
Microsoft	Access	Objects
			
Application

Forms	(Form)	 Controls	(Control)
Properties	(Control)

Module
Properties	(Form)

Reports	(Report)
Controls	(Control)
Properties	(Control)

Module
Properties	(Form)

Modules	(Module)
References	(Reference)
Printers	(Printer)
DataAccessPages	(DataAccessPage)
WebOptions

Screen

CurrentProject
AllForms	(AccessObject)
AccessObjectProperties	(AccessObjectProperty)

AllReports	(AccessObject)
AccessObjectProperties	(AccessObjectProperty)

AllDataAccessPages	(AccessObject)
AccessObjectProperties	(AccessObjectProperty)

AllMacros	(AccessObject)
AccessObjectProperties	(AccessObjectProperty)

AllModules	(AccessObject)
AccessObjectProperties	(AccessObjectProperty)

AccessObjectProperties	(AccessObjectProperty)
CurrentData
AllTables	(AccessObject)
AccessObjectProperties	(AccessObjectProperty)

AllQueries	(AccessObject)
AccessObjectProperties	(AccessObjectProperty)

AllViews	(AccessObject)
AccessObjectProperties	(AccessObjectProperty)

AllStoredProcedures	(AccessObject)
AccessObjectProperties	(AccessObjectProperty)

AllFunctions	(AccessObject)
AccessObjectProperties	(AccessObjectProperty)

AllDatabaseDiagrams	(AccessObject)

DoCmd
VBE
NewFile
DefaultWebOptions
Assistant
CommandBars
DBEngine
FileSearch
FileDialog
COMAddIns
AnswerWizard
LanguageSettings

Legend

		Object	and	collection
		Object	only

AccessObjectProperties	(AccessObjectProperty)
CodeProject
AllForms	(AccessObject)
AccessObjectProperties	(AccessObjectProperty)

AllReports	(AccessObject)
AccessObjectProperties	(AccessObjectProperty)

AllDataAccessPages	(AccessObject)
AccessObjectProperties	(AccessObjectProperty)

AllMacros	(AccessObject)
AccessObjectProperties	(AccessObjectProperty)

AllModules	(AccessObject)
AccessObjectProperties	(AccessObjectProperty)

AccessObjectProperties	(AccessObjectProperty)
CodeData
AllTables	(AccessObject)
AccessObjectProperties	(AccessObjectProperty)

AllQueries	(AccessObject)
AccessObjectProperties	(AccessObjectProperty)

AllViews	(AccessObject)
AccessObjectProperties	(AccessObjectProperty)

AllStoredProcedures	(AccessObject)
AccessObjectProperties	(AccessObjectProperty)

AllFunctions	(AccessObject)
AccessObjectProperties	(AccessObjectProperty)

AllDatabaseDiagrams	(AccessObject)
AccessObjectProperties	(AccessObjectProperty)

mk:@MSITStore:vbaof10.chm::/html/ofobjNewFile.htm
mk:@MSITStore:vbaof10.chm::/html/ofobjAssistant.htm
mk:@MSITStore:vbaof10.chm::/html/ofobjCommandBars.htm
mk:@MSITStore:vbaof10.chm::/html/ofobjFileSearch.htm
mk:@MSITStore:vbaof10.chm::/html/ofobjFileDialog.htm
mk:@MSITStore:vbaof10.chm::/html/ofobjCOMAddIns.htm
mk:@MSITStore:vbaof10.chm::/html/ofobjAnswerWizard.htm
mk:@MSITStore:vbaof10.chm::/html/ofobjLanguageSettings.htm

What's	New	for	Microsoft	Access
2002	Developers
			

Changes	have	been	made	to	the	Microsoft	Access	2002	Visual	Basic	object
model	to	support	new	and	improved	features	in	the	application.

Visit	the	Office	Developer	Center	at	MSDN	Online	for	the	latest	Microsoft
Access	development	information,	including	new	technical	articles,	downloads,
samples,	product	news,	and	more.

http://officeupdate.microsoft.com/office/redirect/10/Helplinks.asp?AppName=ACCESS&HelpLCID=1033&LinkNum=99000030&Version=0,

New	Language	Elements

The	following	topics	provide	lists	of	language	elements	that	are	new	in
Microsoft	Access	2002.

New	Objects

New	Properties	(Alphabetical	List)

New	Properties	(by	Object)

New	Methods	(Alphabetical	List)

New	Methods	(by	Object)

New	Events

Hidden	Language	Elements

The	following	topic	lists	the	language	elements	that	have	been	hidden	in
Microsoft	Access	2002.

Hidden	Properties

New	Objects
			

Visit	the	Office	Developer	Center	at	MSDN	Online	for	the	latest	Microsoft
Access	development	information,	including	new	technical	articles,	downloads,
samples,	product	news,	and	more.

The	following	table	lists	objects	that	have	been	added	to	Visual	Basic	in
Microsoft	Access	2002.

Objects Description

AllFunctions

New	collection	of	AccessObject
objects	that	describe	instances	of	all
functions	specified	by	the
CurrentData	or	CodeData	objects.

Printer,	Printers New	object	and	collection	representing
printers	available	on	the	current	system.

http://officeupdate.microsoft.com/office/redirect/10/Helplinks.asp?AppName=ACCESS&HelpLCID=1033&LinkNum=99000030&Version=0,

New	Events
			

The	following	table	lists	events	that	have	been	added	to	Visual	Basic	in
Microsoft	Access	2002.

Objects Events
ComboBox,	TextBox Undo

Form

AfterBeginTransaction
AfterCommitTransaction
AfterFinalRender
AfterLayout
AfterRender
BeforeBeginTransaction
BeforeCommitTransaction
BeforeQuery
BeforeRender
BeforeScreenTip
BeginBatchEdit
CommandBeforeExecute
CommandChecked
CommandEnabled
CommandExecute
DataChange
DataSetChange
MouseWheel
OnConnect
OnDisconnect
PivotTableChange
Query
RecordExit
RollbackTransaction
SelectionChange
Undo
UndoBatchEdit

ViewChange

New	Methods	(Alphabetical	List)
			

The	following	table	lists	methods	that	have	been	added	to	Visual	Basic	in
Microsoft	Access	2002.

Methods
AddItem
CompactRepair
ConvertAccessProject
CopyDatabaseFile
CreateNewWorkgroupFile
DiscardConflict
ExportXML
ImportXML
Move
OfflineConflict
OpenFunction
RemoveItem
SetDefaultWorkgroupFile
TransferSQLDatabase

New	Methods	(by	Object)
			

The	following	table	lists	methods	that	have	been	added	to	Visual	Basic	in
Microsoft	Access	2002.

Objects Methods

Application

CompactRepair
ConvertAccessProject
CreateNewWorkgroupFile
DiscardConflict
ExportXML
ImportXML
OfflineConflict
SetDefaultWorkgroupFile

BoundObjectFrame Move
CheckBox Move

ComboBox
AddItem
Move
RemoveItem

CommandButton Move
Control Move
CustomControl Move

DoCmd
CopyDatabaseFile
OpenFunction
TransferSQLDatabase

Form Move
Image Move
Label Move
Line Move

ListBox
AddItem
Move
RemoveItem

ObjectFrame Move
OptionButton Move
OptionGroup Move
Page Move
PageBreak Move
Rectangle Move
Report Move
SubForm Move
TabControl Move
TextBox Move
ToggleButton Move

New	Properties	(Alphabetical	List)
			

The	following	table	lists	properties	that	have	been	added	to	Visual	Basic	in
Microsoft	Access	2002.

Properties
AfterBeginTransaction
AfterCommitTransaction
AfterFinalRender
AfterLayout
AfterRender
AllFunctions
AllowDatasheetView
AllowFormView
AllowPivotChartView
AllowPivotTableView
AsianLineBreak
BatchUpdates
BeforeBeginTransaction
BeforeCommitTransaction
BeforeQuery
BeforeRender
BeforeScreenTip
BeginBatchEdit
BrokenReference
Build
ChartSpace
ColorMode
ColumnSpacing
CommandBeforeExecute

CommandChecked
CommandEnabled
CommandExecute
CommitOnClose
CommitOnNavigation
Copies
DataChange
DataOnly
DataSetChange
DatasheetBorderLineStyle
DatasheetColumnHeaderUnderlineStyle
DateCreated
DateModified
DefaultSize
DeviceName
DriverName
Duplex
FileDialog
FileFormat
HorizontalDatasheetGridlineStyle
ItemLayout
ItemsAcross
ItemSizeHeight
ItemSizeWidth
MailEnvelope
MouseWheel
Moveable
MSODSC
NewFile
OnConnect
OnDisconnect
OnRecordExit
OnUndo

PaperBin

PaperSize
PivotTable
PivotTableChange
Port
Printer
Printers
PrintQuality
Query
RecordSourceQualifier
RemovePersonalInformation
RollbackTransaction
RowSpacing
SelectionChange
Shape
TargetBrowser
UndoBatchEdit
UseDefaultPrinter
Version
VerticalDatasheetGridlineStyle
ViewChange
WindowLeft
WindowTop

New	Properties	(By	Object)
			

The	following	table	lists	properties	that	have	been	added	to	Visual	Basic	in
Microsoft	Access	2002.

Objects Properties

AccessObject DateCreated
DateModified

Application

BrokenReference
Build
FileDialog
NewFile
Printer
Printers
Version

CodeData AllFunctions

CodeProject FileFormat
RemovePersonalInformation

ComboBox OnUndo
CurrentData AllFunctions

CurrentProject FileFormat
RemovePersonalInformation

DataAccessPage
MailEnvelope
MSODSC
RemovePersonalInformation

DefaultWebOptions TargetBrowser
AfterBeginTransaction
AfterCommitTransaction
AfterFinalRender
AfterLayout
AfterRender
AllowDatasheetView
AllowFormView

Form

AllowPivotChartView
AllowPivotTableView
BatchUpdates
BeforeBeginTransaction
BeforeCommitTransaction
BeforeQuery
BeforeRender
BeforeScreenTip
BeginBatchEdit
ChartSpace
CommandBeforeExecute
CommandChecked
CommandEnabled
CommandExecute
CommitOnClose
CommitOnNavigation
DataChange
DataSetChange
DatasheetBorderLineStyle
DatasheetColumnHeaderUnderlineStyle
HorizontalDatasheetGridlineStyle
MouseWheel
Moveable
OnConnect
OnDisconnect
OnRecordExit
OnUndo
PivotTable
PivotTableChange
Printer
Query
RecordSourceQualifier
RollbackTransaction
SelectionChange
UndoBatchEdit
UseDefaultPrinter
VerticalDatasheetGridlineStyle
ViewChange
WindowLeft

WindowTop

Printer

ColorMode
ColumnSpacing
Copies
DataOnly
DefaultSize
DeviceName
DriverName
Duplex
ItemLayout
ItemsAcross
ItemSizeHeight
ItemSizeWidth
PaperBin
PaperSize
Port
PrintQuality
RowSpacing

Report

Moveable
Printer
RecordSourceQualifier
Shape
UseDefaultPrinter
WindowLeft
WindowTop

TextBox AsianLineBreak
OnUndo

WebOptions TargetBrowser

Show	All

Scoping	and	Object-Naming
Compatibility
			

Visual	Basic	scoping	rules	affect	the	names	you	choose	for	your	objects,
modules,	and	procedures.

Modules	and	Other	Objects	with	the	Same	Name

When	you	name	a	module,	avoid	prefacing	module	names	with	"Form_"	or
"Report_".	Naming	a	module	in	this	way	could	conflict	with	existing	code
you've	written	behind	forms	and	reports.

If	you	have	a	module	in	an	application	created	with	version	1.x	or	2.0	of
Microsoft	Access	that	doesn't	follow	these	naming	rules,	Microsoft	Access
generates	an	error	when	you	try	to	convert	your	application.	For	example,	a
module	named	Form_Orders	in	a	Microsoft	Access	version	1.x	or	2.0	database
would	generate	an	error	and	you	would	be	asked	to	rename	the	module	before
attempting	to	convert	it.

Modules	and	Procedures	with	the	Same	Name

Although	it	is	not	suggested,	you	can	have	a	procedure	with	the	same	name	as	a
module.	To	call	that	procedure	from	an	expression	anywhere	in	your	application,
you	must	use	a	fully	qualified	name	for	the	procedure,	including	both	the	module
name	and	the	procedure	name,	as	in	the	following	example:

IsLoaded.IsLoaded("Orders")

Note			This	will	not	work	with	the	Runcode	action	in	macros.	Accessing
procedures	with	the	same	name	as	a	module	is	not	possible	with	macros.

Procedures	and	Controls	with	the	Same	Name

If	you	call	a	procedure	from	a	form,	and	that	procedure	has	the	same	name	as	a
control	on	the	form,	you	must	fully	qualify	the	procedure	call	with	the	name	of
the	module	in	which	it	resides.	For	example,	if	you	want	to	call	a	procedure
named	PrintInvoice	that	resides	in	a	standard	module	named	Utilities,	and	there's
also	a	button	on	the	same	form	named	PrintInvoice,	use	the	fully	qualified	name
Utilities.PrintInvoice	when	you	call	the	procedure	from	your	form	or	form
module.

Controls	with	Similar	Names

You	can't	have	a	control	with	a	name	that	differs	from	an	existing	control's	name
by	only	a	space	or	a	symbol.	For	example,	if	you	have	a	control	named
[Last_Name],	you	can't	have	a	control	named	[Last	Name]	or	[Last+Name].

Modules	with	the	Same	Names	as	Type	Libraries

You	can't	save	a	module	with	the	same	name	as	a	type	library.	If	you	try	to	save
a	module	with	the	name	"ADO",	"Access",	"DAO"	or	"VBA",	you'll	get	an	error
stating	that	the	name	conflicts	with	an	existing	module,	project,	or	object	library.
Similarly,	if	you've	set	a	reference	to	another	type	library,	such	as	the	Microsoft
Excel	type	library,	you	can't	save	a	module	with	the	name	"Excel".

Fields	with	the	Same	Names	as	Methods

If	a	field	in	the	table	has	the	same	name	as	an	ActiveX	Data	Objects	(ADO)
method	on	an	ADO	Recordset	object,	or	a	Data	Access	Object	(DAO)	method
on	a	DAO	Recordset	object,	you	can't	refer	to	the	corresponding	field	in	the
recordset	with	the	.	(dot)	syntax.	You	must	use	the	!	(exclamation	point)	syntax,
or	Microsoft	Access	will	generate	an	error.	The	following	example	shows	how	to
refer	to	a	field	called	AddNew	in	a	recordset	opened	on	a	table	called	Contacts:

ADO
Dim	rst	As	New	ADODB.Recordset

rst.Open	"Contacts",CurrentProject.Connection,	_

				adOpenKeySet,adLockOptimistic

Debug.Print	rst!AddNew

DAO
Dim	dbs	As	Database,	rst	As	DAO.Recordset

Set	dbs	=	CurrentDb

Set	rst	=	dbs.OpenRecordset("Contacts")

Debug.Print	rst!AddNew

Modules	with	the	Same	Names	as	Visual	Basic
Functions

If	you	save	a	module	with	the	same	name	as	an	intrinsic	Visual	Basic	function,
Microsoft	Access	will	generate	an	error	when	you	try	to	run	that	function.	For
example,	if	you	save	a	module	named	MsgBox,	and	then	try	to	run	a	procedure
that	calls	the	MsgBox	function,	Microsoft	Access	generates	the	error	"Expected
variable	or	procedure,	not	module."

Modules	with	the	Same	Names	as	Objects

If	a	database	created	with	a	previous	version	of	Microsoft	Access	includes	a
module	that	has	the	same	name	as	a	Microsoft	Access	object,	an	ADO	object,	or
a	DAO	object,	you	may	encounter	compilation	errors	when	you	convert	your
database.	For	example,	a	module	named	"Form"	or	"Database"	may	generate	a
compilation	error.	To	avoid	these	errors,	rename	the	module.

Naming	Fields	Used	in	Expressions	or	Bound	to
Controls	on	Forms	and	Reports

When	you	create	a	field	in	a	table	that	will	be	bound	to	a	control	on	a	report	or
used	in	an	expression	in	the	ControlSource	property	of	a	control	or	a	report,
avoid	assigning	the	field	a	name	that's	the	same	name	as	a	method	of	the
Application	object.	To	see	a	list	of	methods	of	the	Application	object,	click
Object	Browser	on	the	View	menu	while	in	module	Design	view.	Click	Access
in	the	Project/Library	box,	click	Application	in	the	Classes	box,	and	view	the
methods	of	the	Application	object	in	the	Members	Of	box.

When	you	create	a	field	in	a	table	that	will	be	bound	to	a	control	on	a	form	or
report,	avoid	assigning	the	field	any	of	the	following	names:	AddRef,
GetIDsOfNames,	GetTypeInfo,	GetTypeInfoCount,	Invoke,	QueryInterface,	or
Release.

Identifiers	with	Same	Names	as	Visual	Basic
Keywords

The	version	of	Visual	Basic	that's	used	by	Microsoft	Access	97	(and	later)
contains	some	new	Visual	Basic	keywords,	so	you	can	no	longer	use	these
keywords	as	identifiers.	These	keywords	are:	AddressOf,	Assert,	Decimal,
DefDec,	Enum,	Event,	Friend,	Implements,	RaiseEvent,	and	WithEvents.
When	you	convert	a	database	developed	with	a	prior	version	of	Microsoft
Access,	existing	identifiers	that	are	the	same	as	a	new	Visual	Basic	keyword	will
cause	a	compile	error.	To	correct	this	problem,	rename	the	identifiers.

Project	Names	the	Same	as	Microsoft	Access	Objects

A	project	name	is	the	string	that	is	the	name	of	your	Microsoft	Access
application.	In	prior	versions	of	Microsoft	Access,	the	project	name	was	the
name	of	the	database.	Beginning	in	Microsoft	Access	2000,	the	project	name	is
specified	by	the	ProjectName	property	setting	and	its	default	setting	is	the	name
of	the	database.	If	you	convert	a	database	with	a	name	that	is	the	same	as	a	class
of	objects,	for	example,	"application,"	"form,"	or	"report,"	Microsoft	Access	will
append	an	underscore	character	to	the	database	name	to	create	a	project	name
that	does	not	conflict	with	existing	objects.

Show	All

Custom	Methods	and	Properties
			

You	can	use	a	class	module	to	create	a	definition	for	a	new	custom	object.	When
you	create	a	new	instance	of	a	class,	you	create	a	new	object	and	return	a
reference	to	it.

Any	public	procedures	defined	within	the	class	module	become	methods	of	the
new	object.	The	Sub	statement	defines	a	method	that	doesn't	return	a	value;	the
Function	statement	defines	a	method	that	may	return	a	value	of	a	specified	type.

Any	Property	Let,	Property	Get	or	Property	Set	procedures	you	define
become	properties	of	the	new	object.	Property	Get	procedures	retrieve	the	value
of	a	property.	Property	Let	procedures	set	the	value	of	a	nonobject	property.
Property	Set	procedures	set	the	value	of	an	object	property.

For	example,	you	can	use	a	class	module	to	create	an	interface	layer	between
your	application	and	a	set	of	Windows	application	programming	interface	(API)
functions	that	it	calls.	To	do	this,	you	create	a	set	of	simple	procedures	that	call
more	complicated	procedures	in	a	DLL.	When	you	create	an	instance	of	this
class,	the	procedures	you've	created	become	methods	of	the	new	object.	You	can
apply	these	methods	as	you	would	the	methods	of	any	object,	and	in	doing	so
you	also	call	the	API	functions.

Show	All

Program	Toolbars	and	Menu	Bars
			

Microsoft	Access	includes	command	bars,	which	are	programmable	toolbars	and
menu	bars.	Using	command	bars,	you	can	create	custom	toolbars	and	menus	for
your	application.

In	order	to	program	with	command	bars,	you	must	set	a	reference	to	the
Microsoft	Office	object	library.	Click	References	on	the	Tools	menu	while	in
module	Design	view,	and	select	the	check	box	next	to	Microsoft	Office	Object
Library.

The	CommandBars	collection	includes	all	the	command	bars	that	currently
exist	within	the	application.	You	can	add	a	new	CommandBar	object	to	the
CommandBars	collection	by	using	the	Add	method	of	the	CommandBars
collection.	For	example,	the	following	code	creates	a	new	command	bar	named
MyCommandBar.	Note	that	you	need	to	set	the	new	command	bar's	Visible
property	to	True	in	order	to	see	it.

Dim	cmb	As	CommandBar

Set	cmb	=	Application.CommandBars.Add("MyCommandBar")

cmb.Visible	=	True

Each	CommandBar	object	has	a	CommandBarControls	collection,	which
contains	all	the	controls	on	the	command	bar.	Command	bar	controls	are
different	from	the	controls	on	a	form.	You	can	create	different	types	of	command
bar	controls,	including	buttons,	combo	boxes,	and	pop-ups.	You	can	combine
these	controls	to	create	a	custom	toolbar	or	menu	bar.

To	refer	to	the	CommandBarControls	collection,	use	the	Controls	property	of
the	CommandBar	object.	To	add	a	control	to	a	command	bar,	use	the	Add
method	of	the	CommandBarControls	collection,	specifying	which	type	of
control	you	want	to	create.	The	following	example	adds	a	new	button	to	the
command	bar	created	in	the	previous	example:

Dim	cbc	As	CommandBarControl

Set	cbc	=	cmb.Controls.Add(msoControlButton)

cbc.Caption	=	"Button1"

cbc.Style	=	msoButtonCaption

You	can	specify	an	expression	to	evaluate	or	a	macro	to	run	when	the	user	clicks
a	command	bar	control.	Set	the	OnAction	to	the	name	of	a	macro	or	to	an
expression	that	contains	a	built-in	or	user-defined	function.	For	example,	the
following	line	of	code	sets	the	OnAction	property	of	a	CommandBarControl
object	to	an	expression	that	includes	the	MsgBox	function.	This	example	uses
the	CommandBar	and	CommandBarControl	objects	created	in	the	previous
two	examples:

CommandBars("MyCommandBar").Controls("Button1").OnAction	=	"=MsgBox(""Wow!"")"

Note			Unlike	most	other	collections	in	Microsoft	Access,	the	CommandBars
collection	and	all	the	collections	it	contains	are	indexed	beginning	with	1	rather
than	0.

Show	All

Improvements	in	Compilation
Performance
			

Microsoft	Access	includes	improvements	to	module	loading	and	compilation
performance	to	make	your	code	compile	and	run	faster.

Form	and	Report	Modules	Created	on	Demand

When	you	create	a	form	or	report	in	Microsoft	Access	2002,	the	form	or	report
doesn't	automatically	have	an	associated	module.	When	you	click	Code	on	the
toolbar	to	view	the	form's	or	report's	module,	the	module	is	created.	You	can	also
create	the	module	from	Visual	Basic	by	referring	to	the	form's	Module	property
while	the	form	or	report	is	in	Design	view,	or	by	setting	the	HasModule
property	to	True.

The	setting	of	the	HasModule	property	indicates	whether	a	form	or	report
currently	has	an	associated	module.

Since	a	form	or	report	module	isn't	created	until	you	need	to	add	code	to	it,	your
project	may	have	fewer	modules	to	compile,	resulting	in	improved	compilation
performance.	Also,	forms	and	reports	without	modules	load	more	quickly	than
those	with	modules.

Compiling	on	Demand

It's	a	good	idea	to	explicitly	compile	the	modules	in	your	project	by	using	the
commands	described	above,	but	it's	not	necessary.	Microsoft	Access	compiles	a
module	before	running	a	procedure	in	it	if	the	module	hasn't	already	been
compiled.

When	a	module	is	loaded	for	execution,	Microsoft	Access	checks	to	see	whether
the	module	has	already	been	compiled.	If	not,	Microsoft	Access	compiles	the
module	immediately	prior	to	executing	a	procedure	within	it.	The	process	of
compiling	slows	down	your	code,	so	code	in	modules	that	have	been	saved	in	a
compiled	state	will	run	faster.

Note	that	in	Microsoft	Access	95,	when	you	run	a	procedure	in	one	module,	all
modules	in	the	potential	call	tree	are	loaded,	although	by	default	they	aren't
compiled	until	a	procedure	within	them	is	called.	Because	Microsoft	Access	97
(and	later	versions)	load	modules	on	a	need-only	basis,	your	code	may	run	faster
in	many	cases.

You	can	further	enhance	performance	by	grouping	procedures	in	modules	to
reduce	unnecessary	compilations.	Group	procedures	in	modules	with	other
procedures	that	they	call,	as	opposed	to	grouping	them	in	modules	with
unrelated	procedures.

Show	All

Macro	Actions	and	Methods	of	the
DoCmd	Object
			

To	carry	out	macro	actions	from	code	in	Microsoft	Access,	use	the	DoCmd
object	and	its	methods.	This	object	replaces	the	DoCmd	statement	that	you	used
in	versions	1.x	and	2.0	of	Microsoft	Access	to	carry	out	a	macro	action.

When	you	convert	a	database,	Microsoft	Access	automatically	converts	any
DoCmd	statements	and	the	actions	that	they	carried	out	in	your	Access	Basic
code	to	methods	of	the	DoCmd	object	by	replacing	the	space	with	the	.	(dot)
operator.

Some	macro	actions	work	differently	in	Microsoft	Access	9.0	and	later	than	in
version	1.x,	2.0,	or	7.0;	these	differences	are	detailed	below.

Databases	Created	with	Microsoft	Access	95

The	DoMenuItem	Action

The	DoMenuItem	action	is	no	longer	used	in	Microsoft	Access.	The
RunCommand	action	can	be	used	to	accomplish	the	tasks	for	which	you	used	to
use	the	DoMenuItem	action.

When	you	enable	a	database	created	with	a	prior	version	of	Microsoft	Access,
the	DoMenuItem	action	will	continue	to	work	as	it	did	before.

When	you	convert	a	database	created	with	a	prior	version	of	Microsoft	Access,
all	DoMenuItem	actions	in	macros	are	replaced	with	RunCommand	actions	the
first	time	that	the	macros	are	saved	after	conversion.	DoMenuItem	methods	used
in	Visual	Basic	procedures	aren't	changed.

Databases	Created	with	Microsoft	Access	Version	1.x
or	2.0

The	TransferSpreadsheet	Action

Microsoft	Access	can't	import	Microsoft	Excel	version	2.0	spreadsheets	or	Lotus
1-2-3	version	1.0	spreadsheets.	If	your	converted	database	contains	a	macro	that
provided	this	functionality	by	using	the	TransferSpreadsheet	action	in	Microsoft
Access	version	1.x	or	2.0,	converting	the	database	will	change	the	Spreadsheet
Type	argument	to	Microsoft	Excel	version	3.0	(if	you	originally	specified
Microsoft	Excel	version	2.0),	or	causes	an	error	if	you	originally	specified	Lotus
1-2-3	version	1.0	format.

To	work	around	this	problem,	convert	the	spreadsheets	to	a	later	version	of
Microsoft	Excel	or	Lotus	1-2-3	before	importing	them	into	Microsoft	Access.

The	TransferText	and	TransferSpreadsheet	Actions

In	Microsoft	Access,	you	can't	use	a	SQL	statement	to	specify	data	to	export
when	you're	using	the	TransferText	action	or	the	TransferSpreadsheet	action.
Instead	of	using	a	SQL	statement,	you	must	first	create	a	query	and	then	specify
the	name	of	the	query	in	the	Table	Name	argument.

Comparisons	Involving	Null	Values

In	Microsoft	Access	versions	1.x	and	2.0,	if	you	compare	two	expressions	within
a	macro	condition	by	using	a	comparison	operator	and	one	of	the	expressions	is
Null,	Access	Basic	will	return	True	or	False	for	the	comparison,	depending	on
which	comparison	operator	you	use.	In	Microsoft	Access	2000	and	later,	Visual
Basic	returns	Null	for	a	comparison	in	which	one	expression	is	Null.	To
determine	whether	the	comparison	evaluates	to	Null,	use	the	IsNull	function	to
check	the	result	of	the	comparison.

Show	All

Using	Enumerated	Constants	in
Microsoft	Access	2002
			

In	Microsoft	Access	2002,	a	number	of	intrinsic	constants	have	been	added	or
changed.	This	was	done	to	create	lists	of	"enumerated"	constants	that	are
displayed	in	the	Auto	List	Members	list	in	the	Module	window	for	the
arguments	of	various	Microsoft	Access	methods,	functions,	and	properties,	or	as
the	setting	of	various	Microsoft	Access	properties.	You	can	select	the	appropriate
constant	from	the	list	in	the	Module	window,	instead	of	having	to	remember	the
constant	or	look	it	up	in	the	Help	topic.

The	following	information	applies	to	enumerated	constants:

The	set	of	enumerated	constants	for	each	method,	function,	or	property
argument	has	a	name,	which	is	displayed	in	the	syntax	line	for	the	method,
function,	or	property	in	the	Module	window	when	the	Auto	Quick	Info
option	is	selected	in	the	Editor	tab	of	the	Options	dialog	box,	available	by
clicking	Options	on	the	Tool	menu.	(For	property	settings,	the	name	isn't
displayed,	just	the	list	of	constants.)	For	example,	the	syntax	line	for	the
OpenForm	method	of	the	DoCmd	object	shows	[View	As	AcFormView	=
acNormal]	for	the	view	argument	of	this	method.	AcFormView	is	the
name	of	this	set	of	enumerated	constants,	and	acNormal	is	the	default
setting	for	the	argument.	The	Object	Browser	also	lists	the	names	of	the	sets
of	enumerated	constants	in	the	Classes	box	and	lists	the	intrinsic	constants
contained	in	each	of	these	sets	in	the	Members	Of	box.
For	constant	names	that	have	changed,	the	old	constants	will	still	work.	For
example,	one	of	the	intrinsic	constants	for	the	save	argument	of	the	Close
method	of	the	DoCmd	object	was	acPrompt.	It's	now	acSavePrompt,	but
acPrompt	will	still	work.
In	a	number	of	cases	in	previous	versions	of	Microsoft	Access,	you	could
leave	an	argument	setting	blank,	and	Microsoft	Access	would	perform	the
default	action	for	that	argument.	For	example,	you	could	leave	the
objecttype	(and	objectname)	arguments	of	the	Close	method	blank,	and
Microsoft	Access	would	close	the	active	window.	For	the	new	sets	of

enumerated	constants,	the	blank	setting	has	been	replaced	with	a	new
default	constant.	For	example,	the	objecttype	argument	of	the	Close	method
now	has	a	new	default	constant,	acDefault.	Setting	this	argument	to	the
new	constant	has	the	same	effect	as	leaving	the	argument	blank.	In	addition,
you	can	still	leave	such	arguments	blank,	and	Microsoft	Access	will	assume
the	new	default	constant.
There's	one	exception	to	this.	If	you	run	Visual	Basic	code	from	previous
versions	of	Visual	Basic	in	Microsoft	Access	by	using	Automation,	blank
arguments	will	cause	an	error	for	those	arguments	that	have	the	new	default
constants.	This	problem	doesn't	occur	for	old	Visual	Basic	for	Applications
or	Visual	Basic	code	run	directly	in	Microsoft	Access.

Show	All

Comparison	of	Data	Types
			

The	Microsoft	Jet	database	engine	recognizes	several	overlapping	sets	of	data
types.	In	Microsoft	Access,	there	are	four	different	contexts	in	which	you	may
need	to	specify	a	data	type	—	in	table	Design	view,	in	the	Query	Parameters
dialog	box,	in	Visual	Basic,	and	in	SQL	view	in	a	query.

The	following	table	compares	the	five	sets	of	data	types	that	correspond	to	each
context.	The	first	column	lists	the	Type	property	settings	available	in	table
Design	view	and	the	five	FieldSize	property	settings	for	the	Number	data	type.
The	second	column	lists	the	corresponding	query	parameter	data	types	available
for	designing	parameter	queries	in	the	Query	Parameters	dialog	box.	The	third
column	lists	the	corresponding	Visual	Basic	data	types.	The	fourth	column	lists
DAO	Field	object	data	types.	The	fifth	column	lists	the	corresponding	Jet
database	engine	SQL	data	types	defined	by	the	Jet	database	engine	along	with
their	valid	synonyms.

Table	fields Query
parameters

Visual
Basic

ADO	Data	Type
property	constants

Microsoft	Jet
database	engine

SQL	and	synonyms

Not
supported Binary Not

supported adBinary
BINARY	(See	Notes)
(Synonym:
VARBINARY)

Yes/No Yes/No Boolean adBoolean

BOOLEAN
(Synonyms:	BIT,
LOGICAL,
LOGICAL1,
YESNO)

Number
(FieldSize	=
Byte)

Byte Byte adUnsignedTinyInt
BYTE
(Synonym:
INTEGER1)

AutoNumber
(FieldSize=

Long COUNTER

Long
Integer)

Integer Long adInteger (Synonym:
AUTOINCREMENT)

Currency Currency Currency adCurrency CURRENCY
(Synonym:	MONEY)

Date/Time Date/Time Date adDate

DATETIME
(Synonyms:	DATE,
TIME,
TIMESTAMP)

Number
(FieldSize	=
Double)

Double Double adDouble

DOUBLE
(Synonyms:	FLOAT,
FLOAT8,
IEEEDOUBLE,
NUMBER,
NUMERIC)

AutoNumber
/GUID

(FieldSize	=
Replication
ID)

Replication
ID

Not
supported adGUID GUID

Number
(FieldSize	=
Long
Integer)

Long
Integer Long adInteger

LONG	(See	Notes)
(Synonyms:	INT,
INTEGER,
INTEGER4)

OLE	Object OLE	Object String adLongVarBinary

LONGBINARY
(Synonyms:
GENERAL,
OLEOBJECT)

Memo Memo String adLongVarWChar

LONGTEXT
(Synonyms:
LONGCHAR,
MEMO,	NOTE)

Number
(FieldSize	=
Single)

Single Single adSingle

SINGLE
(Synonyms:	FLOAT4,
IEEESINGLE,

REAL)

Number
(FieldSize	=
Integer)

Integer Integer adSmallInt

SHORT	(See	Notes)
(Synonyms:
INTEGER2,
SMALLINT)

Text Text String adVarWChar

TEXT
(Synonyms:
ALPHANUMERIC,
CHAR,
CHARACTER,
STRING,
VARCHAR)

Hyperlink Memo String adLongVarWChar

LONGTEXT
(Synonyms:
LONGCHAR,
MEMO,	NOTE)

Not
supported Value Variant adVariant VALUE	(See	Notes)

Notes

Microsoft	Access	itself	doesn't	use	the	BINARY	data	type.	It's	recognized
only	for	use	in	queries	on	linked	tables	from	other	database	products	that
support	the	BINARY	data	type.
The	INTEGER	data	type	in	Jet	database	engine	SQL	doesn't	correspond	to
the	Integer	data	type	for	table	fields,	query	parameters,	or	Visual	Basic.
Instead,	in	SQL,	the	INTEGER	data	type	corresponds	to	a	Long	Integer
data	type	for	table	fields	and	query	parameters	and	to	a	Long	data	type	in
Visual	Basic.
The	VALUE	reserved	word	doesn't	represent	a	data	type	defined	by	the	Jet
database	engine.	However,	in	Microsoft	Access	or	SQL	queries,	the
VALUE	reserved	word	can	be	considered	a	valid	synonym	for	the	Visual
Basic	Variant	data	type.
If	you	are	setting	the	data	type	for	a	DAO	object	in	Visual	Basic	code,	you
must	set	the	object's	Type	property.

Show	All

Call	Procedures	in	a	Subform	or
Subreport
			

You	can	call	a	procedure	in	a	module	associated	with	a	subform	or	subreport	in
one	of	two	ways.	If	the	form	containing	the	subform	is	open	in	Form	view,	you
can	refer	to	the	procedure	as	a	method	on	the	subform.	The	following	example
shows	how	to	call	the	procedure	GetProductID	in	the	Orders	Subform,	which	is
bound	to	a	subform	control	on	the	Orders	form:

In	the	Orders	Subform	class	module	enter:

Public	Function	GetProductID()	As	Variant

				'	Return	current	productID.

				GetProductID	=	ProductID

End	Function				

Forms!Orders![Orders	Subform].Form.GetProductID

You	can	also	create	a	new	instance	of	the	form	that	is	being	used	as	a	subform,
even	if	neither	the	main	form	nor	the	subform	is	open,	and	call	the	procedure.
This	will	work	for	any	form,	whether	or	not	it	is	being	used	as	a	subform.	The
following	example	shows	how	to	create	an	instance	of	the	Orders	Subform	and
call	the	GetProductID	procedure:

Dim	frm	As	New	[Form_Orders	Subform]

frm.GetProductID

Note			When	you	create	a	new	instance	of	a	form	with	a	name	consisting	of	more
than	one	word,	enclose	the	class	name	of	the	form	in	brackets,	as	shown	in	the
preceding	example.

Show	All

Program	with	Class	Modules
			

In	Microsoft	Access,	there	were	two	types	of	modules:	standard	modules	and
class	modules.	In	Microsoft	Access	95,	class	modules	existed	only	in	association
with	a	form	or	report.	In	Microsoft	Access	97,	they	also	existed	on	the	Modules
tab	of	the	Database	window.

Creating	Custom	Objects	with	Class	Modules

You	can	use	a	class	module	to	create	a	definition	for	a	custom	object.	The	name
with	which	you	save	the	class	module	becomes	the	name	of	your	custom	object.
Public	Sub	and	Function	procedures	that	you	define	within	a	class	module
become	custom	methods	of	the	object.	Public	Property	Let,	Property	Get,	and
Property	Set	procedures	become	properties	of	the	object.

Once	you've	defined	procedures	within	the	class	module,	you	can	create	the	new
object	by	creating	a	new	instance	of	the	class.	To	create	a	new	instance	of	a
class,	you	declare	a	variable	of	the	type	defined	by	that	class.	For	example,	if	the
name	of	your	class	is	ABasicClass,	you	would	create	a	new	instance	of	it	in	the
following	manner:

Dim	abc	As	New	ABasicClass

When	you	run	the	code	containing	this	declaration,	Visual	Basic	creates	the	new
instance.	You	can	then	apply	its	methods	and	properties	by	using	the	variable
abc.	For	example,	if	you've	defined	a	custom	method	called	ListNames,	you
could	apply	it	as	follows:

abc.ListNames

New	in	Microsoft	Access	95:	Creating	the	Default
Instance	of	a	Form	Class

When	you	open	a	form	in	Form	view,	whether	from	the	user	interface	or	from
Visual	Basic,	you	create	an	instance	of	that	form's	class	module.	In	other	words,
you	designate	space	in	memory	where	the	object	now	exists,	and	you	can	then
call	its	methods	and	set	or	return	its	properties	from	code,	as	you	would	for	any
built-in	object.	The	same	is	true	when	you	open	a	report	in	Print	Preview.

When	you	refer	to	a	form	in	Visual	Basic	code,	you're	usually	working	with	the
default	instance	of	the	form's	class.	A	form's	class	has	only	one	default	instance.
You	can	also	create	multiple	instances	of	the	same	form's	class	from	Visual
Basic.	When	you	create	multiple	instances	of	a	form's	class,	you	create
nondefault	instances.

There	are	four	ways	to	create	the	default	instance	of	a	form.	You	can	open	an
existing	form	by	using	the	user	interface,	by	executing	the	OpenForm	method
of	the	DoCmd	object,	by	calling	the	CreateForm	method	and	switching	the	new
form	into	Form	view,	or	by	using	Visual	Basic	to	create	a	variable	of	type	Form
to	refer	to	the	default	instance.	The	following	example	opens	an	Employees	form
and	points	a	Form	object	variable	to	it:

Dim	frm	As	Form

DoCmd.OpenForm	"Employees"

Set	frm	=	Forms!Employees

Microsoft	Access	also	provides	a	shortcut	that	enables	you	to	open	a	form	and
refer	to	a	method	or	property	of	that	form	or	one	of	its	controls	in	one	step.	You
refer	to	the	form's	class	module	as	shown	in	the	following	example:

Form_Employees.Visible	=	True

Form_Employees.Caption	=	"New	Employees"

When	you	run	this	code,	Microsoft	Access	opens	the	Employees	form	in	Form
view	if	it's	not	already	open	and	sets	the	form's	caption	to	"New	Employees."
The	form	isn't	visible	until	you	explicitly	set	its	Visible	property	to	True.	When
the	procedure	that	calls	this	code	has	finished	executing,	this	instance	of	the
form	is	destroyed;	that	is,	the	form	is	closed.

If	you	try	to	run	this	code	when	the	Employees	form	is	open	in	Design	view,
Microsoft	Access	generates	a	run-time	error.	The	form	must	either	be	open	in
Form	view	or	not	open	at	all.

If	you	use	this	syntax	to	change	a	property	of	the	form	or	one	of	its	controls,	that
change	is	lost	when	the	instance	of	the	form	is	destroyed.	This	holds	true	any
time	you	change	a	property	setting	for	a	form	in	Form	view.	You	must	change
the	property	in	Design	view	and	save	the	change	with	the	form.

Creating	Multiple	Nondefault	Instances	of	Forms

You	can	create	multiple	nondefault	instances	of	a	form's	class	if	you	want	to
display	more	than	one	instance	of	a	form	at	a	time.	For	example,	you	might	want
to	display	the	records	for	an	employee	and	the	employee's	manager	at	the	same
time.	You	can	create	one	instance	of	the	Employees	form's	class	to	display	the
employee's	record,	and	one	to	display	the	manager's	record.

To	create	new,	nondefault	instances	of	a	form's	class	from	Visual	Basic,	declare	a
variable	for	which	the	type	is	the	name	of	the	form	class	module.	You	must
include	the	New	keyword	in	the	variable	declaration.	For	example,	the	following
code	creates	a	new	instance	of	the	Employees	form	and	assigns	it	to	a	variable	of
type	Form:

Dim	frm	As	New	Form_Employees

This	nondefault	instance	of	the	form	isn't	visible	until	you	explicitly	set	its
Visible	property.

When	the	procedure	that	creates	this	instance	has	finished	executing,	the
instance	is	removed	from	memory	unless	you've	declared	the	variable
representing	it	as	a	module-level	variable.	Since	module-level	variables	retain
their	values	until	they	are	reset	with	the	Reset	command	on	the	Run	menu	or	the
Reset	button	on	the	toolbar,	the	form	will	stay	open	if	the	variable	has	been
declared	as	a	module-level	variable.

Any	properties	that	you	set	will	affect	this	instance	of	the	form's	class,	but	won't
be	saved	with	the	form.	Also,	a	new	instance	of	the	form's	class	can't	be	created
if	the	form	is	open	in	Design	view.

A	nondefault	instance	of	a	form's	class	can't	be	referred	to	by	name	in	the	Forms
collection.	You	can	refer	to	it	by	index	number	only.	Since	you	can	create
multiple	nondefault	instances	of	a	form,	and	each	instance	has	the	same	name,
you	can	have	more	than	one	form	with	the	same	name	in	the	Forms	collection,
without	any	means	of	distinguishing	them	other	than	by	index	number.

Show	All

Set	References	to	Type	Libraries
			

When	you	set	a	reference	to	another	application's	type	library,	you	can	use	the
objects	supplied	by	that	application	in	your	code.	For	example,	if	you	set	a
reference	from	Microsoft	Access	to	the	Microsoft	Excel	library,	you	can	then	use
Microsoft	Excel	objects	through	Automation	(formerly	called	OLE	Automation).
If	you	set	a	reference	to	a	Visual	Basic	project	in	another	Microsoft	Access
database,	you	can	call	its	public	procedures.	If	you	set	a	reference	to	an	ActiveX
control,	you	can	use	that	control	on	Microsoft	Access	forms.

You	can	set	a	reference	from	Microsoft	Access	while	the	Microsoft	Visual	Basic
Editor	is	open,	or	you	can	set	a	reference	in	Visual	Basic	code.

Setting	a	Reference	from	Microsoft	Access

To	set	a	reference	to	an	application's	type	library:

1.	 On	the	Tools	menu,	click	References.	The	References	command	on	the
Tools	menu	is	available	only	when	a	Module	window	is	open	and	active	in
Design	view.

2.	 Select	the	check	boxes	for	those	applications	whose	type	libraries	you	want
to	reference.

Setting	a	Reference	from	Visual	Basic

To	set	a	reference	from	Visual	Basic,	you	create	a	new	Reference	object
representing	the	desired	reference.	The	References	collection	contains	all
currently	set	references.

To	create	a	new	Reference	object,	use	either	the	AddFromFile	or
AddFromGUID	method	of	the	References	collection.	To	remove	a	Reference
object,	use	the	Remove	method.

Advantages	of	Setting	References

Your	Automation	code	will	run	faster	if	you	set	a	reference	to	another
application's	type	library	before	you	work	with	its	objects.	If	you've	set	a
reference,	you	can	declare	an	object	variable	representing	an	object	in	the	other
application	as	its	most	specific	type.	For	example,	if	you're	writing	code	to	work
with	Microsoft	Excel	objects,	you	can	declare	an	object	variable	of	type
Excel.Application	by	using	the	following	syntax	only	if	you've	created	a
reference	to	the	Microsoft	Excel	type	library:

Dim	appXL	As	New	Excel.Application

If	you	haven't	set	a	reference	to	the	Microsoft	Excel	type	library,	you	must
declare	the	variable	as	a	generic	variable	of	type	Object.	The	following	code
runs	more	slowly:

Dim	appXL	As	Object

Additionally,	if	you	set	a	reference	to	an	application's	type	library,	all	of	its
objects,	as	well	as	their	methods	and	properties,	are	listed	in	the	Object	Browser.
This	makes	it	easy	to	determine	what	properties	and	methods	are	available	to
each	object.

Since	Microsoft	Access	is	an	COM	component	that	supports	Automation,	you
can	also	set	a	reference	to	its	type	library	from	another	application	and	work
with	Microsoft	Access	objects	from	that	application.

Show	All

Set	a	Reference	to	a	Visual	Basic
Project	in	Another	Microsoft	Access
Database	or	Project
			

Each	Microsoft	Access	database	(.mdb	or	.adp)	includes	a	Visual	Basic	project.
The	Visual	Basic	project	is	the	set	of	all	modules	in	the	project,	including	both
standard	modules	and	class	modules.	Every	Microsoft	Access	database	(.mdb	or
.adp),	library	database,	or	add-in	contained	in	an	.mde	file	includes	a	Visual
Basic	project.

The	name	of	the	Access	database	and	the	name	of	the	project	can	differ.	The
name	of	the	Access	database	is	determined	by	the	name	of	the	.mdb	(or	.mda	or
.mde)	or	.adp	file,	while	the	name	of	the	project	is	determined	by	the	setting	of
the	Project	Name	option	on	the	General	tab	of	the	ProjectName	-	Project
Properties	dialog	box,	available	by	clicking	ProjectName	Properties	on	the
Tools	menu	in	the	Visual	Basic	Editor.	When	you	first	create	a	database	(.mdb	or
.adp),	the	database	name	and	project	name	are	the	same	by	default.	However,	if
you	rename	the	database,	the	project	name	doesn't	automatically	change.
Likewise,	changing	the	project	name	has	no	effect	on	the	database	name.

You	can	set	a	reference	from	a	Visual	Basic	project	in	one	Microsoft	Access
database	to	a	project	in	another	Microsoft	Access	database,	a	library	database,	or
an	add-in	contained	in	an	.mde	file.	Once	you've	set	a	reference,	you	can	run
Visual	Basic	procedures	in	the	referenced	project.	For	example,	the	Northwind
sample	database	includes	a	module	named	Utility	Functions	that	contains	a
function	called	IsLoaded.	You	can	set	a	reference	to	the	project	in	the	Northwind
sample	database	from	the	project	in	the	current	database,	and	then	call	the
IsLoaded	function	just	as	you	would	if	it	were	defined	within	the	current
database.

To	set	a	reference	to	the	project	in	the	Northwind	sample	database	from	another
project:

1.	 Open	the	Module	window.
2.	 On	the	Tools	menu,	click	References,	and	click	Browse	in	the	References

dialog	box.
3.	 In	the	Files	Of	Type	box,	click	Microsoft	Access	Databases	(*.mdb).
4.	 Locate	the	Northwind.mdb	file.	If	you've	installed	this	file,	it	will	be	in	the

\Program	Files\Microsoft	Office\Office\Samples	folder	by	default.
5.	 Click	OK.

You	should	now	see	"Northwind.mdb"	in	the	list	of	available	references	in	the
References	dialog	box.

