Microsoft Word Objects

Application |‘Add1ns
LAddin

~AnswerWizard

~Assistant
~AutoCaptions

|‘AutoCaption

~AutoCorrect b

~Browser

—Captionl.abels

|‘Ca tionLabel

~COMAddIns
~CommandBars

~DefaultWebOptions
|‘WebPageFonts

|‘WebPageFont

~Dialogs
|‘Dialog

~Dictionaries

|‘Dictionary

~Documents

L

Document b

EmailOptions

|‘EmailSignature
| |‘EmailSignatureEntries
| |‘EmailSignatureEntr;[

mk:@MSITStore:vbaof10.chm::/html/ofobjAnswerWizard.htm
mk:@MSITStore:vbaof10.chm::/html/ofobjAssistant.htm
mk:@MSITStore:vbaof10.chm::/html/ofobjCOMAddIns.htm
mk:@MSITStore:vbaof10.chm::/html/ofobjCommandBars.htm
mk:@MSITStore:vbaof10.chm::/html/ofobjWebPageFonts.htm
mk:@MSITStore:vbaof10.chm::/html/ofobjWebPageFont.htm

|‘St;zle

~FileConverters

|‘FileConverter

~FileDialog
~FileSearch

~FontNames

HangulHanjaConversionDictionaries
|‘Di(:tionalr;z

~KeyBindings
|‘Ke;gBinding

~KeysBoundTo

|‘Ke;gBinding

Languages

|‘Language

|‘Di(:tionalr;z

~LanguageSettings

~ListGalleries

|‘ListGaller;z

|‘ListTemplates 4

~Mailingl.abel
L

CustomLabels

|‘CustomLabel

~MailMessage
~NewFile

~Options
~RecentFiles
|‘RecentFile

~Selection Pk

~SpellingSuggestions

|‘SpellingSuggestion

mk:@MSITStore:vbaof10.chm::/html/ofobjFileDialog.htm
mk:@MSITStore:vbaof10.chm::/html/ofobjFileSearch.htm
mk:@MSITStore:vbaof10.chm::/html/ofobjLanguageSettings.htm
mk:@MSITStore:vbaof10.chm::/html/ofobjNewFile.htm

~SynonymlInfo

System

~TaskPanes
|‘TaskPane

~Tasks

|‘Task

~Templates b
|‘Windows 4

Legend

Object and collection
Object only

p Click red arrow to expand chart

What's New for Microsoft Word 2002
Developers

Extensive changes have been made to the Microsoft Word 2002 Visual Basic
object model to support new and improved features in the application.

Visit the Office Developer Center at MSDN Online for the latest Microsoft Word
development information, including new technical articles, downloads, samples,
product news, and more.

http://officeupdate.microsoft.com/office/redirect/10/Helplinks.asp?AppName=WORD&HelpLCID=1033&LinkNum=99000030&Version=0,

New Language Elements

The following topics provide lists of language elements that are new in Word
2002.

New Objects

New Properties (by Object)

New Properties (Alphabetic List)

New Methods (by Object)

New Methods (Alphabetic List)

New Events

Language-Specific Properties and Methods

Hidden Language Elements

The following topic provides a list of properties that have been hidden in Word
2002.

Hidden Properties

Understanding Objects, Properties,
and Methods

Objects are the fundamental building block of Visual Basic; nearly everything
you do in Visual Basic involves modifying objects. Every element of Microsoft
Word — documents, tables, paragraphs, bookmarks, fields and so on — can be
represented by an object in Visual Basic.

What are objects and collections?

An object represents an element of Word, such as a document, a paragraph, a
bookmark, or a single character. A collection is an object that contains several
other objects, usually of the same type; for example, all the bookmark objects in
a document are contained in a single collection object. Using properties and
methods, you can modify a single object or an entire collection of objects.

What is a property?

A property is an attribute of an object or an aspect of its behavior. For example,
properties of a document include its name, its content, and its save status, as well
as whether change tracking is turned on. To change the characteristics of an
object, you change the values of its properties.

To set the value of a property, follow the reference to an object with a period, the
property name, an equal sign, and the new property value. The following
example turns on change tracking in the document named "MyDoc.doc."

Sub TrackChanges()
Documents("Sales.doc").TrackRevisions = True
End Sub

In this example, Documents refers to the collection of open documents, and the
name "Sales.doc" identifies a single document in the collection. The
TrackRevisions property is set for that single document.

Some properties cannot be set. The Help topic for a property indicates whether
that property can be set (read-write) or can only be read (read-only).

You can return information about an object by returning the value of one of its
properties. The following example returns the name of the active document.

Sub GetDocumentName()
Dim strDocName As String
strDocName = ActiveDocument.Name
MsgBox strDocName

End Sub

In this example, ActiveDocument refers to the document in the active window in
Word. The name of that document is assigned to the variable strbocName.

Remarks

The Help topic for each property indicates whether you can set that property
(read-write), only read the property (read-only), or only write the property
(write-only). Also the Object Browser in the Visual Basic Editor displays the
read-write status at the bottom of the browser window when the property is

selected.

What is a method?

A method is an action that an object can perform. For example, just as a
document can be printed, the Document object has a PrintOut method.
Methods often have arguments that qualify how the action is performed. The
following example prints the first three pages of the active document.

Sub PrintThreePages()
ActiveDocument.PrintOut Range:=wdPrintRangeOfPages, Pages:="1-3"
End Sub

In most cases, methods are actions and properties are qualities. Using a method
causes something to happen to an object, while using a property returns
information about the object or it causes a quality about the object to change.

Returning an object

Most objects are returned by returning a single object from the collection. For
example, the Documents collection contains the open Word documents. You use
the Documents property of the Application object (the object at the top of the
Word object hierarchy) to return the Documents collection.

After you've accessed the collection, you can return a single object by using an
index value in parentheses (this is similar to how you work with arrays). The
index value is usually a number or a name. For more information, see Returning
an Object from a Collection.

The following example uses the Documents property to access the Documents
collection. The index number is used to return the first document in the
Documents collection. The Close method is then applied to the Document
object to close the first document in the Documents collection.

Sub CloseDocument()
Documents(1).Close
End Sub

The following example uses a name (specified as a string) to identify a
Document object within the Documents collection.

Sub CloseSalesDoc()
Documents("Sales.doc").Close
End Sub

Collection objects often have methods and properties which you can use to
modify the entire collection of objects. The Documents object has a Save
method that saves all the documents in the collection. The following example
saves the open documents by applying the Save method.

Sub SaveAllOpenDocuments()
Documents.Save
End Sub

The Document object also has a Save method available for saving a single
document. The following example saves the document named Sales.doc.

Sub SaveSalesDoc()
Documents("Sales.doc").Save
End Sub

To return an object that is further down in the Word object hierarchy, you must
"drill down" to it by using properties and methods to return objects.

To see how this is done, open the Visual Basic Editor and click Object Browser
on the View menu. Click Application in the Classes list on the left. Then click
ActiveDocument from the list of members on the right. The text at bottom of
the Object Browser indicates that ActiveDocument is a read-only property that
returns a Document object. Click Document at the bottom of the Object
Browser; the Document object is automatically selected in the Classes list, and
the Members list displays the members of the Document object. Scroll through
the list of members until you find Close. Click the Close method. The text at the
bottom of the Object Browser window shows the syntax for the method. For
more information about the method, press F1 or click the Help button to jump to
the Close method Help topic.

Given this information, you can write the following instruction to close the
active document.

Sub CloseDocSaveChanges()
ActiveDocument.Close SaveChanges:=wdSaveChanges
End Sub

The following example maximizes the active document window.

Sub MaximizeDocumentWindow()
ActiveDocument.ActiveWindow.WindowState = wdWindowStateMaximize
End Sub

The ActiveWindow property returns a Window object that represents the active
window. The WindowState property is set to the maximize constant
(wdWindowStateMaximize).

The following example creates a new document and displays the Save As dialog
box so that a name can be provided for the document.

Sub CreateSaveNewDocument ()
Documents.Add. Save
End Sub

The Documents property returns the Documents collection. The Add method
creates a new document and returns a Document object. The Save method is
then applied to the Document object.

As you can see, you use methods or properties to drill down to an object. That is,
you return an object by applying a method or property to an object above it in
the object hierarchy. After you return the object you want, you can apply the
methods and control the properties of that object. To review the hierarchy of
objects, see Microsoft Word Objects.

Getting Help on objects, methods, and properties

Until you become familiar with the Word object model, there are a few tools you
can use to help you to drill down through the hierarchy.

e Auto List Members. When you type a period (.) after an object in the
Visual Basic Editor, a list of available properties and methods is displayed.
For example, if you type Application., a drop-down list of methods and
properties of the Application object is displayed.

e Help. You can also use Help to find out which properties and methods can
be used with an object. Each object topic in Help includes a See Also jump
that displays a list of properties and methods for the object. Press F1 in the
Object Browser or a module to jump to the appropriate Help topic.

¢ Microsoft Word Objects. This topic illustrates how Word objects are
arranged in the hierarchy. Click an object in the graphic to display the
corresponding Help topic.

¢ Object Browser. The Object Browser in the Visual Basic Editor displays
the members (properties and methods) of the Word objects.

Frequently Asked Visual Basic
Questions

General questions

How do I convert my WordBasic macros to Visual Basic?

How do I find out the Visual Basic equivalent for a WordBasic command or

function?

How do I record macros?

What are objects, properties and methods?

How do I find out which property or method I need?

How do I return a single object from a collection?

Questions about Word features

How do I refer to the active element (for example, paragraph, table, field)?

What is a Range object?

How do I refer to words, sentences, paragraphs, or sections in a document?

I keep getting the "object doesn't support this property or method" error; how

can I avoid it?

How do I create, open, save and close documents?

How do I select text in a document?

How do I insert text into a document?

I keep getting the "requested member of the collection does not exist" error; how
can I avoid it?

How do I loop on a collection?

How do I prompt for information from the user?

How do I return text from a document?

How do I know if the Application property is needed before a top level property
or method?

How do I display a built-in Microsoft Word dialog box?

I keep getting an error when I try to access a table row or column?

Automating Common Word Tasks

This topic includes some common Microsoft Word tasks and the Visual Basic
code needed to accomplish the tasks.

Applying formatting to text
Editing text
Finding and replacing text or formatting

Miscellaneous tasks

Working with tables

Working with documents

Referring to the Active Document
Element

To refer to the active paragraph, table, field, or other document element, use the
Selection property to return a Selection object. From the Selection object, you
can access all paragraphs in the selection or the first paragraph in the selection.
The following example applies a border around the first paragraph in the
selection.

Sub BorderAroundFirstParagraph()
Selection.Paragraphs(1).Borders.Enable = True
End Sub

The following example applies a border around each paragraph in the selection.

Sub BorderAroundSelection()
Selection.Paragraphs.Borders.Enable = True
End Sub

The following example applies shading to the first row of the first table in the
selection.

Sub ShadeTableRow()
Selection.Tables(1).Rows(1).Shading.Texture = wdTexturel@Percent
End Sub

An error occurs if the selection doesn't include a table. Use the Count property
to determine if the selection includes a table. The following example applies
shading to the first row of the first table in the selection.

Sub ShadeTableRow()
If Selection.Tables.Count >= 1 Then
Selection.Tables(1).Rows(1).Shading.Texture = wdTexture25Per
Else
MsgBox "Selection doesn't include a table"
End If
End Sub

The following example applies shading to the first row of every table in the
selection. The For Each...Next loop is used to step through the individual tables
in the selection.

Sub ShadeAllFirstRowsInTables()
Dim tblTable As Table
If Selection.Tables.Count >= 1 Then
For Each tblTable In Selection.Tables
tblTable.Rows(1).Shading.Texture = wdTexture30Percent
Next tblTable
End If
End Sub

Storing Values When a Macro Ends

When a macro ends, the values stored in its variables aren't automatically saved
to disk. If a macro needs to preserve a value, it must store that value outside
itself before the macro execution is completed. This topic describes five
locations where macro values can be easily stored and retrieved.

Document variables

Document variables allow you to store values as part of a document or a
template. For example, you might store macro values in the document or
template where the macro resides. You can add variables to a document or
template using the Add method of the Variables collection. The following
example saves a document variable in the same location as the macro that is
running (document or template) using the ThisDocument property.

Sub AddDocumentVariable()
ThisDocument.Variables.Add Name:="Age", Value:=12
End Sub

The following example uses the Value property with a Variable object to return
the value of a document variable.

Sub UseDocumentVariable()

Dim intAge As Integer

intAge = ThisDocument.Variables("Age").Value
End Sub

Remarks

You can use the DOCVARIABLE field to insert a document variable into a
document.

Document properties

Like document variables, document properties allow you to store values as part
of a document or a template. Document properties can be viewed in the
Properties dialog box (File menu).

The Word object model breaks document properties into two groups: built-in and
custom. Custom document properties include the properties shown on the
Custom tab in the Properties dialog box. Built-in document properties include
the properties on all the tabs in the Properties dialog box except the Custom
tab.

To access built-in properties, use the BuiltiInDocumentProperties property to
return a DocumentProperties collection that includes the built-in document
properties. Use the CustomDocumentProperties property to return a
DocumentProperties collection that includes the custom document properties.
The following example creates a custom document property named "YourName"
in the same location as the macro that is running (document or template).

Sub AddCustomDocumentProperties()
ThisDocument.CustomDocumentProperties.Add Name:="YourName", _
LinkToContent:=False, Value:="Joe", Type:=msoPropertyTypeStr
End Sub

Built-in document properties cannot be added to the DocumentProperties
collection returned by the BuiltInDocumentProperties property. You can,
however, retrieve the contents of a built-in document property or change the
value of a read/write built-in document property.

Remarks

You can use the DOCPROPERTY field to insert document properties into a
document.

mk:@MSITStore:vbaof10.chm::/html/ofobjDocumentProperties.htm

AutoText entries

AutoText entries can be used to store information in a template. Unlike a
document variable or property, AutoText entries can include items beyond macro
variables such as formatted text or a graphic. Use the Add method with the
AutoTextEntries collection to create a new AutoText entry. The following
example creates an AutoText entry named "MyText" that contains the contents
of the selection. If the following instruction is part of a template macro, the new
AutoText entry is stored in the template, otherwise, the AutoText entry is stored
in the template attached to the document where the instruction resides.

Sub AddAutoTextEntry()
ThisDocument.AttachedTemplate.AutoTextEntries.Add Name:="MyText"
Range:=Selection.Range
End Sub

Use the Value property with an AutoTextEntry object to retrieve the contents of
an AutoText entry object.

Settings files

You can set and retrieve information from a settings file using the
PrivateProfileString property. The structure of a Windows settings file is the
same as the Windows 3.1 WIN.INI file. The following example sets the
DocNum key to 1 under the DocTracker section in the Macro.ini file.

Sub MacroSystemFile()
System.PrivateProfileString(_
FileName:="C:\My Documents\Macro.ini", _
Section:="DocTracker", Key:="DocNum") = 1
End Sub

After running the above instruction, the Macro.ini file includes the following
text.

[DocTracker]
DocNum=1

The PrivateProfileString property has three arguments: FileName, Section, and
Key. The FileName argument is used to specify a settings file path and file
name. The Section argument specifies the section name that appears between
brackets before the associated keys (don't include the brackets with section
name). The Key argument specifies the key name which is followed by an equal
sign (=) and the setting.

Use the same PrivateProfileString property to retrieve a setting from a settings
file. The following example retrieves the DocNum setting under the DocTracker
section in the Macro.ini file.

Sub GetSystemFileInfo()
Dim intDocNum As Integer
intDocNum = System.PrivateProfileString(_
FileName:="C:\My Documents\Macro.ini", _
Section:="DocTracker", Key:="DocNum")
MsgBox "DocNum is " & intDocNum
End Sub

Windows registry

You can set and retrieve information from the Windows registry using the
PrivateProfileString property. The following example retrieves the Microsoft
Word 2002 program directory from the Windows registry.

Sub GetRegistryInfo()
Dim strSection As String
Dim strPgmDir As String
strSection = "HKEY_CURRENT_USER\Software\Microsoft" _
& "\Office\10.0\Word\Options"
strPgmDir = System.PrivateProfileString(FileName:="",
Section:=strSection, Key:="PROGRAMDIR")
MsgBox "The directory for Word is - " & strPgmDir
End Sub

The PrivateProfileString property has three arguments: FileName, Section, and
Key. To return or set a value for a registry entry, specify an empty string ("") for
the FileName argument. The Section argument should be the complete path to
the registry subkey. The Key argument should be the name of an entry in the
subkey specified by Section.

You can also set information in the Windows registry using the following
PrivateProfileString syntax.

System.PrivateProfileString(FileName, Section, Key) = value

The following example sets the DOC-PATH entry to “C:\My Documents” in the
Options subkey for Word 2002 in the Windows registry.

Sub SetDocumentDirectory()
Dim strDocDirectory As String
strDocDirectory = "HKEY_CURRENT_USER\Software\Microsoft" _
& "\Office\10.0\Word\Options"
System.PrivateProfileString(FileName:="", _
Section:=strDocDirectory, Key:="DOC-PATH") = "C:\My Document
End Sub

Built-in Dialog Box Argument Lists

Many of the built-in dialog boxes in Microsoft Word have options that you may
want to set. To set or return the properties associated with a Word dialog box,
use the equivalent Visual Basic properties and methods. For example, if you
want to print a document, use the Word Visual Basic for Applications PrintOut
method. The following code prints the current document using the Print dialog
box default settings. However, if you don't want to use the default setting in the
print dialog, you can use the arguments associated with the PrintOut method.

Sub PrintCurrentDocument()
ThisDocument.PrintOut
End Sub

Although you are encouraged to use VBA keywords to get or set the value of
dialog box options, many of the built-in Word dialog boxes have arguments that
you can also use to set or get values from a dialog box. For more information,
see Displaying built-in Word dialog boxes.

WdWordDialog constant Argument list(s)
wdDialogConnect Drive, Path, Password
wdDialogConsistencyChecker (none)
wdDialogControlRun Application

wdDialogConvertObject

wdDialogCopyFile
wdDialogCreateAutoText
wdDialogCSSLinks

wdDialogDocumentStatistics

wdDialogDrawAlign

IconNumber, ActivateAs,
IconFileName, Caption, Clas:
DisplayIcon, Floating
FileName, Directory

(none)

(none)

FileName, Directory, Templat
Created, LastSaved, LastSave
Revision, Time, Printed, Page
Characters, Paragraphs, Line
Horizontal, Vertical, Relative]

wdDialogDrawSnapToGrid

wdDialogEditAutoText

wdDialogEditCreatePublisher

wdDialogEditFind

wdDialogEditFrame

wdDialogEditGoTo

wdDialogEditGoToOld

wdDialogEditLinks

wdDialogEditObject

wdDialogEditPasteSpecial

SnapToGrid, XGrid, YGrid, X
YOrigin, SnapToShapes, XGr,
YGridDisplay, FollowMargin:
ViewGridLines,
DefineLineBasedOnGrid

Name, Context, InsertAs, Inse
Define, InsertAsText, Delete,
CompleteAT

(For information about this cor
consult the language reference
included with Microsoft Office
Macintosh Edition.)

Find, Replace, Direction, Mat
WholeWord, PatternMatch,

SoundsLike, FindNext, Repla
ReplaceAll, Format, Wrap,

FindAllWordForms, MatchB)
FuzzyFind, Destination, Corr
MatchKashida, MatchDiacriti
MatchAlefHamza, MatchCon

WidthRule, LockAnchor, Hei

Find, Replace, Direction, Mat
WholeWord, PatternMatch,

SoundsLike, FindNext, Repla
ReplaceAll, Format, Wrap,

FindAllWordForms, MatchB)
FuzzyFind, Destination, Corr:
MatchKashida, MatchDiacriti
MatchAlefHamza, MatchCon

(none)

UpdateMode, Locked,
SavePictureInDoc, UpdateNo
OpenSource, KillLink, Link,
Application, Item, FileName

Verb

IconNumber, Link, DisplayIc
DataType, IconFileName, Caj

wdDialogEditPublishOptions

wdDialogEditReplace

wdDialogEditStyle

wdDialogEditSubscribeOptions

wdDialogEditSubscribeTo

wdDialogEditTOACategory
wdDialogEmailOptions

wdDialogFileDocumentLayout

Floating

(For information about this cor
consult the language reference
included with Microsoft Office
Macintosh Edition.)

Find, Replace, Direction, Mat
WholeWord, PatternMatch,

SoundsLike, FindNext, Repla
ReplaceAll, Format, Wrap,

FindAllWordForms, MatchB)
FuzzyFind, Destination, Corr:
MatchKashida, MatchDiacriti
MatchAlefHamza, MatchCon

(none)

(For information about this cor
consult the language reference
included with Microsoft Office
Macintosh Edition.)

(For information about this cor
consult the language reference
included with Microsoft Office
Macintosh Edition.)

Category, CategoryName
(none)

Tab, PaperSize, TopMargin,
BottomMargin, LeftMargin,
RightMargin, Gutter, PageWi
PageHeight, Orientation, Firs
OtherPages, VertAlign, Apply.
Default, FacingPages, Heade:
FooterDistance, SectionStart,
OddAndEvenPages,
DifferentFirstPage, Endnotes
LineNum, StartingNum, Fron
CountBy, NumMode, TwoOn(
GutterPosition, LayoutMode,
CharsLine, LinesPage, CharF

wdDialogFileFind

wdDialogFileMacPageSetup

wdDialogFileNew

wdDialogFileOpen

wdDialogFilePageSetup

LinePitch, DocFontName,
DocFontSize, PageColumns, '
FirstPageOnLeft, SectionTyp«
RTLAlignment

SearchName, SearchPath, Na
SubDir, Title, Author, Keywor
Subject, Options, MatchCase,
PatternMatch, DateSavedFroi
DateSavedTo, SavedBy,

DateCreatedFrom, DateCreat
View, SortBy, ListBy, Selected
Delete, ShowFolders, MatchB

(For information about this cor
consult the language reference
included with Microsoft Office
Macintosh Edition.)

Template, NewTemplate,
DocumentType, Visible

Name, ConfirmConversions, |
LinkToSource, AddToMru,
PasswordDoc, PasswordDot, |
WritePasswordDoc, WritePass
Connection, SQLStatement,
SQLStatementl, Format, Enc
Visible

Tab, PaperSize, TopMargin,
BottomMargin, LeftMargin,
RightMargin, Gutter, PageWi
PageHeight, Orientation, Firs
OtherPages, VertAlign, Apply.
Default, FacingPages, Heade:
FooterDistance, SectionStart,
OddAndEvenPages,
DifferentFirstPage, Endnotes
LineNum, StartingNum, Fron
CountBy, NumMode, TwoOn(
GutterPosition, LayoutMode,
CharsLine, LinesPage, CharF

wdDialogFilePrint

wdDialogFilePrintOneCopy

wdDialogFilePrintSetup

wdDialogFileRoutingSlip

wdDialogFileSaveAs

wdDialogFileSaveVersion

wdDialogFileSummarylInfo

LinePitch, DocFontName,
DocFontSize, PageColumns, '
FirstPageOnLeft, SectionTyp«
RTLAlignment

Background, AppendPrFile, 1
PrToFileName, From, To, Ty}
NumCopies, Pages, Order, Pr
Collate, FileName, Printer,
OutputPrinter, DuplexPrint,
PrintZoomColumn, PrintZooi
PrintZoomPaperWidth,
PrintZoomPaperHeight

(For information about this cor
consult the language reference
included with Microsoft Office
Macintosh Edition.)

Printer, Options, Network,
DoNotSetAsSysDefault

Subject, Message, AlIAtOnce,
ReturnWhenDone, TrackStati
Protect, AddSlip, RouteDocun
AddRecipient, OldRecipient, 1
ClearSlip, ClearRecipients, A«

Name, Format, LockAnnot, P
AddToMru, WritePassword,
RecommendReadOnly, Embe
NativePictureFormat, Formsl
SaveAsAOCELetter, WriteVer
VersionDesc

(none)

Title, Subject, Author, Keywoi
Comments, FileName, Direct
Template, CreateDate, LastSa
LastSavedBy, RevisionNumbe
EditTime, LastPrintedDate, N
NumWords, NumChars, Num
NumLines, Update, FileSize

wdDialogFileVersions
wdDialogFitText
wdDialogFontSubstitution

wdDialogFormatAddrFonts

wdDialogFormatBordersAndShading

AutoVersion, VersionDesc
FitTextWidth
UnavailableFont, SubstituteF

Points, Underline, Color,
StrikeThrough, Superscript, S
Hidden, SmallCaps, AllCaps,
Position, Kerning, KerningMi
Default, Tab, Font, Bold, Itali
DoubleStrikeThrough, Shado
Outline, Emboss, Engrave, Sc
Animations, CharAccent, For.
FontLowAnsi, FontHighAnsi.
CharacterWidthGrid, ColorR(
UnderlineColor, PointsBi, Co
FontNameBi, BoldBi, ItalicBi
DiacColor

ApplyTo, Shadow, TopBorder,
LeftBorder, BottomBorder,
RightBorder, HorizBorder, Ve
TopColor, LeftColor, Bottom(
RightColor, HorizColor, Vert(
FromText, Shading, Foregrot
Background, Tab, FineShadir
TopStyle, LeftStyle, BottomSt)
RightStyle, HorizStyle, VertSt
TopWeight, LeftWeight, Bottoi
RightWeight, HorizWeight, Ve
BorderObjectType, BorderArt
BorderArt, FromTextTop,
FromTIextBottom, FromTextL
FromTextRight, OffsetFrom, .
SurroundHeader, SurroundF
JoinBorder, LineColor, Whici
TL2BRBorder, TR2BLBorder
TL2BRColor, TR2BLColor,
TL2BRStyle, TR2BL Style,
TL2BRWeight, TR2BLWeight
ForegroundRGB, Backgroun

wdDialogFormatBulletsAndNumbering
wdDialogFormatCallout

wdDialogFormatChangeCase

wdDialogFormatColumns

wdDialogFormatDefineStyleBorders

TopColorRGB, LeftColorRGE
BottomColorRGB, RightColoi
HorizColorRGB, VertColorR(
TL2BRColorRGB, TR2BLCo:
LineColorRGB

(none)

Type, Gap, Angle, Drop, Leng
Border, AutoAttach, Accent

Type

Columns, ColumnNo, Colum
ColumnSpacing, EvenlySpace
ApplyColsTo, ColLine, StartN
FlowColumnsRtl

ApplyTo, Shadow, TopBorder,
LeftBorder, BottomBorder,
RightBorder, HorizBorder, Ve
TopColor, LeftColor, Bottom(
RightColor, HorizColor, Vert(
FromText, Shading, Foregrot
Background, Tab, FineShadir
TopStyle, LeftStyle, BottomSt)
RightStyle, HorizStyle, VertSt
TopWeight, LeftWeight, Bottoi
RightWeight, HorizWeight, Ve
BorderObjectType, BorderArt
BorderArt, FromTextTop,
FromTIextBottom, FromTextL
FromTextRight, OffsetFrom, .
SurroundHeader, SurroundF
JoinBorder, LineColor, Whici
TL2BRBorder, TR2BLBorder
TL2BRColor, TR2BLColor,
TL2BRStyle, TR2BL Style,
TL2BRWeight, TR2BLWeight
ForegroundRGB, Backgroun
TopColorRGB, LeftColorRGE
BottomColorRGB, RightColoi
HorizColorRGB, VertColorR(

wdDialogFormatDefineStyleFont

wdDialogFormatDefineStyleFrame

wdDialogFormatDefineStyleLang

wdDialogFormatDefineStylePara

TL2BRColorRGB, TR2BLCo:
LineColorRGB

Points, Underline, Color,
StrikeThrough, Superscript, S
Hidden, SmallCaps, AllCaps,
Position, Kerning, KerningMi
Default, Tab, Font, Bold, Itali
DoubleStrikeThrough, Shado
Outline, Emboss, Engrave, Sc
Animations, CharAccent, For.
FontLowAnsi, FontHighAnsi.
CharacterWidthGrid, ColorR(
UnderlineColor, PointsBi, Co
FontNameBi, BoldBi, ItalicBi
DiacColor

Wrap, WidthRule, FixedWidtt
HeightRule, FixedHeight,
PositionHorz, PositionHorzR¢
DistFromText, PositionVert,
PositionVertRel, DistVertFron
MoveWithText, LockAnchor,
RemoveFrame

Language, CheckLanguage, 1
NoProof

LeftIndent, RightIndent, Befo
LineSpacingRule, LineSpacin
Alignment, WidowControl,
KeepWithNext, KeepTogether.
PageBreak, NoLineNum, Dor
Tab, Firstindent, OutlineLeve
Kinsoku, WordWrap, Overfloy
TopLinePunct, AutoSpaceDE
LineHeightGrid, AutoSpaceD
CharAlign, CharacterUnitLef
AdjustRight, CharacterUnitFi
CharacterUnitRightIndent,
LineUnitBefore, LineUnitAfte
OrientationBi

wdDialogFormatDefineStyleTabs

wdDialogFormatDrawingObject

wdDialogFormatDropCap

wdDialogFormatEncloseCharacters

wdDialogFormatFont

wdDialogFormatFrame

wdDialogFormatPageNumber

Position, DefTabs, Align, Lea
Clear, ClearAll

Left, PositionHorzRel, Top,
PositionVertRel, LockAnchor,
FloatOverText, WrapSide,
TopDistanceFromText,
BottomDistanceFromText,
LeftDistanceFromText,
RightDistanceFromText, Wraqj
HRWidthType, HRHeight, H}I
HRAlign, Text, AllowOverlap.,
HorizRule

Position, Font, DropHeight,
DistFromText

Style, Text, Enclosure

Points, Underline, Color,
StrikeThrough, Superscript, S
Hidden, SmallCaps, AllCaps,
Position, Kerning, KerningMi
Default, Tab, Font, Bold, Itali
DoubleStrikeThrough, Shado
Outline, Emboss, Engrave, Sc
Animations, CharAccent, For.
FontLowAnsi, FontHighAnsi.
CharacterWidthGrid, ColorR(
UnderlineColor, PointsBi, Co
FontNameBi, BoldBi, ItalicBi
DiacColor

Wrap, WidthRule, FixedWidtt
HeightRule, FixedHeight,
PositionHorz, PositionHorzR
DistFromText, PositionVert,
PositionVertRel, DistVertFron
MoveWithText, LockAnchor,
RemoveFrame
ChapterNumber, NumRestart
NumFormat, StartingNum, L
Separator, DoubleQuote,

wdDialogFormatParagraph

wdDialogFormatPicture

wdDialogFormatRetAddrFonts

wdDialogFormatSectionLayout

wdDialogFormatStyle

PgNumberingStyle
LeftIndent, RightIndent, Befo
LineSpacingRule, LineSpacin
Alignment, WidowControl,
KeepWithNext, KeepTogether.
PageBreak, NoLineNum, Dor
Tab, Firstindent, OutlineLeve
Kinsoku, WordWrap, Overfloy
TopLinePunct, AutoSpaceDE.
LineHeightGrid, AutoSpaceD
CharAlign, CharacterUnitLef
AdjustRight, CharacterUnitFi
CharacterUnitRightIndent,
LineUnitBefore, LineUnitAfte
OrientationBi

SetSize, CropLeft, CropRight,
CropBottom, ScaleX, ScaleY,
SizeY

Points, Underline, Color,
StrikeThrough, Superscript, S
Hidden, SmallCaps, AllCaps,
Position, Kerning, KerningMi
Default, Tab, Font, Bold, Itali
DoubleStrikeThrough, Shado
Outline, Emboss, Engrave, Sc
Animations, CharAccent, For.
FontLowAnsi, FontHighAnsi.
CharacterWidthGrid, ColorR(
UnderlineColor, PointsBi, Co
FontNameBi, BoldBi, ItalicBi
DiacColor

SectionStart, VertAlign, Endn
LineNum, StartingNum, Fron
CountBy, NumMode, Section’
Name, Delete, Merge, NewNa
BasedOn, NextStyle, Type, Fii
Source, AddToTemplate, Defii
Rename, Apply, New

wdDialogFormatStyleGallery
wdDialogFormatStylesCustom

wdDialogFormatTabs

wdDialogFormatTheme
wdDialogFormFieldHelp

wdDialogFormFieldOptions

wdDialogFrameSetProperties

wdDialogHelpAbout

wdDialogHelpWordPerfectHelp

wdDialogHelpWordPerfectHelpOptions

wdDialogHorizontalInVertical
wdDialogIMESetDefault
wdDialogInsertAddCaption
wdDialogInsertAutoCaption

wdDialoglInsertBookmark
wdDialoglInsertBreak

wdDialogInsertCaption

wdDialogInsertCaptionNumbering

wdDialogInsertCrossReference

Template, Preview

(none)

Position, DefTabs, Align, Lea
Clear, ClearAll

(none)

(none)

Entry, Exit, Name, Enable, Te
TextWidth, TextDefault, TextF
CheckSize, CheckWidth, Chec
Type, OwnHelp, HelpText, Ov
StatText, Calculate

(none)

APPNAME, APPCOPYRIGH
APPUSERNAME,
APPORGANIZATION,
APPSERIALNUMBER
WPCommand, HelpText,
DemoGuidance
CommandKeyHelp, DocNavK
MouseSimulation, DemoGuid
DemoSpeed, HelpType

(none)

(none)

Name

Clear, ClearAll, Object, Label
Name, SortBy, Add, Delete, G
Hidden

Type
Label, TitleAutoText, Title, De
Position, AutoCaption

Label, FormatNumber,
ChapterNumber, Level, Separ
CapNumberingStyle
ReferenceType, ReferenceKin
Referenceltem, InsertAsHype
InsertPosition

wdDialogInsertDatabase

wdDialoglInsertDateTime

wdDialoglInsertField
wdDialoglInsertFile

wdDialogInsertFootnote

wdDialoglInsertFormField

wdDialogInsertHyperlink

wdDialogInsertIndex

wdDialogInsertIndexAndTables

Format, Style, LinkToSource,
Connection, SQLStatement,
SQLStatementl, PasswordDo
PasswordDot, DataSource, Fi
IncludeFields, WritePassword
WritePasswordDot

DateTimePic, InsertAsField,
DbCharField, DateLanguage,
CalendarType

Field

Name, Range, ConfirmConve
Link, Attachment

Reference, NoteType, Symbol

Entry, Exit, Name, Enable, Te
TextWidth, TextDefault, TextF
CheckSize, CheckWidth, Chec
Type, OwnHelp, HelpText, Ov
StatText, Calculate

(none)

Outline, Fields, From, To, Tal
AddedStyles, Caption,
HeadingSeparator, Replace,
MarkEntry, AutoMark, Mark
Type, RightAlignPageNumbei
KeepFormatting, Columns, C
Label, ShowPageNumbers,
AccentedLetters, Filter, SortB
TOCUseHyperlinks,
TOCHidePageNumInWeb,
IndexLanguage

Outline, Fields, From, To, Tal
AddedStyles, Caption,
HeadingSeparator, Replace,
MarkEntry, AutoMark, Mark
Type, RightAlignPageNumbei
KeepFormatting, Columns, C
Label, ShowPageNumbers,

wdDialogInsertMergeField
wdDialogInsertNumber

wdDialogInsertObject

wdDialogInsertPageNumbers
wdDialoglInsertPicture

wdDialogInsertSubdocument

wdDialogInsertSymbol

wdDialogInsertTableOfAuthorities

wdDialogInsertTableOfContents

AccentedLetters, Filter, SortB
TOCUseHyperlinks,
TOCHidePageNumInWeb,
IndexLanguage

MergeField, WordField
NumPic

IconNumber, FileName, Link
DisplayIcon, Tab, Class, Icon.
Caption, Floating

Type, Position, FirstPage
Name, LinkToFile, New, Floa

Name, ConfirmConversions, |
LinkToSource, AddToMru,
PasswordDoc, PasswordDot, |
WritePasswordDoc, WritePass
Connection, SQLStatement,
SQLStatementl, Format, Enc
Visible

Font, Tab, CharNum, Unicod

Outline, Fields, From, To, Tal
AddedStyles, Caption,
HeadingSeparator, Replace,
MarkEntry, AutoMark, Mark
Type, RightAlignPageNumbei
KeepFormatting, Columns, C
Label, ShowPageNumbers,
AccentedLetters, Filter, SortB
TOCUseHyperlinks,
TOCHidePageNumInWeb,
IndexLanguage

Outline, Fields, From, To, Tal
AddedStyles, Caption,
HeadingSeparator, Replace,
MarkEntry, AutoMark, Mark
Type, RightAlignPageNumbei
KeepFormatting, Columns, C
Label, ShowPageNumbers,

wdDialogInsertTableOfFigures

wdDialogInsertWebComponent

wdDialogL etterWizard

wdDialogListCommands

wdDialogMailMerge

wdDialogMailMergeCheck

AccentedLetters, Filter, SortB
TOCUseHyperlinks,
TOCHidePageNumInWeb,
IndexLanguage

Outline, Fields, From, To, Tal
AddedStyles, Caption,
HeadingSeparator, Replace,
MarkEntry, AutoMark, Mark
Type, RightAlignPageNumbei
KeepFormatting, Columns, C
Label, ShowPageNumbers,
AccentedLetters, Filter, SortB
TOCUseHyperlinks,
TOCHidePageNumInWeb,
IndexLanguage

(none)

SenderCity, DateFormat,
IncludeHeaderFooter, Letters$
Letterhead, LetterheadLocatic
LetterheadSize, RecipientNan
RecipientAddress, Salutation,
SalutationType, RecipientGen
RecipientReference,
MailingInstructions, Attentioi
LetterSubject, CCList, Sender
ReturnAddress, Closing,
SenderJobTitle, SenderComp«
SenderlInitials, EnclosureNun
PageDesign, InfoBlock, Send,
ReturnAddressSF, RecipientC
SenderCode, SenderReferenc:

ListType

CheckErrors, Destination,
MergeRecords, From, To, Suj
MailMerge, QueryOptions,
MailSubject, MailAsAttachme
MailAddress

CheckErrors

wdDialogMailMergeCreateDataSource

wdDialogMailMergeCreateHeaderSource

wdDialogMailMergeFieldMapping
wdDialogMailMergeFindRecipient
wdDialogMailMergeFindRecord
wdDialogMailMergeHelper
wdDialogMailMergelnsertAddressBlock

wdDialogMailMergelnsertAsk

wdDialogMailMergelnsertFields
wdDialogMailMergelInsertFillIn
wdDialogMailMergelnsertGreetingLine

wdDialogMailMergelnsertIf

wdDialogMailMergelnsertNextIf
wdDialogMailMergelInsertSet
wdDialogMailMergelInsertSkipIf

wdDialogMailMergeOpenDataSource

FileName, PasswordDoc, Pas.
HeaderRecord, MSQuery,
SQLStatement, SQLStatemen
Connection, LinkToSource,
WritePasswordDoc
FileName, PasswordDoc, Pas.
HeaderRecord, MSQuery,
SQLStatement, SQLStatemen
Connection, LinkToSource,
WritePasswordDoc

(none)

(none)

Find, Field

Merge, Options

(none)

Name, Prompt, DefaultBookn
AskOnce

(none)

Prompt, DefaultFilllInText, As
(none)

MergeField, Comparison, Coi
TrueAutoText, TrueText,
FalseAutoText, FalseText
MergeField, Comparison, Coi
Name, ValueText, ValueAutol
MergeField, Comparison, Coi
Name, ConfirmConversions, |
LinkToSource, AddToMru,
PasswordDoc, PasswordDot, i
WritePasswordDoc, WritePass
Connection, SQLStatement,
SQLStatementl, Format, Enc
Visible

Name, ConfirmConversions, |
LinkToSource, AddToMru,
PasswordDoc, PasswordDot, i

wdDialogMailMergeOpenHeaderSource

wdDialogMailMergeQueryOptions
wdDialogMailMergeRecipients
wdDialogMailMergeSetDocumentType
wdDialogMailMergeUseAddressBook

wdDialogMarkCitation

wdDialogMarkIndexEntry

wdDialogMarkTableOfContentsEntry
wdDialogNewToolbar

wdDialogNoteOptions

wdDialogOrganizer

wdDialogPhoneticGuide
wdDialogReviewAfmtRevisions
wdDialogSearch
wdDialogShowRepairs

wdDialogTableAutoFormat

wdDialogTableCellOptions
wdDialogTableColumnWidth
wdDialogTableDeleteCells

WritePasswordDoc, WritePass
Connection, SQLStatement,
SQLStatementl, Format, Enc
Visible

SQLStatement, SQLStatemen
(none)

(none)

AddressBookType

LongCitation, LongCitationA
Category, ShortCitation, Next
Mark, MarkAll

MarkAll, Entry, Range, Bold,
CrossReference, EntryAutoTe
CrossReferenceAutoText, Yon

Entry, EntryAutoText, Tablelc
Name, Context

FootnotesAt, FootNumberAs,
FootStartingNum, FootRestai
EndnotesAt, EndNumberAes,
EndStartingNum, EndRestart
FootNumberingStyle,
EndNumberingStyle

Copy, Delete, Rename, Source
Destination, Name, NewName

(none)

(none)

(none)

(none)

HideAutoFit, Preview, Forma
Borders, Shading, Font, Coloi
HeadingRows, FirstColumn, |
LastColumn

(none)

(none)

ShiftCells

wdDialogTableFormatCell
wdDialogTableFormula
wdDialogTableInsertCells
wdDialogTableInsertRow

wdDialogTableInsertTable

wdDialogTableOfCaptionsOptions
wdDialogTableOfContentsOptions
wdDialogTableProperties
wdDialogTableRowHeight

wdDialogTableSort

wdDialogTableSplitCells

wdDialogTableTableOptions
wdDialogTableToText
wdDialogTableWrapping
wdDialogTCSCTranslator

wdDialogTextToTable

wdDialogToolsAcceptRejectChanges

wdDialogToolsAdvancedSettings

Category

Formula, NumFormat
ShiftCells

NumRows

ConvertFrom, NumColumns,
NumRows, Initial ColWidth, V
Format, Apply, AutoFit, SetD
Word8

(none)

(none)

(none)

(none)

DontSortHdr, FieldNum, Typ.
FieldNum2, Type2, Order2,
FieldNum3, Type3, Order3, S
SortColumn, CaseSensitive, S
IgnoreHe, Diacritics, Ignorel
Kashida, Language
NumColumns, NumRows,
MergeBeforeSplit

(none)

ConvertTo, NestedTables
(none)

Direction, Varients, Translate
ConvertFrom, NumColumns,
NumRows, Initial ColWidth, V
Format, Apply, AutoFit, SetD
Word8

ShowMarks, HideMarks, Wra
FindPrevious, FindNext,
AcceptRevisions, RejectRevisi
AcceptAll, RejectAll
Application, Option, Setting, 1
InitialCaps, SentenceCaps, D
CapsLock, ReplaceText, Forn
Replace, With, Add, Delete,

wdDialogToolsAutoCorrect

wdDialogToolsAutoCorrectExceptions
wdDialogToolsAutoManager
wdDialogToolsAutoSummarize

wdDialogToolsBulletsNumbers

wdDialogToolsCompareDocuments
wdDialogToolsCreateDirectory

wdDialogToolsCreateEnvelope

SmartQuotes,
CorrectHangulAndAlphabet,
ConvBrackets, ConvQuotes,
ConvPunct,
ReplaceTextFromSpellingChe

Tab, Name, AutoAdd, Add, D¢
Tab
TextSize, Show, Update

Replace, Font, CharNum, Ty
FormatOutline, AutoUpdate,
FormatNumber, Punctuation,
Points, Hang, Indent, Remove
DoubleQuote

Name
Directory

ExtractAddress, LabelListInd
Labellndex, LabelDotMatrix,
LabelTray, LabelAcross, Labe
EnvOmitReturn, EnvReturn,
PrintBarCode, SingleLabel, L
LabelColumn, PrintEnvLabel
AddToDocument, EnvWidth,
EnvHeight, EnvPaperSize, Pr
UseEnvFeeder, Tab, AddrAut
AddrText, AddrFromLeft,
AddrFromTop, RetAddrFrom
RetAddrFromTop, LabelTop.
LabelSideMargin, LabelVertP
LabelHorPitch, LabelHeight,
LabelWidth, CustomName,
EnvPaperName, DefaultFace
DefaultOrientation, RetAddrA

ExtractAddress, LabelListInd
Labellndex, LabelDotMatrix,
LabelTray, LabelAcross, Labe
EnvAddress, EnvOmitReturn,
EnvReturn, PrintBarCode, Sii

wdDialogToolsCreateLabels

wdDialogToolsCustomize

wdDialogToolsCustomizeKeyboard

wdDialogToolsCustomizeMenuBar

wdDialogToolsCustomizeMenus

LabelRow, LabelColumn,
PrintEnvLabel, AddToDocum
EnvWidth, EnvHeight, EnvPq
PrintFIMA, UseEnvFeeder, 1
AddrAutoText, AddrText,
AddrFromLeft, AddrFromTop
RetAddrFromLeft, RetAddrFi
LabelTopMargin, LabelSideM
LabelVertPitch, LabelHor Pitc
LabelHeight, LabelWidth,
CustomName, RetAddrText,
EnvPaperName, DefaultFace
DefaultOrientation, RetAddrA

KeyCode, KeyCode2, MenuTy
Position, AddAll, Category, N
Menu, AddBelow, MenuText,
Add, Remove, ResetAll,

CommandValue, Context, Tab

KeyCode, KeyCode2, MenuTy
Position, AddAll, Category, N
Menu, AddBelow, MenuText,
Add, Remove, ResetAll,

CommandValue, Context, Tab

Context, Position, MenuType,
MenuText, Menu, Add, Remo
Rename

KeyCode, KeyCode2, MenuTy
Position, AddAll, Category, N
Menu, AddBelow, MenuText,
Add, Remove, ResetAll,

CommandValue, Context, Tab

ExtractAddress, LabelListInd
Labellndex, LabelDotMatrix,
LabelTray, LabelAcross, Labe
EnvAddress, EnvOmitReturn,
EnvReturn, PrintBarCode, Sii
LabelRow, LabelColumn,

PrintEnvLabel, AddToDocum

wdDialogToolsEnvelopesAndLabels

wdDialogToolsGrammarSettings
wdDialogToolsHangulHanjaConversion

wdDialogToolsHighlightChanges

wdDialogToolsHyphenation

wdDialogToolsLanguage

wdDialogToolsMacro

wdDialogToolsMacroRecord

wdDialogToolsManageFields

wdDialogToolsMergeDocuments
wdDialogToolsOptions

wdDialogToolsOptionsAutoFormat

EnvWidth, EnvHeight, EnvPq
PrintFIMA, UseEnvFeeder, 1
AddrAutoText, AddrText,
AddrFromLeft, AddrFromTop
RetAddrFromLeft, RetAddrFi
LabelTopMargin, LabelSideM
LabelVertPitch, LabelHor Pitc
LabelHeight, LabelWidth,
CustomName, RetAddrText,
EnvPaperName, DefaultFace
DefaultOrientation, RetAddrA

(none)
(none)

MarkRevisions, ViewRevision
PrintRevisions, AcceptAll, Re;

AutoHyphenation, Hyphenate
HyphenationZone,
LimitConsecutiveHyphens
Language, CheckLanguage, 1
NoProof

Name, Run, Edit, Show, Dele:
Rename, Description, NewNa
SetDesc

(This dialog box cannot be call
macro.)

