInVertical (none)
wdDialogIMESetDefault (none)
wdDialogInsertAddCaption Name
wdDialogInsertAutoCaption Clear,	ClearAll,	Object,	Label

wdDialogInsertBookmark Name,	SortBy,	Add,	Delete,	Goto
Hidden

wdDialogInsertBreak Type

wdDialogInsertCaption Label,	TitleAutoText,	Title,	Delete
Position,	AutoCaption

wdDialogInsertCaptionNumbering
Label,	FormatNumber,
ChapterNumber,	Level,	Separator
CapNumberingStyle

wdDialogInsertCrossReference
ReferenceType,	ReferenceKind
ReferenceItem,	InsertAsHyperLink
InsertPosition



wdDialogInsertDatabase

Format,	Style,	LinkToSource,
Connection,	SQLStatement,
SQLStatement1,	PasswordDoc
PasswordDot,	DataSource,	From
IncludeFields,	WritePasswordDoc
WritePasswordDot

wdDialogInsertDateTime
DateTimePic,	InsertAsField,
DbCharField,	DateLanguage,
CalendarType

wdDialogInsertField Field

wdDialogInsertFile Name,	Range,	ConfirmConversions
Link,	Attachment

wdDialogInsertFootnote Reference,	NoteType,	Symbol

wdDialogInsertFormField

Entry,	Exit,	Name,	Enable,	TextType
TextWidth,	TextDefault,	TextFormat
CheckSize,	CheckWidth,	CheckDefault
Type,	OwnHelp,	HelpText,	OwnStat
StatText,	Calculate

wdDialogInsertHyperlink (none)

wdDialogInsertIndex

Outline,	Fields,	From,	To,	TableId
AddedStyles,	Caption,
HeadingSeparator,	Replace,
MarkEntry,	AutoMark,	MarkCitation
Type,	RightAlignPageNumbers
KeepFormatting,	Columns,	Category
Label,	ShowPageNumbers,
AccentedLetters,	Filter,	SortBy
TOCUseHyperlinks,
TOCHidePageNumInWeb,
IndexLanguage

wdDialogInsertIndexAndTables

Outline,	Fields,	From,	To,	TableId
AddedStyles,	Caption,
HeadingSeparator,	Replace,
MarkEntry,	AutoMark,	MarkCitation
Type,	RightAlignPageNumbers
KeepFormatting,	Columns,	Category
Label,	ShowPageNumbers,



AccentedLetters,	Filter,	SortBy
TOCUseHyperlinks,
TOCHidePageNumInWeb,
IndexLanguage

wdDialogInsertMergeField MergeField,	WordField
wdDialogInsertNumber NumPic

wdDialogInsertObject
IconNumber,	FileName,	Link
DisplayIcon,	Tab,	Class,	IconFileName
Caption,	Floating

wdDialogInsertPageNumbers Type,	Position,	FirstPage
wdDialogInsertPicture Name,	LinkToFile,	New,	FloatOverText

wdDialogInsertSubdocument

Name,	ConfirmConversions,	ReadOnly
LinkToSource,	AddToMru,
PasswordDoc,	PasswordDot,	Revert
WritePasswordDoc,	WritePasswordDot
Connection,	SQLStatement,
SQLStatement1,	Format,	Encoding
Visible

wdDialogInsertSymbol Font,	Tab,	CharNum,	Unicode

wdDialogInsertTableOfAuthorities

Outline,	Fields,	From,	To,	TableId
AddedStyles,	Caption,
HeadingSeparator,	Replace,
MarkEntry,	AutoMark,	MarkCitation
Type,	RightAlignPageNumbers
KeepFormatting,	Columns,	Category
Label,	ShowPageNumbers,
AccentedLetters,	Filter,	SortBy
TOCUseHyperlinks,
TOCHidePageNumInWeb,
IndexLanguage

wdDialogInsertTableOfContents

Outline,	Fields,	From,	To,	TableId
AddedStyles,	Caption,
HeadingSeparator,	Replace,
MarkEntry,	AutoMark,	MarkCitation
Type,	RightAlignPageNumbers
KeepFormatting,	Columns,	Category
Label,	ShowPageNumbers,



AccentedLetters,	Filter,	SortBy
TOCUseHyperlinks,
TOCHidePageNumInWeb,
IndexLanguage

wdDialogInsertTableOfFigures

Outline,	Fields,	From,	To,	TableId
AddedStyles,	Caption,
HeadingSeparator,	Replace,
MarkEntry,	AutoMark,	MarkCitation
Type,	RightAlignPageNumbers
KeepFormatting,	Columns,	Category
Label,	ShowPageNumbers,
AccentedLetters,	Filter,	SortBy
TOCUseHyperlinks,
TOCHidePageNumInWeb,
IndexLanguage

wdDialogInsertWebComponent (none)

wdDialogLetterWizard

SenderCity,	DateFormat,
IncludeHeaderFooter,	LetterStyle
Letterhead,	LetterheadLocation
LetterheadSize,	RecipientName
RecipientAddress,	Salutation,
SalutationType,	RecipientGender
RecipientReference,
MailingInstructions,	AttentionLine
LetterSubject,	CCList,	SenderName
ReturnAddress,	Closing,
SenderJobTitle,	SenderCompany
SenderInitials,	EnclosureNumber
PageDesign,	InfoBlock,	SenderGender
ReturnAddressSF,	RecipientCode
SenderCode,	SenderReference

wdDialogListCommands ListType

wdDialogMailMerge

CheckErrors,	Destination,
MergeRecords,	From,	To,	Suppression
MailMerge,	QueryOptions,
MailSubject,	MailAsAttachment
MailAddress

wdDialogMailMergeCheck CheckErrors



wdDialogMailMergeCreateDataSource

FileName,	PasswordDoc,	PasswordDot
HeaderRecord,	MSQuery,
SQLStatement,	SQLStatement1
Connection,	LinkToSource,
WritePasswordDoc

wdDialogMailMergeCreateHeaderSource

FileName,	PasswordDoc,	PasswordDot
HeaderRecord,	MSQuery,
SQLStatement,	SQLStatement1
Connection,	LinkToSource,
WritePasswordDoc

wdDialogMailMergeFieldMapping (none)
wdDialogMailMergeFindRecipient (none)
wdDialogMailMergeFindRecord Find,	Field
wdDialogMailMergeHelper Merge,	Options
wdDialogMailMergeInsertAddressBlock (none)

wdDialogMailMergeInsertAsk Name,	Prompt,	DefaultBookmarkText
AskOnce

wdDialogMailMergeInsertFields (none)
wdDialogMailMergeInsertFillIn Prompt,	DefaultFillInText,	AskOnce
wdDialogMailMergeInsertGreetingLine (none)

wdDialogMailMergeInsertIf
MergeField,	Comparison,	CompareTo
TrueAutoText,	TrueText,
FalseAutoText,	FalseText

wdDialogMailMergeInsertNextIf MergeField,	Comparison,	CompareTo
wdDialogMailMergeInsertSet Name,	ValueText,	ValueAutoText
wdDialogMailMergeInsertSkipIf MergeField,	Comparison,	CompareTo

wdDialogMailMergeOpenDataSource

Name,	ConfirmConversions,	ReadOnly
LinkToSource,	AddToMru,
PasswordDoc,	PasswordDot,	Revert
WritePasswordDoc,	WritePasswordDot
Connection,	SQLStatement,
SQLStatement1,	Format,	Encoding
Visible
Name,	ConfirmConversions,	ReadOnly
LinkToSource,	AddToMru,
PasswordDoc,	PasswordDot,	Revert



wdDialogMailMergeOpenHeaderSource WritePasswordDoc,	WritePasswordDot
Connection,	SQLStatement,
SQLStatement1,	Format,	Encoding
Visible

wdDialogMailMergeQueryOptions SQLStatement,	SQLStatement1
wdDialogMailMergeRecipients (none)
wdDialogMailMergeSetDocumentType (none)
wdDialogMailMergeUseAddressBook AddressBookType

wdDialogMarkCitation
LongCitation,	LongCitationAutoText
Category,	ShortCitation,	NextCitation
Mark,	MarkAll

wdDialogMarkIndexEntry
MarkAll,	Entry,	Range,	Bold,	
CrossReference,	EntryAutoText
CrossReferenceAutoText,	Yomi

wdDialogMarkTableOfContentsEntry Entry,	EntryAutoText,	TableId
wdDialogNewToolbar Name,	Context

wdDialogNoteOptions

FootnotesAt,	FootNumberAs,
FootStartingNum,	FootRestartNum
EndnotesAt,	EndNumberAs,
EndStartingNum,	EndRestartNum
FootNumberingStyle,
EndNumberingStyle

wdDialogOrganizer Copy,	Delete,	Rename,	Source
Destination,	Name,	NewName

wdDialogPhoneticGuide (none)
wdDialogReviewAfmtRevisions (none)
wdDialogSearch (none)
wdDialogShowRepairs (none)

wdDialogTableAutoFormat

HideAutoFit,	Preview,	Format
Borders,	Shading,	Font,	Color
HeadingRows,	FirstColumn,	LastRow
LastColumn

wdDialogTableCellOptions (none)
wdDialogTableColumnWidth (none)
wdDialogTableDeleteCells ShiftCells



wdDialogTableFormatCell Category
wdDialogTableFormula Formula,	NumFormat
wdDialogTableInsertCells ShiftCells
wdDialogTableInsertRow NumRows

wdDialogTableInsertTable

ConvertFrom,	NumColumns,
NumRows,	InitialColWidth,	Wizard
Format,	Apply,	AutoFit,	SetDefault
Word8

wdDialogTableOfCaptionsOptions (none)
wdDialogTableOfContentsOptions (none)
wdDialogTableProperties (none)
wdDialogTableRowHeight (none)

wdDialogTableSort

DontSortHdr,	FieldNum,	Type
FieldNum2,	Type2,	Order2,
FieldNum3,	Type3,	Order3,	Separator
SortColumn,	CaseSensitive,	SortBiDi
IgnoreHe,	Diacritics,	IgnoreThe
Kashida,	Language

wdDialogTableSplitCells NumColumns,	NumRows,
MergeBeforeSplit

wdDialogTableTableOptions (none)
wdDialogTableToText ConvertTo,	NestedTables
wdDialogTableWrapping (none)
wdDialogTCSCTranslator Direction,	Varients,	TranslateCommon

wdDialogTextToTable

ConvertFrom,	NumColumns,
NumRows,	InitialColWidth,	Wizard
Format,	Apply,	AutoFit,	SetDefault
Word8

wdDialogToolsAcceptRejectChanges

ShowMarks,	HideMarks,	Wrap
FindPrevious,	FindNext,
AcceptRevisions,	RejectRevisions
AcceptAll,	RejectAll

wdDialogToolsAdvancedSettings Application,	Option,	Setting,	Delete
InitialCaps,	SentenceCaps,	Days
CapsLock,	ReplaceText,	Formatting
Replace,	With,	Add,	Delete,



wdDialogToolsAutoCorrect SmartQuotes,
CorrectHangulAndAlphabet,
ConvBrackets,	ConvQuotes,
ConvPunct,
ReplaceTextFromSpellingChecker

wdDialogToolsAutoCorrectExceptions Tab,	Name,	AutoAdd,	Add,	Delete
wdDialogToolsAutoManager Tab
wdDialogToolsAutoSummarize TextSize,	Show,	Update

wdDialogToolsBulletsNumbers

Replace,	Font,	CharNum,	Type
FormatOutline,	AutoUpdate,
FormatNumber,	Punctuation,	
Points,	Hang,	Indent,	Remove
DoubleQuote

wdDialogToolsCompareDocuments Name
wdDialogToolsCreateDirectory Directory

wdDialogToolsCreateEnvelope

ExtractAddress,	LabelListIndex
LabelIndex,	LabelDotMatrix,
LabelTray,	LabelAcross,	LabelDown
EnvOmitReturn,	EnvReturn,
PrintBarCode,	SingleLabel,	LabelRow
LabelColumn,	PrintEnvLabel
AddToDocument,	EnvWidth,
EnvHeight,	EnvPaperSize,	PrintFIMA
UseEnvFeeder,	Tab,	AddrAutoText
AddrText,	AddrFromLeft,
AddrFromTop,	RetAddrFromLeft
RetAddrFromTop,	LabelTopMargin
LabelSideMargin,	LabelVertPitch
LabelHorPitch,	LabelHeight,
LabelWidth,	CustomName,
EnvPaperName,	DefaultFaceUp
DefaultOrientation,	RetAddrAutoText
ExtractAddress,	LabelListIndex
LabelIndex,	LabelDotMatrix,
LabelTray,	LabelAcross,	LabelDown
EnvAddress,	EnvOmitReturn,
EnvReturn,	PrintBarCode,	SingleLabel



wdDialogToolsCreateLabels

LabelRow,	LabelColumn,
PrintEnvLabel,	AddToDocument
EnvWidth,	EnvHeight,	EnvPaperSize
PrintFIMA,	UseEnvFeeder,	Tab
AddrAutoText,	AddrText,
AddrFromLeft,	AddrFromTop
RetAddrFromLeft,	RetAddrFromTop
LabelTopMargin,	LabelSideMargin
LabelVertPitch,	LabelHorPitch
LabelHeight,	LabelWidth,
CustomName,	RetAddrText,
EnvPaperName,	DefaultFaceUp
DefaultOrientation,	RetAddrAutoText

wdDialogToolsCustomize

KeyCode,	KeyCode2,	MenuType
Position,	AddAll,	Category,	Name
Menu,	AddBelow,	MenuText,	
Add,	Remove,	ResetAll,
CommandValue,	Context,	Tab

wdDialogToolsCustomizeKeyboard

KeyCode,	KeyCode2,	MenuType
Position,	AddAll,	Category,	Name
Menu,	AddBelow,	MenuText,	
Add,	Remove,	ResetAll,
CommandValue,	Context,	Tab

wdDialogToolsCustomizeMenuBar
Context,	Position,	MenuType,
MenuText,	Menu,	Add,	Remove
Rename

wdDialogToolsCustomizeMenus

KeyCode,	KeyCode2,	MenuType
Position,	AddAll,	Category,	Name
Menu,	AddBelow,	MenuText,	
Add,	Remove,	ResetAll,
CommandValue,	Context,	Tab
ExtractAddress,	LabelListIndex
LabelIndex,	LabelDotMatrix,
LabelTray,	LabelAcross,	LabelDown
EnvAddress,	EnvOmitReturn,
EnvReturn,	PrintBarCode,	SingleLabel
LabelRow,	LabelColumn,
PrintEnvLabel,	AddToDocument



wdDialogToolsEnvelopesAndLabels
EnvWidth,	EnvHeight,	EnvPaperSize
PrintFIMA,	UseEnvFeeder,	Tab
AddrAutoText,	AddrText,
AddrFromLeft,	AddrFromTop
RetAddrFromLeft,	RetAddrFromTop
LabelTopMargin,	LabelSideMargin
LabelVertPitch,	LabelHorPitch
LabelHeight,	LabelWidth,
CustomName,	RetAddrText,
EnvPaperName,	DefaultFaceUp
DefaultOrientation,	RetAddrAutoText

wdDialogToolsGrammarSettings (none)
wdDialogToolsHangulHanjaConversion (none)

wdDialogToolsHighlightChanges MarkRevisions,	ViewRevisions
PrintRevisions,	AcceptAll,	RejectAll

wdDialogToolsHyphenation
AutoHyphenation,	HyphenateCaps
HyphenationZone,
LimitConsecutiveHyphens

wdDialogToolsLanguage Language,	CheckLanguage,	Default
NoProof

wdDialogToolsMacro
Name,	Run,	Edit,	Show,	Delete
Rename,	Description,	NewName
SetDesc

wdDialogToolsMacroRecord (This	dialog	box	cannot	be	called	from	a
macro.)

wdDialogToolsManageFields FieldName,	Add,	Remove,	Rename
NewName

wdDialogToolsMergeDocuments Name
wdDialogToolsOptions Tab

wdDialogToolsOptionsAutoFormat

ApplyStylesHeadings,	ApplyStylesLists
ApplyBulletedLists,
ApplyStylesOtherParas,	ReplaceQuotes
ReplaceOrdinals,	ReplaceFractions
ReplaceSymbols,
ReplacePlainTextEmphasis,
ReplaceHyperlinks,	PreserveStyles
PlainTextWordMail,	ApplyFirstIndent



MatchParentheses,	ReplaceDbDashes
ReplaceAutoSpaces

wdDialogToolsOptionsAutoFormatAsYouType

ApplyStylesHeadings,	ApplyBorders
ApplyTables,	ApplyDates,
ApplyBulletedLists,
ApplyNumberedLists,	ApplyFirstIndent
ApplyClosings,	ReplaceQuotes
ReplaceOrdinals,	ReplaceFractions
ReplaceSymbols,
ReplacePlainTextEmphasis,
ReplaceHyperlinks,	MatchParentheses
ReplaceAutoSpaces,	ReplaceDbDashes
FormatListItemBeginning,
DefineStyles,	InsertOvers,
InsertClosings,	AutoLetterWizard
ShowOptionsFor,	ApplyStylesLists
ApplySkipList,	ApplyStylesOtherParas
ReplaceBullets,	AdjustParaMarks
AdjustTabsSpaces,	AdjustEmptyParas
PreserveStyles

wdDialogToolsOptionsBidi

DocViewDir,	AddCtrlCopy,
HebDoubleQuote,	Numbers,	Move
BiDirectional,	ShowDiac,
DiffDiacColor,	Date,	AdvanceHijri
MasterDocDir,	OutlineDir,
DiacriticColorVal
Product,	Default,	NoTabHangIndent
NoSpaceRaiseLower,	PrintColBlack
WrapTrailSpaces,	NoColumnBalance
ConvMailMergeEsc,
SuppressSpBfAfterPgBrk,
SuppressTopSpacing,
OrigWordTableRules,
TransparentMetafiles,
ShowBreaksInFrames,
SwapBordersFacingPages,
LeaveBackslashAlone,
ExpandShiftReturn,



wdDialogToolsOptionsCompatibility

DontULTrailSpace,
DontBalanceSbDbWidth,
SuppressTopSpacingMac5,
SpacingInWholePoints,
PrintBodyTextBeforeHeader,
NoLeading,	NoSpaceForUL,
MWSmallCaps,	NoExtraLineSpacing
TruncateFontHeight,	SubFontBySize
UsePrinterMetrics,	WW6BorderRules
ExactOnTop,	SuppressBottomSpacing
WPSpaceWidth,	WPJustification
LineWrapLikeWord6,
SpLayoutLikeWW8,
FtnLayoutLikeWW8,
DontUseHTMLParagraphAutoSpacing
DontAdjustLineHeightInTable
ForgetLastTabAlignment,
UseAutospaceForFullWidthAlpha
AlignTablesRowByRow,
LayoutRawTableWidth,
LayoutTableRowsApart,
UseWord97LineBreakingRules

wdDialogToolsOptionsEdit

ReplaceSelection,	DragAndDrop
AutoWordSelection,	InsForPaste
Overtype,	SmartCutPaste,
AllowAccentedUppercase,
PictureEditor,	TabIndent,	BsParaAlign
InlineConversion,	IMELosingFocus
AllowClickAndTypeMouse,
ClickAndTypeParagraphStyle
AutoKeyBi

wdDialogToolsOptionsEditCopyPaste (none)
wdDialogToolsOptionsFileLocations Path,	Setting

wdDialogToolsOptionsFuzzy

FuzzyCase,	FuzzyByte,	FuzzyHira
FuzzySmKana,	FuzzyMinus,
FuzzyRepSymbol,	FuzzyKanji
FuzzyOldKana,	FuzzyLongVowel
FuzzyDZ,	FuzzyBV,	FuzzyTC



FuzzyHF,	FuzzyZJ,	FuzzyAY,
FuzzyKIKU,	FuzzyPunct,	FuzzySpace

wdDialogToolsOptionsGeneral

Pagination,	WPHelp,	WPDocNavKeys
BlueScreen,	ErrorBeeps,	Effects3d
UpdateLinks,	SendMailAttach
RecentFiles,	RecentFileCount
ButtonFieldClicks,	ShortMenuNames
RTFInClipboard,	ConfirmConversions
TipWizardActive,	AnimatedCursors
VirusProtection,	SeparateFont
InterpretHIANSIToDBC,
ExitWithRestoreSession,	AsianText
PixelsInDialogs,	UseCharacterUnit

wdDialogToolsOptionsPrint

Draft,	Reverse,	UpdateFields,
Summary,	ShowCodes,	Annotations
ShowHidden,	EnvFeederInstalled
WidowControl,	DfltTrueType,
UpdateLinks,	Background,
DrawingObjects,	FormsData,
DefaultTray,	PSOverText,
MapPaperSize,	FractionalWidths
PrOrder1,	PrOrder2

wdDialogToolsOptionsSave

CreateBackup,	FastSaves,
SummaryPrompt,	GlobalDotPrompt
NativePictureFormat,	EmbedFonts
FormsData,	AutoSave,	SaveInterval
Password,	WritePassword,
RecommendReadOnly,	SubsetFonts
BackgroundSave,	DefaultSaveFormat
AddCtrlSave

wdDialogToolsOptionsSecurity (none)
wdDialogToolsOptionsSmartTag (none)

AlwaysSuggest,
SuggestFromMainDictOnly,
IgnoreAllCaps,	IgnoreMixedDigits
ResetIgnoreAll,	Type,	CustomDict1
CustomDict2,	CustomDict3,
CustomDict4,	CustomDict5,



wdDialogToolsOptionsSpellingAndGrammar

CustomDict6,	CustomDict7,
CustomDict8,	CustomDict9,
CustomDict10,
AutomaticSpellChecking,
FilenamesEmailAliases,	UserDict1
AutomaticGrammarChecking
ForegroundGrammar,	ShowStatistics
Options,	RecheckDocument,
IgnoreAuxFind,
IgnoreMissDictSearch,
HideGrammarErrors,	CheckSpelling
GrLidUI,	SpLidUI,	DictLang1
DictLang2,	DictLang3,	DictLang4
DictLang5,	DictLang6,	DictLang7
DictLang8,	DictLang9,	DictLang10
HideSpellingErrors,	HebSpellStart
InitialAlefHamza,	FinalYaa,
GermanPostReformSpell,	AraSpeller
ProcessCompoundNoun

wdDialogToolsOptionsTrackChanges

InsertedTextMark,	InsertedTextColor
DeletedTextMark,	DeletedTextColor
RevisedLinesMark,	RevisedLinesColor
HighlightColor,
RevisedPropertiesMark,
RevisedPropertiesColor

wdDialogToolsOptionsTypography

KerningPairs,	Justification,
PunctLevel,	FollowingPunct,
LeadingPunct,	ApplyToTemplate
JapaneseKinsokuStrict,
FarEastLineBreakLanguage

wdDialogToolsOptionsUserInfo Name,	Initials,	Address

wdDialogToolsOptionsView

DraftFont,	WrapToWindow,
PicturePlaceHolders,	FieldCodes
BookMarks,	FieldShading,	StatusBar
HScroll,	VScroll,	StyleAreaWidth
Spaces,	Paras,	Hyphens,	Hidden
ShowAll,	Drawings,	Anchors,
TextBoundaries,	VRuler,	Highlight



ShowAnimation,	ScrnTp,	LeftScroll
RRuler,	OptionalBreak,
EnlargeFontsLessThan,
BrowseToWindow

wdDialogToolsProtectDocument DocumentPassword,	NoReset,	
wdDialogToolsProtectSection Protect,	Section

wdDialogToolsRevisions MarkRevisions,	ViewRevisions
PrintRevisions,	AcceptAll,	RejectAll

wdDialogToolsSpellingAndGrammar SuggestionListBox,
ForegroundGrammar

wdDialogToolsTemplates Store,	Template,	LinkStyles
wdDialogToolsThesaurus (none)
wdDialogToolsUnprotectDocument DocumentPassword

wdDialogToolsWordCount

CountFootnotes,	Pages,	Words
Characters,	DBCs,	SBCs,
CharactersIncludingSpaces,
Paragraphs,	Lines

wdDialogTwoLinesInOne (none)
wdDialogUpdateTOC (none)

wdDialogViewZoom
AutoFit,	TwoPages,	FullPage,
NumColumns,	NumRows,
ZoomPercent,	TextFit

wdDialogWebOptions (none)
wdDialogWindowActivate Window



OLE	Programmatic	Identifiers
			

You	can	use	an	OLE	programmatic	identifier	(sometimes	called	a	ProgID)	to
create	an	Automation	object.	The	following	tables	list	OLE	programmatic
identifiers	for	ActiveX	controls,	Microsoft	Office	applications,	and	Microsoft
Office	Web	Components.

ActiveX	Controls

Microsoft	Access

Microsoft	Excel

Microsoft	Graph

Microsoft	Office	Web	Components

Microsoft	Outlook

Microsoft	PowerPoint

Microsoft	Word



ActiveX	Controls

To	create	the	ActiveX	controls	listed	in	the	following	table,	use	the
corresponding	OLE	programmatic	identifier.

To	create	this	control Use	this	identifier
CheckBox Forms.CheckBox.1
ComboBox Forms.ComboBox.1
CommandButton Forms.CommandButton.1
Frame Forms.Frame.1
Image Forms.Image.1
Label Forms.Label.1
ListBox Forms.ListBox.1
MultiPage Forms.MultiPage.1
OptionButton Forms.OptionButton.1
ScrollBar Forms.ScrollBar.1
SpinButton Forms.SpinButton.1
TabStrip Forms.TabStrip.1
TextBox Forms.TextBox.1
ToggleButton Forms.ToggleButton.1



Microsoft	Access

To	create	the	Microsoft	Access	objects	listed	in	the	following	table,	use	one	of
the	corresponding	OLE	programmatic	identifiers.	If	you	use	an	identifier	without
a	version	number	suffix,	you	create	an	object	in	the	most	recent	version	of
Access	available	on	the	machine	where	the	macro	is	running.

To	create	this	object Use	one	of	these	identifiers
Application Access.Application
CurrentData Access.CodeData,	Access.CurrentData
CurrentProject Access.CodeProject,	Access.CurrentProject
DefaultWebOptions Access.DefaultWebOptions



Microsoft	Excel

To	create	the	Microsoft	Excel	objects	listed	in	the	following	table,	use	one	of	the
corresponding	OLE	programmatic	identifiers.	If	you	use	an	identifier	without	a
version	number	suffix,	you	create	an	object	in	the	most	recent	version	of	Excel
available	on	the	machine	where	the	macro	is	running.

To	create	this	object Use	one	of	these
identifiers Comments

Application Excel.Application	 	
Workbook Excel.AddIn 	

Workbook Excel.Chart

Returns	a	workbook
containing	two	worksheets;
one	for	the	chart	and	one	for
its	data.	The	chart	worksheet
is	the	active	worksheet.

Workbook Excel.Sheet Returns	a	workbook	with	one
worksheet.



Microsoft	Graph

To	create	the	Microsoft	Graph	objects	listed	in	the	following	table,	use	one	of	the
corresponding	OLE	programmatic	identifiers.	If	you	use	an	identifier	without	a
version	number	suffix,	you	create	an	object	in	the	most	recent	version	of	Graph
available	on	the	machine	where	the	macro	is	running.

To	create	this	object Use	one	of	these	identifiers
Application MSGraph.Application
Chart MSGraph.Chart



Microsoft	Office	Web	Components

To	create	the	Microsoft	Office	Web	Components	objects	listed	in	the	following
table,	use	one	of	the	corresponding	OLE	programmatic	identifiers.	If	you	use	an
identifier	without	a	version	number	suffix,	you	create	an	object	in	the	most
recent	version	of	Microsoft	Office	Web	Components	available	on	the	machine
where	the	macro	is	running.

To	create	this	object Use	one	of	these	identifiers
ChartSpace OWC.Chart
DataSourceControl OWC.DataSourceControl
ExpandControl OWC.ExpandControl
PivotTable OWC.PivotTable
RecordNavigationControl OWC.RecordNavigationControl
Spreadsheet OWC.Spreadsheet



Microsoft	Outlook

To	create	the	Microsoft	Outlook	object	given	in	the	following	table,	use	one	of
the	corresponding	OLE	programmatic	identifiers.	If	you	use	an	identifier	without
a	version	number	suffix,	you	create	an	object	in	the	most	recent	version	of
Outlook	available	on	the	machine	where	the	macro	is	running.

To	create	this	object Use	one	of	these	identifiers
Application Outlook.Application



Microsoft	PowerPoint

To	create	the	Microsoft	PowerPoint	object	given	in	the	following	table,	use	one
of	the	corresponding	OLE	programmatic	identifiers.	If	you	use	an	identifier
without	a	version	number	suffix,	you	create	an	object	in	the	most	recent	version
of	PowerPoint	available	on	the	machine	where	the	macro	is	running.

To	create	this	object Use	one	of	these	identifiers
Application PowerPoint.Application



Microsoft	Word

To	create	the	Microsoft	Word	objects	listed	in	the	following	table,	use	one	of	the
corresponding	OLE	programmatic	identifiers.	If	you	use	an	identifier	without	a
version	number	suffix,	you	create	an	object	in	the	most	recent	version	of	Word
available	on	the	machine	where	the	macro	is	running.

To	create	this	object Use	one	of	these	identifiers
Application Word.Application
Document Word.Document,	Word.Template
Global Word.Global



AddIn	Object
									
Application	 AddIns	(AddIn)

Represents	a	single	add-in,	either	installed	or	not	installed.	The	AddIn	object	is
a	member	of	the	AddIns	collection.	The	AddIns	collection	contains	all	the	add-
ins	available	to	Word,	regardless	of	whether	or	not	they're	currently	loaded.	The
AddIns	collection	includes	global	templates	or	Word	add-in	libraries	(WLLs)
displayed	in	the	Templates	and	Add-ins	dialog	box	(Tools	menu).



Using	the	AddIn	Object

Use	AddIns(index),	where	index	is	the	add-in	name	or	index	number,	to	return	a
single	AddIn	object.	You	must	exactly	match	the	spelling	(but	not	necessarily
the	capitalization)	of	the	name,	as	it's	shown	in	the	Templates	and	Add-Ins
dialog	box.	The	following	example	loads	the	Letter.dot	template	as	a	global
template.

AddIns("Letter.dot").Installed	=	True

The	index	number	represents	the	position	of	the	add-in	in	the	list	of	add-ins	in
the	Templates	and	Add-ins	dialog	box.	The	following	instruction	displays	the
path	of	the	first	available	add-in.

If	Addins.Count	>=	1	Then	MsgBox	Addins(1).Path

The	following	example	creates	a	list	of	add-ins	at	the	beginning	of	the	active
document.	The	list	contains	the	name,	path,	and	installed	state	of	each	available
add-in.

With	ActiveDocument.Range(Start:=0,	End:=0)

				.InsertAfter	"Name"	&	vbTab	&	"Path"	&	vbTab	&	"Installed"

				.InsertParagraphAfter

				For	Each	oAddIn	In	AddIns

								.InsertAfter	oAddIn.Name	&	vbTab	&	oAddIn.Path	&	vbTab	_

												&	oAddIn.Installed

								.InsertParagraphAfter

				Next	oAddIn

				.ConvertToTable

End	With

Use	the	Add	method	to	add	an	add-in	to	the	list	of	available	add-ins	and
(optionally)	install	it	using	the	Install	argument.

AddIns.Add	FileName:="C:\Templates\Other\Letter.dot",	Install:=True

To	install	an	add-in	shown	in	the	list	of	available	add-ins,	use	the	Installed
property.

AddIns("Letter.dot").Installed	=	True



Note			Use	the	Compiled	property	to	determine	whether	an	AddIn	object	is	a
template	or	a	WLL.



AddIns	Collection	Object
									
Application	 AddIns	(AddIn)

A	collection	of	AddIn	objects	that	represents	all	the	add-ins	available	to	Word,
regardless	of	whether	or	not	they're	currently	loaded.	The	AddIns	collection
includes	global	templates	or	Word	add-in	libraries	(WLLs)	displayed	in	the
Templates	and	Add-ins	dialog	box	(Tools	menu).



Using	the	AddIns	Collection

Use	the	AddIns	property	to	return	the	AddIns	collection.	The	following
example	displays	the	name	and	the	installed	state	of	each	available	add-in.

For	Each	ad	In	AddIns

				If	ad.Installed	=	True	Then

								MsgBox	ad.Name	&	"	is	installed"

				Else

								MsgBox	ad.Name	&	"	is	available	but	not	installed"

				End	If

Next	ad

Use	the	Add	method	to	add	an	add-in	to	the	list	of	available	add-ins	and
(optionally)	install	it	using	the	Install	argument.

AddIns.Add	FileName:="C:\Templates\Other\Letter.dot",	Install:=True

To	install	an	add-in	shown	in	the	list	of	available	add-ins,	use	the	Installed
property.

AddIns("Letter.dot").Installed	=	True

Use	AddIns(index),	where	index	is	the	add-in	name	or	index	number,	to	return	a
single	AddIn	object.	You	must	exactly	match	the	spelling	(but	not	necessarily
the	capitalization)	of	the	name,	as	it's	shown	in	the	Templates	and	Add-ins
dialog	box.	To	install	an	add-in	shown	in	the	list	of	available	add-ins,	use	the
Installed	property.	The	following	example	loads	the	Letter.dot	template	as	a
global	template.

AddIns("Letter.dot").Installed	=	True

Note			If	the	add-in	is	not	located	in	the	User	Templates,	Workgroup	Templates,
or	Startup	folder,	you	must	specify	the	full	path	and	file	name	when	indexing	an
add-in	by	name.



Remarks

Use	the	Compiled	property	to	determine	whether	an	AddIn	object	is	a	template
or	a	WLL.



Adjustments	Object
									

Multiple	objects	 Adjustments

Contains	a	collection	of	adjustment	values	for	the	specified	AutoShape	or
WordArt	object.	Each	adjustment	value	represents	one	way	an	adjustment	handle
can	be	adjusted.	Because	some	adjustment	handles	can	be	adjusted	in	two
ways	—	for	instance,	some	handles	can	be	adjusted	both	horizontally	and
vertically	—	a	shape	can	have	more	adjustment	values	than	it	has	adjustment
handles.	A	shape	can	have	up	to	eight	adjustments.



Using	the	Adjustments	Object

Use	the	Adjustments	property	to	return	an	Adjustments	object.	Use
Adjustments(index),	where	index	is	the	adjustment	value's	index	number,	to
return	a	single	adjustment	value.

Different	shapes	have	different	numbers	of	adjustment	values,	different	kinds	of
adjustments	change	the	geometry	of	a	shape	in	different	ways,	and	different
kinds	of	adjustments	have	different	ranges	of	valid	values.

Note			Because	each	adjustable	shape	has	a	different	set	of	adjustments,	the	best
way	to	verify	the	adjustment	behavior	for	a	specific	shape	is	to	manually	create
an	instance	of	the	shape,	make	adjustments	with	the	macro	recorder	turned	on,
and	then	examine	the	recorded	code.

The	following	table	summarizes	the	ranges	of	valid	adjustment	values	for
different	types	of	adjustments.	In	most	cases,	if	you	specify	a	value	that's	beyond
the	range	of	valid	values,	the	closest	valid	value	will	be	assigned	to	the
adjustment.

Type	of
Adjustment Valid	values

Linear
(horizontal
or	vertical)

Generally	the	value	0.0	represents	the	left	or	top	edge	of	the	shape
and	the	value	1.0	represents	the	right	or	bottom	edge	of	the	shape.
Valid	values	correspond	to	valid	adjustments	you	can	make	to	the
shape	manually.	For	example,	if	you	can	only	pull	an	adjustment
handle	half	way	across	the	shape	manually,	the	maximum	value	for
the	corresponding	adjustment	will	be	0.5.	For	shapes	such	as
callouts,	where	the	values	0.0	and	1.0	represent	the	limits	of	the
rectangle	defined	by	the	starting	and	ending	points	of	the	callout
line,	negative	numbers	and	numbers	greater	than	1.0	are	valid
values.

Radial An	adjustment	value	of	1.0	corresponds	to	the	width	of	the	shape.
The	maximum	value	is	0.5,	or	half	way	across	the	shape.

Angle Values	are	expressed	in	degrees.	If	you	specify	a	value	outside	the
range		–	180	to	180,	it	will	be	normalized	to	be	within	that	range.



The	following	example	adds	a	right-arrow	callout	to	the	active	document	and
sets	adjustment	values	for	the	callout.	Note	that	although	the	shape	has	only
three	adjustment	handles,	it	has	four	adjustments.	Adjustments	three	and	four
both	correspond	to	the	handle	between	the	head	and	neck	of	the	arrow.

Set	rac	=	ActiveDocument.Shapes	_

				.AddShape(msoShapeRightArrowCallout,	10,	10,	250,	190)

With	rac.Adjustments

				.Item(1)	=	0.5				'adjusts	width	of	text	box

				.Item(2)	=	0.15			'adjusts	width	of	arrow	head

				.Item(3)	=	0.8				'adjusts	length	of	arrow	head

				.Item(4)	=	0.4				'adjusts	width	of	arrow	neck

End	With



Application	Object
									
Application	 Multiple	objects

Represents	the	Microsoft	Word	application.	The	Application	object	includes
properties	and	methods	that	return	top-level	objects.	For	example,	the
ActiveDocument	property	returns	a	Document	object.



Using	the	Application	Object

Use	the	Application	property	to	return	the	Application	object.	The	following
example	displays	the	user	name	for	Word.

MsgBox	Application.UserName

Many	of	the	properties	and	methods	that	return	the	most	common	user-interface
objects	—	such	as	the	active	document	(ActiveDocument	property)	—	can	be
used	without	the	Application	object	qualifier.	For	example,	instead	of	writing
Application.ActiveDocument.PrintOut,	you	can	write
ActiveDocument.PrintOut.	Properties	and	methods	that	can	be	used	without	the
Application	object	qualifier	are	considered	"global."	To	view	the	global
properties	and	methods	in	the	Object	Browser,	click	<globals>	at	the	top	of	the
list	in	the	Classes	box.



Remarks

To	use	Automation	(formerly	OLE	Automation)	to	control	Word	from	another
application,	use	Visual	Basic's	CreateObject	or	GetObject	function	to	return	a
Word	Application	object.	The	following	Microsoft	Excel	example	starts	Word
(if	it's	not	already	running)	and	opens	an	existing	document.

Set	wrd	=	GetObject(,	"Word.Application")

wrd.Visible	=	True

wrd.Documents.Open	"C:\My	Documents\Temp.doc"

Set	wrd	=	Nothing



AutoCaption	Object
									
Application	 AutoCaptions	(AutoCaption)

Represents	a	single	caption	that	can	be	automatically	added	when	items	such	as
tables,	pictures,	or	OLE	objects	are	inserted	into	a	document.	The	AutoCaption
object	is	a	member	of	the	AutoCaptions	collection.	The	AutoCaptions
collection	contains	all	the	captions	listed	in	the	AutoCaption	dialog	box	(Insert
menu).



Using	the	AutoCaption	Object

Use	AutoCaptions(index),	where	index	is	the	caption	name	or	index	number,	to
return	a	single	AutoCaption	object.	The	caption	names	correspond	to	the	items
listed	in	the	AutoCaption	dialog	box	(Insert	menu).	You	must	exactly	match
the	spelling	(but	not	necessarily	the	capitalization)	of	the	name,	as	it's	shown	in
the	AutoCaption	dialog	box.	The	following	example	enables	autocaptions	for
Word	tables.

AutoCaptions("Microsoft	Word	Table").AutoInsert	=	True

The	index	number	represents	the	position	of	the	AutoCaption	object	in	the	list
of	items	in	the	AutoCaption	dialog	box.	The	following	example	displays	the
name	of	the	first	item	listed	in	the	AutoCaption	dialog	box.

MsgBox	AutoCaptions(1).Name

AutoCaption	objects	cannot	be	programmatically	added	to	or	deleted	from	the
AutoCaptions	collection.



AutoCaptions	Collection	Object
									
Application	 AutoCaptions	(AutoCaption)

A	collection	of	AutoCaption	objects	that	represent	the	captions	that	can	be
automatically	added	when	items	such	as	tables,	pictures,	or	OLE	objects	are
inserted	into	a	document.



Using	the	AutoCaptions	Collection

Use	the	AutoCaptions	property	to	return	the	AutoCaptions	collection.	The
following	example	displays	the	names	of	the	selected	items	in	the	AutoCaption
dialog	box.

For	Each	autoCap	In	AutoCaptions

				If	autoCap.AutoInsert	=	True	Then

								MsgBox	autoCap.Name	&	"	is	configured	for	auto	insert"

				End	If

Next	autoCap

The	AutoCaptions	collection	contains	all	the	captions	listed	in	the
AutoCaption	dialog	box	(Insert	menu).	AutoCaption	objects	cannot	be
programmatically	added	to	or	deleted	from	the	AutoCaptions	collection.

Use	AutoCaptions(index),	where	index	is	the	caption	name	or	index	number,	to
return	a	single	AutoCaption	object.	The	caption	names	correspond	to	the	items
listed	in	the	AutoCaption	dialog	box	(Insert	menu).	You	must	exactly	match
the	spelling	(but	not	necessarily	the	capitalization)	of	the	name,	as	it's	shown	in
the	AutoCaption	dialog	box.	The	following	example	displays	the	caption	text
"Microsoft	Word	Table."

MsgBox	AutoCaptions("Microsoft	Word	Table").CaptionLabel.Name

The	index	number	represents	the	position	of	the	AutoCaption	object	in	the	list
of	captions	in	the	AutoCaption	dialog	box.	The	following	example	displays	the
name	of	the	first	item	selected	in	the	AutoCaption	dialog	box.

MsgBox	AutoCaptions(1).Name



AutoCorrect	Object
									
Application	 AutoCorrect

Multiple	objects

Represents	the	AutoCorrect	functionality	in	Word.



Using	the	AutoCorrect	Object

Use	the	AutoCorrect	property	to	return	the	AutoCorrect	object.	The	following
example	enables	the	AutoCorrect	options	and	creates	an	AutoCorrect	entry.

With	AutoCorrect

				.CorrectCapsLock	=	True

				.CorrectDays	=	True

				.Entries.Add	Name:="usualy",	Value:="usually"

End	With

The	Entries	property	returns	the	AutoCorrectEntries	object	that	represents	the
AutoCorrect	entries	in	the	AutoCorrect	dialog	box	(Tools	menu).



AutoCorrectEntries	Collection	Object
									
Application	 AutoCorrect

AutoCorrectEntries	(AutoCorrectEntry)

A	collection	of	AutoCorrectEntry	objects	that	represent	all	the	AutoCorrect
entries	available	to	Word.	The	AutoCorrectEntries	collection	includes	all	the
entries	in	the	AutoCorrect	dialog	box	(Tools	menu).



Using	the	AutoCorrectEntries	Collection

Use	the	Entries	property	to	return	the	AutoCorrectEntries	collection.	The
following	example	displays	the	number	of	AutoCorrectEntry	objects	in	the
AutoCorrectEntries	collection.

MsgBox	AutoCorrect.Entries.Count

Use	the	Add	or	the	AddRichText	method	to	add	an	AutoCorrect	entry	to	the	list
of	available	entries.	The	following	example	adds	a	plain-text	AutoCorrect	entry
for	the	misspelling	of	the	word	"their."

AutoCorrect.Entries.Add	Name:="thier",	Value:="their"

The	following	example	creates	an	AutoCorrect	entry	named	"PMO"	based	on	the
text	and	formatting	of	the	selection.

AutoCorrect.Entries.AddRichText	Name:="PMO",	Range:=Selection.Range

Use	Entries(index),	where	index	is	the	AutoCorrect	entry	name	or	index
number,	to	return	a	single	AutoCorrectEntry	object.	You	must	exactly	match
the	spelling	(but	not	necessarily	the	capitalization)	of	the	name,	as	it's	shown
under	Replace	in	the	AutoCorrect	dialog	box.	The	following	example	sets	the
value	of	an	existing	AutoCorrect	entry	named	"teh."

AutoCorrect.Entries("teh").Value	=	"the"

The	following	example	displays	the	name	and	value	of	the	first	AutoCorrent
entry.

MsgBox	"Name	=	"	&	AutoCorrect.Entries(1).Name	&	vbCr	&	_

				"Value	"	&	AutoCorrect.Entries(1).Value



AutoCorrectEntry	Object
									
Application	 AutoCorrect

AutoCorrectEntries	(AutoCorrectEntry)

Represents	a	single	AutoCorrect	entry.	The	AutoCorrectEntry	object	is	a
member	of	the	AutoCorrectEntries	collection.	The	AutoCorrectEntries
collection	includes	the	entries	in	the	AutoCorrect	dialog	box	(Tools	menu).



Using	the	AutoCorrectEntry	Object

Use	Entries(index),	where	index	is	the	AutoCorrect	entry	name	or	index
number,	to	return	a	single	AutoCorrectEntry	object.	You	must	exactly	match
the	spelling	(but	not	necessarily	the	capitalization)	of	the	name,	as	it's	shown
under	Replace	in	the	AutoCorrect	dialog	box.	The	following	example	sets	the
value	of	the	AutoCorrect	entry	named	"teh."

AutoCorrect.Entries("teh").Value	=	"the"

Use	the	Apply	method	to	insert	an	AutoCorrect	entry	at	the	specified	range.	The
following	example	adds	an	AutoCorrect	entry	and	then	inserts	it	in	place	of	the
selection.

AutoCorrect.Entries.Add	Name:="hellp",	Value:="hello"

AutoCorrect.Entries("hellp").Apply	Range:=Selection.Range

Use	either	the	Add	or	AddRichText	method	to	add	an	AutoCorrect	entry	to	the
list	of	available	entries.	The	following	example	adds	a	plain-text	AutoCorrect
entry	for	the	misspelling	of	the	word	"their.'

AutoCorrect.Entries.Add	Name:="thier",	Value:="their"

The	following	example	creates	an	AutoCorrect	entry	named	"PMO"	based	on	the
text	and	formatting	of	the	selection.

AutoCorrect.Entries.AddRichText	Name:="PMO",	Range:=Selection.Range



AutoTextEntries	Collection	Object
									
Application	 Templates	(Template)

AutoTextEntries	(AutoTextEntry)

A	collection	of	AutoTextEntry	objects	that	represent	the	AutoText	entries	in	a
template.	The	AutoTextEntries	collection	includes	all	the	entries	listed	on	the
AutoText	tab	in	the	AutoCorrect	dialog	box	(Tools	menu).



Using	the	AutoTextEntries	Object

Use	the	AutoTextEntries	property	to	return	the	AutoTextEntries	collection.
The	following	example	determines	whether	an	AutoTextEntry	object	named
"test"	is	in	the	AutoTextEntries	collection.

For	Each	i	In	NormalTemplate.AutoTextEntries

				If	LCase(i.Name)	=	"test"	Then	MsgBox	"AutoText	entry	exists"

Next	i

Use	the	Add	method	to	add	an	AutoText	entry	to	the	AutoTextEntries
collection.	The	following	example	adds	an	AutoText	entry	named	"Blue"	based
on	the	text	of	the	selection.

NormalTemplate.AutoTextEntries.Add	Name:="Blue",	_

				Range:=Selection.Range

Use	AutoTextEntries(index),	where	index	is	the	AutoText	entry	name	or	index
number,	to	return	a	single	AutoTextEntry	object.	You	must	exactly	match	the
spelling	(but	not	necessarily	the	capitalization)	of	the	name,	as	it's	shown	on	the
AutoText	tab	in	the	AutoCorrect	dialog	box.	The	following	example	sets	the
value	of	an	existing	AutoText	entry	named	"cName."

NormalTemplate.AutoTextEntries("cName").Value	=	_

				"The	Johnson	Company"

The	following	example	displays	the	name	and	value	of	the	first	AutoText	entry
in	the	template	attached	to	the	active	document.

Set	myTemplate	=	ActiveDocument.AttachedTemplate

MsgBox	"Name	=	"	&	myTemplate.AutoTextEntries(1).Name	&	vbCr	_

				&	"Value	"	&	myTemplate.AutoTextEntries(1).Value



AutoTextEntry	Object
									
Application	 Templates	(Template)

AutoTextEntries	(AutoTextEntry)

Represents	a	single	AutoText	entry.	The	AutoTextEntry	object	is	a	member	of
the	AutoTextEntries	collection.	The	AutoTextEntries	collection	contains	all
the	AutoText	entries	in	the	specified	template.	The	entries	are	listed	on	the
AutoText	tab	in	the	AutoCorrect	dialog	box	(Tools	menu).



Using	the	AutoTextEntry	Object

Use	AutoTextEntries(index),	where	index	is	the	AutoText	entry	name	or	index
number,	to	return	a	single	AutoTextEntry	object.	You	must	exactly	match	the
spelling	(but	not	necessarily	the	capitalization)	of	the	name,	as	it's	shown	on	the
AutoText	tab	in	the	AutoCorrect	dialog	box.	The	following	example	sets	the
value	of	an	existing	AutoText	entry	named	"cName."

NormalTemplate.AutoTextEntries("cName").Value	=	_

				"The	Johnson	Company"

The	following	example	displays	the	name	and	value	of	the	first	AutoText	entry
in	the	template	attached	to	the	active	document.

Set	myTemplate	=	ActiveDocument.AttachedTemplate

MsgBox	"Name	=	"	&	myTemplate.AutoTextEntries(1).Name	&	vbCr	_

				&	"Value	"	&	myTemplate.AutoTextEntries(1).Value

The	following	example	inserts	the	global	AutoText	entry	named	"TheWorld"	at
the	insertion	point.

Selection.Collapse	Direction:=wdCollapseEnd

NormalTemplate.AutoTextEntries("TheWorld").Insert	_

				Where:=Selection.Range

Use	the	Add	method	to	add	an	AutoTextEntry	object	to	the	AutoTextEntries
collection.	The	following	example	adds	an	AutoText	entry	named	"Blue"	based
on	the	text	of	the	selection.

NormalTemplate.AutoTextEntries.Add	Name:="Blue",	_

				Range:=Selection.Range



Bookmark	Object
									
Multiple	objects	 Bookmarks	(Bookmark)

Range

Represents	a	single	bookmark.	The	Bookmark	object	is	a	member	of	the
Bookmarks	collection.	The	Bookmarks	collection	includes	all	the	bookmarks
listed	in	the	Bookmark	dialog	box	(Insert	menu).



Using	the	Bookmark	Object

Use	Bookmarks(index),	where	index	is	the	bookmark	name	or	index	number,	to
return	a	single	Bookmark	object.	You	must	exactly	match	the	spelling	(but	not
necessarily	the	capitalization)	of	the	bookmark	name.	The	following	example
selects	the	bookmark	named	"temp"	in	the	active	document.

ActiveDocument.Bookmarks("temp").Select

The	index	number	represents	the	position	of	the	bookmark	in	the	Selection	or
Range	object.	For	the	Document	object,	the	index	number	represents	the
position	of	the	bookmark	in	the	alphabetic	list	of	bookmarks	in	the	Bookmarks
dialog	box	(click	Name	to	sort	the	list	of	bookmarks	alphabetically).	The
following	example	displays	the	name	of	the	second	bookmark	in	the
Bookmarks	collection.

MsgBox	ActiveDocument.Bookmarks(2).Name

Use	the	Add	method	to	add	a	bookmark	to	a	document	range.	The	following
example	marks	the	selection	by	adding	a	bookmark	named	"temp."

ActiveDocument.Bookmarks.Add	Name:="temp",	Range:=Selection.Range



Remarks

Use	the	BookmarkID	property	with	a	range	or	selection	object	to	return	the
index	number	of	the	Bookmark	object	in	the	Bookmarks	collection.	The
following	example	displays	the	index	number	of	the	bookmark	named	"temp"	in
the	active	document.

MsgBox	ActiveDocument.Bookmarks("temp").Range.BookmarkID

You	can	use	predefined	bookmarks	with	the	Bookmarks	property.	The
following	example	sets	the	bookmark	named	"currpara"	to	the	location	marked
by	the	predefined	bookmark	named	"\Para".

ActiveDocument.Bookmarks("\Para").Copy	"currpara"

Use	the	Exists	method	to	determine	whether	a	bookmark	already	exists	in	the
selection,	range,	or	document.	The	following	example	ensures	that	the	bookmark
named	"temp"	exists	in	the	active	document	before	selecting	the	bookmark.

If	ActiveDocument.Bookmarks.Exists("temp")	=	True	Then

				ActiveDocument.Bookmarks("temp").Select

End	If



Bookmarks	Collection	Object
									
Multiple	objects	 Bookmarks	(Bookmark)

Range

A	collection	of	Bookmark	objects	that	represent	the	bookmarks	in	the	specified
selection,	range,	or	document.



Using	the	Bookmarks	Collection

Use	the	Bookmarks	property	to	return	the	Bookmarks	collection.	The
following	example	ensures	that	the	bookmark	named	"temp"	exists	in	the	active
document	before	selecting	the	bookmark.

If	ActiveDocument.Bookmarks.Exists("temp")	=	True	Then

				ActiveDocument.Bookmarks("temp").Select

End	If

Use	the	Add	method	to	set	a	bookmark	for	a	range	in	a	document.	The	following
example	marks	the	selection	by	adding	a	bookmark	named	"temp".

ActiveDocument.Bookmarks.Add	Name:="temp",	Range:=Selection.Range

Use	Bookmarks(index),	where	index	is	the	bookmark	name	or	index	number,	to
return	a	single	Bookmark	object.	You	must	exactly	match	the	spelling	(but	not
necessarily	the	capitalization)	of	the	bookmark	name.	The	following	example
selects	the	bookmark	named	"temp"	in	the	active	document.

ActiveDocument.Bookmarks("temp").Select

The	index	number	represents	the	position	of	the	bookmark	in	the	Selection	or
Range	object.	For	the	Document	object,	the	index	number	represents	the
position	of	the	bookmark	in	the	alphabetic	list	of	bookmarks	in	the	Bookmarks
dialog	box	(click	Name	to	sort	the	list	of	bookmarks	alphabetically).	The
following	example	displays	the	name	of	the	second	bookmark	in	the
Bookmarks	collection.

MsgBox	ActiveDocument.Bookmarks(2).Name



Remarks

The	ShowHidden	property	effects	the	number	of	elements	in	the	Bookmarks
collection.	If	ShowHidden	is	True,	hidden	bookmarks	are	included	in	the
Bookmarks	collection.



Border	Object
									
Multiple	objects	 Borders	(LineFormat)

Represents	a	border	of	an	object.	The	Border	object	is	a	member	of	the	Borders
collection.



Using	the	Border	Object

Use	Borders(index),	where	index	identifies	the	border,	to	return	a	single	Border
object.	Index	can	be	one	of	the	following	WdBorderType	constants:
wdBorderBottom,	wdBorderDiagonalDown,	wdBorderDiagonalUp,
wdBorderHorizontal,	wdBorderLeft,	wdBorderRight,	wdBorderTop,	or
wdBorderVertical.	Use	the	LineStyle	property	to	apply	a	border	line	to	a
Border	object.	The	following	example	applies	a	double-line	border	below	the
first	paragraph	in	the	active	document.

With	ActiveDocument.Paragraphs(1).Borders(wdBorderBottom)

				.LineStyle	=	wdLineStyleDouble

				.LineWidth	=	wdLineWidth025pt

End	With

The	following	example	applies	a	single-line	border	around	the	first	character	in
the	selection.

With	Selection.Characters(1)

				.Font.Size	=	36

				.Borders.Enable	=	True

End	With

The	following	example	adds	an	art	border	around	each	page	in	the	first	section.

For	Each	aBorder	In	ActiveDocument.Sections(1).Borders

				With	aBorder

								.ArtStyle	=	wdArtSeattle

								.ArtWidth	=	20

				End	With

Next	aBorder

Border	objects	cannot	be	added	to	the	Borders	collection.	The	number	of
members	in	the	Borders	collection	is	finite	and	varies	depending	on	the	type	of
object.	For	example,	a	table	has	six	elements	in	the	Borders	collection,	whereas
a	paragraph	has	four.





Borders	Collection	Object
									
Multiple	objects	 Borders	(Border)

A	collection	of	Border	objects	that	represent	the	borders	of	an	object.



Using	the	Borders	Collection

Use	the	Borders	property	to	return	the	Borders	collection.	The	following
example	applies	the	default	border	around	the	first	paragraph	in	the	active
document.

ActiveDocument.Paragraphs(1).Borders.Enable	=	True

Border	objects	cannot	be	added	to	the	Borders	collection.	The	number	of
members	in	the	Borders	collection	is	finite	and	varies	depending	on	the	type	of
object.	For	example,	a	table	has	six	elements	in	the	Borders	collection,	whereas
a	paragraph	has	four.

Use	Borders(index),	where	index	identifies	the	border,	to	return	a	single	Border
object.	Index	can	be	one	of	the	following	WdBorderType	constants:
wdBorderBottom,	wdBorderDiagonalDown,	wdBorderDiagonalUp,
wdBorderHorizontal,	wdBorderLeft,	wdBorderRight,	wdBorderTop,	or
wdBorderVertical.	Some	of	these	constants	may	not	be	available	to	you,
depending	on	the	language	support	(U.S.	English,	for	example)	that	you’ve
selected	or	installed.	Use	the	LineStyle	property	to	apply	a	border	line	to	a
Border	object.	The	following	example	applies	a	double-line	border	below	the
first	paragraph	in	the	active	document.

With	ActiveDocument.Paragraphs(1).Borders(wdBorderBottom)

				.LineStyle	=	wdLineStyleDouble

				.LineWidth	=	wdLineWidth025pt

End	With

The	following	example	applies	a	single-line	border	around	the	first	character	in
the	selection.

With	Selection.Characters(1)

				.Font.Size	=	36

				.Borders.Enable	=	True

End	With

The	following	example	adds	an	art	border	around	each	page	in	the	first	section.

For	Each	aBorder	In	ActiveDocument.Sections(1).Borders

				With	aBorder



								.ArtStyle	=	wdArtSeattle

								.ArtWidth	=	20

				End	With

Next	aBorder



Browser	Object
									
Application	 Browser

Represents	the	browser	tool	used	to	move	the	insertion	point	to	objects	in	a
document.	This	tool	is	comprised	of	the	three	buttons	at	the	bottom	of	the
vertical	scroll	bar.



Using	the	Browser	Object

Use	the	Browser	property	to	return	the	Browser	object.	The	following	example
moves	the	insertion	point	just	before	the	next	field	in	the	active	document.

With	Application.Browser

				.Target	=	wdBrowseField

				.Next

End	With

The	following	example	moves	the	insertion	point	to	the	previous	table	and
selects	it.

With	Application.Browser

				.Target	=	wdBrowseTable

				.Previous

End	With

If	Selection.Information(wdWithInTable)	=	True	Then

				Selection.Tables(1).Select

End	If



CalloutFormat	Object
									
Shapes	(Shape)	 CalloutFormat

Contains	properties	and	methods	that	apply	to	line	callouts.



Using	the	CalloutFormat	Object

Use	the	Callout	property	to	return	a	CalloutFormat	object.	The	following
example	specifies	the	following	attributes	of	shape	three	(a	line	callout)	on	the
active	document:	the	callout	will	have	a	vertical	accent	bar	that	separates	the	text
from	the	callout	line;	the	angle	between	the	callout	line	and	the	side	of	the
callout	text	box	will	be	30	degrees;	there	will	be	no	border	around	the	callout
text;	the	callout	line	will	be	attached	to	the	top	of	the	callout	text	box;	and	the
callout	line	will	contain	two	segments.	For	this	example	to	work,	shape	three
must	be	a	callout.

With	ActiveDocument.Shapes(3).Callout

				.Accent	=	True

				.Angle	=	msoCalloutAngle30

				.Border	=	False

				.PresetDrop	msoCalloutDropTop

				.Type	=	msoCalloutThree

End	With



CanvasShapes	Collection
									
Multiple	objects	 CanvasShapes

Multiple	objects

Represents	the	shapes	in	a	drawing	canvas.



Using	the	CanvasShapes	collection

Use	the	CanvasItems	property	of	either	a	Shape	or	ShapeRange	object	to
return	a	CanvasShapes	collection.	To	add	shapes	to	a	drawing	canvas,	use	the
following	methods	of	the	CanvasShapes	collection:	AddCallout,
AddConnector	AddCurve,	AddLabel,	AddLine,	AddPicture,	AddPolyline,
AddShape,	AddTextbox,	AddTextEffect,	or	BuildFreeForm.	The	following
example	adds	a	drawing	canvas	to	the	active	document	and	then	adds	three
shapes	to	the	drawing	canvas.

Sub	AddCanvasShapes()

				Dim	shpCanvas	As	Shape

				Dim	shpCanvasShapes	As	CanvasShapes

				Dim	shpCnvItem	As	Shape

				'Adds	a	new	canvas	to	the	document

				Set	shpCanvas	=	ActiveDocument.Shapes	_

								.AddCanvas(Left:=100,	Top:=75,	_

								Width:=50,	Height:=75)

				Set	shpCanvasShapes	=	shpCanvas.CanvasItems

				'Adds	shapes	to	the	CanvasShapes	collection

				With	shpCanvasShapes

								.AddShape	Type:=msoShapeRectangle,	_

												Left:=0,	Top:=0,	Width:=50,	Height:=50

								.AddShape	Type:=msoShapeOval,	_

												Left:=5,	Top:=5,	Width:=40,	Height:=40

								.AddShape	Type:=msoShapeIsoscelesTriangle,	_

												Left:=0,	Top:=25,	Width:=50,	Height:=50

				End	With

End	Sub

Use	CanvasItems(index),	where	index	is	the	name	or	the	index	number,	to
return	a	single	shape	in	the	CanvasShapes	collection.	The	following	example
sets	the	Line	and	Fill	properties	and	vertically	flips	the	third	shape	in	a	drawing
canvas.

Sub	CanvasShapeThree()

				With	ActiveDocument.Shapes(1).CanvasItems(3)

								.Line.ForeColor.RGB	=	RGB(50,	0,	255)

								.Fill.ForeColor.RGB	=	RGB(50,	0,	255)

								.Flip	msoFlipVertical



				End	With

End	Sub

Each	shape	is	assigned	a	default	name	when	it	is	created.	For	example,	if	you
add	three	different	shapes	to	a	document,	they	might	be	named	Rectangle	2,
TextBox	3,	and	Oval	4.	Use	the	Name	property	to	reference	the	default	name	or
to	assign	a	more	meaningful	name	to	a	shape.



CaptionLabel	Object
									
Application	 CaptionLabels	(CaptionLabel)

Represents	a	single	caption	label.	The	CaptionLabel	object	is	a	member	of	the
CaptionLabels	collection.	The	items	in	the	CaptionLabels	collection	are	listed
in	the	Label	box	in	the	Caption	dialog	box	(Insert	menu).



Using	the	CaptionLabel	Object

Use	CaptionLabels(index),	where	index	is	the	caption	label	name	or	index
number,	to	return	a	single	CaptionLabel	object.	The	following	example	sets	the
numbering	style	for	the	Figure	caption	label.

CaptionLabels("Figure").NumberStyle	=	_

				wdCaptionNumberStyleLowercaseLetter

The	index	number	represents	the	position	of	the	caption	label	in	the
CaptionLabels	collection.	The	following	example	displays	the	first	caption
label.

MsgBox	CaptionLabels(1).Name

Use	the	Add	method	to	add	a	custom	caption	label.	The	following	example	adds
a	caption	label	named	"Photo."

CaptionLabels.Add	Name:="Photo"



CaptionLabels	Collection	Object
									
Application	 CaptionLabels	(CaptionLabel)

A	collection	of	CaptionLabel	objects	that	represent	the	available	caption	labels.
The	items	in	the	CaptionLabels	collection	are	listed	in	the	Label	box	in	the
Caption	dialog	box	(Insert	menu).



Using	the	CaptionLabels	Collection

Use	the	CaptionLabels	property	to	return	the	CaptionLabels	collection.	By
default,	the	CaptionLabels	collection	includes	the	three	built-in	caption	labels:
Figure,	Table,	and	Equation.

Use	the	Add	method	to	add	a	custom	caption	label.	The	following	example	adds
a	caption	label	named	"Photo."

CaptionLabels.Add	Name:="Photo"

Use	CaptionLabels(index),	where	index	is	the	caption	label	name	or	index
number,	to	return	a	single	CaptionLabel	object.	The	following	example	sets	the
numbering	style	for	the	Figure	caption	label.

CaptionLabels("Figure").NumberStyle	=	_

				wdCaptionNumberStyleLowercaseLetter

The	index	number	represents	the	position	of	the	caption	label	in	the
CaptionLabels	collection.	The	following	example	displays	the	first	caption
label.

MsgBox	CaptionLabels(1).Name



Cell	Object
									
Multiple	objects	 Cell

Multiple	objects

Represents	a	single	table	cell.	The	Cell	object	is	a	member	of	the	Cells
collection.	The	Cells	collection	represents	all	the	cells	in	the	specified	object.



Using	the	Cell	Object

Use	Cell(row,	column),	where	row	is	the	row	number	and	column	is	the	column
number,	or	Cells(index),	where	index	is	the	index	number,	to	return	a	Cell
object.	The	following	example	applies	shading	to	the	second	cell	in	the	first	row.

Set	myCell	=	ActiveDocument.Tables(1).Cell(Row:=1,	Column:=2)

myCell.Shading.Texture	=	wdTexture20Percent

The	following	example	applies	shading	to	the	first	cell	in	the	first	row.

ActiveDocument.Tables(1).Rows(1).Cells(1).Shading	_

				.Texture	=	wdTexture20Percent

Use	the	Add	method	to	add	a	Cell	object	to	the	Cells	collection.	You	can	also
use	the	InsertCells	method	of	the	Selection	object	to	insert	new	cells.	The
following	example	adds	a	cell	before	the	first	cell	in	myTable.

Set	myTable	=	ActiveDocument.Tables(1)

myTable.Range.Cells.Add	BeforeCell:=myTable.Cell(1,	1)

The	following	example	sets	a	range	(myRange)	that	references	the	first	two	cells
in	the	first	table.	After	the	range	is	set,	the	cells	are	combined	by	the	Merge
method.

Set	myTable	=	ActiveDocument.Tables(1)

Set	myRange	=	ActiveDocument.Range(myTable.Cell(1,	1)	_

				.Range.Start,	myTable.Cell(1,	2).Range.End)

myRange.Cells.Merge



Remarks

Use	the	Add	method	with	the	Rows	or	Columns	collection	to	add	a	row	or
column	of	cells.

Use	the	Information	property	with	a	Selection	object	to	return	the	current	row
and	column	number.	The	following	example	changes	the	width	of	the	first	cell	in
the	selection	and	then	displays	the	cell's	row	number	and	column	number.

If	Selection.Information(wdWithInTable)	=	True	Then

				With	Selection

								.Cells(1).Width	=	22

								MsgBox	"Cell	"	&	.Information(wdStartOfRangeRowNumber)	_

												&	","	&	.Information(wdStartOfRangeColumnNumber)

				End	With

End	If



Cells	Collection	Object
									
Multiple	objects	 Cells

Multiple	objects

A	collection	of	Cell	objects	in	a	table	column,	table	row,	selection,	or	range.



Using	the	Cells	Object

Use	the	Cells	property	to	return	the	Cells	collection.	The	following	example
formats	the	cells	in	the	first	row	in	table	one	in	the	active	document	to	be	30
points	wide.

ActiveDocument.Tables(1).Rows(1).Cells.Width	=	30

The	following	example	returns	the	number	of	cells	in	the	current	row.

num	=	Selection.Rows(1).Cells.Count

Use	the	Add	method	to	add	a	Cell	object	to	the	Cells	collection.	You	can	also
use	the	InsertCells	method	of	the	Selection	object	to	insert	new	cells.	The
following	example	adds	a	cell	before	the	first	cell	in	myTable.

Set	myTable	=	ActiveDocument.Tables(1)

myTable.Range.Cells.Add	BeforeCell:=myTable.Cell(1,	1)

Use	Cell(row,	column),	where	row	is	the	row	number	and	column	is	the	column
number,	or	Cells(index),	where	index	is	the	index	number,	to	return	a	Cell
object.	The	following	example	applies	shading	to	the	second	cell	in	the	first	row
in	table	one.

Set	myCell	=	ActiveDocument.Tables(1).Cell(Row:=1,	Column:=2)

myCell.Shading.Texture	=	wdTexture20Percent

The	following	example	applies	shading	to	the	first	cell	in	the	first	row.

ActiveDocument.Tables(1).Rows(1).Cells(1).Shading	_

				.Texture	=	wdTexture20Percent



Remarks

Use	the	Add	method	with	the	Rows	or	Columns	collection	to	add	a	row	or
column	of	cells.	The	following	example	adds	a	column	to	the	first	table	in	the
active	document	and	then	inserts	numbers	into	the	first	column.

Set	myTable	=	ActiveDocument.Tables(1)

Set	aColumn	=	myTable.Columns.Add(BeforeColumn:=myTable.Columns(1))

For	Each	aCell	In	aColumn.Cells

				aCell.Range.Delete

				aCell.Range.InsertAfter	num	+	1

				num	=	num	+	1

Next	aCell



Show	All



Characters	Collection	Object
									
Multiple	objects	 Characters	(Range)

Multiple	objects

A	collection	of	characters	in	a	selection,	range,	or	document.	There	is	no
Character	object;	instead,	each	item	in	the	Characters	collection	is	a	Range
object	that	represents	one	character.



Using	the	Characters	Collection

Use	the	Characters	property	to	return	the	Characters	collection.	The	following
example	displays	how	many	characters	are	selected.

MsgBox	Selection.Characters.Count	&	"	characters	are	selected"

Use	Characters(index),	where	index	is	the	index	number,	to	return	a	Range
object	that	represents	one	character.	The	index	number	represents	the	position	of
a	character	in	the	Characters	collection.	The	following	example	formats	the
first	letter	in	the	selection	as	24-point	bold.

With	Selection.Characters(1)

				.Bold	=	True

				.Font.Size	=	24

End	With



Remarks

The	Count	property	for	this	collection	in	a	document	returns	the	number	of
items	in	the	main	story	only.	To	count	items	in	other	stories	use	the	collection
with	the	Range	object.

An	Add	method	isn't	available	for	the	Characters	collection.	Instead,	use	the
InsertAfter	or	InsertBefore	method	to	add	characters	to	a	Range	object.	The
following	example	inserts	a	new	paragraph	after	the	first	paragraph	in	the	active
document.

With	ActiveDocument

				.Paragraphs(1).Range.InsertParagraphAfter

				.Paragraphs(2).Range.InsertBefore	"New	Text"

End	With



CheckBox	Object
									
FormFields	(FormField)	 CheckBox

Represents	a	single	check	box	form	field.



Using	the	CheckBox	Object

Use	FormFields(index),	where	index	is	index	number	or	the	bookmark	name
associated	with	the	check	box,	to	return	a	single	FormField	object.	Use	the
CheckBox	property	with	the	FormField	object	to	return	a	CheckBox	object.
The	following	example	selects	the	check	box	form	field	named	"Check1"	in	the
active	document.

ActiveDocument.FormFields("Check1").CheckBox.Value	=	True

The	index	number	represents	the	position	of	the	form	field	in	the	FormFields
collection.	The	following	example	checks	the	type	of	the	first	form	field;	if	it's	a
check	box,	the	check	box	is	selected.

If	ActiveDocument.FormFields(1).Type	=	wdFieldFormCheckBox	Then

				ActiveDocument.FormFields(1).CheckBox.Value	=	True

End	If

The	following	example	determines	whether	the	ffield	object	is	valid	before
changing	the	check	box	size	to	14	points.

Set	ffield	=	ActiveDocument.FormFields(1).CheckBox

If	ffield.Valid	=	True	Then	

				ffield.AutoSize	=	False

				ffield.Size	=	14

Else

				MsgBox	"First	field	is	not	a	check	box"

End	If

Use	the	Add	method	with	the	FormFields	object	to	add	a	check	box	form	field.
The	following	example	adds	a	check	box	at	the	beginning	of	the	active
document,	sets	the	name	to	"Color",	and	then	selects	the	check	box.

With	ActiveDocument.FormFields.Add(Range:=ActiveDocument.Range	_

				(Start:=0,End:=0),	Type:=wdFieldFormCheckBox)

				.Name	=	"Color"

				.CheckBox.Value	=	True

End	With





ColorFormat	Object
									

Multiple	objects	 ColorFormat

Represents	the	color	of	a	one-color	object	or	the	foreground	or	background	color
of	an	object	with	a	gradient	or	patterned	fill.	You	can	set	colors	to	an	explicit
red-green-blue	value	by	using	the	RGB	property.



Using	the	ColorFormat	Object

Use	one	of	the	properties	listed	in	the	following	table	to	return	a	ColorFormat
object.

Use	this	property With	this	object
To	return	a	ColorFormat	object	that

represents	this

BackColor FillFormat Background	fill	color	(used	in	a	shaded
or	patterned	fill)

ForeColor FillFormat Foreground	fill	color	(or	simply	the	fill
color	for	a	solid	fill)

BackColor LineFormat Background	line	color	(used	in	a
patterned	line)

ForeColor LineFormat Foreground	line	color	(or	just	the	line
color	for	a	solid	line)

ForeColor ShadowFormat Shadow	color
ExtrusionColor ThreeDFormat Color	of	the	sides	of	an	extruded	object

Use	the	RGB	property	to	set	a	color	to	an	explicit	red-green-blue	value.	The
following	example	adds	a	rectangle	to	the	active	document	and	then	sets	the
foreground	color,	background	color,	and	gradient	for	the	rectangle's	fill.

With	ActiveDocument.Shapes	_

								.AddShape(msoShapeRectangle,	90,	90,	90,	50).Fill

				.ForeColor.RGB	=	RGB(128,	0,	0)

				.BackColor.RGB	=	RGB(170,	170,	170)

				.TwoColorGradient	msoGradientHorizontal,	1

End	With



Column	Object
									
Multiple	objects	 Columns	(Column)

Multiple	objects

Represents	a	single	table	column.	The	Column	object	is	a	member	of	the
Columns	collection.	The	Columns	collection	includes	all	the	columns	in	a	table,
selection,	or	range.



Using	the	Column	Object

Use	Columns(index),	where	index	is	the	index	number,	to	return	a	single
Column	object.	The	index	number	represents	the	position	of	the	column	in	the
Columns	collection	(counting	from	left	to	right).

The	following	example	selects	column	one	in	table	one	in	the	active	document.

ActiveDocument.Tables(1).Columns(1).Select

Use	the	Column	property	with	a	Cell	object	to	return	a	Column	object.	The
following	example	deletes	the	text	in	cell	one,	inserts	new	text,	and	then	sorts	the
entire	column.

With	ActiveDocument.Tables(1).Cell(1,	1)

				.Range.Delete

				.Range.InsertBefore	"Sales"

				.Column.Sort

End	With

Use	the	Add	method	to	add	a	column	to	a	table.	The	following	example	adds	a
column	to	the	first	table	in	the	active	document,	and	then	it	makes	the	column
widths	equal.

If	ActiveDocument.Tables.Count	>=	1	Then

				Set	myTable	=	ActiveDocument.Tables(1)

				myTable.Columns.Add	BeforeColumn:=myTable.Columns(1)

				myTable.Columns.DistributeWidth

End	If



Remarks

Use	the	Information	property	with	a	Selection	object	to	return	the	current
column	number.	The	following	example	selects	the	current	column	and	then
displays	the	column	number	in	a	message	box.

If	Selection.Information(wdWithInTable)	=	True	Then

				Selection.Columns(1).Select

				MsgBox	"Column	"	_

								&	Selection.Information(wdStartOfRangeColumnNumber)

End	If



Columns	Collection	Object
									
Multiple	objects	 Columns	(Column)

Multiple	objects

A	collection	of	Column	objects	that	represent	the	columns	in	a	table.



Using	the	Columns	Collection

Use	the	Columns	property	to	return	the	Columns	collection.	The	following
example	displays	the	number	of	Column	objects	in	the	Columns	collection	for
the	first	table	in	the	active	document.

MsgBox	ActiveDocument.Tables(1).Columns.Count

The	following	example	creates	a	table	with	six	columns	and	three	rows	and	then
formats	each	column	with	a	progressively	larger	(darker)	shading	percentage.

Set	myTable	=	ActiveDocument.Tables.Add(Range:=Selection.Range,	_

				NumRows:=3,	NumColumns:=6)

For	Each	col	In	myTable.Columns

				col.Shading.Texture	=	2	+	i

				i	=	i	+	1

Next	col

Use	the	Add	method	to	add	a	column	to	a	table.	The	following	example	adds	a
column	to	the	first	table	in	the	active	document,	and	then	it	makes	the	column
widths	equal.

If	ActiveDocument.Tables.Count	>=	1	Then

				Set	myTable	=	ActiveDocument.Tables(1)

				myTable.Columns.Add	BeforeColumn:=myTable.Columns(1)

				myTable.Columns.DistributeWidth

End	If

Use	Columns(index),	where	index	is	the	index	number,	to	return	a	single
Column	object.	The	index	number	represents	the	position	of	the	column	in	the
Columns	collection	(counting	from	left	to	right).	The	following	example	selects
the	first	column	in	the	first	table.

ActiveDocument.Tables(1).Columns(1).Select





Comment	Object
									
Multiple	objects	 Comments	(Comment)

Range

Represents	a	single	comment.	The	Comment	object	is	a	member	of	the
Comments	collection.	The	Comments	collection	includes	comments	in	a
selection,	range	or	document.



Using	the	Comment	Object

Use	Comments(index),	where	index	is	the	index	number,	to	return	a	single
Comment	object.	The	index	number	represents	the	position	of	the	comment	in
the	specified	selection,	range,	or	document.	The	following	example	displays	the
author	of	the	first	comment	in	the	active	document.

MsgBox	ActiveDocument.Comments(1).Author

Use	the	Add	method	to	add	a	comment	at	the	specified	range.	The	following
example	adds	a	comment	immediately	after	the	selection.

Selection.Collapse	Direction:=wdCollapseEnd

ActiveDocument.Comments.Add	Range:=Selection.Range,	_

				Text:="review	this"

Use	the	Reference	property	to	return	the	reference	mark	associated	with	the
specified	comment.	Use	the	Range	property	to	return	the	text	associated	with	the
specified	comment.	The	following	example	displays	the	text	associated	with	the
first	comment	in	the	active	document.

MsgBox	ActiveDocument.Comments(1).Range.Text



Comments	Collection	Object
									
Multiple	objects	 Comments	(Comment)

Range

A	collection	of	Comment	objects	that	represent	the	comments	in	a	selection,
range,	or	document.



Using	the	Comments	Collection

Use	the	Comments	property	to	return	the	Comments	collection.	The	following
example	displays	comments	made	by	Don	Funk	in	the	active	document.

ActiveDocument.ActiveWindow.View.SplitSpecial	=	wdPaneComments

ActiveDocument.Comments.ShowBy	=	"Don	Funk"

Use	the	Add	method	to	add	a	comment	at	the	specified	range.	The	following
example	adds	a	comment	immediately	after	the	selection.

Selection.Collapse	Direction:=wdCollapseEnd

ActiveDocument.Comments.Add	Range:=Selection.Range,	_

				Text:="review	this"

Use	Comments(index),	where	index	is	the	index	number,	to	return	a	single
Comment	object.	The	index	number	represents	the	position	of	the	comment	in
the	specified	selection,	range,	or	document.	The	following	example	displays	the
author	of	the	first	comment	in	the	active	document.

MsgBox	ActiveDocument.Comments(1).Author

The	following	example	displays	the	initials	of	the	author	of	the	first	comment	in
the	selection.

If	Selection.Comments.Count	>=	1	Then	MsgBox	_

				Selection.Comments(1).Initial



ConditionalStyle	Object
									
TableStyle	 ConditionalStyle

Multiple	objects

Represents	special	formatting	applied	to	specified	areas	of	a	table	when	the
selected	table	is	formatted	with	a	specified	table	style.



Using	the	ConditionalStyle	object

Use	the	Condition	method	of	the	TableStyle	object	to	return	a
ConditionalStyle	object.	The	Shading	property	can	be	used	to	apply	shading	to
specified	areas	of	a	table.	This	example	selects	the	first	table	in	the	active
document	and	applies	shading	to	alternate	rows	and	columns.	This	example
assumes	that	there	is	a	table	in	the	active	document	and	that	it	is	formatted	using
the	Table	Grid	style.

Sub	ApplyConditionalStyle()

				With	ActiveDocument

								.Tables(1).Select

								With	.Styles("Table	Grid").Table

												.Condition(wdOddColumnBanding).Shading	_

																.BackgroundPatternColor	=	wdColorGray10

												.Condition(wdOddRowBanding).Shading	_

																.BackgroundPatternColor	=	wdColorGray10

								End	With

				End	With

End	Sub

Use	the	Borders	property	to	apply	borders	to	specified	areas	of	a	table.	This
example	selects	the	first	table	in	the	active	document	and	applies	borders	to	the
first	and	last	row	and	first	column.	This	example	assumes	that	there	is	a	table	in
the	active	document	and	that	it	is	formatted	using	the	Table	Grid	style.

Sub	ApplyTableBorders()

				With	ActiveDocument

								.Tables(1).Select

								With	.Styles("Table	Grid").Table

												.Condition(wdFirstRow).Borders(wdBorderBottom)	_

																.LineStyle	=	wdLineStyleDouble

												.Condition(wdFirstColumn).Borders(wdBorderRight)	_

																.LineStyle	=	wdLineStyleDouble

												.Condition(wdLastRow).Borders(wdBorderTop)	_

																.LineStyle	=	wdLineStyleDouble

								End	With

				End	With

End	Sub





CustomLabel	Object
									
Application	 MailingLabel

CustomLabels	(CustomLabel)

Represents	a	custom	mailing	label.	The	CustomLabel	object	is	a	member	of	the
CustomLabels	collection.	The	CustomLabels	collection	contains	all	the	custom
mailing	labels	listed	in	the	Label	Options	dialog	box.



Using	the	CustomLabel	Object

Use	CustomLabels(index),	where	index	is	the	custom	label	name	or	index
number,	to	return	a	single	CustomLabel	object.	The	following	example	creates
a	new	document	with	an	existing	custom	label	layout	named	"My	Labels."

Set	ML	=	Application.MailingLabel

If	ML.CustomLabels("My	Labels").Valid	=	True	Then

				ML.CreateNewDocument	Name:="My	Labels"

Else

				MsgBox	"The	My	Labels	custom	label	is	not	available"

End	If

The	index	number	represents	the	position	of	the	custom	mailing	label	in	the
CustomLabels	collection.	The	following	example	displays	the	name	of	the	first
custom	mailing	label.

If	Application.MailingLabel.CustomLabels.Count	>=	1	Then

				MsgBox	Application.MailingLabel.CustomLabels(1).Name

End	If

Note			CustomLabel	objects	are	sorted	alphabetically	in	the	CustomLabels
collection	and	their	index	numbers	are	dynamically	reassigned	as	the	contents	of
the	collection	change.	For	that	reason,	it	is	safer	to	refer	to	a	specific
CustomLabel	object	by	name	rather	than	by	index	number.

Use	the	Add	method	to	create	a	custom	label.	The	following	example	adds	a
custom	mailing	label	named	"My	Label"	and	sets	the	page	size.

Set	ML	=	_

				Application.MailingLabel.CustomLabels.Add(Name:="My	Labels",	_

				DotMatrix:=False)

ML.PageSize	=	wdCustomLabelA4



CustomLabels	Collection	Object
									
Application	 MailingLabel

CustomLabels	(CustomLabel)

A	collection	of	CustomLabel	objects	available	in	the	Label	Options	dialog	box.
This	collection	includes	custom	labels	of	all	printer	types	(dot-matrix,	laser,	and
ink-jet	printers).



Using	the	CustomLabels	Collection

Use	the	CustomLabels	property	to	return	the	CustomLabels	collection.	The
following	example	displays	the	number	of	available	custom	labels.

MsgBox	Application.MailingLabel.CustomLabels.Count

Use	the	Add	method	to	create	a	custom	label.	The	following	example	adds	a
custom	mailing	label	named	"My	Label"	and	sets	the	page	size.

Set	ML	=	_

				Application.MailingLabel.CustomLabels.Add(Name:="My	Labels",	_

				DotMatrix:=False)

ML.PageSize	=	wdCustomLabelA4

Use	CustomLabels(index),	where	index	is	the	custom	label	name	or	index
number,	to	return	a	single	CustomLabel	object.	The	following	example	creates
a	new	document	with	an	existing	custom	label	layout	named	"My	Labels."

Set	ML	=	Application.MailingLabel

If	ML.CustomLabels("My	Labels").Valid	=	True	Then

				ML.CreateNewDocument	Name:="My	Labels"

Else

				MsgBox	"The	My	Labels	custom	label	is	not	available"

End	If

The	index	number	represents	the	position	of	the	custom	mailing	label	in	the
CustomLabels	collection.	The	following	example	displays	the	name	of	the	first
custom	mailing	label.

If	Application.MailingLabel.CustomLabels.Count	>=	1	Then

				MsgBox	Application.MailingLabel.CustomLabels(1).Name

End	If



CustomProperties	Collection
									
SmartTag	 CustomProperties

CustomProperty

A	collection	of	CustomProperty	objects	that	represents	the	properties	related	to
a	smart	tag.	The	CustomProperties	collection	includes	all	the	smart	tag	custom
properties	in	a	document.



Using	the	CustomProperties	collection

Use	the	Properties	property	to	return	a	single	CustomProperties	object.	Use
the	Add	method	of	the	CustomProperties	object	with	to	create	a	custom
property	from	within	a	Microsoft	Word	Visual	Basic	for	Applications	project.
This	example	creates	a	new	property	for	the	first	smart	tag	in	the	active
document	and	displays	the	XML	code	used	for	the	tag.

Sub	AddProps()

				With	ThisDocument.SmartTags(1)

								.Properties.Add	Name:="President",	Value:=True

								MsgBox	"The	XML	code	is	"	&	.XML

				End	With

End	Sub

Use	Properties(index)	to	return	a	single	property	for	a	smart	tag,	where	index	is
the	number	of	the	property.	This	example	displays	the	name	and	value	of	the	first
property	of	the	first	smart	tag	in	the	current	document.

Sub	ReturnProps()

				With	ThisDocument.SmartTags(1).Properties(1)

								MsgBox	"The	Smart	Tag	name	is:	"	&	.Name	&	vbLf	&	.Value

				End	With

End	Sub

Use	the	Count	property	to	return	the	number	of	custom	properties	for	a	smart
tag.	This	example	loops	through	all	the	smart	tags	in	the	current	document	and
then	lists	in	a	new	document	the	name	and	value	of	the	custom	properties	for	all
smart	tags	that	have	custom	properties.

Sub	SmartTagsProps()

				Dim	docNew	As	Document

				Dim	stgTag	As	SmartTag

				Dim	stgProp	As	CustomProperty

				Dim	intTag	As	Integer

				Dim	intProp	As	Integer

				Set	docNew	=	Documents.Add

				'Create	heading	info	in	new	document

				With	docNew.Content

								.InsertAfter	"Name"	&	vbTab	&	"Value"



								.InsertParagraphAfter

				End	With

				'Loop	through	smart	tags	in	current	document

				For	intTag	=	1	To	ThisDocument.SmartTags.Count

								With	ThisDocument.SmartTags(intTag)

												'Verify	that	the	custom	properties

												'for	smart	tags	is	greater	than	zero

												If	.Properties.Count	>	0	Then

																'Loop	through	the	custom	properties

																For	intProp	=	1	To	.Properties.Count

																				'Add	custom	property	name	to	new	document

																				docNew.Content.InsertAfter	.Properties(intProp)	_

																								.Name	&	vbTab	&	.Properties(intProp).Value

																				docNew.Content.InsertParagraphAfter

																Next

												Else

																'Display	message	if	there	are	no	custom	properties

																MsgBox	"There	are	no	custom	properties	for	the	"	&	_

																				"smart	tags	in	your	document."

												End	If

								End	With

				Next

				'Convert	the	content	in	the	new	document	into	a	table

				docNew.Content.Select

				Selection.ConvertToTable	Separator:=wdSeparateByTabs,	NumColumns:=2

End	Sub



CustomProperty	Object
									
CustomProperties	 CustomProperty

Represents	a	single	instance	of	a	custom	property	for	a	smart	tag.	The
CustomProperty	object	is	a	member	of	the	CustomProperties	collection.



Using	the	CustomProperty	object

Use	the	Item	method	—	or	Properties(Index),	where	index	is	the	number	of	the
property	—	of	the	CustomProperties	collection	to	return	a	CustomProperty
object.	Use	the	Name	and	Value	properties	to	return	the	information	related	to	a
custom	property	for	a	smart	tag.		This	example	displays	a	message	containing
the	name	and	value	of	the	first	custom	property	of	the	first	smart	tag	in	the
current	document.	This	example	assumes	that	the	current	document	contains	at
least	one	smart	tag	and	that	the	first	smart	tag	has	at	least	one	custom	property.

Sub	SmartTagsProps()

				With	ThisDocument.SmartTags(Index:=1).Properties.Item(Index:=1)

								MsgBox	"Smart	Tag	Name:	"	&	.Name	&	vbLf	&	_

												"Smart	Tag	Value:	"	&	.Value

				End	With

End	Sub



DefaultWebOptions	Object
									
Application	 DefaultWebOptions

Contains	global	application-level	attributes	used	by	Microsoft	Word	when	you
save	a	document	as	a	Web	page	or	open	a	Web	page.	You	can	return	or	set
attributes	either	at	the	application	(global)	level	or	at	the	document	level.	(Note
that	attribute	values	can	be	different	from	one	document	to	another,	depending
on	the	attribute	value	at	the	time	the	document	was	saved.)	Document-level
attribute	settings	override	application-level	attribute	settings.	Document-level
attributes	are	contained	in	the	WebOptions	object.



Using	the	DefaultWebOptions	Object

Use	the	DefaultWebOptions	method	to	return	the	DefaultWebOptions	object.
The	following	example	checks	to	see	whether	PNG	(Portable	Network	Graphics)
is	allowed	as	an	image	format	and	sets	the	strImageFileType	variable
accordingly.

Set	objAppWebOptions	=	Application.DefaultWebOptions

With	objAppWebOptions

				If	.AllowPNG	=	True	Then

								strImageFileType	=	"PNG"

				Else

								strImageFileType	=	"JPG"

				End	If

End	With



Diagram	Object
									
DiagramNode	 Diagram

DiagramNodes

Represents	a	single	diagram	in	a	document.	The	Diagram	object	is	a	member	of
the	Shapes	collection.



Using	the	Diagram	object

Use	the	Diagram	property	of	the	DiagramNode,	Shape,	and	ShapeRange
objects	to	return	a	single	Diagram	object.	Use	the	Convert	method	to	change	a
diagram	from	one	type	to	another.	This	example	converts	the	first	diagram	in	the
active	document	into	a	radial	diagram.	This	example	assumes	that	the	first	shape
in	the	active	document	is	a	diagram	and	not	another	type	of	shape.

Sub	DiagramConvert()

				ActiveDocument.Shapes(1).Diagram.Convert	msoDiagramRadial

End	Sub

Use	the	Reverse	property	to	flip	the	order	of	the	nodes	in	a	diagram.	This
example	reverses	the	order	of	the	diagram	nodes	in	the	second	shape	in	the
active	document.	This	assumes	that	the	second	shape	in	the	active	document	is	a
diagram.

Sub	DiagramReverse()

				ActiveDocument.Shapes(2).Diagram.Reverse	=	msoTrue

End	Sub



DiagramNode	Object
									
Multiple	objects	 DiagramNode

Multiple	objects

Represents	a	single	diagram	node	within	a	diagram.		The	DiagramNode	object
is	a	member	of	the	DiagramNodes	collection.



Using	the	DiagramNode	object

Use	the	DiagramNode	property	of	the	Shape	or	ShapeRange	object	to	return	a
DiagramNode	object.	Use	the	AddNode	method	to	add	a	node	to	a	diagram.
This	example	assumes	the	third	shape	in	the	document	is	a	diagram	and	adds	a
node	to	it.

Sub	AddDiagramNode()

				ActiveDocument.Shapes(3).DiagramNode.Children.AddNode

End	Sub

Use	the	Delete	method	to	remove	a	node	from	a	diagram.	This	example	assumes
the	second	shape	in	the	document	is	a	diagram	and	removes	the	first	node	from
it.

Sub	DeleteDiagramNode()

				ActiveDocument.Shapes(2).DiagramNode.Children(1).Delete

End	Sub



DiagramNodeChildren	Collection
									
DiagramNode	 DiagramNodeChildren

DiagramNode

A	collection	of	DiagramNode	objects	that	represents	the	child	nodes	in	a
diagram.



Using	the	DiagramNodeChildren	collection

Use	the	Children	property	to	return	the	nodes	in	a	DiagramNodeChildren
collection.	Use	the	FirstChild	property	to	access	the	first	child	node	in	a
diagram.	This	example	deletes	the	first	child	of	the	second	node	in	the	first
diagram	in	the	document.	This	example	assumes	that	the	first	shape	in	the	active
document	is	a	diagram	with	at	least	two	nodes,	one	with	child	nodes.

Sub	DiagramNodeChild()

				ActiveDocument.Shapes(1).Diagram.Nodes.Item(2)	_

								.Children.FirstChild.Delete

End	Sub



DiagramNodes	Collection
									
Diagram	 DiagramNodes

DiagramNode

A	collection	of	DiagramNode	objects	that	represent	all	the	nodes	in	a	diagram.
The	DiagramNodes	collection	contains	all	the	diagram	nodes	in	a	specified
diagram.



Using	the	DiagramNodes	collection

Use	the	Nodes	property	to	return	the	DiagramNodes	collection.	Use	the
SelectAll	method	to	select	and	work	with	all	nodes	in	a	diagram.	This	example
selects	all	nodes	in	the	specified	diagram	and	fills	them	with	the	specified
pattern.	The	following	example	assumes	the	first	shape	in	the	active	document	is
a	diagram.

Sub	FillDiagramNodes()

				ActiveDocument.Shapes(1).Diagram.Nodes.SelectAll

				Selection.ShapeRange.Fill.Patterned	msoPatternSmallConfetti

End	Sub

Use	the	Item	method	to	select	and	work	with	a	single	diagram	node	in	a
diagram.	This	example	selects	the	first	node	in	the	specified	diagram	and	deletes
it.	The	following	example	assumes	the	first	shape	in	the	active	document	is	a
diagram.

Sub	FillDiagramNode()

				ActiveDocument.Shapes(1).Diagram.Nodes.Item(1).Delete

End	Sub



Dialog	Object
									
Application	 Dialogs	(Dialog)

Represents	a	built-in	dialog	box.	The	Dialog	object	is	a	member	of	the	Dialogs
collection.	The	Dialogs	collection	contains	all	the	built-in	dialog	boxes	in	Word.
You	cannot	create	a	new	built-in	dialog	box	or	add	one	to	the	Dialogs	collection.



Using	the	Dialog	Object

Use	Dialogs(index),	where	index	is	a	WdWordDialog	constant	that	identifies
the	dialog	box,	to	return	a	single	Dialog	object.	The	following	example	displays
and	carries	out	the	actions	taken	in	the	built-in	Open	dialog	box	(File	menu).

dlgAnswer	=	Dialogs(wdDialogFileOpen).Show

The	WdWordDialog	constants	are	formed	from	the	prefix	"wdDialog"	followed
by	the	name	of	the	menu	and	the	dialog	box.	For	example,	the	constant	for	the
Page	Setup	dialog	box	is	wdDialogFilePageSetup,	and	the	constant	for	the
New	dialog	box	is	wdDialogFileNew.	For	more	information	about	working	with
built-in	Word	dialog	boxes,	see	Displaying	built-in	Word	dialog	boxes.



Dialogs	Collection	Object
									
Application	 Dialogs	(Dialog)

A	collection	of	Dialog	objects	in	Word.	Each	Dialog	object	represents	a	built-in
Word	dialog	box.



Using	the	Dialogs	Collection

Use	the	Dialogs	property	to	return	the	Dialogs	collection.	The	following
example	displays	the	number	of	available	built-in	dialog	boxes.

MsgBox	Dialogs.Count

You	cannot	create	a	new	built-in	dialog	box	or	add	one	to	the	Dialogs	collection.
Use	Dialogs(index),	where	index	is	the	WdWordDialog	constant	that	identifies
the	dialog	box,	to	return	a	single	Dialog	object.	The	following	example	displays
the	built-in	Open	dialog	box.

dlgAnswer	=	Dialogs(wdDialogFileOpen).Show

For	more	information,	see	Displaying	built-in	Word	dialog	boxes.



Dictionaries	Collection	Object
									
Multiple	objects	 Dictionaries	(Dictionary)

A	collection	of	Dictionary	objects	that	includes	the	active	custom	spelling
dictionaries.



Using	the	Dictionaries	Collection

Use	the	CustomDictionaries	property	to	return	the	collection	of	currently	active
custom	dictionaries.	The	following	example	displays	the	names	of	all	the	active
custom	dictionaries.

For	Each	d	In	CustomDictionaries

				Msgbox	d.Name

Next	d

Use	the	Add	method	to	add	a	new	custom	dictionary	to	the	collection	of	active
custom	dictionaries.	If	there	isn't	a	file	with	the	name	specified	by	FileName,
Word	creates	it.	The	following	example	adds	"MyCustom.dic"	to	the	collection
of	custom	dictionaries.

CustomDictionaries.Add	FileName:="MyCustom.dic"

Use	the	ClearAll	method	to	unload	all	custom	dictionaries.	Note,	however,	that
this	method	doesn't	delete	the	dictionary	files.	After	you	use	this	method,	the
number	of	custom	dictionaries	in	the	collection	is	0	(zero).	The	following
example	clears	the	custom	dictionaries	and	creates	a	new	custom	dictionary	file.
The	new	dictionary	is	set	as	the	active	custom	dictionary,	to	which	Word	will
automatically	add	any	new	words	it	encounters.

With	CustomDictionaries

				.ClearAll

				.Add	FileName:=	"MyCustom.dic"

				.ActiveCustomDictionary	=	CustomDictionaries(1)

End	With



Remarks

You	set	the	custom	dictionary	to	which	new	words	are	added	by	using	the
ActiveCustomDictionary	property.	If	you	try	to	set	this	property	to	a	dictionary
that	isn't	a	custom	dictionary,	an	error	occurs.

The	Maximum	property	returns	the	maximum	number	of	simultaneous	custom
spelling	dictionaries	that	the	application	can	support.	For	Word,	this	maximum	is
10.



Dictionary	Object
									
Multiple	objects	 Dictionaries	(Dictionary)

Represents	a	dictionary.	Dictionary	objects	that	represent	custom	dictionaries
are	members	of	the	Dictionaries	collection.	Other	dictionary	objects	are
returned	by	properties	of	the	Languages	collection;	these	include	the
ActiveSpellingDictionary,	ActiveGrammarDictionary,
ActiveThesaurusDictionary,	and	ActiveHyphenationDictionary	properties.



Using	the	Dictionary	Object

Use	CustomDictionaries(index),	where	index	is	an	index	number	or	the	string
name	for	the	dictionary,	to	return	a	single	Dictionary	object	that	represents	a
custom	dictionary.	The	following	example	returns	the	first	dictionary	in	the
collection.

CustomDictionaries(1)

The	following	example	returns	the	dictionary	named	"MyDictionary."

CustomDictionaries("MyDictionary")

Use	the	ActiveCustomDictionary	property	to	set	the	custom	spelling	dictionary
in	the	collection	to	which	new	words	are	added.	If	you	try	to	set	this	property	to
a	dictionary	that's	not	a	custom	dictionary,	an	error	occurs.

Use	the	Add	method	to	add	a	new	dictionary	to	the	collection	of	active	custom
dictionaries.	If	there's	no	file	with	the	name	specified	by	FileName,	Word
creates	it.	The	following	example	adds	"MyCustom.dic"	to	the	collection	of
custom	dictionaries.

CustomDictionaries.Add	FileName:="MyCustom.dic"



Remarks

Use	the	Name	and	Path	properties	to	locate	any	of	the	dictionaries.	The
following	example	displays	a	message	box	that	contains	the	full	path	for	each
dictionary.

For	Each	d	in	CustomDictionaries

				Msgbox	d.Path	&	Application.PathSeparator	&	d.Name

Next	d

Use	the	LanguageSpecific	property	to	determine	whether	the	specified	custom
dictionary	can	have	a	specific	language	assigned	to	it	with	the	LanguageID
property.	If	the	dictionary	is	language	specific,	it	will	verify	only	text	that's
formatted	for	the	specified	language.

For	each	language	for	which	proofing	tools	are	installed,	you	can	use	the
ActiveGrammarDictionary,	ActiveHyphenationDictionary,
ActiveSpellingDictionary,	and	ActiveThesaurusDictionary	properties	to
return	the	corresponding	Dictionary	objects.	The	following	example	returns	the
full	path	for	the	active	spelling	dictionary	used	in	the	U.S.	English	version	of
Word.

Set	myspell	=	Languages(wdEnglishUS).ActiveSpellingDictionary

MsgBox	mySpell.Path	&	Application.PathSeparator	&	mySpell.Name

The	ReadOnly	property	returns	True	for	.lex	files	(built-in	proofing
dictionaries)	and	False	for	.dic	files	(custom	spelling	dictionaries).



Document	Object
									
Multiple	objects	 Documents	(Document)

Multiple	objects

Represents	a	document.	The	Document	object	is	a	member	of	the	Documents
collection.	The	Documents	collection	contains	all	the	Document	objects	that	are
currently	open	in	Word.



Using	the	Document	Object

Use	Documents(index),	where	index	is	the	document	name	or	index	number	to
return	a	single	Document	object.	The	following	example	closes	the	document
named	"Report.doc"	without	saving	changes.

Documents("Report.doc").Close	SaveChanges:=wdDoNotSaveChanges

The	index	number	represents	the	position	of	the	document	in	the	Documents
collection.	The	following	example	activates	the	first	document	in	the
Documents	collection.

Documents(1).Activate



Using	ActiveDocument

You	can	use	the	ActiveDocument	property	to	refer	to	the	document	with	the
focus.	The	following	example	uses	the	Activate	method	to	activate	the
document	named	"Document	1."	The	example	also	sets	the	page	orientation	to
landscape	mode	and	then	prints	the	document.

Documents("Document1").Activate

ActiveDocument.PageSetup.Orientation	=	wdOrientLandscape

ActiveDocument.PrintOut



Documents	Collection	Object
									
Application	 Documents	(Document)

Multiple	objects

A	collection	of	all	the	Document	objects	that	are	currently	open	in	Word.



Using	the	Documents	Collection

Use	the	Documents	property	to	return	the	Documents	collection.	The	following
example	displays	the	names	of	the	open	documents.

For	Each	aDoc	In	Documents

				aName	=	aName	&	aDoc.Name	&	vbCr

Next	aDoc

MsgBox	aName

Use	the	Add	method	to	create	a	new	empty	document	and	add	it	to	the
Documents	collection.	The	following	example	creates	a	new	document	based	on
the	Normal	template.

Documents.Add

Use	the	Open	method	to	open	a	file.	The	following	example	opens	the	document
named	"Sales.doc."

Documents.Open	FileName:="C:\My	Documents\Sales.doc"

Use	Documents(index),	where	index	is	the	document	name	or	index	number	to
return	a	single	Document	object.	The	following	instruction	closes	the	document
named	"Report.doc"	without	saving	changes.

Documents("Report.doc").Close	SaveChanges:=wdDoNotSaveChanges

The	index	number	represents	the	position	of	the	document	in	the	Documents
collection.	The	following	example	activates	the	first	document	in	the
Documents	collection.

Documents(1).Activate



Remarks

The	following	example	enumerates	the	Documents	collection	to	determine
whether	the	document	named	"Report.doc"	is	open.	If	this	document	is	contained
in	the	Documents	collection,	the	document	is	activated;	otherwise,	it's	opened.

For	Each	doc	In	Documents

				If	doc.Name	=	"Report.doc"	Then	found	=	True

Next	doc

If	found	<>	True	Then	

				Documents.Open	FileName:="C:\Documents\Report.doc"

Else

				Documents("Report.doc").Activate

End	If



DropCap	Object
									
Multiple	objects	 Paragraphs	(Paragraph)

DropCap

Represents	a	dropped	capital	letter	at	the	beginning	of	a	paragraph.	There	is	no
DropCaps	collection;	each	Paragraph	object	contains	only	one	DropCap
object.



Using	the	DropCap	Object

Use	the	DropCap	property	to	return	a	DropCap	object.	The	following	example
sets	a	dropped	capital	letter	for	the	first	letter	in	the	first	paragraph	in	the	active
document.

With	ActiveDocument.Paragraphs(1).DropCap

				.Enable

				.Position	=	wdDropNormal

End	With



DropDown	Object
									
Documents	(Document)	 FormFields	(FormField)

DropDown
ListEntries	(ListEntry)

Represents	a	drop-down	form	field	that	contains	a	list	of	items	in	a	form.



Using	the	DropDown	Object

Use	FormFields(index),	where	index	is	the	index	number	or	the	bookmark	name
associated	with	the	drop-down	form	field,	to	return	a	single	FormField	object.
Use	the	DropDown	property	with	the	FormField	object	to	return	a	DropDown
object.	The	following	example	selects	the	first	item	in	the	drop-down	form	field
named	"DropDown"	in	the	active	document.

ActiveDocument.FormFields("DropDown1").DropDown.Value	=	1

The	index	number	represents	the	position	of	the	form	field	in	the	FormFields
collection.	The	following	example	checks	the	type	of	the	first	form	field	in	the
active	document.	If	it's	a	drop-down	form	field,	the	second	item	is	selected.

If	ActiveDocument.FormFields(1).Type	=	wdFieldFormDropDown	Then

				ActiveDocument.FormFields(1).DropDown.Value	=	2

End	If

The	following	example	determines	whether	form	field	represented	by	ffield	is
a	valid	drop-down	form	field	before	adding	an	item	to	it.

Set	ffield	=	ActiveDocument.FormFields(1).DropDown

If	ffield.Valid	=	True	Then	

				ffield.ListEntries.Add	Name:="Hello"

Else

				MsgBox	"First	field	is	not	a	drop	down"

End	If

Use	the	Add	method	with	the	FormFields	collection	to	add	a	drop-down	form
field.	The	following	example	adds	a	drop-down	form	field	at	the	beginning	of
the	active	document	and	then	adds	items	to	the	form	field.

Set	ffield	=	ActiveDocument.FormFields.Add(	_

				Range:=ActiveDocument.Range(Start:=0,	End:=0),	_

				Type:=wdFieldFormDropDown)

With	ffield

				.Name	=	"Colors"

				With	.DropDown.ListEntries

								.Add	Name:="Blue"

								.Add	Name:="Green"

								.Add	Name:="Red"

				End	With



End	With



Email	Object
									
Documents	(Document)	 Email

EmailAuthor

Represents	an	e-mail	message.	There	is	no	Emails	collection;	each	Document
object	contains	only	one	Email	object.



Using	the	Email	Object

Use	the	Email	property	to	return	the	Email	object.	The	Email	object	and	its
properties	are	valid	only	if	the	active	document	is	an	unsent	forward,	reply,	or
new	e-mail	message.

This	example	returns	the	name	of	the	style	associated	with	the	current	e-mail
author.

MsgBox	ActiveDocument.Email	_

				.CurrentEmailAuthor.Style.NameLocal

Note			The	author	style	name	is	the	same	as	the	value	returned	by	the	UserName
property.



EmailAuthor	Object
									
Email	 EmailAuthor
					 Style

Represents	the	author	of	an	e-mail	message.	There	is	no	EmailAuthors
collection;	each	Email	object	contains	only	one	EmailAuthor	object.



Using	the	EmailAuthor	Object

Use	the	CurrentEmailAuthor	property	to	return	the	EmailAuthor	object.	The
EmailAuthor	object	and	its	properties	are	valid	only	if	the	active	document	is
an	unsent	forward,	reply,	or	new	e-mail	message.

This	example	returns	the	style	associated	with	the	current	author	for	unsent
replies,	forwards,	or	new	e-mail	messages,	and	displays	the	name	of	the	font
associated	with	this	style.

Set	MyEmailStyle	=	_

				ActiveDocument.Email.CurrentEmailAuthor.Style

Msgbox	MyEmailStyle.Font.Name



EmailOptions	Object
									
Application	 EmailOptions
					 Multiple	objects

Contains	global	application-level	attributes	used	by	Microsoft	Word	when	you
create	and	edit	e-mail	messages	and	replies.



Using	the	EmailOptions	Object

Use	the	EmailOptions	property	to	return	the	EmailOptions	object.

This	example	changes	the	font	color	of	the	default	style	used	to	compose	new	e-
mail	messages.

Application.EmailOptions.ComposeStyle.Font.Color	=	_

				wdColorBrightGreen

This	example	sets	Word	to	mark	comments	in	e-mail	messages	with	the	initials
"WK."

Application.EmailOptions.MarkCommentsWith	=	"WK"

Application.EmailOptions.MarkComments	=	True

This	example	changes	the	signatures	Word	appends	to	new	outgoing	e-mail
messages	and	e-mail	message	replies.

With	Application.EmailOptions.EmailSignature

				.NewMessageSignature	=	"Signature1"

				.ReplyMessageSignature	=	"Reply2"

End	With



EmailSignature	Object
									
EmailOptions	 EmailSignature

EmailSignatureEntries

Contains	information	about	the	e-mail	signatures	used	by	Microsoft	Word	when
you	create	and	edit	e-mail	messages	and	replies.	There	is	no	EmailSignatures
collection;	each	EmailOptions	object	contains	only	one	EmailSignature	object.



Using	the	EmailSignature	Object

Use	the	EmailSignature	property	to	return	the	EmailSignature	object.

This	example	changes	the	signatures	Word	appends	to	new	outgoing	e-mail
messages	and	e-mail	message	replies.

With	Application.EmailOptions.EmailSignature

				.NewMessageSignature	=	"Signature1"

				.ReplyMessageSignature	=	"Reply2"

End	With



EmailSignatureEntries	Collection
									
EmailSignature	 EmailSignatureEntries

EmailSignatureEntry

A	collection	of	EmailSignatureEntry	objects	that	represents	all	the	e-mail
signature	entries	available	to	Word.



Using	the	EmailSignatureEntries	collection

Use	the	EmailSignatureEntries	property	to	return	the	EmailSignatureEntries
collection.	Use	the	Add	method	of	the	EmailSignatureEntries	object	to	add	an
e-mail	signature	to	Word.		The	following	example	creates	a	new	e-mail	signature
entry	based	on	the	author's	name	and	a	selection	in	the	active	document,	and
then	it	sets	the	new	signature	entry	as	the	default	e-mail	signature	to	use	for	new
messages.

Sub	NewEmailSignature()

				With	Application.EmailOptions.EmailSignature

								.EmailSignatureEntries.Add	"Jeff	Smith",	Selection.Range

								.NewMessageSignature	=	"Jeff	Smith"

				End	With

End	Sub



EmailSignatureEntry	Object
									
EmailSignatureEntries	 EmailSignatureEntry

Represents	a	single	e-mail	signature	entry.	The	EmailSignatureEntry	object	is	a
member	of	the	EmailSignatureEntries	collection.	The	EmailSignatureEntries
collection	contains	all	the	e-mail	signature	entries	available	to	Word.



Using	the	EmailSignatureEntry	object

Use	EmailSignatureEntries(index),	where	index	is	the	e-mail	signature	entry
name	or	item	number,	to	return	a	single	EmailSignatureEntry	object.	You	must
match	exactly	the	spelling	(but	not	necessarily	the	capitalization)	of	the
name.	The	following	example	uses	the	Delete	method	to	delete	the	signature
entry	named	"Jeff	Smith."

Sub	DeleteSignature()

				Application.EmailOptions.EmailSignature	_

								.EmailSignatureEntries("jeff	smith").Delete

End	Sub



Endnote	Object
									
Multiple	objects	 Endnotes	(Endnote)

Range

Represents	an	endnote.	The	Endnote	object	is	a	member	of	the	Endnotes
collection.	The	Endnotes	collection	represents	the	endnotes	in	a	selection,
range,	or	document.



Using	the	Endnote	Object

Use	Endnotes(index),	where	index	is	the	index	number,	to	return	a	single
Endnote	object.	The	index	number	represents	the	position	of	the	endnote	in	the
selection,	range,	or	document.	The	following	example	applies	red	formatting	to
the	first	endnote	in	the	selection.

If	Selection.Endnotes.Count	>=	1	Then

				Selection.Endnotes(1).Reference.Font.ColorIndex	=	wdRed

End	If

Use	the	Add	method	to	add	an	endnote	to	the	Endnotes	collection.	The
following	example	adds	an	endnote	immediately	after	the	selection.

Selection.Collapse	Direction:=wdCollapseEnd

ActiveDocument.Endnotes.Add	Range:=Selection.Range	,	_

				Text:="The	Willow	Tree,	(Lone	Creek	Press,	1996)."



EndnoteOptions	Object
									
Multiple	objects	 EndnoteOptions

Represents	the	properties	assigned	to	a	range	or	selection	of	endnotes	in	a
document.	



Using	the	EndnoteOptions	object

Use	the	Range	or	Selection	object	to	return	an	EndnoteOptions	object.	Using
the	EndnoteOptions	object,	you	can	assign	different	endnote	properties	to
different	areas	of	a	document.	For	example,	you	may	want	endnotes	in	the
introduction	of	a	long	document	to	be	displayed	as	lowercase	Roman	numerals,
while	in	the	rest	of	your	document	they	are	displayed	as	Arabic	numerals.	The
following	example	uses	the	NumberingRule,	NumberStyle,	and
StartingNumber	properties	to	format	the	endnotes	in	the	first	section	ofthe
active	document.

Sub	BookIntro()

				Dim	rngIntro	As	Range

				'Sets	the	range	as	section	one	of	the	active	document

				Set	rngIntro	=	ActiveDocument.Sections(1).Range

				'Formats	the	EndnoteOptions	properties

				With	rngIntro.EndnoteOptions

								.NumberingRule	=	wdRestartSection

								.NumberStyle	=	wdNoteNumberStyleLowercaseRoman

								.StartingNumber	=	1

				End	With

End	Sub



Endnotes	Collection	Object
									
Multiple	objects	 Endnotes	(Endnote)

Range

A	collection	of	Endnote	objects	that	represents	all	the	endnotes	in	a	selection,
range,	or	document.



Using	the	Endnotes	Collection

Use	the	Endnotes	property	to	return	the	Endnotes	collection.	The	following
example	sets	the	location	of	endnotes	in	the	active	document.

ActiveDocument.Endnotes.Location	=	wdEndOfSection

Use	the	Add	method	to	add	an	endnote	to	the	Endnotes	collection.	The
following	example	adds	an	endnote	immediately	after	the	selection.

Selection.Collapse	Direction:=wdCollapseEnd

ActiveDocument.Endnotes.Add	Range:=Selection.Range	,	_

				Text:="The	Willow	Tree,	(Lone	Creek	Press,	1996)."

Use	Endnotes(index),	where	index	is	the	index	number,	to	return	a	single
Endnote	object.	The	index	number	represents	the	position	of	the	endnote	in	a
selection,	range,	or	document.	The	following	example	applies	red	formatting	to
the	first	endnote	in	the	selection.

If	Selection.Endnotes.Count	>=	1	Then

				Selection.Endnotes(1).Reference.Font.ColorIndex	=	wdRed

End	If



Envelope	Object
									
Documents	(Document)	 Envelope

Multiple	objects

Represents	an	envelope.	There	is	no	Envelopes	collection;	each	Document
object	contains	only	one	Envelope	object.



Using	the	Envelope	Object

Use	the	Envelope	property	to	return	the	Envelope	object.	The	following
example	adds	an	envelope	to	a	new	document	and	sets	the	distance	between	the
top	of	the	envelope	and	the	address	to	2.25	inches.

Set	myDoc	=	Documents.Add

addr	=	"Michael	Matey"	&	vbCr	&	"123	Skye	St."	_

				&	vbCr	&	"Redmond,	WA	98107"

retaddr	=	"Cora	Edmonds"	&	vbCr	&	"456	Erde	Lane"	&	vbCr	_

				&	"Redmond,	WA	98107"

With	myDoc.Envelope

				.Insert	Address:=addr,	ReturnAddress:=retaddr

				.AddressFromTop	=	InchesToPoints(2.25)

End	With



Remarks

The	Envelope	object	is	available	regardless	of	whether	an	envelope	has	been
added	to	the	specified	document.	However,	an	error	occurs	if	you	use	one	of	the
following	properties	when	an	envelope	hasn't	been	added	to	the	document:
Address,	AddressFromleft,	AddressFromTop,	FeedSource,	ReturnAddress,
ReturnAddressFromLeft,	ReturnAddressFromTop,	and	UpdateDocument.

The	following	example	demonstrates	how	to	use	the	On	Error	GoTo	statement
to	trap	the	error	that	occurs	if	an	envelope	hasn't	been	added	to	the	active
document.	If,	however,	an	envelope	has	been	added	to	the	document,	the
recipient	address	is	displayed.

On	Error	GoTo	ErrorHandler

MsgBox	ActiveDocument.Envelope.Address

ErrorHandler:

If	Err	=	5852	Then	MsgBox	_

				"Envelope	is	not	in	the	specified	document"

Use	the	Insert	method	to	add	an	envelope	to	the	specified	document.	Use	the
PrintOut	method	to	set	the	properties	of	an	envelope	and	print	it	without	adding
it	to	the	document.



Field	Object
									
Multiple	objects	 Fields	(Field)

Multiple	objects

Represents	a	field.	The	Field	object	is	a	member	of	the	Fields	collection.	The
Fields	collection	represents	the	fields	in	a	selection,	range,	or	document.



Using	the	Field	Object

Use	Fields(index),	where	index	is	the	index	number,	to	return	a	single	Field
object.	The	index	number	represents	the	position	of	the	field	in	the	selection,
range,	or	document.	The	following	example	displays	the	field	code	and	the	result
of	the	first	field	in	the	active	document.

If	ActiveDocument.Fields.Count	>=	1	Then

				MsgBox	"Code	=		"	&	ActiveDocument.Fields(1).Code	&	vbCr	_

								&	"Result	=		"	&	ActiveDocument.Fields(1).Result	&	vbCr

End	If

Use	the	Add	method	to	add	a	field	to	the	Fields	collection.	The	following
example	inserts	a	DATE	field	at	the	beginning	of	the	selection	and	then	displays
the	result.

Selection.Collapse	Direction:=wdCollapseStart

Set	myField	=	ActiveDocument.Fields.Add(Range:=Selection.Range,	_

				Type:=wdFieldDate)

MsgBox	myField.Result

The	wdFieldDate	constant	is	part	of	the	WdFieldType	group	of	constants,
which	includes	all	the	various	field	types.



Fields	Collection	Object
									
Multiple	objects	 Fields	(Field)

Multiple	objects

A	collection	of	Field	objects	that	represent	all	the	fields	in	a	selection,	range,	or
document.



Using	the	Fields	Collection

Use	the	Fields	property	to	return	the	Fields	collection.	The	following	example
updates	all	the	fields	in	the	selection.

Selection.Fields.Update

Use	the	Add	method	to	add	a	field	to	the	Fields	collection.	The	following
example	inserts	a	DATE	field	at	the	beginning	of	the	selection	and	then	displays
the	result.

Selection.Collapse	Direction:=wdCollapseStart

Set	myField	=	ActiveDocument.Fields.Add(Range:=Selection.Range,	_

				Type:=wdFieldDate)

MsgBox	myField.Result

Use	Fields(index),	where	index	is	the	index	number,	to	return	a	single	Field
object.	The	index	number	represents	the	position	of	the	field	in	the	selection,
range,	or	document.	The	following	example	displays	the	field	code	and	the	result
of	the	first	field	in	the	active	document.

If	ActiveDocument.Fields.Count	>=	1	Then

				MsgBox	"Code	=		"	&	ActiveDocument.Fields(1).Code	&	vbCr	_

								&	"Result	=		"	&	ActiveDocument.Fields(1).Result	&	vbCr

End	If



Remarks

Use	the	Fields	property	with	a	MailMerge	object	to	return	the
MailMergeFields	collection.

The	Count	property	for	this	collection	in	a	document	returns	the	number	of
items	in	the	main	story	only.	To	count	items	in	other	stories	use	the	collection
with	the	Range	object.



FileConverter	Object
									
Application	 FileConverters	(FileConverter)

Represents	a	file	converter	that's	used	to	open	or	save	files.	The	FileConverter
object	is	a	member	of	the	FileConverters	collection.	The	FileConverters
collection	contains	all	the	installed	file	converters	for	opening	and	saving	files.



Using	the	FileConverter	Object

Use	FileConverters(index),	where	index	is	a	class	name	or	index	number,	to
return	a	single	FileConverter	object.	The	following	example	displays	the
extensions	associated	with	the	Microsoft	Excel	worksheet	converter.

MsgBox	FileConverters("MSBiff").Extensions

The	index	number	represents	the	position	of	the	file	converter	in	the
FileConverters	collection.	The	following	example	displays	the	format	name	of
the	first	file	converter.

MsgBox	FileConverters(1).FormatName

You	cannot	create	a	new	file	converter	or	add	one	to	the	FileConverters
collection.	FileConverter	objects	are	added	during	installation	of	Microsoft
Office	or	by	installing	supplemental	file	converters.	Use	either	the	CanSave	or
CanOpen	property	to	determine	whether	a	FileConverter	object	can	be	used	to
open	or	save	document.



Remarks

File	converters	for	saving	documents	are	listed	in	the	Save	As	dialog	box.	File
converters	for	opening	documents	appear	in	a	dialog	box	if	the	Confirm
conversion	at	Open	check	box	is	selected	on	the	General	tab	in	the	Options
dialog	box	(Tools	menu).



FileConverters	Collection	Object
									
Application	 FileConverters	(FileConverter)

A	collection	of	FileConverter	objects	that	represent	all	the	file	converters
available	for	opening	and	saving	files.



Using	the	FileConverters	Collection

Use	the	FileConverters	property	to	return	the	FileConverters	collection.	The
following	example	determines	whether	a	WordPerfect	6.0	converter	is	available.

For	Each	conv	In	FileConverters

				If	conv.FormatName	=	"WordPerfect	6.x"	Then

								MsgBox	"WordPerfect	6.0	converter	is	installed"

				End	if

Next	conv

The	Add	method	isn't	available	for	the	FileConverters	collection.
FileConverter	objects	are	added	during	installation	of	Microsoft	Office	or	by
installing	supplemental	converters.

Use	FileConverters(index),	where	index	is	a	class	name	or	index	number,	to
return	a	single	FileConverter	object.	The	following	example	displays	the
extensions	associated	wtih	the	Microsoft	Excel	worksheet	converter.

MsgBox	FileConverters("MSBiff").Extensions

The	index	number	represents	the	position	of	the	file	converter	in	the
FileConverters	collection.	The	following	example	displays	the	format	name	of
the	first	file	converter.

MsgBox	FileConverters(1).FormatName



Remarks

File	converters	for	saving	documents	are	listed	in	the	Save	As	dialog	box.	File
converters	for	opening	documents	appear	in	a	dialog	box	if	the	Confirm
conversion	at	Open	check	box	is	selected	on	the	General	tab	in	the	Options
dialog	box	(Tools	menu).



FillFormat	Object
									
Shapes	(Shape)	 FillFormat

ColorFormat

Represents	fill	formatting	for	a	shape.	A	shape	can	have	a	solid,	gradient,
texture,	pattern,	picture,	or	semi-transparent	fill.



Using	the	FillFormat	Object

Use	the	Fill	property	to	return	a	FillFormat	object.	The	following	example	adds
a	rectangle	to	the	active	document	and	then	sets	the	gradient	and	color	for	the
rectangle's	fill.

With	ActiveDocument.Shapes	_

								.AddShape(msoShapeRectangle,	90,	90,	90,	80).Fill

				.ForeColor.RGB	=	RGB(0,	128,	128)

				.OneColorGradient	msoGradientHorizontal,	1,	1

End	With



Remarks

Many	of	the	properties	of	the	FillFormat	object	are	read-only.	To	set	one	of
these	properties,	you	have	to	apply	the	corresponding	method.



Find	Object
									
Multiple	objects	 Find

Multiple	objects

Represents	the	criteria	for	a	find	operation.	The	properties	and	methods	of	the
Find	object	correspond	to	the	options	in	the	Find	and	Replace	dialog	box.



Using	the	Find	Object

Use	the	Find	property	to	return	a	Find	object.	The	following	example	finds	and
selects	the	next	occurrence	of	the	word	"hi."

With	Selection.Find

				.ClearFormatting

				.Text	=	"hi"

				.Execute	Forward:=True

End	With

The	following	example	finds	all	occurrences	of	the	word	"hi"	in	the	active
document	and	replaces	the	word	with	"hello."

Set	myRange	=	ActiveDocument.Content

myRange.Find.Execute	FindText:="hi",	ReplaceWith:="hello",	_

				Replace:=wdReplaceAll



Remarks

If	you've	gotten	to	the	Find	object	from	the	Selection	object,	the	selection	is
changed	when	text	matching	the	find	criteria	is	found.	The	following	example
selects	the	next	occurrence	of	the	word	"blue."

Selection.Find.Execute	FindText:="blue",	Forward:=True

If	you've	gotten	to	the	Find	object	from	the	Range	object,	the	selection	isn't
changed	when	text	matching	the	find	criteria	is	found,	but	the	Range	object	is
redefined.	The	following	example	locates	the	first	occurrence	of	the	word	"blue"
in	the	active	document.	If	"blue"	is	found	in	the	document,	myRange	is	redefined
and	bold	formatting	is	applied	to	"blue."

Set	myRange	=	ActiveDocument.Content

myRange.Find.Execute	FindText:="blue",	Forward:=True

If	myRange.Find.Found	=	True	Then	myRange.Bold	=	True



FirstLetterException	Object
									
Application	 AutoCorrect

FirstLetterExceptions	(FirstLetterException)

Represents	an	abbreviation	excluded	from	automatic	correction.	The
FirstLetterException	object	is	a	member	of	the	FirstLetterExceptions
collection.	The	FirstLetterExceptions	collection	includes	all	the	excluded
abbreviations.

Note			The	first	character	following	a	period	is	automatically	capitalized	when
the	CorrectSentenceCaps	property	is	set	to	True.	The	character	you	type
following	an	item	in	the	FirstLetterExceptions	collection	isn't	capitalized.



Using	the	FirstLetterException	Object

Use	FirstLetterExceptions(index),	where	index	is	the	abbreviation	or	the	index
number,	to	return	a	single	FirstLetterException	object.	The	following	example
deletes	the	abbreviation	"appt."	from	the	FirstLetterExceptions	collection.

AutoCorrect.FirstLetterExceptions("appt.").Delete

The	following	example	displays	the	name	of	the	first	item	in	the
FirstLetterExceptions	collection.

MsgBox	AutoCorrect.FirstLetterExceptions(1).Name

Use	the	Add	method	to	add	an	abbreviation	to	the	list	of	first-letter	exceptions.
The	following	example	adds	the	abbreviation	"addr."	to	this	list.

AutoCorrect.FirstLetterExceptions.Add	Name:="addr."



FirstLetterExceptions	Collection
Object
									
Application	 AutoCorrect

FirstLetterExceptions	(FirstLetterException)

A	collection	of	FirstLetterException	objects	that	represent	the	abbreviations
excluded	from	automatic	correction.

Note			The	first	character	following	a	period	is	automatically	capitalized	when
the	CorrectSentenceCaps	property	is	set	to	True.	The	FirstLetterExceptions
collection	includes	exceptions	to	this	behavior	(for	example,	abbreviations	such
as	"addr."	and	"apt.").



Using	the	FirstLetterExceptions	Collection

Use	the	FirstLetterExceptions	property	to	return	the	FirstLetterExceptions
collection.	The	following	example	deletes	the	abbreviation	"addr."	if	it's	included
in	the	FirstLetterExceptions	collection.

For	Each	aExcept	In	AutoCorrect.FirstLetterExceptions

				If	aExcept.Name	=	"addr."	Then	aExcept.Delete

Next	aExcept

The	following	example	creates	a	new	document	and	inserts	all	the	AutoCorrect
first-letter	exceptions	into	it.

Documents.Add

For	Each	aExcept	In	AutoCorrect.FirstLetterExceptions

				With	Selection

								.InsertAfter	aExcept.Name

								.InsertParagraphAfter

								.Collapse	Direction:=wdCollapseEnd

				End	With

Next	aExcept

Use	the	Add	method	to	add	an	abbreviation	to	the	list	of	first-letter	exceptions.
The	following	example	adds	the	abbreviation	"addr."	to	this	list.

AutoCorrect.FirstLetterExceptions.Add	Name:="addr."

Use	FirstLetterExceptions(index),	where	index	is	the	abbreviation	or	the	index
number,	to	return	a	single	FirstLetterException	object.	The	following	example
deletes	the	abbreviation	"appt."	from	the	FirstLetterExceptions	collection.

AutoCorrect.FirstLetterExceptions("appt.").Delete

The	following	example	displays	the	name	of	the	first	item	in	the
FirstLetterExceptions	collection.

MsgBox	AutoCorrect.FirstLetterExceptions(1).Name





Font	Object
									
Multiple	objects	 Font

Multiple	objects

Contains	font	attributes	(font	name,	font	size,	color,	and	so	on)	for	an	object.



Using	the	Font	Object

Use	the	Font	property	to	return	the	Font	object.	The	following	instruction
applies	bold	formatting	to	the	selection.

Selection.Font.Bold	=	True

The	following	example	formats	the	first	paragraph	in	the	active	document	as
24point	Arial	and	italic.

Set	myRange	=	ActiveDocument.Paragraphs(1).Range

With	myRange.Font

				.Bold	=	True

				.Name	=	"Arial"

				.Size	=	24

End	With

The	following	example	changes	the	formatting	of	the	Heading	2	style	in	the
active	document	to	Arial	and	bold.

With	ActiveDocument.Styles(wdStyleHeading2).Font

				.Name	=	"Arial"

				.Italic	=	True

End	With



Remarks

You	can	use	the	New	keyword	to	create	a	new,	stand-alone	Font	object.	The
following	example	creates	a	Font	object,	sets	some	formatting	properties,	and
then	applies	the	Font	object	to	the	first	paragraph	in	the	active	document.

Set	myFont	=	New	Font

myFont.Bold	=	True

myFont.Name	=	"Arial"

ActiveDocument.Paragraphs(1).Range.Font	=	myFont

You	can	also	duplicate	a	Font	object	by	using	the	Duplicate	property.	The
following	example	creates	a	new	character	style	with	the	character	formatting
from	the	selection	as	well	as	italic	formatting.	The	formatting	of	the	selection
isn't	changed.

Set	aFont	=	Selection.Font.Duplicate

aFont.Italic	=	True

ActiveDocument.Styles.Add(Name:="Italics",	_

				Type:=wdStyleTypeCharacter).Font	=	aFont



FontNames	Object
									
Application	 FontNames

Represents	a	list	of	the	names	of	all	the	available	fonts.



Using	the	FontNames	Object

Use	the	FontNames,	LandscapeFontNames,	or	PortraitFontNames	property
to	return	the	FontNames	object.	The	following	example	displays	the	number	of
portrait	fonts	available.

MsgBox	PortraitFontNames.Count	&	"	fonts	available"

This	example	lists	all	the	font	names	in	the	FontNames	object	at	the	end	of	the
active	document.

For	Each	aFont	In	FontNames

				ActiveDocument.Range.InsertAfter	aFont	&	vbCr

Next	aFont

Use	FontNames(index),	where	index	is	the	index	number,	to	return	the	name	of
a	font.	The	following	example	displays	the	first	font	name	in	the	FontNames
object.

MsgBox	FontNames(1)



Remarks

You	cannot	add	names	to	or	remove	names	from	the	list	of	available	font	names.



Footnote	Object
									
Multiple	objects	 Footnotes	(Footnote)

Range

Represents	a	footnote	positioned	at	the	bottom	of	the	page	or	beneath	text.	The
Footnote	object	is	a	member	of	the	Footnotes	collection.	The	Footnotes
collection	represents	the	footnotes	in	a	selection,	range,	or	document.



Using	the	Footnote	Object

Use	Footnotes(index),	where	index	is	the	index	number,	to	return	a	single
Footnote	object.	The	index	number	represents	the	position	of	the	footnote	in	the
selection,	range,	or	document.	The	following	example	applies	red	formatting	to
the	first	footnote	in	the	selection.

If	Selection.Footnotes.Count	>=	1	Then

				Selection.Footnotes(1).Reference.Font.ColorIndex	=	wdRed

End	If

Use	the	Add	method	to	add	a	footnote	to	the	Footnotes	collection.	The
following	example	inserts	an	automatically	numbered	footnote	immediately	after
the	selection.

Selection.Collapse	Direction:=wdCollapseEnd

ActiveDocument.Footnotes.Add	Range:=Selection.Range	,	_

				Text:="The	Willow	Tree,	(Lone	Creek	Press,	1996)."



Remarks

Footnotes	positioned	at	the	end	of	a	document	or	section	are	considered	endnotes
and	are	included	in	the	Endnotes	collection.



FootnoteOptions	Object
									
Multiple	objects	 FootnoteOptions

Represents	the	properties	assigned	to	a	range	or	selection	of	footnotes	in	a
document.



Using	the	FootnoteOptions	object

Use	the	Range	or	Selection	object	to	return	a	FootnoteOptions	object.	Using
the	FootnoteOptions	object,	you	can	assign	different	footnote	properties	to
different	areas	of	a	document.	For	example,	you	may	want	footnotes	in	the
introduction	of	a	long	document	to	be	displayed	as	lowercase	letters,	while	in	the
rest	of	your	document	they	are	displayed	as	asterisks.	The	following	example
uses	the	NumberingRule,	NumberStyle,	and	StartingNumber	properties	to
format	the	footnotes	in	the	first	section	of	the	active	document.

Sub	BookIntro()

				Dim	rngIntro	As	Range

				'Sets	the	range	as	section	one	of	the	active	document

				Set	rngIntro	=	ActiveDocument.Sections(1).Range

				'Formats	the	EndnoteOptions	properties

				With	rngIntro.FootnoteOptions

								.NumberingRule	=	wdRestartPage

								.NumberStyle	=	wdNoteNumberStyleLowercaseLetter

								.StartingNumber	=	1

				End	With

End	Sub



Footnotes	Collection	Object
									
Multiple	objects	 Footnotes	(Footnote)

Range

A	collection	of	Footnote	objects	that	represent	all	the	footnotes	in	a	selection,
range,	or	document.



Using	the	Footnotes	Collection

Use	the	Footnotes	property	to	return	the	Footnotes	collection.	The	following
example	changes	all	of	the	footnotes	in	the	active	document	to	endnotes.

ActiveDocument.Footnotes.SwapWithEndnotes

Use	the	Add	method	to	add	a	footnote	to	the	Footnotes	collection.	The
following	example	adds	a	footnote	immediately	after	the	selection.

Selection.Collapse	Direction:=wdCollapseEnd

ActiveDocument.Footnotes.Add	Range:=Selection.Range	,	_

				Text:="The	Willow	Tree,	(Lone	Creek	Press,	1996)."

Use	Footnotes(index),	where	index	is	the	index	number,	to	return	a	single
Footnote	object.	The	index	number	represents	the	position	of	the	footnote	in	the
selection,	range,	or	document.	The	following	example	applies	red	formatting	to
the	first	footnote	in	the	selection.

If	Selection.Footnotes.Count	>=	1	Then

				Selection.Footnotes(1).Reference.Font.ColorIndex	=	wdRed

End	If



Remarks

Footnotes	positioned	at	the	end	of	a	document	or	section	are	considered	endnotes
and	are	included	in	the	Endnotes	collection.



FormField	Object
									
Multiple	objects	 FormFields	(FormField)

Multiple	objects

Represents	a	single	form	field.	The	FormField	object	is	a	member	of	the
FormFields	collection.



Using	the	FormField	Object

Use	FormFields(index),	where	index	is	a	bookmark	name	or	index	number,	to
return	a	single	FormField	object.	The	following	example	sets	the	result	of	the
Text1	form	field	to	"Don	Funk."

ActiveDocument.FormFields("Text1").Result	=	"Don	Funk"

The	index	number	represents	the	position	of	the	form	field	in	the	selection,
range,	or	document.	The	following	example	displays	the	name	of	the	first	form
field	in	the	selection.

If	Selection.FormFields.Count	>=	1	Then

				MsgBox	Selection.FormFields(1).Name

End	If

Use	the	Add	method	with	the	FormFields	object	to	add	a	form	field.	The
following	example	adds	a	check	box	at	the	beginning	of	the	active	document	and
then	selects	the	check	box.

Set	ffield	=	ActiveDocument.FormFields.Add(	_

				Range:=ActiveDocument.Range(Start:=0,	End:=0),	_

				Type:=wdFieldFormCheckBox)

ffield.CheckBox.Value	=	True



Remarks

Use	the	CheckBox,	DropDown,	and	TextInput	properties	with	the	FormField
object	to	return	the	CheckDown,	DropDown,	and	TextInput	objects.	The
following	example	selects	the	check	box	named	"Check1."

ActiveDocument.FormFields("Check1").CheckBox.Value	=	True



FormFields	Collection	Object
									
Multiple	objects	 FormFields	(FormField)

Multiple	objects

A	collection	of	FormField	objects	that	represent	all	the	form	fields	in	a
selection,	range,	or	document.



Using	the	FormFields	Collection

Use	the	FormFields	property	to	return	the	FormFields	collection.	The
following	example	counts	the	number	of	text	box	form	fields	in	the	active
document.

For	Each	aField	In	ActiveDocument.FormFields

				If	aField.Type	=	wdFieldFormTextInput	Then	count	=	count	+	1

Next	aField

MsgBox	"There	are	"	&	count	&	"	text	boxes	in	this	document"

Use	the	Add	method	with	the	FormFields	object	to	add	a	form	field.	The
following	example	adds	a	check	box	at	the	beginning	of	the	active	document	and
then	selects	the	check	box.

Set	ffield	=	ActiveDocument.FormFields.Add(	_

				Range:=ActiveDocument.Range(Start:=0,End:=0),	_

				Type:=wdFieldFormCheckBox)

ffield.CheckBox.Value	=	True

Use	FormFields(index),	where	index	is	a	bookmark	name	or	index	number,	to
return	a	single	FormField	object.	The	following	example	sets	the	result	of	the
Text1	form	field	to	"Don	Funk."

ActiveDocument.FormFields("Text1").Result	=	"Don	Funk"

The	index	number	represents	the	position	of	the	form	field	in	the	selection,
range,	or	document.	The	following	example	displays	the	name	of	the	first	form
field	in	the	selection.

If	Selection.FormFields.Count	>=	1	Then

				MsgBox	Selection.FormFields(1).Name

End	If



Frame	Object
									
Multiple	objects	 Frames	(Frame)

Multiple	objects

Represents	a	frame.	The	Frame	object	is	a	member	of	the	Frames	collection.
The	Frames	collection	includes	all	frames	in	a	selection,	range,	or	document.



Using	the	Frame	Object

Use	Frames(index),	where	index	is	the	index	number,	to	return	a	single	Frame
object.	The	index	number	represents	the	position	of	the	frame	in	the	selection,
range,	or	document.	The	following	example	allows	text	to	wrap	around	the	first
frame	in	the	active	document.

ActiveDocument.Frames(1).TextWrap	=	True

Use	the	Add	method	to	add	a	frame	around	a	range.	The	following	example	adds
a	frame	around	the	first	paragraph	in	the	active	document.

ActiveDocument.Frames.Add	_

				Range:=ActiveDocument.Paragraphs(1).Range



Remarks

You	can	wrap	text	around	Shape	or	ShapeRange	objects	by	using	the
WrapFormat	property.	You	can	position	a	Shape	or	ShapeRange	object	by
using	the	Top	and	Left	properties.



Frames	Collection	Object
									
Multiple	objects	 Frames	(Frame)

Multiple	objects

A	collection	of	Frame	objects	in	a	selection,	range,	or	document.



Using	the	Frames	Collection

Use	the	Frames	property	to	return	the	Frames	collection.	The	following
example	removes	borders	from	all	frames	in	the	active	document.

For	Each	aFrame	In	ActiveDocument.Frames

				aFrame.Borders.Enable	=	False

Next	aFrame

Use	the	Add	method	to	add	a	frame	around	a	range.	The	following	example	adds
a	frame	around	the	first	paragraph	in	the	active	document.

ActiveDocument.Frames.Add	_

				Range:=ActiveDocument.Paragraphs(1).Range

Use	Frames(index),	where	index	is	the	index	number,	to	return	a	single	Frame
object.	The	index	number	represents	the	position	of	the	frame	in	the	selection,
range,	or	document.	The	following	example	causes	text	to	wrap	around	the	first
frame	in	the	first	section	of	the	active	document.

ActiveDocument.Sections(1).Range.Frames(1).TextWrap	=	True



Remarks

You	can	wrap	text	around	Shape	or	ShapeRange	objects	by	using	the
WrapFormat	property.	You	can	position	a	Shape	or	ShapeRange	object	by
using	the	Top	and	Left	properties.

The	Count	property	for	this	collection	in	a	document	returns	the	number	of
items	in	the	main	story	only.	To	count	items	in	other	stories	use	the	collection
with	the	Range	object.



Frameset	Object
									
Multiple	objects	 Frameset

Represents	an	entire	frames	page	or	a	single	frame	on	a	frames	page.	There	is	no
Framesets	collection;	each	Document	object	or	Pane	object	contains	only	one
Frameset	object.



Using	the	Frameset	Object

Use	the	Frameset	property	to	return	the	Frameset	object.	For	properties	or
methods	that	affect	all	frames	on	a	frames	page,	use	the	Frameset	object	from
the	Document	object	(ActiveWindow.Document.Frameset).	For	properties	or
methods	that	affect	individual	frames	on	a	frames	page,	use	the	Frameset	object
from	the	Pane	object	(ActiveWindow.ActivePane.Frameset).

This	example	opens	a	file	named	"Proposal.doc,"	creates	a	frames	page	based	on
the	file,	and	adds	a	frame	(on	the	left	side	of	the	page)	containing	a	table	of
contents	for	the	file.

Documents.Open	"C:\My	Documents\proposal.doc"

ActiveDocument.ActiveWindow.ActivePane.NewFrameset

ActiveDocument.ActiveWindow.ActivePane.TOCInFrameset

This	example	adds	a	new	frame	to	the	right	of	the	specified	frame.

ActiveDocument.ActiveWindow.ActivePane.Frameset	_

				.AddNewFrame	wdFramesetNewRight

This	example	sets	the	name	of	the	third	child	Frameset	object	of	the	frames
page	to	"BottomFrame."

ActiveWindow.Document.Frameset	_

				.ChildFramesetItem(3).FrameName	=	"BottomFrame"

This	example	links	the	specified	frame	to	a	local	file	called	"Order.htm."	It	sets
the	frame	to	be	resizable,	to	appear	with	scrollbars	in	a	Web	browser,	and	to	be
25%	as	high	as	the	active	window.

With	ActiveDocument.ActiveWindow.ActivePane.Frameset

				.FrameDefaultURL	=	"C:\My	Documents\order.htm"

				.FrameLinkToFile	=	True

				.FrameResizable	=	True

				.FrameScrollbarType	=	wdScrollbarTypeYes

				.HeightType	=	wdFramesetSizeTypePercent

				.Height	=	25

End	With

This	example	sets	Microsoft	Word	to	display	frame	borders	in	the	specified



frames	page.

ActiveDocument.ActiveWindow.ActivePane.Frameset	_

				.FrameDisplayBorders	=	True

This	example	sets	the	frame	borders	on	the	frames	page	to	be	6	points	wide	and
tan.

With	ActiveWindow.Document.Frameset

				.FramesetBorderColor	=	wdColorTan

				.FramesetBorderWidth	=	6

End	With



Remarks

For	more	information	on	creating	frames	pages,	see	Creating	frames	pages.



FreeformBuilder	Object
									
Multiple	objects	 FreeformBuilder

Shape

Represents	the	geometry	of	a	freeform	while	it's	being	built.



Using	the	FreeformBuilder	Object

Use	the	BuildFreeform	method	to	return	a	FreeformBuilder	object.	Use	the
AddNodes	method	to	add	nodes	to	the	freeform.	Use	the	ConvertToShape
method	to	create	the	shape	defined	in	the	FreeformBuilder	object	and	add	it	to
the	Shapes	collection.	The	following	example	adds	a	freeform	with	four
segments	to	the	active	document.

With	ActiveDocument.Shapes	_

								.BuildFreeform(msoEditingCorner,	360,	200)

				.AddNodes	msoSegmentCurve,	msoEditingCorner,	_

								380,	230,	400,	250,	450,	300

				.AddNodes	msoSegmentCurve,	msoEditingAuto,	480,	200

				.AddNodes	msoSegmentLine,	msoEditingAuto,	480,	400

				.AddNodes	msoSegmentLine,	msoEditingAuto,	360,	200

				.ConvertToShape

End	With



Global	Object
									
Global	 Multiple	objects

Contains	top-level	properties	and	methods	that	don't	need	to	be	preceded	by	the
Application	property.	For	example,	the	following	two	statements	have	the	same
result.

Documents(1).Content.Bold	=	True

Application.Documents(1).Content.Bold	=	True



GroupShapes	Collection	Object
									
Shapes	(Shape)	 GroupShapes	(Shape)

Represents	the	individual	shapes	within	a	grouped	shape.	Each	shape	is
represented	by	a	Shape	object.	Using	the	Item	method	with	this	object,	you	can
work	with	single	shapes	within	a	group	without	having	to	ungroup	them.



Using	The	Groupshapes	Collection

Use	the	GroupItems	property	to	return	the	GroupShapes	collection.	Use
GroupItems(index),	where	index	is	the	number	of	the	individual	shape	within
the	grouped	shape,	to	return	a	single	shape	from	the	GroupShapes	collection.
The	following	example	adds	three	triangles	to	the	active	document,	groups	them,
sets	a	color	for	the	entire	group,	and	then	changes	the	color	for	the	second
triangle	only.

With	ActiveDocument.Shapes

				.AddShape(msoShapeIsoscelesTriangle,	_

								10,	10,	100,	100).Name	=	"shpOne"

				.AddShape(msoShapeIsoscelesTriangle,	_

								150,	10,	100,	100).Name	=	"shpTwo"

				.AddShape(msoShapeIsoscelesTriangle,	_

								300,	10,	100,	100).Name	=	"shpThree"

				With	.Range(Array("shpOne",	"shpTwo",	"shpThree")).Group

								.Fill.PresetTextured	msoTextureBlueTissuePaper

								.GroupItems(2).Fill.PresetTextured	msoTextureGreenMarble

				End	With

End	With



HangulAndAlphabetException
Object
									

HangulAndAlphabetExceptions	 HangulAndAlphabetException

Represents	a	single	Hangul	or	alphabet	AutoCorrect	exception.	The
HangulAndAlphabetException	object	is	a	member	of	the
HangulAndAlphabetExceptions	collection.	The
HangulAndAlphabetExceptions	collection	includes	all	Hangul	and	alphabet
AutoCorrect	exceptions	and	corresponds	to	the	items	listed	on	the	Korean	tab	in
the	AutoCorrect	Exceptions	dialog	box	(AutoCorrect	command,	Tools	menu).



Using	the	HangulAndAlphabetException	Object

Use	HangulAndAlphabetExceptions(index),	where	index	is	the	Hangul	or
alphabet	AutoCorrect	exception	name	or	the	index	number,	to	return	a	single
HangulAndAlphabetException	object.	The	following	example	deletes	the
alphabet	AutoCorrect	exception	named	"hello."

AutoCorrect.HangulAndAlphabetExceptions("hello").Delete

The	index	number	represents	the	position	of	the	Hangul	or	alphabet	AutoCorrect
exception	in	the	HangulAndAlphabetExceptions	collection.	The	following
example	displays	the	name	of	the	first	item	in	the
HangulAndAlphabetExceptions	collection.

MsgBox	AutoCorrect.HangulAndAlphabetExceptions(1).Name

If	the	value	of	the	HangulAndAlphabetAutoAdd	property	is	True,	words	are
automatically	added	to	the	list	of	Hangul	and	alphabet	AutoCorrect	exceptions.
Use	the	Add	method	to	add	an	item	to	the	HangulAndAlphabetExceptions
collection.	The	following	example	adds	"goodbye"	to	the	list	of	alphabet
AutoCorrect	exceptions.

AutoCorrect.HangulAndAlphabetExceptions.Add	Name:="goodbye"



Remarks

For	more	information	on	using	Word	with	East	Asian	languages,	see	Word
features	for	East	Asian	languages.

mk:@MSITStore:wdmain10.chm::/html/wdrefFeaturesAvailableInWordWhenAsianLanguagesAreEnabled.htm


HangulAndAlphabetExceptions
Collection	Object
									

AutoCorrect	 HangulAndAlphabetExceptions
HangulAndAlphabetException

A	collection	of	HangulAndAlphabetException	objects	that	represents	all
Hangul	and	alphabet	AutoCorrect	exceptions.	This	list	corresponds	to	the	list	of
AutoCorrect	exceptions	on	the	Korean	tab	in	the	AutoCorrect	Exceptions
dialog	box	(AutoCorrect	command,	Tools	menu).



Using	the	HangulAndAlphabetExceptions	Collection

Use	the	HangulAndAlphabetExceptions	property	to	return	the
HangulAndAlphabetExceptions	collection.	The	following	example	displays
the	items	in	this	collection.

For	Each	aHan	In	AutoCorrect.HangulAndAlphabetExceptions

				MsgBox	aHan.Name

Next	aHan

If	the	value	of	the	HangulAndAlphabetAutoAdd	property	is	True,	words	are
automatically	added	to	the	list	of	Hangul	and	alphabet	AutoCorrect	exceptions.
Use	the	Add	method	to	add	an	item	to	the	HangulAndAlphabetExceptions
collection.	The	following	example	adds	"hello"	to	the	list	of	alphabet
AutoCorrect	exceptions.

AutoCorrect.HangulAndAlphabetExceptions.Add	Name:="hello"

Use	HangulAndAlphabetExceptions(index),	where	index	is	the	Hangul	or
alphabet	AutoCorrect	exception	name	or	the	index	number,	to	return	a	single
HangulAndAlphabetException	object.	The	following	example	deletes	the
alphabet	AutoCorrect	exception	named	"goodbye."

AutoCorrect.HangulAndAlphabetExceptions("goodbye").Delete

The	index	number	represents	the	position	of	the	hangul	or	alphabet	AutoCorrect
exception	in	the	HangulAndAlphabetExceptions	collection.	The	following
example	displays	the	name	of	the	first	item	in	the
HangulAndAlphabetExceptions	collection.

MsgBox	AutoCorrect.HangulAndAlphabetExceptions(1).Name



Remarks

For	more	information	on	using	Word	with	East	Asian	languages,	see	Word
features	for	East	Asian	languages.

mk:@MSITStore:wdmain10.chm::/html/wdrefFeaturesAvailableInWordWhenAsianLanguagesAreEnabled.htm


HangulHanjaConversionDictionaries
Collection	Object
									
Multiple	objects	 HangulHanjaConversionDictionaries

Dictionary

A	collection	of	Dictionary	objects	that	includes	the	active	custom	Hangul-Hanja
conversion	dictionaries.



Using	the	HangulHanjaConversionDictionaries
Collection

Use	the	HangulHanjaDictionaries	property	to	return	the	collection	of	currently
active	custom	conversion	dictionaries.	The	following	example	displays	the
names	of	all	the	active	custom	conversion	dictionaries.

For	Each	d	In	HangulHanjaDictionaries

				Msgbox	d.Name

Next	d

Use	the	Add	method	to	add	a	new	custom	conversion	dictionary	to	the	collection
of	active	custom	conversion	dictionaries.	If	there	isn't	a	file	with	the	name
specified	by	FileName,	Microsoft	Word	creates	it.	The	following	example	adds
"Hanja1.hhd"	to	the	collection	of	custom	conversion	dictionaries.

CustomDictionaries.Add	FileName:="Hanja1.hhd"

Use	the	ClearAll	method	to	unload	all	custom	conversion	dictionaries.	Note,
however,	that	this	method	doesn't	delete	the	dictionary	files.	After	you	use	this
method,	the	number	of	custom	conversion	dictionaries	in	the	collection	is	0
(zero).	The	following	example	clears	the	custom	conversion	dictionaries	and
creates	a	new	custom	conversion	dictionary	file.	The	new	dictionary	is	set	as	the
active	custom	dictionary	to	which	Word	will	automatically	add	any	new	words	it
encounters.

With	HangulHanjaDictionaries

				.ClearAll

				.Add	FileName:=	"Hanja1.hhd"

				.ActiveCustomDictionary	=	HangulHanjaDictionaries(1)

End	With



Remarks

You	set	the	custom	dictionary	to	which	new	words	are	added	by	using	the
ActiveCustomDictionary	property.	If	you	try	to	set	this	property	to	a	dictionary
that	isn't	a	custom	conversion	dictionary,	an	error	occurs.

The	Maximum	property	returns	the	maximum	number	of	simultaneous	custom
conversion	dictionaries	that	the	application	can	support.	For	Word,	this
maximum	is	10.

For	more	information	on	using	Word	with	East	Asian	languages,	see	Word
features	for	East	Asian	languages.

mk:@MSITStore:wdmain10.chm::/html/wdrefFeaturesAvailableInWordWhenAsianLanguagesAreEnabled.htm


HeaderFooter	Object
									
Multiple	objects	 HeaderFooter

Multiple	objects

Represents	a	single	header	or	footer.	The	HeaderFooter	object	is	a	member	of
the	HeadersFooters	collection.	The	HeadersFooters	collection	includes	all
headers	and	footers	in	the	specified	document	section.



Using	the	HeaderFooter	Object

Use	Headers(index)	or	Footers(index),	where	index	is	one	of	the
WdHeaderFooterIndex	constants	(wdHeaderFooterEvenPages,
wdHeaderFooterFirstPage,	or	wdHeaderFooterPrimary),	to	return	a	single
HeaderFooter	object.	The	following	example	changes	the	text	of	both	the
primary	header	and	the	primary	footer	in	the	first	section	of	the	active	document.

With	ActiveDocument.Sections(1)

				.Headers(wdHeaderFooterPrimary).Range.Text	=	"Header	text"

				.Footers(wdHeaderFooterPrimary).Range.Text	=	"Footer	text"

End	With

You	can	also	return	a	single	HeaderFooter	object	by	using	the	HeaderFooter
property	with	a	Selection	object.

Note			You	cannot	add	HeaderFooter	objects	to	the	HeadersFooters	collection.



Remarks

Use	the	DifferentFirstPageHeaderFooter	property	with	the	PageSetup	object
to	specify	a	different	first	page.	The	following	example	inserts	text	into	the	first
page	footer	in	the	active	document.

With	ActiveDocument

				.PageSetup.DifferentFirstPageHeaderFooter	=	True

				.Sections(1).Footers(wdHeaderFooterFirstPage)	_

								.Range.InsertBefore	_

								"Written	by	Joe	Smith"

End	With

Use	the	OddAndEvenPagesHeaderFooter	property	with	the	PageSetup	object
to	specify	different	odd	and	even	page	headers	and	footers.	If	the
OddAndEvenPagesHeaderFooter	property	is	True,	you	can	return	an	odd
header	or	footer	by	using	wdHeaderFooterPrimary,	and	you	can	return	an	even
header	or	footer	by	using	wdHeaderFooterEvenPages.

Use	the	Add	method	with	the	PageNumbers	object	to	add	a	page	number	to	a
header	or	footer.	The	following	example	adds	page	numbers	to	the	primary
footer	in	the	first	section	of	the	active	document.

With	ActiveDocument.Sections(1)

				.Footers(wdHeaderFooterPrimary).PageNumbers.Add

End	With



HeadersFooters	Collection	Object
									
Sections	(Section)	 HeadersFooters	(HeaderFooter)

Multiple	objects

A	collection	of	HeaderFooter	objects	that	represent	the	headers	or	footers	in	the
specified	section	of	a	document.



Using	the	HeadersFooters	Collection

Use	the	Headers	or	Footers	property	to	return	the	HeadersFooters	collection.
The	following	example	displays	the	text	from	the	primary	footer	in	the	first
section	of	the	active	document.

With	ActiveDocument.Sections(1).Footers(wdHeaderFooterPrimary)

				If	.Range.Text	<>	vbCr	Then	

								MsgBox	.Range.Text

				Else

								MsgBox	"Footer	is	empty"

				End	If

End	With

Note			You	cannot	add	HeaderFooter	objects	to	the	HeadersFooters	collection.

Use	Headers(index)	or	Footers(index),	where	index	is	one	of	the
WdHeaderFooterIndex	constants	(wdHeaderFooterEvenPages,
wdHeaderFooterFirstPage,	or	wdHeaderFooterPrimary),	to	return	a	single
HeaderFooter	object.	The	following	example	changes	the	text	of	both	the
primary	header	and	the	primary	footer	the	first	section	of	the	active	document.

With	ActiveDocument.Sections(1)

				.Headers(wdHeaderFooterPrimary).Range.Text	=	"Header	text"

				.Footers(wdHeaderFooterPrimary).Range.Text	=	"Footer	text"

End	With

You	can	also	return	a	single	HeaderFooter	object	by	using	the	HeaderFooter
property	with	a	Selection	object.



Remarks

Use	the	DifferentFirstPageHeaderFooter	property	with	the	PageSetup	object
to	specify	a	different	first	page.	The	following	example	inserts	text	into	the	first
page	footer	in	the	active	document.

With	ActiveDocument

				.PageSetup.DifferentFirstPageHeaderFooter	=	True

				.Sections(1).Footers(wdHeaderFooterFirstPage)	_

								.Range.InsertBefore	_

								"Written	by	Kate	Edson"

End	With

Use	the	OddAndEvenPagesHeaderFooter	property	with	the	PageSetup	object
to	specify	different	odd	and	even	page	headers	and	footers.	If	the
OddAndEvenPagesHeaderFooter	property	is	True,	you	can	return	an	odd
header	or	footer	by	using	wdHeaderFooterPrimary,	and	you	can	return	an	even
header	or	footer	by	using	wdHeaderFooterEvenPages.

Use	the	Add	method	with	the	PageNumbers	object	to	add	a	page	number	to	a
header	or	footer.	The	following	example	adds	page	numbers	to	the	first	page
footer	in	the	first	section	in	the	active	document.

With	ActiveDocument.Sections(1)

				.PageSetup.DifferentFirstPageHeaderFooter	=	True

				.Footers(wdHeaderFooterPrimary).PageNumbers.Add	_

								FirstPage:=True

End	With



HeadingStyle	Object
									
Documents	(Document)	 Multiple	objects

HeadingStyles	(HeadingStyle)

Represents	a	style	used	to	build	a	table	of	contents	or	figures.	The	HeadingStyle
object	is	a	member	of	the	HeadingStyles	collection.



Using	the	HeadingStyle	Object

Use	HeadingStyles(index),	where	index	is	the	index	number,	to	return	a	single
HeadingStyle	object.	The	index	number	represents	the	position	of	the	style	in
the	HeadingStyles	collection.	The	following	example	adds	(at	the	beginning	of
the	active	document)	a	table	of	figures	built	from	the	Title	style,	and	then
displays	the	name	of	the	first	style	in	the	HeadingStyles	collection.

Set	myTOF	=	ActiveDocument.TablesOfFigures.Add	_

				(Range:=ActiveDocument.Range(0,	0),	AddedStyles:="Title")

MsgBox	myTOF.HeadingStyles(1).Style

Use	the	Add	method	to	add	a	style	to	the	HeadingStyles	collection.	The
following	example	adds	a	table	of	contents	at	the	beginning	of	the	active
document	and	then	adds	the	Title	style	to	the	list	of	styles	used	to	build	a	table	of
contents.

Set	myToc	=	ActiveDocument.TablesOfContents.Add	_

				(Range:=ActiveDocument.Range(0,	0),	UseHeadingStyles:=True,	_

					LowerHeadingLevel:=3,	UpperHeadingLevel:=1)

myToc.HeadingStyles.Add	Style:="Title",	Level:=2



HeadingStyles	Collection	Object
									
Documents	(Document)	 Multiple	objects

HeadingStyles	(HeadingStyle)

A	collection	of	HeadingStyle	objects	that	represent	the	styles	used	to	compile	a
table	of	figures	or	table	of	contents.



Using	the	HeadingStyles	Collection

Use	the	HeadingStyles	property	to	return	the	HeadingStyles	collection.	The
following	example	displays	the	number	of	items	in	the	HeadingStyles	collection
for	the	first	table	of	contents	in	the	active	document.

MsgBox	ActiveDocument.TablesOfContents(1).HeadingStyles.Count

Use	the	Add	method	to	add	a	style	to	the	HeadingStyles	collection.	The
following	example	adds	a	table	of	contents	at	the	beginning	of	the	active
document	and	then	adds	the	Title	style	to	the	list	of	styles	used	to	build	a	table	of
contents.

Set	myToc	=	ActiveDocument.TablesOfContents.Add	_

				(Range:=ActiveDocument.Range(0,	0),	UseHeadingStyles:=True,	_

					LowerHeadingLevel:=3,	UpperHeadingLevel:=1)

myToc.HeadingStyles.Add	Style:="Title",	Level:=2

Use	HeadingStyles(index),	where	index	is	the	index	number,	to	return	a	single
HeadingStyle	object.	The	index	number	represents	the	position	of	the	style	in
the	HeadingStyles	collection.	The	following	example	adds	(at	the	beginning	of
the	active	document)	a	table	of	figures	built	from	the	Title	style,	and	then
displays	the	name	of	the	first	style	in	the	HeadingStyles	collection.

Set	myTOF	=	ActiveDocument.TablesOfFigures.Add	_

				(Range:=ActiveDocument.Range(0,	0),	AddedStyles:="Title")

MsgBox	myTOF.HeadingStyles(1).Style



HorizontalLineFormat	Object
									
InlineShapes	(InlineShape)	 HorizontalLineFormat

Represents	horizontal	line	formatting.



Using	the	HorizontalLineFormat	Object

Use	the	HorizontalLineFormat	property	to	return	a	HorizontalLineFormat
object.	This	example	sets	the	alignment	for	a	new	horizontal	line.

Selection.InlineShapes.AddHorizontalLineStandard

ActiveDocument.InlineShapes(1)	_

				.HorizontalLineFormat.Alignment	=	_

				wdHorizontalLineAlignLeft

This	example	adds	a	horizontal	line	without	any	3-D	shading.

Selection.InlineShapes.AddHorizontalLineStandard

ActiveDocument.InlineShapes(1)	_

				.HorizontalLineFormat.NoShade	=	True

This	example	adds	a	horizontal	line	and	sets	its	length	to	50%	of	the	window
width.

Selection.InlineShapes.AddHorizontalLineStandard

ActiveDocument.InlineShapes(1)	_

				.HorizontalLineFormat.PercentWidth	=	50



HTMLDivision	Object
									
HTMLDivisions	 HTMLDivision

Multiple	objects

Represents	a	single	HTML	division	that	can	be	added	to	a	Web	document.	The
HTMLDivision	object	is	a	member	of	the	HTMLDivisions	collection.



Using	the	HTMLDivision	object

Use	HTMLDivisions(index),	where	index	refers	to	the	HTML	division	in	the
document,	to	return	a	single	HTMLDivision	object.	Use	the	Borders	property
to	format	border	properties	for	an	HTML	division.	This	example	formats	three
nested	divisions	in	the	active	document.	This	example	assumes	that	the	active
document	is	an	HTML	document	with	at	least	three	divisions.

Sub	FormatHTMLDivisions()

				With	ActiveDocument.HTMLDivisions(1)

								With	.Borders(wdBorderLeft)

												.Color	=	wdColorRed

												.LineStyle	=	wdLineStyleSingle

								End	With

								With	.Borders(wdBorderTop)

												.Color	=	wdColorRed

												.LineStyle	=	wdLineStyleSingle

								End	With

								With	.HTMLDivisions(1)

												.LeftIndent	=	InchesToPoints(1)

												.RightIndent	=	InchesToPoints(1)

												With	.Borders(wdBorderRight)

																.Color	=	wdColorBlue

																.LineStyle	=	wdLineStyleDouble

												End	With

												End	With

												With	.Borders(wdBorderBottom)

																.Color	=	wdColorBlue

																.LineStyle	=	wdLineStyleDouble

												End	With

												With	.HTMLDivisions(1)

																.LeftIndent	=	InchesToPoints(1)

																.RightIndent	=	InchesToPoints(1)

																With	.Borders(wdBorderLeft)

																				.Color	=	wdColorBlack

																				.LineStyle	=	wdLineStyleDot

																End	With

																With	.Borders(wdBorderTop)

																				.Color	=	wdColorBlack

																				.LineStyle	=	wdLineStyleDot

																End	With

												End	With

								End	With

				End	With



End	Sub

HTML	divisions	can	be	nested	within	multiple	HTML	divisions.	Use	the
HTMLDivisionParent	method	to	access	a	parent	HTML	division	of	the	current
HTML	division.	This	example	formats	the	borders	for	two	HTML	divisions	in
the	active	document.	This	example	assumes	that	the	active	document	is	an
HTML	document	with	at	least	two	divisions.

Sub	FormatHTMLDivisions()

				With	ActiveDocument.HTMLDivisions(1)

								With	.HTMLDivisions(1)

												.LeftIndent	=	InchesToPoints(1)

												.RightIndent	=	InchesToPoints(1)

												With	.Borders(wdBorderLeft)

																.Color	=	wdColorBlue

																.LineStyle	=	wdLineStyleDouble

												End	With

												With	.Borders(wdBorderRight)

																.Color	=	wdColorBlue

																.LineStyle	=	wdLineStyleDouble

												End	With

												With	.HTMLDivisionParent

																.LeftIndent	=	InchesToPoints(1)

																.RightIndent	=	InchesToPoints(1)

																With	.Borders(wdBorderTop)

																				.Color	=	wdColorBlack

																				.LineStyle	=	wdLineStyleDot

																End	With

																With	.Borders(wdBorderBottom)

																				.Color	=	wdColorBlack

																				.LineStyle	=	wdLineStyleDot

																End	With

												End	With

								End	With

				End	With

End	Sub



HTMLDivisions	Collection
									
Multiple	objects	 HTMLDivisions

HTMLDivision

A	collection	of	HTMLDivision	objects	that	represents	the	HTML	divisions	that
exist	in	a	Web	document.



Using	the	HTMLDivisions	collection

Use	the	HTMLDivisions	property	to	return	the	HTMLDivisions	collection.	Use
the	Add	method	to	add	an	HTML	division	to	a	Web	document.	This	example
adds	a	new	HTML	division	to	the	active	document,	adds	text	to	the	division,	and
formats	the	borders	around	the	division.

Sub	NewDivision()

				With	ActiveDocument.HTMLDivisions

								.Add

								.Item(Index:=1).Range.Text	=	"This	is	a	new	HTML	division."

								With	.Item(1)

												With	.Borders(wdBorderBottom)

																.LineStyle	=	wdLineStyleTriple

																.LineWidth	=	wdLineWidth025pt

																.Color	=	wdColorRed

												End	With

												With	.Borders(wdBorderTop)

																.LineStyle	=	wdLineStyleDot

																.LineWidth	=	wdLineWidth050pt

																.Color	=	wdColorBlue

												End	With

												With	.Borders(wdBorderLeft)

																.LineStyle	=	wdLineStyleDouble

																.LineWidth	=	wdLineWidth075pt

																.Color	=	wdColorBrightGreen

												End	With

												With	.Borders(wdBorderRight)

																.LineStyle	=	wdLineStyleDashDotDot

																.LineWidth	=	wdLineWidth075pt

																.Color	=	wdColorTurquoise

												End	With

								End	With

				End	With

End	Sub





Hyperlink	Object
									
Multiple	objects	 Hyperlinks	(Hyperlink)

Multiple	objects

Represents	a	hyperlink.	The	Hyperlink	object	is	a	member	of	the	Hyperlinks
collection.



Using	the	Hyperlink	Object

Use	the	Hyperlink	property	to	return	a	Hyperlink	object	associated	with	a
shape	(a	shape	can	have	only	one	hyperlink).	The	following	example	activates
the	hyperlink	associated	with	the	first	shape	in	the	active	document.

ActiveDocument.Shapes(1).Hyperlink.Follow

Use	Hyperlinks(index),	where	index	is	the	index	number,	to	return	a	single
Hyperlink	object	from	a	document,	range,	or	selection.	The	following	example
activates	the	first	hyperlink	in	the	selection.

If	Selection.HyperLinks.Count	>=	1	Then

				Selection.HyperLinks(1).Follow

End	If



Hyperlinks	Collection	Object
									
Multiple	objects	 Hyperlinks	(Hyperlink)

Multiple	objects

Represents	the	collection	of	Hyperlink	objects	in	a	document,	range,	or
selection.



Using	the	Hyperlinks	Collection

Use	the	Hyperlinks	property	to	return	the	Hyperlinks	collection.	The	following
example	checks	all	the	hyperlinks	in	document	one	for	a	link	that	contains	the
word	"Microsoft"	in	the	address.	If	a	hyperlink	is	found,	it's	activated	with	the
Follow	method.

For	Each	hLink	In	Documents(1).Hyperlinks

				If	InStr(hLink.Address,	"Microsoft")	<>	0	Then

								hLink.Follow

								Exit	For

				End	If

Next	hLink

Use	the	Add	method	to	create	a	hyperlink	and	add	it	to	the	Hyperlinks
collection.	The	following	example	creates	a	new	hyperlink	to	the	MSN	Web	site.

ActiveDocument.Hyperlinks.Add	Address:="http://www.msn.com/",	_

				Anchor:=Selection.Range

Use	Hyperlinks(index),	where	index	is	the	index	number,	to	return	a	single
Hyperlink	object	in	a	document,	range,	or	selection.	The	following	example
activates	the	first	hyperlink	in	the	selection.

If	Selection.HyperLinks.Count	>=	1	Then

				Selection.HyperLinks(1).Follow

End	If



Remarks

The	Count	property	for	this	collection	in	a	document	returns	the	number	of
items	in	the	main	story	only.	To	count	items	in	other	stories	use	the	collection
with	the	Range	object.



Index	Object
									
Indexes	 Index

Range

Represents	a	single	index.	The	Index	object	is	a	member	of	the	Indexes
collection.	The	Indexes	collection	includes	all	the	indexes	in	the	specified
document.



Using	the	Index	Object

Use	Indexes(index),	where	index	is	the	index	number,	to	return	a	single	Index
object.	The	index	number	represents	the	position	of	the	Index	object	in	the
document.	The	following	example	updates	the	first	index	in	the	active	document.

If	ActiveDocument.Indexes.Count	>=	1	Then

				ActiveDocument.Indexes(1).Update

End	If

Use	the	Add	method	to	create	an	index	and	add	it	to	the	Indexes	collection.	The
following	example	creates	an	index	at	the	end	of	the	active	document.

Set	myRange	=	ActiveDocument.Content

myRange.Collapse	Direction:=wdCollapseEnd

ActiveDocument.Indexes.Add	Range:=myRange,	Type:=wdIndexRunin



Indexes	Collection	Object
									
Document	 Indexes

Multiple	objects

A	collection	of	Index	objects	that	represents	all	the	indexes	in	the	specified
document.



Using	the	Indexes	Collection

Use	the	Indexes	property	to	return	the	Indexes	collection.	The	following
example	formats	indexes	in	the	active	document	with	the	classic	format.

ActiveDocument.Indexes.Format	=	wdIndexClassic

Use	the	Add	method	to	create	an	index	and	add	it	to	the	Indexes	collection.	The
following	example	creates	an	index	at	the	end	of	the	active	document.

Set	myRange	=	ActiveDocument.Content

myRange.Collapse	Direction:=wdCollapseEnd

ActiveDocument.Indexes.Add	Range:=myRange,	Type:=wdIndexRunin

Use	Indexes(index),	where	index	is	the	index	number,	to	return	a	single	Index
object.	The	index	number	represents	the	position	of	the	Index	object	in	the
document.	The	following	example	updates	the	first	index	in	the	active	document.

If	ActiveDocument.Indexes.Count	>=	1	Then

				ActiveDocument.Indexes(1).Update

End	If



InlineShape	Object
									
Multiple	objects	 InlineShapes	(InlineShape)

Multiple	objects

Represents	an	object	in	the	text	layer	of	a	document.	An	inline	shape	can	only	be
a	picture,	an	OLE	object,	or	an	ActiveX	control.	InlineShape	objects	are	treated
like	characters	and	are	positioned	as	characters	within	a	line	of	text.	The
InlineShape	object	is	a	member	of	the	InlineShapes	collection.	The
InlineShapes	collection	contains	all	the	shapes	in	a	document,	range,	or
selection.



Using	the	InlineShape	Object

Use	InlineShapes(index),	where	index	is	the	index	number,	to	return	a	single
InlineShape	object.	Inline	shapes	don't	have	names.	The	following	example
activates	the	first	inline	shape	in	the	active	document.

ActiveDocument.InlineShapes(1).Activate



Remarks

Shape	objects	are	anchored	to	a	range	of	text	but	are	free-floating	and	can	be
positioned	anywhere	on	the	page.	You	can	use	the	ConvertToInlineShape
method	and	the	ConvertToShape	method	to	convert	shapes	from	one	type	to	the
other.	You	can	convert	only	pictures,	OLE	objects,	and	ActiveX	controls	to
inline	shapes.	Use	the	Type	property	to	return	the	type	of	inline	shape:	picture,
linked	picture,	embedded	OLE	object,	linked	OLE	object,	or	ActiveX	control.

When	you	open	a	document	created	in	an	earlier	version	of	Word,	pictures	are
converted	to	inline	shapes.



InlineShapes	Collection	Object
									
Multiple	objects	 InlineShapes	(InlineShape)

Multiple	objects

A	collection	of	InlineShape	objects	that	represent	all	the	inline	shapes	in	a
document,	range,	or	selection.



Using	the	InlineShapes	Collection

Use	the	InlineShapes	property	to	return	the	InlineShapes	collection.	The
following	example	converts	each	inline	shape	in	the	active	document	to	a	Shape
object.

For	Each	iShape	In	ActiveDocument.InlineShapes

				iShape.ConvertToShape

Next	iShape

Use	the	New	method	to	create	a	new	picture	as	an	inline	shape.	You	can	use	the
AddPicture	and	AddOLEObject	methods	to	add	pictures	or	OLE	objects	and
link	them	to	a	source	file.	Use	the	AddOLEControl	method	to	add	an	ActiveX
control.



Remarks

Shape	objects	are	anchored	to	a	range	of	text	but	are	free-floating	and	can	be
positioned	anywhere	on	the	page.	You	can	use	the	ConvertToInlineShape
method	and	the	ConvertToShape	method	to	convert	shapes	from	one	type	to	the
other.	You	can	convert	only	pictures,	OLE	objects,	and	ActiveX	controls	to
inline	shapes.

The	Count	property	for	this	collection	in	a	document	returns	the	number	of
items	in	the	main	story	only.	To	count	items	in	other	stories	use	the	collection
with	the	Range	object.

When	you	open	a	document	created	in	an	earlier	version	of	Word,	pictures	are
converted	to	inline	shapes.



KeyBinding	Object
									
Multiple	objects	 KeyBindings	(KeyBinding)

Represents	a	custom	key	assignment	in	the	current	context.	The	KeyBinding
object	is	a	member	of	the	KeyBindings	collection.	Custom	key	assignments	are
made	in	the	Customize	Keyboard	dialog	box.



Using	the	KeyBinding	Object

Use	KeyBindings(index),	where	index	is	the	index	number,	to	return	a	single
KeyBinding	object.	The	following	example	displays	the	command	associated
with	the	first	KeyBinding	object	in	the	KeyBindings	collection.

MsgBox	KeyBindings(1).Command

You	can	also	use	the	FindKey	property	and	the	Key	method	to	return	a
KeyBinding	object.



KeyBindings	Collection	Object
									
Application	 KeyBindings	(KeyBinding)

A	collection	of	KeyBinding	objects	that	represent	the	custom	key	assignments
in	the	current	context.	Custom	key	assignments	are	made	in	the	Customize
Keyboard	dialog	box.



Using	the	KeyBindings	Collection

Use	the	KeyBindings	property	to	return	the	KeyBindings	collection.	The
following	example	inserts	after	the	selection	the	command	name	and	key
combination	for	each	item	in	the	KeyBindings	collection.

CustomizationContext	=	NormalTemplate

For	Each	aKey	In	KeyBindings

				Selection.InsertAfter	aKey.Command	&	vbTab	_

								&	aKey.KeyString	&	vbCr

				Selection.Collapse	Direction:=wdCollapseEnd

Next	aKey

Use	the	Add	method	to	add	a	KeyBinding	object	to	the	KeyBindings
collection.	The	following	example	adds	the	CTRL+ALT+H	key	combination	to
the	Heading	1	style	in	the	active	document.

CustomizationContext	=	ActiveDocument

KeyBindings.Add	KeyCategory:=wdKeyCategoryStyle,	_

				Command:="Heading	1",	_

				KeyCode:=BuildKeyCode(wdKeyControl,	wdKeyAlt,	wdKeyH)

Use	KeyBindings(index),	where	index	is	the	index	number,	to	return	a	single
KeyBinding	object.	The	following	example	displays	the	command	associated
with	the	first	KeyBinding	object	in	the	KeyBindings	collection.

MsgBox	KeyBindings(1).Command



KeysBoundTo	Collection	Object
									
Application	 KeysBoundTo	(KeyBinding)

A	collection	of	KeyBinding	objects	assigned	to	a	command,	style,	macro,	or
other	item	in	the	current	context.



Using	the	KeysBoundTo	Collection

Use	the	KeysBoundTo	property	to	return	the	KeysBoundTo	collection.	The
following	example	displays	the	key	combinations	assigned	to	the	FileNew
command	in	the	Normal	template.

CustomizationContext	=	NormalTemplate

For	Each	myKey	In	KeysBoundTo(KeyCategory:=wdKeyCategoryCommand,	_

				Command:="FileNew")

				myStr	=	myStr	&	myKey.KeyString	&	vbCr

Next	myKey

MsgBox	myStr

The	following	example	displays	the	name	of	the	document	or	template	where	the
keys	for	the	macro	named	"Macro1"	are	stored.

Set	kb	=	KeysBoundTo(KeyCategory:=wdKeyCategoryMacro,	_

				Command:="Macro1")

MsgBox	kb.Context.Name



Language	Object
									
Languages	 Language

Dictionary

Represents	a	language	used	for	proofing	or	formatting	in	Microsoft	Word.	The
Language	object	is	a	member	of	the	Languages	collection.



Using	the	Language	object

Use	Languages(index)	to	return	a	single	Language	object,	where	index	can	be
the	value	of	the	Name	property,	the	value	of	the	NameLocal	property,	one	of	the
WdLanguageID	constants,	or	one	of	the	MsoLanguageID	constants.	(For	the
list	of	valid	WdLanguageID	or	MsoLanguageID	constants,	see	the	Object
Browser	in	the	Visual	Basic	Editor.)

The	Name	property	returns	the	name	of	a	language,	whereas	the	NameLocal
property	returns	the	name	of	a	language	in	the	language	of	the	user.	The
following	example	returns	the	string	"Italiano"	for	Name	and	"Italian
(Standard)"	for	NameLocal	when	it's	run	in	the	U.S.	English	version	of	Word.

Sub	ShowItalianNames()

				Msgbox	Languages(wdItalian).Name

				Msgbox	Languages(wdItalian).NameLocal

End	Sub



Returning	the	Active	Proofing	Dictionaries

For	each	language	for	which	proofing	tools	are	installed,	you	can	use	the
ActiveGrammarDictionary,	ActiveHyphenationDictionary,
ActiveSpellingDictionary,	and	ActiveThesaurusDictionary	properties	to
return	the	corresponding	Dictionary	object.	The	following	example	returns	the
full	path	for	the	active	spelling	dictionary	used	in	the	U.S.	English	version	of
Word.

Sub	ShowDictionaryPath

				Set	myspell	=	Languages(wdEnglishUS).ActiveSpellingDictionary

				MsgBox	mySpell.Path	&	Application.PathSeparator	&	mySpell.Name

End	Sub



Setting	the	Writing	Style

The	writing	style	is	the	set	of	rules	used	by	the	grammar	checker.	The
WritingStyleList	property	returns	an	array	of	strings	that	represent	the	available
writing	styles	for	the	specified	language.	The	following	example	returns	the	list
of	writing	styles	for	U.S.	English.

Sub	ListWritingStyles()

				WrStyles	=	Languages(wdEnglishUS).WritingStyleList

				For	i	=	1	To	UBound(WrStyles)

								MsgBox	WrStyles(i)

				Next	i

End	Sub

Use	the	DefaultWritingStyle	property	to	set	the	default	writing	style	you	want
Word	to	use.

Languages(wdEnglishUS).DefaultWritingStyle	=	"Casual"

You	can	override	the	default	writing	style	with	the	ActiveWritingStyle	property.
This	property	is	applied	to	a	specified	document	for	text	marked	in	a	specified
language.	The	following	example	sets	the	writing	style	to	be	used	for	checking
U.S.	English,	French,	and	German	in	the	active	document.

Sub	SetWritingStyle()

				With	ActiveDocument

								.ActiveWritingStyle(wdEnglishUS)	=	"Technical"

								.ActiveWritingStyle(wdFrench)	=	"Commercial"

								.ActiveWritingStyle(wdGerman)	=	"Technisch/Wiss"

				End	With

End	Sub



Remarks

You	must	have	the	proofing	tools	installed	for	each	language	you	intend	to
check.	For	more	information	on	working	in	other	languages,	see	Language-
specific	information.

If	you	mark	text	as	wdNoProofing,	Word	skips	the	marked	text	when	running	a
spelling	or	grammar	check.



Languages	Collection	Object
									
Application	 Languages	(Language)

Dictionaries	(Dictionary)

A	collection	of	Language	objects	that	represent	languages	used	for	proofing	or
formatting	in	Word.



Using	the	Languages	Collection

Use	the	Languages	property	to	return	the	Languages	collection.	The	following
example	displays	the	localized	name	for	each	language.

For	Each	la	In	Languages

				Msgbox	la.NameLocal

Next	la

Use	Languages(index)	to	return	a	single	Language	object,	where	index	can	be
the	value	of	the	Name	property,	the	value	of	the	NameLocal	property,	one	of	the
WdLanguageID	constants,	or	one	of	the	MsoLanguageID	constants.	(For	the
list	of	valid	WdLanguageID	or	MsoLanguageID	constants,	see	the	Object
Browser	in	the	Visual	Basic	Editor.)



Remarks

The	Count	property	returns	the	number	of	languages	for	which	you	can	mark
text	(languages	for	which	proofing	tools	are	available).	To	check	proofing,	you
must	install	the	appropriate	tools	for	each	language	you	intend	to	check.	You
need	both	a	.dll	file	and	an	.lex	file	for	each	of	the	following:	the	thesaurus,
spelling	checker,	grammar	checker,	and	hyphenation	tools.

If	you	mark	text	as	wdNoProofing,	Word	skips	the	marked	text	when	running	a
spelling	or	grammar	check.	To	mark	text	for	a	specified	language	or	for	no
proofing,	use	the	Set	Language	command	(Tools	menu,	Language	sub	menu).



LetterContent	Object
									
Documents	(Document)	 LetterContent

Represents	the	elements	of	a	letter	created	by	the	Letter	Wizard.



Using	the	LetterContent	Object

Use	the	GetLetterContent	method	or	the	CreateLetterContent	method	to
return	a	LetterContent	object.	The	following	example	retrieves	and	displays	the
letter	recipient's	name	from	the	active	document.

Set	myLetterContent	=	ActiveDocument.GetLetterContent

MsgBox	myLetterContent.RecipientName

The	following	example	uses	the	CreateLetterContent	method	to	create	a	new
LetterContent	object,	which	is	then	used	with	the	RunLetterWizard	method.

Set	myLetter	=	ActiveDocument	_

				.CreateLetterContent(DateFormat:="July	11,	1996",	_

				IncludeHeaderFooter:=False,	_

				PageDesign:="C:\MSOffice\Templates\Letters	&	"	_

								&	"Faxes\Contemporary	Letter.dot",	_

				LetterStyle:=wdFullBlock,	Letterhead:=True,	_

				LetterheadLocation:=wdLetterTop,	_

				LetterheadSize:=InchesToPoints(1.5),	_

				RecipientName:="Dave	Edson",	_

				RecipientAddress:="100	Main	St."	&	vbCr	_

								&	"Bellevue,	WA	98004",	_

				Salutation:="Dear	Dave,",	_

				SalutationType:=wdSalutationInformal,	_

				RecipientReference:="",	MailingInstructions:="",	_

				AttentionLine:="",	_

				Subject:="End	of	year	report",	CCList:="",	ReturnAddress:="",	_

				SenderName:="",	Closing:="Sincerely	yours,",	_

				SenderCompany:="",	_

				SenderJobTitle:="",	SenderInitials:="",	EnclosureNumber:=0)

ActiveDocument.RunLetterWizard	_

				LetterContent:=myLetter,	WizardMode:=True



Remarks

The	CreateLetterContent	method	creates	a	LetterContent	object;	however,
there	are	numerous	required	arguments.	If	you	want	to	set	only	a	few	properties,
use	the	New	keyword	to	create	a	new,	stand-alone	LetterContent	object.	The
following	example	creates	a	LetterContent	object,	sets	some	of	its	properties,
and	then	uses	the	LetterContent	object	with	the	RunLetterWizard	method	to
run	the	Letter	Wizard,	using	the	preset	values	as	the	default	settings.

Set	myLetter	=	New	LetterContent

With	myLetter

				.AttentionLine	=	"Read	this"

				.EnclosureNumber	=	1

				.Letterhead	=	True

				.LetterheadLocation	=	wdLetterTop

				.LetterheadSize	=	InchesToPoints(2)

End	With

Documents.Add.RunLetterWizard	LetterContent:=myLetter,	_

				WizardMode:=True

You	can	duplicate	a	LetterContent	object	by	using	the	Duplicate	property.	The
following	example	retrieves	the	letter	elements	in	the	active	document	and
makes	a	duplicate	copy.	The	example	assigns	the	duplicate	copy	to	aLetter	and
resets	the	recipient's	name	and	address	to	empty	strings.	The	RunLetterWizard
method	is	used	to	run	the	Letter	Wizard,	using	the	values	in	the	revised
LetterContent	object	(aLetter)	as	the	default	settings.

Set	aLetter	=	ActiveDocument.GetLetterContent.Duplicate

With	aLetter

				.RecipientName	=	""

				.RecipientAddress	=	""

End	With

Documents.Add.RunLetterWizard	LetterContent:=aLetter,	_

				WizardMode:=True

The	SetLetterContent	method	inserts	the	contents	of	the	specified
LetterContent	object	in	a	document.	The	following	example	retrieves	the	letter
elements	from	the	active	document,	changes	the	attention	line,	and	then	uses	the
SetLetterContent	method	to	update	the	active	document	to	reflect	the	change.

Set	myLetterContent	=	ActiveDocument.GetLetterContent



myLetterContent.AttentionLine	=	"Greetings"

ActiveDocument.SetLetterContent	LetterContent:=myLetterContent



LineFormat	Object
									
Shapes	(Shape)	 LineFormat

ColorFormat

Represents	line	and	arrowhead	formatting.	For	a	line,	the	LineFormat	object
contains	formatting	information	for	the	line	itself;	for	a	shape	with	a	border,	this
object	contains	formatting	information	for	the	shape's	border.



Using	the	LineFormat	Object

Use	the	Line	property	to	return	a	LineFormat	object.	The	following	example
adds	a	blue,	dashed	line	to	the	active	document.	There's	a	short,	narrow	oval	at
the	line's	starting	point	and	a	long,	wide	triangle	at	its	end	point.

With	ActiveDocument.Shapes.AddLine(100,	100,	200,	300).Line

				.DashStyle	=	msoLineDashDotDot

				.ForeColor.RGB	=	RGB(50,	0,	128)

				.BeginArrowheadLength	=	msoArrowheadShort

				.BeginArrowheadStyle	=	msoArrowheadOval

				.BeginArrowheadWidth	=	msoArrowheadNarrow

				.EndArrowheadLength	=	msoArrowheadLong

				.EndArrowheadStyle	=	msoArrowheadTriangle

				.EndArrowheadWidth	=	msoArrowheadWide

End	With



LineNumbering	Object
									
PageSetup	 LineNumbering

Represents	line	numbers	in	the	left	margin	or	to	the	left	of	each	newspaper-style
column.



Using	the	LineNumbering	Object

Use	the	LineNumbering	property	to	return	the	LineNumbering	object.	The
following	example	applies	line	numbering	to	the	text	in	the	first	section	of	the
active	document.

With	ActiveDocument.Sections(1).PageSetup.LineNumbering

				.Active	=	True

				.CountBy	=	5

				.RestartMode	=	wdRestartPage

End	With

The	following	example	applies	line	numbering	to	the	pages	in	the	current
section.

Selection.PageSetup.LineNumbering.Active	=	True



LinkFormat	Object
									
Multiple	objects	 LinkFormat

Represents	the	linking	characteristics	for	an	OLE	object	or	picture.



Using	the	LinkFormat	Object

Use	the	LinkFormat	property	for	a	shape,	inline	shape,	or	field	to	return	the
LinkFormat	object.	The	following	example	breaks	the	link	for	the	first	shape	on
the	active	document.

ActiveDocument.Shapes(1).LinkFormat.BreakLink



Remarks

Not	all	types	of	shapes,	inline	shapes,	and	fields	can	be	linked	to	a	source.	Use
the	Type	property	for	the	Shape	and	InlineShape	objects	to	determine	whether
a	particular	shape	can	be	linked.	The	Type	property	for	a	Field	object	returns	the
type	of	field.

You	can	use	both	the	Update	method	and	the	AutoUpdate	property	to	update
links.	To	return	or	set	the	full	path	for	a	particular	link's	source	file,	use	the
SourceFullName	property.



List	Object
									
Multiple	objects	 Lists	(List)

Multiple	objects

Represents	a	single	list	format	that's	been	applied	to	specified	paragraphs	in	a
document.	The	List	object	is	a	member	of	the	Lists	collection.



Using	the	List	Object

Use	Lists(index),	where	index	is	the	index	number,	to	return	a	single	List	object.
The	following	example	returns	the	number	of	items	in	list	one	in	the	active
document.

mycount	=	ActiveDocument.Lists(1).CountNumberedItems

To	return	all	the	paragraphs	that	have	list	formatting,	use	the	ListParagraphs
property.	To	return	them	as	a	range,	use	the	Range	property.



Remarks

To	apply	a	different	list	format	to	an	existing	list,	use	the	ApplyListTemplate
method	with	the	List	object.	To	add	a	new	list	to	a	document,	use	the
ApplyListTemplate	method	with	the	ListFormat	object	for	a	specified	range.

Use	the	CanContinuePreviousList	method	to	determine	whether	you	can
continue	the	list	formatting	from	a	list	that	was	previously	applied	to	the
document.

Use	the	CountNumberedItems	method	to	return	the	number	of	items	in	a
numbered	or	bulleted	list,	including	LISTNUM	fields.

To	determine	whether	a	list	contains	more	than	one	list	template,	use	the
SingleListTemplate	property.

You	can	manipulate	the	individual	List	objects	within	a	document,	but	for	more
precise	control	you	should	work	with	the	ListFormat	object.

Picture-bulleted	lists	are	not	included	in	the	Lists	collection	and	cannot	be
manipulated	using	the	List	object.



ListEntries	Collection	Object
									
FormFields	(FormField)	 DropDown

ListEntries	(ListEntry)

A	collection	of	ListEntry	objects	that	represent	all	the	items	in	a	drop-down
form	field.



Using	the	ListEntries	Collection

Use	the	ListEntries	property	to	return	the	ListEntries	collection.	The	following
example	displays	the	items	that	appear	in	the	form	field	named	"Drop1."

For	Each	le	In	_

				ActiveDocument.FormFields("Drop1").DropDown.ListEntries

				MsgBox	le.Name

Next	le

Use	the	Add	method	to	add	an	item	to	a	drop-down	form	field.	The	following
example	inserts	a	drop-down	form	field	and	then	adds	"red,"	"blue,"	and	"green"
to	the	form	field.

Set	myField	=	_

				ActiveDocument.FormFields.Add(Range:=Selection.Range,	_

					Type:=wdFieldFormDropDown)

With	myField.DropDown.ListEntries

				.Add	Name:="Red"

				.Add	Name:="Blue"

				.Add	Name:="Green"

End	With

Use	ListEntries(index),	where	index	is	the	list	entry	name	or	the	index	number,
to	return	a	single	ListEntry	object.	The	index	number	represents	the	position	of
the	entry	in	the	drop-down	form	field	(the	first	item	is	index	number	1).	The
following	example	deletes	the	"Blue"	entry	from	the	drop-down	form	field
named	"Color."

ActiveDocument.FormFields("Color").DropDown	_

				.ListEntries("Blue").Delete

The	following	example	displays	the	first	item	in	the	drop-down	form	field
named	"Color."

MsgBox	_

				ActiveDocument.FormFields("Color").DropDown.ListEntries(1).Name





ListEntry	Object
									
FormFields	(FormField)	 DropDown

ListEntries	(ListEntry)

Represents	an	item	in	a	drop-down	form	field.	The	ListEntry	object	is	a
member	of	the	ListEntries	collection.	The	ListEntries	collection	includes	all
the	items	in	a	drop-down	form	field.



Using	the	ListEntry	Object

Use	ListEntries(index),	where	index	is	the	list	entry	name	or	the	index	number,
to	return	a	single	ListEntry	object.	The	index	number	represents	the	position	of
the	entry	in	the	drop-down	form	field	(the	first	item	is	index	number	1).	The
following	example	deletes	the	"Blue"	entry	from	the	drop-down	form	field
named	"Color."

ActiveDocument.FormFields("Color").DropDown	_

				.ListEntries("Blue").Delete

The	following	example	displays	the	first	item	in	the	drop-down	form	field
named	"Color."

MsgBox	_

				ActiveDocument.FormFields("Color").DropDown.ListEntries(1).Name

Use	the	Add	method	to	add	an	item	to	a	drop-down	form	field.	The	following
example	inserts	a	drop-down	form	field	and	then	adds	"red,"	"blue,"	and	"green"
to	the	form	field.

Set	myField	=	_

				ActiveDocument.FormFields.Add(Range:=Selection.Range,	_

				Type:=wdFieldFormDropDown)

With	myField.DropDown.ListEntries

				.Add	Name:="Red"

				.Add	Name:="Blue"

				.Add	Name:="Green"

End	With



ListFormat	Object
									
Range	 ListFormat

Multiple	objects

Represents	the	list	formatting	attributes	that	can	be	applied	to	the	paragraphs	in	a
range.



Using	the	ListFormat	Object

Use	the	ListFormat	property	to	return	the	ListFormat	object	for	a	range.	The
following	example	applies	the	default	bulleted	list	format	to	the	selection.

Selection.Range.ListFormat.ApplyBulletDefault



Applying	a	List	Template

An	easy	way	to	apply	list	formatting	is	to	use	the	ApplyBulletDefault,
ApplyNumberDefault,	and	ApplyOutlineNumberDefault	methods,	which
correspond,	respectively,	to	the	first	list	format	(excluding	None)	on	each	tab	in
the	Bullets	and	Numbering	dialog	box.

To	apply	a	format	other	than	the	default	format,	use	the	ApplyListTemplate
method,	which	allows	you	to	specify	the	list	format	(list	template)	you	want	to
apply.



Returning	the	List	or	List	Template

Use	the	List	or	ListTemplate	property	to	return	the	list	or	list	template	from	the
first	paragraph	in	the	specified	range.



Remarks

Use	the	ListFormat	property	with	a	Range	object	to	access	the	list	formatting
properties	and	methods	available	for	the	specified	range.	The	following	example
applies	the	default	bullet	list	format	to	the	second	paragraph	in	the	active
document.

ActiveDocument.Paragraphs(2).Range.ListFormat.ApplyBulletDefault

However,	if	there's	already	a	list	defined	in	your	document,	you	can	access	a
List	object	by	using	the	Lists	property.	The	following	example	changes	the
format	of	the	list	created	in	the	preceding	example	to	the	first	number	format	on
the	Numbered	tab	in	the	Bullets	and	Numbering	dialog	box.

ActiveDocument.Lists(1).ApplyListTemplate	_

				ListTemplate:=ListGalleries(2).ListTemplates(1)



ListGalleries	Collection	Object
									
Application	 ListGalleries	(ListGallery)

ListTemplates	(ListTemplate)

A	collection	of	ListGallery	objects	that	represent	the	three	tabs	in	the	Bullets
and	Numbering	dialog	box.



Using	the	ListGalleries	Collection

Use	the	ListGalleries	property	to	return	the	ListGalleries	collection.	The
following	example	enumerates	the	collection	of	list	galleries	and	sets	each	of	the
seven	list	templates	(formats)	back	to	the	list	template	format	built	into	Word.

For	Each	lg	In	ListGalleries

				For	x	=	1	To	7

								lg.Reset(x)

				Next	x

Next	lg

Use	ListGalleries(index),	where	index	is	wdBulletGallery,
wdNumberGallery,	or	wdOutlineNumberGallery,	to	return	a	single
ListGallery	object.

The	following	example	returns	the	third	list	format	(excluding	None)	on	the
Bulleted	tab	in	the	Bullets	and	Numbering	dialog	box	and	then	applies	it	to	the
selection.

Set	temp3	=	ListGalleries(wdBulletGallery).ListTemplates(3)

Selection.Range.ListFormat.ApplyListTemplate	ListTemplate:=	temp3



Resetting	a	List	Template	in	the	Gallery

To	see	whether	the	specified	list	template	contains	the	formatting	built	into
Word,	use	the	Modified	property	with	the	ListGallery	object.	To	reset
formatting	to	the	original	list	format,	use	the	Reset	method	for	the	ListGallery
object.



ListGallery	Object
									
Application	 ListGalleries	(ListGallery)

ListTemplates	(ListTemplate)

Represents	a	single	gallery	of	list	formats.	The	ListGallery	object	is	a	member
of	the	ListGalleries	collection.	Each	ListGallery	object	represents	one	of	the
three	tabs	in	the	Bullets	and	Numbering	dialog	box.



Using	the	ListGallery	Object

Use	ListGalleries(index),	where	index	is	wdBulletGallery,
wdNumberGallery,	or	wdOutlineNumberGallery,	to	return	a	single
ListGallery	object.

The	following	example	returns	the	third	list	format	(excluding	None)	on	the
Bulleted	tab	in	the	Bullets	and	Numbering	dialog	box	and	then	applies	it	to	the
selection.

Set	temp3	=	ListGalleries(wdBulletGallery).ListTemplates(3)

Selection.Range.ListFormat.ApplyListTemplate	ListTemplate:=	temp3



Resetting	a	List	Template	in	the	Gallery

To	see	whether	the	specified	list	template	contains	the	formatting	built	into
Word,	use	the	Modified	property	for	the	ListGallery	object.	To	reset	formatting
to	the	original	list	format,	use	the	Reset	method	for	the	ListGallery	object.



ListLevel	Object
									
ListLevels	 ListLevel

Multiple	objects

Represents	a	single	list	level,	either	the	only	level	for	a	bulleted	or	numbered	list
or	one	of	the	nine	levels	of	an	outline	numbered	list.	The	ListLevel	object	is	a
member	of	the	ListLevels	collection.



Using	the	ListLevel	Object

Use	ListLevels(index),	where	index	is	a	number	from	1	through	9,	to	return	a
single	ListLevel	object.	The	following	example	sets	list	level	one	of	list
template	one	in	the	active	document	to	start	at	4.

ActiveDocument.ListTemplates(1).ListLevels(1).StartAt	=	4



Remarks

The	ListLevel	object	gives	you	access	to	all	the	formatting	properties	for	the
specified	list	level,	such	as	the	Alignment,	Font,	NumberFormat,
NumberPosition,	NumberStyle,	and	TrailingCharacter	properties.

To	apply	a	list	level,	first	identify	the	range	or	list,	and	then	use	the
ApplyListTemplate	method.	Each	tab	at	the	beginning	of	the	paragraph	is
translated	into	a	list	level.	For	example,	a	paragraph	that	begins	with	three	tabs
will	become	a	level-three	list	paragraph	after	the	ApplyListTemplate	method	is
used.



ListLevels	Collection	Object
									
ListTemplate	 ListLevels

ListLevel

A	collection	of	ListLevel	objects	that	represents	all	the	list	levels	of	a	list
template,	either	the	only	level	for	a	bulleted	or	numbered	list	or	one	of	the	nine
levels	of	an	outline	numbered	list.



Using	the	ListLevels	Collection

Use	the	ListLevels	property	to	return	the	ListLevels	collection.	The	following
example	sets	the	variable	mytemp	to	the	first	list	template	in	the	active	document
and	then	modifies	each	level	to	use	lowercase	letters	for	its	number	style.

Set	mytemp	=	ActiveDocument.ListTemplates(1)

For	Each	lev	In	mytemp.ListLevels

				lev.NumberStyle	=	wdListNumberStyleLowercaseLetter

Next	lev

Use	ListLevels(index),	where	index	is	a	number	from	1	through	9,	to	return	a
single	ListLevel	object.	The	following	example	sets	list	level	one	of	list
template	one	in	the	active	document	to	start	at	four.

ActiveDocument.ListTemplates(1).ListLevels(1).StartAt	=	4

Note			You	cannot	add	new	levels	to	a	list	template.



Remarks

To	apply	a	list	level,	first	identify	the	range	or	list,	and	then	use	the
ApplyListTemplate	method.	Each	tab	at	the	beginning	of	the	paragraph	is
translated	into	a	list	level.	For	example,	a	paragraph	that	begins	with	three	tabs
will	become	a	level-three	list	paragraph	after	the	ApplyListTemplate	method	is
used.



ListParagraphs	Collection	Object
									
Multiple	objects	 ListParagraphs

Paragraph

A	collection	of	Paragraph	objects	that	represents	the	paragraphs	of	the	specified
document,	list,	or	range	that	have	list	formatting	applied.



Using	the	ListParagraphs	Collection

Use	the	ListParagraphs	property	to	return	the	ListParagraphs	collection.	The
following	example	applies	highlighting	to	the	collection	of	paragraphs	with	list
formatting	in	the	active	document.

For	Each	para	in	ActiveDocument.ListParagraphs

				para.Range.HighlightColorIndex	=	wdTurquoise

Next	para

Use	ListParagraphs(index),	where	index	is	the	index	number,	to	return	a	single
Paragraph	object	with	list	formatting.



Remarks

Paragraphs	can	have	two	types	of	list	formatting.	The	first	type	includes	an
automatically	added	number	or	bullet	at	the	beginning	of	each	paragraph	in	the
list.	The	second	type	includes	LISTNUM	fields,	which	can	be	placed	anywhere
inside	a	paragraph.	There	can	be	more	than	one	LISTNUM	field	per	paragraph.

To	add	list	formatting	to	paragraphs,	you	can	use	the	ApplyListTemplate,
ApplyBulletDefault,	ApplyNumberDefault,	or	ApplyOutlineNumberDefault
method.	You	access	these	methods	through	the	ListFormat	object	for	a	specified
range.

The	Count	property	for	this	collection	in	a	document	returns	the	number	of
items	in	the	main	story	only.	To	count	items	in	other	stories	use	the	collection
with	the	Range	object.



Lists	Collection	Object
									
Multiple	objects	 Lists	(List)

Multiple	objects

A	collection	of	List	objects	that	represent	all	the	lists	in	the	specified	document.



Using	the	Lists	Collection

Use	the	Lists	property	to	return	the	Lists	collection.	The	following	example
displays	the	number	of	items	in	each	list	in	the	active	document.

For	Each	li	In	ActiveDocument.Lists

				MsgBox	li.CountNumberedItems

Next	li

Use	Lists(index),	where	index	is	the	index	number,	to	return	a	single	List	object.
The	following	example	applies	the	first	list	format	(excluding	None)	on	the
Numbered	tab	in	the	Bullets	and	Numbering	dialog	box	to	the	second	list	in
the	active	document.

Set	temp1	=	ListGalleries(wdNumberGallery).ListTemplates(1)

ActiveDocument.Lists(2).ApplyListTemplate	ListTemplate:=temp1



Remarks

When	you	use	a	For	Each...Next	loop	to	enumerate	the	Lists	collection,	the	lists
in	a	document	are	returned	in	reverse	order.	The	following	example	counts	the
items	for	each	list	in	the	active	document,	from	the	bottom	of	the	document
upward.

For	Each	li	In	ActiveDocument.Lists

			MsgBox	li.CountNumberedItems

Next	li

To	add	a	new	list	to	a	document,	use	the	ApplyListTemplate	method	with	the
ListFormat	object	for	a	specified	range.

You	can	manipulate	the	individual	List	objects	within	a	document,	but	for	more
precise	control	you	should	work	with	the	ListFormat	object.

Picture-bulleted	lists	are	not	included	in	the	Lists	collection.



ListTemplate	Object
									
Multiple	objects	 ListTemplates	(ListTemplate)

ListLevels	(ListLevel)

Represents	a	single	list	template	that	includes	all	the	formatting	that	defines	a
list.	The	ListTemplate	object	is	a	member	of	the	ListTemplates	collection.	Each
of	the	seven	formats	(excluding	None)	found	on	each	of	the	three	tabs	in	the
Bullets	and	Numbering	dialog	box	corresponds	to	a	list	template	object.	These
predefined	list	templates	can	be	accessed	from	the	three	ListGallery	objects	in
the	ListGalleries	collection.	Documents	and	templates	can	also	contain
collections	of	list	templates.



Using	the	ListTemplate	Object

Use	ListTemplates(index),	where	index	is	a	number	from	1	through	7,	to	return
a	single	list	template	from	a	list	gallery.	The	following	example	returns	the	third
list	format	(excluding	None)	on	the	Numbered	tab	in	the	Bullets	and
Numbering	dialog	box.

Set	temp3	=	ListGalleries(2).ListTemplates(3)

Note			Some	properties	and	methods	—	Convert	and	Add,	for	example	—	won't
work	with	list	templates	that	are	accessed	from	a	list	gallery.	You	can	modify
these	list	templates,	but	you	cannot	change	their	list	gallery	type
(wdBulletGallery,	wdNumberGallery,	or	wdOutlineNumberGallery).

The	following	example	sets	an	object	variable	equal	to	the	list	template	used	in
the	third	list	in	the	active	document,	and	then	it	applies	that	list	template	to	the
selection.

Set	myLt	=	ActiveDocument.ListTemplates(3)

Selection.Range.ListFormat.ApplyListTemplate	ListTemplate:=myLt

Use	the	Add	method	to	add	a	list	template	to	the	collection	of	list	templates	in	a
document	or	template.



Resetting	a	List	Template	in	the	Gallery

To	see	whether	the	specified	list	template	contains	the	formatting	built	into
Word,	use	the	Modified	property	with	the	ListGallery	object.	To	reset
formatting	to	the	original	list	format,	use	the	Reset	method	for	the	ListGallery
object.



Remarks

After	you	have	returned	a	ListTemplate	object,	use	ListLevels(index),	where
index	is	a	number	from	1	through	9,	to	return	a	single	ListLevel	object.	With	a
ListLevel	object,	you	have	access	to	all	the	formatting	properties	for	the
specified	list	level,	such	as	Alignment,	Font,	NumberFormat,
NumberPosition,	NumberStyle,	and	TrailingCharacter.

Use	the	Convert	method	to	convert	a	multiple-level	list	template	to	a	single-
level	template.



ListTemplates	Collection	Object
									
Multiple	objects	 ListTemplates	(ListTemplate)

ListLevels	(ListLevel)

A	collection	of	ListTemplate	objects	that	represent	the	seven	predefined	list
formats	on	each	tab	in	the	Bullets	and	Numbering	dialog	box.



Using	the	ListTemplates	Collection

Use	the	ListTemplates	property	to	return	the	ListTemplates	collection.	The
following	example	displays	a	message	with	the	level	status	(single	or	multiple-
level)	for	each	list	template	in	the	active	document.

For	Each	lt	In	ActiveDocument.ListTemplates

				MsgBox	"This	is	a	multiple-level	list	template	-	"	_

				&	lt.OutlineNumbered

Next	LT

Use	the	Add	method	to	add	a	list	template	to	the	collection	in	the	specified
document	or	template.	The	following	example	adds	a	new	list	template	to	the
active	document	and	applies	it	to	the	selection.

Set	myLT	=	ActiveDocument.ListTemplates.Add

Selection.Range.ListFormat.ApplyListTemplate	ListTemplate:=myLT

Use	ListTemplates(index),	where	index	is	a	number	1	through	7,	to	return	a
single	list	template	from	a	list	gallery.	The	following	example	sets	an	object
variable	equal	to	the	list	template	used	in	the	third	list	in	the	active	document,
and	then	it	applies	that	list	template	to	the	selection.

Set	mylt	=	ActiveDocument.ListTemplates(3)

Selection.Range.ListFormat.ApplyListTemplate	ListTemplate:=mylt

Note			Some	properties	and	methods	—	Convert	and	Add,	for	example	—	won't
work	with	list	templates	that	are	accessed	from	a	list	gallery.	You	can	modify
these	list	templates,	but	you	cannot	change	their	list	gallery	type
(wdBulletGallery,	wdNumberGallery,	or	wdOutlineNumberGallery).



Resetting	a	List	Template	in	the	Gallery

To	see	whether	the	specified	list	template	contains	the	formatting	built	into
Word,	use	the	Modified	property	with	the	ListGallery	object.	To	reset
formatting	to	the	original	list	format,	use	the	Reset	method	for	the	ListGallery
object.



Remarks

After	you	have	returned	a	ListTemplate	object,	use	ListLevels(index),	where
index	is	a	number	from	1	through	9,	to	return	a	single	ListLevel	object.	With	a
ListLevel	object,	you	have	access	to	all	the	formatting	properties	for	the
specified	list	level,	such	as	Alignment,	Font,	NumberFormat,
NumberPosition,	NumberStyle,	and	TrailingCharacter.

Use	the	Convert	method	to	convert	a	multiple-level	list	template	to	a	single-
level	template.



MailingLabel	Object
									
Application	 MailingLabel

Multiple	objects

Represents	a	mailing	label.



Using	the	MailingLabel	Object

Use	the	MailingLabel	property	to	return	the	MailingLabel	object.	The
following	example	sets	default	mailing	label	options.

With	Application.MailingLabel

				.DefaultLaserTray	=	wdPrinterLowerBin

				.DefaultPrintBarCode	=	True

End	With

Use	the	PrintOut	method	to	print	a	mailing	label	listed	in	the	Product	Number
box	in	the	Label	Options	dialog	box.	The	following	example	prints	a	page	of
Avery	5162	standard	address	labels	using	the	specified	address.

addr	=	"Katie	Jordan"	&	vbCr	&	"123	Skye	St."	_

				&	vbCr	&	"OurTown,	WA	98107"

Application.MailingLabel.PrintOut	Name:="5162",	Address:=addr



Remarks

Use	the	CustomLabels	property	to	format	or	print	a	custom	mailing	label.	The
following	example	sets	the	number	of	labels	across	and	down	for	the	custom
label	named	"MyLabel."

With	Application.MailingLabel.CustomLabels("MyLabel")

				.NumberAcross	=	2

				.NumberDown	=	5

End	With



MailMerge	Object
									
Document	 MailMerge

Multiple	objects

Represents	the	mail	merge	functionality	in	Word.



Using	the	MailMerge	Object

Use	the	MailMerge	property	to	return	the	MailMerge	object.	The	MailMerge
object	is	always	available	regardless	of	whether	the	mail	merge	operation	has
begun.	Use	the	State	property	to	determine	the	status	of	the	mail	merge
operation.	The	following	example	executes	a	mail	merge	if	the	active	document
is	a	main	document	with	an	attached	data	source.

If	ActiveDocument.MailMerge.State	=	wdMainAndDataSource	Then

				ActiveDocument.MailMerge.Execute

End	If

The	following	example	merges	the	main	document	with	the	first	three	data
records	in	the	attached	data	source	and	then	sends	the	results	to	the	printer.

Set	myMerge	=	ActiveDocument.MailMerge

If	myMerge.State	=	wdMainAndSourceAndHeader	Or	_

				myMerge.State	=	wdMainAndDataSource	Then

				With	myMerge.DataSource

								.FirstRecord	=	1

								.LastRecord	=	3

				End	With

End	If

With	myMerge

				.Destination	=	wdSendToPrinter

				.Execute

End	With



MailMergeDataField	Object
									
Documents	(Document)	 MailMerge

MailMergeDataSource
MailMergeDataFields	(MailMergeDataField)

Represents	a	single	mail	merge	field	in	a	data	source.	The	MailMergeDataField
object	is	a	member	of	the	MailMergeDataFields	collection.	The
MailMergeDataFields	collection	includes	all	the	data	fields	in	a	mail	merge
data	source	(for	example,	Name,	Address,	and	City).



Using	the	MailMergeDataField	Object

Use	DataFields(index),	where	index	is	the	data	field	name	or	the	index	number,
to	return	a	single	MailMergeDataField	object.	The	index	number	represents	the
position	of	the	data	field	in	the	mail	merge	data	source.	The	following	example
retrieves	the	first	value	from	the	FName	field	in	the	data	source	attached	to	the
active	document.

first	=	_

				ActiveDocument.MailMerge.DataSource.DataFields("FName").Value

The	following	example	displays	the	name	of	first	field	in	the	data	source
attached	to	the	active	document.

MsgBox	ActiveDocument.MailMerge.DataSource.DataFields(1).Name

You	cannot	add	fields	to	the	MailMergeDataFields	collection.	All	data	fields	in
a	data	source	are	automatically	included	in	the	MailMergeDataFields
collection.



MailMergeDataFields	Collection
Object
									
Documents	(Document)	 MailMerge

MailMergeDataSource
MailMergeDataFields	(MailMergeDataField)

A	collection	of	MailMergeDataField	objects	that	represent	the	data	fields	in	a
mail	merge	data	source.



Using	the	MailMergeDataFields	Collection

Use	the	DataFields	property	to	return	the	MailMergeDataFields	collection.
The	following	example	displays	the	names	of	all	the	fields	in	the	attached	data
source.

For	Each	afield	In	ActiveDocument.MailMerge.DataSource.DataFields

				MsgBox	afield.Name

Next	afield

You	cannot	add	fields	to	the	MailMergeDataFields	collection.	When	a	data
field	is	added	to	a	data	source,	the	field	is	automatically	included	in	the
MailMergeDataFields	collection.	Use	the	EditDataSource	method	to	edit	the
contents	of	a	data	source.	The	following	example	adds	a	data	field	named
"Author"	to	a	table	in	the	attached	data	source.

If	ActiveDocument.MailMerge.DataSource.Type	=	_

								wdMergeInfoFromWord	Then

				ActiveDocument.MailMerge.EditDataSource

				With	ActiveDocument.Tables(1)

								.Columns.Add

								.Cell(Row:=1,	Column:=.Columns.Count).Range.Text	=	"Author"

				End	With

End	If

Use	DataFields(index),	where	index	is	the	data	field	name	or	the	index	number,
to	return	a	single	MailMergeDataField	object.	The	index	number	represents	the
position	of	the	data	field	in	the	mail	merge	data	source.	The	following	example
retrieves	the	first	value	from	the	FName	field	in	the	data	source	attached	to	the
active	document.

first	=	_

				ActiveDocument.MailMerge.DataSource.DataFields("FName").Value

The	following	example	displays	the	name	of	first	data	field	in	the	data	source
attached	to	the	active	document.

MsgBox	ActiveDocument.MailMerge.DataSource.DataFields(1).Name





MailMergeDataSource	Object
									
MailMerge	 MailMergeDataSource

Multiple	objects

Represents	the	mail	merge	data	source	in	a	mail	merge	operation.



Using	the	MailMergeDataSource	Object

Use	the	DataSource	property	to	return	the	MailMergeDataSource	object.	The
following	example	displays	the	name	of	the	data	source	associated	with	the
active	document.

If	ActiveDocument.MailMerge.DataSource.Name	<>	""	Then	_

				MsgBox	ActiveDocument.MailMerge.DataSource.Name

The	following	example	displays	the	field	names	in	the	data	source	associated
with	the	active	document.

For	Each	aField	In	ActiveDocument.MailMerge.DataSource.FieldNames

				MsgBox	aField.Name

Next	aField

The	following	example	opens	the	data	source	associated	with	Form	letter.doc
and	determines	whether	the	FirstName	field	includes	the	name	"Kate."

With	Documents("Form	letter.doc").MailMerge

				.EditDataSource

				If	.DataSource.FindRecord(FindText:="Kate",	_

												Field:="FirstName")	=	True	Then

								MsgBox	"Data	was	found"

				End	If

End	With



MailMergeField	Object
									
Documents	(Document)	 MailMerge

MailMergeFields	(MailMergeField)
Range

Represents	a	single	mail	merge	field	in	a	document.	The	MailMergeDataField
object	is	a	member	of	the	MailMergeDataFields	collection.	The
MailMergeDataFields	collection	includes	all	the	mail	merge	related	fields	in	a
document.



Using	the	MailMergeField	Object

Use	Fields(index),	where	index	is	the	index	number,	to	return	a	single
MailMergeField	object.	The	following	example	displays	the	field	code	of	the
first	mail	merge	field	in	the	active	document.

MsgBox	ActiveDocument.MailMerge.Fields(1).Code

Use	the	Add	method	to	add	a	merge	field	to	the	MailMergeFields	collection.
The	following	example	replaces	the	selection	with	a	MiddleInitial	merge	field.

ActiveDocument.MailMerge.Fields.Add	Range:=Selection.Range,	_

				Name:="MiddleInitial"



Remarks

The	MailMergeFields	collection	has	additional	methods,	such	as	AddAsk	and
AddFillIn,	for	adding	fields	related	to	a	mail	merge	operation.



MailMergeFieldName	Object
									
Documents	(Document)	 MailMerge

MailMergeDataSource
MailMergeFieldNames	(MailMergeFieldName)

Represents	a	mail	merge	field	name	in	a	data	source.	The
MailMergeFieldName	object	is	a	member	of	the	MailMergeFieldNames
collection.	The	MailMergeFieldNames	collection	includes	all	the	data	field
names	in	a	mail	merge	data	source.



Using	the	MailMergeFieldName	Object

Use	FieldNames(index),	where	index	is	the	index	number,	to	return	a	single
MailMergeFieldName	object.	The	index	number	represents	the	position	of	the
field	in	the	mail	merge	data	source.	The	following	example	retrieves	the	name	of
the	last	field	in	the	data	source	attached	to	the	active	document.

alast	=	ActiveDocument.MailMerge.DataSource.FieldNames.Count

afirst	=	ActiveDocument.MailMerge.DataSource.FieldNames(alast).Name

MsgBox	afirst

You	cannot	add	fields	to	the	MailMergeFieldNames	collection.	Field	names	in
a	data	source	are	automatically	included	in	the	MailMergeFieldNames
collection.



MailMergeFieldNames	Collection
Object
									
Documents	(Document)	 MailMerge

MailMergeDataSource
MailMergeFieldNames	(MailMergeFieldName)

A	collection	of	MailMergeFieldName	objects	that	represent	the	field	names	in	a
mail	merge	data	source.



Using	the	MailMergeFieldNames	Collection

Use	the	FieldNames	property	to	return	the	MailMergeFieldNames	collection.
The	following	example	displays	the	names	of	the	fields	in	the	data	source
attached	to	the	active	document.

For	Each	afield	In	ActiveDocument.MailMerge.DataSource.FieldNames

				MsgBox	afield.Name

Next	afield

You	cannot	add	names	to	the	MailMergeFieldNames	collection.	When	a	field	is
added	to	a	data	source,	the	field	name	is	automatically	included	in	the
MailMergeFieldNames	collection.	Use	the	EditDataSource	method	to	edit	the
contents	of	a	data	source.	The	following	example	adds	a	data	field	named
"Author"	to	a	table	in	the	data	source	attached	to	the	active	document.

If	ActiveDocument.MailMerge.DataSource.Type	=	_

								wdMergeInfoFromWord	Then

				ActiveDocument.MailMerge.EditDataSource

				With	ActiveDocument.Tables(1)

								.Columns.Add

								.Cell(Row:=1,	Column:=.Columns.Count).Range.Text	=	"Author"

				End	With

End	If



MailMergeFields	Collection	Object
									
Documents	(Document)	 MailMerge

MailMergeFields	(MailMergeField)
Range

A	collection	of	MailMergeField	objects	that	represent	the	mail	merge	related
fields	in	a	document.



Using	the	MailMergeFields	Collection

Use	the	Fields	property	to	return	the	MailMergeFields	collection.	The
following	example	adds	an	ASK	field	after	the	last	mail	merge	field	in	the	active
document.

Set	myMMFields	=	ActiveDocument.MailMerge.Fields

myMMFields(myMMFields.Count).Select

Selection.MoveRight	Unit:=wdWord,	Count:=1,	Extend:=wdMove

ActiveDocument.MailMerge.Fields.AddAsk	Range:=Selection.Range,	_

				Name:="Name",	Prompt:="Type	your	name",	AskOnce:=True

Use	the	Add	method	to	add	a	merge	field	to	the	MailMergeFields	collection.
The	following	example	replaces	the	selection	with	a	MiddleInitial	merge	field.

ActiveDocument.MailMerge.Fields.Add	Range:=Selection.Range,	_

				Name:="MiddleInitial"

Use	Fields(index),	where	index	is	the	index	number,	to	return	a	single
MailMergeField	object.	The	following	example	displays	the	field	code	of	the
first	mail	merge	field	in	the	active	document.

MsgBox	ActiveDocument.MailMerge.Fields(1).Code



Remarks

The	MailMergeFields	collection	has	additional	methods,	such	as	AddAsk	and
AddFillIn,	for	adding	fields	related	to	a	mail	merge	operation.



MailMessage	Object
									
Application	 MailMessage

Represents	the	active	email	message	if	you	are	using	Word	as	your	e-mail	editor.



Using	the	MailMessage	Object

Use	the	MailMessage	property	to	return	the	MailMessage	object.	The	following
example	validates	the	e-mail	addresses	that	appear	in	the	active	e-mail	message.

Application.MailMessage.CheckName



Remarks

The	methods	of	the	MailMessage	object	require	that	you	are	using	Word	as	your
e-mail	editor	and	that	an	e-mail	message	is	active.	If	either	of	these	conditions
isn't	true,	an	error	occurs.



MappedDataField	Object
									
MappedDataFields	 MappedDataField

Represents	a	single	mapped	data	field.	The	MappedDataField	object	is	a
member	of	the	MappedDataFields	collection.	The	MappedDataFields
collection	includes	all	the	mapped	data	fields	available	in	Microsoft	Word.

A	mapped	data	field	is	a	field	contained	within	Microsoft	Word	that	represents
commonly	used	name	or	address	information,	such	as	"First	Name."	If	a	data
source	contains	a	"First	Name"	field	or	a	variation	(such	as	"First_Name,"
"FirstName,"	"First,"	or	"FName"),	the	field	in	the	data	source	will	automatically
map	to	the	corresponding	mapped	data	field	in	Word.	If	a	document	or	template
is	to	be	merged	with	more	than	one	data	source,	mapped	data	fields	make	it
unnecessary	to	reenter	the	fields	into	the	document	to	agree	with	the	field	names
in	the	database.



Using	the	MappedDataField	object

Use	the	MappedDataFields	property	to	return	a	MappedDataField	object.	This
example	returns	the	data	source	field	name	for	the	wdFirstName	mapped	data
field.	This	example	assumes	the	current	document	is	a	mail	merge	document.	A
blank	string	value	returned	for	the	DataFieldName	property	indicates	that	the
mapped	data	field	is	not	mapped	to	a	field	in	the	data	source.

Sub	MappedFieldName()

				With	ThisDocument.MailMerge.DataSource

								If	.MappedDataFields.Item(wdFirstName).DataFieldName	<>	""	Then

												MsgBox	"The	mapped	data	field	'FirstName'	is	mapped	to	"	_

												&	.MappedDataFields(Index:=wdFirstName)	_

												.DataFieldName	&	"."

								Else

												MsgBox	"The	mapped	data	field	'FirstName'	is	not	"	&	_

																"mapped	to	any	of	the	data	fields	in	your	"	&	_

																"data	source."

								End	If

				End	With

End	Sub



Show	All



MappedDataFields	Collection
									
MailMergeDataSource	 MappedDataFields

MappedDataField

A	collection	of	MappedDataField	objects	that	represents	all	the	mapped	data
fields	available	in	Microsoft	Word.



Using	the	MappedDataFields	collection

Use	the	MappedDataFields	property	of	the	MailMergeDataSource	object	to
return	the	MappedDataFields	collection.	This	example	creates	a	tabbed	list	of
the	mapped	data	fields	available	in	Word	and	the	fields	in	the	data	source	to
which	they	are	mapped.	This	example	assumes	that	the	current	document	is	a
mail	merge	document	and	that	the	data	source	fields	have	corresponding	mapped
data	fields.

Sub	MappedFields()

				Dim	intCount	As	Integer

				Dim	docCurrent	As	Document

				Dim	docNew	As	Document

				On	Error	Resume	Next

				Set	docCurrent	=	ThisDocument

				Set	docNew	=	Documents.Add

				'Add	leader	tab	to	new	document

				docNew.Paragraphs.TabStops.Add	_

								Position:=InchesToPoints(3.5),	_

								Leader:=wdTabLeaderDots

				With	docCurrent.MailMerge.DataSource

								'Insert	heading	paragraph	for	tabbed	columns

								docNew.Content.InsertAfter	"Word	Mapped	Data	Field"	_

												&	vbTab	&	"Data	Source	Field"

												Do

																intCount	=	intCount	+	1

																				'Insert	Word	mapped	data	field	name	and	the

																				'corresponding	data	source	field	name

																				docNew.Content.InsertAfter	.MappedDataFields(	_

																								Index:=intCount).Name	&	vbTab	&	_

																								.MappedDataFields(Index:=intCount)	_

																								.DataFieldName

																				'Insert	paragraph

																				docNew.Content.InsertParagraphAfter

												Loop	Until	intCount	=	.MappedDataFields.Count



				End	With

End	Sub



OLEFormat	Object
									
Multiple	objects	 OLEFormat

Represents	the	OLE	characteristics	(other	than	linking)	for	an	OLE	object,
ActiveX	control,	or	field.



Using	the	OLEFormat	Object

Use	the	OLEFormat	property	for	a	shape,	inline	shape,	or	field	to	return	the
OLEFormat	object.	The	following	example	displays	the	class	type	for	the	first
shape	on	the	active	document.

MsgBox	ActiveDocument.Shapes(1).OLEFormat.ClassType



Remarks

Not	all	types	of	shapes,	inline	shapes,	and	fields	have	OLE	capabilities.	Use	the
Type	property	for	the	Shape	and	InlineShape	objects	to	determine	what
category	the	specified	shape	or	inline	shape	falls	into.	The	Type	property	for	a
Field	object	returns	the	type	of	field.

You	can	use	the	Activate,	Edit,	Open,	and	DoVerb	methods	to	automate	an
OLE	object.

Use	the	Object	property	to	return	an	object	that	represents	an	ActiveX	control	or
OLE	object.	With	this	object,	you	can	use	the	properties	and	methods	of	the
container	application	or	the	ActiveX	control.



Options	Object
									
Application	 Options

Represents	application	and	document	options	in	Word.	Many	of	the	properties
for	the	Options	object	correspond	to	items	in	the	Options	dialog	box	(Tools
menu).



Using	the	Options	Object

Use	the	Options	property	to	return	the	Options	object.	The	following	example
sets	three	application	options	for	Word.

With	Options

				.AllowDragAndDrop	=	True

				.ConfirmConversions	=	False

				.MeasurementUnit	=	wdPoints

End	With



OtherCorrectionsException	Object
									
AutoCorrect	 OtherCorrectionExceptions	(OtherCorrectionException)

Represents	a	single	AutoCorrect	exception.	The	OtherCorrectionsException
object	is	a	member	of	the	OtherCorrectionsExceptions	collection.	The
OtherCorrectionsExceptions	collection	includes	all	words	that	Microsoft	Word
won't	correct	automatically.	This	list	corresponds	to	the	list	of	AutoCorrect
exceptions	on	the	Other	Corrections	tab	in	the	AutoCorrect	Exceptions	dialog
box	(AutoCorrect	command,	Tools	menu).



Using	the	OtherCorrectionsException	Object

Use	OtherCorrectionsExceptions(index),	where	index	is	the	AutoCorrect
exception	name	or	the	index	number,	to	return	a	single
OtherCorrectionsException	object.	The	following	example	deletes	"WTop"
from	the	list	of	AutoCorrect	exceptions.

AutoCorrect.OtherCorrectionsExceptions("WTop").Delete

The	index	number	represents	the	position	of	the	AutoCorrect	exception	in	the
OtherCorrectionsExceptions	collection.	The	following	example	displays	the
name	of	the	first	item	in	the	OtherCorrectionsExceptions	collection.

MsgBox	AutoCorrect.OtherCorrectionsExceptions(1).Name

If	the	value	of	the	OtherCorrectionsAutoAdd	property	is	True,	words	are
automatically	added	to	the	list	of	AutoCorrect	exceptions.	Use	the	Add	method
to	add	an	item	to	the	OtherCorrectionsExceptions	collection.	The	following
example	adds	"TipTop"	to	the	list	of	AutoCorrect	exceptions.

AutoCorrect.OtherCorrectionsExceptions.Add	Name:="TipTop"



OtherCorrectionsExceptions
Collection	Object
									
AutoCorrect	 OtherCorrectionExceptions	(OtherCorrectionException)

A	collection	of	OtherCorrectionsException	objects	that	represents	the	list	of
words	that	Microsoft	Word	won't	correct	automatically.	This	list	corresponds	to
the	list	of	AutoCorrect	exceptions	on	the	Other	Corrections	tab	in	the
AutoCorrect	Exceptions	dialog	box	(AutoCorrect	command,	Tools	menu).



Using	the	OtherCorrectionsExceptions	Collection

Use	the	OtherCorrectionsExceptions	property	to	return	the
OtherCorrectionsExceptions	collection.	The	following	example	displays	the
items	in	this	collection.

For	Each	aCap	In	AutoCorrect.OtherCorrectionsExceptions

				MsgBox	aCap.Name

Next	aCap

If	the	value	of	the	OtherCorrectionsAutoAdd	property	is	True,	words	are
automatically	added	to	the	list	of	AutoCorrect	exceptions.	Use	the	Add	method
to	add	an	item	to	the	OtherCorrectionsExceptions	collection.	The	following
example	adds	"TipTop"	to	the	list	of	AutoCorrect	exceptions.

AutoCorrect.OtherCorrectionsExceptions.Add	Name:="TipTop"

Use	OtherCorrectionsExceptions(index),	where	index	is	the	name	or	the	index
number,	to	return	a	single	OtherCorrectionsException	object.	The	following
example	deletes	"WTop"	from	the	list	of	AutoCorrect	exceptions.

AutoCorrect.OtherCorrectionsExceptions("WTop").Delete

The	index	number	represents	the	position	of	the	AutoCorrect	exception	in	the
OtherCorrectionsExceptions	collection.	The	following	example	displays	the
name	of	the	first	item	in	the	OtherCorrectionsExceptions	collection.

MsgBox	AutoCorrect.OtherCorrectionsExceptions(1).Name



PageNumber	Object
									
Sections	(Section)	 HeadersFooters	(HeaderFooter)

PageNumbers	(PageNumber)

Represents	a	page	number	in	a	header	or	footer.	The	PageNumber	object	is	a
member	of	the	PageNumbers	collection.	The	PageNumbers	collection	includes
all	the	page	numbers	in	a	single	header	or	footer.



Using	the	PageNumber	Object

Use	PageNumbers(index),	where	index	is	the	index	number,	to	return	a	single
PageNumber	object.	In	most	cases,	a	header	or	footer	will	contain	only	one
page	number,	which	is	index	number	1.	The	following	example	centers	the	first
page	number	in	the	primary	header	in	section	one	in	the	active	document.

ActiveDocument.Sections(1).Headers(wdHeaderFooterPrimary)	_

				.PageNumbers(1).Alignment	=	wdAlignPageNumberCenter

Use	the	Add	method	to	add	a	page	number	(a	PAGE	field)	to	a	header	or	footer.
The	following	example	adds	a	page	number	to	the	primary	footer	in	the	first
section	and	in	any	subsequent	sections.	The	page	number	doesn't	appear	on	the
first	page.

With	ActiveDocument.Sections(1)

				.Footers(wdHeaderFooterPrimary).PageNumbers.Add	_

								PageNumberAlignment:=wdAlignPageNumberLeft,	_

								FirstPage:=False

End	With



PageNumbers	Collection	Object
									
Sections	(Section)	 HeadersFooters	(HeaderFooter)

PageNumbers	(PageNumber)

A	collection	of	PageNumber	objects	that	represent	the	page	numbers	in	a	single
header	or	footer.



Using	the	PageNumbers	Collection

Use	the	PageNumbers	property	to	return	the	PageNumbers	collection.	The
following	example	starts	page	numbering	at	3	for	the	first	section	in	the	active
document.

ActiveDocument.Sections(1).Footers(wdHeaderFooterPrimary)	_

				.PageNumbers.StartingNumber	=	3

Use	the	Add	method	to	add	page	numbers	to	a	header	or	footer.	The	following
example	adds	a	page	number	to	the	primary	footer	in	the	first	section.

With	ActiveDocument.Sections(1)

				.Footers(wdHeaderFooterPrimary).PageNumbers.Add	_

								PageNumberAlignment:=wdAlignPageNumberLeft,	_

								FirstPage:=False

End	With

To	add	or	change	page	numbers	in	a	document	with	multiple	sections,	modify
the	page	numbers	in	each	section	or	set	the	LinkToPrevious	property	to	True.

Use	PageNumbers(index),	where	index	is	the	index	number,	to	return	a	single
PageNumber	object.	In	most	cases,	a	header	or	footer	contains	only	one	page
number,	which	is	index	number	1.	The	following	example	centers	the	first	page
number	in	the	primary	header	in	the	first	section.

ActiveDocument.Sections(1).Headers(wdHeaderFooterPrimary)	_

				.PageNumbers(1).Alignment	=	wdAlignPageNumberCenter



PageSetup	Object
									
Multiple	objects	 PageSetup

Multiple	objects

Represents	the	page	setup	description.	The	PageSetup	object	contains	all	the
page	setup	attributes	of	a	document	(left	margin,	bottom	margin,	paper	size,	and
so	on)	as	properties.



Using	the	PageSetup	Object

Use	the	PageSetup	property	to	return	the	PageSetup	object.	The	following
example	sets	the	first	section	in	the	active	document	to	landscape	orientation	and
then	prints	the	document.

ActiveDocument.Sections(1).PageSetup.Orientation	=	_

				wdOrientLandscape

ActiveDocument.PrintOut

The	following	example	sets	all	the	margins	for	the	document	named	"Sales.doc."

With	Documents("Sales.doc").PageSetup

				.LeftMargin	=	InchesToPoints(0.75)

				.RightMargin	=	InchesToPoints(0.75)

				.TopMargin	=	InchesToPoints(1.5)

				.BottomMargin	=	InchesToPoints(1)

End	With



Pane	Object
									
Windows	(Window)	 Panes	(Pane)

Multiple	objects

Represents	a	window	pane.	The	Pane	object	is	a	member	of	the	Panes
collection.	The	Panes	collection	includes	all	the	window	panes	for	a	single
window.



Using	the	Pane	Object

Use	Panes(index),	where	index	is	the	index	number,	to	return	a	single	Pane
object.	The	following	example	closes	the	active	pane.

If	ActiveDocument.ActiveWindow.Panes.Count	>=	2	Then	_

				ActiveDocument.ActiveWindow.ActivePane.Close

Use	the	Add	method	or	the	Split	property	to	add	a	window	pane.	The	following
example	splits	the	active	window	at	20	percent	of	the	current	window	size.

ActiveDocument.ActiveWindow.Panes.Add	SplitVertical:=20

The	following	example	splits	the	active	window	in	half.

ActiveDocument.ActiveWindow.Split	=	True

You	can	use	the	SplitSpecial	property	to	show	comments,	footnotes,	or	endnotes
in	a	separate	pane.



Remarks

A	window	has	more	than	one	pane	if	the	window	is	split	or	the	view	is	not	print
layout	view	and	information	such	as	footnotes	or	comments	are	displayed.	The
following	example	displays	the	comments	pane	in	normal	view	and	then
prompts	to	close	the	pane.

ActiveDocument.ActiveWindow.View.Type	=	wdNormalView

If	ActiveDocument.Comments.Count	>=	1	Then

				ActiveDocument.ActiveWindow.View.SplitSpecial	=	wdPaneComments

				response	=	_

								MsgBox("Do	you	want	to	close	the	comments	pane?",	vbYesNo)

				If	response	=	vbYes	Then	_

								ActiveDocument.ActiveWindow.ActivePane.Close

End	If



Panes	Collection	Object
									
Windows	(Window)	 Panes	(Pane)

Multiple	objects

A	collection	of	Pane	objects	that	represent	the	window	panes	for	a	single
window.



Using	the	Panes	Collection

Use	the	Panes	property	to	return	the	Panes	collection.	The	following	example
splits	the	active	window	and	hides	the	ruler	for	each	pane.

ActiveDocument.ActiveWindow.Split	=	True

For	Each	aPane	In	ActiveDocument.ActiveWindow.Panes

				aPane.DisplayRulers	=	False

Next	aPane

Use	the	Add	method	or	the	Split	property	to	add	a	window	pane.	The	following
example	splits	the	active	window	at	20	percent	of	the	current	window	size.

ActiveDocument.ActiveWindow.Panes.Add	SplitVertical:=20

The	following	example	splits	the	active	window	in	half.

ActiveDocument.ActiveWindow.Split	=	True

You	can	use	the	SplitSpecial	property	to	show	comments,	footnotes,	or	endnotes
in	a	separate	pane.



Remarks

A	window	has	more	than	one	pane	if	it's	split,	or	if	the	active	view	isn't	print
layout	view	and	information	such	as	footnotes	or	comments	is	displayed.	The
following	example	displays	the	footnote	pane	in	normal	view	and	then	prompts
the	user	to	close	the	pane.

ActiveDocument.ActiveWindow.View.Type	=	wdNormalView

If	ActiveDocument.Footnotes.Count	>=	1	Then

				ActiveDocument.ActiveWindow.View.SplitSpecial	=	wdPaneFootnotes

				response	=	_

								MsgBox("Do	you	want	to	close	the	footnotes	pane?",	vbYesNo)

				If	response	=	vbYes	Then	_

								ActiveDocument.ActiveWindow.ActivePane.Close

End	If



Paragraph	Object
									
Multiple	objects	 Paragraphs	(Paragraph)

Multiple	objects

Represents	a	single	paragraph	in	a	selection,	range,	or	document.	The
Paragraph	object	is	a	member	of	the	Paragraphs	collection.	The	Paragraphs
collection	includes	all	the	paragraphs	in	a	selection,	range,	or	document.



Using	the	Paragraph	Object

Use	Paragraphs(index),	where	index	is	the	index	number,	to	return	a	single
Paragraph	object.	The	following	example	right	aligns	the	first	paragraph	in	the
active	document.

ActiveDocument.Paragraphs(1).Alignment	=	wdAlignParagraphRight

Use	the	Add,	InsertParagraph,	InsertParagraphAfter,	or
InsertParagraphBefore	method	to	add	a	new,	blank	paragraph	to	a	document.
The	following	example	adds	a	paragraph	mark	before	the	first	paragraph	in	the
selection.

Selection.Paragraphs.Add	Range:=Selection.Paragraphs(1).Range

The	following	example	also	adds	a	paragraph	mark	before	the	first	paragraph	in
the	selection.

Selection.Paragraphs(1).Range.InsertParagraphBefore



ParagraphFormat	Object
									
Multiple	objects	 ParagraphFormat

Multiple	objects

Represents	all	the	formatting	for	a	paragraph.



Using	the	ParagraphFormat	Object

Use	the	Format	property	to	return	the	ParagraphFormat	object	for	a	paragraph
or	paragraphs.	The	ParagraphFormat	property	returns	the	ParagraphFormat
object	for	a	selection,	range,	style,	Find	object,	or	Replacement	object.	The
following	example	centers	the	third	paragraph	in	the	active	document.

ActiveDocument.Paragraphs(3).Format.Alignment	=	_

				wdAlignParagraphCenter

The	following	example	finds	the	next	double-spaced	paragraph	after	the
selection.

With	Selection.Find

				.ClearFormatting

				.ParagraphFormat.LineSpacingRule	=	wdLineSpaceDouble

				.Text	=	""

				.Forward	=	True

				.Wrap	=	wdFindContinue

End	With

Selection.Find.Execute



Remarks

You	can	use	Visual	Basic's	New	keyword	to	create	a	new,	standalone
ParagraphFormat	object.	The	following	example	creates	a	ParagraphFormat
object,	sets	some	formatting	properties	for	it,	and	then	applies	all	of	its
properties	to	the	first	paragraph	in	the	active	document.

Dim	myParaF	As	New	ParagraphFormat

myParaF.Alignment	=	wdAlignParagraphCenter

myParaF.Borders.Enable	=	True

ActiveDocument.Paragraphs(1).Format	=	myParaF

You	can	also	make	a	standalone	copy	of	an	existing	ParagraphFormat	object
by	using	the	Duplicate	property.	The	following	example	duplicates	the
paragraph	formatting	of	the	first	paragraph	in	the	active	document	and	stores	the
formatting	in	myDup.	The	example	changes	the	left	indent	of	myDup	to	1	inch,
creates	a	new	document,	inserts	text	into	the	document,	and	applies	the
paragraph	formatting	of	myDup	to	the	text.

Set	myDup	=	ActiveDocument.Paragraphs(1).Format.Duplicate

myDup.LeftIndent	=	InchesToPoints(1)

Documents.Add

Selection.InsertAfter	"This	is	a	new	paragraph."

Selection.Paragraphs.Format	=	myDup



Paragraphs	Collection	Object
									
Multiple	objects	 Paragraphs	(Paragraph)

Multiple	objects

A	collection	of	Paragraph	objects	in	a	selection,	range,	or	document.



Using	the	Paragraphs	Collection

Use	the	Paragraphs	property	to	return	the	Paragraphs	collection.	The
following	example	formats	the	selected	paragraphs	to	be	double-spaced	and
right-aligned.

With	Selection.Paragraphs

				.Alignment	=	wdAlignParagraphRight

				.LineSpacingRule	=	wdLineSpaceDouble

End	With

Use	the	Add,	InsertParagraph,	InsertParagraphAfter,	or
InsertParagraphBefore	method	to	add	a	new	paragraph	to	a	document.	The
following	example	adds	a	new	paragraph	before	the	first	paragraph	in	the
selection.

Selection.Paragraphs.Add	Range:=Selection.Paragraphs(1).Range

The	following	example	also	adds	a	paragraph	before	the	first	paragraph	in	the
selection.

Selection.Paragraphs(1).Range.InsertParagraphBefore

Use	Paragraphs(index),	where	index	is	the	index	number,	to	return	a	single
Paragraph	object.	The	following	example	right	aligns	the	first	paragraph	in	the
active	document.

ActiveDocument.Paragraphs(1).Alignment	=	wdAlignParagraphRight



Remarks

The	Count	property	for	this	collection	in	a	document	returns	the	number	of
items	in	the	main	story	only.	To	count	items	in	other	stories	use	the	collection
with	the	Range	object.



PictureFormat	Object
									
Shapes	(Shape)	 PictureFormat

Contains	properties	and	methods	that	apply	to	pictures	and	OLE	objects.	The
LinkFormat	object	contains	properties	and	methods	that	apply	to	linked	OLE
objects	only.	The	OLEFormat	object	contains	properties	and	methods	that	apply
to	OLE	objects	whether	or	not	they're	linked.



Using	the	PictureFormat	Object

Use	the	PictureFormat	property	to	return	a	PictureFormat	object.	The
following	example	sets	the	brightness,	contrast,	and	color	transformation	for
shape	one	on	the	active	document	and	crops	18	points	off	the	bottom	of	the
shape.	For	this	example	to	work,	shape	one	must	be	either	a	picture	or	an	OLE
object.

With	ActiveDocument.Shapes(1).PictureFormat

				.Brightness	=	0.3

				.Contrast	=	0.7

				.ColorType	=	msoPictureGrayScale

				.CropBottom	=	18

End	With



ProofreadingErrors	Collection	Object
									
Multiple	objects	 ProofreadingErrors	(Range)

Multiple	objects

A	collection	of	spelling	and	grammatical	errors	for	the	specified	document	or
range.	There	is	no	ProofreadingError	object;	instead,	each	item	in	the
ProofreadingErrors	collection	is	a	Range	object	that	represents	one	spelling	or
grammatical	error.



Using	the	ProofreadingErrors	Collection

Use	the	SpellingErrors	or	GrammaticalErrors	property	to	return	the
ProofreadingErrors	collection.	The	following	example	counts	the	spelling	and
grammatical	errors	in	the	selection	and	displays	the	results	in	a	message	box.

Set	pr1	=	Selection.Range.SpellingErrors

			sc	=	pr1.Count

Set	pr2	=	Selection.Range.GrammaticalErrors

			gc	=	pr2.Count

Msgbox	"Spelling	errors:	"	&	sc	&	vbCr	_

				&	"Grammatical	errors:	"	&	gc

Use	SpellingErrors(index),	where	index	is	the	index	number,	to	return	a	single
spelling	error	(represented	by	a	Range	object).	The	following	example	finds	the
second	spelling	error	in	the	selection	and	then	selects	it.

Set	myRange	=	Selection.Range.SpellingErrors(2)

myRange.Select

Use	GrammarErrors(index),	where	index	is	the	index	number,	to	return	a
single	grammatical	error	(represented	by	a	Range	object).	The	following
example	returns	the	sentence	that	contains	the	first	grammatical	error	in	the
selection.

Set	myRange	=	Selection.Range.GrammaticalErrors(1)

Msgbox	myRange.Text



Remarks

The	Count	property	for	this	collection	in	a	document	returns	the	number	of
items	in	the	main	story	only.	To	count	items	in	other	stories	use	the	collection
with	the	Range	object.	If	all	the	words	in	the	document	or	range	are	spelled
correctly	and	are	grammatically	correct,	the	Count	property	for	the
ProofreadingErrors	object	returns	0	(zero)	and	the	SpellingChecked	and
GrammarChecked	properties	return	True.



Range	Object
									
Multiple	objects	 Range

Multiple	objects

Represents	a	contiguous	area	in	a	document.	Each	Range	object	is	defined	by	a
starting	and	ending	character	position.	Similar	to	the	way	bookmarks	are	used	in
a	document,	Range	objects	are	used	in	Visual	Basic	procedures	to	identify
specific	portions	of	a	document.	However,	unlike	a	bookmark,	a	Range	object
only	exists	while	the	procedure	that	defined	it	is	running.

Note			Range	objects	are	independent	of	the	selection.	That	is,	you	can	define
and	manipulate	a	range	without	changing	the	selection.	You	can	also	define
multiple	ranges	in	a	document,	while	there	can	be	only	one	selection	per	pane.



Using	the	Range	Object

Use	the	Range	method	to	return	a	Range	object	defined	by	the	given	starting
and	ending	character	positions.	The	following	example	returns	a	Range	object
that	refers	to	the	first	10	characters	in	the	active	document.

Set	myRange	=	ActiveDocument.Range(Start:=0,	End:=10)

Use	the	Range	property	to	return	a	Range	object	defined	by	the	beginning	and
end	of	another	object.	The	Range	property	applies	to	many	objects	(for	example,
Paragraph,	Bookmark,	and	Cell).	The	following	example	returns	a	Range
object	that	refers	to	the	first	paragraph	in	the	active	document.

Set	aRange	=	ActiveDocument.Paragraphs(1).Range

The	following	example	returns	a	Range	object	that	refers	to	the	second	through
fourth	paragraphs	in	the	active	document

Set	aRange	=	ActiveDocument.Range(	_

				Start:=ActiveDocument.Paragraphs(2).Range.Start,	_

				End:=ActiveDocument.Paragraphs(4).Range.End)

For	more	information	about	working	with	Range	objects,	see	Working	with
Range	Objects.



ReadabilityStatistic	Object
									
Multiple	objects	 ReadabilityStatistics	(ReadabilityStatistic)

Represents	one	of	the	readability	statistics	for	a	document	or	range.	The
ReadabilityStatistic	object	is	a	member	of	the	ReadabilityStatistics	collection.



Using	the	ReadabilityStatistic	Object

Use	ReadabilityStatistics(index),	where	index	is	the	index	number,	to	return	a
single	ReadabilityStatistic	object.	The	statistics	are	ordered	as	follows:	Words,
Characters,	Paragraphs,	Sentences,	Sentences	per	Paragraph,	Words	per
Sentence,	Characters	per	Word,	Passive	Sentences,	Flesch	Reading	Ease,	and
Flesch-Kincaid	Grade	Level.	The	following	example	returns	the	character	count
for	the	active	document.

Msgbox	ActiveDocument.Content.ReadabilityStatistics(2).Value



ReadabilityStatistics	Collection
Object
									
Multiple	objects	 ReadabilityStatistics	(ReadabilityStatistic)

A	collection	of	ReadabilityStatistic	objects	for	a	document	or	range.



Using	the	ReadabilityStatistics	Collection

Use	the	ReadabilityStatistics	property	to	return	the	ReadabilityStatistics
collection.	The	following	example	enumerates	the	readability	statistics	for	the
selection	and	displays	each	one	in	a	message	box.

For	each	rs	in	Selection.Range.ReadabilityStatistics

				Msgbox	rs.Name	&	"	-	"	&	rs.Value

Next	rs

Use	ReadabilityStatistics(index),	where	index	is	the	index	number,	to	return	a
single	ReadabilityStatistic	object.	The	statistics	are	ordered	as	follows:	Words,
Characters,	Paragraphs,	Sentences,	Sentences	per	Paragraph,	Words	per
Sentence,	Characters	per	Word,	Passive	Sentences,	Flesch	Reading	Ease,	and
Flesch-Kincaid	Grade	Level.	The	following	example	returns	the	word	count	for
the	active	document.

Set	myRange	=	ActiveDocument.Content

wordval	=	myRange.ReadabilityStatistics(1).Value

Msgbox	wordval



RecentFile	Object
									
RecentFiles	 RecentFile

Document

Represents	a	recently	used	file.	The	RecentFile	object	is	a	member	of	the
RecentFiles	collection.	The	RecentFiles	collection	includes	all	the	files	that
have	been	used	recently.	The	items	in	the	RecentFiles	collection	are	displayed	at
the	bottom	of	the	File	menu.



Using	the	RecentFile	Object

Use	RecentFiles(index),	where	index	is	the	index	number,	to	return	a	single
RecentFile	object.	The	index	number	represents	the	position	of	the	file	on	the
File	menu.	The	following	example	opens	the	first	document	in	the	RecentFiles
collection.

If	RecentFiles.Count	>=	1	Then	RecentFiles(1).Open

Use	the	Add	method	to	add	a	file	to	the	RecentFiles	collection.	The	following
example	adds	the	active	document	to	the	list	of	recently-used	files.

If	ActiveDocument.Saved	=	True	Then

				RecentFiles.Add	Document:=ActiveDocument.FullName,	_

								ReadOnly:=True

End	If



Remarks

The	SaveAs	and	Open	methods	include	an	AddToRecentFiles	argument	that
controls	whether	or	not	a	file	is	added	to	the	recently-used-files	list	when	the	file
is	opened	or	saved.



RecentFiles	Collection	Object
									
Multiple	objects	 RecentFiles

RecentFile

A	collection	of	RecentFile	objects	that	represents	the	files	that	have	been	used
recently.	The	items	in	the	RecentFiles	collection	are	displayed	at	the	bottom	of
the	File	menu.



Using	the	RecentFiles	Collection

Use	the	RecentFiles	property	to	return	the	RecentFiles	collection.	The
following	example	sets	five	as	the	maximum	number	of	files	that	the
RecentFiles	collection	can	contain.

RecentFiles.Maximum	=	5

Use	the	Add	method	to	add	a	file	to	the	RecentFiles	collection.	The	following
example	adds	the	active	document	to	the	list	of	recently-used	files.

If	ActiveDocument.Saved	=	True	Then

				RecentFiles.Add	Document:=ActiveDocument.FullName,	_

								ReadOnly:=True

End	If

Use	RecentFiles(index),	where	index	is	the	index	number,	to	return	a	single
RecentFile	object.	The	index	number	represents	the	position	of	the	file	on	the
File	menu.	The	following	example	opens	the	first	document	in	the	RecentFiles
collection.

If	RecentFiles.Count	>=	1	Then	RecentFiles(1).Open



Remarks

The	SaveAs	and	Open	methods	include	an	AddToRecentFiles	argument	that
controls	whether	or	not	a	file	is	added	to	the	recently-used-files	list	when	the	file
is	opened	or	saved.



Replacement	Object
									
Find	 Replacement

Multiple	objects

Represents	the	replace	criteria	for	a	find-and-replace	operation.	The	properties
and	methods	of	the	Replacement	object	correspond	to	the	options	in	the	Find
and	Replace	dialog	box.



Using	the	Replacement	Object

Use	the	Replacement	property	to	return	a	Replacement	object.	The	following
example	replaces	the	next	occurrence	of	the	word	"hi"	with	the	word	"hello."

With	Selection.Find

				.Text	=	"hi"

				.ClearFormatting

				.Replacement.Text	=	"hello"

				.Replacement.ClearFormatting

				.Execute	Replace:=wdReplaceOne,	Forward:=True

End	With

To	find	and	replace	formatting,	set	both	the	find	text	and	the	replace	text	to
empty	strings	("")	and	set	the	Format	argument	of	the	Execute	method	to	True.
The	following	example	removes	all	the	bold	formatting	in	the	active	document.
The	Bold	property	is	True	for	the	Find	object	and	False	for	the	Replacement
object.

With	ActiveDocument.Content.Find

				.ClearFormatting

				.Font.Bold	=	True

				.Text	=	""

				With	.Replacement

								.ClearFormatting

								.Font.Bold	=	False

								.Text	=	""

				End	With

				.Execute	Format:=True,	Replace:=wdReplaceAll

End	With



Reviewer	Object
									
Reviewers	 Reviewer

Represents	a	single	reviewer	of	a	document	in	which	changes	have	been	tracked.
The	Reviewer	object	is	a	member	of	the	Reviewers	collection.



Using	the	Reviewer	object

Use	Reviewers(index),	where	index	is	the	name	or	number	of	the	reviewer,	to
return	a	Reviewer	object.	Use	the	Visible	property	to	display	or	hide	individual
reviewers	in	a	document.	The	following	example	hides	the	reviewer	named	"Jeff
Smith"	and	displays	the	reviewer	named	"Judy	Lew."		This	assumes	that	"Jeff
Smith"	and	"Judy	Lew"	are	members	of	the	Reviewers	collection.	If	they	are
not,	you	will	receive	an	error.

Sub	ShowHide()

				With	ActiveWindow.View

								.Reviewers("Jeff	Smith").Visible	=	False

								.Reviewers("Judy	Lew").Visible	=	True

				End	With

End	Sub



Reviewers	Collection
									
View	 Reviewers

Reviewer

A	collection	of	Reviewer	objects	that	represents	the	reviewers	of	one	or	more
documents.	The	Reviewers	collection	contains	the	names	of	all	reviewers	who
have	reviewed	documents	opened	or	edited	on	a	machine.



Using	the	Reviewers	collection

Use	Reviewers(index),	where	index	is	the	name	or	index	number	of	the
reviewer,	to	return	a	single	reviewer	in	the	Reviewers	collection.	This	example
hides	revisions	made	by	the	first	reviewer	in	the	Reviewers	collection.

Sub	HideAuthorRevisions(blnRev	As	Boolean)

				ActiveWindow.View.Reviewers(Index:=1)	_

								.Visible	=	False

End	Sub



Revision	Object
									
Multiple	objects	 Revision

Multiple	objects

Represents	a	change	marked	with	a	revision	mark.	The	Revision	object	is	a
member	of	the	Revisions	collection.	The	Revisions	collection	includes	all	the
revision	marks	in	a	range	or	document.



Using	the	Revision	Object

Use	Revisions(index),	where	index	is	the	index	number,	to	return	a	single
Revision	object.	The	index	number	represents	the	position	of	the	revision	in	the
range	or	document.	The	following	example	displays	the	author	name	for	the	first
revision	in	section	one	of	the	active	document.

MsgBox	ActiveDocument.Sections(1).Range.Revisions(1).Author

The	Add	method	isn't	available	for	the	Revisions	collection.	Revision	objects
are	added	when	change	tracking	is	enabled.	Set	the	TrackRevisions	property	to
True	to	track	revisions	made	to	the	document	text.	The	following	example
enables	revision	tracking	and	then	inserts	"Action	"	before	the	selection.

ActiveDocument.TrackRevisions	=	True

Selection.InsertBefore	"Action	"



Revisions	Collection	Object
									
Multiple	objects	 Revisions	(Revision)

Range

A	collection	of	Revision	objects	that	represent	the	changes	marked	with	revision
marks	in	a	range	or	document.



Using	the	Revisions	Collection

Use	the	Revisions	property	to	return	the	Revisions	collection.	The	following
example	displays	the	number	of	revisions	in	the	main	text	story.

MsgBox	ActiveDocument.Revisions.Count

The	following	example	accepts	all	the	revisions	in	the	selection.

For	Each	myRev	In	Selection.Range.Revisions

				myRev.Accept

Next	myRev

The	following	example	accepts	all	the	revisions	in	the	first	paragraph	in	the
selection.

Set	myRange	=	Selection.Paragraphs(1).Range

myRange.Revisions.AcceptAll

The	Add	method	isn't	available	for	the	Revisions	collection.	Revision	objects
are	added	when	change	tracking	is	enabled.	Set	the	TrackRevisions	property	to
True	to	track	revisions	made	to	the	document	text.	The	following	example
enables	revision	tracking	in	the	active	document	and	then	inserts	"The	"	before
the	selection.

ActiveDocument.TrackRevisions	=	True

Selection.InsertBefore	"The	"

Use	Revisions(index),	where	index	is	the	index	number,	to	return	a	single
Revision	object.	The	index	number	represents	the	position	of	the	revision	in	the
range	or	document.	The	following	example	displays	the	author	name	for	the	first
revision	in	the	first	section.

MsgBox	ActiveDocument.Sections(1).Range.Revisions(1).Author



Remarks

The	Count	property	for	this	collection	in	a	document	returns	the	number	of
items	in	the	main	story	only.	To	count	items	in	other	stories	use	the	collection
with	the	Range	object.



RoutingSlip	Object
									
Documents	(Document)	 RoutingSlip

Represents	the	routing	slip	associated	with	a	document.	You	use	a	routing	slip	to
send	a	document	through	an	electronic	mail	system.



Using	the	RoutingSlip	Object

Use	the	RoutingSlip	property	to	return	the	RoutingSlip	object.	The	following
example	routes	the	active	document	to	the	specified	recipients,	one	after	another.

ActiveDocument.HasRoutingSlip	=	True

With	ActiveDocument.RoutingSlip

				.Subject	=	"Project	Documentation"

				.AddRecipient	"Don	Funk"

				.AddRecipient	"Dave	Edson"

				.Delivery	=	wdOneAfterAnother

End	With

ActiveDocument.Route



Remarks

The	RoutingSlip	object	cannot	be	used	(doesn't	exist)	unless	the
HasRoutingSlip	property	for	the	document	is	set	to	True.



Row	Object
									
Multiple	objects	 Rows	(Row)

Multiple	objects

Represents	a	row	in	a	table.	The	Row	object	is	a	member	of	the	Rows	collection.
The	Rows	collection	includes	all	the	rows	in	the	specified	selection,	range,	or
table.



Using	the	Row	Object

Use	Rows(index),	where	index	is	the	index	number,	to	return	a	single	Row
object.	The	index	number	represents	the	position	of	the	row	in	the	selection,
range,	or	table.	The	following	example	deletes	the	first	row	in	the	first	table	in
the	active	document.

ActiveDocument.Tables(1).Rows(1).Delete

Use	the	Add	method	to	add	a	row	to	a	table.	The	following	example	inserts	a
row	before	the	first	row	in	the	selection.

If	Selection.Information(wdWithInTable)	=	True	Then

				Selection.Rows.Add	BeforeRow:=Selection.Rows(1)

End	If



Remarks

Use	the	Cells	property	to	modify	the	individual	cells	in	a	Row	object.	The
following	example	adds	a	table	to	the	selection	and	then	inserts	numbers	into
each	cell	in	the	second	row	of	the	table.

Selection.Collapse	Direction:=wdCollapseEnd

If	Selection.Information(wdWithInTable)	=	False	Then

				Set	myTable	=	_

								ActiveDocument.Tables.Add(Range:=Selection.Range,	_

								NumRows:=3,	NumColumns:=5)

				For	Each	aCell	In	myTable.Rows(2).Cells

								i	=	i	+	1

								aCell.Range.Text	=	i

				Next	aCell

End	If



Rows	Collection	Object
									
Multiple	objects	 Rows	(Row)

Multiple	objects

A	collection	of	Row	objects	that	represent	the	table	rows	in	the	specified
selection,	range,	or	table.



Using	the	Rows	Collection

Use	the	Rows	property	to	return	the	Rows	collection.	The	following	example
centers	rows	in	the	first	table	in	the	active	document	between	the	left	and	right
margins.

ActiveDocument.Tables(1).Rows.Alignment	=	wdAlignRowCenter

Use	the	Add	method	to	add	a	row	to	a	table.	The	following	example	inserts	a
row	before	the	first	row	in	the	selection.

If	Selection.Information(wdWithInTable)	=	True	Then

				Selection.Rows.Add	BeforeRow:=Selection.Rows(1)

End	If

Use	Rows(index),	where	index	is	the	index	number,	to	return	a	single	Row
object.	The	index	number	represents	the	position	of	the	row	in	the	selection,
range,	or	table.	The	following	example	deletes	the	first	row	in	the	first	table	in
the	active	document.

ActiveDocument.Tables(1).Rows(1).Delete



Section	Object
									
Multiple	objects	 Sections	(Section)

Multiple	objects

Represents	a	single	section	in	a	selection,	range,	or	document.	The	Section
object	is	a	member	of	the	Sections	collection.	The	Sections	collection	includes
all	the	sections	in	a	selection,	range,	or	document.



Using	the	Section	Object

Use	Sections(index),	where	index	is	the	index	number,	to	return	a	single	Section
object.	The	following	example	changes	the	left	and	right	page	margins	for	the
first	section	in	the	active	document.

With	ActiveDocument.Sections(1).PageSetup

				.LeftMargin	=	InchesToPoints(0.5)

				.RightMargin	=	InchesToPoints(0.5)

End	With

Use	the	Add	method	or	the	InsertBreak	method	to	add	a	new	section	to	a
document.	The	following	example	adds	a	new	section	at	the	beginning	of	the
active	document.

Set	myRange	=	ActiveDocument.Range(Start:=0,	End:=0)

ActiveDocument.Sections.Add	Range:=myRange

myRange.InsertParagraphAfter

The	following	example	adds	a	section	break	above	the	first	paragraph	in	the
selection.

Selection.Paragraphs(1).Range.InsertBreak	_

				Type:=wdSectionBreakContinuous

Note			The	Headers	and	Footers	properties	of	the	specified	Section	object
return	a	HeadersFooters	object.



Sections	Collection	Object
									
Multiple	objects	 Sections	(Section)

Multiple	objects

A	collection	of	Section	objects	in	a	selection,	range,	or	document.



Using	the	Sections	Collection

Use	the	Sections	property	to	return	the	Sections	collection.	The	following
example	inserts	text	at	the	end	of	the	last	section	in	the	active	document.

With	ActiveDocument.Sections.Last.Range

				.Collapse	Direction:=wdCollapseEnd

				.InsertAfter	"end	of	document"

End	With

Use	the	Add	method	or	the	InsertBreak	method	to	add	a	new	section	to	a
document.	The	following	example	adds	a	new	section	at	the	beginning	of	the
active	document.

Set	myRange	=	ActiveDocument.Range(Start:=0,	End:=0)

ActiveDocument.Sections.Add	Range:=myRange

myRange.InsertParagraphAfter

The	following	example	displays	the	number	of	sections	in	the	active	document,
adds	a	section	break	above	the	first	paragraph	in	the	selection,	and	then	displays
the	number	of	sections	again.

MsgBox	ActiveDocument.Sections.Count	&	"	sections"

Selection.Paragraphs(1).Range.InsertBreak	_

				Type:=wdSectionBreakContinuous

MsgBox	ActiveDocument.Sections.Count	&	"	sections"

Use	Sections(index),	where	index	is	the	index	number,	to	return	a	single	Section
object.	The	following	example	changes	the	left	and	right	page	margins	for	the
first	section	in	the	active	document.

With	ActiveDocument.Sections(1).PageSetup

				.LeftMargin	=	InchesToPoints(0.5)

				.RightMargin	=	InchesToPoints(0.5)

End	With





Selection	Object
									
Multiple	objects	 Selection

Multiple	objects

Represents	the	current	selection	in	a	window	or	pane.	A	selection	represents
either	a	selected	(or	highlighted)	area	in	the	document,	or	it	represents	the
insertion	point	if	nothing	in	the	document	is	selected.	There	can	only	be	one
Selection	object	per	document	window	pane,	and	only	one	Selection	object	in
the	entire	application	can	be	active.



Using	the	Selection	Object

Use	the	Selection	property	to	return	the	Selection	object.	If	no	object	qualifier	is
used	with	the	Selection	property,	Word	returns	the	selection	from	the	active	pane
of	the	active	document	window.	The	following	example	copies	the	current
selection	from	the	active	document.

Selection.Copy

The	following	example	cuts	the	selection	from	the	third	document	in	the
Documents	collection.	The	document	doesn't	have	to	be	active	to	access	its
current	selection.

Documents(3).ActiveWindow.Selection.Cut

The	following	example	copies	the	selection	from	the	first	pane	of	the	active
document	and	pastes	it	into	the	second	pane.

ActiveDocument.ActiveWindow.Panes(1).Selection.Copy

ActiveDocument.ActiveWindow.Panes(2).Selection.Paste

The	Text	property	is	the	default	property	of	the	Selection	object.	Use	this
property	to	set	or	return	the	text	in	the	current	selection.	The	following	example
assigns	the	text	in	the	current	selection	to	the	variable	strTemp,	removing	the
last	character	if	it	is	a	paragraph	mark.

Dim	strTemp	as	String

strTemp	=	Selection.Text

If	Right(strTemp,	1)	=	vbCr	Then	_

				strTemp	=	Left(strTemp,	Len(strTemp)	-	1)

The	Selection	object	has	various	methods	and	properties	with	which	you	can
collapse,	expand,	or	otherwise	change	the	current	selection.	The	following
example	moves	the	insertion	point	to	the	end	of	the	document	and	selects	the	last
three	lines.

Selection.EndOf	Unit:=wdStory,	Extend:=wdMove

Selection.HomeKey	Unit:=wdLine,	Extend:=wdExtend

Selection.MoveUp	Unit:=wdLine,	Count:=2,	Extend:=wdExtend



The	Selection	object	has	various	methods	and	properties	with	which	you	can
edit	selected	text	in	a	document.	The	following	example	selects	the	first	sentence
in	the	active	document	and	replaces	it	with	a	new	paragraph.

Options.ReplaceSelection	=	True

ActiveDocument.Sentences(1).Select

Selection.TypeText	"Material	below	is	confidential."

Selection.TypeParagraph

The	following	example	cuts	the	last	paragraph	of	the	first	document	in	the
Documents	collection	and	pastes	it	at	the	beginning	of	the	second	document.

With	Documents(1)

				.Paragraphs.Last.Range.Select

				.ActiveWindow.Selection.Cut

End	With

With	Documents(2).ActiveWindow.Selection

				.StartOf	Unit:=wdStory,	Extend:=wdMove

				.Paste

End	With

The	Selection	object	has	various	methods	and	properties	with	which	you	can
change	the	formatting	of	the	current	selection.	The	following	example	changes
the	font	of	the	current	selection	from	Times	New	Roman	to	Tahoma.

If	Selection.Font.Name	=	"Times	New	Roman"	Then	_

				Selection.Font.Name	=	"Tahoma"

Use	properties	like	Flags,	Information,	and	Type	to	return	information	about
the	current	selection.	You	could	use	the	following	example	in	a	procedure	to
determine	if	there	were	anything	actually	selected	in	the	active	document;	if	not,
the	rest	of	the	procedure	would	be	skipped.

If	Selection.Type	=	wdSelectionIP	Then

				MsgBox	Prompt:="You	haven't	selected	any	text!	Exiting	procedure..."

				Exit	Sub

End	If



Remarks

Even	when	a	selection	is	collapsed	to	an	insertion	point,	it	isn't	necessarily
empty.	For	example,	the	Text	property	will	still	return	the	character	to	the	right
of	the	insertion	point;	this	character	also	appears	in	the	Characters	collection	of
the	Selection	object.	However,	calling	methods	like	Cut	or	Copy	from	a
collapsed	selection	will	cause	an	error.

It's	possible	for	the	user	to	select	a	region	in	a	document	that	doesn't	represent
contiguous	text	(for	example,	when	using	the	ALT	key	with	the	mouse).	Because
the	behavior	of	such	a	selection	can	be	unpredictable,	you	may	want	to	include	a
step	in	your	code	that	checks	the	Type	property	of	a	selection	before	performing
any	operations	on	it	(Selection.Type	=	wdSelectionBlock).	Similarly,
selections	that	include	table	cells	can	also	lead	to	unpredictable	behavior.	The
Information	property	will	tell	you	if	a	selection	is	inside	a	table
(Selection.Information(wdWithinTable)	=	True).	The	following	example
determines	if	a	selection	is	normal	(in	other	words,	it	isn't	a	row	or	column	in	a
table,	it	isn't	a	vertical	block	of	text,	and	so	forth);	you	could	use	it	to	test	the
current	selection	before	performing	any	operations	on	it.

If	Selection.Type	<>	wdSelectionNormal	Then

				MsgBox	Prompt:="Not	a	valid	selection!	Exiting	procedure..."

				Exit	Sub

End	If

Because	Range	objects	share	many	of	the	same	methods	and	properties	as
Selection	objects,	using	Range	objects	is	preferable	for	manipulating	a
document	when	there	isn't	a	reason	to	physically	change	the	current	selection.
For	more	information	on	Selection	and	Range	objects,	see	Working	with	the
Selection	object	and	Working	with	Range	objects.



Show	All



Sentences	Collection	Object
									
Multiple	objects	 Sentences	(Range)

Multiple	objects

A	collection	of	Range	objects	that	represent	all	the	sentences	in	a	selection,
range,	or	document.	There	is	no	Sentence	object.



Using	the	Sentences	Collection

Use	the	Sentences	property	to	return	the	Sentences	collection.	The	following
example	displays	the	number	of	sentences	selected.

MsgBox	Selection.Sentences.Count	&	"	sentences	are	selected"

Use	Sentences(index),	where	index	is	the	index	number,	to	return	a	Range
object	that	represents	a	sentence.	The	index	number	represents	the	position	of	a
sentence	in	the	Sentences	collection.	The	following	example	formats	the	first
sentence	in	the	active	document.

With	ActiveDocument.Sentences(1)

				.Bold	=	True

				.Font.Size	=	24

End	With



Remarks

The	Count	property	for	this	collection	in	a	document	returns	the	number	of
items	in	the	main	story	only.	To	count	items	in	other	stories	use	the	collection
with	the	Range	object.

The	Add	method	isn't	available	for	the	Sentences	collection.	Instead,	use	the
InsertAfter	or	InsertBefore	method	to	add	a	sentence	to	a	Range	object.	The
following	example	inserts	a	sentence	after	the	first	paragraph	in	the	active
document.

With	ActiveDocument

				MsgBox	.Sentences.Count	&	"	sentences"

				.Paragraphs(1).Range.InsertParagraphAfter

				.Paragraphs(2).Range.InsertBefore	"The	house	is	blue."

				MsgBox	.Sentences.Count	&	"	sentences"

End	With



Shading	Object
									
Multiple	objects	 Shading

Contains	shading	attributes	for	an	object.



Using	the	Shading	Object

Use	the	Shading	property	to	return	the	Shading	object.	The	following	example
applies	fine	gray	shading	to	the	first	paragraph	in	the	active	document.

ActiveDocument.Paragraphs(1).Shading.Texture	=	wdTexture10Percent

The	following	example	applies	shading	with	different	foreground	and
background	colors	to	the	selection.

With	Selection.Shading

				.Texture	=	wdTexture20Percent

				.ForegroundPatternColorIndex	=	wdBlue

				.BackgroundPatternColorIndex	=	wdYellow

End	With

The	following	example	applies	a	vertical	line	texture	to	the	first	row	in	the	first
table	in	the	active	document.

ActiveDocument.Tables(1).Rows(1).Shading.Texture	=	_

				wdTextureVertical



ShadowFormat	Object
									
Shapes	(Shape)	 ShadowFormat

ColorFormat

Represents	shadow	formatting	for	a	shape.



Using	the	ShadowFormat	Object

Use	the	Shadow	property	to	return	a	ShadowFormat	object.	The	following
example	adds	a	shadowed	rectangle	to	the	active	document.	The
semitransparent,	blue	shadow	is	offset	5	points	to	the	right	of	the	rectangle	and	3
points	above	it.

With	ActiveDocument.Shapes	_

								.AddShape(msoShapeRectangle,	50,	50,	100,	200).Shadow

				.ForeColor.RGB	=	RGB(0,	0,	128)

				.OffsetX	=	5

				.OffsetY	=	-3

				.Transparency	=	0.5

				.Visible	=	True

End	With



Shape	Object
									
Multiple	objects	 Shapes	(Shape)

Multiple	objects

Represents	an	object	in	the	drawing	layer,	such	as	an	AutoShape,	freeform,	OLE
object,	ActiveX	control,	or	picture.	The	Shape	object	is	a	member	of	the	Shapes
collection,	which	includes	all	the	shapes	in	the	main	story	of	a	document	or	in	all
the	headers	and	footers	of	a	document.

A	shape	is	always	attached	to	an	anchoring	range.	You	can	position	the	shape
anywhere	on	the	page	that	contains	the	anchor.

Note			There	are	three	objects	that	represent	shapes:	the	Shapes	collection,
which	represents	all	the	shapes	on	a	document;	the	ShapeRange	collection,
which	represents	a	specified	subset	of	the	shapes	on	a	document	(for	example,	a
ShapeRange	object	could	represent	shapes	one	and	four	on	the	document,	or	it
could	represent	all	the	selected	shapes	on	the	document);	the	Shape	object,
which	represents	a	single	shape	on	a	document.	If	you	want	to	work	with	several
shape	at	the	same	time	or	with	shapes	within	the	selection,	use	a	ShapeRange
collection.



Using	the	Shape	Object

This	section	describes	how	to:

Return	an	existing	shape	on	a	document,	indexed	by	name	or	number.
Return	a	shape	or	shapes	within	a	selection.
Return	a	newly	created	shape.
Return	a	single	shape	from	within	a	group.
Return	a	newly	formed	group	of	shapes.



Returning	an	existing	shape	on	a	document

Use	Shapes(index),	where	index	is	the	name	or	the	index	number,	to	return	a
single	Shape	object.	The	following	example	horizontally	flips	shape	one	on	the
active	document.

ActiveDocument.Shapes(1).Flip	msoFlipHorizontal

The	following	example	horizontally	flips	the	shape	named	"Rectangle	1"	on	the
active	document.

ActiveDocument.Shapes("Rectangle	1").Flip	msoFlipHorizontal

Each	shape	is	assigned	a	default	name	when	it	is	created.	For	example,	if	you
add	three	different	shapes	to	a	document,	they	might	be	named	"Rectangle	2,"
"TextBox	3,"	and	"Oval	4."	To	give	a	shape	a	more	meaningful	name,	set	the
Name	property.



Returning	a	Shape	or	Shapes	Within	a	Selection

Use	Selection.ShapeRange(index),	where	index	is	the	name	or	the	index
number,	to	return	a	Shape	object	that	represents	a	shape	within	a	selection.	The
following	example	sets	the	fill	for	the	first	shape	in	the	selection,	assuming	that
the	selection	contains	at	least	one	shape.

Selection.ShapeRange(1).Fill.ForeColor.RGB	=	RGB(255,	0,	0)

The	following	example	sets	the	fill	for	all	the	shapes	in	the	selection,	assuming
that	the	selection	contains	at	least	one	shape.

Selection.ShapeRange.Fill.ForeColor.RGB	=	RGB(255,	0,	0)



Returning	a	Newly	Created	Shape

To	add	a	Shape	object	to	the	collection	of	shapes	for	the	specified	document	and
return	a	Shape	object	that	represents	the	newly	created	shape,	use	one	of	the
following	methods	of	the	Shapes	collection:	AddCallout,	AddCurve,
AddLabel,	AddLine,	AddOleControl,	AddOleObject,	AddPolyline,
AddShape,	AddTextbox,	AddTextEffect,	or	BuildFreeForm.	The	following
example	adds	a	rectangle	to	the	active	document.

ActiveDocument.Shapes.AddShape	msoShapeRectangle,	50,	50,	100,	200



Returning	a	Single	Shape	from	Within	a	Group

Use	GroupItems(index),	where	index	is	the	shape	name	or	the	index	number
within	the	group,	to	return	a	Shape	object	that	represents	a	single	shape	in	a
grouped	shape.



Returning	a	Newly	Formed	Group	of	Shapes

Use	the	Group	or	Regroup	method	to	group	a	range	of	shapes	and	return	a
single	Shape	object	that	represents	the	newly	formed	group.	After	a	group	has
been	formed,	you	can	work	with	the	group	the	same	way	you	work	with	any
other	shape.



Anchoring	and	Positioning	a	Shape

Every	Shape	object	is	anchored	to	a	range	of	text.	A	shape	is	anchored	to	the
beginning	of	the	first	paragraph	that	contains	the	anchoring	range.	The	shape
will	always	remain	on	the	same	page	as	its	anchor.

You	can	view	the	anchor	itself	by	setting	the	ShowObjectAnchors	property	to
True.	The	shape's	Top	and	Left	properties	determine	its	vertical	and	horizontal
positions.	The	shape's	RelativeHorizontalPosition	and
RelativeVerticalPosition	properties	determine	whether	the	position	is	measured
from	the	anchoring	paragraph,	the	column	that	contains	the	anchoring	paragraph,
the	margin,	or	the	edge	of	the	page.

If	the	LockAnchor	property	for	the	shape	is	set	to	True,	you	cannot	drag	the
anchor	from	its	position	on	the	page.



Formatting	a	Shape

Use	the	Fill	property	to	return	the	FillFormat	object,	which	contains	all	the
properties	and	methods	for	formatting	the	fill	of	a	closed	shape.	The	Shadow
property	returns	the	ShadowFormat	object,	which	you	use	to	format	a	shadow.
Use	the	Line	property	to	return	the	LineFormat	object,	which	contains
properties	and	methods	for	formatting	lines	and	arrows.	The	TextEffect	property
returns	the	TextEffectFormat	object,	which	you	use	to	format	WordArt.	The
Callout	property	returns	the	CalloutFormat	object,	which	you	use	to	format
line	callouts.	The	WrapFormat	property	returns	the	WrapFormat	object,
which	you	use	to	define	how	text	wraps	around	shapes.	The	ThreeD	property
returns	the	ThreeDFormat	object,	which	you	use	to	create	3-D	shapes.	You	can
use	the	PickUp	and	Apply	methods	to	transfer	formatting	from	one	shape	to
another.

Use	the	SetShapesDefaultProperties	method	for	a	Shape	object	to	set	the
formatting	for	the	default	shape	for	the	document.	New	shapes	inherit	many	of
their	attributes	from	the	default	shape.



Other	Important	Shape	Properties

Use	the	Type	property	to	specify	the	type	of	shape:	freeform,	AutoShape,	OLE
object,	callout,	or	linked	picture,	for	instance.	Use	the	AutoShapeType	property
to	specify	the	type	of	AutoShape:	oval,	rectangle,	or	balloon,	for	instance.

Use	the	Width	and	Height	properties	to	specify	the	size	of	the	shape.

The	TextFrame	property	returns	the	TextFrame	object,	which	contains	all	the
properties	and	methods	for	attaching	text	to	shapes	and	linking	the	text	between
text	frames.



Remarks

Shape	objects	are	anchored	to	a	range	of	text	but	are	free-floating	and	can	be
positioned	anywhere	on	the	page.	InlineShape	objects	are	treated	like	characters
and	are	positioned	as	characters	within	a	line	of	text.	You	can	use	the
ConvertToInlineShape	method	and	the	ConvertToShape	method	to	convert
shapes	from	one	type	to	the	other.	You	can	convert	only	pictures,	OLE	objects,
and	ActiveX	controls	to	inline	shapes.



ShapeNode	Object
									
Shapes	(Shape)	 ShapeNodes	(ShapeNode)

Represents	the	geometry	and	the	geometry-editing	properties	of	the	nodes	in	a
user-defined	freeform.	Nodes	include	the	vertices	between	the	segments	of	the
freeform	and	the	control	points	for	curved	segments.	The	ShapeNode	object	is	a
member	of	the	ShapeNodes	collection.	The	ShapeNodes	collection	contains	all
the	nodes	in	a	freeform.



Using	the	ShapeNode	Object

Use	Nodes(index),	where	index	is	the	node	index	number,	to	return	a	single
ShapeNode	object.	If	node	one	in	shape	three	on	the	active	document	is	a	corner
point,	the	following	example	makes	it	a	smooth	point.	For	this	example	to	work,
shape	three	must	be	a	freeform.

With	ActiveDocument.Shapes(3)

				If	.Nodes(1).EditingType	=	msoEditingCorner	Then

								.Nodes.SetEditingType	1,	msoEditingSmooth

				End	If

End	With



ShapeNodes	Collection	Object
									
Shapes	(Shape)	 ShapeNodes	(ShapeNode)

A	collection	of	all	the	ShapeNode	objects	in	the	specified	freeform.	Each
ShapeNode	object	represents	either	a	node	between	segments	in	a	freeform	or	a
control	point	for	a	curved	segment	of	a	freeform.	You	can	create	a	freeform
manually	or	by	using	the	BuildFreeform	and	ConvertToShape	methods.



Using	the	ShapeNodes	Collection

Use	the	Nodes	property	to	return	the	ShapeNodes	collection.	The	following
example	deletes	node	four	in	shape	three	on	the	active	document.	For	this
example	to	work,	shape	three	must	be	a	freeform	with	at	least	four	nodes.

ActiveDocument.Shapes(3).Nodes.Delete	4

Use	the	Insert	method	to	create	a	new	node	and	add	it	to	the	ShapeNodes
collection.	The	following	example	adds	a	smooth	node	with	a	curved	segment
after	node	four	in	shape	three	on	the	active	document.	For	this	example	to	work,
shape	three	must	be	a	freeform	with	at	least	four	nodes.

With	ActiveDocument.Shapes(3).Nodes

				.Insert	4,	msoSegmentCurve,	msoEditingSmooth,	210,	100

End	With

Use	Nodes(index),	where	index	is	the	node	index	number,	to	return	a	single
ShapeNode	object.	If	node	one	in	shape	three	on	the	active	document	is	a	corner
point,	the	following	example	makes	it	a	smooth	point.	For	this	example	to	work,
shape	three	must	be	a	freeform.

With	ActiveDocument.Shapes(3)

				If	.Nodes(1).EditingType	=	msoEditingCorner	Then

								.Nodes.SetEditingType	1,	msoEditingSmooth

				End	If

End	With



ShapeRange	Collection	Object
									
Multiple	objects	 ShapeRange

Multiple	objects

Represents	a	shape	range,	which	is	a	set	of	shapes	on	a	document.	A	shape	range
can	contain	as	few	as	one	shape	or	as	many	as	all	the	shapes	in	the	document.
You	can	include	whichever	shapes	you	want	—	chosen	from	among	all	the
shapes	in	the	document	or	all	the	shapes	in	the	selection	—	to	construct	a	shape
range.	For	example,	you	could	construct	a	ShapeRange	collection	that	contains
the	first	three	shapes	in	a	document,	all	the	selected	shapes	in	a	document,	or	all
the	freeform	shapes	in	a	document.

Note			Most	operations	that	you	can	do	with	a	Shape	object,	you	can	also	do
with	a	ShapeRange	object	that	contains	only	one	shape.	Some	operations,	when
performed	on	a	ShapeRange	object	that	contains	more	than	one	shape,	will
cause	an	error.



Using	the	ShapeRange	Collection

This	section	describes	how	to:

Return	a	set	of	shapes	you	specify	by	name	or	index	number.
Return	a	ShapeRange	object	within	a	selection	or	range.



Returning	a	Set	of	Shapes	You	Specify	by	Name	or
Index	Number

Use	Shapes.Range(index),	where	index	is	the	name	or	index	number	of	the
shape	or	an	array	that	contains	either	names	or	index	numbers	of	shapes,	to
return	a	ShapeRange	collection	that	represents	a	set	of	shapes	on	a	document.
You	can	use	Visual	Basic's	Array	function	to	construct	an	array	of	names	or
index	numbers.	The	following	example	sets	the	fill	pattern	for	shapes	one	and
three	on	the	active	document.

ActiveDocument.Shapes.Range(Array(1,	3)).Fill.Patterned	_

				msoPatternHorizontalBrick

The	following	example	selects	the	shapes	named	"Oval	4"	and	"Rectangle	5"	on
the	active	document.

ActiveDocument.Shapes.Range(Array("Oval	4",	"Rectangle	5")).Select

Although	you	can	use	the	Range	method	to	return	any	number	of	shapes,	it's
simpler	to	use	the	Item	method	if	you	want	to	return	only	a	single	member	of	the
collection.	For	example,	Shapes(1)	is	simpler	than	Shapes.Range(1).



Returning	a	ShapeRange	Object	Within	a	Selection	or
Range

Use	Selection.ShapeRange(index),	where	index	is	the	name	or	the	index
number,	to	return	a	Shape	object	that	represents	a	shape	within	a	selection.	The
following	example	sets	the	fill	for	the	first	shape	in	the	selection,	assuming	that
the	selection	contains	at	least	one	shape.

Selection.ShapeRange(1).Fill.ForeColor.RGB	=	RGB(255,	0,	0)

This	example	selects	all	the	shapes	in	the	first	section	of	the	active	document.

Set	myRange	=	ActiveDocument.Sections(1).Range

myRange.ShapeRange.Select



Aligning,	Distributing,	and	Grouping	Shapes	in	a
ShapeRange	Object

Use	the	Align,	Distribute,	or	ZOrder	method	to	position	a	set	of	shapes	relative
to	each	other	or	relative	to	the	document.

Use	the	Group,	Regroup,	or	UnGroup	method	to	create	and	work	with	a	single
shape	formed	from	a	shape	range.	The	GroupItems	property	for	a	Shape	object
returns	the	GroupShapes	object,	which	represents	all	the	shapes	that	were
grouped	to	form	one	shape.



Remarks

The	recorder	always	uses	the	ShapeRange	property	when	recording	shapes.

A	ShapeRange	object	doesn't	include	InlineShape	objects.



Shapes	Collection	Object
									
Multiple	objects	 Shapes	(Shape)

Multiple	objects

A	collection	of	Shape	objects	that	represent	all	the	shapes	in	a	document	or	all
the	shapes	in	all	the	headers	and	footers	in	a	document.	Each	Shape	object
represents	an	object	in	the	drawing	layer,	such	as	an	AutoShape,	freeform,	OLE
object,	or	picture.

Note			If	you	want	to	work	with	a	subset	of	the	shapes	on	a	document	—	for
example,	to	do	something	to	only	the	AutoShapes	on	the	document	or	to	only	the
selected	shapes	—	you	must	construct	a	ShapeRange	collection	that	contains
the	shapes	you	want	to	work	with.



Using	the	Shapes	Collection

Use	the	Shapes	property	to	return	the	Shapes	collection.	The	following	example
selects	all	the	shapes	on	the	active	document.

ActiveDocument.Shapes.SelectAll

Note			If	you	want	to	do	something	(like	delete	or	set	a	property)	to	all	the
shapes	on	a	document	at	the	same	time,	use	the	Range	method	to	create	a
ShapeRange	object	that	contains	all	the	shapes	in	the	Shapes	collection,	and
then	apply	the	appropriate	property	or	method	to	the	ShapeRange	object.

Use	one	of	the	following	methods	of	the	Shapes	collection:	AddCallout,
AddCurve,	AddLabel,	AddLine,	AddOleControl,	AddOleObject,
AddPolyline,	AddShape,	AddTextbox,	AddTextEffect,	or	BuildFreeForm	to
add	a	shape	to	a	document	return	a	Shape	object	that	represents	the	newly
created	shape	The	following	example	adds	a	rectangle	to	the	active	document.

ActiveDocument.Shapes.AddShape	msoShapeRectangle,	50,	50,	100,	200

Use	Shapes(index),	where	index	is	the	name	or	the	index	number,	to	return	a
single	Shape	object.	The	following	example	horizontally	flips	shape	one	on	the
active	document.

ActiveDocument.Shapes(1).Flip	msoFlipHorizontal

This	example	horizontally	flips	the	shape	named	"Rectangle	1"	on	the	active
document.

ActiveDocument.Shapes("Rectangle	1").Flip	msoFlipHorizontal

Each	shape	is	assigned	a	default	name	when	it	is	created.	For	example,	if	you
add	three	different	shapes	to	a	document,	they	might	be	named	"Rectangle	2,"
"TextBox	3,"	and	"Oval	4."	To	give	a	shape	a	more	meaningful	name,	set	the
Name	property.



Remarks

The	Shapes	collection	does	not	include	InlineShape	objects.	InlineShape
objects	are	treated	like	characters	and	are	positioned	as	characters	within	a	line
of	text.	Shape	objects	are	anchored	to	a	range	of	text	but	are	free-floating	and
can	be	positioned	anywhere	on	the	page.	You	can	use	the
ConvertToInlineShape	method	and	the	ConvertToShape	method	to	convert
shapes	from	one	type	to	the	other.	You	can	convert	only	pictures,	OLE	objects,
and	ActiveX	controls	to	inline	shapes.

The	Count	property	for	this	collection	in	a	document	returns	the	number	of
items	in	the	main	story	only.	To	count	the	shapes	in	all	the	headers	and	footers,
use	the	Shapes	collection	with	any	HeaderFooter	object.



SmartTag	Object
									
SmartTags	 SmartTag

Multiple	objects

Represents	a	string	in	a	document	or	range	that	contains	recognized	type
information.	The	SmartTag	object	is	a	member	of	the	SmartTags	collection.
The	SmartTags	collection	contains	all	the	smart	tags	in	a	document	or	range	of
text	within	a	document.	Microsoft	Word	uses	a	recognizer	file	to	label	smart
tags,	and	it	uses	an	action	file	to	execute	actions	related	to	the	smart	tags,	such	as
linking	to	Web	sites.



Using	the	SmartTag	object

Use	the	Item	method	—	or	SmartTags(index),	where	index	represents	the
number	of	the	smart	tag	—	to	return	a	single	SmartTag	object.	This	example
adds	custom	properties	to	the	first	smart	tag	in	the	active	document.

Sub	NewSTProp()

				ActiveDocument.SmartTags(Index:=1).Properties	_

								.Add	Name:="President",	Value:=True

End	Sub



SmartTags	Collection
									
Multiple	objects	 SmartTags

SmartTag

A	collection	of	SmartTag	objects	that	represents	the	text	in	a	document	that	is
marked	as	containing	recognized	type	information.	The	SmartTags	collection
contains	all	the	smart	tags	in	a	document	or	range	of	text	within	a	document.
Microsoft	Word	uses	a	recognizer	file	to	label	smart	tags,	and	it	uses	an	action
file	to	execute	actions	related	to	the	smart	tags,	such	as	linking	to	Web	sites.



Using	the	SmartTags	collection

Use	the	Item	method	—	or	SmartTags(index),	where	index	represents	the
number	of	the	smart	tag	—	to	return	a	single	SmartTag	object.	This	example
adds	custom	properties	to	the	first	smart	tag	in	the	active	document.

Sub	NewSmartTagProp()

				ActiveDocument.SmartTags(1).Properties	_

								.Add	Name:="President",	Value:=True

End	Sub



SpellingSuggestion	Object
									
Multiple	objects	 SpellingSuggestions	(SpellingSuggestion)

Represents	a	single	spelling	suggestion	for	a	misspelled	word.	The
SpellingSuggestion	object	is	a	member	of	the	SpellingSuggestions	collection.
The	SpellingSuggestions	collection	includes	all	the	suggestions	for	a	specified
word	or	for	the	first	word	in	the	specified	range.



Using	the	SpellingSuggestion	Object

Use	GetSpellingSuggestions(index),	where	index	is	the	index	number,	to	return
a	single	SpellingSuggestion	object.	The	following	example	checks	to	see
whether	there	are	any	spelling	suggestions	for	the	first	word	in	the	active
document.	If	there	are,	the	first	suggestion	is	displayed	in	a	message	box.

If	ActiveDocument.Words(1).GetSpellingSuggestions.Count	<>	0	Then

				MsgBox	_

								ActiveDocument.Words(1).GetSpellingSuggestions.Item(1).Name

EndIf



Remarks

The	Count	property	for	the	SpellingSuggestions	object	returns	0	(zero)	if	the
word	is	spelled	correctly	or	if	there	are	no	suggestions.



SpellingSuggestions	Collection	Object
									
Multiple	objects	 SpellingSuggestions	(SpellingSuggestion)

A	collection	of	SpellingSuggestion	objects	that	represent	all	the	suggestions	for
a	specified	word	or	for	the	first	word	in	the	specified	range.



Using	the	SpellingSuggestions	Collection

Use	the	GetSpellingSuggestions	method	to	return	the	SpellingSuggestions
collection.	The	SpellingSuggestions	method,	when	applied	to	the	Application
object,	must	specify	the	word	to	be	checked.	When	the	GetSpellingSuggestions
method	is	applied	to	a	range,	the	first	word	in	the	range	is	checked.	The
following	example	checks	to	see	whether	there	are	any	spelling	suggestions	for
any	of	the	words	in	the	active	document.	If	there	are,	the	suggestions	are
displayed	in	message	boxes.

For	Each	wd	In	ActiveDocument.Words

				Set	sugg	=	wd.GetSpellingSuggestions

				If	sugg.Count	<>	0	Then

								For	Each	ss	In	sugg

												MsgBox	ss.Name

								Next	ss

				End	If

Next	wd



Remarks

You	cannot	add	suggestions	to	or	remove	suggestions	from	the	collection	of
spelling	suggestions.	Spelling	suggestions	are	derived	from	main	and	custom
dictionary	files.



Show	All



StoryRanges	Collection	Object
									
Documents	(Document)	 StoryRanges	(Range)

Multiple	objects

A	collection	of	Range	objects	that	represent	stories	in	a	document.



Using	the	StoryRanges	Collection

Use	the	StoryRanges	property	to	return	the	StoryRanges	collection.	The
following	example	removes	manual	character	formatting	from	the	text	in	all
stories	other	than	the	main	text	story	in	the	active	document.

For	Each	aStory	In	ActiveDocument.StoryRanges

				If	aStory.StoryType	<>	wdMainTextStory	Then	aStory.Font.Reset

Next	aStory

The	Add	method	isn't	available	for	the	StoryRanges	collection.	The	number	of
stories	in	the	StoryRanges	collection	is	finite.

Use	StoryRanges(index),	where	index	is	a	WdStoryType	constant,	to	return	a
single	story	as	a	Range	object.	The	following	example	adds	text	to	the	primary
header	story	and	then	displays	the	text.

ActiveDocument.Sections(1).Headers(wdHeaderFooterPrimary).Range	_

				.Text	=	"Header	text"

MsgBox	ActiveDocument.StoryRanges(wdPrimaryHeaderStory).Text

The	following	example	copies	the	text	of	the	footnotes	from	the	active	document
into	a	new	document.

If	ActiveDocument.Footnotes.Count	>=	1	Then

				ActiveDocument.StoryRanges(wdFootnotesStory).Copy

				Documents.Add.Content.Paste

End	If



Remarks

If	you	attempt	to	return	a	story	that	isn't	available	in	the	specified	document,	an
error	occurs.	The	following	example	determines	whether	or	not	a	footnote	story
is	available	in	the	active	document.

On	Error	GoTo	errhandler

Set	MyRange	=	ActiveDocument.StoryRanges(wdFootnotesStory)

errhandler:

If	Err	=	5941	Then	MsgBox	"The	footnotes	story	is	not	available."

Use	the	NextStoryRange	property	to	loop	through	all	stories	in	a	document.	The
following	example	searches	each	story	in	the	active	document	for	the	text
"Microsoft	Word."	When	the	text	is	found,	it's	formatted	as	italic.

For	Each	myStoryRange	In	ActiveDocument.StoryRanges

				myStoryRange.Find.Execute	_

								FindText:="Microsoft	Word",	Forward:=True

				While	myStoryRange.Find.Found

								myStoryRange.Italic	=	True

								myStoryRange.Find.Execute	_

												FindText:="Microsoft	Word",	Forward:=True

				Wend

				While	Not	(myStoryRange.NextStoryRange	Is	Nothing)

								Set	myStoryRange	=	myStoryRange.NextStoryRange

								myStoryRange.Find.Execute	_

												FindText:="Microsoft	Word",	Forward:=True

								While	myStoryRange.Find.Found

												myStoryRange.Italic	=	True

												myStoryRange.Find.Execute	_

																FindText:="Microsoft	Word",	Forward:=True

								Wend

				Wend

Next	myStoryRange



Style	Object
									
Multiple	objects	 Styles	(Style)

Multiple	objects

Represents	a	single	built-in	or	user-defined	style.	The	Style	object	includes	style
attributes	(font,	font	style,	paragraph	spacing,	and	so	on)	as	properties	of	the
Style	object.	The	Style	object	is	a	member	of	the	Styles	collection.	The	Styles
collection	includes	all	the	styles	in	the	specified	document.



Using	the	Style	Object

Use	Styles(index),	where	index	is	the	style	name,	a	WdBuiltinStyle	constant	or
index	number,	to	return	a	single	Style	object.	You	must	exactly	match	the
spelling	and	spacing	of	the	style	name,	but	not	necessarily	its	capitalization.	The
following	example	modifies	the	font	name	of	the	user-defined	style	named
"Color"	in	the	active	document.

ActiveDocument.Styles("Color").Font.Name	=	"Arial"

The	following	example	sets	the	built-in	Heading	1	style	to	not	be	bold.

ActiveDocument.Styles(wdStyleHeading1).Font.Bold	=	False

The	style	index	number	represents	the	position	of	the	style	in	the	alphabetically
sorted	list	of	style	names.	Note	that	Styles(1)	is	the	first	style	in	the	alphabetic
list.	The	following	example	displays	the	base	style	and	style	name	of	the	first
style	in	the	Styles	collection.

MsgBox	"Base	style=	"	_

				&	ActiveDocument.Styles(1).BaseStyle	&	vbCr	_

				&	"Style	name=	"	&	ActiveDocument.Styles(1).NameLocal

To	apply	a	style	to	a	range,	paragraph,	or	multiple	paragraphs,	set	the	Style
property	to	a	user-defined	or	built-in	style	name.	The	following	example	applies
the	Normal	style	to	the	first	four	paragraphs	in	the	active	document.

Set	myRange	=	ActiveDocument.Range(	_

				Start:=ActiveDocument.Paragraphs(1).Range.Start,	_

				End:=ActiveDocument.Paragraphs(4).Range.End)

myRange.Style	=	wdStyleNormal

The	following	example	applies	the	Heading	1	style	to	the	first	paragraph	in	the
selection.

Selection.Paragraphs(1).Style	=	wdStyleHeading1

The	following	example	creates	a	character	style	named	"Bolded"	and	applies	it
to	the	selection.



Set	myStyle	=	ActiveDocument.Styles.Add(Name:="Bolded",	_

				Type:=wdStyleTypeCharacter)

myStyle.Font.Bold	=	True

Selection.Range.Style	=	"Bolded"



Remarks

Use	the	OrganizerCopy	method	to	copy	styles	between	documents	and
templates.	Use	the	UpdateStyles	method	to	update	the	styles	in	the	active
document	to	match	the	style	definitions	in	the	attached	template.	Use	the
OpenAsDocument	method	to	open	a	template	as	a	document	so	that	you	can
modify	the	template	styles.



Styles	Collection	Object
									
Documents	(Document)	 Styles	(Style)

Multiple	objects

A	collection	of	Style	objects	that	represent	both	the	built-in	and	user-defined
styles	in	a	document.



Using	the	Styles	Collection

Use	the	Styles	property	to	return	the	Styles	collection.	The	following	example
deletes	all	user-defined	styles	in	the	active	document.

For	Each	sty	In	ActiveDocument.Styles

				If	sty.BuiltIn	=	False	Then	sty.Delete

Next	sty

Use	the	Add	method	to	create	a	new	user-defined	style	and	add	it	to	the	Styles
collection.	The	following	example	adds	a	new	character	style	named
"Introduction"	and	makes	it	12-point	Arial,	with	bold	and	italic	formatting.	The
example	then	applies	this	new	character	style	to	the	selection.

Set	myStyle	=	ActiveDocument.Styles.Add(Name:="Introduction",	_

				Type:=wdStyleTypeCharacter)

With	myStyle.Font

				.Bold	=	True

				.Italic	=	True

				.Name	=	"Arial"

				.Size	=	12

End	With

Selection.Range.Style	=	"Introduction"

Use	Styles(index),	where	index	is	the	style	name,	a	WdBuiltinStyle	constant	or
index	number,	to	return	a	single	Style	object.	You	must	exactly	match	the
spelling	and	spacing	of	the	style	name,	but	not	necessarily	its	capitalization.	The
following	example	modifies	the	font	of	the	user-defined	style	named	"Color"	in
the	active	document.

ActiveDocument.Styles("Color").Font.Name	=	"Arial"

The	following	example	sets	the	built-in	Heading	1	style	to	not	be	bold.

ActiveDocument.Styles(wdStyleHeading1).Font.Bold	=	False

The	style	index	number	represents	the	position	of	the	style	in	the	alphabetically
sorted	list	of	style	names.	Note	that	Styles(1)	is	the	first	style	in	the	alphabetic
list.	The	following	example	displays	the	base	style	and	style	name	of	the	first
style	in	the	Styles	collection.



MsgBox	"Base	style=	"	_

				&	ActiveDocument.Styles(1).BaseStyle	&	vbCr	_

				&	"Style	name=	"	&	ActiveDocument.Styles(1).NameLocal



Remarks

The	Styles	object	isn't	available	from	the	Template	object.	However,	you	can
use	the	OpenAsDocument	method	to	open	a	template	as	a	document	so	that	you
can	modify	styles	in	the	template.	The	following	example	changes	the	formatting
of	the	Heading	1	style	in	the	template	attached	to	the	active	document.

Set	aDoc	=	ActiveDocument.AttachedTemplate.OpenAsDocument

With	aDoc

				.Styles(wdStyleHeading1).Font.Name	=	"Arial"

				.Close	SaveChanges:=wdSaveChanges

End	With

Use	the	OrganizerCopy	method	to	copy	styles	between	documents	and
templates.	Use	the	UpdateStyles	method	to	update	the	styles	in	the	active
document	to	match	the	style	definitions	in	the	attached	template.



StyleSheet	Object
									
StyleSheets	 StyleSheet

Represents	a	single	cascading	style	sheet	attached	to	a	web	document.	The
StyleSheet	object	is	a	member	of	the	StyleSheets	collection.	The	StyleSheets
collection	contains	all	the	cascading	style	sheets	attached	to	a	specified
document.



Using	the	StyleSheet	object

Use	the	Item	method	or	StyleSheets(index),	where	index	is	the	name	or	number
of	the	style	sheet,	of	the	StyleSheets	collection	to	return	a	StyleSheet	object.
The	following	example	removes	the	second	style	sheet	from	the	StyleSheets
collection.

Sub	WebStyleSheets()

				ActiveDocument.StyleSheets.Item(2).Delete

End	Sub

Use	the	Index	property	to	determine	the	precedence	of	cascading	style	sheets.
The	following	example	creates	a	table	of	attached	cascading	style	sheets,	ordered
and	indexed	according	to	which	style	sheet	is	most	important.

Sub	CSSTable()

				Dim	styCSS	As	StyleSheet

				With	ActiveDocument.Range(Start:=0,	End:=0)

								.InsertAfter	"CSS	Name"	&	vbTab	&	"Index"

								.InsertParagraphAfter

								For	Each	styCSS	In	ActiveDocument.StyleSheets

												.InsertAfter	styCSS.Name	&	vbTab	&	styCSS.Index

												.InsertParagraphAfter

								Next	styCSS

								.ConvertToTable

				End	With

End	Sub

Use	the	Move	method	to	reorder	the	precedence	of	attached	style	sheets.	The
following	example	moves	the	most	important	style	sheet	to	the	least	important	of
all	attached	cascading	style	sheets.

Sub	MoveCSS()

				ActiveDocument.StyleSheets(1)	_

								.Move	wdStyleSheetPrecedenceLowest

End	Sub





StyleSheets	Collection
									
Document	 StyleSheets

StyleSheet

A	collection	of	StyleSheet	objects	that	represents	the	cascading	style	sheets
attached	to	a	document.		The	StyleSheets	collection	includes	all	cascading	style
sheets	displayed	in	the	Linked	CSS	Style	Sheets	dialog	box,	accessed	using	the
Templates	and	Add-ins	command	(Tools	menu).



Using	the	StyleSheets	collection

Use	the	StyleSheets	property	to	return	the	StyleSheets	collection.	Use	the	Add
method	to	add	a	style	sheet	to	the	StyleSheets	collection.	The	following	example
adds	three	cascading	style	sheets	to	the	active	document	and	sets	the	third	as	the
highest	in	precedence.

Sub	AddCSS()

				With	ActiveDocument.StyleSheets

								.Add	FileName:="Web.css",	Title:="Web	Styles"

								.Add	FileName:="New.css",	Linktype:=wdStyleSheetLinkTypeImported,	_

												Title:="New	Styles"

								.Add	FileName:="Defs.css",	Title:="Definitions",	_

												Precedence:=wdStyleSheetPrecedenceHighest

				End	With

End	Sub



Subdocument	Object
									
Subdocuments	 Subdocument

Multiple	objects

Represents	a	subdocument	within	a	document	or	range.	The	Subdocument
object	is	a	member	of	the	Subdocuments	collection.	The	Subdocuments
collection	includes	all	the	subdocuments	in	the	a	range	or	document.



Using	the	Subdocument	Object

Use	Subdocuments(index),	where	index	is	the	index	number,	to	return	a	single
Subdocument	object.	The	following	example	displays	the	path	and	file	name	of
the	first	subdocument	in	the	active	document.

If	ActiveDocument.Subdocuments(1).HasFile	=	True	Then

				MsgBox	ActiveDocument.Subdocuments(1).Path	&	_

								Application.PathSeparator	&	_

								ActiveDocument.Subdocuments(1).Name

End	If

Use	the	AddFromFile	or	AddFromRange	method	to	add	a	subdocument	to	a
document.	The	following	example	adds	a	subdocument	named	"Setup.doc"	at
the	end	of	the	active	document.

ActiveDocument.Subdocuments.Expanded	=	True

Selection.EndKey	Unit:=wdStory

Selection.InsertParagraphBefore

ActiveDocument.Subdocuments.AddFromFile	Name:="C:\Temp\Setup.doc"

The	following	example	applies	the	Heading	1	style	to	the	first	paragraph	in	the
selection	and	then	creates	a	subdocument	for	the	contents	of	the	selection.

Selection.Paragraphs(1).Style	=	wdStyleHeading1

With	ActiveDocument.Subdocuments

				.Expanded	=	True

				.AddFromRange	Range:=Selection.Range

End	With



Subdocuments	Collection	Object
									
Multiple	objects	 Subdocuments	(Subdocument)

Range

A	collection	of	Subdocument	objects	that	represent	the	subdocuments	in	a	range
or	document.



Using	the	Subdocuments	Collection

Use	the	Subdocuments	property	to	return	the	Subdocuments	collection.	The
following	example	expands	all	the	subdocuments	in	the	active	document.

ActiveDocument.Subdocuments.Expanded	=	True

Use	the	AddFromFile	or	AddFromRange	method	to	add	a	subdocument	to	a
document.	The	following	example	adds	a	subdocument	named	"Setup.doc"	at
the	end	of	the	active	document.

ActiveDocument.Subdocuments.Expanded	=	True

Selection.EndKey	Unit:=wdStory

Selection.InsertParagraphBefore

ActiveDocument.Subdocuments.AddFromFile	Name:="C:\Temp\Setup.doc"

The	following	example	applies	the	Heading	1	style	to	the	first	paragraph	in	the
selection	and	then	creates	a	subdocument	for	the	contents	of	the	selection.

Selection.Paragraphs(1).Style	=	wdStyleHeading1

With	ActiveDocument.Subdocuments

				.Expanded	=	True

				.AddFromRange	Range:=Selection.Range

End	With

Use	Subdocuments(index),	where	index	is	the	index	number,	to	return	a	single
Subdocument	object.	The	following	example	displays	the	path	and	file	name	of
the	first	subdocument	in	the	active	document.

If	ActiveDocument.Subdocuments(1).HasFile	=	True	Then

				MsgBox	ActiveDocument.Subdocuments(1).Path	&	_

								Application.PathSeparator	_

								&	ActiveDocument.Subdocuments(1).Name

End	If





SynonymInfo	Object
									
Multiple	objects	 SynonymInfo

Represents	the	information	about	synonyms,	antonyms,	related	words,	or	related
expressions	for	the	specified	range	or	a	given	string.



Using	the	SynonymInfo	Object

Use	the	SynonymInfo	property	to	return	a	SynonymInfo	object.	The
SynonymInfo	object	can	be	returned	either	from	a	range	or	from	Word.	If	it's
returned	from	Word,	you	specify	the	lookup	word	or	phrase	and	a	proofing
language	ID.	If	it's	returned	from	a	range,	Word	uses	the	specified	range	as	the
lookup	word.	The	following	example	returns	a	SynonymInfo	object	from	Word.

temp	=	SynonymInfo(Word:="meant",	LanguageID:=wdEnglishUS).Found

The	following	example	returns	a	SynonymInfo	object	from	a	range.

temp	=	Selection.Range.SynonymInfo.Found

The	Found	property,	used	in	the	preceding	examples,	returns	True	if	any
information	is	found	in	the	thesaurus	for	the	specified	range	or	for	Word.	Note,
however,	that	this	property	returns	True	not	only	if	synonyms	are	found	but	also
if	related	words,	related	expressions,	or	antonyms	are	found.

Many	of	the	properties	of	the	SynonymInfo	object	return	a	Variant	that
contains	an	array	of	strings.	When	working	with	these	properties,	you	can	assign
the	returned	array	to	a	variable	and	then	index	the	variable	to	see	the	elements	in
the	array.	In	the	following	example,	Slist	is	assigned	the	synonym	list	for	the
first	meaning	of	the	selected	word	or	phrase.	The	UBound	function	finds	the
upper	bound	of	the	array,	and	then	each	element	is	displayed	in	a	message	box.

Slist	=	Selection.Range.SynonymInfo.SynonymList(1)

For	i	=	1	To	UBound(Slist)

				Msgbox	Slist(i)

Next	i

You	can	check	the	value	of	the	MeaningCount	property	to	prevent	potential
errors	in	your	code.	The	following	example	returns	a	list	of	synonyms	for	the
second	meaning	for	the	word	or	phrase	in	the	selection	and	displays	these
synonyms	in	the	Immediate	pane.

Set	synInfo	=	Selection.Range.SynonymInfo

If	synInfo.MeaningCount	>=	2	Then

				synList	=	synInfo.SynonymList(2)

				For	i	=	1	To	UBound(synList)



								Debug.Print	synList(i)

				Next	i

Else

				MsgBox	"There	is	no	second	meaning	for	the	selection."

End	If



System	Object
									
Application	 System

Contains	information	about	the	computer	system.



Using	the	System	Object

Use	the	System	property	to	return	the	System	object.	If	the	operating	system	is
Windows,	the	following	example	makes	a	network	connection	to	\\Project\Info.

If	System.OperatingSystem	=	"Windows"	Then

				System.Connect	Path:="\\Project\Info"

End	If

The	following	example	displays	the	current	screen	resolution	(for	example,
"1024	x	768").

horz	=	System.HorizontalResolution

vert	=	System.VerticalResolution

MsgBox	"Resolution	=	"	&	horz	&	"	x	"	&	vert



Table	Object
									
Multiple	objects	 Tables	(Table)

Multiple	objects

Represents	a	single	table.	The	Table	object	is	a	member	of	the	Tables	collection.
The	Tables	collection	includes	all	the	tables	in	the	specified	selection,	range,	or
document.



Using	the	Table	Object

Use	Tables(index),	where	index	is	the	index	number,	to	return	a	single	Table
object.	The	index	number	represents	the	position	of	the	table	in	the	selection,
range,	or	document.	The	following	example	converts	the	first	table	in	the	active
document	to	text.

ActiveDocument.Tables(1).ConvertToText	Separator:=wdSeparateByTabs

Use	the	Add	method	to	add	a	table	at	the	specified	range.	The	following
example	adds	a	3x4	table	at	the	beginning	of	the	active	document.

Set	myRange	=	ActiveDocument.Range(Start:=0,	End:=0)

ActiveDocument.Tables.Add	Range:=myRange,	NumRows:=3,	NumColumns:=4



TableOfAuthorities	Object
									
Documents	(Document)	 TablesOfAuthorities	(TableOfAuthorities)

Range

Represents	a	single	table	of	authorities	in	a	document	(a	TOA	field).	The
TableOfAuthorities	object	is	a	member	of	the	TablesOfAuthorities	collection.
The	TablesOfAuthorities	collection	includes	all	the	tables	of	authorities	in	a
document.



Using	the	TableOfAuthorities	Object

Use	TablesOfAuthorities(index),	where	index	is	the	index	number,	to	return	a
single	TableOfAuthorities	object.	The	index	number	represents	the	position	of
the	table	of	authorities	in	the	document.	The	following	example	includes
category	headers	in	the	first	table	of	authorities	in	the	active	document	and	then
updates	the	table.

With	ActiveDocument.TablesOfAuthorities(1)

				.IncludeCategoryHeader	=	True

				.Update

End	With

Use	the	Add	method	to	add	a	table	of	authorities	to	a	document.	The	following
example	adds	a	table	of	authorities	that	includes	all	categories	at	the	beginning
of	the	active	document.

Set	myRange	=	ActiveDocument.Range(Start:=0,	End:=0)

ActiveDocument.TablesOfAuthorities.Add	Range:=myRange,	_

				Passim:=True,	Category:=0,	EntrySeparator:=",	"

Note			A	table	of	authorities	is	built	from	TA	(Table	of	Authorities	Entry)	fields
in	a	document.	Use	the	MarkCitation	method	to	mark	citations	to	be	included
in	a	table	of	authorities.



TableOfAuthoritiesCategory	Object
									
Documents	(Document)	 TablesOfAuthoritiesCategories
(TablesOfAuthoritiesCatagory)

Represents	a	single	table	of	authorities	category.	The
TableOfAuthoritiesCategories	object	is	a	member	of	the
TablesOfAuthoritiesCategories	collection.	The
TablesOfAuthoritiesCategories	collection	includes	all	16	categories	listed	in
the	Category	box	on	the	Table	of	Authorities	tab	in	the	Index	and	Tables
dialog	box	(Insert	menu).



Using	the	TableOfAuthoritiesCategory	Object

Use	TablesOfAuthoritiesCategories(index),	where	index	is	the	category	name
or	index	number,	to	return	a	single	TableOfAuthoritiesCategory	object.	The
following	example	renames	the	Rules	category	as	Other	Provisions.

ActiveDocument.TablesOfAuthoritiesCategories("Rules").Name	=	_

				"Other	Provisions"

The	index	number	represents	the	position	of	the	category	in	the	Index	and
Tables	dialog	box	(Insert	menu).	The	following	example	displays	the	name	of
the	first	category	in	the	TablesOfAuthoritiesCategories	collection.

MsgBox	ActiveDocument.TablesOfAuthoritiesCategories(1).Name

The	Add	method	isn't	available	for	the	TablesOfAuthoritiesCategories
collection.	The	collection	is	limited	to	16	items;	however,	you	can	use	the	Name
property	to	rename	an	existing	category.



TableOfContents	Object
									
Documents	(Document)	 TablesOfContents	(TableOfContents)

Multiple	objects

Represents	a	single	table	of	contents	in	a	document.	The	TableOfContents
object	is	a	member	of	the	TablesOfContents	collection.	The	TablesOfContents
collection	includes	all	the	tables	of	contents	in	a	document.



Using	the	TableOfCContents	Object

Use	TablesOfContents(index),	where	index	is	the	index	number,	to	return	a
single	TableOfContents	object.	The	index	number	represents	the	position	of	the
table	of	contents	in	the	document.	The	following	example	updates	the	page
numbers	of	the	items	in	the	first	table	of	figures	in	the	active	document.

ActiveDocument.TablesOfContents(1).UpdatePageNumbers

Use	the	Add	method	to	add	a	table	of	contents	to	a	document.	The	following
example	adds	a	table	of	contents	at	the	beginning	of	the	active	document.	The
example	builds	the	table	of	contents	from	all	paragraphs	styled	as	either	Heading
1,	Heading	2,	or	Heading	3.

Set	myRange	=	ActiveDocument.Range(Start:=0,	End:=0)

ActiveDocument.TablesOfContents.Add	Range:=myRange,	_

				UseFields:=False,	UseHeadingStyles:=True,	_

				LowerHeadingLevel:=3,	_

				UpperHeadingLevel:=1



TableOfFigures	Object
									
Documents	(Document)	 TablesOfFigures	(TableOfFigures)

Multiple	objects

Represents	a	single	table	of	figures	in	a	document.	The	TableOfFigures	object
is	a	member	of	the	TablesOfFigures	collection.	The	TablesOfFigures	collection
includes	all	the	tables	of	figures	in	a	document.



Using	the	TableOfFigures	Object

Use	TablesOfFigures(index),	where	index	is	the	index	number,	to	return	a	single
TableOfFigures	object.	The	index	number	represents	the	position	of	the	table	of
figures	in	the	document.	The	following	example	updates	the	page	numbers	of	the
items	in	the	first	table	of	figures	in	the	active	document.

ActiveDocument.TablesOfFigures(1).UpdatePageNumbers

Use	the	Add	method	to	add	a	table	of	figures	to	a	document.	A	table	of	figures
lists	figure	captions	in	the	order	in	which	they	appear	in	the	document.	The
following	example	replaces	the	selection	in	the	active	document	with	a	table	of
figures	that	includes	caption	labels	and	page	numbers.

ActiveDocument.TablesOfFigures.Add	Range:=Selection.Range,	_

				IncludeLabel:=True,	IncludePageNumbers:=True



Tables	Collection	Object
									
Multiple	objects	 Tables	(Table)

Multiple	objects

A	collection	of	Table	objects	that	represent	the	tables	in	a	selection,	range,	or
document.



Using	the	Tables	Collection

Use	the	Tables	property	to	return	the	Tables	collection.	The	following	example
applies	a	border	around	each	of	the	tables	in	the	active	document.

For	Each	aTable	In	ActiveDocument.Tables

				aTable.Borders.OutsideLineStyle	=	wdLineStyleSingle

				aTable.Borders.OutsideLineWidth	=	wdLineWidth025pt

				aTable.Borders.InsideLineStyle	=	wdLineStyleNone

Next	aTable

Use	the	Add	method	to	add	a	table	at	the	specified	range.	The	following
example	adds	a	3x4	table	at	the	beginning	of	the	active	document.

Set	myRange	=	ActiveDocument.Range(Start:=0,	End:=0)

ActiveDocument.Tables.Add	Range:=myRange,	NumRows:=3,	NumColumns:=4

Use	Tables(index),	where	index	is	the	index	number,	to	return	a	single	Table
object.	The	index	number	represents	the	position	of	the	table	in	the	selection,
range,	or	document.	The	following	example	converts	the	first	table	in	the	active
document	to	text.

ActiveDocument.Tables(1).ConvertToText	Separator:=wdSeparateByTabs



Remarks

The	Count	property	for	this	collection	in	a	document	returns	the	number	of
items	in	the	main	story	only.	To	count	items	in	other	stories	use	the	collection
with	the	Range	object.



TablesOfAuthorities	Collection
Object
									
Document	 TablesOfAuthorities

Multiple	objects

A	collection	of	TableOfAuthorities	objects	(TOA	fields)	that	represents	the
tables	of	authorities	in	a	document.



Using	the	TablesOfAuthorities	Collection

Use	the	TablesOfAuthorities	property	to	return	the	TablesOfAuthorities
collection.	The	following	example	applies	the	Classic	built-in	format	to	all	the
tables	of	authorities	in	the	active	document.

ActiveDocument.TablesOfAuthorities.Format	=	wdTOAClassic

Use	the	Add	method	to	add	a	table	of	authorities	to	a	document.	A	table	of
authorities	is	built	from	TA	(Table	of	Authorities	Entry)	fields	in	a	document.
The	following	example	adds	a	table	of	authorities	that	includes	all	categories	at
the	beginning	of	the	active	document.

Set	myRange	=	ActiveDocument.Range(Start:=0,	End:=0)

ActiveDocument.TablesOfAuthorities.Add	Range:=myRange,	_

				Passim:=True,	Category:=0,	EntrySeparator:=	",	"

Use	TablesOfAuthorities(index),	where	index	is	the	index	number,	to	return	a
single	TableOfAuthorities	object.	The	index	number	represents	the	position	of
the	table	of	authorities	in	the	document.	The	following	example	includes
category	headers	in	the	first	table	of	authorities	in	the	active	document	and	then
updates	the	table.

With	ActiveDocument.TablesOfAuthorities(1)

				.IncludeCategoryHeader	=	True

				.Update

End	With



TablesOfAuthoritiesCategories
Collection	Object
									
Documents	(Document)	 TablesOfAuthoritiesCategories
(TablesOfAuthoritiesCatagory)

A	collection	of	TableOfAuthoritiesCategory	objects	that	represent	the	table	of
authorities	categories,	such	as	Cases	and	Statutes.	The
TablesOfAuthoritiesCategories	collection	includes	all	16	categories	listed	in
the	Category	box	on	the	Table	of	Authorities	tab	in	the	Index	and	Tables
dialog	box	(Insert	menu).



Using	the	TablesOfAuthoritiesCategories	Collection

Use	the	TablesOfAuthoritiesCategories	property	to	return	the
TablesOfAuthoritiesCategories	collection.	The	following	example	displays	the
names	of	the	categories	in	the	TablesOfAuthoritiesCategories	collection.

For	Each	aCat	In	ActiveDocument.TablesOfAuthoritiesCategories

				response	=	MsgBox(Prompt:=aCat,	Buttons:=vbOKCancel)

				If	response	=	vbCancel	Then	Exit	For

Next	aCat

The	Add	method	isn't	available	for	the	TablesOfAuthoritiesCategories
collection.	The	collection	is	limited	to	16	items;	however,	you	can	use	the	Name
property	to	rename	an	existing	category.

Use	TablesOfAuthoritiesCategories(index),	where	index	is	the	category	name
or	index	number,	to	return	a	single	TableOfAuthoritiesCategory	object.	The
following	example	renames	the	Rules	category	as	Other	Provisions.

ActiveDocument.TablesOfAuthoritiesCategories("Rules").Name	=	_

				"Other	Provisions"

The	index	number	represents	the	position	of	the	category	in	the	Index	and
Tables	dialog	box	(Insert	menu).	The	following	example	displays	the	name	of
the	first	category	in	the	TablesOfAuthoritiesCategories	collection.

MsgBox	ActiveDocument.TablesOfAuthoritiesCategories(1).Name



TablesOfContents	Collection	Object
									
Documents	(Document)	 TablesOfContents	(TableOfContents)

Multiple	objects

A	collection	of	TableOfContents	objects	that	represent	the	tables	of	contents	in
a	document.



Using	the	TablesOfContents	Collection

Use	the	TablesOfContents	property	to	return	the	TablesOfContents	collection.
The	following	example	inserts	a	table	of	contents	entry	that	references	the
selected	text	in	the	active	document.

ActiveDocument.TablesOfContents.MarkEntry	Range:=Selection.Range,	_

				Level:=2,	Entry:="Introduction"

Use	the	Add	method	to	add	a	table	of	contents	to	a	document.	The	following
example	adds	a	table	of	contents	at	the	beginning	of	the	active	document.	The
example	builds	the	table	of	contents	from	all	paragraphs	styled	as	either	Heading
1,	Heading	2,	or	Heading	3.

Set	myRange	=	ActiveDocument.Range(Start:=0,	End:=0)

ActiveDocument.TablesOfContents.Add	Range:=myRange,	_

				UseFields:=False,	UseHeadingStyles:=True,	_

				LowerHeadingLevel:=3,	_

				UpperHeadingLevel:=1

Use	TablesOfContents(index),	where	index	is	the	index	number,	to	return	a
single	TableOfContents	object.	The	index	number	represents	the	position	of	the
table	of	contents	in	the	document.	The	following	example	updates	the	page
numbers	of	the	items	in	the	first	table	of	figures	in	the	active	document.

ActiveDocument.TablesOfContents(1).UpdatePageNumbers



TablesOfFigures	Collection	Object
									
Documents	(Document)	 TablesOfFigures	(TableOfFigures)

Multiple	objects

A	collection	of	TableOfFigures	objects	that	represent	the	tables	of	figures	in	a
document.



Using	the	TablesOfFigures	Collection

Use	the	TablesOfFigures	property	to	return	the	TablesOfFigures	collection.
The	following	example	applies	the	Classic	format	to	all	tables	of	figures	in	the
active	document.

ActiveDocument.TablesOfFigures.Format	=	wdTOFClassic

Use	the	Add	method	to	add	a	table	of	figures	to	a	document.	A	table	of	figures
lists	figure	captions	in	the	order	in	which	they	appear	in	the	document.	The
following	example	replaces	the	selection	in	the	active	document	with	a	table	of
figures	that	includes	caption	labels	and	page	numbers.

ActiveDocument.TablesOfFigures.Add	Range:=Selection.Range,	_

				IncludeLabel:=True,	IncludePageNumbers:=True

Use	TablesOfFigures(index),	where	index	is	the	index	number,	to	return	a	single
TableOfFigures	object.	The	index	number	represents	the	position	of	the	table	of
figures	in	the	document.	The	following	example	updates	the	page	numbers	of	the
items	in	the	first	table	of	figures	in	the	active	document.

ActiveDocument.TablesOfFigures(1).UpdatePageNumbers



TableStyle	Object
									
Style	 TableStyle

Multiple	objects

Represents	a	single	style	that	can	be	applied	to	a	table.



Using	the	TableStyle	object

Use	the	Table	property	of	the	Styles	object	to	return	a	TableStyle	object.	Use
the	Borders	property	to	apply	borders	to	an	entire	table.	Use	the	Condition
method	to	apply	borders	or	shading	only	to	specified	sections	of	a	table.	This
example	creates	a	new	table	style	and	formats	the	table	with	a	surrounding
border.	Special	borders	and	shading	are	applied	to	the	first	and	last	rows	and	the
last	column.

Sub	NewTableStyle()

				Dim	styTable	As	Style

				Set	styTable	=	ActiveDocument.Styles.Add(	_

								Name:="TableStyle	1",	Type:=wdStyleTypeTable)

				With	styTable.Table

								'Apply	borders	around	table

								.Borders(wdBorderTop).LineStyle	=	wdLineStyleSingle

								.Borders(wdBorderBottom).LineStyle	=	wdLineStyleSingle

								.Borders(wdBorderLeft).LineStyle	=	wdLineStyleSingle

								.Borders(wdBorderRight).LineStyle	=	wdLineStyleSingle

								'Apply	a	double	border	to	the	heading	row

								.Condition(wdFirstRow).Borders(wdBorderBottom)	_

												.LineStyle	=	wdLineStyleDouble

								'Apply	a	double	border	to	the	last	column

								.Condition(wdLastColumn).Borders(wdBorderLeft)	_

												.LineStyle	=	wdLineStyleDouble

								'Apply	shading	to	last	row

								.Condition(wdLastRow).Shading	_

												.BackgroundPatternColor	=	wdColorGray125

				End	With

End	Sub





TabStop	Object
									
Multiple	objects	 TabStops	(TabStop)

Represents	a	single	tab	stop.	The	TabStop	object	is	a	member	of	the	TabStops
collection.	The	TabStops	collection	represents	all	the	custom	and	default	tab
stops	in	a	paragraph	or	group	of	paragraphs.



Using	the	TabStop	Object

Use	TabStops(index),	where	index	is	the	location	of	the	tab	stop	(in	points)	or
the	index	number,	to	return	a	single	TabStop	object.	Tab	stops	are	indexed
numerically	from	left	to	right	along	the	ruler.	The	following	example	removes
the	first	custom	tab	stop	from	the	selected	paragraphs.

Selection.Paragraphs.TabStops(1).Clear

The	following	example	adds	a	right-aligned	tab	stop	positioned	at	2	inches	to	the
selected	paragraphs.

Selection.Paragraphs.TabStops(InchesToPoints(2))	_

				.Alignment	=	wdAlignTabRight

Use	the	Add	method	to	add	a	tab	stop.	The	following	example	adds	two	tab
stops	to	the	selected	paragraphs.	The	first	tab	stop	is	a	left-aligned	tab	with	a
dotted	tab	leader	positioned	at	1	inch	(72	points).	The	second	tab	stop	is	centered
and	is	positioned	at	2	inches.

With	Selection.Paragraphs.TabStops

				.Add	Position:=InchesToPoints(1),	_

								Leader:=wdTabLeaderDots,	Alignment:=wdAlignTabLeft

				.Add	Position:=InchesToPoints(2),	Alignment:=wdAlignTabCenter

End	With

You	can	also	add	a	tab	stop	by	specifying	a	location	with	the	TabStops	property.
The	following	example	adds	a	right-aligned	tab	stop	positioned	at	2	inches	to	the
selected	paragraphs.

Selection.Paragraphs.TabStops(InchesToPoints(2))	_

				.Alignment	=	wdAlignTabRight

Note			Set	the	DefaultTabStop	property	to	adjust	the	spacing	of	default	tab
stops.





TabStops	Collection	Object
									
Multiple	objects	 TabStops	(TabStop)

A	collection	of	TabStop	objects	that	represent	the	custom	and	default	tabs	for	a
paragraph	or	group	of	paragraphs.



Using	the	TabStops	Collection

Use	the	TabStops	property	to	return	the	TabStops	collection.	The	following
example	clears	all	the	custom	tab	stops	from	the	first	paragraph	in	the	active
document.

ActiveDocument.Paragraphs(1).TabStops.ClearAll

The	following	example	adds	a	tab	stop	positioned	at	2.5	inches	to	the	selected
paragraphs	and	then	displays	the	position	of	each	item	in	the	TabStops
collection.

Selection.Paragraphs.TabStops.Add	Position:=InchesToPoints(2.5)

For	Each	aTab	In	Selection.Paragraphs.TabStops

				MsgBox	"Position	=	"	_

								&	PointsToInches(aTab.Position)	&	"	inches"

Next	aTab

Use	the	Add	method	to	add	a	tab	stop.	The	following	example	adds	two	tab
stops	to	the	selected	paragraphs.	The	first	tab	stop	is	a	left-aligned	tab	with	a
dotted	tab	leader	positioned	at	1	inch	(72	points).	The	second	tab	stop	is	centered
and	is	positioned	at	2	inches.

With	Selection.Paragraphs.TabStops

				.Add	Position:=InchesToPoints(1),	_

								Leader:=wdTabLeaderDots,	Alignment:=wdAlignTabLeft

				.Add	Position:=InchesToPoints(2),	Alignment:=wdAlignTabCenter

End	With

You	can	also	add	a	tab	stop	by	specifying	a	location	with	the	TabStops	property.
The	following	example	adds	a	right-aligned	tab	stop	positioned	at	2	inches	to	the
selected	paragraphs.

Selection.Paragraphs.TabStops(InchesToPoints(2))	_

				.Alignment	=	wdAlignTabRight

Use	TabStops(index),	where	index	is	the	location	of	the	tab	stop	(in	points)	or
the	index	number,	to	return	a	single	TabStop	object.	Tab	stops	are	indexed
numerically	from	left	to	right	along	the	ruler.	The	following	example	removes
the	first	custom	tab	stop	from	the	first	paragraph	in	the	active	document.



ActiveDocument.Paragraphs(1).TabStops(1).Clear

The	following	example	adds	a	right-aligned	tab	stop	positioned	at	2	inches	to	the
selected	paragraphs.

Selection.Paragraphs.TabStops(InchesToPoints(2))	_

				.Alignment	=	wdAlignTabRight



Remarks

When	working	with	the	Paragraphs	collection	(or	a	range	with	several
paragraphs),	you	must	modify	each	paragraph	in	the	collection	individually	if	the
tab	stops	aren't	identical	in	all	the	paragraphs.	The	following	example	removes
the	tab	positioned	at	1	inch	from	every	paragraph	in	the	active	document.

For	Each	para	In	ActiveDocument.Content.Paragraphs

				para.TabStops(InchesToPoints(1)).Clear

Next	para



Task	Object
									
Tasks	 Task

Represents	a	single	task	running	on	the	system.	The	Task	object	is	a	member	of
the	Tasks	collection.	The	Tasks	collection	includes	all	the	applications	that	are
currently	running	on	the	system.



Using	the	Task	Object

Use	Tasks(index),	where	index	is	the	application	name	or	the	index	number,	to
return	a	single	Task	object.	The	following	example	switches	to	and	resizes	the
application	window	for	the	first	visible	task	in	the	Tasks	collection.

With	Tasks(1)

				If	.Visible	=	True	Then

								.Activate

								.Width	=	400

								.Height	=	200

				End	If

End	With

The	following	example	restores	the	Calculator	application	window	if	Calculator
is	in	the	Tasks	collection.

If	Tasks.Exists("Calculator")	=	True	Then

				Tasks("Calculator").WindowState	=	wdWindowStateNormal

End	If

Use	Visual	Basic's	Shell	function	to	run	an	executable	program	and	add	the
program	to	the	Tasks	collection.



TaskPane	Object
									
TaskPanes	 TaskPane

Represents	a	single	task	pane	available	to	Microsoft	Word,	which	contains
common	tasks	that	users	perform.	The	TaskPane	object	is	a	member	of	the
TaskPanes	collection.



Using	the	TaskPane	object

Use	the	TaskPanes	property	to	return	a	TaskPane	object.	Use	the	Visible
property	to	display	an	individual	task	pane.	This	example	displays	the	formatting
task	pane.

Sub	FormattingPane()

				Application.TaskPanes(wdTaskPaneFormatting).Visible	=	True

End	Sub



TaskPanes	Collection
									
Application	 TaskPanes

TaskPane

A	collection	of	TaskPane	objects	that	contains	commonly	performed	tasks	in
Microsoft	Word.



Using	the	TaskPanes	collection

Use	the	TaskPanes	property	to	return	the	TaskPanes	collection.	Use	the	Item
method	with	a	wdWorkPane	constant	to	refer	to	a	specific	task	pane.	The
example	below	displays	the	formatting	task	pane.

Sub	FormattingPane()

				Application.TaskPanes(wdTaskPaneFormatting).Visible	=	True

End	Sub



Tasks	Collection	Object
									
Multiple	objects	 Tasks

Task

A	collection	of	Task	objects	that	represents	all	the	tasks	currently	running	on	the
system.



Using	the	Tasks	Collection

Use	the	Tasks	property	to	return	the	Tasks	collection.	The	following	example
determines	whether	Microsoft	Excel	is	running.	If	it	is,	this	example	switches	to
it	and	maximizes	it;	otherwise,	the	example	starts	it.

If	Tasks.Exists("Microsoft	Excel")	=	True	Then

				Tasks("Microsoft	Excel").Activate

				Tasks("Microsoft	Excel").WindowState	=	wdWindowStateMaximize

Else

				Shell	"C:\Program	Files\"	&	_

								"Microsoft	Office\Office10\Excel.exe"

End	If

Use	Visual	Basic's	Shell	function	to	run	an	executable	program	and	add	the
program	to	the	Tasks	collection.

Use	Tasks(index),	where	index	is	the	application	name	or	the	index	number,	to
return	a	single	Task	object.	The	following	example	opens	and	resizes	the
application	window	for	the	first	visible	task	in	the	Tasks	collection.

With	Tasks(1)

				If	.Visible	=	True	Then

								.Activate

								.Width	=	400

								.Height	=	200

				End	If

End	With

The	following	example	restores	the	Calculator	application	window	if	the
application	is	in	the	Tasks	collection.

If	Tasks.Exists("Calculator")	=	True	Then

				Tasks("Calculator").WindowState	=	wdWindowStateNormal

End	If





Template	Object
									
Multiple	objects	 Templates	(Template)

Multiple	objects

Represents	a	document	template.	The	Template	object	is	a	member	of	the
Templates	collection.	The	Templates	collection	includes	all	the	available
Template	objects.



Using	the	Template	Object

Use	Templates(index),	where	index	is	the	template	name	or	the	index	number,	to
return	a	single	Template	object.	The	following	example	saves	the	Memo2.dot
template	if	it's	in	the	Templates	collection.

For	Each	aTemp	In	Templates

				If	LCase(aTemp.Name)	=	"memo2.dot"	Then	aTemp.Save

Next	aTemp

The	index	number	represents	the	position	of	the	template	in	the	Templates
collection.	The	following	example	opens	the	first	template	in	the	Templates
collection.

Templates(1).OpenAsDocument

The	Add	method	isn't	available	for	the	Templates	collection.	Instead,	you	can
add	a	template	to	the	Templates	collection	by	doing	any	of	the	following:

Using	the	Open	method	with	the	Documents	collection	to	open	a
document	based	on	a	template	or	a	template
Using	the	Add	method	with	the	Documents	collection	to	open	a	new
document	based	on	a	template
Using	the	Add	method	with	the	Addins	collection	to	load	a	global	template
Using	the	AttachedTemplate	property	with	the	Document	object	to	attach
a	template	to	a	document



Remarks

Use	the	NormalTemplate	property	to	return	a	template	object	that	refers	to	the
Normal	template.	Use	the	AttachedTemplate	property	to	return	the	template
attached	to	the	specified	document.

Use	the	DefaultFilePath	property	to	return	or	set	the	location	of	user	or
workgroup	templates	(that	is,	the	folder	where	you	want	to	store	these
templates).	The	following	example	displays	the	user	template	folder	from	the
File	Locations	tab	in	the	Options	dialog	box	(Tools	menu).

MsgBox	Options.DefaultFilePath(wdUserTemplatesPath)



Templates	Collection	Object
									
Application	 Templates	(Template)

Multiple	objects

A	collection	of	Template	objects	that	represent	all	the	templates	that	are
currently	available.	This	collection	includes	open	templates,	templates	attached
to	open	documents,	and	global	templates	loaded	in	the	Templates	and	Add-ins
dialog	box	(Tools	menu).



Using	the	Templates	Collection

Use	the	Templates	property	to	return	the	Templates	collection.	The	following
example	displays	the	path	and	file	name	of	each	template	in	the	Templates
collection.

For	Each	aTemp	In	Templates

				MsgBox	aTemp.FullName

Next	aTemp

The	Add	method	isn't	available	for	the	Templates	collection.	Instead,	you	can
add	a	template	to	the	Templates	collection	by	doing	any	of	the	following:

Using	the	Open	method	with	the	Documents	collection	to	open	a
document	based	on	a	template	or	a	template
Using	the	Add	method	with	the	Documents	collection	to	open	a	new
document	based	on	a	template
Using	the	Add	method	with	the	Addins	collection	to	load	a	global	template
Using	the	AttachedTemplate	property	with	the	Document	object	to	attach
a	template	to	a	document

Use	Templates(index),	where	index	is	the	template	name	or	the	index	number,	to
return	a	single	Template	object.	The	following	example	saves	the	Dot1.dot
template.

Templates("C:\MSOffice\WinWord\Templates\Dot1.dot").Save

The	index	number	represents	the	position	of	the	template	in	the	Templates
collection.	The	following	example	displays	the	file	name	of	the	first	template	in
the	Templates	collection.

MsgBox	Templates(1).FullName



Remarks

Use	the	NormalTemplate	property	to	return	a	template	object	that	refers	to	the
Normal	template.	Use	the	AttachedTemplate	property	to	return	the	template
attached	to	the	specified	document.

Use	the	DefaultFilePath	property	to	determine	the	location	of	user	or
workgroup	templates	(that	is,	the	folder	where	you	want	to	store	these
templates).	The	following	example	displays	the	user	template	folder	from	the
File	Locations	tab	in	the	Options	dialog	box	(Tools	menu).

MsgBox	Options.DefaultFilePath(wdUserTemplatePath)



TextColumn	Object
									
PageSetup	 TextColumns	(TextColumn)

Represents	a	single	text	column.	The	TextColumn	object	is	a	member	of	the
TextColumns	collection.	The	TextColumns	collection	includes	all	the	columns
in	a	document	or	section	of	a	document.



Using	the	TextColumn	Object

Use	TextColumns(index),	where	index	is	the	index	number,	to	return	a	single
TextColumn	object.	The	index	number	represents	the	position	of	the	column	in
the	TextColumns	collection	(counting	from	left	to	right).

The	following	example	sets	the	space	after	the	first	text	column	in	the	active
document	to	0.5	inch.

ActiveDocument.PageSetup.TextColumns(1).SpaceAfter	=	_

				InchesToPoints(0.5)

Use	the	Add	method	to	add	a	column	to	the	collection	of	columns.	By	default,
there's	one	text	column	in	the	TextColumns	collection.	The	following	example
adds	a	2.5-inch-widecolumn	to	the	active	document.

ActiveDocument.PageSetup.TextColumns.Add	_

				Width:=InchesToPoints(2.5),	_

				Spacing:=InchesToPoints(0.5),	EvenlySpaced:=False



Remarks

Use	the	SetCount	method	to	arrange	text	into	columns.	The	following	example
arranges	the	text	in	the	active	document	into	three	columns.

ActiveDocument.PageSetup.TextColumns.SetCount	NumColumns:=3



TextColumns	Collection	Object
									
PageSetup	 TextColumns	(TextColumn)

A	collection	of	TextColumn	objects	that	represent	all	the	columns	of	text	in	a
document	or	a	section	of	a	document.



Using	the	TextColumns	Collection

Use	the	TextColumns	property	to	return	the	TextColumns	collection.	The
following	example	formats	the	columns	in	the	first	section	in	the	active
document	to	be	evenly	spaced,	with	a	line	between	the	columns.

With	ActiveDocument.Sections(1).PageSetup.TextColumns

				.EvenlySpaced	=	True

				.LineBetween	=	True

End	With

Use	the	Add	method	to	add	a	column	to	the	collection	of	columns.	By	default,
there's	one	text	column	in	the	TextColumns	collection.	The	following	example
adds	a	2.5-inch-wide	column	to	the	active	document.

ActiveDocument.PageSetup.TextColumns.Add	_

				Width:=InchesToPoints(2.5),	_

				Spacing:=InchesToPoints(0.5),	EvenlySpaced:=False



Remarks

Use	the	SetCount	method	to	arrange	text	into	columns.	The	following	example
arranges	the	text	in	the	active	document	into	three	columns.

ActiveDocument.PageSetup.TextColumns.SetCount	NumColumns:=3



TextEffectFormat	Object
									
Shapes	(Shape)	 TextEffectFormat

Contains	properties	and	methods	that	apply	to	WordArt	objects.



Using	the	TextEffectFormat	Object

Use	the	TextEffect	property	to	return	a	TextEffectFormat	object.	The	following
example	sets	the	font	name	and	formatting	for	shape	one	on	the	active	document.
For	this	example	to	work,	shape	one	must	be	a	WordArt	object.

With	ActiveDocument.Shapes(1).TextEffect

				.FontName	=	"Courier	New"

				.FontBold	=	True

				.FontItalic	=	True

End	With



Show	All



TextFrame	Object
									
Multiple	objects	 TextFrame

Range

Represents	the	text	frame	in	a	Shape	object.	Contains	the	text	in	the	text	frame
as	well	as	the	properties	that	control	the	margins	and	orientation	of	the	text
frame.



Using	the	TextFrame	Object

Use	the	TextFrame	property	to	return	the	TextFrame	object	for	a	shape.	The
TextRange	property	returns	a	Range	object	that	represents	the	range	of	text
inside	the	specified	text	frame.	The	following	example	adds	text	to	the	text
frame	of	shape	one	in	the	active	document.

ActiveDocument.Shapes(1).TextFrame.TextRange.Text	=	"My	Text"

Note			Some	shapes	don't	support	attached	text	(lines,	freeforms,	pictures,	and
OLE	objects,	for	example).	If	you	attempt	to	return	or	set	properties	that	control
text	in	a	text	frame	for	those	objects,	an	error	occurs.

Use	the	HasText	property	to	determine	whether	the	text	frame	contains	text,	as
shown	in	the	following	example.

For	Each	s	In	ActiveDocument.Shapes

				With	s.TextFrame

								If	.HasText	Then	MsgBox	.TextRange.Text

				End	With

Next

Text	frames	can	be	linked	together	so	that	the	text	flows	from	the	text	frame	of
one	shape	into	the	text	frame	of	another	shape.	Use	the	Next	and	Previous
properties	to	link	text	frames.	The	following	example	creates	a	text	box	(a
rectangle	with	a	text	frame)	and	adds	some	text	to	it.	It	then	creates	another	text
box	and	links	the	two	text	frames	together	so	that	the	text	flows	from	the	first
text	frame	into	the	second	one.

Set	myTB1	=	ActiveDocument.Shapes.AddTextbox	_

				(msoTextOrientationHorizontal,	72,	72,	72,	36)

myTB1.TextFrame.TextRange	=	_

				"This	is	some	text.	This	is	some	more	text."

Set	myTB2	=	ActiveDocument.Shapes.AddTextbox	_

				(msoTextOrientationHorizontal,	72,	144,	72,	36)

myTB1.TextFrame.Next	=	myTB2.TextFrame

Use	the	ContainingRange	property	to	return	a	Range	object	that	represents	the
entire	story	that	flows	between	linked	text	frames.	The	following	example
checks	the	spelling	of	the	text	in	TextBox	3	and	of	any	other	text	that's	linked	to



TextBox	3.

Set	myStory	=	ActiveDocument.Shapes("TextBox	3")	_

				.TextFrame.ContainingRange

myStory.CheckSpelling



TextInput	Object
									
FormFields	(FormField)	 TextInput

Represents	a	single	text	form	field.



Using	the	TextInput	Object

Use	FormFields(index),	where	index	is	either	the	bookmark	name	associated
with	the	text	form	field	or	the	index	number,	to	return	a	FormField	object.	Use
the	TextInput	property	with	the	FormField	object	to	return	a	TextInput	object.
The	following	example	deletes	the	contents	of	the	text	form	field	named	"Text1"
in	the	active	document.

ActiveDocument.FormFields("Text1").TextInput.Clear

The	index	number	represents	the	position	of	the	form	field	in	the	FormFields
collection.	The	following	example	checks	the	type	of	the	first	form	field	in	the
active	document.	If	the	form	field	is	a	text	form	field,	the	example	sets	"Mission
Critical"	as	the	value	of	the	field.

If	ActiveDocument.FormFields(1).Type	=	wdFieldFormTextInput	Then

				ActiveDocument.FormFields(1).Result	=	"Mission	Critical"

End	If

The	following	example	determines	whether	the	ffield	variable	represents	a
valid	text	form	field	in	the	active	document	before	it	sets	the	default	text.

Set	ffield	=	ActiveDocument.FormFields(1).TextInput

If	ffield.Valid	=	True	Then	

				ffield.Default	=	"Type	your	name	here"

Else

				MsgBox	"First	field	is	not	a	text	box"

End	If

Use	the	Add	method	with	the	FormFields	object	to	add	a	text	form	field.	The
following	example	adds	a	text	form	field	at	the	beginning	of	the	active	document
and	then	sets	the	name	of	the	form	field	to	"FirstName."

Set	ffield	=	ActiveDocument.FormFields.Add(	_

				Range:=ActiveDocument.Range(Start:=0,	End:=0),	_

				Type:=wdFieldFormTextInput)

ffield.Name	=	"FirstName"





TextRetrievalMode	Object
									
Range	 TextRetrievalMode

Represents	options	that	control	how	text	is	retrieved	from	a	Range	object.



Using	the	TextRetrievalMode	Object

Use	the	TextRetrievalMode	property	to	return	a	TextRetrievalMode	object.
The	following	example	displays	the	text	of	the	first	sentence	in	the	active
document,	excluding	field	codes	and	hidden	text.

With	ActiveDocument.Sentences(1).TextRetrievalMode

				.IncludeHiddenText	=	False

				.IncludeFieldCodes	=	False

				MsgBox	.Parent.Text

End	With



Remarks

Changing	the	ViewType,	IncludeHiddentText,	or	IncludeFieldCodes	property
of	the	TextRetrievalMode	object	doesn't	change	the	screen	display.	Instead,
changing	one	of	these	properties	determines	what	text	is	retrieved	from	a	Range
object	when	the	Text	property	is	used.



ThreeDFormat	Object
									
Shapes	(Shape)	 ThreeDFormat

ColorFormat

Represents	a	shape's	three-dimensional	formatting.



Using	The	ThreeDFormat	Object

Use	the	ThreeD	property	to	return	a	ThreeDFormat	object.	The	following
example	adds	an	oval	to	the	active	document	and	then	specifies	that	the	oval	be
extruded	to	a	depth	of	50	points	and	that	the	extrusion	be	purple.

Set	myShape	=	ActiveDocument.Shapes	_

				.AddShape(msoShapeOval,	90,	90,	90,	40)

With	myShape.ThreeD

				.Visible	=	True

				.Depth	=	50

				'	RGB	value	for	purple

				.ExtrusionColor.RGB	=	RGB(255,	100,	255)

End	With



Remarks

You	cannot	apply	three-dimensional	formatting	to	some	kinds	of	shapes,	such	as
beveled	shapes	or	multiple-disjoint	paths.	Most	of	the	properties	and	methods	of
the	ThreeDFormat	object	for	such	a	shape	will	fail.



TwoInitialCapsException	Object
									
Application	 AutoCorrect

TwoInitialCapsExceptions	(TwoInitialCapsException)

Represents	a	single	initial-capital	AutoCorrect	exception.	The
TwoInitialCapsException	object	is	a	member	of	the
TwoInitialCapsExceptions	collection.	The	TwoInitialCapsExceptions
collection	includes	all	the	items	listed	in	the	Don't	correct	box	on	the	INitial
CAps	tab	in	the	AutoCorrect	Exceptions	dialog	box.



Using	the	TwoInitialCapsException	Object

Use	TwoInitialCapsExceptions(index),	where	index	is	the	initial	capital
exception	name	or	the	index	number,	to	return	a	single
TwoInitialCapsException	object.	The	following	example	deletes	the	initial-
capital	exception	named	"KMenu."

AutoCorrect.TwoInitialCapsExceptions("KMenu").Delete

The	index	number	represents	the	position	of	the	initial-capital	exception	in	the
TwoInitialCapsExceptions	collection.	The	following	example	displays	the
name	of	the	first	item	in	the	TwoInitialCapsExceptions	collection.

MsgBox	AutoCorrect.TwoInitialCapsExceptions(1).Name

If	the	TwoInitialCapsAutoAdd	property	is	True,	words	are	automatically	added
to	the	list	of	initial-capital	exceptions.	Use	the	Add	method	to	add	an	item	to	the
TwoInitialCapsExceptions	collection.	The	following	example	adds	"Industry"
to	the	list	of	initial-capital	exceptions.

AutoCorrect.TwoInitialCapsExceptions.Add	Name:="INdustry"



TwoInitialCapsExceptions	Collection
Object
									
Application	 AutoCorrect

TwoInitialCapsExceptions	(TwoInitialCapsException)

A	collection	of	TwoInitialCapsException	objects	that	represent	all	the	items
listed	in	the	Don't	correct	box	on	the	INitial	CAps	tab	in	the	AutoCorrect
Exceptions	dialog	box.



Using	the	TwoInitialCapsExceptions	Collection

Use	the	TwoInitialCapsExceptions	property	to	return	the
TwoInitialCapsExceptions	collection.	The	following	example	displays	the
items	in	this	collection.

For	Each	aCap	In	AutoCorrect.TwoInitialCapsExceptions

				MsgBox	aCap.Name

Next	aCap

If	the	TwoInitialCapsAutoAdd	property	is	True,	words	are	automatically	added
to	the	list	of	initial-capital	exceptions.	Use	the	Add	method	to	add	an	item	to	the
TwoInitialCapsExceptions	collection.	The	following	example	adds	"Industry"
to	the	list	of	initial-capital	exceptions.

AutoCorrect.TwoInitialCapsExceptions.Add	Name:="INdustry"

Use	TwoInitialCapsExceptions(index),	where	index	is	the	initial	cap	name	or
the	index	number,	to	return	a	single	TwoInitialCapsException	object.	The
following	example	deletes	the	initial-capital	item	named	"KMenu."

AutoCorrect.TwoInitialCapsExceptions("KMenu").Delete

The	index	number	represents	the	position	of	the	initial-capital	exception	in	the
TwoInitialCapsExceptions	collection.	The	following	example	displays	the
name	of	the	first	item	in	the	TwoInitialCapsExceptions	collection.

MsgBox	AutoCorrect.TwoInitialCapsExceptions(1).Name



Variable	Object
									
Documents	(Document)	 Variables	(Variable)

Represents	a	variable	stored	as	part	of	a	document.	Document	variables	are	used
to	preserve	macro	settings	in	between	macro	sessions.	The	Variable	object	is	a
member	of	the	Variables	collection.	The	Variables	collection	includes	all	the
document	variables	in	a	document	or	template.



Using	the	Variable	Object

Use	Variables(index),	where	index	is	the	document	variable	name	or	the	index
number,	to	return	a	single	Variable	object.	The	following	example	displays	the
value	of	the	Temp	document	variable	in	the	active	document.