Notes

Set	a	reference	to	the	project	in	another	Microsoft	Access	database	when
you	want	to	call	a	public	procedure	that's	defined	within	a	standard	module
in	that	database.	You	can't	call	procedures	that	are	defined	within	a	class
module	or	procedures	in	a	standard	module	that	are	preceded	with	the
Private	keyword.
You	can	set	a	reference	to	the	project	in	a	Microsoft	Access	database	only
from	another	Microsoft	Access	database.
You	can	set	a	reference	to	a	project	only	in	another	Microsoft	Access	2002
database.	To	set	a	reference	to	a	project	in	a	database	created	in	a	previous
version	of	Microsoft	Access,	first	convert	that	database	to	Microsoft	Access
2002.
If	you	set	a	reference	to	a	project	or	type	library	from	Microsoft	Access	and
then	move	the	file	that	contains	that	project	or	type	library	to	a	different
folder,	Microsoft	Access	will	attempt	to	locate	the	file	and	reestablish	the
reference.	If	the	RefLibPaths	key	exists	in	the	registry,	Microsoft	Access
will	first	search	there.	If	there's	no	matching	entry,	Microsoft	Access	will
search	for	the	file	first	in	the	current	folder,	then	in	all	the	folders	on	the
drive.	You	can	create	the	RefLibPaths	key	by	using	the	Registry	Editor	in
Windows,	under	the	registry	key
\HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Office\version\Access.
For	more	information	about	using	the	Registry	Editor,	see	your	Windows
documentation.

Show	All

Set	Form,	Report,	and	Control
Properties
			

Each	form,	report,	section,	and	control	has	property	settings	that	you	can	change
to	alter	the	look	or	behavior	of	that	particular	item.	You	view	and	change
properties	by	using	the	property	sheet,	macro,	or	Visual	Basic.

To	set	properties

1.	 In	form	Design	view	or	report	Design	view,	select	the	control,	section,
form,	or	report	for	which	you	want	to	set	the	property.	You	can	select:

One	or	more	controls.	To	select	multiple	controls,	hold	down	the
SHIFT	key	and	click	the	controls,	or	drag	the	mouse	pointer	over	the
controls	you	wish	to	select.	If	you	select	multiple	controls,	the
property	sheet	will	display	only	those	properties	that	the	selected
controls	have	in	common.
One	section.	Click	the	section	selector	of	the	section	you	wish	to
select.
The	entire	form	or	report.	Click	the	form	selector	or	report	selector	in
the	upper-left	corner	of	the	form	or	report.

2.	 Display	the	property	sheet	by	right-clicking	the	object	or	section	and	then
clicking	Properties	on	the	shortcut	menu,	or	by	clicking	Properties	on	the
toolbar.

3.	 Click	the	property	for	which	you	want	to	set	the	value,	and	then	do	one	of
the	following:

In	the	property	box,	type	the	appropriate	setting	or	expression.
If	the	property	box	contains	an	arrow,	click	the	arrow	and	then	click	a
value	in	the	list.
If	a	Build	button	appears	to	the	right	of	the	property	box,	click	it	to
display	a	builder	or	to	display	a	dialog	box	giving	you	a	choice	of
builders.	For	example,	you	can	use	the	Code	Builder,	Macro	Builder,
or	Query	Builder	to	set	some	properties.

Tips

Microsoft	Access	provides	a	Zoom	box	for	typing	and	viewing	expressions
or	other	long	property	settings.	To	display	the	Zoom	box,	click	a	property
box	in	the	property	sheet.	Then	press	SHIFT+F2,	or	right-click	and	then
click	Zoom	on	the	shortcut	menu.
You	can	set	the	ControlSource	property	for	some	controls	by	typing	the
property	setting	in	the	control	itself.
You	can	change	the	default	property	settings	for	a	type	of	control	so	that
future	controls	you	create	will	have	the	new	default	settings.
The	property	settings	of	a	bound	control	might	not	match	the	corresponding
settings	in	the	field	in	the	underlying	table	or	query	to	which	the	control	is
bound.	If	the	settings	are	different,	the	form	or	report	settings	typically
override	those	in	the	table	or	query.	For	more	information	about	how
properties	are	inherited,	see	How	control	properties	relate	to	properties	in
their	underlying	fields.

mk:@MSITStore:acmain10.chm::/html/acdecWhatAreDefaultControlStylesS.htm
mk:@MSITStore:acmain10.chm::/html/acconControlPropertiesPropertyInheritanceS.htm

Show	All

Set	Options	from	Visual	Basic
			

You	can	use	the	SetOption	and	GetOption	methods	to	set	and	return	option
values	in	the	Options	dialog	box	from	code.	To	view	the	Options	dialog	box,
click	Options	on	the	Tools	menu.

The	following	tables	list	the	names	of	all	options	that	can	be	set	or	returned	from
code	and	the	tabs	on	which	they	can	be	found	in	the	Options	dialog	box,
followed	by	the	corresponding	string	argument	that	you	must	pass	to	the
SetOption	or	GetOption	method.

Notes

If	your	database	may	run	on	a	version	of	Microsoft	Access	for	a	language	other
than	the	one	in	which	you	created	it,	then	you	must	supply	the	arguments	for	the
GetOption	and	SetOption	methods	in	English.

Some	options	are	available	only	within	a	Microsoft	Access	database	(.mdb)	or
Access	project	(.adp).

View	Tab

Option	text String	argument
Show,	Status	bar Show	Status	Bar
Show,	Startup	Task	Pane Show	Startup	Dialog	Box
Show,	New	object	shortcuts Show	New	Object	Shortcuts
Show,	Hidden	objects Show	Hidden	Objects
Show,	System	objects Show	System	Objects
Show,	Windows	in	Taskbar ShowWindowsInTaskbar
Show	in	Macro	Design,	Names
column Show	Macro	Names	Column

Show	in	Macro	Design,	Conditions
column Show	Conditions	Column

Click	options	in	database	window Database	Explorer	Click	Behavior

General	Tab

Option	text String	argument
Print	margins,	Left	margin Left	Margin
Print	margins,	Right	margin Right	Margin
Print	margins,	Top	margin Top	Margin
Print	margins,	Bottom	margin Bottom	Margin
Use	four-year	digit	year	formatting,
This	database Four-Digit	Year	Formatting

Use	four-year	digit	year	formatting,
All	databases

Four-Digit	Year	Formatting	All
Databases

Name	AutoCorrect,	Track	name
AutoCorrect	info Track	Name	AutoCorrect	Info

Name	AutoCorrect,	Perform	name
AutoCorrect Perform	Name	AutoCorrect

Name	AutoCorrect,	Log	name
AutoCorrect	changes Log	Name	AutoCorrect	Changes

Recently	used	file	list Enable	MRU	File	List
Recently	used	file	list,	(number	of
files) Size	of	MRU	File	List

Provide	feedback	with	sound Provide	Feedback	with	Sound
Compact	on	Close Auto	Compact
New	database	sort	order New	Database	Sort	Order
Remove	personal	information	from
this	file Remove	Personal	Information

Default	database	folder Default	Database	Directory

Edit/Find	Tab

Option	text String	argument
Default	find/replace	behavior Default	Find/Replace	Behavior
Confirm,	Record	changes Confirm	Record	Changes
Confirm,	Document	deletions Confirm	Document	Deletions
Confirm,	Action	queries Confirm	Action	Queries
Show	list	of	values	in,	Local	indexed
fields Show	Values	in	Indexed

Show	list	of	values	in,	Local
nonindexed	fields Show	Values	in	Non-Indexed

Show	list	of	values	in,	ODBC	fields Show	Values	in	Remote
Show	list	of	values	in,	Records	in
local	snapshot Show	Values	in	Snapshot

Show	list	of	values	in,	Records	at
server Show	Values	in	Server

Don't	display	lists	where	more	than
this	number	of	records	read Show	Values	Limit

Datasheet	Tab

Option	text String	argument
Default	colors,	Font Default	Font	Color
Default	colors,	Background Default	Background	Color
Default	colors,	Gridlines Default	Gridlines	Color
Default	gridlines	showing,	Horizontal Default	Gridlines	Horizontal
Default	gridlines	showing,	Vertical Default	Gridlines	Vertical
Default	column	width Default	Column	Width
Default	font,	Font Default	Font	Name
Default	font,	Weight Default	Font	Weight
Default	font,	Size Default	Font	Size
Default	font,	Underline Default	Font	Underline
Default	font,	Italic Default	Font	Italic
Default	cell	effect Default	Cell	Effect
Show	animations Show	Animations

Keyboard	Tab

Option	text String	argument
Move	after	enter Move	After	Enter
Behavior	entering	field Behavior	Entering	Field
Arrow	key	behavior Arrow	Key	Behavior
Cursor	stops	at	first/last	field Cursor	Stops	at	First/Last	Field
Auto	commit Ime	Autocommit
Datasheet	IME	control Datasheet	Ime	Control

Tables/Queries	Tab

Option	text String	argument
Table	design,	Default	field	sizes	-
Text Default	Text	Field	Size

Table	design,	Default	field	sizes	-
Number Default	Number	Field	Size

Table	design,	Default	field	type Default	Field	Type
Table	design,	AutoIndex	on
Import/Create AutoIndex	on	Import/Create

Query	design,	Show	table	names Show	Table	Names
Query	design,	Output	all	fields Output	All	Fields
Query	design,	Enable	AutoJoin Enable	AutoJoin
Query	design,	Run	permissions Run	Permissions
Query	design,	SQL	Server
Compatible	Syntax	(ANSI	92)	-	This
database

ANSI	Query	Mode

Query	design,	SQL	Server
Compatible	Syntax	(ANSI	92)	-
Default	for	new	databases

ANSI	Query	Mode	Default

Forms/Reports	Tab

Option	text String	argument
Selection	behavior Selection	Behavior
Form	template Form	Template
Report	template Report	Template
Always	use	event	procedures Always	Use	Event	Procedures

Advanced	Tab

Option	text String	argument
DDE	operations,	Ignore	DDE
requests Ignore	DDE	Requests

DDE	operations,	Enable	DDE	refresh Enable	DDE	Refresh
Default	File	Format Default	File	Format
Client-server	settings,	Default	max
records Row	Limit

Default	open	mode Default	Open	Mode	for	Databases
Command-line	arguments Command-Line	Arguments
OLE/DDE	timeout OLE/DDE	Timeout	(sec)
Default	record	locking Default	Record	Locking
Refresh	interval Refresh	Interval	(sec)
Number	of	update	retries Number	of	Update	Retries
ODBC	fresh	interval ODBC	Refresh	Interval	(sec)
Update	retry	interval Update	Retry	Interval	(msec)
Open	databases	using	record-level
locking Use	Row	Level	Locking

Save	login	and	password Save	Login	and	Password

Pages	Tab

Option	text String	argument
Default	Designer	Properties,	Section
Indent Section	Indent

Default	Designer	Properties,
Alternative	Row	Color Alternate	Row	Color

Default	Designer	Properties,	Caption
Section	Style Caption	Section	Style

Default	Designer	Properties,	Footer
Section	Style Footer	Section	Style

Default	Database/Project	Properties,
Use	Default	Page	Folder Use	Default	Page	Folder

Default	Database/Project	Properties,
Default	Page	Folder Default	Page	Folder

Default	Database/Project	Properties,
Use	Default	Connection	File Use	Default	Connection	File

Default	Database/Project	Properties,
Default	Connection	File Default	Connection	File

Spelling	Tab

Option	text String	argument
Dictionary	Language Spelling	dictionary	language
Add	words	to Spelling	add	words	to

Suggest	from	main	dictionary	only Spelling	suggest	from	main	dictionary
only

Ignore	words	in	UPPERCASE Spelling	ignore	words	in	UPPERCASE
Ignore	words	with	numbers Spelling	ignore	words	with	number

Ignore	Internet	and	file	addresses Spelling	ignore	Internet	and	file
addresses

Language-specific,	German:	Use
post-reform	rules Spelling	use	German	post-reform	rules

Language-specific,	Korean:	Combine
aux	verb/adj. Spelling	combine	aux	verb/adj

Language-specific,	Korean:	Use	auto-
change	list Spelling	use	auto-change	list

Language-specific,	Korean:	Process
compound	nouns Spelling	process	compound	nouns

Language-specific,	Hebrew	modes Spelling	Hebrew	modes
Language-specific,	Arabic	modes Spelling	Arabic	modes

Note			If	you	are	developing	a	database	application,	add-in,	library	database,	or
referenced	database,	make	sure	that	the	Error	Trapping	option	is	set	to	2
(Break	On	Unhandled	Errors)	when	you	have	finished	debugging	your	code.

The	value	that	you	pass	to	the	SetOption	method	as	the	setting	argument
depends	on	which	type	of	option	you	are	setting.	The	following	table	establishes
some	guidelines	for	setting	options.

If	the	option	is Then	the	setting	argument	is
A	text	box A	string

A	check	box A	Boolean	value	—	True	(–1)	or	False
(0)

An	option	button	in	an	option	group, An	integer	corresponding	to	the	option's

or	an	option	in	a	combo	box	or	a	list
box

position	in	the	option	group	or	list
(starting	with	zero	[0])

Set	Properties	by	Using	Visual	Basic
			

You	can	set	most	properties	from	Visual	Basic	code.	How	you	set	a	property
depends	on	whether	you	are	setting	it	for	a	Form,	Report,	or	Control	object,	an
ActiveX	Data	Object	(ADO),	a	Data	Access	Object	(DAO),	or	for	a
DataAccessPage	object.	The	following	topics	outline	the	steps	involved	for
setting	properties	of	each	type	of	object:

Set	Form,	Report,	and	Control	Properties	in	Visual	Basic

Set	Properties	of	ActiveX	Data	Objects	in	Visual	Basic

Set	Properties	of	Data	Access	Objects	in	Visual	Basic

Set	Properties	of	Data	Access	Pages	in	Visual	Basic

Show	All

Set	Properties	by	Using	Macros
			

From	a	macro,	you	can	set	properties	for	Form,	Report,	and	Control	objects,	as
well	as	form	and	report	sections.	You	use	the	SetValue	action	from	a	macro	to	set
the	value	of	a	property.

You	can't	use	a	macro	to	set	properties	of	other	Microsoft	Access	objects	or
ActiveX	Data	Objects	(ADO),	or	to	set	the	default	properties	of	a	control,	but
you	can	set	them	either	by	using	Visual	Basic	or	an	object's	property	sheet	in
Design	view.

To	set	a	form,	report,	or	control	property	by	using	a	macro

1.	 In	a	macro,	add	a	SetValue	action.
2.	 Set	the	Item	action	argument	of	the	SetValue	action	to	an	expression	that

refers	to	the	property	you	want	to	set:
To	set	a	form	or	report	property,	use	the	syntax
Forms!formname.propertyname	or
Reports!reportname.propertyname.	For	example,	the	following
expression	refers	to	the	Visible	property	of	the	Customers	form:

Forms!Customers.Visible

To	set	a	property	of	a	control	on	a	form	or	report,	use	the	syntax
Forms!formname!controlname.propertyname	or
Reports!reportname!controlname.propertyname.	For	example,	the
following	expression	refers	to	the	Visible	property	of	the
HiddenPageBreak	control	on	the	Invoices	report:

Reports!Invoices!HiddenPageBreak.Visible

Tip			If	the	macro	containing	the	SetValue	action	runs	from	the	form	or
report	with	the	property	you	want	to	set,	you	can	refer	to	the	property	by
using	just	the	syntax	propertyname.	However,	it's	a	good	idea	to	use	the	full
syntax	to	refer	to	the	property	to	avoid	conflicts	with	names	of	controls	or
Visual	Basic	keywords.	For	example,	Name	is	a	Microsoft	Access	property;

if	you	also	have	a	control	on	your	form	called	Name,	you	should	use	the
full	syntax	to	refer	to	both	the	control	and	the	property.

3.	 Set	the	Expression	action	argument	of	the	SetValue	action	to	the	value	you
want	to	set	the	property	to.	If	the	setting	is	a	string,	be	sure	to	enclose	it	in
double	(")	quotation	marks.	For	example,	to	set	the	Caption	property	of	a
form	to	Orders,	you	would	enter	"Orders"	in	the	Expression	argument.

To	set	a	section	property	by	using	a	macro

1.	 In	a	macro,	add	a	SetValue	action.
2.	 In	the	Item	action	argument,	use	the	syntax

Forms!formname.Section(constant).propertyname	to	refer	to	the	property
you	want	to	set.	The	constant	argument	refers	to	a	particular	section	on	the
form	or	report,	as	described	in	the	Section	property.	For	example,	the
following	expression	refers	to	the	Visible	property	of	the	page	header
section	of	the	Customers	form:

Forms!Customers.Section(acPageHeader).Visible

3.	 Set	the	Expression	action	argument	as	described	above.

Note			For	each	property	you	want	to	set,	you	can	look	up	the	property	in	the
Help	index	to	find	information	about:

Whether	you	can	set	the	property	from	a	macro.
Views	in	which	you	can	set	the	property.	Not	all	properties	can	be	set	in	all
views.	For	example,	you	can	set	a	form's	BorderStyle	property	only	in
form	Design	view.
Which	values	you	can	use	to	set	the	property.	Some	properties	require
settings	that	don't	correspond	to	values	in	the	property	sheet	but	to	numeric
values.	You	may	need	to	set	the	property	by	using	the	settings	you	would
use	in	Visual	Basic	rather	than	those	you	would	use	in	the	property	sheet.
For	example,	if	the	property	settings	are	selections	from	a	list,	you	must	use
the	value	or	numeric	equivalent	for	each	selection.

Show	All

Set	Data	Access	Page	and	Control
Properties
			

Each	data	access	page,	section,	and	its	control	have	property	settings	that	you
can	change	to	alter	the	look	or	behavior	of	that	particular	item.	You	view	and
change	properties	by	using	the	property	sheet,	or	the	Microsoft	Visual	Script
Editor.

To	set	properties

1.	 In	page	Design	view,	select	the	data	access	page,	section,	or	control	for
which	you	want	to	set	the	property.	You	can	select:

A	control.	Click	the	control	you	wish	to	select.
One	section.	Click	the	section	selector	of	the	section	you	wish	to
select.
The	entire	data	access	page.	Click	the	data	access	page	title	bar.

2.	 Display	the	property	sheet	by	selecting	the	object	and	clicking	Properties	
	on	the	toolbar.	For	sections	and	controls,	you	can	right-click	the	section

or	control	and	then	click	Properties	on	the	shortcut	menu.
3.	 Click	the	property	for	which	you	want	to	set	the	value,	and	then	do	one	of

the	following:
In	the	property	box,	type	the	appropriate	setting	or	expression.
If	the	property	box	contains	an	arrow,	click	the	arrow	and	then	click	a
value	in	the	list.

Tips

Microsoft	Access	provides	a	Zoom	box	for	typing	and	viewing	expressions
or	other	long	property	settings.	To	display	the	Zoom	box,	click	a	property
box	in	the	property	sheet.	Then	press	SHIFT+F2,	or	right-click	and	then
click	Zoom	on	the	shortcut	menu.
The	property	settings	of	a	bound	control	might	not	match	the	corresponding
settings	in	the	field	in	the	underlying	table,	query,	or	view	to	which	the
control	is	bound.	If	the	settings	are	different,	the	form	or	report	settings

typically	override	those	in	the	table,	query,	or	view.

Set	Startup	Properties	and	Options	in
Code
			

Startup	properties	affect	how	your	database	application	appears	when	it's
opened.	For	example,	startup	properties	enable	you	to	customize	the
application's	title	bar,	menus,	toolbars,	and	startup	form.	To	view	the	properties
in	the	Startup	dialog	box,	click	Startup	on	the	Tools	menu.

You	can	set	options	in	the	Options	dialog	box	to	change	various	aspects	of	the
application's	environment	while	you're	working	in	it.	For	example,	you	can	set
form,	report,	table,	and	query	default	options.	To	view	the	Options	dialog	box,
click	Options	on	the	Tools	menu.

The	following	topics	provide	specific	information	about	setting	startup
properties	and	options	in	code.

Set	Startup	Properties	from	Visual	Basic

Set	Options	from	Visual	Basic

Show	All

Date	and	Time	Criteria	Expressions
			

To	specify	date	or	time	criteria	for	an	operation,	you	supply	a	date	or	time	value
as	part	of	the	string	expression	that	forms	the	criteria	argument.	This	value	must
be	enclosed	in	number	signs	(#).

Note			The	number	signs	indicate	to	Microsoft	Access	that	the	criteria	argument
contains	a	date	or	time	within	a	string.

Suppose	that	you	are	creating	a	filter	for	an	Employees	form	to	display	records
for	all	employees	born	on	or	after	January	1,	1960.	You	could	construct	the
criteria	argument	for	the	form's	Filter	or	ServerFilter	property	as	in	the
following	example.	Note	the	placement	of	the	number	signs.

Forms!Employees.Filter	=	"[BirthDate]	>=	#1-1-60#"

Show	All

Date	and	Time	Criteria	from	a
Control	on	a	Form
			

If	you	want	to	change	the	criteria	argument	for	an	operation	based	on	a	user's
decision,	you	can	specify	that	the	criteria	comes	from	a	control	on	a	form.	For
example,	you	could	specify	that	the	criteria	argument	comes	from	a	list	box
containing	order	dates	from	an	Orders	table.

To	specify	date	and	time	criteria	that	comes	from	a	control	on	a	form,	you
include	in	the	criteria	argument	an	expression	that	references	the	control	on	the
form.	This	expression	should	be	separate	from	the	string	expression,	so	that
Microsoft	Access	will	evaluate	the	control	expression	first	and	concatenate	it
with	the	rest	of	the	string	expression	before	performing	the	appropriate
operation.

In	addition	to	enclosing	the	entire	string	expression	in	double	quotation	marks
("),	you	must	also	ensure	that	the	date	or	time	criteria	within	the	string
expression	is	enclosed	in	number	signs	(#).	The	number	signs	must	be	included
in	the	strings	flanking	the	expression	that	references	the	control	on	the	form.

Note			The	number	signs	indicate	to	Microsoft	Access	that	the	criteria	argument
contains	a	date	or	time	within	a	string.

The	following	examples	set	a	form's	Filter	or	ServerFilter	property	based	on
criteria	that	comes	from	a	control	named	HireDate	that's	on	the	form.	Note	the
placement	of	the	number	signs.

Forms!Employees.Filter	=	"[HireDate]	>=	#"	_

	&					Forms!Employees!HireDate	&	"#"

Forms!Employees.FilterOn	=	True

–	or	–

Forms!Employees.ServerFilter	=	"[HireDate]	>=	#"	_

	&					Forms!Employees!HireDate	&	"#"

Forms!Employees.FilterOn	=	True

If	the	current	value	of	the	HireDate	control	is	5-1-92,	the	Filter	or	ServerFilter
property	will	have	the	following	criteria	argument:

"[HireDate]	>=	#5-1-92#"

Tip			To	troubleshoot	an	expression	in	the	criteria	argument,	break	the
expression	into	smaller	components	and	test	each	individually	in	the	Immediate
window.	When	all	of	the	components	are	working	correctly,	put	them	back
together	one	at	a	time	until	the	complete	expression	works	correctly.

You	can	also	include	a	variable	representing	a	date	or	time	in	the	criteria
argument.	The	variable	should	be	separate	from	the	string	expression,	so	that
Microsoft	Access	will	evaluate	the	variable	first	and	then	concatenate	it	with	the
rest	of	the	string	expression.	The	date	or	time	criteria	must	be	enclosed	in
number	signs.

The	following	example	shows	how	to	construct	a	criteria	argument	that	includes
a	variable	representing	a	date	or	time:

Dim	datHireDate	As	Date

datHireDate	=	#5-1-92#

Forms!Employees.Filter	=	"[HireDate]	>=	#"	_

	&					datHireDate	&	"#"

Show	All

Multiple	Fields	in	Criteria
Expressions
			

You	can	specify	multiple	fields	in	a	criteria	argument.

To	specify	multiple	fields	in	the	criteria	argument,	you	must	ensure	that	multiple
string	expressions	are	concatenated	correctly	to	form	a	valid	SQL	WHERE
clause.	In	an	SQL	WHERE	clause	with	multiple	fields,	fields	may	be	joined	with
one	of	three	keywords:	AND,	OR,	or	NOT.	Your	expression	must	evaluate	to	a
string	that	includes	one	of	these	keywords.

For	example,	suppose	that	you	wish	to	set	the	Filter	property	of	an	Employees
form	to	display	records	restricted	by	two	sets	of	criteria.	The	following	example
filters	the	form	so	that	it	displays	only	those	employees	whose	title	is	"Sales
Representative"	and	who	were	hired	since	January	1,	1993:

Dim	datHireDate	As	Date

Dim	strTitle	As	String

datHireDate	=	#1/1/93#

strTitle	=	"Sales	Representative"

Forms!Employees.Filter	=	"[HireDate]	>=	#"	&	_

				datHireDate	&	"#	AND	[Title]	=	'"	&	strTitle	&	"'"

Forms!Employees.FilterOn	=	True

The	criteria	argument	evaluates	to	the	following	string:

"[HireDate]	>=	#1-1-93#	AND	[Title]	=	'Sales	Representative'"

Tip			To	troubleshoot	an	expression	in	the	criteria	argument,	break	the
expression	into	smaller	components	and	test	each	individually	in	the	Immediate
window.	When	all	of	the	components	are	working	correctly,	put	them	back
together	one	at	a	time	until	the	complete	expression	works	correctly.

Show	All

Numeric	Criteria	Expressions
			

To	specify	numeric	criteria	for	an	operation,	you	supply	a	numeric	value	as	part
of	the	string	expression	that	forms	the	criteria	argument.

Suppose	that	you	are	performing	the	DLookup	function	on	an	Employees	table
to	find	the	last	name	of	a	particular	employee,	and	you	want	to	use	a	value	from
the	EmployeeID	field	in	the	function's	criteria	argument.	You	could	construct	a
criteria	argument	like	the	following	example,	which	returns	the	last	name	of	the
employee	whose	EmployeeID	is	7:

=DLookup("[LastName]",	"Employees",	"[EmployeeID]	=	7")

Show	All

Numeric	Criteria	from	a	Control	on	a
Form
			

If	you	want	to	change	the	criteria	argument	for	an	operation	based	on	a	user's
decision,	you	can	specify	that	the	criteria	comes	from	a	control	on	a	form.	For
example,	you	could	specify	that	the	criteria	argument	comes	from	a	text	box
containing	the	EmployeeID	number.

To	specify	numeric	criteria	coming	from	a	control	on	a	form,	you	can	include	in
the	criteria	argument	an	expression	that	references	that	control.	This	control
expression	should	be	separate	from	the	string	expression,	so	that	Microsoft
Access	will	evaluate	control	expression	first	and	concatenate	it	with	the	rest	of
the	string	expression	before	performing	the	appropriate	operation.

Suppose	that	you	are	performing	the	DLookup	function	on	an	Employees	table
to	find	the	last	name	of	an	employee	based	on	the	EmployeeID	number.	In	the
following	example,	the	criteria	is	determined	by	the	current	value	of	the
EmployeeID	control	on	the	Orders	form.	The	expression	referencing	the	control
is	evaluated	each	time	the	function	is	called,	so	that	if	the	value	of	the	control
changes,	the	criteria	argument	will	reflect	that	change.

=DLookup("[LastName]",	"Employees",	"[EmployeeID]	=	"	_

				&	Forms!Orders!EmployeeID)

If	the	current	value	of	the	EmployeeID	field	is	7,	the	criteria	argument	that	is
passed	to	the	DLookup	function	is:

"[EmployeeID]	=	7"

Tip			To	troubleshoot	an	expression	in	the	criteria	argument,	break	the
expression	into	smaller	components	and	test	each	individually	in	the	Immediate
window.	When	all	of	the	components	are	working	correctly,	put	them	back
together	one	at	a	time	until	the	complete	expression	works	correctly.

You	can	also	include	a	variable	representing	a	numeric	value	in	the	criteria

argument.	The	variable	should	be	separate	from	the	string	expression,	so	that
Microsoft	Access	will	evaluate	the	variable	first	and	then	concatenate	it	with	the
rest	of	the	string	expression.

The	following	example	shows	how	to	construct	a	criteria	argument	that	includes
a	variable:

Dim	intNum	As	Integer

Dim	varResult	As	Variant

intNum	=	7

varResult	=	DLookup("[LastName]",	"Employees",	_

				"[EmployeeID]	=	"	&	intNum)

Show	All

Textual	Criteria	Expressions
			

To	specify	textual	criteria	for	an	operation,	you	supply	a	text	string	as	part	of	the
string	expression	that	forms	the	criteria	argument.	This	text	string	must	be
enclosed	in	single	quotation	marks	(').

Note			The	single	quotation	marks	indicate	to	Microsoft	Access	that	the	criteria
argument	contains	a	string	within	a	string.

Suppose	that	you	are	using	the	ADO	Find	method	to	find	the	first	occurrence	of
a	last	name	in	an	Employees	table.	You	could	construct	the	criteria	argument	as
in	the	following	example,	which	moves	the	current	record	pointer	to	the	first
record	in	which	an	employee's	last	name	is	Buchanan.	Note	that	the	string	literal
Buchanan	is	enclosed	in	single	quotation	marks	and	the	entire	string	comprising
the	criteria	argument	must	also	be	enclosed	in	double	quotation	marks	(").

Dim	rst	As	New	ADODB.Connection

rst.open	"Employees",	CurrentProject.Connection,_

					dbOpenDynaset,	adlockoptimistic)

rst.Find	"[LastName]	=	'Buchanan'"

Show	All

Textual	Criteria	from	a	Control	on	a
Form
			

If	you	want	to	change	the	criteria	argument	for	an	operation	based	on	a	user's
decision,	you	can	specify	that	the	criteria	comes	from	a	control	on	a	form.	For
example,	you	could	specify	that	the	criteria	argument	comes	from	a	list	box
containing	the	last	names	of	all	employees	in	an	Employees	table.

To	specify	textual	criteria	coming	from	a	control	on	a	form,	you	include	in	the
criteria	argument	an	expression	that	references	the	control	on	the	form.	This
expression	should	be	separate	from	the	string	expression,	so	that	Microsoft
Access	will	evaluate	the	control	expression	first	and	concatenate	it	with	the	rest
of	the	string	expression	before	performing	the	appropriate	operation.

In	addition	to	enclosing	the	entire	string	expression	in	double	quotation	marks
("),	you	must	also	ensure	that	the	textual	criteria	within	the	string	expression	is
enclosed	in	single	quotation	marks	(').	The	quotation	marks	must	be	included	in
the	strings	flanking	the	expression	that	references	the	control	on	the	form.

Note			The	single	quotation	marks	indicate	to	Microsoft	Access	that	the	criteria
argument	contains	a	string	within	a	string.

The	following	example	performs	a	lookup	on	an	Employees	table	and	returns	the
region	in	which	an	employee	lives,	based	on	the	employee's	last	name.	The
current	value	of	a	list	box	control	called	LastName	on	the	Employees	form
determines	the	criteria.	Note	the	placement	of	the	single	quotation	marks.

=DLookup("[Region]",	"Employees",	"[LastName]	=	'"	_

				&	Forms!Employees!LastName	&	"'")

If	the	current	value	of	the	control	is	King,	the	following	criteria	argument	is
passed	to	the	DLookup	function	after	Microsoft	Access	evaluates	the	expression
and	concatenates	the	strings:

"[LastName]	=	'King'"

Keep	in	mind	that	the	entire	string	comprising	the	criteria	argument	must	also	be
enclosed	in	double	quotation	marks	once	the	strings	have	been	concatenated.

Tip			To	troubleshoot	an	expression	in	the	criteria	argument,	break	the
expression	into	smaller	components	and	test	each	individually	in	the	Immediate
window.	When	all	of	the	components	are	working	correctly,	put	them	back
together	one	at	a	time	until	the	complete	expression	works	correctly.

You	can	also	include	a	variable	representing	a	textual	string	in	the	criteria
argument.	The	variable	should	be	separate	from	the	string	expression,	so	that
Microsoft	Access	will	evaluate	the	variable	first	and	then	concatenate	it	with	the
rest	of	the	string	expression.	The	textual	string	must	be	enclosed	in	single	or
double	quotation	marks.

The	following	example	shows	how	to	construct	a	criteria	argument	that	includes
a	variable	representing	a	textual	string:

Dim	strLastName	As	String

Dim	varResult	As	Variant

strLastName	=	"King"

varResult	=	DLookup("[EmployeeID]",	"Employees",	"[LastName]	=	'"	_

				&	strLastName	&	"'")

Differences	in	String	Function
Operations
			

The	memory	storage	formats	for	text	are	different	in	Visual	Basic	for	Microsoft
Access	and	Access	Basic	of	previous	versions	of	Microsoft	Access.	Text	is
stored	in	ANSI	format	within	Access	Basic	code,	and	in	Unicode	format	in
Visual	Basic.

The	Unicode	format	is	used	in	Visual	Basic	to	match	the	format	of	text	within
OLE,	which	is	indirectly	related	to	Visual	Basic.

For	example,	the	text	string	"ABC "	would	be	stored	in	memory	as	shown
below.

Storage
format Storage	pattern Description

Unicode 41	00	42	00	43	00	42	30	44	30	46
30

Each	character	is	stored	as	2
bytes.

ANSI 41	42	43	82	A0	82	A2	82	A4

ASCII	characters	are	stored
as	1	byte;	double-byte
characters	are	stored	as	2
bytes.

Because	of	these	differences	in	internal	format,	there	are	string	processing
functions	that	operate	differently	in	Access	Basic	and	Visual	Basic.	The
functions	that	operate	differently	and	their	statements	are	as	shown	below.

Asc	function,	Chr	function,	InputB	function,	InStrB	function,	LeftB	function,
LenB	function,	RightB	function,	MidB	function,	and	their	corresponding
statements.

Also,	the	ChrB	function	and	AscB	function	have	been	added	to	Visual	Basic.

In	that	these	functions	and	statements	both	process	text	in	byte	units,	they	are	the

same	in	Access	Basic	and	Visual	Basic,	but	because	their	storage	formats	for	text
are	different,	they	operate	differently.	For	example,	in	LenB("A")	would	be	1	in
Access	Basic,	but	2	in	Visual	Basic.

Programs	created	in	previous	versions	of	Microsoft	Access	that	use	the	string
processing	functions	that	work	in	byte	units	must	be	changed	in	Visual	Basic	to	a
source	code	that	recognizes	Unicode.	However,	if	only	string	processing
functions	that	process	character	units,	such	as	the	Len	function,	Left	function,
and	Right	function,	are	used,	there	is	no	need	to	recognize	them.

If	programs	created	in	a	previous	version	of	Microsoft	Access	are	moved	to	the
current	version	of	Microsoft	Access,	consider	the	following	points	regarding
string	processing.

Asc	Function	and	AscB	Function

This	program	ran	properly	in	previous	versions	of	Access,	but	produces	a	run-
time	error	in	the	current	version	of	Visual	Basic	in	Microsoft	Access.

Print	Asc(MidB(" ",	2,1))

This	is	because	MidB(" ",	2,1),	an	argument	of	the	Asc	function,	does	not
correctly	return	data	to	Unicode	text.

Use	the	following	AscB	function	to	make	this	program	run	in	the	current	version
Microsoft	Access:

Print	AscB(MidB(" ",	2,1))

In	this	program,	the	value	(&H30)	of	the	second	Unicode	byte	is	returned.

Chr	Function	and	ChrB	Function

The	Chr	function	in	Microsoft	Access	always	returns	2-byte	characters.	In
previous	versions	of	Microsoft	Access,	Chr(&H41)	and	ChrB(&H41)	were
equal,	but	in	the	current	version	of	Microsoft	Access,	Chr(&H41)	and
ChrB(&H41)	+	ChrB(0)	are	equal.

Also,	in	previous	versions	of	Microsoft	Access,	" "	was	expressed	as
ChrB(&H82)	+	ChrB(&HA0),	but	in	the	current	version	of	Microsoft	Access	it
is	expressed	as	ChrB(&H42)	+	ChrB(&H30).

Calling	the	Windows	Application	Programming
Interface	(API)

In	several	Windows	API	the	byte	length	of	a	string	has	a	special	meaning.	For
example,	the	following	program	returns	a	folder	set	up	in	Windows.	In	Microsoft
Access,	LeftB(Buffer,	ret)	does	not	return	the	correct	string.	This	is	because,	in
spite	of	the	fact	that	it	shows	the	byte	length	of	an	ANSI	string,	the	LeftB
function	processes	Unicode	strings.	In	this	case,	use	the	InStr	function	so	that
only	the	character	string,	without	nulls,	is	returned.

Private	Declare	Function	GetWindowsDirectory	Lib	"kernel32"	_

				Alias	"GetWindowsDirectoryA"	(ByVal	lpBuffer	As	String,	_

				ByVal	nSize	As	Long)	As	Long

Private	Sub	Command1_Click()

				Buffer$	=	Space(255)

				ret	=	GetWindowsDirectory(Buffer$,	255)

				'	WinDir	=	LeftB(Buffer,	ret)			'<---	Incorrect	code"

				WinDir	=	Left(Buffer$,	InStr(Buffer$,	Chr(0))	-	1)

																																								'<--Correct	code"

				Print	WinDir

End	Sub

Input	Function	and	InputB	Function

The	Input	function	in	Microsoft	Access	converts	the	number	of	characters
designated	when	the	text	is	read	from	the	file	into	a	Unicode	string	and	reads
them	as	variables.	The	InputB	function,	on	the	other	hand,	assumes	the	data	to
be	binary	data	and	stores	it	as	variables	without	converting	it.	If	the	InputB
function	is	used	when	reading	a	file	stored	in	a	fixed	length	field,	the	fixed	byte
length	data	must	be	converted	once	it	is	read.

Open	"Data.Dat"	For	Input	As	1

dat1	=	StrConv(InputB(10,	1),	vbUnicode)

dat2	=	StrConv(InputB(10,	1),	vbUnicode)

dat3	=	StrConv(InputB(10,	1),	vbUnicode)

===DATA.DAT

123456789012345678901234567

Name						Address						Telephone

Processing	ANSI	string	bytes	in	Microsoft	Access	7.0

If	it	is	necessary	to	process	ANSI	string	bytes	in	Microsoft	Access,	use	the
StrConv	function.	You	can	convert	text	between	ANSI	and	Unicode	by	setting
the	vbUnicode	or	vbFromUnicode	constant.	If	you	process	bytes	after
temporarily	converting	a	string	to	an	ANSI	string,	and	then	reconvert	it	back	to
Unicode	once	the	process	is	finished,	you	can	use	codes	from	previous	version
of	Access	relatively	easily.

' 	 	ANSI	

dat	=	StrConv(dat,	vbFromUnicode)

.

.

.				' 	

.				' 	

.

.

'	 	 	Unicode	

dat	=	StrConv(dat,	vbUnicode)

Sample	Functions	that	perform	operations	that	are
compatible	with	byte	processing	functions	of	16-bit
versions

In	Microsoft	Access	Visual	Basic	for	Applications,	the	internal	processing	of
strings	is	performed	using	Unicode.	Thus,	the	binary	processing	functions	are
different	from	those	of	Access	Basic	used	in	previous	versions	of	Microsoft
Access.

The	ANSI	function	was	created	to	preserve	compatibility	between	the	operations
of	Access	Basic	and	Visual	Basic.

Note			Strings	input	and	removed	with	these	ANSI	processing	functions	are
always	Unicode.	After	being	converted	temporarily	to	ANSI	strings	within	the
function,	they	are	restored	to	Unicode	once	the	process	is	finished.

The	following	cannot	combine	the	first	and	second	byte	of	a	DBCS	character	to
create	a	DBCS	character.

AnsiMidB(" ",1,1)	+	AnsiMidB(" ",2,1)

These	functions	have	been	created	to	process	strings	in	byte	units.	However,	a
different	character	cannot	be	created	by	the	byte-unit	processing.	In	this	case,	it
would	be	expressed	as	follows:

StrArg	=	" "

StrArg	=	StrConv(StrArg,	vbFromUnicode)				'	ANSI	

RetArg	=	MidB(StrArg,1,1)	+	MidB(StrArg,2,1)				'	

				'	

StrArg	=	StrConv(StrArg,	vbUnicode)				'	 	Unicode	

RetArg	=	StrConv(RetArg,	vbUnicode)				'	

Generally,	if	you	convert	a	string	to	an	ANSI	character	before	processing,	you
should	restore	the	converted	string	to	a	Unicode	character	after	the	process	is
finished.

A	byte	string	process	is	always	a	function	for	processing	a	string.	To	process
binary	data,	use	a	byte	Array,	not	a	string	variable	or	a	byte	string	processing

function.

A	string	stored	in	a	byte	Array	appears	as	follows:

	Array	 	 	

Dim	Var()	As	Byte

Var	=	" "													'	Unicode	

Var	=	StrConv(" ",	vbFromUnicode)				'	ANSI	

Function	AnsiStrConv(StrArg,	flag)

				nsiStrConv	=	StrConv(StrArg,	flag)

End	Function

'	LenB	 ANSI	 	 	Unicode	

Function	AnsiLenB(ByVal	StrArg	As	String)	As	Long

				AnsiLenB	=	LenB(AnsiStrConv(StrArg,	vbFromUnicode))

End	Function

'	MidB	 ANSI	 	 	Unicode	

'	

Function	AnsiMidB(ByVal	StrArg	As	String,	ByVal	arg1	As	Long,	_

												Optional	arg2)	As	String

				If	IsMissing(arg2)	Then

				AnsiMidB	=	AnsiStrConv(MidB(AnsiStrConv(StrArg,	vbFromUnicode)	_

												,	arg1),vbUnicode)

				Else

				AnsiMidB	=	AnsiStrConv(MidB(AnsiStrConv(StrArg,	vbFromUnicode)	_

												,	arg1,	arg2),	vbUnicode)

				End	If

End	Function

'	LeftB	 	ANSI	 	 	Unicode	

Function	AnsiLeftB(ByVal	StrArg	As	String,	ByVal	arg1	As	Long)	As	String

				AnsiLeftB	=	AnsiStrConv(LeftB(AnsiStrConv(StrArg,	_

												vbFromUnicode),	arg1),	vbUnicode)

End	Function

'	RightB	 ANSI	 	 	Unicode	

Function	AnsiRightB(ByVal	StrArg	As	String,	ByVal	arg1	As	Long)	As	String

				AnsiRightB	=	AnsiStrConv(RightB(AnsiStrConv(StrArg,	_

												vbFromUnicode),	arg1),	vbUnicode)

End	Function

'	InStrB	 	2	 	Ansi	 Ansi	

Function	AnsiInStrB(arg1,	arg2,	Optional	arg3)	As	Integer

				If	IsNumeric(arg1)	Then

				pos	=	LenB(AnsiLeftB(arg2,	arg1))

				AnsiInStrB	=	InStrB(arg1,	AnsiStrConv(arg2,	vbFromUnicode)	_

												,	AnsiStrConv(arg3,	vbFromUnicode))

				Else

				AnsiInStrB	=	InStrB(AnsiStrConv(arg1,	vbFromUnicode)	_

												,	AnsiStrConv(arg2,	vbFromUnicode))

				End	If

End	Function

Using	byte	data	type

In	Microsoft	Access	Byte	data	type	is	added	as	a	new	data	type.	If	a	string
variable	is	used	when	processing	binary	data,	text	is	converted	between	ANSI
and	Unicode,	and	binary	data	is	changed.	Thus,	when	dealing	with	binary	data,
use	Byte	data	type	variables.

Dim	ByteData()	As	Byte

ByteData	=	" "								'	Unicode	

ByteData	=	StrConv(" ",	vbFromUnicode)					'ANSI	

ByteData	=	InputB(10,	#1)				' 	

Debug.Print	ByteData(5)								'

Show	All

Quotation	Marks	in	Strings
			

In	situations	where	you	must	construct	strings	to	be	concatenated,	you	may	need
to	embed	a	string	within	another	string,	or	a	string	variable	within	a	string.
Situations	in	which	you	might	need	to	nest	one	string	within	another	include:

When	specifying	criteria	for	domain	aggregate	functions.
When	specifying	criteria	for	the	Find	methods.
When	specifying	criteria	for	the	Filter	or	ServerFilter	property	of	a	form.
When	building	SQL	strings.

In	all	of	these	instances,	Microsoft	Access	must	pass	a	string	to	the	Microsoft	Jet
database	engine.	When	you	specify	a	criteria	argument	for	a	domain	aggregate
function,	for	example,	Microsoft	Access	must	evaluate	any	variables,
concatenate	them	into	a	string,	and	then	pass	the	entire	string	to	the	Jet	database
engine.

If	you	embed	a	numeric	variable,	Microsoft	Access	evaluates	the	variable	and
simply	concatenates	the	value	into	the	string.	If	the	variable	is	a	text	string,
however,	the	resulting	criteria	string	will	contain	a	string	within	a	string.	A	string
within	a	string	must	be	identified	by	string	delimiters.	Otherwise,	the	Jet
database	engine	won't	be	able	to	determine	which	part	of	the	string	is	the	value
you	want	to	use.

The	string	delimiters	aren't	actually	part	of	the	variable	itself,	but	they	must	be
included	in	the	string	in	the	criteria	argument.	There	are	three	different	ways	to
construct	the	string	in	the	criteria	argument.	Each	method	results	in	a	criteria
argument	that	looks	like	one	of	the	following	examples.

"[LastName]	=	'Smith'"

–	or	–

"[LastName]	=	""Smith"""

Include	Single	Quotation	Marks

You	should	include	single	quotation	marks	in	the	criteria	argument	in	such	a
way	that	when	the	value	of	the	variable	is	concatenated	into	the	string,	it	will	be
enclosed	within	the	single	quotation	marks.	For	instance,	suppose	your	criteria
argument	must	contain	a	string	variable	called	strName.	You	could	construct	the
criteria	argument	as	in	the	following	example:

"[LastName]	=	'"	&	strName	&	"'"

When	the	variable	strName	is	evaluated	and	concatenated	into	the	criteria	string,
the	criteria	string	becomes:

"[LastName]	=	'Smith'"

Note			This	syntax	does	not	permit	the	use	of	apostrophes	(')	within	the	value	of
the	variable	itself.	If	the	value	of	the	string	variable	includes	an	apostrophe,
Microsoft	Access	generates	a	run-time	error.	If	your	variable	may	represent
values	containing	apostrophes,	consider	using	one	of	the	other	syntax	forms
discussed	in	the	following	sections.

Include	Double	Quotation	Marks

You	should	include	double	quotation	marks	within	the	criteria	argument	in	such
a	way	so	that	when	the	value	of	the	variable	is	evaluated,	it	will	be	enclosed
within	the	quotation	marks.	Within	a	string,	you	must	use	two	sets	of	double
quotation	marks	to	represent	a	single	set	of	double	quotation	marks.	You	could
construct	the	criteria	argument	as	in	the	following	example:

"[LastName]	=	"""	&	strName	&	""""

When	the	variable	strName	is	evaluated	and	concatenated	into	the	criteria
argument,	each	set	of	two	double	quotation	marks	is	replaced	by	one	single
quotation	mark.	The	criteria	argument	becomes:

"[LastName]	=	'Smith'"

This	syntax	may	appear	more	complicated	than	the	single	quotation	mark	syntax,
but	it	enables	you	to	embed	a	string	that	contains	an	apostrophe	within	the
criteria	argument.	It	also	enables	you	to	nest	one	or	more	strings	within	the
embedded	string.

Include	a	Variable	Representing	Quotation	Marks

You	can	create	a	string	variable	that	represents	double	quotation	marks,	and
concatenate	this	variable	into	the	criteria	argument	along	with	the	value	of	the
variable.	The	ANSI	representation	for	double	quotation	marks	is	Chr$(34);	you
could	assign	this	value	to	a	string	variable	called	strQuote.	You	could	then
construct	the	criteria	argument	as	in	the	following	example:

"[LastName]	=	"	&	strQuote	&	strName	&	strQuote

When	the	variables	are	evaluated	and	concatenated	into	the	criteria	argument,
the	criteria	argument	becomes:

[LastName]	=	"Smith"

Show	All

Restrict	Data	to	a	Subset	of	Records
			

When	working	with	records	you	will	often	need	to	restrict	your	data	to	a	specific
set	of	records.	Some	procedures	take	a	criteria	argument	that	enables	you	to
specify	what	data	should	be	returned.	For	example,	you	specify	the	criteria
argument	to	restrict	which	records	are	returned	when	you	use	domain	aggregate
functions.	You	may	also	specify	criteria	when	you	use	the	Find	method	of	a
Recordset	object,	set	the	Filter	or	ServerFilter	property	of	a	form,	or	construct
an	SQL	statement.	Although	each	of	these	operations	involves	a	different	syntax,
you	construct	the	criteria	expression	in	a	similar	manner	for	each.