FieldName, Add, Remove, Rei
NewName

Name

Tab

ApplyStylesHeadings, ApplySi
ApplyBulletedLists,
ApplyStylesOtherParas, Replc
ReplaceOrdinals, ReplaceFra
ReplaceSymbols,
ReplacePlainTextEmphasis,
ReplaceHyperlinks, PreserveS$
PlainTextWordMail, ApplyFir

MatchParentheses, ReplaceD:
ReplaceAutoSpaces
ApplyStylesHeadings, ApplyB
ApplyTables, ApplyDates,
ApplyBulletedLists,
ApplyNumberedLists, ApplyF
ApplyClosings, ReplaceQuote.
ReplaceOrdinals, ReplaceFra
ReplaceSymbols,
ReplacePlainTextEmphasis,
ReplaceHyperlinks, MatchPai
ReplaceAutoSpaces, Replacel
FormatListltemBeginning,
DefineStyles, InsertOvers,
InsertClosings, AutoLetter Wi
ShowOptionsFor, ApplyStyles
ApplySkipList, ApplyStylesOti
ReplaceBullets, AdjustParaM
AdjustTabsSpaces, AdjustEmj
PreserveStyles

DocViewDir, AddCtrICopy,
HebDoubleQuote, Numbers, I
BiDirectional, ShowDiac,
DiffDiacColor, Date, Advance
MasterDocDir, OutlineDir,
DiacriticColorVal

Product, Default, NoTabHang
NoSpaceRaiseLower, PrintCo
WrapTrailSpaces, NoColumn,
ConvMailMergeEsc,
SuppressSpBfAfterPgBrk,
SuppressTopSpacing,
OrigWordTableRules,
TransparentMetadfiles,
ShowBreaksInFrames,
SwapBordersFacingPages,
LeaveBackslashAlone,
ExpandShiftReturn,

wdDialogToolsOptionsAutoFormatAsYouType

wdDialogToolsOptionsBidi

wdDialogToolsOptionsCompatibility

wdDialogToolsOptionsEdit

wdDialogToolsOptionsEditCopyPaste
wdDialogToolsOptionsFileLocations

wdDialogToolsOptionsFuzzy

DontULTrailSpace,
DontBalanceSbDbWidth,
SuppressTopSpacingMac5,
SpacingInWholePoints,
PrintBodyTextBeforeHeader,
NoLeading, NoSpaceForUL,
MWSmallCaps, NoExtraLine,
TruncateFontHeight, SubFon
UsePrinterMetrics, WW6Bor¢
ExactOnTop, SuppressBottom
WPSpaceWidth, WPJustificat
LineWrapLikeWord6,
SpLayoutLikeWW8,
FtnLayoutLikeWWS8,
DontUseHTML ParagraphAu
DontAdjustLineHeightInTabl
ForgetLastTabAlignment,
UseAutospaceF orFullWidthA
AlignTablesRowByRow,
LayoutRawTableWidth,
LayoutTableRowsApart,
UseWord97LineBreakingRule

ReplaceSelection, DragAndDi
AutoWordSelection, InsForPc
Overtype, SmartCutPaste,
AllowAccentedUppercase,
PictureEditor, TabIndent, Bsl
InlineConversion, IME Losing
AllowClickAndTypeMouse,
ClickAndTypeParagraphStyle
AutoKeyBi

(none)

Path, Setting

FuzzyCase, FuzzyByte, Fuzzy.
FuzzySmKana, FuzzyMinus,
FuzzyRepSymbol, FuzzyKanji
FuzzyOldKana, FuzzyLongVo
FuzzyDZ, FuzzyBV, FuzzyTC

wdDialogToolsOptionsGeneral

wdDialogToolsOptionsPrint

wdDialogToolsOptionsSave

wdDialogToolsOptionsSecurity
wdDialogToolsOptionsSmartTag

FuzzyHF, FuzzyZJ, FuzzyAY,
FuzzyKIKU, FuzzyPunct, Fuz

Pagination, WPHelp, WPDoc
BlueScreen, ErrorBeeps, Effe
UpdateLinks, SendMailAttact
RecentFiles, RecentFileCoun:
ButtonFieldClicks, ShortMen
RTFInClipboard, ConfirmCoi
TipWizardActive, AnimatedCi
VirusProtection, SeparateFon
InterpretHIANSIToDBC,

ExitWithRestoreSession, Asia
PixelsInDialogs, UseCharacte

Draft, Reverse, UpdateFields,
Summary, ShowCodes, Annot
ShowHidden, EnvF eederInstc
WidowControl, DfltTrueType,
UpdateLinks, Background,
DrawingObjects, FormsData,
DefaultTray, PSOverText,
MapPaperSize, Fractional Wic
PrOrder1, PrOrder2

CreateBackup, FastSaves,
SummaryPrompt, GlobalDotF
NativePictureFormat, Embed.
FormsData, AutoSave, Savelr
Password, WritePassword,
RecommendReadOnly, Subse
BackgroundSave, DefaultSav.
AddCtriSave

(none)
(none)

AlwaysSuggest,
SuggestFromMainDictOnly,
IgnoreAllCaps, IgnoreMixedl
ResetIgnoreAll, Type, Custom
CustomDict2, CustomDict3,
CustomDict4, CustomDict5,

wdDialogToolsOptionsSpellingAndGrammar

wdDialogToolsOptionsTrackChanges

wdDialogToolsOptionsTypography

wdDialogToolsOptionsUserInfo

wdDialogToolsOptionsView

CustomDict6, CustomDict7,
CustomDict8, CustomDict9,
CustomDict10,
AutomaticSpellChecking,
FilenamesEmailAliases, User
AutomaticGrammarChecking
ForegroundGrammar, Show$
Options, RecheckDocument,
IgnoreAuxFind,
IgnoreMissDictSearch,
HideGrammarkErrors, CheckS
GrLidUI, SpLidUI, DictLang!
DictLang2, DictLang3, DictL
DictLang5, DictLang6, DictL
DictLang8, DictLang9, DictL
HideSpellingErrors, HebSpell
InitialAlefHamza, FinalYaa,
GermanPostReformSpell, Ara
ProcessCompoundNoun

InsertedTextMark, InsertedTe
DeletedTextMark, DeletedTex:
RevisedLinesMark, RevisedLi
HighlightColor,
RevisedPropertiesMark,
RevisedPropertiesColor
KerningPairs, Justification,
PunctLevel, FollowingPunct,
LeadingPunct, ApplyToTempl
JapaneseKinsokusStrict,
FarEastLineBreakLanguage

Name, Initials, Address

DraftFont, WrapToWindow,

PicturePlaceHolders, FieldCo
BookMarks, FieldShading, St
HScroll, VScroll, StyleAreaW
Spaces, Paras, Hyphens, Hidc
ShowAll, Drawings, Anchors,
TextBoundaries, VRuler, Higl

wdDialogToolsProtectDocument
wdDialogToolsProtectSection

wdDialogToolsRevisions

wdDialogToolsSpellingAndGrammar

wdDialogToolsTemplates
wdDialogToolsThesaurus
wdDialogToolsUnprotectDocument

wdDialogToolsWordCount

wdDialogTwoLinesInOne
wdDialogUpdateTOC

wdDialogViewZoom

wdDialogWebOptions
wdDialogWindowActivate

ShowAnimation, ScrnTp, Lefi
RRuler, OptionalBreak,
EnlargeFontsLessThan,
BrowseToWindow

DocumentPassword, NoReset,
Protect, Section

MarkRevisions, ViewRevision
PrintRevisions, AcceptAll, Re;

SuggestionListBox,
ForegroundGrammar

Store, Template, LinkStyles
(none)
DocumentPassword

CountFootnotes, Pages, Word
Characters, DBCs, SBCs,
CharactersIncludingSpaces,
Paragraphs, Lines

(none)
(none)

AutoFit, TwoPages, FullPage
NumColumns, NumRows,
ZoomPercent, TextFit

(none)
Window

OLE Programmatic Identifiers

You can use an OLE programmatic identifier (sometimes called a ProgID) to
create an Automation object. The following tables list OLE programmatic
identifiers for ActiveX controls, Microsoft Office applications, and Microsoft
Office Web Components.

ActiveX Controls

Microsoft Access

Microsoft Excel

Microsoft Graph

Microsoft Office Web Components

Microsoft Outlook

Microsoft PowerPoint

Microsoft Word

ActiveX Controls

To create the ActiveX controls listed in the following table, use the
corresponding OLE programmatic identifier.

To create this control Use this identifier
CheckBox Forms.CheckBox.1
ComboBox Forms.ComboBox.1
CommandButton Forms.CommandButton. 1
Frame Forms.Frame.1

Image Forms.Image.1

Label Forms.Label.1

ListBox Forms.ListBox.1
MultiPage Forms.MultiPage.1
OptionButton Forms.OptionButton.1
ScrollBar Forms.ScrollBar.1
SpinButton Forms.SpinButton.1
TabStrip Forms.TabStrip.1
TextBox Forms.TextBox.1

ToggleButton Forms.ToggleButton.1

Microsoft Access

To create the Microsoft Access objects listed in the following table, use one of
the corresponding OLE programmatic identifiers. If you use an identifier without
a version number suffix, you create an object in the most recent version of
Access available on the machine where the macro is running.

To create this object Use one of these identifiers
Application Access.Application
CurrentData Access.CodeData, Access.CurrentData
CurrentProject Access.CodeProject, Access.CurrentProject

DefaultWebOptions Access.DefaultWebOptions

Microsoft Excel

To create the Microsoft Excel objects listed in the following table, use one of the
corresponding OLE programmatic identifiers. If you use an identifier without a
version number suffix, you create an object in the most recent version of Excel
available on the machine where the macro is running.

Use one of these

To create this object . g Comments
identifiers
Application Excel.Application
Workbook Excel.AddIn

Returns a workbook
containing two worksheets;

Workbook Excel.Chart one for the chart and one for
its data. The chart worksheet
is the active worksheet.

Workbook Excel Sheet Returns a workbook with one
worksheet.

Microsoft Graph

To create the Microsoft Graph objects listed in the following table, use one of the
corresponding OLE programmatic identifiers. If you use an identifier without a

version number suffix, you create an object in the most recent version of Graph
available on the machine where the macro is running.

To create this object Use one of these identifiers
Application MSGraph.Application
Chart MSGraph.Chart

Microsoft Office Web Components

To create the Microsoft Office Web Components objects listed in the following
table, use one of the corresponding OLE programmatic identifiers. If you use an
identifier without a version number suffix, you create an object in the most
recent version of Microsoft Office Web Components available on the machine
where the macro is running.

To create this object Use one of these identifiers
ChartSpace OWC.Chart
DataSourceControl OWC.DataSourceControl
ExpandControl OWC.ExpandControl
PivotTable OWC.PivotTable

RecordNavigationControl OWC.RecordNavigationControl
Spreadsheet OWC.Spreadsheet

Microsoft Outlook

To create the Microsoft Outlook object given in the following table, use one of
the corresponding OLE programmatic identifiers. If you use an identifier without
a version number suffix, you create an object in the most recent version of
Outlook available on the machine where the macro is running.

To create this object Use one of these identifiers
Application Outlook.Application

Microsoft PowerPoint

To create the Microsoft PowerPoint object given in the following table, use one
of the corresponding OLE programmatic identifiers. If you use an identifier
without a version number suffix, you create an object in the most recent version
of PowerPoint available on the machine where the macro is running.

To create this object Use one of these identifiers
Application PowerPoint.Application

Microsoft Word

To create the Microsoft Word objects listed in the following table, use one of the
corresponding OLE programmatic identifiers. If you use an identifier without a

version number suffix, you create an object in the most recent version of Word
available on the machine where the macro is running.

To create this object Use one of these identifiers
Application Word.Application
Document Word.Document, Word.Template

Global Word.Global

AddIn Object

|‘Addlns (AddIn)

Represents a single add-in, either installed or not installed. The AddIn object is
a member of the AddIns collection. The AddIns collection contains all the add-
ins available to Word, regardless of whether or not they're currently loaded. The
AddIns collection includes global templates or Word add-in libraries (WLLSs)
displayed in the Templates and Add-ins dialog box (Tools menu).

Application

Using the AddIn Object

Use AddIns(index), where index is the add-in name or index number, to return a
single AddIn object. You must exactly match the spelling (but not necessarily
the capitalization) of the name, as it's shown in the Templates and Add-Ins
dialog box. The following example loads the Letter.dot template as a global
template.

AddIns("Letter.dot").Installed = True

The index number represents the position of the add-in in the list of add-ins in
the Templates and Add-ins dialog box. The following instruction displays the
path of the first available add-in.

If Addins.Count >= 1 Then MsgBox Addins(1).Path

The following example creates a list of add-ins at the beginning of the active
document. The list contains the name, path, and installed state of each available
add-in.

With ActiveDocument.Range(Start:=0, End:=0)
.InsertAfter "Name" & vbTab & "Path" & vbTab & "Installed"
.InsertParagraphAfter
For Each oAddIn In AddIns
.InsertAfter oAddIn.Name & vbTab & oAddIn.Path & vbTab _
& o0AddIn.Installed
.InsertParagraphAfter
Next oAddIn
.ConvertToTable
End with

Use the Add method to add an add-in to the list of available add-ins and
(optionally) install it using the Install argument.

AddIns.Add FileName:="C:\Templates\Other\Letter.dot", Install:=True

To install an add-in shown in the list of available add-ins, use the Installed
property.

AddIns("Letter.dot").Installed = True

Note Use the Compiled property to determine whether an AddIn object is a
template or a WLL.

AddIns Collection Object

|‘Addlns (AddIn)

A collection of AddIn objects that represents all the add-ins available to Word,
regardless of whether or not they're currently loaded. The AddIns collection
includes global templates or Word add-in libraries (WLLs) displayed in the
Templates and Add-ins dialog box (Tools menu).

Application

Using the AddIns Collection

Use the AddIns property to return the AddIns collection. The following
example displays the name and the installed state of each available add-in.

For Each ad In AddIns
If ad.Installed = True Then
MsgBox ad.Name & " is installed"
Else
MsgBox ad.Name & " is available but not installed"
End If
Next ad

Use the Add method to add an add-in to the list of available add-ins and
(optionally) install it using the Install argument.

AddIns.Add FileName:="C:\Templates\Other\Letter.dot", Install:=True

To install an add-in shown in the list of available add-ins, use the Installed
property.

AddIns("Letter.dot").Installed = True

Use AddIns(index), where index is the add-in name or index number, to return a
single AddIn object. You must exactly match the spelling (but not necessarily
the capitalization) of the name, as it's shown in the Templates and Add-ins
dialog box. To install an add-in shown in the list of available add-ins, use the
Installed property. The following example loads the Letter.dot template as a
global template.

AddIns("Letter.dot").Installed = True

Note If the add-in is not located in the User Templates, Workgroup Templates,
or Startup folder, you must specify the full path and file name when indexing an
add-in by name.

Remarks

Use the Compiled property to determine whether an AddIn object is a template
or a WLL.

Adjustments Object

Multiple objects |‘Adjustments

Contains a collection of adjustment values for the specified AutoShape or
WordArt object. Each adjustment value represents one way an adjustment handle
can be adjusted. Because some adjustment handles can be adjusted in two

ways — for instance, some handles can be adjusted both horizontally and
vertically — a shape can have more adjustment values than it has adjustment

handles. A shape can have up to eight adjustments.

Using the Adjustments Object

Use the Adjustments property to return an Adjustments object. Use
Adjustments(index), where index is the adjustment value's index number, to
return a single adjustment value.

Different shapes have different numbers of adjustment values, different kinds of
adjustments change the geometry of a shape in different ways, and different
kinds of adjustments have different ranges of valid values.

Note Because each adjustable shape has a different set of adjustments, the best
way to verify the adjustment behavior for a specific shape is to manually create
an instance of the shape, make adjustments with the macro recorder turned on,
and then examine the recorded code.

The following table summarizes the ranges of valid adjustment values for
different types of adjustments. In most cases, if you specify a value that's beyond
the range of valid values, the closest valid value will be assigned to the
adjustment.

T.ype of Valid values

Adjustment
Generally the value 0.0 represents the left or top edge of the shape
and the value 1.0 represents the right or bottom edge of the shape.
Valid values correspond to valid adjustments you can make to the

Linear shape manually. For example, if you can only pull an adjustment

: handle half way across the shape manually, the maximum value for
(horizontal

the corresponding adjustment will be 0.5. For shapes such as
callouts, where the values 0.0 and 1.0 represent the limits of the
rectangle defined by the starting and ending points of the callout
line, negative numbers and numbers greater than 1.0 are valid
values.

An adjustment value of 1.0 corresponds to the width of the shape.
The maximum value is 0.5, or half way across the shape.

or vertical)

Radial

Values are expressed in degrees. If you specify a value outside the

Angle range — 180 to 180, it will be normalized to be within that range.

The following example adds a right-arrow callout to the active document and
sets adjustment values for the callout. Note that although the shape has only
three adjustment handles, it has four adjustments. Adjustments three and four
both correspond to the handle between the head and neck of the arrow.

Set rac = ActiveDocument.Shapes _
.AddShape(msoShapeRightArrowCallout, 10, 10, 250, 190)
With rac.Adjustments

.Item(1) = 0.5 'adjusts width of text box

.Item(2) = 0.15 'adjusts width of arrow head
.Item(3) = 0.8 'adjusts length of arrow head
.Item(4) = 0.4 'adjusts width of arrow neck

End With

Application Object

L

Application ~Multiple objects

Represents the Microsoft Word application. The Application object includes
properties and methods that return top-level objects. For example, the
ActiveDocument property returns a Document object.

Using the Application Object

Use the Application property to return the Application object. The following
example displays the user name for Word.

MsgBox Application.UserName

Many of the properties and methods that return the most common user-interface
objects — such as the active document (ActiveDocument property) — can be
used without the Application object qualifier. For example, instead of writing
Application.ActiveDocument.PrintOut, you can write
ActiveDocument.Printout. Properties and methods that can be used without the
Application object qualifier are considered "global." To view the global
properties and methods in the Object Browser, click <globals> at the top of the
list in the Classes box.

Remarks

To use Automation (formerly OLE Automation) to control Word from another
application, use Visual Basic's CreateObject or GetObject function to return a
Word Application object. The following Microsoft Excel example starts Word
(if it's not already running) and opens an existing document.

Set wrd = GetObject(, "Word.Application")
wrd.Visible = True

wrd.Documents.Open "C:\My Documents\Temp.doc"
Set wrd = Nothing

AutoCaption Object

L

Application ~AutoCaptions (AutoCaption)

Represents a single caption that can be automatically added when items such as
tables, pictures, or OLE objects are inserted into a document. The AutoCaption
object is a member of the AutoCaptions collection. The AutoCaptions
collection contains all the captions listed in the AutoCaption dialog box (Insert
menu).

Using the AutoCaption Object

Use AutoCaptions(index), where index is the caption name or index number, to
return a single AutoCaption object. The caption names correspond to the items
listed in the AutoCaption dialog box (Insert menu). You must exactly match
the spelling (but not necessarily the capitalization) of the name, as it's shown in
the AutoCaption dialog box. The following example enables autocaptions for
Word tables.

AutoCaptions("Microsoft Word Table").AutoInsert = True

The index number represents the position of the AutoCaption object in the list
of items in the AutoCaption dialog box. The following example displays the
name of the first item listed in the AutoCaption dialog box.

MsgBox AutoCaptions(1).Name

AutoCaption objects cannot be programmatically added to or deleted from the
AutoCaptions collection.

AutoCaptions Collection Object

L

Application ~AutoCaptions (AutoCaption)

A collection of AutoCaption objects that represent the captions that can be
automatically added when items such as tables, pictures, or OLE objects are
inserted into a document.

Using the AutoCaptions Collection

Use the AutoCaptions property to return the AutoCaptions collection. The
following example displays the names of the selected items in the AutoCaption
dialog box.

For Each autoCap In AutoCaptions
If autoCap.AutoInsert = True Then
MsgBox autoCap.Name & " is configured for auto insert"
End If
Next autoCap

The AutoCaptions collection contains all the captions listed in the
AutoCaption dialog box (Insert menu). AutoCaption objects cannot be
programmatically added to or deleted from the AutoCaptions collection.

Use AutoCaptions(index), where index is the caption name or index number, to
return a single AutoCaption object. The caption names correspond to the items
listed in the AutoCaption dialog box (Insert menu). You must exactly match
the spelling (but not necessarily the capitalization) of the name, as it's shown in
the AutoCaption dialog box. The following example displays the caption text
"Microsoft Word Table."

MsgBox AutoCaptions('"Microsoft Word Table").CaptionLabel.Name

The index number represents the position of the AutoCaption object in the list
of captions in the AutoCaption dialog box. The following example displays the
name of the first item selected in the AutoCaption dialog box.

MsgBox AutoCaptions(1).Name

AutoCorrect Object

L

Application ~AutoCorrect

|‘Multiple objects

Represents the AutoCorrect functionality in Word.

Using the AutoCorrect Object

Use the AutoCorrect property to return the AutoCorrect object. The following
example enables the AutoCorrect options and creates an AutoCorrect entry.

With AutoCorrect

.CorrectCapsLock = True

.CorrectDays = True

.Entries.Add Name:="usualy", Value:="usually"
End With

The Entries property returns the AutoCorrectEntries object that represents the
AutoCorrect entries in the AutoCorrect dialog box (Tools menu).

AutoCorrectEntries Collection Object

L

Application ~AutoCorrect

|‘AutoCorrectEntries (AutoCorrectEntry)

A collection of AutoCorrectEntry objects that represent all the AutoCorrect
entries available to Word. The AutoCorrectEntries collection includes all the
entries in the AutoCorrect dialog box (Tools menu).

Using the AutoCorrectEntries Collection

Use the Entries property to return the AutoCorrectEntries collection. The
following example displays the number of AutoCorrectEntry objects in the
AutoCorrectEntries collection.

MsgBox AutoCorrect. Entries.Count

Use the Add or the AddRichText method to add an AutoCorrect entry to the list
of available entries. The following example adds a plain-text AutoCorrect entry
for the misspelling of the word "their."

AutoCorrect.Entries.Add Name:="thier", Value:="their"

The following example creates an AutoCorrect entry named "PMO" based on the
text and formatting of the selection.

AutoCorrect.Entries.AddRichText Name:="PM0O", Range:=Selection.Range

Use Entries(index), where index is the AutoCorrect entry name or index
number, to return a single AutoCorrectEntry object. You must exactly match
the spelling (but not necessarily the capitalization) of the name, as it's shown
under Replace in the AutoCorrect dialog box. The following example sets the
value of an existing AutoCorrect entry named "teh."

AutoCorrect.Entries("teh").vValue = "the"

The following example displays the name and value of the first AutoCorrent
entry.

MsgBox '"Name = " & AutoCorrect.Entries(1).Name & vbCr & _
"Value " & AutoCorrect.Entries(1).Value

AutoCorrectEntry Object

L

Application ~AutoCorrect

|‘AutoCorrectEntries (AutoCorrectEntry)

Represents a single AutoCorrect entry. The AutoCorrectEntry object is a
member of the AutoCorrectEntries collection. The AutoCorrectEntries
collection includes the entries in the AutoCorrect dialog box (Tools menu).

Using the AutoCorrectEntry Object

Use Entries(index), where index is the AutoCorrect entry name or index
number, to return a single AutoCorrectEntry object. You must exactly match
the spelling (but not necessarily the capitalization) of the name, as it's shown
under Replace in the AutoCorrect dialog box. The following example sets the
value of the AutoCorrect entry named "teh."

AutoCorrect.Entries("teh").vValue = "the"

Use the Apply method to insert an AutoCorrect entry at the specified range. The
following example adds an AutoCorrect entry and then inserts it in place of the
selection.

AutoCorrect.Entries.Add Name:="hellp", Value:="hello"
AutoCorrect.Entries("hellp").Apply Range:=Selection.Range

Use either the Add or AddRichText method to add an AutoCorrect entry to the
list of available entries. The following example adds a plain-text AutoCorrect
entry for the misspelling of the word "their.’

AutoCorrect.Entries.Add Name:="thier", Value:="their"

The following example creates an AutoCorrect entry named "PMO" based on the
text and formatting of the selection.

AutoCorrect.Entries.AddRichText Name:="PMO", Range:=Selection.Range

AutoTextEntries Collection Object

Application |‘Templates (Template)

|‘AutoTextEntries (AutoTextEntry)

A collection of AutoTextEntry objects that represent the AutoText entries in a
template. The AutoTextEntries collection includes all the entries listed on the
AutoText tab in the AutoCorrect dialog box (Tools menu).

Using the AutoTextEntries Object

Use the AutoTextEntries property to return the AutoTextEntries collection.
The following example determines whether an AutoTextEntry object named
"test" is in the AutoTextEntries collection.

For Each i In NormalTemplate.AutoTextEntries
If LCase(i.Name) = "test" Then MsgBox "AutoText entry exists"
Next i

Use the Add method to add an AutoText entry to the AutoTextEntries
collection. The following example adds an AutoText entry named "Blue" based
on the text of the selection.

NormalTemplate.AutoTextEntries.Add Name:="Blue", _
Range:=Selection.Range

Use AutoTextEntries(index), where index is the AutoText entry name or index
number, to return a single AutoTextEntry object. You must exactly match the
spelling (but not necessarily the capitalization) of the name, as it's shown on the
AutoText tab in the AutoCorrect dialog box. The following example sets the
value of an existing AutoText entry named "cName."

NormalTemplate.AutoTextEntries('"cName").Value = _
"The Johnson Company"

The following example displays the name and value of the first AutoText entry
in the template attached to the active document.

Set myTemplate = ActiveDocument.AttachedTemplate
MsgBox '"Name = " & myTemplate.AutoTextEntries(1).Name & vbCr _
& "Value " & myTemplate.AutoTextEntries(1).Value

AutoTextEntry Object

Application |‘Templates (Template)

|‘AutoTextEntries (AutoTextEntry)

Represents a single AutoText entry. The AutoTextEntry object is a member of
the AutoTextEntries collection. The AutoTextEntries collection contains all
the AutoText entries in the specified template. The entries are listed on the
AutoText tab in the AutoCorrect dialog box (Tools menu).

Using the AutoTextEntry Object

Use AutoTextEntries(index), where index is the AutoText entry name or index
number, to return a single AutoTextEntry object. You must exactly match the
spelling (but not necessarily the capitalization) of the name, as it's shown on the
AutoText tab in the AutoCorrect dialog box. The following example sets the
value of an existing AutoText entry named "cName."

NormalTemplate.AutoTextEntries("cName").Value = _
"The Johnson Company"

The following example displays the name and value of the first AutoText entry
in the template attached to the active document.

Set myTemplate = ActiveDocument.AttachedTemplate
MsgBox '"Name = " & myTemplate.AutoTextEntries(1).Name & vbCr _
& "Value " & myTemplate.AutoTextEntries(1).Value

The following example inserts the global AutoText entry named "TheWorld" at
the insertion point.

Selection.Collapse Direction:=wdCollapseEnd
NormalTemplate.AutoTextEntries("TheWorld").Insert _
Where:=Selection.Range

Use the Add method to add an AutoTextEntry object to the AutoTextEntries
collection. The following example adds an AutoText entry named "Blue" based
on the text of the selection.

NormalTemplate.AutoTextEntries.Add Name:="Blue", _
Range:=Selection.Range

Bookmark Object

L

Multiple objects ~“Bookmarks (Bookmark)

|‘Range

Represents a single bookmark. The Bookmark object is a member of the
Bookmarks collection. The Bookmarks collection includes all the bookmarks
listed in the Bookmark dialog box (Insert menu).

Using the Bookmark Object

Use Bookmarks(index), where index is the bookmark name or index number, to
return a single Bookmark object. You must exactly match the spelling (but not
necessarily the capitalization) of the bookmark name. The following example
selects the bookmark named "temp" in the active document.

ActiveDocument.Bookmarks("temp").Select

The index number represents the position of the bookmark in the Selection or
Range object. For the Document object, the index number represents the
position of the bookmark in the alphabetic list of bookmarks in the Bookmarks
dialog box (click Name to sort the list of bookmarks alphabetically). The
following example displays the name of the second bookmark in the
Bookmarks collection.

MsgBox ActiveDocument.Bookmarks(2).Name

Use the Add method to add a bookmark to a document range. The following
example marks the selection by adding a bookmark named "temp."

ActiveDocument.Bookmarks.Add Name:="temp", Range:=Selection.Range

Remarks

Use the BookmarkID property with a range or selection object to return the
index number of the Bookmark object in the Bookmarks collection. The
following example displays the index number of the bookmark named "temp" in
the active document.

MsgBox ActiveDocument.Bookmarks("temp").Range.BookmarkID

You can use predefined bookmarks with the Bookmarks property. The
following example sets the bookmark named "currpara” to the location marked
by the predefined bookmark named "\Para".

ActiveDocument.Bookmarks("\Para").Copy "currpara"

Use the Exists method to determine whether a bookmark already exists in the
selection, range, or document. The following example ensures that the bookmark
named "temp" exists in the active document before selecting the bookmark.

If ActiveDocument.Bookmarks.Exists("temp") = True Then
ActiveDocument.Bookmarks("temp").Select
End If

Bookmarks Collection Object

L

Multiple objects ~“Bookmarks (Bookmark)

|‘Range

A collection of Bookmark objects that represent the bookmarks in the specified
selection, range, or document.

Using the Bookmarks Collection

Use the Bookmarks property to return the Bookmarks collection. The
following example ensures that the bookmark named "temp" exists in the active
document before selecting the bookmark.

If ActiveDocument.Bookmarks.Exists("temp") = True Then
ActiveDocument.Bookmarks("temp").Select
End If

Use the Add method to set a bookmark for a range in a document. The following
example marks the selection by adding a bookmark named "temp".

ActiveDocument.Bookmarks.Add Name:="temp", Range:=Selection.Range

Use Bookmarks(index), where index is the bookmark name or index number, to
return a single Bookmark object. You must exactly match the spelling (but not
necessarily the capitalization) of the bookmark name. The following example
selects the bookmark named "temp" in the active document.

ActiveDocument.Bookmarks("temp").Select

The index number represents the position of the bookmark in the Selection or
Range object. For the Document object, the index number represents the
position of the bookmark in the alphabetic list of bookmarks in the Bookmarks
dialog box (click Name to sort the list of bookmarks alphabetically). The
following example displays the name of the second bookmark in the
Bookmarks collection.

MsgBox ActiveDocument.Bookmarks(2).Name

Remarks

The ShowHidden property effects the number of elements in the Bookmarks
collection. If ShowHidden is True, hidden bookmarks are included in the
Bookmarks collection.

Border Object

L

Multiple objects ~Borders (LineFormat)

Represents a border of an object. The Border object is a member of the Borders
collection.

Using the Border Object

Use Borders(index), where index identifies the border, to return a single Border
object. Index can be one of the following WdBorderType constants:
wdBorderBottom, wdBorderDiagonalDown, wdBorderDiagonalUp,
wdBorderHorizontal, wdBorderLeft, wdBorderRight, wdBorderTop, or
wdBorderVertical. Use the LineStyle property to apply a border line to a
Border object. The following example applies a double-line border below the
first paragraph in the active document.

With ActiveDocument.Paragraphs(1).Borders(wdBorderBottom)
.LineStyle = wdLineStyleDouble
.LinewWidth = wdLinewWidth025pt

End With

The following example applies a single-line border around the first character in
the selection.

With Selection.Characters(1)
.Font.Size = 36
.Borders.Enable = True

End wWith

The following example adds an art border around each page in the first section.

For Each aBorder In ActiveDocument.Sections(1).Borders
with aBorder

.ArtStyle = wdArtSeattle
Artwidth = 20
End With

Next aBorder

Border objects cannot be added to the Borders collection. The number of
members in the Borders collection is finite and varies depending on the type of
object. For example, a table has six elements in the Borders collection, whereas
a paragraph has four.

Borders Collection Object

|‘Borders (Border)

Multiple objects

A collection of Border objects that represent the borders of an object.

Using the Borders Collection

Use the Borders property to return the Borders collection. The following
example applies the default border around the first paragraph in the active
document.

ActiveDocument.Paragraphs(1).Borders.Enable = True

Border objects cannot be added to the Borders collection. The number of
members in the Borders collection is finite and varies depending on the type of
object. For example, a table has six elements in the Borders collection, whereas
a paragraph has four.

Use Borders(index), where index identifies the border, to return a single Border
object. Index can be one of the following WdBorderType constants:
wdBorderBottom, wdBorderDiagonalDown, wdBorderDiagonalUp,
wdBorderHorizontal, wdBorderLeft, wdBorderRight, wdBorderTop, or
wdBorderVertical. Some of these constants may not be available to you,
depending on the language support (U.S. English, for example) that you’ve
selected or installed. Use the LineStyle property to apply a border line to a
Border object. The following example applies a double-line border below the
first paragraph in the active document.

With ActiveDocument.Paragraphs(1).Borders(wdBorderBottom)

.LineStyle = wdLineStyleDouble
.LinewWidth = wdLinewWidth025pt
End wWith

The following example applies a single-line border around the first character in
the selection.

With Selection.Characters(1)
.Font.Size = 36
.Borders.Enable = True

End wWith

The following example adds an art border around each page in the first section.

For Each aBorder In ActiveDocument.Sections(1).Borders
with aBorder

.ArtStyle = wdArtSeattle
Artwidth = 20
End With

Next aBorder

Browser Object

Application |‘Browser

Represents the browser tool used to move the insertion point to objects in a
document. This tool is comprised of the three buttons at the bottom of the
vertical scroll bar.

Using the Browser Object

Use the Browser property to return the Browser object. The following example
moves the insertion point just before the next field in the active document.

wWith Application.Browser
.Target = wdBrowseField
.Next

End With

The following example moves the insertion point to the previous table and
selects it.

wWith Application.Browser
.Target = wdBrowseTable
.Previous

End With

If Selection.Information(wdwWithInTable) = True Then
Selection.Tables(1).Select

End If

CalloutFormat Object

L

CalloutFormat

Shapes (Shape)

Contains properties and methods that apply to line callouts.

Using the CalloutFormat Object

Use the Callout property to return a CalloutFormat object. The following
example specifies the following attributes of shape three (a line callout) on the
active document: the callout will have a vertical accent bar that separates the text
from the callout line; the angle between the callout line and the side of the
callout text box will be 30 degrees; there will be no border around the callout
text; the callout line will be attached to the top of the callout text box; and the
callout line will contain two segments. For this example to work, shape three
must be a callout.

wWith ActiveDocument.Shapes(3).Callout
.Accent = True
.Angle = msoCalloutAngle30
.Border = False
.PresetDrop msoCalloutDropTop
.Type = msoCalloutThree

End wWith

CanvasShapes Collection

L

Multiple objects —CanvasShapes

|‘Multiple objects

Represents the shapes in a drawing canvas.

Using the CanvasShapes collection

Use the Canvasltems property of either a Shape or ShapeRange object to
return a CanvasShapes collection. To add shapes to a drawing canvas, use the
following methods of the CanvasShapes collection: AddCallout,
AddConnector AddCurve, AddLabel, AddLine, AddPicture, AddPolyline,
AddShape, AddTextbox, AddTextEffect, or BuildFreeForm. The following
example adds a drawing canvas to the active document and then adds three
shapes to the drawing canvas.

Sub AddCanvasShapes()
Dim shpCanvas As Shape
Dim shpCanvasShapes As CanvasShapes
Dim shpCnvItem As Shape

'"Adds a new canvas to the document

Set shpCanvas = ActiveDocument.Shapes _
.AddCanvas(Left:=100, Top:=75, _
Width:=50, Height:=75)

Set shpCanvasShapes = shpCanvas.CanvasItems

'Adds shapes to the CanvasShapes collection
wWith shpCanvasShapes
.AddShape Type:=msoShapeRectangle, _
Left:=0, Top:=0, Width:=50, Height:=50
.AddShape Type:=msoShapeOval, _
Left:=5, Top:=5, Width:=40, Height:=40
.AddShape Type:=msoShapelsoscelesTriangle, _
Left:=0, Top:=25, Width:=50, Height:=50
End wWith
End Sub

Use CanvaslItems(index), where index is the name or the index number, to
return a single shape in the CanvasShapes collection. The following example
sets the Line and Fill properties and vertically flips the third shape in a drawing
canvas.