MsgBox	ActiveDocument.Variables("Temp").Value

The	index	number	represents	the	position	of	the	document	variable	in	the
Variables	collection.	The	last	variable	added	to	the	Variables	collection	is	index
number	1;	the	second-to-last	variable	added	to	the	collection	is	index	number	2,
and	so	on.	The	following	example	displays	the	name	of	the	first	document
variable	in	the	active	document.

MsgBox	ActiveDocument.Variables(1).Name

Use	the	Add	method	to	add	a	variable	to	a	document.	The	following	example
adds	a	document	variable	named	"Temp"	with	a	value	of	12	to	the	active
document.

ActiveDocument.Variables.Add	Name:="Temp",	Value:="12"

If	you	try	to	add	a	document	variable	with	a	name	that	already	exists	in	the
Variables	collection,	an	error	occurs.	To	avoid	this	error,	you	can	enumerate	the
collection	before	adding	any	new	variables.	If	the	Blue	document	variable
already	exists	in	the	active	document,	the	following	example	sets	its	value	to	6.
If	this	variable	doesn't	already	exist,	this	example	adds	it	to	the	document	and
sets	it	to	6.

For	Each	aVar	In	ActiveDocument.Variables

				If	aVar.Name	=	"Blue"	Then	num	=	aVar.Index

Next	aVar

If	num	=	0	Then

				ActiveDocument.Variables.Add	Name:="Blue",	Value:=6

Else

				ActiveDocument.Variables(num).Value	=	6

End	If



Remarks

Document	variables	are	invisible	to	the	user	unless	a	DOCVARIABLE	field	is
inserted	with	the	appropriate	variable	name.	The	following	example	adds	a
document	variable	named	"Temp"	to	the	active	document	and	then	inserts	a
DOCVARIABLE	field	to	display	the	value	in	the	variable.

With	ActiveDocument

				.Variables.Add	Name:="Temp",	Value:="12"

				.Fields.Add	Range:=Selection.Range,	_

								Type:=wdFieldDocVariable,	Text:="Temp"

End	With

ActiveDocument.ActiveWindow.View.ShowFieldCodes	=	False

To	add	a	document	variable	to	a	template,	open	the	template	as	a	document	by
using	the	OpenAsDocument	method.	The	following	example	stores	the	user
name	(from	the	Options	dialog	box)	in	the	template	attached	to	the	active
document.

ScreenUpdating	=	False

With	ActiveDocument.AttachedTemplate.OpenAsDocument

				.Variables.Add	Name:="UserName",	Value:=Application.UserName

				.Close	SaveChanges:=wdSaveChanges

End	With



Variables	Collection	Object
									
Documents	(Document)	 Variables	(Variable)

A	collection	of	Variable	objects	that	represent	the	variables	added	to	a	document
or	template.	Document	variables	are	used	to	preserve	macro	settings	in	between
macro	sessions.



Using	the	Variables	Collection

Use	the	Variables	property	to	return	the	Variables	collection.	The	following
example	displays	the	number	of	variables	in	the	document	named	"Sales.doc."

MsgBox	Documents("Sales.doc").Variables.Count	&	"	variables"

Use	the	Add	method	to	add	a	variable	to	a	document.	The	following	example
adds	a	document	variable	named	"Temp"	with	a	value	of	12	to	the	active
document.

ActiveDocument.Variables.Add	Name:="Temp",	Value:="12"

If	you	try	to	add	a	document	variable	with	a	name	that	already	exists	in	the
Variables	collection,	an	error	occurs.	To	avoid	this	error,	you	can	enumerate	the
collection	before	adding	any	new	variables.	If	the	Blue	document	variable
already	exists	in	the	active	document,	the	following	example	sets	its	value	to	6.
If	this	variable	doesn't	already	exist,	this	example	adds	it	to	the	document	and
sets	it	to	6.

For	Each	aVar	In	ActiveDocument.Variables

				If	aVar.Name	=	"Blue"	Then	num	=	aVar.Index

Next	aVar

If	num	=	0	Then

				ActiveDocument.Variables.Add	Name:="Blue",	Value:=6

Else

				ActiveDocument.Variables(num).Value	=	6

End	If

Use	Variables(index),	where	index	is	the	document	variable	name	or	the	index
number,	to	return	a	single	Variable	object.	The	following	example	displays	the
value	of	the	Temp	document	variable	in	the	active	document.

MsgBox	ActiveDocument.Variables("Temp").Value

The	index	number	represents	the	position	of	the	document	variable	in	the
Variables	collection.	The	first	variable	added	to	the	Variables	collection	is
index	number	1;	the	second	variable	added	to	the	collection	is	index	number	2,
and	so	on.	The	following	example	displays	the	name	of	the	first	document
variable	in	the	active	document.



MsgBox	ActiveDocument.Variables(1).Name

To	add	a	variable	to	a	template,	open	the	template	as	a	document	by	using	the
OpenAsDocument	method.	The	following	example	stores	the	user	name	(from
the	Options	dialog	box)	in	the	template	attached	to	the	active	document.

ScreenUpdating	=	False

With	ActiveDocument.AttachedTemplate.OpenAsDocument

				.Variables.Add	Name:="UserName",	Value:=	Application.UserName

				.Close	SaveChanges:=wdSaveChanges

End	With



Version	Object
									
Documents	(Document)	 Versions	(Version)

Represents	a	single	version	of	a	document.	The	Version	object	is	a	member	of
the	Versions	collection.	The	Versions	collection	includes	all	the	versions	of	the
specified	document.



Using	the	Version	Object

Use	Versions(index),	where	index	is	the	index	number,	to	return	a	single	Version
object.	The	index	number	represents	the	position	of	the	version	in	the	Versions
collection.	The	first	version	added	to	the	Versions	collection	is	index	number	1.
The	following	example	displays	the	comment,	author,	and	date	of	the	first
version	of	the	active	document.

If	ActiveDocument.Versions.Count	>=	1	Then

				With	ActiveDocument.Versions(1)

								MsgBox	"Comment	=	"	&	.Comment	&	vbCr	&	"Author	=	"	&	_

												.SavedBy	&	vbCr	&	"Date	=	"	&	.Date

				End	With

End	If

Use	the	Save	method	to	add	an	item	to	the	Versions	collection.	The	following
example	adds	a	version	of	the	active	document	with	the	specified	comment.

ActiveDocument.Versions.Save	_

				Comment:="incorporated	Judy's	revisions"



Versions	Collection	Object
									
Documents	(Document)	 Versions	(Version)

A	collection	of	Version	objects	that	represent	all	the	versions	of	a	document.
Corresponds	to	the	items	listed	in	the	Versions	dialog	box	(File	menu).



Using	the	Versions	Collection

Use	the	Versions	property	to	return	the	Versions	collection.	The	following
example	turns	off	the	option	that	automatically	creates	new	document	versions.

ActiveDocument.Versions.AutoVersion	=	wdAutoVersionOff

Use	the	Save	method	to	add	an	item	to	the	Versions	collection.	The	following
example	adds	a	version	with	the	specified	comment.

ActiveDocument.Versions.Save	_

				Comment:="incorporated	Judy's	revisions"

Use	Versions(index),	where	index	is	the	index	number,	to	return	a	single	Version
object.	The	index	number	represents	the	position	of	the	version	in	the	Versions
collection.	The	first	version	added	to	the	Versions	collection	is	index	number	1.
The	following	example	displays	the	comment,	author,	and	date	of	the	first
version	of	the	active	document.

If	ActiveDocument.Versions.Count	>=	1	Then

				With	ActiveDocument.Versions(1)

								MsgBox	"Comment	=	"	&	.Comment	&	vbCr	&	"Author	=	"	&	_

												.SavedBy	&	vbCr	&	"Date	=	"	&	.Date

				End	With

End	If



View	Object
									
Multiple	objects	 View

Multiple	objects

Contains	the	view	attributes	(show	all,	field	shading,	table	gridlines,	and	so	on)
for	a	window	or	pane.



Using	the	View	Object

Use	the	View	property	to	return	the	View	object.	The	following	example	sets
view	options	for	the	active	window.

With	ActiveDocument.ActiveWindow.View

				.ShowAll	=	True

				.TableGridlines	=	True

				.WrapToWindow	=	False

End	With



Remarks

Use	the	Type	property	to	change	the	view.	The	following	example	switches	the
active	window	to	normal	view.

ActiveDocument.ActiveWindow.View.Type	=	wdNormalView

Use	the	Percentage	property	to	change	the	size	of	the	text	on-screen.	The
following	example	enlarges	the	on-screen	text	to	120	percent.

ActiveDocument.ActiveWindow.View.Zoom.Percentage	=	120

Use	the	SeekView	property	to	view	comments,	endnotes,	footnotes,	or	the
document	header	or	footer.	The	following	example	displays	the	current	footer	in
the	active	window	in	print	layout	view.

With	ActiveDocument.ActiveWindow.View

				.Type	=	wdPrintView

				.SeekView	=	wdSeekCurrentPageFooter

End	With



WebOptions	Object
									
Documents	(Document)	 WebOptions

Contains	document-level	attributes	used	by	Microsoft	Word	when	you	save	a
document	as	a	Web	page	or	open	a	Web	page.	You	can	return	or	set	attributes
either	at	the	application	(global)	level	or	at	the	document	level.	(Note	that
attribute	values	can	be	different	from	one	document	to	another,	depending	on	the
attribute	value	at	the	time	the	document	was	saved.)	Document-level	attribute
settings	override	application-level	attribute	settings.	Application-level	attributes
are	contained	in	the	DefaultWebOptions	object.



Using	the	WebOptions	Object

Use	the	WebOptions	property	to	return	the	WebOptions	object.	The	following
example	checks	to	see	whether	PNG	(Portable	Network	Graphics)	is	allowed	as
an	image	format	and	then	sets	the	strImageFileType	variable	accordingly.

Set	objAppWebOptions	=	ActiveDocument.WebOptions

With	objAppWebOptions

				If	.AllowPNG	=	True	Then

								strImageFileType	=	"PNG"

				Else

								strImageFileType	=	"JPG"

				End	If

End	With



Window	Object
									
Multiple	objects	 Windows	(Window)

Multiple	objects

Represents	a	window.	Many	document	characteristics,	such	as	scroll	bars	and
rulers,	are	actually	properties	of	the	window.	The	Window	object	is	a	member	of
the	Windows	collection.	The	Windows	collection	for	the	Application	object
contains	all	the	windows	in	the	application,	whereas	the	Windows	collection	for
the	Document	object	contains	only	the	windows	that	display	the	specified
document.



Using	the	Window	Object

Use	Windows(index),	where	index	is	the	window	name	or	the	index	number,	to
return	a	single	Window	object.	The	following	example	maximizes	the
Document1	window.

Windows("Document1").WindowState	=	wdWindowStateMaximize

The	index	number	is	the	number	to	the	left	of	the	window	name	on	the	Window
menu.	The	following	example	displays	the	caption	of	the	first	window	in	the
Windows	collection.

MsgBox	Windows(1).Caption

Use	the	Add	method	or	the	NewWindow	method	to	add	a	new	window	to	the
Windows	collection.	Each	of	the	following	statements	creates	a	new	window	for
the	document	in	the	active	window.

ActiveDocument.ActiveWindow.NewWindow

NewWindow

Windows.Add



Remarks

A	colon	(:)	and	a	number	appear	in	the	window	caption	when	more	than	one
window	is	open	for	a	document.

When	you	switch	the	view	to	print	preview,	a	new	window	is	created.	This
window	is	removed	from	the	Windows	collection	when	you	close	print	preview.



Windows	Collection	Object
									
Multiple	objects	 Windows	(Window)

Multiple	objects

A	collection	of	Window	objects	that	represent	all	the	available	windows.	The
Windows	collection	for	the	Application	object	contains	all	the	windows	in	the
application,	whereas	the	Windows	collection	for	the	Document	object	contains
only	the	windows	that	display	the	specified	document.



Using	the	Windows	Collection

Use	the	Windows	property	to	return	the	Windows	collection.	The	following
example	tiles	all	the	windows	so	that	they	don't	overlap	one	another.

Windows.Arrange	ArrangeStyle:=wdTiled

Use	the	Add	method	or	the	NewWindow	method	to	add	a	new	window	to	the
Windows	collection.	Each	of	the	following	statements	creates	a	new	window	for
the	document	in	the	active	window.

ActiveDocument.ActiveWindow.NewWindow

NewWindow

Windows.Add

Use	Windows(index),	where	index	is	the	window	name	or	the	index	number,	to
return	a	single	Window	object.	The	following	example	maximizes	the
Document1	window.

Windows("Document1").WindowState	=	wdWindowStateMaximize

The	index	number	is	the	number	to	the	left	of	the	window	name	on	the	Window
menu.	The	following	example	displays	the	caption	of	the	first	window	in	the
Windows	collection.

MsgBox	Windows(1).Caption



Remarks

A	colon	(:)	and	a	number	appear	in	the	window	caption	when	more	than	one
window	is	open	for	a	document.

When	you	switch	the	view	to	print	preview,	a	new	window	is	created.	This
window	is	removed	from	the	Windows	collection	when	you	close	print	preview.



Words	Collection	Object
									
Multiple	objects	 Words

Range

A	collection	of	words	in	a	selection,	range,	or	document.	Each	item	in	the
Words	collection	is	a	Range	object	that	represents	one	word.	There	is	no	Word
object.



Using	the	Words	Collection

Use	the	Words	property	to	return	the	Words	object.	The	following	example
displays	how	many	words	are	currently	selected.

MsgBox	Selection.Words.Count	&	"	words	are	selected"

Use	Words(index),	where	index	is	the	index	number,	to	return	a	Range	object
that	represents	one	word.	The	index	number	represents	the	position	of	the	word
in	the	Words	collection.	The	following	example	formats	the	first	word	in	the
selection	as	24-point	italic.

With	Selection.Words(1)

				.Italic	=	True

				.Font.Size	=	24

End	With

The	item	in	the	Words	collection	includes	both	the	word	and	the	spaces	after	the
word.	To	remove	the	trailing	spaces,	use	Visual	Basic's	RTrim	function	—	for
example,	RTrim(ActiveDocument.Words(1)).	The	following	example	selects	the
first	word	(and	its	trailing	spaces)	in	the	active	document.

ActiveDocument.Words(1).Select



Remarks

If	the	selection	is	the	insertion	point	and	it	is	immediately	followed	by	a	space,
Selection.Words(1)	refers	to	the	word	preceding	the	selection.	If	the	selection
is	the	insertion	point	and	is	immediately	followed	by	a	character,
Selection.Words(1)	refers	to	the	word	following	the	selection.

The	Count	property	for	this	collection	in	a	document	returns	the	number	of
items	in	the	main	story	only.	To	count	items	in	other	stories	use	the	collection
with	the	Range	object.	Also,	the	Count	property	includes	punctuation	and
paragraph	marks	in	the	total.	If	you	need	a	count	of	the	the	actual	words	in	a
document,	use	the	Word	Count	dialog	box.	The	following	example	retrieves	the
number	of	words	in	the	active	document	and	assigns	the	value	to	the	variable
numWords.

Set	temp	=	Dialogs(wdDialogToolsWordCount)

'	Execute	the	dialog	box	in	order	to	refresh	its	data.

temp.Execute

numWords	=	temp.Words

For	more	information	about	calling	built-in	dialog	boxes,	see	Displaying	built-in
Word	dialog	boxes.

The	Add	method	isn't	available	for	the	Words	collection.	Instead,	use	the
InsertAfter	method	or	the	InsertBefore	method	to	add	text	to	a	Range	object.
The	following	example	inserts	text	after	the	first	word	in	the	active	document.

ActiveDocument.Range.Words(1).InsertAfter	"New	text	"



WrapFormat	Object
									
Multiple	objects	 WrapFormat

Represents	all	the	properties	for	wrapping	text	around	a	shape	or	shape	range.



Using	the	WrapFormat	Object

Use	the	WrapFormat	property	to	return	the	WrapFormat	object.	The
following	example	adds	an	oval	to	the	active	document	and	specifies	that
document	text	wrap	around	the	left	and	right	sides	of	the	square	that
circumscribes	the	oval.	There	will	be	a	0.1-inch	margin	between	the	document
text	and	the	top,	bottom,	left	side,	and	right	side	of	the	square.

Set	myOval	=	_

				ActiveDocument.Shapes.AddShape(msoShapeOval,	36,	36,	100,	35)

With	myOval.WrapFormat

				.Type	=	wdWrapSquare

				.Side	=	wdWrapBoth

				.DistanceTop	=	InchesToPoints(0.1)

				.DistanceBottom	=	InchesToPoints(0.1)

				.DistanceLeft	=	InchesToPoints(0.1)

				.DistanceRight	=	InchesToPoints(0.1)

End	With



Zoom	Object
									
Multiple	objects	 Zooms	(Zoom)

Contains	magnification	options	(for	example,	the	zoom	percentage)	for	a
window	or	pane.	The	Zoom	object	is	a	member	of	the	Zooms	collection.



Using	the	Zoom	Object

Use	the	Zoom	property	of	the	View	object	to	return	a	single	Zoom	object.	The
following	example	sets	the	zoom	percentage	for	the	active	window	to	110
percent.

ActiveDocument.ActiveWindow.View.Zoom.Percentage	=	110

Use	Zooms(index),	where	index	identifies	the	view	type,	to	return	a	single	Zoom
object.	The	view	type	specified	by	index	can	be	one	of	the	following
WdViewType	constants:	wdMasterView,	wdNormalView,	wdOutlineView,
wdPrintPreview,	wdPrintView,	or	wdWebView.	The	following	example	sets
the	magnification	for	the	active	window	so	that	an	entire	page	is	visible.

ActiveDocument.ActiveWindow.ActivePane	_

				.Zooms(wdPrintView).PageFit	=	wdPageFitFullPage

The	Add	method	isn't	available	for	the	Zooms	collection.	The	Zooms	collection
includes	a	single	Zoom	object	for	each	of	the	various	view	types	(outline,
normal,	page	layout,	and	so	on).



Zooms	Collection	Object
									
Pane	 Zooms

Zoom

A	collection	of	Zoom	objects	that	represents	the	magnification	options	for	each
view	(outline,	normal,	print	layout,	and	so	on).



Using	the	Zooms	Collection

Use	the	Zooms	property	to	return	the	Zooms	collection.	The	following	example
sets	the	zoom	percentage	for	the	active	window	to	100	percent	in	Normal	view.

ActiveDocument.ActiveWindow.ActivePane	_

				.Zooms(wdNormalView).Percentage	=	100

The	Add	method	isn't	available	for	the	Zooms	collection.	The	Zooms	collection
includes	a	single	Zoom	object	for	each	of	the	various	view	types	(outline,
normal,	page	layout,	and	so	on).	You	cannot	enumerate	the	Zooms	collection	by
using	a	For	Each...Next	loop.

Use	Zooms(index),	where	index	identifies	the	view	type,	to	return	a	single	Zoom
object.	The	view	type	specified	by	index	can	be	one	of	the	following
WdViewType	constants:	wdMasterView,	wdNormalView,	wdOutlineView,
wdPrintPreview,	wdPrintView,	or	wdWebView.	The	following	example	sets
the	magnification	for	the	active	window	so	that	an	entire	page	is	visible.

ActiveDocument.ActiveWindow.ActivePane	_

				.Zooms(wdPrintView).PageFit	=	wdPageFitFullPage

You	can	also	use	the	Zoom	property	of	the	View	object	to	return	a	single	Zoom
object.	The	following	example	sets	the	zoom	percentage	for	the	active	window
to	110	percent.

ActiveDocument.ActiveWindow.View.Zoom.Percentage	=	110



Accept	Method
							

Accepts	the	specified	tracked	change.	The	revision	marks	are	removed,	and	the
change	is	incorporated	into	the	document.

expression.Accept

expression			Required.	An	expression	that	returns	a	Revision	object.



Example

This	example	accepts	the	next	tracked	change	found	if	the	change	type	is
inserted	text.

Set	revNext	=	Selection.NextRevision(Wrap:=True)

If	Not	(revNext	Is	Nothing)	Then

				If	revNext.Type	=	wdRevisionInsert	Then	revNext.Accept

End	If

This	example	accepts	all	the	tracked	changes	in	the	selection.

Dim	revLoop	As	Revision

Dim	rngSelection	As	Range

Set	rngSelection	=	Selection.Range

For	Each	revLoop	In	rngSelection.Revisions

				revLoop.Accept

Next	revLoop



AcceptAll	Method
							

Accepts	all	the	tracked	changes	in	a	document	or	range.	The	revision	marks	are
removed,	and	the	changes	are	incorporated	into	the	document.

expression.AcceptAll

expression			Required.	An	expression	that	returns	a	Revisions	object.



Remarks

Use	the	AcceptAllRevisions	method	to	accept	all	revisions	in	a	document.



Example

This	example	accepts	all	the	tracked	changes	in	the	active	document.

If	ActiveDocument.Revisions.Count	>=	1	Then	_

				ActiveDocument.Revisions.AcceptAll

This	example	accepts	all	the	tracked	changes	in	the	selection.

Selection.Range.Revisions.AcceptAll



AcceptAllRevisions	Method
							

Accepts	all	tracked	changes	in	the	specified	document.

expression.AcceptAllRevisions

expression			Required.	An	expression	that	returns	a	Document	object.



Example

This	example	checks	the	main	story	in	the	active	document	for	tracked	changes,
and	if	there	are	any,	the	example	incorporates	all	revisions	in	all	stories	in	the
document.

If	ActiveDocument.Revisions.Count	>=	1	Then	_

				ActiveDocument.AcceptAllRevisions



AcceptAllRevisionsShown	Method
							

Accepts	all	revisions	in	the	specified	document	that	are	displayed	on	the	screen.

expression.AcceptAllRevisionsShown

expression			Required.	An	expression	that	returns	a	Document	object.



Remarks

Use	the	RejectAllRevisionsShown	method	to	reject	all	revisions	in	a	specified
document	that	are	displayed	on	the	screen.



Example

This	example	accepts	all	revisions	displayed	after	hiding	revisions	made	by	"Jeff
Smith."		This	example	assumes	that	the	active	document	was	reviewed	by	more
than	one	person	and	that	the	name	of	one	of	the	reviewers	is	"Jeff	Smith."

Sub	AcceptAllChanges()

				Dim	rev	As	Reviewer

				With	ActiveWindow.View

								'Display	all	comments	and	revisions

								.ShowRevisionsAndComments	=	True

								.ShowFormatChanges	=	True

								.ShowInsertionsAndDeletions	=	True

								For	Each	rev	In	.Reviewers

												rev.Visible	=	True

								Next

								'Hide	only	the	revisions/comments	made	by	the

								'reviewer	named	"Jeff	Smith"

								.Reviewers(Index:="Jeff	Smith").Visible	=	False

				End	With

				'Accept	all	revisions	displayed	in	the	active	view

				ActiveDocument.AcceptAllRevisionsShown

End	Sub



Show	All



Activate	Method
							

Activate	method	as	it	applies	to	the	Application,	Document,	InlineShape,
OLEFormat,	Pane,	Shape,	ShapeRange,	and	Window	objects.

Activates	the	specified	object.

expression.Activate

expression			Required.	An	expression	that	returns	one	of	the	above	objects.

Activate	method	as	it	applies	to	the	Task	object.

Activates	the	Task	object.

expression.Activate(Wait)

expression			Required.	An	expression	that	returns	a	Task	object.

Wait		Optional	Variant.	True	to	wait	until	the	user	has	activated	Word	before
activating	the	task.	False	to	immediately	activate	the	task,	even	if	Word	isn't
active.



Example

As	it	applies	to	the	Document	object.

This	example	activates	the	document	named	"Sales.doc."

Sub	OpenSales()

			'Sales.doc	must	exist	and	be	open	but	not	active.

			Documents("Sales.doc").Activate

End	Sub

As	it	applies	to	the	Window	object.

This	example	activates	the	next	window	in	the	Windows	collection.

Sub	NextWindow()

				'Two	or	more	documents	must	be	open	for	this	statement	to	execute.

				ActiveDocument.ActiveWindow.Next.Activate

End	Sub

As	it	applies	to	the	Task	object.

This	example	activates	the	Notepad	application	if	Notepad	is	in	the	Tasks
collection.

Sub	ActivateNotePad()

				Dim	Task1				'Notepad	must	be	open	and	in	the	Task	List.

				For	Each	Task1	In	Tasks

								If	InStr(Task1.Name,	"Notepad")	>	0	Then

												Task1.Activate

												Task1.WindowState	=	wdWindowStateNormal

								End	If

				Next	Task1

End	Sub

As	it	applies	to	the	Pane	object.

This	example	splits	the	active	window	and	then	activates	the	first	pane.

Sub	SplitWindow()

	With	ActiveDocument.ActiveWindow



				.SplitVertical	=	50

				.Panes(1).Activate

	End	With

End	Sub



ActivateAs	Method
							

Sets	the	Windows	registry	value	that	determines	the	default	application	used	to
activate	the	specified	OLE	object.

expression.ActivateAs(ClassType)

expression			Required.	An	expression	that	returns	an	OLEFormat	object.

ClassType			Required	String.	The	name	of	the	application	in	which	an	OLE
object	is	opened.	To	see	a	list	of	object	types	that	the	OLE	object	can	be
activated	as,	click	the	object	and	then	open	the	Convert	dialog	box	(Edit	menu,
Object	submenu).	You	can	find	the	ClassType	string	by	inserting	an	object	as	an
inline	shape	and	then	viewing	the	field	codes.	The	class	type	of	the	object
follows	either	the	word	"EMBED"	or	the	word	"LINK."



Example

This	example	sets	the	first	floating	shape	on	the	active	document	to	open	in
Microsoft	Excel,	and	then	it	activates	the	shape.	For	the	example	to	work,	this
shape	must	be	an	OLE	object	that	can	be	opened	in	Microsoft	Excel.

With	ActiveDocument.Shapes(1).OLEFormat

				.ActivateAs	ClassType:="Excel.Sheet"

				.Activate

End	With



Show	All



Add	Method
							

Add	method	as	it	applies	to	the	AddIns	object.

Returns	an	AddIn	object	that	represents	an	add-in	added	to	the	list	of	available
add-ins.

expression.Add(FileName,	Install)

expression			Required.	An	expression	that	returns	an	AddIns	object.

FileName			Required	String.	The	path	for	the	template	or	WLL.

Install			Optional	Variant.	True	to	install	the	add-in.	False	to	add	the	add-in	to
the	list	of	add-ins	but	not	install	it.	The	default	value	is	True.



Remarks

Use	the	Installed	property	of	an	add-in	to	see	whether	it's	already	installed.

Add	method	as	it	applies	to	the	AutoCorrectEntries	object.

Returns	an	AutoCorrectEntry	object	that	represents	a	plain-text	AutoCorrect
entry	added	to	the	list	of	available	AutoCorrect	entries.

expression.Add(Name,	Value)

expression			Required.	An	expression	that	returns	an	AutoCorrectEntries
object.

Name			Required	String.	The	text	you	want	to	have	automatically	replaced	with
the	text	specified	by	Value.

Value			Required	String.	The	text	you	want	to	have	automatically	inserted
whenever	the	text	specified	by	Name	is	typed.



Remarks

Use	the	AddRichText	method	to	create	a	formatted	AutoCorrect	entry.

Add	method	as	it	applies	to	the	AutoTextEntries	object.

Returns	an	AutoTextEntry	object	that	represents	an	AutoText	entry	added	to	the
list	of	available	AutoText	entries.

expression.Add(Name,	Range)

expression			Required.	An	expression	that	returns	an	AutoTextEntries	object.

Name			Required	String.	The	text	that,	when	typed,	initiates	an	AutoText	entry.

Range			Required	Range.	A	range	of	text	that	will	be	inserted	whenever	Name	is
typed.

Add	method	as	it	applies	to	the	Bookmarks	object.

Returns	a	Bookmark	object	that	represents	a	bookmark	added	to	a	range.

expression.Add(Name,	Range)

expression			Required.	An	expression	that	returns	a	Bookmarks	object.

Name		Required	String.	The	name	of	the	bookmark.	The	name	cannot	be	more
than	one	word.

Range		Optional	Variant.	The	range	of	text	marked	by	the	bookmark.	A
bookmark	can	be	set	to	a	collapsed	range	(the	insertion	point).

Add	method	as	it	applies	to	the	CaptionLabels	object.

Returns	a	CaptionLabel	object	that	represents	a	custom	caption	label.

expression.Add(Name)

expression			Required.	An	expression	that	returns	a	CaptionLabels	object.



Name		Required	String.	The	name	of	the	custom	caption	label.

Add	method	as	it	applies	to	the	Cells	object.

Returns	a	Cell	object	that	represents	a	cell	added	to	a	table.

expression.Add(BeforeCell)

expression			Required.	An	expression	that	returns	a	Cells	object.

BeforeCell		Optional	Variant.	A	Cell	object	that	represents	the	cell	that	will
appear	immediately	to	the	right	of	the	new	cell	or	cells.

Add	method	as	it	applies	to	the	Columns	object.

Returns	a	Column	object	that	represents	a	column	added	to	a	table.

expression.Add(BeforeColumn)

expression			Required.	An	expression	that	returns	a	Columns	object.

BeforeColumn		Optional	Variant.	A	Column	object	that	represents	the	column
that	will	appear	immediately	to	the	right	of	the	new	column.

Add	method	as	it	applies	to	the	Comments	object.

Returns	a	Comment	object	that	represents	a	comment	added	to	a	range.

expression.Add(Range,	Text)

expression			Required.	An	expression	that	returns	a	Comments	object.

Range		Required	Range	object.	The	range	to	have	a	comment	added	to	it.

Text		Optional	Variant.	The	text	of	the	comment.

Add	method	as	it	applies	to	the	CustomLabels	object.

Adds	a	custom	mailing	label	to	the	CustomLabels	collection.	Returns	a
CustomLabel	object	that	represents	the	custom	mailing	label.



expression.Add(Name,	DotMatrix)

expression			Required.	An	expression	that	returns	a	CustomLabels	object.

Name		Required	String.	The	name	for	the	custom	mailing	labels.

DotMatrix		Optional	Variant.	True	to	have	the	mailing	labels	printed	on	a	dot-
matrix	printer.

Add	method	as	it	applies	to	the	CustomProperties	object.

Returns	a	CustomProperty	object	that	represents	s	custom	property	added	to	a
smart	tag.

expression.Add(Name,	Value)

expression			Required.	An	expression	that	returns	a	CustomProperties	object.

Name		Required	String.	The	name	of	the	custom	smart	tag	property.

Value		Required	String.	The	value	of	the	custom	smart	tag	property

Add	method	as	it	applies	to	the	Dictionaries	and
HangulHanjaConversionDictionaries	objects.

Returns	a	Dictionary	object	that	represents	a	new	custom	spelling	or	conversion
dictionary	added	to	the	collection	of	active	custom	spelling	or	conversion
dictionaries.	If	a	file	with	the	name	specified	by	FileName	doesn't	exist,
Microsoft	Word	creates	one.

expression.Add(FileName)

expression			Required.	An	expression	that	returns	one	of	the	above	objects.

FileName		Required	String.	The	string	name	of	the	dictionary	file.	If	no	path	is
specified	in	the	string,	the	proofing	tools	path	is	used.



Remarks

The	Dictionaries	collection	includes	only	the	active	custom	spelling
dictionaries.	Dictionary	objects	that	are	derived	from	the	Languages	collection
don't	have	an	Add	method.	These	include	the	Dictionary	objects	returned	by	the
ActiveSpellingDictionary,	ActiveGrammarDictionary,
ActiveThesaurusDictionary,	and	ActiveHyphenationDictionary	properties.

Use	the	HangulHanjaDictionaries	property	to	return	the	collection	of	custom
conversion	dictionaries.	The	HangulHanjaConversionDictionaries	collection
includes	only	the	active	custom	conversion	dictionaries.

For	more	information	on	using	Microsoft	Word	with	East	Asian	languages,	see
Word	features	for	East	Asian	languages.

Add	method	as	it	applies	to	the	Documents	object.

Returns	a	Document	object	that	represents	a	new,	empty	document	added	to	the
collection	of	open	documents.

expression.Add(Template,	NewTemplate,	DocumentType,	Visible)

expression			Required.	An	expression	that	returns	a	Documents	object.

Template		Optional	Variant.	The	name	of	the	template	to	be	used	for	the	new
document.	If	this	argument	is	omitted,	the	Normal	template	is	used.

NewTemplate		Optional	Variant.	True	to	open	the	document	as	a	template.	The
default	value	is	False.

DocumentType		Optional	Variant.	Can	be	one	of	the	following
WdNewDocumentType	constants:	wdNewBlankDocument,
wdNewEmailMessage,	wdNewFrameset,	or	wdNewWebPage.	The	default
constant	is	wdNewBlankDocument.

Visible		Optional	Variant.	True	to	open	the	document	in	a	visible	window.	If
this	value	is	False,	Microsoft	Word	opens	the	document	but	sets	the	Visible
property	of	the	document	window	to	False.	The	default	value	is	True.

mk:@MSITStore:wdmain10.chm::/html/wdrefFeaturesAvailableInWordWhenAsianLanguagesAreEnabled.htm


Add	method	as	it	applies	to	the	EmailSignatureEntries	object.

Returns	an	EmailSignatureEntry	object	that	represents	a	new	e-mail	signature
entry.

expression.Add(Name,	Range)

expression			Required.	An	expression	that	returns	an	EmailSignatureEntries
object.

Name		Required	String.	The	name	of	the	e-mail	entry.

Range		Required	Range	object.	The	range	in	the	document	that	will	be	added	as
the	signature.



Remarks

An	e-mail	signature	is	standard	text	that	ends	an	e-mail	message,	such	as	your
name	and	telephone	number.	Use	the	EmailSignatureEntries	property	to	create
and	manage	a	collection	of	e-mail	signatures	that	Microsoft	Word	will	use	when
creating	e-mail	messages.

Add	method	as	it	applies	to	the	Endnotes	and	Footnotes	objects.

Returns	an	Endnote	or	Footnote	object	that	represents	an	endnote	or	footnote
added	to	a	range.

expression.Add(Range,	Reference,	Text)

expression			Required.	An	expression	that	returns	one	of	the	above	objects.

Range		Required	Range	object.	The	range	marked	for	the	endnote	or	footnote.
This	can	be	a	collapsed	range.

Reference		Optional	Variant.	The	text	for	the	custom	reference	mark.	If	this
argument	is	omitted,	Microsoft	Word	inserts	an	automatically-numbered
reference	mark.

Text		Optional	Variant.	The	text	of	the	endnote	or	footnote.



Remarks

To	specify	a	symbol	for	the	Reference	argument,	use	the	syntax	{FontName
CharNum}.	FontName	is	the	name	of	the	font	that	contains	the	symbol.	Names
of	decorative	fonts	appear	in	the	Font	box	in	the	Symbol	dialog	box	(Insert
menu).	CharNum	is	the	sum	of	31	and	the	number	corresponding	to	the	position
of	the	symbol	you	want	to	insert,	counting	from	left	to	right	in	the	table	of
symbols.	For	example,	to	specify	an	omega	symbol	(ω)	at	position	56	in	the
table	of	symbols	in	the	Symbol	font,	the	argument	would	be	"{Symbol	87}".

Add	method	as	it	applies	to	the	Fields	object.

Adds	a	Field	object	to	the	Fields	collection.	Returns	the	Field	object	at	the
specified	range.

expression.Add(Range,	Type,	Text,	PreserveFormatting)

expression			Required.	An	expression	that	returns	a	Fields	object.

Range		Required	Range	object.	The	range	where	you	want	to	add	the	field.	If
the	range	isn't	collapsed,	the	field	replaces	the	range.

Type		Optional	Variant.	Can	be	any	WdFieldType	constant.	For	a	list	of	valid
constants,	consult	the	Object	Browser.	The	default	value	is	wdFieldEmpty.

Text		Optional	Variant.	Additional	text	needed	for	the	field.	For	example,	if	you
want	to	specify	a	switch	for	the	field,	you	would	add	it	here.

PreserveFormatting		Optional	Variant.	True	to	have	the	formatting	that's
applied	to	the	field	preserved	during	updates.



Remarks

You	cannot	insert	some	fields	(such	as	wdFieldOCX	and
wdFieldFormCheckBox)	by	using	the	Add	method	of	the	Fields	collection.
Instead,	you	must	use	specific	methods	such	as	the	AddOLEControl	method
and	the	Add	method	for	the	FormFields	collection.

Add	method	as	it	applies	to	the	FirstLetterExceptions,	
OtherCorrectionsExceptions,	and	TwoInitialCapsExceptions	objects.

Returns	a	FirstLetterException,	OtherCorrectionsExceptions,	or
TwoInitialCapsExceptions	object	that	represents	a	new	exception	added	to	the
list	of	AutoCorrect	exceptions.

expression.Add(Name)

expression			Required.	An	expression	that	returns	one	of	the	above	objects.

Name		Required	String.	The	word	with	two	initial	capital	letters	that	you	want
Microsoft	Word	to	overlook	(FirstLetterExceptions	object),	the	abbreviation
that	you	don't	want	Word	to	follow	with	a	capital	letter
(TwoInitialCapsExceptions	object),	or	any	other	word	you	want	Word	to
overlook	(OtherCorrectionsExceptions	object).



Remarks

If	the	TwoInitialCapsAutoAdd	property	is	True,	words	are	automatically	added
to	the	list	of	initial-capital	exceptions.	If	the	FirstLetterAutoAdd	property	is
True,	abbreviations	are	automatically	added	to	the	list	of	first-letter	exceptions.
If	the	OtherCorrectionsAutoAdd	property	is	True,	words	are	automatically
added	to	the	list	of	other	corrections	exceptions.

Add	method	as	it	applies	to	the	FormFields	object.

Returns	a		FormField	object	that	represents	a	new	form	field	added	at	a	range.

expression.Add(Range,	Type)

expression			Required.	An	expression	that	returns	a	FormFields	object.

Range		Required	Range	object.	The	range	where	you	want	to	add	the	form	field.
If	the	range	isn't	collapsed,	the	form	field	replaces	the	range.

Type		Required	WdFieldType.The	type	of	form	field	to	add.

WdFieldType	can	be	one	of	these	WdFieldType	constants.
wdFieldAddin
wdFieldAdvance
wdFieldAsk
wdFieldAuthor
wdFieldAutoNum
wdFieldAutoNumLegal
wdFieldAutoNumOutline
wdFieldAutoText
wdFieldAutoTextList
wdFieldBarCode
wdFieldComments
wdFieldCompare
wdFieldCreateDate



wdFieldData
wdFieldDatabase
wdFieldDate
wdFieldDDE
wdFieldDDEAuto
wdFieldDocProperty
wdFieldDocVariable
wdFieldEditTime
wdFieldEmbed
wdFieldEmpty
wdFieldExpression
wdFieldFileName
wdFieldFileSize
wdFieldFillIn
wdFieldFootnoteRef
wdFieldFormCheckBox
wdFieldFormDropDown
wdFieldFormTextInput
wdFieldFormula
wdFieldGlossary
wdFieldGoToButton
wdFieldHTMLActiveX
wdFieldHyperlink
wdFieldIf
wdFieldImport
wdFieldInclude
wdFieldIncludePicture
wdFieldIncludeText
wdFieldIndex
wdFieldIndexEntry
wdFieldInfo
wdFieldKeyWord
wdFieldLastSavedBy



wdFieldLink
wdFieldListNum
wdFieldMacroButton
wdFieldMergeField
wdFieldMergeRec
wdFieldMergeSeq
wdFieldNext
wdFieldNextIf
wdFieldNoteRef
wdFieldNumChars
wdFieldNumPages
wdFieldNumWords
wdFieldOCX
wdFieldPage
wdFieldPageRef
wdFieldPrint
wdFieldPrintDate
wdFieldPrivate
wdFieldQuote
wdFieldRef
wdFieldRefDoc
wdFieldRevisionNum
wdFieldSaveDate
wdFieldSection
wdFieldSectionPages
wdFieldSequence
wdFieldSet
wdFieldSkipIf
wdFieldStyleRef
wdFieldSubject
wdFieldSubscriber
wdFieldSymbol
wdFieldTemplate



wdFieldTime
wdFieldTitle
wdFieldTOA
wdFieldTOAEntry
wdFieldTOC
wdFieldTOCEntry
wdFieldUserAddress
wdFieldUserInitials
wdFieldUserName

Add	method	as	it	applies	to	the	Frames	object.

Returns	a	Frame	object	that	represents	a	new	frame	added	to	a	range,	selection,
or	document.

expression.Add(Range)

expression			Required.	An	expression	that	returns	a	Frames	object.

Range		Required	Range	object.	The	range	that	you	want	the	frame	to	surround.

Add	method	as	it	applies	to	the	HangulAndAlphabetExceptions	object.

Returns	a	HangulAndAlphabetException	object	that	represents	a	new
exception	to	the	list	of	AutoCorrect	exceptions.

expression.Add(Name)

expression			Required.	An	expression	that	returns	a
HangulAndAlphabetExceptions	object.

Name		Required	String.	The	word	that	you	don't	want	Microsoft	Word	to	correct
automatically.



Remarks

If	the	HangulAndAlphabetAutoAdd	property	is	set	to	True,	words	are
automatically	added	to	the	list	of	hangul	and	alphabet	AutoCorrect	exceptions.

For	more	information	on	using	Word	with	East	Asian	languages,	see	Word
features	for	East	Asian	languages.

Add	method	as	it	applies	to	the	HeadingStyles	object.

Returns	a	HeadingStyle	object	that	represents	a	new	heading	style	added	to	a
document.	The	new	heading	style	will	be	included	whenever	you	compile	a	table
of	contents	or	table	of	figures.

expression.Add(Style,	Level)

expression			Required.	An	expression	that	returns	a	HeadingStyles	object.

Style		Required	Variant.	The	style	you	want	to	add.	You	can	specify	this
argument	by	using	either	the	string	name	for	the	style	or	a	Style	object.

Level		Required	Integer.	A	number	that	represents	the	level	of	the	heading.

Add	method	as	it	applies	to	the	HTMLDivisions	object.

Returns	an	HTMLDivision	object	that	represents	a	new	HTML	division	added
to	a	Web	document.

expression.Add(Range)

expression			Required.	An	expression	that	returns	an	HTMLDivisions	object.

Range		Optional	Variant.	An	existing	HTML	division	around	which	to	place	the
new	HTML	division.

Add	method	as	it	applies	to	the	Hyperlinks	object.

Returns	a	Hyperlink	object	that	represents	a	new	hyperlink	added	to	a	range,
selection,	or	document.

mk:@MSITStore:wdmain10.chm::/html/wdrefFeaturesAvailableInWordWhenAsianLanguagesAreEnabled.htm


expression.Add(Anchor,	Address,	SubAddress,	ScreenTip,	TextToDisplay,
Target)

expression			Required.	An	expression	that	returns	a	Hyperlinks	object.

Anchor		Required	Object.	The	text	or	graphic	that	you	want	turned	into	a
hyperlink.

Address		Optional	Variant.	The	address	for	the	specified	link.	The	address	can
be	an	e-mail	address,	an	Internet	address,	or	a	file	name.	Note	that	Microsoft
Word	doesn't	check	the	accuracy	of	the	address.

SubAddress		Optional	Variant.	The	name	of	a	location	within	the	destination
file,	such	as	a	bookmark,	named	range,	or	slide	number.

ScreenTip		Optional	Variant.	The	text	that	appears	as	a	ScreenTip	when	the
mouse	pointer	is	positioned	over	the	specified	hyperlink.	The	default	value	is
Address.

TextToDisplay		Optional	Variant.	The	display	text	of	the	specified	hyperlink.
The	value	of	this	argument	replaces	the	text	or	graphic	specified	by	Anchor.

Target		Optional	Variant.	The	name	of	the	frame	or	window	in	which	you	want
to	load	the	specified	hyperlink.

Add	method	as	it	applies	to	the	Indexes	object.

Returns	an	Index	object	that	represents	a	new	index	added	to	a	document.

expression.Add(Range,	HeadingSeparator,	RightAlignPageNumbers,	Type,
NumberOfColumns,	AccentedLetters,	SortBy,	IndexLanguage)

expression			Required.	An	expression	that	returns	an	Indexes	object.

Range		Required	Range	object.	The	range	where	you	want	the	index	to	appear.
The	index	replaces	the	range,	if	the	range	isn't	collapsed.

HeadingSeparator		Optional	Variant.The	text	between	alphabetic	groups
(entries	that	start	with	the	same	letter)	in	the	index.	Can	be	one	of	the	following
WdHeadingSeparator	constants:	wdHeadingSeparatorBlankLine,



wdHeadingSeparatorLetter,	wdHeadingSeparatorLetterFull,
wdHeadingSeparatorLetterLow,	or	wdHeadingSeparatorNone.

RightAlignPageNumbers		Optional	Variant.	True	to	align	page	numbers	with
the	right	margin.

Type		Optional	Variant.	Specifies	whether	subentries	are	on	the	same	line	(run-
in)	as	the	main	entry	or	on	a	separate	line	(indented)	from	the	main	entry.	Can	be
either	of	the	following	WdIndexType	constants:	wdIndexIndent	or
wdIndexRunin.

NumberOfColumns		Optional	Variant.	The	number	of	columns	for	each	page	of
the	index.	Specifying	0	(zero)	sets	the	number	of	columns	in	the	index	to	the
same	number	as	in	the	document.

AccentedLetters		Optional	Variant.	True	to	include	separate	headings	for
accented	letters	in	the	index	(for	example,	words	that	begin	with	"À"	and	words
that	begin	with	"A"	are	listed	under	separate	headings).

SortBy		Optional	Variant.	The	sorting	criteria	to	be	used	for	the	specified	index.
Can	be	either	of	the	following	WdIndexSortBy	constants:
wdIndexSortByStroke	or	wdIndexSortBySyllable.

IndexLanguage		Optional	Variant.	The	sorting	language	to	be	used	for	the
specified	index.	Can	be	any	of	the	WdLanguageID	constants.	For	the	list	of
valid	WdLanguageID	constants,	see	the	Object	Browser	in	the	Visual	Basic
Editor.



Remarks

An	index	is	built	from	Index	Entry	(XE)	fields	in	a	document.	Use	the
MarkEntry	method	to	mark	index	entries	to	be	included	in	an	index.

Add	method	as	it	applies	to	the	KeyBindings	object.

Returns	a	KeyBinding	object	that	represents	a	new	shortcut	key	for	a	macro,
built-in	command,	font,	AutoText	entry,	style,	or	symbol.

expression.Add(KeyCategory,	Command,	KeyCode,	KeyCode2,
CommandParameter)

expression			Required.	An	expression	that	returns	a	KeyBindings	object.

KeyCategory		Required	WdKeyCategory.	The	category	of	the	key	assignment.

WdKeyCategory	can	be	one	of	these	WdKeyCategory	constants.
wdKeyCategoryAutoText
wdKeyCategoryCommand
wdKeyCategoryDisable
wdKeyCategoryFont
wdKeyCategoryMacro
wdKeyCategoryNil
wdKeyCategoryPrefix
wdKeyCategoryStyle
wdKeyCategorySymbol

Command		Required	String.The	command	that	the	specified	key	combination
executes.

KeyCode		Required	Long.	A	key	you	specify	by	using	one	of	the	WdKey
constants.

KeyCode2		Optional	Variant.	A	second	key	you	specify	by	using	one	of	the
WdKey	constants.



CommandParameter		Optional	Variant.	Additional	text,	if	any,	required	for	the
command	specified	by	Command.	For	details,	see	the	Remarks	section	below.



Remarks

You	can	use	the	BuildKeyCode	method	to	create	the	KeyCode	or	KeyCode2
argument.

In	the	following	table,	the	left-hand	column	contains	commands	that	require	a
command	value,	and	the	right-hand	column	describes	what	you	must	do	to
specify	CommandParameter	for	each	of	these	commands.	(The	equivalent
action	in	the	Customize	Keyboard	dialog	box	(Tools	menu)	to	specifying
CommandParameter	is	selecting	an	item	in	the	list	box	that	appears	when	you
select	one	of	the	following	commands	in	the	Commands	box.)

If	Command	is
set	to CommandParameter	must	be

Borders,	Color,
or	Shading

A	number	—	specified	as	text	—	corresponding	to	the
position	of	the	setting	selected	in	the	list	box	that
contains	values,	where	0	(zero)	is	the	first	item,	1	is	the
second	item,	and	so	on

Columns
A	number	between	1	and	45	—	specified	as	text	—
corresponding	to	the	number	of	columns	you	want	to
apply

Condensed A	text	measurement	between	0.1	point	and	12.75	points
specified	in	0.05-point	increments	(72	points	=	1	inch)

Expanded A	text	measurement	between	0.1	point	and	12.75	points
specified	in	0.05-point	increments	(72	points	=	1	inch)

FileOpenFile The	path	and	file	name	of	the	file	to	be	opened.	If	the
path	isn't	specified,	the	current	folder	is	used.

Font	Size A	positive	text	measurement,	specified	in	0.5-point
increments	(72	points	=	1	inch)

Lowered,	Raised A	text	measurement	between	1	point	and	64	points,
specified	in	0.5-point	increments	(72	points	=	1	inch)

Symbol
A	string	created	by	concatenating	a	Chr()	instruction
and	the	name	of	a	symbol	font	(for	example,	Chr(167)
&	"Symbol")

Add	method	as	it	applies	to	the	ListEntries	object.



Returns	a	ListEntry	object	that	represents	an	item	added	to	a	drop-down	form
field.

expression.Add(Name,	Index)

expression			Required.	An	expression	that	returns	a	ListEntries	object.

Name		Required	String.	The	name	of	the	drop-down	form	field	item.

Index		Optional	Variant.	A	number	that	represents	the	position	of	the	item	in	the
list.

Add	method	as	it	applies	to	the	ListTemplates	object.

Returns	a	ListTemplate	object	that	represents	a	new	list	template.

expression.Add(OutlineNumbered,	Name)

expression			Required.	An	expression	that	returns	a	ListTemplates	object.

OutlineNumbered		Optional	Variant.	True	to	apply	outline	numbering	to	the
new	list	template.

Name		Optional	Variant.	An	optional	name	used	for	linking	the	list	template	to
a	LISTNUM	field.	You	cannot	use	this	name	to	index	the	list	template	in	the
collection.



Remarks

You	cannot	use	the	Add	method	on	ListTemplates	objects	returned	from	a
ListGallery	object.	You	can,	however,	modify	the	existing	list	templates	in	the
galleries.

Add	method	as	it	applies	to	the	MailMergeFields	object.

Returns	a	MailMergeField	object	that	represents	a	mail	merge	field	added	to	the
data	source	document.

expression.Add(Range,	Name)

expression			Required.	An	expression	that	returns	a	MailMergeFields	object.

Range		Required	Range	object.	The	range	where	you	want	the	field	to	appear.
This	field	replaces	the	range,	if	the	range	isn't	collapsed.

Name		Required	String.	The	name	of	the	field.

Add	method	as	it	applies	to	the	PageNumbers	object.

Returns	a	PageNumber	object	that	represents	page	numbers	added	to	a	header
or	footer	in	a	section.

expression.Add(PageNumberAlignment,	FirstPage)

expression			Required.	An	expression	that	returns	a	PageNumbers	object.

PageNumberAlignment		Optional	Variant.	Can	be	any
WdPageNumberAlignment	constant.

wdAlignPageNumberCenter
wdAlignPageNumberInside
wdAlignPageNumberLeft
wdAlignPageNumberOutside
wdAlignPageNumberRight



FirstPage		Optional	Variant.	False	to	make	the	first-page	header	and	the	first-
page	footer	different	from	the	headers	and	footers	on	all	subsequent	pages	in	the
document.	If	FirstPage	is	set	to	False,	a	page	number	isn't	added	to	the	first
page.	If	this	argument	is	omitted,	the	setting	is	controlled	by	the
DifferentFirstPageHeaderFooter	property.



Remarks

If	the	LinkToPrevious	property	for	the	HeaderFooter	object	is	set	to	True,	the
page	numbers	will	continue	sequentially	from	one	section	to	next	throughout	the
document.

Add	method	as	it	applies	to	the	Panes	object.

Returns	a	Pane	object	that	represents	a	new	pane	to	a	window.

expression.Add(SplitVertical)

expression			Required.	An	expression	that	returns	a	Panes	object.

SplitVertical		Optional	Variant.	A	number	that	represents	the	percentage	of	the
window,	from	top	to	bottom,	you	want	to	appear	above	the	split.



Remarks

This	method	will	fail	if	it's	applied	to	a	window	that's	already	been	split.

Add	method	as	it	applies	to	the	Paragraphs	object.

Returns	a	Paragraph	object	that	represents	a	new,	blank	paragraph	added	to	a
document.

expression.Add(Range)

expression			Required.	An	expression	that	returns	a	Paragraphs	object.

Range		Optional	Variant.	The	range	before	which	you	want	the	new	paragraph
to	be	added.	The	new	paragraph	doesn't	replace	the	range.



Remarks

If	Range	isn't	specified,	the	new	paragraph	is	added	after	the	selection	or	range
or	at	the	end	of	the	document,	depending	on	expression.

Add	method	as	it	applies	to	the	RecentFiles	object.

Returns	a	RecentFile	object	that	represents	a	file	added	to	the	list	of	recently
used	files.

expression.Add(Document,	ReadOnly)

expression			Required.	An	expression	that	returns	a	RecentFile	object.

Document		Required	Variant.	The	document	you	want	to	add	to	the	list	of
recently	used	files.	You	can	specify	this	argument	by	using	either	the	string	name
for	the	document	or	a	Document	object.

ReadOnly		Optional	Variant.	True	to	make	the	document	read-only.

Add	method	as	it	applies	to	the	Rows	object.

Returns	a	Row	object	that	represents	a	row	added	to	a	table.

expression.Add(BeforeRow)

expression			Required.	An	expression	that	returns	a	Rows	object.

BeforeRow		Optional	Variant.	A	Row	object	that	represents	the	row	that	will
appear	immediately	below	the	new	row.

Add	method	as	it	applies	to	the	Sections	object.

Returns	a	Section	object	that	represents	a	new	section	added	to	a	document.

expression.Add(Range,	Start)

expression			Required.	An	expression	that	returns	a	Sections	object.



Range		Optional	Variant.	The	range	before	which	you	want	to	insert	the	section
break.	If	this	argument	is	omitted,	the	section	break	is	inserted	at	the	end	of	the
document.

Start		Optional	Variant.	The	type	of	section	break	you	want	to	add.	Can	be	one
of	the	following	WdSectionStart	constants:	wdSectionContinuous,
wdSectionEvenPage,	wdSectionNewColumn,	wdSectionNewPage,	or
wdSectionOddPage.	If	this	argument	is	omitted,	a	Next	Page	section	break	is
added.

Add	method	as	it	applies	to	the	SmartTags	object.

Returns	a	SmartTag	object	that	represents	a	new	smart	tag	added	to	a	document.

expression.Add(Name,	Range,	Properties)

expression			Required.	An	expression	that	returns	a	SmartTags	object.

Name		Required	String.	The	name	of	the	smart	tag.

Range		Optional	Variant.	The	range	to	which	to	apply	the	smart	tag.

Properties		Optional	Variant.	Properties	that	apply	to	the	smart	tag.

Add	method	as	it	applies	to	the	Styles	object.

Returns	a	Style	object	that	represents	a	new	user-defined	style	added	to	the	list
of	styles.

expression.Add(Name,	Type)

expression			Required.	An	expression	that	returns	a	Styles	object.

Name		Required	String.	The	string	name	for	the	new	style.

Type		Optional	Variant.	The	style	type	of	the	new	style.	Can	be	one	of	the
following	WdStyleType	constants:	wdStyleTypeParagraph,
wdStyleTypeCharacter,	wdStyleTypeList,	or	wdStyleTypeTable.

Add	method	as	it	applies	to	the	StyleSheets	object.



Returns	a	StyleSheet	object	that	represents	a	new	style	sheet	added	to	a	Web
document.

expression.Add(FileName,	LinkType,	Title,	Precedence)

expression			Required.	An	expression	that	returns	a	StyleSheets	object.

FileName		Required	String.	The	path	and	file	name	of	the	cascading	style	sheet.

LinkType		Optional	WdStyleSheetLinkType.	Indicates	whether	the	style	sheet
should	be	added	as	a	link	or	imported	into	the	Web	document.

WdStyleSheetLinkType	can	be	one	of	these	WdStyleSheetLinkType	constants.
wdStyleSheetLinkTypeImported
wdStyleSheetLinkTypeLinked	default

Title		Optional	String.	The	name	of	the	style	sheet.

Precedence		Optional	WdStyleSheetPrecedence.	Indicates	the	level	of
importance	compared	to	other	cascading	style	sheets	attached	to	the	Web
document.

WdStyleSheetPrecedence	can	be	one	of	these	WdStyleSheetPrecedence
constants.
wdStyleSheetPrecedenceHigher
wdStyleSheetPrecedenceHighest	default
wdStyleSheetPrecedenceLower
wdStyleSheetPrecedenceLowest

Add	method	as	it	applies	to	the	Tables	object.

Returns	a	Table	object	that	represents	a	new,	blank	table	added	to	a	document.

expression.Add(Range,	NumRows,	NumColumns,	DefaultTableBehavior,
AutoFitBehavior)

expression			Required.	An	expression	that	returns	a	Tables	object.

Range		Required	Range	object.	The	range	where	you	want	the	table	to	appear.



The	table	replaces	the	range,	if	the	range	isn't	collapsed.

NumRows		Required	Long.	The	number	of	rows	you	want	to	include	in	the
table.

NumColumns		Required	Long.	The	number	of	columns	you	want	to	include	in
the	table.

DefaultTableBehavior		Optional	Variant.	Sets	a	value	that	specifies	whether
Microsoft	Word	automatically	resizes	cells	in	tables	to	fit	the	cells’	contents
(AutoFit).	Can	be	either	of	the	following	constants:	wdWord8TableBehavior
(AutoFit	disabled)	or	wdWord9TableBehavior	(AutoFit	enabled).	The	default
constant	is	wdWord8TableBehavior.

AutoFitBehavior		Optional	Variant.	Sets	the	AutoFit	rules	for	how	Word	sizes
tables.	Can	be	one	of	the	following	WdAutoFitBehavior	constants:
wdAutoFitContent,	wdAutoFitFixed,	or	wdAutoFitWindow.	If
DefaultTableBehavior	is	set	to	wdWord8TableBehavior,	this	argument	is
ignored.

Add	method	as	it	applies	to	the	TablesOfAuthorities	object.

Returns	a	TableOfAuthorities	object	that	represents	a	table	of	authorities	added
to	a	document.

expression.Add(Range,	Category,	Bookmark,	Passim,	KeepEntryFormatting,
Separator,	IncludeSequenceName,	EntrySeparator,	PageRangeSeparator,
IncludeCategoryHeader,	PageNumberSeparator)

expression			Required.	An	expression	that	returns	a	TableOfAuthorities	object.

Range		Required	Range	object.	The	range	where	you	want	the	table	of
authorities	to	appear.	The	table	of	authorities	replaces	the	range,	if	the	range	isn't
collapsed.

Category		Optional	Variant.	The	category	of	entries	you	want	to	include	in	the
table	of	authorities.	Corresponds	to	the	\c	switch	for	a	Table	of	Authorities
(TOA)	field.	Values	0	through	16	correspond	to	the	items	listed	in	the	Category
box	on	the	Table	of	Authorities	tab	in	the	Index	and	Tables	dialog	box
(Reference	command,	Insert	menu).	The	default	value	is	1.



Bookmark		Optional	Variant.	The	string	name	of	the	bookmark	from	which	you
want	to	collect	entries	for	the	table	of	authorities.	If	Bookmark	is	specified,	the
entries	are	collected	only	from	the	portion	of	the	document	marked	by	the
bookmark.	Corresponds	to	the	\b	switch	for	a	Table	of	Authorities	(TOA)	field.

Passim		Optional	Variant.	True	to	replace	five	or	more	page	references	to	the
same	authority	with	Passim	in	the	table	of	authorities.	Corresponds	to	the	\p
switch	for	a	Table	of	Authorities	(TOA)	field.	If	this	argument	is	omitted,
Passim	is	assumed	to	be	False.

KeepEntryFormatting		Optional	Variant.	True	to	apply	formatting	from	table
of	authorities	entries	to	the	entries	in	the	table	of	authorities.	Corresponds	to	the
\f	switch	for	a	Table	of	Authorities	(TOA)	field.	If	this	argument	is	omitted,
KeepEntryFormatting	is	assumed	to	be	True.

Separator		Optional	Variant.	The	characters	(up	to	five)	between	each	sequence
number	and	its	page	number	in	the	table	of	authorities.	Corresponds	to	the	\d
switch	for	a	Table	of	Authorities	(TOA)	field.	If	argument	is	omitted,	a	hyphen	(-
)	is	used.

IncludeSequenceName		Optional	Variant.	A	string	that	specifies	the	Sequence
(SEQ)	field	identifier	for	the	table	of	authorities.	Corresponds	to	the	\s	switch	for
a	Table	of	Authorities	(TOA)	field.

EntrySeparator		Optional	Variant.	The	characters	(up	to	five)	that	separate	each
entry	and	its	page	number	in	the	table	of	authorities.	Corresponds	to	the	\e
switch	for	a	Table	of	Authorities	(TOA)	field.	If	this	argument	is	omitted,	no
separator	is	used.

PageRangeSeparator		Optional	Variant.	The	characters	(up	to	five)	that
separate	the	beginning	and	ending	page	numbers	in	each	page	range	the	table	of
authorities.	Corresponds	to	the	\g	switch	for	a	Table	of	Authorities	(TOA)	field.
If	this	argument	is	omitted,	an	en	dash	is	used.

IncludeCategoryHeader		Optional	Variant.	True	to	have	the	category	name	for
each	group	of	entries	appear	in	the	table	of	authorities	(for	example,	Cases).
Corresponds	to	the	\h	switch	for	a	Table	of	Authorities	(TOA)	field.	If	this
argument	is	omitted,	IncludeCategoryHeader	is	assumed	to	be	True.

PageNumberSeparator		Optional	Variant.	The	characters	(up	to	five)	that



separate	individual	page	numbers	within	page	references	in	the	table	of
authorities.	Corresponds	to	the	\l	switch	for	a	Table	of	Authorities	(TOA)	field.
If	this	argument	is	omitted,	a	comma	and	a	space	are	used.



Remarks

A	table	of	authorities	is	built	from	Table	of	Authorities	Entry	(TA)	fields	in	a
document.	Use	the	MarkCitation	method	to	mark	citations	to	be	included	in	the
table	of	authorities.

Add	method	as	it	applies	to	the	TablesOfContents	object.

Returns	a	TableOfContents	object	that	represents	a	table	of	contents	added	to	a
document.

expression.Add(Range,	UseHeadingStyles,	UpperHeadingLevel,
LowerHeadingLevel,	UseFields,	TableID,	RightAlignPageNumbers,
IncludePageNumbers,	AddedStyles,	UseHyperlinks,	HidePageNumbersInWeb,
UseOutlineLevels)

expression			Required.	An	expression	that	returns	a	TableOfContents	object.

Range		Required	Range	object.	The	range	where	you	want	the	table	of	contents
to	appear.	The	table	of	contents	replaces	the	range,	if	the	range	isn't	collapsed.

UseHeadingStyles		Optional	Variant.	True	to	use	built-in	heading	styles	to
create	the	table	of	contents.	The	default	value	is	True.

UpperHeadingLevel		Optional	Variant.	The	starting	heading	level	for	the	table
of	contents.	Corresponds	to	the	starting	value	used	with	the	\o	switch	for	a	Table
of	Contents	(TOC)	field.	The	default	value	is	1.

LowerHeadingLevel		Optional	Variant.	The	ending	heading	level	for	the	table
of	contents.	Corresponds	to	the	ending	value	used	with	the	\o	switch	for	a	Table
of	Contents	(TOC)	field.	The	default	value	is	9.

UseFields		Optional	Variant.	True	if	Table	of	Contents	Entry	(TC)	fields	are
used	to	create	the	table	of	contents.	Use	the	MarkEntry	method	to	mark	entries
to	be	included	in	the	table	of	contents.	The	default	value	is	False.

TableID		Optional	Variant.	A	one-letter	identifier	that's	used	to	build	a	table	of
contents	from	TC	fields.	Corresponds	to	the	\f	switch	for	a	Table	of	Contents



(TOC)	field.	For	example,	"T"	builds	a	table	of	contents	from	TC	fields	using	the
table	identifier	T.	If	this	argument	is	omitted,	TC	fields	aren't	used.

RightAlignPageNumbers		Optional	Variant.	True	if	page	numbers	in	the	table
of	contents	are	aligned	with	the	right	margin.	The	default	value	is	True.

IncludePageNumbers		Optional	Variant.	True	to	include	page	numbers	in	the
table	of	contents.	The	default	value	is	True.

AddedStyles		Optional	Variant.	The	string	name	for	additional	styles	used	to
compile	the	table	of	contents	(styles	other	than	the	Heading	1	–	Heading	9
styles).	Use	the	Add	method	of	a	HeadingStyles	object	to	create	new	heading
styles.

UseHyperlinks		Optional	Variant.	True	if	entries	in	a	table	of	contents	should
be	formatted	as	hyperlinks	when	the	document	is	being	publishing	to	the	Web.
The	default	value	is	True.

HidePageNumbersInWeb		Optional	Variant.	True	if	page	numbers	in	a	table	of
contents	should	be	hidden	when	the	document	is	being	publishing	to	the	Web.
The	default	value	is	True.

UseOutlineLevels		Optional	Variant.	True	to	use	outline	levels	to	create	the
table	of	contents.	The	default	is	False.

Add	method	as	it	applies	to	the	TablesOfFigures	object.

Returns	a	TableOfFigures	object	that	represents	a	table	of	figures	added	to	a
document.

expression.Add(Range,	Caption,	IncludeLabel,	UseHeadingStyles,
UpperHeadingLevel,	LowerHeadingLevel,	UseFields,	TableID,
RightAlignPageNumbers,	IncludePageNumbers,	AddedStyles,	UseHyperlinks,
HidePageNumbersInWeb)

expression			Required.	An	expression	that	returns	a	TableOfFigures	object.

Range		Required	Range	object.	The	range	where	you	want	the	table	of	figures	to
appear.



Caption		Optional	Variant.	The	label	that	identifies	the	items	you	want	to
include	in	the	table	of	figures.	Corresponds	to	the	\c	switch	for	a	Table	of
Contents	(TOC)	field.	The	default	value	is	"Figure."

IncludeLabel		Optional	Variant.	True	to	include	the	caption	label	and	caption
number	in	the	table	of	figures.	The	default	value	is	True.

UseHeadingStyles		Optional	Variant.	True	to	use	built-in	heading	styles	to
create	the	table	of	figures.	The	default	value	is	False.

UpperHeadingLevel		Optional	Variant.	The	starting	heading	level	for	the	table
of	figures,	if	UseHeadingStyles	is	set	to	True.	Corresponds	to	the	starting	value
used	with	the	\o	switch	for	a	Table	of	Contents	(TOC)	field.	The	default	value	is
1.

LowerHeadingLevel		Optional	Variant.	The	ending	heading	level	for	the	table
of	figures,	if	UseHeadingStyles	is	set	to	True.	Corresponds	to	the	ending	value
used	with	the	\o	switch	for	a	Table	of	Contents	(TOC)	field.	The	default	value	is
9.

UseFields		Optional	Variant.	True	to	use	Table	of	Contents	Entry	(TC)	fields	to
create	the	table	of	figures.	Use	the	MarkEntry	method	to	mark	entries	you	want
to	include	in	the	table	of	figures.	The	default	value	is	False.

TableID		Optional	Variant.	A	one-letter	identifier	that's	used	to	build	a	table	of
figures	from	Table	of	Contents	Entry	(TC)	fields.	Corresponds	to	the	\f	switch
for	a	Table	of	Contents	(TOC)	field.	For	example,	"i"	builds	a	table	of	figures	for
an	illustration.

RightAlignPageNumbers		Optional	Variant.	True	align	page	numbers	with	the
right	margin	in	the	table	of	figures.	The	default	value	is	True.

IncludePageNumbers		Optional	Variant.	True	if	page	numbers	are	included	in
the	table	of	figures.	The	default	value	is	True.

AddedStyles		Optional	Variant.	The	string	name	for	additional	styles	used	to
compile	the	table	of	figures	(styles	other	than	the	Heading	1	–	Heading	9	styles).

UseHyperlinks		Optional	Variant.	True	if	entries	in	a	table	of	figures	should	be
formatted	as	hyperlinks	when	publishing	to	the	Web.	The	default	value	is	True.



HidePageNumbersInWeb		Optional	Variant.	True	if	page	numbers	in	a	table	of
figures	should	be	hidden	when	publishing	to	the	Web.	The	default	value	is	True.

Add	method	as	it	applies	to	the	TabStops	object.

Returns	a	TabStop	object	that	represents	a	custom	tab	stop	added	to	a	document.

expression.Add(Position,	Alignment,	Leader)

expression			Required.	An	expression	that	returns	a	TabStops	object.

Position		Required	Single.	The	position	of	the	tab	stop	(in	points)	relative	to	the
left	margin.

Alignment		Optional	Variant.	The	alignment	of	the	tab	stop.	Can	be	one	of	the
following	WdTabAlignment	constants:	wdAlignTabBar,	wdAlignTabCenter,
wdAlignTabDecimal,	wdAlignTabLeft,	wdAlignTabList,	or
wdAlignTabRight.	If	this	argument	is	omitted,	wdAlignTabLeft	is	used.

Leader		Optional	Variant.	The	type	of	leader	for	the	tab	stop.	Can	be	one	of	the
following	WdTabLeader	constants:	wdTabLeaderDashes,	wdTabLeaderDots,
wdTabLeaderHeavy,	wdTabLeaderLines,	wdTabLeaderMiddleDot,	or
wdTabLeaderSpaces.	If	this	argument	is	omitted,	wdTabLeaderSpaces	is
used.

Add	method	as	it	applies	to	the	TextColumns	object.

Returns	a	TextColumn	object	that	represents	a	new	text	column	added	to	a
section	or	document.

expression.Add(Width,	Spacing,	EvenlySpaced)

expression			Required.	An	expression	that	returns	a	TextColumns	object.

Width		Optional	Variant.	The	width	of	the	new	text	column	in	the	document,	in
points.

Spacing		Optional	Variant.	The	spacing	between	the	text	columns	in	the
document,	in	points.



EvenlySpaced		Optional	Variant.	True	to	evenly	space	all	the	text	columns	be
in	the	document.

Add	method	as	it	applies	to	the	Variables	object.

Returns	a	Variable	object	that	represents	a	variable	added	to	a	document.

expression.Add(Name,	Value)

expression			Required.	An	expression	that	returns	a	Variables	object.

Name		Required	String.		The	name	of	the	document	variable.

Value		Optional	Variant.	The	value	for	the	document	variable.



Remarks

Document	variables	are	invisible	to	the	user	unless	a	DOCVARIABLE	field	is
inserted	with	the	appropriate	variable	name.	If	you	try	to	add	a	variable	with	a
name	that	already	exists	in	the	Variables	collection,	an	error	occurs.	To	avoid
this	error,	you	can	enumerate	the	collection	before	adding	a	new	variable	to	it.

Add	method	as	it	applies	to	the	Windows	object.

Returns	a	Window	object	that	represents	a	new	window	of	a	document.

expression.Add(Window)

expression			Required.	An	expression	that	returns	a	Windows	object.

Window		Optional	Variant.	The	Window	object	you	want	to	open	another
window	for.	If	this	argument	is	omitted,	a	new	window	is	opened	for	the	active
document.



Remarks

A	colon	(:)	and	a	number	appear	in	the	window	caption	when	more	than	one
window	is	open	for	the	document.



Example

As	it	applies	to	the	AddIns	object.

This	example	installs	a	template	named	MyFax.dot	and	adds	it	to	the	list	of	add-
ins	in	the	Templates	and	Add-ins	dialog	box.

Sub	AddTemplate()

				'	For	this	example	to	work	correctly,	verify	that	the

				'	path	is	correct	and	the	file	exists.

				AddIns.Add	FileName:="C:\Program	Files\Microsoft	Office"	_

								&	"\Templates\Letters	&	Faxes\MyFax.dot",	Install:=True

End	Sub

As	it	applies	to	the	AutoCorrectEntries	object.

This	example	adds	a	plain-text	AutoCorrect	entry	for	a	common	misspelling	of
the	word	their.

AutoCorrect.Entries.Add	Name:="thier",	Value:="their"

As	it	applies	to	the	AutoTextEntries	object.

This	example	adds	an	AutoText	entry	named	Sample	Text	that	contains	the	text
in	the	selection.		This	example	assumes	you	have	text	selected	in	the	active
document.

Sub	AutoTxt()

				NormalTemplate.AutoTextEntries.Add	Name:="Sample	Text",	_

								Range:=Selection.Range

End	Sub

As	it	applies	to	the	Bookmarks	object.

This	example	adds	a	bookmark	named	myplace	to	the	selection	in	the	active
document.

Sub	BMark()

				'		Select	some	text	in	the	active	document	prior

				'		to	execution.



				ActiveDocument.Bookmarks.Add	_

								Name:="myplace",	Range:=Selection.Range

End	Sub

This	example	adds	a	bookmark	named	mark	at	the	insertion	point.

Sub	Mark()

				ActiveDocument.Bookmarks.Add	Name:="mark"

End	Sub

This	example	adds	a	bookmark	named	third_para	to	the	third	paragraph	in
Letter.doc,	and	then	it	displays	all	the	bookmarks	for	the	document	in	the	active
window.

Sub	ThirdPara()

				Dim	myDoc	As	Document

				'		To	best	illustrate	this	example,

				'		Letter.doc	must	be	opened,	not	active,

				'		and	contain	more	than	3	paragraphs.

				Set	myDoc	=	Documents("Letter.doc")

				myDoc.Bookmarks.Add	Name:="third_para",	_

								Range:=myDoc.Paragraphs(3).Range

				myDoc.ActiveWindow.View.ShowBookmarks	=	True

End	Sub

As	it	applies	to	the	CaptionLabels	object.

This	example	adds	a	custom	caption	label	named	Demo	Slide.	To	verify	that	the
custom	label	is	added,	view	the	Label	combo	box	in	the	Caption	dialog	box,
accessed	from	the	Reference	item	on	the	Insert	menu.

Sub	CapLbl()

				CaptionLabels.Add	Name:="Demo	Slide"

End	Sub

As	it	applies	to	the	Columns	object.

This	example	creates	a	table	with	two	columns	and	two	rows	in	the	active
document	and	then	adds	another	column	before	the	first	column.	The	width	of
the	new	column	is	set	at	1.5	inches.

Sub	AddATable()

				Dim	myTable	As	Table



				Dim	newCol	As	Column

				Set	myTable	=	ActiveDocument.Tables.Add(Selection.Range,	2,	2)

				Set	newCol	=	myTable.Columns.Add(BeforeColumn:=myTable.Columns(1))

				newCol.SetWidth	ColumnWidth:=InchesToPoints(1.5),	_

								RulerStyle:=wdAdjustNone

End	Sub

As	it	applies	to	the	Comments	object.

This	example	adds	a	comment	at	the	insertion	point.

Sub	AddComment()

				Selection.Collapse	Direction:=wdCollapseEnd

				ActiveDocument.Comments.Add	_

								Range:=Selection.Range,	Text:="review	this"

End	Sub

This	example	adds	a	comment	to	the	third	paragraph	in	the	active	document.

Sub	Comment3rd()

				Dim	myRange	As	Range

				Set	myRange	=	ActiveDocument.Paragraphs(3).Range

				ActiveDocument.Comments.Add	Range:=myRange,	_

								Text:="original	third	paragraph"

End	Sub

As	it	applies	to	the	CustomLabels	object.

This	example	adds	a	custom	mailing	label	named	Return	Address,	sets	the	page
size,	and	then	creates	a	page	of	these	labels.

Sub	ReturnAddrLabel()

				Dim	ml	As	CustomLabel

				Dim	addr	As	String

				Set	ml	=	Application.MailingLabel.CustomLabels	_

								.Add(Name:="Return	Address",	DotMatrix:=False)

				ml.PageSize	=	wdCustomLabelLetter

				addr	=	"Dave	Edson"	&	vbCr	&	"123	Skye	St."	&	vbCr	_

								&	"Our	Town,	WA		98004"

				Application.MailingLabel.CreateNewDocument	_

								Name:="Return	Address",	Address:=addr,	ExtractAddress:=False

End	Sub



As	it	applies	to	the	Dictionaries	and	HangulHanjaConversionDictionaries
objects.

This	example	removes	all	dictionaries	from	the	list	of	custom	spelling
dictionaries	and	creates	a	new	custom	dictionary	file.	The	new	dictionary	is
assigned	to	be	the	active	custom	dictionary,	to	which	new	words	are
automatically	added.

With	CustomDictionaries

				.ClearAll

				.Add	FileName:="c:\My	Documents\MyCustom.dic"

				.ActiveCustomDictionary	=	CustomDictionaries(1)

End	With

This	example	creates	a	new	custom	dictionary	and	assigns	it	to	a	variable.	The
new	custom	dictionary	is	then	set	to	be	used	for	text	that's	marked	as	French
Canadian.	Note	that	to	run	a	spelling	check	for	another	language,	you	must	have
installed	the	proofing	tools	for	that	language.

Sub	FrCanDic()

				Dim	dicFrenchCan	As	Dictionary

				Set	dicFrenchCan	=	CustomDictionaries.Add(FileName:="FrenchCanadian.dic")

				With	dicFrenchCan

								.LanguageSpecific	=	True

								.LanguageID	=	wdFrenchCanadian

				End	With

End	Sub

This	example	removes	all	dictionaries	from	the	list	of	custom	conversion
dictionaries	and	creates	a	new	custom	dictionary	file.	The	new	dictionary	is
assigned	to	be	the	active	custom	dictionary,	to	which	new	words	are
automatically	added.

With	HangulHanjaDictionaries

				.ClearAll

				.Add	FileName:="C:\My	Documents\MyCustom.hhd"

				.ActiveCustomDictionary	=	CustomDictionaries(1)

End	With

As	it	applies	to	the	Documents	object.

This	example	creates	a	new	document	based	on	the	Normal	template.



Documents.Add

This	example	creates	a	new	document	based	on	the	Professional	Memo	template.

Documents.Add	Template:="C:\Program	Files\Microsoft	Office"	_

				&	"\Templates\Memos\Professional	Memo.dot"

This	example	creates	and	opens	a	new	template,	using	the	template	attached	to
the	active	document	as	a	model.

tmpName	=	ActiveDocument.AttachedTemplate.FullName

Documents.Add	Template:=tmpName,	NewTemplate:=True

As	it	applies	to	the	EmailSignatureEntries	objects.

This	example	adds	an	automatically	numbered	footnote	at	the	end	of	the
selection.

Sub	NewSignature()

				Application.EmailOptions.EmailSignature	_

								.EmailSignatureEntries.Add	_

								Name:=ActiveDocument.BuiltInDocumentProperties("Author"),	_

								Range:=Selection.Range

End	Sub

As	it	applies	to	the	Endnotes	and	Footnotes	objects.

This	example	adds	an	automatically-numbered	footnote	at	the	end	of	the
selection.

ActiveDocument.Footnotes.Add	Range:=	Selection.Range	,	_

				Text:=	"The	Willow	Tree,	(Lone	Creek	Press,	1996)."

This	example	adds	an	endnote	to	the	third	paragraph	in	the	active	document

Set	myRange	=	ActiveDocument.Paragraphs(3).Range

ActiveDocument.Endnotes.Add	Range:=myRange,	_

				Text:=	"Ibid.,	314."

This	example	adds	a	footnote	that	uses	a	custom	symbol	for	the	reference	mark.

ActiveDocument.Footnotes.Add	Range:=	Selection.Range	,	_

				Text:=	"More	information	in	the	full	report.",	_

				Reference:=	"{Symbol	-3998}"



As	it	applies	to	the	Fields	object.

This	example	inserts	a	USERNAME	field	at	the	beginning	of	the	selection.

Selection.Collapse	Direction:=wdCollapseStart

Set	myField	=	ActiveDocument.Fields.Add(Range:=Selection.Range,	_

				Type:=wdFieldUserName)

This	example	inserts	a	LISTNUM	field	at	the	end	of	the	selection.	The	starting
switch	is	set	to	begin	at	3.

Selection.Collapse	Direction:=wdCollapseEnd

ActiveDocument.Fields.Add	Range:=Selection.Range,	_

				Type:=wdFieldListNum,	Text:="\s	3"

This	example	inserts	a	DATE	field	at	the	beginning	of	the	selection	and	then
displays	the	result.

Selection.Collapse	Direction:=wdCollapseStart

Set	myField	=	ActiveDocument.Fields.Add(Range:=Selection.Range,	_

				Type:=wdFieldDate)

MsgBox	myField.Result

As	it	applies	to	the	FirstLetterExceptions,		OtherCorrectionsExceptions,
and	TwoInitialCapsExceptions	objects.

This	example	adds	the	abbreviation	addr.	to	the	list	of	first-letter	exceptions.

AutoCorrect.FirstLetterExceptions.Add	Name:="addr."

This	example	adds	MSOffice	to	the	list	of	initial-capital	exceptions.

AutoCorrect.TwoInitialCapsExceptions.Add	Name:="MSOffice"

This	example	adds	myCompany	to	the	list	of	other	corrections	exceptions.

AutoCorrect.OtherCorrectionsExceptions.Add	Name:="myCompany"

As	it	applies	to	the	FormFields	object.

This	example	adds	a	check	box	at	the	end	of	the	selection,	gives	it	a	name,	and
then	selects	it.



Selection.Collapse	Direction:=wdCollapseEnd

Set	ffield	=	ActiveDocument.FormFields	_

				.Add(Range:=Selection.Range,	Type:=wdFieldFormCheckBox)

With	ffield

				.Name	=	"Check_Box_1"

				.CheckBox.Value	=	True

End	With

As	it	applies	to	the	Frames	object.

This	example	adds	a	frame	around	the	selection.

ActiveDocument.Frames.Add	Range:=Selection.Range

This	example	adds	a	frame	around	the	third	paragraph	in	the	selection.

Set	myFrame	=	Selection.Frames	_

				.Add(Range:=Selection.Paragraphs(3).Range)

As	it	applies	to	the	HangulAndAlphabetExceptions	object.

This	example	adds	test	to	the	list	of	hangul	and	alphabet	AutoCorrect	exceptions
on	the	Korean	tab	in	the	AutoCorrect	Exceptions	dialog	box.

AutoCorrect.HangulAndAlphabetExceptions.Add	Name:="test"

As	it	applies	to	the	HeadingStyles	object.

This	example	adds	a	table	of	contents	at	the	beginning	of	the	active	document
and	then	adds	the	Title	style	to	the	list	of	styles	used	to	build	a	table	of	contents.

Set	myToc	=	ActiveDocument.TablesOfContents	_

				.Add(Range:=ActiveDocument.Range(0,	0),	_

				UseHeadingStyles:=True,	UpperHeadingLevel:=1,	_

				LowerHeadingLevel:=3)

myToc.HeadingStyles.Add	Style:="Title",	Level:=2

As	it	applies	to	the	Hyperlinks	object.

This	example	turns	the	selection	into	a	hyperlink	to	the	Microsoft	address	on	the
World	Wide	Web.

ActiveDocument.Hyperlinks.Add	Anchor:=Selection.Range,	_

				Address:="http:\\www.microsoft.com"



This	example	turns	the	selection	into	a	hyperlink	that	links	to	the	bookmark
named	MyBookMark	in	MyFile.doc.

ActiveDocument.Hyperlinks.Add	Anchor:=Selection.Range,	_

				Address:="C:\My	Documents\MyFile.doc",	SubAddress:="MyBookMark"

This	example	turns	the	first	shape	in	the	selection	into	a	hyperlink.

ActiveDocument.Hyperlinks.Add	Anchor:=Selection.ShapeRange(1),	_

				Address:="http:\\www.microsoft.com"

As	it	applies	to	the	Indexes	object.

This	example	marks	an	index	entry,	and	then	it	creates	an	index	at	the	end	of	the
active	document.

ActiveDocument.Indexes.MarkEntry	_

				Range:=Selection.Range,	Entry:="My	Entry"

Set	MyRange	=	ActiveDocument.Content

MyRange.Collapse	Direction:=wdCollapseEnd

ActiveDocument.Indexes.Add	Range:=MyRange,	Type:=wdIndexRunin

As	it	applies	to	the	KeyBindings	object.

This	example	adds	the	CTRL+ALT+W	key	combination	to	the	FileClose
command.	The	keyboard	customization	is	saved	in	the	Normal	template.

CustomizationContext	=	NormalTemplate

KeyBindings.Add	_

				KeyCategory:=wdKeyCategoryCommand,	_

				Command:="FileClose",	_

				KeyCode:=BuildKeyCode(wdKeyControl,	wdKeyAlt,	wdKeyW)

This	example	adds	the	ALT+F4	key	combination	to	the	Arial	font	and	then
displays	the	number	of	items	in	the	KeyBindings	collection.	The	example	then
clears	the	ALT+F4	key	combination	(returned	it	to	its	default	setting)	and
redisplays	the	number	of	items	in	the	KeyBindings	collection.

CustomizationContext	=	ActiveDocument.AttachedTemplate

Set	myKey	=	KeyBindings.Add(KeyCategory:=wdKeyCategoryFont,	_

				Command:="Arial",	KeyCode:=BuildKeyCode(wdKeyAlt,	wdKeyF4))

MsgBox	KeyBindings.Count	&	"	keys	in	KeyBindings	collection"

myKey.Clear

MsgBox	KeyBindings.Count	&	"	keys	in	KeyBindings	collection"



This	example	adds	the	CTRL+ALT+S	key	combination	to	the	Font	command
with	8	points	specified	for	the	font	size.

CustomizationContext	=	NormalTemplate

KeyBindings.Add	KeyCategory:=wdKeyCategoryCommand,	_

				Command:="FontSize",	_

				KeyCode:=BuildKeyCode(wdKeyControl,	wdKeyAlt,	wdKeyS),	_

				CommandParameter:="8"

This	example	adds	the	CTRL+ALT+H	key	combination	to	the	Heading	1	style	in
the	active	document.

CustomizationContext	=	ActiveDocument

KeyBindings.Add	KeyCategory:=wdKeyCategoryStyle,	_

				Command:="Heading	1",	_

				KeyCode:=BuildKeyCode(wdKeyControl,	wdKeyAlt,	wdKeyH)

This	example	adds	the	CTRL+ALT+O	key	combination	to	the	AutoText	entry
named	"Hello."

CustomizationContext	=	ActiveDocument

KeyBindings.Add	KeyCategory:=wdKeyCategoryAutoText,	_

				Command:="Hello",	_

				KeyCode:=BuildKeyCode(wdKeyControl,	wdKeyAlt,	wdKeyO)

As	it	applies	to	the	ListEntries	object.

This	example	inserts	a	drop-down	form	field	in	the	active	document	and	then
adds	the	items	Red,	Blue,	and	Green	to	the	form	field.

Set	myField	=	ActiveDocument.FormFields.Add(Range:=	_

				Selection.Range,	Type:=	wdFieldFormDropDown)

With	myField.DropDown.ListEntries

				.Add	Name:="Red"

				.Add	Name:="Blue"

				.Add	Name:="Green"

End	With

As	it	applies	to	the	ListTemplates	object.

This	example	adds	a	new,	single-level	list	template	to	the	active	document.	The
example	changes	the	numbering	style	for	the	new	list	template	and	then	applies
the	list	template	to	the	selection.



Set	myList	=	_

				ActiveDocument.ListTemplates.Add(OutlineNumbered:=False)

myList.ListLevels(1).NumberStyle	=	wdListNumberStyleUpperCaseLetter

Selection.Range.ListFormat.ApplyListTemplate	ListTemplate:=myList

As	it	applies	to	the	MailMergeFields	object.

This	example	replaces	the	selection	with	a	mail	merge	field	named	MiddleInitial.

ActiveDocument.MailMerge.Fields.Add	Range:=Selection.Range,	_

				Name:="MiddleInitial"

As	it	applies	to	the	PageNumbers	object.

This	example	adds	a	page	number	to	the	primary	footer	in	the	first	section	of	the
active	document.

With	ActiveDocument.Sections(1)

				.Footers(wdHeaderFooterPrimary).PageNumbers.Add	_

								PageNumberAlignment:=wdAlignPageNumberLeft,	_

								FirstPage:=True

End	With

This	example	creates	and	formats	page	numbers	in	the	header	for	the	active
document.

Set	myPgNum	=	ActiveDocument.Sections(1)	_

				.Headers(wdHeaderFooterPrimary)	_

				.PageNumbers.Add(PageNumberAlignment:=	_

				wdAlignPageNumberCenter,	FirstPage:=	True)

myPgNum.Select

With	Selection.Range

				.Italic	=	True

				.Bold	=	True

End	With

As	it	applies	to	the	Panes	object.

The	following	example	splits	the	active	window	such	that	the	top	pane	is	30
percent	of	the	total	window	size.

ActiveDocument.ActiveWindow.Panes.Add	SplitVertical:=30

As	it	applies	to	the	Paragraphs	object.



This	example	adds	a	paragraph	after	the	selection.

Selection.Paragraphs.Add

This	example	adds	a	paragraph	mark	before	the	first	paragraph	in	the	selection.

Selection.Paragraphs.Add	Range:=Selection.Paragraphs(1).Range

This	example	adds	a	paragraph	mark	before	the	second	paragraph	in	the	active
document.

ActiveDocument.Paragraphs.Add	_

				Range:=ActiveDocument.Paragraphs(2).Range

This	example	adds	a	new	paragraph	mark	at	the	end	of	the	active	document.

ActiveDocument.Paragraphs.Add

As	it	applies	to	the	RecentFiles	object.

This	example	adds	the	active	document	to	the	list	of	recently	used	files.

If	ActiveDocument.Saved	=	True	Then

				RecentFiles.Add	Document:=ActiveDocument.Name

End	If

As	it	applies	to	the	Rows	object.

This	example	inserts	a	new	row	before	the	first	row	in	the	selection.

Sub	AddARow()

				If	Selection.Information(wdWithInTable)	=	True	Then

								Selection.Rows.Add	BeforeRow:=Selection.Rows(1)

				End	If

End	Sub

This	example	adds	a	row	to	the	first	table	and	then	inserts	the	text	Cell	into	this
row.

Sub	CountCells()

				Dim	tblNew	As	Table

				Dim	rowNew	As	Row

				Dim	celTable	As	Cell

				Dim	intCount	As	Integer



				intCount	=	1

				Set	tblNew	=	ActiveDocument.Tables(1)

				Set	rowNew	=	tblNew.Rows.Add(BeforeRow:=tblNew.Rows(1))

				For	Each	celTable	In	rowNew.Cells

								celTable.Range.InsertAfter	Text:="Cell	"	&	intCount

								intCount	=	intCount	+	1

				Next	celTable

End	Sub

As	it	applies	to	the	Sections	object.

This	example	adds	a	Next	Page	section	break	before	the	third	paragraph	in	the
active	document.

Set	myRange	=	ActiveDocument.Paragraphs(3).Range

ActiveDocument.Sections.Add	Range:=myRange

This	example	adds	a	Continuous	section	break	at	the	selection.

Set	myRange	=	Selection.Range

ActiveDocument.Sections.Add	Range:=myRange,	_

				Start:=wdSectionContinuous

This	example	adds	a	Next	Page	section	break	at	the	end	of	the	active	document.

ActiveDocument.Sections.Add

As	it	applies	to	the	Styles	object.

This	example	adds	a	new	character	style	named	Introduction	and	makes	it	12-
point	Arial,	with	bold	and	italic	formatting.	The	example	then	applies	the	new
character	style	to	the	selection.

Set	myStyle	=	ActiveDocument.Styles.Add(Name:="Introduction",	_

				Type:=wdStyleTypeCharacter)

With	myStyle.Font

				.Bold	=	True

				.Italic	=	True

				.Name	=	"Arial"

				.Size	=	12

End	With

Selection.Range.Style	=	"Introduction"



As	it	applies	to	the	Styles	object.

This	example	adds	a	style	sheet	to	the	active	document	and	places	it	highest	in
the	list	of	style	sheets	attached	to	the	document.	This	example	assumes	that	you
have	a	style	sheet	document	named	Website.css	located	on	your	C:	drive.

Sub	NewStylesheet()

				ThisDocument.StyleSheets.Add	_

								FileName:="c:\WebSite.css",	_

								Precedence:=wdStyleSheetPrecedenceHighest

End	Sub

As	it	applies	to	the	Tables	object.

This	example	adds	a	blank	table	with	three	rows	and	four	columns	at	the
beginning	of	the	active	document.

Set	myRange	=	ActiveDocument.Range(0,	0)

ActiveDocument.Tables.Add	Range:=myRange,	NumRows:=3,	NumColumns:=4

This	example	adds	a	new,	blank	table	with	six	rows	and	ten	columns	at	the	end
of	the	active	document

Set	MyRange	=	ActiveDocument.Content

MyRange.Collapse	Direction:=wdCollapseEnd

ActiveDocument.Tables.Add	Range:=MyRange,	NumRows:=6,	_

				NumColumns:=10

This	example	adds	a	table	with	three	rows	and	five	columns	to	a	new	document
and	then	inserts	data	into	each	cell	in	the	table.

Sub	NewTable()

				Dim	docNew	As	Document

				Dim	tblNew	As	Table

				Dim	intX	As	Integer

				Dim	intY	As	Integer

				Set	docNew	=	Documents.Add

				Set	tblNew	=	docNew.Tables.Add(Selection.Range,	3,	5)

				With	tblNew

				For	intX	=	1	To	3

								For	intY	=	1	To	5

												.Cell(intX,	intY).Range.InsertAfter	"Cell:	R"	&	intX	&	",	C"	&	intY

								Next	intY



				Next	intX

				.Columns.AutoFit

				End	With

End	Sub

As	it	applies	to	the	TablesOfAuthorities	object.

This	example	adds,	at	the	beginning	of	the	active	document,	a	table	of
authorities	that	includes	all	categories.

Set	myRange	=	ActiveDocument.Range(0,	0)

ActiveDocument.TablesOfAuthorities.Add	Range:=myRange,	_

				Passim:=	True,	Category:=	0,	EntrySeparator:=	",	"

As	it	applies	to	the	TablesOfContents	object.

This	example	adds	a	table	of	contents	at	the	beginning	of	the	active	document.
The	table	of	contents	is	built	from	paragraphs	styled	with	the	Heading	1,
Heading	2,	and	Heading	3	styles	or	the	custom	styles	myStyle	and	yourStyle.

Set	myRange	=	ActiveDocument.Range(0,	0)

ActiveDocument.TablesOfContents.Add	_

				Range:=myRange,	_

				UseFields:=False,	_

				UseHeadingStyles:=True,	_

				LowerHeadingLevel:=3,	_

				UpperHeadingLevel:=1,	_

				AddedStyles:="myStyle,	yourStyle"

As	it	applies	to	the	TablesOfFigures	object.

This	example	inserts	a	table	of	figures	in	the	active	document.

ActiveDocument.TablesOfFigures.Add	Range:=Selection.Range

As	it	applies	to	the	TabStops	object.

This	example	adds	a	tab	stop	positioned	at	2.5	inches	(from	the	left	edge	of	the
page)	to	the	selected	paragraphs.

Selection.Paragraphs.TabStops.Add	Position:=InchesToPoints(2.5)

This	example	adds	two	tab	stops	to	the	selected	paragraphs.	The	first	tab	stop	is



a	left	aligned,	has	a	dotted	leader,	and	is	positioned	at	1	inch	(72	points)	from	the
left	edge	of	the	page.	The	second	tab	stop	is	centered	and	is	positioned	at	2
inches	from	the	left	edge.

With	Selection.Paragraphs.TabStops

				.Add	Position:=InchesToPoints(1),	_

								Leader:=wdTabLeaderDots,	_

								Alignment:=wdAlignTabLeft

				.Add	Position:=InchesToPoints(2),	_

								Alignment:=wdAlignTabCenter

End	With

As	it	applies	to	the	TextColumns	object.

This	example	creates	a	new	document	and	then	adds	another	2.5-inch-wide	text
column	to	it.

Set	myDoc	=	Documents.Add

myDoc.PageSetup.TextColumns.Add	Width:=InchesToPoints(2.5),	_

				Spacing:=InchesToPoints(0.5),	EvenlySpaced:=False

This	example	adds	a	new	text	column	to	the	active	document	and	then	evenly
spaces	all	the	text	columns	in	the	document.

ActiveDocument.PageSetup.TextColumns.Add	_

				Width:=InchesToPoints(1.5),	_

				EvenlySpaced:=True

As	it	applies	to	the	Variables	object.

This	example	adds	a	variable	named	Temp	to	the	active	document	and	then
inserts	a	DOCVARIABLE	field	to	display	the	value	in	the	Temp	variable.

With	ActiveDocument

				.Variables.Add	Name:="Temp",	Value:="12"

				.Fields.Add	Range:=Selection.Range,	_

								Type:=wdFieldDocVariable,	Text:="Temp"

End	With

ActiveDocument.ActiveWindow.View.ShowFieldCodes	=	False

This	example	sets	the	value	of	the	Blue	variable	to	six.	If	this	variable	doesn't
already	exist,	the	example	adds	it	to	the	document	and	sets	it	to	six.

For	Each	aVar	In	ActiveDocument.Variables



				If	aVar.Name	=	"Blue"	Then	num	=	aVar.Index

Next	aVar

If	num	=	0	Then

				ActiveDocument.Variables.Add	Name:="Blue",	Value:=6

Else

				ActiveDocument.Variables(num).Value	=	6

End	If

This	example	stores	the	user	name	(from	the	Options	dialog	box)	in	the	template
attached	to	the	active	document.

ScreenUpdating	=	False

With	ActiveDocument.AttachedTemplate.OpenAsDocument

				.Variables.Add	Name:="UserName",	Value:=	Application.UserName

				.Close	SaveChanges:=wdSaveChanges

End	With

As	it	applies	to	the	Windows	object.

This	example	opens	a	new	window	for	the	document	that's	displayed	in	the
active	window.

Windows.Add

This	example	opens	a	new	window	for	MyDoc.doc.

Windows.Add	Window:=Documents("MyDoc.doc").Windows(1)



AddAddress	Method
							

Adds	an	entry	to	the	address	book.	Each	entry	has	values	for	one	or	more	tag
IDs.

expression.AddAddress(TagID,	Value)

expression			Required.	An	expression	that	returns	an	Application	object.

TagID			Required	String	array.	The	tag	ID	values	for	the	new	address	entry.
Each	element	in	the	array	can	contain	one	of	the	strings	listed	in	the	following
table.	Only	the	display	name	is	required;	the	remaining	entries	are	optional.

Tag	ID Description

PR_DISPLAY_NAME Name	displayed	in	the	Address
Book	dialog	box

PR_DISPLAY_NAME_PREFIX Title	(for	example,	"Ms."	or
"Dr.")

PR_GIVEN_NAME First	name
PR_SURNAME Last	name
PR_STREET_ADDRESS Street	address
PR_LOCALITY City	or	locality
PR_STATE_OR_PROVINCE State	or	province
PR_POSTAL_CODE Postal	code
PR_COUNTRY Country/Region
PR_TITLE Job	title
PR_COMPANY_NAME Company	name

PR_DEPARTMENT_NAME Department	name	within	the
company

PR_OFFICE_LOCATION Office	location
PR_PRIMARY_TELEPHONE_NUMBER Primary	telephone	number
PR_PRIMARY_FAX_NUMBER Primary	fax	number



PR_OFFICE_TELEPHONE_NUMBER Office	telephone	number
PR_OFFICE2_TELEPHONE_NUMBER Second	office	telephone	number
PR_HOME_TELEPHONE_NUMBER Home	telephone	number
PR_CELLULAR_TELEPHONE_NUMBER Cellular	telephone	number
PR_BEEPER_TELEPHONE_NUMBER Beeper	telephone	number

PR_COMMENT Text	included	on	the	Notes	tab
for	the	address	entry

PR_EMAIL_ADDRESS Electronic	mail	address
PR_ADDRTYPE Electronic	mail	address	type

PR_OTHER_TELEPHONE_NUMBER Alternate	telephone	number
(other	than	home	or	office)

PR_BUSINESS_FAX_NUMBER Business	fax	number
PR_HOME_FAX_NUMBER Home	fax	number
PR_RADIO_TELEPHONE_NUMBER Radio	telephone	number
PR_INITIALS Initials

PR_LOCATION

Location,	in	the	format
buildingnumber/roomnumber
(for	example,	7/3007	represents
room	3007	in	building	7)

PR_CAR_TELEPHONE_NUMBER Car	telephone	number

Value			Required	String	array.	The	values	for	the	new	address	entry.	Each
element	corresponds	to	an	element	in	the	TagID	array.	For	more	information,	see
the	example.



Example

This	example	adds	an	entry	to	the	address	book.

Dim	tagIDArray(0	To	3)	As	String

Dim	valueArray(0	To	3)	As	String

tagIDArray(0)	=	"PR_DISPLAY_NAME"

tagIDArray(1)	=	"PR_GIVEN_NAME"

tagIDArray(2)	=	"PR_SURNAME"

tagIDArray(3)	=	"PR_COMMENT"

valueArray(0)	=	"Kim	Buhler"

valueArray(1)	=	"Kim"

valueArray(2)	=	"Buhler"

valueArray(3)	=	"This	is	a	comment"

Application.AddAddress	TagID:=tagIDArray(),	Value:=valueArray()



AddAsk	Method
							

Adds	an	ASK	field	to	a	mail	merge	main	document.	Returns	a	MailMergeField
object.	When	updated,	an	ASK	field	displays	a	dialog	box	that	prompts	you	for
text	to	assign	to	the	specified	bookmark.

expression.AddAsk(Range,	Name,	Prompt,	DefaultAskText,	AskOnce)

expression			Required.	An	expression	that	returns	a	MailMergeFields	object.

Range			Required	Range	object.	The	location	for	the	ASK	field.

Name			Required	String.	The	bookmark	name	that	the	response	or	default	text	is
assigned	to.	Use	a	REF	field	with	the	bookmark	name	to	display	the	result	in	a
document.

Prompt			Optional	Variant.	The	text	that's	displayed	in	the	dialog	box.

DefaultAskText			Optional	Variant.	The	default	response,	which	appears	in	the
text	box	when	the	dialog	box	is	displayed.	Corresponds	to	the	\d	switch	for	an
ASK	field.

AskOnce			Optional	Variant.	True	to	display	the	dialog	box	only	once	instead	of
each	time	a	new	data	record	is	merged.	Corresponds	to	the	\o	switch	for	an	ASK
field.



Example

This	example	adds	an	ASK	field	at	the	end	of	the	active	mail	merge	main
document.

Dim	rngTemp	As	Range

Set	rngTemp	=	ActiveDocument.Content

rngTemp.Collapse	Direction:=wdCollapseEnd

ActiveDocument.MailMerge.Fields.AddAsk	_

				Range:=rngTemp,	_

				Prompt:="Type	your	company	name",	_

				Name:="company",	AskOnce:=True

This	example	adds	an	ASK	field	after	the	last	mail	merge	field	in	Main.doc.

Dim	colMailMergeFields	As	Object

Dim	rngTemp	As	Range

Set	colMailMergeFields	=	_

				Documents("Main.doc").MailMerge.Fields

colMailMergeFields(colMailMergeFields.Count).Select

Set	rngTemp	=	Selection.Range

rngTemp.Collapse	wdCollapseEnd

colMailMergeFields.AddAsk	Range:=rngTemp,	Name:="name",	_

				Prompt:="What	is	your	name"



Show	All



AddCallout	Method
							

AddCallout	method	as	it	applies	to	the	CanvasShapes	object.

Adds	a	borderless	line	callout	to	a	drawing	canvas.	Returns	a	Shape	object	that
represents	the	callout	and	adds	it	to	the	CanvasShapes	collection.

expression.AddCallout(Type,	Left,	Top,	Width,	Height)

expression			Required.	An	expression	that	returns	a	CanvasShapes	object.

Type		Required	MsoCalloutType.	The	type	of	callout.

MsoCalloutType	can	be	one	of	these	MsoCalloutType	constants.
msoCalloutOne		Positions	callout	line	straight	down	along	the	left	edge	of	the
callout's	bounding	box.
msoCalloutTwo		Positions	callout	line	diagonally	down	and	away	from	the	left
edge	of	the	callout's	bounding	box.
msoCalloutThree		Positions	callout	line	straight	out	and	then	diagonally	down
and	away	from	the	left	edge	of	the	callout's	bounding	box.
msoCalloutFour		Positions	callout	line	along	the	left	edge	of	the	callout's
bounding	box.
msoCalloutMixed		A	return	value	indicating	that	more	than	one
MsoCalloutType	exists	in	a	range	or	selection.

Left		Required	Single.	The	position,	in	points,	of	the	left	edge	of	the	callout's
bounding	box.

Top		Required	Single.	The	position,	in	points,	of	the	top	edge	of	the	callout's
bounding	box.

Width		Required	Single.	The	width,	in	points,	of	the	callout's	bounding	box.

Height		Required	Single.	The	height,	in	points,	of	the	callout's	bounding	box.



AddCallout	method	as	it	applies	to	the	Shapes	object.

Adds	a	borderless	line	callout	to	a	document.	Returns	a	Shape	object	that
represents	the	callout	and	adds	it	to	the	Shapes	collection.

expression.AddCallout(Type,	Left,	Top,	Width,	Height,	Anchor)

expression			Required.	An	expression	that	returns	a	Shapes	object.

Type		Required	MsoCalloutType.	The	type	of	callout.

MsoCalloutType	can	be	one	of	these	MsoCalloutType	constants.
msoCalloutOne		Positions	callout	line	straight	down	along	the	left	edge	of	the
callout	box.
msoCalloutTwo		Positions	callout	line	diagonally	down	and	away	from	the	left
edge	of	the	callout	box.
msoCalloutThree		Positions	callout	line	straight	out	and	then	diagonally	down
and	away	from	the	left	edge	of	the	callout	box.
msoCalloutFour		Positions	callout	line	along	the	left	edge	of	the	callout	text
box.
msoCalloutMixed			A	return	value	indicating	that	more	than	one
MsoCalloutType	exists	in	a	range	or	selection.

Left		Required	Single.	The	position,	in	points,	of	the	left	edge	of	the	callout's
bounding	box.

Top		Required	Single.	The	position,	in	points,	of	the	top	edge	of	the	callout's
bounding	box.

Width		Required	Single.	The	width,	in	points,	of	the	callout's	bounding	box.

Height		Required	Single.	The	height,	in	points,	of	the	callout's	bounding	box.

Anchor		Optional	Variant.	A	Range	object	that	represents	the	text	to	which	the
callout	is	bound.	If	Anchor	is	specified,	the	anchor	is	positioned	at	the	beginning
of	the	first	paragraph	in	the	anchoring	range.	If	this	argument	is	omitted,	the
anchoring	range	is	selected	automatically	and	the	callout	is	positioned	relative	to
the	top	and	left	edges	of	the	page.



Remarks

You	can	insert	a	greater	variety	of	callouts,	such	as	balloons	and	clouds,	using
the	AddShape	method.



Example

As	it	applies	to	the	CanvasShapes	object.	

This	example	adds	a	callout	to	a	newly	created	drawing	canvas.

Sub	NewCanvasCallout()

				Dim	shpCanvas	As	Shape

				'Add	drawing	canvas	to	the	active	document

				Set	shpCanvas	=	ActiveDocument.Shapes.AddCanvas	_

								(Left:=150,	Top:=150,	Width:=200,	Height:=300)

				'Add	callout	to	the	drawing	canvas

				shpCanvas.CanvasItems.AddCallout	_

								Type:=msoCalloutTwo,	Left:=100,	_

								Top:=40,	Width:=150,	Height:=75

End	Sub

As	it	applies	to	the	Shapes	object.

This	example	adds	a	callout	to	the	current	document	and	then	sets	the	callout
angle.

Sub	NewCallout()

				Dim	shpCallout	As	Shape

				'Add	callout	to	the	current	document

				Set	shpCallout	=	ThisDocument.Shapes.AddCallout(	_

								Type:=msoCalloutTwo,	Left:=InchesToPoints(1.25),	_

								Top:=36,	Width:=100,	Height:=25)

				'Add	text	to	the	callout

				shpCallout.TextFrame.TextRange.Text	=	"This	is	a	Callout."

				'Format	the	angle	of	the	callout	line	to	30	degrees

				shpCallout.Callout.Angle	=	msoCalloutAngle30

End	Sub





Show	All



AddCanvas	Method
							

Adds	a	drawing	canvas	to	a	document.	Returns	a	Shape	object	that	represents
the	drawing	canvas	and	adds	it	to	the	Shapes	collection.

expression.AddCanvas(Left,	Top,	Width,	Height,	Anchor)

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

Left		Required	Single.	The	position,	in	points,	of	the	left	edge	of	the	drawing
canvas,	relative	to	the	anchor.

Top		Required	Single.	The	position,	in	points,	of	the	top	edge	of	the	drawing
canvas,	relative	to	the	anchor.

Width		Required	Single.	The	width,	in	points,	of	the	drawing	canvas.

Height		Required	Single.	The	height,	in	points,	of	the	drawing	canvas.

Anchor		Optional	Variant.	A	Range	object	that	represents	the	text	to	which	the
canvas	is	bound.	If	Anchor	is	specified,	the	anchor	is	positioned	at	the	beginning
of	the	first	paragraph	in	the	anchoring	range.	If	this	argument	is	omitted,	the
anchoring	range	is	selected	automatically	and	the	canvas	is	positioned	relative	to
the	top	and	left	edges	of	the	page.



Example

The	following	example	adds	a	drawing	canvas	to	a	new	document	and	formats
the	drawing	canvas	so	it	is	inline	with	the	text;	then	adds	two	shapes	to	the
canvas,	and	formats	the	fill	and	line	properties.

Sub	AddInlineCanvas()

				Dim	docNew	As	Document

				Dim	shpCanvas	As	Shape

				Set	docNew	=	Documents.Add

				'Add	a	drawing	canvas	to	the	new	document

				Set	shpCanvas	=	docNew.Shapes.AddCanvas(	_

								Left:=150,	Top:=150,	Width:=70,	Height:=70)

				shpCanvas.WrapFormat.Type	=	wdWrapInline

				'Add	shapes	to	drawing	canvas

				With	shpCanvas.CanvasItems

								.AddShape	msoShapeHeart,	Left:=10,	_

												Top:=10,	Width:=50,	Height:=60

								.AddLine	BeginX:=0,	BeginY:=0,	_

												EndX:=70,	EndY:=70

				End	With

				With	shpCanvas

								.CanvasItems(1).Fill.ForeColor	_

												.RGB	=	RGB(Red:=255,	Green:=0,	Blue:=0)

								.CanvasItems(2).Line	_

												.EndArrowheadStyle	=	msoArrowheadTriangle

				End	With

End	Sub



Show	All



AddConnector	Method
							

Returns	a	Shape	object	that	represents	a	connecting	line	between	two	shapes	in	a
drawing	canvas.

expression.AddConnector(Type,	BeginX,	BeginY,	EndX,	EndY)

expression			Required.	An	expression	that	returns	a	CanvasShapes	object.

Type		Required	MsoConnectorType.	The	type	of	connector.

MsoConnectorType	can	be	one	of	these	MsoConnectorType	constants.
msoConnectorCurve
msoConnectorElbow	
msoConnectorStraight
msoConnectorTypeMixed	Not	used	with	this	method.

BeginX		Required	Single.		The	horizontal	position	that	marks	the	beginning	of
the	connector.

BeginY		Required	Single.		The	vertical	position	that	marks	the	beginning	of	the
connector.

EndX		Required	Single.	The	horizontal	position	that	marks	the	end	of	the
connector.

EndY		Required	Single.	The	vertical	position	that	marks	the	end	of	the
connector.



Example

The	following	example	adds	a	curved	connector	to	a	new	canvas	in	a	new
document.

Sub	AddCanvasConnector()

				Dim	docNew	As	Document

				Dim	shpCanvas	As	Shape

				Set	docNew	=	Documents.Add

				'Add	drawing	canvas	to	new	document

				Set	shpCanvas	=	docNew.Shapes.AddCanvas(	_

								Left:=150,	Top:=150,	Width:=200,	Height:=300)

				'Add	connector	to	the	drawing	canvas

				shpCanvas.CanvasItems.AddConnector	_

								Type:=msoConnectorStraight,	BeginX:=150,	_

								BeginY:=150,	EndX:=200,	EndY:=200

End	Sub



Show	All



AddCurve	Method
							

	AddCurve	method	as	it	applies	to	the	CanvasShapes	object.

Returns	a	Shape	object	that	represents	a	Bézier	curve	in	a	drawing	canvas.

expression.AddCurve(SafeArrayOfPoints)

expression			Required.	An	expression	that	returns	a	CanvasShapes	object..

SafeArrayOfPoints		Required	Variant.	An	array	of	coordinate	pairs	that
specifies	the	vertices	and	control	points	of	the	curve.	The	first	point	you	specify
is	the	starting	vertex,	and	the	next	two	points	are	control	points	for	the	first
Bézier	segment.	Then,	for	each	additional	segment	of	the	curve,	you	specify	a
vertex	and	two	control	points.	The	last	point	you	specify	is	the	ending	vertex	for
the	curve.	Note	that	you	must	always	specify	3n	+	1	points,	where	n	is	the
number	of	segments	in	the	curve.

	AddCurve	method	as	it	applies	to	the	Shapes	object.

Returns	a	Shape	object	that	represents	a	Bézier	curve	in	a	document.

expression.AddCurve(SafeArrayOfPoints,	Anchor)

expression			Required.	An	expression	that	returns	a	Shapes	object.

SafeArrayOfPoints		Required	Variant.	An	array	of	coordinate	pairs	that
specifies	the	vertices	and	control	points	of	the	curve.	The	first	point	you	specify
is	the	starting	vertex,	and	the	next	two	points	are	control	points	for	the	first
Bézier	segment.	Then,	for	each	additional	segment	of	the	curve,	you	specify	a
vertex	and	two	control	points.	The	last	point	you	specify	is	the	ending	vertex	for
the	curve.	Note	that	you	must	always	specify	3n	+	1	points,	where	n	is	the
number	of	segments	in	the	curve.

Anchor		Optional	Variant.	A	Range	object	that	represents	the	text	to	which	the
curve	is	bound.	If	Anchor	is	specified,	the	anchor	is	positioned	at	the	beginning



of	the	first	paragraph	in	the	anchoring	range.	If	this	argument	is	omitted,	the
anchoring	range	is	selected	automatically	and	the	curve	is	positioned	relative	to
the	top	and	left	edges	of	the	page.



Example

	As	it	applies	to	the	CanvasShapes	object.

This	example	adds	a	Bézier	curve	to	a	new	drawing	canvas.

Sub	CanvasBezier()

				Dim	docNew	As	Document

				Dim	shpCanvas	As	Shape

				Dim	sngArray(1	To	7,	1	To	2)	As	Single

				Set	docNew	=	Documents.Add

				'Create	a	new	drawing	canvas

				Set	shpCanvas	=	docNew.Shapes.AddCanvas(Left:=100,	_

								Top:=100,	Width:=300,	Height:=50)

				sngArray(1,	1)	=	0

				sngArray(1,	2)	=	0

				sngArray(2,	1)	=	50

				sngArray(2,	2)	=	50

				sngArray(3,	1)	=	100

				sngArray(3,	2)	=	0

				sngArray(4,	1)	=	150

				sngArray(4,	2)	=	50

				sngArray(5,	1)	=	200

				sngArray(5,	2)	=	0

				sngArray(6,	1)	=	250

				sngArray(6,	2)	=	50

				sngArray(7,	1)	=	300

				sngArray(7,	2)	=	0

				'Add	Bezier	curve	to	drawing	canvas

				shpCanvas.CanvasItems.AddCurve	_

								SafeArrayOfPoints:=sngArray

End	Sub

	As	it	applies	to	the	Shapes	object.

This	example	adds	a	two-segment	Bézier	curve	to	the	active	document	and
anchors	it	to	the	second	paragraph.



Sub	BezierCurve()

				Dim	sngArray(1	To	7,	1	To	2)	As	Single

				sngArray(1,	1)	=	0

				sngArray(1,	2)	=	0

				sngArray(2,	1)	=	72

				sngArray(2,	2)	=	72

				sngArray(3,	1)	=	100

				sngArray(3,	2)	=	40

				sngArray(4,	1)	=	20

				sngArray(4,	2)	=	50

				sngArray(5,	1)	=	90

				sngArray(5,	2)	=	120

				sngArray(6,	1)	=	60

				sngArray(6,	2)	=	30

				sngArray(7,	1)	=	150

				sngArray(7,	2)	=	90

				ActiveDocument.Shapes.AddCurve	_

								SafeArrayOfPoints:=sngArray,	_

								Anchor:=ActiveDocument.Paragraphs(2).Range

End	Sub



Show	All



AddDiagram	Method
							

Returns	a	Shape	object	that	represents	a	newly	created	diagram	in	a	document.

expression.AddDiagram(Type,	Left,	Top,	Width,	Height,	Anchor)

expression			Required.	An	expression	that	returns	a	Shapes	object.

Type		Required	MsoDiagramType.

MsoDiagramType	can	be	one	of	these	MsoDiagramType	constants.
msoDiagramCycle		Shows	a	process	with	a	continuous	cycle.
msoDiagramMixed		Not	used	with	this	method.
msoDiagramOrgChart		Shows	hierarchical	relationships.
msoDiagramPyramid		Shows	foundation-based	relationships.
msoDiagramRadial		Shows	relationships	of	a	core	element.
msoDiagramTarget		Shows	steps	toward	a	goal.
msoDiagramVenn		Shows	areas	of	overlap	between	elements.

Left		Required	Single.	The	position,	measured	in	points,	of	the	left	edge	of	the
diagram's	bounding	box	relative	to	the	anchor.

Top		Required	Single.	The	position,	measured	in	points,	of	the	top	edge	of	the
diagram's	bounding	box	relative	to	the	anchor.

Width		Required	Single.	The	width,	measured	in	points,	of	the	diagram's
bounding	box.

Height		Required	Single.	The	height,	measured	in	points,	of	the	diagram's
bounding	box.

Anchor		Optional	Variant.	A	Range	object	that	represents	the	text	to	which	the
diagram	is	bound.	If	Anchor	is	specified,	the	anchor	is	positioned	at	the
beginning	of	the	first	paragraph	in	the	anchoring	range.	If	this	argument	is



omitted,	the	anchoring	range	is	selected	automatically	and	the	diagram	is
positioned	relative	to	the	top	and	left	edges	of	the	page.



Example

This	example	adds	a	pyramid	chart	to	the	current	document.

Sub	CreatePyramidDiagram()

				Dim	dgnNode	As	DiagramNode

				Dim	shpDiagram	As	Shape

				Dim	intCount	As	Integer

				'Add	pyramid	diagram	to	current	document

				Set	shpDiagram	=	ThisDocument.Shapes.AddDiagram	_

								(Type:=msoDiagramPyramid,	Left:=10,	_

								Top:=15,	Width:=400,	Height:=475)

				'Add	first	diagram	node	child	to	pyramid	diagram

				Set	dgnNode	=	shpDiagram.DiagramNode.Children.AddNode

				'Add	three	more	diagram	node	children	to	the	pyramid	diagram

				For	intCount	=	1	To	3

								dgnNode.AddNode

				Next	intCount

End	Sub



AddFillIn	Method
							

Adds	a	FILLIN	field	to	a	mail	merge	main	document.	Returns	a
MailMergeField	object.	When	updated,	a	FILLIN	field	displays	a	dialog	box
that	prompts	you	for	text	to	insert	into	the	document	at	the	location	of	the
FILLIN	field.

Note			Use	the	Add	method	with	the	Fields	collection	object	to	add	a	FILLIN
field	to	a	document	other	than	a	mail	merge	main	document.

expression.AddFillIn(Range,	Prompt,	DefaultFillInText,	AskOnce)

expression			Required.	An	expression	that	returns	a	MailMergeFields	object.

Range			Required	Range	object.	The	location	for	the	FILLIN	field.

Prompt			Optional	Variant.	The	text	that's	displayed	in	the	dialog	box.

DefaultFillinText			Optional	Variant.	The	default	response,	which	appears	in	the
text	box	when	the	dialog	box	is	displayed.	Corresponds	to	the	\d	switch	for	an
FILLIN	field.

AskOnce			Optional	Variant.	True	to	display	the	prompt	only	once	instead	of
each	time	a	new	data	record	is	merged.	Corresponds	to	the	\o	switch	for	a
FILLIN	field.	The	default	value	is	False.



Example

This	example	adds	a	FILLIN	field	that	prompts	you	for	a	name	to	insert	after
"Name:".

With	Selection

				.Collapse	Direction:=wdCollapseStart

				.InsertAfter	"Name:	"

				.Collapse	Direction:=wdCollapseEnd

End	With

ActiveDocument.MailMerge.Fields.AddFillin	Range:=Selection.Range,	_

				Prompt:="Your	name?",	DefaultFillInText:="Joe",	AskOnce:=True



AddFromFile	Method
							

Adds	the	specified	subdocument	to	the	master	document	at	the	start	of	the
selection	and	returns	a	Subdocument	object.

Note			If	the	active	view	isn't	either	outline	view	or	master	document	view,	an
error	occurs.

expression.AddFromFile(Name,	ConfirmConversions,	ReadOnly,
PasswordDocument,	PasswordTemplate,	Revert,	WritePasswordDocument,
WritePasswordTemplate)

expression			Required.	An	expression	that	returns	a	Subdocuments	object.

Name			Required	String.	The	file	name	of	the	subdocument	to	be	inserted	into
the	master	document.

ConfirmConversions			Optional	Variant.	True	to	confirm	file	conversion	in	the
Convert	File	dialog	box	if	the	file	isn't	in	Word	format.

ReadOnly			Optional	Variant.	True	to	insert	the	subdocument	as	a	read-only
document.

PasswordDocument			Optional	Variant.	The	password	required	to	open	the
subdocument	if	it's	password	protected.

PasswordTemplate			Optional	Variant.	The	password	required	to	open	the
template	attached	to	the	subdocument	if	the	template	is	password	protected.

Revert			Optional	Variant.	Controls	what	happens	if	Name	is	the	file	name	of	an
open	document.	True	to	insert	the	saved	version	of	the	subdocument.	False	to
insert	the	open	version	of	the	subdocument,	which	may	contain	unsaved
changes.

WritePasswordDocument			Optional	Variant.	The	password	required	to	save
changes	to	the	document	file	if	it's	write	protected.



WritePasswordTemplate			Optional	Variant.	The	password	required	to	save
changes	to	the	template	attached	to	the	subdocument	if	the	template	is	write
protected.



Example

This	example	adds	a	subdocument	named	"Subdoc.doc"	to	the	active	document.

ActiveDocument.ActiveWindow.View.Type	=	wdMasterView

ActiveDocument.Subdocuments.AddFromFile	_

				Name:="C:\Subdoc.doc"

This	example	adds	a	password-protected	subdocument	named	"Subdoc.doc"	to
the	active	document	on	a	read-only	basis.

Selection.Range.Subdocuments.AddFromFile	Name:="C:\Subdoc.doc",	_

				ReadOnly:=True,	PasswordDocument:="secretpassword1"



AddFromRange	Method
							

Creates	one	or	more	subdocuments	from	the	text	in	the	specified	range	and
returns	a	SubDocument	object.

Note			The	range	must	begin	with	one	of	the	built-in	heading	level	styles	(for
example,	Heading	1).	Subdocuments	are	created	at	each	paragraph	formatted
with	the	same	heading	format	used	at	the	beginning	of	the	range.	Subdocument
files	are	saved	when	the	master	document	is	saved	and	are	automatically	named
using	text	from	the	first	line	in	the	file.

expression.AddFromRange(Range)

expression			Required.	An	expression	that	returns	a	Subdocuments	object.

Range			Required	Range	object.	The	Range	object	used	to	create	one	or	more
subdocuments.



Example

This	example	creates	one	or	more	subdocuments	from	the	selection.

ActiveDocument.ActiveWindow.View.Type	=	wdMasterView

ActiveDocument.SubDocuments.AddFromRange	Range:=Selection.Range



AddHorizontalLine	Method
							

Adds	a	horizontal	line	based	on	an	image	file	to	the	current	document.

expression.AddHorizontalLine(FileName,	Range)

expression			Required.	An	expression	that	returns	an	InlineShapes	object.

FileName			Required	String.	The	file	name	of	the	image	you	want	to	use	for	the
horizontal	line.

Range			Optional	Variant.	The	range	above	which	Microsoft	Word	places	the
horizontal	line.	If	this	argument	is	omitted,	Word	places	the	horizontal	line	above
the	current	selection.



Remarks

To	add	a	horizontal	line	that	isn't	based	on	an	existing	image	file,	use	the
AddHorizontalLineStandard	method.



Example

This	example	adds	a	horizontal	line	above	the	current	selection	in	the	active
document	using	a	file	called	"ArtsyRule.gif."

Selection.InlineShapes.AddHorizontalLine	_

				"C:\Art	files\ArtsyRule.gif"



AddHorizontalLineStandard	Method
							

Adds	a	horizontal	line	to	the	current	document.

expression.AddHorizontalLineStandard(Range)

expression			Required.	An	expression	that	returns	an	InlineShapes	object.

Range			Optional	Variant.	The	range	above	which	Microsoft	Word	places	the
horizontal	line.	If	this	argument	is	omitted,	Word	places	the	horizontal	line	above
the	current	selection.



Remarks

To	add	a	horizontal	line	based	on	an	existing	image	file,	use	the
AddHorizontalLine	method.



Example

This	example	adds	a	horizontal	line	above	the	fifth	paragraph	in	the	active
document.

ActiveDocument.Paragraphs(5).Range	_

				.InlineShapes.AddHorizontalLineStandard



AddIf	Method
							

Adds	an	IF	field	to	a	mail	merge	main	document.	Returns	a	MailMergeField
object.	When	updated,	an	IF	field	compares	a	field	in	a	data	record	with	a
specified	value,	and	then	it	inserts	the	appropriate	text	according	to	the	result	of
the	comparison.

expression.AddIf(Range,	MergeField,	Comparison,	CompareTo,
TrueAutoText,	TrueText,	FalseAutoText,	FalseText)

expression			Required.	An	expression	that	returns	a	MailMergeFields	object.

Range			Required	Range	object.	The	location	for	the	IF	field.

MergeField			Required	String.	The	merge	field	name.

Comparison		Required	WdMailMergeComparison.	The	operator	used	in	the
comparison.

WdMailMergeComparison	can	be	one	of	these	WdMailMergeComparison
constants.
wdMergeIfEqual
wdMergeIfGreaterThanOrEqual
wdMergeIfIsNotBlank
wdMergeIfLessThanOrEqual
wdMergeIfGreaterThan
wdMergeIfIsBlank
wdMergeIfLessThan
wdMergeIfNotEqual

CompareTo			Optional	Variant.	The	text	to	compare	with	the	contents	of
MergeField.

TrueAutoText			Optional	Variant.	The	AutoText	entry	that's	inserted	if	the



comparison	is	true.	If	this	argument	is	specified,	TrueText	is	ignored.

TrueText			Optional	Variant.	The	text	that's	inserted	if	the	comparison	is	true.

FalseAutoText			Optional	Variant.	The	AutoText	entry	that's	inserted	if	the
comparison	is	false.	If	this	argument	is	specified,	FalseText	is	ignored.

FalseText			Optional	Variant.	The	text	that's	inserted	if	the	comparison	is	false.



Example

This	example	inserts	"for	your	personal	use"	if	the	Company	merge	field	is	blank
and	"for	your	business"	if	the	Company	merge	field	is	not	blank.

ActiveDocument.MailMerge.Fields.AddIf	Range:=Selection.Range,	_

				MergeField:="Company",	Comparison:=wdMergeIfIsBlank,	_

				TrueText:="for	your	personal	use",	_

				FalseText:="for	your	business"



Show	All



AddLabel	Method
							

AddLabel	method	as	it	applies	to	the	CanvasShapes	object.

Adds	a	text	label	to	a	drawing	canvas.	Returns	a	Shape	object	that	represents	the
drawing	canvas	and	adds	it	to	the	CanvasShapes	collection.

expression.AddLabel(Orientation,	Left,	Top,	Width,	Height)

expression			Required.	An	expression	that	returns	a	CanvasShapes	object.

Orientation			Required	MsoTextOrientation.	The	orientation	of	the	text.

MsoTextOrientation	can	be	one	of	the	following	MsoTextOrientation	constants:
msoTextOrientationDownward
msoTextOrientationHorizontal
msoTextOrientationHorizontalRotatedFarEast
msoTextOrientationMixed
msoTextOrientationUpward
msoTextOrientationVertical
msoTextOrientationVerticalFarEast
Some	of	these	constants	may	not	be	available	to	you,	depending	on	the
language	support	(U.S.	English,	for	example)	that	you’ve	selected	or	installed.

Left			Required	Single.	The	position,	measured	in	points,	of	the	left	edge	of	the
label	relative	to	the	left	edge	of	the	drawing	canvas.

Top			Required	Single.	The	position,	measured	in	points,	of	the	top	edge	of	the
label	relative	to	the	top	edge	of	the	drawing	canvas.

Width			Required	Single.	The	width	of	the	label,	in	points.

Height			Required	Single.	The	height	of	the	label,	in	points.



AddLabel	method	as	it	applies	to	the	Shapes	object.

Adds	a	text	label	to	a	document.	Returns	a	Shape	object	that	represents	the	text
label	and	adds	it	to	the	Shapes	collection.

expression.AddLabel(Orientation,	Left,	Top,	Width,	Height,	Anchor)

expression			Required.	An	expression	that	returns	a	Shapes	object.

Orientation			Required	MsoTextOrientation.	The	orientation	of	the	text.

MsoTextOrientation	can	be	one	of	the	following	MsoTextOrientation	constants:
msoTextOrientationDownward
msoTextOrientationHorizontal
msoTextOrientationHorizontalRotatedFarEast
msoTextOrientationMixed
msoTextOrientationUpward
msoTextOrientationVertical
msoTextOrientationVerticalFarEast
Some	of	these	constants	may	not	be	available	to	you,	depending	on	the
language	support	(U.S.	English,	for	example)	that	you’ve	selected	or	installed.

Left			Required	Single.	The	position,	measured	in	points,	of	the	left	edge	of	the
label	relative	to	the	anchor.

Top			Required	Single.	The	position,	measured	in	points,	of	the	top	edge	of	the
label	relative	to	the	anchor.

Width			Required	Single.	The	width	of	the	label,	in	points.

Height			Required	Single.	The	height	of	the	label,	in	points.

Anchor			Optional	Variant.	A	Range	object	that	represents	the	text	to	which	the
label	is	bound.	If	Anchor	is	specified,	the	anchor	is	positioned	at	the	beginning
of	the	first	paragraph	in	the	anchoring	range.	If	this	argument	is	omitted,	the
anchoring	range	is	selected	automatically	and	the	label	is	positioned	relative	to
the	top	and	left	edges	of	the	page.



Example

As	it	applies	to	the	CanvasShapes	object.

This	example	adds	a	blue	text	label	with	the	text	"Hello	World"	to	a	new
drawing	canvas	in	the	active	document.

Sub	NewCanvasTextLabel()

				Dim	shpCanvas	As	Shape

				Dim	shpLabel	As	Shape

				'Add	a	drawing	canvas	to	the	active	document

				Set	shpCanvas	=	ActiveDocument.Shapes.AddCanvas	_

								(Left:=100,	Top:=75,	Width:=150,	Height:=200)

				'Add	a	label	to	the	drawing	canvas

				Set	shpLabel	=	shpCanvas.CanvasItems.AddLabel	_

								(Orientation:=msoTextOrientationHorizontal,	_

								Left:=15,	Top:=15,	Width:=100,	Height:=100)

				'Fill	the	label	textbox	with	a	color,

				'add	text	to	the	label	and	format	it

				With	shpLabel

								With	.Fill

												.BackColor.RGB	=	RGB(Red:=0,	Green:=0,	Blue:=192)

												'Make	the	fill	visible

												.Visible	=	msoTrue

								End	With

								With	.TextFrame.TextRange

												.Text	=	"Hello	World."

												.Bold	=	True

												.Font.Name	=	"Tahoma"

								End	With

				End	With

End	Sub

As	it	applies	to	the	Shapes	object.

This	example	adds	a	label	that	contains	the	text	"Test	Label"	to	a	new	document.

Sub	NewTextLabel()

				Dim	docNew	As	Document

				Dim	shpLabel	As	Shape



				Set	docNew	=	Documents.Add

				'Add	label	to	new	document

				Set	shpLabel	=	docNew.Shapes	_

								.AddLabel(Orientation:=msoTextOrientationHorizontal,	_

								Left:=100,	Top:=100,	Width:=300,	Height:=200)

				'Add	text	to	the	label

				shpLabel.TextFrame.TextRange	=	"Test	Label"

End	Sub



Show	All



AddLine	Method
							

AddLine	method	as	it	applies	to	the	CanvasShapes	object.

Adds	a	line	to	a	drawing	canvas.	Returns	a	Shape	object	that	represents	the	line
and	adds	it	to	the	CanvasShapes	collection.

expression.AddLine(BeginX,	BeginY,	EndX,	EndY)

expression			Required.	An	expression	that	returns	a	CanvasShapes	object.

BeginX		Required	Single.	The	horizontal	position,	measured	in	points,	of	the
line's	starting	point,	relative	to	the	drawing	canvas.

BeginY		Required	Single.	The	vertical	position,	measured	in	points,	of	the	line's
starting	point,	relative	to	the	drawing	canvas.

EndX		Required	Single.	The	horizontal	position,	measured	in	points,	of	the	line's
end	point,	relative	to	the	drawing	canvas.

EndY		Required	Single.	The	vertical	position,	measured	in	points,	of	the	line's
end	point,	relative	to	the	drawing	canvas.

AddLine	method	as	it	applies	to	the	Shapes	object.

Adds	a	line	to	a	document.	Returns	a	Shape	object	that	represents	the	line	and
adds	it	to	the	Shapes	collection.

expression.AddLine(BeginX,	BeginY,	EndX,	EndY,	Anchor)

expression			Required.	An	expression	that	returns	a	Shapes	object.

BeginX		Required	Single.	The	horizontal	position,	measured	in	points,	of	the
line's	starting	point,	relative	to	the	anchor.

BeginY		Required	Single.	The	vertical	position,	measured	in	points,	of	the	line's



starting	point,	relative	to	the	anchor.

EndX		Required	Single.	The	horizontal	position,	measured	in	points,	of	the	line's
end	point,	relative	to	the	anchor.

EndY		Required	Single.	The	vertical	position,	measured	in	points,	of	the	line's
end	point,	relative	to	the	anchor.

Anchor			Optional	Variant.	A	Range	object	that	represents	the	text	to	which	the
label	is	bound.	If	Anchor	is	specified,	the	anchor	is	positioned	at	the	beginning
of	the	first	paragraph	in	the	anchoring	range.	If	this	argument	is	omitted,	the
anchoring	range	is	selected	automatically	and	the	label	is	positioned	relative	to
the	top	and	left	edges	of	the	page.



Remarks

To	create	an	arrow,	use	the	Line	property	to	format	a	line.



Example

As	it	applies	to	the	CanvasShapes	object.

This	example	adds	a	purple	line	with	an	arrow	to	a	new	drawing	canvas.

Sub	NewCanvasLine()

				Dim	shpCanvas	As	Shape

				Dim	shpLine	As	Shape

				'Add	new	drawing	canvas	to	the	active	document

				Set	shpCanvas	=	ActiveDocument.Shapes	_

								.AddCanvas(Left:=100,	Top:=75,	_

								Width:=150,	Height:=200)

				'Add	a	line	to	the	drawing	canvas

				Set	shpLine	=	shpCanvas.CanvasItems.AddLine(	_

								BeginX:=25,	BeginY:=25,	EndX:=150,	EndY:=150)

				'Add	an	arrow	to	the	line	and	sets	the	color	to	purple

				With	shpLine.Line

								.BeginArrowheadStyle	=	msoArrowheadDiamond

								.BeginArrowheadWidth	=	msoArrowheadWide

								.ForeColor.RGB	=	RGB(Red:=150,	Green:=0,	Blue:=255)

				End	With

End	Sub

As	it	applies	to	the	Shapes	object.

This	example	adds	a	line	to	the	active	document	and	then	formats	the	line	as	a
red	arrow.

Sub	NewLine()

				Dim	lineNew	As	Shape

				'Add	new	line	to	document

				Set	lineNew	=	ActiveDocument.Shapes.AddLine_

								(Left:=100,	Top:=100,	Width:=60,	Height:=20)

				'Format	line

				With	lineNew.Line

								.BeginArrowheadStyle	=	msoArrowheadNone

								.EndArrowheadStyle	=	msoArrowheadTriangle



								.ForeColor.RGB	=	RGB(Red:=128,	Green:=0,	Blue:=0)

				End	With

End	Sub



AddMergeRec	Method
							

Adds	a	MERGEREC	field	to	a	mail	merge	main	document.	Returns	a
MailMergeField	object.	A	MERGEREC	field	inserts	the	number	of	the	current
data	record	(the	position	of	the	data	record	in	the	current	query	result)	during	a
mail	merge.

expression.AddMergeRec(Range)

expression			Required.	An	expression	that	returns	a	MailMergeFields	object.

Range			Required	Range	object.	The	location	for	the	MERGEREC	field.



Example

This	example	inserts	text	and	a	MERGEREC	field	at	the	beginning	of	the	active
document.

Dim	rngTemp	As	Range

Set	rngTemp	=	ActiveDocument.Range(Start:=0,	End:=0)

ActiveDocument.MailMerge.Fields.AddMergeRec	Range:=rngTemp

rngTemp.InsertAfter	"Record	Number:	"



AddMergeSeq	Method
							

Adds	a	MERGESEQ	field	to	a	mail	merge	main	document.	Returns	a
MailMergeField	object.	A	MERGESEQ	field	inserts	a	number	based	on	the
sequence	in	which	data	records	are	merged	(for	example,	when	record	50	of
records	50	to	100	is	merged,	MERGESEQ	inserts	the	number	1).

expression.AddMergeSeq(Range)

expression			Required.	An	expression	that	returns	a	MailMergeFields	object.

Range			Required	Range	object.	The	location	for	the	MERGESEQ	field.



Example

This	example	inserts	text	and	a	MERGESEQ	field	at	the	end	of	the	active
document.

Dim	rngTemp	As	Range

Set	rngTemp	=	ActiveDocument.Content

rngTemp.Collapse	Direction:=wdCollapseEnd

ActiveDocument.MailMerge.Fields.AddMergeSeq	Range:=rngTemp

rngTemp.InsertAfter	"Sequence	Number:	"



AddNewFrame	Method
							

Adds	a	new	frame	to	a	frames	page.

expression.AddNewFrame(Where)

expression			Required.	An	expression	that	returns	a	Frameset	object.

Where		Required	WdFramesetNewFrameLocation.	Sets	the	location	where	the
new	frame	is	to	be	added	in	relation	to	the	specified	frame.

WdFramesetNewFrameLocation	can	be	one	of	these
WdFramesetNewFrameLocation	constants.
wdFramesetNewFrameBelow
wdFramesetNewFrameRight
wdFramesetNewFrameAbove
wdFramesetNewFrameLeft



Remarks

For	more	information	on	creating	frames	pages,	see	Creating	frames	pages.



Example

This	example	adds	a	new	frame	to	the	immediate	right	of	the	specified	frame.

ActiveDocument.ActiveWindow.ActivePane.Frameset	_

				.AddNewFrame	wdFramesetNewFrameRight



AddNext	Method
							

Adds	a	NEXT	field	to	a	mail	merge	main	document.	Returns	a	MailMergeField
object.	A	NEXT	field	advances	to	the	next	data	record	so	that	data	from	more
than	one	record	can	be	merged	into	the	same	merge	document	(for	example,	a
sheet	of	mailing	labels).

expression.AddNext(Range)

expression			Required.	An	expression	that	returns	a	MailMergeFields	object.

Range			Required	Range	object.	The	location	for	the	NEXT	field.



Example

This	example	adds	a	NEXT	field	after	the	third	MERGEFIELD	field	in
Main.doc.

Documents("Main.doc").MailMerge.Fields(3).Select

Selection.Collapse	Direction:=wdCollapseEnd

Documents("Main.doc").MailMerge.Fields.AddNext	_

				Range:=Selection.Range



AddNextIf	Method
							

Adds	a	NEXTIF	field	to	a	mail	merge	main	document.	Returns	a
MailMergeField	object.	A	NEXTIF	field	compares	two	expressions,	and	if	the
comparison	is	true,	the	next	data	record	is	merged	into	the	current	merge
document.

expression.AddNextIf(Range,	MergeField,	Comparison,	CompareTo)

expression			Required.	An	expression	that	returns	a	MailMergeFields	object.

Range			Required	Range	object.	The	location	for	the	NEXTIF	field.

MergeField			Required	String.	The	merge	field	name.

Comparison		Required	WdMailMergeComparison.	The	operator	used	in	the
comparison.

WdMailMergeComparison	can	be	one	of	these	WdMailMergeComparison
constants.
wdMergeIfEqual
wdMergeIfGreaterThanOrEqual
wdMergeIfIsNotBlank
wdMergeIfLessThanOrEqual
wdMergeIfGreaterThan
wdMergeIfIsBlank
wdMergeIfLessThan
wdMergeIfNotEqual

CompareTo			Required	String.	The	text	to	compare	with	the	contents	of
MergeField.



Example

This	example	adds	a	NEXTIF	field	before	the	first	MERGEFIELD	field	in
Main.doc.	If	the	next	postal	code	equals	98004,	the	next	data	record	is	merged
into	the	current	merge	document.

Documents("Main.doc").MailMerge.Fields(1).Select

Selection.Collapse	Direction:=wdCollapseStart

Documents("Main.doc").MailMerge.Fields.AddNextIf	_

				Range:=Selection.Range,	MergeField:="PostalCode",	_

				Comparison:=wdMergeIfEqual,	CompareTo:="98004"



Show	All



AddNode	Method
							

AddNode	method	as	it	applies	to	the	DiagramNodeChildren	object.

Adds	a	DiagramNode	object	to	a	collection	of	child	diagram	nodes.

expression.AddNode(Index)

expression			Required.	An	expression	that	returns	a	DiagramNodeChildren
object.

Index		Optional	Variant.	The	index	location	of	where	to	add	the	new	diagram
node:	0	adds	before	all	nodes,	-1	adds	after	all	nodes,	and	any	other	Index
number	will	add	after	that	node	in	the	collection.

AddNode	method	as	it	applies	to	the	DiagramNode	object.

Creates	a	diagram	node,	returning	a	DiagramNode	object	that	represents	the
new	diagram	node.	For	conceptual	diagrams,	the	DiagramNode	object	is	added
to	the	end	of	the	shapes	list.

expression.AddNode(Pos)

expression			Required.	An	expression	that	returns	a	DiagramNode	object.

Pos		Optional	MsoRelativeNodePosition.	Specifies	where	the	node	will	be
added,	relative	to	the	calling	node.

MsoRelativeNodePosition	can	be	one	of	these	MsoRelativeNodePosition
constants.
msoAfterLastSibling
msoAfterNode	default
msoBeforeFirstSibling
msoBeforeNode



Example

As	it	applies	to	the	DiagramNodeChildren	object.

This	example	adds	a	pyramid	chart	to	the	current	document	and	adds	three	nodes
to	the	chart.

Sub	CreatePyramidDiagram()

				Dim	dgnNode	As	DiagramNode

				Dim	shpDiagram	As	Shape

				Dim	intCount	As	Integer

				'Add	pyramid	diagram	to	the	current	document

				Set	shpDiagram	=	ThisDocument.Shapes.AddDiagram	_

								(Type:=msoDiagramPyramid,	Left:=10,	_

								Top:=15,	Width:=400,	Height:=475)

				'Add	first	diagram	node	child	to	the	pyramid	diagram

				Set	dgnNode	=	shpDiagram.DiagramNode.Children.AddNode

				'Add	three	more	diagram	node	children	to	the	pyramid	diagram

				For	intCount	=	1	To	3

								dgnNode.AddNode

				Next	intCount

End	Sub



Show	All



AddNodes	Method
							

Inserts	a	new	segment	at	the	end	of	the	freeform	that's	being	created,	and	adds
the	nodes	that	define	the	segment.	You	can	use	this	method	as	many	times	as	you
want	to	add	nodes	to	the	freeform	you're	creating.	When	you	finish	adding
nodes,	use	the	ConvertToShape	method	to	create	the	freeform	you've	just
defined.	To	add	nodes	to	a	freeform	after	it's	been	created,	use	the	Insert	method
of	the	ShapeNodes	collection.

expression.AddNodes(SegmentType,	EditingType,	X1,	Y1,	X2,	Y2,	X3,	Y3)

expression			Required.	An	expression	that	returns	a	FreeformBuilder	object.

SegmentType		Required	MsoSegmentType.	The	type	of	segment	to	be	added.

MsoSegmentType	can	be	one	of	these	MsoSegmentType	constants.
msoSegmentLine
msoSegmentCurve

EditingType		Required	MsoEditingType.	The	editing	property	of	the	vertex.	If
SegmentType	is	msoSegmentLine,	EditingType	must	be	msoEditingAuto.

MsoEditingType	can	be	one	of	these	MsoEditingType	constants.
msoEditingAuto
msoEditingCorner

X1			Required	Single.	If	the	EditingType	of	the	new	segment	is
msoEditingAuto,	this	argument	specifies	the	horizontal	distance	(in	points)
from	the	upper-left	corner	of	the	document	to	the	end	point	of	the	new	segment.
If	the	EditingType	of	the	new	node	is	msoEditingCorner,	this	argument
specifies	the	horizontal	distance	(in	points)	from	the	upper-left	corner	of	the
document	to	the	first	control	point	for	the	new	segment.

Y1			Required	Single.	If	the	EditingType	of	the	new	segment	is



msoEditingAuto,	this	argument	specifies	the	vertical	distance	(in	points)	from
the	upper-left	corner	of	the	document	to	the	end	point	of	the	new	segment.	If	the
EditingType	of	the	new	node	is	msoEditingCorner,	this	argument	specifies	the
vertical	distance	(in	points)	from	the	upper-left	corner	of	the	document	to	the
first	control	point	for	the	new	segment.

X2			Optional	Single.	If	the	EditingType	of	the	new	segment	is
msoEditingCorner,	this	argument	specifies	the	horizontal	distance	(in	points)
from	the	upper-left	corner	of	the	document	to	the	second	control	point	for	the
new	segment.	If	the	EditingType	of	the	new	segment	is	msoEditingAuto,	don't
specify	a	value	for	this	argument.

Y2			Optional	Single.	If	the	EditingType	of	the	new	segment	is
msoEditingCorner,	this	argument	specifies	the	vertical	distance	(in	points)
from	the	upper-left	corner	of	the	document	to	the	second	control	point	for	the
new	segment.	If	the	EditingType	of	the	new	segment	is	msoEditingAuto,	don't
specify	a	value	for	this	argument.

X3			Optional	Single.	If	the	EditingType	of	the	new	segment	is
msoEditingCorner,	this	argument	specifies	the	horizontal	distance	(in	points)
from	the	upper-left	corner	of	the	document	to	the	end	point	of	the	new	segment.
If	the	EditingType	of	the	new	segment	is	msoEditingAuto,	don't	specify	a	value
for	this	argument.

Y3			Optional	Single.	If	the	EditingType	of	the	new	segment	is
msoEditingCorner,	this	argument	specifies	the	vertical	distance	(in	points)
from	the	upper-left	corner	of	the	document	to	the	end	point	of	the	new	segment.
If	the	EditingType	of	the	new	segment	is	msoEditingAuto,	don't	specify	a	value
for	this	argument.



Example

This	example	adds	a	freeform	with	five	vertices	to	the	active	document.

Dim	docActive	As	Document

Set	docActive	=	ActiveDocument

With	docActive.Shapes.BuildFreeform(msoEditingCorner,	360,	200)

				.AddNodes	msoSegmentCurve,	msoEditingCorner,	_

								380,	230,	400,	250,	450,	300

				.AddNodes	msoSegmentCurve,	msoEditingAuto,	480,	200

				.AddNodes	msoSegmentLine,	msoEditingAuto,	480,	400

				.AddNodes	msoSegmentLine,	msoEditingAuto,	360,	200

				.ConvertToShape

End	With



Show	All



AddOLEControl	Method
							

AddOLEControl	method	as	it	applies	to	the	InlineShapes	object.

Creates	an	ActiveX	control	(formerly	known	as	an	OLE	control).	Returns	the
InlineShape	object	that	represents	the	new	ActiveX	control.

expression.AddOLEControl(ClassType,	Range)

expression			Required.	An	expression	that	returns	an	InlineShapes	object.

ClassType		Optional	Variant.	The	programmatic	identifier	for	the	ActiveX
control	to	be	created.

Range		Optional	Variant.	The	range	where	the	ActiveX	control	will	be	placed	in
the	text.	The	ActiveX	control	replaces	the	range,	if	the	range	isn't	collapsed.	If
this	argument	is	omitted,	the	Active	X	control	is	placed	automatically.

AddOLEControl	method	as	it	applies	to	the	Shapes	object.

Creates	an	ActiveX	control	(formerly	known	as	an	OLE	control).	Returns	the
Shape	object	that	represents	the	new	ActiveX	control.

expression.AddOLEControl(ClassType,	Left,	Top,	Width,	Height,	Anchor)

expression			Required.	An	expression	that	returns	a	Shapes	object.

ClassType		Optional	Variant.	The	programmatic	identifier	for	the	ActiveX
control	to	be	created.

Left		Optional	Variant.	The	position	(in	points)	of	the	left	edge	of	the	new	object
relative	to	the	anchor.

Top		Optional	Variant.	The	position	(in	points)	of	the	upper	edge	of	the	new
object	relative	to	the	anchor.



Width		Optional	Variant.	The	width	of	the	ActiveX	control,	in	points.

Height		Optional	Variant.The	height	of	the	ActiveX	control,	in	points.

Anchor		Optional	Variant.	The	range	to	which	the	ActiveX	control	is	bound.	If
Anchor	is	specified,	the	anchor	is	positioned	at	the	beginning	of	the	first
paragraph	in	the	anchoring	range.	If	this	argument	is	omitted,	however,	the
anchor	is	placed	automatically	and	the	ActiveX	control	is	positioned	relative	to
the	top	and	left	edges	of	the	page.



Remarks

ActiveX	controls	are	represented	as	either	Shape	objects	or	InlineShape	objects
in	Microsoft	Word.	To	modify	the	properties	for	an	ActiveX	control,	you	use	the
Object	property	of	the	OLEFormat	object	for	the	specified	shape	or	inline
shape.

For	information	about	available	ActiveX	control	class	types,	see	OLE
Programmatic	Identifiers.



Example

As	it	applies	to	the	Shape	object.

This	example	adds	a	check	box	to	the	active	document.

ActiveDocument.Shapes.AddOLEControl	ClassType:="Forms.CheckBox.1"

This	example	adds	a	combo	box	to	the	active	document.

ActiveDocument.Shapes.AddOLEControl	ClassType:="Forms.ComboBox.1"

This	example	adds	a	check	box	to	the	active	document,	clears	the	check	box,	and
then	adds	a	caption	for	it.

Set	myCB	=	ActiveDocument.Shapes	_

				.AddOLEControl(ClassType:="Forms.CheckBox.1")

With	myCB.OLEFormat.Object

				.Value	=	False

				.Caption	=	"Check	if	over	21"

End	With



Show	All



AddOLEObject	Method
							

AddOLEObject	method	as	it	applies	to	the	InlineShapes	object.

Creates	an	OLE	object.	Returns	the	InlineShape	object	that	represents	the	new
OLE	object.

expression.AddOLEObject(ClassType,	FileName,	LinkToFile,	DisplayAsIcon,
IconFileName,	IconIndex,	IconLabel,	Range)

expression			Required.	An	expression	that	returns	a	InlineShapes	object.

ClassType		Optional	Variant.	The	name	of	the	application	used	to	activate	the
specified	OLE	object.

FileName		Optional	Variant.	The	file	from	which	the	object	is	to	be	created.	If
this	argument	is	omitted,	the	current	folder	is	used.	You	must	specify	either	the
ClassType	or	FileName	argument	for	the	object,	but	not	both.

LinkToFile		Optional	Variant.	True	to	link	the	OLE	object	to	the	file	from
which	it	was	created.	False	to	make	the	OLE	object	an	independent	copy	of	the
file.	If	you	specified	a	value	for	ClassType,	the	LinkToFile	argument	must	be
False.	The	default	value	is	False.

DisplayAsIcon		Optional	Variant.	True	to	display	the	OLE	object	as	an	icon.
The	default	value	is	False.

IconFileName		Optional	Variant.	The	file	that	contains	the	icon	to	be	displayed.

IconIndex		Optional	Variant.	The	index	number	of	the	icon	within
IconFileName.	The	order	of	icons	in	the	specified	file	corresponds	to	the	order
in	which	the	icons	appear	in	the	Change	Icon	dialog	box	(Insert	menu,	Object
dialog	box)	when	the	Display	as	icon	check	box	is	selected.	The	first	icon	in	the
file	has	the	index	number	0	(zero).	If	an	icon	with	the	given	index	number
doesn't	exist	in	IconFileName,	the	icon	with	the	index	number	1	(the	second
icon	in	the	file)	is	used.	The	default	value	is	0	(zero).



IconLabel		Optional	Variant.	A	label	(caption)	to	be	displayed	beneath	the	icon.

Range		Optional	Variant.	The	range	where	the	OLE	object	will	be	placed	in	the
text.	The	OLE	object	replaces	the	range,	unless	the	range	is	collapsed.	If	this
argument	is	omitted,	the	object	is	placed	automatically.

AddOLEObject	method	as	it	applies	to	the	Shapes	object.

Creates	an	OLE	object.	Returns	the	Shape	object	that	represents	the	new	OLE
object.

expression.AddOLEObject(ClassType,	FileName,	LinkToFile,	DisplayAsIcon,
IconFileName,	IconIndex,	IconLabel,	Left,	Top,	Width,	Height,	Anchor)

expression			Required.	An	expression	that	returns	a	Shapes	object.

ClassType		Optional	Variant.	The	name	of	the	application	used	to	activate	the
specified	OLE	object.

FileName		Optional	Variant.	The	file	from	which	the	object	is	to	be	created.	If
this	argument	is	omitted,	the	current	folder	is	used.	You	must	specify	either	the
ClassType	or	FileName	argument	for	the	object,	but	not	both.

LinkToFile		Optional	Variant.	True	to	link	the	OLE	object	to	the	file	from
which	it	was	created.	False	to	make	the	OLE	object	an	independent	copy	of	the
file.	If	you	specified	a	value	for	ClassType,	the	LinkToFile	argument	must	be
False.	The	default	value	is	False.

DisplayAsIcon		Optional	Variant.	True	to	display	the	OLE	object	as	an	icon.
The	default	value	is	False.

IconFileName		Optional	Variant.	The	file	that	contains	the	icon	to	be	displayed.

IconIndex		Optional	Variant.	The	index	number	of	the	icon	within
IconFileName.	The	order	of	icons	in	the	specified	file	corresponds	to	the	order
in	which	the	icons	appear	in	the	Change	Icon	dialog	box	(Insert	menu,	Object
dialog	box)	when	the	Display	as	icon	check	box	is	selected.	The	first	icon	in	the
file	has	the	index	number	0	(zero).	If	an	icon	with	the	given	index	number
doesn't	exist	in	IconFileName,	the	icon	with	the	index	number	1	(the	second
icon	in	the	file)	is	used.	The	default	value	is	0	(zero).



IconLabel		Optional	Variant.	A	label	(caption)	to	be	displayed	beneath	the	icon.

Left		Optional	Variant.	The	position	(in	points)	of	the	left	edge	of	the	new	object
relative	to	the	anchor.

Top		Optional	Variant.	The	position	(in	points)	of	the	upper	edge	of	the	new
object	relative	to	the	anchor.

Width		Optional	Variant.	The	width	of	the	OLE	object,	in	points.

Height		Optional	Variant.	The	height	of	the	OLE	object,	in	points.

Anchor		Optional	Variant.	The	range	to	which	the	OLE	object	is	bound.	If
Anchor	is	specified,	the	anchor	is	positioned	at	the	beginning	of	the	first
paragraph	of	the	anchoring	range.	If	Anchor	is	not	specified,	the	anchor	is
placed	automatically	and	the	OLE	Object	is	positioned	relative	to	the	top	and	left
edges	of	the	page.



Example

	As	it	applies	to	the	Shapes	object.

This	example	adds	a	new	floating	bitmap	image	to	the	active	document.	The
bitmap	is	linked	to	another	file.

ActiveDocument.Shapes.AddOLEObject	_

				FileName:="c:\my	documents\MyDrawing.bmp",	_

				LinkToFile:=True

	As	it	applies	to	the	InlineShapes	object.

This	example	adds	a	new	Microsoft	Excel	worksheet	to	the	active	document	at
the	second	paragraph.

ActiveDocument.InlineShapes.AddOLEObject	_

				ClassType:="Excel.Sheet",	DisplayAsIcon:=False,	_

				Range:=ActiveDocument.Paragraphs(2).Range



Show	All



AddPicture	Method
							

AddPicture	method	as	it	applies	to	the	CanvasShapes	object.

Adds	a	picture	to	a	drawing	canvas.	Returns	a	Shape	object	that	represents	the
picture	and	adds	it	to	the	CanvasShapes	collection.

expression.AddPicture(FileName,	LinkToFile,	SaveWithDocument,	Left,	Top,
Width,	Height)

expression			Required.	An	expression	that	returns	a	CanvasShapes	object.

FileName		Required	String.	The	path	and	file	name	of	the	picture.

LinkToFile		Optional	Variant.	True	to	link	the	picture	to	the	file	from	which	it
was	created.	False	to	make	the	picture	an	independent	copy	of	the	file.	The
default	value	is	False.

SaveWithDocument		Optional	Variant.	True	to	save	the	linked	picture	with	the
document.	The	default	value	is	False.

Left		Optional	Variant.	The	position,	measured	in	points,	of	the	left	edge	of	the
new	picture	relative	to	the	drawing	canvas.

Top		Optional	Variant.	The	position,	measured	in	points,	of	the	top	edge	of	the
new	picture	relative	to	the	drawing	canvas.

Width		Optional	Variant.	The	width	of	the	picture,	in	points.

Height		Optional	Variant.	The	height	of	the	picture,	in	points.

AddPicture	method	as	it	applies	to	the	InlineShapes	object.

Adds	a	picture	to	a	document.	Returns	a	Shape	object	that	represents	the	picture
and	adds	it	to	the	InlineShapes	collection.



expression.AddPicture(FileName,	LinkToFile,	SaveWithDocument,	Range)

expression			Required.	An	expression	that	returns	an	InlineShapes	object.

FileName		Required	String.	The	path	and	file	name	of	the	picture.

LinkToFile		Optional	Variant.	True	to	link	the	picture	to	the	file	from	which	it
was	created.	False	to	make	the	picture	an	independent	copy	of	the	file.	The
default	value	is	False.

SaveWithDocument		Optional	Variant.	True	to	save	the	linked	picture	with	the
document.	The	default	value	is	False.

Range		Optional	Variant.	The	location	where	the	picture	will	be	placed	in	the
text.	If	the	range	isn't	collapsed,	the	picture	replaces	the	range;	otherwise,	the
picture	is	inserted.	If	this	argument	is	omitted,	the	picture	is	placed
automatically.

AddPicture	method	as	it	applies	to	the	Shapes	object.

Adds	a	picture	to	a	document.		Returns	a	Shape	object	that	represents	the	picture
and	adds	it	to	the	Shapes	collection.

expression.AddPicture(FileName,	LinkToFile,	SaveWithDocument,	Left,	Top,
Width,	Height,	Anchor)

expression			Required.	An	expression	that	returns	a	Shapes	object.

FileName		Required	String.	The	path	and	file	name	of	the	picture.

LinkToFile		Optional	Variant.	True	to	link	the	picture	to	the	file	from	which	it
was	created.	False	to	make	the	picture	an	independent	copy	of	the	file.	The
default	value	is	False.

SaveWithDocument		Optional	Variant.	True	to	save	the	linked	picture	with	the
document.	The	default	value	is	False.

Left		Optional	Variant.	The	position,	measured	in	points,	of	the	left	edge	of	the
new	picture	relative	to	the	anchor.



Top		Optional	Variant.	The	position,	measured	in	points,	of	the	top	edge	of	the
new	picture	relative	to	the	anchor.

Width		Optional	Variant.	The	width	of	the	picture,	in	points.

Height		Optional	Variant.	The	height	of	the	picture,	in	points.

Anchor		Optional	Variant.	The	range	to	which	the	picture	is	bound.	If	Anchor	is
specified,	the	anchor	is	positioned	at	the	beginning	of	the	first	paragraph	in	the
anchoring	range.	If	this	argument	is	omitted,	however,	the	anchor	is	placed
automatically	and	the	picture	is	positioned	relative	to	the	top	and	left	edges	of
the	page.



Example

As	it	applies	to	the	CanvasShapes	object.

This	example	adds	a	picture	to	a	newly	created	drawing	canvas	in	the	active
document.

Sub	NewCanvasPicture()

				Dim	shpCanvas	As	Shape

				'Add	a	drawing	canvas	to	the	active	document

				Set	shpCanvas	=	ActiveDocument.Shapes	_

								.AddCanvas(Left:=100,	Top:=75,	_

								Width:=200,	Height:=300)

				'Add	a	graphic	to	the	drawing	canvas

				shpCanvas.CanvasItems.AddPicture	_

								FileName:="C:\Program	Files\Microsoft	Office\"	&	_

												"Office\Bitmaps\Styles\stone.bmp",	_

								LinkToFile:=False,	SaveWithDocument:=True

End	Sub

As	it	applies	to	the	Shapes	object.

This	example	adds	a	picture	to	the	active	document.	The	picture	is	linked	to	the
original	file	and	is	saved	with	the	document.

Sub	NewPicture()

				ActiveDocument.Shapes.AddPicture	_

								FileName:="C:\Program	Files\Microsoft	Office\"	_	

												&	"Office\Bitmaps\Styles\stone.bmp",	_

								LinkToFile:=True,	SaveWithDocument:=True

End	Sub



AddPictureBullet	Method
							

Adds	a	picture	bullet	based	on	an	image	file	to	the	current	document.

expression.AddPictureBullet(FileName,	Range)

expression			Required.	An	expression	that	returns	an	InlineShapes	object.

FileName			Required	String.	The	file	name	of	the	image	you	want	to	use	for	the
picture	bullet.

Range			Optional	Variant.	The	range	to	which	Microsoft	Word	adds	the	picture
bullet.	Word	adds	the	picture	bullet	to	each	paragraph	in	the	range.	If	this
argument	is	omitted,	Word	adds	the	picture	bullet	to	each	paragraph	in	the
current	selection.



Example

This	example	adds	a	picture	bullet	to	each	paragraph	in	the	selected	text	using	a
file	called	"RedBullet.gif."

Selection.InlineShapes.AddPictureBullet	_

				"C:\Art	files\RedBullet.gif"



Show	All



AddPolyline	Method
							

AddPolyline	method	as	it	applies	to	the	CanvasShapes	object.

Adds	an	open	or	closed	polygon	to	a	drawing	canvas.	Returns	a	Shape	object
that	represents	the	polygon	and	adds	it	to	the	CanvasShapes	collection.

expression.AddPolyline(SafeArrayOfPoints)

expression			Required.	An	expression	that	returns	a	CanvasShapes	object.

SafeArrayOfPoints		Required	Variant.	An	array	of	coordinate	pairs	that
specifies	the	polyline	drawing's	vertices.

AddPolyline	method	as	it	applies	to	the	Shapes	object.

Adds	an	open	or	closed	polygon	to	a	document.	Returns	a	Shape	object	that
represents	the	polygon	and	adds	it	to	the	Shapes	collection.

expression.AddPolyline(SafeArrayOfPoints,	Anchor)

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	to	list.

SafeArrayOfPoints		Required	Variant.	An	array	of	coordinate	pairs	that
specifies	the	polyline	drawing's	vertices.

Anchor		Optional	Variant.	A	Range	object	that	represents	the	text	to	which	the
polyline	is	bound.	If	Anchor	is	specified,	the	anchor	is	positioned	at	the
beginning	of	the	first	paragraph	in	the	anchoring	range.	If	this	argument	is
omitted,	the	anchoring	range	is	selected	automatically	and	the	line	is	positioned
relative	to	the	top	and	left	edges	of	the	page.



Remarks

To	form	a	closed	polygon,	assign	the	same	coordinates	to	the	first	and	last
vertices	in	the	polyline	drawing.



Example

As	it	applies	to	the	CanvasShapes	object.

This	example	creates	a	V-shaped	open	polyline	in	a	new	drawing	canvas.

Sub	NewCanvasPolyline()

				Dim	docNew	As	Document

				Dim	shpCanvas	As	Shape

				Dim	sngArray(1	To	3,	1	To	2)	As	Single

				'Creates	a	new	document	and	adds	a	drawing	canvas

				Set	docNew	=	Documents.Add

				Set	shpCanvas	=	docNew.Shapes.AddCanvas(	_

								Left:=100,	Top:=75,	Width:=200,	Height:=300)

				'Sets	the	coordinates	of	the	array

				sngArray(1,	1)	=	100

				sngArray(1,	2)	=	75

				sngArray(2,	1)	=	150

				sngArray(2,	2)	=	100

				sngArray(3,	1)	=	100

				sngArray(3,	2)	=	125

				'Adds	a	V-shaped	open	polyline	to	the	drawing	canvas

				shpCanvas.CanvasItems.AddPolyline	SafeArrayOfPoints:=sngArray

End	Sub

As	it	applies	to	the	Shapes	object.

This	example	adds	a	triangle	to	a	new	document.	Because	the	first	and	last
points	of	the	triangle	have	the	same	coordinates,	the	polygon	is	closed	and	filled.

Sub	NewPolyline()

				Dim	arrayTriangle(1	To	4,	1	To	2)	As	Single

				Dim	docNew	As	Document

				Set	docNew	=	Documents.Add

				'Sets	the	coordinates	of	the	array

				arrayTriangle(1,	1)	=	25

				arrayTriangle(1,	2)	=	100

				arrayTriangle(2,	1)	=	100



				arrayTriangle(2,	2)	=	150

				arrayTriangle(3,	1)	=	150

				arrayTriangle(3,	2)	=	50

				arrayTriangle(4,	1)	=	25

				arrayTriangle(4,	2)	=	100

				'Adds	a	closed	polygon	to	the	document

				docNew.Shapes.AddPolyline	SafeArrayOfPoints:=arrayTriangle

End	Sub



AddRecipient	Method
							

Adds	a	recipient	name	to	the	specified	routing	slip.

Note	If	the	recipient	name	isn't	in	the	global	address	book,	an	error	occurs.

expression.AddRecipient(Recipient)

expression			Required.	An	expression	that	returns	a	RoutingSlip	object.

Recipient			Required	String.	The	recipient	name.



Example

This	example	routes	the	active	document	to	two	recipients,	one	after	the	other.

ActiveDocument.HasRoutingSlip	=	True

With	ActiveDocument.RoutingSlip

				.Subject	=	"Status	Document"

				.AddRecipient	Recipient:="Tim	O'	Brien"

				.AddRecipient	Recipient:="Karin	Gallagher"

				.Delivery	=	wdOneAfterAnother

End	With

ActiveDocument.Route



AddRichText	Method
							

Creates	a	formatted	AutoCorrect	entry,	preserving	all	text	attributes	of	the
specified	range.	Returns	an	AutoCorrectEntry	object.	The	RichText	property
for	entries	added	by	using	this	method	returns	True.	If	AddRichText	isn't	used,
inserted	AutoCorrect	entries	conform	to	the	current	style.

expression.AddRichText(Name,	Range)

expression			Required.	An	expression	that	returns	an	AutoCorrectEntries
object.

Name			Required	String.	The	text	to	replace	automatically	with	Range.

Range			Required	Range	object.	The	formatted	text	that	Word	will	insert
automatically	whenever	Name	is	typed.



Example

This	example	stores	the	selected	text	as	a	formatted	AutoCorrect	entry	that	will
be	inserted	automatically	whenever	"NewText"	is	typed.

If	Selection.Type	=	wdSelectionNormal	Then

				AutoCorrect.Entries.AddRichText	"NewText",	Selection.Range

Else

				MsgBox	"You	need	to	select	some	text."

End	If

This	example	stores	the	third	word	in	the	active	document	as	a	formatted
AutoCorrect	entry	that	will	be	inserted	automatically	whenever	"NewText"	is
typed.

AutoCorrect.Entries.AddRichText	"NewText",	ActiveDocument.Words(3)



AddSet	Method
							

Adds	a	SET	field	to	a	mail	merge	main	document.	Returns	a	MailMergeField
object.	A	SET	field	defines	the	text	of	the	specified	bookmark.

expression.AddSet(Range,	Name,	ValueText,	ValueAutoText)

expression			Required.	An	expression	that	returns	a	MailMergeFields	object.

Range			Required	Range	object.	The	location	for	the	SET	field.

Name			Required	String.	The	bookmark	name	that	ValueText	is	assigned	to.

ValueText			Optional	Variant.	The	text	associated	with	the	bookmark	specified
by	the	Name	argument.

ValueAutoText			Optional	Variant.	The	AutoText	entry	that	includes	text
associated	with	the	bookmark	specified	by	the	Name	argument.	If	this	argument
is	specified,	ValueText	is	ignored.



Example

This	example	adds	a	SET	field	at	the	beginning	of	the	active	document	and	then
adds	a	REF	field	to	display	the	text	after	the	selection.

Dim	rngTemp	as	Range

Set	rngTemp	=	ActiveDocument.Range(Start:=0,	End:=0)

ActiveDocument.MailMerge.Fields.AddSet	Range:=rngTemp,	_

				Name:="Name",	ValueText:="Joe	Smith"

Selection.Collapse	Direction:=wdCollapseEnd

ActiveDocument.Fields.Add	Range:=Selection.Range,	_

				Type:=wdFieldRef,	Text:="Name"



Show	All



AddShape	Method
							

AddShape	method	as	it	applies	to	the	CanvasShapes	object.

Adds	an	AutoShape	to	a	drawing	canvas.	Returns	a	Shape	object	that	represents
the	AutoShape	and	adds	it	to	the	CanvasShapes	collection.

expression.AddShape(Type,	Left,	Top,	Width,	Height)

expression			Required.	An	expression	that	returns	a	CanvasShapes	object.

Type		Required	Long.	The	type	of	shape	to	be	returned.	Can	be	any
MsoAutoShapeType	constant.

MsoAutoShapeType	can	be	one	of	these	MsoAutoShapeType	constants.
msoShapeFlowchartDirectAccessStorage
msoShapeFlowchartDocument
msoShapeFlowchartInternalStorage
msoShapeFlowchartManualInput
msoShapeFlowchartMerge
msoShapeFlowchartOffpageConnector
msoShapeFlowchartPredefinedProcess
msoShapeFlowchartProcess
msoShapeLeftBracket
msoShapeFlowchartConnector
msoShapeFlowchartData
msoShapeFlowchartDecision
msoShapeFlowchartDelay
msoShapeFlowchartDisplay
msoShapeFlowchartExtract
msoShapeFlowchartMagneticDisk
msoShapeFlowchartManualOperation



msoShapeFlowchartMultidocument
msoShapeFlowchartOr
msoShapeFlowchartPreparation
msoShapeFlowchartPunchedTape
msoShapeFlowchartSequentialAccessStorage
msoShapeFlowchartSort
msoShapeFlowchartStoredData
msoShapeFlowchartSummingJunction
msoShapeFlowchartTerminator
msoShapeFoldedCorner
msoShapeHeart
msoShapeHexagon
msoShapeHorizontalScroll
msoShapeIsoscelesTriangle
msoShapeLeftArrow
msoShapeLeftArrowCallout
msoShapeLeftBrace
msoShapeLeftRightArrow
msoShapeLeftRightArrowCallout
msoShapeLeftRightUpArrow
msoShapeLeftUpArrow
msoShapeLightningBolt
msoShapeLineCallout1
msoShapeLineCallout1AccentBar
msoShapeLineCallout1BorderandAccentBar
msoShapeLineCallout1NoBorder
msoShapeLineCallout2
msoShapeLineCallout2AccentBar
msoShapeLineCallout2BorderandAccentBar
msoShapeLineCallout2NoBorder
msoShapeLineCallout3
msoShapeLineCallout3AccentBar
msoShapeLineCallout3BorderandAccentBar



msoShapeLineCallout3NoBorder
msoShapeLineCallout4
msoShapeLineCallout4AccentBar
msoShapeLineCallout4BorderandAccentBar
msoShapeLineCallout4NoBorder
msoShapeMixed
msoShapeMoon
msoShapeNoSymbol
msoShapeNotchedRightArrow
msoShapeNotPrimitive
msoShapeOctagon
msoShapeOval
msoShapeOvalCallout
msoShapeParallelogram
msoShapePentagon
msoShapePlaque
msoShapeQuadArrow
msoShapeQuadArrowCallout
msoShapeRectangle
msoShapeRectangularCallout
msoShapeRegularPentagon
msoShapeRightArrow
msoShapeRightArrowCallout
msoShapeRightBrace
msoShapeRightBracket
msoShapeRightTriangle
msoShapeRoundedRectangle
msoShapeRoundedRectangularCallout
msoShapeSmileyFace
msoShapeStripedRightArrow
msoShapeSun
msoShapeTrapezoid
msoShapeUpArrow



msoShapeUpArrowCallout
msoShapeUpDownArrow
msoShapeUpDownArrowCallout
msoShapeUpRibbon
msoShapeUTurnArrow
msoShapeVerticalScroll
msoShapeWave
msoShape16pointStar
msoShape24pointStar
msoShape32pointStar
msoShape4pointStar
msoShape5pointStar
msoShape8pointStar
msoShapeActionButtonBackorPrevious
msoShapeActionButtonBeginning
msoShapeActionButtonCustom
msoShapeActionButtonDocument
msoShapeActionButtonEnd
msoShapeActionButtonForwardorNext
msoShapeActionButtonHelp
msoShapeActionButtonHome
msoShapeActionButtonInformation
msoShapeActionButtonMovie
msoShapeActionButtonReturn
msoShapeActionButtonSound
msoShapeArc
msoShapeBalloon
msoShapeBentArrow
msoShapeBentUpArrow
msoShapeBevel
msoShapeBlockArc
msoShapeCan
msoShapeChevron



msoShapeCircularArrow
msoShapeCloudCallout
msoShapeCross
msoShapeCube
msoShapeCurvedDownArrow
msoShapeCurvedDownRibbon
msoShapeCurvedLeftArrow
msoShapeCurvedRightArrow
msoShapeCurvedUpArrow
msoShapeCurvedUpRibbon
msoShapeDiamond
msoShapeDonut
msoShapeDoubleBrace
msoShapeDoubleBracket
msoShapeDoubleWave
msoShapeDownArrow
msoShapeDownArrowCallout
msoShapeDownRibbon
msoShapeExplosion1
msoShapeExplosion2
msoShapeFlowchartAlternateProcess
msoShapeFlowchartCard
msoShapeFlowchartCollate

Left		Required	Single.	The	position,	measured	in	points,	of	the	left	edge	of	the
AutoShape.

Top		Required	Single.	The	position,	measured	in	points,	of	the	top	edge	of	the
AutoShape.

Width		Required	Single.	The	width,	measured	in	points,	of	the	AutoShape.

Height		Required	Single.	The	height,	measured	in	points,	of	the	AutoShape.

AddShape	method	as	it	applies	to	the	Shapes	object.



Adds	an	AutoShape	to	a	document.	Returns	a	Shape	object	that	represents	the
AutoShape	and	adds	it	to	the	Shapes	collection.

expression.AddShape(Type,	Left,	Top,	Width,	Height,	Anchor)

expression			Required.	An	expression	that	returns	a	Shapes	object.

Type		Required	Long.	The	type	of	shape	to	be	returned.	Can	be	any
MsoAutoShapeType	constant.

MsoAutoShapeType	can	be	one	of	these	MsoAutoShapeType	constants.
msoShapeFlowchartDirectAccessStorage
msoShapeFlowchartDocument
msoShapeFlowchartInternalStorage
msoShapeFlowchartManualInput
msoShapeFlowchartMerge
msoShapeFlowchartOffpageConnector
msoShapeFlowchartPredefinedProcess
msoShapeFlowchartProcess
msoShapeLeftBracket
msoShapeFlowchartConnector
msoShapeFlowchartData
msoShapeFlowchartDecision
msoShapeFlowchartDelay
msoShapeFlowchartDisplay
msoShapeFlowchartExtract
msoShapeFlowchartMagneticDisk
msoShapeFlowchartManualOperation
msoShapeFlowchartMultidocument
msoShapeFlowchartOr
msoShapeFlowchartPreparation
msoShapeFlowchartPunchedTape
msoShapeFlowchartSequentialAccessStorage
msoShapeFlowchartSort
msoShapeFlowchartStoredData



msoShapeFlowchartSummingJunction
msoShapeFlowchartTerminator
msoShapeFoldedCorner
msoShapeHeart
msoShapeHexagon
msoShapeHorizontalScroll
msoShapeIsoscelesTriangle
msoShapeLeftArrow
msoShapeLeftArrowCallout
msoShapeLeftBrace
msoShapeLeftRightArrow
msoShapeLeftRightArrowCallout
msoShapeLeftRightUpArrow
msoShapeLeftUpArrow
msoShapeLightningBolt
msoShapeLineCallout1
msoShapeLineCallout1AccentBar
msoShapeLineCallout1BorderandAccentBar
msoShapeLineCallout1NoBorder
msoShapeLineCallout2
msoShapeLineCallout2AccentBar
msoShapeLineCallout2BorderandAccentBar
msoShapeLineCallout2NoBorder
msoShapeLineCallout3
msoShapeLineCallout3AccentBar
msoShapeLineCallout3BorderandAccentBar
msoShapeLineCallout3NoBorder
msoShapeLineCallout4
msoShapeLineCallout4AccentBar
msoShapeLineCallout4BorderandAccentBar
msoShapeLineCallout4NoBorder
msoShapeMixed
msoShapeMoon



msoShapeNoSymbol
msoShapeNotchedRightArrow
msoShapeNotPrimitive
msoShapeOctagon
msoShapeOval
msoShapeOvalCallout
msoShapeParallelogram
msoShapePentagon
msoShapePlaque
msoShapeQuadArrow
msoShapeQuadArrowCallout
msoShapeRectangle
msoShapeRectangularCallout
msoShapeRegularPentagon
msoShapeRightArrow
msoShapeRightArrowCallout
msoShapeRightBrace
msoShapeRightBracket
msoShapeRightTriangle
msoShapeRoundedRectangle
msoShapeRoundedRectangularCallout
msoShapeSmileyFace
msoShapeStripedRightArrow
msoShapeSun
msoShapeTrapezoid
msoShapeUpArrow
msoShapeUpArrowCallout
msoShapeUpDownArrow
msoShapeUpDownArrowCallout
msoShapeUpRibbon
msoShapeUTurnArrow
msoShapeVerticalScroll
msoShapeWave



msoShape16pointStar
msoShape24pointStar
msoShape32pointStar
msoShape4pointStar
msoShape5pointStar
msoShape8pointStar
msoShapeActionButtonBackorPrevious
msoShapeActionButtonBeginning
msoShapeActionButtonCustom
msoShapeActionButtonDocument
msoShapeActionButtonEnd
msoShapeActionButtonForwardorNext
msoShapeActionButtonHelp
msoShapeActionButtonHome
msoShapeActionButtonInformation
msoShapeActionButtonMovie
msoShapeActionButtonReturn
msoShapeActionButtonSound
msoShapeArc
msoShapeBalloon
msoShapeBentArrow
msoShapeBentUpArrow
msoShapeBevel
msoShapeBlockArc
msoShapeCan
msoShapeChevron
msoShapeCircularArrow
msoShapeCloudCallout
msoShapeCross
msoShapeCube
msoShapeCurvedDownArrow
msoShapeCurvedDownRibbon
msoShapeCurvedLeftArrow



msoShapeCurvedRightArrow
msoShapeCurvedUpArrow
msoShapeCurvedUpRibbon
msoShapeDiamond
msoShapeDonut
msoShapeDoubleBrace
msoShapeDoubleBracket
msoShapeDoubleWave
msoShapeDownArrow
msoShapeDownArrowCallout
msoShapeDownRibbon
msoShapeExplosion1
msoShapeExplosion2
msoShapeFlowchartAlternateProcess
msoShapeFlowchartCard
msoShapeFlowchartCollate

Left		Required	Single.	The	position,	measured	in	points,	of	the	left	edge	of	the
AutoShape.

Top		Required	Single.	The	position,	measured	in	points,	of	the	top	edge	of	the
AutoShape.

Width		Required	Single.	The	width,	measured	in	points,	of	the	AutoShape.

Height		Required	Single.	The	height,	measured	in	points,	of	the	AutoShape.

Anchor		Optional	Variant.	A	Range	object	that	represents	the	text	to	which	the
AutoShape	is	bound.	If	Anchor	is	specified,	the	anchor	is	positioned	at	the
beginning	of	the	first	paragraph	in	the	anchoring	range.	If	this	argument	is
omitted,	the	anchoring	range	is	selected	automatically	and	the	AutoShape	is
positioned	relative	to	the	top	and	left	edges	of	the	page.



Remarks

To	change	the	type	of	an	AutoShape	that	you've	added,	set	the	AutoShapeType
property.



Example

As	it	applies	to	the	CanvasShapes	object.

This	example	creates	a	new	canvas	in	the	active	document	and	adds	a	circle	to
the	canvas.

Sub	NewCanvasShape()

				Dim	shpCanvas	As	Shape

				Dim	shpCanvasShape	As	Shape

				'Add	a	new	drawing	canvas	to	the	active	document

				Set	shpCanvas	=	ActiveDocument.Shapes.AddCanvas(	_

								Left:=100,	Top:=75,	Width:=150,	Height:=200)

				'Add	a	circle	to	the	drawing	canvas

				Set	shpCanvasShape	=	shpCanvas.CanvasItems.AddShape(	_

								Type:=msoShapeOval,	Left:=25,	Top:=25,	_

								Width:=150,	Height:=150)

End	Sub

As	it	applies	to	the	Shapes	object.

This	example	adds	a	red	rectangle	to	a	new	document.

Sub	NewShape()

				Dim	docNew	As	Document

				'Create	a	new	document	and	adds	a	shape

				Set	docNew	=	Documents.Add

				docNew.Shapes.AddShape	Type:=msoShapeRectangle,	_

								Left:=50,	Top:=50,	Width:=100,	Height:=200

				'Format	the	shape

				docNew.Shapes(1).Fill.ForeColor	_

								.RGB	=	RGB(Red:=200,	Green:=15,	Blue:=95)

End	Sub





AddSkipIf	Method
							

Adds	a	SKIPIF	field	to	a	mail	merge	main	document.	Returns	a
MailMergeField	object.	A	SKIPIF	field	compares	two	expressions,	and	if	the
comparison	is	true,	SKIPIF	moves	to	the	next	data	record	in	the	data	source	and
starts	a	new	merge	document.

expression.AddSkipIf(Range,	MergeField,	Comparison,	CompareTo)

expression			Required.	An	expression	that	returns	a	MailMergeFields	object.

Range			Required	Range	object.	The	location	for	the	SKIPIF	field.

MergeField			Required	String.	The	merge	field	name.

Comparison		Required	WdMailMergeComparison.	The	operator	used	in	the
comparison.

WdMailMergeComparison	can	be	one	of	these	WdMailMergeComparison
constants.
wdMergeIfEqual
wdMergeIfGreaterThanOrEqual
wdMergeIfIsNotBlank
wdMergeIfLessThanOrEqual
wdMergeIfGreaterThan
wdMergeIfIsBlank
wdMergeIfLessThan
wdMergeIfNotEqual

CompareTo			Optional	Variant.	The	text	to	compare	with	the	contents	of
MergeField.



Example

This	example	adds	a	SKIPIF	field	before	the	first	MERGEFIELD	field	in
Main.doc.	If	the	next	postal	code	equals	98040,	the	next	data	record	is	skipped.

Documents("Main.doc").MailMerge.Fields(1).Select

Selection.Collapse	Direction:=wdCollapseStart

Documents("Main.doc").MailMerge.Fields.AddSkipIf	_

				Range:=Selection.Range,	MergeField:="PostalCode",	_

				Comparison:=wdMergeIfEqual,	CompareTo:="98040"



Show	All



AddTextbox	Method
							

AddTextbox	method	as	it	applies	to	the	CanvasShapes	object.

Adds	a	text	box	to	a	drawing	canvas.	Returns	a	Shape	object	that	represents	the
text	box	and	adds	it	to	the	CanvasShapes	collection.

expression.AddTextbox(Orientation,	Left,	Top,	Width,	Height)

expression			Required.	An	expression	that	returns	a	CanvasShapes	object.

Orientation		Required	MsoTextOrientation.	The	orientation	of	the	text.	Some
of	these	constants	may	not	be	available	to	you,	depending	on	the	language
support	(U.S.	English,	for	example)	that	you’ve	selected	or	installed.

MsoTextOrientation	can	be	one	of	these	MsoTextOrientation	constants.
msoTextOrientationDownward
msoTextOrientationHorizontal
msoTextOrientationHorizontalRotatedFarEast
msoTextOrientationMixed
msoTextOrientationUpward
msoTextOrientationVertical
msoTextOrientationVerticalFarEast

Left		Required	Single.	The	position,	measured	in	points,	of	the	left	edge	of	the
text	box.

Top		Required	Single.	The	position,	measured	in	points,	of	the	top	edge	of	the
text	box.

Width		Required	Single.	The	width,	measured	in	points,	of	the	text	box.

Height		Required	Single.	The	height,	measured	in	points,	of	the	text	box.



AddTextbox	method	as	it	applies	to	the	Shapes	object.

Adds	a	text	box	to	a	document.	Returns	a	Shape	object	that	represents	the	text
box	and	adds	it	to	the	Shapes	collection.

expression.AddTextbox(Orientation,	Left,	Top,	Width,	Height,	Anchor)

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	to	list.

Orientation		Required	MsoTextOrientation.	The	orientation	of	the	text.	Some
of	these	constants	may	not	be	available	to	you,	depending	on	the	language
support	(U.S.	English,	for	example)	that	you’ve	selected	or	installed.

MsoTextOrientation	can	be	one	of	these	MsoTextOrientation	constants.
msoTextOrientationDownward
msoTextOrientationHorizontal
msoTextOrientationHorizontalRotatedFarEast
msoTextOrientationMixed
msoTextOrientationUpward
msoTextOrientationVertical
msoTextOrientationVerticalFarEast

Left		Required	Single.	The	position,	measured	in	points,	of	the	left	edge	of	the
text	box.

Top		Required	Single.	The	position,	measured	in	points,	of	the	top	edge	of	the
text	box.

Width		Required	Single.	The	width,	measured	in	points,	of	the	text	box.

Height		Required	Single.	The	height,	measured	in	points,	of	the	text	box.

Anchor			Optional	Variant.	A	Range	object	that	represents	the	text	to	which	the
text	box	is	bound.	If	Anchor	is	specified,	the	anchor	is	positioned	at	the
beginning	of	the	first	paragraph	in	the	anchoring	range.	If	this	argument	is
omitted,	the	anchoring	range	is	selected	automatically	and	the	text	box	is
positioned	relative	to	the	top	and	left	edges	of	the	page.



Example

As	it	applies	to	the	CanvasShapes	object.

This	example	add	a	textbox	to	a	canvas	in	a	new	document.

Sub	NewCanvasTextbox()

				Dim	docNew	As	Document

				Dim	shpCanvas	As	Shape

				'Create	a	new	document	and	add	a	drawing	canvas

				Set	docNew	=	Documents.Add

				Set	shpCanvas	=	docNew.Shapes.AddCanvas	_

								(Left:=100,	Top:=75,	Width:=150,	Height:=200)

				'Add	a	text	box	to	the	drawing	canvas

				shpCanvas.CanvasItems.AddTextbox	_

								Orientation:=msoTextOrientationHorizontal,	_

								Left:=1,	Top:=1,	Width:=100,	Height:=100

End	Sub

As	it	applies	to	the	Shapes	object.

This	example	adds	a	text	box	that	contains	the	text	"Test"	to	a	new	document.

Sub	newTextbox()

				Dim	docNew	As	Document

				Dim	newTextbox	As	Shape

				'Create	a	new	document	and	add	a	text	box

				Set	docNew	=	Documents.Add

				Set	newTextbox	=	docNew.Shapes.AddTextbox	_

								(Orientation:=msoTextOrientationHorizontal,	_

								Left:=100,	Top:=100,	Width:=300,	Height:=200)

				'Add	text	to	the	text	box

				newTextbox.TextFrame.TextRange	=	"Test"

End	Sub





Show	All



AddTextEffect	Method
							

AddTextEffect	method	as	it	applies	to	the	CanvasShapes	object.

Adds	a	WordArt	shape	to	a	drawing	canvas.		Returns	a	Shape	object	that
represents	the	WordArt	and	adds	it	to	the	CanvasShapes	collection.

expression.AddTextEffect(PresetTextEffect,	Text,	FontName,	FontSize,
FontBold,	FontItalic,	Left,	Top)

expression			Required.	An	expression	that	returns	a	CanvasShapes	object.

PresetTextEffect		Required	MsoPresetTextEffect.	A	preset	text	effect.	The
values	of	the	MsoPresetTextEffect	constants	correspond	to	the	formats	listed	in
the	WordArt	Gallery	dialog	box	(numbered	from	left	to	right	and	from	top	to
bottom).

MsoPresetTextEffect	can	be	one	of	these	MsoPresetTextEffect	constants.
msoTextEffect1
msoTextEffect10
msoTextEffect11
msoTextEffect12
msoTextEffect13
msoTextEffect14
msoTextEffect15
msoTextEffect16
msoTextEffect17
msoTextEffect18
msoTextEffect19
msoTextEffect2
msoTextEffect20
msoTextEffect21



msoTextEffect22
msoTextEffect23
msoTextEffect24
msoTextEffect25
msoTextEffect26
msoTextEffect27
msoTextEffect28
msoTextEffect29
msoTextEffect3
msoTextEffect30
msoTextEffect4
msoTextEffect5
msoTextEffect6
msoTextEffect7
msoTextEffect8
msoTextEffect9
msoTextEffectMixed

Text		Required	String.	The	text	in	the	WordArt.

FontName		Required	String.	The	name	of	the	font	used	in	the	WordArt.

FontSize		Required	Single.	The	size	(in	points)	of	the	font	used	in	the	WordArt.

FontBold		Required	MsoTriState.	MsoTrue	to	bold	the	WordArt	font.

MsoTriState	can	be	one	of	these	MsoTriState	constants.
msoCTrue		Not	used	with	this	argument.
msoFalse		Sets	the	font	used	in	the	WordArt	to	regular.
msoTriStateMixed		Not	used	with	this	argument.
msoTriStateToggle		Not	used	with	this	argument.
msoTrue	Sets	the	font	used	in	the	WordArt	to	bold.

FontItalic		Required	MsoTriState.	MsoTrue	to	italicize	the	WordArt	font.



MsoTriState	can	be	one	of	these	MsoTriState	constants.
msoCTrue		Not	used	with	this	argument.
msoFalse		Sets	the	font	used	in	the	WordArt	to	regular.
msoTriStateMixed		Not	used	with	this	argument.
msoTriStateToggle		Not	used	with	this	argument.
msoTrue	Sets	the	font	used	in	the	WordArt	to	italic.

Left			Required	Single.	The	position,	measured	in	points,	of	the	left	edge	of	the
WordArt	shape	relative	to	the	left	edge	of	the	drawing	canvas.

Top			Required	Single.	The	position,	measured	in	points,	of	the	top	edge	of	the
WordArt	shape	relative	to	the	top	edge	of	the	drawing	canvas.

AddTextEffect	method	as	it	applies	to	the	Shapes	object.

Adds	a	WordArt	shape	to	a	document.	Returns	a	Shape	object	that	represents	the
WordArt	and	adds	it	to	the	Shapes	collection.

expression.AddTextEffect(PresetTextEffect,	Text,	FontName,	FontSize,
FontBold,	FontItalic,	Left,	Top,	Anchor)

expression			Required.	An	expression	that	returns	a	Shapes	object.

PresetTextEffect		Required	MsoPresetTextEffect.	A	preset	text	effect.	The
values	of	the	MsoPresetTextEffect	constants	correspond	to	the	formats	listed	in
the	WordArt	Gallery	dialog	box	(numbered	from	left	to	right	and	from	top	to
bottom).

MsoPresetTextEffect	can	be	one	of	these	MsoPresetTextEffect	constants.
msoTextEffect1
msoTextEffect10
msoTextEffect11
msoTextEffect12
msoTextEffect13
msoTextEffect14
msoTextEffect15
msoTextEffect16



msoTextEffect17
msoTextEffect18
msoTextEffect19
msoTextEffect2
msoTextEffect20
msoTextEffect21
msoTextEffect22
msoTextEffect23
msoTextEffect24
msoTextEffect25
msoTextEffect26
msoTextEffect27
msoTextEffect28
msoTextEffect29
msoTextEffect3
msoTextEffect30
msoTextEffect4
msoTextEffect5
msoTextEffect6
msoTextEffect7
msoTextEffect8
msoTextEffect9
msoTextEffectMixed

Text		Required	String.	The	text	in	the	WordArt.

FontName		Required	String.	The	name	of	the	font	used	in	the	WordArt.

FontSize		Required	Single.	The	size,	in	points,	of	the	font	used	in	the	WordArt.

FontBold		Required	MsoTriState.	MsoTrue	to	bold	the	WordArt	font.

MsoTriState	can	be	one	of	these	MsoTriState	constants.
msoCTrue		Not	used	with	this	argument.
msoFalse		Sets	the	font	used	in	the	WordArt	to	regular.



msoTriStateMixed		Not	used	with	this	argument.
msoTriStateToggle		Not	used	with	this	argument.
msoTrue		Sets	the	font	used	in	the	WordArt	to	bold.

FontItalic		Required	MsoTriState.	MsoTrue	to	italicize	the	WordArt	font.

MsoTriState	can	be	one	of	these	MsoTriState	constants.
msoCTrue		Not	used	with	this	argument.
msoFalse		Sets	the	font	used	in	the	WordArt	to	regular.
msoTriStateMixed		Not	used	with	this	argument.
msoTriStateToggle		Not	used	with	this	argument.
msoTrue		Sets	the	font	used	in	the	WordArt	to	italic.

Left			Required	Single.	The	position,	measured	in	points,	of	the	left	edge	of	the
WordArt	shape	relative	to	the	anchor.

Top			Required	Single.	The	position,	measured	in	points,	of	the	top	edge	of	the
WordArt	shape	relative	to	the	anchor.

Anchor			Optional	Variant.	A	Range	object	that	represents	the	text	to	which	the
WordArt	is	bound.	If	Anchor	is	specified,	the	anchor	is	positioned	at	the
beginning	of	the	first	paragraph	in	the	anchoring	range.	If	this	argument	is
omitted,	the	anchoring	range	is	selected	automatically	and	the	WordArt	is
positioned	relative	to	the	top	and	left	edges	of	the	page.



Remarks

When	you	add	WordArt	to	a	document,	the	height	and	width	of	the	WordArt	are
automatically	set	based	on	the	size	and	amount	of	text	you	specify.



Example

As	it	applies	to	the	CanvasShapes	object.

This	example	adds	a	drawing	canvas	to	a	new	document	and	inserts	a	WordArt
shape	inside	the	canvas	that	contains	the	text	"Hello,	World."

Sub	NewCanvasTextEffect()

				Dim	docNew	As	Document

				Dim	shpCanvas	As	Shape

				'Create	a	new	document	and	add	a	drawing	canvas

				Set	docNew	=	Documents.Add

				Set	shpCanvas	=	docNew.Shapes.AddCanvas(	_

								Left:=100,	Top:=100,	Width:=150,	_

								Height:=50)

				'Add	WordArt	shape	to	the	drawing	canvas

				shpCanvas.CanvasItems.AddTextEffect	_

								PresetTextEffect:=msoTextEffect20,	_

								Text:="Hello,	World",	FontName:="Tahoma",	_

								FontSize:=15,	FontBold:=msoTrue,	_

								FontItalic:=msoFalse,	_

								Left:=120,	Top:=120

End	Sub

As	it	applies	to	the	Shapes	object.

This	example	adds	WordArt	that	contains	the	text	"This	is	a	test"	to	the	active
document,	and	then	it	anchors	the	WordArt	to	the	first	paragraph.

Sub	NewTextEffect()

				ActiveDocument.Shapes.AddTextEffect	_

								PresetTextEffect:=msoTextEffect11,	_

								Text:="This	is	a	test",	FontName:="Arial	Black",	_

								FontSize:=36,	FontBold:=msoTrue,	_

								FontItalic:=msoFalse,	Left:=1,	Top:=1,	_

								Anchor:=ActiveDocument.Paragraphs(1).Range

End	Sub





AddToFavorites	Method
							

Creates	a	shortcut	to	the	document	or	hyperlink	and	adds	it	to	the	Favorites
folder.

expression.AddToFavorites

expression			Required.	An	expression	that	returns	a	Document	or	Hyperlink
object.



Example

This	example	creates	a	shortcut	for	each	hyperlink	in	the	active	document	and
adds	it	to	the	Favorites	folder.

For	Each	myHyperlink	In	ActiveDocument.Hyperlinks

				myHyperlink.AddToFavorites

Next	myHyperlink

This	example	creates	a	shortcut	to	Sales.doc	and	adds	it	to	the	Favorites	folder.
If	Sales.doc	isn't	currently	open,	this	example	opens	it	from	the	C:\Documents
folder.

For	Each	doc	in	Documents

				If	LCase(doc.Name)	=	"sales.doc"	Then	isOpen	=	True

Next	doc

If	isOpen	<>	True	Then	Documents.Open	_

				FileName:="C:\Documents\Sales.doc"

Documents("Sales.doc").AddToFavorites



After	Method
							

Returns	the	next	TabStop	object	to	the	right	of	Position.

expression.After(Position)

expression			Required.	An	expression	that	returns	a	TabStops	collection.

Position			Required	Single.	A	location	on	the	ruler,	in	points.



Example

This	example	changes	the	alignment	of	the	first	custom	tab	stop	in	the	first
paragraph	in	the	active	document	that's	more	than	1	inch	from	the	left	margin.

Dim	tabTemp	as	TabStop

Set	tabTemp	=	ActiveDocument.Paragraphs(1).TabStops	_

				.After(InchesToPoints(1))

tabTemp.Alignment	=	wdAlignTabCenter



Align	Method
							

Aligns	the	shapes	in	the	specified	range	of	shapes.

expression.Align(Align,	RelativeTo)

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

Align		Required	MsoAlignCmd.	Specifies	the	way	the	shapes	in	the	specified
shape	range	are	to	be	aligned.

MsoAlignCmd	can	be	one	of	these	MsoAlignCmd	constants.
msoAlignCenters
msoAlignMiddles
msoAlignTops
msoAlignBottoms
msoAlignLefts
msoAlignRights

RelativeTo		Required	Long.	.	True	to	align	shapes	relative	to	the	edge	of	the
document.	False	to	align	shapes	relative	to	one	another.



Example

This	example	aligns	the	left	edges	of	all	the	shapes	in	the	selection	of	shapes	in
myDocument	with	the	left	edge	of	the	leftmost	shape	in	the	range.

Set	myShapeRange	=	Selection.ShapeRange

myShapeRange.Align	msoAlignLefts,	False



AppendToSpike	Method
							

Deletes	the	specified	range	and	adds	the	contents	of	the	range	to	the	Spike	(a
built-in	AutoText	entry).	This	method	returns	the	Spike	as	an	AutoTextEntry
object.

expression.AppendToSpike(Range)

expression			Required.	An	expression	that	returns	an	AutoTextEntries	object.

Range			Required	Range	object.	The	range	that's	deleted	and	appended	to	the
Spike.



Remarks

The	AppendToSpike	method	is	only	valid	for	the	AutoTextEntries	collection
in	the	Normal	template.



Example

This	example	deletes	the	selection	and	adds	its	contents	to	the	Spike	in	the
Normal	template.

If	Len(Selection.Range.Text)	>	1	Then

				NormalTemplate.AutoTextEntries.AppendToSpike	_

								Range:=Selection.Range

End	If

This	example	clears	the	Spike	and	adds	the	first	and	third	words	in	the	active
document	to	the	Spike	in	the	Normal	template.	The	contents	of	the	Spike	are
then	inserted	at	the	insertion	point.

Dim	atEntry	As	AutoTextEntry

Selection.Collapse	Direction:=wdCollapseStart

For	Each	atEntry	In	NormalTemplate.AutoTextEntries

				If	atEntry.Name	=	"Spike"	Then	atEntry.Delete

Next	atEntry

With	NormalTemplate.AutoTextEntries

				.AppendToSpike	Range:=ActiveDocument.Words(3)

				.AppendToSpike	Range:=ActiveDocument.Words(1)

				.Item("Spike").Insert	Where:=Selection.Range

End	With



Show	All



Apply	Method
							

Apply	method	as	it	applies	to	the	AutoCorrectEntry	object.

Replaces	a	range	with	the	value	of	the	specified	AutoCorrect	entry.

expression.Apply(Range)

expression			Required.	An	expression	that	returns	an	AutoCorrectEntry	object.

Range		Required	Range	object.

Apply	method	as	it	applies	to	the	Shape	or	ShapeRange	object.

Applies	to	the	specified	shape	formatting	that	has	been	copied	using	the	PickUp
method.

expression.Apply

expression			Required.	An	expression	that	returns	one	of	the	above	objects.



Remarks

If	formatting	for	the	Shape	or	ShapeRange	object	has	not	previously	been
copied	using	the	PickUp	method,	using	the	Apply	method	generates	an	error.



Example

As	it	applies	to	the	AutoCorrectEntry	object.

This	example	adds	an	AutoCorrect	replacement	entry,	then	applies	the	"sr"
AutoCorrect	entry	to	the	selected	text.

AutoCorrect.Entries.Add	Name:=	"sr",	Value:=	"Stella	Richards"

AutoCorrect.Entries("sr").Apply	Selection.Range

This	example	applies	the	"sr"	AutoCorrect	entry	to	the	first	word	in	the	active
document.

AutoCorrect.Entries("sr").Apply	ActiveDocument.Words(1)

As	it	applies	to	the	Shape	object.

This	example	copies	the	formatting	of	shape	one	on	the	active	document	and
applies	the	copied	formatting	to	shape	two	on	the	same	document.

With	ActiveDocument

				.Shapes(1).PickUp

				.Shapes(2).Apply

End	With



ApplyBulletDefault	Method
							

Adds	bullets	and	formatting	to	the	paragraphs	in	the	range	for	the	specified
ListFormat	object.	If	the	paragraphs	are	already	formatted	with	bullets,	this
method	removes	the	bullets	and	formatting.

expression.ApplyBulletDefault(DefaultListBehavior)

expression			Required.	An	expression	that	returns	a	ListFormat	object.

DefaultListBehavior			Optional	Variant.	Sets	a	value	that	specifies	whether
Microsoft	Word	uses	new	Web-oriented	formatting	for	better	list	display.	Can	be
either	of	the	following	constants:	wdWord8ListBehavior	(use	formatting
compatible	with	Microsoft	Word	97)	or	wdWord9ListBehavior	(use	Web-
oriented	formatting).	For	compatibility	reasons,	the	default	constant	is
wdWord8ListBehavior,	but	in	new	procedures	you	should	use
wdWord9ListBehavior	to	take	advantage	of	improved	Web-oriented	formatting
with	respect	to	indenting	and	multilevel	lists.



Example

This	example	adds	bullets	and	formatting	to	the	paragraphs	in	the	selection.	If
there	are	already	bullets	in	the	selection,	the	example	removes	the	bullets	and
formatting.

Selection.Range.ListFormat.ApplyBulletDefault

This	example	adds	a	bullet	and	formatting	to,	or	removes	them	from,	the	second
paragraph	in	MyDoc.doc.

Documents("MyDoc.doc").Paragraphs(2).Range.ListFormat	_

				.ApplyBulletDefault

This	example	sets	the	variable	myRange	to	a	range	that	includes	paragraphs	three
through	six	of	the	active	document,	and	then	it	checks	to	see	whether	the	range
contains	list	formatting.	If	there's	no	list	formatting,	default	bullets	are	added.

Set	myDoc	=	ActiveDocument

Set	myRange	=	myDoc.Range(	_

				Start:=	myDoc.Paragraphs(3).Range.Start,	_

				End:=myDoc.Paragraphs(6).Range.End)

If	myRange.ListFormat.ListType	=	wdListNoNumbering	Then

				myRange.ListFormat.ApplyBulletDefault

End	If



Show	All



ApplyListTemplate	Method
							

	ApplyListTemplate	method	as	it	applies	to	the	ListFormat	object.

Applies	a	set	of	list-formatting	characteristics	to	the	specified	ListFormat	object

expression.ApplyListTemplate(ListTemplate,	ContinuePreviousList,	ApplyTo,
DefaultListBehavior)

expression			Required.	An	expression	that	returns	one	of	the	above	objects.

ListTemplate		Required	ListTemplate	object.	The	list	template	to	be	applied.

ContinuePreviousList		Optional	Variant.	True	to	continue	the	numbering	from
the	previous	list;	False	to	start	a	new	list.

ApplyTo		Optional	Variant.	The	portion	of	the	list	that	the	list	template	is	to	be
applied	to.	Can	be	one	of	the	following	WdListApplyTo	constants:
wdListApplyToSelection,	wdListApplyToWholeList,	or
wdListApplyToThisPointForward.

DefaultListBehavior		Optional	Variant.	Sets	a	value	that	specifies	whether
Microsoft	Word	uses	new	Web-oriented	formatting	for	better	list	display.	Can	be
either	of	the	following	constants:	wdWord8ListBehavior	(use	formatting
compatible	with	Microsoft	Word	97)	or	wdWord9ListBehavior	(use	Web-
oriented	formatting).	For	compatibility	reasons,	the	default	constant	is
wdWord8ListBehavior,	but	in	new	procedures	you	should	use
wdWord9ListBehavior	to	take	advantage	of	improved	Web-oriented	formatting
with	respect	to	indenting	and	multilevel	lists.

	

	ApplyListTemplate	method	as	it	applies	to	the	List	object.

Applies	a	set	of	list-formatting	characteristics	to	the	specified	Listobject



expression.ApplyListTemplate(ListTemplate,	ContinuePreviousList,
DefaultListBehavior)

expression			Required.	An	expression	that	returns	one	of	the	above	objects.

ListTemplate		Required	ListTemplate	object.	The	list	template	to	be	applied.

ContinuePreviousList		Optional	Variant.	True	to	continue	the	numbering	from
the	previous	list;	False	to	start	a	new	list.

DefaultListBehavior		Optional	Variant.	Sets	a	value	that	specifies	whether
Microsoft	Word	uses	new	Web-oriented	formatting	for	better	list	display.	Can	be
either	of	the	following	constants:	wdWord8ListBehavior	(use	formatting
compatible	with	Microsoft	Word	97)	or	wdWord9ListBehavior	(use	Web-
oriented	formatting).	For	compatibility	reasons,	the	default	constant	is
wdWord8ListBehavior,	but	in	new	procedures	you	should	use
wdWord9ListBehavior	to	take	advantage	of	improved	Web-oriented	formatting
with	respect	to	indenting	and	multilevel	lists.

	



Example

As	it	applies	to	the	ListFormat	object.

This	example	sets	the	variable	myRange	to	a	range	in	the	active	document,	and
then	it	checks	to	see	whether	the	range	has	list	formatting.	If	no	list	formatting
has	been	applied,	the	fourth	outline-numbered	list	template	is	applied	to	the
range.

Set	myDoc	=	ActiveDocument

Set	myRange	=	myDoc.Range(	_

				Start:=	myDoc.Paragraphs(3).Range.Start,	_

				End:=myDoc.Paragraphs(6).Range.End)

If	myRange.ListFormat.ListType	=	wdListNoNumbering	Then

				myRange.ListFormat.ApplyListTemplate	_

								ListTemplate:=ListGalleries(wdOutlineNumberGallery)	_

								.ListTemplates(4)

End	If

As	it	applies	to	the	List	object.

This	example	sets	the	variable	myList	to	the	fourth	list	in	MyDocument.doc,	and
then	it	applies	the	third	bulleted	list	template	to	the	list.

Set	myList	=	Documents("MyDocument.doc").Lists(4)

myList.ApplyListTemplate	_

				ListTemplate:=ListGalleries(wdBulletGallery).ListTemplates(3)

This	example	sets	the	variable	myLstRange	to	the	list	formatting	in	the	second
paragraph	of	MyDocument.doc.	The	example	then	applies	the	third	numbered
list	template	from	that	point	forward	in	the	list.

Set	myLstRange	=	Documents("MyDocument.doc").Paragraphs(2)	_

				.Range.ListFormat

myLstRange.ApplyListTemplate	_

				ListTemplate:=ListGalleries(wdNumberGallery)	_

				.ListTemplates(3),	_

				ApplyTo:=wdListApplyToThisPointForward





ApplyNumberDefault	Method
							

Adds	the	default	numbering	scheme	to	the	paragraphs	in	the	range	for	the
specified	ListFormat	object.	If	the	paragraphs	are	already	formatted	as	a
numbered	list,	this	method	removes	the	numbers	and	formatting.

expression.ApplyNumberDefault(DefaultListBehavior)

expression			Required.	An	expression	that	returns	a	ListFormat	object.

DefaultListBehavior			Optional	Variant.	Sets	a	value	that	specifies	whether
Microsoft	Word	uses	new	Web-oriented	formatting	for	better	list	display.	Can	be
either	of	the	following	constants:	wdWord8ListBehavior	(use	formatting
compatible	with	Microsoft	Word	97)	or	wdWord9ListBehavior	(use	Web-
oriented	formatting).	For	compatibility	reasons,	the	default	constant	is
wdWord8ListBehavior,	but	in	new	procedures	you	should	use
wdWord9ListBehavior	to	take	advantage	of	improved	Web-oriented	formatting
with	respect	to	indenting	and	multilevel	lists.



Example

This	example	numbers	the	paragraphs	in	the	selection.	If	the	selection	is	already
a	numbered	list,	the	example	removes	the	numbers	and	formatting.

Selection.Range.ListFormat.ApplyNumberDefault

This	example	sets	the	variable	myRange	to	include	paragraphs	three	through	six
of	the	active	document,	and	then	it	checks	to	see	whether	the	range	contains	list
formatting.	If	there's	no	list	formatting,	default	numbers	are	applied	to	the	range.

Set	myDoc	=	ActiveDocument

Set	myRange	=	myDoc.Range(	_

				Start:=	myDoc.Paragraphs(3).Range.Start,	_

				End:=myDoc.Paragraphs(6).Range.End)

If	myRange.ListFormat.ListType	=	wdListNoNumbering	Then

				myRange.ListFormat.ApplyNumberDefault

End	If



ApplyOutlineNumberDefault	Method
							

Adds	the	default	outline-numbering	scheme	to	the	paragraphs	in	the	range	for
the	specified	ListFormat	object.	If	the	paragraphs	are	already	formatted	as	an
outline-numbered	list,	this	method	removes	the	numbers	and	formatting.

expression.ApplyOutlineNumberDefault(DefaultListBehavior)

expression			Required.	An	expression	that	returns	a	ListFormat	object.

DefaultListBehavior			Optional	Variant.	Sets	a	value	that	specifies	whether
Microsoft	Word	uses	new	Web-oriented	formatting	for	better	list	display.	Can	be
either	of	the	following	constants:	wdWord8ListBehavior	(use	formatting
compatible	with	Microsoft	Word	97)	or	wdWord9ListBehavior	(use	Web-
oriented	formatting).	For	compatibility	reasons,	the	default	constant	is
wdWord8ListBehavior,	but	in	new	procedures	you	should	use
wdWord9ListBehavior	to	take	advantage	of	improved	Web-oriented	formatting
with	respect	to	indenting	and	multilevel	lists.



Remarks

This	method	doesn't	remove	built-in	heading	styles	that	have	been	applied	to
paragraphs.



Example

This	example	adds	outline	numbering	to	the	paragraphs	in	the	selection.	If	the
selection	is	already	an	outline-numbered	list,	the	example	removes	the	numbers
and	formatting.

Selection.Range.ListFormat.ApplyOutlineNumberDefault

This	example	sets	the	variable	myRange	to	include	paragraphs	three	through	six
of	the	active	document,	and	then	it	checks	to	see	whether	the	range	contains	list
formatting.	If	there's	no	list	formatting,	the	default	outline-numbered	list	format
is	applied.

Set	myDoc	=	ActiveDocument

Set	myRange	=	myDoc.Range(	_

				Start:=	myDoc.Paragraphs(3).Range.Start,	_

				End:=myDoc.Paragraphs(6).Range.End)

If	myRange.ListFormat.ListType	=	wdListNoNumbering	Then

				myRange.ListFormat.ApplyOutlineNumberDefault

End	If



ApplyPageBordersToAllSections
Method
							

Applies	the	specified	page-border	formatting	to	all	sections	in	a	document.

expression.ApplyPageBordersToAllSections

expression			Required.	An	expression	that	returns	a	Borders	object.



Example

This	example	adds	a	single-line	page	border	to	all	sections	in	the	active
document.

Dim	borderLoop	As	Border

With	ActiveDocument.Sections(1)

				For	Each	borderLoop	In	.Borders

								With	borderLoop

												.LineStyle	=	wdLineStyleSingle

												.LineWidth	=	wdLineWidth050pt

								End	With

				Next	borderLoop

				.Borders.ApplyPageBordersToAllSections

End	With



ApplyPictureBullet	Method
							

Formats	a	paragraph	or	range	of	paragraphs	with	a	picture	bullet.

expression.ApplyPictureBullet(FileName)

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

FileName		Required	String.	The	path	and	file	name	of	the	picture	file.



Example

This	example	creates	a	new	document	with	a	list	and	applies	a	picture	bullet
format	to	all	paragraphs	except	the	first	and	last.

Sub	ApplyPictureBulletsToParagraphs()

				Dim	docNew	As	Document

				Dim	rngRange	As	Range

				Dim	lstTemplate	As	ListTemplate

				Dim	intPara	As	Integer

				Dim	intCount	As	Integer

				'Set	the	initial	value	of	object	variables

				Set	docNew	=	Documents.Add

				'Add	paragraphs	to	the	new	document,	including	eight	list	items

				With	Selection

								.TypeText	Text:="This	is	an	introductory	paragraph."

								.TypeParagraph

				End	With

				Do	Until	intPara	=	8

								With	Selection

												.TypeText	Text:="This	is	a	list	item."

												.TypeParagraph

								End	With

								intPara	=	intPara	+	1

				Loop

				Selection.TypeText	Text:="This	is	a	concluding	paragraph."

				'Count	the	total	number	of	paragraphs	in	the	document

				intCount	=	docNew.Paragraphs.Count

				'Set	the	range	to	include	all	paragraphs	in	the

				'document	except	the	first	and	the	last

				Set	rngRange	=	docNew.Range(	_

								Start:=ActiveDocument.Paragraphs(2).Range.Start,	_

								End:=ActiveDocument.Paragraphs(intCount	-	1).Range.End)

				'Format	the	list	template	as	a	bullet

				Set	lstTemplate	=	ListGalleries(Index:=wdBulletGallery)	_

								.ListTemplates(7)

				'Format	list	with	a	picture	bullet

				lstTemplate.ListLevels(1).ApplyPictureBullet	_



																FileName:="c:\pictures\bluebullet.gif"

				'Apply	the	list	format	settings	to	the	range

				rngRange.ListFormat.ApplyListTemplate	_

								ListTemplate:=lstTemplate

End	Sub



Show	All



ApplyTheme	Method
							

Applies	a	theme	to	an	open	document.

expression.ApplyTheme(Name)

expression			Required.	An	expression	that	returns	a	Document	object.

Name			Required	String.	The	name	of	the	theme	plus	any	theme	formatting
options	you	want	to	apply.	The	format	of	this	string	is	"theme	nnn"	where	theme
and	nnn	are	defined	as	follows:

String Description

theme

The	name	of	the	folder	that	contains	the	data	for	the	requested	theme.
(The	default	location	for	theme	data	folders	is	C:\Program
Files\Common	Files\Microsoft	Shared\Themes.)	You	must	use	the
folder	name	for	the	theme	rather	than	the	display	name	that	appears
in	the	Theme	dialog	box	(Theme	command,	Format	menu).

nnn

A	three-digit	string	that	indicates	which	theme	formatting	options	to
activate	(1	to	activate,	0	to	deactivate).	The	digits	correspond	to	the
Vivid	Colors,	Active	Graphics,	and	Background	Image	check
boxes	in	the	Theme	dialog	box	(Theme	command,	Format	menu).
If	this	string	is	omitted,	the	default	value	for	nnn	is	"011"	(Active
Graphics	and	Background	Image	are	activated).



Example

This	example	applies	the	Artsy	theme	to	the	active	document	and	activates	the
Vivid	Colors	option.

ActiveDocument.ApplyTheme	"artsy	100"



Arrange	Method
							

Arranges	all	open	document	windows	in	the	application	workspace.	Because
Microsoft	Word	uses	a	Single	Document	Interface	(SDI),	this	method	no	longer
has	any	effect.

expression.Arrange(ArrangeStyle)

expression			An	expression	that	returns	a	Windows	object.

ArrangeStyle			Optional	Variant.	The	window	arrangement.	Can	be	either	of	the
following	WdArrangeStyle	constants:	wdIcons	or	wdTiled.



Example

This	example	arranges	all	open	windows	so	that	they	don't	overlap.

Windows.Arrange	ArrangeStyle:=wdTiled

This	example	minimizes	all	open	windows	and	then	arranges	the	minimized
windows.

Dim	windowLoop	As	Window

For	Each	windowLoop	In	Windows

				With	windowLoop

								.Activate

								.WindowState	=	wdWindowStateMinimize

				End	With

Next	windowLoop

Windows.Arrange	ArrangeStyle:=wdIcons



AutoFit	Method
							

Changes	the	width	of	a	table	column	to	accommodate	the	width	of	the	text
without	changing	the	way	text	wraps	in	the	cells.

expression.AutoFit

expression			Required.	An	expression	that	returns	a	Column	or	Columns	object.



Remarks

If	the	table	is	already	as	wide	as	the	distance	between	the	left	and	right	margins,
this	method	has	no	affect.



Example

This	example	creates	a	3x3	table	in	a	new	document	and	then	changes	the	width
of	the	first	column	to	accommodate	the	width	of	the	text.

Dim	docNew	as	Document

Dim	tableNew	as	Table

Set	docNew	=	Documents.Add

Set	tableNew	=	docNew.Tables.Add(Range:=Selection.Range,	_

				NumRows:=3,	NumColumns:=3)

With	tableNew

				.Cell(1,1).Range.InsertAfter	"First	cell"

				.Columns(1).AutoFit

End	With

This	example	creates	a	3x3	table	in	a	new	document	and	then	changes	the	width
of	all	the	columns	to	accommodate	the	width	of	the	text.

Dim	docNew	as	Document

Dim	tableNew	as	Table

Set	docNew	=	Documents.Add

Set	tableNew	=	docNew.Tables.Add(Selection.Range,	3,	3)

With	tableNew

				.Cell(1,1).Range.InsertAfter	"First	cell"

				.Cell(1,2).Range.InsertAfter	"This	is	cell	(1,2)"

				.Cell(1,3).Range.InsertAfter	"(1,3)"

				.Columns.AutoFit

End	With



AutoFitBehavior	Method
							

Determines	how	Microsoft	Word	resizes	a	table	when	the	AutoFit	feature	is
used.	Word	can	resize	the	table	based	on	the	content	of	the	table	cells	or	the
width	of	the	document	window.	You	can	also	use	this	method	to	turn	off	AutoFit
so	that	the	table	size	is	fixed,	regardless	of	cell	contents	or	window	width.

expression.AutoFitBehavior(Behavior)

expression			Required.	An	expression	that	returns	a	Table	object.

Behavior		Required	WdAutoFitBehavior.	How	Word	resizes	the	specified	table
with	the	AutoFit	feature	is	used.

WdAutoFitBehavior	can	be	one	of	these	WdAutoFitBehavior	constants.
wdAutoFitContent
wdAutoFitWindow
wdAutoFitFixed



Remarks

Setting	the	AutoFit	behavior	to	wdAutoFitContent	or	wdAutoFitWindow	sets
the	AllowAutoFit	property	to	True	if	it's	currently	False.	Likewise,	setting	the
AutoFit	behavior	to	wdAutoFitFixed	sets	the	AllowAutoFit	property	to	False	if
it's	currently	True.



Example

This	example	sets	the	AutoFit	behavior	for	the	first	table	in	the	active	document
to	automatically	resize	based	on	the	width	of	the	document	window.

ActiveDocument.Tables(1).AutoFitBehavior	_

				wdAutoFitWindow



Show	All



AutoFormat	Method
							

AutoFormat	method	as	it	applies	to	the	Table	object.

Applies	a	predefined	look	to	a	table.	The	arguments	for	this	method	correspond
to	the	options	in	the	Table	AutoFormat	dialog	box	(Table	menu).

expression.AutoFormat(Format,	ApplyBorders,	ApplyShading,	ApplyFont,
ApplyColor,	ApplyHeadingRows,	ApplyLastRow,	ApplyFirstColumn,
ApplyLastColumn,	AutoFit)

expression			Required.	An	expression	that	returns	one	of	the	above	objects.

Format		Optional	Variant.

ApplyBorders		Optional	Variant.	True	to	apply	the	border	properties	of	the
specified	format.	The	default	value	is	True.

ApplyShading		Optional	Variant.	True	to	apply	the	shading	properties	of	the
specified	format.	The	default	value	is	True.

ApplyFont		Optional	Variant.	True	to	apply	the	font	properties	of	the	specified
format.	The	default	value	is	True.

ApplyColor		Optional	Variant.		True	to	apply	the	color	properties	of	the
specified	format.	The	default	value	is	True.

ApplyHeadingRows		Optional	Variant.	Optional	Variant.	True	to	apply	the
heading-row	properties	of	the	specified	format.	The	default	value	is	True.

ApplyLastRow		Optional	Variant.	True	to	apply	the	last-row	properties	of	the
specified	format.	The	default	value	is	False.

ApplyFirstColumn		Optional	Variant.	True	to	apply	the	first-column	properties
of	the	specified	format.	The	default	value	is	True.



ApplyLastColumn		Optional	Variant.	True	to	apply	the	last-column	properties
of	the	specified	format.	The	default	value	is	False.

AutoFit		Optional	Variant.	True	to	decrease	the	width	of	the	table	columns	as
much	as	possible	without	changing	the	way	text	wraps	in	the	cells.	The	default
value	is	True.

	

AutoFormat	method	as	it	applies	to	the	Document	and	Range	objects.

Automatically	formats	a	document.	Use	the	Kind	property	to	specify	a
document	type.

expression.AutoFormat

expression			Required.	An	expression	that	returns	one	of	the	above	objects.

	



Example

As	it	applies	to	the	Table	object.

This	example	creates	a	5x5	table	in	a	new	document	and	applies	all	the
properties	of	the	Colorful	2	format	to	the	table.

Set	newDoc	=	Documents.Add

Set	myTable	=	newDoc.Tables.Add(Range:=Selection.Range,	_

				NumRows:=5,	NumColumns:=5)

myTable.AutoFormat	Format:=wdTableFormatColorful2

This	example	applies	all	the	properties	of	the	Classic	2	format	to	the	table	in
which	the	insertion	point	is	currently	located.	If	the	insertion	point	isn't	in	a
table,	a	message	box	is	displayed.

Selection.Collapse	Direction:=wdCollapseStart

If	Selection.Information(wdWithInTable)	=	True	Then

				Selection.Tables(1).AutoFormat	Format:=wdTableFormatClassic2

Else

				MsgBox	"The	insertion	point	is	not	in	a	table."

End	If

As	it	applies	to	the	Range	object.

This	example	automatically	formats	the	selection.

Selection.Range.AutoFormat



AutoMarkEntries	Method
							

Automatically	adds	XE	(Index	Entry)	fields	to	the	specified	document,	using	the
entries	from	a	concordance	file.

Note			A	concordance	file	is	a	Word	document	that	contains	a	two-column	table,
with	terms	to	index	in	the	first	column	and	index	entries	in	the	second	column.

expression.AutoMarkEntries(ConcordanceFileName)

expression			Required.	An	expression	that	returns	an	Indexes	object.

ConcordanceFileName			Required	String.	The	concordance	file	name	that
includes	a	list	of	items	to	be	indexed.



Example

This	example	adds	index	entries	to	Thesis.doc	based	on	the	entries	in
C:\Documents\List.doc.

Documents("Thesis.doc").Indexes.AutoMarkEntries	_

				ConcordanceFileName:="C:\Documents\List.doc"



AutomaticChange	Method
							

Performs	an	AutoFormat	action	when	there's	a	change	suggested	by	the	Office
Assistant.	If	no	AutoFormat	action	is	active,	this	method	generates	an	error.

expression.AutomaticChange()

expression			Required.	An	expression	that	returns	an	Application	object.



Example

This	example	completes	an	Office	Assistant	AutoFormat	action	if	one	is	active.

Application.AutomaticChange



AutomaticLength	Method
							

Specifies	that	the	first	segment	of	the	callout	line	(the	segment	attached	to	the
text	callout	box)	be	scaled	automatically	when	the	callout	is	moved.	Use	the
CustomLength	method	to	specify	that	the	first	segment	of	the	callout	line	retain
the	fixed	length	returned	by	the	Length	property	whenever	the	callout	is	moved.
Applies	only	to	callouts	whose	lines	consist	of	more	than	one	segment	(types
msoCalloutThree	and	msoCalloutFour).

expression.AutomaticLength

expression			Required.	An	expression	that	returns	a	CalloutFormat	object.



Remarks

Applying	this	method	sets	the	AutoLength	property	to	True.



Example

This	example	toggles	between	an	automatically	scaling	first	segment	and	one
with	a	fixed	length	for	the	callout	line	for	the	first	shape	on	the	active	document.
For	the	example	to	work,	the	first	shape	must	be	a	callout.

Dim	docActive	as	Document

Set	docActive	=	ActiveDocument

With	docActive.Shapes(1).Callout

				If	.AutoLength	Then

								.CustomLength	50

				Else

								.AutomaticLength

				End	If

End	With



AutoScroll	Method
							

Scrolls	automatically	through	the	specified	pane.

Note			This	method	continues	to	run	until	you	stop	it	manually	by	pressing	a	key
or	clicking	the	mouse.

expression.AutoScroll(Velocity)

expression			Required.	An	expression	that	returns	a	Pane	object.

Velocity			Required	Long.	The	speed	for	scrolling.	Can	be	a	number	from		–	100
through	100.	Use		–	100	for	full-speed	backward	scrolling,	and	use	100	for	full-
speed	forward	scrolling.



Example

This	example	scrolls	backward	through	the	active	window	pane	slowly.

ActiveDocument.ActiveWindow.ActivePane.AutoScroll	_

				Velocity:=-20

This	example	scrolls	forward	through	the	active	window	pane	at	full	speed.

ActiveDocument.ActiveWindow.ActivePane.AutoScroll	_

				Velocity:=100



AutoSum	Method
							

Inserts	an	=	(Formula)	field	that	calculates	and	displays	the	sum	of	the	values	in
table	cells	above	or	to	the	left	of	the	cell	specified	in	the	expression.	For
information	about	how	Word	determines	which	values	to	add,	see	the	Formula
method.

expression.AutoSum

expression			Required.	An	expression	that	returns	a	Cell	object.



Example

This	example	creates	a	3x3	table	in	a	new	document	and	sums	the	numbers	in
the	first	column.

Dim	docNew	as	Document

Dim	tableNew	as	Table

Set	docNew	=	Documents.Add	

Set	tableNew	=	docNew.Tables.Add(Selection.Range,	3,	3)

With	tableNew

				.Cell(1,1).Range.InsertAfter	"10"

				.Cell(2,1).Range.InsertAfter	"15"

				.Cell(3,1).AutoSum

End	With

This	example	sums	the	numbers	above	or	to	the	left	of	the	cell	that	contains	the
insertion	point.

Selection.Collapse	Direction:=wdCollapseStart

If	Selection.Information(wdWithInTable)	=	True	Then

				Selection.Cells(1).AutoSum

Else

				MsgBox	"The	insertion	point	is	not	in	a	table."

End	If



Show	All



AutoSummarize	Method
							

Creates	an	automatic	summary	of	the	specified	document,	and	returns	a	Range
object.	Corresponds	to	the	options	in	AutoSummarize	dialog	box.

expression.AutoSummarize(Length,	Mode,	UpdateProperties)

expression			Required.	An	expression	that	returns	a	Document	object.

Length			Optional	Variant.	The	length	of	the	summary	as	a	percentage	of	the
total	document	length	(the	larger	the	number,	the	more	detail	that's	included	in
the	summary).

Mode			Optional	Variant.	Specifies	the	way	the	summary	is	displayed.	Can	be
one	of	the	following	WdSummaryMode	constants.

WdSummaryMode	can	be	one	of	these	WdSummaryMode	constants.
wdSummaryModeHighlight	Highlights	the	key	points	in	the	specified
document	and	displays	the	AutoSummarize	toolbar.
wdSummaryModeInsert	Inserts	a	summary	at	the	beginning	of	the	specified
document.
wdSummaryModeCreateNew	Creates	a	new	document	and	inserts	the
summary.
wdSummaryModeHideAllButSummary	Hides	everything	except	the
summary	and	displays	the	AutoSummarize	toolbar.

UpdateProperties			Optional	Variant.	True	to	update	the	Keyword	and
Comments	boxes	in	the	Properties	dialog	box	to	reflect	the	content	of	the
summary	for	the	specified	document.



Example

This	example	creates	an	automatic	summary	of	the	active	document	by
highlighting	its	key	points.

ActiveDocument.AutoSummarize	Length:=30,	_

				Mode:=wdSummaryModeHighlight,	_

				UpdateProperties:=True



Before	Method
							

Returns	the	next	TabStop	object	to	the	left	of	Position.

expression.Before(Position)

expression			Required.	An	expression	that	returns	a	TabStops	collection.

Position			Required	Single.	A	location	on	the	ruler,	in	points.



Example

This	example	changes	the	alignment	of	the	first	custom	tab	stop	in	the	first
paragraph	in	the	active	document	that's	less	than	2	inches	from	the	left	margin.

Dim	tsTemp	As	TabStop

Set	tsTemp	=	ActiveDocument.Paragraphs(1)	_

				.TabStops.Before(InchesToPoints(2))

tsTemp.Alignment	=	wdAlignTabCenter



Show	All



BoldRun	Method
							

Adds	the	bold	character	format	to	or	removes	it	from	the	current	run.	If	the	run
contains	a	mix	of	bold	and	non-bold	text,	this	method	adds	the	bold	character
format	to	the	entire	run.

expression.BoldRun

expression			Required.	An	expression	that	returns	a	Selection	object.



Remarks

For	more	information	on	using	Microsoft	Word	with	right-to-left	languages,	see
Word	features	for	right-to-left	languages.

mk:@MSITStore:wdmain10.chm::/html/wdrefFeaturesAvailableInWordWhenBidirectionalLanguagesAreEnabled.htm


Example

This	example	toggles	the	bold	formatting	for	the	current	selection.

Selection.BoldRun



BreakForwardLink	Method
							

Breaks	the	forward	link	for	the	specified	text	frame,	if	such	a	link	exists.

expression.BreakForwardLink

expression			Required.	An	expression	that	returns	a	TextFrame	object.



Remarks

Applying	this	method	to	a	shape	in	the	middle	of	a	chain	of	shapes	with	linked
text	frames	will	break	the	chain,	leaving	two	sets	of	linked	shapes.	All	of	the
text,	however,	will	remain	in	the	first	series	of	linked	shapes.



Example

This	example	creates	a	new	document	adds	a	chain	of	three	linked	text	boxes	to
it,	and	then	breaks	the	link	after	the	second	text	box.

Dim	shapeTextbox1	As	Shape

Dim	shapeTextbox2	As	Shape

Dim	shapeTextbox3	As	Shape

Documents.Add

Set	shapeTextbox1	=	ActiveDocument.Shapes.AddTextbox	_

				(Orientation:=msoTextOrientationHorizontal,	_

				Left:=InchesToPoints(1.5),	_

				Top:=InchesToPoints(0.5),	_

				Width:=InchesToPoints(1),	_

				Height:=InchesToPoints(0.5))

shapeTextbox1.TextFrame.TextRange	=	"This	is	some	text.	"	_

				&	"This	is	some	more	text.	This	is	even	more	text."

Set	shapeTextbox2	=	ActiveDocument.Shapes.AddTextbox	_

				(Orientation:=msoTextOrientationHorizontal,	_

				Left:=InchesToPoints(1.5),	_

				Top:=InchesToPoints(1.5),	_

				Width:=InchesToPoints(1),	_

				Height:=InchesToPoints(0.5))

Set	shapeTextbox3	=	ActiveDocument.Shapes.AddTextbox	_

				(Orientation:=msoTextOrientationHorizontal,	_

				Left:=InchesToPoints(1.5),	_

				Top:=InchesToPoints(2.5),	_

				Width:=InchesToPoints(1),	_

				Height:=InchesToPoints(0.5))

shapeTextbox1.TextFrame.Next	=	shapeTextbox2.TextFrame

shapeTextbox2.TextFrame.Next	=	shapeTextbox3.TextFrame

MsgBox	"Textboxes	1,	2,	and	3	are	linked."

shapeTextbox2.TextFrame.BreakForwardLink





BreakLink	Method
							

Breaks	the	link	between	the	source	file	and	the	specified	OLE	object,	picture,	or
linked	field.

Note			After	you	use	this	method,	the	link	result	won't	be	automatically	updated
if	the	source	file	is	changed.

expression.BreakLink

expression			Required.	An	expression	that	returns	a	LinkFormat	object.



Example

This	example	updates	and	then	breaks	the	links	to	any	shapes	that	are	linked
OLE	objects	in	the	active	document.

Dim	shapeLoop	As	Shape

For	Each	shapeLoop	In	ActiveDocument.Shapes

				With	shapeLoop

								If	.Type	=	msoLinkedOLEObject	Then

												.LinkFormat.Update

												.LinkFormat.BreakLink

								End	If

				End	With

Next	shapeLoop



BuildFreeform	Method
							

Builds	a	freeform	object.	Returns	a	FreeformBuilder	object	that	represents	the
freeform	as	it	is	being	built.	Use	the	AddNodes	method	to	add	segments	to	the
freeform.	After	you	have	added	at	least	one	segment	to	the	freeform,	you	can	use
the	ConvertToShape	method	to	convert	the	FreeformBuilder	object	into	a
Shape	object	that	has	the	geometric	description	you've	defined	in	the
FreeformBuilder	object.

expression.BuildFreeform(EditingType,	X1,	Y1)

expression			Required.	An	expression	that	returns	a	Shapes	object.

EditingType		The	editing	property	of	the	first	node.	Required	MsoEditingType.

MsoEditingType	can	be	either	of	these	MsoEditingType	constants	(cannot	be
msoEditingSmooth	or	msoEditingSymmetric).
msoEditingAuto
msoEditingCorner

X1,	Y1			Required	Single.	The	position	(in	points)	of	the	first	node	in	the
freeform	drawing	relative	to	the	upper-left	corner	of	the	document.



Example

This	example	adds	a	freeform	with	five	vertices	to	the	active	document.

Dim	docActive	As	Document

Set	docActive	=	ActiveDocument

With	docActive.Shapes.BuildFreeform(msoEditingCorner,	360,	200)

				.AddNodes	msoSegmentCurve,	msoEditingCorner,	_

								380,	230,	400,	250,	450,	300

				.AddNodes	msoSegmentCurve,	msoEditingAuto,	480,	200

				.AddNodes	msoSegmentLine,	msoEditingAuto,	480,	400

				.AddNodes	msoSegmentLine,	msoEditingAuto,	360,	200

				.ConvertToShape

End	With



BuildKeyCode	Method
							

Returns	a	unique	number	for	the	specified	key	combination.

expression.BuildKeyCode(Arg1,	Arg2,	Arg3,	Arg4)

expression			Optional.	An	expression	that	returns	an	Application	object.

Arg1		Required	WdKey.	A	key	you	specify	by	using	one	of	the	WdKey
constants.

WdKey	can	be	one	of	these	WdKey	constants.
wdKeyF
wdKeyF10
wdKeyF12
wdKeyF14
wdKeyF16
wdKeyF3
wdKeyF5
wdKeyF7
wdKeyF9
wdKeyH
wdKeyHyphen
wdKeyInsert
wdKeyK
wdKeyL
wdKeyM
wdKeyN
wdKeyNumeric0
wdKeyNumeric1
wdKeyNumeric2



wdKeyNumeric3
wdKeyNumeric4
wdKeyNumeric5
wdKeyNumeric5Special
wdKeyNumeric6
wdKeyNumeric7
wdKeyNumeric8
wdKeyNumeric9
wdKeyNumericAdd
wdKeyNumericDecimal
wdKeyNumericDivide
wdKeyNumericMultiply
wdKeyNumericSubtract
wdKeyO
wdKeyOpenSquareBrace
wdKeyOption
wdKeyP
wdKeyPageDown
wdKeyPageUp
wdKeyPause
wdKeyPeriod
wdKeyQ
wdKeyR
wdKeyReturn
wdKeyS
wdKeyScrollLock
wdKeySemiColon
wdKeyShift
wdKeySingleQuote
wdKeySlash
wdKeySpacebar
wdKeyT
wdKeyTab



wdKeyU
wdKeyV
wdKeyW
wdKeyX
wdKeyY
wdKeyZ
wdNoKey
wdKey0
wdKey1
wdKey2
wdKey3
wdKey4
wdKey5
wdKey6
wdKey7
wdKey8
wdKey9
wdKeyA
wdKeyAlt
wdKeyB
wdKeyBackSingleQuote
wdKeyBackSlash
wdKeyBackspace
wdKeyC
wdKeyCloseSquareBrace
wdKeyComma
wdKeyCommand
wdKeyControl
wdKeyD
wdKeyDelete
wdKeyE
wdKeyEnd
wdKeyEquals



wdKeyEsc
wdKeyF1
wdKeyF11
wdKeyF13
wdKeyF15
wdKeyF2
wdKeyF4
wdKeyF6
wdKeyF8
wdKeyG
wdKeyHome
wdKeyI
wdKeyJ

Arg2	-	Arg4		Optional	WdKey.	A	key	you	specify	by	using	one	of	the	WdKey
constants.

WdKey	can	be	one	of	these	WdKey	constants.
wdKeyF
wdKeyF10
wdKeyF12
wdKeyF14
wdKeyF16
wdKeyF3
wdKeyF5
wdKeyF7
wdKeyF9
wdKeyH
wdKeyHyphen
wdKeyInsert
wdKeyK
wdKeyL
wdKeyM
wdKeyN



wdKeyNumeric0
wdKeyNumeric1
wdKeyNumeric2
wdKeyNumeric3
wdKeyNumeric4
wdKeyNumeric5
wdKeyNumeric5Special
wdKeyNumeric6
wdKeyNumeric7
wdKeyNumeric8
wdKeyNumeric9
wdKeyNumericAdd
wdKeyNumericDecimal
wdKeyNumericDivide
wdKeyNumericMultiply
wdKeyNumericSubtract
wdKeyO
wdKeyOpenSquareBrace
wdKeyOption
wdKeyP
wdKeyPageDown
wdKeyPageUp
wdKeyPause
wdKeyPeriod
wdKeyQ
wdKeyR
wdKeyReturn
wdKeyS
wdKeyScrollLock
wdKeySemiColon
wdKeyShift
wdKeySingleQuote
wdKeySlash



wdKeySpacebar
wdKeyT
wdKeyTab
wdKeyU
wdKeyV
wdKeyW
wdKeyX
wdKeyY
wdKeyZ
wdNoKey
wdKey0
wdKey1
wdKey2
wdKey3
wdKey4
wdKey5
wdKey6
wdKey7
wdKey8
wdKey9
wdKeyA
wdKeyAlt
wdKeyB
wdKeyBackSingleQuote
wdKeyBackSlash
wdKeyBackspace
wdKeyC
wdKeyCloseSquareBrace
wdKeyComma
wdKeyCommand
wdKeyControl
wdKeyD
wdKeyDelete



wdKeyE
wdKeyEnd
wdKeyEquals
wdKeyEsc
wdKeyF1
wdKeyF11
wdKeyF13
wdKeyF15
wdKeyF2
wdKeyF4
wdKeyF6
wdKeyF8
wdKeyG
wdKeyHome
wdKeyI
wdKeyJ



Example

This	example	assigns	the	ALT	+	F1	key	combination	to	the	Organizer
command.

CustomizationContext	=	NormalTemplate

KeyBindings.Add	KeyCode:=BuildKeyCode(Arg1:=wdKeyAlt,	_

				Arg2:=wdKeyF1),	KeyCategory:=wdKeyCategoryCommand,	_

				Command:="Organizer"

This	example	removes	the	ALT+F1	key	assignment	from	the	Normal	template.

CustomizationContext	=	NormalTemplate

FindKey(BuildKeyCode(Arg1:=wdKeyAlt,	Arg2:=wdKeyF1)).Clear

This	example	displays	the	command	assigned	to	the	F1	key.

CustomizationContext	=	NormalTemplate

MsgBox	FindKey(BuildKeyCode(Arg1:=wdKeyF1)).Command



Calculate	Method
							

Calculates	a	mathematical	expression	within	a	range	or	selection.	Returns	the
result	as	a	Single.

expression.Calculate

expression			Required.	An	expression	that	returns	a	Range	or	Selection	object.



Example

This	example	inserts	a	mathematical	expression	at	the	beginning	of	the	active
document,	calculates	the	expression,	and	then	appends	the	results	to	the	range.
The	result	is	"1	+	1	=	2".

Set	myRange	=	ActiveDocument.Range(0,	0)

myRange.InsertBefore	"1	+	1	"

myRange.InsertAfter	"=	"	&	myRange.Calculate

This	example	calculates	the	selected	mathematical	expression	and	displays	the
result.

MsgBox	"And	the	answer	is...	"	&	Selection.Calculate



CancelAutoInsert	Method
							

Prevents	Word	from	automatically	adding	captions	to	any	type	of	item.

expression.CancelAutoInsert

expression			Required.	An	expression	that	returns	an	AutoCaptions	object.



Example

This	example	prevents	Word	from	automatically	adding	captions	to	any	type	of
item.

AutoCaptions.CancelAutoInsert



CanCheckin	Method
							

True	if	Microsoft	Word	can	check	in	a	specified	document	to	a	server.
Read/write	Boolean.

expression.CanCheckin

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.	



Remarks

To	take	advantage	of	the	collaboration	features	built	into	Word,	documents	must
be	stored	on	a	Microsoft	SharePoint	Portal	Server.



Example

This	example	checks	the	server	to	see	if	the	specified	document	can	be	checked
in	and,	if	it	can	be,	closes	the	document	and	checks	it	back	into	the	server.

Sub	CheckInOut(docCheckIn	As	String)

				If	Documents(docCheckIn).CanCheckin	=	True	Then

								Documents(docCheckIn).CheckIn

								MsgBox	docCheckIn	&	"	has	been	checked	in."

				Else

								MsgBox	"This	file	cannot	be	checked	in	"	&	_

								"at	this	time.		Please	try	again	later."

				End	If

End	Sub

To	call	the	CheckInOut	subroutine	above,	use	the	following	subroutine	and
replace	the	"http://servername/workspace/report.doc"	file	name	with	an	actual
file	located	on	a	server	mentioned	in	the	Remarks	section	above.

Sub	CheckDocInOut()

				Call	CheckInOut	(docCheckIn:="http://servername/workspace/report.doc")

End	Sub



CanCheckOut	Method
							

True	if	Microsoft	Word	can	check	out	a	specified	document	from	a	server.
Read/write	Boolean.

expression.CanCheckOut(FileName)

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

FileName		Required	String.	The	server	path	and	name	of	the	document.



Remarks

To	take	advantage	of	the	collaboration	features	built	into	Word,	documents	must
be	stored	on	a	Microsoft	SharePoint	Portal	Server.



Example

This	example	verifies	that	a	document	is	not	being	edited	by	another	user	and
that	it	can	be	checked	out.	If	the	document	can	be	checked	out,	it	copies	the
document	to	the	local	computer	for	editing.

Sub	CheckInOut(docCheckOut	As	String)

				If	Documents.CanCheckOut(docCheckOut)	=	True	Then

								Documents.CheckOut	docCheckOut

				Else

								MsgBox	"You	are	unable	to	check	out	this	document	at	this	time."

				End	If

End	Sub

To	call	the	CheckInOut	subroutine,	use	the	following	subroutine	and	replace	the
"http://servername/workspace/report.doc"	file	name	with	an	actual	file	located
on	a	server	mentioned	in	the	Remarks	section	above.

Sub	CheckDocInOut()

				Call	CheckInOut	(docCheckIn:="http://servername/workspace/report.doc")

End	Sub



CanContinuePreviousList	Method
							

Returns	a	WdContinue	constant	(wdContinueDisabled,	wdResetList,	or
wdContinueList)	that	indicates	whether	the	formatting	from	the	previous	list
can	be	continued.

expression.CanContinuePreviousList(ListTemplate)

expression			Required.	An	expression	that	returns	a	List	or	ListFormat	object.

ListTemplate			Required	ListTemplate	object.	A	list	template	that's	been	applied
to	previous	paragraphs	in	the	document.



Remarks

This	method	returns	the	state	of	the	Continue	previous	list	and	Restart
numbering	options	in	the	Bullets	and	Numbering	dialog	box	for	a	specified
list	format.	To	change	the	settings	of	these	options,	set	the	ContinuePreviousList
argument	of	the	ApplyListTemplate	method.



Example

This	example	checks	to	see	whether	numbering	from	a	previous	list	is	disabled.
If	it	isn't	disabled,	the	current	list	template	is	applied	with	numbering	set	to
continue	from	the	previous	list.	The	selection	must	be	within	the	second	list,	or
this	example	creates	an	error.

Dim	lfTemp	As	ListFormat

Dim	intContinue	As	Integer

Set	lfTemp	=	Selection.Range.ListFormat

intContinue	=	lfTemp.CanContinuePreviousList(	_

				ListTemplate:=lfTemp.ListTemplate)

If	intContinue	<>	wdContinueDisabled	Then

				lfTemp.ApplyListTemplate	_

								ListTemplate:=lfTemp.ListTemplate,	_

								ContinuePreviousList:=True

End	If



Show	All



CanvasCropBottom	Method
							

Crops	a	percentage	of	the	height	of	a	drawing	canvas	from	the	bottom	of	the
canvas.

expression.CanvasCropBottom(Increment)

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

Increment		Required	Single.	The	amount	in	percentage	points	of	a	drawing
canvas's	height	that	you	want	remaining	after	the	canvas	is	cropped.	Entering	0.9
as	the	increment	crops	ten	percent	of	the	canvas's	height	from	the	bottom.
Entering	0.1	crops	ninety	percent	of	the	canvas's	height	from	the	bottom.



Remark

Use	the	CanvasCropTop	method	to	crop	from	the	top.



Example

This	example	crops	twenty-five	percent	of	the	drawing	canvas's	height	from	the
bottom	of	the	first	canvas	in	the	active	document,	assuming	the	first	shape	in	the
active	document	is	a	drawing	canvas.	If	not,	you	will	need	to	add	a	drawing
canvas	to	the	document	using	the	AddCanvas	method.

Sub	CropCanvasBottom()

				Dim	shpCanvas	As	Shape

				Set	shpCanvas	=	ActiveDocument.Shapes(1)

				shpCanvas.CanvasCropBottom	Increment:=0.75

End	Sub



Show	All



CanvasCropLeft	Method
							

Crops	a	percentage	of	the	width	of	a	drawing	canvas	from	the	left	side	of	the
canvas.

expression.CanvasCropBottom(Increment)

expression	Required.	An	expression	that	returns	one	of	the	objects	in	the	Applies
to	list.

Increment		Required	Single.	The	amount	in	percentage	points	of	the	drawing
canvas's	width	that	you	want	remaining	after	the	canvas	is	cropped.	Entering	0.9
as	the	increment	crops	ten	percent	of	the	canvas's	width	from	the	left.	Entering
0.1	crops	ninety	percent	of	the	canvas's	width	from	the	left.



Remark

Use	the	CanvasCropRight	method	to	crop	from	the	right	side	of	a	drawing
canvas.



Example

This	example	crops	twenty-five	percent	of	the	drawing	canvas's	width	from	the
left	side	of	the	first	canvas	in	the	active	document,	assuming	the	first	shape	in
the	active	document	is	a	drawing	canvas.	If	not,	you	will	need	to	add	a	drawing
canvas	to	the	document	using	the	AddCanvas	method.

Sub	CropCanvasLeft()

				Dim	shpCanvas	As	Shape

				Set	shpCanvas	=	ActiveDocument.Shapes(1)

				shpCanvas.CanvasCropLeft	Increment:=0.75

End	Sub



Show	All



CanvasCropRight	Method
							

Crops	a	percentage	of	the	width	of	a	drawing	canvas	from	the	right	side	of	the
canvas.

expression.CanvasCropBottom(Increment)

expression	Required.	An	expression	that	returns	one	of	the	objects	in	the	Applies
to	list.

Increment		Required	Single.	The	amount	in	percentage	points	of	the	canvas's
width	that	you	want	remaining	after	the	canvas	is	cropped.	Entering	0.9	as	the
increment	crops	ten	percent	of	the	canvas's	width	from	the	right.	Entering	0.1
crops	ninety	percent	of	the	canvas's	width	from	the	right.



Remark

Use	the	CanvasCropLeft	method	to	crop	from	the	left	side	of	a	drawing	canvas.



Example

This	example	crops	twenty-five	percent	of	the	drawing	canvas's	width	from	the
right	side	of	the	first	canvas	in	the	active	document,	assuming	the	first	shape	in
the	active	document	is	a	drawing	canvas.	If	not,	you	will	need	to	add	a	drawing
canvas	to	the	document	using	the	AddCanvas	method.

Sub	CropCanvasRight()

				Dim	shpCanvas	As	Shape

				Set	shpCanvas	=	ActiveDocument.Shapes(1)

				shpCanvas.CanvasCropRight	Increment:=0.75

End	Sub



Show	All



CanvasCropTop	Method
							

Crops	a	percentage	of	the	height	of	a	drawing	canvas	from	the	top	of	the	canvas.

expression.CanvasCropBottom(Increment)

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	to	list.

Increment		Required	Single.	The	amount	in	percentage	points	of	a	canvas's
height	that	you	want	remaining	after	the	canvas	is	cropped.	Entering	0.9	as	the
increment	crops	ten	percent	of	the	canvas's	height	from	the	top.	Entering	0.1
crops	ninety	percent	of	the	canvas's	height	from	the	top.



Remark

Use	the	CanvasCropBottom	method	to	crop	from	the	bottom.



Example

This	example	crops	twenty-five	percent	of	the	drawing	canvas's	height	from	the
top	of	the	first	canvas	in	the	active	document,	assuming	the	first	shape	in	the
active	document	is	a	drawing	canvas.	If	not,	you	will	need	to	add	a	drawing
canvas	to	the	document	using	the	AddCanvas	method.

Sub	CropCanvasTop()

				Dim	shpCanvas	As	Shape

				Set	shpCanvas	=	ActiveDocument.Shapes(1)

				shpCanvas.CanvasCropTop	Increment:=0.75

End	Sub



Cell	Method
							

Returns	a	Cell	object	that	represents	a	cell	in	a	table.

expression.Cell(Row,	Column)

expression			Required.	An	expression	that	returns	a	Table	object.

Row			Required	Long.	The	number	of	the	row	in	the	table	to	return.	Can	be	an
integer	between	1	and	the	number	of	rows	in	the	table.

Column			Required	Long.	The	number	of	the	cell	in	the	table	to	return.	Can	be
an	integer	between	1	and	the	number	of	columns	in	the	table.



Example

This	example	creates	a	3x3	table	in	a	new	document	and	inserts	text	into	the	first
and	last	cells	in	the	table.

Dim	docNew	As	Document

Dim	tableNew	As	Table

Set	docNew	=	Documents.Add

Set	tableNew	=	docNew.Tables.Add(Selection.Range,	3,	3)

With	tableNew

				.Cell(1,1).Range.InsertAfter	"First	cell"

				.Cell(tableNew.Rows.Count,	_

								tableNew.Columns.Count).Range.InsertAfter	"Last	Cell"

End	With

This	example	deletes	the	first	cell	from	the	first	table	in	the	active	document.

If	ActiveDocument.Tables.Count	>=	1	Then

				ActiveDocument.Tables(1).Cell(1,	1).Delete

End	If



CentimetersToPoints	Method
							

Converts	a	measurement	from	centimeters	to	points	(1	cm	=	28.35	points).
Returns	the	converted	measurement	as	a	Single.

expression.CentimetersToPoints(Centimeters)

expression			Optional.	An	expression	that	returns	an	Application	object.

Centimeters			Required	Single.	The	centimeter	value	to	be	converted	to	points.



Example

This	example	adds	a	centered	tab	stop	to	all	the	paragraphs	in	the	selection.	The
tab	stop	is	positioned	at	1.5	centimeters	from	the	left	margin.

Selection.Paragraphs.TabStops.Add	_

				Position:=CentimetersToPoints(1.5),	_

				Alignment:=wdAlignTabCenter

This	example	sets	a	first-line	indent	of	2.5	centimeters	for	the	first	paragraph	in
the	active	document.

ActiveDocument.Paragraphs(1).FirstLineIndent	=	_

				CentimetersToPoints(2.5)



ChangeFileOpenDirectory	Method
							

Sets	the	folder	in	which	Word	searches	for	documents.	The	specified	folder's
contents	are	listed	the	next	time	the	Open	dialog	box	(File	menu)	is	displayed.

Note			Word	searches	the	specified	folder	for	documents	until	the	user	changes
the	folder	in	the	Open	dialog	box	or	the	current	Word	session	ends.	Use	the
DefaultFilePath	property	to	change	the	default	folder	for	documents	in	every
Word	session.

expression.ChangeFileOpenDirectory(Path)

expression			Optional.	An	expression	that	returns	an	Application	object.

Path			Required	String.	The	path	to	the	folder	in	which	Word	searches	for
documents.



Example

This	example	changes	the	folder	in	which	Word	searches	for	documents,	and
then	opens	a	file	named	"Test.doc."

ChangeFileOpenDirectory	"C:\Documents"

Documents.Open	FileName:="Test.doc"

This	example	changes	the	folder	in	which	Word	searches	for	documents,	and
then	displays	the	Open	dialog	box.

ChangeFileOpenDirectory	"C:\"

Dialogs(wdDialogFileOpen).Show



Check	Method
							

Simulates	the	mail	merge	operation,	pausing	to	report	each	error	as	it	occurs.

expression.Check

expression			Required.	An	expression	that	returns	a	MailMerge	object.



Example

This	example	checks	the	active	document	for	mail	merge	errors.

Dim	intState	As	Integer

intState	=	ActiveDocument.MailMerge.State

If	intState	=	wdMainAndDataSource	Or	_

				intState	=	wdMainAndSourceAndHeader	Then

				ActiveDocument.MailMerge.Check

End	If



CheckConsistency	Method
							

Searches	all	text	in	a	Japanese	language	document	and	displays	instances	where
character	usage	is	inconsistent	for	the	same	words.

expression.CheckConsistency

expression			Required.	An	expression	that	returns	a	Document	object.



Example

This	example	checks	the	consistency	of	Japanese	characters	in	the	active
document.

ActiveDocument.CheckConsistency



Show	All



CheckGrammar	Method
							

CheckGrammar	method	as	it	applies	to	the	Application	object.

Checks	a	string	for	grammatical	errors.	Returns	a	Boolean	to	indicate	whether
the	string	contains	grammatical	errors.	True	if	the	string	contains	no	errors.

expression.CheckGrammar(String)

expression			Required.	An	expression	that	returns	an	Application	object.

String		Required	String.	The	string	you	want	to	check	for	grammatical	errors.

CheckGrammar	method	as	it	applies	to	the	Document	and	Range	objects.

Begins	a	spelling	and	grammar	check	for	the	specified	document	or	range.	If	the
document	or	range	contains	errors,	this	method	displays	the	Spelling	and
Grammar	dialog	box	(Tools	menu),	with	the	Check	grammar	check	box
selected.	When	applied	to	a	document,	this	method	checks	all	available	stories
(such	as	headers,	footers,	and	text	boxes).

expression.CheckGrammar

expression			Required.	An	expression	that	returns	a	Document	or	Range	object.



Example

As	it	applies	to	the	Document	object.

This	example	begins	a	spelling	and	grammar	check	for	all	stories	in	the	active
document.

ActiveDocument.CheckGrammar

As	it	applies	to	the	Range	object.

This	example	begins	a	spelling	and	grammar	check	on	section	two	in
MyDocument.doc.

Set	Range2	=	Documents("MyDocument.doc").Sections(2).Range

Range2.CheckGrammar

This	example	begins	a	spelling	and	grammar	check	on	the	selection.

Selection.Range.CheckGrammar

As	it	applies	to	the	Application	object.

This	example	displays	the	result	of	a	grammar	check	on	the	selection.

strPass	=	Application.CheckGrammar(String:=Selection.Text)

MsgBox	"Selection	is	grammatically	correct:	"	&	strPass



CheckName	Method
							

Validates	the	e-mail	addresses	that	appear	in	the	To:,	Cc:,	and	Bcc:	lines	in	the
active	e-mail	message.	This	method	is	available	only	if	you	are	using	Word	as
your	e-mail	editor.

Note			If	the	names	cannot	be	validated,	the	Check	Names	dialog	box	is
displayed.

expression.CheckName

expression			Required.	An	expression	that	returns	a	MailMessage	object.



Example

This	example	validates	the	e-mail	addresses	that	appear	in	the	active	e-mail
message.

Application.MailMessage.CheckName



CheckNewSmartTags	Method
							

Accesses	the	Microsoft	Office	Web	site	for	available	smart	tag	recognizer	and
action	files.

expression.CheckNewSmartTags

expression			Required.	An	expression	that	returns	a	Document	object.



Remarks

The	CheckNewSmartTags	method	is	equivalent	to	clicking	the	More	Smart
Tags	button	on	the	Smart	Tags	tab	of	the	AutoCorrect	dialog	box	(Tools
menu).



Example

This	example	displays	the	Office	Web	site	for	smart	tags.

Sub	GetNewSmartTagFiles()

				ThisDocument.CheckNewSmartTags

End	Sub



CheckOut	Method
							

Copies	a	specified	document	from	a	server	to	a	local	computer	for	editing.

expression.CheckOut(FileName)

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

FileName		Required	String.	The	name	of	the	file	to	check	out.



Remarks

To	take	advantage	of	the	collaboration	features	built	into	Word,	documents	must
be	stored	on	a	Microsoft	SharePoint	Portal	Server.



Example

This	example	verifies	that	a	document	is	not	checked	out	by	another	user	and
that	it	can	be	checked	out.	If	the	document	can	be	checked	out,	it	copies	the
document	to	the	local	computer	for	editing.

Sub	CheckInOut(docCheckOut	As	String)

				If	Documents.CanCheckOut(docCheckOut)	=	True	Then

								Documents.CheckOut	docCheckOut

				Else

								MsgBox	"You	are	unable	to	check	out	this	document	at	this	time."

				End	If

End	Sub

To	call	the	CheckInOut	subroutine	above,	use	the	following	subroutine	and
replace	the	"http://servername/workspace/report.doc"	file	name	with	an	actual
file	located	on	a	server	mentioned	in	the	Remarks	section	above.

Sub	CheckDocInOut()

				Call	CheckInOut	(docCheckIn:="http://servername/workspace/report.doc")

End	Sub



Show	All



CheckSpelling	Method
							

CheckSpelling	method	as	it	applies	to	the	Application	and	Global	objects.

Checks	a	string	for	spelling	errors.	Returns	a	Boolean	to	indicate	whether	the
string	contains	spelling	errors.	True	if	the	string	has	no	spelling	errors.

expression.CheckSpelling(Word,	CustomDictionary,	IgnoreUppercase,
MainDictionary,	CustomDictionary2,	CustomDictionary3,
CustomDictionary4,	CustomDictionary5,	CustomDictionary6,
CustomDictionary7,	CustomDictionary8,	CustomDictionary9,
CustomDictionary10)

expression			Required.	An	expression	that	returns	an	Application	or	Global
object.

Word		Required	String.	The	text	whose	spelling	is	to	be	checked.

CustomDictionary		Optional	Variant.	Either	an	expression	that	returns	a
Dictionary	object	or	the	file	name	of	the	custom	dictionary.

IgnoreUppercase		Optional	Variant.	True	if	capitalization	is	ignored.	If	this
argument	is	omitted,	the	current	value	of	the	IgnoreUppercase	property	is	used.

MainDictionary		Optional	Variant.	Either	an	expression	that	returns	a
Dictionary	object	or	the	file	name	of	the	main	dictionary.

CustomDictionary2	–	CustomDictionary10			Optional	Variant.	Either	an
expression	that	returns	a	Dictionary	object	or	the	file	name	of	an	additional
custom	dictionary.	You	can	specify	as	many	as	nine	additional	dictionaries.

CheckSpelling	method	as	it	applies	to	the	Document	and	Range	objects.

Begins	a	spelling	check	for	the	specified	document	or	range.	If	the	document	or
range	contains	errors,	this	method	displays	the	Spelling	and	Grammar	dialog
box	(Tools	menu),	with	the	Check	grammar	check	box	cleared.	For	a



document,	this	method	checks	all	available	stories	(such	as	headers,	footers,	and
text	boxes).

expression.CheckSpelling(CustomDictionary,	IgnoreUppercase,
AlwaysSuggest,	CustomDictionary2,	CustomDictionary3,	CustomDictionary4,
CustomDictionary5,	CustomDictionary6,	CustomDictionary7,
CustomDictionary8,	CustomDictionary9,	CustomDictionary10)

expression			Required.	An	expression	that	returns	a	Document	or	Range	object.

CustomDictionary		Optional	Variant.	Either	an	expression	that	returns	a
Dictionary	object	or	the	file	name	of	the	custom	dictionary.

IgnoreUppercase		Optional	Variant.	True	if	capitalization	is	ignored.	If	this
argument	is	omitted,	the	current	value	of	the	IgnoreUppercase	property	is	used.

AlwaysSuggest		Optional	Variant.	True	for	Microsoft	Word	to	always	suggest
alternative	spellings.	If	this	argument	is	omitted,	the	current	value	of	the
SuggestSpellingCorrections	property	is	used.

CustomDictionary2	–	CustomDictionary10			Optional	Variant.	Either	an
expression	that	returns	a	Dictionary	object	or	the	file	name	of	an	additional
custom	dictionary.	You	can	specify	as	many	as	nine	additional	dictionaries.



Example

As	it	applies	to	the	Range	object.

This	example	begins	a	spelling	check	on	all	available	stories	of	the	active
document.

Set	range2	=	Documents("MyDocument.doc").Sections(2).Range

range2.CheckSpelling	IgnoreUpperCase:=False,	_

				CustomDictionary:="MyWork.Dic",	_

				CustomDictionary2:="MyTechnical.Dic"



CheckSynonyms	Method
							

Displays	the	Thesaurus	dialog	box,	which	lists	alternative	word	choices,	or
synonyms,	for	the	text	in	the	specified	range.

expression.CheckSynonyms

expression			Required.	An	expression	that	returns	a	Range	object.



Example

This	example	displays	the	Thesaurus	dialog	box	with	synonyms	for	the	selected
text.

Selection.Range.CheckSynonyms

This	example	displays	the	Thesaurus	dialog	box	with	synonyms	for	the	first
word	in	the	active	document.

ActiveDocument.Words(1).CheckSynonyms



CleanString	Method
							

Removes	nonprinting	characters	(character	codes	1	–	29)	and	special	Word
characters	from	the	specified	string	or	changes	them	to	spaces	(character	code
32),	as	described	in	the	"Remarks"	section.	Returns	the	result	as	a	string.

expression.CleanString(String)

expression			Optional.	An	expression	that	returns	an	Application	object.

String			Required	String.	The	source	string.



Remarks

The	following	characters	are	converted	as	described	in	this	table.

Character	code Description

7	(beep) Removed	unless	preceded	by	character	13
(paragraph),	then	converted	to	character	9	(tab).

10	(line	feed) Converted	to	character	13	(paragraph)	unless
preceded	by	character	13,	then	removed.

13	(paragraph) Unchanged.
31	(optional	hyphen) Removed.
160	(nonbreaking	space) Converted	to	character	32	(space).
172	(optional	hyphen) Removed.
176	(nonbreaking	space) Converted	to	character	32	(space).
182	(paragraph	mark) Removed.
183	(bullet) Converted	to	character	32	(space).



Example

This	example	removes	nonprinting	characters	from	the	selected	text	and	inserts
the	result	into	a	new	document.

Dim	strClean	As	String

Dim	docNew	As	Document

strClean	=	Application.CleanString(Selection.Text)

Set	docNew	=	Documents.Add

docNew.Content.InsertAfter	strClean

This	example	removes	nonprinting	characters	from	the	selected	field	code	and
then	displays	the	result.

ActiveDocument.ActiveWindow.View.ShowFieldCodes	=	True

ActiveDocument.Fields(1).Select

MsgBox	Application.CleanString(Selection.Text)



Show	All



Clear	Method
							

DropCap	object:	Removes	the	dropped	capital	letter	formatting.

KeyBinding	object:	Removes	the	key	binding	from	the	KeyBindings	collection
and	resets	a	built-in	command	to	its	default	key	assignment.

ListEntries	object:	Removes	all	items	from	a	drop-down	form	field.

TabStop	object:	Removes	the	specified	custom	tab	stop.

TextInput	object:	Deletes	the	text	from	the	specified	text	form	field.

expression.Clear

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.



Example

As	it	applies	to	the	TabStop	object.

This	example	clears	the	first	custom	tab	in	the	first	paragraph	of	the	active
document.

ActiveDocument.Paragraphs(1).TabStops(1).Clear

As	it	applies	to	the	TextInput	object.

This	example	protects	the	document	for	forms	and	deletes	the	text	from	the	first
form	field	if	the	field	is	a	text	form	field.

ActiveDocument.Protect	Type:=wdAllowOnlyFormFields,	NoReset:=True

If	ActiveDocument.FormFields(1).Type	=	wdFieldFormTextInput	Then

				ActiveDocument.FormFields(1).TextInput.Clear

End	If

As	it	applies	to	the	ListEntries	object.

This	example	removes	all	items	from	the	form	field	named	"Colors"	in
Sales.doc.

Documents("Sales.doc").FormFields("Colors")	_

				.DropDown.ListEntries.Clear

As	it	applies	to	the	DropCap	object.

This	example	removes	dropped	capital	letter	formatting	from	the	first	letter	in
the	active	document.

Set	drop	=	ActiveDocument.Paragraphs(1).DropCap

If	Not	(drop	Is	Nothing)	Then	drop.Clear

As	it	applies	to	the	KeyBinding	object.

This	example	removes	the	ALT+F1	key	assignment	from	the	Normal	template.

CustomizationContext	=	NormalTemplate

FindKey(BuildKeyCode(Arg1:=wdKeyAlt,	Arg2:=wdKeyF1)).Clear





Show	All

	



ClearAll	Method
							

TabStops	object:	Clears	all	the	custom	tab	stops	from	the	specified	paragraphs.

KeyBindings	object:	Clears	all	the	customized	key	assignments	and	restores	the
original	Microsoft	Word	shortcut	key	assignments.

Dictionaries	or	HangulHanjaConversionDictionaries	object:	Unloads	all	of
the	custom	or	conversion	dictionaries.

expression.ClearAll

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.



Remarks

To	clear	an	individual	tab	stop,	use	the	Clear	method	of	the	TabStop	object.	The
ClearAll	method	doesn't	clear	the	default	tab	stops.	To	manipulate	the	default
tab	stops,	use	the	DefaultTabStop	property	for	the	document.

After	applying	the	ClearAll	method	to	the	KeyBindings	object,	the	keys
assignments	in	the	specified	template	or	document	are	reset	to	the	default
settings.	Use	the	CustomizationContext	property	to	specify	a	document	or
template	context	prior	to	using	the	ClearAll	method.

The	ClearAll	method	when	used	on	a	Dictionaries	or
HangulHanjaConversionDictionaries	object	does	not	delete	the	custom	or
conversion	dictionary	files.	After	using	this	method,	the	number	of	custom	or
conversion	dictionaries	in	the	collection	is	0	(zero).



Example

As	it	applies	to	the	TabStop	object.

This	example	clears	all	the	custom	tab	stops	in	the	active	document.

ActiveDocument.Paragraphs.TabStops.ClearAll

As	it	applies	to	the	KeyBindings	object.

This	example	clears	the	customized	key	assignments	in	the	Normal	template.
The	key	assignments	are	reset	to	the	default	settings.

CustomizationContext	=	NormalTemplate

KeyBindings.ClearAll

As	it	applies	to	the	Dictionaries	object.

This	example	unloads	all	of	the	custom	dictionaries.

CustomDictionaries.ClearAll



ClearAllFuzzyOptions	Method
							

Clears	all	nonspecific	search	options	associated	with	Japanese	text.

expression.ClearAllFuzzyOptions

expression			Required.	An	expression	that	returns	a	Find	object.



Remarks

This	method	sets	the	following	properties	to	False:

MatchFuzzyAY	MatchFuzzyBV
MatchFuzzyByte
MatchFuzzyCase
MatchFuzzyDash
MatchFuzzyDZ
MatchFuzzyHF
MatchFuzzyHiragana
MatchFuzzyIterationMark

MatchFuzzyKanji
MatchFuzzyKiKu
MatchFuzzyOldKana
MatchFuzzyProlongedSoundMark
MatchFuzzyPunctuation
MatchFuzzySmallKana
MatchFuzzySpace
MatchFuzzyTC
MatchFuzzyZJ



Example

This	example	clears	all	nonspecific	search	options	before	executing	a	search	in
the	selected	range.	If	the	word	" "	is	formatted	as	bold,	the	entire
paragraph	will	be	selected	and	copied	to	the	Clipboard.

With	Selection.Find

				.ClearFormatting

				.ClearAllFuzzyOptions

				.Font.Bold	=	True

				.Execute	FindText:=" ",	Format:=True,	Forward:=True

				If	.Found	=	True	Then

								.Parent.Expand	Unit:=wdParagraph

								.Parent.Copy

				End	If

End	With



Show	All



ClearFormatting	Method
							

Removes	text	and	paragraph	formatting	from	a	selection	or	from	the	formatting
specified	in	a	find	or	replace	operation.

expression.ClearFormatting

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.



Remarks

To	ensure	that	formatting	isn't	included	as	criteria	in	a	find	or	replace	operation,
use	this	method	before	carrying	out	the	operation.



Example

As	it	applies	to	the	Selection	object.

This	example	removes	all	text	and	paragraph	formatting	from	the	active
document.

Sub	ClrFmtg()

				ActiveDocument.Select

				Selection.ClearFormatting

End	Sub

This	example	removes	all	text	and	paragraph	formatting	from	the	second
through	the	fourth	paragraphs	of	the	active	document.

Sub	ClrFmtg2()

				ActiveDocument.Range(Start:=ActiveDocument.Paragraphs(2).Range.Start,	_

								End:=ActiveDocument.Paragraphs(4).Range.End).Select

				Selection.ClearFormatting

End	Sub

As	it	applies	to	the	Replacement	object.

This	example	clears	formatting	from	the	find	or	replace	criteria	before	replacing
the	word	"Inc."	with	"incorporated"	throughout	the	active	document.

Sub	ClrFmtgReplace()

				Dim	rngTemp	As	Range

				Set	rngTemp	=	ActiveDocument.Content

				With	rngTemp.Find

								.ClearFormatting

								.Replacement.ClearFormatting

								.MatchWholeWord	=	True

								.Execute	FindText:="Inc.",	ReplaceWith:="incorporated",	_

												Replace:=wdReplaceAll

				End	With



End	Sub

As	it	applies	to	the	Find	object.

This	example	removes	formatting	from	the	find	criteria	before	searching	through
the	selection.	If	the	word	"Hello"	with	bold	formatting	is	found,	the	entire
paragraph	is	selected	and	copied	to	the	Clipboard.

Sub	ClrFmtgFind()

				With	Selection.Find

								.ClearFormatting

								.Font.Bold	=	True

								.Execute	FindText:="Hello",	Format:=True,	Forward:=True

								If	.Found	=	True	Then

												.Parent.Expand	Unit:=wdParagraph

												.Parent.Copy

								End	If

				End	With

End	Sub



Show	All



CloneNode	Method
							

Clones	a	specified	diagram	node.	Returns	a	DiagramNode	object	that	represents
the	clone.

expression.CloneNode(copyChildren,	TargetNode,	Pos)

expression			Required.	An	expression	that	returns	a	DiagramNode	object.

copyChildren		Required	Boolean.	True	to	clone	the	diagram	node's	children	as
well.

TargetNode		Optional	DiagramNode	object.	The	node	where	the	new	node	will
be	placed.

Pos		Optional	MsoRelativeNodePosition.	IfTargetNode	is	specified,	indicates
where	the	node	will	be	added	relative	to	TargetNode.

MsoRelativeNodePosition	can	be	one	of	these	MsoRelativeNodePosition
constants.
msoAfterLastSibling
msoAfterNode	default
msoBeforeFirstSibling
msoBeforeNode



Example

The	following	example	creates	a	diagram	and	clones	the	most	recently	created
node.

Sub	CreatePyramidDiagram()

				Dim	dgnNode	As	DiagramNode

				Dim	shpDiagram	As	Shape

				Dim	intCount	As	Integer

				'Add	pyramid	diagram	to	current	document

				Set	shpDiagram	=	ThisDocument.Shapes.AddDiagram(	_

								Type:=msoDiagramPyramid,	Left:=10,	_

								Top:=15,	Width:=400,	Height:=475)

				'Add	child	node	to	the	diagram

				Set	dgnNode	=	shpDiagram.DiagramNode.Children.AddNode

				For	intCount	=	1	To	3

								dgnNode.AddNode

				Next	intCount

				'Apply	automatic	formatting	to	the	diagram

				dgnNode.Diagram.AutoFormat	=	msoTrue

				'Clone	the	most	recently	created	child	node

				dgnNode.CloneNode	CopyChildren:=False

End	Sub



Show	All



Close	Method
							

Close	method	as	it	applies	to	the	Document	and	Documents	objects.

Closes	the	specified	document	or	documents.

expression.Close(SaveChanges,	OriginalFormat,	RouteDocument)

expression			Required.	An	expression	that	returns	one	of	the	above	objects.

SaveChanges		Optional	Variant.	Specifies	the	save	action	for	the	document.
Can	be	one	of	the	following	WdSaveOptions	constants:
wdDoNotSaveChanges,	wdPromptToSaveChanges,	or	wdSaveChanges.

OriginalFormat		Optional	Variant.	Specifies	the	save	format	for	the	document.
Can	be	one	of	the	following	WdOriginalFormat	constants:
wdOriginalDocumentFormat,	wdPromptUser,	or	wdWordDocument.

RouteDocument		Optional	Variant.	True	to	route	the	document	to	the	next
recipient.	If	the	document	doesn't	have	a	routing	slip	attached,	this	argument	is
ignored.

Close	method	as	it	applies	to	the	MailMergeDataSource,	Pane,	and	Task
objects.

Closes	the	specified	Mail	Merge	data	source,	pane,	or	task.

expression.Close

expression			Required.	An	expression	that	returns	one	of	the	above	objects.

Close	method	as	it	applies	to	the	Window	object.

Closes	the	specified	window.

expression.Close(SaveChanges,	RouteDocument)



expression			Required.	An	expression	that	returns	one	of	the	above	objects.

SaveChanges		Optional	Variant.	Specifies	the	save	action	for	the	document.
Can	be	one	of	the	following	WdSaveOptions	constants:
wdDoNotSaveChanges,	wdPromptToSaveChanges,	or	wdSaveChanges.

RouteDocument		Optional	Variant.	True	to	route	the	document	to	the	next
recipient.	If	the	document	doesn't	have	a	routing	slip	attached,	this	argument	is
ignored.



Example

As	it	applies	to	the	Document	object.

This	example	prompts	the	user	to	save	the	active	document	before	closing	it.	If
the	user	clicks	Cancel,	error	4198	(command	failed)	is	trapped	and	a	message	is
displayed.

On	Error	GoTo	errorHandler

ActiveDocument.Close	_

				SaveChanges:=wdPromptToSaveChanges,	_

				OriginalFormat:=wdPromptUser

errorHandler:

If	Err	=	4198	Then	MsgBox	"Document	was	not	closed"

As	it	applies	to	the	Pane	object.

This	example	closes	the	active	pane	if	the	active	window	is	split.

If	ActiveDocument.ActiveWindow.Panes.Count	>=	2	Then	_

				ActiveDocument.ActiveWindow.ActivePane.Close

As	it	applies	to	the	Task	object.

This	example	activates	Microsoft	Excel	and	then	closes	it.

For	Each	myTask	In	Tasks

				If	InStr(myTask.Name,	"Microsoft	Excel")	>	0	Then

								myTask.Activate

								myTask.Close

				End	If

Next	myTask

As	it	applies	to	the	Window	object.

This	example	closes	the	active	window	of	the	active	document	and	saves	it.

ActiveDocument.ActiveWindow.Close	SaveChanges:=wdSaveChanges





ClosePrintPreview	Method
							

Switches	the	specified	document	from	print	preview	to	the	previous	view.	If	the
specified	document	isn't	in	print	preview,	an	error	occurs.

expression.ClosePrintPreview

expression			Required.	An	expression	that	returns	a	Document	object.



Example

This	example	switches	the	active	window	from	print	preview	to	normal	view.

If	ActiveDocument.PrintPreview	=	True	Then	_

				ActiveDocument.ClosePrintPreview

ActiveDocument.ActiveWindow.View.Type	=	wdNormalView



CloseUp	Method
							

Removes	any	spacing	before	the	specified	paragraphs.

expression.CloseUp

expression			Required.	An	expression	that	returns	a	Paragraph,	Paragraphs,	or
ParagraphFormat	object.



Remarks

The	following	two	statements	are	equivalent:

ActiveDocument.Paragraphs(1).CloseUp

ActiveDocument.Paragraphs(1).SpaceBefore	=	0



Example

This	example	removes	any	space	before	the	first	paragraph	in	the	selection.

Selection.Paragraphs(1).CloseUp

This	example	changes	the	Heading	1	style	in	the	active	document	so	that	there's
no	space	before	Heading	1	paragraphs.

ActiveDocument.Styles("Heading	1").ParagraphFormat.CloseUp



Collapse	Method
							

Collapses	a	range	or	selection	to	the	starting	or	ending	position.	After	a	range	or
selection	is	collapsed,	the	starting	and	ending	points	are	equal.

expression.Collapse(Direction)

expression			Required.	An	expression	that	returns	a	Range	or	Selection	object.

Direction			Optional	Variant.	The	direction	in	which	to	collapse	the	range	or
selection.	Can	be	either	of	the	following	WdCollapseDirection	constants:
wdCollapseEnd	or	wdCollapseStart.	The	default	value	is	wdCollapseStart.



Remarks

If	you	use	wdCollapseEnd	to	collapse	a	range	that	refers	to	an	entire	paragraph,
the	range	is	located	after	the	ending	paragraph	mark	(the	beginning	of	the	next
paragraph).	However,	you	can	move	the	range	back	one	character	by	using	the
MoveEnd	method	after	the	range	is	collapsed,	as	shown	in	the	following
example.

Set	myRange	=	ActiveDocument.Paragraphs(1).Range

myRange.Collapse	Direction:=wdCollapseEnd

myRange.MoveEnd	Unit:=wdCharacter,	Count:=-1



Example

This	example	collapses	the	selection	to	an	insertion	point	at	the	beginning	of	the
previous	selection.

Selection.Collapse	Direction:=wdCollapseStart

This	example	sets	myRange	equal	to	the	contents	of	the	active	document,
collapses	myRange,	and	then	inserts	a	2x2	table	at	the	end	of	the	document.

Set	myRange	=	ActiveDocument.Content

myRange.Collapse	Direction:=wdCollapseEnd

ActiveDocument.Tables.Add	Range:=myRange,	NumRows:=2,	NumColumns:=2



CollapseOutline	Method
							

Collapses	the	text	under	the	selection	or	the	specified	range	by	one	heading
level.

Note			If	the	document	isn't	in	outline	or	master	document	view,	an	error	occurs.

expression.CollapseOutline(Range)

expression			Required.	An	expression	that	returns	a	View	object.

Range			Optional	Range	object.	The	range	of	paragraphs	to	be	collapsed.	If	this
argument	is	omitted,	the	entire	selection	is	collapsed.



Example

This	example	applies	the	Heading	2	style	to	the	second	paragraph	in	the	active
document,	switches	the	active	window	to	outline	view,	and	collapses	the	text
under	the	second	paragraph	in	the	document.

ActiveDocument.Paragraphs(2).Style	=	wdStyleHeading2

With	ActiveDocument.ActiveWindow.View

				.Type	=	wdOutlineView

				.CollapseOutline	Range:=ActiveDocument.Paragraphs(2).Range

End	With

This	example	collapses	every	heading	in	the	document	by	one	level.

With	ActiveDocument.ActiveWindow.View

				.Type	=	wdOutlineView

				.CollapseOutline	Range:=ActiveDocument.Content

End	With



Show	All



Compare	Method
							

Displays	revision	marks	that	indicate	where	the	specified	document	differs	from
another	document.

expression.Compare(Name,	AuthorName,	CompareTarget,
DetectFormatChanges,	IgnoreAllComparisonWarnings,	AddToRecentFiles)

expression			Required.	An	expression	that	returns	a	Document	object.

Name		Required	String.	The	name	of	the	document	with	which	the	specified
document	is	compared.

AuthorName		Optional	Variant.	The	reviewer	name	associated	with	the
differences	generated	by	the	comparison.	If	unspecified,	the	value	defaults	to	the
author	name	of	the	revised	document	or	the	string	"Comparison"	if	no	author
information	is	present.

CompareTarget		Optional	Variant.	The	target	document	for	the	comparison.
Can	be	any	WdCompareTarget	constant.

WdCompareTarget	can	be	one	of	these	WdCompareTarget	constants.
wdCompareTargetCurrent	Places	comparison	differences	in	the	current
document.	Default.
wdCompareTargetNew	Places	comparison	differences	in	a	new	document.
wdCompareTargetSelected	Places	comparison	differences	in	the	target
document.

DetectFormatChanges		Optional	Boolean.	True	(default)	for	the	comparison	to
include	detection	of	format	changes.

IgnoreAllComparisonWarnings		Optional	Variant.	True	compares	the
documents	without	notifying	a	user	of	problems.	The	default	value	is	False.

AddToRecentFiles		Optional	Variant.	True	adds	the	document	to	the	list	of



recently	used	files	on	the	File	menu.



Example

This	example	compares	the	active	document	with	the	document	named
"FirstRev.doc"	in	the	Draft	folder	and	places	the	comparison	differences	in	a
new	document.

Sub	CompareDocument()

				ActiveDocument.Compare	Name:="C:\Draft\FirstRev.doc",	_

								CompareTarget:=wdCompareTargetNew

End	Sub



Show	All



ComputeStatistics	Method
							

ComputeStatistics	method	as	it	applies	to	the	Range	object.

Returns	a	statistic	based	on	the	contents	of	the	specified	range.	Long.

expression.ComputeStatistics(Statistic)

expression			Required.	An	expression	that	returns	one	of	the	above	objects.

Statistic		Required	WdStatistic.

WdStatistic	can	be	one	of	these	WdStatistic	constants.
wdStatisticCharacters
wdStatisticCharactersWithSpaces
wdStatisticFarEastCharacters
wdStatisticLines
wdStatisticPages
wdStatisticParagraphs
wdStatisticWords

	

ComputeStatistics	method	as	it	applies	to	the	Document	object.

Returns	a	statistic	based	on	the	contents	of	the	specified	document.	Long.

expression.ComputeStatistics(Statistic,	IncludeFootnotesAndEndnotes)

expression			Required.	An	expression	that	returns	one	of	the	above	objects.

Statistic		Required	WdStatistic.

WdStatistic	can	be	one	of	these	WdStatistic	constants.



wdStatisticCharacters
wdStatisticCharactersWithSpaces
wdStatisticFarEastCharacters
wdStatisticLines
wdStatisticPages
wdStatisticParagraphs
wdStatisticWords

IncludeFootnotesAndEndnotes		Optional	Variant.	True	to	include	footnotes
and	endnotes	when	computing	statistics.	If	this	argument	is	omitted,	the	default
value	is	False.

	



Remarks

Some	of	the	constants	listed	above	may	not	be	available	to	you,	depending	on
the	language	support	(U.S.	English,	for	example)	that	you’ve	selected	or
installed.



Example

As	it	applies	to	the	Range	object.

This	example	displays	the	number	of	words	and	characters	in	the	first	paragraph
of	Report.doc.

Set	myRange	=	Documents("Report.doc").Paragraphs(1).Range

wordCount	=	myRange.ComputeStatistics(Statistic:=wdStatisticWords)

charCount	=	_

				myRange.ComputeStatistics(Statistic:=wdStatisticCharacters)

MsgBox	"The	first	paragraph	contains	"	&	wordCount	_

				&	"	words	and	a	total	of	"	&	charCount	&	"	characters."

As	it	applies	to	the	Document	object.

This	example	displays	the	number	of	words	in	the	active	document,	including
footnotes.

MsgBox	_

				ActiveDocument.ComputeStatistics(Statistic:=wdStatisticWords,	_

				IncludeFootnotesAndEndnotes:=True)	&	"	words"



Show	All



Condition	Method
							

Returns	a	ConditionalStyle	object	that	represents	special	style	formatting	for	a
portion	of	a	table.

expression.Condition(ConditionCode)

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

ConditionCode		Required	WdConditionCode.	The	are	of	the	table	to	which	to
apply	the	formatting.

WdConditionCode	can	be	one	of	these	WdConditionCode	constants.
wdEvenColumnBanding		Applies	formatting	to	even-numbered	columns.
wdEvenRowBanding		Applies	formatting	to	even-numbered	rows.
wdFirstColumn		Applies	formatting	to	the	first	column	in	a	table.
wdFirstRow		Applies	formatting	to	the	first	row	in	a	table.
wdLastColumn		Applies	formatting	to	the	last	column	in	a	table.
wdLastRow		Applies	formatting	to	the	last	row		in	a	table.
wdNECell		Applies	formatting	to	the	last	cell	in	the	first	row.
wdNWCell		Applies	formatting	to	the	first	cell	in	the	first	row.
wdOddColumnBanding		Applies	formatting	to	odd-numbered	columns.
wdOddRowBanding		Applies	formatting	to	odd-numbered	rows.
wdSECell		Applies	formatting	to	the	last	cell	in	the	table.
wdSWCell		Applies	formatting	to	first	cell	in	the	last	row	of	the	table.



Example

This	example	selects	the	first	table	in	the	active	document	and	adds	a	20	percent
shading	to	odd-numbered	columns.

Sub	TableStylesTest()

				With	ActiveDocument

								'Select	the	table	to	which	the	conditional

								'formatting	will	apply

								.Tables(1).Select

								'Specify	the	conditional	formatting

								.Styles("Table	Grid").Table	_

												.Condition(wdOddColumnBanding).Shading	_

												.BackgroundPatternColor	=	wdColorGray20

				End	With

End	Sub



Connect	Method
							

Establishes	a	connection	to	a	network	drive.

expression.Connect(Path,	Drive,	Password)

expression			Required.	An	expression	that	returns	a	System	object.

Path			Required	String.	The	path	for	the	network	drive	(for	example,
"\\Project\Info").

Drive			Optional	Variant.	A	number	corresponding	to	the	letter	you	want	to
assign	to	the	network	drive,	where	0	(zero)	corresponds	to	the	first	available
drive	letter,	1	corresponds	to	the	second	available	drive	letter,	and	so	on.	If	this
argument	is	omitted,	the	next	available	letter	is	used.

Password			Optional	Variant.	The	password,	if	the	network	drive	is	protected
with	a	password.



Remarks

Use	the	Dialogs	property	with	the	wdDialogConnect	constant	to	display	the
Connect	To	Network	Drive	dialog	box.	The	following	example	displays	the
Connect	To	Network	Drive	dialog	box,	with	a	preset	path	shown.

With	Dialogs(wdDialogConnect)

				.Path	=	"\\Marketing\Public"

				.Show

End	With



Example

This	example	establishes	a	connection	to	a	network	drive	(\\Project\Info)
protected	with	the	password	"smiley"	and	assigns	the	network	drive	to	the	next
available	drive	letter.

System.Connect	Path:="\\Project\Info",	Password:="smiley"

This	example	establishes	a	connection	to	a	network	drive	(\\Team1\Public)	and
assigns	the	network	drive	to	the	third	available	drive	letter.

System.Connect	Path:="\\Team1\Public",	Drive:=2



Show	All



Convert	Method
							

Convert	method	as	it	applies	to	the	Diagram	object.

Converts	a	diagram	of	one	type	into	a	diagram	of	another	type.

expression.Convert(Type)

expression			Required.	An	expression	that	returns	a	Diagram	object.

Type		Required	MsoDiagramType.	The	type	of	diagram	to	which	to	convert.

MsoDiagramType	can	be	one	of	these	MsoDiagramType	constants.
msoDiagramCycle		Shows	a	process	with	a	continuous	cycle.
msoDiagramMixed		Not	used	with	this	method.
msoDiagramOrgChart		Shows	hierarchical	relationships.
msoDiagramPyramid		Shows	foundation-based	relationships.
msoDiagramRadial		Shows	relationships	of	a	core	element.
msoDiagramTarget		Shows	steps	toward	a	goal.
msoDiagramVenn		Shows	areas	of	overlap	between	elements.

Convert	method	as	it	applies	to	the	Endnotes	and	Footnotes	objects.

Converts	endnotes	to	footnotes,	or	vice	versa.

expression.Convert

expression			Required.	An	expression	that	returns	one	of	the	above	objects.

Convert	method	as	it	applies	to	the	ListTemplate	object.

Converts	a	multiple-level	list	to	a	single-level	list,	or	vice	versa.

expression.Convert(Level)



expression			Required.	An	expression	that	returns	a	ListTemplate	object.

Level		Optional	Variant.	The	level	to	use	for	formatting	the	new	list.	When
converting	a	multiple-level	list	to	a	single-level	list,	this	argument	can	be	a
number	from	1	through	9.	When	converting	a	single-level	list	to	a	multiple-level
list,	1	is	the	only	valid	value.	If	this	argument	is	omitted,	1	is	the	default	value.



Remarks

You	cannot	use	the	Convert	method	on	a	list	template	that	is	derived	from	the
ListGalleries	collection.



Example

As	it	applies	to	the	Diagram	object.

This	example	creates	a	pyramid	diagram	and	then	converts	it	into	a	radial
diagram.

Sub	CreatePyramidDiagram()

				Dim	dgnNode	As	DiagramNode

				Dim	shpDiagram	As	Shape

				Dim	intCount	As	Integer

				'Add	pyramid	diagram	to	current	document

				Set	shpDiagram	=	ThisDocument.Shapes.AddDiagram(	_

								Type:=msoDiagramPyramid,	Left:=10,	_

								Top:=15,	Width:=400,	Height:=475)

				'Add	four	child	nodes	to	the	diagram

				Set	dgnNode	=	shpDiagram.DiagramNode.Children.AddNode

				For	intCount	=	1	To	3

								dgnNode.AddNode

				Next	intCount

				With	dgnNode.Diagram

								'Automatically	formats	the	diagram

								.AutoFormat	=	msoTrue

								'Converts	the	diagram	from	a	pyramid	to	a	radial	diagram

								.Convert	Type:=msoDiagramRadial

				End	With

End	Sub

As	it	applies	to	the	Endnotes	object.

This	example	converts	all	endnotes	in	the	active	document	to	footnotes.

Set	endDocEndnotes	=	ActiveDocument.Endnotes

If	endDocEndnotes.Count	>	0	Then	myEndnotes.Convert

As	it	applies	to	the	Footnotes	object.



This	example	converts	the	footnotes	in	the	selection	to	endnotes.

If	Selection.Footnotes.Count	>	0	Then	Selection.Footnotes.Convert

As	it	applies	to	the	ListTemplate	object.

This	example	converts	the	first	list	template	in	the	active	document.	If	the	list
template	is	multiple-level,	it	becomes	single-level,	or	vice	versa.

ActiveDocument.ListTemplates(1).Convert



ConvertHangulAndHanja	Method
							

Converts	the	specified	range	from	hangul	to	hanja	or	vice	versa.

expression.ConvertHangulAndHanja(ConversionsMode,	FastConversion,
CheckHangulEnding,	EnableRecentOrdering,	CustomDictionary)

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

ConversionsMode		Optional	Variant.	Sets	the	direction	for	the	conversion
between	hangul	and	hanja.	Can	be	either	of	the	following
WdMultipleWordConversionsMode	constants:	wdHangulToHanja	or
wdHanjaToHangul.	The	default	value	is	the	current	value	of	the
MultipleWordConversionsMode	property.

FastConversion		Optional	Variant.	True	if	Microsoft	Word	automatically
converts	a	word	with	only	one	suggestion	for	conversion.	The	default	value	is
the	current	value	of	the	HangulHanjaFastConversion	property.

CheckHangulEnding		Optional	Variant.	True	if	Word	automatically	detects
hangul	endings	and	ignores	them.	The	default	value	is	the	current	value	of	the
CheckHangulEndings	property.	This	argument	is	ignored	if	the
ConversionsMode	argument	is	set	to	wdHanjaToHangul.

EnableRecentOrdering		Optional	Variant.	True	if	Word	displays	the	most
recently	used	words	at	the	top	of	the	suggestions	list.	The	default	value	is	the
current	value	of	the	EnableHangulHanjaRecentOrdering	property.

CustomDictionary		Optional	Variant.	The	name	of	a	custom	hangul-hanja
conversion	dictionary.	Use	this	argument	in	order	to	use	a	custom	dictionary
with	hangul-hanja	conversions	not	contained	in	the	main	dictionary.



Remarks

For	more	information	on	using	Microsoft	Word	with	Asian	languages,	see	Word
features	for	Asian	languages.

mk:@MSITStore:wdmain10.chm::/html/wdrefFeaturesAvailableInWordWhenAsianLanguagesAreEnabled.htm


Example

This	example	converts	the	current	selection	from	hangul	to	hanja.

Selection.Range.ConvertHangulAndHanja	_

				ConversionsMode:=wdHangulToHanja,	_

				FastConversion:=True,	_

				EnableRecentOrdering:=	True



Show	All



ConvertNumbersToText	Method
							

Changes	the	list	numbers	and	LISTNUM	fields	in	the	specified	Document,	List,
or	ListFormat	object	to	text.

expression.ConvertNumbersToText(NumberType)

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

NumberType			Optional	Variant.	The	type	of	number	to	be	converted.	Can	be
any	of	the	following	WdNumberType	constant.

WdNumberType	can	be	one	of	these	WdNumberType	constants.
wdNumberParagraph
wdNumberListNum		Default	value	for	LISTNUM	fields.
wdNumberAllNumbers		Default	value	for	all	other	cases.



Remarks

There	are	two	types	of	numbers:	preset	numbers	(wdNumberParagraph),
which	you	can	add	to	paragraphs	by	selecting	a	template	in	the	Bullets	and
Numbering	dialog	box;	and	LISTNUM	fields	(wdNumberListNum),	which
allow	you	to	add	more	than	one	number	per	paragraph.

The	ConvertNumbersToText	method	is	useful	if	you	want	to	work	with	a
document	in	another	application	and	that	application	doesn't	recognize	list
formatting	or	LISTNUM	fields.

After	you've	converted	list	numbers	to	text,	you	can	no	longer	manipulate	them
in	a	list.



Example

As	it	applies	to	the	Document	object.

This	example	converts	the	list	numbers	and	LISTNUM	fields	in	the	active
document	to	text.

ActiveDocument.ConvertNumbersToText

As	it	applies	to	the	List	object.

This	example	converts	the	numbers	in	the	first	list	to	text.

ActiveDocument.Lists(1).ConvertNumbersToText

As	it	applies	to	the	ListFormat	object.

This	example	converts	the	preset	numbers	in	myRange	to	text	without	affecting
any	LISTNUM	fields.

Set	myDoc	=	ActiveDocument

Set	myRange	=	_

				myDoc.Range(Start:=myDoc.Paragraphs(12).Range.Start,	_

				End:=myDoc.Paragraphs(20).Range.End)

myRange.ListFormat.ConvertNumbersToText	wdNumberParagraph



ConvertTo	Method
							

Converts	the	specified	OLE	object	from	one	class	to	another,	making	it	possible
for	you	to	edit	the	object	in	a	different	server	application,	or	changing	how	the
object	is	displayed	in	the	document.

expression.ConvertTo(ClassType,	DisplayAsIcon,	IconFileName,	IconIndex,
IconLabel)

expression			Required.	An	expression	that	returns	an	OLEFormat	object.

ClassType			Optional	Variant.	The	name	of	the	application	used	to	activate	the
OLE	object.	You	can	see	a	list	of	the	available	applications	in	the	Object	type
box	on	the	Create	New	tab	in	the	Object	dialog	box	(Insert	menu).	You	can
find	the	ClassType	string	by	inserting	an	object	as	an	inline	shape	and	then
viewing	the	field	codes.	The	class	type	of	the	object	follows	either	the	word
"EMBED"	or	the	word	"LINK."

DisplayAsIcon			Optional	Variant.	True	to	display	the	OLE	object	as	an	icon.
The	default	value	is	False.

IconFileName			Optional	Variant.	The	file	that	contains	the	icon	to	be
displayed.

IconIndex			Optional	Variant.	The	index	number	of	the	icon	within
IconFileName.	The	order	of	icons	in	the	specified	file	corresponds	to	the	order
in	which	the	icons	appear	in	the	Change	Icon	dialog	box	(Insert	menu,	Object
dialog	box)	when	the	Display	as	icon	check	box	is	selected.	The	first	icon	in	the
file	has	the	index	number	0	(zero).	If	an	icon	with	the	given	index	number
doesn't	exist	in	IconFileName,	the	icon	with	the	index	number	1	(the	second
icon	in	the	file)	is	used.	The	default	value	is	0	(zero).

IconLabel			Optional	Variant.	A	label	(caption)	to	be	displayed	beneath	the
icon.



Example

This	example	creates	a	new	document,	then	inserts	an	embedded	Word
document	with	some	text.	Then,	the	embedded	document	is	converted	to	a	Word
Picture.

Dim	objEmbedded	As	Object

Documents.Add

Set	objEmbedded	=	ActiveDocument.Shapes	_

				.AddOLEObject(ClassType:=	"Word.Document")

objEmbedded.Activate

Selection.TypeText	"Test"

objEmbedded.OLEFormat.OLEFormat.ConvertTo	_

				ClassType:="Word.Picture"



ConvertToFrame	Method
							

Converts	the	specified	shape	to	a	frame.	Returns	a	Frame	object	that	represents
the	new	frame.

expression.ConvertToFrame

expression			Required.	An	expression	that	returns	a	Shape	or	ShapeRange
object.



Remarks

Shapes	that	don't	support	attached	text	cannot	be	converted	to	frames.	For
pictures,	OLE	objects,	and	ActiveX	controls,	use	the	ConvertToInlineShape
method.

If	you	use	this	method	on	a	ShapeRange	object	that	contains	more	than	one
shape,	an	error	occurs.

In	Word	97	and	later,	frames	have	been	replaced	by	text	boxes.



Example

This	example	creates	a	text	box	using	the	selected	text,	and	then	it	converts	the
text	box	to	a	frame.

If	Selection.Type	=	wdSelectionNormal	Then

				Selection.CreateTextbox

				Selection.ShapeRange.ConvertToFrame

End	If



ConvertToInlineShape	Method
							

Converts	the	specified	shape	in	the	drawing	layer	of	a	document	to	an	inline
shape	in	the	text	layer.	You	can	convert	only	shapes	that	represent	pictures,	OLE
objects,	or	ActiveX	controls.	This	method	returns	an	InlineShape	object	that
represents	the	picture	or	OLE	object.

expression.ConvertToInlineShape

expression			Required.	An	expression	that	returns	a	Shape	or	ShapeRange
object.



Remarks

Shapes	that	support	attached	text	cannot	be	converted	to	inline	shapes.	For	these
shapes,	use	the	ConvertToFrame	method.

If	you	use	this	method	on	a	ShapeRange	object	that	contains	more	than	one
shape,	an	error	occurs.



Example

This	example	converts	each	picture	in	MyDoc.doc	to	an	inline	shape.

For	Each	s	In	Documents("MyDoc.doc").Shapes

				If	s.Type	=	msoPicture	Then

								s.ConvertToInlineShape

				End	If

Next	s



Show	All



ConvertToShape	Method
							

ConvertToShape	method	as	it	applies	to	the	FreeformBuilder	object.

Creates	a	shape	that	has	the	geometric	characteristics	of	the	specified	object.
Returns	a	Shape	object	that	represents	the	new	shape.

expression.ConvertToShape(Anchor)

expression			Required.	An	expression	that	returns	a	FreeformBuilder	object.

Anchor		Optional	Variant.	A	Range	object	that	represents	the	text	to	which	the
shape	is	bound.	If	Anchor	is	specified,	the	anchor	is	positioned	at	the	beginning
of	the	first	paragraph	in	the	anchoring	range.	If	this	argument	is	omitted,	the
anchoring	range	is	selected	automatically	and	the	shape	is	positioned	relative	to
the	top	and	left	edges	of	the	page.

ConvertToShape	method	as	it	applies	to	the	InlineShape	object.

Converts	an	inline	shape	to	a	free-floating	shape.	Returns	a	Shape	object	that
represents	the	new	shape.

expression.ConvertToShape

expression			Required.	An	expression	that	returns	an	InlineShapes	object.



Remarks

You	must	apply	the	AddNodes	method	to	a	FreeformBuilder	object	at	least
once	before	you	use	the	ConvertToShape	method.



Example

As	applies	to	the	InlineShape	object.

This	example	converts	the	first	inline	shape	in	the	active	document	to	a	floating
shape.

ActiveDocument.InlineShapes(1).ConvertToShape

As	applies	to	the	FreeFormBuilder	object.

This	example	adds	a	freeform	with	five	vertices	to	myDocument.

Set	myDocument	=	ActiveDocument

With	myDocument.Shapes.BuildFreeform(msoEditingCorner,	360,	200)

				.AddNodes	msoSegmentCurve,	msoEditingCorner,	_

								380,	230,	400,	250,	450,	300

				.AddNodes	msoSegmentCurve,	msoEditingAuto,	480,	200

				.AddNodes	msoSegmentLine,	msoEditingAuto,	480,	400

				.AddNodes	msoSegmentLine,	msoEditingAuto,	360,	200

				.ConvertToShape

End	With



Show	All



ConvertToTable	Method
							

Converts	text	within	a	range	or	selection	to	a	table.	Returns	the	table	as	a	Table
object.

expression.ConvertToTable(Separator,	NumRows,	NumColumns,
InitialColumnWidth,	Format,	ApplyBorders,	ApplyShading,	ApplyFont,
ApplyColor,	ApplyHeadingRows,	ApplyLastRow,	ApplyFirstColumn,
ApplyLastColumn,	AutoFit,	AutoFitBehavior,	DefaultTableBehavior)

expression			Required.	An	expression	that	returns	a	Range	or	Selection	object.

Separator			Optional	Variant.	Specifies	the	character	used	to	separate	text	into
cells.	Can	be	a	character	or	one	of	the	following	WdTableFieldSeparator
constant.	If	this	argument	is	omitted,	the	value	of	the	DefaultTableSeparator
property	is	used.

WdTableFieldSeparator	can	be	one	of	these	WdTableFieldSeparator	constants.
wdSeparateByCommas
wdSeparateByDefaultListSeparator
wdSeparateByParagraphs
wdSeparateByTabs

NumRows			Optional	Variant.	The	number	of	rows	in	the	table.	If	this	argument
is	omitted,	Microsoft	Word	sets	the	number	of	rows,	based	on	the	contents	of	the
range	or	selection.

NumColumns			Optional	Variant.	The	number	of	columns	in	the	table.	If	this
argument	is	omitted,	Word	sets	the	number	of	columns,	based	on	the	contents	of
the	range	or	selection.

InitialColumnWidth			Optional	Variant.	The	initial	width	of	each	column,	in
points.	If	this	argument	is	omitted,	Word	calculates	and	adjusts	the	column	width
so	that	the	table	stretches	from	margin	to	margin.



Format			Optional	Variant.	Specifies	one	of	the	predefined	formats	listed	in	the
Table	AutoFormat	dialog	box	(Table	menu).	Can	be	one	of	the
WdTableFormat	constants.

Can	be	one	of	the	following	WdTableFormat	constants:
wdTableFormat3DEffects1
wdTableFormat3DEffects2
wdTableFormat3DEffects3
wdTableFormatClassic1
wdTableFormatClassic2
wdTableFormatClassic3
wdTableFormatClassic4
wdTableFormatColorful1
wdTableFormatColorful2
wdTableFormatColorful3
wdTableFormatColumns1
wdTableFormatColumns2
wdTableFormatColumns3
wdTableFormatColumns4
wdTableFormatColumns5
wdTableFormatContemporary
wdTableFormatElegant
wdTableFormatGrid1
wdTableFormatGrid2
wdTableFormatGrid3
wdTableFormatGrid4
wdTableFormatGrid5
wdTableFormatGrid6
wdTableFormatGrid7
wdTableFormatGrid8
wdTableFormatList1
wdTableFormatList2
wdTableFormatList3
wdTableFormatList4



wdTableFormatList5
wdTableFormatList6
wdTableFormatList7
wdTableFormatList8
wdTableFormatNone
wdTableFormatProfessional
wdTableFormatSimple1
wdTableFormatSimple2
wdTableFormatSimple3
wdTableFormatSubtle1
wdTableFormatSubtle2
wdTableFormatWeb1
wdTableFormatWeb2
wdTableFormatWeb3

ApplyBorders			Optional	Variant.	True	to	apply	the	border	properties	of	the
specified	format.

ApplyShading			Optional	Variant.	True	to	apply	the	shading	properties	of	the
specified	format.

ApplyFont			Optional	Variant.	True	to	apply	the	font	properties	of	the	specified
format.

ApplyColor			Optional	Variant.	True	to	apply	the	color	properties	of	the
specified	format.

ApplyHeadingRows			Optional	Variant.	True	to	apply	the	heading-row
properties	of	the	specified	format.

ApplyLastRow			Optional	Variant.	True	to	apply	the	last-row	properties	of	the
specified	format.

ApplyFirstColumn			Optional	Variant.	True	to	apply	the	first-column	properties
of	the	specified	format.

ApplyLastColumn			Optional	Variant.	True	to	apply	the	last-column	properties



of	the	specified	format.

AutoFit			Optional	Variant.	True	to	decrease	the	width	of	the	table	columns	as
much	as	possible	without	changing	the	way	text	wraps	in	the	cells.

AutoFitBehavior			Optional	Variant.	Sets	the	AutoFit	rules	for	how	Word	sizes
a	table.	Can	be	one	of	the	following	WdAutoFitBehavior	constant.	If
DefaultTableBehavior	is	wdWord8TableBehavior,	this	argument	is	ignored.

WdAutoFitBehavior	can	be	one	of	these	WdAutoFitBehavior	constants.
wdAutoFitContent
wdAutoFitFixed
wdAutoFitWindow

DefaultTableBehavior			Optional	Variant.	Sets	a	value	that	specifies	whether
Microsoft	Word	automatically	resizes	cells	in	a	table	to	fit	the	contents
(AutoFit).	Can	be	one	of	the	following	WdDefaultTableBehavior	constant.

WdDefaultTableBehavior	can	be	one	of	these	WdDefaultTableBehavior
constants.
wdWord8TableBehavior	Disables	AutoFit.	Default.
wdWord9TableBehavior	Enables	AutoFit.



Example

As	it	applies	to	the	Range	object.

This	example	converts	the	first	three	paragraphs	in	the	active	document	to	a
table.

Set	aDoc	=	ActiveDocument

Set	myRange	=	aDoc.Range(Start:=aDoc.Paragraphs(1).Range.Start,	_

				End:=aDoc.Paragraphs(3).Range.End)

myRange.ConvertToTable	Separator:=wdSeparateByParagraphs

As	it	applies	to	the	Selection	object.

This	example	inserts	text	at	the	insertion	point	and	then	converts	the	comma-
delimited	text	to	a	table	with	formatting.

With	Selection

				.Collapse

				.InsertBefore	"one,	two,	three"

				.InsertParagraphAfter

				.InsertAfter	"one,	two,	three"

				.InsertParagraphAfter

End	With

Set	myTable	=	_

				Selection.ConvertToTable(Separator:=wdSeparateByCommas,	_

				Format:=wdTableFormatList8)



ConvertToText	Method
							

Converts	a	table	to	text	and	returns	a	Range	object	that	represents	the	delimited
text.

expression.ConvertToText(Separator,	NestedTables)

expression			Required.	An	expression	that	returns	a	Row,	Rows,	or	Table	object.

Separator			Optional	Variant.	The	character	that	delimits	the	converted	columns
(paragraph	marks	delimit	the	converted	rows).	Can	be	any	following
WdTableFieldSeparator	constants..

WdTableFieldSeparator	can	be	one	of	these	WdTableFieldSeparator	constants.
wdSeparateByCommas
wdSeparateByDefaultListSeparator
wdSeparateByParagraphs
wdSeparateByTabs	Default.
	

NestedTables			Optional	Variant.	True	if	nested	tables	are	converted	to	text.
This	argument	is	ignored	if	Separator	is	not	wdSeparateByParagraphs.	The
default	value	is	True.



Remarks

When	you	apply	the	ConvertToText	method	to	a	Table	object,	the	object	is
deleted.	To	maintain	a	reference	to	the	converted	contents	of	the	table,	you	must
assign	the	Range	object	returned	by	the	ConvertToText	method	to	a	new	object
variable.	In	the	following	example,	the	first	table	in	the	active	document	is
converted	to	text	and	then	formatted	as	a	bulleted	list.

Dim	tableTemp	As	Table

Dim	rngTemp	As	Range

Set	tableTemp	=	ActiveDocument.Tables(1)

Set	rngTemp	=	_

				tableTemp.ConvertToText(Separator:=wdSeparateByParagraphs)

rngTemp.ListFormat.ApplyListTemplate	_

				ListTemplate:=ListGalleries(wdBulletGallery).ListTemplates(1)



Example

This	example	creates	a	table	and	then	converts	it	to	text	by	using	tabs	as
separator	characters.

Dim	docNew	As	Document

Dim	tableNew	As	Table

Dim	intTemp	As	Integer

Dim	cellLoop	As	Cell

Dim	rngTemp	As	Range

Set	docNew	=	Documents.Add

Set	tableNew	=	docNew.Tables.Add(Range:=Selection.Range,	_

				NumRows:=3,	NumColumns:=3)

intTemp	=	1

For	Each	cellLoop	In	tableNew.Range.Cells

				cellLoop.Range.InsertAfter	"Cell	"	&	intTemp

				intTemp	=	intTemp	+	1

Next	cellLoop

MsgBox	"Click	OK	to	convert	table	to	text."

Set	rngTemp	=	_

				tableNew.ConvertToText(Separator:=wdSeparateByTabs)

This	example	converts	the	table	that	contains	the	selection	to	text,	with	spaces
between	the	columns.

If	Selection.Information(wdWithInTable)	=	True	Then	

				Selection.Tables(1).ConvertToText	Separator:="	"

Else

				MsgBox	"The	insertion	point	is	not	in	a	table."

End	If



ConvertVietDoc	Method
							

Reconverts	a	Vietnamese	document	to	Unicode	using	a	code	page	other	than	the
default.

expression.ConvertVietDoc(CodePageOrigin)

expression			Required.	An	expression	that	returns	a	Document	object.

CodePageOrigin		Required	Long.	The	original	code	page	used	to	encode	the
document.



Remarks

Use	the	ConvertVietDoc	method	if	you	want	a	document	to	be	viewable	on
another	computer	or	platform.



Example

This	example	converts	the	active	document	from	the	Vietnamese	ABC	code	page
to	Unicode.	This	example	assumes	that	the	active	document	is	encoded	using	the
Vietnamese	ABC	code	page.

Sub	ConvertToVietCodePage()

				ActiveDocument.ConvertVietDoc	CodePageOrigin:=5

End	Sub



Show	All



Copy	Method
							

Copy	method	as	it	applies	to	the	Bookmark	object.

Sets	the	bookmark	specified	by	the	Name	argument	to	the	location	marked	by
another	bookmark,	and	returns	a	Bookmark	object.	Bookmark	object.

expression.Copy(Name)

expression			Required.	An	expression	that	returns	one	of	the	above	objects.

Name		Required	String.	The	name	of	the	new	bookmark.

	

Copy	method	as	it	applies	to	the	Field,	FormField,	Frame,	MailMergeField,
PageNumber,	Range,	and	Selection	objects.

Copies	the	specified	object	to	the	Clipboard.

expression.Copy

expression			Required.	An	expression	that	returns	one	of	the	above	objects.

	



Example

As	it	applies	to	the	Selection	object.

This	example	copies	the	contents	of	the	selection	into	a	new	document.

If	Selection.Type	=	wdSelectionNormal	Then

				Selection.Copy

				Documents.Add.Content.Paste

End	If

As	it	appllies	to	the	BookMark	object.

This	example	sets	the	Book2	bookmark	to	the	location	marked	by	the	Book1
bookmark.

ActiveDocument.Bookmarks("Book1").Copy	Name:="Book2"

As	it	applies	to	the	Range	object.

This	example	sets	the	Selection	bookmark	to	the	\Sel	predefined	bookmark	in
the	active	document.

ActiveDocument.Bookmarks("\Sel").Copy	Name:="Selection"

This	example	copies	the	first	paragraph	in	the	active	document	and	pastes	it	at
the	end	of	the	document.

ActiveDocument.Paragraphs(1).Range.Copy

Set	myRange	=	ActiveDocument.Range	_

				(Start:=ActiveDocument.Content.End	-	1,	_

				End:=ActiveDocument.Content.End	-	1)

myRange.Paste

This	example	copies	the	comments	in	the	active	document	to	the	Clipboard.

If	ActiveDocument.Comments.Count	>=	1	Then

				ActiveDocument.StoryRanges(wdCommentsStory).Copy

End	If





CopyAsPicture	Method
							

The	CopyAsPicture	method	works	the	same	way	as	the	Copy	method	for
Range	and	Selection	objects.

expression.CopyAsPicture

expression			Required.	An	expression	that	returns	a	Range	or	Selection	object.



Example

This	example	copies	the	contents	of	the	active	document	as	a	picture	and	pastes
it	as	a	picture	at	the	end	of	the	document.

Sub	CopyPasteAsPicture()

				ActiveDocument.Content.Select

				With	Selection

								.CopyAsPicture

								.Collapse	Direction:=wdCollapseEnd

								.PasteSpecial	DataType:=wdPasteMetafilePicture

				End	With

End	Sub



CopyFormat	Method
							

Copies	the	character	formatting	of	the	first	character	in	the	selected	text.	If	a
paragraph	mark	is	selected,	Word	copies	paragraph	formatting	in	addition	to
character	formatting.

Note			You	can	apply	the	copied	formatting	to	another	selection	by	using	the
PasteFormat	method.

expression.CopyFormat

expression			Required.	An	expression	that	returns	a	Selection	object.



Example

This	example	copies	the	formatting	of	the	first	paragraph	to	the	second
paragraph	in	the	active	document.

ActiveDocument.Paragraphs(1).Range.Select

Selection.CopyFormat

ActiveDocument.Paragraphs(2).Range.Select

Selection.PasteFormat

This	example	collapses	the	selection	and	copies	its	character	formatting	to	the
next	word.

With	Selection

				.Collapse	Direction:=wdCollapseStart

				.CopyFormat

				.Next(Unit:=wdWord,	Count:=1).Select

				.PasteFormat

End	With



CopyStylesFromTemplate	Method
							

Copies	styles	from	the	specified	template	to	a	document.

expression.CopyStylesFromTemplate(Template)

expression			Required.	An	expression	that	returns	a	Document	object.

Template			Required	String.	The	template	file	name.



Remarks

When	styles	are	copied	from	a	template	to	a	document,	like-named	styles	in	the
document	are	redefined	to	match	the	style	descriptions	in	the	template.	Unique
styles	from	the	template	are	copied	to	the	document.	Unique	styles	in	the
document	remain	intact.



Example

This	example	copies	the	styles	from	the	active	document's	template	to	the
document.

ActiveDocument.CopyStylesFromTemplate	_

				Template:=ActiveDocument.AttachedTemplate.FullName

This	example	copies	the	styles	from	the	Sales96.dot	template	to	Sales.doc.

Documents("Sales.doc").CopyStylesFromTemplate	_

				Template:="C:\MSOffice\Templates\Sales96.dot"



Show	All



CountNumberedItems	Method
							

Returns	the	number	of	bulleted	or	numbered	items	and	LISTNUM	fields	in	the
specified	Document,	List,	or	ListFormat	object.

expression.CountNumberedItems(NumberType,	Level)

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

NumberType			Optional	Variant.	The	type	of	numbers	to	be	counted.	Can	be
one	of	the	following	WdNumberType	constants:	wdNumberParagraph,
wdNumberListNum,	or	wdNumberAllNumbers.	The	default	value	is
wdNumberAllNumbers.

Level			Optional	Variant.	A	number	that	corresponds	to	the	numbering	level	you
want	to	count.	If	this	argument	is	omitted,	all	levels	are	counted.



Remarks

Bulleted	items	are	counted	when	either	wdNumberParagraph	or
wdNumberAllNumbers	(the	default)	is	specified	for	NumberType.

There	are	two	types	of	numbers:	preset	numbers	(wdNumberParagraph),
which	you	can	add	to	paragraphs	by	selecting	a	template	in	the	Bullets	and
Numbering	dialog	box;	and	LISTNUM	fields	(wdNumberListNum),	which
allow	you	to	add	more	than	one	number	per	paragraph.



Example

As	applies	to	the	ListFormat	object.

This	example	formats	the	current	selection	as	a	list,	using	the	second	numbered
list	template.	The	example	then	counts	the	numbered	and	bulleted	items	and
LISTNUM	fields	in	the	active	document	and	displays	the	result	in	a	message
box.

Selection.Range.ListFormat.ApplyListTemplate	_

				ListTemplate:=ListGalleries(wdNumberGallery).ListTemplates(2)

Msgbox	ActiveDocument.CountNumberedItems

This	example	counts	the	number	of	first-level	numbered	or	bulleted	items	in	the
active	document.

Msgbox	ActiveDocument.Content.ListFormat	_

				.CountNumberedItems(Level:=1)

This	example	counts	the	number	of	LISTNUM	fields	in	the	variable	myRange.
The	result	is	displayed	in	a	message	box.

Set	myDoc	=	ActiveDocument

Set	myRange	=	_

				myDoc.Range(Start:=myDoc.Paragraphs(12).Range.Start,	_

				End:=myDoc.Paragraphs(50).Range.End)

numfields	=	myRange.ListFormat.CountNumberedItems(wdNumberListNum)

Msgbox	numfields

As	applies	to	the	List	object.

This	example	displays	a	message	box	that	reports	the	number	of	items	in	each
list	in	MyLetter.



i	=	1

Set	myDoc	=	Documents("MyLetter.doc")

For	Each	li	In	myDoc.Lists

				Msgbox	"List	"	&	i	&	"	has	"	_

								&	li.CountNumberedItems	&	"	items."

				i	=	i	+	1

Next	li



CreateAutoTextEntry	Method
							

Adds	a	new	AutoTextEntry	object	to	the	AutoTextEntries	collection,	based	on
the	current	selection.

expression.CreateAutoTextEntry(Name,	StyleName)

expression			Required.	An	expression	that	returns	a	Selection	object.

Name			Required	String.	The	text	the	user	must	type	to	call	the	new	AutoText
entry.

StyleName			Required	String.	The	category	in	which	the	new	AutoText	entry
will	be	listed	on	the	AutoText	menu.



Example

This	example	creates	a	new	AutoText	entry	named	"handdel"	under	the	category
"Mailing	Instructions,"	given	"HAND	DELIVERY"	as	the	currently	selected
text.

Selection.CreateAutoTextEntry	"handdel",	_

				"Mailing	Instructions"



CreateDataSource	Method
							

Creates	a	Word	document	that	uses	a	table	to	store	data	for	a	mail	merge.	The
new	data	source	is	attached	to	the	specified	document,	which	becomes	a	main
document	if	it's	not	one	already.

expression.CreateDataSource(Name,	PasswordDocument,
WritePasswordDocument,	HeaderRecord,	MSQuery,	SQLStatement,
SQLStatement1,	Connection,	LinkToSource)

expression			Required.	An	expression	that	returns	a	MailMerge	object.

Name			Optional	Variant.	The	path	and	file	name	for	the	new	data	source.

PasswordDocument			Optional	Variant.	The	password	required	to	open	the	new
data	source.

WritePasswordDocument			Optional	Variant.	The	password	required	to	save
changes	to	the	data	source.

HeaderRecord			Optional	Variant.	Field	names	for	the	header	record.	If	this
argument	is	omitted,	the	standard	header	record	is	used:	"Title,	FirstName,
LastName,	JobTitle,	Company,	Address1,	Address2,	City,	State,	PostalCode,
Country,	HomePhone,	WorkPhone."	To	separate	field	names,	use	the	list
separator	specified	in	Regional	Settings	in	Control	Panel.

MSQuery			Optional	Variant.	True	to	launch	Microsoft	Query,	if	it's	installed.
The	FileName,	PasswordDoc,	and	HeaderRecord	arguments	are	ignored.

SQLStatement			Optional	Variant.	Defines	query	options	for	retrieving	data.

SQLStatement1			Optional	Variant.	If	the	query	string	is	longer	than	255
characters,	SQLStatement	specifies	the	first	portion	of	the	string,	and
SQLStatement1	specifies	the	second	portion.

Connection			Optional	Variant.	A	range	within	which	the	query	specified	by



SQLStatement	will	be	performed.	How	you	specify	the	range	depends	on	how
data	is	retrieved.	For	example:

When	retrieving	data	through	ODBC,	you	specify	a	connection	string.
When	retrieving	data	from	Microsoft	Excel	using	dynamic	data	exchange
(DDE),	you	specify	a	named	range.
When	retrieving	data	from	Microsoft	Access,	you	specify	the	word	"Table"
or	"Query"	followed	by	the	name	of	a	table	or	query.

LinkToSource			Optional	Variant.	True	to	perform	the	query	specified	by
Connection	and	SQLStatement	each	time	the	main	document	is	opened.



Example

This	example	creates	a	new	data	source	document	named	"Data.doc"	and
attaches	the	data	source	to	the	active	document.	The	new	data	source	includes	a
five-column	table	that	has	the	field	names	specified	by	the	HeaderRecord
argument.

ActiveDocument.MailMerge.CreateDataSource	_

				Name:="C:\Documents\Data.doc",	_

				HeaderRecord:="Name,	Address,	City,	State,	Zip"



CreateHeaderSource	Method
							

Creates	a	Word	document	that	stores	a	header	record	that's	used	in	place	of	the
data	source	header	record	in	a	mail	merge.	This	method	attaches	the	new	header
source	to	the	specified	document,	which	becomes	a	main	document	if	it's	not	one
already.

Note			The	new	header	source	uses	a	table	to	arrange	mail	merge	field	names.

expression.CreateHeaderSource(Name,	PasswordDocument,
WritePasswordDocument,	HeaderRecord)

expression			Required.	An	expression	that	returns	a	MailMerge	object.

Name			Required	String.	The	path	and	file	name	for	the	new	header	source.

PasswordDocument			Optional	Variant.	The	password	required	to	open	the	new
header	source.

WritePasswordDocument			Optional	Variant.	The	password	required	to	save
changes	to	the	header	source.

HeaderRecord			Optional	Variant.	A	string	that	specifies	the	field	names	for	the
header	record.	If	this	argument	is	omitted,	the	standard	header	record	is	used:
"Title,	FirstName,	LastName,	JobTitle,	Company,	Address1,	Address2,	City,
State,	PostalCode,	Country,	HomePhone,	WorkPhone."	To	separate	field	names
in	Windows,	use	the	list	separator	specified	in	Regional	Settings	in	Control
Panel.



Example

This	example	creates	a	header	source	with	five	field	names	and	attaches	the	new
header	source	named	"Header.doc"	to	the	active	document.

ActiveDocument.MailMerge.CreateHeaderSource	Name:="Header.doc",	_

				HeaderRecord:="Name,	Address,	City,	State,	Zip"

This	example	creates	a	header	source	for	the	document	named	"Main.doc"	(with
the	standard	header	record)	and	opens	the	data	source	named	"Data.doc."

With	Documents("Main.doc").MailMerge

				.CreateHeaderSource	Name:="Fields.doc"

				.OpenDataSource	Name:="C:\Documents\Data.doc"

End	With



CreateLetterContent	Method
							

Creates	and	returns	a	LetterContent	object	based	on	the	specified	letter
elements.	LetterContent	object.

expression.CreateLetterContent(DateFormat,	IncludeHeaderFooter,
PageDesign,	LetterStyle,	Letterhead,	LetterheadLocation,	LetterheadSize,
RecipientName,	RecipientAddress,	Salutation,	SalutationType,
RecipientReference,	MailingInstructions,	AttentionLine,	Subject,	CCList,
ReturnAddress,	SenderName,	Closing,	SenderCompany,	SenderJobTitle,
SenderInitials,	EnclosureNumber,	InfoBlock,	RecipientCode,
RecipientGender,	ReturnAddressShortForm,	SenderCity,	SenderCode,
SenderGender,	SenderReference)

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

DateFormat		Required	String.	The	date	for	the	letter.

IncludeHeaderFooter		Required	Boolean.	True	to	include	the	header	and	footer
from	the	page	design	template.

PageDesign		Required	String.	The	name	of	the	template	attached	to	the
document.

LetterStyle		Required	WdLetterStyle.	The	document	layout.

WdLetterStyle	can	be	one	of	these	WdLetterStyle	constants.
wdFullBlock
wdModifiedBlock
wdSemiBlock

Letterhead		Required	Boolean.	True	to	reserve	space	for	a	preprinted	letterhead.

LetterheadLocation		Required	WdLetterheadLocation.	The	location	of	the



preprinted	letterhead.

WdLetterheadLocation	can	be	one	of	these	WdLetterheadLocation	constants.
wdLetterBottom
wdLetterLeft
wdLetterRight
wdLetterTop

LetterheadSize		Required	Single.	The	amount	of	space	(in	points)	to	be	reserved
for	a	preprinted	letterhead.

RecipientName		Required	String.	The	name	of	the	person	who'll	be	receiving
the	letter.

RecipientAddress		Required	String.	The	mailing	address	of	the	person	who'll	be
receiving	the	letter.

Salutation		Required	String.	The	salutation	text	for	the	letter.

SalutationType		Required	WdSalutationType.	The	salutation	type	for	the	letter.

WdSalutationType	can	be	one	of	these	WdSalutationType	constants.
wdSalutationFormal
wdSalutationOther
wdSalutationBusiness
wdSalutationInformal

RecipientReference		Required	String.	The	reference	line	text	for	the	letter	(for
example,	"In	reply	to:").

MailingInstructions		Required	String.	The	mailing	instruction	text	for	the	letter
(for	example,	"Certified	Mail").

AttentionLine		Required	String.	The	attention	line	text	for	the	letter	(for
example,	"Attention:").

Subject		Required	String.	The	subject	text	for	the	specified	letter.



CCList		Required	String.	The	names	of	the	carbon	copy	(CC)	recipients	for	the
letter.

ReturnAddress		Required	String.	The	text	of	the	return	mailing	address	for	the
letter.

SenderName		Required	String.	The	name	of	the	person	sending	the	letter.

Closing		Required	String.	The	closing	text	for	the	letter.

SenderCompany		Required	String.	The	company	name	of	the	person	creating
the	letter.

SenderJobTitle		Required	String.	The	job	title	of	the	person	creating	the	letter.

SenderInitials		Required	String.	The	initials	of	the	person	creating	the	letter.

EnclosureNumber		Required	Long.	The	number	of	enclosures	for	the	letter.

InfoBlock		Optional	Variant.	This	argument	may	not	be	available	to	you,
depending	on	the	language	support	(U.S.	English,	for	example)	that	you’ve
selected	or	installed.

RecipientCode		Optional	Variant.	This	argument	may	not	be	available	to	you,
depending	on	the	language	support	(U.S.	English,	for	example)	that	you’ve
selected	or	installed.

RecipientGender		Optional	Variant.	This	argument	may	not	be	available	to	you,
depending	on	the	language	support	(U.S.	English,	for	example)	that	you’ve
selected	or	installed.

ReturnAddressShortForm		Optional	Variant.	This	argument	may	not	be
available	to	you,	depending	on	the	language	support	(U.S.	English,	for	example)
that	you’ve	selected	or	installed.

SenderCity		Optional	Variant.	This	argument	may	not	be	available	to	you,
depending	on	the	language	support	(U.S.	English,	for	example)	that	you’ve
selected	or	installed.

SenderCode		Optional	Variant.	This	argument	may	not	be	available	to	you,



depending	on	the	language	support	(U.S.	English,	for	example)	that	you’ve
selected	or	installed.

SenderGender		Optional	Variant.	This	argument	may	not	be	available	to	you,
depending	on	the	language	support	(U.S.	English,	for	example)	that	you’ve
selected	or	installed.

SenderReference		Optional	Variant.	This	argument	may	not	be	available	to	you,
depending	on	the	language	support	(U.S.	English,	for	example)	that	you’ve
selected	or	installed.



Example

The	following	example	uses	the	CreateLetterContent	method	to	create	a	new
LetterContent	object	in	the	active	document	and	then	uses	this	object	with	the
RunLetterWizard	method.

Set	myLetter	=	ActiveDocument	_

				.CreateLetterContent(DateFormat:="July	31,	1996",	_

				IncludeHeaderFooter:=False,	PageDesign:="",	_

				LetterStyle:=wdFullBlock,	Letterhead:=True,	_

				LetterheadLocation:=wdLetterTop,	_

				LetterheadSize:=InchesToPoints(1.5),	_

				RecipientName:="Dave	Edson",	_

				RecipientAddress:="436	SE	Main	St."	&	vbCr	_

				&	"Bellevue,	WA	98004",	_

				Salutation:="Dear	Dave,",	_

				SalutationType:=wdSalutationInformal,	_

				RecipientReference:="",	MailingInstructions:="",	_

				AttentionLine:="",	Subject:="End	of	year	report",	_

				CCList:="",	ReturnAddress:="",	_

				SenderName:="",	Closing:="Sincerely	yours,",	_

				SenderCompany:="",	SenderJobTitle:="",	_

				SenderInitials:="",	EnclosureNumber:=0)

ActiveDocument.RunLetterWizard	LetterContent:=myLetter



Show	All



CreateNewDocument	Method
							

CreateNewDocument	method	as	it	applies	to	the	MailingLabel	object.

Creates	a	new	label	document	using	either	the	default	label	options	or	ones	that
you	specify.	Returns	a	Document	object	that	represents	the	new	document.

expression.CreateNewDocument(Name,	Address,	AutoText,	ExtractAddress,
LaserTray,	PrintEPostageLabel,	Vertical)

expression			Required.	An	expression	that	returns	one	of	the	above	objects.

Name		Optional	Variant.	The	mailing	label	name.

Address		Optional	Variant.	The	text	for	the	mailing	label.

AutoText		Optional	Variant.	The	name	of	the	AutoText	entry	that	includes	the
mailing	label	text.

ExtractAddress		Optional	Variant.	True	to	use	the	address	text	marked	by	the
user-defined	bookmark	named	"EnvelopeAddress"	instead	of	using	the	Address
argument.

LaserTray			Optional	Variant.	The	laser	printer	tray.	Can	be	one	of	the
following	WdPaperTray	constants.

WdPaperTray	can	be	any	one	of	the	following	WdPaperTray	constants:
wdPrinterAutomaticSheetFeed
wdPrinterDefaultBin
wdPrinterEnvelopeFeed
wdPrinterFormSource
wdPrinterLargeCapacityBin
wdPrinterLargeFormatBin
wdPrinterLowerBin



wdPrinterManualFeed
wdPrinterManualEnvelopeFeed
wdPrinterMiddleBin
wdPrinterOnlyBin
wdPrinterPaperCassette
wdPrinterSmallFormatBin
wdPrinterTractorFeed
wdPrinterUpperBin

PrintEPostageLabel		Optional	Variant.	True	to	print	postage	using	an	Internet
e-postage	vendor.

Vertical		Optional	Variant.	True	formats	text	vertically	on	the	label.	Used	for
Asian-language	mailing	labels.

CreateNewDocument	method	as	it	applies	to	the	Hyperlink	object.

Creates	a	new	document	linked	to	the	specified	hyperlink.

expression.CreateNewDocument(FileName,	EditNow,	Overwrite)

expression			Required.	An	expression	that	returns	one	of	the	above	objects.

FileName		Required	String.	The	file	name	of	the	specified	document.

EditNow		Required	Boolean.	True	to	have	the	specified	document	open
immediately	in	its	associated	editing	environment.	The	default	value	is	True.

Overwrite		Required	Boolean.	True	to	overwrite	any	existing	file	of	the	same
name	in	the	same	folder.	False	if	any	existing	file	of	the	same	name	is	preserved
and	the	FileName	argument	specifies	a	new	file	name.	The	default	value	is
False.



Example

As	it	applies	to	the	MailingLabel	object.

This	example	creates	a	new	Avery	2160	minilabel	document	using	a	predefined
address.

addr	=	"Dave	Edson"	&	vbCr	&	"123	Skye	St."	_

				&	vbCr	&	"Our	Town,	WA	98004"

Application.MailingLabel.CreateNewDocument	_

				Name:="2160	mini",	Address:=addr,	ExtractAddress:=False

This	example	creates	a	new	Avery	5664	shipping-label	document	using	the
selected	text	as	the	address.

addr	=	Selection.Text

Application.MailingLabel.CreateNewDocument	_

				Name:="5664",	Address:=addr,	_

				LaserTray:=wdPrinterUpperBin

This	example	creates	a	new	self-adhesive-label	document	using	the
EnvelopeAddress	bookmark	text	as	the	address.

If	ActiveDocument.Bookmarks.Exists("EnvelopeAddress")	=	True	Then

				Application.MailingLabel.CreateNewDocument	_

								Name:="Self	Adhesive	Tab	1	1/2""",	ExtractAddress:=True

End	If

As	it	applies	to	the	Hyperlink	object.

This	example	creates	a	new	document	based	on	the	new	hyperlink	in	the	first
document	and	then	loads	the	new	document	into	Microsoft	Word	for	editing.	The
document	is	called	“Overview.doc,”	and	it	overwrites	any	file	of	the	same	name
in	the	\\Server1\Annual	folder.

With	Documents(1)

				Set	objHyper	=	_

								.Hyperlinks.Add(Anchor:=Selection.Range,	_

								Address:="\\Server1\Annual\Overview.doc")

				objHyper.CreateNewDocument	_

								FileName:="\\Server1\Annual\Overview.doc",	_

								EditNow:=True,	Overwrite:=True



End	With



CreateTextbox	Method
							

Adds	a	default-size	text	box	around	the	selection.	If	the	selection	is	an	insertion
point,	this	method	changes	the	pointer	to	a	cross-hair	pointer	so	that	the	user	can
draw	a	text	box.

expression.CreateTextbox

expression			Required.	An	expression	that	returns	a	Selection	object.



Remarks

Using	this	method	is	equivalent	to	clicking	the	Text	Box	button	on	the	Drawing
toolbar.	A	text	box	is	a	rectangle	with	an	associated	text	frame.



Example

This	example	adds	a	text	box	around	the	selection	and	then	changes	the	text
box's	line	style.

If	Selection.Type	=	wdSelectionNormal	Then

				Selection.CreateTextbox

				Selection.ShapeRange(1).Line.DashStyle	=msoLineDashDot

End	If



CustomDrop	Method
							

Sets	the	vertical	distance	(in	points)	from	the	edge	of	the	text	bounding	box	to
the	place	where	the	callout	line	attaches	to	the	text	box.	This	distance	is
measured	from	the	top	of	the	text	box	unless	the	AutoAttach	property	is	set	to
True	and	the	text	box	is	to	the	left	of	the	origin	of	the	callout	line	(the	place	that
the	callout	points	to),	in	which	case	the	drop	distance	is	measured	from	the
bottom	of	the	text	box.

expression.CustomDrop(Drop)

expression			Required.	An	expression	that	returns	a	CalloutFormat	object.

Drop			Required	Single.	The	drop	distance,	in	points.



Remarks

If	the	PresetDrop	method	was	previously	used	to	set	the	drop	for	the	specified
callout,	use	the	statement	PresetDrop	msoCalloutDropCustom	before	using	the
CustomDrop	method	so	that	the	custom	drop	setting	takes	effect.



Example

This	example	cancels	any	preset	drop	that's	been	set	for	the	first	shape	in	the
active	document,	sets	the	custom	drop	distance	to	14	points,	and	specifies	that
the	drop	distance	always	be	measured	from	the	top.	For	the	example	to	work,	the
first	shape	must	be	a	callout.

Dim	docActive	As	Document

Set	docActive	=	ActiveDocument

With	docActive.Shapes(1).Callout

				.PresetDrop	msoCalloutDropCustom

				.CustomDrop	14

				.AutoAttach	=	False

End	With



CustomLength	Method
							

Specifies	that	the	first	segment	of	the	callout	line	(the	segment	attached	to	the
text	callout	box)	retain	a	fixed	length	whenever	the	callout	is	moved.	Use	the
AutomaticLength	method	to	specify	that	the	first	segment	of	the	callout	line	be
scaled	automatically	whenever	the	callout	is	moved.	Applies	only	to	callouts
whose	lines	consist	of	more	than	one	segment	(types	msoCalloutThree	and
msoCalloutFour).

expression.CustomLength(Length)

expression			Required.	An	expression	that	returns	a	CalloutFormat	object.

Length			Required	Single.	The	length	of	the	first	segment	of	the	callout,	in
points.



Remarks

Applying	this	method	sets	the	AutoLength	property	to	False	and	sets	the
Length	property	to	the	value	specified	for	the	Length	argument.



Example

This	example	toggles	between	an	automatically	scaling	first	segment	and	one
with	a	fixed	length	for	the	callout	line	for	the	first	shape	on	the	active	document.
For	the	example	to	work,	the	first	shape	must	be	a	callout.

Dim	docActive	As	Document

Set	docActive	=	ActiveDocument

With	docActive.Shapes(1).Callout

				If	.AutoLength	Then

								.CustomLength	50

				Else

								.AutomaticLength

				End	If

End	With



Cut	Method
							

Removes	the	specified	object	from	the	document	and	places	it	on	the	Clipboard.

expression.Cut

expression			Required.	An	expression	that	returns	a	Field,	FormField,	Frame,
MailMergeField,	PageNumber,	Range,	or	Selection	object.



Remarks

If	expression	returns	a	Range	or	Selection	object,	the	contents	of	the	object	are
cut	to	the	Clipboard	but	the	collapsed	object	remains	in	the	document.



Example

This	example	cuts	the	first	field	in	the	active	document	and	pastes	the	field	at	the
insertion	point.

If	ActiveDocument.Fields.Count	>=	1	Then

				ActiveDocument.Fields(1).Cut

				Selection.Collapse	Direction:=wdCollapseEnd

				Selection.Paste

End	If

This	example	cuts	the	first	word	in	the	first	paragraph	and	pastes	the	word	at	the
end	of	the	paragraph.

With	ActiveDocument.Paragraphs(1).Range

				.Words(1).Cut

				.Collapse	Direction:=wdCollapseEnd

				.Move	Unit:=wdCharacter,	Count:=-1

				.Paste

End	With

This	example	cuts	the	contents	of	the	selection	and	pastes	them	into	a	new
document.

If	Selection.Type	=	wdSelectionNormal	Then

				Selection.Cut

				Documents.Add.Content.Paste

End	If



DataForm	Method
							

Displays	the	Data	Form	dialog	box,	in	which	you	can	add,	delete,	or	modify
data	records.

Note			You	can	use	this	method	with	a	mail	merge	main	document,	a	mail	merge
data	source,	or	any	document	that	contains	data	delimited	by	table	cells	or
separator	characters.

expression.DataForm

expression			Required.	An	expression	that	returns	a	Document	object.



Example

This	example	displays	the	Data	Form	dialog	box	if	the	active	document	is	a
mail	merge	document.

If	ActiveDocument.MailMerge.State	<>	wdNormalDocument	Then

				ActiveDocument.DataForm

End	If

This	example	creates	a	table	in	a	new	document	and	then	displays	the	Data
Form	dialog	box.

Set	aDoc	=	Documents.Add

With	aDoc

				.Tables.Add	Range:=aDoc.Content,	NumRows:=2,	NumColumns:=2

				.Tables(1).Cell(1,	1).Range.Text	=	"Name"

				.Tables(1).Cell(1,	2).Range.Text	=	"Age"

				.DataForm

End	With



DDEExecute	Method
							

Sends	a	command	or	series	of	commands	to	an	application	through	the	specified
dynamic	data	exchange	(DDE)	channel.

expression.DDEExecute(Channel,	Command)

expression			Optional.	An	expression	that	returns	an	Application	object.

Channel			Required	Long.	The	channel	number	returned	by	the	DDEInitiate
method.

Command			Required	String.	A	command	or	series	of	commands	recognized	by
the	receiving	application	(the	DDE	server).	If	the	receiving	application	cannot
perform	the	specified	command,	an	error	occurs.



Example

This	example	creates	a	new	worksheet	in	Microsoft	Excel.	The	XLM	macro
instruction	to	create	a	new	worksheet	is	New(1).

Dim	lngChannel	As	Long

lngChannel	=	DDEInitiate(App:="Excel",	Topic:="System")

DDEExecute	Channel:=lngChannel,	Command:="[New(1)]"

DDETerminate	Channel:=lngChannel

This	example	runs	the	Microsoft	Excel	macro	named	"Macro1"	in	Personal.xls.

Dim	lngChannel	As	Long

lngChannel	=	DDEInitiate(App:="Excel",	Topic:="System")

DDEExecute	Channel:=lngChannel,	Command:="[Run("	&	Chr(34)	&	_

				"Personal.xls!Macro1"	&	Chr(34)	&	")]"

DDETerminate	Channel:=lngChannel



DDEInitiate	Method
							

Opens	a	dynamic	data	exchange	(DDE)	channel	to	another	application,	and
returns	the	channel	number.

expression.DDEInitiate(App,	Topic)

expression			Optional.	An	expression	that	returns	an	Application	object.

App			Required	String.	The	name	of	the	application.

Topic			Required	String.	The	name	of	a	DDE	topic	—	for	example,	the	name	of
an	open	document	—	recognized	by	the	application	to	which	you're	opening	a
channel.



Remarks

If	it's	successful,	the	DDEInitiate	method	returns	the	number	of	the	open
channel.	All	subsequent	DDE	functions	use	this	number	to	specify	the	channel.



Example

This	example	initiates	a	DDE	conversation	with	the	System	topic	and	opens	the
Microsoft	Excel	workbook	Sales.xls.	The	example	terminates	the	DDE	channel,
initiates	a	channel	to	Sales.xls,	and	then	inserts	text	into	cell	R1C1.

Dim	lngChannel	As	Long

lngChannel	=	DDEInitiate(App:="Excel",	Topic:="System")

DDEExecute	Channel:=lngChannel,	Command:="[OPEN("	&	Chr(34)	_

				&	"C:\Sales.xls"	&	Chr(34)	&	")]

DDETerminate	Channel:=lngChannel

lngChannel	=	DDEInitiate(App:="Excel",	Topic:="Sales.xls")

DDEPoke	Channel:=lngChannel,	Item:="R1C1",	Data:="1996	Sales"

DDETerminate	Channel:=lngChannel



DDEPoke	Method
							

Uses	an	open	dynamic	data	exchange	(DDE)	channel	to	send	data	to	an
application.

expression.DDEPoke(Channel,	Item,	Data)

expression			Optional.	An	expression	that	returns	an	Application	object.

Channel			Required	Long.	The	channel	number	returned	by	the	DDEInitiate
method.

Item			Required	String.	The	item	within	a	DDE	topic	to	which	the	specified	data
is	to	be	sent.

Data			Required	String.	The	data	to	be	sent	to	the	receiving	application	(the
DDE	server).



Remarks

If	the	DDEPoke	method	isn't	successful,	an	error	occurs.



Example

This	example	opens	the	Microsoft	Excel	workbook	Sales.xls	and	inserts	"1996
Sales"	into	cell	R1C1.

Dim	lngChannel	As	Long

lngChannel	=	DDEInitiate(App:="Excel",	Topic:="System")

DDEExecute	Channel:=lngChannel,	Command:="[OPEN("	&	Chr(34)	_

				&	"C:\Sales.xls"	&	Chr(34)	&	")]

DDETerminate	Channel:=lngChannel

lngChannel	=	DDEInitiate(App:="Excel",	Topic:="Sales.xls")

DDEPoke	Channel:=lngChannel,	Item:="R1C1",	Data:="1996	Sales"

DDETerminate	Channel:=lngChannel



DDERequest	Method
							

Uses	an	open	dynamic	data	exchange	(DDE)	channel	to	request	information
from	the	receiving	application,	and	returns	the	information	as	a	string.

expression.DDERequest(Channel,	Item)

expression			Optional.	An	expression	that	returns	an	Application	object.

Channel			Required	Long.	The	channel	number	returned	by	the	DDEInitiate
method.

Item			Required	String.	The	item	to	be	requested.



Remarks

When	you	request	information	from	the	topic	in	the	server	application,	you	must
specify	the	item	in	that	topic	whose	contents	you're	requesting.	In	Microsoft
Excel,	for	example,	cells	are	valid	items,	and	you	refer	to	them	by	using	either
the	"R1C1"	format	or	named	references.

Microsoft	Excel	and	other	applications	that	support	DDE	recognize	a	topic
named	"System."	Three	standard	items	in	the	System	topic	are	described	in	the
following	table.	Note	that	you	can	get	a	list	of	the	other	items	in	the	System
topic	by	using	the	SysItems	item.

Item	in	System	topic Effect

SysItems Returns	a	list	of	all	the	items	in	the	System
topic.

Topics Returns	a	list	of	all	the	available	topics.

Formats Returns	a	list	of	all	the	Clipboard	formats
supported	by	Word.



Example

This	example	opens	the	Microsoft	Excel	workbook	Book1.xls	and	retrieves	the
contents	of	cell	R1C1.

Dim	lngChannel	As	Long

lngChannel	=	DDEInitiate(App:="Excel",	Topic:="System")

DDEExecute	Channel:=lngChannel,	Command:="[OPEN("	&	Chr(34)	_

				&	"C:\Documents\Book1.xls"	&	Chr(34)	&	")]"

DDETerminate	Channel:=lngChannel

lngChannel	=	DDEInitiate(App:="Excel",	Topic:="Book1.xls")

MsgBox	DDERequest(Channel:=lngChannel,	Item:="R1C1")

DDETerminateAll

This	example	opens	a	channel	to	the	System	topic	in	Microsoft	Excel	and	then
uses	the	Topics	item	to	return	a	list	of	available	topics.	The	example	inserts	the
topic	list,	which	includes	all	open	workbooks,	after	the	selection.

Dim	lngChannel	As	Long

Dim	strTopicList	As	String

lngChannel	=	DDEInitiate(App:="Excel",	Topic:="System")

strTopicList	=	DDERequest(Channel:=lngChannel,	Item:="Topics")

Selection.InsertAfter	strTopicList

DDETerminate	Channel:=lngChannel



DDETerminate	Method
							

Closes	the	specified	dynamic	data	exchange	(DDE)	channel	to	another
application.

expression.DDETerminate(Channel)

expression			Optional.	An	expression	that	returns	an	Application	object.

Channel			Required	Long.	The	channel	number	returned	by	the	DDEInitiate
method.



Example

This	example	creates	a	new	workbook	in	Microsoft	Excel	and	then	terminates
the	DDE	conversation.

Dim	lngChannel	As	Long

lngChannel	=	DDEInitiate(App:="Excel",	Topic:="System")

DDEExecute	Channel:=lngChannel,	Command:="[New(1)]"

DDETerminate	Channel:=lngChannel



DDETerminateAll	Method
							

Closes	all	dynamic	data	exchange	(DDE)	channels	opened	by	Word.	This
method	doesn't	close	channels	opened	to	Word	by	client	applications.	Using	this
method	is	the	same	as	using	the	DDETerminate	method	for	each	open	channel.

expression.DDETerminateAll

expression			Optional.	An	expression	that	returns	an	Application	object.



Remarks

If	you	interrupt	a	macro	that	opens	a	DDE	channel,	you	may	inadvertently	leave
a	channel	open.	Open	channels	aren't	closed	automatically	when	a	macro	ends,
and	each	open	channel	uses	system	resources.	For	this	reason,	it's	a	good	idea	to
use	this	method	when	you're	debugging	a	macro	that	opens	one	or	more	DDE
channels.



Example

This	example	opens	the	Microsoft	Excel	workbook	Book1.xls,	inserts	text	into
cell	R2C3,	saves	the	workbook.	and	then	terminates	all	DDE	channels.

Dim	lngChannel	As	Long

lngChannel	=	DDEInitiate(App:="Excel",	Topic:="System")

DDEExecute	Channel:=lngChannel,	Command:="[OPEN("	&	Chr(34)	&	_

				"C:\Documents\Book1.xls"	&	Chr(34)	&	")]"

DDETerminate	Channel:=lngChannel

lngChannel	=	DDEInitiate(App:="Excel",	Topic:="Book1.xls")

DDEPoke	Channel:=lngChannel,	Item:="R2C3",	Data:="Hello	World"

DDEExecute	Channel:=lngChannel,	Command:="[Save]"

DDETerminateAll



DecreaseSpacing	Method
							

Decreases	the	spacing	before	and	after	paragraphs	in	six-point	increments.

expression.DecreaseSpacing

expression			Required.	An	expression	that	returns	a	Paragraphs	object.



Example

This	example	decreases	the	before	and	after	spacing	of	a	paragraph	or	selection
of	paragraphs	by	six	points	each	time	the	procedure	is	run.	If	the	before	and	after
spacing	are	both	zero,	the	procedure	will	do	nothing.

Sub	DecreaseParaSpacing()

				Selection.Paragraphs.DecreaseSpacing

End	Sub



DefaultWebOptions	Method
							

Returns	the	DefaultWebOptions	object	that	contains	global	application-level
attributes	used	by	Microsoft	Word	whenever	you	save	a	document	as	a	Web	page
or	open	a	Web	page.

expression.DefaultWebOptions

expression			Required.	An	expression	that	returns	an	Application	object.



Example

This	example	checks	to	see	whether	the	default	setting	for	document	encoding	is
Western,	and	then	it	sets	the	string	strDocEncoding	accordingly.

Dim	strDocEncoding	As	String

If	Application.DefaultWebOptions.Encoding	_

								=	msoEncodingWestern	Then

				strDocEncoding	=	"Western"

Else

				strDocEncoding	=	"Other"

End	If



Show	All



Delete	Method
							

Delete	method	as	it	applies	to	the	Cell	and	Cells	objects.

Deletes	a	table	cell	or	cells	and	optionally	controls	how	the	remaining	cells	are
shifted.

expression.Delete(ShiftCells)

expression			Required.	An	expression	that	returns	one	of	the	above	objects.

ShiftCells		Optional	Variant.	The	direction	in	which	the	remaining	cells	are	to
be	shifted.	Can	be	any	WdDeleteCells	constant.	If	omitted,	cells	to	the	right	of
the	last	deleted	cell	are	shifted	left.

WdDeleteCells	can	be	one	of	these	WdDeleteCells	constants.
wdDeleteCellsEntireColumn
wdDeleteCellsEntireRow
wdDeleteCellsShiftLeft
wdDeleteCellsShiftUp

Delete	method	as	it	applies	to	the	Range	and	Selection	objects.

Deletes	the	specified	number	of	characters	or	words.	This	method	returns	a
Long	value	that	indicates	the	number	of	items	deleted,	or	it	returns	0	(zero)	if	the
deletion	was	unsuccessful.

expression.Delete(Unit,	Count)

expression			Required.	An	expression	that	returns	one	of	the	above	objects.

Unit		Optional	Variant.	The	unit	by	which	the	collapsed	range	or	selection	is	to
be	deleted.	Can	be	one	of	the	following	WdUnits	constants:	wdCharacter
(default)	or	wdWord.



Count		Optional	Variant.	The	number	of	units	to	be	deleted.	To	delete	units	after
the	range	or	selection,	collapse	the	range	or	selection	and	use	a	positive	number.
To	delete	units	before	the	range	or	selection,	collapse	the	range	or	selection	and
use	a	negative	number.

Delete	method	as	it	applies	to	the	ShapeNodes	object.

Deletes	the	specified	object.

expression.Delete(Index)

expression			Required.	An	expression	that	returns	a	ShapeNodes	object.

Index		Required	Long.	The	number	of	the	shape	node	to	delete.

Delete	method	as	it	applies	to	all	other	objects	in	the	Applies	To	list.	

Deletes	the	specified	object.

expression.Delete

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.



Example

As	it	applies	to	the	Cell	object.

This	example	deletes	the	first	cell	in	the	first	table	of	the	active	document.