For	example,	you	can	use	the	DSum	function,	a	domain	aggregate	function,	to
find	the	sum	total	of	all	freight	costs	in	the	Orders	table.	You	could	create	a
calculated	control	by	entering	the	following	expression	in	the	ControlSource
property:

=DSum("[Freight]",	"Orders")

If	you	specify	the	optional	criteria	argument,	the	DSum	function	will	be
performed	on	a	subset	of	domain.	For	example,	you	could	find	the	sum	total	of
all	freight	costs	in	the	Orders	table	for	only	those	orders	being	shipped	to
California:

=DSum("[Freight]",	"Orders",	"[ShipRegion]	=	'CA'")

When	you	supply	a	criteria	argument,	Microsoft	Access	first	evaluates	any
expressions	included	in	the	argument	to	form	a	string	expression.	Then	the	string
expression	is	passed	to	the	domain	function.	The	string	expression	is	equivalent
to	an	SQL	WHERE	clause,	without	the	word	WHERE.

You	can	specify	numeric,	textual,	or	date/time	criteria.	No	matter	what	type	of
criteria	you	specify,	the	criteria	argument	is	always	converted	to	a	string	before
being	passed	to	the	domain	aggregate	function.	Therefore,	you	must	make
certain	that	after	any	expressions	have	been	evaluated,	all	parts	of	the	argument
are	concatenated	into	a	single	string,	the	whole	of	which	is	enclosed	in	double

quotation	marks	(").

Use	caution	when	constructing	criteria	to	ensure	that	the	string	will	be	properly
concatenated.

The	following	list	of	topics	outlines	the	different	ways	in	which	you	can	specify
criteria:

Numeric	Criteria	Expressions

Textual	Criteria	Expressions

Date	and	Time	Criteria	Expressions

Change	Numeric	Criteria	from	a	Control	on	a	Form

Change	Textual	Criteria	from	a	Control	on	a	Form

Change	Date	and	Time	Criteria	from	a	Control	on	a	Form

Multiple	Fields	in	Criteria	Expressions

Show	All

Calculate	Fields	in	Domain	Aggregate
Functions
			

You	can	use	the	string	expression	argument	(the	expr	argument)	in	a	domain
aggregate	function	to	perform	a	calculation	on	values	in	a	field.	For	example,
you	can	calculate	a	percentage	(such	as	a	surcharge	or	sales	tax)	by	dividing	a
field	value	by	a	number.

The	following	table	provides	examples	of	calculations	on	fields	from	an	Orders
table	and	an	Order	Details	table.

Calculation Example
Add	a	number	to	a	field "[Freight]	+	5"
Subtract	a	number	from	a	field "[Freight]	-	5"
Multiply	a	field	by	a	number "[Freight]	*	2"
Divide	a	field	by	a	number "[Freight]	/	2"
Add	one	field	to	another "[UnitsInStock]	+	[UnitsOnOrder]"
Subtract	one	field	from	another "[ReorderLevel]	-	[UnitsInStock]"

You	would	most	likely	use	a	domain	aggregate	function	in	a	macro	or	module,	in
a	calculated	control	on	a	form	or	report,	or	in	a	criteria	expression	in	a	query.

For	example,	you	can	calculate	the	average	discount	amount	for	all	orders	in	an
Order	Details	table.	Multiply	the	Unit	Price	and	Discount	fields	to	determine	the
discount	for	each	order,	then	calculate	the	average.	Enter	the	following	example
in	a	procedure	in	a	module.

Dim	dblX	As	Double

dblX	=	DAvg("[UnitPrice]	*	[Discount]",	"[Order	Details]")

Show	All

Build	SQL	Statements	That	Include
Variables	and	Controls
			

When	working	with	Data	Access	Objects	(DAO)	or	ActiveX	Data	Objects
(ADO),	you	may	need	to	construct	an	SQL	statement	in	code.	This	is	sometimes
referred	to	as	taking	your	SQL	code	"inline".	For	example,	if	you're	creating	a
new	QueryDef	object,	you	must	set	its	SQL	property	to	a	valid	SQL	string.	But
if	you	are	using	an	ADO	Recordset	object,	you	must	set	its	Source	property	to	a
valid	SQL	string.

The	easiest	way	to	construct	an	SQL	statement	is	to	create	a	query	in	the	query
design	grid,	switch	to	SQL	view,	and	copy	and	paste	the	corresponding	SQL
statement	into	your	code.

Often	a	query	must	be	based	on	values	that	the	user	supplies,	or	that	change	in
different	situations.	If	this	is	the	case,	you'll	need	to	include	variables	or	control
values	in	your	query.	The	Microsoft	Jet	database	engine	processes	all	SQL
statements,	but	not	variables	or	controls.	Therefore,	you	must	construct	your
SQL	statement	so	that	Microsoft	Access	first	determines	these	values	and	then
concatenates	them	into	the	SQL	statement	that's	passed	to	the	Jet	database
engine.

Building	SQL	Statements	With	DAO

The	following	example	shows	how	to	create	a	QueryDef	object	with	a	simple
SQL	statement.	This	query	returns	all	orders	from	an	Orders	table	that	were
placed	after	3-31-96:

Public	Sub	GetOrders()

			Dim	dbs	As	DAO.Database

			Dim	qdf	As	DAO.QueryDef

			Dim	strSQL	As	String

			Set	dbs	=	CurrentDb

			strSQL	=	"SELECT	*	FROM	Orders	WHERE	OrderDate	>#3-31-96#;"

			Set	qdf	=	dbs.CreateQueryDef("SecondQuarter",	strSQL)

End	Sub

The	next	example	creates	the	same	QueryDef	object	by	using	a	value	stored	in	a
variable.	Note	that	the	number	signs	(#)	that	denote	the	date	values	must	be
included	in	the	string	so	that	they	are	concatenated	with	the	date	value.

Dim	dbs	As	Database,	qdf	As	QueryDef,	strSQL	As	String

Dim	dteStart	As	Date

dteStart	=	#3-31-96#

Set	dbs	=	CurrentDb

strSQL	=	"SELECT	*	FROM	Orders	WHERE	OrderDate"	_

				&	">	#"	&	dteStart	&	"#;"

Set	qdf	=	dbs.CreateQueryDef("SecondQuarter",	strSQL)

The	following	example	creates	a	QueryDef	object	by	using	a	value	in	a	control
called	OrderDate	on	an	Orders	form.	Note	that	you	provide	the	full	reference	to
the	control,	and	that	you	include	the	number	signs	that	denote	the	date	within	the
string.

Dim	dbs	As	Database,	qdf	As	QueryDef,	strSQL	As	String

Set	dbs	=	CurrentDb

strSQL	=	"SELECT	*	FROM	Orders	WHERE	OrderDate"	_

				&	">	#"	&	Forms!Orders!OrderDate	&	"#;"

Set	qdf	=	dbs.CreateQueryDef("SecondQuarter",	strSQL)

Building	SQL	Statements	With	ADO

In	this	section,	we	will	build	the	same	statements	as	in	the	previous	section,	but
this	time	using	ADO	as	the	data	access	method.

The	following	example	shows	how	to	create	a	QueryDef	object	with	a	simple
SQL	statement.	This	query	returns	all	orders	from	an	Orders	table	that	were
placed	after	3-31-96:

Dim	dbs	As	Database,	qdf	As	QueryDef,	strSQL	As	String

Set	dbs	=	CurrentDb

strSQL	=	"SELECT	*	FROM	Orders	WHERE	OrderDate	>#3-31-96#;"

Set	qdf	=	dbs.CreateQueryDef("SecondQuarter",	strSQL)

The	next	example	creates	the	same	QueryDef	object	by	using	a	value	stored	in	a
variable.	Note	that	the	number	signs	(#)	that	denote	the	date	values	must	be
included	in	the	string	so	that	they	are	concatenated	with	the	date	value.

Dim	dbs	As	Database,	qdf	As	QueryDef,	strSQL	As	String

Dim	dteStart	As	Date

dteStart	=	#3-31-96#

Set	dbs	=	CurrentDb

strSQL	=	"SELECT	*	FROM	Orders	WHERE	OrderDate"	_

				&	">	#"	&	dteStart	&	"#;"

Set	qdf	=	dbs.CreateQueryDef("SecondQuarter",	strSQL)

The	following	example	creates	a	QueryDef	object	by	using	a	value	in	a	control
called	OrderDate	on	an	Orders	form.	Note	that	you	provide	the	full	reference	to
the	control,	and	that	you	include	the	number	signs	that	denote	the	date	within	the
string.

Dim	dbs	As	Database,	qdf	As	QueryDef,	strSQL	As	String

Set	dbs	=	CurrentDb

strSQL	=	"SELECT	*	FROM	Orders	WHERE	OrderDate"	_

				&	">	#"	&	Forms!Orders!OrderDate	&	"#;"

Set	qdf	=	dbs.CreateQueryDef("SecondQuarter",	strSQL)

Show	All

Use	International	Date	Formats	in
SQL	Statements
			

You	must	use	English	(United	States)	date	formats	in	SQL	statements	in	Visual
Basic.	However,	you	can	use	international	date	formats	in	the	query	design	grid.

Show	All

Error	Trapping
			

You	can	use	the	On	Error	GoTo	statement	to	trap	errors	and	direct	procedure
flow	to	the	location	of	error-handling	statements	within	a	procedure.	For
example,	the	following	statement	directs	the	flow	to	the	ErrorHandler:	label
line:

On	Error	GoTo	ErrorHandler

Be	sure	to	give	each	error	handler	label	in	a	procedure	a	unique	name	that	will
not	conflict	with	any	other	element	in	the	procedure,	and	make	sure	you	append
a	colon	to	the	name.	Within	the	procedure,	place	the	Exit	Sub	or	Exit	Function
statement	in	front	of	the	error	handler	label	so	that	the	procedure	doesn't	run	the
error-checking	code	if	no	error	occurs.

Sub	CausesAnError()

				'	Direct	procedure	flow.

				On	Error	GoTo	ErrorHandler

				'	Raise	division	by	zero	error.

				Err.Raise	11

				Exit	Sub

ErrorHandler:

				'	Display	error	information.

				MsgBox	"Error	number	"	&	Err.Number	&	":	"	&	Err.Description

				'	Resume	with	statement	following	occurrence	of	error.

				Resume	Next

End	Sub

The	Raise	method	of	the	Err	object	generates	the	specified	error.	The	Number
property	of	the	Err	object	returns	the	number	corresponding	to	the	most	recent
run-time	error;	the	Description	property	returns	the	corresponding	message	text
for	a	given	error.

Notes

In	versions	1.x	and	2.0	of	Microsoft	Access,	you	might	have	used	the	Error
statement	to	generate	the	error,	the	Err	function	to	return	the	error	number,

and	the	Error	function	to	return	a	description	of	the	error.	Existing	error-
handling	code	that	relies	on	the	Error	statement	and	the	Error	function
will	continue	to	work.	However,	it's	better	to	use	the	Err	object	and	its
properties	and	methods	when	writing	new	code.
Versions	1.x	and	2.0	of	Microsoft	Access	returned	only	one	error	for	all
Automation,	(formerly	called	OLE	Automation)	errors.	The	COM
component	application	that	generated	the	error	now	returns	the	same	error
information	that	you	would	receive	if	you	were	working	in	that	application.
You	may	need	to	rewrite	existing	error-handling	code	to	handle	new
Automation	errors	properly.
If	you	wish	to	return	the	descriptive	string	associated	with	a	Microsoft
Access	error	or	a	Data	Access	Objects	(DAO)	error,	but	the	error	has	not
actually	occurred	in	your	code,	you	can	use	the	AccessError	method	to
return	the	string.

Show	All

Elements	of	Run-Time	Error
Handling
			

Errors	and	Error	Handling

When	you're	programming	an	application,	you	need	to	consider	what	happens
when	an	error	occurs.	An	error	can	occur	in	your	application	for	one	of	two	of
reasons.	First,	some	condition	at	the	time	the	application	is	running	makes
otherwise	valid	code	fail.	For	example,	if	your	code	attempts	to	open	a	table	that
the	user	has	deleted,	an	error	occurs.	Second,	your	code	may	contain	improper
logic	that	prevents	it	from	doing	what	you	intended.	For	example,	an	error
occurs	if	your	code	attempts	to	divide	a	value	by	zero.

If	you've	implemented	no	error	handling,	then	Visual	Basic	halts	execution	and
displays	an	error	message	when	an	error	occurs	in	your	code.	The	user	of	your
application	is	likely	to	be	confused	and	frustrated	when	this	happens.	You	can
forestall	many	problems	by	including	thorough	error-handling	routines	in	your
code	to	handle	any	error	that	may	occur.

When	adding	error	handling	to	a	procedure,	you	should	consider	how	the
procedure	will	route	execution	when	an	error	occurs.	The	first	step	in	routing
execution	to	an	error	handler	is	to	enable	an	error	handler	by	including	some
form	of	the	On	Error	statement	within	the	procedure.	The	On	Error	statement
directs	execution	in	event	of	an	error.	If	there's	no	On	Error	statement,	Visual
Basic	simply	halts	execution	and	displays	an	error	message	when	an	error
occurs.

When	an	error	occurs	in	a	procedure	with	an	enabled	error	handler,	Visual	Basic
doesn't	display	the	normal	error	message.	Instead	it	routes	execution	to	an	error
handler,	if	one	exists.	When	execution	passes	to	an	enabled	error	handler,	that
error	handler	becomes	active.	Within	the	active	error	handler,	you	can	determine
the	type	of	error	that	occurred	and	address	it	in	the	manner	that	you	choose.
Microsoft	Access	provides	three	objects	that	contain	information	about	errors
that	have	occurred,	the	ADO	Error	object,	the	Visual	Basic	Err	object,	and	the
DAO	Error	object.

Routing	Execution	When	an	Error	Occurs

An	error	handler	specifies	what	happens	within	a	procedure	when	an	error
occurs.	For	example,	you	may	want	the	procedure	to	end	if	a	certain	error
occurs,	or	you	may	want	to	correct	the	condition	that	caused	the	error	and
resume	execution.	The	On	Error	and	Resume	statements	determine	how
execution	proceeds	in	the	event	of	an	error.

The	On	Error	Statement

The	On	Error	statement	enables	or	disables	an	error-handling	routine.	If	an
error-handling	routine	is	enabled,	execution	passes	to	the	error-handling	routine
when	an	error	occurs.

There	are	three	forms	of	the	On	Error	statement:	On	Error	GoTo	label,	On
Error	GoTo	0,	and	On	Error	Resume	Next.	The	On	Error	GoTo	label
statement	enables	an	error-handling	routine,	beginning	with	the	line	on	which
the	statement	is	found.	You	should	enable	the	error-handling	routine	before	the
first	line	at	which	an	error	could	occur.	When	the	error	handler	is	active	and	an
error	occurs,	execution	passes	to	the	line	specified	by	the	label	argument.

The	line	specified	by	the	label	argument	should	be	the	beginning	of	the	error-
handling	routine.	For	example,	the	following	procedure	specifies	that	if	an	error
occurs,	execution	passes	to	the	line	labeled	Error_MayCauseAnError:

Function	MayCauseAnError()

				'	Enable	error	handler.

				On	Error	GoTo	Error_MayCauseAnError

				.												'	Include	code	here	that	may	generate	error.

				.

				.

Error_MayCauseAnError:

				.												'	Include	code	here	to	handle	error.

				.

				.

End	Function

The	On	Error	GoTo	0	statement	disables	error	handling	within	a	procedure.	It
doesn't	specify	line	0	as	the	start	of	the	error-handling	code,	even	if	the

procedure	contains	a	line	numbered	0.	If	there's	no	On	Error	GoTo	0	statement
in	your	code,	the	error	handler	is	automatically	disabled	when	the	procedure	has
run	completely.	The	On	Error	GoTo	0	statement	resets	the	properties	of	the	Err
object,	having	the	same	effect	as	the	Clear	method	of	the	Err	object.

The	On	Error	Resume	Next	statement	ignores	the	line	that	causes	an	error	and
routes	execution	to	the	line	following	the	line	that	caused	the	error.	Execution
isn't	interrupted.	You	can	use	the	On	Error	Resume	Next	statement	if	you	want
to	check	the	properties	of	the	Err	object	immediately	after	a	line	at	which	you
anticipate	an	error	will	occur,	and	handle	the	error	within	the	procedure	rather
than	in	an	error	handler.

The	Resume	Statement

The	Resume	statement	directs	execution	back	to	the	body	of	the	procedure	from
within	an	error-handling	routine.	You	can	include	a	Resume	statement	within	an
error-handling	routine	if	you	want	execution	to	continue	at	a	particular	point	in	a
procedure.	However,	a	Resume	statement	isn't	necessary;	you	can	also	end	the
procedure	after	the	error-handling	routine.

There	are	three	forms	of	the	Resume	statement.	The	Resume	or	Resume	0
statement	returns	execution	to	the	line	at	which	the	error	occurred.	The	Resume
Next	statement	returns	execution	to	the	line	immediately	following	the	line	at
which	the	error	occurred.	The	Resume	label	statement	returns	execution	to	the
line	specified	by	the	label	argument.	The	label	argument	must	indicate	either	a
line	label	or	a	line	number.

You	typically	use	the	Resume	or	Resume	0	statement	when	the	user	must	make
a	correction.	For	example,	if	you	prompt	the	user	for	the	name	of	a	table	to	open,
and	the	user	enters	the	name	of	a	table	that	doesn't	exist,	you	can	prompt	the	user
again	and	resume	execution	with	the	statement	that	caused	the	error.

You	use	the	Resume	Next	statement	when	your	code	corrects	for	the	error
within	an	error	handler,	and	you	want	to	continue	execution	without	rerunning
the	line	that	caused	the	error.	You	use	the	Resume	label	statement	when	you
want	to	continue	execution	at	another	point	in	the	procedure,	specified	by	the
label	argument.	For	example,	you	might	want	to	resume	execution	at	an	exit
routine,	as	described	in	the	following	section.

Exiting	a	Procedure

When	you	include	an	error-handling	routine	in	a	procedure,	you	should	also
include	an	exit	routine,	so	that	the	error-handling	routine	will	run	only	if	an	error
occurs.	You	can	specify	an	exit	routine	with	a	line	label	in	the	same	way	that	you
specify	an	error-handling	routine.

For	example,	you	can	add	an	exit	routine	to	the	example	in	the	previous	section.
If	an	error	doesn't	occur,	the	exit	routine	runs	after	the	body	of	the	procedure.	If
an	error	occurs,	then	execution	passes	to	the	exit	routine	after	the	code	in	the
error-handling	routine	has	run.	The	exit	routine	contains	an	Exit	statement.

Function	MayCauseAnError()

				'	Enable	error	handler.

				On	Error	GoTo	Error_MayCauseAnError

				.												'	Include	code	here	that	may	generate	error.

				.

				.

Exit_MayCauseAnError:

				Exit	Function

Error_MayCauseAnError:

				.												'	Include	code	to	handle	error.

				.

				.

				'	Resume	execution	with	exit	routine	to	exit	function.

				Resume	Exit_MayCauseAnError

End	Function

Handling	Errors	in	Nested	Procedures

When	an	error	occurs	in	a	nested	procedure	that	doesn't	have	an	enabled	error
handler,	Visual	Basic	searches	backward	through	the	calls	list	for	an	enabled
error	handler	in	another	procedure,	rather	than	simply	halting	execution.	This
provides	your	code	with	an	opportunity	to	correct	the	error	within	another
procedure.	For	example,	suppose	Procedure	A	calls	Procedure	B,	and	Procedure
B	calls	Procedure	C.	If	an	error	occurs	in	Procedure	C	and	there's	no	enabled
error	handler,	Visual	Basic	checks	Procedure	B,	then	Procedure	A,	for	an
enabled	error	handler.	If	one	exists,	execution	passes	to	that	error	handler.	If	not,
execution	halts	and	an	error	message	is	displayed.

Visual	Basic	also	searches	backward	through	the	calls	list	for	an	enabled	error
handler	when	an	error	occurs	within	an	active	error	handler.	You	can	force

Visual	Basic	to	search	backward	through	the	calls	list	by	raising	an	error	within
an	active	error	handler	with	the	Raise	method	of	the	Err	object.	This	is	useful
for	handling	errors	that	you	don't	anticipate	within	an	error	handler.	If	an
unanticipated	error	occurs,	and	you	regenerate	that	error	within	the	error	handler,
then	execution	passes	back	up	the	calls	list	to	find	another	error	handler,	which
may	be	set	up	to	handle	the	error.

For	example,	suppose	Procedure	C	has	an	enabled	error	handler,	but	the	error
handler	doesn't	correct	for	the	error	that	has	occurred.	Once	the	error	handler	has
checked	for	all	the	errors	that	you've	anticipated,	it	can	regenerate	the	original
error.	Execution	then	passes	back	up	the	calls	list	to	the	error	handler	in
Procedure	B,	if	one	exists,	providing	an	opportunity	for	this	error	handler	to
correct	the	error.	If	no	error	handler	exists	in	Procedure	B,	or	if	it	fails	to	correct
for	the	error	and	regenerates	it	again,	then	execution	passes	to	the	error	handler
in	Procedure	A,	assuming	one	exists.

To	illustrate	this	concept	in	another	way,	suppose	that	you	have	a	nested
procedure	that	includes	error	handling	for	a	type	mismatch	error,	an	error	which
you've	anticipated.	At	some	point,	a	division-by-zero	error,	which	you	haven't
anticipated,	occurs	within	Procedure	C.	If	you've	included	a	statement	to
regenerate	the	original	error,	then	execution	passes	back	up	the	calls	list	to
another	enabled	error	handler,	if	one	exists.	If	you've	corrected	for	a	division-by-
zero	error	in	another	procedure	in	the	calls	list,	then	the	error	will	be	corrected.
If	your	code	doesn't	regenerate	the	error,	then	the	procedure	continues	to	run
without	correcting	the	division-by-zero	error.	This	in	turn	may	cause	other	errors
within	the	set	of	nested	procedures.

In	summary,	Visual	Basic	searches	back	up	the	calls	list	for	an	enabled	error
handler	if:

An	error	occurs	in	a	procedure	that	doesn't	include	an	enabled	error	handler.
An	error	occurs	within	an	active	error	handler.	If	you	use	the	Raise	method
of	the	Err	object	to	raise	an	error,	you	can	force	Visual	Basic	to	search
backward	through	the	calls	list	for	an	enabled	error	handler.

Getting	Information	About	an	Error

Once	execution	has	passed	to	the	error-handling	routine,	your	code	must
determine	which	error	has	occurred	and	address	it.	Visual	Basic	and	Microsoft
Access	provide	several	language	elements	that	you	can	use	to	get	information
about	a	specific	error.	Each	is	suited	to	different	types	of	errors.	Since	errors	can
occur	in	different	parts	of	your	application,	you	need	to	determine	which	to	use
in	your	code	based	on	what	errors	you	expect.

The	language	elements	available	for	error	handling	include:

The	Err	object.
The	ADO	Error	object	and	Errors	collection
The	DAO	Error	object	and	Errors	collection.
The	AccessError	method.
The	Error	event.

The	Err	Object

The	Err	object	is	provided	by	Visual	Basic.	When	a	Visual	Basic	error	occurs,
information	about	that	error	is	stored	in	the	Err	object.	The	Err	object	maintains
information	about	only	one	error	at	a	time.	When	a	new	error	occurs,	the	Err
object	is	updated	to	include	information	about	that	error	instead.

To	get	information	about	a	particular	error,	you	can	use	the	properties	and
methods	of	the	Err	object.	The	Number	property	is	the	default	property	of	the
Err	object;	it	returns	the	identifying	number	of	the	error	that	occurred.	The	Err
object's	Description	property	returns	the	descriptive	string	associated	with	a
Visual	Basic	error.	The	Clear	method	clears	the	current	error	information	from
the	Err	object.	The	Raise	method	generates	a	specific	error	and	populates	the
properties	of	the	Err	object	with	information	about	that	error.

The	following	example	shows	how	to	use	the	Err	object	in	a	procedure	that	may
cause	a	type	mismatch	error:

Function	MayCauseAnError()

				'	Declare	constant	to	represent	likely	error.

				Const	conTypeMismatch	As	Integer	=	13

				On	Error	GoTo	Error_MayCauseAnError

								.												'	Include	code	here	that	may	generate	error.

								.

								.

Exit_MayCauseAnError:

				Exit	Function

Error_MayCauseAnError:

				'	Check	Err	object	properties.

				If	Err	=	conTypeMismatch	Then

								.												'	Include	code	to	handle	error.

								.

								.

				Else

								'	Regenerate	original	error.

								Dim	intErrNum	As	Integer

								intErrNum	=	Err

								Err.Clear

								Err.Raise	intErrNum

				End	If

				'	Resume	execution	with	exit	routine	to	exit	function.

				Resume	Exit_MayCauseAnError

End	Function

Note	that	in	the	preceding	example,	the	Raise	method	is	used	to	regenerate	the
original	error.	If	an	error	other	than	a	type	mismatch	error	occurs,	execution	will
be	passed	back	up	the	calls	list	to	another	enabled	error	handler,	if	one	exists.

The	Err	object	provides	you	with	all	the	information	you	need	about	Visual
Basic	errors.	However,	it	doesn't	give	you	complete	information	about	Microsoft
Access	errors	or	Microsoft	Jet	database	engine	errors.	Microsoft	Access	and
Data	Access	Objects	(DAO))	provide	additional	language	elements	to	assist	you
with	those	errors.

The	Error	Object	and	Errors	Collection

The	Error	object	and	Errors	collection	are	provided	by	ADO	and	DAO.	The
Error	object	represents	an	ADO	or	DAO	error.	A	single	ADO	or	DAO	operation
may	cause	several	errors,	especially	if	you	are	performing	DAO	ODBC
operations.	Each	error	that	occurs	during	a	particular	data	access	operation	has
an	associated	Error	object.	All	the	Error	objects	associated	with	a	particular
ADO	or	DAO	operation	are	stored	in	the	Errors	collection,	the	lowest-level

error	being	the	first	object	in	the	collection	and	the	highest-level	error	being	the
last	object	in	the	collection.

When	a	ADO	or	DAO	error	occurs,	the	Visual	Basic	Err	object	contains	the
error	number	for	the	first	object	in	the	Errors	collection.	To	determine	whether
additional	ADO	or	DAO	errors	have	occurred,	check	the	Errors	collection.	The
values	of	the	ADO	Number	or	DAO	Number	properties	and	the	ADO
Description	or	DAO	Description	properties	of	the	first	Error	object	in	the
Errors	collection	should	match	the	values	of	the	Number	and	Description
properties	of	the	Visual	Basic	Err	object.

The	AccessError	Method

You	can	use	the	Raise	method	of	the	Err	object	to	generate	a	Visual	Basic	error
that	hasn't	actually	occurred	and	determine	the	descriptive	string	associated	with
that	error.	However,	you	can't	use	the	Raise	method	to	generate	a	Microsoft
Access	error,	an	ADO	error,	or	a	DAO	error.	To	determine	the	descriptive	string
associated	with	a	Microsoft	Access	error,	an	ADO	error,	or	a	DAO	error	that
hasn't	actually	occurred,	use	the	AccessError	method.

The	Error	Event

You	can	use	the	Error	event	to	trap	errors	that	occur	on	a	Microsoft	Access	form
or	report.	For	example,	if	a	user	tries	to	enter	text	in	a	field	whose	data	type	is
Date/Time,	the	Error	event	occurs.	If	you	add	an	Error	event	procedure	to	an
Employees	form,	then	try	to	enter	a	text	value	in	the	HireDate	field,	the	Error
event	procedure	runs.

The	Error	event	procedure	takes	an	integer	argument,	DataErr.	When	an	Error
event	procedure	runs,	the	DataErr	argument	contains	the	number	of	the
Microsoft	Access	error	that	occurred.	Checking	the	value	of	the	DataErr
argument	within	the	event	procedure	is	the	only	way	to	determine	the	number	of
the	error	that	occurred.	The	Err	object	isn't	populated	with	error	information
after	the	Error	event	occurs.	You	can	use	the	value	of	the	DataErr	argument
together	with	the	AccessError	method	to	determine	the	number	of	the	error	and
its	descriptive	string.

Note			The	Error	statement	and	Error	function	are	provided	for	backward
compatibility	only.	When	writing	new	code,	use	the	Err	and	Error	objects,	the
AccessError	function,	and	the	Error	event	for	getting	information	about	an

error.

Show	All

The	ActiveX	Control's	Custom
Properties	Dialog	Box
			

Some	of	the	content	in	this	topic	may	not	be	applicable	to	some	languages.

When	setting	the	properties	of	an	ActiveX	control,	you	may	need	or	prefer	to	use
the	control's	custom	properties	dialog	box.	This	custom	properties	dialog	box
provides	an	alternative	to	the	list	of	properties	in	the	Microsoft	Access	property
sheet	for	setting	ActiveX	control	properties	in	Design	view.

Note			This	information	only	applies	to	ActiveX	controls	in	a	Microsoft	Access
database	(.mdb)	environment.

Two	Ways	to	Set	Properties

The	reason	for	the	custom	properties	dialog	box	is	that	not	all	applications	that
use	ActiveX	controls	provide	a	property	sheet	like	the	one	in	Microsoft	Access.
The	custom	properties	dialog	box	provides	an	interface	for	setting	key	control
properties	regardless	of	the	interface	supplied	by	the	hosting	application.

For	some	ActiveX	control	properties,	you	can	choose	either	of	these	two
locations	to	set	the	property:

The	Microsoft	Access	property	sheet.
The	ActiveX	control's	custom	properties	dialog	box.

In	some	cases,	the	custom	properties	dialog	box	is	the	only	way	to	set	a	property
in	Design	view.	This	is	usually	the	situation	when	the	interface	needed	to	set	a
property	doesn't	work	inside	the	Microsoft	Access	property	sheet.	For	example,
the	GridFont	property	for	the	Calendar	control	has	a	number	of	arguments;	you
can't	set	more	than	one	argument	per	property	in	the	Microsoft	Access	property
sheet.

Finding	the	Custom	Properties	Dialog	Box

Not	all	ActiveX	controls	provide	a	custom	properties	dialog	box.	To	see	whether
a	control	provides	this	custom	properties	dialog	box,	look	for	the	Custom
property	in	the	Microsoft	Access	property	sheet	for	this	control.	If	the	list	of
properties	contains	the	name	Custom,	then	the	control	provides	the	custom
properties	dialog	box.

Using	the	Custom	Properties	Dialog	Box

After	you	click	the	Custom	property	box	in	the	Microsoft	Access	property	sheet,
click	the	Build	button	to	the	right	of	the	property	box	to	display	the	control's
custom	properties	dialog	box,	often	presented	as	a	tabbed	dialog	box.	Choose	the
tab	that	contains	the	interface	for	setting	the	properties	that	you	want	to	set.

After	you	make	changes	on	one	tab,	you	can	often	apply	those	changes
immediately	by	clicking	the	Apply	button	(if	provided).	You	can	click	other	tabs
to	set	other	properties	as	needed.	To	approve	all	changes	made	in	the	custom
properties	dialog	box,	click	the	OK	button.	To	return	to	the	Microsoft	Access
property	sheet	without	changing	any	property	settings,	click	the	Cancel	button.

You	can	also	view	the	custom	properties	dialog	box	by	clicking	the	Properties
subcommand	of	the	ActiveX	control	Object	command	(for	example,	Calendar
Control	Object)	on	the	Edit	menu,	or	by	clicking	this	same	subcommand	on	the
shortcut	menu	for	the	ActiveX	control.	In	addition,	some	properties	in	the
Microsoft	Access	property	sheet	for	the	ActiveX	control,	like	the
GridFontColor	property	of	the	Calendar	control,	have	a	Build	button	to	the
right	of	the	property	box.	When	you	click	the	Build	button,	the	custom
properties	dialog	box	is	displayed,	with	the	appropriate	tab	selected	(for
example,	Colors).

Show	All

View	an	ActiveX	Control's	About	Box
			

To	view	an	About	box	showing	version	and	copyright	information	for	an
ActiveX	control,	click	the	About	property	box	in	the	Microsoft	Access	property
sheet.	Then	click	the	Build	button	to	the	right	of	the	property	box.

Note			The	About	box	is	not	available	for	ActiveX	controls	on	a	data	access
page.

Show	All

Convert	Microsoft	Access	Tables,
Forms,	and	Reports
			

Several	changes	introduced	by	Microsoft	Access	2002	might	affect	the	behavior
of	your	version	1.x	or	2.0	applications.	The	following	sections	provide	more
information	about	those	changes.

Indexes	and	Relationships

A	Microsoft	Access	table	can	contain	up	to	32	indexes.	Very	complex	tables	that
are	a	part	of	many	relationships	may	exceed	the	index	limit,	and	you	won't	be
able	to	convert	the	database	that	contains	these	tables.	Version	3.6	of	the
Microsoft	Jet	database	engine	creates	indexes	on	both	sides	of	relationships
between	tables.	If	your	database	won't	convert,	delete	some	relationships	and	try
again	to	convert	the	database.

The	LimitToList	Property	of	Combo	Boxes

In	Microsoft	Access	2002,	combo	boxes	accept	Null	values	when	the
LimitToList	property	is	set	to	True	(–1),	whether	or	not	the	list	contains	Null
values.	In	version	2.0,	a	combo	box	that	has	the	LimitToList	property	set	to
True	won't	accept	a	Null	value	unless	the	list	contains	a	Null	value.	If	you	want
to	prevent	users	from	entering	a	Null	value	by	using	a	combo	box,	set	the
Required	property	of	the	field	in	the	table	to	Yes.

Menus	and	In-Place	Activation	of	OLE	Objects

In	order	to	make	additional	functionality	available	to	you	while	activating	OLE
objects	in	place,	some	menu	commands	may	have	been	moved	to	a	menu	that
isn't	replaced	when	you	activate	an	OLE	server.

Macros	in	your	converted	application	that	use	a	DoMenuItem	action	to	carry	out
a	version	2.0	menu	command	when	a	component	is	activated	won't	be	affected
by	the	changes.	Version	2.0	commands	are	mapped	to	their	Microsoft	Access
2002	equivalents.

Referencing	a	Control	on	a	Read-Only	Form

In	Microsoft	Access	2002,	you	can't	use	an	expression	to	refer	to	the	value	of	a
control	on	a	read-only	form	that's	bound	to	an	empty	record	source.	In	previous
versions,	the	expression	returns	a	Null	value.	Before	you	reference	a	control	on	a
read-only	form,	you	should	make	sure	that	the	form's	record	source	contains
records.

Date	Fields	and	Data	Entry

If	you	enter	3/3	in	a	field	of	type	Date	on	a	form	or	a	table	datasheet,	Microsoft
Access	2002	automatically	fills	in	the	current	year.	However,	if	you	enter	3/3/	in
the	same	field,	Microsoft	Access	returns	an	error	message.	You	must	omit	the
last	date	delimiter	so	that	Microsoft	Access	can	translate	the	date	into	the	proper
format.

Buttons	Created	with	the	Command	Button	Wizard

If	you	used	the	Command	Button	Wizard	in	version	2.0	or	7.0	of	Microsoft
Access	to	generate	code	that	called	another	application,	you	should	delete	the
button	and	re-create	it	by	using	the	Command	Button	Wizard	in	Microsoft
Access	2002.

Form	and	Report	Class	Modules

In	prior	versions	of	Microsoft	Access,	Form	and	Report	objects	have	associated
class	modules	even	if	there's	no	code	behind	the	object.	In	Microsoft	Access
2002,	you	can	set	a	form's	or	report's	HasModule	property	to	False.	When	you
set	the	HasModule	property	to	False,	the	form	or	report	will	take	up	less	disk
space	and	will	load	faster	than	because	it	will	no	longer	have	an	associated	class
module.

Converted	Version	2.0	Report	Has	Different	Margins

You	may	encounter	problems	when	trying	to	print	or	preview	a	Microsoft	Access
2002	report	that	has	been	converted	from	Microsoft	Access	2.0	if	the	report	has
some	margins	set	to	0.	When	you	convert	a	Microsoft	Access	2.0	report,	margins
aren't	set	to	0;	they	are	instead	set	to	the	minimum	margin	that's	valid	for	the
default	printer.	This	prevents	the	report	from	printing	data	in	the	unprintable
region	of	the	printer.

To	resolve	this	problem,	reduce	the	column	width,	column	spacing,	or	number	of
columns	in	the	report	so	that	the	width	of	the	columns	plus	the	width	of	the
default	margins	is	equal	to	or	less	than	the	width	of	your	paper.

Can't	Use	the	Format	Property	to	Distinguish	Null
Values	and	Zero-Length	Strings

In	versions	1.x	and	2.0,	you	can	use	the	Format	property	of	a	control	to	display
different	values	for	Null	values	and	zero-length	strings	("	").	In	Microsoft
Access	2002,	to	distinguish	between	Null	values	and	zero-length	strings	in	a
control	on	a	form,	set	the	control's	ControlSource	property	to	an	expression	that
tests	for	the	Null	value	case.	For	example,	to	display	"Null"	or	"ZLS"	in	a
control,	set	its	ControlSource	property	to	the	following	expression:

=IIf(IsNull([MyControl]),	"Null",	Format([MyControl],	"@;ZLS"))

Converting	DAO	Code	to	ADO
			

Microsoft	Access	includes	ActiveX	Data	Objects	(ADO)	2.5	as	the	default	data
access	library.	Although	Data	Access	Objects	(DAO)	3.6	is	included	it	is	not
referenced	by	default.	To	aid	in	converting	code	to	the	newer	ADO	standard	the
following	information	is	provided.

Note			Versions	of	the	DAO	library	prior	to	3.6	are	no	longer	provided	or
supported	in	Microsoft	Access	2002

DAO	to	ADO	object	Map

DAO ADO(ADODB) Note
DBEngine None 	
Workspace None 	
Database Connection 	
Recordset Recordset 	

Dynaset-Type Keyset Retrieves	a	set	of	pointers	to	the
records	in	the	recordset

Snapshot-Type Static Both	retrieve	full	records	but	a
Static	recordset	can	be	updated.

Table-Type
Keyset	with
adCmdTableDirect
Option

	

Field Field When	referred	to	in	a	recordset
DAO

Open	a	Recordset

Dim	db	as	Database

Dim	rs	as	DAO.Recordset

Set	db	=	CurrentDB()

Set	rs	=	db.OpenRecordset(“Employees”)

Dim	rs	as	New	ADODB.Recordset

rs.Open	“Employees”,	CurrentProject.Connection,	adOpenKeySet,	adLockOptimistic

Edit	a	Recordset

rs.Edit

rs(“TextFieldName”)	=	“NewValue”

rs.Update

rs(“TextFieldName”)	=	“NewValue”

rs.Update	

Note			Moving	focus	from	current	record	via	
MovePrevious	without	first	using	the	
Update	method.

Show	All

Automation	with	Microsoft	Access
			

Microsoft	Access	is	a	COM	component	that	supports	Automation,	formerly
called	OLE	Automation.	Microsoft	Access	supports	Automation	in	two	ways.
From	Microsoft	Access,	you	can	work	with	objects	supplied	by	another
component.	Microsoft	Access	also	supplies	its	objects	to	other	COM
components.

In	previous	versions	of	Microsoft	Access,	you	could	use	the	CreateObject
function	or	the	GetObject	function	to	point	a	variable	to	an	instance	of	a
component.	In	Microsoft	Access	97	and	above,	you	can	also	use	the	New
keyword	to	create	a	new	instance	of	some	components.

In	Microsoft	Access,	you	can	set	a	reference	to	a	component's	type	library	to
improve	performance	when	you	work	with	that	component	through	Automation.
Microsoft	Access	also	includes	the	Object	Browser,	a	tool	that	enables	you	to
view	objects	in	another	component's	type	library,	as	well	as	their	methods	and
properties.

The	Microsoft	Access	type	library	provides	information	about	Microsoft	Access
objects	to	other	components.	You	can	set	a	reference	to	the	Microsoft	Access
type	library	from	a	component	and	view	its	objects	in	the	Object	Browser.

To	work	with	Microsoft	Access	objects	through	Automation,	you	must	create	an
instance	of	the	Microsoft	Access	Application	object.	For	example,	suppose	you
want	to	display	data	from	Microsoft	Excel	in	a	Microsoft	Access	form	or	report.
To	launch	Microsoft	Access	from	Microsoft	Excel,	you	can	use	the	New
keyword	to	create	an	instance	of	the	Microsoft	Access	Application	object.	You
can	also	use	the	CreateObject	function	to	create	a	new	instance	of	the	Microsoft
Access	Application	object,	or	you	can	use	the	GetObject	function	to	point	an
object	variable	to	an	existing	instance	of	Microsoft	Access.	Check	your
component's	documentation	to	determine	which	syntax	it	supports.

Once	you've	launched	an	instance	of	Microsoft	Access,	if	you	want	to	control
any	Microsoft	Access	objects,	you	must	open	a	database	(.mdb)	or	project	(.adp)

in	the	Microsoft	Access	window	by	using	either	the	OpenCurrentDatabase	or
the	NewCurrentDatabase	method	for	a	database	or	by	using	the
OpenAccessProject	or	the	NewAccessProject	method	for	a	project.

If	you've	opened	Microsoft	Access	only	as	a	means	of	using	the	Data	Access
Objects	provided	by	Microsoft	DAO,	then	you	don't	need	to	open	a	database	in
the	Microsoft	Access	window.	You	can	use	the	DBEngine	property	of	the
Microsoft	Access	Application	object	to	access	objects	in	the	Microsoft	DAO	3.6
object	library	during	an	Automation	operation.

Show	All

Using	ActiveX	Data	Objects	in
Microsoft	Access	2002
			

Microsoft	Access	2002	provides	three	object	models	to	use	in	the	creation,
maintaining	and	managing	of	your	Access	2002	databases	and	their	related	data
by	using	Visual	Basic.

Microsoft	ActiveX	Data	Objects	(ADO)

ADO	contains	the	objects	needed	to	create,	maintain,	and	delete	records	in	a
given	datasource.

Microsoft	ADO	Ext.	for	DDL	and	Security	(ADOX)

ADOX	provides	the	Data	Definition	Language(DDL)	objects	needed	to	create	a
new	database	and	its	contained	objects	in	addition	to	the	objects	needed	to
manage	security.

Microsoft	Jet	and	Replication	Objects	2.5	Library	(JRO)

Since	ADO	objects	were	designed	to	work	with	many	databases	in	addition	to
Microsoft	Jet	databases,	functionality	specific	to	Jet	was	broken	out	into	the	JRO
library.

The	following	table	lists	the	functionality	provided	by	each	compared	to	DAO.

Functionality DAO ADO1 ADOX2
JRO

(MDB's
Only)

Create	Recordsets X X 	 	
Edit	Startup	properties X X** 	 	
Support	ANSI92
SQL*** 	 X X 	

Create	Tables X 	 X 	
Create	New	Database X 	 X* 	
Edit	Existing	Table
properties X 	 X 	

Create	table
relationships X 	 X* 	

Create	New
Users/Groups X 	 X 	

Edit	security	settings X 	 X* 	
Support	for	new	Jet
4.0	Decimal	datatype 	 	 X 	

Support	for
Compression	attribute
for	column	data

	 	 X 	

Edit	stored,	basic	SQL
queries	or	views

X 	 X* 	

Create	permanent
queries	that	are
accessible	only
through	code.

	 	 X* 	

Create	queries
accessible	through
database	container/UI
and	code.

X 	 	 	

Compact/Encrypt
database X 	 	 X4

Refresh	Cache X 	 	 X
Make	Database
Replicable X 	 	 X3

Make	Database
Replicas X 	 	 X3

Synchronize	Replicas X 	 	 X3

Edit	Database
properties X 	 	 	

Create	custom
database	properties X 	 	 	

Edit	table	column
properties X 	 	 	

*	Only	available	when	working	with	Microsoft	Access	databases	(.mdb).	Future
versions	of	the	SQL	Provider	may	provide	this	functionality	in	Microsoft	Access
projects	(.adp).

**	Only	available	when	working	with	Access	projects.

***	Though	Jet	does	support	some	ANSI	92	SQL	it	is	not	yet	fully	ANSI92
compliant.

1	Uses	Connection	object	to	reference	to	database

2	Uses	Catalog	object	to	reference	database

3	Uses	Replica	object	to	reference	database

4	Uses	JetEngine	object	to	reference	database

Note			Unlike	DAO,	ADO	and	ADOX	objects	can	perform	the	marked	actions	in
databases	other	then	Jet	as	long	as	the	provider	for	those	databases	supports	that
action.

Show	All

Use	Microsoft	Access	as	a	DDE
Server
			

Microsoft	Access	supports	dynamic	data	exchange	(DDE)	as	either	a	destination
(client)	application	or	a	source	(server)	application.	For	example,	an	application
such	as	Microsoft	Word,	acting	as	a	client,	can	request	data	through	DDE	from	a
Microsoft	Access	database	that's	acting	as	a	server.

Tip			If	you	need	to	manipulate	Microsoft	Access	objects	from	another
application,	you	may	want	to	consider	using	Automation.

A	DDE	conversation	between	a	client	and	server	is	established	on	a	particular
topic.	A	topic	can	be	either	a	data	file	in	the	format	supported	by	the	server
application,	or	it	can	be	the	System	topic,	which	supplies	information	about	the
server	application	itself.	Once	a	conversation	has	begun	on	a	particular	topic,
only	a	data	item	associated	with	that	topic	can	be	transferred.

For	example,	suppose	you	are	running	Microsoft	Word	and	want	to	insert	data
from	a	particular	Microsoft	Access	database	into	a	document.	You	begin	a	DDE
conversation	with	Microsoft	Access	by	opening	a	DDE	channel	with	the
DDEInitiate	function	and	specifying	the	database	file	name	as	the	topic.	You
can	then	transfer	data	from	that	database	to	Microsoft	Word	through	that
channel.

As	a	DDE	server,	Microsoft	Access	supports	the	following	topics:

The	System	topic
The	name	of	a	database	(database	topic)
The	name	of	a	table	(tablename	topic)
The	name	of	a	query	(queryname	topic)
A	Microsoft	Access	SQL	string	(sqlstring	topic)

Once	you've	established	a	DDE	conversation,	you	can	use	the	DDEExecute
statement	to	send	a	command	from	the	client	to	the	server	application.	When

used	as	a	DDE	server,	Microsoft	Access	recognizes	any	of	the	following	as	a
valid	command:

The	name	of	a	macro	in	the	current	database.
Any	action	that	you	can	carry	out	in	Visual	Basic	by	using	one	of	the
methods	of	the	DoCmd	object.
The	OpenDatabase	and	CloseDatabase	actions,	which	are	used	only	for
DDE	operations.	(For	an	example	of	how	to	use	these	actions,	see	the
example	later	in	this	topic.)

Note			When	you	specify	a	macro	action	as	a	DDEExecute	statement,	the	action
and	any	arguments	follow	the	DoCmd	object	syntax	and	must	be	enclosed	in
brackets	([]).	However,	applications	that	support	DDE	don't	recognize	intrinsic
constants	in	DDE	operations.	Also,	string	arguments	must	be	enclosed	in
quotation	marks	("	")	if	the	string	contains	a	comma.	Otherwise,	quotation	marks
aren't	required.

The	client	application	can	use	the	DDERequest	function	to	request	text	data
from	the	server	application	over	an	open	DDE	channel.	Or	the	client	can	use	the
DDEPoke	statement	to	send	data	to	the	server	application.	Once	the	data
transfer	is	complete,	the	client	can	use	the	DDETerminate	statement	to	close	the
DDE	channel,	or	the	DDETerminateAll	statement	to	close	all	open	channels.

Note			When	your	client	application	has	finished	receiving	data	over	a	DDE
channel,	it	should	close	that	channel	to	conserve	memory	resources.

The	following	example	demonstrates	how	to	create	a	Microsoft	Word	procedure
with	Visual	Basic	that	uses	Microsoft	Access	as	a	DDE	server.	(For	this	example
to	work,	Microsoft	Access	must	be	running.)

Sub	AccessDDE()

				Dim	intChan1	As	Integer,	intChan2	As	Integer

				Dim	strQueryData	As	String

				'	Use	System	topic	to	open	Northwind	sample	database.

				'	Database	must	be	open	before	using	other	DDE	topics.

				intChan1	=	DDEInitiate("MSAccess",	"System")

				'	You	may	need	to	change	this	path	to	point	to	actual	location

				'	of	Northwind	sample	database.