Sub CanvasShapeThree()

With ActiveDocument.Shapes(1).CanvasItems(3)
.Line.ForeColor.RGB = RGB(50, 0, 255)
.Fill.ForeColor.RGB = RGB(50, 0, 255)
.Flip msoFlipVertical

End With
End Sub

Each shape is assigned a default name when it is created. For example, if you
add three different shapes to a document, they might be named Rectangle 2,
TextBox 3, and Oval 4. Use the Name property to reference the default name or
to assign a more meaningful name to a shape.

CaptionLabel Object

Application |‘CaptionLabels (Captionl.abel)

Represents a single caption label. The CaptionLabel object is a member of the
CaptionL.abels collection. The items in the CaptionLabels collection are listed
in the Label box in the Caption dialog box (Insert menu).

Using the CaptionLabel Object

Use CaptionLabels(index), where index is the caption label name or index
number, to return a single CaptionLabel object. The following example sets the
numbering style for the Figure caption label.

CaptionLabels("Figure").NumberStyle = _
wdCaptionNumberStylelLowercaselLetter

The index number represents the position of the caption label in the
CaptionLabels collection. The following example displays the first caption
label.

MsgBox CaptionLabels(1).Name

Use the Add method to add a custom caption label. The following example adds
a caption label named "Photo."

CaptionLabels.Add Name:="Photo"

CaptionLabels Collection Object

Application |‘CaptionLabels (Captionl.abel)

A collection of CaptionL.abel objects that represent the available caption labels.
The items in the CaptionLabels collection are listed in the Label box in the
Caption dialog box (Insert menu).

Using the CaptionLabels Collection

Use the CaptionLabels property to return the CaptionLabels collection. By
default, the CaptionLabels collection includes the three built-in caption labels:
Figure, Table, and Equation.

Use the Add method to add a custom caption label. The following example adds
a caption label named "Photo."

CaptionLabels.Add Name:="Photo"

Use CaptionLabels(index), where index is the caption label name or index
number, to return a single CaptionLabel object. The following example sets the
numbering style for the Figure caption label.

CaptionLabels("Figure").NumberStyle = _
wdCaptionNumberStylelLowercaselLetter

The index number represents the position of the caption label in the
CaptionLabels collection. The following example displays the first caption
label.

MsgBox CaptionLabels(1).Name

Cell Object

|‘Cell

Multiple objects
|‘Multiple objects

Represents a single table cell. The Cell object is a member of the Cells
collection. The Cells collection represents all the cells in the specified object.

Using the Cell Object

Use Cell(row, column), where row is the row number and column is the column
number, or Cells(index), where index is the index number, to return a Cell
object. The following example applies shading to the second cell in the first row.

Set myCell = ActiveDocument.Tables(1).Cell(Row:=1, Column:=2)
myCell.Shading.Texture = wdTexture20Percent

The following example applies shading to the first cell in the first row.

ActiveDocument.Tables(1).Rows(1).Cells(1).Shading _
.Texture = wdTexture20Percent

Use the Add method to add a Cell object to the Cells collection. You can also
use the InsertCells method of the Selection object to insert new cells. The
following example adds a cell before the first cell in myTable.

Set myTable = ActiveDocument.Tables(1)
myTable.Range.Cells.Add BeforeCell:=myTable.Cell(1, 1)

The following example sets a range (myRange) that references the first two cells
in the first table. After the range is set, the cells are combined by the Merge
method.

Set myTable = ActiveDocument.Tables(1)

Set myRange = ActiveDocument.Range(myTable.Cell(1, 1) _
.Range.Start, myTable.Cell(1, 2).Range.End)

myRange.Cells.Merge

Remarks

Use the Add method with the Rows or Columns collection to add a row or
column of cells.

Use the Information property with a Selection object to return the current row
and column number. The following example changes the width of the first cell in
the selection and then displays the cell's row number and column number.

If Selection.Information(wdWithInTable) = True Then
With Selection
.Cells(1).width = 22
MsgBox "Cell " & .Information(wdStartOfRangeRowNumber) _
& "," & .Information(wdStartOfRangeColumnNumber)
End With
End If

Cells Collection Object

|‘Cells

|‘Multiple objects

Multiple objects

A collection of Cell objects in a table column, table row, selection, or range.

Using the Cells Object

Use the Cells property to return the Cells collection. The following example
formats the cells in the first row in table one in the active document to be 30
points wide.

ActiveDocument.Tables(1).Rows(1).Cells.Width = 30

The following example returns the number of cells in the current row.

num = Selection.Rows(1).Cells.Count

Use the Add method to add a Cell object to the Cells collection. You can also
use the InsertCells method of the Selection object to insert new cells. The
following example adds a cell before the first cell in myTable.

Set myTable = ActiveDocument.Tables(1)
myTable.Range.Cells.Add BeforeCell:=myTable.Cell(1, 1)

Use Cell(row, column), where row is the row number and column is the column
number, or Cells(index), where index is the index number, to return a Cell
object. The following example applies shading to the second cell in the first row
in table one.

Set myCell = ActiveDocument.Tables(1).Cell(Row:=1, Column:=2)
myCell.Shading.Texture = wdTexture20Percent

The following example applies shading to the first cell in the first row.

ActiveDocument.Tables(1).Rows(1).Cells(1).Shading _
.Texture = wdTexture20Percent

Remarks

Use the Add method with the Rows or Columns collection to add a row or
column of cells. The following example adds a column to the first table in the
active document and then inserts numbers into the first column.

Set myTable = ActiveDocument.Tables(1)
Set aColumn = myTable.Columns.Add(BeforeColumn:=myTable.Columns(1))
For Each aCell In aColumn.Cells
aCell.Range.Delete
aCell.Range.InsertAfter num + 1
num = num + 1
Next aCell

-Show All

Characters Collection Object

L

Multiple objects —Characters (Range)

|‘Multiple objects

A collection of characters in a selection, range, or document. There is no
Character object; instead, each item in the Characters collection is a Range
object that represents one character.

Using the Characters Collection

Use the Characters property to return the Characters collection. The following
example displays how many characters are selected.

MsgBox Selection.Characters.Count & " characters are selected"

Use Characters(index), where index is the index number, to return a Range
object that represents one character. The index number represents the position of
a character in the Characters collection. The following example formats the
first letter in the selection as 24-point bold.

With Selection.Characters(1)
.Bold = True
.Font.Size = 24

End With

Remarks

The Count property for this collection in a document returns the number of
items in the main story only. To count items in other stories use the collection
with the Range object.

An Add method isn't available for the Characters collection. Instead, use the
InsertAfter or InsertBefore method to add characters to a Range object. The
following example inserts a new paragraph after the first paragraph in the active
document.

With ActiveDocument
.Paragraphs(1).Range.InsertParagraphAfter

.Paragraphs(2).Range.InsertBefore "New Text"
End With

CheckBox Object

L

FormFields (FormField) —CheckBox

Represents a single check box form field.

Using the CheckBox Object

Use FormFields(index), where index is index number or the bookmark name
associated with the check box, to return a single FormField object. Use the
CheckBox property with the FormField object to return a CheckBox object.
The following example selects the check box form field named "Check1" in the
active document.

ActiveDocument.FormFields("Check1").CheckBox.Value = True

The index number represents the position of the form field in the FormFields
collection. The following example checks the type of the first form field; if it's a
check box, the check box is selected.

If ActiveDocument.FormFields(1).Type = wdFieldFormCheckBox Then
ActiveDocument.FormFields(1).CheckBox.Value = True
End If

The following example determines whether the ffield object is valid before
changing the check box size to 14 points.

Set ffield = ActiveDocument.FormFields(1).CheckBox
If ffield.valid = True Then
ffield.AutoSize = False
ffield.Size = 14
Else
MsgBox "First field is not a check box"
End If

Use the Add method with the FormFields object to add a check box form field.
The following example adds a check box at the beginning of the active
document, sets the name to "Color", and then selects the check box.

With ActiveDocument.FormFields.Add(Range:=ActiveDocument.Range _
(Start:=0,End:=0), Type:=wdFieldFormCheckBox)
.Name = "Color"
.CheckBox.Value = True

End With

ColorFormat Object

L

ColorFormat

Multiple objects

Represents the color of a one-color object or the foreground or background color
of an object with a gradient or patterned fill. You can set colors to an explicit

red-green-blue value by using the RGB property.

Using the ColorFormat Object

Use one of the properties listed in the following table to return a ColorFormat

object.

Use this property With this object

BackColor FillFormat
ForeColor FillFormat
BackColor LineFormat
ForeColor LineFormat
ForeColor ShadowFormat

ExtrusionColor ThreeDFormat

To return a ColorFormat object that
represents this

Background fill color (used in a shaded
or patterned fill)

Foreground fill color (or simply the fill
color for a solid fill)

Background line color (used in a
patterned line)

Foreground line color (or just the line
color for a solid line)

Shadow color
Color of the sides of an extruded object

Use the RGB property to set a color to an explicit red-green-blue value. The
following example adds a rectangle to the active document and then sets the
foreground color, background color, and gradient for the rectangle's fill.

wWith ActiveDocument.Shapes _

.AddShape(msoShapeRectangle, 90, 90, 90, 50).Fill
.ForeColor.RGB = RGB(128, 0, 0)
.BackColor.RGB = RGB(170, 170, 170)
.TwoColorGradient msoGradientHorizontal, 1

End With

Column Object

|‘C olumns (Column)

|‘Multiple objects

Multiple objects

Represents a single table column. The Column object is a member of the
Columns collection. The Columns collection includes all the columns in a table,
selection, or range.

Using the Column Object

Use Columns(index), where index is the index number, to return a single
Column object. The index number represents the position of the column in the
Columns collection (counting from left to right).

The following example selects column one in table one in the active document.

ActiveDocument.Tables(1).Columns(1).Select

Use the Column property with a Cell object to return a Column object. The
following example deletes the text in cell one, inserts new text, and then sorts the
entire column.

With ActiveDocument.Tables(1).Cell(1, 1)
.Range.Delete
.Range.InsertBefore "Sales"
.Column.Sort

End With

Use the Add method to add a column to a table. The following example adds a
column to the first table in the active document, and then it makes the column
widths equal.

If ActiveDocument.Tables.Count >= 1 Then
Set myTable = ActiveDocument.Tables(1)
myTable.Columns.Add BeforeColumn:=myTable.Columns(1)
myTable.Columns.Distributewidth

End If

Remarks

Use the Information property with a Selection object to return the current
column number. The following example selects the current column and then
displays the column number in a message box.

If Selection.Information(wdWithInTable) = True Then
Selection.Columns(1).Select
MsgBox "Column " _
& Selection.Information(wdStartOfRangeColumnNumber)
End If

Columns Collection Object

|‘Colurnns Column

|‘Multiple objects

Multiple objects

A collection of Column objects that represent the columns in a table.

Using the Columns Collection

Use the Columns property to return the Columns collection. The following
example displays the number of Column objects in the Columns collection for
the first table in the active document.

MsgBox ActiveDocument.Tables(1).Columns.Count

The following example creates a table with six columns and three rows and then
formats each column with a progressively larger (darker) shading percentage.

Set myTable = ActiveDocument.Tables.Add(Range:=Selection.Range, _
NumRows :=3, NumColumns:=6)

For Each col In myTable.Columns
col.Shading.Texture = 2 + i
i=1i+1

Next col

Use the Add method to add a column to a table. The following example adds a
column to the first table in the active document, and then it makes the column
widths equal.

If ActiveDocument.Tables.Count >= 1 Then
Set myTable = ActiveDocument.Tables(1)
myTable.Columns.Add BeforeColumn:=myTable.Columns(1)
myTable.Columns.Distributewidth

End If

Use Columns(index), where index is the index number, to return a single
Column object. The index number represents the position of the column in the
Columns collection (counting from left to right). The following example selects
the first column in the first table.

ActiveDocument.Tables(1).Columns(1).Select

Comment Object

L

Multiple objects ~Comments (Comment

|‘Range

Represents a single comment. The Comment object is a member of the
Comments collection. The Comments collection includes comments in a
selection, range or document.

Using the Comment Object

Use Comments(index), where index is the index number, to return a single
Comment object. The index number represents the position of the comment in
the specified selection, range, or document. The following example displays the
author of the first comment in the active document.

MsgBox ActiveDocument.Comments(1).Author

Use the Add method to add a comment at the specified range. The following
example adds a comment immediately after the selection.

Selection.Collapse Direction:=wdCollapseEnd
ActiveDocument.Comments.Add Range:=Selection.Range, _
Text:="review this"

Use the Reference property to return the reference mark associated with the
specified comment. Use the Range property to return the text associated with the
specified comment. The following example displays the text associated with the
first comment in the active document.

MsgBox ActiveDocument.Comments(1).Range.Text

Comments Collection Object

L

Multiple objects ~Comments (Comment

|‘Range

A collection of Comment objects that represent the comments in a selection,
range, or document.

Using the Comments Collection

Use the Comments property to return the Comments collection. The following
example displays comments made by Don Funk in the active document.

ActiveDocument.ActiveWindow.View.SplitSpecial = wdPaneComments
ActiveDocument.Comments.ShowBy = "Don Funk"

Use the Add method to add a comment at the specified range. The following
example adds a comment immediately after the selection.

Selection.Collapse Direction:=wdCollapseEnd
ActiveDocument.Comments.Add Range:=Selection.Range, _
Text:="review this"

Use Comments(index), where index is the index number, to return a single
Comment object. The index number represents the position of the comment in
the specified selection, range, or document. The following example displays the
author of the first comment in the active document.

MsgBox ActiveDocument.Comments(1).Author

The following example displays the initials of the author of the first comment in
the selection.

If Selection.Comments.Count >= 1 Then MsgBox _
Selection.Comments(1).Initial

ConditionalStyle Object

L

TableStyle
L

ConditionalStyle
Multiple objects

Represents special formatting applied to specified areas of a table when the
selected table is formatted with a specified table style.

Using the ConditionalStyle object

Use the Condition method of the TableStyle object to return a
ConditionalStyle object. The Shading property can be used to apply shading to
specified areas of a table. This example selects the first table in the active
document and applies shading to alternate rows and columns. This example
assumes that there is a table in the active document and that it is formatted using
the Table Grid style.

Sub ApplyConditionalStyle()
With ActiveDocument
.Tables(1).Select
With .Styles("Table Grid").Table
.Condition(wdO0ddColumnBanding).Shading _
.BackgroundPatternColor = wdColorGrayl10
.Condition(wdOddRowBanding) .Shading _
.BackgroundPatternColor = wdColorGrayl10
End With
End With
End Sub

Use the Borders property to apply borders to specified areas of a table. This
example selects the first table in the active document and applies borders to the
first and last row and first column. This example assumes that there is a table in
the active document and that it is formatted using the Table Grid style.

Sub ApplyTableBorders()
With ActiveDocument
.Tables(1).Select
With .Styles("Table Grid").Table
.Condition(wdFirstRow).Borders(wdBorderBottom) _
.LineStyle = wdLineStyleDouble
.Condition(wdFirstColumn).Borders(wdBorderRight) _
.LineStyle = wdLineStyleDouble
.Condition(wdLastRow).Borders(wdBorderTop) _
.LineStyle = wdLineStyleDouble
End wWith
End With
End Sub

CustomLabel Object

Application |‘MaﬂingLabel
|‘CustornLabels (CustomlLabel)

Represents a custom mailing label. The CustomLabel object is a member of the
Customl.abels collection. The CustomLabels collection contains all the custom
mailing labels listed in the Label Options dialog box.

Using the CustomLabel Object

Use CustomLabels(index), where index is the custom label name or index
number, to return a single CustomLabel object. The following example creates
a new document with an existing custom label layout named "My Labels."

Set ML = Application.MailinglLabel
If ML.CustomLabels("My Labels").valid = True Then
ML.CreateNewDocument Name:="My Labels"
Else
MsgBox "The My Labels custom label is not available"
End If

The index number represents the position of the custom mailing label in the
CustomLabels collection. The following example displays the name of the first
custom mailing label.

If Application.MailingLabel.CustomLabels.Count >= 1 Then
MsgBox Application.MailinglLabel.CustomLabels(1).Name
End If

Note CustomLabel objects are sorted alphabetically in the CustomLabels
collection and their index numbers are dynamically reassigned as the contents of
the collection change. For that reason, it is safer to refer to a specific
CustomLabel object by name rather than by index number.

Use the Add method to create a custom label. The following example adds a
custom mailing label named "My Label" and sets the page size.

Set ML = _
Application.MailingLabel.CustomLabels.Add(Name:="My Labels", _
DotMatrix:=False)

ML.PageSize = wdCustomLabelA4

CustomLabels Collection Object

Application |‘MaﬂingLabel
|‘CustornLabels (CustomlLabel)

A collection of Customl.abel objects available in the Label Options dialog box.
This collection includes custom labels of all printer types (dot-matrix, laser, and
ink-jet printers).

Using the CustomLabels Collection

Use the CustomLabels property to return the CustomLabels collection. The
following example displays the number of available custom labels.

MsgBox Application.MailinglLabel.CustomLabels.Count

Use the Add method to create a custom label. The following example adds a
custom mailing label named "My Label" and sets the page size.

Set ML = _
Application.MailingLabel.CustomLabels.Add(Name:="My Labels", _
DotMatrix:=False)

ML.PageSize = wdCustomLabelA4

Use CustomLabels(index), where index is the custom label name or index
number, to return a single CustomLabel object. The following example creates
a new document with an existing custom label layout named "My Labels."

Set ML = Application.MailinglLabel
If ML.CustomLabels("My Labels").valid = True Then
ML.CreateNewDocument Name:="My Labels"
Else
MsgBox "The My Labels custom label is not available"
End If

The index number represents the position of the custom mailing label in the
CustomLabels collection. The following example displays the name of the first
custom mailing label.

If Application.MailinglLabel.CustomLabels.Count >= 1 Then
MsgBox Application.MailinglLabel.CustomLabels(1).Name
End If

CustomProperties Collection

SmartTa |‘CustoumDerties
omartlag [

L

CustomProperty

A collection of CustomProperty objects that represents the properties related to
a smart tag. The CustomProperties collection includes all the smart tag custom

properties in a document.

Using the CustomProperties collection

Use the Properties property to return a single CustomProperties object. Use
the Add method of the CustomProperties object with to create a custom
property from within a Microsoft Word Visual Basic for Applications project.
This example creates a new property for the first smart tag in the active
document and displays the XML code used for the tag.

Sub AddProps()
With ThisDocument.SmartTags(1)
.Properties.Add Name:="President", Value:=True
MsgBox "The XML code is " & .XML
End With
End Sub

Use Properties(index) to return a single property for a smart tag, where index is
the number of the property. This example displays the name and value of the first
property of the first smart tag in the current document.

Sub ReturnProps()
With ThisDocument.SmartTags(1l).Properties(1)
MsgBox "The Smart Tag name is: " & .Name & vbLf & .Value
End With
End Sub

Use the Count property to return the number of custom properties for a smart
tag. This example loops through all the smart tags in the current document and
then lists in a new document the name and value of the custom properties for all
smart tags that have custom properties.

Sub SmartTagsProps()
Dim docNew As Document
Dim stgTag As SmartTag
Dim stgProp As CustomProperty
Dim intTag As Integer
Dim intProp As Integer

Set docNew = Documents.Add
'Create heading info in new document

With docNew.Content
.InsertAfter "Name" & vbTab & "Value"

.InsertParagraphAfter
End With

'"Loop through smart tags in current document
For intTag = 1 To ThisDocument.SmartTags.Count

With ThisDocument.SmartTags(intTag)

'Verify that the custom properties
'for smart tags is greater than zero
If .Properties.Count > 0 Then

"Loop through the custom properties
For intProp = 1 To .Properties.Count

'"Add custom property name to new document
docNew.Content.InsertAfter .Properties(intProp)
.Name & vbTab & .Properties(intProp).Value
docNew.Content.InsertParagraphAfter
Next
Else

'Display message if there are no custom properties
MsgBox "There are no custom properties for the " & _
"smart tags in your document."
End If
End with
Next

'"Convert the content in the new document into a table
docNew.Content.Select
Selection.ConvertToTable Separator:=wdSeparateByTabs, NumColumns

End Sub

CustomProperty Object

L

CustomProperties —CustomProperty

Represents a single instance of a custom property for a smart tag. The
CustomProperty object is a member of the CustomProperties collection.

Using the CustomProperty object

Use the Item method — or Properties(Index), where index is the number of the
property — of the CustomProperties collection to return a CustomProperty
object. Use the Name and Value properties to return the information related to a
custom property for a smart tag. This example displays a message containing
the name and value of the first custom property of the first smart tag in the
current document. This example assumes that the current document contains at
least one smart tag and that the first smart tag has at least one custom property.

Sub SmartTagsProps()
With ThisDocument.SmartTags(Index:=1).Properties.Item(Index:=1)
MsgBox "Smart Tag Name: " & .Name & vbLf & _
"Smart Tag Value: " & .Value
End With
End Sub

DefaultWebOptions Object

Application |‘DefaultWebOptions

Contains global application-level attributes used by Microsoft Word when you
save a document as a Web page or open a Web page. You can return or set
attributes either at the application (global) level or at the document level. (Note
that attribute values can be different from one document to another, depending
on the attribute value at the time the document was saved.) Document-level
attribute settings override application-level attribute settings. Document-level
attributes are contained in the WebQOptions object.

Using the DefaultWebOptions Object

Use the DefaultWebOptions method to return the DefaultWebOptions object.
The following example checks to see whether PNG (Portable Network Graphics)
is allowed as an image format and sets the strImageFileType variable
accordingly.

Set objAppwWebOptions = Application.DefaultWebOptions
wWith objAppwWebOptions
If .AllowPNG = True Then
strImageFileType = "PNG"
Else
strImageFileType = "JPG"
End If
End wWith

Diagram Object

DiagramNode |‘Diagram
L

DiagramNodes

Represents a single diagram in a document. The Diagram object is a member of
the Shapes collection.

Using the Diagram object

Use the Diagram property of the DiagramNode, Shape, and ShapeRange
objects to return a single Diagram object. Use the Convert method to change a

diagram from one type to another. This example converts the first diagram in the
active document into a radial diagram. This example assumes that the first shape
in the active document is a diagram and not another type of shape.

Sub DiagramConvert()
ActiveDocument.Shapes(1).Diagram.Convert msoDiagramRadial
End Sub

Use the Reverse property to flip the order of the nodes in a diagram. This
example reverses the order of the diagram nodes in the second shape in the
active document. This assumes that the second shape in the active document is a
diagram.

Sub DiagramReverse()
ActiveDocument.Shapes(2).Diagram.Reverse = msoTrue
End Sub

DiagramNode Object

|‘DiagramNode

|‘Multiple objects

Multiple objects

Represents a single diagram node within a diagram. The DiagramNode object
is a member of the DiagramNodes collection.

Using the DiagramNode object

Use the DiagramNode property of the Shape or ShapeRange object to return a
DiagramNode object. Use the AddNode method to add a node to a diagram.
This example assumes the third shape in the document is a diagram and adds a
node to it.

Sub AddDiagramNode()
ActiveDocument.Shapes(3).DiagramNode.Children.AddNode
End Sub

Use the Delete method to remove a node from a diagram. This example assumes
the second shape in the document is a diagram and removes the first node from
it.

Sub DeleteDiagramNode()

ActiveDocument.Shapes(2).DiagramNode.Children(1).Delete
End Sub

DiagramNodeChildren Collection

DiagramNode |‘DiagramNodeChildren

|‘DiagramNode

A collection of DiagramNode objects that represents the child nodes in a
diagram.

Using the DiagramNodeChildren collection

Use the Children property to return the nodes in a DiagramNodeChildren
collection. Use the FirstChild property to access the first child node in a
diagram. This example deletes the first child of the second node in the first
diagram in the document. This example assumes that the first shape in the active
document is a diagram with at least two nodes, one with child nodes.

Sub DiagramNodeChild()
ActiveDocument.Shapes(1).Diagram.Nodes.Item(2) _
.Children.FirstChild.Delete
End Sub

DiagramNodes Collection

Diagram |‘DiagramNodes
L

DiagramNode

A collection of DiagramNode objects that represent all the nodes in a diagram.
The DiagramNodes collection contains all the diagram nodes in a specified
diagram.

Using the DiagramNodes collection

Use the Nodes property to return the DiagramNodes collection. Use the
SelectAll method to select and work with all nodes in a diagram. This example
selects all nodes in the specified diagram and fills them with the specified
pattern. The following example assumes the first shape in the active document is
a diagram.

Sub FillDiagramNodes()
ActiveDocument.Shapes(1).Diagram.Nodes.SelectAll
Selection.ShapeRange.Fill.Patterned msoPatternSmallConfetti

End Sub

Use the Item method to select and work with a single diagram node in a
diagram. This example selects the first node in the specified diagram and deletes
it. The following example assumes the first shape in the active document is a
diagram.

Sub FillDiagramNode()
ActiveDocument.Shapes(1).Diagram.Nodes.Item(1).Delete
End Sub

Dialog Object

Application |‘Dialogs (Dialog)

Represents a built-in dialog box. The Dialog object is a member of the Dialogs
collection. The Dialogs collection contains all the built-in dialog boxes in Word.
You cannot create a new built-in dialog box or add one to the Dialogs collection.

Using the Dialog Object

Use Dialogs(index), where index is a WdWordDialog constant that identifies
the dialog box, to return a single Dialog object. The following example displays
and carries out the actions taken in the built-in Open dialog box (File menu).

dlgAnswer = Dialogs(wdDialogFileOpen).Show

The WdWordDialog constants are formed from the prefix "wdDialog" followed
by the name of the menu and the dialog box. For example, the constant for the
Page Setup dialog box is wdDialogFilePageSetup, and the constant for the
New dialog box is wdDialogFileNew. For more information about working with

built-in Word dialog boxes, see Displaying built-in Word dialog boxes.

Dialogs Collection Object

Application |‘Dialogs (Dialog)

A collection of Dialog objects in Word. Each Dialog object represents a built-in
Word dialog box.

Using the Dialogs Collection

Use the Dialogs property to return the Dialogs collection. The following
example displays the number of available built-in dialog boxes.

MsgBox Dialogs.Count

You cannot create a new built-in dialog box or add one to the Dialogs collection.
Use Dialogs(index), where index is the WdWordDialog constant that identifies

the dialog box, to return a single Dialog object. The following example displays
the built-in Open dialog box.

dlgAnswer = Dialogs(wdDialogFileOpen).Show

For more information, see Displaying built-in Word dialog boxes.

Dictionaries Collection Object

L

Multiple objects ~Dictionaries (Dictionary)

A collection of Dictionary objects that includes the active custom spelling
dictionaries.

Using the Dictionaries Collection

Use the CustomDictionaries property to return the collection of currently active
custom dictionaries. The following example displays the names of all the active
custom dictionaries.

For Each d In CustomDictionaries
Msgbox d.Name
Next d

Use the Add method to add a new custom dictionary to the collection of active
custom dictionaries. If there isn't a file with the name specified by FileName,
Word creates it. The following example adds "MyCustom.dic" to the collection
of custom dictionaries.

CustomDictionaries.Add FileName:="MyCustom.dic"

Use the ClearAll method to unload all custom dictionaries. Note, however, that
this method doesn't delete the dictionary files. After you use this method, the
number of custom dictionaries in the collection is 0 (zero). The following
example clears the custom dictionaries and creates a new custom dictionary file.
The new dictionary is set as the active custom dictionary, to which Word will
automatically add any new words it encounters.

With CustomDictionaries
.ClearAll
.Add FileName:= "MyCustom.dic"
.ActiveCustomDictionary = CustomDictionaries(1)
End wWith

Remarks

You set the custom dictionary to which new words are added by using the
ActiveCustomDictionary property. If you try to set this property to a dictionary
that isn't a custom dictionary, an error occurs.

The Maximum property returns the maximum number of simultaneous custom
spelling dictionaries that the application can support. For Word, this maximum is
10.

Dictionary Object

L

Multiple objects ~Dictionaries (Dictionary)

Represents a dictionary. Dictionary objects that represent custom dictionaries
are members of the Dictionaries collection. Other dictionary objects are
returned by properties of the Languages collection; these include the
ActiveSpellingDictionary, ActiveGrammarDictionary,
ActiveThesaurusDictionary, and ActiveHyphenationDictionary properties.

Using the Dictionary Object

Use CustomDictionaries(index), where index is an index number or the string
name for the dictionary, to return a single Dictionary object that represents a
custom dictionary. The following example returns the first dictionary in the
collection.

CustomDictionaries(1)

The following example returns the dictionary named "MyDictionary."

CustomDictionaries("MyDictionary")

Use the ActiveCustomDictionary property to set the custom spelling dictionary
in the collection to which new words are added. If you try to set this property to
a dictionary that's not a custom dictionary, an error occurs.

Use the Add method to add a new dictionary to the collection of active custom
dictionaries. If there's no file with the name specified by FileName, Word
creates it. The following example adds "MyCustom.dic" to the collection of
custom dictionaries.

CustomDictionaries.Add FileName:="MyCustom.dic"

Remarks

Use the Name and Path properties to locate any of the dictionaries. The
following example displays a message box that contains the full path for each
dictionary.

For Each d in CustomDictionaries
Msgbox d.Path & Application.PathSeparator & d.Name
Next d

Use the LanguageSpecific property to determine whether the specified custom
dictionary can have a specific language assigned to it with the LanguagelID
property. If the dictionary is language specific, it will verify only text that's
formatted for the specified language.

For each language for which proofing tools are installed, you can use the
ActiveGrammarDictionary, ActiveHyphenationDictionary,
ActiveSpellingDictionary, and ActiveThesaurusDictionary properties to
return the corresponding Dictionary objects. The following example returns the
full path for the active spelling dictionary used in the U.S. English version of
Word.

Set myspell = Languages(wdEnglishUS).ActiveSpellingDictionary
MsgBox mySpell.Path & Application.PathSeparator & mySpell.Name

The ReadOnly property returns True for .lex files (built-in proofing
dictionaries) and False for .dic files (custom spelling dictionaries).

Document Object

L

Multiple objects ~“Documents (Document)

|‘Multiple objects

Represents a document. The Document object is a member of the Documents
collection. The Documents collection contains all the Document objects that are
currently open in Word.

Using the Document Object

Use Documents(index), where index is the document name or index number to
return a single Document object. The following example closes the document
named "Report.doc" without saving changes.

Documents("Report.doc").Close SaveChanges:=wdDoNotSaveChanges

The index number represents the position of the document in the Documents
collection. The following example activates the first document in the
Documents collection.

Documents(1).Activate

Using ActiveDocument

You can use the ActiveDocument property to refer to the document with the
focus. The following example uses the Activate method to activate the
document named "Document 1." The example also sets the page orientation to
landscape mode and then prints the document.

Documents("Documentl1").Activate
ActiveDocument.PageSetup.Orientation = wdOrientLandscape
ActiveDocument.PrintOut

Documents Collection Object

Application |‘Documents (Document)
L

Multiple objects

A collection of all the Document objects that are currently open in Word.

Using the Documents Collection

Use the Documents property to return the Documents collection. The following
example displays the names of the open documents.

For Each aDoc In Documents

aName = aName & aDoc.Name & vbCr
Next aDoc
MsgBox aName

Use the Add method to create a new empty document and add it to the
Documents collection. The following example creates a new document based on
the Normal template.

Documents.Add

Use the Open method to open a file. The following example opens the document
named "Sales.doc."

Documents.Open FileName:="C:\My Documents\Sales.doc"

Use Documents(index), where index is the document name or index number to
return a single Document object. The following instruction closes the document
named "Report.doc" without saving changes.

Documents("Report.doc").Close SaveChanges:=wdDoNotSaveChanges

The index number represents the position of the document in the Documents
collection. The following example activates the first document in the
Documents collection.

Documents(1).Activate

Remarks

The following example enumerates the Documents collection to determine
whether the document named "Report.doc” is open. If this document is contained
in the Documents collection, the document is activated; otherwise, it's opened.

For Each doc In Documents
If doc.Name = "Report.doc" Then found = True
Next doc
If found <> True Then
Documents.Open FileName:="C:\Documents\Report.doc"
Else
Documents("Report.doc").Activate
End If

DropCap Object

L

Multiple objects —Paragraphs (Paragraph)

|‘DropCap
Represents a dropped capital letter at the beginning of a paragraph. There is no

DropCaps collection; each Paragraph object contains only one DropCap
object.

Using the DropCap Object

Use the DropCap property to return a DropCap object. The following example
sets a dropped capital letter for the first letter in the first paragraph in the active
document.

wWith ActiveDocument.Paragraphs(1).DropCap
.Enable
.Position = wdDropNormal

End with

DropDown Object

L

Documents (Document) ~FormFields (FormField)

|‘DropDown

LLiStEl’ltl‘iES (ListEntry)

Represents a drop-down form field that contains a list of items in a form.

Using the DropDown Object

Use FormFields(index), where index is the index number or the bookmark name
associated with the drop-down form field, to return a single FormField object.
Use the DropDown property with the FormField object to return a DropDown
object. The following example selects the first item in the drop-down form field
named "DropDown" in the active document.

ActiveDocument.FormFields("DropDownl").DropDown.Value = 1

The index number represents the position of the form field in the FormFields
collection. The following example checks the type of the first form field in the
active document. If it's a drop-down form field, the second item is selected.

If ActiveDocument.FormFields(1).Type = wdFieldFormDropDown Then
ActiveDocument.FormFields(1).DropDown.Value = 2
End If

The following example determines whether form field represented by ffield is
a valid drop-down form field before adding an item to it.

Set ffield = ActiveDocument.FormFields(1).DropDown
If ffield.valid = True Then
ffield.ListEntries.Add Name:="Hello"
Else
MsgBox "First field is not a drop down"
End If

Use the Add method with the FormFields collection to add a drop-down form
field. The following example adds a drop-down form field at the beginning of
the active document and then adds items to the form field.

Set ffield = ActiveDocument.FormFields.Add(_
Range:=ActiveDocument.Range(Start:=0, End:=0), _
Type:=wdFieldFormDropDown)

With ffield
.Name = "Colors"

With .DropDown.ListEntries
.Add Name:="Blue"
.Add Name:="Green"
.Add Name:="Red"

End With

End With

Email Object

|‘Email

Documents (Document)
|‘EmailAuthor

Represents an e-mail message. There is no Emails collection; each Document
object contains only one Email object.

Using the Email Object

Use the Email property to return the Email object. The Email object and its
properties are valid only if the active document is an unsent forward, reply, or
new e-mail message.

This example returns the name of the style associated with the current e-mail
author.

MsgBox ActiveDocument.Email _
.CurrentEmailAuthor.Style.NamelLocal

Note The author style name is the same as the value returned by the UserName
property.

EmailAuthor Object

L

Email ~EmailAuthor

|‘St;[le

Represents the author of an e-mail message. There is no EmailAuthors
collection; each Email object contains only one EmailAuthor object.

Using the EmailAuthor Object

Use the CurrentEmailAuthor property to return the EmailAuthor object. The
EmailAuthor object and its properties are valid only if the active document is
an unsent forward, reply, or new e-mail message.

This example returns the style associated with the current author for unsent
replies, forwards, or new e-mail messages, and displays the name of the font
associated with this style.

Set MyEmailStyle = _
ActiveDocument.Email.CurrentEmailAuthor.Style
Msgbox MyEmailStyle.Font.Name

EmailOptions Object

Application |‘ErnaﬂOptions

|‘Multiple objects

Contains global application-level attributes used by Microsoft Word when you
create and edit e-mail messages and replies.

Using the EmailOptions Object

Use the EmailOptions property to return the EmailOptions object.

This example changes the font color of the default style used to compose new e-
mail messages.

Application.EmailOptions.ComposeStyle.Font.Color = _
wdColorBrightGreen

This example sets Word to mark comments in e-mail messages with the initials
HWK'"

Application.EmailOptions.MarkCommentswWith = "wK"
Application.EmailOptions.MarkComments = True

This example changes the signatures Word appends to new outgoing e-mail
messages and e-mail message replies.

With Application.EmailOptions.EmailSignature
.NewMessageSignature = "Signaturel"
.ReplyMessageSignature = "Reply2"

End With

EmailSignature Object

EmailOptions |‘EmaﬂSignatulre

|‘EmailSignatureEntries
Contains information about the e-mail signatures used by Microsoft Word when

you create and edit e-mail messages and replies. There is no EmailSignatures
collection; each EmailOptions object contains only one EmailSignature object.

Using the EmailSignature Object

Use the EmailSignature property to return the EmailSignature object.

This example changes the signatures Word appends to new outgoing e-mail
messages and e-mail message replies.

With Application.EmailOptions.EmailSignature
.NewMessageSignature = "Signaturel"
.ReplyMessageSignature = "Reply2"

End wWith

EmailSignatureEntries Collection

EmailSignature |‘EmailSignatureEntries

|‘EmailSignatureEntr;[

A collection of EmailSignatureEntry objects that represents all the e-mail
signature entries available to Word.

Using the EmailSignatureEntries collection

Use the EmailSignatureEntries property to return the EmailSignatureEntries
collection. Use the Add method of the EmailSignatureEntries object to add an
e-mail signature to Word. The following example creates a new e-mail signature
entry based on the author's name and a selection in the active document, and
then it sets the new signature entry as the default e-mail signature to use for new
messages.

Sub NewEmailSignature()

With Application.EmailOptions.EmailSignature
.EmailSignatureEntries.Add "Jeff Smith", Selection.Range
.NewMessageSignature = "Jeff Smith"

End With

End Sub

EmailSignatureEntry Object

L

EmailSignatureEntries ~EmailSignatureEntry

Represents a single e-mail signature entry. The EmailSignatureEntry object is a
member of the EmailSignatureEntries collection. The EmailSignatureEntries
collection contains all the e-mail signature entries available to Word.

Using the EmailSignatureEntry object

Use EmailSignatureEntries(index), where index is the e-mail signature entry
name or item number, to return a single EmailSignatureEntry object. You must
match exactly the spelling (but not necessarily the capitalization) of the

name. The following example uses the Delete method to delete the signature
entry named "Jeff Smith."

Sub DeleteSignature()
Application.EmailOptions.EmailSignature _
.EmailSignatureEntries("jeff smith").Delete
End Sub

Endnote Object

L

Multiple objects ~Endnotes (Endnote)

|‘Range

Represents an endnote. The Endnote object is a member of the Endnotes
collection. The Endneotes collection represents the endnotes in a selection,
range, or document.

Using the Endnote Object

Use Endnotes(index), where index is the index number, to return a single
Endnote object. The index number represents the position of the endnote in the
selection, range, or document. The following example applies red formatting to
the first endnote in the selection.

If Selection.Endnotes.Count >= 1 Then
Selection.Endnotes(1).Reference.Font.ColorIndex = wdRed
End If

Use the Add method to add an endnote to the Endnetes collection. The
following example adds an endnote immediately after the selection.

Selection.Collapse Direction:=wdCollapseEnd
ActiveDocument.Endnotes.Add Range:=Selection.Range , _
Text:="The Willow Tree, (Lone Creek Press, 1996)."

EndnoteOptions Object

L

Multiple objects ~EndnoteOptions

Represents the properties assigned to a range or selection of endnotes in a
document.

Using the EndnoteOptions object

Use the Range or Selection object to return an EndnoteOptions object. Using
the EndnoteOptions object, you can assign different endnote properties to
different areas of a document. For example, you may want endnotes in the
introduction of a long document to be displayed as lowercase Roman numerals,
while in the rest of your document they are displayed as Arabic numerals. The
following example uses the NumberingRule, NumberStyle, and
StartingNumber properties to format the endnotes in the first section ofthe
active document.

Sub BookIntro()
Dim rngIntro As Range

'Sets the range as section one of the active document
Set rngIntro = ActiveDocument.Sections(1).Range

'"Formats the EndnoteOptions properties
With rngIntro.EndnoteOptions
.NumberingRule = wdRestartSection
.NumberStyle = wdNoteNumberStylelLowercaseRoman
.StartingNumber = 1
End With
End Sub

Endnotes Collection Object

|‘Endnotes (Endnote)

Multiple objects
|‘Range

A collection of Endnote objects that represents all the endnotes in a selection,
range, or document.

Using the Endnotes Collection

Use the Endnotes property to return the Endnotes collection. The following
example sets the location of endnotes in the active document.

ActiveDocument.Endnotes.Location = wdEndOfSection

Use the Add method to add an endnote to the Endnetes collection. The
following example adds an endnote immediately after the selection.

Selection.Collapse Direction:=wdCollapseEnd
ActiveDocument.Endnotes.Add Range:=Selection.Range , _
Text:="The Willow Tree, (Lone Creek Press, 1996)."

Use Endnotes(index), where index is the index number, to return a single
Endnote object. The index number represents the position of the endnote in a
selection, range, or document. The following example applies red formatting to
the first endnote in the selection.

If Selection.Endnotes.Count >= 1 Then
Selection.Endnotes(1).Reference.Font.ColorIndex = wdRed
End If

Envelope Object

L

Documents (Document) ~Envelope

L

Multiple objects

Represents an envelope. There is no Envelopes collection; each Document
object contains only one Envelope object.

Using the Envelope Object

Use the Envelope property to return the Envelope object. The following
example adds an envelope to a new document and sets the distance between the
top of the envelope and the address to 2.25 inches.