Sub	DeleteCells()

				ActiveDocument.Tables(1).Cell(1,	1).Delete

End	Sub

As	it	applies	to	the	Range	and	Selection	objects.

This	example	selects	and	deletes	the	contents	of	the	active	document.

Sub	DeleteSelection()

				ActiveDocument.Content.Select

				Selection.Delete

End	Sub

This	example	collapses	the	selection	and	deletes	the	two	words	following	the
insertion	point.

Sub	DeleteSelection2()

				ActiveDocument.Range(Start:=ActiveDocument.Paragraphs(3).Range.Start,	End:=ActiveDocument.Paragraphs(6).Range.End).Select

				Selection.Collapse	Direction:=wdCollapseStart

				Selection.Delete	Unit:=wdWord,	Count:=2

End	Sub

This	example	collapses	myRange	and	deletes	the	two	characters	preceding	the
insertion	point.

Sub	DeleteRange()

				Dim	myRange	As	Range

				Set	myRange	=	Selection.Words(1)

				myRange.Collapse	Direction:=wdCollapseStart

				myRange.Delete	Unit:=wdCharacter,	Count:=-2

End	Sub

This	example	deletes	the	first	word	in	the	active	document.

Sub	DeleteFirstWord()

				ActiveDocument.Words(1).Delete



End	Sub

As	it	applies	to	other	objects	in	the	Applies	To	list.	

If	a	bookmark	named	"temp"	exists	in	the	active	document,	this	example	deletes
the	bookmark.

Sub	DeleteBookmark()

				If	ActiveDocument.Bookmarks.Exists(Name:="temp")	Then

								ActiveDocument.Bookmarks(Name:="temp").Delete

				End	If

End	Sub

This	example	deletes	the	style	named	"Intro"	from	Sales.doc.	Paragraphs	using
the	Intro	style	will	revert	to	using	the	Normal	style.

Sub	DeleteStyle()

				Documents(Index:="Sales.doc").Styles	_

								(Index:="Intro").Delete

End	Sub



DeleteAllComments	Method
							

Deletes	all	comments	from	the	Comments	collection	in	a	document.

expression.DeleteAllComments

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.



Remarks

Use	the	Add	method	for	the	Comments	object	to	add	a	comment	to	a	document.



Example

This	example	deletes	all	comments	in	the	active	document.	This	example
assumes	you	have	comments	in	active	document.

Sub	DelAllComments()

				ActiveDocument.DeleteAllComments

End	Sub



DeleteAllCommentsShown	Method
							

Deletes	all	revisions	in	a	specified	document	that	are	displayed	on	the	screen.

expression.DeleteAllCommentsShown

expression			Required.	An	expression	that	returns	a	Document	object.



Example

This	example	hides	all	comments	made	by	"Jeff	Smith"	and	deletes	all	other
displayed	comments.

Sub	HideDeleteComments()

				Dim	rev	As	Reviewer

				With	ActiveWindow.View

								'Display	all	comments	and	revisions

								.ShowRevisionsAndComments	=	True

								.ShowFormatChanges	=	True

								.ShowInsertionsAndDeletions	=	True

								For	Each	rev	In	.Reviewers

												rev.Visible	=	True

								Next

								'Hide	only	the	revisions/comments	made	by	the

								'reviewer	named	"Jeff	Smith"

								.Reviewers(Index:="Jeff	Smith").Visible	=	False

				End	With

				'Delete	all	comments	displayed	in	the	active	view

				ActiveDocument.DeleteAllCommentsShown

End	Sub



DetectLanguage	Method
							

Analyzes	the	specified	text	to	determine	the	language	that	it	is	written	in.

expression.DetectLanguage

expression			Required.	An	expression	that	returns	a	Document,	Range,	or
Selection	object.



Remarks

The	results	of	the	DetectLanguage	method	are	stored	in	the	LanguageID
property	on	a	character-by-character	basis.	To	read	the	LanguageID	property,
you	must	first	specify	a	selection	or	range	of	text.

When	applied	to	a	Document	object,	the	DetectLanguage	method	checks	all
available	text	in	the	document	(headers,	footers,	text	boxes,	and	so	forth).	If	the
specified	text	contains	a	partial	sentence,	the	selection	or	range	is	extended	to	the
end	of	the	sentence.

If	the	DetectLanguage	method	has	already	been	applied	to	the	specified	text,
the	LanguageDetected	property	is	set	to	True.	To	reevaulate	the	language	of	the
specified	text,	you	must	first	set	the	LanguageDetected	property	to	False.

For	more	information	about	automatic	language	detection,	see	About	automatic
language	detection.

mk:@MSITStore:wdmain10.chm::/html/wdconAboutAutomaticLanguageDetection.htm


Example

This	example	checks	the	active	document	to	determine	the	language	it’s	written
in	and	then	displays	the	result.

With	ActiveDocument

				If	.LanguageDetected	=	True	Then

								x	=	MsgBox("This	document	has	already	"	_

												&	"been	checked.	Do	you	want	to	check	"	_

												&	"it	again?",	vbYesNo)

								If	x	=	vbYes	Then

												.LanguageDetected	=	False

												.DetectLanguage

								End	If

				Else

								.DetectLanguage

				End	If

				If	.Range.LanguageID	=	wdEnglishUS	Then

								MsgBox	"This	is	a	U.S.	English	document."

				Else

								MsgBox	"This	is	not	a	U.S.	English	document."

				End	If

End	With



Disable	Method
							

Removes	the	specified	key	combination	if	it's	currently	assigned	to	a	command.
After	you	use	this	method,	the	key	combination	has	no	effect.	Using	this	method
is	the	equivalent	to	clicking	the	Remove	button	in	the	Customize	Keyboard
dialog	box	(Tools	menu).

Note			Use	the	Clear	method	with	a	KeyBinding	object	to	reset	a	built-in
command	to	its	default	key	assignment.	You	don't	need	to	remove	or	rebind	a
KeyBinding	object	before	adding	it	elsewhere.

expression.Disable

expression			Required.	An	expression	that	returns	a	KeyBinding	object.



Example

This	example	removes	the	CTRL+SHIFT+B	key	assignment.	This	key
combination	is	assigned	to	the	Bold	command	by	default.

CustomizationContext	=	NormalTemplate

FindKey(BuildKeyCode(wdKeyControl,	wdKeyShift,	wdKeyB)).Disable

This	example	assigns	the	CTRL+SHIFT+O	key	combination	to	the	Organizer
command.	The	example	then	uses	the	Disable	method	to	remove	the
CTRL+SHIFT+O	key	combination	and	displays	a	message.

CustomizationContext	=	NormalTemplate

KeyBindings.Add	KeyCode:=BuildKeyCode(wdKeyO,	_

				wdKeyControl,	wdKeyShift),	_

				KeyCategory:=wdKeyCategoryCommand,	Command:="Organizer"

With	FindKey(BuildKeyCode(wdKeyO,	wdKeyControl,	wdKeyShift))

				MsgBox	.Command	&	"	is	assigned	to	CTRL+Shift+O"

				.Disable

				If	.Command	=	""	Then	MsgBox	_

								"Nothing	is	assigned	to	CTRL+Shift+O"

End	With

This	example	removes	all	key	assignments	for	the	global	macro	named
"Macro1."

Dim	kbLoop	As	KeyBinding

CustomizationContext	=	NormalTemplate

For	Each	kbLoop	In	KeysBoundTo	_

								(KeyCategory:=wdKeyCategoryMacro,	Command:="Macro1")

				kbLoop.Disable

Next	kbLoop



This	keyword	is	not	implemented.	It	is	reserved	for	future	use.



Display	Method
							

Displays	the	specified	built-in	Word	dialog	box	until	either	the	user	closes	it	or
the	specified	amount	of	time	has	passed.	Returns	a	Long	that	indicates	which
button	was	clicked	to	close	the	dialog	box.

Return	value Description
-2 The	Close	button.
-1 The	OK	button.
0	(zero) The	Cancel	button.

>	0	(zero) A	command	button:	1	is	the	first	button,	2	is	the	second
button,	and	so	on.

Note			Any	actions	initiated	or	settings	specified	while	a	dialog	box	is	displayed
using	this	method	aren't	carried	out.	Use	the	Show	method	to	display	a	dialog
box	and	carry	out	actions	or	apply	settings.

expression.Display(TimeOut)

expression			Required.	An	expression	that	returns	a	Dialog	object.

TimeOut			Optional	Variant.	The	amount	of	time	that	Word	will	wait	before
closing	the	dialog	box	automatically.	One	unit	is	approximately	0.001	second.
Concurrent	system	activity	may	increase	the	effective	time	value.	If	this
argument	is	omitted,	the	dialog	box	is	closed	when	the	user	closes	it.



Example

This	example	displays	the	About	dialog	box.

Dim	dlgAbout	As	Dialog

Set	dlgAbout	=	Dialogs(wdDialogHelpAbout)

dlgAbout.Display

This	example	displays	the	Zoom	dialog	box	for	approximately	nine	seconds.

Dialogs(wdDialogViewZoom).Display	TimeOut:=9000



DisplayMoveDialog	Method
							

Displays	the	Move	dialog	box,	in	which	the	user	can	specify	a	new	location	for
the	active	e-mail	message	in	an	available	message	store.	This	method	is
available	only	if	you	are	using	Word	as	your	e-mail	editor.

expression.DisplayMoveDialog

expression			Required.	An	expression	that	returns	a	MailMessage	object.



Example

This	example	displays	the	Move	dialog	box	for	the	active	e-mail	message.

Application.MailMessage.DisplayMoveDialog



DisplayProperties	Method
							

Displays	the	Properties	dialog	box	for	the	active	e-mail	message.	This	method
is	available	only	if	you	are	using	Word	as	your	e-mail	editor.

expression.DisplayProperties

expression			Required.	An	expression	that	returns	a	MailMessage	object.



Example

This	example	displays	the	Properties	dialog	box	for	the	active	e-mail	message.

Application.MailMessage.DisplayProperties



DisplaySelectNamesDialog	Method
							

Displays	the	Select	Names	dialog	box,	in	which	the	user	can	add	addresses	to
the	To:,	Cc:,	and	Bcc:	lines	in	the	active,	unsent	e-mail	message.	This	method	is
available	only	if	you	are	using	Word	as	your	e-mail	editor.

expression.DisplaySelectNamesDialog

expression			Required.	An	expression	that	returns	a	MailMessage	object.



Example

This	example	displays	the	Select	Names	dialog	box	for	the	active	e-mail
message.

Application.MailMessage.DisplaySelectNamesDialog



Distribute	Method
							

Evenly	distributes	the	shapes	in	the	specified	range	of	shapes.	You	can	specify
whether	you	want	to	distribute	the	shapes	horizontally	or	vertically	and	whether
you	want	to	distribute	them	over	the	entire	page	or	just	over	the	space	they
originally	occupy.

expression.Distribute(Distribute,	RelativeTo)

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

Distribute		Required	MsoDistributeCmd.

MsoDistributeCmd	can	be	one	of	these	MsoDistributeCmd	constants.
msoDistributeHorizontally
msoDistributeVertically

RelativeTo		Required	Long.	True	to	distribute	the	shapes	evenly	over	the	entire
horizontal	or	vertical	space	on	the	page.	False	to	distribute	them	within	the
horizontal	or	vertical	space	that	the	range	of	shapes	originally	occupies.



Example

This	example	defines	a	shape	range	that	contains	all	the	AutoShapes	on	the
active	document	and	then	horizontally	distributes	the	shapes	in	this	range.

With	ActiveDocument.Shapes

				numShapes	=	.Count

				If	numShapes	>	1	Then

								numAutoShapes	=	0

								ReDim	autoShpArray(1	To	numShapes)

								For	i	=	1	To	numShapes

												If	.Item(i).Type	=	msoAutoShape	Then

																numAutoShapes	=	numAutoShapes	+	1

																autoShpArray(numAutoShapes)	=	.Item(i).Name

												End	If

								Next

								If	numAutoShapes	>	1	Then

												ReDim	Preserve	autoShpArray(1	To	numAutoShapes)

												Set	asRange	=	.Range(autoShpArray)

												asRange.Distribute	msoDistributeHorizontally,	False

								End	If

				End	If

End	With



DistributeHeight	Method
							

Adjusts	the	height	of	the	specified	rows	or	cells	so	that	they're	equal.

expression.DistributeHeight

expression			Required.	An	expression	that	returns	a	Cells	or	Rows	object.



Example

This	example	adjusts	the	height	of	the	rows	in	the	first	table	in	the	active
document	so	that	they're	equal.

ActiveDocument.Tables(1).Rows.DistributeHeight

This	example	adjusts	the	height	of	the	first	three	rows	in	the	first	table	so	that
they're	equal.

Dim	rngTemp	As	Range

If	ActiveDocument.Tables.Count	>=	1	Then

				Set	rngTemp	=	ActiveDocument.Range(Start:=ActiveDocument	_

								.Tables(1).Rows(1).Range.Start,	_

								End:=ActiveDocument.Tables(1).Rows(3).Range.End)

				rngTemp.Rows.DistributeHeight

End	If



DistributeWidth	Method
							

Adjusts	the	width	of	the	specified	columns	or	cells	so	that	they're	equal.

expression.DistributeWidth

expression			Required.	An	expression	that	returns	a	Cells	or	Columns	object.



Example

This	example	adjusts	the	width	of	the	columns	in	the	first	table	in	the	active
document	so	that	they're	equal.

ActiveDocument.Tables(1).Columns.DistributeWidth

This	example	adjusts	the	height	of	the	selected	cells.

If	Selection.Cells.Count	>=	2	Then	

				Selection.Cells.DistributeWidth

End	If



DoClick	Method
							

Clicks	the	specified	field.	If	the	field	is	a	GOTOBUTTON	field,	this	method
moves	the	insertion	point	to	the	specified	location	or	selects	the	specified
bookmark.	If	the	field	is	a	MACROBUTTON	field,	this	method	runs	the
specified	macro.	If	the	field	is	a	HYPERLINK	field,	this	method	jumps	to	the
target	location.

expression.DoClick

expression			Required.	An	expression	that	returns	a	Field	object.



Example

If	the	first	field	in	the	selection	is	a	GOTOBUTTON	field,	this	example	clicks	it
(the	insertion	point	is	moved	to	the	specified	location,	or	the	specified	bookmark
is	selected).

Dim	fldTemp

Set	fldTemp	=	Selection.Fields(1)

If	fldTemp.Type	=	wdFieldGoToButton	Then	fldTemp.DoClick



DoVerb	Method
							

Requests	that	an	OLE	object	perform	one	of	its	available	verbs	—	the	actions	an
OLE	object	takes	to	activate	its	contents.	Each	OLE	object	supports	a	set	of
verbs	that	pertain	to	that	object.

expression.DoVerb(VerbIndex)

expression			Required.	An	expression	that	returns	an	OLEFormat	object.

VerbIndex			Optional	Variant.	The	verb	that	the	OLE	object	should	perform.	If
this	argument	is	omitted,	the	default	verb	is	sent.	If	the	OLE	object	does	not
support	the	requested	verb,	an	error	will	occur.	Can	be	any	WdOLEVerb
constant.

WdOLEVerb	can	be	one	of	these	WdOLEVerb	constants.
wdOLEVerbPrimary	Performs	the	verb	that	is	invoked	when	the	user	double-
clicks	the	object.
wdOLEVerbShow	Shows	the	object	to	the	user	for	editing	or	viewing.	Use	it	to
show	a	newly	inserted	object	for	initial	editing.
wdOLEVerbOpen	Opens	the	object	in	a	separate	window.
wdOLEVerbHide	Removes	the	object's	user	interface	from	view.
wdOLEVerbUIActivate	Activates	the	object	in	place	and	displays	any	user-
interface	tools	that	the	object	needs,	such	as	menus	or	toolbars.
wdOLEVerbInPlaceActivateRuns	the	object	and	installs	its	window,	but
doesn't	install	any	user-interface	tools.
wdOLEVerbDiscardUndoState	Forces	the	object	to	discard	any	undo	state
that	it	might	be	maintaining;	note	that	the	object	remains	active,	however.
	



Example

This	example	sends	the	default	verb	to	the	server	for	the	first	floating	OLE
object	on	the	active	document.

ActiveDocument.Shapes(1).OLEFormat.DoVerb



Duplicate	Method
							

Creates	a	duplicate	of	the	specified	Shape	or	ShapeRange	object,	adds	the	new
range	of	shapes	to	the	Shapes	collection	at	a	standard	offset	from	the	original
shapes,	and	then	returns	the	new	Shape	object.

expression.Duplicate

expression			Required.	An	expression	that	returns	a	Shape	or	ShapeRange
object.



Example

This	example	creates	a	duplicate	of	shape	one	on	the	active	document	and	then
changes	the	fill	for	the	new	shape.

Set	newShape	=	ActiveDocument.Shapes(1).Duplicate

With	newShape

				.Fill.PresetGradient	msoGradientVertical,	1,	msoGradientGold

End	With



Edit	Method
							

Opens	the	specified	OLE	object	for	editing	in	the	application	it	was	created	in.

expression.Edit

expression			Required.	An	expression	that	returns	an	OLEFormat	object.



Example

This	example	opens	(for	editing)	the	first	embedded	OLE	object	(defined	as	a
shape)	on	the	active	document.

Dim	shapesAll	As	Shapes

Set	shapesAll	=	ActiveDocument.Shapes

If	shapesAll.Count	>=	1	Then

				If	shapesAll(1).Type	=	msoEmbeddedOLEObject	Then

								shapesAll(1).OLEFormat.Edit

				End	If

End	If

This	example	opens	(for	editing)	the	first	linked	OLE	object	(defined	as	an	inline
shape)	in	the	active	document.

Dim	colIS	As	InlineShapes

Set	colIS	=	ActiveDocument.InlineShapes

If	colIS.Count	>=	1	Then

				If	colIS(1).Type	=	wdInlineShapeLinkedOLEObject	Then

								colIS(1).OLEFormat.Edit

				End	If

End	If



EditDataSource	Method
							

Opens	or	switches	to	the	mail	merge	data	source.

expression.EditDataSource

expression			Required.	An	expression	that	returns	a	MailMerge	object.



Remarks

If	the	data	source	is	a	Word	document,	this	method	opens	the	data	source	(or
activates	the	data	source	if	it's	already	open).

If	Word	is	accessing	the	data	through	dynamic	data	exchange	(DDE)	—	using	an
application	such	as	Microsoft	Excel	or	Microsoft	Access	—	this	method	displays
the	data	source	in	that	application.

If	Word	is	accessing	the	data	through	open	database	connectivity	(ODBC),	this
method	displays	the	data	in	a	Word	document.	Note	that	if	Microsoft	Query	is
installed,	a	message	appears,	providing	the	option	to	display	Microsoft	Query
instead	of	converting	data.



Example

This	example	opens	or	activates	the	data	source	attached	to	the	document	named
"Sales.doc."

Documents("Sales.doc").MailMerge.EditDataSource

This	example	opens	or	activates	the	attached	data	source	if	the	data	source	is	a
Word	document.

Dim	dsMain	As	MailMergeDataSource

Set	dsMain	=	ActiveDocument.MailMerge.DataSource

If	dsMain.Type	=	wdMergeInfoFromWord	Then

				ActiveDocument.MailMerge.EditDataSource

End	If



EditHeaderSource	Method
							

Opens	the	header	source	attached	to	a	mail	merge	main	document,	or	activates
the	header	source	if	it's	already	open.

Note			If	the	mail	merge	main	document	doesn't	have	a	header	source,	this
method	causes	an	error.

expression.EditHeaderSource

expression			Required.	An	expression	that	returns	a	MailMerge	object.



Example

This	example	attaches	a	header	source	to	the	active	document	and	then	opens	the
header	source.

With	ActiveDocument.MailMerge

				.MainDocumentType	=	wdFormLetters

				.OpenHeaderSource	Name:="C:\Documents\Header.doc"

				.EditHeaderSource

End	With

This	example	opens	the	header	source	if	the	active	document	has	an	associated
header	file	attached	to	it.

Dim	mmTemp	As	MailMerge

Set	mmTemp	=	ActiveDocument.MailMerge

If	mmTemp.State	=	wdMainAndSourceAndHeader	Or	_

								mmTemp.State	=	wdMainAndHeader	Then

				mmTemp.EditHeaderSource

End	If



EditMainDocument	Method
							

Activates	the	mail	merge	main	document	associated	with	the	specified	header
source	or	data	source	document.

Note			If	the	main	document	isn't	open,	an	error	occurs.	Use	the	Open	method	if
the	main	document	isn't	currently	open.

expression.EditMainDocument

expression			Required.	An	expression	that	returns	a	MailMerge	object.



Example

This	example	attempts	to	activate	the	main	document	associated	with	the	active
data	source	document.	If	the	main	document	isn't	open,	the	Open	dialog	box	is
displayed,	with	a	message	in	the	status	bar.

Sub	ActivateMain()

				On	Error	GoTo	errorhandler

				Documents("Data.doc").MailMerge.EditMainDocument

				Exit	Sub

errorhandler:

				If	Err	=	4605	Then	StatusBar	=	"Main	document	is	not	open"

				Dialogs(wdDialogFileOpen).Show

End	Sub



EditType	Method
							

Sets	options	for	the	specified	text	form	field.

expression.EditType(Type,	Default,	Format,	Enabled)

expression			Required.	An	expression	that	returns	a	TextInput	object.

Type		Required	WdTextFormFieldType.	The	text	box	type.

WdTextFormFieldType	can	be	one	of	these	WdTextFormFieldType	constants.
wdCalculationText
wdCurrentDateText
wdCurrentTimeText
wdDateText
wdNumberText
wdRegularText

Default			Optional	Variant.	The	default	text	that	appears	in	the	text	box.

Format			Optional	Variant.	The	formatting	string	used	to	format	the	text,
number,	or	date	(for	example,	"0.00,"	"Title	Case,"	or	"M/d/yy").	For	more
examples	of	formats,	see	the	list	of	formats	for	the	specified	text	form	field	type
in	the	Text	Form	Field	Options	dialog	box.

Enabled			Optional	Variant.	True	to	enable	the	form	field	for	text	entry.



Example

This	example	adds	a	text	form	field	named	"Today"	at	the	beginning	of	the
active	document.	The	EditType	method	is	used	to	set	the	type	to
wdCurrentDateText	and	set	the	date	format	to	"M/d/yy."

With	ActiveDocument.FormFields.Add	_

								(Range:=ActiveDocument.Range(0,	0),	_

								Type:=wdFieldFormTextInput)

				.Name	=	"Today"

				.TextInput.EditType	Type:=wdCurrentDateText,	_

								Format:="M/d/yy",	Enabled:=False

End	With



Enable	Method
							

Formats	the	first	character	in	the	specified	paragraph	as	a	dropped	capital	letter.

expression.Enable

expression			Required.	An	expression	that	returns	a	DropCap	object.



Example

This	example	formats	the	first	paragraph	in	the	selection	to	begin	with	a	dropped
capital	letter.

With	Selection.Paragraphs(1).DropCap

				.Enable

				.LinesToDrop	=	2

				.FontName	=	"Arial"

End	With



EndKey	Method
							

Moves	or	extends	the	selection	to	the	end	of	the	specified	unit.	This	method
returns	an	integer	that	indicates	the	number	of	characters	the	selection	or	active
end	was	actually	moved,	or	it	returns	0	(zero)	if	the	move	was	unsuccessful.

Note			This	method	corresponds	to	functionality	of	the	END	key.

expression.EndKey(Unit,	Extend)

expression			Required.	An	expression	that	returns	a	Selection	object.

Unit			Optional	Variant.	The	unit	by	which	the	selection	is	to	be	moved	or
extended.	WdUnits.

				Can	be	one	of	the	following	WdUnits	constants:

				wdStory

				wdColumn

				wdLine

				wdRow.	The	default	value	is	wdLine.

Extend			Optional	Variant.	Specifies	the	way	the	selection	is	moved.
WdMovementType.

				Can	be	one	of	the	following	WdMovementType	constants:

				wdMove

				wdExtend.

If	the	value	of	this	argument	is	wdMove,	the	selection	is	collapsed	to	an
insertion	point	and	moved	to	the	end	of	the	specified	unit.	If	it's	wdExtend,	the



end	of	the	selection	is	extended	to	the	end	of	the	specified	unit.	The	default	value
is	wdMove.



Example

This	example	moves	the	selection	to	the	end	of	the	current	line	and	assigns	the
number	of	characters	moved	to	the	pos	variable.

pos	=	Selection.EndKey(Unit:=wdLine,	Extend:=wdMove)

This	example	moves	the	selection	to	the	beginning	of	the	current	table	column
and	then	extends	the	selection	to	the	end	of	the	column.

If	Selection.Information(wdWithInTable)	=	True	Then

				Selection.HomeKey	Unit:=wdColumn,	Extend:=wdMove

				Selection.EndKey	Unit:=wdColumn,	Extend:=wdExtend

End	If

This	example	moves	the	selection	to	the	end	of	the	current	story.	If	the	selection
is	in	the	main	text	story,	the	example	moves	the	selection	to	the	end	of	the
document.

Selection.EndKey	Unit:=wdStory,	Extend:=wdMove



EndOf	Method
							

Moves	or	extends	the	ending	character	position	of	a	range	or	selection	to	the	end
of	the	nearest	specified	text	unit.	This	method	returns	a	value	that	indicates	the
number	of	character	positions	the	range	or	selection	was	moved	or	extended
(movement	is	forward	in	the	document).

expression.EndOf(Unit,	Extend)

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

Unit			Optional	Variant.	The	unit	by	which	to	move	the	ending	character
position.	WdUnits.

				Can	be	one	of	the	following	WdUnits	constants:

				wdCharacter

				wdWord

				wdSentence

				wdParagraph

				wdSection

				wdStory

				wdCell

				wdColumn

				wdRow

					wdTable.



		If	expression	returns	a	Selection	object,	wdLine	can	also	be	used.	The	default
value	is	wdWord.

Extend			Optional	Variant.WdMovementType.

				Can	be	either	of	the	following	WdMovementType	constants:

				wdMove

				wdExtend

If	wdMove,	both	ends	of	the	range	or	selection	object	are	moved	to	the	end	of
the	specified	unit.	If	wdExtend	is	used,	the	end	of	the	range	or	selection	is
extended	to	the	end	of	the	specified	unit.	The	default	value	is	wdMove.



Remarks

If	the	both	the	starting	and	ending	positions	for	the	range	or	selection	are	already
at	the	end	of	the	specified	unit,	this	method	doesn't	move	or	extend	the	range	or
selection.	For	example,	if	the	selection	is	at	the	end	of	a	word	and	the	trailing
space,	the	following	instruction	doesn't	change	the	selection	(char	equals	0
(zero)).

char	=	Selection.EndOf(Unit:=wdWord,	Extend:=wdMove)



Example

This	example	extends	the	selection	to	the	end	of	the	paragraph.

charmoved	=	Selection.EndOf(Unit:=wdParagraph,	Extend:=wdExtend)

If	charmoved	=	0	Then	MsgBox	"Selection	unchanged"

This	example	moves	myRange	to	the	end	of	the	first	word	in	the	selection	(after
the	trailing	space).

Set	myRange	=	Selection.Characters(1)

myRange.EndOf	Unit:=wdWord,	Extend:=wdMove

This	example	adds	a	table,	selects	the	first	cell	in	row	two,	and	then	extends	the
selection	to	the	end	of	the	column.

Set	myRange	=	ActiveDocument.Range(0,	0)

Set	myTable	=	ActiveDocument.Tables.Add(Range:=myRange,	_

				NumRows:=5,	NumColumns:=3)

myTable.Cell(2,	1).Select

Selection.EndOf	Unit:=wdColumn,	Extend:=wdExtend



EndReview	Method
							

Terminates	a	review	of	a	file	that	has	been	sent	for	review	using	the
SendForReview	method	or	that	has	been	automatically	placed	in	a	review	cycle
by	sending	a	document	to	another	user	in	an	e-mail	message.

expression.EndReview

expression			Required.	An	expression	that	returns	a	Document	object.



Remarks

When	executed,	the	EndReview	method	displays	a	message	asking	the	user
whether	to	end	the	review.



Example

This	example	terminates	the	review	of	the	active	document.	This	example
assumes	the	active	document	part	of	a	review	cycle.

Sub	EndDocRev()

				ActiveDocument.EndReview

End	Sub



EscapeKey	Method
							

Cancels	a	mode	such	as	extend	or	column	select	(equivalent	to	pressing	the	ESC
key).

expression.EscapeKey

expression			Required.	An	expression	that	returns	a	Selection	object.



Example

This	example	turns	on	and	then	cancels	extend	mode.

With	Selection

				.ExtendMode	=	True

				.EscapeKey

End	With



Show	All



Execute	Method
							

Execute	method	as	it	applies	to	the	Find	object.

Runs	the	specified	find	operation.	Returns	True	if	the	find	operation	is
successful.	Boolean.

expression.Execute(FindText,	MatchCase,	MatchWholeWord,
MatchWildcards,	MatchSoundsLike,	MatchAllWordForms,	Forward,	Wrap,
Format,	ReplaceWith,	Replace,	MatchKashida,	MatchDiacritics,
MatchAlefHamza,	MatchControl)

expression			Required.	An	expression	that	returns	a	Find	object.

FindText		Optional	Variant.	The	text	to	be	searched	for.	Use	an	empty	string
("")	to	search	for	formatting	only.	You	can	search	for	special	characters	by
specifying	appropriate	character	codes.	For	example,	"^p"	corresponds	to	a
paragraph	mark	and	"^t"	corresponds	to	a	tab	character.	For	a	list	of	special
characters	you	can	use,	see	Find	and	replace	text	or	other	items.

MatchCase		Optional	Variant.	True	to	specify	that	the	find	text	be	case
sensitive.	Corresponds	to	the	Match	case	check	box	in	the	Find	and	Replace
dialog	box	(Edit	menu).

MatchWholeWord		Optional	Variant.	True	to	have	the	find	operation	locate
only	entire	words,	not	text	that's	part	of	a	larger	word.	Corresponds	to	the	Find
whole	words	only	check	box	in	the	Find	and	Replace	dialog	box.

MatchWildcards		Optional	Variant.	True	to	have	the	find	text	be	a	special
search	operator.	Corresponds	to	the	Use	wildcards	check	box	in	the	Find	and
Replace	dialog	box.

MatchSoundsLike		Optional	Variant.	True	to	have	the	find	operation	locate
words	that	sound	similar	to	the	find	text.	Corresponds	to	the	Sounds	like	check
box	in	the	Find	and	Replace	dialog	box.

mk:@MSITStore:wdmain10.CHM::/html/wodecFindReplaceTextFormatting.htm


MatchAllWordForms		Optional	Variant.	True	to	have	the	find	operation	locate
all	forms	of	the	find	text	(for	example,	"sit"	locates	"sitting"	and	"sat").
Corresponds	to	the	Find	all	word	forms	check	box	in	the	Find	and	Replace
dialog	box.

Forward		Optional	Variant.	True	to	search	forward	(toward	the	end	of	the
document).

Wrap		Optional	Variant.	Controls	what	happens	if	the	search	begins	at	a	point
other	than	the	beginning	of	the	document	and	the	end	of	the	document	is	reached
(or	vice	versa	if	Forward	is	set	to	False).	This	argument	also	controls	what
happens	if	there's	a	selection	or	range	and	the	search	text	isn't	found	in	the
selection	or	range.	Can	be	one	of	the	following	WdFindWrap	constants.

WdFindWrap	can	be	one	of	these	WdFindWrap	constants.
wdFindAsk	After	searching	the	selection	or	range,	Microsoft	Word	displays	a
message	asking	whether	to	search	the	remainder	of	the	document.
wdFindContinue	The	find	operation	continues	if	the	beginning	or	end	of	the
search	range	is	reached.
wdFindStop	The	find	operation	ends	if	the	beginning	or	end	of	the	search	range
is	reached.

Format		Optional	Variant.	True	to	have	the	find	operation	locate	formatting	in
addition	to	or	instead	of	the	find	text.

ReplaceWith		Optional	Variant.	The	replacement	text.	To	delete	the	text
specified	by	the	Find	argument,	use	an	empty	string	("").	You	specify	special
characters	and	advanced	search	criteria	just	as	you	do	for	the	Find	argument.	To
specify	a	graphic	object	or	other	nontext	item	as	the	replacement,	move	the	item
to	the	Clipboard	and	specify	"^c"	for	ReplaceWith.

Replace		Optional	Variant.	Specifies	how	many	replacements	are	to	be	made:
one,	all,	or	none.	Can	be	any	WdReplace	constant.

WdReplace	can	be	one	of	these	WdReplace	constants.
wdReplaceAll
wdReplaceNone
wdReplaceOne



MatchKashida		Optional	Variant.	True	if	find	operations	match	text	with
matching	kashidas	in	an	Arabic	language	document.	This	argument	may	not	be
available	to	you,	depending	on	the	language	support	(U.S.	English,	for	example)
that	you’ve	selected	or	installed.

MatchDiacritics		Optional	Variant.	True	if	find	operations	match	text	with
matching	diacritics	in	a	right-to-left	language	document.	This	argument	may	not
be	available	to	you,	depending	on	the	language	support	(U.S.	English,	for
example)	that	you’ve	selected	or	installed.

MatchAlefHamza		Optional	Variant.	True	if	find	operations	match	text	with
matching	Alef	Hamzas	in	an	Arabic	language	document.	This	argument	may	not
be	available	to	you,	depending	on	the	language	support	(U.S.	English,	for
example)	that	you’ve	selected	or	installed.

MatchControl		Optional	Variant.	True	if	find	operations	match	text	with
matching	bidirectional	control	characters	in	a	right-to-left	language	document.
This	argument	may	not	be	available	to	you,	depending	on	the	language	support
(U.S.	English,	for	example)	that	you’ve	selected	or	installed.



Remarks

If	MatchWildcards	is	True,	you	can	specify	wildcard	characters	and	other
advanced	search	criteria	for	the	FindText	argument.	For	example,	"*(ing)"	finds
any	word	that	ends	in	"ing."

To	search	for	a	symbol	character,	type	a	caret	(^),	a	zero	(0),	and	then	the
symbol's	character	code.	For	example,	"^0151"	corresponds	to	an	em	dash	(—).

Unless	otherwise	specified,	replacement	text	inherits	the	formatting	of	the	text	it
replaces	in	the	document.	For	example,	if	you	replace	the	string	"abc"	with
"xyz,"	occurrences	of	"abc"	with	bold	formatting	are	replaced	with	the	string
"xyz"	with	bold	formatting.

Also,	if	MatchCase	is	False,	occurrences	of	the	search	text	that	are	uppercase
will	be	replaced	with	an	uppercase	version	of	the	replacement	text	regardless	of
the	case	of	the	search	and	replacement	text.	Using	the	previous	example,
occurrences	of	"ABC"	are	replaced	with	"XYZ."

Execute	method	as	it	applies	to	the	Dialog	and	KeyBinding	objects.

Dialog	object:	Applies	the	current	settings	of	a	Microsoft	Word	dialog	box.

KeyBinding	object:	Runs	the	command	associated	with	the	specified	key
combination.

expression.Execute

expression			Required.	An	expression	that	returns	one	of	the	above	objects.

Execute	method	as	it	applies	to	the	MailMerge	object.

Performs	the	specified	mail	merge	operation.

expression.Execute(Pause)

expression			Required.	An	expression	that	returns	one	of	the	above	objects.

Pause		Optional	Variant.	True	for	Microsoft	Word	pause	and	display	a



troubleshooting	dialog	box	if	a	mail	merge	error	is	found.	False	to	report	errors
in	a	new	document.



Example

As	it	applies	to	the	Find	object.

This	example	finds	and	selects	the	next	occurrence	of	the	word	"library."

With	Selection.Find

				.ClearFormatting

				.MatchWholeWord	=	True

				.MatchCase	=	False

				.Execute	FindText:="library"

End	With

This	example	finds	all	occurrences	of	the	word	"hi"	in	the	active	document	and
replaces	each	occurrence	with	"hello."

Set	myRange	=	ActiveDocument.Content

myRange.Find.Execute	FindText:="hi",	_

				ReplaceWith:="hello",	Replace:=wdReplaceAll

As	it	applies	to	the	Dialog	object.

The	following	example	enables	the	Keep	with	next	check	box	on	the	Line	and
Page	Breaks	tab	in	the	Paragraph	dialog	box.

With	Dialogs(wdDialogFormatParagraph)

				.KeepWithNext	=	1

				.Execute

End	With

As	it	applies	to	the	KeyBinding	object.

This	example	assigns	the	CTRL+SHIFT+C	key	combination	to	the	FileClose
command	and	then	executes	the	key	combination	(the	document	is	closed).

CustomizationContext	=	ActiveDocument.AttachedTemplate

Keybindings.Add	KeyCode:=BuildKeyCode(wdKeyControl,	_

				wdKeyShift,	wdKeyC),	KeyCategory:=wdKeyCategoryCommand,	_

				Command:="FileClose"

FindKey(BuildKeyCode(wdKeyControl,	wdKeyShift,	wdKeyC)).Execute

As	it	applies	to	the	MailMerge	object.



This	example	executes	a	mail	merge	if	the	active	document	is	a	main	document
with	an	attached	data	source.

Set	myMerge	=	ActiveDocument.MailMerge

If	myMerge.State	=	wdMainAndDataSource	Then	MyMerge.Execute



Exists	Method
							

Determines	whether	the	specified	bookmark	or	task	exists.	Returns	True	if	the
bookmark	or	task	exists.

expression.Exists(Name)

expression			An	expression	that	returns	a	Bookmarks	or	Tasks	object.

Name			Required	String.	A	bookmark	or	task	name.



Example

This	example	determines	whether	the	bookmark	named	"start"	exists	in	the
active	document.	If	the	bookmark	exists,	it's	deleted.

If	ActiveDocument.Bookmarks.Exists("start")	=	True	Then

				ActiveDocument.Bookmarks("start").Delete

End	If

This	example	determines	whether	the	Windows	Calculator	program	is	running
(if	the	task	exists).	If	Calculator	isn't	running,	the	Shell	statement	starts	it.	If
Calculator	is	running,	the	application	is	activated.

If	Tasks.Exists("Calculator")	=	False	Then

				Shell	"Calc.exe"

Else

				Tasks("Calculator").Activate

End	If

Tasks("Calculator").WindowState	=	wdWindowStateNormal



ExitWindows	Method
							

Closes	all	open	applications,	quits	Microsoft	Windows,	and	logs	the	current	user
off.	This	method	doesn't	save	changes	to	open	Word	documents;	however,	it
does	prompt	you	to	save	changes	to	open	documents	in	other	Windows-based
applications.

expression.ExitWindows

expression			Required.	An	expression	that	returns	a	Tasks	object.



Example

This	example	saves	all	open	Word	documents,	quits	Word,	and	then	quits
Microsoft	Windows.

Documents.Save	NoPrompt:=True,	_

				OriginalFormat:=wdOriginalDocumentFormat

Tasks.ExitWindows



Expand	Method
							

Expands	the	specified	range	or	selection.	Returns	the	number	of	characters
added	to	the	range	or	selection.	Long

expression.Expand(Unit)

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

Unit			Optional	Variant.	The	unit	by	which	to	expand	the	range.	WdUnits.

				Can	be	one	of	the	following	WdUnits	constants:

				wdCharacter

				wdWord

				wdSentence

				wdParagraph

				wdSection

				wdStory

				wdCell

				wdColumn

				wdRow

				wdTable.

If	expression	represents	a	Selection	object,	wdLine	can	also	be	used.	The	default
value	is	wdWord.



Example

This	example	creates	a	range	that	refers	to	the	first	word	in	the	active	document,
and	then	it	expands	the	range	to	reference	the	first	paragraph	in	the	document.

Set	myRange	=	ActiveDocument.Words(1)

myRange.Expand	Unit:=wdParagraph

This	example	capitalizes	the	first	character	in	the	selection	and	then	expands	the
selection	to	include	the	entire	sentence.

With	Selection

				.Characters(1).Case	=	wdTitleSentence

				.Expand	Unit:=wdSentence

End	With



ExpandOutline	Method
							

Expands	the	text	under	the	selection	or	the	specified	range	by	one	heading	level.

Note			If	the	document	isn't	in	outline	or	master	document	view,	an	error	occurs.

expression.ExpandOutline(Range)

expression			Required.	An	expression	that	returns	a	View	object.

Range			Optional	Range	object.	The	range	of	paragraphs	to	be	expanded.	If	this
argument	is	omitted,	the	entire	selection	is	expanded.



Example

This	example	expands	every	heading	in	the	document	by	one	level.

With	ActiveDocument.ActiveWindow.View

				.Type	=	wdOutlineView

				.ExpandOutline	Range:=ActiveDocument.Content

End	With

This	example	expands	the	active	paragraph	in	the	Document2	window.

With	Windows("Document2")

				.Activate

				.View.Type	=	wdOutlineView

				.View.ExpandOutline

End	With



Extend	Method
							

Turns	extend	mode	on	(sets	the	ExtendMode	property	to	True),	or	if	extend
mode	is	already	on,	extends	the	selection	to	the	next	larger	unit	of	text.	The
progression	of	selected	units	of	text	is	as	follows:	word,	sentence,	paragraph,
section,	entire	document.

If	Character	is	specified,	extends	the	selection	forward	through	the	next	instance
of	the	specified	character.	The	selection	is	extended	by	moving	the	active	end	of
the	selection.

expression.Extend(Character)

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

Character		Optional	Variant.	The	character	through	which	the	selection	is
extended.	This	argument	is	case	sensitive	and	must	evaluate	to	a	String	or	an
error	occurs.	Also,	if	the	value	of	this	argument	is	longer	than	a	single	character,
Microsoft	Word	ignores	the	command	entirely.



Example

This	example	collapses	the	current	selection	to	an	insertion	point	and	then
selects	the	current	sentence.

With	Selection

				'	Collapse	current	selection	to	insertion	point.

				.Collapse

				'	Turn	extend	mode	on.

				.Extend

				'	Extend	selection	to	word.

				.Extend

				'	Extend	selection	to	sentence.

				.Extend

End	With

Here	is	an	example	that	accomplishes	the	same	task	without	the	Extend	method.

With	Selection

				'	Collapse	current	selection.

				.Collapse

				'	Expand	selection	to	current	sentence.

				.Expand	Unit:=wdSentence

End	With

This	example	makes	the	end	of	the	selection	active	and	extends	the	selection
through	the	next	instance	of	a	capital	"R".

With	Selection

				.StartIsActive	=	False

				.Extend	Character:="R"

End	Wit



FindRecord	Method
							

Searches	the	contents	of	the	specified	mail	merge	data	source	for	text	in	a
particular	field.	Returns	True	if	the	search	text	is	found.	Boolean.

Note			Corresponds	to	the	Find	Record	button	on	the	Mail	Merge	toolbar.

expression.FindRecord(FindText,	Field)

expression			Required.	An	expression	that	returns	a	MailMergeDataSource
object.

FindText			Required	String.	The	text	to	be	looked	for.

Field			Required	Variant.	The	name	of	the	field	to	be	searched.



Example

This	example	displays	a	merge	document	for	the	first	data	record	in	which	the
FirstName	field	contains	"Joe."	If	the	data	record	is	found,	the	number	of	the
record	is	stored	in	the	numRecord	variable.

Dim	dsMain	As	MailMergeDataSource

Dim	numRecord	As	Integer

ActiveDocument.MailMerge.ViewMailMergeFieldCodes	=	False

Set	dsMain	=	ActiveDocument.MailMerge.DataSource

If	dsMain.FindRecord(FindText:="Joe",	_

								Field:="FirstName")	=	True	Then

				numRecord	=	dsMain.ActiveRecord

End	If



FitToPages	Method
							

Decreases	the	font	size	of	text	just	enough	so	that	the	document	will	fit	on	one
fewer	pages.	An	error	occurs	if	Word	is	unable	to	reduce	the	page	count	by	one.

expression.FitToPages

expression			Required.	An	expression	that	returns	a	Document	object.



Example

This	example	attempts	to	reduce	the	page	count	of	the	active	document	by	one
page.

On	Error	GoTo	errhandler

ActiveDocument.FitToPages

errhandler:

If	Err	=	5538	Then	MsgBox	"Fit	to	pages	failed"

This	example	attempts	to	reduce	the	page	count	of	each	open	document	by	one
page.

For	Each	doc	In	Documents

				doc.FitToPages

Next	doc



Show	All



Flip	Method
							

Flips	a	shape	horizontally	or	vertically.

expression.Flip(FlipCmd)

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	to	list.

FlipCmd		Required	MsoFlipCmd.	The	flip	orientation.

MsoFlipCmd	can	be	one	of	these	MsoFlipCmd	constants.
msoFlipHorizontal
msoFlipVertical



Example

This	example	adds	a	triangle	to	the	active	document,	duplicates	the	triangle,	and
then	flips	the	duplicate	triangle	vertically	and	makes	it	red.

Sub	FlipShape()

				With	ActiveDocument.Shapes.AddShape(	_

								Type:=msoShapeRightTriangle,	Left:=150,	_

								Top:=150,	Width:=50,	Height:=50).Duplicate

								.Fill.ForeColor.RGB	=	RGB(Red:=255,	Green:=0,	Blue:=0)

								.Flip	msoFlipVertical

				End	With

End	Sub



Follow	Method
							

Displays	a	cached	document	associated	with	the	specified	Hyperlink	object,	if
it's	already	been	downloaded.	Otherwise,	this	method	resolves	the	hyperlink,
downloads	the	target	document,	and	displays	the	document	in	the	appropriate
application.

Note			If	the	hyperlink	uses	the	file	protocol,	this	method	opens	the	document
instead	of	downloading	it.

expression.Follow(NewWindow,	AddHistory,	ExtraInfo,	Method,	HeaderInfo)

expression			Required.	An	expression	that	returns	a	Hyperlink	object.

NewWindow			Optional	Variant.	True	to	display	the	target	document	in	a	new
window.	The	default	value	is	False.

AddHistory			Optional	Variant.	This	argument	is	reserved	for	future	use.

ExtraInfo			Optional	Variant.	A	string	or	byte	array	that	specifies	additional
information	for	HTTP	to	use	to	resolve	the	hyperlink.	For	example,	you	can	use
ExtraInfo	to	specify	the	coordinates	of	an	image	map,	the	contents	of	a	form,	or
a	FAT	file	name.	The	string	is	either	posted	or	appended,	depending	on	the	value
of	Method.	Use	the	ExtraInfoRequired	property	to	determine	whether	extra
information	is	required.

Method			Optional	Variant.	Specifies	the	way	additional	information	for	HTTP
is	handled.	Can	be	any	MsoExtraInfoMethod	constant.

Enumerated	type	can	be	one	of	these	enumerated	type	constants.
msoMethodGet	ExtraInfo	is	a	string	that's	appended	to	the	address.
msoMethodPost	ExtraInfo	is	posted	as	a	string	or	a	byte	array.	

HeaderInfo			Optional	Variant.	A	string	that	specifies	header	information	for
the	HTTP	request.	The	default	value	is	an	empty	string.	You	can	combine	several



header	lines	into	a	single	string	by	using	the	following	syntax:	"string1"	&
vbCr	&	"string2".	The	specified	string	is	automatically	converted	into	ANSI
characters.	Note	that	the	HeaderInfo	argument	may	overwrite	default	HTTP
header	fields.



Example

This	example	follows	the	first	hyperlink	in	Home.doc.

Documents("Home.doc").HyperLinks(1).Follow

This	example	inserts	a	hyperlink	to	www.msn.com	and	then	follows	the
hyperlink.

Dim	hypTemp	As	Hyperlink

With	Selection

				.Collapse	Direction:=wdCollapseEnd

				.InsertAfter	"MSN	"

				.Previous

End	With

Set	hypTemp	=	ActiveDocument.Hyperlinks.Add(	_

				Address:="http://www.msn.com",	_

				Anchor:=Selection.Range)

hypTemp.Follow	NewWindow:=False,	AddHistory:=True



FollowHyperlink	Method
							

Displays	a	cached	document,	if	it's	already	been	downloaded.	Otherwise,	this
method	resolves	the	hyperlink,	downloads	the	target	document,	and	displays	the
document	in	the	appropriate	application.

Note			If	the	hyperlink	uses	the	file	protocol,	this	method	opens	the	document
instead	of	downloading	it.

expression.FollowHyperlink(Address,	SubAddress,	NewWindow,	AddHistory,
ExtraInfo,	Method,	HeaderInfo)

expression			Required.	An	expression	that	returns	a	Document	object.

Address			Required	String.	The	address	of	the	target	document.

SubAddress			Optional	Variant.	The	location	within	the	target	document.	The
default	value	is	an	empty	string.

NewWindow			Optional	Variant.	True	to	display	the	target	location	in	a	new
window.	The	default	value	is	False.

AddHistory			Optional	Variant.	True	to	add	the	link	to	the	current	day's	history
folder.

ExtraInfo			Optional	Variant.	A	string	or	a	byte	array	that	specifies	additional
information	for	HTTP	to	use	to	resolve	the	hyperlink.	For	example,	you	can	use
ExtraInfo	to	specify	the	coordinates	of	an	image	map,	the	contents	of	a	form,	or
a	FAT	file	name.	The	string	is	either	posted	or	appended,	depending	on	the	value
of	Method.	Use	the	ExtraInfoRequired	property	to	determine	whether	extra
information	is	required.

Method			Optional	Variant.	Specifies	the	way	additional	information	for	HTTP
is	handled.	MsoExtraInfoMethod.

				Can	be	one	of	the	following	MsoExtraInfoMethod	constants.



Constant Description

msoMethodGet ExtraInfo	is	a	string	that's	appended	to	the
address.

msoMethodPost ExtraInfo	is	posted	as	a	string	or	a	byte	array.

HeaderInfo			Optional	Variant.	A	string	that	specifies	header	information	for
the	HTTP	request.	The	default	value	is	an	empty	string.	You	can	combine	several
header	lines	into	a	single	string	by	using	the	following	syntax:	"string1"	&
vbCr	&	"string2".	The	specified	string	is	automatically	converted	into	ANSI
characters.	Note	that	the	HeaderInfo	argument	may	overwrite	default	HTTP
header	fields.



Example

This	example	follows	the	specified	URL	address	and	displays	the	Microsoft
home	page	in	a	new	window.

ActiveDocument.FollowHyperlink	_

				Address:="http://www.Microsoft.com",	_

				NewWindow:=True,	AddHistory:=True

This	example	displays	the	HTML	document	named	"Default.htm."

ActiveDocument.FollowHyperlink	Address:="file:C:\Pages\Default.htm"



Formula	Method
							

Inserts	an	=	(Formula)	field	that	contains	the	specified	formula	into	a	table	cell.

expression.Formula(Formula,	NumFormat)

expression			Required.	An	expression	that	returns	a	Cell	object.

Formula			Optional	Variant.	The	mathematical	formula	you	want	the	=
(Formula)	field	to	evaluate.	Spreadsheet-type	references	to	table	cells	are	valid.
For	example,	"=SUM(A4:C4)"	specifies	the	first	three	values	in	the	fourth	row.
For	more	information	about	the	=	(Formula)	field,	see	Field	codes:=	(Formula)
field.

NumFormat			Optional	Variant.	A	format	for	the	result	of	the	=	(Formula)	field.
For	information	about	the	types	of	formats	you	can	apply,	see	Numeric	Picture
(\#)	field	switch.

mk:@MSITStore:wdmain10.chm::/html/worefFormula.htm
mk:@MSITStore:wdmain10.chm::/html/worefNumericPicture.htm


Remarks

Formula	is	optional	as	long	as	there	is	at	least	one	cell	that	contains	a	value
above	or	to	the	left	of	the	cell	that	contains	the	insertion	point.	If	the	cells	above
the	insertion	point	contain	values,	the	inserted	field	is	{=SUM(ABOVE)};	if	the
cells	to	the	left	of	the	insertion	point	contain	values,	the	inserted	field	is
{=SUM(LEFT)}.	If	both	the	cells	above	the	insertion	point	and	the	cells	to	the
left	of	the	insertion	point	contain	values,	Microsoft	Word	uses	the	following
rules	to	determine	which	SUM	function	to	insert:

If	the	cell	immediately	above	the	insertion	point	contains	a	value,	Word
inserts	{=SUM(ABOVE)}.
If	the	cell	immediately	above	the	insertion	point	doesn't	contain	a	value	and
the	cell	immediately	to	the	left	of	it	does,	Word	inserts	{=SUM(LEFT)}.
If	neither	adjoining	cell	contains	a	value,	Word	inserts	{=SUM(ABOVE)}.
If	you	don't	specify	Formula	and	all	the	cells	above	and	to	the	left	of	the
insertion	point	are	empty,	the	result	of	the	field	is	an	error.



Example

This	example	creates	a	3x3	table	at	the	beginning	of	the	active	document	and
then	averages	the	numbers	in	the	first	column.

Set	myRange	=	ActiveDocument.Range(0,	0)

Set	myTable	=	ActiveDocument.Tables.Add(myRange,	3,	3)

With	myTable

				.Cell(1,1).Range.InsertAfter	"100"

				.Cell(2,1).Range.InsertAfter	"50"

				.Cell(3,1).Formula	Formula:="=Average(Above)"

End	With

This	example	inserts	a	formula	at	the	insertion	point	that	determines	the	largest
number	in	the	cells	above	the	selected	cell.

Selection.Collapse	Direction:=wdCollapseStart

If	Selection.Information(wdWithInTable)	=	True	Then

				Selection.Cells(1).Formula	Formula:="=Max(Above)"

Else

				MsgBox	"The	insertion	point	is	not	in	a	table."

End	If



Forward	Method
							

Opens	a	new	e-mail	message	with	an	empty	To:	line	for	forwarding	the	active
message.	This	method	is	available	only	if	you	are	using	Word	as	your	e-mail
editor.

expression.Forward

expression			Required.	An	expression	that	returns	a	MailMessage	object.



Example

This	example	opens	a	new	e-mail	message	for	forwarding	the	active	message.

Application.MailMessage.Forward



GetAddress	Method
							

Returns	an	address	from	the	default	address	book.

expression.GetAddress(Name,	AddressProperties,	UseAutoText,
DisplaySelectDialog,	SelectDialog,	CheckNamesDialog,
RecentAddressesChoice,	UpdateRecentAddresses)

expression			Required.	An	expression	that	returns	an	Application	object.

Name			Optional	Variant.	The	name	of	the	addressee,	as	specified	in	the	Search
Name	dialog	box	in	the	address	book.

AddressProperties			Optional	Variant.	If	UseAutoText	is	True,	this	argument
denotes	the	name	of	an	AutoText	entry	that	defines	a	sequence	of	address	book
properties.	If	UseAutoText	is	False	or	omitted,	this	argument	defines	a	custom
layout.	Valid	address	book	property	names	or	sets	of	property	names	are
surrounded	by	angle	brackets	("<"	and	">")	and	separated	by	a	space	or	a
paragraph	mark	(for	example,	"<PR_GIVEN_NAME>	<PR_SURNAME>"	&
vbCr	&	"<PR_OFFICE_TELEPHONE_NUMBER>").

If	this	argument	is	omitted,	default	AutoText	entry	named	"AddressLayout"	is
used.	If	"AddressLayout"	hasn't	been	defined,	the	following	address	layout
definition	is	used:	"<PR_GIVEN_NAME>	<PR_SURNAME>"	&	vbCr	&	"
<PR_STREET_ADDRESS>"	&	vbCr	&	"<PR_LOCALITY>"	&	",	"	&	"
<PR_STATE_OR_PROVINCE>"	&	"	"	&	"<PR_POSTAL_CODE>"	&	vbCr	&
"<PR_COUNTRY>".

For	a	list	of	the	valid	address	book	property	names,	see	the	AddAddress
method.

UseAutoText			Optional	Variant.	True	if	AddressProperties	specifies	the	name
of	an	AutoText	entry	that	defines	a	sequence	of	address	book	properties;	False	if
it	specifies	a	custom	layout.



DisplaySelectDialog			Optional	Variant.	Specifies	whether	the	Select	Name
dialog	box	is	displayed,	as	shown	in	the	following	table.

Value Result
0	(zero) The	Select	Name	dialog	box	isn't	displayed.
1	or	omitted The	Select	Name	dialog	box	is	displayed.

2
The	Select	Name	dialog	box	isn't	displayed,	and	no	search
for	a	specific	name	is	performed.	The	address	returned	by
this	method	will	be	the	previously	selected	address.

SelectDialog			Optional	Variant.	Specifies	how	the	Select	Name	dialog	box
should	be	displayed	(that	is,	in	what	mode),	as	shown	in	the	following	table.

Value Display	mode
0	(zero)	or	omitted Browse	mode
1 Compose	mode,	with	only	the	To:	box

2 Compose	mode,	with	both	the	To:	and	CC:
boxes

CheckNamesDialog			Optional	Variant.	True	to	display	the	Check	Names
dialog	box	when	the	value	of	the	Name	argument	isn't	specific	enough.

RecentAddressesChoice			Optional	Variant.	True	to	use	the	list	of	recently	used
return	addresses.

UpdateRecentAddresses			Optional	Variant.	True	to	add	an	address	to	the	list	of
recently	used	addresses;	False	to	not	add	the	address.	If	SelectDialog	is	set	to	1
or	2,	this	argument	is	ignored.



Example

This	example	sets	the	variable	strAddress	to	John	Smith's	address,	moves	the
insertion	point	to	the	beginning	of	the	document,	and	inserts	the	address.	The
inserted	address	will	include	the	default	address	book	properties.

Dim	strAddress

strAddress	=	Application.GetAddress(Name:="John	Smith",	_

				CheckNamesDialog:=True)

ActiveDocument.Range(Start:=0,	End:=0).InsertAfter	strAddress

The	following	example	returns	John	Smith's	address,	using	the	"My	Address
Layout"	AutoText	entry	as	the	layout	definition.	"My	Address	Layout"	is	defined
in	the	active	template	and	contains	a	set	of	address	properties	assigned	to	the
text$	variable.	The	example	also	adds	John	Smith's	address	to	the	list	of
recently	used	addresses.

Dim	TagIDArray(0	To	3)	As	String

Dim	ValueArray(0	To	3)	As	String

Dim	strAddress	As	String

TagIDArray(0)	=	"PR_DISPLAY_NAME"

TagIDArray(1)	=	"PR_GIVEN_NAME"

TagIDArray(2)	=	"PR_SURNAME"

TagIDArray(3)	=	"PR_COMMENT"

ValueArray(0)	=	"Display_Name"

ValueArray(1)	=	"John"

ValueArray(2)	=	"Smith"

ValueArray(3)	=	"This	is	a	comment"

Application.AddAddress	TagID:=TagIDArray(),	Value:=ValueArray()

strAddress	=	Application.GetAddress(Name:="John	Smith",	_

				UpdateRecentAddresses:=True)



GetCrossReferenceItems	Method
							

Returns	an	array	of	items	that	can	be	cross-referenced	based	on	the	specified
cross-reference	type.	The	array	corresponds	to	the	items	listed	in	the	For	which
box	in	the	Cross-reference	dialog	box	(Insert	menu).

Note			An	item	returned	by	this	method	can	be	used	as	the	ReferenceWhich
argument	for	the	InsertCrossReference	method.

expression.GetCrossReferenceItems(ReferenceType)

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

ReferenceType			Required	Variant.	The	type	of	item	you	want	to	insert	a	cross-
reference	to.	WdReferenceType.

				Can	be	one	of	the	following	WdReferenceType	constants.

				wdRefTypeBookmark

				wdRefTypeEndnote

				wdRefTypeFootnote

				wdRefTypeHeading

				wdRefTypeNumberedItem.

Example

This	example	displays	the	name	of	the	first	bookmark	in	the	active	document
that	can	be	cross-referenced.

If	ActiveDocument.Bookmarks.Count	>=	1	Then

				myBookmarks	=	ActiveDocument.GetCrossReferenceItems(	_

								wdRefTypeBookmark)



				MsgBox	myBookmarks(1)

End	If

This	example	uses	the	GetCrossReferenceItems	method	to	retrieve	a	list	of
headings	that	can	be	cross-referenced	and	then	inserts	a	cross-reference	to	the
page	that	includes	the	heading	"Introduction."

myHeadings	=	_

				ActiveDocument.GetCrossReferenceItems(wdRefTypeHeading)

For	i	=	1	To	Ubound(myHeadings)

				If	Instr(LCase$(myHeadings(i)),	"introduction")	Then	

								Selection.InsertCrossReference	_

												ReferenceType:=wdRefTypeHeading,	_

												ReferenceKind:=wdPageNumber,	ReferenceItem:=i

								Selection.InsertParagraphAfter

				End	If

Next	i



Show	All



GetDefaultTheme	Method
							

Returns	a	String	that	represents	the	name	of	the	default	theme	plus	the	theme
formatting	options	Microsoft	Word	uses	for	new	documents,	e-mail	messages,	or
Web	pages.

expression.GetDefaultTheme(DocumentType)

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

DocumentType		Required	The	type	of	new	document	for	which	you	want	to
retrieve	the	default	theme	name.	WdDocumentMedium.

WdDocumentMedium	can	be	one	of	these	WdDocumentMedium	constants.
wdEmailMessage
wdDocument
wdWebPage



Remarks

You	can	also	use	the	ThemeName	property	to	return	and	set	the	default	theme
for	new	e-mail	messages.



Example

This	example	displays	the	name	of	the	theme	Word	uses	for	new	Web	pages.

MsgBox	Application.GetDefaultTheme(wdWebPage)



GetLetterContent	Method
							

Retrieves	letter	elements	from	the	specified	document	and	returns	a
LetterContent	object.

expression.GetLetterContent

expression			Required.	An	expression	that	returns	a	Document	object.



Example

This	example	displays	the	salutation	and	recipient	name	from	the	letter	in	the
active	document.

MsgBox	ActiveDocument.GetLetterContent.Salutation	_

				&	ActiveDocument.GetLetterContent.RecipientName

This	example	retrieves	letter	elements	from	the	active	document,	changes	the	list
of	carbon	copy	(CC)	recipients	by	setting	the	CClist	property,	and	then	uses	the
SetLetterContent	method	to	update	the	active	document	to	reflect	the	changes.

Set	myLetterContent	=	ActiveDocument.GetLetterContent

With	myLetterContent

				.CCList	=	"J.	Burns,	L.	Scarpaczyk,	K.	Wong"

				.RecipientName	=	"Amy	Anderson"

				.RecipientAddress	=	"123	Main"	&	vbCr	&	"Bellevue,	WA		98004"

				.LetterStyle	=	wdFullBlock

End	With

ActiveDocument.SetLetterContent	LetterContent:=myLetterContent



GetPoint	Method
							

Returns	the	screen	coordinates	of	the	specified	range	or	shape.

expression.GetPoint(ScreenPixelsLeft,	ScreenPixelsTop,	ScreenPixelsWidth,
ScreenPixelsHeight,	obj)

expression			Required.	An	expression	that	returns	a	Window	object.

ScreenPixelsLeft			Required	Long.	The	variable	name	to	which	you	want
Microsoft	Word	to	return	the	value	for	the	left	edge	of	the	object.

ScreenPixelsTop			Required	Long.	The	variable	name	to	which	you	want	Word
to	return	the	value	for	the	top	edge	of	the	object.

ScreenPixelsWidth			Required	Long.	The	variable	name	to	which	you	want
Word	to	return	the	value	for	the	width	of	the	object.

ScreenPixelsHeight			Required	Long.	The	variable	name	to	which	you	want
Word	to	return	the	value	for	the	height	of	the	object.

obj			Required	Object.	A	Range	or	Shape	object.



Remarks

If	the	entire	range	or	shape	isn't	visible	on	the	screen,	an	error	occurs.



Example

This	example	examines	the	current	selection	and	returns	its	screen	coordinates.

Dim	pLeft	As	Long

Dim	pTop	As	Long

Dim	pWidth	As	Long

Dim	pHeight	As	Long

ActiveWindow.GetPoint	pLeft,	pTop,	pWidth,	pHeight,	_

				Selection.Range

MsgBox	"Left	=	"	&	pLeft	&	vbLf	_

				&	"Top	=	"	&	pTop	&	vbLf	_

				&	"Width	=	"	&	pWidth	&	vbLf	_

				&	"Height	=	"	&	pHeight



Show	All



GetSpellingSuggestions	Method
							

GetSpellingSuggestions	method	as	it	applies	to	the	Range	object.

Returns	a	SpellingSuggestions	collection	that	represents	the	words	suggested	as
spelling	replacements	for	the	first	word	in	the	specified	range.

expression.GetSpellingSuggestions(CustomDictionary,	IgnoreUppercase,
MainDictionary,	SuggestionMode,	CustomDictionary2,	CustomDictionary3,
CustomDictionary4,	CustomDictionary5,	CustomDictionary6,
CustomDictionary7,	CustomDictionary8,	CustomDictionary9,
CustomDictionary10)

expression			Required.	An	expression	that	returns	one	of	the	above	objects.

CustomDictionary		Optional	Variant.	Either	an	expression	that	returns	a
Dictionary	object	or	the	file	name	of	the	custom	dictionary.

IgnoreUppercase		Optional	Variant.	True	to	ignore	words	in	all	uppercase
letters.	If	this	argument	is	omitted,	the	current	value	of	the	IgnoreUppercase
property	is	used.

MainDictionary		Optional	Variant.	Either	an	expression	that	returns	a
Dictionary	object	or	the	file	name	of	the	main	dictionary.	If	you	don't	specify	a
main	dictionary,	Microsoft	Word	uses	the	main	dictionary	that	corresponds	to	the
language	formatting	of	the	first	word	in	the	range.

SuggestionMode		Optional	Variant.	Specifies	the	way	Word	makes	spelling
suggestions.	Can	be	one	of	the	following	WdSpellingWordType	constants.	The
default	value	is	WdSpellword.

WdSpellingWordType	can	be	one	of	these	WdSpellingWordType	constants.
wdAnagram
wdSpellword
wdWildcard



CustomDictionary2	–	CustomDictionary10			Optional	Variant.	Either	an
expression	that	returns	a	Dictionary	object	or	the	file	name	of	an	additional
custom	dictionary.	You	can	specify	as	many	as	nine	additional	dictionaries.

GetSpellingSuggestions	method	as	it	applies	to	the	Application	and	Global
objects.

Returns	a	SpellingSuggestions	collection	that	represents	the	words	suggested	as
spelling	replacements	for	a	given	word.

expression.GetSpellingSuggestions(Word,	CustomDictionary,
IgnoreUppercase,	MainDictionary,	SuggestionMode,	CustomDictionary2,
CustomDictionary3,	CustomDictionary4,	CustomDictionary5,
CustomDictionary6,	CustomDictionary7,	CustomDictionary8,
CustomDictionary9,	CustomDictionary10)

expression			Required.	An	expression	that	returns	one	of	the	above	objects.

Word		Required	String.	The	word	whose	spelling	is	to	be	checked.

CustomDictionary		Optional	Variant.	Either	an	expression	that	returns	a
Dictionary	object	or	the	file	name	of	the	custom	dictionary.

IgnoreUppercase		Optional	Variant.	True	to	ignore	words	in	all	uppercase
letters.	If	this	argument	is	omitted,	the	current	value	of	the	IgnoreUppercase
property	is	used.

MainDictionary		Optional	Variant.	Either	an	expression	that	returns	a
Dictionary	object	or	the	file	name	of	the	main	dictionary.	If	you	don't	specify	a
main	dictionary,	Microsoft	Word	uses	the	main	dictionary	that	corresponds	to	the
language	formatting	of	Word	or	of	the	first	word	in	the	range.

SuggestionMode		Optional	Variant.	Specifies	the	way	Word	makes	spelling
suggestions.	Can	be	one	of	the	following	WdSpellingWordType	constants.	The
default	value	is	WdSpellword.

WdSpellingWordType	can	be	one	of	these	WdSpellingWordType	constants.
wdAnagram
wdSpellword



wdWildcard

CustomDictionary2	–	CustomDictionary10			Optional	Variant.	Either	an
expression	that	returns	a	Dictionary	object	or	the	file	name	of	an	additional
custom	dictionary.	You	can	specify	as	many	as	nine	additional	dictionaries.



Remarks

If	the	word	is	spelled	correctly,	the	Count	property	of	the	SpellingSuggestions
object	returns	0	(zero).



Example

As	it	applies	to	the	Range	object.

This	example	looks	for	the	alternate	spelling	suggestions	for	the	first	word	in	the
selection.	If	there	are	suggestions,	the	example	runs	a	spelling	check	on	the
selection.

If	Selection.Range.GetSpellingSuggestions.Count	=	0	Then

				Msgbox	"No	suggestions."

Else

				Selection.Range.CheckSpelling

End	If

As	it	applies	to	the	Global	object.

This	example	looks	for	the	alternate	spelling	suggestions	for	the	word	"?ook."
Suggestions	include	replacements	for	the	?	wildcard	character.	Any	suggested
spellings	are	displayed	in	message	boxes.

Sub	DisplaySuggestions()

				Dim	sugList	As	SpellingSuggestions

				Dim	sug	As	SpellingSuggestion

				Dim	strSugList	As	String

				Set	sugList	=	GetSpellingSuggestions(Word:="lrok",	_

								SuggestionMode:=wdSpellword)

				If	sugList.Count	=	0	Then

								MsgBox	"No	suggestions."

				Else

								For	Each	sug	In	sugList

												strSugList	=	strSugList	&	vbTab	&	sug.Name	&	vbLf

								Next	sug

								MsgBox	"The	suggestions	for	this	word	are:	"	_

												&	vbLf	&	strSugList

				End	If

End	Sub





GoBack	Method
							

Moves	the	insertion	point	among	the	last	three	locations	where	editing	occurred
in	the	active	document	(the	same	as	pressing	SHIFT+F5).

expression.GoBack

expression			Required.	An	expression	that	returns	an	Application	object.



Example

This	example	opens	the	most	recently	used	file	and	then	moves	the	insertion
point	to	the	location	where	editing	last	occurred.

RecentFiles(1).Open

Application.GoBack



GoForward	Method
							

Moves	the	insertion	point	forward	among	the	last	three	locations	where	editing
occurred	in	the	active	document.

expression.GoForward

expression			Required.	An	expression	that	returns	an	Application	object.



Example

This	example	moves	the	insertion	point	to	the	next	location	where	editing
occurred.

Application.GoForward



Show	All



GoTo	Method
							

Document	or	Range	object:	Returns	a	Range	object	that	represents	the	start
position	of	the	specified	item,	such	as	a	page,	bookmark,	or	field.

Selection	object:	Moves	the	insertion	point	to	the	character	position	immediately
preceding	the	specified	item,	and	returns	a	Range	object	(except	for	the
wdGoToGrammaticalError,	wdGoToProofreadingError,	or
wdGoToSpellingError	constant).

expression.GoTo(What,	Which,	Count,	Name)

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

What		Optional	Variant.	The	kind	of	item	to	which	the	range	or	selection	is
moved.	Can	be	one	of	the	WdGoToItem	constants.

WdGoToItem	can	be	one	of	these	WdGoToItem	constants.
wdGoToBookmark
wdGoToComment
wdGoToEndnote
wdGoToEquation
wdGoToField
wdGoToFootnote
wdGoToGrammaticalError
wdGoToGraphic
wdGoToHeading
wdGoToLine
wdGoToObject
wdGoToPage
wdGoToPercent



wdGoToProofreadingError
wdGoToRevision
wdGoToSection
wdGoToSpellingError
wdGoToTable

Which		Optional	Variant.	The	item	to	which	the	range	or	selection	is	moved.
Can	be	one	of	the	WdGoToDirection	constants.	The	following	examples	are
functionally	equivalent;	they	both	move	the	selection	to	the	first	heading	in	the
document.

WdGoToDirection	can	be	one	of	these	WdGoToDirection	constants.
wdGoToAbsolute
wdGoToFirst
wdGoToLast
wdGoToNext
wdGoToPrevious
wdGoToRelative

Selection.GoTo	What:=wdGoToHeading,	Which:=wdGoToFirst

Selection.GoTo	What:=wdGoToHeading,	Which:=wdGoToAbsolute,	Count:=1

Count		Optional	Variant.	The	number	of	the	item	in	the	document.	The	default
value	is	1.	The	following	example	moves	the	selection	to	the	fourth	line	in	the
document.

Selection.GoTo	What:=wdGoToLine,	Which:=wdGoToAbsolute,	Count:=4

Only	positive	values	are	valid.	To	specify	an	item	that	precedes	the	range	or
selection,	use	wdGoToPrevious	as	the	Which	argument	and	specify	a	Count
value.	The	following	example	moves	the	selection	up	two	lines.

Selection.GoTo	What:=wdGoToLine,	Which:=wdGoToPrevious,	Count:=2

Name		Optional	Variant.	If	the	What	argument	is	wdGoToBookmark,
wdGoToComment,	wdGoToField,	or	wdGoToObject,	this	argument	specifies
a	name.	The	following	example	moves	to	the	next	DATE	field.

Selection.GoTo	What:=wdGoToField,	Name:="Date"



Remarks

When	you	use	the	GoTo	method	with	the	wdGoToGrammaticalError,
wdGoToProofreadingError,	or	wdGoToSpellingError	constant,	the	Range
that's	returned	includes	any	grammar	error	text	or	spelling	error	text.



Example

This	example	moves	the	selection	to	the	first	cell	in	the	next	table.

Selection.GoTo	What:=wdGoToTable,	Which:=wdGoToNext

This	example	moves	the	insertion	point	just	before	the	fifth	endnote	reference
mark	in	the	active	document.

If	ActiveDocument.Endnotes.Count	>=	5	Then

				Selection.GoTo	What:=wdGoToEndnote,	_

								Which:=wdGoToAbsolute,	Count:=5

End	If

This	example	sets	R1	equal	to	the	first	footnote	reference	mark	in	the	active
document.

If	ActiveDocument.Footnotes.Count	>=	1	Then

				Set	R1	=	ActiveDocument.GoTo(What:=wdGoToFootnote,	_

								Which:=wdGoToFirst)

				R1.Expand	Unit:=wdCharacter

End	If

This	example	moves	the	selection	down	four	lines.

Selection.GoTo	What:=wdGoToLine,	Which:=wdGoToRelative,	Count:=4

This	example	moves	the	selection	back	two	pages.

Selection.GoTo	What:=wdGoToPage,	Which:=wdGoToPrevious,	Count:=2



Show	All



GoToNext	Method
							

GoToNext	method	as	it	applies	to	the	Range	and	Selection	objects.

Returns	a	Range	object	that	refers	to	the	start	position	of	the	next	item	or
location	specified	by	the	What	argument.	If	you	apply	this	method	to	the
Selection	object,	the	method	moves	the	selection	to	the	specified	item	(except
for	the	wdGoToGrammaticalError,	wdGoToProofreadingError,	and
wdGoToSpellingError	constants).	Range	object.

Note			When	you	use	this	method	with	the	wdGoToGrammaticalError,
wdGoToProofreadingError,	or	wdGoToSpellingError	constant,	the	Range
object	that's	returned	includes	any	grammar	error	text	or	spelling	error	text.

expression.GoToNext(What)

expression			Required.	An	expression	that	returns	one	of	the	above	objects.

What		Required	WdGoToItem.

WdGoToItem	can	be	one	of	these	WdGoToItem	constants.
wdGoToComment
wdGoToEquation
wdGoToFootnote
wdGoToGraphic
wdGoToLine
wdGoToPage
wdGoToProofreadingError
wdGoToSpellingError
wdGoToBookmark
wdGoToEndnote
wdGoToField
wdGoToGrammaticalError



wdGoToHeading
wdGoToObject
wdGoToPercent
wdGoToSection
wdGoToTable

	

GoToNext	method	as	it	applies	to	the	MailMessage	object.

Displays	the	next	mail	message	if	you	are	using	Word	as	your	e-mail	editor.

expression.GoToNext

expression			Required.	An	expression	that	returns	one	of	the	above	objects.

	



Example

This	example	adds	a	bookmark	at	the	top	of	page	2	in	the	active	document.

Set	myRange	=	ActiveDocument.Words(1).GoToNext(What:=wdGoToPage)

ActiveDocument.Bookmarks.Add	Name:="Page2",	Range:=myRange

This	example	moves	to	the	next	field	and	selects	it.

With	Selection

				Set	myRange	=	.GoToNext(What:=wdGoToField)

				.MoveRight	Unit:=wdWord,	Extend:=wdExtend

				.Fields(1).Select

End	With



Show	All



GoToPrevious	Method
							

GoToPrevious	method	as	it	applies	to	the	Range	and	Selection	objects.

Returns	a	Range	object	that	refers	to	the	start	position	of	the	previous	item	or
location	specified	by	the	What	argument.	If	applied	to	a	Selection	object,
GoToPrevious	moves	the	selection	to	the	specified	item.	Range	object.

expression.GoToPrevious(What)

expression			Required.	An	expression	that	returns	one	of	the	above	objects.

What		Required	The	item	that	the	specified	range	or	selection	is	to	be	moved	to.
WdGoToItem.

WdGoToItem	can	be	one	of	these	WdGoToItem	constants.
wdGoToComment
wdGoToEquation
wdGoToFootnote
wdGoToGraphic
wdGoToLine
wdGoToPage
wdGoToProofreadingError
wdGoToSpellingError
wdGoToBookmark
wdGoToEndnote
wdGoToField
wdGoToGrammaticalError
wdGoToHeading
wdGoToObject
wdGoToPercent
wdGoToSection



wdGoToTable

	

GoToPrevious	method	as	it	applies	to	the	MailMessage	object.

Displays	the	previous	mail	message	if	you	are	using	Word	as	your	e-mail	editor.

expression.GoToPrevious

expression			Required.	An	expression	that	returns	one	of	the	above	objects.

	



Example

This	example	moves	to	the	previous	field	in	the	active	document.

Selection.GoToPrevious	What:=wdGoToField

This	example	creates	a	range	that	references	the	last	footnote	reference	marker	in
the	active	document.

Set	myRange	=	ActiveDocument.Words.Last	_

				.GoToPrevious(What:=wdGoToFootnote)

myRange.Expand	Unit:=wdCharacter



Group	Method
							

Groups	the	shapes	in	the	specified	range.	Returns	the	grouped	shapes	as	a	single
Shape	object.

expression.Group

expression			Required.	An	expression	that	returns	a	ShapeRange	object.



Remarks

Because	a	group	of	shapes	is	treated	as	a	single	shape,	grouping	and	ungrouping
shapes	changes	the	number	of	items	in	the	Shapes	collection	and	changes	the
index	numbers	of	items	that	come	after	the	affected	items	in	the	collection.



Example

This	example	adds	two	shapes	to	myDocument,	groups	the	two	new	shapes,	sets
the	fill	for	the	group,	rotates	the	group,	and	sends	the	group	to	the	back	of	the
drawing	layer.

Set	myDocument	=	ActiveDocument

With	myDocument.Shapes

				.AddShape(msoShapeCan,	50,	10,	100,	200).Name	=	"shpOne"

				.AddShape(msoShapeCube,	150,	250,	100,	200).Name	=	"shpTwo"

				With	.Range(Array("shpOne",	"shpTwo")).Group

								.Fill.PresetTextured	msoTextureBlueTissuePaper

								.Rotation	=	45

								.ZOrder	msoSendToBack

				End	With

End	With



Grow	Method
							

Increases	the	font	size	to	the	next	available	size.	If	the	selection	or	range
contains	more	than	one	font	size,	each	size	is	increased	to	the	next	available
setting.

expression.Grow

expression				Required.	An	expression	that	returns	a	Font	object.



Example

This	example	increases	the	font	size	of	the	fourth	word	in	a	new	document.

Dim	rngTemp	As	Range

Set	rngTemp	=	Documents.Add.Content

rngTemp.InsertAfter	"This	is	a	test	of	the	Grow	method."

MsgBox	"Click	OK	to	increase	the	font	size	of	the	fourth	word."

rngTemp.Words(4).Font.Grow

This	example	increases	the	font	size	of	the	selected	text.

If	Selection.Type	=	wdSelectionNormal	Then	

				Selection.Font.Grow

Else

				MsgBox	"You	need	to	select	some	text."

End	If



Help	Method
							

Displays	on-line	Help	information.

expression.Help(HelpType)

expression			An	expression	that	returns	a	Application	object.

HelpType			Required	Variant.	The	on-line	Help	topic	or	window.	Can	be	any	of
these	WdHelpType	constants.

Enumerated	type	can	be	one	of	these	enumerated	type	constants.
wdHelp	Displays	the	Help	Topics	dialog	box.
wdHelpAbout	Displays	the	About	Microsoft	Word	dialog	box	(Help	menu).
wdHelpActiveWindow	Displays	Help	describing	the	command	associated	with
the	active	view	or	pane.
wdHelpContents	Displays	the	Help	Topics	dialog	box.
wdHelpHWP	Displays	Help	topics	for	AreA	Hangul	users.
wdHelpIchitaro	Displays	Help	topics	for	Ichitaro	users.
wdHelpIndex	Displays	the	Help	Topics	dialog	box.
wdHelpPE2	Displays	Help	topics	for	IBM	Personal	Editor	2	users.
wdHelpPSSHelp	Displays	product	support	information.
wdHelpSearch	Displays	the	Help	Topics	dialog	box.
wdHelpUsingHelp	Displays	a	list	of	Help	topics	that	describe	how	to	use	Help.



Remarks

Some	of	the	constants	listed	above	may	not	be	available	to	you,	depending	on
the	language	support	(U.S.	English,	for	example)	that	you’ve	selected	or
installed.



Example

This	example	displays	the	Help	Topics	dialog	box.

Help	HelpType:=wdHelp

This	example	displays	a	list	of	Help	topics	that	describe	how	to	use	Help.

Help	HelpType:=wdHelpUsingHelp



HelpTool	Method
							

Changes	the	pointer	from	an	arrow	to	a	question	mark,	indicating	that	you'll	get
context-sensitive	Help	information	about	the	next	command	or	screen	element
you	click.	If	you	click	text,	Word	displays	a	box	describing	current	paragraph
and	character	formats.	Pressing	ESC	turns	the	pointer	back	to	an	arrow.

expression.HelpTool()

expression			Required.	An	expression	that	returns	an	Application	object.



Example

This	example	changes	the	mouse	pointer	from	an	arrow	to	a	question	mark.

Application.HelpTool



HomeKey	Method
							

Moves	or	extends	the	selection	to	the	beginning	of	the	specified	unit.	This
method	returns	an	integer	that	indicates	the	number	of	characters	the	selection
was	actually	moved,	or	it	returns	0	(zero)	if	the	move	was	unsuccessful.

Note			This	method	corresponds	to	functionality	of	the	HOME	key.

expression.HomeKey(Unit,	Extend)

expression			An	expression	that	returns	a	Selection	object.

Unit			Optional	Variant.	The	unit	by	which	the	selection	is	to	be	moved	or
extended.	WdUnits.

				Can	be	one	of	the	following	WdUnits	constants.

				wdStory

				wdColumn

				wdLine

				wdRow.	The	default	value	is	wdLine.

Extend			Optional	Variant.	Specifies	the	way	the	selection	is	moved.
WdMovementType.

				Can	be	one	of	the	following	WdMovementType	constants.

				wdMove

				wdExtend

If	the	value	of	this	argument	is	wdMove,	the	selection	is	collapsed	to	an
insertion	point	and	moved	to	the	beginning	of	the	specified	unit.	If	it's



wdExtend,	the	beginning	of	the	selection	is	extended	to	the	beginning	of	the
specified	unit.	The	default	value	is	wdMove.



Example

This	example	moves	the	selection	to	the	beginning	of	the	current	story.	If	the
selection	is	in	the	main	text	story,	the	selection	is	moved	to	the	beginning	of	the
document.

Selection.HomeKey	Unit:=wdStory,	Extend:=wdMove

This	example	moves	the	selection	to	the	beginning	of	the	current	line	and
assigns	the	number	of	characters	moved	to	the	pos	variable.

pos	=	Selection.HomeKey(Unit:=wdLine,	Extend:=wdMove)

If	pos	=	0	Then	StatusBar	=	"Selection	was	not	moved"



HTMLDivisionParent	Method
							

Returns	an	HTMLDivision	object	that	represents	a	parent	division	of	the	current
HTML	division.

expression.HTMLDivisionParent(LevelsUp)

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

LevelsUp		Optional	Long.	The	number	of	parent	divisions	to	count	back	to
return	the	desired	division.	If	the	LevelsUp	argument	is	omitted,	the	HTML
division	returned	is	one	level	up	from	the	current	HTML	division.



Example

This	example	formats	the	borders	for	two	HTML	divisions	in	the	active
document.	This	example	assumes	that	the	active	document	is	an	HTML
document	with	at	least	two	divisions.

Sub	FormatHTMLDivisions()

				With	ActiveDocument.HTMLDivisions(1)

								With	.HTMLDivisions(1)

												.LeftIndent	=	InchesToPoints(1)

												.RightIndent	=	InchesToPoints(1)

												With	.Borders(wdBorderLeft)

																.Color	=	wdColorBlue

																.LineStyle	=	wdLineStyleDouble

												End	With

												With	.Borders(wdBorderRight)

																.Color	=	wdColorBlue

																.LineStyle	=	wdLineStyleDouble

												End	With

												With	.HTMLDivisionParent

																.LeftIndent	=	InchesToPoints(1)

																.RightIndent	=	InchesToPoints(1)

																With	.Borders(wdBorderTop)

																				.Color	=	wdColorBlack

																				.LineStyle	=	wdLineStyleDot

																End	With

																With	.Borders(wdBorderBottom)

																				.Color	=	wdColorBlack

																				.LineStyle	=	wdLineStyleDot

																End	With

												End	With

								End	With

				End	With

End	Sub



InchesToPoints	Method
							

Converts	a	measurement	from	inches	to	points	(1	inch	=	72	points).	Returns	the
converted	measurement	as	a	Single.

expression.InchesToPoints(Inches)

expression			Optional.	An	expression	that	returns	an	Application	object.

Inches			Required	Single.	The	inch	value	to	be	converted	to	points.



Example

This	example	sets	the	space	before	for	the	selected	paragraphs	to	0.25	inch.

Selection.ParagraphFormat.SpaceBefore	=	InchesToPoints(0.25)

This	example	prints	each	open	document	after	setting	the	left	and	right	margins
to	0.65	inch.

Dim	docLoop	As	Document

For	Each	docLoop	in	Documents

				With	docLoop

								.PageSetup.LeftMargin	=	InchesToPoints(0.65)

								.PageSetup.RightMargin	=	InchesToPoints(0.65)

								.PrintOut

				End	With

Next	docLoop



IncreaseSpacing	Method
							

Increases	the	spacing	before	and	after	paragraphs	in	six-point	increments.

expression.IncreaseSpacing

expression			Required.	An	expression	that	returns	a	Paragraphs	object.



Example

This	example	increases	the	before	and	after	spacing	of	a	paragraph	or	selection
of	paragraphs	by	six	points	each	time	the	procedure	is	run.

Sub	IncreaseParaSpacing()

				Selection.Paragraphs.IncreaseSpacing

End	Sub



IncrementBrightness	Method
							

Changes	the	brightness	of	the	picture	by	the	specified	amount.	Use	the
Brightness	property	to	set	the	absolute	brightness	of	the	picture.

expression.IncrementBrightness(Increment)

expression			Required.	An	expression	that	returns	a	PictureFormat	object.

Increment			Required	Single.	Specifies	how	much	to	change	the	value	of	the
Brightness	property	for	the	picture.	A	positive	value	makes	the	picture	brighter;
a	negative	value	makes	the	picture	darker.



Remarks

You	cannot	adjust	the	brightness	of	a	picture	past	the	upper	or	lower	limit	for	the
Brightness	property.	For	example,	if	the	Brightness	property	is	initially	set	to
0.9	and	you	specify	0.3	for	the	Increment	argument,	the	resulting	brightness
level	will	be	1.0,	which	is	the	upper	limit	for	the	Brightness	property,	instead	of
1.2.



Example

This	example	creates	a	duplicate	of	the	first	shape	on	the	active	document	and
then	moves	and	darkens	the	duplicate.	For	the	example	to	work,	the	first	shape
must	be	either	a	picture	or	an	OLE	object.

Dim	docActive	As	Document

Set	docActive	=	ActiveDocument

With	docActive.Shapes(1).Duplicate

				.PictureFormat.IncrementBrightness	-0.2

				.IncrementLeft	50

				.IncrementTop	50

End	With



IncrementContrast	Method
							

Changes	the	contrast	of	the	picture	by	the	specified	amount.	Use	the	Contrast
property	to	set	the	absolute	contrast	for	the	picture.

expression.IncrementContrast(Increment)

expression			Required.	An	expression	that	returns	a	PictureFormat	object.

Increment			Required	Single.	Specifies	how	much	to	change	the	value	of	the
Contrast	property	for	the	picture.	A	positive	value	increases	the	contrast;	a
negative	value	decreases	the	contrast.



Remarks

You	cannot	adjust	the	contrast	of	a	picture	past	the	upper	or	lower	limit	for	the
Contrast	property.	For	example,	if	the	Contrast	property	is	initially	set	to	0.9
and	you	specify	0.3	for	the	Increment	argument,	the	resulting	contrast	level	will
be	1.0,	which	is	the	upper	limit	for	the	Contrast	property,	instead	of	1.2.



Example

This	example	increases	the	contrast	for	all	embedded	OLE	objects	on	the	active
document	that	aren't	already	set	to	maximum	contrast.

Dim	docActive	As	Document

Dim	shapeLoop	As	Shape

Set	docActive	=	ActiveDocument

For	Each	shapeLoop	In	docActive.Shapes

				If	shapeLoop.Type	=	msoEmbeddedOLEObject	Then

								shapeLoop.PictureFormat.IncrementContrast	0.1

				End	If

Next	shapeLoop



IncrementLeft	Method
							

Moves	the	specified	shape	horizontally	by	the	specified	number	of	points.

expression.IncrementLeft(Increment)

expression			Required.	An	expression	that	returns	a	Shape	object.

Increment			Required	Single.	Specifies	how	far	the	shape	is	to	be	moved
horizontally,	in	points.	A	positive	value	moves	the	shape	to	the	right;	a	negative
value	moves	it	to	the	left.



Example

This	example	duplicates	shape	one	on	myDocument,	sets	the	fill	for	the	duplicate,
moves	it	70	points	to	the	right	and	50	points	up,	and	rotates	it	30	degrees
clockwise.

Set	myDocument	=	ActiveDocument

With	myDocument.Shapes(1).Duplicate

				.Fill.PresetTextured	msoTextureGranite

				.IncrementLeft	70

				.IncrementTop	-50

				.IncrementRotation	30

End	With



IncrementOffsetX	Method
							

Changes	the	horizontal	offset	of	the	shadow	by	the	specified	number	of	points.
Use	the	OffsetX	property	to	set	the	absolute	horizontal	shadow	offset.

expression.IncrementOffsetX(Increment)

expression			Required.	An	expression	that	returns	a	ShadowFormat	object.

Increment			Required	Single.	Specifies	how	far	the	shadow	offset	is	to	be	moved
horizontally,	in	points.	A	positive	value	moves	the	shadow	to	the	right;	a
negative	value	moves	it	to	the	left.



Example

This	example	moves	the	shadow	on	the	third	shape	in	the	active	document	to	the
left	by	3	points.

ActiveDocument.Shapes(3).Shadow.IncrementOffsetX	-3



IncrementOffsetY	Method
							

Changes	the	vertical	offset	of	the	shadow	by	the	specified	number	of	points.	Use
the	OffsetY	property	to	set	the	absolute	vertical	shadow	offset.

expression.IncrementOffsetY(Increment)

expression			Required.	An	expression	that	returns	a	ShadowFormat	object.

Increment			Required	Single.	Specifies	how	far	the	shadow	offset	is	to	be	moved
vertically,	in	points.	A	positive	value	moves	the	shadow	down;	a	negative	value
moves	it	up.



Example

This	example	moves	the	shadow	on	the	third	shape	in	the	active	document	up	by
3	points.

ActiveDocument.Shapes(3).Shadow.IncrementOffsetY	-3



IncrementRotation	Method
							

Changes	the	rotation	of	the	specified	shape	around	the	z-axis	by	the	specified
number	of	degrees.	Use	the	Rotation	property	to	set	the	absolute	rotation	of	the
shape.

expression.IncrementRotation(Increment)

expression			Required.	An	expression	that	returns	a	Shape	object.

Increment			Required	Single.	Specifies	how	far	the	shape	is	to	be	rotated
horizontally,	in	degrees.	A	positive	value	rotates	the	shape	clockwise;	a	negative
value	rotates	it	counterclockwise.



Remarks

To	rotate	a	three-dimensional	shape	around	the	x-axis	or	the	y-axis,	use	the
IncrementRotationX	method	or	the	IncrementRotationY	method.



Example

This	example	duplicates	shape	one	on	myDocument,	sets	the	fill	for	the	duplicate,
moves	it	70	points	to	the	right	and	50	points	up,	and	rotates	it	30	degrees
clockwise.

Set	myDocument	=	ActiveDocument

With	myDocument.Shapes(1).Duplicate

				.Fill.PresetTextured	msoTextureGranite

				.IncrementLeft	70

				.IncrementTop	-50

				.IncrementRotation	30

End	With



IncrementRotationX	Method
							

Changes	the	rotation	of	the	specified	shape	around	the	x-axis	by	the	specified
number	of	degrees.	Use	the	RotationX	property	to	set	the	absolute	rotation	of
the	shape	around	the	x-axis.

expression.IncrementRotationX(Increment)

expression			Required.	An	expression	that	returns	a	ThreeDFormat	object.

Increment			Required	Single.	Specifies	how	much	(in	degrees)	the	rotation	of
the	shape	around	the	x-axis	is	to	be	changed.	Can	be	a	value	from		–90	through
90.	A	positive	value	tilts	the	shape	up;	a	negative	value	tilts	it	down.



Remarks

You	cannot	adjust	the	rotation	around	the	x-axis	of	the	specified	shape	past	the
upper	or	lower	limit	for	the	RotationX	property	(90	degrees	to		–90	degrees).
For	example,	if	the	RotationX	property	is	initially	set	to	80	and	you	specify	40
for	the	Increment	argument,	the	resulting	rotation	will	be	90	(the	upper	limit	for
the	RotationX	property)	instead	of	120.

To	change	the	rotation	of	a	shape	around	the	y-axis,	use	the
IncrementRotationY	method.	To	change	the	rotation	around	the	z-axis,	use	the
IncrementRotation	method.



Example

This	example	tilts	the	first	shape	on	the	active	document	up	10	degrees.	The	first
shape	must	be	an	extruded	shape	for	you	to	see	the	effect	of	this	code.

ActiveDocument.Shapes(1).ThreeD.IncrementRotationX	10



IncrementRotationY	Method
							

Changes	the	rotation	of	the	specified	shape	around	the	y-axis	by	the	specified
number	of	degrees.	Use	the	RotationY	property	to	set	the	absolute	rotation	of
the	shape	around	the	y-axis.

expression.IncrementRotationY(Increment)

expression			Required.	An	expression	that	returns	a	ThreeDFormat	object.

Increment			Required	Single.	Specifies	how	much	(in	degrees)	the	rotation	of
the	shape	around	the	y-axis	is	to	be	changed.	Can	be	a	value	from		–	90	through
90.	A	positive	value	tilts	the	shape	to	the	left;	a	negative	value	tilts	it	to	the	right.



Remarks

To	change	the	rotation	of	a	shape	around	the	x-axis,	use	the
IncrementRotationX	method.	To	change	the	rotation	around	the	z-axis,	use	the
IncrementRotation	method.

You	cannot	adjust	the	rotation	around	the	y-axis	of	the	specified	shape	past	the
upper	or	lower	limit	for	the	RotationY	property	(90	degrees	to		–	90	degrees).
For	example,	if	the	RotationY	property	is	initially	set	to	80	and	you	specify	40
for	the	Increment	argument,	the	resulting	rotation	will	be	90	(the	upper	limit	for
the	RotationY	property)	instead	of	120.



Example

This	example	tilts	the	first	shape	on	the	active	document	10	degrees	to	the	right.
The	first	shape	must	be	an	extruded	shape	for	you	to	see	the	effect	of	this	code.

ActiveDocument.Shapes(1).ThreeD.IncrementRotationY	-10



IncrementTop	Method
							

Moves	the	specified	shape	vertically	by	the	specified	number	of	points.

expression.IncrementTop(Increment)

expression			Required.	An	expression	that	returns	a	Shape	object.

Increment			Required	Single.	Specifies	how	far	the	shape	object	is	to	be	moved
vertically,	in	points.	A	positive	value	moves	the	shape	down;	a	negative	value
moves	it	up.



Example

This	example	duplicates	shape	one	on	myDocument,	sets	the	fill	for	the	duplicate,
moves	it	70	points	to	the	right	and	50	points	up,	and	rotates	it	30	degrees
clockwise.

Set	myDocument	=	ActiveDocument

With	myDocument.Shapes(1).Duplicate

				.Fill.PresetTextured	msoTextureGranite

				.IncrementLeft	70

				.IncrementTop	-50

				.IncrementRotation	30

End	With



Indent	Method
							

Indents	one	or	more	paragraphs	by	one	level.

Note			Using	this	method	is	equivalent	to	clicking	the	Increase	Indent	button	on
the	Formatting	toolbar.

expression.Indent

expression			Required.	An	expression	that	returns	a	Paragraph	or	Paragraphs
object.



Example

This	example	indents	all	the	paragraphs	in	the	active	document	twice,	and	then	it
removes	one	level	of	the	indent	for	the	first	paragraph.

With	ActiveDocument.Paragraphs

				.Indent

				.Indent

End	With

ActiveDocument.Paragraphs(1).Outdent



IndentCharWidth	Method
							

Indents	one	or	more	paragraphs	by	a	specified	number	of	characters.

expression.IndentCharWidth(Count)

expression			Required.	An	expression	that	returns	a	Paragraph,	Paragraphs,	or
ParagraphFormat	object.

Count			Required	Integer.	The	number	of	characters	by	which	the	specified
paragraphs	are	to	be	indented.



Remarks

Using	this	method	is	equivalent	to	clicking	the	Increase	Indent	button	on	the
Formatting	toolbar.



Example

This	example	indents	the	first	paragraph	of	the	active	document	by	10
characters.

With	ActiveDocument.Paragraphs(1)

				.IndentCharWidth	10

End	With



IndentFirstLineCharWidth	Method
							

Indents	the	first	line	of	one	or	more	paragraphs	by	a	specified	number	of
characters.

expression.IndentFirstLineCharWidth(Count)

expression			Required.	An	expression	that	returns	a	Paragraph,	Paragraphs,	or
ParagraphFormat	object.

Count			Required	Integer.	The	number	of	characters	by	which	the	first	line	of
each	specified	paragraph	is	to	be	indented.



Example

This	example	indents	the	first	line	of	the	first	paragraph	in	the	active	document
by	10	characters.

With	ActiveDocument.Paragraphs(1)

				.IndentFirstLineCharWidth	10

End	With



Show	All



InRange	Method
							

Returns	True	if	the	range	or	selection	to	which	the	method	is	applied	is
contained	in	the	range	specified	by	the	Range	argument.

expression.InRange(Range)

expression			Required.	An	expression	that	returns	a	Range	or	Selection	object.

Range			Required	Range	object.	The	range	to	which	you	want	to	compare
expression.



Remarks

This	method	determines	whether	the	range	or	selection	returned	by	expression	is
contained	in	the	specified	Range	by	comparing	the	starting	and	ending	character
positions,	as	well	as	the	story	type.



Example

This	example	determines	whether	the	selection	is	contained	in	the	first	paragraph
in	the	active	document.

status	=	Selection.InRange(ActiveDocument.Paragraphs(1).Range)

This	example	sets	myRange	equal	to	the	first	word	in	the	active	document.	If
myRange	isn't	contained	in	the	selection,	myRange	is	selected.

Set	myRange	=	ActiveDocument.Words(1)

If	myRange.InRange(Selection.Range)	=	False	Then	myRange.Select

This	example	displays	a	message	if	the	selection	is	in	the	footnote	story.

If	Selection.InRange(ActiveDocument	_

								.StoryRanges(wdFootnotesStory))	Then

				MsgBox	"Selection	in	footnotes"

End	If



Show	All



Insert	Method
							

Insert	method	as	it	applies	to	the	AutoTextEntry	object.

Inserts	the	AutoText	entry	in	place	of	the	specified	range.	Returns	a	Range
object	that	represents	the	AutoText	entry.

expression.Insert(Where,	RichText)

expression			Required.	An	expression	that	returns	an	AutoTextEntry	object.

Where		Required	Range	object.	The	location	for	the	AutoText	entry.

RichText		Optional	Variant.	True	to	insert	the	AutoText	entry	with	its	original
formatting.



Remarks

If	you	don't	want	to	replace	the	range,	use	the	Collapse	method	before	using	this
method.

Insert	method	as	it	applies	to	the	Envelope	object.

Inserts	an	envelope	as	a	separate	section	at	the	beginning	of	the	specified
document.

expression.Insert(ExtractAddress,	Address,	AutoText,	OmitReturnAddress,
ReturnAddress,	ReturnAutoText,	PrintBarCode,	PrintFIMA,	Size,	Height,
Width,	FeedSource,	AddressFromLeft,	AddressFromTop,
ReturnAddressFromLeft,	ReturnAddressFromTop,	DefaultFaceUp,
DefaultOrientation,	PrintEPostage,	Vertical,	RecipientNamefromLeft,
RecipientNamefromTop,	RecipientPostalfromLeft,	RecipientPostalfromTop,
SenderNamefromLeft,	SenderNamefromTop,	SenderPostalfromLeft,
SenderPostalfromTop)

expression			Required.	An	expression	that	returns	an	Envelope	object.

ExtractAddress		Optional	Variant.	True	to	use	the	text	marked	by	the
EnvelopeAddress	bookmark	(a	user-defined	bookmark)	as	the	recipient's
address.

Address		Optional	Variant.	A	string	that	specifies	the	recipient's	address
(ignored	if	ExtractAddress	is	True).

AutoText		Optional	Variant.	A	string	that	specifies	an	AutoText	entry	to	use	for
the	address.	If	specified,	Address	is	ignored.

OmitReturnAddress		Optional	Variant.	True	to	not	insert	a	return	address.

ReturnAddress		Optional	Variant.	A	string	that	specifies	the	return	address.

ReturnAutoText		Optional	Variant.	A	string	that	specifies	an	AutoText	entry	to
use	for	the	return	address.	If	specified,	ReturnAddress	is	ignored.

PrintBarCode		Optional	Variant.	True	to	add	a	POSTNET	bar	code.	For	U.S.



mail	only.

PrintFIMA		Optional	Variant.	True	to	add	a	Facing	Identification	Mark
(FIMA)	for	use	in	presorting	courtesy	reply	mail.	For	U.S.	mail	only.

Size		Optional	Variant.	A	string	that	specifies	the	envelope	size.	The	string	must
match	one	of	the	sizes	listed	in	the	Envelope	size	box	in	the	Envelope	Options
dialog	box	(for	example,	"Size	10"	or	"C4").

Height		Optional	Variant.	The	height	of	the	envelope,	measured	in	points,	when
the	Size	argument	is	set	to	"Custom	size."

Width		Optional	Variant.	The	width	of	the	envelope,	measured	in	points,	when
the	Size	argument	is	set	to	"Custom	size."

FeedSource		Optional	Variant.	True	to	use	the	FeedSource	property	of	the
Envelope	object	to	specify	which	paper	tray	to	use	when	printing	the	envelope.

AddressFromLeft		Optional	Variant.	The	distance,	measured	in	points,	between
the	left	edge	of	the	envelope	and	the	recipient's	address.

AddressFromTop		Optional	Variant.	The	distance,	measured	in	points,	between
the	top	edge	of	the	envelope	and	the	recipient's	address.

ReturnAddressFromLeft		Optional	Variant.	The	distance,	measured	in	points,
between	the	left	edge	of	the	envelope	and	the	return	address.

ReturnAddressFromTop		Optional	Variant.	The	distance,	measured	in	points,
between	the	top	edge	of	the	envelope	and	the	return	address.

DefaultFaceUp		Optional	Variant.	True	to	print	the	envelope	face	up,	False	to
print	it	face	down.

DefaultOrientation		Optional	Variant.	The	orientation	for	the	envelope.	Can	be
any	WdEnvelopeOrientation	constant.

wdLeftPortrait
wdCenterPortrait
wdRightPortrait
wdLeftLandscape



wdCenterLandscape
wdRightLandscape
wdLeftClockwise
wdCenterClockwise
wdRightClockwise

PrintEPostage		Optional	Variant.	True	to	insert	postage	from	an	Internet
postage	vendor.

Vertical		Optional	Variant.	True	to	print	vertical	text	on	the	envelope.		Used	for
Asian	envelopes.	Default	is	False.

RecipientNamefromLeft		Optional	Variant.	Position	of	the	recipient's	name,
measured	in	points	from	the	left	edge	of	the	envelope.	Used	for	Asian	envelopes.

RecipientNamefromTop		Optional	Variant.	Position	of	the	recipient's	name,
measured	in	points	from	the	top	edge	of	the	envelope.	Used	for	Asian	envelopes.

RecipientPostalfromLeft		Optional	Variant.	Position	of	the	recipient's	postal
code,	measured	in	points	from	the	left	edge	of	the	envelope.	Used	for	Asian
envelopes.

RecipientPostalfromTop		Optional	Variant.	Position	of	the	recipient's	postal
code,	measured	in	points	from	the	top	edge	of	the	envelope.	Used	for	Asian
envelopes.

SenderNamefromLeft		Optional	Variant.	Position	of	the	sender's	name,
measured	in	points	from	the	left	edge	of	the	envelope.	Used	for	Asian	envelopes.

SenderNamefromTop		Optional	Variant.	Position	of	the	sender's	name,
measured	in	points	from	the	top	edge	of	the	envelope.	Used	for	Asian	envelopes.

SenderPostalfromLeft		Optional	Variant.	Position	of	the	sender's	postal	code,
measured	in	points	from	the	left	edge	of	the	envelope.	Used	for	Asian	envelopes.

SenderPostalfromTop		Optional	Variant.	Position	of	the	sender's	postal	code,
measured	in	points	from	the	top	edge	of	the	envelope.	Used	for	Asian	envelopes.

Insert	method	as	it	applies	to	the	ShapeNodes	object.



Inserts	a	node	into	a	freeform	shape.

expression.Insert(Index,	SegmentType,	EditingType,	X1,	Y1,	X2,	Y2,	X3,	Y3)

expression			Required.	An	expression	that	returns	a	ShapeNodes	object.

Index		Required	Long.	The	number	of	the	shape	node	after	which	to	insert	a
new	node.

SegmentType		Required	MsoSegmentType.	The	type	of	line	that	connects	the
inserted	node	to	the	neighboring	nodes.

MsoSegmentType	can	be	one	of	these	MsoSegmentType	constants.
msoSegmentLine
msoSegmentCurve

EditingType		Required	MsoEditingType.		The	editing	property	of	the	inserted
node.

MsoEditingType	can	be	one	of	these	MsoEditingType	constants.
msoEditingAuto
msoEditingCorner
msoEditingSmooth
msoEditingSymmetric

X1			Required	Single.	If	the	EditingType	of	the	new	segment	is
msoEditingAuto,	this	argument	specifies	the	horizontal	distance,	measured	in
points,	from	the	upper-left	corner	of	the	document	to	the	end	point	of	the	new
segment.	If	the	EditingType	of	the	new	node	is	msoEditingCorner,	this
argument	specifies	the	horizontal	distance,	measured	in	points,	from	the	upper-
left	corner	of	the	document	to	the	first	control	point	for	the	new	segment.

Y1			Required	Single.	If	the	EditingType	of	the	new	segment	is
msoEditingAuto,	this	argument	specifies	the	vertical	distance,	measured	in
points,	from	the	upper-left	corner	of	the	document	to	the	end	point	of	the	new
segment.	If	the	EditingType	of	the	new	node	is	msoEditingCorner,	this
argument	specifies	the	vertical	distance,	measured	in	points,	from	the	upper-left
corner	of	the	document	to	the	first	control	point	for	the	new	segment.



X2			Optional	Single.	If	the	EditingType	of	the	new	segment	is
msoEditingCorner,	this	argument	specifies	the	horizontal	distance,	measured	in
points,	from	the	upper-left	corner	of	the	document	to	the	second	control	point	for
the	new	segment.	If	the	EditingType	of	the	new	segment	is	msoEditingAuto,
don't	specify	a	value	for	this	argument.

Y2			Optional	Single.	If	the	EditingType	of	the	new	segment	is
msoEditingCorner,	this	argument	specifies	the	vertical	distance,	measured	in
points,	from	the	upper-left	corner	of	the	document	to	the	second	control	point	for
the	new	segment.	If	the	EditingType	of	the	new	segment	is	msoEditingAuto,
don't	specify	a	value	for	this	argument.

X3			Optional	Single.	If	the	EditingType	of	the	new	segment	is
msoEditingCorner,	this	argument	specifies	the	horizontal	distance,	measured	in
points,	from	the	upper-left	corner	of	the	document	to	the	end	point	of	the	new
segment.	If	the	EditingType	of	the	new	segment	is	msoEditingAuto,	don't
specify	a	value	for	this	argument.

Y3			Optional	Single.	If	the	EditingType	of	the	new	segment	is
msoEditingCorner,	this	argument	specifies	the	vertical	distance,	measured	in
points,	from	the	upper-left	corner	of	the	document	to	the	end	point	of	the	new
segment.	If	the	EditingType	of	the	new	segment	is	msoEditingAuto,	don't
specify	a	value	for	this	argument.	



Example

As	it	applies	to	the	AutoTextEntry	object.

This	example	inserts	the	formatted	AutoText	entry	named	"one"	after	the
selection.

Sub	InsertAutoTextEntry()

				ActiveDocument.Content.Select

				Selection.Collapse	Direction:=wdCollapseEnd

				ActiveDocument.AttachedTemplate.AutoTextEntries("one").Insert	_

								Where:=Selection.Range,	RichText:=True

End	Sub

As	it	applies	to	the	Envelope	object.

This	example	adds	a	Size	10	envelope	to	the	active	document	by	using	the
addresses	stored	in	the	strAddr	and	strReturnAddr	variables.

Sub	InsertEnvelope()

				Dim	strAddr	As	String

				Dim	strReturnAddr	As	String

				strAddr	=	"Max	Benson"	&	vbCr	&	"123	Skye	St."	_

								&	vbCr	&	"OurTown,	WA	98107"

				strReturnAddr	=	"Paul	Borm"	&	vbCr	&	"456	Erde	Lane"	_

								&	vbCr	&	"OurTown,	WA	98107"

				ActiveDocument.Envelope.Insert	Address:=strAddr,	_

								ReturnAddress:=strReturnAddr,	Size:="Size	10"

End	Sub

As	it	applies	to	the	ShapeNodes	object.

This	example	selects	the	third	shape	in	the	active	document,	checks	whether	the
shape	is	a	Freeform	object,	and	if	it	is,	inserts	a	node.

Sub	InsertShapeNode()

				ActiveDocument.Shapes(3).Select

				With	Selection.ShapeRange

								If	.Type	=	msoFreeform	Then

												.Nodes.Insert	_

																Index:=3,	SegmentType:=msoSegmentCurve,	_

																EditingType:=msoEditingSymmetric,	x1:=35,	y1:=100



												.Fill.ForeColor.RGB	=	RGB(0,	0,	200)

												.Fill.Visible	=	msoTrue

								Else

												MsgBox	"This	shape	is	not	a	Freeform	object."

								End	If

				End	With

End	Sub



InsertAfter	Method
							

Inserts	the	specified	text	at	the	end	of	a	range	or	selection.	After	this	method	is
applied,	the	range	or	selection	expands	to	include	the	new	text.

expression.InsertAfter(Text)

expression			Required.	An	expression	that	returns	a	Selection	or	Range	object.

Text			Required	String.	The	text	to	be	inserted.



Remarks

You	can	insert	characters	such	as	quotation	marks,	tab	characters,	and
nonbreaking	hyphens	by	using	the	Visual	Basic	Chr	function	with	the
InsertAfter	method.	You	can	also	use	the	following	Visual	Basic	constants:
vbCr,	vbLf,	vbCrLf	and	vbTab.

If	you	use	this	method	with	a	range	or	selection	that	refers	to	an	entire
paragraph,	the	text	is	inserted	after	the	ending	paragraph	mark	(the	text	will
appear	at	the	beginning	of	the	next	paragraph).	To	insert	text	at	the	end	of	a
paragraph,	determine	the	ending	point	and	subtract	1	from	this	location	(the
paragraph	mark	is	one	character),	as	shown	in	the	following	example.

Set	doc	=	ActiveDocument

Set	rngRange	=	_

				doc.Range(doc.Paragraphs(1).Start,	_

				doc.Paragraphs(1).End	-	1)

rngRange.InsertAfter	_

				"	This	is	now	the	last	sentence	in	paragraph	one."

However,	if	the	range	or	selection	ends	with	a	paragraph	mark	that	also	happens
to	be	the	end	of	the	document,	Microsoft	Word	inserts	the	text	before	the	final
paragraph	mark	rather	than	creating	a	new	paragraph	at	the	end	of	the	document.

Also,	if	the	range	or	selection	is	a	bookmark,	Word	inserts	the	specified	text	but
does	not	extend	the	range	or	selection	or	the	bookmark	to	include	the	new	text.



Example

This	example	inserts	text	at	the	end	of	the	active	document.	The	Content
property	returns	a	Range	object.

ActiveDocument.Content.InsertAfter	"end	of	document"

This	example	inserts	text	at	the	end	of	the	selection	and	then	collapses	the
selection	to	an	insertion	point.

With	Selection

				.InsertAfter	"appended	text"

				.Collapse	Direction:=wdCollapseEnd

End	With

This	example	inserts	text	from	an	input	box	as	the	second	paragraph	in	the	active
document.

response	=	InputBox("Type	some	text")

With	ActiveDocument.Paragraphs(1).Range

				.InsertAfter	"1."	&	Chr(9)	&	response

				.InsertParagraphAfter

End	With



InsertAutoText	Method
							

Attempts	to	match	the	text	in	the	specified	range	or	the	text	surrounding	the
range	with	an	existing	AutoText	entry	name.	If	any	such	match	is	found,
InsertAutoText	inserts	the	AutoText	entry	to	replace	that	text.	If	a	match	cannot
be	found,	an	error	occurs.

Note			You	can	use	the	Insert	method	with	an	AutoTextEntry	object	to	insert	a
specific	AutoText	entry.

expression.InsertAutoText

expression			Required.	An	expression	that	returns	a	Range	object.



Example

This	example	inserts	an	AutoText	entry	that	matches	the	text	around	a	selection.

Documents.Add

Selection.TypeText	"Best	w"

Selection.Range.InsertAutoText

This	example	inserts	an	AutoText	entry	with	a	name	that	matches	the	first	word
in	the	active	document.

Documents.Add

Selection.TypeText	"In	"

Set	myRange	=	ActiveDocument.Words(1)

myRange.InsertAutoText



InsertBefore	Method
							

Inserts	the	specified	text	before	the	specified	selection	or	range.	After	the	text	is
inserted,	the	selection	or	range	is	expanded	to	include	the	new	text.	If	the
selection	or	range	is	a	bookmark,	the	bookmark	is	also	expanded	to	include	the
next	text.

expression.InsertBefore(Text)

expression			Required.	An	expression	that	returns	a	Range	or	Selection	object.

Text			Required	String.	The	text	to	be	inserted.



Remarks

You	can	insert	characters	such	as	quotation	marks,	tab	characters,	and
nonbreaking	hyphens	by	using	the	Visual	Basic	Chr	function	with	the
InsertBefore	method.	You	can	also	use	the	following	Visual	Basic	constants:
vbCr,	vbLf,	vbCrLf	and	vbTab.



Example

This	example	inserts	the	text	"Hamlet"	(enclosed	in	quotation	marks)	before	the
selection	and	then	collapses	the	selection.

With	Selection

				.InsertBefore	Chr(34)	&	"Hamlet"	&	Chr(34)	&	Chr(32)

				.Collapse	Direction:=wdCollapseEnd

End	With

This	example	inserts	the	text	"Introduction"	as	a	separate	paragraph	at	the
beginning	of	the	active	document.

With	ActiveDocument.Content

				.InsertParagraphBefore

				.InsertBefore	"Introduction"

End	With

This	example	inserts	all	the	font	names	in	the	FontNames	collection	into	a	new
document.

Documents.Add

For	Each	aFont	In	FontNames

				With	Selection

								.InsertBefore	aFont

								.Collapse	Direction:=wdCollapseEnd

								.TypeParagraph

				End	With

Next	aFont



InsertBreak	Method
							

Inserts	a	page,	column,	or	section	break.

expression.InsertBreak(Type)

expression			Required.	An	expression	that	returns	a	Range	or	Selection	object.

Type			Optional	Variant.	The	type	of	break	to	be	inserted.WdBreakType	

				Can	be	one	of	the	following	WdBreakType	constants.

				wdPageBreak

				wdColumnBreak

				wdSectionBreakNextPage

				wdSectionBreakContinuous

				wdSectionBreakEvenPage

				wdSectionBreakOddPage

				wdLineBreak

				wdLineBreakClearLeft

				wdLineBreakClearRight

				wdTextWrappingBreak

The	default	value	is	wdPageBreak.



Remarks

When	you	insert	a	page	or	column	break,	the	range	or	selection	is	replaced	by
the	break.	If	you	don't	want	to	replace	the	range	or	selection,	use	the	Collapse
method	before	using	the	InsertBreak	method.	When	you	insert	a	section	break,
the	break	is	inserted	immediately	preceding	the	Range	or	Selection	object.

Some	of	the	constants	listed	above	may	not	be	available	to	you,	depending	on
the	language	support	(U.S.	English,	for	example)	that	you’ve	selected	or
installed.



Example

This	example	inserts	a	continuous	section	break	immediately	preceding	the
selection.

Selection.InsertBreak	Type:=wdSectionBreakContinuous

This	example	inserts	a	page	break	immediately	following	the	second	paragraph
in	the	active	document.

Set	myRange	=	ActiveDocument.Paragraphs(2).Range

With	myRange

				.Collapse	Direction:=wdCollapseEnd

				.InsertBreak	Type:=wdPageBreak

End	With



InsertCaption	Method
							

Inserts	a	caption	immediately	preceding	or	following	the	specified	range	or
selection.

expression.InsertCaption(Label,	Title,	TitleAutoText,	Position)

expression			Required.	An	expression	that	returns	a	Range	or	Selection	object.

Label			Required	Variant.	The	caption	label	to	be	inserted.	WdCaptionLabelID

				Can	be	a	string	or	one	of	the	following	WdCaptionLabelID	constants.

				wdCaptionEquation

				wdCaptionFigure

				wdCaptionTable

If	the	label	hasn't	yet	been	defined,	an	error	occurs.	Use	the	Add	method	with
the	CaptionLabels	object	to	define	new	caption	labels.

Title			Optional	Variant.	The	string	to	be	inserted	immediately	following	the
label	in	the	caption	(ignored	if	TitleAutoText	is	specified).

TitleAutoText			Optional	Variant.	The	AutoText	entry	whose	contents	you	want
to	insert	immediately	following	the	label	in	the	caption	(overrides	any	text
specified	by	Title).

Position			Optional	Variant.	Specifies	whether	the	caption	will	be	inserted	above
or	below	the	Selection	or	Range	object.	WdCaptionPosition

				Can	be	either	of	the	following	WdCaptionPosition	constants.

				wdCaptionPositionAbove



			wdCaptionPositionBelow.



Example

This	example	inserts	a	caption	below	the	first	table	in	the	active	document.

ActiveDocument.Tables(1).Range.InsertCaption	_

				Label:=wdCaptionTable,	_

				Position:=wdCaptionPositionBelow

This	example	inserts	a	Figure	caption	at	the	insertion	point.

Selection.Collapse	Direction:=wdCollapseStart

Selection.InsertCaption	Label:="Figure",	_

				Title:=":	Sales	Results",	Position:=wdCaptionPositionBelow



InsertCells	Method
							

Adds	cells	to	an	existing	table.	The	number	of	cells	inserted	is	equal	to	the
number	of	cells	in	the	selection.

Note			You	can	also	insert	cells	by	using	the	Add	method	of	the	Cells	object.

expression.InsertCells(ShiftCells)

expression			Required.	An	expression	that	returns	a	Selection	object.

ShiftCells			Optional	WdInsertCells	.

				Can	be	one	of	the	following	WdInsertCells	constants.

Constant Description

wdInsertCellsEntireColumn Inserts	an	entire	column	to	the	left	of	the
column	that	contains	the	selection.

wdInsertCellsEntireRow Inserts	an	entire	row	above	the	row	that
contains	the	selection.

wdInsertCellsShiftDown Inserts	new	cells	above	the	selected	cells.
wdInsertCellsShiftRight Insert	new	cells	to	the	left	of	the	selected	cells.



Example

This	example	inserts	new	cells	to	the	left	of	the	selected	cells,	and	then	it
surrounds	the	selected	cells	with	a	red,	single-line	border.

If	Selection.Cells.Count	>=	1	Then

				Selection.InsertCells	ShiftCells:=wdInsertCellsShiftRight

				For	Each	aBorder	In	Selection.Borders

								aBorder.LineStyle	=	wdLineStyleSingle

								aBorder.ColorIndex	=	wdRed

				Next	aBorder

End	If



InsertColumns	Method
							

Inserts	columns	to	the	left	of	the	column	that	contains	the	selection.	If	the
selection	isn't	in	a	table,	an	error	occurs.

Note			The	number	of	columns	inserted	is	equal	to	the	number	of	columns
selected.	You	can	also	insert	columns	by	using	the	Add	method	of	the	Columns
object.

expression.InsertColumns

expression			Required.	An	expression	that	returns	a	Selection	object.



Example

This	example	inserts	new	columns	to	the	left	of	the	column	that	contains	the
selection.	The	number	of	columns	inserted	is	equal	to	the	number	of	columns
selected.

If	Selection.Information(wdWithInTable)	=	True	Then

				With	Selection

								.InsertColumns

								.Shading.Texture	=	wdTexture10Percent

				End	With

End	If



InsertColumnsRight	Method
							

Inserts	columns	to	the	right	of	the	current	selection.

expression.InsertColumnsRight

expression			Required.	An	expression	that	returns	a	Selection	object.



Remarks

Microsoft	Word	inserts	as	many	columns	as	there	are	in	the	current	selection.

In	order	to	use	this	method,	the	current	selection	must	be	in	a	table.



Example

This	example	selects	the	second	column	in	the	first	table	and	inserts	a	new
column	to	the	right	of	it.

ActiveDocument.Tables(1).Columns(2).Select

Selection.InsertColumnsRight



Show	All



InsertCrossReference	Method
							

Inserts	a	cross-reference	to	a	heading,	bookmark,	footnote,	or	endnote,	or	to	an
item	for	which	a	caption	label	is	defined	(for	example,	an	equation,	figure,	or
table).

expression.InsertCrossReference(ReferenceType,	ReferenceKind,
ReferenceItem,	InsertAsHyperlink,	IncludePosition)

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

ReferenceType		Required	Variant.	The	type	of	item	for	which	a	cross-reference
is	to	be	inserted.	Can	be	any	WdReferenceType	or	WdCaptionLabelID
constant	or	a	user	defined	caption	label.

WdReferenceType	can	be	one	of	these	WdReferenceType	constants.
wdRefTypeBookmark
wdRefTypeEndnote
wdRefTypeFootnote
wdRefTypeHeading
wdRefTypeNumberedItem
	
WdCaptionLabelID	can	be	one	of	these	WdCaptionLabelID	constants.
wdCaptionEquation
wdCaptionFigure
wdCaptionTable

ReferenceKind		Required	WdReferenceKind.	The	information	to	be	included
in	the	cross-reference.

WdReferenceKind	can	be	one	of	these	WdReferenceKind	constants.
wdContentText



wdEndnoteNumber
wdEndnoteNumberFormatted
wdEntireCaption
wdFootnoteNumber
wdFootnoteNumberFormatted
wdNumberFullContext
wdNumberNoContext
wdNumberRelativeContext
wdOnlyCaptionText
wdOnlyLabelAndNumber
wdPageNumber
wdPosition

ReferenceItem		Required	Variant.	If	ReferenceType	is	wdRefTypeBookmark,
this	argument	specifies	a	bookmark	name.	For	all	other	ReferenceType	values,
this	argument	specifies	the	item	number	or	name	in	the	Reference	type	box	in
the	Cross-reference	dialog	box.	Use	the	GetCrossReferenceItems	method	to
return	a	list	of	item	names	that	can	be	used	with	this	argument.

InsertAsHyperlink		Optional	Variant.	True	to	insert	the	cross-reference	as	a
hyperlink	to	the	referenced	item.

IncludePosition		Optional	Variant.	True	to	insert	"above"	or	"below,"
depending	on	the	location	of	the	reference	item	in	relation	to	the	cross-reference.



Remarks

If	you	specify	wdPageNumber	for	the	value	of	ReferenceKind,	you	may	need
to	repaginate	the	document	in	order	to	see	the	correct	cross-reference
information.



Example

This	example	inserts	at	the	beginning	of	the	active	document	a	cross-reference	to
the	page	that	includes	the	first	bookmark	in	the	document.

Set	myRange	=	ActiveDocument.Range(Start:=0,	End:=0)

myBookmarks	=	ActiveDocument	_

				.GetCrossReferenceItems(wdRefTypeBookmark)

With	myRange

				.InsertBefore	"Page	"

				.Collapse	Direction:=wdCollapseEnd

				.InsertCrossReference	ReferenceType:=wdRefTypeBookmark,	_

								ReferenceKind:=wdPageNumber,	ReferenceItem:=myBookmarks(1)

End	With

This	example	inserts	a	sentence	that	contains	two	cross-references:	one	cross-
reference	to	heading	text,	and	another	one	to	the	page	where	the	heading	text
appears.

With	Selection

				.Collapse	Direction:=wdCollapseStart

				.InsertBefore	"For	more	information,	see	"

				.Collapse	Direction:=wdCollapseEnd

				.InsertCrossReference	ReferenceType:=wdRefTypeHeading,	_

								ReferenceKind:=wdContentText,	ReferenceItem:=1

				.InsertAfter	"	on	page	"

				.Collapse	Direction:=wdCollapseEnd

				.InsertCrossReference	ReferenceType:=wdRefTypeHeading,	_

								ReferenceKind:=wdPageNumber,	ReferenceItem:=1

				.InsertAfter	"."

End	With



InsertDatabase	Method
							

Retrieves	data	from	a	data	source	(for	example,	a	separate	Word	document,	a
Microsoft	Excel	worksheet,	or	a	Microsoft	Access	database)	and	inserts	the	data
as	a	table	in	place	of	the	specified	range.

expression.InsertDatabase(Format,	Style,	LinkToSource,	Connection,
SQLStatement,	SQLStatement1,	PasswordDocument,	PasswordTemplate,
WritePasswordDocument,	WritePasswordTemplate,	DataSource,	From,	To,
IncludeFields)

expression			Required.	An	expression	that	returns	a	Range	object.

Format			Optional	Variant.	A	format	listed	in	the	Formats	box	in	the	Table
AutoFormat	dialog	box	(Table	menu).	Can	be	any	of	the	WdTableFormat
constants.	A	border	is	applied	to	the	cells	in	the	table	by	default.

Style			Optional	Variant.	The	attributes	of	the	AutoFormat	specified	by	Format
that	are	applied	to	the	table.	Use	the	sum	of	any	combination	of	the	following
values:

Value Meaning
0	(zero) None
1 Borders
2 Shading
4 Font
8 Color
16 Auto	Fit
32 Heading	Rows
64 Last	Row
128 First	Column
256 Last	Column



LinkToSource			Optional	Variant.	True	to	establish	a	link	between	the	new
table	and	the	data	source.

Connection			Optional	Variant.	A	range	within	which	to	perform	the	query
specified	by	SQLStatement.	How	you	specify	the	range	depends	on	how	data	is
retrieved.	For	example:

When	retrieving	data	through	ODBC,	you	specify	a	connection	string.
When	retrieving	data	from	Microsoft	Excel	by	using	dynamic	data
exchange	(DDE),	you	specify	a	named	range	or	"Entire	Spreadsheet."
When	retrieving	data	from	Microsoft	Access,	you	specify	the	word	"Table"
or	"Query"	followed	by	the	name	of	a	table	or	query.

SQLStatement			Optional	String.	An	optional	query	string	that	retrieves	a	subset
of	the	data	in	a	primary	data	source	to	be	inserted	into	the	document.

SQLStatement1			Optional	String.	If	the	query	string	is	longer	than	255
characters,	SQLStatement	denotes	the	first	portion	of	the	string	and
SQLStatement1	denotes	the	second	portion.

PasswordDocument			Optional	Variant.	The	password	(if	any)	required	to	open
the	data	source.

PasswordTemplate			Optional	Variant.	If	the	data	source	is	a	Word	document,
this	argument	is	the	password	(if	any)	required	to	open	the	attached	template.

WritePasswordDocument			Optional	Variant.	The	password	required	to	save
changes	to	the	document.

WritePasswordTemplate			Optional	Variant.	The	password	required	to	save
changes	to	the	template.

DataSource			Optional	Variant.	The	path	and	file	name	of	the	data	source.

From			Optional	Variant.	The	number	of	the	first	data	record	in	the	range	of
records	to	be	inserted.

To			Optional	Variant.	The	number	of	the	last	data	record	in	the	range	of	records
to	be	inserted.



IncludeFields			Optional	Variant.	True	to	include	field	names	from	the	data
source	in	the	first	row	of	the	new	table.



Example

This	example	inserts	a	Microsoft	Excel	spreadsheet	named	"Data.xls"	after	the
selection	.	The	Style	value	(191)	is	a	combination	of	the	numbers	1,	2,	4,	8,	16,
32,	and	128.

With	Selection

				.Collapse	Direction:=wdCollapseEnd

				.Range.InsertDatabase	_

								Format:=wdTableFormatSimple2,	Style:=191,	_

								LinkToSource:=False,	Connection:="Entire	Spreadsheet",	_

								DataSource:="C:\MSOffice\Excel\Data.xls"

End	With



InsertDateTime	Method
							

Inserts	the	current	date	or	time,	or	both,	either	as	text	or	as	a	TIME	field.

expression.InsertDateTime(DateTimeFormat,	InsertAsField,
InsertAsFullWidth,	DateLanguage,	CalendarType)

expression			Required.	An	expression	that	returns	a	Range	or	Selection	object.

DateTimeFormat			Optional	Variant.	The	format	to	be	used	for	displaying	the
date	or	time,	or	both.	If	this	argument	is	omitted,	Microsoft	Word	uses	the	short-
date	style	from	the	Windows	Control	Panel	(Regional	Settings	icon).

InsertAsField			Optional	Variant.	True	to	insert	the	specified	information	as	a
TIME	field.	The	default	value	is	True.

InsertAsFullWidth			Optional	Variant.	True	to	insert	the	specified	information
as	double-byte	digits.	This	argument	may	not	be	available	to	you,	depending	on
the	language	support	(U.S.	English,	for	example)	that	you’ve	selected	or
installed.

DateLanguage			Optional	Variant.	Sets	the	language	in	which	to	display	the
date	or	time.	Can	be	either	of	the	following	WdDateLanguage	constants:
wdDateLanguageBidi	or	wdDateLanguageLatin.	This	argument	may	not	be
available	to	you,	depending	on	the	language	support	(U.S.	English,	for	example)
that	you’ve	selected	or	installed.

CalendarType			Optional	Variant.	Sets	the	calendar	type	to	use	when	displaying
the	date	or	time.	Can	be	either	of	the	following	WdCalendarTypeBi	constants:
wdCalendarTypeBidi	or	wdCalendarTypeGregorian.	This	argument	may	not
be	available	to	you,	depending	on	the	language	support	(U.S.	English,	for
example)	that	you’ve	selected	or	installed.



Example

This	example	inserts	a	TIME	field	for	the	current	date.	A	possible	result	might
be	"November	18,	1999."

Selection.InsertDateTime	DateTimeFormat:="MMMM	dd,	yyyy",	_

				InsertAsField:=True

This	example	inserts	the	current	date	at	the	end	of	the	active	document.	A
possible	result	might	be	"01/12/99."

With	ActiveDocument.Content

				.Collapse	Direction:=wdCollapseEnd

				.InsertDateTime	DateTimeFormat:="MM/dd/yy",	_

								InsertAsField:=False

End	With

This	example	inserts	a	TIME	field	for	the	current	date	in	the	footer	for	the	active
document.

ActiveDocument.Sections(1).Footers(wdHeaderFooterPrimary).Range	_

				.InsertDateTime	DateTimeFormat:="MMMM	dd,	yyyy",	_

				InsertAsField:=True



InsertFile	Method
							

Inserts	all	or	part	of	the	specified	file.

expression.InsertFile(FileName,	Range,	ConfirmConversions,	Link,
Attachment)

expression			Required.	An	expression	that	returns	a	Range	or	Selection	object.

FileName			Required	String.	The	path	and	file	name	of	the	file	to	be	inserted.	If
you	don't	specify	a	path,	Word	assumes	the	file	is	in	the	current	folder.

Range			Optional	Variant.	If	the	specified	file	is	a	Word	document,	this
parameter	refers	to	a	bookmark.	If	the	file	is	another	type	(for	example,	a
Microsoft	Excel	worksheet),	this	parameter	refers	to	a	named	range	or	a	cell
range	(for	example,	R1C1:R3C4).

ConfirmConversions			Optional	Variant.	True	to	have	Word	prompt	you	to
confirm	conversion	when	inserting	files	in	formats	other	than	the	Word
Document	format.

Link			Optional	Variant.	True	to	insert	the	file	by	using	an	INCLUDETEXT
field.

Attachment			Optional	Variant.	True	to	insert	the	file	as	an	attachment	to	an	e-
mail	message.



Example

This	example	uses	an	INCLUDETEXT	field	to	insert	the	TEST.DOC	file	at	the
insertion	point.

Selection.Collapse	Direction:=wdCollapseEnd

Selection.InsertFile	FileName:="C:\TEST.DOC",	Link:=True

This	example	creates	a	new	document	and	then	inserts	the	contents	of	each	text
file	in	the	C:\TMP	folder	into	the	new	document.

Documents.Add

ChDir	"C:\TMP"

myName	=	Dir("*.TXT")

While	myName	<>	""

				With	Selection

								.InsertFile	FileName:=myName,	ConfirmConversions:=False

								.InsertParagraphAfter

								.InsertBreak	Type:=wdSectionBreakNextPage

								.Collapse	Direction:=wdCollapseEnd

				End	With

				myName	=	Dir()

Wend



InsertFormula	Method
							

Inserts	an	=	(Formula)	field	that	contains	a	formula	at	the	selection.

Note			The	formula	replaces	the	selection,	if	the	selection	isn't	collapsed.

expression.Formula(Formula,	NumberFormat)

expression			Required.	An	expression	that	returns	a	Selection	object.

Formula			Optional	Variant.	The	mathematical	formula	you	want	the	=
(Formula)	field	to	evaluate.	Spreadsheet-type	references	to	table	cells	are	valid.
For	example,	"=SUM(A4:C4)"	specifies	the	first	three	values	in	the	fourth	row.
For	more	information	about	the	=	(Formula)	field,	see	Field	codes:=	(Formula)
field.

NumberFormat			Optional	Variant.	A	format	for	the	result	of	the	=	(Formula)
field.	For	information	about	the	types	of	formats	you	can	apply,	see	Numeric
Picture	(\#)	field	switch.

mk:@MSITStore:wdmain10.chm::/html/worefformula.htm
mk:@MSITStore:wdmain10.chm::/html/worefnumericpicture.htm


Remarks

If	you're	using	a	spreadsheet	application,	such	as	Microsoft	Excel,	embedding	all
or	part	of	a	worksheet	in	a	document	is	often	easier	than	using	the	=	(Formula)
field	in	a	table.

The	Formula	argument	is	optional	only	if	the	selection	is	in	a	cell	and	there's	at
least	one	cell	that	contains	a	value	above	or	to	the	left	of	the	cell	that	contains
the	insertion	point.	If	the	cells	above	the	insertion	point	contain	values,	the
inserted	field	is	{=SUM(ABOVE)};	if	the	cells	to	the	left	of	the	insertion	point
contain	values,	the	inserted	field	is	{=SUM(LEFT)}.	If	both	the	cells	above	the
insertion	point	and	the	cells	to	the	left	of	it	contain	values,	Microsoft	Word	uses
the	following	rules	to	determine	which	SUM	function	to	insert:

If	the	cell	immediately	above	the	insertion	point	contains	a	value,	Word
inserts	{=SUM(ABOVE)}.
If	the	cell	immediately	above	the	insertion	point	doesn't	contain	a	value	but
the	cell	immediately	to	the	left	of	the	insertion	point	does,	Word	inserts
{=SUM(LEFT)}.
If	neither	cell	immediately	above	the	insertion	point	nor	the	cell
immediately	below	it	contains	a	value,	Word	inserts	{=SUM(ABOVE)}.
If	you	don't	specify	Formula	and	all	the	cells	above	and	to	the	left	of	the
insertion	point	are	empty,	using	the	=	(Formula)	field	causes	an	error.



Example

This	example	creates	a	table	with	three	rows	and	three	columns	at	the	beginning
of	the	active	document	and	then	calculates	the	average	of	all	the	numbers	in	the
first	column.

Set	MyRange	=	ActiveDocument.Range(0,	0)

Set	myTable	=	ActiveDocument.Tables.Add(MyRange,	3,	3)

With	myTable

				.Cell(1,	1).Range.InsertAfter	"100"

				.Cell(2,	1).Range.InsertAfter	"50"

				.Cell(3,	1).Select

End	With

Selection.InsertFormula	Formula:="=Average(Above)"

The	example	inserts	a	formula	field	that's	subtracted	from	a	value	represented	by
the	bookmark	named	"GrossSales."	The	result	is	formatted	with	a	dollar	sign.

Selection.Collapse	Direction:=wdCollapseStart

Selection.InsertFormula	Formula:=	"=GrossSales-45,000.00",	_

				NumberFormat:="$#,##0.00"



InsertParagraph	Method
							

Replaces	the	specified	range	or	selection	with	a	new	paragraph.

Note			After	this	method	has	been	used,	the	range	or	selection	is	the	new
paragraph.

expression.InsertParagraph

expression			Required.	An	expression	that	returns	a	Range	or	Selection	object.



Remarks

If	you	don't	want	to	replace	the	range	or	selection,	use	the	Collapse	method
before	using	this	method.	The	InsertParagraphAfter	method	inserts	a	new
paragraph	following	a	Range	or	Selection	object.



Example

This	example	inserts	a	new	paragraph	at	the	beginning	of	the	active	document.

Set	myRange	=	ActiveDocument.Range(0,	0)

With	myRange

				.InsertParagraph

				.InsertBefore	"Dear	Sirs,"

End	With

This	example	collapses	the	selection	and	then	inserts	a	paragraph	mark	at	the
insertion	point.

With	Selection

				.Collapse	Direction:=wdCollapseStart

				.InsertParagraph

				.Collapse	Direction:=wdCollapseEnd

End	With



InsertParagraphAfter	Method
							

Inserts	a	paragraph	mark	after	a	range	or	selection.

Note			After	this	method	is	applied,	the	range	or	selection	expands	to	include	the
new	paragraph.

expression.InsertParagraphAfter

expression			Required.	An	expression	that	returns	a	Range	or	Selection	object.



Example

This	example	inserts	a	new	paragraph	after	the	current	paragraph.

With	Selection

				.Move	Unit:=wdParagraph

				.InsertParagraphAfter

				.Collapse	Direction:=wdCollapseStart

End	With

This	example	inserts	text	as	a	new	paragraph	at	the	beginning	of	the	active
document.

Set	myRange	=	ActiveDocument.Range(0,	0)

With	myRange

				.InsertBefore	"Title"

				.ParagraphFormat.Alignment	=	wdAlignParagraphCenter

				.InsertParagraphAfter

End	With

This	example	inserts	a	paragraph	at	the	end	of	the	active	document.	The	Content
property	returns	a	Range	object.

ActiveDocument.Content.InsertParagraphAfter



InsertParagraphBefore	Method
							

Inserts	a	new	paragraph	before	the	specified	selection	or	range.

Note			After	this	method	is	applied,	the	range	or	selection	expands	to	include	the
new	paragraph.

expression.InsertParagraphBefore

expression			Required.	An	expression	that	returns	a	Selection	or	Range	object.



Example

This	example	inserts	a	new	paragraph	at	the	beginning	of	the	active	document.

ActiveDocument.Range(Start:=0,	End:=0).InsertParagraphBefore

This	example	inserts	the	text	"Hello"	as	a	new	paragraph	before	the	selection.

With	Selection

				.InsertParagraphBefore

				.InsertBefore	"Hello"

End	With



InsertRows	Method
							

Inserts	the	specified	number	of	new	rows	above	the	row	that	contains	the
selection.	If	the	selection	isn't	in	a	table,	an	error	occurs.

Note			You	can	also	insert	rows	by	using	the	Add	method	of	the	Rows	object.

expression.InsertRows(NumRows)

expression			Required.	An	expression	that	returns	a	Selection	object.

NumRows			Optional	Variant.	The	number	of	rows	to	be	added.



Example

This	example	inserts	two	new	rows	above	the	row	that	contains	the	selection,
and	then	it	removes	the	borders	from	the	new	rows.

If	Selection.Information(wdWithInTable)	=	True	Then

				Selection.InsertRows	NumRows:=2

				Selection.Borders.Enable	=False

End	If



InsertRowsAbove	Method
							

Inserts	rows	above	the	current	selection.

expression.InsertRowsAbove

expression			Required.	An	expression	that	returns	a	Selection	object.



Remarks

Microsoft	Word	inserts	as	many	rows	as	there	are	in	the	current	selection.

In	order	to	use	this	method,	the	current	selection	must	be	in	a	table.



Example

This	example	selects	the	second	row	in	the	first	table	and	inserts	a	new	row
above	it.

ActiveDocument.Tables(1).Rows(2).Select

Selection.InsertRowsAbove



InsertRowsBelow	Method
							

Inserts	rows	below	the	current	selection.

expression.InsertRowsBelow

expression			Required.	An	expression	that	returns	a	Selection	object.



Remarks

Microsoft	Word	inserts	as	many	rows	as	there	are	in	the	current	selection.

In	order	to	use	this	method,	the	current	selection	must	be	in	a	table.



Example

This	example	selects	the	second	row	in	the	first	table	and	inserts	a	new	row
below	it.

ActiveDocument.Tables(1).Rows(2).Select

Selection.InsertRowsBelow



InsertStyleSeparator	Method
							

Inserts	a	special	hidden	paragraph	mark	that	allows	Microsoft	Word	to	join
paragraphs	formatted	using	different	paragraph	styles,	so	lead-in	headings	can	be
inserted	into	a	table	of	contents.

expression.InsertStyleSeparator

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.



Example

This	example	inserts	a	style	separator	after	every	paragraph	formatted	with	the
built-in	"Heading	4"	style.

Note		The	paragraph	count	is	inside	the	Do...Loop	because	when	Word	inserts
the	style	separator,	the	two	paragraphs	become	one	paragraph,	so	the	paragraph
count	for	the	document	changes	as	the	procedure	runs.

Sub	InlineHeading()

				Dim	intCount	As	Integer

				Dim	intParaCount	As	Integer

				intCount	=	1

				With	ThisDocument

								Do

												'Look	for	all	paragraphs	formatted	with	"Heading	4"	style

												If	.Paragraphs(Index:=intCount).Style	=	"Heading	4"	Then

																.Paragraphs(Index:=intCount).Range.Select

																'Insert	a	style	separator	if	paragraph

																'is	formatted	with	a	"Heading	4"	style

																Selection.InsertStyleSeparator

												End	If

												intCount	=	intCount	+	1

												intParaCount	=	.Paragraphs.Count

								Loop	Until	intCount	=	intParaCount

				End	With

End	Sub



InsertSymbol	Method
							

Inserts	a	symbol	in	place	of	the	specified	range	or	selection.

Note			If	you	don't	want	to	replace	the	range	or	selection,	use	the	Collapse
method	before	you	use	this	method.

expression.InsertSymbol(CharacterNumber,	Font,	Unicode,	Bias)

expression			Required.	An	expression	that	returns	a	Range	or	Selection	object.

CharacterNumber			Required	Long.	The	character	number	for	the	specified
symbol.	This	value	will	always	be	the	sum	of	31	and	the	number	that
corresponds	to	the	position	of	the	symbol	in	the	table	of	symbols	(counting	from
left	to	right).	For	example,	to	specify	a	delta	character	at	position	37	in	the	table
of	symbols	in	the	Symbol	font,	set	CharacterNumber	to	68.

Font			Optional	Variant.	The	name	of	the	font	that	contains	the	symbol.

Unicode			Optional	Variant.	True	to	insert	the	unicode	character	specified	by
CharacterNumber;	False	to	insert	the	ANSI	character	specified	by
CharacterNumber.	The	default	value	is	False.

Bias			Optional	Variant.	Sets	the	font	bias	for	symbols.	This	argument	is	useful
for	setting	the	correct	font	bias	for	East	Asian	characters.	Can	be	one	of	the
following	WdFontBias	constants:	wdFontBiasDefault,	wdFontBiasDontCare,
or	wdFontBiasFareast.	This	argument	may	not	be	available	to	you,	depending
on	the	language	support	(U.S.	English,	for	example)	that	you’ve	selected	or
installed.



Example

This	example	inserts	a	double-headed	arrow	at	the	insertion	point.

With	Selection

				.Collapse	Direction:=wdCollapseStart

				.InsertSymbol	CharacterNumber:=171,	_

								Font:="Symbol",	Unicode:=False

End	With

This	example	inserts	a	bullet	and	a	tab	stop	at	the	beginning	of	the	first
paragraph	in	the	selection.

Set	myRange	=	Selection.Paragraphs(1).Range

With	myRange

				.Collapse	Direction:=wdCollapseStart

				.InsertSymbol	CharacterNumber:=183,	_

								Font:="Symbol",	Unicode:=False

				.MoveStart	Unit:=wdCharacter,	Count:=1

				.InsertAfter	vbTab

End	With



Show	All



InStory	Method
							

True	if	the	selection	or	range	to	which	this	method	is	applied	is	in	the	same	story
as	the	range	specified	by	the	Range	argument.

Note			A	range	can	belong	to	only	one	story.

expression.InStory(Range)

expression			Required.	An	expression	that	returns	a	Range	or	Selection	object.

Range			Required	Range	object.	The	Range	object	whose	story	is	compared
with	the	story	that	contains	expression.



Example

This	example	determines	whether	the	selection	is	in	the	same	story	as	the	first
paragraph	in	the	active	document.	The	message	box	displays	"False"	because	the
selection	is	in	the	primary	header	story	and	the	first	paragraph	is	in	the	main	text
story.

With	ActiveDocument.ActiveWindow.View

				.Type	=	wdPrintView

				.SeekView	=	wdSeekCurrentPageHeader

End	With

same	=	Selection.InStory(ActiveDocument.Paragraphs(1).Range)

MsgBox	same

This	example	determines	whether	Range1	and	Range2	are	in	the	same	story.	If
they	are,	bold	formatting	is	applied	to	Range1.

Set	Range1	=	Selection.Words(1)

Set	Range2	=	ActiveDocument.Range(Start:=20,	End:=100)

If	Range1.InStory(Range:=Range2)	=	True	Then

				Range1.Font.Bold	=	True

End	If



IsEqual	Method
							

True	if	the	selection	or	range	to	which	this	method	is	applied	is	equal	to	the
range	specified	by	the	Range	argument.	This	method	compares	the	starting	and
ending	character	positions,	as	well	as	the	story	type.	If	all	three	of	these	items
are	the	same	for	both	objects,	the	objects	are	equal.

expression.IsEqual(Range)

expression			Required.	An	expression	that	returns	a	Range	or	Selection	object.

Range			Required	Range	object.	The	Range	object	that's	compared	with
expression.



Example

This	example	compares	the	selection	with	the	second	paragraph	in	the	active
document.	If	the	selection	isn't	equal	to	the	second	paragraph,	the	second
paragraph	is	selected.

If	Selection.IsEqual(ActiveDocument	_

								.Paragraphs(2).Range)	=	False	Then

				ActiveDocument.Paragraphs(2).Range.Select

End	If

This	example	compares	Range1	with	Range2	to	determine	whether	they're	equal.
If	the	two	ranges	are	equal,	the	content	of	Range1	is	deleted.

Set	Range1	=	Selection.Words(1)

Set	Range2	=	ActiveDocument.Words(3)

If	Range1.IsEqual(Range:=Range2)	=	True	Then

				Range1.Delete

End	If



Show	All



ItalicRun	Method
							

Adds	the	italic	character	format	to	or	removes	it	from	the	current	run.	If	the	run
contains	a	mix	of	italic	and	non-italic	text,	this	method	adds	the	italic	character
format	to	the	entire	run.

expression.ItalicRun

expression			Required.	An	expression	that	returns	a	Selection	object.



Remarks

For	more	information	on	using	Microsoft	Word	with	right-to-left	languages,	see
Word	features	for	right-to-left	languages.

mk:@MSITStore:wdmain10.chm::/html/wdrefFeaturesAvailableInWordWhenBidirectionalLanguagesAreEnabled.htm


Example

This	example	toggles	the	italic	formatting	for	the	current	selection.

Selection.ItalicRun



Show	All



Item	Method
							

Item	method	as	it	applies	to	the	Borders	object.

Returns	a	border	in	a	range	or	selection.

expression.Item(Index)

expression			Required.	An	expression	that	returns	a	Borders	object.

Index		Required	WdBorderType.	The	border	to	be	returned.

WdBorderType	can	be	one	of	these	WdBorderType	constants.
wdBorderBottom
wdBorderDiagonalDown
wdBorderDiagonalUp
wdBorderHorizontal
wdBorderLeft
wdBorderRight
wdBorderTop
wdBorderVertical

Item	method	as	it	applies	to	the	Dialogs	object.

Returns	a	dialog	in	Microsoft	Word.

expression.Item(Index)

expression			Required.	An	expression	that	returns	a	Dialogs	object.

Index		Required	WdWordDialog.	A	constant	that	specifies	the	dialog.

WdWordDialog	can	be	one	of	these	WdWordDialog	constants.



wdDialogMailMergeInsertSet
wdDialogConnect
wdDialogConsistencyChecker
wdDialogControlRun
wdDialogConvertObject
wdDialogCopyFile
wdDialogCreateAutoText
wdDialogDocumentStatistics
wdDialogDrawAlign
wdDialogDrawSnapToGrid
wdDialogEditAutoText
wdDialogEditCreatePublisher
wdDialogEditFind
wdDialogEditFrame
wdDialogEditGoTo
wdDialogEditGoToOld
wdDialogEditLinks
wdDialogEditObject
wdDialogEditPasteSpecial
wdDialogEditPublishOptions
wdDialogEditReplace
wdDialogEditStyle
wdDialogEditSubscribeOptions
wdDialogEditSubscribeTo
wdDialogEditTOACategory
wdDialogEmailOptions
wdDialogFileDocumentLayout
wdDialogFileFind
wdDialogFileMacCustomPageSetupGX
wdDialogFileMacPageSetup
wdDialogFileMacPageSetupGX



wdDialogFileNew
wdDialogFileOpen
wdDialogFilePageSetup
wdDialogFilePrint
wdDialogFilePrintOneCopy
wdDialogFilePrintSetup
wdDialogFileRoutingSlip
wdDialogFileSaveAs
wdDialogFileSaveVersion
wdDialogFileSummaryInfo
wdDialogFileVersions
wdDialogFitText
wdDialogFontSubstitution
wdDialogFormatAddrFonts
wdDialogFormatBordersAndShading
wdDialogFormatBulletsAndNumbering
wdDialogFormatCallout
wdDialogFormatChangeCase
wdDialogFormatColumns
wdDialogFormatDefineStyleBorders
wdDialogFormatDefineStyleFont
wdDialogFormatDefineStyleFrame
wdDialogFormatDefineStyleLang
wdDialogFormatDefineStylePara
wdDialogFormatDefineStyleTabs
wdDialogFormatDrawingObject
wdDialogFormatDropCap
wdDialogFormatEncloseCharacters
wdDialogFormatFont
wdDialogFormatFrame
wdDialogFormatPageNumber



wdDialogFormatParagraph
wdDialogFormatPicture
wdDialogFormatRetAddrFonts
wdDialogFormatSectionLayout
wdDialogFormatStyle
wdDialogFormatStyleGallery
wdDialogFormatStylesCustom
wdDialogFormatTabs
wdDialogFormatTheme
wdDialogFormFieldHelp
wdDialogFormFieldOptions
wdDialogFrameSetProperties
wdDialogHelpAbout
wdDialogHelpWordPerfectHelp
wdDialogHelpWordPerfectHelpOptions
wdDialogHorizontalInVertical
wdDialogIMESetDefault
wdDialogInsertAddCaption
wdDialogInsertAutoCaption
wdDialogInsertBookmark
wdDialogInsertBreak
wdDialogInsertCaption
wdDialogInsertCaptionNumbering
wdDialogInsertCrossReference
wdDialogInsertDatabase
wdDialogInsertDateTime
wdDialogInsertField
wdDialogInsertFile
wdDialogInsertFootnote
wdDialogInsertFormField
wdDialogInsertHyperlink



wdDialogInsertIndex
wdDialogInsertIndexAndTables
wdDialogInsertMergeField
wdDialogInsertNumber
wdDialogInsertObject
wdDialogInsertPageNumbers
wdDialogInsertPicture
wdDialogInsertSubdocument
wdDialogInsertSymbol
wdDialogInsertTableOfAuthorities
wdDialogInsertTableOfContents
wdDialogInsertTableOfFigures
wdDialogLetterWizard
wdDialogListCommands
wdDialogMailMerge
wdDialogMailMergeCheck
wdDialogMailMergeCreateDataSource
wdDialogMailMergeCreateHeaderSource
wdDialogMailMergeFieldMapping
wdDialogMailMergeFindRecord
wdDialogMailMergeHelper
wdDialogMailMergeInsertAddressBlock
wdDialogMailMergeInsertAsk
wdDialogMailMergeInsertFields
wdDialogMailMergeInsertFillIn
wdDialogMailMergeInsertGreetingLine
wdDialogMailMergeInsertIf
wdDialogMailMergeInsertNextIf
wdDialogMailMergeInsertSkipIf
wdDialogMailMergeOpenDataSource
wdDialogMailMergeOpenHeaderSource



wdDialogMailMergeQueryOptions
wdDialogMailMergeRecipients
wdDialogMailMergeUseAddressBook
wdDialogMarkCitation
wdDialogMarkIndexEntry
wdDialogMarkTableOfContentsEntry
wdDialogNewToolbar
wdDialogNoteOptions
wdDialogOrganizer
wdDialogPhoneticGuide
wdDialogReviewAfmtRevisions
wdDialogSearch
wdDialogTableAutoFormat
wdDialogTableCellOptions
wdDialogTableColumnWidth
wdDialogTableDeleteCells
wdDialogTableFormatCell
wdDialogTableFormula
wdDialogTableInsertCells
wdDialogTableInsertRow
wdDialogTableInsertTable
wdDialogTableOfCaptionsOptions
wdDialogTableOfContentsOptions
wdDialogTableProperties
wdDialogTableRowHeight
wdDialogTableSort
wdDialogTableSplitCells
wdDialogTableTableOptions
wdDialogTableToText
wdDialogTableWrapping
wdDialogTCSCTranslator



wdDialogTextToTable
wdDialogToolsAcceptRejectChanges
wdDialogToolsAdvancedSettings
wdDialogToolsAutoCorrect
wdDialogToolsAutoCorrectExceptions
wdDialogToolsAutoManager
wdDialogToolsAutoSummarize
wdDialogToolsBulletsNumbers
wdDialogToolsCompareDocuments
wdDialogToolsCreateDirectory
wdDialogToolsCreateEnvelope
wdDialogToolsCreateLabels
wdDialogToolsCustomize
wdDialogToolsCustomizeKeyboard
wdDialogToolsCustomizeMenuBar
wdDialogToolsCustomizeMenus
wdDialogToolsDictionary
wdDialogToolsEnvelopesAndLabels
wdDialogToolsHangulHanjaConversion
wdDialogToolsHighlightChanges
wdDialogToolsHyphenation
wdDialogToolsLanguage
wdDialogToolsMacro
wdDialogToolsMacroRecord
wdDialogToolsManageFields
wdDialogToolsMergeDocuments
wdDialogToolsOptions
wdDialogToolsOptionsAutoFormat
wdDialogToolsOptionsAutoFormatAsYouType
wdDialogToolsOptionsBidi
wdDialogToolsOptionsCompatibility



wdDialogToolsOptionsEdit
wdDialogToolsOptionsFileLocations
wdDialogToolsOptionsFuzzy
wdDialogToolsOptionsGeneral
wdDialogToolsOptionsPrint
wdDialogToolsOptionsSave
wdDialogToolsOptionsSpellingAndGrammar
wdDialogToolsOptionsTrackChanges
wdDialogToolsOptionsTypography
wdDialogToolsOptionsUserInfo
wdDialogToolsOptionsView
wdDialogToolsProtectDocument
wdDialogToolsProtectSection
wdDialogToolsRevisions
wdDialogToolsSpellingAndGrammar
wdDialogToolsTemplates
wdDialogToolsThesaurus
wdDialogToolsUnprotectDocument
wdDialogToolsWordCount
wdDialogTwoLinesInOne
wdDialogUpdateTOC
wdDialogViewZoom
wdDialogWebOptions
wdDialogWindowActivate

Item	method	as	it	applies	to	the	HeadersFooters	object.

Returns	a	header	or	footer	in	a	range	or	selection.

expression.Item(Index)

expression			Required.	An	expression	that	returns	a	HeadersFooters	object.



Index		Required	WdHeaderFooterIndex.	A	constant	that	specifies	the	header
or	footer	in	the	selection.

WdHeaderFooterIndex	can	be	one	of	these	WdHeaderFooterIndex	constants.
wdHeaderFooterEvenPages
wdHeaderFooterFirstPage
wdHeaderFooterPrimary

Item	method	as	it	applies	to	the	ListGalleries	object.

Returns	the	type	of	list	(bulleted,	numbered	or	outline)	from	the	list	template
gallery.

expression.Item(Index)

expression			Required.	An	expression	that	returns	a	ListGalleries	object.

Index		Required	WdListGalleryType.		A	constant	that	specifies	the	type	of	list.

WdListGalleryType	can	be	one	of	these	WdListGalleryType	constants.
wdBulletGallery
wdNumberGallery
wdOutlineNumberGallery

Item	method	as	it	applies	to	the	MappedDataFields	object.

Returns	a	specified	mapped	data	field.

expression.Item(Index)

expression			Required.	An	expression	that	returns	a	MappedDataFields	object.

Index		Required	WdMappedDataFields.	The	specified	mapped	data	field.

WdMappedDataFields	can	be	one	of	these	WdMappedDataFields	constants.
wdAddress1
wdAddress2



wdBusinessFax
wdBusinessPhone
wdCity
wdCompany
wdCountryRegion
wdCoutesyTitle
wdEmailAddress
wdFirstName
wdHomeFax
wdHomePhone
wdJobTitle
wdLastName
wdMiddleName
wdNickname
wdPostalCode
wdSpouseCourtesyTitle
wdSpouseFirstName
wdSpouseLastName
wdSpouseMiddleName
wdSpouseNickname
wdState
wdSuffix
wdUniqueIdentifier
wdWebPageURL

Item	method	as	it	applies	to	the	StoryRanges	object.

Returns	a	single	story	of	a	range	or	selection	as	a	Range	object.

expression.Item(Index)

expression			Required.	An	expression	that	returns	a	StoryRanges	object.



Index		Required	WdStoryType.	The	specified	story	type.

WdStoryType	can	be	one	of	these	WdStoryType	constants.
wdCommentsStory
wdEndnotesStory
wdEvenPagesFooterStory
wdEvenPagesHeaderStory
wdFirstPageFooterStory
wdFirstPageHeaderStory
wdFootnotesStory
wdMainTextStory
wdPrimaryFooterStory
wdPrimaryHeaderStory
wdTextFrameStory

Item	method	as	it	applies	to	the	TaskPanes	object.

Returns	the	specified	task	pane	as	a	TaskPane	object.

expression.Item(Index)

expression			Required.	An	expression	that	returns	a	TaskPanes	object.

Index		Required	WdTaskPanes.	The	specified	task	pane.

WdTaskPanes	can	be	one	of	these	WdTaskPanes	constants.
wdTaskPaneFormatting
wdTaskPaneInspector
wdTaskPaneMailMerge
wdTaskPaneSearch
wdTaskPaneTranslate

Item	method	as	it	applies	to	the	Zooms	object.

Returns	the	specified	Zoom	object.



expression.Item(Index)

expression			Required.	An	expression	that	returns	a	Zooms	object.

Index		Required	WdViewType.	The	specified	zoom	type.

WdViewType	can	be	one	of	these	WdViewType	constants.
wdMasterView
wdNormalView
wdOutlineView
wdPrintPreview
wdPrintView
wdWebView
Item	method	as	it	applies	to	all	other	objects	in	the	Applies	To	list.

Returns	an	individual	object	in	a	collection.

expression.Item(Index)

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the	above
list.

Index		Required	Variant	or	Long.	The	individual	object	to	be	returned.

For	the	following	objects,	Index	can	be	a	Variant	indicating	the	ordinal	position
or	a	string	representing	the	name	of	the	individual	object.

AddIns
AutoCaptions
AutoCorrectEntries
AutoTextEntries
Bookmarks
CanvasShapes
CaptionLabels
CustomLabels
CustomProperties



DiagramNodeChildren
DiagramNodes
Dictionaries
Documents
EmailSignatureEntries
FileConverters
FirstLetterExceptions
FormFields
GroupShapes
HangulAndAlphabetExceptions
HangulHanjaConversionDictionaries
Hyperlinks
Languages
ListEntries
ListTemplates
MailMergeDataFields
MailMergeFieldNames
OtherCorrectionsExceptions
ReadabilityStatistics
Reviewers
ShapeRange
Shapes
ShapeNodes
SmartTags
Styles
StyleSheets
TablesOfAuthoritiesCategories
TabStops
Tasks
Templates
TwoInitialCapsExceptions
Variables
Windows



For	the	following	objects,	Index	can	be	a	Long	indicating	the	ordinal	position	of
the	individual	object.

Adjustments
Cells
Characters
Columns
Comments
Endnotes
Fields
FontNames
Footnotes
Frames
HeadingStyles
HTMLDivisions
Indexes
InlineShapes
KeyBindings
KeysBoundTo
Lists
ListLevels
ListParagraphs
MailMergeFields
PageNumbers
Panes
Paragraphs
ProofreadingErrors
RecentFiles
Revisions
Rows
Sections
Sentences
SpellingSuggestions



Subdocuments
Tables
TablesOfAuthorities
TablesOfContents
TablesOfFigures
TextColumns
Versions
Words



Example

As	it	applies	to	the	Bookmarks	object.

This	example	selects	the	bookmark	named	"temp"	in	the	active	document.

Sub	BookmarkItem()

				If	ActiveDocument.Bookmarks.Exists("temp")	=	True	Then

								ActiveDocument.Bookmarks.Item("temp").Select

				End	If

End	Sub

As	it	applies	to	the	Borders	object.

This	example	inserts	a	double	border	above	the	first	paragraph	in	the	active
document.

Sub	BorderItem()

				ActiveDocument.Paragraphs(1).Borders.Item(wdBorderTop)	_

								.LineStyle	=	wdLineStyleDouble

End	Sub

As	it	applies	to	the	Dialogs	object.

This	example	displays	the	Page	Setup	dialog.

Sub	DialogItem()

				Application.Dialogs.Item(wdDialogFileDocumentLayout).Display

End	Sub

As	it	applies	to	the	Documents	object.

This	example	displays	the	name	of	the	first	document	in	the	Documents
collection.

Sub	DocumentItem()

				If	Documents.Count	>=	1	Then

								MsgBox	Documents.Item(1).Name

				End	If

End	Sub

As	it	applies	to	the	HeadersFooters	object.



This	example	creates	and	formats	a	first	page	header	in	the	active	document.

Sub	HeadFootItem()

				ActiveDocument.PageSetup.DifferentFirstPageHeaderFooter	=	True

				With	ActiveDocument.Sections(1).Headers	_

												.Item(wdHeaderFooterFirstPage).Range

								.InsertBefore	"Sales	Report"

								With	.Font

												.Bold	=	True

												.Size	=	"15"

												.Color	=	wdColorBlue

								End	With

								.Paragraphs.Alignment	=	wdAlignParagraphCenter

				End	With

End	Sub

As	it	applies	to	the	ListEntries	object.

This	example	clears	all	the	items	from	the	drop-down	form	field	named	"Colors"
and	then	adds	two	color	names.	The	Item	method	is	used	to	display	the	first
color	in	the	drop-down	form	field.

Sub	ListEntryItem()

				Dim	d	As	DropDown

				Set	d	=	ActiveDocument.FormFields.Add	_

								(Range:=Selection.Range,	_

								Type:=wdFieldFormDropDown).DropDown

				With	d.ListEntries

								.Add	Name:="Black"

								.Add	Name:="Green"

				End	With

				MsgBox	d.ListEntries.Item(1).Name

End	Sub



Key	Method
							

Returns	a	KeyBinding	object	that	represents	the	specified	custom	key
combination.	If	the	key	combination	doesn't	exist,	this	method	returns	Nothing.

expression.Key(KeyCode,	KeyCode2)

expression			Required.	An	expression	that	returns	a	KeyBindings	or
KeysBoundTo	object.

KeyCode			Required	Long.	A	key	you	specify	by	using	one	of	the	WdKey
constants.

KeyCode2			Optional	Variant.	A	second	key	you	specify	by	using	one	of	the
WdKey	constants.



Remarks

You	can	use	the	BuildKeyCode	method	to	create	the	KeyCode	or	KeyCode2
argument.



Example

This	example	assigns	the	ALT+F4	key	combination	to	the	Arial	font	and	then
displays	the	number	of	items	in	the	KeyBindings	collection.	The	example	then
clears	the	key	combinations	(returns	it	to	its	default	setting)	and	redisplays	the
number	of	items	in	the	KeyBindings	collection.

CustomizationContext	=	NormalTemplate

KeyBindings.Add	KeyCode:=BuildKeyCode(wdKeyAlt,	wdKeyF4),	_

				KeyCategory:=wdKeyCategoryFont,	Command:="Arial"

MsgBox	KeyBindings.Count	&	"	keys	in	KeyBindings	collection"

KeyBindings.Key(KeyCode:=BuildKeyCode(wdKeyAlt,	wdKeyF4)).Clear

MsgBox	KeyBindings.Count	&	"	keys	in	KeyBindings	collection"

This	example	assigns	the	CTRL+SHIFT+U	key	combination	to	the	macro
named	"Macro1"	in	the	active	document.	The	example	uses	the	Key	property	to
return	a	KeyBinding	object	so	that	Word	can	retrieve	and	display	the	command
name.

CustomizationContext	=	ActiveDocument

KeyBindings.Add	KeyCode:=BuildKeyCode(wdKeyControl,	_

				wdKeyShift,	wdKeyU),	KeyCategory:=wdKeyCategoryMacro,	_

				Command:="Macro1"

MsgBox	KeyBindings.Key(BuildKeyCode(wdKeyControl,	_

				wdKeyShift,	wdKeyU)).Command

This	example	determines	whether	the	CTRL+SHIFT+A	key	combination	is	part
of	the	KeyBindings	collection.

Dim	kbTemp	As	KeyBinding

CustomizationContext	=	NormalTemplate

Set	kbTemp	=	KeyBindings.Key(BuildKeyCode(wdKeyControl,	_

				wdKeyShift,wdKeyA))

If	(kbTemp	Is	Nothing)	Then	MsgBox	_

				"Key	is	not	in	the	KeyBindings	collection"





Keyboard	Method
							

Returns	or	sets	the	keyboard	language	and	layout	settings.

expression.Keyboard(LangId)

expression			Required.	An	expression	that	returns	an	Application	object.

LangId			Optional	Long.	The	language	and	layout	combination	to	which
Microsoft	Word	sets	the	keyboard.	If	this	argument	is	omitted,	the	method
returns	the	current	language	and	layout	setting.



Remarks

Microsoft	Windows	tracks	keyboard	language	and	layout	settings	using	a
variable	type	called	an	input	language	handle,	often	referred	to	as	an	HKL.	The
low	word	of	the	handle	is	a	language	ID,	and	the	high	word	is	a	handle	to	a
keyboard	layout.



Example

This	example	assigns	the	current	keyboard	language	and	layout	setting	to	a
variable.

Dim	lngKeyboard	As	Long

lngKeyboard	=	Application.Keyboard



KeyboardBidi	Method
							

Sets	the	keyboard	language	to	a	right-to-left	language	and	the	text	entry	direction
to	right-to-left.

expression.KeyboardBidi

expression			Required.	An	expression	that	returns	an	Application	object.



Remarks

For	more	information	on	using	Microsoft	Word	with	right-to-left	languages,	see
Word	features	for	right-to-left	languages.

mk:@MSITStore:wdmain10.chm::/html/wdrefFeaturesAvailableInWordWhenBidirectionalLanguagesAreEnabled.htm


Example

This	example	configures	the	keyboard	for	right-to-left	language	entry.

Application.KeyboardBidi



KeyboardLatin	Method
							

Sets	the	keyboard	language	to	a	left-to-right	language	and	the	text	entry	direction
to	left-to-right.

expression.KeyboardLatin

expression			Required.	An	expression	that	returns	an	Application	object.



Remarks

For	more	information	on	using	Microsoft	Word	with	right-to-left	languages,	see
Word	features	for	right-to-left	languages.

mk:@MSITStore:wdmain10.chm::/html/wdrefFeaturesAvailableInWordWhenBidirectionalLanguagesAreEnabled.htm


Example

This	example	configures	the	keyboard	for	left-to-right	language	entry.

Application.KeyboardLatin



KeyString	Method
							

Returns	the	key	combination	string	for	the	specified	keys	(for	example,
CTRL+SHIFT+A).

expression.KeyString(KeyCode,	KeyCode2)

expression			Optional.	An	expression	that	returns	an	Application	object.

KeyCode			Required	Long.	A	key	you	specify	by	using	one	of	the	WdKey
constants.

KeyCode2			Optional	Variant.	A	second	key	you	specify	by	using	one	of	the
WdKey	constants.



Remarks

You	can	use	the	BuildKeyCode	method	to	create	the	KeyCode	or	KeyCode2
argument.



Example

This	example	displays	the	key	combination	string	(CTRL+SHIFT+A)	for	the
following	WdKey	constants:	wdKeyControl,	wdKeyShift,	and	wdKeyA.

CustomizationContext	=	ActiveDocument.AttachedTemplate

MsgBox	KeyString(KeyCode:=BuildKeyCode(wdKeyControl,	_

				wdKeyShift,	wdKeyA))



LabelOptions	Method
							

Displays	the	Label	Options	dialog	box.

expression.LabelOptions

expression			Required.	An	expression	that	returns	a	MailingLabel	object.



Remarks

The	LabelOptions	method	works	only	if	the	document	is	the	main	document	of
a	mailing	labels	mail	merge.



Example

This	example	determines	if	the	current	document	is	a	Mailing	Label	document
and,	if	it	is,	displays	the	Label	Options	dialog	box.

Sub	LabelOps()

				If	ThisDocument.MailMerge	_

								.MainDocumentType	=	wdMailingLabels	Then

								Application.MailingLabel.LabelOptions

				End	If

End	Sub



LargeScroll	Method
							

Scrolls	a	window	or	pane	by	the	specified	number	of	screens.	This	method	is
equivalent	to	clicking	just	before	or	just	after	the	scroll	boxes	on	the	horizontal
and	vertical	scroll	bars.

expression.LargeScroll(Down,	Up,	ToRight,	ToLeft)

expression			Required.	An	expression	that	returns	a	Pane	or	Window	object.

Down			Optional	Variant.	The	number	of	screens	to	scroll	the	window	down.

Up			Optional	Variant.	The	number	of	screens	to	scroll	the	window	up.

ToRight			Optional	Variant.	The	number	of	screens	to	scroll	the	window	to	the
right.

ToLeft			Optional	Variant.	The	number	of	screens	to	scroll	the	window	to	the
left.



Remarks

If	Down	and	Up	are	both	specified,	the	window	is	scrolled	by	the	difference	of
the	arguments.	For	example,	if	Down	is	2	and	Up	is	4,	the	window	is	scrolled	up
two	screens.	Similarly,	if	ToLeft	and	ToRight	are	both	specified,	the	window	is
scrolled	by	the	difference	of	the	arguments.

Any	of	these	arguments	can	be	a	negative	number.	If	no	arguments	are	specified,
the	window	is	scrolled	down	one	screen.



Example

This	example	scrolls	the	active	window	down	one	screen.

ActiveDocument.ActiveWindow.LargeScroll	Down:=1

This	example	splits	the	active	window	and	then	scrolls	up	two	screens	and	to	the
right	one	screen.

With	ActiveDocument.ActiveWindow

				.Split	=	True

				.LargeScroll	Up:=2,	ToRight:=1

End	With



LinesToPoints	Method
							

Converts	a	measurement	from	lines	to	points	(1	line	=	12	points).	Returns	the
converted	measurement	as	a	Single.

expression.LinesToPoints(Lines)

expression			Optional.	An	expression	that	returns	an	Application	object.

Lines			Required	Single.	The	line	value	to	be	converted	to	points.



Example

This	example	sets	the	paragraph	line	spacing	in	the	selection	to	three	lines.

With	Selection.ParagraphFormat

				.LineSpacingRule	=	wdLineSpaceMultiple

				.LineSpacing	=	LinesToPoints(3)

End	With



LinkToListTemplate	Method
							

Links	the	specified	style	to	a	list	template	so	that	the	style's	formatting	can	be
applied	to	lists.

expression.LinkToListTemplate(ListTemplate,	ListLevelNumber)

expression			Required.	An	expression	that	returns	a	Style	object.

ListTemplate			Required	ListTemplate	object.	The	list	template	that	the	style	is
to	be	linked	to.

ListLevelNumber			Optional	Variant.	An	integer	corresponding	to	the	list	level
that	the	style	is	to	be	linked	to.	If	this	argument	is	omitted,	then	the	level	of	the
style	is	used.



Example

This	example	creates	a	new	list	template	and	then	links	heading	styles	1	through
9	to	levels	1	through	9.	The	new	list	template	is	then	applied	to	the	document.
Any	paragraphs	formatted	as	heading	styles	will	assume	the	numbering	from	the
list	template.

Dim	ltTemp	As	ListTemplate

Dim	intLoop	As	Integer

Set	ltTemp	=	_

				ActiveDocument.ListTemplates.Add(OutlineNumbered:=True)

For	intLoop	=	1	To	9

				With	ltTemp.ListLevels(intLoop)

								.NumberStyle	=	wdListNumberStyleArabic

								.NumberPosition	=	InchesToPoints(0.25	*	(intLoop	-	1))

								.TextPosition	=	InchesToPoints(0.25	*	intLoop)

								.NumberFormat	=	"%"	&	intLoop	&	"."

				End	With

				With	ActiveDocument.Styles("Heading	"	&	intLoop)

							.LinkToListTemplate	ListTemplate:=ltTemp

				End	With

Next	intLoop

ActiveDocument.Content.ListFormat.ApplyListTemplate	_

				ListTemplate:=ltTemp



ListCommands	Method
							

Creates	a	new	document	and	then	inserts	a	table	of	Word	commands	along	with
their	associated	shortcut	keys	and	menu	assignments.

expression.ListCommands(ListAllCommands)

expression			Required.	An	expression	that	returns	an	Application	object.

ListAllCommands			Required	Boolean.	True	to	include	all	Word	commands	and
their	assignments	(whether	customized	or	built-in).	False	to	include	only
commands	with	customized	assignments.



Example

This	example	creates	a	new	document	that	lists	all	Word	commands	along	with
their	associated	shortcut	keys	and	menu	assignments.	The	example	then	prints
and	closes	the	new	document	without	saving	changes.

Application.ListCommands	ListAllCommands:=True

With	ActiveDocument

				.PrintOut

				.Close	SaveChanges:=wdDoNotSaveChanges

End	With



ListIndent	Method
							

Increases	the	list	level	of	the	paragraphs	in	the	range	for	the	specified
ListFormat	object,	in	increments	of	one	level.

expression.ListIndent

expression			Required.	An	expression	that	returns	a	ListFormat	object.



Example

This	example	indents	each	paragraph	in	the	first	list	in	document	one	by	one
level.

Documents(1).Lists(1).Range.ListFormat.ListIndent

This	example	formats	paragraphs	four	through	eight	in	the	active	document	as	an
outline-numbered	list,	and	then	it	indents	the	paragraphs	one	level.

Dim	docActive	As	Document

Dim	rngTemp	As	Range

Set	docActive	=	ActiveDocument

Set	rngTemp	=	_

				docActive.Range(	_

				Start:=docActive.Paragraphs(4).Range.Start,	_

				End:=docActive.Paragraphs(8).Range.End)

With	rngTemp.ListFormat

				.ApplyOutlineNumberDefault

				.ListIndent

End	With



ListOutdent	Method
							

Decreases	the	list	level	of	the	paragraphs	in	the	range	for	the	specified
ListFormat	object,	in	increments	of	one	level.

expression.ListOutdent

expression			Required.	An	expression	that	returns	a	ListFormat	object.



Example

This	example	reduces	the	indent	of	each	paragraph	in	first	list	in	the	active
document	by	one	level.

ActiveDocument.Lists(1).Range.ListFormat.ListOutdent

This	example	formats	paragraphs	four	through	eight	in	the	active	document	as	an
outline-numbered	list,	indents	the	paragraphs	one	level,	and	then	removes	the
indent	from	the	first	paragraph	in	the	list.

Dim	docActive	As	Document

Dim	rngTemp	As	Range

Set	docActive	=	ActiveDocument

Set	rngTemp	=	_

				docActive.Range(	_

				Start:=docActive.Paragraphs(4).Range.Start,	_

				End:=docActive.Paragraphs(8).Range.End)

With	rngTemp.ListFormat

				.ApplyOutlineNumberDefault

				.ListIndent

End	With

docActive.Paragraphs(4).Range.ListFormat.ListOutdent



LookupNameProperties	Method
Show	All

							

LookupNameProperties	method	as	it	applies	to	the	Application	object.

Looks	up	a	name	in	the	global	address	book	list	and	displays	the	Properties
dialog	box,	which	includes	information	about	the	specified	name.	If	this	method
finds	more	than	one	match,	it	displays	the	Check	Names	dialog	box.

expression.LookupNameProperties(Name)

expression		Required.	An	expression	that	returns	an	Application	object.

Name		Required	String.	A	name	in	the	global	address	book.

LookupNameProperties	method	as	it	applies	to	the	Range	object.

Looks	up	a	name	in	the	global	address	book	list	and	displays	the	Properties
dialog	box,	which	includes	information	about	the	specified	name.	If	this	method
finds	more	than	one	match,	it	displays	the	Check	Names	dialog	box.

expression.LookupNameProperties

expression			Required.	An	expression	that	returns	a	Range	object.



Example

As	it	applies	to	the	Application	object.

This	example	looks	up	the	name	Don	Funk	in	the	address	book	and	displays	the
Properties	dialog	box	for	Don	Funk.

Application.LookupNameProperties	Name:="Don	Funk"

As	it	applies	to	the	Range	object.

This	example	looks	up	the	selected	name	in	the	address	book	and	displays	the
Properties	dialog	box	for	that	person.

Selection.Range.LookupNameProperties



LtrPara	Method
							

Sets	the	reading	order	and	alignment	of	the	specified	paragraphs	to	left-to-right.

expression.LtrPara

expression			Required.	An	expression	that	returns	a	Selection	object.



Remarks

For	all	selected	paragraphs,	this	method	sets	the	reading	order	to	left-to-right.	If
a	paragraph	with	a	right-to-left	reading	order	is	also	right-aligned,	this	method
reverses	its	reading	order	and	sets	its	paragraph	alignment	to	left-aligned.

Use	the	ReadingOrder	property	to	change	the	reading	order	without	affecting
paragraph	alignment.

For	more	information	on	using	Microsoft	Word	with	right-to-left	languages,	see
Word	features	for	right-to-left	languages.

mk:@MSITStore:wdmain10.chm::/html/wdrefFeaturesAvailableInWordWhenBidirectionalLanguagesAreEnabled.htm


Example

This	example	sets	the	reading	order	and	alignment	of	the	current	selection	to
left-to-right	if	the	selection	is	styled	as	"Normal."

If	Selection.Style	=	"Normal"	Then	_

				Selection.LtrPara



Show	All



LtrRun	Method
							

Sets	the	reading	order	and	alignment	of	the	specified	run	to	left-to-right.

expression.LtrRun

expression			Required.	An	expression	that	returns	a	Selection	object.



Remarks

For	the	specified	run,	this	method	sets	the	reading	order	to	left-to-right.	If	a
paragraph	in	the	run	with	a	right-to-left	reading	order	is	also	right-aligned,	this
method	reverses	its	reading	order	and	sets	its	paragraph	alignment	to	left-
aligned.

Use	the	ReadingOrder	property	to	change	the	reading	order	without	affecting
paragraph	alignment.

For	more	information	on	using	Microsoft	Word	with	right-to-left	languages,	see
Word	features	for	right-to-left	languages.

mk:@MSITStore:wdmain10.chm::/html/wdrefFeaturesAvailableInWordWhenBidirectionalLanguagesAreEnabled.htm


Example

This	example	sets	the	reading	order	and	alignment	of	the	specified	run	to	left-to-
right	if	the	selection	is	styled	as	"Normal."

If	Selection.Style	=	"Normal"	Then	_

				Selection.LtrRun



MakeCompatibilityDefault	Method
							

Sets	the	compatibility	options	on	the	Compatibility	tab	in	the	Options	dialog
box	(Tools	menu)	as	the	default	settings	for	new	documents.

expression.MakeCompatibilityDefault

expression			Required.	An	expression	that	returns	a	Document	object.



Example

This	example	sets	a	few	compatibility	options	for	the	active	document	and	then
makes	the	current	compatibility	options	the	default	settings.

With	ActiveDocument

				.Compatibility(wdSuppressSpBfAfterPgBrk)	=	True

				.Compatibility(wdExpandShiftReturn)	=	True

				.Compatibility(wdUsePrinterMetrics)	=	True

				.Compatibility(wdNoLeading)	=	False

				.MakeCompatibilityDefault

End	With



ManualHyphenation	Method
							

Initiates	manual	hyphenation	of	a	document,	one	line	at	a	time.	The	user	is
prompted	to	accept	or	decline	suggested	hyphenations.

expression.ManualHyphenation

expression			Required.	An	expression	that	returns	a	Document	object.



Example

This	example	starts	manual	hyphenation	of	the	active	document.

ActiveDocument.ManualHyphenation

This	example	sets	hyphenation	options	and	then	starts	manual	hyphenation	of
MyDoc.doc.

With	Documents("MyDoc.doc")

				.HyphenationZone	=	InchesToPoints(0.25)

				.HyphenateCaps	=	False

				.ManualHyphenation

End	With



MarkAllCitations	Method
							

Inserts	a	TA	(Table	of	Authorities	Entry)	field	after	all	instances	of	the
ShortCitation	text.

expression.MarkAllCitations(ShortCitation,	LongCitation,
LongCitationAutoText,	Category)

expression			Required.	An	expression	that	returns	a	TablesOfAuthorities	object.

ShortCitation			Required	String.	The	short	citation	for	the	entry	as	it	will	appear
in	the	Mark	Citation	dialog	box	(Insert	menu,	Index	and	Tables	command).

LongCitation			Optional	Variant.	The	long	citation	string	for	the	entry	as	it	will
appear	in	the	table	of	authorities.

LongCitationAutoText			Optional	Variant.	The	AutoText	entry	name	that
contains	the	text	of	the	long	citation	as	it	will	appear	in	the	table	of	authorities.

Category			Optional	Variant.	The	category	number	to	be	associated	with	the
entry:	1	corresponds	to	the	first	category	in	the	Category	box	in	the	Mark
Citation	dialog	box,	2	corresponds	to	the	second	category,	and	so	on.



Example

This	example	marks	all	instances	of	"Forrester	v.	Craddock"	in	the	active
document	with	a	TA	field	that	references	the	"Forrester	v.	Craddock,	51	Wn.	2d
315	(1957)"	citation.

ActiveDocument.TablesOfAuthorities.MarkAllCitations	_

				ShortCitation:="Forrester	v.	Craddock",	Category:=1,	_

				LongCitation:="Forrester	v.	Craddock,	51	Wn.	2d	315	(1957)"



MarkAllEntries	Method
							

Inserts	an	XE	(Index	Entry)	field	after	all	instances	of	the	text	in	Range.

expression.MarkAllEntries(Range,	Entry,	EntryAutoText,	CrossReference,
CrossReferenceAutoText,	BookmarkName,	Bold,	Italic)

expression			Required.	An	expression	that	returns	an	Indexes	object.

Range			Required	Range	object.	The	range	whose	text	is	marked	with	an	XE
field	throughout	the	document.

Entry			Optional	Variant.	The	text	you	want	to	appear	in	the	index,	in	the	form
MainEntry[:Subentry].

EntryAutoText			Optional	Variant.	The	AutoText	entry	that	contains	the	text	you
want	to	appear	in	the	index	(if	this	argument	is	specified,	Entry	is	ignored).

CrossReference			Optional	Variant.	A	cross-reference	that	will	appear	in	the
index.

CrossReferenceAutoText			Optional	Variant.	The	name	of	the	AutoText	entry
that	contains	the	text	for	a	cross-reference	(if	this	argument	is	specified,
CrossReference	is	ignored).

BookmarkName			Optional	Variant.	The	bookmark	name	that	marks	the	range
of	pages	you	want	to	appear	in	the	index.	If	this	argument	is	omitted,	the	number
of	the	page	that	contains	the	XE	field	appears	in	the	index.

Bold			Optional	Variant.	True	to	add	bold	formatting	to	page	numbers	for	index
entries.

Italic			Optional	Variant.	True	to	add	italic	formatting	to	page	numbers	for
index	entries.



Example

This	example	marks	the	selected	text	with	TA	fields	throughout	the	active
document	and	then	updates	the	first	index	in	the	document.	The	entry	text	in	the
index	matches	the	selected	text.

If	Selection.Type	=	wdSelectionNormal	Then

				ActiveDocument.Indexes.MarkAllEntries	_

								Range:=Selection.Range,	_

								Entry:=Selection.Range.Text,	Italic:=True

				ActiveDocument.Indexes(1).Update

End	If



MarkCitation	Method
							

Inserts	a	TA	(Table	of	Authorities	Entry)	field	and	returns	the	field	as	a	Field
object.

expression.MarkCitation(Range,	ShortCitation,	LongCitation,
LongCitationAutoText,	Category)

expression			Required.	An	expression	that	returns	a	TablesOfAuthorities	object.

Range			Required	Range	object.	The	location	of	the	table	of	authorities	entry.
The	TA	field	is	inserted	after	Range.

ShortCitation			Required	String.	The	short	citation	for	the	entry	as	it	will	appear
in	the	Mark	Citation	dialog	box	(Insert	menu,	Index	and	Tables	command).

LongCitation			Optional	Variant.	The	long	citation	for	the	entry	as	it	will	appear
in	the	table	of	authorities.

LongCitationAutoText			Optional	Variant.	The	name	of	the	AutoText	entry	that
contains	the	text	of	the	long	citation	as	it	will	appear	in	the	table	of	authorities.

Category			Optional	Variant.	The	category	number	to	be	associated	with	the
entry:	1	corresponds	to	the	first	category	in	the	Category	box	in	the	Mark
Citation	dialog	box,	2	corresponds	to	the	second	category,	and	so	on.



Example

This	example	inserts	a	table	of	authorities	entry	(a	TA	field)	that	references	the
selected	text.	The	long	citation	text	is	set	to	"Forrester	v.	Craddock"	and	the
category	is	set	to	Other	Cases.

ActiveDocument.TablesOfAuthorities.MarkCitation	_

				Range:=Selection.Range,	ShortCitation:=Selection.Range.Text,	_

				LongCitation:="Forrester	v.	Craddock",	Category:=1

This	example	inserts	a	table	of	authorities	entry	that	references	the	selected	text.
The	entry	text	that	appears	in	the	table	of	authorities	is	the	text	typed	into	the
input	box	and	the	category	is	set	to	Other	Authorities.

Dim	strCitation	As	String

strCitation	=	InputBox("Type	citation	text")

ActiveDocument.TablesOfAuthorities.MarkCitation	_

				Range:=Selection.Range,	ShortCitation:=Selection.Range.Text,	_

				LongCitation:=strCitation,	Category:=3



Show	All



MarkEntry	Method
							

MarkEntry	method	as	it	applies	to	the	Indexes	object.

Inserts	an	XE	(Index	Entry)	field	after	the	specified	range.	The	XE	field	is
returned	as	a	Field	object.

expression.MarkEntry(Range,	Entry,	EntryAutoText,	CrossReference,
CrossReferenceAutoText,	BookmarkName,	Bold,	Italic,	Reading)

expression			Required.	An	expression	that	returns	an	Indexes	object.

Range		Required	Range	object.	The	location	of	the	entry.	The	XE	field	is
inserted	after	Range.

Entry		Optional	Variant.	The	text	that	appears	in	the	index.	To	indicate	a
subentry,	include	the	main	entry	text	and	the	subentry	text,	separated	by	a	colon
(:)	(for	example,	"Introduction:The	Product").

EntryAutoText		Optional	Variant.	The	AutoText	entry	name	that	includes	text
for	the	index,	table	of	figures,	or	table	of	contents	(Entry	is	ignored).

CrossReference		Optional	Variant.	A	cross-reference	that	will	appear	in	the
index	(for	example,	"See	Apples").

CrossReferenceAutoText		Optional	Variant.	The	AutoText	entry	name	that
contains	the	text	for	a	cross-reference	(CrossReference	is	ignored).

BookmarkName		Optional	Variant.	The	name	of	the	bookmark	that	marks	the
range	of	pages	you	want	to	appear	in	the	index.	If	this	argument	is	omitted,	the
number	of	the	page	containing	the	XE	field	appears	in	the	index.

Bold		Optional	Variant.	True	to	add	bold	formatting	to	the	entry	page	numbers
in	the	index.

Italic		Optional	Variant.	True	to	add	italic	formatting	to	the	entry	page	numbers



in	the	index.

Reading		Optional	Variant.

MarkEntry	method	as	it	applies	to	the	TablesOfContents	and
TablesOfFigures	objects.

Inserts	a	TC	(Table	of	Contents	Entry)	field	after	the	specified	range.	The	TC
field	is	returned	as	a	Field	object.

expression.MarkEntry(Range,	Entry,	EntryAutoText,	TableID,	Level)

expression			Required.	An	expression	that	returns	a	TablesOfContents	or
TablesOfFigures	object.

Range		Required	Range	object.	The	location	of	the	entry.	The	TC	field	is
inserted	after	Range.

Entry		Optional	Variant.	The	text	that	appears	in	the	table	of	contents	or	table	of
figures.	To	indicate	a	subentry,	include	the	main	entry	text	and	the	subentry	text,
separated	by	a	colon	(:)	(for	example,	"Introduction:The	Product").

EntryAutoText		Optional	Variant.	The	AutoText	entry	name	that	includes	text
for	the	index,	table	of	figures,	or	table	of	contents	(Entry	is	ignored).

TableID		Optional	Variant.	A	one-letter	identifier	for	the	table	of	figures	or	table
of	contents	item	(for	example,	"i"	for	an	"illustration").

Level		Optional	Variant.	A	level	for	the	entry	in	the	table	of	contents	or	table	of
figures.



Example

As	it	applies	to	the	Indexes	object.

This	example	inserts	an	index	entry	after	the	selection	in	the	active	document.
The	subentry	text	is	the	text	from	the	selection.

If	Selection.Type	=	wdSelectionNormal	Then

				ActiveDocument.Indexes.MarkEntry	Range:=Selection.Range,	_

								Entry:="Introduction:"	&	Selection.Range.Text,	Italic:=TrueEnd	If

As	it	applies	to	the	Table	of	Contents	object.

This	example	inserts	a	table	of	contents	entry	that	references	the	selected	text.
The	text	typed	in	the	input	box	appears	in	the	table	of	contents.	A	table	of
contents	that	uses	fields	is	then	added	at	the	beginning	of	the	active	document.

entryText	=	InputBox("Type	entry	text")

ActiveDocument.TablesOfContents.MarkEntry	_

				Range:=Selection.Range,	Entry:=entryText

Set	myRange	=	ActiveDocument.Range(Start:=0,	End:=0)

ActiveDocument.TablesOfContents.Add	_

				Range:=myRange,	UseFields:=True,	_

				UseHeadingStyles:=False



Show	All



Merge	Method
							

Merge	method	as	it	applies	to	the	Subdocuments	object.

Merges	the	specified	subdocuments	of	a	master	document	into	a	single
subdocument.

expression.Merge(FirstSubdocument,	LastSubdocument)

expression			Required.	An	expression	that	returns	one	of	the	above	objects.

FirstSubdocument		Optional	Variant.	The	path	and	file	name	of	the	original
document	you	want	to	merge	revisions	with.

LastSubdocument		Optional	Variant.	The	last	subdocument	in	a	range	of
subdocuments	to	be	merged.

	

Merge	method	as	it	applies	to	the	Cell	object.

Merges	the	specified	table	cell	with	another	cell.	The	result	is	a	single	table	cell.

expression.Merge(MergeTo)

expression			Required.	An	expression	that	returns	one	of	the	above	objects.

MergeTo		Required	Cell	object.	The	cell	to	be	merged	with.

	

Merge	method	as	it	applies	to	the	Document	object.

Merges	the	changes	marked	with	revision	marks	from	one	document	to	another.

expression.Merge(Name,	MergeTarget,	DetectFormatChanges,



UseFormattingFrom,	AddToRecentFiles)

expression			Required.	An	expression	that	returns	one	of	the	above	objects.

Name		Required	String.

MergeTarget		Optional	WdMergeTarget.

WdMergeTarget	can	be	one	of	these	WdMergeTarget	constants.
wdMergeTargetCurrent	default
wdMergeTargetSelected
wdMergeTargetNew

DetectFormatChanges		Optional	Boolean.

UseFormattingFrom		Optional	WdUseFormattingFrom.

WdUseFormattingFrom	can	be	one	of	these	WdUseFormattingFrom	constants.
wdFormattingFromPrompt	default
wdFormattingFromCurrent
wdFormattingFromSelected

AddToRecentFiles		Optional	Boolean.

	

Merge	method	as	it	applies	to	the	Cells	object.

Merges	the	specified	table	cells	with	one	another.	The	result	is	a	single	table	cell.

expression.Merge

expression			Required.	An	expression	that	returns	one	of	the	above	objects.

	



Example

As	it	applies	to	the	Cell	object.

This	example	merges	the	first	two	cells	in	table	one	in	the	active	document	with
one	another	and	then	removes	the	table	borders.

If	ActiveDocument.Tables.Count	>=	1	Then

				With	ActiveDocument.Tables(1)

								.Cell(Row:=1,	Column:=1).Merge	_

												MergeTo:=.Cell(Row:=1,	Column:=2)

								.Borders.Enable	=	False

				End	With

End	If

As	it	applies	to	the	Document	object.

This	example	merges	changes	from	Sales1.doc	into	Sales2.doc	(the	active
document).

If	InStr(1,	ActiveDocument.Name,	"sales2.doc",	1)	Then	_

				ActiveDocument.Merge	FileName:="C:\Docs\Sales1.doc"

As	it	applies	to	the	Cells	object.

This	example	merges	the	cells	in	row	one	of	the	selection	into	a	single	cell	and
then	applies	shading	to	the	row.

If	Selection.Information(wdWithInTable)	=	True	Then

				Set	myrow	=	Selection.Rows(1)

				myrow.Cells.Merge

				myrow.Shading.Texture	=	wdTexture10Percent

End	If

As	it	applies	to	the	Subdocuments	object.

This	example	merges	the	first	and	second	subdocuments	in	the	active	document
into	one	subdocument.

If	ActiveDocument.Subdocuments.Count	>=	2	Then

				Set	aDoc	=	ActiveDocument

				aDoc.Subdocuments.Merge	_



								FirstSubdocument:=aDoc.Subdocuments(1),	_

								LastSubdocument:=aDoc.Subdocuments(2)

End	If



MillimetersToPoints	Method
							

Converts	a	measurement	from	millimeters	to	points	(1	mm	=	2.85	points).
Returns	the	converted	measurement	as	a	Single.

expression.MillimetersToPoints(Millimeters)

expression			Optional.	An	expression	that	returns	an	Application	object.

Millimeters			Required	Single.	The	millimeter	value	to	be	converted	to	points.



Example

This	example	sets	the	hyphenation	zone	in	the	active	document	to	8.8
millimeters.

ActiveDocument.HyphenationZone	=	MillimetersToPoints(8.8)

This	example	expands	the	spacing	of	the	selected	characters	to	2.8	points.

Selection.Font.Spacing	=	MillimetersToPoints(1)



Show	All



ModifyEnclosure	Method
							

Adds,	modifies,	or	removes	an	enclosure	around	the	specified	character	or
characters.

expression.ModifyEnclosure(Style,	Symbol,	EnclosedText)

expression			Required.	An	expression	that	returns	a	Range	object.

Style			Required	Variant.	The	style	of	the	enclosure.	Can	be	any
WdEncloseStyle	constant.

WdEncloseStyle	can	be	one	of	these	WdEncloseStyle	constants.
wdEncloseStyleLarge
wdEncloseStyleNone
wdEncloseStyleSmall

Symbol			Optional	Variant.	The	symbol	in	which	to	enclose	the	specified	range.
Can	be	any	WdEnclosureType	constant.

WdEnclosureType	can	be	one	of	these	WdEnclosureType	constants.
wdEnclosureCircle	Default.
wdEnclosureDiamond
wdEnclosureSquare
wdEnclosureTriangle

EnclosedText			Optional	Variant.	The	characters	that	you	want	to	enclose.	If	you
include	this	argument,	Microsoft	Word	replaces	the	specified	range	with	the
enclosed	characters.	If	you	don't	specify	text	to	enclose,	Microsoft	Word
encloses	all	text	in	the	specified	range.



Remarks

For	more	information	on	using	Word	with	Asian	languages,	see	Word	features
for	Asian	languages.

mk:@MSITStore:wdmain10.chm::/html/wdrefFeaturesAvailableInWordWhenAsianLanguagesAreEnabled.htm


Example

This	example	replaces	the	current	selection	with	the	number	25	enclosed	in	a
circle.

Selection.Range.ModifyEnclosure	wdEncloseStyleLarge,	_

				wdEnclosureCircle,	"25"



Show	All



Move	Method
							

Move	method	as	it	applies	to	the	Range	and	Selection	objects.

Collapses	the	specified	range	or	selection	to	its	start	or	end	position	and	then
moves	the	collapsed	object	by	the	specified	number	of	units.	This	method
returns	a	Long	value	that	indicates	the	number	of	units	by	which	the	object	was
actually	moved,	or	it	returns	0	(zero)	if	the	move	was	unsuccessful.

expression.Move(Unit,	Count)

expression			Required.	An	expression	that	returns	one	of	the	above	objects.

Unit		Optional	Variant.	The	unit	by	which	the	collapsed	range	or	selection	is	to
be	moved.	Can	be	one	of	the	following	WdUnits	constants:	wdCharacter,
wdWord,	wdSentence,	wdParagraph,	wdSection,	wdStory,	wdCell,	
wdColumn,	wdRow,	or	wdTable.	If	expression	returns	a	Selection	object,	you
can	also	use	wdLine.	The	default	value	is	wdCharacter.

Count		Optional	Variant.	The	number	of	units	by	which	the	specified	range	or
selection	is	to	be	moved.	If	Count	is	a	positive	number,	the	object	is	collapsed	to
its	end	position	and	moved	forward	in	the	document	by	the	specified	number	of
units.	If	Count	is	a	negative	number,	the	object	is	collapsed	to	its	start	position
and	moved	backward	by	the	specified	number	of	units.	The	default	value	is	1.
You	can	also	control	the	collapse	direction	by	using	the	Collapse	method	before
using	the	Move	method.	If	the	range	or	selection	is	in	the	middle	of	a	unit	or	isn't
collapsed,	moving	it	to	the	beginning	or	end	of	the	unit	counts	as	moving	it	one
full	unit.



Remarks

The	start	and	end	positions	of	a	collapsed	range	or	selection	are	equal.

Applying	the	Move	method	to	a	range	doesn't	rearrange	text	in	the	document.
Instead,	it	redefines	the	range	to	refer	to	a	new	location	in	the	document.

If	you	apply	the	Move	method	to	any	range	other	than	a	Range	object	variable
(for	example,	Selection.Paragraphs(3).Range.Move),	the	method	has	no
effect.

Moving	a	Selection	object	collapses	the	selection	and	moves	the	insertion	point
either	forward	or	backward	in	the	document.

Move	method	as	it	applies	to	the	Application	and	Task	objects.

Positions	a	task	window	or	the	active	document	window.

expression.Move(Left,	Top)

expression			Required.	An	expression	that	returns	one	of	the	above	objects.

Left		Required	Long.	The	horizontal	screen	position	of	the	specified	window.

Top		Required	Long.	The	vertical	screen	position	of	the	specified	window.

Move	method	as	it	applies	to	the	StyleSheet	object.

Moves	a	style	sheet's	order	of	precedence.

expression.Move(Precedence)

expression			Required.	An	expression	that	returns	a	StyleSheet	object.

Precedence		Required	WdStyleSheetPrecedence.	The	precedence	level.

WdStyleSheetPrecedence	can	be	one	of	these	WdStyleSheetPrecedence
constants.
wdStyleSheetPrecedenceHigher



wdStyleSheetPrecedenceHighest
wdStyleSheetPrecedenceLower
wdStyleSheetPrecedenceLowest



Example

As	it	applies	to	the	Application	object.

This	example	starts	the	Calculator	application	(Calc.exe)	and	uses	the	Move
method	to	reposition	the	application	window.

Shell	"Calc.exe"

With	Tasks("Calculator")

				.WindowState	=	wdWindowStateNormal

				.Move	Top:=50,	Left:=50

End	With

As	it	applies	to	the	Range	object.

This	example	sets	Range1	to	the	first	paragraph	in	the	active	document	and	then
moves	the	range	forward	three	paragraphs.	After	this	macro	is	run,	the	insertion
point	is	positioned	at	the	beginning	of	the	fourth	paragraph.

Set	Range1	=	ActiveDocument.Paragraphs(1).Range

With	Range1

				.Collapse	Direction:=wdCollapseStart

				.Move	Unit:=wdParagraph,	Count:=3

				.Select

End	With

As	it	applies	to	the	Selection	object.

This	example	moves	the	selection	two	words	to	the	right	and	positions	the
insertion	point	after	the	second	word's	trailing	space.	If	the	move	is	unsuccessful,
a	message	box	indicates	that	the	selection	is	at	the	end	of	the	document.

If	Selection.StoryType	=	wdMainTextStory	Then

				wUnits	=	Selection.Move(Unit:=wdWord,	Count:=2)

				If	wUnits	<	2	Then	_

								MsgBox	"Selection	is	at	the	end	of	the	document"

End	If

This	example	moves	the	selection	forward	three	cells	in	the	table.

If	Selection.Information(wdWithInTable)	=	True	Then

				Selection.Move	Unit:=wdCell,	Count:=3



End	If



MoveDown	Method
							

Moves	the	selection	down	and	returns	the	number	of	units	it's	been	moved.

Note			The	wdWindow	constant	can	be	used	to	move	to	the	top	or	bottom	of	the
active	window.	Regardless	of	the	value	of	Count	(greater	than	1	or	less	than		–
	1),	the	wdWindow	constant	moves	only	one	unit.	Use	the	wdScreen	constant	to
move	more	than	one	screen.

expression.MoveDown(Unit,	Count,	Extend)

expression			Required.	An	expression	that	returns	a	Selection	object.

Unit			Optional	WdUnits.	The	unit	by	which	the	selection	is	to	be	moved.

								Can	be	one	of	the	following	WdUnits	constants.

								wdLine

								wdParagraph

								wdWindow

								wdScreen

The	default	value	is	wdLine.

Count			Optional	Variant.	The	number	of	units	the	selection	is	to	be	moved.	The
default	value	is	1.

Extend			Optional	Variant.	Can	be	either	wdMove	or	wdExtend.	If	wdMove	is
used,	the	selection	is	collapsed	to	the	end	point	and	moved	down.	If	wdExtend
is	used,	the	selection	is	extended	down.	The	default	value	is	wdMove.



Example

This	example	extends	the	selection	down	one	line.

Selection.MoveDown	Unit:=wdLine,	Count:=1,	Extend:=wdExtend

This	example	moves	the	selection	down	three	paragraphs.	If	the	move	is
successful,	"Company"	is	inserted	at	the	insertion	point.

unitsMoved	=	Selection.MoveDown(Unit:=wdParagraph,	_

				Count:=3,	Extend:=wdMove)

If	unitsMoved	=	3	Then	Selection.Text	=	"Company"

This	example	displays	the	current	line	number,	moves	the	selection	down	three
lines,	and	displays	the	current	line	number	again.

MsgBox	"Line	"	&	Selection.Information(wdFirstCharacterLineNumber)

Selection.MoveDown	Unit:=wdLine,	Count:=3,	Extend:=wdMove

MsgBox	"Line	"	&	Selection.Information(wdFirstCharacterLineNumber)



MoveEnd	Method
							

Moves	the	ending	character	position	of	a	range	or	selection.	This	method	returns
an	integer	that	indicates	the	number	of	units	the	range	or	selection	actually
moved,	or	it	returns	0	(zero)	if	the	move	was	unsuccessful.

expression.MoveEnd(Unit,	Count)

expression			Required.	An	expression	that	returns	a	Range	or	Selection	object.

Unit			Optional	WdUnits.	The	unit	by	which	to	move	the	ending	character
position.

								Can	be	one	of	the	following	WdUnits	constants

								wdCharacter

								wdWord

								wdSentence

								wdParagraph

								wdSection

								wdStory

								wdCell

								wdColumn

								wdRow

									wdTable.

		If	expression	returns	a	Selection	object,	wdLine	can	also	be	used.	The	default



value	is	wdCharacter.

Count			Optional	Variant.	The	number	of	units	to	move.	If	this	number	is
positive,	the	ending	character	position	is	moved	forward	in	the	document.	If	this
number	is	negative,	the	end	is	moved	backward.	If	the	ending	position	overtakes
the	starting	position,	the	range	collapses	and	both	character	positions	move
together.	The	default	value	is	1.



Example

This	example	moves	the	end	of	the	selection	one	character	backward	(the
selection	size	is	reduced	by	one	character).	A	space	is	considered	a	character.

Selection.MoveEnd	Unit:=wdCharacter,	Count:=-1

This	example	moves	the	end	of	the	selection	to	the	end	of	the	line	(the	selection
is	extended	to	the	end	of	the	line).

Selection.MoveEnd	Unit:=wdLine,	Count:=1

This	example	sets	myRange	to	be	equal	to	the	second	word	in	the	active
document.	The	MoveEnd	method	is	used	to	move	the	ending	position	of
myRange	(a	range	object)	forward	one	word.	After	this	macro	is	run,	the	second
and	third	words	in	the	document	are	selected.

If	ActiveDocument.Words.Count	>=	3	Then

				Set	myRange	=	ActiveDocument.Words(2)

				With	myRange

								.MoveEnd	Unit:=wdWord,	Count:=1

								.Select

				End	With

End	If



MoveEndUntil	Method
							

Moves	the	end	position	of	the	specified	range	or	selection	until	any	of	the
specified	characters	are	found	in	the	document.	If	the	movement	is	forward	in
the	document,	the	range	or	selection	is	expanded.



Remarks

This	method	returns	the	number	of	characters	by	which	the	end	position	of	the
specified	range	or	selection	was	moved,	as	a	Long	value.	If	Count	is	greater
than	0	(zero),	this	method	returns	the	number	of	characters	moved	plus	1.	If
Count	is	less	than	0	(zero),	this	method	returns	the	number	of	characters	moved
minus	1.	If	no	Cset	characters	are	found,	the	range	or	selection	isn't	changed	and
the	method	returns	0	(zero).	If	the	end	position	is	moved	backward	to	a	point	that
precedes	the	original	start	position,	the	start	position	is	set	to	the	new	ending
position.

expression.MoveEndUntil(Cset,	Count)

expression			Required.	An	expression	that	returns	a	Range	or	Selection	object.

Cset			Required	Variant.	One	or	more	characters.	This	argument	is	case
sensitive.

Count			Optional	Variant.	The	maximum	number	of	characters	by	which	the
specified	range	or	selection	is	to	be	moved.	Can	be	a	number	or	either	the
wdForward	or	wdBackward	constant.	If	Count	is	a	positive	number,	the	range
or	selection	is	moved	forward	in	the	document.	If	it's	a	negative	number,	the
range	or	selection	is	moved	backward.	The	default	value	is	wdForward.



Example

This	example	extends	the	selection	forward	in	the	document	until	the	letter	"a"	is
found.	The	example	then	expands	the	selection	by	one	character	to	include	the
letter	"a".

With	Selection

				.MoveEndUntil	Cset:="a",	Count:=wdForward

				.MoveRight	Unit:=wdCharacter,	Count:=1,	Extend:=wdExtend

End	With

This	example	extends	the	selection	forward	in	the	document	until	a	tab	is	found.
If	a	tab	character	isn't	found	in	the	next	100	characters,	the	selection	isn't	moved.

char	=	Selection.MoveEndUntil(Cset:=vbTab,	Count:=100)

If	char	=	0	Then	StatusBar	=	"Selection	not	moved"



MoveEndWhile	Method
							

Moves	the	ending	character	position	of	a	range	or	selection	while	any	of	the
specified	characters	are	found	in	the	document.



Remarks

While	any	character	in	Cset	is	found,	the	end	position	of	the	specified	range	or
selection	is	moved.	This	method	returns	the	number	of	characters	that	the	end
position	of	the	range	or	selection	moved	as	a	Long	value.	If	no	Cset	characters
are	found,	the	range	or	selection	isn't	changed	and	the	method	returns	0	(zero).	If
the	end	position	is	moved	backward	to	a	point	that	precedes	the	original	start
position,	the	start	position	is	set	to	the	new	end	position.

expression.MoveEndWhile(Cset,	Count)

expression			Required.	An	expression	that	returns	a	Range	or	Selection	object.

Cset			Required	Variant.	One	or	more	characters.	This	argument	is	case
sensitive.

Count			Optional	Variant.	The	maximum	number	of	characters	by	which	the
range	or	selection	is	to	be	moved.	Can	be	a	number	or	either	the	wdForward	or
wdBackward	constant.	If	Count	is	a	positive	number,	the	range	or	selection	is
moved	forward	in	the	document.	If	it's	a	negative	number,	the	range	or	selection
is	moved	backward.	The	default	value	is	wdForward.



Example

This	example	moves	the	end	position	of	the	selection	forward	while	the	space
character	is	found.

Selection.MoveEndWhile	Cset:="	",	Count:=wdForward

This	example	moves	the	end	position	of	the	selection	forward	while	Count	is
less	than	or	equal	to	10	and	any	letter	from	"a"	through	"h"	is	found.

Selection.MoveEndWhile	Cset:="abcdefgh",	Count:=10



MoveLeft	Method
							

Moves	the	selection	to	the	left	and	returns	the	number	of	units	it's	been	moved.

expression.MoveLeft(Unit,	Count,	Extend)

expression			Required.	An	expression	that	returns	a	Selection	object.

Unit			Optional	WdUnits.	The	unit	by	which	the	selection	is	to	be	moved.

								Can	be	one	of	the	following	WdUnits	constants.

								wdCell

								wdCharacter

								wdWord

								wdSentence

The	default	value	is	wdCharacter.

Count			Optional	Variant.	The	number	of	units	the	selection	is	to	be	moved.	The
default	value	is	1.

Extend			Optional	Variant.	Can	be	either	wdMove	or	wdExtend.	If	wdMove	is
used,	the	selection	is	collapsed	to	the	end	point	and	moved	to	the	left.	If
wdExtend	is	used,	the	selection	is	extended	to	the	left.	The	default	value	is
wdMove.



Remarks

When	the	Unit	is	wdCell,	the	Extend	argument	will	only	be	wdMove.



Example

This	example	moves	the	selection	one	character	to	the	left.	If	the	move	is
successful,	MoveLeft	returns	1.

If	Selection.MoveLeft	=	1	Then	MsgBox	"Move	was	successful"

This	example	enables	field	shading	for	the	selected	field,	inserts	a	DATE	field,
and	then	moves	the	selection	left	to	select	the	field.

ActiveDocument.ActiveWindow.View.FieldShading	=	_

				wdFieldShadingWhenSelected

With	Selection

				.Fields.Add	Range:=Selection.Range,	Type:=wdFieldDate

				.MoveLeft	Unit:=wdWord,	Count:=1

End	With

This	example	moves	the	selection	to	the	previous	table	cell.

If	Selection.Information(wdWithInTable)	=	True	Then

				Selection.MoveLeft	Unit:=wdCell,	Count:=1,	Extend:=wdMove

End	If



Show	All



MoveNode	Method
							

Moves	a	diagram	node	and	any	of	its	child	nodes	within	a	diagram.

expression.MoveNode(TargetNode,	Pos)

expression			Required.	An	expression	that	returns	a	DiagramNode	object.

TargetNode		Required	DiagramNode	object.	The	diagram	node	where	the
specified	node	will	be	moved.

Pos		Required	MsoRelativeNodePosition.	Specifies	where	the	node	will	be
added	relative	to	TargetNode.

MsoRelativeNodePosition	can	be	one	of	these	MsoRelativeNodePosition
constants.
msoAfterLastSibling
msoAfterNode
msoBeforeFirstSibling
msoBeforeNode



Example

The	following	example	moves	the	second	diagram	node	of	a	newly-created
diagram	to	the	last	node.

Sub	MoveDiagramNode()

				Dim	dgnNode	As	DiagramNode

				Dim	shpDiagram	As	Shape

				Dim	intCount	As	Integer

				'Add	pyramid	diagram	to	the	current	document

				Set	shpDiagram	=	ThisDocument.Shapes.AddDiagram	_

								(Type:=msoDiagramPyramid,	Left:=10,	_

								Top:=15,	Width:=400,	Height:=475)

				'Add	four	child	nodes	to	the	pyramid	diagram

				Set	dgnNode	=	shpDiagram.DiagramNode.Children.AddNode

				For	intCount	=	1	To	3

								dgnNode.AddNode

				Next	intCount

				'Move	the	second	node	after	the	fourth	node

				dgnNode.Diagram.Nodes(2).MoveNode	_

								TargetNode:=dgnNode.Diagram.Nodes(4),	_

								Pos:=msoAfterLastSibling

End	Sub



MoveRight	Method
							

Moves	the	selection	to	the	right	and	returns	the	number	of	units	it's	been	moved.

expression.MoveRight(Unit,	Count,	Extend)

expression			Required.	An	expression	that	returns	a	Selection	object.

Unit			Optional	WdUnits.	The	unit	by	which	the	selection	is	to	be	moved.

								Can	be	one	of	the	following	WdUnits	constants.

								wdCell

								wdCharacter

								wdWord

								wdSentence

The	default	value	is	wdCharacter.

Count			Optional	Variant.	The	number	of	units	the	selection	is	to	be	moved.	The
default	value	is	1.

Extend			Optional	Variant.	Can	be	either	wdMove	or	wdExtend.	If	wdMove	is
used,	the	selection	is	collapsed	to	the	end	point	and	moved	to	the	right.	If
wdExtend	is	used,	the	selection	is	extended	to	the	right.	The	default	value	is
wdMove.



Remarks

When	the	Unit	is	wdCell,	the	Extend	argument	will	only	be	wdMove.



Example

This	example	moves	the	selection	before	the	previous	field	and	then	selects	the
field.

With	Selection

				Set	MyRange	=	.GoTo(wdGoToField,	wdGoToPrevious)

				.MoveRight	Unit:=wdWord,	Count:=1,	Extend:=wdExtend

				If	Selection.Fields.Count	=	1	Then	Selection.Fields(1).Update

End	With

This	example	moves	the	selection	one	character	to	the	right.	If	the	move	is
successful,	MoveRight	returns	1.

If	Selection.MoveRight	=	1	Then	MsgBox	"Move	was	successful"

This	example	moves	the	selection	to	the	next	table	cell.

If	Selection.Information(wdWithInTable)	=	True	Then

				Selection.MoveRight	Unit:=wdCell,	Count:=1,	Extend:=wdMove

End	If



MoveStart	Method
							

Moves	the	start	position	of	the	specified	range	or	selection.	This	method	returns
an	integer	that	indicates	the	number	of	units	by	which	the	start	position	or	the
range	or	selection	actually	moved,	or	it	returns	0	(zero)	if	the	move	was
unsuccessful.

expression.MoveStart(Unit,	Count)

expression			Required.	An	expression	that	returns	a	Range	or	Selection	object.

Unit			Optional	WdUnits.	The	unit	by	which	start	position	of	the	specified	range
or	selection	is	to	be	moved.

								Can	be	one	of	the	following	WdUnits	constants.

								wdCharacter

								wdWord

								wdSentence

								wdParagraph

								wdSection

								wdStory

								wdCell

								wdColumn

								wdRow

								wdTable



If	expression	returns	a	Selection	object,	you	can	also	use	wdLine.	The	default
value	is	wdCharacter.

Count			Optional	Variant.	The	maximum	number	of	units	by	which	the
specified	range	or	selection	is	to	be	moved.	If	Count	is	a	positive	number,	the
start	position	of	the	range	or	selection	is	moved	forward	in	the	document.	If	it's	a
negative	number,	the	start	position	is	moved	backward.	If	the	start	position	is
moved	forward	to	a	position	beyond	the	end	position,	the	range	or	selection	is
collapsed	and	both	the	start	and	end	positions	are	moved	together.	The	default
value	is	1.



Example

This	example	moves	the	start	position	of	the	selection	one	character	forward	(the
selection	size	is	reduced	by	one	character).	Note	that	a	space	is	considered	a
character.

Selection.MoveStart	Unit:=wdCharacter,	Count:=1

This	example	moves	the	start	position	of	the	selection	to	the	beginning	of	the
line	(the	selection	is	extended	to	the	start	of	the	line).

Selection.MoveStart	Unit:=wdLine,	Count:=-1

This	example	sets	myRange	to	be	equal	to	the	second	word	in	the	active
document.	The	example	uses	the	MoveStart	method	to	move	the	start	position
of	myRange	(a	Range	object)	backward	one	word.	After	this	macro	is	run,	the
first	and	second	words	in	the	document	are	selected.

If	ActiveDocument.Words.Count	>=	2	Then

				Set	myRange	=	ActiveDocument.Words(2)

				With	myRange

								.MoveStart	Unit:=wdWord,	Count:=-1

								.Select

				End	With

End	If



MoveStartUntil	Method
							

Moves	the	start	position	of	the	specified	range	or	selection	until	one	of	the
specified	characters	is	found	in	the	document.	If	the	movement	is	backward
through	the	document,	the	range	or	selection	is	expanded.



Remarks

This	method	returns	the	number	of	characters	by	which	the	start	position	of	the
specified	range	or	selection	moved,	as	a	Long	value.	If	Count	is	greater	than	0
(zero),	this	method	returns	the	number	of	characters	moved	plus	1.	If	Count	is
less	than	0	(zero),	this	method	returns	the	number	of	characters	moved	minus	1.
If	no	Cset	characters	are	found,	the	specified	range	or	selection	isn't	changed	and
the	method	returns	0	(zero).	If	the	start	position	is	moved	forward	to	a	point
beyond	the	end	position,	the	range	or	selection	is	collapsed	and	both	the	start	and
end	positions	are	moved	together.

expression.MoveStartUntil(Cset,	Count)

expression			Required.	An	expression	that	returns	an	object	in	the	Applies	To
list.

Cset			Required	Variant.	One	or	more	characters.	This	argument	is	case
sensitive.

Count			Optional	Variant.	The	maximum	number	of	characters	by	which	the
specified	range	or	selection	is	to	be	moved.	Can	be	a	number	or	either	the
wdForward	or	wdBackward	constant.	If	Count	is	a	positive	number,	the	range
or	selection	is	moved	forward	in	the	document.	If	it's	a	negative	number,	the
range	or	selection	is	moved	backward.	The	default	value	is	wdForward.



Example

This	example	extends	the	selection	backward	until	a	capital	"I"	is	found.

Selection.MoveStartUntil	Cset:="I",	Count:=wdBackward

If	there's	a	dollar	sign	character	($)	in	the	first	paragraph	in	the	selection,	this
example	moves	myRange	just	before	the	dollar	sign.

Set	myRange	=	Selection.Paragraphs(1).Range

leng	=	myRange.End	-	myRange.Start

myRange.Collapse	Direction:=wdCollapseStart

myRange.MoveStartUntil	Cset:="$",	Count:=leng



MoveStartWhile	Method
							

Moves	the	start	position	of	the	specified	range	or	selection	while	any	of	the
specified	characters	are	found	in	the	document.



Remarks

While	any	character	in	Cset	is	found,	the	start	position	of	the	range	or	selection
is	moved.	This	method	returns	the	number	of	characters	that	the	start	position	of
the	range	or	selection	moved	as	a	Long	value.	If	not	Cset	characters	are	found,
the	range	or	selection	isn't	changed	and	the	method	returns	0	(zero).	If	the	start
position	is	moved	forward	to	a	position	beyond	the	original	end	position,	the	end
position	is	set	to	the	new	start	position.

expression.MoveStartWhile(Cset,	Count)

expression			Required.	An	expression	that	returns	one	of	the		objects	in	the
Applies	To	list.

Cset			Required	Variant.	One	or	more	characters.	This	argument	is	case
sensitive.

Count			Optional	Variant.	The	maximum	number	of	characters	by	which	the
specified	range	or	selection	is	to	be	moved.	Can	be	a	number	or	either	the
wdForward	or	wdBackward	constant.	If	Count	is	a	positive	number,	the	range
or	selection	is	moved	forward	in	the	document.	If	it's	a	negative	number,	the
range	or	selection	is	moved	backward.	The	default	value	is	wdForward.



Example

This	example	moves	the	start	position	of	the	selection	backward	through	the
document	while	the	space	character	is	found.

Selection.MoveStartWhile	Cset:="	",	Count:=wdBackward

This	example	moves	the	start	position	of	the	selection	backward	through	the
document	while	Count	is	less	than	or	equal	to	10	and	any	letter	from	"a"	through
"h"	is	found.

Selection.MoveStartWhile	Cset:="abcdefgh",	Count:=-10



MoveUntil	Method
							

Moves	the	specified	range	or	selection	until	one	of	the	specified	characters	is
found	in	the	document.

expression.MoveUntil(Cset,	Count)

expression			Required.	An	expression	that	returns	a	Range	of	Selection	object.

Cset			Required	Variant.	One	or	more	characters.	If	any	character	in	Cset	is
found	before	the	Count	value	expires,	the	specified	range	or	selection	is
positioned	as	an	insertion	point	immediately	before	that	character.	This	argument
is	case	sensitive.

Count			Optional	Variant.	The	maximum	number	of	characters	by	which	the
specified	range	or	selection	is	to	be	moved.	Can	be	a	number	or	either	the
wdForward	or	wdBackward	constant.	If	Count	is	a	positive	number,	the	range
or	selection	is	moved	forward	in	the	document,	beginning	at	the	end	position.	If
it's	a	negative	number,	the	range	or	selection	is	moved	backward,	beginning	at
the	start	position.	The	default	value	is	wdForward.



Remarks

This	method	returns	the	number	of	characters	by	which	the	specified	range	or
selection	was	moved,	as	a	Long	value.	If	Count	is	greater	than	0	(zero),	this
method	returns	the	number	of	characters	moved	plus	one.	If	Count	is	less	than	0
(zero),	this	method	returns	the	number	of	characters	moved	minus	one.	If	no
Cset	characters	are	found,	the	range	or	selection	isn't	not	changed	and	the
method	returns	0	(zero).



Example

This	example	moves	myRange	forward	through	the	next	100	characters	in	the
document	until	the	character	"t"	is	found.

Set	myRange	=	ActiveDocument.Words(1)

myRange.MoveUntil	Cset:="t",	Count:=100

This	example	moves	the	selection	forward	to	the	end	of	the	active	paragraph	and
then	displays	the	number	of	characters	by	which	the	selection	was	moved.

x	=	Selection.MoveUntil(Cset:=Chr$(13),	Count:=wdForward)

MsgBox	x-1	&	"	character	positions	were	moved"



MoveUp	Method
							

Moves	the	selection	up	and	returns	the	number	of	units	it's	been	moved.

Note			The	wdWindow	constant	can	be	used	to	move	to	the	top	or	bottom	of	the
active	window.	Regardless	of	the	value	of	Count	(greater	than	1	or	less	than		–
	1),	the	wdWindow	constant	moves	only	one	unit.	Use	the	wdScreen	constant	to
move	more	than	one	screen.

expression.MoveUp(Unit,	Count,	Extend)

expression			Required.	An	expression	that	returns	an	object	in	the	Applies	To	list.

Unit			Optional	Variant.	The	unit	by	which	to	move	the	selection.	Can	be	one	of
the	following	WdUnits	constants:	wdLine,	wdParagraph,	wdWindow	or
wdScreen.	The	default	value	is	wdLine.

Count			Optional	Variant.	The	number	of	units	the	selection	is	to	be	moved.	The
default	value	is	1.

Extend			Optional	Variant.	Can	be	either	wdMove	or	wdExtend.	If	wdMove	is
used,	the	selection	is	collapsed	to	the	end	point	and	moved	up.	If	wdExtend	is
used,	the	selection	is	extended	up.	The	default	value	is	wdMove.



Example

This	example	moves	the	selection	to	the	beginning	of	the	previous	paragraph.

Selection.MoveRight

Selection.MoveUp	Unit:=wdParagraph,	Count:=2,	Extend:=wdMove

This	example	displays	the	current	line	number,	moves	the	selection	up	three
lines,	and	displays	the	current	line	number	again.

MsgBox	"Line	"	&	Selection.Information(wdFirstCharacterLineNumber)

Selection.MoveUp	Unit:=wdLine,	Count:=3,	Extend:=wdMove

MsgBox	"Line	"	&	Selection.Information(wdFirstCharacterLineNumber)



MoveWhile	Method
							

Moves	the	specified	range	or	selection	while	any	of	the	specified	characters	are
found	in	the	document.



Remarks

While	any	character	in	Cset	is	found,	the	specified	range	or	selection	is	moved.
The	resulting	Range	or	Selection	object	is	positioned	as	an	insertion	point	after
whatever	Cset	characters	were	found.	This	method	returns	the	number	of
characters	by	which	the	specified	range	or	selection	was	moved,	as	a	Long
value.	If	no	Cset	characters	are	found,	the	range	or	selection	isn't	changed	and
the	method	returns	0	(zero).

expression.MoveWhile(Cset,	Count)

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

Cset			Required	Variant.	One	or	more	characters.	This	argument	is	case
sensitive.

Count			Optional	Variant.	The	maximum	number	of	characters	by	which	the
specified	range	or	selection	is	to	be	moved.	Can	be	a	number	or	either	the
wdForward	or	wdBackward	constant.	If	Count	is	a	positive	number,	the
specified	range	or	selection	is	moved	forward	in	the	document,	beginning	at	the
end	position.	If	it's	a	negative	number,	the	range	or	selection	is	moved	backward,
beginning	at	the	start	position.	The	default	value	is	wdForward.



Example

This	example	moves	the	selection	after	consecutive	tabs.

Selection.MoveWhile	Cset:=vbTab,	Count:=wdForward

This	example	moves	aRange	while	any	of	the	following	(uppercase	or	lowercase)
letters	are	found:	"a",	"t",	or	"i".

Set	aRange	=	ActiveDocument.Characters(1)

aRange.MoveWhile	Cset:="atiATI",	Count:=wdForward



MSInfo	Method
							

Starts	the	Microsoft	System	Information	application	if	it's	not	running,	or
switches	to	it	if	it's	already	running.

expression.MSInfo

expression			Required.	An	expression	that	returns	a	System	object.



Example

This	example	starts	or	switches	to	the	Microsoft	System	Information	application.

System.MSInfo



New	Method
							

Inserts	an	empty,	1-inch-square	Word	picture	object	surrounded	by	a	border.	This
method	returns	the	new	graphic	as	an	InlineShape	object.

expression.New(Range)

expression			Required.	An	expression	that	returns	an	InlineShapes	object.

Range			Required	Range	object.	The	location	of	the	new	graphic.



Example

This	example	inserts	a	new,	empty	picture	in	the	active	document	and	applies	a
shadow	border	around	the	picture.

Dim	ishapeNew	As	InlineShape

Set	ishapeNew	=	_

				ActiveDocument.InlineShapes.New(Range:=Selection.Range)

ishapeNew.Borders.Shadow	=	True

ActiveDocument.ActiveWindow.View.ShowFieldCodes	=	False



NewFrameset	Method
							

Creates	a	new	frames	page	based	on	the	specified	pane.

expression.NewFrameset

expression			Required.	An	expression	that	returns	a	Pane	object.



Remarks

For	more	information	on	creating	frames	pages,	see	Creating	frames	pages.



Example

This	example	opens	a	document	named	"Temp.doc"	and	then	creates	a	new
frames	page	whose	only	frame	contains	"Temp.doc".

Documents.Open	"C:\Documents\Temp.doc"

ActiveDocument.ActiveWindow.ActivePane.NewFrameset



NewWindow	Method
							

Opens	a	new	window	with	the	same	document	as	the	specified	window.	Returns
a	Window	object.

Note			A	colon	(:)	and	a	number	appear	in	the	window	caption	when	more	than
one	window	is	open	for	a	document.

expression.NewWindow

expression			Required.	An	expression	that	returns	an	Application	or	Window
object.



Remarks

If	the	NewWindow	method	is	used	with	the	Application	object,	a	new	window
is	opened	for	the	active	window.	The	following	two	instructions	are	functionally
equivalent.

Set	myWindow	=	ActiveDocument.ActiveWindow.NewWindow

Set	myWindow	=	NewWindow



Example

This	example	posts	a	message	that	indicates	the	number	of	windows	that	exist
before	and	after	you	open	a	new	window	for	Document1.

MsgBox	Windows.Count	&	"	windows	open"

Windows("Document1").NewWindow

MsgBox	Windows.Count	&	"	windows	open"

This	example	opens	a	new	window,	arranges	all	the	open	windows,	closes	the
new	window,	and	then	rearranges	the	open	windows.

Set	myWindow	=	NewWindow

Windows.Arrange	ArrangeStyle:=wdTiled

myWindow.Close

Windows.Arrange	ArrangeStyle:=wdTiled



Show	All



Next	Method
							

Next	method	as	it	applies	to	the	Paragraph	object.

Returnsa	Paragraph	object	that	represents	the	next	paragraph.

expression.Next(Count)

expression			Required.	An	expression	that	returns	a	Paragraph	object.

Count		Optional	Variant.	The	number	of	paragraphs	by	which	you	want	to
move	ahead.	The	default	value	is	one.

Next	method	as	it	applies	to	the	Range	and	Selection	objects.

Returns	a	Range	object	that	represents	the	specified	unit	relative	to	the	specified
selection	or	range.

expression.Next(Unit,	Count)

expression			Required.	An	expression	that	returns	one	of	the	above	objects.

Unit		Optional	Variant.	The	type	of	units	by	which	to	count.	Can	be	any
WdUnits	constant.

WdUnits	can	be	one	of	these	WdUnits	constants.
wdCharacter	Default.
wdWord
wdSentence
wdParagraph
wdSection
wdStory
wdCell
wdColumn



wdRow
wdTable
wdLine		Can	be	used	if	expression	returns	a	Selection	object.

Count		Optional	Variant.	The	number	of	units	by	which	you	want	to	move
ahead.	The	default	value	is	one.



Remarks

If	the	Range	or	Selection	is	just	before	the	specified	Unit,	the	Range	or
Selection	is	moved	to	the	following	unit.	For	example,	if	the	Selection	is	just
before	a	word,	the	following	instruction	moves	the	Selection	forward	to	the
following	word.

Selection.Next(Unit:=wdWord,	Count:=1).Select

Next	method	as	it	applies	to	the	Browser	object.

Moves	the	selection	to	the	next	item	indicated	by	the	browser	target.	Use	the
Target	property	to	change	the	browser	target.

expression.Next

expression			Required.	An	expression	that	returns	a	Browser	object.



Example

As	it	applies	to	the	Browser	object.

This	example	moves	the	insertion	point	just	before	the	next	comment	reference
marker	in	the	active	document.

With	Application.Browser

				.Target	=	wdBrowseComment

				.Next

End	With

As	it	applies	to	the	Paragraph	object

This	example	inserts	a	number	and	a	tab	before	the	first	nine	paragraphs	in	the
active	document.

For	n	=	0	To	8

				Set	myRange	=	ActiveDocument.Paragraphs(1).Next(Count:=n).Range

				myRange.Collapse	Direction:=wdCollapseStart

				myRange.InsertAfter	n	+	1	&	vbTab

Next	n

This	example	selects	the	paragraph	following	the	current	selection.

Selection.Next(Unit:=wdParagraph,	Count:=1).Select



NextCitation	Method
							

Finds	and	selects	the	next	instance	of	the	text	specified	by	ShortCitation.

expression.NextCitation(ShortCitation)

expression			Required.	An	expression	that	returns	a	TablesOfAuthorities	object.

ShortCitation			Required	String.	The	text	of	the	short	citation.



Example

This	example	selects	the	next	citation	in	the	active	document	that	begins	with	"in
re".

ActiveDocument.TablesOfAuthorities.NextCitation	_

				ShortCitation:="in	re"



NextField	Method
							

Selects	the	next	field.	If	a	field	is	found,	this	method	returns	a	Field	object;	if
not,	it	returns	Nothing.

expression.NextField

expression			Required.	An	expression	that	returns	a	Selection	object.



Example

This	example	updates	the	next	field	in	the	selection.

If	Not	(Selection.NextField	Is	Nothing)	Then

				Selection.Fields.Update

End	If

This	example	selects	the	next	field	in	the	selection,	and	if	a	field	is	found,
displays	a	message	in	the	status	bar.

Set	myField	=	Selection.NextField

If	Not	(myField	Is	Nothing)	Then	StatusBar	=	"Field	found"



NextHeaderFooter	Method
							

If	the	selection	is	in	a	header,	this	method	moves	to	the	next	header	within	the
current	section	(for	example,	from	an	odd	header	to	an	even	header)	or	to	the
first	header	in	the	following	section.	If	the	selection	is	in	a	footer,	this	method
moves	to	the	next	footer.

Note			If	the	selection	is	in	the	last	header	or	footer	in	the	last	section	of	the
document,	or	if	it's	not	in	a	header	or	footer	at	all,	an	error	occurs.

expression.NextHeaderFooter

expression			Required.	An	expression	that	returns	a	View	object.



Example

This	example	displays	the	first	page	header	in	the	active	document	and	then
switches	to	the	next	header.	The	document	needs	to	be	at	least	two	pages	long.

ActiveDocument.PageSetup.DifferentFirstPageHeaderFooter	=	True

With	ActiveDocument.ActiveWindow.View

				.Type	=	wdPrintView

				.SeekView	=wdSeekFirstPageHeader

				.NextHeaderFooter

End	With



NextNode	Method
							

Returns	the	next	DiagramNode	object	in	a	collection	of	diagram	nodes.

expression.NextNode

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.



Remarks

Use	the	PrevNode	method	to	return	the	previous	DiagramNode	object	in	a
collection	of	diagram	nodes.



Example

This	example	creates	an	organization	chart	and	adds	child	nodes	to	the	middle
diagram	node.

Sub	AddChildrenToMiddle()

				Dim	dgnRoot	As	DiagramNode

				Dim	shpDiagram	As	Shape

				Dim	dgnNext	As	DiagramNode

				Dim	intCount	As	Integer

				'Add	organization	chart	to	current	document

				Set	shpDiagram	=	ThisDocument.Shapes.AddDiagram	_

								(Type:=msoDiagramOrgChart,	Left:=10,	_

								Top:=15,	Width:=400,	Height:=475)

				'Add	four	child	nodes	to	organization	chart

				Set	dgnRoot	=	shpDiagram.DiagramNode.Children.AddNode

				For	intCount	=	1	To	3

								dgnRoot.Children.AddNode

				Next

				'Access	the	node	immediately	following	the

				'first	diagram	node	and	add	three	child	nodes

				Set	dgnNext	=	dgnRoot.Children.Item(1).NextNode

				For	intCount	=	1	To	3

								dgnNext.Children.AddNode

				Next	intCount

End	Sub



NextRevision	Method
							
Locates	and	returns	the	next	tracked	change	as	a	Revision	object.	The	changed
text	becomes	the	current	selection.	Use	the	properties	of	the	resulting	Revision
object	to	see	what	type	of	change	it	is,	who	made	it,	and	so	forth.	Use	the
methods	of	the	Revision	object	to	accept	or	reject	the	change.

expression.NextRevision(Wrap)

expression			Required.	An	expression	that	returns	a	Selection	object.

Wrap			Optional	Variant.	True	to	continue	searching	for	a	revision	at	the
beginning	of	the	document	when	the	end	of	the	document	is	reached.	The	default
value	is	False.



Remarks

If	there	are	no	tracked	changes	to	be	found,	the	current	selection	remains
unchanged.



Example

This	example	rejects	the	next	tracked	change	found	after	the	fifth	paragraph	in
the	active	document.	The	revTemp	variable	is	set	to	Nothing	if	a	change	is	not
found.

Dim	rngTemp	as	Range

Dim	revTemp	as	Revision

	

If	ActiveDocument.Paragraphs.Count	>=	5	Then

				Set	rngTemp	=	ActiveDocument.Paragraphs(5).Range

				rngTemp.Select

				Set	revTemp	=	Selection.NextRevision(Wrap:=False)

				If	Not	(revTemp	Is	Nothing)	Then	revTemp.Reject

End	If

This	example	accepts	the	next	tracked	change	found	if	the	change	type	is
inserted	text.

Dim	revTemp	as	Revision

	

Set	revTemp	=	Selection.NextRevision(Wrap:=True)

If	Not	(revTemp	Is	Nothing)	Then

				If	revTemp.Type	=	wdRevisionInsert	Then	revTemp.Accept

End	If

This	example	finds	the	next	revision	after	the	current	selection	made	by	the
author	of	the	document.

Dim	revTemp	as	Revision

Dim	strAuthor	as	String

	

strAuthor	=	ActiveDocument.BuiltInDocumentProperties(wdPropertyAuthor)

	

Do	While	True

				Set	revTemp	=	Selection.NextRevision(Wrap:=False)

				If	Not	(revTemp	Is	Nothing)	Then

								If	revTemp.Author	=	strAuthor	Then

												MsgBox	Prompt:="Another	revision	by	"	&	strAuthor	&	"!"

												Exit	Do

								End	If

				Else

								MsgBox	Prompt:="No	more	revisions!"



								Exit	Do

				End	If

Loop



NextSubdocument	Method
							

Moves	the	range	or	selection	to	the	next	subdocument.	If	there	isn't	another
subdocument,	an	error	occurs.

expression.NextSubdocument

expression			Required.	An	expression	that	returns	a	Range	or	Selection	object.



Example

This	example	switches	the	active	document	to	master	document	view	and	selects
the	first	subdocument.

If	ActiveDocument.Subdocuments.Count	>=	1	Then

				ActiveDocument.ActiveWindow.View.Type	=	wdMasterView

				Selection.HomeKey	unit:=wdStory,	Extend:=wdMove

				Selection.NextSubdocument

End	If



This	keyword	is	not	implemented.	It	is	reserved	for	future	use.



OneColorGradient	Method
							

Sets	the	specified	fill	to	a	one-color	gradient.

expression.OneColorGradient(Style,	Variant,	Degree)

expression			Required.	An	expression	that	returns	a	FillFormat	object.

	Style		Required	MsoGradientStyle.	The	gradient	style.

MsoGradientStyle	can	be	one	of	these	MsoGradientStyle	constants.
msoGradientDiagonalDown
msoGradientDiagonalUp
msoGradientFromCenter
msoGradientFromCorner
msoGradientFromTitle	Used	only	in	Microsoft	PowerPoint.
msoGradientHorizontal
msoGradientMixed
msoGradientVertical

Variant			Required	Long.	The	gradient	variant.	Can	be	a	value	from	1	to	4,
corresponding	to	the	four	variants	on	the	Gradient	tab	in	the	Fill	Effects	dialog
box.	If	Style	is	msoGradientFromCenter,	this	argument	can	be	either	1	or	2.

Degree			Required	Single.	The	gradient	degree.	Can	be	a	value	from	0.0	(dark)
to	1.0	(light).



Example

This	example	adds	a	rectangle	with	a	one-color	gradient	fill	to	the	active
document.

With	ActiveDocument.Shapes.AddShape(msoShapeRectangle,	_

								90,	90,	90,	80).Fill

				.ForeColor.RGB	=	RGB(0,	128,	128)

				.OneColorGradient	msoGradientHorizontal,	1,	1

End	With



OnTime	Method
							

Starts	a	background	timer	that	runs	a	macro	on	the	specified	date	and	at	the
specified	time.

expression.OnTime(When,	Name,	Tolerance)

expression			Required.	An	expression	that	returns	an	Application	object.

When			Required	Variant.	The	time	at	which	the	macro	is	to	be	run.	Can	be	a
string	that	specifies	a	time	(for	example,	"4:30	pm"	or	"16:30"),	or	it	can	be	a
serial	number	returned	by	a	function	such	as	TimeValue	or	TimeSerial	(for
example,	TimeValue("2:30	pm")	or	TimeSerial(14,	30,	00)).	You	can	also
include	the	date	(for	example,	"6/30	4:15	pm"	or	TimeValue("6/30	4:15
pm")).

Use	the	sum	of	the	return	values	of	the	Now	function	and	either	the	TimeValue
or	TimeSerial	function	to	set	a	timer	to	run	a	macro	a	specified	amount	of	time
after	the	statement	is	run.	For	example,	use	Now+TimeValue("00:05:30")	to	run
a	macro	5	minutes	and	30	seconds	after	the	statement	is	run.

Name			Required	String.	The	name	of	the	macro	to	be	run.	Use	the	complete
macro	path	to	ensure	that	the	correct	macro	is	run	(for	example,
"Project.Module1.Macro1").	For	the	macro	to	run,	the	document	or	template
must	be	available	both	when	the	OnTime	instruction	is	run	and	when	the	time
specified	by	When	arrives.	For	this	reason,	it's	best	to	store	the	macro	in
Normal.dot	or	another	global	template	that's	loaded	automatically.

Tolerance			Optional	Variant.	The	maximum	time	(in	seconds)	that	can	elapse
before	a	macro	that	wasn't	run	at	the	time	specified	by	When	is	canceled.
Macros	may	not	always	run	at	the	specified	time.	For	example,	if	a	sort
operation	is	under	way	or	a	dialog	box	is	being	displayed,	the	macro	will	be
delayed	until	Word	has	completed	the	task.	If	this	argument	is	0	(zero)	or
omitted,	the	macro	is	run	regardless	of	how	much	time	has	elapsed	since	the
time	specified	by	When.



Remarks

Word	can	maintain	only	one	background	timer	set	by	OnTime.	If	you	start
another	timer	before	an	existing	timer	runs,	the	existing	timer	is	canceled.



Example

This	example	runs	the	macro	named	"Macro1"	in	the	current	module	at	3:55
P.M.

Application.OnTime	When:="15:55:00",	Name:="Macro1"

This	example	runs	the	macro	named	"Macro1"	15	seconds	from	the	time	the
example	is	run.	The	macro	name	includes	the	project	and	module	name.

Application.OnTime	When:=Now	+	TimeValue("00:00:15"),	_

				Name:="Project1.Module1.Macro1"

This	example	runs	the	macro	named	"Start"	at	1:30	P.M.	The	macro	name
includes	the	project	and	module	name.

Application.OnTime	When:=TimeValue("1:30	pm"),	_

				Name:="VBAProj.Module1.Start"



Show	All



Open	Method
							

Open	method	as	it	applies	to	the	Documents	object.

Opens	the	specified	document	and	adds	it	to	the	Documents	collection.	Returns
a	Document	object.

expression.Open(FileName,	ConfirmConversions,	ReadOnly,
AddToRecentFiles,	PasswordDocument,	PasswordTemplate,	Revert,
WritePasswordDocument,	WritePasswordTemplate,	Format,	Encoding,	Visible,
OpenConflictDocument,	OpenAndRepair	,	DocumentDirection,
NoEncodingDialog)

expression			Required.	An	expression	that	returns	a	Documents	object.

FileName		Required	Variant.	The	name	of	the	document	(paths	are	accepted).

ConfirmConversions		Optional	Variant.	True	to	display	the	Convert	File
dialog	box	if	the	file	isn't	in	Microsoft	Word	format.

ReadOnly		Optional	Variant.	True	to	open	the	document	as	read-only.	Note
This	argument	doesn't	override	the	read-only	recommended	setting	on	a	saved
document.	For	example,	if	a	document	has	been	saved	with	read-only
recommended	turned	on,	setting	the	ReadOnly	argument	to	False	will	not	cause
the	file	to	be	opened	as	read/write.

AddToRecentFiles		Optional	Variant.	True	to	add	the	file	name	to	the	list	of
recently	used	files	at	the	bottom	of	the	File	menu.

PasswordDocument		Optional	Variant.	The	password	for	opening	the
document.

PasswordTemplate		Optional	Variant.	The	password	for	opening	the	template.

Revert		Optional	Variant.	Controls	what	happens	if	FileName	is	the	name	of	an
open	document.	True	to	discard	any	unsaved	changes	to	the	open	document	and



reopen	the	file.	False	to	activate	the	open	document.

WritePasswordDocument		Optional	Variant.	The	password	for	saving	changes
to	the	document.

WritePasswordTemplate		Optional	Variant.	The	password	for	saving	changes	to
the	template.

Format		Optional	Variant.	The	file	converter	to	be	used	to	open	the	document.
Can	be	one	of	the	following	WdOpenFormat	constants.

WdOpenFormat	can	be	one	of	these	WdOpenFormat	constants.
wdOpenFormatAllWord
wdOpenFormatAuto	The	default	value.
wdOpenFormatDocument
wdOpenFormatEncodedText
wdOpenFormatRTF
wdOpenFormatTemplate
wdOpenFormatText
wdOpenFormatUnicodeText
wdOpenFormatWebPages

To	specify	an	external	file	format,	apply	the	OpenFormat	property	to	a
FileConverter	object	to	determine	the	value	to	use	with	this	argument.

Encoding		Optional	Variant.	The	document	encoding	(code	page	or	character
set)	to	be	used	by	Microsoft	Word	when	you	view	the	saved	document.	Can	be
any	valid	MsoEncoding	constant.	For	the	list	of	valid	MsoEncoding	constants,
see	the	Object	Browser	in	the	Visual	Basic	Editor.	The	default	value	is	the
system	code	page.

Visible		Optional	Variant.	True	if	the	document	is	opened	in	a	visible	window.
The	default	value	is	True.

OpenConflictDocument		Optional	Variant.	Specifies	whether	to	open	the
conflict	file	for	a	document	with	an	offline	conflict.

OpenAndRepair		Optional	Variant.	True	to	repair	the	document	to	prevent



document	corruption.

DocumentDirection		Optional	WdDocumentDirection.	Indicates	the	horizontal
flow	of	text	in	a	document.

WdDocumentDirection	can	be	one	of	these	WdDocumentDirection	constants.
wdLeftToRight	default
wdRightToLeft

NoEncodingDialog		Optional	Variant.	True	to	skip	displaying	the	Encoding
dialog	box	that	Word	displays	if	the	text	encoding	cannot	be	recognized.	The
default	value	is	False.

Open	method	as	it	applies	to	the	OLEFormat	object.

Opens	the	specified	object.

expression.Open

expression			Required.	An	expression	that	returns	an	OLEFormat	object.

Open	method	as	it	applies	to	the	RecentFile,	Subdocument,	and	Version
objects.

Opens	the	specified	object.	Returns	a	Document	object	representing	the	opened
object.

expression.Open

expression			Required.	An	expression	that	returns	one	of	the	above	objects.



Example

As	it	applies	to	the	Documents	object.

This	example	opens	MyDoc.doc	as	a	read-only	document.

Sub	OpenDoc()

				Documents.Open	FileName:="C:\MyFiles\MyDoc.doc",	ReadOnly:=True

End	Sub

This	example	opens	Test.wp	using	the	WordPerfect	6.x	file	converter.

Sub	OpenDoc2()

				Dim	fmt	As	Variant

				fmt	=	Application.FileConverters("WordPerfect6x").OpenFormat

				Documents.Open	FileName:="C:\MyFiles\Test.wp",	Format:=fmt

End	Sub

As	it	applies	to	the	RecentFiles	object.

This	example	opens	each	document	in	the	RecentFiles	collection.

Sub	OpenRecentFiles()

				Dim	rFile	As	RecentFile

				For	Each	rFile	In	RecentFiles

								rFile.Open

				Next	rFile

End	Sub

As	it	applies	to	the	Version	object.

This	example	opens	the	most	recent	version	of	Report.doc.

Sub	OpenVersion()

				Dim	mydoc	As	Document

				Set	mydoc	=	Documents.Open("C:\MyFiles\Report.doc")

				If	mydoc.Versions.Count	>	0	Then

								mydoc.Versions(mydoc.Versions.Count).Open

				Else

								MsgBox	"There	are	no	saved	versions	for	this	document."

				End	If

End	Sub





OpenAsDocument	Method
							

Opens	the	specified	template	as	a	document	and	returns	a	Document	object.

Note			Opening	a	template	as	a	document	allows	the	user	to	edit	the	contents	of
the	template.	This	may	be	necessary	if	a	property	or	method	(the	Styles	property,
for	example)	isn't	available	from	the	Template	object.

expression.OpenAsDocument()

expression			Required.	An	expression	that	returns	a	Template	object.



Example

This	example	opens	the	template	attached	to	the	active	document,	displays	a
message	box	if	the	template	contains	anything	more	than	a	single	paragraph
mark,	and	then	closes	the	template.

Dim	docNew	As	Document

Set	docNew	=	ActiveDocument.AttachedTemplate.OpenAsDocument

If	docNew.Content.Text	<>	Chr(13)	Then

				MsgBox	"Template	is	not	empty"

Else

				MsgBox	"Template	is	empty"

End	If

docNew.Close	SaveChanges:=wdDoNotSaveChanges

This	example	saves	a	copy	of	the	Normal	template	as	"Backup.dot."

Dim	docNew	As	Document

Set	docNew	=	NormalTemplate.OpenAsDocument

With	docNew

				.SaveAs	FileName:="Backup.dot"

				.Close	SaveChanges:=wdDoNotSaveChanges

End	With

This	example	changes	the	formatting	of	the	Heading	1	style	in	the	template
attached	to	the	active	document.	The	UpdateStyles	method	updates	the	styles	in
the	active	document.

Dim	docNew	As	Document

Set	docNew	=	ActiveDocument.AttachedTemplate.OpenAsDocument

With	docNew.Styles(wdStyleHeading1).Font

				.Name	=	"Arial"

				.Size	=	16

				.Bold	=	False

End	With

docNew.Close	SaveChanges:=wdSaveChanges

ActiveDocument.UpdateStyles





Show	All



OpenDataSource	Method
							

Attaches	a	data	source	to	the	specified	document,	which	becomes	a	main
document	if	it's	not	one	already.

expression.OpenDataSource(Name,	Format,	ConfirmConversions,	ReadOnly,
LinkToSource,	AddToRecentFiles,	PasswordDocument,	PasswordTemplate,
Revert,	WritePasswordDocument,	WritePasswordTemplate,	Connection,
SQLStatement,	SQLStatement1,	OpenExclusive)

expression			Required.	An	expression	that	returns	a	MailMerge	object.

Name			Required	String.	The	data	source	file	name.	You	can	specify	a	Microsoft
Query	(.qry)	file	instead	of	specifying	a	data	source,	a	connection	string,	and	a
query	string.

Format			Optional	Variant.	The	file	converter	used	to	open	the	document.	Can
be	one	of	the	WdOpenFormat	constants.	To	specify	an	external	file	format,	use
the	OpenFormat	property	with	the	FileConverter	object	to	determine	the	value
to	use	with	this	argument.

WdOpenFormat	can	be	one	of	these	WdOpenFormat	constants.
wdOpenFormatAllWord
wdOpenFormatAuto	Default.
wdOpenFormatDocument
wdOpenFormatEncodedText
wdOpenFormatRTF
wdOpenFormatTemplate
wdOpenFormatText
wdOpenFormatUnicodeText
wdOpenFormatWebPages

ConfirmConversions			Optional	Variant.	True	to	display	the	Convert	File



dialog	box	if	the	file	isn't	in	Word	format.

ReadOnly			Optional	Variant.	True	to	open	the	data	source	on	a	read-only	basis.

LinkToSource			Optional	Variant.	True	to	perform	the	query	specified	by
Connection	and	SQLStatement	each	time	the	main	document	is	opened.

AddToRecentFiles			Optional	Variant.	True	to	add	the	file	name	to	the	list	of
recently	used	files	at	the	bottom	of	the	File	menu.

PasswordDocument			Optional	Variant.	The	password	used	to	open	the	data
source.

PasswordTemplate			Optional	Variant.	The	password	used	to	open	the	template.

Revert			Optional	Variant.	Controls	what	happens	if	Name	is	the	file	name	of	an
open	document.	True	to	discard	any	unsaved	changes	to	the	open	document	and
reopen	the	file;	False	to	activate	the	open	document.

WritePasswordDocument			Optional	Variant.	The	password	used	to	save
changes	to	the	document.

WritePasswordTemplate			Optional	Variant.	The	password	used	to	save	changes
to	the	template.

Connection			Optional	Variant.	A	range	within	which	the	query	specified	by
SQLStatement	is	to	be	performed.	How	you	specify	the	range	depends	on	how
data	is	retrieved.	For	example:

When	retrieving	data	through	ODBC,	you	specify	a	connection	string.
When	retrieving	data	from	Microsoft	Excel	using	dynamic	data	exchange
(DDE),	you	specify	a	named	range.
When	retrieving	data	from	Microsoft	Access,	you	specify	the	word	"Table"
or	"Query"	followed	by	the	name	of	a	table	or	query.

SQLStatement			Optional	Variant.	Defines	query	options	for	retrieving	data.

SQLStatement1			Optional	Variant.	If	the	query	string	is	longer	than	255
characters,	SQLStatement	specifies	the	first	portion	of	the	string,	and
SQLStatement1	specifies	the	second	portion.



OpenExclusive		Optional	Variant.	True	to	open	exclusively.



Remarks

To	determine	the	ODBC	connection	and	query	strings,	set	query	options
manually,	and	use	the	QueryString	property	to	return	the	connection	string.	The
following	table	includes	some	commonly	used	SQL	keywords.

Keyword Description
DSN The	name	of	the	ODBC	data	source
UID The	user	logon	ID
PWD The	user-specified	password
DBQ The	database	file	name
FIL The	file	type



Example

This	example	creates	a	new	main	document	and	attaches	the	Orders	table	from	a
Microsoft	Access	database	named	“Northwind.mdb.”

Dim	docNew	As	Document

Set	docNew	=	Documents.Add

With	docNew.MailMerge

				.MainDocumentType	=	wdFormLetters

				.OpenDataSource	_

								Name:="C:\Program	Files\Microsoft	Office"	&	_

								"\Office\Samples\Northwind.mdb",	_

								LinkToSource:=True,	AddToRecentFiles:=False,	_

								Connection:="TABLE	Orders"

End	With

This	example	creates	a	new	main	document	and	attaches	the	Microsoft	Excel
spreadsheet	named	“Names.xls.”	The	Connection	argument	retrieves	data	from
the	range	named	"Sales."

Dim	docNew	As	Document

Set	docNew	=	Documents.Add

With	docNew.MailMerge

				.MainDocumentType	=	wdCatalog

				.OpenDataSource	Name:="C:\Documents\Names.xls",	_

								ReadOnly:=True,	_

								Connection:="Sales"

End	With

This	example	uses	ODBC	to	attach	the	Microsoft	Access	database	named
"Northwind.mdb"	to	the	active	document.	The	SQLStatement	argument	selects
the	records	in	the	Customers	table.

Dim	strConnection	As	String

With	ActiveDocument.MailMerge

				.MainDocumentType	=	wdFormLetters

				strConnection	=	"DSN=MS	Access	Databases;"	_

								&	"DBQ=C:\Northwind.mdb;"	_



								&	"FIL=RedISAM;"

			.OpenDataSource	Name:="C:\NorthWind.mdb",	_

								Connection:=strConnection,	_

								SQLStatement:="SELECT	*	FROM	Customers"

End	With



Show	All



OpenHeaderSource	Method
							

Attaches	a	mail	merge	header	source	to	the	specified	document.

expression.OpenHeaderSource(Name,	Format,	ConfirmConversions,
ReadOnly,	AddToRecentFiles,	PasswordDocument,	PasswordTemplate,	Revert,
WritePasswordDocument,	WritePasswordTemplate,	OpenExclusive)

expression			Required.	An	expression	that	returns	a	MailMerge	object.

Name			Required	String.	The	file	name	of	the	header	source.

Format			Optional	Variant.	The	file	converter	used	to	open	the	document.	Can
be	one	of	the	following	WdOpenFormat	constants.	To	specify	an	external	file
format,	use	the	OpenFormat	property	with	a	FileConverter	object	to	determine
the	value	to	use	with	this	argument.

WdOpenFormat	can	be	one	of	these	WdOpenFormat	constants.
wdOpenFormatAllWord
wdOpenFormatAuto	Default.
wdOpenFormatDocument
wdOpenFormatEncodedText
wdOpenFormatRTF
wdOpenFormatTemplate
wdOpenFormatText
wdOpenFormatUnicodeText
wdOpenFormatWebPages

ConfirmConversions			Optional	Variant.	True	to	display	the	Convert	File
dialog	box	if	the	file	isn't	in	Word	format.

ReadOnly			Optional	Variant.	True	to	open	the	header	source	on	a	read-only
basis.



AddToRecentFiles			Optional	Variant.	True	to	add	the	file	name	to	the	list	of
recently	used	files	at	the	bottom	of	the	File	menu.

PasswordDocument			Optional	Variant.	The	password	required	to	open	the
header	source	document.

PasswordTemplate			Optional	Variant.	The	password	required	to	open	the
header	source	template.

Revert			Optional	Variant.	Controls	what	happens	if	Name	is	the	file	name	of	an
open	document.	True	to	discard	any	unsaved	changes	to	the	open	document	and
reopen	the	file;	False	to	activate	the	open	document.

WritePasswordDocument			Optional	Variant.	The	password	required	to	save
changes	to	the	document	data	source.

WritePasswordTemplate			Optional	Variant.	The	password	required	to	save
changes	to	the	template	data	source.

OpenExclusive		Optional	Variant.	True	to	open	exclusively.



Remarks

When	a	header	source	is	attached,	the	first	record	in	the	header	source	is	used	in
place	of	the	header	record	in	the	data	source.



Example

This	example	sets	the	active	document	as	a	main	document	for	form	letters,	and
then	it	attaches	the	header	source	named	"Header.doc"	and	the	data	document
named	"Names.doc."

With	ActiveDocument.MailMerge

				.MainDocumentType	=	wdFormLetters

				.OpenHeaderSource	Name:="C:\Documents\Header.doc",	_

									Revert:=False,	AddToRecentFiles:=False

				.OpenDataSource	Name:="C:\Documents\Names.doc"

End	With



OpenOrCloseUp	Method
							

If	spacing	before	the	specified	paragraphs	is	0	(zero),	this	method	sets	spacing	to
12	points.	If	spacing	before	the	paragraphs	is	greater	than	0	(zero),	this	method
sets	spacing	to	0	(zero).

expression.OpenOrCloseUp

expression			Required.	An	expression	that	returns	a	Paragraph,	Paragraphs,	or
ParagraphFormat	object.



Example

This	example	toggles	the	formatting	of	the	first	paragraph	in	the	active	document
to	either	add	12	points	of	space	before	the	paragraph	or	leave	no	space	before	it.

ActiveDocument.Paragraphs(1).OpenOrCloseUp



OpenUp	Method
							

Sets	spacing	before	the	specified	paragraphs	to	12	points.

expression.OpenUp

expression			Required.	An	expression	that	returns	a	Paragraph,	Paragraphs,	or
ParagraphFormat	object.



Remarks

The	following	two	statements	are	equivalent:

ActiveDocument.Paragraphs(1).OpenUp

ActiveDocument.Paragraphs(1).SpaceBefore	=	12



Example

This	example	changes	the	formatting	of	the	second	paragraph	in	the	active
document	to	leave	12	points	of	space	before	the	paragraph.

ActiveDocument.Paragraphs(2).OpenUp



Options	Method
							

Displays	the	Envelope	Options	dialog	box.

expression.Options

expression			Required.	An	expression	that	returns	an	Envelope	object.



Remarks

The	Options	method	works	only	if	the	document	is	the	main	document	of	an
envelope	mail	merge.



Example

This	example	checks	that	the	active	document	is	an	envelope	mail	merge	main
document,	and	if	it	is,	displays	the	Envelope	Options	dialog	box.

Sub	EnvelopeOptions()

				If	ThisDocument.MailMerge.MainDocumentType	=	wdEnvelopes	Then

								ActiveDocument.Envelope.Options

				End	If

End	Sub



OrganizerCopy	Method
							

Copies	the	specified	AutoText	entry,	toolbar,	style,	or	macro	project	item	from
the	source	document	or	template	to	the	destination	document	or	template.

expression.OrganizerCopy(Source,	Destination,	Name,	Object)

expression			Required.	An	expression	that	returns	an	Application	object.

Source			Required	String.	The	document	or	template	file	name	that	contains	the
item	you	want	to	copy.

Destination			Required	String.	The	document	or	template	file	name	to	which
you	want	to	copy	an	item.

Name			Required	String.	The	name	of	the	AutoText	entry,	toolbar,	style,	or
macro	you	want	to	copy.

Object		Required	WdOrganizerObject.	The	kind	of	item	you	want	to	copy.

WdOrganizerObject	can	be	one	of	these	WdOrganizerObject	constants.
wdOrganizerObjectAutoText
wdOrganizerObjectCommandBars
wdOrganizerObjectProjectItems
wdOrganizerObjectStyles



Example

This	example	copies	all	the	AutoText	entries	in	the	template	attached	to	the
active	document	to	the	Normal	template.

Dim	atEntry	As	AutoTextEntry

For	Each	atEntry	In	_

								ActiveDocument.AttachedTemplate.AutoTextEntries

				Application.OrganizerCopy	_

								Source:=ActiveDocument.AttachedTemplate.FullName,	_

								Destination:=NormalTemplate.FullName,	Name:=atEntry.Name,	_

								Object:=wdOrganizerObjectAutoText

Next	atEntry

If	the	style	named	"SubText"	exists	in	the	active	document,	this	example	copies
the	style	to	C:\Templates\Template1.dot.

Dim	styleLoop	As	Style

For	Each	styleLoop	In	ActiveDocument.Styles

				If	styleLoop	=	"SubText"	Then

								Application.OrganizerCopy	Source:=ActiveDocument.Name,	_

												Destination:="C:\Templates\Template1.dot",	_

												Name:="SubText",	_

												Object:=wdOrganizerObjectStyles

				End	If

Next	styleLoop



OrganizerDelete	Method
							

Deletes	the	specified	style,	AutoText	entry,	toolbar,	or	macro	project	item	from	a
document	or	template.

expression.OrganizerDelete(Source,	Name,	Object)

expression			Required.	An	expression	that	returns	an	Application	object.

Source			Required	String.	The	file	name	of	the	document	or	template	that
contains	the	item	you	want	to	delete.

Name			Required	String.	The	name	of	the	style,	AutoText	entry,	toolbar,	or
macro	you	want	to	delete.

Object		Required	WdOrganizerObject.	The	kind	of	item	you	want	to	copy.

WdOrganizerObject	can	be	one	of	these	WdOrganizerObject	constants.
wdOrganizerObjectAutoText
wdOrganizerObjectCommandBars
wdOrganizerObjectProjectItems
wdOrganizerObjectStyles



Example

This	example	deletes	the	toolbar	named	"Custom	1"	from	the	Normal	template.

Dim	cbLoop	As	CommandBar

For	Each	cbLoop	In	CommandBars

				If	cbLoop.Name	=	"Custom	1"	Then	

								Application.OrganizerDelete	Source:=NormalTemplate.Name,	_

												Name:="Custom	1",	_

												Object:=wdOrganizerObjectCommandBars

				End	If

Next	cbLoop

This	example	prompts	the	user	to	delete	each	AutoText	entry	in	the	template
attached	to	the	active	document.	If	the	user	clicks	the	Yes	button,	the	AutoText
entries	are	deleted.

Dim	atEntry	As	AutoTextEntry

Dim	intResponse	As	Integer

For	Each	atEntry	In	_

								ActiveDocument.AttachedTemplate.AutoTextEntries

				intResponse	=	_

								MsgBox("Do	you	want	to	delete	the	"	&	atEntry.Name	_

								&	"	AutoText	entry?",	vbYesNoCancel)

				If	intResponse	=	vbYes	Then

								With	ActiveDocument.AttachedTemplate

												Application.OrganizerDelete	_

																Source:=	.Path	&	"\"	&	.Name,	_

																Name:=atEntry.Name,	_

																Object:=wdOrganizerObjectAutoText

								End	With

				ElseIf	intResponse	=	vbCancel	Then

								Exit	For

				End	If

Next	atEntry





OrganizerRename	Method
							

Renames	the	specified	style,	AutoText	entry,	toolbar,	or	macro	project	item	in	a
document	or	template.

expression.OrganizerRename(Source,	Name,	NewName,	Object)

expression			Required.	An	expression	that	returns	an	Application	object.

Source			Required	String.	The	file	name	of	the	document	or	template	that
contains	the	item	you	want	to	rename.

Name			Required	String.	The	name	of	the	style,	AutoText	entry,	toolbar,	or
macro	you	want	to	rename.

NewName			Required	String.	The	new	name	for	the	item.

Object		Required	WdOrganizerObject.	The	kind	of	item	you	want	to	copy.

WdOrganizerObject	can	be	one	of	these	WdOrganizerObject	constants.
wdOrganizerObjectAutoText
wdOrganizerObjectCommandBars
wdOrganizerObjectProjectItems
wdOrganizerObjectStyles



Example

This	example	changes	the	name	of	the	style	named	"SubText"	in	the	active
document	to	"SubText2."

Dim	styleLoop	as	Style

For	Each	styleLoop	In	ActiveDocument.Styles

				If	styleLoop.NameLocal	=	"SubText"	Then

								Application.OrganizerRename	_

												Source:=ActiveDocument.Name,	Name:="SubText",	_

												NewName:="SubText2",	_

												Object:=wdOrganizerObjectStyles

				End	If

Next	styleLoop

This	example	changes	the	name	of	the	macro	module	named	"Module1"	in	the
attached	template	to	"Macros1."

Dim	dotTemp	As	Template

dotTemp	=	ActiveDocument.AttachedTemplate.Name

Application.OrganizerRename	Source:=dotTemp,	Name:="Module1",	_

				NewName:="Macros1",	Object:=wdOrganizerObjectProjectItems



Outdent	Method
							

Removes	one	level	of	indent	for	one	or	more	paragraphs.

Note			Using	this	method	is	equivalent	to	clicking	the	Decrease	Indent	button
on	the	Formatting	toolbar.

expression.Outdent

expression			Required.	An	expression	that	returns	a	Paragraph	or	Paragraphs
object.



Example

This	example	indents	all	the	paragraphs	in	the	active	document	twice,	and	then	it
removes	one	level	of	the	indent	for	the	first	paragraph.

With	ActiveDocument.Paragraphs

				.Indent

				.Indent

End	With

ActiveDocument.Paragraphs(1).Outdent



OutlineDemote	Method
							

Applies	the	next	heading	level	style	(Heading	1	through	Heading	8)	to	the
specified	paragraph	or	paragraphs.	For	example,	if	a	paragraph	is	formatted	with
the	Heading	2	style,	this	method	demotes	the	paragraph	by	changing	the	style	to
Heading	3.

expression.OutlineDemote

expression			Required.	An	expression	that	returns	a	Paragraph	or	Paragraphs
object.



Example

This	example	demotes	the	selected	paragraphs.

Selection.Paragraphs.OutlineDemote

This	example	demotes	the	third	paragraph	in	the	active	document.

ActiveDocument.Paragraphs(3).OutlineDemote



OutlineDemoteToBody	Method
							

Demotes	the	specified	paragraph	or	paragraphs	to	body	text	by	applying	the
Normal	style.

expression.OutlineDemoteToBody

expression			Required.	An	expression	that	returns	a	Paragraph	or	Paragraphs
object.



Example

This	example	demotes	the	selected	paragraphs	to	body	text	by	applying	the
Normal	style.

Selection.Paragraphs.OutlineDemoteToBody

This	example	switches	the	active	window	to	outline	view	and	demotes	the	first
paragraph	in	the	selection	to	body	text.

ActiveDocument.ActiveWindow.View.Type	=	wdOutlineView

Selection.Paragraphs(1).OutlineDemoteToBody



OutlinePromote	Method
							

Applies	the	previous	heading	level	style	(Heading	1	through	Heading	8)	to	the
specified	paragraph	or	paragraphs.	For	example,	if	a	paragraph	is	formatted	with
the	Heading	2	style,	this	method	promotes	the	paragraph	by	changing	the	style	to
Heading	1.

expression.OutlinePromote

expression			Required.	An	expression	that	returns	a	Paragraph	or	Paragraphs
object.



Example

This	example	promotes	the	selected	paragraphs.

Selection.Paragraphs.OutlinePromote

This	example	switches	the	active	window	to	outline	view	and	promotes	the	first
paragraph	in	the	active	document.

ActiveDocument.ActiveWindow.View.Type	=	wdOutlineView

ActiveDocument.Paragraphs(1).OutlinePromote



PageScroll	Method
							

Scrolls	through	the	specified	pane	or	window	page	by	page.

expression.PageScroll(Down,	Up)

expression			Required.	An	expression	that	returns	a	Window	or	Pane	object.

Down			Optional	Variant.	The	number	of	pages	to	be	scrolled	down.	If	this
argument	is	omitted,	this	value	is	assumed	to	be	1.

Up			Optional	Variant.	The	number	of	pages	to	be	scrolled	up.



Remarks

The	PageScroll	method	is	available	only	if	you're	in	print	layout	view	or	web
layout	view.	This	method	doesn't	affect	the	position	of	the	insertion	point.

If	Down	and	Up	are	both	specified,	the	window	is	scrolled	by	the	difference	of
the	arguments.	For	example,	if	Down	is	2	and	Up	is	4,	the	window	is	scrolled	up
two	pages.



Example

This	example	scrolls	down	three	pages	in	the	active	window.

ActiveDocument.ActiveWindow.View.Type	=	wdPrintView

ActiveDocument.ActiveWindow.PageScroll	Down:=3

This	example	scrolls	up	one	page	in	the	active	pane.

ActiveDocument.ActiveWindow.View.Type	=	wdPrintView

ActiveDocument.ActiveWindow.ActivePane.PageScroll	Up:=1

This	example	scrolls	down	one	page	in	the	active	window.

ActiveDocument.ActiveWindow.View.Type	=	wdPrintView

ActiveDocument.ActiveWindow.PageScroll



Paste	Method
							

Inserts	the	contents	of	the	Clipboard	at	the	specified	range	or	selection.	If	you
don't	want	to	replace	the	contents	of	the	range	or	selection,	use	the	Collapse
method	before	using	this	method.

expression.Paste

expression			Required.	An	expression	that	returns	a	Range	or	Selection	object.



Remarks

When	this	method	is	used	with	a	range	object,	the	range	expands	to	include	the
contents	of	the	Clipboard.	When	this	method	is	used	with	a	selection	object,	the
selection	doesn't	expand	to	include	the	Clipboard	contents;	instead,	the	selection
is	positioned	after	the	pasted	Clipboard	contents.



Example

This	example	copies	and	pastes	the	first	table	in	the	active	document	into	a	new
document.

If	ActiveDocument.Tables.Count	>=	1	Then

				ActiveDocument.Tables(1).Range.Copy

				Documents.Add.Content.Paste

End	If

This	example	copies	the	first	paragraph	in	the	document	and	pastes	it	at	the
insertion	point.

ActiveDocument.Paragraphs(1).Range.Copy

Selection.Collapse	Direction:=wdCollapseStart

Selection.Paste

This	example	copies	the	selection	and	pastes	it	at	the	end	of	the	document.

If	Selection.Type	<>	wdSelectionIP	Then

				Selection.Copy

				Set	Range2	=	ActiveDocument.Content

				Range2.Collapse	Direction:=wdCollapseEnd

				Range2.Paste

End	If



Show	All



PasteAndFormat	Method
							

Pastes	the	selected	table	cells	and	formats	them	as	specified.

expression.PasteAndFormat(Type)

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

Type		Required	WdRecoveryType.	The	type	of	formatting	to	use	when	pasting
the	selected	table	cells.

WdRecoveryType	can	be	one	of	these	WdRecoveryType	constants.
wdChart		Pastes	a	Microsoft	Excel	chart	as	an	embedded	OLE	object.
wdChartLinked	Pastes	an	Excel	chart	and	links	it	to	the	original	Excel
spreadsheet.
wdChartPicture		Pastes	an	Excel	chart	as	a	picture.
wdFormatOriginalFormatting		Preserves	original	formatting	of	the	pasted
material.
wdFormatPlainText		Pastes	as	plain,	unformatted	text.
wdFormatSurroundingFormattingWithEmphasis	Matches	the	formatting	of
the	pasted	text	to	the	formatting	of	surrounding	text.
wdListCombineWithExistingList		Merges	a	pasted	list	with	neighboring	lists.
wdListContinueNumbering		Continues	numbering	of	a	pasted	list	from	the	list
in	the	document.
wdListRestartNumbering		Restarts	numbering	of	a	pasted	list.
wdSingleCellTable		Pastes	a	single	cell	table	as	a	separate	table.
wdSingleCellText		Pastes	a	single	cell	as	text.
wdTableAppendTable		Merges	pasted	cells	into	an	existing	table	by	inserting
the	pasted	rows	between	the	selected	rows.
wdTableInsertAsRows		Inserts	a	pasted	table	as	rows	between	two	rows	in	the
target	table.



wdTableOriginalFormatting		Pastes	an	appended	table	without	merging	table
styles.
wdTableOverwriteCells		Pastes	table	cells	and	overwrites	existing	table	cells.



Example

This	example	pastes	a	selected	Microsoft	Excel	chart	as	a	picture.	This	example
assumes	that	the	Clipboard	contains	an	Excel	chart.

Sub	PasteChart()

				Selection.PasteAndFormat	Type:=wdChartPicture

End	Sub



PasteAppendTable	Method
							

Merges	pasted	cells	into	an	existing	table	by	inserting	the	pasted	rows	between
the	selected	rows.	No	cells	are	overwritten.

expression.PasteAppendTable

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.



Example

This	example	pastes	table	cells	by	inserting	rows	into	the	current	table	at	the
insertion	point.	This	example	assumes	that	the	Clipboard	contains	a	collection	of
table	cells.

Sub	PasteAppend

				Selection.PasteAppendTable

End	Sub



PasteAsNestedTable	Method
							

Pastes	a	cell	or	group	of	cells	as	a	nested	table	into	the	selected	range.

expression.PasteAsNestedTable

expression			Required.	An	expression	that	returns	a	Range	or	Selection	object.



Remarks

You	can	use	PasteAsNestedTable	only	if	the	Clipboard	contains	a	cell	or	group
of	cells	and	the	selected	range	is	a	cell	or	group	of	cells	in	the	current	document.



Example

This	example	pastes	the	contents	of	the	Clipboard	into	the	third	cell	of	the	first
table	in	the	active	document.

ActiveDocument.Tables(1).Rows(1).Cells(3).Range	_

				.PasteAsNestedTable



PasteExcelTable	Method
							

Pastes	and	formats	a	Microsoft	Excel	table.

expression.PasteExcelTable(LinkedToExcel,	WordFormatting,	RTF)

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

LinkedToExcel		Required	Boolean.	True	links	the	pasted	table	to	the	original
Excel	file	so	that	changes	made	to	the	Excel	file	are	reflected	in	Microsoft	Word.

WordFormatting		Required	Boolean.	True	formats	the	table	using	the
formatting	in	the	Word	document.	False	formats	the	table	according	to	the
original	Excel	file.

RTF		Required	Boolean.	True	pastes	the	Excel	table	using	Rich	Text	Format
(RTF).	False	pastes	the	Excel	table	as	HTML.



Example

This	example	pastes	an	Excel	table	into	the	active	document.	The	parameters
specify	that	the	pasted	table	is	linked	to	the	Excel	file,	retains	the	original	Excel
formatting,	and	is	pasted	as	RTF.	This	example	assumes	that	the	Clipboard
contains	an	Excel	table.

Sub	PasteExcelFormatted()

				Selection.PasteExcelTable	_

								LinkedToExcel:=True,	_

								WordFormatting:=False,	_

								RTF:=True

End	Sub



PasteFormat	Method
							

Applies	formatting	copied	with	the	CopyFormat	method	to	the	selection.	If	a
paragraph	mark	was	selected	when	the	CopyFormat	method	was	used,	Word
applies	paragraph	formatting	in	addition	to	character	formatting.

expression.PasteFormat

expression			Required.	An	expression	that	returns	a	Selection	object.



Example

This	example	copies	the	paragraph	and	character	formatting	from	the	first
paragraph	in	the	selection	to	the	next	paragraph	in	the	selection.

With	Selection

				.Paragraphs(1).Range.Select

				.CopyFormat

				.Paragraphs(1).Next.Range.Select

				.PasteFormat

End	With

This	example	collapses	the	selection	and	copies	the	character	formatting	to	the
next	word.

With	Selection

				.Collapse	Direction:=wdCollapseStart

				.CopyFormat

				.Next(Unit:=wdWord,	Count:=1).Select

				.PasteFormat

End	With



PasteSpecial	Method
							

Inserts	the	contents	of	the	Clipboard.	Unlike	with	the	Paste	method,	with
PasteSpecial	you	can	control	the	format	of	the	pasted	information	and
(optionally)	establish	a	link	to	the	source	file	(for	example,	a	Microsoft	Excel
worksheet).

Note			If	you	don't	want	to	replace	the	contents	of	the	specified	range	or
selection,	use	the	Collapse	method	before	you	use	this	method.	When	you	use
this	method,	the	range	or	selection	doesn't	expand	to	include	the	contents	of	the
Clipboard.

expression.PasteSpecial(IconIndex,	Link,	Placement,	DisplayAsIcon,
DataType,	IconFileName,	IconLabel)

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

IconIndex		Optional	Variant.	If	DisplayAsIcon	is	True,	this	argument	is	a
number	that	corresponds	to	the	icon	you	want	to	use	in	the	program	file	specified
by	IconFilename.	Icons	appear	in	the	Change	Icon	dialog	box	(Insert	menu,
Object	command,	Create	New	tab):	0	(zero)	corresponds	to	the	first	icon,	1
corresponds	to	the	second	icon,	and	so	on.	If	this	argument	is	omitted,	the	first
(default)	icon	is	used.

Link		Optional	Variant.	True	to	create	a	link	to	the	source	file	of	the	Clipboard
contents.	The	default	value	is	False.

Placement		Optional	Variant.	Can	be	either	of	the	following
WdOLEPlacement	constants:	wdFloatOverText	or	wdInLine.	The	default
value	is	wdInLine.

DisplayAsIcon		Optional	Variant.Optional	Variant.	True	to	display	the	link	as
an	icon.	The	default	value	is	False.



DataType		Optional	Variant.	A	format	for	the	Clipboard	contents	when	they're
inserted	into	the	document.	WdPastDataType.

Can	be	one	of	the	following	WdPasteDataType	constants
wdPasteBitmap
wdPasteDeviceIndependentBitmap
wdPasteEnhancedMetafile
wdPasteHTML
wdPasteHyperlink
wdPasteMetafilePicture
wdPasteOLEObject
wdPasteRTF
wdPasteShape
wdPasteText
The	default	format	varies,	depending	on	the	contents	of	the	Clipboard.

IconFileName		Optional	Variant.If	DisplayAsIcon	is	True,	this	argument	is	the
path	and	file	name	for	the	file	in	which	the	icon	to	be	displayed	is	stored.

IconLabel		Optional	Variant.If	DisplayAsIcon	is	True,	this	argument	is	the	text
that	appears	below	the	icon.



Example

This	example	inserts	the	Clipboard	contents	at	the	insertion	point	as	unformatted
text.

Selection.Collapse	Direction:=wdCollapseStart

Selection.Range.PasteSpecial	DataType:=wdPasteText

This	example	copies	the	selected	text	and	pastes	it	into	a	new	document	as	a
hyperlink.	The	source	document	must	first	be	saved	for	this	example	to	work.

If	Selection.Type	=	wdSelectionNormal	Then

				Selection.Copy

				Documents.Add.Content.PasteSpecial	Link:=True,	_

								DataType:=wdPasteHyperlink

End	If



Show	All



Patterned	Method
							

Sets	the	specified	fill	to	a	pattern.

expression.Patterned(Pattern)

expression			Required.	An	expression	that	returns	a	FillFormat	object.

Pattern		Required	MsoPatternType.	The	pattern	to	be	used	for	the	specified	fill.

MsoPatternType	can	be	one	of	these	MsoPatternType	constants.
msoPattern10Percent
msoPattern25Percent
msoPattern40Percent
msoPattern5Percent
msoPattern70Percent
msoPattern80Percent
msoPatternDarkDownwardDiagonal
msoPatternDarkUpwardDiagonal
msoPatternDashedDownwardDiagonal
msoPattern20Percent
msoPattern30Percent
msoPattern50Percent
msoPattern60Percent
msoPattern75Percent
msoPattern90Percent
msoPatternDarkHorizontal
msoPatternDarkVertical
msoPatternDashedHorizontal
msoPatternDashedUpwardDiagonal
msoPatternDashedVertical



msoPatternDiagonalBrick
msoPatternDivot
msoPatternDottedDiamond
msoPatternDottedGrid
msoPatternHorizontalBrick
msoPatternLargeCheckerBoard
msoPatternLargeConfetti
msoPatternLargeGrid
msoPatternLightDownwardDiagonal
msoPatternLightHorizontal
msoPatternLightUpwardDiagonal
msoPatternLightVertical
msoPatternMixed
msoPatternNarrowHorizontal
msoPatternNarrowVertical
msoPatternOutlinedDiamond
msoPatternPlaid
msoPatternShingle
msoPatternSmallCheckerBoard
msoPatternSmallConfetti
msoPatternSmallGrid
msoPatternSolidDiamond
msoPatternSphere
msoPatternTrellis
msoPatternWave
msoPatternWeave
msoPatternWideDownwardDiagonal
msoPatternWideUpwardDiagonal
msoPatternZigZag



Remarks

Use	the	BackColor	and	ForeColor	properties	to	set	the	colors	used	in	the
pattern.



Example

This	example	adds	an	oval	with	a	patterned	fill	to	the	active	document.

Sub	FillPattern()

				With	ActiveDocument.Shapes.AddShape	_

								(msoShapeOval,	60,	60,	80,	40).Fill

								.ForeColor.RGB	=	RGB(128,	0,	0)

								.BackColor.RGB	=	RGB(0,	0,	255)

								.Patterned	msoPatternDarkVertical

				End	With

End	Sub



Show	All



PhoneticGuide	Method
							

Adds	phonetic	guides	to	the	specified	range.

expression.PhoneticGuide(Text,	Alignment,	Raise,	FontSize,	FontName)

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

Text		Required	String.	The	phonetic	text	to	add.

Alignment		Optional	WdPhoneticGuideAlignmentType.	The	alignment	of	the
added	phonetic	text.

WdPhoneticGuideAlignmentType	can	be	one	of	these
WdPhoneticGuideAlignmentType	constants.
wdPhoneticGuideAlignmentCenter		Microsoft	Word	centers	phonetic	text
over	the	specified	range.	This	is	the	default	value.
wdPhoneticGuideAlignmentLeft		Word	left-aligns	phonetic	text	with	the
specified	range.
wdPhoneticGuideAlignmentOneTwoOne		Word	adjusts	the	inside	and	outside
spacing	of	the	phonetic	text	in	a	1:2:1	ratio.
wdPhoneticGuideAlignmentRight		Word	right-aligns	phonetic	text	with	the
specified	range.
wdPhoneticGuideAlignmentRightSuperscript		Word	right-aligns	superscript
text	with	the	specified	range.
wdPhoneticGuideAlignmentZeroOneZero		Word	adjusts	the	inside	and
outside	spacing	of	the	phonetic	text	in	a	0:1:0	ratio.

Raise		Optional	Long.	The	distance	(in	points)	from	the	top	of	the	text	in	the
specified	range	to	the	top	of	the	phonetic	text.	If	no	value	is	specified,	Microsoft
Word	automatically	sets	the	phonetic	text	at	an	optimum	distance	above	the
specified	range.



FontSize		Optional	Long.	The	font	size	to	use	for	the	phonetic	text.	If	no	value
is	specified,	Word	uses	a	font	size	50%	smaller	than	the	text	in	the	specified
range.

FontName		Optional	String.		The	name	of	the	font	to	use	for	the	phonetic	text.
If	no	value	is	specified,	Word	uses	the	same	font	as	the	text	in	the	specified
range.



Remarks

For	more	information	on	using	Word	with	East	Asian	languages,	see	Word
features	for	East	Asian	languages.

mk:@MSITStore:wdmain10.chm::/html/wdrefFeaturesAvailableInWordWhenAsianLanguagesAreEnabled.htm


Example

This	example	adds	a	phonetic	guide	to	the	selected	phrase	"tres	chic."

Selection.Range.PhoneticGuide	Text:="tray	sheek",	_

				Alignment:=	wdPhoneticGuideAlignmentCenter,	_

				Raise:=11,	FontSize:=7



PicasToPoints	Method
							

Converts	a	measurement	from	picas	to	points	(1	pica	=	12	points).	Returns	the
converted	measurement	as	a	Single.

expression.PicasToPoints(Picas)

expression			Optional.	An	expression	that	returns	an	Application	object.

Picas			Required	Single.	The	pica	value	to	be	converted	to	points.



Example

This	example	adds	line	numbers	to	the	active	document	and	sets	the	distance
between	the	line	numbers	and	the	document	text	to	4	picas.

With	ActiveDocument.PageSetup.LineNumbering

				.Active	=	True

				.DistanceFromText	=	PicasToPoints(4)

End	With

This	example	sets	the	first-line	indent	for	the	selected	paragraphs	to	3	picas.

Selection.ParagraphFormat.FirstLineIndent	=	PicasToPoints(3)



PickUp	Method
							

Copies	the	formatting	of	the	specified	shape.	Use	the	Apply	method	to	apply	the
copied	formatting	to	another	shape.

expression.PickUp

expression			Required.	An	expression	that	returns	a	Shape	or	ShapeRange
object.



Example

This	example	copies	the	formatting	of	shape	one	on	myDocument	and	then
applies	the	copied	formatting	to	shape	two.

Set	myDocument	=	ActiveDocument

With	myDocument

				.Shapes(1).PickUp

				.Shapes(2).Apply

End	With



PixelsToPoints	Method
							

Converts	a	measurement	from	pixels	to	points.	Returns	the	converted
measurement	as	a	Single.

expression.PixelsToPoints(Pixels,	fVertical)

expression			Required.	An	expression	that	returns	an	Application	object.

Pixels			Required	Single.	The	pixel	value	to	be	converted	to	points.

fVertical			Optional	Variant.	True	to	convert	vertical	pixels;	False	to	convert
horizontal	pixels.



Example

This	example	displays	the	height	and	width	in	points	of	an	object	measured	in
pixels.

MsgBox	"320x240	pixels	is	equivalent	to	"	_

				&	PixelsToPoints(320,	False)	&	"x"	_

				&	PixelsToPoints(240,	True)	_

				&	"	points	on	this	display."



PointsToCentimeters	Method
							

Converts	a	measurement	from	points	to	centimeters	(1	centimeter	=	28.35
points).	Returns	the	converted	measurement	as	a	Single.

expression.PointsToCentimeters(Points)

expression			Optional.	An	expression	that	returns	an	Application	object.

Points			Required	Single.	The	measurement,	in	points.



Example

This	example	converts	a	measurement	of	30	points	to	the	corresponding	number
of	centimeters.

MsgBox	PointsToCentimeters(30)	&	"	centimeters"

This	example	converts	the	value	of	the	variable	sngData	(a	measurement	in
points)	to	centimeters,	inches,	lines,	millimeters,	or	picas,	depending	on	the
value	of	the	variable	intUnit	(a	value	from	1	through	5	that	indicates	the
resulting	unit	of	measurement).

Function	ConvertPoints(ByVal	intUnit	As	Integer,	_

				sngData	As	Single)	As	Single

				Select	Case	intUnit

								Case	1

												ConvertPoints	=	PointsToCentimeters(sngData)

								Case	2

												ConvertPoints	=	PointsToInches(sngData)

								Case	3

												ConvertPoints	=	PointsToLines(sngData)

								Case	4

												ConvertPoints	=	PointsToMillimeters(sngData)

								Case	5

												ConvertPoints	=	PointsToPicas(sngData)

								Case	Else

												Error	5

				End	Select

End	Function



PointsToInches	Method
							

Converts	a	measurement	from	points	to	inches	(1	inch	=	72	points).	Returns	the
converted	measurement	as	a	Single.

expression.PointsToInches(Points)

expression			Optional.	An	expression	that	returns	an	Application	object.

Points			Required	Single.	The	measurement,	in	points.



Example

This	example	converts	the	measurement	of	the	top	margin	for	the	active
document	to	inches	and	displays	the	result	in	a	message	box.

MsgBox	PointsToInches(ActiveDocument.Sections(1)	_

				.PageSetup.TopMargin)

This	example	converts	the	value	of	the	variable	sngData	(a	measurement	in
points)	to	centimeters,	inches,	lines,	millimeters,	or	picas,	depending	on	the
value	of	the	variable	intUnit	(a	value	from	1	through	5	that	indicates	the
resulting	unit	of	measurement).

Function	ConvertPoints(ByVal	intUnit	As	Integer,	_

				sngData	As	Single)	As	Single

				Select	Case	intUnit

								Case	1

												ConvertPoints	=	PointsToCentimeters(sngData)

								Case	2

												ConvertPoints	=	PointsToInches(sngData)

								Case	3

												ConvertPoints	=	PointsToLines(sngData)

								Case	4

												ConvertPoints	=	PointsToMillimeters(sngData)

								Case	5

												ConvertPoints	=	PointsToPicas(sngData)

								Case	Else

												Error	5

				End	Select

End	Function



PointsToLines	Method
							

Converts	a	measurement	from	points	to	lines	(1	line	=	12	points).	Returns	the
converted	measurement	as	a	Single.

expression.PointsToLines(Points)

expression			Optional.	An	expression	that	returns	an	Application	object.

Points			Required	Single.	The	measurement,	in	points.



Example

This	example	converts	the	line	spacing	value	of	the	first	paragraph	in	the
selection	from	points	to	lines.

MsgBox	PointsToLines(Selection.Paragraphs(1).LineSpacing)	_

				&	"	lines"

This	example	converts	the	value	of	the	variable	sngData	(a	measurement	in
points)	to	centimeters,	inches,	lines,	millimeters,	or	picas,	depending	on	the
value	of	the	variable	intUnit	(a	value	from	1	through	5	that	indicates	the
resulting	unit	of	measurement).

Function	ConvertPoints(ByVal	intUnit	As	Integer,	_

				sngData	As	Single)	As	Single

				Select	Case	intUnit

								Case	1

												ConvertPoints	=	PointsToCentimeters(sngData)

								Case	2

												ConvertPoints	=	PointsToInches(sngData)

								Case	3

												ConvertPoints	=	PointsToLines(sngData)

								Case	4

												ConvertPoints	=	PointsToMillimeters(sngData)

								Case	5

												ConvertPoints	=	PointsToPicas(sngData)

								Case	Else

												Error	5

				End	Select

End	Function



PointsToMillimeters	Method
							

Converts	a	measurement	from	points	to	millimeters	(1	millimeter	=	2.835
points).	Returns	the	converted	measurement	as	a	Single.

expression.PointsToMillimeters(Points)

expression			Optional.	An	expression	that	returns	an	Application	object.

Points			Required	Single.	The	measurement,	in	points.



Example

This	example	converts	72	points	to	the	corresponding	number	of	millimeters.

MsgBox	PointsToMillimeters(72)	&	"	millimeters"

This	example	converts	the	value	of	the	variable	sngData	(a	measurement	in
points)	to	centimeters,	inches,	lines,	millimeters,	or	picas,	depending	on	the
value	of	the	variable	intUnit	(a	value	from	1	through	5	that	indicates	the
resulting	unit	of	measurement).

Function	ConvertPoints(ByVal	intUnit	As	Integer,	_

				sngData	As	Single)	As	Single

				Select	Case	intUnit

								Case	1

												ConvertPoints	=	PointsToCentimeters(sngData)

								Case	2

												ConvertPoints	=	PointsToInches(sngData)

								Case	3

												ConvertPoints	=	PointsToLines(sngData)

								Case	4

												ConvertPoints	=	PointsToMillimeters(sngData)

								Case	5

												ConvertPoints	=	PointsToPicas(sngData)

								Case	Else

												Error	5

				End	Select

End	Function



PointsToPicas	Method
							

Converts	a	measurement	from	points	to	picas	(1	pica	=	12	points).	Returns	the
converted	measurement	as	a	Single.

expression.PointsToPicas(Points)

expression			Optional.	An	expression	that	returns	an	Application	object.

Points			Required	Single.	The	measurement,	in	points.



Example

This	example	converts	36	points	to	the	corresponding	number	of	picas.

MsgBox	PointsToPicas(36)	&	"	picas"

This	example	converts	the	value	of	the	variable	sngData	(a	measurement	in
points)	to	centimeters,	inches,	lines,	millimeters,	or	picas,	depending	on	the
value	of	the	variable	intUnit	(a	value	from	1	through	5	that	indicates	the
resulting	unit	of	measurement).

Function	ConvertPoints(ByVal	intUnit	As	Integer,	_

				sngData	As	Single)	As	Single

				Select	Case	intUnit

								Case	1

												ConvertPoints	=	PointsToCentimeters(sngData)

								Case	2

												ConvertPoints	=	PointsToInches(sngData)

								Case	3

												ConvertPoints	=	PointsToLines(sngData)

								Case	4

												ConvertPoints	=	PointsToMillimeters(sngData)

								Case	5

												ConvertPoints	=	PointsToPicas(sngData)

								Case	Else

												Error	5

				End	Select

End	Function



PointsToPixels	Method
							

Converts	a	measurement	from	points	to	pixels.	Returns	the	converted
measurement	as	a	Single.

expression.PointsToPixels(Points,	fVertical)

expression			Required.	An	expression	that	returns	an	Application	object.

Points			Required	Single.	The	point	value	to	be	converted	to	pixels.

fVertical			Optional	Variant.	True	to	return	the	result	as	vertical	pixels;	False	to
return	the	result	as	horizontal	pixels.



Example

This	example	displays	the	height	and	width	in	pixels	of	an	object	measured	in
points.

MsgBox	"180x120	points	is	equivalent	to	"	_

				&	PointsToPixels(180,	False)	&	"x"	_

				&	PointsToPixels(120,	True)	_

				&	"	pixels	on	this	display."



Post	Method
							

Posts	the	specified	document	to	a	public	folder	in	Microsoft	Exchange.	This
method	displays	the	Send	to	Exchange	Folder	dialog	box	so	that	a	folder	can	be
selected.

expression.Post

expression			Required.	An	expression	that	returns	a	Document	object.



Example

This	example	displays	the	Send	to	Exchange	Folder	dialog	box	so	that	the
active	document	can	be	posted	to	a	public	folder.

ActiveDocument.Post



PresentIt	Method
							

Opens	PowerPoint	with	the	specified	Word	document	loaded.

expression.PresentIt

expression			Required.	An	expression	that	returns	a	Document	object.



Example

This	example	sends	a	copy	of	the	document	named	"MyPresentation.doc"	to
PowerPoint.

Documents("MyPresentation.doc").PresentIt



PresetDrop	Method
							

Specifies	whether	the	callout	line	attaches	to	the	top,	bottom,	or	center	of	the
callout	text	box	or	whether	it	attaches	at	a	point	that's	a	specified	distance	from
the	top	or	bottom	of	the	text	box.

expression.PresetDrop(DropType)

expression			Required.	An	expression	that	returns	a	CalloutFormat	object.

	DropType		Required	MsoCalloutDropType.	The	starting	position	of	the	callout
line	relative	to	the	text	bounding	box.	If	you	specify	msoCalloutDropCustom,
the	values	of	the	Drop	and	AutoAttach	properties	and	the	relative	positions	of
the	callout	text	box	and	callout	line	origin	(the	place	that	the	callout	points	to)
are	used	to	determine	where	the	callout	line	attaches	to	the	text	box.

MsoCalloutDropType	can	be	one	of	these	MsoCalloutDropType	constants.
msoCalloutDropCenter
msoCalloutDropMixed
msoCalloutDropBottom
msoCalloutDropCustom
msoCalloutDropTop



Example

This	example	specifies	that	the	callout	line	attach	to	the	top	of	the	text	bounding
box	for	the	first	shape	on	the	active	document.	For	the	example	to	work,	the	first
shape	must	be	a	callout.

ActiveDocument.Shapes(1).Callout.PresetDrop	msoCalloutDropTop

This	example	toggles	between	two	preset	drops	for	the	first	shape	on	the	active
document.	For	the	example	to	work,	the	first	shape	must	be	a	callout.

With	ActiveDocument.Shapes(1).Callout

				If	.DropType	=	msoCalloutDropTop	Then

								.PresetDrop	msoCalloutDropBottom

				ElseIf	.DropType	=	msoCalloutDropBottom	Then

								.PresetDrop	msoCalloutDropTop

				End	If

End	With



PresetGradient	Method
							

Sets	the	specified	fill	to	a	preset	gradient.

expression.PresetGradient(Style,	Variant,	PresetGradientType)

expression			Required.	An	expression	that	returns	a	FillFormat	object.

	Style		Required	MsoGradientStyle.	The	gradient	style.

MsoGradientStyle	can	be	one	of	these	MsoGradientStyle	constants.
msoGradientDiagonalDown
msoGradientDiagonalUp
msoGradientFromCenter
msoGradientFromCorner
msoGradientFromTitle	Only	used	in	Microsoft	PowerPoint.	
msoGradientHorizontal
msoGradientMixed
msoGradientVertical

Variant		Required	Long.	The	gradient	variant.	Can	be	a	value	from	1	to	4,
corresponding	to	the	four	variants	on	the	Gradient	tab	in	the	Fill	Effects	dialog
box.	If	Style	is	msoGradientFromCenter,	this	argument	can	be	either	1	or	2.

PresetGradientType		Required	MsoPresetGradientType.	The	gradient	type.

MsoPresetGradientType	can	be	one	of	these	MsoPresetGradientType	constants.
msoGradientBrass
msoGradientChrome
msoGradientDaybreak
msoGradientEarlySunset
msoGradientFog



msoGradientGoldII
msoGradientLateSunset
msoGradientMoss
msoGradientOcean
msoGradientPeacock
msoGradientRainbowII
msoGradientSilver
msoGradientWheat
msoPresetGradientMixed
msoGradientCalmWater
msoGradientChromeII
msoGradientDesert
msoGradientFire
msoGradientGold
msoGradientHorizon
msoGradientMahogany
msoGradientNightfall
msoGradientParchment
msoGradientRainbow
msoGradientSapphire



Example

This	example	adds	a	rectangle	with	a	preset	gradient	fill	to	the	active	document.

ActiveDocument.Shapes.AddShape(	_

				msoShapeRectangle,	90,	90,	140,	80).Fill.PresetGradient	_

				msoGradientHorizontal,	1,	msoGradientBrass



PresetTextured	Method
							

Sets	the	specified	fill	to	a	preset	texture.

expression.PresetTextured(PresetTexture)

expression			Required.	An	expression	that	returns	a	FillFormat	object.

	PresetTexture		Required	MsoPresetTexture.	The	preset	texture.

MsoPresetTexture	can	be	one	of	these	MsoPresetTexture	constants.
msoPresetTextureMixed
msoTextureBouquet
msoTextureCanvas
msoTextureDenim
msoTextureGranite
msoTextureMediumWood
msoTextureOak
msoTexturePapyrus
msoTexturePinkTissuePaper
msoTextureRecycledPaper
msoTextureStationery
msoTextureWaterDroplets
msoTextureWovenMat
msoTextureBlueTissuePaper
msoTextureBrownMarble
msoTextureCork
msoTextureFishFossil
msoTextureGreenMarble
msoTextureNewsprint
msoTexturePaperBag



msoTextureParchment
msoTexturePurpleMesh
msoTextureSand
msoTextureWalnut
msoTextureWhiteMarble



Example

This	example	adds	a	rectangle	with	a	green-marble	textured	fill	to	the	active
document.

ActiveDocument.Shapes.AddShape(msoShapeCan,	90,	90,	40,	80)	_

				.Fill.PresetTextured	msoTextureGreenMarble



Show	All



Previous	Method
							

Previous	method	as	it	applies	to	the	Paragraph	object.

Returns	the	previous	paragraph	as	a	Paragraph	object.

expression.Previous(Count)

expression			Required.	An	expression	that	returns	one	of	the	above	objects.

Count		Optional	Variant.	The	number	of	paragraphs		by	which	you	want	to
move	back.	The	default	value	is	1.

	

Previous	method	as	it	applies	to	the	Range	and	Selection	objects.

Returns	a	Range	object	relative	to	the	specified	selection	or	range.

Note			If	the	Range	or	Selection	is	just	after	the	specified	Unit	the	Range	or
Selection	is	moved	to	the	previous	unit.	For	example,	if	the	Selection	is	just
after	a	word	(before	the	trailing	space),	the	following	instruction	moves	the
Selection	backwards	to	the	previous	word.

Selection.Previous(Unit:=wdWord,	Count:=1).Select

expression.Previous(Unit,	Count)

expression			Required.	An	expression	that	returns	one	of	the	above	objects.

Unit		Optional	Variant.	WdUnits

Can	be	one	of	the	following	WdUnits	constants.
wdCharacter
wdWord
wdSentence



wdParagraph
wdSection
wdStory
wdCell
wdColumn
wdRow
wdTable
If	expression	returns	a	Selection	object,	wdLine	can	also	be	used.	The	default
value	is	wdCharacter.

Count		Optional	Variant.		The	number	of	units	by	which	you	want	to	move
back.	The	default	value	is	1.

	

Previous	method	as	it	applies	to	the	Browser	object.

For	the	Browser	object,	moves	the	selection	to	the	previous	item	indicated	by
the	browser	target.	Use	the	Target	property	to	change	the	browser	target.

expression.Previous

expression			Required.	An	expression	that	returns	one	of	the	above	objects.

	



Example

As	it	applies	to	the	Browser	object.

This	example	moves	the	insertion	point	into	the	first	cell	(the	cell	in	the	upper-
left	corner)	of	the	previous	table.

With	Application.Browser

				.Target	=	wdBrowseTable

				.Previous

End	With

As	it	applies	to	the	Paragraph	object.

This	example	selects	the	paragraph	that	precedes	the	selection	in	the	active
document.

Selection.Previous(Unit:=wdParagraph,	Count:=1).Select

As	it	applies	to	the	Range	object.

This	example	applies	bold	formatting	to	the	first	word	in	the	active	document.

ActiveDocument.Words(2)	_

				.Previous(Unit:=wdWord,	Count:=1).Bold	=	True



PreviousField	Method
							

Selects	the	previous	field.	If	a	field	is	found,	this	method	returns	a	Field	object;
if	not,	it	returns	Nothing.

expression.PreviousField

expression			Required.	An	expression	that	returns	a	Selection	object.



Example

This	example	updates	the	previous	field	(the	field	immediately	preceding	the
selection).

If	Not	(Selection.PreviousField	Is	Nothing)	Then

				Selection.Fields.Update

End	If

This	example	selects	the	previous	field,	and	if	a	field	is	found,	displays	a
message	in	the	status	bar.

Set	myField	=	Selection.PreviousField

If	Not	(myField	Is	Nothing)	Then	StatusBar	=	"Field	found"



PreviousHeaderFooter	Method
							

If	the	selection	is	in	a	header,	this	method	moves	to	the	previous	header	within
the	current	section	(for	example,	from	an	even	header	to	an	odd	header)	or	to	the
last	header	in	the	previous	section.	If	the	selection	is	in	a	footer,	this	method
moves	to	the	previous	footer.

Note			If	the	selection	is	in	the	first	header	or	footer	in	the	first	section	of	the
document,	or	if	it's	not	in	a	header	or	footer	at	all,	an	error	occurs.

expression.PreviousHeaderFooter

expression			Required.	An	expression	that	returns	a	View	object.



Example

This	example	inserts	an	even	section	break,	switches	the	active	window	to	print
layout	view,	displays	the	current	header,	and	then	switches	to	the	previous
header.

Selection.Collapse	Direction:=wdCollapseStart

Selection.InsertBreak	Type:=wdSectionBreakEvenPage

With	ActiveDocument.ActiveWindow.View

				.Type	=	wdPrintView

				.SeekView	=	wdSeekCurrentPageHeader

				.PreviousHeaderFooter

End	With



PreviousRevision	Method
							

Locates	and	returns	the	previous	tracked	change	as	a	Revision	object.

expression.PreviousRevision(Wrap)

expression			Required.	An	expression	that	returns	a	Selection	object.

Wrap			Optional	Variant.	True	to	continue	searching	for	a	revision	at	the	end	of
the	document	when	the	beginning	of	the	document	is	reached.	The	default	value
is	False.



Example

This	example	selects	the	last	tracked	change	in	the	first	section	in	the	active
document	and	displays	the	date	and	time	of	the	change.

Selection.EndOf	Unit:=wdStory,	Extend:=wdMove

Set	myRev	=	Selection.PreviousRevision

If	Not	(myRev	Is	Nothing)	Then	MsgBox	myRev.Date

This	example	rejects	the	previous	tracked	change	found	if	the	change	type	is
deleted	or	inserted	text.	If	the	tracked	change	is	a	style	change,	the	change	is
accepted.

Set	myRev	=	Selection.PreviousRevision(Wrap:=True)

If	Not	(myRev	Is	Nothing)	Then

				Select	Case	myRev.Type

								Case	wdRevisionDelete

												myRev.Reject

								Case	wdRevisionInsert

												myRev.Reject

								Case	wdRevisionStyle

												myRev.Accept

				End	Select

End	If



PreviousSubdocument	Method
							

Moves	the	range	or	selection	to	the	previous	subdocument.	If	there	isn't	another
subdocument,	an	error	occurs.

expression.PreviousSubdocument

expression			Required.	An	expression	that	returns	a	Range	or	Selection	object.



Example

This	example	switches	the	active	document	to	master	document	view	and	selects
the	previous	subdocument.

If	ActiveDocument.Subdocuments.Count	>=	1	Then

				ActiveDocument.ActiveWindow.View.Type	=	wdMasterView

				Selection.EndKey	Unit:=wdStory,	Extend:=wdMove

				Selection.PreviousSubdocument

End	If



PrevNode	Method
							

Returns	a	DiagramNode	object	that	represents	the	previous	diagram	node	in	a
collection	of	diagram	nodes.

expression.PrevNode

expression			Required.	An	expression	that	returns	a	DiagramNode	object.



Remarks

Use	the	NextNode	method	to	return	the	next	DiagramNode	object	in	a
collection	of	diagram	nodes.



Example

This	example	adds	child	nodes	to	the	first	child	node	in	a	newly-created
diagram.

Sub	AddToPrevNode()

				Dim	dgnRoot	As	DiagramNode

				Dim	shpDiagram	As	Shape

				Dim	dgnPrev	As	DiagramNode

				Dim	intCount	As	Integer

				'Add	organizational	chart	to	the	current	document

				Set	shpDiagram	=	ThisDocument.Shapes.AddDiagram	_

								(Type:=msoDiagramOrgChart,	_

								Left:=10,	_

								Top:=15,	_

								Width:=400,	_

								Height:=475)

				'Add	first	diagram	node

				Set	dgnRoot	=	shpDiagram.DiagramNode.Children.AddNode

				'Add	three	child	nodes	off	the	first	diagram	node

				For	intCount	=	1	To	3

								dgnRoot.Children.AddNode

				Next	intCount

				'Access	the	node	immediately	preceding	the	second

				'diagram	node	and	add	three	child	nodes

				Set	dgnPrev	=	dgnRoot.Children.Item(2).PrevNode

				For	intCount	=	1	To	3

								dgnPrev.Children.AddNode

				Next	intCount

End	Sub





Show	All



PrintOut	Method
							

PrintOut	method	as	it	applies	to	the	Application,	Document,	and	Window
objects.

Prints	all	or	part	of	the	specified	document.

expression.PrintOut(Background,	Append,	Range,	OutputFileName,	From,
To,	Item,	Copies,	Pages,	PageType,	PrintToFile,	Collate,	FileName,
ActivePrinterMacGX,	ManualDuplexPrint,	PrintZoomColumn,
PrintZoomRow,	PrintZoomPaperWidth,	PrintZoomPaperHeight)

expression			Required.	An	expression	that	returns	one	of	the	above	objects.

Background		Optional	Variant.	Set	to	True	to	have	the	macro	continue	while
Microsoft	Word	prints	the	document.

Append		Optional	Variant.	Set	to	True	to	append	the	specified	document	to	the
file	name	specified	by	the	OutputFileName	argument.	False	to	overwrite	the
contents	of	OutputFileName.

Range		Optional	Variant.	The	page	range.	Can	be	any	WdPrintOutRange
constant.

wdPrintAllDocument
wdPrintCurrentPage
wdPrintFromTo
wdPrintRangeOfPages
wdPrintSelection

OutputFileName		Optional	Variant.	If	PrintToFile	is	True,	this	argument
specifies	the	path	and	file	name	of	the	output	file.

From		Optional	Variant.	The	starting	page	number	when	Range	is	set	to
wdPrintFromTo.



To		Optional	Variant.	The	ending	page	number	when	Range	is	set	to
wdPrintFromTo.

Item		Optional	Variant.	The	item	to	be	printed.	Can	be	any	WdPrintOutItem
constant.

wdPrintAutoTextEntries
wdPrintComments
wdPrintDocumentContent
wdPrintKeyAssignments
wdPrintProperties
wdPrintStyles

Copies		Optional	Variant.	The	number	of	copies	to	be	printed.

Pages		Optional	Variant.	The	page	numbers	and	page	ranges	to	be	printed,
separated	by	commas.	For	example,	"2,	6-10"	prints	page	2	and	pages	6	through
10.

PageType		Optional	Variant.	The	type	of	pages	to	be	printed.	Can	be	any
WdPrintOutPages	constant.

wdPrintAllPages
wdPrintEvenPagesOnly
wdPrintOddPagesOnly

PrintToFile		Optional	Variant.	True	to	send	printer	instructions	to	a	file.	Make
sure	to	specify	a	file	name	with	OutputFileName.

Collate		Optional	Variant.	When	printing	multiple	copies	of	a	document,	True
to	print	all	pages	of	the	document	before	printing	the	next	copy.

FileName		Optional	Variant.	The	path	and	file	name	of	the	document	to	be
printed.	If	this	argument	is	omitted,	Word	prints	the	active	document.	(Available
only	with	the	Application	object.)

ActivePrinterMacGX		Optional	Variant.	This	argument	is	available	only	in
Microsoft	Office	Macintosh	Edition.	For	additional	information	about	this



argument,	consult	the	language	reference	Help	included	with	Microsoft	Office
Macintosh	Edition.

ManualDuplexPrint		Optional	Variant.	True	to	print	a	two-sided	document	on
a	printer	without	a	duplex	printing	kit.	If	this	argument	is	True,	the
PrintBackground	and	PrintReverse	properties	are	ignored.	Use	the
PrintOddPagesInAscendingOrder	and	PrintEvenPagesInAscendingOrder
properties	to	control	the	output	during	manual	duplex	printing.	This	argument
may	not	be	available	to	you,	depending	on	the	language	support	(U.S.	English,
for	example)	that	you’ve	selected	or	installed.

PrintZoomColumn		Optional	Variant.	The	number	of	pages	you	want	Word	to
fit	horizontally	on	one	page.	Can	be	1,	2,	3,	or	4.	Use	with	the	PrintZoomRow
argument	to	print	multiple	pages	on	a	single	sheet.

PrintZoomRow		Optional	Variant.	The	number	of	pages	you	want	Word	to	fit
vertically	on	one	page.	Can	be	1,	2,	or	4.	Use	with	the	PrintZoomColumn
argument	to	print	multiple	pages	on	a	single	sheet.

PrintZoomPaperWidth		Optional	Variant.	The	width	to	which	you	want	Word
to	scale	printed	pages,	in	twips	(20	twips	=	1	point;	72	points	=	1	inch).

PrintZoomPaperHeight		Optional	Variant.	The	height	to	which	you	want	Word
to	scale	printed	pages,	in	twips	(20	twips	=	1	point;	72	points	=	1	inch).

PrintOut	method	as	it	applies	to	the	Envelope	object.

Prints	an	envelope	without	adding	the	envelope	to	the	active	document.

expression.PrintOut(ExtractAddress,	Address,	AutoText,	OmitReturnAddress,
ReturnAddress,	ReturnAutoText,	PrintBarCode,	PrintFIMA,	Size,	Height,
Width,	FeedSource,	AddressFromLeft,	AddressFromTop,
ReturnAddressFromLeft,	ReturnAddressFromTop,	DefaultFaceUp,
DefaultOrientation,	PrintEPostage,	Vertical,	RecipientNamefromLeft,
RecipientNamefromTop,	RecipientPostalfromLeft,	RecipientPostalfromTop,
SenderNamefromLeft,	SenderNamefromTop,	SenderPostalfromLeft,
SenderPostalfromTop)

expression			Required.	An	expression	that	returns	an	Envelope	object.



ExtractAddress		Optional	Variant.	True	to	use	the	text	marked	by	the
"EnvelopeAddress"	bookmark	(a	user-defined	bookmark)	as	the	recipient's
address.

Address		Optional	Variant.	A	string	that	specifies	the	recipient's	address
(ignored	if	ExtractAddress	is	True).

AutoText		Optional	Variant.	The	name	of	the	AutoText	entry	that	includes	a
recipient's	address.

OmitReturnAddress		Optional	Variant.	True	to	omit	the	return	address.

ReturnAddress		Optional	Variant.	A	string	that	specifies	the	return	address.

ReturnAutoText		Optional	Variant.	The	name	of	the	AutoText	entry	that
includes	a	return	address.

PrintBarCode		Optional	Variant.	True	to	add	a	POSTNET	bar	code.	For	U.S.
mail	only.

PrintFIMA		Optional	Variant.	True	to	add	a	Facing	Identification	Mark	(FIM-
A)	for	use	in	presorting	courtesy	reply	mail.	For	U.S.	mail	only.

Size		Optional	Variant.	A	string	that	specifies	the	envelope	size.	The	string
should	match	one	of	the	sizes	listed	on	the	left	side	of	the	Envelope	size	box	in
the	Envelope	Options	dialog	box	(for	example,	"Size	10").

Height		Optional	Variant.	The	height	of	the	envelope	(in	points)	when	the	Size
argument	is	set	to	"Custom	size."

Width		Optional	Variant.	The	width	of	the	envelope	(in	points)	when	the	Size
argument	is	set	to	"Custom	size."

FeedSource		Optional	Variant.	True	to	use	the	FeedSource	property	of	the
Envelope	object	to	specify	which	paper	tray	to	use	when	printing	the	envelope.

AddressFromLeft		Optional	Variant.	The	distance	(in	points)	between	the	left
edge	of	the	envelope	and	the	recipient's	address.

AddressFromTop		Optional	Variant.	The	distance	(in	points)	between	the	top



edge	of	the	envelope	and	the	recipient's	address.

ReturnAddressFromLeft		Optional	Variant.	The	distance	(in	points)	between
the	left	edge	of	the	envelope	and	the	return	address.

ReturnAddressFromTop		Optional	Variant.	The	distance	(in	points)	between
the	top	edge	of	the	envelope	and	the	return	address.

DefaultFaceUp		Optional	Variant.	True	to	print	the	envelope	face	up;	False	to
print	it	face	down.

DefaultOrientation		Optional	Variant.	The	orientation	of	the	envelope.	Can	be
any	WdEnvelopeOrientation	constant.

wdLeftPortrait
wdCenterPortrait
wdRightPortrait
wdLeftLandscape
wdCenterLandscape
wdRightLandscape
wdLeftClockwise
wdCenterClockwise
wdRightClockwise

PrintEPostage		Optional	Variant.	True	to	print	postage	using	an	Internet	e-
postage	vendor.

Vertical		Optional	Variant.	True	prints	text	vertically	on	the	envelope.	Used	for
Asian-language	envelopes.

RecipientNamefromLeft		Optional	Variant.	The	position	of	the	recipient's
name,	measured	in	points,	from	the	left	edge	of	the	envelope.	Used	for	Asian-
language	envelopes.

RecipientNamefromTop		Optional	Variant.	The	position	of	the	recipient's	name,
measured	in	points,	from	the	top	edge	of	the	envelope.	Used	for	Asian-language
envelopes.



RecipientPostalfromLeft		Optional	Variant.	The	position	of	the	recipient's
postal	code,	measured	in	points,	from	the	left	edge	of	the	envelope.	Used	for
Asian-language	envelopes.

RecipientPostalfromTop		Optional	Variant.	The	position	of	the	recipient's	postal
code,	measured	in	points,	from	the	top	edge	of	the	envelope.	Used	for	Asian-
language	envelopes.

SenderNamefromLeft		Optional	Variant.	The	position	of	the	sender's	name,
measured	in	points,	from	the	left	edge	of	the	envelope.	Used	for	Asian-language
envelopes.

SenderNamefromTop		Optional	Variant.	The	position	of	the	sender's	name,
measured	in	points,	from	the	top	edge	of	the	envelope.	Used	for	Asian-language
envelopes.

SenderPostalfromLeft		Optional	Variant.	The	position	of	the	sender's	postal
code,	measured	in	points,	from	the	left	edge	of	the	envelope.	Used	for	Asian-
language	envelopes.

SenderPostalfromTop		Optional	Variant.	The	position	of	the	sender's	postal
code,	measured	in	points,	from	the	top	edge	of	the	envelope.	Used	for	Asian-
language	envelopes.

PrintOut	method	as	it	applies	to	the	MailingLabel	object.

Prints	a	label	or	a	page	of	labels	with	the	same	address.

expression.PrintOut(Name,	Address,	ExtractAddress,	LaserTray,	SingleLabel,
Row,	Column,	PrintEPostageLabel,	Vertical)

expression			Required.	An	expression	that	returns	a	MailingLabel	object.

Name		Optional	Variant.	The	mailing	label	name.

Address		Optional	Variant.	The	text	for	the	label	address.

ExtractAddress		Optional	Variant.	True	to	use	the	text	marked	by	the
"EnvelopeAddress"	bookmark	(a	user-defined	bookmark)	as	the	label	text.	If	this
argument	is	specified,	Address	and	AutoText	are	ignored.



LaserTray		Optional	Variant.	The	laser	printer	tray	to	be	used.	Can	be	any
WdPaperTray	constant.

wdPrinterAutomaticSheetFeed
wdPrinterDefaultBin
wdPrinterEnvelopeFeed
wdPrinterFormSource
wdPrinterLargeCapacityBin
wdPrinterLargeFormatBin
wdPrinterLowerBin
wdPrinterManualEnvelopeFeed
wdPrinterManualFeed
wdPrinterMiddleBin
wdPrinterOnlyBin
wdPrinterPaperCassette
wdPrinterSmallFormatBin
wdPrinterTractorFeed
wdPrinterUpperBin

SingleLabel		Optional	Variant.	True	to	print	a	single	label;	False	to	print	an
entire	page	of	the	same	label.

Row		Optional	Variant.	The	label	row	for	a	single	label.	Not	valid	if
SingleLabel	is	False.

Column		Optional	Variant.	The	label	column	for	a	single	label.	Not	valid	if
SingleLabel	is	False.

PrintEPostageLabel		Optional	Variant.	True	to	print	postage	using	an	Internet
e-postage	vendor.

Vertical		Optional	Variant.	True	prints	text	vertically	on	the	label.	Used	for
Asian-language	mailing	labels.



Example

As	it	applies	to	the	Application,	Document,	and	Window	objects.

This	example	prints	the	current	page	of	the	active	document.

ActiveDocument.PrintOut	Range:=wdPrintCurrentPage

This	example	prints	all	the	documents	in	the	current	folder.	The	Dir	function	is
used	to	return	all	file	names	that	have	the	file	name	extension	".doc".

adoc	=	Dir("*.DOC")

Do	While	adoc	<>	""

				Application.PrintOut	FileName:=adoc

				adoc	=	Dir()

Loop

This	example	prints	the	first	three	pages	of	the	document	in	the	active	window.

ActiveDocument.ActiveWindow.PrintOut	_

				Range:=wdPrintFromTo,	From:="1",	To:="3"

This	example	prints	the	comments	in	the	active	document.

If	ActiveDocument.Comments.Count	>=	1	Then

				ActiveDocument.PrintOut	Item:=wdPrintComments

End	If

This	example	prints	the	active	document,	fitting	six	pages	on	each	sheet.

ActiveDocument.PrintOut	PrintZoomColumn:=3,	_

				PrintZoomRow:=2

This	example	prints	the	active	document	at	75%	of	actual	size.

ActiveDocument.PrintOut	_

				PrintZoomPaperWidth:=0.75	*	(8.5	*	1440),	_

				PrintZoomPaperHeight:=0.75	*	(11	*	1440)

As	it	applies	to	the	Envelope	object.

This	example	prints	an	envelope	using	the	user	address	as	the	return	address	and



a	predefined	recipient	address.

recep	=	"Don	Funk"	&	vbCr	&	"123	Skye	St."	&	vbCr	&	_

				"OurTown,	WA	98107"

ActiveDocument.Envelope.PrintOut	Address:=recep,	_

				ReturnAddress:=Application.UserAddress,	_

				Size:="Size	10",	PrintBarCode:=True

As	it	applies	to	the	MailingLabel	object.

This	example	prints	a	page	of	Avery	5664	mailing	labels,	using	the	specified
address.

addr	=	"Jane	Doe"	&	vbCr	&	"123	Skye	St."	_

				&	vbCr	&	"OurTown,	WA	98107"

Application.MailingLabel.PrintOut	Name:="5664",	Address:=addr



PrintPreview	Method
							

Switches	the	view	to	print	preview.

Note			In	addition	to	using	the	PrintPreview	method,	you	can	set	the
PrintPreview	property	to	True	or	False	to	switch	to	or	from	print	preview,
respectively.	You	can	also	change	the	view	by	setting	the	Type	property	for	the
View	object	to	wdPrintPreview.

expression.PrintPreview

expression			Required.	An	expression	that	returns	an	Document	object.



Example

This	example	switches	the	active	document	to	print	preview	if	it's	currently	in
some	other	view.

If	Application.PrintPreview	=	False	Then

				ActiveDocument.PrintPreview

End	If



ProductCode	Method
							

Returns	the	Microsoft	Word	globally	unique	identifier	(GUID)	as	a	String.

expression.ProductCode

expression			Required.	An	expression	that	returns	an	Application	object.



Example

This	example	displays	the	GUID	for	Microsoft	Word.

MsgBox	Application.ProductCode



Protect	Method
							

Protects	the	specified	document	from	changes.	When	a	document	is	protected,
the	user	can	make	only	limited	changes,	such	as	adding	annotations,	making
revisions,	or	completing	a	form.

Note			If	the	document	is	already	protected	when	you	use	this	method,	an	error
occurs.

expression.Protect(Type,	NoReset,	Password)

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

Type		Required	The	protection	type	for	the	specified	document.
WdProtectionType.

WdProtectionType	can	be	one	of	these	WdProtectionType	constants.
wdAllowOnlyComments
wdAllowOnlyFormFields
wdAllowOnlyRevisions
wdNoProtection

NoReset		Optional	Variant.		False	to	reset	form	fields	to	their	default	values.
True	to	retain	the	current	form	field	values	if	the	specified	document	is
protected.	If	Type	isn't	wdAllowOnlyFormFields,	the	NoReset	argument	is
ignored.															

Password		Optional	Variant.		The	password	required	to	"unprotect"	the
specified	document.



Example

This	example	protects	the	active	document	for	forms	without	resetting	the
contents	of	the	form	fields.

If	ActiveDocument.ProtectionType	=	wdNoProtection	Then

				ActiveDocument.Protect	_

								Type:=wdAllowOnlyFormFields,	NoReset:=True

End	If

This	example	protects	Monthly	Report.doc	so	that	only	comments	can	be	added
to	it.	The	password	"free"	is	required	to	unprotect	the	document.

Set	myDoc	=	Documents("Monthly	Report.doc")

myDoc.Protect	Type:=wdAllowOnlyComments,	Password:="free"



Show	All



Quit	Method
							

Quits	Microsoft	Word	and	optionally	saves	or	routes	the	open	documents.

expression.Quit(SaveChanges,	Format,	RouteDocument)

expression			Required.	An	expression	that	returns	an	Application	object.

SaveChanges			Optional	Variant.	Specifies	whether	Word	saves	changed
documents	before	quitting.	Can	be	one	of	the	WdSaveOptions	constants.

WdSaveOptions	can	be	one	of	these	WdSaveOptions	constants.
wdDoNotSaveChanges
wdPromptToSaveChanges
wdSaveChanges
	

OriginalFormat			Optional	Variant.	Specifies	the	way	Word	saves	documents
whose	original	format	was	not	Word	Document	format.	Can	be	one	of	the
WdOriginalFormat	constants.

WdOriginalFormat	can	be	one	of	these	WdOriginalFormat	constants.
wdOriginalDocumentFormat
wdPromptUser
wdWordDocument
	

RouteDocument			Optional	Variant.	True	to	route	the	document	to	the	next
recipient.	If	the	document	doesn't	have	a	routing	slip	attached,	this	argument	is
ignored.



Example

This	example	quits	Word	and	prompts	the	user	to	save	each	document	that	has
changed	since	it	was	last	saved.

Application.Quit	SaveChanges:=wdPromptToSaveChanges

This	example	prompts	the	user	to	save	all	documents.	If	the	user	clicks	the	Yes
button,	all	documents	are	saved	in	the	Word	format	before	Word	quits.

Dim	intResponse	As	Integer

intResponse	=	_

				MsgBox("Do	you	want	to	save	all	documents?",	vbYesNo)

If	intResponse	=	vbYes	Then	Application.Quit	_

				SaveChanges:=wdSaveChanges,	OriginalFormat:=wdWordDocument



Show	All



Range	Method
							

Range	method	as	it	applies	to	the	Document	object.

Returns	a	Range	object	by	using	the	specified	starting	and	ending	character
positions.

expression.Range(Start,	End)

expression			Required.	An	expression	that	returns	a	Document	object.

Start		Optional	Variant.		The	starting	character	position.

End		Optional	Variant.		The	ending	character	position.

Range	method	as	it	applies	to	the	CanvasShapes,	GroupShapes,	and	Shapes
objects.

Returns	a	ShapeRange	object.

expression.Range(Index)

expression			Required.	An	expression	that	returns	one	of	the	above	objects.

Index		Required	Variant.		Specifies	which	shapes	are	to	be	included	in	the
specified	range.	Can	be	an	integer	that	specifies	the	index	number	of	a	shape
within	the	Shapes	collection,	a	string	that	specifies	the	name	of	a	shape,	or	a
Variant	array	that	contains	integers	or	strings.



Remarks

Character	position	values	begin	with	0	(zero)	at	the	beginning	of	the	document.
All	characters	are	counted,	including	nonprinting	characters.	Hidden	characters
are	counted	even	if	they're	not	displayed.	If	you	don't	specify	starting	and	ending
character	positions	for	the	Range	method,	the	entire	document	is	returned	as	a
Range	object.

ShapeRange	objects	don't	include	InlineShape	objects.	An	InlineShape	object
is	equivalent	to	a	character	and	is	positioned	as	a	character	within	a	range	of	text.
Shape	objects	are	anchored	to	a	range	of	text	(the	selection,	by	default),	but	they
can	be	positioned	anywhere	on	the	page.	A	Shape	object	will	always	appear	on
the	same	page	as	the	range	it's	anchored	to.

Most	operations	that	you	can	do	with	a	Shape	object	you	can	also	do	with	a
ShapeRange	object	that	contains	a	single	shape.	Some	operations,	when
performed	on	a	ShapeRange	object	that	contains	multiple	shapes,	produce	an
error.



Example

As	it	applies	to	the	Document	object.

This	example	applies	bold	formatting	to	the	first	10	characters	in	the	active
document.

Sub	DocumentRange()

				ActiveDocument.Range(Start:=0,	End:=10).Bold	=	True

End	Sub

This	example	creates	a	range	that	starts	at	the	beginning	of	the	active	document
and	ends	at	the	cursor	position,	and	then	it	changes	all	characters	within	that
range	to	uppercase.

Sub	DocumentRange2()

				Dim	r	As	Range

				Set	r	=	ActiveDocument.Range(Start:=0,	End:=Selection.End)

				r.Case	=	wdUpperCase

End	Sub

This	example	creates	and	sets	the	variable	myRange	to	paragraphs	three	through
six	in	the	active	document,	and	then	it	right-aligns	the	paragraphs	in	the	range.

Sub	DocumentRange3()

				Dim	aDoc	As	Document

				Dim	myRange	As	Range

				Set	aDoc	=	ActiveDocument

				If	aDoc.Paragraphs.Count	>=	6	Then

								Set	myRange	=	aDoc.Range(aDoc.Paragraphs(2).Range.Start,	_

												aDoc.Paragraphs(4).Range.End)

								myRange.Paragraphs.Alignment	=	wdAlignParagraphRight

				End	If

End	Sub

As	it	applies	to	the	CanvasShapes,	GroupShapes,	and	Shapes	objects.

This	example	sets	the	fill	foreground	color	to	purple	for	the	first	shape	in	the
active	document.

Sub	ShRange()

				With	ActiveDocument.Shapes.Range(1).Fill



								.ForeColor.RGB	=	RGB(255,	0,	255)

								.Visible	=	msoTrue

				End	With

End	Sub

This	example	applies	a	shadow	to	a	variable	shape	in	the	active	document.

Sub	ShpRange2(strShpName	As	String)

				ActiveDocument.Shapes.Range(strShpName).Shadow.Type	=	msoShadow6

End	Sub

To	call	the	preceding	subroutine,	enter	the	following	code	into	a	standard	code
module.

Sub	CallShpRange2()

				Dim	shpArrow	As	Shape

				Dim	strName	As	String

				Set	shpArrow	=	ActiveDocument.Shapes.AddShape(Type:=msoShapeLeftArrow,	_

								Left:=200,	Top:=400,	Width:=50,	Height:=75)

				shpArrow.Name	=	"myShape"

				strName	=	shpArrow.Name

				ShpRange2	strShpName:=strName

End	Sub

This	example	selects	shapes	one	and	three	in	the	active	document.

Sub	SelectShapeRange()

				ActiveDocument.Shapes.Range(Array(1,	3)).Select

End	Sub

This	example	selects	and	deletes	the	shapes	in	the	first	shape	in	the	active
document.	This	example	assumes	that	the	first	shape	is	a	canvas	shape.

Sub	CanvasShapeRange()

				Dim	rngCanvasShapes	As	Range

				Set	rngCanvasShapes	=	ActiveDocument.Shapes(1).CanvasItems.Range

				rngCanvasShapes.Select

				rngCanvasShapes.Delete

End	Sub





RangeFromPoint	Method
							

Returns	the	Range	or	Shape	object	that	is	located	at	the	point	specified	by	the
screen	position	coordinate	pair.	If	no	range	or	shape	is	located	at	the	coordinate
pair	specified,	the	method	returns	Nothing.

expression.RangeFromPoint(x,	y)

expression			Required.	An	expression	that	returns	a	Window	object.

x			Required	Long.	The	horizontal	distance	(in	pixels)	from	the	left	edge	of	the
screen	to	the	point.

y			Required	Long.	The	vertical	distance	(in	pixels)	from	the	top	of	the	screen	to
the	point.



Example

This	example	creates	a	new	document	and	adds	a	five-point	star.	It	then	obtains
the	screen	location	of	the	shape	and	calculates	where	the	center	of	the	shape	is.
Using	these	coordinates,	the	example	uses	the	RangeFromPoint	method	to
return	a	reference	to	the	shape	and	change	its	fill	color.

Dim	pLeft	As	Long

Dim	pTop	As	Long

Dim	pWidth	As	Long

Dim	pHeight	As	Long

Dim	newShape	As	Object

Dim	newDoc	As	New	Document

With	newDoc

				.Shapes.AddShape	msoShape5pointStar,	_

								288,	100,	100,	72

				.ActiveWindow.GetPoint	pLeft,	pTop,	_

								pWidth,	pHeight,	.Shapes(1)

				Set	newShape	=	.ActiveWindow.RangeFromPoint(pLeft	_

								+	pWidth	*	0.5,	pTop	+	pHeight	*	0.5)

				newShape.Fill.ForeColor.RGB	=	RGB(80,	160,	130)

End	With



Rebind	Method
							

Changes	the	command	assigned	to	the	specified	key	binding.

expression.Rebind(KeyCategory,	Command,	CommandParameter)

expression			Required.	An	expression	that	returns	a	KeyBinding	object.

KeyCategory		Required	WdKeyCategory.	The	key	category	of	the	specified	key
binding.

WdKeyCategory	can	be	one	of	these	WdKeyCategory	constants.
wdKeyCategoryAutoText
wdKeyCategoryCommand
wdKeyCategoryDisable
wdKeyCategoryFont
wdKeyCategoryMacro
wdKeyCategoryNil
wdKeyCategoryPrefix
wdKeyCategoryStyle
wdKeyCategorySymbol

Command			Required	String.	The	name	of	the	specified	command.

CommandParameter			Optional	Variant.	Additional	text,	if	any,	required	for	the
command	specified	by	Command.	For	information	about	values	for	this
argument,	see	the	Add	method	for	the	KeyBindings	object.



Example

This	example	reassigns	the	CTRL+SHIFT+S	key	binding	to	the	FileSaveAs
command.

Dim	kbTemp	As	KeyBinding

CustomizationContext	=	NormalTemplate

Set	kbTemp	=	_

				FindKey(BuildKeyCode(wdKeyControl,	wdKeyShift,	wdKeyS))

kbTemp.Rebind	KeyCategory:=wdKeyCategoryCommand,	_

				Command:="FileSaveAs"

This	example	rebinds	all	keys	assigned	to	the	macro	named	"Macro1"	to	the
macro	named	"ReportMacro."

Dim	kbLoop	As	KeyBinding

CustomizationContext	=	ActiveDocument.AttachedTemplate

For	Each	kbLoop	In	_

								KeysBoundTo(KeyCategory:=wdKeyCategoryMacro,	_

								Command:="Macro1")

				kbLoop.Rebind	KeyCategory:=wdKeyCategoryMacro,	_

								Command:="ReportMacro"

Next	kbLoop



RecheckSmartTags	Method
							

Removes	smart	tags	recognized	by	the	grammar	checker	and	rechecks	the
document	content	against	all	smart	tag	recognizers.

expression.RecheckSmartTags

expression			Required.	An	expression	that	returns	a	Document	object.



Example

This	example	removes	the	existing	smart	tags	in	the	active	document	and
rechecks	the	document	content	against	the	smart	tag	recognizers	selected	on	the
Smart	Tags	tab	of	the	AutoCorrect	dialog	box.

Sub	SmartTagRecheck()

				ActiveDocument.RecheckSmartTags

End	Sub



Redo	Method
							

Redoes	the	last	action	that	was	undone	(reverses	the	Undo	method).	Returns
True	if	the	actions	were	redone	successfully.

expression.Redo(Times)

expression			Required.	An	expression	that	returns	a	Document	object.

Times			Optional	Variant.	The	number	of	actions	to	be	redone.



Example

This	example	redoes	the	last	two	actions	in	the	Sales.doc	redo	list.

Documents("Sales.doc").Redo	2

This	example	redoes	the	last	action	in	the	active	document.	If	the	action	is
successfully	redone,	a	message	is	displayed	in	the	status	bar.

On	Error	Resume	Next

If	ActiveDocument.Redo	=	False	Then	_

				StatusBar	=	"Redo	was	unsuccessful"



Reject	Method
							

Rejects	the	specified	tracked	change.	The	revision	marks	are	removed,	leaving
the	original	text	intact.

Note			Formatting	changes	cannot	be	rejected.

expression.Reject

expression			Required.	An	expression	that	returns	a	Revision	object.



Example

This	example	rejects	the	next	tracked	change	found	in	the	active	document.

Dim	revNext	As	Revision

If	ActiveDocument.Revisions.Count	>=	1	Then

				Set	revNext	=	Selection.NextRevision

				If	Not	(revNext	Is	Nothing)	Then	revNext.Reject

End	If

This	example	rejects	the	tracked	changes	in	the	first	paragraph.

Dim	rngTemp	As	Range

Dim	revLoop	As	Revision

Set	rngTemp	=	ActiveDocument.Paragraphs(1).Range

For	Each	revLoop	In	rngTemp.Revisions

				revLoop.Reject

Next	revLoop

This	example	rejects	the	first	tracked	change	in	the	selection.

Dim	rngTemp	As	Range

Set	rngTemp	=	Selection.Range

If	rngTemp.Revisions.Count	>=	1	Then	_

				rngTemp.Revisions(1).Reject



RejectAll	Method
							

Rejects	all	the	tracked	changes	in	a	range.	The	revision	marks	are	removed,
leaving	the	original	text	intact.

expression.RejectAll

expression			Required.	An	expression	that	returns	a	Revisions	object.



Remarks

Use	the	RejectAllRevisions	method	to	reject	all	revisions	in	a	document.
Formatting	changes	cannot	be	rejected.



Example

This	example	rejects	all	the	tracked	changes	in	the	active	document.

ActiveDocument.Revisions.RejectAll

This	example	rejects	all	the	tracked	changes	in	the	selection.

Dim	rngTemp	As	Range

Set	rngTemp	=	Selection.Range

rngTemp.Revisions.RejectAll



RejectAllRevisions	Method
							

Rejects	all	tracked	changes	in	the	specified	document.

expression.RejectAllRevisions

expression			Required.	An	expression	that	returns	a	Document	object.



Example

This	example	checks	the	main	story	in	active	document	for	tracked	changes,	and
if	there	are	any,	the	example	rejects	all	revisions	in	all	stories	in	the	document.

If	ActiveDocument.Revisions.Count	>=	1	Then	_

				ActiveDocument.RejectAllRevisions



RejectAllRevisionsShown	Method
							

Rejects	all	revisions	in	a	document	that	are	displayed	on	the	screen.

expression.RejectAllRevisionsShown

expression			Required.	An	expression	that	returns	a	Document	object.



Example

This	example	hides	revisions	made	by	Jeff	Smith	and	rejects	all	remaining
revisions	that	are	displayed.

Sub	RejectAllChanges()

				Dim	rev	As	Reviewer

				With	ActiveWindow.View

								'Show	all	revisions	in	the	document

								.ShowRevisionsAndComments	=	True

								.ShowFormatChanges	=	True

								.ShowInsertionsAndDeletions	=	True

								For	Each	rev	In	.Reviewers

												rev.Visible	=	True

								Next

								'Hide	revisions	made	by	"Jeff	Smith"

								.Reviewers(Index:="Jeff	Smith").Visible	=	False

				End	With

				'Reject	all	revisions	displayed	in	the	active	view

				ActiveDocument.RejectAllRevisionsShown

End	Sub



Reload	Method
							

Reloads	a	cached	document	by	resolving	the	hyperlink	to	the	document	and
downloading	it.

Note			This	method	reloads	the	document	asynchronously;	that	is,	statements
following	the	Reload	method	in	your	procedure	may	execute	before	the
document	is	actually	reloaded.	Because	of	this,	you	may	get	unexpected	results
from	using	this	method	in	your	macros.

expression.Reload

expression			Required.	An	expression	that	returns	a	Document	object.



Example

This	example	opens	and	reloads	the	hyperlink	to	the	address	"main"	on	a	local
intranet.

With	ActiveDocument

				.FollowHyperlink	Address:="http://main"

				.Reload

End	With



ReloadAs	Method
							

Reloads	a	document	based	on	an	HTML	document,	using	the	specified
document	encoding.

expression.ReloadAs(Encoding)

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

Encoding		Required	MsoEncoding.

MsoEncoding	can	be	one	of	these	MsoEncoding	constants.
msoEncodingOEMMultilingualLatinI
msoEncodingOEMNordic
msoEncodingOEMTurkish
msoEncodingSimplifiedChineseAutoDetect
msoEncodingT61
msoEncodingTaiwanEten
msoEncodingTaiwanTCA
msoEncodingTaiwanWang
msoEncodingTraditionalChineseAutoDetect
msoEncodingTurkish
msoEncodingUnicodeLittleEndian
msoEncodingUTF7
msoEncodingVietnamese
msoEncodingEBCDICJapaneseKatakanaExtended
msoEncodingEBCDICJapaneseLatinExtendedAndJapanese
msoEncodingEBCDICKoreanExtendedAndKorean
msoEncodingEBCDICMultilingualROECELatin2
msoEncodingEBCDICSerbianBulgarian



msoEncodingEBCDICThai
msoEncodingEBCDICTurkishLatin5
msoEncodingEBCDICUSCanada
msoEncodingEBCDICUSCanadaAndTraditionalChinese
msoEncodingOEMModernGreek
msoEncodingOEMMultilingualLatinII
msoEncodingOEMPortuguese
msoEncodingOEMUnitedStates
msoEncodingSimplifiedChineseGBK
msoEncodingTaiwanCNS
msoEncodingTaiwanIBM5550
msoEncodingTaiwanTeleText
msoEncodingThai
msoEncodingTraditionalChineseBig5
msoEncodingUnicodeBigEndian
msoEncodingUSASCII
msoEncodingUTF8
msoEncodingWestern
msoEncodingArabic
msoEncodingArabicASMO
msoEncodingArabicAutoDetect
msoEncodingArabicTransparentASMO
msoEncodingAutoDetect
msoEncodingBaltic
msoEncodingCentralEuropean
msoEncodingCyrillic
msoEncodingCyrillicAutoDetect
msoEncodingEBCDICArabic
msoEncodingEBCDICDenmarkNorway
msoEncodingEBCDICFinlandSweden
msoEncodingEBCDICFrance
msoEncodingEBCDICGermany
msoEncodingEBCDICGreek



msoEncodingEBCDICGreekModern
msoEncodingEBCDICHebrew
msoEncodingEBCDICIcelandic
msoEncodingEBCDICInternational
msoEncodingEBCDICItaly
msoEncodingEBCDICJapaneseKatakanaExtendedAndJapanese
msoEncodingEBCDICKoreanExtended
msoEncodingEBCDICLatinAmericaSpain
msoEncodingEBCDICRussian
msoEncodingEBCDICSimplifiedChineseExtendedAndSimplifiedChinese
msoEncodingEBCDICTurkish
msoEncodingEBCDICUnitedKingdom
msoEncodingEBCDICUSCanadaAndJapanese
msoEncodingEUCChineseSimplifiedChinese
msoEncodingEUCJapanese
msoEncodingEUCKorean
msoEncodingEUCTaiwaneseTraditionalChinese
msoEncodingEuropa3
msoEncodingExtAlphaLowercase
msoEncodingGreek
msoEncodingGreekAutoDetect
msoEncodingHebrew
msoEncodingHZGBSimplifiedChinese
msoEncodingIA5German
msoEncodingIA5IRV
msoEncodingIA5Norwegian
msoEncodingIA5Swedish
msoEncodingISO2022CNSimplifiedChinese
msoEncodingISO2022CNTraditionalChinese
msoEncodingISO2022JPJISX02011989
msoEncodingISO2022JPJISX02021984
msoEncodingISO2022JPNoHalfwidthKatakana
msoEncodingISO2022KR



msoEncodingISO6937NonSpacingAccent
msoEncodingISO885915Latin9
msoEncodingISO88591Latin1
msoEncodingISO88592CentralEurope
msoEncodingISO88593Latin3
msoEncodingISO88594Baltic
msoEncodingISO88595Cyrillic
msoEncodingISO88596Arabic
msoEncodingISO88597Greek
msoEncodingISO88598Hebrew
msoEncodingISO88599Turkish
msoEncodingJapaneseAutoDetect
msoEncodingJapaneseShiftJIS
msoEncodingKOI8R
msoEncodingKOI8U
msoEncodingKorean
msoEncodingKoreanAutoDetect
msoEncodingKoreanJohab
msoEncodingMacArabic
msoEncodingMacCroatia
msoEncodingMacCyrillic
msoEncodingMacGreek1
msoEncodingMacHebrew
msoEncodingMacIcelandic
msoEncodingMacJapanese
msoEncodingMacKorean
msoEncodingMacLatin2
msoEncodingMacRoman
msoEncodingMacRomania
msoEncodingMacSimplifiedChineseGB2312
msoEncodingMacTraditionalChineseBig5
msoEncodingMacTurkish
msoEncodingMacUkraine



msoEncodingOEMArabic
msoEncodingOEMBaltic
msoEncodingOEMCanadianFrench
msoEncodingOEMCyrillic
msoEncodingOEMCyrillicII
msoEncodingOEMGreek437G
msoEncodingOEMHebrew
msoEncodingOEMIcelandic



Example

This	example	reloads	the	current	document	with	Cyrillic	encoding.

ActiveDocument.ReloadAs	msoEncodingCyrillic



Relocate	Method
							

In	outline	view,	moves	the	paragraphs	within	the	specified	range	after	the	next
visible	paragraph	or	before	the	previous	visible	paragraph.	Body	text	moves	with
a	heading	only	if	the	body	text	is	collapsed	in	outline	view	or	if	it's	part	of	the
range.

expression.Relocate(Direction)

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

Direction		Required	WdRelocate.	The	direction	of	the	move.

Can	be	either	of	the	following	WdRelocate	constants.
wdRelocateUp
wdRelocateDown



Example

This	example	moves	the	third,	fourth,	and	fifth	paragraphs	in	the	active
document	below	the	next	(sixth)	paragraph.

theStart	=	ActiveDocument.Paragraphs(3).Range.Start

theEnd	=	ActiveDocument.Paragraphs(5).Range.End

Set	myRange	=	ActiveDocument.Range(Start:=theStart,	End:=theEnd)

ActiveDocument.ActiveWindow.View.Type	=	wdOutlineView

myRange.Relocate	Direction:=wdRelocateDown

This	example	moves	the	first	paragraph	in	the	selection	above	the	previous
paragraph.

ActiveDocument.ActiveWindow.View.Type	=	wdOutlineView

Selection.Paragraphs(1).Range.Relocate	Direction:=wdRelocateUp



Show	All



RemoveNumbers	Method
							

Removes	numbers	or	bullets	from	the	specified	Document,	List,	or	ListFormat
object.

expression.RemoveNumbers(NumberType)

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

NumberType		Optional	WdNumberType.	The	type	of	number	to	be	removed.

Can	be	one	of	the	following	WdNumberType	constants.
wdNumberParagraph
wdNumberListNum
wdNumberAllNumbers
The	default	value	is	wdNumberAllNumbers



Remarks

When	this	method	is	applied	to	a	List	object,	it	removes	numbers	only	from
paragraphs	in	the	specified	list,	skipping	over	any	interleaved	numbers	from
other	lists.	If	this	method	is	applied	to	the	ListFormat	object	for	a	range	of	text,
all	numbers	from	all	lists	in	the	range	are	removed.



Example

As	it	applies	to	the	ListFormat	object.

This	example	removes	the	bullets	or	numbers	from	any	numbered	paragraphs	in
the	selection.

Selection.Range.ListFormat.RemoveNumbers

This	example	removes	the	LISTNUM	fields	from	the	selection.

Selection.Range.ListFormat.RemoveNumbers	wdNumberListNum

As	it	applies	to	the	Document	object.

This	example	removes	the	numbers	from	the	beginning	of	any	numbered
paragraphs	in	the	active	document.

ActiveDocument.RemoveNumbers	wdNumberParagraph

This	example	removes	the	bullets	or	numbers	from	the	third	list	in
MyDocument.doc.

If	Documents("MyDocument.doc").Lists.Count	>=	3	Then

				Documents("MyDocument.doc").Lists(3).RemoveNumbers

End	If



RemoveSmartTags	Method
							

Removes	all	smart	tag	information	from	a	document.

expression.RemoveSmartTags

expression			Required.	An	expression	that	returns	a	Document	object.



Example

This	example	removes	all	smart	tag	information	from	the	active	document.

Sub	SmartTagRemove()

				ActiveDocument.RemoveSmartTags

End	Sub



Show	All



RemoveTheme	Method
							

Removes	the	active	theme	from	the	current	document.

expression.RemoveTheme

expression			Required.	An	expression	that	returns	a	Document	object.



Example

This	example	removes	the	active	theme	from	the	current	document.

ActiveDocument.RemoveTheme



Repaginate	Method
							

Repaginates	the	entire	document.

expression.Repaginate

expression			Required.	An	expression	that	returns	a	Document	object.



Example

This	example	repaginates	the	active	document	if	it's	changed	since	the	last	time
it	was	saved.

If	ActiveDocument.Saved	=	False	Then	ActiveDocument.Repaginate

This	example	repaginates	all	open	documents.

For	Each	doc	In	Documents

				doc.Repaginate

Next	doc



Repeat	Method
							

Repeats	the	most	recent	editing	action	one	or	more	times.	Returns	True	if	the
commands	were	repeated	successfully.

Note			Using	this	method	is	the	equivalent	to	using	the	Repeat	command	on	the
Edit	menu.

expression.Repeat(Times)

expression			Optional.	An	expression	that	returns	an	Application	object.

Times			Optional	Variant.	The	number	of	times	you	want	to	repeat	the	last
command.



Example

This	example	inserts	the	text	"Hello"	followed	by	two	paragraphs	(the	second
typing	action	is	repeated	once).

Selection.TypeText	"Hello"

Selection.TypeParagraph

Repeat

This	example	repeats	the	last	command	three	times	(if	it	can	be	repeated).

On	Error	Resume	Next

If	Repeat(3)	=	True	Then	StatusBar	=	"Action	repeated"



ReplaceNode	Method
							

Replaces	a	target	diagram	node	with	the	source	diagram	node.	The	target
diagram	node	is	deleted,	and	the	source	diagram	node,	including	any	of	its	child
nodes,	are	moved	to	where	the	target	diagram	node	was.

expression.ReplaceNode(TargetNode)

expression			Required.	An	expression	that	returns	a	DiagramNode	object.

TargetNode		Required	DiagramNode	object.	The	diagram	node	to	be	replaced.



Example

The	following	example	replaces	the	fourth	diagram	node	of	a	newly-created
diagram	with	the	second	node.

Sub	Replace()

				Dim	dgnNode	As	DiagramNode

				Dim	shpDiagram	As	Shape

				Dim	intCount	As	Integer

				'Add	pyramid	diagram	to	current	document

				Set	shpDiagram	=	ThisDocument.Shapes.AddDiagram	_

								(Type:=msoDiagramPyramid,	Left:=10,	_

								Top:=15,	Width:=400,	Height:=475)

				'Add	first	child	node	to	diagram

				Set	dgnNode	=	shpDiagram.DiagramNode.Children.AddNode

				'Add	three	more	child	nodes

				For	intCount	=	1	To	3

								dgnNode.AddNode

				Next	intCount

				'Replace	fourth	node	with	the	second	node

				dgnNode.Diagram.Nodes(2).ReplaceNode	_

								TargetNode:=dgnNode.Diagram.Nodes(4)

End	Sub



Reply	Method
							

Opens	a	new	e-mail	message	—	with	the	sender's	address	on	the	To:	line	—	for
replying	to	the	active	message.

expression.Reply

expression			Required.	An	expression	that	returns	a	MailMessage	object.



Example

This	example	opens	a	new	e-mail	message	for	replying	to	the	active	message.

Application.MailMessage.Reply



ReplyAll	Method
							

Opens	a	new	e-mail	message	—	with	the	sender’s	and	all	other	recipients'
addresses	on	the	To:	and	Cc:	lines,	as	appropriate	—	for	replying	to	the	active
message.

expression.ReplyAll

expression			Required.	An	expression	that	returns	a	MailMessage	object.



Example

This	example	opens	a	new	e-mail	message	for	replying	to	the	active	message.

Application.MailMessage.ReplyAll



ReplyWithChanges	Method
							

Sends	an	e-mail	message	to	the	author	of	a	document	that	has	been	sent	out	for
review,	notifying	them	that	a	reviewer	has	completed	review	of	the	document.

expression.ReplyWithChanges(ShowMessage)

expression			Required.	An	expression	that	returns	a	Document	object.

ShowMessage		Optional	Variant.	True	to	display	the	message	prior	to	sending.
False	to	automatically	send	the	message	without	displaying	it	first.	The	default
value	is	True.



Remarks

Use	the	SendForReview	method	to	start	a	collaborative	review	of	a	document.
If	the	ReplyWithChanges	method	is	executed	on	a	document	that	is	not	part	of
a	collaborative	review	cycle,	Microsoft	Word	displays	an	error	message.



Example

This	example	sends	a	message	notifying	the	author	that	a	reviewer	has
completed	a	review,	without	first	displaying	the	e-mail	message	to	the	reviewer.
This	example	assumes	that	the	current	document	is	part	of	a	collaborative	review
cycle.