				DDEExecute	intChan1,	"[OpenDatabase	C:\Access\Samples\Northwind.mdb]"

				'	Get	all	data	from	Ten	Most	Expensive	Products	query.

				intChan2	=	DDEInitiate("MSAccess",	"Northwind.mdb;"	_

								&	"QUERY	Ten	Most	Expensive	Products")

				strQueryData	=	DDERequest(intChan2,	"All")

				DDETerminate	intChan2

				'	Close	database.

				DDEExecute	intChan1,	"[CloseDatabase]"

				DDETerminate	intChan1

				'	Print	retrieved	data	to	Debug	Window.

				Debug.Print	strQueryData

End	Sub

The	following	sections	provide	information	about	the	valid	DDE	topics
supported	by	Microsoft	Access.

The	System	Topic

The	System	topic	is	a	standard	topic	for	all	Microsoft	Windows–based
applications.	It	supplies	information	about	the	other	topics	supported	by	the
application.	To	access	this	information,	your	code	must	first	call	the
DDEInitiate	function	with	"System"	as	the	topic	argument,	and	then	execute	the
DDERequest	statement	with	one	of	the	following	supplied	for	the	item
argument.

Item Returns

SysItems A	list	of	items	supported	by	the	System	topic	in	Microsoft
Access.

Formats A	list	of	the	formats	Microsoft	Access	can	copy	onto	the
Clipboard.

Status "Busy"	or	"Ready".
Topics A	list	of	all	open	databases.

The	following	example	demonstrates	the	use	of	the	DDEInitiate	and
DDERequest	functions	with	the	System	topic:

'	In	Visual	Basic,	initiate	DDE	conversation	with	Microsoft	Access.

Dim	intChan1	As	Integer,	strResults	As	String

intChan1	=	DDEInitiate("MSAccess",	"System")

'	Request	list	of	topics	supported	by	System	topic.

strResults	=	DDERequest(intChan1,	"SysItems")

'	Run	OpenDatabase	action	to	open	Northwind.mdb.

'	You	may	need	to	change	this	path	to	point	to	actual	location

'	of	Northwind	sample	database.

DDEExecute	intChan1,	"[OpenDatabase	C:\Access\Samples\Northwind.mdb]"

The	database	Topic

The	database	topic	is	the	file	name	of	an	existing	database.	You	can	type	either
just	the	base	name	(Northwind),	or	its	path	and	.mdb	extension
(C:\Access\Samples\Northwind.mdb).	After	you	start	a	DDE	conversation	with
the	database,	you	can	request	a	list	of	the	objects	in	that	database.

Note			You	can't	use	DDE	to	query	the	Microsoft	Access	workgroup	information
file.

The	database	topic	supports	the	following	items.

Item Returns
TableList A	list	of	tables.
QueryList A	list	of	queries.
FormList A	list	of	forms.
ReportList A	list	of	reports.
MacroList A	list	of	macros.
ModuleList A	list	of	modules.
ViewList A	list	of	views
StoredProcedureList A	list	of	stored	procedures
DatabaseDiagramList A	list	of	database	diagrams

The	following	example	shows	how	you	can	open	the	Employees	form	in	the
Northwind	sample	database	from	a	Visual	Basic	procedure:

'	In	Visual	Basic,	initiate	DDE	conversation	with

'	Northwind	sample	database.

'	Make	sure	database	is	open.

intChan2	=	DDEInitiate("MSAccess",	"Northwind")

'	Request	list	of	forms	in	Northwind	sample	database.

strResponse	=	DDERequest(intChan2,	"FormList")

'	Run	OpenForm	action	and	arguments	to	open	Employees	form.

DDEExecute	intChan2,	"[OpenForm	Employees,0,,,1,0]"

The	TABLE	tablename,	QUERY	queryname,	and	SQL
sqlstring	Topics

These	topics	use	the	following	syntax:

databasename;	TABLE	tablename

databasename;	QUERY	queryname

databasename;	SQL	[sqlstring]

Part Description

databasename

The	name	of	the	database	that	the	table	or	query	is	in	or	that	the
SQL	statement	applies	to,	followed	by	a	semicolon	(;).	The
database	name	can	be	just	the	base	name	(Northwind)	or	its	full
path	and	.mdb	extension	(C:\Access\Samples\Northwind.mdb).

tablename The	name	of	an	existing	table.
queryname The	name	of	an	existing	query.

sqlstring

A	valid	SQL	statement	up	to	256	characters	long,	ending	with	a
semicolon.	To	exchange	more	than	256	characters,	omit	this
argument	and	instead	use	successive	DDEPoke	statements	to
build	an	SQL	statement.

For	example,	the	following	Visual	Basic	code	uses	the
DDEPoke	statement	to	build	an	SQL	statement	and	then	request
the	results	of	the	query.

	

intChan1	=	DDEInitiate("MSAccess",	"Northwind;SQL")

DDEPoke	intChan1,	"SQLText",	"SELECT	*"

DDEPoke	intChan1,	"SQLText",	"	FROM	Orders"

DDEPoke	intChan1,	"SQLText",	"	WHERE	[Freight]	>	100;"

strResponse	=	DDERequest(intChan1,	"NextRow")

DDETerminate	intChan1

The	following	table	lists	the	valid	items	for	the	TABLE	tablename,	QUERY

queryname,	and	SQL	sqlstring	topics.

Item Returns
All All	the	data	in	the	table,	including	field	names.
Data All	rows	of	data,	without	field	names.
FieldNames A	single-row	list	of	field	names.

FieldNames;T A	two-row	list	of	field	names	(first	row)	and	their	data	types
(second	row).

	 These	are	the	values	returned	and	the	data	types	they	represent:
	 Value Data	type
	 0 Invalid
	 1 True/False	(non-Null)
	 2 Unsigned	byte
	 3 2-byte	signed	integer	(Integer)
	 4 4-byte	signed	integer	(Long)
	 5 8-byte	signed	integer	(Currency)
	 6 4-byte	single-precision	floating-point	(Single)
	 7 8-byte	double-precision	floating-point	(Double)
	 8 Date/Time
	 9 Binary	data,	256	bytes	maximum

	 10 ANSI	text,	not	case-sensitive,	256	bytes	maximum
(Text)

	 11 Long	binary	(OLE	Object)
	 12 Long	text	(Memo)

NextRow

The	data	in	the	next	row	in	the	table	or	query.	When	you	open
a	channel,	NextRow	returns	the	data	in	the	first	row.	If	the
current	row	is	the	last	record	and	you	run	NextRow,	the
request	fails.

PrevRow

The	data	in	the	previous	row	in	the	table	or	query.	If	PrevRow
is	the	first	request	on	a	new	channel,	the	data	in	the	last	row	of
the	table	or	query	is	returned.	If	the	first	record	is	the	current
row,	the	request	for	PrevRow	fails.

FirstRow The	data	in	the	first	row	of	the	table	or	query.
LastRow The	data	in	the	last	row	of	the	table	or	query.

FieldCount The	number	of	fields	in	the	table	or	query.

SQLText
An	SQL	statement	representing	the	table	or	query.	For	tables,
this	item	returns	an	SQL	statement	in	the	form	"SELECT	*
FROM	table;".

SQLText;n

An	SQL	statement,	in	n-character	chunks,	representing	the
table	or	query,	where	n	is	an	integer	up	to	256.	For	example,
suppose	a	query	is	represented	by	the	following	SQL
statement:

"SELECT	*	FROM	Orders;"

The	item	"SQLText;7"	returns	the	following	tab-delimited
chunks:

"SELECT	"

"*	FROM	"

"Orders;"

The	following	example	shows	how	you	can	use	DDE	in	a	Visual	Basic
procedure	to	request	data	from	a	table	in	the	Northwind	sample	database	and
insert	that	data	into	a	text	file:

Sub	NorthwindDDE

				Dim	intChan1	As	Integer,	intChan2	As	Integer,	intChan3	As	Integer

				Dim	strResp1	As	Variant,	strResp2	As	Variant,	strResp3	As	Variant

				'	In	a	Visual	Basic	module,	get	data	from	Categories	table,

				'	Catalog	query,	and	Orders	table	in	Northwind.mdb.

				'	Make	sure	database	is	open	first.

				intChan1	=	DDEInitiate("MSAccess",	"Northwind;TABLE	Shippers")

				intChan2	=	DDEInitiate("MSAccess",	"Northwind;QUERY	Catalog")

				intChan3	=	DDEInitiate("MSAccess",	"Northwind;SQL	SELECT	*	"	_

								&	"FROM	Orders	"	_

								&	"WHERE	OrderID	>	10050;")

				strResp1	=	DDERequest(intChan1,	"All")

				strResp2	=	DDERequest(intChan2,	"FieldNames;T")

				strResp3	=	DDERequest(intChan3,	"FieldNames;T")

				DDETerminate	intChan1

				DDETerminate	intChan2

				DDETerminate	intChan3

				'	Insert	data	into	text	file.

				Open	"C:\DATA.TXT"	For	Append	As	#1

				Print	#1,	strResp1

				Print	#1,	strResp2

				Print	#1,	strResp3

				Close	#1

End	Sub

Show	All

AccessObject	Object
									

Multiple	objects	 AccessObject
AccessObjectProperties

An	AccessObject	object	refers	to	a	particular	Microsoft	Access	object	within	the
following	collections.

AllDataAccessPages
AllDatabaseDiagrams
AllForms
AllFunctions
AllMacros
AllModules
AllQueries
AllReports
AllStoredProcedures
AllTables
AllViews

Using	the	AccessObject	Object

An	AccessObject	object	includes	information	about	one	instance	of	an	object.
The	following	table	list	the	types	of	objects	each	AccessObject	describes,	the
name	of	its	collection,	and	what	type	of	information	AccessObject	contains.

AccessObject Collection Contains	information	about
Data	access	page AllDataAccessPages Saved	data	access	pages
Database
diagram AllDatabaseDiagrams Saved	database	diagrams

Form AllForms Saved	forms
Function AllFunctions Saved	functions
Macro AllMacros Saved	macros
Module AllModules Saved	modules
Query AllQueries Saved	queries
Report AllReports Saved	reports
Stored	procedure AllStoredProcedures Saved	stored	procedures
Table AllTables Saved	tables
View AllViews Saved	views

Because	an	AccessObject	object	corresponds	to	an	existing	object,	you	can't
create	new	AccessObject	objects	or	delete	existing	ones.	To	refer	to	an
AccessObject	object	in	a	collection	by	its	ordinal	number	or	by	its	Name
property	setting,	use	any	of	the	following	syntax	forms:

AllForms(0)
AllForms("name")
AllForms![name]

Show	All

AccessObjectProperties	Collection
									
Multiple	objects	 AccessObjectProperties

AccessObjectProperty

The	AccessObjectProperties	collection	contains	all	of	the	custom
AccessObjectProperty	objects	of	a	specific	instance	of	an	object.	These
AccessObjectProperty	objects	(which	are	often	just	called	properties)	uniquely
characterize	that	instance	of	the	object.

Using	the	AccessObjectProperties	Collection

Use	the	AccessObjectProperties	collection	in	Visual	Basic	or	in	an	expression
to	refer	to	properties	of	the	CurrentProject,	CodeProject,	or	AccessObject
object.	For	example,	you	can	enumerate	the	AccessObjectProperties	collection
to	set	or	return	the	values	of	properties	of	an	individual	report.

Note			The	AccessObjectProperties	collection	isn't	accessible	for	objects
derived	from	the	CurrentData	object	(for	example,
CurrentData.AllTables!Table1).	For	objects	derived	in	this	manner,	you	can	only
access	their	built-in	properties	by	direct	calls	to	the	desired	property	(for
example,	CurrentData.AllTables!Table1.Name).

To	add	a	user-defined	property	to	an	existing	instance	of	an	object,	first	define	its
characteristics	and	add	it	to	the	collection	with	the	Add	method.	Referencing	a
user-defined	AccessObjectProperty	object	that	has	not	yet	been	appended	to	an
AccessObjectProperties	collection	will	cause	an	error,	as	will	appending	a	user-
defined	AccessObjectProperty	object	to	an	AccessObjectProperties	collection
containing	an	AccessObjectProperty	object	of	the	same	name.

You	can	use	the	Remove	method	to	remove	user-defined	properties	from	the
AccessObjectProperties	collection.

Note			A	built-in	or	user-defined	AccessObjectProperty	object	is	associated
only	with	the	specific	instance	of	an	object.	The	property	isn't	defined	for	all
instances	of	objects	of	the	selected	type.

To	refer	to	a	built-in	or	user-defined	AccessObjectProperty	object	in	a
collection	by	its	ordinal	number	or	by	its	Name	property	setting,	use	any	of	the
following	syntax	forms:

CurrentProject.AllForms("Form1").Properties(0)

CurrentProject.AllForms("Form1").Properties("name")

CurrentProject.AllForms("Form1").Properties![name]

With	the	same	syntax	forms,	you	can	also	refer	to	the	Value	property	of	a
AccessObjectProperty	object.	The	context	of	the	reference	will	determine
whether	you	are	referring	to	the	AccessObjectProperty	object	itself	or	the
Value	property	of	the	AccessObjectProperty	object.

Note			Properties	in	the	AccessObjectProperties	collection	are	not	stored	and
can	be	lost	when	the	object	they	are	associated	with	is	checked	in	or	out	using
the	Source	Code	Control	add-in.

Show	All

AccessObjectProperty	Object
									
AccessObjectProperties	 AccessObjectProperty

An	AccessObjectProperty	object	represents	a	built-in	or	user-defined
characteristic	of	an	AccessObject	object.

Using	the	AccessObjectProperty	Object

Every	AccessObject	object	contains	an	AccessObjectProperties	collection	that
has	AccessObjectProperty	objects	corresponding	to	the	properties	of	that
AccessObject	object.	The	user	can	also	define	AccessObjectProperty	objects
and	append	them	to	the	AccessObjectProperties	collection	of	some
AccessObject	objects.

You	can	create	user-defined	properties	for	the	following	objects:

CodeData,	CodeProject,	CurrentProject,	and	CurrentData	objects

AccessObject	objects	in	the	following	collections.

	
CurrentProject	and	CodeProject

object	collections
CodeData	and	CodeProject	object

collections
AllForms AllTables
AllReports AllQueries
AllDataAccessPages AllViews
AllMacros AllStoredProcedures
AllModules AllDatabaseDiagrams

Note			The	AccessObjectProperties	collection	isn't	accessible	for	objects
derived	from	the	CurrentData	object	(for	example,
CurrentData.AllTables!Table1).	For	objects	derived	in	this	manner,	you	can	only
access	their	built-in	properties	by	direct	calls	to	the	desired	property	(for
example,	CurrentData.AllTables!Table1.Name).

To	add	a	user-defined	property,	use	the	Add	method	to	create	and	add	an
AccessObjectProperty	object	with	a	unique	Name	property	setting	and	Value
property	of	the	new	AccessObjectProperty	object	to	the
AccessObjectProperties	collection	of	the	appropriate	object.	The	object	to
which	you	are	adding	the	user-defined	property	must	already	be	appended	to	a
collection.	Referencing	a	user-defined	AccessObjectProperty	object	that	has
not	yet	been	appended	to	an	AccessObjectProperties	collection	will	cause	an

error,	as	will	appending	a	user-defined	AccessObjectProperty	object	to	an
AccessObjectProperties	collection	containing	an	AccessObjectProperty	object
of	the	same	name.

You	can	delete	user-defined	properties	from	the	AccessObjectProperties
collection.

Note			A	user-defined	AccessObjectProperty	object	is	associated	only	with	the
specific	instance	of	an	object.	The	property	isn't	defined	for	all	instances	of
objects	of	the	selected	type.

The	AccessObjectProperty	object	has	two	built-in	properties:

The	Name	property,	a	String	that	uniquely	identifies	the	property.

The	Value	property,	a	Variant	that	contains	the	property	setting.

To	refer	to	a	built-in	or	user-defined	AccessObjectProperty	object	in	a
collection	by	its	ordinal	number	or	by	its	Name	property	setting,	use	any	of	the
following	syntax	forms:

CurrentProject.AllForms("Form1").Properties(0)

CurrentProject.AllForms("Form1").Properties("name")

CurrentProject.AllForms("Form1").Properties![name]

With	the	same	syntax	forms,	you	can	also	refer	to	the	Value	property	of	a
AccessObjectProperty	object.	The	context	of	the	reference	will	determine
whether	you	are	referring	to	the	AccessObjectProperty	object	itself	or	the
Value	property	of	the	AccessObjectProperty	object.

Note			Properties	in	the	AccessObjectProperties	collection	are	not	stored	and
can	be	lost	when	when	the	object	they	are	associated	with	is	checked	in	or	out
using	the	Source	Code	Control	add-in.

Show	All

AllDataAccessPages	Collection
									
Multiple	objects	 AllDataAccessPages

AccessObject

The	AllDataAccessPages	collection	contains	an	AccessObject	object	for	each
data	access	page	in	the	CurrentProject	or	CodeProject	object.

Note			Although	a	Microsoft	Access	project	(.adp)	or	Microsoft	Access	database
(.mdb)	can	appear	to	contain	data	access	pages,	these	pages	are	actually	stored	in
files	that	are	external	to	the	project	or	database.

Using	the	AllDataAccessPages	Collection

The	CurrentProject	or	CodeProject	object	has	an	AllDataAccessPages
collection	containing	AccessObject	objects	that	describe	instances	of	all	data
access	pages.	For	example,	you	can	enumerate	the	AllDataAccessPages
collection	in	Visual	Basic	to	set	or	return	the	values	of	properties	of	individual
AccessObject	objects	in	the	collection.

Tip			The	For	Each...Next	statement	is	useful	for	enumerating	a	collection.

You	can	refer	to	an	individual	AccessObject	object	in	the	AllDataAccessPages
collection	either	by	referring	to	the	item	by	name,	or	by	referring	to	its	index
within	the	collection.	If	you	want	to	refer	to	a	specific	data	access	page	in	the
AllDataAccessPages	collection,	it's	better	to	refer	to	the	item	by	name	because
the	index	may	change.

The	AllDataAccessPages	collection	is	indexed	beginning	with	zero.	If	you	refer
to	a	data	access	page	by	its	index,	the	first	data	access	page	is
AllDataAccessPages(0),	the	second	data	access	page	is	AllDataAccessPages(1),
and	so	on.

Note			To	list	all	open	data	access	pages	in	the	database,	use	the	IsLoaded
property	of	each	AccessObject	object	in	the	AllDataAccessPages	collection.
You	can	then	use	the	Name	property	of	each	individual	AccessObject	object	to
return	the	name	of	a	data	access	page.

You	can't	add	or	delete	an	AccessObject	object	from	the	AllDataAccessPages
collection.

The	following	example	prints	the	name	of	each	open	AccessObject	object	in	the
AllDataAccessPages	collection.

Sub	AllDataAccessPages()

				Dim	obj	As	AccessObject,	dbs	As	Object

				Set	dbs	=	Application.CurrentProject

				'	Search	for	open	AccessObject	objects	in

				'	AllDataAccessPages	collection.

				For	Each	obj	In	dbs.AllDataAccessPages

								If	obj.IsLoaded	=	True	Then

												'	Print	name	of	obj.

												Debug.Print	obj.Name

								End	If

				Next	obj

End	Sub

Show	All

AllDatabaseDiagrams	Collection
									
Multiple	objects	 AllDatabaseDiagrams

AccessObject

The	AllDatabaseDiagrams	collection	contains	an	AccessObject	for	each
database	diagram	in	the	CurrentData	or	CodeData	object.

Using	the	AllDatabaseDiagrams	Collection

The	CurrentData	or	CodeData	object	has	an	AllDatabaseDiagrams	collection
containing	AccessObject	objects	that	describe	instances	of	all	database	diagrams
specified	by	CurrentData	or	CodeData.	For	example,	you	can	enumerate	the
AllDatabaseDiagrams	collection	in	Visual	Basic	to	set	or	return	the	values	of
properties	of	individual	AccessObject	objects	in	the	collection.

Tip			The	For	Each...Next	statement	is	useful	for	enumerating	a	collection.

You	can	refer	to	an	individual	AccessObject	object	in	the
AllDatabaseDiagrams	collection	either	by	referring	to	the	object	by	name,	or
by	referring	to	its	index	within	the	collection.	If	you	want	to	refer	to	a	specific
object	in	the	AllDatabaseDiagrams	collection,	it's	better	to	refer	to	the	database
diagram	by	name	because	a	database	diagram's	collection	index	may	change.

The	AllDatabaseDiagrams	collection	is	indexed	beginning	with	zero.	If	you
refer	to	a	database	diagram	by	its	index,	the	first	database	diagram	is
AllDatabaseDiagrams(0),	the	second	database	diagram	is
AllDatabaseDiagrams(1),	and	so	on.

Notes

The	AllDatabaseDiagrams	collection	only	contains	AccessObject	objects
within	a	Microsoft	Access	project	(.adp).	A	Microsoft	Access	database
(.mdb)	does	not	contain	any	database	diagrams.
To	list	all	open	database	diagrams	in	the	project,	use	the	IsLoaded	property
of	each	AccessObject	object	in	the	AllDatabaseDiagrams	collection.	You
can	then	use	the	Name	property	of	each	individual	AccessObject	object	to
return	the	name	of	a	database	diagram.

You	can't	add	or	delete	an	AccessObject	object	from	the	AllDatabaseDiagrams
collection.

The	following	example	prints	the	name	of	each	open	AccessObject	object	in	the
AllDatabaseDiagrams	collection.

Sub	AllDatabaseDiagrams()

				Dim	obj	As	AccessObject,	dbs	As	Object

				Set	dbs	=	Application.CurrentData

				'	Search	for	open	AccessObject	objects	in

				'	AllDatabaseDiagrams	collection.

				For	Each	obj	In	dbs.AllDatabaseDiagrams

								If	obj.IsLoaded	=	True	Then

												'	Print	name	of	obj.

												Debug.Print	obj.Name

								End	If

				Next	obj

End	Sub

Show	All

AllForms	Collection
									
Multiple	objects	 AllForms

AccessObject

The	AllForms	collection	contains	an	AccessObject	object	for	each	form	in	the
CurrentProject	or	CodeProject	object.

Using	the	AllForms	Collection

The	CurrentProject	and	CodeProject	object	has	an	AllForms	collection
containing	AccessObject	objects	that	describe	instances	of	all	the	forms	in	the
database.	For	example,	you	can	enumerate	the	AllForms	collection	in	Visual
Basic	to	set	or	return	the	values	of	properties	of	individual	AccessObject	objects
in	the	collection.

Tip			The	For	Each...Next	statement	is	useful	for	enumerating	a	collection.

You	can	refer	to	an	individual	AccessObject	object	in	the	AllForms	collection
either	by	referring	to	the	object	by	name,	or	by	referring	to	its	index	within	the
collection.	If	you	want	to	refer	to	a	specific	object	in	the	AllForms	collection,
it's	better	to	refer	to	the	form	by	name	because	a	form's	collection	index	may
change.

The	AllForms	collection	is	indexed	beginning	with	zero.	If	you	refer	to	a	form
by	its	index,	the	first	form	is	AllForms(0),	the	second	form	is	AllForms(1),	and
so	on.

Note			To	list	all	open	forms	in	the	database,	use	the	IsLoaded	property	of	each
AccessObject	object	in	the	AllForms	collection.	You	can	then	use	the	Name
property	of	each	individual	AccessObject	object	to	return	the	name	of	a	form.

You	can't	add	or	delete	an	AccessObject	object	from	the	AllForms	collection.

The	following	example	prints	the	name	of	each	open	AccessObject	object	in	the
AllForms	collection.

Sub	AllForms()

				Dim	obj	As	AccessObject,	dbs	As	Object

				Set	dbs	=	Application.CurrentProject

				'	Search	for	open	AccessObject	objects	in	AllForms	collection.

				For	Each	obj	In	dbs.AllForms

								If	obj.IsLoaded	=	True	Then

												'	Print	name	of	obj.

												Debug.Print	obj.Name

								End	If

				Next	obj

End	Sub

AllFunctions	Collection
									
Multiple	objects	 AllFunctions

AccessObject

The	AllFunctions	collection	contains	an	AccessObject	object	for	each	function
in	the	CurrentData	or	CodeData	object.

Using	the	AllFunctions	collection

The	CurrentData	or	CodeData	object	has	an	AllFunctions	collection
containing	AccessObject	objects	that	describe	instances	of	all	functions
specified	by	the	CurrentData	or	CodeData	objects.	For	example,	you	can
enumerate	the	AllFunctions	collection	in	Visual	Basic	to	set	or	return	the	values
of	properties	of	individual	AccessObject	objects	in	the	collection.

You	can	refer	to	an	individual	AccessObject	object	in	the	AllFunctions
collection	either	by	referring	to	the	object	by	name,	or	by	referring	to	its	index
within	the	collection.	If	you	want	to	refer	to	a	specific	object	in	the
AllFunctions	collection,	it's	better	to	refer	to	the	function	by	name	because	a
function's	collection	index	may	change.

The	AllFunctions	collection	is	indexed	beginning	with	zero.	If	you	refer	to	a
function	by	its	index,	the	first	function	is	AllFunctions(0),	the	second	table	is
AllFunctions(1),	and	so	on.

To	list	all	open	functions	in	the	database,	use	the	IsLoaded	property	of	each
AccessObject	object	in	the	AllFunctions	collection.	You	can	then	use	the	Name
property	of	each	individual	AccessObject	object	to	return	the	name	of	a
function.

You	can't	add	or	delete	an	AccessObject	object	from	the	AllFunctions
collection.

Show	All

AllMacros	Collection
									
Multiple	objects	 AllMacros

AccessObject

The	AllMacros	collection	contains	an	AccessObject	for	each	macro	in	the
CurrentProject	or	CodeProject	object.

Using	the	AllMacros	Collection

The	CurrentProject	or	CodeProject	object	has	an	AllMacros	collection
containing	AccessObject	objects	that	describe	instances	of	all	the	macros
specified	by	CurrentProject	or	CodeProject.	For	example,	you	can	enumerate
the	AllMacros	collection	in	Visual	Basic	to	set	or	return	the	values	of	properties
of	individual	AccessObject	objects	in	the	collection.

Tip			The	For	Each...Next	statement	is	useful	for	enumerating	a	collection.

You	can	refer	to	an	individual	AccessObject	object	in	the	AllMacros	collection
either	by	referring	to	the	object	by	name,	or	by	referring	to	its	index	within	the
collection.	If	you	want	to	refer	to	a	specific	object	in	the	AllMacros	collection,
it's	better	to	refer	to	the	macro	by	name	because	a	macro's	collection	index	may
change.

The	AllMacros	collection	is	indexed	beginning	with	zero.	If	you	refer	to	a
macro	by	its	index,	the	first	macro	is	AllMacros(0),	the	second	macro	is
AllMacros(1),	and	so	on.

Note		To	list	all	open	macros	in	the	database,	use	the	IsLoaded	property	of	each
AccessObject	object	in	the	AllMacros	collection.	You	can	then	use	the	Name
property	of	each	individual	AccessObject	object	to	return	the	name	of	a	macro.

You	can't	add	or	delete	an	AccessObject	object	from	the	AllMacros	collection.

The	following	example	prints	the	name	of	each	open	AccessObject	object	in	the
AllMacros	collection.

Sub	AllMacros()

				Dim	obj	As	AccessObject,	dbs	As	Object

				Set	dbs	=	Application.CurrentProject

				'	Search	for	open	AccessObject	objects	in	AllMacros	collection.

				For	Each	obj	In	dbs.AllMacros

								If	obj.IsLoaded	=	True	Then

												'	Print	name	of	obj.

												Debug.Print	obj.Name

								End	If

				Next	obj

End	Sub

Show	All

AllModules	Collection
									
Multiple	objects	 AllModules

AccessObject

The	AllModules	collection	contains	an	AccessObject	of	each	module	in	the
CurrentProject	or	CodeProject	object.

Using	the	AllModules	Collection

The	CurrentProject	or	CodeProject	object	has	an	AllModules	collection
containing	AccessObject	objects	that	describe	instances	of	all	the	Module
objects	specified	by	CurrentProject	or	CodeProject.	For	example,	you	can
enumerate	the	AllModules	collection	in	Visual	Basic	to	set	or	return	the	values
of	properties	of	individual	AccessObject	objects	in	the	collection.

Tip			The	For	Each...Next	statement	is	useful	for	enumerating	a	collection.

You	can	refer	to	an	individual	AccessObject	object	in	the	AllModules	collection
either	by	referring	to	the	object	by	name,	or	by	referring	to	its	index	within	the
collection.	If	you	want	to	refer	to	a	specific	object	in	the	AllModules	collection,
it's	better	to	refer	to	the	module	by	name	because	a	module's	collection	index
may	change.

The	AllModules	collection	is	indexed	beginning	with	zero.	If	you	refer	to	a
module	by	its	index,	the	first	module	is	AllModules(0),	the	second	module	is
AllModules(1),	and	so	on.

Note			To	list	all	open	modules	in	the	database,	use	the	IsLoaded	property	of
each	AccessObject	object	in	the	AllModules	collection.	You	can	then	use	the
Name	property	of	each	individual	AccessObject	object	to	return	the	name	of	a
module.

You	can't	add	or	delete	an	AccessObject	object	from	the	AllModules	collection.

The	following	example	prints	the	name	of	each	open	AccessObject	object	in	the
AllModules	collection.

Sub	AllModules()

				Dim	obj	As	AccessObject,	dbs	As	Object

				Set	dbs	=	Application.CurrentProject

				'	Search	for	open	AccessObject	objects	in	AllModules	collection.

				For	Each	obj	In	dbs.AllModules

								If	obj.IsLoaded	=	True	Then

												'	Print	name	of	obj.

												Debug.Print	obj.Name

								End	If

				Next	obj

End	Sub

Show	All

AllQueries	Collection
									
Multiple	objects	 AllQueries

AccessObject

The	AllQueries	collection	contains	an	AccessObject	for	each	query	in	the
CurrentData	or	CodeData	object.

Using	the	AllQueries	Collection

The	CurrentData	or	CodeData	object	has	an	AllQueries	collection	containing
AccessObject	objects	that	describe	instances	of	all	queries	specified	by
CurrentData	or	CodeData.	For	example,	you	can	enumerate	the	AllQueries
collection	in	Visual	Basic	to	set	or	return	the	values	of	properties	of	individual
AccessObject	objects	in	the	collection.

Tip			The	For	Each...Next	statement	is	useful	for	enumerating	a	collection.

You	can	refer	to	an	individual	AccessObject	object	in	the	AllQueries	collection
either	by	referring	to	the	object	by	name,	or	by	referring	to	its	index	within	the
collection.	If	you	want	to	refer	to	a	specific	object	in	the	AllQueries	collection,
it's	better	to	refer	to	the	query	by	name	because	a	query's	collection	index	may
change.

The	AllQueries	collection	is	indexed	beginning	with	zero.	If	you	refer	to	a	query
by	its	index,	the	first	query	is	AllQueries(0),	the	second	query	is	AllQueries(1),
and	so	on.

Notes

The	AllQueries	collection	only	contains	AccessObject	objects	within	a
Microsoft	Access	database	(.mdb).	A	Microsoft	Access	project	(.adp)	does
not	contain	any	macros,	see	the	AllViews	collection.

To	list	all	open	queries	in	the	database,	use	the	IsLoaded	property	of	each
AccessObject	object	in	the	AllQueries	collection.	You	can	then	use	the
Name	property	of	each	individual	AccessObject	object	to	return	the	name
of	a	query.

You	can't	add	or	delete	an	AccessObject	object	from	the	AllQueries
collection.

The	following	example	prints	the	name	of	each	open	AccessObject	object	in	the
AllQueries	collection.

Sub	AllQueries()

				Dim	obj	As	AccessObject,	dbs	As	Object

				Set	dbs	=	Application.CurrentData

				'	Search	for	open	AccessObject	objects	in	AllQueries	collection.

				For	Each	obj	In	dbs.AllQueries

								If	obj.IsLoaded	=	True	Then

												'	Print	name	of	obj.

												Debug.Print	obj.Name

								End	If

				Next	obj

End	Sub

Show	All

AllReports	Collection
									
Multiple	objects	 AllReports

AccessObject

The	AllReports	collection	contains	an	AccessObject	for	each	report	in	the
CurrentProject	or	CodeProject	object.

Using	the	AllReports	Collection

The	CurrentProject	or	CodeProject	object	has	an	AllReports	collection
containing	AccessObject	objects	that	describe	instances	of	all	the	reports	in	the
database.	For	example,	you	can	enumerate	the	AllReports	collection	in	Visual
Basic	to	set	or	return	the	values	of	properties	of	individual	AccessObject	objects
in	the	collection.

Tip			The	For	Each...Next	statement	is	useful	for	enumerating	a	collection.

You	can	refer	to	an	individual	AccessObject	object	in	the	AllReports	collection
either	by	referring	to	the	item	by	name,	or	by	referring	to	its	index	within	the
collection.	If	you	want	to	refer	to	a	specific	report	in	the	AllReports	collection,
it's	better	to	refer	to	the	item	by	name	because	the	index	may	change.

The	AllReports	collection	is	indexed	beginning	with	zero.	If	you	refer	to	a
report	by	its	index,	the	first	report	is	AllReports(0),	the	second	report	is
AllReports(1),	and	so	on.

Note			To	list	all	open	reports	in	the	database,	use	the	IsLoaded	property	of	each
AccessObject	object	in	the	AllReports	collection.	You	can	then	use	the	Name
property	of	each	individual	AccessObject	object	to	return	the	name	of	a	report.

You	can't	add	or	delete	an	AccessObject	object	from	the	AllReports	collection.

The	following	example	prints	the	name	of	each	open	AccessObject	object	in	the
AllReports	collection.

Sub	AllReports()

				Dim	obj	As	AccessObject,	dbs	As	Object

				Set	dbs	=	Application.CurrentProject

				'	Search	for	open	AccessObject	objects	in	AllReports	collection.

				For	Each	obj	In	dbs.AllReports

								If	obj.IsLoaded	=	True	Then

												'	Print	name	of	obj.

												Debug.Print	obj.Name

								End	If

				Next	obj

End	Sub

Show	All

AllStoredProcedures	Collection
									
Multiple	objects	 AllStoredProcedures

AccessObject

The	AllStoredProcedures	collection	contains	an	AccessObject	for	each	stored
procedure	in	the	CurrentData	or	CodeData	object.

Using	the	AllStoredProcedures	Collection

The	CurrentData	or	CodeData	object	has	an	AllStoredProcedures	collection
containing	AccessObject	objects	that	describe	instances	of	all	stored	procedures
specified	by	CurrentData	or	CodeData.	For	example,	you	can	enumerate	the
AllStoredProcedures	collection	in	Visual	Basic	to	set	or	return	the	values	of
properties	of	individual	AccessObject	objects	in	the	collection.

Tip			The	For	Each...Next	statement	is	useful	for	enumerating	a	collection.

You	can	refer	to	an	individual	AccessObject	object	in	the	AllStoredProcedures
collection	either	by	referring	to	the	object	by	name,	or	by	referring	to	its	index
within	the	collection.	If	you	want	to	refer	to	a	specific	object	in	the
AllStoredProcedures	collection,	it's	better	to	refer	to	the	stored	procedures	by
name	because	a	stored	procedure's	collection	index	may	change.

The	AllStoredProcedures	collection	is	indexed	beginning	with	zero.	If	you
refer	to	a	stored	procedure	by	its	index,	the	first	stored	procedure	is
AllStoredProcedures(0),	the	second	stored	procedure	is	AllStoredProcedures(1),
and	so	on.

Notes

The	AllStoredProcedures	collection	only	contains	AccessObject	objects
within	a	Microsoft	Access	project	(.adp).	A	Microsoft	Access	database
(.mdb)	does	not	contain	any	stored	procedures,	see	the	AllMacros
collection.

To	list	all	open	stored	procedures	in	the	project,	use	the	IsLoaded	property
of	each	AccessObject	object	in	the	AllStoredProcedures	collection.	You
can	then	use	the	Name	property	of	each	individual	AccessObject	object	to
return	the	name	of	a	stored	procedure.

You	can't	add	or	delete	an	AccessObject	object	from	the
AllStoredProcedures	collection.

The	following	example	prints	the	name	of	each	open	AccessObject	object	in	the
AllProcedures	collection.

Sub	AllStoredProcedures()

				Dim	obj	As	AccessObject,	dbs	As	Object

				Set	dbs	=	Application.CurrentData

				'	Search	for	open	AccessObject	objects	in

				'	AllStoredProcedures	collection.

				For	Each	obj	In	dbs.AllStoredProcedures

								If	obj.IsLoaded	=	True	Then

												'	Print	name	of	obj.

												Debug.Print	obj.Name

								End	If

				Next	obj

End	Sub

Show	All

AllTables	Collection
									
Multiple	objects	 AllTables

AccessObject

The	AllTables	collection	contains	an	AccessObject	for	each	table	in	the
CurrentData	or	CodeData	object.

Using	the	AllTables	Collection

The	CurrentData	or	CodeData	object	has	an	AllTables	collection	containing
AccessObject	objects	that	describe	instances	of	all	tables	specified	by
CurrentData	or	CodeData.	For	example,	you	can	enumerate	the	AllTables
collection	in	Visual	Basic	to	set	or	return	the	values	of	properties	of	individual
AccessObject	objects	in	the	collection.

Tip			The	For	Each...Next	statement	is	useful	for	enumerating	a	collection.

You	can	refer	to	an	individual	AccessObject	object	in	the	AllTables	collection
either	by	referring	to	the	object	by	name,	or	by	referring	to	its	index	within	the
collection.	If	you	want	to	refer	to	a	specific	object	in	the	AllTables	collection,
it's	better	to	refer	to	the	table	by	name	because	a	table's	collection	index	may
change.

The	AllTables	collection	is	indexed	beginning	with	zero.	If	you	refer	to	a	table
by	its	index,	the	first	table	is	AllTables(0),	the	second	table	is	AllTables(1),	and
so	on.

Note			To	list	all	open	tables	in	the	database,	use	the	IsLoaded	property	of	each
AccessObject	object	in	the	AllTables	collection.	You	can	then	use	the	Name
property	of	each	individual	AccessObject	object	to	return	the	name	of	a	table.

You	can't	add	or	delete	an	AccessObject	object	from	the	AllTables	collection.

The	following	example	prints	the	name	of	each	open	AccessObject	object	in	the
AllTables	collection.

Sub	AllTables()

				Dim	obj	As	AccessObject,	dbs	As	Object

				Set	dbs	=	Application.CurrentData

				'	Search	for	open	AccessObject	objects	in	AllTables	collection.

				For	Each	obj	In	dbs.AllTables

								If	obj.IsLoaded	=	True	Then

												'	Print	name	of	obj.

												Debug.Print	obj.Name

								End	If

				Next	obj

End	Sub

Show	All

AllViews	Collection
									
Multiple	objects	 AllViews

AccessObject

The	AllViews	collection	contains	an	AccessObject	for	each	view	in	the
CurrentData	or	CodeData	object.

Using	the	AllViews	Collection

The	CurrentData	or	CodeData	object	has	an	AllViews	collection	containing
AccessObject	objects	that	describe	instances	of	all	views	specified	by
CurrentData	or	CodeData.	For	example,	you	can	enumerate	the	AllViews
collection	in	Visual	Basic	to	set	or	return	the	values	of	properties	of	individual
AccessObject	objects	in	the	collection.

Tip			The	For	Each...Next	statement	is	useful	for	enumerating	a	collection.

You	can	refer	to	an	individual	AccessObject	object	in	the	AllViews	collection
either	by	referring	to	the	object	by	name,	or	by	referring	to	its	index	within	the
collection.	If	you	want	to	refer	to	a	specific	object	in	the	AllViews	collection,	it's
better	to	refer	to	the	view	by	name	because	a	view's	collection	index	may
change.

The	AllViews	collection	is	indexed	beginning	with	zero.	If	you	refer	to	a	view
by	its	index,	the	first	view	is	AllViews(0),	the	second	table	is	AllViews(1),	and
so	on.

Notes

The	AllViews	collection	only	contains	AccessObject	objects	within	a
Microsoft	Access	project	(.adp).	A	Microsoft	Access	database	(.mdb)	does
not	contain	any	views,	see	the	AllQueries	collection.

To	list	all	open	views	in	the	project,	use	the	IsLoaded	property	of	each
AccessObject	object	in	the	AllViews	collection.	You	can	then	use	the
Name	property	of	each	individual	AccessObject	object	to	return	the	name
of	a	view.

You	can't	add	or	delete	an	AccessObject	object	from	the	AllViews
collection.

The	following	example	prints	the	name	of	each	open	AccessObject	object	in	the
AllViews	collection.

Sub	AllViews()

				Dim	obj	As	AccessObject,	dbs	As	Object

				Set	dbs	=	Application.CurrentData

				'	Search	for	open	AccessObject	objects	in	AllViews	collection.

				For	Each	obj	In	dbs.AllViews

								If	obj.IsLoaded	=	True	Then

												'	Print	name	of	obj.

												Debug.Print	obj.Name

								End	If

				Next	obj

End	Sub

Show	All

Application	Object
									
Application	 Multiple	objects

The	Application	object	refers	to	the	active	Microsoft	Access	application.

Using	the	Application	Object

The	Application	object	contains	all	Microsoft	Access	objects	and	collections.

You	can	use	the	Application	object	to	apply	methods	or	property	settings	to	the
entire	Microsoft	Access	application.	For	example,	you	can	use	the	SetOption
method	of	the	Application	object	to	set	database	options	from	Visual	Basic.	The
following	example	shows	how	you	can	set	the	Status	Bar	check	box	under
Show	on	the	View	tab	of	the	Options	dialog	box.

Application.SetOption	"Show	Status	Bar",	True

Microsoft	Access	is	a	COM	component	that	supports	Automation,	formerly
called	OLE	Automation.	You	can	manipulate	Microsoft	Access	objects	from
another	application	that	also	supports	Automation.	To	do	this,	you	use	the
Application	object.

For	example,	Microsoft	Visual	Basic	is	a	COM	component.	You	can	open	a
Microsoft	Access	database	from	Visual	Basic	and	work	with	its	objects.	From
Visual	Basic,	first	create	a	reference	to	the	Microsoft	Access	10.0	object	library.
Then	create	a	new	instance	of	the	Application	class	and	point	an	object	variable
to	it,	as	in	the	following	example:

Dim	appAccess	As	New	Access.Application

From	applications	that	don't	support	the	New	keyword,	you	can	create	a	new
instance	of	the	Application	class	by	using	the	CreateObject	function:

Dim	appAccess	As	Object

Set	appAccess	=	CreateObject("Access.Application")

Once	you've	created	a	new	instance	of	the	Application	class,	you	can	open	a
database	or	create	a	new	database,	by	using	either	the	OpenCurrentDatabase
method	or	the	NewCurrentDatabase	method.	You	can	then	set	the	properties	of
the	Application	object	and	call	its	methods.	When	you	return	a	reference	to	the
CommandBars	object	by	using	the	CommandBars	property	of	the
Application	object,	you	can	access	all	Microsoft	Office	XP	command	bar
objects	and	collections	by	using	this	reference.

You	can	also	manipulate	other	Microsoft	Access	objects	through	the
Application	object.	For	example,	by	using	the	OpenForm	method	of	the
Microsoft	Access	DoCmd	object,	you	can	open	a	Microsoft	Access	form	from
Microsoft	Excel:

appAccess.DoCmd.OpenForm	"Orders"

For	more	information	on	creating	a	reference	and	controlling	objects	by	using
Automation,	see	the	documentation	for	the	application	that's	acting	as	the	COM
component.

Show	All

BoundObjectFrame	Object
									
BoundObjectFrame	 Properties

A	bound	object	frame	object	displays	a	picture,	chart,	or	any	OLE	object	stored
in	a	table	in	a	Microsoft	Access	database.	For	example,	if	you	store	pictures	of
your	employees	in	a	table	in	Microsoft	Access,	you	can	use	a	bound	object
frame	to	display	these	pictures	on	a	form	or	report.

Using	the	BoundObjectFrame	Object

This	object	type	allows	you	to	create	or	edit	the	object	from	within	the	form	or
report	by	using	the	OLE	server.

A	bound	object	frame	is	bound	to	a	field	in	an	underlying	table.

The	field	in	the	underlying	table	to	which	the	bound	object	frame	is	bound	must
be	of	the	OLE	Object	data	type.

The	object	in	a	bound	object	frame	is	different	for	each	record.	The	bound	object
frame	can	display	linked	or	embedded	objects.	If	you	want	to	display	objects	not
stored	in	an	underlying	table,	use	an	unbound	object	frame	or	an	image	control.

Show	All

CheckBox	Object
									

CheckBox	 Properties

This	object	corresponds	to	a	check	box	on	a	form	or	report.	This	check	box	is	a
stand-alone	control	that	displays	a	Yes/No	value	from	an	underlying	record
source.

Control: Tool:

Note			This	control	should	not	be	confused	with	the	Dynamic	HTML	check	box
control	used	on	a	data	access	page.	For	information	about	a	check	box	control	on
a	data	access	page,	see	Check	Box	Control	(Data	Access	Pages).

When	you	select	or	clear	a	check	box	that's	bound	to	a	Yes/No	field,	Microsoft
Access	displays	the	value	in	the	underlying	table	according	to	the	field's	Format
property	(Yes/No,	True/False,	or	On/Off).

You	can	also	use	check	boxes	in	an	option	group	to	display	values	to	choose
from.

It's	also	possible	to	use	an	unbound	check	box	in	a	custom	dialog	box	to	accept
user	input.

Show	All

CodeData	Object
									

Application	 CodeData
Multiple	objects

The	CodeData	object	refers	to	objects	stored	within	the	code	database	by	the
source	(server)	application	(Jet	or	SQL).

Remarks

The	CodeData	object	has	several	collections	that	contain	specific	object	types
within	the	code	database.	The	following	table	lists	the	name	of	each	collection
defined	by	the	database	and	the	types	of	objects	it	contains.

Collections Object	type
AllTables All	tables
AllFunctions All	functions

AllQueries All	queries	(the	count	of	queries	in	a	Microsoft
Access	project	(.adp)	will	be	zero).

AllViews All	views	(the	count	of	views	in	an	Access	database
(.mdb)	database	will	be	zero).

AllStoredProcedures All	stored	procedures	(the	count	of	stored	procedures
in	a	.mdb	database	will	be	zero).

AllDatabaseDiagrams All	database	diagrams	(the	count	of	database
diagrams	in	a	.mdb	database	will	be	zero).

Note		The	collections	in	the	preceding	table	contain	all	of	the	respective	objects
in	the	database	regardless	if	they	are	opened	or	closed.

For	example,	an	AccessObject	representing	a	table	is	a	member	of	the	AllTables
collection,	which	is	a	collection	of	AccessObject	objects	within	the	current
database.	Within	the	AllTables	collection,	individual	tables	are	indexed
beginning	with	zero.	You	can	refer	to	an	individual	AccessObject	object	in	the
AllTables	collection	either	by	referring	to	the	table	by	name,	or	by	referring	to
its	index	within	the	collection.	If	you	want	to	refer	to	a	specific	item	in	the
AllTables	collection,	it's	better	to	refer	to	it	by	name	because	the	item's	index
may	change.	If	the	object	name	includes	a	space,	the	name	must	be	surrounded
by	brackets	([]).

Syntax Example
AllTables!tablename AllTables!OrderTable
AllTables![table	name] AllTables![Order	Table]
AllTables("tablename") AllTables("OrderTable")

AllTables(index) AllTables(0)

Show	All

CodeProject	Object
									

Application	 CodeProject
Multiple	objects

The	CodeProject	object	refers	to	the	project	for	the	code	database	of	a
Microsoft	Access	project	(.adp)	or	Access	database	(.mdb).

Using	the	CodeProject	Object

The	CodeProject	object	has	several	collections	that	contain	specific
AccessObject	objects	within	the	code	database.	The	following	table	lists	the
name	of	each	collection	defined	by	Access	project	and	the	types	of	objects	it
contains.

Collections Object	type
AllForms All	forms
AllReports All	reports
AllMacros All	macros
AllModules All	modules
AllDataAccessPages All	data	access	pages

Note		The	collections	in	the	preceding	table	contain	all	of	the	respective	objects
in	the	database	regardless	if	they	are	opened	or	closed.