Set myDoc = Documents.Add

addr = "Michael Matey" & vbCr & "123 Skye St." _
& vbCr & "Redmond, WA 98107"

retaddr = "Cora Edmonds" & vbCr & "456 Erde Lane" & vbCr _
& "Redmond, WA 98107"

wWith myDoc.Envelope
.Insert Address:=addr, ReturnAddress:=retaddr
.AddressFromTop = InchesToPoints(2.25)

End wWith

Remarks

The Envelope object is available regardless of whether an envelope has been
added to the specified document. However, an error occurs if you use one of the
following properties when an envelope hasn't been added to the document:
Address, AddressFromleft, AddressFromTop, FeedSource, ReturnAddress,
ReturnAddressFromLeft, ReturnAddressFromTop, and UpdateDocument.

The following example demonstrates how to use the On Error GoTo statement
to trap the error that occurs if an envelope hasn't been added to the active
document. If, however, an envelope has been added to the document, the
recipient address is displayed.

On Error GoTo ErrorHandler
MsgBox ActiveDocument.Envelope.Address
ErrorHandler:
If Err = 5852 Then MsgBox _
"Envelope is not in the specified document"

Use the Insert method to add an envelope to the specified document. Use the
PrintOut method to set the properties of an envelope and print it without adding
it to the document.

Field Object

L Fields (Field)

|‘Multiple objects

Multiple objects

Represents a field. The Field object is a member of the Fields collection. The
Fields collection represents the fields in a selection, range, or document.

Using the Field Object

Use Fields(index), where index is the index number, to return a single Field
object. The index number represents the position of the field in the selection,
range, or document. The following example displays the field code and the result
of the first field in the active document.

If ActiveDocument.Fields.Count >= 1 Then
MsgBox "Code = " & ActiveDocument.Fields(1).Code & vbCr _
& "Result = " & ActiveDocument.Fields(1).Result & vbCr
End If

Use the Add method to add a field to the Fields collection. The following
example inserts a DATE field at the beginning of the selection and then displays
the result.

Selection.Collapse Direction:=wdCollapseStart

Set myField = ActiveDocument.Fields.Add(Range:=Selection.Range, _
Type:=wdFieldDate)

MsgBox myField.Result

The wdFieldDate constant is part of the WdFieldType group of constants,
which includes all the various field types.

Fields Collection Object

L Fields (Field)

|‘Multiple objects

Multiple objects

A collection of Field objects that represent all the fields in a selection, range, or
document.

Using the Fields Collection

Use the Fields property to return the Fields collection. The following example
updates all the fields in the selection.

Selection.Fields.Update

Use the Add method to add a field to the Fields collection. The following
example inserts a DATE field at the beginning of the selection and then displays
the result.

Selection.Collapse Direction:=wdCollapseStart

Set myField = ActiveDocument.Fields.Add(Range:=Selection.Range, _
Type:=wdFieldDate)

MsgBox myField.Result

Use Fields(index), where index is the index number, to return a single Field
object. The index number represents the position of the field in the selection,
range, or document. The following example displays the field code and the result
of the first field in the active document.

If ActiveDocument.Fields.Count >= 1 Then
MsgBox "Code = " & ActiveDocument.Fields(1).Code & vbCr _
& "Result = " & ActiveDocument.Fields(1).Result & vbCr
End If

Remarks

Use the Fields property with a MailMerge object to return the
MailMergeFields collection.

The Count property for this collection in a document returns the number of
items in the main story only. To count items in other stories use the collection
with the Range object.

FileConverter Object

L

Application ~FileConverters (FileConverter)

Represents a file converter that's used to open or save files. The FileConverter
object is a member of the FileConverters collection. The FileConverters
collection contains all the installed file converters for opening and saving files.

Using the FileConverter Object

Use FileConverters(index), where index is a class name or index number, to
return a single FileConverter object. The following example displays the
extensions associated with the Microsoft Excel worksheet converter.

MsgBox FileConverters("MSBiff").Extensions

The index number represents the position of the file converter in the
FileConverters collection. The following example displays the format name of
the first file converter.

MsgBox FileConverters(1).FormatName

You cannot create a new file converter or add one to the FileConverters
collection. FileConverter objects are added during installation of Microsoft
Office or by installing supplemental file converters. Use either the CanSave or
CanQOpen property to determine whether a FileConverter object can be used to
open or save document.

Remarks

File converters for saving documents are listed in the Save As dialog box. File
converters for opening documents appear in a dialog box if the Confirm
conversion at Open check box is selected on the General tab in the Options
dialog box (Tools menu).

FileConverters Collection Object

L

Application ~FileConverters (FileConverter)

A collection of FileConverter objects that represent all the file converters
available for opening and saving files.

Using the FileConverters Collection

Use the FileConverters property to return the FileConverters collection. The
following example determines whether a WordPerfect 6.0 converter is available.

For Each conv In FileConverters

If conv.FormatName = "WordPerfect 6.x" Then
MsgBox "WordPerfect 6.0 converter is installed"
End if
Next conv

The Add method isn't available for the FileConverters collection.
FileConverter objects are added during installation of Microsoft Office or by
installing supplemental converters.

Use FileConverters(index), where index is a class name or index number, to
return a single FileConverter object. The following example displays the
extensions associated wtih the Microsoft Excel worksheet converter.

MsgBox FileConverters("MSBiff").Extensions

The index number represents the position of the file converter in the
FileConverters collection. The following example displays the format name of
the first file converter.

MsgBox FileConverters(1).FormatName

Remarks

File converters for saving documents are listed in the Save As dialog box. File
converters for opening documents appear in a dialog box if the Confirm
conversion at Open check box is selected on the General tab in the Options
dialog box (Tools menu).

FillFormat Object

LFillFormat

Shapes (Shape)

|‘ColorFormat

Represents fill formatting for a shape. A shape can have a solid, gradient,
texture, pattern, picture, or semi-transparent fill.

Using the FillFormat Object

Use the Fill property to return a FillFormat object. The following example adds
a rectangle to the active document and then sets the gradient and color for the
rectangle's fill.

wWith ActiveDocument.Shapes _
.AddShape(msoShapeRectangle, 90, 90, 90, 80).Fill
.ForeColor.RGB = RGB(0, 128, 128)
.0OneColorGradient msoGradientHorizontal, 1, 1
End wWith

Remarks

Many of the properties of the FillFormat object are read-only. To set one of
these properties, you have to apply the corresponding method.

Find Object

|‘Find

Multiple objects
|‘Multiple objects

Represents the criteria for a find operation. The properties and methods of the
Find object correspond to the options in the Find and Replace dialog box.

Using the Find Object

Use the Find property to return a Find object. The following example finds and
selects the next occurrence of the word "hi."

wWith Selection.Find
.ClearFormatting
.Text = "hi"
.Execute Forward:=True
End With

The following example finds all occurrences of the word "hi" in the active
document and replaces the word with "hello."

Set myRange = ActiveDocument.Content
myRange.Find.Execute FindText:="hi", ReplaceWith:="hello", _
Replace:=wdReplaceAll

Remarks

If you've gotten to the Find object from the Selection object, the selection is
changed when text matching the find criteria is found. The following example
selects the next occurrence of the word "blue."

Selection.Find.Execute FindText:="blue", Forward:=True

If you've gotten to the Find object from the Range object, the selection isn't
changed when text matching the find criteria is found, but the Range object is
redefined. The following example locates the first occurrence of the word "blue"
in the active document. If "blue" is found in the document, myRange is redefined
and bold formatting is applied to "blue."

Set myRange = ActiveDocument.Content
myRange.Find.Execute FindText:="blue", Forward:=True
If myRange.Find.Found = True Then myRange.Bold = True

FirstLetterException Object

L

Application ~AutoCorrect

|‘FirstLetterExceptions (FirstLetterException)

Represents an abbreviation excluded from automatic correction. The
FirstLetterException object is a member of the FirstLetterExceptions
collection. The FirstLetterExceptions collection includes all the excluded
abbreviations.

Note The first character following a period is automatically capitalized when
the CorrectSentenceCaps property is set to True. The character you type
following an item in the FirstLetterExceptions collection isn't capitalized.

Using the FirstLetterException Object

Use FirstLetterExceptions(index), where index is the abbreviation or the index
number, to return a single FirstLetterException object. The following example
deletes the abbreviation "appt." from the FirstLetterExceptions collection.

AutoCorrect.FirstLetterExceptions("appt.").Delete

The following example displays the name of the first item in the
FirstLetterExceptions collection.

MsgBox AutoCorrect.FirstLetterExceptions(1).Name

Use the Add method to add an abbreviation to the list of first-letter exceptions.
The following example adds the abbreviation "addr." to this list.

AutoCorrect.FirstLetterExceptions.Add Name:="addr."

FirstLetterExceptions Collection
Object

L

Application ~AutoCorrect

|‘FirstLetterExceptions (FirstLetterException)

A collection of FirstLetterException objects that represent the abbreviations
excluded from automatic correction.

Note The first character following a period is automatically capitalized when
the CorrectSentenceCaps property is set to True. The FirstLetterExceptions
collection includes exceptions to this behavior (for example, abbreviations such
as "addr." and "apt.").

Using the FirstLetterExceptions Collection

Use the FirstLetterExceptions property to return the FirstLetterExceptions
collection. The following example deletes the abbreviation "addr." if it's included
in the FirstLetterExceptions collection.

For Each aExcept In AutoCorrect.FirstLetterExceptions
If akExcept.Name = "addr." Then aExcept.Delete
Next aExcept

The following example creates a new document and inserts all the AutoCorrect
first-letter exceptions into it.

Documents.Add
For Each aExcept In AutoCorrect.FirstLetterExceptions
wWith Selection
.InsertAfter aExcept.Name
.InsertParagraphAfter
.Collapse Direction:=wdCollapseEnd
End wWith
Next aExcept

Use the Add method to add an abbreviation to the list of first-letter exceptions.
The following example adds the abbreviation "addr." to this list.

AutoCorrect.FirstLetterExceptions.Add Name:="addr."

Use FirstLetterExceptions(index), where index is the abbreviation or the index
number, to return a single FirstLetterException object. The following example
deletes the abbreviation "appt." from the FirstLetterExceptions collection.

AutoCorrect.FirstLetterExceptions("appt.").Delete

The following example displays the name of the first item in the
FirstLetterExceptions collection.

MsgBox AutoCorrect.FirstLetterExceptions(1).Name

Font Object

L

Multiple objects ~Font

|‘Multiple objects

Contains font attributes (font name, font size, color, and so on) for an object.

Using the Font Object

Use the Font property to return the Font object. The following instruction
applies bold formatting to the selection.

Selection.Font.Bold = True

The following example formats the first paragraph in the active document as
24point Arial and italic.

Set myRange = ActiveDocument.Paragraphs(1).Range
with myRange.Font

.Bold = True
.Name = "Arial"
.Size = 24

End With

The following example changes the formatting of the Heading 2 style in the
active document to Arial and bold.

wWith ActiveDocument.Styles(wdStyleHeading2).Font
.Name = "Arial"
.Italic = True

End wWith

Remarks

You can use the New keyword to create a new, stand-alone Font object. The
following example creates a Font object, sets some formatting properties, and
then applies the Font object to the first paragraph in the active document.

Set myFont = New Font

myFont.Bold = True

myFont.Name = "Arial"
ActiveDocument.Paragraphs(1).Range.Font = myFont

You can also duplicate a Font object by using the Duplicate property. The
following example creates a new character style with the character formatting
from the selection as well as italic formatting. The formatting of the selection
isn't changed.

Set aFont = Selection.Font.Duplicate

aFont.Italic = True

ActiveDocument.Styles.Add(Name:="Italics", _
Type:=wdStyleTypeCharacter).Font = aFont

FontNames Object

L

Application ~FontNames

Represents a list of the names of all the available fonts.

Using the FontNames Object

Use the FontNames, LandscapeFontNames, or PortraitFontNames property
to return the FontNames object. The following example displays the number of
portrait fonts available.

MsgBox PortraitFontNames.Count & " fonts available"

This example lists all the font names in the FontNames object at the end of the
active document.

For Each aFont In FontNames
ActiveDocument.Range.InsertAfter aFont & vbCr
Next aFont

Use FontNames(index), where index is the index number, to return the name of
a font. The following example displays the first font name in the FontNames
object.

MsgBox FontNames(1)

Remarks

You cannot add names to or remove names from the list of available font names.

Footnote Object

L

Multiple objects ~Footnotes (Footnote)

|‘Range

Represents a footnote positioned at the bottom of the page or beneath text. The
Footnote object is a member of the Footnotes collection. The Footnotes
collection represents the footnotes in a selection, range, or document.

Using the Footnote Object

Use Footnotes(index), where index is the index number, to return a single
Footnote object. The index number represents the position of the footnote in the
selection, range, or document. The following example applies red formatting to
the first footnote in the selection.

If Selection.Footnotes.Count >= 1 Then
Selection.Footnotes(1).Reference.Font.ColorIndex = wdRed
End If

Use the Add method to add a footnote to the Footnotes collection. The
following example inserts an automatically numbered footnote immediately after
the selection.

Selection.Collapse Direction:=wdCollapseEnd
ActiveDocument.Footnotes.Add Range:=Selection.Range , _
Text:="The Willow Tree, (Lone Creek Press, 1996)."

Remarks

Footnotes positioned at the end of a document or section are considered endnotes
and are included in the Endnotes collection.

FootnoteOptions Object

L

Multiple objects ~FootnoteOptions

Represents the properties assigned to a range or selection of footnotes in a
document.

Using the FootnoteOptions object

Use the Range or Selection object to return a FootnoteOptions object. Using
the FootnoteOptions object, you can assign different footnote properties to
different areas of a document. For example, you may want footnotes in the
introduction of a long document to be displayed as lowercase letters, while in the
rest of your document they are displayed as asterisks. The following example

uses the NumberingRule, NumberStyle, and StartingNumber properties to
format the footnotes in the first section of the active document.

Sub BookIntro()
Dim rngIntro As Range

'Sets the range as section one of the active document
Set rngIntro = ActiveDocument.Sections(1).Range

'"Formats the EndnoteOptions properties
With rngIntro.FootnoteOptions
.NumberingRule = wdRestartPage
.NumberStyle = wdNoteNumberStylelLowercaselLetter
.StartingNumber = 1
End With
End Sub

Footnotes Collection Object

L

Footnotes (Footnote)

Multiple objects
|‘Range

A collection of Footnote objects that represent all the footnotes in a selection,
range, or document.

Using the Footnotes Collection

Use the Footnotes property to return the Footnotes collection. The following
example changes all of the footnotes in the active document to endnotes.

ActiveDocument.Footnotes.SwapwWithEndnotes

Use the Add method to add a footnote to the Footnotes collection. The
following example adds a footnote immediately after the selection.

Selection.Collapse Direction:=wdCollapseEnd
ActiveDocument.Footnotes.Add Range:=Selection.Range , _
Text:="The Willow Tree, (Lone Creek Press, 1996)."

Use Footnotes(index), where index is the index number, to return a single
Footnote object. The index number represents the position of the footnote in the
selection, range, or document. The following example applies red formatting to
the first footnote in the selection.

If Selection.Footnotes.Count >= 1 Then
Selection.Footnotes(1).Reference.Font.ColorIndex = wdRed
End If

Remarks

Footnotes positioned at the end of a document or section are considered endnotes
and are included in the Endnotes collection.

FormField Object

|‘FormFields (FormField)

|‘Multiple objects

Multiple objects

Represents a single form field. The FormField object is a member of the
FormFields collection.

Using the FormField Object

Use FormFields(index), where index is a bookmark name or index number, to
return a single FormField object. The following example sets the result of the
Text1 form field to "Don Funk."

ActiveDocument.FormFields("Text1").Result = "Don Funk"

The index number represents the position of the form field in the selection,
range, or document. The following example displays the name of the first form
field in the selection.

If Selection.FormFields.Count >= 1 Then
MsgBox Selection.FormFields(1).Name
End If

Use the Add method with the FormFields object to add a form field. The
following example adds a check box at the beginning of the active document and
then selects the check box.

Set ffield = ActiveDocument.FormFields.Add(_
Range:=ActiveDocument.Range(Start:=0, End:=0), _
Type:=wdFieldFormCheckBox)

ffield.CheckBox.Value = True

Remarks

Use the CheckBox, DropDown, and TextInput properties with the FormField
object to return the CheckDown, DropDown, and TextInput objects. The
following example selects the check box named "Check1."

ActiveDocument.FormFields("Check1").CheckBox.Value = True

FormFields Collection Object

|‘FormFields (FormField)

|‘Multiple objects

Multiple objects

A collection of FormField objects that represent all the form fields in a
selection, range, or document.

Using the FormFields Collection

Use the FormFields property to return the FormFields collection. The
following example counts the number of text box form fields in the active
document.

For Each aField In ActiveDocument.FormFields

If aField.Type = wdFieldFormTextInput Then count = count + 1
Next aField
MsgBox "There are " & count & " text boxes in this document"

Use the Add method with the FormFields object to add a form field. The
following example adds a check box at the beginning of the active document and
then selects the check box.

Set ffield = ActiveDocument.FormFields.Add(_
Range:=ActiveDocument.Range(Start:=0,End:=0), _
Type:=wdFieldFormCheckBox)

ffield.CheckBox.Value = True

Use FormFields(index), where index is a bookmark name or index number, to
return a single FormField object. The following example sets the result of the
Text1 form field to "Don Funk."

ActiveDocument.FormFields("Text1").Result = "Don Funk"

The index number represents the position of the form field in the selection,
range, or document. The following example displays the name of the first form
field in the selection.

If Selection.FormFields.Count >= 1 Then
MsgBox Selection.FormFields(1).Name
End If

Frame Object

L

Multiple objects ~Frames (Frame)

|‘Multiple objects

Represents a frame. The Frame object is a member of the Frames collection.
The Frames collection includes all frames in a selection, range, or document.

Using the Frame Object

Use Frames(index), where index is the index number, to return a single Frame
object. The index number represents the position of the frame in the selection,
range, or document. The following example allows text to wrap around the first
frame in the active document.

ActiveDocument.Frames(1).TextWrap = True

Use the Add method to add a frame around a range. The following example adds
a frame around the first paragraph in the active document.

ActiveDocument.Frames.Add _
Range:=ActiveDocument.Paragraphs(1).Range

Remarks

You can wrap text around Shape or ShapeRange objects by using the
WrapFormat property. You can position a Shape or ShapeRange object by
using the Top and Left properties.

Frames Collection Object

L

Multiple objects ~Frames (Frame)

|‘Multiple objects

A collection of Frame objects in a selection, range, or document.

Using the Frames Collection

Use the Frames property to return the Frames collection. The following
example removes borders from all frames in the active document.

For Each aFrame In ActiveDocument.Frames
aFrame.Borders.Enable = False
Next aFrame

Use the Add method to add a frame around a range. The following example adds
a frame around the first paragraph in the active document.

ActiveDocument.Frames.Add _
Range:=ActiveDocument.Paragraphs(1).Range

Use Frames(index), where index is the index number, to return a single Frame
object. The index number represents the position of the frame in the selection,
range, or document. The following example causes text to wrap around the first
frame in the first section of the active document.

ActiveDocument.Sections(1).Range.Frames(1).TextWrap = True

Remarks

You can wrap text around Shape or ShapeRange objects by using the
WrapFormat property. You can position a Shape or ShapeRange object by
using the Top and Left properties.

The Count property for this collection in a document returns the number of
items in the main story only. To count items in other stories use the collection
with the Range object.

Frameset Object

L

Multiple objects ~Frameset

Represents an entire frames page or a single frame on a frames page. There is no
Framesets collection; each Document object or Pane object contains only one
Frameset object.

Using the Frameset Object

Use the Frameset property to return the Frameset object. For properties or
methods that affect all frames on a frames page, use the Frameset object from
the Document object (ActivewWindow.Document .Frameset). For properties or
methods that affect individual frames on a frames page, use the Frameset object
from the Pane object (Activewindow.ActivePane.Frameset).

This example opens a file named "Proposal.doc,"” creates a frames page based on
the file, and adds a frame (on the left side of the page) containing a table of
contents for the file.

Documents.Open "C:\My Documents\proposal.doc"
ActiveDocument.ActiveWindow.ActivePane.NewFrameset
ActiveDocument.ActiveWindow.ActivePane.TOCInFrameset

This example adds a new frame to the right of the specified frame.

ActiveDocument.ActiveWindow.ActivePane.Frameset _
.AddNewFrame wdFramesetNewRight

This example sets the name of the third child Frameset object of the frames
page to "BottomFrame."

ActiveWindow.Document.Frameset _
.ChildFramesetItem(3).FrameName = "BottomFrame"

This example links the specified frame to a local file called "Order.htm." It sets
the frame to be resizable, to appear with scrollbars in a Web browser, and to be
25% as high as the active window.

wWith ActiveDocument.ActiveWindow.ActivePane.Frameset
.FrameDefaultURL = "C:\My Documents\order.htm"
.FrameLinkToFile = True
.FrameResizable = True
.FrameScrollbarType = wdScrollbarTypeYes
.HeightType = wdFramesetSizeTypePercent
.Height = 25

End wWith

This example sets Microsoft Word to display frame borders in the specified

frames page.

ActiveDocument.ActiveWindow.ActivePane.Frameset _
.FrameDisplayBorders = True

This example sets the frame borders on the frames page to be 6 points wide and
tan.

With ActiveWindow.Document.Frameset
.FramesetBorderColor = wdColorTan
.FramesetBorderwidth = 6

End with

Remarks

For more information on creating frames pages, see Creating frames pages.

FreeformBuilder Object

L

Multiple objects ~FreeformBuilder

|‘Shape

Represents the geometry of a freeform while it's being built.

Using the FreeformBuilder Object

Use the BuildFreeform method to return a FreeformBuilder object. Use the
AddNodes method to add nodes to the freeform. Use the ConvertToShape
method to create the shape defined in the FreeformBuilder object and add it to
the Shapes collection. The following example adds a freeform with four
segments to the active document.

wWith ActiveDocument.Shapes _
.BuildFreeform(msoEditingCorner, 360, 200)
.AddNodes msoSegmentCurve, msoEditingCorner, _
380, 230, 400, 250, 450, 300
.AddNodes msoSegmentCurve, msoEditingAuto, 480, 200
.AddNodes msoSegmentLine, msoEditingAuto, 480, 400
.AddNodes msoSegmentLine, msoEditingAuto, 360, 200
.ConvertToShape
End wWith

Global Object

L

Global ~Multiple objects

Contains top-level properties and methods that don't need to be preceded by the
Application property. For example, the following two statements have the same

result.

Documents(1).Content.Bold = True
Application.Documents(1).Content.Bold = True

GroupShapes Collection Object

Shapes (Shape) |‘GlroupShapes (Shape)

Represents the individual shapes within a grouped shape. Each shape is
represented by a Shape object. Using the Item method with this object, you can
work with single shapes within a group without having to ungroup them.

Using The Groupshapes Collection

Use the Groupltems property to return the GroupShapes collection. Use
Groupltems(index), where index is the number of the individual shape within
the grouped shape, to return a single shape from the GroupShapes collection.
The following example adds three triangles to the active document, groups them,
sets a color for the entire group, and then changes the color for the second
triangle only.

With ActiveDocument.Shapes
.AddShape(msoShapeIsoscelesTriangle, _
10, 10, 100, 100).Name = '"shpOne"
.AddShape(msoShapelsoscelesTriangle, _
150, 10, 100, 100).Name = "shpTwo"
.AddShape(msoShapelsoscelesTriangle, _
300, 10, 100, 100).Name = "shpThree"
wWith .Range(Array('"shpOne", "shpTwo", "shpThree")).Group
.Fill.PresetTextured msoTextureBlueTissuePaper
.GroupItems(2).Fill.PresetTextured msoTextureGreenMarble
End wWith
End wWith

HangulAndAlphabetException
Object

L

HangulAndAlphabetExceptions ~HangulAndAlphabetException

Represents a single Hangul or alphabet AutoCorrect exception. The
HangulAndAlphabetException object is a member of the
HangulAndAlphabetExceptions collection. The
HangulAndAlphabetExceptions collection includes all Hangul and alphabet
AutoCorrect exceptions and corresponds to the items listed on the Korean tab in
the AutoCorrect Exceptions dialog box (AutoCorrect command, Tools menu).

Using the HangulAndAlphabetException Object

Use HangulAndAlphabetExceptions(index), where index is the Hangul or
alphabet AutoCorrect exception name or the index number, to return a single
HangulAndAlphabetException object. The following example deletes the
alphabet AutoCorrect exception named "hello."”

AutoCorrect.HangulAndAlphabetExceptions("hello").Delete

The index number represents the position of the Hangul or alphabet AutoCorrect
exception in the HangulAndAlphabetExceptions collection. The following
example displays the name of the first item in the
HangulAndAlphabetExceptions collection.

MsgBox AutoCorrect.HangulAndAlphabetExceptions(1).Name

If the value of the HangulAndAlphabetAutoAdd property is True, words are
automatically added to the list of Hangul and alphabet AutoCorrect exceptions.
Use the Add method to add an item to the HangulAndAlphabetExceptions
collection. The following example adds "goodbye" to the list of alphabet
AutoCorrect exceptions.

AutoCorrect.HangulAndAlphabetExceptions.Add Name:="goodbye"

Remarks

For more information on using Word with East Asian languages, see Word
features for East Asian languages.

mk:@MSITStore:wdmain10.chm::/html/wdrefFeaturesAvailableInWordWhenAsianLanguagesAreEnabled.htm

HangulAndAlphabetExceptions
Collection Object

L

AutoCorrect ~HangulAndAlphabetExceptions
L

HangulAndAlphabetException

A collection of HangulAndAlphabetException objects that represents all
Hangul and alphabet AutoCorrect exceptions. This list corresponds to the list of
AutoCorrect exceptions on the Korean tab in the AutoCorrect Exceptions
dialog box (AutoCorrect command, Tools menu).

Using the HangulAndAlphabetExceptions Collection

Use the HangulAndAlphabetExceptions property to return the
HangulAndAlphabetExceptions collection. The following example displays

the items in this collection.

For Each aHan In AutoCorrect.HangulAndAlphabetExceptions
MsgBox aHan.Name
Next aHan

If the value of the HangulAndAlphabetAutoAdd property is True, words are
automatically added to the list of Hangul and alphabet AutoCorrect exceptions.
Use the Add method to add an item to the HangulAndAlphabetExceptions
collection. The following example adds "hello" to the list of alphabet
AutoCorrect exceptions.

AutoCorrect.HangulAndAlphabetExceptions.Add Name:="hello"

Use HangulAndAlphabetExceptions(index), where index is the Hangul or
alphabet AutoCorrect exception name or the index number, to return a single
HangulAndAlphabetException object. The following example deletes the
alphabet AutoCorrect exception named "goodbye."

AutoCorrect.HangulAndAlphabetExceptions('"goodbye") .Delete

The index number represents the position of the hangul or alphabet AutoCorrect
exception in the HangulAndAlphabetExceptions collection. The following
example displays the name of the first item in the
HangulAndAlphabetExceptions collection.

MsgBox AutoCorrect.HangulAndAlphabetExceptions(1).Name

Remarks

For more information on using Word with East Asian languages, see Word
features for East Asian languages.

mk:@MSITStore:wdmain10.chm::/html/wdrefFeaturesAvailableInWordWhenAsianLanguagesAreEnabled.htm

HangulHanjaConversionDictionaries
Collection Object

L

Multiple objects ~“HangulHanjaConversionDictionaries

|‘Dictionalr;[

A collection of Dictionary objects that includes the active custom Hangul-Hanja
conversion dictionaries.

Using the HangulHanjaConversionDictionaries
Collection

Use the HangulHanjaDictionaries property to return the collection of currently
active custom conversion dictionaries. The following example displays the
names of all the active custom conversion dictionaries.

For Each d In HangulHanjaDictionaries
Msgbox d.Name
Next d

Use the Add method to add a new custom conversion dictionary to the collection
of active custom conversion dictionaries. If there isn't a file with the name
specified by FileName, Microsoft Word creates it. The following example adds
"Hanjal.hhd" to the collection of custom conversion dictionaries.

CustomDictionaries.Add FileName:="Hanjal.hhd"

Use the ClearAll method to unload all custom conversion dictionaries. Note,
however, that this method doesn't delete the dictionary files. After you use this
method, the number of custom conversion dictionaries in the collection is 0
(zero). The following example clears the custom conversion dictionaries and
creates a new custom conversion dictionary file. The new dictionary is set as the
active custom dictionary to which Word will automatically add any new words it
encounters.

wWith HangulHanjaDictionaries

.ClearAll

.Add FileName:= "Hanjal.hhd"

.ActiveCustomDictionary = HangulHanjaDictionaries(1)
End wWith

Remarks

You set the custom dictionary to which new words are added by using the
ActiveCustomDictionary property. If you try to set this property to a dictionary
that isn't a custom conversion dictionary, an error occurs.

The Maximum property returns the maximum number of simultaneous custom
conversion dictionaries that the application can support. For Word, this
maximum is 10.

For more information on using Word with East Asian languages, see Word
features for East Asian languages.

mk:@MSITStore:wdmain10.chm::/html/wdrefFeaturesAvailableInWordWhenAsianLanguagesAreEnabled.htm

HeaderFooter Object

L

Multiple objects ~HeaderFooter

|‘Multiple objects

Represents a single header or footer. The HeaderFooter object is a member of
the HeadersFooters collection. The HeadersFooters collection includes all
headers and footers in the specified document section.

Using the HeaderFooter Object

Use Headers(index) or Footers(index), where index is one of the
WdHeaderFooterIndex constants (wdHeaderFooterEvenPages,
wdHeaderFooterFirstPage, or wdHeaderFooterPrimary), to return a single
HeaderFooter object. The following example changes the text of both the
primary header and the primary footer in the first section of the active document.

With ActiveDocument.Sections(1)
.Headers(wdHeaderFooterPrimary) .Range.Text
.Footers(wdHeaderFooterPrimary).Range.Text

End With

"Header text"
"Footer text"

You can also return a single HeaderFooter object by using the HeaderFooter
property with a Selection object.

Note You cannot add HeaderFooter objects to the HeadersFooters collection.

Remarks

Use the DifferentFirstPageHeaderFooter property with the PageSetup object
to specify a different first page. The following example inserts text into the first
page footer in the active document.

wWith ActiveDocument
.PageSetup.DifferentFirstPageHeaderFooter = True
.Sections(1).Footers(wdHeaderFooterFirstPage) _
.Range.InsertBefore _
"Written by Joe Smith"
End wWith

Use the OddAndEvenPagesHeaderFooter property with the PageSetup object
to specify different odd and even page headers and footers. If the
OddAndEvenPagesHeaderFooter property is True, you can return an odd
header or footer by using wdHeaderFooterPrimary, and you can return an even
header or footer by using wdHeaderFooterEvenPages.

Use the Add method with the PageNumbers object to add a page number to a
header or footer. The following example adds page numbers to the primary
footer in the first section of the active document.

With ActiveDocument.Sections(1)
.Footers(wdHeaderFooterPrimary).PageNumbers.Add
End wWith

HeadersFooters Collection Object

L

Sections (Section) ~HeadersFooters (HeaderFooter)

L

Multiple objects

A collection of HeaderFooter objects that represent the headers or footers in the
specified section of a document.

Using the HeadersFooters Collection

Use the Headers or Footers property to return the HeadersFooters collection.
The following example displays the text from the primary footer in the first
section of the active document.

With ActiveDocument.Sections(1).Footers(wdHeaderFooterPrimary)
If .Range.Text <> vbCr Then
MsgBox .Range.Text
Else
MsgBox "Footer is empty"
End If
End With

Note You cannot add HeaderFooter objects to the HeadersFooters collection.

Use Headers(index) or Footers(index), where index is one of the
WdHeaderFooterIndex constants (wdHeaderFooterEvenPages,
wdHeaderFooterFirstPage, or wdHeaderFooterPrimary), to return a single
HeaderFooter object. The following example changes the text of both the
primary header and the primary footer the first section of the active document.

With ActiveDocument.Sections(1)
.Headers(wdHeaderFooterPrimary) .Range.Text
.Footers(wdHeaderFooterPrimary) .Range.Text

End With

"Header text"
"Footer text"

You can also return a single HeaderFooter object by using the HeaderFooter
property with a Selection object.

Remarks

Use the DifferentFirstPageHeaderFooter property with the PageSetup object
to specify a different first page. The following example inserts text into the first
page footer in the active document.

wWith ActiveDocument
.PageSetup.DifferentFirstPageHeaderFooter = True
.Sections(1).Footers(wdHeaderFooterFirstPage) _
.Range.InsertBefore _
"Written by Kate Edson"
End wWith

Use the OddAndEvenPagesHeaderFooter property with the PageSetup object
to specify different odd and even page headers and footers. If the
OddAndEvenPagesHeaderFooter property is True, you can return an odd
header or footer by using wdHeaderFooterPrimary, and you can return an even
header or footer by using wdHeaderFooterEvenPages.

Use the Add method with the PageNumbers object to add a page number to a
header or footer. The following example adds page numbers to the first page
footer in the first section in the active document.

With ActiveDocument.Sections(1)
.PageSetup.DifferentFirstPageHeaderFooter = True
.Footers(wdHeaderFooterPrimary).PageNumbers.Add _

FirstPage:=True

End With

HeadingStyle Object

Documents (Document) |‘Multiple objects
L

HeadingStyles (HeadingStyle)

Represents a style used to build a table of contents or figures. The HeadingStyle
object is a member of the HeadingStyles collection.

Using the HeadingStyle Object

Use HeadingStyles(index), where index is the index number, to return a single
HeadingStyle object. The index number represents the position of the style in
the HeadingStyles collection. The following example adds (at the beginning of
the active document) a table of figures built from the Title style, and then
displays the name of the first style in the HeadingStyles collection.

Set myTOF = ActiveDocument.TablesOfFigures.Add _
(Range:=ActiveDocument.Range(0, 0), AddedStyles:="Title")
MsgBox myTOF.HeadingStyles(1).Style

Use the Add method to add a style to the HeadingStyles collection. The
following example adds a table of contents at the beginning of the active
document and then adds the Title style to the list of styles used to build a table of
contents.

Set myToc = ActiveDocument.TablesOfContents.Add _
(Range:=ActiveDocument.Range(0, 0), UseHeadingStyles:=True, _
LowerHeadingLevel:=3, UpperHeadingLevel:=1)

myToc.HeadingStyles.Add Style:="Title", Level:=2

HeadingStyles Collection Object

Documents (Document) |‘Multiple objects
L

HeadingStyles (HeadingStyle)

A collection of HeadingStyle objects that represent the styles used to compile a
table of figures or table of contents.

Using the HeadingStyles Collection

Use the HeadingStyles property to return the HeadingStyles collection. The
following example displays the number of items in the HeadingStyles collection
for the first table of contents in the active document.

MsgBox ActiveDocument.TablesOfContents(1).HeadingStyles.Count

Use the Add method to add a style to the HeadingStyles collection. The
following example adds a table of contents at the beginning of the active
document and then adds the Title style to the list of styles used to build a table of
contents.

Set myToc = ActiveDocument.TablesOfContents.Add _
(Range:=ActiveDocument.Range(0, 0), UseHeadingStyles:=True, _
LowerHeadingLevel:=3, UpperHeadingLevel:=1)

myToc.HeadingStyles.Add Style:="Title", Level:=2

Use HeadingStyles(index), where index is the index number, to return a single
HeadingStyle object. The index number represents the position of the style in
the HeadingStyles collection. The following example adds (at the beginning of
the active document) a table of figures built from the Title style, and then
displays the name of the first style in the HeadingStyles collection.

Set myTOF = ActiveDocument.TablesOfFigures.Add _
(Range:=ActiveDocument.Range(0, 0), AddedStyles:="Title")
MsgBox myTOF.HeadingStyles(1).Style

HorizontalLineFormat Object

InlineShapes (InlineShape) |‘HorizontalLineFormat

Represents horizontal line formatting.

Using the HorizontalLineFormat Object

Use the HorizontalLineFormat property to return a HorizontalLineFormat
object. This example sets the alignment for a new horizontal line.

Selection.InlineShapes.AddHorizontallLineStandard

ActiveDocument.InlineShapes(1) _
.HorizontallLineFormat.Alignment = _
wdHorizontallLineAlignLeft

This example adds a horizontal line without any 3-D shading.

Selection.InlineShapes.AddHorizontallLineStandard
ActiveDocument.InlineShapes(1) _
.HorizontallLineFormat.NoShade = True

This example adds a horizontal line and sets its length to 50% of the window
width.

Selection.InlineShapes.AddHorizontallLineStandard
ActiveDocument.InlineShapes(1) _
.HorizontallLineFormat.PercentWidth = 50

HTMLDivision Object

HTMLDivisions L

L

HTMLDivision
Multiple objects

Represents a single HTML division that can be added to a Web document. The
HTMLDivision object is a member of the HITMLDivisions collection.

Using the HTMLDivision object

Use HTML.Divisions(index), where index refers to the HTML division in the
document, to return a single HTMLDivision object. Use the Borders property
to format border properties for an HTML division. This example formats three
nested divisions in the active document. This example assumes that the active
document is an HTML document with at least three divisions.

Sub FormatHTMLDivisions()
With ActiveDocument.HTMLDivisions(1)
With .Borders(wdBorderLeft)
.Color = wdColorRed
.LineStyle = wdLineStyleSingle
End With
with .Borders(wdBorderTop)
.Color = wdColorRed
.LineStyle = wdLineStyleSingle
End With
With .HTMLDivisions(1)
.LeftIndent = InchesToPoints(1)
.RightIndent = InchesToPoints(1)
With .Borders(wdBorderRight)
.Color = wdColorBlue
.LineStyle = wdLineStyleDouble
End With
End With
With .Borders(wdBorderBottom)
.Color = wdColorBlue
.LineStyle = wdLineStyleDouble
End With
With .HTMLDivisions(1)
.LeftIndent = InchesToPoints(1)
.RightIndent = InchesToPoints(1)
With .Borders(wdBorderLeft)
.Color = wdColorBlack
.LineStyle = wdLineStyleDot
End with
wWith .Borders(wdBorderTop)
.Color = wdColorBlack
.LineStyle = wdLineStyleDot
End with
End With
End With
End With

End Sub

HTML divisions can be nested within multiple HTML divisions. Use the
HTMIL DivisionParent method to access a parent HTML division of the current
HTML division. This example formats the borders for two HTML divisions in
the active document. This example assumes that the active document is an
HTML document with at least two divisions.

Sub FormatHTMLDivisions()
With ActiveDocument.HTMLDivisions(1)
With .HTMLDivisions(1)
.LeftIndent = InchesToPoints(1)
.RightIndent = InchesToPoints(1)
With .Borders(wdBorderLeft)
.Color = wdColorBlue
.LineStyle = wdLineStyleDouble
End With
With .Borders(wdBorderRight)
.Color = wdColorBlue
.LineStyle = wdLineStyleDouble
End With
With .HTMLDivisionParent
.LeftIndent = InchesToPoints(1)
.RightIndent = InchesToPoints(1)
wWith .Borders(wdBorderTop)
.Color = wdColorBlack
.LineStyle = wdLineStyleDot
End with
With .Borders(wdBorderBottom)
.Color = wdColorBlack
.LineStyle = wdLineStyleDot
End with
End With
End With
End With
End Sub

HTMUL.Divisions Collection

Multiple objects |‘HTMLDiVisions
|‘HTMLDiVision

A collection of HTML.Division objects that represents the HTML divisions that
exist in a Web document.

Using the HTMLDivisions collection

Use the HTML.Divisions property to return the HTMLDivisions collection. Use
the Add method to add an HTML division to a Web document. This example
adds a new HTML division to the active document, adds text to the division, and
formats the borders around the division.

Sub NewDivision()

With ActiveDocument.HTMLDivisions
.Add
.Item(Index:=1).Range.Text = "This is a new HTML division."
with .Item(1)

With .Borders(wdBorderBottom)
.LineStyle = wdLineStyleTriple
.LinewWidth = wdLineWidth025pt
.Color = wdColorRed

End With

wWith .Borders(wdBorderTop)
.LineStyle = wdLineStyleDot
.LinewWidth = wdLineWidthe50pt
.Color = wdColorBlue

End With

With .Borders(wdBorderLeft)
.LineStyle = wdLineStyleDouble
.LinewWidth = wdLineWidth@75pt
.Color = wdColorBrightGreen

End With

With .Borders(wdBorderRight)
.LineStyle = wdLineStyleDashDotDot
.LinewWidth = wdLineWidth@75pt
.Color = wdColorTurquoise

End With

End With
End With

End Sub

Hyperlink Object

|‘H;zperlinks (Hyperlink)

|‘Multiple objects

Multiple objects

Represents a hyperlink. The Hyperlink object is a member of the Hyperlinks
collection.

Using the Hyperlink Object

Use the Hyperlink property to return a Hyperlink object associated with a
shape (a shape can have only one hyperlink). The following example activates
the hyperlink associated with the first shape in the active document.

ActiveDocument.Shapes(1).Hyperlink.Follow

Use Hyperlinks(index), where index is the index number, to return a single
Hyperlink object from a document, range, or selection. The following example
activates the first hyperlink in the selection.

If Selection.HyperLinks.Count >= 1 Then
Selection.HyperLinks(1).Follow
End If

Hyperlinks Collection Object

|‘H;zperlinks (Hyperlink)

|‘Multiple objects

Multiple objects

Represents the collection of Hyperlink objects in a document, range, or
selection.

Using the Hyperlinks Collection

Use the Hyperlinks property to return the Hyperlinks collection. The following
example checks all the hyperlinks in document one for a link that contains the
word "Microsoft" in the address. If a hyperlink is found, it's activated with the
Follow method.