Sub	ReplyMsg()

				ThisDocument.ReplyWithChanges	ShowMessage:=False

End	Sub



Show	All



Reset	Method
							

Reset	method	as	it	applies	to	the	ListGallery	object.

Resets	the	list	template	specified	by	Index	for	the	specified	list	gallery	to	the
built-in	list	template	format.

expression.Reset(Index)

expression			Required.	An	expression	that	returns	one	of	the	above	objects.

Index		Required	Long.

	

Reset	method	as	it	applies	to	the	Font,	InlineShape,	Paragraph,
ParagraphFormat,	Paragraphs,	and	RoutingSlip	objects.

Font	object:	Removes	manual	character	formatting	(formatting	not	applied	using
a	style).	For	example,	if	you	manually	format	a	word	as	bold	and	the	underlying
style	is	plain	text	(not	bold),	the	Reset	method	removes	the	bold	format.

Paragraph,	Paragraphs,	or	ParagraphFormat	object:	Removes	manual
paragraph	formatting	(formatting	not	applied	using	a	style).	For	example,	if	you
manually	right	align	a	paragraph	and	the	underlying	style	has	a	different
alignment,	the	Reset	method	changes	the	alignment	to	match	the	formatting	of
the	underlying	style.

RoutingSlip	object:	Resets	the	routing	slip	so	that	a	new	routing	can	be	initiated
with	the	same	recipient	list	and	delivery	information.	The	routing	must	be
completed	before	you	use	this	method.

InlineShape	object:	Removes	changes	that	were	made	to	an	inline	shape.

expression.Reset



expression			Required.	An	expression	that	returns	one	of	the	above	objects.

	



Example

As	it	applies	to	the	Font	object.

This	example	removes	manual	formatting	from	the	selection.

Selection.Font.Reset

As	it	applies	to	the	Paragraph	object.

This	example	removes	manual	paragraph	formatting	from	the	second	paragraph
in	the	active	document.

ActiveDocument.Paragraphs(2).Reset

As	it	applies	to	the	RoutingSlip	object.

This	example	prepares	the	active	document	to	be	rerouted	to	the	same	recipients
as	in	the	previous	routing	settings.

If	ActiveDocument.HasRoutingSlip	=	True	Then

				ActiveDocument.RoutingSlip.Reset

End	If

As	it	applies	to	the	InlineShape	object.

This	example	inserts	a	picture	as	an	inline	shape,	changes	the	brightness,	and
then	resets	the	picture	to	its	original	brightness.

Set	aInLine	=	ActiveDocument.InlineShapes.AddPicture	_

				(FileName:="C:\Windows\Bubbles.bmp",	Range:=Selection.Range)

aInLine.PictureFormat.Brightness	=	0.5

MsgBox	"Changing	brightness	back"

aInLine.Reset

As	it	applies	to	the	ListGalleries	object.

This	example	sets	the	fourth	format	listed	on	the	Numbered	tab	in	the	Bullets
and	Numbering	dialog	box	back	to	the	built-in	numbering	format,	and	then	it
applies	the	list	template	to	the	selection.



ListGalleries(wdNumberGallery).Reset(4)

Selection.Range.ListFormat.ApplyListTemplate	_

				ListTemplate:=ListGalleries(2).ListTemplates(4)

This	example	resets	all	the	list	templates	in	the	Bullets	and	Numbering	dialog
box	back	to	the	built-in	formats.

For	Each	lg	In	ListGalleries

				For	i	=	1	to	7

								lg.Reset	Index:=i

				Next	i

Next	lg



ResetContinuationNotice	Method
							

Resets	the	footnote	or	endnote	continuation	notice	to	the	default	notice.	The
default	notice	is	blank	(no	text).

expression.ResetContinuationNotice

expression			Required.	An	expression	that	returns	an	Endnotes	or	Footnotes
object.



Example

This	example	resets	the	endnote	continuation	notice	for	the	active	document.

ActiveDocument.Endnotes.ResetContinuationNotice

This	example	resets	the	footnote	continuation	notice	and	sets	the	starting	number
for	footnote	reference	marks	to	2	in	Sales.doc.

With	Documents("Sales.doc").Sections(1).Range.Footnotes

				.ResetContinuationNotice

				.NumberingRule	=	wdRestartContinuous

				.StartingNumber	=	2

End	With



ResetContinuationSeparator	Method
							

Resets	the	footnote	or	endnote	continuation	separator	to	the	default	separator.
The	default	separator	is	a	long	horizontal	line	that	separates	document	text	from
notes	continued	from	the	previous	page.

expression.ResetContinuationSeparator

expression			Required.	An	expression	that	returns	an	Endnotes	or	Footnotes
object.



Example

This	example	resets	the	footnote	continuation	separator	to	the	default	separator
line.

ActiveDocument.Footnotes.ResetContinuationSeparator

This	example	resets	the	endnote	continuation	separator	for	the	first	section	in
each	open	document.

Dim	docLoop	As	Document

For	Each	docLoop	In	Documents

				docLoop.Sections(1).Range.Endnotes	_

								.ResetContinuationSeparator

Next	docLoop



ResetFormFields	Method
							

Clears	all	form	fields	in	a	document,	preparing	the	form	to	be	filled	in	again.

expression.ResetFormFields

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.



Remarks

Use	the	ResetFormFields	method	to	clear	fields	when	a	document's	fields	are
not	locked.	To	clear	fields	when	a	document's	fields	are	locked,	use	the	Protect
method.



Example

This	example	clears	the	fields	in	the	active	document.	This	example	assumes
that	the	active	document	contains	form	fields.

Sub	ClearFormFields()

				ActiveDocument.ResetFormFields

End	Sub



ResetIgnoreAll	Method
							

Clears	the	list	of	words	that	were	previously	ignored	during	a	spelling	check.
After	you	run	this	method,	previously	ignored	words	are	checked	along	with	all
the	other	words.

expression.ResetIgnoreAll

expression			Required.	An	expression	that	returns	an	Application	object.



Remarks

In	order	for	the	ResetIgnoreAll	method	to	work,	you	must	first	set	the
SpellingChecked	property	to	False.



Example

This	example	clears	the	list	of	words	that	were	ignored	during	a	previous
spelling	check	and	then	begins	a	new	spelling	check	on	the	active	document.

Application.ResetIgnoreAll

ActiveDocument.SpellingChecked	=	False

ActiveDocument.CheckSpelling



ResetRotation	Method
							

Resets	the	extrusion	rotation	around	the	x-axis	and	the	y-axis	to	0	(zero)	so	that
the	front	of	the	extrusion	faces	forward.	This	method	doesn't	reset	the	rotation
around	the	z-axis.

expression.ResetRotation

expression			Required.	An	expression	that	returns	a	ThreeDFormat	object.



Remarks

To	set	the	extrusion	rotation	around	the	x-axis	and	the	y-axis	to	anything	other
than	0	(zero),	use	the	RotationX	and	RotationY	properties	of	the
ThreeDFormat	object.	To	set	the	extrusion	rotation	around	the	z-axis,	use	the
Rotation	property	of	the	Shape	object	that	represents	the	extruded	shape.



Example

This	example	resets	the	rotation	around	the	x-axis	and	the	y-axis	to	0	(zero)	for
the	extrusion	of	the	first	shape	on	the	active	document.

ActiveDocument.Shapes(1).ThreeD.ResetRotation



ResetSeparator	Method
							

Resets	the	footnote	or	endnote	separator	to	the	default	separator.	The	default
separator	is	a	short	horizontal	line	that	separates	document	text	from	notes.

expression.ResetSeparator

expression			Required.	An	expression	that	returns	an	Endnotes	or	Footnotes
object.



Example

This	example	resets	the	footnote	separator	to	the	default	separator	line.

ActiveDocument.Footnotes.ResetSeparator

This	example	resets	the	endnote	separator	for	the	notes	in	the	document	where
the	selection	is	located.

Selection.Endnotes.ResetSeparator



Resize	Method
							

Sizes	the	Word	application	window	or	the	specified	task	window.	If	the	window
is	maximized	or	minimized,	an	error	occurs.

Note			Use	the	Width	or	Height	property	to	set	the	window	width	and	height
independently.

expression.Resize(Width,	Height)

expression			Required.	An	expression	that	returns	an	Application	or	Task	object.

Width			Required	Long.	The	width	of	the	window,	in	points.

Height			Required	Long.	The	height	of	the	window,	in	points.



Example

This	example	resizes	the	Microsoft	Excel	application	window	to	6	inches	wide
by	4	inches	high.

If	Tasks.Exists("Microsoft	Excel")	=	True	Then

				With	Tasks("Microsoft	Excel")

								.WindowState	=	wdWindowStateNormal

								.Resize	Width:=InchesToPoints(6),	Height:=InchesToPoints(4)

				End	With

End	If

This	example	resizes	the	Word	application	window	to	7	inches	wide	by	6	inches
high.

With	Application

				.WindowState	=	wdWindowStateNormal

				.Resize	Width:=InchesToPoints(7),	Height:=InchesToPoints(6)

End	With



Route	Method
							

Routes	the	specified	document,	using	the	document's	current	routing	slip.



Remarks

If	the	document	doesn't	have	a	routing	slip,	an	error	occurs.	Use	the
HasRoutingSlip	property	to	determine	whether	there's	a	routing	slip	attached	to
the	document.	Routing	a	document	sets	the	Routed	property	to	True.

expression.Route

expression			Required.	An	expression	that	returns	a	Document	object.



Example

If	the	active	document	has	a	routing	slip	attached	to	it,	this	example	routes	the
document.

If	ActiveDocument.HasRoutingSlip	=	True	Then	ActiveDocument.Route

This	example	routes	Feedback.doc	to	two	recipients,	one	after	the	other.

Documents("Feedback.doc").HasRoutingSlip	=	True

With	Documents("Feedback.doc").RoutingSlip

				.Subject	=	"Your	feedback	please..."

				.AddRecipient	Recipient:="Tad	Orman"

				.AddRecipient	Recipient:="David	Simpson"

				.Delivery	=	wdOneAfterAnother

End	With

Documents("Status.doc").Route



RtlPara	Method
							

Sets	the	reading	order	and	alignment	of	the	specified	paragraphs	to	right-to-left.

expression.RtlPara

expression			Required.	An	expression	that	returns	a	Selection	object.



Remarks

For	all	selected	paragraphs,	this	method	sets	the	reading	order	to	right-to-left.	If
a	paragraph	with	a	left-to-right	reading	order	is	also	left-aligned,	this	method
reverses	its	reading	order	and	sets	its	paragraph	alignment	to	right-aligned.

Use	the	ReadingOrder	property	to	change	the	reading	order	without	affecting
paragraph	alignment.

For	more	information	on	using	Microsoft	Word	with	right-to-left	languages,	see
Word	features	for	right-to-left	languages.

mk:@MSITStore:wdmain10.chm::/html/wdrefFeaturesAvailableInWordWhenBidirectionalLanguagesAreEnabled.htm


Example

This	example	sets	the	reading	order	and	alignment	of	the	current	selection	to
right-to-left	if	the	selection	isn't	styled	as	"Normal."

If	Selection.Style	<>	"Normal"	Then	_

				Selection.RtlPara



Show	All



RtlRun	Method
							

Sets	the	reading	order	and	alignment	of	the	specified	run	to	right-to-left.

expression.RtlRun

expression			Required.	An	expression	that	returns	a	Selection	object.



Remarks

For	the	specified	run,	this	method	sets	the	reading	order	to	right-to-left.	If	a
paragraph	in	the	run	with	a	left-to-right	reading	order	is	also	left-aligned,	this
method	reverses	its	reading	order	and	sets	its	paragraph	alignment	to	right-
aligned.

Use	the	ReadingOrder	property	to	change	the	reading	order	without	affecting
paragraph	alignment.

For	more	information	on	using	Microsoft	Word	with	right-to-left	languages,	see
Word	features	for	right-to-left	languages.

mk:@MSITStore:wdmain10.chm::/html/wdrefFeaturesAvailableInWordWhenBidirectionalLanguagesAreEnabled.htm


Example

This	example	sets	the	reading	order	and	alignment	of	the	specified	run	to	right-
to-left	if	the	selection	isn't	styled	as	"Normal."

If	Selection.Style	<>	"Normal"	Then	_

				Selection.RtlRun



Run	Method
							

Runs	a	Visual	Basic	macro.

expression.Run(MacroName,	varg1,	varg2,	varg3,	varg4,	varg5,	varg6,	varg7,
varg8,	varg9,	varg10,	varg11,	varg12,	varg13,	varg14,	varg15,	varg16,	varg17,
varg18,	varg19,	varg20,	varg21,	varg22,	varg23,	varg24,	varg25,	varg26,
varg27,	varg28,	varg29,	varg30)

expression			Required.	An	expression	that	returns	an	Application	object.

MacroName			Required	String.	The	name	of	the	macro.	Can	be	any
combination	of	template,	module,	and	macro	name.	For	example,	the	following
statements	are	all	valid.

Application.Run	"Normal.Module1.MAIN"

Application.Run	"MyProject.MyModule.MyProcedure"

Application.Run	"'My	Document.doc'!ThisModule.ThisProcedure"

If	you	specify	the	document	name,	your	code	can	only	run	macros	in	documents
related	to	the	current	context	—	not	just	any	macro	in	any	document.

varg1...varg30			Optional	Variant.	Macro	parameter	values.	You	can	pass	up	to
30	parameter	values	to	the	specified	macro.



Remarks

Although	Visual	Basic	code	can	call	a	macro	directly	(without	this	method	being
used),	this	method	is	useful	when	the	macro	name	is	stored	in	a	variable	(for
more	information,	see	the	example	for	this	topic).	The	following	statements	are
functionally	equivalent.

Normal.Module2.Macro1

Call	Normal.Module2.Macro1

Application.Run	MacroName:="Normal.Module2.Macro1"



Example

This	example	prompts	the	user	to	enter	a	template	name,	module	name,	macro
name,	and	parameter	value,	and	then	it	runs	that	macro.

Dim	strTemplate	As	String

Dim	strModule	As	String

Dim	strMacro	As	String

Dim	strParameter	As	String

strTemplate	=	InputBox("Enter	the	template	name")

strModule	=	InputBox("Enter	the	module	name")

strMacro	=	InputBox("Enter	the	macro	name")

strParameter	=	InputBox("Enter	a	parameter	value")

Application.Run	MacroName:=strTemplate	&	"."	_

				&	strModule	&	"."	&	strMacro,	_

				varg1:=strParameter



RunAutoMacro	Method
							

Runs	an	auto	macro	that's	stored	in	the	specified	document.	If	the	specified	auto
macro	doesn't	exist,	nothing	happens.

Note			Use	the	Run	method	to	run	any	macro.

expression.RunAutoMacro(Which)

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

Which		Required	WdAutoMacros.

WdAutoMacros	can	be	one	of	these	WdAutoMacros	constants.
wdAutoExec
wdAutoNew
wdAutoClose
wdAutoExit
wdAutoOpen



Example

This	example	runs	the	AutoOpen	macro	in	the	active	document.

ActiveDocument.RunAutoMacro	Which:=wdAutoOpen



RunLetterWizard	Method
							

Runs	the	Letter	Wizard	on	the	specified	document.

expression.RunLetterWizard(LetterContent,	WizardMode)

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

LetterContent		Optional	Variant.	A	LetterContent	object.	Any	filled	properties
in	the	LetterContent	object	show	up	as	prefilled	elements	in	the	Letter	Wizard
dialog	boxes.	If	this	argument	is	omitted,	the	GetLetterContent	method	is
automatically	used	to	get	a	LetterContent	object	from	the	specified	document.

WizardMode		Optional	Variant.	True	to	display	the	Letter	Wizard	dialog	box
as	a	series	of	steps	with	a	Next,	Back,	and	Finish	button.	False	to	display	the
Letter	Wizard	dialog	box	as	if	it	were	opened	from	the	Tools	menu	(a
properties	dialog	box	with	an	OK	button	and	a	Cancel	button).	The	default
value	is	True.



Remarks

Use	the	CreateLetterContent	method	to	return	a	LetterContent	object,	given
various	letter	element	properties.	Use	the	GetLetterContent	method	to	return	a
LetterContent	object	based	on	the	contents	of	the	specified	document.	You	can
use	the	resulting	LetterContent	object	with	the	RunLetterWizard	method	to
preset	elements	in	the	Letter	Wizard	dialog	box.



Example

This	example	creates	a	new	LetterContent	object,	sets	several	properties	for	it,
and	then	runs	the	Letter	Wizard	by	using	the	RunLetterWizard	method.

Set	myContent	=	New	LetterContent

With	myContent

				.Salutation	="Hello"

				.SalutationType	=	wdSalutationOther

				.SenderName	=	Application.UserName

				.SenderInitials	=Application.UserInitials

End	With

Documents.Add.RunLetterWizard	_

				LetterContent:=myContent,	WizardMode:=True

The	following	example	uses	the	CreateLetterContent	method	to	create	a	new
LetterContent	object	in	the	active	document,	and	then	it	uses	this	object	with
the	RunLetterWizard	method.

Set	myLetter	=	ActiveDocument	_

				.CreateLetterContent(DateFormat:="July	31,	1999",	_

				IncludeHeaderFooter:=False,	_

				PageDesign:="C:\MSOffice\Templates"	_

				&	"\Letters	&	Faxes\Contemporary	Letter.dot",	_

				LetterStyle:=wdFullBlock,	Letterhead:=True,	_

				LetterheadLocation:=wdLetterTop,	_

				LetterheadSize:=InchesToPoints(1.5),	_

				RecipientName:="Dave	Edson",	_

				RecipientAddress:="436	SE	Main	St."	_

				&	vbCr	&	"Bellevue,	WA	98004",	_

				Salutation:="Dear	Dave,",	_

				SalutationType:=wdSalutationInformal,	_

				RecipientReference:="",	MailingInstructions:="",	_

				AttentionLine:="",	Subject:="End	of	year	report",	_

				CCList:="",	ReturnAddress:="",	SenderName:="",	_

				Closing:="Sincerely	yours,",	SenderCompany:="",	_

				SenderJobTitle:="",	SenderInitials:="",	_

				EnclosureNumber:=0)

ActiveDocument.RunLetterWizard	LetterContent:=myLetter





Show	All



Save	Method
							

Save	method	as	it	applies	to	the	Versions	object.

Saves	a	version	of	the	specified	document	with	a	comment.

expression.Save(Comment)

expression			Required.	An	expression	that	returns	one	of	the	above	objects.

Comment		Optional	Variant.

	

Save	method	as	it	applies	to	the	Documents	object.

Saves	all	the	documents	in	the	Documents	collection.	If	a	document	hasn't	been
saved	before,	the	Save	As	dialog	box	prompts	the	user	for	a	file	name.

expression.Save(NoPrompt,	OriginalFormat)

expression			Required.	An	expression	that	returns	one	of	the	above	objects.

NoPrompt		Optional	Variant.	True	to	have	Word	automatically	save	all
documents.	False	to	have	Word	prompt	the	user	to	save	each	document	that	has
changed	since	it	was	last	saved.

OriginalFormat		Optional	Variant.	Specifies	the	way	the	documents	are	saved.
WdOriginalFormat

Can	be	one	of	the	following	WdOriginalFormat	constants
wdOriginalDocumentFormat
wdPromptUserX
wdWordDocument



Save	method	as	it	applies	to	the	Document	and	Template	objects.

Saves	the	specified	document	or	template.	If	the	document	or	template	hasn't
been	saved	before,	the	Save	As	dialog	box	prompts	the	user	for	a	file	name.

expression.Save

expression			Required.	An	expression	that	returns	one	of	the	above	objects.

	



Example

As	it	applies	to	the	Document	object.

This	example	saves	the	active	document	if	it's	changed	since	it	was	last	saved.

If	ActiveDocument.Saved	=	False	Then	ActiveDocument.Save

This	example	saves	each	document	in	the	Documents	collection	without	first
prompting	the	user.

Documents.Save	NoPrompt:=True,	_

				OriginalFormat:=wdOriginalDocumentFormat

As	it	applies	to	the	Version	object.

If	Sales.doc	is	open,	this	example	saves	a	version	of	Sales.doc,	with	a	comment.

For	Each	doc	in	Documents

				If	Instr(1,	doc.Name,	"Sales.doc",	1)	>	0	Then	

								doc.Versions.Save	Comment:="Minor	changes	to	intro"

				End	If

Next	doc



Show	All



SaveAs	Method
							

Saves	the	specified	document	with	a	new	name	or	format.	The	arguments	for	this
method	correspond	to	the	options	in	the	Save	As	dialog	box	(File	menu).

expression.SaveAs(FileName,	FileFormat,	LockComments,	Password,
AddToRecentFiles,	WritePassword,	ReadOnlyRecommended,
EmbedTrueTypeFonts,	SaveNativePictureFormat,	SaveFormsData,
SaveAsAOCELetter,	Encoding,	InsertLineBreaks,	AllowSubstitutions,
LineEnding,	AddBiDiMarks)

expression			Required.	An	expression	that	returns	a	Document	object.

FileName			Optional	Variant.	The	name	for	the	document.	The	default	is	the
current	folder	and	file	name.	If	the	document	has	never	been	saved,	the	default
name	is	used	(for	example,	Doc1.doc).	If	a	document	with	the	specified	file
name	already	exists,	the	document	is	overwritten	without	the	user	being
prompted	first.

FileFormat			Optional	Variant.	The	format	in	which	the	document	is	saved.	Can
be	any	WdSaveFormat	constant.	To	save	a	document	in	another	format,	specify
the	appropriate	value	for	the	SaveFormat	property	of	the	FileConverter	object.

WdSaveFormat	can	be	one	of	these	WdSaveFormat	constants.
wdFormatDocument		Saves	as	a	Word	document.	Default.
wdFormatDOSText		Saves	text	without	formatting.	Converts	all	section
breaks,	page	breaks,	and	new	line	characters	to	paragraph	marks.	Uses	the
ANSI	character	set.	Use	this	format	to	share	documents	between	Word	and
DOS-based	programs.
wdFormatDOSTextLineBreaks		Saves	text	without	formatting.	Converts	all
line	breaks,	section	breaks,	and	page	breaks	to	paragraph	marks.	Use	this	format
when	you	want	to	maintain	line	breaks,	for	example,	when	transferring
documents	to	an	electronic	mail	system.
wdFormatEncodedText	Saves	as	an	encoded	text	file.	Use	the	Encoding



argument	to	specify	the	code	page	to	use.
wdFormatHTML		Saves	all	text	and	formatting	with	HTML	tags	so	that	the
resulting	document	can	be	viewed	in	a	Web	browser.
wdFormatRTF		Saves	all	formatting.	Converts	formatting	to	instructions	that
other	programs,	including	compatible	Microsoft	programs,	can	read	and
interpret.
wdFormatTemplate		Saves	as	a	Word	template.
wdFormatText		Saves	text	without	formatting.	Converts	all	section	breaks,
page	breaks,	and	new	line	characters	to	paragraph	marks.	Uses	the	ANSI
character	set.	Use	this	format	if	the	destination	program	cannot	read	any	of	the
other	available	file	formats.
wdFormatTextLineBreaks		Saves	text	without	formatting.	Converts	all	line
breaks,	section	breaks,	and	page	breaks	to	paragraph	marks.	Use	this	format
when	you	want	to	maintain	line	breaks,	for	example,	when	transferring
documents	to	an	electronic	mail	system.
wdFormatUnicodeText		Saves	as	a	Unicode	text	file.	Converts	text	between
common	character	encoding	standards,	including	Unicode	2.0,	Mac	OS,
Windows,	EUC	and	ISO-8859	series.
Other	File	Types		To	save	in	a	file	type	for	which	there	isn't	a	constant,	use	the
FileConverters	object	to	obtain	the	SaveFormat	property;	then	set	the
FileFormat	argument	to	the	value	of	the	SaveFormat	property.

LockComments			Optional	Variant.	True	to	lock	the	document	for	comments.
The	default	is	False.

Password			Optional	Variant.	A	password	string	for	opening	the	document.

AddToRecentFiles			Optional	Variant.	True	to	add	the	document	to	the	list	of
recently	used	files	on	the	File	menu.	The	default	is	True.

WritePassword			Optional	Variant.	A	password	string	for	saving	changes	to	the
document.

ReadOnlyRecommended			Optional	Variant.	True	to	have	Microsoft	Word
suggest	read-only	status	whenever	the	document	is	opened.	The	default	is	False.

EmbedTrueTypeFonts			Optional	Variant.	True	to	save	TrueType	fonts	with	the
document.	If	omitted,	the	EmbedTrueTypeFonts	argument	assumes	the	value	of



the	EmbedTrueTypeFonts	property.

SaveNativePictureFormat			Optional	Variant.	If	graphics	were	imported	from
another	platform	(for	example,	Macintosh),	True	to	save	only	the	Windows
version	of	the	imported	graphics.

SaveFormsData			Optional	Variant.	True	to	save	the	data	entered	by	a	user	in	a
form	as	a	data	record.

SaveAsAOCELetter			Optional	Variant.	If	the	document	has	an	attached	mailer,
True	to	save	the	document	as	an	AOCE	letter	(the	mailer	is	saved).

Encoding		Optional	MsoEncoding.	The	code	page,	or	character	set,	to	use	for
documents	saved	as	encoded	text	files.	The	default	is	the	system	code	page.

MsoEncoding	can	be	one	of	these	MsoEncoding	constants.
msoEncodingArabic
msoEncodingArabicASMO
msoEncodingArabicAutoDetect	Not	used	with	this	method.
msoEncodingArabicTransparentASMO
msoEncodingAutoDetect	Not	used	with	this	method.
msoEncodingBaltic
msoEncodingCentralEuropean
msoEncodingCyrillic
msoEncodingCyrillicAutoDetect	Not	used	with	this	method.
msoEncodingEBCDICArabic
msoEncodingEBCDICDenmarkNorway
msoEncodingEBCDICFinlandSweden
msoEncodingEBCDICFrance
msoEncodingEBCDICGermany
msoEncodingEBCDICGreek
msoEncodingEBCDICGreekModern
msoEncodingEBCDICHebrew
msoEncodingEBCDICIcelandic
msoEncodingEBCDICInternational
msoEncodingEBCDICItaly



msoEncodingEBCDICJapaneseKatakanaExtended
msoEncodingEBCDICJapaneseKatakanaExtendedAndJapanese
msoEncodingEBCDICJapaneseLatinExtendedAndJapanese
msoEncodingEBCDICKoreanExtended
msoEncodingEBCDICKoreanExtendedAndKorean
msoEncodingEBCDICLatinAmericaSpain
msoEncodingEBCDICMultilingualROECELatin2
msoEncodingEBCDICRussian
msoEncodingEBCDICSerbianBulgarian
msoEncodingEBCDICSimplifiedChineseExtendedAndSimplifiedChinese
msoEncodingEBCDICThai
msoEncodingEBCDICTurkish
msoEncodingEBCDICTurkishLatin5
msoEncodingEBCDICUnitedKingdom
msoEncodingEBCDICUSCanada
msoEncodingEBCDICUSCanadaAndJapanese
msoEncodingEBCDICUSCanadaAndTraditionalChinese
msoEncodingEUCChineseSimplifiedChinese
msoEncodingEUCJapanese
msoEncodingEUCKorean
msoEncodingEUCTaiwaneseTraditionalChinese
msoEncodingEuropa3
msoEncodingExtAlphaLowercase
msoEncodingGreek
msoEncodingGreekAutoDetect	Not	used	with	this	method.
msoEncodingHebrew
msoEncodingHZGBSimplifiedChinese
msoEncodingIA5German
msoEncodingIA5IRV
msoEncodingIA5Norwegian
msoEncodingIA5Swedish
msoEncodingISO2022CNSimplifiedChinese
msoEncodingISO2022CNTraditionalChinese



msoEncodingISO2022JPJISX02011989
msoEncodingISO2022JPJISX02021984
msoEncodingISO2022JPNoHalfwidthKatakana
msoEncodingISO2022KR
msoEncodingISO6937NonSpacingAccent
msoEncodingISO885915Latin9
msoEncodingISO88591Latin1
msoEncodingISO88592CentralEurope
msoEncodingISO88593Latin3
msoEncodingISO88594Baltic
msoEncodingISO88595Cyrillic
msoEncodingISO88596Arabic
msoEncodingISO88597Greek
msoEncodingISO88598Hebrew
msoEncodingISO88599Turkish
msoEncodingJapaneseAutoDetect	Not	used	with	this	method.
msoEncodingJapaneseShiftJIS
msoEncodingKOI8R
msoEncodingKOI8U
msoEncodingKorean
msoEncodingKoreanAutoDetect	Not	used	with	this	method.
msoEncodingKoreanJohab
msoEncodingMacArabic
msoEncodingMacCroatia
msoEncodingMacCyrillic
msoEncodingMacGreek1
msoEncodingMacHebrew
msoEncodingMacIcelandic
msoEncodingMacJapanese
msoEncodingMacKorean
msoEncodingMacLatin2
msoEncodingMacRoman
msoEncodingMacRomania



msoEncodingMacSimplifiedChineseGB2312
msoEncodingMacTraditionalChineseBig5
msoEncodingMacTurkish
msoEncodingMacUkraine
msoEncodingOEMArabic
msoEncodingOEMBaltic
msoEncodingOEMCanadianFrench
msoEncodingOEMCyrillic
msoEncodingOEMCyrillicII
msoEncodingOEMGreek437G
msoEncodingOEMHebrew
msoEncodingOEMIcelandic
msoEncodingOEMModernGreek
msoEncodingOEMMultilingualLatinI
msoEncodingOEMMultilingualLatinII
msoEncodingOEMNordic
msoEncodingOEMPortuguese
msoEncodingOEMTurkish
msoEncodingOEMUnitedStates
msoEncodingSimplifiedChineseAutoDetect	Not	used	with	this	method.
msoEncodingSimplifiedChineseGBK
msoEncodingT61
msoEncodingTaiwanCNS
msoEncodingTaiwanEten
msoEncodingTaiwanIBM5550
msoEncodingTaiwanTCA
msoEncodingTaiwanTeleText
msoEncodingTaiwanWang
msoEncodingThai
msoEncodingTraditionalChineseAutoDetect	Not	used	with	this	method.
msoEncodingTraditionalChineseBig5
msoEncodingTurkish
msoEncodingUnicodeBigEndian



msoEncodingUnicodeLittleEndian
msoEncodingUSASCII
msoEncodingUTF7
msoEncodingUTF8
msoEncodingVietnamese
msoEncodingWestern

InsertLineBreaks		Optional	Variant.	If	the	document	is	saved	as	a	text	file,
True	to	insert	line	breaks	at	the	end	of	each	line	of	text.

AllowSubstitutions		Optional	Variant.	If	the	document	is	saved	as	a	text	file,
True	allows	Word	to	replace	some	symbols	with	text	that	looks	similar.	For
example,	displaying	the	copyright	symbol	as	(c).	The	default	is	False.

LineEnding		Optional	Variant.	The	way	Word	marks	the	line	and	paragraph
breaks	in	documents	saved	as	text	files.	Can	be	any	WdLineEndingType
constant.

WdLineEndingType	can	be	one	of	these	WdLineEndingType	constants.
wdCRLF	Default.
wdCROnly
wdLFCR	Not	used	with	this	method.
wdLFOnly	Not	used	with	this	method.
wdLSPS	Not	used	with	this	method.

AddBiDiMarks		Optional	Variant.	True	adds	control	characters	to	the	output
file	to	preserve	bi-directional	layout	of	the	text	in	the	original	document.



Example

This	example	saves	the	active	document	as	Test.rtf	in	rich-text	format	(RTF).

Sub	SaveAsRTF()

				ActiveDocument.SaveAs	FileName:="Text.rtf",	_

								FileFormat:=wdFormatRTF

End	Sub

This	example	saves	the	active	document	in	text-file	format	with	the	file
extension	".txt".

Sub	SaveAsTextFile()

				Dim	strDocName	As	String

				Dim	intPos	As	Integer

				'Find	position	of	extension	in	filename

				strDocName	=	ActiveDocument.Name

				intPos	=	InStrRev(strDocName,	".")

				If	intPos	=	0	Then

								'If	the	document	has	not	yet	been	saved

								'Ask	the	user	to	provide	a	filename

								strDocName	=	InputBox("Please	enter	the	name	"	&	_

												"of	your	document.")

				Else

								'Strip	off	extension	and	add	".txt"	extension

								strDocName	=	Left(strDocName,	intPos	-	1)

								strDocName	=	strDocName	&	".txt"

				End	If

				'Save	file	with	new	extension

				ActiveDocument.SaveAs	FileName:=strDocName,	_

								FileFormat:=wdFormatText

End	Sub

This	example	loops	through	all	the	installed	converters,	and	if	it	finds	the
WordPerfect	6.0	converter,	it	saves	the	active	document	using	the	converter.

Sub	SaveWithConverter()



				Dim	cnvWrdPrf	As	FileConverter

				'Look	for	WordPerfect	file	converter

				'And	save	document	using	the	converter

				'For	the	FileFormat	converter	value

				For	Each	cnvWrdPrf	In	Application.FileConverters

								If	cnvWrdPrf.ClassName	=	"WrdPrfctWin"	Then

												ActiveDocument.SaveAs	FileName:="MyWP.doc",	_

																FileFormat:=cnvWrdPrf.SaveFormat

								End	If

				Next	cnvWrdPrf

End	Sub

This	example	saves	NewFile.doc	with	a	write	password	and	then	closes	the
document.		This	example	assumes	that	one	of	the	open	files	is	named
"NewFile.doc."		If	not,	Word	displays	an	error	message.

Sub	SaveWithPassword()

				With	Documents("NewFile.doc")

								.SaveAs	WritePassword:="pass"

								.Close

				End	With

End	Sub



ScaleHeight	Method
							

Scales	the	height	of	the	shape	by	a	specified	factor.	For	pictures	and	OLE
objects,	you	can	indicate	whether	you	want	to	scale	the	shape	relative	to	the
original	size	or	relative	to	the	current	size.	Shapes	other	than	pictures	and	OLE
objects	are	always	scaled	relative	to	their	current	height.

expression.ScaleHeight(Factor,	RelativeToOriginalSize,	Scale)

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

Factor		Required	Single.	Specifies	the	ratio	between	the	height	of	the	shape	after
you	resize	it	and	the	current	or	original	height.	For	example,	to	make	a	rectangle
50	percent	larger,	specify	1.5	for	this	argument.

RelativeToOriginalSize		Required	MsoTriState.	True	to	scale	the	shape	relative
to	its	original	size.	False	to	scale	it	relative	to	its	current	size.	You	can	specify
True	for	this	argument	only	if	the	specified	shape	is	a	picture	or	an	OLE	object.

MsoTriState	can	be	one	of	these	MsoTriState	constants.
msoCTrue
msoFalse
msoTriStateMixed
msoTriStateToggle
msoTrue

Scale		Optional	MsoScaleFrom.	The	part	of	the	shape	that	retains	its	position
when	the	shape	is	scaled.

MsoScaleFrom	can	be	one	of	these	MsoScaleFrom	constants.
msoScaleFromBottomRight
msoScaleFromTopLeft	default



msoScaleFromMiddle



Example

This	example	scales	all	pictures	and	OLE	objects	on	myDocument	to	175	percent
of	their	original	height	and	width,	and	it	scales	all	other	shapes	to	175	percent	of
their	current	height	and	width.

Set	myDocument	=	ActiveDocument

For	Each	s	In	myDocument.Shapes

				Select	Case	s.Type

								Case	msoEmbeddedOLEObject,	msoLinkedOLEObject,	_

																msoOLEControlObject,	_

																msoLinkedPicture,	msoPicture

												s.ScaleHeight	1.75,	True

												s.ScaleWidth	1.75,	True

								Case	Else

												s.ScaleHeight	1.75,	False

												s.ScaleWidth	1.75,	False

				End	Select

Next



ScaleWidth	Method
							

Scales	the	width	of	the	shape	by	a	specified	factor.	For	pictures	and	OLE	objects,
you	can	indicate	whether	you	want	to	scale	the	shape	relative	to	the	original	size
or	relative	to	the	current	size.	Shapes	other	than	pictures	and	OLE	objects	are
always	scaled	relative	to	their	current	width.

expression.ScaleWidth(Factor,	RelativeToOriginalSize,	Scale)

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

Factor		Required	Single.	Specifies	the	ratio	between	the	width	of	the	shape	after
you	resize	it	and	the	current	or	original	width.	For	example,	to	make	a	rectangle
50	percent	larger,	specify	1.5	for	this	argument.

RelativeToOriginalSize		Required	MsoTriState.	True	to	scale	the	shape	relative
to	its	original	size.	False	to	scale	it	relative	to	its	current	size.	You	can	specify
True	for	this	argument	only	if	the	specified	shape	is	a	picture	or	an	OLE	object.

MsoTriState	can	be	one	of	these	MsoTriState	constants.
msoCTrue
msoFalse
msoTriStateMixed
msoTriStateToggle
msoTrue

Scale		Optional	MsoScaleFrom.	The	part	of	the	shape	that	retains	its	position
when	the	shape	is	scaled.

MsoScaleFrom	can	be	one	of	these	MsoScaleFrom	constants.
msoScaleFromBottomRight
msoScaleFromTopLeft	default



msoScaleFromMiddle



Example

This	example	scales	all	pictures	and	OLE	objects	on	myDocument	to	175	percent
of	their	original	height	and	width,	and	it	scales	all	other	shapes	to	175	percent	of
their	current	height	and	width.

Set	myDocument	=	ActiveDocument

For	Each	s	In	myDocument.Shapes

				Select	Case	s.Type

								Case	msoEmbeddedOLEObject,	msoLinkedOLEObject,	_

																msoOLEControlObject,	_

																msoLinkedPicture,	msoPicture

												s.ScaleHeight	1.75,	True

												s.ScaleWidth	1.75,	True

								Case	Else

												s.ScaleHeight	1.75,	False

												s.ScaleWidth	1.75,	False

				End	Select

Next



ScreenRefresh	Method
							

Updates	the	display	on	the	monitor	with	the	current	information	in	the	video
memory	buffer.	You	can	use	this	method	after	using	the	ScreenUpdating
property	to	disable	screen	updates.

expression.ScreenRefresh

expression			Required.	An	expression	that	returns	an	Application	object.



Remarks

ScreenRefresh	turns	on	screen	updating	for	just	one	instruction	and	then
immediately	turns	it	off.	Subsequent	instructions	don't	update	the	screen	until
screen	updating	is	turned	on	again	with	the	ScreenUpdating	property.



Example

This	example	turns	off	screen	updating,	opens	Test.doc,	inserts	text,	refreshes	the
screen,	and	then	closes	the	document	(with	changes	saved).

Dim	rngTemp	As	Range

ScreenUpdating	=	False

Documents.Open	FileName:="C:\DOCS\TEST.DOC"

Set	rngTemp	=	ActiveDocument.Range(Start:=0,	End:=0)

rngTemp.InsertBefore	"new"

Application.ScreenRefresh

ActiveDocument.Close	SaveChanges:=wdSaveChanges

ScreenUpdating	=	True



ScrollIntoView	Method
							

Scrolls	through	the	document	window	so	the	specified	range	or	shape	is
displayed	in	the	document	window.

expression.ScrollIntoView(Obj,	Start)

expression			Required.	An	expression	that	returns	a	Window	object.

Obj			Required	Object.	A	Range	or	Shape	object.

Start			Optional	Boolean.	True	if	the	top	left	corner	of	the	range	or	shape
appears	at	the	top	left	corner	of	the	document	window.	False	if	the	bottom	right
corner	of	the	range	or	shape	appears	at	the	bottom	right	corner	of	the	document
window.	The	default	value	is	True.



Remarks

If	the	range	or	shape	is	larger	than	the	document	window,	the	Start	argument
specifies	which	portion	of	the	range	or	shape	displays	or	gets	initial	focus.	This
method	cannot	be	used	with	outline	view.



Example

This	example	scrolls	through	the	active	document	so	that	the	current	selection	is
visible	in	the	document	window.

ActiveWindow.ScrollIntoView	Selection.Range,	True



Show	All



Select	Method
							

Select	method	as	it	applies	to	the	Shape	and	ShapeRange	objects.

Selects	the	specified	object.

expression.Select(Replace)

expression			Required.	An	expression	that	returns	one	of	the	above	objects.

Replace		Optional	Variant.		If	adding	a	shape,	True	replaces	the	selection.	False
adds	the	new	shape	to	the	selection.

Select	method	as	it	applies	to	all	other	objects	in	the	Applies	To	list.	

Selects	the	specified	object.

Note			After	using	this	method,	use	the	Selection	property	to	work	with	the
selected	items.	For	more	information,	see	Working	with	the	Selection	object.

expression.Select

expression			Required.	An	expression	that	returns	one	of	the	above	objects.



Example

As	it	applies	to	the	Range	object.

This	example	selects	the	first	paragraph	in	the	active	document.

Sub	SelectParagraph()

				ActiveDocument.Paragraphs(1).Range.Select

				Selection.Font.Bold	=	True

End	Sub

As	it	applies	to	the	Row	object.

This	example	selects	row	one	in	table	one	of	Report.doc.

Documents("Report.doc").Tables(1).Rows(1).Select

As	it	applies	to	the	Field	object.

This	example	updates	and	selects	the	first	field	in	the	active	document.

ActiveDocument.ActiveWindow.View.FieldShading	=	_

				wdFieldShadingWhenSelected

If	ActiveDocument.Fields.Count	>=	1	Then

				With	ActiveDocument.Fields(1)

							.Update

							.Select

				End	With

End	If



SelectAll	Method
							

Selects	all	the	shapes	in	the	main	story,	in	a	canvas,	or	in	headers	and	footers	of	a
document.

expression.SelectAll

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.



Remarks

This	method	doesn't	select	InlineShape	objects.



Example

This	example	selects	all	the	shapes	in	the	active	document.

Sub	SelectAllShapes()

				ActiveDocument.Shapes.SelectAll

End	Sub

This	example	selects	all	the	shapes	in	the	headers	and	footers	of	the	active
document	and	adds	a	red	shadow	to	each	shape.

Sub	SelectAllHeaderShapes()

				With	ActiveDocument.ActiveWindow

								.View.Type	=	wdPrintView

								.ActivePane.View.SeekView	=	wdSeekCurrentPageHeader

				End	With

				ActiveDocument.Sections(1).Headers(wdHeaderFooterPrimary).Shapes.

				With	Selection.ShapeRange.Shadow

								.Type	=	msoShadow10

								.ForeColor.RGB	=	RGB(220,	0,	0)

				End	With

End	Sub

This	example	selects	and	deletes	all	the	shapes	inside	the	first	canvas	of	the
active	document.

Sub	SelectCanvasShapes()

				Dim	s	As	Shape

				Set	s	=	ActiveDocument.Shapes.Range(1)

				s.CanvasItems.SelectAll

				Selection.Delete

End	Sub



SelectCell	Method
							

Selects	the	entire	cell	containing	the	current	selection.	To	use	this	method,	the
current	selection	must	be	contained	within	a	single	cell.

expression.SelectCell

expression			Required.	An	expression	that	returns	a	Selection	object.



Example

This	example	selects	the	entire	cell	containing	the	current	selection.

Selection.SelectCell



SelectColumn	Method
							

Selects	the	column	that	contains	the	insertion	point,	or	selects	all	columns	that
contain	the	selection.	If	the	selection	isn't	in	a	table,	an	error	occurs.

expression.SelectColumn

expression			Required.	An	expression	that	returns	a	Selection	object.



Example

This	example	collapses	the	selection	to	the	ending	point	and	then	selects	the
column	that	contains	the	insertion	point.

Selection.Collapse	Direction:=wdCollapseEnd

If	Selection.Information(wdWithInTable)	=	True	Then

				Selection.SelectColumn

End	If



SelectCurrentAlignment	Method
							

Extends	the	selection	forward	until	text	with	a	different	paragraph	alignment	is
encountered.

expression.SelectCurrentAlignment

expression			Required.	An	expression	that	returns	a	Selection	object.



Remarks

There	are	four	types	of	paragraph	alignment:	left,	centered,	right,	and	justified.



Example

This	example	positions	the	insertion	point	at	the	beginning	of	the	first	paragraph
after	the	current	paragraph	that	doesn't	have	the	same	alignment	as	the	current
paragraph.	If	the	alignment	is	the	same	from	the	selection	to	the	end	of	the
document,	the	example	moves	the	selection	to	the	end	of	the	document	and
displays	a	message.

Selection.SelectCurrentAlignment

Selection.Collapse	Direction:=wdCollapseEnd

If	Selection.End	=	ActiveDocument.Content.End	-	1	Then

				MsgBox	"No	change	in	alignment	found."

End	If



SelectCurrentColor	Method
							

Extends	the	selection	forward	until	text	with	a	different	color	is	encountered.

expression.SelectCurrentColor

expression			Required.	An	expression	that	returns	a	Selection	object.



Example

This	example	extends	the	selection	from	the	beginning	of	the	document	to	the
first	character	formatted	with	a	different	color	and	then	displays	the	number	of
characters	in	the	resulting	selection.

Selection.HomeKey	Unit:=wdStory,	Extend:=wdMove

Selection.SelectCurrentColor

n	=	Len(Selection.Text)

MsgBox	"Contiguous	characters	with	the	same	color:	"	&	n



SelectCurrentFont	Method
							

Extends	the	selection	forward	until	text	in	a	different	font	or	font	size	is
encountered.

expression.SelectCurrentFont

expression			Required.	An	expression	that	returns	a	Selection	object.



Example

This	example	extends	the	selection	until	text	in	a	different	font	or	font	size	is
encountered.	The	example	uses	the	Grow	method	to	increase	the	size	of	the
selected	text	to	the	next	available	font	size.

With	Selection

				.SelectCurrentFont

				.Font.Grow

End	With



SelectCurrentIndent	Method
							

Extends	the	selection	forward	until	text	with	different	left	or	right	paragraph
indents	is	encountered.

expression.SelectCurrentIndent

expression			Required.	An	expression	that	returns	a	Selection	object.



Example

This	example	jumps	to	the	beginning	of	the	first	paragraph	in	the	document	that
has	different	indents	than	the	first	paragraph	in	the	active	document.

With	Selection

				.HomeKey	Unit:=wdStory,	Extend:=wdMove

				.SelectCurrentIndent

				.Collapse	Direction:=wdCollapseEnd

End	With

This	example	determines	whether	all	the	paragraphs	in	the	active	document	are
formatted	with	the	same	left	and	right	indents	and	then	displays	a	message	box
indicating	the	result.

With	Selection

				.HomeKey	Unit:=wdStory,	Extend:=wdMove

				.SelectCurrentIndent

				.Collapse	Direction:=wdCollapseEnd

End	With

If	Selection.End	=	ActiveDocument.Content.End	-	1	Then

				MsgBox	"All	paragraphs	share	the	same	left	"	_

								&	"and	right	indents."

Else

				MsgBox	"Not	all	paragraphs	share	the	same	left	"	_

								&	"and	right	indents."

End	If



SelectCurrentSpacing	Method
							

Extends	the	selection	forward	until	a	paragraph	with	different	line	spacing	is
encountered.

expression.SelectCurrentSpacing

expression			Required.	An	expression	that	returns	a	Selection	object.



Example

This	example	selects	all	consecutive	paragraphs	that	have	the	same	line	spacing
and	changes	the	line	spacing	to	single	spacing.

With	Selection

				.SelectCurrentSpacing

				.ParagraphFormat.Space1

End	With



SelectCurrentTabs	Method
							

Extends	the	selection	forward	until	a	paragraph	with	different	tab	stops	is
encountered.

expression.SelectCurrentTabs

expression			Required.	An	expression	that	returns	a	Selection	object.



Example

This	example	selects	the	second	paragraph	in	the	active	document	and	then
extends	the	selection	to	include	all	other	paragraphs	that	have	the	same	tab	stops.

Set	myRange	=	ActiveDocument.Paragraphs(2).Range

myRange.Select

Selection.SelectCurrentTabs

This	example	selects	paragraphs	that	have	the	same	tab	stops	and	retrieves	the
position	of	the	first	tab	stop.	The	example	moves	the	selection	to	the	next	range
of	paragraphs	that	have	the	same	tab	stops.	The	example	then	adds	the	tab	stop
setting	from	the	first	group	of	paragraphs	to	the	current	selection.

With	Selection

				.SelectCurrentTabs

				pos	=	.Paragraphs.TabStops(1).Position

				.Collapse	Direction:=wdCollapseEnd

				.SelectCurrentTabs

				.Paragraphs.TabStops.Add	Position:=pos

End	With



SelectNumber	Method
							

Selects	the	number	or	bullet	in	a	list.

expression.SelectNumber

expression			Required.	An	expression	that	returns	a	Paragraph	object.



Remarks

If	the	SelectNumber	method	is	called	from	a	paragraph,	selection,	or	range	that
does	not	contain	a	list,	an	error	message	is	displayed.



Example

This	example	selects	the	bullet	or	number	for	the	list	that	contains	the	selected
paragraph	in	the	active	document,	and	then	it	increases	the	font	size	of	the	bullet
or	number	to	17	points.		This	example	assumes	that	the	first	paragraph	in	the
selection	is	formatted	as	a	bulleted	or	numbered	list.

Sub	SelectParaNumber()

				With	Selection

								.Paragraphs(1).SelectNumber

								.Font.Size	=	17

				End	With

End	Sub



SelectRow	Method
							

Selects	the	row	that	contains	the	insertion	point,	or	selects	all	rows	that	contain
the	selection.	If	the	selection	isn't	in	a	table,	an	error	occurs.

expression.SelectRow

expression			Required.	An	expression	that	returns	a	Selection	object.



Example

This	example	collapses	the	selection	to	the	starting	point	and	then	selects	the
column	that	contains	the	insertion	point.

Selection.Collapse	Direction:=wdCollapseStart

If	Selection.Information(wdWithInTable)	=	True	Then

				Selection.SelectRow

End	If



Show	All



SendFax	Method
							

SendFax	method	as	it	applies	to	the	Document	object.

Sends	the	specified	document	as	a	fax,	without	any	user	interaction.

expression.SendFax(Address,	Subject)

expression			Required.	An	expression	that	returns	a	Document	object.

Address		Required	String.	The	recipient's	fax	number.

Subject		Optional	Variant.	The	text	for	the	subject	line.	The	character	limit	is
255.

SendFax	method	as	it	applies	to	the	Application	object.

Starts	the	Fax	Wizard.

expression.SendFax

expression			Required.	An	expression	that	returns	an	Application	object.



Example

As	it	applies	to	the	Document	object.

This	example	sends	the	active	document	as	a	fax.

ActiveDocument.SendFax	Address:="12065551234",	_

				Subject:="Important	Fax"

As	it	applies	to	the	Application	object.

This	example	starts	the	Fax	Wizard.

Application.SendFax



SendForReview	Method
							

Sends	a	document	in	an	e-mail	message	for	review	by	the	specified	recipients.

expression.SendForReview(Recipients,	Subject,	ShowMessage,
IncludeAttachment)

expression			Required.	An	expression	that	returns	a	Document	object.

Recipients		Optional	Variant.	A	string	that	lists	the	people	to	whom	to	send	the
message.	These	can	be	unresolved	names	and	aliases	in	an	e-mail	phone	book	or
full	e-mail	addresses.	Separate	multiple	recipients	with	a	semicolon	(;).		If	left
blank	and	ShowMessage	is	False,	you	will	receive	an	error	message	and	the
message	will	not	be	sent.

Subject		Optional	Variant.	A	string	for	the	subject	of	the	message.		If	left	blank,
the	subject	will	be:		Please	review	"filename".

ShowMessage		Optional	Variant.	A	Boolean	value	that	indicates	whether	the
message	should	be	displayed	when	the	method	is	executed.	The	default	value	is
True.	If	set	to	False,	the	message	is	automatically	sent	to	the	recipients	without
first	showing	the	message	to	the	sender.

IncludeAttachment		Optional	Variant.	A	Boolean	value	that	indicates	whether
the	message	should	include	an	attachment	or	a	link	to	a	server	location.	The
default	value	is	True.	If	set	to	False,	the	document	must	be	stored	at	a	shared
location.



Remarks

The	SendForReview	method	starts	a	collaborative	review	cycle.	Use	the
EndReview	method	to	end	a	review	cycle.



Example

This	example	automatically	sends	the	current	document	as	an	attachment	in	an	e-
mail	message	to	the	specified	recipients.

Sub	WebReview()

				ThisDocument.SendForReview	_

								Recipients:="someone@microsoft.com;	amy	jones",	_

								Subject:="Please	review	this	document.",	_

								ShowMessage:=False,	_

								IncludeAttachment:=True

End	Sub



SendMail	Method
							

Opens	a	message	window	for	sending	the	specified	document	through	Microsoft
Exchange.

Note			Use	the	SendMailAttach	property	to	control	whether	the	document	is
sent	as	text	in	the	message	window	or	as	an	attachment.

expression.SendMail

expression			Required.	An	expression	that	returns	a	Document	object.



Example

This	example	sends	the	active	document	as	an	attachment	to	a	mail	message.

Options.SendMailAttach	=	True

ActiveDocument.SendMail



SendWindowMessage	Method
							

Sends	a	Windows	message	and	its	associated	parameters	to	the	specified	task.

expression.SendWindowMessage(Message,	wParam,	IParam)

expression			Required.	An	expression	that	returns	a	Task	object.

Message			Required	Long.	A	hexidecimal	number	that	corresponds	to	the
message	you	want	to	send.	If	you	have	the	Microsoft	Platform	Software
Development	Kit,	you	can	look	up	the	name	of	the	message	in	the	header	files
(Winuser.h,	for	example)	to	find	the	associated	hexadecimal	number	(precede	the
hexidecimal	value	with	&h).

wParam,	lParam			Required	Long.	Parameters	appropriate	for	the	message
you’re	sending.	For	information	about	what	these	values	represent,	see	the
reference	topic	for	that	message	in	the	documentation	included	with	the
Microsoft	Platform	Software	Development	Kit.	To	retrieve	the	appropriate
values,	you	may	need	to	use	the	Spy	utility	(which	comes	with	the	kit).



Example

If	Notepad	is	running,	this	example	displays	the	About	dialog	box	(in	Notepad)
by	sending	a	WM_COMMAND	message	to	Notepad.	The
SendWindowMessage	method	is	used	to	send	the	WM_COMMAND	message
(111	is	the	hexidecimal	value	for	WM_COMMAND),	with	the	parameters	11
and	0.	The	Spy	utility	was	used	to	determine	the	wParam	and	lParam	values.

Dim	taskLoop	As	Task

For	Each	taskLoop	In	Tasks

				If	InStr(taskLoop.Name,	"Notepad")	>	0	Then

								taskLoop.Activate

								taskLoop.SendWindowMessage	&h111,	11,	0

				End	If

Next	taskLoop



SetAllErrorFlags	Method
							

Marks	all	records	in	a	mail	merge	data	source	as	containing	invalid	data	in	an
address	field.

expression.SetAllErrorFlags(Invalid,	InvalidComment)

expression			Required.	An	expression	that	returns	a	MailMergeDataSource
object.

Invalid		Required	Boolean.	True	marks	all	records	in	the	data	source	of	a	mail
merge	as	invalid.

InvalidComment		Required	String.		Text	describing	the	invalid	setting.



Remarks

You	can	individually	mark	data	source	records	that	contain	invalid	data	in	an
address	field	by	using	the	InvalidAddress	and	InvalidComments	properties.



Example

This	example	marks	all	records	in	the	data	source	as	containing	an	invalid
address	field,	sets	a	comment	as	to	why	it	is	invalid,	and	excludes	all	records
from	the	mail	merge.

Sub	FlagAllRecords()

				With	ActiveDocument.MailMerge.DataSource

								.SetAllErrorFlags	Invalid:=True,	InvalidComment:=	_

												"All	records	in	the	data	source	have	only	5-"	_

												&	"digit	zip	codes.		Need	5+4	digit	zip	codes."

								.SetAllIncludedFlags	Included:=False

				End	With

End	Sub



SetAllFuzzyOptions	Method
							

Activates	all	nonspecific	search	options	associated	with	Japanese	text.

expression.SetAllFuzzyOptions

expression			Required.	An	expression	that	returns	a	Find	object.



Remarks

This	method	sets	the	following	properties	to	True:

MatchFuzzyAY	MatchFuzzyBV
MatchFuzzyByte
MatchFuzzyCase
MatchFuzzyDash
MatchFuzzyDZ
MatchFuzzyHF
MatchFuzzyHiragana
MatchFuzzyIterationMark

MatchFuzzyKanji
MatchFuzzyKiKu
MatchFuzzyOldKana
MatchFuzzyProlongedSoundMark
MatchFuzzyPunctuation
MatchFuzzySmallKana
MatchFuzzySpace
MatchFuzzyTC
MatchFuzzyZJ



Example

This	example	activates	all	nonspecific	options	before	executing	a	search	in	the
selected	range.	If	the	word	" "	is	formatted	as	bold,	the	entire	paragraph
is	selected	and	copied	to	the	Clipboard.

With	Selection.Find

				.ClearFormatting

				.SetAllFuzzyOptions

				.Font.Bold	=	True

				.Execute	FindText:=" ",	Format:=True,	Forward:=True

				If	.Found	=	True	Then

								.Parent.Expand	Unit:=wdParagraph

								.Parent.Copy

				End	If

End	With



SetAllIncludedFlags	Method
							

True	to	include	all	data	source	records	in	a	mail	merge.

expression.SetAllIncludedFlags(Included)

expression			Required.	An	expression	that	returns	a	MailMergeDataSource
object.

Included		Required	Boolean.	True	to	include	all	data	source	records	in	a	mail
merge.	False	to	exclude	all	data	source	records	from	a	mail	merge.



Remarks

You	can	set	individual	records	in	a	data	source	to	be	included	in	or	excluded
from	a	mail	merge	using	the	Included	property.



Example

This	example	marks	all	records	in	the	data	source	as	containing	an	invalid
address	field,	sets	a	comment	as	to	why	it	is	invalid,	and	excludes	all	records
from	the	mail	merge.

Sub	FlagAllRecords()

				With	ActiveDocument.MailMerge.DataSource

								.SetAllErrorFlags	Invalid:=True,	InvalidComment:=	_

												"All	records	in	the	data	source	have	only	5-"	_

												&	"digit	zip	codes.		Need	5+4	digit	zip	codes."

								.SetAllIncludedFlags	Included:=False

				End	With

End	Sub



SetAsTemplateDefault	Method
							

Font	object:	Sets	the	specified	font	formatting	as	the	default	for	the	active
document	and	all	new	documents	based	on	the	active	template.	The	default	font
formatting	is	stored	in	the	Normal	style.

PageSetup	object:	Sets	the	specified	page	setup	formatting	as	the	default	for	the
active	document	and	all	new	documents	based	on	the	active	template.

expression.SetAsTemplateDefault

expression			Required.	An	expression	that	returns	a	Font	or	PageSetup	object.



Example

This	example	sets	the	character	formatting	in	the	selection	as	the	default.

Selection.Font.SetAsTemplateDefault

This	example	changes	the	left	and	right	margin	settings	for	the	active	document
and	then	sets	the	page	setup	formatting	as	the	default.

With	ActiveDocument.PageSetup

				.LeftMargin	=	InchesToPoints(1)

				.RightMargin	=	InchesToPoints(1)

				.SetAsTemplateDefault

End	With



SetCMYK	Method
							

Sets	a	cyan-magenta-yellow-black	(CMYK)	color	value.

expression.SetCMYK(Cyan,	Magenta,	Yellow,	Black)

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

Cyan		Required	Long.	A	number	that	represents	the	cyan	component	of	the
color.	Can	be	any	number	from	0	to	255.

Magenta		Required	Long.	A	number	that	represents	the	magenta	component	of
the	color.	Can	be	any	number	from	0	to	255.

Yellow		Required	Long.	A	number	that	represents	the	yellow	component	of	the
color.	Can	be	any	number	from	0	to	255.

Black		Required	Long.	A	number	that	represents	the	black	component	of	the
color.	Can	be	any	number	from	0	to	255.



Example

This	example	adds	a	shape	to	the	active	document	and	sets	the	CMYK	fill	and
line	colors	for	the	specified	shape.

Sub	SetCMYKColor()

				Dim	shpHeart	As	Shape

				Set	shpHeart	=	ActiveDocument.Shapes.AddShape	_

								(Type:=msoShapeHeart,	Left:=100,	Top:=100,	_

								Width:=100,	Height:=100)

				With	shpHeart

								.Fill.ForeColor.SetCMYK	Cyan:=0,	_

												Magenta:=255,	Yellow:=100,	Black:=0

								.Line.ForeColor.SetCMYK	Cyan:=0,	_

												Magenta:=255,	Yellow:=100,	Black:=20

				End	With

End	Sub



SetCount	Method
							

Arranges	text	into	the	specified	number	of	text	columns.

Note			You	can	also	use	the	Add	method	of	the	TextColumns	object	to	add	a
single	column	to	the	TextColumns	collection.

expression.SetCount(NumColumns)

expression			Required.	An	expression	that	returns	a	TextColumns	object.

NumColumns			Required	Long.	The	number	of	columns	the	text	is	to	be
arranged	into.



Example

This	example	arranges	the	text	in	the	active	document	into	two	columns	of	equal
width.

ActiveDocument.PageSetup.TextColumns.SetCount	NumColumns:=2

This	example	arranges	the	text	in	the	first	section	of	Brochure.doc	into	three
columns	of	equal	width.

Documents("Brochure.doc").Sections(1)	_

				.PageSetup.TextColumns.SetCount	NumColumns:=3



SetDefaultTableStyle	Method
							

Specifies	the	table	style	to	use	for	newly	created	tables	in	a	document.

expression.SetDefaultTableStyle(Style,	SetInTemplate)

expression			Required.	An	expression	that	returns	a	Document	object.

Style		Required	Variant.	A	string	specifying	the	name	of	the	style.

SetInTemplate		Required	Boolean.	True	to	save	the	table	style	in	the	template
attached	to	the	document.



Example

This	example	checks	to	see	if	the	default	table	style	used	in	the	active	document
is	named	Table	Normal	and,	if	it	is,	changes	the	default	table	style	to
TableStyle1.	This	example	assumes	that	you	have	a	table	style	named
TableStyle1.

Sub	TableDefaultStyle()

				With	ActiveDocument

								If	.DefaultTableStyle	=	"Table	Normal"	Then

												.SetDefaultTableStyle	_

																Style:="TableStyle1",	SetInTemplate:=True

								End	If

				End	With

End	Sub



Show	All



SetDefaultTheme	Method
							

Sets	a	default	theme	for	Microsoft	Word	to	use	with	new	documents,	e-mail
messages,	or	Web	pages.

expression.SetDefaultTheme(Name,	DocumentType)

expression			Required.	An	expression	that	returns	an	Application	object.

Name		Required	String.	The	name	of	the	theme	you	want	to	assign	as	the
default	theme	plus	any	theme	formatting	options	you	want	to	apply.	The	format
of	this	string	is	"theme	nnn"	where	theme	and	nnn	are	defined	as	follows:

String Description

theme

The	name	of	the	folder	that	contains	the	data	for	the	requested	theme.
(The	default	location	for	theme	data	folders	is	C:\Program
Files\Common	Files\Microsoft	Shared\Themes.)	You	must	use	the	folder
name	for	the	theme	rather	than	the	display	name	that	appears	in	the
Theme	dialog	box	(Theme	command,	Format	menu).

nnn

A	three-digit	string	that	indicates	which	theme	formatting	options	to
activate	(1	to	activate,	0	to	deactivate).	The	digits	correspond	to	the
Vivid	Colors,	Active	Graphics,	and	Background	Image	check	boxes
in	the	Theme	dialog	box	(Theme	command,	Format	menu).	If	this
string	is	omitted,	the	default	value	for	nnn	is	"011"	(Active	Graphics	and
Background	Image	are	activated).

DocumentType		Required	WdDocumentMedium.	The	type	of	new	document	to
which	you	are	assigning	a	default	theme.

WdDocumentMedium	can	be	one	of	these	WdDocumentMedium	constants.
wdEmailMessage
wdDocument
wdWebPage



Remarks

Setting	a	default	theme	will	not	apply	that	theme	to	the	blank	document
automatically	created	when	you	start	Word.	Any	new	documents	you	create	after
that	will	have	the	default	theme.

You	can	also	use	the	ThemeName	property	to	return	and	set	the	default	theme
for	new	e-mail	messages.



Example

This	example	specifies	that	Microsoft	Word	use	the	Blueprint	theme	for	all	new
e-mail	messages.

Application.SetDefaultTheme	"blueprnt",	wdEmailMessage

This	example	specifies	that	Word	use	the	Expedition	theme	with	Active
Graphics	for	all	new	Web	pages.

Application.SetDefaultTheme	"expeditn	010",	wdWebPage



SetEditingType	Method
							

Sets	the	editing	type	of	the	node	specified	by	Index.	If	the	node	is	a	control	point
for	a	curved	segment,	this	method	sets	the	editing	type	of	the	node	adjacent	to	it
that	joins	two	segments.	Note	that,	depending	on	the	editing	type,	this	method
may	affect	the	position	of	adjacent	nodes.

expression.SetEditingType(Index,	EditingType)

expression			Required.	An	expression	that	returns	a	ShapeNodes	object.

Index			Required	Long.	The	node	whose	editing	type	is	to	be	set.

	EditingType		Required	MsoEditingType.	The	editing	property	of	the	vertex.

MsoEditingType	can	be	one	of	these	MsoEditingType	constants.
msoEditingAuto
msoEditingCorner
msoEditingSmooth
msoEditingSymmetric



Example

This	example	changes	all	corner	nodes	to	smooth	nodes	in	the	third	shape	on	the
active	document.	The	third	shape	must	be	a	freeform	drawing.

Dim	lngLoop	As	lngLoop

With	ActiveDocument.Shapes(3).Nodes

				For	lngLoop	=	1	to	.Count

								If	.Item(lngLoop).EditingType	=	msoEditingCorner	Then

												.SetEditingType	lngLoop,	msoEditingSmooth

								End	If

				Next	lngLoop

End	With



SetExtrusionDirection	Method
							

Sets	the	direction	that	the	extrusion's	sweep	path	takes	away	from	the	extruded
shape.

expression.SetExtrusionDirection(PresetExtrusionDirection)

expression			Required.	An	expression	that	returns	a	ThreeDFormat	object.

	PresetExtrusionDirection		Required	MsoPresetExtrusionDirection.

MsoPresetExtrusionDirection	can	be	one	of	these	MsoPresetExtrusionDirection
constants.
msoExtrusionTop
msoExtrusionTopRight
msoExtrusionBottom
msoExtrusionBottomLeft
msoExtrusionBottomRight
msoExtrusionLeft
msoExtrusionNone
msoExtrusionRight
msoExtrusionTopLeft
msoPresetExtrusionDirectionMixed



Remarks

This	method	sets	the	PresetExtrusionDirection	property	to	the	direction
specified	by	the	PresetExtrusionDirection	argument.



Example

This	example	specifies	that	the	extrusion	for	the	first	shape	on	the	active
document	extend	toward	the	top	of	the	shape	and	that	the	lighting	for	the
extrusion	come	from	the	left.

With	ActiveDocument.Shapes(1).ThreeD

				.Visible	=	True

				.SetExtrusionDirection	msoExtrusionTop

				.PresetLightingDirection	=	msoLightingLeft

End	With



SetFocus	Method
							

Sets	the	focus	of	the	specified	document	window	to	the	body	of	an	e-mail
message.	If	the	document	isn't	an	e-mail	message,	this	method	has	no	effect.

expression.SetFocus

expression			Required.	An	expression	that	returns	a	Window	object.



Example

This	example	makes	the	header	of	an	e-mail	message	visible	and	sets	the	focus
to	the	body	of	the	message.

ActiveWindow.EnvelopeVisible	=	True

ActiveWindow.SetFocus



Show	All



SetHeight	Method
							

SetHeight	method	as	it	applies	to	the	Row	and	Rows	objects.

Sets	the	height	of	table	rows.

expression.SetHeight(RowHeight,	HeightRule)

expression			Required.	An	expression	that	returns	one	of	the	above	objects.

RowHeight		Required	Single.	The	height	of	the	row	or	rows,	in	points.

HeightRule		Required	WdRowHeightRule.	The	rule	for	determining	the	height
of	the	specified	rows.

WdRowHeightRule	can	be	one	of	these	WdRowHeightRule	constants.
wdRowHeightAtLeast
wdRowHeightExactly
wdRowHeightAuto

	

SetHeight	method	as	it	applies	to	the	Cell	and	Cells	objects.

Sets	the	height	of	table	cells.

expression.SetHeight(RowHeight,	HeightRule)

expression			Required.	An	expression	that	returns	one	of	the	above	objects.

RowHeight		Required	Variant.	The	height	of	the	row	or	rows,	in	points.

HeightRule		Required	WdRowHeightRule.	The	rule	for	determining	the	height
of	the	specified	cells.



WdRowHeightRule	can	be	one	of	these	WdRowHeightRule	constants.
wdRowHeightAtLeast
wdRowHeightExactly
wdRowHeightAuto

	

Note:	Setting	the	SetHeight	property	of	a	Cell	or	Cells	object	automatically	sets
the	property	for	the	entire	row.



Example

As	it	applies	to	the	Rows	object.

This	example	creates	a	table	and	then	sets	a	fixed	row	height	of	0.5	inch	(36
points)	for	the	first	row.

Set	newDoc	=	Documents.Add

Set	aTable	=	_

				newDoc.Tables.Add(Range:=Selection.Range,	NumRows:=3,	_

				NumColumns:=3)

aTable.Rows(1).SetHeight	RowHeight:=InchesToPoints(0.5),	_

				HeightRule:=wdRowHeightExactly

As	it	applies	to	the	Cells	object.

This	example	sets	the	row	height	of	the	selected	cells	to	at	least	18	points.

If	Selection.Information(wdWithInTable)	=	True	Then

				Selection.Cells.SetHeight	RowHeight:=18,	_

								HeightRule:=wdRowHeightAtLeast

Else

				MsgBox	"The	insertion	point	is	not	in	a	table."

End	If



SetLeftIndent	Method
							

Sets	the	indentation	for	a	row	or	rows	in	a	table.

expression.SetLeftIndent(LeftIndent,	RulerStyle)

expression			Required.	An	expression	that	returns	a	Row	or	Rows	object.

LeftIndent			Required	Single.	The	distance	(in	points)	between	the	current	left
edge	of	the	specified	row	or	rows	and	the	desired	left	edge.

RulerStyle		Required	WdRulerStyle.	Controls	the	way	Word	adjusts	the	table
when	the	left	indent	is	changed.

WdRulerStyle	can	be	one	of	these	WdRulerStyle	constants.
wdAdjustNone	Adjusts	the	left	edge	of	row	or	rows,	preserving	the	width	of	all
columns	by	shifting	them	to	the	left	or	right.	This	is	the	default	value.
wdAdjustSameWidth	Adjusts	the	left	edge	of	the	first	column,	preserving	the
position	of	the	right	edge	of	the	table	by	setting	the	widths	of	all	the	cells	in	the
specified	row	or	rows	to	the	same	value.
wdAdjustFirstColumn	Adjusts	the	left	edge	of	the	first	column	only,
preserving	the	positions	of	the	other	columns	and	the	right	edge	of	the	table.
wdAdjustProportional	Adjusts	the	left	edge	of	the	first	column,	preserving	the
position	of	the	right	edge	of	the	table	by	proportionally	adjusting	the	widths	of
all	the	cells	in	the	specified	row	or	rows.



Remarks

The	WdRulerStyle	behavior	described	above	applies	to	left-aligned	tables.	The
WdRulerStyle	behavior	for	center-	and	right-aligned	tables	can	be	unexpected;
in	these	cases,	the	SetLeftIndent	method	should	be	used	with	care.



Example

This	example	creates	a	table	in	a	new	document	and	indents	the	first	row	0.5
inch	(36	points).	When	you	change	the	left	indent,	the	cell	widths	are	adjusted	to
preserve	the	right	edge	of	the	table.

Dim	docNew	As	Document

Dim	tableNew	As	Table

Set	docNew	=	Documents.Add

Set	tableNew	=	docNew.Tables.Add(Range:=Selection.Range,	_

				NumRows:=3,	NumColumns:=3)

tableNew.Rows(1).SetLeftIndent	LeftIndent:=InchesToPoints(0.5),	_

				RulerStyle:=wdAdjustSameWidth

This	example	indents	the	first	row	in	table	one	in	the	active	document	18	points,
and	it	narrows	the	width	of	the	first	column	to	preserve	the	position	of	the	right
edge	of	the	table.

If	ActiveDocument.Tables.Count	>=	1	Then

				ActiveDocument.Tables(1).Rows.SetLeftIndent	LeftIndent:=18,	_

								RulerStyle:=wdAdjustFirstColumn

End	If



SetLetterContent	Method
							

Inserts	the	contents	of	the	specified	LetterContent	object	into	a	document.

expression.SetLetterContent(LetterContent)

expression			Required.	An	expression	that	returns	a	Document	object.

LetterContent			Required	LetterContent	object.	The	LetterContent	object	that
includes	the	various	elements	of	the	letter.



Remarks

This	method	is	similar	to	the	RunLetterWizard	method	except	that	it	doesn't
display	the	Letter	Wizard	dialog	box.	The	method	adds,	deletes,	or	restyles	letter
elements	in	the	specified	document	based	on	the	contents	of	the	LetterContent
object.



Example

This	example	retrieves	the	Letter	Wizard	elements	from	the	active	document,
changes	the	attention	line	text,	and	then	uses	the	SetLetterContent	method	to
update	the	active	document	to	reflect	the	changes.

Set	myLetterContent	=	ActiveDocument.GetLetterContent

myLetterContent.AttentionLine	=	"Greetings"

ActiveDocument.SetLetterContent	LetterContent:=myLetterContent



SetPasswordEncryptionOptions
Method
							

Sets	the	options	Microsoft	Word	uses	for	encrypting	documents	with	passwords.

expression.SetPasswordEncryptionOptions(PasswordEncryptionProvider,
PasswordEncryptionAlgorithm,	PasswordEncryptionKeyLength,
PasswordEncryptionFileProperties)

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

PasswordEncryptionProvider		Required	String.	The	name	of	the	encryption
provider.

PasswordEncryptionAlgorithm		Required	String.	The	name	of	the	encryption
algorithm.	Word	supports	stream-encrypted	algorithms.

PasswordEncryptionKeyLength		Required	Long.	The	encryption	key	length.
Must	be	a	multiple	of	8,	starting	at	40.

PasswordEncryptionFileProperties		Optional	Variant.	True	for	Word	to
encrypt	file	properties.	Default	is	True.



Example

This	example	sets	the	password	encryption	options	if	the	password	encryption
algorithm	in	use	is	"OfficeXor,"	which	is	the	password	algorithm	used	in
versions	of	Word	prior	to	Microsoft	Word	97	for	Windows.

Sub	PasswordSettings()

				With	ActiveDocument

								If	.PasswordEncryptionAlgorithm	=	"OfficeXor"	Then

												.SetPasswordEncryptionOptions	_

																PasswordEncryptionProvider:="Microsoft	RSA	SChannel	Cryptographic	Provider",	_

																PasswordEncryptionAlgorithm:="RC4",	_

																PasswordEncryptionKeyLength:=56,	_

																PasswordEncryptionFileProperties:=True

								End	If

				End	With

End	Sub



SetPosition	Method
							

Sets	the	location	of	the	node	specified	by	Index.	Note	that,	depending	on	the
editing	type	of	the	node,	this	method	may	affect	the	position	of	adjacent	nodes.

expression.SetPosition(Index,	X1,	Y1)

expression			Required.	An	expression	that	returns	a	ShapeNodes	object.

Index			Required	Long.	The	node	whose	position	is	to	be	set.

X1,	Y1			Required	Single.	The	position	(in	points)	of	the	new	node	relative	to	the
upper-left	corner	of	the	document.



Example

This	example	moves	node	two	in	the	third	shape	on	the	active	document	to	the
right	200	points	and	down	300	points.	The	third	shape	must	be	a	freeform
drawing.

With	ActiveDocument.Shapes(3).Nodes

				pointsArray	=	.Item(2).Points

				currXvalue	=	pointsArray(1,	1)

				currYvalue	=	pointsArray(1,	2)

				.SetPosition	2,	currXvalue	+	200,	currYvalue	+	300

End	With



SetRange	Method
							

Sets	the	starting	and	ending	character	positions	for	the	range	or	selection.

Note			Character	position	values	start	at	the	beginning	of	the	story,	with	the	first
value	being	0	(zero).	All	characters	are	counted,	including	nonprinting
characters.	Hidden	characters	are	counted	even	if	they're	not	displayed.

expression.SetRange(Start,	End)

expression			Required.	An	expression	that	returns	a	Range	or	Selection	object.

Start			Required	Long.	The	starting	character	position	of	the	range	or	selection.

End			Required	Long.	The	ending	character	position	of	the	range	or	selection.



Remarks

The	SetRange	method	redefines	the	starting	and	ending	positions	of	an	existing
Selection	or	Range	object.	This	method	differs	from	the	Range	method,	which
is	used	to	create	a	range,	given	a	starting	and	ending	position.



Example

This	example	selects	the	first	10	characters	in	the	document.

Selection.SetRange	Start:=0,	End:=10

This	example	uses	SetRange	to	redefine	myRange	to	refer	to	the	first	three
paragraphs	in	the	active	document.

Set	myRange	=	ActiveDocument.Paragraphs(1).Range

myRange.SetRange	Start:=myRange.Start,	_

				End:=ActiveDocument.Paragraphs(3).Range.End

This	example	uses	SetRange	to	redefine	myRange	to	refer	to	the	area	starting	at
the	beginning	of	the	document	and	ending	at	the	end	of	the	current	selection.

Set	myRange	=	ActiveDocument.Range(Start:=0,	End:=0)

myRange.InsertAfter	"Hello	"

myRange.SetRange	Start:=myRange.Start,	End:=Selection.End

This	example	extends	the	selection	to	the	end	of	the	document.

Selection.SetRange	Start:=Selection.Start,	_

				End:=ActiveDocument.Content.End



SetSegmentType	Method
							

Sets	the	segment	type	of	the	segment	that	follows	the	node	specified	by	Index.	If
the	node	is	a	control	point	for	a	curved	segment,	this	method	sets	the	segment
type	for	that	curve.	Note	that	this	may	affect	the	total	number	of	nodes	by
inserting	or	deleting	adjacent	nodes.

expression.SetSegmentType(Index,	SegmentType)

expression			Required.	An	expression	that	returns	a	ShapeNodes	object.

Index			Required	Long.	The	node	whose	segment	type	is	to	be	set.

	SegmentType		Required	MsoSegmentType.	Specifies	if	the	segment	is	straight
or	curved.

MsoSegmentType	can	be	one	of	these	MsoSegmentType	constants.
msoSegmentLine
msoSegmentCurve



Example

This	example	changes	all	straight	segments	to	curved	segments	in	the	third	shape
on	the	active	document.	The	third	shape	must	be	a	freeform	drawing.

Dim	lngLoop	As	Long

With	ActiveDocument.Shapes(3).Nodes

				lngLoop	=	1

				While	lngLoop	<=	.Count

								If	.Item(lngLoop).SegmentType	=	msoSegmentLine	Then

												.SetSegmentType	lngLoop,	msoSegmentCurve

								End	If

								lngLoop	=	lngLoop	+	1

				Wend

End	With



SetShapesDefaultProperties	Method
							

Applies	the	formatting	of	the	specified	shape	to	a	default	shape	for	that
document.	New	shapes	inherit	many	of	their	attributes	from	the	default	shape.

expression.SetShapesDefaultProperties

expression			Required.	An	expression	that	returns	a	Shape	or	ShapeRange
object.



Remarks

Using	this	method	is	equivalent	to	using	the	Set	AutoShape	Defaults	command
on	the	Draw	menu	on	the	Drawing	toolbar.



Example

This	example	adds	a	rectangle	to	myDocument,	formats	the	rectangle's	fill,	applies
the	rectangle's	formatting	to	the	default	shape,	and	then	adds	another	(smaller)
rectangle	to	the	document.	The	second	rectangle	has	the	same	fill	as	the	first	one.

Set	mydocument	=	ActiveDocument

With	mydocument.Shapes

				With	.AddShape(msoShapeRectangle,	5,	5,	80,	60)

								With	.Fill

												.ForeColor.RGB	=	RGB(0,	0,	255)

												.BackColor.RGB	=	RGB(0,	204,	255)

												.Patterned	msoPatternHorizontalBrick

								End	With

								'	Sets	formatting	for	default	shapes

								.SetShapesDefaultProperties

				End	With

				'	New	shape	has	default	formatting

				.AddShape	msoShapeRectangle,	90,	90,	40,	30

End	With



SetThreeDFormat	Method
							

Sets	the	preset	extrusion	format.	Each	preset	extrusion	format	contains	a	set	of
preset	values	for	the	various	properties	of	the	extrusion.

expression.SetThreeDFormat(PresetThreeDFormat)

expression			Required.	An	expression	that	returns	a	ThreeDFormat	object.

	PresetThreeDFormat		Required	MsoPresetThreeDFormat.	Specifies	a	preset
extrusion	format	that	corresponds	to	one	of	the	options	(numbered	from	left	to
right,	top	to	bottom)	displayed	when	you	click	the	3-D	button	on	the	Drawing
toolbar.

MsoPresetThreeDFormat	can	be	one	of	these	MsoPresetThreeDFormat
constants.	Note	that	specifying	msoPresetThreeDFormatMixed	for	this
argument	causes	an	error.
msoThreeD1
msoThreeD11
msoThreeD13
msoThreeD15
msoThreeD17
msoThreeD19
msoThreeD20
msoThreeD4
msoThreeD6
msoThreeD8
msoPresetThreeDFormatMixed
msoThreeD10
msoThreeD12
msoThreeD14
msoThreeD16



msoThreeD18
msoThreeD2
msoThreeD3
msoThreeD5
msoThreeD7
msoThreeD9



Remarks

This	method	sets	the	PresetThreeDFormat	property	to	the	format	specified	by
the	PresetThreeDFormat	argument.



Example

This	example	adds	an	oval	to	the	active	document	and	sets	its	extrusion	format
to	3D	Style	12.

With	ActiveDocument.Shapes.AddShape(msoShapeOval,	_

								30,	30,	50,	25).ThreeD

				.Visible	=	True

				.SetThreeDFormat	msoThreeD12

End	With



SetWidth	Method
							

Sets	the	width	of	columns	or	cells	in	a	table.

expression.SetWidth(ColumnWidth,	RulerStyle)

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

ColumnWidth		Required	Single.	The	width	of	the	specified	column	or	columns,
in	points.

RulerStyle		Required	WdRulerStyle.	Controls	the	way	Word	adjusts	cell
widths.

WdRulerStyle	can	be	one	of	these	WdRulerStyle	constants.
wdAdjustNone		Sets	the	width	of	all	selected	cells	or	columns	to	the	specified
value.	Word	preserves	the	width	of	all	non-selected	columns,	shifting	them	to
the	right	or	left	as	necessary.	This	is	the	default	value.
wdAdjustSameWidth		Sets	the	width	of	the	cells	in	the	first	column	only	to	the
specified	value.	Word	preserves	the	right	edge	of	the	table	by	adjusting	the
width	of	all	other	cells	or	columns	to	the	same	value.
wdAdjustFirstColumn		Sets	the	width	of	the	cells	in	the	first	column	only	to
the	specified	value.	If	there	is	more	than	one	column,	Word	preserves	the	right
edge	of	the	table	and	the	positions	of	the	other	columns.
wdAdjustProportional		Sets	the	width	of	the	cells	in	the	first	column	only	to
the	specified	value.	If	multiple	columns	are	selected,	Word	preserves	the	right
edge	of	the	table	and	the	positions	of	the	non-selected	columns	by
proportionally	adjusting	the	width	of	the	other	selected	columns.	If	only	one	cell
or	column	is	selected,	Word	preserves	the	right	edge	of	the	table	by
proportionally	adjusting	the	width	of	the	other	cells	or	columns.



Remarks

The	WdRulerStyle	behavior	described	above	applies	to	left-aligned	tables.	The
WdRulerStyle	behavior	for	center-	and	right-aligned	tables	can	be	unexpected;
in	these	cases,	the	SetWidth	method	should	be	used	with	care.



Example

This	example	creates	a	table	in	a	new	document	and	sets	the	width	of	the	first
cell	in	the	second	row	to	1.5	inches.	The	example	preserves	the	widths	of	the
other	cells	in	the	table.

Set	newDoc	=	Documents.Add

Set	myTable	=	_

				newDoc.Tables.Add(Range:=Selection.Range,	NumRows:=3,	_

				NumColumns:=3)

myTable.Cell(2,1).SetWidth	_

				ColumnWidth:=InchesToPoints(1.5),	_

				RulerStyle:=wdAdjustNone

This	example	sets	the	width	of	the	cell	that	contains	the	insertion	point	to	36
points.	The	example	also	narrows	the	first	column	to	preserve	the	position	of	the
right	edge	of	the	table.

If	Selection.Information(wdWithInTable)	=	True	Then

				Selection.Cells(1).SetWidth	ColumnWidth:=36,	_

								RulerStyle:=wdAdjustFirstColumn

Else

				MsgBox	"The	insertion	point	is	not	in	a	table."

End	If



SetWPHelpOptions	Method
							

Sets	the	options	for	the	WordPerfect	Help	feature.

expression.SetWPHelpOptions(CommandKeyHelp,	DocNavigationKeys,
MouseSimulation,	DemoGuidance,	DemoSpeed,	HelpType)

expression			Required.	An	expression	that	returns	an	Options	object.

CommandKeyHelp			Optional	Variant.	True	to	display	instructions	or
demonstrate	a	Word	equivalent	when	a	WordPerfect®	for	DOS	key	combination
is	pressed.	WordPerfect	Help	is	displayed	in	the	status	bar.

DocNavigationKeys			Optional	Variant.	True	to	make	the	arrow	keys	and	the
PAGE	UP,	PAGE	DOWN,	HOME,	END,	and	ESC	keys	function	as	they	would
in	WordPerfect.

MouseSimulation			Optional	Variant.	True	to	have	the	pointer	move	to	each
option	that	WordPerfect	Help	selects	during	demonstrations.

DemoGuidance			Optional	Variant.	True	to	display	help	text	when	user	input	is
required	during	WordPerfect	Help	demonstrations.

DemoSpeed			Optional	Variant.	The	speed	of	WordPerfect	Help	demonstrations.
Can	be	one	of	the	following	values.

Value Speed
0	(zero) Fast
1 Medium
2 Slow

HelpType			Optional	Variant.	Specifies	whether	WordPerfect	Help	displays	help
text	or	demonstrates	the	WordPerfect	command.	Can	be	either	0	(zero),	for	Help
text,	or	1,	for	a	demonstration.



Example

This	example	sets	the	WordPerfect	Help	options.

Options.SetWPHelpOptions	_

				CommandKeyHelp:=True,	_

				DocNavigationKeys:=True,	_

				MouseSimulation:=True,	_

				DemoGuidance:=True,	_

				DemoSpeed:=0,	_

				HelpType:=0



Show	Method
							

Displays	and	carries	out	actions	initiated	in	the	specified	built-in	Word	dialog
box.	Returns	a	Long	that	indicates	which	button	was	clicked	to	close	the	dialog
box.

Return	value Description
-2 The	Close	button.
-1 The	OK	button.
0	(zero) The	Cancel	button.

>	0	(zero) A	command	button:	1	is	the	first	button,	2	is	the	second
button,	and	so	on.

Note			Use	the	Display	method	to	display	a	dialog	box	but	not	have	any	actions
carried	out	or	settings	applied	when	the	dialog	box	is	closed.

expression.Show(TimeOut)

expression			Required.	An	expression	that	returns	a	Dialog	object.

TimeOut			Optional	Variant.	The	amount	of	time	that	Word	will	wait	before
closing	the	dialog	box	automatically.	One	unit	is	approximately	0.001	second.
Concurrent	system	activity	may	increase	the	effective	time	value.	If	this
argument	is	omitted,	the	dialog	box	is	closed	when	the	user	dismisses	it.



Example

This	example	displays	the	Find	and	Replace	dialog	box	with	the	word	"Blue"
preset	in	the	Find	what	text	box.

With		Dialogs(wdDialogEditFind)

				.Find	=	"Blue"

				.Show

End	With

This	example	displays	and	carries	out	any	action	initiated	in	the	Open	dialog
box.	The	file	name	is	set	to	*.*	so	that	all	file	names	are	displayed.

With	Dialogs(wdDialogFileOpen)

				.Name	=	"*.*"

				.Show

End	With

This	example	displays	and	carries	out	any	action	initiated	in	the	Zoom	dialog
box.	If	there	are	no	actions	initiated	for	approximately	9	seconds,	the	dialog	box
is	closed.

Dialogs(wdDialogViewZoom).Show	TimeOut:=9000



ShowAllHeadings	Method
							

Toggles	between	showing	all	text	(headings	and	body	text)	and	showing	only
headings.

Note			This	method	generates	an	error	if	the	view	isn't	outline	view	or	master
document	view.

expression.ShowAllHeadings

expression			Required.	An	expression	that	returns	a	View	object.



Example

This	example	uses	the	ShowHeading	method	to	show	all	headings	(without	any
body	text)	and	then	toggles	the	display	to	show	all	text	(headings	and	body	text)
in	outline	view.

With	ActiveDocument.ActiveWindow.View

				.Type	=	wdOutlineView

				.ShowHeading	9

				.ShowAllHeadings

End	With



ShowHeading	Method
							

Shows	all	headings	up	to	the	specified	heading	level	and	hides	subordinate
headings	and	body	text.

Note			This	method	generates	an	error	if	the	view	isn't	outline	view	or	master
document	view.

expression.ShowHeading(Level)

expression			Required.	An	expression	that	returns	a	View	object.

Level			Required	Long.	The	outline	heading	level	(a	number	from	1	to	9).



Example

This	example	switches	the	active	window	to	outline	view	and	displays	all	text
that's	formatted	with	the	Heading	1	style.	Body	text	and	all	other	types	of
headings	are	hidden.

With	ActiveDocument.ActiveWindow.View

				.Type	=	wdOutlineView

				.ShowHeading	1

End	With

This	example	switches	the	window	for	Document1	to	outline	view	and	displays
all	text	that's	formatted	with	the	Heading	1,	Heading	2,	or	Heading	3	style.

With	Windows("Document1").View

				.Type	=	wdOutlineView

				.ShowHeading	3

End	With



ShowMe	Method
							

Displays	the	Office	Assistant	or	the	Help	window	when	there's	more	information
available.	If	additional	information	isn't	available,	this	method	generates	a
message	that	no	associated	Help	topic	exists.

expression.ShowMe()

expression			An	expression	that	returns	an	Application	object.



Example

This	examples	completes	a	TipWizard	Show	Me	action	if	one's	available.

Application.ShowMe



ShowWizard	Method
							

Displays	the	Mail	Merge	Wizard	in	a	document.

expression.ShowWizard(InitialState,	ShowDocumentStep,	ShowTemplateStep,
ShowDataStep,	ShowWriteStep,	ShowPreviewStep,	ShowMergeStep)

expression			Required.	An	expression	that	returns	a	MailMerge	object.

InitialState		Required	Variant.	The	number	of	the	Mail	Merge	Wizard	step	to
display.

ShowDocumentStep		Optional	Variant.	True	keeps	the	"Select	document	type"
step	in	the	sequence	of	mail	merge	steps.	False	removes	step	one.

ShowTemplateStep		Optional	Variant.	True	keeps	the	"Select	starting
document"	step	in	the	sequence	of	mail	merge	steps.	False	removes	step	two.

ShowDataStep		Optional	Variant.	True	keeps	the	"Select	recipients"	step	in	the
sequence	of	mail	merge	steps.	False	removes	step	three.

ShowWriteStep		Optional	Variant.	True	keeps	the	"Write	your	letter"	step	in	the
sequence	of	mail	merge	steps.	False	removes	step	four.

ShowPreviewStep		Optional	Variant.	True	keeps	the	"Preview	your	letters"	step
in	the	sequence	of	mail	merge	steps.	False	removes	step	five.

ShowMergeStep		Optional	Variant.	True	keeps	the	"Complete	the	merge"	step
in	the	sequence	of	mail	merge	steps.	False	removes	step	six.



Example

This	example	checks	if	the	Mail	Merge	Wizard	is	already	displayed	and,	if	it	is,
moves	to	the	Mail	Merge	Wizard's	sixth	step	and	removes	the	fifth	step	from	the
Wizard.

Sub	ShowMergeWizard()

				With	ActiveDocument.MailMerge

								If	.WizardState	>	0	Then

												.ShowWizard	InitialState:=6,	ShowPreviewStep:=False

								End	If

				End	With

End	Sub



Show	All



Shrink	Method
							

Font	object:	Decreases	the	font	size	to	the	next	available	size.	If	the	selection	or
range	contains	more	than	one	font	size,	each	size	is	decreased	to	the	next
available	setting.

Selection	object:	Shrinks	the	selection	to	the	next	smaller	unit	of	text.	The
progression	is	as	follows:	entire	document,	section,	paragraph,	sentence,	word,
insertion	point.

expression.Shrink

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.



Example

As	it	applies	to	the	Font	object.

This	example	inserts	a	line	of	increasingly	smaller	Z's	in	a	new	document.

Set	myRange	=	Documents.Add.Content

myRange.Font.Size	=	45

For	Count	=	1	To	5

				myRange.InsertAfter	"Z"

				For	Count2	=	1	to	3

								myRange.Characters(Count).Font.Shrink

				Next	Count2

Next	Count

As	it	applies	to	the	Selection	object.

This	example	reduces	the	font	size	of	the	selected	text	by	one	size.

If	Selection.Type	=	wdSelectionNormal	Then

				Selection.Font.Shrink

Else

				MsgBox	"You	need	to	select	some	text."

End	If



ShrinkDiscontiguousSelection
Method
							

Deselects	all	but	the	most	recently	selected	text	when	a	selection	contains
multiple,	unconnected	selections.

expression.ShrinkDiscontiguousSelection

expression			Required.	An	expression	that	returns	a	Selection	object.



Example

This	example	deselects	all	but	the	most	recently	selected	text	and	formats	with
bold	and	small	caps	the	text	remaining	in	the	selection.	This	example	assumes
there	are	multiple	selections	in	the	document.

Sub	ShrinkMultipleSelection()

				With	Selection

								.ShrinkDiscontiguousSelection

								.Font.Bold	=	True

								.Font.SmallCaps	=	True

				End	With

End	Sub



SmallScroll	Method
							

Scrolls	a	window	or	pane	by	the	specified	number	of	lines.	This	method	is
equivalent	to	clicking	the	scroll	arrows	on	the	horizontal	and	vertical	scroll	bars.

expression.SmallScroll(Down,	Up,	ToRight,	ToLeft)

expression			Required.	An	expression	that	returns	a	Pane	or	Window	object.

Down			Optional	Variant.	The	number	of	lines	to	scroll	the	window	down.	A
"line"	corresponds	to	the	distance	scrolled	by	clicking	the	down	scroll	arrow	on
the	vertical	scroll	bar	once.

Up			Optional	Variant.	The	number	of	lines	to	scroll	the	window	up.	A	"line"
corresponds	to	the	distance	scrolled	by	clicking	the	up	scroll	arrow	on	the
vertical	scroll	bar	once.

ToRight			Optional	Variant.	The	number	of	lines	to	scroll	the	window	to	the
right.	A	"line"	corresponds	to	the	distance	scrolled	by	clicking	the	right	scroll
arrow	on	the	horizontal	scroll	bar	once.

ToLeft			Optional	Variant.	The	number	of	lines	to	scroll	the	window	to	the	left.
A	"line"	corresponds	to	the	distance	scrolled	by	clicking	the	left	scroll	arrow	on
the	horizontal	scroll	bar	once.



Remarks

If	Down	and	Up	are	both	specified,	the	window	is	scrolled	by	the	difference	of
the	arguments.	For	example,	if	Down	is	3	and	Up	is	6,	the	window	is	scrolled	up
three	lines.	Similarly,	if	ToLeft	and	ToRight	are	both	specified,	the	window	is
scrolled	by	the	difference	of	the	arguments.

Any	of	these	arguments	can	be	a	negative	number.	If	no	arguments	are	specified,
the	window	is	scrolled	down	by	one	line.



Example

This	example	scrolls	the	active	window	down	one	line.

ActiveDocument.ActiveWindow.SmallScroll	Down:=1

This	example	splits	the	active	window	and	then	scrolls	up	and	over	to	the	left.

With	ActiveDocument.ActiveWindow

				.Split	=	True

				.SmallScroll	Up:=5,	ToLeft:=5

End	With



Solid	Method
							

Sets	the	specified	fill	to	a	uniform	color.	Use	this	method	to	convert	a	gradient,
textured,	patterned,	or	background	fill	back	to	a	solid	fill.

expression.Solid

expression			Required.	An	expression	that	returns	a	FillFormat	object.



Example

This	example	converts	all	fills	on	the	active	document	to	uniform	red	fills.

Dim	shapeLoop	As	Shape

For	Each	shapeLoop	In	ActiveDocument.Shapes

				With	shapeLoop.Fill

								.Solid

								.ForeColor.RGB	=	RGB(255,	0,	0)

				End	With

Next



Show	All



Sort	Method
							

Sort	method	as	it	applies	to	the	Column	object.

Sorts	the	specified	table	column.

expression.Sort(ExcludeHeader,	SortFieldType,	SortOrder,	CaseSensitive,
BidiSort,	IgnoreThe,	IgnoreKashida,	IgnoreDiacritics,	IgnoreHe,
LanguageID)

expression			Required.	An	expression	that	returns	a	Column	object.

ExcludeHeader		Optional	Variant.	True	to	exclude	the	first	row	or	paragraph
header	from	the	sort	operation.	The	default	value	is	False.

SortFieldType		Optional	Variant.	The	sort	type	for	the	column.	Can	be	one	of
the	WdSortFieldType	constants.

wdSortFieldAlphanumeric	Default
wdSortFieldDate
wdSortFieldJapanJIS
wdSortFieldKoreaKS
wdSortFieldNumeric
wdSortFieldStroke
wdSortFieldSyllable

SortOrder		Optional	Variant.	The	sorting	order	to	use	for	the	column.	Can	be
one	WdSortOrder	constant.

wdSortOrderAscending	Default
wdSortOrderDescending

CaseSensitive		Optional	Variant.	True	to	sort	with	case	sensitivity.	The	default
value	is	False.



BidiSort		Optional	Variant.	True	to	sort	based	on	right-to-left	language	rules.
This	argument	may	not	be	available	to	you,	depending	on	the	language	support
(U.S.	English,	for	example)	that	you’ve	selected	or	installed.

IgnoreThe		Optional	Variant.	True	to	ignore	the	Arabic	character	alef	lam
when	sorting	right-to-left	language	text.	This	argument	may	not	be	available	to
you,	depending	on	the	language	support	(U.S.	English,	for	example)	that	you’ve
selected	or	installed.

IgnoreKashida		Optional	Variant.	True	to	ignore	kashidas	when	sorting	right-
to-left	language	text.	This	argument	may	not	be	available	to	you,	depending	on
the	language	support	(U.S.	English,	for	example)	that	you’ve	selected	or
installed.

IgnoreDiacritics		Optional	Variant.	True	to	ignore	bidirectional	control
characters	when	sorting	right-to-left	language	text.	This	argument	may	not	be
available	to	you,	depending	on	the	language	support	(U.S.	English,	for	example)
that	you’ve	selected	or	installed.

IgnoreHe		Optional	Variant.	True	to	ignore	the	Hebrew	character	he	when
sorting	right-to-left	language	text.	This	argument	may	not	be	available	to	you,
depending	on	the	language	support	(U.S.	English,	for	example)	that	you’ve
selected	or	installed.

LanguageID		Optional	Variant.	Optional	Variant.		LanguageID		Optional
Variant.	Specifies	the	sorting	language.	Can	be	one	of	the	WdLanguageID
constants.	Refer	to	the	Object	Browser	for	a	list	of	the	WdLanguageID
constants.



Remarks

If	you	want	to	sort	paragraphs	within	a	table	cell,	include	only	the	paragraphs
and	not	the	end-of-cell	mark;	if	you	include	the	end-of-cell	mark	in	a	selection	or
range	and	then	attempt	to	sort	the	paragraphs,	Word	displays	a	message	stating
that	it	found	no	valid	records	to	sort.

Sort	method	as	it	applies	to	the	Range	and	Selection	objects.

Sorts	the	paragraphs	in	the	specified	range	or	selection.

expression.Sort(ExcludeHeader,	FieldNumber,	SortFieldType,	SortOrder,
FieldNumber2,	SortFieldType2,	SortOrder2,	FieldNumber3,	SortFieldType3,
SortOrder3,	SortColumn,	Separator,	CaseSensitive,	BidiSort,	IgnoreThe,
IgnoreKashida,	IgnoreDiacritics,	IgnoreHe,	LanguageID)

expression			Required.	An	expression	that	returns	one	of	the	above	objects.

ExcludeHeader		Optional	Variant.	True	to	exclude	the	first	row	or	paragraph
header	from	the	sort	operation.	The	default	value	is	False.

FieldNumber,	FieldNumber2,	FieldNumber3		Optional	Variant.	The	fields	to
sort	by.	Microsoft	Word	sorts	by	FieldNumber,	then	by	FieldNumber2,	and	then
by	FieldNumber3.

SortFieldType,	SortFieldType2,	SortFieldType3		Optional	Variant.	The
respective	sort	types	for	FieldNumber,	FieldNumber2,	and	FieldNumber3.	Can
be	one	of	the	WdSortFieldType	constants.

wdSortFieldAlphanumeric
wdSortFieldDate
wdSortFieldJapanJIS
wdSortFieldKoreaKS
wdSortFieldNumeric
wdSortFieldStroke
wdSortFieldSyllable



The	default	value	is	wdSortFieldAlphanumeric.	Some	of	these	constants	may
not	be	available	to	you,	depending	on	the	language	support	(U.S.	English,	for
example)	that	you’ve	selected	or	installed.

SortOrder,	SortOrder2,	SortOrder3		Optional	Variant.	The	sorting	order	to	use
when	sorting	FieldNumber,	FieldNumber2,	and	FieldNumber3.	Can	be	one
WdSortOrder	constant.

wdSortOrderAscending	Default.
wdSortOrderDescending

SortColumn		Optional	Variant.	True	to	sort	only	the	column	specified	by	the
Range	or	Selection	object.

Separator		Optional	Variant.	The	type	of	field	separator.	Can	be	one	of	the
WdSortSeparator	constants.

wdSortSeparateByCommas	Default.
wdSortSeparateByDefaultTableSeparator
wdSortSeparateByTabs

CaseSensitive		Optional	Variant.	True	to	sort	with	case	sensitivity.	The	default
value	is	False.

BidiSort		Optional	Variant.	True	to	sort	based	on	right-to-left	language	rules.
This	argument	may	not	be	available	to	you,	depending	on	the	language	support
(U.S.	English,	for	example)	that	you’ve	selected	or	installed.

IgnoreThe		Optional	Variant.	True	to	ignore	the	Arabic	character	alef	lam
when	sorting	right-to-left	language	text.	This	argument	may	not	be	available	to
you,	depending	on	the	language	support	(U.S.	English,	for	example)	that	you’ve
selected	or	installed.

IgnoreKashida		Optional	Variant.	True	to	ignore	kashidas	when	sorting	right-
to-left	language	text.	This	argument	may	not	be	available	to	you,	depending	on
the	language	support	(U.S.	English,	for	example)	that	you’ve	selected	or
installed.

IgnoreDiacritics		Optional	Variant.	True	to	ignore	bidirectional	control



characters	when	sorting	right-to-left	language	text.	This	argument	may	not	be
available	to	you,	depending	on	the	language	support	(U.S.	English,	for	example)
that	you’ve	selected	or	installed.

IgnoreHe		Optional	Variant.	True	to	ignore	the	Hebrew	character	he	when
sorting	right-to-left	language	text.	This	argument	may	not	be	available	to	you,
depending	on	the	language	support	(U.S.	English,	for	example)	that	you’ve
selected	or	installed.

LanguageID		Optional	Variant.	LanguageID		Optional	Variant.	Specifies	the
sorting	language.	Can	be	one	of	the	WdLanguageID	constants.	Refer	to	the
Object	Browser	for	a	list	of	the	WdLanguageID	constants.

SubFieldNumber,	SubFieldNumber2,	SubFieldNumber3		Optional	Variant.
(Applies	to	the	Selection	object	only.)

Sort	method	as	it	applies	to	the	Table	object.

Sorts	the	specified	table.

expression.Sort(ExcludeHeader,	FieldNumber,	SortFieldType,	SortOrder,
FieldNumber2,	SortFieldType2,	SortOrder2,	FieldNumber3,	SortFieldType3,
SortOrder3,	CaseSensitive,	BidiSort,	IgnoreThe,	IgnoreKashida,
IgnoreDiacritics,	IgnoreHe,	LanguageID)

expression			Required.	An	expression	that	returns	a	Table	object.

ExcludeHeader		Optional	Variant.	True	to	exclude	the	first	row	or	paragraph
header	from	the	sort	operation.	The	default	value	is	False.

FieldNumber,	FieldNumber2,	FieldNumber3		Optional	Variant.	The	fields	to
sort	by.	Microsoft	Word	sorts	by	FieldNumber,	then	by	FieldNumber2,	and	then
by	FieldNumber3.

wdSortFieldAlphanumeric
wdSortFieldDate
wdSortFieldJapanJIS
wdSortFieldKoreaKS
wdSortFieldNumeric



wdSortFieldStroke
wdSortFieldSyllable

The	default	value	is	wdSortFieldAlphanumeric.	Some	of	these	constants	may
not	be	available	to	you,	depending	on	the	language	support	(U.S.	English,	for
example)	that	you’ve	selected	or	installed.

SortOrder,	SortOrder2,	SortOrder3		Optional	Variant.	The	sorting	order	to	use
when	sorting	FieldNumber,	FieldNumber2,	and	FieldNumber3.	Can	be	one
WdSortOrder	constant.

wdSortOrderAscending	Default.
wdSortOrderDescending

CaseSensitive		Optional	Variant.	True	to	sort	with	case	sensitivity.	The	default
value	is	False.

BidiSort		Optional	Variant.	True	to	sort	based	on	right-to-left	language	rules.
This	argument	may	not	be	available	to	you,	depending	on	the	language	support
(U.S.	English,	for	example)	that	you’ve	selected	or	installed.

IgnoreThe		Optional	Variant.	True	to	ignore	the	Arabic	character	alef	lam	
when	sorting	right-to-left	language	text.	This	argument	may	not	be	available	to
you,	depending	on	the	language	support	(U.S.	English,	for	example)	that	you’ve
selected	or	installed.

IgnoreKashida		Optional	Variant.	True	to	ignore	kashidas	when	sorting	right-
to-left	language	text.	This	argument	may	not	be	available	to	you,	depending	on
the	language	support	(U.S.	English,	for	example)	that	you’ve	selected	or
installed.

IgnoreDiacritics		Optional	Variant.	True	to	ignore	bidirectional	control
characters	when	sorting	right-to-left	language	text.	This	argument	may	not	be
available	to	you,	depending	on	the	language	support	(U.S.	English,	for	example)
that	you’ve	selected	or	installed.

IgnoreHe		Optional	Variant.	True	to	ignore	the	Hebrew	character	he	when
sorting	right-to-left	language	text.	This	argument	may	not	be	available	to	you,
depending	on	the	language	support	(U.S.	English,	for	example)	that	you’ve



selected	or	installed.

LanguageID		Optional	Variant.	Specifies	the	sorting	language.	Can	be	one	of
the	WdLanguageID	constants.	Refer	to	the	Object	Browser	for	a	list	of	the
WdLanguageID	constants.



Example

As	it	applies	to	the	Table	object.

This	example	sorts	the	first	table	in	the	active	document,	excluding	the	heading
row.

Sub	NewTableSort()

				ActiveDocument.Tables(Index:=1)

				Selection.Sort	ExcludeHeader:=True

End	Sub

As	it	applies	to	the	Range	or	Selection	object.

This	example	inserts	three	lines	of	text	into	a	new	document	and	then	sorts	the
lines	in	ascending	alphanumeric	order

Sub	NewParagraphSort()

				Dim	newDoc	As	Document

				Set	newDoc	=	Documents.Add

				newDoc.Content.InsertAfter	"pear"	&	Chr(13)	_

								&	"zucchini"	&	Chr(13)	&	"apple"	&	Chr(13)

				newDoc.Content.Sort	SortOrder:=wdSortOrderAscending

End	Sub



SortAscending	Method
							

Sorts	paragraphs	or	table	rows	in	ascending	alphanumeric	order.	The	first
paragraph	or	table	row	is	considered	a	header	record	and	isn't	included	in	the
sort.	Use	the	Sort	method	to	include	the	header	record	in	a	sort.

Note			This	method	offers	a	simplified	form	of	sorting	intended	for	mail	merge
data	sources	that	contain	columns	of	data.	For	most	sorting	tasks,	use	the	Sort
method.

expression.SortAscending

expression			Required.	An	expression	that	returns	a	Range,	Selection,	or	Table
object.



Example

This	example	sorts	the	table	that	contains	the	selection	in	ascending	order.

If	Selection.Information(wdWithInTable)	=	True	Then

				Selection.Tables(1).SortAscending

Else

				MsgBox	"The	insertion	point	is	not	in	a	table."

End	If



SortDescending	Method
							

Sorts	paragraphs	or	table	rows	in	descending	alphanumeric	order.	The	first
paragraph	or	table	row	is	considered	a	header	record	and	isn't	included	in	the
sort.	Use	the	Sort	method	to	include	the	header	record	in	a	sort.

Note			This	method	offers	a	simplified	form	of	sorting	intended	for	mail-merge
data	sources	that	contain	columns	of	data.	For	most	sorting	tasks,	use	the	Sort
method.

expression.SortDescending

expression			Required.	An	expression	that	returns	a	Range,	Selection,	or	Table
object.



Example

This	example	creates	a	5x5	table	in	a	new	document,	inserts	text	into	each	cell,
and	then	sorts	the	table	in	descending	alphanumeric	order.

Set	newDoc	=	Documents.Add

Set	myTable	=	_

				newDoc.Tables.Add(Range:=Selection.Range,	NumRows:=5,	_

				NumColumns:=5)

For	iRow	=	1	To	myTable.Rows.Count

				For	iCol	=	1	To	myTable.Columns.Count

								Set	MyRange	=	myTable.Rows(iRow).Cells(iCol).Range

								MyRange.InsertAfter	"Cell"	&	Str$(iRow)	&	","	&	Str$(iCol)

				Next	iCol

Next	iRow

MsgBox	"Click	OK	to	sort	in	descending	order."

myTable.SortDescending

This	example	sorts	the	table	that	contains	the	insertion	point	in	descending
alphanumeric	order.

If	Selection.Information(wdWithInTable)	=	True	Then	

				Selection.Tables(1).SortDescending

Else

				MsgBox	"The	insertion	point	is	not	in	a	table."

End	If



Space1	Method
							

Single-spaces	the	specified	paragraphs.	The	exact	spacing	is	determined	by	the
font	size	of	the	largest	characters	in	each	paragraph.

expression.Space1

expression			Required.	An	expression	that	returns	a	Paragraph,	Paragraphs,	or
ParagraphFormat	object.



Remarks

The	following	two	statements	are	equivalent:

ActiveDocument.Paragraphs(1).Space1

ActiveDocument.Paragraphs(1).LineSpacingRule	=	wdLineSpaceSingle



Example

This	example	changes	the	first	paragraph	in	the	active	document	to	single
spacing.

ActiveDocument.Paragraphs(1).Space1



Space15	Method
							

Formats	the	specified	paragraphs	with	1.5-line	spacing.	The	exact	spacing	is
determined	by	adding	6	points	to	the	font	size	of	the	largest	character	in	each
paragraph.

expression.Space15

expression			Required.	An	expression	that	returns	a	Paragraph,	Paragraphs,	or
ParagraphFormat	object.



Remarks

The	following	two	statements	are	equivalent:

ActiveDocument.Paragraphs(1).Space15

ActiveDocument.Paragraphs(1).LineSpacingRule	=	wdLineSpace1pt5



Example

This	example	changes	the	first	paragraph	in	the	active	document	to	1.5-line
spacing.

ActiveDocument.Paragraphs(1).Space15



Space2	Method
							

Double-spaces	the	specified	paragraphs.	The	exact	spacing	is	determined	by
adding	12	points	to	the	font	size	of	the	largest	character	in	each	paragraph.

expression.Space2

expression			Required.	An	expression	that	returns	a	Paragraph,	Paragraphs,	or
ParagraphFormat	object.



Remarks

The	following	two	statements	are	equivalent:

ActiveDocument.Paragraphs(1).Space2

ActiveDocument.Paragraphs(1).LineSpacingRule	=	wdLineSpaceDouble



Example

This	example	changes	the	first	paragraph	in	the	selection	to	double	spacing.

Selection.Paragraphs(1).Space2



Show	All



Split	Method
							

Split	method	as	it	applies	to	the	Cell	object.

Splits	a	single	table	cell	into	multiple	cells.

expression.Split(NumRows,	NumColumns)

expression			Required.	An	expression	that	returns	a	Cell	object.

NumRows		Optional	Variant.	The	number	of	rows	that	the	cell	or	group	of	cells
is	to	be	split	into.

NumColumns		Optional	Variant.	The	number	of	columns	that	the	cell	or	group
of	cells	is	to	be	split	into.

Split	method	as	it	applies	to	the	Cells	object.

Splits	a	range	of	table	cells.

expression.Split(NumRows,	NumColumns,	MergeBeforeSplit)

expression			Required.	An	expression	that	returns	a	Cells	object.

NumRows		Optional	Variant.	The	number	of	rows	that	the	cell	or	group	of	cells
is	to	be	split	into.

NumColumns		Optional	Variant.	The	number	of	columns	that	the	cell	or	group
of	cells	is	to	be	split	into.

MergeBeforeSplit		Optional	Variant.	True	to	merge	the	cells	with	one	another
before	splitting	them.

Split	method	as	it	applies	to	the	Subdocument	object.

Divides	an	existing	subdocument	into	two	subdocuments	at	the	same	level	in



master	document	view	or	outline	view.	The	division	is	at	the	beginning	of	the
specified	range.	If	the	active	document	isn't	in	either	master	document	or	outline
view,	or	if	the	range	isn't	at	the	beginning	of	a	paragraph	in	a	subdocument,	an
error	occurs.

expression.Split(Range)

expression			Required.	An	expression	that	returns	a	Subdocument	object.

Range		Required	Range	object.	The	range	that,	when	the	subdocument	is	split,
becomes	a	separate	subdocument.

Split	method	as	it	applies	to	the	Table	object.

Inserts	an	empty	paragraph	immediately	above	the	specified	row	in	the	table,
and	returns	a	Table	object	that	contains	both	the	specified	row	and	the	rows	that
follow	it.

expression.Split(BeforeRow)

expression			Required.	An	expression	that	returns	a	Table	object.

BeforeRow		Required	Variant.	The	row	that	the	table	is	to	be	split	before.	Can
be	a	row	number	or	a	Row	object.



Example

As	it	applies	to	the	Cell	object.

This	example	splits	the	first	cell	in	the	first	table	into	two	cells.

ActiveDocument.Tables(1).Cell(1,	1).Split	NumColumns:=2

As	it	applies	to	the	Cells	object.

This	example	merges	the	selected	cells	into	a	single	cell	and	then	splits	the	cell
into	three	cells	in	the	same	row.

If	Selection.Information(wdWithInTable)	=	True	Then

				Selection.Cells.Split	NumRows:=1,	NumColumns:=3,	_

								MergeBeforeSplit:=	True

End	If

As	it	applies	to	the	Subdocument	object.

This	example	splits	the	selection	from	an	existing	subdocument	into	a	separate
subdocument.

Selection.Range.Subdocuments(1).Split	Range:=Selection.Range

As	it	applies	to	the	Table	object.

This	example	creates	a	5x5	table	in	the	active	document	and	splits	it	before	the
third	row.	Shading	is	applied	to	the	cells	in	the	resulting	table	(the	new	3x5
table).

Set	newDoc	=	Documents.Add

Set	myTable	=	ActiveDocument.Tables.Add(Range:=Selection.Range,	_



				NumColumns:=5,	NumRows:=5)

myTable.Split(BeforeRow:=myTable.Rows(3)).Shading	_

				.Texture	=	wdTexture10Percent



SplitTable	Method
							

Inserts	an	empty	paragraph	above	the	first	row	in	the	selection.	If	the	selection
isn't	in	the	first	row	of	the	table,	the	table	is	split	into	two	tables.

Note			If	the	selection	isn't	in	a	table,	an	error	occurs.

expression.SplitTable

expression			Required.	An	expression	that	returns	a	Selection	object.



Example

If	the	selection	is	in	a	table,	this	example	splits	the	table.

If	Selection.Information(wdWithInTable)	=	True	Then

				Selection.SplitTable

End	If

This	example	splits	the	first	table	in	the	active	document	between	the	first	and
second	rows.

ActiveDocument.Tables(1).Rows(2).Select

Selection.SplitTable



Show	All



StartOf	Method
							

Moves	or	extends	the	start	position	of	the	specified	range	or	selection	to	the
beginning	of	the	nearest	specified	text	unit.	This	method	returns	a	Long	that
indicates	the	number	of	characters	by	which	the	range	or	selection	was	moved	or
extended.	The	method	returns	a	negative	number	if	the	movement	is	backward
through	the	document.

expression.StartOf(Unit,	Extend)

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

Unit		Optional	WdUnits.	The	unit	by	which	the	start	position	of	the	specified
range	or	selection	is	to	be	moved.

WdUnits	can	be	one	of	these	WdUnits	constants.
wdCell
wdCharacter
wdColumn
wdParagraph
wdRow
wdSection
wdSentence
wdStory
wdTable
wdWord
If	expression	returns	a	Selection	object,	you	can	also	use	wdLine.	The	default
value	is	wdWord.

Extend		Optional	WdMovement.

WdMovementType	can	be	one	of	these	WdMovementType	constants.



wdMove
wdExtend
If	you	use	wdMove,	both	ends	of	the	range	or	selection	are	moved	to	the
beginning	of	the	specified	unit.	If	you	use	wdExtend,	the	beginning	of	the
range	or	selection	is	extended	to	the	beginning	of	the	specified	unit.	The	default
value	is	wdMove.



Remarks

If	the	beginning	of	the	specified	range	or	selection	is	already	at	the	beginning	of
the	specified	unit,	this	method	doesn't	move	or	extend	the	range	or	selection.	For
example,	if	the	selection	is	at	the	beginning	of	a	line,	the	following	example
returns	0	(zero)	and	doesn't	change	the	selection.

char	=	Selection.StartOf(Unit:=wdLine,	Extend:=wdMove)



Example

This	example	selects	the	text	from	the	insertion	point	to	the	beginning	of	the
line.	The	number	of	characters	selected	is	stored	in	charmoved.

Selection.Collapse	Direction:=wdCollapseStart	charmoved	=	Selection.

This	example	moves	the	selection	to	the	beginning	of	the	paragraph.

Selection.StartOf	Unit:=wdParagraph,	Extend:=wdMove

This	example	moves	myRange	to	the	beginning	of	the	second	sentence	in	the
document	(myRange	is	collapsed	and	positioned	at	the	beginning	of	the	second
sentence).	The	example	uses	the	Select	method	to	show	the	location	of	myRange.

Set	myRange	=	ActiveDocument.Sentences(2)

myRange.StartOf	Unit:=wdSentence,	Extend:=wdMove

myRange.Select



SubstituteFont	Method
							

Sets	font-mapping	options,	which	are	reflected	in	the	Font	Substitution	dialog
box	(Compatibility	tab,	Options	dialog	box,	Tools	menu).

expression.SubstituteFont(UnavailableFont,	SubstituteFont)

expression			Required.	An	expression	that	returns	an	Application	object.

UnavailableFont			Required	String.	The	name	of	a	font	not	available	on	your
computer	that	you	want	to	map	to	a	different	font	for	display	and	printing.

SubstituteFont			Required	String.	The	name	of	a	font	available	on	your
computer	that	you	want	to	substitute	for	the	unavailable	font.



Example

This	example	substitutes	Courier	for	CustomFont1.

Application.SubstituteFont	UnavailableFont:=	"CustomFont1",	_

				SubstituteFont:=	"Courier"



SwapNode	Method
							

Swaps	the	target	diagram	node	with	the	source	diagram	node.	Any	child	diagram
nodes	are	moved	along	with	their	corresponding	root	nodes.

expression.SwapNode(TargetNode)

expression			Required.	An	expression	that	returns	a	DiagramNode	object.

TargetNode		Required	DiagramNode	object.	The	node	with	which	to	swap.



Example

The	following	example	swaps	two	nodes	in	a	newly-created	diagram.

Sub	SwapNode()

				Dim	dgnNode	As	DiagramNode

				Dim	shpDiagram	As	Object

				Dim	intCount	As	Integer

				'Add	organizational	chart	to	current	document

				Set	shpDiagram	=	ThisDocument.Shapes.AddDiagram	_

								(Type:=msoDiagramOrgChart,	Left:=10,	_

								Top:=15,	Width:=400,	Height:=475)

				'Add	first	node	to	organizational	chart

				Set	dgnNode	=	shpDiagram.DiagramNode.Children.AddNode

				'Add	three	child	nodes	to	the	first	node

				For	intCount	=	1	To	3

								dgnNode.Children.AddNode

				Next	intCount

				'Add	three	child	nodes	to	the	first	child	node

				'of	the	first	node

				For	intCount	=	1	To	3

								dgnNode.Children.Item(1).Children.AddNode

				Next	intCount

				'Swap	the	first	and	third	child	nodes	that	were	just	created

				dgnNode.Children.Item(1).SwapNode	_

								TargetNode:=dgnNode.Children.Item(3)

End	Sub



SwapWithEndnotes	Method
							

Converts	all	footnotes	in	a	document	to	endnotes	and	vice	versa.

Note			To	convert	a	range	of	footnotes	to	endnotes,	use	the	Convert	method.

expression.SwapWithEndnotes

expression			Required.	An	expression	that	returns	a	Footnotes	object.



Example

This	example	converts	the	footnotes	in	the	active	document	to	endnotes	and
converts	the	endnotes	to	footnotes.

ActiveDocument.Footnotes.SwapWithEndnotes



SwapWithFootnotes	Method
							

Converts	all	endnotes	in	a	document	to	footnotes	and	vice	versa.

Note			To	convert	a	range	of	endnotes	to	footnotes,	use	the	Convert	method.

expression.SwapWithFootnotes

expression			Required.	An	expression	that	returns	an	Endnotes	object.



Example

This	example	converts	the	endnotes	in	the	active	document	to	footnotes	and
converts	the	footnotes	to	endnotes.

ActiveDocument.Endnotes.SwapWithFootnotes



TabHangingIndent	Method
							

Sets	a	hanging	indent	to	a	specified	number	of	tab	stops.	Can	be	used	to	remove
tab	stops	from	a	hanging	indent	if	the	value	of	Count	is	a	negative	number.

expression.TabHangingIndent(Count)

expression			Required.	An	expression	that	returns	a	Paragraph,	Paragraphs,	or
ParagraphFormat	object.

Count			Required	Integer.	The	number	of	tab	stops	to	indent	(if	positive)	or	the
number	of	tab	stops	to	remove	from	the	indent	(if	negative).



Example

This	example	sets	a	hanging	indent	to	the	second	tab	stop	for	the	first	paragraph
in	the	active	document.

ActiveDocument.Paragraphs(1).TabHangingIndent(2)

This	example	moves	the	hanging	indent	back	one	tab	stop	for	the	first	paragraph
in	the	active	document.

ActiveDocument.Paragraphs(1).TabHangingIndent(-1)



TabIndent	Method
							

Sets	the	left	indent	for	the	specified	paragraphs	to	a	specified	number	of	tab
stops.	Can	also	be	used	to	remove	the	indent	if	the	value	of	Count	is	a	negative
number.

expression.TabIndent(Count)

expression			Required.	An	expression	that	returns	a	Paragraph,	Paragraphs,	or
ParagraphFormat	object.

Count			Required	Integer.	The	number	of	tab	stops	to	indent	(if	positive)	or	the
number	of	tab	stops	to	remove	from	the	indent	(if	negative).



Example

This	example	indents	the	first	paragraph	in	the	active	document	to	the	second	tab
stop.

ActiveDocument.Paragraphs(1).TabIndent(2)

This	example	moves	the	indent	of	the	first	paragraph	in	the	active	document
back	one	tab	stop.

ActiveDocument.Paragraphs(1).TabIndent(-1)



Show	All



TCSCConverter	Method
							

Converts	the	specified	range	from	Traditional	Chinese	to	Simplified	Chinese	or
vice	versa.

expression.TCSCConverter(WdTCSCConverterDirection,	CommonTerms,
UseVariants)

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

WdTCSCConverterDirection		Optional	WdTCSCConverterDirection.

WdTCSCConverterDirection	can	be	one	of	these	WdTCSCConverterDirection
constants.
wdTCSCConverterDirectionAuto	default	Converts	in	the	appropriate
direction	based	on	the	detected	language	of	the	specified	range.
wdTCSCConverterDirectionSCTC		Converts	from	Simplified	Chinese	to
Traditional	Chinese.
wdTCSCConverterDirectionTCSC		Converts	from	Traditional	Chinese	to
Simplified	Chinese.

CommonTerms		Optional	Boolean.		True	if	Microsoft	Word	converts	common
expressions	intact	rather	than	converting	on	a	character-by-character	basis.

UseVariants		Optional	Boolean.	True	if	Word	uses	Taiwan,	Hong	Kong	SAR,
and	Macao	character	variants.	Can	only	be	used	if	translating	from	Simplified
Chinese	to	Traditional	Chinese.



Remarks

For	more	information	on	using	Word	with	Asian	languages,	see	Word	features
for	Asian	languages.

mk:@MSITStore:wdmain10.chm::/html/wdrefFeaturesAvailableInWordWhenAsianLanguagesAreEnabled.htm


Example

This	example	converts	the	current	selection	from	Simplified	Chinese	to
Traditional	Chinese.	It	converts	common	expressions	intact	and	uses	regional
character	variants.

Selection.Range.TCSCConverter	_

				wdTCSCConverterDirectionSCTC,	True,	True



TOCInFrameset	Method
							

Creates	a	table	of	contents	based	on	the	specified	document	and	puts	it	in	a	new
frame	on	the	left	side	of	the	frames	page.

expression.TOCInFrameset

expression			Required.	An	expression	that	returns	a	Pane	object.



Remarks

For	more	information	on	creating	frames	pages,	see	Creating	frames	pages.



Example

This	example	opens	a	file	named	"Proposal.doc",	creates	a	frames	page	based	on
the	file,	and	adds	a	frame	(on	the	left	side	of	the	page)	containing	a	table	of
contents	for	the	file.

Documents.Open	"C:\Documents\Proposal.doc"

ActiveDocument.ActiveWindow.ActivePane.NewFrameset

ActiveDocument.ActiveWindow.ActivePane.TOCInFrameset



ToggleCharacterCode	Method
							

Switches	a	selection	between	a	Unicode	character	and	its	corresponding
hexadecimal	value.

expression.ToggleCharacterCode

expression			Required.	An	expression	that	returns	a	Selection	object.



Example

This	example	enters	the	hex	value	"20ac"	at	the	cursor	position	and	toggles	that
value	to	its	corresponding	Unicode	character.

Sub	ToggleCharCase()

				Selection.TypeText	Text:="20ac"

				Selection.ToggleCharacterCode

End	Sub



ToggleFormsDesign	Method
							

Toggles	form	design	mode	on	or	off.	When	Word	is	in	form	design	mode,	the
Control	Toolbox	toolbar	is	displayed.	You	can	use	this	toolbar	to	insert	ActiveX
controls	such	as	command	buttons,	scroll	bars,	and	option	buttons.	In	form
design	mode,	event	procedures	don't	run,	and	when	you	click	an	embedded
control,	the	control's	sizing	handles	appear.

expression.ToggleFormsDesign

expression			Required.	An	expression	that	returns	a	Document	object.



Example

This	example	switches	to	form	design	mode	if	the	Control	Toolbox	toolbar	isn't
currently	displayed.

If	CommandBars("Control	Toolbox").Visible	=	False	Then

				ActiveDocument.ToggleFormsDesign

End	If



ToggleHeader	Method
							

Toggles	the	display	of	the	header	in	the	active	e-mail	message.

expression.ToggleHeader

expression			Required.	An	expression	that	returns	a	MailMessage	object.



Example

This	example	toggles	the	display	of	the	header	in	the	active	e-mail	message.

Application.MailMessage.ToggleHeader



ToggleKeyboard	Method
							

Switches	the	keyboard	language	setting	between	right-to-left	and	left-to-right
languages.

expression.ToggleKeyboard

expression			Required.	An	expression	that	returns	an	Application	object.



Remarks

For	more	information	on	using	Microsoft	Word	with	right-to-left	languages,	see
Word	features	for	right-to-left	languages.

mk:@MSITStore:wdmain10.chm::/html/wdrefFeaturesAvailableInWordWhenBidirectionalLanguagesAreEnabled.htm


Example

This	example	asks	the	user	whether	to	switch	the	keyboard	language	setting
between	right-to-left	and	left-to-right	languages.

x	=	MsgBox("Switch	the	keyboard	language	setting?",	vbYesNo)

If	x	=	vbYes	Then	Application.ToggleKeyboard



TogglePortrait	Method
							

Switches	between	portrait	and	landscape	page	orientations	for	a	document	or
section.

expression.TogglePortrait

expression			Required.	An	expression	that	returns	a	PageSetup	object.



Remarks

If	the	specified	sections	have	different	page	orientations,	an	error	occurs.



Example

This	example	changes	the	page	orientation	for	the	active	document.

ActiveDocument.PageSetup.TogglePortrait

This	example	changes	the	page	orientation	for	all	the	sections	in	the	selection.	If
the	initial	orientation	of	each	section	is	not	the	same	as	the	orientation	of	the
other	sections,	an	error	occurs.

Selection.PageSetup.TogglePortrait



ToggleShowCodes	Method
							

Toggles	the	display	of	the	fields	between	field	codes	and	field	results.

Note			Use	the	ShowCodes	property	to	control	the	display	of	an	individual	field.

expression.ToggleShowCodes

expression			Required.	An	expression	that	returns	a	Fields	object.



Example

This	example	toggles	the	display	of	fields	in	the	selection	(the	equivalent	of
pressing	SHIFT+F9).

Selection.Fields.ToggleShowCodes

This	example	toggles	the	display	of	fields	in	the	active	document	(the	equivalent
of	pressing	ALT+F9).

ActiveDocument.Fields.ToggleShowCodes



ToggleVerticalText	Method
							

Switches	the	text	flow	in	the	specified	WordArt	from	horizontal	to	vertical,	or
vice	versa.

expression.ToggleVerticalText

expression			Required.	An	expression	that	returns	a	TextEffectFormat	object.



Remarks

Using	the	ToggleVerticalText	method	swaps	the	values	of	the	Width	and
Height	properties	of	the	Shape	object	that	represents	the	WordArt	and	leaves	the
Left	and	Top	properties	unchanged.

The	Flip	method	and	Rotation	property	of	the	Shape	object	and	the
RotatedChars	property	and	ToggleVerticalText	method	of	the
TextEffectFormat	object	all	affect	the	character	orientation	and	the	direction	of
text	flow	in	a	Shape	object	that	represents	WordArt.	You	may	have	to
experiment	to	find	out	how	to	combine	the	effects	of	these	properties	and
methods	to	get	the	result	you	want.



Example

This	example	adds	WordArt	that	contains	the	text	"Test"	to	the	active	document
and	switches	from	horizontal	text	flow	(the	default	for	the	specified	WordArt
style,	msoTextEffect1)	to	vertical	text	flow.

Dim	newWordArt	As	Shape

Set	newWordArt	=	_

				ActiveDocument.Shapes.AddTextEffect(	_

				PresetTextEffect:=msoTextEffect1,	Text:="Test",	_

				FontName:="Arial	Black",	FontSize:=36,	FontBold:=False,	_

				FontItalic:=False,	Left:=100,	Top:=100)

newWordArt.TextEffect.ToggleVerticalText



TransferChildren	Method
							

Moves	the	child	nodes	of	the	source	diagram	node	to	the	target	(receiving)
diagram	node.

expression.TransferChildren(ReceivingNode)

expression			Required.	An	expression	that	returns	a	DiagramNode	object.

ReceivingNode		Required	DiagramNode	object.	The	node	to	which	to	transfer
the	child	nodes.



Example

The	following	example	transfers	the	child	nodes	of	a	newly-created	diagram
from	one	node	to	another.

Sub	TransferChildNodes()

				Dim	dgnNode	As	DiagramNode

				Dim	shpDiagram	As	Shape

				Dim	intCount	As	Integer

				'Add	organizational	chart	to	current	document

				Set	shpDiagram	=	ThisDocument.Shapes.AddDiagram	_

								(Type:=msoDiagramOrgChart,	Left:=10,	_

								Top:=15,	Width:=400,	Height:=475)

				'Add	first	node	to	organizational	chart

				Set	dgnNode	=	shpDiagram.DiagramNode.Children.AddNode

				'Add	three	child	nodes	to	first	node

				For	intCount	=	1	To	3

								dgnNode.Children.AddNode

				Next	intCount

				'Add	three	child	nodes	to	the	first	child	node

				'of	the	first	node

				For	intCount	=	1	To	3

								dgnNode.Children.Item(1).Children.AddNode

				Next	intCount

				'Move	the	child	nodes	of	the	first	child	node

				'so	they	become	child	nodes	of	the	third	child	node

				dgnNode.Children.Item(1).TransferChildren	_

								ReceivingNode:=dgnNode.Children.Item(3)

End	Sub



TwoColorGradient	Method
							

Sets	the	specified	fill	to	a	two-color	gradient.

expression.TwoColorGradient(Style,	Variant)

expression			Required.	An	expression	that	returns	a	FillFormat	object.

	Style		Required	MsoGradientStyle.	The	gradient	style.

MsoGradientStyle	can	be	one	of	these	MsoGradientStyle	constants.
msoGradientDiagonalDown
msoGradientDiagonalUp
msoGradientFromCenter
msoGradientFromCorner
msoGradientFromTitle	Used	only	in	Microsoft	PowerPoint.	
msoGradientHorizontal
msoGradientMixed
msoGradientVertical

Variant			Required	Long.	The	gradient	variant.	Can	be	a	value	from	1	to	4,
corresponding	to	the	four	variants	on	the	Gradient	tab	in	the	Fill	Effects	dialog
box.	If	Style	is	msoGradientFromCenter,	this	argument	can	be	either	1	or	2.



Example

This	example	adds	a	rectangle	with	a	two-color	gradient	fill	to	the	active
document	and	sets	the	background	and	foreground	color	for	the	fill.

With	ActiveDocument.Shapes.AddShape(msoShapeRectangle,	_

								0,	0,	40,	80).Fill

				.ForeColor.RGB	=	RGB(128,	0,	0)

				.BackColor.RGB	=	RGB(0,	170,	170)

				.TwoColorGradient	msoGradientHorizontal,	1

End	With



TypeBackspace	Method
							

Deletes	the	character	preceding	a	collapsed	selection	(an	insertion	point).	If	the
selection	isn't	collapsed	to	an	insertion	point,	the	selection	is	deleted.

Note			This	method	corresponds	to	functionality	of	the	BACKSPACE	key.

expression.TypeBackspace

expression			Required.	An	expression	that	returns	a	Selection	object.



Example

This	example	deletes	the	character	preceding	the	insertion	point	(the	collapsed
selection).

With	Selection

				.Collapse	Direction:=wdCollapseEnd

				.TypeBackspace

End	With

This	example	extends	the	selection	to	the	end	of	the	current	paragraph	(including
the	paragraph	mark)	and	then	deletes	the	selection.

With	Selection

				.EndOf	Unit:=wdParagraph,	Extend:=wdExtend

				.TypeBackspace

End	With



TypeParagraph	Method
							

Inserts	a	new,	blank	paragraph.	If	the	selection	isn't	collapsed	to	an	insertion
point,	it's	replaced	by	the	new	paragraph.	Use	the	InsertParagraphAfter	or
InsertParagraphBefore	method	to	insert	a	new	paragraph	without	deleting	the
contents	of	the	selection.

Note			This	method	corresponds	to	the	functionality	of	the	ENTER	key.

expression.TypeParagraph

expression			Required.	An	expression	that	returns	a	Selection	object.



Example

This	example	collapses	the	selection	to	its	end	and	then	inserts	a	new	paragraph
following	it.

With	Selection

				.Collapse	Direction:=wdCollapseEnd

				.TypeParagraph

End	With



TypeText	Method
							

Inserts	the	specified	text.	If	the	ReplaceSelection	property	is	True,	the	selection
is	replaced	by	the	specified	text.	If	ReplaceSelection	is	False,	the	specified	text
is	inserted	before	the	selection.

expression.TypeText(Text)

expression			Required.	An	expression	that	returns	a	Selection	object.

Text			Required	String.	The	text	to	be	inserted.



Example

If	Typing	replaces	selection	is	selected	on	the	Edit	tab	in	the	Options	dialog
box,	this	example	collapses	the	selection	before	inserting	"Hello."	This
technique	prevents	existing	document	text	from	being	replaced.

If	Options.ReplaceSelection	=	True	Then

				Selection.Collapse	Direction:=wdCollapseStart

				Selection.TypeText	Text:="Hello"

End	If

This	example	inserts	"Title"	followed	by	a	new	paragraph.

Options.ReplaceSelection	=	False

With	Selection

				.TypeText	Text:="Title"

				.TypeParagraph

End	With



Undo	Method
							

Undoes	the	last	action	or	a	sequence	of	actions,	which	are	displayed	in	the	Undo
list.	Returns	True	if	the	actions	were	successfully	undone.

expression.Undo(Times)

expression			Required.	An	expression	that	returns	a	Document	object.

Times			Optional	Variant.	The	number	of	actions	to	be	undone.



Example

This	example	undoes	the	last	two	actions	taken	in	Sales.doc.

Documents("Sales.doc").Undo	2

This	example	undoes	the	last	action.	If	the	action	is	successfully	undone,	a
message	is	displayed	in	the	status	bar.

On	Error	Resume	Next

If	ActiveDocument.Undo	=	False	Then	_

				StatusBar	=	"Undo	was	unsuccessful"



UndoClear	Method
							

Clears	the	list	of	actions	that	can	be	undone	for	the	specified	document.
Corresponds	to	the	list	of	items	that	appears	when	you	click	the	arrow	beside	the
Undo	button	on	the	Standard	toolbar.

Note			Include	this	method	at	the	end	of	a	macro	to	keep	Visual	Basic	actions
from	appearing	in	the	Undo	box	(for	example,	"VBA-Selection.InsertAfter").

expression.UndoClear

expression			Required.	An	expression	that	returns	a	Document	object.



Example

This	example	clears	the	list	of	actions	that	can	be	undone	for	the	active
document.

ActiveDocument.UndoClear



Ungroup	Method
							

Ungroups	any	grouped	shapes	in	the	specified	shape	or	range	of	shapes.
Disassembles	pictures	and	OLE	objects	within	the	specified	shape	or	range	of
shapes.	Returns	the	ungrouped	shapes	as	a	single	ShapeRange	object.

expression.Ungroup

expression			Required.	An	expression	that	returns	a	ShapeRange	object.



Remarks

Because	a	group	of	shapes	is	treated	as	a	single	object,	grouping	and	ungrouping
shapes	changes	the	number	of	items	in	the	Shapes	collection	and	changes	the
index	numbers	of	items	that	come	after	the	affected	items	in	the	collection.



Example

This	example	ungroups	any	grouped	shapes	and	disassembles	any	pictures	or
OLE	objects	on	myDocument.

Set	myDocument	=	ActiveDocument

For	Each	s	In	myDocument.Shapes

				s.Ungroup

Next

This	example	ungroups	any	grouped	shapes	on	myDocument	without
disassembling	pictures	or	OLE	objects	on	the	document.

Set	myDocument	=	ActiveDocument

For	Each	s	In	myDocument.Shapes

				If	s.Type	=	msoGroup	Then	s.Ungroup

Next



Unlink	Method
							

Field	object:	Replaces	the	specified	field	with	its	most	recent	result.

Fields	object:	Replaces	all	the	fields	in	the	Fields	collection	with	their	most
recent	results.

expression.Unlink

expression			Required.	An	expression	that	returns	a	Field	or	Fields	object.



Remarks

When	you	unlink	a	field,	it's	current	result	is	converted	to	text	or	a	graphic	and
can	no	longer	be	updated	automatically.	Note	that	some	fields	—	such	as	XE
(Index	Entry)	fields	and	SEQ	(Sequence)	fields	—	cannot	be	unlinked.



Example

This	example	unlinks	the	first	field	in	"Sales.doc."

Documents("Sales.doc").Fields(1).Unlink

This	example	updates	and	unlinks	all	the	fields	in	the	first	section	in	the	active
document.

With	ActiveDocument.Sections(1).Range.Fields

				.Update

				.Unlink

End	With



Unload	Method
							

Unloads	all	loaded	add-ins	and,	depending	on	the	value	of	the	RemoveFromList
argument,	removes	them	from	the	AddIns	collection.

expression.Unload(RemoveFromList)

expression			Required.	An	expression	that	returns	an	AddIns	object.

RemoveFromList			Required	Boolean.	True	to	remove	the	unloaded	add-ins
from	the	AddIns	collection	(the	names	are	removed	from	the	Templates	and
Add-ins	dialog	box).	False	to	leave	the	unloaded	add-ins	in	the	collection.

If	the	Autoload	property	for	an	unloaded	add-in	returns	True,	Unload	cannot
remove	that	add-in	from	the	AddIns	collection,	regardless	of	the	value	of
RemoveFromList.



Remarks

To	unload	a	single	template	or	WLL,	set	the	Installed	property	of	the	AddIn
object	to	False.	To	remove	a	single	template	or	WLL	from	the	AddIns
collection,	apply	the	Delete	method	to	the	AddIn	object.



Example

This	example	unloads	all	the	add-ins	listed	in	the	Templates	and	Add-ins	dialog
box.	The	add-in	names	remain	in	the	AddIns	collection.

If	AddIns.Count	>	0	Then	AddIns.UnLoad	RemoveFromList:=False



Show	All



Update	Method
							

Update	method	as	it	applies	to	the	Field	object.

Updates	the	result	of	the	field	object.	When	applied	to	a	Field	object,	returns
True	if	the	field	is	updated	successfully.

expression.Update

expression			Required.	An	expression	that	returns	one	of	the	above	objects.

Update	method	as	it	applies	to	the	Fields	object.

Updates	the	result	of	the	fields	object.	When	applied	to	a	Fields	collection,
returns	0	(zero)	if	no	errors	occur	when	the	fields	are	updated,	or	returns	a	Long
that	represents	the	index	of	the	first	field	that	contains	an	error.

expression.Update

expression			Required.	An	expression	that	returns	one	of	the	above	objects.

Update	method	as	it	applies	to	the	Dialog,	Index,	LinkFormat,
TableOfAuthorities,	TableOfContents,	and	TableOfFigures	objects.

Updates	the	values	shown	in	a	built-in	Microsoft	Word	dialog	box,	updates	the
specified	link,	or	updates	the	entries	shown	in	specified	index,	table	of
authorities,	table	of	figures	or	table	of	contents.

Note			Use	the	UpdatePageNumbers	method	to	update	the	page	numbers	of
items	in	a	table	of	contents	or	figures.

expression.Update

expression			Required.	An	expression	that	returns	one	of	the	above	objects.



Example

As	it	applies	to	the	Fields	object.

This	example	updates	all	the	fields	in	the	active	document.	A	return	value	of	0
(zero)	indicates	that	the	fields	were	updated	without	error.

If	ActiveDocument.Fields.Update	=	0	Then

				MsgBox	"Update	Successful"

Else

				MsgBox	"Field	"	&	ActiveDocument.Fields.Update	&	_

								"	has	an	error"

End	If

This	example	updates	any	fields	in	the	active	document	that	aren't	updated
automatically.

For	Each	afield	In	ActiveDocument.Fields

				If	afield.LinkFormat.AutoUpdate	=	False	_

								Then	afield.LinkFormat.Update

Next	afield

As	it	applies	to	the	TableOfFigures	object.

This	example	updates	the	first	table	of	figures	in	the	active	document.

If	ActiveDocument.TablesOfFigures.Count	>=	1	Then

				ActiveDocument.TableOfFigures(1).Update

End	If

As	it	applies	to	the	Field	object.

This	example	updates	the	first	field	in	the	active	document	and	displays	a
message	in	the	status	bar	indicating	whether	or	not	the	field	was	updated
successfully.

If	ActiveDocument.Fields(1).Update	=	True	Then

				StatusBar	=	"Field	updated"

Else

				StatusBar	=	"Error,	field	not	updated"

End	If



As	it	applies	to	the	Dialog	object.

This	example	returns	a	Dialog	object	that	refers	to	the	Font	dialog	box.	The	font
applied	to	the	Selection	object	is	changed	to	Arial,	the	dialog	values	are	updated,
and	the	Font	dialog	box	is	displayed.

Set	myDialog	=	Dialogs(wdDialogFormatFont)

Selection.Font.Name	=	"Arial"

myDialog.Update

myDialog.Show



UpdateAutoFormat	Method
							

Updates	the	table	with	the	characteristics	of	a	predefined	table	format.	For
example,	if	you	apply	a	table	format	with	AutoFormat	and	then	insert	rows	and
columns,	the	table	may	no	longer	match	the	predefined	look.
UpdateAutoFormat	restores	the	format.

expression.UpdateAutoFormat

expression			Required.	An	expression	that	returns	a	Table	object.



Example

This	example	creates	a	table,	applies	a	predefined	format	to	it,	adds	a	row,	and
then	reapplies	the	predefined	format.

Dim	docNew	As	Document

Dim	tableNew	As	Table

Set	docNew	=	Documents.Add	

Set	tableNew	=	docNew.Tables.Add(Selection.Range,	5,	5)

With	tableNew

				.AutoFormat	Format:=wdTableFormatColumns1

				.Rows.Add	BeforeRow:=tableNew.Rows(1)

End	With

MsgBox	"Click	OK	to	reapply	autoformatting."

tableNew.UpdateAutoFormat

This	example	restores	the	predefined	format	to	the	table	that	contains	the
insertion	point.

If	Selection.Information(wdWithInTable)	=	True	Then

				Selection.Tables(1).UpdateAutoFormat

Else

				MsgBox	"The	insertion	point	is	not	in	a	table."

End	If



UpdateDocument	Method
							

Updates	the	envelope	in	the	document	with	the	current	envelope	settings.

Note			If	you	use	this	property	before	an	envelope	has	been	added	to	the
document,	an	error	occurs.

expression.UpdateDocument

expression			Required.	An	expression	that	returns	an	Envelope	object.



Example

This	example	formats	the	envelope	in	Report.doc	to	use	a	custom	envelope	size
(4.5	inches	by	7.5	inches).

Sub	UpdateEnvelope()

				On	Error	GoTo	errhandler

				With	Documents("Report.doc").Envelope

								.DefaultHeight	=	InchesToPoints(4.5)

								.DefaultWidth	=	InchesToPoints(7.5)

								.UpdateDocument

				End	With

				Exit	Sub

errhandler:

				If	Err	=	5852	Then	_

								MsgBox	"Report.doc	doesn't	include	an	envelope"

End	Sub

This	example	adds	an	envelope	to	the	active	document,	using	predefined
addresses.	The	default	envelope	bar	code	and	Facing	Identification	Mark	(FIM-
A)	settings	are	set	to	True,	and	the	envelope	in	the	active	document	is	updated.

Dim	strAddress	As	String

Dim	strReturn	As	String

strAddress	=	"Darlene	Rudd"	&	vbCr	&	"1234	E.	Main	St."	_

				&	vbCr	&	"Our	Town,	WA		98004"

strReturn	=	"Patricia	Reed"	&	vbCr	&	"N.	33rd	St."	_

				&	vbCr	&	"Other	Town,	WA		98040"

ActiveDocument.Envelope.Insert	_

				Address:=strAddress,	ReturnAddress:=strReturn

With	ActiveDocument.Envelope

				.DefaultPrintBarCode	=	True

				.DefaultPrintFIMA	=	True

				.UpdateDocument

End	With





UpdatePageNumbers	Method
							

Updates	the	page	numbers	for	items	in	the	specified	table	of	contents	or	table	of
figures.

expression.UpdatePageNumbers

expression			Required.	An	expression	that	returns	a	TableOfContents	or
TableOfFigures	object.



Example

This	example	updates	all	tables	of	figures	in	Sales.doc.

Dim	tofLoop	As	TableOfFigures

For	Each	tofLoop	In	Documents("Sales.doc").TablesOfFigures

				tofLoop.UpdatePageNumbers

Next	tofLoop

This	example	inserts	a	page	break	at	the	insertion	point	and	then	updates	the
page	numbers	for	the	first	table	of	contents	in	the	active	document.

Selection.Collapse	Direction:=wdCollapseStart

Selection.InsertBreak	Type:=wdPageBreak

ActiveDocument.TablesOfContents(1).UpdatePageNumbers



UpdateSource	Method
							

Saves	the	changes	made	to	the	results	of	an	INCLUDETEXT	field	back	to	the
source	document.

Note			The	source	document	must	be	formatted	as	a	Word	document.

expression.UpdateSource

expression			Required.	An	expression	that	returns	a	Field	or	Fields	object.



Example

This	example	updates	the	INCLUDETEXT	fields	in	the	active	document.

Dim	fldLoop	As	Field

For	Each	fldLoop	In	ActiveDocument.Fields

				If	fldLoop.Type	=	wdFieldIncludeText	Then	_

								fldLoop.UpdateSource

Next	fldLoop



UpdateStyles	Method
							

Copies	all	styles	from	the	attached	template	into	the	document,	overwriting	any
existing	styles	in	the	document	that	have	the	same	name.

expression.UpdateStyles

expression			Required.	An	expression	that	returns	a	Document	object.



Example

This	example	copies	the	styles	from	the	attached	template	into	each	open
document,	and	then	it	closes	each	document.

For	Each	aDoc	In	Documents

				aDoc.UpdateStyles

				aDoc.Close	SaveChanges:=wdSaveChanges

Next	aDoc

This	example	changes	the	formatting	of	the	Heading	1	style	in	the	template
attached	to	the	active	document.	The	UpdateStyles	method	updates	the	styles	in
the	active	document,	including	the	Heading	1	style.

Set	aDoc	=	ActiveDocument.AttachedTemplate.OpenAsDocument

With	aDoc.Styles(wdStyleHeading1).Font

				.Name	=	"Arial"

				.Bold	=	False

End	With

aDoc.Close	SaveChanges:=wdSaveChanges

ActiveDocument.UpdateStyles



UpdateSummaryProperties	Method
							

Updates	the	keyword	and	comment	text	in	the	Properties	dialog	box	(File
menu)	to	reflect	the	AutoSummary	content	for	the	specified	document.

expression.UpdateSummaryProperties

expression			Required.	An	expression	that	returns	a	Document	object.



Example

This	example	highlights	key	points	in	the	active	document	and	updates	the
summary	information	in	the	Properties	dialog	box	(File	menu).

With	ActiveDocument

				.AutoSummarize	Length:=wd25Percent,	_

								Mode:=wdSummaryModeHighlight

				.UpdateSummaryProperties

End	With



UseDefaultFolderSuffix	Method
							

Sets	the	folder	suffix	for	the	specified	document	to	the	default	suffix	for	the
language	support	you	have	selected	or	installed.

expression.UseDefaultFolderSuffix

expression			Required.	An	expression	that	returns	a	WebOptions	object.



Remarks

Microsoft	Word	uses	the	folder	suffix	when	you	save	a	document	as	a	Web	page,
use	long	file	names,	and	choose	to	save	supporting	files	in	a	separate	folder	(that
is,	if	the	UseLongFileNames	and	OrganizeInFolder	properties	are	set	to	True).

The	suffix	appears	in	the	folder	name	after	the	document	name.	For	example,	if
the	document	is	called	"Doc1"	and	the	language	is	English,	the	folder	name	is
Doc1_files.	The	available	folder	suffixes	are	listed	in	the	FolderSuffix	property
topic.



Example

This	example	sets	the	folder	suffix	for	the	active	document	to	the	default	suffix.

ActiveDocument.WebOptions.UseDefaultFolderSuffix



UserPicture	Method
							

Fills	the	specified	shape	with	one	large	image.	If	you	want	to	fill	the	shape	with
small	tiles	of	an	image,	use	the	UserTextured	method.

expression.UserPicture(PictureFile)

expression			Required.	An	expression	that	returns	a	FillFormat	object.

PictureFile			Required	String.	The	name	of	the	picture	file.



Example

This	example	adds	two	rectangles	to	the	active	document.	The	rectangle	on	the
left	is	filled	with	one	large	image	of	the	picture	in	Tiles.bmp;	the	rectangle	on	the
right	is	filled	with	many	small	tiles	of	the	picture	in	Tiles.bmp.

Sub	Pic()

				'		Windows	NT	and	Windows2000	users	need	to

				'		specify	a	different	explicit	path	to	a	bitmap

				'		file	in	the	methods	below.

				With	ActiveDocument.Shapes

								.AddShape(msoShapeRectangle,	0,	0,	200,	100).Fill	_

												.UserPicture	"C:\Windows\Tiles.bmp"

								.AddShape(msoShapeRectangle,	300,	0,	200,	100).Fill	_

												.UserTextured	"C:\Windows\Tiles.bmp"

				End	With

End	Sub



UserTextured	Method
							

Fills	the	specified	shape	with	small	tiles	of	an	image.	If	you	want	to	fill	the
shape	with	one	large	image,	use	the	UserPicture	method.

expression.UserTextured(TextureFile)

expression			Required.	An	expression	that	returns	a	FillFormat	object.

TextureFile			Required	String.	The	name	of	the	picture	file.



Example

This	example	adds	two	rectangles	to	the	active	document.	The	rectangle	on	the
left	is	filled	with	one	large	image	of	the	picture	in	Tiles.bmp;	the	rectangle	on	the
right	is	filled	with	many	small	tiles	of	the	picture	in	Tiles.bmp

Sub	Texture()

				'		Windows	NT	and	Windows2000	users	need	to

				'		specify	a	different	explicit	path	to	a	bitmap

				'		file	in	the	methods	below.

				With	ActiveDocument.Shapes

								.AddShape(msoShapeRectangle,	0,	0,	200,	100).Fill	_

												.UserPicture	"C:\Windows\Tiles.bmp"

								.AddShape(msoShapeRectangle,	300,	0,	200,	100).Fill	_

												.UserTextured	"C:\Windows\Tiles.bmp"

				End	With

End	Sub



ValidLinkTarget	Method
							

Determines	whether	the	text	frame	of	one	shape	can	be	linked	to	the	text	frame
of	another	shape.	Returns	True	if	TargetTextFrame	is	a	valid	target.	Returns
False	if	TargetTextFrame	already	contains	text	or	is	already	linked,	or	if	the
shape	doesn't	support	attached	text.

expression.ValidLinkTarget(TargetTextFrame)

expression			Required.	An	expression	that	returns	a	TextFrame	object.

TargetTextFrame			Required	TextFrame	object.	The	target	text	frame	that	you'd
like	to	link	the	text	frame	returned	by	expression	to.



Example

This	example	checks	to	see	whether	the	text	frames	for	the	first	and	second
shapes	in	the	active	document	can	be	linked	to	one	another.	If	so,	the	example
links	the	two	text	frames.

Dim	textFrame1	As	TextFrame

Dim	textFrame2	As	TextFrame

Set	textFrame1	=	ActiveDocument.Shapes(1).TextFrame

Set	textFrame2	=	ActiveDocument.Shapes(2).TextFrame

If	textFrame1.ValidLinkTarget(textFrame2)	=	True	Then

				textFrame1.Next	=	textFrame2

End	If



ViewCode	Method
							

Displays	the	code	window	for	the	selected	ActiveX	control	in	the	specified
document.

Note			This	method	is	available	only	from	outside	of	Word.

expression.ViewCode

expression			Required.	An	expression	that	returns	a	Document	object.



ViewPropertyBrowser	Method
							

Displays	the	property	window	for	the	selected	ActiveX	control	in	the	specified
document.

Note			This	method	is	available	only	from	outside	of	Word.

expression.ViewPropertyBrowser

expression			Required.	An	expression	that	returns	a	Document	object.



WebPagePreview	Method
							

Displays	a	preview	of	the	current	document	as	it	would	look	if	saved	as	a	Web
page.

expression.WebPagePreview

expression			Required.	An	expression	that	returns	a	Document	object.



Example

This	example	displays	the	current	document	as	it	would	appear	if	saved	as	a	Web
page.

ActiveDocument.WebPagePreview



Show	All



WholeStory	Method
							

Expands	a	range	or	selection	to	include	the	entire	story.

expression.WholeStory

expression			Required.	An	expression	that	returns	a	Range	or	Selection	object.



Remarks

The	following	instructions,	where	myRange	is	a	valid	Range	object,	are
functionally	equivalent:

myRange.WholeStory

myRange.Expand	Unit:=wdStory



Example

This	example	expands	myRange	to	include	the	entire	story	and	then	applies	the
Arial	font	to	the	range.

Set	myRange	=	Selection.Range

myRange.WholeStory

myRange.Font.Name	=	"Arial"

This	example	expands	myRange	to	include	the	entire	comments	story
(wdCommentsStory)	and	then	copies	the	comments	into	a	new	document.

If	ActiveDocument.Comments.Count	>=	1	Then

				Set	myRange	=	Activedocument.Comments(1).Range

				myRange.WholeStory

				myRange.Copy

				Documents.Add.Content.Paste

End	If



Show	All



ZOrder	Method
							

Moves	the	specified	shape	in	front	of	or	behind	other	shapes	in	the	collection
(that	is,	changes	the	shape's	position	in	the	z-order).

expression.ZOrder(ZOrderCmd)

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

ZOrderCmd		Required	MsoZOrderCmd.	Specifies	where	to	move	the	specified
shape	relative	to	the	other	shapes.

MsoZOrderCmd	can	be	one	of	these	MsoZOrderCmd	constants.
msoBringForward
msoBringInFrontOfText
msoBringToFront
msoSendBackward
msoSendBehindText
msoSendToBack



Remarks

Use	the	ZOrderPosition	property	to	determine	a	shape's	current	position	in	the
z-order.



Example

This	example	adds	an	oval	to	the	active	document	and	then	places	the	oval	as
second	from	the	back	in	the	z-order	if	there	is	at	least	one	other	shape	on	the
document.

With	ActiveDocument.Shapes.AddShape(Type:=msoShapeOval,	Left:=100,	_

				Top:=100,	Width:=100,	Height:=300)

				While	.ZOrderPosition	>	2

								.ZOrder	msoSendBackward

				Wend

End	With



Accent	Property
							

True	if	a	vertical	accent	bar	separates	the	callout	text	from	the	callout	line.
Read/write	MsoTriState.

MsoTriState	can	be	one	of	these	MsoTriState	constants.
msoCTrue
msoFalse
msoTriStateMixed
msoTriStateToggle
msoTrue



Example

This	example	adds	an	oval	to	the	active	document	and	a	callout	that	points	to	the
oval.	The	callout	text	won't	have	a	border,	but	it	will	have	a	vertical	accent	bar
that	separates	the	text	from	the	callout	line.

Dim	shapeCallout	As	Shape

With	ActiveDocument.Shapes

				.AddShape	msoShapeOval,	180,	200,	280,	130

				Set	shapeCallout	=	.AddCallout(msoCalloutTwo,	420,	170,	170,	40)

				

				With	shapeCallout

								.TextFrame.TextRange.Text	=	"My	oval"

								.Callout.Accent	=	msoTrue

								.Callout.Border	=	msoFalse

				End	With

End	With



AccentedLetters	Property
							

True	if	the	specified	index	contains	separate	headings	for	accented	letters	(for
example,	words	that	begin	with	"À"	are	under	one	heading	and	words	that	begin
with	"A"	are	under	another).	Read/write	Boolean.



Example

This	example	formats	the	first	index	in	the	active	document	in	a	single	column,
with	the	appropriate	letter	preceding	each	alphabetic	group	and	separate
headings	for	accented	letters.

If	ActiveDocument.Indexes.Count	>=	1	Then

				With	ActiveDocument.Indexes(1)

								.HeadingSeparator	=	wdHeadingSeparatorLetter

								.NumberOfColumns	=	1

								.AccentedLetters	=	True

				End	With

End	If



Show	All



Active	Property
							

Active	property	as	it	applies	to	the	LineNumbering	object.

True	if	line	numbering	is	active	for	the	specified	document,	section,	or	sections.
Read/write	Long.

expression.Active

expression			Required.	An	expression	that	returns	a	LineNumbering	object.

Active	property	as	it	applies	to	the	Selection	object.

True	if	the	selection	in	the	specified	window	or	pane	is	active.	Read-only
Boolean.

expression.Active

expression			Required.	An	expression	that	returns	a	Selection	object.

Active	property	as	it	applies	to	the	Window	object.

True	if	the	specified	window	is	active.	Read-only	Boolean.

expression.Active

expression			Required.	An	expression	that	returns	a	Window	object.



Example

As	it	applies	to	the	LineNumbering	object.

This	example	activates	line	numbering	for	the	first	section	in	the	selection.

Sub	CountByFive()

				With	Selection.Sections(1).PageSetup.LineNumbering

								.Active	=	True

								.CountBy	=	5

								.StartingNumber	=	1

				End	With

End	Sub

As	it	applies	to	the	Selection	object.

This	example	splits	the	active	window	into	two	panes	and	activates	the	selection
in	the	first	pane,	if	it	isn't	already	active.

Sub	SplitWindow()

				ActiveDocument.ActiveWindow.Split	=	True

				If	ActiveDocument.ActiveWindow.Panes(1).Selection	_

												.Active	=	False	Then

								ActiveDocument.ActiveWindow.Panes(1).Activate

				End	If

End	Sub

As	it	applies	to	the	Window	object.

This	example	activates	the	first	window	in	the	Windows	collection,	if	the
window	isn't	currently	active.

Sub	ActiveWin()

				If	Windows(1).Active	=	False	Then	Windows(1).Activate

End	Sub





ActiveCustomDictionary	Property
							

Returns	or	sets	a	Dictionary	object	that	represents	the	custom	dictionary	to
which	words	will	be	added.	Read/write.



Example

This	example	displays	the	full	path	and	file	name	of	the	active	custom
dictionary.

Set	dicCustom	=	Application.CustomDictionaries.ActiveCustomDictionary

MsgBox	dicCustom.Path	&	Application.PathSeparator	&	dicCustom.Name

This	example	clears	all	existing	custom	dictionaries,	adds	a	custom	dictionary
named	"Home.dic,"	and	then	loads	the	new	dictionary.

Dim	dicCustom	As	Dictionary

Application.CustomDictionaries.ClearAll

Set	dicCustom	=	Application.CustomDictionaries	_

				.Add(FileName:="C:\Program	Files"	_

				&	"\Microsoft	Office\Office\Home.dic")

Application.CustomDictionaries.ActiveCustomDictionary	=	dicCustom



ActiveDocument	Property
							

Returns	a	Document	object	that	represents	the	active	document	(the	document
with	the	focus).	If	there	are	no	documents	open,	an	error	occurs.	Read-only.



Example

This	example	displays	the	name	of	the	active	document,	or	if	there	are	no
documents	open,	it	displays	a	message.

If	Application.Documents.Count	>=	1	Then

				MsgBox	ActiveDocument.Name

Else

				MsgBox	"No	documents	are	open"

End	If

This	example	collapses	the	selection	to	an	insertion	point	and	then	creates	a
range	for	the	next	five	characters	in	the	selection.

Dim	rngTemp	As	Range

Selection.Collapse	Direction:=wdCollapseStart

Set	rngTemp	=	ActiveDocument.Range(Start:=Selection.Start,	_

				End:=Selection.Start	+	5)

This	example	inserts	texts	at	the	beginning	of	the	active	document	and	then
prints	the	document.

Dim	rngTemp	As	Range

Set	rngTemp	=	ActiveDocument.Range(Start:=0,	End:=0)

With	rngTemp

				.InsertBefore	"Company	Report"

				.Font.Name	=	"Arial"

				.Font.Size	=	24

				.InsertParagraphAfter

End	With

ActiveDocument.PrintOut



ActiveGrammarDictionary	Property
							

Returns	a	Dictionary	object	that	represents	the	active	grammar	dictionary	for
the	specified	language.	Read-only.



Remarks

If	there's	no	grammar	dictionary	installed	for	the	specified	language,	this
property	returns	Nothing.



Example

This	example	displays	the	full	path	and	file	name	of	the	active	grammar
dictionary.

Dim	lngLanguage	As	Long

Dim	dicGrammar	As	Dictionary

lngLanguage	=	Selection.LanguageID

Set	dicGrammar	=	Languages(lngLanguage).ActiveGrammarDictionary

MsgBox	dicGrammar.Path	&	Application.PathSeparator	&	dicGrammar.Name



ActiveHyphenationDictionary
Property
							

Returns	a	Dictionary	object	that	represents	the	active	hyphenation	dictionary	for
the	specified	language.	Read-only.



Remarks

If	there's	no	hyphenation	dictionary	installed	for	the	specified	language,	this
property	returns	Nothing.



Example

This	example	displays	the	full	path	and	file	name	of	the	active	hyphenation
dictionary.

Dim	lngLanguage	As	Long

Dim	dicHyphen	As	Dictionary

lngLanguage	=	Selection.LanguageID

Set	dicHyphen	=	Languages(lngLanguage).ActiveHyphenationDictionary

If	dicHyphen	Is	Nothing	Then

				MsgBox	"No	hyphenation	dictionary	installed!"

Else

				MsgBox	dicHyphen.Path	&	Application.PathSeparator	&	dicHyphen.Name

End	If



ActivePane	Property
							

Returns	a	Pane	object	that	represents	the	active	pane	for	the	specified	window.
Read-only.



Example

This	example	splits	the	active	window	and	then	activates	the	next	pane	after	the
active	pane.

With	ActiveDocument.ActiveWindow

				.Split	=	True

				.ActivePane.Next.Activate

				MsgBox	"Pane	"	&	.ActivePane.Index	&	"	is	active"

End	With

This	example	activates	the	first	window	and	displays	tabs	in	the	active	pane.

With	Application.Windows(1)

				.Activate

				.ActivePane.View.ShowTabs	=	True

End	With



ActivePrinter	Property
							

Returns	or	sets	the	name	of	the	active	printer.	Read/write	String.



Example

This	example	displays	the	name	of	the	active	printer.

MsgBox	"The	name	of	the	active	printer	is	"	&	ActivePrinter

This	example	makes	a	network	HP	LaserJet	IIISi	printer	the	active	printer.

Application.ActivePrinter	=	"HP	LaserJet	IIISi	on	\\printers\laser"

This	example	makes	a	local	HP	LaserJet	4	printer	on	LPT1	the	active	printer.

Application.ActivePrinter	=	"HP	LaserJet	4	local	on	LPT1:"



ActiveRecord	Property
							

Returns	or	sets	the	active	mail	merge	data	record.	Can	be	either	a	valid	data
record	number	in	the	query	result	or	one	of	the	following	read/write
WdMailMergeActiveRecord	constants.

WdMailMergeActiveRecord	can	be	one	of	these	WdMailMergeActiveRecord
constants.
wdLastRecord
wdNoActiveRecord
wdFirstRecord
wdNextRecord
wdPreviousRecord
	

Note			The	active	data	record	number	is	the	position	of	the	record	in	the	query
result	produced	by	the	current	query	options;	as	such,	this	number	isn't
necessarily	the	position	of	the	record	in	the	data	source.



Example

This	example	hides	the	mail	merge	field	codes	in	the	active	document	so	that	the
merge	data	is	visible	in	the	main	document.	The	active	record	is	then	advanced
to	the	next	record	in	the	data	source.

If	ActiveDocument.MailMerge.MainDocumentType	<>	_

								wdNotAMergeDocument	Then	

				With	ActiveDocument.MailMerge

								.ViewMailMergeFieldCodes	=	False

								.DataSource.ActiveRecord	=	wdNextRecord

				End	With

End	If

This	example	returns	the	numerical	position	of	the	active	data	record	from
Main2.doc.

Dim	intRecordNumber	as	Integer

If	Documents("Main2.doc").MailMerge.State	=	_

								wdMainAndDataSource	Or	_

								wdMainAndSourceAndHeader	Then

				intRecordNumber	=	Documents("Main2.doc").MailMerge	_

								.DataSource.ActiveRecord

End	If



ActiveSpellingDictionary	Property
							

Returns	a	Dictionary	object	that	represents	the	active	spelling	dictionary	for	the
specified	language.

expression.ActiveSpellingDictionary

expression			Required.	An	expression	that	returns	a	Language	object.



Remarks

If	there's	no	spelling	dictionary	installed	for	the	specified	language,	this	property
returns	Nothing.



Example

This	example	returns	the	full	path	and	file	name	of	the	active	spelling	dictionary.

Dim	lngLanguage	As	Long

Dim	dicSpelling	As	Dictionary

lngLanguage	=	Selection.LanguageID

Set	dicSpelling	=	Languages(lngLanguage).ActiveSpellingDictionary

If	dicSpelling	Is	Nothing	Then

				MsgBox	"No	spelling	dictionary	installed!"

Else

				MsgBox	dicSpelling.Path	&	Application.PathSeparator	_

								&	dicSpelling.Name

End	If



Show	All



ActiveTheme	Property
							

Returns	the	name	of	the	active	theme	plus	the	theme	formatting	options	for	the
specified	document.	Returns	"none"	if	the	document	doesn't	have	an	active
theme.	Read-only	String.



Remarks

For	an	explanation	of	the	value	returned	by	this	property,	see	the	Name
argument	of	the	ApplyTheme	method.	The	value	returned	by	this	property	may
not	correspond	to	the	theme's	display	name.	To	return	a	theme's	display	name,
use	the	ActiveThemeDisplayName	property.



Example

This	example	applies	a	theme	and		then	displays	the	name	of	the	active	theme
plus	the	theme	formatting	options	for	the	current	document.

Sub	CheckTheme()	

				ActiveDocument.ApplyTheme	"artsy	100"

				MsgBox	ActiveDocument.ActiveTheme	

End	Sub



Show	All



ActiveThemeDisplayName	Property
							

Returns	the	display	name	of	the	active	theme	for	the	specified	document.
Returns	"none"	if	the	document	doesn't	have	an	active	theme.	Read-only	String.



Remarks

A	theme's	display	name	is	the	name	that	appears	in	the	Theme	dialog	box.	This
name	may	not	correspond	to	the	string	you	would	use	to	set	a	default	theme	or	to
apply	a	theme	to	a	document.



Example

This	example	returns	the	display	name	of	the	active	theme	for	the	current
document.

Sub	DisplayThemeName()

				ActiveDocument.ApplyTheme	"artsy	100"

				MsgBox	ActiveDocument.ActiveThemeDisplayName

End	Sub



ActiveThesaurusDictionary	Property
							

Returns	a	Dictionary	object	that	represents	the	active	thesaurus	dictionary	for
the	specified	language.

expression.ActiveThesaurusDictionary

expression			Required.	An	expression	that	returns	a	Language	object.



Remarks

If	there's	no	thesaurus	dictionary	installed	for	the	specified	language,	this
property	returns	Nothing.



Example

This	example	returns	the	full	path	and	file	name	of	the	active	thesaurus
dictionary.

Dim	lngLanguage	As	Long

Dim	dicThesaurus	As	Dictionary

lngLanguage	=	Selection.LanguageID

Set	dicThesaurus	=	Languages(lngLanguage).ActiveThesaurusDictionary

If	dicThesaurus	Is	Nothing	Then

				MsgBox	"No	thesaurus	dictionary	installed!"

Else

				MsgBox	dicThesaurus.Path	&	Application.PathSeparator	_

								&	dicThesaurus.Name

End	If



ActiveWindow	Property
							

Returns	a	Window	object	that	represents	the	active	window	(the	window	with
the	focus).	If	there	are	no	windows	open,	an	error	occurs.	Read-only.



Example

This	example	displays	the	caption	text	for	the	active	window.

Sub	WindowCaption()

				MsgBox	ActiveDocument.ActiveWindow.Caption

End	Sub

This	example	opens	a	new	window	for	the	active	window	of	the	active	document
and	then	tiles	all	the	windows.

Sub	WindowTiled()

				Dim	wndTileWindow	As	Window

				

				Set	wndTileWindow	=	ActiveDocument.ActiveWindow.NewWindow

				Windows.Arrange	ArrangeStyle:=wdTiled

End	Sub

This	example	splits	the	first	document	window.

Sub	WindowSplit()

				Documents(1).ActiveWindow.Split	=	True

End	Sub



Show	All



ActiveWritingStyle	Property
							

Returns	or	sets	the	writing	style	for	a	specified	language	in	the	specified
document.	Read/write	String.

Note			The	WritingStyleList	property	returns	an	array	of	the	names	of	the
available	writing	styles.

expression.ActiveWritingStyle(LanguageID)

expression			Required.	An	expression	that	returns	a	Document	object.

LanguageID			Required	Variant.	The	language	to	set	the	writing	style	for	in	the
specified	document.	Can	be	either	a	string	or	one	of	the	following
WdLanguageID	constants.

WdLanguageID	can	be	one	of	these	WdLanguageID	constants.
wdAfrikaans
wdAlbanian
wdArabic
wdArabicAlgeria
wdArabicBahrain
wdArabicEgypt
wdArabicIraq
wdArabicJordan
wdArabicKuwait
wdArabicLebanon
wdArabicLibya
wdArabicMorocco
wdArabicOman
wdArabicQatar
wdArabicSyria



wdArabicTunisia
wdArabicUAE
wdArabicYemen
wdArmenian
wdAssamese
wdAzeriCyrillic
wdAzeriLatin
wdBasque
wdBelgianDutch
wdBelgianFrench
wdBengali
wdBosniaHerzegovina
wdBrazilianPortuguese
wdBulgarian
wdBurmese
wdByelorussian
wdCatalan
wdChineseHongKong
wdChineseMacao
wdChineseSingapore
wdCroatian
wdCzech
wdDanish
wdDutch
wdEnglishAUS
wdEnglishBelize
wdEnglishCanadian
wdEnglishCaribbean
wdEnglishIreland
wdEnglishJamaica
wdEnglishNewZealand
wdEnglishPhilippines
wdEnglishSouthAfrica



wdEnglishTrinidad
wdEnglishUK
wdEnglishUS
wdEnglishZimbabwe
wdEstonian
wdFaeroese
wdFarsi
wdFinnish
wdFrench
wdFrenchCameroon
wdFrenchCanadian
wdFrenchCotedIvoire
wdFrenchLuxembourg
wdFrenchMali
wdFrenchMonaco
wdFrenchReunion
wdFrenchSenegal
wdFrenchWestIndies
wdFrenchZaire
wdFrisianNetherlands
wdGaelicIreland
wdGaelicScotland
wdGalician
wdGeorgian
wdGerman
wdGermanAustria
wdGermanLiechtenstein
wdGermanLuxembourg
wdGreek
wdGujarati
wdHebrew
wdHindi
wdHungarian



wdIcelandic
wdIndonesian
wdItalian
wdJapanese
wdKannada
wdKashmiri
wdKazakh
wdKhmer
wdKirghiz
wdKonkani
wdKorean
wdLanguageNone
wdLao
wdLatvian
wdLithuanian
wdLithuanianClassic
wdMacedonian
wdMalayalam
wdMalayBruneiDarussalam
wdMalaysian
wdMaltese
wdManipuri
wdMarathi
wdMexicanSpanish
wdMongolian
wdNepali
wdNoProofing
wdNorwegianBokmol
wdNorwegianNynorsk
wdOriya
wdPolish
wdPortuguese
wdPunjabi



wdRhaetoRomanic
wdRomanian
wdRomanianMoldova
wdRussian
wdRussianMoldova
wdSamiLappish
wdSanskrit
wdSerbianCyrillic
wdSerbianLatin
wdSesotho
wdSimplifiedChinese
wdSindhi
wdSlovak
wdSlovenian
wdSorbian
wdSpanish
wdSpanishArgentina
wdSpanishBolivia
wdSpanishChile
wdSpanishColombia
wdSpanishCostaRica
wdSpanishDominicanRepublic
wdSpanishEcuador
wdSpanishElSalvador
wdSpanishGuatemala
wdSpanishHonduras
wdSpanishModernSort
wdSpanishNicaragua
wdSpanishPanama
wdSpanishParaguay
wdSpanishPeru
wdSpanishPuertoRico
wdSpanishUruguay



wdSpanishVenezuela
wdSutu
wdSwahili
wdSwedish
wdSwedishFinland
wdSwissFrench
wdSwissGerman
wdSwissItalian
wdTajik
wdTamil
wdTatar
wdTelugu
wdThai
wdTibetan
wdTraditionalChinese
wdTsonga
wdTswana
wdTurkish
wdTurkmen
wdUkrainian
wdUrdu
wdUzbekCyrillic
wdUzbekLatin
wdVenda
wdVietnamese
wdWelsh
wdXhosa
wdZulu



Remarks

Some	of	the	constants	listed	above	may	not	be	available	to	you,	depending	on
the	language	support	(U.S.	English,	for	example)	that	you’ve	selected	or
installed.



Example

This	example	sets	the	writing	style	used	for	French,	German,	and	U.S.	English
for	the	active	document.	You	must	have	the	grammar	files	installed	for	French,
German,	and	U.S.	English	to	run	this	example.

With	ActiveDocument

				.ActiveWritingStyle(wdFrench)	=	"Commercial"

				.ActiveWritingStyle(wdGerman)	=	"Technisch/Wiss"

				.ActiveWritingStyle(wdEnglishUS)	=	"Technical"

End	With

This	example	returns	the	writing	style	for	the	language	of	the	selection.

Sub	WhichLanguage()

				Dim	varLang	As	Variant

				varLang	=	Selection.LanguageID

				MsgBox	ActiveDocument.ActiveWritingStyle(varLang)

End	Sub



AddBiDirectionalMarksWhenSavingTextFile
Property
							

True	if	Microsoft	Word	adds	bidirectional	control	characters	when	saving	a
document	as	a	text	file.	Read/write	Boolean.

expression.AddBiDirectionalMarksWhenSavingTextFile

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.



Remarks

Saving	text	files	with	bidirectional	control	characters	preserves	right-to-left	and
left-to-right	properties	and	the	order	of	neutral	characters.

For	more	information	on	using	Word	with	right-to-left	languages,	see	Word
features	for	right-to-left	languages.

mk:@MSITStore:wdmain10.chm::/html/wdrefFeaturesAvailableInWordWhenBidirectionalLanguagesAreEnabled.htm


Example

This	example	sets	Word	to	add	bidirectional	control	characters	when	saving	a
document	as	a	text	file.

Options.AddBiDirectionalMarksWhenSavingTextFile	=	True



AddControlCharacters	Property
							

True	if	Microsoft	Word	adds	bidirectional	control	characters	when	cutting	and
copying	text.	Read/write	Boolean.

expression.AddControlCharacters

expression			Required.	An	expression	that	returns	an	Options	object.



Remarks

For	more	information	on	using	Word	with	right-to-left	languages,	see	Word
features	for	right-to-left	languages.

mk:@MSITStore:wdmain10.chm::/html/wdrefFeaturesAvailableInWordWhenBidirectionalLanguagesAreEnabled.htm


Example

This	example	sets	Word	to	add	bidirectional	control	characters	when	cutting	and
copying	text.

Options.AddControlCharacters	=	True



AddHebDoubleQuote	Property
							

True	if	Microsoft	Word	encloses	number	formats	in	double	quotation	marks	(").
Read/write	Boolean.

expression.AddHebDoubleQuote

expression			Required.	An	expression	that	returns	an	Options	object.



Remarks

For	more	information	on	using	Word	with	right-to-left	languages,	see	Word
features	for	right-to-left	languages.

mk:@MSITStore:wdmain10.chm::/html/wdrefFeaturesAvailableInWordWhenBidirectionalLanguagesAreEnabled.htm


Example

This	example	sets	Word	to	enclose	number	formats	in	double	quotation	marks
(").

Options.AddHebDoubleQuote	=	True



AddIns	Property
							

Returns	an	AddIns	collection	that	represents	all	available	add-ins,	regardless	of
whether	they're	currently	loaded.	The	AddIns	collection	includes	the	global
templates	and	Word	add-in	libraries	(WLLs)	listed	in	the	Templates	and	Add-
ins	dialog	box	(Tools	menu).	Read-only.

For	information	about	returning	a	single	member	of	a	collection,	see	Returning
an	Object	from	a	Collection.



Example

This	example	returns	the	total	number	of	add-ins.

Dim	intAddIns	as	Integer

intAddIns	=	AddIns.Count

This	example	displays	the	name	of	each	add-in	in	the	Addins	collection.

Dim	addinLoop	as	AddIn

For	Each	addinLoop	In	AddIns

				MsgBox	addinLoop.Name

Next	addinLoop



Show	All



Address	Property
							

Address	property	as	it	applies	to	the	Envelope	object.

Returns	the	envelope	delivery	address	as	a	Range	object.	Read-only.

expression.Address

expression			Required.	An	expression	that	returns	one	of	the	above	objects.

Note			An	error	occurs	if	you	use	this	property	when	there	hasn't	been	an
envelope	added	to	the	specified	document.

Address	property	as	it	applies	to	the	Hyperlink	object.

Returns	or	sets	the	address	(for	example,	a	file	name	or	URL)	of	the	specified
hyperlink.	Read/write	String.

expression.Address

expression			Required.	An	expression	that	returns	one	of	the	above	objects.



Example

As	it	applies	to	the	Envelope	object.

This	example	displays	the	delivery	address	if	an	envelope	has	been	added	to	the
document;	otherwise,	it	displays	a	message.

On	Error	GoTo	errhandler

addr	=	ActiveDocument.Envelope.Address.Text

MsgBox	Prompt:=addr,	Title:="Delivery	Address"

errhandler:

If	Err	=	5852	Then	MsgBox	"Insert	an	envelope	into	the	document"

As	it	applies	to	the	Hyperlink	object.

This	example	adds	a	hyperlink	to	the	selection	in	the	active	document,	sets	the
address,	and	then	displays	the	address	in	a	message	box.

Set	aHLink	=	ActiveDocument.Hyperlinks.Add(	_

				Anchor:=Selection.Range,	_

				Address:="http://forms")

MsgBox	"The	hyperlink	goes	to	"	&	aHLink.Address

If	the	active	document	includes	hyperlinks,	this	example	inserts	a	list	of	the
hyperlink	destinations	at	the	end	of	the	document.

Set	myRange	=	ActiveDocument	_

				.Range(Start:=ActiveDocument.Content.End	-	1)

Count	=	0

For	Each	aHyperlink	In	ActiveDocument.Hyperlinks

				Count	=	Count	+	1

				With	myRange

								.InsertAfter	"Hyperlink	#"	&	Count	&	vbTab

								.InsertAfter	aHyperlink.Address

								.InsertParagraphAfter

				End	With

Next	aHyperlink





AddressFromLeft	Property
							

Returns	or	sets	the	distance	(in	points)	between	the	left	edge	of	the	envelope	and
the	delivery	address.	Read/write	Single.

Note			If	you	use	this	property	before	an	envelope	has	been	added	to	the
document,	an	error	occurs.



Example

This	example	creates	a	new	document	and	adds	an	envelope	with	a	predefined
delivery	address	and	return	address.	The	example	then	sets	the	distance	between
the	left	edge	of	the	envelope	and	the	delivery	address	to	3.75	inches.

Dim	strAddress	As	String

Dim	strReturn	As	String

strAddress	=	"James	Allard"	&	vbCr	&	"123	Skye	St."	&	vbCr	_

				&	"Our	Town,	WA		98004"

strReturn	=	"Rich	Andrews"	&	vbCr	&	"123	Main"	&	vbCr	_

				&	"Other	Town,	WA		98004"

With	Documents.Add.Envelope

				.Insert	Address:=strAddress,	ReturnAddress:=strReturn

				.AddressFromLeft	=	InchesToPoints(3.75)

End	With

ActiveDocument.ActiveWindow.View.Type	=	wdPrintView



AddressFromTop	Property
							

Returns	or	sets	the	distance	(in	points)	between	the	top	edge	of	the	envelope	and
the	delivery	address.	Read/write	Single.

Note			If	you	use	this	property	before	an	envelope	has	been	added	to	the
document,	an	error	occurs.



Example

This	example	creates	a	new	document	and	adds	an	envelope	with	a	predefined
delivery	address	and	return	address.	The	example	then	sets	the	distance	between
the	top	edge	of	the	envelope	and	the	delivery	address	to	1.75	inches	and	sets	the
distance	between	the	left	edge	of	the	envelope	and	the	delivery	address	is	set	to
3.75	inches.

Dim	strAddress	As	String

Dim	strReturn	As	String

strAddress	=	"Michael	Bunney"	&	vbCr	&	"123	Skye	St."	&	vbCr	_

				&	"Our	Town,	WA		98040"

strReturn	=	"Kate	Dresen"	&	vbCr	&	"123	Main"	&	vbCr	_

				&	"Other	Town,	WA		98040"

With	Documents.Add.Envelope

				.Insert	Address:=strAddress,	ReturnAddress:=strReturn

				.AddressFromTop	=	InchesToPoints(1.75)

				.AddressFromLeft	=	InchesToPoints(3.75)

End	With

ActiveDocument.ActiveWindow.View.Type	=	wdPrintView



AddressStyle	Property
							

Returns	a	Style	object	that	represents	the	delivery	address	style	for	the	envelope.
Read-only

Note			If	an	envelope	is	added	to	the	document,	text	formatted	with	the	Envelope
Address	style	is	automatically	updated.



Example

This	example	modifies	the	font	formatting	associated	with	the	Envelope	Address
style.

With	ActiveDocument.Envelope.AddressStyle.Font

				.Bold	=	False

				.Name	=	"Times	New	Roman"

				.Size	=	16

End	With



AddSpaceBetweenFarEastAndAlpha
Property
							

True	if	Microsoft	Word	is	set	to	automatically	add	spaces	between	Japanese	and
Latin	text	for	the	specified	paragraphs.	This	property	returns	wdUndefined	if	it’s
set	to	True	for	only	some	of	the	specified	paragraphs.	Read/write	Long.



Example

This	example	sets	Microsoft	Word	to	automatically	add	spaces	between	Japanese
and	Latin	text	for	the	first	paragraph	in	the	active	document.

ActiveDocument.Paragraphs(1).AddSpaceBetweenFarEastAndAlpha	=	True



AddSpaceBetweenFarEastAndDigit
Property
							

True	if	Microsoft	Word	is	set	to	automatically	add	spaces	between	Japanese	text
and	numbers	for	the	specified	paragraphs.	This	property	returns	wdUndefined	if
it’s	set	to	True	for	only	some	of	the	specified	paragraphs.	Read/write	Long.



Example

This	example	sets	Microsoft	Word	to	automatically	add	spaces	between	Japanese
text	and	numbers	for	the	first	paragraph	in	the	active	document.

ActiveDocument.Paragraphs(1).AddSpaceBetweenFarEastAndDigit	=	True



Show	All



Adjustments	Property
							

Adjustments	property	as	it	applies	to	the	Shape	object.

Returns	an	Adjustments	object	that	contains	adjustment	values	for	all	the
adjustments	in	the	specified	Shape	object	that	represents	an	AutoShape	or
WordArt.	Read-only.

Adjustments	property	as	it	applies	to	the	ShapeRange	object.

Returns	an	Adjustments	object	that	contains	adjustment	values	for	all	the
adjustments	in	the	specified	ShapeRange	object	that	represents	an	AutoShape	or
WordArt.	Read-only.



Example

As	it	applies	to	the	Shape	object.

This	example	sets	to	0.25	the	value	of	adjustment	one	on	shape	three	on
myDocument.

Set	myDocument	=	ActiveDocument

myDocument.Shapes(3).Adjustments(1)	=	0.25



Show	All



Alignment	Property
							

Alignment	property	as	it	applies	to	the	HorizontalLineFormat	object.

Returns	or	sets	a	WdHorizontalLineAlignment	constant	that	represents	the
alignment	for	the	specified	horizontal	line.	Read/write.

WdHorizontalLineAlignment	can	be	one	of	these	WdHorizontalLineAlignment
constants.
wdHorizontalLineAlignCenter
wdHorizontalLineAlignRight
wdHorizontalLineAlignLeft

expression.Alignment

expression			Required.	An	expression	that	returns	a	HorizontalLineFormat
object.

Alignment	property	as	it	applies	to	the	ListLevel	object.

Returns	or	sets	a	WdListLevelAlignment	constant	that	represents	the	alignment
for	the	list	level	of	the	list	template.	Read/write.

WdListLevelAlignment	can	be	one	of	these	WdListLevelAlignment	constants.
wdListLevelAlignLeft
wdListLevelAlignCenter
wdListLevelAlignRight

expression.Alignment

expression			Required.	An	expression	that	returns	a	ListLevel	object.

Alignment	property	as	it	applies	to	the	PageNumber	object.



Returns	or	sets	a	WdPageNumberAlignment	constant	that	represents	the
alignment	for	the	page	number.	Read/write.

WdPageNumberAlignment	can	be	one	of	these	WdPageNumberAlignment
constants.
wdAlignPageNumberInside
wdAlignPageNumberOutside
wdAlignPageNumberCenter
wdAlignPageNumberLeft
wdAlignPageNumberRight

expression.Alignment

expression			Required.	An	expression	that	returns	a	PageNumber	object.

Alignment	property	as	it	applies	to	the	Paragraph,	ParagraphFormat,	and
Paragraphs	objects.

Returns	or	sets	a	WdParagraphAlignment	constant	that	represents	the
alignment	for	the	specified	paragraphs.	Read/write.

WdParagraphAlignment	can	be	one	of	these	WdParagraphAlignment	constants.
wdAlignParagraphCenter
wdAlignParagraphDistribute
wdAlignParagraphJustify
wdAlignParagraphJustifyHi
wdAlignParagraphJustifyLow
wdAlignParagraphJustifyMed
wdAlignParagraphLeft
wdAlignParagraphRight
wdAlignParagraphThaiJustify

expression.Alignment

expression			Required.	An	expression	that	returns	a	Paragraph,
ParagraphFormat,	or	Paragraphs	object.



Remarks

Some	of	the	constants	listed	above	may	not	be	available	to	you,	depending	on
the	language	support	(U.S.	English,	for	example)	that	you’ve	selected	or
installed.

Alignment	property	as	it	applies	to	the	Row,	Rows,	and	TableStyle	objects.

Returns	or	sets	a	WdRowAlignment	constant	that	represents	the	alignment	for
the	specified	rows.	Read/write.

WdRowAlignment	can	be	one	of	these	WdRowAlignment	constants.
wdAlignRowLeft
wdAlignRowCenter
wdAlignRowRight

expression.Alignment

expression			Required.	An	expression	that	returns	a	Row,	Rows,	or	TableStyle
object.

Alignment	property	as	it	applies	to	the	TabStop	object.

Returns	or	sets	a	WdTabAlignment	constant	that	represents	the	alignment	for
the	specified	tab	stop.	Read/write.

WdTabAlignment	can	be	one	of	these	WdTabAlignment	constants.
wdAlignTabBar
wdAlignTabCenter
wdAlignTabDecimal
wdAlignTabLeft
wdAlignTabList
wdAlignTabRight

expression.Alignment



expression			Required.	An	expression	that	returns	a	TabStop	object.

Alignment	property	as	it	applies	to	the	TextEffectFormat	object.

Returns	or	sets	an	MsoTextEffectAlignment	constant	that	represents	the
alignment	for	the	specified	text	effect.	Read/write.

MsoTextEffectAlignment	can	be	one	of	these	MsoTextEffectAlignment
constants.
msoTextEffectAlignmentCentered
msoTextEffectAlignmentLeft
msoTextEffectAlignmentLetterJustify
msoTextEffectAlignmentMixed
msoTextEffectAlignmentRight
msoTextEffectAlignmentStretchJustify
msoTextEffectAlignmentWordJustify

expression.Alignment

expression			Required.	An	expression	that	returns	a	TextEffectFormat	object.



Example

As	it	applies	to	the	Paragraph	object.

This	example	right-aligns	the	first	paragraph	in	the	active	document.

Sub	AlignParagraph()

				ActiveDocument.Paragraphs(1).Alignment	=	_

								wdAlignParagraphRight

End	Sub

As	it	applies	to	the	Rows	object.

This	example	centers	all	the	rows	in	the	first	table	of	the	active	document.

Sub	CenterRows()

				ActiveDocument.Tables(1).Rows	_

								.Alignment	=	wdAlignRowCenter

End	Sub

As	it	applies	to	the	TabStop	object.

This	example	centers	the	first	tab	stop	in	the	first	paragraph	of	the	active
document.

Sub	CenterTabStop()

				ActiveDocument.Paragraphs(1).TabStops(1)	_

								.Alignment	=	wdAlignTabCenter

End	Sub



AllCaps	Property
							

True	if	the	font	is	formatted	as	all	capital	letters.	Returns	True,	False,	or
wdUndefined	(a	mixture	of	True	and	False).	Can	be	set	to	True,	False,	or
wdToggle	(reverses	the	current	setting).	Read/write	Long.



Remarks

Setting	AllCaps	to	True	sets	SmallCaps	to	False,	and	vice	versa.



Example

This	example	checks	the	third	paragraph	in	the	active	document	for	text
formatted	as	all	capital	letters.

If	ActiveDocument.Paragraphs(3).Range.Font.AllCaps	=	True	Then

				MsgBox	"Text	is	all	caps."

Else

				MsgBox	"Text	is	not	all	caps."

End	if

This	example	formats	the	selected	text	as	all	capital	letters.

If	Selection.Type	=	wdSelectionNormal	Then

				Selection.Font.AllCaps	=	True

Else

				MsgBox	"You	need	to	select	some	text."

End	If



AllowAccentedUppercase	Property
							

True	if	accents	are	retained	when	a	French	language	character	is	changed	to
uppercase.	Read/write	Boolean.



Remarks

This	property	affects	only	text	that's	been	marked	as	standard	French.	For	all
other	languages,	accents	are	always	retained	even	if	the
AllowAccentedUppercase	property	is	set	to	False.

If	you	change	a	character	back	to	lowercase	after	an	accent	mark	has	been
stripped	from	it,	the	accent	won't	reappear.



Example

This	example	sets	Word	to	remove	accent	marks	when	characters	in	French	text
are	changed	to	uppercase.

Options.AllowAccentedUppercase	=	False

This	example	returns	the	status	of	the	Allow	accented	uppercase	in	French
option	on	the	Edit	tab	in	the	Options	dialog	box.

Dim	blnUppercaseAccents	as	Boolean

blnUppercaseAccents	=	Options.AllowAccentedUppercase



AllowAutoFit	Property
							

Allows	Microsoft	Word	to	automatically	resize	cells	in	a	table	to	fit	their
contents.	Read/write	Boolean.

expression.AllowAutoFit

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.



Example

This	example	sets	the	first	table	in	the	active	document	to	automatically	resize
based	on	its	contents.

Sub	AllowFit()

				ActiveDocument.Tables(1).AllowAutoFit	=	True

End	Sub



AllowBreakAcrossPage	Property
							

Sets	or	returns	a	Long	indicating	whether	lines	in	the	rows	of	tables	formatted
with	a	specified	style	break	across	pages.	True	to	break	the	lines	in	table	rows
across	page	breaks.	False	to	keep	the	lines	in	a	row	of	a	table	all	on	the	same
page.	The	default	setting	is	True.	Read/write.

expression.AllowBreakAcrossPage

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.



Example

This	example	formats	rows	in	tables	formatted	with	the	"Table	Grid"	style	to	not
break	at	page	breaks.

Sub	DontSplitRows()

				ActiveDocument.Styles("Table	Grid")	_

								.Table.AllowBreakAcrossPage	=	False

End	Sub



AllowBreakAcrossPages	Property
							

True	if	the	text	in	a	table	row	or	rows	are	allowed	to	split	across	a	page	break.
Can	be	True,	False	or	wdUndefined	(only	some	of	the	specified	text	is	allowed
to	split).	Read/write	Long.

expression.AllowBreakAcrossPages

expression			Required.	An	expression	that	returns	a	TableStyle	object.



Example

This	example	creates	a	new	document	with	a	5x5	table	and	prevents	the	third
row	of	the	table	from	being	split	during	pagination.

Dim	docNew	As	Document

Dim	tableNew	As	Table

Set	docNew	=	Documents.Add

Set	tableNew	=	docNew.Tables.Add(Range:=Selection.Range,	_

				NumRows:=5,	NumColumns:=5)

tableNew.Rows(3).AllowBreakAcrossPages	=	False

This	example	determines	whether	the	rows	in	the	current	table	can	be	split
across	pages.	If	the	insertion	point	isn't	in	a	table,	a	message	box	is	displayed.

Dim	lngAllowBreak	as	Long

Selection.Collapse	Direction:=wdCollapseStart

If	Selection.Tables.Count	=	0	Then

				MsgBox	"The	insertion	point	is	not	in	a	table."

Else

				lngAllowBreak	=	Selection.Rows.AllowBreakAcrossPages

End	If



AllowClickAndTypeMouse	Property
							

True	if	Click	and	Type	functionality	is	enabled.	Read/write	Boolean.

expression.AllowClickAndTypeMouse

expression			Required.	An	expression	that	returns	an	Options	object.



Remarks

For	more	information	on	Click	and	Type,	see	About	Click	and	Type.

mk:@MSITStore:wdmain10.chm::/html/wdhowInsertTextGraphicsInBlankAreaOfDocument.htm


Example

This	example	checks	to	determine	whether	Click	and	Type	functionality	is
enabled.	If	it	isn't	enabled,	the	example	sets	this	functionality	based	on	the	user's
choice.

If	Options.AllowClickAndTypeMouse	=	False	Then

				x	=	MsgBox("Do	you	want	to	use	Click	and	Type?",	_

								vbYesNo)

				If	x	=	vbYes	Then

								Options.AllowClickAndTypeMouse	=	True

								MsgBox	"Click	and	Type	enabled!"

				End	If

End	If



AllowCombinedAuxiliaryForms
Property
							

True	if	Microsoft	Word	ignores	auxiliary	verb	forms	when	checking	spelling	in
a	Korean	language	document.	Read/write	Boolean.

expression.AllowCombinedAuxiliaryForms

expression			Required.	An	expression	that	returns	an	Options	object.



Remarks

For	more	information	on	using	Word	with	Asian	languages,	see	Word	features
for	Asian	languages.

mk:@MSITStore:wdmain10.chm::/html/wdrefFeaturesAvailableInWordWhenAsianLanguagesAreEnabled.htm


Example

This	example	asks	the	user	whether	Microsoft	Word	should	ignore	auxiliary	verb
forms	when	checking	spelling	in	a	Korean	language	document.

If	Options.AllowCombinedAuxiliaryForms	=	False	Then

				x	=	MsgBox("Do	you	want	to	ignore	auxiliary	"	_

								&	"verb	forms	when	checking	spelling?",	_

								vbYesNo)

				If	x	=	vbYes	Then

								Options.AllowCombinedAuxiliaryForms	=	True

								MsgBox	"Auxiliary	verb	forms	will	be	ignored!"

				End	If

End	If



AllowCompoundNounProcessing
Property
							

True	if	Microsoft	Word	ignores	compound	nouns	when	checking	spelling	in	a
Korean	language	document.	Read/write	Boolean.

expression.AllowCompoundNounProcessing

expression			Required.	An	expression	that	returns	an	Options	object.



Remarks

For	more	information	on	using	Word	with	Asian	languages,	see	Word	features
for	Asian	languages.

mk:@MSITStore:wdmain10.chm::/html/wdrefFeaturesAvailableInWordWhenAsianLanguagesAreEnabled.htm


Example

This	example	asks	the	user	whether	Microsoft	Word	should	ignore	compound
nouns	when	checking	spelling	in	a	Korean	language	document.

If	Options.AllowCompoundNounProcessing	=	False	Then

				x	=	MsgBox("Do	you	want	to	ignore	compound	"	_

								&	"nouns	when	checking	spelling?",	_

								vbYesNo)

				If	x	=	vbYes	Then

								Options.AllowCompoundNounProcessing	=	True

								MsgBox	"Compound	nouns	will	be	ignored!"

				End	If

End	If



AllowDragAndDrop	Property
							

True	if	dragging	and	dropping	can	be	used	to	move	or	copy	a	selection.
Read/write	Boolean.



Example

This	example	turns	on	the	drag-and-drop	editing	feature.

Options.AllowDragAndDrop	=	True

This	example	returns	the	status	the	Drag-and-Drop	text	editing	option	on	the
Edit	tab	in	the	Options	dialog	box.

Dim	blnDragAndDrop	as	Boolean

blnDragAndDrop	=	Options.AllowDragAndDrop



AllowFastSave	Property
							

True	if	Word	saves	only	changes	to	a	document.	When	reopening	the	document,
Word	uses	the	saved	changes	to	reconstruct	the	document.	Read/write	Boolean.



Remarks

The	AllowFastSave	and	CreateBackup	properties	cannot	be	set	to	True
concurrently.



Example

This	example	sets	Word	to	save	the	complete	document,	and	then	it	saves	the
active	document.

Options.AllowFastSave	=	False

ActiveDocument.Save

This	example	returns	the	current	status	of	the	Allow	fast	saves	option	on	the
Save	tab	in	the	Options	dialog	box.

Dim	blnFastSave	as	Boolean

blnFastSave	=	Options.AllowFastSave



AllowOverlap	Property
							

Rows	object:	Returns	or	sets	a	value	that	specifies	whether	the	specified	rows
can	overlap	other	rows.	Returns	wdUndefined	if	the	specified	rows	include	both
overlapping	rows	and	nonoverlapping	rows.	Can	be	set	to	either	True	or	False.
Read/write	Long.	Setting	AllowOverlap	to	True	also	sets	WrapAroundText	to
True,	and	setting	WrapAroundText	to	False	also	sets	AllowOverlap	to	False.

WrapFormat	object:	Returns	or	sets	a	value	that	specifies	whether	a	given
shape	can	overlap	other	shapes.	Can	be	set	to	either	True	or	False.	Read/write
Long.



Remarks

Because	HTML	doesn't	support	overlapping	tables	or	shapes,	AllowOverlap	is
ignored	in	Web	layout	view.



Example

This	example	specifies	that	text	wraps	around	the	selected	table	and	that	the
table	doesn’t	overlap	any	other	wrapped	tables.

Selection.Rows.WrapAroundText	=	True

Selection.Rows.AllowOverlap	=	False

This	example	specifies	that	the	first	shape	in	the	active	document	can	overlap
other	shapes.

ActiveDocument.Shapes(1).WrapFormat.AllowOverlap	=	True



AllowPageBreaks	Property
							

Allows	Microsoft	Word	to	break	the	specified	table	across	pages.	Read/write
Boolean.

expression.AllowPageBreaks

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.



Example

This	example	sets	the	second	table	in	the	active	document	to	break	across	pages.

Sub	BreakRow()

				ActiveDocument.Tables(2).AllowPageBreaks	=	True

End	Sub



AllowPixelUnits	Property
							

True	if	Microsoft	Word	uses	pixels	as	the	default	unit	of	measurement	for
HTML	features	that	support	measurements.	Read/write	Boolean.



Example

This	example	sets	Word	to	allow	pixels	as	the	default	unit	of	measurement	for
HTML	features.

Options.AllowPixelUnits	=	True



AllowPNG	Property
							

True	if	PNG	(Portable	Network	Graphics)	is	allowed	as	an	image	format	when
you	save	a	document	as	a	Web	page.	False	if	PNG	is	not	allowed	as	an	output
format.	The	default	value	is	False.	Read/write	Boolean.



Remarks

If	you	save	images	in	the	PNG	format	and	if	the	Web	browsers	you	are	targeting
support	the	PNG	format,	you	might	improve	the	image	quality	or	reduce	the	size
of	those	image	files,	and	therefore	decrease	the	download	time.



Example

This	example	enables	PNG	as	an	output	format	for	the	active	document.

ActiveDocument.WebOptions.AllowPNG	=	True

Alternatively,	PNG	can	be	enabled	as	the	global	default	for	the	application	for
newly	created	documents.

Application.DefaultWebOptions.AllowPNG	=	True



Show	All



AlternativeText	Property
							

Returns	or	sets	the	alternative	text	associated	with	a	shape	in	a	Web	page.
Read/write	String.



Example

The	following	example	sets	the	alternative	text	for	the	selected	shape	in	the
active	window.	The	selected	shape	is	a	picture	of	a	mallard	duck.

ActiveWindow.Selection.ShapeRange	_

				.AlternativeText	=	"This	is	a	mallard	duck."



AlwaysInFront	Property
							

True	if	page	borders	are	displayed	in	front	of	the	document	text.	Read/write
Boolean.



Example

This	example	adds	a	graphical	page	border	in	front	of	text	in	the	first	section	in
the	active	document.

Dim	borderLoop	as	Border

With	ActiveDocument.Sections(1)

				.Borders.AlwaysInFront	=	True

				For	Each	borderLoop	In	.Borders

								With	borderLoop

												.ArtStyle	=	wdArtPeople

												.ArtWidth	=	15

								End	With

				Next	borderLoop

End	With



AlwaysSaveInDefaultEncoding
Property
							

True	if	the	default	encoding	is	used	when	you	save	a	Web	page	or	plain	text
document,	independent	of	the	file's	original	encoding	when	opened.	False	if	the
original	encoding	of	the	file	is	used.	The	default	value	is	False.	Read/write
Boolean.



Remarks

The	Encoding	property	can	be	used	to	set	the	default	encoding.



Example

This	example	sets	the	encoding	to	the	default	encoding.	The	encoding	is	used
when	you	save	the	document	as	a	Web	page.

Application.DefaultWebOptions	_

				.AlwaysSaveInDefaultEncoding	=	True



Anchor	Property
							

Returns	a	Range	object	that	represents	the	anchoring	range	for	the	specified
shape	or	shape	range.	Read-only.



Remarks

All	Shape	objects	are	anchored	to	a	range	of	text	but	can	be	positioned
anywhere	on	the	page	that	contains	the	anchor.	If	you	specify	the	anchoring
range	when	you	create	a	shape,	the	anchor	is	positioned	at	the	beginning	of	the
first	paragraph	that	contains	the	anchoring	range.	If	you	don't	specify	the
anchoring	range,	the	anchoring	range	is	selected	automatically	and	the	shape	is
positioned	relative	to	the	top	and	left	edges	of	the	page.

The	shape	will	always	remain	on	the	same	page	as	its	anchor.	If	the
LockAnchor	property	for	the	shape	is	set	to	True,	you	cannot	drag	the	anchor
from	its	position	on	the	page.

If	you	use	this	property	on	a	ShapeRange	object	that	contains	more	than	one
shape,	an	error	occurs.



Example

This	example	selects	the	paragraph	that	the	first	shape	in	the	active	document	is
anchored	to.

ActiveDocument.Shapes(1).Anchor.Paragraphs(1).Range.Select



Angle	Property
							

Returns	or	sets	the	angle	of	the	callout	line.	If	the	callout	line	contains	more	than
one	line	segment,	this	property	returns	or	sets	the	angle	of	the	segment	that	is
farthest	from	the	callout	text	box.	Read/write	MsoCalloutAngleType.

MsoCalloutAngleType	can	be	one	of	these	MsoCalloutAngleType	constants.
msoCalloutAngle45
msoCalloutAngle90
msoCalloutAngleMixed
msoCalloutAngle30
msoCalloutAngle60
msoCalloutAngleAutomatic



Remarks

If	you	set	the	value	of	this	property	to	anything	other	than
msoCalloutAngleAutomatic,	the	callout	line	maintains	a	fixed	angle	as	you
drag	the	callout.



Example

This	example	sets	the	callout	angle	to	90	degrees	for	a	callout	named	"co1"	on
the	active	document.

ActiveDocument.Shapes("co1").Callout.Angle	=	msoCalloutAngle90



AnimateScreenMovements	Property
							

True	if	Word	animates	mouse	movements,	uses	animated	cursors,	and	animates
actions	such	as	background	saving	and	find	and	replace	operations.	Read/write
Boolean.



Example

This	example	sets	Word	to	animate	movements	on	the	screen.

Options.AnimateScreenMovements	=	True

This	example	returns	the	current	status	of	the	Provide	feedback	with	animation
option	on	the	General	tab	in	the	Options	dialog	box	(Tools	menu).

Dim	blnAnimation	as	Boolean	blnAnimation	=	Options.AnimateScreenMovements



Animation	Property
							

Returns	or	sets	the	type	of	animation	applied	to	the	font.	Read/write
WdAnimation.

WdAnimation	can	be	one	of	these	WdAnimation	constants.
wdAnimationBlinkingBackground
wdAnimationLasVegasLights
wdAnimationMarchingRedAnts
wdAnimationShimmer
wdAnimationMarchingBlackAnts
wdAnimationNone
wdAnimationSparkleText

expression.Animation

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.



Example

This	example	animates	the	text	in	a	new	document.

Dim	docNew	As	Document

Set	docNew	=	Documents.Add

With	docNew.Content

				.InsertAfter	"This	is	a	test	of	animation."

				.Font.Animation	=	wdAnimationLasVegasLights

End	With

This	example	animates	the	selected	text.

If	Selection.Type	=	wdSelectionNormal	Then

				Selection.Font.Animation	=	wdAnimationShimmer

Else

				MsgBox	"You	need	to	select	some	text."

End	If



AnswerWizard	Property
							

Returns	an	AnswerWizard	object	that	contains	the	files	used	by	the	online	Help
search	engine.

expression.AnswerWizard

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

mk:@MSITStore:vbaof10.chm::/html/ofobjAnswerWizard.htm


Example

This	example	resets	the	Answer	Wizard	file	list.

Sub	AnswerWizardReset()

				Application.AnswerWizard.ResetFileList

End	Sub



AntonymList	Property
							

Returns	a	list	of	antonyms	for	the	word	or	phrase.	The	list	is	returned	as	an	array
of	strings.	Read-only	Variant.

expression.AntonymList

expression			Required.	An	expression	that	returns	a	SynonymInfo		object.



Remarks

The	AntonymList	property	is	a	property	of	the	SynonymInfo	object,	which	can
be	returned	from	either	a	range	or	the	application.	If	this	object	is	returned	from
the	application,	you	specify	the	word	to	look	up	and	the	language	to	use.	When
the	object	is	returned	from	a	range,	the	range	is	looked	up	using	the	language	of
the	range.



Example

This	example	returns	a	list	of	antonyms	for	the	word	"big"	in	U.S.	English.

Dim	arrayAntonyms	As	Variant

Dim	intLoop	As	Integer

arrayAntonyms	=	SynonymInfo(Word:="big",	_

				LanguageID:=wdEnglishUS).AntonymList

For	intLoop	=	1	To	UBound(arrayAntonyms)

				MsgBox	arrayAntonyms(intLoop)

Next	intLoop

This	example	returns	a	list	of	antonyms	for	the	word	or	phrase	in	the	selection
and	displays	them	in	the	Immediate	window	in	the	Visual	Basic	Editor.

Dim	arrayAntonyms	As	Variant

Dim	intLoop	As	Integer

arrayAntonyms	=	Selection.Range.SynonymInfo.AntonymList

If	UBound(arrayAntonyms)	<>	0	Then

				For	intLoop	=	1	To	UBound(arrayAntonyms)

								Debug.Print	arrayAntonyms(intLoop)	&	Str(intLoop)

				Next	intLoop

Else

				MsgBox	"No	antonyms	were	found."

End	If

This	example	returns	a	list	of	antonyms,	if	there	are	any,	for	the	third	word	in	the
active	document.

Dim	rngTemp	As	Range

Dim	arrayAntonyms	As	Variant

Dim	intLoop	As	Integer

Set	rngTemp	=	ActiveDocument.Words(3)

arrayAntonyms	=	rngTemp.SynonymInfo.AntonymList

If	UBound(arrayAntonyms)	=	0	Then

				MsgBox	"There	are	no	antonyms	for	the	third	word."

Else

				For	intLoop	=	1	To	UBound(arrayAntonyms)

								MsgBox	arrayAntonyms(intLoop)



				Next	intLoop

End	If



Application	Property
							

Used	without	an	object	qualifier,	this	property	returns	an	Application	object	that
represents	the	Microsoft	Word	application.	Used	with	an	object	qualifier,	this
property	returns	an	Application	object	that	represents	the	creator	of	the
specified	object.	When	used	with	an	OLE	Automation	object,	it	returns	the
object's	application.

expression.Application

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.



Remarks

Visual	Basic's	CreateObject	and	GetObject	functions	give	you	access	to	an
OLE	Automation	object	from	a	Visual	Basic	for	Applications	project.



Example

This	example	displays	scroll	bars,	screen	tips,	and	the	status	bar	for	Microsoft
Word.

With	Application

				.DisplayScrollBars	=	True

				.DisplayScreenTips	=	True

				.DisplayStatusBar	=	True

End	With

This	example	displays	the	Microsoft	Excel	startup	path	if	Excel	is	running.

If	Tasks.Exists(Name:="Microsoft	Excel")	=	True	Then

				Set	myobject	=	GetObject("",	"Excel.Application")

				MsgBox	myobject.Application.StartupPath

				Set	myobject	=	Nothing

End	If



ApplyFarEastFontsToAscii	Property
							

True	if	Microsoft	Word	applies	East	Asian	fonts	to	Latin	text.	Read/write
Boolean.

expression.ApplyFarEastFontsToAscii

expression			Required.	An	expression	that	returns	an	Options	object.



Remarks

This	property	applies	only	when	you	have	selected	an	East	Asian	language	for
editing.	If	this	property	is	False	and	you	apply	an	East	Asian	font	to	a	specified
range,	Word	will	not	apply	the	font	to	any	Latin	text	in	the	range.

For	more	information	on	using	Word	with	Asian	languages,	see	Word	features
for	Asian	languages.

mk:@MSITStore:wdmain10.chm::/html/wdrefFeaturesAvailableInWordWhenAsianLanguagesAreEnabled.htm


Example

This	example	sets	Microsoft	Word	to	apply	East	Asian	fonts	to	Latin	text.

Options.ApplyFarEastFontsToAscii	=	True



ApplyStyleFirstColumn	Property
							

True	for	Microsoft	Word	to	apply	first-column	formatting	to	the	first	column	of
the	specified	table.	Read/write	Boolean.

expression.ApplyStyleFirstColumn

expression			Required.	An	expression	that	returns	a	Table	object.



Remarks

The	specified	table	style	must	contain	first-column	formatting	in	order	to	apply
this	formatting	to	a	table.



Example

This	example	formats	the	second	table	in	the	active	document	with	the	table
style	"Table	Style	1"	and	removes	formatting	for	the	first	and	last	rows	and	the
first	and	last	columns.	This	example	assumes	that	a	table	style	named	"Table
Style	1"	exists	and	that	it	contains	first	column	formatting.

Sub	TableStyles()

				With	ActiveDocument.Tables(2)

								.Style	=	"Table	Style	1"

								.ApplyStyleFirstColumn	=	False

								.ApplyStyleHeadingRows	=	False

								.ApplyStyleLastColumn	=	False

								.ApplyStyleLastRow	=	False

				End	With

End	Sub



ApplyStyleHeadingRows	Property
							

True	for	Microsoft	Word	to	apply	heading-row	formatting	to	the	first	row	of	the
selected	table.	Read/write	Boolean.

expression.ApplyStyleHeadingRows

expression			Required.	An	expression	that	returns	a	Table	object.



Remarks

The	specified	table	style	must	contain	heading-row	formatting	in	order	to	apply
this	formatting	to	a	table.



Example

This	example	formats	the	second	table	in	the	active	document	with	the	table
style	"Table	Style	1"	and	removes	formatting	for	the	first	and	last	rows	and	the
first	and	last	columns.	This	example	assumes	that	a	table	style	named	"Table
Style	1"	exists	and	that	it	contains	heading-row	formatting.

Sub	TableStyles()

				With	ActiveDocument.Tables(2)

								.Style	=	"Table	Style	1"

								.ApplyStyleFirstColumn	=	False

								.ApplyStyleHeadingRows	=	False

								.ApplyStyleLastColumn	=	False

								.ApplyStyleLastRow	=	False

				End	With

End	Sub



ApplyStyleLastColumn	Property
							

True	for	Microsoft	Word	to	apply	last-column	formatting	to	the	last	column	of
the	specified	table.	Read/write	Boolean.

expression.ApplyStyleLastColumn

expression			Required.	An	expression	that	returns	a	Table	object.



Remarks

The	specified	table	style	must	contain	last-column	formatting	in	order	to	apply
this	formatting	to	a	table.



Example

This	example	formats	the	second	table	in	the	active	document	with	the	table
style	"Table	Style	1"	and	removes	formatting	for	the	first	and	last	rows	and	the
first	and	last	columns.	This	example	assumes	that	a	table	style	named	"Table
Style	1"	exists	and	that	it	contains	last-column	formatting.

Sub	TableStyles()

				With	ActiveDocument.Tables(2)

								.Style	=	"Table	Style	1"

								.ApplyStyleFirstColumn	=	False

								.ApplyStyleHeadingRows	=	False

								.ApplyStyleLastColumn	=	False

								.ApplyStyleLastRow	=	False

				End	With

End	Sub



ApplyStyleLastRow	Property
							

True	for	Microsoft	Word	to	apply	last-row	formatting	to	the	last	row	of	the
specified	table.	Read/write	Boolean.

expression.ApplyStyleLastRow

expression			Required.	An	expression	that	returns	a	Table	object.



Remarks

The	specified	table	style	must	contain	last-row	formatting	in	order	to	apply	this
formatting	to	a	table.



Example

This	example	formats	the	second	table	in	the	active	document	with	the	table
style	"Table	Style	1"	and	removes	formatting	for	the	first	and	last	rows	and	the
first	and	last	columns.	This	example	assumes	that	a	table	style	named	"Table
Style	1"	exists	and	that	it	contains	last-row	formatting.

Sub	TableStyles()

				With	ActiveDocument.Tables(2)

								.Style	=	"Table	Style	1"

								.ApplyStyleFirstColumn	=	False

								.ApplyStyleHeadingRows	=	False

								.ApplyStyleLastColumn	=	False

								.ApplyStyleLastRow	=	False

				End	With

End	Sub



Show	All



ArabicMode	Property
							

Returns	or	sets	the	mode	for	the	Arabic	spelling	checker.	Read/write
WdAraSpeller.

WdAraSpeller	can	be	one	of	these	WdAraSpeller	constants.
wdBoth		The	spelling	checker	uses	spelling	rules	regarding	both	Arabic	words
ending	with	the	letter	yaa	and	Arabic	words	beginning	with	an	alef	hamza.
wdInitialAlef		The	spelling	checker	uses	spelling	rules	regarding	Arabic	words
beginning	with	an	alef	hamza.
wdFinalYaa		The	spelling	checker	uses	spelling	rules	regarding	Arabic	words
ending	with	the	letter	yaa.
wdNone		The	spelling	checker	ignores	spelling	rules	regarding	either	Arabic
words	ending	with	the	letter	yaa	or	Arabic	words	beginning	with	an	alef	hamza.

expression.ArabicMode

expression			Required.	An	expression	that	returns	an	Options	object.



Remarks

For	more	information	on	using	Microsoft	Word	with	right-to-left	languages,	see
Word	features	for	right-to-left	languages.

mk:@MSITStore:wdmain10.chm::/html/wdrefFeaturesAvailableInWordWhenBidirectionalLanguagesAreEnabled.htm


Example

This	example	sets	the	spelling	checker	to	ignore	spelling	rules	regarding	Arabic
words	beginning	with	an	alef	hamza.

Options.ArabicMode	=	wdInitialAlef



Show	All



ArabicNumeral	Property
							

Returns	or	sets	the	numeral	style	for	an	Arabic	language	document.	Read/write
WdArabicNumeral.

WdArabicNumeral	can	be	one	of	these	WdArabicNumeral	constants.
wdNumeralArabic
wdNumeralHindi
wdNumeralContext
wdNumeralSystem

expression.ArabicNumeral

expression			Required.	An	expression	that	returns	an	Options	object.



Remarks

For	more	information	on	using	Microsoft	Word	with	right-to-left	languages,	see
Word	features	for	right-to-left	languages.

mk:@MSITStore:wdmain10.chm::/html/wdrefFeaturesAvailableInWordWhenBidirectionalLanguagesAreEnabled.htm


Example

This	example	sets	the	numeral	style	to	Hindi.

Options.ArabicNumeral	=	wdNumeralHindi



ArtStyle	Property
							

Returns	or	sets	the	graphical	page-border	design	for	a	document.	Read/write
WdPageBorderArt.

WdPageBorderArt	can	be	one	of	these	WdPageBorderArt	constants.
wdArtSeattle
wdArtSharksTeeth
wdArtSkyrocket
wdArtSnowflakes
wdArtSouthwest
wdArtStars3D
wdArtStarsShadowed
wdArtSun
wdArtTornPaper
wdArtTrees
wdArtTriangles
wdArtTribal2
wdArtTribal4
wdArtTribal6
wdArtTwistedLines2
wdArtWaveline
wdArtWeavingBraid
wdArtWeavingStrips
wdArtWoodwork
wdArtZanyTriangles
wdArtZigZagStitch
wdArtCirclesLines
wdArtClassicalWave
wdArtCompass



wdArtConfettiGrays
wdArtConfettiStreamers
wdArtCornerTriangles
wdArtCouponCutoutDots
wdArtCreaturesButterfly
wdArtCreaturesInsects
wdArtScaredCat
wdArtShadowedSquares
wdArtShorebirdTracks
wdArtSnowflakeFancy
wdArtSombrero
wdArtStars
wdArtStarsBlack
wdArtStarsTop
wdArtSwirligig
wdArtTornPaperBlack
wdArtTriangleParty
wdArtTribal1
wdArtTribal3
wdArtTribal5
wdArtTwistedLines1
wdArtVine
wdArtWeavingAngles
wdArtWeavingRibbon
wdArtWhiteFlowers
wdArtXIllusions
wdArtZigZag
wdArtChristmasTree
wdArtCirclesRectangles
wdArtClocks
wdArtConfetti
wdArtConfettiOutline
wdArtConfettiWhite



wdArtCouponCutoutDashes
wdArtCrazyMaze
wdArtCreaturesFish
wdArtCreaturesLadyBug
wdArtCrossStitch
wdArtCup
wdArtDecoArch
wdArtDecoArchColor
wdArtDecoBlocks
wdArtDiamondsGray
wdArtDoubleD
wdArtDoubleDiamonds
wdArtEarth1
wdArtEarth2
wdArtEclipsingSquares1
wdArtEclipsingSquares2
wdArtEggsBlack
wdArtFans
wdArtFilm
wdArtFirecrackers
wdArtFlowersBlockPrint
wdArtFlowersDaisies
wdArtFlowersModern1
wdArtFlowersModern2
wdArtFlowersPansy
wdArtFlowersRedRose
wdArtFlowersRoses
wdArtFlowersTeacup
wdArtFlowersTiny
wdArtGems
wdArtGingerbreadMan
wdArtGradient
wdArtHandmade1



wdArtHandmade2
wdArtHeartBalloon
wdArtHeartGray
wdArtHearts
wdArtHeebieJeebies
wdArtHolly
wdArtHouseFunky
wdArtHypnotic
wdArtIceCreamCones
wdArtLightBulb
wdArtLightning1
wdArtLightning2
wdArtMapleLeaf
wdArtMapleMuffins
wdArtMapPins
wdArtMarquee
wdArtMarqueeToothed
wdArtMoons
wdArtMosaic
wdArtMusicNotes
wdArtNorthwest
wdArtOvals
wdArtPackages
wdArtPalmsBlack
wdArtPalmsColor
wdArtPaperClips
wdArtPapyrus
wdArtPartyFavor
wdArtPartyGlass
wdArtPencils
wdArtPeople
wdArtPeopleHats
wdArtPeopleWaving



wdArtPoinsettias
wdArtPostageStamp
wdArtPumpkin1
wdArtPushPinNote1
wdArtPushPinNote2
wdArtPyramids
wdArtPyramidsAbove
wdArtQuadrants
wdArtRings
wdArtSafari
wdArtSawtooth
wdArtSawtoothGray
wdArtApples
wdArtArchedScallops
wdArtBabyPacifier
wdArtBabyRattle
wdArtBalloons3Colors
wdArtBalloonsHotAir
wdArtBasicBlackDashes
wdArtBasicBlackDots
wdArtBasicBlackSquares
wdArtBasicThinLines
wdArtBasicWhiteDashes
wdArtBasicWhiteDots
wdArtBasicWhiteSquares
wdArtBasicWideInline
wdArtBasicWideMidline
wdArtBasicWideOutline
wdArtBats
wdArtBirds
wdArtBirdsFlight
wdArtCabins
wdArtCakeSlice



wdArtCandyCorn
wdArtCelticKnotwork
wdArtCertificateBanner
wdArtChainLink
wdArtChampagneBottle
wdArtCheckedBarBlack
wdArtCheckedBarColor
wdArtCheckered

expression.ArtStyle

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.



Example

This	example	adds	a	border	of	black	dots	around	each	page	in	first	section	in	the
selection.

Dim	borderLoop	As	Border

For	Each	borderLoop	In	Selection.Sections(1).Borders

				With	borderLoop

								.ArtStyle	=	wdArtBasicBlackDots

								.ArtWidth	=	6

				End	With

Next	borderLoop

This	example	adds	a	picture	border	around	each	page	in	section	one	in	the	active
document.

Dim	borderLoop	As	Border

With	ActiveDocument.Sections(1)

				.Borders.AlwaysInFront	=	True

				For	Each	borderLoop	In	.Borders

								With	borderLoop

												.ArtStyle	=	wdArtPeople

												.ArtWidth	=	15

								End	With

				Next	borderLoop

End	With



ArtWidth	Property
							

Returns	or	sets	the	width	(in	points)	of	the	specified	graphical	page	border.
Read/write	Long.



Example

This	example	adds	a	6-point	dotted	border	around	each	page	in	the	first	section
in	the	selection.

Dim	borderLoop	As	Border

For	Each	borderLoop	In	Selection.Sections(1).Borders

				With	borderLoop

								.ArtStyle	=	wdArtBasicBlackDots

								.ArtWidth	=	6

				End	With

Next	borderLoop



Assistant	Property
							

Returns	an	Assistant	object	that	represents	the	Microsoft	Office	Assistant.

expression.Assistant

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

mk:@MSITStore:vbaof10.chm::/html/ofobjAssistant.htm


Example

This	example	displays	the	Office	Assistant.

Assistant.Visible	=	True

This	example	displays	the	Office	Assistant	and	moves	it	to	the	upper-left	region
of	the	screen.

With	Assistant

				.Visible	=	True

				.Move	xLeft:=100,	yTop:=100

End	With

This	example	displays	the	Office	Assistant	with	a	custom	message	in	a	balloon.

With	Assistant

				.Visible	=	True

				Set	bln	=	.NewBalloon

				With	bln

								.Mode	=	msoModeAutoDown

								.Text	=	"Hello"

								.Button	=	msoButtonSetNone

								.Show

				End	With

End	With



AttachedTemplate	Property
							

Returns	a	Template	object	that	represents	the	template	attached	to	the	specified
document.	To	set	this	property,	specify	either	the	name	of	the	template	or	an
expression	that	returns	a	Template	object.	Read/write	Variant.



Example

This	example	displays	the	name	and	path	of	the	template	attached	to	the	active
document.

Set	myTemplate	=	ActiveDocument.AttachedTemplate

MsgBox	myTemplate.Path	&	Application.PathSeparator	_

				&	myTemplate.Name

This	example	inserts	the	contents	of	the	Spike	(a	built-in	AutoText	entry)	at	the
beginning	of	document	one.

Set	myRange	=	Documents(1).Range(0,	0)

Documents(1).AttachedTemplate.AutoTextEntries("Spike")	_

				.Insert	myRange

This	example	attaches	the	template	"Letter.dot"	to	the	active	document.

ActiveDocument.AttachedTemplate	=	"C:\Templates\Letter.dot"



AttentionLine	Property
							

Returns	or	sets	the	attention	line	text	for	a	letter	created	by	the	Letter	Wizard.
Read/write	String.



Example

This	example	retrieves	the	Letter	Wizard	elements	from	the	active	document.	If
the	attention	line	isn't	blank,	the	example	displays	the	text	in	a	message	box.

If	ActiveDocument.GetLetterContent.AttentionLine	<>	""	Then

				MsgBox	ActiveDocument.GetLetterContent.AttentionLine

End	If

This	example	retrieves	the	Letter	Wizard	elements	from	the	active	document,
changes	the	attention	line	text,	and	then	uses	the	SetLetterContent	method	to
update	the	document	to	reflect	the	changes.

Dim	lcTemp	As	LetterContent

Set	lcTemp	=	ActiveDocument.GetLetterContent

lcTemp.AttentionLine	=	"Greetings"

ActiveDocument.SetLetterContent	LetterContent:=lcTemp



Show	All



Author	Property
							

Author	property	as	it	applies	to	the	Comment	object.

Returns	or	sets	the	author	name	for	a	comment.	Read/write	String.

expression.Author

expression			Required.	An	expression	that	returns	one	of	the	above	objects.



Remarks

Changing	the	author	for	one	comment	will	change	the	author	for	all	comments	in
a	document.

Author	property	as	it	applies	to	the	Revision	object.

Returns	the	name	of	the	user	who	made	the	specified	tracked	change.	Read-only
String.

expression.Author

expression			Required.	An	expression	that	returns	one	of	the	above	objects.



Example

As	it	applies	to	the	Comment	object.

This	example	sets	the	author	name	and	initials	for	the	first	comment	in	the	active
document.

If	ActiveDocument.Comments.Count	>=	1	Then

				With	ActiveDocument.Comments(1)

								.Author	=	"Joe	Smith"

								.Initial	=	"JAS"

				End	With

End	If

This	example	returns	the	author	name	for	the	first	comment	in	the	selection.

Dim	strAuthor	as	String

If	Selection.Comments.Count	>=	1	Then	_

				strAuthor	=	Selection.Comments(1).Author

As	it	applies	to	the	Revision	object.

This	example	displays	the	author	name	for	the	first	tracked	change	in	the	first
selected	section.

Dim	rngSection	as	Range

Set	rngSection	=	Selection.Sections(1).Range

MsgBox	"Revisions	made	by	"	&	rngSection.Revisions(1).Author



AutoAdjustRightIndent	Property
							

True	if	Microsoft	Word	is	set	to	automatically	adjust	the	right	indent	for	the
specified	paragraphs	if	you’ve	specified	a	set	number	of	characters	per	line.
Returns	wdUndefined	if	the	AutoAdjustRightIndent	property	is	set	to	True
for	only	some	of	the	specified	paragraphs.	Read/write	Long.



Example

This	example	sets	Microsoft	Word	to	automatically	adjust	the	right	indent	for	the
selected	paragraphs	if	you’ve	specified	a	set	number	of	characters	per	line.

With	Selection.ParagraphFormat

				.AutoAdjustRightIndent	=	True

End	With



AutoAttach	Property
							

True	if	the	place	where	the	callout	line	attaches	to	the	callout	text	box	changes
depending	on	whether	the	origin	of	the	callout	line	(where	the	callout	points	to)
is	to	the	left	or	right	of	the	callout	text	box.	Read/write	MsoTriState.

MsoTriState	can	be	one	of	these	MsoTriState	constants.
msoCTrue
msoFalse
msoTriStateMixed
msoTriStateToggle
msoTrue



Remarks

When	the	value	of	this	property	is	True,	the	drop	value	(the	vertical	distance
from	the	edge	of	the	callout	text	box	to	the	place	where	the	callout	line	attaches)
is	measured	from	the	top	of	the	text	box	when	the	text	box	is	to	the	right	of	the
origin,	and	it's	measured	from	the	bottom	of	the	text	box	when	the	text	box	is	to
the	left	of	the	origin.	When	the	value	of	this	property	is	False,	the	drop	value	is
always	measured	from	the	top	of	the	text	box,	regardless	of	the	relative	positions
of	the	text	box	and	the	origin.	Use	the	CustomDrop	method	to	set	the	drop
value,	and	use	the	Drop	property	to	return	the	drop	value.

Setting	this	property	affects	a	callout	only	if	it	has	an	explicitly	set	drop	value	—
that	is,	if	the	value	of	the	DropType	property	is	msoCalloutDropCustom.	By
default,	callouts	have	explicitly	set	drop	values	when	they're	created.



Example

This	example	adds	two	callouts	to	the	active	document.	If	you	drag	the	text	box
for	each	of	these	callouts	to	the	left	of	the	callout	line	origin,	the	place	on	the
text	box	where	the	callout	line	attaches	will	change	for	the	automatically
attached	callout.

Dim	docActive	as	Document

Set	docActive	=	ActiveDocument

With	docActive.Shapes

				With	.AddCallout(msoCalloutTwo,	100,	170,	200,	50)

								.TextFrame.TextRange.Text	=	"auto-attached"

								.Callout.AutoAttach	=	msoTrue

				End	With

				With	.AddCallout(msoCalloutTwo,	100,	350,	200,	50)

								.TextFrame.TextRange.Text	=	"not	auto-attached"

								.Callout.AutoAttach	=	msoFalse

				End	With

End	With



AutoCaptions	Property
							

Returns	an	AutoCaptions	collection	that	represents	the	captions	that	are
automatically	added	when	items	such	as	tables	and	pictures	are	inserted	into	a
document.	Read-only.

For	information	about	returning	a	single	member	of	a	collection,	see	Returning
an	Object	from	a	Collection.



Example

This	example	displays	the	name	of	each	item	that	automatically	gets	a	caption
when	inserted	into	the	document.

Dim	captionLoop	as	AutoCaption

For	Each	captionLoop	In	AutoCaptions

				If	captionLoop.AutoInsert	Then	MsgBox	captionLoop.Name

Next	captionLoop



AutoCorrect	Property
							

Returns	an	AutoCorrect	object	that	contains	the	current	AutoCorrect	options,
entries,	and	exceptions.	Read-only.



Example

This	example	adds	an	AutoCorrect	replacement	entry.	After	this	code	runs,	every
instance	of	"sr"	that's	typed	in	a	document	will	automatically	be	replaced	with
"Stella	Richards."

AutoCorrect.Entries.Add	Name:=	"sr",	Value:=	"Stella	Richards"

This	example	deletes	the	specified	AutoCorrect	entry	it	if	it	exists.

Dim	strInput	as	String

Dim	aceLoop	as	AutoCorrectEntry

Dim	blnMatch	as	Boolean

Dim	intConfirm	as	Integer

blnMatch	=	False

strInput	=	InputBox("Enter	the	AutoCorrect	entry	to	delete.")

For	Each	aceLoop	in	AutoCorrect.Entries

				With	aceLoop

								If	.Name	=	strInput	Then

												blnMatch	=	True

												intConfirm	=	_

																MsgBox("Are	you	sure	you	want	to	delete	"	&	_

																.Name,	4)

												If	intConfirm	=	vbYes	Then

																.Delete

												End	If

								End	If

				End	With

Next	aceLoop

If	blnMatch	<>	True	Then

				MsgBox	"There	was	no	AutoCorrect	entry:	"	&	strInput

End	If





AutoCorrectEmail	Property
							

Returns	an	AutoCorrect	object	that	represents	automatic	corrections	made	to	e-
mail	messages.

expression.AutoCorrectEmail

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	to	list.



Example

This	example	adds	AutoCorrect	entries	for	e-mail	messages.	After	this	code
runs,	every	instance	of	"allways,"	"hte,"	and	"hwen"	that's	typed	in	an	e-mail
message	will	be	replaced	with	"always,"	"the,"	and	"when,"	respectively.

Sub	AutoCorrectEMailAddress()

				With	Application.AutoCorrectEmail

								.Entries.Add	Name:="allways",	Value:="always"

								.Entries.Add	Name:="hte",	Value:="the"

								.Entries.Add	Name:="hwen",	Value:="when"

				End	With

End	Sub



Show	All



AutoCreateNewDrawings	Property
							

True	for	Microsoft	Word	to	draw	newly	created	shapes	in	a	drawing	canvas.
Read/write	Boolean.

expression.AutoCreateNewDrawings

expression			Required.	An	expression	that	returns	an	Options	object.



Remarks

The	AutoCreateNewDrawings	property	only	affects	shapes	as	they	are	added
from	within	Word.	If	shapes	are	added	through	Visual	Basic	for	Applications
code,	they	are	added	as	specified	in	the	code	regardless	of	whether	this	option	is
set	to	True	or	False.



Example

This	example	sets	Word	to	add	newly	created	shapes	directly	to	the	document
and	not	within	a	drawing	canvas.

Sub	NewDrawings()

				Application.Options.AutoCreateNewDrawings	=	False

End	Sub



Show	All



AutoFormat	Property
							

Sets	or	returns	an	MsoTriState	constant	specifying	the	automatic	formatting
state	for	a	diagram.	Read/write.

MsoTriState	can	be	one	of	these	MsoTriState	constants.
msoCTrue	Not	used	for	this	property.
msoFalse	Disables	automatic	formatting.
msoTriStateMixed	Not	used	for	this	property.
msoTriStateToggle	Not	used	for	this	property.
msoTrue	Formats	a	diagram	to	format	automatically.

expression.AutoFormat

expression			Required.	An	expression	that	returns	a	Diagram	object.



Example

This	example	creates	a	diagram	in	the	current	document	and	turns	on	automatic
formatting	for	the	diagram.

Sub	CreatePyramidDiagram()

				Dim	dgnNode	As	DiagramNode

				Dim	shpDiagram	As	Shape

				Dim	intCount	As	Integer

				'Add	a	pyramid	diagram	to	current	document	and	first	child	node

				Set	shpDiagram	=	ThisDocument.Shapes.AddDiagram	_

								(Type:=msoDiagramPyramid,	Left:=10,	_

								Top:=15,	Width:=400,	Height:=475)

				Set	dgnNode	=	shpDiagram.DiagramNode.Children.AddNode

				'Add	three	child	node

				For	intCount	=	1	To	3

								dgnNode.AddNode

				Next	intCount

				'Enable	automatic	formatting	for	the	diagram	and	convert

				'it	to	a	radial	diagram

				With	dgnNode.Diagram

								.AutoFormat	=	msoTrue

								.Convert	Type:=msoDiagramRadial

				End	With

End	Sub



AutoFormatApplyBulletedLists
Property
							

True	if	characters	(such	as	asterisks,	hyphens,	and	greater-than	signs)	at	the
beginning	of	list	paragraphs	are	replaced	with	bullets	from	the	Bullets	and
Numbering	dialog	box	(Format	menu)	when	Word	formats	a	document	or
range	automatically.	Read/write	Boolean.



Example

This	example	replaces	any	characters	used	at	the	beginning	of	list	paragraphs	in
the	current	selection	with	bullets.

Options.AutoFormatApplyBulletedLists	=	True

Selection.Range.AutoFormat

This	example	returns	the	status	of	the	Automatic	bulleted	lists	option	on	the
AutoFormat	tab	in	the	AutoCorrect	dialog	box	(Tools	menu).

Dim	blnAutoFormat	as	Boolean

blnAutoFormat	=	Options.AutoFormatApplyBulletedLists



AutoFormatApplyFirstIndents
Property
							

True	if	Microsoft	Word	replaces	a	space	entered	at	the	beginning	of	a	paragraph
with	a	first-line	indent	when	Word	formats	a	document	or	range	automatically.
Read/write	Boolean.

expression.AutoFormatApplyFirstIndents

expression			Required.	An	expression	that	returns	an	Options	object.



Example

This	example	sets	Microsoft	Word	to	replace	a	space	entered	at	the	beginning	of
a	paragraph	with	a	first-line	indent	and	automatically	formats	the	selected	range.

Options.AutoFormatApplyFirstIndents	=	True

Selection.Range.AutoFormat



AutoFormatApplyHeadings	Property
							

True	if	styles	are	automatically	applied	to	headings	when	Word	formats	a
document	or	range	automatically.	Read/write	Boolean.



Example

This	example	applies	the	Heading	1	through	Heading	9	styles	to	headings	in	the
current	selection.

Options.AutoFormatApplyHeadings	=	True

Selection.Range.AutoFormat

This	example	returns	the	status	of	the	Headings	option	on	the	AutoFormat	tab
in	the	AutoCorrect	dialog	box	(Tools	menu).

Dim	blnAutoFormat	as	Boolean

blnAutoFormat	=	Options.AutoFormatApplyHeadings



AutoFormatApplyLists	Property
							

True	if	styles	are	automatically	applied	to	lists	when	Word	formats	a	document
or	range	automatically.	Read/write	Boolean.



Example

This	example	applies	styles	to	any	lists	in	the	current	selection.

Options.AutoFormatApplyLists	=	True

Selection.Range.AutoFormat

This	example	returns	the	status	of	the	Lists	option	on	the	AutoFormat	tab	in	the
AutoCorrect	dialog	box	(Tools	menu).

Dim	blnAutoFormat	as	Boolean

blnAutoFormat	=	Options.AutoFormatApplyLists



AutoFormatApplyOtherParas
Property
							

True	if	styles	are	automatically	applied	to	paragraphs	that	aren't	headings	or	list
items	when	Word	formats	a	document	or	range	automatically.	Read/write
Boolean.



Example

This	example	automatically	applies	styles	to	paragraphs	in	the	current	selection.

Options.AutoFormatApplyOtherParas	=	True

Selection.Range.AutoFormat

This	example	returns	the	status	of	the	Other	paragraphs	option	on	the
AutoFormat	tab	in	the	AutoCorrect	dialog	box	(Tools	menu).

Dim	blnAutoFormat	as	Boolean

blnAutoFormat	=	Options.AutoFormatApplyOtherParas



AutoFormatAsYouTypeApplyBorders
Property
							

True	if	a	series	of	three	or	more	hyphens	(-),	equal	signs	(=),	or	underscore
characters	(_)	are	automatically	replaced	by	a	specific	border	line	when	the
ENTER	key	is	pressed.	Read/write	Boolean.



Remarks

Hyphens	(-)	are	replaced	by	a	0.75-point	line,	equal	signs	(=)	are	replaced	by	a
0.75-point	double	line,	and	underscore	characters	(_)	are	replaced	by	a	1.5-point
line.



Example

This	example	causes	sequences	of	three	or	more	hyphens	(-),	equal	signs	(=),	or
underscore	characters	(_)	to	be	transformed	into	borders.

Options.AutoFormatAsYouTypeApplyBorders	=	True

This	example	returns	the	current	setting	for	the	Borders	option	on	the
AutoFormat	As	You	Type	tab	in	the	AutoCorrect	dialog	box	(Tools	menu).

MsgBox	Options.AutoFormatAsYouTypeApplyBorders



AutoFormatAsYouTypeApplyBulletedLists
Property
							

True	if	bullet	characters	(such	as	asterisks,	hyphens,	and	greater-than	signs)	are
replaced	with	bullets	from	the	Bullets	And	Numbering	dialog	box	(Format
menu)	as	you	type.	Read/write	Boolean.



Example

This	example	causes	characters	to	be	replaced	with	bullets	when	typed	in	a	list.

Options.AutoFormatAsYouTypeApplyBulletedLists	=	True

This	example	returns	the	status	of	the	Automatic	bulleted	lists	option	on	the
AutoFormat	As	You	Type	tab	in	the	AutoCorrect	dialog	box	(Tools	menu).

Dim	blnAutoFormat	as	Boolean

blnAutoFormat	=	Options.AutoFormatAsYouTypeApplyBulletedLists



AutoFormatAsYouTypeApplyClosings
Property
							

True	for	Microsoft	Word	to	automatically	apply	the	Closing	style	to	letter
closings	as	you	type.	Read/write	Boolean.

expression.AutoFormatAsYouTypeApplyClosings

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.



Remarks

For	more	information	on	Japanese	AutoFormat	options,	see	Automatically
correct	text	as	you	type	in	another	language.

mk:@MSITStore:wdmain10.chm::/html/wddccUseAutoCorrectToCorrectTextInAnotherLanguage.htm


Example

This	example	sets	Microsoft	Word	to	automatically	apply	the	Closing	style	to
letter	closings	as	you	type.

Sub	AutoClosings()

				Options.AutoFormatAsYouTypeApplyClosings	=	True

End	Sub



AutoFormatAsYouTypeApplyDates
Property
							

True	for	Microsoft	Word	to	automatically	apply	the	Date	style	to	dates	as	you
type.	Read/write.

expression.AutoFormatAsYouTypeApplyDates

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.



Remarks

For	more	information	on	Japanese	AutoFormat	options,	see	Automatically
correct	text	as	you	type	in	another	language.

mk:@MSITStore:wdmain10.chm::/html/wddccUseAutoCorrectToCorrectTextInAnotherLanguage.htm


Example

This	example	sets	Microsoft	Word	to	automatically	apply	the	Date	style	to	dates
as	you	type.

Sub	AutoApplyDates()

				Options.AutoFormatAsYouTypeApplyDates	=	True

End	Sub



AutoFormatAsYouTypeApplyFirstIndents
Property
							

True	for	Microsoft	Word	to	automatically	replace	a	space	entered	at	the
beginning	of	a	paragraph	with	a	first-line	indent.	Read/write.

expression.AutoFormatAsYouTypeApplyFirstIndents

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.



Remarks

For	more	information	on	Japanese	AutoFormat	options,	see	Automatically
correct	text	as	you	type	in	another	language.

mk:@MSITStore:wdmain10.chm::/html/wddccUseAutoCorrectToCorrectTextInAnotherLanguage.htm


Example

This	example	sets	Microsoft	Word	to	automatically	replace	a	space	entered	at	the
beginning	of	a	paragraph	with	a	first-line	indent	as	you	type.

Sub	ApplyFirstIndents()

				Options.AutoFormatAsYouTypeApplyFirstIndents	=	True

End	Sub



AutoFormatAsYouTypeApplyHeadings
Property
							

True	if	styles	are	automatically	applied	to	headings	as	you	type.	Read/write
Boolean.



Example

This	example	sets	Word	to	automatically	apply	the	Heading1	through	Heading	9
styles	to	headings	as	you	type.

Options.AutoFormatAsYouTypeApplyHeadings	=	True

This	example	returns	the	status	of	the	Headings	option	on	the	AutoFormat	As
You	Type	tab	in	the	AutoCorrect	dialog	box	(Tools	menu).

Dim	blnAutoFormat	as	Boolean

blnAutoFormat	=	Options.AutoFormatAsYouTypeApplyHeadings



AutoFormatAsYouTypeApplyNumberedLists
Property
							

True	if	paragraphs	are	automatically	formatted	as	numbered	lists	with	a
numbering	scheme	from	the	Bullets	and	Numbering	dialog	box	(Format
menu),	according	to	what's	typed.	For	example,	if	a	paragraph	starts	with	"1.1"
and	a	tab	character,	Word	automatically	inserts	"1.2"	and	a	tab	character	after	the
ENTER	key	is	pressed.	Read/write	Boolean.



Example

This	example	causes	lists	to	be	automatically	numbered	as	you	type.

Options.AutoFormatAsYouTypeApplyNumberedLists	=	True

This	example	returns	the	status	of	the	Automatic	numbered	lists	option	on	the
AutoFormat	As	You	Type	tab	in	the	AutoCorrect	dialog	box	(Tools	menu).

Dim	blnAutoFormat	as	Boolean

blnAutoFormat	=	Options.AutoFormatAsYouTypeApplyNumberedLists



AutoFormatAsYouTypeApplyTables
Property
							

True	if	Word	automatically	creates	a	table	when	you	type	a	plus	sign,	a	series	of
hyphens,	another	plus	sign,	and	so	on,	and	then	press	ENTER.	The	plus	signs
become	the	column	borders,	and	the	hyphens	become	the	column	widths.
Read/write	Boolean.



Example

This	example	sets	Word	to	automatically	create	tables	as	you	type.

Options.AutoFormatAsYouTypeApplyTables	=	True

This	example	returns	the	status	of	the	Tables	option	on	the	AutoFormat	As	You
Type	tab	in	the	AutoCorrect	dialog	box	(Tools	menu).

Dim	blnAutoFormat	as	Boolean

blnAutoFormat	=	Options.AutoFormatAsYouTypeApplyTables



AutoFormatAsYouTypeAutoLetterWizard
Property
							

True	for	Microsoft	Word	to	automatically	start	the	Letter	Wizard	when	the	user
enters	a	letter	salutation	or	closing.	Read/write.

expression.AutoFormatAsYouTypeAutoLetterWizard

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.



Remarks

For	more	information	on	Japanese	AutoFormat	options,	see	Automatically
correct	text	as	you	type	in	another	language.

mk:@MSITStore:wdmain10.chm::/html/wddccUseAutoCorrectToCorrectTextInAnotherLanguage.htm


Example

This	example	sets	Microsoft	Word	to	automatically	start	the	Letter	Wizard	when
the	user	enters	a	letter	salutation	or	closing.

Sub	AutoLeterWizard()

				Options.AutoFormatAsYouTypeAutoLetterWizard	=	True

End	Sub



AutoFormatAsYouTypeDefineStyles
Property
							

True	if	Word	automatically	creates	new	styles	based	on	manual	formatting.
Read/write	Boolean.



Example

This	example	sets	Word	to	automatically	create	styles	as	you	type.

Options.AutoFormatAsYouTypeDefineStyles	=	True

This	example	returns	the	status	of	the	Define	styles	based	on	your	formatting
option	on	the	AutoFormat	As	You	Type	tab	in	the	AutoCorrect	dialog	box
(Tools	menu).

Dim	blnAutoFormat	as	Boolean

blnAutoFormat	=	Options.AutoFormatAsYouTypeDefineStyles



AutoFormatAsYouTypeDeleteAutoSpaces
Property
							

True	for	Microsoft	Word	to	automatically	delete	spaces	inserted	between
Japanese	and	Latin	text	as	you	type.	Read/write.

expression.AutoFormatAsYouTypeDeleteAutoSpaces

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.



Remarks

For	more	information	on	Japanese	AutoFormat	options,	see	Automatically
correct	text	as	you	type	in	another	language.

mk:@MSITStore:wdmain10.chm::/html/wddccUseAutoCorrectToCorrectTextInAnotherLanguage.htm


Example

This	example	sets	Microsoft	Word	to	automatically	delete	spaces	inserted
between	Japanese	and	Latin	text	as	you	type.

Sub	AutoDeleteSpaces()

				Options.AutoFormatAsYouTypeDeleteAutoSpaces	=	True

End	Sub



AutoFormatAsYouTypeFormatListItemBeginning
Property
							

True	if	Word	repeats	character	formatting	applied	to	the	beginning	of	a	list	item
to	the	next	list	item.	Read/write	Boolean.



Example

This	example	sets	Word	to	automatically	repeat	character	formatting	at	the
beginning	of	list	items.

Options.AutoFormatAsYouTypeFormatListItemBeginning	=	True

This	example	returns	the	status	of	the	Format	beginning	of	list	item	like	the
one	before	it	option	in	the	AutoFormat	As	You	Type	tab	in	the	AutoCorrect
dialog	box	(Options	menu).

Dim	blnAutoFormat	as	Boolean

blnAutoFormat	=	_

				Options.AutoFormatAsYouTypeFormatListItemBeginning



AutoFormatAsYouTypeInsertClosings
Property
							

True	for	Microsoft	Word	to	automatically	insert	the	corresponding	memo
closing	when	the	user	enters	a	memo	heading.	Read/write.

expression.AutoFormatAsYouTypeInsertClosings

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.



Remarks

For	more	information	on	Japanese	AutoFormat	options,	see	Automatically
correct	text	as	you	type	in	another	language.

mk:@MSITStore:wdmain10.chm::/html/wddccUseAutoCorrectToCorrectTextInAnotherLanguage.htm


Example

This	example	sets	Microsoft	Word	to	automatically	insert	the	corresponding
memo	closing	when	the	user	enters	a	memo	heading.

Sub	AutoInsertClosings()

				Options.AutoFormatAsYouTypeInsertClosings	=	True

End	Sub



AutoFormatAsYouTypeInsertOvers
Property
							

True	for	Microsoft	Word	to	automatically	insert	"	 	"	when	the	user	enters	"
"	or	" ".	Read/write	Boolean.

expression.AutoFormatAsYouTypeInsertOvers

expression			Required.	An	expression	that	returns	an	Options	object.



Example

This	example	sets	Microsoft	Word	to	automatically	insert	" "	when	the	user
enters	" "	or	" ".

Options.AutoFormatAsYouTypeInsertOvers	=	True



AutoFormatAsYouTypeMatchParentheses
Property
							

True	for	Microsoft	Word	to	automatically	correct	improperly	paired	parentheses.
Read/write.

expression.AutoFormatAsYouTypeMatchParentheses

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.



Remarks

For	more	information	on	Japanese	AutoFormat	options,	see	Automatically
correct	text	as	you	type	in	another	language.

mk:@MSITStore:wdmain10.chm::/html/wddccUseAutoCorrectToCorrectTextInAnotherLanguage.htm


Example

This	example	sets	Microsoft	Word	to	automatically	correct	improperly	paired
parentheses	as	you	type.

Sub	AutoMatchParentheses()

				Options.AutoFormatAsYouTypeMatchParentheses	=	True

End	Sub



AutoFormatAsYouTypeReplaceFarEastDashes
Property
							

True	for	Microsoft	Word	to	automatically	correct	long	vowel	sounds	and	dashes.
Read/write.

expression.AutoFormatAsYouTypeReplaceFarEastDashes

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.



Remarks

For	more	information	on	Japanese	AutoFormat	options,	Automatically	correct
text	as	you	type	in	another	language.

mk:@MSITStore:wdmain10.chm::/html/wddccUseAutoCorrectToCorrectTextInAnotherLanguage.htm


Example

This	example	sets	Microsoft	Word	to	automatically	correct	long	vowel	sounds
and	dashes	as	you	type.

Sub	AutoFarEastDashes()

				Options.AutoFormatAsYouTypeReplaceFarEastDashes	=	True

End	Sub



AutoFormatAsYouTypeReplaceFractions
Property
							

True	if	typed	fractions	are	replaced	with	fractions	from	the	current	character	set
as	you	type.	For	example,	"1/2"	is	replaced	with	"½."	Read/write	Boolean.



Example

This	example	turns	off	the	automatic	replacement	of	typed	fractions.

Options.AutoFormatAsYouTypeReplaceFractions	=	False

This	example	returns	the	status	of	the	Fractions	(1/2)	with	fraction	character
(½)	option	on	the	AutoFormat	As	You	Type	tab	in	the	AutoCorrect	dialog	box
(Tools	menu).

Dim	blnAutoFormat	as	Boolean

blnAutoFormat	=	Options.AutoFormatAsYouTypeReplaceFractions



AutoFormatAsYouTypeReplaceHyperlinks
Property
							

True	if	e-mail	addresses,	server	and	share	names	(also	known	as	UNC	paths),
and	Internet	addresses	(also	known	as	URLs)	are	automatically	changed	to
hyperlinks	as	you	type.	Read/write	Boolean.



Remarks

Word	changes	any	text	that	looks	like	an	e-mail	address,	UNC,	or	URL	to	a
hyperlink.	Word	doesn't	check	the	validity	of	the	hyperlink.



Example

This	example	enables	Word	to	automatically	replace	any	Internet	or	network
paths	with	hyperlinks	when	the	paths	are	typed.

Options.AutoFormatAsYouTypeReplaceHyperlinks	=	True

This	example	returns	the	status	of	the	Internet	and	network	paths	with
hyperlinks	option	on	the	AutoFormat	As	You	Type	tab	in	the	AutoCorrect
dialog	box	(Tools	menu).

Dim	blnAutoFormat	as	Boolean

blnAutoFormat	=	Options.AutoFormatAsYouTypeReplaceHyperlinks



AutoFormatAsYouTypeReplaceOrdinals
Property
							

True	if	the	ordinal	number	suffixes	"st",	"nd",	"rd",	and	"th"	are	replaced	with
the	same	letters	in	superscript	as	you	type.	For	example,	"1st"	is	replaced	with
"1"	followed	by	"st"	formatted	as	superscript.	Read/write	Boolean.



Example

This	example	turns	on	the	automatic	replacement	of	ordinals	with	superscript
letters.

Options.AutoFormatAsYouTypeReplaceOrdinals	=	True

This	example	returns	the	status	of	the	Ordinals	(1st)	with	superscript	option	on
the	AutoFormat	As	You	Type	tab	in	the	AutoCorrect	dialog	box	(Tools	menu).

Dim	blnAutoFormat	as	Boolean

blnAutoFormat	=	Options.AutoFormatAsYouTypeReplaceOrdinals



AutoFormatAsYouTypeReplacePlainTextEmphasis
Property
							

True	if	manual	emphasis	characters	are	automatically	replaced	with	character
formatting	as	you	type.	For	example,	"*bold*"	is	changed	to	"bold"	and
"_underline_"	is	changed	to	"underline."	Read/write	Boolean.



Example

This	example	turns	on	the	replacement	of	manual	emphasis	characters	with
character	formatting.

Options.AutoFormatAsYouTypeReplacePlainTextEmphasis	=	True

This	example	returns	the	status	of	the	*Bold*	and	_underline_	with	real
formatting	option	on	the	AutoFormat	As	You	Type	tab	in	the	AutoCorrect
dialog	box	(Tools	menu).

Dim	blnAutoFormat	as	Boolean

blnAutoFormat	=	_

				Options.AutoFormatAsYouTypeReplacePlainTextEmphasis



AutoFormatAsYouTypeReplaceQuotes
Property
							

True	if	straight	quotation	marks	are	automatically	changed	to	smart	(curly)
quotation	marks	as	you	type.	Read/write	Boolean.



Example

This	example	turns	on	the	automatic	replacement	of	straight	quotation	marks
with	smart	(curly)	quotation	marks	as	you	type.

Options.AutoFormatAsYouTypeReplaceQuotes	=	True

This	example	returns	the	status	of	the	Straight	quotes	with	smart	quotes	option
on	the	AutoFormat	As	You	Type	tab	in	the	AutoCorrect	dialog	box	(Tools
menu).

Dim	blnAutoFormat	as	Boolean

blnAutoFormat	=	Options.AutoFormatReplaceQuotes



AutoFormatAsYouTypeReplaceSymbols
Property
							

True	if	two	consecutive	hyphens	(--)	are	replaced	with	an	en	dash	(–)	or	an	em
dash	(—)	as	you	type.	Read/write	Boolean.

Note			If	the	hyphens	are	typed	with	leading	and	trailing	spaces,	Word	replaces
the	hyphens	with	an	en	dash;	if	there	are	no	trailing	spaces,	the	hyphens	are
replaced	with	an	em	dash.



Example

This	example	turns	on	the	replacement	of	hyphens	with	symbols	as	you	type.

Options.AutoFormatAsYouTypeReplaceSymbols	=	True

This	example	returns	the	status	of	the	Symbol	characters	(--)	with	symbols
(—)	option	on	the	AutoFormat	As	You	Type	tab	in	the	AutoCorrect	dialog
box	(Tools	menu).

Dim	blnAutoFormat	as	Boolean

blnAutoFormat	=	Options.AutoFormatAsYouTypeReplaceSymbols



AutoFormatDeleteAutoSpaces
Property
							

True	if	spaces	inserted	between	Japanese	and	Latin	text	will	be	deleted	when
Microsoft	Word	formats	a	document	or	range	automatically.	Read/write
Boolean.

expression.AutoFormatDeleteAutoSpaces

expression			Required.	An	expression	that	returns	an	Options	object.



Example

This	example	sets	Microsoft	Word	to	automatically	delete	spaces	between
Japanese	and	Latin	text,	and	then	it	formats	the	current	selection.

Options.AutoFormatDeleteAutoSpaces	=	True

Selection.Range.AutoFormat



AutoFormatMatchParentheses
Property
							

True	if	improperly	paired	parentheses	are	corrected	when	Microsoft	Word
formats	a	document	or	range	automatically.	Read/write	Boolean.

expression.AutoFormatMatchParentheses

expression			Required.	An	expression	that	returns	an	Options	object.



Example

This	example	sets	Microsoft	Word	to	automatically	correct	pairs	of	parentheses,
and	then	it	formats	the	current	selection.

Options.AutoFormatMatchParentheses	=	True

Selection.Range.AutoFormat



AutoFormatPlainTextWordMail
Property
							

True	if	Word	automatically	formats	plain-text	e-mail	messages	when	you	open
them	in	Word.	Read/write	Boolean.



Example

This	example	sets	Word	to	automatically	format	any	plain-text	e-mail	messages
that	are	opened.

Options.AutoFormatPlainTextWordMail	=	True

This	example	returns	the	status	of	the	Plain	text	WordMail	documents	option
on	the	AutoFormat	tab	in	the	AutoCorrect	dialog	box	(Tools	menu).

Dim	blnAutoFormat	as	Boolean

blnAutoFormat	=	Options.AutoFormatPlainTextWordMail



AutoFormatPreserveStyles	Property
							

True	if	previously	applied	styles	are	preserved	when	Word	formats	a	document
or	range	automatically.	Read/write	Boolean.



Example

This	example	sets	Word	to	preserve	existing	styles	and	to	format	headings,	lists,
and	other	paragraphs	with	styles	when	formatting	automatically.	Word	then
formats	the	current	selection	automatically.

With	Options

				.AutoFormatPreserveStyles	=	True

				.AutoFormatApplyHeadings	=	True

				.AutoFormatApplyLists	=	True

				.AutoFormatApplyOtherParas	=	True

End	With

Selection.Range.AutoFormat

This	example	returns	the	status	of	the	Styles	option	on	the	AutoFormat	tab	in
the	AutoCorrect	dialog	box	(Tools	menu).

Dim	blnAutoFormat	as	Boolean

blnAutoFormat	=	Options.AutoFormatPreserveStyles



AutoFormatReplaceFarEastDashes
Property
							

True	if	long	vowel	sound	and	dash	use	is	corrected	when	Microsoft	Word
formats	a	document	or	range	automatically.	Read/write	Boolean.

expression.AutoFormatReplaceFarEastDashes

expression			Required.	An	expression	that	returns	an	Options	object.



Example

This	example	sets	Microsoft	Word	to	automatically	correct	the	use	of	long	vowel
sounds	and	dashes,	and	then	it	formats	the	current	selection.

Options.AutoFormatReplaceFarEastDashes	=	True

Selection.Range.AutoFormat



AutoFormatReplaceFractions
Property
							

True	if	typed	fractions	are	replaced	with	fractions	from	the	current	character	set
when	Word	formats	a	document	or	range	automatically.	For	example,	"1/2"	is
replaced	with	"½."	Read/write	Boolean.



Example

This	example	turns	on	the	replacement	of	typed	fractions,	and	thenit	formats	the
current	selection	automatically.

Options.AutoFormatReplaceFractions	=	True

Selection.Range.AutoFormat

This	example	returns	the	status	of	the	Fractions	(1/2)	with	fraction	character
(½)	option	on	the	AutoFormat	tab	in	the	AutoCorrect	dialog	box	(Tools
menu).

Dim	blnAutoFormat	as	Boolean

blnAutoFormat	=	Options.AutoFormatReplaceFractions



AutoFormatReplaceHyperlinks
Property
							

True	if	e-mail	addresses,	server	and	share	names	(also	known	as	UNC	paths),
and	Internet	addresses	(also	known	as	URLs)	are	automatically	formatted
whenever	Word	AutoFormats	a	document	or	range.	Read/write	Boolean.



Remarks

Word	changes	any	text	that	looks	like	an	e-mail	address,	UNC,	or	URL	to	a
hyperlink.	Word	doesn't	check	the	validity	of	the	hyperlink.



Example

This	example	enables	replacement	of	any	Internet	or	network	paths	with
hyperlinks,	and	then	it	formats	the	selection	automatically.

Options.AutoFormatReplaceHyperlinks	=	True

Selection.Range.AutoFormat

This	example	returns	the	status	of	the	Internet	and	network	paths	with
hyperlinks	option	on	the	AutoFormat	tab	in	the	AutoCorrect	dialog	box
(Tools	menu).

Dim	blnAutoFormat	as	Boolean

blnAutoFormat	=	Options.AutoFormatReplaceHyperlinks



AutoFormatReplaceOrdinals
Property
							

True	if	the	ordinal	number	suffixes	"st",	"nd",	"rd",	and	"th"	are	replaced	with
the	same	letters	in	superscript	when	Word	formats	a	document	or	range
automatically.	For	example,	"1st"	is	replaced	with	"1"	followed	by	"st"	formatted
as	superscript.	Read/write	Boolean.



Example

This	example	turns	on	the	automatic	replacement	of	ordinals	with	superscript,
and	then	it	formats	the	current	selection	automatically.

Options.AutoFormatReplaceOrdinals	=	True

Selection.Range.AutoFormat

This	example	returns	the	status	of	the	Ordinals	(1st)	with	superscript	option	on
the	AutoFormat	tab	in	the	AutoCorrect	dialog	box	(Tools	menu).

Dim	blnAutoFormat	as	Boolean

blnAutoFormat	=	Options.AutoFormatReplaceOrdinals



AutoFormatReplacePlainTextEmphasis
Property
							

True	if	manual	emphasis	characters	are	replaced	with	character	formatting	when
Word	formats	a	document	or	range	automatically.	For	example,	"*bold*"	is
changed	to	"bold"	and	"_underline_"	is	changed	to	"underline."	Read/write
Boolean.



Example

This	example	turns	on	the	replacement	of	manual	emphasis	characters	with
character	formatting

Options.AutoFormatReplacePlainTextEmphasis	=	True

Selection.Range.AutoFormat

This	example	returns	the	status	of	the	*Bold*	and	_underline_	with	real
formatting	option	on	the	AutoFormat	tab	in	the	AutoCorrect	dialog	box
(Tools	menu).

Dim	blnAutoFormat	as	Boolean

blnAutoFormat	=	Options.AutoFormatReplacePlainTextEmphasis



AutoFormatReplaceQuotes	Property
							

True	if	straight	quotation	marks	are	automatically	changed	to	smart	(curly)
quotation	marks	when	Word	formats	a	document	or	range	automatically.
Read/write	Boolean.



Example

This	example	turns	on	the	automatic	replacement	of	straight	quotation	marks
with	smart	(curly)	quotation	marks,	and	then	it	formats	the	current	selection
automatically.

Options.AutoFormatReplaceQuotes	=	True

Selection.Range.AutoFormat

This	example	returns	the	status	of	the	Straight	quotes	with	smart	quotes	option
on	the	AutoFormat	tab	in	the	AutoCorrect	dialog	box	(Tools	menu).

Dim	blnAutoFormat	as	Boolean

blnAutoFormat	=	Options.AutoFormatReplaceQuotes



AutoFormatReplaceSymbols
Property
							

True	if	two	consecutive	hyphens	(--)	are	replaced	by	an	en	dash	(–)	or	an	em
dash	(—)	when	Word	formats	a	document	or	range	automatically.	Read/write
Boolean.



Example

This	example	turns	on	the	replacement	of	hyphens	with	symbols,	and	then	it
formats	the	current	selection	automatically.

Options.AutoFormatReplaceSymbols	=	True

Selection.Range.AutoFormat

This	example	returns	the	status	of	the	Symbol	characters	(--)	with	symbols
(—)	option	on	the	AutoFormat	tab	in	the	AutoCorrect	dialog	box	(Tools
menu).

Dim	blnAutoFormat	as	Boolean

blnAutoFormat	=	Options.AutoFormatReplaceSymbols



AutoFormatType	Property
							

Returns	the	type	of	automatic	formatting	that's	been	applied	to	the	specified
table.	Read-only	Long.	Can	be	one	of	the	following	WdTableFormat	constants.

WdTableFormat	can	be	one	of	these	WdTableFormat	constants.
wdTableFormat3DEffects1
wdTableFormat3DEffects2
wdTableFormat3DEffects3
wdTableFormatClassic1
wdTableFormatClassic2
wdTableFormatClassic3
wdTableFormatClassic4
wdTableFormatColorful1
wdTableFormatColorful2
wdTableFormatColorful3
wdTableFormatColumns1
wdTableFormatColumns2
wdTableFormatColumns3
wdTableFormatColumns4
wdTableFormatColumns5
wdTableFormatContemporary
wdTableFormatElegant
wdTableFormatGrid1
wdTableFormatGrid2
wdTableFormatGrid3
wdTableFormatGrid4
wdTableFormatGrid5
wdTableFormatGrid6
wdTableFormatGrid7



wdTableFormatGrid8
wdTableFormatList1
wdTableFormatList2
wdTableFormatList3
wdTableFormatList4
wdTableFormatList5
wdTableFormatList6
wdTableFormatList7
wdTableFormatList8
wdTableFormatNone
wdTableFormatProfessional
wdTableFormatSimple1
wdTableFormatSimple2
wdTableFormatSimple3
wdTableFormatSubtle1
wdTableFormatSubtle2
wdTableFormatWeb1
wdTableFormatWeb2
wdTableFormatWeb3

Note			Use	the	AutoFormat	method	to	apply	automatic	formatting	to	a	table.



Example

This	example	formats	the	first	table	in	the	active	document	to	use	the	Classic	1
AutoFormat	if	the	current	format	is	Simple	1,	Simple	2,	or	Simple	3.

If	ActiveDocument.Tables.Count	>=	1	Then

				If	ActiveDocument.Tables(1).AutoFormatType	<=	wdTableFormatSimple3	Then

								ActiveDocument.Tables(1).AutoFormat	_

												Format:=wdTableFormatClassic1

				End	If

End	If



AutoHyphenation	Property
							

True	if	automatic	hyphenation	is	turned	on	for	the	specified	document.
Read/write	Boolean.



Example

This	example	turns	on	automatic	hyphenation,	with	a	hyphenation	zone	of	0.25
inch.	Words	in	all	capital	letters	aren't	hyphenated.

With	ActiveDocument

				.HyphenationZone	=	InchesToPoints(0.25)

				.HyphenateCaps	=	False

				.AutoHyphenation	=	True

End	With



AutoInsert	Property
							

True	if	a	caption	is	automatically	added	when	the	item	is	inserted	into	a
document.	Read/write	Boolean.



Example

This	example	enables	Word	to	add	captions	to	tables	automatically.	Then	the
example	collapses	the	selection	to	an	insertion	point,	and	inserts	a	table.	A
caption	is	automatically	added	to	the	new	table.

AutoCaptions("Microsoft	Word	Table").AutoInsert	=	True

Selection.Collapse	Direction:=wdCollapseStart

ActiveDocument.Tables.Add	Range:=Selection.Range,	_

				NumRows:=2,	NumColumns:=2



AutoKeyboardSwitching	Property
							

True	if	Microsoft	Word	automatically	switches	the	keyboard	language	to	match
what	you’re	typing	at	any	given	time.	Read/write	Boolean.

expression.AutoKeyboardSwitching

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.



Remarks

To	use	this	property,	you	must	have	the	CheckLanguage	property	set	to	True.

For	more	information	on	using	Word	with	multiple	languages,	see	Troubleshoot
Multilingual	Text	and	Automatic	Language	Detection.

mk:@MSITStore:wdmain10.chm::/html/wdtbsTroubleshootMultilingualDocumentsInWord.htm


Example

This	example	asks	the	user	to	choose	whether	or	not	to	enable	automatic
keyboard	switching	for	multilingual	documents.

x	=	MsgBox("Enable	automatic	keyboard	switching?",	vbYesNo)

If	x	=	vbYes	Then

				Application.CheckLanguage	=	True

				Options.AutoKeyboardSwitching	=	True

				MsgBox	"Automatic	keyboard	switching	enabled!"

End	If



Show	All



AutoLayout	Property
							

Returns	or	sets	an	MsoTriState	constant	that	determines	the	automatic
positioning	of	the	nodes	and	connectors	in	a	diagram.	Read/write.

MsoTriState	can	be	one	of	these	MsoTriState	constants.
msoCTrue	Not	used	for	this	property.
msoFalse	Disables	automatic	layout.
msoTriStateMixed	Not	used	for	this	property.
msoTriStateToggle	Not	used	for	this	property.
msoTrue	Automatically	positions	nodes	and	connectors	in	a	diagram.

expression.AutoLayout

expression			Required.	An	expression	that	returns	a	Diagram	object.



Example

This	example	creates	a	diagram	in	the	current	document	and	automatically
positions	the	nodes	and	connectors.

Sub	CreatePyramidDiagram()

				Dim	dgnNode	As	DiagramNode

				Dim	shpDiagram	As	Shape

				Dim	intCount	As	Integer

				'Add	a	pyramid	diagram	to	current	document	and	first	child	node

				Set	shpDiagram	=	ThisDocument.Shapes.AddDiagram(	_

								Type:=msoDiagramPyramid,	Left:=10,	_

								Top:=15,	Width:=400,	Height:=475)

				Set	dgnNode	=	shpDiagram.DiagramNode.Children.AddNode

				'Add	three	child	node

				For	intCount	=	1	To	3

								dgnNode.AddNode

				Next	intCount

				'Enable	automatic	positioning	of	the	diagram	nodes

				'and	convert	diagram	to	a	radial	diagram

				With	dgnNode.Diagram

								.AutoLayout	=	msoTrue

								.Convert	Type:=msoDiagramRadial

				End	With

End	Sub



Show	All



AutoLength	Property
							

MsoTrue	to	automatically	sets	the	length	of	the	callout	line.	Read-only
MsoTriState.

MsoTriState	can	be	one	of	these	MsoTriState	constants.
msoCTrue		Not	used	with	this	property.
msoFalse		To	set	the	length	of	the	callout	line	manually.
msoTriStateMixed		Not	used	with	this	property.
msoTriStateToggle		Not	used	with	this	property.
msoTrue		To	automatically	set	the	length	of	the	callout	line.

expression.AutoLength

expression			Required.	An	expression	that	returns	a	CalloutFormat	object.



Remarks

Use	the	AutomaticLength	method	to	set	this	property	to	msoTrue,	and	use	the
CustomLength	method	to	set	this	property	to	msoFalse.



Example

This	example	creates	a	new	document	and	adds	a	callout	to	the	new	document,
and	then	sets	the	length	of	the	callout	manually.

Sub	AutoCalloutLength()

				Dim	docNew	As	Document

				Dim	shpCallout	As	Shape

				Set	docNew	=	Documents.Add

				Set	shpCallout	=	docNew.Shapes.AddCallout(Type:=msoCalloutFour,	_

								Left:=15,	Top:=15,	Width:=150,	Height:=200)

				With	shpCallout.Callout

								If	.AutoLength	=	msoTrue	then

												.CustomLength	50

								End	If

				End	With

End	Sub



Autoload	Property
							

True	if	the	specified	add-in	is	automatically	loaded	when	Word	is	started.	Add-
ins	located	in	the	Startup	folder	in	the	Word	program	folder	are	automatically
loaded.	Read-only	Boolean.



Example

This	example	displays	the	name	of	each	add-in	that	is	automatically	loaded	when
Word	is	started.

Dim	addinLoop	as	AddIn

Dim	blnFound	as	Boolean

blnFound	=	False

For	Each	addinLoop	In	AddIns

				With	addinLoop

								If	.Autoload	=	True	Then	

												MsgBox	.Name

												blnFound	=	True

								End	If

				End	With

Next	addinLoop

If	blnFound	<>	True	Then	_

				MsgBox	"No	add-ins	were	loaded	automatically."

This	example	determines	whether	the	add-in	named	"Gallery.dot"	was
automatically	loaded.

Dim	addinLoop	as	AddIn

For	Each	addinLoop	In	AddIns

				If	InStr(LCase$(addinLoop.Name),	"gallery.dot")	>	0	Then

								If	addinLoop.Autoload	=	True	Then	Msgbox	"Autoload"

				End	If

Next	addinLoop



AutomaticallyUpdate	Property
							

True	if	the	style	is	automatically	redefined	based	on	the	selection.	False	if	Word
prompts	for	confirmation	before	redefining	the	style	based	on	the	selection.	A
style	can	be	redefined	when	it's	applied	to	a	selection	that	has	the	same	style	but
different	manual	formatting.	Read/write	Boolean.



Example

This	example	creates	a	style	named	"Style1"	that	can	be	redefined	without	the
need	for	confirmation.

Dim	docNew	as	Document

Dim	styleNew	as	Style

Set	docNew	=	Documents.Add

Set	styleNew	=	docNew.Styles.Add("Style1")

With	styleNew

				.BaseStyle	=	docNew.Styles(wdStyleNormal)

				.ParagraphFormat.LineSpacingRule	=	wdLineSpaceDouble

				.AutomaticallyUpdate	=	True

End	With



Show	All



AutomationSecurity	Property
							

Returns	or	sets	an	MsoAutomationSecurity	constant	that	represents	the	security
mode	Microsoft	Word	uses	when	programmatically	opening	files.	Read/write.

MsoAutomationSecurity	can	be	one	of	these	MsoAutomationSecurity	constants.
msoAutomationSecurityByUI		Uses	the	security	setting	specified	in	the
Security	dialog	box.
msoAutomationSecurityForceDisable		Disables	all	macros	in	all	files	opened
programmatically	without	showing	any	security	alerts.
msoAutomationSecurityLow		Enables	all	macros.	This	is	the	default	value
when	the	application	is	started.

expression.AutomationSecurity

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.



Remarks

This	property	is	automatically	set	to	msoAutomationSecurityLow	when	Word
is	started.	Therefore,	to	avoid	breaking	solutions	that	rely	on	the	default	setting,
you	should	be	careful	to	reset	this	property	to	msoAutomationSecurityLow
after	programmatically	opening	a	file.	Also,	this	property	should	be	set
immediately	before	and	after	opening	a	file	programmatically	to	avoid	malicious
subversion.

Setting	ScreenUpdating	to	False	does	not	affect	alerts	and	will	not	affect
security	warnings.	The	DisplayAlerts	setting	will	not	apply	to	security
warnings.	For	example,	if	the	user	sets	DisplayAlerts	equal	to	False	and
AutomationSecurity	to	msoAutomationSecurityByUI,	while	the	user	is	on
Medium	security	level,	then	there	will	be	security	warnings	while	the	macro	is
running.	This	allows	the	macro	to	trap	file	open	errors,	while	still	showing	the
security	warning	if	the	file	open	succeeds.



Example

This	example	captures	the	current	automation	security	setting,	changes	the
setting	to	disable	macros,	displays	the	Open	dialog	box,	and	after	opening	the
selected	document,	sets	the	automation	security	back	to	its	original	setting.

Sub	Security()

				Dim	secAutomation	As	MsoAutomationSecurity

				With	Application

								secAutomation	=	.AutomationSecurity

								.AutomationSecurity	=	msoAutomationSecurityForceDisable

								With	.FileDialog(msoFileDialogOpen)

												.Show

												.Execute

								End	With

								.AutomationSecurity	=	secAutomation

				End	With

End	Sub



Show	All



AutoShapeType	Property
							

Returns	or	sets	the	shape	type	for	the	specified	Shape	or	ShapeRange	object,
which	must	represent	an	AutoShape	other	than	a	line	or	freeform	drawing.
Read/write	MsoAutoShapeType.

MsoAutoShapeType	can	be	one	of	these	MsoAutoShapeType	constants.
msoShape24pointStar
msoShape4pointStar
msoShape8pointStar
msoShapeActionButtonBeginning
msoShapeActionButtonDocument
msoShapeActionButtonForwardorNext
msoShapeActionButtonHome
msoShapeActionButtonMovie
msoShapeActionButtonSound
msoShapeBalloon
msoShapeBentUpArrow
msoShapeBlockArc
msoShapeChevron
msoShapeCloudCallout
msoShapeCube
msoShapeCurvedDownRibbon
msoShapeCurvedRightArrow
msoShapeCurvedUpRibbon
msoShapeDonut
msoShapeDoubleBracket
msoShapeDownArrow
msoShapeDownRibbon
msoShapeExplosion2



msoShapeFlowchartCard
msoShapeFlowchartConnector
msoShapeFlowchartDecision
msoShapeFlowchartDirectAccessStorage
msoShapeFlowchartDisplay
msoShapeFlowchartDocument
msoShapeFlowchartExtract
msoShapeFlowchartInternalStorage
msoShapeFlowchartMagneticDisk
msoShapeFlowchartManualInput
msoShapeFlowchartManualOperation
msoShapeFlowchartMerge
msoShapeFlowchartMultidocument
msoShapeFlowchartOffpageConnector
msoShapeFlowchartOr
msoShapeFlowchartPredefinedProcess
msoShapeFlowchartPreparation
msoShapeFlowchartProcess
msoShapeFlowchartPunchedTape
msoShapeFlowchartSequentialAccessStorage
msoShapeFlowchartSort
msoShapeFlowchartStoredData
msoShapeFlowchartSummingJunction
msoShapeFlowchartTerminator
msoShapeFoldedCorner
msoShapeHeart
msoShapeHexagon
msoShapeHorizontalScroll
msoShapeIsoscelesTriangle
msoShapeLeftArrow
msoShapeLeftArrowCallout
msoShapeLeftBrace
msoShapeLeftBracket



msoShapeLeftRightArrow
msoShapeLeftRightArrowCallout
msoShapeLeftRightUpArrow
msoShapeLeftUpArrow
msoShapeLightningBolt
msoShapeLineCallout1
msoShapeLineCallout1AccentBar
msoShapeLineCallout1BorderandAccentBar
msoShapeLineCallout1NoBorder
msoShapeLineCallout2
msoShapeLineCallout2AccentBar
msoShapeLineCallout2BorderandAccentBar
msoShapeLineCallout2NoBorder
msoShapeLineCallout3
msoShapeLineCallout3AccentBar
msoShapeLineCallout3BorderandAccentBar
msoShapeLineCallout3NoBorder
msoShapeLineCallout4
msoShapeLineCallout4AccentBar
msoShapeLineCallout4BorderandAccentBar
msoShapeLineCallout4NoBorder
msoShapeMixed
msoShapeMoon
msoShapeNoSymbol
msoShapeNotchedRightArrow
msoShapeNotPrimitive
msoShapeOctagon
msoShapeOval
msoShapeOvalCallout
msoShapeParallelogram
msoShapePentagon
msoShapePlaque
msoShapeQuadArrowCallout



msoShapeRectangularCallout
msoShapeRightArrow
msoShapeRightBrace
msoShapeRightTriangle
msoShapeRoundedRectangularCallout
msoShapeStripedRightArrow
msoShapeTrapezoid
msoShapeUpArrowCallout
msoShapeUpDownArrowCallout
msoShapeUTurnArrow
msoShapeWave
msoShape16pointStar
msoShape32pointStar
msoShape5pointStar
msoShapeActionButtonBackorPrevious
msoShapeActionButtonCustom
msoShapeActionButtonEnd
msoShapeActionButtonHelp
msoShapeActionButtonInformation
msoShapeActionButtonReturn
msoShapeArc
msoShapeBentArrow
msoShapeBevel
msoShapeCan
msoShapeCircularArrow
msoShapeCross
msoShapeCurvedDownArrow
msoShapeCurvedLeftArrow
msoShapeCurvedUpArrow
msoShapeDiamond
msoShapeDoubleBrace
msoShapeDoubleWave
msoShapeDownArrowCallout



msoShapeExplosion1
msoShapeFlowchartAlternateProcess
msoShapeFlowchartCollate
msoShapeFlowchartData
msoShapeFlowchartDelay
msoShapeQuadArrow
msoShapeRectangle
msoShapeRegularPentagon
msoShapeRightArrowCallout
msoShapeRightBracket
msoShapeRoundedRectangle
msoShapeSmileyFace
msoShapeSun
msoShapeUpArrow
msoShapeUpDownArrow
msoShapeUpRibbon
msoShapeVerticalScroll

expression.AutoShapeType

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.



Remarks

When	you	change	the	type	of	a	shape,	the	shape	retains	its	size,	color,	and	other
attributes.



Example

This	example	replaces	all	16-point	stars	with	32-point	stars	in	the	active
document.

Sub	ReplaceAutoShape()

				Dim	docNew	As	Document

				Dim	shpStar	As	Shape

				Set	docNew	=	ActiveDocument

				For	Each	shpStar	In	docNew.Shapes

								If	shpStar.AutoShapeType	=	msoShape16pointStar	Then

												shpStar.AutoShapeType	=	msoShape32pointStar

								End	If

				Next

End	Sub



Show	All



AutoSize	Property
							

AutoSize	property	as	it	applies	to	the	CheckBox	object.

True	sizes	the	check	box	or	text	frame	according	to	the	font	size	of	the
surrounding	text.	False	sizes	the	check	box	or	text	frame	according	to		the	Size
property.	Read/write	Boolean.

expression.AutoSize

expression			Required.	An	expression	that	returns	a	CheckBox	object.

AutoSize	property	as	it	applies	to	the	TextFrame	object.

Returns	or	sets	a	Long	that	represents	whether	a	text	frame	is	sized
automatically.	Read/write.

expression.AutoSize

expression			Required.	An	expression	that	returns	a	TextFrame	object.



Example

This	example	sets	the	size	of	the	check	box	named	"Check1"	to	Auto	and	then
selects	the	check	box.

With	ActiveDocument.FormFields("Check1").CheckBox

				.AutoSize	=	True

				.Value	=	True

End	With



AutoTextEntries	Property
							

Returns	an	AutoTextEntries	collection	that	represents	all	the	AutoText	entries
in	the	specified	template.	Read-only.

For	information	about	returning	a	single	member	of	a	collection,	see	Returning
an	Object	from	a	Collection.



Example

This	example	deletes	the	AutoText	entry	named	"Hello"	if	the	entry	exists	in	the
attached	template.

Dim	atEntry	As	AutoTextEntry

For	Each	atEntry	In	_

								ActiveDocument.AttachedTemplate.AutoTextEntries

				If	atEntry.Name	=	"asdf"	Then	atEntry.Delete

				Debug.Print	atEntry.Name

Next	atEntry

This	example	adds	an	AutoText	entry	named	"Temp"	to	the	Normal	template.
The	contents	of	the	AutoText	entry	(the	first	word	in	the	document)	are	then
displayed	in	a	message	box.

Dim	atEntry	As	AutoTextEntry

Set	atEntry	=	_

				NormalTemplate.AutoTextEntries.Add(Name:="Temp",	_

				Range:=ActiveDocument.Words(1))

MsgBox	atEntry.Value

This	example	stores	the	contents	of	the	selection	as	an	AutoText	entry	named
"Address"	in	the	attached	template.

If	Len(Selection.Text)	>	1	Then

				ActiveDocument.AttachedTemplate.AutoTextEntries.Add	_

								Range:=Selection.Range,	Name:="Address"

End	If



AutoUpdate	Property
							

True	if	the	specified	link	is	updated	automatically	when	the	container	file	is
opened	or	when	the	source	file	is	changed.	Read/write	Boolean.



Example

This	example	updates	any	shapes	in	the	active	document	that	are	linked	OLE
objects	if	Word	isn't	set	to	update	links	automatically.

Dim	shapeLoop	as	Shape

For	Each	shapeLoop	In	ActiveDocument.Shapes

				With	shapeLoop

								If	.Type	=	msoLinkedOLEObject	Then

												If	.LinkFormat.AutoUpdate	=	False	Then	

																.LinkFormat.Update

												End	If

								End	If

				End	With

Next	s

This	example	updates	any	fields	in	the	active	document	that	aren't	updated
automatically.

Dim	fieldLoop	as	Field

For	Each	fieldLoop	In	ActiveDocument.Fields

				If	fieldLoop.LinkFormat.AutoUpdate	=	False	Then	_

								fieldLoop.LinkFormat.Update

Next	fieldLoop



AutoVersion	Property
							

Returns	or	sets	the	state	of	the	option	for	automatically	saving	document
versions.	Can	be	one	of	the	following	read/write	WdAutoVersions	constants.

WdAutoVersions	can	be	one	of	these	WdAutoVersions	constants.
wdAutoVersionOff
wdAutoVersionOnClose

expression.AutoVersion

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

Note			When	the	AutoVersion	property	is	set	to	wdAutoVersionOnClose,	a
document	version	is	automatically	saved	when	the	document	is	closed.



Example

This	example	disables	the	option	to	save	a	document	version	automatically	when
the	active	document	is	closed.

ActiveDocument.Versions.AutoVersion	=	wdAutoVersionOff

This	example	displays	a	message	in	the	status	bar	if	the	option	to	save	a
document	version	automatically	is	active	for	Report.doc.

If	Documents("Report.doc").Versions.AutoVersion	=	_

								wdAutoVersionOnClose	Then

				StatusBar	=	"A	version	will	be	automatically	saved"

End	If



AutoWordSelection	Property
							

True	if	dragging	selects	one	word	at	a	time	instead	of	one	character	at	a	time.
Read/write	Boolean.



Example

This	example	sets	Word	to	select	individual	characters	instead	of	entire	words
when	you	select	by	dragging.

Options.AutoWordSelection	=	False

This	example	returns	the	status	of	the	When	selecting,	automatically	select
entire	word	option	on	the	Edit	tab	in	the	Options	dialog	box.

Dim	blnAutoSelect	as	Boolean

blnAutoSelect	=	Options.AutoWordSelection



BackColor	Property
							

Returns	or	sets	a	ColorFormat	object	that	represents	the	background	color	for
the	specified	fill	or	patterned	line.	Read/write.



Example

This	example	adds	a	rectangle	to	the	active	document	and	then	sets	the
foreground	color,	background	color,	and	gradient	for	the	rectangle's	fill.

Dim	docActive	As	Document

Set	docActive	=	ActiveDocument

With	docActive.Shapes.AddShape(msoShapeRectangle,	_

								90,	90,	90,	50).Fill

				.ForeColor.RGB	=	RGB(128,	0,	0)

				.BackColor.RGB	=	RGB(170,	170,	170)

				.TwoColorGradient	msoGradientHorizontal,	1

End	With

This	example	adds	a	patterned	line	to	the	active	document.

Dim	docActive	As	Document

Set	docActive	=	ActiveDocument

With	docActive.Shapes.AddLine(10,	100,	250,	0).Line

				.Weight	=	6

				.ForeColor.RGB	=	RGB(0,	0,	255)

				.BackColor.RGB	=	RGB(128,	0,	0)

				.Pattern	=	msoPatternDarkDownwardDiagonal

End	With



Background	Property
							

Returns	a	Shape	object	that	represents	the	background	image	for	the	specified
document.	Read-only.

Note			Backgrounds	are	visible	only	in	web	layout	view.



Example

This	example	sets	the	background	color	for	web	layout	view	to	light	gray	for	the
active	window.

ActiveDocument.ActiveWindow.View.Type	=	wdWebView

With	ActiveDocument.Background.Fill

				.Visible	=	True

				.ForeColor.RGB	=	RGB(192,	192,	192)

End	With

This	example	sets	the	background	bitmap	image	of	web	layout	view	to
Bubbles.bmp.

ActiveDocument.ActiveWindow.View.Type	=	wdWebView

ActiveDocument.Background.Fill.UserPicture	_

				PictureFile:="C:\Windows\Bubbles.bmp"



BackgroundOpen	Property
							

True	for	Microsoft	Word	to	open	Web	documents	in	the	background.	Read/write
Boolean.

expression.BackgroundOpen

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.



Remarks

While	Microsoft	Word	is	opening	a	large	Web	document	in	the	background,
users	can	continue	to	type	and	choose	commands	in	another	document.
However,	until	the	Web	document	is	fully	opened,	Word	Visual	Basic	for
Applications	functions	are	disabled	for	the	document	being	opened.



Example

This	example	toggles	between	opening	large	Web	documents	in	the	background
and	not	opening	them	in	the	background.

Sub	BackOpen()

				If	Options.BackgroundOpen	=	False	Then

								Options.BackgroundOpen	=	True

				Else

								Options.BackgroundOpen		=	False

				End	If

End	Sub



Show	All



BackgroundPatternColor	Property
							

Returns	or	sets	the	24-bit	color	that's	applied	to	the	background	of	the	Shading
object.	Can	be	any	valid	WdColor	constant	or	a	value	returned	by	Visual	Basic's
RGB	function.	Read/write.

WdColor	can	be	one	of	these	WdColor	constants.
wdColorGray625
wdColorGray70
wdColorGray80
wdColorGray875
wdColorGray95
wdColorIndigo
wdColorLightBlue
wdColorLightOrange
wdColorLightYellow
wdColorOliveGreen
wdColorPaleBlue
wdColorPlum
wdColorRed
wdColorRose
wdColorSeaGreen
wdColorSkyBlue
wdColorTan
wdColorTeal
wdColorTurquoise
wdColorViolet
wdColorWhite
wdColorYellow
wdColorAqua



wdColorAutomatic
wdColorBlack
wdColorBlue
wdColorBlueGray
wdColorBrightGreen
wdColorBrown
wdColorDarkBlue
wdColorDarkGreen
wdColorDarkRed
wdColorDarkTeal
wdColorDarkYellow
wdColorGold
wdColorGray05
wdColorGray10
wdColorGray125
wdColorGray15
wdColorGray20
wdColorGray25
wdColorGray30
wdColorGray35
wdColorGray375
wdColorGray40
wdColorGray45
wdColorGray50
wdColorGray55
wdColorGray60
wdColorGray65
wdColorGray75
wdColorGray85
wdColorGray90
wdColorGreen
wdColorLavender
wdColorLightGreen



wdColorLightTurquoise
wdColorLime
wdColorOrange
wdColorPink

expression.BackgroundPatternColor

expression			Required.	An	expression	that	returns	a	Shading	object.



Example

This	example	applies	turquoise	background	shading	to	the	first	paragraph	in	the
active	document.

Set	myRange	=	ActiveDocument.Paragraphs(1).Range

myRange.Shading.BackgroundPatternColor	=	_

				wdColorTurquoise

This	example	adds	a	table	at	the	insertion	point	and	then	applies	light	gray
background	shading	to	the	first	cell.

Selection.Collapse	Direction:=wdCollapseStart

Set	myTable	=	_

				ActiveDocument.Tables.Add(Range:=Selection.Range,	_

				NumRows:=2,	NumColumns:=2)

myTable.Cell(1,	1).Shading.BackgroundPatternColor	=	_

				wdColorGray25



BackgroundPatternColorIndex
Property
							

Returns	or	sets	the	color	that's	applied	to	the	background	of	the	Shading	object.
Read/write	WdColorIndex.

WdColorIndex	can	be	one	of	these	WdColorIndex	constants.
wdAuto
wdBlack
wdBlue
wdBrightGreen
wdByAuthor
wdDarkBlue
wdDarkRed
wdDarkYellow
wdGray25
wdGray50
wdGreen
wdNoHighlight
wdPink
wdRed
wdTeal
wdTurquoise
wdViolet
wdWhite
wdYellow

expression.BackgroundPatternColorIndex

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the



Applies	To	list.



Example

This	example	applies	cyan	background	shading	to	the	first	paragraph	in	the
active	document.

Dim	rngTemp	As	Range

Set	rngTemp	=	ActiveDocument.Paragraphs(1).Range

rngTemp.Shading.BackgroundPatternColorIndex	=	wdTurquoise

This	example	adds	a	table	at	the	insertion	point	and	then	applies	light	gray
background	shading	to	the	first	cell.

Dim	tableNew	As	Table

Selection.Collapse	Direction:=wdCollapseStart

Set	tableNew	=	ActiveDocument.Tables.Add(Range:=Selection.Range,	_

				NumRows:=2,	NumColumns:=2)

tableNew.Cell(1,	1).Shading.BackgroundPatternColorIndex	=	_

				wdGray25



BackgroundPrintingStatus	Property
							

Returns	the	number	of	print	jobs	in	the	background	printing	queue.	Read-only
Long.



Example

This	example	returns	the	number	of	Word	print	jobs	currently	queued	up	for
background	printing.

Dim	lngStatus	As	Long

If	Options.PrintBackground	=	True	Then

				lngStatus	=	Application.BackgroundPrintingStatus

End	If

If	the	number	of	print	jobs	is	greater	than	0	(zero),	this	example	displays	a
message	in	the	status	bar.

If	Application.BackgroundPrintingStatus	>	0	Then

				StatusBar	=	Application.BackgroundPrintingStatus	_

								&	"	print	jobs	are	queued	up"

End	If



BackgroundSave	Property
							

True	if	Word	saves	documents	in	the	background.	When	Word	is	saving	in	the
background,	users	can	continue	to	type	and	to	choose	commands.	Read/write
Boolean.



Example

This	example	allows	users	to	continue	working	in	a	document	while	Word	is
saving	it.

Options.BackgroundSave	=	True

This	example	returns	the	current	status	of	the	Allow	background	saves	option
on	the	Save	tab	in	the	Options	dialog	box.

Dim	blnAutoSave	As	Boolean

blnAutoSave	=	Options.BackgroundSave



BackgroundSavingStatus	Property
							

Returns	the	number	of	files	queued	up	to	be	saved	in	the	background.	Read-only
Long.



Example

This	example	displays	in	the	status	bar	the	number	of	documents	currently	being
saved.

Options.BackgroundSave	=True

Documents.Add

ActiveDocument.SaveAs

				While	Application.BackgroundSavingStatus	<>	0

								StatusBar	=	"Documents	remaining	to	save:	"	_

												&	Application.BackgroundSavingStatus

				DoEvents

Wend



BaseStyle	Property
							

Returns	or	sets	an	existing	style	on	which	you	can	base	the	formatting	of	another
style.	To	set	this	property,	specify	either	the	local	name	of	the	base	style,	an
integer	or	a	WdBuiltinStyle	constant,	or	an	object	that	represents	the	base	style.
Read/write	Variant.

For	a	list	of	the	WdBuiltinStyle	constants,	see	the	Style	property.



Example

This	example	creates	a	new	document	and	then	adds	a	new	paragraph	style
named	"myHeading."	It	assigns	Heading	1	as	the	base	style	for	the	new	style	.	A
left	indent	of	1	inch	(72	points)	is	then	specified	for	the	new	style.

Dim	docNew	As	Document

Dim	styleNew	As	Style

Set	docNew	=	Documents.Add

Set	styleNew	=	docNew.Styles.Add("NewHeading1")

With	styleNew

				.BaseStyle	=	docNew.Styles(wdStyleHeading1)

				.ParagraphFormat.LeftIndent	=	72

End	With

This	example	returns	the	base	style	that's	used	for	the	Body	Text	paragraph	style.

Dim	styleBase	As	Style

styleBase	=	ActiveDocument.Styles(wdStyleBodyText).BaseStyle

MsgBox	styleBase



BeginArrowheadLength	Property
							

Returns	or	sets	the	length	of	the	arrowhead	at	the	beginning	of	the	specified
line.	Read/write	MsoArrowheadLength.

MsoArrowheadLength	can	be	one	of	these	MsoArrowheadLength	constants.
msoArrowheadLengthMixed
msoArrowheadShort
msoArrowheadLengthMedium
msoArrowheadLong

expression.BeginArrowheadLength

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.



Example

This	example	adds	a	line	to	the	active	document.	There's	a	short,	narrow	oval	on
the	line's	starting	point	and	a	long,	wide	triangle	on	its	end	point.

Dim	docActive	As	Document

Set	docActive	=	ActiveDocument

With	docActive.Shapes.AddLine(100,	100,	200,	300).Line

				.BeginArrowheadLength	=	msoArrowheadShort

				.BeginArrowheadStyle	=	msoArrowheadOval

				.BeginArrowheadWidth	=	msoArrowheadNarrow

				.EndArrowheadLength	=	msoArrowheadLong

				.EndArrowheadStyle	=	msoArrowheadTriangle

				.EndArrowheadWidth	=	msoArrowheadWide

End	With



BeginArrowheadStyle	Property
							

Returns	or	sets	the	style	of	the	arrowhead	at	the	beginning	of	the	specified	line.
Read/write	MsoArrowheadStyle.

MsoArrowheadStyle	can	be	one	of	these	MsoArrowheadStyle	constants.
msoArrowheadNone
msoArrowheadOval
msoArrowheadStyleMixed
msoArrowheadDiamond
msoArrowheadOpen
msoArrowheadStealth
msoArrowheadTriangle

expression.BeginArrowheadStyle

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.



Example

This	example	adds	a	line	to	the	active	document.	There's	a	short,	narrow	oval	on
the	line's	starting	point	and	a	long,	wide	triangle	on	its	end	point.

Dim	docActive	As	Document

Set	docActive	=	ActiveDocument

With	docActive.Shapes.AddLine(100,	100,	200,	300).Line

				.BeginArrowheadLength	=	msoArrowheadShort

				.BeginArrowheadStyle	=	msoArrowheadOval

				.BeginArrowheadWidth	=	msoArrowheadNarrow

				.EndArrowheadLength	=	msoArrowheadLong

				.EndArrowheadStyle	=	msoArrowheadTriangle

				.EndArrowheadWidth	=	msoArrowheadWide

End	With



BeginArrowheadWidth	Property
							

Returns	or	sets	the	width	of	the	arrowhead	at	the	beginning	of	the	specified
line.	Read/write	MsoArrowheadWidth.

MsoArrowheadWidth	can	be	one	of	these	MsoArrowheadWidth	constants.
msoArrowheadNarrow
msoArrowheadWidthMedium
msoArrowheadWide
msoArrowheadWidthMixed

expression.BeginArrowheadWidth

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.



Example

This	example	adds	a	line	to	the	first		document.	There's	a	short,	narrow	oval	on
the	line's	starting	point	and	a	long,	wide	triangle	on	its	end	point.

Dim	docFirst	As	Document

Set	docFirst	=	Documents(1)

With	docFirst.Shapes.AddLine(100,	100,	200,	300).Line

				.BeginArrowheadLength	=	msoArrowheadShort

				.BeginArrowheadStyle	=	msoArrowheadOval

				.BeginArrowheadWidth	=	msoArrowheadNarrow

				.EndArrowheadLength	=	msoArrowheadLong

				.EndArrowheadStyle	=	msoArrowheadTriangle

				.EndArrowheadWidth	=	msoArrowheadWide

End	With



Black	Property
							

Sets	or	returns	a	Long	that	represents	the	black	component	of	a	CMYK	color.
Read-only.

expression.Black

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.



Example

This	example	creates	a	new	shape,	then	retrieves	the	four	CMYK	values	from	an
existing	shape	in	the	active	document,	and	then	sets	the	CMYK	fill	color	of	the
new	shape	to	the	same	CMYK	values.

Sub	ReturnAndSetCMYK()

				Dim	lngCyan	As	Long

				Dim	lngMagenta	As	Long

				Dim	lngYellow	As	Long

				Dim	lngBlack	As	Long

				Dim	shpHeart	As	Shape

				Dim	shpStar	As	Shape

				Set	shpHeart	=	ActiveDocument.Shapes(1)

				Set	shpStar	=	ActiveDocument.Shapes.AddShape	_

								(Type:=msoShape5pointStar,	Left:=200,	_

								Top:=100,	Width:=150,	Height:=150)

				'Get	current	shapes	CMYK	colors

				With	shpHeart.Fill.ForeColor

								lngCyan	=	.Cyan

								lngMagenta	=	.Magenta

								lngYellow	=	.Yellow

								lngBlack	=	.Black

				End	With

				'Set	new	shape	to	current	shapes	CMYK	colors

				shpStar.Fill.ForeColor.SetCMYK	_

								Cyan:=lngCyan,	Magenta:=lngMagenta,	_

								Yellow:=lngYellow,	Black:=lngBlack

End	Sub



BlueScreen	Property
							

True	if	Word	displays	text	as	white	characters	on	a	blue	background.	Read/write
Boolean.



Example

This	example	asks	users	whether	they	want	white	text	on	a	blue	background	and
presents	Yes	and	No	buttons	for	their	response.

If	MsgBox("Do	you	want	white	on	blue?",	36,	_

								"BlueScreen?")	=	vbYes	Then

				Options.BlueScreen	=	True

Else

				Options.BlueScreen	=	False

End	If



Bold	Property
							

True	if	the	font	or	range	is	formatted	as	bold.	Returns	True,	False	or
wdUndefined	(a	mixture	of	True	and	False).	Can	be	set	to	True,	False,	or
wdToggle.	Read/write	Long.



Example

This	example	formats	the	sixth	word	in	a	new	document	as	bold.

Set	newDoc	=	Documents.Add

Set	myRange	=	newDoc.Content

myRange.InsertAfter	"This	is	a	test	of	bold."

myRange.Words(6).Bold	=	True

This	example	makes	the	entire	selection	bold	if	part	of	the	selection	is	formatted
as	bold.

If	Selection.Type	=	wdSelectionNormal	Then

				If	Selection.Font.Bold	=	wdUndefined	Then	_

								Selection.Font.Bold	=	True

Else

				MsgBox	"You	need	to	select	some	text."

End	If

This	example	toggles	the	bold	format	for	the	selected	text.

If	Selection.Type	=	wdSelectionNormal	Then

				Selection.Range.Bold	=	wdToggle

End	If

This	example	makes	the	first	paragraph	in	the	active	document	bold.

ActiveDocument.Paragraphs(1).Range.Bold	=	True



BoldBi	Property
							

True	if	the	font	or	range	is	formatted	as	bold.	Returns	True,	False	or
wdUndefined	(for	a	mixture	of	bold	and	non-bold	text).	Can	be	set	to	True,
False,	or	wdToggle.	Read/write	Long.

expression.BoldBi

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.



Remarks

The	BoldBi	property	applies	to	text	in	a	right-to-left	language.

For	more	information	on	using	Word	with	right-to-left	languages,	see	Word
features	for	right-to-left	languages.

mk:@MSITStore:wdmain10.chm::/html/wdrefFeaturesAvailableInWordWhenBidirectionalLanguagesAreEnabled.htm


Example

This	example	makes	the	first	paragraph	in	the	active	right-to-left	language
document	bold.

ActiveDocument.Paragraphs(1).Range.BoldBi	=	True



BookFoldPrinting	Property
							

True	for	Microsoft	Word	to	print	a	document	in	a	series	of	booklets	so	the
printed	pages	can	be	folded	and	read	as	a	book.	Read/write	Boolean.

expression.BookFoldPrinting

expression			Required.	An	expression	that	returns	a	PageSetup	object.



Example

This	example	turns	the	active	document	into	a	booklet	that	prints	in	four-page
increments.

Sub	Booklet()

				With	PageSetup

								.BookFoldPrinting	=	True

								.BookFoldPrintingSheets	=	4

				End	With

End	Sub



BookFoldPrintingSheets	Property
							

Returns	or	sets	a	Long	which	represents	the	number	of	pages	for	each	booklet.
Read/write	Boolean.

expression.BookFoldPrintingSheets

expression			Required.	An	expression	that	returns	a	PageSetup	object.



Example

This	example	turns	the	active	document	into	a	booklet	that	will	print	in	sixteen-
page	booklets.

Sub	Booklet()

				With	PageSetup

								.BookFoldPrinting	=	True

								.BookFoldPrintingSheets	=	16

				End	With

End	Sub



Show	All



BookFoldRevPrinting	Property
							

True	for	Microsoft	Word	to	reverse	the	printing	order	for	book	fold	printing	of
bidirectional	or	Asian	language	documents.	Read/write	Boolean.

expression.BookFoldRevPrinting

expression			Required.	An	expression	that	returns	a	PageSetup	object.



Example

This	example	switches	from	left-to-right	book	printing	to	right-to-left	book
printing	for	a	bidirectional	or	Asian	language	document	that	will	print	in	sixteen-
page	increments.

Sub	BookletRev()

				With	PageSetup

								.BookFoldRevPrinting	=	True

								.BookFoldPrintingSheets	=	16

				End	With

End	Sub



Bookmark	Property
							

Returns	or	sets	the	name	of	the	bookmark	from	which	to	collect	table	of
authorities	entries.	Read/write	String.



Remarks

The	Bookmark	property	corresponds	to	the	\b	switch	for	a	TOA	(Table	of
Authorities)	field.



Example

If	a	table	of	authorities	exists	in	the	active	document,	the	entries	are	collected
from	the	area	defined	by	the	bookmark	named	"area."

If	ActiveDocument.TablesOfAuthorities.Count	>=	1	Then

				ActiveDocument.TablesOfAuthorities(1).Bookmark	=	"area"

End	If



BookmarkID	Property
							

Returns	the	number	of	the	bookmark	that	encloses	the	beginning	of	the	specified
selection	or	range;	returns	0	(zero)	if	there's	no	corresponding	bookmark.	The
number	corresponds	to	the	position	of	the	bookmark	in	the	document	—	1	for
the	first	bookmark,	2	for	the	second	one,	and	so	on.	Read-only	Long.



Example

This	example	displays	the	number	of	the	bookmark	that	encloses	the	beginning
of	the	selection.

MsgBox	"Bookmark	"	&	Selection.BookmarkID

This	example	adds	a	bookmark	named	"temp"	at	the	beginning	of	the	document
if	there's	not	already	a	bookmark	set	for	that	location.

Set	myRange	=	ActiveDocument.Content

myRange.Collapse	Direction:=wdCollapseStart

If	myRange.BookmarkID	=	0	Then

				ActiveDocument.Bookmarks.Add	Name:="temp",	Range:=myRange

End	If



Bookmarks	Property
							

Returns	a	Bookmarks	collection	that	represents	all	the	bookmarks	in	a
document,	range,	or	selection.	Read-only.

For	information	about	returning	a	single	member	of	a	collection,	see	Returning
an	Object	from	a	Collection.



Example

This	example	retrieves	the	starting	and	ending	character	positions	for	the	first
bookmark	in	the	active	document.

With	ActiveDocument.Bookmarks(1)

				BookStart	=	.Start

				BookEnd	=	.End

End	With

This	example	uses	the	aMarks()	array	to	store	the	name	of	each	bookmark
contained	in	the	active	document.

If	ActiveDocument.Bookmarks.Count	>=	1	Then

				ReDim	aMarks(ActiveDocument.Bookmarks.Count	-	1)

				i	=	0

				For	Each	aBookmark	In	ActiveDocument.Bookmarks

								aMarks(i)	=	aBookmark.Name

								i	=	i	+	1

				Next	aBookmark

End	If

This	example	applies	bold	formatting	to	the	first	range	of	bookmarked	text	in	the
selection.

If	Selection.Bookmarks.Count	>=	1	Then

				Selection.Bookmarks(1).Range.Bold	=	True

End	If



Border	Property
							

Returns	or	sets	whether	the	text	in	the	specified	callout	is	surrounded	by	a
border.	Read/write	MsoTriState.

MsoTriState	can	be	one	of	these	MsoTriState	constants.
msoCTrue
msoFalse
msoTriStateMixed
msoTriStateToggle
msoTrue	The	text	in	the	specified	callout	is	surrounded	by	a	border.

expression.Border

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

Read/write	Long.



Example

This	example	adds	an	oval	to	the	active	document	and	a	callout	that	points	to	the
oval.	The	callout	text	won't	have	a	border,	but	it	will	have	a	vertical	accent	bar
that	separates	the	text	from	the	callout	line.

Dim	docActive	As	Document

Set	docActive	=	ActiveDocument

With	docActive.Shapes

				.AddShape	msoShapeOval,	180,	200,	280,	130

				With	.AddCallout(msoCalloutTwo,	420,	170,	170,	40)

								.TextFrame.TextRange.Text	=	"My	oval"

								With	.Callout

												.Accent	=	True

												.Border	=	False

								End	With

				End	With

End	With



Borders	Property
							

Returns	a	Borders	collection	that	represents	all	the	borders	for	the	specified
object.

expression.Borders

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.



Remarks

For	information	about	returning	a	single	member	of	a	collection,	see	Returning
an	Object	from	a	Collection.



Example

This	example	applies	inside	and	outside	borders	to	the	first	table	in	the	active
document.

Set	myTable	=	ActiveDocument.Tables(1)

With	myTable.Borders

				.InsideLineStyle	=	wdLineStyleSingle

				.OutsideLineStyle	=	wdLineStyleDouble

End	With

This	example	applies	a	border	around	the	first	character	in	the	selection.	If
nothing	is	selected,	the	border	is	applied	to	the	first	character	after	the	insertion
point.

Selection.Characters(1).Borders.Enable	=	True

This	example	applies	a	bottom	border	below	all	centered	paragraphs	in	the	active
document.

For	Each	para	In	ActiveDocument.Paragraphs

				If	para.Alignment	=	wdAlignParagraphCenter	Then

								para.Borders(wdBorderBottom).LineStyle	=	wdLineStyleSingle

								para.Borders(wdBorderBottom).LineWidth	=	wdLineWidth300pt

				End	If

Next	para

This	example	adds	a	border	around	all	the	pages	in	the	current	section.

For	Each	aBorder	In	Selection.Sections(1).Borders

				aBorder.ArtStyle	=	wdArtBasicBlackDots

				aBorder.ArtWidth	=	6

Next	aBorder



BottomMargin	Property
							

Returns	or	sets	the	distance	(in	points)	between	the	bottom	edge	of	the	page	and
the	bottom	boundary	of	the	body	text.	Read/write	Single.



Example

This	example	sets	the	bottom	margin	to	72	points	(1	inch)	and	the	top	margin	to
2	inches	for	the	active	document.	The	InchesToPoints	method	is	used	to	convert
inches	to	points.

With	ActiveDocument.PageSetup

				.BottomMargin	=	72

				.TopMargin	=	InchesToPoints(2)

End	With

This	example	sets	the	bottom	margin	to	2.5	inches	for	all	the	sections	in	the
current	selection.

Selection.PageSetup.BottomMargin	=	InchesToPoints(2.5)

This	example	returns	the	bottom	margin	for	section	1	in	the	selection.	The
PointsToInches	method	is	used	to	convert	the	result	to	inches.

Dim	sngMargin	As	Single

sngMargin	=	Selection.Sections(1).PageSetup.BottomMargin

MsgBox	PointsToInches(sngMargin)	&	"	inches"



BottomPadding	Property
							

Returns	or	sets	the	amount	of	space	(in	points)	to	add	below	the	contents	of	a
single	cell	or	all	the	cells	in	a	table.	Read/write	Single.

expression.BottomPadding

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.



Remarks

The	setting	of	the	BottomPadding	property	for	a	single	cell	overrides	the	setting
of	the	BottomPadding	property	for	the	entire	table.



Example

This	example	sets	the	bottom	padding	for	the	first	table	in	the	active	document	to
40	pixels.

ActiveDocument.Tables(1).BottomPadding	=	_

				PixelsToPoints(40,	True)



Brightness	Property
							

Returns	or	sets	the	brightness	of	the	specified	picture	or	OLE	object.	The	value
for	this	property	must	be	a	number	from	0.0	(dimmest)	to	1.0	(brightest).
Read/write	Single.



Example

This	example	sets	the	brightness	for	the	first	shape	on	the	active	document.	The
first	shape		must	be	either	a	picture	or	an	OLE	object.

Dim	docActive	As	Document

Set	docActive	=	ActiveDocument

docActive.Shapes(1).PictureFormat.Brightness	=	0.3



BrowseExtraFileTypes	Property
							

Set	this	property	to	"text/html"	to	allow	hyperlinked	HTML	files	to	be	opened	in
Microsoft	Word	(instead	of	the	default	Internet	browser).	Read/write	String.



Example

This	example	allows	hyperlinked	HTML	files	to	be	opened	in	Word	(instead	of
the	default	Internet	browser).

Application.BrowseExtraFileTypes	=	"text/html"



Browser	Property
							

Returns	a	Browser	object	that	represents	the	Select	Browse	Object	tool	on	the
vertical	scroll	bar.	Read-only.



Example

This	example	moves	to	the	next	footnote	reference	mark	in	the	active	document.

With	Application.Browser

				.Target	=	wdBrowseFootnote

				.Next

End	With

This	example	moves	to	the	next	field	in	the	active	document.	The	text	from	the
initial	selection	to	the	next	field	is	formatted	as	bold.

Selection.ExtendMode	=	True

With	Application.Browser

				.Target	=	wdBrowseField

				.Next

End	With

With	Selection

				.Font.Bold	=	True

				.ExtendMode	=	False

				.Collapse	Direction:=wdCollapseEnd

End	With



Show	All



BrowserLevel	Property
							

As	it	applies	to	the	DefaultWebOptions	object.

Returns	or	sets	a	WdBrowserLevel	that	represents	the	level	of	the	Web	browser
for	which	you	want	to	target	new	Web	pages	created	in	Microsoft	Word.
Read/write.

WdBrowserLevel	can	be	one	of	these	WdBrowserLevel	constants.
wdBrowserLevelMicrosoftInternetExplorer6
wdBrowserLevelMicrosoftInternetExplorer5
wdBrowserLevelV4

expression.BrowserLevel

expression			Required.	An	expression	that	returns	a	DefaultWebOptions	object.



Remarks

After	you	set	the	BrowserLevel	property	on	the	DefaultWebOptions	object,	the
BrowserLevel	property	of	any	new	Web	pages	you	create	in	Word	will	be	the
same	as	the	global	setting.

As	it	applies	to	the	WebOptions	object.

Returns	or	sets	WdBrowserLevel	that	represents	the	level	of	Web	browser	at
which	you	want	to	target	the	specified	Web	page.	This	property	is	ignored	if	the
OptimizeForBrowser	property	is	set	to	False.	Read/write.

WdBrowserLevel	can	be	one	of	these	WdBrowserLevel	constants.
wdBrowserLevelMicrosoftInternetExplorer6
wdBrowserLevelMicrosoftInternetExplorer5
wdBrowserLevelV4

expression.BrowserLevel

expression			Required.	An	expression	that	returns	a	WebOptions	obejct.



Example

As	it	applies	to	the	DefaultWebOptions	object.

This	example	sets	Word	to	optimize	new	Web	pages	for	Microsoft	Internet
Explorer	5	and	creates	a	Web	page	based	on	this	setting.

With	Application.DefaultWebOptions

				.BrowserLevel	=	wdBrowserLevelMicrosoftInternetExplorer5

				.OptimizeForBrowser	=	True

End	With

Documents.Add	DocumentType:=wdNewWebPage

As	it	applies	to	the	WebOptions	object.

This	example	creates	a	new	Web	page	and	optimizes	it	for	Microsoft	Internet
Explorer	5.

Documents.Add	DocumentType:=wdNewWebPage

With	ActiveDocument.WebOptions

				.BrowserLevel	=	wdBrowserLevelMicrosoftInternetExplorer5

				.OptimizeForBrowser	=	True

End	With



BrowseWidth	Property
							

Returns	the	width	(in	points)	of	the	area	in	which	text	wraps	in	the	specified
pane.	Read-only	Long.

Note			This	property	works	only	when	you're	in	web	layout	view.



Build	Property
							

Returns	the	version	and	build	number	of	the	Word	application.	Read-only
String.



Example

This	example	displays	the	version	and	build	number	of	Word.

MsgBox	Prompt:=Application.Build,	_

				Title:="Microsoft	Word	Version"



BuiltIn	Property
							

True	if	the	specified	object	is	one	of	the	built-in	styles	or	caption	labels	in	Word.
Read-only	Boolean.



Remarks

You	can	specify	built-in	styles	across	all	languages	by	using	the	WdBuiltinStyle
constants	or	within	a	language	by	using	the	style	name	for	the	language	version
of	Word.	For	example,	if	you	specify	U.S.	English	in	your	Microsoft	Office
language	settings,	the	following	statements	are	equivalent:

ActiveDocument.Styles(wdStyleHeading1)

ActiveDocument.Styles("Heading	1")



Example

This	example	checks	all	the	styles	in	the	active	document.	When	it	finds	a	style
that	isn't	built	in,	it	displays	the	name	of	the	style.

Dim	styleLoop	As	Style

For	Each	styleLoop	in	ActiveDocument.Styles

				If	styleLoop.BuiltIn	=	False	Then

								Msgbox	styleLoop.NameLocal

				End	If

Next	styleLoop

This	example	checks	all	the	caption	labels	that	have	been	created	in	the
application.	When	it	finds	a	caption	label	that	isn't	built	in,	it	displays	the	name
of	the	label.

Dim	clLoop	As	CaptionLabel

For	Each	clLoop	in	CaptionLabels

				If	clLoop.BuiltIn	=	False	Then

								Msgbox	clLoop.Name

				End	If

Next	clLoop



BuiltinDictionary	Property
							

Returns	a	Dictionary	object	that	represents	the	main	dictionary	Microsoft	Word
uses	during	conversion	between	Hangul	and	Hanja.

expression.BuiltinDictionary

expression			Required.	An	expression	that	returns	a
HangulHanjaConversionDictionaries	object.



Remarks

For	more	information	on	using	Microsoft	Word	with	East	Asian	languages,	see
Word	features	for	East	Asian	languages.

mk:@MSITStore:wdmain10.chm::/html/wdrefFeaturesAvailableInWordWhenAsianLanguagesAreEnabled.htm


Example

This	example	displays	the	full	path	for	the	main	Hangul-Hanja	conversion
dictionary.

With	HangulHanjaDictionaries.BuiltinDictionary

				Msgbox	.Path	&	Application.PathSeparator	&	.Name

End	With



BuiltInDocumentProperties	Property
							

Returns	a	DocumentProperties	collection	that	represents	all	the	built-in
document	properties	for	the	specified	document.

expression.BuiltInDocumentProperties

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

mk:@MSITStore:vbaof10.chm::/html/ofobjDocumentProperties.htm


Remarks

To	return	a	single	DocumentProperty	object	that	represents	a	specific	built-in
document	property,	use	BuiltinDocumentProperties(index),	where	index	is	a
WdBuiltInProperty	constant.	For	a	list	of	valid	constants,	consult	the	Microsoft
Visual	Basic	Object	Browser.	For	information	about	returning	a	single	member
of	a	collection,	see	Returning	an	Object	from	a	Collection.

If	Microsoft	Word	doesn't	define	a	value	for	one	of	the	built-in	document
properties,	reading	the	Value	property	for	that	document	property	generates	an
error.

Use	the	CustomDocumentProperties	property	to	return	the	collection	of
custom	document	properties.

mk:@MSITStore:vbaof10.chm::/html/ofobjDocumentProperty.htm


Example

This	example	inserts	a	list	of	built-in	properties	at	the	end	of	the	active
document.

Sub	ListProperties()

				Dim	rngDoc	As	Range

				Dim	proDoc	As	DocumentProperty

				Set	rngDoc	=	ActiveDocument.Content

				rngDoc.Collapse	Direction:=wdCollapseEnd

				For	Each	proDoc	In	ActiveDocument.BuiltInDocumentProperties

								With	rngDoc

												.InsertParagraphAfter

												.InsertAfter	proDoc.Name	&	"=	"

												On	Error	Resume	Next

												.InsertAfter	proDoc.Value

								End	With

				Next

End	Sub

This	example	displays	the	number	of	words	in	the	active	document.

Sub	DisplayTotalWords()

				Dim	intWords	As	Integer

				intWords	=	ActiveDocument.BuiltInDocumentProperties(wdPropertyWords)

				MsgBox	"This	document	contains	"	&	intWords	&	"	words."

End	Sub



ButtonFieldClicks	Property
							

Returns	or	sets	the	number	of	clicks	(either	one	or	two)	required	to	run	a
GOTOBUTTON	or	MACROBUTTON	field.	Read/write	Long.



Example

This	example	sets	the	number	of	clicks	required	to	run	a	MACROBUTTON	or
GOTOBUTTON	field	to	one.

Options.ButtonFieldClicks	=	1



CalculateOnExit	Property
							

True	if	references	to	the	specified	form	field	are	automatically	updated
whenever	the	field	is	exited.	Read/write	Boolean.



Remarks

A	REF	field	can	be	used	to	reference	the	contents	of	a	form	field.	For	example,
{REF	SubTotal}	references	the	form	field	marked	by	the	SubTotal	bookmark.



Example

This	example	keeps	references	to	form	fields	in	Form.doc	from	being
automatically	updated	whenever	the	form	field	is	exited.

Dim	ffLoop	As	FormField

For	Each	ffLoop	In	Documents("Form.doc").FormFields

				ffLoop.CalculateOnExit	=	False

Next	ffLoop

This	example	adds	a	text	form	field	and	a	REF	field	in	a	new	document.
Whenever	text	is	typed	and	the	Text1	field	is	exited,	the	REF	field	is
automatically	updated.

With	Documents.Add

				.FormFields.Add	Range:=Selection.Range,	_

								Type:=wdFieldFormTextInput

				.Fields.Add	Range:=Selection.Range,	_

								Type:=wdFieldRef,	Text:="Text1"

				.FormFields("Text1").CalculateOnExit	=	True

				.Protect	Type:=wdAllowOnlyFormFields

End	With



Callout	Property
							

Returns	a	CalloutFormat	object	that	contains	callout	formatting	properties	for
the	specified	shape.	Applies	to	Shape	or	ShapeRange	objects	that	represent
callouts.	Read-only.



Example

This	example	adds	to	myDocument	an	oval	and	a	callout	that	points	to	the	oval.
The	callout	text	won't	have	a	border,	but	it	will	have	a	vertical	accent	bar	that
separates	the	text	from	the	callout	line.

Set	myDocument	=	ActiveDocument

With	myDocument.Shapes

				.AddShape	msoShapeOval,	180,	200,	280,	130

				With	.AddCallout(msoCalloutTwo,	420,	170,	170,	40)

								.TextFrame.TextRange.Text	=	"My	oval"

								With	.Callout

												.Accent	=	True

												.Border	=	False

								End	With

				End	With

End	With



CanOpen	Property
							

True	if	the	specified	file	converter	is	designed	to	open	files.	Read-only	Boolean.

Note			The	CanSave	property	returns	True	if	the	specified	file	converter	can	be
used	to	save	(export)	files.



Example

This	example	determines	whether	the	first	file	converter	is	able	to	open	files.

If	FileConverters(1).CanOpen	=	True	Then

				MsgBox	FileConverters(1).FormatName	&	"	can	open	files"

End	If

This	example	determines	whether	the	WordPerfect6x	file	converter	can	be	used
to	open	files.	If	the	CanOpen	property	returns	True,	a	document	named
"Test.wp"	is	opened.

If	FileConverters("WordPerfect6x").CanOpen	=	True	Then

				Documents.Open	FileName:="C:\Test.wp",	_

								Format:=FileConverters("WordPerfect6x").OpenFormat

End	If



CanSave	Property
							

True	if	the	specified	file	converter	is	designed	to	save	files.	Read-only	Boolean.

Note			The	CanOpen	property	returns	True	if	the	specified	file	converter	can	be
used	to	open	(import)	files.



Example

This	example	determines	whether	the	WordPerfect	converter	can	be	used	to	save
files.	If	the	return	value	is	True,	the	active	document	is	saved	in	WordPerfect	6.x
format.

Dim	lngSaveFormat	As	Long

If	Application.FileConverters("WordPerfect6x").CanSave	=	_

								True	Then

				lngSaveFormat	=	_

								Application.FileConverters("WordPerfect6x").SaveFormat

				ActiveDocument.SaveAs	FileName:="C:\Document.wp",	_

								FileFormat:=lngSaveFormat

End	If

This	example	displays	a	message	that	indicates	whether	the	third	converter	in	the
FileConverters	collection	can	save	files.

If	FileConverters(3).CanSave	=	True	Then

				MsgBox	FileConverters(3).FormatName	&	"	can	save	files"

Else

				MsgBox	FileConverters(3).FormatName	&	"	cannot	save	files"

End	If



CanvasItems	Property
							

Returns	a	CanvasShapes	object	that	represents	a	collection	of	shapes	in	a
drawing	canvas.

expression.CanvasItems

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	to	list.



Example

This	example	creates	a	new	drawing	canvas	in	the	active	document	and	adds	a
circle	to	the	canvas.

Sub	NewCanvasShape()

				Dim	shpCanvas	As	Shape

				Set	shpCanvas	=	ActiveDocument.Shapes.AddCanvas(	_

								Left:=100,	Top:=75,	Width:=150,	Height:=200)

				shpCanvas.CanvasItems.AddShape	_

								Type:=msoShapeOval,	Top:=25,	_

								Left:=25,	Width:=150,	Height:=150

End	Sub



CapsLock	Property
							

True	if	the	CAPS	LOCK	key	is	turned	on.	Read-only	Boolean.



Example

This	example	retrieves	the	current	state	of	the	CAPS	LOCK	key.

Dim	blnCapsLock	As	Boolean

blnCapsLock	=	Application.CapsLock



Caption	Property
							

TableOfFigures	object:	Returns	or	sets	the	label	that	identifies	the	items	to	be
included	in	a	table	of	figures.	Corresponds	to	the	\c	switch	for	a	TOC	field.
Read/write	String.

Window	or	Application	object:	Returns	or	sets	the	caption	text	for	the	specified
document	or	application	window.	Read/write	String.



Remarks

To	change	the	caption	of	the	application	window	to	the	default	text,	set	this
property	to	an	empty	string	("").



Example

This	example	displays	the	caption	of	each	window	in	the	Windows	collection.

Count	=	1

For	Each	win	In	Windows

				MsgBox	Prompt:=win.Caption,	Title:="Window"	&	Str(Count)	&	_

				"	Caption"

				Count	=	Count	+	1

Next	win

This	example	resets	the	caption	of	the	application	window.

Application.Caption	=	""

This	example	sets	the	caption	of	the	active	window	to	the	active	document	name.

ActiveDocument.ActiveWindow.Caption	=	ActiveDocument.FullName

This	example	changes	the	caption	of	the	Word	application	window	to	include	the
user	name.

Application.Caption	=	UserName	&	"'s	copy	of	Word"

This	example	inserts	a	Table	caption	and	then	changes	the	caption	of	the	first
table	of	figures	to	"Table."

Selection.Collapse	Direction:=wdCollapseStart

Selection.Range.InsertCaption	"Table"

If	ActiveDocument.TablesOfFigures.Count	>=	1	Then

				ActiveDocument.TablesOfFigures(1).Caption	=	"Table"

End	If



CaptionLabel	Property
							

Returns	or	sets	the	caption	label	("Figure,"	"Table,"	or	"Equation,"	for	example)
of	the	specified	caption.	Read/write	Variant.

Note			This	property	can	be	set	to	a	string	or	a	WdCaptionLabelID	constant.



Example

This	example	displays	the	name	("Microsoft	Excel	Worksheet,"	for	example)
and	caption	label	("Figure,"	for	example)	for	each	item	that	has	a	caption	added
automatically	when	inserted.

Dim	acLoop	As	AutoCaption

For	Each	acLoop	In	AutoCaptions

				If	acLoop.AutoInsert	=	True	Then	MsgBox	acLoop.Name	_

								&	vbCr	&	"Label	=	"	&	acLoop.CaptionLabel.Name

Next	acLoop

This	example	sets	the	caption	label	for	Word	tables	to	"Table"	and	then	inserts	a
new	table	immediately	after	the	selection.

With	AutoCaptions("Microsoft	Word	Table")

				.AutoInsert	=	True

				.CaptionLabel	=	wdCaptionTable

End	With

Selection.Collapse	Direction:=wdCollapseEnd

ActiveDocument.Tables.Add	Range:=Selection.Range,	NumRows:=2,	_

				NumColumns:=3



CaptionLabels	Property
							

Returns	a	CaptionLabels	collection	that	represents	all	the	available	caption
labels.	Read-only.

For	information	about	returning	a	single	member	of	a	collection,	see	Returning
an	Object	from	a	Collection.



Example

This	example	sets	the	numbering	style	for	table	captions.

CaptionLabels(wdCaptionTable).NumberStyle	=	_

				wdCaptionNumberStyleLowercaseRoman

This	example	adds	a	new	caption	label	named	"Photo"	and	then	inserts	a	photo
caption.

CaptionLabels.Add	Name:="Photo"

With	Selection

				.InsertParagraphAfter

				.InsertCaption	Label:="Photo"

End	With



Show	All



Case	Property
							

Returns	or	sets	a	WdCharacterCase	constant	that	represents	the	case	of	the	text
in	the	specified	range.	Read/write.

WdCharacterCase	can	be	one	of	these	WdCharacterCase	constants.
wdFullWidth
wdHalfWidth
wdHiragana
wdKatakana
wdLowerCase
wdNextCase
wdTitleSentence
wdTitleWord
wdToggleCase
wdUpperCase

expression.Case

expression			Required.	An	expression	that	returns	a	Range	object.



Remarks

Some	of	the	constants	listed	above	may	not	be	available	to	you,	depending	on
the	language	support	(U.S.	English,	for	example)	that	you’ve	selected	or
installed.



Example

This	example	changes	the	first	word	in	the	selection	to	uppercase.

Selection.Words(1).Case	=	wdUpperCase

This	example	capitalizes	the	first	letter	of	each	sentence	in	the	first	paragraph	of
the	document.

Set	myRange	=	ActiveDocument.Paragraphs(1).Range

For	Each	Sent	In	myRange.Sentences

				Sent.Case	=	wdTitleSentence

Next	Sent



Category	Property
							

Returns	or	sets	the	category	of	entries	to	be	included	in	a	table	of	authorities.
Corresponds	to	the	\c	switch	for	a	TOA	field.	Values	1	through	16	correspond	to
the	items	in	the	Category	list	on	the	Table	of	Authorities	tab	in	the	Index	and
Tables	dialog	box.	Read/write	Long.

Note			The	number	0	(zero),	which	corresponds	to	all	categories,	cannot	be	used
with	this	property.	You	can,	however,	use	0	to	specify	all	categories	when	you're
inserting	a	table	of	authorities.	The	following	example	inserts	a	table	of
authorities	for	all	categories.

ActiveDocument.TablesOfAuthorities.Add	_

				Range:=Selection.Range,	Category:=0



Example

This	example	formats	the	first	table	of	authorities	in	the	active	document	to
include	all	citations	in	the	first	category	(by	default,	the	Cases	category).

If	ActiveDocument.TablesOfAuthorities.Count	>=	1	Then

				ActiveDocument.TablesOfAuthorities(1).Category	=	1

End	If



CCList	Property
							

Returns	or	sets	the	carbon	copy	(CC)	recipients	for	a	letter	created	by	the	Letter
Wizard.	Read/write	String.



Example

This	example	displays	the	CC	list	text	for	the	active	document.

MsgBox	ActiveDocument.GetLetterContent.CCList

This	example	creates	a	new	LetterContent	object,	sets	the	courtesy	copies	by
setting	the	CClist	property,	and	then	runs	the	Letter	Wizard	by	using	the
RunLetterWizard	method.

Dim	lcNew	As	New	LetterContent

lcNew.CCList	=	"K.	Jordan,	D.	Funk,	D.	Morrison"

ActiveDocument.RunLetterWizard	LetterContent:=lcNew



Cells	Property
							

Returns	a	Cells	collection	that	represents	the	table	cells	in	a	column,	row,
selection,	or	range.	Read-only.

For	information	about	returning	a	single	member	of	a	collection,	see	Returning
an	Object	from	a	Collection.



Example

This	example	creates	a	3x3	table	and	assigns	a	sequential	cell	number	to	each
cell	in	the	table.

Set	newDoc	=	Documents.Add	

Set	myTable	=	newDoc.Tables.Add(Selection.Range,	3,	3)

i	=	1

For	Each	c	In	myTable.Range.Cells

				c.Range.InsertAfter	"Cell	"	&	i

				i	=	i	+	1

Next	c

This	example	sets	the	current	cell's	background	color	to	red.

If	Selection.Information(wdWithInTable)	=	True	Then

				Selection.Cells(1).Shading.BackgroundPatternColorIndex	=	wdRed

Else

				MsgBox	"The	insertion	point	is	not	in	a	table."

End	If



ChapterPageSeparator	Property
							

Returns	or	sets	the	separator	character	used	between	the	chapter	number	and	the
page	number.	Can	be	one	of	the	following	read/write	WdSeparatorType
constants.

WdSeparatorType	can	be	one	of	these	WdSeparatorType	constants.
wdSeparatorColon
wdSeparatorEnDash
wdSeparatorPeriod
wdSeparatorEmDash
wdSeparatorHyphen

expression.ChapterPageSeparator

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.



Remarks

Before	you	can	create	page	numbers	that	include	chapter	numbers,	the	document
headings	must	have	a	numbered	outline	format	applied	that	uses	styles	from	the
Bullets	and	Numbering	dialog	box.	To	do	this	in	Visual	Basic,	use	the
ApplyListTemplate	method.



Example

The	first	part	of	this	example	creates	a	new	document,	adds	chapter	titles	and
page	breaks,	and	then	formats	the	document	by	using	the	last	numbered	outline
format	listed	in	the	Bullets	and	Numbering	dialog	box.	The	second	part	of	the
example	adds	centered	page	numbers	—	including	the	chapter	number	—	to	the
header;	an	en	dash	separates	the	chapter	number	and	the	page	number.

Dim	intLoop	As	Integer

Dim	hfTemp	As	HeaderFooter

Documents.Add

For	intLoop	=	1	To	5

				With	Selection

								.TypeParagraph

								.InsertBreak

				End	With

Next	intLoop

ActiveDocument.Content.Style	=	wdStyleHeading1

ActiveDocument.Content.ListFormat.ApplyListTemplate	_

				ListTemplate:=ListGalleries(wdOutlineNumberGallery)	_

				.ListTemplates(7)

Set	hfTemp	=	ActiveDocument.Sections(1)	_

				.Headers(wdHeaderFooterPrimary)

With	hfTemp.PageNumbers

				.Add	PageNumberAlignment:=wdAlignPageNumberCenter

				.NumberStyle	=	wdPageNumberStyleArabic

				.IncludeChapterNumber	=	True

				.HeadingLevelForChapter	=	0

				.ChapterPageSeparator	=	wdSeparatorEnDash

End	With



ChapterStyleLevel	Property
							

Returns	or	sets	the	heading	style	that	marks	a	new	chapter	when	chapter
numbers	are	included	with	the	specified	caption	label.	The	number	1
corresponds	to	Heading	1,	2	corresponds	to	Heading	2,	and	so	on.	Read/write
Long.

Note			The	IncludeChapterNumber	property	must	be	set	to	True	for	chapter
numbers	to	be	included	with	caption	labels.



Example

This	example	formats	the	table's	caption	label	to	include	a	chapter	number.	The
chapter	number	is	taken	from	paragraphs	formatted	with	the	Heading	2	style.

With	CaptionLabels(wdCaptionTable)

				.IncludeChapterNumber	=	True

				.ChapterStyleLevel	=	2

End	With



Characters	Property
							

Returns	a	Characters	collection	that	represents	the	characters	in	a	document,
range,	or	selection.	Read-only.

For	information	about	returning	a	single	member	of	a	collection,	see	Returning
an	Object	from	a	Collection.



Example

This	example	displays	the	first	character	in	the	selection.	If	nothing	is	selected,
the	character	immediately	after	the	insertion	point	is	displayed.

char	=	Selection.Characters(1).Text

MsgBox	"The	first	character	is...	"	&	char

This	example	returns	the	number	of	characters	in	the	first	sentence	in	the	active
document	(spaces	are	included	in	the	count).

numchars	=	ActiveDocument.Sentences(1).Characters.Count



CharacterUnitFirstLineIndent
Property
							

Returns	or	sets	the	value	(in	characters)	for	a	first-line	or	hanging	indent.	Use	a
positive	value	to	set	a	first-line	indent,	and	use	a	negative	value	to	set	a	hanging
indent.	Read/write	Single.

expression.CharacterUnitFirstLineIndent

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.



Remarks

For	more	information	on	using	Word	with	Asian	languages,	see	Word	features
for	Asian	languages.

mk:@MSITStore:wdmain10.chm::/html/wdrefFeaturesAvailableInWordWhenAsianLanguagesAreEnabled.htm


Example

This	example	sets	a	first-line	indent	of	one	character	for	the	first	paragraph	in	the
active	document.

ActiveDocument.Paragraphs(1)	_

				.CharacterUnitFirstLineIndent	=	1

This	example	sets	a	hanging	indent	of	1.5	characters	for	the	second	paragraph	in
the	active	document.

ActiveDocument.Paragraphs(2)	_

				.CharacterUnitFirstLineIndent	=	-1.5



CharacterUnitLeftIndent	Property
							

Returns	or	sets	the	left	indent	value	(in	characters)	for	the	specified	paragraphs.
Read/write	Single.

expression.CharacterUnitLeftIndent

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.



Remarks

For	more	information	on	using	Word	with	Asian	languages,	see	Word	features
for	Asian	languages.

mk:@MSITStore:wdmain10.chm::/html/wdrefFeaturesAvailableInWordWhenAsianLanguagesAreEnabled.htm


Example

This	example	sets	the	left	indent	of	the	first	paragraph	in	the	active	document	to
one	character	from	the	left	margin.

ActiveDocument.Paragraphs(1)	_

				.CharacterUnitLeftIndent	=	1



CharacterUnitRightIndent	Property
							

Returns	or	sets	the	right	indent	value	(in	characters)	for	the	specified	paragraphs.
Read/write	Single.

expression.CharacterUnitRightIndent

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.



Remarks

For	more	information	on	using	Word	with	Asian	languages,	see	Word	features
for	Asian	languages.

mk:@MSITStore:wdmain10.chm::/html/wdrefFeaturesAvailableInWordWhenAsianLanguagesAreEnabled.htm


Example

This	example	sets	the	right	indent	for	all	paragraphs	in	the	active	document	to
one	character	from	the	right	margin.

ActiveDocument.Paragraphs	_

				.CharacterUnitRightIndent	=	1



Show	All



CharacterWidth	Property
							

Returns	or	sets	the	character	width	of	the	specified	range.	Read/write
WdCharacterWidth.

WdCharacterWidth	can	be	one	of	these	WdCharacterWidth	constants.
wdWidthFullWidth
wdWidthHalfWidth

expression.CharacterWidth

expression			Required.	An	expression	that	returns	a	Range	object.



Example

This	example	converts	the	current	selection	to	half-width	characters.

Selection.Range.CharacterWidth	=	wdWidthHalfWidth



CharsLine	Property
							

Returns	or	sets	the	number	of	characters	per	line	in	the	document	grid.
Read/write	Single.



Example

This	example	sets	the	number	of	characters	per	line	to	42	for	the	active
document.

ActiveDocument.PageSetup.CharsLine	=	42



CheckBox	Property
							

Returns	a	CheckBox	object	that	represents	a	check	box	form	field.	Read-only.



Remarks

If	the	CheckBox	property	is	applied	to	a	FormField	object	that	isn't	a	check	box
form	field,	the	property	won't	fail,	but	the	Valid	property	for	the	returned	object
will	be	False.



Example

This	example	clears	the	check	box	named	"Blue."

ActiveDocument.FormFields("Blue").CheckBox.Value	=	False

This	example	compares	the	current	value	with	the	default	value	of	the	check	box
named	"Check1."	If	the	values	are	equal,	the	blnSame	variable	is	set	to	True.

Dim	ffTemp	As	FormField

Dim	blnSame	As	Boolean

Set	ffTemp	=	ActiveDocument.FormFields("Check1").CheckBox

If	ffTemp.Default	=	ffTemp.Value	Then	

				blnSame	=	True

Else

				blnSame	=	False

End	If



CheckGrammarAsYouType	Property
							

True	if	Word	checks	grammar	and	marks	errors	automatically	as	you	type.
Read/write	Boolean.



Remarks

This	property	marks	grammatical	errors,	but	to	see	them	on	screen,	you	must	set
the	ShowGrammaticalErrors	property	to	True.



Example

This	example	sets	Word	to	check	for	grammatical	errors	as	you	type	and	to
display	any	errors	found	in	the	active	document.

Options.CheckGrammarAsYouType	=	True

ActiveDocument.ShowGrammaticalErrors	=	True

This	example	returns	the	status	of	the	Check	grammar	as	you	type	option	on
the	Spelling	&	Grammar	tab	in	the	Options	dialog	box	(Tools	menu).

Dim	blnCheck	As	Boolean

blnCheck	=	Options.CheckGrammarAsYouType



CheckGrammarWithSpelling
Property
							

True	if	Word	checks	grammar	while	checking	spelling.	Read/write	Boolean.



Remarks

This	property	controls	whether	Word	checks	grammar	when	you	check	spelling
by	using	the	Spelling	command	(Tools	menu).

To	check	spelling	or	grammar	from	a	Visual	Basic	procedure,	use	the
CheckSpelling	method	to	check	only	spelling	and	use	the	CheckGrammar
method	to	check	both	grammar	and	spelling.



Example

This	example	returns	the	status	of	the	Check	grammar	with	spelling	option	on
the	Spelling	&	Grammar	tab	in	the	Options	dialog	box.	If	the	option	is
selected,	the	procedure	checks	both	spelling	and	grammar	for	the	active
document;	otherwise,	only	spelling	is	checked.

If	Options.CheckGrammarWithSpelling	=	True	Then

				ActiveDocument.CheckGrammar

Else

				ActiveDocument.CheckSpelling

End	If



CheckHangulEndings	Property
							

True	if	Microsoft	Word	automatically	detects	Hangul	endings	and	ignores	them
during	conversion	from	Hangul	to	Hanja.	Read/write	Boolean.

expression.CheckHangulEndings

expression			Required.	An	expression	that	returns	an	Options	object.



Remarks

If	converting	from	Hanja	to	Hangul,	this	property	is	ignored.

For	more	information	on	using	Word	with	Asian	languages,	see	Word	features
for	Asian	languages.

mk:@MSITStore:wdmain10.chm::/html/wdrefFeaturesAvailableInWordWhenAsianLanguagesAreEnabled.htm


Example

This	example	asks	the	user	whether	to	set	Microsoft	Word	to	automatically
detect	Hangul	endings	and	ignore	them	during	conversion	from	Hangul	to	hanja.

x	=	MsgBox("Check	Hangul	endings	during	"	_

				&	"conversion	from	Hangul	to	Hanja?",	vbYesNo)

If	x	=	vbYes	Then

				Options.CheckHangulEndings	=	True

Else

				Options.CheckHangulEndings	=	False

End	If



CheckIfOfficeIsHTMLEditor
Property
							

True	if	Microsoft	Word	checks	to	see	whether	an	Office	application	is	the
default	HTML	editor	when	you	start	Word.	False	if	Word	does	not	perform	this
check.	The	default	value	is	True.	Read/write	Boolean.



Remarks

This	property	is	used	only	if	the	Web	browser	you	are	using	supports	HTML
editing	and	HTML	editors.

To	use	a	different	HTML	editor,	you	must	set	this	property	to	False	and	then
register	the	editor	as	the	default	system	HTML	editor.



Example

This	example	causes	Microsoft	Word	not	to	check	to	see	whether	an	Office
application	is	the	default	HTML	editor.

Application.DefaultWebOptions	_

				.CheckIfOfficeIsHTMLEditor	=	False



CheckIfWordIsDefaultHTMLEditor
Property
							

True	if	Microsoft	Word	checks	to	see	whether	it	is	the	default	HTML	editor
when	you	start	Word.	False	if	Word	does	not	perform	this	check.	The	default
value	is	True.	Read/write	Boolean.



Remarks

This	property	is	used	only	if	the	Web	browser	you	are	using	supports	HTML
editing	and	HTML	editors.

To	use	a	different	HTML	editor,	you	must	set	this	property	to	False	and	then
register	the	editor	as	the	default	system	HTML	editor.



Example

This	example	sets	Microsoft	Word	to	check	to	see	whether	it	is	the	default
HTML	editor.

Application.DefaultWebOptions	_

				.CheckIfWordIsDefaultHTMLEditor	=	True



CheckLanguage	Property
							

True	if	Microsoft	Word	automatically	detects	the	language	you	are	using	as	you
type.	Read/write	Boolean.

expression.CheckLanguage

expression			Required.	An	expression	that	returns	an	Application	object.



Remarks

If	you	haven't	set	up	Word	for	multilingual	editing,	the	CheckLanguage
property	always	returns	False.	For	more	information	about	automatic	language
detection,	see	About	automatic	language	detection.

mk:@MSITStore:wdmain10.chm::/html/wdconAboutAutomaticLanguageDetection.htm


Example

This	example	checks	to	see	if	automatic	language	detection	has	been	activated.

If	Application.CheckLanguage	=	True	Then

				MsgBox	"Automatic	language	detection	is	activated!"

End	If



CheckSpellingAsYouType	Property
							

True	if	Word	checks	spelling	and	marks	errors	automatically	as	you	type.
Read/write	Boolean.



Remarks

This	property	marks	spelling	errors,	but	to	see	them	on	the	screen,	you	must	set
the	ShowSpellingErrors	property	to	True.



Example

This	example	turns	off	automatic	spell	checking	in	Word.

Options.CheckSpellingAsYouType	=	False

This	example	sets	Word	to	check	for	spelling	errors	as	you	type	and	to	display
any	errors	found	in	the	active	document.

Options.CheckSpellingAsYouType	=	True

ActiveDocument.ShowSpellingErrors	=	True

This	example	returns	the	status	of	the	Check	spelling	as	you	type	option	on	the
Spelling	&	Grammar	tab	in	the	Options	dialog	box	(Tools	menu).

Dim	blnCheck	As	Boolean

blnCheck	=	Options.CheckSpellingAsYouType



Show	All



Child	Property
							

True	if	the	shape	is	a	child	shape	or	if	all	shapes	in	a	shape	range	are	child
shapes	of	the	same	parent.	Read-only	MsoTriState.

MsoTriState	can	be	one	of	these	MsoTriState	constants.
msoCTrue
msoFalse
msoTriStateMixed
msoTriStateToggle
msoTrue

expression.Child

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.



Example

This	example	selects	the	first	shape	in	the	canvas	and,	if	the	selected	shape	is	a
child	shape,	fills	the	shape	with	the	specified	color.	This	example	assumes	that
the	first	shape	in	the	active	document	is	a	drawing	canvas	that	contains	multiple
shapes.

Sub	FillChildShape()

				Dim	shpCanvasItem	As	Shape

				

				'Select	the	first	shape	in	the	drawing	canvas

				Set	shpCanvasItem	=	ActiveDocument.Shapes(1).CanvasItems(1)

				'Fill	selected	shape	if	it	is	a	child	shape

				With	shpCanvasItem

								If	.Child	=	msoTrue	Then

												.Fill.ForeColor.RGB	=	RGB(100,	0,	200)

								Else

												MsgBox	"This	shape	is	not	a	child	shape."

								End	If

				End	With

End	Sub



ChildFramesetCount	Property
							

Returns	the	number	of	child	Frameset	objects	associated	with	the	specified
Frameset	object.	This	property	applies	only	to	Frameset	objects	of	type
wdFramesetTypeFrameset.	Read-only	Long.



Remarks

For	more	information	on	creating	frames	pages,	see	Creating	frames	pages.



Example

This	example	displays	the	number	of	child	Frameset	objects	contained	by	the
Frameset	object	that	represents	the	specified	frames	page.

MsgBox	ActiveWindow.Document_

				.Frameset.ChildFramesetCount



ChildFramesetItem	Property
							

Returns	the	Frameset	object	that	represents	the	child	Frameset	object	specified
by	the	Index	argument.	This	property	applies	only	to	Frameset	objects	of	type
wdFramesetTypeFrameset.	Read-only.

expression.ChildFramesetItem(Index)

expression			Required.	An	expression	that	returns	a	Frameset	object.

Index			Required	Long.	The	index	number	of	the	specified	frame.



Remarks

For	more	information	on	creating	frames	pages,	see	Creating	frames	pages.



Example

This	example	sets	the	name	of	the	third	child	frame	of	the	specified	frame	to
"BottomFrame".

ActiveWindow.Document.Frameset	_

				.ChildFramesetItem(3).FrameName	=	"BottomFrame"



Children	Property
							

Returns	a	DiagramNodeChildren	object	that	contains	all	of	the	children	of	the
calling	diagram	node.

expression.Children

expression			Required.	An	expression	that	returns	a	DiagramNode	object.



Example

The	following	example	creates	a	diagram	and	adds	child	nodes	to	it.

Sub	CreatePyramidDiagram()

				Dim	dgnNode	As	DiagramNode

				Dim	shpDiagram	As	Shape

				Dim	intCount	As	Integer

				'Add	pyramid	diagram	to	current	document

				Set	shpDiagram	=	ThisDocument.Shapes.AddDiagram(	_

								Type:=msoDiagramPyramid,	Left:=10,	_

								Top:=15,	Width:=400,	Height:=475)

				'Add	first	child	diagram	node

				Set	dgnNode	=	shpDiagram.DiagramNode.Children.AddNode

				'Add	four	more	child	nodes

				For	intCount	=	1	To	3

								dgnNode.AddNode

				Next	intCount

End	Sub



ChildShapeRange	Property
							

Returns	a	ShapeRange	object	representing	the	child	shapes	of	a	selection.

expression.ChildShapeRange

expression			Required.	An	expression	that	returns	a	Selection	object.



Example

This	example	creates	a	new	document	with	a	drawing	canvas,	populates	the
drawing	canvas	with	shapes,	and	then,	after	checking	that	the	shapes	selected	are
child	shapes,	fills	the	child	shapes	with	a	pattern.

Sub	ChildShapes()

				Dim	docNew	As	Document

				Dim	shpCanvas	As	Shape

				'Create	a	new	document	with	a	drawing	canvas	and	shapes

				Set	docNew	=	Documents.Add

				Set	shpCanvas	=	docNew.Shapes.AddCanvas(	_

								Left:=100,	Top:=100,	Width:=200,	Height:=200)

				shpCanvas.CanvasItems.AddShape	msoShapeRectangle,	_

								Left:=0,	Top:=0,	Width:=100,	Height:=100

				shpCanvas.CanvasItems.AddShape	msoShapeOval,	_

								Left:=0,	Top:=50,	Width:=100,	Height:=100

				shpCanvas.CanvasItems.AddShape	msoShapeDiamond,	_

								Left:=0,	Top:=100,	Width:=100,	Height:=100

				'Select	all	shapes	in	the	canvas

				shpCanvas.CanvasItems.SelectAll

				'Fill	canvas	child	shapes	with	a	pattern

				If	Selection.HasChildShapeRange	=	True	Then

								Selection.ChildShapeRange.Fill.Patterned	msoPatternDivot

				Else

								MsgBox	"This	is	not	a	range	of	child	shapes."

				End	If

End	Sub



ClassName	Property
							

Returns	a	unique	name	that	identifies	the	file	converter.	Read-only	String.



Example

This	example	displays	the	class	name	and	format	name	of	the	first	converter	in
the	FileConverters	collection.

MsgBox	"ClassName=	"	&	FileConverters(1).ClassName	&	vbCr	_

				&	"FormatName=	"	&	FileConverters(1).FormatName

If	an	HTML	file	converter	is	available,	this	example	sets	the	HTML	format	as
the	default	save	format.