For	example,	an	AccessObject	object	representing	a	form	is	a	member	of	the
AllForms	collection,	which	is	a	collection	of	AccessObject	objects	within	the
current	database.	Within	the	AllForms	collection,	individual	members	of	the
collection	are	indexed	beginning	with	zero.	You	can	refer	to	an	individual
AccessObject	object	in	the	AllForms	collection	either	by	referring	to	the	form
by	name,	or	by	referring	to	its	index	within	the	collection.	If	you	want	to	refer	to
a	specific	object	in	the	AllForms	collection,	it's	better	to	refer	to	it	by	name
because	a	item's	collection	index	may	change.	If	the	object	name	includes	a
space,	the	name	must	be	surrounded	by	brackets	([]).

Syntax Example
AllForms!formname AllForms!OrderForm
AllForms![form	name] AllForms![Order	Form]
AllForms("formname") AllForms("OrderForm")
AllForms(index) AllForms(0)

Show	All

ComboBox	Object
									

ComboBox	 Multiple	objects

This	object	corresponds	to	a	combo	box	control.	The	combo	box	control
combines	the	features	of	a	text	box	and	a	list	box.	Use	a	combo	box	when	you
want	the	option	of	either	typing	a	value	or	selecting	a	value	from	a	predefined
list.

Control: Tool:

Note			This	control	should	not	be	confused	with	the	Dynamic	HTML	drop-down
list	box	control	used	on	a	data	access	page.	For	information	about	a	drop-down
list	box	control	on	a	data	access	page,	see	Drop-down	List	Box	Control	(Data
Access	Page).

In	Form	view,	Microsoft	Access	doesn't	display	the	list	until	you	click	the
combo	box's	arrow.

If	you	have	Control	Wizards	on	before	you	select	the	combo	box	tool,	you	can
create	a	combo	box	with	a	wizard.	To	turn	Control	Wizards	on	or	off,	click	the
Control	Wizards	tool	 	in	the	toolbox.

The	setting	of	the	LimitToList	property	determines	whether	you	can	enter
values	that	aren't	in	the	list.

The	list	can	be	single-	or	multiple-column,	and	the	columns	can	appear	with	or
without	headings.

Show	All

CommandButton	Object
									

CommandButton	 Multiple	objects

This	object	corresponds	to	a	command	button.	A	command	button	on	a	form	can
start	an	action	or	a	set	of	actions.	For	example,	you	could	create	a	command
button	that	opens	another	form.	To	make	a	command	button	do	something,	you
write	a	macro	or	event	procedure	and	attach	it	to	the	button's	OnClick	property.

Control: Tool:

Note			This	control	should	not	be	confused	with	the	Dynamic	HTML	command
button	control	used	on	a	data	access	page.	For	information	about	a	command
button	control	on	a	data	access	page,	see	Command	Button	Control	(Data	Access

You	can	display	text	on	a	command	button	by	setting	its	Caption	property,	or
you	can	display	a	picture	by	setting	its	Picture	property.

Tip			You	can	create	over	30	different	types	of	command	buttons	with	the
Command	Button	Wizard.	When	you	use	the	Command	Button	Wizard,
Microsoft	Access	creates	the	button	and	the	event	procedure	for	you.

Show	All

Control	Object
									
Multiple	objects	 Control

Multiple	objects

The	Control	object	represents	a	control	on	a	form,	report,	or	section,	within
another	control,	or	attached	to	another	control.

Using	the	Control	Object

All	controls	on	a	form	or	report	belong	to	the	Controls	collection	for	that	Form
or	Report	object.	Controls	within	a	particular	section	belong	to	the	Controls
collection	for	that	section.	Controls	within	a	tab	control	or	option	group	control
belong	to	the	Controls	collection	for	that	control.	A	label	control	that	is	attached
to	another	control	belongs	to	the	Controls	collection	for	that	control.

When	you	refer	to	an	individual	Control	object	in	the	Controls	collection,	you
can	refer	to	the	Controls	collection	either	implicitly	or	explicitly.

'	Implicitly	refer	to	NewData	control	in	Controls

'	collection.

Me!NewData

'	Use	if	control	name	contains	space.

Me![New	Data]

'	Performance	slightly	slower.

Me("NewData")

'	Refer	to	a	control	by	its	index	in	the	controls

'	collection.

Me(0)

'	Refer	to	a	NewData	control	by	using	the	subform

'	Controls	collection.

Me.ctlSubForm.Controls!NewData

'	Explicitly	refer	to	the	NewData	control	in	the

'	Controls	collection.

Me.Controls!NewData

Me.Controls("NewData")

Me.Controls(0)

Note			You	can	use	the	Me	keyword	to	represent	a	Form	or	Report	object
within	code	only	if	you're	referring	to	the	form	or	report	from	code	within	the
class	module.	If	you're	referring	to	a	form	or	report	from	a	standard	module	or	a
different	form's	or	report's	module,	you	must	use	the	full	reference	to	the	form	or
report.

Each	Control	object	is	denoted	by	a	particular	intrinsic	constant.	For	example,
the	intrinsic	constant	acTextBox	is	associated	with	a	text	box	control,	and
acCommandButton	is	associated	with	a	command	button.	The	constants	for	the
various	Microsoft	Access	controls	are	set	forth	in	the	control's	ControlType
property.

To	determine	the	type	of	an	existing	control,	you	can	use	the	ControlType
property.	However,	you	don't	need	to	know	the	specific	type	of	a	control	in	order
to	use	it	in	code.	You	can	simply	represent	it	with	a	variable	of	data	type
Control.

If	you	do	know	the	data	type	of	the	control	to	which	you	are	referring,	and	the
control	is	a	built-in	Microsoft	Access	control,	you	should	represent	it	with	a
variable	of	a	specific	type.	For	example,	if	you	know	that	a	particular	control	is	a
text	box,	declare	a	variable	of	type	TextBox	to	represent	it,	as	shown	in	the
following	code.

Dim	txt	As	TextBox

Set	txt	=	Forms!Employees!LastName

Note			If	a	control	is	an	ActiveX	control,	then	you	must	declare	a	variable	of
type	Control	to	represent	it;	you	cannot	use	a	specific	type.	If	you're	not	certain
what	type	of	control	a	variable	will	point	to,	declare	the	variable	as	type
Control.

The	option	group	control	can	contain	other	controls	within	its	Controls
collection,	including	option	button,	check	box,	toggle	button,	and	label	controls.

The	tab	control	contains	a	Pages	collection,	which	is	a	special	type	of	Controls
collection.	The	Pages	collection	contains	Page	objects,	which	are	controls.	Each
Page	object	in	turn	contains	a	Controls	collection,	which	contains	all	of	the
controls	on	that	page.

Other	Control	objects	have	a	Controls	collection	that	can	contain	an	attached
label.	These	controls	include	the	text	box,	option	group,	option	button,	toggle
button,	check	box,	combo	box,	list	box,	command	button,	bound	object	frame,
and	unbound	object	frame	controls.

Show	All

Controls	Collection
									
Multiple	objects	 Controls

Control

The	Controls	collection	contains	all	of	the	controls	on	a	form,	report,	or
subform,	within	another	control,	or	attached	to	another	control.	The	Controls
collection	is	a	member	of	a	Form,	Report,	and	SubForm	objects.

Using	the	Controls	Collection

You	can	enumerate	individual	controls,	count	them,	and	set	their	properties	in
the	Controls	collection.	For	example,	you	can	enumerate	the	Controls
collection	of	a	particular	form	and	set	the	Height	property	of	each	control	to	a
specified	value.

Tip			The	For	Each...Next	statement	is	useful	for	enumerating	a	collection.

It	is	faster	to	refer	to	the	Controls	collection	implicitly,	as	in	the	following
examples,	which	refer	to	a	control	called	NewData	on	a	form	named	OrderForm.
Of	the	following	syntax	examples,	Me!NewData	is	the	fastest	way	to	refer	to	the
control.

Me!NewData															'	Or	Forms!OrderForm!NewData.

Me![New	Data]												'	Use	if	control	name	contains	space.

Me("NewData")												'	Performance	is	slightly	slower.

You	can	also	refer	to	an	individual	control	by	referring	explicitly	to	the	Controls
collection.

Me.Controls!NewData						'	Or	Forms!OrderForm.Controls!NewData.

Me.Controls![New	Data]

Me.Controls("NewData")

Additionally,	you	can	refer	to	a	control	by	its	index	in	the	collection.	The
Controls	collection	is	indexed	beginning	with	zero.

Me(0)																				'	Refer	to	first	item	in	collection.

Me.Controls(0)

Note			You	can	use	the	Me	keyword	to	represent	a	form	or	report	within	code
only	if	you're	referring	to	the	form	or	report	from	code	within	the	form	module
or	report	module.	If	you're	referring	to	a	form	or	report	from	a	standard	module
or	a	different	form's	or	report's	module,	you	must	use	the	full	reference	to	the
form	or	report.

To	work	with	the	controls	on	a	section	of	a	form	or	report,	use	the	Section
property	to	return	a	reference	to	a	Section	object.	Then	refer	to	the	Controls
collection	of	the	Section	object.

Two	types	of	Control	objects,	the	tab	control	and	option	group	control,	have
Controls	collections	that	can	contain	multiple	controls.	The	Controls	collection
belonging	to	the	option	group	control	contains	any	option	button,	check	box,
toggle	button,	or	label	controls	in	the	option	group.

The	tab	control	contains	a	Pages	collection,	which	is	a	special	type	of	Controls
collection.	The	Pages	collection	contains	Page	objects.	Page	objects	are	also
controls.	The	ControlType	property	constant	for	a	Page	control	is	acPage.	A
Page	object,	in	turn,	has	its	own	Controls	collection,	which	contains	all	the
controls	on	an	individual	page.

Other	Control	objects	have	a	Controls	collection	that	can	contain	an	attached
label.	These	controls	include	the	text	box,	option	group,	option	button,	toggle
button,	check	box,	combo	box,	list	box,	command	button,	bound	object	frame,
and	unbound	object	frame	controls.

Show	All

CurrentData	Object
									

Application	 CurrentData
Multiple	objects

The	CurrentData	object	refers	to	the	objects	stored	in	the	current	database	by
the	source	(server)	application	(Jet	or	SQL).

Using	the	CurrentData	Object

The	CurrentData	object	has	several	collections	that	contain	specific
AccessObject	objects	within	the	current	database.	The	following	table	lists	the
name	of	each	collection	defined	by	the	database	and	the	types	of	objects	it
contains.

Collections Object	type
AllTables All	tables
AllFunctions All	functions

AllQueries All	queries	(the	count	of	queries	in	a	Microsoft	Access
project	(.adp)	will	be	zero).

AllViews All	views	(the	count	of	views	in	an	Access	database
(.mdb)	database	will	be	zero).

AllStoredProcedures All	stored	procedures	(the	count	of	stored	procedures
in	a	.mdb	database	will	be	zero).

AllDatabaseDiagrams All	database	diagrams	(the	count	of	database	diagrams
in	a	.mdb	database	will	be	zero).

Note		The	collections	in	the	preceding	table	contain	all	of	the	respective	objects
in	the	database	regardless	if	they	are	opened	or	closed.

For	example,	an	AccessObject	representing	a	table	is	a	member	of	the	AllTables
collection,	which	is	a	collection	of	AccessObject	objects	within	the	current
database.	Within	the	AllTables	collection,	individual	tables	are	indexed
beginning	with	zero.	You	can	refer	to	an	individual	AccessObject	object	in	the
AllTables	collection	either	by	referring	to	the	table	by	name,	or	by	referring	to
its	index	within	the	collection.	If	you	want	to	refer	to	a	specific	item	in	the
AllTables	collection,	it's	better	to	refer	to	it	by	name	because	the	item's	index
may	change.	If	the	object	name	includes	a	space,	the	name	must	be	surrounded
by	brackets	([]).

Syntax Example
AllTables!tablename AllTables!OrderTable
AllTables![table	name] AllTables![Order	Table]

AllTables("tablename") AllTables("OrderTable")
AllTables(index) AllTables(5)

Show	All

CurrentProject	Object
									

Application	 CurrentProject
Multiple	objects

The	CurrentProject	object	refers	to	the	project	for	the	current	Microsoft	Access
project	(.adp)	or	Access	database	(.mdb).

Using	the	CurrentProject	Object

The	CurrentProject	object	has	several	collections	that	contain	specific
AccessObject	objects	within	the	current	database.	The	following	table	lists	the
name	of	each	collection	and	the	types	of	objects	it	contains.

Collections Object	type
AllForms All	forms
AllReports All	reports
AllMacros All	macros
AllModules All	modules
AllDataAccessPages All	data	access	pages

Note		The	collections	in	the	preceding	table	contain	all	of	the	respective	objects
in	the	database	regardless	if	they	are	opened	or	closed.

For	example,	an	AccessObject	object	representing	a	form	is	a	member	of	the
AllForms	collection,	which	is	a	collection	of	AccessObject	objects	within	the
current	database.	Within	the	AllForms	collection,	individual	members	of	the
collection	are	indexed	beginning	with	zero.	You	can	refer	to	an	individual
AccessObject	object	in	the	AllForms	collection	either	by	referring	to	the	form
by	name,	or	by	referring	to	its	index	within	the	collection.	If	you	want	to	refer	to
a	specific	object	in	the	AllForms	collection,	it's	better	to	refer	to	it	by	name
because	a	item's	collection	index	may	change.	If	the	object	name	includes	a
space,	the	name	must	be	surrounded	by	brackets	([]).

Syntax Example
AllForms!formname AllForms!OrderForm
AllForms![form	name] AllForms![Order	Form]
AllForms("formname") AllForms("OrderForm")
AllForms(index) AllForms(0)

The	following	example	prints	some	current	property	settings	of	the
CurrentProject	object	and	then	sets	an	option	to	display	hidden	objects	within
the	application:

Sub	ApplicationInformation()

				'	Print	name	and	type	of	current	object.

				Debug.Print	Application.CurrentProject.FullName

				Debug.Print	Application.CurrentProject.ProjectType

				'	Set	Hidden	Objects	option	under	Show	on	View	Tab

				'of	the	Options	dialog	box.

				Application.SetOption	"Show	Hidden	Objects",	True

End	Sub

The	next	example	shows	how	to	use	the	CurrentProject	object	using	Automation
from	another	Microsoft	Office	application.	First,	from	the	other	application,
create	a	reference	to	Microsoft	Access	by	clicking	References	on	the	Tools
menu	in	the	Module	window.	Select	the	check	box	next	to	Microsoft	Access
Object	Library.	Then	enter	the	following	code	in	a	Visual	Basic	module	within
that	application	and	call	the	GetAccessData	procedure.

The	example	passes	a	database	name	and	report	name	to	a	procedure	that	creates
a	new	instance	of	the	Application	class,	opens	the	database,	and	verifies	that	the
specified	report	exists	using	the	CurrentProject	object	and	AllReports
collection.

Sub	GetAccessData()

'	Declare	object	variable	in	declarations	section	of	a	module

				Dim	appAccess	As	Access.Application

				Dim	strDB	As	String

				Dim	strReportName	As	String

				strDB	=	"C:\Program	Files\Microsoft	"_

								&	"Office\Office10\Samples\Northwind.mdb"

				strReportName	=	InputBox("Enter	name	of	report	to	be	verified",	_

								"Report	Verification")

				VerifyAccessReport	strDB,	strReportName

End	Sub

Sub	VerifyAccessReport(strDB	As	String,	_

					strReportName	As	String)

				'	Return	reference	to	Microsoft	Access

				'	Application	object.

				Set	appAccess	=	New	Access.Application

				'	Open	database	in	Microsoft	Access.

				appAccess.OpenCurrentDatabase	strDB

				'	Verify	report	exists.

				On	Error	Goto	ErrorHandler

				appAccess.CurrentProject.AllReports(strReportName)

				MsgBox	"Report	"	&	strReportName	&	_

								"	verified	within	Northwind	database."

				appAccess.CloseCurrentDatabase

				Set	appAccess	=	Nothing

Exit	Sub

ErrorHandler:

				MsgBox	"Report	"	&	strReportName	&	_

								"	does	not	exist	within	Northwind	database."

				appAccess.CloseCurrentDatabase

				Set	appAccess	=	Nothing

End	Sub

Show	All

CustomControl	Object
									
CustomControl	 Properties

Some	of	the	content	in	this	topic	may	not	be	applicable	to	some	languages.

When	setting	the	properties	of	an	ActiveX	control,	you	may	need	or	prefer	to	use
the	control's	custom	properties	dialog	box.	This	custom	properties	dialog	box
provides	an	alternative	to	the	list	of	properties	in	the	Microsoft	Access	property
sheet	for	setting	ActiveX	control	properties	in	Design	view.

Using	the	CustomControl	Object

Note			This	information	only	applies	to	ActiveX	controls	in	a	Microsoft	Access
database	(.mdb)	environment.

Two	Ways	to	Set	Properties

The	reason	for	the	custom	properties	dialog	box	is	that	not	all	applications	that
use	ActiveX	controls	provide	a	property	sheet	like	the	one	in	Microsoft	Access.
The	custom	properties	dialog	box	provides	an	interface	for	setting	key	control
properties	regardless	of	the	interface	supplied	by	the	hosting	application.

For	some	ActiveX	control	properties,	you	can	choose	either	of	these	two
locations	to	set	the	property:

The	Microsoft	Access	property	sheet.

The	ActiveX	control's	custom	properties	dialog	box.

In	some	cases,	the	custom	properties	dialog	box	is	the	only	way	to	set	a	property
in	Design	view.	This	is	usually	the	situation	when	the	interface	needed	to	set	a
property	doesn't	work	inside	the	Microsoft	Access	property	sheet.	For	example,
the	GridFont	property	for	the	Calendar	control	has	a	number	of	arguments;	you
can't	set	more	than	one	argument	per	property	in	the	Microsoft	Access	property
sheet.

Finding	the	Custom	Properties	Dialog	Box

Not	all	ActiveX	controls	provide	a	custom	properties	dialog	box.	To	see	whether
a	control	provides	this	custom	properties	dialog	box,	look	for	the	Custom
property	in	the	Microsoft	Access	property	sheet	for	this	control.	If	the	list	of
properties	contains	the	name	Custom,	then	the	control	provides	the	custom
properties	dialog	box.

Using	the	Custom	Properties	Dialog	Box

After	you	click	the	Custom	property	box	in	the	Microsoft	Access	property	sheet,
click	the	Build	button	 	to	the	right	of	the	property	box	to	display	the	control's

custom	properties	dialog	box,	often	presented	as	a	tabbed	dialog	box.	Choose	the
tab	that	contains	the	interface	for	setting	the	properties	that	you	want	to	set.

After	you	make	changes	on	one	tab,	you	can	often	apply	those	changes
immediately	by	clicking	the	Apply	button	(if	provided).	You	can	click	other	tabs
to	set	other	properties	as	needed.	To	approve	all	changes	made	in	the	custom
properties	dialog	box,	click	the	OK	button.	To	return	to	the	Microsoft	Access
property	sheet	without	changing	any	property	settings,	click	the	Cancel	button.

You	can	also	view	the	custom	properties	dialog	box	by	clicking	the	Properties
subcommand	of	the	ActiveX	control	Object	command	(for	example,	Calendar
Control	Object)	on	the	Edit	menu,	or	by	clicking	this	same	subcommand	on	the
shortcut	menu	for	the	ActiveX	control.	In	addition,	some	properties	in	the
Microsoft	Access	property	sheet	for	the	ActiveX	control,	like	the
GridFontColor	property	of	the	Calendar	control,	have	a	Build	button	to	the
right	of	the	property	box.	When	you	click	the	Build	button,	the	custom
properties	dialog	box	is	displayed,	with	the	appropriate	tab	selected	(for
example,	Colors).

Show	All

DataAccessPage	Object
									

Multiple	objects	 DataAccessPage
WebOptions

A	DataAccessPage	object	refers	to	a	particular	Microsoft	Access	data	access
page.

Using	the	DataAccessPage	Object

A	DataAccessPage	object	is	a	member	of	the	DataAccessPages	collection,
which	is	a	collection	of	all	currently	open	data	access	pages.	Within	the
DataAccessPages	collection,	individual	data	access	pages	are	indexed	beginning
with	zero.	You	can	refer	to	an	individual	DataAccessPage	object	in	the
DataAccessPages	collection	either	by	referring	to	the	data	access	page	by	name,
or	by	referring	to	its	index	within	the	collection.	If	you	want	to	refer	to	a	specific
data	access	page	in	the	DataAccessPages	collection,	it's	better	to	refer	to	the
data	access	page	by	name	because	a	data	access	page's	collection	index	may
change.	If	the	data	access	name	includes	a	space,	the	name	must	be	surrounded
by	brackets	([]).

Syntax Example
DataAccessPages!pagename DataAccessPages!SalePage
DataAccessPages![page	name] DataAccessPages![Sale	Page]
DataAccessPages("pagename") DataAccessPages("Sale	Page")
DataAccessPages(index) DataAccessPages(0)

The	following	example	creates	a	new	data	access	page	and	sets	certain
properties:

Sub	NewDataAccessPage()

				Dim	dap	As	AccessObject

				'	Create	new	data	access	page.

				Set	dap	=	CreateDataAccessPage("c:\My	Documents\Sales	Entry",	_

												True)

				'	Set	data	access	page	Tag	property.

				dap.Tag	=	"Sales	Entry	Data	Access	Page"

				'	Restore	data	access	page.

				DoCmd.Restore

End	Sub

The	next	example	enumerates	the	DataAccessPages	collection	and	prints	the
name	of	each	data	access	page	in	the	DataAccessPages	collection.

Sub	AllOpenDataAccessPages()

				Dim	dap	As	AccessObject

				Set	dbs	=	Application.CurrentProject

				'	Search	for	open	objects	in	DataAccessPages	collection.

				For	Each	dap	In	dbs.AllDataAccessPages

								If	dap.IsLoaded	=	TRUE	then

												'	Print	name	of	form.

												Debug.Print	dap.Name

								End	If

				Next	dap

End	Sub

Show	All

DataAccessPages	Collection
									
Application	 DataAccessPages

DataAccessPage

The	DataAccessPages	collection	contains	all	of	the	data	access	pages	that	are
currently	open	in	a	Microsoft	Access	project	(.adp)	or	Access	database	(.mdb).

Using	the	DataAccessPages	Collection

Use	the	DataAccessPages	collection	in	Visual	Basic	or	in	an	expression	to	refer
to	data	access	pages	that	are	currently	open.	For	example,	you	can	enumerate	the
DataAccessPages	collection	to	set	or	return	the	values	of	properties	of
individual	data	access	pages	in	the	collection.

Tip			The	For	Each...Next	statement	is	useful	for	enumerating	a	collection.

You	can	refer	to	an	individual	DataAccessPage	object	in	the	DataAccessPages
collection	either	by	referring	to	the	data	access	page	by	name,	or	by	referring	to
its	index	within	the	collection.	If	you	want	to	refer	to	a	specific	data	access	page
in	the	DataAccessPages	collection,	it's	better	to	refer	to	the	data	access	page	by
name	because	a	data	access	page's	collection	index	may	change.

The	DataAccessPages	collection	is	indexed	beginning	with	zero.	If	you	refer	to
a	data	access	page	by	its	index,	the	first	data	access	page	opened	is
DataAccessPages(0),	the	second	form	opened	is	DataAccessPages(1),	and	so	on.
If	you	opened	Page1	and	then	opened	Page2,	Page2	would	be	referenced	in	the
DataAccessPages	collection	by	its	index	as	DataAccessPages(1).	If	you	then
closed	Page1,	Page2	would	be	referenced	in	the	DataAccessPages	collection	by
its	index	as	DataAccessPages(0).

Note			To	list	all	data	access	pages	in	the	database,	whether	open	or	closed,
enumerate	the	AllDataAccessPages	collection	of	the	CurrentProject	object.
You	can	then	use	the	Name	property	of	each	individual	AccessObject	object	to
return	the	name	of	a	data	access	page.

You	can't	add	or	delete	a	DataAccessPage	object	from	the	DataAccessPages
collection.

The	following	example	creates	a	new	data	access	page	and	sets	certain
properties:

Sub	NewDataAccessPage()

				Dim	dap	As	AccessObject

				'	Create	new	data	access	page.

				Set	dap	=	CreateDataAccessPage("c:\My	Documents\Sales	Entry",	_

												True)

				'	Set	data	access	page	Tag	property.

				dap.Tag	=	"Sales	Entry	Data	Access	Page"

				'	Restore	data	access	page.

				DoCmd.Restore

End	Sub

The	next	example	enumerates	the	DataAccessPages	collection	and	prints	the
name	of	each	data	access	page	in	the	DataAccessPages	collection.

Sub	AllOpenDataAccessPages()

				Dim	dap	As	AccessObject

				Set	dbs	=	Application.CurrentProject

				'	Search	for	open	objects	in	DataAccessPages	collection.

				For	Each	dap	In	dbs.AllDataAccessPages

								If	dap.IsLoaded	=	TRUE	then

												'	Print	name	of	form.

												Debug.Print	dap.Name

								End	If

				Next	dap

End	Sub

DefaultWebOptions	Object
									
Application	 DefaultWebOptions

The	DefaultWebOptions	object	contains	global	application-level	attributes	used
by	Microsoft	Access	when	you	save	a	data	access	page	as	a	Web	page	or	open	a
Web	page.	You	can	return	or	set	attributes	either	at	the	application	(global)	level
or	at	the	data	access	page	level.

Using	the	DefaultWebOptions	Object

Use	the	DefaultWebOptions	property	to	return	the	DefaultWebOptions	object.

Note	that	attribute	values	can	be	different	from	one	data	access	page	to	another,
depending	on	the	attribute	value	at	the	time	the	data	access	page	was	saved.	Data
access	page-level	attributes	override	application-level	attributes.	Data	access
page	attributes	are	contained	in	the	WebOptions	object.

The	following	example	checks	to	see	whether	Microsoft	Office	Web	components
are	downloaded	when	a	saved	data	access	page	is	displayed	and	sets	the
download	flag	accordingly.

Set	objAppWebOptions	=	Application.DefaultWebOptions

With	objAppWebOptions

				If	.DownloadComponents	=	True	Then

								strCompDownload	=	"Loaded"

				Else

								strCompDownload	=	"Not	Loaded"

				End	If

End	With

Show	All

DoCmd	Object
									
Application	 DoCmd

You	can	use	the	methods	of	the	DoCmd	object	to	run	Microsoft	Access	actions
from	Visual	Basic.	An	action	performs	tasks	such	as	closing	windows,	opening
forms,	and	setting	the	value	of	controls.

Using	the	DoCmd	Object

For	example,	you	can	use	the	OpenForm	method	of	the	DoCmd	object	to	open
a	form,	or	use	the	Hourglass	method	to	change	the	mouse	pointer	to	an
hourglass	icon.

Most	of	the	methods	of	the	DoCmd	object	have	arguments	—	some	are
required,	while	others	are	optional.	If	you	omit	optional	arguments,	the
arguments	assume	the	default	values	for	the	particular	method.	For	example,	the
OpenForm	method	uses	seven	arguments,	but	only	the	first	argument,
FormName,	is	required.	The	following	example	shows	how	you	can	open	the
Employees	form	in	the	current	database.	Only	employees	with	the	title	Sales
Representative	are	included.

DoCmd.OpenForm	"Employees",	,	,"[Title]	=	'Sales	Representative'"

The	DoCmd	object	doesn't	support	methods	corresponding	to	the	following
actions:

AddMenu.
MsgBox.	Use	the	MsgBox	function.
RunApp.	Use	the	Shell	function	to	run	another	application.
RunCode.	Run	the	function	directly	in	Visual	Basic.
SendKeys.	Use	the	SendKeys	statement.
SetValue.	Set	the	value	directly	in	Visual	Basic.
StopAllMacros.
StopMacro.

For	more	information	on	the	Microsoft	Access	action	corresponding	to	a
DoCmd	method,	search	the	Help	index	for	the	name	of	the	action.

The	following	example	opens	a	form	in	Form	view	and	moves	to	a	new	record.

Sub	ShowNewRecord()

				DoCmd.OpenForm	"Employees",	acNormal

				DoCmd.GoToRecord	,	,	acNewRec

End	Sub

Show	All

Form	Object
									

Multiple	objects	 Form
Multiple	objects

A	Form	object	refers	to	a	particular	Microsoft	Access	form.

Using	the	Form	Object

A	Form	object	is	a	member	of	the	Forms	collection,	which	is	a	collection	of	all
currently	open	forms.	Within	the	Forms	collection,	individual	forms	are	indexed
beginning	with	zero.	You	can	refer	to	an	individual	Form	object	in	the	Forms
collection	either	by	referring	to	the	form	by	name,	or	by	referring	to	its	index
within	the	collection.	If	you	want	to	refer	to	a	specific	form	in	the	Forms
collection,	it's	better	to	refer	to	the	form	by	name	because	a	form's	collection
index	may	change.	If	the	form	name	includes	a	space,	the	name	must	be
surrounded	by	brackets	([]).

Syntax Example
Forms!formname Forms!OrderForm
Forms![form	name] Forms![Order	Form]
Forms("formname") Forms("OrderForm")
Forms(index) Forms(0)

Each	Form	object	has	a	Controls	collection,	which	contains	all	controls	on	the
form.	You	can	refer	to	a	control	on	a	form	either	by	implicitly	or	explicitly
referring	to	the	Controls	collection.	Your	code	will	be	faster	if	you	refer	to	the
Controls	collection	implicitly.	The	following	examples	show	two	of	the	ways
you	might	refer	to	a	control	named	NewData	on	the	form	called	OrderForm:

'	Implicit	reference.

Forms!OrderForm!NewData

'	Explicit	reference.

Forms!OrderForm.Controls!NewData

The	next	two	examples	show	how	you	might	refer	to	a	control	named	NewData
on	a	subform	ctlSubForm	contained	in	the	form	called	OrderForm:

Forms!OrderForm.ctlSubForm.Form!Controls.NewData

Forms!OrderForm.ctlSubForm!NewData

Each	Form	object	has	a	Controls	collection,	which	contains	all	controls	on	the
form.	You	can	refer	to	a	control	on	a	form	either	by	implicitly	or	explicitly

referring	to	the	Controls	collection.	Your	code	will	be	faster	if	you	refer	to	the
Controls	collection	implicitly.	The	following	examples	show	two	of	the	ways
you	might	refer	to	a	control	named	NewData	on	the	form	called	OrderForm:

'	Implicit	reference.

Forms!OrderForm!NewData

'	Explicit	reference.

Forms!OrderForm.Controls!NewData

The	next	two	examples	show	how	you	might	refer	to	a	control	named	NewData
on	a	subform	ctlSubForm	contained	in	the	form	called	OrderForm:

Forms!OrderForm.ctlSubForm.Form!Controls.NewData

Forms!OrderForm.ctlSubForm!NewData

Show	All

FormatCondition	Object
									
FormatConditions	 FormatCondition

The	FormatCondition	object	represents	a	conditional	format	of	a	combo	box	or
text	box	control	and	is	a	member	of	the	FormatConditions	collection.

Using	the	FormatCondition	Object

You	can	use	the	FormatConditions(index),	where	index	is	the	index	number	of
the	conditional	format,	to	return	a	FormatCondition	object.

Use	the	Add	method	to	create	a	new	conditional	format.	You	can	use	the	Modify
method	to	change	one	of	the	formats,	or	the	Delete	method	to	delete	a	format.

Conditional	formatting	can	also	be	set	on	a	combo	box	or	text	box	from	the
Conditional	Formatting	dialog	box.	The	Conditional	Formatting	dialog	box
is	available	by	clicking	Conditional	Formatting	on	the	Format	menu	when	a
form	is	in	Design	view.

Use	the	BackColor,	Enabled,	FontBold,	FontItalic,	FontUnderline,	and
ForeColor	properties	of	the	FormatCondition	object	to	control	the	appearance
of	formatted	combo	box	and	text	box	controls.

Show	All

FormatConditions	Collection
									
Multiple	objects	 FormatConditions

FormatCondition

The	FormatConditions	collection	represents	the	collection	of	conditional
formats	for	a	combo	box	or	text	box	control.	Each	format	is	represented	by	a
FormatCondition	object.

Using	the	FormatConditions	Collection

Use	the	FormatConditions	property	of	a	combo	box	or	text	box	in	Visual	Basic
or	in	an	expression	to	return	a	FormatConditions	collection.	Use	the	Add
method	to	create	a	new	conditional	format,	and	use	the	Modify	method	to
change	an	existing	conditional	format.

You	can	use	the	Modify	method	to	change	one	of	the	formats,	or	the	Delete
method	to	delete	a	format.

Conditional	formatting	can	also	be	set	on	a	combo	box	or	text	box	from	the
Conditional	Formatting	dialog	box.	The	Conditional	Formatting	dialog	box
is	available	by	clicking	Conditional	Formatting	on	the	Format	menu	when	a
form	is	in	Design	view.

Show	All

Forms	Collection
									
Application	 Forms

Form

The	Forms	collection	contains	all	of	the	currently	open	forms	in	a	Microsoft
Access	database.

Using	the	Forms	Collection

Use	the	Forms	collection	in	Visual	Basic	or	in	an	expression	to	refer	to	forms
that	are	currently	open.	For	example,	you	can	enumerate	the	Forms	collection	to
set	or	return	the	values	of	properties	of	individual	forms	in	the	collection.

Tip			The	For	Each...Next	statement	is	useful	for	enumerating	a	collection.

You	can	refer	to	an	individual	Form	object	in	the	Forms	collection	either	by
referring	to	the	form	by	name,	or	by	referring	to	its	index	within	the	collection.
If	you	want	to	refer	to	a	specific	form	in	the	Forms	collection,	it's	better	to	refer
to	the	form	by	name	because	a	form's	collection	index	may	change.

The	Forms	collection	is	indexed	beginning	with	zero.	If	you	refer	to	a	form	by
its	index,	the	first	form	opened	is	Forms(0),	the	second	form	opened	is	Forms(1),
and	so	on.	If	you	opened	Form1	and	then	opened	Form2,	Form2	would	be
referenced	in	the	Forms	collection	by	its	index	as	Forms(1).	If	you	then	closed
Form1,	Form2	would	be	referenced	in	the	Forms	collection	by	its	index	as
Forms(0).

Note			To	list	all	forms	in	the	database,	whether	open	or	closed,	enumerate	the
AllForms	collection	of	the	CurrentProject	object.	You	can	then	use	the	Name
property	of	each	individual	AccessObject	object	to	return	the	name	of	a	form.

You	can't	add	or	delete	a	Form	object	from	the	Forms	collection.

Show	All

GroupLevel	Object
									

Report	 GroupLevel
Properties

You	can	use	the	GroupLevel	property	in	Visual	Basic	to	refer	to	the	group	level
you	are	grouping	or	sorting	on	in	a	report.

Using	the	GroupLevel	Object

The	GroupLevel	property	setting	is	an	array	in	which	each	entry	identifies	a
group	level.	To	refer	to	a	group	level,	use	this	syntax:

GroupLevel(n)

The	number	n	is	the	group	level,	starting	with	0.	The	first	field	or	expression	you
group	on	is	group	level	0,	the	second	is	group	level	1,	and	so	on.	You	can	have
up	to	10	group	levels	(0	to	9).

The	following	sample	settings	show	how	you	use	the	GroupLevel	property	to
refer	to	a	group	level.

Group	level Refers	to
GroupLevel(0) The	first	field	or	expression	you	sort	or	group	on.

GroupLevel(1) The	second	field	or	expression	you	sort	or	group
on.

GroupLevel(2) The	third	field	or	expression	you	sort	or	group	on.

You	can	use	this	property	only	by	using	Visual	Basic	to	set	the	SortOrder,
GroupOn,	GroupInterval,	KeepTogether,	and	ControlSource	properties.	You
set	these	properties	in	the	Open	event	procedure	of	a	report.

In	reports,	you	can	group	or	sort	on	more	than	one	field	or	expression.	Each	field
or	expression	you	group	or	sort	on	is	a	group	level.

You	specify	the	fields	and	expressions	to	sort	and	group	on	by	using	the
CreateGroupLevel	method.

If	a	group	is	already	defined	for	a	report	(the	GroupLevel	property	is	set	to	0),
then	you	can	use	the	ControlSource	property	to	change	the	group	level	in	the
report's	Open	event	procedure.	For	example,	the	following	code	changes	the
ControlSource	property	to	a	value	contained	in	the	txtPromptYou	text	box	on
the	open	form	named	SortForm:

Private	Sub	Report_Open(Cancel	As	Integer)

				Me.GroupLevel(0).ControlSource	_

								=	Forms!SortForm!txtPromptYou

End	Sub

Show	All

Hyperlink	Object
									
Multiple	objects	 Hyperlink

The	Hyperlink	object	represents	a	hyperlink	associated	with	a	control	on	a
form,	report,	or	data	access	page.

Using	the	Hyperlink	Object

Use	the	Hyperlink	property	to	return	a	reference	to	a	hyperlink	object.

Image	Object
									

Image	 Multiple	objects

This	object	corresponds	to	an	image	control.	The	image	control	can	add	a	picture
to	a	form	or	report.	For	example,	you	could	include	an	image	control	for	a	logo
on	an	Invoice	report.

Control: Tool:

Note			This	control	should	not	be	confused	with	the	Dynamic	HTML	image
control	used	on	a	data	access	page.	For	information	about	a	image	control	on	a
data	access	page,	see	Image	Control	(Data	Access	Page).

You	can	use	the	image	control	or	an	unbound	object	frame	for	unbound	pictures.
The	advantage	of	using	the	image	control	is	that	it's	faster	to	display.	The
advantage	of	using	the	unbound	object	frame	is	that	you	can	edit	the	object
directly	from	the	form	or	report.

Show	All

Label	Object
									
Label	 Multiple	objects

This	object	corresponds	to	a	label	control.	Labels	on	a	form	or	report	display
descriptive	text	such	as	titles,	captions,	or	brief	instructions.

Labels	have	certain	characteristics:

Labels	don't	display	values	from	fields	or	expressions.

Labels	are	always	unbound.

Labels	don't	change	as	you	move	from	record	to	record.

Control: Tool:

Note			This	control	should	not	be	confused	with	the	Dynamic	HTML	label
control	used	on	a	data	access	page.	For	information	about	a	label	control	on	a
data	access	page,	see	Label	Control	(Data	Access	Pages).

A	label	can	be	attached	to	another	control.	When	you	create	a	text	box,	for
example,	it	has	an	attached	label	that	displays	a	caption	for	that	text	box.	This
label	appears	as	a	column	heading	in	the	Datasheet	view	of	a	form.

When	you	create	a	label	by	using	the	Label	tool,	the	label	stands	on	its	own	—	it
isn't	attached	to	any	other	control.	You	use	stand-alone	labels	for	information
such	as	the	title	of	a	form	or	report,	or	for	other	descriptive	text.	Stand-alone
labels	don't	appear	in	Datasheet	view.

Line	Object
									
Line	 Properties

The	line	control	displays	a	horizontal,	vertical,	or	diagonal	line	on	a	form	or
report.

Note			This	control	should	not	be	confused	with	the	Dynamic	HTML	line	control
used	on	a	data	access	page.	For	information	about	a	line	control	on	a	data	access
page,	see	Line	Control	(Data	Access	Pages).

Using	the	Line	object

You	can	use	the	BorderWidth	property	to	change	the	line	width.	You	can	use
the	BorderColor	property	to	change	the	color	of	the	border	or	make	it
transparent.	You	can	change	the	line	style	(dots,	dashes,	and	so	on)	of	the	border
by	using	the	BorderStyle	property.

Show	All

ListBox	Object
									

ListBox	 Multiple	objects

This	object	corresponds	to	a	list	box	control.	The	list	box	control	displays	a	list
of	values	or	alternatives.

In	many	cases,	it's	quicker	and	easier	to	select	a	value	from	a	list	than	to
remember	a	value	to	type.	A	list	of	choices	also	helps	ensure	that	the	value	that's
entered	in	a	field	is	correct.

Control: Tool:

The	list	in	a	list	box	consists	of	rows	of	data.	Rows	can	have	one	or	more
columns,	which	can	appear	with	or	without	headings.

Note			This	control	should	not	be	confused	with	the	Dynamic	HTML	list	box
control	used	on	a	data	access	page.	For	information	about	a	list	box	control	on	a
data	access	page,	see	List	Box	Control	(Data	Access	Pages).

If	a	multiple-column	list	box	is	bound,	Microsoft	Access	stores	the	values	from
one	of	the	columns.

You	can	use	an	unbound	list	box	to	store	a	value	that	you	can	use	with	another
control.	For	example,	you	could	use	an	unbound	list	box	to	limit	the	values	in
another	list	box	or	in	a	custom	dialog	box.	You	could	also	use	an	unbound	list
box	to	find	a	record	based	on	the	value	you	select	in	the	list	box.

If	you	don't	have	room	on	your	form	to	display	a	list	box,	or	if	you	want	to	be
able	to	type	new	values	as	well	as	select	values	from	a	list,	use	a	combo	box
instead	of	a	list	box.

Show	All

Module	Object
									

Multiple	objects	 Module

A	Module	object	refers	to	a	standard	module	or	a	class	module.

Using	the	Module	Object

Microsoft	Access	includes	class	modules	that	are	not	associated	with	any	object,
and	form	modules	and	report	modules,	which	are	associated	with	a	form	or
report.

To	determine	whether	a	Module	object	represents	a	standard	module	or	a	class
module	from	code,	check	the	Module	object's	Type	property.

The	Modules	collection	contains	all	open	Module	objects,	regardless	of	their
type.	Modules	in	the	Modules	collection	can	be	compiled	or	uncompiled.

To	return	a	reference	to	a	particular	standard	or	class	Module	object	in	the
Modules	collection,	use	any	of	the	following	syntax	forms.

Syntax Description

Modules!modulename The	modulename	argument	is	the	name	of	the
Module	object.

Modules("modulename") The	modulename	argument	is	the	name	of	the
Module	object.

Modules(index) The	index	argument	is	the	numeric	position	of
the	object	within	the	collection.

The	following	example	returns	a	reference	to	a	standard	Module	object	and
assigns	it	to	an	object	variable:

Dim	mdl	As	Module

Set	mdl	=	Modules![Utility	Functions]

Note	that	the	brackets	enclosing	the	name	of	the	Module	object	are	necessary
only	if	the	name	of	the	Module	includes	spaces.

The	next	example	returns	a	reference	to	a	form	Module	object	and	assigns	it	to
an	object	variable:

Dim	mdl	As	Module

Set	mdl	=	Modules!Form_Employees

To	refer	to	a	specific	form	or	report	module,	you	can	also	use	the	Form	or
Report	object's	Module	property:

Forms!formname.Module

The	following	example	also	returns	a	reference	to	the	Module	object	associated
with	an	Employees	form	and	assigns	it	to	an	object	variable:

Dim	mdl	As	Module

Set	mdl	=	Forms!Employees.Module

Once	you've	returned	a	reference	to	a	Module	object,	you	can	set	or	read	its
properties	and	apply	its	methods.

Show	All

Modules	Collection
									
Application	 Modules

Module

The	Modules	collection	contains	all	open	standard	modules	and	class	modules
in	a	Microsoft	Access	database.

Using	the	Modules	Collection

You	can	enumerate	through	the	Modules	collection	by	using	the	For
Each...Next	statement.	To	determine	whether	an	individual	Module	object
represents	a	standard	module	or	a	class	module,	check	the	Module	object's	Type
property.

All	open	modules	are	included	in	the	Modules	collection,	whether	they	are
uncompiled,	are	compiled,	are	in	break	mode,	or	contain	the	code	that's	running.

The	Modules	collection	belongs	to	the	Microsoft	Access	Application	object.

Individual	Module	objects	in	the	Modules	collection	are	indexed	beginning	with
zero.

Show	All

ObjectFrame	Object
									
ObjectFrame	 Properties

This	object	corresponds	to	an	unbound	object	frame.	The	unbound	object	frame
control	displays	a	picture,	chart,	or	any	OLE	object	not	stored	in	a	table.

For	example,	you	can	use	an	unbound	object	frame	to	display	a	chart	that	you
created	and	stored	in	Microsoft	Graph.

This	control	allows	you	to	create	or	edit	the	object	from	within	a	Microsoft
Access	form	or	report	by	using	the	application	in	which	the	object	was	originally
created.

To	display	objects	that	are	stored	in	a	Microsoft	Access	database,	use	a	bound
object	frame	control.

The	object	in	an	unbound	object	frame	is	the	same	for	every	record.

The	unbound	object	frame	can	display	linked	or	embedded	objects.

Tip			You	can	use	the	unbound	object	frame	or	an	image	control	to	display
unbound	pictures	in	a	form	or	report.	The	advantage	of	using	the	unbound	object
frame	is	that	you	can	edit	the	object	directly	from	the	form	or	report.	The
advantage	of	using	the	image	control	is	that	it's	faster	to	display.

Show	All

OptionButton	Object
									
OptionButton	 Properties

An	option	button	on	a	form	or	report	is	a	stand-alone	control	used	to	display	a
Yes/No	value	from	an	underlying	record	source

Note			This	control	should	not	be	confused	with	the	Dynamic	HTML	option
button	control	used	on	a	data	access	page.	For	information	about	an	option
button	control	on	a	data	access	page,	see	Option	Button	Control	(Data	Access
Pages).

Using	the	OptionButton	object

When	you	select	or	clear	an	option	button	that's	bound	to	a	Yes/No	field,
Microsoft	Access	displays	the	value	in	the	underlying	table	according	to	the
field's	Format	property	(Yes/No,	True/False,	or	On/Off).

You	can	also	use	option	buttons	in	an	option	group	to	display	values	to	choose
from.

It's	also	possible	to	use	an	unbound	option	button	in	a	custom	dialog	box	to
accept	user	input.

Show	All

OptionGroup	Object
									
OptionGroup	 Properties

An	option	group	on	a	form	or	report	displays	a	limited	set	of	alternatives.	An
option	group	makes	selecting	a	value	easy	since	you	can	just	click	the	value	you
want.	Only	one	option	in	an	option	group	can	be	selected	at	a	time.

An	option	group	consists	of	a	group	frame	and	a	set	of	check	boxes,	toggle
buttons,	or	option	buttons.

Note			This	control	should	not	be	confused	with	the	Dynamic	HTML	option
group	control	used	on	a	data	access	page.	For	information	about	a	option	group
control	on	a	data	access	page,	see	Option	Group	Control	(Data	Access	Pages).

Using	the	OptionGroup	object

If	an	option	group	is	bound	to	a	field,	only	the	group	frame	itself	is	bound	to	the
field,	not	the	check	boxes,	toggle	buttons,	or	option	buttons	inside	the	frame.
Instead	of	setting	the	ControlSource	property	for	each	control	in	the	option
group,	you	set	the	OptionValue	property	of	each	check	box,	toggle	button,	or
option	button	to	a	number	that's	meaningful	for	the	field	to	which	the	group
frame	is	bound.	When	you	select	an	option	in	an	option	group,	Microsoft	Access
sets	the	value	of	the	field	to	which	the	option	group	is	bound	to	the	value	of	the
selected	option's	OptionValue	property.

Note			The	OptionValue	property	is	set	to	a	number	because	the	value	of	an
option	group	can	only	be	a	number,	not	text.	Microsoft	Access	stores	this
number	in	the	underlying	table.	In	the	preceding	example,	if	you	want	to	display
the	name	of	the	shipper	instead	of	a	number	in	the	Orders	table,	you	can	create	a
separate	table	called	Shippers	that	stores	shipper	names,	and	then	make	the
ShipVia	field	in	the	Orders	table	a	Lookup	field	that	looks	up	data	in	the
Shippers	table.

An	option	group	can	also	be	set	to	an	expression,	or	it	can	be	unbound.	You	can
use	an	unbound	option	group	in	a	custom	dialog	box	to	accept	user	input	and
then	carry	out	an	action	based	on	that	input.

mk:@MSITStore:acmain10.chm::/html/acdecCreatingLookupAndListFieldsInTablesS.htm

Show	All

Page	Object
									

Pages	 Page
Properties

A	Page	object	corresponds	to	an	individual	page	on	a	tab	control.

Using	the	Page	Object

A	Page	object	is	a	member	of	a	tab	control's	Pages	collection.

To	return	a	reference	to	a	particular	Page	object	in	the	Pages	collection,	use	any
of	the	following	syntax	forms.

Syntax Description

Pages!pagename The	pagename	argument	is	the	name	of	the	Page
object.

Pages("pagename") The	pagename	argument	is	the	name	of	the	Page
object.

Pages(index) The	index	argument	is	the	numeric	position	of	the
object	within	the	collection.