For Each hLink In Documents(1).Hyperlinks
If InStr(hLink.Address, "Microsoft") <> 0@ Then
hLink.Follow
Exit For
End If
Next hLink

Use the Add method to create a hyperlink and add it to the Hyperlinks
collection. The following example creates a new hyperlink to the MSN Web site.

ActiveDocument.Hyperlinks.Add Address:="http://www.msn.com/", _
Anchor:=Selection.Range

Use Hyperlinks(index), where index is the index number, to return a single
Hyperlink object in a document, range, or selection. The following example
activates the first hyperlink in the selection.

If Selection.HyperLinks.Count >= 1 Then
Selection.HyperLinks(1).Follow
End If

Remarks

The Count property for this collection in a document returns the number of
items in the main story only. To count items in other stories use the collection
with the Range object.

Index Object

L

Indexes —Index

|‘Range

Represents a single index. The Index object is a member of the Indexes
collection. The Indexes collection includes all the indexes in the specified
document.

Using the Index Object

Use Indexes(index), where index is the index number, to return a single Index
object. The index number represents the position of the Index object in the
document. The following example updates the first index in the active document.

If ActiveDocument.Indexes.Count >= 1 Then
ActiveDocument.Indexes(1).Update
End If

Use the Add method to create an index and add it to the Indexes collection. The
following example creates an index at the end of the active document.

Set myRange = ActiveDocument.Content
myRange.Collapse Direction:=wdCollapseEnd
ActiveDocument.Indexes.Add Range:=myRange, Type:=wdIndexRunin

Indexes Collection Object

L

Document —Indexes

L

Multiple objects

A collection of Index objects that represents all the indexes in the specified
document.

Using the Indexes Collection

Use the Indexes property to return the Indexes collection. The following
example formats indexes in the active document with the classic format.

ActiveDocument.Indexes.Format = wdIndexClassic

Use the Add method to create an index and add it to the Indexes collection. The
following example creates an index at the end of the active document.

Set myRange = ActiveDocument.Content
myRange.Collapse Direction:=wdCollapseEnd
ActiveDocument.Indexes.Add Range:=myRange, Type:=wdIndexRunin

Use Indexes(index), where index is the index number, to return a single Index
object. The index number represents the position of the Index object in the
document. The following example updates the first index in the active document.

If ActiveDocument.Indexes.Count >= 1 Then
ActiveDocument.Indexes(1).Update
End If

InlineShape Object

|‘InlineShapes (InlineShape)

|‘Multiple objects

Multiple objects

Represents an object in the text layer of a document. An inline shape can only be
a picture, an OLE object, or an ActiveX control. InlineShape objects are treated
like characters and are positioned as characters within a line of text. The
InlineShape object is a member of the InlineShapes collection. The
InlineShapes collection contains all the shapes in a document, range, or
selection.

Using the InlineShape Object

Use InlineShapes(index), where index is the index number, to return a single
InlineShape object. Inline shapes don't have names. The following example
activates the first inline shape in the active document.

ActiveDocument.InlineShapes(1).Activate

Remarks

Shape objects are anchored to a range of text but are free-floating and can be
positioned anywhere on the page. You can use the ConvertTolInlineShape
method and the ConvertToShape method to convert shapes from one type to the
other. You can convert only pictures, OLE objects, and ActiveX controls to
inline shapes. Use the Type property to return the type of inline shape: picture,
linked picture, embedded OLE object, linked OLE object, or ActiveX control.

When you open a document created in an earlier version of Word, pictures are
converted to inline shapes.

InlineShapes Collection Object

Multiple objects |‘InlineShapes (InlineShape)
|‘Multiple objects

A collection of InlineShape objects that represent all the inline shapes in a
document, range, or selection.

Using the InlineShapes Collection

Use the InlineShapes property to return the InlineShapes collection. The
following example converts each inline shape in the active document to a Shape
object.

For Each iShape In ActiveDocument.InlineShapes
iShape.ConvertToShape
Next iShape

Use the New method to create a new picture as an inline shape. You can use the
AddPicture and AddOLEODbject methods to add pictures or OLE objects and

link them to a source file. Use the AddOLEControl method to add an ActiveX
control.

Remarks

Shape objects are anchored to a range of text but are free-floating and can be
positioned anywhere on the page. You can use the ConvertTolInlineShape
method and the ConvertToShape method to convert shapes from one type to the
other. You can convert only pictures, OLE objects, and ActiveX controls to
inline shapes.

The Count property for this collection in a document returns the number of
items in the main story only. To count items in other stories use the collection
with the Range object.

When you open a document created in an earlier version of Word, pictures are
converted to inline shapes.

KeyBinding Object

|‘Ke;gBindings (KeyBinding)

Represents a custom key assignment in the current context. The KeyBinding
object is a member of the KeyBindings collection. Custom key assignments are
made in the Customize Keyboard dialog box.

Multiple objects

Using the KeyBinding Object

Use KeyBindings(index), where index is the index number, to return a single
KeyBinding object. The following example displays the command associated
with the first KeyBinding object in the KeyBindings collection.

MsgBox KeyBindings(1).Command

You can also use the FindKey property and the Key method to return a
KeyBinding object.

KeyBindings Collection Object

|‘Ke;[Bindings (KeyBinding)

A collection of KeyBinding objects that represent the custom key assignments
in the current context. Custom key assignments are made in the Customize
Keyboard dialog box.

Application

Using the KeyBindings Collection

Use the KeyBindings property to return the KeyBindings collection. The
following example inserts after the selection the command name and key
combination for each item in the KeyBindings collection.

CustomizationContext = NormalTemplate
For Each aKey In KeyBindings
Selection.InsertAfter aKey.Command & vbTab _
& aKey.KeyString & vbCr
Selection.Collapse Direction:=wdCollapseEnd
Next aKey

Use the Add method to add a KeyBinding object to the KeyBindings
collection. The following example adds the CTRL+ALT+H key combination to
the Heading 1 style in the active document.

CustomizationContext = ActiveDocument

KeyBindings.Add KeyCategory:=wdKeyCategoryStyle, _
Command:="Heading 1", _
KeyCode:=BuildKeyCode(wdKeyControl, wdKeyAlt, wdKeyH)

Use KeyBindings(index), where index is the index number, to return a single
KeyBinding object. The following example displays the command associated
with the first KeyBinding object in the KeyBindings collection.

MsgBox KeyBindings(1).Command

KeysBoundTo Collection Object

Application |‘KeysBoundTo (KeyBinding)

A collection of KeyBinding objects assigned to a command, style, macro, or
other item in the current context.

Using the KeysBoundTo Collection

Use the KeysBoundTo property to return the KeysBoundTo collection. The
following example displays the key combinations assigned to the FileNew
command in the Normal template.

CustomizationContext = NormalTemplate

For Each myKey In KeysBoundTo(KeyCategory:=wdKeyCategoryCommand, _
Command:="FileNew")
myStr = myStr & myKey.KeyString & vbCr

Next myKey

MsgBox myStr

The following example displays the name of the document or template where the
keys for the macro named "Macrol" are stored.

Set kb = KeysBoundTo(KeyCategory:=wdKeyCategoryMacro, _
Command:="Macrol")
MsgBox kb.Context.Name

Language Object

Languages |‘Language

|‘Dictionalr;[

Represents a language used for proofing or formatting in Microsoft Word. The
Language object is a member of the Languages collection.

Using the Language object

Use Languages(index) to return a single Language object, where index can be
the value of the Name property, the value of the NamelL.ocal property, one of the
WdLanguagelD constants, or one of the MsoLanguagelID constants. (For the
list of valid WdLanguagelID or MsoLanguagelD constants, see the Object
Browser in the Visual Basic Editor.)

The Name property returns the name of a language, whereas the NameL.ocal
property returns the name of a language in the language of the user. The
following example returns the string "Italiano” for Name and "Italian
(Standard)" for NameLocal when it's run in the U.S. English version of Word.

Sub ShowItalianNames()
Msgbox Languages(wdItalian).Name
Msgbox Languages(wdItalian).NameLocal
End Sub

Returning the Active Proofing Dictionaries

For each language for which proofing tools are installed, you can use the
ActiveGrammarDictionary, ActiveHyphenationDictionary,
ActiveSpellingDictionary, and ActiveThesaurusDictionary properties to
return the corresponding Dictionary object. The following example returns the
full path for the active spelling dictionary used in the U.S. English version of
Word.

Sub ShowDictionaryPath
Set myspell = Languages(wdEnglishUS).ActiveSpellingDictionary
MsgBox mySpell.Path & Application.PathSeparator & mySpell.Name
End Sub

Setting the Writing Style

The writing style is the set of rules used by the grammar checker. The
WritingStyleList property returns an array of strings that represent the available
writing styles for the specified language. The following example returns the list
of writing styles for U.S. English.

Sub ListWritingStyles()
WrStyles = Languages(wdEnglishUS).WritingStylelist
For i = 1 To UBound(WrStyles)
MsgBox WrStyles(1i)
Next i
End Sub

Use the DefaultWritingStyle property to set the default writing style you want
Word to use.

Languages(wdEnglishUS).DefaultWritingStyle = "Casual"

You can override the default writing style with the ActiveWritingStyle property.
This property is applied to a specified document for text marked in a specified
language. The following example sets the writing style to be used for checking
U.S. English, French, and German in the active document.

Sub SetWritingStyle()
With ActiveDocument
.ActiveWritingStyle(wdEnglishUS) = "Technical"

.ActiveWritingStyle(wdFrench) = "Commercial"
.ActiveWritingStyle(wdGerman) = "Technisch/Wiss"
End With

End Sub

Remarks

You must have the proofing tools installed for each language you intend to
check. For more information on working in other languages, see Language-
specific information.

If you mark text as wdNoProofing, Word skips the marked text when running a
spelling or grammar check.

Languages Collection Object

Application |‘Languages (Language)

|‘Dictionalries (Dictionary)

A collection of Language objects that represent languages used for proofing or
formatting in Word.

Using the Languages Collection

Use the Languages property to return the Languages collection. The following
example displays the localized name for each language.

For Each la In Languages
Msgbox la.NamelLocal
Next la

Use Languages(index) to return a single Language object, where index can be
the value of the Name property, the value of the NamelL.ocal property, one of the
WdLanguagelD constants, or one of the MsoLanguagelID constants. (For the
list of valid WdLanguageID or MsoLanguagelD constants, see the Object
Browser in the Visual Basic Editor.)

Remarks

The Count property returns the number of languages for which you can mark
text (languages for which proofing tools are available). To check proofing, you
must install the appropriate tools for each language you intend to check. You
need both a .dll file and an .lex file for each of the following: the thesaurus,
spelling checker, grammar checker, and hyphenation tools.

If you mark text as wdNoProofing, Word skips the marked text when running a
spelling or grammar check. To mark text for a specified language or for no
proofing, use the Set Language command (Tools menu, Language sub menu).

LetterContent Object

L

Documents (Document) ~LetterContent

Represents the elements of a letter created by the Letter Wizard.

Using the LetterContent Object

Use the GetLetterContent method or the CreateL.etterContent method to
return a LetterContent object. The following example retrieves and displays the
letter recipient's name from the active document.

Set myLetterContent = ActiveDocument.GetLetterContent
MsgBox myLetterContent.RecipientName

The following example uses the CreateLetterContent method to create a new
LetterContent object, which is then used with the RunLetterWizard method.

Set myLetter = ActiveDocument _
.CreatelLetterContent(DateFormat:="July 11, 1996", _
IncludeHeaderFooter:=False, _
PageDesign:="C:\MSOffice\Templates\Letters & " _

& "Faxes\Contemporary Letter.dot", _
LetterStyle:=wdFullBlock, Letterhead:=True, _
LetterheadLocation:=wdLetterTop, _
LetterheadSize:=InchesToPoints(1.5), _
RecipientName:="Dave Edson", _
RecipientAddress:="100 Main St." & vbCr _

& "Bellevue, WA 98004",

Salutation:="Dear Dave,", _
SalutationType:=wdSalutationInformal,

RecipientReference:="", MailingInstructions:="", _
AttentionLine:="", _

Subject:="End of year report", CCList:="", ReturnAddress:="", _
SenderName:="", Closing:="Sincerely yours,", _
SenderCompany:="", _

SenderJobTitle:="", SenderInitials:="", EnclosureNumber:=0)

ActiveDocument.RunLetterWizard _
LetterContent:=myLetter, WizardMode:=True

Remarks

The CreateLetterContent method creates a LetterContent object; however,
there are numerous required arguments. If you want to set only a few properties,
use the New keyword to create a new, stand-alone LetterContent object. The
following example creates a LetterContent object, sets some of its properties,
and then uses the LetterContent object with the RunL.etterWizard method to
run the Letter Wizard, using the preset values as the default settings.

Set myLetter = New LetterContent
With myLetter
.AttentionLine = "Read this"
.EnclosureNumber = 1
.Letterhead = True
.LetterheadLocation = wdLetterTop
.LetterheadSize = InchesToPoints(2)
End With
Documents.Add.RunLetterWizard LetterContent:=myLetter, _
WizardMode:=True

You can duplicate a LetterContent object by using the Duplicate property. The
following example retrieves the letter elements in the active document and
makes a duplicate copy. The example assigns the duplicate copy to aLetter and
resets the recipient's name and address to empty strings. The RunLetterWizard
method is used to run the Letter Wizard, using the values in the revised
LetterContent object (aLetter) as the default settings.

Set aletter = ActiveDocument.GetlLetterContent.Duplicate
wWith alLetter
.RecipientName = ""
.RecipientAddress = ""
End With
Documents.Add.RunLetterwWizard LetterContent:=alLetter, _
WizardMode:=True

The SetLetterContent method inserts the contents of the specified
LetterContent object in a document. The following example retrieves the letter
elements from the active document, changes the attention line, and then uses the
SetLetterContent method to update the active document to reflect the change.

Set myLetterContent = ActiveDocument.GetLetterContent

myLetterContent.AttentionLine = "Greetings"
ActiveDocument.SetLetterContent LetterContent:=myLetterContent

LineFormat Object

L

LineFormat

Shapes (Shape)

|‘ColorFormat

Represents line and arrowhead formatting. For a line, the LineFormat object
contains formatting information for the line itself; for a shape with a border, this
object contains formatting information for the shape's border.

Using the LineFormat Object

Use the Line property to return a LineFormat object. The following example
adds a blue, dashed line to the active document. There's a short, narrow oval at
the line's starting point and a long, wide triangle at its end point.

wWith ActiveDocument.Shapes.AddLine(100, 100, 200, 300).Line
.DashStyle = msoLineDashDotDot
.ForeColor.RGB = RGB(50, 0, 128)
.BeginArrowheadLength = msoArrowheadShort
.BeginArrowheadStyle = msoArrowheadOval
.BeginArrowheadwidth msoArrowheadNarrow
.EndArrowheadLength = msoArrowheadLong
.EndArrowheadStyle msoArrowheadTriangle
.EndArrowheadwidth msoArrowheadwide

End With

LineNumbering Object

L

PageSetup ~LineNumbering

Represents line numbers in the left margin or to the left of each newspaper-style
column.

Using the LineNumbering Object

Use the LineNumbering property to return the LineNumbering object. The
following example applies line numbering to the text in the first section of the
active document.

With ActiveDocument.Sections(1).PageSetup.LineNumbering
.Active = True

.CountBy = 5
.RestartMode = wdRestartPage
End with

The following example applies line numbering to the pages in the current
section.

Selection.PageSetup.LineNumbering.Active = True

LinkFormat Object

L

Multiple objects ~LinkFormat

Represents the linking characteristics for an OLE object or picture.

Using the LinkFormat Object

Use the LinkFormat property for a shape, inline shape, or field to return the
LinkFormat object. The following example breaks the link for the first shape on
the active document.

ActiveDocument.Shapes(1).LinkFormat.BreakLink

Remarks

Not all types of shapes, inline shapes, and fields can be linked to a source. Use
the Type property for the Shape and InlineShape objects to determine whether
a particular shape can be linked. The Type property for a Field object returns the
type of field.

You can use both the Update method and the AutoUpdate property to update
links. To return or set the full path for a particular link's source file, use the
SourceFullName property.

List Object

|‘Lists (List)

|‘Multiple objects

Multiple objects

Represents a single list format that's been applied to specified paragraphs in a
document. The List object is a member of the Lists collection.

Using the List Object

Use Lists(index), where index is the index number, to return a single List object.
The following example returns the number of items in list one in the active
document.

mycount = ActiveDocument.Lists(1).CountNumberedItems

To return all the paragraphs that have list formatting, use the ListParagraphs
property. To return them as a range, use the Range property.

Remarks

To apply a different list format to an existing list, use the ApplyListTemplate
method with the List object. To add a new list to a document, use the
ApplyListTemplate method with the ListFormat object for a specified range.

Use the CanContinuePreviousList method to determine whether you can
continue the list formatting from a list that was previously applied to the
document.

Use the CountNumberedItems method to return the number of items in a
numbered or bulleted list, including LISTNUM fields.

To determine whether a list contains more than one list template, use the
SingleListTemplate property.

You can manipulate the individual List objects within a document, but for more
precise control you should work with the ListFormat object.

Picture-bulleted lists are not included in the Lists collection and cannot be
manipulated using the List object.

ListEntries Collection Object

FormFields (FormField) L
LLiStEl’ltl‘iES (ListEntry)

A collection of ListEntry objects that represent all the items in a drop-down
form field.

DropDown

Using the ListEntries Collection

Use the ListEntries property to return the ListEntries collection. The following
example displays the items that appear in the form field named "Drop1."

For Each le In _
ActiveDocument.FormFields("Dropl1").DropDown.ListEntries
MsgBox le.Name

Next le

Use the Add method to add an item to a drop-down form field. The following
example inserts a drop-down form field and then adds "red," "blue," and "green"
to the form field.

Set myField = _
ActiveDocument.FormFields.Add(Range:=Selection.Range, _
Type:=wdFieldFormDropDown)
With myField.DropDown.ListEntries
.Add Name:="Red"
.Add Name:="Blue"
.Add Name:="Green"
End with

Use ListEntries(index), where index is the list entry name or the index number,
to return a single ListEntry object. The index number represents the position of
the entry in the drop-down form field (the first item is index number 1). The
following example deletes the "Blue" entry from the drop-down form field
named "Color."

ActiveDocument.FormFields("Color").DropDown _
.ListEntries("Blue").Delete

The following example displays the first item in the drop-down form field
named "Color."

MsgBox _
ActiveDocument.FormFields("Color").DropDown.ListEntries(1).Name

ListEntry Object

FormFields (FormField) L
LLiStEl’ltl‘iES (ListEntry)

Represents an item in a drop-down form field. The ListEntry object is a
member of the ListEntries collection. The ListEntries collection includes all
the items in a drop-down form field.

DropDown

Using the ListEntry Object

Use ListEntries(index), where index is the list entry name or the index number,
to return a single ListEntry object. The index number represents the position of
the entry in the drop-down form field (the first item is index number 1). The
following example deletes the "Blue" entry from the drop-down form field
named "Color."

ActiveDocument.FormFields("Color").DropDown _
.ListEntries("Blue").Delete

The following example displays the first item in the drop-down form field
named "Color."

MsgBox _
ActiveDocument.FormFields("Color").DropDown.ListEntries(1).Name

Use the Add method to add an item to a drop-down form field. The following
example inserts a drop-down form field and then adds "red," "blue," and "green"
to the form field.

Set myField = _
ActiveDocument.FormFields.Add(Range:=Selection.Range, _
Type:=wdFieldFormDropDown)

With myField.DropDown.ListEntries
.Add Name:="Red"

.Add Name:="Blue"
.Add Name:="Green"
End with

ListFormat Object

L

Range ~ListFormat

|‘Multiple objects

Represents the list formatting attributes that can be applied to the paragraphs in a
range.

Using the ListFormat Object

Use the ListFormat property to return the ListFormat object for a range. The
following example applies the default bulleted list format to the selection.

Selection.Range.ListFormat.ApplyBulletDefault

Applying a List Template

An easy way to apply list formatting is to use the ApplyBulletDefault,
ApplyNumberDefault, and ApplyOutlineNumberDefault methods, which
correspond, respectively, to the first list format (excluding None) on each tab in
the Bullets and Numbering dialog box.

To apply a format other than the default format, use the ApplyListTemplate
method, which allows you to specify the list format (list template) you want to

apply.

Returning the List or List Template

Use the List or ListTemplate property to return the list or list template from the
first paragraph in the specified range.

Remarks

Use the ListFormat property with a Range object to access the list formatting
properties and methods available for the specified range. The following example
applies the default bullet list format to the second paragraph in the active
document.

ActiveDocument.Paragraphs(2).Range.ListFormat.ApplyBulletDefault

However, if there's already a list defined in your document, you can access a
List object by using the Lists property. The following example changes the
format of the list created in the preceding example to the first number format on
the Numbered tab in the Bullets and Numbering dialog box.

ActiveDocument.Lists(1).ApplyListTemplate _
ListTemplate:=ListGalleries(2).ListTemplates(1)

ListGalleries Collection Object

Application |‘ListGalleries (ListGallery)

|‘ListTemplates (ListTemplate)

A collection of ListGallery objects that represent the three tabs in the Bullets
and Numbering dialog box.

Using the ListGalleries Collection

Use the ListGalleries property to return the ListGalleries collection. The
following example enumerates the collection of list galleries and sets each of the
seven list templates (formats) back to the list template format built into Word.

For Each 1g In ListGalleries
For x =1 To 7
1g.Reset(x)
Next X
Next 1lg

Use ListGalleries(index), where index is wdBulletGallery,
wdNumberGallery, or wdOutlineNumberGallery, to return a single
ListGallery object.

The following example returns the third list format (excluding None) on the
Bulleted tab in the Bullets and Numbering dialog box and then applies it to the
selection.

Set temp3 = ListGalleries(wdBulletGallery).ListTemplates(3)
Selection.Range.ListFormat.ApplyListTemplate ListTemplate:= temp3

Resetting a List Template in the Gallery

To see whether the specified list template contains the formatting built into
Word, use the Modified property with the ListGallery object. To reset
formatting to the original list format, use the Reset method for the ListGallery
object.

ListGallery Object

Application |‘ListGalleries (ListGallery)

|‘ListTemplates (ListTemplate)

Represents a single gallery of list formats. The ListGallery object is a member
of the ListGalleries collection. Each ListGallery object represents one of the
three tabs in the Bullets and Numbering dialog box.

Using the ListGallery Object

Use ListGalleries(index), where index is wdBulletGallery,
wdNumberGallery, or wdOutlineNumberGallery, to return a single
ListGallery object.

The following example returns the third list format (excluding None) on the
Bulleted tab in the Bullets and Numbering dialog box and then applies it to the
selection.

Set temp3 = ListGalleries(wdBulletGallery).ListTemplates(3)
Selection.Range.ListFormat.ApplyListTemplate ListTemplate:= temp3

Resetting a List Template in the Gallery

To see whether the specified list template contains the formatting built into
Word, use the Modified property for the ListGallery object. To reset formatting
to the original list format, use the Reset method for the ListGallery object.

ListLevel Object

|‘ListLevel

Multiple objects

Listl.evels
L

Represents a single list level, either the only level for a bulleted or numbered list
or one of the nine levels of an outline numbered list. The ListLevel object is a
member of the ListLevels collection.

Using the ListLevel Object

Use ListLevels(index), where index is a number from 1 through 9, to return a
single ListLevel object. The following example sets list level one of list
template one in the active document to start at 4.

ActiveDocument.ListTemplates(1l).ListLevels(1).StartAt = 4

Remarks

The ListLevel object gives you access to all the formatting properties for the
specified list level, such as the Alignment, Font, NumberFormat,
NumberPosition, NumberStyle, and TrailingCharacter properties.

To apply a list level, first identify the range or list, and then use the
ApplyListTemplate method. Each tab at the beginning of the paragraph is
translated into a list level. For example, a paragraph that begins with three tabs
will become a level-three list paragraph after the ApplyListTemplate method is
used.

ListLevels Collection Object

L

ListTemplate ~ListLevels

|‘ListLevel

A collection of ListLevel objects that represents all the list levels of a list
template, either the only level for a bulleted or numbered list or one of the nine
levels of an outline numbered list.

Using the ListLevels Collection

Use the ListLevels property to return the ListLevels collection. The following
example sets the variable mytemp to the first list template in the active document
and then modifies each level to use lowercase letters for its number style.

Set mytemp = ActiveDocument.ListTemplates(1)
For Each lev In mytemp.ListLevels

lev.NumberStyle = wdListNumberStylelLowercaselLetter
Next lev

Use ListLevels(index), where index is a number from 1 through 9, to return a
single ListLevel object. The following example sets list level one of list
template one in the active document to start at four.

ActiveDocument.ListTemplates(1l).ListLevels(1).StartAt = 4

Note You cannot add new levels to a list template.

Remarks

To apply a list level, first identify the range or list, and then use the
ApplyListTemplate method. Each tab at the beginning of the paragraph is
translated into a list level. For example, a paragraph that begins with three tabs
will become a level-three list paragraph after the ApplyListTemplate method is
used.

ListParagraphs Collection Object

L

Multiple objects ~ListParagraphs

|‘Paraglraph

A collection of Paragraph objects that represents the paragraphs of the specified
document, list, or range that have list formatting applied.

Using the ListParagraphs Collection

Use the ListParagraphs property to return the ListParagraphs collection. The
following example applies highlighting to the collection of paragraphs with list
formatting in the active document.

For Each para in ActiveDocument.ListParagraphs
para.Range.HighlightColorIndex = wdTurquoise
Next para

Use ListParagraphs(index), where index is the index number, to return a single
Paragraph object with list formatting.

Remarks

Paragraphs can have two types of list formatting. The first type includes an

automatically added number or bullet at the beginning of each paragraph in the
list. The second type includes LISTNUM fields, which can be placed anywhere
inside a paragraph. There can be more than one LISTNUM field per paragraph.

To add list formatting to paragraphs, you can use the ApplyListTemplate,
ApplyBulletDefault, ApplyNumberDefault, or ApplyOutlineNumberDefault
method. You access these methods through the ListFormat object for a specified
range.

The Count property for this collection in a document returns the number of
items in the main story only. To count items in other stories use the collection
with the Range object.

Lists Collection Object

|‘Lists (List)

|‘Multiple objects

Multiple objects

A collection of List objects that represent all the lists in the specified document.

Using the Lists Collection

Use the Lists property to return the Lists collection. The following example
displays the number of items in each list in the active document.

For Each 1i In ActiveDocument.Lists
MsgBox 1li.CountNumberedItems
Next 1i

Use Lists(index), where index is the index number, to return a single List object.
The following example applies the first list format (excluding None) on the
Numbered tab in the Bullets and Numbering dialog box to the second list in
the active document.

Set templ = ListGalleries(wdNumberGallery).ListTemplates(1)
ActiveDocument.Lists(2).ApplyListTemplate ListTemplate:=templ

Remarks

When you use a For Each...Next loop to enumerate the Lists collection, the lists
in a document are returned in reverse order. The following example counts the
items for each list in the active document, from the bottom of the document
upward.

For Each 1i In ActiveDocument.Lists

MsgBox 1li.CountNumberedItems
Next 1i

To add a new list to a document, use the ApplyListTemplate method with the
ListFormat object for a specified range.

You can manipulate the individual List objects within a document, but for more
precise control you should work with the ListFormat object.

Picture-bulleted lists are not included in the Lists collection.

ListTemplate Object

|‘ListTemplates (ListTemplate)

|‘ListLevels (ListLevel)

Multiple objects

Represents a single list template that includes all the formatting that defines a
list. The ListTemplate object is a member of the ListTemplates collection. Each
of the seven formats (excluding None) found on each of the three tabs in the
Bullets and Numbering dialog box corresponds to a list template object. These
predefined list templates can be accessed from the three ListGallery objects in
the ListGalleries collection. Documents and templates can also contain
collections of list templates.

Using the ListTemplate Object

Use ListTemplates(index), where index is a number from 1 through 7, to return
a single list template from a list gallery. The following example returns the third
list format (excluding None) on the Numbered tab in the Bullets and
Numbering dialog box.

Set temp3 = ListGalleries(2).ListTemplates(3)

Note Some properties and methods — Convert and Add, for example — won't
work with list templates that are accessed from a list gallery. You can modify
these list templates, but you cannot change their list gallery type
(wdBulletGallery, wdNumberGallery, or wdOutlineNumberGallery).

The following example sets an object variable equal to the list template used in
the third list in the active document, and then it applies that list template to the
selection.

Set myLt = ActiveDocument.ListTemplates(3)
Selection.Range.ListFormat.ApplyListTemplate ListTemplate:=myLt

Use the Add method to add a list template to the collection of list templates in a
document or template.

Resetting a List Template in the Gallery

To see whether the specified list template contains the formatting built into
Word, use the Modified property with the ListGallery object. To reset
formatting to the original list format, use the Reset method for the ListGallery
object.

Remarks

After you have returned a ListTemplate object, use ListLevels(index), where
index is a number from 1 through 9, to return a single ListLevel object. With a
ListLevel object, you have access to all the formatting properties for the
specified list level, such as Alignment, Font, NumberFormat,
NumberPosition, NumberStyle, and TrailingCharacter.

Use the Convert method to convert a multiple-level list template to a single-
level template.

ListTemplates Collection Object

|‘ListTemplates (ListTemplate)

|‘ListLevels (ListLevel)

Multiple objects

A collection of ListTemplate objects that represent the seven predefined list
formats on each tab in the Bullets and Numbering dialog box.

Using the ListTemplates Collection

Use the ListTemplates property to return the ListTemplates collection. The
following example displays a message with the level status (single or multiple-
level) for each list template in the active document.

For Each 1t In ActiveDocument.ListTemplates
MsgBox "This is a multiple-level list template - " _
& 1t.OutlineNumbered

Next LT

Use the Add method to add a list template to the collection in the specified
document or template. The following example adds a new list template to the
active document and applies it to the selection.

Set myLT = ActiveDocument.ListTemplates.Add
Selection.Range.ListFormat.ApplyListTemplate ListTemplate:=myLT

Use ListTemplates(index), where index is a number 1 through 7, to return a
single list template from a list gallery. The following example sets an object
variable equal to the list template used in the third list in the active document,
and then it applies that list template to the selection.

Set mylt = ActiveDocument.ListTemplates(3)
Selection.Range.ListFormat.ApplyListTemplate ListTemplate:=mylt

Note Some properties and methods — Convert and Add, for example — won't
work with list templates that are accessed from a list gallery. You can modify
these list templates, but you cannot change their list gallery type
(wdBulletGallery, wdNumberGallery, or wdOutlineNumberGallery).

Resetting a List Template in the Gallery

To see whether the specified list template contains the formatting built into
Word, use the Modified property with the ListGallery object. To reset
formatting to the original list format, use the Reset method for the ListGallery
object.

Remarks

After you have returned a ListTemplate object, use ListLevels(index), where
index is a number from 1 through 9, to return a single ListLevel object. With a
ListLevel object, you have access to all the formatting properties for the
specified list level, such as Alignment, Font, NumberFormat,
NumberPosition, NumberStyle, and TrailingCharacter.

Use the Convert method to convert a multiple-level list template to a single-
level template.

MailingL.abel Object

Application |‘MaﬂingLabel

|‘Multiple objects

Represents a mailing label.

Using the Mailingl.abel Object

Use the Mailingl.abel property to return the MailingLabel object. The
following example sets default mailing label options.

With Application.MailinglLabel
.DefaultLaserTray = wdPrinterLowerBin
.DefaultPrintBarCode = True

End with

Use the PrintOut method to print a mailing label listed in the Product Number
box in the Label Options dialog box. The following example prints a page of
Avery 5162 standard address labels using the specified address.

addr = "Katie Jordan" & vbCr & "123 Skye St." _
& vbCr & "OurTown, WA 98107"
Application.MailinglLabel.PrintOut Name:="5162", Address:=addr

Remarks

Use the Customl.abels property to format or print a custom mailing label. The
following example sets the number of labels across and down for the custom
label named "MyLabel."

With Application.MailinglLabel.CustomLabels("MyLabel")
.NumberAcross = 2
.NumberDown = 5

End With

MailMerge Object

L

Document

L

MailMerge

Multiple objects

Represents the mail merge functionality in Word.

Using the MailMerge Object

Use the MailMerge property to return the MailMerge object. The MailMerge
object is always available regardless of whether the mail merge operation has
begun. Use the State property to determine the status of the mail merge
operation. The following example executes a mail merge if the active document
is a main document with an attached data source.

If ActiveDocument.MailMerge.State = wdMainAndDataSource Then
ActiveDocument.MailMerge.Execute
End If

The following example merges the main document with the first three data
records in the attached data source and then sends the results to the printer.

Set myMerge = ActiveDocument.MailMerge
If myMerge.State = wdMainAndSourceAndHeader Or _
myMerge.State = wdMainAndDataSource Then
wWith myMerge.DataSource
.FirstRecord = 1
.LastRecord = 3
End With
End If
wWith myMerge
.Destination = wdSendToPrinter
.Execute
End With

MailMergeDataField Object

|‘MailMerge

MailMergeDataSource
|‘MaﬂMergeDataFields (MailMergeDataField)

Documents (Document)

L

Represents a single mail merge field in a data source. The MailMergeDataField
object is a member of the MailMergeDataFields collection. The
MailMergeDataFields collection includes all the data fields in a mail merge
data source (for example, Name, Address, and City).

Using the MailMergeDataField Object

Use DataFields(index), where index is the data field name or the index number,
to return a single MailMergeDataField object. The index number represents the
position of the data field in the mail merge data source. The following example
retrieves the first value from the FName field in the data source attached to the
active document.

first = _
ActiveDocument.MailMerge.DataSource.DataFields("FName").Value

The following example displays the name of first field in the data source
attached to the active document.

MsgBox ActiveDocument.MailMerge.DataSource.DataFields(1).Name

You cannot add fields to the MailMergeDataFields collection. All data fields in
a data source are automatically included in the MailMergeDataFields
collection.

MailMergeDataFields Collection
Object

|‘MailMerge

MailMergeDataSource
|‘MaﬂMergeDataFields (MailMergeDataField)

Documents (Document)

L

A collection of MailMergeDataField objects that represent the data fields in a
mail merge data source.

Using the MailMergeDataFields Collection

Use the DataFields property to return the MailMergeDataFields collection.
The following example displays the names of all the fields in the attached data
source.

For Each afield In ActiveDocument.MailMerge.DataSource.DataFields
MsgBox afield.Name
Next afield

You cannot add fields to the MailMergeDataFields collection. When a data
field is added to a data source, the field is automatically included in the
MailMergeDataFields collection. Use the EditDataSource method to edit the
contents of a data source. The following example adds a data field named
"Author" to a table in the attached data source.

If ActiveDocument.MailMerge.DataSource.Type = _
wdMergeInfoFromword Then
ActiveDocument.MailMerge.EditDataSource
With ActiveDocument.Tables(1)
.Columns.Add
.Cell(Row:=1, Column:=.Columns.Count).Range.Text = "Author"
End With
End If

Use DataFields(index), where index is the data field name or the index number,
to return a single MailMergeDataField object. The index number represents the
position of the data field in the mail merge data source. The following example
retrieves the first value from the FName field in the data source attached to the
active document.

first = _
ActiveDocument.MailMerge.DataSource.DataFields("FName").Value

The following example displays the name of first data field in the data source
attached to the active document.

MsgBox ActiveDocument.MailMerge.DataSource.DataFields(1).Name

MailMergeDataSource Object

|‘MailMergeDataSource

MailMerge
|‘Multiple objects

Represents the mail merge data source in a mail merge operation.

Using the MailMergeDataSource Object

Use the DataSource property to return the MailMergeDataSource object. The
following example displays the name of the data source associated with the
active document.

If ActiveDocument.MailMerge.DataSource.Name <> "" Then _
MsgBox ActiveDocument.MailMerge.DataSource.Name

The following example displays the field names in the data source associated
with the active document.

For Each aField In ActiveDocument.MailMerge.DataSource.FieldNames
MsgBox aField.Name
Next aField

The following example opens the data source associated with Form letter.doc
and determines whether the FirstName field includes the name "Kate."

With Documents("Form letter.doc").MailMerge
.EditDataSource
If .DataSource.FindRecord(FindText:="Kate", _
Field:="FirstName") = True Then
MsgBox '"Data was found"
End If
End With

MailMergeField Object

|‘MailMerge
MailMergeFields (MailMergeField)

|‘Range

Documents (Document)

L

Represents a single mail merge field in a document. The MailMergeDataField
object is a member of the MailMergeDataFields collection. The
MailMergeDataFields collection includes all the mail merge related fields in a
document.

Using the MailMergeField Object

Use Fields(index), where index is the index number, to return a single
MailMergeField object. The following example displays the field code of the
first mail merge field in the active document.

MsgBox ActiveDocument.MailMerge.Fields(1).Code

Use the Add method to add a merge field to the MailMergeFields collection.
The following example replaces the selection with a Middlelnitial merge field.

ActiveDocument.MailMerge.Fields.Add Range:=Selection.Range, _
Name:="MiddleInitial"

Remarks

The MailMergeFields collection has additional methods, such as AddAsk and
AddFillIn, for adding fields related to a mail merge operation.

MailMergeFieldName Object

|‘MailMerge

MailMergeDataSource
|‘MaﬂMergeFieldNarnes (MailMergeFieldName)

Documents (Document)

L

Represents a mail merge field name in a data source. The
MailMergeFieldName object is a member of the MailMergeFieldNames
collection. The MailMergeFieldNames collection includes all the data field
names in a mail merge data source.

Using the MailMergeFieldName Object

Use FieldNames(index), where index is the index number, to return a single
MailMergeFieldName object. The index number represents the position of the
field in the mail merge data source. The following example retrieves the name of
the last field in the data source attached to the active document.

alast = ActiveDocument.MailMerge.DataSource.FieldNames.Count
afirst = ActiveDocument.MailMerge.DataSource.FieldNames(alast).Name
MsgBox afirst

You cannot add fields to the MailMergeFieldNames collection. Field names in
a data source are automatically included in the MailMergeFieldNames
collection.

MailMergeFieldNames Collection
Object

L

Documents (Document) ~MailMerge
|‘MaﬂMergeDataSource
L

MailMergeFieldNames (MailMergeFieldName)

A collection of MailMergeFieldName objects that represent the field names in a
mail merge data source.

Using the MailMergeFieldNames Collection

Use the FieldNames property to return the MailMergeFieldNames collection.
The following example displays the names of the fields in the data source
attached to the active document.

For Each afield In ActiveDocument.MailMerge.DataSource.FieldNames
MsgBox afield.Name
Next afield

You cannot add names to the MailMergeFieldNames collection. When a field is
added to a data source, the field name is automatically included in the
MailMergeFieldNames collection. Use the EditDataSource method to edit the
contents of a data source. The following example adds a data field named
"Author" to a table in the data source attached to the active document.

If ActiveDocument.MailMerge.DataSource.Type = _
wdMergeInfoFromword Then
ActiveDocument.MailMerge.EditDataSource
With ActiveDocument.Tables(1)
.Columns.Add
.Cell(Row:=1, Column:=.Columns.Count).Range.Text = "Author"
End With
End If

MailMergeFields Collection Object

|‘MailMerge
MailMergeFields (MailMergeField)

|‘Range

Documents (Document)

L

A collection of MailMergeField objects that represent the mail merge related
fields in a document.

Using the MailMergeFields Collection

Use the Fields property to return the MailMergeFields collection. The
following example adds an ASK field after the last mail merge field in the active
document.

Set myMMFields = ActiveDocument.MailMerge.Fields

myMMFields(myMMFields.Count).Select

Selection.MoveRight Unit:=wdWord, Count:=1, Extend:=wdMove

ActiveDocument.MailMerge.Fields.AddAsk Range:=Selection.Range, _
Name:="Name", Prompt:="Type your name", AskOnce:=True

Use the Add method to add a merge field to the MailMergeFields collection.
The following example replaces the selection with a MiddleInitial merge field.

ActiveDocument.MailMerge.Fields.Add Range:=Selection.Range, _
Name:="MiddleInitial"

Use Fields(index), where index is the index number, to return a single
MailMergeField object. The following example displays the field code of the
first mail merge field in the active document.

MsgBox ActiveDocument.MailMerge.Fields(1).Code

Remarks

The MailMergeFields collection has additional methods, such as AddAsk and
AddFillIn, for adding fields related to a mail merge operation.

MailMessage Object

L

Application ~MailMessage

Represents the active email message if you are using Word as your e-mail editor.

Using the MailMessage Object

Use the MailMessage property to return the MailMessage object. The following
example validates the e-mail addresses that appear in the active e-mail message.

Application.MailMessage.CheckName

Remarks

The methods of the MailMessage object require that you are using Word as your
e-mail editor and that an e-mail message is active. If either of these conditions
isn't true, an error occurs.

MappedDataField Object

L

MappedDataFields ~MappedDataField

Represents a single mapped data field. The MappedDataField object is a
member of the MappedDataFields collection. The MappedDataFields
collection includes all the mapped data fields available in Microsoft Word.

A mapped data field is a field contained within Microsoft Word that represents
commonly used name or address information, such as "First Name." If a data
source contains a "First Name" field or a variation (such as "First_Name,"
"FirstName," "First," or "FName"), the field in the data source will automatically
map to the corresponding mapped data field in Word. If a document or template
is to be merged with more than one data source, mapped data fields make it
unnecessary to reenter the fields into the document to agree with the field names
in the database.