Dim	fcLoop	As	FileConverter

For	Each	fcLoop	In	FileConverters

				If	fcLoop.ClassName	=	"HTML"	Then	_

								Application.DefaultSaveFormat	=	"HTML"

Next	fcLoop



ClassType	Property
							

Returns	or	sets	the	class	type	for	the	specified	OLE	object,	picture,	or	field.
Read/write	String.



Remarks

This	property	is	read-only	for	linked	objects	other	than	DDE	links.

You	can	see	a	list	of	the	available	applications	in	the	Object	type	box	on	the
Create	New	tab	in	the	Object	dialog	box	(Insert	menu).	You	can	find	the
ClassType	string	by	inserting	an	object	as	an	inline	shape	and	then	viewing	the
field	codes.	The	class	type	of	the	object	follows	either	the	word	"EMBED"	or	the
word	"LINK."



Example

This	example	loops	through	all	the	floating	shapes	on	the	active	document	and
sets	all	linked	Microsoft	Excel	worksheets	to	be	updated	automatically.

Dim	shapeLoop	As	Shape

For	Each	shapeLoop	In	ActiveDocument.Shapes

				With	shapeLoop

								If	.Type	=	msoLinkedOLEObject	Then

												If	.OLEFormat.ClassType	=	"Excel.Sheet"	Then	

																.LinkFormat.AutoUpdate	=	True

												End	If

								End	If

				End	With

Next



ClickAndTypeParagraphStyle
Property
							

Returns	or	sets	the	default	paragraph	style	applied	to	text	by	the	Click	and	Type
feature	in	the	specified	document.	To	set	this	property,	specify	either	the	local
name	of	the	style,	an	integer,	or	a	WdBuiltinStyle	constant,	or	an	object	that
represents	the	style.	Read/write	Variant.

expression.ClickAndTypeParagraphStyle

expression			Required.	An	expression	that	returns	a	Document	object.



Remarks

For	a	list	of	the	WdBuiltinStyle	constants,	consult	the	Microsoft	Visual	Basic
Object	Browser.

If	the	InUse	property	for	the	specified	style	is	set	to	False,	an	error	occurs.

For	more	information	on	Click	and	Type,	see	Overview	of	Click	and	Type.

mk:@MSITStore:wdmain10.chm::/html/wdhowInsertTextGraphicsInBlankAreaOfDocument.htm


Example

This	example	sets	the	default	paragraph	style	applied	by	Click	and	Type	to	Plain
Text.

With	ActiveDocument

				x	=	"Plain	Text"

				If	.Styles(x).InUse	Then

								.ClickAndTypeParagraphStyle	=	x

				Else

								MsgBox	"Sorry,	this	style	is	not	in	use	yet."

				End	If

End	With



Closing	Property
							

Returns	or	sets	the	closing	text	for	a	letter	created	by	the	Letter	Wizard	(for
example,	"Sincerely	yours").	Read/write	String.



Example

This	example	displays	the	closing	text	from	the	active	document.

MsgBox	ActiveDocument.GetLetterContent.Closing

This	example	retrieves	letter	elements	from	the	active	document,	changes	the
closing	text	by	setting	the	Closing	property,	and	then	uses	the	SetLetterContent
method	to	update	the	document	to	reflect	the	changes.

Dim	lcCurrent	As	LetterContent

Set	lcCurrent	=	ActiveDocument.GetLetterContent

lcCurrent.Closing	=	"Sincerely	yours,"

ActiveDocument.SetLetterContent	LetterContent:=lcCurrent



Code	Property
							

Returns	a	Range	object	that	represents	a	field's	code.	A	field's	code	is	everything
that's	enclosed	by	the	field	characters	({	})	including	the	leading	space	and
trailing	space	characters.	You	can	access	a	field's	code	without	changing	the
view	from	field	results.	Read/write.



Example

This	example	displays	the	field	code	for	each	field	in	the	active	document.

Dim	fieldLoop	As	Field

For	Each	fieldLoop	In	ActiveDocument.Fields

				MsgBox	Chr(34)	&	fieldLoop.Code.Text	&	Chr(34)

Next	fieldLoop

This	example	changes	the	field	code	for	the	first	field	in	the	active	document	to
CREATEDATE.

Dim	rngTemp	As	Range

Set	rngTemp	=	ActiveDocument.Fields(1).Code

rngTemp.Text	=	"	CREATEDATE	"

ActiveDocument.Fields(1).Update

This	example	determines	whether	the	active	document	includes	a	mail	merge
field	named	"Title."

Dim	fieldLoop	As	Field

For	Each	fieldLoop	In	ActiveDocument.MailMerge.Fields

				If	InStr(1,	fieldLoop.Code.Text,	"Title",	1)	Then

								MsgBox	"A	Title	merge	field	is	in	this	document"

				End	If

Next	fieldLoop



CodeName	Property
							

Returns	the	code	name	for	the	specified	document.	Read-only	String.



Remarks

The	code	name	is	the	name	for	the	module	that	houses	event	macros	for	a
document.	The	default	name	for	the	module	is	"ThisDocument";	you	can	view	it
in	the	Project	window.	For	information	about	using	events	with	the	Document
object,	see	Using	Events	with	the	Document	Object.



Example

This	example	returns	the	name	of	the	code	window	for	the	active	document.

Msgbox	ActiveDocument.CodeName



Show	All



Color	Property
							

Returns	or	sets	the	24-bit	color	for	the	specified	Border	or	Font	object.	Can	be
any	valid	WdColor	constant	or	a	value	returned	by	Visual	Basic's	RGB
function.

WdColor	can	be	one	of	these	WdColor	constants.
wdColorGray625
wdColorGray70
wdColorGray80
wdColorGray875
wdColorGray95
wdColorIndigo
wdColorLightBlue
wdColorLightOrange
wdColorLightYellow
wdColorOliveGreen
wdColorPaleBlue
wdColorPlum
wdColorRed
wdColorRose
wdColorSeaGreen
wdColorSkyBlue
wdColorTan
wdColorTeal
wdColorTurquoise
wdColorViolet
wdColorWhite
wdColorYellow
wdColorAqua



wdColorAutomatic
wdColorBlack
wdColorBlue
wdColorBlueGray
wdColorBrightGreen
wdColorBrown
wdColorDarkBlue
wdColorDarkGreen
wdColorDarkRed
wdColorDarkTeal
wdColorDarkYellow
wdColorGold
wdColorGray05
wdColorGray10
wdColorGray125
wdColorGray15
wdColorGray20
wdColorGray25
wdColorGray30
wdColorGray35
wdColorGray375
wdColorGray40
wdColorGray45
wdColorGray50
wdColorGray55
wdColorGray60
wdColorGray65
wdColorGray75
wdColorGray85
wdColorGray90
wdColorGreen
wdColorLavender
wdColorLightGreen



wdColorLightTurquoise
wdColorLime
wdColorOrange
wdColorPink

expression.Color

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.



Example

This	example	changes	the	color	of	the	text	in	the	first	paragraph	of	the	active
document	to	green.

ActiveDocument.Paragraphs(1).Range.Font.Color	=	wdColorGreen

This	example	changes	the	color	of	the	selected	text	to	dark	red.

Selection.Font.Color	=	wdColorDarkRed

This	example	adds	a	dotted	indigo	border	around	each	cell	in	the	first	table.

If	ActiveDocument.Tables.Count	>=	1	Then

				For	Each	aBorder	In	ActiveDocument.Tables(1).Borders

								aBorder.Color	=	wdColorIndigo

								aBorder.LineStyle	=	wdLineStyleDashDot

								aBorder.LineWidth	=	wdLineWidth075pt

				Next	aBorder

End	If



ColorIndex	Property
							

Returns	or	sets	the	color	for	the	specified	border	or	font	object.	Read/write
WdColorIndex.

WdColorIndex	can	be	one	of	these	WdColorIndex	constants.
wdAuto
wdBlack
wdBlue
wdBrightGreen
wdByAuthor
wdDarkBlue
wdDarkRed
wdDarkYellow
wdGray25
wdGray50
wdGreen
wdNoHighlight
wdPink
wdRed
wdTeal
wdTurquoise
wdViolet
wdWhite
wdYellow

expression.ColorIndex

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.



Remarks

The	wdByAuthor	constant	is	not	valid	for	border	and	font	objects.



Example

This	example	changes	the	color	of	the	text	in	the	first	paragraph	in	the	active
document.

ActiveDocument.Paragraphs(1).Range.Font.ColorIndex	=	wdGreen

This	example	formats	the	selected	text	to	appear	in	red.

Selection.Font.ColorIndex	=	wdRed

This	example	adds	a	dotted	red	border	around	each	cell	in	the	first	table.

Dim	borderLoop	As	Border

If	ActiveDocument.Tables.Count	>=	1	Then

				For	Each	borderLoop	In	ActiveDocument.Tables(1).Borders

								With	borderLoop

												.ColorIndex	=	wdRed

												.LineStyle	=	wdLineStyleDashDot

												.LineWidth	=	wdLineWidth075pt

								End	With

				Next	borderLoop

End	If



Show	All



ColorIndexBi	Property
							

Returns	or	sets	the	color	for	the	specified	Font	object	in	a	right-to-left	language
document.	Read/write	WdColorIndex.

WdColorIndex	can	be	one	of	these	WdColorIndex	constants.
wdAuto
wdBlack
wdBlue
wdBrightGreen
wdByAuthor
wdDarkBlue
wdDarkRed
wdDarkYellow
wdGray25
wdGray50
wdGreen
wdNoHighlight
wdPink
wdRed
wdTeal
wdTurquoise
wdViolet
wdWhite
wdYellow

expression.ColorIndexBi

expression			Required.	An	expression	that	returns	a	Font	object.



Remarks

The	wdByAuthor	constant	is	not	valid	for	Font	objects.

For	more	information	on	using	Microsoft	Word	with	right-to-left	languages,	see
Word	features	for	right-to-left	languages.

mk:@MSITStore:wdmain10.chm::/html/wdrefFeaturesAvailableInWordWhenBidirectionalLanguagesAreEnabled.htm


Example

This	example	sets	the	color	of	the	Font	object	to	teal.

Selection.Font.ColorIndexBi	=	wdTeal



ColorType	Property
							

Returns	or	sets	the	type	of	color	transformation	applied	to	the	specified	picture
or	OLE	object.	Read/write	MsoPictureColorType.

MsoPictureColorType	can	be	one	of	these	MsoPictureColorType	constants.
msoPictureAutomatic
msoPictureBlackAndWhite
msoPictureGrayscale
msoPictureMixed
msoPictureWatermark

expression.ColorType

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.



Example

This	example	sets	the	color	transformation	to	grayscale	for	the	first	shape	on	the
active	document.	The	first	shape	must	be	either	a	picture	or	an	OLE	object.

Dim	docActive	As	Document

Set	docActive	=	ActiveDocument

docActive.Shapes(1).PictureFormat.ColorType	=	_

				msoPictureGrayScale



Show	All



Column	Property
							

	Column	property	as	it	applies	to	the	Bookmark	object.

True	if	the	specified	bookmark	is	a	table	column.	Read-only	Boolean.

expression.Column

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	TO	list.

	

	Column	property	as	it	applies	to	the	Cell	object.

Returns	a	read-only	Column	object	that	represents	the	table	column	containing
the	specified	cell.

expression.Column

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.



Example

As	it	applies	to	the	Bookmark	object.

This	example	creates	a	table	with	a	bookmark	and	then	displays	a	message	box
that	confirms	that	the	bookmark	is	a	table	column.

Dim	docNew	As	Document

Dim	tableNew	As	Table

Dim	rangeCell	As	Range

Set	docNew	=	Documents.Add

Set	tableNew	=	docNew.Tables.Add(Selection.Range,	3,	5)

Set	rangeCell	=	tableNew.Cell(3,5).Range

rangeCell.InsertAfter	"Cell(3,5)"	

docNew.Bookmarks.Add	Name:="BKMK_Cell35",	Range:=rangeCell

MsgBox	docNew.Bookmarks(1).Column

As	it	applies	to	the	Cell	object.

This	example	creates	a	3x5	table	and	applies	shading	to	the	even-numbered
columns.

Dim	tableNew	As	Table

Dim	cellLoop	As	Cell

Selection.Collapse	Direction:=wdCollapseStart

Set	tableNew	=	_

				ActiveDocument.Tables.Add(Range:=Selection.Range,	_

				NumRows:=3,	NumColumns:=5)

For	Each	cellLoop	In	tableNew.Rows(1).Cells

				If	cellLoop.ColumnIndex	Mod	2	=	0	Then	

								cellLoop.Column.Shading.Texture	=	wdTexture10Percent

				End	If

Next	cellLoop





ColumnIndex	Property
							

Returns	the	number	of	the	table	column	that	contains	the	specified	cell.	Read-
only	Long.



Example

This	example	creates	a	table	in	a	new	document,	selects	each	cell	in	the	first	row,
and	returns	the	column	number	that	contains	the	selected	cell.

Dim	docNew	As	Document

Dim	tableNew	As	Table

Dim	cellLoop	As	Cell

Set	docNew	=	Documents.Add

Set	tableNew	=	docNew.Tables.Add(Selection.Range,	3,	3)

For	Each	cellLoop	In	tableNew.Rows(1).Cells

				cellLoop.Select

				MsgBox	"This	is	column	"	&	cellLoop.ColumnIndex

Next	cellLoop

This	example	returns	the	column	number	of	the	cell	that	contains	the	insertion
point.

Msgbox	Selection.Cells(1).ColumnIndex



Columns	Property
							

Returns	a	Columns	collection	that	represents	all	the	table	columns	in	the	range,
selection,	or	table.	Read-only.

For	information	about	returning	a	single	member	of	a	collection,	see	Returning
an	Object	from	a	Collection.



Example

This	example	displays	the	number	of	columns	in	the	first	table	in	the	active
document.

If	ActiveDocument.Tables.Count	>=	1	Then

				MsgBox	ActiveDocument.Tables(1).Columns.Count

End	If

This	example	sets	the	width	of	the	current	column	to	1	inch.

If	Selection.Information(wdWithInTable)	=	True	Then

				Selection.Columns.SetWidth	ColumnWidth:=InchesToPoints(1),	_

								RulerStyle:=wdAdjustProportional

End	If



ColumnSelectMode	Property
							

True	if	column	selection	mode	is	active.	When	this	mode	is	active,	the	letters
"COL"	appear	on	the	status	bar.	Read/write	Boolean.



Example

This	example	selects	a	column	of	text	that's	two	words	across	and	three	lines
deep.	The	example	copies	the	selection	to	the	Clipboard	and	cancels	column
selection	mode.

With	Selection

				.Collapse	Direction:=wdCollapseStart

				.ColumnSelectMode	=	True

				.MoveRight	Unit:=wdWord,	Count:=2,	Extend:=wdExtend

				.MoveDown	Unit:=wdLine,	Count:=2,	Extend:=wdExtend

				.Copy

				.ColumnSelectMode	=	False

End	With



ColumnStripe	Property
							

Returns	or	sets	a	Long	that	represents	the	number	of	columns	in	the	banding
when	a	style	specifies	odd-	or	even-column	banding.	Read/write.

expression.ColumnStripe

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.



Remarks

Use	the	Condition	method	to	set	odd-	or	even-column	banding	for	a	table	style.



Example

This	example	creates	and	formats	a	new	table	style	then	applies	the	new	style	to
a	new	table.	The	resulting	style	causes	three	columns	every	third	column	and
two	rows	every	second	row	to	have	20%	shading.

Sub	NewTableStyle()

				Dim	styTable	As	Style

				With	ActiveDocument

								Set	styTable	=	.Styles.Add(Name:="TableStyle	1",	_

												Type:=wdStyleTypeTable)

								With	.Styles("TableStyle	1").Table

												.Condition(wdEvenColumnBanding).Shading	_

																.Texture	=	wdTexture20Percent

												.ColumnStripe	=	3

												.Condition(wdEvenRowBanding).Shading	_

																.Texture	=	wdTexture20Percent

												.RowStripe	=	2

								End	With

								With	.Tables.Add(Range:=Selection.Range,	NumRows:=15,	_

																NumColumns:=15)

												.Style	=	ActiveDocument.Styles("TableStyle	1")

								End	With

				End	With

End	Sub



Show	All



COMAddIns	Property
							

Returns	a	reference	to	the	COMAddIns	collection	that	represents	all	the
Component	Object	Model	(COM)	add-ins	currently	loaded	in	Microsoft	Word.
These	are	listed	in	the	COM	Add-Ins	dialog	box.	You	can	add	the	COM	Add-
Ins	command	to	your	Tools	menu	by	using	the	Customize	dialog	box	(Tools
menu).

expression.COMAddIns

expression			Required.	An	expression	that	returns	an	Application	object.

mk:@MSITStore:vbaof10.chm::/html/ofobjCOMAddIns.htm


CombineCharacters	Property
							

True	if	the	specified	range	contains	combined	characters.	Read/write	Boolean.

expression.CombineCharacters

expression			Required.	An	expression	that	returns	a	Range	object.



Example

This	example	combines	the	characters	in	the	selected	range.

Selection.Range.CombineCharacters	=	True



Command	Property
							

Returns	the	command	assigned	to	the	specified	key	combination.	Read-only
String.



Example

This	example	displays	the	keys	assigned	to	font	names.	A	message	is	displayed
if	no	keys	have	been	assigned	to	fonts.

Dim	kbLoop	As	KeyBinding

For	Each	kbLoop	In	KeyBindings

				If	kbLoop.KeyCategory	=	wdKeyCategoryFont	Then

								Count	=	Count	+	1

								MsgBox	kbLoop.Command	&	vbCr	&	kbLoop.KeyString

				End	If

Next	kbLoop

If	Count	=	0	Then	MsgBox	"Keys	haven't	been	assigned	to	fonts"



CommandBars	Property
							

Returns	a	CommandBars	collection	that	represents	the	menu	bar	and	all	the
toolbars	in	Microsoft	Word.

expression.CommandBars

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

mk:@MSITStore:vbaof10.chm::/html/ofobjCommandBars.htm


Remarks

Use	the	CustomizationContext	property	to	set	the	template	or	document
context	prior	to	accessing	the	CommandBars	collection.

For	information	about	returning	a	single	member	of	a	collection,	see	Returning
an	Object	from	a	Collection.



Example

This	example	enlarges	all	command	bar	buttons	and	enables	ToolTips.

With	CommandBars

				.LargeButtons	=	True

				.DisplayTooltips	=	True

End	With

This	example	displays	the	Drawing	toolbar	at	the	bottom	of	the	application
window.

With	CommandBars("Drawing")

				.Visible	=	True

				.Position	=	msoBarBottom

End	With

This	example	adds	the	Versions	command	button	to	the	Standard	toolbar.

CustomizationContext	=	NormalTemplate

CommandBars("Standard").Controls.Add	Type:=msoControlButton,	_

				ID:=2522,	Before:=4



CommandName	Property
							

Returns	the	name	of	the	procedure	that	displays	the	specified	built-in	dialog	box.
Read-only	String.



Remarks

For	more	information	about	working	with	built-in	Word	dialog	boxes,	see
Displaying	built-in	Word	dialog	boxes.



Example

This	example	displays	the	name	of	the	procedure	that	displays	the	Save	As
dialog	box	(File	menu),	FileSaveAs.

MsgBox	Dialogs(wdDialogFileSaveAs).CommandName



CommandParameter	Property
							

Returns	the	command	parameter	assigned	to	the	specified	shortcut	key.	Read-
only	String.

Note			For	information	about	commands	that	take	parameters,	see	Add	Method
(KeyBindings	Object).	Use	the	Command	property	to	return	the	command
name	assigned	to	the	specified	shortcut	key.



Example

This	example	assigns	a	shortcut	key	to	the	FontSize	command,	with	a	command
parameter	of	8.	Use	the	CommandParameter	property	to	display	the	command
parameter	along	with	the	command	name	and	key	string.

Dim	kbNew	As	KeyBinding

Set	kbNew	=	KeyBindings.Add(KeyCategory:=wdKeyCategoryCommand,	_

				Command:="FontSize",	_

				KeyCode:=BuildKeyCode(wdKeyControl,	wdKeyAlt,	wdKeyS),	_

				CommandParameter:="8")

MsgBox	kbNew.Command	&	Chr$(32)	&	kbNew.CommandParameter	_

				&	vbCr	&	kbNew.KeyString



Comment	Property
							

Returns	the	comment	associated	with	the	specified	version	of	a	document.	Read-
only	String.



Example

This	example	displays	the	comment	text	for	the	first	version	of	the	active
document.

If	ActiveDocument.Versions.Count	>=	1	Then

				MsgBox	Prompt:=ActiveDocument.Versions(1).Comment,	_

								Title:="First	Version	Comment"

End	If

This	example	saves	a	version	of	the	document	with	the	user's	comment	and	then
displays	the	comment.

Dim	verTemp	As	Versions

Dim	strComment	As	String

Dim	lngCount	As	Long

Set	verTemp	=	ActiveDocument.Versions

strComment	=	InputBox("Type	a	comment")

verTemp.Save	Comment:=strComment

lngCount	=	verTemp.Count

MsgBox	Prompt:=verTemp(lngCount).Comment,	_

				Title:=verTemp(lngCount).SavedBy



Comments	Property
							

Returns	a	Comments	collection	that	represents	all	the	comments	in	the	specified
document,	selection,	or	range.	Read-only.

For	information	about	returning	a	single	member	of	a	collection,	see	Returning
an	Object	from	a	Collection.



Example

This	example	adds	a	comment	to	the	selected	text.

ActiveDocument.ActiveWindow.View.ShowHiddenText	=	True

Selection.Comments.Add	Range:=Selection.Range,	Text:="Approved"

This	example	compares	the	author	name	of	each	comment	in	the	active
document	with	the	user	name	on	the	User	Information	tab	in	the	Options
dialog	box	(Tools	menu).	If	the	names	aren't	the	same,	the	comment	reference
mark	is	formatted	to	appear	in	red.

For	Each	comm	In	ActiveDocument.Comments

				If	comm.Author	<>	Application.UserName	Then	_

								comm.Reference.Font.ColorIndex	=	wdRed

Next	comm



Show	All



CommentsColor	Property
							

Returns	or	sets	a	WdColorIndex	constant	that	represents	the	color	of	comments
in	a	document.	Read/write.

WdColorIndex	can	be	one	of	these	WdColorIndex	constants.
wdAuto
wdBlack
wdBlue
wdBrightGreen
wdByAuthor
wdDarkBlue
wdDarkRed
wdDarkYellow
wdGray25
wdGray50
wdGreen
wdNoHighlight
wdPink
wdRed
wdTeal
wdTurquoise
wdViolet
wdWhite
wdYellow

expression.CommentsColor

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.



Example

This	example	sets	the	global	option	for	Microsoft	Word	to	color	comments	made
in	documents	according	to	the	author	of	the	comment.

Sub	ColorCodeComments()

				Options.CommentsColor	=	wdByAuthor

End	Sub



Show	All



Compatibility	Property
							

True	if	the	compatibility	option	specified	by	the	Type	argument	is	enabled.
Compatibility	options	affect	how	a	document	is	displayed	in	Microsoft	Word.
Read/write	Boolean.

expression.Compatibility(Type)

expression			Required.	An	expression	that	returns	a	Document	object.

Type		Required	WdCompatibility.	The	compatibility	option.

WdCompatibility	can	be	one	of	these	WdCompatibility	constants.
wdAlignTablesRowByRow
wdApplyBreakingRules
wdAutospaceLikeWW7
wdConvMailMergeEsc
wdDontAdjustLineHeightInTable
wdDontBalanceSingleByteDoubleByteWidth
wdDontBreakWrappedTables
wdDontSnapTextToGridInTableWithObjects
wdDontULTrailSpace
wdDontUseHTMLParagraphAutoSpacing
wdExactOnTop
wdExpandShiftReturn
wdFootnoteLayoutLikeWW8
wdForgetLastTabAlignment
wdLayoutRawTableWidth
wdLayoutTableRowsApart
wdLeaveBackslashAlone
wdLineWrapLikeWord6



wdMWSmallCaps
wdNoColumnBalance
wdNoExtraLineSpacing
wdNoLeading
wdNoSpaceForUL
wdNoSpaceRaiseLower
wdNoTabHangIndent
wdOrigWordTableRules
wdPrintBodyTextBeforeHeader
wdPrintColBlack
wdSelectFieldWithFirstOrLastCharacter
wdShapeLayoutLikeWW8
wdShowBreaksInFrames
wdSpacingInWholePoints
wdSubFontBySize
wdSuppressBottomSpacing
wdSuppressSpBfAfterPgBrk
wdSuppressTopSpacing
wdSuppressTopSpacingMac5
wdSwapBordersFacingPages
wdTransparentMetafiles
wdUsePrinterMetrics
wdWPJustification
wdWrapTrailSpaces
wdTruncateFontHeight
wdUseWord97LineBreakingRules
wdWPSpaceWidth
wdWW6BorderRules



Remarks

Some	of	the	constants	listed	above	may	not	be	available	to	you,	depending	on
the	language	support	(U.S.	English,	for	example)	that	you’ve	selected	or
installed.



Example

This	example	enables	the	Suppress	Space	Before	after	a	hard	page	or	column
break	option	on	the	Compatibility	tab	in	the	Options	dialog	box	(Tools	menu)
for	the	active	document.

ActiveDocument.Compatibility(wdSuppressSpBfAfterPgBrk)	=	True

This	example	toggles	the	Don't	add	automatic	tab	stop	for	hanging	indent
option	on	or	off.

ActiveDocument.Compatibility(wdNoTabHangIndent)	=	Not	_

				ActiveDocument.Compatibility(wdNoTabHangIndent)



Show	All



Compiled	Property
							

True	if	the	specified	add-in	is	a	Word	add-in	library	(WLL).	False	if	the	add-in
is	a	template.	Read-only	Boolean.



Example

This	example	determines	how	many	WLLs	are	currently	loaded.

count	=	0

For	Each	aAddin	in	Addins

				If	aAddin.Compiled	=	True	And	aAddin.Installed	=	True	Then

								count	=	count	+	1

				End	If

Next	aAddin

MsgBox	Str(count)	&	"	WLL's	are	loaded"

If	the	first	add-in	is	a	template,	this	example	unloads	the	template	and	opens	it.

If	Addins(1).Compiled	=	False	Then	

				Addins(1).Installed	=	False

				Documents.Open	FileName:=AddIns(1).Path	_

								&	Application.PathSeparator	_

								&	AddIns(1).Name

End	If



ComposeStyle	Property
							

Returns	a	Style	object	that	represents	the	style	used	to	compose	new	e-mail
messages.	Read-only.



Example

This	example	displays	the	name	of	the	default	style	used	to	compose	new	e-mail
messages.

MsgBox	Application.EmailOptions.ComposeStyle.NameLocal

This	example	changes	the	font	color	of	the	default	style	used	to	compose	new	e-
mail	messages.

Application.EmailOptions.ComposeStyle.Font.Color	=	_

				wdColorBrightGreen



ConfirmConversions	Property
							

True	if	Word	displays	the	Convert	File	dialog	box	before	it	opens	or	inserts	a
file	that	isn't	a	Word	document	or	template.	In	the	Convert	File	dialog	box,	the
user	chooses	the	format	to	convert	the	file	from.	Read/write	Boolean.



Example

This	example	sets	Word	to	display	the	Convert	File	dialog	box	whenever	a	file
that	isn't	a	Word	document	or	template	is	opened.

Options.ConfirmConversions	=	True

This	example	returns	the	current	status	of	the	Confirm	conversion	at	Open
option	on	the	General	tab	in	the	Options	dialog	box.

Dim	blnConfirm	As	Boolean

blnConfirm=	Options.ConfirmConversions



ConnectString	Property
							

Returns	the	connection	string	for	the	specified	mail	merge	data	source.	Read-
only	String.



Example

This	example	creates	a	new	main	document	and	attaches	the	Customers	table
from	a	Microsoft	Access	database	named	"Northwind.mdb."	The	connection
string	is	displayed	in	a	message	box.

Dim	docNew	As	Document

Set	docNew	=	Documents.Add

With	docNew.MailMerge

				.MainDocumentType	=	wdFormLetters

				.OpenDataSource	_

								Name:="C:\Program	Files\Microsoft	Office\Office"	&	_

								"\Samples\Northwind.mdb",	_

								LinkToSource:=True,	AddToRecentFiles:=False,	_

								Connection:="TABLE	Customers"

				MsgBox	.DataSource.ConnectString

End	With



ConsecutiveHyphensLimit	Property
							

Returns	or	sets	the	maximum	number	of	consecutive	lines	that	can	end	with
hyphens.	Read/write.	Long.

Note			If	this	property	is	set	to	0	(zero),	any	number	of	consecutive	lines	can	end
with	hyphens.



Example

This	example	enables	automatic	hyphenation	for	MyReport.doc	and	limits	the
number	of	consecutive	lines	that	can	end	with	hyphens	to	two.

With	Documents("MyReport.doc")

				.AutoHyphenation	=	True

				.ConsecutiveHyphensLimit	=	2

End	With

This	example	sets	no	limit	on	the	number	of	consecutive	lines	that	can	end	with
hyphens.

ActiveDocument.ConsecutiveHyphensLimit	=	0



Container	Property
							

Returns	the	object	that	represents	the	container	application	for	the	specified	OLE
object.	Read-only.



Remarks

This	property	provides	access	to	the	specified	document's	container	application
if	the	document	is	embedded	in	another	application	as	an	OLE	object.

The	Container	property	also	provides	a	pathway	into	the	object	model	of	the
container	application	if	a	Word	document	is	opened	as	an	ActiveX	document	—
for	example,	when	a	Word	document	is	opened	in	Microsoft	Office	Binder	or
Internet	Explorer.



Example

This	example	displays	the	name	of	the	container	application	for	the	first	shape	in
the	active	document.	For	the	example	to	work,	this	shape	must	be	an	OLE
object.

Msgbox	ActiveDocument.Shapes(1).OLEFormat.Object.Container.Name



ContainingRange	Property
							

Returns	a	Range	object	that	represents	the	entire	story	in	a	series	of	shapes	with
linked	text	frames	that	the	specified	text	frame	belongs	to.	Read-only.



Example

This	example	checks	the	spelling	in	TextBox	1	and	any	other	text	in	text	frames
that	are	linked	to	TextBox	1.

Dim	rngStory	As	Range

Set	rngStory	=	ActiveDocument.Shapes("TextBox	1")	_

				.TextFrame.ContainingRange

rngStory.CheckSpelling



Show	All



Content	Property
							

Returns	a	Range	object	that	represents	the	main	document	story.	Read-only.



Remarks

The	following	two	statements	are	equivalent:

Set	mainStory	=	ActiveDocument.Content

Set	mainStory	=	ActiveDocument.StoryRanges(wdMainTextStory)



Example

This	example	changes	the	font	and	font	size	of	the	text	in	the	active	document	to
Arial	10	point.

Set	myRange	=	ActiveDocument.Content

With	myRange.Font

				.Name	=	"Arial"

				.Size	=	10

End	With

This	example	inserts	text	at	the	end	of	the	document	named	"Changes.doc."	The
For	Each...Next	statement	is	used	to	determine	whether	the	document	is	open.

For	Each	aDocument	In	Documents

				If	InStr(LCase$(aDocument.Name),	"changes.doc")	Then

								Set	myRange	=	Documents("Changes.doc").Content

								myRange.InsertAfter	"the	end."

				End	If

Next	aDocument



Context	Property
							

Returns	an	object	that	represents	the	storage	location	of	the	specified	key
binding.	This	property	can	return	a	Document,	Template,	or	Application
object.	Read-only.

Note			Built-in	key	assignments	(for	example,	CTRL+I	for	Italic)	return	the
Application	object	as	the	context.	Any	key	bindings	you	add	will	return	a
Document	or	Template	object,	depending	on	the	customization	context	in	effect
when	the	KeyBinding	object	was	added.



Example

This	example	displays	the	name	of	the	document	or	template	where	the	macro
named	"Macro1"	is	stored.

Sub	TestContext1()

				Dim	kbMacro1	As	KeysBoundTo

				

				Set	kbMacro1	=	KeysBoundTo(KeyCategory:=wdKeyCategoryMacro,	_

								Command:="Macro1")

				MsgBox	kbMacro1.Context.Name

End	Sub

This	example	adds	the	F2	key	to	the	Italic	command	and	then	uses	the	For
Each...Next	loop	to	display	the	keys	assigned	to	the	Italic	command	along	with
the	context.

Dim	kbLoop	As	KeyBinding

CustomizationContext	=	NormalTemplate

KeyBindings.Add	KeyCategory:=wdKeyCategoryCommand,	_

				Command:="Italic",	KeyCode:=wdKeyF2

For	Each	kbLoop	In	_

								KeysBoundTo(KeyCategory:=wdKeyCategoryCommand,	_

								Command:="Italic")

				MsgBox	kbLoop.KeyString	&	vbCr	&	kbLoop.Context.Name

Next	kbLoop



ContinuationNotice	Property
							

Returns	a	Range	object	that	represents	the	footnote	or	endnote	continuation
notice.	Read-only.



Example

This	example	replaces	the	current	footnote	continuation	notice	with	the	text
"Continued...".

With	ActiveDocument.Footnotes.ContinuationNotice

				.Delete

				.InsertBefore	"Continued..."

End	With



ContinuationSeparator	Property
							

Returns	a	Range	object	that	represents	the	footnote	or	endnote	continuation
separator.	Read-only.



Example

This	example	replaces	the	current	endnote	continuation	separator	with	a	series	of
underscore	characters.

With	ActiveDocument.Endnotes.ContinuationSeparator

				.Delete

				.InsertBefore	"____"

End	With



Contrast	Property
							

Returns	or	sets	the	contrast	for	the	specified	picture	or	OLE	object.	The	value	for
this	property	must	be	a	number	from	0.0	(the	least	contrast)	to	1.0	(the	greatest
contrast).	Read/write	Single.



Example

This	example	sets	the	contrast	for	the	first	shape	on	the	active	document.	The
first	shape	must	be	either	a	picture	or	an	OLE	object.

Dim	docActive	As	Document

Set	docActive	=	ActiveDocument

docActive.Shapes(1).PictureFormat.Contrast	=	0.8



ConvertHighAnsiToFarEast	Property
							

True	if	Microsoft	Word	converts	text	that	is	associated	with	an	East	Asian	font
to	the	appropriate	font	when	it	opens	a	document.	Read/write	Boolean.

expression.ConvertHighAnsiToFarEast

expression			Required.	An	expression	that	returns	an	Options	object.



Remarks

For	more	information	on	using	Word	with	Asian	languages,	see	Word	features
for	Asian	languages.

mk:@MSITStore:wdmain10.chm::/html/wdrefFeaturesAvailableInWordWhenAsianLanguagesAreEnabled.htm


Example

This	example	sets	Microsoft	Word	to	convert	text	that	is	associated	with	an	East
Asian	font	to	the	appropriate	font	when	it	opens	a	document.

Options.ConvertHighAnsiToFarEast	=	True



ConvertMacWordChevrons	Property
							

Controls	whether	text	enclosed	in	chevron	characters	(«	»)	is	converted	to	merge
fields.	Read/write	Long.	WdChevronConvertRule

Can	be	one	of	the	following	WdChevronConvertRule	constants.

Constant Description

wdAlwaysConvert The	converter	attempts	to	convert	text	enclosed	in
chevrons	(«	»)	to	mail	merge	fields.

wdNeverConvert The	converter	passes	the	text	through	without
attempting	any	interpretation.

wdAskToConvert,
wdAskToNotConvert

The	converter	prompts	the	user	to	convert	or	not
convert	chevrons	when	a	Word	for	the	Macintosh
document	is	opened.



Remarks

Word	for	the	Macintosh	version	4.0	and	5.x	documents	use	chevron	characters	to
denote	mail	merge	fields.



Example

This	example	sets	the	ConvertMacWordChevrons	property	to	convert	the	text
enclosed	in	chevrons	to	mail	merge	fields,	and	then	it	opens	the	document
named	"Mac	Word	Document."

FileConverters.ConvertMacWordChevrons	=	wdAlwaysConvert

Documents.Open	FileName:="C:\Documents\Mac	Word	Document"



CorrectCapsLock	Property
							

True	if	Word	automatically	corrects	instances	in	which	you	use	the	CAPS
LOCK	key	inadvertently	as	you	type.	Read/write	Boolean.



Example

This	example	determines	whether	Word	is	set	to	automatically	correct	CAPS
LOCK	key	errors.

If	AutoCorrect.CorrectCapsLock	=	True	Then

				MsgBox	"Correct	CAPS	LOCK	is	active."

Else

				MsgBox	"Correct	CAPS	LOCK	is	not	active."

End	If



CorrectDays	Property
							

True	if	Word	automatically	capitalizes	the	first	letter	of	days	of	the	week.
Read/write	Boolean.



Example

This	example	sets	Word	to	automatically	capitalize	the	first	letter	of	days	of	the
week.

AutoCorrect.CorrectDays	=	True

This	example	toggles	the	value	of	the	CorrectDays	property.

AutoCorrect.CorrectDays	=	Not	AutoCorrect.CorrectDays



CorrectHangulAndAlphabet
Property
							

True	if	Microsoft	Word	automatically	applies	the	correct	font	to	Latin	words
typed	in	the	middle	of	Hangul	text	or	vice	versa.	Read/write	Boolean.

expression.CorrectHangulAndAlphabet

expression			Required.	An	expression	that	returns	an	AutoCorrect	object.



Remarks

For	more	information	on	using	Microsoft	Word	with	Asian	languages,	see	Word
features	for	Asian	languages.

mk:@MSITStore:wdmain10.chm::/html/wdrefFeaturesAvailableInWordWhenAsianLanguagesAreEnabled.htm


Example

This	example	sets	Microsoft	Word	to	automatically	apply	the	correct	font	to
Latin	words	typed	in	the	middle	of	Hangul	text	or	vice	versa.

AutoCorrect.CorrectHangulAndAlphabet	=	True



CorrectHangulEndings	Property
							

True	if	Microsoft	Word	automatically	corrects	Hangul	endings	when	replacing
Hangul	text.	Read/write	Boolean.

expression.CorrectHangulEndings

expression			Required.	An	expression	that	returns	a	Find	object.



Remarks

For	more	information	on	using	Microsoft	Word	with	East	Asian	languages,	see
Word	features	for	East	Asian	languages.

mk:@MSITStore:wdmain10.chm::/html/wdrefFeaturesAvailableInWordWhenAsianLanguagesAreEnabled.htm


Example

This	example	sets	Microsoft	Word	to	automatically	correct	Hangul	endings
when	replacing	Hangul	text.

With	Selection.Find

				.Forward	=	True

				.Wrap	=	wdFindContinue

				.Format	=	False

				.CorrectHangulEndings	=	True

End	With



CorrectInitialCaps	Property
							

True	if	Word	automatically	makes	the	second	letter	lowercase	if	the	first	two
letters	of	a	word	are	typed	in	uppercase.	For	example,	"WOrd"	is	corrected	to
"Word."	Read/write	Boolean.



Example

This	example	sets	Word	to	automatically	correct	errors	in	initial	capitalization.

AutoCorrect.CorrectInitialCaps	=	True



CorrectKeyboardSetting	Property
							

True	if	Microsoft	Word	automatically	transposes	words	to	their	native	alphabet
if	you	type	text	in	a	language	other	than	the	current	keyboard	language.
Read/write	Boolean.

expression.CorrectKeyboardSetting

expression			Required.	An	expression	that	returns	an	AutoCorrect	object.



Remarks

The	CheckLanguage	property	must	be	set	to	True	in	order	to	use	the
CorrectKeyboardSetting	property.

For	more	information	on	using	Word	with	multiple	languages,	see	Troubleshoot
multilingual	text	and	automatic	language	detection.

mk:@MSITStore:wdmain10.chm::/html/wdtbsTroubleshootMultilingualDocumentsInWord.htm


Example

This	example	displays	a	dialog	box	where	the	user	can	choose	whether	or	not
Word	automatically	transposes	foreign	words	to	their	native	alphabets.

x	=	MsgBox("Do	you	want	Microsoft	Word	to	tranpose	"	_

				&	"foreign	words	to	their	native	alphabet?",	_

				vbYesNo)

If	x	=	vbYes	Then

				Application.CheckLanguage	=	True

				AutoCorrect.CorrectKeyboardSetting	=	True

				MsgBox	"Automatic	keyboard	correction	enabled!"

End	If



CorrectSentenceCaps	Property
							

True	if	Word	automatically	capitalizes	the	first	letter	in	each	sentence.
Read/write	Boolean.



Example

This	example	toggles	the	value	of	the	CorrectSentenceCaps	property.

AutoCorrect.CorrectSentenceCaps	=	Not	_

				AutoCorrect.CorrectSentenceCaps



CorrectTableCells	Property
							

True	to	automatically	capitalize	the	first	letter	of	table	cells.	Read/write
Boolean.

expression.CorrectTableCells

expression			Required.	An	expression	that	returns	an	AutoCorrect	object.



Example

This	example	disables	automatic	capitalization	of	the	first	letter	typed	within
table	cells.

Sub	AutoCorrectFirstLetterOfTableCells()

				Application.AutoCorrect.CorrectTableCells	=	False

End	Sub



Count	Property
							

Returns	the	number	of	items	in	the	specified	collection.	Read-only	Long.

expression.Count

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.



Example

This	example	displays	the	number	of	paragraphs	in	the	active	document.

MsgBox	"The	active	document	contains	"	&	_

				ActiveDocument.Paragraphs.Count		&	"paragraphs."

This	example	displays	the	number	of	words	in	the	selection.

If	Selection.Words.Count	>=	1	And	_

								Selection.Type	<>	wdSelectionIP	Then

				MsgBox	"The	selection	contains	"	&	Selection.Words.Count	_

								&	"	words."

End	If

This	example	uses	the	aFields()	array	to	store	the	field	codes	in	the	active
document.

fcount	=	ActiveDocument.Fields.Count

If	fcount	>=	1	Then

				ReDim	aFields(fcount)

				For	Each	aField	In	ActiveDocument.Fields

								aFields(aField.Index)	=	aField.Code.Text

				Next	aField

End	If



CountBy	Property
							

Returns	or	sets	the	numeric	increment	for	line	numbers.	For	example,	if	the
CountBy	property	is	set	to	5,	every	fifth	line	will	display	the	line	number.	Line
numbers	are	only	displayed	in	print	layout	view	and	print	preview.	Read/write
Long.



Remarks

This	property	has	no	effect	unless	the	Active	property	of	the	LineNumbering
object	is	set	to	True.



Example

This	example	turns	on	line	numbering	for	the	active	document.	The	line	number
is	displayed	on	every	fifth	line	and	line	numbering	starts	over	for	each	new
section.

With	ActiveDocument.PageSetup.LineNumbering

				.Active	=	True

				.CountBy	=	5

				.RestartMode	=	wdRestartSection

End	With



Country	Property
							

Returns	the	country/region	designation	of	the	system.	Read-only	WdCountry.

WdCountry	can	be	one	of	these	WdCountry	constants.
wdArgentina
wdCanada
wdChina
wdFinland
wdGermany
wdItaly
wdKorea
wdMexico
wdNorway
wdSpain
wdTaiwan
wdUS
wdBrazil
wdChile
wdDenmark
wdFrance
wdIceland
wdJapan
wdLatinAmerica
wdNetherlands
wdPeru
wdSweden
wdUK
wdVenezuela



expression.Country

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.



Example

If	the	Country	property	returns	wdUS,	this	example	converts	the	top	margin
value	from	points	to	inches.

Dim	sngMargin	As	Single

If	System.Country	=	wdUS	Then	

				sngMargin	=	ActiveDocument.PageSetup.TopMargin

				MsgBox	"Top	margin	is	"	&	PointsToInches(sngMargin)

End	If



CreateBackup	Property
							

True	if	Word	creates	a	backup	copy	each	time	a	document	is	saved.	Read/write
Boolean.



Remarks

The	CreateBackup	and	AllowFastSave	properties	cannot	be	set	to	True
concurrently.



Example

This	example	sets	Word	to	automatically	create	a	backup	copy,	and	then	it	saves
the	active	document.

Options.CreateBackup	=	True

ActiveDocument.Save

This	example	returns	the	current	status	of	the	Always	create	backup	copy
option	on	the	Save	tab	in	the	Options	dialog	box.

Dim	blnBackup	As	Boolean

blnBackup	=	Options.CreateBackup



Creator	Property
							

Returns	a	32-bit	integer	that	indicates	the	application	in	which	the	specified
object	was	created.	For	example,	if	the	object	was	created	in	Microsoft	Word,
this	property	returns	the	hexadecimal	number	4D535744,	which	represents	the
string	"MSWD."	This	value	can	also	be	represented	by	the	constant
wdCreatorCode.	Read-only	Long.

expression.Creator

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.



Remarks

The	Creator	property	was	primarily	designed	to	be	used	on	the	Macintosh,
where	each	application	has	a	four-character	creator	code.	For	example,
Microsoft	Word	has	the	creator	code	MSWD.	For	additional	information	about
this	property,	consult	the	language	reference	Help	included	with	Microsoft
Office	Macintosh	Edition.



Example

This	example	displays	a	message	about	the	creator	of	myObject.

Set	myObject	=	ActiveDocument

If	myObject.Creator	=	wdCreatorCode	Then

				MsgBox	"This	is	a	Microsoft	Word	object"

Else

				MsgBox	"This	is	not	a	Microsoft	Word	object"

End	If



CropBottom	Property
							

Returns	or	sets	the	number	of	points	that	are	cropped	off	the	bottom	of	the
specified	picture	or	OLE	object.	Read/write	Single.

Note			Cropping	is	calculated	relative	to	the	original	size	of	the	picture.	For
example,	if	you	insert	a	picture	that	is	originally	100	points	high,	rescale	it	so
that	it's	200	points	high,	and	then	set	the	CropBottom	property	to	50,	100	points
(not	50)	will	be	cropped	off	the	bottom	of	your	picture.



Example

This	example	crops	20	points	off	the	bottom	of	shape	three	on	the	active
document.	For	the	example	to	work,	shape	three	must	be	either	a	picture	or	an
OLE	object.

ActiveDocument.Shapes(3).PictureFormat.CropBottom	=	20

This	example	crops	the	percentage	specified	by	the	user	off	the	bottom	of	the
selected	shape,	regardless	of	whether	the	shape	has	been	scaled.	For	the	example
to	work,	the	selected	shape	must	be	either	a	picture	or	an	OLE	object.

Dim	dblPercent	As	Double

Dim	shapeCrop	As	Shape

Dim	sngHeight	As	Single

Dim	sngCrop	As	Single

dblPercent	=	Val(InputBox("What	percentage	do	you	want	"	_

				&	"to	crop	off	the	bottom	of	this	picture?"))

Set	shapeCrop	=	_

				Selection.ShapeRange(1)

With	shapeCrop.Duplicate

				.ScaleHeight	1,	True

				sngHeight	=	.Height

				.Delete

End	With

sngCrop	=	sngHeight	*	dblPercent	/	100

shapeCrop.PictureFormat.CropBottom	=	sngCrop



CropLeft	Property
							

Returns	or	sets	the	number	of	points	that	are	cropped	off	the	left	side	of	the
specified	picture	or	OLE	object.	Read/write	Single.

Note			Cropping	is	calculated	relative	to	the	original	size	of	the	picture.	For
example,	if	you	insert	a	picture	that	is	originally	100	points	wide,	rescale	it	so
that	it's	200	points	wide,	and	then	set	the	CropLeft	property	to	50,	100	points
(not	50)	will	be	cropped	off	the	left	side	of	your	picture.



Example

This	example	crops	20	points	off	the	left	side	of	shape	three	on	the	active
document.	For	the	example	to	work,	shape	three	must	be	either	a	picture	or	an
OLE	object.

ActiveDocument.Shapes(3).PictureFormat.CropLeft	=	20

This	example	crops	the	percentage	specified	by	the	user	off	the	left	side	of	the
selected	shape,	regardless	of	whether	the	shape	has	been	scaled.	For	the	example
to	work,	the	selected	shape	must	be	either	a	picture	or	an	OLE	object.

Dim	dblPercent	As	Double

Dim	shapeCrop	As	Shape

Dim	sngHeight	As	Single

Dim	sngCrop	As	Single

dblPercent	=	Val(InputBox("What	percentage	do	you	want	"	_

				&	"to	crop	off	the	left	of	this	picture?"))

Set	shapeCrop	=	_

				Selection.ShapeRange(1)

With	shapeCrop.Duplicate

				.ScaleHeight	1,	True

				sngHeight	=	.Height

				.Delete

End	With

sngCrop	=	sngHeight	*	dblPercent	/	100

shapeCrop.PictureFormat.Crop	Left	=	sngCrop



CropRight	Property
							

Returns	or	sets	the	number	of	points	that	are	cropped	off	the	right	side	of	the
specified	picture	or	OLE	object.	Read/write	Single.

Note			Cropping	is	calculated	relative	to	the	original	size	of	the	picture.	For
example,	if	you	insert	a	picture	that	is	originally	100	points	wide,	rescale	it	so
that	it's	200	points	wide,	and	then	set	the	CropRight	property	to	50,	100	points
(not	50)	will	be	cropped	off	the	right	side	of	your	picture.



Example

This	example	crops	20	points	off	the	right	side	of	shape	three	on	the	active
document.	For	this	example	to	work,	shape	three	must	be	either	a	picture	or	an
OLE	object.

ActiveDocument.Shapes(3).PictureFormat.CropRight	=	20

This	example	crops	the	percentage	specified	by	the	user	off	the	right	side	of	the
selected	shape,	regardless	of	whether	the	shape	has	been	scaled.	For	the	example
to	work,	the	selected	shape	must	be	either	a	picture	or	an	OLE	object.

Dim	dblPercent	As	Double

Dim	shapeCrop	As	Shape

Dim	sngHeight	As	Single

Dim	sngCrop	As	Single

dblPercent	=	Val(InputBox("What	percentage	do	you	want	"	_

				&	"to	crop	off	the	right	of	this	picture?"))

Set	shapeCrop	=	_

				Selection.ShapeRange(1)

With	shapeCrop.Duplicate

				.ScaleHeight	1,	True

				sngHeight	=	.Height

				.Delete

End	With

sngCrop	=	sngHeight	*	dblPercent	/	100

shapeCrop.PictureFormat.Crop	Right	=	sngCrop



CropTop	Property
							

Returns	or	sets	the	number	of	points	that	are	cropped	off	the	top	of	the	specified
picture	or	OLE	object.	Read/write	Single.

Note			Cropping	is	calculated	relative	to	the	original	size	of	the	picture.	For
example,	if	you	insert	a	picture	that	is	originally	100	points	high,	rescale	it	so
that	it's	200	points	high,	and	then	set	the	CropTop	property	to	50,	100	points
(not	50)	will	be	cropped	off	the	top	of	your	picture.



Example

This	example	crops	20	points	off	the	top	of	shape	three	on	the	active	document.
For	the	example	to	work,	shape	three	must	be	either	a	picture	or	an	OLE	object.

ActiveDocument.Shapes(3).PictureFormat.CropTop	=	20

This	example	crops	the	percentage	specified	by	the	user	off	the	top	of	the
selected	shape,	regardless	of	whether	the	shape	has	been	scaled.	For	the	example
to	work,	the	selected	shape	must	be	either	a	picture	or	an	OLE	object.

Dim	dblPercent	As	Double

Dim	shapeCrop	As	Shape

Dim	sngHeight	As	Single

Dim	sngCrop	As	Single

dblPercent	=	Val(InputBox("What	percentage	do	you	want	"	_

				&	"to	crop	off	the	top	of	this	picture?"))

Set	shapeCrop	=	_

				Selection.ShapeRange(1)

With	shapeCrop.Duplicate

				.ScaleHeight	1,	True

				sngHeight	=	.Height

				.Delete

End	With

sngCrop	=	sngHeight	*	dblPercent	/	100

shapeCrop.PictureFormat.CropTop	=	sngCrop



CtrlClickHyperlinkToOpen	Property
							

True	if	Microsoft	Word	requires	holding	down	the	CTRL	key	while	clicking	to
open	a	hyperlink.	Read/write	Boolean.

expression.CtrlClickHyperlinkToOpen

expression			Required.	An	expression	that	returns	an	Options	object.



Example

This	example	disables	the	option	that	requires	holding	down	the	CTRL	key	and
clicking	on	hyperlinks	to	open	them.

Sub	ToggleHyperlinkOption()

				Options.CtrlClickHyperlinkToOpen	=	False

End	Sub



CurrentEmailAuthor	Property
							

Returns	an	EmailAuthor	object	that	represents	the	author	of	the	current	e-mail
message.	Read-only.



Example

This	example	returns	the	name	of	the	style	associated	with	the	current	e-mail
author.

MsgBox	ActiveDocument.Email	_

				.CurrentEmailAuthor.Style.NameLocal



Cursor	Property
							

Returns	or	sets	the	state	(shape)	of	the	pointer.	Can	be	one	of	the	following
WdCursorType	constants:	wdCursorIBeam,	wdCursorNormal,
wdCursorNorthwestArrow,	or	wdCursorWait.	Read/write	Long.



Example

This	example	prints	a	message	on	the	status	bar	and	changes	the	pointer	to	a
busy	pointer.

Dim	intWait	As	Integer

StatusBar	=	"Please	wait..."

For	intWait	=	1	To	1000

				System.Cursor	=	wdCursorWait

Next	intWait

StatusBar	=	"Task	completed"

System.Cursor	=	wdCursorNormal



Show	All



CursorMovement	Property
							

Returns	or	sets	how	the	insertion	point	progresses	within	bidirectional	text.
Read/write	WdCursorMovement.

WdCursorMovement	can	be	one	of	these	WdCursorMovement	constants.
wdCursorMovementLogical	Insertion	point	progresses	according	to	the
direction	of	the	language	Microsoft	Word	detects.
wdCursorMovementVisual	Insertion	point	progresses	to	the	next	visually
adjacent	character.

expression.CursorMovement

expression			Required.	An	expression	that	returns	an	Options	object.



Remarks

For	more	information	on	using	Word	with	right-to-left	languages,	see	Word
features	for	right-to-left	languages.

mk:@MSITStore:wdmain10.chm::/html/wdrefFeaturesAvailableInWordWhenBidirectionalLanguagesAreEnabled.htm


Example

This	example	sets	the	insertion	point	to	progress	to	the	next	visually	adjacent
character	as	it	moves	through	bidirectional	text.

Options.CursorMovement	=	wdCursorMovementVisual



CustomDictionaries	Property
							

Returns	a	Dictionaries	object	that	represents	the	collection	of	active	custom
dictionaries.	Active	custom	dictionaries	are	marked	with	a	check	in	the	Custom
Dictionaries	dialog	box.	Read-only.

For	information	about	returning	a	single	member	of	a	collection,	see	Returning
an	Object	from	a	Collection.



Example

This	example	adds	a	new,	blank	custom	dictionary	to	the	collection.	The	path
and	file	name	of	the	new	custom	dictionary	are	then	displayed	in	a	message	box.

Dim	dicHome	As	Dictionary

Set	dicHome	=	CustomDictionaries.Add(Filename:="Home.dic")

Msgbox	dicHome.Path	&	Application.PathSeparator	&	dicHome.Name

This	example	removes	all	custom	dictionaries	so	that	no	custom	dictionaries	are
active.	The	custom	dictionary	files	aren't	deleted,	though.

CustomDictionaries.ClearAll

This	example	displays	the	name	of	each	custom	dictionary	in	the	collection.

Dim	dicLoop	As	Dictionary

For	Each	dicLoop	In	CustomDictionaries

				MsgBox	dicLoop.Name

Next	dicLoop



CustomDocumentProperties	Property
							

Returns	a	DocumentProperties	collection	that	represents	all	the	custom
document	properties	for	the	specified	document.

expression.CustomDocumentProperties

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

mk:@MSITStore:vbaof10.chm::/html/ofobjDocumentProperties.htm


Remarks

Use	the	BuiltInDocumentProperties	property	to	return	the	collection	of	built-in
document	properties.

For	information	about	returning	a	single	member	of	a	collection,	see	Returning
an	Object	from	a	Collection.



Example

This	example	inserts	a	list	of	custom	built-in	properties	at	the	end	of	the	active
document.

Set	myRange	=	ActiveDocument.Content

myRange.Collapse	Direction:=wdCollapseEnd

For	Each	prop	In	ActiveDocument.CustomDocumentProperties

				With	myRange

								.InsertParagraphAfter

								.InsertAfter	prop.Name	&	"=	"

								.InsertAfter	prop.Value

				End	With

Next

This	example	adds	a	custom	built-in	property	to	Sales.doc.

thename	=	InputBox("Please	type	your	name",	"Name")

Documents("Sales.doc").CustomDocumentProperties.Add	_

				Name:="YourName",	LinkToContent:=False,	Value:=thename,	_

				Type:=msoPropertyTypeString



CustomizationContext	Property
							

Returns	or	sets	a	Template	or	Document	object	that	represents	the	template	or
document	in	which	changes	to	menu	bars,	toolbars,	and	key	bindings	are	stored.
Corresponds	to	the	value	of	the	Save	in	box	on	the	Commands	tab	in	the
Customize	dialog	box	(Tools	menu).	Read/write.



Example

This	example	adds	the	ALT+CTRL+W	key	combination	to	the	FileClose
command.	The	keyboard	customization	is	saved	in	the	Normal	template.

CustomizationContext	=	NormalTemplate

KeyBindings.Add	KeyCode:=BuildKeyCode(wdKeyControl,	_

				wdKeyAlt,	wdKeyW),	_

				KeyCategory:=wdKeyCategoryCommand,	Command:="FileClose"

This	example	adds	the	File	Versions	button	to	the	Standard	toolbar.	The
command	bar	customization	is	saved	in	the	template	attached	to	the	active
document.

CustomizationContext	=	ActiveDocument.AttachedTemplate

Application.CommandBars("Standard").Controls.Add	_

				Type:=msoControlButton,	_

				ID:=2522,	Before:=8



CustomLabels	Property
							

Returns	a	CustomLabels	collection	that	represents	the	available	custom	mailing
labels.	Read-only.

For	information	about	returning	a	single	member	of	a	collection,	see	Returning
an	Object	from	a	Collection.



Example

This	example	creates	a	new	custom	label	named	"AdminAddress"	and	then
creates	a	page	of	mailing	labels	using	a	predefined	return	address.

Dim	strAddress	As	String

Dim	labelNew	As	CustomLabel

strAddress	=	"Administration"	&	vbCr	&	"Mail	Stop	22-16"

Set	labelNew	=	Application.MailingLabel	_

				.CustomLabels.Add(Name:="AdminAddress",	DotMatrix:=	False)

With	labelNew

				.Height	=	InchesToPoints(0.5)

				.Width	=	InchesToPoints(1)

				.HorizontalPitch	=	InchesToPoints(2.06)

				.VerticalPitch	=	InchesToPoints(0.5)

				.NumberAcross	=	4

				.NumberDown	=	20

				.PageSize	=	wdCustomLabelLetter

				.SideMargin	=	InchesToPoints(0.28)

				.TopMargin	=	InchesToPoints(0.5)

End	With

Application.MailingLabel.CreateNewDocument	_

				Name:="AdminAddress",	Address:=strAddress



CustomTab	Property
							

True	if	the	specified	tab	stop	is	a	custom	tab	stop.	Read-only	Boolean.



Example

This	example	cycles	through	the	collection	of	tab	stops	in	the	first	paragraph	in
the	active	document,	and	left-aligns	any	custom	tab	stops	that	it	finds.

Dim	tsLoop	As	TabStop

For	each	tsLoop	in	ActiveDocument.Paragraphs(1).TabStops

				If	tsLoop.CustomTab	=	True	Then	

								tsLoop.Alignment	=	wdAlignTabLeft

				End	If

Next	tsLoop



Cyan	Property
							

Sets	or	returns	a	Long	that	represents	the	cyan	component	of	a	CMYK	color.
Read-only.

expression.Cyan

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.



Example

This	example	creates	a	new	shape,	then	retrieves	the	four	CMYK	values	from	an
existing	shape	in	the	active	document,	and	then	sets	the	CMYK	fill	color	of	the
new	shape	to	the	same	CMYK	values.

Sub	ReturnAndSetCMYK()

				Dim	lngCyan	As	Long

				Dim	lngMagenta	As	Long

				Dim	lngYellow	As	Long

				Dim	lngBlack	As	Long

				Dim	shpHeart	As	Shape

				Dim	shpStar	As	Shape

				Set	shpHeart	=	ActiveDocument.Shapes(1)

				Set	shpStar	=	ActiveDocument.Shapes.AddShape	_

								(Type:=msoShape5pointStar,	Left:=200,	_

								Top:=100,	Width:=150,	Height:=150)

				'Get	current	shapes	CMYK	colors

				With	shpHeart.Fill.ForeColor

								lngCyan	=	.Cyan

								lngMagenta	=	.Magenta

								lngYellow	=	.Yellow

								lngBlack	=	.Black

				End	With

				'Setsnew	shape	to	current	shapes	CMYK	colors

				shpStar.Fill.ForeColor.SetCMYK	_

								Cyan:=lngCyan,	Magenta:=lngMagenta,	_

								Yellow:=lngYellow,	Black:=lngBlack

End	Sub



DashStyle	Property
							

Returns	or	sets	the	dash	style	for	the	specified	line.	Read/write
MsoLineDashStyle.

MsoLineDashStyle	can	be	one	of	these	MsoLineDashStyle	constants.
msoLineDashDot
msoLineDashStyleMixed
msoLineLongDashDot
msoLineSolid
msoLineDash
msoLineDashDotDot
msoLineLongDash
msoLineRoundDot
msoLineSquareDot

expression.DashStyle

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.



Example

This	example	adds	a	blue	dashed	line	to	the	active	document.

Dim	docActive	As	Document

Set	docActive	=	ActiveDocument

With	docActive.Shapes.AddLine(10,	10,	250,	250).Line

				.DashStyle	=	msoLineDashDotDot

				.ForeColor.RGB	=	RGB(50,	0,	128)

End	With



Data	Property
							

Returns	or	sets	data	in	an	ADDIN	field.	Read/write	String.

Note			The	data	is	not	visible	in	the	field	code	or	result;	it	is	only	accessible	by
returning	the	value	of	the	Data	property.	If	the	field	isn't	an	ADDIN	field,	this
property	will	cause	an	error.



Example

This	example	inserts	an	ADDIN	field	at	the	insertion	point	in	the	active
document	and	then	sets	the	data	for	the	field.

Dim	fldTemp	As	Field

Selection.Collapse	Direction:=wdCollapseStart

Set	fldTemp	=	_

				ActiveDocument.Fields.Add(Range:=Selection.Range,	_

				Type:=wdFieldAddin)

fldTemp.Data	=	"Hidden	information"



Show	All



DataFieldIndex	Property
							

Returns	or	sets	a	Long	that	represents	the	corresponding	field	number	in	the
mail	merge	data	source	to	which	a	mapped	data	field	maps.	This	property	returns
zero	if	the	specified	data	field	is	not	mapped	to	a	mapped	data	field.	Read/write.

expression.DataFieldIndex

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.



Example

This	example	maps	the	PostalAddress1	field	in	the	data	source	to	the
wdAddress1	mapped	data	field.	This	example	assumes	that	the	current	document
is	a	mail	merge	document.

Sub	MapField()

				With	ThisDocument.MailMerge.DataSource

								.MappedDataFields(wdAddress1).DataFieldIndex	=	_

												.FieldNames("PostalAddress1").Index

				End	With

End	Sub



Show	All



DataFieldName	Property
							

Sets	or	returns	a	String	that	represents	the	name	of	the	field	in	the	mail	merge
data	source	to	which	a	mapped	data	field	maps.	A	blank	string	is	returned	if	the
specified	data	field	is	not	mapped	to	a	mapped	data	field.	Read/write.

expression.DataFieldName

expression			Required.	An	expression	that	returns	a	MappedDataField	object.



Example

This	example	creates	a	tabbed	list	of	the	mapped	data	fields	available	in	Word
and	the	fields	in	the	data	source	to	which	they	are	mapped.	This	example
assumes	that	the	current	document	is	a	mail	merge	document	and	that	the	data
source	fields	have	corresponding	mapped	data	fields.

Sub	MappedFields()

				Dim	intCount	As	Integer

				Dim	docCurrent	As	Document

				Dim	docNew	As	Document

				On	Error	Resume	Next

				Set	docCurrent	=	ThisDocument

				Set	docNew	=	Documents.Add

				'Add	leader	tab	to	new	document

				docNew.Paragraphs.TabStops.Add	_

								Position:=InchesToPoints(3.5),	_

								Leader:=wdTabLeaderDots

				With	docCurrent.MailMerge.DataSource

								'Insert	heading	paragraph	for	tabbed	columns

								docNew.Content.InsertAfter	"Word	Mapped	Data	Field"	_

												&	vbTab	&	"Data	Source	Field"

												Do

																intCount	=	intCount	+	1

																				'Insert	Word	mapped	data	field	name	and	the

																				'corresponding	data	source	field	name

																				docNew.Content.InsertAfter	.MappedDataFields(	_

																								Index:=intCount).Name	&	vbTab	&	_

																								.MappedDataFields(Index:=intCount)	_

																								.DataFieldName

																				'Insert	paragraph

																				docNew.Content.InsertParagraphAfter

												Loop	Until	intCount	=	.MappedDataFields.Count

				End	With



End	Sub



DataFields	Property
							

Returns	a	MailMergeDataFields	collection	that	represents	the	fields	in	the
specified	mail	merge	data	source.	Read-only.

For	information	about	returning	a	single	member	of	a	collection,	see	Returning
an	Object	from	a	Collection.



Example

This	example	displays	the	name	of	each	field	in	the	data	source	attached	to	the
active	mail	merge	main	document.

Dim	mmdfTemp	As	MailMergeDataField

For	Each	mmdfTemp	In	_

								ActiveDocument.MailMerge.DataSource.DataFields

				MsgBox	mmdfTemp.Name

Next	mmdfTemp

This	example	displays	the	value	of	the	LastName	field	from	the	first	record	in
the	data	source	attached	to	"Main.doc."

With	Documents("Main.doc").MailMerge.DataSource

				.ActiveRecord	=	wdFirstRecord

				MsgBox	.DataFields("LastName").Value

End	With



DataSource	Property
							

Returns	a	MailMergeDataSource	object	that	refers	to	the	data	source	attached
to	a	mail	merge	main	document.	Read-only.



Example

This	example	displays	the	name	of	the	data	source	attached	to	the	active
document.

If	ActiveDocument.MailMerge.DataSource.Name	<>	""	Then	_

				MsgBox	ActiveDocument.MailMerge.DataSource.Name

This	example	displays	the	next	record	from	the	data	source	attached	to
Main.doc.

ActiveDocument.ActiveWindow.View.ShowFieldCodes	=	False

With	Documents("Main.doc").MailMerge

				.ViewMailMergeFieldCodes	=	False

				.DataSource.ActiveRecord	=	wdNextRecord

End	With



Date	Property
							

Revision	object:	The	date	and	time	that	the	tracked	change	was	made.	Read-only
Date.

Version	object:	The	date	and	time	that	the	document	version	was	saved.	Read-
only	Date.



Example

This	example	displays	the	date	and	time	that	the	last	version	of	the	active
document	was	saved.

Dim	docActive	As	Document

Set	docActive	=	ActiveDocument

If	docActive.Path	<>	""	Then	MsgBox	_

				docActive.Versions(docActive.Versions.Count).Date

This	example	displays	the	date	and	time	of	the	next	tracked	change	found	in	the
active	document.

Dim	revTemp	As	Revision

If	ActiveDocument.Revisions.Count	>=	1	Then

				Set	revTemp	=	Selection.NextRevision

				If	Not	(revTemp	Is	Nothing)	Then	MsgBox	revTemp.Date

End	If



DateFormat	Property
							

Returns	or	sets	the	date	for	a	letter	created	by	the	Letter	Wizard.	Read/write
String.



Example

This	example	displays	the	date	from	the	letter	that	appears	in	the	active
document.

MsgBox	ActiveDocument.GetLetterContent.DateFormat

This	example	creates	a	new	LetterContent	object,	sets	the	date	line	to	the
current	date,	and	then	runs	the	Letter	Wizard	by	using	the	RunLetterWizard
method.

Dim	lcNew	As	LetterContent

Set	lcNew	=	New	LetterContent

lcNew.DateFormat	=	Date$

ActiveDocument.RunLetterWizard	LetterContent:=lcNew



Show	All



Default	Property
							

	Default	property	as	it	applies	to	the	CheckBox	object.

Returns	or	sets	the	default	check	box	value.	True	if	the	default	value	is	checked.
Read/write	Boolean.

expression.Default

expression			Required.	An	expression	that	returns	one	of	the	above	objects.

	

	Default	property	as	it	applies	to	the	DropDown	object.

Returns	or	sets	the	default	drop-down	item.	The	first	item	in	a	drop-down	form
field	is	1,	the	second	item	is	2,	and	so	on.	Read/write	Long.

expression.Default

expression			Required.	An	expression	that	returns	one	of	the	above	objects.

	

	Default	property	as	it	applies	to	the	TextInput	object.

Returns	or	sets	the	text	that	represents	the	default	text	box	contents.	Read/write
String.

expression.Default

expression			Required.	An	expression	that	returns	one	of	the	above	objects.



Example

As	it	applies	to	the	CheckBox	object.

If	the	first	form	field	in	the	active	document	is	a	check	box,	this	example
retrieves	the	default	value.

Dim	blnDefault	As	Boolean

If	ActiveDocument.FormFields(1).Type	=	wdFieldFormCheckBox	Then

				blnDefault	=	ActiveDocument.FormFields(1).CheckBox.Default

End	If

As	it	applies	to	the	DropDown	object.

This	example	sets	the	default	item	for	the	drop-down	form	field	named	"Colors"
in	Sales.doc.

Documents("Sales.doc").FormFields("Colors").DropDown	_

	.Default	=	2

As	it	applies	to	the	TextInput	object.

This	example	sets	the	default	text	for	the	text	form	field	named	"Name."

ActiveDocument.FormFields("Name").TextInput.Default	=	_

	"your	name"



Show	All



DefaultBorderColor	Property
							

Returns	or	sets	the	default	24-bit	color	to	use	for	new	Border	objects.	Can	be
any	valid	WdColor	constant	or	a	value	returned	by	Visual	Basic's	RGB
function.	Read/write.

WdColor	can	be	one	of	these	WdColor	constants.
wdColorGray625
wdColorGray70
wdColorGray80
wdColorGray875
wdColorGray95
wdColorIndigo
wdColorLightBlue
wdColorLightOrange
wdColorLightYellow
wdColorOliveGreen
wdColorPaleBlue
wdColorPlum
wdColorRed
wdColorRose
wdColorSeaGreen
wdColorSkyBlue
wdColorTan
wdColorTeal
wdColorTurquoise
wdColorViolet
wdColorWhite
wdColorYellow
wdColorAqua



wdColorAutomatic
wdColorBlack
wdColorBlue
wdColorBlueGray
wdColorBrightGreen
wdColorBrown
wdColorDarkBlue
wdColorDarkGreen
wdColorDarkRed
wdColorDarkTeal
wdColorDarkYellow
wdColorGold
wdColorGray05
wdColorGray10
wdColorGray125
wdColorGray15
wdColorGray20
wdColorGray25
wdColorGray30
wdColorGray35
wdColorGray375
wdColorGray40
wdColorGray45
wdColorGray50
wdColorGray55
wdColorGray60
wdColorGray65
wdColorGray75
wdColorGray85
wdColorGray90
wdColorGreen
wdColorLavender
wdColorLightGreen



wdColorLightTurquoise
wdColorLime
wdColorOrange
wdColorPink

expression.DefaultBorderColor

expression			Required.	An	expression	that	returns	an	Options	object.



Example

This	example	sets	the	default	color	for	new	borders	to	teal.

Options.DefaultBorderColor	=	wdColorTeal



DefaultBorderColorIndex	Property
							

Returns	or	sets	the	default	line	color	for	borders.	Read/write	WdColorIndex.

WdColorIndex	can	be	one	of	these	WdColorIndex	constants.
wdAuto
wdBlack
wdBlue
wdBrightGreen
wdByAuthor
wdDarkBlue
wdDarkRed
wdDarkYellow
wdGray25
wdGray50
wdGreen
wdNoHighlight
wdPink
wdRed
wdTeal
wdTurquoise
wdViolet
wdWhite
wdYellow

expression.DefaultBorderColorIndex

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

Note			If	the	Enable	property	of	the	Borders	object	is	set	to	True,	the	default



line	width,	line	style,	and	line	color	for	borders	are	used.



Example

This	example	changes	the	default	line	color	and	style	for	borders	and	then
applies	a	border	around	the	first	paragraph	in	the	active	document.

ActiveDocument.Paragraphs(1).Borders.Enable	=	True

With	Options

				.DefaultBorderColorIndex	=	wdRed

				.DefaultBorderLineStyle	=	wdLineStyleDouble

End	With



DefaultBorderLineStyle	Property
							

Returns	or	sets	the	default	border	line	style.	Read/write	WdLineStyle.

WdLineStyle	can	be	one	of	these	WdLineStyle	constants.
wdLineStyleDashDot
wdLineStyleDashDotDot
wdLineStyleDashDotStroked
wdLineStyleDashLargeGap
wdLineStyleDashSmallGap
wdLineStyleDot
wdLineStyleDouble
wdLineStyleDoubleWavy
wdLineStyleEmboss3D
wdLineStyleEngrave3D
wdLineStyleInset
wdLineStyleNone
wdLineStyleOutset
wdLineStyleSingle
wdLineStyleSingleWavy
wdLineStyleThickThinLargeGap
wdLineStyleThickThinMedGap
wdLineStyleThickThinSmallGap
wdLineStyleThinThickLargeGap
wdLineStyleThinThickMedGap
wdLineStyleThinThickSmallGap
wdLineStyleThinThickThinLargeGap
wdLineStyleThinThickThinMedGap
wdLineStyleThinThickThinSmallGap
wdLineStyleTriple



expression.DefaultBorderLineStyle

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.



Example

This	example	sets	the	default	line	style	to	double.

Options.DefaultBorderLineStyle	=	wdLineStyleDouble

This	example	returns	the	current	default	line	style.

Dim	lngTemp	As	Long

lngTemp	=	Options.DefaultBorderLineStyle



DefaultBorderLineWidth	Property
							

Returns	or	sets	the	default	line	width	of	borders.	Read/write	WdLineWidth.

WdLineWidth	can	be	one	of	these	WdLineWidth	constants.
wdLineWidth025pt
wdLineWidth050pt
wdLineWidth075pt
wdLineWidth100pt
wdLineWidth150pt
wdLineWidth225pt
wdLineWidth300pt
wdLineWidth450pt
wdLineWidth600pt

expression.DefaultBorderLineWidth

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

Note			If	the	Enable	property	of	the	Borders	object	is	set	to	True,	the	default
line	width	and	line	style	of	borders	are	used.



Example

This	example	changes	the	default	line	width	of	borders	and	then	adds	a	border
around	each	paragraph	in	the	selection.

Options.DefaultBorderLineWidth	=	wdLineWidth050pt

Selection.Borders.Enable	=	True



DefaultEPostageApp	Property
							

Sets	or	returns	a	String	that	represents	the	path	and	file	name	of	the	default
electronic	postage	application.	Read/write.

expression.DefaultEPostageApp

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.



Example

This	example	specifies	the	path	and	file	name	for	the	default	electronic	postage
application.

Sub	DefaultEPostage()

				Application.Options.DefaultEPostageApp	=	"C:\MyApp\EPostage.exe"

End	Sub



DefaultFaceUp	Property
							

True	if	envelopes	are	fed	face	up	by	default.	Read/write	Boolean.



Example

This	example	sets	envelopes	to	be	fed	face	up	by	default.	The	UpdateDocument
method	updates	the	envelope	in	the	active	document.

With	ActiveDocument.Envelope

				.DefaultFaceUp	=	True

				.DefaultOrientation	=	wdCenterPortrait

				.UpdateDocument

End	With

This	example	displays	a	message	telling	the	user	how	to	feed	the	envelopes	into
the	printer	based	on	the	default	setting.

If	ActiveDocument.Envelope.DefaultFaceUp	=	True	Then

				MsgBox	"Feed	envelopes	face	up."

Else

				MsgBox	"Feed	envelopes	face	down."

End	If



DefaultFilePath	Property
							

Returns	or	sets	default	folders	for	items	such	as	documents,	templates,	and
graphics.	Read/write	String.

expression.DefaultFilePath(Path)

expression			Required.	An	expression	that	returns	an	Options	object.

	Path		Required	WdDefaultFilePath.	The	default	folder	to	set.

WdDefaultFilePath	can	be	one	of	these	WdDefaultFilePath	constants.
wdAutoRecoverPath
wdCurrentFolderPath
wdGraphicsFiltersPath
wdProgramPath
wdStartupPath
wdTempFilePath
wdToolsPath
wdUserOptionsPath
wdWorkgroupTemplatesPath
wdBorderArtPath
wdDocumentsPath
wdPicturesPath
wdProofingToolsPath
wdStyleGalleryPath
wdTextConvertersPath
wdTutorialPath
wdUserTemplatesPath



Remarks

The	new	setting	takes	effect	immediately.

You	can	use	an	empty	string	("")	to	remove	the	setting	from	the	Windows
registry.



Example

This	example	sets	the	default	folder	for	Word	documents.

Options.DefaultFilePath(wdDocumentsPath)	=	"C:\Documents"

This	example	returns	the	current	default	path	for	user	templates	(corresponds	to
the	default	path	setting	on	the	File	Locations	tab	in	the	Options	dialog	box).

Dim	strPath	As	String

strPath	=	Options.DefaultFilePath(wdUserTemplatesPath)



DefaultHeight	Property
							

Returns	or	sets	the	default	envelope	height,	in	points.	Read/write	Single.

Note			If	you	set	either	the	DefaultHeight	or	DefaultWidth	property,	the
envelope	size	is	automatically	changed	to	Custom	Size	in	the	Envelope	Options
dialog	box	(Tools	menu).	Use	the	DefaultSize	property	to	set	the	default	size	to
a	predefined	size.



Example

This	example	sets	the	default	envelope	size	to	4.5	inches	by	7.5	inches.

With	ActiveDocument.Envelope

				.DefaultHeight	=	InchesToPoints(4.5)

				.DefaultWidth	=	InchesToPoints(7.5)

End	With



DefaultHighlightColorIndex	Property
							

Returns	or	sets	the	color	used	to	highlight	text	formatted	with	the	Highlight
button	(Formatting	toolbar).	Read/write	WdColorIndex.

WdColorIndex	can	be	one	of	these	WdColorIndex	constants.
wdAuto
wdBlack
wdBlue
wdBrightGreen
wdByAuthor
wdDarkBlue
wdDarkRed
wdDarkYellow
wdGray25
wdGray50
wdGreen
wdNoHighlight
wdPink
wdRed
wdTeal
wdTurquoise
wdViolet
wdWhite
wdYellow

expression.DefaultHighlightColorIndex

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.



Example

This	example	sets	the	default	highlight	color	to	bright	green.	The	new	color
doesn't	apply	to	any	previously	highlighted	text.

Options.DefaultHighlightColorIndex	=	wdBrightGreen

This	example	returns	the	current	default	highlight	color	index.

Dim	lngTemp	As	Long

lngTemp	=	Options.DefaultHighlightColorIndex



DefaultLabelName	Property
							

Returns	or	sets	the	name	for	the	default	mailing	label.	Read/write	String.

Note			To	find	the	string	for	the	specified	built-in	label,	select	the	label	in	the
Label	Options	dialog	box	(Tools	menu,	Envelopes	and	Labels	dialog	box,
Labels	tab,	Options	button).	Then	click	Details	and	look	at	the	Label	name
box,	which	contains	the	correct	string	to	use	for	this	property.	To	set	a	custom
label	as	the	default	mailing	label,	use	the	label	name	that	appears	in	the	Details
dialog	box,	or	use	the	Name	property	with	a	CustomLabel	object.



Remarks

Creating	a	new	label	document	from	a	CustomLabel	object	automatically	sets
the	DefaultLabelName	property	to	the	name	of	the	CustomLabel	object.



Example

This	example	returns	the	name	of	the	current	default	mailing	label.

Msgbox	Application.MailingLabel.DefaultLabelName

This	example	sets	the	Avery	Standard,	5160	Address	label	as	the	default	mailing
label.

Application.MailingLabel.DefaultLabelName	=	"5160"



DefaultLaserTray	Property
							

Returns	or	sets	the	default	paper	tray	that	contains	sheets	of	mailing	labels.
Read/write	WdPaperTray.

WdPaperTray	can	be	one	of	these	WdPaperTray	constants.
wdPrinterAutomaticSheetFeed
wdPrinterDefaultBin
wdPrinterEnvelopeFeed
wdPrinterFormSource
wdPrinterLargeCapacityBin
wdPrinterLargeFormatBin
wdPrinterLowerBin
wdPrinterManualEnvelopeFeed
wdPrinterManualFeed
wdPrinterMiddleBin
wdPrinterOnlyBin
wdPrinterPaperCassette
wdPrinterSmallFormatBin
wdPrinterTractorFeed
wdPrinterUpperBin

expression.DefaultLaserTray

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.



Example

This	example	checks	to	determine	whether	the	mailing	label	printer	is	set	for
feed	labels	manually,	and	then	it	displays	a	message	on	the	status	bar.

If	Application.MailingLabel.DefaultLaserTray	=	_

								wdPrinterManualEnvelopeFeed	Then

				StatusBar	=	"Printer	set	for	feeding	labels	manually"

Else

				StatusBar	=	"Check	printer	paper	tray	setting"

End	If

This	example	sets	the	mailing-label	paper	tray	to	the	upper	bin.

Application.MailingLabel.DefaultLaserTray	=	wdPrinterUpperBin



DefaultLegalBlackline	Property
							

True	for	Microsoft	Word	to	compare	and	merge	documents	using	the	Legal
blackline	option	in	the	Compare	and	Merge	Documents	dialog	box.
Read/write	Boolean.

expression.DefaultLegalBlackline

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.



Remarks

For	more	information	about	the	Legal	blackline	option,	see	About	comparing
and	merging	documents	and	Compare	documents	with	the	Legal	blackline
option.

mk:@MSITStore:wdmain10.chm::/html/AboutComparingAndMergingDocuments.htm
mk:@MSITStore:wdmain10.chm::/html/CreateALegalBlacklineToCompareDocume.htm


Example

This	example	enables	Word's	Legal	blackline	option	for	comparing	and	merging
legal	documents.

Sub	CreateLegalBlackline()

				Application.DefaultLegalBlackline	=	True

End	Sub



DefaultOmitReturnAddress	Property
							

True	if	the	return	address	is	omitted	from	envelopes	by	default.	Read/write
Boolean.



Example

This	example	omits	return	addresses	from	new	envelopes	by	default.

ActiveDocument.Envelope.DefaultOmitReturnAddress	=	True

This	example	displays	the	return	address	status	in	a	message	box.

If	ActiveDocument.Envelope.DefaultOmitReturnAddress	=	True	Then

				MsgBox	"A	return	address	is	not	included	by	default."

Else

				MsgBox	"A	return	address	is	included	by	default."

End	If



DefaultOpenFormat	Property
							

Returns	or	sets	the	default	file	converter	used	to	open	documents.	Can	be	a
number	returned	by	the	OpenFormat	property,	or	one	of	the	following
WdOpenFormat	constants.

WdOpenFormat	can	be	one	of	these	WdOpenFormat	constants.
wdOpenFormatAllWord
wdOpenFormatAuto
wdOpenFormatDocument
wdOpenFormatEncodedText
wdOpenFormatRTF
wdOpenFormatTemplate
wdOpenFormatText
wdOpenFormatUnicodeText
wdOpenFormatWebPages

expression.DefaultOpenFormat

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

Note			Use	the	Format	argument	with	the	Open	method	to	specify	a	file
converter	when	you're	opening	a	single	document.



Example

This	example	sets	the	default	converter	for	opening	documents	to	the	Word
document	format	and	then	opens	Forecast.doc.

Options.DefaultOpenFormat	=	wdOpenFormatDocument

Documents.Open	FileName:="C:\Sales\Forecast.doc"

This	example	sets	the	default	converter	for	opening	documents	to	automatically
determine	the	appropriate	file	converter	to	use	when	opening	documents.

Options.DefaultOpenFormat	=	wdOpenFormatAuto

This	example	sets	the	default	converter	for	opening	documents	to	the
WordPerfect	6.x	format.

Options.DefaultOpenFormat	=	_

				FileConverters("WordPerfect6x").OpenFormat



DefaultOrientation	Property
							

Returns	or	sets	the	default	orientation	for	feeding	envelopes.	Read/write
WdEnvelopeOrientation.

WdEnvelopeOrientation	can	be	one	of	these	WdEnvelopeOrientation	constants.
wdCenterClockwise
wdCenterLandscape
wdCenterPortrait
wdLeftClockwise
wdLeftLandscape
wdLeftPortrait
wdRightClockwise
wdRightLandscape
wdRightPortrait

expression.DefaultOrientation

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.



Example

This	example	sets	envelopes	to	be	fed	face	up,	centered,	and	in	portrait
orientation.

With	ActiveDocument.Envelope

				.DefaultFaceUp	=	True

				.DefaultOrientation	=	wdCenterPortrait

				MsgBox	"Feed	envelopes	centered,	face	up,	"	_

								&	"in	portrait	orientation"

End	With



DefaultPrintBarCode	Property
							

True	if	a	POSTNET	bar	code	is	added	to	envelopes	or	mailing	labels	by	default.
Read/write	Boolean.

Note			For	U.S.	mail	only.	For	envelopes,	this	property	must	be	set	to	True
before	the	DefaultPrintFIMA	property	is	set.



Example

This	example	sets	the	default	envelope	settings	to	include	a	bar	code	and	a
Facing	Identification	Mark	(FIM-A).

With	ActiveDocument.Envelope

				.DefaultPrintBarCode	=	True

				.DefaultPrintFIMA	=	True

End	With

This	example	displays	the	bar	code	status	in	a	message	box.

If	ActiveDocument.Envelope.DefaultPrintBarCode	=	False	Then

				MsgBox	"A	bar	code	is	not	included	by	default"

Else

				MsgBox	"A	bar	code	is	included	by	default"

End	If



DefaultPrintFIMA	Property
							

True	to	add	a	Facing	Identification	Mark	(FIM-A)	to	envelopes	by	default.
Read/write	Boolean.

Note			For	U.S.	mail	only.	A	FIM-A	code	is	used	to	presort	courtesy	reply	mail.
The	DefaultPrintBarCode	property	must	be	set	to	True	before	this	property	is
set.



Example

This	example	sets	the	default	envelope	settings	to	include	a	bar	code	and	a
Facing	Identification	Mark	(FIM-A).

With	ActiveDocument.Envelope

				.DefaultPrintBarCode	=	True

				.DefaultPrintFIMA	=	True

End	With



DefaultSaveFormat	Property
							

Returns	or	sets	the	default	format	that	will	appear	in	the	Save	as	type	box	in	the
Save	As	dialog	box	(File	menu).	Corresponds	to	the	Save	Word	files	as	box	on
the	Save	tab	in	the	Options	dialog	box	(Tools	menu).	Read/write	String.



Remarks

The	string	used	with	this	property	is	the	file	converter	class	name.	The	class
names	for	internal	Word	formats	are	listed	in	the	following	table.

Word	format File	converter	class	name
Word	Document ""
Document	Template "Dot"
Text	Only "Text"
Text	Only	with	Line	Breaks "CRText"
MS-DOS	Text "8Text"
MS-DOS	Text	with	Line	Breaks "8CRText"
Rich	Text	Format "Rtf"
Unicode	Text "Unicode"

Use	the	ClassName	property	with	a	FileConverter	object	to	determine	the	class
name	of	an	external	file	converter.



Example

This	example	sets	the	Word	document	format	as	the	default	save	format.

Application.DefaultSaveFormat	=	""

This	example	returns	the	current	setting	the	Save	Word	files	as	box	on	the	Save
tab	in	the	Options	dialog	box	(Tools	menu).

Msgbox	Application.DefaultSaveFormat



DefaultSize	Property
							

Returns	or	sets	the	default	envelope	size.	Read/write	String.

Note			The	string	that's	returned	corresponds	to	the	right-hand	side	of	the	string
that	appears	in	the	Envelope	Size	box	in	the	Envelope	Options	dialog	box.	If
you	set	either	the	DefaultHeight	or	DefaultWidth	property,	the	envelope	size	is
automatically	changed	to	Custom	Size	in	the	Envelope	Options	dialog	box
(Tools	menu)	and	this	property	returns	"Custom	size."



Example

This	example	sets	the	default	envelope	size	to	C4	(229	x	324	mm).

ActiveDocument.Envelope.DefaultSize	=	"C4"

This	example	asks	the	user	whether	or	not	they	want	to	change	the	default
envelope	size	to	Size	10.	If	the	answer	is	yes,	the	default	size	is	changed
accordingly.	The	UpdateDocument	method	changes	the	envelope	size	for	the
active	document.	If	an	envelope	has	not	been	added	to	the	active	document,	a
message	box	is	displayed.

Sub	exDefaultSize()

				Dim	intResponse	As	Integer

				On	Error	GoTo	errhandler

				intResponse	=	MsgBox("Do	you	want	to	set	the	"	_

								&	"default	envelope	to	Size	10?",	4)

				If	intResponse	=	vbYes	Then

								With	ActiveDocument.Envelope

												.DefaultSize	=	"Size	10"

												.UpdateDocument

								End	With

				End	If

				Exit	Sub

errhandler:

				If	Err	=	5852	Then	_

								MsgBox	"An	envelope	isn't	part	of	this	document"

End	Sub



DefaultSorting	Property
							

Returns	or	sets	the	sorting	option	for	bookmark	names	displayed	in	the
Bookmark	dialog	box	(Insert	menu).	Read/write	WdBookmarkSortBy.

WdBookmarkSortBy	can	be	one	of	these	WdBookmarkSortBy	constants.
wdSortByLocation
wdSortByName

expression.DefaultSorting

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.



Remarks

This	property	doesn't	affect	the	order	of	Bookmark	objects	in	the	Bookmarks
collection.



Example

This	example	sorts	bookmarks	by	location	and	then	displays	the	Bookmark
dialog	box.

ActiveDocument.Bookmarks.DefaultSorting	=	wdSortByLocation

Dialogs(wdDialogInsertBookmark).Show



DefaultTab	Property
							

Returns	or	sets	the	active	tab	when	the	specified	dialog	box	is
displayed.	Read/write	WdWordDialogTab.

WdWordDialogTab	can	be	one	of	these	WdWordDialogTab	constants.
wdDialogEmailOptionsTabSignature
wdDialogFilePageSetupTabCharsLines
wdDialogFilePageSetupTabMargins
wdDialogFilePageSetupTabPaperSize
wdDialogFormatBordersAndShadingTabBorders
wdDialogFormatBordersAndShadingTabShading
wdDialogFormatBulletsAndNumberingTabNumbered
wdDialogFormatDrawingObjectTabColorsAndLines
wdDialogFormatDrawingObjectTabPicture
wdDialogFormatDrawingObjectTabSize
wdDialogFormatDrawingObjectTabWeb
wdDialogFormatFontTabAnimation
wdDialogFormatFontTabFont
wdDialogFormatParagraphTabTeisai
wdDialogInsertIndexAndTablesTabIndex
wdDialogInsertIndexAndTablesTabTableOfContents
wdDialogInsertSymbolTabSpecialCharacters
wdDialogLetterWizardTabLetterFormat
wdDialogLetterWizardTabRecipientInfo
wdDialogNoteOptionsTabAllEndnotes
wdDialogOrganizerTabAutoText
wdDialogOrganizerTabMacros
wdDialogTablePropertiesTabCell
wdDialogTablePropertiesTabRow



wdDialogEmailOptionsTabQuoting
wdDialogEmailOptionsTabStationary
wdDialogFilePageSetupTabLayout
wdDialogFilePageSetupTabPaper
wdDialogFilePageSetupTabPaperSource
wdDialogFormatBordersAndShadingTabPageBorder
wdDialogFormatBulletsAndNumberingTabBulleted
wdDialogFormatBulletsAndNumberingTabOutlineNumbered
wdDialogFormatDrawingObjectTabHR
wdDialogFormatDrawingObjectTabPosition
wdDialogFormatDrawingObjectTabTextbox
wdDialogFormatDrawingObjectTabWrapping
wdDialogFormatFontTabCharacterSpacing
wdDialogFormatParagraphTabIndentsAndSpacing
wdDialogFormatParagraphTabTextFlow
wdDialogInsertIndexAndTablesTabTableOfAuthorities
wdDialogInsertIndexAndTablesTabTableOfFigures
wdDialogInsertSymbolTabSymbols
wdDialogLetterWizardTabOtherElements
wdDialogLetterWizardTabSenderInfo
wdDialogNoteOptionsTabAllFootnotes
wdDialogOrganizerTabCommandBars
wdDialogOrganizerTabStyles
wdDialogTablePropertiesTabColumn
wdDialogTablePropertiesTabTable
wdDialogToolsAutoCorrectExceptionsTabFirstLetter
wdDialogToolsAutoCorrectExceptionsTabHangulAndAlphabet
wdDialogToolsAutoCorrectExceptionsTabIac
wdDialogToolsAutoCorrectExceptionsTabInitialCaps
wdDialogToolsAutoManagerTabAutoCorrect
wdDialogToolsAutoManagerTabAutoFormat
wdDialogToolsAutoManagerTabAutoFormatAsYouType
wdDialogToolsAutoManagerTabAutoText



wdDialogToolsAutoManagerTabTraits
wdDialogToolsEnvelopesAndLabelsTabEnvelopes
wdDialogToolsEnvelopesAndLabelsTabLabels
wdDialogToolsOptionsTabAcetate
wdDialogToolsOptionsTabBidi
wdDialogToolsOptionsTabCompatibility
wdDialogToolsOptionsTabEdit
wdDialogToolsOptionsTabFileLocations
wdDialogToolsOptionsTabFuzzy
wdDialogToolsOptionsTabGeneral
wdDialogToolsOptionsTabHangulHanjaConversion
wdDialogToolsOptionsTabPrint
wdDialogToolsOptionsTabProofread
wdDialogToolsOptionsTabSave
wdDialogToolsOptionsTabSecurity
wdDialogToolsOptionsTabTrackChanges
wdDialogToolsOptionsTabTypography
wdDialogToolsOptionsTabUserInfo
wdDialogToolsOptionsTabView
wdDialogWebOptionsBrowsers
wdDialogWebOptionsEncoding
wdDialogWebOptionsFiles
wdDialogWebOptionsFonts
wdDialogWebOptionsGeneral
wdDialogWebOptionsPictures

expression.DefaultTab

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.



Example

This	example	displays	the	Page	Setup	dialog	box	with	the	Paper	Source	tab
selected.

With	Dialogs(wdDialogFilePageSetup)

				.DefaultTab	=	wdDialogFilePageSetupTabPaperSource

				.Show

End	With



DefaultTableSeparator	Property
							

Returns	or	sets	the	single	character	used	to	separate	text	into	cells	when	text	is
converted	to	a	table.	Read/write	String.

Note			The	value	of	the	DefaultTableSeparator	property	is	used	if	the
Separator	argument	is	omitted	from	the	ConvertToTable	method.



Example

This	example	changes	the	default	table	separator	character.

Application.DefaultTableSeparator	=	"%"



DefaultTableStyle	Property
							

Returns	a	Variant	that	represents	the	table	style	that	is	applied	to	all	newly
created	tables	in	a	document.	Read-only.

expression.DefaultTableStyle

expression			Required.	An	expression	that	returns	a	Document	object.



Example

This	example	checks	to	see	if	the	default	table	style	used	in	the	active	document
is	named	"Table	Normal"	and,	if	it	is,	changes	the	default	table	style	to
"TableStyle1."	This	example	assumes	that	you	have	a	table	style	named
"TableStyle1."

Sub	TableDefaultStyle()

				With	ActiveDocument

								If	.DefaultTableStyle	=	"Table	Normal"	Then

												.SetDefaultTableStyle	_

																Style:="TableStyle1",	SetInTemplate:=True

								End	If

				End	With

End	Sub



DefaultTabStop	Property
							

Returns	or	sets	the	interval	(in	points)	between	the	default	tab	stops	in	the
specified	document.	Read/write	Single.



Example

This	example	sets	the	default	tab	stops	in	the	active	document	to	1	inch.	The
InchesToPoints	method	is	used	to	convert	inches	to	points.

ActiveDocument.DefaultTabStop	=	InchesToPoints(1)



DefaultTargetFrame	Property
							

Returns	or	sets	a	String	indicating	the	browser	frame	in	which	to	display	a	Web
page	reached	through	a	hyperlink.	Read/write.

expression.DefaultTargetFrame

expression			Required.	An	expression	that	returns	a	Document	object.



Remarks

While	the	DefaultTargetFrame	property	can	use	any	user-defined	string,	it	has
the	following	predefined	strings:		"_top",	"_blank",	"_parent",	and	"_self".



Example

This	example	sets	Microsoft	Word	to	open	a	new	blank	browser	window	when	a
user	clicks	on	hyperlinks	in	the	active	document.

Sub	DefaultFrame()

				ActiveDocument.DefaultTargetFrame	=	"_blank"

End	Sub



Show	All



DefaultTextEncoding	Property
							

Returns	or	sets	an	MsoEncoding	constant	representing	the	code	page,	or
character	set,	that	Microsoft	Word	uses	for	all	documents	saved	as	encoded	text
files.	Read/write.

MsoEncoding	can	be	one	of	these	MsoEncoding	constants.
msoEncodingArabic
msoEncodingArabicASMO
msoEncodingArabicAutoDetect	Not	used	with	this	property.
msoEncodingArabicTransparentASMO
msoEncodingAutoDetect	Not	used	with	this	property.
msoEncodingBaltic
msoEncodingCentralEuropean
msoEncodingCyrillic
msoEncodingCyrillicAutoDetect	Not	used	with	this	property.
msoEncodingEBCDICArabic
msoEncodingEBCDICDenmarkNorway
msoEncodingEBCDICFinlandSweden
msoEncodingEBCDICFrance
msoEncodingEBCDICGermany
msoEncodingEBCDICGreek
msoEncodingEBCDICGreekModern
msoEncodingEBCDICHebrew
msoEncodingEBCDICIcelandic
msoEncodingEBCDICInternational
msoEncodingEBCDICItaly
msoEncodingEBCDICJapaneseKatakanaExtended
msoEncodingEBCDICJapaneseKatakanaExtendedAndJapanese
msoEncodingEBCDICJapaneseLatinExtendedAndJapanese



msoEncodingEBCDICKoreanExtended
msoEncodingEBCDICKoreanExtendedAndKorean
msoEncodingEBCDICLatinAmericaSpain
msoEncodingEBCDICMultilingualROECELatin2
msoEncodingEBCDICRussian
msoEncodingEBCDICSerbianBulgarian
msoEncodingEBCDICSimplifiedChineseExtendedAndSimplifiedChinese
msoEncodingEBCDICThai
msoEncodingEBCDICTurkish
msoEncodingEBCDICTurkishLatin5
msoEncodingEBCDICUnitedKingdom
msoEncodingEBCDICUSCanada
msoEncodingEBCDICUSCanadaAndJapanese
msoEncodingEBCDICUSCanadaAndTraditionalChinese
msoEncodingEUCChineseSimplifiedChinese
msoEncodingEUCJapanese
msoEncodingEUCKorean
msoEncodingEUCTaiwaneseTraditionalChinese
msoEncodingEuropa3
msoEncodingExtAlphaLowercase
msoEncodingGreek
msoEncodingGreekAutoDetect	Not	used	with	this	property.
msoEncodingHebrew
msoEncodingHZGBSimplifiedChinese
msoEncodingIA5German
msoEncodingIA5IRV
msoEncodingIA5Norwegian
msoEncodingIA5Swedish
msoEncodingISO2022CNSimplifiedChinese
msoEncodingISO2022CNTraditionalChinese
msoEncodingISO2022JPJISX02011989
msoEncodingISO2022JPJISX02021984
msoEncodingISO2022JPNoHalfwidthKatakana



msoEncodingISO2022KR
msoEncodingISO6937NonSpacingAccent
msoEncodingISO885915Latin9
msoEncodingISO88591Latin1
msoEncodingISO88592CentralEurope
msoEncodingISO88593Latin3
msoEncodingISO88594Baltic
msoEncodingISO88595Cyrillic
msoEncodingISO88596Arabic
msoEncodingISO88597Greek
msoEncodingISO88598Hebrew
msoEncodingISO88599Turkish
msoEncodingJapaneseAutoDetect	Not	used	with	this	property.
msoEncodingJapaneseShiftJIS
msoEncodingKOI8R
msoEncodingKOI8U
msoEncodingKorean
msoEncodingKoreanAutoDetect	Not	used	with	this	property.
msoEncodingKoreanJohab
msoEncodingMacArabic
msoEncodingMacCroatia
msoEncodingMacCyrillic
msoEncodingMacGreek1
msoEncodingMacHebrew
msoEncodingMacIcelandic
msoEncodingMacJapanese
msoEncodingMacKorean
msoEncodingMacLatin2
msoEncodingMacRoman
msoEncodingMacRomania
msoEncodingMacSimplifiedChineseGB2312
msoEncodingMacTraditionalChineseBig5
msoEncodingMacTurkish



msoEncodingMacUkraine
msoEncodingOEMArabic
msoEncodingOEMBaltic
msoEncodingOEMCanadianFrench
msoEncodingOEMCyrillic
msoEncodingOEMCyrillicII
msoEncodingOEMGreek437G
msoEncodingOEMHebrew
msoEncodingOEMIcelandic
msoEncodingOEMModernGreek
msoEncodingOEMMultilingualLatinI
msoEncodingOEMMultilingualLatinII
msoEncodingOEMNordic
msoEncodingOEMPortuguese
msoEncodingOEMTurkish
msoEncodingOEMUnitedStates
msoEncodingSimplifiedChineseAutoDetect	Not	used	with	this	property.
msoEncodingSimplifiedChineseGBK
msoEncodingT61
msoEncodingTaiwanCNS
msoEncodingTaiwanEten
msoEncodingTaiwanIBM5550
msoEncodingTaiwanTCA
msoEncodingTaiwanTeleText
msoEncodingTaiwanWang
msoEncodingThai
msoEncodingTraditionalChineseAutoDetect	Not	used	with	this	property.
msoEncodingTraditionalChineseBig5
msoEncodingTurkish
msoEncodingUnicodeBigEndian
msoEncodingUnicodeLittleEndian
msoEncodingUSASCII
msoEncodingUTF7



msoEncodingUTF8
msoEncodingVietnamese
msoEncodingWestern

expression.DefaultTextEncoding

expression			Required.	An	expression	that	returns	an	Options	object.



Remarks

Use	the	TextEncoding	property	to	set	the	encoding	for	an	individual	document.
To	set	encoding	for	HTML	documents,	use	the	Encoding	property.



Example

This	example	sets	the	global	text	encoding	to	the	Western	code	page.	This	means
that	Word	will	save	all	encoded	text	files	using	the	Western	code	page.

Sub	DefaultEncode()

				Application.Options.DefaultTextEncoding	=	msoEncodingWestern

End	Sub



DefaultTray	Property
							

Returns	or	sets	the	default	tray	your	printer	uses	to	print	documents.	Read/write
String.



Remarks

When	setting	this	property,	you	must	specify	a	string	found	in	the	Default	tray
box	on	the	Print	tab	in	the	Options	dialog	box.	You	can	use	the	DefaultTrayID
property	and	specify	a	WdPaperTray	constant	to	set	this	same	option.



Example

This	example	sets	Word	up	to	use	the	lower	print	tray.

Options.DefaultTray	=	"Lower	tray"

This	example	returns	the	string	found	in	the	Default	tray	box	on	the	Print	tab	in
the	Options	dialog	box.

Msgbox	Options.DefaultTray



DefaultTrayID	Property
							

Returns	or	sets	the	default	tray	your	printer	uses	to	print	documents.	Read/write
WdPaperTray.

WdPaperTray	can	be	one	of	these	WdPaperTray	constants.
wdPrinterAutomaticSheetFeed
wdPrinterDefaultBin
wdPrinterEnvelopeFeed
wdPrinterFormSource
wdPrinterLargeCapacityBin
wdPrinterLargeFormatBin
wdPrinterLowerBin
wdPrinterManualEnvelopeFeed
wdPrinterManualFeed
wdPrinterMiddleBin
wdPrinterOnlyBin
wdPrinterPaperCassette
wdPrinterSmallFormalBin
wdPrinterTractorFeed
wdPrinterUpperBin
	



Remarks

You	can	use	the	DefaultTray	property	with	a	string	from	the	Default	tray	box
on	the	Print	tab	in	the	Options	dialog	box	to	set	this	same	option.



Example

This	example	sets	Word	to	use	the	upper	print	tray,	and	then	it	prints	the	active
document.

Options.DefaultTrayID	=	wdPrinterUpperBin

ActiveDocument.PrintOut

This	example	returns	the	current	setting	of	the	Default	tray	option	on	the	Print
tab	in	the	Options	dialog	box.

Dim	lngTray	As	Long

lngTray	=	Options.DefaultTrayID



DefaultWidth	Property
							

Returns	or	sets	the	default	envelope	width,	in	points.	Read/write	Single

Note			If	you	set	the	DefaultHeight	or	DefaultWidth	property,	the	envelope	size
is	automatically	changed	to	Custom	Size	in	the	Envelope	Options	dialog	box
(Tools	menu).	Use	the	DefaultSize	property	to	set	the	default	size	to	a
predefined	size.



Example

This	example	sets	the	default	custom	envelope	width	and	height	and	adds	an
envelope	to	the	active	document.

Dim	strAddress	As	String

Dim	strReturn	As	String

strAddress	=	"Tim	O'	Brien	"	&	vbCr	&	"123	Skye	St."	_

				&	vbCr	&	"Bellevue,	WA		98004"

strReturn	=	"Dave	Edson"	&	vbCr	&	"123	West	Main"	_

				&	vbCr	&	"Seattle,	WA		98004"

With	ActiveDocument.Envelope

				.DefaultWidth	=	InchesToPoints(9)

				.DefaultHeight	=	InchesToPoints(3.85)

End	With

ActiveDocument.Envelope.Insert	_

				Address:=strAddress,	ReturnAddress:=strReturn



DefaultWritingStyle	Property
							

Returns	or	sets	the	default	writing	style	used	by	the	grammar	checker	for	the
specified	language.	The	name	of	the	writing	style	is	the	localized	name	for	the
specified	language.	Read/write	String.



Remarks

This	property	controls	the	global	setting	for	the	writing	style.	When	setting	this
property,	you	must	use	the	exact	name	found	in	the	Writing	style	box	on	the
Spelling	&	Grammar	tab	in	the	Options	dialog	box	(Tools	menu).

The	ActiveWritingStyle	property	sets	the	writing	style	for	each	language	in	a
document.	The	ActiveWritingStyle	setting	overrides	the	DefaultWritingStyle
setting.



Example

This	example	returns	the	default	writing	style	in	a	message	box.

Dim	lngLanguage	As	Long

lngLanguage	=	Selection.LanguageID

Msgbox	Languages(lngLanguage).DefaultWritingStyle

This	example	sets	the	writing	style	for	U.S.	English	to	Casual,	and	then	it	checks
spelling	and	grammar	in	the	active	document.

Languages(wdEnglishUS).DefaultWritingStyle	=	"Casual"

ActiveDocument.CheckGrammar



DeletedTextColor	Property
							

Returns	or	sets	the	color	of	text	that	is	deleted	while	change	tracking	is
enabled.	Read/write	WdColorIndex.

WdColorIndex	can	be	one	of	these	WdColorIndex	constants.
wdAuto
wdBlack
wdBlue
wdBrightGreen
wdByAuthor
wdDarkBlue
wdDarkRed
wdDarkYellow
wdGray25
wdGray50
wdGreen
wdNoHighlight
wdPink
wdRed
wdTeal
wdTurquoise
wdViolet
wdWhite
wdYellow

expression.DeletedTextColor

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.



Remarks

If	the	DeletedTextColor	property	is	set	to	wdByAuthor,	Word	automatically
assigns	a	unique	color	to	each	of	the	first	eight	authors	who	revise	a	document.



Example

This	example	sets	the	color	of	deleted	text	to	bright	green.

Options.DeletedTextColor	=	wdBrightGreen

This	example	returns	the	current	status	of	the	Color	option	under	Deleted	Text
on	the	Track	Changes	tab	in	the	Options	dialog	box.

Dim	lngTemp	As	Long

lngTemp	=	Options.DeletedTextColor



DeletedTextMark	Property
							

Returns	or	sets	the	format	of	text	that	is	deleted	while	change	tracking	is
enabled.	Read/write	WdDeletedTextMark.

WdDeletedTextMark	can	be	one	of	these	WdDeletedTextMark	constants.
wdDeletedTextMarkCaret
wdDeletedTextMarkPound
wdDeletedTextMarkHidden
wdDeletedTextMarkStrikeThrough

expression.DeletedTextMark

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.



Example

This	example	applies	strikethrough	formatting	to	deleted	text.

Options.DeletedTextMark	=	wdDeletedTextMarkStrikeThrough

This	example	returns	the	current	status	of	the	Mark	option	under	Deleted	Text
on	the	Track	Changes	tab	in	the	Options	dialog	box.

Dim	lngTemp	As	Long

lngTemp	=	Options.DeletedTextMark



Delivery	Property
							

Returns	or	sets	the	delivery	method	used	for	routing	the	document.	Read/write
WdRoutingSlipDelivery.	Read/write	Long	before	routing	starts;	read-only
Long	while	routing	is	in	progress.

WdRoutingSlipDelivery	can	be	one	of	these	WdRoutingSlipDelivery	constants.
wdAllAtOnce
wdOneAfterAnother

expression.Delivery

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.



Example

This	example	routes	the	document	named	"Status.doc"	to	two	recipients,	one
after	the	other.

Documents("Status.doc").HasRoutingSlip	=	True

With	Documents("Status.doc").RoutingSlip

				.Subject	=	"Status	Doc"

				.AddRecipient	Recipient:="Don	Funk"

				.AddRecipient	Recipient:="Eric	Maffei"

				.Delivery	=	wdOneAfterAnother

End	With

Documents("Status.doc").Route



Depth	Property
							

Returns	or	sets	the	depth	of	the	shape's	extrusion.	Can	be	a	value	from		–	600
through	9600	(positive	values	produce	an	extrusion	whose	front	face	is	the
original	shape;	negative	values	produce	an	extrusion	whose	back	face	is	the
original	shape).	Read/write	Single.



Example

This	example	adds	an	oval	to	the	active	document	and	then	specifies	that	the
oval	be	extruded	to	a	depth	of	50	points	and	that	the	extrusion	be	purple.

Dim	docActive	As	Document

Dim	shapeNew	As	Shape

Set	docActive	=	ActiveDocument

Set	shapeNew	=	docActive.Shapes.AddShape(msoShapeOval,	_

				90,	90,	90,	40)

With	shapeNew.ThreeD

				.Visible	=	True

				.Depth	=	50

				'	RGB	value	for	purple

				.ExtrusionColor.RGB	=	RGB(255,	100,	255)

End	With



Description	Property
							

Returns	the	description	of	the	specified	style.	For	example,	a	typical	description
for	the	Heading	2	style	might	be	"Normal	+	Font:	Arial,	12	pt,	Bold,	Italic,
Space	Before	12	pt	After	3	pt,	KeepWithNext,	Level	2."	Read-only	String.



Example

This	example	creates	a	new	document	and	inserts	a	tab-delimited	list	of	the
active	document's	styles	and	their	descriptions.

Dim	docActive	As	Document

Dim	docNew	As	Document

Dim	styleLoop	As	Style

Set	docActive	=	ActiveDocument

Set	docNew	=	Documents.Add

For	Each	styleLoop	In	docActive.Styles

				With	docNew.Range

								.InsertAfter	Text:=styleLoop.NameLocal	&	Chr(9)	_

												&	styleLoop.Description

								.InsertParagraphAfter

				End	With

Next	styleLoop



Destination	Property
							

Returns	or	sets	the	destination	of	the	mail	merge	results.	Read/write
WdMailMergeDestination.

WdMailMergeDestination	can	be	one	of	these	WdMailMergeDestination
constants.
wdSendToFax
wdSendToPrinter
wdSendToEmail
wdSendToNewDocument

expression.Destination

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.



Example

This	example	sends	the	results	of	a	mail	merge	operation	to	a	new	document.

Dim	mmTemp	As	MailMerge

Set	mmTemp	=	ActiveDocument.MailMerge

If	mmTemp.State	=	wdMainAndDataSource	Then

				mmTemp.Destination	=	wdSendToNewDocument

				mmTemp.Execute

End	If



Show	All



DiacriticColor	Property
							

Returns	or	sets	the	24-bit	color	to	be	used	for	diacritics	for	the	specified	Font
object.	Can	be	any	valid	WdColor	constant	or	a	value	returned	by	Visual	Basic's
RGB	function.	Read/write.

WdColor	can	be	one	of	these	WdColor	constants.
wdColorGray625
wdColorGray70
wdColorGray80
wdColorGray875
wdColorGray95
wdColorIndigo
wdColorLightBlue
wdColorLightOrange
wdColorLightYellow
wdColorOliveGreen
wdColorPaleBlue
wdColorPlum
wdColorRed
wdColorRose
wdColorSeaGreen
wdColorSkyBlue
wdColorTan
wdColorTeal
wdColorTurquoise
wdColorViolet
wdColorWhite
wdColorYellow
wdColorAqua



wdColorAutomatic
wdColorBlack
wdColorBlue
wdColorBlueGray
wdColorBrightGreen
wdColorBrown
wdColorDarkBlue
wdColorDarkGreen
wdColorDarkRed
wdColorDarkTeal
wdColorDarkYellow
wdColorGold
wdColorGray05
wdColorGray10
wdColorGray125
wdColorGray15
wdColorGray20
wdColorGray25
wdColorGray30
wdColorGray35
wdColorGray375
wdColorGray40
wdColorGray45
wdColorGray50
wdColorGray55
wdColorGray60
wdColorGray65
wdColorGray75
wdColorGray85
wdColorGray90
wdColorGreen
wdColorLavender
wdColorLightGreen



wdColorLightTurquoise
wdColorLime
wdColorOrange
wdColorPink

expression.DiacriticColor

expression			Required.	An	expression	that	returns	a	Font	object.



Remarks

The	value	of	the	UseDiffDiacColor	property	must	be	True	in	order	to	use	this
property.

For	more	information	on	using	Word	with	right-to-left	languages,	see	Word
features	for	right-to-left	languages.

mk:@MSITStore:wdmain10.chm::/html/wdrefFeaturesAvailableInWordWhenBidirectionalLanguagesAreEnabled.htm


Example

This	example	sets	the	color	for	diacritics	to	blue	in	the	current	selection.

If	Options.UseDiffDiacColor	=	True	Then	_

				Selection.Font.DiacriticColor	=	wdColorBlue



Show	All



DiacriticColorVal	Property
							

Returns	or	sets	the	24-bit	color	to	be	used	for	diacritics	in	a	right-to-left	language
document.	Can	be	any	valid	WdColor	constant	or	a	value	returned	by	Visual
Basic's	RGB	function.	Read/write.

WdColor	can	be	one	of	these	WdColor	constants.
wdColorGray625
wdColorGray70
wdColorGray80
wdColorGray875
wdColorGray95
wdColorIndigo
wdColorLightBlue
wdColorLightOrange
wdColorLightYellow
wdColorOliveGreen
wdColorPaleBlue
wdColorPlum
wdColorRed
wdColorRose
wdColorSeaGreen
wdColorSkyBlue
wdColorTan
wdColorTeal
wdColorTurquoise
wdColorViolet
wdColorWhite
wdColorYellow
wdColorAqua



wdColorAutomatic
wdColorBlack
wdColorBlue
wdColorBlueGray
wdColorBrightGreen
wdColorBrown
wdColorDarkBlue
wdColorDarkGreen
wdColorDarkRed
wdColorDarkTeal
wdColorDarkYellow
wdColorGold
wdColorGray05
wdColorGray10
wdColorGray125
wdColorGray15
wdColorGray20
wdColorGray25
wdColorGray30
wdColorGray35
wdColorGray375
wdColorGray40
wdColorGray45
wdColorGray50
wdColorGray55
wdColorGray60
wdColorGray65
wdColorGray75
wdColorGray85
wdColorGray90
wdColorGreen
wdColorLavender
wdColorLightGreen



wdColorLightTurquoise
wdColorLime
wdColorOrange
wdColorPink

expression.DiacriticColorVal

expression			Required.	An	expression	that	returns	an	Options	object.



Remarks

The	value	of	the	UseDiffDiacColor	property	must	be	True	in	order	to	use	this
property.

For	more	information	on	using	Microsoft	Word	with	right-to-left	languages,	see
Word	features	for	right-to-left	languages.

mk:@MSITStore:wdmain10.chm::/html/wdrefFeaturesAvailableInWordWhenBidirectionalLanguagesAreEnabled.htm


Example

This	example	sets	the	color	for	diacritics	to	bright	green.

If	Options.UseDiffDiacColor	=	True	Then	_

				Options.DiacriticColorVal	=	wdColorBrightGreen



Diagram	Property
							

Returns	a	Diagram	object	to	which	a	diagram	node	belongs.

expression.Diagram

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.



Example

This	example	converts	a	pyramid	diagram	into	a	radial	diagram.

Sub	CreatePyramidDiagram()

				Dim	dgnNode	As	DiagramNode

				Dim	shpDiagram	As	Shape

				Dim	intCount	As	Integer

				'Add	diagram	to	current	document

				Set	shpDiagram	=	ThisDocument.Shapes.AddDiagram	_

								(Type:=msoDiagramPyramid,	Left:=10,	_

								Top:=15,	Width:=400,	Height:=475)

				'Add	first	child	node

				Set	dgnNode	=	shpDiagram.DiagramNode.Children.AddNode

				'Add	three	more	child	nodes

				For	intCount	=	1	To	3

								dgnNode.AddNode

				Next	intCount

				With	dgnNode.Diagram

								'Turn	on	automatic	formatting

								.AutoFormat	=	msoTrue

								'Convert	pyramid	diagram	into	a	radial	diagram

								.Convert	Type:=msoDiagramRadial

				End	With

End	Sub



DiagramNode	Property
							

Returns	a	DiagramNode	object	that	represents	a	node	in	a	diagram.	Read-only.

expression.DiagramNode

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.



Example

This	example	adds	a	pyramid	chart	to	the	current	document.

Sub	CreatePyramidDiagram()

				Dim	dgnNode	As	DiagramNode

				Dim	shpDiagram	As	Shape

				Dim	intCount	As	Integer

				'Add	pyramid	diagram	to	current	document

				Set	shpDiagram	=	ThisDocument.Shapes.AddDiagram	_

								(Type:=msoDiagramPyramid,	Left:=10,	_

								Top:=15,	Width:=400,	Height:=475)

				'Add	first	diagram	node	child

				Set	dgnNode	=	shpDiagram.DiagramNode.Children.AddNode

				'Add	three	more	diagram	child	nodes

				For	intCount	=	1	To	3

								dgnNode.AddNode

				Next	intCount

End	Sub



Dialogs	Property
							

Returns	a	Dialogs	collection	that	represents	all	the	built-in	dialog	boxes	in	Word.
Read-only.

For	information	about	returning	a	single	member	of	a	collection,	see	Returning
an	Object	from	a	Collection.



Example

This	example	displays	the	built-in	Find	dialog	box,	with	"Hello"	in	the	Find
What	box.

Dim	dlgFind	As	Dialog

Set	dlgFind	=	Dialogs(wdDialogEditFind)

With	dlgFind

				.Find	=	"Hello"

				.Show

End	With

This	example	displays	the	built-in	Open	dialog	box	showing	all	file	types.

With	Dialogs(wdDialogFileOpen)

				.Name	=	"*.*"

				.Show

End	With

This	example	prints	the	active	document,	using	the	settings	from	the	Print
dialog	box.

Dialogs(wdDialogFilePrint).Execute



DifferentFirstPageHeaderFooter
Property
							

True	if	a	different	header	or	footer	is	used	on	the	first	page.	Can	be	True,	False,
or	wdUndefined.	Read/write	Long.



Example

This	example	checks	each	section	in	the	active	document	for	headers	and	footers
that	are	different	on	the	first	page	and	displays	a	message	if	any	are	found.

Dim	secLoop	As	Section

For	Each	secLoop	In	ActiveDocument.Sections

				If	secLoop.PageSetup	_

											.DifferentFirstPageHeaderFooter	=	True	Then

								Msgbox	"Section	"	&	secLoop.Index	_

												&	"	has	different	first	page	headers	&	footers."

				End	If

Next	secLoop



DisableCharacterSpaceGrid	Property
							

True	if	Microsoft	Word	ignores	the	number	of	characters	per	line	for	the
corresponding	Font	or	Range	object.	Returns	wdUndefined	if	the
DisableCharacterSpaceGrid	property	is	set	to	True	for	only	some	of	the
specified	font	or	range.	Read/write	Boolean.



Example

This	example	signals	Microsoft	Word	to	ignore	the	number	of	characters	per	line
for	the	selected	text.

With	Selection.Font

				.DisableCharacterSpaceGrid	=	True

End	With



DisableFeatures	Property
							

True	disables	all	features	introduced	after	the	version	specified	in	the
DisableFeaturesIntroducedAfter	property.	The	default	value	is	False.
Read/write	Boolean.

expression.DisableFeatures

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.



Remarks

The	DisableFeatures	property	only	affects	the	document	for	which	you	set	the
property.	Use	this	property	if	you	plan	on	sharing	a	document	between	users
with	an	earlier	versions	of	Microsoft	Word,	so	you	don't	end	up	introducing	into
a	document	features	that	are	not	available	in	their	versions	of	Word.

Use	the	DisableFeaturesByDefault	property	to	disable	in	all	documents	features
introduced	after	a	specified	version.



Example

This	example	disables	all	features	added	after	Word	for	Windows	95,	versions
7.0	and	7.0a,	for	the	current	document.	The	global	default	setting	remains
unchanged.

Sub	FeaturesDisable()

				With	ThisDocument

								'Checks	whether	features	are	disabled

								If	.DisableFeatures	=	True	Then

												'If	they	are,	disables	all	features	after	Word	for	Windows	95

												.DisableFeaturesIntroducedAfter	=	wd70

								Else

												'If	not,	turns	on	the	disable	features	option	and	disables

												'all	features	introduced	after	Word	for	Windows	95

												.DisableFeatures	=	True

												.DisableFeaturesIntroducedAfter	=	wd70

								End	If

				End	With

End	Sub



DisableFeaturesbyDefault	Property
							

True	for	Microsoft	Word	to	disable	in	all	documents	all	features	introduced	after
the	version	of	Word	specified	in	the
DisableFeaturesIntroducedAfterByDefault.	The	default	value	is	False.
Read/write	Boolean.

expression.DisableFeaturesbyDefault

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.



Remarks

The	DisableFeaturesByDefault	property	sets	a	global	option	for	the	application.
If	you	want	to	disable	features	introduced	after	Word	97	for	Windows	for	the
document	only,	use	the	DisableFeatures	property.



Example

This	example	disables	all	features	introduced	after	Word	for	Windows	95,
versions	7.0	and	7.0a,	for	all	documents.

Sub	FeaturesDisableByDefault()

				With	Application.Options

								'Checks	whether	features	are	disabled

								If	.DisableFeaturesbyDefault	=	True	Then

												'If	they	are,	disables	all	features	after	Word	for	Windows	95

												.DisableFeaturesIntroducedAfterbyDefault	=	wd70

								Else

												'If	not,	turns	on	the	disable	features	option	and	disables

												'all	features	introduced	after	Word	for	Windows	95

												.DisableFeaturesbyDefault	=	True

												.DisableFeaturesIntroducedAfterbyDefault	=	wd70

								End	If

				End	With

End	Sub



Show	All



DisableFeaturesIntroducedAfter
Property
							

Disables	all	features	introduced	after	a	specified	version	of	Microsoft	Word	in
the	document	only.	Read/write	WdDisableFeaturesIntroducedAfter.

WdDisableFeaturesIntroducedAfter	can	be	one	of	these
WdDisableFeaturesIntroducedAfter	constants.
wd70		Specifies	Word	for	Windows	95,	versions	7.0	and	7.0a.
wd70FE		Specifies	Word	for	Windows	95,	versions	7.0	and	7.0a,	Asian	edition.
wd80		Specifies	Word	97	for	Windows.	Default.

expression.DisableFeaturesIntroducedAfter

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.



Remarks

The	DisableFeatures	property	must	be	set	to	True	prior	to	setting	the
DisableFeaturesIntroducedAfter	property.	Otherwise,	the	setting	will	not	take
effect	and	will	remain	at	its	default	setting	of	Word	97	for	Windows.

The	DisableFeaturesIntroducedAfter	property	only	affects	the	document	for
which	the	property	is	set.	If	you	want	to	set	a	global	option	for	the	application	to
disable	features	for	all	documents,	use	the
DisableFeaturesIntroducedAfterByDefault	property.



Example

This	example	disables	all	features	added	after	Word	for	Windows	95,	versions
7.0	and	7.0a,	for	the	current	document	only.	The	global	default	setting	remains
unchanged.

Sub	FeaturesDisable()

				With	ThisDocument

								'Checks	whether	features	are	disabled

								If	.DisableFeatures	=	True	Then

												'If	they	are,	disables	all	features	after	Word	for	Windows	95

												.DisableFeaturesIntroducedAfter	=	wd70

								Else

												'If	not,	turns	on	the	disable	features	option	and	disables

												'all	features	introduced	after	Word	for	Windows	95

												.DisableFeatures	=	True

												.DisableFeaturesIntroducedAfter	=	wd70

								End	If

				End	With

End	Sub



Show	All



DisableFeaturesIntroducedAfterbyDefault
Property
							

Disables	all	features	introduced	after	a	the	specified	version	for	all	documents.
Read/write	WdDisableFeaturesIntroducedAfter.

WdDisableFeaturesIntroducedAfter	can	be	one	of	these
WdDisableFeaturesIntroducedAfter	constants.
wd70	Specifies	Word	for	Windows	95,	versions	7.0	and	7.0a.
wd70FE	Specifies	Word	for	Windows	95,	versions	7.0	and	7.0a,	Asian	edition.
wd80		Specifies	Word	97	for	Windows.	Default.

expression.DisableFeaturesIntroducedAfterbyDefault

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.



Remarks

The	DisableFeaturesByDefault	property	must	be	set	to	True	prior	to	setting	the
DisableFeaturesIntroducedAfterByDefault	property.	Otherwise,	the	setting
will	not	take	effect	and	will	remain	at	its	default	setting	of	Word	97	for
Windows.

The	DisableFeaturesIntroducedAfterByDefault	property	sets	a	global	option
for	the	application	and	affects	all	documents.	If	you	want	to	disable	features
introduced	after	a	specified	version	for	a	document	only,	use	the
DisableFeaturesIntroducedAfter	property.



Example

This	example	disables	all	features	introduced	after	Word	for	Windows	95,
versions	7.0	and	7.0a,	for	all	documents.

Sub	FeaturesDisableByDefault()

				With	Application.Options

								'Checks	whether	features	are	disabled

								If	.DisableFeaturesbyDefault	=	True	Then

												'If	they	are,	disables	all	features	after	Word	for	Windows	95

												.DisableFeaturesIntroducedAfterbyDefault	=	wd70

								Else

												'If	not,	turns	on	the	disable	features	option	and	disables

												'all	features	introduced	after	Word	for	Windows	95

												.DisableFeaturesbyDefault	=	True

												.DisableFeaturesIntroducedAfterbyDefault	=	wd70

								End	If

				End	With

End	Sub



DisableLineHeightGrid	Property
							

True	if	Microsoft	Word	aligns	characters	in	the	specified	paragraphs	to	the	line
grid	when	a	set	number	of	lines	per	page	is	specified.	Returns	wdUndefined	if
the	DisableLineHeightGrid	property	is	set	to	True	for	only	some	of	the
specified	paragraphs.	Read/write	Long.



Example

This	example	sets	Microsoft	Word	to	align	characters	in	the	selected	paragraphs
to	the	line	grid	if	you’ve	specified	a	set	number	of	lines	per	page.

With	Selection.ParagraphFormat

				.DisableLineHeightGrid	=	True

End	With



DisplayAlerts	Property
							

Returns	or	sets	the	way	certain	alerts	and	messages	are	handled	while	a	macro	is
running.	Read/write	WdAlertLevel.

WdAlertLevel	can	be	one	of	these	WdAlertLevel	constants.
wdAlertsAll	All	message	boxes	and	alerts	are	displayed;	errors	are	returned	to
the	macro.
wdAlertsMessageBox	Only	message	boxes	are	displayed;	errors	are	trapped
and	returned	to	the	macro.
wdAlertsNone	No	alerts	or	message	boxes	are	displayed.	If	a	macro	encounters
a	message	box,	the	default	value	is	chosen	and	the	macro	continues.

expression.DisplayAlerts

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

Note			If	you	set	this	property	to	wdAlertsNone	or	wdAlertsMessageBox,	Word
doesn't	set	it	back	to	wdAlertsAll	when	your	macro	stops	running.	You	should
write	your	macro	in	such	a	way	that	it	always	sets	the	DisplayAlerts	property
back	to	wdAlertsAll	when	it	stops	running.



Example

This	example	sets	Word	to	display	all	alerts	and	message	boxes	when	it's	running
macros.

Application.DisplayAlerts	=	wdAlertsAll

This	example	returns	the	current	setting	of	the	DisplayAlerts	property.

Dim	lngTemp	As	Long

lngTemp	=	Application.DisplayAlerts



DisplayAsIcon	Property
							

True	if	the	specified	object	is	displayed	as	an	icon.	Read/write	Boolean.



Example

This	example	displays	a	message	box	containing	the	name	of	each	floating	shape
that's	displayed	as	an	icon	on	the	active	document.

Dim	shapeLoop	As	Shape

For	Each	shapeLoop	In	ActiveDocument.Shapes

				If	shapeLoop.OLEFormat.DisplayAsIcon	Then

								MsgBox	shapeLoop.Name	&	"	is	displayed	as	an	icon."

				End	If

Next	shapeLoop

This	example	inserts	a	Microsoft	Excel	worksheet	as	a	linked	OLE	object	on	the
active	document	and	then	changes	the	display	of	the	object	to	an	icon.

Dim	objNew	As	Object

Set	objNew	=	ActiveDocument.Shapes.AddOLEObject	_

				(FileName:="C:\Program	Files\Microsoft	Office"	_

				&	"\Office\Samples\samples.xls",	LinkToFile:=True)

objNew.OLEFormat.DisplayAsIcon	=	True



DisplayAutoCompleteTips	Property
							

True	if	Word	displays	tips	that	suggest	text	for	completing	words,	dates,	or
phrases	as	you	type.	Read/write	Boolean.



Example

This	example	sets	Word	to	display	tips	that	suggest	text	for	completing	words,
dates,	or	phrases	as	you	type.

Application.DisplayAutoCompleteTips	=	True

This	example	returns	the	status	of	the	Suggest	the	rest	of	the	word	or	date	with
a	tip	as	you	type	option	on	the	AutoText	tab	in	the	AutoCorrect	dialog	box
(Tools	menu).

Dim	blnTemp	As	Boolean

blnTemp	=	Application.DisplayAutoCompleteTips



DisplayAutoCorrectOptions	Property
							

True	for	Microsoft	Word	to	display	the	AutoCorrect	Options	button.
Read/write	Boolean.

expression.DisplayAutoCorrectOptions

expression			Required.	An	expression	that	returns	an	AutoCorrect	object.



Example

This	example	disables	display	of	the	AutoCorrect	Options	button.

Sub	HideAutoCorrectOpButton()

				AutoCorrect.DisplayAutoCorrectOptions	=	False

End	Sub



DisplayGridLines	Property
							

True	if	Microsoft	Word	displays	the	document	grid.	This	property	is	the
equivalent	of	the	Gridlines	command	on	the	View	menu.	Read/write	Boolean.



Remarks

This	property	affects	only	the	document	grid.	For	table	gridlines,	use	the
TableGridlines	property.



Example

This	example	switches	between	displaying	and	hiding	the	document	grid	in	the
active	window.

Options.DisplayGridLines	=	Not	Options.DisplayGridLines



DisplayHorizontalScrollBar	Property
							

True	if	a	horizontal	scroll	bar	is	displayed	for	the	specified	window.	Read/write
Boolean.



Example

This	example	displays	vertical	and	horizontal	scroll	bars	for	the	active	window.

With	ActiveDocument.ActiveWindow

				.DisplayHorizontalScrollBar	=	True

				.DisplayVerticalScrollBar	=	True

End	With

This	example	toggles	the	horizontal	scroll	bar	of	the	window	for	Document1.

Dim	winTemp	As	Window

Set	winTemp	=	Windows("Document1")

winTemp.DisplayHorizontalScrollBar	=	_

				Not	winTemp.DisplayHorizontalScrollBar



DisplayLeftScrollBar	Property
							

True	if	the	vertical	scroll	bar	appears	on	the	left	side	of	the	document	window.
Read/write	Boolean.

expression.DisplayLeftScrollBar

expression			Required.	An	expression	that	returns	a	Window	object.



Remarks

For	more	information	on	using	Word	with	right-to-left	languages,	see	Word
features	for	right-to-left	languages.

mk:@MSITStore:wdmain10.chm::/html/wdrefFeaturesAvailableInWordWhenBidirectionalLanguagesAreEnabled.htm


Example

This	example	displays	the	vertical	scroll	bar	on	the	left	side	of	the	active
window.

ActiveWindow.DisplayLeftScrollBar	=	True



DisplayPageBoundaries	Property
							

True	to	display	the	top	and	bottom	margins	(white	space)	and	the	gray	area	(gray
space)	between	pages	in	a	document.	False	to	hide	from	view	the	white	and	gray
space	so	that	the	pages	flow	together	as	one	long	page.	The	default	value	is
True.	Read/write	Boolean.

expression.DisplayPageBoundaries

expression			Required.	An	expression	that	returns	a	View	object.



Remarks

This	feature	is	only	available	in	the	Print	Layout	view	and	only	affects	the	gray
space	on	the	top	and	bottom	of	a	page,	not	the	left	and	right	sides	of	a	page.	
This	setting	affects	the	document	in	the	in	the	specified	window.	When	the
document	is	saved,	the	state	of	this	setting	is	saved	with	it.



Example

This	example	changes	the	current	view	to	Print	Layout	and	suppresses	the	white
and	gray	space	between	document	pages.

Sub	WhiteSpace()

				With	ActiveWindow.View

								.Type	=	wdPrintView

								.DisplayPageBoundaries	=	False

				End	With

End	Sub



DisplayPasteOptions	Property
							

True	for	Microsoft	Word	to	display	the	Paste	Options	button,	which	displays
directly	under	newly	pasted	text.	Read/write	Boolean.

expression.DisplayPasteOptions

expression			Required.	An	expression	that	returns	an	Options	object.



Example

This	example	enables	the	Paste	Options	button	if	the	option	has	been	disabled.

Sub	ShowPasteOptionsButton()

				With	Options

								If	.DisplayPasteOptions	=	False	Then

												.DisplayPasteOptions	=	True

								End	If

				End	With

End	Sub



DisplayRecentFiles	Property
							

True	if	the	names	of	recently	used	files	are	displayed	on	the	File	menu.
Read/write	Boolean.



Example

This	example	sets	Word	to	display	a	maximum	of	six	file	names	on	the	File
menu.

Application.DisplayRecentFiles	=	True

RecentFiles.Maximum	=	6

This	example	removes	the	list	of	recently	used	files	from	the	File	menu.

Application.DisplayRecentFiles	=	False



DisplayRightRuler	Property
							

True	if	the	vertical	ruler	appears	on	the	right	side	of	the	document	window	in
print	layout	view.	Read/write	Boolean.

expression.DisplayRightRuler

expression			Required.	An	expression	that	returns	a	Window	object.



Remarks

For	more	information	on	using	Word	with	right-to-left	languages,	see	Word
features	for	right-to-left	languages.

mk:@MSITStore:wdmain10.chm::/html/wdrefFeaturesAvailableInWordWhenBidirectionalLanguagesAreEnabled.htm


Example

This	example	sets	the	active	window	to	print	layout	view	and	displays	the
vertical	ruler	on	the	right	side.

With	ActiveWindow

				.View	=	wdPrintView

				.DisplayRightRuler	=	True

End	With



DisplayRulers	Property
							

True	if	rulers	are	displayed	for	the	specified	window	or	pane.	Equivalent	to	the
Ruler	command	on	the	View	menu.	Read/write	Boolean.

Note			If	DisplayRulers	is	False,	the	horizontal	and	vertical	rulers	won't	be
displayed,	regardless	of	the	state	of	the	DisplayVerticalRuler	property.



Example

This	example	toggles	the	ruler	display	for	the	active	window.

ActiveDocument.ActiveWindow.DisplayRulers	=	_

				Not	ActiveDocument.ActiveWindow.DisplayRulers

This	example	switches	the	window	to	print	layout	view	and	displays	the
horizontal	and	vertical	rulers.

With	ActiveDocument.ActiveWindow

				.View.Type	=	wdPrintView

				.DisplayVerticalRuler	=	True

				.DisplayRulers	=	True

End	With



DisplayScreenTips	Property
							

True	if	comments,	footnotes,	endnotes,	and	hyperlinks	are	displayed	as	tips.
Text	marked	as	having	comments	is	highlighted.	Read/write	Boolean.



Example

This	example	enables	Word	to	display	comments,	footnotes,	and	endnotes	as
tips.	Also,	text	marked	as	having	comments	is	highlighted.

Application.DisplayScreenTips	=	True

This	example	returns	the	current	status	of	the	ScreenTips	checkbox	in	the	Show
area	on	the	View	tab	in	the	Options	dialog	box.

temp	=	Application.DisplayScreenTips



DisplayScrollBars	Property
							

True	if	Word	displays	a	scroll	bar	in	at	least	one	document	window.	False	if
there	are	no	scroll	bars	displayed	in	any	window.	Read/write	Boolean.



Remarks

Setting	the	DisplayScrollBars	property	to	True	displays	horizontal	and	vertical
scroll	bars	in	all	windows.	Setting	this	property	to	False	turns	off	all	scroll	bars
in	all	windows.

Use	the	DisplayHorizontalScrollBar	and	DisplayVerticalScrollBar	properties
to	display	individual	scroll	bars	in	the	specified	window.



Example

This	example	displays	horizontal	and	vertical	scroll	bars	in	all	windows.

Application.DisplayScrollBars	=	True

This	example	returns	True	if	there's	a	scroll	bar	currently	displayed	in	any
window.

Dim	blnTemp	As	Boolean

blnTemp	=	Application.DisplayScrollBars



DisplaySmartTagButtons	Property
							

True	for	Microsoft	Word	to	display	a	button	directly	above	a	smart	tag	when	a
mouse	pointer	is	positioned	over	it.	Read/write	Boolean.

expression.DisplaySmartTagButtons

expression			Required.	An	expression	that	returns	an	Options	object.



Remarks

The	smart	tag	button	provides	a	drop-down	menu	from	which	a	user	can	access
smart	tag	options	and	actions.



Example

This	example	hides	the	button	that	appears	when	the	mouse	pointer	is	positioned
over	a	smart	tag.

Sub	DontShowSmartTagButton()

				Options.DisplaySmartTagButtons	=	False

End	Sub



DisplaySmartTags	Property
							

True	for	Microsoft	Word	to	display	an	underline	beneath	smart	tags	in	a
document.	Read/write	Boolean.

expression.DisplaySmartTags

expression			Required.	An	expression	that	returns	a	View	object.



Remarks

Smart	tags	are	marked	in	documents	with	a	dashed	underline.	Setting	the
DisplaySmartTags	property	to	False	does	not	remove	smart	tags;	it	only	turns
off	displaying	the	underline.



Example

This	example	turns	off	displaying	the	underline	beneath	smart	tags	in	the	active
view.

Sub	DontShowSmartTags()

				ActiveWindow.View.ShowSmartTags	=	False

End	Sub



DisplayStatusBar	Property
							

True	if	the	status	bar	is	displayed.	Read/write	Boolean.



Example

This	example	toggles	the	status	bar.

Application.DisplayStatusBar	=	Not	Application.DisplayStatusBar

This	example	displays	scroll	bars	and	the	status	bar.

With	Application

				.DisplayScrollBars	=	True

				.DisplayStatusBar	=	True

End	With



DisplayVerticalRuler	Property
							

True	if	a	vertical	ruler	is	displayed	for	the	specified	window	or	pane.	Read/write
Boolean.

Note			A	vertical	ruler	appears	only	in	print	layout	view,	and	only	if	the
DisplayRulers	property	is	set	to	True.



Example

This	example	switches	each	window	in	the	Windows	collection	to	print	layout
view	and	displays	the	horizontal	and	vertical	rulers.

Dim	winLoop	As	Window

For	Each	winLoop	In	Windows

				With	winLoop

								.View.Type	=	wdPrintView

								.DisplayRulers	=	True

								.DisplayVerticalRuler	=	True

				End	With

Next	winLoop

This	example	hides	the	horizontal	and	vertical	rulers	for	the	active	window.

With	ActiveDocument.ActiveWindow

				.DisplayVerticalRuler	=	False

				.DisplayRulers	=	False

End	With



DisplayVerticalScrollBar	Property
							

True	if	a	vertical	scroll	bar	is	displayed	for	the	specified	window.	Read/write
Boolean.



Example

This	example	displays	the	vertical	and	horizontal	scroll	bars	for	each	window	in
the	Windows	collection.

Dim	winLoop	As	Window

For	Each	winLoop	In	Windows

				winLoop.DisplayVerticalScrollBar	=	True

				winLoop.DisplayHorizontalScrollBar	=	True

Next	winLoop

This	example	toggles	the	vertical	scroll	bar	for	the	active	window.

Dim	winTemp	As	Window

Set	winTemp	=	ActiveDocument.ActiveWindow

winTemp.DisplayVerticalScrollBar	=	_

				Not	winTemp.DisplayVerticalScrollBar



DistanceBottom	Property
							

Rows	object:	Returns	or	sets	the	distance	(in	points)	between	the	document	text
and	the	bottom	edge	of	the	specified	table.	This	property	doesn't	have	any	effect
if	WrapAroundText	is	False.	Read/write	Single.

WrapFormat	object:	Returns	or	sets	the	distance	(in	points)	between	the
document	text	and	the	bottom	edge	of	the	text-free	area	surrounding	the
specified	shape.	The	size	and	shape	of	the	specified	shape,	together	with	the
values	of	the	Type	and	Side	properties	of	the	WrapFormat	object,	determine
the	size	and	shape	of	this	text-free	area.	Read/write	Single.



Example

This	example	sets	text	to	wrap	around	the	first	table	in	the	active	document	and
sets	the	distance	for	wrapped	text	to	20	points	on	all	sides	of	the	table.

With	ActiveDocument.Tables(1).Rows

				.WrapAroundText	=	True

				.DistanceLeft	=	20

				.DistanceRight	=	20

				.DistanceTop	=	20

				.DistanceBottom	=	20

End	With

This	example	adds	an	oval	to	the	active	document	and	specifies	that	the
document	text	wrap	around	the	left	and	right	sides	of	the	square	that
circumscribes	the	oval.	The	example	sets	a	0.1-inch	margin	between	the
document	text	and	the	top,	bottom,	left	side,	and	right	side	of	the	square.

Dim	shapeOval	As	Shape

Set	shapeOval	=	ActiveDocument.Shapes.AddShape(msoShapeOval,	_

				36,	36,	100,	35)

With	shapeOval.WrapFormat

				.Type	=	wdWrapSquare

				.Side	=	wdWrapBoth

				.DistanceTop	=	InchesToPoints(0.1)

				.DistanceBottom	=	InchesToPoints(0.1)

				.DistanceLeft	=	InchesToPoints(0.1)

				.DistanceRight	=	InchesToPoints(0.1)

End	With



DistanceFrom	Property
							

Returns	or	sets	a	value	that	indicates	whether	the	specified	page	border	is
measured	from	the	edge	of	the	page	or	from	the	text	it	surrounds.	Read/write
WdBorderDistanceFrom.

WdBorderDistanceFrom	can	be	one	of	these	WdBorderDistanceFrom	constants.
wdBorderDistanceFromPageEdge
wdBorderDistanceFromText

expression.DistanceFrom

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.



Example

This	example	adds	a	single	border	around	each	page	in	section	one	in	the	active
document	and	then	sets	the	distance	between	each	border	and	the	corresponding
edge	of	the	page.

Dim	borderLoop	As	Border

With	ActiveDocument.Sections(1)

				For	Each	borderLoop	In	.Borders

								borderLoop.LineStyle	=	wdLineStyleSingle

								borderLoop.LineWidth	=	wdLineWidth050pt

				Next	borderLoop

				With	.Borders

								.DistanceFrom	=	wdBorderDistanceFromPageEdge

								.DistanceFromTop	=	20

								.DistanceFromLeft	=	22

								.DistanceFromBottom	=	20

								.DistanceFromRight	=	22

				End	With

End	With

This	example	adds	a	border	around	each	page	in	the	first	section	in	the	selection,
and	then	it	sets	the	distance	between	the	text	and	the	page	border	to	6	points.

Dim	borderLoop	As	Border

With	Selection.Sections(1)

				For	Each	borderLoop	In	.Borders

								borderLoop.ArtStyle	=	wdArtSeattle

								borderLoop.ArtWidth	=	22

				Next	borderLoop

				With	.Borders

								.DistanceFrom	=	wdBorderDistanceFromText

								.DistanceFromTop	=	6

								.DistanceFromLeft	=	6

								.DistanceFromBottom	=	6

								.DistanceFromRight	=	6

				End	With

End	With





DistanceFromBottom	Property
							

Returns	or	sets	the	space	(in	points)	between	the	text	and	the	bottom	border.
Read/write	Long.

Note			Using	this	property	with	a	page	border,	you	can	set	either	the	space
between	the	text	and	the	bottom	page	border	or	the	space	between	the	bottom
edge	of	the	page	and	the	bottom	page	border.	Where	the	distance	is	measured
from	depends	on	the	value	of	the	DistanceFrom	property.



Example

This	example	adds	a	border	around	the	first	paragraph	in	the	active	document
and	sets	the	distance	between	the	text	and	the	bottom	border	to	6	points.

With	ActiveDocument.Paragraphs(1).Borders

				.Enable	=	True

				.DistanceFromBottom	=	6

End	With

This	example	adds	a	border	around	each	table	in	Sales.doc.	The	example	also
sets	the	distance	between	the	text	and	the	border	to	3	points	for	the	top	and
bottom	borders,	and	6	points	for	the	left	and	right	borders.

Dim	tableLoop	As	Table

For	Each	tableLoop	In	Documents("Sales.doc").Tables

				With	tableLoop.Borders

								.OutsideLineStyle	=	wdLineStyleSingle

								.OutsideLineWidth	=	wdLineWidth150pt

								.DistanceFromBottom	=	3

								.DistanceFromTop	=	3

								.DistanceFromLeft	=	6

								.DistanceFromRight	=	6

				End	With

Next	tableLoop



DistanceFromLeft	Property
							

Returns	or	sets	the	space	(in	points)	between	the	text	and	the	left	border.
Read/write	Long.

Note			Using	this	property	with	a	page	border,	you	can	set	either	the	space
between	the	text	and	the	left	page	border	or	the	space	between	the	left	edge	of
the	page	and	the	left	page	border.	Where	the	distance	is	measured	from	depends
on	the	value	of	the	DistanceFrom	property.



Example

This	example	adds	a	border	around	each	frame	in	the	active	document	and	sets
the	distance	between	the	frame	and	the	border	to	5	points.

Dim	frameLoop	As	Frame

For	Each	frameLoop	In	ActiveDocument.Frames

				With	frameLoop.Borders

								.Enable	=	True

								.DistanceFromLeft	=	5

								.DistanceFromRight	=	5

								.DistanceFromTop	=	5

								.DistanceFromBottom	=	5

				End	With

Next	frameLoop

This	example	adds	a	border	around	the	first	paragraph	in	the	active	document
and	sets	the	distance	between	the	text	and	the	left	border	to	3	points.

With	ActiveDocument.Paragraphs(1).Borders

				.Enable	=	True

				.DistanceFromLeft	=	3

End	With



DistanceFromRight	Property
							

Returns	or	sets	the	space	(in	points)	between	the	right	edge	of	the	text	and	the
right	border.	Read/write	Long.

Note			Using	this	property	with	a	page	border,	you	can	set	either	the	space
between	the	text	and	the	right	border	or	the	space	between	the	right	edge	of	the
page	and	the	right	border.	Where	the	distance	is	measured	from	depends	on	the
value	of	the	DistanceFrom	property.



Example

This	example	adds	a	border	around	each	paragraph	in	the	selection	and	sets	the
distance	between	the	text	and	the	right	border	to	3	points.

With	Selection.Paragraphs.Borders

				.Enable	=	True

				.DistanceFromRight	=	3

End	With

This	example	adds	a	single	border	around	each	page	in	section	one	in	the	active
document.	The	example	also	sets	the	distance	between	the	right	and	left	border
and	the	corresponding	edges	of	the	page	to	22	points.

Dim	borderLoop	As	Border

With	ActiveDocument.Sections(1)

				For	Each	borderLoop	In	.Borders

								borderLoop.LineStyle	=	wdLineStyleSingle

								borderLoop.LineWidth	=	wdLineWidth050pt

				Next	borderLoop

				With	.Borders

								.DistanceFrom	=	wdBorderDistanceFromPageEdge

								.DistanceFromLeft	=	22

								.DistanceFromRight	=	22

				End	With

End	With



DistanceFromText	Property
							

DropCap	object:	Returns	or	sets	the	distance	(in	points)	between	the	dropped
capital	letter	and	the	paragraph	text.	Read/write	Single.

LineNumbering	object:	Returns	or	sets	the	distance	(in	points)	between	the
right	edge	of	line	numbers	and	the	left	edge	of	the	document	text.	Read/write
Single.



Example

This	example	adds	line	numbers	to	the	active	document.	The	distance	between
the	line	numbers	and	the	left	margin	is	36	points	(0.5	inch).

With	ActiveDocument.PageSetup.LineNumbering

				.Active	=	True

				.CountBy	=	5

				.DistanceFromText	=	36

End	With

This	example	sets	a	dropped	capital	letter	for	the	first	paragraph	in	the	active
document.	The	offset	for	the	dropped	capital	letter	is	then	set	to	12	points.

With	ActiveDocument.Paragraphs(1).DropCap

				.Enable

				.FontName=	"Arial"

				.Position	=	wdDropNormal

				.DistanceFromText	=	12

End	With



DistanceFromTop	Property
							

Returns	or	sets	the	space	(in	points)	between	the	text	and	the	top	border.
Read/write	Long.

Note			Using	this	property	with	a	page	border,	you	can	set	either	the	space
between	the	text	and	the	top	page	border	or	the	space	between	the	top	edge	of
the	page	and	the	top	page	border.	Where	the	distance	is	measured	from	depends
on	the	value	of	the	DistanceFrom	property.



Example

This	example	adds	a	border	around	each	paragraph	in	the	selection	and	sets	the
distance	between	the	text	and	the	top	border	to	3	points.

With	Selection.Borders

				.Enable	=	True

				.DistanceFromTop	=	3

End	With

This	example	adds	a	border	around	each	page	in	the	first	section	in	the	selection.
The	example	also	sets	the	distance	between	the	text	and	the	page	border	to	6
points.

Dim	borderLoop	As	Border

With	Selection.Sections(1)

				For	Each	borderLoop	In	.Borders

								borderLoop.ArtStyle	=	wdArtSeattle

								borderLoop.ArtWidth	=	22

				Next	borderLoop

				With	.Borders

								.DistanceFrom	=	wdBorderDistanceFromText

								.DistanceFromTop	=	6

								.DistanceFromLeft	=	6

								.DistanceFromBottom	=	6

								.DistanceFromRight	=	6

				End	With

End	With



DistanceLeft	Property
							

Rows	object:	Returns	or	sets	the	distance	(in	points)	between	the	document	text
and	the	left	edge	of	the	specified	table.	This	property	doesn't	have	any	effect	if
WrapAroundText	is	False.	Read/write	Single.

WrapFormat	object:	Returns	or	sets	the	distance	(in	points)	between	the
document	text	and	the	left	edge	of	the	text-free	area	surrounding	the	specified
shape.	The	size	and	shape	of	the	specified	shape,	together	with	the	values	of	the
Type	and	Side	properties	of	the	WrapFormat	object,	determine	the	size	and
shape	of	this	text-free	area.	Read/write	Single.



Example

This	example	sets	text	to	wrap	around	the	first	table	in	the	active	document	and
sets	the	distance	for	wrapped	text	to	20	points	on	all	sides	of	the	table.

With	ActiveDocument.Tables(1).Rows

				.WrapAroundText	=	True

				.DistanceLeft	=	20

				.DistanceRight	=	20

				.DistanceTop	=	20

				.DistanceBottom	=	20

End	With

This	example	adds	an	oval	to	the	active	document	and	specifies	that	the
document	text	wrap	tightly	around	the	oval.	The	example	sets	a	0.1-inch	margin
between	the	document	text	and	the	top,	bottom,	left	side,	and	right	side	of	the
oval.

Dim	shapeOval	As	Shape

Set	shapeOval	=	ActiveDocument.Shapes.AddShape(msoShapeOval,	_

				0,	0,	200,	50)

With	shapeOval.WrapFormat

				.Type	=	wdWrapTight

				.Side	=	wdWrapBoth

				.DistanceTop	=	InchesToPoints(0.1)

				.DistanceBottom	=	InchesToPoints(0.1)

				.DistanceLeft	=	InchesToPoints(0.1)

				.DistanceRight	=	InchesToPoints(0.1)

End	With



DistanceRight	Property
							

Rows	object:	Returns	or	sets	the	distance	(in	points)	between	the	document	text
and	the	right	edge	of	the	specified	table.	This	property	doesn't	have	any	effect	if
WrapAroundText	is	False.	Read/write	Single.

WrapFormat	object:	Returns	or	sets	the	distance	(in	points)	between	the
document	text	and	the	right	edge	of	the	text-free	area	surrounding	the	specified
shape.	The	size	and	shape	of	the	specified	shape,	together	with	the	values	of	the
Type	and	Side	properties	of	the	WrapFormat	object,	determine	the	size	and
shape	of	this	text-free	area.	Read/write	Single.



Example

This	example	sets	text	to	wrap	around	the	first	table	in	the	active	document	and
sets	the	distance	for	wrapped	text	to	20	points	on	all	sides	of	the	table.

With	ActiveDocument.Tables(1).Rows

				.WrapAroundText	=	True

				.DistanceLeft	=	20

				.DistanceRight	=	20

				.DistanceTop	=	20

				.DistanceBottom	=	20

End	With

This	example	adds	an	oval	to	the	active	document	and	specifies	that	the
document	text	wrap	around	the	left	and	right	sides	of	the	square	that
circumscribes	the	oval.	The	example	sets	a	0.1-inch	margin	between	the
document	text	and	the	top,	bottom,	left	side,	and	right	side	of	the	square.

Dim	shapeOval	As	Shape

Set	shapeOval	=	ActiveDocument.Shapes.AddShape(msoShapeOval,	_

				0,	0,	200,	50)

With	shapeOval.WrapFormat

				.Type	=	wdWrapSquare

				.Side	=	wdWrapBoth

				.DistanceTop	=	InchesToPoints(0.1)

				.DistanceBottom	=	InchesToPoints(0.1)

				.DistanceLeft	=	InchesToPoints(0.1)

				.DistanceRight	=	InchesToPoints(0.1)

End	With



DistanceTop	Property
							

Rows	object:	Returns	or	sets	the	distance	(in	points)	between	the	document	text
and	the	top	edge	of	the	specified	table.	This	property	doesn't	have	any	effect	if
WrapAroundText	is	False.	Read/write	Single.

WrapFormat	object:	Returns	or	sets	the	distance	(in	points)	between	the
document	text	and	the	top	edge	of	the	text-free	area	surrounding	the	specified
shape.	The	size	and	shape	of	the	specified	shape,	together	with	the	values	of	the
Type	and	Side	properties	of	the	WrapFormat	object,	determine	the	size	and
shape	of	this	text-free	area.	Read/write	Single.



Example

This	example	sets	text	to	wrap	around	the	first	table	in	the	active	document	and
sets	the	distance	for	wrapped	text	to	20	points	on	all	sides	of	the	table.

With	ActiveDocument.Tables(1).Rows

				.WrapAroundText	=	True

				.DistanceLeft	=	20

				.DistanceRight	=	20

				.DistanceTop	=	20

				.DistanceBottom	=	20

End	With

This	example	adds	an	oval	to	the	active	document	and	specifies	that	the
document	text	wrap	around	the	left	and	right	sides	of	the	square	that
circumscribes	the	oval.	The	example	sets	a	0.1-inch	margin	between	the
document	text	and	the	top,	bottom,	left	side,	and	right	side	of	the	square.

Dim	shapeOval	As	Shape

Set	shapeOval	=	ActiveDocument.Shapes.AddShape(msoShapeOval,	_

				0,	0,	200,	50)

With	shapeOval.WrapFormat

				.Type	=	wdWrapSquare

				.Side	=	wdWrapBoth

				.DistanceTop	=	InchesToPoints(0.1)

				.DistanceBottom	=	InchesToPoints(0.1)

				.DistanceLeft	=	InchesToPoints(0.1)

				.DistanceRight	=	InchesToPoints(0.1)

End	With



Document	Property
							

Returns	a	Document	object	associated	with	the	specified	pane,	window,	or
selection.	Read-only.



Example

This	example	displays	the	document	name	and	path	for	the	selection.

Msgbox	Selection.Document.FullName

This	example	sets	myDoc	to	the	document	associated	with	the	active	window.	The
focus	is	changed	to	the	next	window,	and	the	window	is	split.	The	Activate
method	is	used	to	switch	back	to	the	original	document.

Set	myDoc	=	Application.ActiveWindow.Document

If	Windows.Count	>=	2	Then	

				Application.ActiveWindow.Next.Activate

				Application.ActiveWindow.Split	=	True

				myDoc.Activate

End	If



DocumentMap	Property
							

True	if	the	document	map	is	visible.	Read/write	Boolean.



Example

This	example	toggles	the	document	map	for	the	active	window.

ActiveDocument.ActiveWindow.DocumentMap	=	_

				Not	ActiveDocument.ActiveWindow.DocumentMap

This	example	displays	the	document	map	in	the	window	for	Sales.doc.

Dim	docSales	As	Document

Set	docSales	=	_

				Documents.Open(FileName:="C:\Documents\Sales.doc")

docSales.ActiveWindow.DocumentMap	=	True



DocumentMapPercentWidth
Property
							

Returns	or	sets	the	width	of	the	document	map	as	a	percentage	of	the	width	of
the	specified	window.	Read/write	Long.



Example

This	example	displays	the	document	map	for	the	active	window	and	sets	the
map's	width	to	25	percent	of	the	window's	width.

With	ActiveDocument.ActiveWindow

				.DocumentMap	=	True

				.DocumentMapPercentWidth	=	25

End	With



Documents	Property
							

Returns	a	Documents	collection	that	represents	all	the	open	documents.	Read-
only.

For	information	about	returning	a	single	member	of	a	collection,	see	Returning
an	Object	from	a	Collection.



Example

This	example	creates	a	new	document	based	on	the	Normal	template	and	then
displays	the	Save	As	dialog	box.

Documents.Add.Save

This	example	saves	open	documents	that	have	changed	since	they	were	last
saved.

Dim	docLoop	As	Document

For	Each	docLoop	In	Documents

			If	docLoop.Saved	=	False	Then	docLoop.Save

Next	docLoop

This	example	prints	each	open	document	after	setting	the	left	and	right	margins
to	0.5	inch.

Dim	docLoop	As	Document

For	Each	docLoop	In	Documents

				With	docLoop

								.PageSetup.LeftMargin	=	InchesToPoints(0.5)

								.PageSetup.RightMargin	=	InchesToPoints(0.5)

								.PrintOut

				End	With

Next	docLoop

This	example	opens	Doc.doc	as	a	read-only	document.

Documents.Open	FileName:="C:\Files\Doc.doc",	ReadOnly:=True



Show	All



DocumentViewDirection	Property
							

Returns	or	sets	the	alignment	and	reading	order	for	the	entire	document.
Read/write	WdDocumentViewDirection.

WdDocumentViewDirection	can	be	one	of	these	WdDocumentViewDirection
constants.
wdDocumentViewLtr	Displays	the	document	with	left	alignment	and	left-to-
right	reading	order.
wdDocumentViewRtl	Displays	the	document	with	right	alignment	and	right-
to-left	reading	order.

expression.DocumentViewDirection

expression			Required.	An	expression	that	returns	an	Options	object.



Remarks

For	more	information	on	using	Word	with	right-to-left	languages,	see	Word
features	for	right-to-left	languages.

mk:@MSITStore:wdmain10.chm::/html/wdrefFeaturesAvailableInWordWhenBidirectionalLanguagesAreEnabled.htm


Example

This	example	sets	the	alignment	to	right	and	the	reading	order	to	right-to-left	for
the	entire	document.

Options.DocumentViewDirection	=	wdDocumentViewRtl



DoNotEmbedSystemFonts	Property
							

True	for	Microsoft	Word	to	not	embed	common	system	fonts.	Read/write
Boolean.

expression.DoNotEmbedSystemFonts

expression			Required.	An	expression	that	returns	a	Document	object.



Remarks

Setting	the	DoNotEmbedSystemFonts	property	to	False	is	useful	if	the	user	is
on	an	East	Asian	system	and	wants	to	create	a	document	that	is	readable	by
others	who	do	not	have	fonts	for	that	language	on	their	system.	For	example,	a
user	on	a	Japanese	system	could	choose	to	embed	the	fonts	in	a	document	so	that
the	Japanese	document	would	be	readable	on	all	systems.



Example

This	example	embeds	all	fonts	in	the	current	document.

Sub	EmbedFonts()

				With	ThisDocument

								If	.EmbedTrueTypeFonts	=	False	Then

												.EmbedTrueTypeFonts	=	True

												.DoNotEmbedSystemFonts	=	False

								Else

												.DoNotEmbedSystemFonts	=	False

								End	If

				End	With

End	Sub



DotMatrix	Property
							

True	if	the	printer	type	for	the	specified	custom	label	is	dot	matrix.	False	if	the
printer	type	is	either	laser	or	ink	jet.	Read-only	Boolean.



Example

This	example	displays	the	name	and	printer	type	of	the	first	custom	mailing
label.

Dim	mlTemp	As	MailingLabel

Set	mlTemp	=	Application.MailingLabel

If	mlTemp.CustomLabels.Count	>=	1	Then

				If	mlTemp.CustomLabels(1).DotMatrix	=	True	Then

								MsgBox	mlTemp.CustomLabels(1).Name	&	"	is	dot	matrix"

				Else

								MsgBox	mlTemp.CustomLabels(1).Name	_

												&	"	is	laser	or	ink	jet"

				End	If

End	If



DoubleQuote	Property
							

True	if	Microsoft	Word	encloses	the	specified	PageNumbers	object	in	double
quotation	marks	(").	Read/write	Boolean.

expression.DoubleQuote

expression			Required.	An	expression	that	returns	a	PageNumbers	object.



Remarks

To	set	Word	to	enclose	page	numbers	in	double	quotation	marks	by	default,	use
the	AddHebDoubleQuote	property.

For	more	information	on	using	Word	with	right-to-left	languages,	see	Word
features	for	right-to-left	languages.

mk:@MSITStore:wdmain10.chm::/html/wdrefFeaturesAvailableInWordWhenBidirectionalLanguagesAreEnabled.htm


Example

This	example	encloses	the	page	numbers	in	the	first	footer	of	the	active
document	in	double	quotation	marks	(").

ActiveDocument.Sections(1).Footers(1)	_

				.PageNumbers.DoubleQuote	=	True



DoubleStrikeThrough	Property
							

True	if	the	specified	font	is	formatted	as	double	strikethrough	text.	Returns
True,	False,	or	wdUndefined	(a	mixture	of	True	and	False).	Can	be	set	to
True,	False,	or	wdToggle.	Read/write	Long.

Note			To	set	or	return	single-line	strikethrough	formatting,	use	the
StrikeThrough	property.	Setting	DoubleStrikeThrough	to	True	sets
StrikeThrough	to	False,	and	vice	versa.



Example

This	example	applies	double	strikethrough	formatting	to	the	selected	text.

If	Selection.Type	=	wdSelectionNormal	Then

				Selection.Font.DoubleStrikeThrough	=	True

Else

				MsgBox	"You	need	to	select	some	text."

End	If

This	example	removes	double	strikethrough	formatting	from	the	first	word	in	the
active	document	and	capitalizes	the	first	letter	in	the	word.

With	ActiveDocument.Words(1)

				.Font.DoubleStrikeThrough	=	False

				.Case	=	wdTitleSentence

End	With



DownloadURL	Property
							

Returns	a	String	that	represents	the	URL	address	for	a	smart	tag.	Read-only.

expression.DownloadURL

expression			Required.	An	expression	that	returns	a	SmartTag	object.



Remarks

The	URL	address	is	specified	in	the	related	smart	tag	recognizer	file.		When	a
piece	of	text	is	recognized	and	marked,	the	URL	becomes	part	of	the	information
contained	in	the	smart	tag.	The	DownloadURL	property	is	useful	if	a	document
is	sent	to	someone	who	does	not	have	the	necessary	recognizer	and	action	files
installed	on	their	computer.	The	user	can	follow	the	URL	to	download	the
necessary	smart	tag	files.



Example

This	example	loops	through	the	smart	tags	in	the	current	document	and,	if	a
smart	tag	has	a	URL	address,	lists	the	address	in	a	new	document.

Sub	SmartTagDownloadURL()

				Dim	docNew	As	Document

				Dim	stgTag	As	SmartTag

				Dim	intCount	As	Integer

				Set	docNew	=	Documents.Add

				docNew.Content.InsertAfter	"Smart	Tag	URLs"

				docNew.Content.InsertParagraphAfter

				For	Each	stgTag	In	ThisDocument.SmartTags

								intCount	=	intCount	+	1

								If	ThisDocument.SmartTags(intCount).DownloadURL	<>	""	Then

												docNew.Content.InsertAfter	ThisDocument	_

																.SmartTags(intCount).DownloadURL

												docNew.Content.InsertParagraphAfter

								End	If

				Next

End	Sub



Draft	Property
							

True	if	all	the	text	in	a	window	is	displayed	in	the	same	sans-serif	font	with
minimal	formatting	to	speed	up	display.	Read/write	Boolean.



Example

This	example	displays	the	contents	of	the	window	for	Document1	in	the	draft
font.

Windows("Document1").View.Draft	=	True

This	example	toggles	the	draft	font	option	for	the	active	window.

ActiveDocument.ActiveWindow.View.Draft	=	_

				Not	ActiveDocument.ActiveWindow.View.Draft



Drop	Property
							

For	callouts	with	an	explicitly	set	drop	value,	this	property	returns	the	vertical
distance	(in	points)	from	the	edge	of	the	text	bounding	box	to	the	place	where
the	callout	line	attaches	to	the	text	box.	This	distance	is	measured	from	the	top	of
the	text	box	unless	the	AutoAttach	property	is	set	to	True	and	the	text	box	is	to
the	left	of	the	origin	of	the	callout	line	(the	place	that	the	callout	points	to),	in
which	case	the	drop	distance	is	measured	from	the	bottom	of	the	text	box.	Read-
only	Single.



Remarks

Use	the	CustomDrop	method	to	set	the	value	of	this	property.

The	value	of	this	property	accurately	reflects	the	position	of	the	callout	line
attachment	to	the	text	box	only	if	the	callout	has	an	explicitly	set	drop	value	—
that	is,	if	the	value	of	the	DropType	property	is	msoCalloutDropCustom.	Use
the	statement	PresetDrop	msoCalloutCustomDrop	to	set	the	DropType	property
to	msoCalloutDropCustom.



Example

This	example	replaces	the	custom	drop	for	the	first	shape	on	the	active	document
with	one	of	two	preset	drops,	depending	on	whether	the	custom	drop	value	is
greater	than	or	less	than	half	the	height	of	the	callout	text	box.	For	the	example
to	work,	the	first	shape	must	be	a	callout.

Dim	docActive	As	Document

Set	docActive	=	ActiveDocument

With	docActive.Shapes(1).Callout

				If	.DropType	=	msoCalloutDropCustom	Then

								If	.Drop	<	.Parent.Height	/	2	Then

												.PresetDrop	msoCalloutDropTop

								Else

												.PresetDrop	msoCalloutDropBottom

								End	If

				End	If

End	With



DropCap	Property
							

Returns	a	DropCap	object	that	represents	a	dropped	capital	letter	for	the
specified	paragraph.	Read-only.



Example

This	example	sets	a	dropped	capital	letter	for	the	first	paragraph	in	the	active
document.

With	ActiveDocument.Paragraphs(1).DropCap

				.FontName	=	"Arial"

				.Position	=	wdDropNormal

				.LinesToDrop	=	3

				.DistanceFromText	=	InchesToPoints(0.1)

End	With



DropDown	Property
							

Returns	a	DropDown	object	that	represents	a	drop-down	form	field.	Read-only.



Remarks

If	the	DropDown	property	is	applied	to	a	FormField	object	that	isn't	a	drop-
down	form	field,	the	property	won't	fail,	but	the	Valid	property	for	the	returned
object	will	be	False.



Example

This	example	displays	the	text	of	the	item	selected	in	the	drop-down	form	field
named	"Colors."

Dim	ffDrop	As	FormField

Set	ffDrop	=	ActiveDocument.FormFields("Colors").DropDown

MsgBox	ffDrop.ListEntries(ffDrop.Value).Name

This	example	adds	"Seattle"	to	the	drop-down	form	field	named	"Places"	in
Form.doc.

With	Documents("Form.doc").FormFields("Places")	_

								.DropDown.ListEntries

				.Add	Name:="Seattle"

End	With



DropType	Property
							

Returns	a	value	that	indicates	where	the	callout	line	attaches	to	the	callout	text
box.	Read-only	MsoCalloutDropType.

MsoCalloutDropType	can	be	one	of	these	MsoCalloutDropType	constants.
msoCalloutDropCenter
msoCalloutDropMixed
msoCalloutDropBottom
msoCalloutDropCustom
msoCalloutDropTop

expression.DropType

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.



Remarks

If	the	callout	drop	type	is	msoCalloutDropCustom,	the	values	of	the	Drop	and
AutoAttach	properties	and	the	relative	positions	of	the	callout	text	box	and
callout	line	origin	(the	place	that	the	callout	points	to)	are	used	to	determine
where	the	callout	line	attaches	to	the	text	box.

This	property	is	read-only.	Use	the	PresetDrop	method	to	set	the	value	of	this
property.



Example

This	example	checks	to	determine	whether	the	third	shape	on	the	active
document	is	a	callout	with	a	custom	drop.	If	it	is,	the	code	replaces	the	custom
drop	with	one	of	two	preset	drops,	depending	on	whether	the	custom	drop	value
is	greater	than	or	less	than	half	the	height	of	the	callout	text	box.

Dim	docActive	As	Document

Set	docActive	=	ActiveDocument

With	docActive.Shapes(3)

				If	.Type	=	msoCallout	Then

								With	.Callout

												If	.DropType	=	msoCalloutDropCustom	Then

																If	.Drop	<	.Parent.Height	/	2	Then

																				.PresetDrop	msoCalloutDropTop

																Else

																				.PresetDrop	msoCalloutDropBottom

																End	If

												End	If

								End	With

				End	If

End	With



Show	All



Duplicate	Property
							

Duplicate	property	as	it	applies	to	the	Font	object.

Returns	a	read-only	Font	object	that	represents	the	character	formatting	of	the
specified	font.

expression.Duplicate

expression			Required.	An	expression	that	returns	a	Font	object.

	

Duplicate	property	as	it	applies	to	the	LetterContent	object.

Returns	a	read-only	LetterContent	object	that	represents	the	contents	of	the
specified	letter	created	by	the	Letter	Wizard.

expression.Duplicate

expression			Required.	An	expression	that	returns	a	LetterContent	object.

	

Duplicate	property	as	it	applies	to	the	ParagraphFormat	object.

Returns	a	read-only	ParagraphFormat	object	that	represents	the	paragraph
formatting	of	the	specified	paragraph.

expression.Duplicate

expression			Required.	An	expression	that	returns	a	Paragraph	object.

	

Duplicate	property	as	it	applies	to	the	Range	object.



Returns	a	read-only	Range	object	that	represents	all	the	properties	of	the
specified	range.

expression.Duplicate

expression			Required.	An	expression	that	returns	a	Range	object.

	

Duplicate	property	as	it	applies	to	the	TextRetrievalMode	object.

Returns	a	read-only	TextRetrievalMode	object	that	represents	options	related	to
retrieving	text	from	the	specified	Range	object.

expression.Duplicate

expression			Required.	An	expression	that	returns	a	TextRetrievalMode	object.



Remarks

You	can	use	the	Duplicate	property	to	pick	up	the	settings	of	all	the	properties	of
a	duplicated	Font,	LetterContent,	or	ParagraphFormat	object.	You	can	assign
the	object	returned	by	the	Duplicate	property	to	another	object	of	the	same	type
to	apply	those	settings	all	at	once.	Before	assigning	the	duplicate	object	to
another	object,	you	can	change	any	of	the	properties	of	the	duplicate	object
without	affecting	the	original.

By	duplicating	a	Range	object,	you	can	change	the	starting	or	ending	character
position	of	the	duplicate	range	without	changing	the	original	range.



Example

As	it	applies	to	the	Font	object.

This	example	sets	the	variable	MyDupFont	to	the	character	formatting	of	the
selection,	removes	bold	formatting	from	MyDupFont,	and	adds	italic	formatting	to
it	instead.	The	example	also	creates	a	new	document,	inserts	text	into	it,	and	then
applies	the	formatting	stored	in	MyDupFont	to	the	text.

Set	myDupFont	=	Selection.Font.Duplicate

With	myDupFont

				.Bold	=	False

				.Italic	=	True

End	With

Documents.Add

Selection.InsertAfter	"This	is	some	text."

Selection.Font	=	myDupFont

As	it	applies	to	the	ParagraphFormat	object.

This	example	duplicates	the	paragraph	formatting	of	the	first	paragraph	in	the
active	document	and	stores	the	formatting	in	the	variable	myDup,	and	then	it
changes	the	left	indent	for	myDup	to	1	inch.	The	example	also	creates	a	new
document,	inserts	text	into	it,	and	then	applies	the	paragraph	formatting	stored	in
myDup	to	the	text.

ActiveDocument.Range(Start:=0,	End:=0).InsertAfter	_

				"Paragraph	Number	1"

Set	myDup	=	ActiveDocument.Paragraphs(1).Format.Duplicate

myDup.LeftIndent	=	InchesToPoints(1)

Documents.Add

Selection.InsertAfter	"This	is	a	new	paragraph."

Selection.Paragraphs.Format	=	myDup



As	it	applies	to	the	Range	object.

This	example	duplicates	the	Range	object	assigned	to	the	variable	myRange.	The
example	collapses	the	duplicate	range	to	its	end	point,	expands	it	by	one
character,	and	makes	this	character	uppercase.	The	example	then	applies	italic
formatting	to	the	original	Range	object	(myRange).

Set	myRange	=	Selection.Range

With	myRange.Duplicate

				.Collapse	Direction:=wdCollapseEnd

				.Expand	Unit:=wdCharacter

				.Case	=	wdUpperCase

End	With

myRange.Font.Italic	=	True



EditingType	Property
							

If	the	specified	node	is	a	vertex,	this	property	returns	a	value	that	indicates	how
changes	made	to	the	node	affect	the	two	segments	connected	to	the	node.	Read-
only	MsoEditingType.	If	the	node	is	a	control	point	for	a	curved	segment,	this
property	returns	the	editing	type	of	the	adjacent	vertex.

MsoEditingType	can	be	one	of	these	MsoEditingType	constants.
msoEditingAuto
msoEditingCorner
msoEditingSmooth
msoEditingSymmetric

expression.EditingType

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.



Remarks

This	property	is	read-only.	Use	the	SetEditingType	method	to	set	the	value	of
this	property.



Example

This	example	changes	all	corner	nodes	to	smooth	nodes	in	the	third	shape	on	the
active	document.	The	third	shape	must	be	a	freeform	drawing.

Dim	docActive	As	Document

Dim	intCount	As	Integer

Set	docActive	=	ActiveDocument

With	docActive.Shapes(3).Nodes

				For	intCount	=	1	to	.Count

								If	.Item(intCount).EditingType	=	msoEditingCorner	Then

												.SetEditingType	intCount,	msoEditingSmooth

								End	If

				Next

End	With



Email	Property
							

Returns	an	Email	object	that	contains	all	the	e-mail	–	related	properties	of	the
current	document.	Read-only.



Example

This	example	returns	the	name	of	the	style	associated	with	the	current	e-mail
author.

MsgBox	ActiveDocument.Email	_

				.CurrentEmailAuthor.Style.NameLocal



EmailOptions	Property
							

Returns	an	EmailOptions	object	that	represents	the	global	preferences	for	e-
mail	authoring.	Read-only.



Example

This	example	sets	Microsoft	Word	to	mark	comments	in	e-mail	messages.

Application.EmailOptions.MarkComments	=	True



EmailSignature	Property
							

Returns	an	EmailSignature	object	that	represents	the	signatures	Microsoft	Word
appends	to	outgoing	e-mail	messages.	Read-only.



Example

This	example	displays	the	signature	Word	appends	to	new	outgoing	e-mail
messages.

With	Application.EmailOptions.EmailSignature

				If	.NewMessageSignature	=	""	Then

								MsgBox	"There	is	no	signature	for	new	"	_

												&	"e-mail	messages!"

				Else

								MsgBox	"The	signature	for	new	e-mail"	_

												&	"messages	is:	"	&	vbLf	&	vbLf	_

												&	.NewMessageSignature

				End	If

End	With



EmailSignatureEntries	Property
							

Returns	an	EmailSignatureEntries	object	that	represents	the	e-mail	signature
entries	in	Microsoft	Word.	Read-only.

expression.EmailSignatureEntries

expression			Required.	An	expression	that	returns	an	EmailSignature	object.



Remarks

An	e-mail	signature	is	standard	text	that	ends	an	e-mail	message,	such	as	your
name	and	telephone	number.	Use	the	EmailSignatureEntries	property	to	create
and	manage	a	collection	of	e-mail	signatures	that	Word	will	use	when	creating	e-
mail	messages.



Example

This	example	creates	a	new	signature	entry	based	on	the	author's	name	and	the
selection	in	the	active	document.

Sub	NewSignature()

				Application.EmailOptions.EmailSignature	_

								.EmailSignatureEntries.Add	_

								Name:=ActiveDocument.BuiltInDocumentProperties("Author"),	_

								Range:=Selection.Range

End	Sub



EmailSubject	Property
							

Returns	or	sets	the	text	string	for	the	specified	hyperlink’s	subject	line.	The
subject	line	is	appended	to	the	hyperlink’s	Internet	address,	or	URL.	Read/write
String.



Remarks

This	property	is	commonly	used	with	e-mail	hyperlinks.	The	value	of	this
property	takes	precedence	over	any	e-mail	subject	specified	in	the	Address
property	of	the	same	Hyperlink	object.



Example

This	example	checks	the	active	document	for	e-mail	hyperlinks;	if	it	finds	any
that	have	a	blank	subject	line,	it	adds	the	subject	"NewProducts".

Dim	hypLoop	As	Hyperlink

For	Each	hypLoop	In	ActiveDocument.Hyperlinks

				If	hypLoop.Address	Like	"mailto*"	And	_

												hypLoop.Address	=	hypLoop.EmailSubject	Then

								hypLoop.EmailSubject	=	"NewProducts"

				End	If

Next	hypLoop



EmailTemplate	Property
							

Returns	or	sets	a	String	that	represents	the	document	template	to	use	when
sending	e-mail	messages.	Read/write.

expression.EmailTemplate

expression			Required.	An	expression	that	returns	an	Application	object.



Remarks

Use	the	EmailTemplate	property	when	Microsoft	Word	is	specified	as	your	e-
mail	editor,	which	you	must	do	inside	Microsoft	Outlook.



Example

This	example	instructs	Word	to	use	the	template	named	"Email"	for	all	new	e-
mail	messages.	This	example	assumes	that	you	have	a	template	named	"Email"
and	that	it	is	stored	in	the	default	template	location.

Sub	MessageTemplate()

				Application.EmailTemplate	=	"Email"

End	Sub



EmbedLinguisticData	Property
							

True	for	Microsoft	Word	to	embed	speech	and	handwriting	so	that	data	can	be
converted	back	to	speech	or	handwriting	and	to	store	East	Asian	IME	keystrokes
to	improve	correction;	also	controls	text	service	data	received	from	devices
connected	to	Microsoft	Office	using	the	Windows	Text	Service	Framework
Application	Programming	Interface.	Read/write	Boolean.

expression.EmbedLinguisticData

expression			Required.	An	expression	that	returns	a	Document	object.



Example

This	example	embeds	into	the	active	document	any	speech	or	handwriting	that
may	exist	in	the	document.

Sub	EmbedSpeechHandwriting()

				ActiveDocument.EmbedLinguisticData	=	True

End	Sub



EmbedSmartTag	Property
							

True	for	Microsoft	Word	to	save	the	smart	tag	information	in	HTML	e-mail
messages.	Read/write	Boolean.

expression.EmbedSmartTag

expression			Required.	An	expression	that	returns	an	EmailOptions	object.



Remarks

Use	the	EmbedSmartTag	property	when	Word	is	specified	as	your	e-mail	editor
and	messages	are	sent	using	HTML	This	allows	recipients	of	the	message	to
have	access	to	the	smart	tag	information	without	having	the	recognizer	file
registered	on	their	computer.	To	make	Word	your	default	e-mail	editor,	change
the	necessary	settings	in	Microsoft	Outlook.



Example

This	example	enables	embedding	smart	tag	information	in	e-mail	messages.	This
example	assumes	that	Word	is	your	default	e-mail	editor.

Sub	EmbedSmartTagsInEmail()

				Application.EmailOptions.EmbedSmartTag	=	True

End	Sub



EmbedSmartTags	Property
							

True	for	Microsoft	Word	to	save	the	smart	tag	information	in	a	document.
Read/write	Boolean.

expression.EmbedSmartTags

expression			Required.	An	expression	that	returns	a	Document	object.



Remarks

Use	the	EmbedSmartTags	property	when	sending	documents	to	users	who	may
not	have	the	smart	tag	recognizer	file	on	their	computer.	This	allows	the
recipient	to	still	have	access	to	the	smart	tag	information	(and	to	the	related
actions	if	they	have	the	smart	tag	actions	file	on	their	computer).	However,	if	a
document	containing	smart	tags	is	edited	by	a	user	with	an	earlier	version	of
Word,	the	smart	tag	information	is	removed.



Example

This	example	turns	off	saving	smart	tag	information	with	the	active	document,
which	requires	that	recipients	of	the	document	have	the	necessary	smart	tag
recognizer	files	registered	on	their	computer	and	enabled	through	the	Smart
Tags	tab	of	the	AutoCorrect	dialog.

Sub	DontEmbedSmartTags()

				ActiveDocument.EmbedSmartTags	=	False

End	Sub



EmbedTrueTypeFonts	Property
							

True	if	Microsoft	Word	embeds	TrueType	fonts	in	a	document	when	it's	saved.
This	allow	others	to	view	the	document	with	the	same	fonts	that	were	used	to
create	it.	Read/write	Boolean.



Example

This	example	sets	Word	to	automatically	embed	TrueType	fonts	when	saving	a
document,	and	then	it	saves	the	active	document.

ActiveDocument.EmbedTrueTypeFonts	=	True

ActiveDocument.Save

This	example	returns	the	current	status	of	the	Embed	TrueType	fonts	check	box
in	the	Save	options	area	on	the	Save	tab	in	the	Options	dialog	box.

temp	=	ActiveDocument.EmbedTrueTypeFonts



Emboss	Property
							

True	if	the	specified	font	is	formatted	as	embossed.	Returns	True,	False,	or
wdUndefined.	Can	be	set	to	True,	False,	or	wdToggle.	Read/write	Long.



Remarks

Setting	Emboss	to	True	sets	Engrave	to	False,	and	vice	versa.



Example

This	example	embosses	the	second	sentence	in	a	new	document.

With	Documents.Add.Content

				.InsertAfter	"This	is	the	first	sentence.	"

				.InsertAfter	"This	is	the	second	sentence.	"

				.Sentences(2).Font.Emboss	=	True

End	With

This	example	embosses	the	selected	text.

If	Selection.Type	=	wdSelectionNormal	Then

				Selection.Font.Emboss	=	True

Else

				MsgBox	"You	need	to	select	some	text."

End	If



EmphasisMark	Property
							

Returns	or	sets	the	emphasis	mark	for	a	character	or	designated	character	string.
Read/write	WdEmphasisMark.

WdEmphasisMark	can	be	one	of	these	WdEmphasisMark	constants.
wdEmphasisMarkNone
wdEmphasisMarkOverComma
wdEmphasisMarkOverSolidCircle
wdEmphasisMarkOverWhiteCircle
wdEmphasisMarkUnderSolidCircle

expression.EmphasisMark

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.



Example

This	example	sets	the	emphasis	mark	over	the	fourth	word	in	the	active
document	to	a	comma.

ActiveDocument.Words(4).EmphasisMark	=	wdEmphasisMarkOverComma



Empty	Property
							

True	if	the	specified	bookmark	is	empty.	An	empty	bookmark	marks	a	location
(a	collapsed	selection);	it	doesn't	mark	any	text.	Read-only	Boolean.

Note			An	error	occurs	if	the	specified	bookmark	doesn't	exist.	Use	the	Exists
property	to	determine	whether	the	bookmark	exists.



Example

This	example	determines	whether	the	bookmark	named	"temp"	exists	and
whether	it	is	empty.

If	ActiveDocument.Bookmarks.Exists("temp")	=	True	Then

				If	ActiveDocument.Bookmarks("temp").Empty	=	True	Then	_

				MsgBox	"The	Temp	bookmark	is	empty"

End	If



Enable	Property
							

Returns	or	sets	border	formatting	for	the	specified	object.	Returns	True	or
wdUndefined	if	border	formatting	is	applied	to	all	or	part	of	the	specified
object.	Can	be	set	to	True,	False,	or	a	WdLineStyle	constant.	Read/write	Long.



Remarks

The	Enable	property	applies	to	all	borders	for	the	specified	object.	True	sets	the
line	style	to	the	default	line	style	and	sets	the	line	width	to	the	default	line	width.
The	default	line	style	and	line	width	can	be	set	using	the
DefaultBorderLineWidth	and	DefaultBorderLineStyle	properties.

To	remove	all	the	borders	from	an	object,	set	the	Enable	property	to	False,	as
shown	in	the	following	example.

ActiveDocument.Tables(1).Borders.Enable	=	False

To	remove	or	apply	a	single	border,	use	Borders(index),	where	index	is	a
WdBorderType	constant,	to	return	a	single	border,	and	then	set	the	LineStyle
property.	The	following	example	removes	the	bottom	border	from	rngTemp.

Dim	rngTemp

rngTemp.Borders(wdBorderBottom).LineStyle	=	wdLineStyleNone



Example

This	example	removes	all	borders	from	the	first	cell	in	table	one.

If	ActiveDocument.Tables.Count	>=	1	Then

				ActiveDocument.Tables(1).Cell(1,	1).Borders.Enable	=	False

End	If

This	example	applies	a	dashed	border	around	the	first	paragraph	in	the	selection.

Options.DefaultBorderLineWidth	=	wdLineWidth025pt

Selection.Paragraphs(1).Borders.Enable	=	_

				wdLineStyleDashSmallGap

This	example	applies	a	border	around	the	first	character	in	the	selection.	If
nothing	is	selected,	the	border	is	applied	to	the	first	character	after	the	insertion
point.

Selection.Characters(1).Borders.Enable	=	True



EnableCancelKey	Property
							

Returns	or	sets	the	way	that	Word	handles	CTRL+BREAK	user
interruptions.	Read/write	WdEnableCancelKey.

WdEnableCancelKey	can	be	one	of	these	WdEnableCancelKey	constants.
wdCancelDisabled	Prevents	CTRL+BREAK	from	interrupting	a	macro.
wdCancelInterrupt	Allows	a	macro	to	be	interrupted	by	CTRL+BREAK.

expression.EnableCancelKey

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.



Remarks

Use	this	property	very	carefully.	If	you	use	wdCancelDisabled,	there's	no	way
to	interrupt	a	runaway	loop	or	other	non	–	self-terminating	code.	Also,	the
EnableCancelKey	property	is	not	reset	to	wdCancelInterrupt	when	your	code
stops	running;	unless	you	explicitly	reset	its	value,	it	will	remain	set	to
wdCancelDisabled	for	the	duration	of	the	Word	session.



Example

This	example	disables	CTRL+BREAK	from	interrupting	a	counter	loop.

Dim	intWait	As	Integer

Application.EnableCancelKey	=	wdCancelDisabled

For	intWait	=	1	To	10000

				StatusBar	=	intWait

Next	intWait

Application.EnableCancelKey	=	wdCancelInterrupt



Enabled	Property
							

True	if	a	form	field	is	enabled.	If	a	form	field	is	enabled,	its	contents	can	be
changed	as	the	form	is	filled	in.	Read/write	Boolean.



Example

If	the	first	form	field	in	the	active	document	is	an	enabled	check	box,	this
example	selects	the	check	box.

Dim	ffFirst	As	FormField

Set	ffFirst	=	ActiveDocument.FormFields(1)

If	ffFirst.Enabled	=	True	And	_

								ffFirst.Type	=	wdFieldFormCheckBox	Then

				ffFirst.CheckBox.Value	=	True

End	If



EnableFirstPageInSection	Property
							

True	if	page	borders	are	enabled	for	the	first	page	in	the	section.	Read/write
Boolean.



Example

This	example	adds	a	border	around	the	first	page	in	the	first	section	in	the
selection.

Dim	borderLoop	As	Border

With	Selection.Sections(1)

				.Borders.EnableFirstPageInSection	=	True

				.Borders.EnableOtherPagesInSection	=	False

				For	Each	borderLoop	In	.Borders

								borderLoop.ArtStyle	=	wdArtPeople

								borderLoop.ArtWidth	=	15

				Next	borderLoop

End	With



EnableHangulHanjaRecentOrdering
Property
							

True	if	Microsoft	Word	displays	the	most	recently	used	words	at	the	top	of	the
suggestions	list	during	conversion	between	Hangul	and	Hanja.	Read/write
Boolean.

expression.EnableHangulHanjaRecentOrdering

expression			Required.	An	expression	that	returns	an	Options	object.



Remarks

For	more	information	on	using	Microsoft	Word	with	East	Asian	languages,	see
Word	features	for	East	Asian	languages.

mk:@MSITStore:wdmain10.chm::/html/wdrefFeaturesAvailableInWordWhenAsianLanguagesAreEnabled.htm


Example

This	example	asks	the	user	whether	to	set	Microsoft	Word	to	display	the	most
recently	used	words	at	the	top	of	the	suggestions	list	during	conversion	between
Hangul	and	Hanja.

x	=	MsgBox("Display	most	recently	used	words	"	_

				&	"at	the	top	of	the	suggestions	list?",	vbYesNo)

If	x	=	vbYes	Then

				Options.EnableHangulHanjaRecentOrdering	=	True

Else

				Options.EnableHangulHanjaRecentOrdering	=	False

End	If



EnableMisusedWordsDictionary
Property
							

True	if	Microsoft	Word	checks	for	misused	words	when	checking	the	spelling
and	grammar	in	a	document.	Read/write	Boolean.



Remarks

Word	looks	for	the	following	when	checking	for	misused	words:	incorrect	usage
of	adjectives	and	adverbs,	comparatives	and	superlatives,	"like"	as	a	conjunction,
"nor"	versus	"or,"	"what"	versus	"which,"	"who"	versus	"whom,"	units	of
measurement,	conjunctions,	prepositions,	and	pronouns.



Example

This	example	sets	Word	to	ignore	misused	words	when	checking	spelling	and
grammar.

Options.EnableMisusedWordsDictionary	=	False



EnableOtherPagesInSection	Property
							

True	if	page	borders	are	enabled	for	all	pages	in	the	section	except	for	the	first
page.	Read/write	Boolean.



Example

This	example	adds	a	border	around	each	page	in	the	first	section	in	the	selection
except	for	the	first	page.

Dim	borderLoop	As	Border

With	Selection.Sections(1)

				.Borders.EnableFirstPageInSection	=	False

				.Borders.EnableOtherPagesInSection	=	True

				For	Each	borderLoop	In	.Borders

								borderLoop.ArtStyle	=	wdArtBabyRattle

								borderLoop.ArtWidth	=	22

				Next	borderLoop

End	With



EnableSound	Property
							

True	if	Word	makes	the	computer	respond	with	a	sound	whenever	an	error
occurs.	Read/write	Boolean.



Example

This	example	sets	the	Provide	feedback	with	sound	option	on	the	General	tab
in	the	Options	dialog	box,	based	on	user	input.

If	MsgBox("Do	you	want	Word	to	beep	on	errors?",	36)	=	vbYes	Then

				Options.EnableSound	=	True

Else

				Options.EnableSound	=	False

End	If	



EnclosureNumber	Property
							

Returns	or	sets	the	number	of	enclosures	for	a	letter	created	by	the	Letter
Wizard.	Read/write	String.



Example

This	example	displays	the	number	of	enclosures	specified	in	the	active
document.

MsgBox	ActiveDocument.GetLetterContent.EnclosureNumber

This	example	retrieves	letter	elements	from	the	active	document,	changes	the
number	of	enclosures	by	setting	the	EnclosureNumber	property,	and	then	uses
the	SetLetterContent	method	to	update	the	active	document	to	reflect	the
changes.

Dim	lcTemp	As	LetterContent

Set	lcTemp	=	ActiveDocument.GetLetterContent

lcTemp.EnclosureNumber	=	"5"

ActiveDocument.SetLetterContent	LetterContent:=lcTemp



Encoding	Property
							

Returns	or	sets	the	document	encoding	(code	page	or	character	set)	to	be	used	by
the	Web	browser	when	you	view	the	saved	document.	Read/write
MsoEncoding.

MsoEncoding	can	be	one	of	these	MsoEncoding	constants;	however,	you	cannot
use	any	of	the	constants	that	have	the	suffix	AutoDetect.	These	constants	are
used	by	the	ReloadAs	method.
msoEncodingOEMMultilingualLatinI
msoEncodingOEMNordic
msoEncodingOEMTurkish
msoEncodingSimplifiedChineseAutoDetect
msoEncodingT61
msoEncodingTaiwanEten
msoEncodingTaiwanTCA
msoEncodingTaiwanWang
msoEncodingTraditionalChineseAutoDetect
msoEncodingTurkish
msoEncodingUnicodeLittleEndian
msoEncodingUTF7
msoEncodingVietnamese
msoEncodingEBCDICJapaneseKatakanaExtended
msoEncodingEBCDICJapaneseLatinExtendedAndJapanese
msoEncodingEBCDICKoreanExtendedAndKorean
msoEncodingEBCDICMultilingualROECELatin2
msoEncodingEBCDICSerbianBulgarian
msoEncodingEBCDICThai
msoEncodingEBCDICTurkishLatin5
msoEncodingEBCDICUSCanada
msoEncodingEBCDICUSCanadaAndTraditionalChinese



msoEncodingOEMModernGreek
msoEncodingOEMMultilingualLatinII
msoEncodingOEMPortuguese
msoEncodingOEMUnitedStates
msoEncodingSimplifiedChineseGBK
msoEncodingTaiwanCNS
msoEncodingTaiwanIBM5550
msoEncodingTaiwanTeleText
msoEncodingThai
msoEncodingTraditionalChineseBig5
msoEncodingUnicodeBigEndian
msoEncodingUSASCII
msoEncodingUTF8
msoEncodingWestern
msoEncodingArabic
msoEncodingArabicASMO
msoEncodingArabicAutoDetect
msoEncodingArabicTransparentASMO
msoEncodingAutoDetect
msoEncodingBaltic
msoEncodingCentralEuropean
msoEncodingCyrillic
msoEncodingCyrillicAutoDetect
msoEncodingEBCDICArabic
msoEncodingEBCDICDenmarkNorway
msoEncodingEBCDICFinlandSweden
msoEncodingEBCDICFrance
msoEncodingEBCDICGermany
msoEncodingEBCDICGreek
msoEncodingEBCDICGreekModern
msoEncodingEBCDICHebrew
msoEncodingEBCDICIcelandic
msoEncodingEBCDICInternational



msoEncodingEBCDICItaly
msoEncodingEBCDICJapaneseKatakanaExtendedAndJapanese
msoEncodingEBCDICKoreanExtended
msoEncodingEBCDICLatinAmericaSpain
msoEncodingEBCDICRussian
msoEncodingEBCDICSimplifiedChineseExtendedAndSimplifiedChinese
msoEncodingEBCDICTurkish
msoEncodingEBCDICUnitedKingdom
msoEncodingEBCDICUSCanadaAndJapanese
msoEncodingEUCChineseSimplifiedChinese
msoEncodingEUCJapanese
msoEncodingEUCKorean
msoEncodingEUCTaiwaneseTraditionalChinese
msoEncodingEuropa3
msoEncodingExtAlphaLowercase
msoEncodingGreek
msoEncodingGreekAutoDetect
msoEncodingHebrew
msoEncodingHZGBSimplifiedChinese
msoEncodingIA5German
msoEncodingIA5IRV
msoEncodingIA5Norwegian
msoEncodingIA5Swedish
msoEncodingISO2022CNSimplifiedChinese
msoEncodingISO2022CNTraditionalChinese
msoEncodingISO2022JPJISX02011989
msoEncodingISO2022JPJISX02021984
msoEncodingISO2022JPNoHalfwidthKatakana
msoEncodingISO2022KR
msoEncodingISO6937NonSpacingAccent
msoEncodingISO885915Latin9
msoEncodingISO88591Latin1
msoEncodingISO88592CentralEurope



msoEncodingISO88593Latin3
msoEncodingISO88594Baltic
msoEncodingISO88595Cyrillic
msoEncodingISO88596Arabic
msoEncodingISO88597Greek
msoEncodingISO88598Hebrew
msoEncodingISO88599Turkish
msoEncodingJapaneseAutoDetect
msoEncodingJapaneseShiftJIS
msoEncodingKOI8R
msoEncodingKOI8U
msoEncodingKorean
msoEncodingKoreanAutoDetect
msoEncodingKoreanJohab
msoEncodingMacArabic
msoEncodingMacCroatia
msoEncodingMacCyrillic
msoEncodingMacGreek1
msoEncodingMacHebrew
msoEncodingMacIcelandic
msoEncodingMacJapanese
msoEncodingMacKorean
msoEncodingMacLatin2
msoEncodingMacRoman
msoEncodingMacRomania
msoEncodingMacSimplifiedChineseGB2312
msoEncodingMacTraditionalChineseBig5
msoEncodingMacTurkish
msoEncodingMacUkraine
msoEncodingOEMArabic
msoEncodingOEMBaltic
msoEncodingOEMCanadianFrench
msoEncodingOEMCyrillic



msoEncodingOEMCyrillicII
msoEncodingOEMGreek437G
msoEncodingOEMHebrew
msoEncodingOEMIcelandic

expression.Encoding

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.



Example

This	example	checks	to	see	whether	the	default	document	encoding	is	Western,
and	then	it	sets	the	string	strDocEncoding	accordingly.

Dim	strDocEncoding	As	String

If	Application.DefaultWebOptions.Encoding	_

								=	msoEncodingWestern	Then

				strDocEncoding	=	"Western"

Else

				strDocEncoding	=	"Other"

End	If



End	Property
							

Returns	or	sets	the	ending	character	position	of	a	selection,	range,	or	bookmark.
Read/write	Long.

Note			If	this	property	is	set	to	a	value	smaller	than	the	Start	property,	the	Start
property	is	set	to	the	same	value	(that	is,	the	Start	and	End	property	are	equal).



Remarks

The	Selection,	Range,	and	Bookmark	objects	all	have	a	starting	position	and	an
ending	position.	The	ending	position	is	the	point	farthest	away	from	the
beginning	of	the	story.

This	property	returns	the	ending	character	position	relative	to	the	beginning	of
the	story.	The	main	document	story	(wdMainTextStory)	begins	with	character
position	0	(zero).	You	can	change	the	size	of	a	selection,	range,	or	bookmark	by
setting	this	property.



Example

This	example	compares	the	ending	position	of	the	"temp"	bookmark	with	the
starting	position	of	the	"begin"	bookmark.

Set	Book1	=	ActiveDocument.Bookmarks("begin")

Set	Book2	=	ActiveDocument.Bookmarks("temp")

If	Book2.End	>	Book1.Start	Then	Book1.Select

This	example	retrieves	the	ending	position	of	the	selection.	This	value	is	used	to
create	a	range	so	that	a	field	can	be	inserted	after	the	selection.

pos	=	Selection.End

Set	myRange	=	ActiveDocument.Range(Start:=pos,	End:=pos)

ActiveDocument.Fields.Add	Range:=myRange,	Type:=wdFieldAuthor

This	example	changes	the	ending	position	of	myRange	by	one	character.

Set	myRange	=	ActiveDocument.Paragraphs(1).Range

myRange.End	=	myRange.End	-	1



EndArrowheadLength	Property
							

Returns	or	sets	the	length	of	the	arrowhead	at	the	end	of	the	specified
line.	Read/write	MsoArrowheadLength.

MsoArrowheadLength	can	be	one	of	these	MsoArrowheadLength	constants.
msoArrowheadLengthMixed
msoArrowheadShort
msoArrowheadLengthMedium
msoArrowheadLong

expression.EndArrowheadLength

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.



Example

This	example	adds	a	line	to	the	active	document.	There's	a	short,	narrow	oval	on
the	line's	starting	point	and	a	long,	wide	triangle	on	its	end	point.

Dim	docActive	As	Document

Set	docActive	=	ActiveDocument

With	docActive.Shapes.AddLine(100,	100,	200,	300).Line

				.BeginArrowheadLength	=	msoArrowheadShort

				.BeginArrowheadStyle	=	msoArrowheadOval

				.BeginArrowheadWidth	=	msoArrowheadNarrow

				.EndArrowheadLength	=	msoArrowheadLong

				.EndArrowheadStyle	=	msoArrowheadTriangle

				.EndArrowheadWidth	=	msoArrowheadWide

End	With



EndArrowheadStyle	Property
							

Returns	or	sets	the	style	of	the	arrowhead	at	the	end	of	the	specified
line.	Read/write	MsoArrowheadStyle.

MsoArrowheadStyle	can	be	one	of	these	MsoArrowheadStyle	constants.
msoArrowheadNone
msoArrowheadOval
msoArrowheadStyleMixed
msoArrowheadDiamond
msoArrowheadOpen
msoArrowheadStealth
msoArrowheadTriangle

expression.EndArrowheadStyle

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.



Example

This	example	adds	a	line	to	the	active	document.	There's	a	short,	narrow	oval	on
the	line's	starting	point	and	a	long,	wide	triangle	on	its	end	point.

Dim	docActive	As	Document

Set	docActive	=	ActiveDocument

With	docActive.Shapes.AddLine(100,	100,	200,	300).Line

				.BeginArrowheadLength	=	msoArrowheadShort

				.BeginArrowheadStyle	=	msoArrowheadOval

				.BeginArrowheadWidth	=	msoArrowheadNarrow

				.EndArrowheadLength	=	msoArrowheadLong

				.EndArrowheadStyle	=	msoArrowheadTriangle

				.EndArrowheadWidth	=	msoArrowheadWide

End	With



EndArrowheadWidth	Property
							

Returns	or	sets	the	width	of	the	arrowhead	at	the	end	of	the	specified
line.	Read/write	MsoArrowheadWidth.

MsoArrowheadWidth	can	be	one	of	these	MsoArrowheadWidth	constants.
msoArrowheadNarrow
msoArrowheadWidthMedium
msoArrowheadWide
msoArrowheadWidthMixed

expression.EndArrowheadWidth

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.



Example

This	example	adds	a	line	to	the	active	document.	There's	a	short,	narrow	oval	on
the	line's	starting	point	and	a	long,	wide	triangle	on	its	end	point.

Dim	docActive	As	Document

Set	docActive	=	ActiveDocument

With	docActive.Shapes.AddLine(100,	100,	200,	300).Line

				.BeginArrowheadLength	=	msoArrowheadShort

				.BeginArrowheadStyle	=	msoArrowheadOval

				.BeginArrowheadWidth	=	msoArrowheadNarrow

				.EndArrowheadLength	=	msoArrowheadLong

				.EndArrowheadStyle	=	msoArrowheadTriangle

				.EndArrowheadWidth	=	msoArrowheadWide

End	With



EndnoteOptions	Property
							

Returns	an	EndnoteOptions	object	that	represents	the	endnotes	in	a	range	or
selection.

expression.EndnoteOptions

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.



Example

This	example	sets	the	starting	number	for	endnotes	in	section	two	of	the	active
document	to	one	if	the	starting	number	is	not	one.

Sub	SetEndnoteOptionsRange()

				With	ActiveDocument.Sections(2).Range.EndnoteOptions

								If	.StartingNumber	<>	1	Then

												.StartingNumber	=	1

								End	If

				End	With

End	Sub



Endnotes	Property
							

Returns	an	Endnotes	collection	that	represents	all	the	endnotes	in	a	range,
selection,	or	document.	Read-only.

For	information	about	returning	a	single	member	of	a	collection,	see	Returning
an	Object	from	a	Collection.



Example

This	example	positions	the	endnotes	in	the	active	document	at	the	end	of	the
document	and	formats	the	endnote	reference	marks	as	lowercase	roman
numerals.

With	ActiveDocument.Endnotes

				.Location	=	wdEndOfDocument

				.NumberStyle	=	wdNoteNumberStyleLowercaseRoman

End	With



Engrave	Property
							

True	if	the	font	is	formatted	as	engraved.	Returns	True,	False	or	wdUndefined
(a	mixture	of	True	and	False).	Can	be	set	to	True,	False,	or	wdToggle.
Read/write	Long.



Remarks

Setting	Engrave	to	True	sets	Emboss	to	False,	and	vice	versa.



Example

This	example	formats	the	first	letter	in	the	active	document	as	engraved.

Dim	rngTemp	As	Range

Set	rngTemp	=	ActiveDocument.Characters(1)

With	rngTemp.Font

				.Size	=	20

				.Engrave	=	True

End	With

This	example	formats	the	selection	as	engraved.

If	Selection.Type	=	wdSelectionNormal	Then

				Selection.Font.Engrave	=	True

Else

				MsgBox	"You	need	to	select	some	text."

End	If



Entries	Property
							

Returns	an	AutoCorrectEntries	collection	that	represents	the	current	list	of
AutoCorrect	entries.	This	list	corresponds	to	the	list	of	AutoCorrect	entries	on
the	AutoCorrect	tab	in	the	AutoCorrect	dialog	box	(Tools	menu).	Read-only.

For	information	about	returning	a	single	member	of	a	collection,	see	Returning
an	Object	from	a	Collection.



Example

This	example	displays	the	total	number	of	AutoCorrect	entries.

MsgBox	AutoCorrect.Entries.Count

This	example	deletes	the	specified	AutoCorrect	entry	if	it	exists.

Dim	strEntry	As	String

Dim	acEntry	As	AutoCorrectEntry

Dim	blnMatch	As	Boolean

Dim	intResponse	As	Integer

strEntry	=	InputBox("Enter	the	AutoCorrect	entry	to	delete.")

blnMatch	=	False

For	Each	acEntry	in	AutoCorrect.Entries

				If	acEntry.Name	=	strEntry	Then

								blnMatch	=	True

								intResponse	=	_

												MsgBox("Are	you	sure	you	want	to	delete	"	_

												&	acEntry.Name,	4)

								If	intResponse	=	vbYes	Then

												acEntry.Delete

								End	If

				End	If

Next	acEntry

If	blnMatch	<>	True	Then

				MsgBox	"There	was	no	AutoCorrect	entry:	"	&	strEntry

End	If



EntryMacro	Property
							

Returns	or	sets	an	entry	macro	name	for	the	specified	form	field	(CheckBox,
DropDown,	or	TextInput).	The	entry	macro	runs	when	the	form	field	gets	the
focus.	Read/write	String.



Example

This	example	assigns	the	macro	named	"Blue"	to	the	first	form	field	in
"Form.doc."

Documents("Form.doc").FormFields(1).EntryMacro	=	"Blue"

This	example	assigns	the	macro	named	"Breadth"	to	the	form	field	named
"Text1"	in	the	active	document.

ActiveDocument.FormFields("Text1").EntryMacro	=	"Breadth"



EntrySeparator	Property
							

Returns	or	sets	the	characters	(up	to	five)	that	separate	a	table	of	authorities	entry
and	its	page	number.	The	default	is	a	tab	character	with	a	dotted	leader.
Corresponds	to	the	\e	switch	for	a	TOA	(Table	of	Authorities)	field.	Read/write
String.



Example

This	example	inserts	a	table	of	authorities	into	the	active	document	and	then
formats	the	table	to	use	a	comma	between	the	entries	and	their	corresponding
page	numbers.

Dim	rngTemp	As	Range

Dim	toaLoop	As	TableOfAuthorities

Set	rngTemp	=	ActiveDocument.Range(Start:=0,	End:=0)

ActiveDocument.TablesOfAuthorities.Add	_

				Range:=rngTemp,	Category:=1

For	Each	toaLoop	In	ActiveDocument.TablesOfAuthorities

				toaLoop.EntrySeparator	=	",	"

Next	toaLoop

This	example	returns	the	entry	separator	for	the	first	table	of	authorities.

Dim	strSeparator

strSeparator	=	_

				ActiveDocument.TablesOfAuthorities(1).EntrySeparator



Envelope	Property
							

Returns	an	Envelope	object	that	represents	envelope	functionality	and	the
envelope	in	the	specified	document.	Read-only.



Example

This	example	sets	the	default	envelope	size	to	C4	(229	x	324	mm).

ActiveDocument.Envelope.DefaultSize	=	"C4"

This	example	displays	the	delivery	address	if	an	envelope	has	been	added	to	the
document;	otherwise,	a	message	box	is	displayed.

On	Error	GoTo	errhandler

addr	=	ActiveDocument.Envelope.Address.Text

MsgBox	Prompt:=addr,	Title:="Delivery	Address"

errhandler:

If	Err	=	5852	Then	MsgBox	"Add	an	envelope	to	the	document"

This	example	creates	a	new	document	and	adds	an	envelope	with	a	predefined
delivery	address	and	return	address.

addr	=	"Don	Funk"	&	vbCr	&	"123	Skye	St."	_

				&	vbCr	&	"Our	Town,	WA		98040"

retaddr	=	"Karin	Gallagher"	&	vbCr	&	"123	Main"	_

				&	vbCr	&	"Other	Town,	WA		98004"

Documents.Add.Envelope.Insert	Address:=addr,	ReturnAddress:=retaddr

ActiveDocument.ActiveWindow.View.Type	=	wdPrintView



EnvelopeFeederInstalled	Property
							

True	if	the	current	printer	has	a	special	feeder	for	envelopes.	Read-only
Boolean.



Example

This	example	prints	the	active	document	as	an	envelope,	provided	that	there's	an
envelope	feeder	installed.

If	Options.EnvelopeFeederInstalled	=	True	Then

				ActiveDocument.Envelope.PrintOut	_

								AddressFromLeft:=InchesToPoints(3),	_

								AddressFromTop:=InchesToPoints(1.5)

Else

				Msgbox	"No	envelope	feeder	available."

End	If



EnvelopeVisible	Property
							

True	if	the	e-mail	message	header	is	visible	in	the	document	window.	The
default	value	is	False.	This	property	has	no	effect	if	the	document	isn't	an	e-mail
message.	Read/write	Boolean.



Example

This	example	displays	the	e-mail	message	header.

ActiveWindow.EnvelopeVisible	=	True



EvenlySpaced	Property
							

True	if	text	columns	are	evenly	spaced.	Can	be	True,	False,	or	wdUndefined.
Read/write	Long.



Remarks

If	you	set	the	Spacing	or	Width	property	of	the	TextColumns	object,	the
EvenlySpaced	property	is	automatically	set	to	True.	Also,	setting	the
EvenlySpaced	property	may	change	the	settings	for	the	Spacing	and	Width
properties	of	the	TextColumns	object.



Example

This	example	topic	sets	columns	in	the	active	document	to	be	evenly	spaced.

Dim	colTextColumns

Set	colTextColumns	=	ActiveDocument.PageSetup.TextColumns

If	colTextColumns.Count	>	1	Then	_

				colTextColumns.EvenlySpaced	=	True

End	If

This	example	returns	the	status	of	the	Equal	column	width	option	in	the
Columns	dialog	box	(Format	menu).

Dim	lngSpaced	As	Long

lngSpaced	=	ActiveDocument.PageSetup.TextColumns.EvenlySpaced



Exists	Property
							

True	if	the	specified	HeaderFooter	object	exists.	Read/write	Boolean.

Note			The	primary	header	and	footer	exist	in	all	new	documents	by	default.	Use
this	method	to	determine	whether	a	first-page	or	odd-page	header	or	footer
exists.	You	can	also	use	the	DifferentFirstPageHeaderFooter	or
OddAndEvenPagesHeaderFooter	property	to	return	or	set	the	number	of
headers	and	footers	in	the	specified	document	or	section.



Example

If	a	first-page	header	exists	in	section	one,	this	example	sets	the	text	for	the
header.

Dim	secTemp	As	Section

Set	secTemp	=	ActiveDocument.Sections(1)

If	secTemp.Headers(wdHeaderFooterFirstPage).Exists	=	True	Then

				secTemp.Headers(wdHeaderFooterFirstPage).Range.Text	=	_

								"First	Page"

End	If



ExitMacro	Property
							

Returns	or	sets	an	exit	macro	name	for	the	specified	form	field	(CheckBox,
DropDown,	or	TextInput).	The	exit	macro	runs	when	the	form	field	loses	the
focus.	Read/write	String.



Example

This	example	assigns	the	macro	named	"Reformat"	to	the	first	form	field	in	the
selection.

If	Selection.FormFields.Count	>	0	Then	_

				Selection.FormFields(1).ExitMacro	=	"Reformat"

This	example	assigns	the	macro	named	"Blue"	to	the	last	form	field	in
"Form.doc."

Dim	intMax	As	Integer

intMax	=	Documents("Form.doc").FormFields.Count

Documents("Form.doc").FormFields(intMax).ExitMacro	=	"Blue"



Expanded	Property
							

True	if	the	subdocuments	in	the	specified	document	are	expanded.	Read/write
Boolean.



Example

This	example	expands	all	subdocuments	in	the	active	master	document.

If	ActiveDocument.Subdocuments.Count	>=	1	Then

				ActiveDocument.Subdocuments.Expanded	=	True

End	If

This	example	toggles	the	Expanded	property	between	expanding	and	collapsing
all	subdocuments	in	the	active	document.

ActiveDocument.Subdocuments.Expanded	=	_

				Not	ActiveDocument.Subdocuments.Expanded

This	example	determines	whether	the	subdocuments	in	Report.doc	are	expanded
and	then	displays	a	message	indicating	their	status.

If	Documents("Report.doc").Subdocuments.Expanded	=	True	Then

				MsgBox	"All	available	information	is	displayed."

Else

				MsgBox	"Expand	subdocuments	for	more	information."

End	If



ExtendMode	Property
							

True	if	Extend	mode	is	active.	When	Extend	mode	is	active,	the	Extend
argument	of	the	following	methods	is	True	by	default:	EndKey,	HomeKey,
MoveDown,	MoveLeft,	MoveRight,	and	MoveUp.	Also,	the	letters	"EXT"
appear	on	the	status	bar.	Read/write	Boolean.

expression.ExtendMode

expression			Required.	An	expression	that	returns	a	Selection	object.



Remarks

This	property	can	only	be	set	during	run	time;	attempts	to	set	it	in	Immediate
mode	are	ignored.	The	Extend	arguments	of	the	EndOf	and	StartOf	methods
are	not	affected	by	this	property.



Example

This	example	moves	to	the	beginning	of	the	paragraph	and	selects	the	paragraph
plus	the	next	two	sentences.

With	Selection

				.MoveUp	Unit:=wdParagraph

				.ExtendMode	=	True

				.MoveDown	Unit:=wdParagraph

				.MoveRight	Unit:=wdSentence,	Count:=2

End	With

This	example	collapses	the	current	selection,	turns	on	Extend	mode,	and	selects
the	current	sentence.

With	Selection

				.Collapse

				.ExtendMode	=	True

				'	Select	current	word.

				.Extend

				'	Select	current	sentence.

				.Extend

End	With



Extensions	Property
							

Returns	the	file	name	extensions	associated	with	the	specified	FileConverter
object.	Read-only	String.



Example

This	example	displays	the	name	and	file	name	extensions	for	first	file	converter.

Dim	fcTemp	As	FileConverter

Set	fcTemp	=	FileConverters(1)

MsgBox	"The	file	extensions	for	"	&	fcTemp.FormatName	_

				&	"	files	are:	"	&	fcTemp.Extensions



ExtraInfoRequired	Property
							

True	if	extra	information	is	required	to	resolve	the	specified	hyperlink.	Read-
only	Boolean.

Note			You	can	specify	extra	information	by	using	the	ExtraInfo	argument	with
the	Follow	or	FollowHyperlink	method.	For	example,	you	can	use	ExtraInfo	to
specify	the	coordinates	of	an	image	map,	the	contents	of	a	form,	or	a	FAT	file
name.



Example

This	example	inserts	a	hyperlink	to	www.msn.com	and	then	follows	the
hyperlink	if	extra	information	isn't	required.

Dim	hypTemp	As	Hyperlink

With	Selection

				.Collapse	Direction:=wdCollapseEnd

				.InsertAfter	"MSN	"

				.Previous

End	With

Set	hypTemp	=	ActiveDocument.Hyperlinks.Add(	_

				Address:="http://www.msn.com",	_

				Anchor:=Selection.Range)

If	hypTemp.ExtraInfoRequired	=	False	Then

				hypTemp.Follow

End	If



ExtrusionColor	Property
							

Returns	a	ColorFormat	object	that	represents	the	color	of	the	shape's	extrusion.
Read-only.



Example

This	example	adds	an	oval	to	the	active	document	and	then	specifies	that	the
oval	be	extruded	to	a	depth	of	50	points	and	that	the	extrusion	be	purple.

Dim	docActive	As	Document

Dim	shapeNew	As	Shape

Set	docActive	=	ActiveDocument

Set	shapeNew	=	docActive.Shapes.AddShape(msoShapeOval,	_

				90,	90,	90,	40)

With	shapeNew.ThreeD

				.Visible	=	True

				.Depth	=	50

				'	RGB	value	for	purple

				.ExtrusionColor.RGB	=	RGB(255,	100,	255)

End	With



ExtrusionColorType	Property
							

Returns	or	sets	a	value	that	indicates	whether	the	extrusion	color	is	based	on	the
extruded	shape's	fill	(the	front	face	of	the	extrusion)	and	automatically	changes
when	the	shape's	fill	changes,	or	whether	the	extrusion	color	is	independent	of
the	shape's	fill.	Read/write	MsoExtrusionColorType.

MsoExtrusionColorType	can	be	one	of	these	MsoExtrusionColorType
constants.
msoExtrusionColorAutomatic	Extrusion	color	based	on	shape	fill.
msoExtrusionColorTypeMixed
msoExtrusionColorCustom	Extrusion	color	independent	of	shape	fill.

expression.ExtrusionColorType

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.



Example

If	the	first	shape	on	the	active	document	has	an	automatic	extrusion	color,	this
example	gives	the	extrusion	a	custom	yellow	color.

Dim	docActive	As	Document

Set	docActive	=	ActiveDocument

With	docActive.Shapes(1).ThreeD

				If	.ExtrusionColorType	=	msoExtrusionColorAutomatic	Then

								.ExtrusionColor.RGB	=	RGB(240,	235,	16)

				End	If

End	With



FarEastLineBreakControl	Property
							

True	if	Microsoft	Word	applies	East	Asian	line-breaking	rules	to	the	specified
paragraphs.	Returns	wdUndefined	if	the	FarEastLineBreakControl	property	is
set	to	True	for	only	some	of	the	specified	paragraphs.	Read/write	Long.



Example

This	example	sets	Word	to	apply	East	Asian	line-breaking	rules	to	the	first
paragraph	in	the	active	document.

ActiveDocument.Paragraphs(1).FarEastLineBreakControl	=	True



Show	All



FarEastLineBreakLanguage
Property
							

Returns	or	sets	the	East	Asian	language	to	use	when	breaking	lines	of	text	in	the
specified	document	or	template.	Read/write
WdFarEastLineBreakLanguageID.

WdFarEastLineBreakLanguageID	can	be	one	of	these
WdFarEastLineBreakLanguageID	constants.
wdLineBreakJapanese
wdLineBreakKorean
wdLineBreakSimplifiedChinese
wdLineBreakTraditionalChinese

reexpression.FarEastLineBakLanguage

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.



Remarks

For	more	information	on	using	Microsoft	Word	with	East	Asian	languages,	see
Word	features	for	East	Asian	languages.

mk:@MSITStore:wdmain10.chm::/html/wdrefFeaturesAvailableInWordWhenAsianLanguagesAreEnabled.htm


Example

This	example	sets	Word	to	break	lines	in	the	current	document	based	on	Korean
language	rules.

ActiveDocument.FarEastLineBreakLanguage	=	wdLineBreakKorean



Show	All



FarEastLineBreakLevel	Property
							

Returns	or	sets	the	line	break	control	level	for	the	specified	document.	This
property	is	ignored	if	the	FarEastLineBreakControl	property	is	set	to	False.
Read/write	WdFarEastLineBreakLevel.

WdFarEastLineBreakLevel	can	be	one	of	these	WdFarEastLineBreakLevel
constants.
wdFarEastLineBreakLevelCustom
wdFarEastLineBreakLevelNormal
wdFarEastLineBreakLevelStrict

expression.FarEastLineBreakLevel

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.



Remarks

For	more	information	on	using	Microsoft	Word	with	East	Asian	languages,	see
Word	features	for	East	Asian	languages.

mk:@MSITStore:wdmain10.chm::/html/wdrefFeaturesAvailableInWordWhenAsianLanguagesAreEnabled.htm


Example

This	example	sets	Microsoft	Word	to	perform	line	breaking	on	first-level	kinsoku
characters	in	the	active	document.

ActiveDocument.FarEastLineBreakLevel	=	wdJustificationModeCompressKana



FeatureInstall	Property
							

Returns	or	sets	how	Microsoft	Word	handles	calls	to	methods	and	properties	that
require	features	not	yet	installed.	Read/write	MsoReatureInstall.

Can	be	one	of	the	following	MsoFeatureInstall	constants.

Constant Value Description

msoFeatureInstallNone 0

The	default	value.	A
generic	Automation	error
is	generated	at	run	time
when	uninstalled	features
are	called.

msoFeatureInstallOnDemand 1 The	user	is	prompted	to
install	new	features.

msoFeatureInstallOnDemandWithUI 2

A	progress	meter	is
displayed	during
installation.	The	user	isn't
prompted	to	install	new
features.

expression.FeatureInstall

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.



Remarks

You	can	use	the	msoFeatureInstallOnDemandWithUI	constant	to	prevent
users	from	believing	that	the	application	isn't	responding	while	a	feature	is	being
installed.	Use	the	msoFeatureInstallNone	constant	if	you	want	the	developer	to
be	the	only	one	who	can	install	features.

If	you	have	the	DisplayAlerts	property	set	to	False,	users	will	not	be	prompted
to	install	new	features	even	if	the	FeatureInstall	property	is	set	to
msoFeatureInstallOnDemand.	If	the	DisplayAlerts	property	is	set	to	True,	an
installation	progress	meter	will	appear	if	the	FeatureInstall	property	is	set	to
msoFeatureInstallOnDemand.



Example

This	example	activates	a	new	instance	of	Microsoft	Excel	and	checks	the	value
of	the	FeatureInstall	property.	If	the	property	is	set	to	msoFeatureInstallNone,
the	code	displays	a	message	box	that	asks	the	user	whether	they	want	to	change
the	property	setting.	If	the	user	responds	"Yes,"	the	property	is	set	to
msoFeatureInstallOnDemand.	For	this	example	to	function	properly,	you	must
add	a	reference	to	Microsoft	Excel	Object	Library	in	the	References	dialog
(Tools	menu).

Dim	ExcelApp	As	New	Excel.Application

Dim	intReply	As	Integer

With	ExcelApp

				If	.FeatureInstall	=	msoFeatureInstallNone	Then

								intReply	=	MsgBox("Uninstalled	features	for	"	_

												&	"this	application	may	"	&	vbCrLf	_

												&	"cause	a	run-time	error	when	called."	_

												&	vbCrLf	&	vbCrLf	_

												&	"Would	you	like	to	change	this	setting"	&	vbCrLf	_

												&	"to	automatically	install	missing	features?",	_

												vbYesNo,	"Feature	Install	Setting")

								If	intReply	=	vbYes	Then

												.FeatureInstall	=	msoFeatureInstallOnDemand

								End	If

				End	If

End	With



FeedSource	Property
							

Returns	or	sets	the	paper	tray	for	the	envelope.	Read/write	WdPaperTray.

WdPaperTray	can	be	one	of	these	WdPaperTray	constants.
wdPrinterAutomaticSheetFeed
wdPrinterDefaultBin
wdPrinterEnvelopeFeed
wdPrinterFormSource
wdPrinterLargeCapacityBin
wdPrinterLargeFormatBin
wdPrinterLowerBin
wdPrinterManualEnvelopeFeed
wdPrinterManualFeed
wdPrinterMiddleBin
wdPrinterOnlyBin
wdPrinterPaperCassette
wdPrinterSmallFormatBin
wdPrinterTractorFeed
wdPrinterUpperBin

expression.FeedSource

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

Note			If	you	use	this	property	before	an	envelope	has	been	added	to	the
document,	an	error	occurs.



Example

This	example	asks	the	user	whether	envelopes	are	fed	into	the	printer	manually.
If	the	answer	is	yes,	the	example	sets	the	paper	tray	to	manual	envelope	feed.

Sub	exFeedSource()

				Dim	intResponse	As	Integer

				intResponse	=	_

								MsgBox("Are	the	envelopes	manually	fed?",	vbYesNo)

				If	intResponse	=	vbYes	then

								On	Error	GoTo	errhandler

								ActiveDocument.Envelope.FeedSource	=	_

												wdPrinterManualEnvelopeFeed

				End	If

				Exit	Sub

errhandler:

				If	Err	=	5852	Then	MsgBox	_

								"Envelope	not	part	of	the	active	document"

End	Sub



Field	Property
							

Returns	a	Field	object	that	represents	the	field	associated	with	the	specified
shape.	Read-only.

Note			Use	the	Fields	property	to	return	the	Fields	collection.



Example

This	example	inserts	a	graphic	as	an	inline	shape	(using	an	INCLUDEPICTURE
field)	and	then	displays	the	shape's	field	code.

Dim	ishapeNew	As	InlineShape

Set	iShapeNew	=	_

				ActiveDocument.InlineShapes	_

				.AddPicture(FileName:="C:\Windows\Tiles.bmp",	_

				LinkToFile:=True,	SaveWithDocument:=False,	_

				Range:=Selection.Range)

MsgBox	iShapeNew.Field.Code.Text



FieldNames	Property
							

Returns	a	MailMergeFieldNames	collection	that	represents	the	names	of	all	the
fields	in	the	specified	mail	merge	data	source.	Read-only.

For	information	about	returning	a	single	member	of	a	collection,	see	Returning
an	Object	from	a	Collection.



Example

This	example	displays	the	name	of	the	first	field	in	the	data	source	attached	to
the	active	mail	merge	main	document.

MsgBox	ActiveDocument.MailMerge.DataSource.FieldNames(1).Name

This	example	uses	the	mNames()	array	to	store	the	names	of	each	merge	field
contained	in	the	data	source	attached	to	the	active	document.

Dim	mNames	As	Variant

Dim	mmTemp	As	MailMerge

Dim	intCount	As	Integer

Dim	intIncrement	As	Integer

Dim	mmfnLoop	As	MailMergeFieldName

Set	mmTemp	=	ActiveDocument.MailMerge

intCount	=	_

				ActiveDocument.MailMerge.DataSource.FieldNames.Count	-	1

ReDim	mNames(intCount)

intIncrement	=	0

For	Each	mmfnLoop	In	mmTemp.DataSource.FieldNames

				mNames(intIncrement)	=	mmfnLoop.Name

				intIncrement	=	intIncrement	+	1

Next	mmfnLoop



Show	All



Fields	Property
							

Fields	property	as	it	applies	to	the	Document,	Range,	and	Selection	objects.

Returns	a	read-only	Fields	collection	that	represents	all	the	fields	in	the
document,	range,	or	selection.

expression.Fields

expression			Required.	An	expression	that	returns	one	of	the	above	objects.

Note			When	applied	to	the	Document	object,	the	Fields	property	returns	a
Fields	collection	that	contains	only	the	fields	in	the	main	text	story.

Fields	property	as	it	applies	to	the	MailMerge	object.

Returns	a	read-only	MailMergeFields	collection	that	represents	all	the	mail
merge	related	fields	in	the	specified	document.

expression.Fields

expression			Required.	An	expression	that	returns	a	MailMerge	object.

For	information	about	returning	a	single	member	of	a	collection,	see	Returning
an	Object	from	a	Collection.



Example

As	it	applies	to	the	Document,	Range,	and	Selection	objects.

This	example	updates	all	the	fields	in	the	active	document.

ActiveDocument.Fields.Update

This	example	removes	all	the	fields	from	the	main	text	story	and	the	footer	in	the
active	document.

For	Each	aField	in	ActiveDocument.Fields

				aField.Delete

Next	aField

Set	myRange	=	ActiveDocument.Sections(1).Footers	_

				(wdHeaderFooterPrimary).Range

For	Each	aField	In	myRange.Fields

				aField.Delete

Next	aField

This	example	adds	a	DATE	field	at	the	insertion	point.

With	Selection

				.Collapse	Direction:=wdCollapseStart

				.Fields.Add	Range:=Selection.Range,	Type:=wdFieldDate

End	With

As	it	applies	to	the	Document,	Range,	and	Selection	objects.

This	example	adds	a	mail	merge	field	named	"Title"	at	the	insertion	point.

Selection.Collapse	Direction:=wdCollapseStart

ActiveDocument.MailMerge.Fields.Add	Range:=	Selection.Range,	_

				Name:=	"Title"



FieldShading	Property
							

Returns	or	sets	on-screen	shading	for	form	fields.	Read/write	WdFieldShading.

WdFieldShading	can	be	one	of	these	WdFieldShading	constants.
wdFieldShadingAlways
wdFieldShadingNever
wdFieldShadingWhenSelected

expression.FieldShading

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.



Example

This	example	enables	field	shading	for	all	form	fields	in	the	active	window.

ActiveDocument.ActiveWindow.View.FieldShading	=	_

				wdFieldShadingAlways



FileConverters	Property
							

Returns	a	FileConverters	collection	that	represents	all	the	file	converters
available	to	Word.	Read-only.

For	information	about	returning	a	single	member	of	a	collection,	see	Returning
an	Object	from	a	Collection.



Example

This	example	displays	the	path	of	the	WordPerfect	5.0	file	converter.

MsgBox	FileConverters("WrdPrfctDOS50").Path

This	example	displays	a	message	that	indicates	whether	the	third	converter	in	the
FileConverters	collection	can	save	files.

If	FileConverters(3).CanSave	=	True	Then

				MsgBox	FileConverters(3).FormatName	&	"	can	save	files"

Else

				MsgBox	FileConverters(3).FormatName	&	"	cannot	save	files"

End	If

This	example	displays	the	name	of	the	last	file	converter.

Dim	fcTemp	As	FileConverter

Set	fcTemp	=	FileConverters(FileConverters.Count)

MsgBox	"The	file	extensions	for	"	&	fcTemp.FormatName	&	_

				"	files	are:	"	&	fcTemp.Extensions



Show	All



FileDialog	Property
							

Returns	a	FileDialog	object	which	represents	a	single	instance	of	a	file	dialog
box.

expression.FileDialog(FileDialogType)

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

FileDialogType		Required	MsoFileDialogType.	The	type	of	dialog.

MsoFileDialogType	can	be	one	of	these	MsoFileDialogType	constants.
msoFileDialogFilePicker
msoFileDialogFolderPicker
msoFileDialogOpen
msoFileDialogSaveAs



Example

This	example	displays	the	Save	As	dialog	box.

Sub	ShowSaveAsDialog()

				Dim	dlgSaveAs	As	FileDialog

				Set	dlgSaveAs	=	Application.FileDialog(	_

								FileDialogType:=msoFileDialogSaveAs)

				dlgSaveAs.Show

End	Sub

This	example	displays	the	Open	dialog	box	and	allows	a	user	to	select	multiple
files	to	open.

Sub	ShowFileDialog()

				Dim	dlgOpen	As	FileDialog

				Set	dlgOpen	=	Application.FileDialog(	_

								FileDialogType:=msoFileDialogOpen)

				With	dlgOpen

								.AllowMultiSelect	=	True

								.Show

				End	With

End	Sub



FileSearch	Property
							

Returns	a	FileSearch	object	that	can	be	used	to	search	for	files	using	either	an
absolute	or	relative	path.

expression.FileSearch

expression			Required.	An	expression	that	returns	an	Application	object.

mk:@MSITStore:vbaof10.chm::/html/ofobjFileSearch.htm


Example

This	example	displays,	in	a	series	of	message	boxes,	the	file	names	in	the	My
Documents	folder	that	begin	with	99.

With	Application.FileSearch

				.FileName	=	"99*.*"

				.LookIn	=	"C:\My	Documents"

				.Execute

				For	I	=	1	to	.FoundFiles.Count

								MsgBox	.FoundFiles(I)

				Next	I

End	With



Fill	Property
							

Returns	a	FillFormat	object	that	contains	fill	formatting	properties	for	the
specified	shape.	Read-only.



Example

This	example	adds	a	rectangle	to	myDocument	and	then	sets	the	foreground	color,
background	color,	and	gradient	for	the	rectangle's	fill.

Set	myDocument	=	Documents(1)

With	myDocument.Shapes.AddShape(msoShapeRectangle,	_

								90,	90,	90,	50).Fill

				.ForeColor.RGB	=	RGB(128,	0,	0)

				.BackColor.RGB	=	RGB(170,	170,	170)

				.TwoColorGradient	msoGradientHorizontal,	1

End	With



Filter	Property
							

Returns	or	sets	a	value	that	specifies	how	Microsoft	Word	classifies	the	first
character	of	entries	in	the	specified	index.	Can	be	any	of	the	following
WdIndexFilter	constants:	wdIndexFilterAiueo,	wdIndexFilterAkasatana,
wdIndexFilterChosung,	wdIndexFilterLow,	wdIndexFilterMedium,
wdIndexFilterFull,	or	wdIndexFilterNone.	Read/write	Long.



Example

This	example	inserts	an	index	at	the	end	of	the	active	document.	right-aligns	the
page	numbers,	and	then	sets	Microsoft	Word	to	classify	index	entries	as	"
".

Set	myRange	=	ActiveDocument.Range	_

				(Start:=ActiveDocument.Content.End	-1,	_

				End:=ActiveDocument.Content.End	-1)

ActiveDocument.Indexes.Add(Range:=myRange,	Type:=wdIndexIndent,	_

				RightAlignPageNumbers:=True).Filter	=	wdIndexFilterAkasatana



Find	Property
							

Returns	a	Find	object	that	contains	the	criteria	for	a	find	operation.	Read-only.

Note			When	this	property	is	used	with	a	Selection	object,	the	selection	is
changed	if	the	find	operation	is	successful.	If	this	property	is	used	with	a	Range
object,	the	selection	isn't	changed	unless	the	Select	method	is	applied.



Example

The	following	example	searches	forward	through	the	document	for	the	word
"Microsoft."	If	the	word	is	found,	it's	automatically	selected.

With	Selection.Find

				.Forward	=	True

				.ClearFormatting

				.MatchWholeWord	=	True

				.MatchCase	=	False

				.Wrap	=	wdFindContinue

				.Execute	FindText:="Microsoft"

End	With

This	example	inserts	"Tip:	"	at	the	beginning	of	every	paragraph	formatted	with
the	Heading	3	style	in	the	active	document.	The	Do…Loop	statement	is	used	to
repeat	a	series	of	actions	each	time	this	style	is	found.

With	ActiveDocument.Content.Find

				.ClearFormatting

				.Style	=	wdStyleHeading3

				Do	While	.Execute(FindText:="",	Forward:=True,	_

												Format:=True)	=	True

								With	.Parent

												.StartOf	Unit:=wdParagraph,	Extend:=wdMove

												.InsertAfter	"Tip:	"

												.Move	Unit:=wdParagraph,	Count:=1

								End	With

				Loop

End	With



FindKey	Property
							

Returns	a	KeyBinding	object	that	represents	the	specified	key	combination.
Read-only.

expression.FindKey(KeyCode,	KeyCode2)

expression			Optional.	An	expression	that	returns	an	Application	object.

KeyCode			Required	Long.	A	key	you	specify	by	using	one	of	the	WdKey
constants.

KeyCode2			Optional	Variant.	A	second	key	you	specify	by	using	one	of	the
WdKey	constants.



Remarks

You	can	use	the	BuildKeyCode	method	to	create	the	KeyCode	or	KeyCode2
argument.



Example

This	example	disables	the	ALT+SHIFT+F12	key	combination	in	the	template
attached	to	the	active	document.	To	return	a	KeyBinding	object	that	includes
more	than	two	keys,	use	the	BuildKeyCode	method,	as	shown	in	the	example.

CustomizationContext	=	ActiveDocument.AttachedTemplate

FindKey(KeyCode:=BuildKeyCode(wdKeyAlt,	wdKeyShift,	_

				wdKeyF12)).Disable

This	example	displays	the	command	assigned	to	the	F1	key.

CustomizationContext	=	NormalTemplate

MsgBox	FindKey(KeyCode:=wdKeyF1).Command



Show	All



First	Property
							

First	property	as	it	applies	to	the	Characters,	Sentences,	and	Words	objects.

Returns	a	Range	object	that	represents	the	first	sentence,	word,	or	character	in	a
document,	selection	or	range.

expression.First

expression			Required.	An	expression	that	returns	one	of	the	above	objects.

First	property	as	it	applies	to	the	Columns	object.

Returns	a	Column	object	that	represents	the	first	item	in	the	Columns
collection.

expression.First

expression			Required.	An	expression	that	returns	a	Columns	object.

First	property	as	it	applies	to	the	Paragraphs	object.

Returns	a	Paragraph	object	that	represents	the	first	item	in	the	Paragraphs
collection.

expression.First

expression			Required.	An	expression	that	returns	a	Paragraphs	object.

First	property	as	it	applies	to	the	Rows	object.

Returns	a	Row	object	that	represents	the	first	item	in	the	Rows	collection.

expression.First

expression			Required.	An	expression	that	returns	a	Rows	object.



First	property	as	it	applies	to	the	Sections	object.

Returns	a	Section	object	that	represents	the	first	item	in	the	Sections	collection.

expression.First

expression			Required.	An	expression	that	returns	a	Sections	object.



Example

As	it	applies	to	the	Paragraph	object.

This	example	right-aligns	the	first	paragraph	in	the	selection.

Selection.Paragraphs.First.Alignment	=	wdAlignParagraphRight

As	it	applies	to	the	Rows	object.

This	example	applies	shading	and	a	bottom	border	to	the	first	row	in	the	first
table	of	the	active	document.

ActiveDocument.Tables(1).Borders.Enable	=	False

With	ActiveDocument.Tables(1).Rows.First

				.Shading.Texture	=	wdTexture10Percent

				.Borders(wdBorderBottom).LineStyle	=	wdLineStyleSingle

End	With



FirstChild	Property
							

Returns	a	DiagramNode	object	that	represents	the	first	child	node	of	a	parent
node.	Read-only.

expression.FirstChild

expression			Required.	An	expression	that	returns	a	DiagramNodeChildren
object.



Remarks

Use	the	LastChild	property	to	access	the	last	child	node.	Use	the	Root	property
to	access	the	parent	node	in	a	diagram.



Example

This	example	adds	an	organization	chart	diagram	to	the	current	document,	adds
three	nodes,	and	assigns	the	first	and	last	child	nodes	to	variables.

Sub	FirstChild()

				Dim	shpDiagram	As	Shape

				Dim	dgnRoot	As	DiagramNode

				Dim	dgnFirstChild	As	DiagramNode

				Dim	dgnLastChild	As	DiagramNode

				Dim	intCount	As	Integer

				'Add	organizational	chart	diagram	to	the	current	document

				Set	shpDiagram	=	ThisDocument.Shapes.AddDiagram	_

								(Type:=msoDiagramOrgChart,	Left:=10,	_

								Top:=15,	Width:=400,	Height:=475)

				'Add	the	first	node	to	the	diagram

				Set	dgnRoot	=	shpDiagram.DiagramNode.Children.AddNode

				'Add	three	child	nodes

				For	intCount	=	1	To	3

								dgnRoot.Children.AddNode

				Next	intCount

				'Assign	the	first	and	last	child	nodes	to	variables

				Set	dgnFirstChild	=	dgnRoot.Children.FirstChild

				Set	dgnLastChild	=	dgnRoot.Children.LastChild

End	Sub



FirstLetterAutoAdd	Property
							

True	if	Word	automatically	adds	abbreviations	to	the	list	of	AutoCorrect	First
Letter	exceptions.	Word	adds	an	abbreviation	to	this	list	if	you	delete	and	then
retype	the	letter	that	Word	capitalized	immediately	after	the	period	following	the
abbreviation.	Read/write	Boolean.



Example

This	example	prevents	Word	from	automatically	adding	abbreviations	to	the	list
of	AutoCorrect	First	Letter	exceptions.

AutoCorrect.FirstLetterAutoAdd	=	False



FirstLetterExceptions	Property
							

Returns	a	FirstLetterExceptions	collection	that	represents	the	list	of
abbreviations	after	which	Word	won't	automatically	capitalize	the	next	letter.
This	list	corresponds	to	the	list	of	AutoCorrect	exceptions	on	the	First	Letter
tab	in	the	AutoCorrect	Exceptions	dialog	box	(AutoCorrect	command,	Tools
menu).Read-only.

For	information	about	returning	a	single	member	of	a	collection,	see	Returning
an	Object	from	a	Collection.



Example

This	example	adds	"apt."	to	the	list	of	AutoCorrect	First	Letter	exceptions.

AutoCorrect.FirstLetterExceptions.Add	"apt."

This	example	deletes	the	specified	AutoCorrect	First	Letter	exception	if	it	exists.

Dim	strException	As	String

Dim	fleLoop	As	FirstLetterException

Dim	blnMatch	As	Boolean

Dim	intConfirm	As	Integer

strException	=	_

				InputBox("Enter	the	First	Letter	exception	to	delete.")

blnMatch	=	False

For	Each	fleLoop	in	AutoCorrect.FirstLetterExceptions

				If	fleLoop.Name	=	strException	Then

								blnMatch	=	True

								intConfirm	=	MsgBox("Are	you	sure	you	want	to	delete	"	_

												&	fleLoop.Name,	4)

								If	intConfirm	=	vbYes	Then

												fleLoop.Delete

								End	If

				End	If

Next	fleLoop

If	blnMatch	<>	True	Then

				MsgBox	"There	was	no	First	Letter	exception:	"	_

								&	strException

End	If



FirstLineIndent	Property
							

Returns	or	sets	the	value	(in	points)	for	a	first	line	or	hanging	indent.	Use	a
positive	value	to	set	a	first-line	indent,	and	use	a	negative	value	to	set	a	hanging
indent.	Read/write	Single.



Example

This	example	sets	a	first-line	indent	of	1	inch	for	the	first	paragraph	in	the	active
document.

ActiveDocument.Paragraphs(1).FirstLineIndent	=	_

				InchesToPoints(1)

This	example	sets	a	hanging	indent	of	0.5	inch	for	the	second	paragraph	in	the
active	document.	The	InchesToPoints	method	is	used	to	convert	inches	to
points.

ActiveDocument.Paragraphs(2).FirstLineIndent	=	_

				InchesToPoints(-0.5)



FirstPageTray	Property
							

Returns	or	sets	the	paper	tray	to	use	for	the	first	page	of	a	document	or
section.	Read/write	WdPaperTray.

WdPaperTray	can	be	one	of	these	WdPaperTray	constants.
wdPrinterAutomaticSheetFeed
wdPrinterDefaultBin
wdPrinterEnvelopeFeed
wdPrinterFormSource
wdPrinterLargeCapacityBin
wdPrinterLargeFormatBin
wdPrinterLowerBin
wdPrinterManualEnvelopeFeed
wdPrinterManualFeed
wdPrinterMiddleBin
wdPrinterOnlyBin
wdPrinterPaperCassette
wdPrinterSmallFormatBin
wdPrinterTractorFeed
wdPrinterUpperBin

expression.FirstPageTray

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.



Example

This	example	sets	the	tray	to	use	for	printing	the	first	page	of	each	section	in	the
active	document.

ActiveDocument.PageSetup.FirstPageTray	=	wdPrinterLowerBin

This	example	sets	the	tray	to	use	for	printing	the	first	page	of	each	section	in	the
selection.

Selection.PageSetup.FirstPageTray	=	wdPrinterUpperBin



FirstRecord	Property
							

Returns	or	sets	the	number	of	the	first	data	record	to	be	merged	in	a	mail	merge
operation.	Read/write	Long.



Example

This	example	merges	the	main	document	with	data	records	1	through	3	and
sends	the	merge	documents	to	the	printer.

With	ActiveDocument.MailMerge

				.DataSource.FirstRecord	=	1

				.DataSource.LastRecord	=	3

				.Destination	=	wdSendToPrinter

				.Execute

End	With



FitText	Property
							

True	if	Microsoft	Word	visually	reduces	the	size	of	text	typed	into	a	cell	so	that
it	fits	within	the	column	width.	Read/write	Boolean.



Remarks

If	the	FitText	property	is	set	to	True,	the	font	size	of	the	text	is	not	changed,	but
the	visual	width	of	the	characters	is	adjusted	to	fit	all	the	typed	text	into	the	cell.



Example

This	example	sets	the	first	cell	in	the	selection	to	automatically	fit	typed	text
within	its	width.

Selection.Cells(1).FitText	=	True



FitTextWidth	Property
							

Returns	or	sets	the	width	(in	the	current	measurement	units)	in	which	Microsoft
Word	fits	the	text	in	the	current	selection	or	range.	Read/write	Single.

expression.FitTextWidth

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.



Remarks

For	more	information	on	using	Word	with	Asian	languages,	see	Word	features
for	Asian	languages.

mk:@MSITStore:wdmain10.chm::/html/wdrefFeaturesAvailableInWordWhenAsianLanguagesAreEnabled.htm


Example

This	example	fits	the	current	selection	into	a	space	five	centimeters	wide.

Selection.FitTextWidth	=	CentimetersToPoints(5)



Flags	Property
							

Returns	or	sets	properties	of	the	selection.	Read/write	WdSelectionFlags.

WdSelectionFlags	can	be	one	of	these	WdSelectionFlags	constants.
wdSelActive
wdSelOvertype
wdSelStartActive
wdSelAtEOL
wdSelReplace
The	return	value	of	the	Flags	property	is	the	sum	of	the	WdSelectionFlags
constants	that	apply	to	the	selection.

Note:	Setting	the	Flags	property	to	wdSelAtEOL	wil	make	the	end	of	the
selection	active.

expression.Flags

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.



Example

This	example	selects	the	first	word	in	the	active	document.	The	first	message
box	displays	"False"	because	the	end	of	the	selection	is	active.	The	Flags
property	makes	the	beginning	of	the	selection	active.,	and	the	second	message
box	displays	"True."

				ActiveDocument.Words(1).Select

				MsgBox	Selection.StartIsActive

				Selection.Flags	=	wdSelStartActive

				MsgBox	Selection.StartIsActive

	

This	example	turns	on	overtype	mode	for	the	selection.

				Selection.Flags	=	wdSelStartActive

					



Show	All



FlowDirection	Property
							

Returns	or	sets	the	direction	in	which	text	flows	from	one	text	column	to	the
next.	Read/write	WdFlowDirection.

WdFlowDirection	can	be	one	of	these	WdFlowDirection	constants.
wdFlowLtr	Text	in	columns	flows	from	left	to	right.
wdFlowRtl	Text	in	columns	flows	from	right	to	left.

expression.FlowDirection

expression			Required.	An	expression	that	returns	a	TextColumns	object.



Remarks

For	more	information	on	using	Word	with	right-to-left	languages,	see	Word
features	for	right-to-left	languages.

mk:@MSITStore:wdmain10.chm::/html/wdrefFeaturesAvailableInWordWhenBidirectionalLanguagesAreEnabled.htm


Example

This	example	sets	the	flow	direction	so	that	text	flows	through	the	specified
columns	from	right	to	left.

ActiveDocument.PageSetup.TextColumns.FlowDirection	=	_

				wdFlowRtl



FocusInMailHeader	Property
							

True	if	the	insertion	point	is	in	an	e-mail	header	field	(the	To:	field,	for
example).	Read-only	Boolean.



Example

This	example	displays	a	message	in	the	status	bar	if	the	insertion	point	is	in	an	e-
mail	header	field.

If	Application.FocusInMailHeader	=	True	Then

				StatusBar	=	"Selection	is	in	message	header"

End	If



Show	All



FolderSuffix	Property
							

Returns	the	folder	suffix	that	Microsoft	Word	uses	when	you	save	a	document	as
a	Web	page,	use	long	file	names,	and	choose	to	save	supporting	files	in	a
separate	folder	(that	is,	if	the	UseLongFileNames	and	OrganizeInFolder
properties	are	set	to	True).	Read-only	String.

expression.FolderSuffix

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.



Remarks

Newly	created	documents	use	the	suffix	returned	by	the	FolderSuffix	property
of	the	DefaultWebOptions	object.	The	value	of	the	FolderSuffix	property	of
the	WebOptions	object	may	differ	from	that	of	the	DefaultWebOptions	object
if	the	document	was	previously	edited	in	a	different	language	version	of
Microsoft	Word.	You	can	use	the	UseDefaultFolderSuffix	method	to	change	the
suffix	to	the	language	you	are	currently	using	in	Microsoft	Office.

By	default,	the	name	of	the	supporting	folder	is	the	name	of	the	Web	page	plus
an	underscore	(_),	a	period	(.),	or	a	hyphen	(-)	and	the	word	"files"	(appearing	in
the	language	of	the	version	of	Word	in	which	the	file	was	saved	as	a	Web	page).
For	example,	suppose	that	you	use	the	Dutch	language	version	of	Word	to	save	a
file	called	"Page1"	as	a	Web	page.	The	default	name	of	the	supporting	folder	is
Page1_bestanden.

The	following	table	lists	each	language	version	of	Office	and	gives	its
corresponding	LanguageID	property	value	and	folder	suffix.	For	the	languages
that	are	not	listed	in	the	table,	the	suffix	".files"	is	used.

LanguageID	property	values
Language LanguageID Folder	suffix

Arabic 1025 .files
Basque 1069 _fitxategiak
Brazilian 1046 _arquivos
Bulgarian 1026 .files
Catalan 1027 _fitxers
Chinese	-	Simplified 2052 .files
Chinese	-	Traditional 1028 .files
Croatian 1050 _datoteke
Czech 1029 _soubory
Danish 1030 -filer
Dutch 1043 _bestanden
English 1033 _files
Estonian 1061 _failid



Finnish 1035 _tiedostot
French 1036 _fichiers
German 1031 -Dateien
Greek 1032 .files
Hebrew 1037 .files
Hungarian 1038 _elemei
Italian 1040 _file
Japanese 1041 .files
Korean 1042 .files
Latvian 1062 _fails
Lithuanian 1063 _bylos
Norwegian 1044 -filer
Polish 1045 _pliki
Portuguese 2070 _ficheiros
Romanian 1048 .files
Russian 1049 .files
Serbian	(Cyrillic) 3098 .files
Serbian	(Latin) 2074 _fajlovi
Slovakian 1051 .files
Slovenian 1060 _datoteke
Spanish 3082 _archivos
Swedish 1053 -filer
Thai 1054 .files
Turkish 1055 _dosyalar
Ukranian 1058 .files
Vietnamese 1066 .files



Example

This	example	places	the	folder	suffix	used	by	the	active	document	in	a	string
variable.

strFolderSuffix	=	ActiveDocument.WebOptions.FolderSuffix



Font	Property
							

Returns	or	sets	a	Font	object	that	represents	the	character	formatting	of	the
specified	object.	To	set	this	property,	specify	an	expression	that	returns	a	Font
object.	Read/write	Font.



Example

This	example	removes	bold	formatting	from	the	Heading	1	style	in	the	active
document.

ActiveDocument.Styles(wdStyleHeading1).Font.Bold	=	False

This	example	toggles	the	font	of	the	second	paragraph	in	the	active	document
between	Arial	and	Times	New	Roman.

Set	myRange	=	ActiveDocument.Paragraphs(2).Range

If	myRange.Font.Name	=	"Times	New	Roman"	Then

				myRange.Font.Name	=	"Arial"

Else

				myRange.Font.Name	=	"Times	New	Roman"

End	If

This	example	displays	the	font	of	the	selected	text.

MsgBox	Selection.Font.Name

This	example	applies	the	character	formatting	of	the	selected	text	to	the	first
paragraph	in	the	active	document.

Set	myFont	=	Selection.Font.Duplicate

ActiveDocument.Paragraphs(1).Range.Font	=	myFont

This	example	finds	the	next	range	of	text	that's	formatted	with	the	Times	New
Roman	font.

With	Selection.Find

				.ClearFormatting

				.Font.Name	=	"Times	New	Roman"

				.Execute	FindText:="",	ReplaceWith:="",	Format:=True,	_

								Forward:=True

End	With





FontBold	Property
							

Read/write	MsoTriState.

MsoTriState	can	be	one	of	these	MsoTriState	constants.
msoCTrue
msoFalse
msoTriStateMixed
msoTriStateToggle
msoTrue	The	font	in	the	specified	WordArt	is	bold.



Example

This	example	sets	the	font	to	bold	for	the	third	shape	on	the	active	document	if
the	shape	is	WordArt.

Dim	docActive	As	Document

Set	docActive	=	ActiveDocument

With	docActive.Shapes(3)

				If	.Type	=	msoTextEffect	Then

								.TextEffect.FontBold	=	msoTrue

				End	If

End	With



Show	All



FontItalic	Property
							

Italicizes	WordArt	text.	Read/write	MsoTriState.

MsoTriState	can	be	one	of	these	MsoTriState	constants.
msoCTrue
msoFalse
msoTriStateMixed
msoTriStateToggle
msoTrue

expression.FontItalic

expression			Required.	An	expression	that	returns	a	TextEffectFormat	object.



Example

This	example	sets	the	font	to	italic	for	the	shape	named	"WordArt	4"	in	the
active	document.

Sub	ItalicizeWordArt()

				ActiveDocument.Shapes("WordArt	4")	_

								.TextEffect.FontItalic	=	msoTrue

End	Sub



FontName	Property
							

Returns	or	sets	the	name	of	the	font	for	the	dropped	capital	letter.	Read/write
String.



Example

This	example	sets	Arial	as	the	font	for	the	dropped	capital	letter	for	the	first
paragraph	in	the	active	document.

With	ActiveDocument.Paragraphs(1).DropCap

				.FontName	=	"Arial"

				.Position	=	wdDropNormal

				.LinesToDrop	=	3

				.DistanceFromText	=	InchesToPoints(0.1)

End	With



FontNames	Property
							

Returns	a	FontNames	object	that	includes	the	names	of	all	the	available	fonts.
Read-only.



Example

This	example	displays	the	font	names	in	the	FontNames	collection.

Dim	strFont	As	String

Dim	intResponse	As	Integer

For	Each	strFont	In	FontNames

				intResponse	=	MsgBox(Prompt:=strFont,	Buttons:=vbOKCancel)

				If	intResponse	=	vbCancel	Then	Exit	For

Next	strFont



Fonts	Property
							

Returns	the	WebPageFonts	collection	representing	the	set	of	fonts	Microsoft
Word	uses	when	you	open	a	Web	page	in	Word	and	either	there	is	no	font
information	specified	in	the	Web	page,	or	the	current	default	font	can't	display
the	character	set	in	the	Web	page.

expression.Fonts

expression			Required.	An	expression	that	returns	a	DefaultWebObtions	object.

mk:@MSITStore:vbaof10.chm::/html/ofobjWebPageFonts.htm


Example

This	example	sets	the	default	fixed-width	font	for	the	English/Western
European/Other	Latin	Script	character	set	to	Courier	New,	14	points.

With	Application.DefaultWebOptions	_

								.Fonts(msoCharacterSetEnglishWesternEuropeanOtherLatinScript)

				.FixedWidthFont	=	"Courier	New"

				.FixedWidthFontSize	=	14

End	With



FontSize	Property
							

Returns	or	sets	the	font	size	for	the	specified	WordArt,	in	points.	Read/write
Single.



Example

This	example	sets	the	font	size	to	16	points	for	the	shape	named	"WordArt	2"	in
the	active	document.

Dim	docActive	As	Document

Set	docActive	=	ActiveDocument

docActive.Shapes("WordArt	2").TextEffect.FontSize	=	16



FooterDistance	Property
							

Returns	or	sets	the	distance	(in	points)	between	the	footer	and	the	bottom	of	the
page.	Read/write	Single.



Example

This	example	sets	the	distance	between	the	footer	and	the	bottom	of	the	page	to
0.5	inch.	The	InchesToPoints	method	is	used	to	convert	inches	to	points.

ActiveDocument.PageSetup.FooterDistance	=	InchesToPoints(0.5)

This	example	sets	the	distance	between	the	footer	and	the	bottom	of	the	page	for
all	the	sections	in	the	selection	to	1	inch.

Selection.Range.PageSetup.FooterDistance	=	72



Footers	Property
							

Returns	a	HeadersFooters	collection	that	represents	the	footers	in	the	specified
section.	Read-only.

For	information	about	returning	a	single	member	of	a	collection,	see	Returning
an	Object	from	a	Collection.



Example

This	example	adds	a	right-aligned	page	number	to	the	primary	footer	in	the	first
section	in	the	active	document.

With	ActiveDocument.Sections(1).Footers(wdHeaderFooterPrimary)

				.PageNumbers.Add	PageNumberAlignment:=wdAlignPageNumberRight

End	With



FootnoteOptions	Property
							

Returns	FootnoteOptions	object	that	represents	the	footnotes	in	a	selection	or
range.

expression.FootnoteOptions

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.



Example

This	example	sets	the	numbering	rule	in	section	two	to	restart	at	the	beginning	of
the	new	section.

Sub	SetFootnoteOptionsRange()

				ActiveDocument.Sections(2).Range.FootnoteOptions	_

								.NumberingRule	=	wdRestartSection

End	Sub



Footnotes	Property
							

Returns	a	Footnotes	collection	that	represents	all	the	footnotes	in	a	range,
selection,	or	document.	Read-only.

For	information	about	returning	a	single	member	of	a	collection,	see	Returning
an	Object	from	a	Collection.



Example

This	example	changes	the	footnote	reference	marks	for	the	footnotes	in	the
active	document	to	lowercase	letters,	starting	with	the	letter	"c".

With	ActiveDocument.Footnotes

				.StartingNumber	=	3

				.NumberStyle	=	wdNoteNumberStyleLowercaseLetter

End	With

This	example	inserts	an	automatically	numbered	footnote	at	the	insertion	point.

Selection.Collapse	Direction:=wdCollapseStart

ActiveDocument.Footnotes.Add	Range:=Selection.Range,	_

				Text:="(Lone	Creek	Press,	1995)"



ForeColor	Property
							

Returns	or	sets	a	ColorFormat	object	that	represents	the	foreground	color	for
the	fill,	line,	or	shadow.	Read/write.



Example

This	example	adds	a	rectangle	to	the	active	document	and	then	sets	the
foreground	color,	background	color,	and	gradient	for	the	rectangle's	fill.

Dim	docActive	As	Document

Set	docActive	=	ActiveDocument

With	docActive.Shapes.AddShape(msoShapeRectangle,	_

								90,	90,	90,	50).Fill

				.ForeColor.RGB	=	RGB(128,	0,	0)

				.BackColor.RGB	=	RGB(170,	170,	170)

				.TwoColorGradient	msoGradientHorizontal,	1

End	With

This	example	adds	a	patterned	line	to	the	active	document.

Dim	docActive	As	Document

Set	docActive	=	ActiveDocument

With	docActive.Shapes.AddLine(10,	100,	250,	0).Line

				.Weight	=	6

				.ForeColor.RGB	=	RGB(0,	0,	255)

				.BackColor.RGB	=	RGB(128,	0,	0)

				.Pattern	=	msoPatternDarkDownwardDiagonal

End	With



Show	All



ForegroundPatternColor	Property
							

Returns	or	sets	the	24-bit	color	that's	applied	to	the	foreground	of	the	Shading
object.	This	color	is	applied	to	the	dots	and	lines	in	the	shading	pattern.	Can	be
any	valid	WdColor	constant	or	a	value	returned	by	Visual	Basic's	RGB
function.	Read/write.

WdColor	can	be	one	of	these	WdColor	constants.
wdColorGray625
wdColorGray70
wdColorGray80
wdColorGray875
wdColorGray95
wdColorIndigo
wdColorLightBlue
wdColorLightOrange
wdColorLightYellow
wdColorOliveGreen
wdColorPaleBlue
wdColorPlum
wdColorRed
wdColorRose
wdColorSeaGreen
wdColorSkyBlue
wdColorTan
wdColorTeal
wdColorTurquoise
wdColorViolet
wdColorWhite
wdColorYellow



wdColorAqua
wdColorAutomatic
wdColorBlack
wdColorBlue
wdColorBlueGray
wdColorBrightGreen
wdColorBrown
wdColorDarkBlue
wdColorDarkGreen
wdColorDarkRed
wdColorDarkTeal
wdColorDarkYellow
wdColorGold
wdColorGray05
wdColorGray10
wdColorGray125
wdColorGray15
wdColorGray20
wdColorGray25
wdColorGray30
wdColorGray35
wdColorGray375
wdColorGray40
wdColorGray45
wdColorGray50
wdColorGray55
wdColorGray60
wdColorGray65
wdColorGray75
wdColorGray85
wdColorGray90
wdColorGreen
wdColorLavender



wdColorLightGreen
wdColorLightTurquoise
wdColorLime
wdColorOrange
wdColorPink

expression.ForegroundPatternColor

expression			Required.	An	expression	that	returns	a	Shading	object.



Example

This	example	applies	shading	with	teal	dots	on	a	dark	red	background	to	the
selection.

With	Selection.Shading

				.Texture	=	wdTexture30Percent

				.ForegroundPatternColor	=	wdColorTeal

				.BackgroundPatternColor	=	wdColorDarkRed

End	With



ForegroundPatternColorIndex
Property
							

Returns	or	sets	the	color	that's	applied	to	the	foreground	of	the	Shading	object.
This	color	is	applied	to	the	dots	and	lines	in	the	shading	pattern.	Read/write
WdColorIndex.

WdColorIndex	can	be	one	of	these	WdColorIndex	constants.
wdAuto
wdBlack
wdBlue
wdBrightGreen
wdByAuthor
wdDarkBlue
wdDarkRed
wdDarkYellow
wdGray25
wdGray50
wdGreen
wdNoHighlight
wdPink
wdRed
wdTeal
wdTurquoise
wdViolet
wdWhite
wdYellow

expression.ForegroundPatternColorIndex



expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.



Example

This	example	applies	shading	with	different	foreground	and	background	colors
to	the	selection.

With	Selection.Shading

				.Texture	=	wdTexture30Percent

				.ForegroundPatternColorIndex	=	wdBlue

				.BackgroundPatternColorIndex	=	wdYellow

End	With



Show	All



Format	Property
							

Format	property	as	it	applies	to	the	Find	object.

True	if	formatting	is	included	in	the	find	operation.	Read/write	Boolean.

expression.Format

expression			Required.	An	expression	that	returns	a	Find	object.

Format	property	as	it	applies	to	the	Indexes	object.

Returns	or	sets	the	formatting	for	the	indexes	in	the	specified	document.
Read/write	WdIndexFormat.

WdIndexFormat	can	be	one	of	these	WdIndexFormat	constants.
wdIndexBulleted
wdIndexFancy
wdIndexModern
wdIndexTemplate
wdIndexClassic
wdIndexFormal
wdIndexSimple

expression.Format

expression			Required.	An	expression	that	returns	an	Indexes	object.

Format	property	as	it	applies	to	the	Paragraph	and	Paragraphs	objects.

Returns	or	sets	a	ParagraphFormat	object	that	represents	the	formatting	of	the
specified	paragraph	or	paragraphs.

expression.Format



expression			Required.	An	expression	that	returns	one	of	the	above	objects.

Format	property	as	it	applies	to	the	TablesOfAuthorities	object.

Returns	or	sets	the	formatting	for	the	tables	of	authorities	in	the	specified
document.	Read/write	WdToaFormat.

WdToaFormat	can	be	one	of	these	WdToaFormat	constants.
wdTOAClassic
wdTOAFormal
wdTOATemplate
wdTOADistinctive
wdTOASimple

expression.Format

expression			Required.	An	expression	that	returns	a	TablesOfAuthorities	object.

Format	property	as	it	applies	to	the	TablesOfContents	object.

Returns	or	sets	the	formatting	for	the	tables	of	contents	in	the	specified
document.	Read/write	WdTocFormat.

WdTocFormat	can	be	one	of	these	WdTocFormat	constants.
wdTOCDistinctive
wdTOCFormal
wdTOCSimple
wdTOCClassic
wdTOCFancy
wdTOCModern
wdTOCTemplate

expression.Format

expression			Required.	An	expression	that	returns	a	TablesOfContents	object.

Format	property	as	it	applies	to	the	TablesOfFigures	object.



Returns	or	sets	the	formatting	for	the	tables	of	figures	in	the	specified	document.
Read/write	WdTofFormat.

WdTofFormat	can	be	one	of	these	WdTofFormat	constants.
wdTOFCentered
wdTOFDistinctive
wdTOFSimple
wdTOFClassic
wdTOFFormal
wdTOFTemplate

expression.Format

expression			Required.	An	expression	that	returns	a	TablesOfFigures	object.

Format	property	as	it	applies	to	the	TextInput	object.

Returns	the	text	formatting	for	the	specified	text	box.	Read-only	String.

expression.Format

expression			Required.	An	expression	that	returns	a	TextInput	object.



Example

As	it	applies	to	the	Find	object.

This	example	removes	all	bold	formatting	in	the	active	document.

With	ActiveDocument.Content.Find

				.ClearFormatting

				.Font.Bold	=	True

				.Format	=	True

				.Replacement.ClearFormatting

				.Replacement.Font.Bold	=	False

				.Execute	Forward:=True,	Replace:=wdReplaceAll,	_

								FindText:="",	ReplaceWith:=""

End	With

As	it	applies	to	the	Paragraph	object.

This	example	returns	the	formatting	of	the	first	paragraph	in	the	active	document
and	then	applies	the	formatting	to	the	selection.

Set	paraFormat	=	ActiveDocument.Paragraphs(1).Format.Duplicate

Selection.Paragraphs.Format	=	paraFormat

As	it	applies	to	the	Paragraphs	object.

The	following	example	left-aligns	all	the	paragraphs	in	the	active	document.

ActiveDocument.Paragraphs.Format.Alignment	=	wdAlignParagraphLeft

As	it	applies	to	the	TablesOfContents	object.

This	example	applies	Classic	formatting	to	the	tables	of	contents	in	Report.doc.

Documents("Report.doc").TablesOfContents.Format	=	wdTOCClassic

As	it	applies	to	the	TextInput	object.

This	example	displays	the	text	formatting	in	the	first	field	of	the	active
document.



If	ActiveDocument.FormFields(1).Type	=	wdFieldFormTextInput	Then

				MsgBox	ActiveDocument.FormFields(1).TextInput.Format

Else

				MsgBox	"First	field	is	not	a	text	form	field"

End	If



FormatDescription	Property
							

Returns	a	String	representing	a	description	of	tracked	formatting	changes	in	a
revision.	Read-only.

expression.FormatDescription

expression			Required.	An	expression	that	returns	a	Revision	object.



Example

This	example	displays	a	description	for	each	of	the	formatting	changes	made	in	a
document	with	tracked	changes.

Sub	FmtChanges()

				Dim	revFmtRev	As	Revision

				For	Each	revFmtRev	In	ActiveDocument.Revisions

								If	revFmtRev.FormatDescription	<>	""	Then

												MsgBox	"Format	changes	made	:	"	&	revFmtRev.FormatDescription

								End	If

				Next

End	Sub



FormatName	Property
							

Returns	the	name	of	the	specified	file	converter.	The	format	names	appear	in	the
Save	as	type	box	in	the	Save	As	dialog	box	(File	menu).	Read-only	String.



Example

This	example	displays	the	format	name	of	the	first	converter	in	the
FileConverters	collection.

MsgBox	FileConverters(1).FormatName

This	example	uses	the	AvailableConv()	array	to	store	the	names	of	all	the
available	file	converters.

Dim	intTemp	As	Integer

Dim	fcLoop	As	FileConverter

Dim	AvailableConv	As	Variant

ReDim	AvailableConv(FileConverters.Count	-	1)

intTemp	=	0

For	Each	fcLoop	In	FileConverters

				AvailableConv(intTemp)	=	fcLoop.FormatName

				intTemp	=	intTemp	+	1

Next	fcLoop



FormatScanning	Property
							

True	for	Microsoft	Word	to	keep	track	of	all	formatting	in	a	document.
Read/write	Boolean.

expression.FormatScanning

expression			Required.	An	expression	that	returns	an	Options	object.



Remarks

Enabling	the	FormatScanning	property	allows	you	to	identify	all	unique
formatting	in	your	document,	so	you	can	easily	apply	the	same	formatting	to
new	text	and	quickly	replace	or	modify	all	instances	of	a	given	formatting	within
a	document.



Example

This	example	enables	Word	to	keep	track	of	formatting	in	documents	but
disables	displaying	a	squiggly	underline	beneath	text	formatted	similarly	to	other
formatting	that	is	used	more	frequently	in	a	document.

Sub	ShowFormatErrors()

				With	Options

								.FormatScanning	=	True

								.ShowFormatError	=	False		'Disables	displaying	squiggly	underline

				End	With

End	Sub



FormattedText	Property
							

Returns	or	sets	a	Range	object	that	includes	the	formatted	text	in	the	specified
range	or	selection.	Read/write.



Remarks

This	property	returns	a	Range	object	with	the	character	formatting	and	text	from
the	specified	range	or	selection.	Paragraph	formatting	is	included	in	the	Range
object	if	there's	a	paragraph	mark	in	the	range	or	selection.

When	you	set	this	property,	the	text	in	the	range	is	replaced	with	formatted	text.
If	you	don't	want	to	replace	the	existing	text,	use	the	Collapse	method	before
using	this	property	(see	the	first	example).



Example

This	example	copies	the	first	paragraph	in	the	document,	including	its
formatting,	and	inserts	the	formatted	text	at	the	insertion	point.

Selection.Collapse	Direction:=wdCollapseStart

Selection.FormattedText	=	ActiveDocument.Paragraphs(1).Range

This	example	copies	the	text	and	formatting	from	the	selection	into	a	new
document.

Set	myRange	=	Selection.FormattedText

Documents.Add.Content.FormattedText	=	myRange



FormattingShowClear	Property
							

True	for	Microsoft	Word	to	show	clear	formatting	in	the	Styles	and	Formatting
task	pane.	Read/write	Boolean.

expression.FormattingShowClear

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.



Example

This	example	disables	display	of	the	Clear	Formatting	button	in	the	list	of
styles.

Sub	ShowClearFormatting()

				With	ActiveDocument

								.FormattingShowClear	=	False

								.FormattingShowFilter	=	wdShowFilterFormattingInUse

								.FormattingShowFont	=	True

								.FormattingShowNumbering	=	True

								.FormattingShowParagraph	=	True

				End	With

End	Sub



Show	All



FormattingShowFilter	Property
							

Sets	or	returns	a	WdShowFilter	constant	that	represents	the	styles	and
formatting	displayed	in	the	Styles	and	Formatting	task	pane.	Read/write
Boolean.

WdShowFilter	can	be	one	of	these	WdShowFilter	constants.
wdShowFilterFormattingAvailable
wdShowFilterFormattingInUse
wdShowFilterStylesAll
wdShowFilterStylesAvailable
wdShowFilterStylesInUse

expression.FormattingShowFilter

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.



Example

This	example	filters	formatting	to	show	in	the	Styles	and	Formatting	task	pane
only	the	formatting	in	use	in	the	active	document.

Sub	ShowClearFormatting()

				With	ActiveDocument

								.FormattingShowClear	=	False

								.FormattingShowFilter	=	wdShowFilterFormattingInUse

								.FormattingShowFont	=	True

								.FormattingShowNumbering	=	True

								.FormattingShowParagraph	=	True

				End	With

End	Sub



FormattingShowFont	Property
							

True	for	Microsoft	Word	to	display	font	formatting	in	the	Styles	and
Formatting	task	pane.	Read/write	Boolean.

expression.FormattingShowFont

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.



Example

This	example	enables	display	of	font	formatting	in	the	Styles	and	Formatting
task	pane.

Sub	ShowClearFormatting()

				With	ActiveDocument

								.FormattingShowClear	=	False

								.FormattingShowFilter	=	wdShowFilterFormattingInUse

								.FormattingShowFont	=	True

								.FormattingShowNumbering	=	True

								.FormattingShowParagraph	=	True

				End	With

End	Sub



FormattingShowNumbering	Property
							

True	for	Microsoft	Word	to	display	number	formatting	in	the	Styles	and
Formatting	task	pane.	Read/write	Boolean.

expression.FormattingShowNumbering

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.



Example

This	example	enables	displaying	number	formatting	in	the	Styles	and
Formatting	pane.

Sub	ShowClearFormatting()

				With	ActiveDocument

								.FormattingShowClear	=	False

								.FormattingShowFilter	=	wdShowFilterFormattingInUse

								.FormattingShowFont	=	True

								.FormattingShowNumbering	=	True

								.FormattingShowParagraph	=	True

				End	With

End	Sub



FormattingShowParagraph	Property
							

True	for	Microsoft	Word	to	display	paragraph	formatting	in	the	Styles	and
Formatting	task	pane.	Read/write	Boolean.

expression.FormattingShowParagraph

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.



Example

This	example	enables	displaying	paragraph	formatting	in	the	Styles	and
Formatting	task	pane.

Sub	ShowClearFormatting()

				With	ActiveDocument

								.FormattingShowClear	=	False

								.FormattingShowFilter	=	wdShowFilterFormattingInUse

								.FormattingShowFont	=	True

								.FormattingShowNumbering	=	True

								.FormattingShowParagraph	=	True

				End	With

End	Sub



FormFields	Property
							

Returns	a	FormFields	collection	that	represents	all	the	form	fields	in	the
document,	range,	or	selection.	Read-only.

For	information	about	returning	a	single	member	of	a	collection,	see	Returning
an	Object	from	a	Collection.



Example

This	example	sets	the	content	of	the	form	field	named	"Text1"	to	"Name."

ActiveDocument.FormFields("Text1").Result	=	"Name"

This	example	retrieves	the	type	of	the	first	form	field	in	section	two.

myType	=	ActiveDocument.Sections(2).Range.FormFields(1).Type

Select	Case	myType

				Case	wdFieldFormTextInput

								thetype	=	"TextBox"

				Case	wdFieldFormDropDown

								thetype	=	"DropDown"

				Case	wdFieldFormCheckBox

								thetype	=	"CheckBox"

End	Select

This	example	displays	the	name	of	the	first	form	field	in	the	selection.

If	Selection.FormFields.Count	>	0	Then

				MsgBox	Selection.FormFields(1).Name

End	If



FormsDesign	Property
							

True	if	the	specified	document	is	in	form	design	mode.	Read-only	Boolean.

Note			This	property	always	returns	False	if	it’s	used	in	code	run	from	Microsoft
Word,	but	it	returns	the	correct	value	if	it	is	run	through	Automation.	For
example,	if	you	run	the	example	from	Microsoft	Excel,	it	will	return	True	if
you’re	in	design	mode.



Remarks

When	Word	is	in	form	design	mode,	the	Control	Toolbox	toolbar	is	displayed.
You	can	use	this	toolbar	to	insert	ActiveX	controls	such	as	command	buttons,
scroll	bars,	and	option	buttons.	In	form	design	mode,	event	procedures	don't	run,
and	when	you	click	an	embedded	control,	the	control's	sizing	handles	appear.



Example

This	example	displays	a	message	box	that	indicates	whether	the	active	document
is	in	form	design	mode.	This	example	will	always	return	False.

Msgbox	ActiveDocument.FormsDesign



Forward	Property
							

True	if	the	find	operation	searches	forward	through	the	document.	False	if	it
searches	backward	through	the	document.	Read/write	Boolean.



Example

This	example	replaces	the	next	occurrence	of	the	word	"hi"	in	the	selection	with
"hello."

With	Selection.Find

				.Forward	=	True

				.Text	=	"hi"

				.ClearFormatting

				.Replacement.Text	=	"hello"

				.Execute	Replace:=wdReplaceOne

End	With

The	following	example	searches	backward	through	the	document	for	the	word
"Microsoft."	If	the	word	is	found,	it's	automatically	selected.

Selection.Collapse	Direction:=wdCollapseStart

With	Selection.Find

				.Forward	=	False

				.ClearFormatting

				.MatchWholeWord	=	True

				.MatchCase	=	False

				.Wrap	=	wdFindContinue

				.Execute	FindText:="Microsoft"

End	With



Found	Property
							

SynonymInfo	object:	True	if	the	thesaurus	finds	synonyms,	antonyms,	related
words,	or	related	expressions	for	the	word	or	phrase.	Read-only	Boolean.

Find	object:	True	if	the	search	produces	a	match.	Read-only	Boolean.



Example

This	example	checks	to	see	whether	the	thesaurus	contains	any	synonym
suggestions	for	the	word	"authorize."

Dim	siTemp	As	SynonymInfo

Set	siTemp	=	SynonymInfo(Word:="authorize",	_

				LanguageID:=wdEnglishUS)

If	siTemp.Found	=	True	Then

				Msgbox	"The	thesaurus	has	suggestions."

Else

				Msgbox	"The	thesaurus	has	no	suggestions."

End	If

This	example	checks	to	see	whether	the	thesaurus	contains	any	synonym
suggestions	for	the	selection.	If	it	does,	the	example	displays	the	Thesaurus
dialog	box	with	the	synonyms	listed.

Dim	siTemp	As	SynonymInfo

Set	siTemp	=	Selection.Range.SynonymInfo

If	siTemp.Found	=	True	Then

				Selection.Range.CheckSynonyms

Else

				Msgbox	"The	thesaurus	has	no	suggestions."

End	If

This	example	removes	formatting	from	the	find	criteria	before	searching	the
selection.	If	the	word	"Hello"	with	bold	formatting	is	found,	the	entire	paragraph
is	selected	and	copied	to	the	Clipboard.

With	Selection.Find

				.ClearFormatting

				.Font.Bold	=	True

				.Execute	FindText:="Hello",	Format:=True,	Forward:=True

				If	.Found	=	True	Then

								.Parent.Expand	Unit:=wdParagraph

								.Parent.Copy

				End	If

End	With





Frame	Property
							

Returns	a	Frame	object	that	represents	the	frame	formatting	for	the	specified
style	or	find-and-replace	operation.	Read-only.



Example

This	example	creates	a	style	with	frame	formatting	and	then	applies	the	style	to
the	first	paragraph	in	the	selection.

Dim	styleNew	As	Style

Set	styleNew	=	ActiveDocument.Styles	_

				.Add(Name:="frame",	Type:=wdStyleTypeParagraph)

With	styleNew.Frame

				.RelativeHorizontalPosition	=	_

								wdRelativeHorizontalPositionMargin

				.HeightRule	=	wdFrameAuto

				.WidthRule	=	wdFrameAuto

				.TextWrap	=	True

End	With

Selection.Paragraphs(1).Range.Style	=	"frame"

This	example	finds	the	first	frame	with	wrap	around	formatting.	If	such	a	frame
is	found,	a	message	is	displayed	on	the	status	bar.

With	ActiveDocument.Content.Find

				.Text	=	""

				.Frame.TextWrap	=	True

				.Execute	Forward:=True,	Wrap:=wdFindContinue,	Format:=True

				If	.Found	=	True	Then	StatusBar	=	"Frame	was	found"

				.Parent.Select

End	With



FrameDefaultURL	Property
							

Returns	or	sets	the	Web	page	or	other	document	to	be	displayed	in	the	specified
frame	when	the	frames	page	is	opened.	Read/write	String.



Remarks

For	more	information	on	creating	frames	pages,	see	Creating	frames	pages.



Example

This	example	sets	the	specified	frame	to	display	a	local	file	named	"Order.htm".

With	ActiveDocument.ActiveWindow.ActivePane.Frameset

				.FrameDefaultURL	=	"C:\Documents\Order.htm"

				.FrameLinkToFile	=	True

End	With



FrameDisplayBorders	Property
							

True	if	the	frame	borders	on	the	specified	frames	page	are	displayed.	Read/write
Boolean.



Remarks

For	more	information	on	creating	frames	pages,	see	Creating	frames	pages.



Example

This	example	sets	Microsoft	Word	to	display	frame	borders	in	the	specified
frames	page.

ActiveDocument.ActiveWindow.ActivePane.Frameset	_

				.FrameDisplayBorders	=	True



FrameLinkToFile	Property
							

True	if	the	Web	page	or	other	document	specified	by	the	FrameDefaultURL
property	is	an	external	file	to	which	Microsoft	Word	maintains	only	a	link	from
the	specified	frame.	Read/write	Boolean.



Remarks

For	more	information	on	creating	frames	pages,	see	Creating	frames	pages.



Example

This	example	sets	Microsoft	Word	to	maintain	only	a	link	from	the	specified
frame	to	the	document	"Order.htm".

With	ActiveDocument.ActiveWindow.ActivePane.Frameset

				.FrameDefaultURL	=	"C:\Documents\Order.htm"

				.FrameLinkToFile	=	True

End	With



FrameName	Property
							

Returns	or	sets	the	name	of	the	specified	frame	on	a	frames	page.	Read/write
String.



Remarks

For	more	information	on	creating	frames	pages,	see	Creating	frames	pages.



Example

This	example	sets	the	name	of	the	specified	frame	to	"BottomFrame".

ActiveWindow.Document.Frameset	_

				.ChildFramesetItem(3).FrameName	=	"BottomFrame"



FrameResizable	Property
							

True	if	the	user	can	resize	the	specified	frame	when	the	frames	page	is	viewed	in
a	Web	browser.	Read/write	Boolean.



Remarks

For	more	information	on	creating	frames	pages,	see	Creating	frames	pages.



Example

This	example	sets	the	specified	frame	to	be	resizable	when	viewed	in	a	Web
browser.

With	ActiveDocument.ActiveWindow.ActivePane.Frameset

				.FrameDefaultURL	=	"C:\Documents\Order.htm"

				.FrameResizable	=	True

End	With



Frames	Property
							

Returns	a	Frames	collection	that	represents	all	the	frames	in	a	document,	range,
or	selection.	Read-only.

For	information	about	returning	a	single	member	of	a	collection,	see	Returning
an	Object	from	a	Collection.



Example

This	example	causes	text	to	wrap	around	frames	in	the	first	section	in	the	active
document.

For	Each	aFrame	In	ActiveDocument.Sections(1).Range.Frames

				aFrame.TextWrap	=	True

Next	aFrame

This	example	adds	a	frame	around	the	selection	and	returns	a	frame	object	to	the
myFrame	variable.

Set	myFrame	=	ActiveDocument.Frames.Add(Range:=Selection.Range)



FrameScrollBarType	Property
							

Returns	or	sets	when	scroll	bars	are	available	for	the	specified	frame	when
viewing	its	frames	page	in	a	Web	browser.	Read/write	WdScrollbarType.

WdScrollbarType	can	be	one	of	these	WdScrollbarType	constants.
wdScrollbarTypeNo	Scroll	bars	are	never	available	for	the	specified	frame.
wdScrollbarTypeAuto	Scroll	bars	are	available	for	the	specified	frame	only	if
the	contents	are	too	large	to	fit	in	the	allotted	space.
wdScrollbarTypeYes	Scroll	bars	are	always	available	for	the	specified	frame.

expression.FrameScrollbarType

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.



Remarks

For	more	information	on	creating	frames	pages,	see	Creating	frames	pages.



Example

This	example	makes	scroll	bars	always	available	for	the	specified	frame,
regardless	of	whether	the	contents	of	the	frame	require	scrolling.

With	ActiveDocument.ActiveWindow.ActivePane.Frameset

				.FrameDefaultURL	=	"C:\Documents\Order.htm"

				.FrameScrollBarType	=	wdScrollBarTypeYes

End	With



Frameset	Property
							

Returns	a	Frameset	object	that	represents	an	entire	frames	page	or	a	single
frame	on	a	frames	page.	Read-only.



Remarks

For	more	information	on	creating	frames	pages,	see	Creating	frames	pages.



Example

This	example	sets	the	color	of	frame	borders	in	the	specified	frames	page	to	tan.

With	ActiveWindow.Document.Frameset

				.FramesetBorderColor	=	wdColorTan

				.FramesetBorderWidth	=	6

End	With

This	example	adds	a	new	frame	to	the	immediate	right	of	the	specified	frame.

ActiveDocument.ActiveWindow.ActivePane.Frameset	_

				.AddNewFrame	wdFramesetNewRight



Show	All



FramesetBorderColor	Property
							

Returns	or	sets	the	color	of	the	frame	borders	on	the	specified	frames	page.	Can
be	any	of	the	WdColor	constants	or	a	value	returned	by	Visual	Basic's	RGB
function.	Read/write.

WdColor	can	be	one	of	these	WdColor	constants.
wdColorGray625
wdColorGray70
wdColorGray80
wdColorGray875
wdColorGray95
wdColorIndigo
wdColorLightBlue
wdColorLightOrange
wdColorLightYellow
wdColorOliveGreen
wdColorPaleBlue
wdColorPlum
wdColorRed
wdColorRose
wdColorSeaGreen
wdColorSkyBlue
wdColorTan
wdColorTeal
wdColorTurquoise
wdColorViolet
wdColorWhite
wdColorYellow
wdColorAqua



wdColorAutomatic
wdColorBlack
wdColorBlue
wdColorBlueGray
wdColorBrightGreen
wdColorBrown
wdColorDarkBlue
wdColorDarkGreen
wdColorDarkRed
wdColorDarkTeal
wdColorDarkYellow
wdColorGold
wdColorGray05
wdColorGray10
wdColorGray125
wdColorGray15
wdColorGray20
wdColorGray25
wdColorGray30
wdColorGray35
wdColorGray375
wdColorGray40
wdColorGray45
wdColorGray50
wdColorGray55
wdColorGray60
wdColorGray65
wdColorGray75
wdColorGray85
wdColorGray90
wdColorGreen
wdColorLavender
wdColorLightGreen



wdColorLightTurquoise
wdColorLime
wdColorOrange
wdColorPink

expression.FramesetBorderColor

expression			Required.	An	expression	that	returns	a	Frameset		object.



Remarks

For	more	information	on	creating	frames	pages,	see	Creating	frames	pages.



Example

This	example	sets	the	color	of	frame	borders	in	the	specified	frames	page	to	tan.

With	ActiveWindow.Document.Frameset

				.FramesetBorderColor	=	wdColorTan

				.FramesetBorderWidth	=	6

End	With



FramesetBorderWidth	Property
							

Returns	or	sets	the	width	(in	points)	of	the	borders	surrounding	the	frames	on	the
specified	frames	page.	Read/write	Single.



Remarks

For	more	information	on	creating	frames	pages,	see	Creating	frames	pages.



Example

This	example	sets	the	width	of	frame	borders	in	the	specified	frames	page	to	6
points.

With	ActiveWindow.Document.Frameset

				.FramesetBorderColor	=	wdColorTan

				.FramesetBorderWidth	=	6

End	With



FreeDiskSpace	Property
							

Returns	the	available	disk	space	for	the	current	drive,	in	bytes.	Use	the	ChDrive
statement	to	change	the	current	drive.	Read-only	Long.

Note			There	are	1024	bytes	in	a	kilobyte	and	1,048,576	bytes	in	a	megabyte.
The	maximum	return	value	for	the	FreeDiskSpace	property	is	2,147,483,647.
Therefore,	even	if	you	have	four	gigabytes	of	free	disk	space,	it	returns
2147483647.



Example

This	example	checks	the	amount	of	free	disk	space.	If	there's	less	than	10
megabytes	of	space	available,	a	message	is	displayed.

If	(System.FreeDiskSpace	\	1048576)	<	10	Then	_

				MsgBox	"Low	disk	space"



FullName	Property
							

Specifies	the	name	of	a	document,	template,	or	cascading	style	sheet,	including
the	drive	or	Web	path.	Read-only	String.

expression.FullName

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.



Remarks

Using	this	property	is	equivalent	to	using	the	Path,	PathSeparator,	and	Name
properties	in	sequence.



Example

This	example	displays	the	path	and	file	name	of	the	active	document.

Sub	DocName()

				MsgBox	ActiveDocument.FullName

End	Sub

This	example	displays	the	path	and	file	name	of	the	template	attached	to	the
active	document.

Sub	TemplateName()

				MsgBox	ActiveDocument.AttachedTemplate.FullName

End	Sub

This	example	displays	the	path	and	file	name	of	the	style	sheet	attached	to	the
active	document.

Sub	CSSName()

				MsgBox	ActiveDocument.StyleSheets(1).FullName

End	Sub



FullScreen	Property
							

True	if	the	window	is	in	full-screen	view.	Read/write	Boolean.



Example

This	example	switches	the	active	window	to	full-screen	view.

ActiveDocument.ActiveWindow.View.FullScreen	=	True

This	example	activates	the	window	for	Sales.doc	and	switches	out	of	full-screen
view.

With	Windows("Sales.doc")

				.Activate

				.View.FullScreen	=	False

End	With



Gap	Property
							

Returns	or	sets	the	horizontal	distance	(in	points)	between	the	end	of	the	callout
line	and	the	text	bounding	box.	Read/write	Single.



Example

This	example	sets	the	distance	between	the	callout	line	and	the	text	bounding
box	to	3	points	for	the	first	shape	on	the	active	document.	For	the	example	to
work,	the	first	shape	must	be	a	callout.

Dim	docActive	As	Document

Set	docActive	=	ActiveDocument

docActive.Shapes(1).Callout.Gap	=	3



GradientColorType	Property
							

Returns	the	gradient	color	type	for	the	specified	fill.	Read-only
MsoGradientColorType.

MsoGradientColorType	can	be	one	of	these	MsoGradientColorType	constants.
msoGradientColorMixed
msoGradientOneColor
msoGradientPresetColors
msoGradientTwoColors

expression.GradientColorType

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

This	property	is	read-only.	Use	the	OneColorGradient,	PresetGradient,	or
TwoColorGradient	method	to	set	the	gradient	type	for	the	fill.



Example

This	example	changes	the	fill	for	all	shapes	in	the	active	document	that	have	a
two-color	gradient	fill	to	a	preset	gradient	fill.

Dim	docActive	As	Document

Dim	shapeLoop	As	Shape

Set	docActive	=	ActiveDocument

For	Each	shapeLoop	In	docActive.Shapes

				With	shapeLoop.Fill

								If	.GradientColorType	=	msoGradientTwoColors	Then

												.PresetGradient	msoGradientHorizontal,	1,	_

																msoGradientBrass

								End	If

				End	With

Next



GradientDegree	Property
							

Returns	a	value	that	indicates	how	dark	or	light	a	one-color	gradient	fill	is.	A
value	of	0	(zero)	means	that	black	is	mixed	in	with	the	shape's	foreground	color
to	form	the	gradient;	a	value	of	1	means	that	white	is	mixed	in;	and	values
between	0	and	1	mean	that	a	darker	or	lighter	shade	of	the	foreground	color	is
mixed	in.	Read-only	Single.

This	property	is	read-only.	Use	the	OneColorGradient	method	to	set	the
gradient	degree	for	the	fill.



Example

This	example	adds	a	rectangle	to	the	active	document	and	sets	the	degree	of	its
fill	gradient	to	match	that	of	the	shape	named	"Rectangle	2."	If	Rectangle	2
doesn't	have	a	one-color	gradient	fill,	this	example	fails.

Dim	docActive	As	Document

Dim	sngGradient	As	Single

Set	docActive	=	ActiveDocument

With	docActive.Shapes

				sngGradient	=	.Item("Rectangle	2").Fill.GradientDegree

				With	.AddShape(msoShapeRectangle,	0,	0,	40,	80).Fill

								.ForeColor.RGB	=	RGB(0,	128,	128)

								.OneColorGradient	msoGradientHorizontal,	1,	sngGradient

				End	With

End	With



GradientStyle	Property
							

Returns	the	gradient	style	for	the	specified	fill.	Read-only	MsoGradientStyle.

MsoGradientStyle	can	be	one	of	these	MsoGradientStyle	constants.
msoGradientDiagonalDown
msoGradientDiagonalUp
msoGradientFromCenter
msoGradientFromCorner
msoGradientFromTitle	Only	used	with	Microsoft	PowerPoint.	
msoGradientHorizontal
msoGradientMixed
msoGradientVertical

expression.GradientStyle

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

This	property	is	read-only.	Use	the	OneColorGradient	or	TwoColorGradient
method	to	set	the	gradient	style	for	the	fill.

Note			Attempting	to	return	this	property	for	a	fill	that	doesn't	have	a	gradient
generates	an	error.	Use	the	Type	property	to	determine	whether	the	fill	has	a
gradient.



Example

This	example	adds	a	rectangle	to	the	active	document	and	sets	its	fill	gradient
style	to	match	that	of	the	shape	named	"rect1."	For	the	example	to	work,	rect1
must	have	a	gradient	fill.

Dim	docActive	As	Document

Dim	lngGradient	As	Long

Set	docActive	=	ActiveDocument

With	docActive.Shapes

				lngGradient	=	.Item("rect1").Fill.GradientStyle

				With	.AddShape(msoShapeRectangle,	0,	0,	40,	80).Fill

								.ForeColor.RGB	=	RGB(128,	0,	0)

								.OneColorGradient	lngGradient,	1,	1

				End	With

End	With



GradientVariant	Property
							

Returns	the	gradient	variant	for	the	specified	fill	as	an	integer	value	from	1	to	4
for	most	gradient	fills.	If	the	gradient	style	is	msoGradientFromCenter,	this
property	returns	either	1	or	2.	The	values	for	this	property	correspond	to	the
gradient	variants	(numbered	from	left	to	right	and	from	top	to	bottom)	on	the
Gradient	tab	in	the	Fill	Effects	dialog	box.	Read-only	Long.

This	property	is	read-only.	Use	the	OneColorGradient	or	TwoColorGradient
method	to	set	the	gradient	variant	for	the	fill.



Example

This	example	adds	a	rectangle	to	the	active	document	and	sets	its	fill	gradient
variant	to	match	that	of	the	shape	named	"rect1."	For	the	example	to	work,	rect1
must	have	a	gradient	fill.

Dim	lngGradient	As	Long

With	ActiveDocument.Shapes

				lngGradient	=	.Item("rect1").Fill.GradientVariant

				With	.AddShape(msoShapeRectangle,	0,	0,	40,	80).Fill

								.ForeColor.RGB	=	RGB(128,	0,	0)

								.OneColorGradient	msoGradientHorizontal,	_

												lngGradient,	1

				End	With

End	With



GrammarChecked	Property
							

True	if	a	grammar	check	has	been	run	on	the	specified	range	or	document.	False
if	some	of	the	specified	range	or	document	hasn't	been	checked	for	grammar.
Read/write	Boolean.



Remarks

To	recheck	the	grammar	in	a	range	or	document,	set	the	GrammarChecked
property	to	False.



Example

This	example	determines	whether	grammar	has	been	checked	in	the	active
document.	If	it	has,	the	word	count	is	displayed.	If	grammar	hasn't	been	checked,
a	spelling	and	grammar	check	is	started.

Set	myStat	=	ActiveDocument.ReadabilityStatistics

passGram	=	ActiveDocument.GrammarChecked

If	passGram	=	True	Then

				Msgbox	myStat(1).Name	&	"	-	"	&	myStat(1).Value

Else

				ActiveDocument.CheckGrammar

End	If

This	example	sets	the	GrammarChecked	property	to	False	for	the	active
document,	and	then	it	runs	a	grammar	check	again.

ActiveDocument.GrammarChecked	=	False

ActiveDocument.CheckGrammar



GrammaticalErrors	Property
							

Returns	a	ProofreadingErrors	collection	that	represents	the	sentences	that
failed	the	grammar	check	on	the	specified	document	or	range.	There	can	be	more
than	one	error	per	sentence.	Read-only.

For	information	about	returning	a	single	member	of	a	collection,	see	Returning
an	Object	from	a	Collection.



Remarks

If	there	are	no	grammatical	errors,	the	Count	property	for	the
ProofreadingErrors	object	returned	by	the	GrammaticalErrors	property
returns	0	(zero).



Example

This	example	checks	the	third	paragraph	in	the	active	document	for	grammatical
errors	and	displays	each	sentence	that	contains	one	or	more	errors.

Set	myErrors	=	ActiveDocument.Paragraphs(3).Range.GrammaticalErrors

For	Each	myerr	In	myErrors

				MsgBox	myerr.Text

Next	myerr

This	example	checks	the	active	document	for	grammatical	errors.	If	any	errors
are	found,	a	new	spelling	and	grammar	check	is	started.

If	ActiveDocument.GrammaticalErrors.Count	=	0	Then

				Msgbox	"There	are	no	grammatical	errors."

Else

				ActiveDocument.CheckGrammar

End	If



GridDistanceHorizontal	Property
							

Document	object:	Returns	or	sets	the	amount	of	horizontal	space	between	the
invisible	gridlines	that	Microsoft	Word	uses	when	you	draw,	move,	and	resize
AutoShapes	or	East	Asian	characters	in	the	specified	document.	Read/write
Single.

Options	object:	Returns	or	sets	the	amount	of	horizontal	space	between	the
invisible	gridlines	that	Word	uses	when	you	draw,	move,	and	resize	AutoShapes
or	East	Asian	characters	in	new	documents.	Read/write	Single.



Example

This	example	sets	the	horizontal	and	vertical	distance	between	gridlines	and	then
enables	the	Snap	objects	to	grid	feature	for	the	current	document.

With	ActiveDocument

				.GridDistanceHorizontal	=	9

				.GridDistanceVertical	=	9

				.SnapToGrid	=	True

End	With

This	example	sets	the	horizontal	and	vertical	distance	between	gridlines	and	then
enables	the	Snap	objects	to	grid	feature	for	a	new	document.

With	Options

				.GridDistanceHorizontal	=	InchesToPoints(0.2)

				.GridDistanceVertical	=	InchesToPoints(0.2)

				.SnapToGrid	=	True

End	With

Documents.Add



GridDistanceVertical	Property
							

Document	object:	Returns	or	sets	the	amount	of	vertical	space	between	the
invisible	gridlines	that	Microsoft	Word	uses	when	you	draw,	move,	and	resize
AutoShapes	or	East	Asian	characters	in	the	specified	document.	Read/write
Single.

Options	object:	Returns	or	sets	the	amount	of	vertical	space	between	the
invisible	gridlines	that	Word	uses	when	you	draw,	move,	and	resize	AutoShapes
or	East	Asian	characters	in	new	documents.	Read/write	Single.



Example

This	example	sets	the	horizontal	and	vertical	distance	between	gridlines	and	then
enables	the	Snap	objects	to	grid	feature	for	the	current	document.

With	ActiveDocument

				.GridDistanceHorizontal	=	9

				.GridDistanceVertical	=	9

				.SnapToGrid	=	True

End	With

This	example	sets	the	horizontal	and	vertical	distance	between	gridlines	and	then
enables	the	Snap	objects	to	grid	feature	for	a	new	document.

With	Options

				.GridDistanceHorizontal	=	InchesToPoints(0.2)

				.GridDistanceVertical	=	InchesToPoints(0.2)

				.SnapToGrid	=	True

End	With

Documents.Add



GridOriginFromMargin	Property
							

True	if	Microsoft	Word	starts	the	character	grid	from	the	upper-left	corner	of	the
page.	Read/write	Boolean.



Example

This	example	sets	Microsoft	Word	to	start	the	character	grid	for	the	active
document	from	the	upper-left	corner	of	the	page.

ActiveDocument.GridOriginFromMargin	=	True



GridOriginHorizontal	Property
							

Document	object:	Returns	or	sets	the	point,	relative	to	the	left	edge	of	the	page,
where	you	want	the	invisible	grid	for	drawing,	moving,	and	resizing	AutoShapes
or	East	Asian	characters	to	begin	in	the	specified	document.	Read/write	Single.

Options	object:	Returns	or	sets	the	point,	relative	to	the	left	edge	of	the	page,
where	you	want	the	invisible	grid	for	drawing,	moving,	and	resizing	AutoShapes
or	East	Asian	characters	to	begin	in	new	documents.	Read/write	Single.



Example

This	example	sets	the	horizontal	and	vertical	point	of	origin	for	the	grid,	sets	the
horizontal	and	vertical	distance	between	gridlines,	and	then	enables	the	Snap	to
grid	feature	for	the	current	document.

With	ActiveDocument

				.GridOriginHorizontal	=	80

				.GridOriginVertical	=	90

				.GridDistanceHorizontal	=	9

				.GridDistanceVertical	=	9

				.SnapToGrid	=	True

End	With

This	example	sets	the	horizontal	and	vertical	point	of	origin	for	the	grid,	sets	the
horizontal	and	vertical	distance	between	gridlines,	and	then	enables	the	Snap
objects	to	grid	feature	for	a	new	document.

With	Options

				.GridOriginHorizontal	=	InchesToPoints(1)

				.GridOriginVertical	=	InchesToPoints(2)

				.GridDistanceHorizontal	=	InchesToPoints(0.1)

				.GridDistanceVertical	=	InchesToPoints(0.1)

				.SnapToGrid	=	True

End	With

Documents.Add



GridOriginVertical	Property
							

Document	object:	Returns	or	sets	the	point,	relative	to	the	top	of	the	page,	where
you	want	the	invisible	grid	for	drawing,	moving,	and	resizing	AutoShapes	or
East	Asian	characters	to	begin	in	the	specified	document.	Read/write	Single.

Options	object:	Returns	or	sets	the	point,	relative	to	the	top	of	the	page,	where
you	want	the	invisible	grid	for	drawing,	moving,	and	resizing	AutoShapes	or
East	Asian	characters	to	begin	in	new	documents.	Read/write	Single.



Example

This	example	sets	the	horizontal	and	vertical	point	of	origin	for	the	grid,	sets	the
horizontal	and	vertical	distance	between	gridlines,	and	then	enables	the	Snap
objects	to	grid	feature	for	the	current	document.

With	ActiveDocument

				.GridOriginHorizontal	=	80

				.GridOriginVertical	=	90

				.GridDistanceHorizontal	=	9

				.GridDistanceVertical	=	9

				.SnapToGrid	=	True

End	With

This	example	sets	the	horizontal	and	vertical	point	of	origin	for	the	grid,	sets	the
horizontal	and	vertical	distance	between	gridlines,	and	then	enables	the	Snap
objects	to	grid	feature	for	a	new	document.

With	Options

				.GridOriginHorizontal	=	InchesToPoints(1)

				.GridOriginVertical	=	InchesToPoints(2)

				.GridDistanceHorizontal	=	InchesToPoints(0.2)

				.GridDistanceVertical	=	InchesToPoints(0.2)

				.SnapToGrid	=	True

End	With

Documents.Add



GridSpaceBetweenHorizontalLines
Property
							

Returns	or	sets	the	interval	at	which	Microsoft	Word	displays	horizontal
character	gridlines	in	print	layout	view.	Read/write	Long.



Example

This	example	sets	Microsoft	Word	to	display	every	fifth	horizontal	character
gridline.

ActiveDocument.GridSpaceBetweenHorizontalLines	=	5



GridSpaceBetweenVerticalLines
Property
							

Returns	or	sets	the	interval	at	which	Microsoft	Word	displays	vertical	character
gridlines	in	print	layout	view.	Read/write	Long.



Example

This	example	sets	Microsoft	Word	to	display	every	other	vertical	character
gridline.

ActiveDocument.GridSpaceBetweenVerticalLines	=	2



GroupItems	Property
							

Returns	a	GroupShapes	object	that	represents	the	individual	shapes	in	the
specified	group.	Use	the	Item	method	of	the	GroupShapes	object	to	return	a
single	shape	from	the	group.	Applies	to	Shape	or	ShapeRange	objects	that
represent	grouped	shapes.	Read-only.



Example

This	example	adds	three	triangles	to	myDocument,	groups	them,	sets	a	color	for
the	entire	group,	and	then	changes	the	color	for	the	second	triangle	only.

Set	myDocument	=	ActiveDocument

With	myDocument.Shapes

				.AddShape(msoShapeIsoscelesTriangle,	_

								10,	10,	100,	100).Name	=	"shpOne"

				.AddShape(msoShapeIsoscelesTriangle,	_

								150,	10,	100,	100).Name	=	"shpTwo"

				.AddShape(msoShapeIsoscelesTriangle,	_

								300,	10,	100,	100).Name	=	"shpThree"

				With	.Range(Array("shpOne",	"shpTwo",	"shpThree")).Group

								.Fill.PresetTextured	msoTextureBlueTissuePaper

								.GroupItems(2).Fill.PresetTextured	msoTextureGreenMarble

				End	With

End	With



Gutter	Property
							

Returns	or	sets	the	amount	(in	points)	of	extra	margin	space	added	to	each	page
in	a	document	or	section	for	binding.	Read/write	Single.



Remarks

If	the	MirrorMargins	property	is	set	to	True,	the	Gutter	property	adds	the
extra	space	to	the	inside	margins.	Otherwise,	the	extra	space	is	added	to	the	left
margin.



Example

This	example	adds	1	inch	(72	points)	to	the	inside	margins	of	the	active
document.

With	ActiveDocument.PageSetup

				.MirrorMargins	=	True

				.Gutter	=	72

End	With



Show	All



GutterPos	Property
							

Returns	or	sets	on	which	side	the	gutter	appears	in	a	document.	Read/write
WdGutterStyle.

WdGutterStyle	can	be	one	of	these	WdGutterStyle	constants.
wdGutterPosLeft
wdGutterPosRight
wdGutterPosTop

expression.GutterPos

expression			Required.	An	expression	that	returns	a	PageSetup	object.



Remarks

For	more	information	on	using	Word	with	right-to-left	languages,	see	Word
features	for	right-to-left	languages.

mk:@MSITStore:wdmain10.chm::/html/wdrefFeaturesAvailableInWordWhenBidirectionalLanguagesAreEnabled.htm


Example

This	example	sets	the	gutter	to	appear	on	the	right	side	of	the	document.

ActiveDocument.PageSetup.GutterPos	=	wdGutterPosRight



Show	All



GutterStyle	Property
							

Returns	or	sets	whether	Microsoft	Word	uses	gutters	for	the	current	document
based	on	a	right-to-left	language	or	a	left-to-right	language.	Read/write
WdGutterStyleOld.

WdGutterStyleOld	can	be	one	of	these	WdGutterStyleOld	constants.
wdGutterStyleLatin
wdGutterStyleBidi

expression.GutterStyle

expression			Required.	An	expression	that	returns	a	PageSetup	object.



Remarks

For	more	information	on	using	Word	with	right-to-left	languages,	see	Word
features	for	right-to-left	languages.

mk:@MSITStore:wdmain10.chm::/html/wdrefFeaturesAvailableInWordWhenBidirectionalLanguagesAreEnabled.htm


Example

This	example	sets	the	current	document	to	follow	a	gutter	style	for	a	right-to-left
language	document.

ActiveDocument.PageSetup.GutterStyle	=	wdGutterStyleBidi



HalfWidthPunctuationOnTopOfLine
Property
							

True	if	Microsoft	Word	changes	punctuation	symbols	at	the	beginning	of	a	line
to	half-width	characters	for	the	specified	paragraphs.	This	property	returns
wdUndefined	if	it’s	set	to	True	for	only	some	of	the	specified	paragraphs.
Read/write	Long.



Example

This	example	sets	Microsoft	Word	to	change	punctuation	symbols	at	the
beginning	of	a	line	to	half-width	characters	for	the	first	paragraph	in	the	active
document.

ActiveDocument.Paragraphs(1).HalfWidthPunctuationOnTopOfLine	=	True



HangingPunctuation	Property
							

True	if	hanging	punctuation	is	enabled	for	the	specified	paragraphs.	This
property	returns	wdUndefined	if	it’s	set	to	True	for	only	some	of	the	specified
paragraphs.	Read/write	Long.



Example

This	example	enables	hanging	punctuation	for	the	first	paragraph	in	the	active
document.

ActiveDocument.Paragraphs(1).HangingPunctuation	=	True



HangulAndAlphabetAutoAdd
Property
							

True	if	Microsoft	Word	automatically	adds	words	to	the	list	of	Hangul	and
alphabet	AutoCorrect	exceptions	on	the	Korean	tab	in	the	AutoCorrect
Exceptions	dialog	box	(on	the	Tools	menu,	click	AutoCorrect	Options,	then
click	the	AutoCorrect	tab,	and	then	click	the	Exceptions	button).	Word	adds	a
word	to	this	list	if	you	delete	and	then	retype	a	word	that	you	didn't	want	Word
to	correct.	Read/write	Boolean.

expression.HangulAndAlphabetAutoAdd

expression			Required.	An	expression	that	returns	an	AutoCorrect	object.



Remarks

For	more	information	on	using	Word	with	Asian	languages,	see	Word	features
for	Asian	languages.

mk:@MSITStore:wdmain10.chm::/html/wdrefFeaturesAvailableInWordWhenAsianLanguagesAreEnabled.htm


Example

This	example	sets	Microsoft	Word	to	automatically	add	words	to	the	list	of
hangul	and	alphabet	AutoCorrect	exceptions	on	the	Korean	tab	in	the
AutoCorrect	Exceptions	dialog	box.

AutoCorrect.HangulAndAlphabetAutoAdd	=	True



HangulAndAlphabetExceptions
Property
							

Returns	a	HangulAndAlphabetExceptions	collection	that	represents	the	list	of
Hangul	and	alphabet	AutoCorrect	exceptions.	This	list	corresponds	to	the	list	of
Hangul	and	alphabet	AutoCorrect	exceptions	on	the	Korean	tab	in	the
AutoCorrect	Exceptions	dialog	box	(on	the	Tools	menu,	click	AutoCorrect
Options,	then	click	the	AutoCorrect	tab,	and	then	click	the	Exceptions	button).

expression.HangulAndAlphabetExceptions

expression			Required.	An	expression	that	returns	an	AutoCorrect	object.



Remarks

For	information	about	returning	a	single	member	of	a	collection,	see	Returning
an	Object	from	a	Collection.

For	more	information	on	using	Microsoft	Word	with	East	Asian	languages,	see
Word	features	for	East	Asian	languages.

mk:@MSITStore:wdmain10.chm::/html/wdrefFeaturesAvailableInWordWhenAsianLanguagesAreEnabled.htm


Example

This	example	prompts	the	user	to	delete	or	keep	each	hangul	and	alphabet
AutoCorrect	exception	on	the	Korean	tab	in	the	AutoCorrect	Exceptions
dialog	box.

For	Each	anEntry	In	_

								AutoCorrect.HangulAndAlphabetExceptions

				response	=	MsgBox("Delete	entry:	"	_

								&	anEntry.Name,	vbYesNoCancel)

				If	response	=	vbYes	Then

								anEntry.Delete

				Else

								If	response	=	vbCancel	Then	End

				End	If

Next	anEntry



HangulHanjaDictionaries	Property
							

Returns	a	HangulHanjaConversionDictionaries	collection	that	represents	all
the	active	custom	conversion	dictionaries.	Active	custom	conversion	dictionaries
are	marked	with	a	check	in	the	Custom	Dictionaries	dialog	box	(on	the	Tools
menu,	click	Options,	then	click	the	Spelling	&	Grammar	tab,	and	then	click
the	Custom	Dictionaries	button).

expression.HangulHanjaDictionaries

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.



Remarks

For	information	about	returning	a	single	member	of	a	collection,	see	Returning
an	Object	from	a	Collection.

For	more	information	on	using	Microsoft	Word	with	Asian	languages,	see	Word
features	for	Asian	languages.

mk:@MSITStore:wdmain10.chm::/html/wdrefFeaturesAvailableInWordWhenAsianLanguagesAreEnabled.htm


Example

This	example	adds	a	new,	blank	custom	dictionary	to	the	collection.	The	path
and	file	name	of	the	new	custom	dictionary	are	then	displayed	in	a	message	box.

Set	myHome	=	_

				HangulHanjaDictionaries.Add(Filename:="Home.hhd")

Msgbox	myHome.Path	&	Application.PathSeparator	_

				&	myHome.Name

This	example	deactivates	all	custom	dictionaries	but	does	not	delete	the	custom
dictionary	files.

HangulHanjaDictionaries.ClearAll

This	example	displays	the	name	of	each	custom	dictionary	in	the	collection.

For	Each	di	In	HangulHanjaDictionaries

				MsgBox	di.Name

Next	di



HangulHanjaFastConversion
Property
							

True	if	Microsoft	Word	automatically	converts	a	word	with	only	one	suggestion
during	conversion	between	Hangul	and	Hanja.	Read/write	Boolean.

expression.HangulHanjaFastConversion

expression			Required.	An	expression	that	returns	an	Options	object.



Remarks

For	more	information	on	using	Microsoft	Word	with	East	Asian	languages,	see
Word	features	for	East	Asian	languages.

mk:@MSITStore:wdmain10.chm::/html/wdrefFeaturesAvailableInWordWhenAsianLanguagesAreEnabled.htm


Example

This	example	asks	the	user	whether	to	set	Microsoft	Word	to	use	fast	conversion
during	conversion	between	Hangul	and	Hanja.

x	=	MsgBox("Use	fast	conversion?",	vbYesNo)

If	x	=	vbYes	Then

				Options.HangulHanjaFastConversion	=	True

Else

				Options.HangulHanjaFastConversion	=	False

End	If



HasChildShapeRange	Property
							

True	if	the	selection	contains	child	shapes.	Read-only	Boolean.

expression.HasChildShapeRange

expression			Required.	An	expression	that	returns	a	Selection	object.



Example

This	example	creates	a	new	document	with	a	drawing	canvas,	populates	the
drawing	canvas	with	shapes,	and	then,	after	checking	that	the	shapes	are	child
shapes,	fills	the	child	shapes	with	a	pattern.

Sub	ChildShapes()

				Dim	docNew	As	Document

				Dim	shpCanvas	As	Shape

				'Create	a	new	document	with	a	drawing	canvas	and	shapes

				Set	docNew	=	Documents.Add

				Set	shpCanvas	=	docNew.Shapes.AddCanvas(	_

								Left:=100,	Top:=100,	Width:=200,	Height:=200)

				shpCanvas.CanvasItems.AddShape	msoShapeRectangle,	_

								Left:=0,	Top:=0,	Width:=100,	Height:=100

				shpCanvas.CanvasItems.AddShape	msoShapeOval,	_

								Left:=0,	Top:=50,	Width:=100,	Height:=100

				shpCanvas.CanvasItems.AddShape	msoShapeDiamond,	_

								Left:=0,	Top:=100,	Width:=100,	Height:=100

				'Select	all	shapes	in	the	canvas

				shpCanvas.CanvasItems.SelectAll

				'Fill	canvas	child	shapes	with	a	pattern

				If	Selection.HasChildShapeRange	=	True	Then

								Selection.ChildShapeRange.Fill.Patterned	msoPatternDivot

				Else

								MsgBox	"This	is	not	a	range	of	child	shapes."

				End	If

End	Sub



Show	All



HasDiagram	Property
							

MsoTrue	if	a	shape	is	a	diagram.	Read-only	MsoTriState.

MsoTriState	can	be	one	of	these	MsoTriState	constants.
msoCTrue	Not	used	for	this	property.
msoFalse	Returned	if	a	shape	is	not	a	diagram.
msoTriStateMixed	Not	used	for	this	property.
msoTriStateToggle	Not	used	for	this	property.
msoTrue	Returned	if	a	shape	is	a	diagram.

expression.HasDiagram

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.



Example

This	example	searches	the	current	document	for	diagrams	with	nodes	and	if	it
finds	both,	creates	a	black	balloon	with	bold	white	text.

Sub	HasDiagramProperties()

				Dim	shpDiagram	As	Shape

				Dim	shpNode	As	DiagramNode

				Dim	shpBalloon	As	Shape

				Dim	docThis	As	Document

				Set	docThis	=	ThisDocument

	

				'Look	through	the	current	document	and	if	a	diagram	with	one

				'or	more	diagram	nodes	exists,	create	a	balloon	with	text

				For	Each	shpDiagram	In	docThis.Shapes

								If	shpDiagram.HasDiagram	=	msoTrue	And	_

												shpDiagram.HasDiagramNode	=	msoTrue	Then

																Set	shpBalloon	=	docThis.Shapes.AddShape	_

																				(Type:=msoShapeBalloon,	Left:=350,	_

																				Top:=75,	Width:=150,	Height:=150)

																With	shpBalloon

																				With	.TextFrame.TextRange

																								.Text	=	"This	is	a	diagram	with	nodes."

																								.Font.Color	=	wdColorWhite

																								.Font.Bold	=	True

																								.Font.Name	=	"Tahoma"

																								.Font.Size	=	15

																				End	With

																				.Line.BackColor.RGB	=	RGB	_

																								(Red:=0,	Green:=25,	Blue:=25)

																				.Fill.ForeColor.RGB	=	RGB	_

																								(Red:=0,	Green:=25,	Blue:=25

																End	With

								End	If

				Next	shpDiagram

End	Sub





Show	All



HasDiagramNode	Property
							

MsoTrue	if	a	shape	is	a	diagram	node.	Read-only	MsoTriState.

MsoTriState	can	be	one	of	these	MsoTriState	constants.
msoCTrue	Not	used	for	this	property.
msoFalse	Returned	if	a	shape	is	not	a	diagram	node.
msoTriStateMixed	Not	used	for	this	property.
msoTriStateToggle	Not	used	for	this	property.
msoTrue	Returned	if	a	shape	is	a	diagram	node.

expression.HasDiagramNode

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.



Example

This	example	searches	the	current	document	for	diagrams	with	nodes	and,	if	it
finds	both,	creates	a	black	balloon	with	bold	white	text.

Sub	HasDiagramProperties()

				Dim	shpDiagram	As	Shape

				Dim	shpNode	As	DiagramNode

				Dim	shpBalloon	As	Shape

				Dim	docThis	As	Document

				Set	docThis	=	ThisDocument

				'Looks	through	the	current	document	and	when	it	finds	a	diagram

				'	with	one	or	more	diagram	nodes,	creates	a	balloon	with	text

				For	Each	shpDiagram	In	docThis.Shapes

								If	shpDiagram.HasDiagram	=	msoTrue	_

												And	shpDiagram.HasDiagramNode	=	msoTrue	Then

																Set	shpBalloon	=	docThis.Shapes.AddShape(	_

																				Type:=msoShapeBalloon,	Left:=350,	_

																				Top:=75,	Width:=150,	Height:=150)

																With	shpBalloon

																				With	.TextFrame.TextRange

																								.Text	=	"This	is	a	diagram	with	nodes."

																								.Font.Color	=	wdColorWhite

																								.Font.Bold	=	True

																								.Font.Name	=	"Tahoma"

																								.Font.Size	=	15

																				End	With

																				.Line.BackColor.RGB	=	RGB(	_

																								Red:=0,	Green:=25,	Blue:=25)

																				.Fill.ForeColor.RGB	=	RGB(	_

																								Red:=0,	Green:=25,	Blue:=25)

																End	With

								End	If

				Next	shpDiagram

End	Sub





HasFile	Property
							

True	if	the	specified	subdocument	has	been	saved	to	a	file.	Read-only	Boolean.



Example

This	example	displays	the	file	name	of	each	subdocument	in	the	active
document.	The	example	also	displays	a	message	for	each	subdocument	that
hasn't	been	saved.

Dim	subLoop	As	Subdocument

For	Each	subLoop	In	ActiveDocument.Subdocuments

				subLoop.Range.Select

				If	subLoop.HasFile	=	True	Then

								MsgBox	subLoop.Path	&	Application.PathSeparator	_

												&	subLoop.Name

				Else

								MsgBox	"This	subdocument	has	not	been	saved."

				End	If

Next	subLoop



HasHorizontal	Property
							

True	if	a	horizontal	border	can	be	applied	to	the	object.	Read-only	Boolean.



Remarks

Horizontal	borders	can	be	applied	to	ranges	that	contain	cells	in	two	or	more
rows	of	a	table	or	ranges	that	contain	two	or	more	paragraphs.



Example

This	example	applies	single-line	horizontal	borders,	if	the	selection	supports
horizontal	borders.

If	Selection.Borders.HasHorizontal	=	True	Then

				Selection.Borders(wdBorderHorizontal).LineStyle	=	_

								wdLineStyleSingle

End	If



HasPassword	Property
							

True	if	a	password	is	required	to	open	the	specified	document.	Read-only
Boolean.



Example

This	example	sets	the	password	"kittycat"	for	the	active	document	and	then
displays	a	confirmation	message.

ActiveDocument.Password	=	"kittycat"

If	ActiveDocument.HasPassword	=	True	Then	_

				MsgBox	"The	password	is	set."



HasRoutingSlip	Property
							

True	if	the	specified	document	has	a	routing	slip	attached	to	it.	Setting	this
property	to	True	creates	a	routing	slip;	setting	it	to	False	deletes	the	routing	slip.
Read/write	Boolean.



Example

This	example	removes	the	routing	slip	from	Sales	1995.doc.

Documents("Sales	1995.doc").HasRoutingSlip	=	False

If	the	active	document	has	a	routing	slip	attached	to	it,	this	example	routes	the
document.

If	ActiveDocument.HasRoutingSlip	=	True	Then	

				ActiveDocument.Route

End	If



HasText	Property
							

True	if	the	specified	shape	has	text	associated	with	it.	Read-only	Boolean.



Example

If	the	second	shape	on	the	active	document	contains	text,	this	example	displays	a
message	if	the	text	overflows	its	frame.

Dim	docActive	As	Document

Set	docActive	=	ActiveDocument

With	docActive.Shapes(2).TextFrame

				If	.HasText	=	True	Then	

								If	.Overflowing	=	True	Then

												Msgbox	"Text	overflows	the	frame."

								End	If

				End	If

End	With



HasVertical	Property
							

True	if	a	vertical	border	can	be	applied	to	the	specified	object.	Read-only
Boolean.



Remarks

Vertical	borders	can	be	applied	to	ranges	that	contain	cells	in	two	or	more
columns	of	a	table.



Example

If	the	selection	supports	vertical	borders,	this	example	applies	a	single	vertical
border.

If	Selection.Borders.HasVertical	=	True	Then

				Selection.Borders(wdBorderVertical).LineStyle	=	_

								wdLineStyleSingle

End	If



HeaderDistance	Property
							

Returns	or	sets	the	distance	(in	points)	between	the	header	and	the	top	of	the
page.	Read/write	Single.



Example

This	example	displays	the	distance	between	the	header	and	the	top	of	the	page.
The	PointsToInches	method	is	used	to	convert	points	to	inches.

Dim	sngDistance	As	Single

sngDistance	=	ActiveDocument.PageSetup.HeaderDistance

Msgbox	PointsToInches(sngDistance)	&	"	inches"



HeaderFooter	Property
							

Returns	a	HeaderFooter	object	for	the	specified	selection	or	range.	Read-only.

Note			An	error	occurs	if	the	selection	isn't	located	within	a	header	or	footer.



Example

This	example	adds	a	centered	page	number	to	the	current	page	footer.

With	ActiveDocument.ActiveWindow.View

				.Type	=	wdPrintView

				.SeekView	=	wdSeekCurrentPageFooter

End	With

Selection.HeaderFooter.PageNumbers.Add	_

				PageNumberAlignment:=wdAlignPageNumberCenter



Headers	Property
							

Returns	a	HeadersFooters	collection	that	represents	the	headers	for	the
specified	section.	Read-only.

For	information	about	returning	a	single	member	of	a	collection,	see	Returning
an	Object	from	a	Collection.



Remarks

To	return	a	HeadersFooters	collection	that	represents	the	footers	for	the
specified	section,	use	the	Footers	property.



Example

This	example	adds	centered	page	numbers	to	every	page	in	the	active	document
except	the	first.	(A	separate	header	is	created	for	the	first	page.)

With	ActiveDocument.Sections(1).Headers(wdHeaderFooterPrimary)

				.PageNumbers.Add	_

								PageNumberAlignment:=wdAlignPageNumberCenter,	_

								FirstPage:=False

End	With

This	example	adds	text	to	the	first-page	header	in	the	active	document.

ActiveDocument.PageSetup.DifferentFirstPageHeaderFooter	=	True

With	ActiveDocument.Sections(1).Headers(wdHeaderFooterFirstPage)

				.Range.InsertAfter("First	Page	Text")

				.Range.Paragraphs.Alignment	=	wdAlignParagraphRight

End	With



HeaderSourceName	Property
							

Returns	the	path	and	file	name	of	the	header	source	attached	to	the	specified
mail	merge	main	document.	Read-only	String.



Example

If	a	header	source	is	attached	to	the	active	document,	this	example	displays	the
file	name.

Dim	strName	As	String

strName	=	ActiveDocument.MailMerge.DataSource.HeaderSourceName

If	strName	<>	""	Then	MsgBox	strName

This	example	opens	the	header	source	attached	to	the	active	document	if	the
source	is	a	Word	document.

Dim	mmdsTemp	As	MailMergeDataSource

Set	mmdsTemp	=	ActiveDocument.MailMerge.DataSource

If	mmdsTemp.HeaderSourceType	=	wdMergeInfoFromWord	Then

				Documents.Open	FileName:=mmdsTemp.HeaderSourceName

End	If



HeaderSourceType	Property
							

Returns	a	value	that	indicates	the	way	the	header	source	is	being	supplied	for	the
mail	merge	operation.	Read-only	WdMailMergeDataSource.

WdMailMergeDataSource	can	be	one	of	these	WdMailMergeDataSource
constants.
wdMergeInfoFromAccessDDE
wdMergeInfoFromMSQueryDDE
wdMergeInfoFromODSO
wdNoMergeInfo
wdMergeInfoFromExcelDDE
wdMergeInfoFromODBC
wdMergeInfoFromWord

expression.HeaderSourceType

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.



Example

This	example	opens	the	header	source	attached	to	the	active	document	if	the
source	is	a	Word	document.

Dim	mmdsTemp	As	MailMergeDataSource

Set	mmdsTemp	=	ActiveDocument.MailMerge.DataSource

If	mmdsTemp.HeaderSourceType	=	wdMergeInfoFromWord	Then

				Documents.Open	FileName:=mmdsTemp.HeaderSourceName

End	If



HeadingFormat	Property
							

True	if	the	specified	row	or	rows	are	formatted	as	a	table	heading.	Rows
formatted	as	table	headings	are	repeated	when	a	table	spans	more	than	one	page.
Can	be	True,	False	or	wdUndefined.	Read/write	Long.



Example

This	example	creates	a	5x5	table	at	the	beginning	of	the	active	document	and
then	adds	the	table	heading	format	to	the	first	table	row.

Dim	rngTemp	As	Range

Dim	tableNew	As	Table

Set	rngTemp	=	ActiveDocument.Range(0,	0)

Set	tableNewe	=	ActiveDocument.Tables.Add(rngTemp,	5,	5)

tableNew.Rows(1).HeadingFormat	=	True

This	example	determines	whether	the	row	that	contains	the	insertion	point	is
formatted	as	a	table	heading.

If	Selection.Information(wdWithInTable)	=	True	Then	

				If	Selection.Rows(1).HeadingFormat	=	True	Then	_

								MsgBox	"The	current	row	is	a	table	heading"

Else

				MsgBox	"The	insertion	point	is	not	in	a	table."

End	If



HeadingLevelForChapter	Property
							

Returns	or	sets	the	heading	level	style	that's	applied	to	the	chapter	titles	in	the
document.	Can	be	a	number	from	0	(zero)	through	8,	corresponding	to	heading
levels	1	through	9.	Read/write	Long.



Remarks

Before	you	can	create	page	numbers	that	include	chapter	numbers,	the	document
headings	must	have	a	numbered	outline	format	applied	that	uses	styles	from	the
Bullets	and	Numbering	dialog	box.	To	do	this	in	Visual	Basic,	use	the
ApplyListTemplate	method.



Example

The	first	part	of	this	example	creates	a	new	document,	adds	chapter	titles	and
page	breaks,	and	then	formats	the	document	by	using	the	last	numbered	outline
format	listed	in	the	Bullets	and	Numbering	dialog	box.	The	second	part	of	the
example	adds	centered	page	numbers	-	including	the	chapter	number	-	to	the
header;	an	en	dash	separates	the	chapter	number	and	the	page	number.	The	first
heading	level	is	used	for	the	chapter	number,	and	lowercase	roman	numerals	are
used	for	the	page	number.

Dim	intLoop	As	Integer

Dim	hdrTemp	As	HeaderFooter

Documents.Add

For	intLoop	=	1	To	5

				With	Selection

								.TypeParagraph

								.InsertBreak

				End	With

Next	intLoop

ActiveDocument.Content.Style	=	wdStyleHeading1

ActiveDocument.Content.ListFormat.ApplyListTemplate	_

				ListTemplate:=ListGalleries(wdOutlineNumberGallery)	_

				.ListTemplates(7)

Set	hdrTemp	=	ActiveDocument.Sections(1)	_

				.Headers(wdHeaderFooterPrimary)

With	hdrTemp.PageNumbers

				.Add	PageNumberAlignment:=wdAlignPageNumberCenter

				.NumberStyle	=	wdPageNumberStyleArabic

				.IncludeChapterNumber	=	True

				.HeadingLevelForChapter	=	0

				.ChapterPageSeparator	=	wdSeparatorEnDash

End	With





HeadingSeparator	Property
							

Returns	or	sets	the	text	between	alphabetic	groups	(entries	that	start	with	the
same	letter)	in	the	index.	Corresponds	to	the	\h	switch	for	an	INDEX
field.	Read/write	WdHeadingSeparator.

WdHeadingSeparator	can	be	one	of	these	WdHeadingSeparator	constants.
wdHeadingSeparatorBlankLine
wdHeadingSeparatorLetterFull
wdHeadingSeparatorNone
wdHeadingSeparatorLetter
wdHeadingSeparatorLetterLow

expression.HeadingSeparator

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.



Example

This	example	formats	the	first	index	for	the	active	document	in	a	single	column,
with	the	appropriate	letter	preceding	each	alphabetic	group.

If	ActiveDocument.Indexes.Count	>=	1	Then

				With	ActiveDocument.Indexes(1)

								.HeadingSeparator	=	wdHeadingSeparatorLetter

								.NumberOfColumns	=	1

				End	With

End	If



HeadingStyles	Property
							

Returns	a	HeadingStyles	object	that	represents	additional	styles	used	to	compile
a	table	of	contents	or	table	of	figures	(styles	other	than	the	Heading	1	–	Heading
9	styles).	Read-only.



Example

This	example	adds	a	style	to	the	HeadingStyles	collection	and	then	displays	the
names	of	all	the	style	in	the	collection.

Dim	hsLoop	As	HeadingStyle

If	ActiveDocument.TablesOfContents.Count	>=1	Then

				ActiveDocument.TablesOfContents(1).HeadingStyles.Add	_

								Style:="Title",	Level:=2

				For	Each	hsLoop	In	_

												ActiveDocument.TablesOfContents(1).HeadingStyles

								MsgBox	hsLoop.Style

				Next	hsLoop

End	If

This	example	adds	a	style	named	"Blue"	to	the	HeadingStyles	collection	in	a
table	of	contents	for	Sales.doc.

With	Documents("Sales.doc")

				.Styles.Add	Name:="Blue"

				.TablesOfContents(1).UseHeadingStyles	=	True

				.TablesOfContents(1).HeadingStyles.Add	_

								Style:="Blue",	Level:=4

End	With



Show	All



HebrewMode	Property
							

Returns	or	sets	the	mode	for	the	Hebrew	spelling	checker.	Read/write
WdHebSpellStart.

WdHebSpellStart	can	be	one	of	these	WdHebSpellStart	constants.
wdFullScript	The	spelling	checker	follows	rules	for	the	conventional	script
required	by	the	Hebrew	Language	Academy	for	writing	text	without	diacritics.
wdMixedAuthorizedScript	The	spelling	checker	follows	rules	for	full	and
partial	script,	but	highlights	as	potential	mistakes	any	spelling	variations	not
permitted	within	either	system	and	any	completely	unrecognized	words.
wdMixedScript	The	spelling	checker	follows	rules	for	full	and	partial	script
and	allows	non-conventional	spelling	variations.	Only	completely	unrecognized
words	are	highlighted	as	potential	mistakes.
wdPartialScript	The	spelling	checker	follows	rules	for	the	traditional	script
used	only	for	text	with	diacritics.

expression.HebrewMode

expression			Required.	An	expression	that	returns	an	Options	object.



Remarks

For	more	information	on	using	Word	with	right-to-left	languages,	see	Word
features	for	right-to-left	languages.

mk:@MSITStore:wdmain10.chm::/html/wdrefFeaturesAvailableInWordWhenBidirectionalLanguagesAreEnabled.htm


Example

This	example	sets	the	spelling	checker	to	check	spelling	based	on	the
conventional	script	required	by	the	Hebrew	Language	Academy	for	writing	text
with	diacritics.

Options.HebrewMode	=	wdFullScript



Show	All



Height	Property
							

Returns	or	sets	the	height	of	the	specified	object	(in	points	unless	otherwise
noted),	as	shown	in	the	following	table.

Object Height

Application Returns	or	sets	the	height	of	the	active	document	window.
Read/write	Long.

Cell,	Cells

Returns	or	sets	the	height	of	the	specified	cell	or	cells	in	a
table.	If	the	HeightRule	property	of	the	specified	row	is
wdRowHeightAuto,	Height	returns	wdUndefined;	setting
the	Height	property	sets	HeightRule	to
wdRowHeightAtLeast.	Read/write	Single.

CustomLabel Returns	or	sets	the	height	of	the	specified	custom	mailing
label.	Read/write	Single.

Frame Returns	or	sets	the	height	of	the	specified	frame.	Read/write
Single.

Frameset
Returns	or	sets	the	height	of	the	specified	Frameset	object.
Read/write	Float.	The	HeightType	property	determines	the
type	of	unit	in	which	this	value	is	expressed.

InlineShape Returns	or	sets	the	height	of	the	specified	inline	shape.
Read/write	Single.

Row,	Rows

Returns	or	sets	the	height	of	the	specified	row	or	rows	in	a
table.	If	the	HeightRule	property	of	the	specified	row	is
wdRowHeightAuto,	Height	returns	wdUndefined;	setting
the	Height	property	sets	HeightRule	to
wdRowHeightAtLeast.	Read/write	Single.

Shape,
ShapeRange

Returns	or	sets	the	height	of	the	specified	shape.	Read/write
Single.

Task Returns	or	sets	the	height	of	the	specified	task	window.
Read/write	Long.
Returns	or	sets	the	height	of	the	window.	You	cannot	set
this	property	if	the	window	is	maximized	or	minimized.



Window Use	the	UsableHeight	property	of	the	Application	object
to	determine	the	maximum	size	for	the	window.	Use	the
WindowState	property	to	determine	the	window	state.
Read/write	Long.



Example

As	it	applies	to	the	Rows	object.

This	example	sets	the	height	of	the	rows	in	the	first	table	in	the	active	document
to	at	least	20	points.

ActiveDocument.Tables(1).Rows.Height	=	20

As	it	applies	to	the	Row	object.

This	example	displays	the	height	(in	points)	of	the	table	row	that	contains	the
insertion	point.

If	Selection.Information(wdWithInTable)	=	True	Then

				MsgBox	Selection.Rows(1).Height

End	If

As	it	applies	to	the	Window	object.

This	example	changes	the	height	of	the	active	window	to	fill	the	application
window	area.

With	ActiveDocument.ActiveWindow

				.WindowState	=	wdWindowStateNormal

				.Height	=	Application.UsableHeight

End	With

As	it	applies	to	the	ShapeRange	object.

This	example	inserts	a	picture	as	an	inline	shape	and	changes	the	height	and
width	of	the	image.

Set	aInLine	=	_

				ActiveDocument.InlineShapes.AddPicture(	_

				FileName:="C:\Windows\Bubbles.bmp",	_

				Range:=Selection.Range)

With	aInLine

				.Height	=	100

				.Width	=	200

End	With



As	it	applies	to	the	Frameset	object.

This	example	sets	the	height	of	the	specified	Frameset	object	to	25%	of	the
window	height.

With	ActiveWindow.ActivePane.Frameset

				.HeightType	=	wdFramesetSizeTypePercent

				.Height	=	25

End	With



Show	All



HeightRule	Property
							

HeightRule	property	as	it	applies	to	the	Frame	object.

Returns	or	sets	the	rule	for	determining	the	height	of	the	specified	frame.
Read/write	WdFrameSizeRule.

WdFrameSizeRule	can	be	one	of	these	WdFrameSizeRule	constants.
wdFrameAtLeast
wdFrameExact
wdFrameAuto

expression.HeightRule

expression			Required.	An	expression	that	returns	a	Frame	object.

HeightRule	property	as	it	applies	to	the	Cell,	Cells,	Row,	and	Rows	objects.

Returns	or	sets	the	rule	for	determining	the	height	of	the	specified	cells	or	rows.
Read/write	WdRowHeightRule.

WdRowHeightRule	can	be	one	of	these	WdRowHeightRule	constants.
wdRowHeightAtLeast
wdRowHeightExactly
wdRowHeightAuto

expression.HeightRule

expression			Required.	An	expression	that	returns	one	of	the	above	objects.



Remarks

Setting	the	HeightRule	property	of	a	Cell	or	Cells	object	automatically	sets	the
property	for	the	entire	row.



Example

As	it	applies	to	the	Frame	object.

This	example	sets	both	the	height	and	width	of	the	first	frame	in	the	active
document	to	exactly	1	inch.

If	ActiveDocument.Frames.Count	>=	1	Then

				With	ActiveDocument.Frames(1)

								.HeightRule	=	wdFrameExact

								.Height	=	InchesToPoints(1)

								.WidthRule	=	wdFrameExact

								.Width	=	InchesToPoints(1)

				End	With

End	If

As	it	applies	to	the	Row	object.

This	example	creates	a	3x3	table	in	a	new	document	and	then	sets	a	minimum
row	height	of	24	points	for	the	second	row.

Set	newDoc	=	Documents.Add

Set	myTable	=	newDoc.Tables.Add(Range:=Selection.Range,	_

				NumRows:=3,	NumColumns:=3)

With	myTable.Rows(2)

				.Height	=	24

				.HeightRule	=	wdRowHeightAtLeast

End	With

As	it	applies	to	the	Rows	object.

This	example	sets	the	height	rule	for	the	selected	rows	to	automatically	adjust	to
the	tallest	cell	in	the	row.

If	Selection.Information(wdWithInTable)	=	True	Then

				Selection.Rows.HeightRule	=	wdRowHeightAuto

Else

				MsgBox	"The	insertion	point	is	not	in	a	table."

End	If





HeightType	Property
							

Returns	or	sets	the	width	type	for	the	specified	frame	on	a	frames
page.	Read/write	WdFramesetSizeType.

WdFramesetSizeType	can	be	one	of	these	WdFramesetSizeType	constants.
wdFramesetSizeTypePercent	Microsoft	Word	interprets	the	height	of	the
specified	frame	as	a	percentage	of	the	screen	width.
wdFramesetSizeTypeFixed	Word	interprets	the	height	of	the	specified	frame
as	a	fixed	value	(in	points).
wdFramesetSizeTypeRelative	Word	interprets	the	height	of	the	specified
frame	relative	to	the	width	of	other	frames	on	the	same	frames	page.

expression.HeightType

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.



Example

This	example	sets	the	height	of	the	first	Frameset	object	in	the	specified	frames
page	to	25	percent	of	the	window	height.

With	ActiveDocument.ActiveWindow.Panes(1).Frameset

				.HeightType	=	wdFramesetSizeTypePercent

				.Height	=	25

End	With



HelpText	Property
							

Returns	or	sets	the	text	that's	displayed	in	a	message	box	when	the	form	field	has
the	focus	and	the	user	presses	F1.	If	the	OwnHelp	property	is	set	to	True,
HelpText	specifies	the	text	string	value.	If	OwnHelp	is	set	to	False,	HelpText
specifies	the	name	of	an	AutoText	entry	that	contains	help	text	for	the	form	field.
Read/write	String.



Example

This	example	sets	the	help	text	for	the	form	field	named	"Name."

With	ActiveDocument.FormFields("Name")

				.OwnHelp	=	True

				.HelpText	=	"Type	your	full	legal	name."

End	With



Show	All



Hidden	Property
							

Hidden	property	as	it	applies	to	the	Style	object.

True	if	the	font	is	formatted	as	hidden	text.	Read/write	Boolean.

expression.Hidden

expression			Required.	An	expression	that	returns	one	of	the	above	objects.

	

Hidden	property	as	it	applies	to	the	Font	object.

True	if	the	font	is	formatted	as	hidden	text.	Returns	True,	False	or
wdUndefined	(a	mixture	of	True	and	False).	Can	be	set	to	True,	False,	or
wdToggle.	Read/write	Long.

expression.Hidden

expression			Required.	An	expression	that	returns	one	of	the	above	objects.



Remarks

To	control	the	display	of	hidden	text,	use	the	ShowHiddenText	property	of	the
View	object.

To	control	whether	properties	and	methods	that	return	Range	objects	include	or
exclude	hidden	text	when	hidden	text	isn't	displayed,	use	the
IncludeHiddenText	property	of	the	TextRetrievalMode	object.



Example

As	it	applies	to	the	Font	object.

This	example	inserts	text	and	formats	the	password	number	as	hidden	text.

Selection.Collapse	Direction:=wdCollapseEnd

With	Selection.Range

				.InsertAfter	"Smith	account	password:	8116"

				.Words(5).Font.Hidden	=	True

End	With

This	example	checks	the	selection	for	hidden	text.

If	Selection.Type	=	wdSelectionNormal	Then

				If	Selection.Font.Hidden	=	wdUndefined	or	_

												Selection.Font.Hidden	=	True	Then

								MsgBox	"There's	hidden	text	in	the	selection."

				Else

								MsgBox	"No	hidden	text	in	the	selection."

				End	If

Else

				MsgBox	"You	need	to	select	some	text."

End	If

This	example	makes	all	hidden	text	in	the	active	window	visible	and	then
formats	the	selection	as	hidden	text.

ActiveDocument.ActiveWindow.View.ShowHiddenText	=	True

If	Selection.Type	=	wdSelectionNormal	Then	_

				Selection.Font.Hidden	=	True



HidePageNumbersInWeb	Property
							

Returns	or	sets	whether	page	numbers	in	a	table	of	contents	or	a	table	of	figures
should	be	hidden	when	publishing	to	the	Web.	Read/write	Boolean.



Example

This	example	hides	page	numbers	in	the	first	table	of	contents	if	the	document	is
to	be	published	to	the	Web.

ActiveDocument.TableOfContents(1).HidePageNumbersInWeb	=	True



Highlight	Property
							

Find	object:	True	if	highlight	formatting	is	included	in	the	find	criteria.	Can
return	or	be	set	to	True,	False,	or	wdUndefined.	Read/write	Long.

Note			The	wdUndefined	value	can	be	used	with	the	Find	object	to	ignore	the
state	of	highlight	formatting	in	the	selection	or	range	that	is	searched.

Replacement	object:	True	if	highlight	formatting	is	applied	to	the	replacement
text.	Can	return	or	be	set	to	True,	False,	or	wdUndefined.	Read/write	Long.



Example

This	example	finds	all	instances	of	highlighted	text	in	the	active	document	and
removes	the	highlight	formatting	by	setting	the	Highlight	property	of	the
Replacement	object	to	False.

Dim	rngTemp	As	Range

Set	rngTemp	=	ActiveDocument.Range(Start:=0,	End:=0)

With	rngTemp.Find

				.ClearFormatting

				.Highlight	=	True

				With	.Replacement

								.ClearFormatting

								.Highlight	=	False

				End	With

				.Execute	Replace:=wdReplaceAll,	Forward:=True,	FindText:="",	_

									ReplaceWith:="",	Format:=True

End	With

This	example	applies	highlight	formatting	to	the	next	instance	of	bold	text	in	the
active	document.

With	Selection.Find

				.ClearFormatting

				.Font.Bold	=	True

				With	.Replacement

								.ClearFormatting

								.Highlight	=	True

				End	With

				.Execute	Forward:=True,	FindText:="",	ReplaceWith:="",	_

								Format:=True

End	With



HighlightColorIndex	Property
							

Returns	or	sets	the	highlight	color	for	the	specified	range.	Read/write
WdColorIndex.

Applies	to	one	of	the	following	WdColorIndex	constants.

				wdByAuthor				

				wdAuto

				wdNoHighlight

				wdBlack

				wdBlue

				wdBrightGreen

				wdDarkBlue

				wdDarkRed

				wdDarkYellow

				wdGray25

				wdGray50

				wdGreen

				wdPink

				wdRed

				wdTeal



				wdTurquoise

				wdViolet

				wdWhite

				wdYellow

expression.HighlightColorIndex

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.



Remark

Setting	this	property	to	wdNoHighlight	removes	the	highlight	color	(if	any)
from	the	specified	range.



Example

This	example	removes	highlight	formatting	from	the	selection.

Selection.Range.HighlightColorIndex	=	wdNoHighlight

This	example	applies	yellow	highlighting	to	each	bookmark	in	the	active
document.

For	Each	abookmark	In	ActiveDocument.Bookmarks

				abookmark.Range.HighlightColorIndex	=	wdYellow

Next	abookmark



HighlightMergeFields	Property
							

True	to	highlight	the	merge	fields	in	a	document.	Read/write	Boolean.

expression.HighlightMergeFields

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.



Example

This	example	turns	off	highlighting	merge	fields	in	the	active	document.

Sub	HighlightFields()

				ActiveDocument.MailMerge.HighlightMergeFields	=	False

End	Sub



HorizontalDistanceFromText
Property
							

Returns	or	sets	the	horizontal	distance	between	a	frame	and	the	surrounding	text,
in	points.	Read/write	Single.



Example

This	example	adds	a	frame	around	the	selection	and	sets	the	horizontal	distance
between	the	frame	and	the	text	to	12	points.

Dim	frmNew	As	Frame

Set	frmNew	=	ActiveDocument.Frames.Add(Range:=Selection.Range)

frmNew.HorizontalDistanceFromText	=	12

This	example	adds	a	frame	around	the	first	paragraph	and	sets	several	properties
of	the	frame.

Dim	frmNew	As	Frame

Set	frmNew	=	ActiveDocument.Frames.Add	_

				(Range:=ActiveDocument.Paragraphs(1).Range)

With	frmNew

				.HorizontalDistanceFromText	=	InchesToPoints(0.25)

				.VerticalDistanceFromText	=	InchesToPoints(0.25)

				.HeightRule	=	wdFrameAuto

				.WidthRule	=	wdFrameAuto

				.Borders.Enable	=	False

End	With



Show	All



HorizontalFlip	Property
							

Indicates	that	a	shape	has	been	flipped	horizontally.	Read-only	MsoTriState.

MsoTriState	can	be	one	of	these	MsoTriState	constants.
msoCTrue
msoFalse
msoTriStateMixed
msoTriStateToggle
msoTrue

expression.HorizontalFlip

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.



Example

This	example	restores	each	shape	in	the	active	document	to	its	original	state	if
it's	been	flipped	horizontally	or	vertically.

Sub	FlipShape()

				Dim	shpFlip	As	Shape

				For	Each	shpFlip	In	ActiveDocument.Shapes

								If	shpFlip.HorizontalFlip	Then	shpFlip.Flip	msoFlipHorizontal

								If	shpFlip.VerticalFlip	Then	shpFlip.Flip	msoFlipVertical

				Next

End	Sub



Show	All



HorizontalInVertical	Property
							

Returns	or	sets	the	formatting	for	horizontal	text	set	within	vertical	text.
Read/write	WdHorizontalInVerticalType.

WdHorizontalInVerticalType	can	be	one	of	these	WdHorizontalInVerticalType
constants.
wdHorizontalInVerticalNone
wdHorizontalInVerticalFitInLine
wdHorizontalInVerticalResizeLine

expression.HorizontalInVertical

expression			Required.	An	expression	that	returns	a	Range	object.



Remarks

For	more	information	on	using	Microsoft	Word	with	East	Asian	languages,	see
Word	features	for	East	Asian	languages.

mk:@MSITStore:wdmain10.chm::/html/wdrefFeaturesAvailableInWordWhenAsianLanguagesAreEnabled.htm


Example

This	example	formats	the	current	selection	as	horizontal	text	within	a	run	of
vertical	text,	fitting	the	text	to	the	line	width	of	the	vertical	text.

Selection.Range.HorizontalInVertical	=	wdHorizontalInVerticalFitInLine



HorizontalLineFormat	Property
							

Returns	a	HorizontalLineFormat	object	that	contains	the	horizontal	line
formatting	for	the	specified	InlineShape	object.	Read-only.



Example

This	example	sets	the	length	of	the	specified	horizontal	line	to	50%	of	the
window	width.

ActiveDocument.InlineShapes(1).HorizontalLineFormat	_

				.PercentWidth	=	50



HorizontalPercentScrolled	Property
							

Returns	or	sets	the	horizontal	scroll	position	as	a	percentage	of	the	document
width.	Read/write	Long.



Example

This	example	displays	the	percentage	that	the	active	window	is	scrolled
horizontally.

MsgBox	_

				ActiveDocument.ActiveWindow.HorizontalPercentScrolled	&	"%"

This	example	vertically	scrolls	the	active	pane	of	the	window	for	Document1	all
the	way	to	the	left.

With	Windows("Document1")

				.Activate

				.ActivePane.HorizontalPercentScrolled	=	0

End	With



HorizontalPitch	Property
							

Returns	or	sets	the	horizontal	distance	(in	points)	between	the	left	edge	of	one
custom	mailing	label	and	the	left	edge	of	the	next	mailing	label.	Read/write
Single.

Note			If	this	property	is	changed	to	a	value	that	isn't	valid	for	the	specified
mailing	label	layout,	an	error	occurs.



Example

This	example	defines	the	layout	of	an	existing	custom	label	named	"Laser
labels."	The	horizontal	distance	between	the	left	edge	of	one	label	and	the	left
edge	of	the	next	label	is	set	to	4.19	inches.

With	Application.MailingLabel.CustomLabels("Laser	labels")

				.Height	=	InchesToPoints(2)

				.HorizontalPitch	=	InchesToPoints(4.19)

				.NumberAcross	=	2

				.NumberDown	=	5

				.PageSize	=	wdCustomLabelLetter

				.SideMargin	=	InchesToPoints(0.16)

				.TopMargin	=	InchesToPoints(0.5)

				.VerticalPitch	=	InchesToPoints(2)

				.Width	=	InchesToPoints(4)

End	With



HorizontalPosition	Property
							

Frame	object:	Returns	or	sets	the	horizontal	distance	between	the	edge	of	the
frame	and	the	item	specified	by	the	RelativeHorizontalPosition	property.	Can
be	a	number	that	indicates	a	measurement	in	points,	or	can	be	one	of	the
following	WdFramePosition	constants:	wdFrameLeft,	wdFrameRight,
wdFrameCenter,	wdFrameInside,	or	wdFrameOutside.	Read/write	Single.

Rows	object:	Returns	or	sets	the	horizontal	distance	between	the	edge	of	the
rows	and	the	item	specified	by	the	RelativeHorizontalPosition	property.	Can	be
a	number	that	indicates	a	measurement	in	points,	or	can	be	one	of	the	following
WdTablePosition	constants:	wdTableLeft,	wdTableRight,	wdTableCenter,
wdTableInside,	or	wdTableOutside.	Read/write	Single.	This	property	doesn't
have	any	effect	if	WrapAroundText	is	False.



Example

This	example	aligns	the	first	frame	in	the	active	document	horizontally	with	the
right	margin.

If	ActiveDocument.Frames.Count	>=	1	Then

				With	ActiveDocument.Frames(1)

								.RelativeHorizontalPosition	=	_

												wdRelativeHorizontalPositionMargin

								.HorizontalPosition	=	wdFrameRight

				End	With

End	If

This	example	aligns	the	first	table	in	the	active	document	horizontally	with	the
right	margin.

If	ActiveDocument.Tables.Count	>=	1	Then

				With	ActiveDocument.Tables(1).Rows

								.RelativeHorizontalPosition	=	_

												wdRelativeHorizontalPositionMargin

								.HorizontalPosition	=	wdTableRight

				End	With

End	If



HorizontalResolution	Property
							

Returns	the	horizontal	display	resolution,	in	pixels.	Read-only	Long.



Example

This	example	displays	the	current	screen	resolution	(for	example,	"1024	x	768").