You	can	create,	move,	or	delete	Page	objects	and	set	their	properties	either	in
Visual	Basic	or	in	form	Design	view.	To	create	a	new	Page	object	in	Visual
Basic,	use	the	Add	method	of	the	Pages	collection.	To	delete	a	Page	object,	use
the	Remove	method	of	the	Pages	collection.

To	create	a	new	Page	object	in	form	Design	view,	right-click	the	tab	control	and
then	click	Insert	Page	on	the	shortcut	menu.	You	can	also	copy	an	existing	page
and	paste	it.	You	can	set	the	properties	of	the	new	Page	object	in	form	Design
view	by	using	the	property	sheet.

Each	Page	object	has	a	PageIndex	property	that	indicates	its	position	within	the
Pages	collection.	The	Value	property	of	the	tab	control	is	equal	to	the
PageIndex	property	of	the	current	page.	You	can	use	these	properties	to
determine	which	page	is	currently	selected	after	the	user	has	switched	from	one
page	to	another,	or	to	change	the	order	in	which	the	pages	appear	in	the	control.

A	Page	object	is	also	a	type	of	Control	object.	The	ControlType	property
constant	for	a	Page	object	is	acPage.	Although	it	is	a	control,	a	Page	object
belongs	to	a	Pages	collection,	rather	than	a	Controls	collection.	A	tab	control's
Pages	collection	is	a	special	type	of	Controls	collection.

Each	Page	object	can	also	contain	one	or	more	controls.	Controls	on	a	Page
object	belong	to	that	Page	object's	Controls	collection.	In	order	to	work	with	a
control	on	a	Page	object,	you	must	refer	to	that	control	within	the	Page	object's
Controls	collection.

Show	All

PageBreak	Object
									

PageBreak	 Properties

This	object	corresponds	to	a	page	break	control.	The	page	break	control	marks
the	start	of	a	new	screen	or	printed	page	on	a	form	or	report.

Control: Tool:

In	a	form,	a	page	break	is	active	only	when	you	set	the	form's	DefaultView
property	to	Single	Form.	Page	breaks	don't	affect	a	form's	datasheet.

In	Form	view,	press	the	PAGE	UP	or	PAGE	DOWN	key	to	move	to	the	previous
or	next	page	break.

Position	page	breaks	above	or	below	other	controls.	Placing	a	page	break	on	the
same	line	as	another	control	splits	that	control's	data.

Show	All

Pages	Collection
									
Multiple	objects	 Pages

Page

The	Pages	collection	contains	all	Page	objects	in	a	tab	control.

Using	the	Pages	Collection

The	Pages	collection	is	a	special	kind	of	Controls	collection	belonging	to	the
tab	control.	It	contains	Page	objects,	which	are	controls.	The	Pages	collection
differs	from	a	typical	Controls	collection	in	that	you	can	add	and	remove	Page
objects	by	using	methods	of	the	Pages	collection.

To	add	a	new	Page	object	to	the	Pages	collection	from	Visual	Basic,	use	the
Add	method	of	the	Pages	collection.	To	remove	an	existing	Page	object,	use	the
Remove	method	of	the	Pages	collection.	To	count	the	number	of	Page	objects	in
the	Pages	collection,	use	the	Count	property	of	the	Pages	collection.

You	can	also	use	the	CreateControl	method	to	add	a	Page	object	to	the	Pages
collection	of	a	tab	control.	To	do	this,	you	must	specify	the	name	of	the	tab
control	for	the	Parent	argument	of	the	CreateControl	function.	The
ControlType	property	constant	for	a	Page	object	is	acPage.

You	can	enumerate	through	the	Pages	collection	by	using	the	For	Each...Next
statement.

Individual	Page	objects	in	the	Pages	collection	are	indexed	beginning	with	zero.

Printer	Object
									

Multiple	objects	 Printer

A	Printer	object	corresponds	to	a	printer	available	on	your	system.

Using	the	Printer	object

A	Printer	object	is	a	member	of	the	Printers	collection.

To	return	a	reference	to	a	particular	Printer	object	in	the	Printer	s	collection,
use	any	of	the	following	syntax	forms.

Syntax Description

Printer	s!devicename
The	devicename	argument	is	the	name	of	the
Printer	object	as	returned	by	the	DeviceName
property.

Printer	s("devicename")
The	devicename	argument	is	the	name	of	the
Printer	object	as	returned	by	the	DeviceName
property.

Printer	s(index)
The	index	argument	is	the	numeric	position	of	the
object	within	the	collection.	The	valid	range	is	from
0	to	Printers.Count-1.

You	can	use	the	properties	of	the	Printer	object	to	set	the	printing	characteristics
for	any	of	the	printers	available	on	your	system.

Use	the	ColorMode,	Copies,	Duplex,	Orientation,	PaperBin,	PaperSize,	and
PrintQuality	properties	to	specify	print	settings	for	a	particular	printer.

Use	the	LeftMargin,	RightMargin,	TopMargin,	BottomMargin,
ColumnSpacing,	RowSpacing,	DataOnly,	DefaultSize,	ItemLayout,
ItemsAcross,	ItemSizeHeight,	and	ItemSizeWidth	properties	to	specify	how
Microsoft	Access	should	format	the	appearance	of	data	on	printed	pages.

Use	the	DeviceName,	DriverName,	and	Port	properties	to	return	system
information	about	a	particular	printer.

The	following	example	displays	system	information	about	the	first	printer	in	the
Printers	collection.

Dim	prtFirst	As	Printer

Set	prtFirst	=	Application.Printers(0)

With	prtFirst

				MsgBox	"Device	name:	"	&	.DeviceName	&	vbCr	_

								&	"Driver	name:	"	&	.DriverName	&	vbCr	_

								&	"Port:	"	&	.Port

End	With

Printers	Collection
									
Application	 Printers

Printer

The	Printers	collection	contains	Printer	objects	representing	all	the	printers
available	on	the	current	system.

Using	the	Printers	collection

Use	the	Printers	property	of	the	Application	object	to	return	the	Printers
collection.	You	can	enumerate	through	the	Printers	collection	by	using	the	For
Each...Next	statement.	The	following	example	displays	information	about	all
the	printers	available	to	the	system.

Dim	prtLoop	As	Printer

For	Each	prtLoop	In	Application.Printers

				With	prtLoop

								MsgBox	"Device	name:	"	&	.DeviceName	&	vbCr	_

												&	"Driver	name:	"	&	.DriverName	&	vbCr	_

												&	"Port:	"	&	.Port

				End	With

Next	prtLoop

You	can	refer	to	an	individual	Printer	object	in	the	Printers	collection	either	by
referring	to	the	printer	by	name,	or	by	referring	to	its	index	within	the	collection.

The	Printers	collection	is	indexed	beginning	with	zero.	If	you	refer	to	a	printer
by	its	index,	the	first	printer	is	Printers(0),	the	second	printer	is	Printers(1),	and
so	on.

You	can't	add	or	delete	a	Printer	object	from	the	Printers	collection.

Show	All

Properties	Collection
									
Multiple	objects	 Properties

The	Properties	collection	contains	all	of	the	built-in	properties	in	an	instance	of
an	open	form,	report,	or	control.	These	properties	uniquely	characterize	that
instance	of	the	object.

Using	the	Properties	Collection

Use	the	Properties	collection	in	Visual	Basic	or	in	an	expression	to	refer	to
form,	report,	or	control	properties	on	forms	or	reports	that	are	currently	open.

Tip			The	For	Each...Next	statement	is	useful	for	enumerating	a	collection.

You	can	use	the	Properties	collection	of	an	object	to	enumerate	the	object's
built-in	properties.	You	don't	need	to	know	beforehand	exactly	which	properties
exist	or	what	their	characteristics	(Name	and	Value	properties)	are	to	manipulate
them.

Note			In	addition	to	the	built-in	properties,	you	can	also	create	and	add	your
own	user-defined	properties.	To	add	a	user-defined	property	to	an	existing
instance	of	an	object,	see	the	AccessObjectProperties	collection	and	Add
method	topics.

The	following	example	enumerates	the	Forms	collection	and	prints	the	name	of
each	open	form	in	the	Forms	collection.	It	then	enumerates	the	Properties
collection	of	each	form	and	prints	the	name	of	each	property	and	value.

Sub	AllOpenForms()

				Dim	frm	As	Form,	prp	As	Property

				'	Enumerate	Forms	collection.

				For	Each	frm	In	Forms

								'	Print	name	of	form.

								Debug.Print	frm.Name

								'	Enumerate	Properties	collection	of	each	form.

								For	Each	prp	In	frm.Properties

												'	Print	name	of	each	property.

												Debug.Print	prp.Name;	"	=	";	prp.Value

								Next	prp

				Next	frm

End	Sub

Rectangle	Object
									

Rectangle	 Properties

This	object	corresponds	to	a	rectangle	control.	The	rectangle	control	displays	a
rectangle	on	a	form	or	report.

Control: Tool:

Note			This	control	should	not	be	confused	with	the	Dynamic	HTML	rectangle
control	used	on	a	data	access	page.	For	information	about	a	rectangle	control	on
a	data	access	page,	see	Rectangle	Control	(Data	Access	Page).

You	can	move	a	rectangle	and	the	controls	in	it	as	a	single	unit	by	dragging	the
mouse	pointer	diagonally	across	the	entire	rectangle	to	select	all	of	the	controls.
The	entire	selection	can	then	be	moved	to	a	new	position.

Show	All

Reference	Object
									

References	 Reference
References

The	Reference	object	refers	to	a	reference	set	to	another	application's	or
project's	type	library.

Using	the	Reference	Object

When	you	create	a	Reference	object,	you	set	a	reference	dynamically	from
Visual	Basic.

The	Reference	object	is	a	member	of	the	References	collection.	To	refer	to	a
particular	Reference	object	in	the	References	collection,	use	any	of	the
following	syntax	forms.

Syntax Description

References!referencename The	referencename	argument	is	the	name	of	the
Reference	object.

References("referencename") The	referencename	argument	is	the	name	of	the
Reference	object.

References(index) The	index	argument	is	the	object's	numerical
position	within	the	collection.

The	following	example	refers	to	the	Reference	object	that	represents	the
reference	to	the	Microsoft	Access	type	library:

Dim	ref	As	Reference

Set	ref	=	References!Access

References	Collection
									
Multiple	objects	 References

Reference

The	References	collection	contains	Reference	objects	representing	each
reference	that's	currently	set.

Using	the	References	Collection

The	Reference	objects	in	the	References	collection	correspond	to	the	list	of
references	in	the	References	dialog	box,	available	by	clicking	References	on	the
Tools	menu.	Each	Reference	object	represents	one	selected	reference	in	the	list.
References	that	appear	in	the	References	dialog	box	but	haven't	been	selected
aren't	in	the	References	collection.

You	can	enumerate	through	the	References	collection	by	using	the	For
Each...Next	statement.

The	References	collection	belongs	to	the	Microsoft	Access	Application	object.

Individual	Reference	objects	in	the	References	collection	are	indexed	beginning
with	1.

Show	All

Report	Object
									

Multiple	objects	 Report
Multiple	objects

A	Report	object	refers	to	a	particular	Microsoft	Access	report.

Using	the	Report	Object

A	Report	object	is	a	member	of	the	Reports	collection,	which	is	a	collection	of
all	currently	open	reports.	Within	the	Reports	collection,	individual	reports	are
indexed	beginning	with	zero.	You	can	refer	to	an	individual	Report	object	in	the
Reports	collection	either	by	referring	to	the	report	by	name,	or	by	referring	to	its
index	within	the	collection.	If	the	report	name	includes	a	space,	the	name	must
be	surrounded	by	brackets	([]).

Syntax Example
Reports!reportname Reports!OrderReport
Reports![report	name] Reports![Order	Report]
Reports("reportname") Reports("OrderReport")
Reports(index) Reports(0)

Each	Report	object	has	a	Controls	collection,	which	contains	all	controls	on	the
report.	You	can	refer	to	a	control	on	a	report	either	by	implicitly	or	explicitly
referring	to	the	Controls	collection.	Your	code	will	be	faster	if	you	refer	to	the
Controls	collection	implicitly.	The	following	examples	show	two	of	the	ways
you	might	refer	to	a	control	named	NewData	on	a	report	called	OrderReport.

'	Implicit	reference.

Reports!OrderReport!NewData

'	Explicit	reference.

Reports!OrderReport.Controls!NewData

Show	All

Reports	Collection
									
Application	 Reports

Report

The	Reports	collection	contains	all	of	the	currently	open	reports	in	a	Microsoft
Access	database.

Using	the	Reports	Collection

You	can	use	the	Reports	collection	in	Visual	Basic	or	in	an	expression	to	refer	to
reports	that	are	currently	open.	For	example,	you	can	enumerate	the	Reports
collection	to	set	or	return	the	values	of	properties	of	individual	reports	in	the
collection.

Tip			The	For	Each...Next	statement	is	useful	for	enumerating	a	collection.

You	can	refer	to	an	individual	Report	object	in	the	Reports	collection	either	by
referring	to	the	report	by	name,	or	by	referring	to	its	index	within	the	collection.

The	Reports	collection	is	indexed	beginning	with	zero.	If	you	refer	to	a	report
by	its	index,	the	first	report	is	Reports(0),	the	second	report	is	Reports(1),	and	so
on.	If	you	opened	Report1	and	then	opened	Report2,	Report2	would	be
referenced	in	the	Reports	collection	by	its	index	as	Reports(1).	If	you	then
closed	Report1,	Report2	would	be	referenced	in	the	Reports	collection	by	its
index	as	Reports(0).

Note			To	list	all	reports	in	the	database,	whether	open	or	closed,	enumerate	the
AllReports	collection	of	the	CurrentProject	object.	You	can	then	use	the	Name
property	of	each	individual	AccessObject	object	to	return	the	name	of	a	report.

You	can't	add	or	delete	a	Report	object	from	the	Reports	collection.

Show	All

Screen	Object
									
Application	 Screen

Multiple	objects

The	Screen	object	refers	to	the	particular	form,	report,	or	control	that	currently
has	the	focus.

Using	the	Screen	Object

You	can	use	the	Screen	object	together	with	its	properties	to	refer	to	a	particular
form,	report,	or	control	that	has	the	focus.

For	example,	you	can	use	the	Screen	object	with	the	ActiveForm	property	to
refer	to	the	form	in	the	active	window	without	knowing	the	form's	name.	The
following	example	displays	the	name	of	the	form	in	the	active	window:

MsgBox	Screen.ActiveForm.Name

Referring	to	the	Screen	object	doesn't	make	a	form,	report,	or	control	active.	To
make	a	form,	report,	or	control	active,	you	must	use	the	SelectObject	method	of
the	DoCmd	object.

If	you	refer	to	the	Screen	object	when	there's	no	active	form,	report,	or	control,
Microsoft	Access	returns	a	run-time	error.	For	example,	if	a	standard	module	is
in	the	active	window,	the	code	in	the	preceding	example	would	return	an	error.

The	following	example	uses	the	Screen	object	to	print	the	name	of	the	form	in
the	active	window	and	of	the	active	control	on	that	form:

Sub	ActiveObjects()

				Dim	frm	As	Form,	ctl	As	Control

				'	Return	Form	object	pointing	to	active	form.

				Set	frm	=	Screen.ActiveForm

				MsgBox	frm.Name	&	"	is	the	active	form."

				'	Return	Control	object	pointing	to	active	control.

				Set	ctl	=	Screen.ActiveControl

				MsgBox	ctl.Name	&	"	is	the	active	control	"	_

								&	"on	this	form."

End	Sub

Show	All

Section	Object
									
Multiple	objects	 Section

Properties

A	form	section	is	part	of	a	form	such	as	a	header,	footer,	or	detail	section.

Using	the	Section	Object

You	can	set	section	properties	which	are	attributes	of	a	form	that	affect	the
appearance	or	behavior	of	that	section.	For	example,	you	can	set	the	CanGrow
property	to	specify	whether	the	section	will	increase	vertically	to	print	all	the
data	the	section	contains.	Section	properties	are	set	in	form	Design	view.

Show	All

SubForm	Object
									

SubForm	 Multiple	objects

This	object	corresponds	to	a	subform	control.	The	subform	control	embeds	a
form	in	a	form.

Control: Tool:

For	example,	you	can	use	a	form	with	a	subform	to	present	one-to-many
relationships,	such	as	one	product	category	with	the	items	that	fall	into	that
category.	In	this	case,	the	main	form	can	display	the	category	ID,	name,	and
description;	the	subform	can	display	the	available	products	in	that	category.

Tip			Instead	of	creating	the	main	form,	and	then	adding	the	subform	control	to
it,	you	can	simultaneously	create	the	main	form	and	subform	with	a	wizard.	You
can	also	create	a	subform	by	dragging	an	existing	form	or	report	from	the
Database	window	to	the	main	form.

mk:@MSITStore:acmain10.chm::/html/achowCreateFormSubformWizardS.htm
mk:@MSITStore:acmain10.chm::/html/acdecCreateSubformS.htm

Show	All

SubReport	Object
									
SubReport	 Multiple	objects

This	object	corresponds	to	a	subreport	control.	A	subreport	control	embeds	a
report	in	a	report.

Tip		You	can	create	a	subreport	by	dragging	an	existing	report	from	the	Database
window	to	the	main	report.

Show	All

TabControl	Collection
									
TabControl	 Multiple	objects

A	tab	control	contains	multiple	pages	on	which	you	can	place	other	controls,
such	as	text	boxes	or	option	buttons.	When	a	user	clicks	the	corresponding	tab,
that	page	becomes	active.

Using	the	TabControl	collection

With	the	tab	control,	you	can	construct	a	single	form	or	dialog	box	that	contains
several	different	tabs,	and	you	can	group	similar	options	or	data	on	each	tab's
page.	For	example,	you	might	use	a	tab	control	on	an	Employees	form	to
separate	general	and	personal	information.

Show	All

TextBox	Object
									

TextBox	 Multiple	objects

This	object	corresponds	to	a	text	box.	Text	boxes	on	a	form	or	report	display
data	from	a	record	source.

This	type	of	text	box	is	called	a	bound	text	box	because	it's	bound	to	data	in	a
field.	Text	boxes	can	also	be	unbound.	For	example,	you	can	create	an	unbound
text	box	to	display	the	results	of	a	calculation,	or	to	accept	input	from	a	user.
Data	in	an	unbound	text	box	isn't	saved	with	the	database.

Control: Tool:

Note			This	control	should	not	be	confused	with	the	Dynamic	HTML	text	box
control	used	on	a	data	access	page.	For	information	about	a	text	box	control	on	a
data	access	page,	see	Text	Box	Control	(Data	Access	Pages).

Show	All

ToggleButton	Object
									

ToggleButton	 Properties

This	object	corresponds	to	a	toggle	button.	A	toggle	button	on	a	form	is	a	stand-
alone	control	used	to	display	a	Yes/No	value	from	an	underlying	record	source.

Control: Tool:

When	you	click	a	toggle	button	that's	bound	to	a	Yes/No	field,	Microsoft	Access
displays	the	value	in	the	underlying	table	according	to	the	field's	Format
property	(Yes/No,	True/False,	or	On/Off).

Toggle	buttons	are	most	useful	when	used	in	an	option	group	with	other	buttons.

You	can	also	use	a	toggle	button	in	a	custom	dialog	box	to	accept	user	input.

Show	All

WebOptions	Object
									
DataAccessPage	 WebOptions

A	WebOptions	object	refers	to	a	specific	Microsoft	Access	data	access	page's
web	option	properties.

Using	the	WebOptions	Object

Use	the	WebOptions	property	to	return	the	WebOptions	object.

Contains	data	access	page	attributes	used	by	Microsoft	Access	when	you	save	a
data	access	page	as	a	Web	page	or	open	a	Web	page.	You	can	return	or	set
attributes	either	at	the	application	(global)	level	or	at	the	data	access	page	level.
(Note	that	attribute	values	can	be	different	from	one	data	access	page	to	another,
depending	on	the	attribute	value	at	the	time	the	data	access	page	was	saved.)
Data	access	page-level	attributes	override	application-level	attributes.
Application-level	attributes	are	contained	in	the	DefaultWebOptions	object.

Remember	that	if	you	change	the	value	of	a	data	access	page-level	attribute,	the
corresponding	application-level	attribute	is	automatically	set	to	the	same	value.
Therefore,	you	should	restore	and	save	the	application-level	values	for	a	given
data	access	page	during	each	session	in	that	data	access	page.

The	following	example	checks	to	see	whether	Microsoft	Office	Web	components
are	downloaded	when	a	saved	data	access	page	("Inventory")	is	displayed	and
sets	the	download	flag	accordingly.

Set	objAppWebOptions	=	DataAccessPages("Inventory").WebOptions

With	objAppWebOptions

				If	.DownloadComponents	=	True	Then

								strCompDownload	=	"Loaded"

				Else

								strCompDownload	=	"Not	Loaded"

				End	If

End	With

AccessError	Method
							

You	can	use	the	AccessError	method	to	return	the	descriptive	string	associated
with	a	Microsoft	Access	or	DAO	error.	Variant.

expression.AccessError(ErrorNumber)

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

ErrorNumber		Required	Variant.	The	number	of	the	error	for	which	you	wish
to	return	a	descriptive	string.

Remarks

You	can	use	the	AccessError	method	to	return	the	descriptive	string	associated
with	a	Microsoft	Access	or	DAO	error	when	the	error	hasn't	actually	occurred,
but	you	cannot	use	it	for	ADO	errors.

You	can	use	the	Visual	Basic	Raise	method	to	raise	a	Visual	Basic	error.	Once
you've	raised	the	error,	you	can	determine	its	associated	descriptive	string	by
reading	the	Description	property	of	the	Err	object.

You	can't	use	the	Raise	method	to	raise	a	Microsoft	Access	or	DAO	error.
However,	you	can	use	the	AccessError	method	to	return	the	descriptive	string
associated	with	these	errors,	without	having	to	generate	the	error.

You	can	use	the	AccessError	method	to	return	a	descriptive	string	from	within	a
form's	Error	event.

If	the	Microsoft	Access	error	has	occurred,	you	can	return	the	descriptive	string
by	using	either	the	AccessError	method	or	the	Description	property	of	the
Visual	Basic	Err	object.

Example

The	following	function	returns	an	error	string	for	any	valid	error	number:

Note	You	must	have	your	error	trapping	options	set	to	Break	on	Unhandled
Errors	for	the	code	to	run	in	the	VBA	IDE.	You	can	set	this	option	on	the
General	tab	of	the	Options	dialog	found	on	the	VBA	Tools	menu.

Function	ErrorString(ByVal	lngError	As	Long)	As	String

				

				Const	conAppError	=	"Application-defined	or	"	&	_

	 	 	 "object-defined	error"

				On	Error	Resume	Next

				Err.Raise	lngError

				If	Err.Description	=	conAppError	Then

								ErrorString	=	AccessError(lngError)

				ElseIf	Err.Description	=	vbNullString	Then

								MsgBox	"No	error	string	associated	with	this	number."

				Else

								ErrorString	=	Err.Description

				End	If

End	Function

Show	All

Add	Method
							

Add	method	as	it	applies	to	the	AccessObjectProperties	collection	object.

You	can	use	the	Add	method	to	add	a	new	property	as	an
AccessObjectProperty	object	to	the	AccessObjectProperties	collection	of	an
AccessObject	object.

expression.Add(PropertyName,	Value)

expression			Required.	An	expression	that	returns	an	AccessObjectProperties
collection	object.

PropertyName		Required	String.	A	string	expression	that's	the	name	of	the	new
property.

Value		Required	Variant.	A	Variant	value	corresponding	to	the	option	setting.
The	setting	of	the	value	argument	depends	on	the	possible	settings	for	a
particular	option.	Can	be	a	constant	or	a	string	value.

Remarks

You	can	use	the	Remove	method	of	the	AccessObjectProperties	collection	to
delete	an	existing	property.

Add	method	as	it	applies	to	the	FormatConditions	collection	object.

You	can	use	the	Add	method	to	add	a	conditional	format	as	a	FormatCondition
object	to	the	FormatConditions	collection	of	a	combo	box	or	text	box	control.

expression.Add(Type,	Operator,	Expression1,	Expression2)

expression			Required.	An	expression	that	returns	a	FormatConditions
collection	object.

Type		Required	AcFormatConditionType.	The	type	of	format	condition	to	be
added.

AcFormatConditionType	can	be	one	of	these	AcFormatConditionType
constants.
acExpression
acFieldHasFocus
acFieldValue

Operator		Optional	AcFormatConditionOperator.	If	the	Type	argument	is
acExpression,	the	Operator	argument	is	ignored.	If	you	leave	this	argument
blank,	the	default	constant	(acBetween)	is	assumed.

AcFormatConditionOperator	can	be	one	of	these	AcFormatConditionOperator
constants.
acBetween	default
acEqual
acGreaterThan
acGreaterThanOrEqual
acLessThan
acLessThanOrEqual

acNotBetween
acNotEqual

Expression1		Optional	Variant.	A	Variant	value	or	expression	associated	with
the	first	part	of	the	conditional	format.	Can	be	a	constant	or	a	string	value.

Expression2		Optional	Variant.	A	Variant	value	or	expression	associated	with
the	second	part	of	the	conditional	format	when	the	Operator	argument	is
acBetween	or	acNotBetween	(otherwise,	this	argument	is	ignored).	Can	be	a
constant	or	a	string	value.

Remarks

You	can	use	the	Delete	method	of	the	FormatConditions	collection	to	delete	an
existing	FormatConditions	collection	from	a	combo	box	or	text	box	control.

Add	method	as	it	applies	to	the	Pages	collection	object.

The	Add	method	adds	a	new	Page	object	to	the	Pages	collection	of	a	tab
control.

expression.Add(Before)

expression			Required.	An	expression	that	returns	a	Pages	collection	object.

Before		Optional	Variant.	An	Integer	that	specifies	the	index	of	the	Page	object
before	which	the	new	Page	object	should	be	added.	The	index	of	the	Page	object
corresponds	to	the	value	of	the	PageIndex	property	for	that	Page	object.	If	you
omit	this	argument,	the	new	Page	object	is	added	to	the	end	of	the	collection.

Remarks

The	first	Page	object	in	the	Pages	collection	corresponds	to	the	leftmost	page	in
the	tab	control	and	has	an	index	of	0.	The	second	Page	object	is	immediately	to
the	right	of	the	first	page	and	has	an	index	of	1,	and	so	on	for	all	the	Page
objects	in	the	tab	control.

If	you	specify	0	for	the	Before	argument,	the	new	Page	object	is	added	before
the	first	Page	object	in	the	Pages	collection.	The	new	Page	object	then	becomes
the	first	Page	object	in	the	collection,	with	an	index	of	0.

You	can	add	a	Page	object	to	the	Pages	collection	of	a	tab	control	only	when	the
form	is	in	Design	view.

Example

As	it	applies	to	the	Pages	collection	object.

The	following	example	adds	a	page	to	a	tab	control	on	a	form	that's	in	Design
view.	To	try	this	example,	create	a	new	form	named	Form1	with	a	tab	control
named	TabCtl0.	Paste	the	following	code	into	a	standard	module	and	run	it:

Function	AddPage()	As	Boolean

				Dim	frm	As	Form

				Dim	tbc	As	TabControl,	pge	As	Page

				On	Error	GoTo	Error_AddPage

				Set	frm	=	Forms!Form1

				Set	tbc	=	frm!TabCtl0

				tbc.Pages.Add

				AddPage	=	True

Exit_AddPage:

				Exit	Function

Error_AddPage:

				MsgBox	Err	&	":	"	&	Err.Description

				AddPage	=	False

				Resume	Exit_AddPage

End	Function

Show	All

AddFromFile	Method
							

AddFromFile	method	as	it	applies	to	the	References	object.

The	AddFromFile	method	creates	a	reference	to	a	type	library	in	a	specified
file.	Reference	object.

expression.AddFromFile(FileName)

expression			Required.	An	expression	that	returns	one	of	the	above	objects.

FileName		Required	String.	A	string	expression	that	evaluates	to	the	full	path
and	file	name	of	the	file	containing	the	type	library	to	which	you	wish	to	set	a
reference.

AddFromFile	method	as	it	applies	to	the	Module	object.

The	AddFromFile	method	adds	the	contents	of	a	text	file	to	a	Module	object.
The	Module	object	may	represent	a	standard	module	or	a	class	module.

expression.AddFromFile(FileName)

expression			Required.	An	expression	that	returns	one	of	the	above	objects.

FileName		Required	String.	The	name	and	full	path	of	a	text	(.txt)	file	or
another	file	that	stores	text	in	an	ANSI	format.

Remarks

As	it	applies	to	the	References	object.

The	following	table	lists	types	of	files	that	commonly	contain	type	libraries.

File	extension Type	of	file
.olb,	.tlb Type	library	file
.mdb,	.mda,	.mde Database
.exe,	.dll Executable	file
.ocx ActiveX	control

As	it	applies	to	the	Module	object.

The	AddFromFile	method	places	the	contents	of	the	specified	text	file
immediately	after	the	Declarations	section	and	before	the	first	procedure	in	the
module	if	it	contains	other	procedures.

The	AddFromFile	method	enables	you	to	import	code	or	comments	stored	in	a
text	file.

In	order	to	add	the	contents	of	a	file	to	a	form	or	report	module,	the	form	or
report	must	be	open	in	form	Design	view	or	report	Design	view.	In	order	to	add
the	contents	of	a	file	to	a	standard	module	or	class	module,	the	module	must	be
open.

Example

As	it	applies	to	the	References	object.

The	following	example	adds	a	reference	to	the	Microsoft	Scripting	Runtime
library.

References.AddFromFile	"C:\WINNT\system32\scrrun.dll"	

As	it	applies	to	the	Module	object.

The	following	example	places	the	contents	of	the	file	"ShippingRoutines.bas"
into	the	module	"CalculateShipping"	immediately	after	the	Declarations	section,
but	before	the	first	procedure	in	the	module.

Modules("CalculateShipping").AddFromFile	"C:\Shipping\ShippingRoutines.bas"

Show	All

AddFromGuid	Method
							

The	AddFromGUID	method	creates	a	Reference	object	based	on	the	GUID
that	identifies	a	type	library.	Reference	object.

expression.AddFromGuid(Guid,	Major,	Minor)

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

Guid		Required	String.	A	GUID	that	identifies	a	type	library.

Major		Required	Long.

Minor		Required	Long.

Remarks

The	GUID	property	returns	the	GUID	for	a	specified	Reference	object.	If	you've
stored	the	value	of	the	GUID	property,	you	can	use	it	to	re-create	a	reference
that's	been	broken.

Example

The	following	example	re-creates	a	reference	to	the	Microsoft	Scripting
Runtime	version	1.0,	based	on	its	GUID	on	the	user's	system.

References.AddFromGuid	"{420B2830-E718-11CF-893D-00A0C9054228}",	1,	0

Show	All

AddFromString	Method
							

The	AddFromString	method	adds	a	string	to	a	Module	object.	The	Module
object	may	represent	a	standard	module	or	a	class	module.

expression.AddFromString(String)

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

String		Required	String.

Remarks

The	AddFromString	method	places	the	contents	of	a	string	after	the
Declarations	section	and	before	the	first	existing	procedure	in	the	module	if	the
module	contains	other	procedures.

In	order	to	add	a	string	to	a	form	or	report	module,	the	form	or	report	must	be
open	in	form	Design	view	or	report	Design	view.	In	order	to	add	a	string	to	a
standard	module	or	class	module,	the	module	must	be	open.

Example

This	example	creates	a	new	form	and	adds	a	string	and	the	contents	of	the
Functions.txt	file	to	its	module.	Run	the	following	procedure	from	a	standard
module:

Sub	AddTextToFormModule()

				Dim	frm	As	Form,	mdl	As	Module

				Set	frm	=	CreateForm

				Set	mdl	=	frm.Module

				mdl.AddFromString	"Public	intY	As	Integer"

				mdl.AddFromFile	"C:\My	Documents\Functions.txt"

End	Sub

AddItem	Method
							

Adds	a	new	item	to	the	list	of	values	displayed	by	the	specified	list	box	control
or	combo	box	control.

expression.AddItem(Item,	Index)

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

Item		Required	String.	The	display	text	for	the	new	item.

Index		Optional	Variant.	The	position	of	the	item	in	the	list.	If	this	argument	is
omitted,	the	item	is	added	to	the	end	of	the	list.

Remarks

The	RowSourceType	property	of	the	specified	control	must	be	set	to	"Value
List".

This	method	is	only	valid	for	list	box	or	combo	box	controls	on	forms.

List	item	numbers	start	from	zero.	If	the	value	of	the	Index	argument	doesn't
correspond	to	an	existing	item	number,	an	error	occurs.

For	multiple-column	lists,	use	semicolons	to	delimit	the	strings	for	each	column
(for	example,	"1010;red;large"	for	a	three-column	list).	If	the	Item	argument
contains	fewer	strings	than	columns	in	the	control,	items	will	be	added	starting
with	the	left-most	column.	If	the	Item	argument	contains	more	strings	than
columns	in	the	control,	the	extra	strings	are	ignored.

Use	the	RemoveItem	method	to	remove	items	from	the	list	of	values.

Example

This	example	adds	an	item	to	the	end	of	the	list	in	a	list	box	control.	For	the
function	to	work,	you	must	pass	it	a	ListBox	object	representing	a	list	box
control	on	a	form	and	a	String	value	representing	the	text	of	the	item	to	be
added.

Function	AddItemToEnd(ctrlListBox	As	ListBox,	_

								ByVal	strItem	As	String)

				ctrlListBox.AddItem	Item:=strItem

End	Function

This	example	adds	an	item	to	the	beginning	of	the	list	in	a	combo	box	control.
For	the	function	to	work,	you	must	pass	it	a	ComboBox	object	representing	a
combo	box	control	on	a	form	and	a	String	value	representing	the	text	of	the	item
to	be	added.

Function	AddItemToBeginning(ctrlComboBox	As	ComboBox,	_

								ByVal	strItem	As	String)

				ctrlComboBox.AddItem	Item:=strItem,	Index:=0

End	Function

Show	All

AddMenu	Method
							

The	AddMenu	method	carries	out	the	AddMenu	action	in	Visual	Basic.

expression.AddMenu(MenuName,	MenuMacroName,	StatusBarText)

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

MenuName		Required	Variant.	A	string	expression	that's	the	valid	name	of	a
drop-down	menu	to	add	to	the	custom	menu	bar	or	global	menu	bar.	To	create	an
access	key	so	that	you	can	use	the	keyboard	to	choose	the	menu,	type	an
ampersand	(&)	before	the	letter	you	want	to	be	the	access	key.	This	letter	will	be
underlined	in	the	menu	name	on	the	menu	bar.

MenuMacroName		Required	Variant.	A	string	expression	that's	the	valid	name
of	the	macro	group	that	contains	the	macros	for	the	menu's	commands.	This	is	a
required	argument.

StatusBarText		Required	Variant.	A	string	expression	that's	the	text	to	display	in
the	status	bar	when	the	menu	is	selected.

mk:@MSITStore:acmain10.chm::/html/acactAddMenu.htm

Remarks

You	must	include	the	menuname	and	menumacroname	arguments	in	the
AddMenu	method	for	custom	menu	bars	and	global	menu	bars.	The	menuname
argument	is	not	required	and	will	be	ignored	for	custom	shortcut	menus	and
global	shortcut	menus.

The	statusbartext	argument	is	optional,	this	argument	is	ignored	for	custom
shortcut	menus	and	global	shortcut	menus.

Show	All

AddToFavorites	Method
							

The	AddToFavorites	method	adds	a	hyperlink	address	to	the	Favorites	folder.

expression.AddToFavorites

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

Remarks

When	applied	to	the	Application	object,	the	AddToFavorites	method	adds	the
name	of	the	current	database	to	the	Favorites	folder.	For	example,	if	you're
working	in	the	Northwind	sample	database,	applying	the	AddToFavorites
method	to	the	Application	object	adds	the	hyperlink	address	of	the	Northwind
database	to	the	Favorites	folder.

When	applied	to	a	Control	object,	the	AddToFavorites	method	adds	the
hyperlink	address	contained	in	a	control	to	the	Favorites	folder.	The	Favorites
folder	is	installed	in	the	Windows	folder	by	default.

The	AddToFavorites	method	has	the	same	effect	as	clicking	AddToFavorites
on	the	Favorites	menu	on	the	Web	toolbar	when	the	document	whose	address
you	wish	to	add	is	open.

Example

The	following	example	sets	the	HyperlinkAddress	property	of	a	command
button.	When	the	user	clicks	the	command	button,	the	address	is	added	to	the
Favorites	folder	by	using	the	AddToFavorites	method.

To	try	this	example,	create	a	new	form	and	add	a	command	button	named
Command0.	Paste	the	following	code	into	the	form's	module.	Switch	to	Form
view	and	click	the	command	button.

Private	Sub	Form_Load()

				Me!Command0.HyperlinkAddress	=	"http://www.microsoft.com/"

End	Sub

Private	Sub	Command0_Click()

				Me!Command0.Hyperlink.AddToFavorites

End	Sub

Show	All

ApplyFilter	Method
							

The	ApplyFilter	method	carries	out	the	ApplyFilter	action	in	Visual	Basic.

expression.ApplyFilter(FilterName,	WhereCondition)

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

FilterName		Optional	Variant.	A	string	expression	that's	the	valid	name	of	a
filter	or	query	in	the	current	database.	When	using	this	method	to	apply	a	server
filter,	the	FilterName	argument	must	be	blank.

WhereCondition		Optional	Variant.	A	string	expression	that's	a	valid	SQL
WHERE	clause	without	the	word	WHERE.

mk:@MSITStore:acmain10.chm::/html/acactApplyFilter.htm

Remarks

For	more	information	on	how	the	action	and	its	arguments	work,	see	the	action
topic.

The	filter	and	WHERE	condition	you	apply	become	the	setting	of	the	form's
Filter	property	or	report's	ServerFilter	property.

You	must	include	at	least	one	of	the	two	ApplyFilter	method	arguments.	If	you
enter	a	value	for	both	arguments,	the	WhereCondition	argument	is	applied	to	the
filter.

The	maximum	length	of	the	WhereCondition	argument	is	32,768	characters
(unlike	the	Where	Condition	action	argument	in	the	Macro	window,	whose
maximum	length	is	256	characters).

If	you	specify	the	WhereCondition	argument	and	leave	the	FilterName
argument	blank,	you	must	include	the	FilterName	argument's	comma.

Example

The	following	example	uses	the	ApplyFilter	method	to	display	only	records	that
contain	the	name	King	in	the	LastName	field:

DoCmd.ApplyFilter	,	"LastName	=	'King'"

Show	All

ApplyTheme	Method
							

You	can	use	the	ApplyTheme	method	to	specify	the	Microsoft	Office	theme	for
a	specified	data	access	page.

expression.ApplyTheme(ThemeName)

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

ThemeName		Required	String.	The	name	of	the	Office	theme.

Remarks

The	ApplyTheme	method	provides	a	means	of	changing	environment	options
from	Visual	Basic	code.

Example

The	following	example	applies	the	Artsy	theme	to	the	data	access	page	named
"Switchboard".

DataAccessPages("Switchboard").ApplyTheme	"Artsy"

Beep	Method
							

The	Beep	method	carries	out	the	Beep	action	in	Visual	Basic.

expression.Beep

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

mk:@MSITStore:acmain10.chm::/html/acactBeep.htm

Remarks

This	method	has	no	arguments	and	can	called	directly	using	the	syntax
DoCmd.Beep.

You	can	also	use	the	VBA	command	Interaction.Beep	to	accomplish	the	same
result.

You	can	also	use	the	Visual	Basic	Beep	statement	to	cause	your	computer	to
sound	a	tone	through	its	speaker.

Show	All

BuildCriteria	Method
							

The	BuildCriteria	method	returns	a	parsed	criteria	string	as	it	would	appear	in
the	query	design	grid,	in	Filter	By	Form	or	Server	Filter	By	Form	mode.	For
example,	you	may	want	to	set	a	form's	Filter	or	ServerFilter	property	based	on
varying	criteria	from	the	user.	You	can	use	the	BuildCriteria	method	to
construct	the	string	expression	argument	for	the	Filter	or	ServerFilter	property.
String.

expression.BuildCriteria(Field,	FieldType,	Expression)

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

Field		Required	String.	A	string	expression	identifying	the	field	for	which	you
wish	to	define	criteria.

FieldType		Required	Integer.	An	intrinsic	constant	denoting	the	data	type	of	the
field.	For	a	list	of	possible	field	data	types,	see	the	ADO	Type	property.

Expression		Required	String.	A	string	expression	identifying	the	criteria	to	be
parsed.

mk:@MSITStore:ado210.chm::/htm/mdproType.htm

Remarks

The	BuildCriteria	method	returns	a	string.

The	BuildCriteria	method	enables	you	to	easily	construct	criteria	for	a	filter
based	on	user	input.	It	parses	the	expression	argument	in	the	same	way	that	the
expression	would	be	parsed	had	it	been	entered	in	the	query	design	grid,	in	Filter
By	Form	or	Server	Filter	By	Form	mode.

For	example,	a	user	creating	a	query	on	an	Orders	table	might	restrict	the	result
set	to	orders	placed	after	January	1,	1995,	by	setting	criteria	on	an	OrderDate
field.	The	user	might	enter	an	expression	such	as	the	following	one	in	the
Criteria	row	beneath	the	OrderDate	field:

>1-1-95

Microsoft	Access	automatically	parses	this	expression	and	returns	the	following
expression:

>#1/1/95#

The	BuildCriteria	method	provides	the	same	parsing	from	Visual	Basic	code.
For	example,	to	return	the	preceding	correctly	parsed	string,	you	can	supply	the
following	arguments	to	the	BuildCriteria	method:

Dim	strCriteria	As	String

strCriteria	=	BuildCriteria("OrderDate",	dbDate,	">1-1-95")

Since	you	need	to	supply	criteria	for	the	Filter	property	in	correctly	parsed	form,
you	can	use	the	BuildCriteria	method	to	construct	a	correctly	parsed	string.

You	can	use	the	BuildCriteria	method	to	construct	a	string	with	multiple	criteria
if	those	criteria	refer	to	the	same	field.	For	example,	you	can	use	the
BuildCriteria	method	with	the	following	arguments	to	construct	a	string	with
multiple	criteria	relating	to	the	OrderDate	field:

strCriteria	=	BuildCriteria("OrderDate",	dbDate,	">1-1-95	and	<5-1-95")

This	example	returns	the	following	criteria	string:

OrderDate>#1/1/95#	And	OrderDate<#5/1/95#

However,	if	you	wish	to	construct	a	criteria	string	that	refers	to	multiple	fields,
you	must	create	the	strings	and	concatenate	them	yourself.	For	example,	if	you
wish	to	construct	criteria	for	a	filter	to	show	records	for	orders	placed	after	1-1-
95	and	for	which	freight	is	less	than	$50,	you	would	need	to	use	the
BuildCriteria	method	twice	and	concatenate	the	resulting	strings.

Example

The	following	example	prompts	the	user	to	enter	the	first	few	letters	of	a
product's	name	and	then	uses	the	BuildCriteria	method	to	construct	a	criteria
string	based	on	the	user's	input.	Next,	the	procedure	provides	this	string	as	an
argument	to	the	Filter	property	of	a	Products	form.	Finally,	the	FilterOn
property	is	set	to	apply	the	filter.

Sub	SetFilter()

				Dim	frm	As	Form,	strMsg	As	String

				Dim	strInput	As	String,	strFilter	As	String

				'	Open	Products	form	in	Form	view.

				DoCmd.OpenForm	"Products"

				'	Return	Form	object	variable	pointing	to	Products	form.

				Set	frm	=	Forms!Products

				strMsg	=	"Enter	one	or	more	letters	of	product	name	"	_

								&	"followed	by	an	asterisk."

				'	Prompt	user	for	input.

				strInput	=	InputBox(strMsg)

				'	Build	criteria	string.

				strFilter	=	BuildCriteria("ProductName",	dbText,	strInput)

				'	Set	Filter	property	to	apply	filter.

				frm.Filter	=	strFilter

				'	Set	FilterOn	property;	form	now	shows	filtered	records.

				frm.FilterOn	=	True

End	Sub

Show	All

CancelEvent	Method
							

The	CancelEvent	method	carries	out	the	CancelEvent	action	in	Visual	Basic.

expression.CancelEvent

expression			Required.	An	expression	that	returns	a	DoCmd	object.

mk:@MSITStore:acmain10.chm::/html/acactCancelEvent.htm

Remarks

This	method	has	no	arguments	and	can	be	called	directly	using	the	syntax
DoCmd.CancelEvent.

The	CancelEvent	method	has	an	effect	only	when	it's	run	as	the	result	of	an
event.	This	method	cancels	the	event.

All	events	that	can	be	canceled	in	Visual	Basic	have	a	Cancel	argument.	You	can
use	this	argument	instead	of	the	CancelEvent	method	to	cancel	the	event.	The
KeyPress	event	and	MouseDown	event	(for	right-clicking	only)	can	be	canceled
only	in	macros,	not	event	procedures,	so	you	must	use	the	CancelEvent	action	in
a	macro	to	cancel	these	events.

Show	All

Circle	Method
							

The	Circle	method	draws	a	circle,	an	ellipse,	or	an	arc	on	a	Report	object	when
the	Print	event	occurs.

expression.Circle(flags,	X,	Y,	radius,	color,	start,	end,	aspect)

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

flags		Required	Integer.

X		Required.	Single	value	indicating	the	x-coordinate	of	the	center	point	of	the
circle,	ellipse,	or	arc.	The	Scale	properties	(ScaleMode,	ScaleLeft,	ScaleTop,
ScaleHeight,	and	ScaleWidth)	of	the	Report	object	specified	by	the	object
argument	determine	the	unit	of	measure	used.

Y		Required.	Single	value	indicating	the	y-coordinate	of	the	center	point	of	the
circle,	ellipse,	or	arc.	The	Scale	properties	(ScaleMode,	ScaleLeft,	ScaleTop,
ScaleHeight,	and	ScaleWidth)	of	the	Report	object	specified	by	the	object
argument	determine	the	unit	of	measure	used.

radius		Required.	A	Single	value	indicating	the	radius	of	the	circle,	ellipse,	or
arc.	The	Scale	properties	(ScaleMode,	ScaleLeft,	ScaleTop,	ScaleHeight,	and
ScaleWidth)	of	the	Report	object	specified	by	the	object	argument	determine
the	unit	of	measure	used.	By	default,	distances	are	measured	in	twips.

color		Required	Long.	A	Long	value	indicating	the	RGB	(red-green-blue)	color
of	the	circle	outline.	If	this	argument	is	omitted,	the	value	of	the	ForeColor
property	is	used.	You	can	also	use	the	RGB	function	or	QBColor	function	to
specify	the	color.

start		Required	Single.	When	a	partial	circle	or	ellipse	is	drawn,	the	start
argument	specifies	(in	radians)	the	beginning	position	of	the	arc.	The	default
value	for	the	start	argument	is	0	radians.	The	range	is	–2	pi	radians	to	2	pi

radians.

end		Required	Single.	When	a	partial	circle	or	ellipse	is	drawn,	the	end	argument
specifies	(in	radians)	the	end	position	of	the	arc.	The	default	value	for	the	end
argument	is	2	pi	radians.	The	range	is	–2	pi	radians	to	2	pi	radians.

aspect		Required.	A	Single	value	indicating	the	aspect	ratio	of	the	circle.	The
default	value	is	1.0,	which	yields	a	perfect	(nonelliptical)	circle	on	any	screen.

Remarks

You	can	use	this	method	only	in	an	event	procedure	or	a	macro	specified	by	the
event	properties	for	a	report	section,	or	the	OnPage	event	property	for	a	report.

When	drawing	a	partial	circle	or	ellipse,	if	the	start	argument	is	negative,	the
Circle	method	draws	a	radius	to	the	position	specified	by	the	start	argument	and
treats	the	angle	as	positive.	If	the	end	argument	is	negative,	the	Circle	method
draws	a	radius	to	the	position	specified	by	the	end	argument	and	again	treats	the
angle	as	positive.	The	Circle	method	always	draws	in	a	counterclockwise
(positive)	direction.

To	fill	a	circle,	set	the	FillColor	and	FillStyle	properties	of	the	report.	Only	a
closed	figure	can	be	filled.	Closed	figures	include	circles,	ellipses,	and	pie	slices,
which	are	arcs	with	radius	lines	drawn	at	both	ends.