Using the MappedDataField object

Use the MappedDataFields property to return a MappedDataField object. This
example returns the data source field name for the wdFirstName mapped data
field. This example assumes the current document is a mail merge document. A
blank string value returned for the DataFieldName property indicates that the
mapped data field is not mapped to a field in the data source.

Sub MappedFieldName()

With ThisDocument.MailMerge.DataSource
If .MappedDataFields.Item(wdFirstName).DataFieldName <> "" T
MsgBox "The mapped data field 'FirstName' is mapped to "
& .MappedDataFields(Index:=wdFirstName) _
.DataFieldName & "."
Else
MsgBox "The mapped data field 'FirstName' is not " & _
"mapped to any of the data fields in your " & _
"data source."
End If

End With

End Sub

-Show All

MappedDataFields Collection

L

MailMergeDataSource —~MappedDataFields

|‘MappedDataField

A collection of MappedDataField objects that represents all the mapped data
fields available in Microsoft Word.

Using the MappedDataFields collection

Use the MappedDataFields property of the MailMergeDataSource object to
return the MappedDataFields collection. This example creates a tabbed list of
the mapped data fields available in Word and the fields in the data source to
which they are mapped. This example assumes that the current document is a
mail merge document and that the data source fields have corresponding mapped
data fields.

Sub MappedFields()
Dim intCount As Integer
Dim docCurrent As Document
Dim docNew As Document

On Error Resume Next

Set docCurrent = ThisDocument
Set docNew = Documents.Add

'"Add leader tab to new document

docNew.Paragraphs.TabStops.Add _
Position:=InchesToPoints(3.5), _
Leader :=wdTabLeaderDots

With docCurrent.MailMerge.DataSource

'"Insert heading paragraph for tabbed columns
docNew.Content.InsertAfter "Word Mapped Data Field" _
& vbTab & "Data Source Field"

Do
intCount = intCount + 1

'"Insert Word mapped data field name and the

'corresponding data source field name

docNew.Content.InsertAfter .MappedDataFields(_
Index:=intCount).Name & vbTab & _
.MappedDataFields(Index:=intCount) _
.DataFieldName

'Insert paragraph
docNew.Content.InsertParagraphAfter
Loop Until intCount = .MappedDataFields.Count

End With

End Sub

OLEFormat Object

L

Multiple objects ~OLEFormat

Represents the OLE characteristics (other than linking) for an OLE object,
ActiveX control, or field.

Using the OLEFormat Object

Use the OLEFormat property for a shape, inline shape, or field to return the
OLEFormat object. The following example displays the class type for the first
shape on the active document.

MsgBox ActiveDocument.Shapes(1).0LEFormat.ClassType

Remarks

Not all types of shapes, inline shapes, and fields have OLE capabilities. Use the
Type property for the Shape and InlineShape objects to determine what
category the specified shape or inline shape falls into. The Type property for a
Field object returns the type of field.

You can use the Activate, Edit, Open, and DoVerb methods to automate an
OLE object.

Use the Object property to return an object that represents an ActiveX control or
OLE object. With this object, you can use the properties and methods of the
container application or the ActiveX control.

Options Object

L

Application ~Options

Represents application and document options in Word. Many of the properties
for the Options object correspond to items in the Options dialog box (Tools
menu).

Using the Options Object

Use the Options property to return the Options object. The following example
sets three application options for Word.

wWith Options
.AllowDragAndDrop = True
.ConfirmConversions = False
.MeasurementUnit = wdPoints
End With

OtherCorrectionsException Object

AutoCorrect |‘C)therCorrectionExceptions (OtherCorrectionException)

Represents a single AutoCorrect exception. The OtherCorrectionsException
object is a member of the OtherCorrectionsExceptions collection. The
OtherCorrectionsExceptions collection includes all words that Microsoft Word
won't correct automatically. This list corresponds to the list of AutoCorrect
exceptions on the Other Corrections tab in the AutoCorrect Exceptions dialog
box (AutoCorrect command, Tools menu).

Using the OtherCorrectionsException Object

Use OtherCorrectionsExceptions(index), where index is the AutoCorrect
exception name or the index number, to return a single
OtherCorrectionsException object. The following example deletes "WTop"
from the list of AutoCorrect exceptions.

AutoCorrect.OtherCorrectionsExceptions("WTop").Delete

The index number represents the position of the AutoCorrect exception in the
OtherCorrectionsExceptions collection. The following example displays the
name of the first item in the OtherCorrectionsExceptions collection.

MsgBox AutoCorrect.OtherCorrectionsgExceptions(1).Name

If the value of the OtherCorrectionsAutoAdd property is True, words are
automatically added to the list of AutoCorrect exceptions. Use the Add method
to add an item to the OtherCorrectionsExceptions collection. The following
example adds "TipTop" to the list of AutoCorrect exceptions.

AutoCorrect.OtherCorrectionsExceptions.Add Name:="TipTop"

OtherCorrectionsExceptions
Collection Object

AutoCorrect |‘C)therCorrectionExceptions (OtherCorrectionException)

A collection of OtherCorrectionsException objects that represents the list of
words that Microsoft Word won't correct automatically. This list corresponds to
the list of AutoCorrect exceptions on the Other Corrections tab in the
AutoCorrect Exceptions dialog box (AutoCorrect command, Tools menu).

Using the OtherCorrectionsExceptions Collection

Use the OtherCorrectionsExceptions property to return the
OtherCorrectionsExceptions collection. The following example displays the
items in this collection.

For Each aCap In AutoCorrect.OtherCorrectionsExceptions
MsgBox aCap.Name
Next aCap

If the value of the OtherCorrectionsAutoAdd property is True, words are
automatically added to the list of AutoCorrect exceptions. Use the Add method
to add an item to the OtherCorrectionsExceptions collection. The following
example adds "TipTop" to the list of AutoCorrect exceptions.

AutoCorrect.OtherCorrectionsExceptions.Add Name:="TipTop"

Use OtherCorrectionsExceptions(index), where index is the name or the index
number, to return a single OtherCorrectionsException object. The following
example deletes "WTop" from the list of AutoCorrect exceptions.

AutoCorrect.OtherCorrectionsExceptions("WTop").Delete

The index number represents the position of the AutoCorrect exception in the
OtherCorrectionsExceptions collection. The following example displays the
name of the first item in the OtherCorrectionsExceptions collection.

MsgBox AutoCorrect.OtherCorrectionsgExceptions(1).Name

PageNumber Object

L

Sections (Section) ~HeadersFooters (HeaderFooter)

|‘&geNurnbers (PageNumber)

Represents a page number in a header or footer. The PageNumber object is a
member of the PageNumbers collection. The PageNumbers collection includes
all the page numbers in a single header or footer.

Using the PageNumber Object

Use PageNumbers(index), where index is the index number, to return a single
PageNumber object. In most cases, a header or footer will contain only one
page number, which is index number 1. The following example centers the first
page number in the primary header in section one in the active document.

ActiveDocument.Sections(1).Headers(wdHeaderFooterPrimary) _
.PageNumbers(1).Alignment = wdAlignPageNumberCenter

Use the Add method to add a page number (a PAGE field) to a header or footer.
The following example adds a page number to the primary footer in the first
section and in any subsequent sections. The page number doesn't appear on the
first page.

With ActiveDocument.Sections(1)
.Footers(wdHeaderFooterPrimary) .PageNumbers.Add _
PageNumberAlignment:=wdAlignPageNumberLeft, _
FirstPage:=False
End With

PageNumbers Collection Object

L

Sections (Section) ~HeadersFooters (HeaderFooter)

|‘&geNurnbers (PageNumber)

A collection of PageNumber objects that represent the page numbers in a single
header or footer.

Using the PageNumbers Collection

Use the PageNumbers property to return the PageNumbers collection. The
following example starts page numbering at 3 for the first section in the active
document.

ActiveDocument.Sections(1).Footers(wdHeaderFooterPrimary) _
.PageNumbers.StartingNumber = 3

Use the Add method to add page numbers to a header or footer. The following
example adds a page number to the primary footer in the first section.

With ActiveDocument.Sections(1)
.Footers(wdHeaderFooterPrimary) .PageNumbers.Add _
PageNumberAlignment:=wdAlignPageNumberLeft, _
FirstPage:=False
End With

To add or change page numbers in a document with multiple sections, modify
the page numbers in each section or set the LinkToPrevious property to True.

Use PageNumbers(index), where index is the index number, to return a single
PageNumber object. In most cases, a header or footer contains only one page
number, which is index number 1. The following example centers the first page
number in the primary header in the first section.

ActiveDocument.Sections(1).Headers(wdHeaderFooterPrimary) _
.PageNumbers(1).Alignment = wdAlignPageNumberCenter

PageSetup Object

|‘PageSetup

|‘Multiple objects

Multiple objects

Represents the page setup description. The PageSetup object contains all the
page setup attributes of a document (left margin, bottom margin, paper size, and
SO on) as properties.

Using the PageSetup Object

Use the PageSetup property to return the PageSetup object. The following
example sets the first section in the active document to landscape orientation and
then prints the document.

ActiveDocument.Sections(1).PageSetup.Orientation = _
wdOrientLandscape
ActiveDocument.PrintOut

The following example sets all the margins for the document named "Sales.doc."

wWith Documents("Sales.doc").PageSetup
.LeftMargin = InchesToPoints(0.75)
.RightMargin = InchesToPoints(0.75)
.TopMargin = InchesToPoints(1.5)
.BottomMargin = InchesToPoints(1)
End With

Pane Object

L

Windows (Window) ~Panes (Pane)

L

Multiple objects

Represents a window pane. The Pane object is a member of the Panes
collection. The Panes collection includes all the window panes for a single
window.

Using the Pane Object

Use Panes(index), where index is the index number, to return a single Pane
object. The following example closes the active pane.

If ActiveDocument.ActiveWindow.Panes.Count >= 2 Then _
ActiveDocument.ActiveWindow.ActivePane.Close

Use the Add method or the Split property to add a window pane. The following
example splits the active window at 20 percent of the current window size.

ActiveDocument.ActiveWindow.Panes.Add SplitVertical:=20
The following example splits the active window in half.

ActiveDocument.ActiveWindow.Split = True

You can use the SplitSpecial property to show comments, footnotes, or endnotes
in a separate pane.

Remarks

A window has more than one pane if the window is split or the view is not print
layout view and information such as footnotes or comments are displayed. The
following example displays the comments pane in normal view and then
prompts to close the pane.

ActiveDocument.ActiveWindow.View.Type = wdNormalView
If ActiveDocument.Comments.Count >= 1 Then
ActiveDocument.ActiveWindow.View.SplitSpecial = wdPaneComments
response = _
MsgBox('"Do you want to close the comments pane?", vbYesNo)
If response = vbYes Then _
ActiveDocument.ActiveWindow.ActivePane.Close
End If

Panes Collection Object

L

Windows (Window) ~Panes (Pane)

L

Multiple objects

A collection of Pane objects that represent the window panes for a single
window.

Using the Panes Collection

Use the Panes property to return the Panes collection. The following example
splits the active window and hides the ruler for each pane.

ActiveDocument.ActiveWindow.Split = True
For Each aPane In ActiveDocument.ActiveWindow.Panes

aPane.DisplayRulers = False
Next aPane

Use the Add method or the Split property to add a window pane. The following
example splits the active window at 20 percent of the current window size.

ActiveDocument.ActiveWindow.Panes.Add SplitVertical:=20
The following example splits the active window in half.

ActiveDocument.ActiveWindow.Split = True

You can use the SplitSpecial property to show comments, footnotes, or endnotes
in a separate pane.

Remarks

A window has more than one pane if it's split, or if the active view isn't print
layout view and information such as footnotes or comments is displayed. The
following example displays the footnote pane in normal view and then prompts
the user to close the pane.

ActiveDocument.ActiveWindow.View.Type = wdNormalView
If ActiveDocument.Footnotes.Count >= 1 Then
ActiveDocument.ActiveWindow.View.SplitSpecial = wdPaneFootnotes
response = _
MsgBox("Do you want to close the footnotes pane?", vbYesNo)
If response = vbYes Then _
ActiveDocument.ActiveWindow.ActivePane.Close
End If

Paragraph Object

|‘Paragraphs (Paragraph)

|‘Multiple objects

Multiple objects

Represents a single paragraph in a selection, range, or document. The
Paragraph object is a member of the Paragraphs collection. The Paragraphs
collection includes all the paragraphs in a selection, range, or document.

Using the Paragraph Object

Use Paragraphs(index), where index is the index number, to return a single
Paragraph object. The following example right aligns the first paragraph in the
active document.

ActiveDocument.Paragraphs(1).Alignment = wdAlignParagraphRight

Use the Add, InsertParagraph, InsertParagraphAfter, or
InsertParagraphBefore method to add a new, blank paragraph to a document.
The following example adds a paragraph mark before the first paragraph in the
selection.

Selection.Paragraphs.Add Range:=Selection.Paragraphs(1).Range

The following example also adds a paragraph mark before the first paragraph in
the selection.

Selection.Paragraphs(1).Range.InsertParagraphBefore

ParagraphFormat Object

|‘ParagraphForrnat

|‘Multiple objects

Multiple objects

Represents all the formatting for a paragraph.

Using the ParagraphFormat Object

Use the Format property to return the ParagraphFormat object for a paragraph
or paragraphs. The ParagraphFormat property returns the ParagraphFormat
object for a selection, range, style, Find object, or Replacement object. The
following example centers the third paragraph in the active document.

ActiveDocument.Paragraphs(3).Format.Alignment = _
wdAlignParagraphCenter

The following example finds the next double-spaced paragraph after the
selection.

With Selection.Find
.ClearFormatting
.ParagraphFormat.LineSpacingRule = wdLineSpaceDouble
.Text = ""
.Forward = True
.Wrap = wdFindContinue
End wWith
Selection.Find.Execute

Remarks

You can use Visual Basic's New keyword to create a new, standalone
ParagraphFormat object. The following example creates a ParagraphFormat
object, sets some formatting properties for it, and then applies all of its
properties to the first paragraph in the active document.

Dim myParaF As New ParagraphFormat
myParaF.Alignment = wdAlignParagraphCenter
myParaF.Borders.Enable = True
ActiveDocument.Paragraphs(1).Format = myParaF

You can also make a standalone copy of an existing ParagraphFormat object
by using the Duplicate property. The following example duplicates the
paragraph formatting of the first paragraph in the active document and stores the
formatting in mybup. The example changes the left indent of mybup to 1 inch,
creates a new document, inserts text into the document, and applies the
paragraph formatting of myDup to the text.

Set myDup = ActiveDocument.Paragraphs(1).Format.Duplicate
myDup.LeftIndent = InchesToPoints(1)

Documents.Add

Selection.InsertAfter "This is a new paragraph."
Selection.Paragraphs.Format = myDup

Paragraphs Collection Object

|‘Paragraphs (Paragraph)

|‘Multiple objects

Multiple objects

A collection of Paragraph objects in a selection, range, or document.

Using the Paragraphs Collection

Use the Paragraphs property to return the Paragraphs collection. The
following example formats the selected paragraphs to be double-spaced and
right-aligned.

With Selection.Paragraphs
.Alignment = wdAlignParagraphRight
.LineSpacingRule = wdLineSpaceDouble
End wWith

Use the Add, InsertParagraph, InsertParagraphAfter, or
InsertParagraphBefore method to add a new paragraph to a document. The
following example adds a new paragraph before the first paragraph in the
selection.

Selection.Paragraphs.Add Range:=Selection.Paragraphs(1).Range

The following example also adds a paragraph before the first paragraph in the
selection.

Selection.Paragraphs(1).Range.InsertParagraphBefore

Use Paragraphs(index), where index is the index number, to return a single
Paragraph object. The following example right aligns the first paragraph in the
active document.

ActiveDocument.Paragraphs(1).Alignment = wdAlignParagraphRight

Remarks

The Count property for this collection in a document returns the number of
items in the main story only. To count items in other stories use the collection
with the Range object.

PictureFormat Object

Shapes (Shape) |‘PictulreFomlat

Contains properties and methods that apply to pictures and OLE objects. The
LinkFormat object contains properties and methods that apply to linked OLE
objects only. The OLEFormat object contains properties and methods that apply
to OLE objects whether or not they're linked.

Using the PictureFormat Object

Use the PictureFormat property to return a PictureFormat object. The
following example sets the brightness, contrast, and color transformation for
shape one on the active document and crops 18 points off the bottom of the
shape. For this example to work, shape one must be either a picture or an OLE
object.

wWith ActiveDocument.Shapes(1).PictureFormat
.Brightness = 0.3
.Contrast = 0.7
.ColorType = msoPictureGrayScale
.CropBottom = 18

End With

ProofreadingErrors Collection Object

|‘PlrooflreadingErrors (Range)

|‘Multiple objects

Multiple objects

A collection of spelling and grammatical errors for the specified document or
range. There is no ProofreadingError object; instead, each item in the
ProofreadingErrors collection is a Range object that represents one spelling or
grammatical error.

Using the ProofreadingErrors Collection

Use the SpellingErrors or GrammaticalErrors property to return the
ProofreadingErrors collection. The following example counts the spelling and
grammatical errors in the selection and displays the results in a message box.

Set prl = Selection.Range.SpellingErrors
sc = prl.Count

Set pr2 = Selection.Range.GrammaticalErrors
gc = pr2.Count

Msgbox "Spelling errors: " & sc & vbCr _
& "Grammatical errors: " & gc

Use SpellingErrors(index), where index is the index number, to return a single
spelling error (represented by a Range object). The following example finds the
second spelling error in the selection and then selects it.

Set myRange = Selection.Range.SpellingErrors(2)
myRange.Select

Use GrammarErrors(index), where index is the index number, to return a
single grammatical error (represented by a Range object). The following
example returns the sentence that contains the first grammatical error in the
selection.

Set myRange = Selection.Range.GrammaticalErrors(1)
Msgbox myRange.Text

Remarks

The Count property for this collection in a document returns the number of
items in the main story only. To count items in other stories use the collection
with the Range object. If all the words in the document or range are spelled
correctly and are grammatically correct, the Count property for the
ProofreadingErrors object returns O (zero) and the SpellingChecked and
GrammarChecked properties return True.

Range Object

|‘Range

|‘Multiple objects

Multiple objects

Represents a contiguous area in a document. Each Range object is defined by a
starting and ending character position. Similar to the way bookmarks are used in
a document, Range objects are used in Visual Basic procedures to identify
specific portions of a document. However, unlike a bookmark, a Range object
only exists while the procedure that defined it is running.

Note Range objects are independent of the selection. That is, you can define
and manipulate a range without changing the selection. You can also define
multiple ranges in a document, while there can be only one selection per pane.

Using the Range Object

Use the Range method to return a Range object defined by the given starting
and ending character positions. The following example returns a Range object
that refers to the first 10 characters in the active document.

Set myRange = ActiveDocument.Range(Start:=0, End:=10)

Use the Range property to return a Range object defined by the beginning and
end of another object. The Range property applies to many objects (for example,
Paragraph, Bookmark, and Cell). The following example returns a Range
object that refers to the first paragraph in the active document.

Set aRange = ActiveDocument.Paragraphs(1).Range

The following example returns a Range object that refers to the second through
fourth paragraphs in the active document

Set aRange = ActiveDocument.Range(_
Start:=ActiveDocument.Paragraphs(2).Range.Start, _
End:=ActiveDocument.Paragraphs(4).Range.End)

For more information about working with Range objects, see Working with
Range Objects.

ReadabilityStatistic Object

L

Multiple objects —~ReadabilityStatistics (ReadabilityStatistic)

Represents one of the readability statistics for a document or range. The
ReadabilityStatistic object is a member of the ReadabilityStatistics collection.

Using the ReadabilityStatistic Object

Use ReadabilityStatistics(index), where index is the index number, to return a
single ReadabilityStatistic object. The statistics are ordered as follows: Words,
Characters, Paragraphs, Sentences, Sentences per Paragraph, Words per
Sentence, Characters per Word, Passive Sentences, Flesch Reading Ease, and
Flesch-Kincaid Grade Level. The following example returns the character count
for the active document.

Msgbox ActiveDocument.Content.ReadabilityStatistics(2).Value

ReadabilityStatistics Collection
Object

|‘ReadabilityStatistics (ReadabilityStatistic)

Multiple objects

A collection of ReadabilityStatistic objects for a document or range.

Using the ReadabilityStatistics Collection

Use the ReadabilityStatistics property to return the ReadabilityStatistics
collection. The following example enumerates the readability statistics for the
selection and displays each one in a message box.

For each rs in Selection.Range.ReadabilityStatistics
Msgbox rs.Name & " - " & rs.Value
Next rs

Use ReadabilityStatistics(index), where index is the index number, to return a
single ReadabilityStatistic object. The statistics are ordered as follows: Words,
Characters, Paragraphs, Sentences, Sentences per Paragraph, Words per
Sentence, Characters per Word, Passive Sentences, Flesch Reading Ease, and
Flesch-Kincaid Grade Level. The following example returns the word count for
the active document.

Set myRange = ActiveDocument.Content
wordval = myRange.ReadabilityStatistics(1).Value
Msgbox wordval

RecentFile Object

L

RecentFiles —RecentFile

L

Document

Represents a recently used file. The RecentFile object is a member of the
RecentFiles collection. The RecentFiles collection includes all the files that
have been used recently. The items in the RecentFiles collection are displayed at
the bottom of the File menu.

Using the RecentFile Object

Use RecentFiles(index), where index is the index number, to return a single
RecentFile object. The index number represents the position of the file on the
File menu. The following example opens the first document in the RecentFiles
collection.

If RecentFiles.Count >= 1 Then RecentFiles(1).0pen

Use the Add method to add a file to the RecentFiles collection. The following
example adds the active document to the list of recently-used files.

If ActiveDocument.Saved = True Then
RecentFiles.Add Document:=ActiveDocument.FullName, _
ReadOnly:=True
End If

Remarks

The SaveAs and Open methods include an AddToRecentFiles argument that
controls whether or not a file is added to the recently-used-files list when the file
is opened or saved.

RecentFiles Collection Object

L

Multiple objects ~RecentFiles

RecentFile

A collection of RecentFile objects that represents the files that have been used
recently. The items in the RecentFiles collection are displayed at the bottom of
the File menu.

Using the RecentFiles Collection

Use the RecentFiles property to return the RecentFiles collection. The
following example sets five as the maximum number of files that the
RecentFiles collection can contain.

RecentFiles.Maximum = 5

Use the Add method to add a file to the RecentFiles collection. The following
example adds the active document to the list of recently-used files.

If ActiveDocument.Saved = True Then
RecentFiles.Add Document:=ActiveDocument.FullName, _
ReadOnly:=True
End If

Use RecentFiles(index), where index is the index number, to return a single
RecentFile object. The index number represents the position of the file on the
File menu. The following example opens the first document in the RecentFiles
collection.

If RecentFiles.Count >= 1 Then RecentFiles(1).0pen

Remarks

The SaveAs and Open methods include an AddToRecentFiles argument that
controls whether or not a file is added to the recently-used-files list when the file
is opened or saved.

Replacement Object

Find |‘Replac:ement

|‘Multiple objects

Represents the replace criteria for a find-and-replace operation. The properties
and methods of the Replacement object correspond to the options in the Find
and Replace dialog box.

Using the Replacement Object

Use the Replacement property to return a Replacement object. The following
example replaces the next occurrence of the word "hi" with the word "hello."”

With Selection.Find
.Text = "hi"
.ClearFormatting
.Replacement.Text = "hello"
.Replacement.ClearFormatting
.Execute Replace:=wdReplaceOne, Forward:=True
End With

To find and replace formatting, set both the find text and the replace text to
empty strings ("") and set the Format argument of the Execute method to True.
The following example removes all the bold formatting in the active document.
The Bold property is True for the Find object and False for the Replacement
object.

With ActiveDocument.Content.Find

.ClearFormatting

.Font.Bold = True

.Text = ""

With .Replacement
.ClearFormatting
.Font.Bold = False
.Text = ""

End With

.Execute Format:=True, Replace:=wdReplaceAll

End With

Reviewer Object

. |)
Reviewers ~Reviewer

Represents a single reviewer of a document in which changes have been tracked.
The Reviewer object is a member of the Reviewers collection.

Using the Reviewer object

Use Reviewers(index), where index is the name or number of the reviewer, to
return a Reviewer object. Use the Visible property to display or hide individual
reviewers in a document. The following example hides the reviewer named "Jeff
Smith" and displays the reviewer named "Judy Lew." This assumes that "Jeff
Smith" and "Judy Lew" are members of the Reviewers collection. If they are
not, you will receive an error.

Sub ShowHide()
wWith ActiveWindow.View
.Reviewers("Jeff Smith").Visible = False
.Reviewers("Judy Lew").Visible = True
End With
End Sub

Reviewers Collection

L

View ~Reviewers

L

Reviewer

A collection of Reviewer objects that represents the reviewers of one or more
documents. The Reviewers collection contains the names of all reviewers who
have reviewed documents opened or edited on a machine.

Using the Reviewers collection

Use Reviewers(index), where index is the name or index number of the
reviewer, to return a single reviewer in the Reviewers collection. This example
hides revisions made by the first reviewer in the Reviewers collection.

Sub HideAuthorRevisions(blnRev As Boolean)
ActiveWindow.View.Reviewers(Index:=1) _
.Visible = False
End Sub

Revision Object

L

Multiple objects ~Revision

|‘Multiple objects

Represents a change marked with a revision mark. The Revision object is a
member of the Revisions collection. The Revisions collection includes all the
revision marks in a range or document.

Using the Revision Object

Use Revisions(index), where index is the index number, to return a single
Revision object. The index number represents the position of the revision in the
range or document. The following example displays the author name for the first
revision in section one of the active document.

MsgBox ActiveDocument.Sections(1).Range.Revisions(1).Author

The Add method isn't available for the Revisions collection. Revision objects
are added when change tracking is enabled. Set the TrackRevisions property to
True to track revisions made to the document text. The following example
enables revision tracking and then inserts "Action " before the selection.

ActiveDocument.TrackRevisions = True
Selection.InsertBefore "Action "

Revisions Collection Object

L

Revisions (Revision)

Multiple objects
|‘Range

A collection of Revision objects that represent the changes marked with revision
marks in a range or document.

Using the Revisions Collection

Use the Revisions property to return the Revisions collection. The following
example displays the number of revisions in the main text story.

MsgBox ActiveDocument.Revisions.Count

The following example accepts all the revisions in the selection.

For Each myRev In Selection.Range.Revisions
myRev.Accept
Next myRev

The following example accepts all the revisions in the first paragraph in the
selection.

Set myRange = Selection.Paragraphs(1).Range
myRange.Revisions.AcceptAll

The Add method isn't available for the Revisions collection. Revision objects
are added when change tracking is enabled. Set the TrackRevisions property to
True to track revisions made to the document text. The following example
enables revision tracking in the active document and then inserts "The " before
the selection.

ActiveDocument.TrackRevisions = True
Selection.InsertBefore "The "

Use Revisions(index), where index is the index number, to return a single
Revision object. The index number represents the position of the revision in the
range or document. The following example displays the author name for the first
revision in the first section.

MsgBox ActiveDocument.Sections(1).Range.Revisions(1).Author

Remarks

The Count property for this collection in a document returns the number of
items in the main story only. To count items in other stories use the collection
with the Range object.

RoutingSlip Object

|‘RoutingSlip

Documents (Document)

Represents the routing slip associated with a document. You use a routing slip to
send a document through an electronic mail system.

Using the RoutingSlip Object

Use the RoutingSlip property to return the RoutingSlip object. The following
example routes the active document to the specified recipients, one after another.

ActiveDocument.HasRoutingSlip = True

With ActiveDocument.RoutingSlip
.Subject = "Project Documentation"
.AddRecipient "Don Funk"
.AddRecipient "Dave Edson"
.Delivery = wdOneAfterAnother

End With

ActiveDocument.Route

Remarks

The RoutingSlip object cannot be used (doesn't exist) unless the
HasRoutingSlip property for the document is set to True.

Row Object

L

Multiple objects ~Rows (Row)

|‘Multiple objects

Represents a row in a table. The Row object is a member of the Rows collection.
The Rows collection includes all the rows in the specified selection, range, or
table.

Using the Row Object

Use Rows(index), where index is the index number, to return a single Row
object. The index number represents the position of the row in the selection,
range, or table. The following example deletes the first row in the first table in
the active document.

ActiveDocument.Tables(1).Rows(1).Delete

Use the Add method to add a row to a table. The following example inserts a
row before the first row in the selection.

If Selection.Information(wdWithInTable) = True Then
Selection.Rows.Add BeforeRow:=Selection.Rows(1)
End If

Remarks

Use the Cells property to modify the individual cells in a Row object. The
following example adds a table to the selection and then inserts numbers into
each cell in the second row of the table.

Selection.Collapse Direction:=wdCollapseEnd
If Selection.Information(wdWithInTable) = False Then
Set myTable = _
ActiveDocument.Tables.Add(Range:=Selection.Range, _
NumRows:=3, NumColumns:=5)
For Each aCell In myTable.Rows(2).Cells
i=1i+1
aCell.Range.Text = 1i
Next aCell
End If

Rows Collection Object

L

Multiple objects ~Rows (Row)

|‘Multiple objects

A collection of Row objects that represent the table rows in the specified
selection, range, or table.

Using the Rows Collection

Use the Rows property to return the Rows collection. The following example
centers rows in the first table in the active document between the left and right
margins.

ActiveDocument.Tables(1).Rows.Alignment = wdAlignRowCenter

Use the Add method to add a row to a table. The following example inserts a
row before the first row in the selection.

If Selection.Information(wdWithInTable) = True Then
Selection.Rows.Add BeforeRow:=Selection.Rows(1)
End If

Use Rows(index), where index is the index number, to return a single Row
object. The index number represents the position of the row in the selection,
range, or table. The following example deletes the first row in the first table in
the active document.

ActiveDocument.Tables(1).Rows(1).Delete

Section Object

L

Sections (Section)

Multiple objects
|‘Multiple objects

Represents a single section in a selection, range, or document. The Section
object is a member of the Sections collection. The Sections collection includes
all the sections in a selection, range, or document.

Using the Section Object

Use Sections(index), where index is the index number, to return a single Section
object. The following example changes the left and right page margins for the
first section in the active document.

wWith ActiveDocument.Sections(1).PageSetup
.LeftMargin = InchesToPoints(0.5)
.RightMargin = InchesToPoints(0.5)
End wWith

Use the Add method or the InsertBreak method to add a new section to a
document. The following example adds a new section at the beginning of the
active document.

Set myRange = ActiveDocument.Range(Start:=0, End:=0)
ActiveDocument.Sections.Add Range:=myRange
myRange.InsertParagraphAfter

The following example adds a section break above the first paragraph in the
selection.

Selection.Paragraphs(1).Range.InsertBreak _
Type:=wdSectionBreakContinuous

Note The Headers and Footers properties of the specified Section object
return a HeadersFooters object.

Sections Collection Object

L

Multiple objects ~Sections (Section)

|‘Multiple objects

A collection of Section objects in a selection, range, or document.

Using the Sections Collection

Use the Sections property to return the Sections collection. The following
example inserts text at the end of the last section in the active document.

wWith ActiveDocument.Sections.Last.Range
.Collapse Direction:=wdCollapseEnd
.InsertAfter "end of document"

End wWith

Use the Add method or the InsertBreak method to add a new section to a
document. The following example adds a new section at the beginning of the
active document.

Set myRange = ActiveDocument.Range(Start:=0, End:=0)
ActiveDocument.Sections.Add Range:=myRange
myRange.InsertParagraphAfter

The following example displays the number of sections in the active document,
adds a section break above the first paragraph in the selection, and then displays
the number of sections again.

MsgBox ActiveDocument.Sections.Count & " sections"

Selection.Paragraphs(1).Range.InsertBreak _
Type:=wdSectionBreakContinuous

MsgBox ActiveDocument.Sections.Count & " sections"

Use Sections(index), where index is the index number, to return a single Section
object. The following example changes the left and right page margins for the
first section in the active document.

wWith ActiveDocument.Sections(1).PageSetup
.LeftMargin = InchesToPoints(0.5)
.RightMargin = InchesToPoints(0.5)
End wWith

Selection Object

L

Multiple objects ~Selection

|‘Multiple objects

Represents the current selection in a window or pane. A selection represents
either a selected (or highlighted) area in the document, or it represents the
insertion point if nothing in the document is selected. There can only be one
Selection object per document window pane, and only one Selection object in
the entire application can be active.

Using the Selection Object

Use the Selection property to return the Selection object. If no object qualifier is
used with the Selection property, Word returns the selection from the active pane
of the active document window. The following example copies the current
selection from the active document.

Selection.Copy

The following example cuts the selection from the third document in the
Documents collection. The document doesn't have to be active to access its
current selection.

Documents(3).ActiveWindow.Selection.Cut

The following example copies the selection from the first pane of the active
document and pastes it into the second pane.

ActiveDocument.ActiveWindow.Panes(1).Selection.Copy
ActiveDocument.ActiveWindow.Panes(2).Selection.Paste

The Text property is the default property of the Selection object. Use this
property to set or return the text in the current selection. The following example
assigns the text in the current selection to the variable strTemp, removing the
last character if it is a paragraph mark.

Dim strTemp as String

strTemp = Selection.Text
If Right(strTemp, 1) = vbCr Then _
strTemp = Left(strTemp, Len(strTemp) - 1)

The Selection object has various methods and properties with which you can
collapse, expand, or otherwise change the current selection. The following
example moves the insertion point to the end of the document and selects the last
three lines.

Selection.EndOf Unit:=wdStory, Extend:=wdMove
Selection.HomeKey Unit:=wdLine, Extend:=wdExtend
Selection.MoveUp Unit:=wdLine, Count:=2, Extend:=wdExtend

The Selection object has various methods and properties with which you can
edit selected text in a document. The following example selects the first sentence
in the active document and replaces it with a new paragraph.

Options.ReplaceSelection = True
ActiveDocument.Sentences(1).Select
Selection.TypeText "Material below is confidential."
Selection.TypeParagraph

The following example cuts the last paragraph of the first document in the
Documents collection and pastes it at the beginning of the second document.

With Documents(1)
.Paragraphs.Last.Range.Select
.ActiveWindow.Selection.Cut

End With

With Documents(2).ActiveWindow.Selection
.StartOf Unit:=wdStory, Extend:=wdMove
.Paste

End With

The Selection object has various methods and properties with which you can
change the formatting of the current selection. The following example changes
the font of the current selection from Times New Roman to Tahoma.

If Selection.Font.Name = "Times New Roman" Then _
Selection.Font.Name = "Tahoma"

Use properties like Flags, Information, and Type to return information about
the current selection. You could use the following example in a procedure to
determine if there were anything actually selected in the active document; if not,
the rest of the procedure would be skipped.

If Selection.Type = wdSelectionIP Then
MsgBox Prompt:="You haven't selected any text! Exiting procedure
Exit Sub

End If

Remarks

Even when a selection is collapsed to an insertion point, it isn't necessarily
empty. For example, the Text property will still return the character to the right
of the insertion point; this character also appears in the Characters collection of
the Selection object. However, calling methods like Cut or Copy from a
collapsed selection will cause an error.

It's possible for the user to select a region in a document that doesn't represent
contiguous text (for example, when using the ALT key with the mouse). Because
the behavior of such a selection can be unpredictable, you may want to include a
step in your code that checks the Type property of a selection before performing
any operations on it (Selection.Type = wdSelectionBlock). Similarly,
selections that include table cells can also lead to unpredictable behavior. The
Information property will tell you if a selection is inside a table
(Sselection.Information(wdwithinTable) = True). The following example
determines if a selection is normal (in other words, it isn't a row or column in a
table, it isn't a vertical block of text, and so forth); you could use it to test the
current selection before performing any operations on it.

If Selection.Type <> wdSelectionNormal Then
MsgBox Prompt:="Not a valid selection! Exiting procedure..."
Exit Sub

End If

Because Range objects share many of the same methods and properties as
Selection objects, using Range objects is preferable for manipulating a
document when there isn't a reason to physically change the current selection.
For more information on Selection and Range objects, see Working with the
Selection object and Working with Range objects.

-Show All

Sentences Collection Object

L

Sentences (Range)
|‘Multiple objects

Multiple objects

A collection of Range objects that represent all the sentences in a selection,
range, or document. There is no Sentence object.

Using the Sentences Collection

Use the Sentences property to return the Sentences collection. The following
example displays the number of sentences selected.

MsgBox Selection.Sentences.Count & " sentences are selected"

Use Sentences(index), where index is the index number, to return a Range
object that represents a sentence. The index number represents the position of a
sentence in the Sentences collection. The following example formats the first
sentence in the active document.

With ActiveDocument.Sentences(1)
.Bold = True
.Font.Size = 24

End wWith

Remarks

The Count property for this collection in a document returns the number of
items in the main story only. To count items in other stories use the collection
with the Range object.

The Add method isn't available for the Sentences collection. Instead, use the
InsertAfter or InsertBefore method to add a sentence to a Range object. The
following example inserts a sentence after the first paragraph in the active
document.

With ActiveDocument
MsgBox .Sentences.Count & " sentences"
.Paragraphs(1).Range.InsertParagraphAfter
.Paragraphs(2).Range.InsertBefore "The house is blue."
MsgBox .Sentences.Count & " sentences"

End wWith

Shading Object

L

Multiple objects —Shading

Contains shading attributes for an object.

Using the Shading Object

Use the Shading property to return the Shading object. The following example
applies fine gray shading to the first paragraph in the active document.

ActiveDocument.Paragraphs(1).Shading.Texture = wdTexturelOPercent

The following example applies shading with different foreground and
background colors to the selection.

With Selection.Shading
.Texture = wdTexture20Percent
.ForegroundPatternColorIndex
.BackgroundPatternColorIndex
End With

wdBlue
wdYellow

The following example applies a vertical line texture to the first row in the first
table in the active document.

ActiveDocument.Tables(1).Rows(1).Shading.Texture = _
wdTextureVertical

ShadowFormat Object

L

ShadowFormat

Shapes (Shape)

|‘ColorFormat

Represents shadow formatting for a shape.

Using the ShadowFormat Object

Use the Shadow property to return a ShadowFormat object. The following
example adds a shadowed rectangle to the active document. The
semitransparent, blue shadow is offset 5 points to the right of the rectangle and 3
points above it.

wWith ActiveDocument.Shapes _
.AddShape(msoShapeRectangle, 50, 50, 100, 200).Shadow
.ForeColor.RGB = RGB(0, 0, 128)
.0ffsetX = 5
.0ffsetY = -3
.Transparency = 0.5
.Visible = True
End With

Shape Object

|‘Shapes (Shape)

|‘Multiple objects

Multiple objects

Represents an object in the drawing layer, such as an AutoShape, freeform, OLE
object, ActiveX control, or picture. The Shape object is a member of the Shapes
collection, which includes all the shapes in the main story of a document or in all
the headers and footers of a document.

A shape is always attached to an anchoring range. You can position the shape
anywhere on the page that contains the anchor.

Note There are three objects that represent shapes: the Shapes collection,
which represents all the shapes on a document; the ShapeRange collection,
which represents a specified subset of the shapes on a document (for example, a
ShapeRange object could represent shapes one and four on the document, or it
could represent all the selected shapes on the document); the Shape object,
which represents a single shape on a document. If you want to work with several
shape at the same time or with shapes within the selection, use a ShapeRange
collection.

Using the Shape Object

This section describes how to:

Return an existing shape on a document, indexed by name or number.
Return a shape or shapes within a selection.

Return a newly created shape.

Return a single shape from within a group.

Return a newly formed group of shapes.

Returning an existing shape on a document

Use Shapes(index), where index is the name or the index number, to return a
single Shape object. The following example horizontally flips shape one on the
active document.

ActiveDocument.Shapes(1).Flip msoFlipHorizontal

The following example horizontally flips the shape named "Rectangle 1" on the
active document.

ActiveDocument.Shapes("Rectangle 1").Flip msoFlipHorizontal

Each shape is assigned a default name when it is created. For example, if you
add three different shapes to a document, they might be named "Rectangle 2,"
"TextBox 3," and "Oval 4." To give a shape a more meaningful name, set the
Name property.

Returning a Shape or Shapes Within a Selection

Use Selection.ShapeRange(index), where index is the name or the index
number, to return a Shape object that represents a shape within a selection. The
following example sets the fill for the first shape in the selection, assuming that
the selection contains at least one shape.

Selection.ShapeRange(1).Fill.ForeColor.RGB = RGB(255, 0, 0)

The following example sets the fill for all the shapes in the selection, assuming
that the selection contains at least one shape.

Selection.ShapeRange.Fill.ForeColor.RGB = RGB(255, 0, 0)

Returning a Newly Created Shape

To add a Shape object to the collection of shapes for the specified document and
return a Shape object that represents the newly created shape, use one of the
following methods of the Shapes collection: AddCallout, AddCurve,
AddLabel, AddLine, AddOleControl, AddOleObject, AddPolyline,
AddShape, AddTextbox, AddTextEffect, or BuildFreeForm. The following
example adds a rectangle to the active document.

ActiveDocument.Shapes.AddShape msoShapeRectangle, 50, 50, 100, 200

Returning a Single Shape from Within a Group

Use GrouplItems(index), where index is the shape name or the index number
within the group, to return a Shape object that represents a single shape in a
grouped shape.

Returning a Newly Formed Group of Shapes

Use the Group or Regroup method to group a range of shapes and return a
single Shape object that represents the newly formed group. After a group has
been formed, you can work with the group the same way you work with any
other shape.

Anchoring and Positioning a Shape

Every Shape object is anchored to a range of text. A shape is anchored to the
beginning of the first paragraph that contains the anchoring range. The shape
will always remain on the same page as its anchor.