Dim	lngHorizontal	As	Long

Dim	lngVertical	As	Long

lngHorizontal	=	System.HorizontalResolution

lngVertical	=	System.VerticalResolution

MsgBox	"Resolution	=	"	&	lngHorizontal	&	"	x	"	&	lngVertical



HTMLDivisions	Property
							

Returns	an	HTMLDivisions	object	that	represents	an	HTML	division	in	a	Web
document.

expression.HTMLDivisions

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.



Example

This	example	formats	three	nested	divisions	in	the	active	document.	This
example	assumes	that	the	active	document	is	an	HTML	document	with	at	least
three	divisions.

Sub	FormatHTMLDivisions()

				With	ActiveDocument.HTMLDivisions(1)

								With	.Borders(wdBorderLeft)

												.Color	=	wdColorRed

												.LineStyle	=	wdLineStyleSingle

								End	With

								With	.Borders(wdBorderRight)

												.Color	=	wdColorRed

												.LineStyle	=	wdLineStyleSingle

								End	With

								With	.HTMLDivisions(1)

												.LeftIndent	=	InchesToPoints(1)

												.RightIndent	=	InchesToPoints(1)

												With	.Borders(wdBorderTop)

																.Color	=	wdColorBlue

																.LineStyle	=	wdLineStyleDouble

												End	With

												With	.Borders(wdBorderBottom)

																.Color	=	wdColorBlue

																.LineStyle	=	wdLineStyleDouble

												End	With

												With	.HTMLDivisions(1)

																.LeftIndent	=	InchesToPoints(1)

																.RightIndent	=	InchesToPoints(1)

																With	.Borders(wdBorderLeft)

																				.LineStyle	=	wdLineStyleDot

																End	With

																With	.Borders(wdBorderRight)

																				.LineStyle	=	wdLineStyleDot

																End	With

																With	.Borders(wdBorderTop)

																				.LineStyle	=	wdLineStyleDot

																End	With

																With	.Borders(wdBorderBottom)

																				.LineStyle	=	wdLineStyleDot

																End	With

												End	With

								End	With



				End	With

End	Sub



Show	All



HTMLFidelity	Property
							

Strips	HTML	tags	used	for	opening	HTML	files	in	Word	but	not	required	for
display.	Read/write	WdEmailHTMLFidelity.

WdEmailHTMLFidelity	can	be	one	of	these	WdEmailHTMLFidelity	constants.
wdEmailHTMLFidelityHigh		Leaves	HTML	intact.
wdEmailHTMLFidelityLow		Removes	all	HTML	tags	that	do	not	affect	how	a
message	displays.

expression.HTMLFidelity

expression			Required.	An	expression	that	returns	an	EmailOptions	object.



Example

This	example	keeps	all	HTML	tags	intact	when	sending	e-mail	messages.

Sub	HTMLEmail()

				Application.EmailOptions	_

								.HTMLFidelity	=	wdEmailHTMLFidelityHigh

End	Sub



HTMLProject	Property
							

Returns	an	HTMLProject	object	in	the	specified	document	that	represents	a
top-level	project	branch,	as	in	the	Project	Explorer	of	the	Microsoft	Script
Editor.

expression.HTMLProject

expression			Required.	An	expression	that	returns	a	Document	object.

mk:@MSITStore:vbaof10.chm::/html/ofobjHTMLProject.htm


Hyperlink	Property
							

Returns	a	Hyperlink	object	that	represents	the	hyperlink	associated	with	the
specified	Shape,	InlineShape,	or	ShapeRange	object.	Read-only.

Note			If	there's	no	hyperlink	associated	with	the	specified	shape,	an	error
occurs.



Example

This	example	displays	the	address	for	the	hyperlink	for	the	first	shape	in	the
active	document.

MsgBox	ActiveDocument.Shapes(1).Hyperlink.Address



Hyperlinks	Property
							

Returns	a	Hyperlinks	collection	that	represents	all	the	hyperlinks	in	the
specified	document,	range,	or	selection.	Read-only.

For	information	about	returning	a	single	member	of	a	collection,	see	Returning
an	Object	from	a	Collection.



Example

This	example	displays	the	target	address	of	the	second	hyperlink	in	Home.doc.

If	Documents("Home.doc").Hyperlinks.Count	>=	2	Then

				MsgBox	Documents("Home.doc").Hyperlinks(2).Name

End	If

This	example	jumps	to	the	address	of	the	first	hyperlink	in	the	selection.

If	Selection.Hyperlinks.Count	>=	1	Then

				Selection.Hyperlinks(1).Follow

End	If

This	example	displays	the	name	of	every	hyperlink	in	the	active	document	that
includes	the	word	"Microsoft"	in	its	address.

For	Each	aHyperlink	In	ActiveDocument.Hyperlinks

				If	InStr(LCase(aHyperlink.Address),	"microsoft")	<>	0	Then

								MsgBox	aHyperlink.Name

				End	If

Next	aHyperlink



HyphenateCaps	Property
							

True	if	words	in	all	capital	letters	can	be	hyphenated.	Read/write	Boolean.



Example

This	example	enables	automatic	hyphenation	for	the	active	document	and	allows
capitalized	words	to	be	hyphenated.

With	ActiveDocument

				.AutoHyphenation	=	True

				.HyphenateCaps	=	True

End	With



Hyphenation	Property
							

True	if	the	specified	paragraphs	are	included	in	automatic	hyphenation.	False	if
the	specified	paragraphs	are	to	be	excluded	from	automatic	hyphenation.	Can	be
True,	False	or	wdUndefined.	Read/write	Long.



Example

This	example	turns	off	automatic	hyphenation	for	all	paragraphs	in	the	active
document	that	have	the	Normal	style.

ActiveDocument.Styles("Normal").ParagraphFormat.Hyphenation	=	False



HyphenationZone	Property
							

Returns	or	sets	the	width	of	the	hyphenation	zone,	in	points.	The	hyphenation
zone	is	the	maximum	amount	of	space	that	Microsoft	Word	leaves	between	the
end	of	the	last	word	in	a	line	and	the	right	margin.	Read/write	Long.



Example

This	example	enables	automatic	hyphenation	for	MyReport.doc.	The
hyphenation	zone	is	set	to	36	points	(0.5	inch).

With	Documents("MyReport.doc")

				.AutoHyphenation	=	True

				.HyphenationZone	=	36

End	With

This	example	sets	the	hyphenation	zone	to	0.25	inch	(18	points)	and	then	starts
manual	hyphenation	of	the	active	document.

With	ActiveDocument

				.HyphenationZone	=	InchesToPoints(0.25)

				.ManualHyphenation

End	With



IconIndex	Property
							

Returns	or	sets	the	icon	that's	used	when	the	DisplayAsIcon	property	is	True:	0
(zero)	corresponds	to	the	first	icon,	1	corresponds	to	the	second	icon,	and	so	on.
If	this	argument	is	omitted,	the	first	(default)	icon	is	used.	Read/write	Long.

expression.IconIndex

expression			Required.	An	expression	that	returns	an	OleFormat	object.



Example

This	example	returns	the	icon	index	number	in	a	message	box	for	the	first
selected	shape	that's	displayed	as	an	icon.

Dim	olefTemp	As	OLEFormat

If	Selection.ShapeRange.Count	>=	1	Then

				Set	olefTemp	=	Selection.ShapeRange(1).OLEFormat

				With	olefTemp

								If	.DisplayAsIcon	=	True	Then	Msgbox	.IconIndex

				End	With

End	If



IconLabel	Property
							

Returns	or	sets	the	text	displayed	below	the	icon	for	an	OLE	object.	Read/write
String.

expression.IconLabel

expression			Required.	An	expression	that	returns	an	OleFormat	object.



Example

This	example	changes	the	text	below	the	icon	for	the	first	shape	in	the	selection.

Dim	olefTemp	As	OLEFormat

If	Selection.ShapeRange.Count	>=	1	Then

				Set	olefTemp	=	Selection.ShapeRange(1).OLEFormat

				With	olefTemp

								.DisplayAsIcon	=	True

								.IconLabel	=	"My	Icon"

				End	With

End	If



IconName	Property
							

Returns	or	sets	the	program	file	in	which	the	icon	for	an	OLE	object	is	stored.
Read/write	String.

expression.IconName

expression			Required.	An	expression	that	returns	an	OleFormat	object.



Example

This	example	changes	the	first	shape	in	the	selection	to	be	displayed	as	an	icon
and	sets	the	text	below	the	icon	to	the	icon's	file	name.

Dim	olefTemp	As	OLEFormat

If	Selection.ShapeRange.Count	>=	1	Then

				Set	olefTemp	=	Selection.ShapeRange(1).OLEFormat

				With	olefTemp

								.DisplayAsIcon	=	True

								.IconLabel	=	.IconName

				End	With

End	If



IconPath	Property
							

Returns	the	path	of	the	file	in	which	the	icon	for	an	OLE	object	is	stored.	Read-
only	String.

expression.IconPath

expression			Required.	An	expression	that	returns	an	OleFormat	object.



Example

This	example	displays	the	path	for	each	embedded	OLE	object	that's	displayed
as	an	icon	on	the	active	document.

Dim	shapeLoop	As	Shape

For	Each	shapeLoop	In	ActiveDocument.Shapes

				If	shapeLoop.Type	=	msoEmbeddedOLEObject	Then

								If	shapeLoop.OLEFormat.DisplayAsIcon	=	True	Then	_

												Msgbox	shapeLoop.OLEFormat.IconPath

				End	If

Next	shapeLoop



IgnoreInternetAndFileAddresses
Property
							

True	if	file	name	extensions,	MS-DOS	paths,	e-mail	addresses,	server	and	share
names	(also	known	as	UNC	paths),	and	Internet	addresses	(also	known	as	URLs)
are	ignored	while	checking	spelling.	Read/write	Boolean.

expression.IgnoreInternetAndFileAddresses

expression			Required.	An	expression	that	returns	an	Options	object.



Example

This	example	sets	Microsoft	Word	to	ignore	file	names	and	Internet	addresses,
and	then	it	checks	spelling	in	the	active	document.

Options.IgnoreInternetAndFileAddresses	=	True

ActiveDocument.CheckSpelling

This	example	returns	the	current	status	of	the	Ignore	Internet	and	file
addresses	option	on	the	Spelling	&	Grammar	tab	in	the	Options	dialog	box.

Dim	blnTemp	As	Boolean

blnTemp	=	Options.IgnoreInternetAndFileAddresses



IgnoreMixedDigits	Property
							

True	if	words	that	contain	numbers	are	ignored	while	checking	spelling.
Read/write	Boolean.

expression.IgnoreMixedDigits

expression			Required.	An	expression	that	returns	an	Options	object.



Example

This	example	sets	Microsoft	Word	to	ignore	words	that	contain	numbers,	and
then	it	checks	spelling	in	the	active	document.

Options.IgnoreMixedDigits	=	True

ActiveDocument.CheckSpelling

This	example	returns	the	current	status	of	the	Ignore	words	with	numbers
option	on	the	Spelling	&	Grammar	tab	in	the	Options	dialog	box.

Dim	blnTemp	As	Boolean

blnTemp	=	Options.IgnoreMixedDigits



IgnoreUppercase	Property
							

True	if	words	in	all	uppercase	letters	are	ignored	while	checking	spelling.
Read/write	Boolean.

expression.IgnoreUppercase

expression			Required.	An	expression	that	returns	an	Options	object.



Example

This	example	sets	Word	to	ignore	words	in	all	uppercase	letters,	and	then	it
checks	spelling	in	the	active	document.

Options.IgnoreUppercase	=	True

ActiveDocument.CheckSpelling

This	example	returns	the	current	status	of	the	Ignore	words	in	UPPERCASE
option	on	the	Spelling	&	Grammar	tab	in	the	Options	dialog	box.

Dim	blnTemp	As	Boolean

blnTemp	=	Options.IgnoreUppercase



IMEAutomaticControl	Property
							

True	if	Microsoft	Word	is	set	to	automatically	open	and	close	the	Japanese	Input
Method	Editor	(IME).	Read/write	Boolean.

expression.IMEAutomaticControl

expression			Required.	An	expression	that	returns	an	Options	object.



Example

This	example	sets	Microsoft	Word	to	automatically	open	and	close	the	Japanese
Input	Method	Editor	(IME).

Options.IMEAutomaticControl	=	True



Show	All



IMEMode	Property
							

Returns	or	sets	the	default	start-up	mode	for	the	Japanese	Input	Method	Editor
(IME).	Read/write	WdIMEMode.

WdIMEMode	can	be	one	of	these	WdIMEMode	constants.
wdIMEModeAlpha	Activates	the	IME	in	half-width	Latin	mode.
wdIMEModeAlphaFull	Activates	the	IME	in	full-width	Latin	mode.
wdIMEModeHangul	Activates	the	IME	in	half-width	Hangul	mode.
wdIMEModeHangulFull	Activates	the	IME	in	full-width	Hangul	mode.
wdIMEModeHiragana	Activates	the	IME	in	full-width	hiragana	mode.
wdIMEModeKatakana	Activates	the	IME	in	full-width	katakana	mode.
wdIMEModeKatakanaHalf	Activates	the	IME	in	half-width	katakana	mode.
wdIMEModeNoControl	Does	not	change	the	IME	mode.
wdIMEModeOff	Disables	the	IME	and	activates	Latin	text	entry.
wdIMEModeOn	Activates	the	IME.

expression.IMEMode

expression			Required.	An	expression	that	returns	an	Window	object.



IncludeCategoryHeader	Property
							

True	if	the	category	name	for	a	group	of	entries	appears	in	the	table	of
authorities.	Corresponds	to	the	\h	switch	for	a	Table	of	Authorities	(TOA)	field.
Read/write	Boolean.

expression.IncludeCategoryHeader

expression			Required.	An	expression	that	returns	a	TableOfAuthorities	object.



Example

This	example	includes	the	category	name	for	each	table	of	authorities	in	the
active	document.

Dim	toaLoop	As	TableOfAuthorities

For	Each	toaLoop	In	ActiveDocument.TablesOfAuthorities

				toaLoop.IncludeCategoryHeader	=	True

Next	toaLoop



IncludeChapterNumber	Property
							

True	if	a	chapter	number	is	included	with	page	numbers	or	a	caption	label.
Read/write	Boolean.

expression.IncludeChapterNumber

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.



Example

This	example	adds	page	numbers	in	the	footer	for	section	one	in	the	active
document.	The	page	numbers	include	the	chapter	number.

With	ActiveDocument.Sections(1).Footers	_

								(wdHeaderFooterPrimary).PageNumbers

				.Add

				.IncludeChapterNumber	=	True

				.HeadingLevelForChapter	=	1

End	With

This	example	adds	the	chapter	number	from	the	Heading	2	style	to	figure
captions,	sets	the	caption	numbering	style,	and	then	inserts	a	new	figure	caption.
The	document	should	already	contain	a	Heading	2	style	with	numbering.

With	CaptionLabels(wdCaptionFigure)

				.IncludeChapterNumber	=	True

				.ChapterStyleLevel	=	2

				.NumberStyle	=	wdCaptionNumberStyleUppercaseLetter

End	With

Selection.InsertCaption	Label:="Figure",	Title:=":	History"



Included	Property
							

True	if	a	record	is	included	in	a	mail	merge.	Read/write	Boolean.

expression.Included

expression			Required.	An	expression	that	returns	a	MailMergeDataSource
object.



Remarks

Use	the	SetAllIncludedFlags	method	to	include	or	exclude	all	records	in	a	mail
merge	data	source.



Example

This	example	loops	through	the	records	in	the	mail	merge	data	source	and
checks	if	the	zip	code	field	(in	this	case	field	number	six)	contains	less	than	five
digits.	If	a	record	does	contain	a	zip	code	of	less	than	five	digits,	the	record	is
excluded	from	the	mail	merge	and	the	address	is	marked	as	invalid.

Sub	CheckRecords()

				Dim	intCount	As	Integer

				On	Error	Resume	Next

				With	ActiveDocument.MailMerge.DataSource

								'Set	the	active	record	equal	to	the	first	included	record

								'	in	the	data	source

								.ActiveRecord	=	wdFirstRecord

								Do

												intCount	=	intCount	+	1

												'Set	the	condition	that	field	six	must	be	greater	than

												'or	equal	to	five

												If	Len(.DataFields(6).Value)	<	5	Then

																'Exclude	the	record	if	field	six	is	less	than	five

																.Included	=	False

																'Mark	the	record	as	containing	an	invalid	address	field

																.InvalidAddress	=	True

																'Specify	the	comment	attached	to	the	record

																'explaining	why	the	record	was	excluded

																'from	the	mail	merge

																.InvalidComments	=	"The	zip	code	for	this	record	"	&	_

																				"is	less	than	five	digits.	It	will	be	removed	"	_

																				&	"from	the	mail	merge	process."

												End	If

												'Move	the	record	to	the	next	record	in	the	data	source

												.ActiveRecord	=	wdNextRecord

								'End	the	loop	when	the	counter	variable	equals	the



								'number	of	records	in	the	data	source

								Loop	Until	intCount	=	.RecordCount

				End	With

End	Sub



IncludeFieldCodes	Property
							

True	if	the	text	retrieved	from	the	specified	range	includes	field	codes.
Read/write	Boolean.

Note			The	default	value	is	the	same	as	the	setting	of	the	Field	codes	option	on
the	View	tab	in	the	Options	dialog	box	(Tools	menu)	until	this	property	has	been
set.	Use	the	Text	property	with	a	Range	object	to	retrieve	text	from	the	specified
range.

expression.IncludeFieldCodes

expression			Required.	An	expression	that	returns	a	TextRetrievalMode	object.



Example

This	example	displays	the	text	of	the	first	paragraph	in	the	active	document	in	a
message	box.	The	example	uses	the	IncludeFieldCodes	property	to	exclude
field	codes.

Dim	rngTemp	As	Range

Set	rngTemp	=	ActiveDocument.Paragraphs(1).Range

rngTemp.TextRetrievalMode.IncludeFieldCodes	=	False

MsgBox	rngTemp.Text

This	example	excludes	field	codes	and	hidden	text	from	the	range	that	refers	to
the	selected	text,	and	then	it	displays	the	text	in	a	message	box.

Dim	rngTemp	As	Range

If	Selection.Type	=	wdSelectionNormal	Then

				Set	rngTemp	=	Selection.Range

				With	rngTemp.TextRetrievalMode

								.IncludeHiddenText	=	False

								.IncludeFieldCodes	=	False

				End	With

				MsgBox	rngTemp.Text

End	If



IncludeHeaderFooter	Property
							

True	if	the	header	and	footer	from	the	page	design	template	are	included	in	a
letter	created	by	the	Letter	Wizard.	Read/write	Boolean.

Note			Use	the	PageDesign	property	to	set	the	name	of	the	template	attached	to	a
document	created	by	the	Letter	Wizard.

expression.IncludeHeaderFooter

expression			Required.	An	expression	that	returns	LetterContent	object.



Example

This	example	creates	a	new	LetterContent	object,	includes	the	header	and
footer	from	the	Contemporary	Letter	template,	and	then	runs	the	Letter	Wizard
by	using	the	RunLetterWizard	method.

Dim	lcNew	As	LetterContent

Set	lcNew	=	New	LetterContent

With	lcNew

				.PageDesign	=	"C:\Program	Files\Microsoft	Office\"	_

								&	"Templates\1033\Contemporary	Letter.dot"

				.IncludeHeaderFooter	=	True

End	With

Documents.Add.RunLetterWizard	LetterContent:=lcNew



IncludeHiddenText	Property
							

True	if	the	text	retrieved	from	the	specified	range	includes	hidden	text.
Read/write	Boolean.

Note			The	default	value	is	the	same	as	the	current	setting	of	the	Hidden	text
option	on	the	View	tab	in	the	Options	dialog	box	(Tools	menu)	until	this
property	has	been	set.	Use	the	Text	property	with	a	Range	object	to	retrieve	text
from	the	specified	range.

expression.IncludeHiddenText

expression			Required.	An	expression	that	returns	a	TextRetrievalMode	object.



Example

This	example	displays	the	text	of	the	first	sentence	in	the	active	document	in	a
message	box.	The	example	uses	the	IncludeHiddenText	property	to	include
hidden	text.

Dim	rngTemp	As	Range

Set	rngTemp	=	ActiveDocument.Sentences(1)

rngTemp.TextRetrievalMode.IncludeHiddenText	=	True

MsgBox	rngTemp.Text

This	example	posts	a	message	if	the	entire	selection	is	formatted	as	hidden	text.

Dim	rngTemp	As	Range

If	Selection.Type	=	wdSelectionNormal	Then

				Set	rngTemp	=	Selection.Range

				rngTemp.TextRetrievalMode.IncludeHiddenText	=	False

				If	rngTemp.Text	=	""	Then	MsgBox	"Selection	is	hidden"

End	If



IncludeLabel	Property
							

True	if	the	caption	label	and	caption	number	are	included	in	a	table	of	figures.
Read/write	Boolean.

expression.IncludeLabel

expression			Required.	An	expression	that	returns	a	TableOfFigures		object.



Example

This	example	formats	the	first	table	of	figures	in	the	active	document	to	exclude
caption	labels	(Figure	1,	for	example).

If	ActiveDocument.TablesOfFigures.Count	>=	1	Then

				ActiveDocument.TablesOfFigures(1).IncludeLabel	=	False

End	If

This	example	adds	a	table	of	figures	in	place	of	the	selection	and	then	formats
the	table	to	include	caption	labels.

Dim	tofTemp	As	TableOfFigures

Set	tofTemp	=	ActiveDocument.TablesOfFigures	_

				.Add(Range:=Selection.Range,	_

				Caption:="Figure")

tofTemp.IncludeLabel	=	True



IncludePageNumbers	Property
							

True	if	page	numbers	are	included	in	the	table	of	contents	or	table	of	figures.
Read/write	Boolean.

expression.IncludePageNumbers

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.



Example

This	example	formats	the	first	table	of	contents	in	the	active	document	to	include
right-aligned	page	numbers.

If	ActiveDocument.TablesOfContents.Count	>=	1	Then

				With	ActiveDocument.TablesOfContents(1)

								.IncludePageNumbers	=	True

								.RightAlignPageNumbers	=	True

				End	With

End	If



IncludeSequenceName	Property
							

Returns	or	sets	the	Sequence	(SEQ)	field	identifier	for	a	table	of	authorities.
Corresponds	to	the	\s	switch	for	a	Table	of	Authorities	(TOA)	field.	Read/write
String.

expression.IncludeSequenceName

expression			Required.	An	expression	that	returns	a	TableOfAuthorities	object.



Example

This	example	inserts	a	table	of	authorities	at	the	beginning	of	the	active
document	and	then	formats	the	table	to	include	the	Chapter	sequence	field
number	before	the	page	number	(for	example,	"Chapter	2-14").

Dim	rngTemp	As	Range

Dim	toaTemp	As	TableOfAuthorities

Set	rngTemp	=	ActiveDocument.Range(Start:=0,	End:=0)

Set	toaTemp	=	_

				ActiveDocument.TablesOfAuthorities.Add(Range:=rngTemp)

toaTemp.IncludeSequenceName	=	"Chapter"

This	example	returns	the	sequence	name	for	the	first	table	of	authorities.

Dim	strSequence	As	String

strSequence	=	_

				ActiveDocument.TablesOfAuthorities(1).IncludeSequenceName



Show	All



Index	Property
							

Index	property	as	it	applies	to	the	HeaderFooter	object.

Returns	a	WdHeaderFooterIndex	that	represents	the	specified	header	or	footer
in	a	document	or	section.	Read-only.

WdHeaderFooterIndex	can	be	one	of	these	WdHeaderFooterIndex	constants.
wdHeaderFooterEvenPages	Returns	all	headers	or	footers	on	even-numbered
pages.
wdHeaderFooterFirstPage	Returns	the	first	header	or	footer	in	a	document	or
section.
wdHeaderFooterPrimary	Returns	the	header	or	footer	on	all	pages	other	than
the	first	page	of	a	document	or	section.

expression.Index

expression			Required.	An	expression	that	returns	a	HeaderFooter	object.

Index	property	as	it	applies	to	all	other	objects	in	the	Applies	To	list.

Returns	a	Long	that	represents	the	position	of	an	item	in	a	collection.	Read-only.

expression.Index

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list	as	mentioned	above.



Example

As	it	applies	to	the	Field	object.

This	example	returns	the	position	of	the	selected	field	in	the	Fields	collection.

num	=	Selection.Fields(1).Index

As	it	applies	to	the	HeaderFooter	object.

This	example	adds	a	shape	to	the	first	page	header	in	the	active	document	if	the
specified	variable	references	the	first	page	header.

Sub	ChangeFirstPageFooter()

				Dim	hdrFirstPage	As	HeaderFooter

				Set	hdrFirstPage	=	ActiveDocument.Sections(1).Headers(wdHeaderFooterFirstPage)

				If	hdrFirstPage.Index	=	wdHeaderFooterFirstPage	Then

								With	hdrFirstPage.Shapes.AddShape(Type:=msoShapeHeart,	_

																Left:=36,	Top:=36,	Width:=36,	Height:=36)

												.Fill.ForeColor.RGB	=	RGB(Red:=255,	Green:=0,	Blue:=0)

								End	With

				End	If

End	Sub

As	it	applies	to	the	Variable	object.

This	example	adds	a	document	variable	to	the	active	document	and	then	returns
the	position	of	the	specified	variable	in	the	Variables	collection.

Set	myVar	=	ActiveDocument.Variables.Add(Name:="Name",	_

				Value:="Joe")

num	=	myVar.Index

As	it	applies	to	the	Window	object.

This	example	returns	the	number	of	the	first	window	in	the	Windows	collection.
If	there	are	at	least	two	windows	in	the	Windows	collection,	the	macro	activates
the	next	window,	copies	the	first	word,	switches	back	to	the	original	window,



and	inserts	the	Clipboard	contents	there.

Set	myWindow	=	Windows(1)

winNum	=	myWindow.Index

If	Windows.Count	>=	2	Then

				myWindow.Next.Activate

				ActiveDocument.Words(1).Copy

				Windows(winNum).Activate

				Selection.Range.Paste

End	If



Indexes	Property
							

Returns	an	Indexes	collection	that	represents	all	the	indexes	in	the	specified
document.	Read-only.

For	information	about	returning	a	single	member	of	a	collection,	see	Returning
an	Object	from	a	Collection.



Example

This	example	adds	an	index	at	the	end	of	the	active	document.

Set	MyRange	=	_

				ActiveDocument.Range(Start:=ActiveDocument.Content.End	-	1,	_

				End:=ActiveDocument.Content.End	-	1)

ActiveDocument.Indexes.Add	Range:=MyRange,	NumberOfColumns:=1,	_

				HeadingSeparator:=False

This	example	inserts	an	index	entry	for	the	selected	text.

If	Selection.Type	=	wdSelectionNormal	Then

				ActiveDocument.Indexes.MarkEntry	Range:=Selection.Range,	_

								Entry:=Selection.Range.Text

End	If



Show	All



IndexLanguage	Property
							

Returns	or	sets	the	sorting	language	to	use	for	the	specified	index.	Read/write
WdLanguageID.

WdLanguageID	can	be	one	of	these	WdLanguageID	constants.
wdAfrikaans
wdAlbanian
wdAmharic
wdArabic
wdArabicAlgeria
wdArabicBahrain
wdArabicEgypt
wdArabicIraq
wdArabicJordan
wdArabicKuwait
wdArabicLebanon
wdArabicLibya
wdArabicMorocco
wdArabicOman
wdArabicQatar
wdArabicSyria
wdArabicTunisia
wdArabicUAE
wdArabicYemen
wdArmenian
wdAssamese
wdAzeriCyrillic
wdAzeriLatin
wdBasque



wdBelgianDutch
wdBelgianFrench
wdBengali
wdBrazilianPortuguese
wdBulgarian
wdBurmese
wdByelorussian
wdCatalan
wdCherokee
wdChineseHongKong
wdChineseMacao
wdChineseSingapore
wdCroatian
wdCzech
wdDanish
wdDivehi
wdDutch
wdEdo
wdEnglishAUS
wdEnglishBelize
wdEnglishCanadian
wdEnglishCaribbean
wdEnglishIreland
wdEnglishJamaica
wdEnglishNewZealand
wdEnglishPhilippines
wdEnglishSouthAfrica
wdEnglishTrinidad
wdEnglishUK
wdEnglishUS
wdEnglishZimbabwe
wdEstonian
wdFaeroese



wdFarsi
wdFilipino
wdFinnish
wdFrench
wdFrenchCameroon
wdFrenchCanadian
wdFrenchCotedIvoire
wdFrenchLuxembourg
wdFrenchMali
wdFrenchMonaco
wdFrenchReunion
wdFrenchSenegal
wdFrenchWestIndies
wdFrenchZaire
wdFrisianNetherlands
wdFulfulde
wdGaelicIreland
wdGaelicScotland
wdGalician
wdGeorgian
wdGerman
wdGermanAustria
wdGermanLiechtenstein
wdGermanLuxembourg
wdGreek
wdGuarani
wdGujarati
wdHausa
wdHawaiian
wdHebrew
wdHindi
wdHungarian
wdIbibio



wdIcelandic
wdIgbo
wdIndonesian
wdInuktitut
wdItalian
wdJapanese
wdKannada
wdKanuri
wdKashmiri
wdKazakh
wdKhmer
wdKirghiz
wdKonkani
wdKorean
wdKyrgyz
wdLanguageNone
wdLao
wdLatin
wdLatvian
wdLithuanian
wdMacedonian
wdMalayalam
wdMalayBruneiDarussalam
wdMalaysian
wdMaltese
wdManipuri
wdMarathi
wdMexicanSpanish
wdMongolian
wdNepali
wdNoProofing
wdNorwegianBokmol
wdNorwegianNynorsk



wdOriya
wdOromo
wdPashto
wdPolish
wdPortuguese
wdPunjabi
wdRhaetoRomanic
wdRomanian
wdRomanianMoldova
wdRussian
wdRussianMoldova
wdSamiLappish
wdSanskrit
wdSerbianCyrillic
wdSerbianLatin
wdSesotho
wdSimplifiedChinese
wdSindhi
wdSindhiPakistan
wdSinhalese
wdSlovak
wdSlovenian
wdSomali
wdSorbian
wdSpanish
wdSpanishArgentina
wdSpanishBolivia
wdSpanishChile
wdSpanishColombia
wdSpanishCostaRica
wdSpanishDominicanRepublic
wdSpanishEcuador
wdSpanishElSalvador



wdSpanishGuatemala
wdSpanishHonduras
wdSpanishModernSort
wdSpanishNicaragua
wdSpanishPanama
wdSpanishParaguay
wdSpanishPeru
wdSpanishPuertoRico
wdSpanishUruguay
wdSpanishVenezuela
wdSutu
wdSwahili
wdSwedish
wdSwedishFinland
wdSwissFrench
wdSwissGerman
wdSwissItalian
wdSyriac
wdTajik
wdTamazight
wdTamazightLatin
wdTamil
wdTatar
wdTelugu
wdThai
wdTibetan
wdTigrignaEritrea
wdTigrignaEthiopic
wdTraditionalChinese
wdTsonga
wdTswana
wdTurkish
wdTurkmen



wdUkrainian
wdUrdu
wdUzbekCyrillic
wdUzbekLatin
wdVenda
wdVietnamese
wdWelsh
wdXhosa
wdYi
wdYiddish
wdYoruba
wdZulu

expression.IndexLanguage

expression			Required.	An	expression	that	returns	an	Index	object.



Remarks

Some	of	these	constants	may	not	be	available	to	you,	depending	on	the	language
support	(U.S.	English,	for	example)	that	you've	selected	or	installed.



Example

This	example	sets	the	sorting	language	of	the	first	index	in	the	active	document
to	New	Zealand	English.

ActiveDocument.Indexes(1).IndexLanguage	=	_

				wdEnglishNewZealand



InfoBlock	Property
							

Associated	with	the	Letter	Wizard	in	Microsoft	Word.	Not	used	in	the	U.S.
English	version	of	Word.



Remarks

This	property	may	not	be	available	to	you,	depending	on	the	language	support
(U.S.	English,	for	example)	that	you’ve	selected	or	installed.



Show	All



Information	Property
							

Returns	information	about	the	specified	selection	or	range.	Read-only	Variant.

expression.Information(Type)

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

Type		Required	WdInformation.	The	information	type.

WdInformation	can	be	one	of	these	WdInformation	constants.
wdActiveEndAdjustedPageNumber		Returns	the	number	of	the	page	that
contains	the	active	end	of	the	specified	selection	or	range.	If	you	set	a	starting
page	number	or	make	other	manual	adjustments,	returns	the	adjusted	page
number	(unlike	wdActiveEndPageNumber).
wdActiveEndPageNumber		Returns	the	number	of	the	page	that	contains	the
active	end	of	the	specified	selection	or	range,	counting	from	the	beginning	of
the	document.	Any	manual	adjustments	to	page	numbering	are	disregarded
(unlike	wdActiveEndAdjustedPageNumber).
wdActiveEndSectionNumber		Returns	the	number	of	the	section	that	contains
the	active	end	of	the	specified	selection	or	range.
wdAtEndOfRowMarker		Returns	True	if	the	specified	selection	or	range	is	at
the	end-of-row	mark	in	a	table.
wdCapsLock		Returns	True	if	Caps	Lock	is	in	effect.
wdEndOfRangeColumnNumber		Returns	the	table	column	number	that
contains	the	end	of	the	specified	selection	or	range.
wdEndOfRangeRowNumber		Returns	the	table	row	number	that	contains	the
end	of	the	specified	selection	or	range.
wdFirstCharacterColumnNumber		Returns	the	character	position	of	the	first
character	in	the	specified	selection	or	range.	If	the	selection	or	range	is
collapsed,	the	character	number	immediately	to	the	right	of	the	range	or
selection	is	returned	(this	is	the	same	as	the	character	column	number	displayed



in	the	status	bar	after	"Col").
wdFirstCharacterLineNumber		Returns	the	character	position	of	the	first
character	in	the	specified	selection	or	range.	If	the	selection	or	range	is
collapsed,	the	character	number	immediately	to	the	right	of	the	range	or
selection	is	returned	(this	is	the	same	as	the	character	column	number	displayed
in	the	status	bar	after	"Col").
wdFrameIsSelected		Returns	True	if	the	selection	or	range	is	an	entire	frame
or	text	box.
wdHeaderFooterType		Returns	a	value	that	indicates	the	type	of	header	or
footer	that	contains	the	specified	selection	or	range,	as	shown	in	the	following
table.
wdHorizontalPositionRelativeToPage		Returns	the	horizontal	position	of	the
specified	selection	or	range;	this	is	the	distance	from	the	left	edge	of	the
selection	or	range	to	the	left	edge	of	the	page	measured	in	points	(1	point	=	20
twips,	72	points	=	1	inch).	If	the	selection	or	range	isn't	within	the	screen	area,
returns		–	1.
wdHorizontalPositionRelativeToTextBoundary	Returns	the	horizontal
position	of	the	specified	selection	or	range	relative	to	the	left	edge	of	the	nearest
text	boundary	enclosing	it,	in	points	(1	point	=	20	twips,	72	points	=	1	inch).	If
the	selection	or	range	isn't	within	the	screen	area,	returns		-	1.
wdInClipboard		For	information	about	this	constant,	consult	the	language
reference	Help	included	with	Microsoft	Office	Macintosh	Edition.
wdInCommentPane		Returns	True	if	the	specified	selection	or	range	is	in	a
comment	pane.
wdInEndnote		Returns	True	if	the	specified	selection	or	range	is	in	an	endnote
area	in	print	layout	view	or	in	the	endnote	pane	in	normal	view.
wdInFootnote		Returns	True	if	the	specified	selection	or	range	is	in	a	footnote
area	in	print	layout	view	or	in	the	footnote	pane	in	normal	view.
wdInFootnoteEndnotePane		Returns	True	if	the	specified	selection	or	range	is
in	the	footnote	or	endnote	pane	in	normal	view	or	in	a	footnote	or	endnote	area
in	print	layout	view.	For	more	nformation,	see	the	descriptions	of
wdInFootnote	and	wdInEndnote	in	the	preceding	paragraphs.
wdInHeaderFooter		Returns	True	if	the	selection	or	range	is	in	the	header	or
footer	pane	or	in	a	header	or	footer	in	print	layout	view.

Value Type	of	header	or	footer
	-	1 None	(the	selection	or	range	isn't	in	a	header	or	footer)



0	(zero) Even	page	header

1
Odd	page	header	(or	the	only	header,	if	there	aren't	odd	and
even	headers)

2 Even	page	footer

3 Odd	page	footer	(or	the	only	footer,	if	there	aren't	odd	and	even
footers)

4 First	page	header
5 First	page	footer
wdInMasterDocument		Returns	True	if	the	selection	or	range	is	in	a	master
document	(that	is,	a	document	that	contains	at	least	one	subdocument).
wdInWordMail		Returns	True	if	the	selection	or	range	is	in	the	header	or
footer	pane	or	in	a	header	or	footer	in	print	layout	view.

Value Location
0(zero) The	selection	or	range	isn't	in	an	e-mail	message.
1 The	selection	or	range	is	in	an	e-mail	message	you	are	sending.
2 The	selection	or	range	is	in	an	e-mail	you	are	reading.
wdMaximumNumberOfColumns		Returns	the	greatest	number	of	table
columns	within	any	row	in	the	selection	or	range.
wdMaximumNumberOfRows		Returns	the	greatest	number	of	table	rows
within	the	table	in	the	specified	selection	or	range.
wdNumberOfPagesInDocument		Returns	the	number	of	pages	in	the
document	associated	with	the	selection	or	range.
wdNumLock		Returns	True	if	Num	Lock	is	in	effect.
wdOverType		Returns	True	if	Overtype	mode	is	in	effect.	The	Overtype
property	can	be	used	to	change	the	state	of	the	Overtype	mode.
wdReferenceOfType		Returns	a	value	that	indicates	where	the	selection	is	in
relation	to	a	footnote,	endnote,	or	comment	reference,	as	shown	in	the	following
table.

Value Description

	–	1 The	selection	or	range	includes	but	isn't	limited	to	a	footnote,
endnote,	or	comment	reference.

0	(zero) The	selection	or	range	isn't	before	a	footnote,	endnote,	or
comment	reference.

1 The	selection	or	range	is	before	a	footnote	reference.



2 The	selection	or	range	is	before	an	endnote	reference.
3 The	selection	or	range	is	before	a	comment	reference.

wdRevisionMarking		Returns	True	if	change	tracking	is	in	effect.
wdSelectionMode		Returns	a	value	that	indicates	the	current	selection	mode,	as
shown	in	the	following	table.

Value Selection	mode
0	(zero) Normal	selection
1 Extended	selection	("EXT"	appears	on	the	status	bar)
2 Column	selection.	("COL"	appears	on	the	status	bar)
wdStartOfRangeColumnNumber		Returns	the	table	column	number	that
contains	the	beginning	of	the	selection	or	range.
wdStartOfRangeRowNumber		Returns	the	table	row	number	that	contains	the
beginning	of	the	selection	or	range.
wdVerticalPositionRelativeToPage		Returns	the	vertical	position	of	the
selection	or	range;	this	is	the	distance	from	the	top	edge	of	the	selection	to	the
top	edge	of	the	page	measured	in	points	(1	point	=	20	twips,	72	points	=	1	inch).
If	the	selection	isn't	visible	in	the	document	window,	returns		–	1.
wdVerticalPositionRelativeToTextBoundary		Returns	the	vertical	position	of
the	selection	or	range	relative	to	the	top	edge	of	the	nearest	text	boundary
enclosing	it,	in	points	(1	point	=	20	twips,	72	points	=	1	inch).	This	is	useful	for
determining	the	position	of	the	insertion	point	within	a	frame	or	table	cell.	If	the
selection	isn't	visible,	returns		–	1.
wdWithInTable		Returns	True	if	the	selection	is	in	a	table.
wdZoomPercentage		Returns	the	current	percentage	of	magnification	as	set	by
the	Percentage	property.



Example

This	example	displays	the	current	page	number	and	the	total	number	of	pages	in
the	active	document.

MsgBox	"The	selection	is	on	page	"	&	_

				Selection.Information(wdActiveEndPageNumber)	&	"	of	page	"	_

				&	Selection.Information(wdNumberOfPagesInDocument)

If	the	selection	is	in	a	table,	this	example	selects	the	table.

If	Selection.Information(wdWithInTable)	Then	_

				Selection.Tables(1).Select

This	example	displays	a	message	that	indicates	the	current	section	number.

Selection.Collapse	Direction:=wdCollapseStart

MsgBox	"The	insertion	point	is	in	section	"	&	_

				Selection.Information(wdActiveEndSectionNumber)



Initial	Property
							

Returns	or	sets	the	initials	of	the	user	associated	with	a	specific	comment.
Read/write	String.

expression.Initial

expression			Required.	An	expression	that	returns	a	Comment	object.



Example

This	example	displays	the	initials	of	the	user	who	made	the	first	comment	in	the
selection.

If	Selection.Comments.Count	>=	1	Then

				MsgBox	"Comment	made	by	"	&	Selection.Comments(1).Initial

End	If

This	example	checks	the	author	initials	associated	with	each	comment	in	the	first
document	section.	If	the	author	initials	are	"MSOffice,"	the	example	changes
them	to	"KAE."

Dim	rngTemp	As	Range

Dim	comLoop	As	Comment

Set	rngTemp	=	ActiveDocument.Sections(1).Range

For	Each	comLoop	In	rngTemp.Comments

				If	comLoop.Initial	=	"MSOffice"	Then	comLoop.Initial	=	"KAE"

Next	comLoop



Ink	Property
							

Returns	or	sets	a	Single	that	represents	the	degree	of	saturation	for	a	specified
ink.	Read/write.

expression.Ink(Index)

expression			Required.	An	expression	that	returns	a	ColorFormat	object.

Index		Required	Long.	The	number	of	the	ink.



Remarks

The	value	of	the	Ink	property	can	be	any	number	between	0	and	1.	Zero	(0)
means	no	ink;	one	(1)	means	full	saturation.	For	example,	0.5	would	be	50%
saturation	of	the	specified	ink.



Example

This	example	creates	a	new	shape	in	the	active	document,	sets	the	fill	color,	and
specifies	the	degree	of	saturation	for	two	of	the	four	CMYK	colors.

Sub	TintShade()

				Dim	shpHeart	As	Shape

				Set	shpHeart	=	ActiveDocument.Shapes.AddShape(	_

								Type:=msoShapeHeart,	Left:=150,	_

								Top:=150,	Width:=250,	Height:=250)

				With	shpHeart.Fill.ForeColor

								.SetCMYK	Cyan:=0,	Magenta:=125,	Yellow:=12,	Black:=25

								.TintAndShade	=	0.3

								.OverPrint	=	msoTrue

								.Ink(Index:=1)	=	0.3

								.Ink(Index:=2)	=	0.7

				End	With

End	Sub



InlineConversion	Property
							

True	if	Microsoft	Word	displays	an	unconfirmed	character	string	in	the	Japanese
Input	Method	Editor	(IME)	as	an	insertion	between	existing	(confirmed)
character	strings.	Read/write	Boolean.

expression.InlineConversion

expression			Required.	An	expression	that	returns	an	Options	object.



Remarks

For	more	information	on	using	Word	with	Asian	languages,	see	Word	features
for	Asian	languages.

mk:@MSITStore:wdmain10.chm::/html/wdrefFeaturesAvailableInWordWhenAsianLanguagesAreEnabled.htm


Example

This	example	sets	Microsoft	Word	to	display	an	unconfirmed	character	string	in
the	Japanese	Input	Method	Editor	(IME)	as	an	insertion	between	existing
(confirmed)	character	strings.

Options.InlineConversion	=	True



InlineShape	Property
							

Returns	an	InlineShape	object	that	represents	the	picture,	OLE	object,	or
ActiveX	control	that	is	the	result	of	an	INCLUDEPICTURE	or	EMBED	field.

expression.InlineShape

expression			Required.	An	expression	that	returns	a	Field	object.



Remarks

An	InlineShape	object	is	treated	like	a	character	and	is	positioned	as	a	character
within	a	line	of	text.



Example

This	example	returns	the	width	of	the	inline	shape	associated	with	the	first	field
in	the	active	document.	For	this	example	to	work,	the	field	must	be	an
INCLUDEPICTURE	field.

If	ActiveDocument.Fields(1).Type	=	wdFieldIncludePicture	Then

				MsgBox	ActiveDocument.Fields(1).InlineShape.Width

End	If



InlineShapes	Property
							

Returns	an	InlineShapes	collection	that	represents	all	the	InlineShape	objects	in
a	document,	range,	or	selection.	Read-only.

For	information	about	returning	a	single	member	of	a	collection,	see	Returning
an	Object	from	a	Collection.



Example

This	example	displays	the	number	of	shapes	and	inline	shapes	in	the	active
document.

Set	doc	=	ActiveDocument

Msgbox	"InlineShape	=	"	&	doc.InlineShapes.Count	&	_

				vbCr	&	"Shapes	=	"	&	doc.Shapes.Count



Show	All



InsertedTextColor	Property
							

Returns	or	sets	the	color	of	text	that	is	inserted	while	change	tracking	is	enabled.
Read/write	WdColorIndex.

WdColorIndex	can	be	one	of	these	WdColorIndex	constants.
wdAuto
wdBlack
wdBlue
wdBrightGreen
wdByAuthor
wdDarkBlue
wdDarkRed
wdDarkYellow
wdGray25
wdGray50
wdGreen
wdNoHighlight
wdPink
wdRed
wdTeal
wdTurquoise
wdViolet
wdWhite
wdYellow

expression.InsertedTextColor

expression			Required.	An	expression	that	returns	an	Options	object.



Remarks

If	the	InsertedTextColor	property	is	set	to	wdByAuthor,	Microsoft	Word
automatically	assigns	a	unique	color	to	each	of	the	first	eight	authors	who	revise
a	document.



Example

This	example	sets	the	color	of	inserted	text	to	dark	red.

Options.InsertedTextColor	=	wdDarkRed

This	example	returns	the	current	status	of	the	Color	option	under	Track
Changes	options	on	the	Track	Changes	tab	in	the	Options	dialog	box.

Dim	lngColor	As	Long

lngColor	=	Options.InsertedTextColor



Show	All



InsertedTextMark	Property
							

Returns	or	sets	how	Microsoft	Word	formats	inserted	text	while	change	tracking
is	enabled	(the	TrackRevisions	property	is	True).	If	change	tracking	is	not
enabled,	this	property	is	ignored.	Use	this	property	with	the	InsertedTextColor
property	to	control	the	appearance	of	inserted	text	in	a	document.	Read/write
WdInsertedTextMark.

WdInsertedTextMark	can	be	one	of	these	WdInsertedTextMark	constants.
wdInsertedTextMarkBold
wdInsertedTextMarkColorOnly
wdInsertedTextMarkDoubleUnderline
wdInsertedTextMarkItalic
wdInsertedTextMarkNone
wdInsertedTextMarkStrikeThrough
wdInsertedTextMarkUnderline

expression.InsertedTextMark

expression			Required.	An	expression	that	returns	an	Options	object.



Remarks

The	ShowRevisions	property	must	be	True	in	order	to	see	the	formatting	for
inserted	text	during	editing.	The	PrintRevisions	property	must	be	True	in	order
for	Word	to	use	the	formatting	for	inserted	text	when	printing	a	document.



Example

This	example	sets	Word	to	italicize	inserted	text.

Options.InsertedTextMark	=	wdInsertedTextMarkItalic

This	example	sets	Word	to	format	inserted	text	as	bold	if	it	isn't	already.

If	Options.InsertedTextMark	<>	wdInsertedTextMarkBold	Then

				Options.InsertedTextMark	=	wdInsertedTextMarkBold

Else

				MsgBox	Prompt:="Inserted	text	is	already	bold!"

End	If



Show	All



InsetPen	Property
							

MsoTrue	to	draw	lines	on	the	inside	of	a	specified	shape.	Read/write
MsoTriState.

MsoTriState	can	be	one	of	these	MsoTriState	constants.
msoCTrue	Not	used	for	this	property.
msoFalse	Draws	lines	centered	on	a	shape's	border.
msoTriStateMixed	Not	used	for	this	property.
msoTriStateToggle	Not	used	for	this	property.
msoTrue	Draws	lines	on	the	inside	of	the	shapes

expression.InsetPen

expression			Required.	An	expression	that	returns	a	LineFormat	object.



Remarks

Use	the	InsetPen	property	to	match	up	the	edges	of	shapes	of	equal	width	but
whose	line	widths	vary.



Example

This	example	sets	all	shapes	in	the	active	document	to	draw	lines	on	the	inside
of	the	shapes.

Sub	InsetLine()

				Dim	shpShape	As	Shape

				For	Each	shpShape	In	ActiveDocument.Shapes

								shpShape.Line.InsetPen	=	msoTrue

				Next	shpShape

End	Sub



Inside	Property
							

True	if	an	inside	border	can	be	applied	to	the	specified	object.	Read-only
Boolean.

expression.Inside

expression			Required.	An	expression	that	returns	a	Border	object.



Example

If	the	current	selection	supports	inside	borders	(that	is,	if	multiple	paragraphs	or
cells	are	selected),	this	example	applies	a	single	inside	border.

Dim	borderLoop	As	Border

For	Each	borderLoop	In	Selection.Borders

				If	borderLoop.Inside	=	True	Then	_

								borderLoop.LineStyle	=	wdLineStyleSingle

Next	borderLoop



Show	All



InsideColor	Property
							

Returns	or	sets	the	24-bit	color	of	the	inside	borders.	Can	be	any	valid	WdColor
constant	or	a	value	returned	by	Visual	Basic's	RGB	function.	Read/write.

WdColor	can	be	one	of	these	WdColor	constants.
wdColorGray625
wdColorGray70
wdColorGray80
wdColorGray875
wdColorGray95
wdColorIndigo
wdColorLightBlue
wdColorLightOrange
wdColorLightYellow
wdColorOliveGreen
wdColorPaleBlue
wdColorPlum
wdColorRed
wdColorRose
wdColorSeaGreen
wdColorSkyBlue
wdColorTan
wdColorTeal
wdColorTurquoise
wdColorViolet
wdColorWhite
wdColorYellow
wdColorAqua
wdColorAutomatic



wdColorBlack
wdColorBlue
wdColorBlueGray
wdColorBrightGreen
wdColorBrown
wdColorDarkBlue
wdColorDarkGreen
wdColorDarkRed
wdColorDarkTeal
wdColorDarkYellow
wdColorGold
wdColorGray05
wdColorGray10
wdColorGray125
wdColorGray15
wdColorGray20
wdColorGray25
wdColorGray30
wdColorGray35
wdColorGray375
wdColorGray40
wdColorGray45
wdColorGray50
wdColorGray55
wdColorGray60
wdColorGray65
wdColorGray75
wdColorGray85
wdColorGray90
wdColorGreen
wdColorLavender
wdColorLightGreen
wdColorLightTurquoise



wdColorLime
wdColorOrange
wdColorPink

expression.InsideColor

expression			Required.	An	expression	that	returns	a	Border	object.



Remarks

If	the	InsideLineStyle	property	is	set	to	either	wdLineStyleNone	or	False,
setting	this	property	has	no	effect.



Example

This	example	adds	borders	between	rows	and	between	columns	in	the	first	table
of	the	active	document,	and	then	it	sets	the	colors	for	both	the	inside	and	outside
borders.

If	ActiveDocument.Tables.Count	>=	1	Then

				Set	myTable	=	ActiveDocument.Tables(1)

				With	myTable.Borders

								.InsideLineStyle	=	True

								.InsideColor	=	wdColorBlueGray

								.OutsideColor	=	wdColorPink

				End	With

End	If

This	example	adds	dark	red	borders	between	the	first	four	paragraphs	in	the
active	document.

Set	myDoc	=	ActiveDocument

Set	myRange	=	myDoc.Range(Start:=myDoc.Paragraphs(1).Range.Start,	_

				End:=myDoc.Paragraphs(4).Range.End)

With	myRange.Borders

				.InsideLineStyle	=	wdLineStyleSingle

				.InsideLineWidth	=	wdLineWidth150pt

				.InsideColor	=	wdDarkRed

End	With



Show	All



InsideColorIndex	Property
							

Returns	or	sets	the	color	of	the	inside	borders.	Read/write	WdColorIndex.

WdColorIndex	can	be	one	of	these	WdColorIndex	constants.
wdAuto
wdBlack
wdBlue
wdBrightGreen
wdByAuthor
wdDarkBlue
wdDarkRed
wdDarkYellow
wdGray25
wdGray50
wdGreen
wdNoHighlight
wdPink
wdRed
wdTeal
wdTurquoise
wdViolet
wdWhite
wdYellow

expression.InsideColorIndex

expression			Required.	An	expression	that	returns	a	Border	object.



Remarks

If	the	InsideLineStyle	property	is	set	to	either	wdLineStyleNone	or	False,
setting	this	property	has	no	effect.



Example

This	example	adds	borders	between	rows	and	between	columns	in	the	first	table
in	the	active	document,	and	then	it	sets	the	colors	for	both	the	inside	and	outside
borders.

Dim	tableTemp	As	Table

If	ActiveDocument.Tables.Count	>=	1	Then

				Set	tableTemp	=	ActiveDocument.Tables(1)

				With	tableTemp.Borders

								.InsideLineStyle	=	True

								.InsideColorIndex	=	wdBrightGreen

								.OutsideColorIndex	=	wdPink

				End	With

End	If

This	example	adds	red	borders	between	the	first	four	paragraphs	in	the	active
document.

Dim	docActive	As	Document

Dim	rngTemp	As	Range

Set	docActive	=	ActiveDocument

Set	rngTemp	=	docActive.Range(	_

				Start:=docActive.Paragraphs(1).Range.Start,	_

				End:=docActive.Paragraphs(4).Range.End)

With	rngTemp.Borders

				.InsideLineStyle	=	wdLineStyleSingle

				.InsideLineWidth	=	wdLineWidth150pt

				.InsideColorIndex	=	wdRed

End	With



Show	All



InsideLineStyle	Property
							

Returns	or	sets	the	inside	border	for	the	specified	object.	Returns	wdUndefined
if	more	than	one	kind	of	border	is	applied	to	the	specified	object;	otherwise,
returns	False	or	a	WdLineStyle	constant.	Can	be	set	to	True,	False,	or	a
WdLineStyle	constant.

WdLineStyle	can	be	one	of	these	WdLineStyle	constants.
wdLineStyleDashDot
wdLineStyleDashDotDot
wdLineStyleDashDotStroked
wdLineStyleDashLargeGap
wdLineStyleDashSmallGap
wdLineStyleDot
wdLineStyleDouble
wdLineStyleDoubleWavy
wdLineStyleEmboss3D
wdLineStyleEngrave3D
wdLineStyleInset
wdLineStyleNone
wdLineStyleOutset
wdLineStyleSingle
wdLineStyleSingleWavy
wdLineStyleThickThinLargeGap
wdLineStyleThickThinMedGap
wdLineStyleThickThinSmallGap
wdLineStyleThinThickLargeGap
wdLineStyleThinThickMedGap
wdLineStyleThinThickSmallGap
wdLineStyleThinThickThinLargeGap



wdLineStyleThinThickThinMedGap
wdLineStyleThinThickThinSmallGap
wdLineStyleTriple

expression.InsideLineStyle

expression			Required.	An	expression	that	returns	a	Border	object.



Remarks

True	sets	the	line	style	to	the	default	line	style	and	the	line	width	to	the	default
line	width.	The	default	line	style	and	line	width	can	be	set	using	the
DefaultBorderLineWidth	and	DefaultBorderLineStyle	properties.

Use	either	of	the	following	instructions	to	remove	the	inside	border	from	the	first
table	in	the	active	document.

ActiveDocument.Tables(1).Borders.InsideLineStyle	=	wdLineStyleNone

ActiveDocument.Tables(1).Borders.InsideLineStyle	=	False



Example

This	example	adds	borders	between	rows	and	between	columns	in	the	first	table
of	the	active	document.

Dim	tableTemp	As	Table

If	ActiveDocument.Tables.Count	>=	1	Then

				Set	tableTemp	=	ActiveDocument.Tables(1)

				tableTemp.Borders.InsideLineStyle	=	True

End	If

This	example	adds	borders	between	the	first	four	paragraphs	in	the	document.

Dim	docActive	As	Document

Dim	rngTemp	As	Range

Set	docActive	=	ActiveDocument

Set	rngTemp	=	docActive.Range(	_

				Start:=docActive.Paragraphs(1).Range.Start,	_

				End:=docActive.Paragraphs(4).Range.End)

With	rngTemp.Borders

				.InsideLineStyle	=	wdLineStyleSingle

				.InsideLineWidth	=	wdLineWidth150pt

End	With



Show	All



InsideLineWidth	Property
							

Returns	or	sets	the	line	width	of	the	inside	border	of	an	object.	Returns
wdUndefined	if	the	object	has	inside	borders	with	more	than	one	line	width;
otherwise,	returns	False	or	a	WdLineWidth	constant.	Can	be	set	to	True,	False,
or	one	of	the	following	WdLineWidth	constants.

WdLineWidth	can	be	one	of	these	WdLineWidth	constants.
wdLineWidth025pt
wdLineWidth050pt
wdLineWidth075pt
wdLineWidth100pt
wdLineWidth150pt
wdLineWidth225pt
wdLineWidth300pt
wdLineWidth450pt
wdLineWidth600pt

expression.InsideLineWidth

expression			Required.	An	expression	that	returns	a	Border	object.



Example

This	example	adds	borders	between	rows	and	between	columns	in	the	first	table
in	the	active	document.

Dim	tableTemp	As	Table

If	ActiveDocument.Tables.Count	>=	1	Then

				Set	tableTemp	=	ActiveDocument.Tables(1)

				tableTemp.Borders.InsideLineStyle	=	wdLineStyleDot

				tableTemp.Borders.InsideLineWidth	=	wdLineWidth050pt

End	If

This	example	adds	dotted	borders	between	the	first	four	paragraphs	of	the	active
document.

Dim	docActive	As	Document

Dim	rngTemp	As	Range

Set	docActive	=	ActiveDocument

Set	rngTemp	=	docActive.Range(	_

				Start:=docActive.Paragraphs(1).Range.Start,	_

				End:=docActive.Paragraphs(4).Range.End)

rngTemp.Borders.InsideLineStyle	=	wdLineStyleDot

rngTemp.Borders.InsideLineWidth	=	wdLineWidth075pt



INSKeyForPaste	Property
							

True	if	the	INS	key	can	be	used	for	pasting	the	Clipboard	contents.	Read/write
Boolean.

expression.INSKeyForPaste

expression			Required.	An	expression	that	returns	an	Options	object.



Example

This	example	enables	the	INS	key	to	be	used	for	pasting	the	contents	of	the
Clipboard.

Options.INSKeyForPaste	=	True

This	example	returns	the	status	of	the	Use	the	INS	key	for	paste	option	on	the
Edit	tab	in	the	Options	dialog	box.

Dim	blnTemp	As	Boolean

blnTemp	=	Options.INSKeyForPaste



Installed	Property
							

True	if	the	specified	add-in	is	installed	(loaded).	Add-ins	that	are	loaded	are
selected	in	the	Templates	and	Add-ins	dialog	box	(Tools	menu).	Read/write
Boolean.

Note		Uninstalled	add-ins	are	included	in	the	AddIns	collection.	To	remove	a
template	or	WLL	from	the	AddIns	collection,	apply	the	Delete	method	to	the
AddIn	object	(the	add-in	name	is	removed	from	the	Templates	and	Add-ins
dialog	box).	To	unload	all	templates	and	WLLs,	apply	the	Unload	method	to	the
AddIns	collection.

expression.Installed

expression			Required.	An	expression	that	returns	an	AddIn	object.



Example

This	example	unloads	the	global	template	named	"Gallery.dot."

Addins("Gallery.dot").Installed	=	False

This	example	loads	FindAll.wll.

Addins("C:\Templates\FindAll.wll").Installed	=	True

This	example	loads	Custom.dot.

AddIns("C:\Program	Files\Microsoft	Office\"	_

				&	"Templates\Custom.dot").Installed	=	True

This	example	displays	a	message	on	the	status	bar	if	Dot1.dot	is	loaded	as	a
global	template.

If	AddIns("Dot1.dot").Installed	=	True	Then	_

				StatusBar	=	"Dot1.dot	is	loaded"



Show	All



International	Property
							

Returns	information	about	the	current	country/region	and	international	settings.
Read-only	Variant.

expression.International(Index)

expression			Required.	An	expression	that	returns	an	Application	object.

Index			Required	WdInternationalIndex.	The	current	country/region	and/or
international	setting.

WdInternationalIndex	can	be	one	of	these	WdInternationalIndex	constants.
wd24HourClock	Returns	True	if	you're	using	24-hour	time;	returns	False	if
you're	using	12-hour	time.
wdCurrencyCode	Returns	the	currency	symbol	($	in	U.S.	English).
wdDateSeparator	Returns	the	date	separator	(/	in	U.S.	English).
wdDecimalSeparator	Returns	the	decimal	separator	(.	in	U.S.	English).
wdInternationalAM	Returns	the	string	used	to	indicate	morning	hours	(for
example,	10	AM).
wdInternationalPM	Returns	the	string	used	to	indicate	afternoon	and	evening
hours	(for	example,	2	PM).
wdListSeparator	Returns	the	list	separator	(,	in	U.S.	English).
wdProductLanguageID	Returns	the	language	version	of	Word.
wdThousandsSeparator	Returns	the	thousands	separator	(,	in	U.S.	English).
wdTimeSeparator	Returns	the	time	separator	(:	in	U.S.	English).



Example

This	example	displays	the	currency	format	in	the	status	bar.

StatusBar	=	"Currency	Format:	"	_

				&	Application.International(wdCurrencyCode)



Show	All



InterpretHighAnsi	Property
							

Returns	or	sets	the	high-ANSI	text	interpretation	behavior.	Read/write
WdHighAnsiText.

WdHighAnsiText	can	be	one	of	these	WdHighAnsiText	constants.
wdAutoDetectHighAnsiFarEast		Microsoft	Word	interprets	high-ANSI	text	as
East	Asian	characters	only	if	Word	automatically	detects	East	Asian	language
text.
wdHighAnsiIsHighAnsi		Word	interprets	all	high-ANSI	text	as	East	Asian
characters.
wdHighAnsiIsFarEast		Word	doesn't	interpret	any	high-ANSI	text	as	East
Asian	characters.

expression.InterpretHighAnsi

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.



Remarks

For	more	information	on	using	Microsoft	Word	with	East	Asian	languages,	see
Word	features	for	East	Asian	languages.

mk:@MSITStore:wdmain10.chm::/html/wdrefFeaturesAvailableInWordWhenAsianLanguagesAreEnabled.htm


Example

This	example	sets	Word	to	interpret	all	high-ANSI	text	as	East	Asian	characters.

Options.InterpretHighAnsi	=	wdHighAnsiIsFarEast



InUse	Property
							

True	if	the	specified	style	is	a	built-in	style	that	has	been	modified	or	applied	in
the	document	or	a	new	style	that	has	been	created	in	the	document.	Read-only
Boolean.

expression.InUse

expression			Required.	An	expression	that	returns	a	Style	object.



Remarks

This	property	doesn't	necessarily	indicate	whether	the	style	is	currently	applied
to	any	text	in	the	document.	For	instance,	if	text	that's	been	formatted	with	a
style	is	deleted,	the	InUse	property	of	the	style	remains	True.	For	built-in	styles
that	have	never	been	used	in	the	document,	this	property	returns	False.



Example

This	example	displays	a	message	box	that	lists	the	names	of	all	the	styles	that	are
currently	being	used	in	the	active	document.

Dim	docActive	As	Document

Dim	strMessage	As	String

Dim	styleLoop	As	Style

Set	docActive	=	ActiveDocument

strMessage	=	"Styles	in	use:"	&	vbCr

For	Each	styleLoop	In	docActive.Styles

				If	styleLoop.InUse	=	True	Then

								With	docActive.Content.Find

												.ClearFormatting

												.Text	=	""

												.Style	=	styleLoop

												.Execute	Format:=True

												If	.Found	=	True	Then

																strMessage	=	strMessage	&	styleLoop.Name	&	vbCr

												End	If

								End	With

				End	If

Next	styleLoop

MsgBox	strMessage



InvalidAddress	Property
							

True	for	Microsoft	Word	to	mark	a	record	in	a	mail	merge	data	source	if	it
contains	invalid	data	in	an	address	field.	Read/write	Boolean.

expression.InvalidAddress

expression			Required.	An	expression	that	returns	a	MailMergeDataSource
object.



Remarks

Use	the	SetAllErrorFlags	method	to	set	both	the	InvalidAddress	and
InvalidComments	properties	for	all	records	in	a	data	source.



Example

This	example	loops	through	the	records	in	the	mail	merge	data	source	and
checks	whether	the	ZIP	code	field	(in	this	case	field	number	six)	contains	less
than	five	digits.	If	a	record	does	contain	a	ZIP	code	of	less	than	five	digits,	the
record	is	excluded	from	the	mail	merge	and	the	address	is	marked	as	invalid.

Sub	ExcludeRecords()

				Dim	intCount	As	Integer

				On	Error	Resume	Next

				With	ActiveDocument.MailMerge.DataSource

								.ActiveRecord	=	wdFirstRecord

								Do

												intCount	=	intCount	+	1

												'Counts	the	number	of	digits	in	the	postal	code	field	and	if

												'it	is	less	than	5,	the	record	is	excluded	from	the	mail	merge,

												'marked	as	having	an	invalid	address,	and	given	a	comment

												'describing	why	the	postal	code	was	removed

												If	Len(.DataFields(6).Value)	<	5	Then

																.Included	=	False

																.InvalidAddress	=	True

																.InvalidComments	=	"The	zip	code	for	this	record"	&	_

																				"is	less	than	five	digits.	This	record	is"	&	_

																				"removed	from	the	mail	merge	process."

												End	If

												.ActiveRecord	=	wdNextRecord

								Loop	Until	intCount	>=	.ActiveRecord

				End	With

End	Sub



InvalidComments	Property
							

If	the	InvalidAddress	property	is	True,	returns	or	sets	a	String	that	describes	an
invalid	address	error.	Read/write.

expression.InvalidComments

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.



Remarks

Use	the	SetAllErrorFlags	method	to	set	both	the	InvalidAddress	and
InvalidComments	properties	for	all	records	in	a	data	source.



Example

This	example	loops	through	the	records	in	the	mail	merge	data	source	and
checks	whether	the	ZIP	code	field	(in	this	case	field	number	six)	contains	less
than	five	digits.	If	a	record	does	contain	a	ZIP	code	of	less	than	five	digits,	the
record	is	excluded	from	the	mail	merge,	the	address	is	marked	as	invalid,	and	a
comment	why	the	record	was	excluded.

Sub	ExcludeRecords()

				Dim	intCount	As	Integer

				On	Error	Resume	Next

				With	ActiveDocument.MailMerge.DataSource

								.ActiveRecord	=	wdFirstRecord

								Do

												intCount	=	intCount	+	1

												'Counts	the	number	of	digits	in	the	postal	code	field	and	if

												'it	is	less	than	5,	the	record	is	excluded	from	the	mail	merge,

												'marked	as	having	an	invalid	address,	and	given	a	comment

												'describing	why	the	postal	code	was	removed

												If	Len(.DataFields(6).Value)	<	5	Then

																.Included	=	False

																.InvalidAddress	=	True

																.InvalidComments	=	"The	zip	code	for	this	record"	&	_

																				"is	less	than	five	digits.	This	record	is"	&	_

																				"removed	from	the	mail	merge	process."

												End	If

												.ActiveRecord	=	wdNextRecord

								Loop	Until	intCount	>=	.ActiveRecord

				End	With

End	Sub



IPAtEndOfLine	Property
							

True	if	the	insertion	point	is	at	the	end	of	a	line	that	wraps	to	the	next	line.	False
if	the	selection	isn't	collapsed,	if	the	insertion	point	isn't	at	the	end	of	a	line,	or	if
the	insertion	point	is	positioned	before	a	paragraph	mark.	Read-only	Boolean.



Example

If	the	insertion	point	isn't	already	at	the	end	of	the	line,	this	example	moves	it
there.

Selection.Collapse	Direction:=wdCollapseEnd

If	Selection.IPAtEndOfLine	=	False	Then

				Selection.EndKey	Unit:=wdLine,	Extend:=wdMove

End	If



IsEndOfRowMark	Property
							

True	if	the	specified	selection	or	range	is	collapsed	and	is	located	at	the	end-of-
row	mark	in	a	table.	Read-only	Boolean.

Note			This	property	is	the	equivalent	of	the	following	expression:

Selection.Information(wdAtEndOfRowMarker)



Example

This	example	collapses	the	selection	and	selects	the	current	row	if	the	insertion
point	is	at	the	end	of	the	row	(just	before	the	end-of-row	mark).

Selection.Collapse	Direction:=wdCollapseEnd

If	Selection.IsEndOfRowMark	=	True	Then

				Selection.Rows(1).Select

End	If



IsFirst	Property
							

True	if	the	specified	column	or	row	is	the	first	one	in	the	table.	Read-only
Boolean.

expression.IsFirst

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.



Example

This	example	determines	whether	the	first	row	in	the	selection	is	the	first	row	in
the	table.

MsgBox	Selection.Rows(1).IsFirst



IsHeader	Property
							

True	if	the	specified	HeaderFooter	object	is	a	header.	Read-only	Boolean.

expression.IsHeader

expression			Required.	An	expression	that	returns	a	HeaderFooter	object.



Example

This	example	selects	the	footer	and	adds	a	page	number.

With	ActiveDocument.ActiveWindow.ActivePane.View

				.Type	=	wdPrintView

				.SeekView	=	wdSeekCurrentPageHeader

End	With

If	Selection.HeaderFooter.IsHeader	=	True	Then

				ActiveDocument.ActiveWindow.ActivePane.View	_

								.SeekView	=	wdSeekCurrentPageFooter

End	If

Selection.HeaderFooter.PageNumbers.Add



IsLast	Property
							

True	if	the	specified	column	or	row	is	the	last	one	in	the	table.	Read-only
Boolean.

expression.IsLast

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.



Example

This	example	determines	whether	the	second	row	is	the	last	row	in	the	table.

MsgBox	ActiveDocument.Tables(1).Rows(2).IsLast

This	example	determines	whether	the	first	column	in	the	selection	is	the	last
column	in	the	table.

If	Selection.Information(wdWithInTable)	=	True	Then

				MsgBox	Selection.Columns(1).IsLast

End	If



IsMasterDocument	Property
							

True	if	the	specified	document	is	a	master	document.	A	master	document
includes	one	or	more	subdocuments.	Read-only	Boolean.



Example

If	the	active	document	is	a	master	document,	this	example	switches	to	master
document	view	and	opens	the	first	subdocument.

If	ActiveDocument.IsMasterDocument	=	True	Then

				ActiveDocument.ActiveWindow.View.Type	=	wdMasterView

				ActiveDocument.Subdocuments(1).Open

Else

				MsgBox	"This	document	is	not	a	master	document."

End	If



IsObjectValid	Property
							

True	if	the	specified	variable	that	references	an	object	is	valid.	False	if	the
object	referenced	by	the	variable	has	been	deleted.	Read-only	Boolean.

expression.IsObjectValid(Object)

expression			Optional.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

Object			Required	Object.	A	variable	that	references	an	object.



Example

This	example	adds	a	table	to	the	active	document	and	assigns	it	to	the	variable
aTable.	The	example	then	deletes	the	first	table	from	the	document.	If	the	table
that	aTable	refers	to	was	not	the	first	table	in	the	document	(that	is,	if	aTable	is
still	a	valid	object),	the	example	also	removes	any	borders	from	that	table.

Dim	aTable	As	Table

Set	aTable	=	ActiveDocument.Tables.Add(Range:=Selection.Range,	_

				NumRows:=2,	NumColumns:=3)

ActiveDocument.Tables(1).Delete

If	IsObjectValid(aTable)	=	True	Then	_

				aTable.Borders.Enable	=	False



IsPictureBullet	Property
							

True	indicates	that	an	InlineShape	object	is	a	picture	bullet.	Read-only
Boolean.

expression.IsPictureBullet

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	to	list.



Remarks

Although	picture	bullets	are	considered	inline	shapes,	searching	a	document's
InlineShapes	collection	will	not	return	picture	bullets.



Example

This	example	formats	the	selected	list	if	the	list	if	formatted	with	a	picture	bullet.
If	not,	a	message	is	displayed.

Sub	IsSelectionAPictureBullet(shp	As	InlineShape)

				On	Error	GoTo	ErrorHandler

				If	shp.IsPictureBullet	=	True	Then

												shp.Width	=	InchesToPoints(0.5)

												shp.Height	=	InchesToPoints(0.05)

				End	If

				Exit	Sub

ErrorHandler:

				MsgBox	"The	selection	is	not	a	list	or	"	&	_

								"does	not	contain	picture	bullets."

End	Sub

Use	the	following	code	to	call	the	routine	above.

Sub	CallPic()

				Call	IsSelectionAPictureBullet(shp:=Selection	_

								.Range.ListFormat.ListPictureBullet)

End	Sub



IsStyleSeparator	Property
							

True	if	a	paragraph	contains	a	special	hidden	paragraph	mark	that	allows
Microsoft	Word	to	appear	to	join	paragraphs	of	different	paragraph	styles.	Read-
only	Boolean.

expression.IsStyleSeparator

expression			Required.	An	expression	that	returns	a	Paragraph	object.



Example

This	example	formats	all	paragraphs	in	which	there	is	a	style	separator	with	the
built-in	"Normal"	style.

Sub	StyleSep()

				Dim	pghDoc	As	Paragraph

				For	Each	pghDoc	In	ThisDocument.Paragraphs

								If	pghDoc.IsStyleSeparator	=	True	Then

												pghDoc.Range.Select

												Selection.Style	=	"Normal"

								End	If

				Next	pghDoc

End	Sub

This	example	adds	a	paragraph	after	each	style	separator	and	then	deletes	the
style	separator.

Sub	RemoveStyleSeparator()

				Dim	pghDoc	As	Paragraph

				Dim	styName	As	String

				'Loop	through	all	paragraphs	in	document	to	check	if	it	is	a	style

				'separator.	If	it	is,	delete	it	and	enter	a	regular	paragraph

				For	Each	pghDoc	In	ThisDocument.Paragraphs

								If	pghDoc.IsStyleSeparator	=	True	Then

												pghDoc.Range.Select

												With	Selection

																.Collapse	(wdCollapseEnd)

																.TypeParagraph

																.MoveLeft	(1)

																.TypeBackspace

												End	With

								End	If

				Next	pghDoc

End	Sub





IsSubdocument	Property
							

True	if	the	specified	document	is	opened	in	a	separate	document	window	as	a
subdocument	of	a	master	document.	Read-only	Boolean



Example

This	example	determines	whether	Sales.doc	is	a	subdocument	and	then	displays
a	message	indicating	it's	status.

If	Documents("Sales.doc").IsSubdocument	=	True	Then

				MsgBox	"Sales.doc	is	a	subdocument."

Else

				MsgBox	"Sales.doc	is	not	a	subdocument."

End	If



Italic	Property
							

True	if	the	font	or	range	is	formatted	as	italic.	Returns	True,	False	or
wdUndefined	(a	mixture	of	True	and	False).	Can	be	set	to	True,	False,	or
wdToggle.	Read/write	Long.



Example

This	example	formats	the	first	word	in	the	active	document	as	italic.

ActiveDocument.Words(1).Italic	=	True

This	example	checks	the	selection	for	italic	formatting	and	removes	any	that	it
finds.

If	Selection.Type	=	wdSelectionNormal	Then

				mySel	=	Selection.Font.Italic

				If	mySel	=	wdUndefined	or	mySel	=	True	Then

								MsgBox	"There's	italic	text	in	selection.	"	_

												&	"Click	OK	to	remove."

								Selection.Font.Italic	=	False

				Else

								MsgBox	"No	italic	text	in	the	selection."

				End	If

Else

				MsgBox	"You	need	to	select	some	text."

End	If



ItalicBi	Property
							

True	if	the	font	or	range	is	formatted	as	italic.	Returns	True,	False	or
wdUndefined	(for	a	mixture	of	italic	and	non-italic	text).	Can	be	set	to	True,
False,	or	wdToggle.	Read/write	Long.

expression.ItalicBi

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.



Remarks

The	ItalicBi	property	applies	to	text	in	right-to-left	languages.	For	more
information	on	using	Word	with	right-to-left	languages,	see	Word	features	for
right-to-left	languages.

mk:@MSITStore:wdmain10.chm::/html/wdrefFeaturesAvailableInWordWhenBidirectionalLanguagesAreEnabled.htm


Example

This	example	italicizes	the	first	paragraph	in	the	active	right-to-left	language
document.

ActiveDocument.Paragraphs(1).Range.ItalicBi	=	True



Item	Property
							

Returns	or	sets	the	adjustment	value	specified	by	the	Index	argument.	For	linear
adjustments,	an	adjustment	value	of	0.0	generally	corresponds	to	the	left	or	top
edge	of	the	shape,	and	a	value	of	1.0	generally	corresponds	to	the	right	or	bottom
edge	of	the	shape.	However,	adjustments	can	pass	beyond	shape	boundaries	for
some	shapes.	For	radial	adjustments,	an	adjustment	value	of	1.0	corresponds	to
the	width	of	the	shape.	For	angular	adjustments,	the	adjustment	value	is
specified	in	degrees.	The	Item	property	applies	only	to	shapes	that	have
adjustments.	Read/write	Single.

expression.Item(Index)

expression			Required.	An	expression	that	returns	an	Adjustments	object.

Index			Required	Long.	The	index	number	of	the	adjustment.



Remarks

AutoShapes	and	WordArt	objects	have	up	to	eight	adjustments.



Example

This	example	adds	two	crosses	to	the	active	document	and	then	sets	the	value	for
adjustment	one	(the	only	one	for	this	type	of	AutoShape)	on	each	cross.

Dim	docActive	As	Document

Set	docActive	=	ActiveDocument

With	docActive.Shapes

				.AddShape(msoShapeCross,	_

								10,	10,	100,	100).Adjustments.Item(1)	=	0.4

				.AddShape(msoShapeCross,	_

								150,	10,	100,	100).Adjustments.Item(1)	=	0.2

End	With

This	example	has	the	same	result	as	the	previous	example	even	though	it	doesn't
explicitly	use	the	Item	property.

Dim	docActive	As	Document

Set	docActive	=	ActiveDocument

With	docActive.Shapes

				.AddShape(msoShapeCross,	_

								10,	10,	100,	100).Adjustments(1)	=	0.4

				.AddShape(msoShapeCross,	_

								150,	10,	100,	100).Adjustments(1)	=	0.2

End	With



JoinBorders	Property
							

True	if	vertical	borders	at	the	edges	of	paragraphs	and	tables	are	removed	so	that
the	horizontal	borders	can	connect	to	the	page	border.	Read/write	Boolean.

expression.JoinBorders

expression			Required.	An	expression	that	returns	a	Borders	object.



Example

This	example	adds	a	border	around	each	page	in	the	first	section	of	the	selection.
The	example	also	removes	the	horizontal	borders	at	the	edges	of	tables	and
paragraphs,	thus	connecting	the	horizontal	borders	to	the	page	border.

Dim	borderLoop	As	Border

With	Selection.Sections(1)

				For	Each	borderLoop	In	.Borders

								borderLoop.ArtStyle	=	wdArtBalloonsHotAir

								borderLoop.ArtWidth	=	15

				Next	borderLoop

				With	.Borders

								.DistanceFromLeft	=	2

								.DistanceFromRight	=	2

								.DistanceFrom	=	wdBorderDistanceFromText

								.JoinBorders	=	True

				End	With

End	With



JustificationMode	Property
							

Returns	or	sets	the	character	spacing	adjustment	for	the	specified	document.
Read/write	WdJustificationMode.

WdJustificationMode	can	be	one	of	these	WdJustificationMode	constants.
wdJustificationModeCompress
wdJustificationModeCompressKana
wdJustificationModeExpand

expression.JustificationMode

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.



Example

This	example	sets	Microsoft	Word	to	compress	only	punctuation	marks	when
adjusting	character	spacing.

ActiveDocument.JustificationMode	=	wdJustificationModeCompressKana



Show	All



Kana	Property
							

Returns	or	sets	whether	the	specified	range	of	Japanese	language	text	is	hiragana
or	katakana.	Read/write	WdKana.

WdKana	can	be	one	of	these	WdKana	constants.
wdKanaHiragana
wdKanaKatakana

expression.Kana

expression			Required.	An	expression	that	returns	a	Range	object.



Remarks

This	property	returns	wdUndefined	if	the	range	contains	a	mix	of	hiragana	and
katakana	or	if	the	range	contains	some	non-Japanese	text.	If	you	set	the	Kana
property	to	wdUndefined,	an	error	occurs.



Example

This	example	displays	what	type	of	Japanese	text	the	current	selection	contains.

Select	Case	Selection.Range.Kana

				Case	wdKanaHiragana

								MsgBox	"This	text	is	hiragana."

				Case	wdKanaKatakana

								MsgBox	"This	text	is	katakana."

				Case	wdUndefined

								MsgBox	"This	text	is	a	mix	of	"	_

												&	"hiragana	and	katakana."

End	Select



KeepEntryFormatting	Property
							

True	if	formatting	from	table	of	authorities	entries	is	applied	to	the	entries	in	the
specified	table	of	authorities.	Corresponds	to	the	\f	switch	for	a	Table	of
Authorities	(TOA)	field.	Read/write	Boolean.

expression.KeepEntryFormatting

expression			Required.	An	expression	that	returns	a	TableOfAuthorities	object.



Example

This	example	removes	the	formatting	from	the	entries	in	the	first	table	of
authorities	of	the	active	document	(the	\f	switch	is	added	to	the	TOA	field).

If	ActiveDocument.TablesOfAuthorities.Count	>=	1	Then

				ActiveDocument.TablesOfAuthorities(1)	_

								.KeepEntryFormatting	=	False

End	If



KeepTogether	Property
							

True	if	all	lines	in	the	specified	paragraphs	remain	on	the	same	page	when
Microsoft	Word	repaginates	the	document.	Can	be	True,	False,	or
wdUndefined.	Read/write	Long.



Example

This	example	formats	the	paragraphs	in	the	active	document	so	that	all	the	lines
in	each	paragraph	are	on	the	same	page	when	Word	repaginates	the	document.

ActiveDocument.Paragraphs.KeepTogether	=	True



KeepWithNext	Property
							

True	if	the	specified	paragraph	remains	on	the	same	page	as	the	paragraph	that
follows	it	when	Microsoft	Word	repaginates	the	document.	Can	be	True,	False,
or	wdUndefined.	Read/write	Long.



Example

This	example	keeps	the	third	paragraph	through	sixth	paragraph	in	the	active
document	on	the	same	page.

For	i	=	3	To	5

				ActiveDocument.Paragraphs(i).KeepWithNext	=	True

Next	i



Show	All



KernedPairs	Property
							

Indicates	that	character	pairs	in	a	WordArt	object	have	been	kerned.	Read/write
MsoTriState.

MsoTriState	can	be	one	of	these	MsoTriState	constants.
msoCTrue
msoFalse
msoTriStateMixed
msoTriStateToggle
msoTrue

expression.KernedPairs

expression			Required.	An	expression	that	returns	a	TextEffectFormat	object.



Example

This	example	turns	on	character	pair	kerning	for	all	WordArt	objects	in	the
active	document.

Sub	Kerned()

				With	ActiveDocument.Range(1,	ActiveDocument.Shapes.Count).ShapeRange

								If	.Type	=	msoTextEffect	Then

												.TextEffect.KernedPairs	=	True

								End	If

				End	With

End	Sub



Kerning	Property
							

Returns	or	sets	the	minimum	font	size	for	which	Microsoft	Word	will	adjust
kerning	automatically.	Read/write	Single.

expression.Kerning

expression			Required.	An	expression	that	returns	a	Font	object.



Example

This	example	sets	the	minimum	font	size	for	automatic	kerning	to	12	points	or
larger	in	the	active	document.

ActiveDocument.Content.Font.Kerning	=	12

This	example	displays	the	minimum	font	size	for	which	Word	will	automatically
adjust	kerning	in	the	selected	text.

If	Selection.Type	=	wdSelectionNormal	Then

				MsgBox	Selection.Font.Kerning

Else

				MsgBox	"You	need	to	select	some	text."

End	If



KerningByAlgorithm	Property
							

True	if	Microsoft	Word	kerns	half-width	Latin	characters	and	punctuation	marks
in	the	specified	document.	Read/write	Boolean.



Example

This	example	sets	Microsoft	Word	to	kern	half-width	Latin	characters	and
punctuation	marks	in	the	active	document.

ActiveDocument.KerningByAlgorithm	=	True



KeyBindings	Property
							

Returns	a	KeyBindings	collection	that	represents	customized	key	assignments,
which	include	a	key	code,	a	key	category,	and	a	command.

expression.KeyBindings

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.



Example

This	example	assigns	the	CTRL+ALT+W	key	combination	to	the	FileClose
command.	This	keyboard	customization	is	saved	in	the	Normal	template.

CustomizationContext	=	NormalTemplate

KeyBindings.Add	KeyCode:=BuildKeyCode(wdKeyControl,	wdKeyAlt,	_

				wdKeyW),	KeyCategory:=wdKeyCategoryCommand,	_

				Command:="FileClose"

This	example	inserts	the	command	name	and	key	combination	string	for	each
item	in	the	KeyBindings	collection.

Dim	kbLoop	As	KeyBinding

CustomizationContext	=	NormalTemplate

For	Each	kbLoop	In	KeyBindings

				Selection.InsertAfter	kbLoop.Command	&	vbTab	_

								&	kbLoop.KeyString	&	vbCr

				Selection.Collapse	Direction:=wdCollapseEnd

Next	kbLoop



Show	All



KeyCategory	Property
							

Returns	the	type	of	item	assigned	to	the	specified	key	binding.	Read-only
WdKeyCategory.

WdKeyCategory	can	be	one	of	these	WdKeyCategory	constants.
wdKeyCategoryAutoText
wdKeyCategoryCommand
wdKeyCategoryDisable
wdKeyCategoryFont
wdKeyCategoryMacro
wdKeyCategoryNil
wdKeyCategoryPrefix
wdKeyCategoryStyle
wdKeyCategorySymbol

expression.KeyCategory

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.



Example

This	example	displays	the	keys	assigned	to	font	names.	A	message	is	displayed
if	no	keys	have	been	assigned	to	fonts.

Dim	kbLoop	As	KeyBinding

Dim	intCount	As	Integer

intCount	=	0

For	Each	kbLoop	In	KeyBindings

				If	kbLoop.KeyCategory	=	wdKeyCategoryFont	Then

								intCount	=	intCount	+	1

								MsgBox	kbLoop.Command	&	vbCr	&	kbLoop.KeyString

				End	If

Next	kbLoop

If	intCount	=	0	Then	_

				MsgBox	"Keys	haven't	been	assigned	to	fonts"



KeyCode	Property
							

Returns	a	unique	number	for	the	first	key	in	the	specified	key	binding.	Read-
only	Long.

Note			You	create	this	number	by	using	the	BuildKeyCode	method	when	you're
adding	key	bindings	by	using	the	Add	method	of	the	KeyBindings	object.

expression.KeyCode

expression			Required.	An	expression	that	returns	a	KeyBinding	object.



Example

This	example	displays	a	message	if	the	KeyBindings	collection	includes	the
ALT+CTRL+W	key	combination.

Dim	lngCode	As	Long

Dim	kbLoop	As	KeyBinding

CustomizationContext	=	NormalTemplate

lngCode	=	BuildKeyCode(wdKeyAlt,	wdKeyControl,	wdKeyW)

For	Each	kbLoop	In	KeyBindings

				If	lngCode	=	kbLoop.KeyCode	Then

								MsgBox	kbLoop.KeyString	&	"	is	already	in	use"

				End	If

Next	kbLoop



KeyCode2	Property
							

Returns	a	unique	number	for	the	second	key	in	the	specified	key	binding.	Read-
only	Long.

expression.KeyCode2

expression			Required.	An	expression	that	returns	a	KeyBinding	object.



Example

This	example	displays	the	key	codes	of	each	key	in	the	KeyBindings	collection
(the	collection	of	all	the	customized	keys	in	the	active	document).

Dim	aKey	As	KeyBinding

CustomizationContext	=	ActiveDocument

For	Each	aKey	In	KeyBindings

				If	aKey.KeyCode2	<>	wdNoKey	Then

								MsgBox	aKey.KeyString	&	vbCr	_

												&	"KeyCode1	=	"	&	aKey.KeyCode	&	vbCr	_

												&	"KeyCode2	=	"	&	aKey.KeyCode2

				Else

								MsgBox	aKey.KeyString	&	vbCr	_

												&	"KeyCode1	=	"	&	aKey.KeyCode

				End	If

Next	aKey



Show	All



KeysBoundTo	Property
							

Returns	a	KeysBoundTo	object	that	represents	all	the	key	combinations
assigned	to	the	specified	item.

expression.KeysBoundTo(KeyCategory,	Command,	CommandParameter)

expression			Optional.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

KeyCategory			Required	WdKeyCategory.	The	category	of	the	key
combination.

WdKeyCategory	can	be	one	of	these	WdKeyCategory	constants.
wdKeyCategoryAutoText
wdKeyCategoryCommand
wdKeyCategoryDisable
wdKeyCategoryFont
wdKeyCategoryMacro
wdKeyCategoryNil
wdKeyCategoryPrefix
wdKeyCategoryStyle
wdKeyCategorySymbol

Command			Required	String.	The	name	of	the	command.

CommandParameter			Optional	Variant.	Additional	text,	if	any,	required	for	the
command	specified	by	Command.	For	more	information,	see	the	"Remarks"
section	in	the	Add	method	for	the	KeyBindings	object.



Example

This	example	displays	all	the	key	combinations	assigned	to	the	FileOpen
command	in	the	template	attached	to	the	active	document.

Dim	kbLoop	As	KeyBinding

Dim	strOutput	As	String

CustomizationContext	=	ActiveDocument.AttachedTemplate

For	Each	kbLoop	In	_

								KeysBoundTo(KeyCategory:=wdKeyCategoryCommand,	_

								Command:="FileOpen")

				strOutput	=	strOutput	&	kbLoop.KeyString	&	vbCr

Next	kbLoop

MsgBox	strOutput

This	example	removes	all	key	assignments	from	Macro1	in	the	Normal	template.

Dim	aKey	As	KeyBinding

CustomizationContext	=	NormalTemplate

For	Each	aKey	In	_

								KeysBoundTo(KeyCategory:=wdKeyCategoryMacro,	_

								Command:="Macro1")

				aKey.Disable

Next	aKey



KeyString	Property
							

Returns	the	key	combination	string	for	the	specified	keys	(for	example,
CTRL+SHIFT+A).	Read-only	String.

expression.KeyString

expression			Required.	An	expression	that	returns	a	KeyBinding	object.



Example

This	example	displays	the	key	combination	string	for	the	first	customized	key
combination	in	the	Normal	template.

CustomizationContext	=	NormalTemplate

If	KeyBindings.Count	>=	1	Then

				MsgBox	KeyBindings(1).KeyString

End	If

This	example	displays	a	message	if	the	KeyBindings	collection	includes	the
ALT+CTRL+W	key	combination.

Dim	aCode	As	Long

Dim	aKey	As	KeyBinding

CustomizationContext	=	NormalTemplate

aCode	=	BuildKeyCode(wdKeyAlt,	wdKeyControl,	wdKeyW)

For	Each	aKey	In	KeyBindings

				If	aCode	=	aKey.KeyCode	Then

								MsgBox	aKey.KeyString	&	"	is	already	in	use"

				End	If

Next	aKey



Show	All



Kind	Property
							

Kind	property	as	it	applies	to	the	Document	object.

Returns	or	sets	the	format	type	that	Microsoft	Word	uses	when	automatically
formatting	the	specified	document.	Read/write	WdDocumentKind.

WdDocumentKind	can	be	one	of	these	WdDocumentKind	constants.
wdDocumentEmail
wdDocumentNotSpecified
wdDocumentLetter

expression.Kind

expression			Required.	An	expression	that	returns	a	Document	object.

Kind	property	as	it	applies	to	the	Field	object.

Returns	the	type	of	link	for	a	Field	object.	Read-only	WdFieldKind.

WdFieldKind	can	be	one	of	these	WdFieldKind	constants.
wdFieldKindCold		A	field	that	doesn't	have	a	result,	for	example,	an	Index
Entry	(XE),	Table	of	Contents	Entry	(TC),	or	Private	field.
wdFieldKindHot		A	field	that's	automatically	updated	each	time	it's	displayed
or	each	time	the	page	is	reformatted,	but	which	can	also	be	manually	updated
(for	example,	INCLUDEPICTURE	or	FORMDROPDOWN).
wdFieldKindNone		An	invalid	field	(for	example,	a	pair	of	field	characters
with	nothing	inside).
wdFieldKindWarm		A	field	that	can	be	updated	and	has	a	result.	This	type
includes	fields	that	are	automatically	updated	when	the	source	changes	as	well
as	fields	that	can	be	manually	updated	(for	example,	DATE	or
INCLUDETEXT).

expression.Kind



expression			Required.	An	expression	that	returns	a	Field	object.



Example

As	it	applies	to	the	Document	object.

This	example	asks	the	user	whether	the	active	document	is	an	e-mail	message.	If
the	response	is	Yes,	the	document	is	formatted	as	an	e-mail	message.

response	=	MsgBox("Is	this	document	an	email	message?",	vbYesNo)

If	response	=	vbYes	Then

				ActiveDocument.Kind	=	wdDocumentEmail

				ActiveDocument.Content.AutoFormat

End	If

As	it	applies	to	the	Field	object.

This	example	updates	all	warm	link	fields	in	the	active	document.

For	Each	aField	In	ActiveDocument.Fields

				If	aField.Kind	=	wdFieldKindWarm	Then	aField.Update

Next	aField



Label	Property
							

Returns	a	string	that's	used	to	identify	the	portion	of	the	source	file	that's	being
linked.	For	example,	if	the	source	file	is	a	Microsoft	Excel	workbook,	the	Label
property	might	return	"Workbook1!R3C1:R4C2"	if	the	OLE	object	contains	only
a	few	cells	from	the	worksheet.	Read-only	String.

Note			This	property	works	only	for	shapes,	inline	shapes,	or	fields	that	are
linked	OLE	objects.

expression.Label

expression			Required.	An	expression	that	returns	an	OLEFormat	object.



Example

This	example	returns	the	label	for	the	first	field	in	the	active	document.

MsgBox	ActiveDocument.Fields(1).OLEFormat.Label



LabelSmartTags	Property
							

True	for	Microsoft	Word	to	mark	text	in	documents	with	smart	tag	information.
Read/write	Boolean.

expression.LabelSmartTags

expression			Required.	An	expression	that	returns	an	Options	object.



Example

This	example	turns	off	marking	smart	tags	in	documents.

Sub	MarkSmartTags()

				Application.Options.LabelSmartTags	=	False

End	Sub



LandscapeFontNames	Property
							

Returns	a	FontNames	object	that	includes	the	names	of	all	the	available
landscape	fonts.

expression.LandscapeFontNames

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.



Example

This	example	creates	a	sorted	list	in	a	new	document	of	the	landscape	font
names	in	the	FontNames	object.

Sub	ListLandscapeFonts()

				Dim	docNew	As	Document

				Dim	intCount	As	Integer

				Set	docNew	=	Documents.Add

				docNew.Content.InsertAfter	"Landscape	Fonts"	&	vbLf

				For	intCount	=	1	To	LandscapeFontNames.Count

								docNew.Content.InsertAfter	LandscapeFontNames(intCount)	_

												&	vbLf

				Next

				With	docNew

								.Range(Start:=.Paragraphs(2).Range.Start,	End:=.Paragraphs	_

												(docNew.Paragraphs.Count).Range.End).Select

				End	With

				Selection.Sort

End	Sub



Show	All



Language	Property
							

Returns	an	MsoLanguageID	constant	that	represents	the	language	selected	for
the	Microsoft	Word	user	interface.

MsoLanguageID	can	be	one	of	these	MsoLanguageID	constants.
msoLanguageIDAfrikaans
msoLanguageIDAlbanian
msoLanguageIDAmharic
msoLanguageIDArabic
msoLanguageIDArabicAlgeria
msoLanguageIDArabicBahrain
msoLanguageIDArabicEgypt
msoLanguageIDArabicIraq
msoLanguageIDArabicJordan
msoLanguageIDArabicKuwait
msoLanguageIDArabicLebanon
msoLanguageIDArabicLibya
msoLanguageIDArabicMorocco
msoLanguageIDArabicOman
msoLanguageIDArabicQatar
msoLanguageIDArabicSyria
msoLanguageIDArabicTunisia
msoLanguageIDArabicUAE
msoLanguageIDArabicYemen
msoLanguageIDArmenian
msoLanguageIDAssamese
msoLanguageIDAzeriCyrillic
msoLanguageIDAzeriLatin
msoLanguageIDBasque



msoLanguageIDBelgianDutch
msoLanguageIDBelgianFrench
msoLanguageIDBengali
msoLanguageIDBrazilianPortuguese
msoLanguageIDBulgarian
msoLanguageIDBurmese
msoLanguageIDByelorussian
msoLanguageIDCatalan
msoLanguageIDCherokee
msoLanguageIDChineseHongKong
msoLanguageIDChineseMacao
msoLanguageIDChineseSingapore
msoLanguageIDCroatian
msoLanguageIDCzech
msoLanguageIDDanish
msoLanguageIDDutch
msoLanguageIDEnglishAUS
msoLanguageIDEnglishBelize
msoLanguageIDEnglishCanadian
msoLanguageIDEnglishCaribbean
msoLanguageIDEnglishIreland
msoLanguageIDEnglishJamaica
msoLanguageIDEnglishNewZealand
msoLanguageIDEnglishPhilippines
msoLanguageIDEnglishSouthAfrica
msoLanguageIDEnglishTrinidad
msoLanguageIDEnglishUK
msoLanguageIDEnglishUS
msoLanguageIDEnglishZimbabwe
msoLanguageIDEstonian
msoLanguageIDFaeroese
msoLanguageIDFarsi
msoLanguageIDFinnish



msoLanguageIDFrench
msoLanguageIDFrenchCameroon
msoLanguageIDFrenchCanadian
msoLanguageIDFrenchCotedIvoire
msoLanguageIDFrenchLuxembourg
msoLanguageIDFrenchMali
msoLanguageIDFrenchMonaco
msoLanguageIDFrenchReunion
msoLanguageIDFrenchSenegal
msoLanguageIDFrenchWestIndies
msoLanguageIDFrenchZaire
msoLanguageIDFrisianNetherlands
msoLanguageIDGaelicIreland
msoLanguageIDGaelicScotland
msoLanguageIDGalician
msoLanguageIDGeorgian
msoLanguageIDGerman
msoLanguageIDGermanAustria
msoLanguageIDGermanLiechtenstein
msoLanguageIDGermanLuxembourg
msoLanguageIDGreek
msoLanguageIDGujarati
msoLanguageIDHebrew
msoLanguageIDHindi
msoLanguageIDHungarian
msoLanguageIDIcelandic
msoLanguageIDIndonesian
msoLanguageIDInuktitut
msoLanguageIDItalian
msoLanguageIDJapanese
msoLanguageIDKannada
msoLanguageIDKashmiri
msoLanguageIDKazakh



msoLanguageIDKhmer
msoLanguageIDKirghiz
msoLanguageIDKonkani
msoLanguageIDKorean
msoLanguageIDLao
msoLanguageIDLatvian
msoLanguageIDLithuanian
msoLanguageIDMacedonian
msoLanguageIDMalayalam
msoLanguageIDMalayBruneiDarussalam
msoLanguageIDMalaysian
msoLanguageIDMaltese
msoLanguageIDManipuri
msoLanguageIDMarathi
msoLanguageIDMexicanSpanish
msoLanguageIDMixed
msoLanguageIDMongolian
msoLanguageIDNepali
msoLanguageIDNone
msoLanguageIDNoProofing
msoLanguageIDNorwegianBokmol
msoLanguageIDNorwegianNynorsk
msoLanguageIDOriya
msoLanguageIDOromo
msoLanguageIDPolish
msoLanguageIDPortuguese
msoLanguageIDPunjabi
msoLanguageIDRhaetoRomanic
msoLanguageIDRomanian
msoLanguageIDRomanianMoldova
msoLanguageIDRussian
msoLanguageIDRussianMoldova
msoLanguageIDSamiLappish



msoLanguageIDSanskrit
msoLanguageIDSerbianCyrillic
msoLanguageIDSerbianLatin
msoLanguageIDSesotho
msoLanguageIDSimplifiedChinese
msoLanguageIDSindhi
msoLanguageIDSlovak
msoLanguageIDSlovenian
msoLanguageIDSorbian
msoLanguageIDSpanish
msoLanguageIDSpanishArgentina
msoLanguageIDSpanishBolivia
msoLanguageIDSpanishChile
msoLanguageIDSpanishColombia
msoLanguageIDSpanishCostaRica
msoLanguageIDSpanishDominicanRepublic
msoLanguageIDSpanishEcuador
msoLanguageIDSpanishElSalvador
msoLanguageIDSpanishGuatemala
msoLanguageIDSpanishHonduras
msoLanguageIDSpanishModernSort
msoLanguageIDSpanishNicaragua
msoLanguageIDSpanishPanama
msoLanguageIDSpanishParaguay
msoLanguageIDSpanishPeru
msoLanguageIDSpanishPuertoRico
msoLanguageIDSpanishUruguay
msoLanguageIDSpanishVenezuela
msoLanguageIDSutu
msoLanguageIDSwahili
msoLanguageIDSwedish
msoLanguageIDSwedishFinland
msoLanguageIDSwissFrench



msoLanguageIDSwissGerman
msoLanguageIDSwissItalian
msoLanguageIDTajik
msoLanguageIDTamil
msoLanguageIDTatar
msoLanguageIDTelugu
msoLanguageIDThai
msoLanguageIDTibetan
msoLanguageIDTigrignaEritrea
msoLanguageIDTigrignaEthiopic
msoLanguageIDTraditionalChinese
msoLanguageIDTsonga
msoLanguageIDTswana
msoLanguageIDTurkish
msoLanguageIDTurkmen
msoLanguageIDUkrainian
msoLanguageIDUrdu
msoLanguageIDUzbekCyrillic
msoLanguageIDUzbekLatin
msoLanguageIDVenda
msoLanguageIDVietnamese
msoLanguageIDWelsh
msoLanguageIDXhosa
msoLanguageIDZulu

expression.Language

expression			Required.	An	expression	that	returns	an	Application	object.



Remarks

The	value	of	this	property	is	the	same	as	the	value	returned	by	the	following
expression:

Application.LanguageSettings	_

				.LanguageID(msoLanguageIDUI)



Example

This	example	displays	a	message	stating	whether	the	language	selected	for	the
Microsoft	Word	user	interface	is	U.S.	English.

Sub	LangSetting()

				If	Application.Language	=	msoLanguageIDEnglishUS	Then

								MsgBox	"The	user	interface	language	is	U.S.	English."

				Else

								MsgBox	"The	user	interface	language	is	not	U.S.	English."

				End	If

End	Sub



LanguageDesignation	Property
							

Returns	the	designated	language	of	the	system	software.	Read-only	String.

expression.LanguageDesignation

expression			Required.	An	expression	that	returns	a	System	object.



Example

This	example	displays	"U.S.	English"	if	the	LanguageDesignation	property
returns	"English	(US)".

If	System.LanguageDesignation	=	"English	(US)"	Then	_

				MsgBox	"U.S.	English"



LanguageDetected	Property
							

Returns	or	sets	a	value	that	specifies	whether	Microsoft	Word	has	detected	the
language	of	the	specified	text.	Read/write	Boolean.

expression.LanguageDetected

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.



Remarks

Check	the	LanguageID	property	for	the	results	of	any	previous	language
detection.

The	LanguageDetected	property	is	set	to	True	when	the	DetectLanguage
method	is	called.	To	reevaluate	the	language	of	the	specified	text,	you	must	first
set	the	LanguageDetected	property	to	False.

For	more	information	about	automatic	language	detection,	see	About	automatic
language	detection.

mk:@MSITStore:wdmain10.chm::/html/wdconAboutAutomaticLanguageDetection.htm


Example

This	example	checks	the	active	document	to	determine	the	language	it’s	written
in	and	then	displays	the	result.

With	ActiveDocument

				If	.LanguageDetected	=	True	Then

								x	=	MsgBox("This	document	has	already	"	_

												&	"been	checked.	Do	you	want	to	check	"	_

												&	"it	again?",	vbYesNo)

								If	x	=	vbYes	Then

												.LanguageDetected	=	False

												.DetectLanguage

								End	If

				Else

								.DetectLanguage

				End	If

				If	.Range.LanguageID	=	wdEnglishUS	Then

								MsgBox	"This	is	a	U.S.	English	document."

				Else

								MsgBox	"This	is	not	a	U.S.	English	document."

				End	If

End	With



Show	All



LanguageID	Property
							

Returns	or	sets	the	language	for	the	specified	object.	Read/write
WdLanguageID.

WdLanguageID	can	be	one	of	these	WdLanguageID	constants.
wdAfrikaans
wdAlbanian
wdAmharic
wdArabic
wdArabicAlgeria
wdArabicBahrain
wdArabicEgypt
wdArabicIraq
wdArabicJordan
wdArabicKuwait
wdArabicLebanon
wdArabicLibya
wdArabicMorocco
wdArabicOman
wdArabicQatar
wdArabicSyria
wdArabicTunisia
wdArabicUAE
wdArabicYemen
wdArmenian
wdAssamese
wdAzeriCyrillic
wdAzeriLatin
wdBasque



wdBelgianDutch
wdBelgianFrench
wdBengali
wdBrazilianPortuguese
wdBulgarian
wdBurmese
wdByelorussian
wdCatalan
wdCherokee
wdChineseHongKong
wdChineseMacao
wdChineseSingapore
wdCroatian
wdCzech
wdDanish
wdDivehi
wdDutch
wdEdo
wdEnglishAUS
wdEnglishBelize
wdEnglishCanadian
wdEnglishCaribbean
wdEnglishIreland
wdEnglishJamaica
wdEnglishNewZealand
wdEnglishPhilippines
wdEnglishSouthAfrica
wdEnglishTrinidad
wdEnglishUK
wdEnglishUS
wdEnglishZimbabwe
wdEstonian
wdFaeroese



wdFarsi
wdFilipino
wdFinnish
wdFrench
wdFrenchCameroon
wdFrenchCanadian
wdFrenchCotedIvoire
wdFrenchLuxembourg
wdFrenchMali
wdFrenchMonaco
wdFrenchReunion
wdFrenchSenegal
wdFrenchWestIndies
wdFrenchZaire
wdFrisianNetherlands
wdFulfulde
wdGaelicIreland
wdGaelicScotland
wdGalician
wdGeorgian
wdGerman
wdGermanAustria
wdGermanLiechtenstein
wdGermanLuxembourg
wdGreek
wdGuarani
wdGujarati
wdHausa
wdHawaiian
wdHebrew
wdHindi
wdHungarian
wdIbibio



wdIcelandic
wdIgbo
wdIndonesian
wdInuktitut
wdItalian
wdJapanese
wdKannada
wdKanuri
wdKashmiri
wdKazakh
wdKhmer
wdKirghiz
wdKonkani
wdKorean
wdKyrgyz
wdLanguageNone
wdLao
wdLatin
wdLatvian
wdLithuanian
wdMacedonian
wdMalayalam
wdMalayBruneiDarussalam
wdMalaysian
wdMaltese
wdManipuri
wdMarathi
wdMexicanSpanish
wdMongolian
wdNepali
wdNoProofing
wdNorwegianBokmol
wdNorwegianNynorsk



wdOriya
wdOromo
wdPashto
wdPolish
wdPortuguese
wdPunjabi
wdRhaetoRomanic
wdRomanian
wdRomanianMoldova
wdRussian
wdRussianMoldova
wdSamiLappish
wdSanskrit
wdSerbianCyrillic
wdSerbianLatin
wdSesotho
wdSimplifiedChinese
wdSindhi
wdSindhiPakistan
wdSinhalese
wdSlovak
wdSlovenian
wdSomali
wdSorbian
wdSpanish
wdSpanishArgentina
wdSpanishBolivia
wdSpanishChile
wdSpanishColombia
wdSpanishCostaRica
wdSpanishDominicanRepublic
wdSpanishEcuador
wdSpanishElSalvador



wdSpanishGuatemala
wdSpanishHonduras
wdSpanishModernSort
wdSpanishNicaragua
wdSpanishPanama
wdSpanishParaguay
wdSpanishPeru
wdSpanishPuertoRico
wdSpanishUruguay
wdSpanishVenezuela
wdSutu
wdSwahili
wdSwedish
wdSwedishFinland
wdSwissFrench
wdSwissGerman
wdSwissItalian
wdSyriac
wdTajik
wdTamazight
wdTamazightLatin
wdTamil
wdTatar
wdTelugu
wdThai
wdTibetan
wdTigrignaEritrea
wdTigrignaEthiopic
wdTraditionalChinese
wdTsonga
wdTswana
wdTurkish
wdTurkmen



wdUkrainian
wdUrdu
wdUzbekCyrillic
wdUzbekLatin
wdVenda
wdVietnamese
wdWelsh
wdXhosa
wdYi
wdYiddish
wdYoruba
wdZulu

expression.LanguageID

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.



Remarks

For	a	custom	dictionary,	you	must	first	set	the	LanguageSpecific	property	to
True	before	specifying	the	the	LanguageID	property.	Custom	dictionaries	that
are	language	specific	only	look	at	text	formatted	for	that	language.

Some	of	the	constants	listed	above	may	not	be	available	to	you,	depending	on
the	language	support	(U.S.	English,	for	example)	that	you’ve	selected	or
installed.



Example

This	example	formats	the	second	paragraph	in	the	active	document	as	French
and	then	adds	a	new	custom	dictionary	that	will	be	used	on	the	French	text.

ActiveDocument.Paragraphs(2).Range.LanguageID	=	wdFrench

Set	myDictionary	=	CustomDictionaries.Add(Filename:="French.dic")

With	myDictionary

				.LanguageSpecific	=	True

				.LanguageID	=	wdFrench

End	With

This	example	redefines	the	Title	style	to	use	the	Spanish	proofing	tools.	The	new
style	description	is	then	displayed	in	a	message	box.

ActiveDocument.Styles("Title").LanguageID	=	wdSpanish

MsgBox	ActiveDocument.Styles("Title").Description



LanguageIDFarEast	Property
							

Returns	or	sets	an	East	Asian	language	for	the	specified	object.	Read/write
WdLanguageID.

WdLanguageID	can	be	one	of	these	WdLanguageID	constants.
wdAfrikaans
wdAlbanian
wdAmharic
wdArabic
wdArabicAlgeria
wdArabicBahrain
wdArabicEgypt
wdArabicIraq
wdArabicJordan
wdArabicKuwait
wdArabicLebanon
wdArabicLibya
wdArabicMorocco
wdArabicOman
wdArabicQatar
wdArabicSyria
wdArabicTunisia
wdArabicUAE
wdArabicYemen
wdArmenian
wdAssamese
wdAzeriCyrillic
wdAzeriLatin
wdBelgianDutch



wdBengali
wdBulgarian
wdByelorussian
wdCherokee
wdChineseMacao
wdCroatian
wdDanish
wdEnglishAUS
wdEnglishCanadian
wdEnglishIreland
wdEnglishNewZealand
wdEnglishSouthAfrica
wdEnglishUK
wdEnglishZimbabwe
wdFaeroese
wdFinnish
wdFrenchCameroon
wdFrenchCotedIvoire
wdFrenchMali
wdFrenchReunion
wdFrenchWestIndies
wdFrisianNetherlands
wdGaelicScotland
wdGeorgian
wdGermanAustria
wdGermanLuxembourg
wdGujarati
wdHindi
wdIcelandic
wdInuktitut
wdJapanese
wdKashmiri
wdKhmer



wdKonkani
wdLanguageNone
wdLatvian
wdMacedonian
wdMalayBruneiDarussalam
wdMaltese
wdMarathi
wdMongolian
wdNoProofing
wdNorwegianNynorsk
wdPolish
wdPunjabi
wdRomanian
wdRussian
wdSamiLappish
wdSerbianCyrillic
wdSesotho
wdSindhi
wdSlovenian
wdSpanish
wdSpanishBolivia
wdSpanishColombia
wdSpanishDominicanRepublic
wdSpanishElSalvador
wdSpanishHonduras
wdSpanishNicaragua
wdSpanishParaguay
wdSpanishPuertoRico
wdSpanishVenezuela
wdSwahili
wdSwedishFinland
wdSwissGerman
wdTajik



wdTatar
wdThai
wdTraditionalChinese
wdTswana
wdBasque
wdBelgianFrench
wdBrazilianPortuguese
wdBurmese
wdCatalan
wdChineseHongKong
wdChineseSingapore
wdCzech
wdDutch
wdEnglishBelize
wdEnglishCaribbean
wdEnglishJamaica
wdEnglishPhilippines
wdEnglishTrinidad
wdEnglishUS
wdEstonian
wdFarsi
wdFrench
wdFrenchCanadian
wdFrenchLuxembourg
wdFrenchMonaco
wdFrenchSenegal
wdFrenchZaire
wdGaelicIreland
wdGalician
wdGerman
wdGermanLiechtenstein
wdGreek
wdHebrew



wdHungarian
wdIndonesian
wdItalian
wdKannada
wdKazakh
wdKirghiz
wdKorean
wdLao
wdLithuanian
wdMalayalam
wdMalaysian
wdManipuri
wdMexicanSpanish
wdNepali
wdNorwegianBokmol
wdOriya
wdPortuguese
wdRhaetoRomanic
wdRomanianMoldova
wdRussianMoldova
wdSanskrit
wdSerbianLatin
wdSimplifiedChinese
wdSlovak
wdSorbian
wdSpanishArgentina
wdSpanishChile
wdSpanishCostaRica
wdSpanishEcuador
wdSpanishGuatemala
wdSpanishModernSort
wdSpanishPanama
wdSpanishPeru



wdSpanishUruguay
wdSutu
wdSwedish
wdSwissFrench
wdSwissItalian
wdTamil
wdTelugu
wdTibetan
wdTsonga
wdTurkish
wdTurkmen
wdUkrainian
wdUrdu
wdUzbekCyrillic
wdUzbekLatin
wdVenda
wdVietnamese
wdWelsh
wdXhosa
wdZulu

expression.LanguageIDFarEast

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.



Remarks

This	is	the	recommended	way	to	return	or	set	the	language	of	East	Asian	text	in
a	document	created	in	an	East	Asian	version	of	Microsoft	Word.



Example

This	example	sets	the	language	of	the	selection	to	Korean.

Selection.LanguageIDFarEast	=	wdKorean



LanguageIDOther	Property
							

Returns	or	sets	the	language	for	the	specified	object.	Read/write
WdLanguageID.

WdLanguageID	can	be	one	of	these	WdLanguageID	constants.
wdAfrikaans
wdAlbanian
wdAmharic
wdArabic
wdArabicAlgeria
wdArabicBahrain
wdArabicEgypt
wdArabicIraq
wdArabicJordan
wdArabicKuwait
wdArabicLebanon
wdArabicLibya
wdArabicMorocco
wdArabicOman
wdArabicQatar
wdArabicSyria
wdArabicTunisia
wdArabicUAE
wdArabicYemen
wdArmenian
wdAssamese
wdAzeriCyrillic
wdAzeriLatin
wdBelgianDutch



wdBengali
wdBulgarian
wdByelorussian
wdCherokee
wdChineseMacao
wdCroatian
wdDanish
wdEnglishAUS
wdEnglishCanadian
wdEnglishIreland
wdEnglishNewZealand
wdEnglishSouthAfrica
wdEnglishUK
wdEnglishZimbabwe
wdFaeroese
wdFinnish
wdFrenchCameroon
wdFrenchCotedIvoire
wdFrenchMali
wdFrenchReunion
wdFrenchWestIndies
wdFrisianNetherlands
wdGaelicScotland
wdGeorgian
wdGermanAustria
wdGermanLuxembourg
wdGujarati
wdHindi
wdIcelandic
wdInuktitut
wdJapanese
wdKashmiri
wdKhmer



wdKonkani
wdLanguageNone
wdLatvian
wdMacedonian
wdMalayBruneiDarussalam
wdMaltese
wdMarathi
wdMongolian
wdNoProofing
wdNorwegianNynorsk
wdPolish
wdPunjabi
wdRomanian
wdRussian
wdSamiLappish
wdSerbianCyrillic
wdSesotho
wdSindhi
wdSlovenian
wdSpanish
wdSpanishBolivia
wdSpanishColombia
wdSpanishDominicanRepublic
wdSpanishElSalvador
wdSpanishHonduras
wdSpanishNicaragua
wdSpanishParaguay
wdSpanishPuertoRico
wdSpanishVenezuela
wdSwahili
wdSwedishFinland
wdSwissGerman
wdTajik



wdTatar
wdThai
wdTraditionalChinese
wdTswana
wdBasque
wdBelgianFrench
wdBrazilianPortuguese
wdBurmese
wdCatalan
wdChineseHongKong
wdChineseSingapore
wdCzech
wdDutch
wdEnglishBelize
wdEnglishCaribbean
wdEnglishJamaica
wdEnglishPhilippines
wdEnglishTrinidad
wdEnglishUS
wdEstonian
wdFarsi
wdFrench
wdFrenchCanadian
wdFrenchLuxembourg
wdFrenchMonaco
wdFrenchSenegal
wdFrenchZaire
wdGaelicIreland
wdGalician
wdGerman
wdGermanLiechtenstein
wdGreek
wdHebrew



wdHungarian
wdIndonesian
wdItalian
wdKannada
wdKazakh
wdKirghiz
wdKorean
wdLao
wdLithuanian
wdMalayalam
wdMalaysian
wdManipuri
wdMexicanSpanish
wdNepali
wdNorwegianBokmol
wdOriya
wdPortuguese
wdRhaetoRomanic
wdRomanianMoldova
wdRussianMoldova
wdSanskrit
wdSerbianLatin
wdSimplifiedChinese
wdSlovak
wdSorbian
wdSpanishArgentina
wdSpanishChile
wdSpanishCostaRica
wdSpanishEcuador
wdSpanishGuatemala
wdSpanishModernSort
wdSpanishPanama
wdSpanishPeru



wdSpanishUruguay
wdSutu
wdSwedish
wdSwissFrench
wdSwissItalian
wdTamil
wdTelugu
wdTibetan
wdTsonga
wdTurkish
wdTurkmen
wdUkrainian
wdUrdu
wdUzbekCyrillic
wdUzbekLatin
wdVenda
wdVietnamese
wdWelsh
wdXhosa
wdZulu

expression.LanguageIDOther

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.



Remarks

This	is	the	recommended	way	to	return	or	set	the	language	of	Latin	text	in	a
document	created	in	a	right-to-left	language	version	of	Microsoft	Word.



Example

This	example	sets	the	language	of	the	selection	to	French.

Selection.LanguageIDOther	=	wdFrench



Languages	Property
							

Returns	a	Languages	collection	that	represents	the	proofing	languages	listed	in
the	Language	dialog	box	(on	the	Tools	menu,	click	Language,	and	then	click
Set	Language).

expression.Languages

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.



Remarks

For	information	about	returning	a	single	member	of	a	collection,	see	Returning
an	Object	from	a	Collection.



Example

This	example	returns	the	full	path	and	file	name	of	the	active	spelling	dictionary.

Dim	dicSpell	As	Dictionary

Set	dicSpell	=	_

				Languages(Selection.LanguageID).ActiveSpellingDictionary

MsgBox	dicSpell.Path	&	Application.PathSeparator	&	dicSpell.Name

This	example	uses	the	aLang()	array	to	store	the	proofing	language	names.

Dim	intCount	As	Integer

Dim	langLoop	As	Language

Dim	aLang(Languages.Count	-	1)	As	String

intCount	=	0

For	Each	langLoop	In	Languages

				aLang(intCount)	=	langLoop.NameLocal

				intCount	=	intCount	+	1

Next	langLoop



LanguageSettings	Property
							

Returns	a	LanguageSettings	object,	which	contains	information	about	the
language	settings	in	Microsoft	Word.

expression.LanguageSettings

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

mk:@MSITStore:vbaof10.chm::/html/ofobjLanguageSettings.htm


LanguageSpecific	Property
							

True	if	the	custom	dictionary	is	to	be	used	only	with	text	formatted	for	a	specific
language.	Read/write	Boolean.

expression.LanguageSpecific

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.



Example

This	example	checks	to	see	whether	any	custom	dictionaries	are	language
specific.	If	any	of	them	are,	the	example	removes	them	from	the	list	of	active
custom	dictionaries.

Dim	dicLoop	As	Dictionary

For	each	dicLoop	in	CustomDictionaries

			If	dicLoop.LanguageSpecific	=	True	Then	dicLoop.Delete

Next	dicLoop

This	example	adds	a	custom	dictionary	that	will	check	only	text	that's	formatted
as	German.

Dim	dicNew	As	Dictionary

Set	dicNew	=	CustomDictionaries.Add("German1.dic")

dicNew.LanguageSpecific	=	True

dicNew.LanguageID	=	wdGerman



Show	All



Last	Property
							

Last	property	as	it	applies	to	the	Columns	object.

Returns	the	last	item	in	the	Columns	collection	as	a	Column	object.	

expression.Last

expression			Required.	An	expression	that	returns	a	Columns	object.

Last	property	as	it	applies	to	the	Paragraphs	object.

Returns	the	last	item	in	the	Paragraphs	collection	as	a	Paragraph	object.

expression.Last

expression			Required.	An	expression	that	returns	a	Paragraphs	object.

Last	property	as	it	applies	to	the	Characters,	Sentences,	and	Words	objects.

Returns	a	Range	object	that	represents	the	last	character,	word,	or	sentence	in	a
document,	selection,	or	range.

expression.Last

expression			Required.	An	expression	that	returns	one	of	the	above	objects.

Last	property	as	it	applies	to	the	Rows	object.

Returns	the	last	item	in	the	Rows	collection	as	a	Row	object.

expression.Last

expression			Required.	An	expression	that	returns	a	Rows	object.

Last	property	as	it	applies	to	the	Sections	object.



Returns	the	last	item	in	the	Sections	collection	as	a	Section	object.

expression.Last

expression			Required.	An	expression	that	returns	a	Sections	object.



Example

As	it	applies	to	the	Paragraphs	object.

This	example	formats	the	last	paragraph	in	the	active	document	to	be	right-
aligned.

ActiveDocument.Paragraphs.Last.Alignment	=	wdAlignParagraphRight

As	it	applies	to	the	Words	object.

This	example	applies	bold	formatting	to	the	last	word	in	the	selection.

If	Selection.Words.Count	>=	2	Then

				Selection.Words.Last.Bold	=	True

End	If

As	it	applies	to	the	Rows	object.

This	example	deletes	the	last	row	in	table	one.

ActiveDocument.Tables(1).Rows.Last.Cells.Delete



LastChild	Property
							

Returns	a	DiagramNode	object	that	represents	the	last	child	node	of	a	parent
node.

expression.LastChild

expression			Required.	An	expression	that	returns	a	DiagramNodeChildren
object.



Remarks

Use	the	FirstChild	property	to	access	the	first	child	node	in	a	diagram.	Use	the
Root	property	to	access	the	parent	node	in	a	diagram.



Example

This	example	adds	an	organization	chart	diagram	to	the	current	document,	adds
three	nodes,	and	assigns	the	first	and	last	diagram	nodes	to	variables.

Sub	FirstChild()

				Dim	shpDiagram	As	Shape

				Dim	dgnRoot	As	DiagramNode

				Dim	dgnFirstChild	As	DiagramNode

				Dim	dgnLastChild	As	DiagramNode

				Dim	intCount	As	Integer

				'Add	organization	chart	to	the	current	document

				Set	shpDiagram	=	ThisDocument.Shapes.AddDiagram	_

								(Type:=msoDiagramOrgChart,	Left:=10,	_

								Top:=15,	Width:=400,	Height:=475)

				'Add	the	first	diagram	node	to	the	organization	chart

				Set	dgnRoot	=	shpDiagram.DiagramNode.Children.AddNode

				'Add	three	diagram	child	nodes	under	the	first	diagram	node

				For	intCount	=	1	To	3

								dgnRoot.Children.AddNode

				Next

				'Assign	the	first	and	last	child	nodes	to	variables

				Set	dgnFirstChild	=	dgnRoot.Children.FirstChild

				Set	dgnLastChild	=	dgnRoot.Children.LastChild

End	Sub



LastRecord	Property
							

Returns	or	sets	the	number	of	the	last	data	record	to	be	merged	in	a	mail	merge
operation.	Read/write	Long.

expression.LastRecord

expression			Required.	An	expression	that	returns	a	MailMergeDataSource
object.



Example

This	example	merges	the	main	document	with	data	records	2	through	4	and
sends	the	merge	documents	to	a	new	document.

With	ActiveDocument.MailMerge

				.DataSource.FirstRecord	=	2

				.DataSource.LastRecord	=	4

				.Destination	=	wdSendToNewDocument

				.Execute

End	With



Show	All



Layout	Property
							

Returns	or	sets	an	MsoOrgChartLayoutType	constant	to	indicate	the
formatting	of	the	child	nodes	in	an	organization	chart.	Read/write.

MsoOrgChartLayoutType	can	be	one	of	these	MsoOrgChartLayoutType
constants.
msoOrgChartLayoutAssistant		Places	child	nodes	as	assistants.
msoOrgChartLayoutBothHanging		Places	child	nodes	vertically	below	the
parent	node	on	both	the	left	and	the	right	side.
msoOrgChartLayoutLeftHanging		Places	child	nodes	vertically	below	the
parent	node	on	the	left	side.
msoOrgChartLayoutMixed		Return	value	for	a	parent	node	that	has	children
formatted	using	more	than	one	MsoOrgChartLayoutType.
msoOrgChartLayoutRightHanging		Places	child	nodes	vertically	below	the
parent	node	on	the	right	side.
msoOrgChartLayoutStandard		Places	child	nodes	horizontally	below	the
parent	node.

expression.Layout

expression			Required.	An	expression	that	returns	a	DiagramNode	object.



Example

This	example	creates	an	organization	chart	in	the	active	document	with	three
child	nodes	and	places	them	vertically	beneath	the	parent	node	along	the	right
side.

Sub	OrgChartLayoutHangRight()

				Dim	shpOrgChart	As	Shape

				Dim	dgnRoot	As	DiagramNode

				Dim	dgnManagerShape	As	DiagramNode

				Dim	intCount	As	Integer

				'Add	an	org	chart	to	the	active	document	and

				'add	the	first	(parent)	node

				Set	shpOrgChart	=	ActiveDocument.Shapes.AddDiagram(	_

								Type:=msoDiagramOrgChart,	Left:=10,	_

								Top:=15,	Width:=400,	Height:=475)

				Set	dgnRoot	=	shpOrgChart.DiagramNode.Children.AddNode

				'Add	three	child	nodes	to	the	parent	node

				For	intCount	=	1	To	3

								dgnRoot.Children.AddNode

				Next

				'Format	the	child	nodes	to	hang	vertically	along	the

				'right	directly	under	the	parent	node.

				dgnRoot.Layout	=	msoOrgChartLayoutRightHanging

End	Sub



Show	All



LayoutMode	Property
							

Returns	or	sets	the	layout	mode	for	the	current	document.
Read/write	WdLayoutMode.

WdLayoutMode	can	be	one	of	these	WdLayoutMode	constants.
wdLayoutModeDefault	No	grid	is	used	to	lay	out	text.
wdLayoutModeGenko	Text	is	laid	out	on	a	grid;	the	user	specifies	the	number
of	lines	and	the	number	of	characters	per	line.	As	the	user	types,	Microsoft
Word	automatically	aligns	characters	with	gridlines.
wdLayoutModeGrid	Text	is	laid	out	on	a	grid;	the	user	specifies	the	number	of
lines	and	the	number	of	characters	per	line.	As	the	user	types,	Microsoft	Word
doesn't	automatically	align	characters	with	gridlines.
wdLayoutModeLineGrid	Text	is	laid	out	on	a	grid;	the	user	specifies	the
number	of	lines,	but	not	the	number	of	characters	per	line.

expression.LayoutMode

expression			Required.	An	expression	that	returns	a	PageSetup	object.



Remarks

For	more	information	on	using	Word	with	Asian	languages,	see	Word	features
for	Asian	languages.

mk:@MSITStore:wdmain10.chm::/html/wdrefFeaturesAvailableInWordWhenAsianLanguagesAreEnabled.htm


Example

This	example	sets	the	layout	mode	for	the	active	document	so	that	Microsoft
Word	automatically	aligns	typed	text	to	a	grid.

ActiveDocument.PageSetup.LayoutMode	=	wdLayoutModeGenko



Show	All



Leader	Property
							

Returns	or	sets	the	leader	for	the	specified	TabStop	object.	Read/write
WdTabLeader.

WdTabLeader	can	be	one	of	these	WdTabLeader	constants.
wdTabLeaderDashes
wdTabLeaderDots
wdTabLeaderHeavy
wdTabLeaderLines
wdTabLeaderMiddleDot
wdTabLeaderSpaces

expression.Leader

expression			Required.	An	expression	that	returns	a	TabStop	object.



Example

This	example	changes	the	leader	for	all	tab	stops	that	have	a	leader	to	dashes	for
all	the	paragraphs	in	the	active	document.

Dim	tsLoop	As	TabStop

For	each	tsLoop	in	ActiveDocument.Paragraphs.TabStops

				If	tsLoop.Leader	<>	wdTabLeaderSpaces	Then

								tsLoop.Leader	=	wdTabLeaderDashes

				End	If

Next	tsLoop



Show	All



Left	Property
							

Left	property	as	it	applies	to	the	Shape	and	ShapeRange	objects.

Returns	or	sets	a	Single	that	represents	the	horizontal	position,	measured	in
points,	of	the	specified	shape	or	shape	range.	Can	also	be	any	valid
WdShapePosition	constant.	Read/write.

WdShapePosition	can	be	one	of	these	WdShapePosition	constants.
WdShapeBottom
WdShapeCenter
WdShapeInside
WdShapeLeft
WdShapeOutside
WdShapeRight
WdShapeTop

expression.Left

expression			Required.	An	expression	that	returns	one	of	the	above	objects.



Remarks

The	position	of	a	shape	is	measured	from	the	upper-left	corner	of	the	shape's
bounding	box	to	the	shape's	anchor.	The	RelativeHorizontalPosition	property
controls	whether	the	anchor	is	positioned	alongside	a	character,	column,	margin,
or	the	edge	of	the	page.

For	a	ShapeRange	object	that	contains	more	than	one	shape,	the	Left	property
sets	the	horizontal	position	of	each	shape.

Left	property	as	it	applies	to	the	Application,	Task,	and	Window	objects.

Returns	or	sets	a	Long	that	represents	the	horizontal	position	of	the	active
document	(for	the	Application	object)	or	the	specified	task	or	window,
measured	in	points.	Read/write.

expression.Left

expression			Required.	An	expression	that	returns	one	of	the	above	objects.



Example

As	it	applies	to	the	Shape	object.

This	example	sets	the	horizontal	position	of	the	first	shape	in	the	active
document	to	1	inch	from	the	left	edge	of	the	page.

With	ActiveDocument.Shapes(1)

				.RelativeHorizontalPosition	=	_

								wdRelativeHorizontalPositionPage

				.Left	=	InchesToPoints(1)

End	With

This	example	sets	the	horizontal	position	of	the	first	and	second	shapes	in	the
active	document	to	1	inch	from	the	left	edge	of	the	column.

With	ActiveDocument.Shapes.Range(Array(1,	2))

				.RelativeHorizontalPosition	=	_

								wdRelativeHorizontalPositionColumn

				.Left	=	InchesToPoints(1)

End	With

As	it	applies	to	the	Window	object.

This	example	sets	the	horizontal	position	of	the	active	window	to	100	points.

With	ActiveDocument.ActiveWindow

				.WindowState	=	wdWindowStateNormal

				.Left	=	100

				.Top	=	0

End	With



LeftIndent	Property
							

Returns	or	sets	a	Single	that	represents	the	left	indent	value	(in	points)	for	the
specified	paragraphs,	table	rows,	or	HTML	division.	Read/write.

expression.LeftIndent



Example

This	example	sets	the	left	indent	of	the	first	paragraph	in	the	active	document	to
1	inch.	The	InchesToPoints	method	is	used	to	convert	inches	to	points.

ActiveDocument.Paragraphs(1).LeftIndent	=	InchesToPoints(1)

This	example	sets	the	left	indent	for	all	rows	in	the	first	table	in	the	active
document.

ActiveDocument.Tables(1).Rows.LeftIndent	=	InchesToPoints(1)



LeftMargin	Property
							

Returns	or	sets	the	distance	(in	points)	between	the	left	edge	of	the	page	and	the
left	boundary	of	the	body	text.	Read/write	Single.

expression.LeftMargin

expression			Required.	An	expression	that	returns	a	PageSetup	object.



Remarks

If	the	MirrorMargins	property	is	set	to	True,	the	LeftMargin	property	controls
the	setting	for	inside	margins	and	the	RightMargin	property	controls	the	setting
for	outside	margins.



Example

This	example	sets	the	left	margin	to	1	inch	(72	points)	for	the	second	section	in
the	active	document.

ActiveDocument.Sections(2).PageSetup.LeftMargin	=	72



LeftPadding	Property
							

Returns	or	sets	the	amount	of	space	(in	points)	to	add	to	the	left	of	the	contents
of	a	single	cell	or	all	the	cells	in	a	table.	Read/write	Single.

expression.LeftPadding

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.



Remarks

The	setting	of	the	LeftPadding	property	for	a	single	cell	overrides	the	setting	of
the	LeftPadding	property	for	the	entire	table.



Example

This	example	sets	the	left	padding	for	the	first	table	in	the	active	document	to	40
pixels.

ActiveDocument.Tables(1).LeftPadding	=	_

				PixelsToPoints(40,	False)



Length	Property
							

When	the	AutoLength	property	of	the	specified	callout	is	set	to	False,	the
Length	property	returns	the	length	(in	points)	of	the	first	segment	of	the	callout
line	(the	segment	attached	to	the	text	callout	box).	Applies	only	to	callouts
whose	lines	consist	of	more	than	one	segment	(types	msoCalloutThree	and
msoCalloutFour).	Read-only	Single.

expression.Length

expression			Required.	An	expression	that	returns	a	CalloutFormat	object.



Remarks

This	property	is	read-only.	Use	the	CustomLength	method	to	set	the	value	of
this	property	for	the	CalloutFormat	object.



Example

This	example	specifies	that	if	the	first	line	segment	in	the	callout	named	"co1"
has	a	fixed	length,	then	the	length	of	the	first	line	segment	in	the	callout	named
"co2"	will	also	be	fixed	at	that	same	length.	For	the	example	to	work,	both
callouts	must	have	multiple-segment	lines.

Dim	sngLength	As	Single

With	ActiveDocument.Shapes

				With	.Item("co1").Callout

								If	Not	.AutoLength	Then	sngLength	=	.Length

				End	With

				If	sngLength	Then	_

								.Item("co2").Callout.CustomLength	sngLength

End	With



Letterhead	Property
							

True	if	space	is	reserved	for	a	preprinted	letterhead	in	a	letter	created	by	the
Letter	Wizard.	Read/write	Boolean.

Note			The	LetterheadSize	property	controls	the	size	of	the	reserved	letterhead
space.

expression.Letterhead

expression			Required.	An	expression	that	returns	a	LetterContent	object.



Example

This	example	creates	a	new	LetterContent	object,	reserves	an	inch	of	space	at
the	top	of	the	page	for	a	preprinted	letterhead,	and	then	runs	the	Letter	Wizard	by
using	the	RunLetterWizard	method.

Dim	lcNew	As	LetterContent

Set	lcNew	=	New	LetterContent

With	lcNew

				.Letterhead	=	True

				.LetterheadLocation	=	wdLetterTop

				.LetterheadSize	=	InchesToPoints(1)

End	With

ActiveDocument.RunLetterWizard	_

				LetterContent:=lcNew,	WizardMode:=True



Show	All



LetterheadLocation	Property
							

Returns	or	sets	the	location	of	the	preprinted	letterhead	in	a	letter	created	by	the
Letter	Wizard.	Read/write	WdLetterheadLocation.

WdLetterheadLocation	can	be	one	of	these	WdLetterheadLocation	constants.
wdLetterBottom
wdLetterLeft
wdLetterRight
wdLetterTop

expression.LetterheadLocation

expression			Required.	An	expression	that	returns	a	LetterContent	object.



Example

This	example	creates	a	new	LetterContent	object,	reserves	an	inch	of	space	at
the	top	of	the	page	for	a	preprinted	letterhead,	and	then	runs	the	Letter	Wizard	by
using	the	RunLetterWizard	method.

Dim	lcNew	As	LetterContent

Set	lcNew	=	New	LetterContent

With	lcNew

				.Letterhead	=	True

				.LetterheadLocation	=	wdLetterTop

				.LetterheadSize	=	InchesToPoints(1)

End	With

ActiveDocument.RunLetterWizard	LetterContent:=lcNew



LetterheadSize	Property
							

Returns	or	sets	the	amount	of	space	(in	points)	to	be	reserved	for	a	preprinted
letterhead	in	a	letter	created	by	the	Letter	Wizard.	Read/write	Single.

expression.LetterheadSize

expression			Required.	An	expression	that	returns	a	LetterContent	object.



Example

This	example	retrieves	the	Letter	Wizard	elements	from	the	active	document,
changes	the	preprinted	letterhead	settings,	and	then	uses	the	SetLetterContent
method	to	update	the	active	document	to	reflect	the	changes.

Set	myLetterContent	=	ActiveDocument.GetLetterContent

With	myLetterContent

				.Letterhead	=	True

				.LetterheadLocation	=	wdLetterTop

				.LetterheadSize	=	InchesToPoints(1.5)

End	With

ActiveDocument.SetLetterContent	LetterContent:=myLetterContent



Show	All



LetterStyle	Property
							

Returns	or	sets	the	layout	of	a	letter	created	by	the	Letter	Wizard.	Read/write
WdLetterStyle.

WdLetterStyle	can	be	one	of	these	WdLetterStyle	constants.
wdFullBlock
wdModifiedBlock
wdSemiBlock

expression.LetterStyle

expression			Required.	An	expression	that	returns	a	LetterContent	object.



Example

This	example	creates	a	new	LetterContent	object,	selects	a	letter	style,	and	then
runs	the	Letter	Wizard	by	using	the	RunLetterWizard	method.

Set	aLetterContent	=	New	LetterContent

aLetterContent.LetterStyle	=	wdFullBlock

ActiveDocument.RunLetterWizard	_

				LetterContent:=aLetterContent,	WizardMode:=True



Show	All



Level	Property
							

Level	property	as	it	applies	to	the	HeadingStyle	object.

Returns	or	sets	the	level	for	the	heading	style	in	a	table	of	contents	or	table	of
figures.	Read/write	Integer.

expression.Level

expression			Required.	An	expression	that	returns	a	HeadingStyle	object.

Level	property	as	it	applies	to	the	Subdocument	object.

Returns	the	heading	level	used	to	create	the	subdocument.	Read-only	Long.

expression.Level

expression			Required.	An	expression	that	returns	a	Subdocument	object.



Example

As	it	applies	to	the	HeadingStyle	object.	

This	example	adds	a	table	of	contents	at	the	insertion	point	in	the	active
document,	and	then	it	changes	the	levels	for	the	heading	styles.

ActiveDocument.TablesOfContents.Add	_

				Range:=Selection.Range,	_

				RightAlignPageNumbers:=True,	_

				UseHeadingStyles:=True,	_

				UpperHeadingLevel:=1,	_

				LowerHeadingLevel:=3,	_

				IncludePageNumbers:=True,	_

				TableID:=wdTOCFormal

With	ActiveDocument.TablesOfContents(1).HeadingStyles

				.Add	Style:="Title",	Level:=1

				.Add	Style:="SubTitle",	Level:=2

				.Add	Style:="List	Bullet",	Level:=3

End	With

With	ActiveDocument.TablesOfContents(1)

				.HeadingStyles(1).Level	=	2

				.HeadingStyles(2).Level	=	4

				.HeadingStyles(3).Level	=	6

End	With

As	it	applies	to	the	Subdocument	object.	

This	example	looks	through	each	subdocument	in	the	active	document	and
displays	the	subdocument's	heading	level.

i	=	1

If	ActiveDocument.Subdocuments.Count	>	=	1	Then

				For	each	s	in	ActiveDocument.Subdocuments

								MsgBox	"The	heading	level	for	SubDoc	"	&	i	_

												&	"	is	"	&	s.Level

								i	=	i	+	1

				Next	s

Else

				MsgBox	"There	are	no	subdocuments	defined."

End	If





Line	Property
							

Returns	a	LineFormat	object	that	contains	line	formatting	properties	for	the
specified	shape.	(For	a	line,	the	LineFormat	object	represents	the	line	itself;	for
a	shape	with	a	border,	the	LineFormat	object	represents	the	border.)	Read-only.



Example

This	example	adds	a	blue	dashed	line	to	myDocument.

Set	myDocument	=	ActiveDocument

With	myDocument.Shapes.AddLine(10,	10,	250,	250).Line

				.DashStyle	=	msoLineDashDotDot

				.ForeColor.RGB	=	RGB(50,	0,	128)

End	With

This	example	adds	a	cross	to	myDocument	and	then	sets	its	border	to	be	8	points
thick	and	red.

Set	myDocument	=	ActiveDocument

With	myDocument.Shapes.AddShape(msoShapeCross,	10,	10,	50,	70).Line

				.Weight	=	8

				.ForeColor.RGB	=	RGB(255,	0,	0)

End	With



LineBetween	Property
							

True	if	vertical	lines	appear	between	all	the	columns	in	the	TextColumns
collection.	Can	be	True,	False,	or	wdUndefined.	Read/write	Long.

expression.LineBetween

expression			Required.	An	expression	that	returns	a	TextColumns	collection
object.



Example

This	example	cycles	through	each	section	in	the	active	document	and	displays	a
message	box	if	the	text	columns	in	the	section	are	separated	by	vertical	lines.

i	=	1

For	each	s	in	ActiveDocument.Sections

				If	s.PageSetup.TextColumns.LineBetween	=	True	Then

								MsgBox	"The	columns	in	section	"	&	i	&	"	contain	lines."

				End	If

				i	=	i	+	1

Next	s



LineNumbering	Property
							

Returns	or	sets	the	LineNumbering	object	that	represents	the	line	numbers	for
the	specified	PageSetup	object.

expression.LineNumbering

expression			Required.	An	expression	that	returns	a	PageSetup	object.



Remarks

You	must	be	in	print	layout	view	to	see	line	numbering.



Example

This	example	enables	line	numbering	for	the	active	document.

ActiveDocument.PageSetup.LineNumbering.Active	=	True

This	example	enables	line	numbering	for	a	document	named
"MyDocument.doc"	The	starting	number	is	set	to	one,	every	fifth	line	number	is
shown,	and	the	numbering	is	continuous	throughout	all	sections	in	the	document.

set	myDoc	=	Documents("MyDocument.doc")

With	myDoc.PageSetup.LineNumbering

				.Active	=	True

				.StartingNumber	=	1

				.CountBy	=	5

				.RestartMode	=	wdRestartContinuous

End	With

This	example	sets	the	line	numbering	in	the	active	document	equal	to	the	line
numbering	in	MyDocument.doc.

ActiveDocument.PageSetup.LineNumbering	=	Documents("MyDocument.doc")	_

				.PageSetup.LineNumbering



Show	All



LineSpacing	Property
							

Returns	or	sets	the	line	spacing	(in	points)	for	the	specified	paragraphs.
Read/write	Single.



Remarks

The	LineSpacing	property	can	be	set	after	the	LineSpacingRule	property	has
been	set	to:

wdLineSpaceAtLeast	the	line	spacing	can	be	greater	than	or	equal	to,	but	never
less	than,	the	specified	LineSpacing	value.

wdLineSpaceExactly		the	line	spacing	never	changes	from	the	specified
LineSpacing	value,	even	if	a	larger	font	is	used	within	the	paragraph.

wdLineSpaceMultiple			a	LineSpacing	property	value	must	be	specified,	in
points.

Use	the	LinesToPoints	method	to	convert	a	number	of	lines	to	the
corresponding	value	in	points.	For	example,	LinesToPoints(2)	returns	the	value
24.



Example

This	example	sets	the	line	spacing	for	the	first	paragraph	in	the	active	document
to	always	be	at	least	12	points.

With	ActiveDocument.Paragraphs(1)

				.LineSpacingRule	=	wdLineSpaceAtLeast

				.LineSpacing	=	12

End	With

This	example	triple-spaces	the	lines	in	the	selected	paragraphs.

With	Selection.Paragraphs

				.LineSpacingRule	=	wdLineSpaceMultiple

				.LineSpacing	=	LinesToPoints(3)

End	With



Show	All



LineSpacingRule	Property
							

Returns	or	sets	the	line	spacing	for	the	specified	paragraphs.	Read/write
WdLineSpacing.

WdLineSpacing	can	be	one	of	these	WdLineSpacing	constants.
wdLineSpace1pt5
wdLineSpaceAtLeast
wdLineSpaceDouble
wdLineSpaceExactly
wdLineSpaceMultiple
wdLineSpaceSingle

expression.LineSpacingRule

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.



Remarks

Use	wdLineSpaceSingle,	wdLineSpace1pt5,	or	wdLineSpaceDouble	to	set	the
line	spacing	to	one	of	these	values.	To	set	the	line	spacing	to	an	exact	number	of
points	or	to	a	multiple	number	of	lines,	you	must	also	set	the	LineSpacing
property.



Example

This	example	double-spaces	the	lines	in	the	first	paragraph	of	the	active
document.

ActiveDocument.Paragraphs(1).LineSpacingRule	=	_

				wdLineSpaceDouble

This	example	returns	the	line	spacing	rule	used	for	the	first	paragraph	in	the
selection.

lrule	=	Selection.Paragraphs(1).LineSpacingRule



LinesPage	Property
							

Returns	or	sets	the	number	of	lines	per	page	in	the	document	grid.	Read/write
Single.

expression.LinesPage

expression			Required.	An	expression	that	returns	a	PageSetup	object.



Example

This	example	sets	the	number	of	lines	per	page	to	35	for	the	active	document.

ActiveDocument.PageSetup.LinesPage	=	35



LinesToDrop	Property
							

Returns	or	sets	the	height	(in	lines)	of	the	specified	dropped	capital	letter.
Read/write	Long.

expression.LinesToDrop

expression			Required.	An	expression	that	returns	a	DropCap	object.



Example

This	example	formats	the	first	character	in	the	active	document	as	a	dropped
capital	letter	with	a	height	of	three	lines.

With	ActiveDocument.Paragraphs(1).DropCap

				.Enable

				.Position	=	wdDropNormal

				.LinesToDrop	=	3

End	With



Show	All



LineStyle	Property
							

Returns	or	sets	the	border	line	style	for	the	specified	object.	Read/write
WdLineStyle.

WdLineStyle	can	be	one	of	these	WdLineStyle	constants.
wdLineStyleDashDot
wdLineStyleDashDotDot
wdLineStyleDashDotStroked
wdLineStyleDashLargeGap
wdLineStyleDashSmallGap
wdLineStyleDot
wdLineStyleDouble
wdLineStyleDoubleWavy
wdLineStyleEmboss3D
wdLineStyleEngrave3D
wdLineStyleInset
wdLineStyleNone
wdLineStyleOutset
wdLineStyleSingle
wdLineStyleSingleWavy
wdLineStyleThickThinLargeGap
wdLineStyleThickThinMedGap
wdLineStyleThickThinSmallGap
wdLineStyleThinThickLargeGap
wdLineStyleThinThickMedGap
wdLineStyleThinThickSmallGap
wdLineStyleThinThickThinLargeGap
wdLineStyleThinThickThinMedGap
wdLineStyleThinThickThinSmallGap



wdLineStyleTriple

expression.LineStyle

expression			Required.	An	expression	that	returns	a	Border	object.



Remarks

Setting	the	LineStyle	property	for	a	range	that	refers	to	individual	characters	or
words	applies	a	character	border.

Setting	the	LineStyle	property	for	a	paragraph	or	range	of	paragraphs	applies	a
paragraph	border.	Use	the	InsideLineStyle	property	to	apply	a	border	between
consecutive	paragraphs.

Setting	the	LineStyle	property	for	a	section	applies	a	page	border	around	the
pages	in	the	section.



Example

If	the	selection	is	a	paragraph	or	a	collapsed	selection,	this	example	adds	a	single
0.75-point	paragraph	border	above	the	selection.	If	the	selection	doesn't	include
a	paragraph,	a	border	is	applied	around	the	selected	text.

With	Selection.Borders(wdBorderTop)

				.LineStyle	=	wdLineStyleSingle

				.LineWidth	=	wdLineWidth075pt

End	With

This	example	adds	a	double	1.5-point	border	below	each	frame	in	the	active
document.

For	Each	aFrame	In	ActiveDocument.Frames

				With	aFrame.Borders(wdBorderBottom)

								.LineStyle	=	wdLineStyleDouble

								.LineWidth	=	wdLineWidth150pt

				End	With

Next	aFrame

The	following	example	applies	a	border	around	the	fourth	word	in	the	active
document.	Applying	a	single	border	(in	this	example,	a	top	border)	to	text
applies	a	border	around	the	text.

ActiveDocument.Words(4).Borders(wdBorderTop)	_

				.LineStyle	=	wdLineStyleSingle



LineUnitAfter	Property
							

Returns	or	sets	the	amount	of	spacing	(in	gridlines)	after	the	specified
paragraphs.	Read/write	Single.

expression.LineUnitAfter

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.



Remarks

For	more	information	on	using	Microsoft	Word	with	East	Asian	languages,	see
Word	features	for	East	Asian	languages.

mk:@MSITStore:wdmain10.chm::/html/wdrefFeaturesAvailableInWordWhenAsianLanguagesAreEnabled.htm


Example

This	example	sets	the	spacing	after	the	first	paragraph	in	the	active	document	to
one	gridline.

ActiveDocument.Paragraphs(1).LineUnitAfter	=	1



LineUnitBefore	Property
							

Returns	or	sets	the	amount	of	spacing	(in	gridlines)	before	the	specified
paragraphs.	Read/write	Single.

expression.LineUnitBefore

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.



Remarks

For	more	information	on	using	Microsoft	Word	with	East	Asian	languages,	see
Word	features	for	East	Asian	languages.

mk:@MSITStore:wdmain10.chm::/html/wdrefFeaturesAvailableInWordWhenAsianLanguagesAreEnabled.htm


Example

This	example	sets	the	spacing	before	the	second	paragraph	in	the	active
document	to	one	gridline.

ActiveDocument.Paragraphs(2).LineUnitBefore	=	1



Show	All



LineWidth	Property
							

Returns	or	sets	the	line	width	of	an	object's	border.	Returns	a	WdLineWidth
constant	or	wdUndefined	if	the	object	either	has	no	borders	or	has	borders	with
more	than	one	line	width.	Read/write.

WdLineWidth	can	be	one	of	these	WdLineWidth	constants.
wdLineWidth025pt
wdLineWidth050pt
wdLineWidth075pt
wdLineWidth100pt
wdLineWidth150pt
wdLineWidth225pt
wdLineWidth300pt
wdLineWidth450pt
wdLineWidth600pt

expression.LineWidth

expression			Required.	An	expression	that	returns	a	Border	object.



Remarks

If	the	specified	line	width	isn't	available	for	the	border's	line	style,	this	property
generates	an	error.	To	determine	the	line	widths	available	for	a	particular	line
style,	see	the	Borders	and	Shading	dialog	box	(Format	menu).



Example

This	example	adds	a	border	below	the	first	row	in	the	first	table	of	the	active
document.

If	ActiveDocument.Tables.Count	>=	1	Then

				With	ActiveDocument.Tables(1).Rows(1).Borders(wdBorderBottom)

								.LineStyle	=	wdLineStyleSingle

								.LineWidth	=	wdLineWidth050pt

				End	With

End	If

This	example	adds	a	wavy,	red	line	to	the	left	of	the	selection.

With	Selection.Borders(wdBorderLeft)

				.LineStyle	=	wdLineStyleSingleWavy

				.LineWidth	=	wdLineWidth075pt

				.ColorIndex	=	wdRed

End	With



LinkedStyle	Property
							

Returns	or	sets	the	name	of	the	style	that's	linked	to	the	specified	ListLevel
object.	Read/write	String.

expression.LinkedStyle

expression			Required.	An	expression	that	returns	a	ListLevel	object.



Example

This	example	sets	the	variable	myListTemp	to	the	first	list	template	(excluding
None)	on	the	Outline	Numbered	tab	in	the	Bullets	and	Numbering	dialog	box
(Format	menu).	Each	level	in	the	list	has	a	matching	heading	style	linked	to	it.

Set	myListTemp	=	_

				ListGalleries(wdOutlineNumberGallery).ListTemplates(1)

For	Each	mylevel	In	myListTemp.ListLevels

				mylevel.LinkedStyle	=	"Heading	"	&	mylevel.index

Next	mylevel



LinkFormat	Property
							

Returns	a	LinkFormat	object	that	represents	the	link	options	of	the	specified
field,	inline	shape,	or	shape	that's	linked	to	a	file.	Read/only.



Example

This	example	inserts	a	graphic	as	an	inline	shape	(using	an	INCLUDEPICTURE
field)	and	then	displays	the	source	name	(Tiles.bmp).

Set	iShape	=	ActiveDocument.InlineShapes	_

				.AddPicture(FileName:="C:\windows\Tiles.bmp",	_

				LinkToFile:=True,	SaveWithDocument:=False,	_

				Range:=Selection.Range)

MsgBox	iShape.LinkFormat.SourceName

This	example	updates	any	fields	in	the	active	document	that	aren't	updated
automatically.

For	Each	afield	In	ActiveDocument.Fields

				If	afield.LinkFormat.AutoUpdate	=	False	_

								Then	afield.LinkFormat.Update

Next	afield



LinkStyle	Property
							

Sets	or	returns	a	Variant	that	represents	a	link	between	a	paragraph	and	a
character	style.	Read/write.

expression.LinkStyle

expression			Required.	An	expression	that	returns	a	Style	object.



Remarks

When	a	character	style	and	a	paragraph	style	are	linked,	the	two	styles	take	on
the	same	character	formatting.



Example

This	example	creates	and	formats	a	new	character	style,	and	then	it	links	the
character	style	to	the	built-in	heading	style	"Heading	1"	so	that	the	"Heading	1"
style	takes	on	the	character	formatting	of	the	newly	added	style.

Sub	LinkHeadStyle()

				Dim	styChar1	As	Style

				Set	styChar1	=	ActiveDocument.Styles.Add(Name:="Heading	1	Characters",	_

								Type:=wdStyleTypeCharacter)

								With	styChar1

												.Font.Name	=	"Verdana"

												.Font.Bold	=	True

												.Font.Shadow	=	True

												With	.Font.Borders(1)

																.LineStyle	=	wdLineStyleDot

																.LineWidth	=	wdLineWidth300pt

																.Color	=	wdColorDarkRed

												End	With

								End	With

				ActiveDocument.Styles("Heading	1").LinkStyle	=	ActiveDocument	_

								.Styles("Heading	1	Characters")

				With	ActiveDocument.Content

								.InsertParagraphAfter

								.InsertAfter	"New	Linked	Style"

								.Select

				End	With

				Selection.Collapse	Direction:=wdCollapseEnd

				Selection.Style	=	ActiveDocument.Styles("Heading	1")

End	Sub



LinkToPrevious	Property
							

True	if	the	specified	header	or	footer	is	linked	to	the	corresponding	header	or
footer	in	the	previous	section.	When	a	header	or	footer	is	linked,	its	contents	are
the	same	as	in	the	previous	header	or	footer.	Read/write	Boolean.

expression.LinkToPrevious

expression			Required.	An	expression	that	returns	a	HeaderFooter	object.



Remarks

Because	the	LinkToPrevious	property	is	set	to	True	by	default,	you	can	add
headers,	footers,	and	page	numbers	to	your	entire	document	by	working	with	the
headers,	footers,	and	page	numbers	in	the	first	section.	For	instance,	the
following	example	adds	page	numbers	to	the	header	on	all	pages	in	all	sections
of	the	active	document.

ActiveDocument.Sections(1)	_

				.Headers(wdHeaderFooterPrimary).PageNumbers.Add

The	LinkToPrevious	property	applies	to	each	header	or	footer	individually.	For
example,	the	LinkToPrevious	property	could	be	set	to	True	for	the	even-
numbered-page	header	but	False	for	the	even-numbered-page	footer.



Example

The	first	part	of	this	example	creates	a	new	document	with	two	sections.	The
second	part	creates	unique	headers	for	even-numbered	and	odd-numbered	pages
in	sections	one	and	two	in	the	new	document.

Documents.Add

With	Selection

				For	j	=	1	to	4

								.TypeParagraph

								.InsertBreak

								.TypeParagraph

				Next	j

End	With

With	ActiveDocument

				.Paragraphs(5).Range.InsertBreak	Type:=wdSectionBreakNextPage

				.PageSetup.OddAndEvenPagesHeaderFooter	=	True

End	With

With	ActiveDocument.Sections(2)

				With	.Headers(wdHeaderFooterPrimary)

								.LinkToPrevious	=	False

								.Range.InsertBefore	"Section	2	Odd	Header"

				End	With

				With	.Headers(wdHeaderFooterEvenPages)

								.LinkToPrevious	=	False

								.Range.InsertBefore	"Section	2	Even	Header"

				End	With

End	With

With	ActiveDocument.Sections(1)

				.Headers(wdHeaderFooterPrimary)	_

								.Range.InsertBefore	"Section	1	Odd	Header"

				.Headers(wdHeaderFooterEvenPages)	_

								.Range.InsertBefore	"Section	1	Even	Header"

End	With



List	Property
							

Returns	a	List	object	that	represents	the	first	formatted	list	contained	in	the
specified	ListFormat	object.

expression.List

expression			Required.	An	expression	that	returns	a	ListFormat	object.



Remarks

If	the	first	paragraph	in	the	range	for	the	ListFormat	object	is	not	formatted	as	a
list,	the	List	property	returns	nothing.



Example

This	example	returns	the	first	list	in	the	selection,	and	then	it	applies	the	first	list
template	(excluding	None)	on	the	Numbered	tab	in	the	Bullets	and	Numbering
dialog	box	(Format	menu).	The	selection	can	only	contain	one	list.

Set	mylist	=	Selection.Range.ListFormat.List

mylist.ApplyListTemplate	_

				ListTemplate:=ListGalleries(wdNumberGallery)	_

				.ListTemplates(1)



ListEntries	Property
							

Returns	a	ListEntries	collection	that	represents	all	the	items	in	a	DropDown
object.

expression.ListEntries

expression			Required.	An	expression	that	returns	a	DropDown	object.



Remarks

For	information	about	returning	a	single	member	of	a	collection,	see	Returning
an	Object	from	a	Collection.



Example

This	example	retrieves	the	text	of	the	active	item	from	the	drop-down	form	field
named	"DropDown1."

Set	myField	=	ActiveDocument.FormFields("DropDown1").DropDown

num	=	myField.Value

myName	=	myField.ListEntries(num).Name

This	example	retrieves	the	total	number	of	items	in	the	active	drop-down	form
field	(the	document	should	be	protected	for	forms).	If	there	are	two	or	more
items,	this	example	sets	the	second	item	as	the	active	item.

Set	myField	=	Selection.FormFields(1)

If	myfield.Type	=	wdFieldFormDropDown	Then

				num	=	myField.DropDown.ListEntries.Count

				If	num	>=	2	Then	myField.DropDown.Value	=	2

End	If



ListFormat	Property
							

Returns	a	ListFormat	object	that	represents	all	the	list	formatting	characteristics
of	a	range.	Read-only.



Example

This	example	sets	the	variable	myDoc	to	a	range	that	includes	paragraphs	three
through	six	of	the	active	document.	The	example	then	either	applies	the	default
outline-numbered	list	format	to	the	range	or	removes	it,	depending	on	whether	or
not	the	format	was	already	applied	to	the	range.

Set	myDoc	=	ActiveDocument

Set	myRange	=	_

				myDoc.Range(Start:=	myDoc.Paragraphs(3).Range.Start,	_

				End:=myDoc.Paragraphs(6).Range.End)

myRange.ListFormat.ApplyOutlineNumberDefault

This	example	applies	the	second	list	template	on	the	Numbered	tab	in	the
Bullets	and	Numbering	dialog	box	to	all	the	paragraphs	in	the	selection.

Selection.Range.ListFormat.ApplyListTemplate	_

				ListTemplate:=ListGalleries(wdNumberGallery).ListTemplates(2)



ListGalleries	Property
							

Returns	a	ListGalleries	collection	that	represents	the	three	list	template	galleries
(Bulleted,	Numbered,	and	Outline	Numbered).	Each	gallery	corresponds	to	a
tab	in	the	Bullets	and	Numbering	dialog	box	(Format	menu).

expression.ListGalleries

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.



Remarks

For	information	about	returning	a	single	member	of	a	collection,	see	Returning
an	Object	from	a	Collection.



Example

This	example	sets	the	variable	mylsttmp	to	the	second	list	template	on	the
Outline	Numbered	tab	in	the	Bullets	and	Numbering	dialog	box.	The	example
then	applies	that	template	to	the	first	list	in	the	active	document.

Set	mylsttmp	=	_

				ListGalleries(wdOutlineNumberGallery).ListTemplates(2)

ActiveDocument.Lists(1).ApplyListTemplate	ListTemplate:=mylsttmp

This	example	cycles	through	the	ListGalleries	collection	and	changes	the
templates	in	each	list	template	gallery	back	to	the	built-in	template.

For	Each	listgal	In	ListGalleries

				For	i	=	1	To	7

								listgal.Reset(i)

				Next	i

Next	listgal



Show	All



ListLevelNumber	Property
							

ListLevelNumber	property	as	it	applies	to	the	ListFormat	object.

Returns	or	sets	the	list	level	for	the	first	paragraph	in	the	specified	ListFormat
object.	Read/write	Long.

expression.ListLevelNumber

expression			Required.	An	expression	that	returns	a	ListFormat	object.

ListLevelNumber	property	as	it	applies	to	the	Style	object.

Returns	the	list	level	for	the	specified	style.	Read-only	Long.

expression.ListLevelNumber

expression			Required.	An	expression	that	returns	a	Style	object.



Example

As	it	applies	to	the	ListFormat	object.	

This	example	returns	the	list	level	for	the	third	paragraph	in	the	active	document.

lev	=	ActiveDocument.Paragraphs(3).Range.ListFormat.ListLevelNumber

As	it	applies	to	the	Style	object.

This	example	displays	the	list	level	for	the	Heading	3	style.

Msgbox	ActiveDocument.Styles(wdStyleHeading3).ListLevelNumber



ListLevels	Property
							

Returns	a	ListLevels	collection	that	represents	all	the	levels	for	the	specified
ListTemplate.

expression.ListLevels

expression			Required.	An	expression	that	returns	a	ListTemplate	object.



Remarks

For	information	about	returning	a	single	member	of	a	collection,	see	Returning
an	Object	from	a	Collection.



Example

This	example	sets	the	variable	myListTemp	to	the	first	list	template	(excluding
None)	on	the	Outline	Numbered	tab	in	the	Bullets	and	Numbering	dialog	box
(Format	menu).	Each	level	in	the	list	has	a	matching	heading	style	linked	to	it.

Set	myListTemp	=	_

				ListGalleries(wdOutlineNumberGallery).ListTemplates(1)

For	Each	mylevel	In	myListTemp.ListLevels

				mylevel.LinkedStyle	=	"Heading	"	&	mylevel.index

Next	mylevel



ListParagraphs	Property
							

Returns	a	ListParagraphs	collection	that	represents	all	the	numbered
paragraphs	in	the	list,	document,	or	range.	Read-only.

For	information	about	returning	a	single	member	of	a	collection,	see	Returning
an	Object	from	a	Collection.



Example

This	example	adds	a	yellow	background	to	each	numbered	or	bulleted	paragraph
in	the	first	document.

For	Each	numpar	In	Documents(1).ListParagraphs

				numpar.Shading.BackgroundPatternColorIndex	=	wdYellow

Next	numpar

This	example	double	underlines	the	paragraphs	in	the	second	list	in	the	active
document.

For	Each	mypara	In	ActiveDocument.Lists(2).ListParagraphs

				mypara.Range.Underline	=	wdUnderlineDouble

Next	mypara



ListPictureBullet	Property
							

Returns	the	InlineShape	object	that	represents	the	picture	used	as	a	bullet	in	a
picture	bullet	list.

expression.ListPictureBullet

expression			Required.	An	expression	that	returns	a	ListFormat	object.



Example

This	example	sets	the	height	and	width	of	the	selected	picture	bullet.	This
example	assumes	that	the	insertion	point	in	the	document	is	located	in	a
paragraph	formatted	with	a	picture	bullet.

Sub	ListPictBullet()

				With	Selection.Range.ListFormat.ListPictureBullet

								.Width	=	InchesToPoints(Inches:=0.5)

								.Height	=	InchesToPoints(Inches:=0.05)

				End	With

End	Sub



Lists	Property
							

Returns	a	Lists	collection	that	contains	all	the	formatted	lists	in	the	specified
document.	Read-only.

For	information	about	returning	a	single	member	of	a	collection,	see	Returning
an	Object	from	a	Collection.



Example

This	example	formats	the	selection	as	a	numbered	list.	The	example	then
displays	a	message	box	that	reports	the	number	of	lists	in	the	active	document.

Selection.Range.ListFormat.ApplyListTemplate	_

				ListTemplate:=ListGalleries(wdNumberGallery).ListTemplates(2)

MsgBox	"This	document	has	"	&	ActiveDocument.Lists.Count	_

				&	"	lists."

This	example	formats	the	third	list	in	the	active	document	with	the	default
bulleted	list	format.	If	the	list	is	already	formatted	with	a	bulleted	list	format,	the
example	removes	the	formatting.

If	ActiveDocument.Lists.Count	>=	3	Then

				ActiveDocument.Lists(3).Range.ListFormat.ApplyBulletDefault

End	If

This	example	displays	a	message	box	that	reports	the	number	of	items	in	each
list	in	MyLetter.doc.

Set	myDoc	=	Documents("MyLetter.doc")

i	=	myDoc.Lists.Count

For	each	li	in	myDoc.Lists

				Msgbox	"List	"	&	i	&	"	has	"	&	li.CountNumberedItems	_

								&	"	items."

				i	=	i	-	1

Next	li



ListString	Property
							

Returns	a	String	that	represents	the	appearance	of	the	list	value	of	the	first
paragraph	in	the	range	for	the	specified	ListFormat	object.	For	example,	the
second	paragraph	in	an	alphabetic	list	would	return	B.	Read-only.

expression.ListString

expression			Required.	An	expression	that	returns	a	ListFormat	object.



Remarks

For	a	bulleted	list,	you	will	need	to	apply	the	correct	font	in	order	to	see	the
string.	Most	bullets	use	the	Symbol	or	Wingdings	font.

Use	the	ListValue	property	to	return	the	numeric	value	of	the	paragraph.



Example

This	example	displays	both	the	numeric	value	of	the	first	paragraph	in	the
selection	and	the	string	representation	of	the	list	value.

v	=	Selection.Range.ListFormat.ListValue

lstring	=	Selection.Range.ListFormat.ListString

MsgBox	"List	value	"	&	v	_

				&	"	is	represented	by	the	string	"	&	lstring



ListTemplate	Property
							

Returns	a	ListTemplate	object	that	represents	the	list	formatting	for	the
specified	Style	or	ListFormat	object.

expression.ListTemplate

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.



Remarks

A	list	template	includes	all	the	formatting	that	defines	a	particular	list.	Each	of
the	seven	formats	(excluding	None)	found	on	each	of	the	tabs	in	the	Bullets	and
Numbering	dialog	box	(Format	menu)	corresponds	to	a	list	template.
Documents	and	templates	can	also	contain	collections	of	list	templates.

If	the	first	paragraph	in	the	range	for	the	ListFormat	object	is	not	formatted	as	a
list,	the	ListTemplate	property	returns	Nothing.



Example

This	example	checks	to	see	which	list	template	is	used	for	the	second	paragraph
in	the	active	document,	and	then	it	applies	that	list	template	to	the	selection.

Set	myltemp	=	ActiveDocument.Paragraphs(2).Range.	_

				ListFormat.ListTemplate

Selection.Range.ListFormat.ApplyListTemplate	ListTemplate:=myltemp



ListTemplates	Property
							

Returns	a	ListTemplates	collection	that	represents	all	the	list	formats	for	the
specified	document,	template,	or	list	gallery.	Read-only.

For	information	about	returning	a	single	member	of	a	collection,	see	Returning
an	Object	from	a	Collection.



Example

This	example	sets	the	variable	mytemp	to	the	first	list	template	on	the	Outline
Numbered	tab	in	the	Bullets	and	Numbering	dialog	box.	The	template	is
modified	to	use	lowercase	letters	for	each	level,	and	it's	applied	to	the	second	list
in	the	active	document.

Set	mytemp	=	ListGalleries(wdOutlineNumberGallery).ListTemplates(1)

For	each	lev	in	mytemp.ListLevels

				lev.NumberStyle	=	wdListNumberStyleLowercaseLetter

Next	lev

ActiveDocument.Lists(2).ApplyListTemplate	ListTemplate:=mytemp

This	example	displays	the	number	of	list	templates	used	in	the	active	document.

Msgbox	ActiveDocument.ListTemplates.Count



Show	All



ListType	Property
							

Returns	the	type	of	lists	that	are	contained	in	the	range	for	the	specified
ListFormat	object.	Read	only	WdListType.

WdListType	can	be	one	of	these	WdListType	constants.
wdListBullet
wdListListNumOnly
wdListMixedNumbering
wdListNoNumbering
wdListOutlineNumbering
wdListPictureBullet
wdListSimpleNumbering

expression.ListType

expression			Required.	An	expression	that	returns	a	ListFormat.



Remarks

The	constant	wdListListNumOnly	refers	to	LISTNUM	fields,	which	are	fields
that	can	be	added	within	the	text	of	a	paragraph.



Example

This	example	checks	to	see	if	the	first	list	in	the	active	document	is	a	simple
numbered	list.	If	it	is,	the	fourth	list	template	on	the	Numbered	tab	of	the
Bullets	and	Numbering	dialog	box	(Format	menu)	is	applied.

Set	myList	=	ActiveDocument.Lists(1)

If	myList.Range.ListFormat.ListType	=	wdListSimpleNumbering	Then

				myList.ApplyListTemplate	_

								ListTemplate:=ListGalleries(wdNumberGallery)	_

								.ListTemplates(4)

End	If



ListValue	Property
							

Returns	the	numeric	value	of	the	first	paragraph	in	the	range	for	the	specified
ListFormat	object.	For	example,	the	ListValue	property	applied	to	the	second
paragraph	in	an	alphabetic	list	would	return	2.	Read-only	Long.

expression.ListValue

expression			Required.	An	expression	that	returns	a	ListFormat	object.



Remarks

Use	the	ListString	property	to	return	a	string	that	represents	the	list	value.

If	the	ListFormat	object	applies	to	a	bulleted	list,	the	ListValue	property	returns
1.

If	the	ListFormat	object	applies	to	an	outline-numbered	list,	the	ListValue
property	returns	the	numeric	value	of	the	first	paragraph	as	it	occurs	in	the
sequence	of	paragraphs	at	the	same	level.	For	example,	if	the	first	paragraph	for
a	specified	ListFormat	object	were	numbered	"A.2,"	the	ListValue	would
return	2.

This	property	will	not	return	the	value	for	a	LISTNUM	field.



Example

This	example	displays	both	the	numeric	value	of	the	first	paragraph	in	the
selection	and	the	string	representation	of	that	value.

v	=	Selection.Range.ListFormat.ListValue

lstring	=	Selection.Range.ListFormat.ListString

MsgBox	"List	value	"	&	v	_

				&	"	is	represented	by	the	string	"	&	lstring



LocalNetworkFile	Property
							

True	if	Microsoft	Word	creates	a	local	copy	of	a	file	on	the	user's	machine	when
editing	a	file	stored	on	a	network	server.	Read/write	Boolean.

expression.LocalNetworkFile

expression			Required.	An	expression	that	returns	an	Options	object.



Example

This	example	instructs	Word	to	not	make	a	local	copy	of	files	stored	on	a	server.

Sub	LocalFile()

				Application.Options.LocalNetworkFile	=	False

End	Sub



Show	All



Location	Property
							

Location	property	as	it	applies	to	the	EndnoteOptions	and	Endnotes	objects.

Returns	or	sets	the	position	of	all	endnotes.	Read/write	WdEndnoteLocation.

WdEndnoteLocation	can	be	one	of	these	WdEndnoteLocation	constants.
wdEndOfDocument
wdEndOfSection

expression.Location

expression			Required.	An	expression	that	returns	an	Endnotes	or
EndnoteOptions	object.

Location	property	as	it	applies	to	the	FootnoteOptions	and	Footnotes	objects.

Returns	or	sets	the	position	of	all	footnotes.	Read/write	WdFootnoteLocation.

WdFootnoteLocation	can	be	one	of	these	WdFootnoteLocation	constants.
wdBeneathText
wdBottomOfPage

expression.Location

expressionRequired.	An	expression	that	returns	a	Footnotes	or
FootnoteOptions	object.



Example

As	it	applies	to	the	EndnoteOptions	and	Endnotes	objects.

This	example	positions	all	endnotes	at	the	end	of	sections.

ActiveDocument.Endnotes.Location	=	wdEndOfSection

As	it	applies	to	the	FootnoteOptions	and	Footnotes	objects.

This	example	positions	footnotes	at	the	bottom	of	each	page.

ActiveDocument.Footnotes.Location	=	wdBottomOfPage



Show	All



LockAnchor	Property
							

LockAnchor	property	as	it	applies	to	the	Frame	object.

True	if	the	specified	frame	is	locked.	The	frame	anchor	indicates	where	the
frame	will	appear	in	Normal	view.	You	cannot	reposition	a	locked	frame	anchor.
Read/write	Boolean.

expression.LockAnchor

expression			Required.	An	expression	that	returns	a	Frame	object.

LockAnchor	property	as	it	applies	to	the	Shape	and	ShapeRange	objects.

True	if	the	specified	Shape	or	ShapeRange	object's	anchor	is	locked	to	the
anchoring	range.	When	a	shape	has	a	locked	anchor,	you	cannot	move	the
shape's	anchor	by	dragging	it	(the	anchor	doesn't	move	as	the	shape	is	moved).
Read/write	Long.

expression.LockAnchor

expression			Required.	An	expression	that	returns	one	of	the	above	objects.



Remarks

A	Shape	object	is	anchored	to	a	range	of	text,	but	you	can	position	it	anywhere
on	the	page.	The	shape	is	anchored	to	the	beginning	of	the	first	paragraph	that
contains	the	anchoring	range.	A	shape	will	always	remain	on	the	same	page	as
its	anchor.



Example

As	it	applies	to	the	Frame	object.

This	example	locks	the	anchor	of	the	first	frame	in	section	two	of	the	active
document.

Set	myRange	=	ActiveDocument.Sections(2).Range

If	TypeName(myRange)	<>	"Nothing"	And	myRange.Frames.Count	>	0	Then

				myRange.Frames(1).LockAnchor	=	True

End	If

As	it	applies	to	the	Shape	and	ShapeRange	objects.

This	example	creates	a	new	document,	adds	a	shape	to	it,	and	then	locks	the
shape's	anchor.

Set	myDoc	=	Documents.Add

Set	myShape	=	myDoc.Shapes.AddShape(msoShapeBalloon,	_

				100,	100,	140,	70)

myShape.LockAnchor	=	True

ActiveDocument.ActiveWindow.View.ShowObjectAnchors	=	True

This	example	returns	a	message	that	states	the	lock	status	for	each	shape	in	the
active	document.

For	x	=	1	to	ActiveDocument.Shapes.Count

				Msgbox	"Shape	"	&	x	&	"	is	locked	-	"	_

								&	ActiveDocument.Shapes(x).LockAnchor

Next	x



Show	All



LockAspectRatio	Property
							

MsoTrue	if	the	specified	shape	retains	its	original	proportions	when	you	resize
it.	MsoFalse	if	you	can	change	the	height	and	width	of	the	shape	independently
of	one	another	when	you	resize	it.	Read/write	MsoTriState.

MsoTriState	can	be	one	of	these	MsoTriState	constants.
msoCTrue
msoFalse
msoTriStateMixed
msoTriStateToggle
msoTrue

expression.LockAspectRatio

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.



Example

This	example	adds	a	cube	to	myDocument.	The	cube	can	be	moved	and	resized
but	not	reproportioned.

Set	myDocument	=	ActiveDocument

myDocument.Shapes.AddShape(msoShapeCube,	_

				50,	50,	100,	200).LockAspectRatio	=	msoTrue



Show	All



Locked	Property
							

Locked	property	as	it	applies	to	the	Field,	LinkFormat,	MailMergeField,	and
Subdocument	objects.

Subdocument	object:	True	if	a	subdocument	in	a	master	document	is	locked.

LinkFormat	object:	True	if	a	Field,	InlineShape,	or	Shape	object	is	locked	to
prevent	automatic	updating.	If	you	use	this	property	with	a	Shape	object	that's	a
floating	linked	picture	(a	picture	added	with	the	AddPicture	method	of	the
Shapes	object),	an	error	occurs.

Field	or	MailMergeField	object:	True	if	the	specified	field	is	locked.	When	a
field	is	locked,	you	cannot	update	the	field	results.

Read/write	Boolean.

expression.Locked

expression			Required.	An	expression	that	returns	one	of	the	above	objects.

Locked	property	as	it	applies	to	the	Fields	object.

True	if	all	fields	in	the	Fields	collection	are	locked.	Can	be	True,	False,	or
wdUndefined	(if	some	of	the	fields	in	the	collection	are	locked).	Read/write
Long.

expression.Locked

expression			Required.	An	expression	that	returns	a	Fields	object.



Example

As	it	applies	to	the	Subdocument	object.

This	example	checks	the	first	subdocument	in	the	specified	master	document	and
sets	the	master	document	to	allow	only	comments	if	the	subdocument	is	locked.

If	ActiveDocument.Subdocuments(1).Locked	=	True	Then

				ActiveDocument.Protect	Type:=wdAllowOnlyComments

End	If

As	it	applies	to	the	Fields	object.

This	example	inserts	a	DATE	field	at	the	beginning	of	the	selection	and	then
locks	the	field.

Selection.Collapse	Direction:=wdCollapseStart

Set	myField	=	ActiveDocument.Fields.Add(Range:=Selection.Range,	_

				Type:=wdFieldDate)

myField.Locked	=	True

This	example	locks	all	the	fields	in	the	selection.

Selection.Fields.Locked	=	True

This	example	displays	a	message	if	some	of	the	fields	in	the	active	document	are
locked.

Set	theFields	=	ActiveDocument.Fields

If	theFields.Locked	=	wdUndefined	Then

				MsgBox	"Some	fields	are	locked"

ElseIf	theFields.Locked	=	False	Then

				MsgBox	"No	fields	are	locked"

ElseIf	theFields.Locked	=	True	Then

				MsgBox	"All	fields	are	locked"

End	If





LowerHeadingLevel	Property
							

Returns	or	sets	the	ending	heading	level	for	a	table	of	contents	or	table	of
figures.	Corresponds	to	the	ending	value	used	with	the	\o	switch	for	a	Table	of
Contents	(TOC)	field.	Read/write	Long.

expression.LowerHeadingLevel

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.



Remarks

Use	the	UpperHeadingLevel	property	to	set	the	starting	heading	level.	For
example,	to	set	the	TOC	field	syntax	{TOC	\o	"1-3"},	set	the
LowerHeadingLevel	property	to	3	and	the	UpperHeadingLevel	property	to	1.



Example

This	example	formats	the	first	table	of	contents	in	the	active	document	to	show
entries	formatted	with	the	Heading	2,	Heading	3,	and	Heading	4	styles.

If	ActiveDocument.TablesOfContents.Count	>=	1	Then

				With	ActiveDocument.TablesOfContents(1)

								.UseHeadingStyles	=	True

								.UpperHeadingLevel	=	2

								.LowerHeadingLevel	=	4

				End	With

End	If



MacroContainer	Property
							

Returns	a	Template	or	Document	object	that	represents	the	template	or
document	in	which	the	module	that	contains	the	running	procedure	is	stored.

expression.MacroContainer

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.



Example

This	example	displays	the	name	of	the	document	or	template	in	which	the
running	procedure	is	stored.

Set	cntnr	=	MacroContainer

MsgBox	cntnr.Name



Magenta	Property
							

Sets	or	returns	a	Long	that	represents	the	magenta	component	of	a	CMYK	color.
Read-only.

expression.Magenta

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.



Example

This	example	creates	a	new	shape,	then	retrieves	the	four	CMYK	values	from	an
existing	shape	in	the	active	document,	and	then	sets	the	CMYK	fill	color	of	the
new	shape	to	the	same	CMYK	values.

Sub	ReturnAndSetCMYK()

				Dim	lngCyan	As	Long

				Dim	lngMagenta	As	Long

				Dim	lngYellow	As	Long

				Dim	lngBlack	As	Long

				Dim	shpHeart	As	Shape

				Dim	shpStar	As	Shape

				Set	shpHeart	=	ActiveDocument.Shapes(1)

				Set	shpStar	=	ActiveDocument.Shapes.AddShape	_

								(Type:=msoShape5pointStar,	Left:=200,	_

								Top:=100,	Width:=150,	Height:=150)

				'Get	current	shapes	CMYK	colors

				With	shpHeart.Fill.ForeColor

								lngCyan	=	.Cyan

								lngMagenta	=	.Magenta

								lngYellow	=	.Yellow

								lngBlack	=	.Black

				End	With

				'Set	new	shape	to	current	shapes	CMYK	colors

				shpStar.Fill.ForeColor.SetCMYK	_

								Cyan:=lngCyan,	Magenta:=lngMagenta,	_

								Yellow:=lngYellow,	Black:=lngBlack

End	Sub



Magnifier	Property
							

True	if	the	pointer	is	displayed	as	a	magnifying	glass	in	print	preview,	indicating
that	the	user	can	click	to	zoom	in	on	a	particular	area	of	the	page	or	zoom	out	to
see	an	entire	page	or	spread	of	pages.	Read/write	Boolean.

expression.Magnifier

expression			Required.	An	expression	that	returns	a	View	object.



Remarks

This	property	generates	an	error	if	the	view	is	not	print	preview.



Example

This	example	switches	to	print	preview	and	changes	the	pointer	to	an	insertion
point.

PrintPreview	=	True

ActiveDocument.ActiveWindow.View.Magnifier	=	False



MailAddressFieldName	Property
							

Returns	or	sets	the	name	of	the	field	that	contains	e-mail	addresses	that	are	used
when	the	mail	merge	destination	is	electronic	mail.	Read/write	String.

expression.MailAddressFieldName

expression			Required.	An	expression	that	returns	a	MailMerge	object.



Example

This	example	merges	the	document	named	"FormLetter.doc"	with	its	attached
data	document	and	sends	the	results	to	the	e-mail	addresses	stored	in	the	Email
merge	field.

With	Documents("FormLetter.doc").MailMerge

				.MailAddressFieldName	=	"Email"

				.MailSubject	=	"Amazing	offer"

				.Destination	=	wdSendToEmail

				.Execute

End	With



MailAsAttachment	Property
							

True	if	the	merge	documents	are	sent	as	attachments	when	the	mail	merge
destination	is	an	e-mail	message	or	a	fax.	Read/write	Boolean.

expression.MailAsAttachment

expression			Required.	An	expression	that	returns	a	MailMerge	object.



Example

This	example	performs	a	mail	merge	operation	and	sends	the	merge	results	as
attachments	to	e-mail	messages.	The	e-mail	addresses	are	stored	in	the
MailAddress	merge	field.

With	Documents("Main.doc").MailMerge

				.MailAsAttachment	=	True

				.Destination	=	wdSendToEmail

				.MailSubject	=	"Special	offer"

				.MailAddressFieldName	=	"MailAddress"

				.Execute

End	With



MailEnvelope	Property
							

Returns	an	MsoEnvelope	object	that	represents	an	e-mail	header	for	a
document.

expression.MailEnvelope

expression			Required.	An	expression	that	returns	a	Document	object.

mk:@MSITStore:vbaof10.chm::/html/ofobjMsoEnvelope.htm


Example

This	example	sets	the	comments	for	the	e-mail	header	of	the	active	document.

Sub	HeaderComments()

				ActiveDocument.MailEnvelope.Introduction	=	_

								"Please	review	this	document	and	let	me	know	"	&	_

								"what	you	think.		I	need	your	input	by	Friday."	&	_

								"		Thanks."

End	Sub



Show	All



MailFormat	Property
							

Returns	a	WdMailMergeMailFormat	constant	that	represents	the	format	to	use
when	the	mail	merge	destination	is	an	e-mail	message.	Read/write.

WdMailMergeMailFormat	can	be	one	of	these	WdMailMergeMailFormat
constants.
wdMailFormatHTML	Sends	mail	merge	e-mail	documents	using	HTML
format.
wdMailFormatPlainText		Sends	mail	merge	e-mail	documents	using	plain
text.

expression.MailFormat

expression			Required.	An	expression	that	returns	a	MailMerge	object.



Remarks

The	MailFormat	property	is	ignored	if	the	MailAsAttachment	property	is	set
to	True.



Example

This	example	merges	the	active	document	to	an	e-mail	message	and	formats	it
using	HTML.

Sub	MergeDestination()

				With	ActiveDocument.MailMerge

								.Destination	=	wdSendToEmail

								.MailAsAttachment	=	False

								.MailFormat	=	wdMailFormatHTML

								.Execute

				End	With

End	Sub



MailingInstructions	Property
							

Returns	or	sets	the	mailing	instruction	text	for	a	letter	created	by	the	Letter
Wizard	(for	example,	"Certified	Mail").	Read/write	String.

expression.MailingInstructions

expression			Required.	An	expression	that	returns	a	LetterContent	object.



Example

This	example	retrieves	the	Letter	Wizard	elements	from	the	active	document,
changes	the	text	of	the	mailing	instructions,	and	then	uses	the	SetLetterContent
method	to	update	the	active	document	to	reflect	the	changes.

Set	myLetterContent	=	ActiveDocument.GetLetterContent

myLetterContent.MailingInstructions	=	"Air	Mail"

ActiveDocument.SetLetterContent	LetterContent:=myLetterContent

This	example	creates	a	new	LetterContent	object,	sets	several	properties
(including	the	mailing	instruction	text),	and	then	runs	the	Letter	Wizard	by	using
the	RunLetterWizard	method.

Set	myContent	=	New	LetterContent

With	myContent

				.RecipientReference	=	"In	reply	to:"

				.Salutation	=	"Hello"

				.MailingInstructions	=	"Certified	Mail"

End	With

Documents.Add.RunLetterWizard	LetterContent:=myContent



MailingLabel	Property
							

Returns	a	MailingLabel	object	that	represents	a	mailing	label.

expression.MailingLabel

expression			Required.	An	expression	that	returns	an	Application	object.



Example

This	example	creates	a	new	Avery	2160	mini-label	document	for	a	specified
address.

addr	=	"Dave	Edson"	&	vbCr	&	"123	Skye	St."	_

				&	vbCr	&	"Our	Town,	WA		98004"

Application.MailingLabel.CreateNewDocument	_

				Name:="2160	mini",	Address:=addr,	ExtractAddress:=False



MailMerge	Property
							

Returns	a	MailMerge	object	that	represents	the	mail	merge	functionality	for	the
specified	document.	Read-only.

Note			The	MailMerge	object	is	available	regardless	of	whether	the	specified
document	is	a	mail	merge	main	document.	Use	the	State	property	to	determine
the	current	state	of	the	mail	merge	operation.



Example

This	example	executes	a	mail	merge	if	the	active	document	is	a	main	document
with	an	attached	data	source.

Set	myMerge	=	ActiveDocument.MailMerge

If	myMerge.State	=	wdMainAndDataSource	Then	myMerge.Execute

This	example	merges	the	main	document	with	data	records	1	through	4	and
sends	the	merge	documents	to	the	printer.

With	ActiveDocument.MailMerge

				.DataSource.FirstRecord	=	1

				.DataSource.LastRecord	=	4

				.Destination	=	wdSendToPrinter

				.SuppressBlankLines	=	True

				.Execute

End	With



MailMergeDataView	Property
							

True	if	mail	merge	data	is	displayed	instead	of	mail	merge	fields	in	the	specified
window.	Read/write	Boolean.

expression.MailMergeDataView

expression			Required.	An	expression	that	returns	a	View	object.



Remarks

	If	the	specified	window	isn't	a	main	document,	an	error	occurs.



Example

If	the	active	document	includes	at	least	one	mail	merge	field,	this	example
displays	mail	merge	data	from	the	first	record	in	the	attached	data	source.

If	ActiveDocument.MailMerge.Fields.Count	>=	1	Then

				ActiveDocument.MailMerge.DataSource.ActiveRecord	=	1

				ActiveDocument.ActiveWindow.View.ShowFieldCodes	=	False

				ActiveDocument.ActiveWindow.View.MailMergeDataView	=	True

End	If

This	example	toggles	between	viewing	mail	merge	fields	and	viewing	the
resulting	data.

With	ActiveDocument.ActiveWindow.View

				.ShowFieldCodes	=	False

				.MailMergeDataView	=	Not	.MailMergeDataView

End	With



MailMessage	Property
							

Returns	a	MailMessage	object	that	represents	the	active	e-mail	message.

expression.MailMessage

expression			Required.	An	expression	that	returns	an	Application	object.



Example

This	example	displays	the	Select	Names	dialog	box	for	the	active	e-mail
message.

Application.MailMessage.DisplaySelectNamesDialog



MailSubject	Property
							

Returns	or	sets	the	subject	line	used	when	the	mail	merge	destination	is
electronic	mail.	Read/write	String.

expression.MailSubject

expression			Required.	An	expression	that	returns	a	MailMerge	object.



Example

This	example	merges	the	document	named	"Offer.doc"	with	its	attached	data
document.	The	results	are	sent	to	the	e-mail	addresses	stored	in	the	EmailNames
merge	field,	and	the	subject	of	the	mail	message	is	"Amazing	Offer."

With	Documents("Offer.doc").MailMerge

				.MailAddressFieldName	=	"EmailNames"

				.MailSubject	=	"Amazing	Offer"

				.Destination	=	wdSendToEmail

				.Execute

End	With



MailSystem	Property
							

Returns	the	mail	system	(or	systems)	installed	on	the	host	machine.		Read-only
WdMailSystem.

WdMailSystem	can	be	one	of	these	WdMailSystem	constants.
wdMAPI
wdNoMailSystem
wdMAPIandPowerTalk
wdPowerTalk

expression.MailSystem

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.



Remarks

Some	of	the	constants	listed	above	are	available	only	in	Microsoft	Office
Macintosh	Edition.	For	additional	information	about	these	constants,	consult	the
language	reference	Help	included	with	Microsoft	Office	Macintosh	Edition.



Example

This	example	displays	the	mail	system	installed	on	the	host	machine.

ms	=	Application.MailSystem

If	ms	<>	wdNoMailSystem	Then

				MsgBox	"This	machine	has	a	mail	system	installed."

Else

				MsgBox	"This	machine	has	no	mail	system	installed."

End	If



Show	All



MainDocumentType	Property
							

Returns	or	sets	the	mail	merge	main	document	type.	Read/write
WdMailMergeMainDocType.

WdMailMergeMainDocType	can	be	one	of	these	WdMailMergeMainDocType
constants.
wdCatalog
wdDirectory
wdEMail
wdEnvelopes
wdFax
wdFormLetters
wdMailingLabels
wdNotAMergeDocument

expression.MainDocumentType

expression			Required.	An	expression	that	returns	a	MailMerge	object.

Remarks

If	you	set	this	property	for	a	document	that's	already	a	main	document,	the
attached	data	source	is	removed.



Example

This	example	creates	a	new	document	and	makes	it	a	catalog	main	document	for
a	mail	merge	operation.

Set	myDoc	=	Documents.Add

myDoc.MailMerge.MainDocumentType	=	wdCatalog

This	example	determines	whether	the	active	document	is	a	main	document	for	a
mail	merge	operation,	and	then	it	displays	a	message	in	the	status	bar.

Set	doc	=	ActiveDocument

If	doc.MailMerge.MainDocumentType	=	wdNotAMergeDocument	Then

				StatusBar	=	"Not	a	mail	merge	main	document"

Else

				StatusBar	=	"Document	is	a	mail	merge	main	document."

End	If



MAPIAvailable	Property
							

True	if	MAPI	is	installed.	Read-only	Boolean.

expression.MAPIAvailable

expression			Required.	An	expression	that	returns	an	Application	object.



Example

This	example	displays	a	message	if	MAPI	is	installed.

If	Application.MAPIAvailable	=	True	Then

				MsgBox	"MAPI	is	available"

End	If



MapPaperSize	Property
							

True	if	documents	formatted	for	another	country's/region's	standard	paper	size
(for	example,	A4)	are	automatically	adjusted	so	that	they're	printed	correctly	on
your	country's/region's	standard	paper	size	(for	example,	Letter).	Read/write
Boolean.

expression.MapPaperSize

expression			Required.	An	expression	that	returns	an	Options	object.



Remarks

This	property	affects	only	the	printout	of	your	document;	its	formatting	is	left
unchanged.



Example

This	example	allows	Microsoft	Word	to	adjust	paper	size	according	to	the
country/region	setting.

Options.MapPaperSize	=	True

This	example	returns	the	status	of	the	Allow	A4/Letter	paper	resizing	option	on
the	Print	tab	in	the	Options	dialog	box	(Tools	menu).

temp	=	Options.MapPaperSize



Show	All



MappedDataFields	Property
							

Returns	a	MappedDataFields	object	that	represents	the	mapped	data	fields
available	in	Microsoft	Word.

expression.MappedDataFields

expression			Required.	An	expression	that	returns	a	MailMergeDataSource
object.



Example

This	example	creates	a	tabbed	list	of	the	mapped	data	fields	available	in	Word
and	the	fields	in	the	data	source	to	which	they	are	mapped.	This	example
assumes	that	the	current	document	is	a	mail	merge	document.

Sub	MappedFields()

				Dim	intCount	As	Integer

				Dim	docCurrent	As	Document

				Dim	docNew	As	Document

				On	Error	Resume	Next

				Set	docCurrent	=	ThisDocument

				Set	docNew	=	Documents.Add

				'Add	leader	tab	to	new	document

				docNew.Paragraphs.TabStops.Add	_

								Position:=InchesToPoints(3.5),	_

								Leader:=wdTabLeaderDots

				With	docCurrent.MailMerge.DataSource

								'Insert	heading	paragraph	for	tabbed	columns

								docNew.Content.InsertAfter	"Word	Mapped	Data	Field"	_

												&	vbTab	&	"Data	Source	Field"

												Do

																intCount	=	intCount	+	1

																				'Insert	Word	mapped	data	field	name	and	the

																				'corresponding	data	source	field	name

																				docNew.Content.InsertAfter	.MappedDataFields(	_

																								Index:=intCount).Name	&	vbTab	&	_

																								.MappedDataFields(Index:=intCount)	_

																								.DataFieldName

																				'Insert	paragraph

																				docNew.Content.InsertParagraphAfter

												Loop	Until	intCount	=	.MappedDataFields.Count

				End	With

End	Sub





MarginBottom	Property
							

Returns	or	sets	the	distance	(in	points)	between	the	bottom	of	the	text	frame	and
the	bottom	of	the	inscribed	rectangle	of	the	shape	that	contains	the	text.
Read/write	Single.

expression.MarginBottom

expression			Required.	An	expression	that	returns	a	TextFrame	object.



Example

This	example	adds	a	rectangle	to	myDocument,	adds	text	to	the	rectangle,	and
then	sets	the	margins	for	the	text	frame.

Set	myDocument	=	ActiveDocument

With	myDocument.Shapes.AddShape(msoShapeRectangle,	_

								0,	0,	250,	140).TextFrame

				.TextRange.Text	=	"Here	is	some	test	text"

				.MarginBottom	=	0

				.MarginLeft	=	100

				.MarginRight	=	0

				.MarginTop	=	20

End	With



MarginLeft	Property
							

Returns	or	sets	the	distance	(in	points)	between	the	left	edge	of	the	text	frame
and	the	left	edge	of	the	inscribed	rectangle	of	the	shape	that	contains	the	text.
Read/write	Single.

expression.MarginLeft

expression			Required.	An	expression	that	returns	a	TextFrame	object.



Example

This	example	adds	a	rectangle	to	myDocument,	adds	text	to	the	rectangle,	and
then	sets	the	margins	for	the	text	frame.

Set	myDocument	=	ActiveDocument

With	myDocument.Shapes.AddShape(msoShapeRectangle,	_

								0,	0,	250,	140).TextFrame

				.TextRange.Text	=	"Here	is	some	test	text"

				.MarginBottom	=	0

				.MarginLeft	=	100

				.MarginRight	=	0

				.MarginTop	=	20

End	With



MarginRight	Property
							

Returns	or	sets	the	distance	(in	points)	between	the	right	edge	of	the	text	frame
and	the	right	edge	of	the	inscribed	rectangle	of	the	shape	that	contains	the	text.
Read/write	Single.

expression.MarginRight

expression			Required.	An	expression	that	returns	a	TextFrame	object.



Example

This	example	adds	a	rectangle	to	myDocument,	adds	text	to	the	rectangle,	and
then	sets	the	margins	for	the	text	frame.

Set	myDocument	=	ActiveDocument

With	myDocument.Shapes.AddShape(msoShapeRectangle,	_

								0,	0,	250,	140).TextFrame

				.TextRange.Text	=	"Here	is	some	test	text"

				.MarginBottom	=	0

				.MarginLeft	=	100

				.MarginRight	=	0

				.MarginTop	=	20

End	With



MarginTop	Property
							

Returns	or	sets	the	distance	(in	points)	between	the	top	of	the	text	frame	and	the
top	of	the	inscribed	rectangle	of	the	shape	that	contains	the	text.	Read/write
Single.

expression.MarginTop

expression			Required.	An	expression	that	returns	a	TextFrame	object.



Example

This	example	adds	a	rectangle	to	myDocument,	adds	text	to	the	rectangle,	and
then	sets	the	margins	for	the	text	frame.

Set	myDocument	=	ActiveDocument

With	myDocument.Shapes.AddShape(msoShapeRectangle,	_

								0,	0,	250,	140).TextFrame

				.TextRange.Text	=	"Here	is	some	test	text"

				.MarginBottom	=	0

				.MarginLeft	=	100

				.MarginRight	=	0

				.MarginTop	=	20

End	With



MarkComments	Property
							

True	if	Microsoft	Word	marks	the	user's	comments	in	e-mail	messages.
Read/write	Boolean.

expression.MarkComments

expression			Required.	An	expression	that	returns	an	EMailOptions	object.



Remarks

This	property	marks	comments	with	the	value	of	the	MarkCommentsWith
property.	The	default	value	of	the	MarkCommentsWith	property	is	the	value	of
the	UserName	property.



Example

This	example	sets	Word	to	mark	comments	in	e-mail	messages	with	the	initials
"WK."

Application.EmailOptions.MarkCommentsWith	=	"WK"

Application.EmailOptions.MarkComments	=	True



MarkCommentsWith	Property
							

Returns	or	sets	the	string	with	which	Microsoft	Word	marks	comments	in	e-mail
messages.	Read/write	String.

expression.MarkCommentsWith

expression			Required.	An	expression	that	returns	an	EMailOptions	object.



Remarks

The	default	value	is	the	value	of	the	UserName	property.



Example

This	example	sets	Word	to	mark	comments	in	e-mail	messages	with	the	initials
"WK."

Application.EmailOptions.MarkCommentsWith	=	"WK"

Application.EmailOptions.MarkComments	=	True



MatchAlefHamza	Property
							

True	if	find	operations	match	text	with	matching	alef	hamzas	in	an	Arabic
language	document.	Read/write	Boolean.

expression.MatchAlefHamza

expression			Required.	An	expression	that	returns	a	Find	object.



Remarks

For	more	information	on	using	Word	with	right-to-left	languages,	see	Word
features	for	right-to-left	languages.

mk:@MSITStore:wdmain10.chm::/html/wdrefFeaturesAvailableInWordWhenBidirectionalLanguagesAreEnabled.htm


Example

This	example	sets	the	current	find	operation	to	match	alef	hamzas.

Selection.Find.MatchAlefHamza	=	True



MatchAllWordForms	Property
							

True	if	all	forms	of	the	text	to	find	are	found	by	the	find	operation	(for	instance,
if	the	text	to	find	is	"sit,"	"sat"	and	"sitting"	are	found	as	well).	Read/write
Boolean.

expression.MatchAllWordForms

expression			Required.	An	expression	that	returns	a	Find	object.



Remarks

Use	the	Text	property	of	the	Find	object	or	the	FindText	argument	with	the
Execute	method	to	specify	the	text	to	be	searched	for	in	a	document.



Example

This	example	selects	the	next	form	of	the	word	"sit"	found	in	the	selection	or
displays	a	message	box	if	a	form	of	"sit"	isn't	found.

With	Selection.Find

				.MatchAllWordForms	=	True

				.Text	=	"sit"

				.Execute	Format:=False

				If	.Found	=	False	Then	MsgBox	"Not	Found"

End	With



MatchByte	Property
							

True	if	Microsoft	Word	distinguishes	between	full-width	and	half-width	letters
or	characters	during	a	search.	Read/write	Boolean.



Example

This	example	searches	for	the	term	" "	in	the	specified	range	without
distinguishing	between	full-width	and	half-width	characters.

With	Selection.Find

				.ClearFormatting

				.MatchWholeWord	=	True

				.MatchByte	=	False

				.Execute	FindText:=" "

End	With



MatchCase	Property
							

True	if	the	find	operation	is	case	sensitive.	The	default	is	False.	Read/write
Boolean.

expression.MatchCase

expression			Required.	An	expression	that	returns	a	Find	object.



Remarks

Use	the	Text	property	of	the	Find	object	or	use	the	FindText	argument	with	the
Execute	method	to	specify	the	text	to	be	located	in	a	document.



Example

This	example	selects	the	next	occurrence	of	the	word	"library"	in	the	selection,
regardless	of	the	case.

With	Selection.Find

				.ClearFormatting

				.MatchWholeWord	=	True

				.MatchCase	=	False

				.Execute	FindText:="library"

End	With



MatchControl	Property
							

True	if	find	operations	match	text	with	matching	bidirectional	control	characters
in	a	right-to-left	language	document.	Read/write	Boolean.

expression.MatchControl

expression			Required.	An	expression	that	returns	a	Find	object.



Remarks

For	more	information	on	using	Word	with	right-to-left	languages,	see	Word
features	for	right-to-left	languages.

mk:@MSITStore:wdmain10.chm::/html/wdrefFeaturesAvailableInWordWhenBidirectionalLanguagesAreEnabled.htm


Example

This	example	sets	the	current	find	operation	to	match	bidirectional	control
characters.

Selection.Find.MatchControl	=	True



MatchDiacritics	Property
							

True	if	find	operations	match	text	with	matching	diacritics	in	a	right-to-left
language	document.	Read/write	Boolean.

expression.MatchDiacritics

expression			Required.	An	expression	that	returns	a	Find	object.



Remarks

For	more	information	on	using	Word	with	right-to-left	languages,	see	Word
features	for	right-to-left	languages.

mk:@MSITStore:wdmain10.chm::/html/wdrefFeaturesAvailableInWordWhenBidirectionalLanguagesAreEnabled.htm


Example

This	example	sets	the	current	find	operation	to	match	diacritics.

Selection.Find.MatchDiacritics	=	True



MatchFuzzy	Property
							

True	if	Microsoft	Word	uses	the	nonspecific	search	options	for	Japanese	text
during	a	search.	Read/write	Boolean.

expression.MatchFuzzy

expression			Required.	An	expression	that	returns	a	Find	object.



Example

This	example	conducts	a	nonspecific	search	for	" "	in	the	selected	range	and
selects	the	next	occurrence	(for	example,	" ").

With	Selection.Find

				.ClearFormatting

				.Text	=	" "

				.MatchFuzzy	=	True

				.Execute	Format:=False,	Forward:=True,	Wrap:=wdFindContinue

End	With



MatchFuzzyAY	Property
							

True	if	Microsoft	Word	ignores	the	distinction	between	" "	and	" "	following	
-row	and	 -row	characters	during	a	search.	Read/write	Boolean.

expression.MatchFuzzyAY

expression			Required.	An	expression	that	returns	an	Options	object.



Example

This	example	sets	Microsoft	Word	to	ignore	the	distinction	between	" "	and	" "
following	 -row	and	 -row	characters	during	a	search.

Options.MatchFuzzyAY	=	True



MatchFuzzyBV	Property
							

True	if	Microsoft	Word	ignores	the	distinction	between	" "	and	" "	and
between	" "	and	" "	during	a	search.	Read/write	Boolean.

expression.MatchFuzzyBV

expression			Required.	An	expression	that	returns	an	Options	object.



Example

This	example	sets	Microsoft	Word	to	ignore	the	distinction	between	" "	and	"
"	and	between	" "	and	" "	during	a	search.

Options.MatchFuzzyBV	=	True



MatchFuzzyByte	Property
							

True	if	Microsoft	Word	ignores	the	distinction	between	full-width	and	half-
width	characters	(Latin	or	Japanese)	during	a	search.	Read/write	Boolean.

expression.MatchFuzzyByte

expression			Required.	An	expression	that	returns	an	Options	object.



Example

This	example	sets	Microsoft	Word	to	ignore	the	distinction	between	full-width
and	half-width	characters	(Latin	or	Japanese)	during	a	search.

Options.MatchFuzzyByte	=	True



MatchFuzzyCase	Property
							

True	if	Microsoft	Word	ignores	the	distinction	between	uppercase	and	lowercase
letters	during	a	search.	Read/write	Boolean.

expression.MatchFuzzyCase

expression			Required.	An	expression	that	returns	an	Options	object.



Example

This	example	sets	Microsoft	Word	to	ignore	the	distinction	between	uppercase
and	lowercase	letters	during	a	search.

Options.MatchFuzzyCase	=	True



MatchFuzzyDash	Property
							

True	if	Microsoft	Word	ignores	the	distinction	between	minus	signs,	long	vowel
sounds,	and	dashes	during	a	search.	Read/write	Boolean.

expression.MatchFuzzyDash

expression			Required.	An	expression	that	returns	an	Options	object.



Example

This	example	sets	Microsoft	Word	to	ignore	the	distinction	between	minus	signs,
long	vowel	sounds,	and	dashes	during	a	search.

Options.MatchFuzzyDash	=	True



MatchFuzzyDZ	Property
							

True	if	Microsoft	Word	ignores	the	distinction	between	" "	and	" "	and
between	" "	and	" "	during	a	search.	Read/write	Boolean.

expression.MatchFuzzyDZ

expression			Required.	An	expression	that	returns	an	Options	object.



Example

This	example	sets	Microsoft	Word	to	ignore	the	distinction	between	" "	and	" "
and	between	" "	and	" "	during	a	search.

Options.MatchFuzzyDZ	=	True



MatchFuzzyHF	Property
							

True	if	Microsoft	Word	ignores	the	distinction	between	" "	and	" "	and
between	" "	and	" "	during	a	search.	Read/write	Boolean.

expression.MatchFuzzyHF

expression			Required.	An	expression	that	returns	an	Options	object.



Example

This	example	sets	Microsoft	Word	to	ignore	the	distinction	between	" "	and	"
"	and	between	" "	and	" "	during	a	search.

Options.MatchFuzzyHF	=	True



MatchFuzzyHiragana	Property
							

True	if	Microsoft	Word	ignores	the	distinction	between	hiragana	and	katakana
during	a	search.	Read/write	Boolean.

expression.MatchFuzzyHiragana

expression			Required.	An	expression	that	returns	an	Options	object.



Example

This	example	sets	Microsoft	Word	to	ignore	the	distinction	between	hiragana
and	katakana	during	a	search.

Options.MatchFuzzyHiragana	=	True



MatchFuzzyIterationMark	Property
							

True	if	Microsoft	Word	ignores	the	distinction	between	types	of	repetition	marks
during	a	search.	Read/write	Boolean.

expression.MatchFuzzyIterationMark

expression			Required.	An	expression	that	returns	an	Options	object.



Example

This	example	sets	Microsoft	Word	to	ignore	the	distinction	between	types	of
repetition	marks	during	a	search.

Options.MatchFuzzyIterationMark	=	True



MatchFuzzyKanji	Property
							

True	if	Microsoft	Word	ignores	the	distinction	between	standard	and
nonstandard	kanji	ideography	during	a	search.	Read/write	Boolean.

expression.MatchFuzzyKanji

expression			Required.	An	expression	that	returns	an	Options	object.



Example

This	example	sets	Microsoft	Word	to	ignore	the	distinction	between	standard	and
nonstandard	Kanji	ideography	during	a	search.

Options.MatchFuzzyKanji	=	True



MatchFuzzyKiKu	Property
							

True	if	Microsoft	Word	ignores	the	distinction	between	" "	and	" "	before	 -
row	characters	during	a	search.	Read/write	Boolean.

expression.MatchFuzzyKiKu

expression			Required.	An	expression	that	returns	an	Options	object.



Example

This	example	sets	Microsoft	Word	to	ignore	the	distinction	between	" "	and	" "
before	 -row	characters	during	a	search.

Options.MatchFuzzyKiKu	=	True



MatchFuzzyOldKana	Property
							

True	if	Microsoft	Word	ignores	the	distinction	between	new	kana	and	old	kana
characters	during	a	search.	Read/write	Boolean.

expression.MatchFuzzyOldKana

expression			Required.	An	expression	that	returns	an	Options	object.



Example

This	example	sets	Microsoft	Word	to	ignore	the	distinction	between	new	kana
and	old	kana	characters	during	a	search.

Options.MatchFuzzyOldKana	=	True



MatchFuzzyProlongedSoundMark
Property
							

True	if	Microsoft	Word	ignores	the	distinction	between	short	and	long	vowel
sounds	during	a	search.	Read/write	Boolean.

expression.MatchFuzzyProlongedSoundMark

expression			Required.	An	expression	that	returns	an	Options	object.



Example

This	example	sets	Microsoft	Word	to	ignore	the	distinction	between	short	and
long	vowel	sounds	during	a	search.

Options.MatchFuzzyProlongedSoundMark	=	True



MatchFuzzyPunctuation	Property
							

True	if	Microsoft	Word	ignores	the	distinction	between	types	of	punctuation
marks	during	a	search.	Read/write	Boolean.

expression.MatchFuzzyPunctuation

expression			Required.	An	expression	that	returns	an	Options	object.



Example

This	example	sets	Microsoft	Word	to	ignore	the	distinction	between	types	of
punctuation	marks	during	a	search

Options.MatchFuzzyPunctuation	=	True



MatchFuzzySmallKana	Property
							

True	if	Microsoft	Word	ignores	the	distinction	between	diphthongs	and	double
consonants	during	a	search.	Read/write	Boolean.

expression.MatchFuzzySmallKana

expression			Required.	An	expression	that	returns	an	Options	object.



Example

This	example	sets	Microsoft	Word	to	ignore	the	distinction	between	diphthongs
and	double	consonants	during	a	search.

Options.MatchFuzzySmallKana	=	True



MatchFuzzySpace	Property
							

True	if	Microsoft	Word	ignores	the	distinction	between	space	markers	used
during	a	search.	Read/write	Boolean.

expression.MatchFuzzySpace

expression			Required.	An	expression	that	returns	an	Options	object.



Example

This	example	sets	Microsoft	Word	to	ignore	the	distinction	between	space
markers	used	during	a	search.

Options.MatchFuzzySpace	=	True



MatchFuzzyTC	Property
							

True	if	Microsoft	Word	ignores	the	distinction	between	" ",	" ",	and	" ",
and	between	" "	and	" "	during	a	search.	Read/write	Boolean.

expression.MatchFuzzyTC

expression			Required.	An	expression	that	returns	an	Options	object.



Example

This	example	sets	Microsoft	Word	to	ignore	the	distinction	between	" ",	"
",	and	" ",	and	between	" "	and	" "	during	a	search.

Options.MatchFuzzyTC	=	True



MatchFuzzyZJ	Property
							

True	if	Microsoft	Word	ignores	the	distinction	between	" "	and	" "	and
between	" "	and	" "	during	a	search.	Read/write	Boolean.

expression.MatchFuzzyZJ

expression			Required.	An	expression	that	returns	an	Options	object.



Example

This	example	sets	Microsoft	Word	to	ignore	the	distinction	between	" "	and	"
"	and	between	" "	and	" "	during	a	search.

Options.MatchFuzzyZJ	=	True



MatchKashida	Property
							

True	if	find	operations	match	text	with	matching	kashidas	in	an	Arabic	language
document.	Read/write	Boolean.

expression.MatchKashida

expression			Required.	An	expression	that	returns	a	Find	object.



Remarks

For	more	information	on	using	Word	with	right-to-left	languages,	see	Word
features	for	right-to-left	languages.

mk:@MSITStore:wdmain10.chm::/html/wdrefFeaturesAvailableInWordWhenBidirectionalLanguagesAreEnabled.htm


Example

This	example	sets	the	current	find	operation	to	match	kashidas.

Selection.Find.MatchKashida	=	True



MatchSoundsLike	Property
							

True	if	words	that	sound	similar	to	the	text	to	find	are	returned	by	the	find
operation.	Read/write	Boolean.

expression.MatchSoundsLike

expression			Required.	An	expression	that	returns	a	Find	object.



Remarks

Use	the	Text	property	of	the	Find	object	or	the	FindText	argument	with	the
Execute	method	to	specify	the	text	to	be	located	in	a	document.



Example

This	example	selects	the	next	word	that	sounds	like	the	word	"fun"	(for	instance,
"funny")	in	the	selection.

With	Selection.Find

				.ClearFormatting

				.Text	=	"fun"

				.MatchFuzzy	=	False

				.MatchSoundsLike	=	True

				.Execute	Format:=False,	Forward:=True,	Wrap:=wdFindContinue

End	With



MatchWholeWord	Property
							

True	if	the	find	operation	locates	only	entire	words	and	not	text	that's	part	of	a
larger	word.	Read/write	Boolean.

expression.MatchWholeWord

expression			Required.	An	expression	that	returns	a	Find	object.



Remarks

Use	the	Text	property	of	the	Find	object	or	the	FindText	argument	with	the
Execute	method	to	specify	the	text	to	be	located	in	a	document.



Example

This	example	clears	all	formatting	from	the	find	and	replace	criteria	before
replacing	the	word	"Inc."	with	"incorporated"	throughout	the	active	document.

With	ActiveDocument.Content.Find

				.ClearFormatting

				.Replacement.ClearFormatting

				.MatchWholeWord	=	True

				.Execute	FindText:="Inc.",	_

								ReplaceWith:="incorporated",	Replace:=wdReplaceAll

End	With



MatchWildcards	Property
							

True	if	the	text	to	find	contains	wildcards.	Corresponds	to	the	Use	wildcards
check	box	in	the	Find	and	Replace	dialog	box	(Edit	menu).	Read/write
Boolean.

expression.MatchWildcards

expression			Required.	An	expression	that	returns	a	Find	object.



Remarks

Use	the	Text	property	of	the	Find	object	or	use	the	FindText	argument	with	the
Execute	method	to	specify	the	text	to	be	located	in	a	document.



Example

This	example	finds	and	selects	the	next	three-letter	word	that	begins	with	"s"	and
ends	with	"t."

With	Selection.Find

				.ClearFormatting

				.Text	=	"s?t"

				.MatchAllWordForms	=	False

				.MatchSoundsLike	=	False

				.MatchFuzzy	=	False

				.MatchWildcards	=	True

				.Execute	Format:=False,	Forward:=True

End	With



MathCoprocessorAvailable	Property
							

True	if	a	math	coprocessor	is	installed	and	available	to	Microsoft	Word.	Read-
only	Boolean.

expression.MathCoprocessorAvailable

expression			Required.	An	expression	that	returns	an	Application	object.



Example

This	example	displays	a	message	indicating	whether	a	math	coprocessor	is
installed	and	available	to	Word.

If	Application.MathCoprocessorAvailable	=	True	Then

				MsgBox	"A	math	coprocessor	is	available."

Else

				MsgBox	"A	math	coprocessor	is	not	installed."

End	If



MathCoprocessorInstalled	Property
							

True	if	a	math	coprocessor	is	installed	on	the	system.	Read-only	Boolean.

expression.MathCoprocessorInstalled

expression			Required.	An	expression	that	returns	a	System	object.



Example

This	example	displays	a	message	if	a	math	coprocessor	is	installed	on	the
system.

If	System.MathCoprocessorInstalled	=	True	Then

				MsgBox	"A	math	coprocessor	is	installed."

End	If



Show	All



Maximum	Property
							

Maximum	property	as	it	applies	to	the	RecentFiles	object.

Returns	or	sets	the	maximum	number	of	recently	used	files	that	can	appear	on
the	File	menu.	Can	be	a	number	from	0	(zero)	through	9.	Read/write	Long.

expression.Maximum

expression			Required.	An	expression	that	returns	a	RecentFiles	object.

Maximum	property	as	it	applies	to	the	Dictionaries	and
HangulHanjaConversionDictionaries	objects.

Returns	the	maximum	number	of	custom	or	conversion	dictionaries	allowed.
Read-only	Long.

expression.Maximum

expression			Required.	An	expression	that	returns	one	of	the	above	objects.



Example

As	it	applies	to	the	RecentFiles	object.

This	example	disables	the	list	of	most	recently	used	files.

RecentFiles.Maximum	=	0

This	example	increases	the	number	of	items	on	the	list	of	most	recently	used
files	by	1.

num	=	RecentFiles.Maximum

If	num	<>	9	Then	RecentFiles.Maximum	=	num	+	1

As	it	applies	to	the	Dictionaries	and	HangulHanjaConversionDictionaries
objects.

This	example	displays	a	message	if	the	number	of	custom	dictionaries	is	equal	to
the	maximum	number	allowed.	If	the	maximum	number	hasn't	been	reached,	a
custom	dictionary	named	"MyDictionary.dic"	is	added.

If	CustomDictionaries.Count	=	CustomDictionaries.Maximum	Then

				MsgBox	"Cannot	add	another	dictionary	file"

Else

				CustomDictionaries.Add	"MyDictionary.dic"

End	If



MeaningCount	Property
							

Returns	the	number	of	entries	in	the	list	of	meanings	found	in	the	thesaurus	for
the	word	or	phrase.	Returns	0	(zero)	if	no	meanings	were	found.	Read-only
Long.

expression.MeaningCount

expression			Required.	An	expression	that	returns	a	SystemInfo	object.



Remarks

Each	meaning	represents	a	unique	list	of	synonyms	for	the	word	or	phrase.

The	lists	of	related	words,	related	expressions,	and	antonyms	aren't	counted	as
entries	in	the	list	of	meanings.



Example

This	example	checks	to	see	whether	any	meanings	were	found	for	the	selection.
If	any	were	found,	the	list	of	meanings	is	displayed	in	the	Immediate	window	of
the	Visual	Basic	Editor.

Set	mySynInfo	=	Selection.Range.SynonymInfo

If	mySynInfo.MeaningCount	<>	0	Then

				myList	=	mySynInfo.MeaningList

				For	i	=	1	To	Ubound(myList)

								Debug.Print	myList(i)

				Next	i

Else

				Msgbox	"There	were	no	meanings	found."

End	If



MeaningList	Property
							

Returns	the	list	of	meanings	for	the	word	or	phrase.	The	list	is	returned	as	an
array	of	strings.	Read-only	Variant.

expression.MeaningList

expression			Required.	An	expression	that	returns	a	SystemInfo	object.



Remarks

The	lists	of	related	words,	related	expressions,	and	antonyms	aren't	counted	as
entries	in	the	list	of	meanings.



Example

This	example	checks	to	see	whether	any	meanings	were	found	for	the	third	word
in	MyDoc.doc.	If	so,	the	meanings	are	displayed	in	a	series	of	message	boxes.

Set	mySyn	=	Documents("MyDoc.doc").Words(3).SynonymInfo

If	mySyn.MeaningCount	<>	0	Then

				myList	=	mySyn.MeaningList

				For	i	=	1	To	UBound(myList)

								Msgbox	myList(i)

				Next	i

Else

				Msgbox	"There	were	no	meanings	found."

End	If



Show	All



MeasurementUnit	Property
							

Returns	or	sets	the	standard	measurement	unit	for	Microsoft	Word.	Read/write
WdMeasurementUnits.

WdMeasurementUnits	can	be	one	of	these	WdMeasurementUnits	constants.
wdCentimeters
wdInches
wdMillimeters
wdPicas
wdPoints

expression.MeasurementUnit

expression			Required.	An	expression	that	returns	an	Options	object.



Example

This	example	sets	the	standard	measurement	unit	for	Word	to	points.

Options.MeasurementUnit	=	wdPoints

This	example	returns	the	current	measurement	unit	selected	on	the	General	tab
in	the	Options	dialog	box	(Tools	menu).

CurrUnit	=	Options.MeasurementUnit



Message	Property
							

Returns	or	sets	the	message	text	for	the	specified	routing	slip.	The	text	is	used	as
the	body	text	of	the	mail	message	for	routing	the	document.	Read/write	String.

expression.Message

expression			Required.	An	expression	that	returns	a	RoutingSlip	object.



Example

This	example	adds	a	routing	slip	to	the	active	document,	sets	the	subject	and
message	text,	adds	a	recipient,	and	then	routes	the	document.

ActiveDocument.HasRoutingSlip	=	True

With	ActiveDocument.RoutingSlip

				.Subject	=	"Status	Doc"

				.Message	=	"Please	fill	in	your	status."

				.AddRecipient	Recipient:="Kate	Dresen"

End	With

ActiveDocument.Route

If	"Monthly	Report.doc"	has	a	routing	slip	attached	to	it,	this	example	displays
the	message	text.

Set	myDoc	=	Documents("Monthly	Report.doc")

If	myDoc.HasRoutingSlip	=	True	_

				Then	MsgBox	myDoc.RoutingSlip.Message



MinimumFontSize	Property
							

Returns	or	sets	the	minimum	font	size	(in	points)	displayed	for	the	specified
pane.	Read/write	Long.

expression.MinimumFontSize

expression			Required.	An	expression	that	returns	a	Pane	object.



Remarks

This	property	only	affects	the	text	as	shown	in	Web	layout	view.	The	point	sizes
that	are	displayed	on	the	Formatting	toolbar	and	used	for	printing	aren't
changed.



Example

This	example	sets	the	active	window	to	online	view	and	then	sets	the	minimum
font	size	for	the	active	pane	to	12	points.

With	ActiveDocument.ActiveWindow

				.View.Type	=	wdWebView

				.ActivePane.MinimumFontSize	=	12

End	With

This	example	returns	the	minimum	font	size	for	the	active	pane.

Msgbox	_

				ActiveDocument.ActiveWindow.ActivePane.MinimumFontSize



MirrorMargins	Property
							

True	if	the	inside	and	outside	margins	of	facing	pages	are	the	same	width.	Can
be	True,	False,	or	wdUndefined.	Read/write	Long.

expression.MirrorMargins

expression			Required.	An	expression	that	returns	a	PageSetup	object.



Remarks

If	the	MirrorMargins	property	is	set	to	True,	the	LeftMargin	property	controls
the	setting	for	inside	margins	and	the	RightMargin	property	controls	the	setting
for	outside	margins.



Example

This	example	sets	the	inside	margins	of	the	active	document	to	1	inch	(72	points)
and	the	outside	margins	to	0.5	inch.	The	InchesToPoints	method	is	used	to
convert	inches	to	points.

With	ActiveDocument.PageSetup

				.MirrorMargins	=	True

				.LeftMargin	=	72

				.RightMargin	=	InchesToPoints(0.5)

End	With



Modified	Property
							

True	if	the	specified	list	template	is	not	the	built-in	list	template	for	that	position
in	the	list	gallery.	Read-only	Boolean.

expression.Modified(Index)

expression			Required.	An	expression	that	returns	a	ListGallery	object.

Index			Required	Long.	A	number	from	1	to	7	that	corresponds	to	the	position	of
the	template	in	the	Bullets	and	Numbering	dialog	box	(Format	menu).
Excluding	the	None	option,	the	templates	are	numbered	from	left	to	right,
starting	with	the	top	row.



Remarks

Use	the	Reset	method	to	set	a	list	template	in	a	list	gallery	back	to	the	built-in
list	template.



Example

This	example	checks	to	see	whether	the	first	template	on	the	Bulleted	tab	in	the
Bullets	and	Numbering	dialog	box	has	been	changed.	If	it	has,	the	list	template
is	reset.

temp	=	ListGalleries(wdBulletGallery).Modified(1)

If	temp	=	True	Then

				ListGalleries(wdBulletGallery).Reset(1)

Else

			Msgbox	"This	is	the	built-in	list	template."

End	If



Show	All



MonthNames	Property
							

Returns	or	sets	the	direction	for	conversion	between	Hangul	and	Hanja.
Read/write	WdMonthNames.

WdMonthNames	can	be	one	of	these	WdMonthNames	constants.
wdMonthNamesEnglish
wdMonthNamesArabic
wdMonthNamesFrench

expression.MonthNames

expression			Required.	An	expression	that	returns	an	Options	object.



Remarks

For	more	information	on	using	Word	with	right-to-left	languages,	see	Word
features	for	right-to-left	languages.

mk:@MSITStore:wdmain10.chm::/html/wdrefFeaturesAvailableInWordWhenBidirectionalLanguagesAreEnabled.htm


Example

This	example	sets	Microsoft	Word	to	convert	from	Hangul	to	Hanja	by	default.

Options.MultipleWordConversionsMode	=	wdHangulToHanja



MouseAvailable	Property
							

True	if	there's	a	mouse	available	for	the	system.	Read-only	Boolean.

expression.MouseAvailable

expression			Required.	An	expression	that	returns	an	Application	object.



Example

This	example	displays	a	message	no	mouse	is	available.

If	Application.MouseAvailable	=	False	Then

				Msgbox	"Make	sure	your	mouse	is	plugged	in."

Else

				Msgbox	"Mouse	is	available"

End	If



Show	All



MultipleWordConversionsMode
Property
							

Returns	or	sets	the	direction	for	conversion	between	Hangul	and	Hanja.
Read/write	WdMultipleWordConversionsMode.

WdMultipleWordConversionsMode	can	be	one	of	these
WdMultipleWordConversionsMode	constants.
wdHangulToHanja
wdHanjaToHangul

expression.MultipleWordConversionsMode

expression			Required.	An	expression	that	returns	an	Options	object.



Remarks

For	more	information	on	using	Word	with	right-to-left	languages,	see	Word
features	for	right-to-left	languages.

mk:@MSITStore:wdmain10.chm::/html/wdrefFeaturesAvailableInWordWhenBidirectionalLanguagesAreEnabled.htm


Example

This	example	sets	Microsoft	Word	to	convert	from	Hangul	to	Hanja	by	default.

Options.MultipleWordConversionsMode	=	wdHangulToHanja



Name	Property
							

Returns	or	sets	the	name	of	the	specified	object.	

Read/write	String	for	the	following	objects:	AutoCorrectEntry,
AutoTextEntry,	ColorFormat,	CustomLabel,	EmailSignatureEntry,	Font,
FormField,	ListEntry,	ListTemplate,	Shape,	ShapeRange,	and
TableOfAuthoritiesCategory;	read-only	String	for	all	other	objects	in	the
Applies	To	list.

expression.Name

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.



Example

This	example	adds	a	document	variable	to	the	active	document	and	then	displays
the	name	of	the	first	document	variable.

ActiveDocument.Variables.Add	Name:="Temp",	Value:="1"

MsgBox	ActiveDocument.Variables(1).Name

This	example	returns	the	name	of	the	first	bookmark	in	Hello.doc.

abook	=	Documents("Hello.doc").Bookmarks(1).Name

This	example	displays	the	names	of	the	form	fields	in	the	active	document.

If	ActiveDocument.FormFields.Count	>=	1	Then

				For	Each	FF	In	ActiveDocument.FormFields

								FFNames	=	FFNames	&	FF.Name	&	vbCr

				Next	FF

				MsgBox	FFNames

End	If

This	example	formats	the	selection	as	Arial	bold.

With	Selection.Font

				.Name	=	"Arial"

				.Bold	=	True

End	With

This	example	sets	the	name	of	the	first	list	template	used	in	the	active	document
to	"myList."	A	LISTNUM	field	(linked	to	the	myList	template)	is	then	added	at
the	insertion	point.	The	field	adopts	the	formatting	of	the	myList	template.

If	ActiveDocument.ListTemplates.Count	>=	1	Then

				ActiveDocument.ListTemplates(1).Name	=	"myList"

				Selection.Collapse	Direction:=wdCollapseEnd

				ActiveDocument.Fields.Add	Range:=Selection.Range,	_

								Type:=wdFieldListNum,	Text:="myList"

End	If





NameAscii	Property
							

Returns	or	sets	the	font	used	for	Latin	text	(characters	with	character	codes	from
0	(zero)	through	127).	Read/write	String.

expression.NameAscii

expression			Required.	An	expression	that	returns	a	Font	object.



Remarks

In	the	U.S.	English	version	of	Microsoft	Word,	the	default	value	of	this	property
is	Times	New	Roman.	Use	the	Name	property	to	change	the	font	that's	applied
to	all	text	and	that	appears	in	the	Font	box	on	the	Formatting	toolbar.



Example

This	example	sets	the	font	used	for	Latin	text.

Selection.Font.NameAscii	=	"Century"



NameBi	Property
							

Returns	or	sets	the	name	of	the	font	in	a	right-to-left	language	document.
Read/write	String.

expression.NameBi

expression			Required.	An	expression	that	returns	a	Font	object.



Remarks

For	more	information	on	using	Word	with	right-to-left	languages,	see	Word
features	for	right-to-left	languages.

mk:@MSITStore:wdmain10.chm::/html/wdrefFeaturesAvailableInWordWhenBidirectionalLanguagesAreEnabled.htm


Example

This	example	formats	the	selection	with	Arial	font.

With	Selection.Font

				.NameBi	=	"Arial"

End	With



NameFarEast	Property
							

Returns	or	sets	an	East	Asian	font	name.	Read/write	String.

expression.NameFarEast

expression			Required.	An	expression	that	returns	a	Font	object.



Remarks

In	the	U.S.	English	version	of	Microsoft	Word,	the	default	value	of	this	property
is	Times	New	Roman.	This	is	the	recommended	way	to	return	or	set	the	font	for
Asian	text	in	a	document	created	in	an	Asian	version	of	Word.

For	more	information	on	using	Word	with	Asian	languages,	see	Word	features
for	Asian	languages.

mk:@MSITStore:wdmain10.chm::/html/wdrefFeaturesAvailableInWordWhenAsianLanguagesAreEnabled.htm


Example

This	example	displays	the	East	Asian	font	name	that's	applied	to	the	selection.

MsgBox	Selection.Font.NameFarEast



Show	All



NameLocal	Property
							

NameLocal	property	as	it	applies	to	the	Language	object.

Returns	the	name	of	a	proofing	tool	language	in	the	language	of	the	user.	Read-
only	String.

expression.NameLocal

expression			Required.	An	expression	that	returns	a	Language	object.

NameLocal	property	as	it	applies	to	the	Style	object.

Returns	the	name	of	a	built-in	style	in	the	language	of	the	user.	Setting	this
property	renames	a	user-defined	style	or	adds	an	alias	to	a	built-in	style.
Read/write	String.

expression.NameLocal

expression			Required.	An	expression	that	returns	a	Style	object.



Example

As	it	applies	to	the	Language	object.	

This	example	displays	the	name	of	the	German	language	two	different	ways	—
first	in	the	language	of	the	user,	and	then	in	German.

MsgBox	Languages(wdGerman).NameLocal

MsgBox	Languages(wdGerman).Name

As	it	applies	to	the	Style	object.	

This	example	displays	the	style	name	(in	the	language	of	the	user)	applied	to	the
selected	paragraphs.	If	more	than	one	style	has	been	applied	to	the	selection,	the
first	style	name	is	displayed.

MsgBox	Selection.Paragraphs.Style.NameLocal

This	example	adds	the	name	"MyH1"	as	the	alias	for	the	Heading	1	style	in	the
active	document.

ActiveDocument.Styles("Heading	1").NameLocal	=	"MyH1"

This	example	renames	the	style	named	"Test"	to	"Intro."

ActiveDocument.Styles("Test").NameLocal	=	"Intro"



NameOther	Property
							

Returns	or	sets	the	font	used	for	characters	with	character	codes	from	128
through	255.	Read/write	String.

expression.NameOther

expression			Required.	An	expression	that	returns	a	Font	object.



Remarks

In	the	U.S.	English	version	of	Microsoft	Word,	the	default	value	of	this	property
is	Times	New	Roman.	Use	the	Name	property	to	change	the	font	that's	applied
to	all	text	and	that	appears	in	the	Font	box	on	the	Formatting	toolbar.



Example

This	example	sets	the	font	used	for	characters	with	character	codes	from	128
through	255.

Selection.Font.NameOther	=	"Century"



NestingLevel	Property
							

Returns	the	nesting	level	of	the	specified	cells,	columns,	rows,	or	tables.	Read-
only	Long.

expression.NestingLevel

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.



Remarks

The	outermost	table	has	a	nesting	level	of	1.	The	nesting	level	of	each
successively	nested	table	is	one	higher	than	the	previous	table.



Example

This	example	creates	a	new	document,	creates	a	nested	table	with	three	levels,
and	then	fills	the	first	cell	of	each	table	with	its	nesting	level.

Documents.Add

ActiveDocument.Tables.Add	Selection.Range,	_

				3,	3,	wdWord9TableBehavior,	wdAutoFitContent

With	ActiveDocument.Tables(1).Range

				.Copy

				.Cells(1).Range.Text	=	.Cells(1).NestingLevel

				.Cells(5).Range.PasteAsNestedTable

				With	.Cells(5).Tables(1).Range

								.Cells(1).Range.Text	=	.Cells(1).NestingLevel

								.Cells(5).Range.PasteAsNestedTable

								With	.Cells(5).Tables(1).Range

												.Cells(1).Range.Text	=	_

																.Cells(1).NestingLevel

								End	With

				End	With

End	With



NewColorOnReply	Property
							

True	specifies	whether	a	user	needs	to	choose	a	new	color	for	reply	text	when
replying	to	e-mail.	Read/write	Boolean.

expression.NewColorOnReply

expression			Required.	An	expression	that	returns	an	EmailOptions	object.



Remarks

Use	the	NewColorOnReply	property	if	you	want	the	reply	text	of	e-mail
messages	sent	from	Microsoft	Word	to	be	a	different	color	than	the	original
message.



Example

This	example	checks	to	see	if	a	user	needs	to	choose	a	new	color	for	e-mail	reply
text	and,	if	not,	sets	the	reply	font	color	to	blue.

Sub	NewColor()

				With	Application.EmailOptions

								If	.NewColorOnReply	=	False	Then

												.ReplyStyle.Font.Color	=	wdColorBlue

								End	If

				End	With

End	Sub



NewDocument	Property
							

Returns	a	NewFile	object	that	represents	a	document	listed	on	the	New
Document	task	pane.

expression.NewDocument

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.



Example

This	example	creates	a	document	list	item	on	the	New	Document	task	pane	in
the	New	From	Existing	File	section.

Sub	CreateNewDocument()

				Application.NewDocument.Add	FileName:="C:\NewFile.doc",	_

								Section:=msoNewfromExistingFile,	DisplayName:="New	File",	_

								Action:=msoCreateNewFile

End	Sub



NewMessageSignature	Property
							

Returns	or	sets	the	signature	that	Microsoft	Word	appends	to	new	e-mail
messages.	Read/write	String.

expression.NewMessageSignature

expression			Required.	An	expression	that	returns	an	Email	object.



Remarks

When	setting	this	property,	you	must	use	the	name	of	an	e-mail	signature	that
you	have	created	in	the	E-mail	Options	dialog	box,	available	from	the	General
tab	of	the	Options	dialog	box	(Tools	menu).



Example

This	example	changes	the	signature	Word	appends	to	new	outgoing	e-mail
messages.

With	Application.EmailOptions.EmailSignature

				.NewMessageSignature	=	"Signature1"

End	With



Next	Property
							

Returns	the	next	object	in	the	collection.	Read-only.



Example

This	example	activates	the	next	window.

If	Windows.Count	>	1	Then	ActiveDocument.ActiveWindow.Next.Activate

If	the	selection	is	in	a	table,	this	example	selects	the	contents	of	the	next	table
cell.

If	Selection.Information(wdWithInTable)	=	True	Then

				Selection.Cells(1).Next.Select

End	If

This	example	updates	the	fields	in	the	first	section	in	the	active	document	as
long	as	the	Next	method	returns	a	Field	object	and	the	field	isn't	a	FILLIN	field.

If	ActiveDocument.Sections(1).Range.Fields.Count	>=	1	Then

				Set	myField	=	ActiveDocument.Fields(1)

				While	Not	(myField	Is	Nothing)

								If	myField.Type	<>	wdFieldFillIn	Then	myField.Update

								Set	myField	=	myField.Next

				Wend

End	If

This	example	indents	the	second	paragraph	in	the	selection.

Selection.Paragraphs(1).Next.Indent



NextParagraphStyle	Property
							

Returns	or	sets	the	style	to	be	applied	automatically	to	a	new	paragraph	inserted
after	a	paragraph	formatted	with	the	specified	style.	To	set	this	property,	specify
either	the	local	name	of	the	next	style,	an	integer	or	a	WdBuiltinStyle	constant,
or	an	object	that	represents	the	next	style.	Read/write	Variant.

For	a	list	of	the	WdBuiltinStyle	constants,	see	the	Style	property.

expression.NextParagraphStyle

expression			Required.	An	expression	that	returns	a	Style		object.



Example

This	example	sets	the	Heading	1	style	to	be	followed	by	the	Heading	2	style	in
the	active	document.

ActiveDocument.Styles(wdStyleHeading1).NextParagraphStyle	=	_

				ActiveDocument.Styles(wdStyleHeading2)

This	example	creates	a	new	document	and	adds	a	paragraph	style	named
"MyStyle."	The	new	style	is	based	on	the	Normal	style,	is	followed	by	the
Heading	3	style,	has	a	left	indent	of	1	inch	(72	points),	and	is	formatted	as	bold.

Set	myDoc	=	Documents.Add

Set	myStyle	=	myDoc.Styles.Add(Name:=	"MyStyle")

				With	myStyle

								.BaseStyle	=	wdStyleNormal

								.NextParagraphStyle	=	wdStyleHeading3

								.ParagraphFormat.LeftIndent	=	72

								.Font.Bold	=	True

				End	With



Show	All



NextStoryRange	Property
							

Returns	a	Range	object	that	refers	to	the	next	story,	as	shown	in	the	following
table.

Story	type

Item	returned
by	the

NextStoryRange
method

wdMainTextStory,	wdFootnotesStory,	wdEndnotesStory,
and	wdCommentsStory

Always	returns
Nothing

wdTextFrameStory
The	story	of	the
next	set	of	linked
text	boxes

wdEvenPagesHeaderStory,	wdPrimaryHeaderStory,
wdEvenPagesFooterStory,	wdPrimaryFooterStory,
wdFirstPageHeaderStory,	wdFirstPageFooterStory

The	next	section's
story	of	the	same
type

expression.NextStoryRange

expression			Required.	An	expression	that	returns	a	Range	object.



Example

This	example	adds	text	to	the	even	headers	in	the	first	two	sections	of	the	active
document.

If	ActiveDocument.Sections.Count	>=	2	Then

				With	ActiveDocument

								.PageSetup.OddAndEvenPagesHeaderFooter	=	True

								.Sections(1).Headers(wdHeaderFooterEvenPages)	_

												.Range.Text	=	"Even	Header	1"

								.Sections(2).Headers(wdHeaderFooterEvenPages)	_

												.LinkToPrevious	=	False

								.StoryRanges(wdEvenPagesHeaderStory)	_

												.NextStoryRange.Text	=	"Even	Header	2"

				End	With

End	If

This	example	searches	each	story	in	the	active	document	for	the	text	"Microsoft
Word."	The	example	also	applies	italic	formatting	to	any	instances	of	this	text
that	it	finds.

For	Each	myStoryRange	In	ActiveDocument.StoryRanges

				myStoryRange.Find.Execute		_

								FindText:="Microsoft	Word",	Forward:=True

				While	myStoryRange.Find.Found

								myStoryRange.Italic	=	True

								myStoryRange.Find.Execute		_

												FindText:="Microsoft	Word",	Forward:=True

				Wend

				While	Not	(myStoryRange.NextStoryRange	Is	Nothing)

								Set	myStoryRange	=	myStoryRange.NextStoryRange

								myStoryRange.Find.Execute		_

												FindText:="Microsoft	Word",	Forward:=True

								While	myStoryRange.Find.Found

												myStoryRange.Italic	=	True

												myStoryRange.Find.Execute		_

																FindText:="Microsoft	Word",	Forward:=True

								Wend

				Wend

Next	myStoryRange





Show	All



Nodes	Property
							

Nodes	property	as	it	applies	to	the	Diagram	object.

Returns	a	DiagramNodes	object	that	represents	the	nodes	in	a	diagram.

expression.Nodes

expression			Required.	An	expression	that	returns	a	Diagram	object.

Nodes	property	as	it	applies	to	the	Shape	and	ShapeRange	objects.

Returns	a	ShapeNodes	collection	that	represents	the	geometric	description	of	the
specified	shape.

expression.Nodes

expression			Required.	An	expression	that	returns	one	of	the	above	objects.



Example

As	it	applies	to	the	Diagram	object.

This	example	assumes	the	first	shape	in	the	active	document	is	a	diagram,	selects
the	first	node,	and	deletes	it.

Sub	FillDiagramNode()

				ActiveDocument.Shapes(1).Diagram.Nodes.Item(1).Delete

End	Sub

As	it	applies	to	the	Shape	object.

This	example	adds	a	smooth	node	with	a	curved	segment	after	node	four	in
shape	three	in	the	active	document.	Shape	three	must	be	a	freeform	drawing	with
at	least	four	nodes.

With	ActiveDocument.Shapes(3).Nodes

				.Insert	Index:=4,	SegmentType:=msoSegmentCurve,	_

								EditingType:=msoEditingSmooth,	X1:=210,	Y1:=100

End	With



NoLineBreakAfter	Property
							

Returns	or	sets	the	kinsoku	characters	after	which	Microsoft	Word	will	not	break
a	line.	Read/write	String.



Example

This	example	sets	"$",	"(",	"[",	"\",	and	"{"	as	the	kinsoku	characters	after	which
Microsoft	Word	will	not	break	a	line	in	the	active	document.

ActiveDocument.NoLineBreakAfter	=	"$([\{"



NoLineBreakBefore	Property
							

Returns	or	sets	the	kinsoku	characters	before	which	Microsoft	Word	will	not
break	a	line.	Read/write	String.



Example

This	example	sets	"!",	")",	and	"]"	as	the	kinsoku	characters	before	which
Microsoft	Word	will	not	break	a	line	in	the	active	document.

ActiveDocument.NoLineBreakBefore	=	"!)]"



NoLineNumber	Property
							

True	if	line	numbers	are	repressed	for	the	specified	paragraphs.	Can	be	True,
False,	or	wdUndefined.	Read/write	Long.



Remarks

Use	the	LineNumbering	property	to	set	line	numbers.



Example

This	example	enables	line	numbering	for	the	active	document.	The	starting
number	is	set	to	1,	and	the	numbering	is	continuous	throughout	all	sections	in
the	document.	Line	numbering	is	then	repressed	for	the	second	paragraph.

With	ActiveDocument.PageSetup.LineNumbering

				.Active	=	True

				.StartingNumber	=	1

				.CountBy	=	1

				.RestartMode	=	wdRestartContinuous

End	With

ActiveDocument.Paragraphs(2).NoLineNumber	=	True



NoProofing	Property
							

Find	or	Replacement	object:	True	if	Microsoft	Word	finds	or	replaces	text	that
the	spelling	and	grammar	checker	ignores.	Read/write	Long.

Range	or	Selection	object:	True	if	the	spelling	and	grammar	checker	ignores	the
specified	text.	Returns	wdUndefined	if	the	NoProofing	property	is	set	to	True
for	only	some	of	the	specified	text.	Read/write	Long.

Style	object:	True	if	the	spelling	and	grammar	checker	ignores	text	formatted
with	this	style.	Read/write	Long.

Template	object:	True	if	the	spelling	and	grammar	checker	ignores	documents
based	on	this	template.	Read/write	Long.



Example

This	example	searches	for	the	string	"hi"	in	text	that	the	spelling	and	grammar
checker	ignores.

With	Selection.Find

				.ClearFormatting

				.Text	=	"hi"

				.NoProofing	=	True

				.Execute	Forward:=True

End	With

This	example	marks	the	current	selection	to	be	ignored	by	the	spelling	and
grammar	checker.

Selection.NoProofing	=	True

This	example	sets	the	spelling	and	grammar	checker	to	ignore	any	text	in	the
active	document	formatted	with	the	style	"Test".

ActiveDocument.Styles("Test").NoProofing	=	True



Show	All



NormalizedHeight	Property
							

MsoTrue	if	all	characters	(both	uppercase	and	lowercase)	in	the	specified
WordArt	are	the	same	height.	Read/write	MsoTriState.

MsoTriState	can	be	one	of	these	MsoTriState	constants.
msoCTrue
msoFalse
msoTriStateMixed
msoTriStateToggle
msoTrue

expression.NormalizedHeight

expression			Required.	An	expression	that	returns	a	TextEffectFormat	object.



Example

This	example	adds	WordArt	that	contains	the	text	"Test	Effect"	to	myDocument
and	gives	the	new	WordArt	the	name	"texteff1."	The	code	then	makes	all
characters	in	the	shape	named	"texteff1"	the	same	height.

Set	myDocument	=	ActiveDocument

myDocument.Shapes.AddTextEffect(PresetTextEffect:=msoTextEffect1,	_

				Text:="Test	Effect",	FontName:="Courier	New",	_

				FontSize:=44,	FontBold:=True,	_

				FontItalic:=False,	Left:=10,	Top:=10).Name	=	"texteff1"

myDocument.Shapes("texteff1").TextEffect.NormalizedHeight	=	msoTrue



NormalTemplate	Property
							

Returns	a	Template	object	that	represents	the	Normal	template.

expression.NormalTemplate

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.



Example

This	example	inserts	the	AutoText	entry	named	"Test"	from	the	Normal
template,	if	this	entry	is	contained	in	the	AutoTextEntries	collection.

For	Each	entry	In	NormalTemplate.AutoTextEntries

				If	entry.Name	=	"Test"	Then	entry.Insert	Where:=Selection.Range

Next	entry

This	example	saves	the	Normal	template	if	changes	have	been	made	to	it.

If	NormalTemplate.Saved	=	False	Then	NormalTemplate.Save



NoShade	Property
							

True	if	Microsoft	Word	draws	the	specified	horizontal	line	without	3-D	shading.
Read/write	Boolean.

expression.NoShade

expression			Required.	An	expression	that	returns	a	HorizontalLineFormat
object.



Remarks

You	can	only	use	this	property	with	horizontal	lines	that	are	not	based	on	an
existing	image	file.



Example

This	example	adds	a	horizontal	line	without	any	3-D	shading.

Selection.InlineShapes.AddHorizontalLineStandard

ActiveDocument.InlineShapes(1)	_

				.HorizontalLineFormat.NoShade	=	True



NoSpaceBetweenParagraphsOfSameStyle
Property
							

True	for	Microsoft	Word	to	remove	spacing	between	paragraphs	that	are
formatted	using	the	same	style.	Read/write	Boolean.

expression.NoSpaceBetweenParagraphsOfSameStyle

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	to	list.



Example

This	example	removes	spacing	between	paragraphs	formatted	with	the	"List	1"
style.	This	example	assumes	that	you	have	a	sequence	of	paragraphs	in	the	active
document	formatted	with	a	style	named	"List	1."

Sub	NoSpace()

				ActiveDocument.Styles("List	1")	_

								.NoSpaceBetweenParagraphsOfSameStyle	=	True

End	Sub



NumberAcross	Property
							

Returns	or	sets	the	number	of	custom	mailing	labels	across	a	page.	Read/write
Long.

expression.NumberAcross

expression			Required.	An	expression	that	returns	a	CustomLabel	object.



Remarks

If	this	property	is	changed	to	a	value	that	isn't	valid	for	the	specified	mailing
label	layout,	an	error	occurs.



Example

This	example	creates	a	new	custom	label	named	"Dept.	Labels"	and	defines	the
layout,	including	the	number	of	labels	across	the	page.

Set	myLabel	=	Application.MailingLabel.CustomLabels	_

				.Add(Name:="Dept.	Labels",	DotMatrix:=False)

With	myLabel

				.Height	=	InchesToPoints(0.5)

				.HorizontalPitch	=	InchesToPoints(2.06)

				.NumberAcross	=	4

				.NumberDown	=	4

				.PageSize	=	wdCustomLabelLetter

				.SideMargin	=	InchesToPoints(0.28)

				.TopMargin	=	InchesToPoints(0.5)

				.VerticalPitch	=	InchesToPoints(2)

				.Width	=	InchesToPoints(1.75)

End	With



NumberDown	Property
							

Returns	or	sets	the	number	of	custom	mailing	labels	down	the	length	of	a	page.
Read/write	Long.

expression.NumberDown

expression			Required.	An	expression	that	returns	a	CustomLabel	object.



Remarks

If	this	property	is	changed	to	a	value	that	isn't	valid	for	the	specified	mailing
label	layout,	an	error	occurs.



Example

This	example	displays	the	number	of	labels	across	and	down	the	page	for	the
first	custom	label	in	the	CustomLabels	collection.

numAcr	=	Application.MailingLabel.CustomLabels(1).NumberAcross

numDwn	=	Application.MailingLabel.CustomLabels(1).NumberDown

MsgBox	Prompt:=	"Number	of	labels	across	"	&	numAcr	&	vbCr	_

				&	"Number	of	labels	down	"	&	numDwn	&	vbCr	,	_

				Title:="Label	Page	Configuration"



NumberFormat	Property
							

Returns	or	sets	the	number	format	for	the	specified	list	level.	Read/write	String.

expression.NumberFormat

expression			Required.	An	expression	that	returns	a	ListLevel	object.



Remarks

The	percent	sign	(%)	followed	by	any	number	from	1	through	9	represents	the
number	style	from	the	respective	list	level.	For	example,	if	you	wanted	the
format	for	the	first	level	to	be	"Article	I,"	"Article	II,"	and	so	on,	the	string	for
the	NumberFormat	property	would	be	"Article	%1"	and	the	NumberStyle
property	would	be	set	to	wdListNumberStyleUpperCaseRoman.

If	the	NumberStyle	property	is	set	to	wdListNumberStyleBullet,	the	string	for
the	NumberFormat	property	can	only	contain	one	character.



Example

This	example	creates	a	list	template	that	indents	each	level	and	formats	the	level
with	an	Arabic	numeral	and	a	period.	The	new	list	template	is	then	applied	to	the
selection.

Set	LT	=	ActiveDocument.ListTemplates.Add(OutlineNumbered:=True)

For	x	=	1	To	9

				With	LT.ListLevels(x)

								.NumberStyle	=	wdListNumberStyleArabic

								.NumberPosition	=	InchesToPoints(0.25	*	(x	-	1))

								.TextPosition	=	InchesToPoints(0.25	*	x)

								.NumberFormat	=	"%"	&	x	&	"."

				End	With

Next	x

Selection.Range.ListFormat.ApplyListTemplate	ListTemplate:=LT



Show	All



NumberingRule	Property
							

Returns	or	sets	the	way	footnotes	or	endnotes	are	numbered	after	page	breaks	or
section	breaks.	Read/write	WdNumberingRule.

WdNumberingRule	can	be	one	of	these	WdNumberingRule	constants.
wdRestartContinuous
wdRestartPage	Applies	to	the	Footnotes	object	only.
wdRestartSection

expression.NumberingRule

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.



Example

This	example	restarts	endnote	numbering	after	each	section	break	in	the	active
document.

ActiveDocument.Endnotes.NumberingRule	=	wdRestartSection

If	the	footnote	numbering	in	section	one	is	set	to	restart	after	each	section	break,
this	example	sets	the	numbering	to	restart	on	each	page.

Set	myRange	=	ActiveDocument.Sections(1).Range

If	myRange.Footnotes.NumberingRule	=	wdRestartSection	Then

				myRange.Footnotes.NumberingRule	=	wdRestartPage

End	If



NumberOfColumns	Property
							

Sets	or	returns	the	number	of	columns	for	each	page	of	an	index.	Read/write
Long.

expression.NumberOfColumns

expression			Required.	An	expression	that	an	Index	object.



Remarks

Specifying	0	(zero)	sets	the	number	of	columns	in	the	index	to	the	same	number
as	in	the	document.



Example

This	example	sets	the	number	of	columns	in	the	first	index	to	the	same	number
as	in	the	active	document.

ActiveDocument.Indexes(1).NumberOfColumns	=	0

This	example	sets	a	two-column	format	for	each	index	in	the	active	document.

For	Each	myIndex	In	ActiveDocument.Indexes

				myIndex.NumberOfColumns	=	2

Next	myIndex



NumberPosition	Property
							

Returns	or	sets	the	position	(in	points)	of	the	number	or	bullet	for	the	specified
ListLevel	object.	Read/write	Single.

expression.NumberPosition

expression			Required.	An	expression	that	returns	a	ListLevel	object.



Remarks

For	each	list	level,	you	can	set	the	position	of	the	number	or	bullet,	the	position
of	the	tab,	and	the	position	of	the	text	that	wraps.



Example

This	example	sets	the	indentation	for	all	the	levels	of	the	third	outline-numbered
list	template.	Each	list	level	is	indented	0.25	inch	(18	points)	more	than	the
preceding	level.

r	=	0

For	Each	lev	In	ListGalleries(wdOutlineNumberGallery)	_

				.ListTemplates(3).ListLevels

								lev.Alignment	=	wdListLevelAlignLeft

								lev.NumberPosition	=	r

								r	=	r	+	18

Next	lev

This	example	sets	the	indent	for	the	first	level	of	the	last	numbered	list	template
to	0.5	inch.

With	ListGalleries(wdNumberGallery).ListTemplates(7).ListLevels(1)

				.Alignment	=	wdListLevelAlignLeft

				.NumberPosition	=	InchesToPoints(0.5)

End	With



Show	All



NumberStyle	Property
							

NumberStyle	property	as	it	applies	to	the	CaptionLabel	object.

Returns	or	sets	the	number	style	for	the	CaptionLabel	object.	Read/write
WdCaptionNumberStyle.

WdCaptionNumberStyle	can	be	one	of	these	WdCaptionNumberStyle
constants.
wdCaptionNumberStyleArabicFullWidth
wdCaptionNumberStyleArabicLetter2
wdCaptionNumberStyleGanada
wdCaptionNumberStyleHanjaReadDigit
wdCaptionNumberStyleHebrewLetter2
wdCaptionNumberStyleHindiCardinalText
wdCaptionNumberStyleHindiLetter2
wdCaptionNumberStyleKanjiDigit
wdCaptionNumberStyleArabic
wdCaptionNumberStyleArabicLetter1
wdCaptionNumberStyleChosung
wdCaptionNumberStyleHanjaRead
wdCaptionNumberStyleHebrewLetter1
wdCaptionNumberStyleHindiArabic
wdCaptionNumberStyleHindiLetter1
wdCaptionNumberStyleKanji
wdCaptionNumberStyleKanjiTraditional
wdCaptionNumberStyleLowercaseLetter
wdCaptionNumberStyleLowercaseRoman
wdCaptionNumberStyleNumberInCircle
wdCaptionNumberStyleSimpChinNum2
wdCaptionNumberStyleSimpChinNum3



wdCaptionNumberStyleThaiArabic
wdCaptionNumberStyleThaiCardinalText
wdCaptionNumberStyleThaiLetter
wdCaptionNumberStyleTradChinNum2
wdCaptionNumberStyleTradChinNum3
wdCaptionNumberStyleUppercaseLetter
wdCaptionNumberStyleUppercaseRoman
wdCaptionNumberStyleVietCardinalText
wdCaptionNumberStyleZodiac1
wdCaptionNumberStyleZodiac2

expression.NumberStyle

expression			Required.	An	expression	that	returns	a	CaptionLabel	object.

NumberStyle	property	as	it	applies	to	the	EndnoteOptions,	Endnotes,
FootnoteOptions,	and	Footnotes	objects.

Returns	or	sets	the	number	style	for	the	EndnoteOptions,	Endnotes,
FootnoteOptions,	and	Footnotes	objects.	Read/write	WdNoteNumberStyle.

WdNoteNumberStyle	can	be	one	of	these	WdNoteNumberStyle	constants.
wdNoteNumberStyleArabic
wdNoteNumberStyleArabicLetter1
wdNoteNumberStyleHanjaRead
wdNoteNumberStyleHebrewLetter1
wdNoteNumberStyleHindiArabic
wdNoteNumberStyleHindiLetter1
wdNoteNumberStyleKanji
wdNoteNumberStyleKanjiTraditional
wdNoteNumberStyleLowercaseRoman
wdNoteNumberStyleSimpChinNum1
wdNoteNumberStyleSymbol
wdNoteNumberStyleThaiCardinalText
wdNoteNumberStyleTradChinNum1



wdNoteNumberStyleUppercaseLetter
wdNoteNumberStyleVietCardinalText
wdNoteNumberStyleArabicFullWidth
wdNoteNumberStyleArabicLetter2
wdNoteNumberStyleHanjaReadDigit
wdNoteNumberStyleHebrewLetter2
wdNoteNumberStyleHindiCardinalText
wdNoteNumberStyleHindiLetter2
wdNoteNumberStyleKanjiDigit
wdNoteNumberStyleLowercaseLetter
wdNoteNumberStyleNumberInCircle
wdNoteNumberStyleSimpChinNum2
wdNoteNumberStyleThaiArabic
wdNoteNumberStyleThaiLetter
wdNoteNumberStyleTradChinNum2
wdNoteNumberStyleUppercaseRoman

expression.NumberStyle

expression			Required.	An	expression	that	returns	an	EndnoteOptions,
Endnotes,	FootnoteOptions,	or	Footnotes	object.

NumberStyle	property	as	it	applies	to	the	ListLevel	object.

Returns	or	sets	the	number	style	for	the	ListLevel	object.	Read/write
WdListNumberStyle.

WdListNumberStyle	can	be	one	of	these	WdListNumberStyle	constants.
wdListNumberStyleAiueo
wdListNumberStyleArabic
wdListNumberStyleArabic2
wdListNumberStyleArabicLZ
wdListNumberStyleCardinalText
wdListNumberStyleChosung
wdListNumberStyleGanada



wdListNumberStyleGBNum1
wdListNumberStyleGBNum2
wdListNumberStyleGBNum3
wdListNumberStyleGBNum4
wdListNumberStyleHangul
wdListNumberStyleHanja
wdListNumberStyleHanjaRead
wdListNumberStyleHanjaReadDigit
wdListNumberStyleHebrew1
wdListNumberStyleHebrew2
wdListNumberStyleHindiArabic
wdListNumberStyleHindiCardinalText
wdListNumberStyleHindiLetter1
wdListNumberStyleHindiLetter2
wdListNumberStyleIroha
wdListNumberStyleIrohaHalfWidth
wdListNumberStyleKanji
wdListNumberStyleKanjiDigit
wdListNumberStyleKanjiTraditional
wdListNumberStyleKanjiTraditional2
wdListNumberStyleLegal
wdListNumberStyleLegalLZ
wdListNumberStyleLowercaseLetter
wdListNumberStyleLowercaseRoman
wdListNumberStyleLowercaseRussian
wdListNumberStyleNone
wdListNumberStyleNumberInCircle
wdListNumberStyleOrdinal
wdListNumberStyleOrdinalText
wdListNumberStylePictureBullet
wdListNumberStyleSimpChinNum1
wdListNumberStyleSimpChinNum2
wdListNumberStyleSimpChinNum3



wdListNumberStyleSimpChinNum4
wdListNumberStyleThaiArabic
wdListNumberStyleThaiCardinalText
wdListNumberStyleThaiLetter
wdListNumberStyleTradChinNum1
wdListNumberStyleTradChinNum2
wdListNumberStyleTradChinNum3
wdListNumberStyleTradChinNum4
wdListNumberStyleUppercaseLetter
wdListNumberStyleUppercaseRoman
wdListNumberStyleUppercaseRussian
wdListNumberStyleVietCardinalText
wdListNumberStyleZodiac1
wdListNumberStyleZodiac2
wdListNumberStyleZodiac3
wdListNumberStyleAiueoHalfWidth
wdListNumberStyleArabic1
wdListNumberStyleArabicFullWidth
wdListNumberStyleBullet

expression.NumberStyle

expression			Required.	An	expression	that	returns	a	ListLevel	object.

NumberStyle	property	as	it	applies	to	the	PageNumbers	object.

Returns	or	sets	the	number	style	for	the	PageNumbers	object.	Read/write
WdPageNumberStyle.

WdPageNumberStyle	can	be	one	of	these	WdPageNumberStyle	constants.
wdPageNumberStyleArabic
wdPageNumberStyleArabicLetter1
wdPageNumberStyleHanjaRead
wdPageNumberStyleHebrewLetter1
wdPageNumberStyleHindiArabic



wdPageNumberStyleHindiLetter1
wdPageNumberStyleKanji
wdPageNumberStyleKanjiTraditional
wdPageNumberStyleLowercaseRoman
wdPageNumberStyleNumberInDash
wdPageNumberStyleSimpChinNum2
wdPageNumberStyleThaiCardinalText
wdPageNumberStyleTradChinNum1
wdPageNumberStyleUppercaseLetter
wdPageNumberStyleVietCardinalText
wdPageNumberStyleArabicFullWidth
wdPageNumberStyleArabicLetter2
wdPageNumberStyleHanjaReadDigit
wdPageNumberStyleHebrewLetter2
wdPageNumberStyleHindiCardinalText
wdPageNumberStyleHindiLetter2
wdPageNumberStyleKanjiDigit
wdPageNumberStyleLowercaseLetter
wdPageNumberStyleNumberInCircle
wdPageNumberStyleSimpChinNum1
wdPageNumberStyleThaiArabic
wdPageNumberStyleThaiLetter
wdPageNumberStyleTradChinNum2
wdPageNumberStyleUppercaseRoman

expression.NumberStyle

expression			Required.	An	expression	that	returns	a	PageNumbers	object.



Remarks

Some	of	the	constants	listed	above	may	not	be	available	to	you,	depending	on
the	language	support	(U.S.	English,	for	example)	that	you’ve	selected	or
installed.



Example

As	it	applies	to	the	CaptionLabel	object.

This	example	inserts	a	caption	at	the	insertion	point.	The	caption	letter	is
formatted	as	an	uppercase	letter.

CaptionLabels(wdCaptionFigure).NumberStyle	=	_

				wdCaptionNumberStyleUppercaseLetter

Selection.Collapse	Direction:=wdCollapseEnd

Selection.InsertCaption	Label:=wdCaptionFigure

As	it	applies	to	the	ListLevel	object.

This	example	creates	an	alternating	number	style	for	the	third	outline-numbered
list	template.

Set	myTemp	=	ListGalleries(wdOutlineNumberGallery).ListTemplates(3)

For	i	=	1	to	9

				If	i	Mod	2	=	0	Then

								myTemp.ListLevels(i).NumberStyle	=	_

												wdListNumberStyleUppercaseRoman

				Else

								myTemp.ListLevels(i).NumberStyle	=	_

												wdListNumberStyleLowercaseRoman

				End	If

Next	i

This	example	changes	the	number	style	to	uppercase	letters	for	every	outline-
numbered	list	in	the	active	document.

For	Each	lt	In	ActiveDocument.ListTemplates

				For	Each	ll	In	lt.listlevels

							ll.NumberStyle	=	wdListNumberStyleUppercaseLetter

				Next	ll

Next	lt

As	it	applies	to	the	Footnote	and	Endnote	options.

This	example	sets	the	formatting	for	footnotes	and	endnotes	in	the	active
document.



With	ActiveDocument

				.Footnotes.NumberStyle	=	wdNoteNumberStyleLowercaseRoman

				.Endnotes.NumberStyle	=	wdNoteNumberStyleUppercaseRoman

End	With

As	it	applies	to	the	PageNumbers	object.

This	example	formats	the	page	numbers	in	the	active	document's	footer	as
lowercase	roman	numerals.

For	Each	sec	In	ActiveDocument.Sections

				sec.Footers(wdHeaderFooterPrimary).PageNumbers	_

								.NumberStyle	=	wdPageNumberStyleLowercaseRoman

Next	sec



NumLock	Property
							

Returns	the	state	of	the	NUM	LOCK	key.	True	if	the	keys	on	the	numeric
keypad	insert	numbers,	False	if	the	keys	move	the	insertion	point.	Read-only
Boolean.

expression.NumLock

expression			Required.	An	expression	that	returns	an	Application	object.



Example

This	example	returns	the	current	state	of	the	NUM	LOCK	key.

theState	=	Application.NumLock



Object	Property
							

Returns	an	Object	that	represents	the	specified	OLE	object's	top-level	interface.
This	property	allows	you	to	access	the	properties	and	methods	of	an	ActiveX
control	or	the	application	in	which	an	OLE	object	was	created.	The	OLE	object
must	support	OLE	Automation	for	this	property	to	work.

expression.Object

expression			Required.	An	expression	that	returns	an	OLEFormat	object.



Example

This	example	sets	the	value	of	the	first	shape	on	the	active	document.	For	the
example	to	work,	this	first	shape	must	be	an	ActiveX	control	(for	example,	a
check	box	or	an	option	button).

With	ActiveDocument.Shapes(1).OLEFormat

				.Activate

				Set	myObj	=	.Object

End	With

myObj.Value	=	True

This	example	adds	a	new	ActiveX	control	to	the	active	document.	The	example
then	activates	the	new	option	button	and	sets	some	of	its	properties.

Set	myOB	=	ActiveDocument.Shapes	_

				.AddOLEControl(ClassType:="Forms.OptionButton.1")

With	myOB.OLEFormat

				.Activate

				Set	myObj	=	.Object

End	With

With	myObj

				.Value	=	False

				.Caption	=	"My	Caption"

				.AutoSize	=	True

End	With



Show	All



Obscured	Property
							

MsoTrue	if	the	shadow	of	the	specified	shape	appears	filled	in	and	is	obscured
by	the	shape,	even	if	the	shape	has	no	fill.	MsoFalse	if	the	shadow	has	no	fill
and	the	outline	of	the	shadow	is	visible	through	the	shape	if	the	shape	has	no	fill.
Read/write	MsoTriState.

MsoTriState	can	be	one	of	these	MsoTriState	constants.
msoCTrue
msoFalse
msoTriStateMixed
msoTriStateToggle
msoTrue

expression.Obscured

expression			Required.	An	expression	that	returns	a	ShadowFormat	object.



Example

This	example	sets	the	horizontal	and	vertical	offsets	for	the	shadow	of	shape
three	on	myDocument.	The	shadow	is	offset	5	points	to	the	right	of	the	shape	and
3	points	above	it.	If	the	shape	doesn't	already	have	a	shadow,	this	example	adds
one	to	it.	The	shadow	will	be	filled	in	and	obscured	by	the	shape,	even	if	the
shape	has	no	fill.

Set	myDocument	=	ActiveDocument

With	myDocument.Shapes(3).Shadow

				.Visible	=	True

				.OffsetX	=	5

				.OffsetY	=	-3

				.Obscured	=	msoTrue

End	With



OddAndEvenPagesHeaderFooter
Property
							

True	if	the	specified	PageSetup	object	has	different	headers	and	footers	for	odd-
numbered	and	even-numbered	pages.	Can	be	True,	False,	or	wdUndefined.
Read/write	Long.

expression.OddAndEvenPagesHeaderFooter

expression			Required.	An	expression	that	returns	a	PageSetup	object.



Example

This	example	creates	different	headers	and	footers	for	odd-numbered	and	even-
numbered	pages	in	Document1.

Set	myDoc	=	Documents("Document1")

myDoc.PageSetup.OddAndEvenPagesHeaderFooter	=	True

With	myDoc.Sections(1)

				.Headers(wdHeaderFooterPrimary).Range	_

								.InsertAfter	"Odd	Header"

				.Headers(wdHeaderFooterEvenPages).Range	_

								.InsertAfter	"Even	Header"

End	With



OffsetX	Property
							

Returns	or	sets	the	horizontal	offset	(in	points)	of	the	shadow	from	the	specified
shape.	A	positive	value	offsets	the	shadow	to	the	right	of	the	shape;	a	negative
value	offsets	it	to	the	left.	Read/write	Single.

expression.OffsetX

expression			Required.	An	expression	that	returns	a	ShadowFormat	object.



Remarks

If	you	want	to	nudge	a	shadow	horizontally	or	vertically	from	its	current	position
without	having	to	specify	an	absolute	position,	use	the	IncrementOffsetX	or
IncrementOffsetY	method.



Example

This	example	sets	the	horizontal	and	vertical	offsets	for	the	shadow	of	shape
three	on	myDocument.	The	shadow	is	offset	5	points	to	the	right	of	the	shape	and
3	points	above	it.	If	the	shape	doesn't	already	have	a	shadow,	this	example	adds
one	to	it.

Set	myDocument	=	ActiveDocument

With	myDocument.Shapes(3).Shadow

				.Visible	=	True

				.OffsetX	=	5

				.OffsetY	=	-3

End	With



OffsetY	Property
							

Returns	or	sets	the	vertical	offset	(in	points)	of	the	shadow	from	the	specified
shape.	A	positive	value	offsets	the	shadow	below	the	shape;	a	negative	value
offsets	it	above	the	shape.	Read/write	Single.

expression.OffsetY

expression			Required.	An	expression	that	returns	a	ShadowFormat	object.



Remarks

If	you	want	to	nudge	a	shadow	horizontally	or	vertically	from	its	current	position
without	having	to	specify	an	absolute	position,	use	the	IncrementOffsetX	or
IncrementOffsetY	method.



Example

This	example	sets	the	horizontal	and	vertical	offsets	for	the	shadow	of	shape
three	in	myDocument.	The	shadow	is	offset	5	points	to	the	right	of	the	shape	and
3	points	above	it.	If	the	shape	doesn't	already	have	a	shadow,	this	example	adds
one	to	it.

Set	myDocument	=	ActiveDocument

With	myDocument.Shapes(3).Shadow

				.Visible	=	True

				.OffsetX	=	5

				.OffsetY	=	-3

End	With



OLEFormat	Property
							

Returns	an	OLEFormat	object	that	represents	the	OLE	characteristics	(other
than	linking)	for	the	specified	shape,	inline	shape,	or	field.	Read-only.



Example

This	example	loops	through	all	the	floating	shapes	on	the	active	document	and
sets	all	linked	Microsoft	Excel	worksheets	to	be	updated	automatically.

For	Each	s	In	ActiveDocument.Shapes

				If	s.Type	=	msoLinkedOLEObject	Then

								If	s.OLEFormat.ProgID	=	"Excel.Sheet"	Then	

												s.LinkFormat.AutoUpdate	=	True

								End	If

				End	If

Next



OpenEncoding	Property
							

Returns	the	encoding	used	to	open	the	specified	document.	Read-only
MsoEncoding.

MsoEncoding	can	be	one	of	these	MsoEncoding	constants;	however,	you	cannot
use	any	of	the	constants	that	have	the	suffix	AutoDetect.	These	constants	are
used	by	the	ReloadAs	method.
msoEncodingOEMMultilingualLatinI
msoEncodingOEMNordic
msoEncodingOEMTurkish
msoEncodingSimplifiedChineseAutoDetect
msoEncodingT61
msoEncodingTaiwanEten
msoEncodingTaiwanTCA
msoEncodingTaiwanWang
msoEncodingTraditionalChineseAutoDetect
msoEncodingTurkish
msoEncodingUnicodeLittleEndian
msoEncodingUTF7
msoEncodingVietnamese
msoEncodingEBCDICJapaneseKatakanaExtended
msoEncodingEBCDICJapaneseLatinExtendedAndJapanese
msoEncodingEBCDICKoreanExtendedAndKorean
msoEncodingEBCDICMultilingualROECELatin2
msoEncodingEBCDICSerbianBulgarian
msoEncodingEBCDICThai
msoEncodingEBCDICTurkishLatin5
msoEncodingEBCDICUSCanada
msoEncodingEBCDICUSCanadaAndTraditionalChinese



msoEncodingOEMModernGreek
msoEncodingOEMMultilingualLatinII
msoEncodingOEMPortuguese
msoEncodingOEMUnitedStates
msoEncodingSimplifiedChineseGBK
msoEncodingTaiwanCNS
msoEncodingTaiwanIBM5550
msoEncodingTaiwanTeleText
msoEncodingThai
msoEncodingTraditionalChineseBig5
msoEncodingUnicodeBigEndian
msoEncodingUSASCII
msoEncodingUTF8
msoEncodingWestern
msoEncodingArabic
msoEncodingArabicASMO
msoEncodingArabicAutoDetect
msoEncodingArabicTransparentASMO
msoEncodingAutoDetect
msoEncodingBaltic
msoEncodingCentralEuropean
msoEncodingCyrillic
msoEncodingCyrillicAutoDetect
msoEncodingEBCDICArabic
msoEncodingEBCDICDenmarkNorway
msoEncodingEBCDICFinlandSweden
msoEncodingEBCDICFrance
msoEncodingEBCDICGermany
msoEncodingEBCDICGreek
msoEncodingEBCDICGreekModern
msoEncodingEBCDICHebrew
msoEncodingEBCDICIcelandic
msoEncodingEBCDICInternational



msoEncodingEBCDICItaly
msoEncodingEBCDICJapaneseKatakanaExtendedAndJapanese
msoEncodingEBCDICKoreanExtended
msoEncodingEBCDICLatinAmericaSpain
msoEncodingEBCDICRussian
msoEncodingEBCDICSimplifiedChineseExtendedAndSimplifiedChinese
msoEncodingEBCDICTurkish
msoEncodingEBCDICUnitedKingdom
msoEncodingEBCDICUSCanadaAndJapanese
msoEncodingEUCChineseSimplifiedChinese
msoEncodingEUCJapanese
msoEncodingEUCKorean
msoEncodingEUCTaiwaneseTraditionalChinese
msoEncodingEuropa3
msoEncodingExtAlphaLowercase
msoEncodingGreek
msoEncodingGreekAutoDetect
msoEncodingHebrew
msoEncodingHZGBSimplifiedChinese
msoEncodingIA5German
msoEncodingIA5IRV
msoEncodingIA5Norwegian
msoEncodingIA5Swedish
msoEncodingISO2022CNSimplifiedChinese
msoEncodingISO2022CNTraditionalChinese
msoEncodingISO2022JPJISX02011989
msoEncodingISO2022JPJISX02021984
msoEncodingISO2022JPNoHalfwidthKatakana
msoEncodingISO2022KR
msoEncodingISO6937NonSpacingAccent
msoEncodingISO885915Latin9
msoEncodingISO88591Latin1
msoEncodingISO88592CentralEurope



msoEncodingISO88593Latin3
msoEncodingISO88594Baltic

msoEncodingISO88595Cyrillic
msoEncodingISO88596Arabic
msoEncodingISO88597Greek
msoEncodingISO88598Hebrew
msoEncodingISO88599Turkish
msoEncodingJapaneseAutoDetect
msoEncodingJapaneseShiftJIS
msoEncodingKOI8R
msoEncodingKOI8U
msoEncodingKorean
msoEncodingKoreanAutoDetect
msoEncodingKoreanJohab
msoEncodingMacArabic
msoEncodingMacCroatia
msoEncodingMacCyrillic
msoEncodingMacGreek1
msoEncodingMacHebrew
msoEncodingMacIcelandic
msoEncodingMacJapanese
msoEncodingMacKorean
msoEncodingMacLatin2
msoEncodingMacRoman
msoEncodingMacRomania
msoEncodingMacSimplifiedChineseGB2312
msoEncodingMacTraditionalChineseBig5
msoEncodingMacTurkish
msoEncodingMacUkraine
msoEncodingOEMArabic
msoEncodingOEMBaltic
msoEncodingOEMCanadianFrench
msoEncodingOEMCyrillic



msoEncodingOEMCyrillicII
msoEncodingOEMGreek437G

msoEncodingOEMHebrew
msoEncodingOEMIcelandic

expression.OpenEncoding

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.



Example

This	example	tests	whether	the	current	document	was	opened	with	UTF7
encoding.

If	ActiveDocument.OpenEncoding	=	msoEncodingUTF7	Then

				MsgBox	"This	is	a	UTF7-encoded	text	file!"

Else

				MsgBox	"This	is	not	a	UTF7-encoded	text	file!"

End	If



Show	All



OpenFormat	Property
							

Returns	the	file	format	of	the	specified	file	converter.	Can	be	any	vailid
WdOpenFormat	constant,	or	it	can	be	a	unique	number	that	represents	an
external	file	converter.	Read-only	Long.

WdOpenFormat	can	be	one	of	these	WdOpenFormat	constants.
wdOpenFormatAllWord
wdOpenFormatAuto
wdOpenFormatDocument
wdOpenFormatEncodedText
wdOpenFormatRTF
wdOpenFormatTemplate
wdOpenFormatText
wdOpenFormatUnicodeText
wdOpenFormatWebPages

expression.OpenFormat

expression			Required.	An	expression	that	returns	a	FileConverter	object.



Example

This	example	displays	the	unique	format	value	and	the	format	name	for	the
converters	you	can	use	to	open	documents.

For	Each	fc	In	FileConverters

				If	fc.CanOpen	=	True	Then	_

								MsgBox	fc.OpenFormat	&	vbCr	&	fc.FormatName

Next	fc

This	example	opens	the	file	named	"Data.wp"	by	using	the	WordPerfect	6x	file
converter.

Documents.Open	FileName:="C:\Data.wp",	_

				Format:=FileConverters("WordPerfect6x").OpenFormat



OperatingSystem	Property
							

Returns	the	name	of	the	current	operating	system	(for	example,	"Windows"	or
"Windows	NT").	Read-only	String.

expression.OperatingSystem

expression			Required.	An	expression	that	returns	a	System	object.



Example

This	example	displays	a	message	that	includes	the	name	of	the	current	operating
system.

MsgBox	"This	computer	is	running	"	&	System.OperatingSystem



OptimizeForBrowser	Property
							

True	if	Microsoft	Word	optimizes	new	Web	pages	created	in	Word	for	the	Web
browser	specified	by	the	BrowserLevel	property	(for	the	DefaultWebOptions
object).	True	if	Word	optimizes	the	specified	Web	page	for	the	Web	browser
specified	by	the	BrowserLevel	property	(for	the	WebOptions	object).
Read/write	Boolean.

expression.OptimizeForBrowser

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.



Example

This	example	sets	Word	to	optimize	new	Web	pages	for	Microsoft	Internet
Explorer	5	and	creates	a	Web	page	based	on	this	setting.

With	Application.DefaultWebOptions

				.BrowserLevel	_

								=	wdBrowserLevelMicrosoftInternetExplorer5

				.OptimizeForBrowser	=	True

End	With

Documents.Add	DocumentType:=wdNewWebPage

This	example	creates	a	new	Web	page	and	optimizes	it	for	Microsoft	Internet
Explorer	5.

Documents.Add	DocumentType:=wdNewWebPage

With	ActiveDocument.WebOptions

				.BrowserLevel	_

								=	wdBrowserLevelMicrosoftInternetExplorer5

				.OptimizeForBrowser	=	True

End	With



OptimizeForWord97	Property
							

True	if	Microsoft	Word	optimizes	the	current	document	for	viewing	in	Word	97
by	disabling	any	incompatible	formatting.	Read/write	Boolean.



Remarks

To	optimize	all	new	documents	for	Word	97	by	default,	use	the
OptimizeForWord97byDefault	property.



Example

This	example	checks	the	current	document	to	see	if	it's	optimized	for	Word	97;	if
it	isn't,	the	example	asks	the	user	whether	it	should	be.

If	ActiveDocument.OptimizeForWord97	=	False	Then

				x	=	MsgBox("Is	this	document	targeted	at	"	_

								&	"Word	97	users?",	vbYesNo)

				If	x	=	vbYes	Then	_

								ActiveDocument.OptimizeForWord97	=	True

End	If



OptimizeForWord97byDefault
Property
							

True	if	Microsoft	Word	optimizes	all	new	documents	for	viewing	in	Word	97	by
disabling	any	incompatible	formatting.	Read/write	Boolean.



Remarks

To	optimize	a	single	document	for	Word	97,	use	the	OptimizeForWord97
property.



Example

This	example	sets	Word	to	disable	all	formatting	in	new	documents	that’s
incompatible	with	Word	97,	and	then	it	creates	a	new	document	whose
OptimizeForWord97	property	is	automatically	set	to	True.

Options.OptimizeForWord97byDefault	=	True

MsgBox	Documents.Add(DocumentType:=wdNewBlankDocument)	_

				.OptimizeForWord97



Options	Property
							

Returns	an	Options	object	that	represents	application	settings	in	Microsoft
Word.

expression.Options

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.



Example

This	example	disables	fast	saves	and	then	saves	the	active	document.

Options.AllowFastSave	=	False

ActiveDocument.Save

This	example	prints	Sales.doc	with	comments	and	field	results.

With	Options

				.PrintFieldCodes	=	False

				.PrintComments	=	True

End	With

Documents("Sales.doc").PrintOut



OrganizeInFolder	Property
							

True	if	all	supporting	files,	such	as	background	textures	and	graphics,	are
organized	in	a	separate	folder	when	you	save	the	specified	document	as	a	Web
page.	False	if	supporting	files	are	saved	in	the	same	folder	as	the	Web	page.	The
default	value	is	True.	Read/write	Boolean.

expression.OrganizeInFolder

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.



Remarks

The	new	folder	is	created	in	the	folder	where	you	have	saved	the	Web	page	and
is	named	after	the	document.	If	long	file	names	are	used,	a	suffix	is	added	to	the
folder	name.	The	FolderSuffix	property	returns	wither	the	folder	suffix	for	the
language	support	you	have	selected	or	installed	or	the	default	folder	suffix.

If	you	save	a	document	that	was	previously	saved	with	the	OrganizeInFolder
property	set	to	a	different	value,	Microsoft	Word	automatically	moves	the
supporting	files	into	or	out	of	the	folder,	as	appropriate.

If	you	don't	use	long	file	names	(that	is,	if	the	UseLongFileNames	property	is
set	to	False),	Microsoft	Word	automatically	saves	any	supporting	files	in	a
separate	folder.	The	files	cannot	be	saved	in	the	same	folder	as	the	Web	page.



Example

This	example	specifies	that	all	supporting	files	are	saved	in	the	same	folder
when	the	document	is	saved	as	a	Web	page.

Application.DefaultWebOptions.OrganizeInFolder	=	False



Show	All



Orientation	Property
							

Orientation	property	as	it	applies	to	the	PageSetup	object.

Returns	or	sets	the	orientation	of	the	page.	Read/write	WdOrientation.

WdOrientation	can	be	one	of	these	WdOrientation	constants.
wdOrientLandscape
wdOrientPortrait

expression.Orientation

expression			Required.	An	expression	that	returns	a	PageSetup	object.

Orientation	property	as	it	applies	to	the	Range	and	Selection	objects.

Returns	or	sets	the	orientation	of	text	in	a	range	or	selection	when	the	Text
Direction	feature	is	enabled.	Read/write	WdTextOrientation.

WdTextOrientation	can	be	one	of	these	WdTextOrientation	constants.
wdTextOrientationDownward
wdTextOrientationHorizontal
wdTextOrientationHorizontalRotatedFarEast
wdTextOrientationUpward
wdTextOrientationVerticalFarEast

expression.Orientation

expression			Required.	An	expression	that	returns	one	of	the	above	objects.

Orientation	property	as	it	applies	to	the	TextFrame	object.

Returns	or	sets	the	orientation	of	the	text	inside	the	frame.	Read/write
MsoTextOrientation.



MsoTextOrientation	can	be	one	of	these	MsoTextOrientation	constants.
msoTextOrientationDownward
msoTextOrientationHorizontal
msoTextOrientationHorizontalRotatedFarEast
msoTextOrientationMixed
msoTextOrientationUpward
msoTextOrientationVertical
msoTextOrientationVerticalFarEast

expression.Orientation

expression			Required.	An	expression	that	returns	a	TextFrame	object.



Remarks

Some	of	the	constants	listed	above	may	not	be	available	to	you,	depending	on
the	language	support	(U.S.	English,	for	example)	that	you’ve	selected	or
installed.

You	can	set	the	orientation	for	a	text	frame	or	for	a	range	or	selection	that
happens	to	occur	inside	a	text	frame.	For	information	about	the	difference
between	a	text	frame	and	a	text	box,	see	the	TextFrame	object.



Example

As	it	applies	to	the	TextFrame	object

This	example	creates	a	new	document,	inserts	text	into	it,	uses	this	text	to	create
a	text	box,	and	then	sets	the	orientation	of	the	text	frame	so	that	the	text	slopes
upward.

Set	mydoc	=	Documents.Add

Selection.TypeText	"This	is	some	text."

mydoc.Content.Select

Selection.CreateTextbox

mydoc.Shapes(1).TextFrame.Orientation	=	msoTextOrientationUpward

As	it	applies	to	the	PageSetup	object.

This	example	changes	the	orientation	of	the	document	named
"MyDocument.doc"	and	then	prints	the	document.	The	example	then	changes
the	orientation	of	the	document	back	to	portrait.

Set	myDoc	=	Documents("MyDocument.doc")

With	myDoc

				.PageSetup.Orientation	=	wdOrientLandscape

				.PrintOut

				.PageSetup.Orientation	=	wdOrientPortrait

End	With



OtherCorrectionsAutoAdd	Property
							

True	if	Microsoft	Word	automatically	adds	words	to	the	list	of	AutoCorrect
exceptions	on	the	Other	Corrections	tab	in	the	AutoCorrect	Exceptions	dialog
box	(AutoCorrect	Options	command,	Tools	menu).	Word	adds	a	word	to	this
list	if	you	delete	and	then	retype	a	word	that	you	didn't	want	Word	to	correct.
Read/write	Boolean.

expression.OtherCorrectionsAutoAdd

expression			Required.	An	expression	that	returns	an	AutoCorrect	object.



Example

This	example	sets	Word	to	automatically	add	words	to	the	list	of	AutoCorrect
exceptions.

AutoCorrect.OtherCorrectionsAutoAdd	=	True



OtherCorrectionsExceptions
Property
							

Returns	an	OtherCorrectionsExceptions	collection	that	represents	the	list	of
words	that	Microsoft	Word	won't	correct	automatically.	This	list	corresponds	to
the	list	of	AutoCorrect	exceptions	on	the	Other	Corrections	tab	in	the
AutoCorrect	Exceptions	dialog	box	(AutoCorrect	command,	Tools	menu).

expression.OtherCorrectionsExceptions

expression			Required.	An	expression	that	returns	an	AutoCorrect	object.



Remarks

For	information	about	returning	a	single	member	of	a	collection,	see	Returning
an	Object	from	a	Collection.



Example

This	example	prompts	the	user	to	delete	or	keep	each	AutoCorrect	exception	on
the	Other	Corrections	tab	in	the	AutoCorrect	Exceptions	dialog	box.

For	Each	anEntry	In	_

								AutoCorrect.OtherCorrectionsExceptions

				response	=	MsgBox("Delete	entry:	"	_

								&	anEntry.Name,	vbYesNoCancel)

				If	response	=	vbYes	Then

								anEntry.Delete

				Else

								If	response	=	vbCancel	Then	End

				End	If

Next	anEntry



Show	All



OtherPagesTray	Property
							

Returns	or	sets	the	paper	tray	to	be	used	for	all	but	the	first	page	of	a	document
or	section.	Read/write	WdPaperTray.

WdPaperTray	can	be	one	of	these	WdPaperTray	constants.
wdPrinterAutomaticSheetFeed
wdPrinterDefaultBin
wdPrinterEnvelopeFeed
wdPrinterFormSource
wdPrinterLargeCapacityBin
wdPrinterLargeFormatBin
wdPrinterLowerBin
wdPrinterManualEnvelopeFeed
wdPrinterManualFeed
wdPrinterMiddleBin
wdPrinterOnlyBin
wdPrinterPaperCassette
wdPrinterSmallFormatBin
wdPrinterTractorFeed
wdPrinterUpperBin

expression.OtherPagesTray

expression			Required.	An	expression	that	returns	a	PageSetup	object.



Example

This	example	sets	the	tray	to	be	used	for	printing	all	but	the	first	page	of	each
section	in	the	active	document.

ActiveDocument.PageSetup.OtherPagesTray	=	wdPrinterUpperBin

This	example	sets	the	tray	to	be	used	for	printing	all	but	the	first	page	of	each
section	in	the	selection.

Selection.PageSetup.OtherPagesTray	=	wdPrinterLowerBin



Outline	Property
							

True	if	the	font	is	formatted	as	outline.	Returns	True,	False,	or	wdUndefined	(a
mixture	of	True	and	False).	Can	be	set	to	True,	False,	or	wdToggle.	Read/write
Long.

expression.Outline

expression			Required.	An	expression	that	returns	a	Font	object.



Example

This	example	applies	outline	font	formatting	to	the	first	three	words	in	the	active
document.

Set	myRange	=	ActiveDocument.Range(Start:=	_

				ActiveDocument.Words(1).Start,	_

				End:=ActiveDocument.Words(3).End)

myRange.Font.Outline	=	True

This	example	toggles	outline	formatting	for	the	selected	text.

Selection.Font.Outline	=	wdToggle

This	example	removes	outline	font	formatting	from	the	selection	if	outline
formatting	is	partially	applied	to	the	selection.

Set	myFont	=	Selection.Font

If	myFont.Outline	=	wdUndefined	Then

				myFont.Outline	=	False

End	If



OutlineLevel	Property
							

Returns	or	sets	the	outline	level	for	the	specified	paragraphs.	Read/write
wdOutlineLevel.

				Can	be	one	of	the	following	WdOutlineLevel	constants.

				wdOutLineLevel1

				wdOutLineLevel2

				wdOutLineLevel3

				wdOutLineLevel4

				wdOutLineLevel5

				wdOutLineLevel6

				wdOutLineLevel7

				wdOutLineLevel8

				wdOutLineLevel9

				wdOutLineLevelBodyText.

expression.OutlineLevel

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.



Remarks

If	a	paragraph	has	a	heading	style	applied	to	it	(Heading	1	through	Heading	9),
the	outline	level	is	the	same	as	the	heading	style	and	cannot	be	changed.

Outline	levels	are	visible	only	in	outline	view	or	the	document	map	pane.



Example

This	example	returns	the	outline	level	of	the	first	paragraph	in	the	active
document.

temp	=	ActiveDocument.Paragraphs(1).OutlineLevel

This	example	sets	the	outline	level	for	each	paragraph	in	the	active	document.
First	the	Normal	style	is	applied	to	all	paragraphs.	The	Mod	operator	is	used	to
determine	which	outline	level	(1,	2,	or	3)	to	apply	to	successive	paragraphs	in
the	document,	and	then	the	view	is	changed	to	outline	view.

Set	myParas	=	ActiveDocument.Paragraphs

ActiveDocument.Paragraphs.Style	=	wdStyleNormal

For	x	=	1	To	myParas.Count

				If	x	Mod	3	=	1	Then

								myParas(x).OutlineLevel	=	wdOutlineLevel1

				ElseIf	x	Mod	3	=	2	Then

								myParas(x).OutlineLevel	=	wdOutlineLevel2

				Else

								myParas(x).OutlineLevel	=	wdOutlineLevel3

				End	If

Next	x

ActiveDocument.ActiveWindow.View.Type	=	wdOutlineView



OutlineNumbered	Property
							

True	if	the	specified	ListTemplate	object	is	outline	numbered.	Read/write
Boolean.

expression.OutlineNumbered

expression			Required.	An	expression	that	returns	a	ListTemplate	object.



Remarks

Setting	this	property	to	False	converts	the	list	template	to	a	single-level	list	that
uses	the	formatting	of	the	first	level.

You	cannot	set	this	property	for	a	ListTemplate	object	returned	from	a
ListGallery	object.



Example

This	example	changes	the	selected	outline-numbered	list	to	a	single-level
numbered	list.

Selection.Range.ListFormat.ListTemplate.OutlineNumbered	=	False

This	example	checks	to	see	whether	the	third	list	in	MyDoc.doc	is	an	outline-
numbered	list.	If	it	is,	the	third	outline-numbered	list	template	is	applied	to	it.

Set	myltemp	=	Documents("MyDoc.doc").Lists(3).Range	_

				.ListFormat.ListTemplate

num	=	myltemp.OutlineNumbered

If	num	=	True	Then	ActiveDocument.Lists(3).ApplyListTemplate	_

				ListTemplate:=ListGalleries(wdOutlineNumberGallery)	_

				.ListTemplates(3)



Show	All



OutsideColor	Property
							

Returns	or	sets	the	24-bit	color	of	the	outside	borders.	Can	be	any	valid
WdColor	constant	or	a	value	returned	by	Visual	Basic's	RGB	function.

WdColor	can	be	one	of	these	WdColor	constants.
wdColorGray625
wdColorGray70
wdColorGray80
wdColorGray875
wdColorGray95
wdColorIndigo
wdColorLightBlue
wdColorLightOrange
wdColorLightYellow
wdColorOliveGreen
wdColorPaleBlue
wdColorPlum
wdColorRed
wdColorRose
wdColorSeaGreen
wdColorSkyBlue
wdColorTan
wdColorTeal
wdColorTurquoise
wdColorViolet
wdColorWhite
wdColorYellow
wdColorAqua
wdColorAutomatic



wdColorBlack
wdColorBlue
wdColorBlueGray
wdColorBrightGreen
wdColorBrown
wdColorDarkBlue
wdColorDarkGreen
wdColorDarkRed
wdColorDarkTeal
wdColorDarkYellow
wdColorGold
wdColorGray05
wdColorGray10
wdColorGray125
wdColorGray15
wdColorGray20
wdColorGray25
wdColorGray30
wdColorGray35
wdColorGray375
wdColorGray40
wdColorGray45
wdColorGray50
wdColorGray55
wdColorGray60
wdColorGray65
wdColorGray75
wdColorGray85
wdColorGray90
wdColorGreen
wdColorLavender
wdColorLightGreen
wdColorLightTurquoise



wdColorLime
wdColorOrange
wdColorPink

expression.OutsideColor

expression			Required.	An	expression	that	returns	a	Borders	object.



Remarks

If	the	OutsideLineStyle	property	is	set	to	either	wdLineStyleNone	or	False,
setting	this	property	has	no	effect.



Example

This	example	adds	borders	between	rows	and	between	columns	in	the	first	table
of	the	active	document,	and	then	it	sets	the	colors	for	both	the	inside	and	outside
borders.

If	ActiveDocument.Tables.Count	>=	1	Then

				Set	myTable	=	ActiveDocument.Tables(1)

				With	myTable.Borders

								.InsideLineStyle	=	True

								.InsideColor	=	wdColorBrightGreen

								.OutsideColor	=	wdColorDarkTeal

				End	With

End	If

This	example	adds	a	dark	red,	0.75-point	double	border	around	the	first
paragraph	in	the	active	document.

With	ActiveDocument.Paragraphs(1).Borders

				.OutsideLineStyle	=	wdLineStyleDouble

				.OutsideLineWidth	=	wdLineWidth075pt

				.OutsideColor	=	wdColorDarkRed

End	With



Show	All



OutsideColorIndex	Property
							

Returns	or	sets	the	color	of	the	outside	borders.	Read/write	WdColorIndex.

WdColorIndex	can	be	one	of	these	WdColorIndex	constants.
wdAuto
wdBlack
wdBlue
wdBrightGreen
wdByAuthor
wdDarkBlue
wdDarkRed
wdDarkYellow
wdGray25
wdGray50
wdGreen
wdNoHighlight
wdPink
wdRed
wdTeal
wdTurquoise
wdViolet
wdWhite
wdYellow

expression.OutsideColorIndex

expression			Required.	An	expression	that	returns	a	Borders	object.



Remarks

If	the	OutsideLineStyle	property	is	set	to	either	wdLineStyleNone	or	False,
setting	this	property	has	no	effect.



Example

This	example	adds	borders	between	rows	and	between	columns	in	the	first	table
of	the	active	document,	and	then	it	sets	the	colors	for	both	the	inside	and	outside
borders.

If	ActiveDocument.Tables.Count	>=	1	Then

				Set	myTable	=	ActiveDocument.Tables(1)

				With	myTable.Borders

								.InsideLineStyle	=	True

								.InsideColorIndex	=	wdBrightGreen

								.OutsideColorIndex	=	wdPink

				End	With

End	If

This	example	adds	a	red,	0.75-point	double	border	around	the	first	paragraph	in
the	active	document.

With	ActiveDocument.Paragraphs(1).Borders

				.OutsideLineStyle	=	wdLineStyleDouble

				.OutsideLineWidth	=	wdLineWidth075pt

				.OutsideColorIndex	=	wdRed

End	With



Show	All



OutsideLineStyle	Property
							

Returns	or	sets	the	outside	border	for	the	specified	object.	Returns	wdUndefined
if	more	than	one	kind	of	border	is	applied	to	the	specified	object;	otherwise,
returns	False	or	a	WdLineStyle	constant.	Can	be	set	to	True,	False,	or	a
WdLineStyle	constant.

WdLineStyle	can	be	one	of	these	WdLineStyle	constants.
wdLineStyleDashDot
wdLineStyleDashDotDot
wdLineStyleDashDotStroked
wdLineStyleDashLargeGap
wdLineStyleDashSmallGap
wdLineStyleDot
wdLineStyleDouble
wdLineStyleDoubleWavy
wdLineStyleEmboss3D
wdLineStyleEngrave3D
wdLineStyleInset
wdLineStyleNone
wdLineStyleOutset
wdLineStyleSingle
wdLineStyleSingleWavy
wdLineStyleThickThinLargeGap
wdLineStyleThickThinMedGap
wdLineStyleThickThinSmallGap
wdLineStyleThinThickLargeGap
wdLineStyleThinThickMedGap
wdLineStyleThinThickSmallGap
wdLineStyleThinThickThinLargeGap



wdLineStyleThinThickThinMedGap
wdLineStyleThinThickThinSmallGap
wdLineStyleTriple

expression.OutsideLineStyle

expression			Required.	An	expression	that	returns	a	Borders	object.



Remarks

True	sets	the	line	style	to	the	default	line	style	and	the	line	width	to	the	default
line	width.	The	default	line	style	and	width	can	be	set	using	the
DefaultBorderLineWidth	and	DefaultBorderLineStyle	properties.

Use	either	of	the	following	instructions	to	remove	the	outside	border	from	the
first	table	in	the	active	document.

ActiveDocument.Tables(1).Borders.OutsideLineStyle	=	wdLineStyleNone

ActiveDocument.Tables(1).Borders.OutsideLineStyle	=	False



Example

This	example	adds	a	double	0.75-point	border	around	the	first	paragraph	in	the
active	document.

With	ActiveDocument.Paragraphs(1).Borders

				.OutsideLineStyle	=	wdLineStyleDouble

				.OutsideLineWidth	=	wdLineWidth075pt

End	With

This	example	adds	a	border	around	the	first	table	in	the	active	document.

If	ActiveDocument.Tables.Count	>=	1	Then

				Set	myTable	=	ActiveDocument.Tables(1)

				myTable.Borders.OutsideLineStyle	=	wdLineStyleSingle

End	If



Show	All



OutsideLineWidth	Property
							

Returns	or	sets	the	line	width	of	the	outside	border	of	an	object.	Returns
wdUndefined	if	the	object	has	outside	borders	with	more	than	one	line	width;
otherwise,	returns	False	or	a	WdLineWidth	constant.	Can	be	set	to	True,	False,
or	a	WdLineWidth	constant.	Read/write.

WdLineWidth	can	be	one	of	these	WdLineWidth	constants.
wdLineWidth025pt
wdLineWidth050pt
wdLineWidth075pt
wdLineWidth100pt
wdLineWidth150pt
wdLineWidth225pt
wdLineWidth300pt
wdLineWidth450pt
wdLineWidth600pt

expression.OutsideLineWidth

expression			Required.	An	expression	that	returns	a	Borders	object.



Example

This	example	adds	a	wavy	border	around	the	first	table	in	the	active	document.

If	ActiveDocument.Tables.Count	>=	1	Then

				With	ActiveDocument.Tables(1).Borders

								.OutsideLineStyle	=	wdLineStyleSingleWavy

								.OutsideLineWidth	=	wdLineWidth075pt

				End	With

End	If

This	example	adds	dotted	borders	around	the	first	four	paragraphs	in	the	active
document.

Set	myDoc	=	ActiveDocument

Set	myRange	=	myDoc.Range(Start:=myDoc.Paragraphs(1).Range.Start,	_

				End:=myDoc.Paragraphs(4).Range.End)

myRange.Borders.OutsideLineStyle	=	wdLineStyleDot

myRange.Borders.OutsideLineWidth	=	wdLineWidth075pt



Overflowing	Property
							

True	if	the	text	inside	the	specified	text	frame	doesn't	all	fit	within	the	frame.
Read-only	Boolean.

expression.Overflowing

expression			Required.	An	expression	that	returns	a	TextFrame	object.



Example

This	example	checks	to	see	whether	the	text	in	MyTextBox	is	overflowing	its
text	frame.	If	so,	the	example	adds	another	text	box	and	links	the	two	text	boxes
so	that	the	text	flows	into	the	next	one.

Set	myTBox	=	ActiveDocument.Shapes("MyTextBox")

If	myTBox.TextFrame.Overflowing	=	True	Then

				Set	nextTBox	=	ActiveDocument.Shapes.	_

								AddTextbox(msoTextOrientationHorizontal,	72,	72,	100,	200)

				MyTBox.TextFrame.Next	=	nextTBox.TextFrame

End	If



Show	All



OverPrint	Property
							

When	creating	separation	plates	for	commercial	printing,	MsoTrue	indicates
that	the	specified	shape	is	not	printed	on	the	separation	plates	where	the	ink	level
of	the	shape	is	set	to	0	(zero).	Read/write	MsoTriState.

MsoTriState	can	be	one	of	these	MsoTriState	constants.
msoCTrue		Does	not	apply	to	this	property.
msoFalse		Removes	any	color	left	for	the	selected	shape	by	earlier	plates.
msoTriStateMixed		Does	not	apply	to	this	property.
msoTriStateToggle		Does	not	apply	to	this	property.
msoTrue		Excludes	the	shape	from	being	processed	or	printed	on	a	CMYK
plate.

expression.OverPrint

expression			Required.	An	expression	that	returns	a	ColorFormat	object.



Example

This	example	creates	a	new	shape	in	the	active	document,	sets	the	fill	color,	and
excludes	the	shape	from	the	printer's	plate.

Sub	TintShade()

				Dim	shpHeart	As	Shape

				Set	shpHeart	=	ActiveDocument.Shapes.AddShape(	_

								Type:=msoShapeHeart,	Left:=150,	_

								Top:=150,	Width:=250,	Height:=250)

				With	shpHeart.Fill.ForeColor

								.SetCMYK	Cyan:=0,	Magenta:=125,	Yellow:=12,	Black:=25

								.TintAndShade	=	0.3

								.OverPrint	=	msoTrue

				End	With

End	Sub



Overtype	Property
							

True	if	Overtype	mode	is	active.	In	Overtype	mode,	the	characters	you	type
replace	existing	characters	one	by	one.	When	Overtype	isn't	active,	the
characters	you	type	move	existing	text	to	the	right.	Read/write	Boolean.

expression.Overtype

expression			Required.	An	expression	that	returns	an	Options	object.



Example

If	Overtype	mode	is	active,	this	example	displays	a	message	box	asking	whether
Overtype	should	be	deactivated.	If	the	user	clicks	the	Yes	button,	Overtype	mode
is	made	inactive.

If	Options.Overtype	=	True	Then

				aButton	=	MsgBox("Overtype	is	on.	Turn	off?",	4)

				If	aButton	=	vbYes	Then	Options.Overtype	=	False

End	If



OwnHelp	Property
							

Specifies	the	source	of	the	text	that's	displayed	in	a	message	box	when	a	form
field	has	the	focus	and	the	user	presses	F1.	If	True,	the	text	specified	by	the
HelpText	property	is	displayed.	If	False,	the	text	in	the	AutoText	entry	specified
by	the	HelpText	property	is	displayed.	Read/write	Boolean.

expression.OwnHelp

expression			Required.	An	expression	that	returns	a	FormField	object.



Example

This	example	sets	the	help	text	for	the	first	form	field	in	the	current	section	to
the	contents	of	the	AutoText	entry	named	"Sample."

With	Selection.Sections(1).Range.FormFields(1)

				.OwnHelp	=	False

				.HelpText	=	"Sample"

End	With



OwnStatus	Property
							

Specifies	the	source	of	the	text	that's	displayed	in	the	status	bar	when	a	form
field	has	the	focus.	If	True,	the	text	specified	by	the	StatusText	property	is
displayed.	If	False,	the	text	of	the	AutoText	entry	specified	by	the	StatusText
property	is	displayed.	Read/write	Boolean.

expression.OwnStatus

expression			Required.	An	expression	that	returns	a	FormField	object.



Example

This	example	sets	the	status	bar	text	for	the	form	field	named	"Account"	to	the
contents	of	the	AutoText	entry	named	"Acct."

With	ActiveDocument.FormFields("Account")

				.OwnStatus	=	False

				.StatusText	=	"Acct"

End	With



PageBreakBefore	Property
							

True	if	a	page	break	is	forced	before	the	specified	paragraphs.	Can	be	True,
False,	or	wdUndefined.	Read/write	Long.



Example

This	example	forces	a	page	break	before	the	first	paragraph	in	the	selection.

Selection.Paragraphs(1).PageBreakBefore	=	True



PageColumns	Property
							

Returns	or	sets	the	number	of	pages	to	be	displayed	side	by	side	on-screen	at	the
same	time	in	print	layout	view	or	print	preview.	Read/write	Long.

expression.PageColumns

expression			Required.	An	expression	that	returns	a	Zoom	object.



Example

This	example	switches	the	active	window	to	print	layout	view	and	displays	two
pages	side	by	side.

With	ActiveDocument.ActiveWindow.View

				.Type	=	wdPrintView

				.Zoom.PageColumns	=	2

				.Zoom.PageRows	=	1

End	With

This	example	switches	the	document	window	for	Hello.doc	to	print	layout	view
and	displays	one	full	page.

With	Windows("Hello.doc").View

				.Type	=	wdPrintView

				With	.Zoom

								.PageColumns	=	1

								.PageRows	=	1

								.PageFit	=	wdPageFitFullPage

				End	With

End	With



PageDesign	Property
							

Returns	or	sets	the	name	of	the	template	attached	to	the	document	created	by	the
Letter	Wizard.	Read/write	String.

expression.PageDesign

expression			Required.	An	expression	that	returns	a	LetterContent	object.



Example

This	example	creates	a	new	LetterContent	object,	includes	the	header	and
footer	from	the	Contemporary	Letter	template,	and	then	runs	the	Letter	Wizard
by	using	the	RunLetterWizard	method.

Set	myContent	=	New	LetterContent

With	myContent

				.PageDesign	=	"C:\MSOffice\Templates\"	_

								&	"Letters	&	Faxes\Contemporary	Letter.dot"

				.IncludeHeaderFooter	=	True

End	With

Documents.Add.RunLetterWizard	LetterContent:=myContent



Show	All



PageFit	Property
							

Returns	or	sets	the	view	magnification	of	a	window	so	that	either	the	entire	page
is	visible	or	the	entire	width	of	the	page	is	visible.	Read/write	WdPageFit.

WdPageFit	can	be	one	of	these	WdPageFit	constants.
wdPageFitBestFit
wdPageFitFullPage
wdPageFitNone
wdPageFitTextFit

expression.PageFit

expression			Required.	An	expression	that	returns	a	Zoom	object.



Remarks

The	wdPageFitFullPage	constant	has	no	effect	if	the	document	isn't	in	print
view.

When	the	PageFit	property	is	set	to	wdPageFitBestFit,	the	zoom	percentage	is
automatically	recalculated	every	time	the	document	window	size	is	changed.
Setting	this	property	to	wdPageFitNone	keeps	the	zoom	percentage	from	being
recalculated	whenever	this	happens.



Example

This	example	changes	the	magnification	percentage	of	the	window	for	Letter.doc
so	that	the	entire	width	of	the	text	is	visible.

With	Windows("Letter.doc").View

				.Type	=	wdNormalView

				.Zoom.PageFit	=	wdPageFitBestFit

End	With

This	example	switches	the	active	window	to	print	view	and	changes	the
magnification	so	that	the	entire	page	is	visible.

With	ActiveDocument.ActiveWindow.View

				.Type	=	wdPrintView

				.Zoom.PageFit	=	wdPageFitFullPage

End	With



PageHeight	Property
							

Returns	or	sets	the	height	of	the	page	in	points.	Read/write	Single.

expression.PageHeight

expression			Required.	An	expression	that	returns	a	PageSetup	object.



Remarks

Setting	the	PageHeight	property	changes	the	PaperSize	property	to
wdPaperCustom.

Use	the	PaperSize	property	to	set	the	page	height	and	width	to	those	of	a
predefined	paper	size,	such	as	Letter	or	A4.



Example

This	example	sets	the	page	height	for	the	active	document	to	9	inches.

With	ActiveDocument.PageSetup

				.PageHeight	=	InchesToPoints(9)

				.PageWidth	=	InchesToPoints(7)

End	With



PageNumbers	Property
							

Returns	a	PageNumbers	collection	that	represents	all	the	page	number	fields
included	in	the	specified	header	or	footer.

expression.PageNumbers

expression			Required.	An	expression	that	returns	a	HeaderFooter	object.



Remarks

For	information	about	returning	a	single	member	of	a	collection,	see	Returning
an	Object	from	a	Collection.



Example

This	example	creates	a	new	document	and	adds	page	numbers	to	the	footer.

Set	myDoc	=	Documents.Add

With	myDoc.Sections(1).Footers(wdHeaderFooterPrimary)

				.PageNumbers.Add	PageNumberAlignment	:=	wdAlignPageNumberCenter

End	With



PageNumberSeparator	Property
							

Returns	of	sets	the	characters	(up	to	five)	that	separate	individual	page
references	in	a	table	of	authorities.	The	default	is	a	comma	and	a	space.
Corresponds	to	the	\l	switch	for	a	Table	of	Authorities	(TOA)	field.	Read/write
String.

expression.PageNumberSeparator

expression			Required.	An	expression	that	returns	a	TableOfAuthorities	object.



Example

This	example	formats	the	tables	of	authorities	in	the	active	document	to	use	a
comma	as	the	page	separator	(for	example,	"9,12").

For	Each	myTOA	In	ActiveDocument.TablesOfAuthorities

				myTOA.PageNumberSeparator	=	","

Next	myTOA



PageRangeSeparator	Property
							

Returns	or	sets	the	characters	(up	to	five)	that	separate	a	range	of	pages	in	a	table
of	authorities.	The	default	is	an	en	dash.	Corresponds	to	the	\g	switch	for	a	Table
of	Authorities	(TOA)	field.	Read/write	String.

expression.PageRangeSeparator

expression			Required.	An	expression	that	returns	a	TableOfAuthorities	object.



Example

This	example	formats	the	first	table	of	authorities	in	the	active	document	to	use	a
hyphen	with	a	space	on	either	side	as	the	page	range	separator	(for	example,	"9	-
12").

ActiveDocument.TablesOfAuthorities(1).PageRangeSeparator	=	"	-	"



PageRows	Property
							

Returns	or	sets	the	number	of	pages	to	be	displayed	one	above	the	other	on-
screen	at	the	same	time	in	print	layout	view	or	print	preview.	Read/write	Long.

expression.PageRows

expression			Required.	An	expression	that	returns	a	Zoom	object.



Example

This	example	switches	the	active	window	to	print	preview	and	displays	two
pages	one	above	the	other.

PrintPreview	=	True

With	ActiveDocument.ActiveWindow.View.Zoom

				.PageColumns	=	1

				.PageRows	=	2

End	With



PageSetup	Property
							

Returns	a	PageSetup	object	that's	associated	with	the	specified	document,	range,
section,	sections,	or	selection.	Read-only.



Example

This	example	sets	the	right	margin	of	the	active	document	to	72	points	(1	inch).

ActiveDocument.PageSetup.RightMargin	=	InchesToPoints(1)

This	example	sets	the	gutter	for	the	first	section	in	Summary.doc	to	36	points
(0.5	inch).

Documents("Summary.doc").Sections(1).PageSetup.Gutter	=	36

This	example	sets	the	header	and	footer	distance	to	18	points	(0.25	inch)	from
the	top	and	bottom	of	the	page,	respectively.	This	formatting	change	is	applied	to
the	section	that	contains	the	selection.

With	Selection.PageSetup

				.FooterDistance	=	18

				.HeaderDistance	=	18

End	With

This	example	displays	the	left	margin	setting,	in	inches.

MsgBox	PointsToInches(ActiveDocument.PageSetup.LeftMargin)	_

				&	"	inches"



Show	All



PageSize	Property
							

Returns	or	sets	the	page	size	for	the	specified	custom	mailing	label.	Read/write
WdCustomLabelPageSize.

WdCustomLabelPageSize	can	be	one	of	these	WdCustomLabelPageSize
constants.
wdCustomLabelA4
wdCustomLabelA4LS
wdCustomLabelA5
wdCustomLabelA5LS
wdCustomLabelB4JIS
wdCustomLabelB5
wdCustomLabelFanfold
wdCustomLabelHigaki
wdCustomLabelHigakiLS
wdCustomLabelLetter
wdCustomLabelLetterLS
wdCustomLabelMini
wdCustomLabelVertHalfSheet
wdCustomLabelVertHalfSheetLS

expression.PageSize

expression			Required.	An	expression	that	returns	a	CustomLabel	object.



Remarks

Some	of	the	constants	listed	above	may	not	be	available	to	you,	depending	on
the	language	support	(U.S.	English,	for	example)	that	you’ve	selected	or
installed.



Example

This	example	creates	a	new	custom	label	named	"Home	Address"	and	then	sets
various	properties	for	the	label,	including	the	page	size.

Set	myLabel	=	Application.MailingLabel	_

				.CustomLabels.Add(Name:="Home	Address",	DotMatrix:=False)

With	myLabel

				.Height	=	InchesToPoints(0.5)

				.HorizontalPitch	=	InchesToPoints(2.06)

				.NumberAcross	=	4

				.NumberDown	=	20

				.PageSize	=	wdCustomLabelLetter

				.SideMargin	=	InchesToPoints(0.28)

				.TopMargin	=	InchesToPoints(0.5)

				.VerticalPitch	=	InchesToPoints(0.5)

				.Width	=	InchesToPoints(1.75)

End	With



PageWidth	Property
							

Returns	or	sets	the	width	of	the	page	in	points.	Read/write	Single.

expression.PageWidth

expression			Required.	An	expression	that	returns	a	PageSetup	object.



Remarks

Setting	the	PageWidth	property	changes	the	PaperSize	property	to
wdPaperCustom.

Use	the	PaperSize	property	to	set	the	page	height	and	width	to	those	of	a
predefined	paper	size,	such	as	Letter	or	A4.



Example

This	example	returns	the	page	width	for	Document1.	The	PointsToInches
method	is	used	to	convert	points	to	inches.

Set	doc1set	=	Documents("Document1").PageSetup

Msgbox	"The	page	width	is	"	_

				&	PointsToInches(doc1set.PageWidth)	&	"	inches."



Pagination	Property
							

True	if	Microsoft	Word	repaginates	documents	in	the	background.	Read/write
Boolean.

expression.Pagination

expression			Required.	An	expression	that	returns	a	Options	object.



Example

This	example	sets	Word	to	perform	background	repagination.

Options.Pagination	=	True

This	example	returns	the	current	status	of	the	Background	repagination	option
on	the	General	tab	in	the	Options	dialog	box	(Tools	menu).

temp	=	Options.Pagination



Panes	Property
							

Returns	a	Panes	collection	that	represents	all	the	window	panes	for	the	specified
window.

expression.Panes

expression			Required.	An	expression	that	returns	a	Window	object.



Remarks

For	information	about	returning	a	single	member	of	a	collection,	see	Returning
an	Object	from	a	Collection.



Example

This	example	splits	the	active	window	in	half.

If	ActiveDocument.ActiveWindow.Panes.Count	=	1	Then	_

				ActiveDocument.ActiveWindow.Panes.Add

This	example	activates	the	first	pane	in	the	window	for	Document2.

Windows("Document2").Panes(1).Activate



Show	All



PaperSize	Property
							

Returns	or	sets	the	paper	size.	Read/write	WdPaperSize.

WdPaperSize	can	be	one	of	these	WdPaperSize	constants.
wdPaper10x14
wdPaper11x17
wdPaperA3
wdPaperA4
wdPaperA4Small
wdPaperA5
wdPaperB4
wdPaperB5
wdPaperCSheet
wdPaperCustom
wdPaperDSheet
wdPaperEnvelope10
wdPaperEnvelope11
wdPaperEnvelope12
wdPaperEnvelope14
wdPaperEnvelope9
wdPaperEnvelopeB4
wdPaperEnvelopeB5
wdPaperEnvelopeB6
wdPaperEnvelopeC3
wdPaperEnvelopeC4
wdPaperEnvelopeC5
wdPaperEnvelopeC6
wdPaperEnvelopeC65
wdPaperEnvelopeDL



wdPaperEnvelopeItaly
wdPaperEnvelopeMonarch
wdPaperEnvelopePersonal
wdPaperESheet
wdPaperExecutive
wdPaperFanfoldLegalGerman
wdPaperFanfoldStdGerman
wdPaperFanfoldUS
wdPaperFolio
wdPaperLedger
wdPaperLegal
wdPaperLetter
wdPaperLetterSmall
wdPaperNote
wdPaperQuarto
wdPaperStatement
wdPaperTabloid

expression.PaperSize

expression			Required.	An	expression	that	returns	a	PageSetup	object.



Remarks

Setting	the	PageHeight	or	PageWidth	property	changes	the	PaperSize	property
to	wdPaperCustom.



Example

This	example	sets	the	paper	size	to	legal	for	the	first	document.

Documents(1).PageSetup.PaperSize	=	wdPaperLegal



ParagraphFormat	Property
							

Returns	or	sets	a	ParagraphFormat	object	that	represents	the	paragraph	settings
for	the	specified	range,	selection,	find	or	replacement	operation,	or	style.
Read/write.



Example

This	example	sets	the	paragraph	formatting	for	the	current	selection	to	be	right-
aligned.

Selection.ParagraphFormat.Alignment	=	wdAlignParagraphRight

This	example	sets	paragraph	formatting	for	a	range	that	includes	the	entire
contents	of	MyDoc.doc.	Paragraphs	in	this	document	are	double-spaced	and
have	a	custom	tab	stop	at	0.25	inch.

Set	myRange	=	Documents("MyDoc.doc").Content

With	myRange.ParagraphFormat

				.Space2

				.TabStops.Add	Position:=InchesToPoints(.25)

End	With

This	example	modifies	the	Heading	2	style	for	the	active	document.	Paragraphs
formatted	with	this	style	are	indented	to	the	first	tab	stop	and	double-spaced.

With	ActiveDocument.Styles(wdStyleHeading2).ParagraphFormat

				.TabIndent(1)

				.Space2

End	With

This	example	finds	all	double-spaced	paragraphs	in	the	active	document	and
replaces	the	formatting	with	1.5-line	spacing.

With	ActiveDocument.Content.Find

				.ClearFormatting

				.ParagraphFormat.Space2

				.Replacement.ClearFormatting

				.Replacement.ParagraphFormat.Space15

				.Execute	FindText:="",	ReplaceWith:="",	_

								Replace:=wdReplaceAll

End	With





Paragraphs	Property
							

Returns	a	Paragraphs	collection	that	represents	all	the	paragraphs	in	the
specified	document,	range,	or	selection.	Read-only.

For	information	about	returning	a	single	member	of	a	collection,	see	Returning
an	Object	from	a	Collection.



Example

This	example	sets	the	line	spacing	to	single	for	the	collection	of	all	paragraphs	in
section	one	in	the	active	document.

ActiveDocument.Sections(1).Range.Paragraphs.LineSpacingRule	=	_	

				wdLineSpaceSingle

This	example	sets	the	line	spacing	to	double	for	the	first	paragraph	in	the
selection.

Selection.Paragraphs(1).LineSpacingRule	=	wdLineSpaceDouble



Parent	Property
							

For	the	TextFrame	object,	returns	a	Shape	object	representing	the	parent	shape
of	the	text	frame.	For	all	other	objects,	returns	an	object	that	represents	the
parent	object	of	the	specified	object.

expression.Parent

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.



Example

This	example	sets	a	variable	to	the	parent	object	of	the	Bookmarks	object	and
displays	a	message	box	with	the	object	type	name	of	the	variable.

Set	myObject	=	ActiveDocument.Bookmarks.Parent

MsgBox	TypeName(myObject)

This	example	sets	a	variable	to	the	first	cell	in	the	first	table	of	the	active
document,	changes	the	width	of	the	cell	to	36	points,	and	removes	borders	from
the	table.

Set	myRange	=	ActiveDocument.Tables(1).Cell(1,	1)

With	myRange

				.SetWidth	ColumnWidth:=36,	RulerStyle:=wdAdjustNone

				.Parent.Borders.Enable	=	False

End	With



ParentFrameset	Property
							

Returns	a	Frameset	object	that	represents	the	parent	of	the	specified	Frameset
object	on	a	frames	page.

expression.ParentFrameset

expression			Required.	An	expression	that	returns	a	Frameset	object.



Remarks

For	more	information	on	creating	frames	pages,	see	Creating	frames	pages.



Example

This	example	returns	the	number	of	child	Frameset	objects	belonging	to	the
parent	Frameset	object	of	the	specified	frame.

MsgBox	ActiveDocument.ActiveWindow.ActivePane	_

				.Frameset.ParentFrameset.ChildFramesetCount



ParentGroup	Property
							

Returns	a	Shape	object	that	represents	the	common	parent	shape	of	a	child	shape
or	a	range	of	child	shapes.

expression.ParentGroup

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.



Example

This	example	creates	two	shapes	in	the	active	document	and	groups	those
shapes.	Then	using	one	shape	in	the	group,	it	accesses	the	parent	group	and	fills
all	shapes	in	the	parent	group	with	the	same	fill	color.		This	example	assumes
that	the	active	document	does	not	currently	contain	any	shapes.	If	it	does,	an
error	may	occur.

Sub	ParentGroupShape()

				Dim	pgShape	As	Shape

				'Add	two	shapes	to	active	document	and	group

				With	ActiveDocument.Shapes

								.AddShape	Type:=msoShapeOval,	Left:=72,	_

												Top:=72,	Width:=100,	Height:=100

								.AddShape	Type:=msoShapeHeart,	Left:=110,	_

												Top:=120,	Width:=100,	Height:=100

								.Range(Array(1,	2)).Group

				End	With

				Set	pgShape	=	ActiveDocument.Shapes(1)	_

								.GroupItems(1).ParentGroup

				pgShape.Fill.ForeColor.RGB	=	RGB(Red:=100,	Green:=0,	Blue:=255)

End	Sub



PartOfSpeechList	Property
							

Returns	a	list	of	the	parts	of	speech	corresponding	to	the	meanings	found	for	the
word	or	phrase	looked	up	in	the	thesaurus.	The	list	is	returned	as	an	array	of
integers.	Read-only	Variant.

expression.PartOfSpeechList

expression			Required.	An	expression	that	returns	a	SynonymInfo	object.



Remarks

The	list	of	the	parts	of	speech	is	returned	as	an	array	consisting	of	the	following
WdPartOfSpeech	constants:	wdAdjective,	wdAdverb,	wdConjunction,
wdIdiom,	wdInterjection,	wdNoun,	wdOther,	wdPreposition,	wdPronoun,
and	wdVerb.	The	array	elements	are	ordered	to	correspond	to	the	elements
returned	by	the	MeaningList	property.



Example

This	example	checks	to	see	whether	the	thesaurus	found	any	meanings	for	the
selection.	If	so,	the	meanings	and	their	corresponding	parts	of	speech	are
displayed	in	a	series	of	message	boxes.

Set	mySynInfo	=	Selection.Range.SynonymInfo

If	mySynInfo.MeaningCount	<>	0	Then

				myList	=	mySynInfo.MeaningList

				myPos	=	mySynInfo.PartOfSpeechList

				For	i	=	1	To	UBound(myPos)

								Select	Case	myPos(i)

												Case	wdAdjective

																	pos	=	"adjective"

												Case	wdNoun

																	pos	=	"noun"

												Case	wdAdverb

																	pos	=	"adverb"

												Case	wdVerb

																	pos	=	"verb"

												Case	Else

																	pos	=	"other"

								End	Select

								MsgBox	myList(i)	&	"	found	as	"	&	pos

				Next	i

Else

				MsgBox	"There	were	no	meanings	found."

End	If



Passim	Property
							

True	if	five	or	more	page	references	to	the	same	authority	are	replaced	with
"Passim."	Corresponds	to	the	\p	switch	for	a	Table	of	Authorities	(TOA)	field.
Read/write	Boolean.

expression.Passim

expression			Required.	An	expression	that	returns	a	TableOfAuthorities	object.



Example

This	example	formats	the	first	table	of	authorities	in	Brief.doc	to	use	page
references	instead	of	"Passim."

Documents("Brief.doc").TablesOfAuthorities(1).Passim	=	False

This	example	formats	the	tables	of	authorities	in	the	active	document	to	replace
each	instance	of	five	or	more	page	references	for	the	same	entry	with	"Passim."

For	Each	myTOA	In	ActiveDocument.TablesOfAuthorities

				myToa.Passim	=	True

Next	myTOA



Password	Property
							

Sets	a	password	that	must	be	supplied	to	open	the	specified	document.	Write-
only	String.



Example

This	example	opens	Earnings.doc,	sets	a	password	for	it,	and	then	closes	the
document.

Set	myDoc	=	Documents	_

				.Open(FileName:="C:\My	Documents\Earnings.doc")

myDoc.Password	=	"why"

myDoc.Close



PasswordEncryptionAlgorithm
Property
							

Returns	a	String	indicating	the	algorithm	Microsoft	Word	uses	for	encrypting
documents	with	passwords.	Read-only.

expression.PasswordEncryptionAlgorithm

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.



Remarks

Use	the	SetPasswordEncryptionOptions	method	to	specify	the	algorithm	Word
uses	for	encrypting	documents	with	passwords.



Example

This	example	sets	the	password	encryption	options	if	the	password	encryption
algorithm	in	use	is	"OfficeXor,"	which	is	the	password	algorithm	used	in
versions	of	Word	prior	to	Word	97	for	Windows.

Sub	PasswordSettings()

				With	ActiveDocument

								If	.PasswordEncryptionAlgorithm	=	"OfficeXor"	Then

												.SetPasswordEncryptionOptions	_

																PasswordEncryptionProvider:="Microsoft	RSA	SChannel	Cryptographic	Provider",	_

																PasswordEncryptionAlgorithm:="RC4",	_

																PasswordEncryptionKeyLength:=56,	_

																PasswordEncryptionFileProperties:=True

								End	If

				End	With

End	Sub



PasswordEncryptionFileProperties
Property
							

True	if	Microsoft	Word	encrypts	file	properties	for	password-protected
documents.	Read-only	Boolean.

expression.PasswordEncryptionFileProperties

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.



Remarks

Use	the	SetPasswordEncryptionOptions	method	to	specify	whether	Word
encrypts	file	properties	for	password-protected	documents.



Example

This	example	sets	the	password	encryption	options	if	the	file	properties	are	not
encrypted	for	password-protected	documents.

Sub	PasswordSettings()

				With	ActiveDocument

								If	.PasswordEncryptionFileProperties	=	False	Then

												.SetPasswordEncryptionOptions	_

																PasswordEncryptionProvider:="Microsoft	RSA	SChannel	Cryptographic	Provider",	_

																PasswordEncryptionAlgorithm:="RC4",	_

																PasswordEncryptionKeyLength:=56,	_

																PasswordEncryptionFileProperties:=True

								End	If

				End	With

End	Sub



PasswordEncryptionKeyLength
Property
							

Returns	a	Long	indicating	the	key	length	of	the	algorithm	Microsoft	Word	uses
when	encrypting	documents	with	passwords.	Read-only.

expression.PasswordEncryptionKeyLength

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.



Remarks

Use	the	SetPasswordEncryptionOptions	method	to	specify	the	key	length
Word	uses	when	encrypting	documents	with	passwords.



Example

This	example	sets	the	password	encryption	options	if	the	password	encryption
key	length	is	less	than	40.

Sub	PasswordSettings()

				With	ActiveDocument

								If	.PasswordEncryptionKeyLength	<	40	Then

												.SetPasswordEncryptionOptions	_

																PasswordEncryptionProvider:="Microsoft	RSA	SChannel	Cryptographic	Provider",	_

																PasswordEncryptionAlgorithm:="RC4",	_

																PasswordEncryptionKeyLength:=56,	_

																PasswordEncryptionFileProperties:=True

								End	If

				End	With

End	Sub



PasswordEncryptionProvider
Property
							

Returns	a	String	specifying	the	name	of	the	algorithm	encryption	provider	that
Microsoft	Word	uses	when	encrypting	documents	with	passwords.	Read-only.

expression.PasswordEncryptionProvider

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.



Remarks

Use	the	SetPasswordEncryptionOptions	method	to	specify	the	name	of	the
algorithm	encryption	provider	Word	uses	when	encrypting	documents	with
passwords.



Example

This	example	sets	the	password	encryption	options	if	the	password	encryption
algorithm	in	use	is	not	"Microsoft	RSA	SChannel	Cryptographic	Provider."

Sub	PasswordSettings()

				With	ActiveDocument

								If	.PasswordEncryptionProvider	<>	"Microsoft	RSA	SChannel	Cryptographic	Provider"	Then

												.SetPasswordEncryptionOptions	_

																PasswordEncryptionProvider:="Microsoft	RSA	SChannel	Cryptographic	Provider",	_

																PasswordEncryptionAlgorithm:="RC4",	_

																PasswordEncryptionKeyLength:=56,	_

																PasswordEncryptionFileProperties:=True

								End	If

				End	With

End	Sub



PasteAdjustParagraphSpacing
Property
							

True	if	Microsoft	Word	automatically	adjusts	the	spacing	of	paragraphs	when
cutting	and	pasting	selections.	Read/write	Boolean.

expression.PasteAdjustParagraphSpacing

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.



Example

This	example	sets	Word	to	automatically	adjust	the	spacing	of	paragraphs	when
cutting	and	pasting	selections	if	the	option	has	been	disabled.

Sub	AdjustParaSpace()

				With	Options

								If	.PasteAdjustParagraphSpacing	=	False	Then

												.PasteAdjustParagraphSpacing	=	True

								End	If

				End	With

End	Sub



PasteAdjustTableFormatting
Property
							

True	if	Microsoft	Word	automatically	adjusts	the	formatting	of	tables	when
cutting	and	pasting	selections.	Read/write	Boolean.

expression.PasteAdjustTableFormatting

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.



Example

This	example	sets	Word	to	automatically	adjust	the	formatting	of	tables	when
cutting	and	pasting	if	the	option	has	been	disabled.

Sub	AdjustTableFormatting()

				With	Options

								If	.PasteAdjustTableFormatting	=	False	Then

												.PasteAdjustTableFormatting	=	True

								End	If

				End	With

End	Sub



PasteAdjustWordSpacing	Property
							

True	if	Microsoft	Word	automatically	adjusts	the	spacing	of	words	when	cutting
and	pasting	selections.	Read/write	Boolean.

expression.PasteAdjustWordSpacing

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.



Example

This	example	sets	Word	to	automatically	adjust	the	spacing	of	words	when
cutting	and	pasting	selections	if	the	option	has	been	disabled.

Sub	AdjustWordSpace()

				With	Options

								If	.PasteAdjustWordSpacing	=	False	Then

												.PasteAdjustWordSpacing	=	True

								End	If

				End	With

End	Sub



PasteMergeFromPPT	Property
							

True	to	merge	text	formatting	when	pasting	from	Microsoft	PowerPoint.
Read/write	Boolean.

expression.PasteMergeFromPPT

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.



Example

This	example	sets	Microsoft	Word	to	automatically	merge	text	formatting	when
pasting	content	from	PowerPoint	if	the	option	has	been	disabled.

Sub	AdjustPPTFormatting()

				With	Options

								If	.PasteMergeFromPPT	=	False	Then

												.PasteMergeFromPPT	=	True

								End	If

				End	With

End	Sub



PasteMergeFromXL	Property
							

True	to	merge	table	formatting	when	pasting	from	Microsoft	Excel.	Read/write
Boolean.

expression.PasteMergeFromXL

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.



Example

This	example	sets	Microsoft	Word	to	automatically	merge	table	formatting	when
pasting	Excel	tables	if	the	option	has	been	disabled.

Sub	AdjustExcelFormatting()

				With	Options

								If	.PasteMergeFromXL	=	False	Then

												.PasteMergeFromXL	=	True

								End	If

				End	With

End	Sub



PasteMergeLists	Property
							

True	to	merge	the	formatting	of	pasted	lists	with	surrounding	lists.	Read/write
Boolean.

expression.PasteMergeLists

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.



Example

This	example	sets	Microsoft	Word	to	automatically	merge	list	formatting	with
surrounding	lists	if	the	option	has	been	disabled.

Sub	UseSmartStyle()

				With	Options

								If	.PasteMergeLists	=	False	Then

												.PasteMergeLists	=	True

								End	If

				End	With

End	Sub



PasteSmartCutPaste	Property
							

True	if	Microsoft	Word	intelligently	pastes	selections	into	a	document.
Read/write	Boolean.

expression.PasteSmartCutPaste

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.



Example

This	example	sets	Word	to	enable	intelligent	selection	pasting	if	the	option	has
been	disabled.

Sub	EnableSmartCutPaste()

				If	Options.PasteSmartCutPaste	=	False	Then

								Options.PasteSmartCutPaste	=	True

				End	If

End	Sub



PasteSmartStyleBehavior	Property
							

True	if	Microsoft	Word	intelligently	merges	styles	when	pasting	a	selection
from	a	different	document.	Read/write	Boolean.

expression.PasteSmartStyleBehavior

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.



Example

This	example	sets	Word	to	intelligently	paste	styles	in	text	selected	from	a
different	document	if	the	option	has	been	disabled.

Sub	UseSmartStyle()

				With	Options

								If	.PasteSmartStyleBehavior	=	False	Then

												.PasteSmartStyleBehavior	=	True

								End	If

				End	With

End	Sub



Path	Property
							

Returns	the	disk	or	Web	path	to	the	specified	object.	Read-only	String.

expression.Path

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.



Remarks

The	path	doesn't	include	a	trailing	character	—	for	example,	"C:\MSOffice"	or
"http://MyServer".	Use	the	PathSeparator	property	to	add	the	character	that
separates	folders	and	drive	letters.	Use	the	Name	property	to	return	the	file	name
without	the	path	and	use	the	FullName	property	to	return	the	file	name	and	the
path	together.

Note			You	can	use	the	PathSeparator	property	to	build	Web	addresses	even
though	they	contain	forward	slashes	(/)	and	the	PathSeparator	property	defaults
to	a	backslash	(\).



Example

This	example	displays	the	path	and	file	name	of	the	active	document.

MsgBox	ActiveDocument.Path	&	Application.PathSeparator	&	_

				ActiveDocument.Name

This	example	changes	the	current	folder	to	the	path	of	the	template	attached	to
the	active	document.

ChDir	ActiveDocument.AttachedTemplate.Path

This	example	displays	the	path	of	the	first	add-in	in	the	AddIns	collection.

If	AddIns.Count	>=	1	Then	MsgBox	AddIns(1).Path



PathSeparator	Property
							

Returns	the	character	used	to	separate	folder	names.	This	property	returns	a
backslash	(\).	Read-only	String.

expression.PathSeparator

expression			Required.	An	expression	that	returns	an	Application	object.



Remarks

You	can	use	PathSeparator	property	to	build	Web	addresses	even	though	they
contain	forward	slashes	(/).

The	FullName	property	returns	the	path	and	file	name	as	a	single	string.



Example

This	example	displays	the	path	and	file	name	of	the	active	document.

MsgBox	ActiveDocument.Path	&	Application.PathSeparator	&	_

				ActiveDocument.Name

If	the	first	add-in	is	a	template,	this	example	unloads	the	template	and	opens	it.

If	Addins(1).Compiled	=	False	Then

				Addins(1).Installed	=	False

				Documents.Open	FileName:=AddIns(1).Path	_

								&	Application.PathSeparator	_

								&	AddIns(1).Name

End	If



Show	All



Pattern	Property
							

Returns	or	sets	a	value	that	represents	the	pattern	applied	to	the	specified	fill	or
line.	Read-only	MsoPatternType	for	the	FillFormat		object;	read/write
MsoPatternType	for	the	LineFormat	object.

MsoPatternType	can	be	one	of	these	MsoPatternType	constants.
msoPattern10Percent
msoPattern20Percent
msoPattern25Percent
msoPattern30Percent
msoPattern40Percent
msoPattern50Percent
msoPattern5Percent
msoPattern60Percent
msoPattern70Percent
msoPattern75Percent
msoPattern80Percent
msoPattern90Percent
msoPatternDarkDownwardDiagonal
msoPatternDarkHorizontal
msoPatternDarkUpwardDiagonal
msoPatternDarkVertical
msoPatternDashedDownwardDiagonal
msoPatternDashedHorizontal
msoPatternDashedUpwardDiagonal
msoPatternDashedVertical
msoPatternDiagonalBrick
msoPatternDivot
msoPatternDottedDiamond



msoPatternDottedGrid
msoPatternHorizontalBrick
msoPatternLargeCheckerBoard
msoPatternLargeConfetti
msoPatternLargeGrid
msoPatternLightDownwardDiagonal
msoPatternLightHorizontal
msoPatternLightUpwardDiagonal
msoPatternLightVertical
msoPatternMixed
msoPatternNarrowHorizontal
msoPatternNarrowVertical
msoPatternOutlinedDiamond
msoPatternPlaid
msoPatternShingle
msoPatternSmallCheckerBoard
msoPatternSmallConfetti
msoPatternSmallGrid
msoPatternSolidDiamond
msoPatternSphere
msoPatternTrellis
msoPatternWave
msoPatternWeave
msoPatternWideDownwardDiagonal
msoPatternWideUpwardDiagonal
msoPatternZigZag

expression.Pattern

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.



Remarks

You	can	also	use	the	Patterned	method	to	set	the	pattern	for	the	fill	or	line.

Use	the	BackColor	and	ForeColor	properties	to	set	the	colors	used	in	the
pattern.



Example

This	example	adds	a	rectangle	to	myDocument	and	sets	its	fill	pattern	to	match
that	of	the	shape	named	"rect1."	The	new	rectangle	has	the	same	pattern	as
"rect1"	but	not	necessarily	the	same	colors.	The	colors	used	in	the	pattern	are	set
with	the	BackColor	and	ForeColor	properties.

Set	myDocument	=	ActiveDocument

With	myDocument.Shapes

				pattern1	=	.Item("rect1").Fill.Pattern

				With	.AddShape(msoShapeRectangle,	100,	100,	120,	80).Fill

								.ForeColor.RGB	=	RGB(128,	0,	0)

								.BackColor.RGB	=	RGB(0,	0,	255)

								.Patterned	pattern1

				End	With

End	With

This	example	adds	a	patterned	line	to	myDocument.

Set	myDocument	=	ActiveDocument

With	myDocument.Shapes.AddLine(10,	100,	250,	0).Line

				.Weight	=	6

				.ForeColor.RGB	=	RGB(0,	0,	255)

				.BackColor.RGB	=	RGB(128,	0,	0)

				.Pattern	=	msoPatternDarkDownwardDiagonal

End	With



Percentage	Property
							

Returns	or	sets	the	magnification	for	a	window	as	a	percentage.	Read/write
Long.

expression.Percentage

expression			Required.	An	expression	that	returns	a	Zoom	object.



Example

This	example	switches	the	active	window	to	normal	view	and	sets	the
magnification	to	80	percent.

With	ActiveDocument.ActiveWindow.View

				.Type	=	wdNormalView

				.Zoom.Percentage	=	80

End	With

This	example	increases	the	magnification	of	the	active	window	by	10	percent.

Set	myZoom	=	ActiveDocument.ActiveWindow.View.Zoom

myZoom.Percentage	=	myZoom.Percentage	+	10



PercentWidth	Property
							

Returns	or	sets	the	length	of	the	specified	horizontal	line	expressed	as	a
percentage	of	the	window	width.	Read/write	Single.

expression.PercentWidth

expression			Required.	An	expression	that	returns	a	HorizontalLineFormat
object.



Remarks

Setting	this	property	also	sets	the	WidthType	property	to
wdHorizontalLinePercentWidth.



Example

This	example	adds	a	horizontal	line	and	sets	its	length	to	50%	of	the	window
width.

Selection.InlineShapes.AddHorizontalLineStandard

ActiveDocument.InlineShapes(1)	_

				.HorizontalLineFormat.PercentWidth	=	50



Show	All



Perspective	Property
							

MsoTrue	if	the	extrusion	appears	in	perspective	—	that	is,	if	the	walls	of	the
extrusion	narrow	toward	a	vanishing	point.	MsoFalse	if	the	extrusion	is	a
parallel,	or	orthographic,	projection	—	that	is,	if	the	walls	don't	narrow	toward	a
vanishing	point.	Read/write	MsoTriState.

MsoTriState	can	be	one	of	these	MsoTriState	constants.
msoCTrue
msoFalse
msoTriStateMixed
msoTriStateToggle
msoTrue

expression.Perspective

expression			Required.	An	expression	that	returns	a	ThreeDFormat	object.



Example

This	example	sets	the	extrusion	depth	for	shape	one	on	myDocument	to	100	points
and	specifies	that	the	extrusion	be	parallel,	or	orthographic.

Set	myDocument	=	ActiveDocument

With	myDocument.Shapes(1).ThreeD

				.Visible	=	True

				.Depth	=	100

				.Perspective	=	msoFalse

End	With



PictureBullet	Property
							

Returns	an	InlineShape	object	that	represents	a	picture	bullet.

expression.PictureBullet

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	to	list.



Example

This	example	returns	the	picture	bullet	for	the	first	list	in	the	active	document
and	sets	the	picture	bullet's	width	to	one-quarter	inch.	To	see	this	example,	first
run	the	code	example	for	the	ApplyPictureBullet		method.

Sub	PicBullet()

				ActiveDocument.ListTemplates(1)	_

	 .ListLevels(1)	_

	 .PictureBullet.Width	=	InchesToPoints(0.25)

End	Sub



PictureEditor	Property
							

Returns	or	sets	the	name	of	the	application	to	use	to	edit	pictures.	Read/write
String.

expression.PictureEditor

expression			Required.	An	expression	that	returns	an	Options	object.



Remarks

You	must	use	the	exact	wording	displayed	in	the	Picture	editor	box	on	the	Edit
tab	of	the	Options	dialog	box	(Tools	menu).	Otherwise,	the	default	setting
"Microsoft	Word"	is	used.

If	the	name	of	your	graphics	application	doesn't	appear	in	the	list,	contact	the
manufacturer	of	the	graphics	application	for	instructions.



Example

This	example	sets	the	application	used	to	edit	pictures.

Options.PictureEditor	=	"Microsoft	Word"

This	example	returns	the	name	of	the	application	to	use	to	edit	pictures.

MsgBox	Options.PictureEditor



PictureFormat	Property
							

Returns	a	PictureFormat	object	that	contains	picture	formatting	properties	for
the	specified	object.	Applies	to	Shape,	ShapeRange,	or	InlineShape	objects
that	represent	pictures	or	OLE	objects.	Read-only.



Example

This	example	sets	the	brightness	and	contrast	for	shape	one	on	myDocument.
Shape	one	must	be	a	picture	or	an	OLE	object.

Set	myDocument	=	ActiveDocument

With	myDocument.Shapes(1).PictureFormat

				.Brightness	=	0.3

				.Contrast	=	.75

End	With



Show	All



PictureWrapType	Property
							

Sets	or	returns	a	WdWrapTypeMerged	that	indicates	how	Microsoft	Word
wraps	text	around	pictures.	Read/write.

WdWrapTypeMerged	can	be	one	of	these	WdWrapTypeMerged	constants.
wdWrapMergeBehind
wdWrapMergeFront
wdWrapMergeInline	Default
wdWrapMergeSquare
wdWrapMergeThrough
wdWrapMergeTight
wdWrapMergeTopBottom

expression.PictureWrapType

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.



Remarks

This	is	a	default	option	setting	and	affects	all	pictures	inserted	unless	picture
wrapping	is	individually	defined	for	a	picture.



Example

This	example	sets	Word	to	insert	and	paste	all	pictures	inline	with	the	text	if
inline	is	not	already	specified.

Sub	PicWrap()

				With	Application.Options

								If	.PictureWrapType	<>	wdWrapMergeInline	Then

												.PictureWrapType	=	wdWrapMergeInline

								End	If

				End	With

End	Sub



PixelsPerInch	Property
							

Returns	or	sets	the	density	(pixels	per	inch)	of	graphics	images	and	table	cells	on
a	Web	page.	The	range	of	settings	is	usually	from	19	to	480,	and	common
settings	for	popular	screen	sizes	are	72,	96,	and	120.	The	default	setting	is	96.
Read/write	Long.

expression.PixelsPerInch

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.



Remarks

This	property	determines	the	size	of	the	images	and	cells	on	the	specified	Web
page	relative	to	the	size	of	text	whenever	you	view	the	saved	document	in	a	Web
browser.	The	physical	dimensions	of	the	resulting	image	or	cell	are	the	result	of
the	original	dimensions	(in	inches)	multiplied	by	the	number	of	pixels	per	inch.

Use	the	ScreenSize	property	to	set	the	optimum	screen	size	for	the	targeted	Web
browsers.



Example

This	example	sets	the	pixel	density	depending	on	the	target	screen	size	of	the
Web	browser.

With	Application.DefaultWebOptions

				Select	Case	.ScreenSize

								Case	msoScreenSize800x600

												.PixelsPerInch	=	72

								Case	msoScreenSize1024x768

												.PixelsPerInch	=	96

								Case	Else

												.PixelsPerInch	=	120

				End	Select

End	With



PlainTextStyle	Property
							

Returns	the	Style	object	that	represents	the	text	attributes	for	e-mail	messages
that	are	sent	or	received	using	plain	text.

expression.PlainTextStyle

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.



Example

This	example	sets	the	plain	text	font	for	e-mail	messages	to	Tahoma,	size	10.

Sub	PlainTxt()

				With	Application.EmailOptions.PlainTextStyle

								.Font.Name	=	"Tahoma"

								.Font.Size	=	10

				End	With

End	Sub



Show	All



Points	Property
							

Returns	the	position	of	the	specified	node	as	a	coordinate	pair.	Each	coordinate
is	expressed	in	points.	Read-only	Variant.



Remarks

This	property	is	read-only.	Use	the	SetPosition	method	to	set	the	location	of	the
node.



Example

This	example	moves	node	two	in	shape	three	on	myDocument	to	the	right	200
points	and	down	300	points.	Shape	three	must	be	a	freeform	drawing.

Set	myDocument	=	ActiveDocument

With	myDocument.Shapes(3).Nodes

				pointsArray	=	.Item(2).Points

				currXvalue	=	pointsArray(1,	1)

				currYvalue	=	pointsArray(1,	2)

				.SetPosition	2,	currXvalue	+	200,	currYvalue	+	300

End	With



PortraitFontNames	Property
							

Returns	a	FontNames	object	that	includes	the	names	of	all	the	available	portrait
fonts.

expression.PortraitFontNames

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.



Example

This	example	inserts	a	list	of	portrait	fonts	at	the	insertion	point.

For	Each	aFont	In	PortraitFontNames

				With	Selection

								.Collapse	Direction:=wdCollapseEnd

								.InsertAfter	aFont

								.InsertParagraphAfter

								.Collapse	Direction:=wdCollapseEnd

				End	With

Next	aFont



Show	All



Position	Property
							

Position	property	as	it	applies	to	the	CaptionLabel	object.

Returns	or	sets	the	position	of	caption	label	text.	Read/write
WdCaptionPosition.

WdCaptionPosition	can	be	one	of	these	WdCaptionPosition	constants.
wdCaptionPositionAbove
wdCaptionPositionBelow

expression.Position

expression			Required.	An	expression	that	returns	one	of	the	above	objects.

	

Position	property	as	it	applies	to	the	DropCap	object.

Returns	or	sets	the	position	of	a	dropped	capital	letter.	Read/write
WdDropPosition.

WdDropPosition	can	be	one	of	these	WdDropPosition	constants.
wdDropNone
wdDropMargin
wdDropNormal

expression.Position

expression			Required.	An	expression	that	returns	one	of	the	above	objects.

	

Position	property	as	it	applies	to	the	TabStop	object.



Returns	or	sets	the	position	of	a	tab	stop	relative	to	the	left	margin.	Read/write
Single.

expression.Position

expression			Required.	An	expression	that	returns	one	of	the	above	objects.

	

Position	property	as	it	applies	to	the	Font	object.

Returns	or	sets	the	position	of	text	(in	points)	relative	to	the	base	line.	A	positive
number	raises	the	text,	and	a	negative	number	lowers	it.	Read/write	Long.

expression.Position

expression			Required.	An	expression	that	returns	one	of	the	above	objects.

	



Example

As	it	applies	to	the	Font	object.

This	example	lowers	the	selected	text	by	2	points.

Selection.Font.Position	=	-2

As	it	applies	to	the	TabStop	object.

This	example	adds	a	right	tab	stop	to	the	selected	paragraphs	2	inches	from	the
left	margin.	The	position	of	the	tab	stop	is	then	displayed	in	a	message	box.

With	Selection.Paragraphs.TabStops

				.ClearAll

				.Add	Position:=InchesToPoints(2),	Alignment:=wdAlignTabRight

				MsgBox	.Item(1).Position	&	"	or	"	&	_

								PointsToInches(.Item(1).Position)	&	"	inches"

End	With

As	it	applies	to	the	DropCap	object.

This	example	sets	the	first	paragraph	in	the	active	document	to	begin	with	a
dropped	capital	letter.	The	position	of	the	DropCap	object	is	set	to
wdDropNormal.

With	ActiveDocument.Paragraphs(1).DropCap

				.Enable

				.FontName=	"Arial"

				.Position	=	wdDropNormal

End	With



Show	All



PreferredWidth	Property
							

PreferredWidth	property	as	it	applies	to	the	Cell,	Cells,	Column,	Columns,
and	Table	objects.

Returns	or	sets	the	preferred	width	(in	points	or	as	a	percentage	of	the	window
width)	for	the	specified	cell,	cells,	columns,	or	table.	Read/write	Single.

expression.PreferredWidth

expression			Required.	An	expression	that	returns	one	of	the	above	objects.

	

PreferredWidth	property	as	it	applies	to	the	TableStyle	object.

Returns	or	sets	the	preferred	width	(in	points	or	as	a	percentage	of	the	window
width)	for	the	specified	table	style.	Read-only	Single.

expression.PreferredWidth

expression			Required.	An	expression	that	returns	one	of	the	above	objects.

	



Remarks

If	the	PreferredWidthType	property	is	set	to	wdPreferredWidthPoints,	the
PreferredWidth	property	returns	or	sets	the	width	in	points.	If	the
PreferredWidthType	property	is	set	to	wdPreferredWidthPercent,	the
PreferredWidth	property	returns	or	sets	the	width	as	a	percentage	of	the
window	width.



Example

This	example	sets	Microsoft	Word	to	accept	preferred	widths	as	a	percentage	of
window	width,	and	then	sets	the	preferred	width	of	the	first	table	in	the
document	to	50%	of	the	window	width.

With	ActiveDocument.Tables(1)

				.PreferredWidthType	=	wdPreferredWidthPercent

				.PreferredWidth	=	50

End	With



Show	All



PreferredWidthType	Property
							

Returns	or	sets	the	preferred	unit	of	measurement	to	use	for	the	width	of	the
specified	cells,	columns,	or	table.	Read-only	WdPreferredWidthType	for	the
ConditionalStyle	and	TableStyle	objects;	read/write	WdPreferredWidthType
for	all	other	objects	in	the	Applies	To	list.

WdPreferredWidthType	can	be	one	of	these	WdPreferredWidthType	constants.
wdPreferredWidthAuto
wdPreferredWidthPercent
wdPreferredWidthPoints

expression.PreferredWidthType

expression			Required.	An	expression	that	returns	one	of	the	above	objects.



Example

This	example	sets	Microsoft	Word	to	accept	widths	as	a	percentage	of	window
width,	and	then	it	sets	the	width	of	the	first	table	in	the	document	to	50%	of	the
window	width.

With	ActiveDocument.Tables(1)

				.PreferredWidthType	=	wdPreferredWidthPercent

				.PreferredWidth	=	50

End	With



PreserveFormattingOnUpdate
Property
							

True	preserves	formatting	done	in	Microsoft	Word	to	a	linked	OLE	object,	such
as	a	table	linked	to	a	Microsoft	Excel	spreadsheet.	Read/write	Boolean.

expression.PreserveFormattingOnUpdate

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.



Remarks

When	PreserveFormattingOnUpdate	is	set	to	True,	formatting	changes	made
to	the	object	in	Word	is	preserved	when	the	object	is	updated.	Word	updates	only
the	content	in	the	linked	object.



Example

This	example	preserves	the	formatting	of	the	first	shape	in	the	current	document,
assuming	the	first	shape	in	the	document	is	a	linked	OLE	object.