When	drawing	pie	slices,	if	you	need	to	draw	a	radius	to	angle	0	to	form	a
horizontal	line	segment	to	the	right,	specify	a	very	small	negative	value	for	the
start	argument	rather	than	0.	For	example,	you	might	specify	–.00000001	for	the
start	argument.

You	can	omit	an	argument	in	the	middle	of	the	syntax,	but	you	must	include	the
argument's	comma	before	including	the	next	argument.	If	you	omit	a	trailing
argument,	don't	use	any	commas	following	the	last	argument	you	specify.

The	width	of	the	line	used	to	draw	the	circle,	ellipse,	or	arc	depends	on	the
DrawWidth	property	setting.	The	way	the	circle	is	drawn	on	the	background
depends	on	the	settings	of	the	DrawMode	and	DrawStyle	properties.

When	you	apply	the	Circle	method,	the	CurrentX	and	CurrentY	properties	are
set	to	the	center	point	specified	by	the	x	and	y	arguments.

Example

The	following	example	uses	the	Circle	method	to	draw	a	circle,	and	then	create
a	pie	slice	within	the	circle	and	color	it	red.

To	try	this	example	in	Microsoft	Access,	create	a	new	report.	Set	the	OnPrint
property	of	the	Detail	section	to	[Event	Procedure].	Enter	the	following	code	in
the	report's	module,	then	switch	to	Print	Preview.

Private	Sub	Detail_Print(Cancel	As	Integer,	PrintCount	As	Integer)

				Const	conPI	=	3.14159265359

				Dim	sngHCtr	As	Single,	sngVCtr	As	Single

				Dim	sngRadius	As	Single

				Dim	sngStart	As	Single,	sngEnd	As	Single

				sngHCtr	=	Me.ScaleWidth	/	2					'	Horizontal	center.

				sngVCtr	=	Me.ScaleHeight	/	2					'	Vertical	center.

				sngRadius	=	Me.ScaleHeight	/	3					'	Circle	radius.

				'	Draw	circle.

				Me.Circle(sngHCtr,	sngVCtr),	sngRadius

				sngStart	=	-0.00000001													'	Start	of	pie	slice.

				sngEnd	=	-2	*	conPI	/	3													'	End	of	pie	slice.

				Me.FillColor	=	RGB(255,0,0)					'	Color	pie	slice	red.

				Me.FillStyle	=	0																					'	Fill	pie	slice.

				'	Draw	pie	slice	within	circle.

				Me.Circle(sngHCtr,	sngVCtr),	sngRadius,	,	sngStart,	sngEnd

End	Sub

Show	All

Close	Method
							

The	Close	method	carries	out	the	Close	action	in	Visual	Basic.

expression.Close(ObjectType,	ObjectName,	Save)

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

ObjectType		Optional	AcObjectType.

AcObjectType	can	be	one	of	these	AcObjectType	constants.
acDataAccessPage
acDefault	default
acDiagram
acForm
acFunction
acMacro
acModule
acQuery
acReport
acServerView
acStoredProcedure
acTable

Note			If	closing	a	module	in	the	Visual	Basic	Editor	(VBE),	you	must	use
acModule	in	the	objecttype	argument.

ObjectName		Optional	Variant.	A	string	expression	that's	the	valid	name	of	an
object	of	the	type	selected	by	the	objecttype	argument.

Save		Optional	AcCloseSave.

mk:@MSITStore:acmain10.chm::/html/acactClose.htm

AcCloseSave	can	be	one	of	these	AcCloseSave	constants.
acSaveNo
acSavePrompt	default
acSaveYes

If	you	leave	this	argument	blank,	the	default	constant	(acSavePrompt)	is
assumed.

Remarks

For	more	information	on	how	the	action	and	its	arguments	work,	see	the	action
topic.

If	you	leave	the	objecttype	and	objectname	arguments	blank	(the	default
constant,	acDefault,	is	assumed	for	objecttype),	Microsoft	Access	closes	the
active	window.	If	you	specify	the	save	argument	and	leave	the	objecttype	and
objectname	arguments	blank,	you	must	include	the	objecttype	and	objectname
arguments'	commas.

Note			If	a	form	has	a	control	bound	to	a	field	that	has	its	Required	property	set
to	'Yes,'	and	the	form	is	closed	using	the	Close	method	without	entering	any	data
for	that	field,	an	error	message	is	not	displayed.	Any	changes	made	to	the	record
will	be	aborted.	When	the	form	is	closed	using	the	Windows	Close	button,	the
Close	action	in	a	macro,	or	selecting	Close	from	the	File	menu,	Microsoft
Access	displays	an	alert.	The	following	code	will	display	an	error	message	when
attempting	to	close	a	form	with	a	Null	field,	using	the	Close	method.

If	IsNull(Me![Field1])	Then

				If	MsgBox("'Field1'	must	contain	a	value."	_

								&	Chr(13)	&	Chr(10)	_

				&	"Press	'OK'	to	return	and	enter	a	value."	_

				&	Chr(13)	&	Chr(10)	_

				&	"Press	'Cancel'	to	abort	the	record.",	_

								vbOKCancel,	"A	Required	field	is	Null")	=	_

								vbCancel	Then

								DoCmd.Close

				End	If

End	If

Example

The	following	example	uses	the	Close	method	to	close	the	form	Order	Review,
saving	any	changes	to	the	form	without	prompting:

DoCmd.Close	acForm,	"Order	Review",	acSaveYes

Show	All

CloseConnection	Method
							

You	can	use	the	CloseConnection	method	to	close	the	current	connection
between	the	CurrentProject	or	CodeProject	object	in	a	Microsoft	Access
project	(.adp)	or	Access	database	(.mdb)	and	the	database	specified	in	the
project's	base	connection	string.

expression.CloseConnection

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

Remarks

The	CloseConnection	method	closes	the	current	connection	of	the	Access
project,	database,	or	data	source	control,	frees	the	ADO	Connection	object,	and
sets	the	Connection	property	to	Null.	The	BaseConnectionString	property	is
left	unchanged.	Users	are	prevented	from	calling
datasoucecontrol.Connection.Close	and	must	use	this	method	instead.

The	CloseConnection	method	is	useful	when	you	have	opened	a	Microsoft
Access	database	from	another	application	through	Automation.

mk:@MSITStore:ado210.chm::/htm/mdobjConnection.htm

Show	All

CloseCurrentDatabase	Method
							

You	can	use	the	CloseCurrentDatabase	method	to	close	the	current	database
(either	a	Microsoft	Access	database	(.mdb)	or	an	Access	project	(.adp)	from
another	application	that	has	opened	a	database	through	Automation.

expression.CloseCurrentDatabase

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

Remarks

For	example,	you	might	use	this	method	from	Microsoft	Excel	to	close	the
database	currently	open	in	the	Microsoft	Access	window	before	opening	another
database.

The	CloseCurrentDatabase	method	is	useful	when	you	have	opened	a
Microsoft	Access	database	from	another	application	through	Automation.	Once
you	have	created	an	instance	of	Microsoft	Access	from	another	application,	you
must	also	create	a	new	database	or	specify	an	existing	database	to	open.	This
database	opens	in	the	Microsoft	Access	window.

If	you	use	the	CloseCurrentDatabase	method	to	close	the	database	that	is	open
in	the	current	instance	of	Microsoft	Access,	you	can	then	open	a	different
database	without	having	to	create	another	instance	of	Microsoft	Access.

Example

The	following	example	opens	a	Microsoft	Access	database	from	another
application	through	Automation,	creates	a	new	form	and	saves	it,	then	closes	the
database.

You	can	enter	this	code	in	a	Visual	Basic	module	in	any	application	that	can	act
as	a	COM	component.	For	example,	you	might	run	the	following	code	from
Microsoft	Excel	or	Microsoft	Visual	Basic.

When	the	variable	pointing	to	the	Application	object	goes	out	of	scope,	the
instance	of	Microsoft	Access	that	it	represents	closes	as	well.	Therefore,	you
should	declare	this	variable	at	the	module	level.

'	Enter	following	in	Declarations	section	of	module.

Dim	appAccess	As	Access.Application

Sub	CreateForm()

				Const	strConPathToSamples	=	"C:\Program	Files\Microsoft	Office\Office\Samples\"

				Dim	frm	As	Form,	strDB	As	String

				'	Initialize	string	to	database	path.

				strDB	=	strConPathToSamples	&	"Northwind.mdb"

				'	Create	new	instance	of	Microsoft	Access.

				Set	appAccess	=	CreateObject("Access.Application.9")

				'	Open	database	in	Microsoft	Access	window.

				appAccess.OpenCurrentDatabase	strDB

				'	Create	new	form.

				Set	frm	=	appAccess.CreateForm

				'	Save	new	form.

				appAccess.DoCmd.Save	,	"NewForm1"

				'	Close	currently	open	database.

				appAccess.CloseCurrentDatabase

				Set	AppAccess	=	Nothing

End	Sub

Show	All

CodeDb	Method
							

You	can	use	the	CodeDb	method	in	a	code	module	to	determine	the	name	of	the
Database	object	that	refers	to	the	database	in	which	code	is	currently	running.
Use	the	CodeDb	method	to	access	Data	Access	Objects	(DAO)	that	are	part	of	a
library	database.

expression.CodeDb

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

mk:@MSITStore:dao360.chm::/htm/daobjDatabase.htm

Remarks

For	example,	you	can	use	the	CodeDb	method	in	a	module	in	a	library	database
to	create	a	Database	object	referring	to	the	library	database.	You	can	then	open	a
recordset	based	on	a	table	in	the	library	database.

Set	database	=	CodeDb

The	CodeDb	method	returns	a	Database	object	for	which	the	Name	property	is
the	full	path	and	name	of	the	database	from	which	it	is	called.	This	method	can
be	useful	when	you	need	to	manipulate	the	Data	Access	Objects	in	your	library
database.

When	you	call	a	method	in	a	library	database,	the	database	from	which	you	have
called	the	method	remains	the	current	database,	even	while	code	is	running	in	a
module	in	the	library	database.	In	order	to	refer	to	the	Data	Access	Objects	in	the
library	database,	you	need	to	know	the	name	of	the	Database	object	that
represents	the	library	database.

For	example,	suppose	you	have	a	table	in	a	library	database	that	lists	error
messages.	To	manipulate	data	in	the	table	from	code,	you	could	use	the	CodeDb
method	to	determine	the	name	of	the	Database	object	that	refers	to	the	library
database	that	contains	the	table.

If	the	CodeDb	method	is	run	from	the	current	database,	it	returns	the	name	of
the	current	database,	which	is	the	same	value	returned	by	the	CurrentDb
method.

Example

The	following	example	uses	the	CodeDb	method	to	return	a	Database	object
that	refers	to	a	library	database.	The	library	database	contains	both	a	table	named
Errors	and	the	code	that	is	currently	running.	After	the	CodeDb	method
determines	this	information,	the	GetErrorString	function	opens	a	table-type
recordset	based	on	the	Errors	table.	It	then	extracts	an	error	message	from	a	field
named	ErrorData	based	on	the	Integer	value	passed	to	the	function.

Function	GetErrorString(ByVal	intError	As	Integer)	As	String

				Dim	dbs	As	Database,	rst	As	RecordSet

				'	Variable	refers	to	database	where	code	is	running.

				Set	dbs	=	CodeDb

				'	Create	table-type	Recordset	object.

				Set	rst	=	dbs.OpenRecordSet("Errors",	dbOpenTable)

				'	Set	index	to	primary	key	(ErrorID	field).

				rst.Index	=	"PrimaryKey"

				'	Find	error	number	passed	to	GetErrorString	function.

				rst.Seek	"=",	intError

				'	Return	associated	error	message.

				GetErrorString	=	rst.Fields!ErrorData.Value

				rst.Close

End	Function

CompactRepair	Method
							

Compacts	and	repairs	the	specified	database	(.mdb)	or	Microsoft	Access	project
(.adp)	file.	Returns	a	Boolean;	True	if	the	process	was	successful.

expression.CompactRepair(SourceFile,	DestinationFile,	LogFile)

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

SourceFile		Required	String.	The	full	path	and	filename	of	the	database	or
project	file	to	compact	and	repair.

DestinationFile		Required	String.	The	full	path	and	filename	for	where	the
recovered	file	will	be	saved.

LogFile		Optional	Boolean.	True	if	a	log	file	is	created	in	the	destination
directory	to	record	any	corruption	detected	in	the	source	file.	A	log	file	is	only
created	if	corruption	is	detected	in	the	source	file.	If	LogFile	is	False	or	omitted,
no	log	file	is	created,	even	if	corruption	is	detected	in	the	source	file.

Remarks

The	source	file	must	not	be	the	current	database	or	be	open	by	any	other	user,
since	calling	this	method	will	open	the	file	exclusively.

Example

The	following	example	compacts	and	repairs	a	database,	creates	a	log	if	there's
any	corruption	in	the	source	file,	and	returns	a	Boolean	value	based	on	whether
the	recovery	was	successful.	For	the	example	to	work,	you	must	pass	it	the	paths
and	file	names	of	the	source	and	destination	files.

Function	RepairDatabase(strSource	As	String,	_

								strDestination	As	String)	As	Boolean

								'	Input	values:	the	paths	and	file	names	of

								'	the	source	and	destination	files.

				'	Trap	for	errors.

				On	Error	GoTo	error_handler

				'	Compact	and	repair	the	database.	Use	the	return	value	of

				'	the	CompactRepair	method	to	determine	if	the	file	was

				'	successfully	compacted.

				RepairDatabase	=	_

								Application.CompactRepair(_

								LogFile:=True,	_

								SourceFile:=strSource,	_

								DestinationFile:=strDestination)

				'	Reset	the	error	trap	and	exit	the	function.

				On	Error	GoTo	0

				Exit	Function

'	Return	False	if	an	error	occurs.

error_handler:

				RepairDatabase	=	False

End	Function

Show	All

ConvertAccessProject	Method
							

Converts	the	specified	Microsoft	Access	file	from	one	version	to	another.

expression.ConvertAccessProject(SourceFilename,	DestinationFilename,
DestinationFileFormat)

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

SourceFilename		Required	String.	The	name	of	the	Access	file	to	convert.	If	a
path	isn't	specified,	Access	looks	for	the	file	in	the	current	directory.

DestinationFilename		Required	String.	The	name	of	the	file	where	Access
saves	the	converted	file.	If	a	path	isn't	specified,	Access	saves	the	file	in	the
current	directory.

DestinationFileFormat		Required	AcFileFormat.	The	Access	version	of	the
converted	file.

AcFileFormat	can	be	one	of	these	AcFileFormat	constants.
acFileFormatAccess2
acFileFormatAccess2000
acFileFormatAccess2002
acFileFormatAccess95
acFileFormatAccess97

Remarks

The	file	specified	by	DestinationFilename	cannot	already	exist,	or	an	error
occurs.

Example

The	following	example	converts	the	specified	Access	97	file	to	an	Access	2000
file	in	the	same	directory.

Application.ConvertAccessProject	_

				SourceFilename:="C:\My	Documents\Sales-Access97.mdb",	_

				DestinationFilename:="C:\My	Documents\Sales-Access2000.mdb",	_

				DestinationFileFormat:=acFileFormatAccess2000

CopyDatabaseFile	Method
							

Copies	the	database	connected	to	the	current	project	to	a	Microsoft	SQL	Server
database	file	for	export.

expression.CopyDatabaseFile(DatabaseFileName,	OverwriteExistingFile,
DisconnectAllUsers)

expression			Required.	An	expression	that	returns	a	DoCmd	object.

DatabaseFileName		Required	Variant.	The	name	of	the	file	(and	path)	to	which
the	current	database	is	copied.	If	no	path	is	specified,	the	current	directory	is
used.

OverwriteExistingFile		Optional	Variant.	Determines	whether	Microsoft	Access
overwrites	the	file	specified	by	DatabaseFileName.	True	to	overwrite	the
existing	file.	If	the	file	doesn't	already	exist,	this	argument	is	ignored.

DisconnectAllUsers		Optional	Variant.	Determines	whether	Access	disconnects
any	users	connected	to	the	current	database	in	order	to	make	the	copy.	True	to
disconnect	other	users	before	copying	the	database	file.

Remarks

The	file	name	of	the	copy	must	have	an	.mdf	extension	in	order	to	be	recognized
as	a	SQL	Server	database	file.

The	method	fails	and	an	error	occurs	if	any	of	the	following	occurs:

DisconnectAllUsers	is	True	but	Access	is	unable	to	log	off	other	users.

The	method	cancels	a	save	operation	by	any	open	design	sessions.

The	destination	file	exists	but	OverwriteExistingFile	was	not	set	to	True.

The	destination	file	exists,	but	is	in	use	by	another	application.

Access	could	not	reconnect	the	original	.mdf	file.

The	current	user	for	the	Access	project	doesn’t	have	system	administrator
privileges	for	the	database	server.

Example

This	example	copies	the	database	connected	to	the	current	project	to	a	SQL
Server	database	file.	If	the	file	exists	already,	Access	overwrites	it,	and	any	other
users	connected	to	the	database	are	disconnected	before	the	copy	is	made.

DoCmd.CopySQLDatabaseFile	_

				DatabaseFileName:="C:\Export\Sales.mdf",	_

				OverwriteExistingFile:=True,	_

				DisconnectAllUsers:=True

Show	All

CopyObject	Method
							

The	CopyObject	method	carries	out	the	CopyObject	action	in	Visual	Basic.

expression.CopyObject(DestinationDatabase,	NewName,	SourceObjectType,
SourceObjectName)

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

DestinationDatabase		Optional	Variant.	A	string	expression	that's	the	valid	path
and	file	name	for	the	database	you	want	to	copy	the	object	into.	To	select	the
current	database,	leave	this	argument	blank.	Note:	In	a	Microsoft	Access	project
(.adp)	you	must	leave	the	destinationdatabase	argument	blank.	If	you	execute
Visual	Basic	code	containing	the	CopyObject	method	in	a	library	database	and
leave	this	argument	blank,	Microsoft	Access	copies	the	object	into	the	library
database.

NewName		Optional	Variant.	A	string	expression	that's	the	new	name	for	the
object	you	want	to	copy.	To	use	the	same	name	if	you	are	copying	into	another
database,	leave	this	argument	blank.

SourceObjectType		Optional	AcObjectType.

AcObjectType	can	be	one	of	these	AcObjectType	constants.
acDataAccessPage
acDefault	default
acDiagram
acForm
acFunction
acMacro
acModule
acQuery

mk:@MSITStore:acmain10.chm::/html/acactCopyObject.htm

acReport
acServerView
acStoredProcedure
acTable

Note			When	using	the	CopyObject	method	with	a	data	access	page,	a	copy	of
the	HTML	file	for	the	data	access	page	is	created	in	the	Default	database	folder
and	a	link	to	it	is	created	in	the	destination	database.

SourceObjectName		Optional	Variant.	A	string	expression	that's	the	valid	name
of	an	object	of	the	type	selected	by	the	sourceobjecttype	argument.	If	you	run
Visual	Basic	code	containing	the	CopyObject	method	in	a	library	database,
Microsoft	Access	looks	for	the	object	with	this	name	first	in	the	library	database,
then	in	the	current	database.

Remarks

For	more	information	on	how	the	action	and	its	arguments	work,	see	the	action
topic.

You	must	include	either	the	destinationdatabase	or	newname	argument	or	both
for	this	method.

If	you	leave	the	sourceobjecttype	and	sourceobjectname	arguments	blank	(the
default	constant,	acDefault,	is	assumed	for	sourceobjecttype),	Microsoft	Access
copies	the	object	selected	in	the	Database	window.	To	select	an	object	in	the
Database	window,	you	can	use	the	SelectObject	action	or	SelectObject	method
with	the	In	Database	Window	argument	set	to	Yes	(True).

If	you	specify	the	sourceobjecttype	and	sourceobjectname	arguments	but	leave
either	the	newname	argument	or	the	destinationdatabase	argument	blank,	you
must	include	the	newname	or	destinationdatabase	argument's	comma.	If	you
leave	a	trailing	argument	blank,	don't	use	a	comma	following	the	last	argument
you	specify.

Example

The	following	example	uses	the	CopyObject	method	to	copy	the	Employees
table	and	give	it	a	new	name	in	the	current	database:

DoCmd.CopyObject,	"Employees	Copy",	acTable,	"Employees"

Show	All

CreateAccessProject	Method
							

You	can	use	the	CreateAccessProject	method	to	create	a	new	Microsoft	Access
project	(.adp)	on	disk.

expression.CreateAccessProject(filepath,	Connect)

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

filepath		Required	String.	A	string	expression	that	is	the	name	of	the	new
Access	project,	including	the	path	name	and	the	file	name	extension.	If	your
network	supports	it,	you	can	also	specify	a	network	path	in	the	following	form:
\\Server\Share\Folder\Filename.adp

Connect		Optional	Variant.	A	string	expression	that's	the	valid	connection	string
for	the	Access	project.	See	the	ADO	ConnectionString	property	for	details
about	this	string.

mk:@MSITStore:ado210.chm::/htm/mdproConnectionString.htm

Remarks

The	CreateAccessProject	method	enables	you	to	create	a	new	Access	project
from	within	Microsoft	Access	or	another	application	through	Automation,
formally	called	OLE	Automation.	For	example,	you	can	use	the
CreateAccessProject	method	from	Microsoft	Excel	to	create	a	new	Access
project	on	disk.	Once	you	have	created	an	instance	of	Microsoft	Access	from
another	application,	you	must	also	create	a	new	Access	project.

If	the	Access	project	identified	by	projname	already	exists,	an	error	occurs.

To	create	and	open	a	new	Access	project	as	the	current	Access	project	in	the
Access	window,	use	the	NewAccessProject	method	of	the	Application	object.

To	open	an	existing	Access	project	as	the	current	Access	project	in	the	Access
window,	use	the	OpenAccessProject	method	of	the	Application	object.

Example

The	following	example	creates	a	Microsoft	Access	project	named	"Order
Entry.adp"	on	drive	C.

Application.CreateAccessProject	"C:\Order	Entry.adp"	

Show	All

CreateControl	Method
							
The	CreateControl	method	creates	a	control	on	a	specified	open	form.	For
example,	suppose	you	are	building	a	custom	wizard	that	allows	users	to	easily
construct	a	particular	form.	You	can	use	the	CreateControl	method	in	your
wizard	to	add	the	appropriate	controls	to	the	form.

CreateControl(formname,	controltype[,	section[,	parent[,	columnname[,	left[,
top[,	width[,	height]]]]]]])

The	CreateControl	method	has	the	following	arguments.

Argument Description

formname A	string	expression	identifying	the	name	of	the	open	form	or
report	on	which	you	want	to	create	the	control.

controltype

One	of	the	following	intrinsic	constants	identifying	the	type	of
control	you	want	to	create.	To	view	these	constants	and	paste
them	into	your	code	from	the	Object	Browser,	click	Object
Browser	on	the	Visual	Basic	toolbar,	then	click	Access	in	the
Project/Library	box,	and	click	AcControlType	in	the	Classes
box.

	 Constant Control
	 acBoundObjectFrame Bound	object	frame
	 acCheckBox Check	box
	 acComboBox Combo	box
	 acCommandButton Command	button
	 acCustomControl ActiveX	control
	 acImage Image
	 acLabel Label
	 acLine Line
	 acListBox List	box
	 acObjectFrame Unbound	object	frame
	 acOptionButton Option	button

	 acOptionGroup Option	group
	 acPage Page
	 acPageBreak Page	break
	 acRectangle Rectangle
	 acSubform Subform
	 acTabCtl Tab	control
	 acTextBox Text	box
	 acToggleButton Toggle	button

section

One	of	the	following	intrinsic	constants	identifying	the	section
that	will	contain	the	new	control.	To	view	these	constants	and
paste	them	into	your	code	from	the	Object	Browser,	click
Object	Browser	on	the	Visual	Basic	toolbar,	then	click	Access
in	the	Project/Library	box,	and	click	AcSection	in	the	Classes
box.

	 Constant Section
	 acDetail (Default)	Detail	section
	 acHeader Form	or	report	header
	 acFooter Form	or	report	footer
	 acPageHeader Page	header
	 acPageFooter Page	footer
	 acGroupLevel1Header Group-level	1	header	(reports	only)
	 acGroupLevel1Footer Group-level	1	footer	(reports	only)
	 acGroupLevel2Header Group-level	2	header	(reports	only)
	 acGroupLevel2Footer Group-level	2	footer	(reports	only)

	 If	a	report	has	additional	group	levels,	the	header/footer	pairs	are
numbered	consecutively,	beginning	with	9.

parent
A	string	expression	identifying	the	name	of	the	parent	control	of
an	attached	control.	For	controls	that	have	no	parent	control,	use
a	zero-length	string	for	this	argument,	or	omit	it.

columnname The	name	of	the	field	to	which	the	control	will	be	bound,	if	it	is
to	be	a	data-bound	control.

	 If	you	are	creating	a	control	that	won't	be	bound	to	a	field,	use	a
zero-length	string	for	this	argument.

left,	top Numeric	expressions	indicating	the	coordinates	for	the	upper-
left	corner	of	the	control	in	twips.

width,	height
Numeric	expressions	indicating	the	width	and	height	of	the
control	in	twips.

Remarks

You	can	use	the	CreateControl	and	CreateReportControl	methods	in	a	custom
wizard	to	create	controls	on	a	form	or	report.	Both	methods	return	a	Control
object.

You	can	use	the	CreateControl	and	CreateReportControl	methods	only	in
form	Design	view	or	report	Design	view,	respectively.

You	use	the	parent	argument	to	identify	the	relationship	between	a	main	control
and	a	subordinate	control.	For	example,	if	a	text	box	has	an	attached	label,	the
text	box	is	the	main	(or	parent)	control	and	the	label	is	the	subordinate	(or	child)
control.	When	you	create	the	label	control,	set	its	parent	argument	to	a	string
identifying	the	name	of	the	parent	control.	When	you	create	the	text	box,	set	its
parent	argument	to	a	zero-length	string.

You	also	set	the	parent	argument	when	you	create	check	boxes,	option	buttons,
or	toggle	buttons.	An	option	group	is	the	parent	control	of	any	check	boxes,
option	buttons,	or	toggle	buttons	that	it	contains.	The	only	controls	that	can	have
a	parent	control	are	a	label,	check	box,	option	button,	or	toggle	button.	All	of
these	controls	can	also	be	created	independently,	without	a	parent	control.

Set	the	columnname	argument	according	to	the	type	of	control	you	are	creating
and	whether	or	not	it	will	be	bound	to	a	field	in	a	table.	The	controls	that	may	be
bound	to	a	field	include	the	text	box,	list	box,	combo	box,	option	group,	and
bound	object	frame.	Additionally,	the	toggle	button,	option	button,	and	check
box	controls	may	be	bound	to	a	field	if	they	are	not	contained	in	an	option
group.

If	you	specify	the	name	of	a	field	for	the	columnname	argument,	you	create	a
control	that	is	bound	to	that	field.	All	of	the	control's	properties	are	then
automatically	set	to	the	settings	of	any	corresponding	field	properties.	For
example,	the	value	of	the	control's	ValidationRule	property	will	be	the	same	as
the	value	of	that	property	for	the	field.

Note			If	your	wizard	creates	controls	on	a	new	or	existing	form	or	report,	it	must
first	open	the	form	or	report	in	Design	view.

To	remove	a	control	from	a	form	or	report,	use	the	DeleteControl	and
DeleteReportControl	statements.

Example

The	following	example	first	creates	a	new	form	based	on	an	Orders	table.	It	then
uses	the	CreateControl	method	to	create	a	text	box	control	and	an	attached	label
control	on	the	form.

Sub	NewControls()

				Dim	frm	As	Form

				Dim	ctlLabel	As	Control,	ctlText	As	Control

				Dim	intDataX	As	Integer,	intDataY	As	Integer

				Dim	intLabelX	As	Integer,	intLabelY	As	Integer

				'	Create	new	form	with	Orders	table	as	its	record	source.

				Set	frm	=	CreateForm

				frm.RecordSource	=	"Orders"

				'	Set	positioning	values	for	new	controls.

				intLabelX	=	100

				intLabelY	=	100

				intDataX	=	1000

				intDataY	=	100

				'	Create	unbound	default-size	text	box	in	detail	section.

				Set	ctlText	=	CreateControl(frm.Name,	acTextBox,	,	"",	"",	_

								intDataX,	intDataY)

				'	Create	child	label	control	for	text	box.

				Set	ctlLabel	=	CreateControl(frm.Name,	acLabel,	,	_

									ctlText.Name,	"NewLabel",	intLabelX,	intLabelY)

				'	Restore	form.

				DoCmd.Restore

End	Sub

							

This	keyword	is	not	implemented.	It	is	reserved	for	future	use.

Show	All

CreateEventProc	Method
							

The	CreateEventProc	method	creates	an	event	procedure	in	a	class	module.	It
returns	a	Long	value	that	indicates	the	line	number	of	the	first	line	of	the	event
procedure.	Long.

expression.CreateEventProc(EventName,	ObjectName)

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

EventName		Required	String.	A	string	expression	that	evaluates	to	the	name	of
an	event.

ObjectName		Required	String.	An	object	that	has	the	event	specified	by	the
eventname	argument.	It	may	be	a	Form,	Report,	or	Control	object,	a	form	or
report	section,	or	a	class	module.

Remarks

The	CreateEventProc	method	creates	a	code	stub	for	an	event	procedure	for	the
specified	object.	For	example,	you	can	use	this	method	to	create	a	Click	event
procedure	for	a	command	button	on	a	form.	Microsoft	Access	creates	the	Click
event	procedure	in	the	module	associated	with	the	form	that	contains	the
command	button.

Once	you've	created	the	event	procedure	code	stub	by	using	the
CreateEventProc	method,	you	can	add	lines	of	code	to	the	procedure	by	using
other	methods	of	the	Module	object.	For	example,	you	can	use	the	InsertLines
method	to	insert	a	line	of	code.

Example

The	following	example	creates	a	new	form,	adds	a	command	button,	and	creates
a	Click	event	procedure	for	the	command	button:

Function	ClickEventProc()	As	Boolean

				Dim	frm	As	Form,	ctl	As	Control,	mdl	As	Module

				Dim	lngReturn	As	Long

				On	Error	GoTo	Error_ClickEventProc

				'	Create	new	form.

				Set	frm	=	CreateForm

				'	Create	command	button	on	form.

				Set	ctl	=	CreateControl(frm.Name,	acCommandButton,	,	,	,	_

									1000,	1000)

				ctl.Caption	=	"Click	here"

				'	Return	reference	to	form	module.

				Set	mdl	=	frm.Module

				'	Add	event	procedure.

				lngReturn	=	mdl.CreateEventProc("Click",	ctl.Name)

				'	Insert	text	into	body	of	procedure.

				mdl.InsertLines	lngReturn	+	1,	vbTab	&	"MsgBox	""Way	cool!"""

				ClickEventProc	=	True

Exit_ClickEventProc:

				Exit	Function

Error_ClickEventProc:

				MsgBox	Err	&	"	:"	&	Err.Description

				ClickEventProc	=	False

				Resume	Exit_ClickEventProc

End	Function

Show	All

CreateForm	Method
							
The	CreateForm	method	creates	a	form	and	returns	a	Form	object.	

CreateForm([database[,	formtemplate]])

The	CreateForm	method	has	the	following	arguments.

Argument Description

database

A	string	expression	identifying	the	name	of	the	database
that	contains	the	form	template	you	want	to	use	to	create	a
form.	If	you	want	the	current	database,	omit	this	argument.
If	you	want	to	use	an	open	library	database,	specify	the
library	database	with	this	argument.

formtemplate

A	string	expression	identifying	the	name	of	the	form	you
want	to	use	as	a	template	to	create	a	new	form.	If	you	omit
this	argument,	Microsoft	Access	bases	the	new	form	on	the
template	specified	by	the	Forms/Reports	tab	of	the
Options	dialog	box,	available	by	clicking	Options	on	the
Tools	menu.

Remarks

You	can	use	the	CreateForm	method	when	designing	a	wizard	that	creates	a
new	form.

The	CreateForm	method	opens	a	new,	minimized	form	in	form	Design	view.

If	the	name	you	use	for	the	formtemplate	argument	isn't	valid,	Visual	Basic	uses
the	form	template	specified	by	the	Form	Template	setting	on	the
Forms/Reports	tab	of	the	Options	dialog	box.

The	CreateForm	method	creates	minimized	forms	and	reports.

Example

This	example	creates	a	new	form	in	the	Northwind	sample	database	based	on	the
Customers	form,	and	sets	its	RecordSource	property	to	the	Customers	table.
Run	this	code	from	the	Northwind	sample	database.

Sub	NewForm()

				Dim	frm	As	Form

				

				'	Create	form	based	on	Customers	form.

				Set	frm	=	CreateForm(,	"Customers")

				DoCmd.Restore

				'	Set	RecordSource	property	to	Customers	table.

				frm.RecordSource	=	"Customers"

End	Sub

Show	All

CreateGroupLevel	Method
							

You	can	use	the	CreateGroupLevel	method	to	specify	a	field	or	expression	on
which	to	group	or	sort	data	in	a	report.	Long.

expression.CreateGroupLevel(ReportName,	Expression,	Header,	Footer)

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

ReportName		Required	String.	A	string	expression	identifying	the	name	of	the
report	that	will	contain	the	new	group	level.

Expression		Required	String.	A	string	expression	identifying	the	field	or
expression	to	sort	or	group	on.

Header		Required	Integer.	An	Integer	value	that	indicates	a	field	or	expression
will	have	an	associated	group	header.	If	the	header	argument	is	True	(–1),	the
field	or	expression	will	have	a	group	header.	If	the	header	argument	is	False	(0),
the	field	or	expression	won't.	You	can	create	a	header	by	setting	the	argument	to
True.

Footer		Required	Integer.	An	Integer	value	that	indicates	a	field	or	expression
will	have	an	associated	group	footer.	If	the	footer	argument	is	True	(–1),	the
field	or	expression	will	have	a	group	footer.	If	the	footer	argument	is	False	(0),
the	field	or	expression	won't.	You	can	create	a	footer	by	setting	the	argument	to
True.

Remarks

For	example,	suppose	you	are	building	a	custom	wizard	that	provides	the	user
with	a	choice	of	fields	on	which	to	group	data	when	designing	a	report.	Call	the
CreateGroupLevel	method	from	your	wizard	to	create	the	appropriate	groups
according	to	the	user's	choice.

You	can	use	the	CreateGroupLevel	method	when	designing	a	wizard	that
creates	a	report	with	groups	or	totals.	The	CreateGroupLevel	method	groups	or
sorts	data	on	the	specified	field	or	expression	and	creates	a	header	and/or	footer
for	the	group	level.

The	CreateGroupLevel	method	is	available	only	in	report	Design	view.

Microsoft	Access	uses	an	array,	the	GroupLevel	property	array,	to	keep	track	of
the	group	levels	created	for	a	report.	The	CreateGroupLevel	method	adds	a
new	group	level	to	the	array,	based	on	the	expression	argument.	The
CreateGroupLevel	method	then	returns	an	index	value	that	represents	the	new
group	level's	position	in	the	array.	The	first	field	or	expression	you	sort	or	group
on	is	level	0,	the	second	is	level	1,	and	so	on.	You	can	have	up	to	ten	group
levels	in	a	report	(0	to	9).

When	you	specify	that	either	the	header	or	footer	argument,	or	both,	is	True,	the
GroupHeader	and	GroupFooter	properties	in	a	report	are	set	to	Yes,	and	a
header	and/or	footer	is	created	for	the	group	level.

Once	a	header	or	footer	is	created,	you	can	set	other	GroupLevel	properties:
GroupOn,	GroupInterval,	and	KeepTogether.	You	can	set	these	properties	in
Visual	Basic	or	in	the	report's	Sorting	And	Grouping	box,	available	by	clicking
Sorting	And	Grouping	 	on	the	Report	Design	toolbar.

Note			If	your	wizard	creates	group	levels	in	a	new	or	existing	report,	it	must
open	the	report	in	Design	view.

Example

The	following	example	creates	a	group	level	on	an	OrderDate	field	on	a	report
called	OrderReport.	The	report	on	which	the	group	level	is	to	be	created	must	be
open	in	Design	view.	Since	the	header	and	footer	arguments	are	set	to	True	(–1),
the	method	creates	both	the	header	and	footer	for	the	group	level.	The	header
and	footer	are	then	sized.

Sub	CreateGL()

				Dim	varGroupLevel	As	Variant

				'	Create	new	group	level	on	OrderDate	field.

				varGroupLevel	=	CreateGroupLevel("OrderReport",	"OrderDate",	_

								True,	True)

				'	Set	height	of	header/footer	sections.

				Reports!OrderReport.Section(acGroupLevel1Header).Height	=	400

				Reports!OrderReport.Section(acGroupLevel1Footer).Height	=	400

End	Sub

Show	All

CreateNewDocument	Method
							

You	can	use	the	CreateNewDocument	method	to	create	a	new	document
associated	with	a	specified	hyperlink.

expression.CreateNewDocument(FileName,	EditNow,	Overwrite)

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

FileName		Required	String.	A	string	expression	identifying	the	name	and	path
of	the	document.	The	type	of	document	format	you	want	used	can	be	determine
by	the	extension	used	with	the	filename.	to	output	the	data.	You	can	create
HTML	(*.htm),	Microsoft	Active	Server	Pages	(*.asp),	Microsoft	Excel	(*.xls),
Microsoft	IIS	(*.htx,	*.idc),	MS-DOS	Text	(*.txt),	Rich	Text	Format	(*.rtf),	or
Microsoft	Data	Access	Pages	(*.html).	Modules	can	be	output	only	to	MS-DOS
text	format.	Data	access	pages	can	only	be	output	in	HTML	format.	Microsoft
Internet	Information	Server	and	Microsoft	Active	Server	formats	are	available
only	for	tables,	queries,	and	forms.	Note:	If	an	extension	is	not	provided	then	the
data	access	page	format	(.html)	is	assumed.	If	a	directory	is	not	specfied,	the
default	database	directory	is	used.	This	directory	is	determined	by	the	setting	in
Options	dialog	box.

EditNow		Required	Boolean.	A	Boolean	value	where	True	opens	the	document
in	design	view	and	False	stores	the	new	document	in	the	specified	database
directory.	The	default	is	True.

Overwrite		Required	Boolean.	A	Boolean	value	where	True	overwrites	an
existing	document	if	the	filename	argument	identifies	an	existing	document	and
False	requires	that	the	filename	argument	specifies	a	new	filename.	The	default
is	False.

Remarks

The	CreateNewDocument	method	provides	a	way	to	programmatically	create	a
document	associated	with	a	hyperlink	within	a	control.

Example

The	following	example	utilizes	a	hyperlink	control's	Click	event.	This	event
creates	a	new	file	named	"Report.txt"	when	the	user	clicks	the	hyperlink	control
named	"GenerateReport"	on	a	form.	The	new	file	opened	for	editing.	If	a	file
named	"Report.txt"	already	exists	on	drive	C,	it	is	replaced	with	this	new	file.

Private	Sub	GenerateReport_Click()

				ActiveControl.Hyperlink.CreateNewDocument	_

								"C:\Report.txt",	EditNow:=True,	Overwrite:=True

End	Sub

CreateNewWorkgroupFile	Method
							

Creates	a	new	workgroup	file	so	that	a	user	can	securely	access	a	database.

expression.CreateNewWorkgroupFile(Path,	Name,	Company,	WorkgroupID,
Replace)

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

Path		Optional	String.	The	path	of	the	new	workgroup	file.	If	the	path	is	invalid,
an	error	occurs.	Default	is	an	empty	string	("").

Name		Optional	String.	The	name	of	the	user	creating	the	file.	Default	is	an
empty	string	("").

Company		Optional	String.	The	company	of	the	user	creating	the	file.	Default	is
an	empty	string	("").

WorkgroupID		Optional	String.	The	name	of	the	workgroup.	Default	is	an
empty	string	("").

Replace		Optional	Boolean.	Specifies	whether	to	replace	the	workgroup	file	in
the	directory	specified	by	Path	if	it	exists	already.	Default	is	False.

Remarks

If	a	workgroup	file	already	exists	in	the	directory	specified	by	Path,	and	Replace
is	not	True,	an	error	occurs.

Example

This	example	creates	a	new	workgroup	file	in	the	specified	directory	with	the
specified	user	information.	If	a	workgroup	file	for	this	user	already	exists	in	the
specified	directory,	Microsoft	Access	replaces	it.

Application.CreateNewWorkgroupFile	_

				Path:="C:\Documents	and	Settings\Wendy	Vasse"	_

				&	"\Application	Data\Microsoft\Access",	_

				Name:="Wendy	Vasse",	_

				Company:="Microsoft",	_

				Replace:=True

Show	All

CreateReport	Method
							

The	CreateReport	method	creates	a	report	and	returns	a	Report	object.	For
example,	suppose	you	are	building	a	custom	wizard	to	create	a	sales	report.	You
can	use	the	CreateReport	method	in	your	wizard	to	create	a	new	report	based
on	a	specified	report	template.

expression.CreateReport(Database,	ReportTemplate)

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

Database		Optional	Variant.	A	string	expression	identifying	the	name	of	the
database	that	contains	the	report	template	you	want	to	use	to	create	a	report.	If
you	want	the	current	database,	omit	this	argument.	If	you	want	to	use	an	open
library	database,	specify	the	library	database	with	this	argument.

ReportTemplate		Optional	Variant.	A	string	expression	identifying	the	name	of
the	report	you	want	to	use	as	a	template	to	create	a	new	report.	If	you	omit	this
argument,	Microsoft	Access	bases	the	new	report	on	the	template	specified	by
the	Forms/Reports	tab	of	the	Options	dialog	box,	available	by	clicking
Options	on	the	Tools	menu.

Remarks

You	can	use	the	CreateReport	method	when	designing	a	wizard	that	creates	a
new	report.

The	CreateReport	method	open	a	new,	minimized	report	in	report	Design	view.

If	the	name	you	use	for	the	reporttemplate	argument	isn't	valid,	Visual	Basic
uses	the	report	template	specified	by	the	Report	Template	setting	on	the
Forms/Reports	tab	of	the	Options	dialog	box.

The	CreateReport	method	creates	minimized	forms	and	reports.

Example

The	following	example	creates	a	report	in	the	current	database	by	using	the
template	specified	by	the	Report	Template	setting	on	the	Forms/Reports	tab	of
the	Options	dialog	box.

Sub	NormalReport()

				Dim	rpt	As	Report

				Set	rpt	=	CreateReport																'	Create	minimized	report.

				DoCmd.Restore																												'	Restore	report.

End	Sub

Show	All

CreateReportControl	Method
							

The	CreateReportControl	method	creates	a	control	on	a	specified	open	report.
For	more	information,	see	the	CreateControl	method.

expression.CreateReportControl(ReportName,	ControlType,	Section,	Parent,
ColumnName,	Left,	Top,	Width,	Height)

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

ReportName		Required	String.	A	string	expression	identifying	the	name	of	the
open	report	on	which	you	want	to	create	the	control.

ControlType		Required	AcControlType.	The	type	of	control	you	want	to	create.

AcControlType	can	be	one	of	these	AcControlType	constants.
acBoundObjectFrame
acCheckBox
acComboBox
acCommandButton
acCustomControl
acImage
acLabel
acLine
acListBox
acObjectFrame
acOptionButton
acOptionGroup
acPage
acPageBreak
acRectangle

acSubform
acTabCtl
acTextBox
acToggleButton

Section		Optional	AcSection.	The	section	that	will	contain	the	new	control.

AcSection	can	be	one	of	these	AcSection	constants.
acDetail	default
acFooter
acGroupLevel1Footer
acGroupLevel1Header
acGroupLevel2Footer
acGroupLevel2Header
acHeader
acPageFooter
acPageHeader

Parent		Optional	Variant.	A	string	expression	identifying	the	name	of	the	parent
control	of	an	attached	control.	For	controls	that	have	no	parent	control,	use	a
zero-length	string	for	this	argument,	or	omit	it.

ColumnName		Optional	Variant.	The	name	of	the	field	to	which	the	control	will
be	bound,	if	it	is	to	be	a	data-bound	control.

Left,	Top		Optional	Variant.	Numeric	expressions	indicating	the	coordinates	for
the	upper-left	corner	of	the	control	in	twips.

Width,	Height		Optional	Variant.	Numeric	expressions	indicating	the	width	and
height	of	the	control	in	twips.

Show	All

CurrentDb	Method
							

The	CurrentDb	method	returns	an	object	variable	of	type	Database	that
represents	the	database	currently	open	in	the	Microsoft	Access	window.

expression.CurrentDb

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

mk:@MSITStore:dao360.chm::/htm/daobjDatabase.htm

Remarks

Note			In	Microsoft	Access	the	CurrentDb	method	establishes	a	hidden
reference	to	the	Microsoft	DAO	3.6	Object	Library	in	a	Microsoft	Access
database	(.mdb).	If	you	want	to	use	the	CurrentDb	method	in	an	Access	project
(.adp)	you	must	set	a	permanent	reference	to	the	DAO	3.6	Object	library	in	the
Microsoft	Visual	Basic	Editor.

In	order	to	manipulate	the	structure	of	your	database	and	its	data	from	Visual
Basic,	you	must	use	Data	Access	Objects	(DAO).	The	CurrentDb	method
provides	a	way	to	access	the	current	database	from	Visual	Basic	code	without
having	to	know	the	name	of	the	database.	Once	you	have	a	variable	that	points	to
the	current	database,	you	can	also	access	and	manipulate	other	objects	and
collections	in	the	DAO	hierarchy.

You	can	use	the	CurrentDb	method	to	create	multiple	object	variables	that	refer
to	the	current	database.	In	the	following	example,	the	variables	dbsA	and	dbsB
both	refer	to	the	current	database:

Dim	dbsA	As	Database,	dbsB	As	Database

Set	dbsA	=	CurrentDb

Set	dbsB	=	CurrentDb

Note			In	previous	versions	of	Microsoft	Access,	you	may	have	used	the	syntax
DBEngine.Workspaces(0).Databases(0)	or	DBEngine(0)(0)	to	return	a	pointer
to	the	current	database.	In	Microsoft	Access	2000,	you	should	use	the
CurrentDb	method	instead.	The	CurrentDb	method	creates	another	instance	of
the	current	database,	while	the	DBEngine(0)(0)	syntax	refers	to	the	open	copy
of	the	current	database.	The	CurrentDb	method	enables	you	to	create	more	than
one	variable	of	type	Database	that	refers	to	the	current	database.	Microsoft
Access	still	supports	the	DBEngine(0)(0)	syntax,	but	you	should	consider
making	this	modification	to	your	code	in	order	to	avoid	possible	conflicts	in	a
multiuser	database.

If	you	need	to	work	with	another	database	at	the	same	time	that	the	current
database	is	open	in	the	Microsoft	Access	window,	use	the	OpenDatabase
method	of	a	Workspace	object.	The	OpenDatabase	method	doesn't	actually
open	the	second	database	in	the	Microsoft	Access	window;	it	simply	returns	a

mk:@MSITStore:dao360.chm::/htm/daconMSJetDatabaseEngine25.htm
mk:@MSITStore:dao360.chm::/htm/damthOpenDatabase.htm
mk:@MSITStore:dao360.chm::/htm/daobjWorkspace.htm

Database	variable	representing	the	second	database.	The	following	example
returns	a	pointer	to	the	current	database	and	to	a	database	called	Contacts.mdb:

Dim	dbsCurrent	As	Database,	dbsContacts	As	Database

Set	dbsCurrent	=	CurrentDb

Set	dbsContacts	=	DBEngine.Workspaces(0).OpenDatabase("Contacts.mdb")

Show	All

CurrentUser	Method
							

You	can	use	the	CurrentUser	method	to	return	the	name	of	the	current	user	of
the	database.	String.

expression.CurrentUser

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

Remarks

For	example,	use	the	CurrentUser	method	in	a	procedure	that	keeps	track	of	the
users	who	modify	the	database.

The	CurrentUser	method	returns	a	string	that	contains	the	name	of	the	current
user	account.

If	you	haven't	established	a	secure	workgroup,	the	CurrentUser	method	returns
the	name	of	the	default	user	account,	Admin.	The	Admin	user	account	gives	the
user	full	permissions	to	all	database	objects.

If	you	have	enabled	workgroup	security,	then	the	CurrentUser	method	returns
the	name	of	the	current	user	account.	For	user	accounts	other	than	Admin,	you
can	specify	permissions	that	restrict	the	users'	access	to	database	objects.