You can view the anchor itself by setting the ShowObjectAnchors property to
True. The shape's Top and Left properties determine its vertical and horizontal
positions. The shape's RelativeHorizontalPosition and
RelativeVerticalPosition properties determine whether the position is measured
from the anchoring paragraph, the column that contains the anchoring paragraph,
the margin, or the edge of the page.

If the LockAnchor property for the shape is set to True, you cannot drag the
anchor from its position on the page.

Formatting a Shape

Use the Fill property to return the FillFormat object, which contains all the
properties and methods for formatting the fill of a closed shape. The Shadow
property returns the ShadewFormat object, which you use to format a shadow.
Use the Line property to return the LineFormat object, which contains
properties and methods for formatting lines and arrows. The TextEffect property
returns the TextEffectFormat object, which you use to format WordArt. The
Callout property returns the CalloutFormat object, which you use to format
line callouts. The WrapFormat property returns the WrapFormat object,
which you use to define how text wraps around shapes. The ThreeD property
returns the ThreeDFormat object, which you use to create 3-D shapes. You can
use the PickUp and Apply methods to transfer formatting from one shape to
another.

Use the SetShapesDefaultProperties method for a Shape object to set the
formatting for the default shape for the document. New shapes inherit many of
their attributes from the default shape.

Other Important Shape Properties

Use the Type property to specify the type of shape: freeform, AutoShape, OLE
object, callout, or linked picture, for instance. Use the AutoShapeType property
to specify the type of AutoShape: oval, rectangle, or balloon, for instance.

Use the Width and Height properties to specify the size of the shape.

The TextFrame property returns the TextFrame object, which contains all the
properties and methods for attaching text to shapes and linking the text between
text frames.

Remarks

Shape objects are anchored to a range of text but are free-floating and can be
positioned anywhere on the page. InlineShape objects are treated like characters
and are positioned as characters within a line of text. You can use the
ConvertToInlineShape method and the ConvertToShape method to convert
shapes from one type to the other. You can convert only pictures, OLE objects,
and ActiveX controls to inline shapes.

ShapeNode Object

L

Shapes (Shape) —ShapeNodes (ShapeNode)

Represents the geometry and the geometry-editing properties of the nodes in a
user-defined freeform. Nodes include the vertices between the segments of the
freeform and the control points for curved segments. The ShapeNode object is a
member of the ShapeNodes collection. The ShapeNodes collection contains all
the nodes in a freeform.

Using the ShapeNode Object

Use Nodes(index), where index is the node index number, to return a single
ShapeNode object. If node one in shape three on the active document is a corner
point, the following example makes it a smooth point. For this example to work,
shape three must be a freeform.

wWith ActiveDocument.Shapes(3)
If .Nodes(1).EditingType = msoEditingCorner Then
.Nodes.SetEditingType 1, msoEditingSmooth
End If
End With

ShapeNodes Collection Object

Shapes (Shape) |‘ShapeNodes (ShapeNode)

A collection of all the ShapeNode objects in the specified freeform. Each
ShapeNode object represents either a node between segments in a freeform or a
control point for a curved segment of a freeform. You can create a freeform
manually or by using the BuildFreeform and ConvertToShape methods.

Using the ShapeNodes Collection

Use the Nodes property to return the ShapeNodes collection. The following
example deletes node four in shape three on the active document. For this
example to work, shape three must be a freeform with at least four nodes.

ActiveDocument.Shapes(3).Nodes.Delete 4

Use the Insert method to create a new node and add it to the ShapeNodes
collection. The following example adds a smooth node with a curved segment
after node four in shape three on the active document. For this example to work,
shape three must be a freeform with at least four nodes.

With ActiveDocument.Shapes(3).Nodes
.Insert 4, msoSegmentCurve, msoEditingSmooth, 210, 100
End wWith

Use Nodes(index), where index is the node index number, to return a single
ShapeNode object. If node one in shape three on the active document is a corner
point, the following example makes it a smooth point. For this example to work,
shape three must be a freeform.

wWith ActiveDocument.Shapes(3)
If .Nodes(1).EditingType = msoEditingCorner Then
.Nodes.SetEditingType 1, msoEditingSmooth
End If
End With

ShapeRange Collection Object

|‘ShapeRange

|‘Multiple objects

Multiple objects

Represents a shape range, which is a set of shapes on a document. A shape range
can contain as few as one shape or as many as all the shapes in the document.
You can include whichever shapes you want — chosen from among all the
shapes in the document or all the shapes in the selection — to construct a shape
range. For example, you could construct a ShapeRange collection that contains
the first three shapes in a document, all the selected shapes in a document, or all
the freeform shapes in a document.

Note Most operations that you can do with a Shape object, you can also do
with a ShapeRange object that contains only one shape. Some operations, when
performed on a ShapeRange object that contains more than one shape, will
cause an error.

Using the ShapeRange Collection

This section describes how to:

e Return a set of shapes you specify by name or index number.
e Return a ShapeRange object within a selection or range.

Returning a Set of Shapes You Specify by Name or
Index Number

Use Shapes.Range(index), where index is the name or index number of the
shape or an array that contains either names or index numbers of shapes, to
return a ShapeRange collection that represents a set of shapes on a document.
You can use Visual Basic's Array function to construct an array of names or
index numbers. The following example sets the fill pattern for shapes one and
three on the active document.

ActiveDocument.Shapes.Range(Array(1, 3)).Fill.Patterned _
msoPatternHorizontalBrick

The following example selects the shapes named "Oval 4" and "Rectangle 5" on
the active document.

ActiveDocument.Shapes.Range(Array("Oval 4", "Rectangle 5")).Select

Although you can use the Range method to return any number of shapes, it's
simpler to use the Item method if you want to return only a single member of the
collection. For example, Shapes(1) is simpler than Shapes.Range(1).

Returning a ShapeRange Object Within a Selection or
Range

Use Selection.ShapeRange(index), where index is the name or the index
number, to return a Shape object that represents a shape within a selection. The
following example sets the fill for the first shape in the selection, assuming that
the selection contains at least one shape.

Selection.ShapeRange(1).Fill.ForeColor.RGB = RGB(255, 0, 0)

This example selects all the shapes in the first section of the active document.

Set myRange = ActiveDocument.Sections(1).Range
myRange.ShapeRange.Select

Aligning, Distributing, and Grouping Shapes in a
ShapeRange Object

Use the Align, Distribute, or ZOrder method to position a set of shapes relative
to each other or relative to the document.

Use the Group, Regroup, or UnGroup method to create and work with a single
shape formed from a shape range. The Groupltems property for a Shape object
returns the GroupShapes object, which represents all the shapes that were
grouped to form one shape.

Remarks

The recorder always uses the ShapeRange property when recording shapes.

A ShapeRange object doesn't include InlineShape objects.

Shapes Collection Object

|‘Shapes (Shape)

|‘Multiple objects

Multiple objects

A collection of Shape objects that represent all the shapes in a document or all
the shapes in all the headers and footers in a document. Each Shape object
represents an object in the drawing layer, such as an AutoShape, freeform, OLE
object, or picture.

Note If you want to work with a subset of the shapes on a document — for
example, to do something to only the AutoShapes on the document or to only the
selected shapes — you must construct a ShapeRange collection that contains
the shapes you want to work with.

Using the Shapes Collection

Use the Shapes property to return the Shapes collection. The following example
selects all the shapes on the active document.

ActiveDocument.Shapes.SelectAll

Note If you want to do something (like delete or set a property) to all the
shapes on a document at the same time, use the Range method to create a
ShapeRange object that contains all the shapes in the Shapes collection, and
then apply the appropriate property or method to the ShapeRange object.

Use one of the following methods of the Shapes collection: AddCallout,
AddCurve, AddLabel, AddLine, AddOleControl, AddOleObject,
AddPolyline, AddShape, AddTextbox, AddTextEffect, or BuildFreeForm to
add a shape to a document return a Shape object that represents the newly
created shape The following example adds a rectangle to the active document.

ActiveDocument.Shapes.AddShape msoShapeRectangle, 50, 50, 100, 200

Use Shapes(index), where index is the name or the index number, to return a
single Shape object. The following example horizontally flips shape one on the
active document.

ActiveDocument.Shapes(1).Flip msoFlipHorizontal

This example horizontally flips the shape named "Rectangle 1" on the active
document.

ActiveDocument.Shapes("Rectangle 1").Flip msoFlipHorizontal

Each shape is assigned a default name when it is created. For example, if you
add three different shapes to a document, they might be named "Rectangle 2,"
"TextBox 3," and "Oval 4." To give a shape a more meaningful name, set the
Name property.

Remarks

The Shapes collection does not include InlineShape objects. InlineShape
objects are treated like characters and are positioned as characters within a line
of text. Shape objects are anchored to a range of text but are free-floating and
can be positioned anywhere on the page. You can use the
ConvertToInlineShape method and the ConvertToShape method to convert
shapes from one type to the other. You can convert only pictures, OLE objects,
and ActiveX controls to inline shapes.

The Count property for this collection in a document returns the number of
items in the main story only. To count the shapes in all the headers and footers,
use the Shapes collection with any HeaderFooter object.

SmartTag Object

SmartTags |‘SInartTag

|‘Multiple objects

Represents a string in a document or range that contains recognized type
information. The SmartTag object is a member of the SmartTags collection.
The SmartTags collection contains all the smart tags in a document or range of
text within a document. Microsoft Word uses a recognizer file to label smart
tags, and it uses an action file to execute actions related to the smart tags, such as
linking to Web sites.

Using the SmartTag object

Use the Item method — or SmartTags(index), where index represents the
number of the smart tag — to return a single SmartTag object. This example
adds custom properties to the first smart tag in the active document.

Sub NewSTProp()
ActiveDocument.SmartTags(Index:=1).Properties _
.Add Name:="President", Value:=True
End Sub

SmartTags Collection

Multiple objects L

|‘SInalrtTag

SmartTags

A collection of SmartTag objects that represents the text in a document that is
marked as containing recognized type information. The SmartTags collection
contains all the smart tags in a document or range of text within a document.
Microsoft Word uses a recognizer file to label smart tags, and it uses an action
file to execute actions related to the smart tags, such as linking to Web sites.

Using the SmartTags collection

Use the Item method — or SmartTags(index), where index represents the
number of the smart tag — to return a single SmartTag object. This example
adds custom properties to the first smart tag in the active document.

Sub NewSmartTagProp()
ActiveDocument.SmartTags(1).Properties _
.Add Name:="President", Value:=True
End Sub

SpellingSuggestion Object

Multiple objects |‘SpellingSuggestions (SpellingSuggestion)

Represents a single spelling suggestion for a misspelled word. The

SpellingSuggestion object is a member of the SpellingSuggestions collection.
The SpellingSuggestions collection includes all the suggestions for a specified

word or for the first word in the specified range.

Using the SpellingSuggestion Object

Use GetSpellingSuggestions(index), where index is the index number, to return
a single SpellingSuggestion object. The following example checks to see
whether there are any spelling suggestions for the first word in the active
document. If there are, the first suggestion is displayed in a message box.

If ActiveDocument.Words(1l).GetSpellingSuggestions.Count <> 0 Then
MsgBox _
ActiveDocument.Words(1).GetSpellingSuggestions.Item(1).Name
EndIf

Remarks

The Count property for the SpellingSuggestions object returns 0 (zero) if the
word is spelled correctly or if there are no suggestions.

SpellingSuggestions Collection Object

Multiple objects |‘SpellingSuggestions (SpellingSuggestion)

A collection of SpellingSuggestion objects that represent all the suggestions for
a specified word or for the first word in the specified range.

Using the SpellingSuggestions Collection

Use the GetSpellingSuggestions method to return the SpellingSuggestions
collection. The SpellingSuggestions method, when applied to the Application
object, must specify the word to be checked. When the GetSpellingSuggestions
method is applied to a range, the first word in the range is checked. The
following example checks to see whether there are any spelling suggestions for
any of the words in the active document. If there are, the suggestions are
displayed in message boxes.

For Each wd In ActiveDocument.Words
Set sugg = wd.GetSpellingSuggestions
If sugg.Count <> 0 Then
For Each ss In sugg
MsgBox ss.Name
Next ss
End If
Next wd

Remarks

You cannot add suggestions to or remove suggestions from the collection of
spelling suggestions. Spelling suggestions are derived from main and custom
dictionary files.

-Show All

StoryRanges Collection Object

LMM&(@g&)

Documents (Document)

L

Multiple objects

A collection of Range objects that represent stories in a document.

Using the StoryRanges Collection

Use the StoryRanges property to return the StoryRanges collection. The
following example removes manual character formatting from the text in all
stories other than the main text story in the active document.

For Each aStory In ActiveDocument.StoryRanges
If aStory.StoryType <> wdMainTextStory Then aStory.Font.Reset
Next aStory

The Add method isn't available for the StoryRanges collection. The number of
stories in the StoryRanges collection is finite.

Use StoryRanges(index), where index is a WdStoryType constant, to return a
single story as a Range object. The following example adds text to the primary
header story and then displays the text.

ActiveDocument.Sections(1).Headers(wdHeaderFooterPrimary).Range _
.Text = "Header text"
MsgBox ActiveDocument.StoryRanges(wdPrimaryHeaderStory).Text

The following example copies the text of the footnotes from the active document
into a new document.

If ActiveDocument.Footnotes.Count >= 1 Then
ActiveDocument.StoryRanges(wdFootnotesStory).Copy
Documents.Add.Content.Paste

End If

Remarks

If you attempt to return a story that isn't available in the specified document, an
error occurs. The following example determines whether or not a footnote story
is available in the active document.

On Error GoTo errhandler

Set MyRange = ActiveDocument.StoryRanges(wdFootnotesStory)
errhandler:

If Err = 5941 Then MsgBox "The footnotes story is not available."

Use the NextStoryRange property to loop through all stories in a document. The
following example searches each story in the active document for the text
"Microsoft Word." When the text is found, it's formatted as italic.

For Each myStoryRange In ActiveDocument.StoryRanges
myStoryRange.Find.Execute _
FindText:="Microsoft Word", Forward:=True
While myStoryRange.Find.Found
myStoryRange.Italic = True
myStoryRange.Find.Execute _
FindText:="Microsoft Word", Forward:=True
Wend
While Not (myStoryRange.NextStoryRange Is Nothing)
Set myStoryRange = myStoryRange.NextStoryRange
myStoryRange.Find.Execute _
FindText:="Microsoft Word", Forward:=True
While myStoryRange.Find.Found
myStoryRange.Italic = True
myStoryRange.Find.Execute _
FindText:="Microsoft Word", Forward:=True
Wend
Wend
Next myStoryRange

Style Object

|‘Styles (Style)

|‘Multiple objects

Multiple objects

Represents a single built-in or user-defined style. The Style object includes style
attributes (font, font style, paragraph spacing, and so on) as properties of the
Style object. The Style object is a member of the Styles collection. The Styles
collection includes all the styles in the specified document.

Using the Style Object

Use Styles(index), where index is the style name, a WdBuiltinStyle constant or
index number, to return a single Style object. You must exactly match the
spelling and spacing of the style name, but not necessarily its capitalization. The
following example modifies the font name of the user-defined style named
"Color" in the active document.

ActiveDocument.Styles("Color").Font.Name = "Arial"

The following example sets the built-in Heading 1 style to not be bold.

ActiveDocument.Styles(wdStyleHeadingl).Font.Bold = False

The style index number represents the position of the style in the alphabetically
sorted list of style names. Note that Styles(1) is the first style in the alphabetic
list. The following example displays the base style and style name of the first
style in the Styles collection.

MsgBox '"Base style= " _
& ActiveDocument.Styles(1).BaseStyle & vbCr _
& "Style name= " & ActiveDocument.Styles(1).NameLocal

To apply a style to a range, paragraph, or multiple paragraphs, set the Style
property to a user-defined or built-in style name. The following example applies
the Normal style to the first four paragraphs in the active document.

Set myRange = ActiveDocument.Range(_
Start:=ActiveDocument.Paragraphs(1).Range.Start, _
End:=ActiveDocument.Paragraphs(4).Range.End)

myRange.Style = wdStyleNormal

The following example applies the Heading 1 style to the first paragraph in the
selection.

Selection.Paragraphs(1).Style = wdStyleHeadingl

The following example creates a character style named "Bolded" and applies it
to the selection.

Set myStyle = ActiveDocument.Styles.Add(Name:="Bolded", _

Type:=wdStyleTypeCharacter)
myStyle.Font.Bold = True
Selection.Range.Style = "Bolded"

Remarks

Use the OrganizerCopy method to copy styles between documents and
templates. Use the UpdateStyles method to update the styles in the active
document to match the style definitions in the attached template. Use the
OpenAsDocument method to open a template as a document so that you can
modify the template styles.

Styles Collection Object

L

Documents (Document) —Styles (Style)

L

Multiple objects

A collection of Style objects that represent both the built-in and user-defined
styles in a document.

Using the Styles Collection

Use the Styles property to return the Styles collection. The following example
deletes all user-defined styles in the active document.

For Each sty In ActiveDocument.Styles
If sty.BuiltIn = False Then sty.Delete
Next sty

Use the Add method to create a new user-defined style and add it to the Styles
collection. The following example adds a new character style named
"Introduction” and makes it 12-point Arial, with bold and italic formatting. The
example then applies this new character style to the selection.

Set myStyle = ActiveDocument.Styles.Add(Name:="Introduction", _
Type:=wdStyleTypeCharacter)
wWith myStyle.Font

.Bold = True
.Italic = True
.Name = "Arial"
.Size = 12
End With
Selection.Range.Style = "Introduction"

Use Styles(index), where index is the style name, a WdBuiltinStyle constant or
index number, to return a single Style object. You must exactly match the
spelling and spacing of the style name, but not necessarily its capitalization. The
following example modifies the font of the user-defined style named "Color" in
the active document.

ActiveDocument.Styles("Color").Font.Name = "Arial"

The following example sets the built-in Heading 1 style to not be bold.

ActiveDocument.Styles(wdStyleHeadingl).Font.Bold = False

The style index number represents the position of the style in the alphabetically
sorted list of style names. Note that Styles(1) is the first style in the alphabetic
list. The following example displays the base style and style name of the first
style in the Styles collection.

MsgBox '"Base style= " _
& ActiveDocument.Styles(1).BaseStyle & vbCr _
& "Style name= " & ActiveDocument.Styles(1).NameLocal

Remarks

The Styles object isn't available from the Template object. However, you can
use the OpenAsDocument method to open a template as a document so that you
can modify styles in the template. The following example changes the formatting
of the Heading 1 style in the template attached to the active document.

Set aDoc = ActiveDocument.AttachedTemplate.OpenAsDocument
with abDoc

.Styles(wdStyleHeadingl).Font.Name = "Arial"

.Close SaveChanges:=wdSaveChanges
End With

Use the OrganizerCopy method to copy styles between documents and
templates. Use the UpdateStyles method to update the styles in the active
document to match the style definitions in the attached template.

StyleSheet Object

L

StyleSheets —StyleSheet

Represents a single cascading style sheet attached to a web document. The
StyleSheet object is a member of the StyleSheets collection. The StyleSheets
collection contains all the cascading style sheets attached to a specified
document.

Using the StyleSheet object

Use the Item method or StyleSheets(index), where index is the name or number
of the style sheet, of the StyleSheets collection to return a StyleSheet object.
The following example removes the second style sheet from the StyleSheets
collection.

Sub WebStyleSheets()
ActiveDocument.StyleSheets.Item(2).Delete
End Sub

Use the Index property to determine the precedence of cascading style sheets.
The following example creates a table of attached cascading style sheets, ordered
and indexed according to which style sheet is most important.

Sub CSSTable()
Dim styCSS As StyleSheet

With ActiveDocument.Range(Start:=0, End:=0)
.InsertAfter "CSS Name" & vbTab & "Index"
.InsertParagraphAfter
For Each styCSS In ActiveDocument.StyleSheets

.InsertAfter styCSS.Name & vbTab & styCSS.Index
.InsertParagraphAfter
Next styCSS
.ConvertToTable
End With
End Sub

Use the Move method to reorder the precedence of attached style sheets. The
following example moves the most important style sheet to the least important of
all attached cascading style sheets.

Sub MoveCSS()
ActiveDocument.StyleSheets(1) _
.Move wdStyleSheetPrecedencelLowest
End Sub

StyleSheets Collection

L

Document

|‘St;[leSheet

StyleSheets

A collection of StyleSheet objects that represents the cascading style sheets
attached to a document. The StyleSheets collection includes all cascading style
sheets displayed in the Linked CSS Style Sheets dialog box, accessed using the
Templates and Add-ins command (Tools menu).

Using the StyleSheets collection

Use the StyleSheets property to return the StyleSheets collection. Use the Add
method to add a style sheet to the StyleSheets collection. The following example
adds three cascading style sheets to the active document and sets the third as the
highest in precedence.

Sub AddCSS()
With ActiveDocument.StyleSheets
.Add FileName:="Web.css", Title:="Web Styles"
.Add FileName:="New.css", Linktype:=wdStyleSheetLinkTypeImpc
Title:="New Styles"
.Add FileName:="Defs.css", Title:="Definitions", _
Precedence:=wdStyleSheetPrecedenceHighest
End With
End Sub

Subdocument Object

L

Subdocuments —~Subdocument

L

Multiple objects

Represents a subdocument within a document or range. The Subdocument
object is a member of the Subdecuments collection. The Subdocuments
collection includes all the subdocuments in the a range or document.

Using the Subdocument Object

Use Subdocuments(index), where index is the index number, to return a single
Subdocument object. The following example displays the path and file name of
the first subdocument in the active document.

If ActiveDocument.Subdocuments(1l).HasFile = True Then
MsgBox ActiveDocument.Subdocuments(1).Path & _
Application.PathSeparator & _
ActiveDocument.Subdocuments(1).Name
End If

Use the AddFromFile or AddFromRange method to add a subdocument to a
document. The following example adds a subdocument named "Setup.doc" at
the end of the active document.

ActiveDocument.Subdocuments.Expanded = True

Selection.EndKey Unit:=wdStory

Selection.InsertParagraphBefore
ActiveDocument.Subdocuments.AddFromFile Name:="C:\Temp\Setup.doc"

The following example applies the Heading 1 style to the first paragraph in the
selection and then creates a subdocument for the contents of the selection.

Selection.Paragraphs(1).Style = wdStyleHeadingl
With ActiveDocument.Subdocuments

.Expanded = True

.AddFromRange Range:=Selection.Range
End With

Subdocuments Collection Object

L

Multiple objects ~Subdocuments (Subdocument)

|‘Range

A collection of Subdocument objects that represent the subdocuments in a range
or document.

Using the Subdocuments Collection

Use the Subdocuments property to return the Subdoecuments collection. The
following example expands all the subdocuments in the active document.

ActiveDocument.Subdocuments.Expanded = True

Use the AddFromFile or AddFromRange method to add a subdocument to a
document. The following example adds a subdocument named "Setup.doc" at
the end of the active document.

ActiveDocument.Subdocuments.Expanded = True

Selection.EndKey Unit:=wdStory

Selection.InsertParagraphBefore
ActiveDocument.Subdocuments.AddFromFile Name:="C:\Temp\Setup.doc"

The following example applies the Heading 1 style to the first paragraph in the
selection and then creates a subdocument for the contents of the selection.

Selection.Paragraphs(1).Style = wdStyleHeadingl
With ActiveDocument.Subdocuments

.Expanded = True

.AddFromRange Range:=Selection.Range
End wWith

Use Subdocuments(index), where index is the index number, to return a single
Subdocument object. The following example displays the path and file name of
the first subdocument in the active document.

If ActiveDocument.Subdocuments(1l).HasFile = True Then
MsgBox ActiveDocument.Subdocuments(1).Path & _
Application.PathSeparator _
& ActiveDocument.Subdocuments(1).Name
End If

SynonymInfo Object

L

Multiple objects ~SynonymlInfo

Represents the information about synonyms, antonyms, related words, or related
expressions for the specified range or a given string.

Using the SynonymlInfo Object

Use the SynonymlInfo property to return a SynonymlInfo object. The
SynonymlInfo object can be returned either from a range or from Word. If it's
returned from Word, you specify the lookup word or phrase and a proofing
language ID. If it's returned from a range, Word uses the specified range as the
lookup word. The following example returns a SynonymlInfo object from Word.

temp = SynonymInfo(Word:="meant", LanguageID:=wdEnglishUS).Found

The following example returns a SynonymlInfo object from a range.

temp = Selection.Range.SynonymInfo.Found

The Found property, used in the preceding examples, returns True if any
information is found in the thesaurus for the specified range or for Word. Note,
however, that this property returns True not only if synonyms are found but also
if related words, related expressions, or antonyms are found.

Many of the properties of the SynonymInfo object return a Variant that
contains an array of strings. When working with these properties, you can assign
the returned array to a variable and then index the variable to see the elements in
the array. In the following example, Slist is assigned the synonym list for the
first meaning of the selected word or phrase. The UBound function finds the
upper bound of the array, and then each element is displayed in a message box.

Slist = Selection.Range.SynonymInfo.SynonymList(1)
For i = 1 To UBound(Slist)

Msgbox Slist(i)
Next i

You can check the value of the MeaningCount property to prevent potential
errors in your code. The following example returns a list of synonyms for the
second meaning for the word or phrase in the selection and displays these
synonyms in the Immediate pane.

Set synInfo = Selection.Range.SynonymInfo
If synInfo.MeaningCount >= 2 Then

synList = synInfo.SynonymList(2)

For i = 1 To UBound(synList)

Debug.Print synList(1i)
Next i
Else
MsgBox "There is no second meaning for the selection."
End If

System Object

L

Application —System

Contains information about the computer system.

Using the System Object

Use the System property to return the System object. If the operating system is
Windows, the following example makes a network connection to \\Project\Info.

If System.OperatingSystem = "Windows" Then
System.Connect Path:="\\Project\Info"
End If

The following example displays the current screen resolution (for example,
"1024 x 768").

horz System.HorizontalResolution
vert System.VerticalResolution
MsgBox "Resolution = " & horz & " x " & vert

Table Object

L Tables (Table)

|‘Multiple objects

Multiple objects

Represents a single table. The Table object is a member of the Tables collection.
The Tables collection includes all the tables in the specified selection, range, or
document.

Using the Table Object

Use Tables(index), where index is the index number, to return a single Table
object. The index number represents the position of the table in the selection,
range, or document. The following example converts the first table in the active
document to text.

ActiveDocument.Tables(1).ConvertToText Separator:=wdSeparateByTabs

Use the Add method to add a table at the specified range. The following
example adds a 3x4 table at the beginning of the active document.

Set myRange = ActiveDocument.Range(Start:=0, End:=0)
ActiveDocument.Tables.Add Range:=myRange, NumRows:=3, NumColumns:=4

TableOfAuthorities Object

Documents (Document) |"I“ablesOfAuthorities (TableOfAuthorities)

|‘Range

Represents a single table of authorities in a document (a TOA field). The
TableOfAuthorities object is a member of the TablesOf Authorities collection.
The TablesOfAuthorities collection includes all the tables of authorities in a
document.

Using the TableOfAuthorities Object

Use TablesOfAuthorities(index), where index is the index number, to return a
single TableOfAuthorities object. The index number represents the position of
the table of authorities in the document. The following example includes
category headers in the first table of authorities in the active document and then
updates the table.

With ActiveDocument.TablesOfAuthorities(1)
.IncludeCategoryHeader = True
.Update

End With

Use the Add method to add a table of authorities to a document. The following
example adds a table of authorities that includes all categories at the beginning
of the active document.

Set myRange = ActiveDocument.Range(Start:=0, End:=0)
ActiveDocument.TablesOfAuthorities.Add Range:=myRange, _
Passim:=True, Category:=0, EntrySeparator:=", "

Note A table of authorities is built from TA (Table of Authorities Entry) fields
in a document. Use the MarkCitation method to mark citations to be included
in a table of authorities.

TableOfAuthoritiesCategory Object

Documents (Document) |"I“ablesOfAuthoritiesCategories
(TablesOfAuthoritiesCatagory)

Represents a single table of authorities category. The
TableOfAuthoritiesCategories object is a member of the
TablesOfAuthoritiesCategories collection. The
TablesOfAuthoritiesCategories collection includes all 16 categories listed in
the Category box on the Table of Authorities tab in the Index and Tables
dialog box (Insert menu).

Using the TableOfAuthoritiesCategory Object

Use TablesOfAuthoritiesCategories(index), where index is the category name
or index number, to return a single TableOf AuthoritiesCategory object. The
following example renames the Rules category as Other Provisions.

ActiveDocument.TablesOfAuthoritiesCategories("Rules").Name = _
"Other Provisions"

The index number represents the position of the category in the Index and
Tables dialog box (Insert menu). The following example displays the name of
the first category in the TablesOfAuthoritiesCategories collection.

MsgBox ActiveDocument.TablesOfAuthoritiesCategories(1).Name

The Add method isn't available for the TablesOf AuthoritiesCategories
collection. The collection is limited to 16 items; however, you can use the Name
property to rename an existing category.

TableOfContents Object

Documents (Document) |"I“ablesOfContents (TableOfContents)
L

Multiple objects

Represents a single table of contents in a document. The TableOfContents
object is a member of the TablesOfContents collection. The TablesOfContents
collection includes all the tables of contents in a document.

Using the TableOfCContents Object

Use TablesOfContents(index), where index is the index number, to return a
single TableOfContents object. The index number represents the position of the
table of contents in the document. The following example updates the page
numbers of the items in the first table of figures in the active document.

ActiveDocument.TablesOfContents(1).UpdatePageNumbers

Use the Add method to add a table of contents to a document. The following
example adds a table of contents at the beginning of the active document. The
example builds the table of contents from all paragraphs styled as either Heading
1, Heading 2, or Heading 3.

Set myRange = ActiveDocument.Range(Start:=0, End:=0)
ActiveDocument.TablesOfContents.Add Range:=myRange, _
UseFields:=False, UseHeadingStyles:=True, _
LowerHeadingLevel:=3, _
UpperHeadinglLevel:=1

TableOfFigures Object

Documents (Document) |‘TablesOfFigures (TableOfFigures)
L

Multiple objects

Represents a single table of figures in a document. The TableOfFigures object
is a member of the TablesOfFigures collection. The TablesOfFigures collection
includes all the tables of figures in a document.

Using the TableOfFigures Object

Use TablesOfFigures(index), where index is the index number, to return a single
TableOfFigures object. The index number represents the position of the table of
figures in the document. The following example updates the page numbers of the
items in the first table of figures in the active document.

ActiveDocument.TablesOfFigures(1).UpdatePageNumbers

Use the Add method to add a table of figures to a document. A table of figures
lists figure captions in the order in which they appear in the document. The
following example replaces the selection in the active document with a table of
figures that includes caption labels and page numbers.

ActiveDocument.TablesOfFigures.Add Range:=Selection.Range, _
IncludelLabel:=True, IncludePageNumbers:=True

Tables Collection Object

L Tables (Table)

|‘Multiple objects

Multiple objects

A collection of Table objects that represent the tables in a selection, range, or
document.

Using the Tables Collection

Use the Tables property to return the Tables collection. The following example
applies a border around each of the tables in the active document.

For Each aTable In ActiveDocument.Tables
aTable.Borders.OutsideLineStyle = wdLineStyleSingle
aTable.Borders.OQutsideLineWidth = wdLineWidth025pt
aTable.Borders.InsideLineStyle = wdLineStyleNone

Next aTable

Use the Add method to add a table at the specified range. The following
example adds a 3x4 table at the beginning of the active document.

Set myRange = ActiveDocument.Range(Start:=0, End:=0)
ActiveDocument.Tables.Add Range:=myRange, NumRows:=3, NumColumns:=4

Use Tables(index), where index is the index number, to return a single Table
object. The index number represents the position of the table in the selection,
range, or document. The following example converts the first table in the active
document to text.

ActiveDocument.Tables(1).ConvertToText Separator:=wdSeparateByTabs

Remarks

The Count property for this collection in a document returns the number of
items in the main story only. To count items in other stories use the collection
with the Range object.

TablesOf Authorities Collection
Object

|‘TablesOfAuthorities

Multiple objects

Document

L

A collection of TableOfAuthorities objects (TOA fields) that represents the
tables of authorities in a document.

Using the TablesOfAuthorities Collection

Use the TablesOfAuthorities property to return the TablesOfAuthorities
collection. The following example applies the Classic built-in format to all the
tables of authorities in the active document.

ActiveDocument.TablesOfAuthorities.Format = wdTOAClassic

Use the Add method to add a table of authorities to a document. A table of
authorities is built from TA (Table of Authorities Entry) fields in a document.
The following example adds a table of authorities that includes all categories at
the beginning of the active document.

Set myRange = ActiveDocument.Range(Start:=0, End:=0)
ActiveDocument.TablesOfAuthorities.Add Range:=myRange, _
Passim:=True, Category:=0, EntrySeparator:= ", "

Use TablesOfAuthorities(index), where index is the index number, to return a
single TableOfAuthorities object. The index number represents the position of
the table of authorities in the document. The following example includes
category headers in the first table of authorities in the active document and then
updates the table.

With ActiveDocument.TablesOfAuthorities(1)
.IncludeCategoryHeader = True
.Update

End wWith

TablesOfAuthoritiesCategories
Collection Object

Documents (Document) |"I“ablesOfAuthoritiesCategories
(TablesOf AuthoritiesCatagory)

A collection of TableOfAuthoritiesCategory objects that represent the table of
authorities categories, such as Cases and Statutes. The
TablesOfAuthoritiesCategories collection includes all 16 categories listed in
the Category box on the Table of Authorities tab in the Index and Tables
dialog box (Insert menu).

Using the TablesOfAuthoritiesCategories Collection

Use the TablesOfAuthoritiesCategories property to return the
TablesOfAuthoritiesCategories collection. The following example displays the
names of the categories in the TablesOf AuthoritiesCategories collection.

For Each aCat In ActiveDocument.TablesOfAuthoritiesCategories
response = MsgBox(Prompt:=aCat, Buttons:=vbOKCancel)
If response = vbCancel Then Exit For

Next aCat

The Add method isn't available for the TablesOf AuthoritiesCategories
collection. The collection is limited to 16 items; however, you can use the Name
property to rename an existing category.

Use TablesOfAuthoritiesCategories(index), where index is the category name
or index number, to return a single TableOfAuthoritiesCategory object. The
following example renames the Rules category as Other Provisions.

ActiveDocument.TablesOfAuthoritiesCategories("Rules").Name = _
"Other Provisions"

The index number represents the position of the category in the Index and
Tables dialog box (Insert menu). The following example displays the name of
the first category in the TablesOfAuthoritiesCategories collection.

MsgBox ActiveDocument.TablesOfAuthoritiesCategories(1).Name

TablesOfContents Collection Object

Documents (Document) |‘TablesOfContents (TableOfContents)
L

Multiple objects

A collection of TableOfContents objects that represent the tables of contents in
a document.

Using the TablesOfContents Collection

Use the TablesOfContents property to return the TablesOfContents collection.
The following example inserts a table of contents entry that references the
selected text in the active document.

ActiveDocument.TablesOfContents.MarkEntry Range:=Selection.Range, _
Level:=2, Entry:="Introduction"

Use the Add method to add a table of contents to a document. The following
example adds a table of contents at the beginning of the active document. The
example builds the table of contents from all paragraphs styled as either Heading
1, Heading 2, or Heading 3.

Set myRange = ActiveDocument.Range(Start:=0, End:=0)
ActiveDocument.TablesOfContents.Add Range:=myRange, _
UseFields:=False, UseHeadingStyles:=True, _
LowerHeadingLevel:=3, _
UpperHeadinglLevel:=1

Use TablesOfContents(index), where index is the index number, to return a
single TableOfContents object. The index number represents the position of the
table of contents in the document. The following example updates the page
numbers of the items in the first table of figures in the active document.

ActiveDocument.TablesOfContents(1).UpdatePageNumbers

TablesOfFigures Collection Object

Documents (Document) |‘TablesOfFigures (TableOfFigures)

|‘Multiple objects

A collection of TableOfFigures objects that represent the tables of figures in a
document.

Using the TablesOfFigures Collection

Use the TablesOfFigures property to return the TablesOfFigures collection.
The following example applies the Classic format to all tables of figures in the
active document.

ActiveDocument.TablesOfFigures.Format = wdTOFClassic

Use the Add method to add a table of figures to a document. A table of figures
lists figure captions in the order in which they appear in the document. The
following example replaces the selection in the active document with a table of
figures that includes caption labels and page numbers.

ActiveDocument.TablesOfFigures.Add Range:=Selection.Range, _
IncludelLabel:=True, IncludePageNumbers:=True

Use TablesOfFigures(index), where index is the index number, to return a single
TableOfFigures object. The index number represents the position of the table of
figures in the document. The following example updates the page numbers of the
items in the first table of figures in the active document.

ActiveDocument.TablesOfFigures(1).UpdatePageNumbers

TableStyle Object

Style -

L

TableStyle
Multiple objects

Represents a single style that can be applied to a table.

Using the TableStyle object

Use the Table property of the Styles object to return a TableStyle object. Use
the Borders property to apply borders to an entire table. Use the Condition
method to apply borders or shading only to specified sections of a table. This
example creates a new table style and formats the table with a surrounding
border. Special borders and shading are applied to the first and last rows and the
last column.

Sub NewTableStyle()
Dim styTable As Style

Set styTable = ActiveDocument.Styles.Add(_
Name:="TableStyle 1", Type:=wdStyleTypeTable)

With styTable.Table

"Apply borders around table

.Borders(wdBorderTop) .LineStyle = wdLineStyleSingle
.Borders(wdBorderBottom).LineStyle = wdLineStyleSingle
.Borders(wdBorderLeft).LineStyle = wdLineStyleSingle
.Borders(wdBorderRight).LineStyle = wdLineStyleSingle

'"Apply a double border to the heading row
.Condition(wdFirstRow).Borders(wdBorderBottom) _
.LineStyle = wdLineStyleDouble

"Apply a double border to the last column
.Condition(wdLastColumn).Borders(wdBorderLeft) _
.LineStyle = wdLineStyleDouble
"Apply shading to last row
.Condition(wdLastRow) .Shading _
.BackgroundPatternColor = wdColorGrayl25
End With

End Sub

TabStop Object

L

Multiple objects —~TabStops (TabStop)

Represents a single tab stop. The TabStop object is a member of the TabStops
collection. The TabStops collection represents all the custom and default tab
stops in a paragraph or group of paragraphs.

Using the TabStop Object

Use TabStops(index), where index is the location of the tab stop (in points) or
the index number, to return a single TabStop object. Tab stops are indexed
numerically from left to right along the ruler. The following example removes
the first custom tab stop from the selected paragraphs.

Selection.Paragraphs.TabStops(1).Clear

The following example adds a right-aligned tab stop positioned at 2 inches to the
selected paragraphs.

Selection.Paragraphs.TabStops(InchesToPoints(2)) _
.Alignment = wdAlignTabRight

Use the Add method to add a tab stop. The following example adds two tab
stops to the selected paragraphs. The first tab stop is a left-aligned tab with a
dotted tab leader positioned at 1 inch (72 points). The second tab stop is centered
and is positioned at 2 inches.

With Selection.Paragraphs.TabStops
.Add Position:=InchesToPoints(1), _
Leader:=wdTabLeaderDots, Alignment:=wdAlignTabLeft
.Add Position:=InchesToPoints(2), Alignment:=wdAlignTabCenter
End With

You can also add a tab stop by specifying a location with the TabStops property.
The following example adds a right-aligned tab stop positioned at 2 inches to the
selected paragraphs.

Selection.Paragraphs.TabStops(InchesToPoints(2)) _
.Alignment = wdAlignTabRight

Note Set the DefaultTabStop property to adjust the spacing of default tab
stops.

TabStops Collection Object

L

Multiple objects —~TabStops (TabStop)

A collection of TabStop objects that represent the custom and default tabs for a
paragraph or group of paragraphs.

Using the TabStops Collection

Use the TabStops property to return the TabStops collection. The following
example clears all the custom tab stops from the first paragraph in the active
document.

ActiveDocument.Paragraphs(1).TabStops.ClearAll

The following example adds a tab stop positioned at 2.5 inches to the selected
paragraphs and then displays the position of each item in the TabStops
collection.

Selection.Paragraphs.TabStops.Add Position:=InchesToPoints(2.5)
For Each aTab In Selection.Paragraphs.TabStops
MsgBox "Position = " _
& PointsToInches(aTab.Position) & " inches"
Next aTab

Use the Add method to add a tab stop. The following example adds two tab
stops to the selected paragraphs. The first tab stop is a left-aligned tab with a
dotted tab leader positioned at 1 inch (72 points). The second tab stop is centered
and is positioned at 2 inches.

With Selection.Paragraphs.TabStops
.Add Position:=InchesToPoints(1), _
Leader:=wdTabLeaderDots, Alignment:=wdAlignTabLeft
.Add Position:=InchesToPoints(2), Alignment:=wdAlignTabCenter
End With

You can also add a tab stop by specifying a location with the TabStops property.
The following example adds a right-aligned tab stop positioned at 2 inches to the
selected paragraphs.

Selection.Paragraphs.TabStops(InchesToPoints(2)) _
.Alignment = wdAlignTabRight

Use TabStops(index), where index is the location of the tab stop (in points) or
the index number, to return a single TabStop object. Tab stops are indexed
numerically from left to right along the ruler. The following example removes
the first custom tab stop from the first paragraph in the active document.

ActiveDocument.Paragraphs(1).TabStops(1).Clear

The following example adds a right-aligned tab stop positioned at 2 inches to the
selected paragraphs.