Sub	PreserveFmtg()

				ThisDocument.Shapes(1).OLEFormat	_

								.PreserveFormattingOnUpdate	=	True

End	Sub



Show	All



PresetExtrusionDirection	Property
							

Returns	the	direction	taken	by	the	extrusion's	sweep	path	leading	away	from	the
extruded	shape	(the	front	face	of	the	extrusion).	Read/write
MsoPresetExtrusionDirection.

MsoPresetExtrusionDirection	can	be	one	of	these	MsoPresetExtrusionDirection
constants.
msoExtrusionBottom
msoExtrusionBottomLeft
msoExtrusionBottomRight
msoExtrusionLeft
msoExtrusionNone
msoExtrusionRight
msoExtrusionTop
msoExtrusionTopLeft
msoExtrusionTopRight
msoPresetExtrusionDirectionMixed

expression.PresetExtrusionDirection

expression			Required.	An	expression	that	returns	a	ThreeDFormat	object.



Remarks

This	property	is	read-only.	To	set	the	value	of	this	property,	use	the
SetExtrusionDirection	method.



Example

This	example	changes	each	extrusion	on	myDocument	that	extends	toward	the
upper-left	corner	of	the	extrusion's	front	face	to	an	extrusion	that	extends	toward
the	lower-right	corner	of	the	front	face.

Set	myDocument	=	ActiveDocument

For	Each	s	In	myDocument.Shapes

				With	s.ThreeD

								If	.PresetExtrusionDirection	=	msoExtrusionTopLeft	Then

											.SetExtrusionDirection	msoExtrusionBottomRight

								End	If

				End	With

Next



Show	All



PresetGradientType	Property
							

Returns	the	preset	gradient	type	for	the	specified	fill.	Read-only
MsoPresetGradientType.

MsoPresetGradientType	can	be	one	of	these	MsoPresetGradientType	constants.
msoGradientBrass
msoGradientCalmWater
msoGradientChrome
msoGradientChromeII
msoGradientDaybreak
msoGradientDesert
msoGradientEarlySunset
msoGradientFire
msoGradientFog
msoGradientGold
msoGradientGoldII
msoGradientHorizon
msoGradientLateSunset
msoGradientMahogany
msoGradientMoss
msoGradientNightfall
msoGradientOcean
msoGradientParchment
msoGradientPeacock
msoGradientRainbow
msoGradientRainbowII
msoGradientSapphire
msoGradientSilver
msoGradientWheat



msoPresetGradientMixed

expression.PresetGradientType

expression			Required.	An	expression	that	returns	a	FillFormat	object.



Remarks

Use	the	PresetGradient	method	to	set	the	preset	gradient	type	for	the	fill.



Example

This	example	changes	the	fill	for	all	shapes	in	myDocument	with	the	Moss	preset
gradient	fill	to	the	Fog	preset	gradient	fill.

Set	myDocument	=	ActiveDocument

For	Each	s	In	myDocument.Shapes

				With	s.Fill

								If	.PresetGradientType	=	msoGradientMoss	Then

												.PresetGradient	msoGradientHorizontal,	1,	_

																msoGradientFog

								End	If

				End	With

Next



Show	All



PresetLightingDirection	Property
							

Returns	or	sets	the	position	of	the	light	source	relative	to	the	extrusion.
Read/write	MsoPresetLightingDirection.

MsoPresetLightingDirection	can	be	one	of	these	MsoPresetLightingDirection
constants.
msoLightingBottom
msoLightingBottomLeft
msoLightingBottomRight
msoLightingLeft
msoLightingNone
msoLightingRight
msoLightingTop
msoLightingTopLeft
msoLightingTopRight
msoPresetLightingDirectionMixed

expression.PresetLightingDirection

expression			Required.	An	expression	that	returns	a	ThreeDFormat	object.



Remarks

The	lighting	effects	you	set	won't	be	apparent	if	the	extrusion	has	a	wire	frame
surface.



Example

This	example	specifies	that	the	extrusion	for	shape	one	on	myDocument	extend
toward	the	top	of	the	shape	and	that	the	lighting	for	the	extrusion	come	from	the
left.

Set	myDocument	=	ActiveDocument

With	myDocument.Shapes(1).ThreeD

				.Visible	=	True

				.SetExtrusionDirection	msoExtrusionTop

				.PresetLightingDirection	=	msoLightingLeft

End	With



Show	All



PresetLightingSoftness	Property
							

Returns	or	sets	the	intensity	of	the	extrusion	lighting.	Read/write
MsoPresetLightingSoftness.

MsoPresetLightingSoftness	can	be	one	of	these	MsoPresetLightingSoftness
constants.
msoLightingBright
msoLightingDim
msoLightingNormal
msoPresetLightingSoftnessMixed

expression.PresetLightingSoftness

expression			Required.	An	expression	that	returns	a	ThreeDFormat	object.



Example

This	example	specifies	that	the	extrusion	for	shape	one	on	myDocument	be	lit
brightly	from	the	left.

Set	myDocument	=	ActiveDocument

With	myDocument.Shapes(1).ThreeD

				.Visible	=	True

				.PresetLightingSoftness	=	msoLightingBright

				.PresetLightingDirection	=	msoLightingLeft

End	With



Show	All



PresetMaterial	Property
							

Returns	or	sets	the	extrusion	surface	material.	Read/write	MsoPresetMaterial.

MsoPresetMaterial	can	be	one	of	these	MsoPresetMaterial	constants.
msoMaterialMatte
msoMaterialMetal
msoMaterialPlastic
msoMaterialWireFrame
msoPresetMaterialMixed

expression.PresetMaterial

expression			Required.	An	expression	that	returns	a	ThreeDFormat	object.



Example

This	example	specifies	that	the	extrusion	surface	for	shape	one	in	myDocument	be
wire	frame.

Set	myDocument	=	ActiveDocument

With	myDocument.Shapes(1).ThreeD

				.Visible	=	True

				.PresetMaterial	=	msoMaterialWireFrame

End	With



Show	All



PresetShape	Property
							

Returns	or	sets	the	shape	of	the	specified	WordArt.	Read/write
MsoPresetTextEffectShape.

MsoPresetTextEffectShape	can	be	one	of	these	MsoPresetTextEffectShape
constants.
msoTextEffectShapeArchDownCurve
msoTextEffectShapeArchDownPour
msoTextEffectShapeArchUpCurve
msoTextEffectShapeArchUpPour
msoTextEffectShapeButtonCurve
msoTextEffectShapeButtonPour
msoTextEffectShapeCanDown
msoTextEffectShapeCanUp
msoTextEffectShapeCascadeDown
msoTextEffectShapeCascadeUp
msoTextEffectShapeChevronDown
msoTextEffectShapeChevronUp
msoTextEffectShapeCircleCurve
msoTextEffectShapeCirclePour
msoTextEffectShapeCurveDown
msoTextEffectShapeCurveUp
msoTextEffectShapeDeflate
msoTextEffectShapeDeflateBottom
msoTextEffectShapeDeflateInflate
msoTextEffectShapeDeflateInflateDeflate
msoTextEffectShapeDeflateTop
msoTextEffectShapeDoubleWave1
msoTextEffectShapeDoubleWave2



msoTextEffectShapeFadeDown
msoTextEffectShapeFadeLeft
msoTextEffectShapeFadeRight
msoTextEffectShapeFadeUp
msoTextEffectShapeInflate
msoTextEffectShapeInflateBottom
msoTextEffectShapeInflateTop
msoTextEffectShapeMixed
msoTextEffectShapePlainText
msoTextEffectShapeRingInside
msoTextEffectShapeRingOutside
msoTextEffectShapeSlantDown
msoTextEffectShapeSlantUp
msoTextEffectShapeStop
msoTextEffectShapeTriangleDown
msoTextEffectShapeTriangleUp
msoTextEffectShapeWave1
msoTextEffectShapeWave2

expression.PresetShape

expression			Required.	An	expression	that	returns	a	TextEffectFormat	object.



Remarks

Setting	the	PresetTextEffect	property	automatically	sets	the	PresetShape
property.



Example

This	example	sets	the	shape	of	all	WordArt	on	myDocument	to	a	chevron	whose
center	points	down.

Set	myDocument	=	ActiveDocument

For	Each	s	In	myDocument.Shapes

				If	s.Type	=	msoTextEffect	Then

								s.TextEffect.PresetShape	=	msoTextEffectShapeChevronDown

				End	If

Next



Show	All



PresetTextEffect	Property
							

Returns	or	sets	the	style	of	the	specified	WordArt.	The	values	for	this	property
correspond	to	the	formats	in	the	WordArt	Gallery	dialog	box	(Insert	menu),
numbered	from	left	to	right,	top	to	bottom.	Read/write	MsoPresetTextEffect.

MsoPresetTextEffect	can	be	one	of	these	MsoPresetTextEffect	constants.
msoTextEffect1
msoTextEffect10
msoTextEffect11
msoTextEffect12
msoTextEffect13
msoTextEffect14
msoTextEffect15
msoTextEffect16
msoTextEffect17
msoTextEffect18
msoTextEffect19
msoTextEffect2
msoTextEffect20
msoTextEffect21
msoTextEffect22
msoTextEffect23
msoTextEffect24
msoTextEffect25
msoTextEffect26
msoTextEffect27
msoTextEffect28
msoTextEffect29
msoTextEffect3



msoTextEffect30
msoTextEffect4
msoTextEffect5
msoTextEffect6
msoTextEffect7
msoTextEffect8
msoTextEffect9
msoTextEffectMixed

expression.PresetTextEffect

expression			Required.	An	expression	that	returns	a	TextEffectFormat	object.



Remarks

Setting	the	PresetTextEffect	property	automatically	sets	many	other	formatting
properties	of	the	specified	shape.



Example

This	example	sets	the	style	for	all	WordArt	on	myDocument	to	the	first	style	listed
in	the	WordArt	Gallery	dialog	box.

Set	myDocument	=	ActiveDocument

For	Each	s	In	myDocument.Shapes

				If	s.Type	=	msoTextEffect	Then

								s.TextEffect.PresetTextEffect	=	msoTextEffect1

				End	If

Next



Show	All



PresetTexture	Property
							

Returns	the	preset	texture	for	the	specified	fill.	Read-only	MsoPresetTexture.

MsoPresetTexture	can	be	one	of	these	MsoPresetTexture	constants.
msoPresetTextureMixed
msoTextureBlueTissuePaper
msoTextureBouquet
msoTextureBrownMarble
msoTextureCanvas
msoTextureCork
msoTextureDenim
msoTextureFishFossil
msoTextureGranite
msoTextureGreenMarble
msoTextureMediumWood
msoTextureNewsprint
msoTextureOak
msoTexturePaperBag
msoTexturePapyrus
msoTextureParchment
msoTexturePinkTissuePaper
msoTexturePurpleMesh
msoTextureRecycledPaper
msoTextureSand
msoTextureStationery
msoTextureWalnut
msoTextureWaterDroplets
msoTextureWhiteMarble
msoTextureWovenMat



expression.PresetTexture

expression			Required.	An	expression	that	returns	a	FillFormat	object.



Remarks

Use	the	PresetTextured	method	to	specify	the	preset	texture	for	the	fill.



Example

This	example	adds	a	rectangle	to	myDocument	and	sets	its	preset	texture	to	match
that	of	shape	two.	For	the	example	to	work,	shape	two	must	have	a	preset
textured	fill.

Set	myDocument	=	ActiveDocument

With	myDocument.Shapes

				presetTexture2	=	.Item(2).Fill.PresetTexture

				.AddShape(msoShapeRectangle,	100,	0,	40,	80).Fill	_

								.PresetTextured	presetTexture2

End	With



Show	All



PresetThreeDFormat	Property
							

Returns	the	preset	extrusion	format.	Each	preset	extrusion	format	contains	a	set
of	preset	values	for	the	various	properties	of	the	extrusion.	If	the	extrusion	has	a
custom	format	rather	than	a	preset	format,	this	property	returns
msoPresetThreeDFormatMixed.	Read-only	MsoPresetThreeDFormat.

MsoPresetThreeDFormat	can	be	one	of	these	MsoPresetThreeDFormat
constants.
msoPresetThreeDFormatMixed
msoThreeD1
msoThreeD10
msoThreeD11
msoThreeD12
msoThreeD13
msoThreeD14
msoThreeD15
msoThreeD16
msoThreeD17
msoThreeD18
msoThreeD19
msoThreeD2
msoThreeD20
msoThreeD3
msoThreeD4
msoThreeD5
msoThreeD6
msoThreeD7
msoThreeD8
msoThreeD9



expression.PresetThreeDFormat

expression			Required.	An	expression	that	returns	a	ThreeDFormat	object.



Remarks

The	values	for	this	property	correspond	to	the	options	(numbered	from	left	to
right,	top	to	bottom)	displayed	when	you	click	the	3-D	button	on	the	Drawing
toolbar.

Use	the	SetThreeDFormat	method	to	set	the	preset	extrusion	format.



Example

This	example	sets	the	extrusion	format	for	shape	one	on	myDocument	to	3-D
Style	12	if	the	shape	initially	has	a	custom	extrusion	format.

Set	myDocument	=	ActiveDocument

With	myDocument.Shapes(1).ThreeD

				If	.PresetThreeDFormat	=	msoPresetThreeDFormatMixed	Then

								.SetThreeDFormat	msoThreeD12

				End	If

End	With



Previous	Property
							

Returns	the	previous	object	in	the	collection.	Read-only.



Example

This	example	sets	the	space-before	and	space-after	formatting	for	the	paragraph
immediately	preceding	the	selection.

Set	myPara	=	Selection.Paragraphs(1).Previous

With	myPara

				.SpaceAfter	=	12

				.SpaceBefore	=	6

End	With

If	the	selection	is	in	a	table,	this	example	selects	the	contents	of	the	previous
row.

If	Selection.Information(wdWithInTable)	=	True	Then

				Selection.Rows(1).Previous.Select

End	If

This	example	displays	the	field	code	of	the	second-to-last	field	in	the	active
document.

Set	aField	=	ActiveDocument	_

				.Fields(ActiveDocument.Fields.Count).Previous

MsgBox	"Field	code	=	"	&	aField.Code



PreviousBookmarkID	Property
							

Returns	the	number	of	the	last	bookmark	that	starts	before	or	at	the	same	place
as	the	specified	selection	or	range;	returns	0	(zero)	if	there's	no	corresponding
bookmark.	Read-only	Long.



Example

This	example	selects	the	previous	bookmark	in	the	active	document.

num	=	Selection.PreviousBookmarkID

If	num	<>	0	Then	ActiveDocument.Content.Bookmarks(num).Select

This	example	displays	the	name	of	the	bookmark	that	precedes	the	second
paragraph.

num	=	ActiveDocument.Paragraphs(2).Range.PreviousBookmarkID

If	num	<>	0	Then	MsgBox	ActiveDocument.Content.Bookmarks(num).Name



PrintBackground	Property
							

True	if	Microsoft	Word	prints	in	the	background.	Read/write	Boolean.

expression.PrintBackground

expression			Required.	An	expression	that	returns	an	Options	object.



Example

This	example	sets	Word	to	print	documents	in	the	background	and	then	prints	the
active	document.

Options.PrintBackground	=	True

ActiveDocument.PrintOut

This	example	returns	the	current	status	of	the	Background	printing	option	on
the	Print	tab	in	the	Options	dialog	box	(Tools	menu).

temp	=	Options.PrintBackground



PrintComments	Property
							

True	if	Microsoft	Word	prints	comments,	starting	on	a	new	page	at	the	end	of
the	document.	Read/write	Boolean.

expression.PrintComments

expression			Required.	An	expression	that	returns	an	Options	object.



Remarks

Setting	the	PrintComments	property	to	True	automatically	sets	the
PrintHiddenText	property	to	True.	However,	setting	the	PrintComments
property	to	False	has	no	effect	on	the	setting	of	the	PrintHiddenText	property.



Example

This	example	sets	Word	to	print	comments	and	then	prints	the	active	document.

Options.PrintComments	=	True

ActiveDocument.PrintOut



PrintDraft	Property
							

True	if	Microsoft	Word	prints	using	minimal	formatting.	Read/write	Boolean.

expression.PrintDraft

expression			Required.	An	expression	that	returns	an	Options	object.



Remarks

Not	all	printers	support	draft	printing.



Example

This	example	sets	Word	to	use	draft	printing	and	then	prints	the	active
document.

Options.PrintDraft	=	True

ActiveDocument.PrintOut

This	example	returns	the	current	status	of	the	Draft	output	option	on	the	Print
tab	in	the	Options	dialog	box	(Tools	menu).

temp	=	Options.PrintDraft



PrintDrawingObjects	Property
							

True	if	Microsoft	Word	prints	drawing	objects.	Read/write	Boolean.

expression.PrintDrawingObjects

expression			Required.	An	expression	that	returns	an	Options	object.



Example

This	example	sets	Word	to	print	drawing	objects,	and	then	it	prints	the	active
document.

Options.PrintDrawingObjects	=	True

ActiveDocument.PrintOut

This	example	returns	the	current	status	of	the	Drawing	objects	option	on	the
Print	tab	in	the	Options	dialog	box	(Tools	menu).

temp	=	Options.PrintDrawingObjects



PrintEvenPagesInAscendingOrder
Property
							

True	if	Microsoft	Word	prints	even	pages	in	ascending	order	during	manual
duplex	printing.	Read/write	Boolean.

expression.PrintEvenPagesInAscendingOrder

expression			Required.	An	expression	that	returns	an	Options	object.



Remarks

If	the	ManualDuplexPrint	argument	of	the	PrintOut	method	is	False,	this
property	is	ignored.

For	more	information	on	using	Word	with	East	Asian	languages,	see	Word
features	for	East	Asian	languages.

mk:@MSITStore:wdmain10.chm::/html/wdrefFeaturesAvailableInWordWhenAsianLanguagesAreEnabled.htm


Example

This	example	sets	Word	to	print	odd	pages	in	ascending	order	and	even	pages	in
descending	order	during	manual	duplex	printing,	and	then	it	prints	the	active
document.

Options.PrintOddPagesInAscendingOrder	=	True

Options.PrintEvenPagesInAscendingOrder	=	False

ActiveDocument.PrintOut	ManualDuplexPrint:=True



PrintFieldCodes	Property
							

True	if	Microsoft	Word	prints	field	codes	instead	of	field	results.	Read/write
Boolean.

expression.PrintFieldCodes

expression			Required.	An	expression	that	returns	an	Options	object.



Example

This	example	sets	Word	to	print	field	codes,	and	then	it	prints	the	active
document.

Options.PrintFieldCodes	=	True

ActiveDocument.PrintOut

This	example	returns	the	current	status	of	the	Field	codes	option	on	the	Print
tab	in	the	Options	dialog	box	(Tools	menu).

temp	=	Options.PrintFieldCodes



PrintFormsData	Property
							

True	if	Microsoft	Word	prints	onto	a	preprinted	form	only	the	data	entered	in	the
corresponding	online	form.	Read/write	Boolean.



Example

This	example	sets	Word	to	print	only	the	data	from	an	online	form,	and	then	it
prints	the	active	document.

ActiveDocument.PrintFormsData	=	True

ActiveDocument.PrintOut

This	example	returns	the	current	status	of	the	Print	data	only	for	forms	check
box	in	the	Options	for	current	document	only	area	on	the	Print	tab	in	the
Options	dialog	box.

temp	=	ActiveDocument.PrintFormsData



PrintFractionalWidths	Property
							

True	if	the	specified	document	is	formatted	to	use	fractional	point	spacing	to
display	and	print	characters.	Read/write	Boolean.

Note			In	Windows,	this	property	always	returns	False.	For	additional
information	about	this	property,	consult	the	language	reference	Help	included
with	Microsoft	Office	Macintosh	Edition.



PrintHiddenText	Property
							

True	if	hidden	text	is	printed.	Read/write	Boolean.

expression.PrintHiddenText

expression			Required.	An	expression	that	returns	an	Options	object.



Remarks

Setting	the	PrintHiddenText	property	to	False	automatically	sets	the
PrintComments	property	to	False.	However,	setting	the	PrintHiddenText
property	to	True	has	no	effect	on	the	setting	of	the	PrintComments	property.



Example

This	example	sets	Word	to	print	hidden	text,	and	then	it	prints	the	active
document.

Options.PrintHiddenText	=	True

ActiveDocument.PrintOut

This	example	returns	the	current	status	of	the	Hidden	text	option	on	the	Print
tab	in	the	Options	dialog	box.

temp	=	Options.PrintHiddenText



PrintOddPagesInAscendingOrder
Property
							

True	if	Microsoft	Word	prints	odd	pages	in	ascending	order	during	manual
duplex	printing.	Read/write	Boolean.

expression.PrintOddPagesInAscendingOrder

expression			Required.	An	expression	that	returns	an	Options	object.



Remarks

If	the	ManualDuplexPrint	argument	of	the	PrintOut	method	is	False,	this
property	is	ignored.

For	more	information	on	using	Word	with	East	Asian	languages,	see	Word
features	for	East	Asian	languages.

mk:@MSITStore:wdmain10.chm::/html/wdrefFeaturesAvailableInWordWhenAsianLanguagesAreEnabled.htm


Example

This	example	sets	Microsoft	Word	to	print	odd	pages	in	ascending	order	and
even	pages	in	descending	order	during	manual	duplex	printing,	and	then	it	prints
the	active	document.

Options.PrintOddPagesInAscendingOrder	=	True

Options.PrintEvenPagesInAscendingOrder	=	False

ActiveDocument.PrintOut	ManualDuplexPrint:=True



PrintPostScriptOverText	Property
							

True	if	PRINT	field	instructions	(such	as	PostScript	commands)	in	a	document
are	to	be	printed	on	top	of	text	and	graphics	when	a	PostScript	printer	is	used.
Read/write	Boolean.



Remarks

This	property	controls	whether	postscript	code	is	printed	in	a	converted
Microsoft	Word	for	Macintosh	document.	If	the	document	contains	no	PRINT
fields,	this	property	has	no	effect.



Example

This	example	sets	Word	to	print	PRINT	field	instructions	on	top	of	text	and
graphics,	and	then	it	prints	the	active	document.

ActiveDocument.PrintPostScriptOverText	=	True

ActiveDocument.PrintOut

This	example	returns	the	current	status	of	the	Print	PostScript	over	text	check
box	in	the	Printing	options	area	on	the	Print	tab	in	the	Options	dialog	box.

currSet	=	ActiveDocument.PrintPostScriptOverText



PrintPreview	Property
							

True	if	print	preview	is	the	current	view.	Read/write	Boolean.

expression.PrintPreview

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.



Example

This	example	switches	the	view	to	print	preview.

PrintPreview	=	True

This	example	switches	the	active	window	from	print	preview	to	normal	view.

PrintPreview	=	False

ActiveDocument.ActiveWindow.View.Type	=	wdNormalView



PrintProperties	Property
							

True	if	Microsoft	Word	prints	document	summary	information	on	a	separate
page	at	the	end	of	the	document.	False	if	document	summary	information	is	not
printed.	Summary	information	is	found	in	the	Properties	dialog	box	(File
menu).	Read/write	Boolean.

expression.PrintProperties

expression			Required.	An	expression	that	returns	an	Options	object.



Example

This	example	sets	Word	to	print	document	summary	information	on	a	separate
page	at	the	end	of	the	document,	and	then	it	prints	the	active	document.

Options.PrintProperties	=	True

ActiveDocument.PrintOut

This	example	returns	the	current	status	of	the	Document	properties	option	on
the	Print	tab	in	the	Options	dialog	box	(Tools	menu).

temp	=	Options.PrintProperties



PrintReverse	Property
							

True	if	Microsoft	Word	prints	pages	in	reverse	order.	Read/write	Boolean.

expression.PrintReverse

expression			Required.	An	expression	that	returns	an	Options	object.



Example

This	example	sets	Word	to	print	pages	in	reverse	order,	and	then	it	prints	the
active	document.

Options.PrintReverse	=	True

ActiveDocument.PrintOut

This	example	returns	the	current	status	of	the	Reverse	print	order	option	on	the
Print	tab	in	the	Options	dialog	box	(Tools	menu).

temp	=	Options.PrintReverse



PrintRevisions	Property
							

True	if	revision	marks	are	printed	with	the	document.	False	if	revision	marks
aren't	printed	(that	is,	tracked	changes	are	printed	as	if	they'd	been	accepted).
Read/write	Boolean.



Example

This	example	prints	the	active	document	without	revision	marks.

With	ActiveDocument

				.PrintRevisions	=	False

				.PrintOut

End	With



PrivateProfileString	Property
							

Returns	or	sets	a	string	in	a	settings	file	or	the	Windows	registry.	Read/write
String.

expression.PrivateProfileString(FileName,	Section,	Key)

expression			Required.	An	expression	that	returns	a	System	object.

FileName			Required	String.	The	file	name	for	the	settings	file.	If	there's	no	path
specified,	the	Windows	folder	is	assumed.	If	you're	using	Windows	95,	Windows
98,	or	Windows	NT	to	return	the	value	of	a	registry	entry,	FileName	must	be	an
empty	string	("").

Section			Required	String.	The	name	of	the	section	in	the	settings	file	that
contains	Key.	In	a	Windows	settings	file,	the	section	name	appears	between
brackets	before	the	associated	keys	(don't	include	the	brackets	with	Section).	If
you're	returning	the	value	of	an	entry	from	the	Windows	registry,	Section	should
be	the	complete	path	to	the	subkey,	including	the	subtree	(for	example,
"HKEY_CURRENT_USER\Software\Microsoft\Office\version\Word\Options").

Key			Required	String.	The	key	setting	or	registry	entry	value	you	want	to
retrieve.	In	a	Windows	settings	file,	the	key	name	is	followed	by	an	equal	sign
(=)	and	the	setting.	If	you're	returning	the	value	of	an	entry	from	the	Windows
registry,	Key	should	be	the	name	of	an	entry	in	the	subkey	specified	by	Section
(for	example,	"STARTUP-PATH").



Remarks

You	can	write	macros	that	use	a	settings	file	to	store	and	retrieve	settings.	For
example,	you	can	store	the	name	of	the	active	document	when	you	quit	Word	so
that	it	can	be	reopened	automatically	the	next	time	you	start	Word.	A	settings	file
is	a	text	file	with	information	arranged	like	the	information	in	the	Windows	3.x
WIN.INI	file.



Example

This	example	sets	the	current	document	name	as	the	LastFile	setting	under	the
MacroSettings	heading	in	Settings.txt.

System.PrivateProfileString("C:\Settings.txt",	"MacroSettings",	_

				"LastFile")	=	ActiveDocument.FullName

This	example	returns	the	LastFile	setting	from	Settings.txt	and	then	opens	the
document	stored	in	LastFile.

LastFile	=	System.PrivateProfileString("C:\Settings.Txt",	_

				"MacroSettings",	"LastFile")

If	LastFile	<>	""	Then	Documents.Open	FileName:=LastFile

This	example	displays	the	value	of	the	EmailName	entry	from	the	Windows
registry.

aName	=	System.PrivateProfileString("",	_

				"HKEY_CURRENT_USER\Software\Microsoft\"	_

				&	"Windows\CurrentVersion\Internet	Settings",	"EmailName")

MsgBox	aName



ProcessorType	Property
							

Returns	the	type	of	processor	that	the	system	is	using	(for	example,	i486).	Read-
only	String.

expression.ProcessorType

expression			Required.	An	expression	that	returns	a	System	object.



Example

This	example	displays	a	message	on	the	status	bar	if	the	processor	that	the
system	is	using	isn't	a	Pentium	processor.

If	System.ProcessorType	<>	"Pentium"	Then	_

				StatusBar	=	"Please	wait..."



ProfileString	Property
							

Returns	or	sets	a	value	for	an	entry	in	the	Windows	registry	under	the	following
subkey:	HKEY_CURRENT_USER\Software\Microsoft\Office\version\Word.
Read/write	String.

expression.ProfileString(Section,	Key)

expression			Required.	An	expression	that	returns	a	System	object.

Section			Required	String.	A	subkey	below	the
"HKEY_CURRENT_USER\Software\Microsoft\Office\version\Word"	subkey
in	the	Windows	registry.

Key			Required	String.	The	name	of	the	entry	in	the	subkey	specified	by	Section
(for	example,	"BackgroundPrint"	in	the	Options	subkey).



Example

This	example	retrieves	and	displays	the	startup	path	stored	in	the	Windows
registry.

MsgBox	System.ProfileString("Options",	"STARTUP-PATH")

This	example	sets	and	returns	the	value	for	an	entry	in	the	Windows	registry	(the
SubkeyName	subkey	is	added	below
HKEY_CURRENT_USER\Software\Microsoft\Office\version\Word).

System.ProfileString("SubkeyName",	"EntryName")	=	"Value"

MsgBox	System.ProfileString("SubkeyName",	"EntryName")



Show	All



ProgID	Property
							

Returns	the	programmatic	identifier	(ProgID)	for	the	specified	OLE	object.
Read-only	String.

expression.ProgID

expression			Required.	An	expression	that	returns	an	OLEFormat	object.



Remarks

The	ProgID	and	ClassType	properties	will	(by	default)	return	the	same	string.
However,	you	can	change	the	ClassType	property	for	DDE	links.

For	information	about	programmatic	identifiers,	see	OLE	Programmatic
Identifiers.



Example

This	example	loops	through	all	the	floating	shapes	in	the	active	document	and
sets	all	linked	Microsoft	Excel	worksheets	to	be	updated	automatically.

For	Each	s	In	ActiveDocument.Shapes

				If	s.Type	=	msoLinkedOLEObject	Then

								If	s.OLEFormat.ProgID	=	"Excel.Sheet"	Then

												s.LinkFormat.AutoUpdate	=	True

								End	If

				End	If

Next



PromptUpdateStyle	Property
							

True	displays	a	message	asking	the	user	to	verify	whether	they	want	to	reformat
a	style	or	reapply	the	original	style	formatting	when	changing	the	formatting	of
styles.	False	reapplies	the	style	formatting	to	the	selection	without	verifying
whether	the	user	wants	to	change	the	style.	Read/write	Boolean.

expression.PromptUpdateStyle

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.



Example

This	example	checks	to	see	if	a	user	receives	a	message	when	updating	styles,
and	if	not,	enables	it.

Sub	UpdateStylePrompt()

				With	Application.Options

								If	.PromptUpdateStyle	=	False	Then

												.PromptUpdateStyle	=	True

								End	If

				End	With

End	Sub



Properties	Property
							

Returns	a	CustomProperties	object	that	represents	the	properties	of	a	smart	tag.

expression.Properties

expression			Required.	An	expression	that	returns	a	SmartTag	object.



Remarks

You	can	use	the	Add	method	to	add	custom	properties	from	within	a	Microsoft
Word	Visual	Basic	for	Applications	project.	However,	custom	properties	are
generally	specified	in	the	smart	tag	recognizer	and	action	files.



Example

This	example	loops	through	all	the	smart	tags	in	the	current	document,	and	then
it	creates	a	new	document	and	lists	the	names	and	values	of	custom	properties
for	all	smart	tags	that	have	custom	properties.

Sub	SmartTagProps()

				Dim	docNew	As	Document

				Dim	stgTag	As	SmartTag

				Dim	stgProp	As	CustomProperty

				Dim	intTag	As	Integer

				Dim	intProp	As	Integer

				'Create	new	document	and	add	heading	content

				Set	docNew	=	Documents.Add

				With	docNew.Content

								.InsertAfter	"Name"	&	vbTab	&	"Value"

								.InsertParagraphAfter

				End	With

				'Loop	through	smart	tags	in	current	document

				For	intTag	=	1	To	ThisDocument.SmartTags.Count

								With	ThisDocument.SmartTags(intTag)

												'Verify	that	a	smart	tag	has	properties

												If	.Properties.Count	>	0	Then

																'Enter	the	name	and	value	of	properties	into	new	document

																For	intProp	=	1	To	.Properties.Count

																				docNew.Content.InsertAfter	.Properties(intProp)	_

																								.Name	&	vbTab	&	.Properties(intProp).Value

																				docNew.Content.InsertParagraphAfter

																Next

												Else

																'Display	message	if	no	properties	for	smart	tag

																MsgBox	"There	are	no	custom	properties	for	this	smart	tag."

												End	If

								End	With

				Next

				'Convert	the	tabbed	list	in	the	new	document	to	a	table



				docNew.Content.Select

				Selection.ConvertToTable	Separator:=wdSeparateByTabs,	NumColumns:=2

End	Sub



Show	All



Protect	Property
							

Returns	or	sets	the	protection	type	for	the	document	associated	with	the	specified
routing	slip.	Read/write	WdProtectionType.

WdProtectionType	can	be	one	of	these	WdProtectionType	constants.
wdAllowOnlyComments
wdAllowOnlyFormFields
wdAllowOnlyRevisions
wdNoProtection

expression.Protect

expression			Required.	An	expression	that	returns	a	RoutingSlip	object.



Example

This	example	protects	the	active	document	(only	allows	comments)	and	then
routes	it.

ActiveDocument.HasRoutingSlip	=	True

With	ActiveDocument.RoutingSlip

				.Subject	=	"Status	Doc"

				.Protect	=	wdAllowOnlyComments

				.AddRecipient	Recipient:="Kim	Johnson"

End	With

ActiveDocument.Route



Protected	Property
							

True	if	you	cannot	change	the	specified	key	binding	in	the	Customize
Keyboard	dialog	box	(from	the	Tools	menu,	click	Customize,	and	then	click
the	Keyboard	button).	Read-only	Boolean.

expression.Protected

expression			Required.	An	expression	that	returns	a	KeyBinding	object.



Remarks

Use	the	Add	method	of	the	KeyBindings	object	to	add	a	key	binding	regardless
of	the	protected	status.



Example

This	example	displays	the	protection	status	for	the	CTRL+S	key	binding.

CustomizationContext	=	ActiveDocument.AttachedTemplate

MsgBox	FindKey(BuildKeyCode(wdKeyControl,	wdKeyS)).Protected

This	example	displays	a	message	if	the	A	key	binding	is	protected.

CustomizationContext	=	NormalTemplate

If	FindKey(BuildKeyCode(wdKeyA)).Protected	=	True	Then

				MsgBox	"The	A	key	is	protected"

End	If



ProtectedForForms	Property
							

True	if	the	specified	section	is	protected	for	forms.	When	a	section	is	protected
for	forms,	you	can	select	and	modify	text	only	in	form	fields.	Read/write
Boolean.

expression.ProtectedForForms

expression			Required.	An	expression	that	returns	a	Section	object.



Remarks

To	protect	an	entire	document,	use	the	Protect	method	of	the	Document	object.



Example

This	example	protects	the	second	section	in	the	active	document	for	forms.

If	ActiveDocument.Sections.Count	>=	2	Then	_

				ActiveDocument.Sections(2).ProtectedForForms	=	True

This	example	unprotects	the	first	section	in	the	selection.

Selection.Sections(1).ProtectedForForms	=	False

This	example	toggles	the	protection	for	the	first	section	in	the	selection.

Selection.Sections(1).ProtectedForForms	=	Not	_

				Selection.Sections(1).ProtectedForForms



ProtectionType	Property
							

Returns	the	protection	type	for	the	specified	document.	Can	be	one	of	the
following	WdProtectionType	constants:	wdAllowOnlyComments,
wdAllowOnlyFormFields,	wdAllowOnlyRevisions,	or	wdNoProtection.
Read-only	Long.



Example

If	the	active	document	isn't	already	protected,	this	example	protects	the
document	for	comments.

If	ActiveDocument.ProtectionType	=	wdNoProtection	Then

				ActiveDocument.Protect	Type:=wdAllowOnlyComments

End	If

This	example	unprotects	the	active	document	if	it's	protected.

Set	Doc	=	ActiveDocument

If	Doc.ProtectionType	<>	wdNoProtection	Then	Doc.Unprotect



QueryString	Property
							

Returns	or	sets	the	query	string	(SQL	statement)	used	to	retrieve	a	subset	of	the
data	in	a	mail	merge	data	source.	Read/write	String.

expression.QueryString

expression			Required.	An	expression	that	returns	a	MailMergeDataSource
object.



Example

This	example	returns	the	query	string	for	the	data	source	attached	to	the	active
document.

qString	=	ActiveDocument.MailMerge.DataSource.QueryString



Range	Property
							

Returns	a	Range	object	that	represents	the	portion	of	a	document	that's
contained	in	the	specified	object.

expression.Range

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.



Remarks

For	information	about	returning	a	range	from	a	document	or	returning	a	shape
range	from	a	collection	of	shapes,	see	the	Range	method.



Example

This	example	applies	the	Heading	1	style	to	the	first	paragraph	in	the	active
document.

ActiveDocument.Paragraphs(1).Range.Style	=	wdStyleHeading1

This	example	copies	the	first	row	in	table	one.

If	ActiveDocument.Tables.Count	>=	1	Then	_

				ActiveDocument.Tables(1).Rows(1).Range.Copy

This	example	changes	the	text	of	the	first	comment	in	the	document.

With	ActiveDocument.Comments(1).Range

				.Delete

				.InsertBefore	"new	comment	text"

End	With

This	example	inserts	text	at	the	end	of	section	one.

Set	myRange	=	ActiveDocument.Sections(1).Range

With	myRange

				.MoveEnd	Unit:=wdCharacter,	Count:=-1

				.Collapse	Direction:=wdCollapseEnd

				.InsertParagraphAfter

				.InsertAfter	"End	of	section"

End	With



ReadabilityStatistics	Property
							

Returns	a	ReadabilityStatistics	collection	that	represents	the	readability
statistics	for	the	specified	document	or	range.	Read-only.

For	information	about	returning	a	single	member	of	a	collection,	see	Returning
an	Object	from	a	Collection.



Example

This	example	displays	each	readability	statistic,	along	with	its	value,	for
document	one.

For	Each	rs	In	Documents(1).ReadabilityStatistics

				Msgbox	rs.Name	&	"	-	"	&	rs.Value

Next	rs



Show	All



ReadingOrder	Property
							

Returns	or	sets	the	reading	order	of	the	specified	paragraphs	without	changing
their	alignment.	Read/write	WdReadingOrder.

WdReadingOrder	can	be	one	of	these	WdReadingOrder	constants.
wdReadingOrderLtr
wdReadingOrderRtl

expression.ReadingOrder

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.



Remarks

Use	the	LtrPara,	LtrRun,	RtlPara,	and	RtlRun	methods	to	change	the
paragraph	alignment	along	with	the	reading	order.



Example

This	example	sets	the	reading	order	of	the	first	paragraph	to	right-to-left.

ActiveDocument.Paragraphs(1).ReadingOrder	=	_

				wdReadingOrderRtl



Show	All



ReadOnly	Property
							

ReadOnly	property	as	it	applies	to	the	Dictionary	and	Document	objects.

Dictionary	object:	True	if	the	specified	dictionary	cannot	be	changed.	Read-
only	Boolean.

Document	object:	True	if	changes	to	the	document	cannot	be	saved	to	the
original	document.	Read-only	Boolean.

expression.ReadOnly

expression			Required.	An	expression	that	returns	one	of	the	above	objects.

Note			The	active	grammar,	hyphenation,	spelling,	and	thesaurus	dictionaries	are
read-only.	Custom	dictionaries	are	read/write.

ReadOnly	property	as	it	applies	to	the	RecentFile	object.

True	if	changes	to	the	document	cannot	be	saved	to	the	original	document.
Read/write	Boolean.

expression.ReadOnly

expression			Required.	An	expression	that	returns	a	RecentFile	object.



Example

As	it	applies	to	the	Dictionary	and	Document	objects.

This	example	saves	the	active	document	if	it	isn't	read-only.

If	ActiveDocument.ReadOnly	=	False	Then	ActiveDocument.Save

As	it	applies	to	the	RecentFile	object.

This	example	opens	the	most	recently	used	file	as	a	read-only	document.

With	RecentFiles(1)

				.ReadOnly	=	True

				.Open

End	With



ReadOnlyRecommended	Property
							

True	if	Word	displays	a	message	box	whenever	a	user	opens	the	document,
suggesting	that	it	be	opened	as	read-only.	Read/write	Boolean.



Example

This	example	sets	Word	to	suggest,	when	it's	opening	the	document,	that	the
document	be	opened	as	read-only.

ActiveDocument.ReadOnlyRecommended	=	True



RecentFiles	Property
							

Returns	a	RecentFiles	collection	that	represents	the	most	recently	accessed	files.

expression.RecentFiles

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.



Remarks

For	information	about	returning	a	single	member	of	a	collection,	see	Returning
an	Object	from	a	Collection.



Example

This	example	opens	the	first	item	in	the	RecentFiles	collection	(the	first
document	name	listed	on	the	File	menu).

If	RecentFiles.Count	>=	1	Then	RecentFiles(1).Open

This	example	displays	the	name	of	each	file	in	the	RecentFiles	collection.

For	Each	rFile	In	RecentFiles

				MsgBox	rFile.Name

Next	rFile



RecipientAddress	Property
							

Returns	or	sets	the	mailing	address	of	the	person	who'll	be	receiving	the	letter
created	by	the	Letter	Wizard.	Read/write	String.

expression.RecipientAddress

expression			Required.	An	expression	that	returns	a	LetterContent	object.



Example

This	example	creates	a	new	LetterContent	object,	sets	several	properties
(including	the	recipient	address),	and	then	runs	the	Letter	Wizard	by	using	the
RunLetterWizard	method.

Dim	oLC	as	New	LetterContent

With	oLC

				.ReturnAddress	=	Application.UserAddress

				.RecipientName	=	"Amy	Anderson"

				.RecipientAddress	=	"123	Main"	&	vbCr	&	"Bellevue,	WA		98004"

End	With

Documents.Add.RunLetterWizard	LetterContent:=oLC,	WizardMode:=True



RecipientCode	Property
							

Returns	or	sets	the	recipient	code.	Not	used	in	the	U.S.	English	version	of
Microsoft	Word.	Read/write	String.

expression.RecipientCode

expression			Required.	An	expression	that	returns	a	LetterContent	object.



Remarks

This	property	may	not	be	available	to	you,	depending	on	the	language	support
(U.S.	English,	for	example)	that	you’ve	selected	or	installed.



Show	All



RecipientGender	Property
							

Returns	or	sets	the	recipient's	gender,	if	known.	Not	used	in	the	U.S.	English
version	of	Microsoft	Word.	Read/write	WdSalutationGender.

WdSalutationGender	can	be	one	of	these	WdSalutationGender	constants.
wdGenderFemale
wdGenderMale
wdGenderNeutral
wdGenderUnknown

expression.RecipientGender

expression			Required.	An	expression	that	returns	a	LetterContent	object.



Remarks

This	property	may	not	be	available	to	you,	depending	on	the	language	support
(U.S.	English,	for	example)	that	you’ve	selected	or	installed.



RecipientName	Property
							

Returns	or	sets	the	name	of	the	person	who'll	be	receiving	the	letter	created	by
the	Letter	Wizard.	Read/write	String.

expression.RecipientName

expression			Required.	An	expression	that	returns	a	LetterContent	object.



Example

This	example	displays	the	salutation	and	recipient	name	for	the	active	document.

MsgBox	ActiveDocument.GetLetterContent.Salutation	_

				&	Space(1)	&	ActiveDocument.GetLetterContent.RecipientName

This	example	creates	a	new	LetterContent	object,	sets	several	properties
(including	the	recipient	name),	and	then	runs	the	Letter	Wizard	by	using	the
RunLetterWizard	method.

Dim	oLC	as	New	LetterContent

With	oLC

				.LetterStyle	=	wdFullBlock

				.ReturnAddress	=	Application.UserAddress

				.RecipientName	=	"Amy	Anderson"

				.RecipientAddress	=	"123	Main"	&	vbCr	&	"Bellevue,	WA		98004"

End	With

Documents.Add.RunLetterWizard	LetterContent:=oLC,	WizardMode:=True



RecipientNamefromLeft	Property
							

Returns	or	sets	a	Single	that	represents	the	position,	measured	in	points,	of	the
recipient's	name	from	the	left	edge	of	the	envelope.	Used	for	Asian	language
envelopes.	Read/write.

expression.RecipientNamefromLeft

expression			Required.	An	expression	that	returns	an	Envelope	object.



Remarks

For	more	information	on	using	Word	with	right-to-left	languages,	see	Word
features	for	right-to-left	languages.

mk:@MSITStore:wdmain10.chm::/html/wdrefFeaturesAvailableInWordWhenBidirectionalLanguagesAreEnabled.htm


Example

This	example	checks	that	the	active	document	is	a	mail	merge	envelope	and	that
it	is	formatted	for	vertical	type.	If	so,	it	positions	the	recipient	and	sender	address
information.

Sub	NewEnvelopeMerge()

				With	ActiveDocument

								If	.MailMerge.MainDocumentType	=	wdEnvelopes	Then

												With	ActiveDocument.Envelope

																If	.Vertical	=	True	Then

																				.RecipientNamefromLeft	=	InchesToPoints(2.5)

																				.RecipientNamefromTop	=	InchesToPoints(2)

																				.RecipientPostalfromLeft	=	InchesToPoints(1.5)

																				.RecipientPostalfromTop	=	InchesToPoints(0.5)

																				.SenderNamefromLeft	=	InchesToPoints(0.5)

																				.SenderNamefromTop	=	InchesToPoints(2)

																				.SenderPostalfromLeft	=	InchesToPoints(0.5)

																				.SenderPostalfromTop	=	InchesToPoints(3)

																End	If

												End	With

								End	If

				End	With

End	Sub



RecipientNamefromTop	Property
							

Returns	or	sets	a	Single	that	represents	the	position,	measured	in	points,	of	the
recipient's	name	from	the	top	edge	of	the	envelope.	Used	for	Asian	language
envelopes.	Read/write.

expression.RecipientNamefromTop

expression			Required.	An	expression	that	returns	an	Envelope	object.



Remarks

For	more	information	on	using	Microsoft	Word	with	Asian	languages,	see	Word
features	for	Asian	languages.

mk:@MSITStore:wdmain10.chm::/html/wdrefFeaturesAvailableInWordWhenAsianLanguagesAreEnabled.htm


Example

This	example	checks	that	the	active	document	is	a	mail	merge	envelope	and	that
it	is	formatted	for	vertical	type.	If	so,	it	positions	the	recipient	and	sender	address
information.

Sub	NewEnvelopeMerge()

				With	ActiveDocument

								If	.MailMerge.MainDocumentType	=	wdEnvelopes	Then

												With	ActiveDocument.Envelope

																If	.Vertical	=	True	Then

																				.RecipientNamefromLeft	=	InchesToPoints(2.5)

																				.RecipientNamefromTop	=	InchesToPoints(2)

																				.RecipientPostalfromLeft	=	InchesToPoints(1.5)

																				.RecipientPostalfromTop	=	InchesToPoints(0.5)

																				.SenderNamefromLeft	=	InchesToPoints(0.5)

																				.SenderNamefromTop	=	InchesToPoints(2)

																				.SenderPostalfromLeft	=	InchesToPoints(0.5)

																				.SenderPostalfromTop	=	InchesToPoints(3)

																End	If

												End	With

								End	If

				End	With

End	Sub



RecipientPostalfromLeft	Property
							

Returns	or	sets	a	Single	that	represents	the	position,	measured	in	points,	of	the
recipient's	postal	code	from	the	left	edge	of	the	envelope.	Used	for	Asian
language	envelopes.	Read/write.

expression.RecipientPostalfromLeft

expression			Required.	An	expression	that	returns	an	Envelope	object.



Remarks

For	more	information	on	using	Microsoft	Word	with	Asian	languages,	see	Word
features	for	Asian	languages.

mk:@MSITStore:wdmain10.chm::/html/wdrefFeaturesAvailableInWordWhenAsianLanguagesAreEnabled.htm


Example

This	example	checks	that	the	active	document	is	a	mail	merge	envelope	and	that
it	is	formatted	for	vertical	type.	If	so,	it	positions	the	recipient	and	sender	address
information.

Sub	NewEnvelopeMerge()

				With	ActiveDocument

								If	.MailMerge.MainDocumentType	=	wdEnvelopes	Then

												With	ActiveDocument.Envelope

																If	.Vertical	=	True	Then

																				.RecipientNamefromLeft	=	InchesToPoints(2.5)

																				.RecipientNamefromTop	=	InchesToPoints(2)

																				.RecipientPostalfromLeft	=	InchesToPoints(1.5)

																				.RecipientPostalfromTop	=	InchesToPoints(0.5)

																				.SenderNamefromLeft	=	InchesToPoints(0.5)

																				.SenderNamefromTop	=	InchesToPoints(2)

																				.SenderPostalfromLeft	=	InchesToPoints(0.5)

																				.SenderPostalfromTop	=	InchesToPoints(3)

																End	If

												End	With

								End	If

				End	With

End	Sub



RecipientPostalfromTop	Property
							

Returns	or	sets	a	Single	that	represents	the	position,	measured	in	points,	of	the
recipient's	postal	code	from	the	top	edge	of	the	envelope.	Used	for	Asian
language	envelopes.	Read/write.

expression.RecipientPostalfromTop

expression			Required.	An	expression	that	returns	an	Envelope	object.



Remarks

For	more	information	on	using	Microsoft	Word	with	Asian	languages,	see	Word
features	for	Asian	languages.

mk:@MSITStore:wdmain10.chm::/html/wdrefFeaturesAvailableInWordWhenAsianLanguagesAreEnabled.htm


Example

This	example	checks	that	the	active	document	is	a	mail	merge	envelope	and	that
it	is	formatted	for	vertical	type.	If	so,	it	positions	the	recipient	and	sender	address
information.

Sub	NewEnvelopeMerge()

				With	ActiveDocument

								If	.MailMerge.MainDocumentType	=	wdEnvelopes	Then

												With	ActiveDocument.Envelope

																If	.Vertical	=	True	Then

																				.RecipientNamefromLeft	=	InchesToPoints(2.5)

																				.RecipientNamefromTop	=	InchesToPoints(2)

																				.RecipientPostalfromLeft	=	InchesToPoints(1.5)

																				.RecipientPostalfromTop	=	InchesToPoints(0.5)

																				.SenderNamefromLeft	=	InchesToPoints(0.5)

																				.SenderNamefromTop	=	InchesToPoints(2)

																				.SenderPostalfromLeft	=	InchesToPoints(0.5)

																				.SenderPostalfromTop	=	InchesToPoints(3)

																End	If

												End	With

								End	If

				End	With

End	Sub



RecipientReference	Property
							

Returns	or	sets	the	reference	line	(for	example,	"In	reply	to:")	for	a	letter	created
by	the	Letter	Wizard.	Read/write	String.

expression.RecipientReference

expression			Required.	An	expression	that	returns	a	LetterContent	object.



Example

This	example	creates	a	new	LetterContent	object,	sets	several	properties
(including	the	reference	line),	and	then	runs	the	Letter	Wizard	by	using	the
RunLetterWizard	method.

Set	myContent	=	New	LetterContent

With	myContent

				.RecipientReference	=	"In	reply	to:"

				.Salutation	="Hello"

				.MailingInstructions	=	"Certified	Mail"

End	With

Documents.Add.RunLetterWizard	LetterContent:=myContent



Recipients	Property
							

Returns	a	recipient	name	from	the	specified	routing	slip.	Read-only	Variant.

expression.Recipients(Index)

expression			Required.	An	expression	that	returns	a	RoutingSlip	object.

Index			Optional	Variant.	A	number	that	specifies	the	recipient	(in	the	list	of
recipients).



Example

This	example	adds	a	recipient	to	the	routing	slip	attached	to	Sales.doc	and	then
displays	the	name	of	the	first	recipient.

If	Documents("Sales.doc").HasRoutingSlip	=	True	Then

				Documents("Sales.doc").RoutingSlip.AddRecipient	_

								Recipient:="Aaron	Con"

				MsgBox	Documents("Sales.doc").RoutingSlip.Recipients(1)

End	If



RecordCount	Property
							

Returns	a	Long	that	represents	the	number	of	records	in	the	data	source.		Read-
only.

expression.RecordCount

expression			Required.	An	expression	that	returns	a	MailMergeDataSource
object.



Remarks

If	Microsoft	Word	cannot	determine	the	number	of	records	in	a	data	source,	the
RecordCount	property	will	return	a	value	of	-1.



Example

This	example	loops	through	the	records	in	the	data	source	and	verifies	that	the
postal	code	field	(field	six	in	this	example)	is	not	less	than	five	digits.	If	it	is,	it
removes	the	record	from	the	mail	merge.	If	you	want	to	make	sure	that	the
locator	code	is	added	to	the	postal	code,	you	can	change	the	length	value	from	5
to	10.	Therefore,	if	a	postal	code	is	less	than	ten	digits	it	will	be	removed	from
the	mail	merge.

Sub	ExcludeRecords()

				On	Error	GoTo	ErrorHandler

				With	ActiveDocument.MailMerge.DataSource

								.ActiveRecord	=	wdFirstRecord

								Do

												'Counts	the	number	of	digits	in	the	postal	code	field	and	if

												'it	is	less	than	5,	the	record	is	excluded	from	the	mail	merge,

												'marked	as	having	an	invalid	address,	and	given	a	comment

												'describing	why	the	postal	code	was	removed

												If	Len(.DataFields(6).Value)	<	5	Then

																.Included	=	False

																.InvalidAddress	=	True

																.InvalidComments	=	"The	zip	code	for	this	record"	&	_

																				"is	less	than	five	digits.	This	record	is"	&	_

																				"removed	from	the	mail	merge	process."

												End	If

												If	.ActiveRecord	<>	.RecordCount	Then

																.ActiveRecord	=	wdNextRecord

												End	If

								Loop	Until	.ActiveRecord	=	.RecordCount

ErrorHandler:

				End	With

End	Sub





Reference	Property
							

Returns	a	Range	object	that	represents	a	footnote,	endnote,	or	comment
reference	mark.

expression.Reference

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.



Example

This	example	sets	myRange	to	the	first	footnote	reference	mark	in	the	active
document	and	then	copies	the	reference	mark.

Set	myRange	=	ActiveDocument.Footnotes(1).Reference

myRange.Copy

This	example	formats	the	comment	reference	marks	in	the	selection	to	be	red.

For	Each	comm	In	Selection.Comments

				comm.Reference.Font.ColorIndex	=	wdRed

Next	comm



RelatedExpressionList	Property
							

Returns	a	list	of	expressions	related	to	the	specified	word	or	phrase.	The	list	is
returned	as	an	array	of	strings.	Read-only	Variant.

expression.RelatedExpressionList

expression			Required.	An	expression	that	returns	a	SynonymInfo	object.



Remarks

Typically,	there	are	very	few	related	expressions	found	in	the	thesaurus.



Example

This	example	checks	to	see	whether	any	related	expressions	were	found	for	the
selection.	If	so,	the	meanings	are	displayed	in	a	series	of	message	boxes.	If	none
were	found,	this	is	stated	in	a	message	box.

Set	synInfo	=	Selection.Range.SynonymInfo

If	synInfo.Found	=	True	Then

				relList	=	synInfo.RelatedExpressionList

				If	UBound(relList)	<>	0	Then

								For	intCount	=	1	To	UBound(relList)

												Msgbox	relList(intCount)

								Next	intCount

				Else

								Msgbox	"There	were	no	related	expressions	found."

				End	If

End	If



RelatedWordList	Property
							

Returns	a	list	of	words	related	to	the	specified	word	or	phrase.	The	list	is
returned	as	an	array	of	strings.	Read-only	Variant.

expression.RelatedWordList

expression			Required.	An	expression	that	returns	a	SynonymInfo	object.



Example

This	example	checks	to	see	whether	any	related	words	were	found	for	the	third
word	in	the	active	document.	If	so,	the	meanings	are	displayed	in	a	series	of
message	boxes.	If	there	are	no	related	words	found,	this	is	stated	in	a	message
box.

Set	synInfo	=	ActiveDocument.Words(3).SynonymInfo

If	synInfo.Found	=	True	Then

				relList	=	synInfo.RelatedWordList

				If	UBound(relList)	<>	0	Then

								For	intCount	=	1	To	UBound(relList)

												Msgbox	relList(intCount)

								Next	intCount

				Else

								Msgbox	"There	were	no	related	words	found."

				End	If

End	If



Show	All



RelativeHorizontalPosition	Property
							

Specifies	to	what	the	horizontal	position	of	a	frame,	a	shape,	or	a	group	of	rows
is	relative.	Read/write	WdRelativeHorizontalPosition.

				Can	be	one	of	the	following	WdRelativeHorizontalPosition	constants.

				wdRelativeHorizontalPositionCharacter

				wdRelativeHorizontalPositionColumn

				wdRelativeHorizontalPositionMargin

				wdRelativeHorizontalPositionPage.



Example

As	it	relates	to	the	wdRelativeHorizontalPositionMargin	constant.

This	example	adds	a	frame	around	the	selection	and	aligns	the	frame
horizontally	with	the	right	margin.

Set	myFrame	=	ActiveDocument.Frames.Add(Range:=Selection.Range)

With	myFrame

				.RelativeHorizontalPosition	=	_

								wdRelativeHorizontalPositionMargin

				.HorizontalPosition	=	wdFrameRight

End	With

As	it	relates	to	the	wdRelativeHorizontalPositionPage	constant.

This	example	repositions	the	selected	shape	object.

With	Selection.ShapeRange

				.Left	=	InchesToPoints(0.6)

				.RelativeHorizontalPosition	=	wdRelativeHorizontalPositionPage

				.Top	=	InchesToPoints(1)

				.RelativeVerticalPosition	=	wdRelativeVerticalPositionParagraph

End	With



Show	All



RelativeVerticalPosition	Property
							

Specifies	to	what	the	vertical	position	of	a	frame,	a	shape,	or	a	group	of	rows	is
relative.	Read/write	WdRelativeVerticalPosition.

				Can	be	one	of	the	following	WdRelativeVerticalPosition	constants.

				wdRelativeVerticalPositionLine

				wdRelativeVerticalPositionMargin

				wdRelativeVerticalPositionPage

				wdRelativeVerticalPositionParagraph.



	Example

As	it	applies	to	the	Frames	object.

This	example	adds	a	frame	around	the	selection	and	aligns	the	frame	vertically
with	the	top	of	the	page.

Set	myFrame	=	ActiveDocument.Frames.Add(Range:=Selection.Range)

With	myFrame

				.RelativeVerticalPosition	=	wdRelativeVerticalPositionPage

				.VerticalPosition	=	wdFrameTop

End	With

As	it	applies	to	the	Shape	object.

This	example	repositions	the	first	shape	object	in	the	active	document.

With	ActiveDocument.Shapes(1)

				.Left	=	InchesToPoints(0.6)

				.RelativeHorizontalPosition	=	wdRelativeHorizontalPositionPage

				.Top	=	InchesToPoints(1)

				.RelativeVerticalPosition	=	wdRelativeVerticalPositionParagraph

End	With



RelyOnCSS	Property
							

True	if	cascading	style	sheets	(CSS)	are	used	for	font	formatting	when	you	view
a	saved	document	in	a	Web	browser.	Microsoft	Word	creates	a	cascading	style
sheet	file	and	saves	it	either	to	the	specified	folder	or	to	the	same	folder	as	your
Web	page,	depending	on	the	value	of	the	OrganizeInFolder	property.	False	if
HTML	<FONT>	tags	and	cascading	style	sheets	are	used.	The	default	value	is
True.	Read/write	Boolean.

expression.RelyOnCSS

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.



Remarks

You	should	set	this	property	to	True	if	your	Web	browser	supports	cascading
style	sheets	because	this	will	give	you	more	precise	layout	and	formatting
control	on	your	Web	page	and	make	it	look	more	like	your	document	(as	it
appears	in	Microsoft	Word).



Example

This	example	enables	the	use	of	cascading	style	sheets	as	the	global	default	for
the	application.

Application.DefaultWebOptions.RelyOnCSS	=	True



RelyOnVML	Property
							

True	if	image	files	are	not	generated	from	drawing	objects	when	you	save	a
document	as	a	Web	page.	False	if	images	are	generated.	The	default	value	is
False.	Read/write	Boolean.

expression.RelyOnVML

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.



Remarks

You	can	reduce	file	sizes	by	not	generating	images	for	drawing	objects,	if	your
Web	browser	supports	Vector	Markup	Language	(VML).	For	example,	Microsoft
Internet	Explorer	5	supports	this	feature,	and	you	should	set	the	RelyOnVML
property	to	True	if	you	are	targeting	this	browser.	For	browsers	that	do	not
support	VML,	the	image	will	not	appear	when	you	view	a	Web	page	saved	with
this	property	enabled.

Don't	generate	images	if	your	Web	page	uses	image	files	that	you	have	generated
earlier	and	if	the	location	where	you	save	the	document	is	different	from	the
final	location	of	the	page	on	the	Web	server.



Example

This	example	specifies	that	images	are	generated	when	saving	the	document	as	a
Web	page.

ActiveDocument.WebOptions.RelyOnVML	=	False



RemovePersonalInformation
Property
							

True	if	Microsoft	Word	removes	all	user	information	from	comments,	revisions,
and	the	Properties	dialog	box	upon	saving	a	document.	Read/write	Boolean.

expression.RemovePersonalInformation

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.



Example

This	example	sets	the	current	document	to	remove	personal	information	from	the
document	the	next	time	the	user	saves	it.

Sub	RemovePersonalInfo()

				ThisDocument.RemovePersonalInformation	=	True

End	Sub



Replacement	Property
							

Returns	a	Replacement	object	that	contains	the	criteria	for	a	replace	operation.

expression.Replacement

expression			Required.	An	expression	that	returns	a	Find	object.



Example

This	example	removes	bold	formatting	from	the	active	document.	The	Bold
property	is	True	for	the	Find	object	and	False	for	the	Replacement	object.

With	ActiveDocument.Content.Find

				.ClearFormatting

				.Font.Bold	=	True

				With	.Replacement

								.ClearFormatting

								.Font.Bold	=	False

				End	With

				.Execute	FindText:="",	ReplaceWith:="",	Format:=True,	_

								Replace:=wdReplaceAll

End	With

This	example	finds	every	instance	of	the	word	"Start"	in	the	active	document	and
replaces	it	with	"End."	The	find	operation	ignores	formatting	but	matches	the
case	of	the	text	to	find	("Start").

Set	myRange	=	ActiveDocument.Range(Start:=0,	End:=0)

With	myRange.Find

				.ClearFormatting

				.Text	=	"Start"

				With	.Replacement

								.ClearFormatting

								.Text	=	"End"

				End	With

				.Execute	Replace:=wdReplaceAll,	_

								Format:=True,	MatchCase:=True,	_

								MatchWholeWord:=True

End	With



ReplaceSelection	Property
							

True	if	the	result	of	typing	or	pasting	replaces	the	selection.	False	if	the	result	of
typing	or	pasting	is	added	before	the	selection,	leaving	the	selection	intact.
Read/write	Boolean.

expression.ReplaceSelection

expression			Required.	An	expression	that	returns	an	Options	object.



Example

This	example	sets	Microsoft	Word	to	add	the	result	of	typing	or	pasting	before
the	selection,	leaving	the	selection	intact.

Options.ReplaceSelection	=	False

This	example	returns	the	status	of	the	Typing	replaces	selection	option	on	the
Edit	tab	in	the	Options	dialog	box	(Tools	menu).

temp	=	Options.ReplaceSelection



ReplaceText	Property
							

True	if	Microsoft	Word	automatically	replaces	specified	text	with	entries	from
the	AutoCorrect	list.	Read/write	Boolean.

expression.ReplaceText

expression			Required.	An	expression	that	returns	an	AutoCorrect	object.



Example

This	example	sets	Word	to	automatically	replace	specified	text	with	entries	from
the	AutoCorrect	list	as	you	type.

AutoCorrect.ReplaceText	=	True

This	example	toggles	the	value	of	the	ReplaceText	property.

AutoCorrect.ReplaceText	=	Not	AutoCorrect.ReplaceText



ReplaceTextFromSpellingChecker
Property
							

True	if	Microsoft	Word	automatically	replaces	misspelled	text	with	suggestions
from	the	spelling	checker	as	the	user	types.	Word	only	replaces	words	that
contain	a	single	misspelling	and	for	which	the	spelling	dictionary	only	lists	one
alternative.	Read/write	Boolean.

expression.ReplaceTextFromSpellingChecker

expression			Required.	An	expression	that	returns	an	AutoCorrect	object.



Example

This	example	sets	Word	to	automatically	replace	misspelled	text	with
suggestions	from	the	spelling	checker.

AutoCorrect.ReplaceTextFromSpellingChecker	=	True



ReplyMessageSignature	Property
							

Returns	or	sets	the	signature	that	Microsoft	Word	appends	to	e-mail	message
replies.	Read/write	String.

expression.ReplyMessageSignature

expression			Required.	An	expression	that	returns	an	EmailSignature	object.



Remarks

When	setting	this	property,	you	must	use	the	name	of	an	e-mail	signature	that
you	have	created	in	the	E-mail	Options	dialog	box,	available	from	the	General
tab	of	the	Options	dialog	box	(Tools	menu).



Example

This	example	changes	the	signature	Word	appends	to	e-mail	message	replies.

With	Application.EmailOptions.EmailSignature

				.ReplyMessageSignature	=	"Reply2"

End	With



ReplyStyle	Property
							

Returns	a	Style	object	that	represents	the	style	used	when	replying	to	e-mail
messages.

expression.ReplyStyle

expression			Required.	An	expression	that	returns	an	EmailOptions	object.



Example

This	example	displays	the	name	of	the	default	style	used	when	replying	to	e-mail
messages.

MsgBox	Application.EmailOptions.ReplyStyle.NameLocal



ResetOnHigher	Property
							

Sets	or	returns	the	list	level	that	must	appear	before	the	specified	list	level
restarts	numbering	at	1.	False	if	the	numbering	continues	sequentially	each	time
the	list	level	appears.	Read/write	Long.

expression.ResetOnHigher

expression			Required.	An	expression	that	returns	a	ListLevel	object.



Remarks

This	feature	allows	lists	to	be	interleaved,	maintaining	numeric	sequence.	You
cannot	set	the	ResetOnHigher	property	of	a	list	level	to	a	value	greater	than	or
equal	to	its	index	in	the	ListLevels	collection.



Example

This	example	sets	each	of	the	nine	list	levels	in	the	first	outline-numbered	list
template	to	continue	its	sequential	numbering	whenever	that	level	is	used.

For	Each	li	In	_

								ListGalleries(wdOutlineNumberGallery)	_

								.ListTemplates(1).ListLevels

				li.ResetOnHigher	=	False

Next	li



Show	All



RestartMode	Property
							

Returns	or	sets	the	way	line	numbering	runs	—	that	is,	whether	it	starts	over	at
the	beginning	of	a	new	page	or	section	or	runs	continuously.	Read/write
WdNumberingRule.

WdNumberingRule	can	be	one	of	these	WdNumberingRule	constants.
wdRestartContinuous
wdRestartPage
wdRestartSection

expression.RestartMode

expression			Required.	An	expression	that	returns	a	LineNumbering	object.



Remarks

You	must	be	in	print	layout	view	to	see	line	numbering.



Example

This	example	enables	line	numbering	for	the	active	document.	The	starting
number	is	set	to	1,	every	tenth	line	number	is	shown,	and	the	numbering	starts
over	at	the	beginning	of	each	section.

set	myDoc	=	ActiveDocument

With	myDoc.PageSetup.LineNumbering

				.Active	=	True

				.StartingNumber	=	1

				.CountBy	=	10

				.RestartMode	=	wdRestartSection

End	With



RestartNumberingAtSection
Property
							

True	if	page	numbering	starts	at	1	again	at	the	beginning	of	the	specified
section.	Read/write	Boolean.

expression.RestartNumberingAtSection

expression			Required.	An	expression	that	returns	a	PageNumbers	collection
object.



Remarks

If	set	to	False,	the	RestartNumberingAtSection	property	will	override	the
StartingNumber	property	so	that	page	numbering	can	continue	from	the
previous	section.



Example

This	example	adds	page	numbers	to	the	headers	in	the	active	document,	and	then
it	sets	page	numbering	to	start	at	1	again	at	the	beginning	of	each	section.

ActiveDocument.Sections(1).Headers(wdHeaderFooterPrimary)	_

				.PageNumbers.Add	Pagenumberalignment:=wdAlignPageNumberCenter

For	Each	s	In	ActiveDocument.Sections

				With	s.Headers(wdHeaderFooterPrimary).PageNumbers

								.RestartNumberingAtSection	=	True

								.StartingNumber	=	1

				End	With

Next	s



Show	All



Result	Property
							

Result	property	as	it	applies	to	the	Field	object.

Returns	a	Range	object	that	represents	a	field's	result.	You	can	access	a	field
result	without	changing	the	view	from	field	codes.	Use	the	Text	property	to
return	text	from	a	Range	object.	Read/write.

expression.Result

expression			Required.	An	expression	that	returns	a	Field	object.

Result	property	as	it	applies	to	the	FormField	object.

Returns	a	String	that	represents	the	result	of	the	specified	form	field.
Read/write.

expression.Result

expression			Required.	An	expression	that	returns	a	FormField	object.



Example

As	it	applies	to	the	Field	object.

This	example	applies	bold	formatting	to	the	first	field	in	the	selection.

If	Selection.Fields.Count	>=	1	Then

				Set	myRange	=	Selection.Fields(1).Result

				myRange.Bold	=	True

End	If

As	it	applies	to	the	FormField	object.

This	example	displays	the	result	of	each	form	field	in	the	active	document.

For	Each	aField	In	ActiveDocument.FormFields

				MsgBox	aField.Result

Next	aField



Show	All



ReturnAddress	Property
							

ReturnAddress	property	as	it	applies	to	the	Envelope	object.

Returns	a	Range	object	that	represents	the	envelope	return	address.

expression.ReturnAddress

expression			Required.	An	expression	that	returns	an	Envelope	object.



Remarks

An	error	occurs	if	you	use	this	property	before	adding	an	envelope	to	the
document.

ReturnAddress	property	as	it	applies	to	the	LetterContent	object.

Returns	or	sets	the	return	address	for	a	letter	created	with	the	Letter	Wizard.
Read/write	String.

expression.ReturnAddress

expression			Required.	An	expression	that	returns	a	LetterContent	object.



Example

As	it	applies	to	the	Envelope	object.

This	example	displays	the	return	address	if	an	envelope	has	been	added	to	the
active	document;	otherwise,	a	message	box	is	displayed.

On	Error	GoTo	errhandler

addr	=	ActiveDocument.Envelope.ReturnAddress.Text

MsgBox	Prompt:=addr,	Title:="Return	Address"

errhandler:

If	Err	=	5852	Then	MsgBox	_

				"The	active	document	doesn't	include	an	envelope"

As	it	applies	to	the	LetterContent	object.

This	example	creates	a	new	LetterContent	object,	sets	the	return	address	and
several	other	properties,	and	then	runs	the	Letter	Wizard	by	using	the
RunLetterWizard	method.

Dim	oLC	as	New	LetterContent

With	oLC

				.LetterStyle	=	wdFullBlock

				.Salutation	="Hello"

				.SalutationType	=	wdSalutationOther

				.ReturnAddress	=	Application.UserAddress

End	With

Documents.Add.RunLetterWizard	LetterContent:=oLC



ReturnAddressFromLeft	Property
							

Returns	or	sets	the	distance	(in	points)	between	the	left	edge	of	the	envelope	and
the	return	address.	Read/write	Single.

expression.ReturnAddressFromLeft

expression			Required.	An	expression	that	returns	an	Envelope	object.



Remarks

If	you	use	this	property	before	an	envelope	has	been	added	to	the	document,	an
error	occurs.



Example

This	example	creates	a	new	document	and	adds	an	envelope	with	a	predefined
delivery	address	and	return	address.	The	example	then	sets	the	distance	between
the	left	edge	of	the	envelope	and	the	return	address	to	0.75	inch.

addr	=	"Karin	Gallagher"	&	vbCr	&	"123	Skye	St."	_

				&	vbCr	&	"Our	Town,	WA		98004"

retaddr	=	"Don	Funk"	&	vbCr	&	"123	Main"	_

				&	vbCr	&	"Other	Town,	WA		98040"

With	Documents.Add.Envelope

				.Insert	Address:=addr,	ReturnAddress:=retaddr

				.ReturnAddressFromLeft	=	InchesToPoints(0.75)

End	With

ActiveDocument.ActiveWindow.View.Type	=	wdPrintView



ReturnAddressFromTop	Property
							

Returns	or	sets	the	distance	(in	points)	between	the	top	edge	of	the	envelope	and
the	return	address.	Read/write	Single.

expression.ReturnAddressFromTop

expression			Required.	An	expression	that	returns	an	Envelope	object.



Remarks

If	you	use	this	property	before	an	envelope	has	been	added	to	the	document,	an
error	occurs.



Example

This	example	creates	a	new	document	and	adds	an	envelope	with	a	predefined
delivery	address	and	return	address.	The	example	then	sets	the	distance	between
the	top	edge	of	the	envelope	and	the	return	address	to	0.5	inch	and	sets	the
distance	between	the	left	edge	of	the	envelope	and	the	return	address	to	0.75
inch.

addr	=	"Eric	Lang"	&	vbCr	&	"123	Main"	_

				&	vbCr	&	"Seattle,	WA		98040"

retaddr	=	"Nate	Sun"	&	vbCr	&	"123	Main"	_

				&	vbCr	&	"Bellevue,	WA		98004"

With	Documents.Add.Envelope

				.Insert	Address:=addr,	ReturnAddress:=retaddr

				.ReturnAddressFromTop	=	InchesToPoints(0.5)

				.ReturnAddressFromLeft	=	InchesToPoints(0.75)

End	With



ReturnAddressShortForm	Property
							

Returns	or	sets	the	short	form	address.	Not	used	in	the	U.S.	English	version	of
Microsoft	Word.	Read/write	String.

expression.ReturnAddressShortForm

expression			Required.	An	expression	that	returns	a	LetterContent	object.



Remarks

This	property	may	not	be	available	to	you,	depending	on	the	language	support
(U.S.	English,	for	example)	that	you’ve	selected	or	installed.



ReturnAddressStyle	Property
							

Returns	a	Style	object	that	represents	the	return	address	style	for	the	envelope.

expression.ReturnAddressStyle

expression			Required.	An	expression	that	returns	an	Envelope	object.



Remarks

If	an	envelope	is	added	to	the	document,	text	formatted	with	the	Envelope
Return	style	is	automatically	updated.



Example

This	example	displays	the	style	name	and	description	of	the	envelope	return
address.

Set	myStyle	=	ActiveDocument.Envelope.ReturnAddressStyle

MsgBox	Prompt:=myStyle.Description,	Title:=myStyle.NameLocal

This	example	sets	the	line	spacing	and	space-after	formatting	for	the	envelope
return	address	style.

With	ActiveDocument.Envelope.ReturnAddressStyle.ParagraphFormat

				.LineSpacingRule	=	wdLineSpaceExactly

				.LineSpacing	=	13

				.SpaceAfter	=	6

End	With



ReturnWhenDone	Property
							

True	if	the	document	associated	with	the	specified	routing	slip	is	sent	back	to
the	original	sender	when	the	routing	is	finished.	Read/write	Boolean	before
routing	begins;	read-only	Boolean	while	routing	is	in	progress.

expression.ReturnWhenDone

expression			Required.	An	expression	that	returns	a	RoutingSlip	object.



Example

This	example	sets	the	routing	slip	for	Sales	1995.doc	to	return	the	document
back	to	the	original	sender	after	the	last	recipient	reviews	it.

If	Documents("Sales	1995.doc").HasRoutingSlip	=	True	Then

				With	Documents("Sales	1995.doc").RoutingSlip

								.Delivery	=	wdOneAfterAnother

								.ReturnWhenDone	=	True

				End	With

End	If



Show	All



Reverse	Property
							

MsoTrue	reverses	the	nodes	in	a	diagram.	Read/write	MsoTriState.

MsoTriState	can	be	one	of	these	MsoTriState	constants.
msoCTrue	Not	used	with	this	property.
msoFalse	Leaves	the	diagram	nodes	as	they	are.
msoTriStateMixed	Not	used	with	this	property.
msoTriStateToggle	Not	used	with	this	property.
msoTrue	Reverses	the	nodes	in	a	diagram.

expression.Reverse

expression			Required.	An	expression	that	returns	a	Diagram	object.



Example

The	following	example	creates	a	pyramid	diagram	and	reverses	the	nodes	so	the
node	that	was	on	the	bottom	of	the	pyramid	is	on	the	top	and	the	node	that	was
on	the	top	is	on	the	bottom.

Sub	CreatePyramidDiagram()

				Dim	shpDiagram	As	Shape

				Dim	dgnNode	As	DiagramNode

				Dim	intCount	As	Integer

				'Add	pyramid	diagram	to	the	current	document

				Set	shpDiagram	=	ThisDocument.Shapes.AddDiagram	_

								(Type:=msoDiagramPyramid,	Left:=10,	_

								Top:=15,	Width:=400,	Height:=475)

				'Add	first	child	node	to	the	diagram

				Set	dgnNode	=	shpDiagram.DiagramNode.Children.AddNode

				'Add	three	child	nodes

				For	intCount	=	1	To	3

								dgnNode.AddNode

				Next	intCount

				With	dgnNode.Diagram

								'Enable	automatic	formatting

								.AutoFormat	=	msoTrue

								'Reverse	the	order	of	the	nodes

								.Reverse	=	msoTrue

				End	With

End	Sub



Reviewers	Property
							

Returns	a	Reviewers	object	that	represents	all	reviewers.

expression.Reviewers

expression			Required.	An	expression	that	returns	a	View	object.



Remarks

The	Reviewers	object	is	a	global	list	of	all	reviewers,	regardless	of	whether	the
reviewer	reviewed	the	document	displayed	in	the	specified	window.



Example

This	example	hides	all	revisions	and	comments	in	the	document	and	displays
only	revisions	and	comments	made	by	"Jeff	Smith."

Sub	HideRevisions()

				Dim	revName	As	Reviewer

				With	ActiveWindow.View

								.ShowRevisionsAndComments	=	False

								.ShowFormatChanges	=	True

								.ShowInsertionsAndDeletions	=	True

								For	Each	revName	In	.Reviewers

												revName.Visible	=	True

								Next

								.Reviewers.Item("Jeff	Smith").Visible	=	True

				End	With

End	Sub



Show	All



RevisedLinesColor	Property
							

Returns	or	sets	the	color	of	changed	lines	in	a	document	with	tracked	changes.
Read/write	WdColorIndex.

WdColorIndex	can	be	one	of	these	WdColorIndex	constants.
wdAuto
wdBlack
wdBlue
wdBrightGreen
wdByAuthor
wdDarkBlue
wdDarkRed
wdDarkYellow
wdGray25
wdGray50
wdGreen
wdNoHighlight
wdPink
wdRed
wdTeal
wdTurquoise
wdViolet
wdWhite
wdYellow

expression.RevisedLinesColor

expression			Required.	An	expression	that	returns	an	Options	object.



Example

This	example	sets	the	color	of	changed	lines	to	pink.

Options.RevisedLinesColor	=	wdPink

This	example	returns	the	current	status	of	the	Color	option	under	Changed	lines
on	the	Track	Changes	tab	in	the	Options	dialog	box	(Tools	menu).

temp	=	Options.RevisedLinesColor



Show	All



RevisedLinesMark	Property
							

Returns	or	sets	the	placement	of	changed	lines	in	a	document	with	tracked
changes.	Read/write	WdRevisedLinesMark.

WdRevisedLinesMark	can	be	one	of	these	WdRevisedLinesMark	constants.
wdRevisedLinesMarkLeftBorder
wdRevisedLinesMarkNone
wdRevisedLinesMarkOutsideBorder
wdRevisedLinesMarkRightBorder

expression.RevisedLinesMark

expression			Required.	An	expression	that	returns	an	Options	object.



Example

This	example	sets	changed	lines	to	appear	in	the	left	margin	of	every	page.

Options.RevisedLinesMark	=	wdRevisedLinesMarkLeftBorder

This	example	returns	the	current	status	of	the	Mark	option	under	Changed	lines
on	the	Track	Changes	tab	in	the	Options	dialog	box	(Tools	menu).

temp	=	Options.RevisedLinesMark



Show	All



RevisedPropertiesColor	Property
							

Returns	or	sets	the	color	used	to	mark	formatting	changes	while	change	tracking
is	enabled.	Read/write	WdColorIndex.

WdColorIndex	can	be	one	of	these	WdColorIndex	constants.
wdAuto
wdBlack
wdBlue
wdBrightGreen
wdByAuthor
wdDarkBlue
wdDarkRed
wdDarkYellow
wdGray25
wdGray50
wdGreen
wdNoHighlight
wdPink
wdRed
wdTeal
wdTurquoise
wdViolet
wdWhite
wdYellow

expression.RevisedPropertiesColor

expression			Required.	An	expression	that	returns	an	Options	object.



Remarks

If	deleted	or	inserted	text	has	formatting	changes,	the	RevisedPropertiesColor
property	is	overridden	by	the	DeletedTextColor	or	InsertedTextColor	property.



Example

This	example	tracks	changes	in	the	active	document,	sets	the	color	of	text	with
changed	formatting	to	teal,	and	applies	bold	formatting	to	the	selection.

ActiveDocument.TrackRevisions	=	True

Options.RevisedPropertiesColor	=	wdTeal

Selection.Font.Bold	=	True

This	example	returns	the	option	selected	in	the	Color	box	under	Track	Changes
options	on	the	Track	Changes	tab	in	the	Options	dialog	box	(Tools	menu).

temp	=	Options.RevisedPropertiesColor



Show	All



RevisedPropertiesMark	Property
							

Returns	or	sets	the	mark	used	to	show	formatting	changes	while	change	tracking
is	enabled.	Read/write	WdRevisedPropertiesMark.

WdRevisedPropertiesMark	can	be	one	of	these	WdRevisedPropertiesMark
constants.
wdRevisedPropertiesMarkBold
wdRevisedPropertiesMarkColorOnly
wdRevisedPropertiesMarkDoubleUnderline
wdRevisedPropertiesMarkItalic
wdRevisedPropertiesMarkNone
wdRevisedPropertiesMarkStrikeThrough
wdRevisedPropertiesMarkUnderline

expression.RevisedPropertiesMark

expression			Required.	An	expression	that	returns	an	Options	object.



Example

This	example	causes	text	with	changed	formatting	to	be	double-underlined	when
change	tracking	is	enabled.

Options.RevisedPropertiesMark	=	_

				wdRevisedPropertiesMarkDoubleUnderline

This	example	returns	the	option	selected	in	the	Formatting	box	under	Track
Changes	options	on	the	Track	Changes	tab	in	the	Options	dialog	box	(Tools
menu).

temp	=	Options.RevisedPropertiesMark



Revisions	Property
							

Returns	a	Revisions	collection	that	represents	the	tracked	changes	in	the
document	or	range.	Read-only.

For	information	about	returning	a	single	member	of	a	collection,	see	Returning
an	Object	from	a	Collection.



Example

This	example	displays	the	number	of	tracked	changes	in	the	first	section	in	the
active	document.

MsgBox	ActiveDocument.Sections(1).Range.Revisions.Count

This	example	accepts	all	tracked	changes	in	the	first	paragraph	in	the	selection.

Set	myRange	=	Selection.Paragraphs(1).Range

myRange.Revisions.AcceptAll



Show	All



RevisionsBalloonPrintOrientation
Property
							

Returns	or	sets	a	WdRevisionsBalloonPrintOrientation	constant	that
represents	the	direction	of	revision	and	comment	balloons	when	they	are	printed.
Read/write.

WdRevisionsBalloonPrintOrientation	can	be	one	of	these
WdRevisionsBalloonPrintOrientation	constants.
wdBalloonPrintOrientationAuto	Microsoft	Word	automatically	selects	the
orientation	that	keeps	the	zoom	factor	closest	to	100%.
wdBalloonPrintOrientationForceLandscape	Word	forces	all	sections	to	be
printed	in	Landscape	mode,	regardless	of	original	orientation,	and	prints	the
revision	and	comment	balloons	on	the	side	opposite	to	the	document	text.
wdBalloonPrintOrientationPerserve	Word	preserves	the	orientation	of	the
original,	uncommented	document.

expression.RevisionsBalloonPrintOrientation

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.



Example

This	example	prints	documents	with	comments	in	Landscape	format	with	the
revision	and	comment	balloons	on	one	side	of	the	page	and	the	document	text	on
the	other.

Sub	PrintLandscapeCommentBalloons()

				Options.RevisionsBalloonPrintOrientation	=	_

								wdBalloonPrintOrientationForceLandscape

End	Sub



RevisionsBalloonShowConnectingLines
Property
							

True	for	Microsoft	Word	to	display	connecting	lines	from	the	text	to	the	revision
and	comment	balloons.	Read/write	Boolean.

expression.RevisionsBalloonShowConnectingLines

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.



Example

This	example	hides	the	lines	connecting	the	document	text	with	the
corresponding	revision	or	comment	balloons.

Sub	ShowConnectingLines()

				ActiveWindow.View	_

								.RevisionsBalloonShowConnectingLines	=	False

End	Sub



Show	All



RevisionsBalloonSide	Property
							

Sets	or	returns	a	WdRevisionsBalloonMargin	constant	representing	the	global
setting	in	Microsoft	Word	that	specifies	whether	Word	displays	revision	balloons
in	the	left	or	right	margin.	Read/write.

WdRevisionsBalloonMargin	can	be	one	of	these	WdRevisionsBalloonMargin
constants.
wdLeftMargin
wdRightMargin

expression.RevisionsBalloonSide

expression			Required.	An	expression	that	returns	a	View	object.



Example

This	example	toggles	the	revision	balloons	between	the	left	and	right	side.	This
example	assumes	that	the	document	in	the	active	window	contains	revisions
made	by	one	or	more	reviewers	and	that	revisions	are	displayed	in	balloons.

Sub	ToggleRevisionBalloons()

				With	ActiveWindow.View

								If	.RevisionsBalloonSide	=	wdLeftMargin	Then

												.RevisionsBalloonSide	=	wdRightMargin

								Else

												.RevisionsBalloonSide	=	wdLeftMargin

								End	If

				End	With

End	Sub



RevisionsBalloonWidth	Property
							

Sets	or	returns	a	Single	representing	the	global	setting	in	Microsoft	Word	that
specifies	the	width	of	the	revision	balloons.	Read/write.

expression.RevisionsBalloonWidth

expression			Required.	An	expression	that	returns	one	a	View	object.



Remarks

The	width	of	revision	balloons	includes	padding	of	one-half	inch	between	the
document	margin	and	the	edge	of	the	balloon	and	one-eighth	of	an	inch	between
the	edge	of	the	balloon	and	the	edge	of	the	paper.	Microsoft	Word	adds	space
along	the	left	or	right	edge	of	the	paper.	This	width	is	extended	into	the	margin
and	does	not	change	the	width	of	the	document	or	paper	size.	Use	the
RevisionsBalloonWidthType	property	to	specify	the	measurement	to	use	when
setting	the	RevisionsBalloonWidth	property.	



Example

This	example	sets	the	width	of	the	revision	balloons	to	one	inch	and	displays	the
revision	balloons	in	the	left	margin.	This	example	assumes	that	the	document	in
the	active	window	contains	revisions	made	by	one	or	more	reviewers	and	that
revisions	are	displayed	in	balloons.

Sub	BalloonWidth()

				With	ActiveWindow.View

								.RevisionsBalloonWidthType	=	wdBalloonWidthPoints

								.RevisionsBalloonWidth	=	InchesToPoints(1)

								.RevisionsBalloonSide	=	wdLeftMargin

				End	With

End	Sub



Show	All



RevisionsBalloonWidthType	Property
							

Sets	or	returns	a	WdRevisionsBalloonWidthType	constant	representing	the
global	setting	that	specifies	how	Microsoft	Word	measures	the	width	of	revision
balloons.	Read/write.

WdRevisionsBalloonWidthType	can	be	one	of	these
WdRevisionsBalloonWidthType	constants.
wdBalloonWidthPercent		Measured	as	a	percentage	of	the	width	of	the
document.
wdBalloonWidthPoints		Measured	in	points.

expression.RevisionsBalloonWidthType

expression			Required.	An	expression	that	returns	a	View	object.



Remarks

The	RevisionsBalloonWidthType	property	sets	the	measurement	unit	to	use
when	setting	the	RevisionsBalloonWidth	property.



Example

This	example	sets	the	width	of	the	revision	balloons	to	twenty-five	percent	of	the
document's	width.	This	example	assumes	that	the	document	in	the	active
window	contains	revisions	made	by	one	or	more	reviewers	and	that	revisions	are
displayed	in	balloons.

Sub	BalloonWidthType()

				With	ActiveWindow.View

								.RevisionsBalloonWidthType	=	wdBalloonWidthPercent

								.RevisionsBalloonWidth	=	25

				End	With

End	Sub



Show	All



RevisionsMode	Property
							

Sets	or	returns	a	WdRevisionsMode	constant	representing	the	global	option	that
specifies	whether	Microsoft	Word	displays	balloons	in	the	margin	or	inline	with
the	document's	text.	Read/write.

WdRevisionsMode	can	be	one	of	these	WdRevisionsMode	constants.
wdBalloonRevisions		Displays	revisions	in	balloons	in	the	left	or	right	margin.
wdInLineRevisions		Displays	revisions	within	the	text	using	strikethrough	for
deletions	and	underlining	for	insertions.	This	is	the	default	setting	for	prior
versions	of	Word.

expression.RevisionsMode

expression			Required.	An	expression	that	returns	a	View	object.



Example

This	example	toggles	between	displaying	the	revisions	in	balloons	in	the	margins
and	displaying	them	inline	with	the	text.	This	example	assumes	that	the
document	in	the	active	window	contains	revisions	made	by	one	or	more
reviewers	and	that	revisions	are	displayed	in	balloons.

Sub	TogglesRevisionMode()

				With	ActiveWindow.View

								If	.RevisionsMode	=	wdInLineRevisions	Then

												.RevisionsMode	=	wdBalloonRevisions

								Else

												.RevisionsMode	=	wdInLineRevisions

								End	If

				End	With

End	Sub



Show	All



RevisionsView	Property
							

Sets	or	returns	a	WdRevisionsView	constant	representing	the	global	option	that
specifies	whether	Word	displays	the	original	version	of	a	document	or	a	version
with	revisions	and	formatting	changes	applied.	Read/write.

WdRevisionsView	can	be	one	of	these	WdRevisionsView	constants.
wdRevisionsViewFinal	Displays	the	document	with	formatting	and	content
changes	applied.
wdRevisionsViewOriginal	Displays	the	document	before	changes	were	made.

expression.RevisionsView

expression			Required.	An	expression	that	returns	a	View	object.



Example

This	example	toggles	between	displaying	the	original	and	a	final	version	of	the
document.	This	example	assumes	that	the	document	in	the	active		window
contains	revisions	made	by	one	or	more	reviewers	and	that	revisions	are
displayed	in	balloons.

Sub	ToggleRevView()

				With	ActiveWindow.View

								If	.RevisionsMode	=	wdBalloonRevisions	Then

												If	.RevisionsView	=	wdRevisionsViewFinal	Then

																.RevisionsView	=	wdRevisionsViewOriginal

												Else

																.RevisionsView	=	wdRevisionsViewFinal

												End	If

								End	If

				End	With

End	Sub



Show	All



RGB	Property
							

Returns	or	sets	the	red-green-blue	(RGB)	value	of	the	specified	color.	Read/write
Long.



Example

This	example	sets	the	color	of	the	second	shape	in	the	active	document	to	gray.

ActiveDocument.Shapes(2).Fill.ForeColor.RGB	=	RGB(128,	128,	128)

This	example	sets	the	color	of	the	shadow	for	Rectangle	1	in	the	active
document	to	blue.

ActiveDocument.Shapes("Rectangle	1").Shadow.ForeColor.RGB	=	_

				RGB(0,	0,	255)

This	example	returns	the	value	of	the	foreground	color	of	the	first	shape	in	the
active	document.

MsgBox	ActiveDocument.Shapes(1).Fill.ForeColor.RGB



RichText	Property
							

True	if	formatting	is	stored	with	the	AutoCorrect	entry	replacement	text.	Read-
only	Boolean.

expression.RichText

expression			Required.	An	expression	that	returns	an	AutoCorrectEntry	object.



Example

This	example	determines	whether	AutoCorrect	entry	one	is	formatted.

MsgBox	AutoCorrect.Entries(1).RichText



RightAlignPageNumbers	Property
							

True	if	page	numbers	are	aligned	with	the	right	margin	in	an	index,	table	of
contents,	or	table	of	figures.	Read/write	Boolean.

expression.RightAlignPageNumbers

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.



Example

This	example	right-aligns	page	numbers	for	the	first	table	of	contents	in	the
active	document.

If	ActiveDocument.TablesOfContents.Count	>=	1	Then

				With	ActiveDocument.TablesOfContents(1)

								.IncludePageNumbers	=	True

								.RightAlignPageNumbers	=	True

				End	With

End	If



RightIndent	Property
							

Returns	or	sets	the	right	indent	(in	points)	for	the	specified	paragraphs.
Read/write	Single.

expression.RightIndent

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.



Example

This	example	sets	the	right	indent	for	all	paragraphs	in	the	active	document	to	1
inch	from	the	right	margin.	The	InchesToPoints	method	is	used	to	convert
inches	to	points.

ActiveDocument.Paragraphs.RightIndent	=	InchesToPoints(1)



RightMargin	Property
							

Returns	or	sets	the	distance	(in	points)	between	the	right	edge	of	the	page	and
the	right	boundary	of	the	body	text.	Read/write	Single.

expression.RightMargin

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.



Remarks

If	the	MirrorMargins	property	is	set	to	True,	the	RightMargin	property
controls	the	setting	for	outside	margins	and	the	LeftMargin	property	controls
the	setting	for	inside	margins.



Example

This	example	displays	the	right	margin	setting	for	the	active	document.	The
PointsToInches	method	is	used	to	convert	the	result	to	inches.

With	ActiveDocument.PageSetup

				Msgbox	"The	right	margin	is	set	to	"	_

								&	PointsToInches(.RightMargin)	&	"	inches."

End	With

This	example	sets	the	right	margin	for	section	two	in	the	selection.	The
InchesToPoints	method	is	used	to	convert	inches	to	points.

Selection.Sections(2).PageSetup.RightMargin	=	InchesToPoints(1)



RightPadding	Property
							

Returns	or	sets	the	amount	of	space	(in	points)	to	add	to	the	right	of	the	contents
of	a	single	cell	or	all	the	cells	in	a	table.	Read/write	Single.

expression.RightPadding

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.



Remarks

The	setting	of	the	RightPadding	property	for	a	single	cell	overrides	the	setting
of	the	RightPadding	property	for	the	entire	table.



Example

This	example	sets	the	right	padding	for	the	first	table	in	the	active	document	to
40	pixels.

ActiveDocument.Tables(1).RightPadding	=	_

				PixelsToPoints(40,	False)



Root	Property
							

Returns	a	DiagramNode	object	that	represents	the	root	diagram	node	to	which
the	source	diagram	node	belongs.	Read-only.

expression.Root

expression			Required.	An	expression	that	returns	a	DiagramNode	object.



Example

The	following	example	creates	an	organization	chart	and	adds	child	nodes	to	the
root	diagram	node.

Sub	Root()

				Dim	shpDiagram	As	Shape

				Dim	dgnRoot	As	DiagramNode

				Dim	intCount	As	Integer

				'Add	organization	chart	to	the	current	document

				Set	shpDiagram	=	ThisDocument.Shapes.AddDiagram	_

								(Type:=msoDiagramOrgChart,	Left:=10,	_

								Top:=15,	Width:=400,	Height:=475)

				'Add	the	first	node	to	the	diagram

				shpDiagram.DiagramNode.Children.AddNode

				'Assign	the	root	diagram	node	to	a	variable

				Set	dgnRoot	=	shpDiagram.DiagramNode.Root

				'Add	three	child	nodes	to	the	root	node

				For	intCount	=	1	To	3

								dgnRoot.Children.AddNode

				Next	intCount

End	Sub



Show	All



RotatedChars	Property
							

MsoTrue	if	characters	in	the	specified	WordArt	are	rotated	90	degrees	relative	to
the	WordArt's	bounding	shape.	MsoFalse	if	characters	in	the	specified	WordArt
retain	their	original	orientation	relative	to	the	bounding	shape.	Read/write
MsoTriState.

MsoTriState	can	be	one	of	these	MsoTriState	constants.
msoCTrue
msoFalse
msoTriStateMixed
msoTriStateToggle
msoTrue

expression.RotatedChars

expression			Required.	An	expression	that	returns	a	TextEffectFormat	object.



Remarks

If	the	WordArt	has	horizontal	text,	setting	the	RotatedChars	property	to	True
rotates	the	characters	90	degrees	counterclockwise.	If	the	WordArt	has	vertical
text,	setting	the	RotatedChars	property	to	False	rotates	the	characters	90
degrees	clockwise.	Use	the	ToggleVerticalText	method	to	switch	between
horizontal	and	vertical	text	flow.

The	Flip	method	and	Rotation	property	of	the	Shape	object	and	the
RotatedChars	property	and	ToggleVerticalText	method	of	the
TextEffectFormat	object	all	affect	the	character	orientation	and	direction	of	text
flow	in	a	Shape	object	that	represents	WordArt.	You	may	have	to	experiment	to
find	out	how	to	combine	the	effects	of	these	properties	and	methods	to	get	the
result	you	want.



Example

This	example	adds	WordArt	that	contains	the	text	"Test"	to	myDocument	and
rotates	the	characters	90	degrees	counterclockwise.

Set	myDocument	=	ActiveDocument

Set	newWordArt	=	_

				myDocument.Shapes.AddTextEffect(	_

				PresetTextEffect:=msoTextEffect1,	_

				Text:="Test",	_

				FontName:="Arial	Black",	FontSize:=36,	_

				FontBold:=False,	FontItalic:=False,	Left:=10,	Top:=10)

newWordArt.TextEffect.RotatedChars	=	True



Rotation	Property
							

Returns	or	sets	the	number	of	degrees	the	specified	shape	is	rotated	around	the	z-
axis.	A	positive	value	indicates	clockwise	rotation;	a	negative	value	indicates
counterclockwise	rotation.	Read/write	Single.



Remarks

To	set	the	rotation	of	a	three-dimensional	shape	around	the	x-axis	or	the	y-axis,
use	the	RotationX	property	or	the	RotationY	property	of	the	ThreeDFormat
object.



Example

This	example	matches	the	rotation	of	all	shapes	on	myDocument	to	the	rotation	of
shape	one.

Set	myDocument	=	ActiveDocument

With	myDocument.Shapes

				sh1Rotation	=	.Item(1).Rotation

				For	o	=	1	To	.Count

								.Item(o).Rotation	=	sh1Rotation

				Next

End	With



RotationX	Property
							

Returns	or	sets	the	rotation	of	the	extruded	shape	around	the	x-axis	in	degrees.
Can	be	a	value	from		–	90	through	90.	A	positive	value	indicates	upward
rotation;	a	negative	value	indicates	downward	rotation.	Read/write	Single.

expression.RotationX

expression			Required.	An	expression	that	returns	a	ThreeDFormat	object.



Remarks

To	set	the	rotation	of	the	extruded	shape	around	the	y-axis,	use	the	RotationY
property	of	the	ThreeDFormat	object.	To	set	the	rotation	of	the	extruded	shape
around	the	z-axis,	use	the	Rotation	property	of	the	Shape	object.	To	change	the
direction	of	the	extrusion's	sweep	path	without	rotating	the	front	face	of	the
extrusion,	use	the	SetExtrusionDirection	method.



Example

This	example	adds	three	identical	extruded	ovals	to	the	active	document	and	sets
their	rotation	around	the	x-axis	to		–	30,	0,	and	30	degrees,	respectively.

With	ActiveDocument.Shapes

				With	.AddShape(msoShapeOval,	30,	60,	50,	25).ThreeD

								.Visible	=	True

								.RotationX	=	-30

				End	With

				With	.AddShape(msoShapeOval,	90,	60,	50,	25).ThreeD

								.Visible	=	True

								.RotationX	=	0

				End	With

				With	.AddShape(msoShapeOval,	150,	60,	50,	25).ThreeD

								.Visible	=	True

								.RotationX	=	30

				End	With

End	With



RotationY	Property
							

Returns	or	sets	the	rotation	of	the	extruded	shape	around	the	y-axis,	in	degrees.
Can	be	a	value	from		–	90	through	90.	A	positive	value	indicates	rotation	to	the
left;	a	negative	value	indicates	rotation	to	the	right.	Read/write	Single.

expression.RotationY

expression			Required.	An	expression	that	returns	a	ThreeDFormat	object.



Remarks

To	set	the	rotation	of	the	extruded	shape	around	the	x-axis,	use	the	RotationX
property	of	the	ThreeDFormat	object.	To	set	the	rotation	of	the	extruded	shape
around	the	z-axis,	use	the	Rotation	property	of	the	Shape	object.	To	change	the
direction	of	the	extrusion's	sweep	path	without	rotating	the	front	face	of	the
extrusion,	use	the	SetExtrusionDirection	method.



Example

This	example	adds	three	identical	extruded	ovals	to	myDocument	and	sets	their
rotation	around	the	y-axis	to		–	30,	0,	and	30	degrees,	respectively.

Set	myDocument	=	ActiveDocument

With	myDocument.Shapes

				With	.AddShape(msoShapeOval,	30,	30,	50,	25).ThreeD

								.Visible	=	True

								.RotationY	=	-30

				End	With

				With	.AddShape(msoShapeOval,	30,	70,	50,	25).ThreeD

								.Visible	=	True

								.RotationY	=	0

				End	With

				With	.AddShape(msoShapeOval,	30,	110,	50,	25).ThreeD

								.Visible	=	True

								.RotationY	=	30

				End	With

End	With



Routed	Property
							

True	if	the	specified	document	has	been	routed	to	the	next	recipient.	False	if	the
document	has	yet	to	be	routed	(for	example,	if	the	document	has	no	routing	slip,
or	if	a	routing	slip	was	just	created).	Read-only	Boolean.



Example

This	example	routes	the	active	document	if	it	hasn't	yet	been	routed.

If	ActiveDocument.Routed	=	False	Then	ActiveDocument.Route



RoutingSlip	Property
							

Returns	a	RoutingSlip	object	that	represents	the	routing	slip	information	for	the
specified	document.	A	routing	slip	is	used	to	send	a	document	through	an
electronic	mail	system.	Read-only.



Example

This	example	adds	a	routing	slip	to	Status.doc	and	then	routes	the	document	to
the	specified	recipients.

Documents("Status.doc").HasRoutingSlip	=	True

With	Documents("Status.doc").RoutingSlip

				.Subject	=	"Status	Doc	"

				.AddRecipient	Recipient:="Don	Funk"

				.AddRecipient	Recipient:="Frida	Ebbeson"

				.Delivery	=	wdAllAtOnce

End	With

Documents("Status.doc").Route



Row	Property
							

Returns	a	Row	object	that	represents	the	row	containing	the	specified	cell.

expression.Row

expression			Required.	An	expression	that	returns	a	Cell	object.



Example

This	example	applies	shading	to	the	table	row	that	contains	the	insertion	point.

If	Selection.Information(wdWithInTable)	=	True	Then

				Selection.Cells(1).Row.Shading.Texture	=	wdTexture10Percent

Else

				MsgBox	"The	insertion	point	is	not	in	a	table."

End	If



RowIndex	Property
							

Returns	the	number	of	the	row	that	contains	the	specified	cell.	Read-only	Long.

expression.RowIndex

expression			Required.	An	expression	that	returns	a	Cell	object.



Example

This	example	creates	a	3x3	table	in	a	new	document,	selects	each	cell	in	the	first
column,	and	displays	the	row	number	that	contains	each	selected	cell.

Set	newDoc	=	Documents.Add

Set	myTable	=	newDoc.Tables.Add(Range:=Selection.Range,	_

				NumRows:=3,	NumColumns:=3)

For	Each	aCell	In	myTable.Columns(1).Cells

				aCell.Select

				MsgBox	"This	is	row	"	&	aCell.RowIndex

Next	aCell

This	example	displays	the	row	number	of	the	first	row	in	the	selection.

If	Selection.Information(wdWithInTable)	=	True	Then

				Msgbox	Selection.Cells(1).RowIndex

End	If



Rows	Property
							

Returns	a	Rows	collection	that	represents	all	the	table	rows	in	a	range,	selection,
or	table.	Read-only.

For	information	about	returning	a	single	member	of	a	collection,	see	Returning
an	Object	from	a	Collection.



Example

This	example	deletes	the	second	row	from	the	first	table	in	the	active	document.

ActiveDocument.Tables(1).Rows(2).Delete

This	example	places	a	border	around	the	cells	in	the	row	that	contains	the
insertion	point.

Selection.Collapse	Direction:=wdCollapseStart

If	Selection.Information(wdWithInTable)	=	True	Then

				Selection.Rows(1).Borders.OutsideLineStyle	=		wdLineStyleSingle

Else

				MsgBox	"The	insertion	point	is	not	in	a	table."

End	If



RowStripe	Property
							

Returns	or	sets	a	Long	that	represents	the	number	of	rows	to	include	in	the
banding	when	a	style	specifies	odd-	or	even-row	banding.	Read/write.

expression.RowStripe

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.



Remarks

Use	the	Condition	method	to	set	odd-	or	even-column	banding	for	a	table	style.



Example

This	example	creates	and	formats	a	new	table	style	then	applies	the	new	style	to
a	new	table.	The	resulting	style	causes	three	columns	every	third	column	and
two	rows	every	second	row	to	have	20%	shading.

Sub	NewTableStyle()

				Dim	styTable	As	Style

				With	ActiveDocument

								Set	styTable	=	.Styles.Add(Name:="TableStyle	1",	_

												Type:=wdStyleTypeTable)

								With	.Styles("TableStyle	1").Table

												.Condition(wdEvenColumnBanding).Shading	_

																.Texture	=	wdTexture20Percent

												.ColumnStripe	=	3

												.Condition(wdEvenRowBanding).Shading	_

																.Texture	=	wdTexture20Percent

												.RowStripe	=	2

								End	With

								With	.Tables.Add(Range:=Selection.Range,	NumRows:=15,	_

																NumColumns:=15)

												.Style	=	ActiveDocument.Styles("TableStyle	1")

								End	With

				End	With

End	Sub



Salutation	Property
							

Returns	or	sets	the	salutation	text	for	a	letter	created	by	the	Letter	Wizard.
Read/write	String.

expression.Salutation

expression			Required.	An	expression	that	returns	a	LetterContent	object.



Example

This	example	creates	a	new	LetterContent	object,	sets	several	properties
(including	the	salutation	text),	and	then	runs	the	Letter	Wizard	by	using	the
RunLetterWizard	method.

Set	myContent	=	New	LetterContent

myContent.Salutation	="Hello,"

Documents.Add.RunLetterWizard	LetterContent:=myContent



Show	All



SalutationType	Property
							

Returns	or	sets	the	type	of	salutation	for	a	letter	created	by	the	Letter	Wizard.
Read/write	WdSalutationType.

WdSalutationType	can	be	one	of	these	WdSalutationType	constants.
wdSalutationBusiness
wdSalutationFormal
wdSalutationInformal
wdSalutationOther

expression.SalutationType

expression			Required.	An	expression	that	returns	a	LetterContent	object.



Example

This	example	creates	a	new	LetterContent	object,	sets	several	properties
(including	the	salutation	text),	and	then	runs	the	Letter	Wizard	by	using	the
RunLetterWizard	method.

Set	myContent	=	New	LetterContent

myContent.SalutationType	=	wdSalutationBusiness

Documents.Add.RunLetterWizard	_

				LetterContent:=myContent,	WizardMode:=True



Saved	Property
							

True	if	the	specified	document	or	template	hasn't	changed	since	it	was	last
saved.	False	if	Microsoft	Word	displays	a	prompt	to	save	changes	when	the
document	is	closed.	Read/write	Boolean.



Example

This	example	saves	the	active	document	if	it	contains	previously	unsaved
changes.

If	ActiveDocument.Saved	=	False	Then	ActiveDocument.Save

This	example	changes	the	status	of	the	Normal	template	to	unchanged.	If
changes	were	made	to	the	Normal	template,	the	changes	aren't	saved	when	you
quit	Word.

NormalTemplate.Saved	=	True

Application.Quit



SavedBy	Property
							

Returns	the	name	of	the	user	who	saved	the	specified	version	of	the	document.
Read-only	String.

expression.SavedBy

expression			Required.	An	expression	that	returns	a	Version	object.



Example

This	example	displays	the	name	of	the	user	who	saved	the	first	version	of	the
active	document.

If	ActiveDocument.Versions.Count	>=	1	Then

				MsgBox	ActiveDocument.Versions(1).SavedBy

End	If

This	example	saves	a	version	of	the	document	with	a	comment	and	then	displays
the	user	name.

ActiveDocument.Versions.Save	Comment:="Added	client	information"

last	=	ActiveDocument.Versions.Count

MsgBox	ActiveDocument.Versions(last).SavedBy



SaveEncoding	Property
							

Returns	or	sets	the	encoding	to	use	when	saving	a	document.	Read/write
MsoEncoding.

MsoEncoding	can	be	one	of	these	MsoEncoding	constants;	however,	you	cannot
use	any	of	the	constants	that	have	the	suffix	AutoDetect.	These	constants	are
used	by	the	ReloadAs	method.
msoEncodingOEMMultilingualLatinI
msoEncodingOEMNordic
msoEncodingOEMTurkish
msoEncodingSimplifiedChineseAutoDetect
msoEncodingT61
msoEncodingTaiwanEten
msoEncodingTaiwanTCA
msoEncodingTaiwanWang
msoEncodingTraditionalChineseAutoDetect
msoEncodingTurkish
msoEncodingUnicodeLittleEndian
msoEncodingUTF7
msoEncodingVietnamese
msoEncodingEBCDICJapaneseKatakanaExtended
msoEncodingEBCDICJapaneseLatinExtendedAndJapanese
msoEncodingEBCDICKoreanExtendedAndKorean
msoEncodingEBCDICMultilingualROECELatin2
msoEncodingEBCDICSerbianBulgarian
msoEncodingEBCDICThai
msoEncodingEBCDICTurkishLatin5
msoEncodingEBCDICUSCanada
msoEncodingEBCDICUSCanadaAndTraditionalChinese



msoEncodingOEMModernGreek
msoEncodingOEMMultilingualLatinII
msoEncodingOEMPortuguese
msoEncodingOEMUnitedStates
msoEncodingSimplifiedChineseGBK
msoEncodingTaiwanCNS
msoEncodingTaiwanIBM5550
msoEncodingTaiwanTeleText
msoEncodingThai
msoEncodingTraditionalChineseBig5
msoEncodingUnicodeBigEndian
msoEncodingUSASCII
msoEncodingUTF8
msoEncodingWestern
msoEncodingArabic
msoEncodingArabicASMO
msoEncodingArabicAutoDetect
msoEncodingArabicTransparentASMO
msoEncodingAutoDetect
msoEncodingBaltic
msoEncodingCentralEuropean
msoEncodingCyrillic
msoEncodingCyrillicAutoDetect
msoEncodingEBCDICArabic
msoEncodingEBCDICDenmarkNorway
msoEncodingEBCDICFinlandSweden
msoEncodingEBCDICFrance
msoEncodingEBCDICGermany
msoEncodingEBCDICGreek
msoEncodingEBCDICGreekModern
msoEncodingEBCDICHebrew
msoEncodingEBCDICIcelandic
msoEncodingEBCDICInternational



msoEncodingEBCDICItaly
msoEncodingEBCDICJapaneseKatakanaExtendedAndJapanese
msoEncodingEBCDICKoreanExtended
msoEncodingEBCDICLatinAmericaSpain
msoEncodingEBCDICRussian
msoEncodingEBCDICSimplifiedChineseExtendedAndSimplifiedChinese
msoEncodingEBCDICTurkish
msoEncodingEBCDICUnitedKingdom
msoEncodingEBCDICUSCanadaAndJapanese
msoEncodingEUCChineseSimplifiedChinese
msoEncodingEUCJapanese
msoEncodingEUCKorean
msoEncodingEUCTaiwaneseTraditionalChinese
msoEncodingEuropa3
msoEncodingExtAlphaLowercase
msoEncodingGreek
msoEncodingGreekAutoDetect
msoEncodingHebrew
msoEncodingHZGBSimplifiedChinese
msoEncodingIA5German
msoEncodingIA5IRV
msoEncodingIA5Norwegian
msoEncodingIA5Swedish
msoEncodingISO2022CNSimplifiedChinese
msoEncodingISO2022CNTraditionalChinese
msoEncodingISO2022JPJISX02011989
msoEncodingISO2022JPJISX02021984
msoEncodingISO2022JPNoHalfwidthKatakana
msoEncodingISO2022KR
msoEncodingISO6937NonSpacingAccent
msoEncodingISO885915Latin9
msoEncodingISO88591Latin1
msoEncodingISO88592CentralEurope



msoEncodingISO88593Latin3
msoEncodingISO88594Baltic

msoEncodingISO88595Cyrillic
msoEncodingISO88596Arabic
msoEncodingISO88597Greek
msoEncodingISO88598Hebrew
msoEncodingISO88599Turkish
msoEncodingJapaneseAutoDetect
msoEncodingJapaneseShiftJIS
msoEncodingKOI8R
msoEncodingKOI8U
msoEncodingKorean
msoEncodingKoreanAutoDetect
msoEncodingKoreanJohab
msoEncodingMacArabic
msoEncodingMacCroatia
msoEncodingMacCyrillic
msoEncodingMacGreek1
msoEncodingMacHebrew
msoEncodingMacIcelandic
msoEncodingMacJapanese
msoEncodingMacKorean
msoEncodingMacLatin2
msoEncodingMacRoman
msoEncodingMacRomania
msoEncodingMacSimplifiedChineseGB2312
msoEncodingMacTraditionalChineseBig5
msoEncodingMacTurkish
msoEncodingMacUkraine
msoEncodingOEMArabic
msoEncodingOEMBaltic
msoEncodingOEMCanadianFrench
msoEncodingOEMCyrillic



msoEncodingOEMCyrillicII
msoEncodingOEMGreek437G

msoEncodingOEMHebrew
msoEncodingOEMIcelandic

expression.SaveEncoding

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.



Example

This	example	specifies	Western	encoding	for	saving	the	current	document.

ActiveDocument.SaveEncoding	=	msoEncodingWestern



Show	All



SaveFormat	Property
							

Returns	the	file	format	of	the	specified	document	or	file	converter.	Will	be	a
unique	number	that	specifies	an	external	file	converter	or	a	WdSaveFormat
constant.	Read-only	Long.

WdSaveFormat	can	be	one	of	the	following	WdSaveFormat	constants.
wdFormatDocument
wdFormatDOSText
wdFormatDOSTextLineBreaks
wdFormatEncodedText
wdFormatHTML			
wdFormatRTF
wdFormatTemplate
wdFormatText
wdFormatTextLineBreaks
wdFormatUnicodeText

expression.SaveFormat

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.



Remarks

Use	the	value	of	the	SaveFormat	property	for	the	FileFormat	argument	of	the
SaveAs	method	to	save	a	document	in	a	file	format	for	which	there	isn't	a
corresponding	WdSaveFormat	constant.



Example

If	the	active	document	is	a	Rich	Text	Format	(RTF)	document,	this	example
saves	it	as	a	Microsoft	Word	document.

If	ActiveDocument.SaveFormat	=	wdFormatRTF	Then

				ActiveDocument.SaveAs	FileFormat:=wdFormatDocument

End	If

This	example	creates	a	new	document	and	lists	in	a	table	the	converters	that	can
be	used	to	save	documents	and	their	corresponding	SaveFormat	values.

Sub	FileConverterList()

				Dim	cnvFile	As	FileConverter

				Dim	docNew	As	Document

				'Create	a	new	document	and	set	a	tab	stop

				Set	docNew	=	Documents.Add

				docNew.Paragraphs.Format.TabStops.Add	_

								Position:=InchesToPoints(3)

				'List	all	the	converters	in	the	FileConverters	collection

				With	docNew.Content

								.InsertAfter	"Name"	&	vbTab	&	"Number"

								.InsertParagraphAfter

								For	Each	cnvFile	In	FileConverters

												If	cnvFile.CanSave	=	True	Then

																.InsertAfter	cnvFile.FormatName	&	vbTab	&	_

																				cnvFile.SaveFormat

																.InsertParagraphAfter

												End	If

								Next

								.ConvertToTable

				End	With

End	Sub

This	example	saves	the	active	document	in	the	WordPerfect	5.1	or	5.2	secondary
file	format.

ActiveDocument.SaveAs	_

				FileFormat:=FileConverters("WrdPrfctDat").SaveFormat





SaveFormsData	Property
							

True	if	Microsoft	Word	saves	the	data	entered	in	a	form	as	a	tab-delimited
record	for	use	in	a	database.	Read/write	Boolean.



Example

This	example	sets	Word	to	save	only	the	data	entered	in	a	form

ActiveDocument.SaveFormsData	=	True

This	example	returns	the	current	status	of	the	Save	data	only	for	forms	check
box	in	the	Save	options	area	on	the	Save	tab	in	the	Options	dialog	box.

temp	=	ActiveDocument.SaveFormsData



SaveInterval	Property
							

Returns	or	sets	the	time	interval	in	minutes	for	saving	AutoRecover	information.
Read/write	Long.

expression.SaveInterval

expression			Required.	An	expression	that	returns	an	Options	object.



Remarks

Set	the	SaveInterval	property	to	0	(zero)	to	turn	off	saving	AutoRecover
information.



Example

This	example	sets	Word	to	save	AutoRecover	information	for	all	open
documents	every	five	minutes.

Options.SaveInterval	=	5

This	example	prevents	Word	from	saving	AutoRecover	information.

Options.SaveInterval	=	0

This	example	returns	the	current	status	of	the	Save	AutoRecover	info	every
option	on	the	Save	tab	in	the	Options	dialog	box	(Tools	menu).

temp	=	Options.SaveInterval



SaveNewWebPagesAsWebArchives
Property
							

True	for	Microsoft	Word	to	save	new	Web	pages	using	the	Web	Archive	format.
Read/write	Boolean.

expression.SaveNewWebPagesAsWebArchives

expression			Required.	An	expression	that	returns	a	DefaultWebOptions	object.



Remarks

Setting	the	SaveNewWebPagesAsWebArchives	property	won't	change	the
format	of	any	saved	Web	pages.	To	change	their	format,	you	must	individually
open	them	and	then	use	the	SaveAs	method	to	set	the	Web	page	format.



Example

This	example	enables	the	SaveNewWebPagesAsWebArchives	property	so	that
when	Web	pages	are	saved,	they	are	saved	using	the	Web	Archive	format.

Sub	SetWebOption()

				Application.DefaultWebOptions	_

								.SaveNewWebPagesAsWebArchives	=	True

End	Sub



SaveNormalPrompt	Property
							

True	if	Microsoft	Word	prompts	the	user	for	confirmation	to	save	changes	to	the
Normal	template	before	it	quits.	False	if	Word	automatically	saves	changes	to
the	Normal	template	before	it	quits.	Read/write	Boolean.

expression.SaveNormalPrompt

expression			Required.	An	expression	that	returns	an	Options	object.



Example

This	example	sets	Word	to	save	the	Normal	template	automatically	before
quitting,	and	then	it	quits.

Options.SaveNormalPrompt	=	False

Application.Quit

This	example	returns	the	current	status	of	the	Prompt	to	save	Normal	template
option	on	the	Save	tab	in	the	Options	dialog	box	(Tools	menu).

temp	=	Options.SaveNormalPrompt



SavePictureWithDocument	Property
							

True	if	the	specified	picture	is	saved	with	the	document.	Read/write	Boolean.

expression.SavePictureWithDocument

expression			Required.	An	expression	that	returns	a	LinkFormat	object.



Remarks

This	property	works	only	with	shapes	and	inline	shapes	that	are	linked	pictures.



Example

This	example	saves	the	linked	picture	that's	defined	as	the	first	inline	shape	in
the	active	document	when	the	document	is	saved.

Set	myPic	=	ActiveDocument.InlineShapes(1)

If	myPic.Type	=	wdInlineShapeLinkedPicture	Then

				myPic.LinkFormat.SavePictureWithDocument	=	True

End	If



SavePropertiesPrompt	Property
							

True	if	Microsoft	Word	prompts	for	document	property	information	when
saving	a	new	document.	Read/write	Boolean.

expression.SavePropertiesPrompt

expression			Required.	An	expression	that	returns	an	Options	object.



Example

This	example	causes	Word	to	prompt	for	document	property	information	when
saving	a	new	document.

Options.SavePropertiesPrompt	=	True

This	example	returns	the	current	status	of	the	Prompt	for	document	properties
option	on	the	Save	tab	in	the	Options	dialog	box	(Tools	menu).

temp	=	Options.SavePropertiesPrompt



SaveSubsetFonts	Property
							

True	if	Microsoft	Word	saves	a	subset	of	the	embedded	TrueType	fonts	with	the
document.	Read/write	Boolean.



Remarks

If	fewer	than	32	characters	of	a	TrueType	font	are	used	in	a	document,	Word
embeds	the	subset	(only	the	characters	used)	in	the	document.	If	more	than	32
characters	are	used,	Word	embeds	the	entire	font.



Example

This	example	sets	a	document	named	"MyDoc"	to	save	only	a	subset	of	its
embedded	TrueType	fonts	(when	just	a	few	characters	are	used),	and	then	it
saves	"MyDoc."

With	Documents("MyDoc")

				.EmbedTrueTypeFonts	=	True

				.SaveSubsetFonts	=	True

				.Save

End	With



ScaleHeight	Property
							

Scales	the	height	of	the	specified	inline	shape	relative	to	its	original	size.
Read/write	Single.

expression.ScaleHeight

expression			Required.	An	expression	that	returns	an	InlineShape		object.



Example

This	example	sets	the	height	and	width	of	the	first	inline	shape	in	the	active
document	to	150	percent	of	the	shape's	original	height	and	width.

With	ActiveDocument.InlineShapes(1)

				.ScaleHeight	=	150

				.ScaleWidth	=	150

End	With



ScaleWidth	Property
							

Scales	the	width	of	the	specified	inline	shape	relative	to	its	original	size.
Read/write	Single.

expression.ScaleWidth

expression			Required.	An	expression	that	returns	an	InlineShape		object.



Example

This	example	sets	the	height	and	width	of	the	first	inline	shape	in	the	active
document	to	150	percent	of	the	shape's	original	height	and	width.

With	ActiveDocument.InlineShapes(1)

				.ScaleHeight	=	150

				.ScaleWidth	=	150

End	With



Scaling	Property
							

Returns	or	sets	the	scaling	percentage	applied	to	the	font.	This	property	stretches
or	compresses	text	horizontally	as	a	percentage	of	the	current	size	(the	scaling
range	is	from	1	through	600).	Read/write	Long.

expression.Scaling

expression			Required.	An	expression	that	returns	a	Font	object.



Example

This	example	horizontally	stretches	the	text	in	the	active	document	to	110
percent	of	its	original	size.

ActiveDocument.Content.Font.Scaling	=	110

This	example	compresses	the	text	in	the	first	paragraph	in	Sales.doc	to	90
percent	of	its	original	size.

With	Documents("Sales.doc").Paragraphs(1).Range.Font

				.Scaling	=	90

				.Bold	=	False

End	With



Scope	Property
							

Returns	a	Range	object	that	represents	the	range	of	text	marked	by	the	specified
comment.

expression.Scope

expression			Required.	An	expression	that	returns	a	Comment	object.



Example

This	example	displays	the	text	associated	with	the	first	comment	in	the	selection.

If	Selection.Comments.Count	>=	1	Then

				Set	myRange	=	Selection.Comments(1).Scope

				MsgBox	myRange.Text

End	If

This	example	copies	the	text	associated	with	the	last	comment	in	the	active
document.

total	=	ActiveDocument.Comments.Count

If	total	>=	1	Then	ActiveDocument.Comments(total).Scope.Copy



Show	All



ScreenSize	Property
							

Returns	or	sets	the	ideal	minimum	screen	size	(width	by	height,	in	pixels)	that
you	should	use	when	viewing	the	saved	document	in	a	Web	browser.	Read/write
MsoScreenSize.

MsoScreenSize	can	be	one	of	these	MsoScreenSize	constants.
msoScreenSize1024x768
msoScreenSize1152x882
msoScreenSize1152x900
msoScreenSize1280x1024
msoScreenSize1600x1200
msoScreenSize1800x1440
msoScreenSize1920x1200
msoScreenSize544x376
msoScreenSize640x480
msoScreenSize720x512
msoScreenSize800x600	default

expression.ScreenSize

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.



Example

This	example	sets	the	target	screen	size	at	800x600	pixels.

Application.DefaultWebOptions.ScreenSize	=	_

				msoScreenSize800x600



ScreenTip	Property
							

Returns	or	sets	the	text	that	appears	as	a	ScreenTip	when	the	mouse	pointer	is
positioned	over	the	specified	hyperlink.	Read/write	String.

expression.ScreenTip

expression			Required.	An	expression	that	returns	a	Hyperlink	object.



Example

This	example	sets	the	ScreenTip	text	for	the	first	hyperlink	in	the	active
document.

ActiveDocument.Hyperlinks(1).ScreenTip	=	_

				"Home"



ScreenUpdating	Property
							

True	if	screen	updating	is	turned	on.	Read/write	Boolean.

expression.ScreenUpdating

expression			Required.	An	expression	that	returns	an	Application	object.



Remarks

The	ScreenUpdating	property	controls	most	display	changes	on	the	monitor
while	a	procedure	is	running.	When	screen	updating	is	turned	off,	toolbars
remain	visible	and	Word	still	allows	the	procedure	to	display	or	retrieve
information	using	status	bar	prompts,	input	boxes,	dialog	boxes,	and	message
boxes.	You	can	increase	the	speed	of	some	procedures	by	keeping	screen
updating	turned	off.	You	must	set	the	ScreenUpdating	property	to	True	when
the	procedure	finishes	or	when	it	stops	after	an	error.



Example

This	example	turns	off	screen	updating	and	then	adds	a	new	document.	Five
hundred	lines	of	text	are	added	to	the	document.	At	every	fiftieth	line,	the	macro
selects	the	line	and	refreshes	the	screen.

Application.ScreenUpdating	=	False

Documents.Add

For	x	=	1	To	500

				With	ActiveDocument.Content

								.InsertAfter	"This	is	line	"	&	x	&	"."

								.InsertParagraphAfter

				End	With

If	x	Mod	50	=	0	Then

				ActiveDocument.Paragraphs(x).Range.Select

				Application.ScreenRefresh

End	If

Next	x

Application.ScreenUpdating	=	True



Script	Property
							

Returns	a	Script	object,	which	represents	a	block	of	script	or	code	on	the
specified	Web	page.	If	the	page	contains	no	script,	nothing	is	returned.

expression.Script

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

mk:@MSITStore:vbaof10.chm::/html/ofobjScript.htm


Example

This	example	displays	the	type	of	scripting	language	used	in	the	first	shape	in
the	active	document.

Set	objScr	=	ActiveDocument.Shapes(1).Script

If	Not	(objScr	Is	Nothing)	Then

				Select	Case	objScr.Language

								Case	msoScriptLanguageVisualBasic

												MsgBox	"VBScript"

								Case	msoScriptLanguageJava

												MsgBox	"JavaScript"

								Case	msoScriptLanguageASP

												MsgBox	"Active	Server	Pages"

								Case	Else

												Msgbox	"Other	scripting	language"

				End	Select

End	If



Scripts	Property
							

Returns	a	Scripts	collection	that	represents	the	collection	of	HTML	scripts	in	the
specified	object.

expression.Scripts

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

mk:@MSITStore:vbaof10.chm::/html/ofobjScripts.htm


Example

This	example	displays	the	text	in	the	first	Script	object	of	the	active	document.

Debug.Print	ActiveDocument.Scripts(1).ScriptText

This	example	tests	the	second	Script	object	in	the	specified	range	to	determine
its	language.

Select	Case	Selection.Range.Scripts(2).Language

				Case	msoScriptLanguageASP

								MsgBox	"Active	Server	Pages"

				Case	msoScriptLanguageVisualBasic

								MsgBox	"VBScript"

				Case	msoScriptLanguageJava

								MsgBox	"JavaScript"

				Case	msoScriptLanguageOther

								MsgBox	"Unknown	type	of	script"

End	Select

mk:@MSITStore:vbaof10.chm::/html/ofobjScript.htm


Show	All



SectionDirection	Property
							

Returns	or	sets	the	reading	order	and	alignment	for	the	specified	sections.
Read/write	WdSectionDirection.

WdSectionDirection	can	be	one	of	these	WdSectionDirection	constants.
wdSectionDirectionLtr	Displays	the	section	with	left	alignment	and	left-to-
right	reading	order.
wdSectionDirectionRtl	Displays	the	section	with	right	alignment	and	right-to-
left	reading	order.

expression.SectionDirection

expression			Required.	An	expression	that	returns	a	PageSetup	object.



Remarks

For	more	information	on	using	Word	with	right-to-left	languages,	see	Word
features	for	right-to-left	languages.

mk:@MSITStore:wdmain10.chm::/html/wdrefFeaturesAvailableInWordWhenBidirectionalLanguagesAreEnabled.htm


Example

This	example	sets	the	direction	of	the	first	section	in	the	active	document	to
right-to-left.

ActiveDocument.Sections(1).PageSetup.SectionDirection	=	_

				wdSectionDirectionRtl



Sections	Property
							

Returns	a	Sections	collection	that	represents	the	sections	in	the	specified
document,	range,	or	selection.	Read-only.

For	information	about	returning	a	single	member	of	a	collection,	see	Returning
an	Object	from	a	Collection.



Example

This	example	sets	the	page	orientation	for	all	the	sections	in	the	active
document.

For	Each	sec	In	ActiveDocument.Sections

				sec.PageSetup.Orientation	=	wdOrientLandscape

Next	sec

This	example	creates	a	new	document	then	adds	some	text	to	the	document.	It
then	creates	a	new	section	in	the	document	and	inserts	text	into	the	new	section.

Set	myDoc	=	Documents.Add

Selection.InsertAfter	"This	is	section	1."

Set	mysec	=	myDoc.Sections.Add

mysec.Range.InsertAfter	"This	is	section	2"



Show	All



SectionStart	Property
							

Returns	or	sets	the	type	of	section	break	for	the	specified	object.	Read/write
WdSectionStart.

WdSectionStart	can	be	one	of	these	WdSectionStart	constants.
wdSectionContinuous
wdSectionEvenPage
wdSectionNewColumn
wdSectionNewPage
wdSectionOddPage

expression.SectionStart

expression			Required.	An	expression	that	returns	a	PageSetup	object.



Example

This	example	changes	the	type	of	section	break	to	continuous	for	all	sections	in
the	active	document.

ActiveDocument.PageSetup.SectionStart	=	wdSectionContinuous

This	example	returns	the	type	of	section	break	used	at	the	beginning	of	the
second	section	in	MyDoc.doc	and	applies	it	to	all	the	sections	in	the	active
document.

mytype	=	Documents("MyDoc.doc").Sections(2).PageSetup.SectionStart

ActiveDocument.PageSetup.SectionStart	=	mytype



Show	All



SeekView	Property
							

Returns	or	sets	the	document	element	displayed	in	print	layout	view.	Read/write
WdSeekView.

WdSeekView	can	be	one	of	these	WdSeekView	constants.
wdSeekCurrentPageFooter
wdSeekCurrentPageHeader
wdSeekEndnotes
wdSeekEvenPagesFooter
wdSeekEvenPagesHeader
wdSeekFirstPageFooter
wdSeekFirstPageHeader
wdSeekFootnotes
wdSeekMainDocument
wdSeekPrimaryFooter
wdSeekPrimaryHeader

expression.SeekView

expression			Required.	An	expression	that	returns	a	View	object.



Remarks

This	property	generates	an	error	if	the	view	is	not	print	layout	view.



Example

If	the	active	document	has	footnotes,	this	example	displays	footnotes	in	print
layout	view.

If	ActiveDocument.Footnotes.Count	>=	1	Then

				With	ActiveDocument.ActiveWindow.View

								.Type	=	wdPrintView

								.SeekView	=	wdSeekFootnotes

				End	With

End	If

This	example	shows	the	first	page	footer	for	the	current	section.

ActiveDocument.PageSetup.DifferentFirstPageHeaderFooter	=	True

With	ActiveDocument.ActiveWindow.View

				.Type	=	wdPrintView

				.SeekView	=	wdSeekFirstPageFooter

End	With

If	the	selection	is	in	a	footnote	or	endnote	area	in	print	layout	view,	this	example
switches	to	the	main	document.

Set	myView	=	ActiveDocument.ActiveWindow.View

If	myView.SeekView	=	wdSeekFootnotes	Or	_

				myView.SeekView	=	wdSeekEndnotes	Then

				myView.SeekView	=	wdSeekMainDocument

End	If



Show	All



SegmentType	Property
							

Returns	a	value	that	indicates	whether	the	segment	associated	with	the	specified
node	is	straight	or	curved.	Read-only	MsoSegmentType.

MsoSegmentType	can	be	one	of	these	MsoSegmentType	constants.
msoSegmentCurve
msoSegmentLine

expression.SegmentType

expression			Required.	An	expression	that	returns	a	ShapeNode	object.



Remarks

If	the	specified	node	is	a	control	point	for	a	curved	segment,	this	property	returns
msoSegmentCurve.

Use	the	SetSegmentType	method	to	set	the	value	of	this	property.



Example

This	example	changes	all	straight	segments	to	curved	segments	in	shape	three	on
myDocument.	Shape	three	must	be	a	freeform	drawing.

Set	myDocument	=	ActiveDocument

With	myDocument.Shapes(3).Nodes

				n	=	1

				While	n	<=	.Count

								If	.Item(n).SegmentType	=	msoSegmentLine	Then

												.SetSegmentType	n,	msoSegmentCurve

								End	If

								n	=	n	+	1

				Wend

End	With



Selection	Property
							

Returns	the	Selection	object	that	represents	a	selected	range	or	the	insertion
point.	Read-only.



Example

This	example	displays	the	selected	text.

If	Selection.Type	=	wdSelectionNormal	Then	MsgBox	Selection.Text

This	example	copies	the	selection	from	window	one	to	the	next	window.

If	Windows.Count	>=	2	Then

				Windows(1).Selection.Copy

				Windows(1).Next.Activate

				Selection.Paste

End	If

This	example	applies	the	Arial	font	and	bold	formatting	to	the	selection.

With	Selection.Font

				.Bold	=	True

				.Italic	=	False

				.Name	=	"Arial"

End	With

If	the	insertion	point	isn't	located	in	a	table,	the	selection	is	moved	to	the	next
table.

If	Selection.Information(wdWithInTable)	=	False	Then	

				Selection.GoToNext	What:=wdGoToTable

End	If



SenderCity	Property
							

Returns	or	sets	the	sender's	city.	Not	used	in	the	U.S.	English	version	of
Microsoft	Word.	Read/write	String.

expression.SenderCity

expression			Required.	An	expression	that	returns	a	LetterContent	object.



Remarks

This	property	may	not	be	available	to	you,	depending	on	the	language	support
(U.S.	English,	for	example)	that	you’ve	selected	or	installed.



SenderCode	Property
							

Returns	or	sets	the	sender	code.	Not	used	in	the	U.S.	English	version	of
Microsoft	Word.	Read/write	String.

expression.SenderCode

expression			Required.	An	expression	that	returns	a	LetterContent	object.



Remarks

This	property	may	not	be	available	to	you,	depending	on	the	language	support
(U.S.	English,	for	example)	that	you’ve	selected	or	installed.



SenderCompany	Property
							

Returns	or	sets	the	company	name	of	the	person	creating	a	letter	with	the	Letter
Wizard.	Read/write	String.

expression.SenderCompany

expression			Required.	An	expression	that	returns	a	LetterContent	object.



Example

This	example	retrieves	the	Letter	Wizard	elements	from	the	active	document.	If
the	sender's	company	name	isn't	blank,	the	example	displays	the	text	in	a
message	box.

If	ActiveDocument.GetLetterContent.SenderCompany	<>	""	Then

				MsgBox	ActiveDocument.GetLetterContent.SenderCompany

End	If



Show	All



SenderGender	Property
							

Returns	or	sets	the	gender	used	with	the	salutation.	Not	used	in	the	U.S.	English
version	of	Microsoft	Word.	Read/write	WdSalutationGender.

WdSalutationGender	can	be	one	of	these	WdSalutationGender	constants.
wdGenderFemale
wdGenderMale
wdGenderNeutral
wdGenderUnknown

expression.SenderGender

expression			Required.	An	expression	that	returns	a	LetterContent	object.



Remarks

This	property	may	not	be	available	to	you,	depending	on	the	language	support
(U.S.	English,	for	example)	that	you’ve	selected	or	installed.



SenderInitials	Property
							

Returns	or	sets	the	initials	of	the	person	creating	a	letter	with	the	Letter	Wizard.
Read/write	String.

expression.SenderInitials

expression			Required.	An	expression	that	returns	a	LetterContent	object.



Example

This	example	creates	a	new	LetterContent	object	with	the	sender	name	and
initials	from	the	User	Information	tab	in	the	Options	dialog	box	(Tools	menu).
The	example	creates	a	new	document	and	then	runs	the	Letter	Wizard	by	using
the	RunLetterWizard	method.

Set	myContent	=	New	LetterContent

With	myContent

				.SenderName	=	Application.UserName

				.SenderInitials	=Application.UserInitials

End	With

Documents.Add.RunLetterWizard	_

				LetterContent:=myContent,	WizardMode:=True



SenderJobTitle	Property
							

Returns	or	sets	the	job	title	of	the	person	creating	a	letter	with	the	Letter	Wizard.
Read/write	String.

expression.SenderJobTitle

expression			Required.	An	expression	that	returns	a	LetterContent	object.



Example

This	example	retrieves	the	Letter	Wizard	elements	from	the	active	document	and
displays	the	sender's	job	title.

Set	myLetterContent	=	ActiveDocument.GetLetterContent

MsgBox	myLetterContent.SenderJobTitle



SenderName	Property
							

Returns	or	sets	the	name	of	the	person	creating	a	letter	with	the	Letter	Wizard.
Read/write	String.

expression.SenderName

expression			Required.	An	expression	that	returns	a	LetterContent	object.



Example

This	example	creates	a	new	LetterContent	object,	with	the	sender	name	and
initials	from	the	User	Information	tab	in	the	Options	dialog	box	(Tools	menu).
The	example	creates	a	new	document	and	then	runs	the	Letter	Wizard	by	using
the	RunLetterWizard	method.

Set	myContent	=	New	LetterContent

With	myContent

				.SenderName	=	Application.UserName

				.SenderInitials	=Application.UserInitials

End	With

Documents.Add.RunLetterWizard	_

				LetterContent:=myContent,	WizardMode:=True



SenderNamefromLeft	Property
							

Returns	or	sets	a	Single	that	represents	the	position,	measured	in	points,	of	the
sender's	name	from	the	left	edge	of	the	envelope.	Used	for	Asian	language
envelopes.	Read/write.

expression.SenderNamefromLeft

expression			Required.	An	expression	that	returns	an	Envelope	object.



Remarks

For	more	information	on	using	Microsoft	Word	with	Asian	languages,	see	Word
features	for	Asian	languages.

mk:@MSITStore:wdmain10.chm::/html/wdrefFeaturesAvailableInWordWhenAsianLanguagesAreEnabled.htm


Example

This	example	checks	that	the	active	document	is	a	mail	merge	envelope	and	that
it	is	formatted	for	vertical	type.	If	so,	it	positions	the	recipient	and	sender	address
information.

Sub	NewEnvelopeMerge()

				With	ActiveDocument

								If	.MailMerge.MainDocumentType	=	wdEnvelopes	Then

												With	ActiveDocument.Envelope

																If	.Vertical	=	True	Then

																				.RecipientNamefromLeft	=	InchesToPoints(2.5)

																				.RecipientNamefromTop	=	InchesToPoints(2)

																				.RecipientPostalfromLeft	=	InchesToPoints(1.5)

																				.RecipientPostalfromTop	=	InchesToPoints(0.5)

																				.SenderNamefromLeft	=	InchesToPoints(0.5)

																				.SenderNamefromTop	=	InchesToPoints(2)

																				.SenderPostalfromLeft	=	InchesToPoints(0.5)

																				.SenderPostalfromTop	=	InchesToPoints(3)

																End	If

												End	With

								End	If

				End	With

End	Sub



SenderNamefromTop	Property
							

Returns	or	sets	a	Single	that	represents	the	position,	measured	in	points,	of	the
sender's	name	from	the	top	edge	of	the	envelope.	Used	for	Asian	language
envelopes.	Read/write.

expression.SenderNamefromTop

expression			Required.	An	expression	that	returns	an	Envelope	object.



Remarks

For	more	information	on	using	Microsoft	Word	with	Asian	languages,	see	Word
features	for	Asian	languages.

mk:@MSITStore:wdmain10.chm::/html/wdrefFeaturesAvailableInWordWhenAsianLanguagesAreEnabled.htm


Example

This	example	checks	that	the	active	document	is	a	mail	merge	envelope	and	that
it	is	formatted	for	vertical	type.	If	so,	it	positions	the	recipient	and	sender	address
information.

Sub	NewEnvelopeMerge()

				With	ActiveDocument

								If	.MailMerge.MainDocumentType	=	wdEnvelopes	Then

												With	ActiveDocument.Envelope

																If	.Vertical	=	True	Then

																				.RecipientNamefromLeft	=	InchesToPoints(2.5)

																				.RecipientNamefromTop	=	InchesToPoints(2)

																				.RecipientPostalfromLeft	=	InchesToPoints(1.5)

																				.RecipientPostalfromTop	=	InchesToPoints(0.5)

																				.SenderNamefromLeft	=	InchesToPoints(0.5)

																				.SenderNamefromTop	=	InchesToPoints(2)

																				.SenderPostalfromLeft	=	InchesToPoints(0.5)

																				.SenderPostalfromTop	=	InchesToPoints(3)

																End	If

												End	With

								End	If

				End	With

End	Sub



SenderPostalfromLeft	Property
							

Returns	or	sets	a	Single	that	represents	the	position,	measured	in	points,	of	the
sender's	postal	code	from	the	left	edge	of	the	envelope.	Used	for	Asian	language
envelopes.	Read/write.

expression.SenderPostalfromLeft

expression			Required.	An	expression	that	returns	an	Envelope	object.



Remarks

For	more	information	on	using	Microsoft	Word	with	Asian	languages,	see	Word
features	for	Asian	languages.

mk:@MSITStore:wdmain10.chm::/html/wdrefFeaturesAvailableInWordWhenAsianLanguagesAreEnabled.htm


Example

This	example	checks	that	the	active	document	is	a	mail	merge	envelope	and	that
it	is	formatted	for	vertical	type.	If	so,	it	positions	the	recipient	and	sender	address
information.

Sub	NewEnvelopeMerge()

				With	ActiveDocument

								If	.MailMerge.MainDocumentType	=	wdEnvelopes	Then

												With	ActiveDocument.Envelope

																If	.Vertical	=	True	Then

																				.RecipientNamefromLeft	=	InchesToPoints(2.5)

																				.RecipientNamefromTop	=	InchesToPoints(2)

																				.RecipientPostalfromLeft	=	InchesToPoints(1.5)

																				.RecipientPostalfromTop	=	InchesToPoints(0.5)

																				.SenderNamefromLeft	=	InchesToPoints(0.5)

																				.SenderNamefromTop	=	InchesToPoints(2)

																				.SenderPostalfromLeft	=	InchesToPoints(0.5)

																				.SenderPostalfromTop	=	InchesToPoints(3)

																End	If

												End	With

								End	If

				End	With

End	Sub



SenderPostalfromTop	Property
							

Returns	or	sets	a	Single	that	represents	the	position,	measured	in	points,	of	the
sender's	postal	code	from	the	top	edge	of	the	envelope.	Used	for	Asian	language
envelopes.	Read/write.

expression.SenderPostalfromTop

expression			Required.	An	expression	that	returns	an	Envelope	object.



Remarks

For	more	information	on	using	Microsoft	Word	with	Asian	languages,	see	Word
features	for	Asian	languages.

mk:@MSITStore:wdmain10.chm::/html/wdrefFeaturesAvailableInWordWhenAsianLanguagesAreEnabled.htm


Example

This	example	checks	that	the	active	document	is	a	mail	merge	envelope	and	that
it	is	formatted	for	vertical	type.	If	so,	it	positions	the	recipient	and	sender	address
information.

Sub	NewEnvelopeMerge()

				With	ActiveDocument

								If	.MailMerge.MainDocumentType	=	wdEnvelopes	Then

												With	ActiveDocument.Envelope

																If	.Vertical	=	True	Then

																				.RecipientNamefromLeft	=	InchesToPoints(2.5)

																				.RecipientNamefromTop	=	InchesToPoints(2)

																				.RecipientPostalfromLeft	=	InchesToPoints(1.5)

																				.RecipientPostalfromTop	=	InchesToPoints(0.5)

																				.SenderNamefromLeft	=	InchesToPoints(0.5)

																				.SenderNamefromTop	=	InchesToPoints(2)

																				.SenderPostalfromLeft	=	InchesToPoints(0.5)

																				.SenderPostalfromTop	=	InchesToPoints(3)

																End	If

												End	With

								End	If

				End	With

End	Sub



SenderReference	Property
							

Not	used	in	the	U.S.	English	version	of	Microsoft	Word.	Read/write	String.

expression.SenderReference

expression			Required.	An	expression	that	returns	a	LetterContent	object.



Remarks

This	property	may	not	be	available	to	you,	depending	on	the	language	support
(U.S.	English,	for	example)	that	you’ve	selected	or	installed.



SendMailAttach	Property
							

True	if	the	Send	To	command	on	the	File	menu	inserts	the	active	document	as
an	attachment	to	a	mail	message.	False	if	the	Send	To	command	inserts	the
contents	of	the	active	document	as	text	in	a	mail	message.	Read/write	Boolean.

expression.SendMailAttach

expression			Required.	An	expression	that	returns	an	Options	object.



Example

This	example	opens	a	new	mail	message	that	has	the	active	document	attached
to	it.

Options.SendMailAttach	=	True

ActiveDocument.SendMail

This	example	returns	the	state	of	the	Mail	as	attachment	option	on	the	General
tab	of	the	Options	dialog	box.

Msgbox	Options.SendMailAttach



Sentences	Property
							

Returns	a	Sentences	collection	that	represents	all	the	sentences	in	the	range,
selection,	or	document.	Read-only.

For	information	about	returning	a	single	member	of	a	collection,	see	Returning
an	Object	from	a	Collection.



Example

This	example	copies	the	first	sentences	in	the	active	document.

ActiveDocument.Sentences(1).Copy

This	example	deletes	the	last	sentence	in	the	active	document.

ActiveDocument.Sentences.Last.Delete

This	example	displays	the	number	of	sentences	in	the	first	paragraph	in	the
active	document.

MsgBox	ActiveDocument.Paragraphs(1).Range	_

				.Sentences.Count	&	"	sentences"



Show	All



Separator	Property
							

Separator	property	as	it	applies	to	the	CaptionLabel	object.

Returns	or	sets	the	character	between	the	chapter	number	and	the	sequence
number.	Read/write	WdSeparatorType.

WdSeparatorType	can	be	one	of	these	WdSeparatorType	constants.
wdSeparatorColon
wdSeparatorEnDash
wdSeparatorPeriod
wdSeparatorEmDash
wdSeparatorHyphen

expression.Separator

expression			Required.	An	expression	that	returns	a	CaptionLabel	object.

Separator	property	as	it	applies	to	the	Endnotes	and	Footnotes	objects.

Returns	a	Range	object	that	represents	the	endnote	or	footnote	separator.

expression.Separator

expression			Required.	An	expression	that	returns	one	of	the	above	objects.

Separator	property	as	it	applies	to	the	TableOfAuthorities	object.

Returns	or	sets	the	characters	(up	to	five)	between	the	sequence	number	and	the
page	number.	A	hyphen	(-)	is	the	default	character.	This	property	corresponds	to
the	\d	switch	for	a	Table	of	Authorities	(TOA)	field.	Read/write	String.

expression.Separator

expression			Required.	An	expression	that	returns	a	TableOfAuthorities	object.



Example

As	applies	to	the	CaptionLabel	object.

This	example	inserts	a	Figure	caption	that	has	a	colon	(:)	between	the	chapter
number	and	the	sequence	number.

With	CaptionLabels("Figure")

				.Separator	=	wdSeparatorColon

				.IncludeChapterNumber	=	True

End	With

Selection.InsertCaption	"Figure"

As	applies	to	the	Footnotes	object.

This	example	changes	the	footnote	separator	to	a	single	border	indented	3	inches
from	the	right	margin.

With	ActiveDocument.Footnotes.Separator

				.Delete

				.Borders(wdBorderTop).LineStyle	=	wdLineStyleSingle

				.ParagraphFormat.RightIndent	=	InchesToPoints(3)

End	With

As	applies	to	the	TableOfAuthorities	object.

This	example	inserts	a	table	of	authorities	at	the	beginning	of	the	active
document,	and	then	it	formats	the	table	to	include	a	sequence	number	and	a	page
number,	separated	by	a	hyphen	(-).

Set	myRange	=	ActiveDocument.Range(0,	0)

With	ActiveDocument.TablesOfAuthorities.Add(Range:=myRange)

				.IncludeSequenceName	=	"Chapter"

				.Separator	=	"-"

End	With





SequenceCheck	Property
							

True	to	check	the	sequence	of	independent	characters	for	South	Asian	text.
Read/write	Boolean.

expression.SequenceCheck

expression			Required.	An	expression	that	returns	an	Options	object.



Example

This	example	enables	sequence	checking,	allowing	the	user	to	type	a	valid
sequence	of	independent	characters	to	form	valid	character	cells	in	South	Asian
text.

Sub	CheckSequence()

				Options.SequenceCheck	=	True

End	Sub



Shaded	Property
							

True	if	shading	is	applied	to	form	fields.	Read/write	Boolean.

expression.Shaded

expression			Required.	An	expression	that	returns	a	FormFields	collection
object.



Remarks

Shading	makes	form	fields	easier	to	locate	in	a	document	and	doesn't	affect	the
printed	output.



Example

This	example	removes	shading	from	form	fields	in	Employment	Form.doc.

Documents("Employment	Form.doc").FormFields.Shaded	=	False

This	example	adds	shading	to	the	form	fields	in	the	active	document	and	protects
the	document	for	forms.

With	ActiveDocument

				.FormFields.Shaded	=	True

				.Protect	Type:=wdAllowOnlyFormFields,	NoReset:=True

End	With



Shading	Property
							

Returns	a	Shading	object	that	refers	to	the	shading	formatting	for	the	specified
object.

expression.Shading

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.



Example

This	example	applies	yellow	shading	to	the	first	paragraph	in	the	selection.

With	Selection.Paragraphs(1).Shading

				.Texture	=	wdTexture12Pt5Percent

				.BackgroundPatternColorIndex	=	wdYellow

				.ForegroundPatternColorIndex	=	wdBlack

End	With

This	example	applies	horizontal	line	texture	to	the	first	row	in	table	one.

If	ActiveDocument.Tables.Count	>=	1	Then

				With	ActiveDocument.Tables(1).Rows(1).Shading

								.Texture	=	wdTextureHorizontal

				End	With

End	If

This	example	applies	10	percent	shading	to	the	first	word	in	the	active
document.

ActiveDocument.Words(1).Shading.Texture	=	wdTexture10Percent



Show	All



Shadow	Property
							

Shadow	property	as	it	applies	to	the	Borders	object.

True	if	the	specified	border	is	formatted	as	shadowed.	Read/write	Boolean.

expression.Shadow

expression			Required.	An	expression	that	returns	a	Borders	object.

Shadow	property	as	it	applies	to	the	Font	object.

True	if	the	specified	font	is	formatted	as	shadowed.	Can	be	True,	False,	or
wdUndefined.	Read/write	Long.

expression.Shadow

expression			Required.	An	expression	that	returns	a	Font	object.

Shadow	property	as	it	applies	to	the	Shape	and	ShapeRange	objects.

Returns	a	ShadowFormat	object	that	represents	the	shadow	formatting	for	the
specified	shape.

expression.Shadow

expression			Required.	An	expression	that	returns	one	of	the	above	objects.



Example

As	it	applies	to	the	Borders	object.

This	example	demonstrates	two	different	border	styles	in	a	new	document.

Set	myRange	=	Documents.Add.Content

With	myRange

			.InsertAfter	"Demonstration	of	border	with	shadow."

			.InsertParagraphAfter

			.InsertParagraphAfter

			.InsertAfter	"Demonstration	of	border	without	shadow."

End	With

With	ActiveDocument

				.Paragraphs(1).Borders.Shadow	=	True

				.Paragraphs(3).Borders.Enable	=	True

End	With

As	it	applies	to	the	Font	object.

This	example	applies	shadow	and	bold	formatting	to	the	selection.

If	Selection.Type	=	wdSelectionNormal	Then

				With	Selection.Font

								.Shadow	=	True

								.Bold	=	True

				End	With

Else

				MsgBox	"You	need	to	select	some	text."

End	If

As	it	applies	to	the	Shape	and	ShapeRange	objects.

This	example	adds	an	arrow	with	shadow	formatting	to	the	active	document.

Set	myShape	=	ActiveDocument.Shapes	_

				.AddShape(Type:=msoShapeRightArrow,	_

				Left:=90,	Top:=79,	Width:=64,	Height:=43)

myShape.Shadow.Type	=	msoShadow5





Shape	Property
							

Returns	a	Shape	object	for	the	specified	hyperlink	or	diagram	node.

expression.Shape

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.



Remarks

If	a	hyperlink	isn't	represented	by	a	shape,	an	error	occurs.



Example

This	example	changes	the	fill	color	for	the	shape	that	represents	the	first
hyperlink	in	the	active	document.	For	this	example	to	work,	the	hyperlink	must
be	represented	by	a	shape.

ActiveDocument.Hyperlinks(1).Shape.Fill.ForeColor.RGB	=	_

				RGB(255,	255,	0)



ShapeRange	Property
							

Returns	a	ShapeRange	collection	that	represents	all	the	Shape	objects	in	the
specified	range	or	selection.	The	shape	range	can	contain	drawings,	shapes,
pictures,	OLE	objects,	ActiveX	controls,	text	objects,	and	callouts.	Read-only.



Example

The	following	example	sets	the	fill	foreground	color	to	purple	for	all	the	shapes
in	the	active	document.

ActiveDocument.Content.ShapeRange.Fill.ForeColor.RGB	=	_

				RGB(255,	0,	255)

The	following	example	applies	shadow	formatting	to	all	the	shapes	in	the
selection.

Selection.ShapeRange.Shadow.Type	=	msoShadow6



Shapes	Property
							

Returns	a	Shapes	collection	that	represents	all	the	Shape	objects	in	the	specified
document,	header,	or	footer.	This	collection	can	contain	drawings,	shapes,
pictures,	OLE	objects,	ActiveX	controls,	text	objects,	and	callouts.	Read-only.

For	information	about	returning	a	single	member	of	a	collection,	see	Returning
an	Object	from	a	Collection.



Remarks

The	Shapes	property,	when	applied	to	a	document,	returns	all	the	Shape	objects
in	the	main	story	of	the	document,	excluding	the	headers	and	footers.	When
applied	to	a	HeaderFooter	object,	the	Shapes	property	returns	all	the	Shape
objects	found	in	all	the	headers	and	footers	in	the	document.



Example

This	example	creates	a	new	document,	adds	a	rectangle	to	it	that's	100	points
wide	and	50	points	high,	and	sets	the	upper-left	corner	of	the	rectangle	to	be	5
points	from	the	left	edge	and	25	points	from	the	upper-left	corner	of	the	page.

Set	myDoc	=	Documents.Add

myDoc.Shapes.AddShape	msoShapeRectangle,	5,	25,	100,	50

This	example	sets	the	fill	texture	for	all	the	shapes	in	the	active	document.

For	each	s	in	ActiveDocument.Shapes

				s.Fill.PresetTextured	msoTextureOak

Next	s

This	example	adds	a	shadow	to	the	first	shape	in	the	active	document.

Set	myShape	=	ActiveDocument.Shapes(1)

myShape.Shadow.Type	=	msoShadow6

This	example	displays	a	count	of	all	the	shapes	in	the	primary	header	and	footer
of	the	first	section	of	the	active	document.

MsgBox	ActiveDocument.Sections(1).	_

				Headers(wdHeaderFooterPrimary).Shapes.Count



ShowAll	Property
							

True	if	all	nonprinting	characters	(such	as	hidden	text,	tab	marks,	space	marks,
and	paragraph	marks)	are	displayed.	Read/write	Boolean.

expression.ShowAll

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.



Example

This	example	displays	all	nonprinting	characters	in	the	active	window.

ActiveDocument.ActiveWindow.View.ShowAll	=	True

This	example	toggles	the	display	of	nonprinting	characters	in	the	first	window.

Windows(1).View.ShowAll	=	Not	Windows(1).View.ShowAll



ShowAnimation	Property
							

True	if	text	animation	is	displayed.	Read/write	Boolean.

expression.ShowAnimation

expression			Required.	An	expression	that	returns	a	View	object.



Example

This	example	turns	on	text	animation	in	the	active	window	and	then	applies
sparkle-text	animation	to	the	selection.

ActiveDocument.ActiveWindow.View.ShowAnimation	=	True

Selection.Font.Animation	=	wdAnimationSparkleText

This	example	turns	off	font	animation	in	all	open	windows.

For	Each	aWindow	In	Windows

				aWindow.View.ShowAnimation	=	False

Next	aWindow



ShowBookmarks	Property
							

True	if	square	brackets	are	displayed	at	the	beginning	and	end	of	each
bookmark.	Read/write	Boolean.

expression.ShowBookmarks

expression			Required.	An	expression	that	returns	a	View	object.



Example

This	example	displays	square	brackets	around	bookmarks	in	all	windows.

For	Each	aWindow	In	Windows

				aWindow.View.ShowBookmarks	=	True

Next	aWindow

This	example	marks	the	selection	with	a	bookmark,	displays	square	brackets
around	each	bookmark	in	the	active	document,	and	then	collapses	the	selection.

ActiveDocument.Bookmarks.Add	Range:=Selection.Range,	Name:="temp"

ActiveDocument.ActiveWindow.View.ShowBookmarks	=	True

Selection.Collapse	Direction:=wdCollapseStart



ShowBy	Property
							

Returns	or	sets	the	name	of	the	reviewer	whose	comments	are	shown	in	the
comments	pane.	You	can	choose	to	show	comments	either	by	a	single	reviewer
or	by	all	reviewers.	Read/write	String.

expression.ShowBy

expression			Required.	An	expression	that	returns	a	Comments	collection	object.



Remarks

To	view	the	comments	by	all	reviewers,	set	this	property	to	"All	Reviewers."



Example

The	following	example	displays	comments	made	by	Don	Funk.

If	ActiveDocument.Comments.Count	>=	1	Then

				ActiveDocument.ActiveWindow.View.SplitSpecial	=	wdPaneComments

				ActiveDocument.Comments.ShowBy	=	"Don	Funk"

End	If



ShowCodes	Property
							

True	if	field	codes	are	displayed	for	the	specified	field	instead	of	field	results.
Read/write	Boolean.

expression.ShowCodes

expression			Required.	An	expression	that	returns	a	Field	object.



Example

This	example	selects	the	next	field	and	displays	the	field	codes.

With	Selection

				.GoTo	What:=wdGoToField

				.Expand	Unit:=wdWord

				If	.Fields.Count	=	1	Then	.Fields(1).ShowCodes	=	True

End	With

This	example	updates	and	displays	the	result	of	the	first	field	in	the	active
document.

If	ActiveDocument.Fields.Count	>=	1	Then

				With	ActiveDocument.Fields(1)

								.Update

								.ShowCodes	=	False

				End	With

End	If



ShowComments	Property
							

True	for	Microsoft	Word	to	display	the	comments	in	a	document.	Read/write
Boolean.

expression.ShowComments

expression			Required.	An	expression	that	returns	a	View	object.



Remarks

If	revision	marks	are	displayed	in	balloons	in	the	right	or	left	margin,	comments
are	displayed	in	balloons.	If	revision	marks	are	displayed	inline,	the	text	to
which	comments	apply	is	surrounded	by	wide-angled	square	brackets;	when	a
user	places	the	mouse	pointer	over	the	text	within	the	brackets,	the	related
comment	is	displayed	in	a	square	balloon	directly	above	the	mouse	pointer.



Example

This	example	hides	the	comments	in	the	active	document.	This	example	assumes
that	the	document	in	the	active	window	contains	one	or	more	comments.

Sub	HideComments()

				ActiveWindow.View.ShowComments	=	False

End	Sub



ShowControlCharacters	Property
							

True	if	bidirectional	control	characters	are	visible	in	the	current	document.
Read/write	Boolean.

expression.ShowControlCharacters

expression			Required.	An	expression	that	returns	an	Options	object.



Example

This	example	hides	bidirectional	control	characters	in	the	current	document.

Options.ShowControlCharacters	=	False



ShowDiacritics	Property
							

True	if	diacritics	are	visible	in	a	right-to-left	language	document.	Read/write
Boolean.

expression.ShowDiacritics

expression			Required.	An	expression	that	returns	an	Options	object.



Example

This	example	hides	diacritics	in	the	current	document.

Options.ShowDiacritics	=	False



ShowDrawings	Property
							

True	if	objects	created	with	the	drawing	tools	are	displayed	in	print	layout	view.
Read/write	Boolean.

expression.ShowDrawings

expression			Required.	An	expression	that	returns	a	View	object.



Example

This	example	switches	the	active	window	to	print	layout	view	and	displays
objects	created	with	the	drawing	tools.

With	ActiveDocument.ActiveWindow.View

				.Type	=	wdPrintView

				.ShowDrawings	=	True

End	With



ShowFieldCodes	Property
							

True	if	field	codes	are	displayed.	Read/write	Boolean.

expression.ShowFieldCodes

expression			Required.	An	expression	that	returns	a	View	object.



Example

This	example	hides	field	codes	in	the	window	for	Document1.

Windows("Document1").View.ShowFieldCodes	=	False

This	example	shows	field	codes	in	the	first	window.

Windows(1).View.ShowFieldCodes	=	True

This	example	toggles	field	codes	in	the	active	window.

ActiveDocument.ActiveWindow.View.ShowFieldCodes	=	_

				Not	ActiveDocument.ActiveWindow.View.ShowFieldCodes



ShowFirstLineOnly	Property
							

True	if	only	the	first	line	of	body	text	is	shown	in	outline	view.	Read/write
Boolean.

expression.ShowFirstLineOnly

expression			Required.	An	expression	that	returns	a	View	object.



Remarks

This	property	generates	an	error	if	the	view	isn't	outline	or	master	document
view.



Example

This	example	switches	the	active	window	to	outline	view	and	hides	all	but	the
first	line	of	body	text.

With	ActiveDocument.ActiveWindow.View

				.Type	=	wdOutlineView

				.ShowFirstLineOnly	=	True

End	With



ShowFirstPageNumber	Property
							

True	if	the	page	number	appears	on	the	first	page	in	the	section.	Read/write
Boolean.

expression.ShowFirstPageNumber

expression			Required.	An	expression	that	returns	a	PageNumbers	collection
object.



Remarks

Setting	this	property	to	True	automatically	adds	page	numbers	to	a	section.



Example

This	example	checks	to	see	whether	the	page	number	appears	on	the	first	page	in
the	active	document.

Set	myDoc	=	ActiveDocument

first	=	myDoc.Sections(1).Headers(wdHeaderFooterPrimary).	_

				PageNumbers.ShowFirstPageNumber

Msgbox	"This	document	shows	numbers	on	the	first	page	-	"	&	first

This	example	adds	page	numbers	to	the	active	document.

ActiveDocument.Sections(1)	_

				.Headers(wdHeaderFooterPrimary).PageNumbers	_

				.ShowFirstPageNumber	=	True



ShowFormat	Property
							

True	if	character	formatting	is	visible	in	outline	view.	Read/write	Boolean.

expression.ShowFormat

expression			Required.	An	expression	that	returns	a	View	object.



Remarks

This	property	generates	an	error	if	the	view	isn't	outline	or	master	document
view.



Example

This	example	switches	the	active	window	to	outline	view	and	shows	character
formatting.

With	ActiveDocument.ActiveWindow.View

				.Type	=	wdOutlineView

				.ShowFormat	=	True

End	With



ShowFormatChanges	Property
							

True	for	Microsoft	Word	to	display	formatting	changes	made	to	a	document
with	Track	Changes	enabled.	Read/write	Boolean.

expression.ShowFormatChanges

expression			Required.	An	expression	that	returns	a	View	object.



Example

This	example	hides	the	formatting	changes	made	to	the	active	document.		This
example	assumes	that	formatting	changes	have	been	made	to	a	document	in
which	Track	Changes	is	enabled.

Sub	HideFormattingChanges()

				ActiveWindow.View.ShowFormatChanges	=	False

End	Sub



ShowFormatError	Property
							

True	for	Microsoft	Word	to	mark	inconsistencies	in	formatting	by	placing	a
squiggly	underline	beneath	text	formatted	similarly	to	other	formatting	that	is
used	more	frequently	in	a	document.	Read/write	Boolean.

expression.ShowFormatError

expression			Required.	An	expression	that	returns	an	Options	object.



Example

This	example	enables	Word	to	keep	track	of	formatting	in	documents	but	does
not	display	a	squiggly	underline	beneath	text.

Sub	ShowFormatErrors()

				With	Options

								.FormatScanning	=	True		'Enables	keeping	track	of	formatting

								.ShowFormatError	=	False

				End	With

End	Sub



ShowGrammaticalErrors	Property
							

True	if	grammatical	errors	are	marked	by	a	wavy	green	line	in	the	specified
document.	Read/write	Boolean.

Note			To	view	grammatical	errors	in	your	document,	you	must	set	the
CheckGrammarAsYouType	property	to	True.



Example

This	example	sets	Word	to	check	for	grammatical	errors	as	you	type	and	to
display	any	errors	found	in	the	active	document.

Options.CheckGrammarAsYouType	=	True

ActiveDocument.ShowGrammaticalErrors	=	True



ShowHidden	Property
							

True	if	hidden	bookmarks	are	included	in	the	Bookmarks	collection.	This
property	also	controls	whether	hidden	bookmarks	are	listed	in	the	Bookmark
dialog	box	(Insert	menu).	Read/write	Boolean.

expression.ShowHidden

expression			Required.	An	expression	that	returns	a	Bookmarks	collection
object.



Remarks

Hidden	bookmarks	are	automatically	inserted	when	cross-references	are	inserted
into	the	document.



Example

This	example	displays	the	Bookmark	dialog	box	with	both	visible	and	hidden
bookmarks	listed.

ActiveDocument.Bookmarks.ShowHidden	=	True

Dialogs(wdDialogInsertBookmark).Show

This	example	displays	the	name	of	each	hidden	bookmark	in	the	document.
Hidden	bookmarks	in	a	Word	document	begin	with	an	underscore	(	_	).

ActiveDocument.Bookmarks.ShowHidden	=	True

For	Each	aBookmark	In	ActiveDocument.Bookmarks

				If	Left(aBookmark.Name,	1)	=	"_"	Then	MsgBox	aBookmark.Name

Next	aBookmark



ShowHiddenText	Property
							

True	if	text	formatted	as	hidden	text	is	displayed.	Read/write	Boolean.

expression.ShowHiddenText

expression			Required.	An	expression	that	returns	a	View	object.



Example

This	example	hides	text	formatted	as	hidden	text	in	each	window.

For	Each	myWindow	In	Windows

				myWindow.View.ShowHiddenText	=	False

Next	myWindow

This	example	toggles	the	display	of	hidden	text.

ActiveDocument.ActiveWindow.View.ShowHiddenText	=	_

				Not	ActiveDocument.ActiveWindow.View.ShowHiddenText



ShowHighlight	Property
							

True	if	highlight	formatting	is	displayed	and	printed	with	a	document.
Read/write	Boolean.

expression.ShowHighlight

expression			Required.	An	expression	that	returns	a	View	object.



Example

This	example	toggles	the	display	of	highlighting	in	the	active	document.

ActiveDocument.ActiveWindow.View.ShowHighlight	=	_

				Not	ActiveDocument.ActiveWindow.View.ShowHighlight

This	example	prints	the	active	document	without	highlight	formatting.

With	ActiveDocument

				.ActiveWindow.View.ShowHighlight	=	False

				.PrintOut

End	With



ShowHyphens	Property
							

True	if	optional	hyphens	are	displayed.	An	optional	hyphen	indicates	where	to
break	a	word	when	it	falls	at	the	end	of	a	line.	Read/write	Boolean.

expression.ShowHyphens

expression			Required.	An	expression	that	returns	a	View	object.



Example

This	example	inserts	an	optional	hyphen	before	the	selection	and	then	displays
optional	hyphens	in	the	active	window.

Selection.InsertBefore	Chr(31)

ActiveDocument.ActiveWindow.View.ShowHyphens	=	True



ShowInsertionsAndDeletions
Property
							

True	for	Microsoft	Word	to	display	insertions	and	deletions	that	were	made	to	a
document	with	Track	Changes	enabled.	Read/write	Boolean.

expression.ShowInsertionsAndDeletions

expression			Required.	An	expression	that	returns	a	View	object.



Example

This	example	hides	the	insertions	and	deletions	made	in	a	document.		This
example	assumes	that	the	document	in	the	active	window	contains	revisions
made	by	one	or	more	reviewers.

Sub	HideInsertDelete()

				ActiveWindow.View.ShowInsertionsAndDeletions	=	False

End	Sub



ShowMainTextLayer	Property
							

True	if	the	text	in	the	specified	document	is	visible	when	the	header	and	footer
areas	are	displayed.	This	property	is	equivalent	to	the	Show/Hide	Document
Text	button	on	the	Header	and	Footer	toolbar.	Read/write	Boolean.

expression.ShowMainTextLayer

expression			Required.	An	expression	that	returns	a	View	object.



Example

This	example	displays	the	document	header	in	the	active	window	and	hides	the
document	text.

With	ActiveDocument.ActiveWindow.View

				.Type	=	wdPrintView

				.SeekView	=	wdSeekCurrentPageHeader

				.ShowMainTextLayer	=	False

End	With



ShowObjectAnchors	Property
							

True	if	object	anchors	are	displayed	next	to	items	that	can	be	positioned	in	print
layout	view.	Read/write	Boolean.

expression.ShowObjectAnchors

expression			Required.	An	expression	that	returns	a	View	object.



Example

This	example	adds	a	frame	around	the	selection,	switches	the	active	window	to
print	layout	view,	and	shows	object	anchors	for	framed	objects.

Selection.Frames.Add(Range:=Selection.Range).LockAnchor	=	True

With	ActiveDocument.ActiveWindow.View

				.Type	=	wdPrintView

				.ShowObjectAnchors	=	True

End	With



ShowOptionalBreaks	Property
							

True	if	Microsoft	Word	displays	optional	line	breaks.	Read/write	Boolean.

expression.ShowOptionalBreaks

expression			Required.	An	expression	that	returns	a	View	object.



Example

This	example	displays	the	optional	line	breaks	in	the	active	window.

ActiveDocument.ActiveWindow.View.ShowOptionalBreaks	=	True



ShowParagraphs	Property
							

True	if	paragraph	marks	are	displayed.	Read/write	Boolean.

expression.ShowParagraphs

expression			Required.	An	expression	that	returns	a	View	object.



Example

This	example	hides	paragraph	marks	in	the	active	window.

ActiveDocument.ActiveWindow.View.ShowParagraphs	=	False



ShowPicturePlaceHolders	Property
							

True	if	blank	boxes	are	displayed	as	placeholders	for	pictures.	Read/write
Boolean.

expression.ShowPicturePlaceHolders

expression			Required.	An	expression	that	returns	a	View	object.



Example

This	example	inserts	a	picture	in	the	active	document	and	displays	picture
placeholders	in	the	active	window.

Selection.Collapse	Direction:=wdCollapseStart

ActiveDocument.InlineShapes.AddPicture	Range:=Selection.Range,	_

				FileName:="C:\Windows\Bubbles.bmp"

ActiveDocument.ActiveWindow.View.ShowPicturePlaceHolders	=	True



ShowReadabilityStatistics	Property
							

True	if	Microsoft	Word	displays	a	list	of	summary	statistics,	including	measures
of	readability,	when	it	has	finished	checking	grammar.	Read/write	Boolean.

expression.ShowReadabilityStatistics

expression			Required.	An	expression	that	returns	an	Options	object.



Example

This	example	sets	Word	to	show	readability	statistics,	and	then	it	checks	the
spelling	and	grammar	in	the	active	document.

Options.ShowReadabilityStatistics	=	True

ActiveDocument.CheckGrammar

This	example	returns	the	current	status	of	the	Show	readability	statistics	option
on	the	Spelling	&	Grammar	tab	in	the	Options	dialog	box	(Tools	menu).

temp	=	Options.ShowReadabilityStatistics



ShowRevisions	Property
							

True	if	tracked	changes	in	the	specified	document	are	shown	on	the	screen.
Read/write	Boolean.



Example

This	example	sets	the	active	document	so	that	it	tracks	changes	and	makes	them
visible	on	the	screen.

With	ActiveDocument

				.TrackRevisions	=	True

				.ShowRevisions	=	True

End	With



ShowRevisionsAndComments
Property
							

True	for	Microsoft	Word	to	display	revisions	and	comments	that	were	made	to	a
document	with	Track	Changes	enabled.	Read/write	Boolean.

expression.ShowRevisionsAndComments

expression			Required.	An	expression	that	returns	a	View	object.



Example

This	example	hides	the	revisions	and	comments	in	a	document.	This	example
assumes	that	the	document	in	the	active	window	contains	revisions	made	by	one
or	more	reviewers.

Sub	ShowRevsComments()

				ActiveWindow.View.ShowRevisionsAndComments	=	False

End	Sub



ShowSendToCustom	Property
							

Returns	or	sets	a	String	corresponding	to	the	caption	on	a	custom	button	on	the
Complete	the	merge	step	(step	six)	of	the	Mail	Merge	Wizard.	Read/write.

expression.ShowSendToCustom

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.



Remarks

When	a	user	clicks	the	custom	button,	the	MailMergeWizardSendToCustom
event	executes.



Example

This	example	displays	a	custom	button	on	the	sixth	step	of	the	Mail	Merge
Wizard	only	for	mailing	labels.

Sub	ShowCustomButton()

				With	ActiveDocument.MailMerge

								If	.MainDocumentType	=	wdMailingLabels	Then

												.ShowSendToCustom	=	"Custom	Label	Processing"

								End	If

				End	With

End	Sub



ShowSpaces	Property
							

True	if	space	characters	are	displayed.	Read/write	Boolean.

expression.ShowSpaces

expression			Required.	An	expression	that	returns	a	View	object.



Example

This	example	inserts	spaces	before	the	selection	and	displays	space	characters	in
the	active	window.

Selection.InsertBefore	"				"

ActiveDocument.ActiveWindow.View.ShowSpaces	=	True



ShowSpellingErrors	Property
							

True	if	Microsoft	Word	underlines	spelling	errors	in	the	document.	Read/write
Boolean.



Remarks

To	view	spelling	errors	in	a	document,	you	must	set	the
CheckSpellingAsYouType	property	to	True.



Example

This	example	sets	Word	to	hide	the	wavy	red	line	that	denotes	possible	spelling
errors	in	the	active	document.

ActiveDocument.ShowSpellingErrors	=	False

This	example	sets	Word	to	show	spelling	errors	in	the	active	document.

Options.CheckSpellingAsYouType	=	True

ActiveDocument.ShowSpellingErrors	=	True

This	example	returns	the	current	status	of	the	Hide	spelling	errors	in	this
document	checkbox	in	the	Spelling	area	on	the	Spelling	&	Grammar	tab	in	the
Options	dialog	box.

temp	=	ActiveDocument.ShowSpellingErrors



ShowStartupDialog	Property
							

True	to	display	the	Task	Pane	when	starting	Microsoft	Word.	Read/write
Boolean.

expression.ShowStartupDialog

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.



Remarks

The	ShowStartupDialog	is	a	global	option,	and	the	new	setting	will	take	effect
only	after	you	restart	Word.	Use	the	Visible	property	of	the	CommandBars
collection	show	or	hide	the	Task	Pane	without	restarting	Word.



Example

This	example	turns	off	the	Task	Pane,	so	it	won't	display	upon	starting	Word.
This	will	not	take	effect	until	the	next	time	the	user	starts	Word.

Sub	HideStartUpDlg()

				Application.ShowStartupDialog	=	False

End	Sub



ShowSummary	Property
							

True	if	an	automatic	summary	is	displayed	for	the	specified	document.
Read/write	Boolean.



Example

This	example	hides	everything	in	the	active	document	except	the	summary	text.

With	ActiveDocument

				.SummaryViewMode	=	wdSummaryModeHideAllButSummary

				.SummaryLength	=	30

				.ShowSummary	=	True

End	With



ShowTabs	Property
							

True	if	tab	characters	are	displayed.	Read/write	Boolean.

expression.ShowTabs

expression			Required.	An	expression	that	returns	a	View	object.



Example

This	example	inserts	a	tab	before	the	selection	and	displays	tab	characters	in	the
window	for	Document2.

With	Windows("Document2")

				.Activate

				.View.ShowTabs	=	True

End	With

Selection.InsertBefore	vbTab

Selection.Collapse	Direction:=wdCollapseEnd

This	example	splits	the	active	window,	shows	tab	characters	in	the	first	pane,	and
hides	tab	characters	in	the	second	pane.

With	ActiveDocument.ActiveWindow

				.Split	=	True

				.Panes(1).View.ShowTabs	=	True

				.Panes(2).View.ShowTabs	=	False

End	With



ShowTextBoundaries	Property
							

True	if	dotted	lines	are	displayed	around	page	margins,	text	columns,	objects,
and	frames	in	print	layout	view.	Read/write	Boolean.

expression.ShowTextBoundaries

expression			Required.	An	expression	that	returns	a	View	object.



Example

This	example	switches	the	active	window	to	page	view	and	displays	text
boundary	lines.

With	ActiveDocument.ActiveWindow.View

				.Type	=	wdPrintView

				.ShowTextBoundaries	=	True

End	With



ShowTip	Property
							

True	if	text	associated	with	a	comment	is	displayed	in	a	ScreenTip.	The
ScreenTip	remains	displayed	until	you	click	the	mouse	or	press	a	key.
Read/write	Boolean.

expression.ShowTip

expression			Required.	An	expression	that	returns	a	Comment	object.



Example

This	example	shows	the	ScreenTip	for	the	first	comment	in	the	active	document.

If	ActiveDocument.Comments.Count	>=	1	Then

				ActiveDocument.Comments(1).ShowTip	=	True

End	If

This	example	shows	the	ScreenTip	for	the	next	comment	in	the	active	document.

If	ActiveDocument.Comments.Count	>=	1	Then

				With	Selection

								.GoTo	What:=wdGotoComment,	Which:=wdGotoNext

								.MoveEnd	Unit:=wdWord,	Count:=1

								.Comments(1).ShowTip	=	True

				End	With

End	If



ShowVisualBasicEditor	Property
							

True	if	the	Visual	Basic	Editor	window	is	visible.	Read/write	Boolean.

expression.ShowVisualBasicEditor

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.



Example

This	example	makes	the	Visual	Basic	Editor	window	visible.

Application.ShowVisualBasicEditor	=	True



ShowWindowsInTaskbar	Property
							

True	displays	opened	documents	in	the	task	bar,	the	default	Single	Document
Interface	(SDI).	False	lists	opened	documents	only	in	the	Window	menu,
providing	the	appearance	of	a	Multiple	Document	Interface	(MDI).	Read/write
Boolean.

expression.ShowWindowsInTaskbar

expression			Required.	An	expression	that	returns	an	Application	object.



Example

This	example	switches	the	interface	to	list	open	documents	only	on	the	Window
menu.

Sub	SDIToMDI()

				Application.ShowWindowsInTaskbar	=	False

End	Sub



Show	All



Side	Property
							

Returns	or	sets	a	value	that	indicates	whether	the	document	text	should	wrap	on
both	sides	of	the	specified	shape,	on	either	the	left	or	right	side	only,	or	on	the
side	of	the	shape	that's	farthest	from	the	page	margin.	If	the	text	wraps	on	only
one	side	of	the	shape,	there's	a	text-free	area	between	the	other	side	of	the	shape
and	the	page	margin.	Read/write	WdWrapSideType.

WdWrapSideType	can	be	one	of	these	WdWrapSideType	constants.
wdWrapBoth
wdWrapLargest
wdWrapLeft
wdWrapRight

expression.Side

expression			Required.	An	expression	that	returns	a	WrapFormat	object.



Example

This	example	adds	an	oval	to	the	active	document	and	specifies	that	the
document	text	wrap	around	the	left	and	right	sides	of	the	square	that
circumscribes	the	oval.	The	example	sets	a	0.1-inch	margin	between	the
document	text	and	the	top,	bottom,	left	side,	and	right	side	of	the	square.

Set	myOval	=	ActiveDocument.Shapes.AddShape(msoShapeOval,	_

				0,	0,	200,	50)

With	myEll.WrapFormat

				.Type	=	wdWrapSquare

				.Side	=	wdWrapBoth

				.DistanceTop	=	InchesToPoints(0.1)

				.DistanceBottom	=	InchesToPoints(0.1)

				.DistanceLeft	=	InchesToPoints(0.1)

				.DistanceRight	=	InchesToPoints(0.1)

End	With



SideMargin	Property
							

Returns	or	sets	the	side	margin	widths	(in	points)	for	the	specified	custom
mailing	label.	Read/write	Single.

expression.SideMargin

expression			Required.	An	expression	that	returns	a	CustomLabel	object.



Remarks

If	this	property	is	changed	to	a	value	that	isn't	valid	for	the	specified	mailing
label	layout,	an	error	occurs.



Example

This	example	creates	a	custom	label	named	"VisitorPass"	and	defines	its	layout.
The	left	and	right	margins	for	each	label	are	0.75	inch.

Set	myLabel	=	Application.MailingLabel.CustomLabels	_

				.Add(Name:="VisitorPass",	DotMatrix:=False)

With	myLabel

				.Height	=	InchesToPoints(2.17)

				.HorizontalPitch	=	InchesToPoints(3.5)

				.NumberAcross	=	2

				.NumberDown	=	4

				.PageSize	=	wdCustomLabelLetter

				.SideMargin	=	InchesToPoints(0.75)

				.TopMargin	=	InchesToPoints(0.17)

				.VerticalPitch	=	InchesToPoints(2.17)

				.Width	=	InchesToPoints(3.5)

End	With



Signatures	Property
							

Returns	a	SignatureSet	object	that	represents	the	digital	signatures	for	a
document.

expression.Signatures

expression			Required.	An	expression	that	returns	a	Document	object.

mk:@MSITStore:vbaof10.chm::/html/ofobjSignatureSet.htm


Remarks

To	digitally	sign	Microsoft	Word	documents	and	verify	other	signatures	in	them,
you	will	need	the	Microsoft	CryptoAPI	and	a	unique	digital	signature
certificate.		The	CryptoAPI	is	installed	with	Microsoft	Internet	Explorer	4.01
and	higher.	You	can	obtain	a	digital	signature	certificate	from	a	certification
authority.



Example

This	example	displays	the	Signatures	dialog	box	with	which	you	can	add	a
digital	signature	to	a	document.

Sub	AddSignature

				ActiveDocument.Signatures.Add

End	Sub



SingleList	Property
							

True	if	the	specified	ListFormat	object	contains	only	one	list.	Read-only
Boolean.

expression.SingleList

expression			Required.	An	expression	that	returns	a	ListFormat	object.



Example

This	example	checks	the	selection	to	see	whether	it	only	contains	one	list.	If	it
does,	the	example	applies	the	default	numbered	list	template	to	the	selection.

temp	=	Selection.Range.ListFormat.SingleList

If	temp	=	True	Then

		Selection.Range.ListFormat.ApplyNumberDefault

End	If



SingleListTemplate	Property
							

True	if	the	entire	List	or	ListFormat	object	uses	the	same	list	template.	Read-
only	Boolean.

expression.SingleListTemplate

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.



Example

This	example	checks	to	see	whether	the	selection	is	formatted	with	a	single	list
template.	If	so,	the	example	applies	the	second	numbered	list	template	to	the
selection.

Set	myList	=	Selection.Range.ListFormat

temp	=	myList.SingleListTemplate

If	temp	=	True	Then

				myList.ApplyListTemplate	_

								ListTemplate:=ListGalleries(wdNumberGallery)	_

								.ListTemplates(2)

End	If



Size	Property
							

Returns	or	sets	the	font	size	(for	the	Font	object)	or	the	size	of	the	specified
check	box	(for	the	CheckBox	object),	in	points.	Read/write	Single.

expression.Size

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.



Example

This	example	inserts	text	and	then	sets	the	font	size	of	the	seventh	word	of	the
inserted	text	to	20	points.

Selection.Collapse	Direction:=wdCollapseEnd

With	Selection.Range

				.Font.Reset

				.InsertBefore	"This	is	a	demonstration	of	font	size."

				.Words(7).Font.Size	=	20

End	With

This	example	determines	the	font	size	of	the	selected	text.

mySel	=	Selection.Font.Size

If	mySel	=	wdUndefined	Then

				MsgBox	"There's	a	mix	of	font	sizes	in	the	selection."

Else

				MsgBox	mySel	&	"	points"

End	If

This	example	sets	the	size	of	the	check	box	named	"Check1"	in	the	active
document	to	14	points	and	then	sets	the	check	box	as	selected.

With	ActiveDocument.FormFields("Check1").CheckBox

				.AutoSize	=	False

				.Size	=	14

				.Value	=	True

End	With



SizeBi	Property
							

Returns	or	sets	the	font	size	in	points.	Read/write	Single.

expression.SizeBi

expression			Required.	An	expression	that	returns	a	Font	object.



Remarks

The	SizeBi	property	applies	to	text	in	a	right-to-left	language.

For	more	information	on	using	Word	with	right-to-left	languages,	see	Word
features	for	right-to-left	languages.

mk:@MSITStore:wdmain10.chm::/html/wdrefFeaturesAvailableInWordWhenBidirectionalLanguagesAreEnabled.htm


Example

This	example	sets	the	font	size	of	the	first	word	to	20	points.

With	ActiveDocument.Paragraphs(1).Range

				.Words(1).Font.SizeBi	=	20

End	With



SmallCaps	Property
							

True	if	the	font	is	formatted	as	small	capital	letters.	Returns	True,	False	or
wdUndefined	(a	mixture	of	True	and	False).	Can	be	set	to	True,	False,	or
wdToggle.	Read/write	Long.

expression.SmallCaps

expression			Required.	An	expression	that	returns	a	Font	object.



Remarks

Setting	the	SmallCaps	property	to	True	sets	the	AllCaps	property	to	False,	and
vice	versa.



Example

This	example	demonstrates	the	difference	between	small	capital	letters	and	all
capital	letters	in	a	new	document.

Set	myRange	=	Documents.Add.Content

With	myRange

				.InsertAfter	"This	is	a	demonstration	of	SmallCaps."

				.Words(6).Font.SmallCaps	=	True

				.InsertParagraphAfter

				.InsertAfter	"This	is	a	demonstration	of	AllCaps."

				.Words(14).Font.AllCaps	=	True

End	With

This	example	formats	the	entire	selection	as	small	capital	letters	if	part	of	the
selection	is	already	formatted	as	small	capital	letters.

If	Selection.Type	=	wdSelectionNormal	Then

				mySel	=	Selection.Font.SmallCaps

				If	mySel	=	wdUndefined	Then	Selection.Font.SmallCaps	=	True

Else

				MsgBox	"You	need	to	select	some	text."

End	If



SmartCutPaste	Property
							

True	if	Microsoft	Word	automatically	adjusts	the	spacing	between	words	and
punctuation	when	cutting	and	pasting	occurs.	Read/write	Boolean.

expression.SmartCutPaste

expression			Required.	An	expression	that	returns	an	Options	object.



Example

This	example	sets	Word	to	automatically	adjust	the	spacing	between	words	and
punctuation	when	cutting	and	pasting	occurs,	and	then	it	cuts	and	pastes	some
text	in	a	newly	created	document.	If	the	SmartCutPaste	property	were	set	to
False,	the	second	and	third	words	would	run	together.

Options.SmartCutPaste	=	True

Set	myDoc	=	Documents.Add

With	myDoc

				.Content.InsertAfter("The	brown	quick	fox")

				.Words(2).Cut

				.Characters(10).Paste

End	With

This	example	returns	the	status	of	the	Smart	cut	and	paste	option	on	the	Edit
tab	in	the	Options	dialog	box	(Tools	menu).

temp	=	Options.SmartCutPaste



SmartParaSelection	Property
							

True	for	Microsoft	Word	to	include	the	paragraph	mark	in	a	selection	when
selecting	most	or	all	of	a	paragraph.	Read/write	Boolean.

expression.SmartParaSelection

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.



Example

This	example	disables	smart	paragraph	selection.

Sub	SetSmartParagraphSelection()

				Options.SmartParaSelection	=	False

End	Sub



SmartTags	Property
							

Returns	a	SmartTags	object	that	represents	a	smart	tag	in	a	document.

expression.SmartTags

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.



Example

This	example	adds	custom	properties	to	the	first	smart	tag	in	the	active
document.

Sub	NewSmartTagProperty()

				ActiveDocument.SmartTags(1).Properties	_

								.Add	Name:="President",	Value:=True

End	Sub



SmartTagsAsXMLProps	Property
							

True	for	Microsoft	Word	to	create	an	XML	header	containing	smart	tag
information	when	a	document	containing	smart	tags	is	saved	as	HTML.
Read/write	Boolean.

expression.SmartTagsAsXMLProps

expression			Required.	An	expression	that	returns	a	Document	object.



Example

This	example	enables	saving	smart	tag	information	in	an	XML	header	if	the
active	document	is	saved	as	HTML.

Sub	SaveXMLForSmartTags()

				ActiveDocument.SmartTagsAsXMLProps	=	True

End	Sub



SnapToGrid	Property
							

Document	object:	True	if	AutoShapes	or	East	Asian	characters	are
automatically	aligned	with	an	invisible	grid	when	they	are	drawn,	moved,	or
resized	in	the	specified	document.	Read/write	Boolean.

Options	object:	True	if	AutoShapes	or	East	Asian	characters	are	automatically
aligned	with	an	invisible	grid	when	they	are	drawn,	moved,	or	resized	in	new
documents.	Read/write	Boolean.



Remarks

You	can	temporarily	override	this	setting	by	pressing	ALT	while	drawing,
moving,	or	resizing	an	AutoShape.



Example

This	example	sets	Microsoft	Word	to	automatically	align	East	Asian	characters
with	the	invisible	grid	in	the	current	document.

ActiveDocument.SnapToGrid	=	True

This	example	sets	Word	so	that	AutoShapes	are	automatically	aligned	with	the
invisible	grid	in	a	new	document.

Options.SnapToGrid	=	True

Documents.Add

This	example	returns	the	status	of	the	Snap	to	grid	option	in	the	Snap	to	Grid
dialog	box	(Drawing	toolbar,	Draw	menu,	Grid	command).

Temp	=	Options.SnapToGrid



SnapToShapes	Property
							

Document	object:	True	if	Microsoft	Word	automatically	aligns	AutoShapes	or
East	Asian	characters	with	invisible	gridlines	that	go	through	the	vertical	and
horizontal	edges	of	other	AutoShapes	or	East	Asian	characters	in	the	specified
document.	Read/write	Boolean.

Options	object:	True	if	Word	automatically	aligns	AutoShapes	or	East	Asian
characters	with	invisible	gridlines	that	go	through	the	vertical	and	horizontal
edges	of	other	AutoShapes	or	East	Asian	characters	in	new	documents.
Read/write	Boolean.



Remarks

This	property	creates	additional	invisible	gridlines	for	each	AutoShape.
SnapToShapes	works	independently	of	the	SnapToGrid	property.



Example

This	example	sets	Microsoft	Word	to	automatically	align	East	Asian	characters
with	invisible	gridlines	that	go	through	the	vertical	and	horizontal	edges	of	other
East	Asian	characters	in	the	current	document.

ActiveDocument.SnapToShapes	=	True

This	example	sets	Word	to	automatically	align	AutoShapes	with	invisible
gridlines	that	go	through	the	vertical	and	horizontal	edges	of	other	AutoShapes
in	a	new	document.

Options.SnapToShapes	=	True

Documents.Add



Show	All



SortBy	Property
							

Returns	or	sets	the	sorting	criteria	for	the	specified	index.	Read/write
WdIndexSortBy.

WdIndexSortBy	can	be	one	of	these	WdIndexSortBy	constants.
wdIndexSortBySyllable	Sort	phonetically.
wdIndexSortByStroke	Sort	by	the	number	of	strokes	in	a	character.

expression.SortBy

expression			Required.	An	expression	that	returns	an	Index	object.



Remarks

For	more	information	on	using	Microsoft	Word	with	right-to-left	languages,	see
Word	features	for	right-to-left	languages.

mk:@MSITStore:wdmain10.chm::/html/wdrefFeaturesAvailableInWordWhenBidirectionalLanguagesAreEnabled.htm


Example

This	example	sets	the	first	index	in	the	current	document	to	sort	by	the	number
of	strokes.

ActiveDocument.Indexes(1).SortBy	=	_

				wdIndexSortByStroke



SourceFullName	Property
							

Returns	or	sets	the	path	and	name	of	the	source	file	for	the	specified	linked	OLE
object,	picture,	or	field.	Read/write	String.

expression.SourceFullName

expression			Required.	An	expression	that	returns	a	LinkFormat	object.



Remarks

Using	this	property	is	equivalent	to	using	in	sequence	the	SourcePath,
PathSeparator,	and	SourceName	properties.



Example

This	example	sets	MyExcel.xls	as	the	source	file	for	shape	one	on	the	active
document	and	specifies	that	the	OLE	object	be	updated	automatically.

With	ActiveDocument.Shapes(1)

				If	.Type	=	msoLinkedOLEObject	Then

								With	.LinkFormat

												.SourceFullName	=	"c:\my	documents\myExcel.xls"

												.AutoUpdate	=	True

								End	With

				End	If

End	With



SourceName	Property
							

Returns	the	name	of	the	source	file	for	the	specified	linked	OLE	object,	picture,
or	field.	Read-only	String.

expression.SourceName

expression			Required.	An	expression	that	returns	a	LinkFormat	object.



Remarks

This	property	doesn't	return	the	path	for	the	source	file.



Example

This	example	returns	the	path	and	name	of	the	source	file	for	any	shapes	on	the
active	document	that	are	linked	OLE	objects.

For	Each	s	In	ActiveDocument.Shapes

				If	s.Type	=	msoLinkedOLEObject	Then

								Msgbox	s.LinkFormat.SourcePath	&	"\"	_

												&	s.LinkFormat.SourceName

				End	If

Next	s



SourcePath	Property
							

Returns	the	path	of	the	source	file	for	the	specified	linked	OLE	object,	picture,
or	field.	Read-only	String.

expression.SourcePath

expression			Required.	An	expression	that	returns	a	LinkFormat	object.



Remarks

The	path	doesn't	include	a	trailing	character	(for	example,	"C:\MSOffice").	Use
the	PathSeparator	property	to	add	the	character	that	separates	folders	and	drive
letters.	Use	the	SourceName	property	to	return	the	file	name	without	the	path
and	use	the	SourceFullName	property	to	return	the	path	and	file	name	together.



Example

This	example	returns	the	path	and	name	of	the	source	file	for	any	shapes	on	the
active	document	that	are	linked	OLE	objects.

For	Each	s	In	ActiveDocument.Shapes

				If	s.Type	=	msoLinkedOLEObject	Then

								Msgbox	s.LinkFormat.SourcePath	&	"\"	_

												&	s.LinkFormat.SourceName

				End	If

Next	s



SpaceAfter	Property
							

Returns	or	sets	the	amount	of	spacing	(in	points)	after	the	specified	paragraph	or
text	column.	Read/write	Single.

expression.SpaceAfter

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.



Example

This	example	sets	the	spacing	after	the	first	paragraph	in	the	active	document	to
12	points.

ActiveDocument.Paragraphs(1).SpaceAfter	=	12

This	example	sets	the	active	document	to	three	columns	with	a	0.5-inch	space
after	the	first	column.	The	InchesToPoints	method	is	used	to	convert	inches	to
points.

With	ActiveDocument.PageSetup.TextColumns

				.SetCount	NumColumns:=3

				.LineBetween	=	False

				.EvenlySpaced	=	True

				.Item(1).SpaceAfter	=	InchesToPoints(0.5)

End	With



SpaceAfterAuto	Property
							

True	if	Microsoft	Word	automatically	sets	the	amount	of	spacing	after	the
specified	paragraphs.	Returns	wdUndefined	if	the	SpaceAfterAuto	property	is
set	to	True	for	only	some	of	the	specified	paragraphs.	Can	be	set	to	either	True
or	False.	Read/write	Long.



Remarks

When	you	open	an	HTML	document	without	cascading	style	sheets,	Word
automatically	sets	the	SpaceAfterAuto	property	to	True	to	render	the	paragraph
spacing	exactly	as	it	would	appear	in	a	Web	browser.

If	SpaceAfterAuto	is	set	to	True,	the	SpaceAfter	property	is	ignored.



Example

This	example	displays	a	report	showing	the	SpaceAfterAuto	settings	for	the
active	document.

Select	Case	ActiveDocument.Paragraphs.SpaceAfterAuto

				Case	True

								x	=	"Spacing	after	paragraphs	is	handled	"	_

												&	"automatically	for	all	paragraphs."

				Case	False

								x	=	"Spacing	after	paragraphs	is	handled	"	_

												&	"manually	for	all	paragraphs."

				Case	wdUndefined

								x	=	"Spacing	after	paragraphs	is	handled	"	_

												&	"automatically	for	some	paragraphs,	"	_

												&	"manually	for	some	paragraphs."

End	Select



SpaceBefore	Property
							

Returns	or	sets	the	spacing	(in	points)	before	the	specified	paragraphs.
Read/write	Single.

expression.SpaceBefore

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.



Example

This	example	sets	the	spacing	before	the	second	paragraph	in	the	active
document	to	12	points.

ActiveDocument.Paragraphs(2).SpaceBefore	=	12



SpaceBeforeAuto	Property
							

True	if	Microsoft	Word	automatically	sets	the	amount	of	spacing	before	the
specified	paragraphs.	Returns	wdUndefined	if	the	SpaceBeforeAuto	property	is
set	to	True	for	only	some	of	the	specified	paragraphs.	Can	be	set	to	either	True
or	False.	Read/write	Long.



Remarks

When	you	open	an	HTML	document	without	cascading	style	sheets,	Word
automatically	sets	the	SpaceBeforeAuto	property	to	True	to	render	the
paragraph	spacing	exactly	as	it	would	appear	in	a	Web	browser.

If	SpaceBeforeAuto	is	set	to	True,	the	SpaceBefore	property	is	ignored.



Example

This	example	displays	a	report	showing	the	SpaceBeforeAuto	settings	for	the
active	document.

Select	Case	ActiveDocument.Paragraphs.SpaceBeforeAuto

				Case	True

								x	=	"Spacing	before	paragraphs	is	handled	"	_

												&	"automatically	for	all	paragraphs."

				Case	False

								x	=	"Spacing	before	paragraphs	is	handled	"	_

												&	"manually	for	all	paragraphs."

				Case	wdUndefined

								x	=	"Spacing	before	paragraphs	is	handled	"	_

												&	"automatically	for	some	paragraphs,	"	_

												&	"manually	for	some	paragraphs."

End	Select



SpaceBetweenColumns	Property
							

Returns	or	sets	the	distance	(in	points)	between	text	in	adjacent	columns	of	the
specified	row	or	rows.	Read/write	Single.

expression.SpaceBetweenColumns

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.



Example

This	example	creates	a	3x3	table	in	a	new	document	and	then	sets	the	distance
between	columns	in	the	first	row	to	0.5	inches.

Set	newDoc	=	Documents.Add

Set	myTable	=	newDoc.Tables.Add(Selection.Range,	3,	3)

myTable.Rows(1).SpaceBetweenColumns	=	InchesToPoints(0.5)

This	example	returns	the	distance	(in	points)	between	columns	in	the	selected
table	rows.

If	Selection.Information(wdWithInTable)	=	True	Then

				MsgBox	Selection.Rows.SpaceBetweenColumns

End	If



Spacing	Property
							

Returns	or	sets	the	spacing	(in	points)	between	characters	(for	the	Font	object),
between	the	cells	in	a	table	(for	the	Table	object),	or	between	columns	(for	the
TextColumns	object).	Read/write	Single.

expression.Spacing

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.



Remarks

After	this	property	has	been	set	for	a	TextColumns	object,	the	EvenlySpaced
property	is	set	to	True.	To	return	or	set	the	spacing	for	a	single	text	column
when	EvenlySpaced	is	False,	use	the	SpaceAfter	property	of	the	TextColumn
object.



Example

This	example	demonstrates	two	different	character	spacings	at	the	beginning	of
the	active	document.

Set	myRange	=	ActiveDocument.Range(Start:=0,	End:=0)

With	myRange

				.InsertAfter	"Demonstration	of	no	character	spacing."

				.InsertParagraphAfter

				.InsertAfter	"Demonstration	of	character	spacing	(1.5pt)."

				.InsertParagraphAfter

End	With

ActiveDocument.Paragraphs(2).Range.Font.Spacing	=	1.5

This	example	sets	the	character	spacing	of	the	selected	text	to	2	points.

If	Selection.Type	=	wdSelectionNormal	Then

				Selection.Font.Spacing	=	2

Else

				MsgBox	"You	need	to	select	some	text."

End	If

This	example	sets	the	spacing	between	cells	in	the	first	table	in	the	active
document	to	nine	points.

ActiveDocument.Tables(1).Spacing	=	9

This	example	formats	the	active	document	to	display	text	in	two	columns	with
0.5	inch	(36	points)	spacing	between	the	columns.

With	ActiveDocument.PageSetup.TextColumns

				.SetCount	NumColumns:=2

				.LineBetween	=	False

				.EvenlySpaced	=	True

				.Spacing	=	36

End	With





SpecialMode	Property
							

True	if	Microsoft	Word	is	in	a	special	mode	(for	example,	CopyText	mode	or
MoveText	mode).	Read-only	Boolean.

expression.SpecialMode

expression			Required.	An	expression	that	returns	an	Application	object.



Remarks

Word	enters	a	special	copy	or	move	mode	if	you	press	F2	or	SHIFT+F2	while
text	is	selected.



Example

This	example	checks	to	see	whether	Word	is	in	a	special	mode.	If	it	is,	ESC	is
activated	before	the	current	selection	is	cut	and	pasted.

If	Application.SpecialMode	=	True	Then	SendKeys	"ESC"

With	Selection

				.Cut

				.EndKey	Unit:=wdStory

				.Paste

End	With



SpellingChecked	Property
							

True	if	spelling	has	been	checked	throughout	the	specified	range	or	document.
False	if	all	or	some	of	the	range	or	document	hasn't	been	checked	for	spelling.
Read/write	Boolean.



Remarks

To	recheck	the	spelling	in	a	range	or	document,	set	the	SpellingChecked
property	to	False.

To	see	whether	the	range	or	document	contains	spelling	errors,	use	the
SpellingErrors	property.



Example

This	example	determines	whether	spelling	in	section	one	of	the	active	document
has	been	checked.	If	spelling	hasn't	been	checked,	the	example	starts	a	spelling
check.

Set	myRange	=	ActiveDocument.Sections(1).Range

isChecked	=	myRange.SpellingChecked

If	isChecked	=	False	Then

				myRange.CheckSpelling

Else

				MsgBox	"The	range	has	already	been	spell	checked."

End	If

This	example	sets	the	SpellingChecked	property	to	False	for	MyDocument.doc,
and	then	it	runs	another	spelling	check	on	the	document.

Documents("MyDocument.doc").SpellingChecked	=	False

Documents("MyDocument.doc").CheckSpelling	IgnoreUppercase:=False



Show	All



SpellingDictionaryType	Property
							

Returns	or	sets	the	proofing	tool	type.	Read/write	WdDictionaryType.

WdDictionaryType	can	be	one	of	these	WdDictionaryType	constants.
wdGrammar
wdHangulHanjaConversion
wdHangulHanjaConversionCustom
wdHyphenation
wdSpelling
wdSpellingComplete
wdSpellingCustom
wdSpellingLegal
wdSpellingMedical
wdThesaurus

expression.SpellingDictionaryType

expression			Required.	An	expression	that	returns	a	Language	object.



Remarks

You	can	use	this	property	to	change	the	active	spelling	dictionary	to	one	of	the
available	add-on	dictionaries	that	work	with	Word.	For	example,	there	are	legal,
medical,	and	complete	spelling	dictionaries	you	can	use	instead	of	the	standard
dictionary.

Some	of	the	constants	listed	above	may	not	be	available	to	you,	depending	on
the	language	support	(U.S.	English,	for	example)	that	you’ve	selected	or
installed.



Example

This	example	returns	the	type	of	spelling	dictionary	used	for	U.S.	English.

myType	=	Languages(wdEnglishUS).SpellingDictionaryType

This	example	makes	the	legal	dictionary	the	active	spelling	dictionary.

Languages(wdEnglishUS).SpellingDictionaryType	=	wdSpellingLegal



SpellingErrors	Property
							

Returns	a	ProofreadingErrors	collection	that	represents	the	words	identified	as
spelling	errors	in	the	specified	document	or	range.	Read-only.

For	information	about	returning	a	single	member	of	a	collection,	see	Returning
an	Object	from	a	Collection.



Example

This	example	checks	the	active	document	for	spelling	errors	and	displays	the
number	of	errors	found.

myErr	=	ActiveDocument.SpellingErrors.Count

If	myErr	=	0	Then

				Msgbox	"No	spelling	errors	found."

Else

				Msgbox	myErr	&	"	spelling	errors	found."

End	If

This	example	checks	the	specified	range	for	spelling	errors	and	displays	each
error	found.

Set	myErrors	=	ActiveDocument.Paragraphs(3).Range.SpellingErrors

If	myErrors.Count	=	0	Then

				Msgbox	"No	spelling	errors	found."

Else

				For	Each	myErr	in	myErrors

								Msgbox	myErr.Text

				Next

End	If



Show	All



SpellingErrorType	Property
							

Returns	the	spelling	error	type.	Read-only	WdSpellingErrorType.

WdSpellingErrorType	can	be	one	of	these	WdSpellingErrorType	constants.
wdSpellingCapitalization
wdSpellingCorrect
wdSpellingNotInDictionary

expression.SpellingErrorType

expression			Required.	An	expression	that	returns	a	SpellingSuggestions	object.



Remarks

Use	the	GetSpellingSuggestions	method	to	return	a	collection	of	words
suggested	as	spelling	replacements.	If	a	word	is	misspelled,	the	CheckSpelling
method	returns	True.



Example

If	the	first	word	in	the	active	document	isn't	in	the	dictionary,	this	example
displays	"Unknown	word"	in	the	status	bar.

Set	suggs	=	ActiveDocument.Content.GetSpellingSuggestions

If	suggs.SpellingErrorType	=	wdSpellingNotInDictionary	Then

				StatusBar	=	"Unknown	word"

End	If



Split	Property
							

True	if	the	window	is	split	into	multiple	panes.	Read/write	Boolean.

expression.Split

expression			Required.	An	expression	that	returns	a	Window	object.



Example

This	example	splits	the	active	window	into	two	equal-sized	window	panes.

ActiveDocument.ActiveWindow.Split	=	True

If	the	Document1	window	is	split,	this	example	closes	the	active	pane.

If	Windows("Document1").Split	=	True	Then

				Windows("Document1").ActivePane.Close

End	If



SplitSpecial	Property
							

Returns	or	sets	the	active	window	pane.	Read/write	WdSpecialPane.

Can	be	one	of	the	following	WdSpecialPane	constants:

wdPaneComments

wdCurrentPageFooter

wdPaneCurrentPageHeader

wdPaneEndnoteContinuationNotice

wdPaneEndnoteContinuationSeparator

wdPaneEndnotes

wdPaneEndnoteSeparator

wdPaneEvenPagesFooter

wdPaneEvenPagesHeader

wdPaneFirstPageFooter

wdPaneFirstPageHeader

wdPaneFootnoteContinuationNotice

wdPaneFootnoteContinuationSeparator

wdPaneFootnotes

wdPaneFootnoteSeparator

wdPaneNone

wdPanePrimaryFooter

wdPanePrimaryHeader



Example

This	example	displays	the	primary	footer	in	a	separate	pane	in	the	active
window.

ActiveDocument.ActiveWindow.View.SplitSpecial	=	wdPanePrimaryFooter

This	example	adds	a	footnote	to	the	active	document	and	displays	all	the
footnotes	in	a	separate	pane	in	the	active	window.

ActiveDocument.Footnotes.Add	Range:=Selection.Range,	_

				Text:="Footnote	text"

With	ActiveDocument.ActiveWindow.View

				.Type	=	wdNormalView

				.SplitSpecial	=	wdPaneFootnotes

End	With



SplitVertical	Property
							

Returns	or	sets	the	vertical	split	percentage	for	the	specified	window.	Read/write
Long.

expression.SplitVertical

expression			Required.	An	expression	that	returns	a	Window	object.



Remarks

To	remove	the	split,	set	this	property	to	zero	(0)	or	set	the	Split	property	to
False.



Example

This	example	splits	the	active	window	so	that	the	top	pane	occupies	70	percent
of	the	window.

ActiveDocument.ActiveWindow.SplitVertical	=	70

This	example	splits	the	window	for	Document1	in	half	vertically.

Windows("Document1").SplitVertical	=	50



Start	Property
							

Returns	or	sets	the	starting	character	position	of	a	selection,	range,	or	bookmark.
Read/write	Long.

Note			If	this	property	is	set	to	a	value	larger	than	that	of	the	End	property,	the
End	property	is	set	to	the	same	value	as	that	of	Start	property.



Remarks

Selection,	Range,	and	Bookmark	objects	have	starting	and	ending	character
positions.	The	starting	position	refers	to	the	character	position	closest	to	the
beginning	of	the	story.

This	property	returns	the	starting	character	position	relative	to	the	beginning	of
the	story.	The	main	text	story	(wdMainTextStory)	begins	with	character
position	0	(zero).	You	can	change	the	size	of	a	selection,	range,	or	bookmark	by
setting	this	property.



Example

This	example	returns	the	starting	position	of	the	second	paragraph	and	the
ending	position	of	the	fourth	paragraph	in	the	active	document.	The	character
positions	are	used	to	create	the	range	myRange.

pos	=	ActiveDocument.Paragraphs(2).Range.Start

pos2	=	ActiveDocument.Paragraphs(4).Range.End

Set	myRange	=	ActiveDocument.Range(Start:=pos,	End:=pos2)

This	example	determines	the	length	of	the	selection	by	comparing	the	starting
and	ending	character	positions.

SelLength	=	Selection.End	-	Selection.Start

This	example	moves	the	starting	position	of	myRange	one	character	to	the	right
(this	reduces	the	size	of	the	range	by	one	character).

Set	myRange	=	Selection.Range

myRange.SetRange	Start:=myRange.Start	+	1,	End:=myRange.End



StartAt	Property
							

Returns	or	sets	the	starting	number	for	the	specified	ListLevel	object.
Read/write	Long.

expression.StartAt

expression			Required.	An	expression	that	returns	a	ListLevel	object.



Example

This	example	sets	the	number	style	and	starting	number	for	the	third	outline-
numbered	list	template.	Because	the	style	uses	uppercase	letters	and	the	starting
number	is	4,	the	first	letter	is	D.

Set	mylev	=	ListGalleries(wdOutlineNumberGallery)	_

				.ListTemplates(3).ListLevels(1)

With	mylev

				.NumberStyle	=	wdListNumberStyleUppercaseLetter

				.StartAt	=	4

End	With



StartingNumber	Property
							

Returns	or	sets	the	starting	note	number,	line	number,	or	page	number.
Read/write	Long.

expression.StartingNumber

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.



Remarks

You	must	be	in	print	layout	view	to	see	line	numbering.

When	applied	to	page	numbers,	this	property	returns	or	sets	the	beginning	page
number	for	the	specified	HeaderFooter	object.	This	number	may	or	may	not	be
visible	on	the	first	page,	depending	on	the	setting	of	the	ShowFirstPageNumber
property.	The	RestartNumberingAtSection	property,	if	set	to	False,	will
override	the	StartingNumber	property	so	that	page	numbering	can	continue
from	the	previous	section.



Example

This	example	creates	a	new	document,	sets	the	starting	number	for	footnotes	to
10,	and	then	adds	a	footnote	at	the	insertion	point.

Set	myDoc	=	Documents.Add

With	myDoc.Footnotes

				.StartingNumber	=	10

				.Add	Range:=Selection.Range,	Text:="Text	for	a	footnote"

End	With

This	example	enables	line	numbering	for	the	active	document.	The	starting
number	is	set	to	5,	every	fifth	line	number	is	shown,	and	the	numbering	starts
over	at	the	beginning	of	each	section	in	the	document.

With	ActiveDocument.PageSetup.LineNumbering

				.Active	=	True

				.StartingNumber	=	5

				.CountBy	=	5

				.RestartMode	=	wdRestartSection

End	With

This	example	sets	properties	for	page	numbers,	and	then	it	adds	page	numbers	to
the	header	of	the	active	document.

With	ActiveDocument.Sections(1)	_

								.Headers(wdHeaderFooterPrimary).PageNumbers

				.NumberStyle	=	wdPageNumberStyleArabic

				.IncludeChapterNumber	=	False

				.RestartNumberingAtSection	=	True

				.StartingNumber	=	5

				.Add	PageNumberAlignment:=wdAlignPageNumberCenter,	_

								FirstPage:=True

End	With



StartIsActive	Property
							

True	if	the	beginning	of	the	selection	is	active.	If	the	selection	is	not	collapsed	to
an	insertion	point,	either	the	beginning	or	the	end	of	the	selection	is	active.	The
active	end	of	the	selection	moves	when	you	call	the	following	methods:
EndKey,	Extend	(with	the	Characters	argument),	HomeKey,	MoveDown,
MoveLeft,	MoveRight,	and	MoveUp.	Read/write	Boolean.

expression.StartIsActive

expression			Required.	An	expression	that	returns	a	Selection	object.



Remarks

This	property	is	equivalent	to	using	the	Flags	property	with	the
wdSelStartActive	constant.	However,	using	the	Flags	property	requires	binary
operations,	which	are	more	complicated	than	using	the	StartIsActive	property.



Example

This	example	extends	the	current	selection	through	the	next	two	words.	To	make
sure	that	any	currently	selected	text	stays	selected	during	the	extension,	the	end
of	the	selection	is	made	active	first.	(For	example,	if	the	first	three	words	of	this
paragraph	were	selected	but	the	start	of	the	selection	were	active,	the
MoveRight	method	call	would	simply	deselect	the	first	two	words.)

With	Selection

			.StartIsActive	=	False

			.MoveRight	Unit:=wdWord,	Count:=2,	Extend:=wdExtend

End	With

Here's	the	same	example	using	the	Flags	property.	This	solution	is	problematic
because	you	can	only	deactivate	a	Flags	property	setting	by	overwriting	it	with
an	unrelated	value.

With	Selection

			If	(.Flags	And	wdSelStartActive)	=	wdSelStartActive	Then	_

						.Flags	=	wdSelReplace

						.MoveRight	Unit:=wdWord,	Count:=2,	Extend:=wdExtend

End	With

Here's	the	same	example	using	the	MoveEnd	method,	which	eliminates	the	need
to	check	which	end	of	the	selection	is	active.

With	Selection

			.MoveEnd	Unit:=wdWord,	Count:=2

End	With



StartupPath	Property
							

Returns	or	sets	the	complete	path	of	the	startup	folder,	excluding	the	final
separator.	Read/write	String.

expression.StartupPath

expression			Required.	An	expression	that	returns	an	Application	object.



Remarks

Templates	and	add-ins	located	in	the	Startup	folder	are	automatically	loaded
when	you	start	Word.



Example

This	example	displays	the	complete	path	of	the	Startup	folder.

MsgBox	Application.StartupPath

This	example	enables	the	user	to	change	the	path	of	the	Startup	folder.

x	=	MsgBox("Do	you	want	to	change	the	startup	path?",	vbYesNo,	_

				"Current	path	=	"	&	Application.StartupPath)

If	x	=	vbYes	Then

				newStartup	=	InputBox("Type	a	startup	path")

				Application.StartupPath	=	newStartup

End	If



Show	All



State	Property
							

Returns	the	current	state	of	a	mail	merge	operation.	Read-only
WdMailMergeState.

WdMailMergeState	can	be	one	of	these	WdMailMergeState	constants.
wdDataSource
wdMainAndDataSource
wdMainAndHeader
wdMainAndSourceAndHeader
wdMainDocumentOnly
wdNormalDocument

expression.State

expression			Required.	An	expression	that	returns	a	MailMerge	object.



Example

This	example	executes	a	mail	merge	if	the	active	document	is	a	main	document
with	an	attached	data	source.

Set	myMerge	=	ActiveDocument.MailMerge

If	myMerge.State	=	wdMainAndDataSource	Then	myMerge.Execute



Show	All



Status	Property
							

Returns	the	routing	status	of	the	specified	routing	slip.	Read-only
WdRoutingSlipStatus.

WdRoutingSlipStatus	can	be	one	of	these	WdRoutingSlipStatus	constants.
wdNotYetRouted
wdRouteComplete
wdRouteInProgress

expression.Status

expression			Required.	An	expression	that	returns	a	RoutingSlip	object.



Example

If	the	active	document	has	a	routing	slip	attached	to	it,	this	example	displays	a
message	indicating	the	routing	status.

If	ActiveDocument.HasRoutingSlip	=	True	Then

				Select	Case	ActiveDocument.RoutingSlip.Status

								Case	wdNotYetRouted

												MsgBox	"The	document	hasn't	been	routed	yet."

								Case	wdRouteInProgress

												MsgBox	"Routing	is	in	progress."

								Case	wdRouteComplete

												MsgBox	"Routing	is	complete."

				End	Select

End	If

This	example	resets	the	routing	slip	for	Sales.doc	if	the	routing	is	complete.

With	Documents("Sales.doc").RoutingSlip

				If	.Status	=	wdRouteComplete	Then

								.Reset

				Else

								MsgBox	"Cannot	reset	routing;	not	yet	complete."

				End	If

End	With



StatusBar	Property
							

Displays	the	specified	text	in	the	status	bar.	Write-only	String.

expression.StatusBar

expression			Required.	An	expression	that	returns	an	Application	object.



Example

This	example	displays	a	message	in	the	status	bar.

StatusBar	=	"Please	wait..."

This	example	displays	in	the	status	bar	the	name	of	the	template	attached	to	the
active	document.

aName	=	ActiveDocument.AttachedTemplate.Name

StatusBar	=	aName	&	"	template	is	attached	to	the	active	document"



StatusText	Property
							

Returns	or	sets	the	text	that's	displayed	in	the	status	bar	when	a	form	field	has
the	focus.	If	the	OwnStatus	property	is	set	to	True,	the	StatusText	property
specifies	the	status	bar	text.	If	the	OwnStatus	property	is	set	to	False,	the
StatusText	property	specifies	the	name	of	an	AutoText	entry	that	contains	status
bar	text	for	the	form	field.	Read/write	String.

expression.StatusText

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.



Example

This	example	sets	the	status	bar	help	text	for	the	form	field	named	"Age."

With	ActiveDocument.FormFields("Age")

				.OwnStatus	=	True

				.StatusText	=	"Type	your	current	age."

End	With



StoreRSIDOnSave	Property
							

True	for	Microsoft	Word	to	assign	a	random	number	to	changes	in	a	document,
each	time	a	document	is	saved,	to	facilitate	comparing	and	merging	documents.
Word	stores	the	random	numbers	in	a	table	and	updates	the	table	after	each	save.
Read/write	Boolean.

expression.StoreRSIDOnSave

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.



Remarks

The	default	for	the	StoreRSIDOnSave	property	is	True.		However,	RSID
information	is	not	saved	for	HTML	documents.

Use	the	RemovePersonalInformation	property	if	you	want	to	remove
information	related	to	authors	and	reviewers	of	a	document.



Example

This	example	turns	off	storing	a	random	number	when	saving	documents.

Sub	SaveRandomNumber()

				Application.Options.StoreRSIDOnSave	=	False

End	Sub



Show	All



StoryLength	Property
							

Returns	the	number	of	characters	in	the	story	that	contains	the	specified	range	or
selection.	Read-only	Long.



Example

This	example	determines	whether	the	header	in	the	active	document	is	empty.	If
the	header	story	isn't	empty,	a	message	box	displays	the	contents	of	the	header.	If
the	document	header	is	empty,	StoryLength	returns	1	for	the	final	paragraph
mark.

Set	myRange	=	ActiveDocument.Sections(1)	_

				.Headers(wdHeaderFooterPrimary).Range

If	myRange.StoryLength	>	1	Then	MsgBox	myRange.Text

This	example	closes	the	document	without	saving	changes	if	it's	empty.

If	ActiveDocument.Content.StoryLength	=	1	Then	_

				ActiveDocument.Close	SaveChanges:=wdDoNotSaveChanges



StoryRanges	Property
							

Returns	a	StoryRanges	collection	that	represents	all	the	stories	in	the	specified
document.	Read-only.

For	information	about	returning	a	single	member	of	a	collection,	see	Returning
an	Object	from	a	Collection.



Example

This	example	steps	through	the	StoryRanges	collection	to	determine	whether
wdPrimaryFooterStory	is	part	of	the	StoryRanges	collection.

For	Each	aStory	In	ActiveDocument.StoryRanges

				If	aStory.StoryType	=	wdEvenPagesFooterStory	Then	

								MsgBox	"Document	includes	an	even	page	footer"

				End	If

Next	aStory

This	example	adds	text	to	the	primary	header	story	and	then	displays	the	text.

ActiveDocument.Sections(1).Headers(wdHeaderFooterPrimary).Range	_

				.Text	=	"Header	text"

MsgBox	ActiveDocument.StoryRanges(wdPrimaryHeaderStory).Text



Show	All



StoryType	Property
							

Returns	the	story	type	for	the	specified	range,	selection,	or	bookmark.	Read-only
WdStoryType.

WdStoryType	can	be	one	of	these	WdStoryType	constants.
wdCommentsStory
wdEndnotesStory
wdEvenPagesFooterStory
wdEvenPagesHeaderStory
wdFirstPageFooterStory
wdFirstPageHeaderStory
wdFootnotesStory
wdMainTextStory
wdPrimaryFooterStory
wdPrimaryHeaderStory
wdTextFrameStory

expression.StoryType

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.



Example

This	example	returns	the	story	type	of	the	selection.

story	=	Selection.StoryType

This	example	closes	the	footnote	pane	if	the	selection	is	contained	in	the
footnote	story.

ActiveDocument.ActiveWindow.View.Type	=	wdNormalView

If	Selection.StoryType	=	wdFootnotesStory	Then	_

				ActiveDocument.ActiveWindow.ActivePane.Close

This	example	selects	the	bookmark	named	"temp"	if	the	bookmark	is	contained
in	the	main	story	of	the	active	document.

If	ActiveDocument.Bookmarks.Exists("temp")	=	True	Then

				Set	myBookmark	=	ActiveDocument.Bookmarks("temp")

				If	myBookmark.StoryType	=	wdMainTextStory	_

								Then	myBookmark.Select

End	If



StrictFinalYaa	Property
							

True	if	the	spelling	checker	uses	spelling	rules	regarding	Arabic	words	ending
with	the	letter	yaa.	Read/write	Boolean.

expression.StrictFinalYaa

expression			Required.	An	expression	that	returns	an	Options	object.



Remarks

For	more	information	on	using	Word	with	right-to-left	languages,	see	Word
features	for	right-to-left	languages.

mk:@MSITStore:wdmain10.chm::/html/wdrefFeaturesAvailableInWordWhenBidirectionalLanguagesAreEnabled.htm


Example

This	example	sets	the	spelling	checker	to	use	spelling	rules	regarding	Arabic
words	ending	with	the	letter	yaa.

Options.StrictFinalYaa	=	True



StrictInitialAlefHamza	Property
							

True	if	the	spelling	checker	uses	spelling	rules	regarding	Arabic	words
beginning	with	an	alef	hamza.	Read/write	Boolean.

expression.StrictInitialAlefHamza

expression			Required.	An	expression	that	returns	an	Options	object.



Remarks

For	more	information	on	using	Word	with	right-to-left	languages,	see	Word
features	for	right-to-left	languages.

mk:@MSITStore:wdmain10.chm::/html/wdrefFeaturesAvailableInWordWhenBidirectionalLanguagesAreEnabled.htm


Example

This	example	sets	the	spelling	checker	to	use	spelling	rules	regarding	Arabic
words	beginning	with	an	alef	hamza.

Options.StrictInitialAlefHamza	=	True



StrikeThrough	Property
							

True	if	the	font	is	formatted	as	strikethrough	text.	Returns	True,	False	or
wdUndefined	(a	mixture	of	True	and	False).	Can	be	set	to	True,	False,	or
wdToggle.	Read/write	Long.

expression.StrikeThrough

expression			Required.	An	expression	that	returns	a	Font	object.



Remarks

To	set	or	return	double	strikethrough	formatting,	use	the	DoubleStrikeThrough
property.



Example

This	example	applies	strikethrough	formatting	to	the	first	three	words	in	the
active	document.

Set	myDoc	=	ActiveDocument

Set	myRange	=	myDoc.Range(Start:=myDoc.Words(1).Start,	_

				End:=myDoc.Words(3).End)

myRange.Font.StrikeThrough	=	True

This	example	applies	strikethrough	formatting	to	the	selected	text.

If	Selection.Type	=	wdSelectionNormal	Then

				Selection.Font.StrikeThrough	=	True

Else

				MsgBox	"You	need	to	select	some	text."

End	If



Show	All



Style	Property
							

Style	property	as	it	applies	to	the	LineFormat	object.

Returns	or	sets	the	line	format	style.	Read/write	MsoLineStyle.

MsoLineStyle	can	be	one	of	these	MsoLineStyle	constants.
msoLineSingle
msoLineThickBetweenThin
msoLineThinThick
msoLineStyleMixed
msoLineThickThin
msoLineThinThin

expression.Style

expression			Required.	An	expression	that	returns	a	LineFormat	object.

Style	property	as	it	applies	to	the	EmailAuthor	and	Revision	objects.

Returns	a	Style	object	that	represents	the	style	associated	with	the	current	e-mail
author	for	unsent	replies,	forwards,	or	new	e-mail	messages.

expression.Style

expression			Required.	An	expression	that	returns	one	of	the	above	objects.

Style	property	as	it	applies	to	the	Find,	HeadingStyle,	Paragraph,
ParagraphFormat,	Paragraphs,	Range,	Replacement,	Selection,	and	Table
objects.

Returns	or	sets	the	style	for	the	specified	object.	To	set	this	property,	specify	the
local	name	of	the	style,	an	integer,	a	WdBuiltinStyle	constant,	or	an	object	that
represents	the	style.	For	a	list	of	valid	constants,	consult	the	Microsoft	Visual



Basic	Object	Browser.	Read/write	Variant.

expression.Style

expression			Required.	An	expression	that	returns	one	of	the	above	objects.



Remarks

When	you	return	the	style	for	a	range	that	includes	more	than	one	style,	only	the
first	character	or	paragraph	style	is	returned.



Example

As	it	applies	to	the	EmailAuthor	object.

This	example	returns	the	style	associated	with	the	current	author	for	unsent
replies,	forwards,	or	new	e-mail	messages	and	displays	the	name	of	the	font
associated	with	this	style.

Set	MyEmailStyle	=	_

				ActiveDocument.Email.CurrentEmailAuthor.Style

Msgbox	MyEmailStyle.Font.Name

As	it	applies	to	the	Paragraph	object.

This	example	displays	the	style	for	each	paragraph	in	the	active	document.

For	Each	para	in	ActiveDocument.Paragraphs

				MsgBox	para.Style

Next	para

This	example	sets	alternating	styles	of	Heading	3	and	Normal	for	all	the
paragraphs	in	the	active	document.

For	i	=	1	To	ActiveDocument.Paragraphs.Count

				If	i	Mod	2	=	0	Then

								ActiveDocument.Paragraphs(i).Style	=	wdStyleNormal

				Else:	ActiveDocument.Paragraphs(i).Style	=	wdStyleHeading3

				End	If

Next	i

As	it	applies	to	the	Range	object.

This	example	displays	the	style	for	each	character	in	the	selection.	Each	element
of	the	Characters	collection	is	a	Range	object.

For	each	c	in	Selection.Characters

				MsgBox	c.Style

Next	c





StyleAreaWidth	Property
							

Returns	or	sets	the	width	of	the	style	area	in	points.	Read/write	Single.

expression.StyleAreaWidth

expression			Required.	An	expression	that	returns	a	Window	object.



Remarks

When	the	StyleAreaWidth	property	is	greater	than	0	(zero),	style	names	are
displayed	to	the	left	of	the	text.	The	style	area	isn't	visible	in	print	layout	or	Web
layout	view.



Example

This	example	switches	the	active	window	to	normal	view	and	sets	the	width	of
the	style	area	to	1	inch.

With	ActiveDocument.ActiveWindow

				.View.Type	=	wdNormalView

				.StyleAreaWidth	=	InchesToPoints(1)

End	With



StyleName	Property
							

Returns	the	name	of	the	style	applied	to	the	specified	AutoText	entry.	Read-only
String.

expression.StyleName

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.



Example

This	example	creates	an	AutoText	entry	and	then	displays	the	style	name	of	the
entry.

Set	myentry	=	NormalTemplate.AutoTextEntries.Add(Name:="rsvp",	_

				Range:=Selection.Range)

MsgBox	myentry.StyleName



Styles	Property
							

Returns	a	Styles	collection	for	the	specified	document.	Read-only.

For	information	about	returning	a	single	member	of	a	collection,	see	Returning
an	Object	from	a	Collection.



Example

This	example	applies	the	Heading	1	style	to	each	paragraph	in	the	active
document	that	begins	with	the	word	"Chapter."

For	Each	para	In	ActiveDocument.Paragraphs

				If	para.Range.Words(1).Text	=	"Chapter	"	Then

								para.Style	=	ActiveDocument.Styles(wdStyleHeading1)

				End	If

Next	para

This	example	opens	the	template	attached	to	the	active	document	and	modifies
the	Heading	1	style.	The	template	is	saved,	and	all	styles	in	the	active	document
are	updated.

Set	tempDoc	=	ActiveDocument.AttachedTemplate.OpenAsDocument

With	tempDoc.Styles(wdStyleHeading1).Font

				.Name	=	"Arial"

				.Size	=	16

End	With

tempDoc.Close	SaveChanges:=wdSaveChanges

ActiveDocument.UpdateStyles



StyleSheets	Property
							

Returns	a	StyleSheets	object	that	represents	the	Web	style	sheets	attached	to	a
document.

expression.StyleSheets

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	to	list.



Example

This	example	adds	a	style	sheet	to	the	active	document	and	places	it	highest	in
the	list	of	style	sheets	attached	to	the	document.	This	example	assumes	that	you
have	a	style	sheet	document	named	"Website.css"	located	on	your	C:	drive.

Sub	Styshts()

				ThisDocument.StyleSheets.Add	_

								FileName:="c:\WebSite.css",	_

								Precedence:=wdStyleSheetPrecedenceHighest

End	Sub



SubAddress	Property
							

Returns	or	sets	a	named	location	in	the	destination	of	the	specified	hyperlink.
Read/write	String.

expression.SubAddress

expression			Required.	An	expression	that	returns	a	Hyperlink	object.



Remarks

The	named	location	can	be	a	bookmark	in	a	Microsoft	Word	document,	a	named
cell	or	cell	reference	in	a	Microsoft	Excel	worksheet,	a	named	object	in	a
Microsoft	Access	database,	or	a	slide	number	in	a	Microsoft	PowerPoint
presentation.



Example

This	example	displays	the	subaddress	of	the	selected	hyperlink.

If	Selection.Range.Hyperlinks.Count	>=	1	Then

				MsgBox	Selection.Range.Hyperlinks(1).SubAddress

End	If

This	example	adds	a	hyperlink	to	the	selection	in	the	active	document,	sets	the
hyperlink	destination	and	subaddress,	and	then	displays	them	in	a	message	box.

Set	SCut	=	ActiveDocument.Hyperlinks.Add(	_

				Anchor:=	Selection.Range,	_

				Address:="C:\My	Documents\Other.doc",	SubAddress:=	"temp")

MsgBox	"The	hyperlink	goes	to	"	&	SCut.SubAddress



Subdocuments	Property
							

Returns	a	Subdocuments	collection	that	represents	all	the	subdocuments	in	the
specified	range	or	document.	Read-only.

For	information	about	returning	a	single	member	of	a	collection,	see	Returning
an	Object	from	a	Collection.



Example

This	example	displays	the	number	of	subdocuments	embedded	in	the	active
document.

MsgBox	ActiveDocument.Subdocuments.Count

This	example	displays	the	path	and	file	name	of	each	subdocument	in	the	active
document.

For	Each	subdoc	In	ActiveDocument.Subdocuments

				If	subdoc.HasFile	=	True	Then

								MsgBox	subdoc.Path	&	Application.PathSeparator	_

												&	subdoc.Name

				Else

								MsgBox	"This	subdocument	has	not	been	saved."

				End	If

Next	subdoc



Subject	Property
							

Returns	or	sets	the	subject	text	of	mail	messages	used	to	route	a	document	(for
the	RoutingSlip	object)	or	the	subject	text	of	a	letter	created	by	the	Letter
Wizard	(for	the	LetterContent	object).	Read/write	String.

expression.Subject

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.



Example

This	example	sets	the	subject	and	message	text	for	the	routing	slip	associated
with	Month	End.doc.

If	Documents("Month	End.doc").HasRoutingSlip	=	True	Then

				With	Documents("Month	End.doc").RoutingSlip

								.Subject	=	"End	of	month	report"

								.Message	=	"I	need	your	response	on	this."

				End	With

End	If

This	example	displays	the	subject	of	a	letter	created	by	the	Letter	Wizard,	unless
the	subject	is	an	empty	string.

If	ActiveDocument.GetLetterContent.Subject	<>	""	Then

				MsgBox	ActiveDocument.GetLetterContent.Subject

End	If



Subscript	Property
							

True	if	the	font	is	formatted	as	subscript.	Returns	True,	False	or	wdUndefined
(a	mixture	of	True	and	False).	Can	be	set	to	True,	False,	or	wdToggle.
Read/write	Long.

expression.Subscript

expression			Required.	An	expression	that	returns	a	Font	object.



Remarks

Setting	the	Subscript	property	to	True	sets	the	Superscript	property	to	False,
and	vice	versa.



Example

This	example	inserts	text	at	the	beginning	of	the	active	document	and	formats
the	tenth	character	as	subscript.

Set	myRange	=	ActiveDocument.Range(Start:=0,	End:=0)

myRange.InsertAfter	"Water	=	H20"

myRange.Characters(10).Font.Subscript	=	True

This	example	checks	the	selected	text	for	subscript	formatting.

If	Selection.Type	=	wdSelectionNormal	Then

				mySel	=	Selection.Font.Subscript

				If	mySel	=	wdUndefined	Or	mySel	=	True	Then

								MsgBox	"Subscript	text	exists	in	the	selection."

				Else

								MsgBox	"No	subscript	text	in	the	selection."

				End	If

Else

				MsgBox	"You	need	to	select	some	text."

End	If



SuggestFromMainDictionaryOnly
Property
							

True	if	Microsoft	Word	draws	spelling	suggestions	from	the	main	dictionary
only.	False	if	it	draws	spelling	suggestions	from	the	main	dictionary	and	any
custom	dictionaries	that	have	been	added.	Read/write	Boolean.

expression.SuggestFromMainDictionaryOnly

expression			Required.	An	expression	that	returns	an	Options	object.



Example

This	example	sets	Word	to	suggest	words	from	the	main	dictionary	only,	and
then	it	checks	spelling	in	the	active	document.

Options.SuggestFromMainDictionaryOnly	=	True

ActiveDocument.CheckSpelling

This	example	returns	the	current	status	of	the	Suggest	from	main	dictionary
only	option	on	the	Spelling	&	Grammar	tab	in	the	Options	dialog	box	(Tools
menu).

temp	=	Options.SuggestFromMainDictionaryOnly



SuggestSpellingCorrections	Property
							

True	if	Microsoft	Word	always	suggests	alternative	spellings	for	each	misspelled
word	when	checking	spelling.	Read/write	Boolean.

expression.SuggestSpellingCorrections

expression			Required.	An	expression	that	returns	an	Options	object.



Example

This	example	sets	Word	to	always	suggest	alternative	spellings	for	misspelled
words,	and	then	it	checks	spelling	in	the	active	document.

Options.SuggestSpellingCorrections	=	True

ActiveDocument.CheckSpelling

This	example	returns	the	current	status	of	the	Always	suggest	corrections
option	on	the	Spelling	&	Grammar	tab	in	the	Options	dialog	box	(Tools
menu).

temp	=	Options.SuggestSpellingCorrections



SummaryLength	Property
							

Returns	or	sets	the	length	of	the	summary	as	a	percentage	of	the	document
length.	The	larger	the	number,	the	more	detail	that's	included	in	the	summary.
Read/write	Long.

Note			This	property	takes	effect	immediately	if	the	AutoSummarize	toolbar	is
displayed;	otherwise,	it	takes	effect	the	next	time	the	AutoSummarize	method
or	the	SummaryViewMode	property	is	applied	to	the	document.



Example

This	example	highlights	the	key	points	in	the	active	document.	The	level	of
detail	is	set	to	50	percent.

With	ActiveDocument

				.AutoSummarize	Mode:=wdSummaryModeHighlight

				.SummaryLength	=	50

End	With

This	example	displays	the	summary	and	sets	the	level	of	detail	to	55	percent.

With	ActiveDocument

				.ShowSummary	=	True

				.SummaryLength	=	55

End	With



SummaryViewMode	Property
		

Returns	or	sets	the	way	a	summary	is	displayed.	This	property	corresponds	to
Type	of	summary	in	the	AutoSummarize	dialog	box	(Tools	menu).	Read/write
WdSummaryMode.

Can	be	one	of	the	following	WdSummaryMode	constants.

Constant Description

wdSummaryModeHighlight
Highlights	the	key	points	in	the
specified	document	and	displays
the	AutoSummarize	toolbar.

wdSummaryModeInsert Inserts	a	summary	at	the	beginning
of	the	specified	document.

wdSummaryModeCreateNew Creates	a	new	document	and
inserts	the	specified	summary.

wdSummaryModeHideAllButSummary
Hides	everything	except	the
specified	summary	and	displays
the	AutoSummarize	toolbar.



Example

This	example	hides	everything	in	the	active	document	except	the	summary	text.

With	ActiveDocument

				.SummaryViewMode	=	wdSummaryModeHideAllButSummary

				.SummaryLength	=	60

				.ShowSummary	=	True

End	With



Superscript	Property
							

True	if	the	font	is	formatted	as	superscript.	Returns	True,	False,	or
wdUndefined	(a	mixture	of	True	and	False).	Can	be	set	to	True,	False,	or
wdToggle.	Read/write	Long.

expression.Superscript

expression			Required.	An	expression	that	returns	a	Font	object.



Remarks

Setting	the	Superscript	property	to	True	sets	the	Subscript	property	to	False,
and	vice	versa.



Example

This	example	inserts	text	at	the	beginning	of	the	active	document	and	formats
two	characters	in	the	fourth	word	as	superscript.

Set	myRange	=	ActiveDocument.Range(Start:=0,	End:=0)

myRange.InsertAfter	"Superscript	in	the	4th	word."

ActiveDocument.Range(Start:=20,	End:=22).Font.Superscript	=	True

This	example	formats	the	selected	text	as	superscript.

If	Selection.Type	=	wdSelectionNormal	Then

				Selection.Font.Superscript	=	True

Else

				MsgBox	"You	need	to	select	some	text."

End	If



SuppressBlankLines	Property
							

True	if	blank	lines	are	suppressed	when	mail	merge	fields	in	a	mail	merge	main
document	are	empty.	Read/write	Boolean.

expression.SuppressBlankLines

expression			Required.	An	expression	that	returns	a	MailMerge	object.



Example

This	example	opens	Main.doc	and	executes	the	mail	merge	operation.	When
merge	fields	are	empty,	blank	lines	are	suppressed	in	the	merge	document.

Set	myDoc	=	Documents.Open(FileName:="C:\My	Documents\Main.doc")

With	myDoc.MailMerge

				.SuppressBlankLines	=	True

				.Destination	=	wdSendToPrinter

				.Execute

End	With



SuppressEndnotes	Property
							

True	if	endnotes	are	printed	at	the	end	of	the	next	section	that	doesn't	suppress
endnotes.	Suppressed	endnotes	are	printed	before	the	endnotes	in	that	section.
Read/write	Long.

expression.SuppressEndnotes

expression			Required.	An	expression	that	returns	a	PageSetup		object.



Remarks

This	property	takes	effect	only	if	the	Location	property	is	set	to
wdEndOfSection.



Example

This	example	suppresses	endnotes	in	the	first	section	of	the	active	document.

If	ActiveDocument.Endnotes.Location	=	wdEndOfSection	Then

				ActiveDocument.Sections(1).PageSetup.SuppressEndnotes	=	True

End	If



SurroundFooter	Property
							

True	if	a	page	border	encompasses	the	document	footer.	Read/write	Boolean.

expression.SurroundFooter

expression			Required.	An	expression	that	returns	a	Borders	collection	object.



Example

This	example	formats	the	page	border	in	section	one	of	the	active	document	so
that	it	encompasses	the	header	and	footer	on	each	page	in	the	section.

With	ActiveDocument.Sections(1).Borders

				.SurroundFooter	=	True

				.SurroundHeader	=	True

End	With

This	example	adds	a	graphical	page	border	around	each	page	in	section	one.	The
page	border	doesn't	encompass	the	header	and	footer	areas.

With	ActiveDocument.Sections(1)

				.Borders.SurroundFooter	=	False

				.Borders.SurroundHeader	=	False

				For	Each	aBord	In	.Borders

								aBord.ArtStyle	=	wdArtPeople

								aBord.ArtWidth	=	15

				Next	aBord

End	With



SurroundHeader	Property
							

True	if	a	page	border	encompasses	the	document	header.	Read/write	Boolean.

expression.SurroundHeader

expression			Required.	An	expression	that	returns	a	Borders	collection	object.



Example

This	example	formats	the	page	border	in	section	one	of	the	active	document	to
exclude	the	header	and	footer	areas	on	each	page.

With	ActiveDocument.Sections(1).Borders

				.SurroundFooter	=	False

				.SurroundHeader	=	False

End	With



Show	All



SynonymInfo	Property
							

SynonymInfo	property	as	it	applies	to	the	Range	object.

Returns	a	SynonymInfo	object	that	contains	information	from	the	thesaurus	on
synonyms,	antonyms,	or	related	words	and	expressions	for	the	specified	word	or
phrase.

expression.SynonymInfo

expression			Required.	An	expression	that	returns	a	Range	object.

SynonymInfo	property	as	it	applies	to	the	Application	and	Global	objects.

Returns	a	SynonymInfo	object	that	contains	information	from	the	thesaurus	on
synonyms,	antonyms,	or	related	words	and	expressions	for	the	specified	word	or
phrase.

expression.SynonymInfo(Word,	LanguageID)

expression			Required.	An	expression	that	returns	one	of	the	above	objects.

Word		Required	String.	The	specified	word	or	phrase.

LanguageID		Optional	Variant.	The	language	used	for	the	thesaurus.	Can	be
one	of	the	WdLanguageID	constants	(although	some	of	the	constants	listed	may
not	be	available	to	you,	depending	on	the	language	support	(U.S.	English,	for
example)	that	you’ve	selected	or	installed).

WdLanguageID	can	be	one	of	these	WdLanguageID	constants.
wdAfrikaans
wdAlbanian
wdArabic
wdArabicAlgeria
wdArabicBahrain



wdArabicEgypt
wdArabicIraq
wdArabicJordan
wdArabicKuwait
wdArabicLebanon
wdArabicLibya
wdArabicMorocco
wdArabicOman
wdArabicQatar
wdArabicSyria
wdArabicTunisia
wdArabicUAE
wdArabicYemen
wdArmenian
wdAssamese
wdAzeriCyrillic
wdAzeriLatin
wdBasque
wdBelgianDutch
wdBelgianFrench
wdBengali
wdBosniaHerzegovina
wdBrazilianPortuguese
wdBulgarian
wdBurmese
wdByelorussian
wdCatalan
wdChineseHongKong
wdChineseMacao
wdChineseSingapore
wdCroatian
wdCzech
wdDanish



wdDutch
wdEnglishAUS
wdEnglishBelize
wdEnglishCanadian
wdEnglishCaribbean
wdEnglishIreland
wdEnglishJamaica
wdEnglishNewZealand
wdEnglishPhilippines
wdEnglishSouthAfrica
wdEnglishTrinidad
wdEnglishUK
wdEnglishUS
wdEnglishZimbabwe
wdEstonian
wdFaeroese
wdFarsi
wdFinnish
wdFrench
wdFrenchCameroon
wdFrenchCanadian
wdFrenchCotedIvoire
wdFrenchLuxembourg
wdFrenchMali
wdFrenchMonaco
wdFrenchReunion
wdFrenchSenegal
wdFrenchWestIndies
wdFrenchZaire
wdFrisianNetherlands
wdGaelicIreland
wdGaelicScotland
wdGalician



wdGeorgian
wdGerman
wdGermanAustria
wdGermanLiechtenstein
wdGermanLuxembourg
wdGreek
wdGujarati
wdHebrew
wdHindi
wdHungarian
wdIcelandic
wdIndonesian
wdItalian
wdJapanese
wdKannada
wdKashmiri
wdKazakh
wdKhmer
wdKirghiz
wdKonkani
wdKorean
wdLanguageNone
wdLao
wdLatvian
wdLithuanian
wdLithuanianClassic
wdMacedonian
wdMalayalam
wdMalayBruneiDarussalam
wdMalaysian
wdMaltese
wdManipuri
wdMarathi



wdMexicanSpanish
wdMongolian
wdNepali
wdNoProofing
wdNorwegianBokmol
wdNorwegianNynorsk
wdOriya
wdPolish
wdPortuguese
wdPunjabi
wdRhaetoRomanic
wdRomanian
wdRomanianMoldova
wdRussian
wdRussianMoldova
wdSamiLappish
wdSanskrit
wdSerbianCyrillic
wdSerbianLatin
wdSesotho
wdSimplifiedChinese
wdSindhi
wdSlovak
wdSlovenian
wdSorbian
wdSpanish
wdSpanishArgentina
wdSpanishBolivia
wdSpanishChile
wdSpanishColombia
wdSpanishCostaRica
wdSpanishDominicanRepublic
wdSpanishEcuador



wdSpanishElSalvador
wdSpanishGuatemala
wdSpanishHonduras
wdSpanishModernSort
wdSpanishNicaragua
wdSpanishPanama
wdSpanishParaguay
wdSpanishPeru
wdSpanishPuertoRico
wdSpanishUruguay
wdSpanishVenezuela
wdSutu
wdSwahili
wdSwedish
wdSwedishFinland
wdSwissFrench
wdSwissGerman
wdSwissItalian
wdTajik
wdTamil
wdTatar
wdTelugu
wdThai
wdTibetan
wdTraditionalChinese
wdTsonga
wdTswana
wdTurkish
wdTurkmen
wdUkrainian
wdUrdu
wdUzbekCyrillic
wdUzbekLatin



wdVenda
wdVietnamese
wdWelsh
wdXhosa
wdZulu



Example

As	it	applies	to	the	Range	object.

This	example	returns	a	list	of	synonyms	for	the	selection's	first	meaning.

Slist	=	Selection.Range.SynonymInfo.SynonymList(Meaning:=1)

For	i	=	1	To	UBound(Slist)

				Msgbox	Slist(i)

Next	i

As	it	applies	to	the	Application	and	Global	objects.

This	example	returns	a	list	of	antonyms	for	the	word	"big"	in	U.S.	English.

Alist	=	SynonymInfo(Word:="big",	_

				LanguageID:=wdEnglishUS).AntonymList

For	i	=	1	To	UBound(Alist)

				Msgbox	Alist(i)

Next	i



SynonymList	Property
							

Returns	a	list	of	synonyms	for	a	specified	meaning	of	a	word	or	phrase.	The	list
is	returned	as	an	array	of	strings.	Read-only	Variant.

expression.SynonymList(Meaning)

expression			Required.	An	expression	that	returns	a	SynonymInfo	object.

Meaning			Required	Variant.	The	meaning	as	a	string	or	an	index	number	in	the
array	of	possible	meanings.



Example

This	example	returns	a	list	of	synonyms	for	the	word	"big,"	using	the	meaning
"generous"	in	U.S.	English.

Slist	=	SynonymInfo(Word:="big",	LanguageID:=wdEnglishUS)	_

				.SynonymList(Meaning:="generous")

For	i	=	1	To	UBound(Slist)

				Msgbox	Slist(i)

Next	i

This	example	returns	a	list	of	synonyms	for	the	second	meaning	of	the	selected
word	or	phrase	and	displays	these	synonyms	in	the	Immediate	window	of	the
Visual	Basic	editor.	If	there's	no	second	meaning	or	if	there	are	no	synonyms,
this	is	stated	in	a	message	box.

Set	mySi	=	Selection.Range.SynonymInfo

If	mySi.MeaningCount	>=	2	Then

				synList	=	mySi.SynonymList(Meaning:=2)

								For	i	=	1	To	UBound(synList)

												Debug.Print	synList(i)

								Next	i

Else

				MsgBox	"There	is	no	second	meaning	for	this	word	or	phrase."

End	If



System	Property
							

Returns	a	System	object,	which	can	be	used	to	return	system-related	information
and	perform	system-related	tasks.

expression.System

expression			Required.	An	expression	that	returns	an	Application	object.



Example

This	example	returns	information	about	the	system.

processor	=	System.ProcessorType

enviro	=	System.OperatingSystem

This	example	establishes	a	connection	to	a	network	drive.

System.Connect	Path:="\\Project\Info"



TabIndentKey	Property
							

True	if	the	TAB	and	BACKSPACE	keys	can	be	used	to	increase	and	decrease,
respectively,	the	left	indent	of	paragraphs	and	if	the	BACKSPACE	key	can	be
used	to	change	right-aligned	paragraphs	to	centered	paragraphs	and	centered
paragraphs	to	left-aligned	paragraphs.	Read/write	Boolean.

expression.TabIndentKey

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.



Example

This	example	sets	Word	so	that	the	TAB	and	BACKSPACE	keys	set	the	left
indent	instead	of	inserting	and	deleting	tabs.

Options.TabIndentKey	=	True



Table	Property
							

Returns	a	TableStyle	object	representing	properties	that	can	be	applied	to	a	table
using	a	table	style.

expression.Table

expression			Required.	An	expression	that	returns	a	Style	object.



Example

This	example	creates	a	new	table	style	that	specifies	a	surrounding	border	and
special	borders	and	shading	for	only	the	first	and	last	rows	and	the	last	column.

Sub	NewTableStyle()

				Dim	styTable	As	Style

				Set	styTable	=	ActiveDocument.Styles.Add(	_

								Name:="TableStyle	1",	Type:=wdStyleTypeTable)

				With	styTable.Table

								'Apply	borders	around	table,	a	double	border	to	the	heading	row,

								'a	double	border	to	the	last	column,	and	shading	to	last	row

								.Borders(wdBorderTop).LineStyle	=	wdLineStyleSingle

								.Borders(wdBorderBottom).LineStyle	=	wdLineStyleSingle

								.Borders(wdBorderLeft).LineStyle	=	wdLineStyleSingle

								.Borders(wdBorderRight).LineStyle	=	wdLineStyleSingle

								.Condition(wdFirstRow).Borders(wdBorderBottom)	_

												.LineStyle	=	wdLineStyleDouble

								.Condition(wdLastColumn).Borders(wdBorderLeft)	_

												.LineStyle	=	wdLineStyleDouble

								.Condition(wdLastRow).Shading	_

												.BackgroundPatternColor	=	wdColorGray125

				End	With

End	Sub



Show	All



TabLeader	Property
							

Returns	or	sets	the	character	between	entries	and	their	page	numbers	in	an	index,
table	of	authorities,	table	of	contents,	or	table	of	figures.	Read/write
WdTabLeader.

WdTabLeader	can	be	one	of	these	WdTabLeader	constants.
wdTabLeaderDashes
wdTabLeaderDots
wdTabLeaderHeavy
wdTabLeaderLines
wdTabLeaderMiddleDot
wdTabLeaderSpaces

expression.TabLeader

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.



Example

This	example	formats	the	tables	of	contents	in	Sales.doc	to	use	a	dotted	tab
leader.

For	Each	aTOC	In	Documents("Sales.doc").TablesOfContents

				aTOC.TabLeader	=	wdTabLeaderDots

Next	aTOC

This	example	adds	an	index	at	the	end	of	the	active	document.	The	page
numbers	are	right-aligned	with	a	dashed-line	tab	leader.

Set	myRange	=	ActiveDocument.Range(	_

				Start:=ActiveDocument.Content.End	-1,	_

				End:=ActiveDocument.Content.End	-1)

ActiveDocument.Indexes.Add(Range:=myRange,	Type:=wdIndexIndent,	_

				RightAlignPageNumbers:=True).TabLeader	=	wdTabLeaderDashes



Show	All



TableDirection	Property
							

Returns	or	sets	the	direction	in	which	Microsoft	Word	orders	cells	in	the
specified	table	or	row.	Read/write	WdTableDirection.

WdTableDirection	can	be	one	of	these	WdTableDirection	constants.
wdTableDirectionLtr
wdTableDirectionRtl

expression.TableDirection

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.



Remarks

If	the	TableDirection	property	is	set	to	wdTableDirectionLtr,	the	selected	rows
are	arranged	with	the	first	column	in	the	leftmost	position.	If	the	TableDirection
property	is	set	to	wdTableDirectionRtl,	the	selected	rows	are	arranged	with	the
first	column	in	the	rightmost	position.

For	more	information	on	using	Word	with	right-to-left	languages,	see	Word
features	for	right-to-left	languages.

mk:@MSITStore:wdmain10.chm::/html/wdrefFeaturesAvailableInWordWhenBidirectionalLanguagesAreEnabled.htm


Example

This	example	sets	Microsoft	Word	to	order	cells	in	the	selected	row	from	right	to
left.

Selection.Rows.TableDirection	=	_

				wdTableDirectionRtl



TableGridlines	Property
							

True	if	table	gridlines	are	displayed.	Read/write	Boolean.

expression.TableGridlines

expression			Required.	An	expression	that	returns	a	View	object.



Example

This	example	displays	table	gridlines	in	the	active	window.

ActiveDocument.ActiveWindow.View.TableGridlines	=	True

This	example	shows	table	gridlines	for	the	panes	associated	with	window	one	in
the	Windows	collection.

For	Each	myPane	In	Windows(1).Panes

				myPane.View.TableGridlines	=	True

Next	myPane



TableName	Property
							

Returns	a	String	with	the	SQL	query	used	to	retrieve	the	records	from	the	data
source	file	attached	to	a	mail	merge	document.	May	be	blank	if	the	table	name	is
unknown	or	not	applicable	to	the	current	data	source.	Read-only.

expression.TableName

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.



Example

This	example	checks	to	see	if	the	Customers	table	is	the	name	of	the	table	in	the
attached	data	source.	If	not,	it	attaches	the	Customers	table	in	the	Northwind
database.

Sub	DataSourceTable()

				With	ActiveDocument.MailMerge

								If	InStr(1,	.DataSource.TableName,	"Customers")	<	1	Then

												.OpenDataSource	Name:="C:\ProgramFiles\Microsoft	Office\Office\"	&	_

																"Samples\Northwind.mdb",	LinkToSource:=True,	_

																AddToRecentFiles:=False,	Connection:="TABLE	Customers"

								End	If

				End	With

End	Sub

Note		This	example	uses	the	Visual	Basic	InStr	function,	which	returns	the
position	of	the	first	character	in	the	second	string	if	it	exists	in	the	first	string.	A
value	of	zero	(0)	is	returned	if	the	first	string	does	not	contain	the	second	string.
Setting	the	conditional	value	to	less	than	one	(1)	indicates	that	the	attached	table
is	not	named	Customers.



Tables	Property
							

Returns	a	Tables	collection	that	represents	all	the	tables	in	the	specified	cell,
document,	range,	selection,	or	table.	Read-only.

For	information	about	returning	a	single	member	of	a	collection,	see	Returning
an	Object	from	a	Collection.



Example

This	example	creates	a	5x5	table	in	the	active	document	and	then	applies	a
predefined	format	to	it.

Selection.Collapse	Direction:=wdCollapseStart

Set	myTable	=	ActiveDocument.Tables.Add(Range:=Selection.Range,	_

NumRows:=5,	NumColumns:=5)

myTable.AutoFormat	Format:=wdTableFormatClassic2

This	example	inserts	numbers	and	text	into	the	first	column	of	the	first	table	in
the	active	document.

num	=	90

For	Each	acell	In	ActiveDocument.Tables(1).Columns(1).Cells

				acell.Range.Text	=	num	&	"	Sales"

				num	=	num	+	1

Next	acell



TablesOfAuthorities	Property
							

Returns	a	TablesOfAuthorities	collection	that	represents	the	tables	of
authorities	in	the	specified	document.	Read-only.

For	information	about	returning	a	single	member	of	a	collection,	see	Returning
an	Object	from	a	Collection.



Example

This	example	adds	a	table	of	authorities	at	the	beginning	of	Sales.doc.	The	table
of	authorities	compiles	references	from	all	categories.

Set	myRange	=	Documents("Sales.doc").Range(Start:=0,	End:=0)

Documents("Sales.doc").TablesOfAuthorities.Add	Range:=myRange,	_

				Category:=0,	Passim:=True,	IncludeCategoryHeader:=True

This	example	updates	each	table	of	authorities	in	the	active	document.

For	Each	myTOA	In	ActiveDocument.TablesOfAuthorities

				myTOA.Update

Next	myTOA



TablesOfAuthoritiesCategories
Property
							

Returns	a	TablesOfAuthoritiesCategories	collection	that	represents	the
available	table	of	authorities	categories	for	the	specified	document.	Read-only.

For	information	about	returning	a	single	member	of	a	collection,	see	Returning
an	Object	from	a	Collection.



Example

This	example	changes	the	name	of	the	eighth	item	in	the	table	of	authorities
category	list	for	the	active	document.

ActiveDocument.TablesOfAuthoritiesCategories(8).Name	=	"Other	case"

This	example	displays	the	name	of	the	last	table	of	authorities	category	if	the
category	name	has	been	changed.

last	=	ActiveDocument.TablesOfAuthoritiesCategories.Count

If	ActiveDocument.TablesOfAuthoritiesCategories(last)	_

				.Name	<>	"16"	Then

				MsgBox	ActiveDocument.TablesOfAuthoritiesCategories(last).Name

End	If



TablesOfContents	Property
							

Returns	a	TablesOfContents	collection	that	represents	the	tables	of	contents	in
the	specified	document.	Read-only.

For	information	about	returning	a	single	member	of	a	collection,	see	Returning
an	Object	from	a	Collection.



Example

This	example	adds	a	table	of	contents	at	the	beginning	of	Sales.doc.	The	table	of
contents	collects	entry	text	from	TC	fields.

Set	myRange	=	Documents("Sales.doc").Range(Start:=0,	End:=0)

Documents("Sales.doc").TablesOfContents.Add	Range:=myRange,	_

				UseFields:=True,	UseHeadingStyles:=False

This	example	updates	the	page	numbers	for	items	in	the	table	of	contents	in	the
active	document.

For	Each	myTOC	In	ActiveDocument.TablesOfContents

				myTOC.UpdatePageNumbers

Next	myTOC



TablesOfFigures	Property
							

Returns	a	TablesOfFigures	collection	that	represents	the	tables	of	figures	in	the
specified	document.	Read-only.

For	information	about	returning	a	single	member	of	a	collection,	see	Returning
an	Object	from	a	Collection.



Example

This	example	adds	a	table	of	figures	at	the	insertion	point	in	the	active
document.

Selection.Collapse	Direction:=wdCollapseStart

ActiveDocument.TablesOfFigures.Add	Range:=Selection.Range,	_

				Caption:=wdCaptionFigure

This	example	updates	the	contents	of	the	first	table	of	figures	in	Report.doc.

Documents("Report.doc").TablesOfFigures(1).Update



TabPosition	Property
							

Returns	or	sets	the	tab	position	for	the	specified	ListLevel	object.	Read/write
Single.

expression.TabPosition

expression			Required.	An	expression	that	returns	a	ListLevel	object.



Example

This	example	sets	each	list	level	number	so	that	it's	indented	0.5	inch	(36	points)
from	the	previous	level,	and	the	tab	is	set	at	0.25	inch	(18	points)	from	the
number.

r	=	0

For	Each	lev	In	ListGalleries(wdOutlineNumberGallery)	_

				.ListTemplates(1).ListLevels

								lev.Alignment	=	wdListLevelAlignLeft

								lev.NumberPosition	=	r

								lev.TrailingCharacter	=	wdTrailingTab

								lev.TabPosition	=	r	+	18

								r	=	r	+	36

Next	lev

This	example	sets	the	variable	myltemp	to	the	first	numbered	list	template,	and
then	it	sets	the	tab	position	at	one	inch.	The	list	template	is	then	applied	to	the
selection.

Set	myltemp	=	ListGalleries(wdNumberGallery).ListTemplates(1)

myltemp.ListLevels(1).TabPosition	=	InchesToPoints(1)

Selection.Range.ListFormat.ApplyListTemplate	ListTemplate:=myltemp



TabStops	Property
							

Returns	or	sets	a	TabStops	collection	that	represents	all	the	custom	tab	stops	for
the	specified	paragraphs.	Read/write.

For	information	about	returning	a	single	member	of	a	collection,	see	Returning
an	Object	from	a	Collection.



Example

This	example	adds	a	centered	tab	stop	at	2	inches	to	all	the	paragraphs	in	the
active	document.	The	InchesToPoints	method	is	used	to	convert	inches	to
points.

With	ActiveDocument.Paragraphs.TabStops

				.Add	Position:=	InchesToPoints(2),	Alignment:=	wdAlignTabCenter

End	With

This	example	sets	the	tab	stops	for	every	paragraph	in	the	document	to	match	the
tab	stops	in	the	first	paragraph.

Set	para1Tabs	=	ActiveDocument.Paragraphs(1).TabStops

ActiveDocument.Paragraphs.TabStops	=	para1Tabs



Show	All



Target	Property
							

Target	property	as	it	applies	to	the	Browser	object.

Returns	or	sets	the	document	item	that	the	Previous	and	Next	methods	locate.
Read/write	WdBrowseTarget.

WdBrowseTarget	can	be	one	of	these	WdBrowseTarget	constants.
wdBrowseComment
wdBrowseEdit
wdBrowseEndnote
wdBrowseField
wdBrowseFind
wdBrowseFootnote
wdBrowseGoTo
wdBrowseGraphic
wdBrowseHeading
wdBrowsePage
wdBrowseSection
wdBrowseTable

expression.Target

expression			Required.	An	expression	that	returns	a	Browser	object.

Target	property	as	it	applies	to	the	Hyperlink	object.

Returns	or	sets	the	name	of	the	frame	or	window	in	which	to	load	the	hyperlink.
Read/write	String.

expression.Target

expression			Required.	An	expression	that	returns	a	Hyperlink	object.



Example

As	it	applies	to	the	Browser	object.

This	example	moves	the	insertion	point	to	the	next	comment	in	the	active
document.

With	Application.Browser

				.Target	=	wdBrowseComment

				.Next

End	With

As	it	applies	to	the	Hyperlink	object.

This	example	sets	the	specified	hyperlink	to	open	in	a	new	browser	window.

ActiveDocument.Hyperlinks(1).Target	=	"_blank"

This	example	sets	the	specified	hyperlink	to	open	in	the	frame	called	"left."

ActiveDocument.Hyperlinks(1).Target	=	"left"



Show	All



TargetBrowser	Property
							

Sets	or	returns	an	MsoTargetBrowser	constant	representing	the	target	browser
for	documents	viewed	in	a	Web	browser.	Read/write.

MsoTargetBrowser	can	be	one	of	these	MsoTargetBrowser	constants.
msoTargetBrowserIE4		Microsoft	Internet	Explorer	4.0.
msoTargetBrowserIE5		Internet	Explorer	5.
msoTargetBrowserIE6		Internet	Explorer	6.
msoTargetBrowserV3		Netscape	Navigator	3.
msoTargetBrowserV4		Netscape	Navigator	4.

expression.TargetBrowser

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.



Remark

The	TargetBrowser	property	sets	the	BrowserLevel	property,	but
BrowserLevel	is	only	important	if	the	DisableFeatures	property	is	set	to	True.
Otherwise,	it	is	ignored.	The	TargetBrowser	property,	however,	is	not	ignored
and	sets	the	browser	level	for	all	Web	documents	or	for	a	single	Web	document.



Example

This	example	sets	the	target	browser	for	the	active	document	to	Microsoft
Internet	Explorer	6	if	the	current	target	browser	is	an	earlier	version.

Sub	SetWebBrowser()

				With	ActiveDocument.WebOptions

								If	.TargetBrowser	<	msoTargetBrowserIE6	Then

												.TargetBrowser	=	msoTargetBrowserIE6

								End	If

				End	With

End	Sub

This	example	sets	the	target	browser	for	all	documents	to	Internet	Explorer	6.

Sub	GlobalTargetBrowser()

				Application.DefaultWebOptions	_

								.TargetBrowser	=	msoTargetBrowserIE6

End	Sub



TaskPanes	Property
							

Returns	a	TaskPanes	object	that	represents	the	most	commonly	performed	tasks
in	Microsoft	Word.	

expression.TaskPanes

expression			Required.	An	expression	that	returns	an	Application	object.



Example

The	following	example	displays	the	task	pane	that	contains	information	about
formatting	in	a	document.

Sub	showFormatting()

				Application.TaskPanes.Item(wdTaskPaneFormatting).Visible	=	True

End	Sub



Tasks	Property
							

Returns	a	Tasks	collection	that	represents	all	the	applications	that	are	running.

expression.Tasks

expression			Required.	An	expression	that	returns	an	Application	object.



Remarks

For	information	about	returning	a	single	member	of	a	collection,	see	Returning
an	Object	from	a	Collection.



Example

This	example	displays	the	calculator.	If	the	calculator	is	not	already	running,
then	Word	starts	the	task	and	then	displays	the	calculator.

If	Tasks.Exists("Calculator")	Then

				With	Tasks("Calculator")

								.Activate

								.WindowState	=	wdWindowStateNormal

				End	With

Else

				Shell	"calc.exe"

				Tasks("Calculator").WindowState	=	wdWindowStateNormal

End	If

This	example	checks	to	see	whether	Microsoft	Excel	is	currently	running.	If	the
task	is	running,	the	example	activates	Microsoft	Excel;	otherwise,	a	message	box
is	displayed.

If	Tasks.Exists("Microsoft	Excel")	=	True	Then

				With	Tasks("Microsoft	Excel")

								.Activate

								.WindowState	=	wdWindowStateMaximize

				End	With

Else

				Msgbox	"Microsoft	Excel	is	not	currently	running."

End	If



Templates	Property
							

Returns	a	Templates	collection	that	represents	all	the	available	templates	—
global	templates	as	well	as	those	attached	to	open	documents.

expression.Templates

expression			Required.	An	expression	that	returns	an	Application	object.



Remarks

For	information	about	returning	a	single	member	of	a	collection,	see	Returning
an	Object	from	a	Collection.



Example

This	example	displays	the	name	of	each	template	in	the	Templates	collection.

Count	=	1

For	Each	aTemplate	In	Templates

				MsgBox	aTemplate.Name	&	"	is	template	number	"	&	Count

				Count	=	Count	+	1

Next	aTemplate

In	this	example,	if	template	one	is	a	global	template,	its	path	is	stored	in
thePath.	The	ChDir	statement	is	used	to	make	the	folder	with	the	path	stored	in
thePath	the	current	folder.	When	this	change	is	made,	the	Open	dialog	box	is
displayed.

If	Templates(1).Type	=	wdGlobalTemplate	Then

				thePath	=	Templates(1).Path

				If	thePath	<>	""	Then	ChDir	thePath

				Dialogs(wdDialogFileOpen).Show

End	If



Text	Property
							

Range	or	Selection	object:	Returns	or	sets	the	text	in	the	specified	range	or
selection.	Read/write	String.

Find	or	Replacement	object:	Returns	or	sets	the	text	to	find	or	replace	in	the
specified	range	or	selection.	Read/write	String.



Remarks

The	Text	property	returns	the	plain,	unformatted	text	of	the	selection	or	range.
When	you	set	this	property,	the	text	of	the	range	or	selection	is	replaced.



Example

This	example	displays	the	text	in	the	selection.	If	nothing	is	selected,	the
character	following	the	insertion	point	is	displayed.

MsgBox	Selection.Text

This	example	replaces	the	first	word	in	the	active	document	with	"Dear."

Set	myRange	=	ActiveDocument.Words(1)

myRange.Text	=	"Dear	"

This	example	inserts	10	lines	of	text	into	a	new	document.

Documents.Add

For	i	=	1	To	10

				Selection.Text	=	"Line"	&	Str(i)	&	Chr(13)

				Selection.MoveDown	Unit:=wdParagraph,	Count:=1

Next	i

This	example	replaces	"Hello"	with	"Goodbye"	in	the	active	document.

Set	myRange	=	ActiveDocument.Content

With	myRange.Find

				.ClearFormatting

				.Replacement.ClearFormatting

				.Text	=	"Hello"

				.Replacement.Text	=	"Goodbye"

				.Execute	Replace:=wdReplaceAll

End	With



TextColumns	Property
							

Returns	a	TextColumns	collection	that	represents	the	set	of	text	columns	for	the
specified	PageSetup	object.

expression.TextColumns

expression			Required.	An	expression	that	returns	a	PageSetup	object.



Remarks

There	will	always	be	at	least	one	text	column	in	the	collection.	When	you	create
new	text	columns,	you're	adding	to	a	collection	of	one	column.

For	information	about	returning	a	single	member	of	a	collection,	see	Returning
an	Object	from	a	Collection.



Example

This	example	creates	four	evenly-spaced	text	columns	that	are	applied	to	section
two	in	the	active	document.

With	ActiveDocument.Sections(2).PageSetup.TextColumns

				.SetCount	NumColumns:=3

				.Add	EvenlySpaced:=True

End	With

This	example	creates	a	document	with	two	text	columns.	The	first	column	is	1.5
inches	wide	and	the	second	is	3	inches	wide.

Set	myDoc	=	Documents.Add

With	myDoc.PageSetup.TextColumns

				.SetCount	NumColumns:=1

				.Add	Width:=InchesToPoints(3)

End	With

With	myDoc.PageSetup.TextColumns(1)

				.Width	=	InchesToPoints(1.5)

				.SpaceAfter	=	InchesToPoints(0.5)

End	With



TextEffect	Property
							

Returns	a	TextEffectFormat	object	that	contains	text-effect	formatting
properties	for	the	specified	shape.	Applies	to	Shape	or	ShapeRange	objects	that
represent	WordArt	and	to	InlineShape	objects.	Read-only.



Example

This	example	sets	the	font	style	to	bold	for	shape	three	on	myDocument	if	the
shape	is	WordArt.

Set	myDocument	=	ActiveDocument

With	myDocument.Shapes(3)

				If	.Type	=	msoTextEffect	Then

								.TextEffect.FontBold	=	True

				End	If

End	With



Show	All



TextEncoding	Property
							

Returns	or	sets	the	code	page,	or	character	set,	that	Microsoft	Word	uses	for	a
document	saved	as	an	encoded	text	file.	Read/write	MsoEncoding.

MsoEncoding	can	be	one	of	these	MsoEncoding	constants.
msoEncodingArabic
msoEncodingArabicASMO
msoEncodingArabicAutoDetect	Not	used	with	this	property.
msoEncodingArabicTransparentASMO
msoEncodingAutoDetect	Not	used	with	this	property.
msoEncodingBaltic
msoEncodingCentralEuropean
msoEncodingCyrillic
msoEncodingCyrillicAutoDetect	Not	used	with	this	property.
msoEncodingEBCDICArabic
msoEncodingEBCDICDenmarkNorway
msoEncodingEBCDICFinlandSweden
msoEncodingEBCDICFrance
msoEncodingEBCDICGermany
msoEncodingEBCDICGreek
msoEncodingEBCDICGreekModern
msoEncodingEBCDICHebrew
msoEncodingEBCDICIcelandic
msoEncodingEBCDICInternational
msoEncodingEBCDICItaly
msoEncodingEBCDICJapaneseKatakanaExtended
msoEncodingEBCDICJapaneseKatakanaExtendedAndJapanese
msoEncodingEBCDICJapaneseLatinExtendedAndJapanese
msoEncodingEBCDICKoreanExtended



msoEncodingEBCDICKoreanExtendedAndKorean
msoEncodingEBCDICLatinAmericaSpain
msoEncodingEBCDICMultilingualROECELatin2
msoEncodingEBCDICRussian
msoEncodingEBCDICSerbianBulgarian
msoEncodingEBCDICSimplifiedChineseExtendedAndSimplifiedChinese
msoEncodingEBCDICThai
msoEncodingEBCDICTurkish
msoEncodingEBCDICTurkishLatin5
msoEncodingEBCDICUnitedKingdom
msoEncodingEBCDICUSCanada
msoEncodingEBCDICUSCanadaAndJapanese
msoEncodingEBCDICUSCanadaAndTraditionalChinese
msoEncodingEUCChineseSimplifiedChinese
msoEncodingEUCJapanese
msoEncodingEUCKorean
msoEncodingEUCTaiwaneseTraditionalChinese
msoEncodingEuropa3
msoEncodingExtAlphaLowercase
msoEncodingGreek
msoEncodingGreekAutoDetect	Not	used	with	this	property.
msoEncodingHebrew
msoEncodingHZGBSimplifiedChinese
msoEncodingIA5German
msoEncodingIA5IRV
msoEncodingIA5Norwegian
msoEncodingIA5Swedish
msoEncodingISO2022CNSimplifiedChinese
msoEncodingISO2022CNTraditionalChinese
msoEncodingISO2022JPJISX02011989
msoEncodingISO2022JPJISX02021984
msoEncodingISO2022JPNoHalfwidthKatakana
msoEncodingISO2022KR



msoEncodingISO6937NonSpacingAccent
msoEncodingISO885915Latin9
msoEncodingISO88591Latin1
msoEncodingISO88592CentralEurope
msoEncodingISO88593Latin3
msoEncodingISO88594Baltic
msoEncodingISO88595Cyrillic
msoEncodingISO88596Arabic
msoEncodingISO88597Greek
msoEncodingISO88598Hebrew
msoEncodingISO88599Turkish
msoEncodingJapaneseAutoDetect	Not	used	with	this	property.
msoEncodingJapaneseShiftJIS
msoEncodingKOI8R
msoEncodingKOI8U
msoEncodingKorean
msoEncodingKoreanAutoDetect	Not	used	with	this	property.
msoEncodingKoreanJohab
msoEncodingMacArabic
msoEncodingMacCroatia
msoEncodingMacCyrillic
msoEncodingMacGreek1
msoEncodingMacHebrew
msoEncodingMacIcelandic
msoEncodingMacJapanese
msoEncodingMacKorean
msoEncodingMacLatin2
msoEncodingMacRoman
msoEncodingMacRomania
msoEncodingMacSimplifiedChineseGB2312
msoEncodingMacTraditionalChineseBig5
msoEncodingMacTurkish
msoEncodingMacUkraine



msoEncodingOEMArabic
msoEncodingOEMBaltic
msoEncodingOEMCanadianFrench
msoEncodingOEMCyrillic
msoEncodingOEMCyrillicII
msoEncodingOEMGreek437G
msoEncodingOEMHebrew
msoEncodingOEMIcelandic
msoEncodingOEMModernGreek
msoEncodingOEMMultilingualLatinI
msoEncodingOEMMultilingualLatinII
msoEncodingOEMNordic
msoEncodingOEMPortuguese
msoEncodingOEMTurkish
msoEncodingOEMUnitedStates
msoEncodingSimplifiedChineseAutoDetect	Not	used	with	this	property.
msoEncodingSimplifiedChineseGBK
msoEncodingT61
msoEncodingTaiwanCNS
msoEncodingTaiwanEten
msoEncodingTaiwanIBM5550
msoEncodingTaiwanTCA
msoEncodingTaiwanTeleText
msoEncodingTaiwanWang
msoEncodingThai
msoEncodingTraditionalChineseAutoDetect	Not	used	with	this	property.
msoEncodingTraditionalChineseBig5
msoEncodingTurkish
msoEncodingUnicodeBigEndian
msoEncodingUnicodeLittleEndian
msoEncodingUSASCII
msoEncodingUTF7
msoEncodingUTF8



msoEncodingVietnamese
msoEncodingWestern

expression.TextEncoding

expression			Required.	An	expression	that	returns	a	Document	object.



Remarks

The	TextEncoding	property	sets	text	encoding	separately	from	HTML	encoding,
which	you	can	set	using	the	Encoding	property.	To	set	text	encoding	for	all
documents	saved	as	text	files,	use	the	DefaultTextEncoding	property.



Example

This	example	sets	the	text	encoding	for	the	active	document	to	Japanese	if	it	is
saved	as	a	text	file.

Sub	EncodeText()

				ActiveDocument.TextEncoding	=	msoEncodingJapaneseShiftJIS

End	Sub



TextFrame	Property
							

Returns	a	TextFrame	object	that	contains	the	text	for	the	specified	shape.



Example

This	example	adds	a	rectangle	to	myDocument,	adds	text	to	the	rectangle,	and	sets
the	margins	for	the	text	frame.

Set	myDocument	=	ActiveDocument

With	myDocument.Shapes.AddShape(msoShapeRectangle,	_

								0,	0,	250,	140).TextFrame

				.TextRange.Text	=	"Here	is	some	test	text"

				.MarginBottom	=	0

				.MarginLeft	=	100

				.MarginRight	=	0

				.MarginTop	=	20

End	With



TextInput	Property
							

Returns	a	TextInput	object	that	represents	a	text	form	field.

expression.TextInput

expression			Required.	An	expression	that	returns	a	FormField	object.



Remarks

If	the	TextInput	property	is	applied	to	a	FormField	object	that	isn't	a	drop-
down	form	field,	the	property	won't	fail,	but	the	Valid	property	for	the	returned
object	will	be	False.

Use	the	Result	property	with	the	FormField	object	to	return	or	set	the	contents
of	a	TextInput	object,	as	follows:

ActiveDocument.FormFields("Text1").Result	=	"John	Doe"



Example

This	example	protects	the	active	document	for	forms	and	deletes	the	contents	of
the	form	field	named	"Text1."

ActiveDocument.Protect	Type:=wdAllowOnlyFormFields

ActiveDocument.FormFields("Text1").TextInput.Clear

If	the	first	form	field	in	the	active	document	is	a	text	form	field	that	accepts
regular	text,	this	example	sets	the	contents	of	the	form	field.

Set	myField	=	ActiveDocument.FormFields(1)

If	myField.Type	=	wdFieldFormTextInput	And	_

				myField.TextInput.Type	=	wdRegularText	Then

				myField.Result	=	"Hello"

End	If



Show	All



TextLineEnding	Property
							

Returns	or	sets	a	WdLineEndingType	constant	indicating	how	Microsoft	Word
marks	the	line	and	paragraph	breaks	in	documents	saved	as	text	files.
Read/write.

WdLineEndingType	can	be	one	of	these	WdLineEndingType	constants.
wdCRLF
wdCROnly
wdLFCR	Default
wdLFOnly
wdLSPS

expression.TextLineEnding

expression			Required.	An	expression	that	returns	a	Document	object.



Example

This	example	sets	the	active	document	to	enter	a	carriage	return	for	line	and
paragraph	breaks	when	it	is	saved	as	a	text	file.

Sub	LineEndings()

				ActiveDocument.TextLineEnding	=	wdCROnly

End	Sub



TextPosition	Property
							

Returns	or	sets	the	position	(in	points)	for	the	second	line	of	wrapping	text	for
the	specified	ListLevel	object.	Read/write	Single.

expression.TextPosition

expression			Required.	An	expression	that	returns	a	ListLevel	object.



Example

This	example	sets	the	indentation	for	all	levels	of	the	first	outline-numbered	list
template.	Each	list	level	number	is	indented	0.5	inch	(36	points)	from	the
previous	level,	the	tab	is	set	at	0.25	inch	(18	points)	from	the	number,	and
wrapping	text	is	indented	0.25	inch	(18	points)	from	the	number.

r	=	0

For	Each	lev	In	ListGalleries(wdOutlineNumberGallery)	_

								.ListTemplates(1).ListLevels

				lev.Alignment	=	wdListLevelAlignLeft

				lev.NumberPosition	=	r

				lev.TrailingCharacter	=	wdTrailingTab

				lev.TabPosition	=	r	+	18

				lev.TextPosition	=	r	+	18

				r	=	r	+	36

Next	lev



TextRange	Property
							

Returns	a	Range	object	that	represents	the	text	in	the	specified	text	frame.

expression.TextRange

expression			Required.	An	expression	that	returns	a	TextFrame	object.



Example

This	example	adds	a	text	box	to	the	active	document	and	then	adds	text	to	the
text	box.

Set	myTBox	=	ActiveDocument.Shapes	_

				.AddTextBox(Orientation:=msoTextOrientationHorizontal,	_

				Left:=100,	Top:=100,	Width:=300,	Height:=200)

myTBox.TextFrame.TextRange	=	"Test	Box"

This	example	adds	text	to	TextBox	1	in	the	active	document.

ActiveDocument.Shapes("TextBox	1").TextFrame.TextRange	_

				.InsertAfter("New	Text")

This	example	returns	the	text	from	TextBox	1	in	the	active	document	and
displays	it	in	a	message	box.

MsgBox	ActiveDocument.Shapes("TextBox	1").TextFrame.TextRange.Text



TextRetrievalMode	Property
							

Returns	a	TextRetrievalMode	object	that	controls	how	text	is	retrieved	from	the
specified	Range.	Read/write.



Example

This	example	retrieves	the	selected	text	(excluding	any	hidden	text)	and	inserts	it
at	the	beginning	of	the	third	paragraph	in	the	active	document.

If	Selection.Type	=	wdSelectionNormal	Then

				Set	Range1	=	Selection.Range

				Range1.TextRetrievalMode.IncludeHiddenText	=	False

				Set	Range2	=	ActiveDocument.Paragraphs(2).Range

				Range2.InsertAfter	Range1.Text

End	If

This	example	retrieves	and	displays	the	first	three	paragraphs	as	they	appear	in
outline	view.

Set	myRange	=	ActiveDocument.Range(Start:=ActiveDocument	_

				.Paragraphs(1).Range.Start,	_

				End:=ActiveDocument.Paragraphs(3).Range.End)

myRange.TextRetrievalMode.ViewType	=	wdOutlineView

MsgBox	myRange.Text

This	example	excludes	field	codes	and	hidden	text	from	the	range	that	refers	to
the	selected	text.	The	example	then	displays	the	text	in	a	message	box.

If	Selection.Type	=	wdSelectionNormal	Then

				Set	aRange	=	Selection.Range

				With	aRange.TextRetrievalMode

								.IncludeHiddenText	=	False

								.IncludeFieldCodes	=	False

				End	With

				MsgBox	aRange.Text

End	If



TextShape	Property
							

Returns	a	Shape	object	that	represents	the	shape	of	the	text	box	associated	with
a	diagram	node.

expression.TextShape

expression			Required.	An	expression	that	returns	a	DiagramNode	object.



Example

This	example	adds	child	nodes	to	a	parent	node	and	displays	text	in	the	parent
node	indicating	the	number	of	child	nodes	created.

Sub	CountChildNodes()

				Dim	shpDiagram	As	Shape

				Dim	dgnNode	As	DiagramNode

				Dim	shpText	As	Shape

				Dim	intCount	As	Integer

				'Add	radial	diagram	to	the	current	document

				Set	shpDiagram	=	ThisDocument.Shapes.AddDiagram	_

								(Type:=msoDiagramRadial,	Left:=10,	_

								Top:=15,	Width:=400,	Height:=475)

				'Add	first	node	to	the	diagram

				Set	dgnNode	=	shpDiagram.DiagramNode.Children.AddNode

				'Add	three	child	nodes

				For	intCount	=	1	To	3

								dgnNode.Children.AddNode

				Next	intCount

				'Add	a	text	box	for	each	node	in	the	diagram

				For	intCount	=	1	To	4

								Set	shpText	=	shpDiagram.DiagramNode.Children(1).TextShape

								shpText.TextFrame.TextRange.Text	=	Str(intCount)

				Next	intCount

End	Sub



TextToDisplay	Property
							

Returns	or	sets	the	specified	hyperlink's	visible	text	in	a	document.	Read/write
String.

expression.TextToDisplay

expression			Required.	An	expression	that	returns	a	Hyperlink	object.



Example

This	example	sets	the	display	text	for	the	first	hyperlink	in	the	active	document.

ActiveDocument.Hyperlinks(1).TextToDisplay	=	_

				"Follow	this	link	for	more	information..."



Show	All



Texture	Property
							

Returns	or	sets	the	shading	texture	for	the	specified	object.	Read/write
WdTextureIndex.

WdTextureIndex	can	be	one	of	these	WdTextureIndex	constants.
wdTexture10Percent
wdTexture12Pt5Percent
wdTexture15Percent
wdTexture17Pt5Percent
wdTexture20Percent
wdTexture22Pt5Percent
wdTexture25Percent
wdTexture27Pt5Percent
wdTexture2Pt5Percent
wdTexture30Percent
wdTexture32Pt5Percent
wdTexture35Percent
wdTexture37Pt5Percent
wdTexture40Percent
wdTexture42Pt5Percent
wdTexture45Percent
wdTexture47Pt5Percent
wdTexture50Percent
wdTexture52Pt5Percent
wdTexture55Percent
wdTexture57Pt5Percent
wdTexture5Percent
wdTexture60Percent
wdTexture62Pt5Percent



wdTexture65Percent
wdTexture67Pt5Percent
wdTexture70Percent
wdTexture72Pt5Percent
wdTexture75Percent
wdTexture77Pt5Percent
wdTexture7Pt5Percent
wdTexture80Percent
wdTexture82Pt5Percent
wdTexture85Percent
wdTexture87Pt5Percent
wdTexture90Percent
wdTexture92Pt5Percent
wdTexture95Percent
wdTexture97Pt5Percent
wdTextureCross
wdTextureDarkCross
wdTextureDarkDiagonalCross
wdTextureDarkDiagonalDown
wdTextureDarkDiagonalUp
wdTextureDarkHorizontal
wdTextureDarkVertical
wdTextureDiagonalCross
wdTextureDiagonalDown
wdTextureDiagonalUp
wdTextureHorizontal
wdTextureNone
wdTextureSolid
wdTextureVertical

expression.Texture

expression			Required.	An	expression	that	returns	a	Shading	object.



Example

This	example	sets	a	range	that	references	the	first	paragraph	in	the	active
document	and	then	applies	a	grid	texture	to	that	range.

Set	myRange	=	ActiveDocument.Paragraphs(1).Range

myRange.Shading.Texture	=	wdTextureCross

This	example	adds	a	table	at	the	insertion	point	and	then	applies	a	vertical	line
texture	to	the	first	row	in	the	table.

Selection.Collapse	Direction:=wdCollapseStart

Set	myTable	=	ActiveDocument.Tables.Add(Range:=Selection.Range,	_

				NumRows:=2,	NumColumns:=2)

myTable.Rows(1).Shading.Texture	=	wdTextureVertical

This	example	applies	10	percent	shading	to	the	first	word	in	the	active
document.

ActiveDocument.Words(1).Shading.Texture	=	wdTexture10Percent



TextureName	Property
							

Returns	the	name	of	the	custom	texture	file	for	the	specified	fill.	Read-only
String.

expression.TextureName

expression			Required.	An	expression	that	returns	a	FillFormat	object.



Remarks

Use	the	UserTextured	method	to	set	the	texture	file	for	the	fill.



Example

This	example	adds	an	oval	to	the	active	document.	If	the	second	shape	in	the
document	has	a	user-defined	textured	fill,	the	new	oval	will	have	the	same	fill	as
shape	two.	If	shape	two	has	any	other	type	of	fill,	the	new	oval	will	have	a	green
marble	fill.	This	example	assumes	that	the	active	document	already	has	at	least
two	shapes.

With	ActiveDocument.Shapes

				Set	newFill	=	.AddShape(msoShapeOval,	0,	0,	200,	90).Fill

				With	.Item(2).Fill

								If.TextureType	=	msoTextureUserDefined	Then

												newFill.UserTextured	.TextureName

								Else

												newFill.PresetTextured	msoTextureGreenMarble

								End	If

				End	With

End	With



Show	All



TextureType	Property
							

Returns	the	texture	type	for	the	specified	fill.	Read-only	MsoTextureType.

MsoTextureType	can	be	one	of	these	MsoTextureType	constants.
msoTexturePreset
msoTextureTypeMixed
msoTextureUserDefined

expression.TextureType

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.



Remarks

This	property	is	read-only.	Use	the	PresetTextured,	UserPicture,	or
UserTextured	method	to	set	the	texture	type	for	the	fill.



Example

This	example	changes	the	fill	for	all	shapes	in	the	active	document	with	a
custom	textured	fill	to	a	canvas	fill.

For	Each	s	In	ActiveDocument.Shapes

				With	s.Fill

								If	.TextureType	=	msoTextureUserDefined	Then

												.PresetTextured	msoTextureCanvas

								End	If

				End	With

Next



TextWrap	Property
							

True	if	document	text	wraps	around	the	specified	frame.	Read/write	Boolean.

expression.TextWrap

expression			Required.	An	expression	that	returns	a	Frame	object.



Example

This	example	causes	text	to	not	wrap	around	the	first	frame	in	the	active
document.

If	ActiveDocument.Frames.Count	>=	1	Then

				ActiveDocument.Frames(1).TextWrap	=	False

End	If

This	example	causes	text	to	wrap	around	all	frames	in	the	active	document.

For	Each	aFrame	In	ActiveDocument.Frames

				aFrame.TextWrap	=	True

Next	aFrame



Show	All



ThemeName	Property
							

Returns	or	sets	the	name	of	the	theme	plus	any	theme	formatting	options	to	use
for	new	e-mail	messages.	Read/write	String.



Remarks

For	an	explanation	of	the	value	returned	by	this	property,	see	the	Name
argument	of	the	ApplyTheme	method.	The	value	returned	by	this	property	may
not	correspond	to	the	theme's	display	name	as	it	appears	in	the	Theme	dialog
box.	To	return	a	theme's	display	name,	use	the	ActiveThemeDisplayName
property.

You	can	also	use	the	GetDefaultTheme	and	SetDefaultTheme	methods	to
return	and	set	the	default	theme	for	new	e-mail	messages.



Example

This	example	sets	Microsoft	Word	to	use	the	Blueprint	theme	with	Vivid	Colors
for	all	new	e-mail	messages.

Application.EmailOptions.ThemeName	=	"blueprnt	100"



ThreeD	Property
							

Returns	a	ThreeDFormat	object	that	contains	3-D	–	effect	formatting	properties
for	the	specified	shape.	Read-only.



Example

This	example	sets	the	depth,	extrusion	color,	extrusion	direction,	and	lighting
direction	for	the	3-D	effects	applied	to	shape	one	on	myDocument.

Set	myDocument	=	ActiveDocument

With	myDocument.Shapes(1).ThreeD

				.Visible	=	True

				.Depth	=	50

				'	RGB	value	for	purple

				.ExtrusionColor.RGB	=	RGB(255,	100,	255)

				.SetExtrusionDirection	msoExtrusionTop

				.PresetLightingDirection	=	msoLightingLeft

End	With



TintAndShade	Property
							

Returns	a	Single	that	represents	the	lightening	or	darkening	of	a	specified
shape's	color.	Read/write.

expression.TintAndShade

expression			Required.	An	expression	that	returns	a	ColorFormat	object.



Remarks

You	can	enter	a	number	from	-1	(darkest)	to	1	(lightest)	for	the	TintAndShade
property,	0	(zero)	being	neutral.



Example

This	example	creates	a	new	shape	in	the	active	document,	sets	the	fill	color,	and
lightens	the	color	shade.

Sub	NewTintedShape()

				Dim	shpHeart	As	Shape

				Set	shpHeart	=	ActiveDocument.Shapes	_

								.AddShape(Type:=msoShapeHeart,	Left:=150,	_

								Top:=150,	Width:=250,	Height:=250)

				With	shpHeart.Fill.ForeColor

								.RGB	=	RGB(Red:=255,	Green:=28,	Blue:=0)

								.TintAndShade	=	0.3

				End	With

End	Sub



Title	Property
							

Returns	a	String	representing	the	title	of	a	Web	style	sheet.	Read/write.

expression.Title

expression			Required.	An	expression	that	returns	a	Sylesheet	object.



Example

This	example	assigns	titles	to	the	first	three	Web	style	sheets	attached	to	the
active	document.	This	example	assumes	that	there	are	three	style	sheets	attached
to	the	active	document.

Sub	AssignCSSTitle()

				ActiveDocument.StyleSheets.Item(1).Title	=	"New	Look	Stylesheet"

				ActiveDocument.StyleSheets.Item(2).Title	=	"Standard	Web	Stylesheet"

				ActiveDocument.StyleSheets.Item(3).Title	=	"Definitions	Stylesheets"

End	Sub

This	example	creates	a	list	of	Web	style	sheets	attached	to	the	active	document
and	places	the	list	in	a	new	document.	This	example	assumes	there	are	one	or
more	Web	style	sheets	attached	to	the	active	document.

Sub	CSSTitles()

				Dim	docNew	As	Document

				Dim	styCSS	As	StyleSheet

				Set	docNew	=	Documents.Add

				With	docNew.Range(Start:=0,	End:=0)

								.InsertAfter	"CSS	Name	:	Assigned	to	"	&	ThisDocument.Name	_

												&	vbTab	&	"Title"

								.InsertParagraphAfter

								For	Each	styCSS	In	ThisDocument.StyleSheets

												.InsertAfter	styCSS.Name	&	vbTab	&	styCSS.Title

												.InsertParagraphAfter

								Next	styCSS

								.ConvertToTable

				End	With

End	Sub



Show	All



Top	Property
							

Top	property	as	it	applies	to	the	Shape	and	ShapeRange	objects.

Returns	or	sets	the	vertical	position	of	the	specified	shape	or	shape	range	in
points.	Read/write	Single.

expression.Top

expression			Required.	An	expression	that	returns	one	of	the	above	objects.



Remarks

The	position	of	a	shape	is	measured	from	the	upper-left	corner	of	the	shape's
bounding	box	to	the	shape's	anchor.	The	RelativeVerticalPosition	property
controls	whether	the	shape's	anchor	is	positioned	alongside	the	line,	the
paragraph,	the	margin,	or	the	edge	of	the	page.

For	a	ShapeRange	object	that	contains	more	than	one	shape,	the	Top	property
sets	the	vertical	position	of	each	shape.

Top	property	as	it	applies	to	the	Application,	Task,	and	Window	objects.

Returns	or	sets	the	vertical	position	of	the	active	document	(for	the	Application
object)	or	the	specified	task	or	window,	in	points.	Read/write	Long.

expression.Top

expression			Required.	An	expression	that	returns	one	of	the	above	objects.



Example

As	it	applies	to	the	Application	object.

This	example	positions	the	Word	application	window	100	points	from	the	top	of
the	screen.

Application.WindowState	=	wdWindowStateNormal

Application.Top	=	100

As	it	applies	to	the	Shape	object.

This	example	sets	the	vertical	position	of	the	first	shape	in	the	active	document
to	1	inch	from	the	top	of	the	page.

With	ActiveDocument.Shapes(1)

				.RelativeVerticalPosition	=	wdRelativeVerticalPositionPage

				.Top	=	InchesToPoints(1)

End	With

This	example	sets	the	vertical	position	of	the	first	and	second	shapes	in	the
active	document	to	1	inch	from	the	top	of	the	page.

With	ActiveDocument.Shapes.Range(Array(1,	2))

				.RelativeVerticalPosition	=	wdRelativeVerticalPositionPage

				.Top	=	InchesToPoints(1)

End	With

As	it	applies	to	the	Task	object.

This	example	starts	the	Calculator	and	positions	its	window	100	points	from	the
top	of	the	screen.

Shell	"Calc.exe"

With	Tasks("Calculator")

				.WindowState	=	wdWindowStateNormal

				.Top	=	100

End	With





TopLevelTables	Property
							

Returns	a	Tables	collection	that	represents	the	tables	at	the	outermost	nesting
level	in	the	current	range	or	selection.	Read-only.



Remarks

This	method	returns	a	collection	containing	only	those	tables	at	the	outermost
nesting	level	within	the	context	of	the	current	range	or	selection.	These	tables
may	not	be	at	the	outermost	nesting	level	within	the	entire	set	of	nested	tables.

For	information	about	returning	a	single	member	of	a	collection,	see	Returning
an	Object	from	a	Collection.



Example

This	example	creates	a	new	document,	creates	a	nested	table	with	three	levels,
and	then	fills	the	first	cell	of	each	table	with	its	nesting	level.	The	example
selects	the	second	column	of	the	second-level	table	and	then	selects	the	first	of
the	top-level	tables	in	this	selection.	The	innermost	table	is	selected,	even	though
it	isn't	a	top-level	table	within	the	context	of	the	entire	set	of	nested	tables.

Documents.Add

ActiveDocument.Tables.Add	Selection.Range,	_

				3,	3,	wdWord9TableBehavior,	wdAutoFitContent

With	ActiveDocument.Tables(1).Range

				.Copy

				.Cells(1).Range.Text	=	.Cells(1).NestingLevel

				.Cells(5).Range.PasteAsNestedTable

				With	.Cells(5).Tables(1).Range

								.Cells(1).Range.Text	=	.Cells(1).NestingLevel

								.Cells(5).Range.PasteAsNestedTable

								With	.Cells(5).Tables(1).Range

												.Cells(1).Range.Text	=	_

																.Cells(1).NestingLevel

								End	With

								.Columns(2).Select

								Selection.TopLevelTables(1).Select

				End	With

End	With



TopMargin	Property
							

Returns	or	sets	the	distance	(in	points)	between	the	top	edge	of	the	page	and	the
top	boundary	of	the	body	text.	Read/write	Single.

expression.TopMargin

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.



Example

This	example	sets	the	top	margin	to	72	points	(1	inch)	for	the	first	section	in	the
active	document.

ActiveDocument.Sections(1).PageSetup.TopMargin	=	72

This	example	creates	a	new	custom	label	and	sets	several	properties,	including
the	top	margin,	and	then	it	creates	a	new	document	using	the	custom	labels.

Set	newlbl	=	Application.MailingLabel.	_

				CustomLabels.Add(Name:="My	Label")

With	newlbl

				.Height	=	InchesToPoints(1.25)

				.NumberAcross	=	2

				.NumberDown	=	7

				.PageSize	=	wdCustomLabelLetter

				.SideMargin	=	InchesToPoints(0)

				.TopMargin	=	InchesToPoints(1)

				.Width	=	InchesToPoints(4.25)

End	With

Application.MailingLabel.CreateNewDocument	Name:="My	Label"



TopPadding	Property
							

Returns	or	sets	the	amount	of	space	(in	points)	to	add	above	the	contents	of	a
single	cell	or	all	the	cells	in	a	table.	Read/write	Single.

expression.TopPadding

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.



Remarks

The	setting	of	the	TopPadding	property	for	a	single	cell	overrides	the	setting	of
the	TopPadding	property	for	the	entire	table.



Example

This	example	sets	the	top	padding	for	the	first	table	in	the	active	document	to	40
pixels.

ActiveDocument.Tables(1).TopPadding	=	_

				PixelsToPoints(40,	True)



Tracking	Property
							

Returns	or	sets	the	ratio	of	the	horizontal	space	allotted	to	each	character	in	the
specified	WordArt	in	relation	to	the	width	of	the	character.	Can	be	a	value	from
0	(zero)	through	5.	(Large	values	for	this	property	specify	ample	space	between
characters;	values	less	than	1	can	produce	character	overlap.)	Read/write	Single.

expression.Tracking

expression			Required.	An	expression	that	returns	a	TextEffectFormat	object.



Remarks

The	following	table	gives	the	values	of	the	Tracking	property	that	correspond	to
the	settings	available	in	the	user	interface.

User	interface	setting Equivalent	Tracking	property	value
Very	Tight 0.8
Tight 0.9
Normal 1.0
Loose 1.2
Very	Loose 1.5



Example

This	example	adds	WordArt	that	contains	the	text	"Test"	to	the	active	document
and	specifies	that	the	characters	be	very	tightly	spaced.

Set	newWordArt	=	ActiveDocument.Shapes.AddTextEffect(	_

				PresetTextEffect:=msoTextEffect1,	Text:="Test",	_

				FontName:="Arial	Black",	FontSize:=36,	FontBold:=False,	_

				FontItalic:=False,	Left:=100,	Top:=100)

newWordArt.TextEffect.Tracking	=	0.8



TrackRevisions	Property
							

True	if	changes	are	tracked	in	the	specified	document.	Read/write	Boolean.



Example

This	example	sets	the	active	document	so	that	it	tracks	changes	and	makes	them
visible	on	the	screen.

With	ActiveDocument

				.TrackRevisions	=	True

				.ShowRevisions	=	True

End	With

This	example	inserts	text	if	change	tracking	isn't	enabled.

If	ActiveDocument.TrackRevisions	=	False	Then

				Selection.InsertBefore	"new	text"

End	If



TrackStatus	Property
							

True	if	a	mail	message	is	sent	back	to	the	original	sender	each	time	the	routed
document	is	forwarded.	Read/write	Boolean	before	routing	begins;	read-only
Boolean	while	routing	is	in	progress.

expression.TrackStatus

expression			Required.	An	expression	that	returns	a	RoutingSlip	object.



Example

This	example	adds	a	routing	slip	to	the	active	document,	adds	two	recipients,
enables	status	tracking,	and	routes	the	document.

ActiveDocument.HasRoutingSlip	=	True

With	ActiveDocument.RoutingSlip

				.AddRecipient	Recipient:="James	Allard"

				.AddRecipient	Recipient:="Rich	Andrews"

				.TrackStatus	=	True

				.Parent.Route

End	With



Show	All



TrailingCharacter	Property
							

Returns	or	sets	the	character	inserted	after	the	number	for	the	specified	list	level.
Read/write	WdTrailingCharacter.

WdTrailingCharacter	can	be	one	of	these	WdTrailingCharacter	constants.
wdTrailingNone
wdTrailingSpace
wdTrailingTab

expression.TrailingCharacter

expression			Required.	An	expression	that	returns	a	ListLevel	object.



Example

This	example	sets	the	number	and	text	alignment	for	each	level	of	the	sixth
outline-numbered	list	template.	The	number	for	each	level	is	followed	by	a
space.

r	=	0

For	Each	lev	In	ListGalleries(wdOutlineNumberGallery)	_

								.ListTemplates(6).ListLevels

				lev.Alignment	=	wdListLevelAlignLeft

				lev.NumberPosition	=	r

				lev.TextPosition	=	r

				lev.TrailingCharacter	=	wdTrailingSpace

				r	=	r	+	18

Next	lev



Transparency	Property
							

Returns	or	sets	the	degree	of	transparency	of	the	specified	fill,	shadow,	or	line	as
a	value	between	0.0	(opaque)	and	1.0	(clear).	Read/write	Single.

expression.Transparency

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.



Remarks

The	value	of	this	property	affects	the	appearance	of	solid-colored	fills	and	lines
only;	it	has	no	effect	on	the	appearance	of	patterned	lines	or	of	patterned,
gradient,	picture,	or	textured	fills.



Example

This	example	sets	the	shadow	of	shape	three	in	the	active	document	to
semitransparent	red.	If	the	shape	doesn't	already	have	a	shadow,	this	example
adds	one	to	it.

With	ActiveDocument.Shapes(3).Shadow

				.Visible	=	True

				.ForeColor.RGB	=	RGB(255,	0,	0)

				.Transparency	=	0.5

End	With



TransparencyColor	Property
							

Returns	or	sets	the	transparent	color	for	the	specified	picture	as	a	red-green-blue
(RGB)	value.	For	this	property	to	take	effect,	the	TransparentBackground
property	must	be	set	to	True.	Applies	to	bitmaps	only.	Read/write	Long.

expression.TransparencyColor

expression			Required.	An	expression	that	returns	a	PictureFormat	object.



Remarks

If	you	want	to	be	able	to	see	through	the	transparent	parts	of	the	picture	all	the
way	to	the	objects	behind	the	picture,	you	must	set	the	Visible	property	of	the
picture's	FillFormat	object	to	False.	If	your	picture	has	a	transparent	color	and
the	Visible	property	of	the	picture's	FillFormat	object	is	set	to	True,	the
picture's	fill	will	be	visible	through	the	transparent	color,	but	objects	behind	the
picture	will	be	obscured.



Example

This	example	sets	the	color	returned	by	the	RGB	function	as	the	transparent
color	for	shape	one	in	the	active	document.	For	the	example	to	work,	shape	one
must	be	a	bitmap.

blueScreen	=	RGB(0,	0,	255)

With	ActiveDocument.Shapes(1)

				With	.PictureFormat

								.TransparentBackground	=	True

								.TransparencyColor	=	blueScreen

				End	With

				.Fill.Visible	=	False

End	With



Show	All



TransparentBackground	Property
							

MsoTrue	if	the	parts	of	the	picture	that	are	defined	with	a	transparent	color
actually	appear	transparent.	Use	the	TransparencyColor	property	to	set	the
transparent	color.	Applies	to	bitmaps	only.	Read/write	MsoTriState.

MsoTriState	can	be	one	of	these	MsoTriState	constants.
msoCTrue
msoFalse
msoTriStateMixed
msoTriStateToggle
msoTrue

expression.TransparentBackground

expression			Required.	An	expression	that	returns	a	PictureFormat	object.



Remarks

If	you	want	to	be	able	to	see	through	the	transparent	parts	of	the	picture	all	the
way	to	the	objects	behind	the	picture,	you	must	set	the	Visible	property	of	the
picture's	FillFormat	object	to	False.	If	your	picture	has	a	transparent	color	and
the	Visible	property	of	the	picture's	FillFormat	object	is	set	to	True,	the
picture's	fill	will	be	visible	through	the	transparent	color,	but	objects	behind	the
picture	will	be	obscured.



Example

This	example	sets	the	color	returned	by	the	RGB	function	as	the	transparent
color	for	shape	one	in	the	active	document.	For	the	example	to	work,	shape	one
must	be	a	bitmap.

blueScreen	=	RGB(0,	0,	255)

With	ActiveDocument.Shapes(1)

				With	.PictureFormat

								.TransparentBackground	=	msoTrue

								.TransparencyColor	=	blueScreen

				End	With

				.Fill.Visible	=	False

End	With



TwoInitialCapsAutoAdd	Property
							

True	if	Microsoft	Word	automatically	adds	words	to	the	list	of	AutoCorrect
Initial	Caps	exceptions.	A	word	is	added	to	this	list	if	you	delete	and	then	retype
the	uppercase	letter	(following	the	initial	uppercase	letter)	that	Word	changed	to
lowercase.	Read/write	Boolean.

expression.TwoInitialCapsAutoAdd

expression			Required.	An	expression	that	returns	an	AutoCorrect	object.



Example

This	example	sets	Word	to	automatically	add	words	to	the	list	of	AutoCorrect
Initial	Caps	exceptions.

AutoCorrect.TwoInitialCapsAutoAdd	=	True



TwoInitialCapsExceptions	Property
							

Returns	a	TwoInitialCapsExceptions	collection	that	represents	the	list	of	terms
containing	mixed	capitalization	that	Word	won't	correct	automatically.	This	list
corresponds	to	the	list	of	AutoCorrect	exceptions	on	the	INitial	CAps	tab	in	the
AutoCorrect	Exceptions	dialog	box	(AutoCorrect	Options	command,	Tools
menu).

expression.TwoInitialCapsExceptions

expression			Required.	An	expression	that	returns	an	AutoCorrect	object.



Remarks

For	information	about	returning	a	single	member	of	a	collection,	see	Returning
an	Object	from	a	Collection.



Example

This	example	prompts	the	user	to	delete	or	keep	each	AutoCorrect	Initial	Caps
exception.

For	Each	anEntry	In	AutoCorrect.TwoInitialCapsExceptions

				response	=	MsgBox	("Delete	entry:	"	_

								&	anEntry.Name,	vbYesNoCancel)

				If	response	=	vbYes	Then

								anEntry.Delete

				Else

								If	response	=	vbCancel	Then	End

				End	If

Next	anEntry



Show	All



TwoLinesInOne	Property
							

Returns	or	sets	whether	Microsoft	Word	sets	two	lines	of	text	in	one	and
specifies	the	characters	that	enclose	the	text,	if	any.	Read/write
WdTwoLinesInOneType.

WdTwoLinesInOneType	can	be	one	of	these	WdTwoLinesInOneType
constants.
wdTwoLinesInOneCurlyBrackets
wdTwoLinesInOneNone
wdTwoLinesInOneSquareBrackets
wdTwoLinesInOneAngleBrackets
wdTwoLinesInOneNoBrackets
wdTwoLinesInOneParentheses

expression.TwoLinesInOne

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.



Remarks

Setting	the	TwoLinesInOne	property	to	wdTwoLinesInOneNoBrackets	sets
two	lines	of	text	in	one	without	enclosing	the	text	in	any	characters.	Setting	the
TwoLinesInOne	property	to	wdTwoLinesInOneNone	restores	a	line	of
combined	text	to	two	separate	lines.

For	more	information	on	using	Word	with	Asian	languages,	see	Word	features
for	Asian	languages.

mk:@MSITStore:wdmain10.chm::/html/wdrefFeaturesAvailableInWordWhenAsianLanguagesAreEnabled.htm


Example

This	example	formats	the	current	selection	as	two	lines	of	text	in	one,	enclosed
in	parentheses.

Selection.Range.TwoLinesInOne	=	_

				wdTwoLinesInOneParentheses



TwoPagesOnOne	Property
							

True	if	Microsoft	Word	prints	the	specified	document	two	pages	per	sheet.
Read/write	Boolean.

expression.TwoPagesOnOne

expression			Required.	An	expression	that	returns	a	PageSetup	object.



Example

This	example	sets	Microsoft	Word	to	print	the	active	document	two	pages	per
sheet.

ActiveDocument.PageSetup.TwoPagesOnOne	=	True



Show	All



Type	Property
							

Type	property	as	it	applies	to	the	CalloutFormat	object.

Returns	or	sets	the	callout	type.	Read/write	MsoCalloutType.

MsoCalloutType	can	be	one	of	these	MsoCalloutType	constants.
msoCalloutFour
msoCalloutOne
msoCalloutTwo
msoCalloutMixed
msoCalloutThree

expression.Type

expression			Required.	An	expression	that	returns	a	CalloutFormat	object.

Type	property	as	it	applies	to	the	ColorFormat	object.

Returns	or	sets	the	shape	color	type.	Read-only	MsoColorType.

MsoColorType	can	be	one	of	these	MsoColorType	constants.
msoColorTypeCMYK
msoColorTypeRGB
msoColorTypeCMS
msoColorTypeMixed
msoColorTypeScheme

expression.Type

expression			Required.	An	expression	that	returns	ColorFormat	object.

Type	property	as	it	applies	to	the	Diagram	object.



Returns	the	diagram	type.	Read-only	MsoDiagramType.

MsoDiagramType	can	be	one	of	these	MsoDiagramType	constants.
msoDiagramCycle
msoDiagramMixed
msoDiagramOrgChart
msoDiagramPyramid
msoDiagramRadial
msoDiagramTarget
msoDiagramVenn

expression.Type

expression			Required.	An	expression	that	returns	a	Diagram	object.

Type	property	as	it	applies	to	the	Dialog	object.

Returns	the	type	of	built-in	Microsoft	Word	dialog	box.	Read-only
WdWordDialog.

WdWordDialog	can	be	one	of	these	WdWordDialog	constants.
wdDialogConsistencyChecker
wdDialogConvertObject
wdDialogCreateAutoText
wdDialogDrawAlign
wdDialogEditAutoText
wdDialogEditFind
wdDialogEditGoTo
wdDialogInsertAddCaption
wdDialogInsertBookmark
wdDialogInsertCaption
wdDialogInsertCrossReference
wdDialogInsertDateTime
wdDialogInsertFile
wdDialogInsertFormField



wdDialogInsertIndex
wdDialogInsertMergeField
wdDialogInsertObject
wdDialogInsertPicture
wdDialogInsertSubdocument
wdDialogInsertSymbol
wdDialogInsertTableOfAuthorities
wdDialogInsertTableOfContents
wdDialogInsertTableOfFigures
wdDialogLetterWizard
wdDialogListCommands
wdDialogMailMerge
wdDialogMailMergeCheck
wdDialogMailMergeCreateDataSource
wdDialogMailMergeCreateHeaderSource
wdDialogMailMergeFieldMapping
wdDialogMailMergeFindRecord
wdDialogMailMergeHelper
wdDialogMailMergeInsertAddressBlock
wdDialogMailMergeInsertAsk
wdDialogMailMergeInsertFields
wdDialogMailMergeInsertFillIn
wdDialogMailMergeInsertGreetingLine
wdDialogMailMergeInsertIf
wdDialogMailMergeInsertNextIf
wdDialogMailMergeInsertSet
wdDialogMailMergeInsertSkipIf
wdDialogMailMergeOpenDataSource
wdDialogMailMergeOpenHeaderSource
wdDialogMailMergeQueryOptions
wdDialogMailMergeRecipients
wdDialogMailMergeUseAddressBook
wdDialogMarkCitation



wdDialogMarkIndexEntry
wdDialogMarkTableOfContentsEntry
wdDialogNewToolbar
wdDialogNoteOptions
wdDialogOrganizer
wdDialogPhoneticGuide
wdDialogReviewAfmtRevisions
wdDialogSearch
wdDialogTableAutoFormat
wdDialogTableCellOptions
wdDialogTableColumnWidth
wdDialogTableDeleteCells
wdDialogTableFormatCell
wdDialogTableFormula
wdDialogTableInsertCells
wdDialogTableInsertRow
wdDialogTableInsertTable
wdDialogTableOfCaptionsOptions
wdDialogTableOfContentsOptions
wdDialogTableProperties
wdDialogTableRowHeight
wdDialogTableSort
wdDialogTableSplitCells
wdDialogTableTableOptions
wdDialogTableToText
wdDialogTableWrapping
wdDialogTCSCTranslator
wdDialogTextToTable
wdDialogToolsAcceptRejectChanges
wdDialogToolsAdvancedSettings
wdDialogToolsAutoCorrect
wdDialogToolsAutoManager
wdDialogToolsBulletsNumbers



wdDialogToolsCreateDirectory
wdDialogToolsCreateLabels
wdDialogToolsCustomizeKeyboard
wdDialogToolsCustomizeMenus
wdDialogToolsEnvelopesAndLabels
wdDialogToolsHighlightChanges
wdDialogToolsLanguage
wdDialogToolsMacroRecord
wdDialogToolsMergeDocuments
wdDialogToolsOptionsAutoFormat
wdDialogToolsOptionsBidi
wdDialogToolsOptionsEdit
wdDialogToolsOptionsFuzzy
wdDialogToolsOptionsPrint
wdDialogToolsOptionsSpellingAndGrammar
wdDialogToolsOptionsTypography
wdDialogToolsOptionsView
wdDialogToolsProtectSection
wdDialogToolsSpellingAndGrammar
wdDialogToolsThesaurus
wdDialogToolsWordCount
wdDialogUpdateTOC
wdDialogWebOptions
wdDialogConnect
wdDialogControlRun
wdDialogCopyFile
wdDialogDocumentStatistics
wdDialogDrawSnapToGrid
wdDialogEditCreatePublisher
wdDialogEditFrame
wdDialogEditGoToOld
wdDialogEditLinks
wdDialogEditObject



wdDialogEditPasteSpecial
wdDialogEditPublishOptions
wdDialogEditReplace
wdDialogEditStyle
wdDialogEditSubscribeOptions
wdDialogEditSubscribeTo
wdDialogEditTOACategory
wdDialogEmailOptions
wdDialogFileDocumentLayout
wdDialogFileFind
wdDialogFileMacCustomPageSetupGX
wdDialogFileMacPageSetup
wdDialogFileMacPageSetupGX
wdDialogFileNew
wdDialogFileOpen
wdDialogFilePageSetup
wdDialogFilePrint
wdDialogFilePrintOneCopy
wdDialogFilePrintSetup
wdDialogFileRoutingSlip
wdDialogFileSaveAs
wdDialogFileSaveVersion
wdDialogFileSummaryInfo
wdDialogFileVersions
wdDialogFitText
wdDialogFontSubstitution
wdDialogFormatAddrFonts
wdDialogFormatBordersAndShading
wdDialogFormatBulletsAndNumbering
wdDialogFormatCallout
wdDialogFormatChangeCase
wdDialogFormatColumns
wdDialogFormatDefineStyleBorders



wdDialogFormatDefineStyleFont
wdDialogFormatDefineStyleFrame
wdDialogFormatDefineStyleLang
wdDialogFormatDefineStylePara
wdDialogFormatDefineStyleTabs
wdDialogFormatDrawingObject
wdDialogFormatDropCap
wdDialogFormatEncloseCharacters
wdDialogFormatFont
wdDialogFormatFrame
wdDialogFormatPageNumber
wdDialogFormatParagraph
wdDialogFormatPicture
wdDialogFormatRetAddrFonts
wdDialogFormatSectionLayout
wdDialogFormatStyle
wdDialogFormatStyleGallery
wdDialogFormatStylesCustom
wdDialogFormatTabs
wdDialogFormatTheme
wdDialogFormFieldHelp
wdDialogFormFieldOptions
wdDialogFrameSetProperties
wdDialogHelpAbout
wdDialogHelpWordPerfectHelp
wdDialogHelpWordPerfectHelpOptions
wdDialogHorizontalInVertical
wdDialogIMESetDefault
wdDialogInsertAutoCaption
wdDialogInsertBreak
wdDialogInsertCaptionNumbering
wdDialogInsertDatabase
wdDialogInsertField



wdDialogInsertFootnote
wdDialogInsertHyperlink
wdDialogInsertIndexAndTables
wdDialogInsertNumber
wdDialogInsertPageNumbers
wdDialogToolsAutoCorrectExceptions
wdDialogToolsAutoSummarize
wdDialogToolsCompareDocuments
wdDialogToolsCreateEnvelope
wdDialogToolsCustomize
wdDialogToolsCustomizeMenuBar
wdDialogToolsDictionary
wdDialogToolsHangulHanjaConversion
wdDialogToolsHyphenation
wdDialogToolsMacro
wdDialogToolsManageFields
wdDialogToolsOptions
wdDialogToolsOptionsAutoFormatAsYouType
wdDialogToolsOptionsCompatibility
wdDialogToolsOptionsFileLocations
wdDialogToolsOptionsGeneral
wdDialogToolsOptionsSave
wdDialogToolsOptionsTrackChanges
wdDialogToolsOptionsUserInfo
wdDialogToolsProtectDocument
wdDialogToolsRevisions
wdDialogToolsTemplates
wdDialogToolsUnprotectDocument
wdDialogTwoLinesInOne
wdDialogViewZoom
wdDialogWindowActivate

expression.Type



expression			Required.	An	expression	that	returns	a	Dialog	object.

Type	property	as	it	applies	to	the	Dictionary	object.

Returns	the	dictionary	type.	Read-only	WdDictionaryType.

WdDictionaryType	can	be	one	of	these	WdDictionaryType	constants.
wdGrammar
wdHangulHanjaConversionCustom
wdSpelling
wdSpellingCustom
wdSpellingMedical
wdHangulHanjaConversion
wdHyphenation
wdSpellingComplete
wdSpellingLegal
wdThesaurus

expression.Type

expression			Required.	An	expression	that	returns	a	Dictionary	object.

Type	property	as	it	applies	to	the	Document	object.

Returns	the	document	type	(template	or	document).		Read-only
WdDocumentType.

WdDocumentType	can	be	one	of	these	WdDocumentType	constants.
wdTypeDocument
wdTypeTemplate
wdTypeFrameset

expression.Type

expression			Required.	An	expression	that	returns	a	Document	object.

Type	property	as	it	applies	to	the	Field,	FormField,	and	MailMergeField



objects.

Returns	the	field	type.	Read-only	WdFieldType.

WdFieldType	can	be	one	of	these	WdFieldType	constants.
wdFieldFileSize
wdFieldFootnoteRef
wdFieldFormDropDown
wdFieldFormula
wdFieldGoToButton
wdFieldHyperlink
wdFieldImport
wdFieldIncludePicture
wdFieldIndex
wdFieldInfo
wdFieldLastSavedBy
wdFieldListNum
wdFieldMacroButton
wdFieldMergeField
wdFieldMergeRec
wdFieldMergeSeq
wdFieldNext
wdFieldNextIf
wdFieldNoteRef
wdFieldNumChars
wdFieldNumPages
wdFieldNumWords
wdFieldOCX
wdFieldPage
wdFieldPageRef
wdFieldPrint
wdFieldPrintDate
wdFieldPrivate
wdFieldQuote



wdFieldRef
wdFieldRefDoc
wdFieldRevisionNum
wdFieldSaveDate
wdFieldSection
wdFieldSectionPages
wdFieldSequence
wdFieldSet
wdFieldSkipIf
wdFieldStyleRef
wdFieldSubject
wdFieldSubscriber
wdFieldSymbol
wdFieldTemplate
wdFieldTime
wdFieldTitle
wdFieldTOA
wdFieldTOAEntry
wdFieldTOC
wdFieldTOCEntry
wdFieldUserAddress
wdFieldUserInitials
wdFieldUserName
wdFieldAddin
wdFieldAdvance
wdFieldAsk
wdFieldAuthor
wdFieldAutoNum
wdFieldAutoNumLegal
wdFieldAutoNumOutline
wdFieldAutoText
wdFieldAutoTextList
wdFieldBarCode



wdFieldComments
wdFieldCompare
wdFieldCreateDate
wdFieldData
wdFieldDatabase
wdFieldDate
wdFieldDDE
wdFieldDDEAuto
wdFieldDocProperty
wdFieldDocVariable
wdFieldEditTime
wdFieldEmbed
wdFieldEmpty
wdFieldExpression
wdFieldFileName
wdFieldFillIn
wdFieldFormCheckBox
wdFieldFormTextInput
wdFieldGlossary
wdFieldHTMLActiveX
wdFieldIf
wdFieldInclude
wdFieldIncludeText
wdFieldIndexEntry
wdFieldKeyWord
wdFieldLink

expression.Type

expression			Required.	An	expression	that	returns	one	of	the	above	objects.

Type	property	as	it	applies	to	the	FillFormat	object.

Returns	the	shape	fill	format	type.	Read-only	MsoFillType.



MsoFillType	can	be	one	of	these	MsoFillType	constants.
msoFillGradient
msoFillBackground
msoFillMixed
msoFillPatterned
msoFillPicture
msoFillSolid
msoFillTextured

expression.Type

expression			Required.	An	expression	that	returns	a	FillFormat	object.

Type	property	as	it	applies	to	the	Frameset	object.

Returns	the	Frameset	object	type.	Read-only	WdFramesetType.

WdFramesetType	can	be	one	of	these	WdFramesetType	constants.
wdFramesetTypeFrame
wdFramesetTypeFrameset

expression.Type

expression			Required.	An	expression	that	returns	a	Frameset	object.

Type	property	as	it	applies	to	the	Hyperlink	object.

Returns	the	hyperlink	type.	Read-only	MsoHyperlinkType.

MsoHyperlinkType	can	be	one	of	these	MsoHyperlinkType	constants.
msoHyperlinkInlineShape
msoHyperlinkRange
msoHyperlinkShape

expression.Type

expression			Required.	An	expression	that	returns	a	Hyperlink	object.



Type	property	as	it	applies	to	the	Index	object.

Returns	or	sets	the	index	type.	Read/write	WdIndexType.

WdIndexType	can	be	one	of	these	WdIndexType	constants.
wdIndexRunin
wdIndexIndent

expression.Type

expression			Required.	An	expression	that	returns	an	Index	object.

Type	property	as	it	applies	to	the	InlineShape	object.

Returns	the	type	of	inline	shape.	Read-only	WdInlineShapeType.

WdInlineShapeType	can	be	one	of	these	WdInlineShapeType	constants.
wdInlineShapeEmbeddedOLEObject
wdInlineShapeHorizontalLine
wdInlineShapeLinkedOLEObject
wdInlineShapeLinkedPicture
wdInlineShapeLinkedPictureHorizontalLine
wdInlineShapeOLEControlObject
wdInlineShapeOWSAnchor
wdInlineShapePicture
wdInlineShapePictureBullet
wdInlineShapePictureHorizontalLine
wdInlineShapeScriptAnchor

expression.Type

expression			Required.	An	expression	that	returns	an	InlineShape	object.

Type	property	as	it	applies	to	the	LinkFormat	object.

Returns	the	link	type.	Read-only	WdLinkType.



WdLinkType	can	be	one	of	these	WdLinkType	constants.
wdLinkTypeText
wdLinkTypeDDE
wdLinkTypeDDEAuto
wdLinkTypeImport
wdLinkTypeInclude
wdLinkTypeOLE
wdLinkTypePicture
wdLinkTypeReference

expression.Type

expression			Required.	An	expression	that	returns	a	LinkFormat	object.

Type	property	as	it	applies	to	the	MailMergeDataSource	object.

Returns	the	type	of	mail	merge	data	source.	Read-only
WdMailMergeDataSource.

WdMailMergeDataSource	can	be	one	of	these	WdMailMergeDataSource
constants.
wdMergeInfoFromAccessDDE
wdMergeInfoFromMSQueryDDE
wdMergeInfoFromODSO
wdNoMergeInfo
wdMergeInfoFromExcelDDE
wdMergeInfoFromODBC
wdMergeInfoFromWord

expression.Type

expression			Required.	An	expression	that	returns	a	MailMergeDataSource
object.

Type	property	as	it	applies	to	the	ProofreadingErrors	object.

Returns	the	type	of	proofreading	error.	Read-only	WdProofreadingErrorType.



WdProofreadingErrorType	can	be	one	of	these	WdProofreadingErrorType
constants.
wdGrammaticalError
wdSpellingError

expression.Type

expression			Required.	An	expression	that	returns	a	ProofreadingErrors	object.

Type	property	as	it	applies	to	the	Revision	object.

Returns	the	revision	type.	Read-only	WdRevisionType.

WdRevisionType	can	be	one	of	these	WdRevisionType	constants.
wdNoRevision
wdRevisionDelete
wdRevisionInsert
wdRevisionParagraphProperty
wdRevisionReconcile
wdRevisionSectionProperty
wdRevisionStyleDefinition
wdRevisionConflict
wdRevisionDisplayField
wdRevisionParagraphNumber
wdRevisionProperty
wdRevisionReplace
wdRevisionStyle
wdRevisionTableProperty

expression.Type

expression			Required.	An	expression	that	returns	a	Revision	object.

Type	property	as	it	applies	to	the	Selection	object.

Returns	the	selection	type.	Read-only	WdSelectionType.



WdSelectionType	can	be	one	of	these	WdSelectionType	constants.
wdSelectionBlock
wdSelectionFrame
wdSelectionIP
wdSelectionRow
wdNoSelection
wdSelectionColumn
wdSelectionInlineShape
wdSelectionNormal
wdSelectionShape

expression.Type

expression			Required.	An	expression	that	returns	a	Selection	object.

Type	property	as	it	applies	to	the	ShadowFormat	object.

Returns	or	sets	the	shape	shadow	type.	Read/write	MsoShadowType.

MsoShadowType	can	be	one	of	these	MsoShadowType	constants.
msoShadow10
msoShadow12
msoShadow14
msoShadow16
msoShadow18
msoShadow2
msoShadow3
msoShadow5
msoShadow7
msoShadow9
msoShadow1
msoShadow11
msoShadow13
msoShadow15
msoShadow17



msoShadow19
msoShadow20
msoShadow4
msoShadow6
msoShadow8
msoShadowMixed

expression.Type

expression			Required.	An	expression	that	returns	a	ShadowFormat	object.

Type	property	as	it	applies	to	the	Shape	and	ShapeRange	objects.

Returns	the	shape	type.	Read-only	MsoShapeType.

MsoShapeType	can	be	one	of	these	MsoShapeType	constants.
msoAutoShape
msoCanvas
msoComment
msoFormControl
msoCallout
msoChart
msoEmbeddedOLEObject
msoFreeform
msoGroup
msoLine
msoLinkedOLEObject
msoLinkedPicture
msoMedia
msoOLEControlObject
msoPicture
msoPlaceholder
msoScriptAnchor
msoShapeTypeMixed
msoTable



msoTextBox
msoTextEffect

expression.Type

expression			Required.	An	expression	that	returns	one	of	the	above	objects.

Type	property	as	it	applies	to	the	Style	object.

Returns	the	style	type.	Read-only	WdStyleType.

WdStyleType	can	be	one	of	these	WdStyleType	constants.
wdStyleTypeCharacter
wdStyleTypeList
wdStyleTypeParagraph
wdStyleTypeTable

expression.Type

expression			Required.	An	expression	that	returns	a	Style	object.

Type	property	as	it	applies	to	the	StyleSheet	object.

Returns	or	sets	the	style	sheet	type.	Read/write	WdStyleSheetLinkType.

WdStyleSheetLinkType	can	be	one	of	these	WdStyleSheetLinkType	constants.
wdStyleSheetLinkTypeImported
wdStyleSheetLinkTypeLinked

expression.Type

expression			Required.	An	expression	that	returns	a	StyleSheet	object.

Type	property	as	it	applies	to	the	Template	object.

Returns	the	template	type.	Read-only	WdTemplateType.

WdTemplateType	can	be	one	of	these	WdTemplateType	constants.



wdAttachedTemplate
wdGlobalTemplate
wdNormalTemplate

expression.Type

expression			Required.	An	expression	that	returns	a	Template	object.

Type	property	as	it	applies	to	the	TextInput	object.

Returns	the	type	of	text	form	field.	Read-only	WdTextFormFieldType.

WdTextFormFieldType	can	be	one	of	these	WdTextFormFieldType	constants.
wdCalculationText
wdCurrentDateText
wdCurrentTimeText
wdDateText
wdNumberText
wdRegularText

expression.Type

expression			Required.	An	expression	that	returns	a	TextInput	object.

Type	property	as	it	applies	to	the	View	object.

Returns	or	sets	the	view	type.	Read/write	WdViewType.

WdViewType	can	be	one	of	these	WdViewType	constants.
wdMasterView
wdOutlineView
wdPrintView
wdNormalView
wdPrintPreview
wdWebView

expression.Type



expression			Required.	An	expression	that	returns	a	View	object.



Remarks

The	Type	property	returns	wdMasterView	for	all	documents	where	the	current
view	is	an	outline	or	a	master	document.	The	current	view	will	never	return
wdOutlineView	unless	explicitly	set	first	in	code.

To	check	whether	the	current	document	is	an	outline,	use	the	Type	property	and
the	Subdocuments	collection's	Count	property.	If	the	Type	property	returns
either	wdOutlineView	or	wdMasterView	and	the	Count	property	returns	zero,
the	document	is	an	outline.	For	example:

Sub	VerifyOutlineView()

				With	ActiveWindow.View

								If	.Type	=	wdOutlineView	Or	wdMasterView	Then

												If	ActiveDocument.Subdocuments.Count	=	0	Then

																.

																.

																.

												End	If

								End	If

				End	With

End	Sub

Type	property	as	it	applies	to	the	Window	object.

Returns	the	window	type.	Read-only	WdWindowType.

WdWindowType	can	be	one	of	these	WdWindowType	constants.
wdWindowTemplate
wdWindowDocument

expression.Type

expression			Required.	An	expression	that	returns	a	Window	object.

Type	property	as	it	applies	to	the	WrapFormat	object.

Returns	the	wrap	type	for	the	specified	shape.	Read/write	WdWrapType.

WdWrapType	can	be	one	of	these	WdWrapType	constants.



wdWrapInline
wdWrapNone
wdWrapSquare
wdWrapThrough
wdWrapTight
wdWrapTopBottom

expression.Type

expression			Required.	An	expression	that	returns	a	WrapFormat	object.



Example

As	it	applies	to	the	Document	object.

If	the	active	window	contains	a	document,	this	example	redefines	the	Heading	1
style	as	centered.

If	ActiveDocument.ActiveWindow.Type	=	wdWindowDocument	Then

				ActiveDocument.Styles("Heading	1")	_

								.ParagraphFormat.Alignment	=	wdAlignParagraphCenter

End	If

As	it	applies	to	the	Revision	object.

This	example	accepts	the	next	revision	in	the	active	document	if	the	revision
type	is	inserted	text.

Set	myRev	=	Selection.NextRevision

If	Not	(myRev	Is	Nothing)	Then

				If	myRev.Type	=	wdRevisionInsert	Then	myRev.Accept

End	If

As	it	applies	to	the	Selection	object.

This	example	formats	the	selection	as	engraved	if	the	selection	isn't	an	insertion
point.

If	Selection.Type	<>	wdSelectionIP	Then

				Selection.Font.Engrave	=	True

Else

				MsgBox	"You	need	to	select	some	text."

End	If

As	it	applies	to	the	Style	object.

This	example	displays	a	message	that	indicates	the	style	type	of	the	style	named
"SubTitle"	in	the	active	document.

If	ActiveDocument.Styles("SubTitle").Type	=	_

								wdStyleTypeParagraph	Then

				MsgBox	"Paragraph	style"

ElseIf	ActiveDocument.Styles("SubTitle").Type	=	_



								wdStyleTypeCharacter	Then

				MsgBox	"Character	style"

End	If

As	it	applies	to	the	View	object.

This	example	switches	the	active	window	to	print	preview.	The	Type	property
creates	a	new	print	preview	window.

ActiveDocument.ActiveWindow.View.Type	=	wdPrintPreview



TypeNReplace	Property
							

True	for	Microsoft	Word	to	replace	illegal	South	Asian	characters.	Read/write
Boolean.

expression.TypeNReplace

expression			Required.	An	expression	that	returns	an	Options	object.



Example

This	example	instructs	Word	to	replace	illegal	South	Asian	characters.

Sub	TypeReplace()

				Application.Options.TypeNReplace	=	True

End	Sub



Underline	Property
							

Returns	or	sets	the	type	of	underline	applied	to	the	font	or	range.	Read/write
WdUnderline.

WdUnderline	can	be	one	of	these	WdUnderline	constants.
wdUnderlineDashHeavy
wdUnderlineDashLongHeavy
wdUnderlineDotDashHeavy
wdUnderlineDotDotDashHeavy
wdUnderlineDottedHeavy
wdUnderlineNone
wdUnderlineThick
wdUnderlineWavyDouble
wdUnderlineWords
wdUnderlineDash
wdUnderlineDashLong
wdUnderlineDotDash
wdUnderlineDotDotDash
wdUnderlineDotted
wdUnderlineDouble
wdUnderlineSingle
wdUnderlineWavy
wdUnderlineWavyHeavy

expression.Underline

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.



Example

This	example	applies	a	double	underline	to	the	fourth	word	in	the	active
document.

ActiveDocument.Words(4).Underline	=	wdUnderlineDouble

This	example	applies	a	single	underline	to	the	selected	text.

If	Selection.Type	=	wdSelectionNormal	Then

				Selection.Font.Underline	=	wdUnderlineSingle

Else

				MsgBox	"You	need	to	select	some	text."

End	If



Show	All



UnderlineColor	Property
							

Returns	or	sets	the	24-bit	color	of	the	underline	for	the	specified	Font	object.
Can	be	any	valid	WdColor	constant	or	a	value	returned	by	Visual	Basic's	RGB
function.

WdColor	can	be	one	of	these	WdColor	constants.
wdColorGray625
wdColorGray70
wdColorGray80
wdColorGray875
wdColorGray95
wdColorIndigo
wdColorLightBlue
wdColorLightOrange
wdColorLightYellow
wdColorOliveGreen
wdColorPaleBlue
wdColorPlum
wdColorRed
wdColorRose
wdColorSeaGreen
wdColorSkyBlue
wdColorTan
wdColorTeal
wdColorTurquoise
wdColorViolet
wdColorWhite
wdColorYellow
wdColorAqua



wdColorAutomatic
wdColorBlack
wdColorBlue
wdColorBlueGray
wdColorBrightGreen
wdColorBrown
wdColorDarkBlue
wdColorDarkGreen
wdColorDarkRed
wdColorDarkTeal
wdColorDarkYellow
wdColorGold
wdColorGray05
wdColorGray10
wdColorGray125
wdColorGray15
wdColorGray20
wdColorGray25
wdColorGray30
wdColorGray35
wdColorGray375
wdColorGray40
wdColorGray45
wdColorGray50
wdColorGray55
wdColorGray60
wdColorGray65
wdColorGray75
wdColorGray85
wdColorGray90
wdColorGreen
wdColorLavender
wdColorLightGreen



wdColorLightTurquoise
wdColorLime
wdColorOrange
wdColorPink

expression.UnderlineColor

expression			Required.	An	expression	that	returns	a	Font	object.



Remarks

Setting	the	UnderlineColor	property	to	wdColorAutomatic	resets	the	color	of
the	underline	to	the	color	of	the	text	above	it.



Example

This	example	applies	a	double	underline	to	the	third	word	in	the	active	document
and	sets	the	color	of	the	underline	to	turquoise.

With	ActiveDocument.Words(3)

				.Underline	=	wdUnderlineDouble

				.Font.UnderlineColor	=	wdColorTurquoise

End	With



Uniform	Property
							

True	if	all	the	rows	in	a	table	have	the	same	number	of	columns.	Read-only
Boolean.

expression.Uniform

expression			Required.	An	expression	that	returns	a	Table	object.



Example

This	example	creates	a	table	that	contains	a	split	cell	and	then	displays	a
message	box	that	confirms	that	the	table	doesn't	have	the	same	number	of
columns	for	each	row.

Set	newDoc	=	Documents.Add

Set	myTable	=	newDoc.Tables.Add(Selection.Range,	5,	5)

myTable.Cell(3,	3).Split	1,	2

If	myTable.Uniform	=	False	Then	MsgBox	"Table	is	not	uniform"

This	example	determines	whether	the	table	that	contains	the	selection	has	the
same	number	of	columns	for	each	row.

If	Selection.Information(wdWithInTable)	=	True	Then

				MsgBox	Selection.Tables(1).Uniform

End	If



UpdateFieldsAtPrint	Property
							

True	if	Microsoft	Word	updates	fields	automatically	before	printing	a	document.
Read/write	Boolean.

expression.UpdateFieldsAtPrint

expression			Required.	An	expression	that	returns	an	Options	object.



Example

This	example	sets	Word	to	update	fields	automatically	before	printing,	and	then
it	prints	the	active	document.

Options.UpdateFieldsAtPrint	=	True

ActiveDocument.PrintOut

This	example	returns	the	current	status	of	the	Update	fields	option	on	the	Print
tab	in	the	Options	dialog	box	(Tools	menu).

temp	=	Options.UpdateFieldsAtPrint



UpdateLinksAtOpen	Property
							

True	if	Microsoft	Word	automatically	updates	all	embedded	OLE	links	in	a
document	when	it's	opened.	Read/write	Boolean.

expression.UpdateLinksAtOpen

expression			Required.	An	expression	that	returns	an	Options	object.



Example

This	example	sets	Word	to	update	embedded	OLE	links	when	it	opens	files.

Options.UpdateLinksAtOpen	=	True

This	example	returns	the	current	status	of	the	Update	automatic	links	at	Open
option	on	the	General	tab	in	the	Options	dialog	box.

temp	=	Options.UpdateLinksAtOpen



UpdateLinksAtPrint	Property
							

True	if	Microsoft	Word	updates	embedded	links	to	other	files	before	printing	a
document.	Read/write	Boolean.

expression.UpdateLinksAtPrint

expression			Required.	An	expression	that	returns	an	Options	object.



Example

This	example	sets	Word	to	update	embedded	links	automatically	before	printing,
and	then	it	prints	the	active	document.

Options.UpdateLinksAtPrint	=	True

ActiveDocument.PrintOut

This	example	returns	the	current	status	of	the	Update	links	option	on	the	Print
tab	in	the	Options	dialog	box	(Tools	menu).

temp	=	Options.UpdateLinksAtPrint



UpdateLinksOnSave	Property
							

True	if	hyperlinks	and	paths	to	all	supporting	files	are	automatically	updated
before	you	save	the	document	as	a	Web	page,	ensuring	that	the	links	are	up-to-
date	at	the	time	the	document	is	saved.	False	if	the	links	are	not	updated.	The
default	value	is	True.	Read/write	Boolean.

expression.UpdateLinksOnSave

expression			Required.	An	expression	that	returns	a	DefaultWebOptions	object.



Remarks

You	should	set	this	property	to	False	if	the	location	where	the	document	is	saved
is	different	from	the	final	location	on	the	Web	server	and	the	supporting	files	are
not	available	at	the	first	location.



Example

This	example	specifies	that	links	are	not	updated	before	the	document	is	saved.

Application.DefaultWebOptions.UpdateLinksOnSave	=	False



UpdateStylesOnOpen	Property
							

True	if	the	styles	in	the	specified	document	are	updated	to	match	the	styles	in
the	attached	template	each	time	the	document	is	opened.	Read/write	Boolean.



Example

This	example	enables	the	option	to	update	document	styles	for	all	open
documents	and	then	closes	the	documents.	When	any	of	these	documents	is
reopened,	changes	to	the	styles	in	the	attached	template	will	automatically
appear	in	the	document.

For	Each	doc	In	Documents

				doc.UpdateStylesOnOpen	=	True

				doc.Close	SaveChanges:=wdSaveChanges

Next	doc

This	example	disables	the	option	to	update	document	styles	so	that	changes
made	to	the	styles	in	the	attached	template	aren't	reflected	in	Report.doc.

Documents("Report.doc").UpdateStylesOnOpen	=	False



UpperHeadingLevel	Property
							

Returns	or	sets	the	starting	heading	level	for	a	table	of	contents	or	table	of
figures.	Corresponds	to	the	starting	value	used	with	the	\o	switch	for	a	Table	of
Contents	(TOC)	field.	Read/write	Long.

expression.UpperHeadingLevel

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.



Remarks

Use	the	LowerHeadingLevel	property	to	set	the	ending	heading	level.	For
example,	to	set	the	TOC	field	syntax	{TOC	\o	"1-3"},	set	the
LowerHeadingLevel	property	to	3	and	the	UpperHeadingLevel	property	to	1.



Example

This	example	formats	the	first	table	of	contents	in	the	active	document	to
compile	all	headings	that	are	formatted	with	either	the	Heading	2	or	Heading	3
style.

If	ActiveDocument.TablesOfContents.Count	>=	1	Then

				With	ActiveDocument.TablesOfContents(1)

								.UseHeadingStyles	=	True

								.UseFields	=	False

								.UpperHeadingLevel	=	2

								.LowerHeadingLevel	=	3

				End	With

End	If



UsableHeight	Property
							

Application	object:	Returns	the	maximum	height	(in	points)	to	which	you	can
set	the	height	of	a	Microsoft	Word	document	window.	Read-only	Long.

Window	object:	Returns	the	height	(in	points)	of	the	active	working	area	in	the
specified	document	window.	Read-only	Long.	If	none	of	the	working	area	is
visible	in	the	document	window,	UsableHeight	returns	1.	To	determine	the
actual	available	height,	subtract	1	from	the	UsableHeight	value.



Example

This	example	sets	the	size	of	the	active	document	window	to	one	quarter	of	the
maximum	allowable	screen	area.

With	ActiveDocument.ActiveWindow

				.WindowState	=	wdWindowStateNormal

				.Top	=	5

				.Left	=	5

				.Height	=	(Application.UsableHeight*0.5)

				.Width	=	(Application.UsableWidth*0.5)

End	With

This	example	displays	the	size	of	the	working	area	in	the	active	document
window.

With	ActiveDocument.ActiveWindow

				MsgBox	"Working	area	height	=	"	_

								&	.UsableHeight	&	vbLf	_

								&	"Working	area	width	=	"	_

								&	.UsableWidth

End	With



UsableWidth	Property
							

Application	object:	Returns	the	maximum	width	(in	points)	to	which	you	can	set
the	width	of	a	Microsoft	Word	document	window.	Read-only	Long.

Window	object:	Returns	the	width	(in	points)	of	the	active	working	area	in	the
specified	document	window.	Read-only	Long.	If	none	of	the	working	area	is
visible	in	the	document	window,	UsableWidth	returns	1.	To	determine	the
actual	available	height,	subtract	1	from	the	UsableWidth	value.



Example

This	example	sets	the	size	of	the	active	document	window	to	one	quarter	of	the
maximum	allowable	screen	area.

With	ActiveDocument.ActiveWindow

				.WindowState	=	wdWindowStateNormal

				.Top	=	5

				.Left	=	5

				.Height	=	(Application.UsableHeight*0.5)

				.Width	=	(Application.UsableWidth*0.5)

End	With

This	example	displays	the	size	of	the	working	area	in	the	active	document
window.

With	ActiveDocument.ActiveWindow

				MsgBox	"Working	area	height	=	"	_

								&	.UsableHeight	&	vbLf	_

								&	"Working	area	width	=	"	_

								&	.UsableWidth

End	With



UseCharacterUnit	Property
							

True	if	Microsoft	Word	uses	characters	as	the	default	measurement	unit	for	the
current	document.	Read/write	Boolean.

expression.UseCharacterUnit

expression			Required.	An	expression	that	returns	an	Options	object.



Remarks

For	more	information	on	using	Word	with	right-to-left	languages,	see	Word
features	for	right-to-left	languages.

mk:@MSITStore:wdmain10.chm::/html/wdrefFeaturesAvailableInWordWhenBidirectionalLanguagesAreEnabled.htm


Example

This	example	sets	Word	to	use	characters	as	the	default	measurement	unit.

Options.UseCharacterUnit	=	True



UseDiffDiacColor	Property
							

True	if	you	can	set	the	color	of	diacritics	in	the	current	document.	Read/write
Boolean.

expression.UseDiffDiacColor

expression			Required.	An	expression	that	returns	an	Options	object.



Remarks

For	more	information	on	using	Word	with	Asian	languages,	see	Word	features
for	Asian	languages.

mk:@MSITStore:wdmain10.chm::/html/wdrefFeaturesAvailableInWordWhenAsianLanguagesAreEnabled.htm


Example

This	example	checks	the	UseDiffDiacColor	property	before	setting	the	color	of
diacritics	in	the	current	selection.

If	Options.UseDiffDiacColor	=	True	Then	_

				Selection.Font.DiacriticColor	=	wdColorBlue



UseFields	Property
							

True	if	Table	of	Contents	Entry	(TC)	fields	are	used	to	create	a	table	of	contents
or	a	table	of	figures.	Read/write	Boolean.

expression.UseFields

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.



Example

This	example	formats	the	first	table	of	contents	in	the	active	document	to	use
heading	styles	instead	of	TC	fields.

If	ActiveDocument.TablesOfContents.Count	>=	1	Then

				With	ActiveDocument.TablesOfContents(1)

								.UseFields	=	False

								.UseHeadingStyles	=	True

				End	With

End	If

This	example	adds	a	table	of	figures	after	the	selection	and	formats	the	table	to
compile	entries	with	the	"B"	identifier.

Selection.Collapse	Direction:=wdCollapseEnd

Set	myTOF	=	ActiveDocument.TablesOfFigures	_

				.Add(Range:=Selection.Range)

With	myTOF

				.UseFields	=	True

				.TableId	=	"B"

				.Caption	=	""

End	With



UseGermanSpellingReform	Property
							

True	if	Microsoft	Word	uses	the	German	post-reform	spelling	rules	when
checking	spelling.	Read/write	Boolean.

expression.UseGermanSpellingReform

expression			Required.	An	expression	that	returns	an	Options	object.



Remarks

This	property	may	not	be	available	to	you,	depending	on	the	language	support
(U.S.	English,	for	example)	that	you’ve	selected	or	installed.



Example

This	example	sets	Word	to	use	the	post-reform	rules	for	checking	spelling	in
German.

Options.UseGermanSpellingReform	=	True



UseHeadingStyles	Property
							

True	if	built-in	heading	styles	are	used	to	create	a	table	of	contents	or	a	table	of
figures.	Read/write	Boolean.

expression.UseHeadingStyles

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.



Example

This	example	formats	the	first	table	of	contents	in	the	active	document	to
compile	entries	formatted	with	the	Heading	1,	Heading	2,	or	Heading	3	style.

If	ActiveDocument.TablesOfContents.Count	>=	1	Then

				With	ActiveDocument.TablesOfContents(1)

								.UseHeadingStyles	=	True

								.UseFields	=	False

								.UpperHeadingLevel	=	1

								.LowerHeadingLevel	=	3

				End	With

End	If

This	example	adds	a	table	of	figures	in	place	of	the	selection	and	then	formats
the	table	to	compile	entries	from	TC	fields.

With	ActiveDocument.TablesOfFigures.Add(Range:=Selection.Range)

				.UseHeadingStyles	=	False

				.UseFields	=	True

End	With



UseHyperlinks	Property
							

Returns	or	sets	whether	entries	in	a	table	of	contents	or	a	table	of	figures	should
be	formatted	as	hyperlinks	when	publishing	to	the	Web.	Read/write	Boolean.

expression.UseHyperlinks

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.



Example

This	example	formats	the	first	table	of	contents	in	the	document	using
hyperlinks.

ActiveDocument.TableOfContents(1).UseHyperlinks	=	True



UseLongFileNames	Property
							

True	if	long	file	names	are	used	when	you	save	the	document	as	a	Web	page.
False	if	long	file	names	are	not	used	and	the	DOS	file	name	format	(8.3)	is	used.
The	default	value	is	True.	Read/write	Boolean.

expression.UseLongFileNames

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.



Remarks

If	you	don't	use	long	file	names	and	your	document	has	supporting	files,
Microsoft	Word	automatically	organizes	those	files	in	a	separate	folder.
Otherwise,	use	the	OrganizeInFolder	property	to	determine	whether	supporting
files	are	organized	in	a	separate	folder.



Example

This	example	disallows	the	use	of	long	file	names	as	the	global	default	for	the
application.

Application.DefaultWebOptions.UseLongFileNames	=	False



UserAddress	Property
							

Returns	or	sets	the	user's	mailing	address.	Read/write	String.

expression.UserAddress

expression			Required.	An	expression	that	returns	an	Application	object.



Remarks

The	mailing	address	is	used	as	a	return	address	on	envelopes.



Example

This	example	sets	the	user's	return	address.	The	Chr	function	is	used	to	return	a
line	feed	character.

Application.UserAddress	=	"4200	Third	Street	NE"	&	Chr(10)	_

				&	"Anytown,	WA		98999"

This	example	returns	the	address	found	in	the	Mailing	address	box	on	the	User
Information	tab	in	the	Options	dialog	box	(Tools	menu).

Msgbox	Application.UserAddress



UserControl	Property
							

True	if	the	document	or	application	was	created	or	opened	by	the	user.	False	if
the	document	or	application	was	created	or	opened	programmatically	from
another	Microsoft	Office	application	with	the	Open	method	or	the
CreateObject	or	GetObject	method.	Read/write	Boolean	for	the	Document
object;	read-only	Boolean	for	the	Application	object.



Remarks

If	Word	is	visible	to	the	user,	or	if	you	call	the	UserControl	property	of	a	Word
Application	or	Document	object	from	within	a	Word	code	module,	this
property	will	always	return	True.



Example

This	example	displays	the	status	of	the	UserControl	property	for	the	active
document.	This	example	will	only	work	correctly	when	run	from	another	Office
application	with	the	Word	object	library	loaded.

Set	wd	=	New	Word.Application

Set	wdDoc	=	_

				wd.Documents.Open("C:\My	Documents\doc1.doc")

If	wdDoc.UserControl	=	True	Then

				MsgBox	"This	document	was	created	or	opened	by	the	user."

Else

				MsgBox	"This	document	was	created	programmatically."

End	If



UserInitials	Property
							

Returns	or	sets	the	user's	initials,	which	Microsoft	Word	uses	to	construct
comment	marks.	Read/write	String.

expression.UserInitials

expression			Required.	An	expression	that	returns	an	Application	object.



Example

This	example	sets	the	user's	initials.

Application.UserInitials	=	"baa"

This	example	returns	the	letters	found	in	the	Initials	box	on	the	User
Information	tab	in	the	Options	dialog	box	(Tools	menu).

Msgbox	Application.UserInitials



UserName	Property
							

Returns	or	sets	the	user's	name,	which	is	used	on	envelopes	and	for	the	Author
document	property.	Read/write	String.

expression.UserName

expression			Required.	An	expression	that	returns	an	Application	object.



Example

This	example	sets	the	user's	name.

Application.UserName	=	"Andrew	Fuller"

This	example	returns	the	name	found	in	the	Name	box	on	the	User	Information
tab	in	the	Options	dialog	box	(Tools	menu).

Msgbox	Application.UserName



Show	All



UseThemeStyle	Property
							

True	if	new	e-mail	messages	use	the	character	style	defined	by	the	default	e-
mail	message	theme.	If	no	default	e-mail	message	theme	has	been	specified,	this
property	has	no	effect.	Read/write	Boolean.



Example

This	example	sets	Microsoft	Word	to	use	the	Artsy	theme	as	the	default	theme
for	new	e-mail	messages	and	to	use	the	character	style	defined	in	the	Artsy
theme.

Application.EmailOptions.ThemeName	=	"artsy"

Application.EmailOptions.UseThemeStyle	=	True



UseThemeStyleOnReply	Property
							

True	for	Microsoft	Word	to	use	a	theme	when	replying	to	e-mail.	Read/write
Boolean.

expression.UseThemeStyleOnReply

expression			Required.	An	expression	that	returns	an	EmailOptions	object.