Selection.Paragraphs.TabStops(InchesToPoints(2)) _
.Alignment = wdAlignTabRight

Remarks

When working with the Paragraphs collection (or a range with several
paragraphs), you must modify each paragraph in the collection individually if the
tab stops aren't identical in all the paragraphs. The following example removes
the tab positioned at 1 inch from every paragraph in the active document.

For Each para In ActiveDocument.Content.Paragraphs
para.TabStops(InchesToPoints(1)).Clear
Next para

Task Object

L

Tasks —Task

Represents a single task running on the system. The Task object is a member of
the Tasks collection. The Tasks collection includes all the applications that are
currently running on the system.

Using the Task Object

Use Tasks(index), where index is the application name or the index number, to
return a single Task object. The following example switches to and resizes the
application window for the first visible task in the Tasks collection.

With Tasks(1)
If .Visible = True Then

.Activate
.Width = 400
.Height = 200
End If
End With

The following example restores the Calculator application window if Calculator
is in the Tasks collection.

If Tasks.Exists('"Calculator") = True Then
Tasks("Calculator").windowState = wdwWindowStateNormal
End If

Use Visual Basic's Shell function to run an executable program and add the
program to the Tasks collection.

TaskPane Object

L

TaskPanes —TaskPane

Represents a single task pane available to Microsoft Word, which contains
common tasks that users perform. The TaskPane object is a member of the
TaskPanes collection.

Using the TaskPane object

Use the TaskPanes property to return a TaskPane object. Use the Visible
property to display an individual task pane. This example displays the formatting
task pane.

Sub FormattingPane()
Application.TaskPanes(wdTaskPaneFormatting).Visible = True
End Sub

TaskPanes Collection

L

Application —TaskPanes

|‘TaskPane

A collection of TaskPane objects that contains commonly performed tasks in
Microsoft Word.

Using the TaskPanes collection

Use the TaskPanes property to return the TaskPanes collection. Use the Item
method with a wdWorkPane constant to refer to a specific task pane. The
example below displays the formatting task pane.

Sub FormattingPane()
Application.TaskPanes(wdTaskPaneFormatting).Visible = True
End Sub

Tasks Collection Object

|‘Tasks

Multiple objects
|‘Task

A collection of Task objects that represents all the tasks currently running on the
system.

Using the Tasks Collection

Use the Tasks property to return the Tasks collection. The following example
determines whether Microsoft Excel is running. If it is, this example switches to
it and maximizes it; otherwise, the example starts it.

If Tasks.Exists('"Microsoft Excel") = True Then
Tasks("Microsoft Excel").Activate
Tasks("Microsoft Excel").WindowState = wdWindowStateMaximize
Else
Shell "C:\Program Files\" & _
"Microsoft Office\OfficelO\Excel.exe"
End If

Use Visual Basic's Shell function to run an executable program and add the
program to the Tasks collection.

Use Tasks(index), where index is the application name or the index number, to
return a single Task object. The following example opens and resizes the
application window for the first visible task in the Tasks collection.

With Tasks(1)
If .Visible = True Then

.Activate

.wWidth = 400

.Height = 200
End If

End With

The following example restores the Calculator application window if the
application is in the Tasks collection.

If Tasks.Exists('"Calculator") = True Then
Tasks("Calculator").windowState = wdwWindowStateNormal
End If

Template Object

|‘Templates (Template)

|‘Multiple objects

Multiple objects

Represents a document template. The Template object is a member of the
Templates collection. The Templates collection includes all the available
Template objects.

Using the Template Object

Use Templates(index), where index is the template name or the index number, to
return a single Template object. The following example saves the Memo2.dot
template if it's in the Templates collection.

For Each aTemp In Templates
If LCase(aTemp.Name) = "memo2.dot" Then aTemp.Save
Next aTemp

The index number represents the position of the template in the Templates
collection. The following example opens the first template in the Templates
collection.

Templates(1).0penAsDocument

The Add method isn't available for the Templates collection. Instead, you can
add a template to the Templates collection by doing any of the following:

e Using the Open method with the Documents collection to open a
document based on a template or a template

e Using the Add method with the Documents collection to open a new
document based on a template

e Using the Add method with the Addins collection to load a global template

e Using the AttachedTemplate property with the Document object to attach
a template to a document

Remarks

Use the NormalTemplate property to return a template object that refers to the
Normal template. Use the AttachedTemplate property to return the template
attached to the specified document.

Use the DefaultFilePath property to return or set the location of user or
workgroup templates (that is, the folder where you want to store these
templates). The following example displays the user template folder from the
File Locations tab in the Options dialog box (Tools menu).

MsgBox Options.DefaultFilePath(wdUserTemplatesPath)

Templates Collection Object

Application |‘Templates (Template)

|‘Multiple objects

A collection of Template objects that represent all the templates that are
currently available. This collection includes open templates, templates attached
to open documents, and global templates loaded in the Templates and Add-ins
dialog box (Tools menu).

Using the Templates Collection

Use the Templates property to return the Templates collection. The following
example displays the path and file name of each template in the Templates
collection.

For Each aTemp In Templates
MsgBox aTemp.FullName
Next aTemp

The Add method isn't available for the Templates collection. Instead, you can
add a template to the Templates collection by doing any of the following:

e Using the Open method with the Documents collection to open a
document based on a template or a template

e Using the Add method with the Documents collection to open a new
document based on a template

e Using the Add method with the Addins collection to load a global template

e Using the AttachedTemplate property with the Document object to attach
a template to a document

Use Templates(index), where index is the template name or the index number, to
return a single Template object. The following example saves the Dot1.dot
template.

Templates("C:\MSOffice\WinWord\Templates\Dotl.dot").Save

The index number represents the position of the template in the Templates
collection. The following example displays the file name of the first template in
the Templates collection.

MsgBox Templates(1).FullName

Remarks

Use the NormalTemplate property to return a template object that refers to the
Normal template. Use the AttachedTemplate property to return the template
attached to the specified document.

Use the DefaultFilePath property to determine the location of user or
workgroup templates (that is, the folder where you want to store these
templates). The following example displays the user template folder from the
File Locations tab in the Options dialog box (Tools menu).

MsgBox Options.DefaultFilePath(wdUserTemplatePath)

TextColumn Object

|‘TextColumns (TextColumn)

Represents a single text column. The TextColumn object is a member of the
TextColumns collection. The TextColumns collection includes all the columns
in a document or section of a document.

PageSetup

Using the TextColumn Object

Use TextColumns(index), where index is the index number, to return a single
TextColumn object. The index number represents the position of the column in
the TextColumns collection (counting from left to right).

The following example sets the space after the first text column in the active
document to 0.5 inch.

ActiveDocument.PageSetup.TextColumns(1).SpaceAfter = _
InchesToPoints(0.5)

Use the Add method to add a column to the collection of columns. By default,
there's one text column in the TextColumns collection. The following example
adds a 2.5-inch-widecolumn to the active document.

ActiveDocument.PageSetup.TextColumns.Add _
width:=InchesToPoints(2.5), _
Spacing:=InchesToPoints(0.5), EvenlySpaced:=False

Remarks

Use the SetCount method to arrange text into columns. The following example
arranges the text in the active document into three columns.

ActiveDocument.PageSetup.TextColumns.SetCount NumColumns:=3

TextColumns Collection Object

|‘TextColumns (TextColumn)

A collection of TextColumn objects that represent all the columns of text in a
document or a section of a document.

PageSetup

Using the TextColumns Collection

Use the TextColumns property to return the TextColumns collection. The
following example formats the columns in the first section in the active
document to be evenly spaced, with a line between the columns.

With ActiveDocument.Sections(1).PageSetup.TextColumns
.EvenlySpaced = True
.LineBetween = True

End wWith

Use the Add method to add a column to the collection of columns. By default,
there's one text column in the TextColumns collection. The following example
adds a 2.5-inch-wide column to the active document.

ActiveDocument.PageSetup.TextColumns.Add _
width:=InchesToPoints(2.5), _
Spacing:=InchesToPoints(0.5), EvenlySpaced:=False

Remarks

Use the SetCount method to arrange text into columns. The following example
arranges the text in the active document into three columns.

ActiveDocument.PageSetup.TextColumns.SetCount NumColumns:=3

TextEffectFormat Object

Shapes (Shape) |‘TextEffectFormat

Contains properties and methods that apply to WordArt objects.

Using the TextEffectFormat Object

Use the TextEffect property to return a TextEffectFormat object. The following
example sets the font name and formatting for shape one on the active document.
For this example to work, shape one must be a WordArt object.

wWith ActiveDocument.Shapes(1).TextEffect
.FontName = "Courier New"
.FontBold = True
.FontItalic = True

End with

-Show All

TextFrame Object

L

Multiple objects —TextFrame

|‘Range
Represents the text frame in a Shape object. Contains the text in the text frame

as well as the properties that control the margins and orientation of the text
frame.

Using the TextFrame Object

Use the TextFrame property to return the TextFrame object for a shape. The
TextRange property returns a Range object that represents the range of text
inside the specified text frame. The following example adds text to the text
frame of shape one in the active document.

ActiveDocument.Shapes(1).TextFrame.TextRange.Text = "My Text"

Note Some shapes don't support attached text (lines, freeforms, pictures, and
OLE objects, for example). If you attempt to return or set properties that control
text in a text frame for those objects, an error occurs.

Use the HasText property to determine whether the text frame contains text, as
shown in the following example.

For Each s In ActiveDocument.Shapes
With s.TextFrame
If .HasText Then MsgBox .TextRange.Text
End With
Next

Text frames can be linked together so that the text flows from the text frame of
one shape into the text frame of another shape. Use the Next and Previous
properties to link text frames. The following example creates a text box (a
rectangle with a text frame) and adds some text to it. It then creates another text
box and links the two text frames together so that the text flows from the first
text frame into the second one.

Set myTB1 = ActiveDocument.Shapes.AddTextbox _
(msoTextOrientationHorizontal, 72, 72, 72, 36)
myTB1.TextFrame.TextRange = _
"This is some text. This is some more text."
Set myTB2 = ActiveDocument.Shapes.AddTextbox _
(msoTextOrientationHorizontal, 72, 144, 72, 36)
myTB1l.TextFrame.Next = myTB2.TextFrame

Use the ContainingRange property to return a Range object that represents the
entire story that flows between linked text frames. The following example
checks the spelling of the text in TextBox 3 and of any other text that's linked to

TextBox 3.

Set myStory = ActiveDocument.Shapes("TextBox 3") _
. TextFrame.ContainingRange
myStory.CheckSpelling

TextInput Object

L

FormFields (FormField) —TextInput

Represents a single text form field.

Using the TextInput Object

Use FormFields(index), where index is either the bookmark name associated
with the text form field or the index number, to return a FormField object. Use
the TextInput property with the FormField object to return a TextInput object.
The following example deletes the contents of the text form field named "Text1"
in the active document.

ActiveDocument.FormFields("Text1").TextInput.Clear

The index number represents the position of the form field in the FormFields
collection. The following example checks the type of the first form field in the
active document. If the form field is a text form field, the example sets "Mission
Critical" as the value of the field.

If ActiveDocument.FormFields(1).Type = wdFieldFormTextInput Then
ActiveDocument.FormFields(1).Result = "Mission Critical"
End If

The following example determines whether the ffield variable represents a
valid text form field in the active document before it sets the default text.

Set ffield = ActiveDocument.FormFields(1).TextInput
If ffield.valid = True Then
ffield.Default = "Type your name here"
Else
MsgBox "First field is not a text box"
End If

Use the Add method with the FormFields object to add a text form field. The
following example adds a text form field at the beginning of the active document
and then sets the name of the form field to "FirstName."

Set ffield = ActiveDocument.FormFields.Add(_
Range:=ActiveDocument.Range(Start:=0, End:=0), _
Type:=wdFieldFormTextInput)

ffield.Name = "FirstName"

TextRetrievalMode Object

L

Range ~TextRetrievalMode

Represents options that control how text is retrieved from a Range object.

Using the TextRetrievalMode Object

Use the TextRetrievalMode property to return a TextRetrievalMode object.
The following example displays the text of the first sentence in the active
document, excluding field codes and hidden text.

With ActiveDocument.Sentences(1).TextRetrievalMode
.IncludeHiddenText = False
.IncludeFieldCodes = False
MsgBox .Parent.Text

End With

Remarks

Changing the ViewType, IncludeHiddentText, or IncludeFieldCodes property
of the TextRetrievalMode object doesn't change the screen display. Instead,
changing one of these properties determines what text is retrieved from a Range
object when the Text property is used.

ThreeDFormat Object

Shapes (Shape) |‘ThreeDForrnat

|‘ColorFormat

Represents a shape's three-dimensional formatting.

Using The ThreeDFormat Object

Use the ThreeD property to return a ThreeDFormat object. The following
example adds an oval to the active document and then specifies that the oval be
extruded to a depth of 50 points and that the extrusion be purple.

Set myShape = ActiveDocument.Shapes _
.AddShape(msoShapeOval, 90, 90, 90, 40)
wWith myShape.ThreeD
.Visible = True
.Depth = 50
' RGB value for purple
.ExtrusionColor.RGB = RGB(255, 100, 255)
End wWith

Remarks

You cannot apply three-dimensional formatting to some kinds of shapes, such as
beveled shapes or multiple-disjoint paths. Most of the properties and methods of
the ThreeDFormat object for such a shape will fail.

Twolnitial CapsException Object

L

Application ~AutoCorrect

|‘TwoInitialCapsExceptions (Twolnitial CapsException)

Represents a single initial-capital AutoCorrect exception. The

Twolnitial CapsException object is a member of the

Twolnitial CapsExceptions collection. The TwolInitial CapsExceptions
collection includes all the items listed in the Don't correct box on the INitial
CAps tab in the AutoCorrect Exceptions dialog box.

Using the Twolnitial CapsException Object

Use TwolnitialCapsExceptions(index), where index is the initial capital
exception name or the index number, to return a single

Twolnitial CapsException object. The following example deletes the initial-
capital exception named "KMenu."

AutoCorrect.TwoInitialCapsExceptions("KMenu") .Delete

The index number represents the position of the initial-capital exception in the
Twolnitial CapsExceptions collection. The following example displays the
name of the first item in the TwolnitialCapsExceptions collection.

MsgBox AutoCorrect.TwoInitialCapsExceptions(1).Name

If the Twolnitial CapsAutoAdd property is True, words are automatically added
to the list of initial-capital exceptions. Use the Add method to add an item to the
Twolnitial CapsExceptions collection. The following example adds "Industry"
to the list of initial-capital exceptions.

AutoCorrect.TwoInitialCapsExceptions.Add Name:="INdustry"

Twolnitial CapsExceptions Collection
Object

L

Application ~AutoCorrect

|‘TwoInitialCapsExceptions (Twolnitial CapsException)

A collection of TwolnitialCapsException objects that represent all the items
listed in the Don't correct box on the INitial CAps tab in the AutoCorrect
Exceptions dialog box.

Using the Twolnitial CapsExceptions Collection

Use the Twolnitial CapsExceptions property to return the
Twolnitial CapsExceptions collection. The following example displays the
items in this collection.

For Each aCap In AutoCorrect.TwoInitialCapsExceptions
MsgBox aCap.Name
Next aCap

If the Twolnitial CapsAutoAdd property is True, words are automatically added
to the list of initial-capital exceptions. Use the Add method to add an item to the
Twolnitial CapsExceptions collection. The following example adds "Industry"
to the list of initial-capital exceptions.

AutoCorrect.TwoInitialCapsExceptions.Add Name:="INdustry"

Use TwolnitialCapsExceptions(index), where index is the initial cap name or
the index number, to return a single TwolInitialCapsException object. The
following example deletes the initial-capital item named "KMenu."

AutoCorrect.TwoInitialCapsExceptions("KMenu") .Delete

The index number represents the position of the initial-capital exception in the
Twolnitial CapsExceptions collection. The following example displays the
name of the first item in the TwolnitialCapsExceptions collection.

MsgBox AutoCorrect.TwoInitialCapsExceptions(1).Name

Variable Object

L

Documents (Document) —Variables (Variable)

Represents a variable stored as part of a document. Document variables are used
to preserve macro settings in between macro sessions. The Variable object is a
member of the Variables collection. The Variables collection includes all the
document variables in a document or template.

Using the Variable Object

Use Variables(index), where index is the document variable name or the index
number, to return a single Variable object. The following example displays the
value of the Temp document variable in the active document.

MsgBox ActiveDocument.Variables("Temp").Value

The index number represents the position of the document variable in the
Variables collection. The last variable added to the Variables collection is index
number 1; the second-to-last variable added to the collection is index number 2,
and so on. The following example displays the name of the first document
variable in the active document.

MsgBox ActiveDocument.Variables(1).Name

Use the Add method to add a variable to a document. The following example
adds a document variable named "Temp" with a value of 12 to the active
document.

ActiveDocument.Variables.Add Name:="Temp", Value:="12"

If you try to add a document variable with a name that already exists in the
Variables collection, an error occurs. To avoid this error, you can enumerate the
collection before adding any new variables. If the Blue document variable
already exists in the active document, the following example sets its value to 6.
If this variable doesn't already exist, this example adds it to the document and
sets it to 6.

For Each avar In ActiveDocument.Variables
If avar.Name = "Blue" Then num = aVar.Index
Next avar
If num = @ Then
ActiveDocument.Variables.Add Name:="Blue'", Value:=6
Else
ActiveDocument.Variables(num).Value = 6
End If

Remarks

Document variables are invisible to the user unless a DOCVARIABLE field is
inserted with the appropriate variable name. The following example adds a
document variable named "Temp" to the active document and then inserts a
DOCVARIABLE field to display the value in the variable.

wWith ActiveDocument
.Variables.Add Name:="Temp", Value:="12"
.Fields.Add Range:=Selection.Range, _
Type:=wdFieldDocVariable, Text:="Temp"
End wWith
ActiveDocument.ActiveWindow.View.ShowFieldCodes = False

To add a document variable to a template, open the template as a document by
using the OpenAsDocument method. The following example stores the user
name (from the Options dialog box) in the template attached to the active
document.

ScreenUpdating = False

With ActiveDocument.AttachedTemplate.OpenAsDocument
.Variables.Add Name:="UserName", Value:=Application.UserName
.Close SaveChanges:=wdSaveChanges

End wWith

Variables Collection Object

L

Documents (Document) —Variables (Variable)

A collection of Variable objects that represent the variables added to a document
or template. Document variables are used to preserve macro settings in between
macro sessions.

Using the Variables Collection

Use the Variables property to return the Variables collection. The following
example displays the number of variables in the document named "Sales.doc.’

MsgBox Documents('"Sales.doc").Variables.Count & " variables"

Use the Add method to add a variable to a document. The following example
adds a document variable named "Temp" with a value of 12 to the active
document.

ActiveDocument.Variables.Add Name:="Temp", Value:="12"

If you try to add a document variable with a name that already exists in the
Variables collection, an error occurs. To avoid this error, you can enumerate the
collection before adding any new variables. If the Blue document variable
already exists in the active document, the following example sets its value to 6.
If this variable doesn't already exist, this example adds it to the document and
sets it to 6.

For Each aVvar In ActiveDocument.Variables
If avar.Name = "Blue" Then num = aVar.Index
Next avar
If num = @ Then
ActiveDocument.Variables.Add Name:="Blue", Value:=6
Else
ActiveDocument.Variables(num).Value = 6
End If

Use Variables(index), where index is the document variable name or the index
number, to return a single Variable object. The following example displays the
value of the Temp document variable in the active document.

MsgBox ActiveDocument.Variables("Temp").Value

The index number represents the position of the document variable in the
Variables collection. The first variable added to the Variables collection is
index number 1; the second variable added to the collection is index number 2,
and so on. The following example displays the name of the first document
variable in the active document.

MsgBox ActiveDocument.Variables(1).Name

To add a variable to a template, open the template as a document by using the
OpenAsDocument method. The following example stores the user name (from
the Options dialog box) in the template attached to the active document.

ScreenUpdating = False

With ActiveDocument.AttachedTemplate.OpenAsDocument
.Variables.Add Name:="UserName", Value:= Application.UserName
.Close SaveChanges:=wdSaveChanges

End wWith

Version Object

L

Documents (Document) —Versions (Version)

Represents a single version of a document. The Version object is a member of
the Versions collection. The Versions collection includes all the versions of the
specified document.

Using the Version Object

Use Versions(index), where index is the index number, to return a single Version
object. The index number represents the position of the version in the Versions
collection. The first version added to the Versions collection is index number 1.
The following example displays the comment, author, and date of the first
version of the active document.

If ActiveDocument.Versions.Count >= 1 Then
With ActiveDocument.Versions(1)
MsgBox "Comment = " & .Comment & vbCr & "Author =" & _
.SavedBy & vbCr & "Date = " & .Date
End With
End If

Use the Save method to add an item to the Versions collection. The following
example adds a version of the active document with the specified comment.

ActiveDocument.Versions.Save _
Comment:="incorporated Judy's revisions"

Versions Collection Object

L

Documents (Document) —Versions (Version)

A collection of Version objects that represent all the versions of a document.
Corresponds to the items listed in the Versions dialog box (File menu).

Using the Versions Collection

Use the Versions property to return the Versions collection. The following
example turns off the option that automatically creates new document versions.

ActiveDocument.Versions.AutoVersion = wdAutoVersionOff

Use the Save method to add an item to the Versions collection. The following
example adds a version with the specified comment.

ActiveDocument.Versions.Save _
Comment:="incorporated Judy's revisions"

Use Versions(index), where index is the index number, to return a single Version
object. The index number represents the position of the version in the Versions
collection. The first version added to the Versions collection is index number 1.
The following example displays the comment, author, and date of the first
version of the active document.

If ActiveDocument.Versions.Count >= 1 Then
With ActiveDocument.Versions(1)
MsgBox "Comment = " & .Comment & vbCr & "Author =" & _
.SavedBy & vbCr & "Date = " & .Date
End With
End If

View Object

L

Multiple objects —View

|‘Multiple objects

Contains the view attributes (show all, field shading, table gridlines, and so on)
for a window or pane.

Using the View Object

Use the View property to return the View object. The following example sets
view options for the active window.

With ActiveDocument.ActiveWindow.View
.ShowAll = True
.TableGridlines = True
.WrapTowWindow = False

End wWith

Remarks

Use the Type property to change the view. The following example switches the
active window to normal view.

ActiveDocument.ActiveWindow.View.Type = wdNormalView

Use the Percentage property to change the size of the text on-screen. The
following example enlarges the on-screen text to 120 percent.

ActiveDocument.ActiveWindow.View.Zoom.Percentage = 120

Use the SeekView property to view comments, endnotes, footnotes, or the
document header or footer. The following example displays the current footer in
the active window in print layout view.

wWith ActiveDocument.ActiveWindow.View
.Type = wdPrintView
.SeekView = wdSeekCurrentPageFooter
End wWith

WebOptions Object

L

Documents (Document) ~WebOptions

Contains document-level attributes used by Microsoft Word when you save a
document as a Web page or open a Web page. You can return or set attributes
either at the application (global) level or at the document level. (Note that
attribute values can be different from one document to another, depending on the
attribute value at the time the document was saved.) Document-level attribute
settings override application-level attribute settings. Application-level attributes
are contained in the DefaultWebOptions object.

Using the WebOptions Object

Use the WebOptions property to return the WebOptions object. The following
example checks to see whether PNG (Portable Network Graphics) is allowed as
an image format and then sets the strImageFileType variable accordingly.

Set objAppWebOptions = ActiveDocument.WebOptions
wWith objAppwWebOptions
If .AllowPNG = True Then
strImageFileType = "PNG"
Else
strImageFileType = "JPG"
End If
End wWith

Window Object

|‘Windows (Window)

|‘Multiple objects

Multiple objects

Represents a window. Many document characteristics, such as scroll bars and
rulers, are actually properties of the window. The Window object is a member of
the Windows collection. The Windows collection for the Application object
contains all the windows in the application, whereas the Windows collection for
the Document object contains only the windows that display the specified
document.

Using the Window Object

Use Windows(index), where index is the window name or the index number, to
return a single Window object. The following example maximizes the
Document1 window.

Windows('"Documentl1").WindowState = wdWindowStateMaximize

The index number is the number to the left of the window name on the Window
menu. The following example displays the caption of the first window in the
Windows collection.

MsgBox Windows(1).Caption

Use the Add method or the NewWindow method to add a new window to the
Windows collection. Each of the following statements creates a new window for
the document in the active window.

ActiveDocument.ActiveWindow.NewwWindow
NewwWindow
Windows.Add

Remarks

A colon (:) and a number appear in the window caption when more than one
window is open for a document.

When you switch the view to print preview, a new window is created. This
window is removed from the Windows collection when you close print preview.

Windows Collection Object

|‘Windows (Window)

|‘Multiple objects

Multiple objects

A collection of Window objects that represent all the available windows. The
Windows collection for the Application object contains all the windows in the
application, whereas the Windows collection for the Document object contains
only the windows that display the specified document.

Using the Windows Collection

Use the Windows property to return the Windows collection. The following
example tiles all the windows so that they don't overlap one another.

wWindows.Arrange ArrangeStyle:=wdTiled

Use the Add method or the NewWindow method to add a new window to the
Windows collection. Each of the following statements creates a new window for
the document in the active window.

ActiveDocument.ActiveWindow.NewwWindow
NewwWindow
Windows.Add

Use Windows(index), where index is the window name or the index number, to
return a single Window object. The following example maximizes the
Document1 window.

Windows('"Documentl").WindowState = wdWindowStateMaximize

The index number is the number to the left of the window name on the Window
menu. The following example displays the caption of the first window in the
Windows collection.

MsgBox Windows(1).Caption

Remarks

A colon (:) and a number appear in the window caption when more than one
window is open for a document.

When you switch the view to print preview, a new window is created. This
window is removed from the Windows collection when you close print preview.

Words Collection Object

|‘Words

Multiple objects
|‘Range
A collection of words in a selection, range, or document. Each item in the

Words collection is a Range object that represents one word. There is no Word
object.

Using the Words Collection

Use the Words property to return the Words object. The following example
displays how many words are currently selected.

MsgBox Selection.Words.Count & " words are selected"

Use Words(index), where index is the index number, to return a Range object
that represents one word. The index number represents the position of the word
in the Words collection. The following example formats the first word in the
selection as 24-point italic.

With Selection.Words(1)
.Italic = True
.Font.Size = 24

End with

The item in the Words collection includes both the word and the spaces after the
word. To remove the trailing spaces, use Visual Basic's RTrim function — for
example, RTrim(ActiveDocument.Words(1)). The following example selects the
first word (and its trailing spaces) in the active document.

ActiveDocument.Words(1).Select

Remarks

If the selection is the insertion point and it is immediately followed by a space,
Selection.Words(1) refers to the word preceding the selection. If the selection
is the insertion point and is immediately followed by a character,
Selection.Words(1) refers to the word following the selection.

The Count property for this collection in a document returns the number of
items in the main story only. To count items in other stories use the collection
with the Range object. Also, the Count property includes punctuation and
paragraph marks in the total. If you need a count of the the actual words in a
document, use the Word Count dialog box. The following example retrieves the
number of words in the active document and assigns the value to the variable
numwWords.

Set temp = Dialogs(wdDialogToolsWordCount)

' Execute the dialog box in order to refresh its data.
temp.Execute

numwWords = temp.Words

For more information about calling built-in dialog boxes, see Displaying built-in
Word dialog boxes.

The Add method isn't available for the Words collection. Instead, use the
InsertAfter method or the InsertBefore method to add text to a Range object.
The following example inserts text after the first word in the active document.

ActiveDocument.Range.Words(1).InsertAfter "New text "

WrapFormat Object

L

Multiple objects ~WrapFormat

Represents all the properties for wrapping text around a shape or shape range.

Using the WrapFormat Object

Use the WrapFormat property to return the WrapFormat object. The
following example adds an oval to the active document and specifies that
document text wrap around the left and right sides of the square that
circumscribes the oval. There will be a 0.1-inch margin between the document
text and the top, bottom, left side, and right side of the square.

Set myOval = _

ActiveDocument.Shapes.AddShape(msoShapeOval, 36, 36, 100, 35)
wWith myOval.WrapFormat

.Type = wdWrapSquare

.Side = wdwrapBoth

.DistanceTop = InchesToPoints(0.1)

.DistanceBottom = InchesToPoints(0.1)

.DistanceLeft = InchesToPoints(0.1)

.DistanceRight = InchesToPoints(0.1)
End With

Z.oom Object

L

Zooms (Zoom)

Multiple objects

Contains magnification options (for example, the zoom percentage) for a
window or pane. The Zoom object is a member of the Zooms collection.

Using the Zoom Object

Use the Zoom property of the View object to return a single Zoom object. The
following example sets the zoom percentage for the active window to 110
percent.

ActiveDocument.ActiveWindow.View.Zoom.Percentage = 110

Use Zooms(index), where index identifies the view type, to return a single Zoom
object. The view type specified by index can be one of the following
WdViewType constants: wdMasterView, wdNormalView, wdOutlineView,
wdPrintPreview, wdPrintView, or wdWebView. The following example sets
the magnification for the active window so that an entire page is visible.

ActiveDocument.ActiveWindow.ActivePane _
.Zooms (wdPrintView) .PageFit = wdPageFitFullPage

The Add method isn't available for the Zooms collection. The Zooms collection
includes a single Zoom object for each of the various view types (outline,
normal, page layout, and so on).

Z.ooms Collection Object

L

Pane —Zooms

L

Z.oom

A collection of Zoom objects that represents the magnification options for each
view (outline, normal, print layout, and so on).

Using the Zooms Collection

Use the Zooms property to return the Zooms collection. The following example
sets the zoom percentage for the active window to 100 percent in Normal view.

ActiveDocument.ActiveWindow.ActivePane _
.Zooms (wdNormalView) .Percentage = 100

The Add method isn't available for the Zooms collection. The Zooms collection
includes a single Zoom object for each of the various view types (outline,
normal, page layout, and so on). You cannot enumerate the Zooms collection by
using a For Each...Next loop.

Use Zooms(index), where index identifies the view type, to return a single Zoom
object. The view type specified by index can be one of the following
WdViewType constants: wdMasterView, wdNormalView, wdOutlineView,
wdPrintPreview, wdPrintView, or wdWebView. The following example sets
the magnification for the active window so that an entire page is visible.

ActiveDocument.ActiveWindow.ActivePane _
.Zooms (wdPrintView) .PageFit = wdPageFitFullPage

You can also use the Zoom property of the View object to return a single Zoom
object. The following example sets the zoom percentage for the active window
to 110 percent.

ActiveDocument.ActiveWindow.View.Zoom.Percentage = 110

Accept Method

Accepts the specified tracked change. The revision marks are removed, and the
change is incorporated into the document.

expression.Accept

expression Required. An expression that returns a Revision object.

Example

This example accepts the next tracked change found if the change type is
inserted text.

Set revNext = Selection.NextRevision(Wrap:=True)

If Not (revNext Is Nothing) Then
If revNext.Type = wdRevisionInsert Then revNext.Accept
End If

This example accepts all the tracked changes in the selection.

Dim revLoop As Revision
Dim rngSelection As Range

Set rngSelection = Selection.Range

For Each revLoop In rngSelection.Revisions
revLoop.Accept

Next revLoop

AcceptAll Method

Accepts all the tracked changes in a document or range. The revision marks are
removed, and the changes are incorporated into the document.

expression.AcceptAll

expression Required. An expression that returns a Revisions object.

Remarks

Use the AcceptAllRevisions method to accept all revisions in a document.

Example

This example accepts all the tracked changes in the active document.

If ActiveDocument.Revisions.Count >= 1 Then _
ActiveDocument.Revisions.AcceptAll

This example accepts all the tracked changes in the selection.

Selection.Range.Revisions.AcceptAll

AcceptAllRevisions Method

Accepts all tracked changes in the specified document.
expression.AcceptAllRevisions

expression Required. An expression that returns a Document object.

Example

This example checks the main story in the active document for tracked changes,
and if there are any, the example incorporates all revisions in all stories in the
document.

If ActiveDocument.Revisions.Count >= 1 Then _
ActiveDocument .AcceptAllRevisions

AcceptAllRevisionsShown Method

Accepts all revisions in the specified document that are displayed on the screen.
expression.AcceptAllRevisionsShown

expression Required. An expression that returns a Document object.

Remarks

Use the RejectAllRevisionsShown method to reject all revisions in a specified
document that are displayed on the screen.

Example

This example accepts all revisions displayed after hiding revisions made by "Jeff
Smith." This example assumes that the active document was reviewed by more
than one person and that the name of one of the reviewers is "Jeff Smith."

Sub AcceptAllChanges()
Dim rev As Reviewer
wWith ActiveWindow.View
'Display all comments and revisions
.ShowRevisionsAndComments = True
.ShowFormatChanges = True
.ShowInsertionsAndDeletions = True

For Each rev In .Reviewers
rev.Visible = True
Next

'Hide only the revisions/comments made by the

'reviewer named "Jeff Smith"

.Reviewers(Index:="Jeff Smith").Visible = False
End With

"Accept all revisions displayed in the active view
ActiveDocument .AcceptAllRevisionsShown

End Sub

-Show All

Activate Method

» Activate method as it applies to the Application, Document, InlineShape,
OLEFormat, Pane, Shape, ShapeRange, and Window objects.

Activates the specified object.
expression.Activate
expression Required. An expression that returns one of the above objects.

» Activate method as it applies to the Task object.

Activates the Task object.
expression.Activate(Wait)
expression Required. An expression that returns a Task object.

Wait Optional Variant. True to wait until the user has activated Word before
activating the task. False to immediately activate the task, even if Word isn't
active.

Example

» As it applies to the Document object.

This example activates the document named "Sales.doc."

Sub OpenSales()
'Sales.doc must exist and be open but not active.
Documents("Sales.doc").Activate

End Sub

» As it applies to the Window object.

This example activates the next window in the Windows collection.

Sub NextWindow()
'"Two or more documents must be open for this statement to execut
ActiveDocument.ActiveWindow.Next.Activate

End Sub

» As it applies to the Task object.

This example activates the Notepad application if Notepad is in the Tasks
collection.

Sub ActivateNotePad()
Dim Task1 "Notepad must be open and in the Task List.

For Each Taskl In Tasks
If InStr(Taskl.Name, "Notepad") > O Then
Taskl.Activate
Taskl.WindowState = wdwWindowStateNormal
End If
Next Taskil
End Sub

» As it applies to the Pane object.

This example splits the active window and then activates the first pane.

Sub SplitWindow()
With ActiveDocument.ActiveWindow

.SplitVertical = 50
.Panes(1) .Activate
End With
End Sub

ActivateAs Method

Sets the Windows registry value that determines the default application used to
activate the specified OLE object.

expression.ActivateAs(ClassType)
expression Required. An expression that returns an OLEFormat object.

ClassType Required String. The name of the application in which an OLE
object is opened. To see a list of object types that the OLE object can be
activated as, click the object and then open the Convert dialog box (Edit menu,
Object submenu). You can find the ClassType string by inserting an object as an
inline shape and then viewing the field codes. The class type of the object
follows either the word "EMBED" or the word "LINK."

Example

This example sets the first floating shape on the active document to open in
Microsoft Excel, and then it activates the shape. For the example to work, this
shape must be an OLE object that can be opened in Microsoft Excel.

With ActiveDocument.Shapes(1).0LEFormat
.ActivateAs ClassType:="Excel.Sheet"
.Activate

End wWith

-Show All

Add Method

» Add method as it applies to the AddIns object.

Returns an AddIn object that represents an add-in added to the list of available
add-ins.

expression.Add(FileName, Install)
expression Required. An expression that returns an AddIns object.
FileName Required String. The path for the template or WLL.

Install Optional Variant. True to install the add-in. False to add the add-in to
the list of add-ins but not install it. The default value is True.

Remarks

Use the Installed property of an add-in to see whether it's already installed.

» Add method as it applies to the AutoCorrectEntries object.

Returns an AutoCorrectEntry object that represents a plain-text AutoCorrect
entry added to the list of available AutoCorrect entries.

expression.Add(Name, Value)

expression Required. An expression that returns an AutoCorrectEntries
object.

Name Required String. The text you want to have automatically replaced with
the text specified by Value.

Value Required String. The text you want to have automatically inserted
whenever the text specified by Name is typed.

Remarks

Use the AddRichText method to create a formatted AutoCorrect entry.

» Add method as it applies to the AutoTextEntries object.

Returns an AutoTextEntry object that represents an AutoText entry added to the
list of available AutoText entries.

expression.Add(Name, Range)

expression Required. An expression that returns an AutoTextEntries object.

Name Required String. The text that, when typed, initiates an AutoText entry.

Range Required Range. A range of text that will be inserted whenever Name is
typed.

» Add method as it applies to the Bookmarks object.

Returns a Bookmark object that represents a bookmark added to a range.
expression.Add(Name, Range)

expression Required. An expression that returns a Bookmarks object.

Name Required String. The name of the bookmark. The name cannot be more
than one word.

Range Optional Variant. The range of text marked by the bookmark. A
bookmark can be set to a collapsed range (the insertion point).

» Add method as it applies to the CaptionLabels object.

Returns a CaptionlL.abel object that represents a custom caption label.
expression.Add(Name)

expression Required. An expression that returns a CaptionL.abels object.

Name Required String. The name of the custom caption label.

» Add method as it applies to the Cells object.

Returns a Cell object that represents a cell added to a table.
expression.Add(BeforeCell)
expression Required. An expression that returns a Cells object.

BeforeCell Optional Variant. A Cell object that represents the cell that will
appear immediately to the right of the new cell or cells.

» Add method as it applies to the Columns object.

Returns a Column object that represents a column added to a table.
expression.Add(BeforeColumn)

expression Required. An expression that returns a Columns object.

BeforeColumn Optional Variant. A Column object that represents the column
that will appear immediately to the right of the new column.

» Add method as it applies to the Comments object.

Returns a Comment object that represents a comment added to a range.
expression.Add(Range, Text)

expression Required. An expression that returns a Comments object.
Range Required Range object. The range to have a comment added to it.
Text Optional Variant. The text of the comment.

» Add method as it applies to the Customl .abels object.

Adds a custom mailing label to the Customl.abels collection. Returns a
Customl abel object that represents the custom mailing label.

expression.Add(Name, DotMatrix)
expression Required. An expression that returns a CustomLabels object.
Name Required String. The name for the custom mailing labels.

DotMatrix Optional Variant. True to have the mailing labels printed on a dot-
matrix printer.

» Add method as it applies to the CustomProperties object.

Returns a CustomProperty object that represents s custom property added to a
smart tag.

expression.Add(Name, Value)

expression Required. An expression that returns a CustomProperties object.
Name Required String. The name of the custom smart tag property.
Value Required String. The value of the custom smart tag property

» Add method as it applies to the Dictionaries and
HangulHanjaConversionDictionaries objects.

Returns a Dictionary object that represents a new custom spelling or conversion
dictionary added to the collection of active custom spelling or conversion
dictionaries. If a file with the name specified by FileName doesn't exist,
Microsoft Word creates one.

expression.Add(FileName)
expression Required. An expression that returns one of the above objects.

FileName Required String. The string name of the dictionary file. If no path is
specified in the string, the proofing tools path is used.

Remarks

The Dictionaries collection includes only the active custom spelling
dictionaries. Dictionary objects that are derived from the Languages collection
don't have an Add method. These include the Dictionary objects returned by the

ActiveSpellingDictionary, ActiveGrammarDictionary,
ActiveThesaurusDictionary, and ActiveHyphenationDictionary properties.

Use the HangulHanjaDictionaries property to return the collection of custom
conversion dictionaries. The HangulHanjaConversionDictionaries collection
includes only the active custom conversion dictionaries.

For more information on using Microsoft Word with East Asian languages, see
Word features for East Asian languages.

» Add method as it applies to the Documents object.

Returns a Document object that represents a new, empty document added to the
collection of open documents.

expression.Add(Template, NewTemplate, DocumentType, Visible)
expression Required. An expression that returns a Documents object.

Template Optional Variant. The name of the template to be used for the new
document. If this argument is omitted, the Normal template is used.

NewTemplate Optional Variant. True to open the document as a template. The
default value is False.

DocumentType Optional Variant. Can be one of the following
WdNewDocumentType constants: wdNewBlankDocument,
wdNewEmailMessage, wdNewFrameset, or wdNewWebPage. The default
constant is wdNewBlankDocument.

Visible Optional Variant. True to open the document in a visible window. If
this value is False, Microsoft Word opens the document but sets the Visible
property of the document window to False. The default value is True.

mk:@MSITStore:wdmain10.chm::/html/wdrefFeaturesAvailableInWordWhenAsianLanguagesAreEnabled.htm

» Add method as it applies to the EmailSignatureEntries object.

Returns an EmailSignatureEntry object that represents a new e-mail signature
entry.

expression.Add(Name, Range)

expression Required. An expression that returns an EmailSignatureEntries
object.

Name Required String. The name of the e-mail entry.

Range Required Range object. The range in the document that will be added as
the signature.

Remarks

An e-mail signature is standard text that ends an e-mail message, such as your
name and telephone number. Use the EmailSignatureEntries property to create
and manage a collection of e-mail signatures that Microsoft Word will use when
creating e-mail messages.

» Add method as it applies to the Endnotes and Footnotes objects.

Returns an Endnote or Footnote object that represents an endnote or footnote
added to a range.

expression.Add(Range, Reference, Text)
expression Required. An expression that returns one of the above objects.

Range Required Range object. The range marked for the endnote or footnote.
This can be a collapsed range.

Reference Optional Variant. The text for the custom reference mark. If this
argument is omitted, Microsoft Word inserts an automatically-numbered
reference mark.

Text Optional Variant. The text of the endnote or footnote.

Remarks

To specify a symbol for the Reference argument, use the syntax {Font