Example

This	example	tells	Word	to	use	a	theme	when	replying	to	e-mail	if	Word	uses	a
theme	for	new	messages.

Sub	NewTheme()

				With	Application.EmailOptions

								If	.UseThemeStyle	=	True	Then

												.UseThemeStyleOnReply	=	True

								End	If

				End	With

End	Sub



Show	All



Valid	Property
							

CheckBox,	DropDown,	and	TextInput	objects:	True	if	the	specified	form	field
object	is	a	valid	check	box	form	field.	Read-only	Boolean.

CustomLabel	object:	True	if	the	various	properties	(for	example,	Height,
Width,	and	NumberDown)	for	the	specified	custom	label	work	together	to
produce	a	valid	mailing	label.	Read-only	Boolean.

expression.Valid

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.



Remarks

For	the	CheckBox,	DropDown,	and	TextInput	objects,	use	the	Type	property
of	the	FormField	object	to	determine	the	type	of	form	field
(wdFieldFormCheckBox,	wdFieldFormDropDown,	or
wdFieldFormTextInput)	before	applying	the	CheckBox,	DropDown,	or
TextInput	property.	This	precaution	ensures	that	the	FormField	object	is	the
expected	type.	If	the	first	form	field	in	the	active	document	is	a	check	box,	the
following	example	selects	the	check	box.

If	ActiveDocument.FormFields(1).Type	=	wdFieldFormCheckBox	Then

				ActiveDocument.FormFields(1).CheckBox.Valid	=	True

End	If



Example

As	it	applies	to	the	CheckBox	object.

This	example	adds	a	text	form	field	at	the	insertion	point.	Because	myFormField
is	a	text	input	field	and	not	a	check	box,	the	message	box	displays	"False."

Selection.Collapse	Direction:=wdCollapseStart

Set	myFormField	=	ActiveDocument.FormFields.Add(Range:=	_

				Selection.Range,	Type:=wdFieldFormTextInput)

MsgBox	myFormField.CheckBox.Valid

As	it	applies	to	the	TextInput	object.

This	example	determines	whether	the	first	form	field	in	the	active	document	is	a
text	form	field.	If	the	Valid	property	is	True,	the	contents	of	the	text	form	field
are	changed	to	"Hello."

If	ActiveDocument.FormFields(1).TextInput.Valid	=	True	Then

				ActiveDocument.FormFields(1).Result	=	"Hello"

End	If

As	it	applies	to	the	CustomLabel	object.

If	the	settings	for	the	custom	label	named	"My	Labels"	are	valid,	this	example
creates	a	new	document	of	labels	using	the	My	Labels	settings.

addr	=	"James	Allard"	&	vbCr	&	"123	Main	St."	&	vbCr	_

				&	"Seattle,	WA	98040"

If	Application.MailingLabel.CustomLabels("My	Labels")	_

								.Valid	=	True	Then

				Application.MailingLabel.CreateNewDocument	_

								Name:="My	Labels",	Address:=addr

End	If





Show	All



Value	Property
							

Value	property	as	it	applies	to	the	AutoCorrectEntry,	AutoTextEntry,
CustomProperty,	and	Variable	objects.

Returns	or	sets	the	value	of	the	AutoCorrect	entry,	AutoText	entry,	custom
property,	or	document	variable.	Read/write	String.

expression.Value

expression			Required.	An	expression	that	returns	one	of	the	above	objects.



Remarks

For	AutoCorrectEntry	and	AutoTextEntry	objects,	the	Value	property	only
returns	the	first	255	characters	of	the	object's	value.	Setting	the	Value	property
to	a	string	longer	than	255	characters	generates	an	error.

Value	property	as	it	applies	to	the	DropDown	object.

Returns	or	sets	the	number	of	the	selected	item	in	a	drop-down	form	field.
Read/write	Long.

expression.Value

expression			Required.	An	expression	that	returns	a	DropDown	object.

Value	property	as	it	applies	to	the	MailMergeDataField	and
MappedDataField	objects.

Returns	the	contents	of	the	mail	merge	data	field	or	mapped	data	field	for	the
current	record.	Use	the	ActiveRecord	property	to	set	the	active	record	in	a	mail
merge	data	source.	Read-only	String.

expression.Value

expression			Required.	An	expression	that	returns	one	of	the	above	objects.

Value	property	as	it	applies	to	the	CheckBox	object.

True	if	the	check	box	is	selected.	Read/write	Boolean.

expression.Value

expression			Required.	An	expression	that	returns	a	CheckBox	object.

Value	property	as	it	applies	to	the	ReadabilityStatistic	object.

Returns	the	value	of	the	grammar	statistic.	Read-only	Long.

expression.Value



expression			Required.	An	expression	that	returns	a	ReadabilityStatistic	object.



Example

As	it	applies	to	the	AutoCorrectEntry,	AutoTextEntry,	CustomProperty,
and	Variable	objects.

This	example	adds	a	document	variable	to	the	active	document	and	then	displays
the	value	of	the	new	variable.

ActiveDocument.Variables.Add	Name:="Temp2",	Value:="10"

MsgBox	ActiveDocument.Variables("Temp2").Value

This	example	creates	an	AutoCorrect	entry	and	then	displays	the	value	of	the
new	entry.

AutoCorrect.Entries.Add	Name:="i.e.",	Value:="that	is"

MsgBox	AutoCorrect.Entries("i.e.").Value

As	it	applies	to	the	MailMergeDataField	and	MappedDataField	objects.

This	example	displays	the	contents	of	the	active	data	record	in	the	data	source
attached	to	Main.doc.

For	Each	dataF	In	_

				Documents("Main.doc").MailMerge.DataSource.DataFields

				If	dataF.Value	<>	""	Then	dRecord	=	dRecord	&	_

								dataF.Value	&	vbCr

Next	dataF

MsgBox	dRecord

As	it	applies	to	the	ReadabilityStatistic	object.

This	example	checks	the	grammar	in	the	active	document	and	then	displays	the
Flesch	reading-ease	index.

ActiveDocument.CheckGrammar

MsgBox	ActiveDocument.ReadabilityStatistics(	_

				"Flesch	Reading	Ease").Value





Variables	Property
							

Returns	a	Variables	collection	that	represents	the	variables	stored	in	the
specified	document.	Read-only.

For	information	about	returning	a	single	member	of	a	collection,	see	Returning
an	Object	from	a	Collection.



Example

This	example	adds	a	document	variable	named	"Value1"	to	the	active	document.
The	example	then	retrieves	the	value	from	the	Value1	variable,	adds	3	to	the
value,	and	displays	the	results.

ActiveDocument.Variables.Add	Name:="Value1",	Value:="1"

MsgBox	ActiveDocument.Variables("Value1")	+	3

This	example	displays	the	name	and	value	of	each	document	variable	in	the
active	document.

For	Each	myVar	In	ActiveDocument.Variables

				MsgBox	"Name	="	&	myVar.Name	&	vbCr	&	"Value	=	"	&	myVar.Value

Next	myVar



VBASigned	Property
							

True	if	the	Visual	Basic	for	Applications	(VBA)	project	for	the	specified
document	has	been	digitally	signed.	Read-only	Boolean.



Example

This	example	loads	a	document	called	"Temp.doc"	and	tests	to	see	whether	or
not	it	has	a	digital	signature.	If	there's	no	digital	signature,	the	example	displays
a	warning	message.

Documents.Open	_

				FileName:="C:\My	Documents\Temp.doc"

If	ActiveDocument.VBASigned	=	False	Then

				MsgBox	"Warning!	This	document	"	_

								&	"has	not	been	digitally	signed.",	_

								vbCritical,	"Digital	Signature	Warning"

End	If



VBE	Property
							

Returns	a	VBE	object	that	represents	the	Visual	Basic	Editor.

expression.VBE

expression			Required.	An	expression	that	returns	an	Application	object.



Example

This	example	displays	the	number	of	references	available	for	the	active	project.

MsgBox	"References	=	"	&	VBE.ActiveVBProject.References.Count



VBProject	Property
							

Returns	the	VBProject	object	for	the	specified	template	or	document.

expression.VBProject

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.



Remarks

Use	this	property	to	gain	access	to	code	modules	and	user	forms.

To	view	the	VBProject	object	in	the	object	browser,	you	must	select	the
Microsoft	Visual	Basic	for	Applications	Extensibility	check	box	in	the
References	dialog	box	(Tools	menu)	in	the	Visual	Basic	Editor.



Example

This	example	displays	the	name	of	the	Visual	Basic	project	for	the	Normal
template.

Set	normProj	=	NormalTemplate.VBProject

MsgBox	normProj.Name

This	example	displays	the	name	of	the	Visual	Basic	project	for	the	active
document.

Set	currProj	=	ActiveDocument.VBProject

MsgBox	currProj.Name

This	example	adds	a	standard	code	module	to	the	active	document	and	renames
it	"MyModule."

Set	newModule	=	ActiveDocument.VBProject.VBComponents	_

				.Add(vbext_ct_StdModule)

NewModule.Name	=	"MyModule"



Version	Property
							

Application	object:	Returns	the	Microsoft	Word	version	number.	Read-only
String.

System	object:	Returns	the	version	number	of	the	operating	system.	Read-only
String.



Example

This	example	displays	the	Word	version	number	in	a	message	box.

Msgbox	"The	version	of	Word	is	"	&	Application.Version

This	example	displays	the	version	number	of	the	operating	system	in	a	message
box.

Msgbox	"The	system	version	is	"	&	System.Version



Versions	Property
							

Returns	a	Versions	collection	that	represents	all	the	versions	of	the	specified
document.	Read-only.

For	information	about	returning	a	single	member	of	a	collection,	see	Returning
an	Object	from	a	Collection.



Example

This	example	displays	the	user	name	and	date	of	the	most	recent	version	of	the
document.

If	ActiveDocument.Versions.Count	>=	1	Then

				Set	aVersion	=	_

								ActiveDocument.Versions(ActiveDocument.Versions.Count)

				MsgBox	"Saved	by	"	&	aVersion.SavedBy	&	"	on	"	&	aVersion.Date

End	If

This	example	saves	a	version	of	Contract.doc	with	a	short	comment.

Documents("Contract.doc").Versions.Save	_

				Comment:="Added	a	single	word"



Vertical	Property
							

True	vertically	orients	text	on	Asian	envelopes	and	mailing	labels.	Read/write
Boolean.

expression.Vertical

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.



Remark

This	property	works	only	with	mailing	labels	or	envelopes	that	are	set	up	for	a
mail	merge	and	applies	only	to	Asian	languages.



Example

This	example	determines	if	the	active	document	is	a	mail	merge	mailing	label
document	and	if	the	language	setting	is	Japanese,	and	if	so,	sets	the	mailing
label's	orientation	to	vertical.

Sub	VerticalLabel()

				If	ActiveDocument.MailMerge.MainDocumentType	=	wdMailingLabels	And

								Application.Language	=	msoLanguageIDJapanese	Then

												Application.MailingLabel.Vertical	=	True

				End	If

End	Sub

This	example	determines	if	the	active	document	is	a	mail	merge	envelope
document	and	if	the	language	setting	is	Chinese,	and	if	so,	sets	the	envelope's
orientation	to	vertical	and	updates	the	current	document.

Sub	VerticalEnvelope()

				If	ActiveDocument.MailMerge.MainDocumentType	=	wdEnvelopes	And

								Application.Language	=	msoLanguageIDChineseHongKong	Then

												With	ThisDocument.Envelope

																.Vertical	=	True

																.UpdateDocument

												End	With

				End	If

End	Sub



Show	All



VerticalAlignment	Property
							

VerticalAlignment	property	as	it	applies	to	the	Cell	and	Cells	objects.

Returns	or	sets	the	vertical	alignment	of	text	in	one	or	more	cells	of	a	table.
Read/write	WdCellVerticalAlignment.

WdCellVerticalAlignment	can	be	one	of	these	WdCellVerticalAlignment
constants.
wdCellAlignVerticalBottom
wdCellAlignVerticalCenter
wdCellAlignVerticalTop

expression.VerticalAlignment

expression			Required.	An	expression	that	returns	one	of	the	above	objects.

VerticalAlignment	property	as	it	applies	to	the	PageSetup	object.

Returns	or	sets	the	vertical	alignment	of	text	on	each	page	in	a	document	or
section.	Read/write	WdVerticalAlignment.

WdVerticalAlignment	can	be	one	of	these	WdVerticalAlignment	constants.
wdAlignVerticalBottom
wdAlignVerticalCenter
wdAlignVerticalJustify
wdAlignVerticalTop

expression.VerticalAlignment

expression			Required.	An	expression	that	returns	a	PageSetup	object.



Example

As	it	applies	to	the	Cell	and	Cells	objects.	

This	example	creates	a	3x3	table	in	a	new	document	and	assigns	a	sequential	cell
number	to	each	cell	in	the	table.	The	example	then	sets	the	height	of	the	first	row
to	20	points	and	vertically	aligns	the	text	at	the	top	of	the	cells.

Set	newDoc	=	Documents.Add

Set	myTable	=	newDoc.Tables.Add(Selection.Range,	3,	3)

i	=	1

For	Each	c	In	myTable.Range.Cells

				c.Range.InsertAfter	"Cell	"	&	i

				i	=	i	+	1

Next

With	myTable.Rows(1)

				.Height	=	20

				.Cells.VerticalAlignment	=	wdAlignVerticalTop

End	With

As	it	applies	to	the	PageSetup	object.

This	example	changes	the	vertical	alignment	of	the	first	document	so	that	the
text	is	centered	between	the	top	and	bottom	margins.

Documents(1).PageSetup.VerticalAlignment	=	wdAlignVerticalCenter

This	example	creates	a	new	document	and	then	inserts	the	same	paragraph	10
times.	The	vertical	alignment	of	the	new	document	is	then	set	so	that	the	10
paragraphs	are	equally	spaced	(justified)	between	the	top	and	bottom	margins.

Set	myDoc	=	Documents.Add

With	myDoc.Content

				For	i	=	1	to	9

								.InsertAfter	"This	is	a	sentence."

								.InsertParagraphAfter

				Next	i

				.InsertAfter	"This	is	a	sentence."

End	With

myDoc.PageSetup.VerticalAlignment	=	wdAlignVerticalJustify





VerticalDistanceFromText	Property
							

Returns	or	sets	the	vertical	distance	(in	points)	between	a	frame	and	the
surrounding	text.	Read/write	Single.

expression.VerticalDistanceFromText

expression			Required.	An	expression	that	returns	a	Frame	object.



Example

This	example	sets	the	vertical	distance	between	the	selected	frame	and	the
surrounding	text	to	12	points.

If	Selection.Frames.Count	=	1	Then

				Selection.Frames(1).VerticalDistanceFromText	=	12

End	If

This	example	adds	a	frame	around	the	selection	and	sets	several	properties	of	the
frame.

Set	aFrame	=	ActiveDocument.Frames.Add(Range:=Selection.Range)

With	aFrame

				.HorizontalDistanceFromText	=	InchesToPoints(0.13)

				.VerticalDistanceFromText	=	InchesToPoints(0.13)

				.HeightRule	=	wdFrameAuto

				.WidthRule	=	wdFrameAuto

End	With



Show	All



VerticalFlip	Property
							

True	if	the	specified	shape	is	flipped	around	the	vertical	axis.	Read-only
MsoTriState.

MsoTriState	can	be	one	of	these	MsoTriState	constants.
msoCTrue
msoFalse
msoTriStateMixed
msoTriStateToggle
msoTrue

expression.VerticalFlip

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.



Example

This	example	restores	each	shape	on	myDocument	to	its	original	state	if	it's	been
flipped	horizontally	or	vertically.

For	Each	s	In	ActiveDocument.Shapes

				If	s.HorizontalFlip	Then	s.Flip	msoFlipHorizontal

				If	s.VerticalFlip	Then	s.Flip	msoFlipVertical

Next



VerticalPercentScrolled	Property
							

Returns	or	sets	the	vertical	scroll	position	as	a	percentage	of	the	document
length.	Read/write	Long.

expression.VerticalPercentScrolled

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.



Example

This	example	displays	the	percentage	that	the	active	window	is	scrolled
vertically.

MsgBox	ActiveDocument.ActiveWindow.VerticalPercentScrolled	&	"%"

This	example	scrolls	the	active	window	vertically	by	10	percent.

Set	aWindow	=	ActiveDocument.ActiveWindow

aWindow.VerticalPercentScrolled	=	_

				aWindow.VerticalPercentScrolled	+	10

This	example	vertically	scrolls	the	active	pane	of	the	window	for	Document1	to
the	end.

With	Windows("Document1")

				.Activate

				.ActivePane.VerticalPercentScrolled	=	100

End	With



VerticalPitch	Property
							

Returns	or	sets	the	vertical	distance	between	the	top	of	one	mailing	label	and	the
top	of	the	next	mailing	label.	Read/write	Single.

expression.VerticalPitch

expression			Required.	An	expression	that	returns	a	CustomLabel	object.



Remarks

If	this	property	is	changed	to	a	value	that	isn't	valid	for	the	specified	mailing
label	layout,	an	error	occurs.



Example

This	example	creates	a	custom	label	named	"VisitorPass"	and	defines	its	layout.
The	distance	between	the	top	edge	of	one	label	to	the	top	edge	of	the	next	label
is	2.17	inches.

Set	myLabel	=	Application.MailingLabel.CustomLabels	_

				.Add(Name:="VisitorPass",	DotMatrix:=False)

With	myLabel

				.Height	=	InchesToPoints(2.17)

				.HorizontalPitch	=	InchesToPoints(3.5)

				.NumberAcross	=	2

				.NumberDown	=	4

				.PageSize	=	wdCustomLabelLetter

				.SideMargin	=	InchesToPoints(0.75)

				.TopMargin	=	InchesToPoints(0.17)

				.VerticalPitch	=	InchesToPoints(2.17)

				.Width	=	InchesToPoints(3.5)

End	With



VerticalPosition	Property
							

Returns	or	sets	the	vertical	distance	between	the	edge	of	the	frame	(for	the
Frame	object)	or	the	rows	(for	the	Rows	object)	and	the	item	specified	by	the
RelativeVerticalPosition	property.	Can	be	a	number	that	indicates	a
measurement	in	points,	or	can	be	any	valid		WdFramePosition	constant.	For	a
list	of	valid	constants,	consult	the	Microsoft	Visual	Basic	Object	Browser.
Read/write	Single.

expression.VerticalPosition

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.



Example

This	example	vertically	aligns	the	first	frame	in	the	active	document	with	the	top
of	the	page.

Set	myFrame	=	ActiveDocument.Frames(1)

With	myFrame

				.RelativeVerticalPosition	=	wdRelativeVerticalPositionPage

				.VerticalPosition	=	wdFrameTop

End	With

This	example	adds	a	frame	around	the	first	shape	in	the	active	document	and
positions	the	frame	1	inch	from	the	top	margin.

If	ActiveDocument.Shapes.Count	>=	1	Then

				ActiveDocument.Shapes(1).Select

				Set	aFrame	=	ActiveDocument.Frames.Add(Range:=Selection.Range)

				With	aFrame

								.RelativeVerticalPosition	=	_

												wdRelativeVerticalPositionMargin

								.VerticalPosition	=	InchesToPoints(1)

				End	With

End	If

This	example	vertically	aligns	the	first	table	in	the	active	document	with	the	top
of	the	page.

Set	myTable	=	ActiveDocument.Tables(1).Rows

With	myTable

				.RelativeVerticalPosition	=	wdRelativeVerticalPositionPage

				.VerticalPosition	=	wdTableTop

End	With



VerticalResolution	Property
							

Returns	the	vertical	screen	resolution	in	pixels.	Read-only	Long.

expression.VerticalResolution

expression			Required.	An	expression	that	returns	a	System	object.



Example

This	example	displays	the	current	screen	resolution	(for	example,	"1024	x	768").

horz	=	System.HorizontalResolution

vert	=	System.VerticalResolution

MsgBox	"Resolution	=	"	&	horz	&	"	x	"	&	vert



Show	All



Vertices	Property
							

Returns	the	coordinates	of	the	specified	freeform	drawing's	vertices	(and	control
points	for	Bézier	curves)	as	a	series	of	coordinate	pairs.	You	can	use	the	array
returned	by	this	property	as	an	argument	for	the	AddCurve	or	AddPolyLine
method.	Read-only	Variant.

expression.Vertices

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.



Remarks

The	following	table	shows	how	the	Vertices	property	associates	values	in	the
array	vertArray()	with	the	coordinates	of	a	triangle's	vertices.

vertArray
element Contains

vertArray(1,

1)

The	horizontal	distance	from	the	first	vertex	to	the	left	side	of
the	document.

vertArray(1,

2)

The	vertical	distance	from	the	first	vertex	to	the	top	of	the
document.

vertArray(2,

1)

The	horizontal	distance	from	the	second	vertex	to	the	left	side
of	the	document.

vertArray(2,

2)

The	vertical	distance	from	the	second	vertex	to	the	top	of	the
document.

vertArray(3,

1)

The	horizontal	distance	from	the	third	vertex	to	the	left	side	of
the	document.

vertArray(3,

2)

The	vertical	distance	from	the	third	vertex	to	the	top	of	the
document.



Example

This	example	assigns	the	vertex	coordinates	for	shape	one	in	the	active
document	to	an	array	variable	and	displays	the	coordinates	for	the	first	vertex.
Shape	one	must	be	a	freeform	drawing.

With	ActiveDocument.Shapes(1)

				vertArray	=	.Vertices

				x1	=	vertArray(1,	1)

				y1	=	vertArray(1,	2)

				MsgBox	"First	vertex	coordinates:	"	&	x1	&	",	"	&	y1

End	With

This	example	creates	a	curve	that	has	the	same	geometric	description	as	shape
one	in	the	active	document.	This	example	assumes	that	the	first	shape	is	a	Bézier
curve	containing	3n+1	vertices,	where	n	is	the	number	of	curve	segments.

With	ActiveDocument.Shapes

				.AddCurve	.Item(1).Vertices,	Selection.Range

End	With



View	Property
							

Returns	a	View	object	that	represents	the	view	for	the	specified	window	or	pane.

expression.View

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.



Example

This	example	switches	the	active	window	to	full-screen	view.

ActiveDocument.ActiveWindow.View.FullScreen	=	True

This	example	shows	all	nonprinting	characters	for	panes	associated	with	the	first
window	in	the	Windows	collection.

For	Each	myPane	In	Windows(1).Panes

				myPane.View.ShowAll	=	True

Next	myPane

This	example	sets	view	options	for	each	window	in	the	Windows	collection.

For	Each	myWindow	In	Windows

				With	myWindow.View

								.ShowTabs	=	True

								.ShowParagraphs	=	True

								.Type	=	wdNormalView

				End	With

Next	myWindow



ViewMailMergeFieldCodes	Property
							

True	if	merge	field	names	are	displayed	in	a	mail	merge	main	document.	False
if	information	from	the	current	data	record	is	displayed.	Read/write	Long.

expression.ViewMailMergeFieldCodes

expression			Required.	An	expression	that	returns	a	MailMerge	object.



Remarks

If	the	active	document	isn't	a	mail	merge	main	document,	this	property	causes	an
error.	To	view	merge	field	names	or	their	results,	set	the	ShowFieldCodes
property	to	False.



Example

This	example	displays	the	mail	merge	fields	in	Main.doc.

ActiveDocument.ActiveWindow.View.ShowFieldCodes	=	False

With	Documents("Main.doc")

				.Activate

				.MailMerge.ViewMailMergeFieldCodes	=	True

End	With

If	the	active	document	is	set	up	for	a	mail	merge	operation,	this	example	displays
the	current	data	record	information	in	the	main	document.

ActiveDocument.ActiveWindow.View.ShowFieldCodes	=	False

Set	myMerge	=	ActiveDocument.MailMerge

If	myMerge.State	=	wdMainAndSourceAndHeader	Or	_

				myMerge.State	=	wdMainAndDataSource	Then

				myMerge.ViewMailMergeFieldCodes	=	False

End	If



Show	All



ViewType	Property
							

Returns	or	sets	the	view	for	the	TextRetrievalMode	object.	Read/write
WdViewType.

WdViewType	can	be	one	of	these	WdViewType	constants.
wdMasterView
wdNormalView
wdOutlineView
wdPrintPreview
wdPrintView
wdWebView

expression.ViewType

expression			Required.	An	expression	that	returns	a	TextRetrievalMode	object.



Remarks

Changing	the	view	for	the	TextRetrievalMode	object	doesn't	change	the	display
of	a	document	on	the	screen.	Instead,	it	determines	which	characters	in	the
document	will	be	included	when	a	range	is	retrieved.



Example

This	example	sets	the	view	for	text	retrieval	to	outline	view	and	then	displays	the
contents	of	the	active	document	in	a	dialog	box.	Note	that	only	the	text	displayed
in	outline	view	is	retrieved.

Set	myText	=	ActiveDocument.Content

myText.TextRetrievalMode.ViewType	=	wdOutlineView

Msgbox	myText



Show	All



Visible	Property
							

Visible	property	as	it	applies	to	the	FillFormat,	LineFormat,
ShadowFormat,	Shape,	ShapeRange,	and	ThreeDFormat	objects.

True	if	the	specified	object,	or	the	formatting	applied	to	it,	is	visible.	Read/write
MsoTriState.

MsoTriState	can	be	one	of	these	MsoTriState	constants.
msoCTrue
msoFalse
msoTriStateMixed
msoTriStateToggle
msoTrue

expression.Visible

expression			Required.	An	expression	that	returns	one	of	the	above	objects.

Visible	property	as	it	applies	to	the	Application,	Border,	Reviewer,	Task,
TaskPane,	and	Window	objects.

True	if	the	specified	object	is	visible.	Read/write	Boolean.

expression.Visible

expression			Required.	An	expression	that	returns	one	of	the	above	objects.



Remarks

For	any	object,	some	methods	and	properties	may	be	unavailable	if	the	Visible
property	is	False.



Example

As	it	applies	to	the	Application	object.

This	example	hides	Microsoft	Word.

Application.Visible	=	False

As	it	applies	to	the	Task	object.

This	example	hides	the	Calculator,	if	it's	running.	If	it's	not	running,	a	message	is
displayed.

If	Tasks.Exists("Calculator")	Then

				Tasks("Calculator").Visible	=	False

Else

				Msgbox	"Calculator	is	not	running."

End	If

As	it	applies	to	the	Border	object.

This	example	creates	a	table	in	the	active	document	and	removes	the	default
borders	from	the	table.

Set	myTable	=	ActiveDocument.Tables.Add(Range:=Selection.Range,	_

				NumRows:=12,	NumColumns:=5)

For	Each	aBorder	In	myTable.Borders

				aBorder.Visible	=	False

Next	aBorder

As	it	applies	to	the	Shape	object.

This	example	hides	the	shadow	formatting	for	the	first	shape	in	the	active
document.

ActiveDocument.Shapes(1).Shadow.Visible	=	False

This	example	creates	a	new	document	and	then	adds	text	and	a	rectangle	to	it.
The	example	also	sets	Word	to	hide	the	rectangle	while	the	document	is	being
printed	and	then	to	make	it	visible	again	after	printing	is	completed.



Set	myDoc	=	Documents.Add

Selection.TypeText	Text:="This	is	some	sample	text."

With	myDoc

				.Shapes.AddShape	msoShapeRectangle,	200,	70,	150,	60

				.Shapes(1).Visible	=	False

				.PrintOut

				.Shapes(1).Visible	=	True

End	With



Show	All



VisualSelection	Property
							

Returns	or	sets	the	selection	behavior	based	on	visual	cursor	movement	in	a
right-to-left	language	document.	Read/write	WdVisualSelection.

WdVisualSelection	can	be	one	of	these	WdVisualSelection	constants.
wdVisualSelectionBlock		All	selected	lines	are	the	same	width.
wdVisualSelectionContinuous		The	selection	wraps	from	line	to	line.

expression.VisualSelection

expression			Required.	An	expression	that	returns	an	Options	object.



Remarks

The	CursorMovement	property	must	be	set	to	wdCursorMovementVisual	in
order	to	use	this	property.

For	more	information	on	using	Word	with	right-to-left	languages,	see	Word
features	for	right-to-left	languages.

mk:@MSITStore:wdmain10.chm::/html/wdrefFeaturesAvailableInWordWhenBidirectionalLanguagesAreEnabled.htm


Example

This	example	sets	the	selection	behavior	so	that	the	selection	wraps	from	line	to
line.

If	Options.CursorMovement	=	wdCursorMovementVisual	Then	_

				Options.VisualSelection	=	wdVisualSelectionContinuous



WarnBeforeSavingPrintingSendingMarkup
Property
							

True	for	Microsoft	Word	to	display	a	warning	when	saving,	printing,	or	sending
as	e-mail	a	document	containing	comments	or	tracked	changes.	Read/write
Boolean.

expression.WarnBeforeSavingPrintingSendingMarkup

expression			Required.	An	expression	that	returns	a	Options	object.



Example

This	example	prints	the	active	document	but	allows	the	user	to	abort	if	the
document	contains	tracked	changes	or	comments.

Sub	SaferPrint

				Dim	blnOldState	as	Boolean

				'Save	old	state	in	variable

				blnOldState	=	Application.Options.WarnBeforeSavingPrintingSendingMarkup

				'Turn	on	warning

				Application.Options.WarnBeforeSavingPrintingSendingMarkup	=	True

				'Print	document

				ActiveDocument.PrintOut

				'Restore	original	warning	state

				Application.Options.WarnBeforeSavingPrintingSendingMarkup	=	blnOldState

EndSub



WebOptions	Property
							

Returns	the	WebOptions	object,	which	contains	document-level	attributes	used
by	Microsoft	Word	when	you	save	a	document	as	a	Web	page	or	open	a	Web
page.	Read-only.



Example

This	example	specifies	that	cascading	style	sheets	and	Western	document
encoding	be	used	when	items	in	the	active	document	are	saved	to	a	Web	page.

Set	objWO	=	ActiveDocument.WebOptions

objWO.RelyOnCSS	=	True

objWO.Encoding	=	msoEncodingWestern



Weight	Property
							

Returns	or	sets	the	thickness	of	the	specified	line	in	points.	Read/write	Single.

expression.Weight

expression			Required.	An	expression	that	returns	a	LineFormat	object.



Example

This	example	adds	a	green	dashed	line	two	points	thick	to	the	active	document.

With	ActiveDocument.Shapes.AddLine(10,	10,	250,	250).Line

				.DashStyle	=	msoLineDashDotDot

				.ForeColor.RGB	=	RGB(0,	255,	255)

				.Weight	=	2

End	With



WidowControl	Property
							

True	if	the	first	and	last	lines	in	the	specified	paragraph	remain	on	the	same	page
as	the	rest	of	the	paragraph	when	Word	repaginates	the	document.	Can	be	True,
False	or	wdUndefined.	Read/write	Long.



Example

This	example	formats	the	paragraphs	in	the	active	document	so	that	the	first	or
last	line	in	a	paragraph	can	appear	by	itself	at	the	top	or	bottom	of	a	page.

ActiveDocument.Paragraphs.WidowControl	=	False



Width	Property
							

Frameset	object:	Returns	or	sets	the	width	of	the	specified	Frameset	object.
Read/write	Long.	The	WidthType	property	determines	the	type	of	unit	in	which
this	value	is	expressed.

All	other	objects:	Returns	or	sets	the	width	of	the	specified	object,	in	points.
Read/write	Long.



Example

This	example	creates	a	5x5	table	in	a	new	document	and	then	sets	the	width	of
the	first	cell	to	1.5	inches.

Set	newDoc	=	Documents.Add

Set	myTable	=	_

				newDoc.Tables.Add(Range:=Selection.Range,	NumRows:=5,	_

				NumColumns:=5)

myTable.Cell(1,	1).Width	=	InchesToPoints(1.5)

This	example	returns	the	width	(in	inches)	of	the	cell	that	contains	the	insertion
point.

If	Selection.Information(wdWithInTable)	=	True	Then

				MsgBox	PointsToInches(Selection.Cells(1).Width)

End	If

This	example	formats	the	section	that	includes	the	selection	as	three	columns.
The	For	Each...Next	loop	is	used	to	display	the	width	of	each	column	in	the
TextColumns	collection.

Selection.PageSetup.TextColumns.SetCount	NumColumns:=3

For	Each	acol	In	Selection.PageSetup.TextColumns

				MsgBox	"Width=	"	&	PointsToInches(acol.Width)

Next	acol

This	example	sets	the	width	and	height	of	the	Microsoft	Word	application
window.

With	Application

				.WindowState	=	wdWindowStateNormal

				.Width	=	500

				.Height	=	400

End	With

This	example	sets	the	width	of	the	specified	Frameset	object	to	25%	of	the
window	width.

With	ActiveWindow.ActivePane.Frameset

				.WidthType	=	wdFramesetSizeTypePercent

				.Width	=	25



End	With



Show	All



WidthRule	Property
							

Returns	or	sets	the	rule	used	to	determine	the	width	of	a	frame.	Read/write
WdFrameSizeRule.

WdFrameSizeRule	can	be	one	of	these	WdFrameSizeRule	constants.
wdFrameAtLeast	Sets	the	width	to	a	value	equal	to	or	greater	than	the	value
specified	by	the	Width	property.
wdFrameAuto	Sets	the	width	according	to	the	width	of	the	item	in	the	frame.
wdFrameExact	Sets	the	width	to	an	exact	value	specified	by	the	Width
property.

expression.WidthRule

expression			Required.	An	expression	that	returns	a	Frame	object.



Example

This	example	sets	the	width	of	the	last	frame	in	the	active	document	to	exactly
72	points	(1	inch).

If	ActiveDocument.Frames.Count	>=	1	Then

				With	ActiveDocument.Frames(ActiveDocument.Frames.Count)

								.WidthRule	=	wdFrameExact

								.Width	=	72

				End	With

End	If



Show	All



WidthType	Property
							

WidthType	property	as	it	applies	to	the	Frameset	object.

Returns	or	sets	the	width	type	for	the	specified	Frameset	object.	Read/write
WdFramesetSizeType.

WdFramesetSizeType	can	be	one	of	these	WdFramesetSizeType	constants.
wdFramesetSizeTypeFixed	Microsoft	Word	interprets	the	width	of	the
specified	frame	as	a	fixed	value	(in	points).
wdFramesetSizeTypePercent	Word	interprets	the	width	of	the	specified	frame
as	a	percentage	of	the	screen	width.
wdFramesetSizeTypeRelative	Word	interprets	the	width	of	the	specified	frame
as	relative	to	the	width	of	other	frames	on	the	frames	page.

expression.WidthType

expression			Required.	An	expression	that	returns	a	Frameset	object.

WidthType	property	as	it	applies	to	the	HorizontalLineFormat	object.

Returns	or	sets	the	width	type	for	the	specified	HorizontalLineFormat	object.
Read/write	WdHorizontalLineWidthType.

WdHorizontalLineWidthType	can	be	one	of	these	WdHorizontalLineWidthType
constants.
wdHorizontalLineFixedWidth	Microsoft	Word	interprets	the	width	(length)	of
the	specified	horizontal	line	as	a	fixed	value	(in	points).	This	is	the	default	value
for	horizontal	lines	added	with	the	AddHorizontalLine	method.	Setting	the
Width	property	for	the	InlineShape	object	associated	with	a	horizontal	line	sets
the	WidthType	property	to	this	value.
wdHorizontalLinePercentWidth	Word	interprets	the	width	(length)	of	the
specified	horizontal	line	as	a	percentage	of	the	screen	width.	This	is	the	default
value	for	horizontal	lines	added	with	the	AddHorizontalLineStandard



method.	Setting	the	PercentWidth	property	on	a	horizontal	line	sets	the
WidthType	property	to	this	value.

expression.WidthType

expression			Required.	An	expression	that	returns	a	HorizontalLineFormat
object.



Example

As	it	applies	to	the	Frameset	object.

This	example	sets	the	width	of	the	first	Frameset	object	in	the	active	document
to	25%	of	the	window	width.

With	ActiveDocument.ActiveWindow.Panes(1).Frameset

				.WidthType	=	wdFramesetSizeTypePercent

				.Width	=	25

End	With

As	it	applies	to	the	HorizontalLineFormat	object.

This	example	adds	horizontal	lines	to	the	active	document	and	compares	their
width	types.

Dim	temp	As	InlineShape

Set	temp	=	_

				ActiveDocument.InlineShapes.AddHorizontalLineStandard

MsgBox	"AddHorizontalLineStandard	-	WidthType	=	"	_

				&	temp.HorizontalLineFormat.WidthType

Set	temp	=	_

				ActiveDocument.InlineShapes.AddHorizontalLine	_

				("C:\My	Documents\ArtsyRule.gif")

MsgBox	"AddHorizontalLine	-	WidthType	=	"	_

				&	temp.HorizontalLineFormat.WidthType



WindowNumber	Property
							

Returns	the	window	number	of	the	document	displayed	in	the	specified	window.
For	example,	if	the	caption	of	the	window	is	"Sales.doc:2",	this	property	returns
the	number	2.	Read-only	Long.

expression.WindowNumber

expression			Required.	An	expression	that	returns	a	Window	object.



Remarks

Use	the	Index	property	to	return	the	number	of	the	specified	window	in	the
Windows	collection.



Example

This	example	retrieves	the	window	number	of	the	active	window,	opens	a	new
window,	and	then	activates	the	original	window.

Sub	WinNum()

				Dim	lwindowNum	As	Long

				lwindowNum	=	ActiveDocument.ActiveWindow.WindowNumber

				NewWindow

				ActiveDocument.Windows(lwindowNum).Activate

End	Sub



Windows	Property
							

Application	object:	Returns	a	Windows	collection	that	represents	all	document
windows.	The	collection	corresponds	to	the	window	names	that	appear	at	the
bottom	of	the	Window	menu.	Read-only.

Document	object:	Returns	a	Windows	collection	that	represents	all	windows	for
the	specified	document	(for	example,	Sales.doc:1	and	Sales.doc:2).	Read-only.

For	information	about	returning	a	single	member	of	a	collection,	see	Returning
an	Object	from	a	Collection.



Example

This	example	displays	the	number	of	windows	for	the	active	document,	both
before	and	after	the	NewWindow	method	is	run.

MsgBox	Prompt:=	ActiveDocument.Windows.Count	&	"	window(s)",	_

				Title:=	ActiveDocument.Name

ActiveDocument.ActiveWindow.NewWindow

MsgBox	Prompt:=	ActiveDocument.Windows.Count	&	"	windows",	_

				Title:=	ActiveDocument.Name

This	example	arranges	all	open	windows	so	that	they	don't	overlap.

Windows.Arrange	ArrangeStyle:=wdTiled



WindowState	Property
							

Returns	or	sets	the	state	of	the	specified	document	window	or	task	window.
Read/write	WdWindowState.

WdWindowState	can	be	one	of	these	WdWindowState	constants.
wdWindowStateMaximize
wdWindowStateNormal
wdWindowStateMinimize

expression.WindowState

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.



Remarks

The	wdWindowStateNormal	constant	indicates	a	window	that's	not	maximized
or	minimized.	The	state	of	an	inactive	window	cannot	be	set.	Use	the	Activate
method	to	activate	a	window	prior	to	setting	the	window	state.



Example

This	example	maximizes	the	active	window	if	it's	not	maximized	or	minimized.

If	ActiveDocument.ActiveWindow	_

				.WindowState	=	wdWindowStateNormal	Then	_

				ActiveDocument.ActiveWindow.WindowState	=	wdWindowStateMaximize

This	example	minimizes	the	Microsoft	Excel	application	window.

For	Each	myTask	In	Tasks

				If	InStr(myTask.Name,	"Microsoft	Excel")	>	0	Then

								myTask.Activate

								myTask.WindowState	=	wdWindowStateMinimize

				End	If

Next	myTask



WizardState	Property
							

Returns	or	sets	a	Long	indicating	the	current	Mail	Merge	Wizard	step	for	a
document.	The	WizardState	method	returns	a	number	that	equates	to	the	current
Mail	Merge	Wizard	step;	a	zero	(0)	means	the	Mail	Merge	Wizard	is	closed.
Read/write.

expression.WizardState

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.



Example

This	example	checks	if	the	Mail	Merge	Wizard	is	already	displayed	in	the	active
document	and	if	it	is,	moves	to	the	Mail	Merge	Wizard's	sixth	step	and	removes
the	fifth	step	from	the	Wizard.

Sub	ShowMergeWizard()

				With	ActiveDocument.MailMerge

								If	.WizardState	>	0	Then

												.ShowWizard	InitialState:=6,	ShowPreviewStep:=False

								End	If

				End	With

End	Sub



Word	Property
							

Returns	the	word	or	phrase	that	was	looked	up	by	the	thesaurus.	Read-only
String.

expression.Word

expression			Required.	An	expression	that	returns	a	SynonymInfo	object.



Remarks

The	thesaurus	will	sometimes	look	up	a	shortened	version	of	the	string	or	range
used	to	return	the	SynonymInfo	object.	The	Word	property	allows	you	to	see
the	exact	string	that	was	used.



Example

This	example	returns	a	list	of	synonyms	for	the	first	meaning	of	the	third	word	in
the	active	document.

Sub	Syn()

				Dim	mySynObj	As	Object

				Dim	SList	As	Variant

				Dim	i	As	Variant

				Set	mySynObj	=	ActiveDocument.Words(3).SynonymInfo

				SList	=	mySynObj.SynonymList(1)

				For	i	=	1	To	UBound(SList)

								MsgBox	"A	synonym	for	"	&	mySynObj.Word	_

												&	"	is	"	&	SList(i)

				Next	i

End	Sub

This	example	checks	to	make	sure	that	the	word	or	phrase	that	was	looked	up
isn't	empty.	If	it's	not,	the	example	returns	a	list	of	synonyms	for	the	first
meaning	of	the	word	or	phrase.

Sub	SelectWord()

				Dim	mySynObj	As	Object

				Dim	SList	As	Variant

				Dim	i	As	Variant

				Set	mySynObj	=	Selection.Range.SynonymInfo

				If	mySynObj.Word	=	""	Then

								MsgBox	"Please	select	a	word	or	phrase"

				Else

								SList	=	mySynObj.SynonymList(1)

								For	i	=	1	To	UBound(SList)

												MsgBox	"A	synonym	for	"	&	mySynObj.Word	_

																&	"	is	"	&	SList(i)

								Next	i

				End	If

End	Sub





WordBasic	Property
							

Returns	an	Automation	object	(Word.Basic)	that	includes	methods	for	all	the
WordBasic	statements	and	functions	available	in	Word	version	6.0	and	Word	for
Windows	95.	Read-only.



Remarks

In	Word	2000	and	later,	when	you	open	a	Word	version	6.0	or	Word	for
Windows	95	template	that	contains	WordBasic	macros,	the	macros	are
automatically	converted	to	Visual	Basic	modules.	Each	WordBasic	statement
and	function	in	the	macro	is	converted	to	the	corresponding	Word.Basic	method.

For	information	about	WordBasic	statements	and	functions,	see	WordBasic	Help
in	Word	version	6.0	or	Word	for	Windows	95.

For	information	about	converting	WordBasic	to	Visual	Basic,	see	Visual	Basic
Equivalents	for	WordBasic	Commands.



Example

This	example	uses	the	Word.Basic	object	to	create	a	new	document	in	Word
version	6.0	or	Word	for	Windows	95	and	insert	the	available	font	names.	Each
font	name	is	formatted	in	its	corresponding	font.

With	WordBasic

				.FileNewDefault

				For	aCount	=	1	To	.CountFonts()

								.Font	.[Font$](aCount)

								.Insert	.[Font$](aCount)

								.InsertPara

				Next

End	With



Words	Property
							

Returns	a	Words	collection	that	represents	all	the	words	in	a	range,	selection,	or
document.	Read-only.

Note			Punctuation	and	paragraph	marks	in	a	document	are	included	in	the
Words	collection.

For	information	about	returning	a	single	member	of	a	collection,	see	Returning
an	Object	from	a	Collection.



Example

This	example	displays	the	number	of	words	in	the	selection.	Paragraphs	marks,
partial	words,	and	punctuation	are	included	in	the	count.

MsgBox	"There	are	"	&	Selection.Words.Count	&	"	words."

This	example	steps	through	the	words	in	myRange	(which	spans	from	the
beginning	of	the	active	document	to	the	end	of	the	selection)	and	deletes	the
word	"Franklin"	(including	the	trailing	space)	wherever	it	occurs	in	the	range.

Set	myRange	=	ActiveDocument.Range(Start:=0,	End:=Selection.End)

For	Each	aWord	In	myRange.Words

				If	aWord.Text	=	"Franklin	"	Then	aWord.Delete

Next	aWord



Show	All



WordWrap	Property
							

WordWrap	property	as	it	applies	to	the	Cell	object.

True	if	Microsoft	Word	wraps	text	to	multiple	lines	and	lengthens	the	cell	so	that
the	cell	width	remains	the	same.	Read/write	Boolean.

expression.WordWrap

expression			Required.	An	expression	that	returns	a	Cell	object.

WordWrap	property	as	it	applies	to	the	Paragraph,	ParagraphFormat,
Paragraphs,	and	TextFrame	objects.

True	if	Microsoft	Word	wraps	Latin	text	in	the	middle	of	a	word	in	the	specified
paragraphs	or	text	frames.	This	property	returns	wdUndefined	if	it’s	set	to	True
for	only	some	of	the	specified	paragraphs	or	text	frames.	Read/write	Long.	This
usage	may	not	be	available	to	you,	depending	on	the	language	support	(U.S.
English,	for	example)	that	you’ve	selected	or	installed.

expression.WordWrap

expression			Required.	An	expression	that	returns	one	of	the	above	objects.



Example

As	it	applies	to	the	Cell	object.

This	example	sets	Microsoft	Word	to	wrap	text	to	multiple	lines	in	the	third	cell
of	the	first	table	so	that	the	cell's	width	remains	the	same.

ActiveDocument.Tables(1).Range.Cells(3).WordWrap	=	True

As	it	applies	to	the	Paragraph,	ParagraphFormat,	Paragraphs,	and
TextFrame	objects.

This	example	sets	Microsoft	Word	to	wrap	Latin	text	in	the	middle	of	a	word	in
the	first	paragraph	of	the	active	document.

ActiveDocument.Paragraphs(1).WordWrap	=	True



WPDocNavKeys	Property
							

True	to	enable	in	Microsoft	Word	navigation	keys	for	WordPerfect	users.
Read/write	Boolean.

expression.WPDocNavKeys

expression			Required.	An	expression	that	returns	an	Options	object.



Example

This	example	sets	Word	to	use	WordPerfect	navigation	keys.

Sub	WPNavKeys()

				Options.WPDocNavKeys	=	True

End	Sub

This	example	returns	the	status	of	the	Navigation	keys	for	WordPerfect	users
option	on	the	General	tab	in	the	Options	dialog	box	(Tools	menu).

Sub	WPKeyStatus()

				Dim	bKeyStatus	As	Boolean

				bKeyStatus	=	Options.WPDocNavKeys

				MsgBox	bKeyStatus

End	Sub



WPHelp	Property
							

True	if	pressing	Microsoft	Word	key	combinations	that	produce	actions	in
WordPerfect	displays	dialog	boxes	that	describe	how	to	perform	the	equivalent
actions	in	Word.	Read/write	Boolean.

expression.WPHelp

expression			Required.	An	expression	that	returns	an	Options	object.



Example

This	example	toggles	WordPerfect	help	between	True	and	False.

Sub	WPHelpToggle()

				Options.WPHelp	=	Not	Options.WPHelp

End	Sub

This	example	displays	the	status	of	the	Help	for	WordPerfect	users	option	on
the	General	tab	in	the	Options	dialog	box	(Tools	menu).

Sub	WPHelpStatus()

				Msgbox	Options.WPHelp

End	Sub



Show	All



Wrap	Property
							

Returns	or	sets	what	happens	if	the	search	begins	at	a	point	other	than	the
beginning	of	the	document	and	the	end	of	the	document	is	reached	(or	vice	versa
if	Forward	is	set	to	False)	or	if	the	search	text	isn't	found	in	the	specified
selection	or	range.	Read/write	WdFindWrap.

WdFindWrap	can	be	one	of	these	WdFindWrap	constants.
wdFindAsk	After	searching	the	selection	or	range,	Word	displays	a	message
asking	whether	to	search	the	remainder	of	the	document.
wdFindContinue	The	find	operation	continues	when	the	beginning	or	end	of
the	search	range	is	reached.
wdFindStop	The	find	operation	ends	when	the	beginning	or	end	of	the	search
range	is	reached.

expression.Wrap

expression			Required.	An	expression	that	returns	a	Find	object.



Example

The	following	example	searches	forward	through	the	document	for	the	word
"aspirin."	When	the	end	of	the	document	is	reached,	the	search	continues	at	the
beginning	of	the	document.	If	the	word	"aspirin"	is	found,	it's	selected.

Sub	WordFind()

				With	Selection.Find

								.Forward	=	True

								.ClearFormatting

								.MatchWholeWord	=	True

								.MatchCase	=	False

								.Wrap	=	wdFindContinue

								.Execute	FindText:="aspirin"

				End	With

End	Sub



WrapAroundText	Property
							

Returns	or	sets	whether	text	should	wrap	around	the	specified	rows.	Returns
wdUndefined	if	only	some	of	the	specified	rows	have	wrapping	enabled.	Can	be
set	to	True	or	False.	Read/write	Long.

expression.WrapAroundText

expression			Required.	An	expression	that	returns	a	Rows	object.



Remarks

Setting	the	WrapAroundText	property	to	False	also	sets	the	AllowOverlap
property	to	False.	Setting	the	AllowOverlap	property	to	True	also	sets	the
WrapAroundText	property	to	True.



Example

This	example	sets	Microsoft	Word	to	wrap	text	around	the	first	table	in	the
document.

ActiveDocument.Tables(1).Rows.WrapAroundText	=	True



WrapFormat	Property
							

Returns	a	WrapFormat	object	that	contains	the	properties	for	wrapping	text
around	the	specified	shape	or	shape	range.	Read-only.



Example

This	example	adds	an	oval	to	the	active	document	and	specifies	that	the
document	text	wrap	around	the	left	and	right	sides	of	the	square	that
circumscribes	the	oval.	The	example	sets	a	0.1-inch	margin	between	the
document	text	and	the	top,	bottom,	left	side,	and	right	side	of	the	square.

Set	myOval	=	_

				ActiveDocument.Shapes.AddShape(msoShapeOval,	36,	36,	90,	50)

With	myOval.WrapFormat

				.Type	=	wdWrapSquare

				.Side	=	wdWrapBoth

				.DistanceTop	=	InchesToPoints(0.1)

				.DistanceBottom	=	InchesToPoints(0.1)

				.DistanceLeft	=	InchesToPoints(0.1)

				.DistanceRight	=	InchesToPoints(0.1)

End	With



WrapToWindow	Property
							

True	if	lines	wrap	at	the	right	edge	of	the	document	window	rather	than	at	the
right	margin	or	the	right	column	boundary.	Read/write	Boolean.

expression.WrapToWindow

expression			Required.	An	expression	that	returns	a	View	object.



Remarks

This	property	has	no	effect	in	print	layout	or	Web	layout	view.



Example

This	example	wraps	the	text	to	fit	within	the	active	window.

With	ActiveDocument.ActiveWindow.View

				.Type	=	wdNormalView

				.WrapToWindow	=	True

End	With



WritePassword	Property
							

Sets	a	password	for	saving	changes	to	the	specified	document.	Write-only
String.



Example

If	the	active	document	isn't	already	protected	against	saving	changes,	this
example	sets	"secret"	as	the	write	password	for	the	document.

Set	myDoc	=	ActiveDocument

If	myDoc.WriteReserved	=	False	Then	myDoc.WritePassword	=	"secret"



WriteReserved	Property
							

True	if	the	specified	document	is	protected	with	a	write	password.	Read-only
Boolean.



Example

This	example	displays	a	message	if	the	active	document	has	a	write	password.

If	ActiveDocument.WriteReserved	=	True	Then	

				MsgBox	"Changes	cannot	be	made	to	this	document."

End	If



WritingStyleList	Property
							

Returns	a	string	array	that	contains	the	names	of	all	writing	styles	available	for
the	specified	language.	Read-only	Variant.

expression.WritingStyleList

expression			Required.	An	expression	that	returns	a	Language	object.



Example

This	example	displays	each	writing	style	available	for	U.S.	English.	Each
writing	style	and	its	number	in	the	array	are	also	displayed	in	the	Immediate
window	of	the	Visual	Basic	editor.

Sub	WritingStyles()

				Dim	WrStyles	As	Variant

				Dim	i	As	Integer

				WrStyles	=	Languages(wdEnglishUS).WritingStyleList

				For	i	=	1	To	UBound(WrStyles)

								MsgBox	WrStyles(i)

								Debug.Print	WrStyles(i)	&	"	["	&	Trim(Str$(i))	&	"]"

				Next	i

End	Sub



Yellow	Property
							

Sets	or	returns	a	Long	that	represents	the	yellow	component	of	a	CMYK	color.
Read-only.

expression.Yellow

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.



Example

This	example	creates	a	new	shape,	then	retrieves	the	four	CMYK	values	from	an
existing	shape	in	the	active	document,	and	then	sets	the	CMYK	fill	color	of	the
new	shape	to	the	same	CMYK	values.

Sub	ReturnAndSetCMYK()

				Dim	lngCyan	As	Long

				Dim	lngMagenta	As	Long

				Dim	lngYellow	As	Long

				Dim	lngBlack	As	Long

				Dim	shpHeart	As	Shape

				Dim	shpStar	As	Shape

				Set	shpHeart	=	ActiveDocument.Shapes(1)

				Set	shpStar	=	ActiveDocument.Shapes.AddShape	_

								(Type:=msoShape5pointStar,	Left:=200,	_

								Top:=100,	Width:=150,	Height:=150)

				'Get	current	shapes	CMYK	colors

				With	shpHeart.Fill.ForeColor

								lngCyan	=	.Cyan

								lngMagenta	=	.Magenta

								lngYellow	=	.Yellow

								lngBlack	=	.Black

				End	With

				'Set	new	shape	to	current	shapes	CMYK	colors

				shpStar.Fill.ForeColor.SetCMYK	_

								Cyan:=lngCyan,	Magenta:=lngMagenta,	_

								Yellow:=lngYellow,	Black:=lngBlack

End	Sub



Zoom	Property
							

Returns	a	Zoom	object	that	represents	the	magnification	for	the	specified	view.

expression.Zoom

expression			Required.	An	expression	that	returns	one	of	a	View	object.



Example

This	example	changes	the	zoom	percentage	of	each	open	window	to	125	percent.

Sub	wndBig()

				Dim	wndBig	As	Window

				For	Each	wndBig	In	Windows

								wndBig.View.Zoom.Percentage	=	125

				Next	wndBig

End	Sub

This	example	changes	the	zoom	percentage	of	the	active	window	so	that	the
entire	width	of	the	text	is	visible.

ActiveDocument.ActiveWindow.View.Zoom.PageFit	=	wdPageFitBestFit



Zooms	Property
							

Returns	a	Zooms	collection	that	represents	the	magnification	options	for	each
view	(normal	view,	outline	view,	print	layout	view,	and	so	on).

expression.Zooms

expression			Required.	An	expression	that	returns	a	Pane	object.



Remarks

For	information	about	returning	a	single	member	of	a	collection,	see	Returning
an	Object	from	a	Collection.



Example

This	example	sets	the	magnification	in	normal	view	to	100	percent	for	each	open
window.

Dim	wndLoop	as	Window

For	Each	wndLoop	In	Windows

				wndLoop.ActivePane.Zooms(wdNormalView).Percentage	=	100

Next	wndLoop

This	example	sets	the	magnification	in	print	layout	view	so	that	an	entire	page	is
visible.

ActiveDocument.ActiveWindow.Panes(1).Zooms(wdPrintView).PageFit	=	_

				wdPageFitFullPage



ZOrderPosition	Property
							

Returns	the	position	of	the	specified	shape	in	the	z-order.	Shapes(1)	returns	the
shape	at	the	back	of	the	z-order,	and	Shapes(Shapes.Count)	returns	the	shape	at
the	front	of	the	z-order.	Read-only	Long.

This	property	is	read-only.	To	set	the	shape's	position	in	the	z-order,	use	the
ZOrder	method.



Remarks

A	shape's	position	in	the	z-order	corresponds	to	the	shape's	index	number	in	the
Shapes	collection.	For	example,	if	there	are	four	shapes	on	myDocument,	the
expression	myDocument.Shapes(1)	returns	the	shape	at	the	back	of	the	z-order,
and	the	expression	myDocument.Shapes(4)	returns	the	shape	at	the	front	of	the
z-order.

Whenever	you	add	a	new	shape	to	a	collection,	it's	added	to	the	front	of	the	z-
order	by	default.



Example

This	example	adds	an	oval	to	myDocument	and	then	places	the	oval	second	from
the	back	in	the	z-order	if	there	is	at	least	one	other	shape	on	the	document.

Set	myDocument	=	ActiveDocument

With	myDocument.Shapes.AddShape(msoShapeOval,	100,	100,	100,	300)

				While	.ZOrderPosition	>	2

								.ZOrder	msoSendBackward

				Wend

End	With



Close	Event
							

Occurs	when	a	document	is	closed.

Private	Sub	Document_Close()



Remarks

If	the	event	procedure	is	stored	in	a	template,	the	procedure	will	run	when	a	new
document	based	on	that	template	is	closed	and	when	the	template	itself	is	closed
(after	being	opened	as	a	document).

For	information	about	using	events	with	a	Document	object,	see	Using	Events
with	the	Document	Object.



Example

This	example	makes	a	backup	copy	of	the	document	on	a	file	server	when	the
document	is	closed.	(The	procedure	can	be	stored	in	the	ThisDocument	class
module	of	a	document	or	its	attached	template.)

Private	Sub	Document_Close()

				ThisDocument.Save

				ThisDocument.SaveAs	"\\network\backup\"	&	ThisDocument.Name

End	Sub



DocumentBeforeClose	Event
							

Occurs	immediately	before	any	open	document	closes.

Private	Sub	object_DocumentBeforeClose(ByVal	Doc	As	Document,	Cancel
As	Boolean)

object			An	object	of	type	Application	declared	with	events	in	a	class	module.
For	more	information	about	using	events	with	the	Application	object,	see	Using
Events	with	the	Application	Object.

Doc			The	document	that's	being	closed.

Cancel			False	when	the	event	occurs.	If	the	event	procedure	sets	this	argument
to	True,	the	document	doesn't	close	when	the	procedure	is	finished.



Example

This	example	prompts	the	user	for	a	yes	or	no	response	before	closing	any
document.	This	code	must	be	placed	in	a	class	module,	and	an	instance	of	the
class	must	be	correctly	initialized	in	order	to	see	this	example	work;	see	Using
Events	with	the	Application	ObjectUsing	Events	with	the	Application	Object	for
directions	on	how	to	accomplish	this.

Public	WithEvents	appWord	as	Word.Application

Private	Sub	appWord_DocumentBeforeClose	_

								(ByVal	Doc	As	Document,	_

								Cancel	As	Boolean)

				Dim	intResponse	As	Integer

				intResponse	=	MsgBox("Do	you	really	"	_

								&	"want	to	close	the	document?",	_

								vbYesNo)

				If	intResponse	=	vbNo	Then	Cancel	=	True

End	Sub



DocumentBeforePrint	Event
							

Occurs	before	any	open	document	is	printed.

Private	Sub	object_DocumentBeforePrint(ByVal	Doc	As	Document,	Cancel
As	Boolean)

object			An	object	of	type	Application	declared	with	events	in	a	class	module.
For	more	information	about	using	events	with	the	Application	object,	see	Using
Events	with	the	Application	Object.

Doc			The	document	that's	being	printed.

Cancel			False	when	the	event	occurs.	If	the	event	procedure	sets	this	argument
to	True,	the	document	isn't	printed	when	the	procedure	is	finished.



Example

This	example	prompts	the	user	for	a	yes	or	no	response	before	printing	any
document.	This	code	must	be	placed	in	a	class	module,	and	an	instance	of	the
class	must	be	correctly	initialized	in	order	to	see	this	example	work;	see	Using
Events	with	the	Application	Object	for	directions	on	how	to	accomplish	this.

Public	WithEvents	appWord	as	Word.Application

Private	Sub	appWord_DocumentBeforePrint	_

								(ByVal	Doc	As	Document,	_

								Cancel	As	Boolean)

				Dim	intResponse	As	Integer

				intResponse	=	MsgBox("Have	you	checked	the	"	_

								&	"printer	for	letterhead?",	_

								vbYesNo)

				If	intResponse	=	vbNo	Then	Cancel	=	True

End	Sub



DocumentBeforeSave	Event
							

Occurs	before	any	open	document	is	saved.

Private	Sub	object_DocumentBeforeSave(ByVal	Doc	As	Document,	ByVal
SaveAsUI	As	Boolean,	Cancel	As	Boolean)

object			An	object	of	type	Application	declared	with	events	in	a	class	module.
For	more	information	about	using	events	with	the	Application	object,	see	Using
Events	with	the	Application	Object.

Doc			The	document	that's	being	saved.

SaveAsUI			True	to	display	the	Save	As	dialog	box.

Cancel			False	when	the	event	occurs.	If	the	event	procedure	sets	this	argument
to	True,	the	document	isn't	saved	when	the	procedure	is	finished.



Example

This	example	prompts	the	user	for	a	yes	or	no	response	before	saving	any
document.	This	code	must	be	placed	in	a	class	module,	and	an	instance	of	the
class	must	be	correctly	initialized	in	order	to	see	this	example	work;	see	Using
Events	with	the	Application	Object	for	directions	on	how	to	accomplish	this.

Public	WithEvents	appWord	as	Word.Application

Private	Sub	appWord_DocumentBeforeSave	_

								(ByVal	Doc	As	Document,	_

								ByVal	SaveAsUI	As	Boolean,	_

								Cancel	As	Boolean)

				Dim	intResponse	As	Integer

				intResponse	=	MsgBox("Do	you	really	want	to	"	_

								&	"save	the	document?",	_

								vbYesNo)

				If	intResponse	=	vbNo	Then	Cancel	=	True

End	Sub



DocumentChange	Event
							

Occurs	when	a	new	document	is	created,	when	an	existing	document	is	opened,
or	when	another	document	is	made	the	active	document.

Private	Sub	object_DocumentChange()

object			An	object	of	type	Application	declared	with	events	in	a	class	module.
For	information	about	using	events	with	the	Application	object,	see	Using
Events	with	the	Application	Object.



Example

This	example	asks	the	user	whether	to	save	all	the	other	open	documents	when
the	document	focus	changes.	This	code	must	be	placed	in	a	class	module,	and	an
instance	of	the	class	must	be	correctly	initialized	in	order	to	see	this	example
work;	see	Using	Events	with	the	Application	Object	for	directions	on	how	to
accomplish	this.

Public	WithEvents	appWord	as	Word.Application

Private	Sub	appWord_DocumentChange()

				Dim	intResponse	As	Integer

				Dim	strName	As	String

				Dim	docLoop	As	Document

				intResponse	=	MsgBox("Save	all	other	documents?",	vbYesNo)

				If	intResponse	=	vbYes	Then

								strName	=	ActiveDocument.Name

								For	Each	docLoop	In	Documents

												With	docLoop

																If	.Name	<>	strName	Then

																				.Save

																End	If

												End	With

								Next	docLoop

				End	If

End	Sub



DocumentOpen	Event
							

Occurs	when	a	document	is	opened.

Private	Sub	object_DocumentOpen(ByVal	Doc	As	Document)

object			An	object	of	type	Application	declared	with	events	in	a	class	module.
For	more	information	about	using	events	with	the	Application	object,	see	Using
Events	with	the	Application	Object.

Doc			The	document	that's	being	opened.



Example

This	example	asks	the	user	whether	to	save	all	other	open	documents	when	a
document	is	opened.	This	code	must	be	placed	in	a	class	module,	and	an	instance
of	the	class	must	be	correctly	initialized	in	order	to	see	this	example	work;	see
Using	Events	with	the	Application	Object	for	directions	on	how	to	accomplish
this.

Public	WithEvents	appWord	as	Word.Application

Private	Sub	appWord_DocumentOpen(ByVal	Doc	As	Document)

				Dim	intResponse	As	Integer

				Dim	strName	As	String

				Dim	docLoop	As	Document

				intResponse	=	MsgBox("Save	all	other	documents?",	vbYesNo)

				If	intResponse	=	vbYes	Then

								strName	=	ActiveDocument.Name

								For	Each	docLoop	In	Documents

												With	docLoop

																If	.Name	<>	strName	Then

																				.Save

																End	If

												End	With

								Next	docLoop

				End	If

End	Sub



Show	All



EPostageInsert	Event
							

Occurs	when	a	user	inserts	electronic	postage	into	a	document.

Private	Sub	object_EPostageInsert(ByVal	Doc	As	Document)

object		An	object	of	type	Application	declared	with	events	in	a	class	module.
For	information	about	using	events	with	the	Application	object,	see	Using
Events	with	the	Application	Object.

Doc		The	name	of	the	document	to	which	to	add	electronic	postage.



Example

This	example	displays	a	message	when	electronic	postage	is	inserted	into	a
document.

Private	Sub	AppWord_EPostageInsert(ByVal	Doc	As	Document)

				MsgBox	"You	just	inserted	electronic	postage	into	your	document."

End	Sub



Show	All



EPostagePropertyDialog	Event
							

Occurs	when	a	user	clicks	the	E-postage	Properties	(Labels	and	Envelopes
dialog	box)	button	or	Print	Electronic	Postage	toolbar	button.	This	event
allows	a	third-party	software	application	to	intercept	and	show	their	properties
dialog	box.

Private	Sub	object_EPostagePropertyDialog(ByVal	Doc	As	Document)

object		An	object	of	type	Application	declared	with	events	in	a	class	module.
For	information	about	using	events	with	the	Application	object,	see	Using
Events	with	the	Application	Object.

Doc		The	name	of	the	document	to	which	to	add	electronic	postage.



Example

This	example	displays	a	message	when	a	user	clicks	on	either	the	Add
Electronic	Postage	or	Print	Electronic	Postage	button.

Private	Sub	AppWord_EPostagePropertyDialog(ByVal	Doc	As	Document)

				MsgBox	"You	have	clicked	on	a	button	to	"	&	_

								"display	the	ePostage	property	dialog	box."

End	Sub



Show	All



MailMergeAfterMerge	Event
							

Occurs	after	all	records	in	a	mail	merge	have	merged	successfully.

Private	Sub	object_MailMergeAfterMerge(ByVal	Doc	As	Document,	ByVal
DocResult	As	Document)

object		An	object	of	type	Application	declared	with	events	in	a	class	module.
For	information	about	using	events	with	the	Application	object,	see	Using
Events	with	the	Application	Object.

Doc		The	mail	merge	main	document.

DocResult		The	document	created	from	the	mail	merge.



Example

This	example	displays	a	message	stating	that	all	records	in	the	specified
document	are	finished	merging.	If	the	document	has	been	merged	to	a	second
document,	the	message	includes	the	name	of	the	new	document.	This	example
assumes	that	you	have	declared	an	application	variable	called	MailMergeApp	in
your	general	declarations	and	have	set	the	variable	equal	to	the	Word
Application	object.

Private	Sub	MailMergeApp_MailMergeAfterMerge(ByVal	Doc	As	Document,	_

								ByVal	DocResult	As	Document)

				If	DocResult	Is	Nothing	Then

								MsgBox	"Your	mail	merge	on	"	&	_

												Doc.Name	&	"	is	now	finished."

				Else

								MsgBox	"Your	mail	merge	on	"	&	_

												Doc.Name	&	"	is	now	finished	and	"	&	_

												DocResult.Name	&	"	has	been	created."

				End	If

End	Sub



Show	All



MailMergeAfterRecordMerge	Event
							

Occurs	after	each	record	in	the	data	source	successfully	merges	in	a	mail	merge.

Private	Sub	object_MailMergeAfterRecordMerge(ByVal	Doc	As	Document)

object		An	object	of	type	Application	declared	with	events	in	a	class	module.
For	information	about	using	events	with	the	Application	object,	see	Using
Events	with	the	Application	Object.

Doc		The	mail	merge	main	document.



Example

This	example	displays	a	message	with	the	value	of	the	first	and	second	fields	in
the	record	that	has	just	finished	merging.	This	example	assumes	that	you	have
declared	an	application	variable	called	MailMergeApp	in	your	general
declarations	and	have	set	the	variable	equal	to	the	Word	Application	object.

Private	Sub	MailMergeApp_MailMergeAfterRecordMerge(ByVal	Doc	As	Document)

				With	Doc.MailMerge.DataSource

								MsgBox	.DataFields(1).Value	&	"	"	&	_

												.DataFields(2).Value	&	"	is	finished	merging."

				End	With

End	Sub



Show	All



MailMergeBeforeMerge	Event
							

Occurs	when	a	merge	is	executed	before	any	records	merge.

Private	Sub	object_MailMergeBeforeMerge(ByVal	Doc	As	Document,	ByVal
StartRecord	As	Long,	ByVal	EndRecord	As	Long,	Cancel	As	Boolean)

object		An	object	of	type	Application	declared	with	events	in	a	class	module.
For	information	about	using	events	with	the	Application	object,	see	Using
Events	with	the	Application	Object.

Doc			The	mail	merge	main	document.

StartRecord			The	first	record	in	the	data	source	to	include	in	the	mail	merge.

EndRecord			The	last	record	in	the	data	source	to	include	in	the	mail	merge.

Cancel			True	stops	the	mail	merge	process	before	it	starts.



Example

This	example	displays	a	message	before	the	mail	merge	process	begins,	asking
the	user	if	they	want	to	continue.	If	the	user	clicks	No,	the	merge	process	is
cancelled.	This	example	assumes	that	you	have	declared	an	application	variable
called	MailMergeApp	in	your	general	declarations	and	have	set	the	variable
equal	to	the	Word	Application	object.

Private	Sub	MailMergeApp_MailMergeBeforeMerge(ByVal	Doc	As	Document,	_

				ByVal	StartRecord	As	Long,	ByVal	EndRecord	As	Long,	_

				Cancel	As	Boolean)

				Dim	intVBAnswer	As	Integer

				'Request	whether	the	user	wants	to	continue	with	the	merge

				intVBAnswer	=	MsgBox("Mail	Merge	for	"	&	_

								Doc.Name	&	"	is	now	starting.		"	&	_

								"Do	you	want	to	continue?",	vbYesNo,	"MailMergeBeforeMerge	Event")

				'If	users	response	to	question	is	No,	cancel	the	merge	process

				'and	deliver	a	message	to	the	user	stating	the	merge	is	cancelled

				If	intVBAnswer	=	vbNo	Then

								Cancel	=	True

								MsgBox	"You	have	cancelled	mail	merge	for	"	&	_

												Doc.Name	&	"."

				End	If

End	Sub



Show	All



MailMergeBeforeRecordMerge	Event
							

Occurs	as	a	merge	is	executed	for	the	individual	records	in	a	merge.

Private	Sub	object_MailMergeBeforeRecordMerge(ByVal	Doc	As
Document,	Cancel	As	Boolean)

object		An	object	of	type	Application	declared	with	events	in	a	class	module.
For	information	about	using	events	with	the	Application	object,	see	Using
Events	with	the	Application	Object.

Doc				The	mail	merge	main	document.

Cancel			True	stops	the	mail	merge	process	for	the	current	record	only	before	it
starts.



Example

This	example	verifies	that	the	length	of	the	zip	code,	which	in	this	example	is
field	number	six,	is	less	than	five,	and	if	it	is	cancels	the	merge	for	that	record
only.	This	example	assumes	that	you	have	declared	an	application	variable	called
MailMergeApp	in	your	general	declarations	and	have	set	the	variable	equal	to
the	Word	Application	object.

Private	Sub	MailMergeApp_MailMergeBeforeRecordMerge(ByVal	_

				Doc	As	Document,	Cancel	As	Boolean)

								Dim	intZipLength	As	Integer

								intZipLength	=	Len(ActiveDocument.MailMerge	_

												.DataSource.DataFields(6).Value)

								'Cancel	merge	of	this	record	only	if

								'the	zip	code	is	less	than	five	digits

								If	intZipLength	<	5	Then

												Cancel	=	True

								End	If

End	Sub



Show	All



MailMergeDataSourceLoad	Event
							

Occurs	when	the	data	source	is	loaded	for	a	mail	merge.

Private	Sub	object_MailMergeDataSourceLoad(ByVal	Doc	As	Document)

object		An	object	of	type	Application	declared	with	events	in	a	class	module.
For	information	about	using	events	with	the	Application	object,	see	Using
Events	with	the	Application	Object.

Doc		The	mail	merge	main	document.



Example

This	example	displays	a	message	with	the	data	source	file	name	when	the	data
source	starts	loading.	This	example	assumes	that	you	have	declared	an
application	variable	called	MailMergeApp	in	your	general	declarations	and	have
set	the	variable	equal	to	the	Word	Application	object.

Private	Sub	MailMergeApp_MailMergeDataSourceLoad(ByVal	Doc	As	Document)

				Dim	strDSName	As	String

				Dim	intDSLength	As	Integer

				Dim	intDSStart	As	Integer

				'Extract	from	the	Name	property	only	the	filename

				intDSLength	=	Len(Doc.MailMerge.DataSource.Name)

				intDSStart	=	InStrRev(Doc.MailMerge.DataSource.Name,	"\")

				intDSStart	=	intDSLength	-	intDSStart

				strDSName	=	Right(Doc.MailMerge.DataSource.Name,	intDSStart)

				'Deliver	a	message	to	user	when	data	source	is	loading

				MsgBox	"Your	data	source,	"	&	strDSName	&	",	is	now	loading."

End	Sub



Show	All



MailMergeDataSourceValidate	Event
							

Occurs	when	a	user	performs	address	verification	by	clicking	Validate	in	the
Mail	Merge	Recipients	dialog	box.

Private	Sub	object_MailMergeDataSourceValidate(ByVal	Doc	As
Document,	Handled	As	Boolean)

object		An	object	of	type	Application	declared	with	events	in	a	class	module.
For	information	about	using	events	with	the	Application	object,	see	Using
Events	with	the	Application	Object.

Doc			The	mail	merge	main	document.

Handled			True	runs	the	accompanying	validation	code	against	the	mail	merge
data	source.	False	cancels	the	data	source	validation.



Remarks

If	you	don't	have	address	verification	software	installed	on	your	computer,	the
MailMergeDataSourceValidate	event	allows	you	to	create	simple	filtering
routines,	such	as	looping	through	records	to	check	the	postal	codes	and
removing	any	that	are	non-U.S.	Non-U.S.	users	can	filter	out	all	U.S.	postal
codes	by	modifying	the	code	sample	below	and	using	Microsoft	Visual	Basic
commands	to	search	for	text	or	special	characters.



Example

This	example	displays	a	message,	asking	if	addresses	in	the	data	source	should
be	validated.		This	example	assumes	that	the	postal	codes	are	U.S.	ZIP	codes	and
that	you	have	declared	an	application	variable	called	MailMergeApp	in	your
general	declarations	and	have	set	the	variable	equal	to	the	Word	Application
object.	(You	could	modify	this	example	to	filter	for	international	postal	codes	or
for	ZIP	codes	that	have	a	4-digit	locator	code	appended	to	the	ZIP	code.)	

Private	Sub	MailMergeApp_MailMergeDataSourceValidate(ByVal	Doc	As	Document,	_

								Handled	As	Boolean)

				Dim	intCount	As	Integer

				Handled	=	True

				On	Error	Resume	Next

				With	Doc.MailMerge.DataSource

								'Set	the	active	record	equal	to	the	first	record	in	the	data	source

								.ActiveRecord	=	wdFirstRecord

								Do

												intCount	=	intCount	+	1

												'Set	the	condition	that	field	six	must	be	greater	than	or

												'equal	to	five

												If	Len(.DataFields(6).Value)	<	5	Then

																'Exclude	the	record	if	field	six	is	less	than	five	digits

																.Included	=	False

																'Mark	the	record	as	containing	an	invalid	address	field

																.InvalidAddress	=	True

																'Specify	the	comment	attached	to	the	record	explaining

																'why	the	record	was	excluded	from	the	mail	merge

																.InvalidComments	=	"The	zip	code	for	this	record	is	"	_

																				&	"less	than	five	digits.	It	will	be	removed	"	_

																				&	"from	the	mail	merge	process."

												End	If



												'Move	the	record	to	the	next	record	in	the	data	source

												.ActiveRecord	=	wdNextRecord

								'End	the	loop	when	the	counter	variable

								'equals	the	number	of	records	in	the	data	source

								Loop	Until	intCount	=	.RecordCount

				End	With

End	Sub



Show	All



MailMergeWizardSendToCustom
Event
							

Occurs	when	the	custom	button	is	clicked	on	step	six	of	the	Mail	Merge	Wizard.

Private	Sub	object_MailMergeWizardSendToCustom(ByVal	Doc	As
Document)

object		An	object	of	type	Application	declared	with	events	in	a	class	module.
For	information	about	using	events	with	the	Application	object,	see	Using
Events	with	the	Application	Object.

Doc			The	mail	merge	main	document.



Remarks

Use	the	ShowSendToCustom	property	to	create	a	custom	button	on	the	sixth
step	of	the	Mail	Merge	Wizard.



Example

This	example	executes	a	merge	to	a	fax	machine	when	a	user	clicks	the	custom
destination	button.	This	example	assumes	that	the	user	has	access	to	a	custom
destination	button,	fax	numbers	are	included	for	each	record	in	the	data	source,
and	an	application	variable	called	MailMergeApp	has	been	declared	and	set
equal	to	the	Word	Application	object.

Private	Sub	MailMergeApp_MailMergeWizardSendToCustom(ByVal	Doc	As	Document)

				With	Doc.MailMerge

								.Destination	=	wdSendToFax

								.Execute

				End	With

End	Sub



Show	All



MailMergeWizardStateChange	Event
							

Occurs	when	a	user	changes	from	a	specified	step	to	a	specified	step	in	the	Mail
Merge	Wizard.

Private	Sub	object_MailMergeWizardStateChange(ByVal	Doc	As
Document,	FromState	As	Long,	ToState	As	Long,	Handled	As	Boolean)

object		An	object	of	type	Application	declared	with	events	in	a	class	module.
For	information	about	using	events	with	the	Application	object,	see	Using
Events	with	the	Application	Object.

Doc		The	mail	merge	main	document.

FromState		The	Mail	Merge	Wizard	step	from	which	a	user	is	moving.

ToState		The	Mail	Merge	Wizard	step	to	which	a	user	is	moving.

Handled		True	moves	the	user	to	the	next	step.	False	for	the	user	to	remain	at
the	current	step.



Example

This	example	displays	a	message	when	a	user	moves	from	step	three	of	the	Mail
Merge	Wizard	to	step	four.	Based	on	the	answer	to	the	message,	the	user	will
either	move	to	step	four	or	remain	at	step	three.	This	example	assumes	that	you
have	declared	an	application	variable	called	MailMergeApp	in	your	general
declarations	and	have	set	the	variable	equal	to	the	Word	Application	object.

Private	Sub	MailMergeApp_MailMergeWizardStateChange(ByVal	Doc	As	Document,	_

				FromState	As	Long,	ToState	As	Long,	Handled	As	Boolean)

				Dim	intVBAnswer	As	Integer

				FromState	=	3

				ToState	=	4

				'Display	a	message	when	moving	from	step	three	to	step	four

				intVBAnswer	=	MsgBox("Have	you	selected	all	of	your	recipients?",	_

								vbYesNo,	"Wizard	State	Event!")

				If	intVBAnswer	=	vbYes	Then

								'Continue	on	to	step	four

								Handled	=	True

				Else

								'Return	to	step	three

								MsgBox	"Please	select	all	recipients	to	whom	"	&	_

												"you	want	to	send	this	letter."

								Handled	=	False

				End	If

End	Sub



New	Event
							

Occurs	when	a	new	document	based	on	the	template	is	created.	A	procedure	for
the	New	event	will	run	only	if	it	is	stored	in	a	template.

Private	Sub	Document_New()



Remarks

For	information	about	using	events	with	the	Document	object,	see	Using	Events
with	the	Document	Object.



Example

This	example	asks	the	user	whether	to	save	all	other	open	documents	when	a
new	document	based	on	the	template	is	created.	(This	procedure	is	stored	in	the
ThisDocument	class	module	of	a	template,	not	a	document.)

Private	Sub	Document_New()

				Dim	intResponse	As	Integer

				Dim	strName	As	String

				Dim	docLoop	As	Document

				intResponse	=	MsgBox("Save	all	other	documents?",	vbYesNo)

				If	intResponse	=	vbYes	Then

								strName	=	ActiveDocument.Name

								For	Each	docLoop	In	Application.Documents

												With	docLoop

																If	.Name	<>	strName	Then

																				.Save

																End	If

												End	With

								Next	docLoop

				End	If

End	Sub



NewDocument	Event
							

Occurs	when	a	new	document	is	created.

Private	Sub	object_NewDocument(ByVal	Doc	As	Document)

object			An	object	of	type	Application	declared	with	events	in	a	class	module.
For	more	information	about	using	events	with	the	Application	object,	see	Using
Events	with	the	Application	Object.

Doc			The	new	document.



Example

This	example	asks	the	user	whether	to	save	all	other	open	documents	when	a
new	document	is	created.	This	code	must	be	placed	in	a	class	module,	and	an
instance	of	the	class	must	be	correctly	initialized	in	order	to	see	this	example
work;	see	Using	Events	with	the	Application	Object	for	directions	on	how	to
accomplish	this.

Public	WithEvents	appWord	as	Word.Application

Private	Sub	appWord_NewDocument(ByVal	Doc	As	Document)

				Dim	intResponse	As	Integer

				Dim	strName	As	String

				Dim	docLoop	As	Document

				intResponse	=	MsgBox("Save	all	other	documents?",	vbYesNo)

				If	intResponse	=	vbYes	Then

								strName	=	ActiveDocument.Name

								For	Each	docLoop	In	Documents

												With	docLoop

																If	.Name	<>	strName	Then

																				.Save

																End	If

												End	With

								Next	docLoop

				End	If

End	Sub



Open	Event
							

Occurs	when	a	document	is	opened.

Private	Sub	Document_Open()



Remarks

If	the	event	procedure	is	stored	in	a	template,	the	procedure	will	run	when	a	new
document	based	on	that	template	is	opened	and	when	the	template	itself	is
opened	as	a	document.

For	information	about	using	events	with	the	Document	object,	see	Using	Events
with	the	Document	Object.



Example

This	example	displays	a	message	when	a	document	is	opened.	(The	procedure
can	be	stored	in	the	ThisDocument	class	module	of	a	document	or	its	attached
template.)

Private	Sub	Document_Open()

				MsgBox	"This	document	is	copyrighted."

End	Sub



Quit	Event
							

Occurs	when	the	user	quits	Word.

Private	Sub	object_Quit()

object			An	object	of	type	Application	declared	with	events	in	a	class	module.
For	information	about	using	events	with	the	Application	object,	see	Using
Events	with	the	Application	Object.



Example

This	example	ensures	that	the	Standard	and	Formatting	toolbars	are	visible
before	the	user	quits	Word.	As	a	result,	when	Word	is	started	again,	the
Standard	and	Formatting	toolbars	will	be	visible.

This	code	must	be	placed	in	a	class	module,	and	an	instance	of	the	class	must	be
correctly	initialized	in	order	to	see	this	example	work;	see	Using	Events	with	the
Application	Object	for	directions	on	how	to	accomplish	this.

Public	WithEvents	appWord	as	Word.Application

Private	Sub	appWord_Quit()

				CommandBars("Standard").Visible	=	True

				CommandBars("Formatting").Visible	=	True

End	Sub



WindowActivate	Event
							

Occurs	when	any	document	window	is	activated.

Private	Sub	object_WindowActivate(ByVal	Doc	As	Word.Document,	ByVal
Wn	As	Word.Window)

object			An	object	of	type	Application	declared	with	events	in	a	class	module.
For	more	information	about	using	events	with	the	Application	object	or	the
Document	object,	see	Using	Events	with	the	Application	Object	or	Using
Events	with	the	Document	Object.

Doc			Used	only	with	the	Application	object.	The	document	displayed	in	the
activated	window.

Wn			The	window	that's	being	activated.



Example

This	example	maximizes	any	document	window	when	it's	activated.	This	code
must	be	placed	in	a	class	module,	and	an	instance	of	the	class	must	be	correctly
initialized	in	order	to	see	this	example	work;	see	Using	Events	with	the
Application	Object	for	directions	on	how	to	accomplish	this.

Public	WithEvents	appWord	as	Word.Application

Private	Sub	appWord_WindowActivate	_

								(ByVal	Wn	As	Word.Window)

				Wn.WindowState	=	wdWindowStateMaximize

End	Sub



WindowBeforeDoubleClick	Event
							

Occurs	when	the	editing	area	of	a	document	window	is	double-clicked,	before
the	default	double-click	action.

Private	Sub	object_WindowBeforeDoubleClick(ByVal	Sel	As	Selection,
ByVal	Cancel	As	Boolean)

object			An	object	of	type	Application	declared	with	events	in	a	class	module.
For	more	information	about	using	events	with	the	Application	object,	see	Using
Events	with	the	Application	Object.

Sel			The	current	selection.

Cancel			False	when	the	event	occurs.	If	the	event	procedure	sets	this	argument
to	True,	the	default	double-click	action	does	not	occur	when	the	procedure	is
finished.



Example

This	example	prompts	the	user	for	a	yes	or	no	response	before	executing	the
default	double-click	action.	This	code	must	be	placed	in	a	class	module,	and	an
instance	of	the	class	must	be	correctly	initialized	in	order	to	see	this	example
work;	see	Using	Events	with	the	Application	Object	for	directions	on	how	to
accomplish	this.

Public	WithEvents	appWord	as	Word.Application

Private	Sub	appWord_WindowBeforeDoubleClick	_

								(ByVal	Sel	As	Selection,	_

								Cancel	As	Boolean)

				Dim	intResponse	As	Integer

				intResponse	=	MsgBox("Selection	=	"	&	Sel	&	vbLf	&	vbLf	_

								&	"Continue	with	operation	on	this	selection?",	_

								vbYesNo)

				If	intResponse	=	vbNo	Then	Cancel	=	True

End	Sub



WindowBeforeRightClick	Event
							

Occurs	when	the	editing	area	of	a	document	window	is	right-clicked,	before	the
default	right-click	action.

Private	Sub	object_WindowBeforeRightClick(ByVal	Sel	As	Selection,	ByVal
Cancel	As	Boolean)

object			An	object	of	type	Application	declared	with	events	in	a	class	module.
For	more	information	about	using	events	with	the	Application	object,	see	Using
Events	with	the	Application	Object.

Sel			The	current	selection.

Cancel			False	when	the	event	occurs.	If	the	event	procedure	sets	this	argument
to	True,	the	default	right-click	action	does	not	occur	when	the	procedure	is
finished.



Example

This	example	prompts	the	user	for	a	yes	or	no	response	before	executing	the
default	right-click	action.	This	code	must	be	placed	in	a	class	module,	and	an
instance	of	the	class	must	be	correctly	initialized	in	order	to	see	this	example
work;	see	Using	Events	with	the	Application	Object	for	directions	on	how	to
accomplish	this.

Public	WithEvents	appWord	as	Word.Application

Private	Sub	appWord_WindowBeforeRightClick	_

								(ByVal	Sel	As	Selection,	_

								Cancel	As	Boolean)

				Dim	intResponse	As	Integer

				intResponse	=	MsgBox("Selection	=	"	&	Sel	&	vbLf	&	vbLf	_

								&	"Continue	with	operation	on	this	selection?",	_

								vbYesNo)

				If	intResponse	=	vbNo	Then	Cancel	=	True

End	Sub



WindowDeactivate	Event
							

Occurs	when	any	document	window	is	deactivated.

Private	Sub	object_WindowDeactivate(ByVal	Doc	As	Word.Document,
ByVal	Wn	As	Word.Window)

object			An	object	of	type	Application	declared	with	events	in	a	class	module.
For	more	information	about	using	events	with	the	Application	object	or	the
Document	object,	see	Using	Events	with	the	Application	Object	or	Using
Events	with	the	Document	Object.

Doc			Used	only	with	the	Application	object.	The	document	displayed	in	the
deactivated	window.

Wn			The	deactivated	window.



Example

This	example	minimizes	any	document	window	when	it's	deactivated.	This	code
must	be	placed	in	a	class	module,	and	an	instance	of	the	class	must	be	correctly
initialized	in	order	to	see	this	example	work;	see	Using	Events	with	the
Application	Object	for	directions	on	how	to	accomplish	this.

Public	WithEvents	appWord	as	Word.Application

Private	Sub	appWord_WindowDeactivate	_

								(ByVal	Wn	As	Word.Window)

				Wn.WindowState	=	wdWindowStateMinimize

End	Sub



WindowSelectionChange	Event
							

Occurs	when	the	selection	changes	in	the	active	document	window.

Private	Sub	object_WindowSelectionChange(ByVal	Sel	As	Selection)

object			An	object	of	type	Application	declared	with	events	in	a	class	module.
For	more	information	about	using	events	with	the	Application	object,	see	Using
Events	with	the	Application	Object.

Sel			The	new	selection.



Example

This	example	applies	bold	formatting	to	the	new	selection.	This	code	must	be
placed	in	a	class	module,	and	an	instance	of	the	class	must	be	correctly
initialized	in	order	to	see	this	example	work;	see	Using	Events	with	the
Application	Object	for	directions	on	how	to	accomplish	this.

Public	WithEvents	appWord	as	Word.Application

Private	Sub	appWord_WindowSelectionChange	_

								(ByVal	Sel	As	Selection)

				Sel.Font.Bold	=	True

End	Sub



Show	All



WindowSize	Event
							

Occurs	when	the	application	window	is	resized	or	moved.

Private	Sub	object_WindowSize(ByVal	Doc	As	Document,	ByVal	Wn	As
Window)

object		An	object	of	type	Application	declared	with	events	in	a	class	module.
For	information	about	using	events	with	the	Application	object,	see	Using
Events	with	the	Application	Object.

Doc	The	document	in	the	window	being	sized.

Wn	The	window	being	sized.



Example

This	example	displays	a	message	every	time	the	Microsoft	Word	application
window	is	moved	or	resized.	This	example	assumes	that	you	have	declared	an
application	variable	called	"WordApp"	in	your	general	declarations	and	have	set
the	variable	equal	to	the	Word	Application	object.

Private	Sub	WordApp_WindowSize(ByVal	Doc	As	Document,	_

								ByVal	Wn	As	Window)

				MsgBox	"You	have	just	resized	or	moved	your	window."

End	Sub



Microsoft	Word	Objects
(AutoCorrect)
			
AutoCorrect	 AutoCorrectEntries

AutoCorrectEntry
FirstLetterExceptions
FirstLetterException

HangulAndAlphabetExceptions
HangulAndAlphabetException

OtherCorrectionsExceptions
OtherCorrectionsException

TwoInitialCapsExceptions
TwoInitialCapsException

Legend

		Object	and	collection
		Object	only



Microsoft	Word	Objects	(Documents)
			
Documents	 Document

Bookmarks
Bookmark

Characters	(Range)
CommandBars
Comments
Comment

DocumentProperties
Email
EmailAuthor

Endnotes
Endnote

Envelope
Style

Fields
Field

Footnotes
Footnote

FormFields
Frames
Frame
Borders
Shading

HTMLDivisions
HTMLDivision

mk:@MSITStore:vbaof10.chm::/html/ofobjCommandBars.htm
mk:@MSITStore:vbaof10.chm::/html/ofobjDocumentProperties.htm


Borders
HTMLProject
Hyperlinks
Hyperlink

Indexes
Field
Index

InlineShapes
LetterContent
ListParagraphs
Paragraph

Lists
List
ListParagraphs
Range

ListParagraphs
Range

ListTemplates
MailMerge
PageSetup
LineNumbering
TextColumns
TextColumn

Paragraphs
ProofreadingErrors	(Range)
Range
ReadabilityStatistics
ReadabilityStatistic

Revisions
Revision

mk:@MSITStore:vbaof10.chm::/html/ofobjHTMLProject.htm


RoutingSlip
Scripts
Script

Sections
Sentences	(Range)
Shapes
SignatureSet
Signature

SmartTags
SmartTag

StoryRanges	(Range)
Styles
StyleSheets
StyleSheet

Subdocuments
Subdocument

Tables
Table

TablesOfAuthorities
Field
TableOfAuthorities

TablesOfAuthoritiesCategories
TableOfAuthoritiesCategory

TablesOfContents
Field
TableOfContents
HeadingStyles

TablesOfFigures
Field
TableOfFigures

mk:@MSITStore:vbaof10.chm::/html/ofobjScripts.htm
mk:@MSITStore:vbaof10.chm::/html/ofobjScript.htm
mk:@MSITStore:vbaof10.chm::/html/ofobjSignatureSet.htm
mk:@MSITStore:vbaof10.chm::/html/ofobjSignature.htm


Variables
Variable

Versions
Version

WebOptions
Windows
Words	(Range)

Legend

		Object	and	collection
		Object	only

	Click	red	arrow	to	expand	chart



Microsoft	Word	Objects
(ListTemplates)
			
ListTemplates	 ListTemplate

ListLevels
ListLevel
Font
InlineShape

Legend

		Object	and	collection
		Object	only

	Click	red	arrow	to	expand	chart



Microsoft	Word	Objects	(Selection)
			
Selection	 AutoTextEntry
Bookmarks
Bookmark

Borders
Border

Cells
Characters	(Range)
Columns
Column

Comments
Comment

Document
EndnoteOptions
Endnotes
Endnote

Fields
Field

Find
Font
FootnoteOptions
Footnotes
Footnote

FormFields
Frames
Frame



HeaderFooter
HTMLDivisions
HTMLDivision
Borders

Hyperlinks
Hyperlink

InlineShapes
PageSetup
ParagraphFormat
Paragraphs
Revision
Range
Rows
Row

Sections
Sentences	(Range)
Shading
ShapeRange	(Shape)
SmartTags
Style
Tables
Words	(Range)

Legend

		Object	and	collection
		Object	only

	Click	red	arrow	to	expand	chart





Microsoft	Word	Objects	(Templates)
			
Template	 Template

AutoTextEntries
AutoTextEntry
Range

DocumentProperties
ListTemplates

Legend

		Object	and	collection
		Object	only

	Click	red	arrow	to	expand	chart

mk:@MSITStore:vbaof10.chm::/html/ofobjDocumentProperties.htm


Microsoft	Word	Objects	(Windows)
			
Windows	 Window

Panes
Pane
Frameset
Selection
View
Zooms
Zoom

Range
Selection
Shape
View
Reviewers
Reviewer

Zoom

Legend

		Object	and	collection
		Object	only

	Click	red	arrow	to	expand	chart





Show	All



New	Objects
Visit	the	Office	Developer	Center	at	MSDN	Online	for	the	latest	Microsoft	Word
development	information,	including	new	technical	articles,	downloads,	samples,
product	news,	and	more.

			

Objects	that	were	added	to	Visual	Basic	in	Microsoft	Word	2002	are	listed	in	the
following	table.

Object Description
CanvasShapes A	collection	of	the	shapes	in	a	drawing	canvas.

ConditionalStyle
Consists	of	special	formatting	applied	to
specified	areas	of	a	table	when	the	selected
table	is	formatted	with	a	specified	table	style.	

CustomProperties A	collection	of	custom	properties	related	to	a
smart	tag.

CustomProperty A	single	custom	property	for	a	smart	tag.
Diagram A	single	diagram	in	a	document.
DiagramNode A	single	diagram	node	within	a	diagram.

DiagramNodeChildren A	collection	of	DiagramNode	objects	that
represents	the	child	nodes	in	a	diagram.

DiagramNodes A	collection	of	DiagramNode	objects	that
represent	all	the	nodes	in	a	diagram.

EmailSignatureEntries A	collection	of	all	the	e-mail	signature	entries
available	in	Word.

EmailSignatureEntry A	single	e-mail	signature	entry.

EndnoteOptions Properties	assigned	to	a	range	or	selection	of
endnotes	in	a	document.

FootnoteOptions Properties	assigned	to	a	range	or	selection	of
footnotes	in	a	document.

HTMLDivision A	single	HTML	division	that	can	be	added	to	a
Web	document.

http://officeupdate.microsoft.com/office/redirect/10/Helplinks.asp?AppName=WORD&HelpLCID=1033&LinkNum=99000030&Version=0,


HTMLDivisions A	collection	of	the	HTML	divisions	that	exist
in	a	Web	document

MappedDataField A	single	mapped	data	field.

MappedDataFields A	collection	of	all	the	mapped	data	fields
available	in	Microsoft	Word.

Reviewer A	single	reviewer	of	a	document	in	which
changes	have	been	tracked.

Reviewers A	collection	of	reviewers	who	have	reviewed
one	or	more	documents.

SmartTag A	string	in	a	document	or	range	that	contains
recognized	type	information.

SmartTags
A	collection	of	SmartTag	objects	that	represent
text	in	a	document	that	is	marked	as	containing
recognized	type	information.

Stylesheet A	single	cascading	style	sheet	attached	to	a	web
document.

Stylesheets A	collection	of	the	cascading	style	sheets
attached	to	a	document.

TableStyle A	single	style	that	contains	formatting	that	can
be	applied	to	a	table.

TaskPane A	single	task	pane	available	in	Microsoft	Word
that	contains	commonly	performed	tasks.

TaskPanes A	collection	of	task	panes	that	contains
commonly-performed	tasks	in	Microsoft	Word.



New	Properties	(by	Object)
			

Properties	that	have	been	added	to	existing	objects	in	Microsoft	Word	2002	are
listed	in	the	following	table	(sorted	by	object	name).

Object New	Properties

Application

AutoCorrectEmail,	AutomationSecurity,
DefaultLegalBlackline,	EmailTemplate,	FileDialog,
NewDocument,	ShowStartupDialog,
ShowWindowsInTaskbar,	TaskPanes

AutoCorrect CorrectTableCells,	DisplayAutoCorrectOptions

ColorFormat TintAndShade,	Black,	Cyan,	Ink,	Magenta,
OverPrint,	Yellow

DefaultWebOptions SaveNewWebPagesAsWebArchives,	TargetBrowser
Diagram AutoFormat,	AutoLayout,	Reverse
DiagramNode Children,	Diagram,	Layout,	Root,	TextShape
DiagramNodeChildren FirstChild,	LastChild

Document

DefaultTableStyle,	DefaultTargetFrame,
DisableFeatures,	DisableFeaturesIntroducedAfter,
DoNotEmbedSystemFonts,	EmbedLinguisticData,
EmbedSmartTag,	FormattingShowClear,
FormattingShowFilter,	FormattingShowFont,
FormattingShowNumbering,
FormattingShowParagraph,	HTMLDivisions,
MailEnvelope,	PasswordEncryptionAlgorithm,
PasswordEncryptionFileProperties,
PasswordEncryptionKeyLength,
PasswordEncryptionProvider,
RemovePersonalInformation,	Signatures,
SmartTags,	SmartTagsAsXMLProps,	StyleSheets,
TextEncoding,	TextLineEnding

EmailOptions
EmbedSmartTags,	HTMLFidelity,
NewColorOnReply,	PlainTextStyle,



UseThemeStyleOnReply
EmailSignature EmailSignatureEntries

Envelope

RecipientNameFromLeft,	RecipientNameFromTop,
RecipientPostalFromLeft,
RecipientPostalFromTop,	SenderNameFromLeft,
SenderNameFromTop,	SenderPostalFromLeft,
SenderPostalFromTop,	Vertical

Global AutoCorrectEmail
InlineShape IsPictureBullet
LineFormat InsetPen
ListFormat ListPictureBullet
ListLevel PictureBullet
MailingLabel Vertical

MailMerge HighlightMergeFields,	MailFormat,
ShowSendToCustom,	WizardState

MailMergeDataSource Included,	InvalidAddress,	InvalidComments,MappedDataFields,	RecordCount,	TableName
MappedDataField DataFieldIndex,	DataFieldName
OLEFormat PreserveFormattingOnUpdate

Options

AutoCreateNewDrawings,	BackgroundOpen,
CommentColor,	CtrlClickHyperlinkToOpen,
DefaultEPostageApp,	DefaultTextEncoding,
DisableFeaturesByDefault,
DisableFeaturesIntroducedAfterByDefault,
DisplayPasteOptions,	DisplaySmartTagButtons,
FormatScanning,	LabelSmartTags,
LocalNetworkFile,	PasteAdjustParagraphSpacing,
PasteAdjustTableFormatting,
PasteAdjustWordSpacing,	PasteMergeFromPPT,
PasteMergeFromXL,	PasteMergeLists,
PasteSmartCutPaste,	PasteSmartStyleBehavior,
PictureWrapType,	PromptUpdateStyle,
RevisionsBalloonPrintOrientation,	SequenceCheck,
ShowFormatError,	SmartParaSelection,
StoreRSIDOnSave,	TypeNReplace,
WarnBeforeSavingPrintingSendingMarkup



PageSetup BookFoldPrinting,	BookFoldPrintingSheets,
BookFoldRevPrinting

Paragraph IsStyleSeparator
Revision FormatDescription

Range EndnoteOptions,	FootnoteOptions,
HTMLDivisions,	SmartTags

Selection
ChildShapeRange,	EndnoteOptions,
FootnoteOptions,	HasChildShapeRange,
HTMLDivisions,	SmartTags

Shape CanvasItems,	Child,	Diagram,	DiagramNode,
HasDiagram,	HasDiagramNode,	ParentGroup

ShapeRange CanvasItems,	Child,	Diagram,	DiagramNode,
HasDiagram,	HasDiagramNode,	ParentGroup

SmartTag DownloadURL,	Properties,	XML

Style LinkStyle,
NoSpaceBetweenParagraphsOfSameStyle,	Table

StyleSheet Title

Table ApplyStyleFirstColumn,	ApplyStyleHeadingRows,
ApplyStyleLastColumn,	ApplyStyleLastRow

TableStyle AllowBreakAcrossPage,	ColumnStripe,	RowStripe

View

DisplayPageBoundaries,	DisplaySmartTags,
Reviewers,	RevisionsBalloonShowConnectingLines,
RevisionsBalloonSide,	RevisionsBalloonWidth,
RevisionsBalloonWidthType,	RevisionsMode,
RevisionsView,	ShowComments,
ShowFormatChanges,
ShowInsertionsAndDeletions,
ShowRevisionsAndComments

WebOptions TargetBrowser



New	Properties	(Alphabetic	List)
			

Properties	that	have	been	added	to	existing	objects	in	Microsoft	Word	2002	are
listed	in	the	following	table	(sorted	alphabetically).

New	Property Object(s)
AllowBreakAcrossPage TableStyle
ApplyStyleFirstColumn Table
ApplyStyleHeadingRows Table
ApplyStyleLastColumn Table
ApplyStyleLastRow Table
AutoCorrectEmail Application,	Global
AutoCreateNewDrawings Options
AutoFormat Diagram
AutoLayout Diagram
AutomationSecurity Application
BackgroundOpen Options
Black ColorFormat
BookFoldPrinting PageSetup
BookFoldPrintingSheets PageSetup
BookFoldRevPrinting PageSetup
CanvasItems Shape,	ShapeRange
Child Shape,	ShapeRange
Children DiagramNode
ChildShapeRange Selection
ColumnStripe TableStyle
CommentsColor Options
CorrectTableCells AutoCorrect
CtrlClickHyperlinkToOpen Options
Cyan ColorFormat



DataFieldIndex MappedDataField
DataFieldName MappedDataField
DefaultEPostageApp Options
DefaultLegalBlackline Application
DefaultTableStyle Document
DefaultTargetFrame Document
DefaultTextEncoding Options

Diagram DiagramNode,	Shape,
ShapeRange

DiagramNode Shape,	ShapeRange
DisableFeatures Document
DisableFeaturesByDefault Options
DisableFeaturesIntroducedAfter Document
DisableFeaturesIntroducedAfterByDefault Options
DisplayAutoCorrectOptions AutoCorrect
DisplayPageBoundaries View
DisplayPasteOptions Options
DisplaySmartTagButtons Options
DisplaySmartTags View
DoNotEmbedSystemFonts Document
DownloadURL SmartTag
EmailSignatureEntries EmailSignature
EmailTemplate Application
EmbedLinguisticData Document
EmbedSmartTag Document
EmbedSmartTags EmailOptions
EndnoteOptions Range,	Selection
FileDialog Application
FirstChild DiagramNodeChildren
FootnoteOptions Range,	Selection
FormatDescription Revision
FormatScanning Options
FormattingShowClear Document



FormattingShowFilter Document
FormattingShowFont Document
FormattingShowNumbering Document
FormattingShowParagraph Document
HasChildShapeRange Selection
HasDiagram Shape,	ShapeRange
HasDiagramNode Shape,	ShapeRange
HighlightMergeFields MailMerge

HTMLDivisions Document,	HTMLDivision,
Range,	Selection

HTMLFidelity EmailOptions
Included MailMergeDataSource
Ink ColorFormat
InsetPen LineFormat
InvalidAddress MailMergeDataSource
InvalidComments MailMergeDataSource
IsPictureBullet InlineShape
IsStyleSeparator Paragraph
LabelSmartTags Options
LastChild DiagramNodeChildren
Layout DiagramNode
LinkStyle Style
ListPictureBullet ListPictureBullet
LocalNetworkFile Options
Magenta ColorFormat
MailEnvelope Document
MailFormat MailMerge
MappedDataFields MailMergeDataSource
NewColorOnReply EmailOptions
NewDocument Application
NoSpaceBetweenParagraphsOfSameStyle Style
OverPrint ColorFormat
ParentGroup Shape,	ShapeRange



PasswordEncryptionAlgorithm Document
PasswordEncryptionFileProperties Document

PasswordEncryptionKeyLength Document
PasswordEncryptionProvider Document
PasteAdjustParagraphSpacing Options
PasteAdjustTableFormatting Options
PasteAdjustWordSpacing Options
PasteMergeFromPPT Options
PasteMergeFromXL Options
PasteMergeLists Options
PasteSmartCutPaste Options
PasteSmartStyleBehavior Options
PictureBullet ListLevel
PictureWrapType Options
PlainTextStyle EmailOptions
PreserveFormattingOnUpdate OLEFormat
PromptUpdateStyle Options
Properties SmartTag
RecipientNameFromLeft Envelope
RecipientNameFromTop Envelope
RecipientPostalFromLeft Envelope
RecipientPostalFromTop Envelope
RecordCount MailMergeDataSource
RemovePersonalInformation Document
Reverse Diagram
Reviewers View
RevisionsBalloonPrintOrientation Options
RevisionsBalloonShowConnectingLines View
RevisionsBalloonSide View
RevisionsBalloonWidth View
RevisionsBalloonWidthType View
RevisionsMode View
RevisionsView View



Root DiagramNode
RowStripe TableStyle

SaveNewWebPagesAsWebArchives DefaultWebOptions
SenderNameFromLeft Envelope
SenderNameFromTop Envelope
SenderPostalFromLeft Envelope
SenderPostalFromTop Envelope
SequenceCheck Options
ShowComments View
ShowFormatChanges View
ShowFormatError Options
ShowInsertionsAndDeletions View
ShowRevisionsAndComments View
ShowSendToCustom MailMerge
ShowStartupDialog Application
ShowWindowsInTaskbar Application
Signatures Document
SmartParaSelection Options
SmartTags Document,	Range,	Selection
SmartTagsAsXMLProps Document
StoreRSIDOnSave Options
StyleSheets Document
Table Style
TableName MailMergeDataSource

TargetBrowser DefaultWebOptions,
WebOptions

TaskPanes Application
TextEncoding Document
TextLineEnding Document
TextShape DiagramNode
TintAndShade ColorFormat
Title StyleSheet



TypeNReplace Options
UseThemeStyleOnReply EmailOptions
Vertical Envelope,	MailingLabel
WarnBeforeSavingPrintingSendingMarkup Options
WizardState MailMerge
XML SmartTag
Yellow ColorFormat



New	Methods	(by	Object)
			

Methods	that	have	been	added	to	existing	objects	in	Microsoft	Word	2002	are
listed	in	the	following	table	(sorted	by	object	name).

Object New	Methods
CanvasShapes AddConnector
ColorFormat SetCMYK

DiagramNode
AddNode,	CloneNode,	MoveNode,	NextNode,
PrevNode,	ReplaceNode,	SwapNode,
TransferChildren

DiagramNodeChildren AddNode

Document

AcceptAllRevisionsShown,	CanCheckIn,	CheckIn,
CheckNewSmartTags,	ConvertVietDoc,
DeleteAllComments,	DeleteAllCommentsShown,
EndReview,	RecheckSmartTags,
RejectAllRevisionsShown,	RemoveSmartTags,
ReplyWithChanges,	ResetFormFields,
SendForReview,	SetDefaultTableStyle,
SetPasswordEncryptionOptions

Documents CanCheckOut,	CheckOut,	DiscardConflict,
OfflineConflict

Envelope Options
HTMLDivision HTMLDivisionParent
ListLevel ApplyPictureBullet
MailingLabel LabelOptions
MailMerge ShowWizard
MailMergeDataSource SetAllErrorFlags,	SetAllIncludedFlags
Paragraph SelectNumber
Paragraphs DecreaseSpacing,	IncreaseSpacing

Selection
InsertStyleSeparator,	PasteAndFormat,
PasteAppendTable,	PasteExcelTable,



ShrinkDiscontiguousSelection,
ToggleCharacterCode

Shape CanvasCropBottom,	CanvasCropLeft,
CanvasCropRight,	CanvasCropTop

ShapeRange CanvasCropBottom,	CanvasCropLeft,
CanvasCropRight,	CanvasCropTop

Shapes AddCanvas,	AddConnector,	AddDiagram
TableStyle Condition



New	Methods	(Alphabetic	List)
			

Methods	that	have	been	added	to	existing	objects	in	Microsoft	Word	2002	are
listed	in	the	following	table	(sorted	alphabetically).

New	Method Object
AcceptAllRevisionsShown Document
AddCanvas Shapes
AddConnector CanvasShapes,	Shapes
AddDiagram Shapes

AddNode DiagramNode,
DiagramNodeChildren

ApplyPictureBullet ListLevel
CanCheckIn Document
CanCheckOut Documents
CanvasCropBottom Shape,	ShapeRange
CanvasCropLeft Shape,	ShapeRange
CanvasCropRight Shape,	ShapeRange
CanvasCropTop Shape,	ShapeRange
CheckIn Document
CheckNewSmartTags Document
CheckOut Documents
CloneNode DiagramNode
Condition TableStyle
ConvertVietDoc Document
DecreaseSpacing Paragraphs
DeleteAllComments Document
DeleteAllCommentsShown Document
DiscardConflict Documents
EndReview Document



HTMLDivisionParent HTMLDivision
IncreaseSpacing Paragraphs
InsertStyleSeparator Selection
LabelOptions MailingLabel
MoveNode DiagramNode
NextNode DiagramNode
OfflineConflict Documents
Options Envelope
PasteAndFormat Selection
PasteAppendTable Selection
PasteExcelTable Selection
PrevNode DiagramNode
RecheckSmartTags Document
RejectAllRevisionsShown Document
RemoveSmartTags Document
ReplaceNode DiagramNode
ReplyWithChanges Document
ResetFormFields Document
SelectNumber Paragraph
SendForReview Document
SetAllErrorFlags MailMergeDataSource
SetAllIncludedFlags MailMergeDataSource
SetCMYK ColorFormat
SetDefaultTableStyle Document
SetPasswordEncryptionOptions Document
ShowWizard MailMerge
ShrinkDiscontiguousSelection Selection
SwapNode DiagramNode
ToggleCharacterCode Selection
TransferChildren DiagramNode





New	Events
			

Events	that	have	been	added	to	the	Application	object	in	Microsoft	Word	2002
are	given	in	the	following	alphabetic	list.

EPostageInsert

EPostagePropertyDialog

MailMergeAfterMerge

MailMergeAfterRecordMerge

MailMergeBeforeMerge

MailMergeBeforeRecordMerge

MailMergeDataSourceLoad

MailMergeDataSourceValidate

MailMergeWizardSendToCustom

MailMergeWizardStateChange

WindowSize



Show	All



Language-Specific	Properties	and
Methods
			

The	Microsoft	Word	2002	Visual	Basic	object	model	has	language-specific
keywords	for	use	with	Asian	and	right-to-left	languages.	The	availability	of
these	language-specific	keywords	depends	on	the	language	support	you	have
selected	or	installed.	This	topic	includes	information	on	the	following	Visual
Basic	language-specific	items:

Properties
Methods
Arguments



Language-Specific	Properties

Properties	that	are	available	only	in	Asian	or	right-to-left	languages	are	listed	in
the	following	table.

Property Object
AddBiDirectionalMarksWhenSavingTextFile Options
AddControlCharacters Options
AddHebDoubleQuote Options

AddSpaceBetweenFarEastAndAlpha Paragraph,	ParagraphFormat
Paragraphs

AddSpaceBetweenFarEastAndDigit Paragraph,	ParagraphFormat
Paragraphs

AllowCombinedAuxiliaryForms Options
AllowCompoundNounProcessing Options
ApplyFarEastFontsToAscii Options
ArabicMode Options
ArabicNumeral Options

AutoAdjustRightIndent Paragraph,	ParagraphFormat
Paragraphs

AutoFormatApplyFirstIndents Options
AutoFormatAsYouTypeApplyClosings Options
AutoFormatAsYouTypeApplyDates Options
AutoFormatAsYouTypeApplyFirstIndents Options
AutoFormatAsYouTypeAutoLetterWizard Options
AutoFormatAsYouTypeDeleteAutoSpaces Options
AutoFormatAsYouTypeInsertClosings Options
AutoFormatAsYouTypeInsertOvers Options
AutoFormatAsYouTypeMatchParentheses Options
AutoFormatAsYouTypeReplaceFarEastDashes Options
AutoFormatDeleteAutoSpaces Options
AutoFormatMatchParentheses Options
AutoFormatReplaceFarEastDashes Options



BaseLineAlignment Paragraph,	ParagraphFormat
Paragraphs

BoldBi Font,	Range
BookFoldRevPrinting PageSetup
BuiltinDictionary HangulHanjaConversionDictionaries

CharacterUnitFirstLineIndent Paragraph,	ParagraphFormat
Paragraphs

CharacterUnitLeftIndent Paragraph,	ParagraphFormat
Paragraphs

CharacterUnitRightIndent Paragraph,	ParagraphFormat
Paragraphs

CharacterWidth Range
CharsLine PageSetup
CheckHangulEndings Options
ColorIndexBi Font
CombineCharacters Range
ConvertHighAnsiToFarEast Options
CorrectHangulAndAlphabet AutoCorrect
CorrectHangulEndings Find
CursorMovement Options
DiacriticColor Font
DiacriticColorVal Options
DisableCharacterSpaceGrid Font,	Range

DisableLineHeightGrid Paragraph,	ParagraphFormat
Paragraphs

DisplayGridLines Options
DisplayLeftScrollBar Window
DisplayRightRuler Window
DocumentViewDirection Options
DoNotEmbedSystemFonts Document
DoubleQuote PageNumbers
EmphasisMark Font,	Range
EnableHangulHanjaRecentOrdering Options

Paragraph,	ParagraphFormat



FarEastLineBreakControl Paragraphs

FarEastLineBreakLanguage Document,	Template
FarEastLineBreakLevel Document,	Template
Filter Index
FitTextWidth Range,	Selection
FlowDirection TextColumns
GridOriginFromMargin Document
GridSpaceBetweenHorizontalLines Document
GridSpaceBetweenVerticalLines Document
GutterPos PageSetup
GutterStyle PageSetup

HalfWidthPunctuationOnTopOfLine Paragraph,	ParagraphFormat
Paragraphs

HangingPunctuation Paragraph,	ParagraphFormat
Paragraphs

HangulAndAlphabetAutoAdd AutoCorrect
HangulAndAlphabetExceptions AutoCorrect
HangulHanjaDictionaries Application,	Global
HangulHanjaFastConversion Options
HebrewMode Options
HorizontalInVertical Range
IMEAutomaticControl Options
IMEMode Window
InlineConversion Options
ItalicBi Font,	Range
JustificationMode Document,	Template
Kana Range
KerningByAlgorithm Document,	Template
LayoutMode PageSetup
LinesPage PageSetup

LineUnitAfter Paragraph,	ParagraphFormat
Paragraphs

LineUnitBefore Paragraph,	ParagraphFormat



Paragraphs
MatchAlefHamza Find
MatchByte Find
MatchControl Find
MatchDiacritics Find
MatchFuzzy Find
MatchFuzzyAY Options
MatchFuzzyBV Options
MatchFuzzyByte Options
MatchFuzzyCase Options
MatchFuzzyDash Options
MatchFuzzyDZ Options
MatchFuzzyHF Options
MatchFuzzyHiragana Options
MatchFuzzyIterationMark Options
MatchFuzzyKanji Options
MatchFuzzyKiKu Options
MatchFuzzyOldKana Options
MatchFuzzyProlongedSoundMark Options
MatchFuzzyPunctuation Options
MatchFuzzySmallKana Options
MatchFuzzySpace Options
MatchFuzzyTC Options
MatchFuzzyZJ Options
MatchKashida Find
MonthNames Options
MultipleWordConversionsMode Options
NameBi Font
NoLineBreakAfter Document,	Template
NoLineBreakBefore Document,	Template
PrintEvenPagesInAscendingOrder Options
PrintOddPagesInAscendingOrder Options

ReadingOrder Paragraph,	ParagraphFormat



Paragraphs
RecipientNamefromLeft Envelope
RecipientNamefromTop Envelope
RecipientPostalfromLeft Envelope
RecipientPostalfromTop Envelope
SectionDirection PageSetup
SenderNamefromLeft Envelope
SenderNamefromTop Envelope
SenderPostalfromLeft Envelope
SenderPostalfromTop Envelope
ShowControlCharacters Options
ShowDiacritics Options
ShowOptionalBreaks View
SizeBi Font
SortBy Index
StrictFinalYaa Options
StrictInitialAlefHamza Options
TableDirection Rows,	Table
TwoLinesInOne Range
TwoPagesOnOne PageSetup
UseCharacterUnit Options
UseDiffDiacColor Options
UseGermanSpellingReform Options
Vertical Envelope	and	MailingLabel
VisualSelection Options



Language-Specific	Methods

Methods	that	are	available	only	in	Asian	or	right-to-left	languages	are	listed	in
the	following	table.

Method Object
BoldRun Selection
CheckConsistency Document
ClearAllFuzzyOptions Find
ConvertHangulAndHanja Range
ConvertVietDoc Document

IndentCharWidth Paragraph,	ParagraphFormat,
Paragraphs

IndentFirstLineCharWidth Paragraph,	ParagraphFormat,
Paragraphs

ItalicRun Selection
KeyboardBidi Application
KeyboardLatin Application
LtrPara Selection
LtrRun Selection
ModifyEnclosure Range
PhoneticGuide Range
RtlPara Selection
RtlRun Selection
SetAllFuzzyOptions Find
TCSCConverter Range
ToggleKeyboard Application



Language-Specific	Arguments

Methods	that	are	available	in	all	languages,	but	that	have	one	or	more	language-
specific	arguments,	are	listed	in	the	following	table.

Method Object
Execute Find
InsertDateTime Range,	Selection
InsertSymbol Range,	Selection

PrintOut Application,	Document,
Window

Sort Column,	Range,	Selection,	Table

Note			In	order	to		enable	the	language-specific	features	in	Microsoft	Word,	you
must	be	running	a	32-bit	version	of	the	Microsoft	Windows	operating	system
that	has	support	for	that	particular	language	—	for	example,	the	Arabic	version
of	Microsoft	Windows	95	has	right-to-left	support.	For	more	information,	see
Learn	about	requirements	for	right-to-left	or	Asian	languages.

mk:@MSITStore:ofmain10.chm::/html/ofhowSystemReqsForAsianBidirectionalLanguages.htm


Hidden	Properties	and	Methods
			

In	Microsoft	Word	2002,	the	following	properties	and	methods	have	been
hidden.	Hidden	properties	are	supported	only	for	backward	compatibility.



Properties

Property Object
BrowseToWindow View
EnlargeFontsLessThan View



Methods

Method Object
UseAddressBook MailMerge



Show	All



Returning	an	Object	from	a
Collection
			

The	Item	method	returns	a	single	object	from	a	collection.	The	following
example	sets	the	firstDoc	variable	to	a	Document	object	that	represents	the
first	document	in	the	Documents	collection.

Sub	SetFirstDoc()

				Dim	docFirst	As	Document

				Set	docFirst	=	Documents.Item(1)

End	Sub

The	Item	method	is	the	default	method	for	most	collections,	so	you	can	write	the
same	statement	more	concisely	by	omitting	the	Item	keyword.

Sub	SetFirstDoc()

				Dim	docFirst	As	Document

				Set	docFirst	=	Documents(1)

End	Sub



Named	Objects

Although	you	can	usually	specify	an	integer	value	with	the	Item	method,	it	may
be	more	convenient	to	return	an	object	by	name.	The	following	example
switches	the	focus	to	a	document	named	Sales.doc.

Sub	ActivateDocument()

				Documents("Sales.doc").Activate

				MsgBox	ActiveDocument.Name

End	Sub

The	following	example	selects	the	text	marked	by	the	first	bookmark	in	the
active	document.

Sub	SelectBookmark()

				ActiveDocument.Bookmarks(1).Select

				MsgBox	Selection.Text

End	Sub

Not	all	collections	can	be	indexed	by	name.	To	determine	the	valid	collection
index	values,	see	the	collection	object	topic.



Predefined	Index	Values

Some	collections	have	predefined	index	values	you	can	use	to	return	single
objects.	Each	predefined	index	value	is	represented	by	a	constant.	For	example,
you	specify	an	WdBorderType	constant	with	the	Borders	property	to	return	a
single	Border	object.

The	following	example	adds	a	single	0.75	point	border	below	the	first	paragraph
in	the	selection.

Sub	AddBorderToFirstParagraphInSelection()

				With	Selection.Paragraphs(1).Borders(wdBorderBottom)

								.LineStyle	=	wdLineStyleSingle

								.LineWidth	=	wdLineWidth300pt

								.Color	=	wdColorBlue

				End	With

End	Sub



Converting	WordBasic	Macros	to
Visual	Basic
			

Microsoft	Word	2002	automatically	converts	the	macros	in	a	Word	6.x	or	Word
95	template	the	first	time	you	do	any	of	the	following:

Open	the	template
Create	a	new	document	based	on	the	template
Attach	the	template	to	a	document	by	using	the	Templates	command	(Tools
menu).

A	message	is	displayed	on	the	status	bar	while	the	macros	are	being	converted.
After	the	conversion	is	complete,	you	must	save	the	template	to	save	the
converted	macros.	If	you	don't	save	the	template,	Word	converts	the	macros
again	the	next	time	you	use	the	template.

Note			Word	2002	cannot	convert	Word	2.x	macros	directly.	Instead,	you	need	to
open	and	save	your	Word	2.x	templates	in	Word	6.x	or	Word	95	and	then	open
them	in	Word	2002.

The	conversion	process	converts	each	macro	to	a	Visual	Basic	module.	To	see
the	converted	macros,	point	to	Macro	on	the	Tools	menu	and	click	Macros.	The
macro	names	in	the	Macros	dialog	box	appear	as	macroname.Main,	where	Main
refers	to	the	main	subroutine	in	the	converted	macro	(the	subroutine	that	began
with	Sub	MAIN	in	earlier	versions	of	Word).	To	edit	the	converted	macro,	select
a	macro	name	and	click	Edit	to	display	the	Visual	Basic	module	in	the	Visual
Basic	Editor.

Each	WordBasic	statement	is	modified	to	work	with	Visual	Basic	for
Applications.	The	converted	WordBasic	macros	are	functionally	equivalent	to
new	Visual	Basic	for	Applications	macros	you	might	write	or	record,	but	they
are	not	identical.	The	following	example	is	a	WordBasic	macro	in	a	Word	95
template.



Sub	MAIN

FormatFont	.Name	=	"Arial",	.Points	=	10

Insert	"Hello	World"

End	Sub

When	the	template	is	opened	in	Word,	the	macro	is	converted	to	the	following
code.

Public	Sub	Main()

WordBasic.FormatFont	Font:="Arial",	Points:=10

WordBasic.Insert	"Hello	World"

End	Sub

Each	statement	in	the	converted	macro	begins	with	the	WordBasic	property.
WordBasic	is	a	property	in	the	Word	2002	object	model	that	returns	an	object
with	all	the	WordBasic	statements	and	functions;	this	object	makes	it	possible	to
run	WordBasic	macros	in	Word	2002.

Note			If	you	save	the	template	over	the	original	template,	the	WordBasic	macros
will	be	permanently	lost	and	previous	versions	of	Word	will	not	be	able	to	use
the	converted	macros.

The	following	Visual	Basic	macro	is	functionally	the	same	as	the	preceding
WordBasic	macro,	but	doesn't	use	the	WordBasic	property.

Public	Sub	Main()

				With	Selection.Font

								.Name	=	"Arial"

								.Size	=	10

				End	With

				Selection.TypeText	Text:="Hello	World"

End	Sub



Visual	Basic	Equivalents	for
WordBasic	Commands
			

To	find	the	Visual	Basic	property	or	method	that's	the	equivalent	of	a	WordBasic
command,	click	the	first	letter	of	the	WordBasic	command	name.	Then	scroll
through	the	lists	of	WordBasic	commands	until	you	find	the	appropriate
command.	The	right	column	includes	sample	Visual	Basic	syntax	with	jumps	to
topics	in	the	Microsoft	Word	Visual	Basic	Help.

For	information	about	converting	macros,	see	Converting	WordBasic	macros	to
Visual	Basic.

For	information	about	the	differences	between	WordBasic	and	Visual	Basic,	see
Conceptual	differences	between	WordBasic	and	Visual	Basic.



Recording	a	Macro	to	Generate	Code
			

If	you	are	unsure	of	which	Visual	Basic	method	or	property	to	use,	you	can	turn
on	the	macro	recorder	and	manually	perform	the	action.	The	macro	recorder
translates	your	actions	into	Visual	Basic	code.	After	you've	recorded	your
actions,	you	can	modify	the	code	to	do	exactly	what	you	want.	For	example	if
you	don't	know	what	property	or	method	to	use	to	indent	a	paragraph,	do	the
following:

1.	 On	the	Tools	menu,	point	to	Macro,	and	then	click	Record	New	Macro.
2.	 Change	the	default	macro	name	if	you'd	like	and	click	OK	to	start	the

recorder.
3.	 On	the	Format	menu,	choose	Paragraph.
4.	 Change	the	left	paragraph	indent	value	and	click	OK.
5.	 Click	the	Stop	Recording	button	on	the	Stop	Recording	toolbar.
6.	 On	the	Tools	menu,	point	to	Macro,	and	then	click	Macros.
7.	 Select	the	macro	name	from	Step	2	and	click	the	Edit	button.

View	the	Visual	Basic	code	to	determine	the	property	that	corresponds	to	the	left
paragraph	indent	(the	LeftIndent	property).	Position	the	insertion	point	within
LeftIndent	and	press	F1	or	click	the	Help	button.	Within	the	topic,	you	can
view	examples	and	review	the	objects	that	support	the	LeftIndent	property
(click	Applies	To).



Remarks

Recorded	macros	use	the	Selection	property	to	return	the	Selection	object.	For
example,	the	following	instruction	indents	the	selected	paragraphs	by	a	half	inch.

Sub	IndentParagraph()

				Selection.ParagraphFormat.LeftIndent	=	InchesToPoints(0.5)

End	Sub

You	can,	however,	modify	the	recorded	macro	to	work	with	Range	objects.	For
information,	see	Revising	recorded	Visual	Basic	macros.



Finding	Out	Which	Property	or
Method	to	Use
			

You	can	use	the	macro	recorder	to	find	out	what	methods	or	properties	you	need
to	accomplish	a	task	in	Microsoft	Word.	The	macro	recorder	is	a	tool	that
translates	your	actions	into	Visual	Basic	instructions.	For	example,	if	you	turn	on
the	macro	recorder	and	open	a	document	named	Examples.doc,	the	macro
recorder	records	an	instruction	similar	to	the	following.

Sub	Macro1()

'

'	Macro1	Macro

'	Macro	recorded	9/22/2000	by	JeffSmith

'

				Documents.Open	FileName:="Examples.doc",	ConfirmConversions:=False,	_

								ReadOnly:=False,	AddToRecentFiles:=False,	_

								PasswordDocument:="",	PasswordTemplate:="",	_

								Revert:=False,	WritePasswordDocument:="",	_

								WritePasswordTemplate:="",	Format:=wdOpenFormatAuto

End	Sub

The	Documents	property	returns	the	Documents	collection	and	the	Open
method	opens	the	specified	file	name.	When	you're	first	learning	Visual	Basic,
using	the	macro	recorder	will	help	you	learn	which	properties	and	methods	you
need	to	use	to	accomplish	a	task.

For	more	information,	see	the	following:

Revising	recorded	Visual	Basic	macros





Returning	a	Single	Object	from	a
Collection
			

Information	about	returning	a	single	object	is	available	in	the	object	topic	itself
and	in	the	collection	object	topic	for	the	collection	that	contains	the	object.	Most
object	topics	include	information	about	returning	a	single	object	as	well	as
adding	an	object	to	the	collection	of	those	objects.	Most	collection	object	topics
include	information	about	returning	the	collection	itself	and	adding	an	object	to
the	collection.

To	browse	the	Help	topics	for	the	objects	and	collections	in	Microsoft	Word,	see
Microsoft	Word	Objects.



Show	All



Working	with	Range	Objects
			

A	common	task	when	using	Visual	Basic	is	to	specify	an	area	in	a	document	and
then	do	something	with	it,	such	as	insert	text	or	apply	formatting.	For	example,
you	may	want	to	write	a	macro	that	locates	a	word	or	phrase	within	a	portion	of
a	document.	The	portion	of	the	document	can	be	represented	by	a	Range	object.
After	the	Range	object	is	identified,	methods	and	properties	of	the	Range	object
can	be	applied	in	order	to	modify	the	contents	of	the	range.

A	Range	object	refers	to	a	contiguous	area	in	a	document.	Each	Range	object	is
defined	by	a	starting	and	ending	character	position.	Similar	to	the	way
bookmarks	are	used	in	a	document,	Range	objects	are	used	in	Visual	Basic
procedures	to	identify	specific	portions	of	a	document.	A	Range	object	can	be	as
small	as	the	insertion	point	or	as	large	as	the	entire	document.	However,	unlike	a
bookmark,	a	Range	object	only	exists	while	the	procedure	that	defined	it	is
running.

The	Start,	End	and	StoryType	properties	uniquely	identify	a	Range	object.	The
Start	and	End	properties	return	or	set	the	starting	and	ending	character	positions
of	the	Range	object.	The	character	position	at	the	beginning	of	the	document	is
zero,	the	position	after	the	first	character	is	one,	and	so	on.	There	are	eleven
different	story	types	represented	by	the	WdStoryType	constants	of	the
StoryType	property.

Note			Range	objects	are	independent	of	the	selection.	That	is,	you	can	define
and	modify	a	range	without	changing	the	current	selection.	You	can	also	define
multiple	ranges	in	a	document,	while	there	is	only	one	selection	per	document
pane.



Using	the	Range	method

The	Range	method	is	used	to	create	a	Range	object	in	the	specified	document.
The	Range	method	(which	is	available	from	the	Document	object)	returns	a
Range	object	located	in	the	main	story	given	a	start	and	end	point.	The
following	example	creates	a	Range	object	that	is	assigned	to	a	variable.

Sub	SetNewRange()

				Dim	rngDoc	As	Range

				Set	rngDoc	=	ActiveDocument.Range(Start:=0,	End:=10)

End	Sub

The	variable	refers	to	the	first	ten	characters	in	the	active	document.	You	can	see
that	the	Range	object	has	been	created	when	you	apply	a	property	or	method	to
the	Range	object	stored	in	a	variable.	The	following	example	applies	bold
formatting	to	the	first	ten	characters	in	the	active	document.

Sub	SetBoldRange()

				Dim	rngDoc	As	Range

				Set	rngDoc	=	ActiveDocument.Range(Start:=0,	End:=10)

				rngDoc.Bold	=	True

End	Sub

When	you	need	to	refer	to	a	Range	object	multiple	times,	you	can	use	the	Set
statement	to	set	a	variable	equal	to	the	Range	object.	However,	if	you	only	need
to	perform	a	single	action	on	a	Range	object,	there's	no	need	to	store	the	object
in	a	variable.	The	same	results	can	be	achieved	using	just	one	instruction	that
identifies	the	range	and	changes	the	Bold	property.

Sub	BoldRange()

				ActiveDocument.Range(Start:=0,	End:=10).Bold	=	True

End	Sub

Like	a	bookmark,	a	range	can	span	a	group	of	characters	or	mark	a	location	in	a
document.	The	Range	object	in	the	following	example	has	the	same	starting	and
ending	points.	The	range	does	not	include	any	text.	The	following	example
inserts	text	at	the	beginning	of	the	active	document.

Sub	InsertTextBeforeRange()

				Dim	rngDoc	As	Range

				Set	rngDoc	=	ActiveDocument.Range(Start:=0,	End:=0)



				rngDoc.InsertBefore	"Hello	"

End	Sub

You	can	define	the	beginning	and	end	points	of	a	range	using	the	character
position	numbers	as	shown	above,	or	use	the	Start	and	End	properties	with
objects	such	as	Selection,	Bookmark,	or	Range.	The	following	example	creates
a	Range	object	beginning	at	the	start	of	the	second	paragraph	and	ending	after
the	third	paragraph.

Sub	NewRange()

				Dim	doc	As	Document

				Dim	rngDoc	As	Range

				Set	doc	=	ActiveDocument

				Set	rngDoc	=	doc.Range(Start:=doc.Paragraphs(2).Range.Start,	_

								End:=doc.Paragraphs(3).Range.End)

End	Sub

For	additional	information	and	examples,	see	the	Range	method.



Using	the	Range	property

The	Range	property	appears	on	multiple	objects,	such	as	Paragraph,
Bookmark,	and	Cell,	and	is	used	to	return	a	Range	object.	The	following
example	returns	a	Range	object	that	refers	to	the	first	paragraph	in	the	active
document.

Sub	SetParagraphRange()

				Dim	rngParagraph	As	Range

				Set	rngParagraph	=	ActiveDocument.Paragraphs(1).Range

End	Sub

After	you	have	a	Range	object,	you	can	use	any	of	its	properties	or	methods	to
modify	the	Range	object.	The	following	example	selects	the	second	paragraph
in	the	active	document	and	then	centers	the	selection.

Sub	FormatRange()

				ActiveDocument.Paragraphs(2).Range.Select

				Selection.ParagraphFormat.Alignment	=	wdAlignParagraphJustify

End	Sub

If	you	need	to	apply	numerous	properties	or	methods	to	the	same	Range	object,
you	can	use	the	With…End	With	structure.	The	following	example	formats	the
text	in	the	first	paragraph	of	the	active	document.

Sub	FormatFirstParagraph()

				Dim	rngParagraph	As	Range

				Set	rngParagraph	=	ActiveDocument.Paragraphs(1).Range

				With	rngParagraph

								.Bold	=	True

								.ParagraphFormat.Alignment	=	wdAlignParagraphCenter

								With	.Font

												.Name	=	"Stencil"

												.Size	=	15

								End	With

				End	With

End	Sub

For	additional	information	and	examples,	see	the	Range	property	topic.



Redefining	a	Range	object

Use	the	SetRange	method	to	redefine	an	existing	Range	object.	The	following
example	defines	a	range	as	the	current	selection.	The	SetRange	method	then
redefines	the	range	so	that	it	refers	to	current	selection	plus	the	next	ten
characters.

Sub	ExpandRange()

				Dim	rngParagraph	As	Range

				Set	rngParagraph	=	Selection.Range

				rngParagraph.SetRange	Start:=rngParagraph.Start,	_

								End:=rngParagraph.End	+	10

End	Sub

For	additional	information	and	examples,	see	the	SetRange	method.

Note			When	debugging	your	macros,	you	can	use	the	Select	method	to	ensure
that	a	Range	object	is	referring	to	the	correct	range	of	text.	For	example,	the
following	example	selects	a	Range	object,	which	refers	the	second	and	third
paragraphs	in	the	active	document,	and	then	formats	the	font	of	the	selection.

Sub	SelectRange()

				Dim	rngParagraph	As	Range

				Set	rngParagraph	=	ActiveDocument.Paragraphs(2).Range

				rngParagraph.SetRange	Start:=rngParagraph.Start,	_

								End:=ActiveDocument.Paragraphs(3).Range.End

				rngParagraph.Select

				Selection.Font.Italic	=	True

End	Sub



Modifying	a	Portion	of	a	Document
			

Visual	Basic	includes	objects	which	you	can	use	to	modify	the	following
document	elements:	characters,	words,	sentences,	paragraphs	and	sections.	The
following	table	includes	the	properties	that	correspond	to	these	document
elements	and	the	objects	they	return.

This	expression Returns	this	object
Words(index) Range
Characters(index) Range
Sentences(index) Range
Paragraphs(index) Paragraph
Sections(index) Section

When	these	properties	are	used	without	an	index,	a	collection	object	with	the
same	name	is	returned.	For	example,	the	Paragraphs	property	returns	the
Paragraphs	collection	object.	However,	if	you	identify	an	item	within	these
collections	by	index,	the	object	in	the	second	column	of	the	table	is	returned.	For
example,	Words(1)	returns	a	Range	object.	After	you	have	a	Range	object,	you
can	use	any	of	the	range	properties	or	methods	to	modify	the	Range	object.	For
example,	the	following	instruction	copies	the	first	word	in	the	selection	to	the
Clipboard.

Sub	CopyWord()

				Selection.Words(1).Copy

End	Sub

Note			The	items	in	the	Paragraphs	and	Sections	collections	are	singular	forms
of	the	collection	rather	than	Range	objects.	However,	the	Range	property
(which	returns	a	Range	object)	is	available	from	both	the	Paragraph	and
Section	objects.	For	example,	the	following	instruction	copies	the	first	paragraph
in	the	active	document	to	the	Clipboard.

Sub	CopyParagraph()

				ActiveDocument.Paragraphs(1).Range.Copy



End	Sub

All	of	the	document	element	properties	in	the	preceding	table	are	available	from
the	Document,	Selection,	and	Range	objects.	The	following	examples
demonstrate	how	you	can	drill	down	to	these	properties	from	Document,
Selection,	and	Range	objects.

The	following	example	sets	the	case	of	the	first	word	in	the	active	document.

Sub	ChangeCase()

				ActiveDocument.Words(1).Case	=	wdUpperCase

End	Sub

The	following	example	sets	the	bottom	margin	of	the	current	section	to	0.5	inch.

Sub	ChangeSectionMargin()

				Selection.Sections(1).PageSetup.BottomMargin	=	InchesToPoints(0.5)

End	Sub

The	following	example	double	spaces	the	text	in	the	active	document	(the
Content	property	returns	a	Range	object).

Sub	DoubleSpaceDocument()

				ActiveDocument.Content.ParagraphFormat.Space2

End	Sub



Modifying	a	group	of	document	elements

To	modify	a	range	of	text	that	consists	of	a	group	of	document	elements
(characters,	words,	sentences,	paragraphs	or	sections),	you	need	to	create	a
Range	object.	The	Range	method	creates	a	Range	object	given	a	start	and	end
point.	For	example,	the	following	instruction	creates	a	Range	object	that	refers
to	the	first	ten	characters	in	the	active	document.

Sub	SetRangeForFirstTenCharacters()

				Dim	rngTenCharacters	As	Range

				Set	rngTenCharacters	=	ActiveDocument.Range(Start:=0,	End:=10)

End	Sub

Using	the	Start	and	End	properties	with	a	Range	object,	you	can	create	a	new
Range	object	that	refers	to	a	group	of	document	elements.	For	example,	the
following	instruction	creates	a	Range	object	(myRange)	that	refers	to	the	first
three	words	in	the	active	document.

Sub	SetRangeForFirstThreeWords()

				Dim	docActive	As	Document

				Dim	rngThreeWords	As	Range

				Set	docActive	=	ActiveDocument

				Set	rngThreeWords	=	docActive.Range(Start:=docActive.Words(1).Start,	_

								End:=docActive.Words(3).End)

End	Sub

The	following	example	creates	a	Range	object	(aRange)	beginning	at	the	start	of
the	second	paragraph	and	ending	after	the	third	paragraph.

Sub	SetParagraphRange()

				Dim	docActive	As	Document

				Dim	rngParagraphs	As	Range

				Set	docActive	=	ActiveDocument

				Set	rngParagraphs	=	docActive.Range(Start:=docActive.Paragraphs(2).Range.Start,	_

								End:=docActive.Paragraphs(3).Range.End)

End	Sub

For	more	information	on	defining	Range	objects,	see	Working	with	Range
objects.





Object	Doesn't	Support	this	Property
or	Method
			

The	"object	doesn't	support	this	property	or	method"	error	occurs	when	you	try
to	use	a	method	or	property	that	the	specified	object	doesn't	support.	For
example,	the	following	instruction	results	in	an	error.

ActiveDocument.Copy

The	ActiveDocument	property	returns	a	Document	object.	A	Copy	method	or
property	is	not	available	for	the	Document	object	so	an	error	occurs.	To
determine	what	properties	and	methods	are	available	for	an	object,	do	any	of	the
following.

Use	the	Object	Browser	to	determine	what	members	(properties	and
methods)	are	available	for	the	selected	class	(object).
Use	the	Auto	List	Members	feature	in	the	Visual	Basic	Editor.	When	you
type	a	period	(.)	after	a	property	or	method	in	the	Visual	Basic	Editor,	a	list
of	available	properties	and	methods	is	displayed
Use	Word	Visual	Basic	Help	to	determine	which	properties	and	methods
can	be	used	with	an	object.	Each	object	topic	in	Help	includes	a	Properties
and	Methods	jump	that	displays	a	list	of	properties	and	methods	for	the
object.	Press	F1	in	the	Object	Browser	or	a	module	to	display	the
appropriate	Help	topic.
Use	the	TypeName	function	to	determine	the	type	of	object	returned	by	an
expression.	The	following	example	displays	"Range"	because	the	Content
property	returns	a	Range	object.

MsgBox	TypeName(ActiveDocument.Content)





Working	with	Document	Objects
			

In	Visual	Basic,	the	methods	for	modifying	files	are	methods	of	the	Document
object	or	the	Documents	collection	object.	This	topic	includes	Visual	Basic
examples	related	to	the	following	tasks:

Creating	a	new	document
Opening	a	document
Saving	an	existing	document
Saving	a	new	document
Activating	a	document
Determining	if	a	document	is	open
Referring	to	the	active	document



Creating	a	new	document

The	Documents	collection	includes	all	of	the	open	documents.	To	create	a	new
document,	use	the	Add	method	to	add	a	Document	object	to	the	Documents
collection.	The	following	instruction	creates	a	new	document.

Documents.Add

A	better	way	to	create	a	new	document	is	to	assign	the	return	value	to	an	object
variable.	The	Add	method	returns	a	Document	object	that	refers	to	the	new
document.	In	the	following	example,	the	Document	object	returned	by	the	Add
method	is	assigned	to	an	object	variable.	Then	several	properties	and	methods	of
the	Document	object	are	set.	You	can	easily	control	the	new	document	using	an
object	variable.

Sub	NewSampleDoc()

				Dim	docNew	As	Document

				Set	docNew	=	Documents.Add

				With	docNew

								.Content.Font.Name	=	"Tahoma"

								.SaveAs	FileName:="Sample.doc"

				End	With

End	Sub



Opening	a	document

To	open	an	existing	document,	use	the	Open	method	with	the	Documents
collection.	The	following	instruction	opens	a	document	named	Sample.doc
located	in	the	MyFolder	folder.

Sub	OpenDocument()

				Documents.Open	FileName:="C:\MyFolder\Sample.doc"

End	Sub



Saving	an	existing	document

To	save	a	single	document,	use	the	Save	method	with	the	Document	object.	The
following	instruction	saves	the	document	named	Sales.doc.

Sub	SaveDocument()

				Documents("Sales.doc").Save

End	Sub

You	can	save	all	open	documents	by	applying	the	Save	method	to	the
Documents	collection.	The	following	instruction	saves	all	open	documents.

Sub	SaveAllOpenDocuments()

				Documents.Save

End	Sub



Saving	a	new	document

To	save	a	single	document,	use	the	SaveAs	method	with	a	Document	object.
The	following	instruction	saves	the	active	document	as	"Temp.doc"	in	the
current	folder.

Sub	SaveNewDocument()

				ActiveDocument.SaveAs	FileName:="Temp.doc"

End	Sub

The	FileName	argument	can	include	only	the	file	name	or	the	complete	path	(for
example,	"C:\Documents\Temporary	File.doc").



Closing	documents

To	close	a	single	document,	use	the	Close	method	with	a	Document	object.	The
following	instruction	closes	and	saves	the	document	named	Sales.doc.

Sub	CloseDocument()

				Documents("Sales.doc").Close	SaveChanges:=wdSaveChanges

End	Sub

You	can	close	all	open	documents	by	applying	the	Close	method	to	the
Documents	collection.	The	following	instruction	closes	all	documents	without
saving	changes.

Sub	CloseAllDocuments()

				Documents.Close	SaveChanges:=wdDoNotSaveChanges

End	Sub

The	following	example	prompts	the	user	to	save	each	document	before	the
document	is	closed.

Sub	PromptToSaveAndClose()

				Dim	doc	As	Document

				For	Each	doc	In	Documents

								doc.Close	SaveChanges:=wdPromptToSaveChanges

				Next

End	Sub



Activating	a	document

To	change	the	active	document,	use	the	Activate	method	with	a	Document
object.	The	following	instruction	activates	the	open	document	named	Sales.doc.

Sub	ActivateDocument()

				Documents("Sales.doc").Activate

End	Sub



Determining	if	a	document	is	open

To	determine	if	a	document	is	open,	you	can	enumerate	the	Documents
collection	by	using	a	For	Each...Next	statement.	The	following	example
activates	the	document	named	Sample.doc	if	the	document	is	open,	or	opens
Sample.doc	if	it's	not	currently	open.

Sub	ActivateOrOpenDocument()

				Dim	doc	As	Document

				Dim	docFound	As	Boolean

				For	Each	doc	In	Documents

								If	InStr(1,	doc.Name,	"sample.doc",	1)	Then

												doc.Activate

												docFound	=	True

												Exit	For

								Else

												docFound	=	False

								End	If

				Next	doc

				If	docFound	=	False	Then	Documents.Open	FileName:="Sample.doc"

End	Sub



Referring	to	the	active	document

Instead	of	referring	to	a	document	by	name	or	index	number	—	for	example
Documents("Sales.doc")	—	the	ActiveDocument	property	returns	a
Document	object	which	refers	to	the	active	document	(the	document	with	the
focus).	The	following	example	displays	the	name	of	the	active	document,	or	if
there	are	no	documents	open,	it	displays	a	message.

Sub	ActiveDocumentName()

				If	Documents.Count	>=	1	Then

								MsgBox	ActiveDocument.Name

				Else

								MsgBox	"No	documents	are	open"

				End	If

End	Sub



Selecting	Text	in	a	Document
			

Use	the	Select	method	to	select	an	item	in	a	document.	The	Select	method	is
available	from	several	objects,	such	as	Bookmark,	Field,	Range,	and	Table.
The	following	example	selects	the	first	table	in	the	active	document.

Sub	SelectTable()

				ActiveDocument.Tables(1).Select

End	Sub

The	following	example	selects	the	first	field	in	the	active	document.

Sub	SelectField()

				ActiveDocument.Fields(1).Select

End	Sub

The	following	example	selects	the	first	four	paragraphs	in	the	active	document.
The	Range	method	is	used	to	create	a	Range	object	which	refers	to	the	first	four
paragraphs.	The	Select	method	is	then	applied	to	the	Range	object.

Sub	SelectRange()

				Dim	rngParagraphs	As	Range

				Set	rngParagraphs	=	ActiveDocument.Range(	_

								Start:=ActiveDocument.Paragraphs(1).Range.Start,	_

								End:=ActiveDocument.Paragraphs(4).Range.End)

				rngParagraphs.Select

End	Sub

For	more	information,	see	Working	with	the	Selection	object.



Inserting	Text	in	a	Document
			

Use	the	InsertAfter	or	InsertBefore	method	to	insert	text	before	or	after	a
Selection	or	Range	object.	The	following	example	inserts	text	at	the	end	of	the
active	document.

Sub	InsertTextAtEndOfDocument()

				ActiveDocument.Content.InsertAfter	Text:="	The	end."

End	Sub

The	following	example	inserts	text	before	the	selection.

Sub	AddTextBeforeSelection()

				Selection.InsertBefore	Text:="new	text	"

End	Sub

After	using	the	InsertBefore	or	InsertAfter	method,	the	Range	or	Selection
expands	to	include	the	new	text.	Use	the	Collapse	method	to	collapse	a
Selection	or	Range	to	the	beginning	or	ending	point.



Requested	Member	of	the	Collection
Does	Not	Exist
			

The	"requested	member	of	the	collection	does	not	exist"	error	occurs	when	you
try	to	access	an	object	that	doesn't	exist.	For	example,	the	following	instruction
may	post	an	error	if	the	active	document	doesn't	contain	at	least	one	table.

Sub	SelectTable()

				ActiveDocument.Tables(1).Select

End	Sub

To	avoid	this	error	when	accessing	a	member	of	a	collection,	ensure	that	the
member	exists	prior	to	accessing	the	collection	member.	If	you're	accessing	the
member	by	index	number,	you	can	use	the	Count	property	to	determine	if	the
member	exists.	The	following	example	selects	the	first	table	if	there	is	at	least
one	table	in	the	active	document.

Sub	SelectFirstTable()

				If	ActiveDocument.Tables.Count	>	0	Then

								ActiveDocument.Tables(1).Select

				Else

								MsgBox	"Document	doesn't	contain	a	table"

				End	If

End	Sub

If	you're	accessing	a	collection	member	by	name,	you	can	loop	on	the	elements
in	a	collection	using	a	For	Each...Next	loop	to	determine	if	the	named	member
is	part	of	the	collection.	For	example,	the	following	example	deletes	the
AutoCorrect	entry	named	"acheive"	if	it's	part	of	the	AutoCorrectEntries
collection.	For	more	information,	see	Looping	Through	a	Collection.

Sub	DeleteAutoTextEntry()

				Dim	aceEntry	As	AutoCorrectEntry

				For	Each	aceEntry	In	AutoCorrect.Entries

								If	aceEntry.Name	=	"acheive"	Then	aceEntry.Delete

				Next	aceEntry

End	Sub





Looping	Through	a	Collection
			

There	are	several	different	ways	you	can	loop	on	the	elements	of	a	collection.
However,	the	recommended	method	for	looping	on	a	collection	is	to	use	the	For
Each...Next	loop.	In	this	structure,	Visual	Basic	repeats	a	block	of	statements	for
each	object	in	a	collection.	The	following	example	displays	the	name	of	each
document	in	the	Documents	collection.

Sub	LoopThroughOpenDocuments()

				Dim	docOpen	As	Document

				For	Each	docOpen	In	Documents

								MsgBox	docOpen.Name

				Next	docOpen

End	Sub

Instead	of	displaying	each	element	name	in	a	message	box,	you	can	use	an	array
to	store	the	information.	This	example	uses	an		array	to	store	the	name	of	each
bookmark	contained	in	the	active	document.

Sub	LoopThroughBookmarks()

				Dim	bkMark	As	Bookmark

				Dim	strMarks()	As	String

				Dim	intCount	As	Integer

				If	ActiveDocument.Bookmarks.Count	>	0	Then

								ReDim	strMarks(ActiveDocument.Bookmarks.Count	-	1)

								intCount	=	0

								For	Each	bkMark	In	ActiveDocument.Bookmarks

												strMarks(intCount)	=	bkMark.Name

												intCount	=	intCount	+	1

								Next	bkMark

				End	If

End	Sub

You	can	loop	through	a	collection	to	conditionally	perform	a	task	on	members	of
the	collection.	For	example,	the	following	example	updates	the	DATE	fields	in
the	active	document.



Sub	UpdateDateFields()

				Dim	fldDate	As	Field

				For	Each	fldDate	In	ActiveDocument.Fields

								If	InStr(1,	fldDate.Code,	"Date",	1)	Then	fldDate.Update

				Next	fldDate

End	Sub

You	can	loop	through	a	collection	to	determine	if	an	element	exists.	For
example,	the	following	example	displays	a	message	if	an	AutoText	entry	named
"Filename"	is	part	of	the	AutoTextEntries	collection.

Sub	FindAutoTextEntry()

				Dim	atxtEntry	As	AutoTextEntry

				For	Each	atxtEntry	In	ActiveDocument.AttachedTemplate.AutoTextEntries

								If	atxtEntry.Name	=	"Filename"	Then	_

												MsgBox	"The	Filename	AutoText	entry	exists."

				Next	atxtEntry

End	Sub



Prompting	for	Information
			

There	are	several	different	ways	you	can	prompt	for	information	from	a	user.

Use	the	Visual	Basic	InputBox	function	to	display	a	dialog	box	with	a
message	and	an	edit	box.	When	the	user	clicks	OK,	the	function	returns	the
text	that	the	user	entered.
Use	the	Visual	Basic	MsgBox	function	to	display	a	simple	message.	You
can	display	several	different	command	buttons	and	icons.	This	function
returns	a	number	that	indicates	which	button	was	clicked.
Use	a	built-in	Microsoft	Word	dialog	box	to	get	user	input	for	a	specific
Word	feature.
Use	a	custom	form	to	get	user	input.	For	information	on	adding	controls	to
a	form,	see	Add	a	control	to	a	form.



Returning	Text	from	a	Document
			

Use	the	Text	property	to	return	text	from	a	Range	or	Selection	object.	The
following	example	selects	the	next	paragraph	formatted	with	the	Heading	1
style.	The	contents	of	the	Text	property	are	displayed	by	the	MsgBox	function.

Sub	FindHeadingStyle()

				With	Selection.Find

								.ClearFormatting

								.Style	=	wdStyleHeading1

								.Execute	FindText:="",	Format:=True,	_

												Forward:=True,	Wrap:=wdFindStop

								If	.Found	=	True	Then	MsgBox	Selection.Text

				End	With

End	Sub

The	following	instruction	returns	and	displays	the	selected	text.

Sub	ShowSelection()

				Dim	strText	As	String

				strText	=	Selection.Text

				MsgBox	strText

End	Sub

The	following	example	returns	the	first	word	in	the	active	document.	Each	item
in	the	Words	collection	is	a	Range	object	that	represents	one	word.

Sub	ShowFirstWord()

				Dim	strFirstWord	As	String

				strFirstWord	=	ActiveDocument.Words(1).Text

				MsgBox	strFirstWord

End	Sub

The	following	example	returns	the	text	associated	with	the	first	bookmark	in	the
active	document.

Sub	ShowFirstBookmark()

				Dim	strBookmark	As	String

				If	ActiveDocument.Bookmarks.Count	>	0	Then



								strBookmark	=	ActiveDocument.Bookmarks(1).Range.Text

								MsgBox	strBookmark

				End	If

End	Sub



Determining	Whether	the	Application
Property	is	Necessary
			

Many	of	the	properties	and	methods	of	the	Application	object	can	be	used
without	the	Application	object	qualifier.	For	example	the	ActiveDocument
property	can	be	used	without	the	Application	object	qualifier.	Instead	of	writing
Application.ActiveDocument.PrintOut,	you	can	write
ActiveDocument.PrintOut.

Properties	and	methods	that	can	be	used	without	the	Application	object	qualifier
are	considered	"global."	To	view	the	global	properties	and	methods	in	the	Object
Browser,	click	<globals>	at	the	top	of	the	list	in	the	Classes	box.



Displaying	Built-in	Word	Dialog
Boxes
			

This	topic	contains	the	following	information	and	examples:

Showing	a	built-in	dialog	box
Returning	and	changing	dialog	box	settings
Checking	how	a	dialog	box	was	closed



Showing	a	built-in	dialog	box

You	can	display	a	built-in	dialog	box	to	get	user	input	or	to	control	Microsoft
Word	using	Visual	Basic.	The	Show	method	of	the	Dialog	object	displays	and
executes	any	action	taken	in	a	built-in	Word	dialog	box.	To	access	a	particular
built-in	Word	dialog	box,	you	specify	a	WdWordDialog	constant	with	the
Dialogs	property.	For	example,	the	following	macro	instruction	displays	the
Open	dialog	box	(wdDialogFileOpen).

Sub	ShowOpenDialog()

				Dialogs(wdDialogFileOpen).Show

End	Sub

If	a	file	is	selected	and	OK	is	clicked,	the	file	is	opened	(the	action	is	executed).
The	following	example	displays	the	Print	dialog	box	(wdDialogFilePrint).

Sub	ShowPrintDialog()

				Dialogs(wdDialogFilePrint).Show

End	Sub

Set	the	DefaultTab	property	to	access	a	particular	tab	in	a	Word	dialog	box.	The
following	example	displays	the	Page	Border	tab	in	the	Borders	and	Shading
dialog	box	(Format	menu).

Sub	ShowBorderDialog()

				With	Dialogs(wdDialogFormatBordersAndShading)

								.DefaultTab	=	wdDialogFormatBordersAndShadingTabPageBorder

								.Show

				End	With

End	Sub

The	Display	method	displays	a	dialog	box	without	executing	the	actions	taken	in
the	dialog	box.	This	can	be	useful	if	you	want	to	prompt	the	user	with	a	built-in
dialog	box	and	return	the	settings.	For	example,	the	following	macro	instruction
displays	the	User	Information	tab	from	the	Options	dialog	box	(Tools	menu)
and	then	returns	and	displays	the	user	name.

Sub	DisplayUserInfoDialog()

				With	Dialogs(wdDialogToolsOptionsUserInfo)

								.Display

								MsgBox	.Name



				End	With

End	Sub

Note		You	can	also	use	Word's	Visual	Basic	for	Applications	properties	to
display	the	user	information	without	displaying	the	dialog	box.	The	following
example	uses	the	UserName	property	for	the	Application	object	to	display	the
user	name	for	the	application	without	displaying	the	User	Information	dialog
box.

Sub	DisplayUserInfo()

				MsgBox	Application.UserName

End	Sub

If	the	user	name	is	changed	in	the	previous	example,	the	change	is	not	set	in	the
dialog	box.	Use	the	Execute	method	to	execute	the	settings	in	a	dialog	box
without	displaying	the	dialog	box.	The	following	example	displays	the	User
Information	dialog	box,	and	if	the	name	is	not	an	empty	string,	the	settings	are
set	in	the	dialog	box	by	using	the	Execute	method.

Sub	ShowAndSetUserInfoDialogBox()

				With	Dialogs(wdDialogToolsOptionsUserInfo)

								.Display

								If	.Name	<>	""	Then	.Execute

				End	With

End	Sub

Note		Use	the	VBA	properties	and	methods	in	Word	to	set	the	user	information
without	displaying	the	dialog	box.	The	following	code	example	changes	the	user
name	through	the	UserName	property	of	the	Application	object,	and	then	it
displays	the	User	Information	dialog	box	to	show	that	the	change	has	been
made.	Note	that	displaying	the	dialog	box	is	not	necessary	to	change	the	value	of
a	dialog	box.

Sub	SetUserName()

				Application.UserName	=	"Jeff	Smith"

				Dialogs(wdDialogToolsOptionsUserInfo).Display

End	Sub



Returning	and	changing	dialog	box	settings

It's	not	very	efficient	to	use	a	Dialog	object	to	return	or	change	a	value	for	a
dialog	box	when	you	can	return	or	change	it	using	a	property	or	method.	Also,	in
most,	if	not	all,	cases,	when	VBA	code	is	used	in	place	of	accessing	the	Dialog
object,	code	is	simpler	and	shorter.	Therefore,	the	following	examples	also
include	corresponding	examples	that	use	corresponding	VBA	properties	to
perform	the	same	tasks.

Prior	to	returning	or	changing	a	dialog	box	setting	using	the	Dialog	object,	you
need	to	identify	the	individual	dialog	box.	This	is	done	by	using	the	Dialogs
property	with	a	WdWordDialog	constant.	After	you	have	instantiated	a	Dialog
object	you	can	return	or	set	options	in	the	dialog	box.	The	following	example
displays	the	right	indent	from	the	Paragraphs	dialog	box.

Sub	ShowRightIndent()

				Dim	dlgParagraph	As	Dialog

				Set	dlgParagraph	=	Dialogs(wdDialogFormatParagraph)

				MsgBox	"Right	indent	=	"	&	dlgParagraph.RightIndent

End	Sub

Note		You	can	use	the	VBA	properties	and	methods	of	Word	to	display	the	right
indent	setting	for	the	paragraph.	The	following	example	uses	the	RightIndent
property	of	the	ParagraphFormat	object	to	display	the	right	indent	for	the
paragraph	at	the	insertion	point	position.

Sub	ShowRightIndexForSelectedParagraph()

				MsgBox	Selection.ParagraphFormat.RightIndent

End	Sub

Just	as	you	can	return	dialog	box	settings,	you	can	also	set	dialog	box	settings.
The	following	example	marks	the	Keep	with	next	check	box	in	the	Paragraph
dialog	box.

Sub	SetKeepWithNext()

				With	Dialogs(wdDialogFormatParagraph)

								.KeepWithNext	=	1

								.Execute

				End	With

End	Sub



Note		You	can	also	use	the	VBA	properties	and	methods	to	change	the	right
indent	for	the	paragraph.	The	following	example	uses	the	KeepWithNext
property	of	the	ParagraphFormat	object	to	keep	the	selected	paragraph	with
the	following	paragraph.

Sub	SetKeepWithNextForSelectedParagraph()

				Selection.ParagraphFormat.KeepWithNext	=	True

End	Sub

Note			Use	the	Update	method	to	ensure	that	the	dialog	box	values	reflect	the
current	values.	It	may	be	necessary	to	use	the	Update	method	if	you	define	a
dialog	box	variable	early	in	your	macro	and	later	want	to	return	or	change	the
current	settings.



Checking	how	a	dialog	box	was	closed

The	value	returned	by	the	Show	and	Display	methods	indicates	which	button
was	clicked	to	close	the	dialog	box.	The	following	example	displays	the	Break
dialog	box,	and	if	OK	is	clicked,	a	message	is	displayed	on	the	status	bar.

Sub	DialogBoxButtons()

				If	Dialogs(wdDialogInsertBreak).Show	=	-1	Then

								StatusBar	=	"Break	inserted"

				End	If

End	Sub

The	following	table	describes	the	return	values	associated	with	buttons	in
dialogs	boxes.

Return	value Description
-2 The	Close	button.
-1 The	OK	button.
0	(zero) The	Cancel	button.

>	0	(zero) A	command	button:	1	is	the	first	button,	2	is	the	second
button,	and	so	on.



Error	Accessing	a	Table	Row	or
Column
			

When	you	try	to	access	an	individual	row	or	column	in	a	drawn	table,	a	runtime
error	may	occur	if	the	table	is	not	uniform.	For	example,	the	following
instruction	posts	an	error	if	the	first	table	in	the	active	document	doesn't	have	the
same	number	of	rows	in	each	column.

Sub	RemoveTableBorders()

				ActiveDocument.Tables(1).Rows(1).Borders.Enable	=	False

End	Sub

You	can	avoid	this	error	by	first	selecting	the	cells	in	a	column	or	row	using	the
SelectColumn	or	SelectRow	method.	After	the	selection	is	made,	use	the	Cells
property	with	the	Selection	object.	The	following	example	selects	the	first	row
in	the	first	document	table.	The	Cells	property	is	used	to	access	the	selected	cells
(all	the	cells	in	the	first	row)	so	that	borders	can	be	removed.

Sub	RemoveTableBorders()

				ActiveDocument.Tables(1).Cell(1,	1).Select

				With	Selection

								.SelectRow

								.Cells.Borders.Enable	=	False

				End	With

End	Sub

The	following	example	selects	the	first	column	in	the	first	document	table.	The
For	Each...Next	loop	is	used	to	add	text	to	each	cell	in	the	selection	(all	the	cells
in	the	first	column).

Sub	AddTextToTableCells()

				Dim	intCell	As	Integer

				Dim	oCell	As	Cell

				ActiveDocument.Tables(1).Cell(1,	1).Select

				Selection.SelectColumn

				intCell	=	1



				For	Each	oCell	In	Selection.Cells

								oCell.Range.Text	=	"Cell	"	&	intCell

								intCell	=	intCell	+	1

				Next	oCell

End	Sub



Applying	Formatting	to	Text
			

This	topic	includes	Visual	Basic	examples	related	to	the	following	tasks:

Applying	formatting	to	the	selection
Applying	formatting	to	a	range
Inserting	text	and	applying	character	and	paragraph	formatting
Toggling	the	space	before	a	paragraph	between	12	points	and	none
Toggling	bold	formatting
Increasing	the	left	margin	by	0.5	inch



Applying	formatting	to	the	selection

The	following	example	uses	the	Selection	property	to	apply	character	and
paragraph	formatting	to	the	selected	text.	Use	the	Font	property	to	access
character	formatting	properties	and	methods	and	the	ParagraphFormat
property	to	access	paragraph	formatting	properties	and	methods.

Sub	FormatSelection()

				With	Selection.Font

								.Name	=	"Times	New	Roman"

								.Size	=	14

								.AllCaps	=	True

				End	With

				With	Selection.ParagraphFormat

								.LeftIndent	=	InchesToPoints(0.5)

								.Space1

				End	With

End	Sub



Applying	formatting	to	a	range

The	following	example	defines	a	Range	object	that	refers	to	the	first	three
paragraphs	in	the	active	document.	The	Range	is	formatted	by	applying
properties	of	the	Font	and	ParagraphFormat	objects.

Sub	FormatRange()

				Dim	rngFormat	As	Range

				Set	rngFormat	=	ActiveDocument.Range(	_

								Start:=ActiveDocument.Paragraphs(1).Range.Start,	_

								End:=ActiveDocument.Paragraphs(3).Range.End)

				With	rngFormat

								.Font.Name	=	"Arial"

								.ParagraphFormat.Alignment	=	wdAlignParagraphJustify

				End	With

End	Sub



Inserting	text	and	applying	character	and	paragraph
formatting

The	following	example	adds	the	word	Title	at	the	top	of	the	current	document.
The	first	paragraph	is	center	aligned	and	a	half	inch	space	is	added	after	the
paragraph.	The	word	Title	is	formatted	with	24	point	Arial	font.

Sub	InsertFormatText()

				Dim	rngFormat	As	Range

				Set	rngFormat	=	ActiveDocument.Range(Start:=0,	End:=0)

				With	rngFormat

								.InsertAfter	Text:="Title"

								.InsertParagraphAfter

								With	.Font

												.Name	=	"Tahoma"

												.Size	=	24

												.Bold	=	True

								End	With

				End	With

				With	ActiveDocument.Paragraphs(1)

								.Alignment	=	wdAlignParagraphCenter

								.SpaceAfter	=	InchesToPoints(0.5)

				End	With

End	Sub



Toggling	the	space	before	a	paragraph	between	12
points	none

The	following	example	toggles	the	space	before	formatting	of	the	first	paragraph
in	the	selection.	The	macro	retrieves	the	current	space	before	value,	and	if	the
value	is	12	points	the	space	before	formatting	is	removed	(the	SpaceBefore
property	is	set	to	zero).	If	the	space	before	value	is	anything	other	than	12,	then
SpaceBefore	property	is	set	to	12	points.

Sub	ToggleParagraphSpace()

				With	Selection.Paragraphs(1)

								If	.SpaceBefore	<>	0	Then

												.SpaceBefore	=	0

								Else

												.SpaceBefore	=	6

								End	If

				End	With

End	Sub



Toggling	bold	formatting

The	following	example	toggles	bold	formatting	of	the	selected	text.

Sub	ToggleBold()

				Selection.Font.Bold	=	wdToggle

End	Sub



Increasing	the	left	margin	by	0.5	inch

The	following	example	increases	the	left	and	right	margins	by	0.5	inch.	The
PageSetup	object	contains	all	the	page	setup	attributes	of	a	document	(left
margin,	bottom	margin,	paper	size,	and	so	on)	as	properties.	The	LeftMargin
property	is	used	to	return	and	set	the	left	margin	setting.	The	RightMargin
property	is	used	to	return	and	set	the	right	margin	setting.

Sub	FormatMargins()

				With	ActiveDocument.PageSetup

								.LeftMargin	=	.LeftMargin	+	InchesToPoints(0.5)

								.RightMargin	=	.RightMargin	+	InchesToPoints(0.5)

				End	With

End	Sub



Editing	Text
			

This	topic	includes	Visual	Basic	examples	related	to	the	following	tasks:

Determining	whether	text	is	selected
Collapsing	a	selection	or	range
Extending	a	selection	or	range
Redefining	a	Range	object
Changing	text

For	information	about	and	examples	of	other	editing	tasks,	see	the	following
topics:

Returning	text	from	a	document

Selecting	text	in	a	document

Inserting	text	in	a	document

Manipulating	a	portion	of	a	document



Determining	whether	text	is	selected

The	Type	property	of	the	Selection	object	returns	information	about	the	type	of
selection.	The	following	example	displays	a	message	if	the	selection	is	an
insertion	point.

Sub	IsTextSelected()

				If	Selection.Type	=	wdSelectionIP	Then	MsgBox	"Nothing	is	selected"

End	Sub



Collapsing	a	selection	or	range

Use	the	Collapse	method	to	collapse	a	Selection	or	Range	object	to	it's
beginning	or	ending	point.	The	following	example	collapses	the	selection	to	an
insertion	point	at	the	beginning	of	the	selection.

Sub	CollapseToBeginning()

				Selection.Collapse	Direction:=wdCollapseStart

End	Sub

The	following	example	cancels	the	range	to	it's	ending	point	(after	the	first
word)	and	adds	new	text.

Sub	CollapseToEnd()

				Dim	rngWords	As	Range

				Set	rngWords	=	ActiveDocument.Words(1)

				With	rngWords

								.Collapse	Direction:=wdCollapseEnd

								.Text	=	"(This	is	a	test.)	"

				End	With

End	Sub



Extending	a	selection	or	range

The	following	example	uses	the	MoveEnd	method	to	extend	the	end	of	the
selection	to	include	three	additional	words.	The	MoveLeft,	MoveRight,
MoveUp,	and	MoveDown	methods	can	also	be	used	to	extend	a	Selection
object.

Sub	ExtendSelection()

				Selection.MoveEnd	Unit:=wdWord,	Count:=3

End	Sub

The	following	example	uses	the	MoveEnd	method	to	extend	the	range	to
include	the	first	three	paragraphs	in	the	active	document.

Sub	ExtendRange()

				Dim	rngParagraphs	As	Range

				Set	rngParagraphs	=	ActiveDocument.Paragraphs(1).Range

				rngParagraphs.MoveEnd	Unit:=wdParagraph,	Count:=2

End	Sub



Redefining	a	Range	object

Use	the	SetRange	method	to	redefine	an	existing	Range	object.	For	more
information,	see	Working	with	Range	objects.



Changing	text

You	can	change	existing	text	by	changing	the	contents	of	a	range.	The	following
instruction	changes	the	first	word	in	the	active	document	by	setting	the	Text
property	to	"The."

Sub	ChangeText()

				ActiveDocument.Words(1).Text	=	"The	"

End	Sub

You	can	also	use	the	Delete	method	to	delete	existing	text	and	then	insert	new
text	using	the	InsertAfter	or	InsertBefore	method.	The	following	example
deletes	the	first	paragraph	in	the	active	document	and	inserts	new	text.

Sub	DeleteText()

				Dim	rngFirstParagraph	As	Range

				Set	rngFirstParagraph	=	ActiveDocument.Paragraphs(1).Range

				With	rngFirstParagraph

								.Delete

								.InsertAfter	Text:="New	text"

								.InsertParagraphAfter

				End	With

End	Sub



Finding	and	Replacing	Text	or
Formatting
			

Finding	and	replacing	is	exposed	by	the	Find	and	Replacement	objects.	The
Find	object	is	available	from	the	Selection	and	Range	object.	The	find	action
differs	slightly	depending	upon	whether	you	access	the	Find	object	from	the
Selection	or	Range	object.



Finding	text	and	selecting	it

If	the	Find	object	is	accessed	from	the	Selection	object,	the	selection	is	changed
when	the	find	criteria	is	found.	The	following	example	selects	the	next
occurrence	of	the	word	"Hello."	If	the	end	of	the	document	is	reached	before	the
word	"Hello"	is	found,	the	search	is	stopped.

With	Selection.Find

				.Forward	=	True

				.Wrap	=	wdFindStop

				.Text	=	"Hello"

				.Execute

End	With

The	Find	object	includes	properties	that	relate	to	the	options	in	the	Find	and
Replace	dialog	box	(choose	Find	from	the	Edit	menu).	You	can	set	the
individual	properties	of	the	Find	object	or	use	arguments	with	the	Execute
method	as	shown	in	the	following	example.

Selection.Find.Execute	FindText:="Hello",	_

				Forward:=True,	Wrap:=wdFindStop



Finding	text	without	changing	the	selection

If	the	Find	object	is	accessed	from	a	Range	object,	the	selection	is	not	changed
but	the	Range	is	redefined	when	the	find	criteria	is	found.	The	following
example	locates	the	first	occurrence	of	the	word	"blue"	in	the	active	document.
If	the	find	operation	is	successful,	the	range	is	redefined	and	bold	formatting	is
applied	to	the	word	"blue."

With	ActiveDocument.Content.Find

				.Text	=	"blue"

				.Forward	=	True

				.Execute

				If	.Found	=	True	Then	.Parent.Bold	=	True

End	With

The	following	example	performs	the	same	result	as	the	previous	example	using
arguments	of	the	Execute	method.

Set	myRange	=	ActiveDocument.Content

myRange.Find.Execute	FindText:="blue",	Forward:=True

If	myRange.Find.Found	=	True	Then	myRange.Bold	=	True



Using	the	Replacement	object

The	Replacement	object	represents	the	replace	criteria	for	a	find	and	replace
operation.	The	properties	and	methods	of	the	Replacement	object	correspond	to
the	options	in	the	Find	and	Replace	dialog	box	(Edit	menu).

The	Replacement	object	is	available	from	the	Find	object.	The	following
example	replaces	all	occurrences	of	the	word	"hi"	with	"hello."	The	selection
changes	when	the	find	criteria	is	found	because	the	Find	object	is	accessed	from
the	Selection	object.

With	Selection.Find

				.ClearFormatting

				.Text	=	"hi"

				.Replacement.ClearFormatting

				.Replacement.Text	=	"hello"

				.Execute	Replace:=wdReplaceAll,	Forward:=True,	_

								Wrap:=wdFindContinue

End	With

The	following	example	removes	bold	formatting	in	the	active	document.	The
Bold	property	is	True	for	the	Find	object	and	False	for	the	Replacement	object.
In	order	to	find	and	replace	formatting,	set	the	find	and	replace	text	to	empty
strings	("")	and	set	the	Format	argument	of	the	Execute	method	to	True.	The
selection	remains	unchanged	because	the	Find	object	is	accessed	from	a	Range
object	(the	Content	property	returns	a	Range	object).

With	ActiveDocument.Content.Find

				.ClearFormatting

				.Font.Bold	=	True

				With	.Replacement

								.ClearFormatting

								.Font.Bold	=	False

				End	With

				.Execute	FindText:="",	ReplaceWith:="",	_

								Format:=True,	Replace:=wdReplaceAll

End	With





Miscellaneous	Tasks
			

This	topic	includes	Visual	Basic	examples	for	the	following	tasks:

Changing	the	view
Setting	text	in	a	header	or	footer
Setting	options
Changing	the	document	layout
Looping	through	paragraphs	in	a	document
Customizing	menus	and	toolbars



Changing	the	view

The	View	object	includes	properties	and	methods	related	to	view	attributes
(show	all,	field	shading,	table	gridlines,	and	so	on)	for	a	window	or	pane.	The
following	example	changes	the	view	to	print	view.

Sub	ChangeView()

				ActiveDocument.ActiveWindow.View.Type	=	wdPrintView

End	Sub



Setting	text	in	a	header	or	footer

The	HeaderFooter	object	is	returned	by	the	Headers,	Footers	and
HeaderFooter	properties.	The	following	example	changes	the	text	of	current
page	header.

Sub	AddHeaderText()

				With	ActiveDocument.ActiveWindow.View

								.SeekView	=	wdSeekCurrentPageHeader

								Selection.HeaderFooter.Range.Text	=	"Header	text"

								.SeekView	=	wdSeekMainDocument

				End	With

End	Sub

This	example	creates	a	Range	object	(rngFooter)	that	references	the	primary
footer	for	the	first	section	in	the	active	document.	After	the	Range	object	is	set,
the	existing	footer	text	is	deleted.	The	FILENAME	field	is	added	to	the	footer
along	with	two	tabs	and	the	AUTHOR	field.

Sub	AddFooterText()

				Dim	rngFooter	As	Range

				Set	rngFooter	=	ActiveDocument.Sections(1)	_

								.Footers(wdHeaderFooterPrimary).Range

				With	rngFooter

								.Delete

								.Fields.Add	Range:=rngFooter,	Type:=wdFieldFileName,	Text:="\p"

								.InsertAfter	Text:=vbTab	&	vbTab

								.Collapse	Direction:=wdCollapseStart

								.Fields.Add	Range:=rngFooter,	Type:=wdFieldAuthor

				End	With

End	Sub



Setting	options

The	Options	object	includes	properties	that	correspond	to	items	in	the	Options
dialog	box	(Tools	menu).	The	following	example	sets	three	application	options
for	Word.

Sub	SetOptions()

				With	Options

								.AllowDragAndDrop	=	True

								.ConfirmConversions	=	False

								.MeasurementUnit	=	wdPoints

				End	With

End	Sub



Changing	the	document	layout

The	PageSetup	contains	all	the	page	setup	attributes	of	a	document	(left	margin,
bottom	margin,	paper	size,	and	so	on)	as	properties.	The	following	example	sets
the	margin	values	for	the	active	document.

Sub	ChangeDocumentLayout()

				With	ActiveDocument.PageSetup

								.LeftMargin	=	InchesToPoints(0.75)

								.RightMargin	=	InchesToPoints(0.75)

								.TopMargin	=	InchesToPoints(1.5)

								.BottomMargin	=	InchesToPoints(1)

				End	With

End	Sub



Looping	through	paragraphs	in	a	document

This	example	loops	through	all	of	the	paragraphs	in	the	active	document.	If	the
space	before	setting	for	a	paragraph	is	6	points,	this	example	changes	the	spacing
to	12	points.

Sub	LoopParagraphs()

				Dim	parCount	As	Paragraph

				For	Each	parCount	In	ActiveDocument.Paragraphs

								If	parCount.SpaceBefore	=	12	Then	parCount.SpaceBefore	=	6

				Next	parCount

End	Sub

For	more	information,	see	Looping	through	a	collection.



Customizing	menus	and	toolbars

The	CommandBar	object	represents	both	menus	and	toolbars.	Use	the
CommandBars	property	with	a	menu	or	toolbar	name	to	return	a	single
CommandBar	object.	The	Controls	property	returns	a	CommandBarControls
object	that	refers	to	the	items	on	the	specified	command	bar.	The	following
example	adds	the	Word	Count	command	to	the	Standard	menu.

Sub	AddToolbarItem()

				Dim	btnNew	As	CommandBarButton

				CustomizationContext	=	NormalTemplate

				Set	btnNew	=	CommandBars("Standard").Controls.Add	_

								(Type:=msoControlButton,	ID:=792,	Before:=6)

				With	btnNew

								.BeginGroup	=	True

								.FaceId	=	700

								.TooltipText	=	"Word	Count"

				End	With

End	Sub

The	following	example	adds	the	Double	Underline	command	to	the
Formatting	toolbar.

Sub	AddDoubleUnderlineButton()

				CustomizationContext	=	NormalTemplate

				CommandBars("Formatting").Controls.Add	_

								Type:=msoControlButton,	ID:=60,	Before:=7

End	Sub

Turn	on	the	macro	recorder	and	customize	a	menu	or	toolbar	to	determine	the	ID
value	for	a	particular	command	(for	example,	ID	60	is	the	Double	Underline
command).

mk:@MSITStore:vbaof10.chm::/html/ofobjCommandBar.htm
mk:@MSITStore:vbaof10.chm::/html/ofproControls.htm
mk:@MSITStore:vbaof10.chm::/html/ofobjCommandBarControls.htm


Working	with	Tables
			

This	topic	includes	Visual	Basic	examples	related	to	the	following	tasks:

Creating	a	table,	inserting	text,	and	applying	formatting
Inserting	text	into	a	table	cell
Returning	text	from	a	table	cell	without	returning	the	end	of	cell	marker
Converting	text	to	a	table
Returning	the	contents	of	each	table	cell
Copying	all	tables	in	the	active	document	into	a	new	document



Creating	a	table,	inserting	text,	and	applying
formatting

The	following	example	inserts	a	four	column,	three	row	table	at	the	beginning	of
the	active	document.	The	For	Each...Next	structure	is	used	to	step	through	each
cell	in	the	table.	Within	the	For	Each...Next	structure,	the	InsertAfter	method
is	used	to	add	text	to	the	table	cells	(Cell	1,	Cell	2,	and	so	on).

Sub	CreateNewTable()

				Dim	docActive	As	Document

				Dim	tblNew	As	Table

				Dim	celTable	As	Cell

				Dim	intCount	As	Integer

				Set	docActive	=	ActiveDocument

				Set	tblNew	=	docActive.Tables.Add(	_

								Range:=docActive.Range(Start:=0,	End:=0),	NumRows:=3,	_

								NumColumns:=4)

				intCount	=	1

				For	Each	celTable	In	tblNew.Range.Cells

								celTable.Range.InsertAfter	"Cell	"	&	intCount

								intCount	=	intCount	+	1

				Next	celTable

				tblNew.AutoFormat	Format:=wdTableFormatColorful2,	_

								ApplyBorders:=True,	ApplyFont:=True,	ApplyColor:=True

End	Sub



Inserting	text	into	a	table	cell

The	following	example	inserts	text	into	the	first	cell	of	the	first	table	in	the
active	document.	The	Cell	method	returns	a	single	Cell	object.	The	Range
property	returns	a	Range	object.	The	Delete	method	is	used	to	delete	the
existing	text	and	the	InsertAfter	method	inserts	the	"Cell	1,1"	text.

Sub	InsertTextInCell()

				If	ActiveDocument.Tables.Count	>=	1	Then

								With	ActiveDocument.Tables(1).Cell(Row:=1,	Column:=1).Range

												.Delete

												.InsertAfter	Text:="Cell	1,1"

								End	With

				End	If

End	Sub



Returning	text	from	a	table	cell	without	returning	the
end	of	cell	marker

The	following	examples	return	and	display	the	contents	of	each	cell	in	the	first
row	of	the	first	document	table.

Sub	ReturnTableText()

				Dim	tblOne	As	Table

				Dim	celTable	As	Cell

				Dim	rngTable	As	Range

				Set	tblOne	=	ActiveDocument.Tables(1)

				For	Each	celTable	In	tblOne.Rows(1).Cells

								Set	rngTable	=	ActiveDocument.Range(Start:=celTable.Range.Start,	_

												End:=celTable.Range.End	-	1)

								MsgBox	rngTable.Text

				Next	celTable

End	Sub

Sub	ReturnCellText()

				Dim	tblOne	As	Table

				Dim	celTable	As	Cell

				Dim	rngTable	As	Range

				Set	tblOne	=	ActiveDocument.Tables(1)

				For	Each	celTable	In	tblOne.Rows(1).Cells

								Set	rngTable	=	celTable.Range

								rngTable.MoveEnd	Unit:=wdCharacter,	Count:=-1

								MsgBox	rngTable.Text

				Next	celTable

End	Sub



Converting	existing	text	to	a	table

The	following	example	inserts	tab-delimited	text	at	the	beginning	of	the	active
document	and	then	converts	the	text	to	a	table.

Sub	ConvertExistingText()

				With	Documents.Add.Content

								.InsertBefore	"one"	&	vbTab	&	"two"	&	vbTab	&	"three"	&	vbCr

								.ConvertToTable	Separator:=Chr(9),	NumRows:=1,	NumColumns:=3

				End	With

End	Sub



Returning	the	contents	of	each	table	cell

The	following	example	defines	an	array	equal	to	the	number	of	cells	in	the	first
document	table	(assuming	Option	Base	1).	The	For	Each...Next	structure	is
used	to	return	the	contents	of	each	table	cell	and	assign	the	text	to	the
corresponding	array	element.

Sub	ReturnCellContentsToArray()

				Dim	intCells	As	Integer

				Dim	celTable	As	Cell

				Dim	strCells()	As	String

				Dim	intCount	As	Integer

				Dim	rngText	As	Range

				If	ActiveDocument.Tables.Count	>=	1	Then

								With	ActiveDocument.Tables(1).Range

												intCells	=	.Cells.Count

												ReDim	strCells(intCells)

												intCount	=	1

												For	Each	celTable	In	.Cells

																Set	rngText	=	celTable.Range

																rngText.MoveEnd	Unit:=wdCharacter,	Count:=-1

																strCells(intCount)	=	rngText

																intCount	=	intCount	+	1

												Next	celTable

								End	With

				End	If

End	Sub



Copying	all	tables	in	the	active	document	into	a	new
document

This	example	copies	the	tables	from	the	current	document	into	a	new	document.

Sub	CopyTablesToNewDoc()

				Dim	docOld	As	Document

				Dim	rngDoc	As	Range

				Dim	tblDoc	As	Table

				If	ActiveDocument.Tables.Count	>=	1	Then

								Set	docOld	=	ActiveDocument

								Set	rngDoc	=	Documents.Add.Range(Start:=0,	End:=0)

								For	Each	tblDoc	In	docOld.Tables

												tblDoc.Range.Copy

												With	rngDoc

																.Paste

																.Collapse	Direction:=wdCollapseEnd

																.InsertParagraphAfter

																.Collapse	Direction:=wdCollapseEnd

												End	With

								Next

				End	If

End	Sub



Predefined	Bookmarks
			

Microsoft	Word	sets	and	automatically	updates	a	number	of	reserved	bookmarks.
You	can	use	these	predefined	bookmarks	just	as	you	use	the	ones	that	you	place
in	documents,	except	that	you	don't	have	to	set	them	and	they	are	not	listed	on
the	Go	To	tab	in	the	Find	and	Replace	dialog	box	(Edit	menu).

You	can	use	predefined	bookmarks	with	the	Bookmarks	property.	The
following	example	sets	the	bookmark	named	"currpara"	to	the	location	marked
by	the	predefined	bookmark	named	"\Para."

ActiveDocument.Bookmarks("\Para").Copy	"currpara"

The	following	table	describes	the	predefined	bookmarks	available	in	Word.

Bookmark Description
\Sel Current	selection	or	the	insertion	point.

\PrevSel1 Most	recent	selection	where	editing	occurred;	going	to	this
bookmark	is	equivalent	to	running	the	GoBack	method	once.

\PrevSel2
Second	most	recent	selection	where	editing	occurred;	going	to
this	bookmark	is	equivalent	to	running	the	GoBack	method
twice.

\StartOfSel Start	of	the	current	selection.
\EndOfSel End	of	the	current	selection.

\Line
Current	line	or	the	first	line	of	the	current	selection.	If	the
insertion	point	is	at	the	end	of	a	line	that	is	not	the	last	line	in
the	paragraph,	the	bookmark	includes	the	entire	next	line.

\Char
Current	character,	which	is	the	character	following	the
insertion	point	if	there	is	no	selection,	or	the	first	character	of
the	selection.

\Para

Current	paragraph,	which	is	the	paragraph	containing	the
insertion	point	or,	if	more	than	one	paragraph	is	selected,	the
first	paragraph	of	the	selection.	Note	that	if	the	insertion	point
or	selection	is	in	the	last	paragraph	of	the	document,	the



"\Para"	bookmark	does	not	include	the	paragraph	mark.

\Section

Current	section,	including	the	break	at	the	end	of	the	section,
if	any.	The	current	section	contains	the	insertion	point	or
selection.	If	the	selection	contains	more	than	one	section,	the
"\Section"	bookmark	is	the	first	section	in	the	selection.

\Doc Entire	contents	of	the	active	document,	with	the	exception	of
the	final	paragraph	mark.

\Page

Current	page,	including	the	break	at	the	end	of	the	page,	if
any.	The	current	page	contains	the	insertion	point.	If	the
current	selection	contains	more	than	one	page,	the	"\Page"
bookmark	is	the	first	page	of	the	selection.	Note	that	if	the
insertion	point	or	selection	is	in	the	last	page	of	the	document,
the	"\Page"	bookmark	does	not	include	the	final	paragraph
mark.

\StartOfDoc Beginning	of	the	document.
\EndOfDoc End	of	the	document.

\Cell

Current	cell	in	a	table,	which	is	the	cell	containing	the
insertion	point.	If	one	or	more	cells	of	a	table	are	included	in
the	current	selection,	the	"\Cell"	bookmark	is	the	first	cell	in
the	selection.

\Table

Current	table,	which	is	the	table	containing	the	insertion	point
or	selection.	If	the	selection	includes	more	than	one	table,	the
"\Table"	bookmark	is	the	entire	first	table	of	the	selection,
even	if	the	entire	table	is	not	selected.

\HeadingLevel

The	heading	that	contains	the	insertion	point	or	selection,	plus
any	subordinate	headings	and	text.	If	the	current	selection	is
body	text,	the	"\HeadingLevel"	bookmark	includes	the
preceding	heading,	plus	any	headings	and	text	subordinate	to
that	heading.



Creating	Frames	Pages
			

In	Microsoft	Word,	you	can	use	frames	in	your	Web	page	design	to	make	your
information	organized	and	easy	to	access.	A	frames	page,	also	called	a	frameset,
is	a	Web	page	that	is	divided	into	two	or	more	frames,	each	of	which	points	to
another	Web	page.	A	frame	on	a	frames	page	can	also	point	to	another	frames
page.	For	information	about	creating	frames	and	frames	pages	in	the	Word	user
interface,	see	Create	frames	and	frames	pages.

Frames	and	frames	pages	are	created	with	a	series	of	HTML	tags.	The	Visual
Basic	object	model	for	working	with	frames	and	frames	pages	is	best	understood
by	examining	their	HTML	tags.

mk:@MSITStore:wdmain10.chm::/html/wdconCreateFramesFramesets.htm


Frames	pages	in	HTML

In	HTML,	frames	pages	and	the	frames	they	contain	are	built	using	a
hierarchical	set	of	<FRAMESET>	and	<FRAME>	tags.	A	frameset	can	contain
both	frames	and	other	framesets.	For	example,	the	following	HTML	creates	a
frameset	with	a	frame	on	top	and	a	frameset	immediately	below	it.	That	frameset
contains	a	frame	on	the	left	and	a	frameset	on	the	right.	That	frameset	contains
two	frames,	one	on	top	of	the	other.

<FRAMESET	ROWS="100,	*">

				<FRAME	NAME=top	SRC="banner.htm">

				<FRAMESET	COLS="20%,	*">

								<FRAME	NAME=left	SRC="contents.htm">

								<FRAMESET	ROWS="75%,	*">

												<FRAME	NAME=main	SRC="main.htm">

												<FRAME	NAME=bottom	SRC="footer.htm">

								</FRAMESET>

				</FRAMESET>

</FRAMESET>

Note			To	better	understand	the	preceding	HTML	example,	paste	the	example
into	a	blank	text	document,	rename	the	document	"framespage.htm",	and	open
the	document	in	Word	or	in	a	Web	browser.



The	Frameset	Object

The	Frameset	object	encompasses	the	functionality	of	both	tags.	Each
Frameset	object	is	either	of	type	wdFramesetTypeFrameset	or
wdFramesetTypeFrame,	which	represent	the	HTML	tags	<FRAMESET>	and
<FRAME>	respectively.	Properties	beginning	with	"Frameset"	apply	to
Frameset	objects	of	type	wdFramesetTypeFrameset	(FramesetBorderColor
and	FramesetBorderWidth).	Properties	beginning	with	"Frame"	apply	to
Frameset	objects	of	type	wdFramesetTypeFrame	(FrameDefaultURL,
FrameDisplayBorders,	FrameLinkToFile,	FrameName,	FrameResizable,
and	FrameScrollbarType).



Traversing	the	Frameset	Object	Hierarchy

Because	frames	pages	are	defined	as	a	hierarchical	set	of	HTML	tags,	the	object
model	for	accessing	Frameset	objects	is	also	hierarchical.	Use	the
ChildFramesetItem	and	ParentFrameset	properties	to	traverse	the	hierarchy	of
Frameset	objects.	For	example,

MyFrameset.ChildFramesetItem(n)

returns	a	Frameset	object	corresponding	to	the	nth	first-level	<FRAMESET>	or
<FRAME>	tag	between	the	<FRAMESET>	and	</FRAMESET>	tags
corresponding	to	MyFrameset.

If	MyFrameset	is	a	Frameset	object	corresponding	to	the	outermost
<FRAMESET>	tags	in	the	preceding	HTML	example,
MyFrameset.ChildFramesetItem(1)	returns	a	Frameset	object	of	type
wdFramesetTypeFrame	that	corresponds	to	the	frame	named	"top."	Similarly,
MyFrameset.ChildFramesetItem(2)	returns	a	Frameset	object	of	type
wdFramesetTypeFrameset,	itself	containing	two	Frameset	objects:	the	first
object	corresponds	to	the	frame	named	"left,"	the	second	is	of	type
wdFramesetTypeFrameset.

Frameset	objects	of	type	wdFramesetTypeFrame	have	no	child	frames,	while
objects	of	wdFramesetTypeFrameset	have	at	least	one.

The	following	Visual	Basic	example	displays	the	names	of	the	four	frames
defined	in	the	preceding	HTML	example.

Dim	MyFrameset	As	Frameset

Dim	Name1	As	String

Dim	Name2	As	String

Dim	Name3	As	String

Dim	Name4	As	String

Set	MyFrameset	=	ActiveWindow.Document.Frameset

With	MyFrameset

				Name1	=	.ChildFramesetItem(1).FrameName

				With	.ChildFramesetItem(2)

								Name2	=	.ChildFramesetItem(1).FrameName



								With	.ChildFramesetItem(2)

												Name3	=	.ChildFramesetItem(1).FrameName

												Name4	=	.ChildFramesetItem(2).FrameName

								End	With

				End	With

End	With

Debug.Print	Name1,	Name2,	Name3,	Name4



Individual	Frames	and	the	Entire	Frames	Page

To	return	the	Frameset	object	associated	with	a	particular	frame	on	a	frames
page,	use	the	Frameset	property	of	a	Pane	object.	For	example,

ActiveWindow.Panes(1).Frameset

returns	the	Frameset	object	that	corresponds	to	the	first	frame	of	the	frames
page.

The	frames	page	is	itself	a	document	separate	from	the	documents	that	make	up
the	content	of	the	individual	frames.	The	Frameset	object	associated	with	a
frames	page	is	accessed	from	its	corresponding	Document	object,	which	in	turn
is	accessed	from	the	Window	object	in	which	the	frames	page	appears.	For
example,

ActiveWindow.Document.Frameset

returns	the	Frameset	object	for	the	frames	page	in	the	current	window.

Note			When	working	with	frames	pages,	the	ActiveDocument	property	returns
the	Document	object	associated	with	the	frame	in	the	active	pane,	not	the	entire
frames	page.



Creating	a	Frames	Page	and	Its	Content	from	Scratch

This	example	creates	a	new	frames	page	with	three	frames,	adds	text	to	each
frame,	and	sets	the	background	color	for	each	frame.	It	inserts	two	hyperlinks
into	the	Left	frame:	the	first	hyperlink	opens	a	document	called	One.htm	in	the
Main	frame,	and	the	second	opens	a	document	called	Two.htm	in	the	entire
window.	For	these	hyperlinks	to	work,	you	must	create	files	called	One.htm	and
Two.htm	or	change	the	strings	to	the	names	of	existing	files.

Note			As	each	frame	is	created,	Word	creates	a	new	document	whose	content
will	be	loaded	into	the	new	frame.	The	example	saves	the	frames	page	which
automatically	saves	the	documents	associated	with	each	of	the	three	frames.

Sub	FramesetExample1()

				'	Create	new	frames	page.

				Documents.Add	DocumentType:=wdNewFrameset

				With	ActiveWindow

								'	Add	text	and	color	to	first	frame.

								Selection.TypeText	Text:="BANNER	FRAME"

								With	ActiveDocument.Background.Fill

												.ForeColor.RGB	=	RGB(204,	153,	255)

												.Visible	=	msoTrue

								End	With

								'	Add	new	frame	below	top	frame.

								.ActivePane.Frameset.AddNewFrame	_

												wdFramesetNewFrameBelow

								'	Add	text	and	color	to	bottom	frame.

								.ActivePane.Frameset.FrameName	=	"main"

								Selection.TypeText	Text:="MAIN	FRAME"

								With	ActiveDocument.Background.Fill

												.ForeColor.RGB	=	RGB(0,	128,	128)

												.Visible	=	msoTrue

								End	With

								'	Add	new	frame	to	left	of	bottom	frame.

								.ActivePane.Frameset.AddNewFrame	_

												wdFramesetNewFrameLeft

								'	Set	the	width	to	25%	of	the	window	width.

								With	.ActivePane.Frameset

												.WidthType	=	wdFramesetSizeTypePercent



												.Width	=	25

												.FrameName	=	"left"

								End	With

								'	Add	text	and	color	to	left	frame.

								Selection.TypeText	Text:="LEFT	FRAME"

								With	ActiveDocument.Background.Fill

												.ForeColor.RGB	=	RGB(204,	255,	255)

												.Visible	=	msoTrue

								End	With

								Selection.TypeParagraph

								Selection.TypeParagraph

								'	Add	hyperlinks	to	left	frame.

								With	ActiveDocument.Hyperlinks

												.Add	Anchor:=Selection.Range,	_

																Address:="one.htm",	Target:="main"

												Selection.TypeParagraph

												Selection.TypeParagraph

												.Add	Anchor:=Selection.Range,	_

																Address:="two.htm",	Target:="_top"

								End	With

							

								'	Activate	top	frame.

								.Panes(1).Activate

								'	Set	the	height	to	1	inch.

								With	.ActivePane.Frameset

												.HeightType	=	wdFramesetSizeTypeFixed

												.Height	=	InchesToPoints(1)

												.FrameName	=	"top"

								End	With

								'	Save	the	frames	page	and	its	associated	files.

								.Document.SaveAs	FileName:="default.htm",	_

												FileFormat:=wdFormatHTML

				End	With

End	Sub



Creating	a	Frames	Page	that	Displays	Content	from
Existing	Files

This	example	creates	a	frames	page	similar	to	the	one	above,	but	sets	the	default
URL	for	each	frame	to	an	existing	document	so	that	the	content	of	that	document
is	displayed	in	the	frame.	For	this	example	to	work,	you	must	create	files	called
Main.htm,	Left.htm,	and	Banner.htm	or	change	the	strings	in	the	example	to	the
names	of	existing	files.

Sub	FramesetExample2()

			

				'	Create	new	frames	page.

				Documents.Add	DocumentType:=wdNewFrameset

				With	ActiveWindow

								'	Add	new	frame	below	top	frame.

								.ActivePane.Frameset.AddNewFrame	_

												wdFramesetNewFrameBelow

								'	Set	the	name	and	initial	page	for	the	frame.

								With	.ActivePane.Frameset

												.FrameName	=	"main"

												.FrameDefaultURL	=	"main.htm"

								End	With

							

								'	Add	new	frame	to	left	of	bottom	frame.

								.ActivePane.Frameset.AddNewFrame	_

												wdFramesetNewFrameLeft

								With	.ActivePane.Frameset

												'	Set	the	width	to	25%	of	the	window	width.

												.WidthType	=	wdFramesetSizeTypePercent

												.Width	=	25

												'	Set	the	name	and	initial	page	for	the	frame.

												.FrameName	=	"left"

												.FrameDefaultURL	=	"left.htm"

								End	With

			

								'	Activate	top	frame.

								.Panes(1).Activate

								With	.ActivePane.Frameset

												'	Set	the	height	to	1	inch.

												.HeightType	=	wdFramesetSizeTypeFixed

												.Height	=	InchesToPoints(1)

												'	Set	the	name	and	initial	page	for	the	frame.



												.FrameName	=	"top"

												.FrameDefaultURL	=	"banner.htm"

								End	With

								'	Save	the	frameset.

								.Document.SaveAs	FileName:="default.htm",	_

												FileFormat:=wdFormatHTML

				End	With

End	Sub



Learn	About	Language-Specific
Information
			

Language-specific	Help	topics	apply	only	if	the	language-specific	feature	is
available.	Learn	about	working	in	another	language	or	installing	the	proofing
tools	for	another	language,	or	see	your	system	administrator	for	more
information.

mk:@MSITStore:ofmain10.chm::/html/ofhowEnableEditingOfMultipleLanguagesInOfficeApplications.htm
mk:@MSITStore:ofmain10.chm::/html/ofconAboutProofingToolsKitNew.htm


Working	with	the	Selection	Object
			

When	you	work	on	a	document	in	Word,	you	usually	select	text	and	then
perform	an	action,	such	as	formatting	the	text	or	typing	text.	In	Visual	Basic,	it	is
usually	not	necessary	to	select	text	before	modifying	the	text.	Instead,	you	create
a	Range	object	that	refers	to	a	specific	portion	of	the	document.	For	information
on	defining	Range	objects,	see	Working	with	Range	objects.	However,	when
you	want	your	code	to	respond	to	or	change	the	selection,	you	can	do	so	with	the
Selection	object.

The	Select	method	activates	an	object.	For	example,	the	following	instruction
selects	the	first	word	in	the	active	document.

Sub	SelectFirstWord()

				ActiveDocument.Words(1).Select

End	Sub

For	more	information,	see	Selecting	text	in	a	document.

The	Selection	property	returns	a	Selection	object	that	represents	the	active
selection	in	a	document	window	pane.	There	can	only	be	one	Selection	object
per	document	window	pane	and	only	one	Selection	object	can	be	active.	For
example,	the	following	example	changes	the	paragraph	formatting	of	the
paragraphs	in	the	selection.

Sub	FormatSelection()

				Selection.Paragraphs.LeftIndent	=	InchesToPoints(0.5)

End	Sub

For	example,	the	following	example	inserts	the	word	"Hello"	after	the	selection.

Sub	InsertTextAfterSelection()

				Selection.InsertAfter	Text:="Hello	"

End	Sub

The	following	example	applies	bold	formatting	to	the	selected	text.



Sub	BoldSelectedText()

				Selection.Font.Bold	=	True

End	Sub

The	macro	recorder	will	often	create	a	macro	that	uses	the	Selection	property.
The	following	example	was	created	using	the	macro	recorder.	The	macro	applies
bold	formatting	to	the	first	two	words	in	the	document.

Sub	Macro()

				Selection.HomeKey	Unit:=wdStory

				Selection.MoveRight	Unit:=wdWord,	Count:=2,	Extend:=wdExtend

				Selection.Font.Bold	=	wdToggle

End	Sub

The	following	example	accomplishes	the	same	task	without	using	the	Selection
property.

Sub	WorkingWithRanges()

				ActiveDocument.Range(Start:=0,	_

								End:=ActiveDocument.Words(2).End).Bold	=	True

End	Sub



Regroup	Method
							

Regroups	the	group	that	the	specified	shape	range	belonged	to	previously.
Returns	the	regrouped	shapes	as	a	single	Shape	object.

expression.Regroup

expression			Required.	An	expression	that	returns	a	ShapeRange	object.



Remarks

The	Regroup	method	only	restores	the	group	for	the	first	previously	grouped
shape	it	finds	in	the	specified	ShapeRange	collection.	Therefore,	if	the	specified
shape	range	contains	shapes	that	previously	belonged	to	different	groups,	only
one	of	the	groups	will	be	restored.

Note	that	because	a	group	of	shapes	is	treated	as	a	single	shape,	grouping	and
ungrouping	shapes	changes	the	number	of	items	in	the	Shapes	collection	and
changes	the	index	numbers	of	items	that	come	after	the	affected	items	in	the
collection.



Example

This	example	regroups	the	shapes	in	the	selection	in	the	active	window.	If	the
shapes	haven't	been	previously	grouped	and	ungrouped,	this	example	will	fail.

ActiveDocument.ActiveWindow.Selection.ShapeRange.Regroup



Using	Events	with	the	Document
Object
			

The	Document	object	supports	three	events:	Close,	New	and	Open.	You	write
procedures	to	respond	to	these	events	in	the	class	module	named
"ThisDocument."	Use	the	following	steps	to	create	an	event	procedure.

1.	 Under	your	Normal	project	or	document	project	in	the	Project	Explorer
window,	double-click	ThisDocument.	(In	Folder	view,	ThisDocument	is
located	in	the	Microsoft	Word	Objects	folder.)

2.	 Select	Document	from	the	Object	drop-down	list	box.
3.	 Select	an	event	from	the	Procedure	drop-down	list	box.

An	empty	subroutine	is	added	to	the	class	module.

4.	 Add	the	Visual	Basic	instructions	you	want	to	run	when	the	event	occurs.

The	following	example	shows	a	New	event	procedure	in	the	Normal	project	that
will	run	when	a	new	document	based	on	the	Normal	template	is	created.

Private	Sub	Document_New()

				MsgBox	"New	document	was	created"

End	Sub

The	following	example	shows	a	Close	event	procedure	in	a	document	project
that	runs	only	when	that	document	is	closed.

Private	Sub	Document_Close()

				MsgBox	"Closing	the	document"

End	Sub

Unlike	auto	macros,	event	procedures	in	the	Normal	template	don't	have	a	global
scope.	For	example,	event	procedures	in	the	Normal	template	only	occur	if	the
attached	template	is	the	Normal	template.



If	an	auto	macro	exists	in	a	document	and	the	attached	template,	only	the	auto
macro	stored	in	the	document	will	execute.	If	an	event	procedure	for	a	document
event	exists	in	a	document	and	its	attached	template,	both	event	procedures	will
run.



Remarks

For	information	on	creating	event	procedures	for	the	Application	object,	see
Using	Events	with	the	Application	Object.



Using	Events	with	the	Application
Object
			

To	create	an	event	handler	for	an	event	of	the	Application	object,	you	need	to
complete	the	following	three	steps:

1.	 Declare	an	object	variable	in	a	class	module	to	respond	to	the	events.
2.	 Write	the	specific	event	procedures.
3.	 Initialize	the	declared	object	from	another	module.



Declare	the	Object	Variable

Before	you	can	write	procedures	for	the	events	of	the	Application	object,	you
must	create	a	new	class	module	and	declare	an	object	of	type	Application	with
events.	For	example,	assume	that	a	new	class	module	is	created	and	called
EventClassModule.	The	new	class	module	contains	the	following	code.

Public	WithEvents	App	As	Word.Application



Write	the	Event	Procedures

After	the	new	object	has	been	declared	with	events,	it	appears	in	the	Object
drop-down	list	box	in	the	class	module,	and	you	can	write	event	procedures	for
the	new	object.	(When	you	select	the	new	object	in	the	Object	box,	the	valid
events	for	that	object	are	listed	in	the	Procedure	drop-down	list	box.)	Select	an
event	from	the	Procedure	drop-down	list	box;	an	empty	procedure	is	added	to
the	class	module.

Private	Sub	App_DocumentChange()

End	Sub



Initialize	the	Declared	Object

Before	the	procedure	will	run,	you	must	connect	the	declared	object	in	the	class
module	(App	in	this	example)	with	the	Application	object.	You	can	do	this	with
the	following	code	from	any	module.

Dim	X	As	New	EventClassModule

Sub	Register_Event_Handler()

				Set	X.App	=	Word.Application

End	Sub

Run	the	Register_Event_Handler	procedure.	After	the	procedure	is	run,	the	App
object	in	the	class	module	points	to	the	Microsoft	Word	Application	object,	and
the	event	procedures	in	the	class	module	will	run	when	the	events	occur.



Microsoft	Word	Objects	(Range)
			
Range	 Bookmarks

Bookmark
Borders
Border

Cells
Characters
Columns
Column
Borders
Border

Cells
Shading

Comments
Comment

EndnoteOptions
Endnotes
Endnote

Fields
Field

Find
Font
FootnoteOptions
Footnotes
Footnote

FormFields



Frames
Frame

HTMLDivisions
HTMLDivision
Borders

Hyperlinks
Hyperlink

InlineShapes
ListFormat
InlineShape
List
ListTemplate

ListParagraphs
Paragraph

PageSetup
LineNumbering
TextColumns
TextColumn

ParagraphFormat
Paragraphs
ReadabilityStatistics
ReadabilityStatistic

Revisions
Revision

Rows
Row

Scripts
Script

Sections
Sentences

mk:@MSITStore:vbaof10.chm::/html/ofobjScripts.htm
mk:@MSITStore:vbaof10.chm::/html/ofobjScripts.htm


Shading
ShapeRange	(Shape)
ProofreadingErrors
Style
Subdocuments
Subdocument

SynonymInfo
Tables
TextRetrievalMode
Words

	

Legend

		Object	and	collection
		Object	only

	Click	red	arrow	to	expand	chart



Microsoft	Word	Objects	(FormFields)
			
FormFields	Collection	 FormField

CheckBox
DropDown
ListEntries
ListEntry

TextInput

Legend

		Object	and	collection
		Object	only



Microsoft	Word	Objects
(InlineShapes)
			
InlineShapes	 InlineShape

Borders
Border

Field
FillFormat
ColorFormat

HorizontalLineFormat
Hyperlink
LineFormat
ColorFormat

LinkFormat
OLEFormat
PictureFormat
Script
TextEffectFormat

Legend

		Object	and	collection
		Object	only

mk:@MSITStore:vbaof10.chm::/html/ofobjScript.htm




Microsoft	Word	Objects
(Paragraphs)
			
Paragraphs	 Paragraph

Borders
Border

DropCap
ParagraphFormat
Range
Shading
TabStops
TabStop

Legend

		Object	and	collection
		Object	only



Microsoft	Word	Objects	(MailMerge)
			
MailMerge	 MailMergeDataSource

MailMergeDataFields
MailMergeDataField

MailMergeFieldNames
MailMergeFieldName

MappedDataFields
MappedDataField

MailMergeFields
MailMergeField

Legend

		Object	and	collection
		Object	only



Microsoft	Word	Objects	(Section)
			
Sections	 Section

Borders
Border

HeadersFooters
HeadersFooters
PageNumbers
PageNumber

PageSetup
Range

	

Legend

		Object	and	collection
		Object	only

	Click	red	arrow	to	expand	chart



Microsoft	Word	Objects	(Shapes)
			
Shapes	 FreeformBuilder
ShapeRange
Shape
Adjustments
CalloutFormat
CanvasShapes
FreeformBuilder

DiagramNode
Diagram
DiagramNodes

DiagramNodeChildren
FillFormat
ColorFormat

Frame
Borders
Border

Shading
GroupShapes
Hyperlink
InlineShape
LineFormat
ColorFormat

LinkFormat
OLEFormat
PictureFormat



Script
ShadowFormat
ColorFormat

ShapeNodes
ShapeNode

ShapeRange
TextEffectFormat
TextFrame
ThreeDFormat
ColorFormat

WrapFormat

Legend

		Object	and	collection
		Object	only

	Click	red	arrow	to	expand	chart

mk:@MSITStore:vbaof10.chm::/html/ofobjScript.htm


Microsoft	Word	Objects	(Styles)
			
Styles	 Style

Borders
Border

Font
Frame
ListTemplate
ListLevels

ParagraphFormat
TabStops

Shading
TableStyle
ConditionalStyle

Legend

		Object	and	collection
		Object	only



Microsoft	Word	Objects	(Cells)
			
Cells	 Cell

Borders
Border

Column
Borders
Cells
Shading

Range
Row
Borders
Cells
Range
Shading

Shading
	

Legend

		Object	and	collection
		Object	only

	Click	red	arrow	to	expand	chart



Microsoft	Word	Objects	(Find)
			
Find	 Font
Frame
ParagraphFormat
Replacement

	

Legend

		Object	and	collection
		Object	only



Microsoft	Word	Objects	(Tables)
			
Tables	 Table

Borders
Border

Cell
Columns
Column

Range
Rows
Row

Shading
	

Legend

		Object	and	collection
		Object	only

	Click	red	arrow	to	expand	chart



XML	Property
							

Returns	a	String	that	represents	the	related	XML	for	a	smart	tag.	Read-only.

expression.XML

expression			Required.	An	expression	that	returns	a	SmartTag	object.



Example

This	example	displays	the	XML	information	for	the	first	smart	tag	in	the	active
document.		This	example	assumes	that	the	active	document	contains	at	least	one
smart	tag.

Sub	SmartTagXml()

				MsgBox	"The	XML	information	for	this	smart	tag	is	:	"	&	_

								ActiveDocument.SmartTags(1).XML

End	Sub



CheckIn	Method
							

Returns	a	document	from	a	local	computer	to	a	server,	and	sets	the	local
document	to	read-only	so	that	it	cannot	be	edited	locally.

expression.CheckIn(SaveChanges,	MakePublic,	Comments)

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

SaveChanges		Optional	Boolean.	True	saves	the	document	to	the	server
location.	The	default	is	True.

MakePublic		Optional	Boolean.	True	allows	the	user	to	perform	a	publish	on
the	document	after	being	checked	in.	This	submits	the	document	for	the	approval
process,	which	can	eventually	result	in	a	version	of	the	document	being
published	to	users	with	read-only	rights	to	the	document	(only	applies	if
SaveChanges	equals	True).

Comments		Optional	Variant.	Comments	for	the	revision	of	the	document	being
checked	in	(only	applies	if	SaveChanges	equals	True).



Remarks

To	take	advantage	of	the	collaboration	features	built	into	Word,	documents	must
be	stored	on	a	Microsoft	SharePoint	Portal	Server.



Example

This	example	checks	the	server	to	see	if	the	specified	document	can	be	checked
in.	If	it	can	be,	it	saves	and	closes	the	document	and	checks	it	back	into	the
server.

Sub	CheckInOut(docCheckIn	As	String)

				If	Documents(docCheckIn).CanCheckin	=	True	Then

								Documents(docCheckIn).CheckIn

								MsgBox	docCheckIn	&	"	has	been	checked	in."

				Else

								MsgBox	"This	file	cannot	be	checked	in	"	&

								"at	this	time.		Please	try	again	later."

				End	If

End	Sub

To	call	the	CheckInOut	subroutine,	use	the	following	subroutine	and	replace	the
"http://servername/workspace/report.doc"	file	name	with	an	actual	file	located
on	a	server	mentioned	in	the	Remarks	section	above.

Sub	CheckDocInOut()

				Call	CheckInOut	(docCheckIn:="http://servername/workspace/report.doc")

End	Sub



Show	All



BaseLineAlignment	Property
							

Returns	or	sets	a	WdBaselineAlignment	constant	that	represents	the	vertical
position	of	fonts	on	a	line.	Read/write.

WdBaselineAlignment	can	be	one	of	these	WdBaselineAlignment	constants.
wdBaselineAlignAuto
wdBaselineAlignCenter
wdBaselineAlignTop
wdBaselineAlignBaseline
wdBaselineAlignFarEast50

expression.BaseLineAlignment

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.



Example

This	example	sets	Microsoft	Word	to	automatically	adjust	the	baseline	font
alignment	in	the	active	document.

ActiveDocument.BaseLineAlignment	=	wdBaselineAlignAuto



Visual	Basic	Equivalents	A
			

A 	
Abs(number) Abs(number)

Activate	name

Windows(name).Activate

'	or

Documents(name).Activate

ActivateObject

ActiveDocument.Shapes(1).OLEFormat.Activate

'	or

ActiveDocument.InlineShapes(1).OLEFormat.Activate

AddAddIn Addins.Add
AddAddress Application.AddAddress
AddButton CommandBars(name).Controls.Add
AddDropDownItem ActiveDocument.FormFields(1).DropDown.ListEntries.

AddInState

state	=	AddInState(name)

Addins(name).Installed	=	True

state	=	Addins(name).Installed

state	=	Addins(name).Compiled

state	=	Addins(name).AutoLoad

AllCaps,	AllCaps()
Selection.Font.AllCaps	=	True

x	=	Selection.Font.AllCaps



AnnotationRefFromSel$() x	=	Selection.Comments(1).Reference

AOCEAddRecipient

ActiveDocument.Mailer.Recipients	=	Array(name)

ActiveDocument.Mailer.CCRecipients	=	Array(name)

ActiveDocument.Mailer.BCCRecipients	=	Array(name

AOCEAuthenticateUser() x	=	WordBasic.AOCEAuthenticateUser
AOCEClearMailerField ActiveDocument.Mailer.Recipients	=	""

AOCECountRecipients()

x	=	Ubound(ActiveDocument.Mailer.Recipients)

x	=	Ubound(ActiveDocument.Mailer.CCRecipients)

x	=	Ubound(ActiveDocument.Mailer.BCCRecipients)

AOCEGetRecipient$()

rec	=	ActiveDocument.Mailer.Recipients

ccRec	=	ActiveDocument.Mailer.CCRecipients

bccRec	=	ActiveDocument.Mailer.BCCRecipients

AOCEGetSender$() send	=	ActiveDocument.Mailer.Sender
AOCEGetSubject$() sub	=	ActiveDocument.Mailer.Subject
AOCESendMail ActiveDocument.SendMailer
AOCESetSubject ActiveDocument.Mailer.Subject	=	text
AppActivate	name Tasks(name).Activate
AppClose	name Tasks(name).Close
AppCount() Tasks.Count

AppGetNames,
AppGetNames()

'	enumerate	the	Tasks	collection

i	=	1

For	Each	aTask	In	Tasks

				aArray(i)	=	aTask.Name

				i	=	i	+	1



Next	aTask

AppHide	name Tasks(name).Visible	=	False

AppInfo$(1)

AppInfo$(2)

AppInfo$(3)

AppInfo$(4)

AppInfo$(5)

AppInfo$(6)

AppInfo$(7)

AppInfo$(8)

AppInfo$(9)

AppInfo$(10)

AppInfo$(13)

AppInfo$(14)

AppInfo$(15)

AppInfo$(16)

AppInfo$(17)

AppInfo$(18)

AppInfo$(19)

AppInfo$(20)

AppInfo$(21)

MsgBox	System.OperatingSystem	&	Chr(32)	&	System.

x	=	Application.Version

x	=	Application.SpecialMode

x	=	Application.Left

x	=	Application.Top

x	=	Application.UsableWidth

x	=	Application.UsableHeight

x	=	Application.WindowState(wdWindowStateMaximize)

x	=	WordBasic.[AppInfo$](9)

x	=	WordBasic.[AppInfo$](10)

x	=	System.MathCoprocessorInstalled

x	=	Application.MouseAvailable

x	=	System.FreeDiskSpace

x	=	Application.International(wdProductLanguageID)

x	=	Application.International(wdListSeparator)

x	=	Application.International(wdDecimalSeparator)

x	=	Application.International(wdThousandsSeparator)

x	=	Application.International(CurrencyCode)

x	=	Application.International(wd24HourClock)



AppInfo$(22)

AppInfo$(23)

AppInfo$(24)

AppInfo$(25)

AppInfo$(26)

AppInfo$(27)

x	=	Application.International(wdInternationalAM)

x	=	Application.International(wdInternationalPM)

x	=	Application.International(wdTimeSeparator)

x	=	Application.International(wdDateSeparator)

x	=	WordBasic.[AppInfo$](26)

x	=
Application.LanguageSettings.LanguageID(msoLanguageIDUI)

AppIsRunning(name) Tasks(name).Exists
AppMaximize	name

AppMaximize

Tasks(name).WindowState	=	wdWindowStateMaximize

Application.WindowState	=	wdWindowStateMaximize

AppMinimize	name

AppMinimize

Tasks(name).WindowState	=	wdWindowStateMinimize

Application.WindowState	=	wdWindowStateMinimize

AppMove	name,
horizpos,	vertpos

AppMove	horizpos,
vertpos

Tasks(name).Move	Left:=horizpos,	Top:=vertpos

Application.Move	Left:=horizpos,	Top:=vertpos

AppRestore	name

AppRestore

Tasks(name).WindowState	=	wdWindowStateNormal

Application.WindowState	=	wdWindowStateNormal

AppSendMessage Tasks(name).SendWindowMessage
AppShow	name

AppShow

Tasks(name).Visible	=	True

Application.Visible	=	True

AppSize	name,	width,
height Tasks(name).Resize	Width:=width,	Height:=height



AppSize	width,	height Application.Resize	Width:=width,	Height:=height

AppWindowHeight	name,
height

AppWindowHeight
height

Tasks(name).Height	=	height

Application.Height	=	height

AppWindowPosLeft
name,	horizpos

AppWindowPosLeft
horizpos

Tasks(name).Left	=	horizpos

Application.Left	=	horizpos

AppWindowPosTop
name,	vertpos

AppWindowPosTop
vertpos

Tasks(name).Top	=	vertpos

Application.Top	=	vertpos

AppWindowWidth	name,
width

AppWindowWidth	width

Tasks(name).Width	=	width

Application.Width	=	width

Asc(string) Asc(string)

AtEndOfDocument() If	Selection.Type	=	wdSelectionIP	and	Selection.End	=
ActiveDocument.Content.End	-	1	Then	atEnd	=	True

AtStartOfDocument() If	Selection.Type	=	wdSelectionIP	and	Selection.Start	=	0	Then
atStart	=	True

AutoMarkIndexEntries ActiveDocument.Indexes.AutoMarkEntries
AutomaticChange Application.AutomaticChange
AutoText Selection.Range.InsertAutoText
AutoTextName$(num,
context)

x	=
ActiveDocument.AttachedTemplate.AutoTextEntries(num





Visual	Basic	Equivalents	B
			

B 	
Beep Beep
Begin	Dialog...End
Dialog

Create	and	display	a	custom	form.	For	information	about	adding
controls	to	a	form,	see	Adding	controls	to	a	user	form.

Bold,	Bold()
Selection.Font.Bold	=	True

x	=	Selection.Font.Bold

name	=
BookmarkName$(num) name	=	ActiveDocument.Bookmarks(num).Name

BorderBottom,
BorderBottom()

With	ActiveDocument.Paragraphs(1).Borders(wdBorderBottom)

				.LineStyle	=	wdLineStyleSingle

				.LineWidth	=	wdLineWidth075pt

End	With

x	=
ActiveDocument.Paragraphs(1).Borders(wdBorderBottom).

BorderInside,
BorderInside()

With	Selection.Borders

				.InsideLineStyle	=	wdLineStyleSingle

				.InsideLineWidth	=	wdLineWidth075pt

End	With

x	=	Selection.Borders.InsideLineStyle



BorderLeft,
BorderLeft()

With	ActiveDocument.Paragraphs(1).Borders(wdBorderLeft)

				.LineStyle	=	wdLineStyleSingle

				.LineWidth=	wdLineWidth075pt

End	With

x	=
ActiveDocument.Paragraphs(1).Borders(wdBorderLeft).

BorderLineStyle,
BorderLineStyle()

Selection.Borders(wdBorderType).LineStyle	=	wdLineStyle

x	=
ActiveDocument.Paragraphs(1).Borders(wdBorderType).

BorderNone,
BorderNone()

Selection.Borders.Enable	=	False

'	or

Selection.Borders(wdBorderLeft).LineStyle	=	wdLineStyleNone

x	=	Selection.Range.Borders.Enable

BorderOutside,
BorderOutside()

With	Selection.Borders

				.OutsideLineStyle	=	wdLineStyleSingle

				.OutsideLineWidth	=	wdLineWidth075pt

End	With

x	=	Selection.Borders.OutsideLineStyle

BorderRight,
BorderRight()

With	ActiveDocument.Paragraphs(1).Borders(wdBorderRight)

				.LineStyle	=	wdLineStyleSingle

				.LineWidth=	wdLineWidth075pt



End	With

x	=
ActiveDocument.Paragraphs(1).Borders(wdBorderRight).

BorderTop,
BorderTop()

With	Selection.Paragraphs(1).Borders(wdBorderTop)

				.LineStyle	=	wdLineStyleSingle

				.LineWidth=	wdLineWidth075pt

End	With

x	=
ActiveDocument.Paragraphs(1).Borders(wdBorderTop).LineStyle



Visual	Basic	Equivalents	C
			

C 	

Call

Call

'	or

WordBasic.Call

'	or

Application.Run

Cancel

Selection.ColumnSelectMode	=	False

Selection.ExtendMode	=	False

Selection.EscapeKey

CancelButton CommandButton

CenterPara,	CenterPara()
Selection.Paragraphs.Alignment	=	wdAlignParagraphCenter

x	=	Selection.Paragraphs.Alignment

ChangeCase,	ChangeCase()
Selection.Range.Case	=	WdCharacterCase

x	=	Selection.Range.Case

CharColor,	CharColor()
Selection.Font.ColorIndex	=	WdColorIndex

x	=	Selection.Font.ColorIndex

Selection.MoveLeft	Unit:=wdCharacter,	Count:=1,



CharLeft	1

CharLeft	1,	1

num	=	CharLeft(1)

Extend:=wdMove

Selection.MoveLeft	Unit:=wdCharacter,	Count:=1,
Extend:=wdExtend

num	=	Selection.MoveLeft(Unit:=wdCharacter,	Count:=1)

CharRight	1

CharRight	1,	1

num	=	CharRight(1)

Selection.MoveRight	Unit:=wdCharacter,	Count:=1,
Extend:=wdMove

Selection.MoveRight	Unit:=wdCharacter,	Count:=1,
Extend:=wdExtend

num	=	Selection.MoveRight(Unit:=wdCharacter,	Count:=1)

ChDefaultDir	path,
wdDefaultFilePath Options.DefaultFilePath(WdDefaultFilePath)	=	

ChDir	path

ChDir	path

'	or

Application.ChangeFileOpenDirectory

CheckBox CheckBox	control

CheckBoxFormField ActiveDocument.FormFields.Add	Range:=range
Type:=wdFieldFormCheckBox

ChooseButtonImage

With	CommandBars(name).Controls(1)

				.FaceId	=	num

				.TooltipText	=	text

End	With

Chr$(num) Chr(num)
CleanString$(string) x	=	CleanString(string)
ClearAddInst Addins.Unload
ClearFormField ActiveDocument.FormFields(1).TextInput.Clear



Close Close
ClosePane ActiveWindow.ActivePane.Close
ClosePreview ActiveDocument.ClosePrintPreview
CloseUpPara Selection.Paragraphs.CloseUp
CloseViewHeaderFooter ActiveWindow.View.SeekView	=	wdSeekMainDocument

CmpBookmarks()

If	ActiveDocument.Bookmarks(name)	=
ActiveDocument.Bookmarks(name)	Then

				same	=	True

End	If

The	Start	and	End	properties	can	be	used	to	compare	the	starting
and	ending	positions	of	two	bookmarks.

ColumnSelect Selection.ColumnSelectMode	=	True
ComboBox ComboBox	control

CommandValid()
Use	the	IsObjectValid	property	to	determine	if	an	object	variable
reference	is	valid.	Also	an	object	variable	that	returns	Nothing	is	not
valid.

Connect System.Connect

ControlRun

WordBasic.ControlRun

'	or

Shell	appfilename

Converter$(num) x	=	FileConverters(num).ClassName
ConverterLookup(name) x	=	FileConverters(name).SaveFormat

ConvertObject	IconNumber,
ActivateAs,	IconFileName,

With	ActiveDocument.Shapes(1).OLEFormat

				.IconIndex	=	num

				.ActivateAs	=	text

				.IconPath	&	Application.PathSeparator	&	.IconName

				.IconLabel	=	text



Caption,	Class,	DisplayIcon 				.ClassType	=	text

				.DisplayAsIcon	=	True

End	With

CopyBookmark ActiveDocument.Bookmarks(name).Copy(name
CopyButtonImage CommandBars(name).Controls(1).CopyFace
CopyFile FileCopy
CopyFormat Selection.CopyFormat
CopyText Application.Run	MacroName:="CopyText"
CountAddins() x	=	Addins.Count
CountAutoCorrectExceptions(0)

CountAutoCorrectExceptions(1)

x	=	AutoCorrect.FirstLetterExceptions.Count

x	=	AutoCorrect.TwoInitialCapsExceptions.Count

CountAutoTextEntries() x	=	ActiveDocument.AttachedTemplate.AutoTextEntries.
CountBookmarks() x	=	ActiveDocument.Bookmarks.Count

CountDirectories()

myPath	=	"C:\"

myName	=	Dir(myPath,	vbDirectory)

Do	While	myName	<>	""

				If	myName	<>	"."	And	myName	<>	".."	Then

								If	(GetAttr(myPath	&	myName)	And	vbDirectory)	=
vbDirectory	Then

												count	=	count	+	1

								End	If

				End	If

myName	=	Dir



Loop

MsgBox	count	&	"	directories"

CountDocumentProperties()

x	=	ActiveDocument.BuiltInDocumentProperties.

'	or

x	=	ActiveDocument.CustomDocumentProperties.

CountDocumentVars() x	=	ActiveDocument.Variables.Count
CountFiles() x	=	RecentFiles.Count

CountFonts()

x	=	FontNames.Count

'	or

x	=	PortraitFontNames.Count

'	or

x	=	LandscapeFontNames.Count

CountFoundFiles() x	=	Application.FileSearch.FoundFiles.Count

CountKeys()
CustomizationContext	=	template	or	document

x	=	KeyBindings.Count

CountLanguages() x	=	Languages.Count

CountMacros()

'	no	direct	equivalent

'	counts	the	number	of	modules	associated	with	the	normal	template

For	Each	xItem	In	NormalTemplate.VBProject.VBComponents

				If	xItem.Type	=	vbext_ct_StdModule	Then	Count	=	Count	+	1

Next	x

MsgBox	Count



CountMenuItems() x	=	CommandBars(name).Controls.Count
CountMenus() x	=	CommandBars.ActiveMenuBar.Controls.Count
CountMergeFields() x	=	ActiveDocument.MailMerge.Fields.Count

CountStyles()

x	=	ActiveDocument.Styles.Count

'	or

x	=
ActiveDocument.AttachedTemplate.OpenAsDocument.Styles.

'	to	exclude	built-in	styles	from	the	count

For	Each	xSty	In	ActiveDocument.Styles

				If	xSty.BuiltIn	=	False	Then	aCount	=	aCount	+	1

Next	xSty

CountToolbarButtons() x	=	CommandBars(name).Controls.Count

CountToolbars()

For	Each	xCB	In	CommandBars

				If	xCB.Type	=	msoBarTypeNormal	Then	aCount	=	aCount	+	1

Next	xCB

CountToolsGrammarStatistics() x	=	ActiveDocument.Content.ReadabilityStatistics.
CountWindows() x	=	Windows.Count
CreateSubdocument ActiveDocument.Subdocuments.AddFromRange



Visual	Basic	Equivalents	D
			

D 	
Date$() Date
DateSerial() DateSerial
DateValue() DateValue
Day() Day
Days360() DateDiff
DDEExecute	channel,
command DDEExecute	channel,	command

chan	=	DDEInitiate
(application,	topic) chan	=	DDEInitiate(application,	topic)

DDEPoke	channel,	item,
data DDEPoke	channel,	item,	data

data	=
DDERequest$(channel,
item)

data	=	DDERequest(channel,	item)

DDETerminate	channel DDETerminate	channel
DDETerminateAll DDETerminateAll
Declare Declare
DefaultDir$() x	=	DefaultFilePath(WdDefaultFilePath)
DeleteAddIn	name Addins(name).Delete
DeleteBackWord Selection.Delete	Unit:=wdWord,	Count:=-1
DeleteButton CommandBars(name).Controls(num).Delete
DeleteDocumentProperty
name ActiveDocument.CustomDocumentProperties(name

DeleteWord Selection.Words(1).Delete
DemoteList Selection.Range.ListFormat.ListOutdent
DemoteToBodyList Selection.Paragraphs(1).OutlineDemoteToBody



Dialog,	Dialog() Dialogs(WdWordDialog).Show
DialogEditor ShowVisualBasicEditor	=	True
Dim Dim
DisableAutoMacros WordBasic.DisableAutoMacros
DisableInput Application.EnableCancelKey	=	WdEnableCancelKey

DlgControlId()
WordBasic	dynamic	dialog	functionality	has	been	replaced
by	custom	user	forms.	Refer	to	the	topics	in	Microsoft
Forms	Help.

DlgEnable,	DlgEnable() 	
DlgFilePreview,
DlgFilePreview$() 	

DlgFocus,	DlgFocus$() 	
DlgListBoxArray,
DlgListBoxArray() 	

DlgLoadValues,
DlgLoadValues() 	

DlgSetPicture 	
DlgStoreValues 	
DlgText,	DlgText$() 	
DlgUpdateFilePreview 	
DlgValue,	DlgValue() 	
DlgVisible,	DlgVisible() 	
DocClose ActiveWindow.Close
DocMaximize,
DocMaximize() ActiveWindow.WindowState	=	wdWindowStateMaximize

DocMinimize,
DocMinimize() ActiveWindow.WindowState	=	wdWindowStateMinimize

DocMove	HorizPos,
VertPos

With	ActiveWindow

				.Top	=	VertPos

				.Left	=	HorizPos

End	With

DocRestore ActiveWindow.WindowState	=	wdWindowStateNormal



DocSize	width,	height

With	ActiveWindow

				.Height	=	width

				.Width	=	height

End	With

DocSplit,	DocSplit()
ActiveWindow.SplitVertical	=	50

x	=	ActiveWindow.SplitVertical

DocumentHasMisspellings() x	=	ActiveDocument.SpellingErrors.Count

DocumentPropertyExists()

'	enumerate	the	DocumentProperties	collection

For	Each	aProp	In
ActiveDocument.CustomDocumentProperties

				If	aProp.Name	=	name	Then	itExists	=	True

Next	aProp

DocumentPropertyName$()

x	=
ActiveDocument.CustomDocumentProperties(num).

'	or

x	=
ActiveDocument.BuiltInDocumentProperties(num).

DocumentPropertyType() x	=
ActiveDocument.CustomDocumentProperties(name

DocumentProtection() x	=	ActiveDocument.ProtectionType
With	ActiveDocument

				var1	=	.Name

				var2	=	.Path



DocumentStatistics
FileName,	Directory,
Template,	Title,	Created,
LastSaved,	LastSavedBy,
Revision,	Time,	Printed,
Pages,	Words,	Characters,
Paragraphs,	Lines,	FileSize

				var3	=
.BuiltInDocumentProperties(wdPropertyTemplate)

				var4	=	.BuiltInDocumentProperties(wdPropertyTitle)

				var5	=
.BuiltInDocumentProperties(wdPropertyTimeCreated)

				var6	=
.BuiltInDocumentProperties(wdPropertyTimeLastSaved)

				var7	=
.BuiltInDocumentProperties(wdPropertyLastAuthor)

				var8	=	.BuiltInDocumentProperties(wdPropertyRevision)

				var9	=
.BuiltInDocumentProperties(wdPropertyVBATotalEdit)

				var10	=
.BuiltInDocumentProperties(wdPropertyTimeLastPrinted)

				var11	=	.BuiltInDocumentProperties(wdPropertyPages)

				var12	=	.BuiltInDocumentProperties(wdPropertyWords)

				var13	=
.BuiltInDocumentProperties(wdPropertyCharacters)

				var14	=	.BuiltInDocumentProperties(wdPropertyParas)

				var15	=	.BuiltInDocumentProperties(wdPropertyLines)

				var16	=	.BuiltInDocumentProperties(wdPropertyBytes)

End	With

DocWindowHeight ActiveWindow.Height	=	height
DocWindowPosLeft ActiveWindow.Left	=	horizpos
DocWindowPosTop ActiveWindow.Top	=	vertpos



DocWindowWidth ActiveWindow.Width	=	width
DoFieldClick Selection.Fields(1).DoClick
DOSToWin$() x	=	WordBasic.[DOSToWin$](StringToTranslate)

DottedUnderline,
DottedUnderline()

Selection.Font.UnderLine=	wdUnderlineDotted

x	=	Selection.Font.UnderLine

DoubleUnderline,
DoubleUnderline()

Selection.Font.UnderLine	=	wdUnderlineDouble

x	=	Selection.Font.UnderLine

Drawing	object	statements
and	functions

Use	the	properties	and	methods	of	the	following	objects:
Shape,	Shapes,	and	ShapeRange.

DropDownFormField ActiveDocument.FormFields.Add	Range:=range,
Type:=wdFieldFormDropDown

DropListBox ComboBox	control



Visual	Basic	Equivalents	E
			

E 	
EditAutoText	.Name=
name,	.Add

EditAutoText	.Name=
name,	.InsertAs	=	0,	.Insert

EditAutoText	.Name=
name,	.Delete

ActiveDocument.AttachedTemplate.AutoTextEntries.

ActiveDocument.AttachedTemplate.AutoTextEntries(
Where:=range,	RichText:=True

Templates(name).AutoTextEntries(name).Delete

EditBookmark	.Name	=
name,	.Add

EditBookmark	.Name	=
name,	.Delete

EditBookmark	.Name	=
name,	.Goto

EditBookmark	.Name	=
name,	.SortBy

ActiveDocument.Bookmarks.Add	Name:=name,	Range:=

ActiveDocument.Bookmarks(name).Delete

ActiveDocument.Bookmarks(name).Select

ActiveDocument.Bookmarks.DefaultSorting	=	wdSortByName

EditButtonImage WordBasic.EditButtonImage
EditClear Selection.Range.Delete
EditConvertAllEndnotes ActiveDocument.Endnotes.Convert
EditConvertAllFootnotes ActiveDocument.Footnotes.Convert

EditConvertNotes

Selection.Footnotes.Convert

'	or



Selection.Endnotes.Convert

EditCopy Selection.Range.Copy
EditCopyAsPicture Selection.Range.CopyAsPicture
EditCreatePublisher Selection.Range.CreatePublisher
EditCut Selection.Range.Cut
EditFind Selection.Find
EditFindBorder Selection.Find.Borders
EditFindClearFormatting Selection.Find.ClearFormatting
EditFindFont Selection.Find.Font
EditFindFound() Selection.Find.Found
EditFindFrame Selection.Find.Frame
EditFindHighlight Selection.Find.Highlight	=	True
EditFindLang Selection.Find.LanguageID
EditFindNotHighlight Selection.Find.Highlight	=	False
EditFindPara Selection.Find.ParagraphFormat
EditFindStyle Selection.Find.Style
EditFindTabs Seleciton.Find.ParagraphFormat.TabStops
EditGoTo Selection.Goto

EditLinks	UpdateMode,
Locked,	SavePictureInDoc,
UpdateNow,	OpenSource,
KillLink,	Link,	Application,
Item,	FileName

ActiveDocument.Shapes(1).OLEFormat.Open

'	or

ActiveDocument.InlineShapes(1).OLEFormat.Open

With	ActiveDocument.InlineShapes(1).LinkFormat

				.AutoUpdate	=	True

				.Locked	=	True

				.SavePictureWithDocument	=	True

				.Update

				.BreakLink



				.Application.Name

				.SourceFullName

End	With

EditObject

Selection.InlineShapes(1).OLEFormat.Edit

'	or

Selection.ShapeRange(1).OLEFormat.Edit

EditPaste Selection.Range.Paste
EditPasteSpecial Selection.Range.PasteSpecial
EditPicture Selection.ShapeRange(1).Activate
EditPublishOptions ActiveDocument.EditionOptions
EditRedo ActiveDocument.Redo
EditRepeat Repeat
EditReplaceBorder Selection.Find.Replacement.Borders
EditReplaceClearFormatting Selection.Find.Replacement.ClearFormatting
EditReplaceFont Selection.Find.Replacement.Font
EditReplaceFrame Selection.Find.Replacement.Frame
EditReplaceHighlight Selection.Find.Replacement.Highlight	=	True
EditReplaceLang Selection.Find.Replacement.LanguageID
EditReplaceNotHighlight Selection.Find.Replacement.Highlight	=	False
EditReplacePara Selection.Find.Replacement.ParagraphFormat
EditReplaceStyle Selection.Find.Replacement.Style
EditReplaceTabs Selection.Find.Replacement.ParagraphFormat.TabStops

EditSelectAll

ActiveDocument.Content.Select

'	or

Selection.WholeStory

EditSubscribeOptions ActiveDocument.EditionOptions
EditSubscribeTo Selection.Range.SubscribeTo



EditSwapAllNotes

ActiveDocument.Endnotes.SwapWithFootnotes

'	or

ActiveDocument.Footnotes.SwapWithEndnotes

EditTOACategory ActiveDocument.TablesOfAuthoritiesCategories(num
name

EditUndo ActiveDocument.Undo
EmptyBookmark(name) x	=	ActiveDocument.Bookmarks(name).Empty
EnableFormField ActiveDocument.FormFields(name).Enabled	=	True
EndOfColumn,
EndOfColumn() Selection.EndOf	Unit:=wdColumn,	Extend:=wdMove

EndOfDocument,
EndOfDocument() Selection.EndKey	Unit:=wdStory

EndOfLine,	EndOfLine() Selection.EndKey	Unit:=wdLine,	Extend:=wdMove
EndOfRow,	EndOfRow() Selection.EndKey	Unit:=wdRow,	Extend:=wdMove
EndOfWindow,
EndOfWindow() Selection.MoveDown	Unit:=wdWindow

Environ$() Environ$()
Eof() EOF()
Err Err
Error Error
ExistingBookmark(name) x	=	ActiveDocument.Bookmarks.Exists(name)
ExitWindows Tasks.ExitWindows
ExtendMode() x=	Selection.ExtendMode

ExtendSelection

'	activates	extend	mode

Selection.ExtendMode	=	True

'	extends	the	selection

Selection.Expand	Unit:=wdUnits





Visual	Basic	Equivalents	F
			

F 	
FieldSeparator$ Application.DefaultTableSeparator
FileAOCEAddMailer ActiveDocument.HasMailer	=	True
FileAOCEDeleteMailer ActiveDocument.HasMailer	=	False
FileAOCEExpandMailer Macintosh	only
FileAOCEForwardMail ActiveDocument.ForwardMailer
FileAOCENextLetter Application.NextLetter
FileAOCEReplyAllMail Macintosh	only
FileAOCEReplyMail Macintosh	only
FileAOCESendMail ActiveDocument.SendMailer
FileClose ActiveDocument.Close
FileCloseAll Documents.Close
FileClosePicture ActiveDocument.Close
FileConfirmConversions Options.ConfirmConversions	=	True
FileCreator$() Macintosh	only
FileDocumentLayout Macintosh	only
FileExit Application.Quit
FileFind Application.FileSearch
FileList	number RecentFiles(num).Open
FileMacCustomPageSetupGX Macintosh	only
FileMacPageSetup Macintosh	only
FileMacPageSetupGX Macintosh	only

FileName$()

FileName$(num)

x	=	ActiveDocument.FullName

x	=	RecentFiles(num).Name	&	Application.PathSeparator	&
RecentFiles(num).Path



FileNameFromWindow$() x	=	Windows(1).Document.FullName

FileNameInfo$()

x	=	WordBasic.[FileNameInfo$]()

x	=	ActiveDocument.Name

x	=	ActiveDocument.Path

x	=	ActiveDocument.FullName

FileNew	Template Documents.Add	Template:=filename
FileNewDefault Documents.Add
File	num RecentFiles(num).Open
FileOpen Documents.Open
FilePost ActiveDocument.Post

FilePageSetup	Tab,
TopMargin,	BottomMargin,
LeftMargin,	RightMargin,
Gutter,	PageWidth,
PageHeight,	Orientation,

With	ActiveDocument.PageSetup

				.TopMargin	=	num

				.BottomMargin	=	num

				.LeftMargin	=	num

				.RightMargin	=	num

				.Gutter	=	num

				.PageHeight	=	num

				.PageWidth	=	num

				.Orientation	=	WdOrientation

				.FirstPageTray	=	WdPaperTray

				.OtherPagesTray	=	WdPaperTray

				.VerticalAlignment	=	WdVerticalAlignment

				.SetAsTemplateDefault



FirstPage,	OtherPages,
VertAlign,	ApplyPropsTo,
Default,	FacingPages,
HeaderDistance,
FooterDistance,	SectionStart,
OddAndEvenPages,
DifferentFirstPage,	Endnotes,
LineNum,	StartingNum,
FromText,	CountBy,
NumMode

				.MirrorMargins	=	True

				.HeaderDistance	=	num

				.FooterDistance	=	num

				.SectionStart	=	WdSectionStart

				.OddAndEvenPagesHeaderFooter	=	True

				.DifferentFirstPageHeaderFooter	=	True

				.SuppressEndnotes	=	True

				With	LineNumbering

								.Active	=True

								.StartingNumber	=	num

								.DistanceFromText	=	num

								.CountBy	=	num

								.RestartMode	=	WdNumberingRule

				End	With

End	With

FilePreview Image	control
FilePrint ActiveDocument.PrintOut
FilePrintDefault ActiveDocument.PrintOut
FilePrintOneCopy Macintosh	only

FilePrintPreview,
FilePrintPreview()

PrintPreview	=	True

x	=	PrintPreview

PrintPreview	=	True



FilePrintPreviewFullScreen ActiveWindow.View.FullScreen	=	True

FilePrintPreviewPages,
FilePrintPreviewPages()

With	ActiveWindow.View.Zoom

				.PageColumns	=	2

				.PageRows	=	1

End	With

FilePrintSetup ActivePrinter
FileProperties WordBasic.FileProperties
FileQuit Application.Quit

FileRoutingSlip	Subject,
Message,	AllAtOnce,
ReturnWhenDone,
TrackStatus,	Protect

FileRoutingSlip	AddSlip

FileRoutingSlip
RouteDocument

FileRoutingSlip	AddRecipient

FileRoutingSlip	ResetSlip

FileRoutingSlip	ClearSlip

With	ActiveDocument.RoutingSlip

				.Subject	=	text

				.Message	=	text

				.Delivery	=	WdRoutingSlipDelivery

				.ReturnWhenDone	=	True

				.TrackStatus	=	True

				.Protect	=	WdProtectionType

End	With

ActiveDocument.HasRoutingSlip	=	True

ActiveDocument.Route

ActiveDocument.RoutingSlip.AddRecipient

ActiveDocument.RoutingSlip.Reset

ActiveDocument.HasRoutingSlip	=	False



Files$() Dir()
FileSave ActiveDocument.Save
FileSaveAll Documents.Save
FileSaveAs ActiveDocument.SaveAs
FileSendMail ActiveDocument.SendMail

FileSummaryInfo	Title,
Subject,	Author,	Keywords,
Comments,	FileName,
Directory,	Template,
CreateDate,	LastSavedDate,
LastSavedBy,
RevisionNumber,	EditTime,
LastPrintedDate,	NumPages,
NumWords,	NumChars,
NumParas,	NumLines,
FileSize

With	ActiveDocument

				.BuiltInDocumentProperties(wdPropertyTitle)

				.BuiltInDocumentProperties(wdPropertySubject)

				.BuiltInDocumentProperties(wdPropertyLastAuthor)

				.BuiltInDocumentProperties(wdPropertyKeywords)

				.BuiltInDocumentProperties(wdPropertyComments)

				.Name

				.Path

				.BuiltInDocumentProperties(wdPropertyTemplate)

				.BuiltInDocumentProperties(wdPropertyTimeCreated)

				.BuiltInDocumentProperties(wdPropertyTimeLastSaved)

				.BuiltInDocumentProperties(wdPropertyLastAuthor)

				.BuiltInDocumentProperties(wdPropertyRevision)

				.BuiltInDocumentProperties(wdPropertyVBATotalEdit)

				.BuiltInDocumentProperties(wdPropertyTimeLastPrinted)

				.BuiltInDocumentProperties(wdPropertyPages)

				.BuiltInDocumentProperties(wdPropertyWords)

				.BuiltInDocumentProperties(wdPropertyCharacters)



				.BuiltInDocumentProperties(wdPropertyParas)

				.BuiltInDocumentProperties(wdPropertyLines)

				.BuiltInDocumentProperties(wdPropertyBytes)

End	With

FileTemplates ActiveDocument.AttachedTemplate	=	template
FileType$() Macintosh	only

Font,	Font$()
Selection.Font.Name	=	text

x	=	Selection.Font.Name

FontSize,	FontSize()
Selection.Font.Size	=	num

x	=	Selection.Font.Size

FontSizeSelect Application.Run	MacroName:="FontSizeSelect"
FontSubstitution Application.SubstituteFont
For...Next For...Next

FormatAddrFonts

'	Set	properties	of	the	Font	object

With	ActiveDocument.Envelope.Address.Font

				.Size	=	num

				.ColorIndex	=	WdColorIndex

				.Bold	=	True

End	With

FormatAutoFormat ActiveDocument.AutoFormat
With	ActiveDocument.Paragraphs(1).Borders

				.Shadow	=	True

				.DistanceFromBottom	=	num



FormatBordersAndShading
Shadow,	TopBorder,
LeftBorder,	BottomBorder,
RightBorder,	HorizBorder,
VertBorder,	TopColor,
LeftColor,	BottomColor,
RightColor,	HorizColor,
VertColor,	FineShading,
FromText,	Shading,
Foreground,	Background,	Tab

				.DistanceFromTop	=	num

				.DistanceFromLeft	=	num

				.DistanceFromRight	=	num

End	With

With	Selection.Shading

				.Texture	=	WdTextureIndex

				.BackgroundPatternColorIndex	=	WdColorIndex

				.ForegroundPatternColorIndex	=	WdColorIndex

End	With

With	ActiveDocument.Paragraphs(1)

				.Borders(WdBorderType).LineStyle	=	WdLineStyle

				.Borders(WdBorderType).LineWidth	=	WdLineWidth

				.Borders(WdBorderType).ColorIndex	=	WdColorIndex

End	With

With	Dialogs(wdDialogFormatBordersAndShading)

				.DefaultTab	=	WdWordDialogTab

				.Show

End	With

With	ListGalleries(wdBulletGallery).ListTemplates(1).ListLevels(1)

				.NumberFormat	=	ChrW(num)



FormatBullet	Points,	Color,
Alignment,	Indent,	Space,
Hang,	CharNum,	Font

				.NumberStyle	=	wdListNumberStyleBullet

				.NumberPosition	=	num

				.Alignment	=	WdListLevelAlignment

				.TextPosition	=	num

				.TabPosition	=	num

				With	.Font

								.Size	=	num

								.Name	=	text

								.ColorIndex	=	WdColorIndex

				End	With

End	With

FormatBulletDefault,
FormatBulletDefault()

Selection.Range.ListFormat.ApplyBulletDefault

Selection.Range.ListFormat.RemoveNumbers

FormatBulletsAndNumbering
Remove,	Hang,	Preset

Selection.Range.ListFormat.ApplyListTemplate
ListTemplate:=ListGalleries(WdListGalleryType).ListTemplates(

Selection.Range.ListFormat.RemoveNumbers

With	ActiveDocument.Shapes(1).Callout

				.Type	=	MsoCalloutType

				.Gap	=	num

				.Angle	=	MsoCalloutAngleType

				.Drop	=	num



FormatCallout	Type,	Gap,
Angle,	Drop,	Length,	Border,
AutoAttach,	Accent

				.DropType	=	MsoCalloutDropType

				.Length	=	num

				.Border	=	MsoTriState

				.AutoAttach	=	MsoTriState

				.Accent	=	MsoTriState

End	With

FormatChangeCase Selection.Range.Case	=	WdCharacterCase

FormatColumns	Columns,
ColumnWidth,
ColumnSpacing,
EvenlySpaced,	ColLine

With	ActiveDocument.TextColumns

				.SetCount	NumColumns:=num

				.Width	=	num

				.Spacing	=	num

				.EvenlySpaced	=	False

				.LineBetween	=	False

End	With

FormatDefineStyleBorders

'	Set	properties	of	the	Borders	object

With	ActiveDocument.Styles(name).Borders

				.Enable	=	True

				.Shadow	=	True

End	With

'	Set	properties	of	the	Font	object

With	ActiveDocument.Styles(name).Font



FormatDefineStyleFont
				.Bold	=	True

				.Name	=	"Arial"

End	With

FormatDefineStyleFrame

'	Set	properties	of	the	Frame	object

With	ActiveDocument.Styles(name).Frame

				.Width	=	num

				.VerticalPosition	=	num

End	With

FormatDefineStyleLang ActiveDocument.Styles(name).LanguageID	=	WdLanguageID

FormatDefineStyleNumbers

'	Set	properties	of	the	ListLevel	object

With	ActiveDocument.Styles(name).
ListGalleries(WdListGalleryType).ListTemplates(num

				.NumberFormat	=	"%1)"

				.TrailingCharacter	=	wdTrailingTab

				.NumberStyle	=	wdListNumberStyleArabic

End	With

FormatDefineStylePara

'	Set	properties	of	the	ParagraphFormat	object

With	ActiveDocument.Styles(name).ParagraphFormat

				.SpaceAfter	=	num

				.RightIndent	=	num

End	With



FormatDefineStyleTabs

'	Set	properties	of	the	TabStops	object

ActiveDocument.Styles(name).ParagraphFormat.TabStops
WdTabLeader

FormatDrawingObject Set	properties	of	the	Shape	object.

FormatDropCap	Position,
Font,	DropHeight,
DistFromText

With	ActiveDocument.Paragraphs(1).DropCap

				.Position	=	WdDropPosition

				.FontName	=	text

				.LinesToDrop	=	num

				.DistanceFromText	=	num

End	With

FormatFont	Points,
Underline,	Color,
Strikethrough,	Superscript,

With	Selection.Font

				.Size	=	num

				.Underline	=	True

				.ColorIndex	=	WdColorIndex

				.StrikeThrough	=	True

				.Superscript	=	num

				.Subscript	=	num

				.Shadow	=	True

				.Hidden	=	True

				.SmallCaps	=	True

				.AllCaps	=	True

				.Outline	=	True



Subscript,	Shadow,	Hidden,
SmallCaps,	AllCaps,	Outline,
Spacing,	Position,	Kerning,
KerningMin,	Default,	Tab,
Font,	Bold,	Italic

				.Spacing	=	num

				.Position	=	num

				.Kerning	=	num

				.SetAsTemplateDefault

				.Font	=	name

				.Bold	=	True

				.Italic	=	True

End	With

With	Dialogs(wdDialogFormatFont)

				.DefaultTab	=	WdWordDialogTab

				.Show

End	With

FormatFrame	Wrap,
WidthRule,	FixedWidth,
HeightRule,	FixedHeight,
PositionHorz,
PositionHorzRel,
DistFromText,	PositionVert,

With	ActiveDocument.Frames(1)

				.TextWrap	=	True

				.WidthRule	=	WdFrameSizeRule

				.Width	=	num

				.Height	=	num		

				.HeightRule	=	WdFrameSizeRule

				.HorizontalPosition	=	num

				.RelativeHorizontalPosition	=	WdRelativeHorizontalPosition



PositionVertRel,
DistVertFromText,
MoveWithText,	LockAnchor,
RemoveFrame

				.HorizontalDistanceFromText	=	num

				.VerticalPosition	=	num

				.RelativeVerticalPosition	=	WdRelativeVerticalPosition

				.VerticalDistanceFromText	=	num

				.LockAnchor	=	True

				.Delete

End	With

FormatHeaderFooterLink

ActiveDocument.Sections(num).Headers(WdHeaderFooterIndex
=	True

'	or

ActiveDocument.Sections(num).Footers(WdHeaderFooterIndex
=	True

FormatHeadingNumber

With	ListGalleries(WdListGalleryType).ListTemplates(

				'	Set	properties	of	the	ListLevel	object	and	use	the

End	With

FormatHeadingNumbering

'	Set	properties	of	the	ListLevel	object	and	use	the

Set	atemp	=	ListGalleries(wdOutlineNumberGallery).

With	atemp.ListLevels(1)

				.NumberFormat	=	"Chapter	%1"

				.TrailingCharacter	=	wdTrailingNone

				.NumberStyle	=	wdListNumberStyleArabic

End	With



Selection.Range.ListFormat.ApplyListTemplate	ListTemplate:=atemp

FormatMultilevel

'	Set	properties	of	the	ListLevel	object	and	use	the

Set	atemp	=	ListGalleries(wdOutlineNumberGallery).

atemp.ListLevels(1).NumberStyle	=	wdListNumberStyleLowercaseLetter

Selection.Range.ListFormat.ApplyListTemplate	ListTemplate:=atemp

FormatNumber

'	Set	properties	of	the	ListLevel	object	and	use	the

Set	atemp	=	ListGalleries(wdNumberGallery).ListTemplates

With	atemp.ListLevels(1)

				.NumberFormat	=	"%1."

				.TrailingCharacter	=	wdTrailingTab

				.NumberStyle	=	wdListNumberStyleArabic

End	With

Selection.Range.ListFormat.ApplyListTemplate	ListTemplate:=atemp

FormatNumberDefault,
FormatNumberDefault()

Selection.Range.ListFormat.ApplyNumberDefault

Selection.Range.ListFormat.RemoveNumbers

FormatPageNumber
ChapterNumber,	NumRestart,
NumFormat,	StartingNum,
Level,	Separator

With	Section.Footers(wdHeaderFooterPrimary).PageNumbers

				.IncludeChapterNumber	=	True

				.RestartNumberingAtSection	=	True

				.NumberStyle	=	WdPageNumberStyle

				.StartingNumber	=	num



				.HeadingLevelForChapter	=	num

				.ChapterPageSeparator	=	WdSeparatorType

End	With

FormatParagraph	LeftIndent,
RightIndent,	Before,	After,
LineSpacingRule,
LineSpacing,	Alignment,
WidowControl,
KeepWithNext,	KeepTogether,
PageBreak,	NoLineNum,
DontHyphen,	Tab,	FirstIndent

With	ActiveDocument.Paragraphs(1)

				.LeftIndent	=	num

				.RightIndent	=	num

				.SpaceBefore	=	num

				.SpaceAfter	=	num

				.LineSpacingRule	=	WdLineSpacing

				.LineSpacing	=	num

				.Alignment	=	WdParagraphAlignment

				.WidowControl	=	True

				.KeepWithNext	=	True

				.KeepTogether	=	True

				.PageBreakBefore	=	True

				.NoLineNumber	=	True

				.Hyphenation	=	True

				.FirstLineIndent	=	num

End	With

With	Dialogs(wdDialogFormatParagraph)

				.DefaultTab	=	WdWordDialogTab



				.Show

End	With

FormatPicture	SetSize,
CropLeft,	CropRight,
CropTop,	CropBottom,
ScaleX,	ScaleY,	SizeX,	SizeY

With	ActiveDoucment.InlineShapes(1)

				.Width	=	num

				.Height	=	num

				.ScaleHeight	=	num

				.ScaleWidth	=	num

				With	.PictureFormat

								.CropBottom	=	num

								.CropLeft	=	num

								.CropRight	=	num

								.CropTop	=	num

				End	With

End	With

FormatRetAddrFonts

'	Set	properties	of	the	Font	object

With	ActiveDocument.Envelope.ReturnAddress.Font

				.Size	=	num

				.ColorIndex	=	WdColorIndex

				.Bold	=	True

End	With



FormatSectionLayout
SectionStart,	VertAlign,
Endnotes,	LineNum,
StartingNum,	FromText,
CountBy,	NumMode

With	ActiveDocument.PageSetup

				.VerticalAlignment	=	WdVerticalAlignment

				.SectionStart	=	WdSectionStart

				.SuppressEndnotes	=	True

				With	LineNumbering

								.Active	=True

								.StartingNumber	=	num

								.DistanceFromText	=	num

								.CountBy	=	num

								.RestartMode	=	WdNumberingRule

				End	With

End	With

FormatStyle	Name,	Delete,
Merge,	NewName,	BasedOn,
NextStyle,	Type,	FileName,
Source,	AddToTemplate,
Define,	Rename,	Apply

With	ActiveDocument.Styles(name)

				.Delete

				.NameLocal	=	name

				.BaseStyle	=	text

				.NextParagraphStyle	=	style

				x	=	.Type

End	With

Application.OrganizerCopy

With	ActiveDocument



				.UpdateStyles

				.CopyStylesFromTemplate

End	With

ActiveDocument.Styles.Add

Selection.Style	=	name

FormatStyleGallery ActiveDocument.CopyStylesFromTemplate

FormatTabs	Position,
DefTabs,	Align,	Leader,	Set,
Clear,	ClearAll

With	Selection.Paragraphs.TabStops

				.ClearAll

				.Add	Position:=num,	Alignment:=	WdTabAlignment

				.Item(1).Clear

End	With

ActiveDocument.DefaultTabStop

With	ActiveDocument.FormFields(1)

				.EntryMacro	=	text

				.ExitMacro	=	text

				.Name	=	text

				.Enabled	=	True

				.OwnHelp	=	True

				.HelpText	=	text

				.OwnStatus	=	True

				.StatusText	=	text



FormFieldOptions	Entry,
Exit,	Name,	Enable,	TextType,
TextWidth,	TextDefault,
TextFormat,	CheckSize,
CheckWidth,	CheckDefault,
Type,	OwnHelp,	HelpText,
OwnStat,	StatText

				.Type	=	WdFieldType

End	With

With	ActiveDocument.FormFields(1).TextInput

				.Width	=	num

				.Default	=	text

				.EditType

End	With

With	ActiveDocument.FormFields(1).CheckBox

				.Size	=	num

				.AutoSize	=	True

				.Default	=	True

End	With

FormShading ActiveDocument.FormFields.Shaded	=	True
FoundFileName$() Application.FileSearch.FoundFiles	(num)
Function...End	Function Function…End	Function

mk:@MSITStore:vbaof10.chm::/html/ofproFoundFiles.htm


Visual	Basic	Equivalents	G
			

G 	
GetAddInID(name) x	=	Addins(name).Index
GetAddInName$(num) x	=	Addins(num).Name
GetAddress$() x	=	Application.GetAddress
GetAttr(filename) GetAttr(filename)
GetAutoCorrect$(name) x	=	AutoCorrect.Entries(name).Value

GetAutoCorrectException$()
x	=	AutoCorrect.FirstLetterExceptions(num).Name

x	=	AutoCorrect.TwoInitialCapsExceptions(num).

GetAutoText$() x	=
ActiveDocument.AttachedTemplate.AutoTextEntries(

GetBookmark$(name) x	=	ActiveDocument.Bookmarks(name).Range.Text
GetCurValues Dialogs(WdWordDialog).Update
GetDirectory$() x	=	WordBasic.[GetDirectory$]()

GetDocumentProperty(),
GetDocumentProperty$()

x	=	ActiveDocument.CustomDocumentProperties(

'	or

x	=	ActiveDocument.BuiltInDocumentProperties(

GetDocumentVar$(name) x	=	ActiveDocument.Variables(name).Value
GetDocumentVarName$(num) x	=	ActiveDocument.Variables(num).Name
GetFieldData$() x	=	Selection.Fields(1).Data
GetFormResult(),
GetFormResult$() x	=	ActiveDocument.FormFields(name).Result

GetMergeField$() x	=
ActiveDocument.MailMerge.DataSource.DataFields(



GetPrivateProfileString$() x	=	System.PrivateProfileString(filename,	section
GetProfileString$() x	=	System.ProfileString(section,	key)
GetSelEndPos() x	=	Selection.End
GetSelStartPos() x	=	Selection.Start

GetSystemInfo$(21)

GetSystemInfo$(22)

GetSystemInfo$(23)

GetSystemInfo$(24)

GetSystemInfo$(25)

GetSystemInfo$(26)

GetSystemInfo$(27)

GetSystemInfo$(28)

GetSystemInfo$(29)

GetSystemInfo$(30)

GetSystemInfo$(31)

GetSystemInfo$(32)

x	=	System.OperatingSystem

x	=	System.ProcessorType

'	not	available

x	=	System.Version

'	not	available

x	=	System.FreeDiskSpace

'	not	available

x	=	System.MathCoprocessorInstalled

x	=	System.Country

x	=	System.LanguageDesignation

x	=	System.VerticalResolution

x	=	System.HorizontalResolution

Values	512	to	526	are	Macintosh	only.

GetText$(Pos1,	Pos2) x	=	ActiveDocument.Range(Pos1,	Pos2).Text
GoBack Application.GoBack
Goto GoTo
GoToAnnotationScope Selection.Comments(1).Scope.Select

If	Selection.HeaderFooter.IsHeader	=	True	Then

				ActiveWindow.ActivePane.View.SeekView	=
wdSeekCurrentPageFooter



GoToHeaderFooter Else

				ActiveWindow.ActivePane.View.SeekView	=
wdSeekCurrentPageHeader

End	If

GoToNextAnnotation

GoToNextEndnote

GoToNextFootnote

GoToNextPage

GoToNextSection

GoToNextSubdocument

Selection.GoToNext(wdGoToComment)

Selection.GoToNext(wdGoToEndnote)

Selection.GoToNext(wdGoToFootnote)

Selection.GotoNext(wdGoToPage)

Selection.GotoNext(wdGoToSection)

Selection.NextSubdocument

GoToPreviousItem Selection.GoTo	What:=WdGoToItem,	Which:=wdGoToPrevious
GroupBox Frame	control
GrowFont Selection.Font.Grow
GrowFontOnePoint Selection.Font.Size	=	Selection.Font.Size	+	1



Visual	Basic	Equivalents	H
			

H 	
HangingIndent ActiveDocument.Paragraphs(1).TabHangingIndent
Help Assistant.Help
HelpAbout Application.Help	HelpType:=wdHelpAbout

HelpActiveWindow Application.Help
HelpType:=wdHelpActiveWindow

HelpContents Application.Help	HelpType:=wdHelpContents
HelpExamplesAndDemos Not	applicable	in	Word	2002
HelpIndex Application.Help	HelpType:=wdHelpIndex
HelpKeyboard Not	applicable	in	Word	2002
HelpMSN Not	applicable	in	Word	2002
HelpPSSHelp Application.Help	HelpType:=wdHelpPSSHelp
HelpQuickPreview Not	applicable	in	Word	2002
HelpSearch Application.Help	HelpType:=wdHelpSearch
HelpTipOfTheDay Assistant.FeatureTips	=	True
HelpTool Application.HelpTool
HelpUsingHelp Application.Help	HelpType:=wdHelpUsingHelp
HelpWordPerfectHelp Options.WPHelp	=	True
HelpWordPerfectHelpOptions Options.SetWPHelpOptions
Hidden Selection.Font.Hidden	=	True

Highlight,	Highlight()

Selection.Range.HighlightColorIndex	=
WdColorIndex

x	=	Selection.Range.HighlightColorIndex

HighlightColor,
Selection.Range.HighlightColorIndex	=
WdColorIndex



HighlightColor() x	=	Selection.Range.HighlightColorIndex

HLine

ActiveWindow.SmallScroll	ToRight:=num

'	or

ActiveWindow.SmallScroll	ToLeft:=num

Hour() Hour

HPage

ActiveWindow.LargeScroll	ToRight:=num

'	or

ActiveWindow.LargeScroll	ToLeft:=num

HScroll,	HScroll()
ActiveWindow.HorizontalPercentScrolled	=	num

num	=	ActiveWindow.VerticalPercentScrolled



Visual	Basic	Equivalents	I
			

I 	
If...Then...Else If...Then...Else
Indent ActiveDocument.Paragraphs(1).TabIndent
Input Input
Input$() Input()
InputBox$() InputBox

Insert

Selection.InsertAfter	Text:=text

'	or

Selection.TypeText	Text:=text

InsertAddCaption CaptionLabels.Add
InsertAddress Application.GetAddress
InsertAnnotation ActiveDocument.Comments.Add

InsertAutoCaption	Clear,
ClearAll,	Label,	Position

With	AutoCaptions(name)

				.AutoInsert	=	True

				.CaptionLabel.Name	=	text

				.CaptionLabel.Position	=	WdCaptionPosition

End	With

AutoCaptions.CancelAutoInsert

InsertAutoText Selection.Range.InsertAutoText
InsertBreak Selection.InsertBreak	Type:=WdBreakType



InsertCaption Selection.InsertCaption

InsertCaptionNumbering	Label,
FormatNumber,
ChapterNumber,	Level,
Separator

With	CaptionLabels(name)

				.ChapterStyleLevel	=	num

				.Separator	=	WdSeparatorType

				.NumberStyle	=	WdCaptionNumberStyle

				.IncludeChapterNumber	=	True

End	With

InsertChart ActiveDocument.Shapes.AddOLEObject
InsertColumnBreak Selection.InsertBreak	Type:=wdColumnBreak
InsertCrossReference Selection.InsertCrossReference
InsertDatabase Selection.Range.InsertDatabase
InsertDateField Selection.Fields.Add	Range:=range,	Type:=wdFieldDate
InsertDateTime Selection.InsertDateTime
InsertDrawing ActiveDocument.Shapes.AddOLEObject
InsertEquation ActiveDocument.Shapes.AddOLEObject
InsertExcelTable ActiveDocument.Shapes.AddOLEObject
InsertField	field_type ActiveDocument.Fields.Add	Range:=range,	Type:=

InsertFieldChars Selection.Fields.Add	Range:=range,	Type:=wdFieldEmpty,
PreserveFormatting:=False

InsertFile	Name,	Range,
ConfirmConversions,	Link Selection.InsertFile

InsertFootnote	Reference,
NoteType

ActiveDocument.Footnotes.Add	Range:=range,	Text:=

ActiveDocument.Endnotes.Add	Range:=range,	Text:=

Set	myField	=	ActiveDocument.FormFields.Add(Range:=
Type:=WdFieldType)

With	myField

				.EntryMacro	=	text



InsertFormField	Entry,	Exit,
Name,	Enable,	TextType,
TextDefault,	TextWidth,
TextFormat,	CheckSize,
CheckWidth,	CheckDefault,
Type,	OwnHelp,	HelpText,
OwnStat,	StatText

				.ExitMacro	=	text

				.Name	=	text

				.Enabled	=	True

				.OwnHelp	=	True

				.HelpText	=	text

				.OwnStatus	=	True

				.StatusText	=	text

End	With

With	myField.TextInput

				.Width	=	num

				.Default	=	text

				.EditType

End	With

With	myField.CheckBox

				.Size	=	num

				.AutoSize	=	True

				.Default	=	True

End	With

InsertFrame Selection.Frames.Add
InsertIndex ActiveDocument.Indexes.Add
InsertMergeField ActiveDocument.MailMerge.Fields.Add
InsertObject ActiveDocument.Shapes.AddOLEObject



InsertPageBreak Selection.InsertBreak	Type:=wdPageBreak
InsertPageField ActiveDocument.Fields.Add	Range:=range,	Type:=wdFieldPage
InsertPageNumbers ActiveDocument.Sections(1).Footers(wdHeaderFooterPrimary).PageNumbers.

InsertPara

Selection.InsertParagraphAfter

'	or

Selection.TypeParagraph

InsertPicture	Name,	LinkToFile,
New

ActiveDocument.Shapes.AddPicture

ActiveDocument.InlineShapes.New	Range:=range

InsertSectionBreak Selection.Range.InsertBreak	Type:=WdBreakType
InsertSound Selection.InlineShapes.AddOLEObject	ClassType:="SoundRec"
InsertSpike NormalTemplate.AutoTextEntries("Spike").Insert
InsertSubdocument ActiveDocument.Subdocuments.AddFromFile	Range:=
InsertSymbol Selection.InsertSymbol
InsertTableOfAuthorities ActiveDocument.TablesOfAuthorities.Add
InsertTableOfContents ActiveDocument.TablesOfContents.Add
InsertTableOfFigures ActiveDocument.TablesOfFigures.Add
InsertTimeField ActiveDocument.Fields.Add	Range:=range,	Type:=wdFieldTime
InsertWordArt ActiveDocument.Shapes.AddOLEObject
InStr() InStr()
Int() Int()

IsAutoCorrectException()

For	Each	xItem	In	AutoCorrect.FirstLetterExceptions

				If	xItem.Name	=	"apt."	Then	isFound	=	True

Next	xItem

For	Each	aItem	In	AutoCorrect.TwoInitialCapsExceptions

				If	aItem.Name	=	"THem"	Then	aExists	=	True

Next	aItem



IsCustomDocumentProperty()

For	Each	aProp	In	ActiveDocument.CustomDocumentProperties

				If	aProp.Name	=	"age"	Then	isFound	=	True

Next	aProp

IsDocumentDirty() x	=	Not	ActiveDocument.Saved
IsDocumentPropertyReadOnly() x	=	WordBasic.IsDocumentPropertyReadOnly(name
IsExecuteOnly() x	=	ActiveDocument.VBProject.Protection
IsMacro() Not	applicable	in	Word	2002
IsTemplateDirty() x	=	Not	ActiveDocument.AttachedTemplate.Saved
Italic,	Italic() Selection.Font.Italic	=	True



Visual	Basic	Equivalents	J	Through	L
			

J 	

JustifyPara,	JustifyPara() Selection.Paragraphs.Alignment	=
wdAlignParagraphJustify

K 	
KeyCode() x	=	KeyBindings(1).KeyCode

KeyMacro$() x	=
KeyBindings(1).Command

Kill	filename Kill	filename

L 	
Language,	Language$() Selection.LanguageID

LCase$()

LCase()

'	or

LCase$()

Left$()

Left$()

'	or

Left()

LeftPara,	LeftPara() Selection.Paragraphs.Alignment	=
wdAlignParagraphLeft

Len() Len()
Let Let
Line	Input Line	Input

Selection.MoveDown	Unit:=wdLine,	Count:=1,



LineDown,	LineDown() Extend:=wdMove

LineUp,	LineUp() Selection.MoveUp	Unit:=	wdLine,	Count:=1,
Extend:=wdMove

ListBox ListBox	Control
ListCommands Application.ListCommands

LockDocument,
LockDocument()

ActiveDocument.Subdocuments(1).Locked	=	True

state	=	ActiveDocument.Subdocuments(1).Locked

LockFields

'	You	can	lock	a	single	field	or	a	group	of	fields
within	a	range.

Selection.Fields.Locked	=	True

ActiveDocument.Fields(1).Locked	=True

Lof() LOF()
LTrim$() LTrim()



Visual	Basic	Equivalents	M
			

M 	
MacID$() Macintosh	only
MacroCopy Application.OrganizerCopy
MacroDesc$() x	=	WordBasic.[MacroDesc$](name)
MacroFileName$() Not	applicable	in	Word	2002
MacroName$() x	=	WordBasic.[MacroName$](num)
MacroNameFromWindow$() Not	applicable	in	Word	2002
MacScript,	MacScript$() Macintosh	only

Magnifier,	Magnifier()
ActiveWindow.View.Magnifier	=	True

state	=	ActiveWindow.View.Magnifier

MailCheckNames Application.MailMessage.CheckName
MailHideMessageHeader Application.MailMessage.ToggleHeader

MailMerge	CheckErrors,
Destination,	MergeRecords,	From,
To,	Suppression,	MailMerge,
MailSubject,	MailAsAttachment,
MailAddress

With	ActiveDocument.MailMerge

				.Check

				.Destination	=	WdMailMergeDestination

				.DataSource.FirstRecord	=	num

				.DataSource.LastRecord	=	num

				.SuppressBlankLines	=	True

				.MailSubject	=	text

				.MailAsAttachment	=	True



				.MailAddressFieldName	=	text

				.Execute

End	With

MailMergeAskToConvertChevrons,
MailMergeAskToConvertChevrons()

FileConverters.ConvertMacWordChevrons	=
WdChevronConvertRule

state	=	FileConverters.ConvertMacWordChevrons

MailMergeCheck ActiveDocument.MailMerge.Check

MailMergeConvertChevrons,
MailMergeConvertChevrons()

FileConverters.ConvertMacWordChevrons	=
WdChevronConvertRule

state	=	FileConverters.ConvertMacWordChevrons

MailMergeCreateDataSource ActiveDocument.MailMerge.CreateDataSource
MailMergeCreateHeaderSource Documents(name).MailMerge.CreateHeaderSource
MailMergeDataForm ActiveDocument.DataForm

MailMergeDataSource$(0)

MailMergeDataSource$(1)

MailMergeDataSource$(2)

MailMergeDataSource$(3)

x	=	ActiveDocument.MailMerge.DataSource.

x	=
ActiveDocument.MailMerge.DataSource.HeaderSourceName

x	=	ActiveDocument.MailMerge.DataSource.

x	=
ActiveDocument.MailMerge.DataSource.HeaderSourceType

MailMergeEditDataSource Documents(name).MailMerge.EditDataSource
MailMergeEditHeaderSource Documents(1).MailMerge.EditHeaderSource
MailMergeEditMainDocument ActiveDocument.MailMerge.EditMainDocument
MailMergeFindRecord ActiveDocument.MailMerge.DataSource.FindRecord

MailMergeFirstRecord ActiveDocument.MailMerge.DataSource.ActiveRecord
wdFirstRecord

MailMergeFoundRecord() x	=	ActiveDocument.MailMerge.DataSource.
ActiveDocument.MailMerge.DataSource.ActiveRecord



MailMergeGotoRecord,
MailMergeGotoRecord()

num

x	=	ActiveDocument.MailMerge.DataSource.

MailMergeHelper Dialogs(wdDialogMailMergeHelper).Show
MailMergeInsertAsk Documents(name).MailMerge.Fields.AddAsk
MailMergeInsertFillIn Documents(name).MailMerge.Fields.AddFillIn
MailMergeInsertIf ActiveDocument.MailMerge.Fields.AddIf
MailMergeInsertMergeRec ActiveDocument.MailMerge.Fields.AddMergeRec
MailMergeInsertMergeSeq ActiveDocument.MailMerge.Fields.AddMergeSeq
MailMergeInsertNext Documents(1).MailMerge.Fields.AddNext
MailMergeInsertNextIf ActiveDocument.MailMerge.Fields.AddNextIf
MailMergeInsertSet ActiveDocument.MailMerge.Fields.AddSet
MailMergeInsertSkipIf ActiveDocument.MailMerge.Fields.AddSkipIf

MailMergeLastRecord Documents(name).MailMerge.DataSource.ActiveRecord
wdLastRecord

MailMergeMainDocumentType,
MailMergeMainDocumentType()

ActiveDocument.MailMerge.MainDocumentType
WdMailMergeMainDocType

state	=	ActiveDocument.MailMerge.MainDocumentType

MailMergeNextRecord ActiveDocument.MailMerge.DataSource.ActiveRecord
wdNextRecord

MailMergeOpenDataSource Documents(1).MailMerge.OpenDataSource
MailMergeOpenHeaderSource Documents(name).MailMerge.OpenHeaderSource

MailMergePrevRecord ActiveDocument.MailMerge.DataSource.ActiveRecord
wdPreviousRecord

MailMergeQueryOptions ActiveDocument.MailMerge.DataSource.QueryString

MailMergeReset ActiveDocument.MailMerge.MainDocumentType
wdNotAMergeDocument

MailMergeState() theState	=	ActiveDocument.MailMerge.State

MailMergeToDoc Documents(name).MailMerge.Destination	=
wdSendToNewDocument

MailMergeToPrinter ActiveDocument.MailMerge.Destination	=	wdSendToPrinter
MailMergeUseAddressBook Not	applicable	in	Word	2002



MailMergeViewData,
MailMergeViewData()

ActiveDocument.MailMerge.ViewMailMergeFieldCodes
True

x	=	ActiveDocument.MailMerge.ViewMailMergeFieldCodes

MailMessageDelete Application.MailMessage.Delete
MailMessageForward Application.MailMessage.Forward
MailMessageMove Application.MailMessage.DisplayMoveDialog
MailMessageNext Application.MailMessage.GoToNext
MailMessagePrevious Application.MailMessage.GoToPrevious
MailMessageProperties Application.MailMessage.DisplayProperties
MailMessageReply Application.MailMessage.Reply
MailMessageReplyAll Application.MailMessage.ReplyAll
MailSelectNames Application.MailMessage.DisplaySelectNamesDialog

MarkCitation
ActiveDocument.TablesOfAuthorities.MarkCitation

ActiveDocument.TablesOfAuthorities.MarkAllCitations

MarkIndexEntry ActiveDocument.Indexes.MarkEntry
MarkTableOfContentsEntry ActiveDocument.TablesOfContents.MarkEntry
MenuItemMacro$() x	=	CommandBars(name).Controls(num).OnAction
MenuItemText$() x	=	CommandBars(name).Controls(num).Caption
MenuMode WordBasic.MenuMode
MenuText$() x	=	CommandBars.ActiveMenuBar.Controls(

MergeFieldName$(num) x	=
ActiveDocument.MailMerge.DataSource.FieldNames

MergeSubdocument ActiveDocument.Subdocuments.Merge

MicrosoftAccess
WordBasic.MicrosoftAccess

'	or	use	the	technique	shown	in	Microsoft	Excel	example

WordBasic.MicrosoftExcel

'	or

If	Tasks.Exists("Microsoft	Excel")	=	True	Then



MicrosoftExcel

				Tasks("Microsoft	Excel").Activate

				Tasks("Microsoft	Excel").WindowState	=
wdWindowStateMaximize

Else

				Shell	"C:\MSOffice\Excel\Excel.exe"

End	If

MicrosoftFoxPro
WordBasic.MicrosoftFoxPro

'	or	use	the	technique	shown	in	Microsoft	Excel	example

MicrosoftMail
WordBasic.Mail

'	or	use	the	technique	shown	in	Microsoft	Excel	example

MicrosoftPowerPoint
WordBasic.PowerPoint

'	or	use	the	technique	shown	in	Microsoft	Excel	example

MicrosoftProject
WordBasic.Project

'	or	use	the	technique	shown	in	Microsoft	Excel	example

MicrosoftPublisher
WordBasic.Publisher

'	or	use	the	technique	shown	in	Microsoft	Excel	example

MicrosoftSchedule
WordBasic.Schedule

'	or	use	the	technique	shown	in	Microsoft	Excel	example

MicrosoftSystemInfo System.MSInfo

Mid$()

Mid$()

'	or



Mid()

Minute() Minute()
MkDir	path_name MkDir	path_name
Month() Month()
MountVolume Application.MountVolume
MoveButton CommandBars(name).Controls(1).Move
MoveText WordBasic.MoveText

MoveToolbar

With	CommandBars(name)

				.Top	=	num

				.Left	=	num

End	With

CommandBars(name).Position	=	MsoBarPosition

MsgBox,	MsgBox() MsgBox,	MsgBox()



Visual	Basic	Equivalents	N
			

N 	
Name Name
NewToolbar CommandBars.Add

NextCell

Selection.Move	Unit:=wdCell,	Count:=1

'	or

Selection.Cells(1).Next.Select

NextField,	NextField()

Selection.GoToNext	What:=wdGoToField

'	or

Selection.NextField

NextMisspelling Selection.GoToNext	What:=wdGoToSpellingError

NextObject

Selection.GoToNext	What:=wdGoToObject

'	or

Selection.MoveRight	Unit:=wdItem

NextPage,	NextPage()

Selection.GoToNext	What:=wdGoToPage

'	or

ActiveWindow.View.Type	=	wdPrintView

ActiveWindow.PageScroll	Down:=1

x	=



NextTab() ActiveDocument.Paragraphs(1).TabStops(1).Next.Position

NextWindow ActiveWindow.Next.Activate
NormalFontPosition Selection.Font.Position	=	0
NormalFontSpacing Selection.Font.Spacing	=	0
NormalStyle Selection.Style	=	wdStyleNormal

NormalViewHeaderArea
Type,	FirstPage,
OddAndEvenPages,
HeaderDistance,
FooterDistance

With	ActiveDocument.PageSetup

				.DifferentFirstPageHeaderFooter	=	True

				.OddAndEvenPagesHeaderFooter	=	True

				.HeaderDistance	=	num

				.FooterDistance	=	num

End	With

ActiveWindow.View.SeekView	=	WdSeekView

NoteOptions
FootnotesAt,
FootNumberAs,
FootStartingNum,
FootRestartNum,
EndnotesAt,
EndNumberAs,
EndStartingNum,
EndRestartNum

With	ActiveDocument.Footnotes

				.Location	=	WdFootnoteLocation

				.NumberingRule	=	WdNumberingRule

				.NumberStyle	=	WdNoteNumberStyle

				.StartingNumber	=	num

End	With

With	ActiveDocument.Endnotes

				.Location	=	WdEndnoteLocation

				.NumberingRule	=	WdNumberingRule

				.NumberStyle	=	WdNoteNumberStyle



				.StartingNumber	=	num

End	With

Now() Now



Visual	Basic	Equivalents	O	Through
P
			

O 	
OK WordBasic.OK
OKButton CommandButton	control
On	Error On	Error
OnTime Application.OnTime
Open Open
OpenSubdocument ActiveDocument.Subdocuments(name).Open
OpenUpPara Selection.Paragraphs.OpenUp
OptionButton OptionButton	control
OptionGroup Frame	control

Organizer

Application.OrganizerCopy

Application.OrganizerDelete

Application.OrganizerRename

OtherPane ActiveWindow.ActivePane.Next.Activate

Outline,	Outline()
Selection.Font.Outline	=	True

x	=	Selection.Font.Outline

OutlineCollapse ActiveWindow.View.CollapseOutline
OutlineDemote Selection.Paragraphs.OutlineDemote
OutlineExpand ActiveWindow.View.ExpandOutline
OutlineLevel() aLevel	=	Selection.Paragraphs.OutlineLevel

Selection.Range.Relocate



OutlineMoveDown Direction:=wdRelocateDown

OutlineMoveUp Selection.Range.Relocate	Direction:=wdRelocateUp
OutlinePromote Selection.Paragraphs.OutlinePromote

OutlineShowFirstLine,
OutlineShowFirstLine()

ActiveWindow.View.ShowFirstLineOnly	=	True

x	=	ActiveWindow.View.ShowFirstLineOnly

OutlineShowFormat AcitveWindow.View.ShowFormat	=	True
Overtype Options.Overtype	=	True

P 	

PageDown,	PageDown() Selection.MoveDown	Unit:=wdScreen,	Count:=1,
Extend:=wdMove

PageUp,	PageUp() Selection.MoveUp	Unit:=wdScreen,	Count:=1,
Extend:=wdMove

ParaDown,	ParaDown() Selection.MoveDown	Unit:=wdParagraph,	Count:=1,
Extend:=wdMove

ParaKeepLinesTogether,
ParaKeepLinesTogether()

ActiveDocument.Paragraphs(1).KeepTogether	=	True

x	=	ActiveDocument.Paragraphs(1).KeepTogether

ParaKeepWithNext,
ParaKeepWithNext()

ActiveDocument.Paragraphs(1).KeepWithNext	=	True

x	=	ActiveDocument.Paragraphs(1).KeepWithNext

ParaPageBreakBefore,
ParaPageBreakBefore()

ActiveDocument.Paragraphs(1).PageBreakBefore	=	True

x	=	ActiveDocument.Paragraphs(1).PageBreakBefore

ParaUp,	ParaUp() Selection.MoveUp	Unit:=wdParagraph,	Count:=1,
Extend:=wdMove

ParaWidowOrphanControl,
ParaWidowOrphanControl()

ActiveDocument.Paragraphs(1).WidowControl	=	True

x	=	ActiveDocument.Paragraphs(1).WidowControl

PasteButtonImage CommandBars(name).Controls(1).PasteFace	
PasteFormat Selection.PasteFormat

mk:@MSITStore:vbaof10.chm::/html/ofmthPasteFace.htm


PathFromMacPath$() x	=	WordBasic.[PathFromMacPath$](path)
PathFromWinPath$() x	=	WordBasic.[PathFromWinPath$](path)
PauseRecorder WordBasic.PauseRecorder
Picture Image	control

PrevCell,	PrevCell()

Selection.Move	Unit:=wdCell,	Count:=-1

'	or

Selection.Cells(1).Previous.Select

PrevField,	PrevField()

Selection.GoToPrevious	What:=wdGoToField

'	or

Selection.PreviousField

PrevObject

Selection.GoToPrevious	What:=wdGoToObject

'	or

Selection.MoveLeft	Unit:=wdItem

PrevPage,	PrevPage()

Selection.GoToPrevious	What:=wdGoToPage

'	or

ActiveWindow.View.Type	=	wdPrintView

ActiveWindow.PageScroll	Up:=1

PrevTab() x	=
ActiveDocument.Paragraphs(1).TabStops(1).Previous

PrevWindow ActiveWindow.Previous.Activate
Print Print
PromoteList Selection.Range.ListFormat.ListIndent
PushButton CommandButton	control
PutFieldData ActiveDocument.Fields(1).Data	=	text





Visual	Basic	Equivalents	R
			

R 	
Read Input	#
Redim ReDim
REM REM
RemoveAllDropDownItems ActiveDocument.FormFields(1).DropDown.ListEntries.
RemoveBulletsNumbers Selection.Range.ListFormat.RemoveNumbers
RemoveDropDownItem ActiveDocument.FormFields(1).DropDown.ListEntries(1).

RemoveFrames

While	Selection.Frames.Count	>	0

				Selection.Frames(1).Delete

Wend

RemoveSubdocument ActiveDocument.Subdocuments(1).Delete

RenameMenu CommandBars.ActiveMenuBar.Controls(name).Caption	=
newname

RepeatFind Application.Run	MacroName:="RepeatFind"
ResetButtonImage CommandBars(name).Controls(1).Reset
ResetChar,	ResetChar() Selection.Font.Reset

ResetNoteSepOrNotice

ActiveDocument.Endnotes.ResetContinuationNotice

ActiveDocument.Footnotes.ResetContinuationNotice

ActiveDocument.Endnotes.ResetContinuationSeparator

ActiveDocument.Footnotes.ResetContinuationSeparator

ResetPara,	ResetPara() Selection.Paragraphs.Reset
Right()



Right$()
'	or

Right$()

RightPara,	RightPara() Selection.Paragraphs.Alignment	=	wdAlignParagraphRight
RmDir	path RmDir	path
Rnd(number) Rnd(number)

RTrim$()

RTrim()

'	or

RTrim$()

RunPrintManager Not	available



Visual	Basic	Equivalents	S
			

S 	

SaveTemplate

ActiveDocument.AttachedTemplate.Save

'	or

Templates(name).Save

ScreenRefresh Application.ScreenRefresh
ScreenUpdating,
ScreenUpdating() Application.ScreenUpdating	=	True

Second(time) Second(time)
Seek	filenumber,	position

Seek(filenumber)

Seek[#]filenumber,position

Seek(filenumber)

Select	Case Select	Case
SelectCurAlignment Selection.SelectCurrentAlignment
SelectCurColor Selection.SelectCurrentColor
SelectCurFont Selection.SelectCurrentFont
SelectCurIndent Selection.SelectCurrentIndent
SelectCurSentence Selection.Sentences(1).Select
SelectCurSpacing Selection.SelectCurrentSpacing
SelectCurTabs Selection.SelectCurrentTabs
SelectCurWord Selection.Words(1).Select
Selection$() text	=	Selection.Text
SelectionFileName$() aFileName	=	Selection.Document.FullName
SelInfo(Type) x	=	Selection.Information(WdInformation)
SelType() aType	=	Selection.Type(Type)



SelType	1 Selection.Collapse	Direction:=wdCollapseStart

SendKeys	keys,	wait SendKeys	keys,	wait

SentLeft	1,1 Selection.Sentences(1).Previous(Unit:=wdSentence,
Count:=1).Select

SentRight	1,	1 Selection.Sentences(1).Next(Unit:=wdSentence,
Count:=1).Select

SetAttr	filename,	attribute SetAttr	filename,	attribute
SetAutoText Templates(name).AutoTextEntries.Add
SetDocumentDirty	1 ActiveDocument.Saved	=	False

SetDocumentProperty

ActiveDocument.BuiltInDocumentProperties.Add

'	or

ActiveDocument.CustomDocumentProperties.Add

SetDocumentPropertyLink
name,	source

ActiveDocument.CustomDocumentProperties(name).LinkSource
=	source

SetDocumentVar	name,
value ActiveDocument.Variables.Add	name,	value

SetEndOfBookmark	name

SetEndOfBookmark
name1,	name2

range.Bookmarks(name).Start	=	range.Bookmarks(name

ActiveDocument.Bookmarks(name1).End	=
ActiveDocument.Bookmarks(name2).End

SetFileCreatorAndType Macintosh	only
SetFormResult	name,
"text"

SetFormResult	name,	1

SetFormResult	name,	num

SetFormResult	name,	,
default

ActiveDocument.FormFields(name).Result	=	"text"

ActiveDocument.FormFields(name).CheckBox.Value

ActiveDocument.FormFields(name).DropDown.Value

Use	the	Default	property	with	a	CheckBox,	DropDown	or
TextInput	object.

SetPrivateProfileString



section,	key,	setting,
filename

System.PrivateProfileString(filename,	section,	key)	=	

SetProfileString	section,
key,	setting System.ProfileString(section,	key)	=	setting

SetSelRange	charpos1,
charpos2 ActiveDocument.Range(Start:=charpos1,	End:=charpos2

SetStartOfBookmark
name

SetStartOfBookmark
book1,	book2

range.Bookmarks(name).End	=	range.Bookmarks(name

ActiveDocument.Bookmarks(book1).Start	=
ActiveDocument.Bookmarks(book2).Start

SetTemplateDirty	0

Documents(name).AttachedTemplate.Saved	=	True

'	or

Templates(name).Saved	=	True

Sgn() Sgn()
ShadingPattern,
ShadingPattern() Selection.Shading.Texture	=	WdTextureIndex

Shadow,	Shadow()
Selection.Font.Shadow	=	True

x	=	Selection.Font.Shadow

Shell Shell

ShowAll,	ShowAll()
Windows(1).View.ShowAll	=	True

x	=	ActiveWindow.View.ShowAll

ShowAllHeadings ActiveWindow.View.ShowAllHeadings
ShowAnnotationBy	name ActiveDocument.Comments.ShowBy	=	name
ShowClipboard Application.ShowClipboard
ShowHeadingNumber Windows(name).View.ShowHeading	Level:=num
ShowMe Application.ShowMe
ShowNextHeaderFooter ActiveWindow.View.NextHeaderFooter
ShowPrevHeaderFooter ActiveWindow.View.PreviousHeaderFooter



ShowVars Add	a	watch	expression	in	the	Visual	Basic	Editor
ShrinkFont Selection.Font.Shrink
ShrinkFontOnePoint Selection.Font.Size	=	Selection.Font.Size	-	1
ShrinkSelection Selection.Shrink
SizeToolbar	name,	width CommandBars(name).Width	=	num
SkipNumbering,
SkipNumbering() Selection.Range.ListFormat.RemoveNumbers

SmallCaps,	SmallCaps() Selection.Font.SmallCaps	=	True
SortArray WordBasic.SortArray

SpacePara1,	SpacePara1()
Selection.Paragraphs.Space1

x	=	Selection.Paragraphs.LineSpacing

SpacePara15,
SpacePara15()

Selection.Paragraphs.Space15

x	=	Selection.Paragraphs.LineSpacing

SpacePara2,	SpacePara2()
Selection.Paragraphs.Space2

x	=	Selection.Paragraphs.LineSpacing

SpellChecked,
SpellChecked()

ActiveDocument.Content.SpellingChecked	=	True

x	=	ActiveDocument.Content.SpellingChecked

Spike NormalTemplate.AutoTextEntries.AppendToSpike
SplitSubdocument ActiveDocument.Subdocuments(1).Split	Range:=range
StartOfColumn,
StartOfColumn() Selection.StartOf	Unit:=wdColumn,	Extend:=wdMove

StartOfDocument,
StartOfDocument() Selection.HomeKey	Unit:=wdStory,	Extend:=wdMove

StartOfLine,	StartOfLine() Selection.HomeKey	Unit:=wdLine,	Extend:=wdMove
StartOfRow,	StartOfRow() Selection.StartOf	Unit:=wdRow,	Extend:=wdMove
StartOfWindow,
StartOfWindow() Selection.MoveUp	Unit:=wdWindow

Stop Stop



Str$(number)
Str(number)

Str$(number)

Strikethrough,
Strikethrough() Selection.Font.StrikeThrough	=	True

String$(count,	character)
String(count,	character)

String$(count,	character)

Style Selection.Style	=	wdStyleHeading1
StyleDesc$() x	=	Selection.Style.Description
StyleName$() x	=	Selection.Style.NameLocal
Sub...End	Sub Sub...End	Sub

Subscript,	Subscript()
Selection.Font.Subscript	=	True

x	=	Selection.Font.Subscript

Superscript,	Superscript()
Selection.Font.Superscript	=	True

x	=	Selection.Font.Superscript

SymbolFont Selection.Font.Name	=	"Symbol"



Visual	Basic	Equivalents	T
			

T 	
TabLeader$(pos) aType	=	Selection.Paragraphs(num).TabStops(pos
TableAutoFormat ActiveDocument.Tables(1).AutoFormat
TableAutoSum ActiveDocument.Tables(1).Cell(row,	column).AutoSum
TableColumnWidth
ColumnWidth,	RulerStyle

TableColumnWidth	AutoFit

TableColumnWidth	NextColumn

TableColumnWidth	PrevColumn

TableColumnWidth
SpaceBetweenCols

ActiveDocument.Tables(1).Columns.SetWidth
Rulerstyle:=wdRulerStyle

ActiveDocument.Tables(1).Columns.AutoFit

Selection.Columns(1).Next.Select

Selection.Columns(1).Previous.Select

ActiveDocument.Tables(1).Rows.SpaceBetweenColumns

TableDeleteCells	ShiftCells ActiveDocument.Tables(1).Cell(row,	column).Delete

TableDeleteColumn

ActiveDocument.Tables(1).Columns(num).Delete

'	or

ActiveDocument.Tables(1).Columns.Delete

TableDeleteRow

ActiveDocument.Tables(1).Rows(num).Delete

'	or

ActiveDocument.Tables(1).Rows.Delete

TableFormula ActiveDocument.Tables(1).Cell(row,	column).Formula



TableGridlines,	TableGridlines() ActiveWindow.View.TableGridlines	=	True

x	=	ActiveWindow.View.TableGridlines

TableHeadings,	TableHeadings()

Selection.Tables(1).Rows(num).HeadingFormat

'	or

Selection.Tables(1).Rows.HeadingFormat	=	True

x	=	Selection.Tables(1).Rows.HeadingFormat

TableInsertCells Selection.Tables(1).Columns(num).Cells.Add
TableInsertColumn Selection.Tables(1).Columns.Add
TableInsertRow Selection.Tables(1).Rows.Add
TableInsertTable	NumColumns,
NumRows

TableInsertTable	NumColumns,
NumRows,	Format,	Apply

TableInsertTable	NumColumns,
NumRows,	ConvertFrom

ActiveDocument.Tables.Add	Range:=range,	NumRows:=

ActiveDocument.Tables.Add(Range:=range,	NumRows:=
NumColumns:=num).AutoFormat

Selection.ConvertToTable	Separator:=WdTableFieldSeparator
NumColumns:=num

TableMergeCells Selection.Cells.Merge

TableRowHeight	RulerStyle,
LineSpacingRule,	LineSpacing,
LeftIndent,	Alignment,
AllowRowSplit

TableRowHeight	NextColumn

TableRowHeight	PrevColumn

With	ActiveDocument.Tables(num).Rows(num

				.SetHeight	RowHeight:=	num,	HeightRule:=

				.Alignment	=	WdRowAlignment

				.SetLeftIndent	LeftIndent:=num,	RulerStyle:=

				.AllowBreakAcrossPages	=	True

End	With

Selection.Rows(1).Next.Select

Selection.Rows(1).Previous.Select



TableSelectColumn Selection.Tables(1).Columns(num).Select
TableSelectRow Selection.Tables(1).Rows(num).Select
TableSelectTable ActiveDocument.Tables(1).Select
TableSort ActiveDocument.Tables(1).Sort
TableSortAToZ ActiveDocument.Tables(1).SortAscending
TableSortZToA ActiveDocument.Tables(1).SortDescending
TableSplit Selection.Tables(1).Split
TableSplitCells Selection.Tables(1).Cells(row,	column).Split
TableToText Selection.Tables(1).ConvertToText
TableUpdateAutoFormat Selection.Tables(1).UpdateAutoFormat
TabType() x	=	Selection.ParagraphFormat.TabStops(1).Alignment
Text Label	control
TextBox TextBox	control
TextFormField ActiveDocument.FormFields.Add	Range:=range
TextToTable] Selection.ConvertToTable

Time$()

Time()

'	or

Time$()

TimeSerial() TimeSerial
TimeValue() TimeValue

TipWizard

No	direct	equivalent

'	displays	a	special	tip	when	Word	is	launched

Assistant.FeatureTips	=	True

Today()
Dim	x	As	Long

x	=	DateSerial(Year(Date),	Month(Date),	Day(Date))

ToggleFieldDisplay Selection.Fields.ToggleShowCodes
ToggleFull ActiveWindow.View.FullScreen	=	Not	ActiveWindow.View.FullScreen



ToggleHeaderFooterLink ActiveDocument.Sections(2).Headers(wdHeaderFooterPrimary).

ToggleMainTextLayer ActiveWindow.View.ShowMainTextLayer	=	Not
ActiveWindow.View.ShowMainTextLayer

TogglePortrait ActiveDocument.PageSetup.TogglePortrait
ToggleScribbleMode WordBasic.ToggleScribbleMode
ToolbarButtonMacro$() x	=	CommandBars(name).Controls(1).OnAction
name	=	ToolbarName$() name	=	CommandBars(num).Name
ToolbarState(name) CommandBars(name).Visible	=	True

ToolsAddRecordDefault

WordBasic.ToolsAddRecordDefault

'	or	if	the	data	source	is	a	Word	table

Selection.Tables(1).Cell(Row:=Selection.Information(wdMaximumNumberOfRows),
_

				Column:=Selection.Information(wdMaximumNumberOfColumns)).Select

Selection.MoveRight	Unit:=wdCell

ToolsAdvancedSettings Not	available	with	any	32-bit	version	of	Windows	or	later.

ToolsAutoCorrect	InitialCaps,
SentenceCaps,	Days,	CapsLock,
ReplaceText

ToolsAutoCorrect	SmartQuotes

ToolsAutoCorrect	Formatting,
Replace,	With,	Add

ToolsAutoCorrect	Formatting,
Replace,	With,	Add

ToolsAutoCorrect	.Replace	=
text,	.Delete

With	AutoCorrect

				.CorrectInitialCaps	=	True

				.CorrectSentenceCaps	=	True

				.CorrectDays	=	True

				.CorrectCapsLock	=	True

				.ReplaceText	=	True

End	with

Options.AutoFormatAsYouTypeReplaceQuotes

AutoCorrectEntries.AddRichText	Name:=	text,	Range:=

AutoCorrectEntries.Add	Name:=	text,	Value:=	



AutoCorrectEntries(name).Delete

ToolsAutoCorrectCapsLockOff,
ToolsAutoCorrectCapsLockOff() AutoCorrect.CorrectCapsLock	=	True

ToolsAutoCorrectDays,
ToolsAutoCorrectDays() AutoCorrect.CorrectDays	=	True

ToolsAutoCorrectExceptions	Tab
=	0,	Name,	Add

ToolsAutoCorrectExceptions	Tab
=	1,	Name,	Add

ToolsAutoCorrectExceptions	Tab
=	0,	AutoAdd

ToolsAutoCorrectExceptions	Tab
=	1,	AutoAdd

ToolsAutoCorrectExceptions	Tab
=	0,	Name,	.Delete

ToolsAutoCorrectExceptions	Tab
=	1,	Name,	Delete

FirstLetterExceptions.Add	name

TwoInitialCapsExceptions.Add	name

AutoCorrect.FirstLetterAutoAdd	=	True

AutoCorrect.TwoInitialCapsAutoAdd	=	True

FirstLetterExceptions(name).Delete

TwoInitialCapsExceptions(name).Delete

ToolsAutoCorrectInitialCaps,
ToolsAutoCorrectInitialCaps() AutoCorrect.CorrectInitialCaps	=	True

ToolsAutoCorrectReplaceText,
ToolsAutoCorrectReplaceText() AutoCorrect.ReplaceText	=	True

ToolsAutoCorrectSentenceCaps,
ToolsAutoCorrectSentenceCaps() AutoCorrect.CorrectSentenceCaps	=	True

ToolsAutoCorrectSmartQuotes,
ToolsAutoCorrectSmartQuotes() Options.AutoFormatAsYouTypeReplaceQuotes

ToolsBulletListDefault Selection.Range.ListFormat.ApplyBulletDefault
With	ListGalleries(wdNumberGallery).ListTemplates

				.NumberFormat	=	"%1."

				.TrailingCharacter	=	WdTrailingCharacter



ToolsBulletsNumbers	Replace,
Font,	CharNum,	Type,
FormatOutline,	AutoUpdate,
FormatNumber,	Punctuation,
StartAt,	Points,	Hang,	Indent,
Remove

				.NumberStyle	=	WdListNumberStyle

				.Alignment	=	WdListLevelAlignment

				.TextPosition	=	InchesToPoints(num)

				.TabPosition	=	InchesToPoints(num)

				.ResetOnHigher	=	True

				.StartAt	=	num

				.Font.Size	=	num

End	With

Selection.Range.ListFormat.ApplyListTemplate

								ListTemplate:=ListGalleries(wdNumberGallery).ListTemplates(1)

ToolsCalculate,	ToolsCalculate() Selection.Range.Calculate
ToolsCompareVersions ActiveDocument.Compare
ToolsCreateEnvelope
PrintEnvLabel

ToolsCreateEnvelope
AddToDocument

ActiveDocument.Envelope.Insert

ActiveDocument.Envelope.PrintOut

ToolsCreateLabels
PrintEnvLabel

ToolsCreateLabels
AddToDocument

Application.MailingLabel.PrintOut

Application.MailingLabel.CreateNewDocument

ToolsCustomize	Tab

With	Dialogs(WdWordDialog)

				.DefaultTab	=	WdWordDialogTab

				.Show



End	With

ToolsCustomizeKeyboard
KeyCode,	KeyCode2,	Category,
Name,	Add,	Remove,	ResetAll,
CommandValue,	Context

CustomizationContext	=	template	or	document

KeyBindings.Add

CustomizationContext	=	template	or	document

FindKey(BuildKeyCode(Wdkey,	Wdkey)).Disable

CustomizationContext	=	template	or	document

KeyBindings.ClearAll

ToolsCustomizeMenuBar
Context,	Position,	MenuType,
MenuText,	Menu,	Add,	Remove,
Rename

CustomizationContext	=	template	or	document

CommandBars(name).Delete

CommandBars.Add

CommandBars(name).Name	=	text

ToolsCustomizeMenus
MenuType,	Position,	Category,
Name,	Menu,	AddBelow,
MenuText,	Rename,	Add,
Remove,	ResetAll,
CommandValue,	Context

CustomizationContext	=	template	or	document

CommandBars(name).Controls(num).Delete

CommandBars(name).Controls.Add	Type:=msoControlButton,	ID:=
Before:=num

CommandBars(name).Controls(num).Caption	=	

ToolsGetSpelling,
ToolsGetSpelling() GetSpellingSuggestions

ToolsGetSynonyms,
ToolsGetSynonyms() SynonymInfo

ToolsGrammar ActiveDocument.CheckGrammar
'	enumerate	the	ReadabilityStatistics	collection

i	=	1



ToolsGrammarStatisticsArray
For	Each	aStat	In	ActiveDocument.ReadabilityStatistics

				aArray(i)	=	aStat.Value

				i	=	i	+	1

Next	aStat

ToolsHyphenation
AutoHyphenation,
HyphenateCaps,
HyphenationZone,
LimitConsecutiveHyphens

With	ActiveDocument

				.AutoHyphenation	=	True

				.HyphenateCaps	=	True

				.HyphenationZone	=	num

				.ConsecutiveHyphensLimit	=	num

End	With

ToolsHyphenationManual ActiveDocument.ManualHyphenation

ToolsLanguage	Language,
Default

Selection.Range.LanguageID	=	WdLanguageID

ActiveDocument.Styles(wdStyleNormal).LanguageID	=	

ToolsMacro	Name,	Run,	Edit,

Application.Run

Application.OrganizerDelete

Application.OrganizerRename

With	Dialogs(wdDialogToolsMacro)

				.Show	=	"templateName"

				.Name	=	"macroName"

				.Edit	=	True

				.Execute



Show,	Delete,	Rename,
Description,	NewName,	SetDesc

End	With

With	Dialogs(wdDialogToolsMacro)

				.Show	=	"templateName"

				.Name	=	"macroName"

				.Description	=	"newDescription"

				.SetDesc	=	True

				.Execute

End	With

ToolsManageFields Application.Run	MacroName:="ToolsManageFields"
ToolsMergeRevisions ActiveDocument.Merge	FileName:=name
ToolsNumberListDefault Selection.Range.ListFormat.ApplyNumberDefault
ToolsOptions Dialogs(WdWordDialog).Show

ToolsOptionsAutoFormat
PreserveStyles,
ApplyStylesHeadings,
ApplyStylesLists,
ApplyStylesOtherParas,
ReplaceQuotes,	ReplaceSymbols,
ApplyBulletedLists,
ReplaceOrdinals,
ReplaceFractions,
ShowOptionsFor

ToolsOptionsAutoFormat
ApplyBorders,

With	Options

				.AutoFormatPreserveStyles	=	True

				.AutoFormatApplyHeadings	=	True

				.AutoFormatApplyLists	=	True

				.AutoFormatApplyOtherParas	=	True

				.AutoFormatReplaceQuotes	=	True

				.AutoFormatReplaceSymbols	=	True

				.AutoFormatApplyBulletedLists	=	True

				.AutoFormatReplaceOrdinals	=	True

				.AutoFormatReplaceFractions	=	True



ApplyBulletedLists,
ApplyStylesHeadings,
ApplyNumberedLists,
ReplaceFractions,
ReplaceOrdinals,
ReplaceQuotes,	ReplaceSymbols,
ShowOptionFor

There	is	no	Visual	Basic
equivalent	for	the	following
arguments:	AdjustParaMarks,
AdjustTabsSpaces,
ReplaceBullets,
AdjustEmptyParas.

End	With

With	Options

				.AutoFormatAsYouTypeApplyBorders	=	True

				.AutoFormatAsYouTypeApplyBulletedLists

				.AutoFormatAsYouTypeApplyHeadings	=	True

				.AutoFormatAsYouTypeApplyNumberedLists

				.AutoFormatAsYouTypeReplaceFractions	=	True

				.AutoFormatAsYouTypeReplaceOrdinals	=	True

				.AutoFormatAsYouTypeReplaceQuotes	=	True

				.AutoFormatAsYouTypeReplaceSymbols	=	True

End	With

ToolsOptionsCompatibility ActiveDocument.Compatibility	Type:=WdCompatibility

ToolsOptionsEdit
ReplaceSelection,	DragAndDrop,
AutoWordSelection,	InsForPaste,
Overtype,	SmartCutPaste,
AllowAccentedUppercase,
PictureEditor,	TabIndent

With	Options

				.ReplaceSelection	=	True

				.AllowDragAndDrop	=	True

				.AutoWordSelection	=	True

				.INSKeyForPaste	=	True

				.Overtype	=	True

				.SmartCutPaste	=	True

				.AllowAccentedUppercase	=	True

				.PictureEditor	=	text



				.TabIndentKey	=	True

End	With

ToolsOptionsFileLocations Options.DefaultFilePath(WdDefaultFilePath)	=	

ToolsOptionsGeneral	Pagination,
WPHelp,	WPDocNavKeys,
BlueScreen,	ErrorBeeps,
UpdateLinks,	SendMailAttach,
Units,	ButtonFieldClicks,
ShortMenuNames,
RTFInClipboard,
ConfirmConversions,
TipWizardActive,	RecentFiles,
RecentFileCount

With	Options

				.Pagination	=	True

				.WPHelp	=	True

				.WPDocNavKeys	=	True

				.BlueScreen	=	True

				.EnableSound	=	True

				.UpdateLinksAtOpen	=	True

				.SendMailAttach	=	True

				.MeasurementUnit	=	WdUnits

				.ButtonFieldClicks	=	num

				.ShortMenuNames	=	True

				.RTFInClipboard	=	True

				.ConfirmConversions	=	True

End	With

Assistant.ActivateWizard

With	Application

				.DisplayRecentFiles	=	True

				.RecentFiles.Maximum	=	num

mk:@MSITStore:vbaof10.chm::/html/ofmthActivateWizard.htm


End	With

ToolsOptionsGrammar	Options,
CheckSpelling,	ShowStatistics

With	Options

				.CheckGrammarWithSpelling	=	True

				.ShowReadabilityStatistics	=	True

End	With

ActiveDocument.ActiveWritingStyle(language

ToolsOptionsPrint	Draft,
Reverse,	UpdateFields,
Summary,	ShowCodes,
Annotations,	ShowHidden,
EnvFeederInstalled,
UpdateLinks,	Background,
DrawingObjects,	DefaultTray,
FormsData,	FractionalWidths,
PSOverText

With	Options

				.PrintDraft	=	True

				.PrintReverse	=	True

				.UpdateFieldsAtPrint	=	True

				.PrintProperties	=	True

				.PrintFieldCodes	=	True

				.PrintComments	=	True

				.PrintHiddenText	=	True

				.EnvelopeFeederInstalled	=	True

				.UpdateLinksAtPrint	=	True

				.PrintBackground	=	True

				.PrintDrawingObjects	=	True

				.DefaultTray	=	text

				.DefaultTrayID	=	WdPaperTray

End	With



With	ActiveDocument

				.PrintFormsData	=	True

				.PrintFractionalWidths	=	True

				.PrintPostScriptOverText	=	True

End	With

ToolsOptionsRevisions
InsertedTextMark,
DeletedTextMark,
RevisedLinesMark,
InsertedTextColor,
DeletedTextColor,
RevisedLinesColor,
HighlightColor

With	Options

				.InsertedTextMark	=	WdInsertedTextMark

				.DeletedTextMark	=	WdDeletedTextMark

				.RevisedLinesMark	=	WdRevisedLinesMark

				.InsertedTextColor	=	WdColorIndex

				.DeletedTextColor	=	WdColorIndex

				.RevisedLinesColor	=	WdColorIndex

				.DefaultHighlightColorIndex	=	WdColorIndex

End	With

ToolsOptionsSave	CreateBackup,
FastSaves,	SummaryPrompt,
GlobalDotPrompt,

With	Options

				.CreateBackup	=	True

				.AllowFastSave	=	True

				.SavePropertiesPrompt	=	True

				.SaveNormalPrompt	=	True

				.BackgroundSave	=	True



NativePictureFormat,	AutoSave,
SaveInterval

ToolsOptionsSave	FormsData,
Password,	WritePassword,
RecommendReadOnly,
EmbedFonts

				.SaveInterval	=	number

End	With

With	ActiveDocument

				.SaveFormsData	=	True

				.Password	=	text

				.WritePassword	=	text

				.ReadOnlyRecommended	=	True

				.EmbedTrueTypeFonts	=	True

End	With

ToolsOptionsSpelling
AlwaysSuggest,
SuggestFromMainDictOnly,
IgnoreAllCaps,
IgnoreMixedDigits,
ResetIgnoreAll,	Type,
CustomDictn,
AutomaticSpellChecking,
HideSpellingErrors,
RecheckDocument

With	Options

				.SuggestSpellingCorrections	=	True

				.SuggestFromMainDictionaryOnly	=	True

				.IgnoreUppercase	=	True

				.IgnoreMixedDigits	=	True

				.CheckSpellingAsYouType	=	True

End	With

With	ActiveDocument

				.SpellingChecked	=	False

				.ShowSpellingErrors	=	True

End	With

Application.ResetIgnoreAll



Languages(wdLanguageID).SpellingDictionaryType

CustomDictionaries.Add

ToolsOptionsUserInfo	Name,
Initials,	Address

With	Application

				.UserName	=	text

				.UserInitials	=	text

				.UserAddress	=	text

End	With

ToolsOptionsView	DraftFont,
WrapToWindow,
PicturePlaceHolders,
FieldCodes,	BookMarks,
FieldShading,	Hscroll,	Vscroll,
StyleAreaWidth,	Tabs,	Spaces,
Paras,	Hyphens,	Hidden,
ShowAll,	Drawings,	Anchors,
TextBoundaries,	Vruler,
Highlight

With	ActiveWindow.View

				.Draft	=	True

				.WrapToWindow	=	True

				.ShowPicturePlaceHolders	=	True

				.ShowFieldCodes	=	True

				.ShowBookmarks	=	True

				.FieldShading	=	WdFieldShading

				.Parent.DisplayHorizontalScrollBar	=	True

				.Parent.DisplayVerticalScrollBar	=	True

				.Parent.StyleAreaWidth	=	num

				.ShowTabs	=	True

				.ShowSpaces	=	True

				.ShowParagraphs	=	True

				.ShowHyphens	=	True



ToolsOptionsView	StatusBar 				.ShowHiddenText	=	True

				.ShowAll	=	True

				.ShowDrawings	=	True

				.ShowObjectAnchors	=	True

				.ShowTextBoundaries	=	True

				.Parent.DisplayVerticalRuler	=	True

				.ShowHighlight	=	True

End	With

Application.DisplayStatusBar	=	True

ToolsProtectDocument ActiveDocument.Protect
ToolsProtectSection	Protect,
Section ActiveDocument.Sections(num).ProtectedForForms

ToolsRemoveRecordDefault

WordBasic.ToolsRemoveRecordDefault

'	or	if	the	data	source	is	a	Word	table

Selection.Tables(1).Rows(1).Delete

ToolsRepaginate ActiveDocument.Repaginate

ToolsReviewRevisions
ShowMarks,	HideMarks,	Wrap,
FindPrevious,	FindNext,
AcceptRevisions,	RejectRevisions

ActiveDocument.ShowRevisions	=	True

Selection.NextRevision

Selection.PreviousRevision

Selection.Range.Revisions.AcceptAll

Selection.Range.Revisions.RejectAll

ToolsRevisionAuthor$() anAuthor	=	Selection.Range.Revisions(1).Author



ToolsRevisionDate$() aDate	=	ActiveDocument.Revisions(1).Date

ToolsRevisions	MarkRevisions,
ViewRevisions,	PrintRevisions,
AcceptAll,	RejectAll

With	ActiveDocument

				.TrackRevisions	=	True

				.PrintRevisions	=	True

				.ShowRevisions	=	True

End	With

With	Selection.Range.Revisions

				.AcceptAll

				.RejectAll

End	With

ToolsRevisionType() aType	=	ActiveDocument.Revisions(1).Type
ToolsShrinkToFit ActiveDocument.FitToPages
ToolsSpelling ActiveDocument.CheckSpelling
ToolsSpellingRecheckDocument ActiveDocument.SpellingChecked	=	False
ToolsSpellSelection Selection.Range.CheckSpelling
ToolsThesaurus Selection.Range.CheckSynonyms
ToolsUnprotectDocument ActiveDocument.UnProtect(Password:=text)
ToolsWordCount
CountFootnotes,	Pages,	Words,
Characters,	Paragraphs,	Lines

ActiveDocument.ComputeStatistics	Statistic:=
IncludeFootnotesAndEndnotes:=True



Visual	Basic	Equivalents	U	Through
V
			

U 	

UCase$(string)

UCase(string)

'	or

UCase$(string)

Underline,
Underline()

ActiveDocument.Words(1).Underline	=	True

status	=	Selection.Font.Underline

UnHang ActiveDocument.Paragraphs(1).TabHangingIndent
Count:=-1

UnIndent Selection.Paragraphs.TabIndent	Count:=-1

UnlinkFields
Selection.Range.Fields.Unlink

ActiveDocument.Fields(num).Unlink

UnlockFields
Selection.Paragraphs(1).Range.Fields.Locked	=	False

ActiveDocument.Fields(num).Locked	=	False

UpdateFields
ActiveDocument.Sections(1).Range.Fields.Update

ActiveDocument.Fields(num).Update

UpdateSource
ActiveDocument.Paragraphs(1).Range.Fields.UpdateSource

ActiveDocument.Fields(num).UpdateSource



V 	
Val(text) Val(text)

ViewAnnotations ActiveWindow.View.SplitSpecial	=
wdPaneComments

ViewBorderToolbar CommandBars("Borders").Visible	=	True

ViewDraft,	ViewDraft()
ActiveWindow.View.Draft	=	True

x	=	ActiveWindow.View.Draft

ViewDrawingToolbar CommandBars("Drawing").Visible	=	True

ViewEndnoteArea,
ViewEndnoteArea()

ActiveWindow.View.SplitSpecial	=
wdPaneEndnotes

x	=	ActiveWindow.View.SplitSpecial

ViewEndnoteContNotice ActiveWindow.View.SplitSpecial	=
wdPaneEndnoteContinuationNotice

ViewEndnoteContSeparator ActiveWindow.View.SplitSpecial	=
wdPaneEndnoteContinuationSeparator

ViewEndnoteSeparator ActiveWindow.View.SplitSpecial	=
wdPaneEndnoteSeparator

ViewFieldCodes ActiveWindow.View.ShowFieldCodes	=	True

ViewFooter,	ViewFooter()

ActiveWindow.View.SplitSpecial	=
wdPaneCurrentPageFooter

'	or

With	ActiveWindow.View

				.Type	=	wdPrintView

				.SeekView	=	wdSeekCurrentPageFooter

End	With

'	use	the	StoryType	property	to	return	the	active
story/pane

mk:@MSITStore:vbaof10.chm::/html/ofproVisible.htm
mk:@MSITStore:vbaof10.chm::/html/ofproVisible.htm


aPane	=	Selection.StoryType

ViewFootnoteArea,
ViewFootnoteArea()

ActiveWindow.View.SplitSpecial	=
wdPaneFootnotes

x	=	ActiveWindow.View.SplitSpecial

ViewFootnoteContNotice ActiveWindow.View.SplitSpecial	=
wdPaneFootnoteContinuationNotice

ViewFootnoteContSeparator ActiveWindow.View.SplitSpecial	=
wdPaneFootnoteContinuationSeparator

ViewFootnotes,
ViewFootnotes()

If	ActiveDocument.Footnotes.Count	>=	1	Then

				ActiveWindow.View.SplitSpecial	=
wdPaneFootnotes

ElseIf	ActiveDocument.Endnotes.Count	>=	1
Then

				ActiveWindow.View.SplitSpecial	=
wdPaneEndnotes

End	If

'	Use	the	Information	property	to	determine	if	the
selection	is	in	a	footnote	or	endnote	pane

x	=
Selection.Information(wdInFootnoteEndnotePane)

ViewFootnoteSeparator ActiveWindow.View.SplitSpecial	=
wdPaneFootnoteSeparator
ActiveWindow.View.SplitSpecial	=
wdPaneCurrentPageHeader

'	or

With	ActiveWindow.View



ViewHeader,	ViewHeader()
				.Type	=	wdPrintView

				.SeekView	=	wdSeekCurrentPageHeader

End	With

'	use	the	StoryType	property	to	return	the	active
story/pane

aPane	=	Selection.StoryType

ViewMasterDocument,
ViewMasterDocument()

ActiveWindow.View.Type	=	wdMasterView

aView	=	ActiveWindow.View.Type

ViewMenus() Not	applicable	in	Word	2002

ViewNormal,	ViewNormal()
ActiveWindow.View.Type	=wdNormalView

x	=	ActiveWindow.View.Type

ViewOutline,	ViewOutline()
Windows(1).View.Type	=wdOutlineView

x	=	Windows(1).View.Type

ViewPage,	ViewPage()
Windows(name).View.Type	=wdPrintView

x	=	Windows(name).View.Type

ViewRibbon,	ViewRibbon()
CommandBars("Formatting").Visible	=	True

x	=	CommandBars("Formatting").Visible

ViewRuler,	ViewRuler()
ActiveWindow.DisplayRulers	=	True

x	=	ActiveWindow.DisplayRulers

ViewStatusBar,
ViewStatusBar()

Application.DisplayStatusBar	=	True

x	=	Application.DisplayStatusBar

mk:@MSITStore:vbaof10.chm::/html/ofproVisible.htm
mk:@MSITStore:vbaof10.chm::/html/ofproVisible.htm


ViewToggleMasterDocument

If	ActiveWindow.View.Type	=	wdOutlineView
Then

				ActiveWindow.View.Type	=	wdMasterView

ElseIf	ActiveWindow.View.Type	=
wdMasterView	Then

				ActiveWindow.View.Type	=	wdOutlineView

End	If

ViewToolbars	LargeButtons,
ToolTips,	ToolTipsKey,	Reset,
Delete,	Show

With	CommandBars

				.LargeButtons	=	True

				.DisplayToolTips	=	True

				.DisplayKeysInToolTips	=	True

End	With

CommandBars(name).Reset

CommandBars(name).Delete

CommandBars(name).Visible	=	True

ViewZoom	AutoFit

ViewZoom	TwoPages

ViewZoom	FullPage

Windows(name).View.Zoom.PageFit	=
wdPageFitBestFit

With	ActiveWindow.View.Zoom

				.PageColumns	=	2

				.PageRows	=	1

End	With

ActiveWindow.View.Zoom.PageFit	=
wdPageFitFullPage

mk:@MSITStore:vbaof10.chm::/html/ofproLargeButtons.htm
mk:@MSITStore:vbaof10.chm::/html/ofproDisplayToolTips.htm
mk:@MSITStore:vbaof10.chm::/html/ofproDisplayKeysInToolTips.htm
mk:@MSITStore:vbaof10.chm::/html/ofmthReset.htm
mk:@MSITStore:vbaof10.chm::/html/ofmthDelete.htm
mk:@MSITStore:vbaof10.chm::/html/ofproVisible.htm


ViewZoom	NumColumns,
NumRows

ViewZoom	ZoomPercent

With	ActiveWindow.View.Zoom

				.PageColumns	=	num

				.PageRows	=	num

End	With

ActiveWindow.View.Zoom.Percentage	=	num

ViewZoom100 Windows(1).View.Zoom.Percentage	=	100
ViewZoom200 ActiveWindow.View.Zoom.Percentage	=	200
ViewZoom75 ActiveWindow.View.Zoom.Percentage	=	75

ViewZoomPageWidth Windows(name).View.Zoom.PageFit	=
wdPageFitBestFit

ViewZoomWholePage ActiveWindow.View.Zoom.PageFit	=
wdPageFitFullPage

VLine

ActiveWindow.SmallScroll	Down:=num

'	or

ActiveWindow.SmallScroll	Up:=num

VPage

ActiveWindow.LargeScroll	Down:=num

'	or

ActiveWindow.LargeScroll	Up:=num

VScroll,	VScroll()
ActiveWindow.VerticalPercentScrolled	=	num

num	=	ActiveWindow.VerticalPercentScrolled





Visual	Basic	Equivalents	W	Through
Y
			

W 	
WaitCursor System.Cursor	=	WdCursorType
Weekday(date) Weekday(date)
While...Wend While...Wend
num	=	Window() num	=	ActiveWindow.Index
WindowArrangeAll Windows.Arrange	ArrangeStyle:=wdTiled
WindowList	num Window(num).Activate
WindowName$() aCap	=	ActiveWindow.Caption

WindowNewWindow

Windows.Add

'	or

ActiveWindow.NewWindow

Window	num Window(num).Activate

WindowPane()

Use	the	Split	property	to	determine	if	a	Window	is
split.

Use	StoryType	property	with	the	Selection	object	to
determine	the	pane/story	of	the	selection.

WinToDOS$() x	=	WordBasic.[WinToDOS$](StringToTranslate)

WordLeft	count

Selection.MoveLeft	Unit:=wdWord,	Count:=1,
Extend:=wdMove

Selection.MoveStart	Unit:=wdWord,	Count:=-1



WordLeft	count,	select '	or

Selection.MoveLeft	Unit:=WdWord,	Count:=1,
Extend:=wdExtend

WordRight	1

WordRight	1,	1

Selection.MoveRight	Unit:=wdWord,	Count:=1,
Extend:=wdMove

Selection.MoveEnd	Unit:=wdWord,	Count:=1

'	or

Selection.MoveRight	Unit:=WdWord,	Count:=1,
Extend:=wdExtend

WordUnderline,
WordUnderline()

Selection.Range.Underline	=	wdUnderlineWords

status	=	Selection.Range.Underline

Write Write
Y 	

Year Year()



Conceptual	Differences	Between
WordBasic	and	Visual	Basic
			

The	primary	difference	between	Visual	Basic	for	Applications	and	Microsoft
WordBasic	is	that	whereas	the	WordBasic	language	consists	of	a	flat	list	of
approximately	900	commands,	Visual	Basic	consists	of	a	hierarchy	of	objects,
each	of	which	exposes	a	specific	set	of	methods	and	properties	(similar	to
statements	and	functions	in	WordBasic).	While	most	WordBasic	commands	can
be	run	at	any	time,	Visual	Basic	only	exposes	the	methods	and	properties	of	the
available	objects	at	a	given	time.

Objects	are	the	fundamental	building	block	of	Visual	Basic;	almost	everything
you	do	in	Visual	Basic	involves	modifying	objects.	Every	element	of	Word	—
documents,	paragraphs,	fields,	bookmarks,	and	so	on	—	can	be	represented	by
an	object	in	Visual	Basic.	Unlike	commands	in	a	flat	list,	there	are	objects	that
can	only	be	accessed	from	other	objects.	For	example,	the	Font	object	can	be
accessed	from	various	objects	including	the	Style,	Selection,	and	Find	object.

The	programming	task	of	applying	bold	formatting	demonstrates	the	differences
between	the	two	programming	languages.	The	following	WordBasic	instruction
applies	bold	formatting	to	the	selection.

Bold	1

The	following	example	is	the	Visual	Basic	equivalent	for	applying	bold
formatting	to	the	selection.

Selection.Font.Bold	=	True

Visual	Basic	doesn't	include	a	Bold	statement	and	function.	Instead,	there's	a
property	named	Bold.	(A	property	is	usually	an	attribute	of	an	object,	such	as	its
size,	its	color,	or	whether	or	not	it's	bold.)	Bold	is	a	property	of	the	Font	object.
Likewise,	Font	is	a	property	of	the	Selection	object	that	returns	a	Font	object.
Following	the	object	hierarchy,	you	can	build	the	instruction	to	apply	bold



formatting	to	the	selection.

The	Bold	property	is	a	read/write	Boolean	property.	This	means	that	the	Bold
property	can	be	set	to	True	or	False	(on	or	off),	or	the	current	value	can	be
returned.	The	following	WordBasic	instruction	returns	a	value	indicating
whether	bold	formatting	is	applied	to	the	selection.

x	=	Bold()

The	following	example	is	the	Visual	Basic	equivalent	for	returning	the	bold
formatting	status	from	the	selection.

x	=	Selection.Font.Bold



The	Visual	Basic	thought	process

To	perform	a	task	in	Visual	Basic,	you	need	to	determine	the	appropriate	object.
For	example,	if	you	want	to	apply	character	formatting	found	in	the	Font	dialog
box,	use	the	Font	object.	Then	you	need	to	determine	how	to	"drill	down"
through	the	Word	object	hierarchy	from	the	Application	object	to	the	Font
object,	through	the	objects	that	contain	the	Font	object	you	want	to	modify.
After	you	have	determined	the	path	to	your	object	(for	example,
Selection.Font),	use	the	Object	Browser,	Help,	or	the	features	such	as	Auto
List	Members	in	the	Visual	Basic	Editor	to	determine	what	properties	and
methods	can	be	applied	to	the	object.	For	more	information	about	drilling	down
to	objects	using	properties	and	methods,	see	Understanding	objects,	properties,
and	methods.

Properties	and	methods	are	often	available	to	multiple	objects	in	the	Word	object
hierarchy.	For	example,	the	following	instruction	applies	bold	formatting	to	the
entire	document.

ActiveDocument.Content.Bold	=	True

Also,	objects	themselves	often	exists	in	more	than	one	place	in	the	object
hierarchy.	For	an	illustration	of	the	Word	object	model,	see	Microsoft	Word
Objects.

If	you	know	the	WordBasic	command	for	the	task	you	want	to	accomplish	in
Word	2002,	see	Visual	Basic	Equivalents	for	WordBasic	Commands.



The	Selection	and	Range	objects

Most	WordBasic	commands	modify	the	selection.	For	example,	the	Bold
command	formats	the	selection	with	bold	formatting.	The	InsertField	command
inserts	a	field	at	the	insertion	point.	Anytime	you	want	to	work	with	the	selection
in	Visual	Basic,	you	use	the	Selection	property	to	return	the	Selection	object.
The	selection	can	be	a	block	of	text	or	just	the	insertion	point.

The	following	Visual	Basic	example	inserts	text	and	a	new	paragraph	after	the
selection.

Selection.InsertAfter	Text:="Hello	World"

Selection.InsertParagraphAfter

In	addition	to	working	with	the	selection,	you	can	define	and	work	with	various
ranges	of	text	in	a	document.	A	Range	object	refers	to	a	contiguous	area	in	a
document	with	a	starting	character	position	and	ending	character	position.
Similar	to	the	way	bookmarks	are	used	in	a	document,	Range	objects	are	used	in
Visual	Basic	to	identify	portions	of	a	document.	However,	unlike	a	bookmark,	a
Range	object	is	invisible	to	the	user	unless	the	Range	has	been	selected	using
the	Select	method.	For	example,	you	can	use	Visual	Basic	to	apply	bold
formatting	anywhere	in	the	document	without	changing	the	selection.	The
following	example	applies	bold	formatting	to	the	first	10	characters	in	the	active
document.

ActiveDocument.Range(Start:=0,	End:=10).Bold	=	True

The	following	example	applies	bold	formatting	to	the	first	paragraph.

ActiveDocument.Paragraphs(1).Range.Bold	=	True

Both	of	these	example	change	the	formatting	in	the	active	document	without
changing	the	selection.	For	more	information	on	the	Range	object	see	Working
with	Range	objects.





Revising	Recorded	Visual	Basic
Macros
			

The	macro	recorder	is	a	great	tool	for	discovering	the	Visual	Basic	methods	and
properties	you	want	to	use.	If	you	don't	know	what	properties	or	methods	to	use,
turn	on	the	macro	recorder	and	manually	perform	the	action.	The	macro	recorder
translates	your	actions	into	Visual	Basic	code.	There	are,	however,	some
limitations	to	recording	macros.	You	cannot	record	the	following:

Conditional	branches
Variable	assignments
Looping	structures
Custom	user	forms
Error	handling
Text	selections	made	with	the	mouse	(you	must	use	keyboard
combinations).

To	enhance	your	macros,	you	may	want	to	revise	the	code	recorded	into	your
module.



Removing	the	Selection	property

Macros	created	using	the	macro	recorder	depend	on	the	selection.	At	the
beginning	of	most	recorded	macro	instructions,	you'll	see	"Selection."
Recorded	macros	use	the	Selection	property	to	return	the	Selection	object.	For
example,	the	following	example	moves	the	selection	to	the	Temp	bookmark	and
inserts	text	after	the	bookmark.

Sub	Macro1()

				Selection.Goto	What:=wdGotoBookmark,	Name:="Temp"

				Selection.MoveRight	Unit:=wdCharacter,	Count:=1

				Selection.TypeText	Text:="New	text"

End	Sub

This	macro	accomplishes	the	task,	but	there	are	a	couple	of	drawbacks.	First,	if
the	document	doesn't	have	a	bookmark	named	Temp,	the	macro	posts	an	error.
Second,	the	macro	moves	the	selection,	which	may	not	be	appropriate.	Both	of
these	issues	can	be	resolved	by	revising	the	macro	so	that	it	doesn't	use	the
Selection	object.	This	is	the	revised	macro.

Sub	MyMacro()

If	ActiveDocument.Bookmarks.Exists("Temp")	=	True	Then

				endloc	=	ActiveDocument.Bookmarks("Temp").End

				ActiveDocument.Range(Start:=endloc,	_

								End:=endloc).InsertAfter	"New	text"

End	If

End	Sub

The	Exists	method	is	used	to	check	for	the	existence	of	the	bookmark	named
Temp.	If	the	bookmark	is	found,	the	bookmark's	ending	character	position	is
returned	by	the	End	property.	Finally,	the	Range	method	is	used	to	return	a
Range	object	that	refers	to	the	bookmark's	ending	position,	so	that	text	can	be
inserted	using	the	InsertAfter	method.	For	more	information	on	defining	Range
objects,	see	Working	with	Range	objects.



Using	With…End	With

Macros	instructions	that	refer	to	the	same	object	can	be	simplified	using	a
With…End	With	structure.	For	example,	the	following	macro	was	recorded
when	a	title	was	added	at	the	top	of	a	document.

Sub	Macro1()

				Selection.HomeKey	Unit:=wdStory

				Selection.TypeText	Text:="Title"

				Selection.ParagraphAlignment.Alignment	=	wdAlignParagraphCenter

End	Sub

The	Selection	property	is	used	with	each	instruction	to	return	a	Selection	object.
The	macro	can	be	simplified	so	that	the	Selection	property	is	only	used	once.

Sub	MyMacro()

				With	Selection

								.HomeKey	Unit:=wdStory

								.TypeText	Text:="Title"

								.ParagraphAlignment.Alignment	=	wdAlignParagraphCenter

				End	With

End	Sub

The	same	task	can	also	be	performed	without	using	the	Selection	object.	The
following	macro	uses	a	Range	object	at	the	beginning	of	the	active	document	to
accomplish	the	same	task.

Sub	MyMacro()

				With	ActiveDocument.Range(Start:=0,	End:=0)

								.InsertAfter	"Title"

								.ParagraphFormat.Alignment	=	wdAlignParagraphCenter

				End	With

End	Sub



Removing	unnecessary	properties

If	you	record	a	macro	that	involves	selecting	an	option	in	a	dialog	box,	the
macro	recorder	records	the	settings	of	all	the	options	in	the	dialog	box,	even	if
you	only	change	one	or	two	options.	If	you	don't	need	to	change	all	the	options,
you	can	remove	the	unnecessary	properties	from	the	recorded	macro.	The
following	recorded	macro	includes	a	number	of	options	from	the	Paragraph
dialog	box	(Format	menu).

Sub	Macro1()

				With	Selection.ParagraphFormat

								.LeftIndent	=	InchesToPoints(0)

								.RightIndent	=	InchesToPoints(0)

								.SpaceBefore	=	6

								.SpaceAfter	=	6

								.LineSpacingRule	=	0

								.Alignment	=	wdAlignParagraphLeft

								.WidowControl	=	True

								.KeepWithNext	=	False

								.KeepTogether	=	False

								.PageBreakBefore	=	False

								.NoLineNumber	=	False

								.Hyphenation	=	True

								.FirstLineIndent	=	InchesToPoints(0)

								.OutlineLevel	=	10

				End	With

End	Sub

However,	if	you	only	want	to	change	the	spacing	before	and	after	the	paragraph,
you	can	change	the	macro	to	the	following.

Sub	MyMacro()

				With	Selection.ParagraphFormat

								.SpaceBefore	=	6

								.SpaceAfter	=	6

				End	With

End	Sub

The	simplified	macro	executes	faster	because	it	sets	fewer	properties.	Only	the
spacing	before	and	after	are	changed;	all	the	other	settings	for	the	selected
paragraphs	are	unchanged.



Removing	unnecessary	arguments

When	the	macro	recorder	records	a	method,	the	values	of	all	the	arguments	are
included.	The	following	macro	was	recorded	when	the	document	named
Test.doc	was	opened.	The	resulting	macro	includes	all	the	arguments	for	the
Open	method.

Sub	Macro1()

				Documents.Open	FileName:="C:\My	Documents\Test.doc",	_

								ConfirmConversions:=	False,	ReadOnly:=False,	_

								AddToRecentFiles:=False,	PasswordDocument:="",	_

								PasswordTemplate:="",	Revert:=False,	_

								WritePasswordDocument:="",	_

								WritePasswordTemplate:="",	Format:=wdOpenFormatAuto

End	Sub

The	arguments	that	are	not	needed	can	be	removed	from	the	recorded	macro.	For
example,	you	could	remove	all	of	arguments	set	to	an	empty	string	(for	example,
WritePasswordDocument:=""),	as	shown.

Sub	MyMacro()

				Documents.Open	FileName:="C:\My	Documents\Test.doc",	_

								ConfirmConversions:=	False,	_

								ReadOnly:=False,	AddToRecentFiles:=False,	_

								Revert:=False,	Format:=wdOpenFormatAuto

End	Sub



Adding	Controls	to	a	Document
			

You	can	add	controls	to	a	document's	drawing	layer	or	text	layer.	To	add	a
control	to	the	drawing	layer,	click	the	control	on	the	Control	Toolbox.	Drag	an
adjustment	handle	of	the	control	until	the	control's	outline	is	the	size	and	shape
you	want.	To	add	a	control	to	the	text	layer,	hold	down	the	SHIFT	key	while	you
click	a	control	on	the	Control	Toolbox.	The	control	is	automatically	added	to
the	document	at	the	insertion	point.

Note			Dragging	a	control	(or	a	number	of	"grouped"	controls)	from	the	form
back	to	the	Control	Toolbox	creates	a	template	of	that	control,	which	can	be
reused.	This	is	a	useful	feature	for	implementing	a	standard	interface	for	your
applications.



Auto	Macros
			

By	giving	a	macro	a	special	name,	you	can	run	it	automatically	when	you
perform	an	operation	such	as	starting	Microsoft	Word	or	opening	a	document.
Word	recognizes	the	following	names	as	automatic	macros,	or	"auto"	macros.

Macro	name When	it	runs
AutoExec When	you	start	Word	or	load	a	global	template
AutoNew Each	time	you	create	a	new	document
AutoOpen Each	time	you	open	an	existing	document
AutoClose Each	time	you	close	a	document
AutoExit When	you	quit	Word	or	unload	a	global	template

Auto	macros	in	code	modules	are	recognized	if	either	of	the	following
conditions	are	true.

The	module	is	named	after	the	auto	macro	(for	example,	AutoExec)	and	it
contains	a	procedure	named	"Main."
A	procedure	in	any	module	is	named	after	the	auto	macro.

Just	like	other	macros,	auto	macros	can	be	stored	in	the	Normal	template,
another	template,	or	a	document.	In	order	for	an	auto	macro	to	run,	it	must	be
either	in	the	Normal	template,	in	the	active	document,	or	in	the	template	on
which	the	active	document	is	based.	The	only	exception	is	the	AutoExec	macro,
which	will	not	run	automatically	unless	it	is	stored	in	one	of	the	following:	the
Normal	template,	a	template	that	is	loaded	globally	through	the	Templates	and
Add-Ins	dialog	box,	or	a	global	template	stored	in	the	folder	specified	as	the
Startup	folder.

In	the	case	of	a	naming	conflict	(multiple	auto	macros	with	the	same	name),
Word	runs	the	auto	macro	stored	in	the	closest	context.	For	example,	if	you
create	an	AutoClose	macro	in	a	document	and	the	attached	template,	only	the
auto	macro	stored	in	the	document	will	execute.	If	you	create	an	AutoNew
macro	in	the	normal	template,	the	macro	will	run	if	a	macro	named	AutoNew



doesn't	exist	in	the	document	or	the	attached	template.

Note			You	can	hold	down	the	SHIFT	key	to	prevent	auto	macros	from	running.
For	example,	if	you	create	a	new	document	based	on	a	template	that	contains	an
AutoNew	macro,	you	can	prevent	the	AutoNew	macro	from	running	by	holding
down	SHIFT	when	you	click	OK	in	the	New	dialog	box	(File	menu)	and
continuing	to	hold	down	SHIFT	until	the	new	document	is	displayed.	In	a	macro
that	might	trigger	an	auto	macro,	you	can	use	the	following	instruction	to
prevent	auto	macros	from	running.

WordBasic.DisableAutoMacros



Getting	Help	on	Macintosh	Keywords
			

You	have	requested	Help	for	a	Visual	Basic	keyword	used	only	on	the
Macintosh.	For	information	about	this	keyword,	consult	the	language	reference
Help	included	with	Microsoft	Office	Macintosh	Edition.



Creating	a	Custom	Dialog	Box
			

Use	the	following	procedure	to	create	a	custom	dialog	box:

1.	 Create	a	UserForm

On	the	Insert	menu	in	the	Visual	Basic	Editor,	click	UserForm.

2.	 Add	controls	to	the	UserForm

Find	the	control	you	want	to	add	in	the	Toolbox	and	drag	the	control	onto
the	form.

3.	 Set	control	properties

Right-click	a	control	in	design	mode	and	click	Properties	to	display	the
Properties	window.

4.	 Initialize	the	controls

You	can	initialize	controls	in	a	procedure	before	you	show	a	form,	or	you
can	add	code	to	the	Initialize	event	of	the	form.

5.	 Write	event	procedures

All	controls	have	a	predefined	set	of	events.	For	example,	a	command
button	has	a	Click	event	that	occurs	when	the	user	clicks	the	command
button.	You	can	write	event	procedures	that	run	when	the	events	occur.

6.	 Show	the	dialog	box

Use	the	Show	method	to	display	a	UserForm.

7.	 Use	control	values	while	code	is	running

Some	properties	can	be	set	at	run	time.	Values	the	user	sets	for	controls	in



the	dialog	box	are	lost	when	the	dialog	box	is	closed.



Adding	Controls	to	a	UserForm
			

To	add	controls	to	a	user	form,	find	the	control	you	want	to	add	in	the	Toolbox,
drag	the	control	onto	the	form,	and	then	drag	an	adjustment	handle	on	the
control	until	the	control's	outline	is	the	size	and	shape	you	want.

Note			Dragging	a	control	(or	a	number	of	"grouped"	controls)	from	the	form
back	to	the	Toolbox	creates	a	template	of	that	control,	which	can	be	reused.	This
is	a	useful	feature	for	implementing	a	standard	interface	for	your	applications.

When	you've	added	controls	to	the	form,	use	the	commands	on	the	Format
menu	in	the	Visual	Basic	Editor	to	adjust	the	control	alignment	and	spacing.



UnProtect	Method
							

Removes	protection	from	the	specified	document.	If	the	document	isn't
protected,	this	method	generates	an	error.

expression.UnProtect(Password)

expression			Required.	An	expression	that	returns	a	Document	object.

Password			Optional	Variant.	The	password	string	used	to	protect	the	document.
Passwords	are	case-sensitive.	If	the	document	is	protected	with	a	password	and
the	correct	password	isn't	supplied,	a	dialog	box	prompts	the	user	for	the
password.



Example

This	example	unprotects	the	active	document,	using	"Blue"	as	the	password.	If
the	document	has	a	password,	a	dialog	box	prompts	the	user	for	the	password.

If	ActiveDocument.ProtectionType	<>	wdNoProtection	Then

				ActiveDocument.Unprotect	Password:="Blue"

End	If

This	example	unprotects	the	active	document.	Text	is	inserted,	and	the	document
is	protected	for	revisions.

Set	aDoc	=	ActiveDocument

If	aDoc.ProtectionType	<>	wdNoProtection	Then	

				aDoc.Unprotect

				Selection.InsertBefore	"department	six"

				aDoc.Protect	Type:=wdAllowOnlyRevisions,	Password:="Blue"

End	If



ActiveX	Controls
			

For	more	information	about	a	specific	control,	select	an	object	from	the
following	list.	For	information	about	events,	select	a	control	and	click	Events	at
the	top	of	the	topic.

CheckBox

ComboBox

CommandButton

Frame

Image

Label

ListBox

MultiPage

OptionButton

ScrollBar

SpinButton

TabStrip

TextBox

ToggleButton

mk:@MSITStore:fm20.chm::/html/f3objCheckBox.htm
mk:@MSITStore:fm20.chm::/html/f3objComboBox.htm
mk:@MSITStore:fm20.chm::/html/f3objCommandButton.htm
mk:@MSITStore:fm20.chm::/html/f3objFrame.htm
mk:@MSITStore:fm20.chm::/html/f3objImage.htm
mk:@MSITStore:fm20.chm::/html/f3objLabel.htm
mk:@MSITStore:fm20.chm::/html/f3objListBox.htm
mk:@MSITStore:fm20.chm::/html/f3objMultiPage.htm
mk:@MSITStore:fm20.chm::/html/f3objOptionButton.htm
mk:@MSITStore:fm20.chm::/html/f3objScrollBar.htm
mk:@MSITStore:fm20.chm::/html/f3objSpinButton.htm
mk:@MSITStore:fm20.chm::/html/f3objTabStrip.htm
mk:@MSITStore:fm20.chm::/html/f3objTextBox.htm
mk:@MSITStore:fm20.chm::/html/f3objToggleButton.htm


Creating	a	UserForm
			

To	create	a	custom	dialog	box,	you	must	create	a	UserForm.	To	create	a
UserForm,	click	UserForm	on	the	Insert	menu	in	the	Visual	Basic	Editor.

Use	the	Properties	window	to	change	the	name,	behavior,	and	appearance	of	the
form.	For	example,	to	change	the	caption	on	a	form,	set	the	Caption	property.



Show	All



Setting	Control	Properties
			

You	can	set	some	control	properties	at	design	time	(before	any	macro	is
running).	In	design	mode,	right-click	a	control	and	click	Properties	to	display
the	Properties	window.	Property	names	are	shown	in	the	left	column	in	the
window,	property	values	in	the	right	column.	You	set	a	property	value	by
entering	the	new	value	to	the	right	of	the	property	name.



Initializing	Control	Properties
			

You	can	initialize	controls	at	run	time	by	using	Visual	Basic	code	in	a	macro.	For
example,	you	could	fill	a	list	box,	set	text	values,	or	set	option	buttons.

The	following	example	uses	the	Visual	Basic	AddItem	method	to	add	data	to	a
list	box	named	lstRegions.	Then	it	sets	the	value	of	a	text	box	and	displays	the
form.

Private	Sub	GetUserName()

				With	UserForm1

								.lstRegions.AddItem	"North"

								.lstRegions.AddItem	"South"

								.lstRegions.AddItem	"East"

								.lstRegions.AddItem	"West"

								.txtSalesPersonID.Text	=	"00000"

								.Show

								'	...

				End	With

End	Sub

You	can	also	use	code	in	the	Visual	Basic	Initialize	event	of	a	form	to	set	initial
values	for	controls	on	the	form.	An	advantage	to	setting	initial	control	values	in
the	Initialize	event	is	that	the	initialization	code	stays	with	the	form.	You	can
copy	the	form	to	another	project,	and	when	you	run	the	Show	method	to	display
the	dialog	box,	the	controls	will	be	initialized.

Private	Sub	UserForm_Initialize()

				With	UserForm1

								With	.lstRegions

												.AddItem	"North"

												.AddItem	"South"

												.AddItem	"East"

												.AddItem	"West"

								End	With

								.txtSalesPersonID.Text	=	"00000"

				End	With

End	Sub





Control	and	Dialog	Box	Events
			

After	you	have	added	controls	to	your	dialog	box	or	document,	you	add	event
procedures	to	determine	how	the	controls	respond	to	user	actions.

UserForms	and	controls	have	a	predefined	set	of	events.	For	example,	a
command	button	has	a	Click	event	that	occurs	when	the	user	clicks	the
command	button,	and	UserForms	have	an	Initialize	event	that	runs	when	the
form	is	loaded.

To	write	a	control	or	form	event	procedure,	open	a	module	by	double-clicking
the	form	or	control,	and	select	the	event	from	the	Procedure	drop-down	list	box.

Event	procedures	include	the	name	of	the	control.	For	example,	the	name	of	the
Click	event	procedure	for	a	command	button	named	Command1	is
Command1_Click.

If	you	add	code	to	an	event	procedure	and	then	change	the	name	of	the	control,
your	code	remains	in	procedures	with	the	previous	name.

For	example,	assume	you	add	code	to	the	Click	event	for	Commmand1	and	then
rename	the	control	to	Command2.	When	you	double-click	Command2,	you	will
not	see	any	code	in	the	Click	event	procedure.	You	will	need	to	move	code	from
Command1_Click	to	Command2_Click.

To	simplify	development,	it	is	a	good	practice	to	name	your	controls	before
writing	code.



Displaying	a	Custom	Dialog	Box
			

To	test	your	dialog	box	in	the	Visual	Basic	Editor,	click	Run	Sub/UserForm	on
the	Run	menu.

To	display	a	dialog	box	from	Visual	Basic,	use	the	Show	method.	The	following
example	displays	the	dialog	box	named	UserForm1.

Private	Sub	GetUserName()

				UserForm1.Show

End	Sub

Note			Use	the	Unload	method	in	an	event	procedure,	such	as	the	Click	event
procedure	for	a	command	button,	to	close	a	dialog	box.



Using	Control	Values	While	Code	is
Running
			

Some	controls	properties	can	be	set	and	returned	while	Visual	Basic	code	is
running.	The	following	example	sets	the	Text	property	of	a	text	box	to	"Hello."

TextBox1.Text	=	"Hello"

The	data	entered	in	a	form	by	a	user	is	lost	when	the	form	is	closed.	If	you	return
the	values	of	controls	on	a	form	after	the	form	has	been	unloaded,	you	get	the
initial	values	for	the	controls	rather	than	the	values	the	user	entered.

If	you	want	to	save	the	data	entered	in	a	form,	you	can	save	the	information	to
module-level	variables	while	the	form	is	still	running.	The	following	example
displays	a	form	and	saves	the	form	data	in	public	variables	prior	to	unloading	the
form.

'Code	in	module	to	declare	public	variables

Public	strRegion	As	String

Public	intSalesPersonID	As	Integer

Public	blnCancelled	As	Boolean

'Code	in	form

Private	Sub	cmdCancel_Click()

				Module1.blnCancelled	=	True

				Unload	Me

End	Sub

Private	Sub	cmdOK_Click()

				'Save	data

				intSalesPersonID	=	txtSalesPersonID.Text

				strRegion	=	lstRegions.List(lstRegions.ListIndex)

				Module1.blnCancelled	=	False

				Unload	Me

End	Sub

Private	Sub	UserForm_Initialize()

				Module1.blnCancelled	=	True



End	Sub

'Code	in	module	to	display	form

Sub	LaunchSalesPersonForm()

				frmSalesPeople.Show

				If	blnCancelled	=	True	Then

								MsgBox	"Operation	Cancelled!",	vbExclamation

				Else

								MsgBox	"The	Salesperson's	ID	is:	"	&	_

												intSalesPersonID	&	_

												"The	Region	is:	"	&	strRegion

				End	If

End	Sub