Example

The	following	example	obtains	the	name	of	the	current	user	and	displays	it	in	a
dialog	box.

MsgBox("The	current	user	is:	"	&	CurrentUser)

Show	All

DAvg	Method
							

You	can	use	the	DAvg	function	to	calculate	the	average	of	a	set	of	values	in	a
specified	set	of	records	(a	domain).	Use	the	DAvg	function	in	Visual	Basic	code
or	in	a	macro,	in	a	query	expression,	or	in	a	calculated	control.	Variant.

expression.DAvg(Expr,	Domain,	Criteria)

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

Expr		Required	String.	An	expression	that	identifies	the	field	containing	the
numeric	data	you	want	to	average.	It	can	be	a	string	expression	identifying	a
field	in	a	table	or	query,	or	it	can	be	an	expression	that	performs	a	calculation	on
data	in	that	field.	In	expr,	you	can	include	the	name	of	a	field	in	a	table,	a	control
on	a	form,	a	constant,	or	a	function.	If	expr	includes	a	function,	it	can	be	either
built-in	or	user-defined,	but	not	another	domain	aggregate	or	SQL	aggregate
function.

Domain		Required	String.	A	string	expression	identifying	the	set	of	records	that
constitutes	the	domain.	It	can	be	a	table	name	or	a	query	name.

Criteria		Optional	Variant.	An	optional	string	expression	used	to	restrict	the
range	of	data	on	which	the	DAvg	function	is	performed.	For	example,	criteria	is
often	equivalent	to	the	WHERE	clause	in	an	SQL	expression,	without	the	word
WHERE.	If	criteria	is	omitted,	the	DAvg	function	evaluates	expr	against	the
entire	domain.	Any	field	that	is	included	in	criteria	must	also	be	a	field	in
domain;	otherwise	the	DAvg	function	returns	a	Null.

Remarks

Records	containing	Null	values	aren't	included	in	the	calculation	of	the	average.

Whether	you	use	the	DAvg	function	in	a	macro	or	module,	a	query	expression,
or	a	calculated	control,	you	must	construct	the	criteria	argument	carefully	to
ensure	that	it	will	be	evaluated	correctly.

You	can	use	the	DAvg	function	to	specify	criteria	in	the	Criteria	row	of	a	query.
For	example,	suppose	you	want	to	view	a	list	of	all	products	ordered	in
quantities	above	the	average	order	quantity.	You	could	create	a	query	on	the
Orders,	Order	Details,	and	Products	tables,	and	include	the	Product	Name	field
and	the	Quantity	field,	with	the	following	expression	in	the	Criteria	row
beneath	the	Quantity	field:

>DAvg("[Quantity]",	"Orders")

You	can	also	use	the	DAvg	function	within	a	calculated	field	expression	in	a
query,	or	in	the	Update	To	row	of	an	update	query.

Note			You	can	use	either	the	DAvg	or	Avg	function	in	a	calculated	field
expression	in	a	totals	query.	If	you	use	the	DAvg	function,	values	are	averaged
before	the	data	is	grouped.	If	you	use	the	Avg	function,	the	data	is	grouped
before	values	in	the	field	expression	are	averaged.

Use	the	DAvg	function	in	a	calculated	control	when	you	need	to	specify	criteria
to	restrict	the	range	of	data	on	which	the	DAvg	function	is	performed.	For
example,	to	display	the	average	cost	of	freight	for	shipments	sent	to	California,
set	the	ControlSource	property	of	a	text	box	to	the	following	expression:

=DAvg("[Freight]",	"Orders",	"[ShipRegion]	=	'CA'")

If	you	simply	want	to	average	all	records	in	domain,	use	the	Avg	function.

You	can	use	the	DAvg	function	in	a	module	or	macro	or	in	a	calculated	control
on	a	form	if	a	field	that	you	need	to	display	isn't	in	the	record	source	on	which
your	form	is	based.	For	example,	suppose	you	have	a	form	based	on	the	Orders
table,	and	you	want	to	include	the	Quantity	field	from	the	Order	Details	table	in
order	to	display	the	average	number	of	items	ordered	by	a	particular	customer.

You	can	use	the	DAvg	function	to	perform	this	calculation	and	display	the	data
on	your	form.

Tips

If	you	use	the	DAvg	function	in	a	calculated	control,	you	may	want	to	place
the	control	on	the	form	header	or	footer	so	that	the	value	for	this	control	is
not	recalculated	each	time	you	move	to	a	new	record.

If	the	data	type	of	the	field	from	which	expr	is	derived	is	a	number,	the
DAvg	function	returns	a	Double	data	type.	If	you	use	the	DAvg	function	in
a	calculated	control,	include	a	data	type	conversion	function	in	the
expression	to	improve	performance.

Although	you	can	use	the	DAvg	function	to	determine	the	average	of	values
in	a	field	in	a	foreign	table,	it	may	be	more	efficient	to	create	a	query	that
contains	all	of	the	fields	that	you	need,	and	then	base	your	form	or	report	on
that	query.

Note			Unsaved	changes	to	records	in	domain	aren't	included	when	you	use	this
function.	If	you	want	the	DAvg	function	to	be	based	on	the	changed	values,	you
must	first	save	the	changes	by	clicking	Save	Record	on	the	File	menu,	moving
the	focus	to	another	record,	or	by	using	the	Update	method.

Show	All

DCount	Method
							

You	can	use	the	DCount	function	to	determine	the	number	of	records	that	are	in
a	specified	set	of	records	(a	domain).	Use	the	DCount	function	in	Visual	Basic,
a	macro,	a	query	expression,	or	a	calculated	control.	Variant.

expression.DCount(Expr,	Domain,	Criteria)

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

Expr		Required	String.	An	expression	that	identifies	the	field	for	which	you
want	to	count	records.	It	can	be	a	string	expression	identifying	a	field	in	a	table
or	query,	or	it	can	be	an	expression	that	performs	a	calculation	on	data	in	that
field.	In	expr,	you	can	include	the	name	of	a	field	in	a	table,	a	control	on	a	form,
a	constant,	or	a	function.	If	expr	includes	a	function,	it	can	be	either	built-in	or
user-defined,	but	not	another	domain	aggregate	or	SQL	aggregate	function.

Domain		Required	String.	A	string	expression	identifying	the	set	of	records	that
constitutes	the	domain.	It	can	be	a	table	name	or	a	query	name.

Criteria		Optional	Variant.	An	optional	string	expression	used	to	restrict	the
range	of	data	on	which	the	DCount	function	is	performed.	For	example,	criteria
is	often	equivalent	to	the	WHERE	clause	in	an	SQL	expression,	without	the
word	WHERE.	If	criteria	is	omitted,	the	DCount	function	evaluates	expr
against	the	entire	domain.	Any	field	that	is	included	in	criteria	must	also	be	a
field	in	domain;	otherwise	the	DCount	function	returns	a	Null.

Remarks

Use	the	DCount	function	to	count	the	number	of	records	in	a	domain	when	you
don't	need	to	know	their	particular	values.	Although	the	expr	argument	can
perform	a	calculation	on	a	field,	the	DCount	function	simply	tallies	the	number
of	records.	The	value	of	any	calculation	performed	by	expr	is	unavailable.

Whether	you	use	the	DCount	function	in	a	macro	or	module,	a	query
expression,	or	a	calculated	control,	you	must	construct	the	criteria	argument
carefully	to	ensure	that	it	will	be	evaluated	correctly.

Use	the	DCount	function	in	a	calculated	control	when	you	need	to	specify
criteria	to	restrict	the	range	of	data	on	which	the	function	is	performed.	For
example,	to	display	the	number	of	orders	to	be	shipped	to	California,	set	the
ControlSource	property	of	a	text	box	to	the	following	expression:

=DCount("[OrderID]",	"Orders",	"[ShipRegion]	=	'CA'")

If	you	simply	want	to	count	all	records	in	domain	without	specifying	any
restrictions,	use	the	Count	function.

Tip			The	Count	function	has	been	optimized	to	speed	counting	of	records	in
queries.	Use	the	Count	function	in	a	query	expression	instead	of	the	DCount
function,	and	set	optional	criteria	to	enforce	any	restrictions	on	the	results.	Use
the	DCount	function	when	you	must	count	records	in	a	domain	from	within	a
code	module	or	macro,	or	in	a	calculated	control.

You	can	use	the	DCount	function	to	count	the	number	of	records	containing	a
particular	field	that	isn't	in	the	record	source	on	which	your	form	or	report	is
based.	For	example,	you	could	display	the	number	of	orders	in	the	Orders	table
in	a	calculated	control	on	a	form	based	on	the	Products	table.

The	DCount	function	doesn't	count	records	that	contain	Null	values	in	the	field
referenced	by	expr,	unless	expr	is	the	asterisk	(*)	wildcard	character.	If	you	use
an	asterisk,	the	DCount	function	calculates	the	total	number	of	records,
including	those	that	contain	Null	fields.	The	following	example	calculates	the
number	of	records	in	an	Orders	table.

intX	=	DCount("*",	"Orders")

mk:@MSITStore:acmain10.chm::/html/acconWildcardCharactersS.htm

If	domain	is	a	table	with	a	primary	key,	you	can	also	count	the	total	number	of
records	by	setting	expr	to	the	primary	key	field,	since	there	will	never	be	a	Null
in	the	primary	key	field.

If	expr	identifies	multiple	fields,	separate	the	field	names	with	a	concatenation
operator,	either	an	ampersand	(&)	or	the	addition	operator	(+).	If	you	use	an
ampersand	to	separate	the	fields,	the	DCount	function	returns	the	number	of
records	containing	data	in	any	of	the	listed	fields.	If	you	use	the	addition
operator,	the	DCount	function	returns	only	the	number	of	records	containing
data	in	all	of	the	listed	fields.	The	following	example	demonstrates	the	effects	of
each	operator	when	used	with	a	field	that	contains	data	in	all	records
(ShipName)	and	a	field	that	contains	no	data	(ShipRegion).

intW	=	DCount("[ShipName]",	"Orders")										'	Returns	831.

intX	=	DCount("[ShipRegion]",	"Orders")										'	Returns	323.

intY	=	DCount("[ShipName]	+	[ShipRegion]",	_

					"Orders")						'	Returns	323.

intZ	=	DCount("[ShipName]	&	[ShipRegion]",	_

					"Orders")						'	Returns	831.

Note			The	ampersand	is	the	preferred	operator	for	performing	string
concatenation.	You	should	avoid	using	the	addition	operator	for	anything	other
than	numeric	addition,	unless	you	specifically	wish	to	propagate	Nulls	through
an	expression.

Unsaved	changes	to	records	in	domain	aren't	included	when	you	use	this
function.	If	you	want	the	DCount	function	to	be	based	on	the	changed	values,
you	must	first	save	the	changes	by	clicking	Save	Record	on	the	File	menu,
moving	the	focus	to	another	record,	or	by	using	the	Update	method.

Show	All

DDEExecute	Method
							

You	can	use	the	DDEExecute	statement	to	send	a	command	from	a	client
application	to	a	server	application	over	an	open	dynamic	data	exchange	(DDE)
channel.

expression.DDEExecute(ChanNum,	Command)

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

ChanNum		Required	Variant.	A	channel	number,	the	long	integer	returned	by
the	DDEInitiate	function.

Command		Required	String.	A	string	expression	specifying	a	command
recognized	by	the	server	application.	Check	the	server	application's
documentation	for	a	list	of	these	commands.

Remarks

For	example,	suppose	you've	opened	a	DDE	channel	in	Microsoft	Access	to
transfer	text	data	from	a	Microsoft	Excel	spreadsheet	into	a	Microsoft	Access
database.	Use	the	DDEExecute	statement	to	send	the	New	command	to
Microsoft	Excel	to	specify	that	you	wish	to	open	a	new	spreadsheet.	In	this
example,	Microsoft	Access	acts	as	the	client	application,	and	Microsoft	Excel
acts	as	the	server	application.

The	value	of	the	command	argument	depends	on	the	application	and	topic
specified	when	the	channel	indicated	by	the	channum	argument	is	opened.	An
error	occurs	if	the	channum	argument	isn't	an	integer	corresponding	to	an	open
channel	or	if	the	other	application	can't	carry	out	the	specified	command.

From	Visual	Basic,	you	can	use	the	DDEExecute	statement	only	to	send
commands	to	another	application.	For	information	on	sending	commands	to
Microsoft	Access	from	another	application,	see	Use	Microsoft	Access	as	a	DDE
Server.

Tip			If	you	need	to	manipulate	another	application's	objects	from	Microsoft
Access,	you	may	want	to	consider	using	Automation.

Show	All

DDEInitiate	Method
							

You	can	use	the	DDEInitiate	function	to	begin	a	dynamic	data	exchange	(DDE)
conversation	with	another	application.	The	DDEInitiate	function	opens	a	DDE
channel	for	transfer	of	data	between	a	DDE	server	and	client	application.
Variant.

expression.DDEInitiate(Application,	Topic)

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

Application		Required	String.	A	string	expression	identifying	an	application	that
can	participate	in	a	DDE	conversation.	Usually,	the	application	argument	is	the
name	of	an	.exe	file	(without	the	.exe	extension)	for	a	Microsoft	Windows–based
application,	such	as	Microsoft	Excel.

Topic		Required	String.	A	string	expression	that	is	the	name	of	a	topic
recognized	by	the	application	argument.	Check	the	application's	documentation
for	a	list	of	topics.

Remarks

For	example,	if	you	wish	to	transfer	data	from	a	Microsoft	Excel	spreadsheet	to
a	Microsoft	Access	database,	you	can	use	the	DDEInitiate	function	to	open	a
channel	between	the	two	applications.	In	this	example,	Microsoft	Access	acts	as
the	client	application,	and	Microsoft	Excel	acts	as	the	server	application.

If	successful,	the	DDEInitiate	function	begins	a	DDE	conversation	with	the
application	and	topic	specified	by	the	application	and	topic	arguments,	and	then
returns	a	Long	integer	value.	This	return	value	represents	a	unique	channel
number	identifying	a	channel	over	which	data	transfer	can	take	place.	This
channel	number	is	subsequently	used	with	other	DDE	functions	and	statements.

If	the	application	isn't	already	running	or	if	it's	running	but	doesn't	recognize	the
topic	argument	or	doesn't	support	DDE,	the	DDEInitiate	function	returns	a	run-
time	error.

The	value	of	the	topic	argument	depends	on	the	application	specified	by	the
application	argument.	For	applications	that	use	documents	or	data	files,	valid
topic	names	often	include	the	names	of	those	files.

Note			The	maximum	number	of	channels	that	can	be	open	simultaneously	is
determined	by	Microsoft	Windows	and	your	computer's	memory	and	resources.
If	you	aren't	using	a	channel,	you	should	conserve	resources	by	terminating	it
with	a	DDETerminate	or	DDETerminateAll	statement.

Tip			If	you	need	to	manipulate	another	application's	objects	from	Microsoft
Access,	you	may	want	to	consider	using	Automation.

Show	All

DDEPoke	Method
							

You	can	use	the	DDEPoke	statement	to	supply	text	data	from	a	client
application	to	a	server	application	over	an	open	dynamic	data	exchange	(DDE)
channel.

expression.DDEPoke(ChanNum,	Item,	Data)

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

ChanNum		Required	Variant.	A	channel	number,	an	integer	returned	by	the
DDEInitiate	function.

Item		Required	String.	A	string	expression	that's	the	name	of	a	data	item
recognized	by	the	application	specified	by	the	DDEInitiate	function.	Check	the
application's	documentation	for	a	list	of	possible	items.

Data		Required	String.	A	string	containing	the	data	to	be	supplied	to	the	other
application.

Remarks

For	example,	if	you	have	an	open	DDE	channel	between	Microsoft	Access	and
Microsoft	Excel,	you	can	use	the	DDEPoke	statement	to	transfer	text	from	a
Microsoft	Access	database	to	a	Microsoft	Excel	spreadsheet.	In	this	example,
Microsoft	Access	acts	as	the	client	application,	and	Microsoft	Excel	acts	as	the
server	application.

The	value	of	the	item	argument	depends	on	the	application	and	topic	specified
when	the	channel	indicated	by	the	channum	argument	is	opened.	For	example,
the	item	argument	may	be	a	range	of	cells	in	a	Microsoft	Excel	spreadsheet.

The	string	contained	in	the	data	argument	must	be	an	alphanumeric	text	string.
No	other	formats	are	supported.	For	example,	the	data	argument	could	be	a
number	to	fill	a	cell	in	a	specified	range	in	an	Excel	worksheet.

If	the	channum	argument	isn't	an	integer	corresponding	to	an	open	channel	or	if
the	other	application	doesn't	recognize	or	accept	the	specified	data,	a	run-time
error	occurs.

Tip			If	you	need	to	manipulate	another	application's	objects	from	Microsoft
Access,	you	may	want	to	consider	using	Automation.

Show	All

DDERequest	Method
							

You	can	use	the	DDERequest	function	over	an	open	dynamic	data	exchange
(DDE)	channel	to	request	an	item	of	information	from	a	DDE	server	application.
String.

expression.DDERequest(ChanNum,	Item)

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

ChanNum		Required	Variant.	A	channel	number,	an	integer	returned	by	the
DDEInitiate	function.

Item		Required	String.	A	string	expression	that's	the	name	of	a	data	item
recognized	by	the	application	specified	by	the	DDEInitiate	function.	Check	the
application's	documentation	for	a	list	of	possible	items.

Remarks

For	example,	if	you	have	an	open	DDE	channel	between	Microsoft	Access	and
Microsoft	Excel,	you	can	use	the	DDERequest	function	to	transfer	text	from	a
Microsoft	Excel	spreadsheet	to	a	Microsoft	Access	database.	In	this	example,
Microsoft	Access	acts	as	the	client	application,	and	Microsoft	Excel	acts	as	the
server	application.

The	channum	argument	specifies	the	channel	number	of	the	desired	DDE
conversation,	and	the	item	argument	identifies	which	data	should	be	retrieved
from	the	server	application.	The	value	of	the	item	argument	depends	on	the
application	and	topic	specified	when	the	channel	indicated	by	the	channum
argument	is	opened.	For	example,	the	item	argument	may	be	a	range	of	cells	in	a
Microsoft	Excel	spreadsheet.

The	DDERequest	function	returns	a	Variant	as	a	string	containing	the	requested
information	if	the	request	was	successful.

The	data	is	requested	in	alphanumeric	text	format.	Graphics	or	text	in	any	other
format	can't	be	transferred.

If	the	channum	argument	isn't	an	integer	corresponding	to	an	open	channel,	or	if
the	data	requested	can't	be	transferred,	a	run-time	error	occurs.

Tip			If	you	need	to	manipulate	another	application's	objects	from	Microsoft
Access,	you	may	want	to	consider	using	Automation.

Show	All

DDETerminate	Method
							

You	can	use	the	DDETerminate	statement	to	close	a	specified	dynamic	data
exchange	(DDE)	channel.

expression.DDETerminate(ChanNum)

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

ChanNum		Required	Variant.	A	channel	number	to	close,	refers	to	a	channel
opened	by	the	DDEInitiate	function.

Remarks

For	example,	if	you've	opened	a	DDE	channel	to	transfer	data	between
Microsoft	Excel	and	Microsoft	Access,	you	can	use	the	DDETerminate
statement	to	close	that	channel	once	the	transfer	is	complete.

If	the	channum	argument	isn't	an	integer	corresponding	to	an	open	channel,	a
run-time	error	occurs.

Once	a	channel	is	closed,	any	subsequent	DDE	functions	or	statements
performed	on	that	channel	cause	a	run-time	error.

The	DDETerminate	statement	has	no	effect	on	active	DDE	link	expressions	in
fields	on	forms	or	reports.

Tip			If	you	need	to	manipulate	another	application's	objects	from	Microsoft
Access,	you	may	want	to	consider	using	Automation.

Show	All

DDETerminateAll	Method
							

You	can	use	the	DDETerminateAll	statement	to	close	all	open	dynamic	data
exchange	(DDE)	channels.

expression.DDETerminateAll

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

Remarks

For	example,	suppose	you've	opened	two	DDE	channels	between	Microsoft
Excel	and	Microsoft	Access,	one	to	retrieve	system	information	about	Microsoft
Excel	and	one	to	transfer	data.	You	can	use	the	DDETerminateAll	statement	to
close	both	channels	simultaneously.

Using	the	DDETerminateAll	statement	is	equivalent	to	executing	a
DDETerminate	statement	for	each	open	channel	number.	Like	the
DDETerminate	statement,	the	DDETerminateAll	statement	has	no	effect	on
active	DDE	link	expressions	in	fields	on	forms	or	reports.

If	there	are	no	DDE	channels	open,	the	DDETerminateAll	statement	runs
without	causing	a	run-time	error.

Tips

If	you	interrupt	a	procedure	that	performs	DDE,	you	may	inadvertently
leave	channels	open.	To	avoid	exhausting	system	resources,	use	the
DDETerminateAll	statement	in	your	code	or	from	the	Immediate	(lower)
pane	of	the	Debug	window	while	debugging	code	that	performs	DDE.

If	you	need	to	manipulate	another	application's	objects	from	Microsoft
Access,	you	may	want	to	consider	using	Automation.

Show	All

DefaultWorkspaceClone	Method
							

You	can	use	the	DefaultWorkspaceClone	method	to	create	a	new	Workspace
object	without	requiring	the	user	to	log	on	again.	For	example,	if	you	need	to
conduct	two	sets	of	transactions	simultaneously	in	separate	workspaces,	you	can
use	the	DefaultWorkspaceClone	method	to	create	a	second	Workspace	object
with	the	same	user	name	and	password	without	prompting	the	user	for	this
information	again.

expression.DefaultWorkspaceClone

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

mk:@MSITStore:dao360.chm::/htm/daobjWorkspace.htm

Remarks

Note			In	Microsoft	Access,	the	DefaultWorkspaceClone	method	is	included	in
this	version	of	Microsoft	Access	only	for	compatibility	with	previous	versions
using	Data	Access	Object	(DAO)	language.

The	DefaultWorkspaceClone	method	creates	a	clone	of	the	default	Workspace
object	in	Microsoft	Access.	The	properties	of	the	Workspace	object	clone	have
settings	identical	to	those	of	the	default	Workspace	object,	except	for	the	Name
property	setting.	For	the	default	Workspace	object,	the	value	of	the	Name
property	is	always	#Default	Workspace#.	For	the	cloned	Workspace	object,	it	is
#CloneAccess#.

The	UserName	property	of	the	default	Workspace	object	indicates	the	name
under	which	the	current	user	logged	on.	The	Workspace	object	clone	is
equivalent	to	the	Workspace	object	that	would	be	created	if	the	same	user
logged	on	again	with	the	same	password.

mk:@MSITStore:dao360.chm::/htm/daproName.htm
mk:@MSITStore:dao360.chm::/htm/daproUserName.htm

Delete	Method
							

Removes	either	one	FormatCondition	object	or	all	the	format	conditions	in	the
FormatConditions	collection	of	a	combo	box	or	text	box	control.

expression.Delete

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

Remarks

Use	the	Add	method	to	add	a	format	condition	to	the	FormatConditions
collection	of	a	combo	box	or	text	box.

Show	All

DeleteControl	Method
							

The	DeleteControl	method	deletes	a	specified	control	from	a	form.

expression.DeleteControl(FormName,	ControlName)

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

FormName		Required	String.	A	string	expression	identifying	the	name	of	the
form	or	report	containing	the	control	you	want	to	delete.

ControlName		Required	String.	A	string	expression	identifying	the	name	of	the
control	you	want	to	delete.

Remarks

For	example,	suppose	you	have	a	procedure	that	must	be	run	the	first	time	each
user	logs	onto	your	database.	You	can	set	the	OnClick	property	of	a	button	on
the	form	to	this	procedure.	Once	the	user	has	logged	on	and	run	the	procedure,
you	can	use	the	DeleteControl	method	to	dynamically	remove	the	command
button	from	the	form.

The	DeleteControl		method	is	available	only	in	form	Design	view	or	report
Design	view,	respectively.

Note			If	you	are	building	a	wizard	that	deletes	a	control	from	a	form	or	report,
your	wizard	must	open	the	form	or	report	in	Design	view	before	it	can	delete	the
control.

Example

The	following	example	creates	a	form	with	a	command	button	and	displays	a
message	that	asks	if	the	user	wants	to	delete	the	command	button.	If	the	user
clicks	Yes,	the	command	button	is	deleted.

Sub	DeleteCommandButton()

				Dim	frm	As	Form,	ctlNew	As	Control

				Dim	strMsg	As	String,	intResponse	As	Integer,	_

									intDialog	As	Integer

				'	Create	new	form	and	get	pointer	to	it.

				Set	frm	=	CreateForm

				'	Create	new	command	button.

				Set	ctlNew	=	CreateControl(frm.Name,	acCommandButton)

				'	Restore	form.

				DoCmd.Restore

				'	Set	caption.

				ctlNew.Caption	=	"New	Command	Button"

				'	Size	control.

				ctlNew.SizeToFit

				'	Prompt	user	to	delete	control.

				strMsg	=	"About	to	delete	"	&	ctlNew.Name	&".	Continue?"

				'	Define	buttons	to	be	displayed	in	dialog	box.

				intDialog	=	vbYesNo	+	vbCritical	+	vbDefaultButton2

				intResponse	=	MsgBox(strMsg,	intDialog)

				If	intResponse	=	vbYes	Then

								'	Delete	control.

								DeleteControl	frm.Name,	ctlNew.Name

				End	If

End	Sub

Show	All

DeleteLines	Method
							

The	DeleteLines	method	deletes	lines	from	a	standard	module	or	a	class	module.

expression.DeleteLines(StartLine,	Count)

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

StartLine		Required	Long.	A	Long	value	that	specifies	the	number	of	the	line
from	which	to	begin	deleting.

Count		Required	Long.	A	Long	value	that	specifies	the	number	of	lines	to
delete.

Remarks

Lines	in	a	module	are	numbered	beginning	with	one.	To	determine	the	number
of	lines	in	a	module,	use	the	CountOfLines	property.

To	replace	one	line	with	another	line,	use	the	ReplaceLine	method.

Example

The	following	example	deletes	a	specified	line	from	a	module.

Function	DeleteWholeLine(strModuleName,	strText	As	String)	_

					As	Boolean

				Dim	mdl	As	Module,	lngNumLines	As	Long

				Dim	lngSLine	As	Long,	lngSCol	As	Long

				Dim	lngELine	As	Long,	lngECol	As	Long

				Dim	strTemp	As	String

				

				On	Error	GoTo	Error_DeleteWholeLine

				DoCmd.OpenModule	strModuleName

				Set	mdl	=	Modules(strModuleName)

				

				If	mdl.Find(strText,	lngSLine,	lngSCol,	lngELine,	lngECol)	Then

								lngNumLines	=	Abs(lngELine	-	lngSLine)	+	1

								strTemp	=	LTrim$(mdl.Lines(lngSLine,	lngNumLines))

								strTemp	=	RTrim$(strTemp)

								If	strTemp	=	strText	Then

												mdl.DeleteLines	lngSLine,	lngNumLines

								Else

												MsgBox	"Line	contains	text	in	addition	to	'"	_

																&	strText	&	"'."

								End	If

				Else

								MsgBox	"Text	'"	&	strText	&	"'	not	found."

				End	If

				DeleteWholeLine	=	True

				

Exit_DeleteWholeLine:

				Exit	Function

				

Error_DeleteWholeLine:

				MsgBox	Err	&	"	:"	&	Err.Description

				DeleteWholeLine	=	False

				Resume	Exit_DeleteWholeLine

End	Function

You	could	call	this	function	from	a	procedure	such	as	the	following,	which
searches	the	module	Module1	for	a	constant	declaration	and	deletes	it.

Sub	DeletePiConst()

				If	DeleteWholeLine("Module1",	"Const	conPi	=	3.14")	Then

								Debug.Print	"Constant	declaration	deleted	successfully."

				Else

								Debug.Print	"Constant	declaration	not	deleted."

				End	If

End	Sub

Show	All

DeleteObject	Method
							

The	DeleteObject	method	carries	out	the	DeleteObject	action	in	Visual	Basic.

expression.DeleteObject(ObjectType,	ObjectName)

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

ObjectType		Optional	AcObjectType.

AcObjectType	can	be	one	of	these	AcObjectType	constants.
acDataAccessPage
acDefault	default
acDiagram
acForm
acFunction
acMacro
acModule
acQuery
acReport
acServerView
acStoredProcedure
acTable

ObjectName		Optional	Variant.	A	string	expression	that's	the	valid	name	of	an
object	of	the	type	selected	by	the	objecttype	argument.	If	you	run	Visual	Basic
code	containing	the	DeleteObject	method	in	a	library	database,	Microsoft
Access	looks	for	the	object	with	this	name	first	in	the	library	database,	then	in
the	current	database.

mk:@MSITStore:acmain10.chm::/html/acactDeleteObject.htm

Remarks

For	more	information	on	how	the	action	and	its	arguments	work,	see	the	action
topic.

If	you	leave	the	objecttype	and	objectname	arguments	blank	(the	default
constant,	acDefault,	is	assumed	for	objecttype),	Microsoft	Access	deletes	the
object	selected	in	the	Database	window.	To	select	an	object	in	the	Database
window,	you	can	use	the	SelectObject	action	or	SelectObject	method	with	the
In	Database	Window	argument	set	to	Yes	(True).

Example

The	following	example	deletes	the	specified	table:

DoCmd.DeleteObject	acTable,	"Former	Employees	Table"

Show	All

DeleteReportControl	Method
							

The	DeleteReportControl	method	deletes	a	specified	control	from	a	report.

expression.DeleteReportControl(ReportName,	ControlName)

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

ReportName		Required	String.	A	string	expression	identifying	the	name	of	the
form	or	report	containing	the	control	you	want	to	delete.

ControlName		Required	String.	A	string	expression	identifying	the	name	of	the
control	you	want	to	delete.

Remarks

The	DeleteReportControl	method	is	available	only	in	form	Design	view	or
report	Design	view,	respectively.

Note			If	you	are	building	a	wizard	that	deletes	a	control	from	a	form	or	report,
your	wizard	must	open	the	form	or	report	in	Design	view	before	it	can	delete	the
control.

Example

Example

The	following	example	creates	a	form	with	a	command	button	and	displays	a
message	that	asks	if	the	user	wants	to	delete	the	command	button.	If	the	user
clicks	Yes,	the	command	button	is	deleted.

Sub	DeleteCommandButton()

				Dim	frm	As	Form,	ctlNew	As	Control

				Dim	strMsg	As	String,	intResponse	As	Integer,	_

									intDialog	As	Integer

				'	Create	new	form	and	get	pointer	to	it.

				Set	frm	=	CreateForm

				'	Create	new	command	button.

				Set	ctlNew	=	CreateControl(frm.Name,	acCommandButton)

				'	Restore	form.

				DoCmd.Restore

				'	Set	caption.

				ctlNew.Caption	=	"New	Command	Button"

				'	Size	control.

				ctlNew.SizeToFit

				'	Prompt	user	to	delete	control.

				strMsg	=	"About	to	delete	"	&	ctlNew.Name	&".	Continue?"

				'	Define	buttons	to	be	displayed	in	dialog	box.

				intDialog	=	vbYesNo	+	vbCritical	+	vbDefaultButton2

				intResponse	=	MsgBox(strMsg,	intDialog)

				If	intResponse	=	vbYes	Then

								'	Delete	control.

								DeleteControl	frm.Name,	ctlNew.Name

				End	If

End	Sub

Show	All

DFirst	Method
							

Use	the	DFirst	function	to	return	a	random	record	from	a	particular	field	in	a
table	or	query,	when	you	need	any	value	from	that	field.	Use	the	DFirst	function
in	a	macro,	module,	query	expression,	or	calculated	control	on	a	form	or	report.
Variant.

expression.DFirst(Expr,	Domain,	Criteria)

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

Expr		Required	String.	An	expression	that	identifies	the	field	from	which	you
want	to	find	the	first	or	last	value.	It	can	be	either	a	string	expression	identifying
a	field	in	a	table	or	query,	or	an	expression	that	performs	a	calculation	on	data	in
that	field.	In	expr,	you	can	include	the	name	of	a	field	in	a	table,	a	control	on	a
form,	a	constant,	or	a	function.	If	expr	includes	a	function,	it	can	be	either	built-
in	or	user-defined,	but	not	another	domain	aggregate	or	SQL	aggregate	function.

Domain		Required	String.	A	string	expression	identifying	the	set	of	records	that
constitutes	the	domain.

Criteria		Optional	Variant.	An	optional	string	expression	used	to	restrict	the
range	of	data	on	which	the	DFirst	function	is	performed.	For	example,	criteria
is	often	equivalent	to	the	WHERE	clause	in	an	SQL	expression,	without	the
word	WHERE.	If	criteria	is	omitted,	the	DFirst	function	evaluates	expr	against
the	entire	domain.	Any	field	that	is	included	in	criteria	must	also	be	a	field	in
domain;	otherwise,	the	DFirst	function	returns	a	Null.

Remarks

Note			If	you	want	to	return	the	first	record	in	a	set	of	records	(a	domain),	you
should	create	a	query	sorted	as	ascending	or	descending	and	set	the	TopValues
property	to	1.	For	more	information,	see	the	TopValues	property	topic.	From
Visual	Basic,	you	can	also	create	a	Recordset	object,	and	use	the	MoveFirst	or
MoveLast	method	to	return	the	first	or	last	record	in	a	set	of	records.

mk:@MSITStore:ado210.chm::/htm/mdobjODBRec.htm
mk:@MSITStore:ado210.chm::/htm/mdmthMoveFirst.htm
mk:@MSITStore:ado210.chm::/htm/mdmthMoveFirst.htm

Example

The	following	example	prints	the	value	of	the	"OrderDate"	field	from	the	Orders
table	in	the	Immediate	window	in	the	Visual	Basic	Editor.	Microsoft	Access
picks	one	of	the	field	records	at	random.	This	example	is	useful	for	quickly
displaying		the	contents	of	a	field	to	check	data	consistency.

?	DFirst("[Orders]![OrderDate]",	"[Orders]")

This	keyword	is	not	implemented.	It	is	reserved	for	future	use.

Show	All

DLast	Method
							

Use	the	DLast	function	to	return	a	random	record	from	a	particular	field	in	a
table	or	query,	when	you	need	any	value	from	that	field.	Use	the	DLast	function
in	a	macro,	module,	query	expression,	or	calculated	control	on	a	form	or	report.
Variant.

expression.DLast(Expr,	Domain,	Criteria)

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

Expr		Required	String.	An	expression	that	identifies	the	field	from	which	you
want	to	find	the	first	or	last	value.	It	can	be	either	a	string	expression	identifying
a	field	in	a	table	or	query,	or	an	expression	that	performs	a	calculation	on	data	in
that	field.	In	expr,	you	can	include	the	name	of	a	field	in	a	table,	a	control	on	a
form,	a	constant,	or	a	function.	If	expr	includes	a	function,	it	can	be	either	built-
in	or	user-defined,	but	not	another	domain	aggregate	or	SQL	aggregate	function.

Domain		Required	String.	A	string	expression	identifying	the	set	of	records	that
constitutes	the	domain.

Criteria		Optional	Variant.	An	optional	string	expression	used	to	restrict	the
range	of	data	on	which	the	DLast	function	is	performed.	For	example,	criteria	is
often	equivalent	to	the	WHERE	clause	in	an	SQL	expression,	without	the	word
WHERE.	If	criteria	is	omitted,	the	DLast	functions	evaluate	expr	against	the
entire	domain.	Any	field	that	is	included	in	criteria	must	also	be	a	field	in
domain;	otherwise,	the	DLast	functions	return	a	Null.

Remarks

Note			If	you	want	to	return	the	last	record	in	a	set	of	records	(a	domain),	you
should	create	a	query	sorted	as	either	ascending	or	descending	and	set	the
TopValues	property	to	1.	For	more	information,	see	the	TopValues	property
topic.	From	Visual	Basic,	you	can	also	create	a	Recordset	object,	and	use	the
MoveFirst	or	MoveLast	method	to	return	the	first	or	last	record	in	a	set	of
records.

mk:@MSITStore:ado210.chm::/htm/mdobjODBRec.htm
mk:@MSITStore:ado210.chm::/htm/mdmthMoveFirst.htm
mk:@MSITStore:ado210.chm::/htm/mdmthMoveFirst.htm

Example

The	following	example	prints	the	value	of	the	"OrderDate"	field	from	the	Orders
table	in	the	Immediate	window	in	the	Visual	Basic	Editor.	Microsoft	Access
picks	one	of	the	field	records	at	random.	This	example	is	useful	for	quickly
displaying		the	contents	of	a	field	to	check	data	consistency.

?	DLast("[Orders]![OrderDate]",	"[Orders]")

Show	All

DLookup	Method
							

You	can	use	the	DLookup	function	to	get	the	value	of	a	particular	field	from	a
specified	set	of	records	(a	domain).	Use	the	DLookup	function	in	Visual	Basic,
a	macro,	a	query	expression,	or	a	calculated	control	on	a	form	or	report.	Variant.

expression.DLookup(Expr,	Domain,	Criteria)

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

Expr		Required	String.	An	expression	that	identifies	the	field	whose	value	you
want	to	return.	It	can	be	a	string	expression	identifying	a	field	in	a	table	or	query,
or	it	can	be	an	expression	that	performs	a	calculation	on	data	in	that	field.	In
expr,	you	can	include	the	name	of	a	field	in	a	table,	a	control	on	a	form,	a
constant,	or	a	function.	If	expr	includes	a	function,	it	can	be	either	built-in	or
user-defined,	but	not	another	domain	aggregate	or	SQL	aggregate	function.

Domain		Required	String.	A	string	expression	identifying	the	set	of	records	that
constitutes	the	domain.	It	can	be	a	table	name	or	a	query	name.

Criteria		Optional	Variant.	An	optional	string	expression	used	to	restrict	the
range	of	data	on	which	the	DLookup	function	is	performed.	For	example,
criteria	is	often	equivalent	to	the	WHERE	clause	in	an	SQL	expression,	without
the	word	WHERE.	If	criteria	is	omitted,	the	DLookup	function	evaluates	expr
against	the	entire	domain.	Any	field	that	is	included	in	criteria	must	also	be	a
field	in	domain;	otherwise,	the	DLookup	function	returns	a	Null.

Remarks

You	can	use	the	DLookup	function	to	display	the	value	of	a	field	that	isn't	in	the
record	source	for	your	form	or	report.	For	example,	suppose	you	have	a	form
based	on	an	Order	Details	table.	The	form	displays	the	OrderID,	ProductID,
UnitPrice,	Quantity,	and	Discount	fields.	However,	the	ProductName	field	is	in
another	table,	the	Products	table.	You	could	use	the	DLookup	function	in	a
calculated	control	to	display	the	ProductName	on	the	same	form.

The	DLookup	function	returns	a	single	field	value	based	on	the	information
specified	in	criteria.	Although	criteria	is	an	optional	argument,	if	you	don't
supply	a	value	for	criteria,	the	DLookup	function	returns	a	random	value	in	the
domain.

If	no	record	satisfies	criteria	or	if	domain	contains	no	records,	the	DLookup
function	returns	a	Null.

If	more	than	one	field	meets	criteria,	the	DLookup	function	returns	the	first
occurrence.	You	should	specify	criteria	that	will	ensure	that	the	field	value
returned	by	the	DLookup	function	is	unique.	You	may	want	to	use	a	primary
key	value	for	your	criteria,	such	as	[EmployeeID]	in	the	following	example,	to
ensure	that	the	DLookup	function	returns	a	unique	value:

Dim	varX	As	Variant

varX	=	DLookup("[LastName]",	"Employees",	"[EmployeeID]	=	1")

Whether	you	use	the	DLookup	function	in	a	macro	or	module,	a	query
expression,	or	a	calculated	control,	you	must	construct	the	criteria	argument
carefully	to	ensure	that	it	will	be	evaluated	correctly.

You	can	use	the	DLookup	function	to	specify	criteria	in	the	Criteria	row	of	a
query,	within	a	calculated	field	expression	in	a	query,	or	in	the	Update	To	row	in
an	update	query.

You	can	also	use	the	DLookup	function	in	an	expression	in	a	calculated	control
on	a	form	or	report	if	the	field	that	you	need	to	display	isn't	in	the	record	source
on	which	your	form	or	report	is	based.	For	example,	suppose	you	have	an	Order
Details	form	based	on	an	Order	Details	table	with	a	text	box	called	ProductID

that	displays	the	ProductID	field.	To	look	up	ProductName	from	a	Products	table
based	on	the	value	in	the	text	box,	you	could	create	another	text	box	and	set	its
ControlSource	property	to	the	following	expression:

=DLookup("[ProductName]",	"Products",	"[ProductID]	="	_

					&	Forms![Order	Details]!ProductID)

Tips

Although	you	can	use	the	DLookup	function	to	display	a	value	from	a	field
in	a	foreign	table,	it	may	be	more	efficient	to	create	a	query	that	contains
the	fields	that	you	need	from	both	tables	and	then	to	base	your	form	or
report	on	that	query.

You	can	also	use	the	Lookup	Wizard	to	find	values	in	a	foreign	table.

Note			Unsaved	changes	to	records	in	domain	aren't	included	when	you	use	this
function.	If	you	want	the	DLookup	function	to	be	based	on	the	changed	values,
you	must	first	save	the	changes	by	clicking	Save	Record	on	the	File	menu,
moving	the	focus	to	another	record,	or	by	using	the	Update	method.

mk:@MSITStore:dao360.chm::/htm/damthUpdate.htm

Show	All

DMax	Method
							

You	can	use	the	DMax	functions	to	determine	the	maximum	values	in	a
specified	set	of	records	(a	domain).	Use	the	DMax	functions	in	Visual	Basic,	a
macro,	a	query	expression,	or	a	calculated	control.	Variant.

expression.DMax(Expr,	Domain,	Criteria)

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

Expr		Required	String.	An	expression	that	identifies	the	field	for	which	you
want	to	find	the	minimum	or	maximum	value.	It	can	be	a	string	expression
identifying	a	field	in	a	table	or	query,	or	it	can	be	an	expression	that	performs	a
calculation	on	data	in	that	field.	In	expr,	you	can	include	the	name	of	a	field	in	a
table,	a	control	on	a	form,	a	constant,	or	a	function.	If	expr	includes	a	function,	it
can	be	either	built-in	or	user-defined,	but	not	another	domain	aggregate	or	SQL
aggregate	function.

Domain		Required	String.	A	string	expression	identifying	the	set	of	records	that
constitutes	the	domain.	It	can	be	a	table	name	or	a	query	name.

Criteria		Optional	Variant.	An	optional	string	expression	used	to	restrict	the
range	of	data	on	which	the	DMax	function	is	performed.	For	example,	criteria	is
often	equivalent	to	the	WHERE	clause	in	an	SQL	expression,	without	the	word
WHERE.	If	criteria	is	omitted,	the	DMax	function	evaluates	expr	against	the
entire	domain.	Any	field	that	is	included	in	criteria	must	also	be	a	field	in
domain,	otherwise	the	DMax	function	returns	a	Null.

Remarks

The	DMax	function	returns	the	maximum	value	that	satisfies	criteria.	If	expr
identifies	numeric	data,	the	DMax	function	returns	numeric	values.	If	expr
identifies	string	data,	they	return	the	string	that	is	first	or	last	alphabetically.

The	DMax	function	ignores	Null	values	in	the	field	referenced	by	expr.
However,	if	no	record	satisfies	criteria	or	if	domain	contains	no	records,	the
DMax	function	returns	a	Null.

When	you	use	the	DMax	function	in	a	macro,	module,	query	expression,	or
calculated	control,	you	must	construct	the	criteria	argument	carefully	to	ensure
that	it	will	be	evaluated	correctly.

You	can	use	the	DMax	function	to	specify	criteria	in	the	Criteria	row	of	a
query,	in	a	calculated	field	expression	in	a	query,	or	in	the	Update	To	row	of	an
update	query.

Note			You	can	use	the	DMax	function	or	theMax	function	in	a	calculated	field
expression	in	a	totals	query.	If	you	use	the	DMax	function,	values	are	evaluated
before	the	data	is	grouped.	If	you	use	the	Max	function,	the	data	is	grouped
before	values	in	the	field	expression	are	evaluated.

Use	the	DMax	function	in	a	calculated	control	when	you	need	to	specify	criteria
to	restrict	the	range	of	data	on	which	the	function	is	performed.	For	example,	to
display	the	maximum	freight	charged	for	an	order	shipped	to	California,	set	the
ControlSource	property	of	a	text	box	to	the	following	expression:

=DMax("[Freight]",	"Orders",	"[ShipRegion]	=	'CA'")

If	you	simply	want	to	find	the	maximum	value	of	all	records	in	domain,	use	the
Max	function.

You	can	use	the	DMax	function	in	a	module	or	macro	or	in	a	calculated	control
on	a	form	if	the	field	that	you	need	to	display	is	not	in	the	record	source	on
which	your	form	is	based.

Tip			Although	you	can	use	the	DMax	function	to	find	the	maximum	value	from

a	field	in	a	foreign	table,	it	may	be	more	efficient	to	create	a	query	that	contains
the	fields	that	you	need	from	both	tables,	and	base	your	form	or	report	on	that
query.

Note			Unsaved	changes	to	records	in	domain	aren't	included	when	you	use	these
functions.	If	you	want	the	DMax	function	to	be	based	on	the	changed	values,
you	must	first	save	the	changes	by	clicking	Save	Record	on	the	File	menu,
moving	the	focus	to	another	record,	or	by	using	the	Update	method.

mk:@MSITStore:ado210.chm::/htm/mdmthUpdate.htm

Example

The	following	example	returns	the	highest	value	from	the	Freight	field	for	orders
shipped	to	the	United	Kingdom.	The	domain	is	an	Orders	table.	The	criteria
argument	restricts	the	resulting	set	of	records	to	those	for	which	ShipCountry
equals	UK.

Dim	curX	As	Currency,	curY	As	Currency

curY	=	DMax("[Freight]",	"Orders",	"[ShipCountry]	=	'UK'")

In	the	next	example,	the	criteria	argument	includes	the	current	value	of	a	text
box	called	OrderDate.	The	text	box	is	bound	to	an	OrderDate	field	in	an	Orders
table.	Note	that	the	reference	to	the	control	isn't	included	in	the	double	quotation
marks	(")	that	denote	the	strings.	This	ensures	that	each	time	the	DMax	function
is	called,	Microsoft	Access	obtains	the	current	value	from	the	control.

Dim	curX	As	Currency

curX	=	DMax("[Freight]",	"Orders",	"[OrderDate]	=	#"	_

				&	Forms!Orders!OrderDate	&	"#")

Show	All

DMin	Method
							

You	can	use	the	DMin	function	to	determine	the	minimum	value	in	a	specified
set	of	records	(a	domain).	Use	the	DMin	function	in	Visual	Basic,	a	macro,	a
query	expression,	or	a	calculated	control.	Variant.

expression.DMin(Expr,	Domain,	Criteria)

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

Expr		Required	String.	An	expression	that	identifies	the	field	for	which	you
want	to	find	the	minimum	or	maximum	value.	It	can	be	a	string	expression
identifying	a	field	in	a	table	or	query,	or	it	can	be	an	expression	that	performs	a
calculation	on	data	in	that	field.	In	expr,	you	can	include	the	name	of	a	field	in	a
table,	a	control	on	a	form,	a	constant,	or	a	function.	If	expr	includes	a	function,	it
can	be	either	built-in	or	user-defined,	but	not	another	domain	aggregate	or	SQL
aggregate	function.

Domain		Required	String.	A	string	expression	identifying	the	set	of	records	that
constitutes	the	domain.	It	can	be	a	table	name	or	a	query	name.

Criteria		Optional	Variant.	An	optional	string	expression	used	to	restrict	the
range	of	data	on	which	the	DMin	function	is	performed.	For	example,	criteria	is
often	equivalent	to	the	WHERE	clause	in	an	SQL	expression,	without	the	word
WHERE.	If	criteria	is	omitted,	the	DMin	function	evaluates	expr	against	the
entire	domain.	Any	field	that	is	included	in	criteria	must	also	be	a	field	in
domain,	otherwise	the	DMin	function	returns	a	Null.

Remarks

For	example,	you	could	use	the	DMin	function	in	calculated	controls	on	a	report
to	display	the	largest	and	smallest	order	amounts	for	a	particular	customer.	Or
you	could	use	the	DMin	function	in	a	query	expression	to	display	all	orders	with
a	discount	greater	than	the	minimum	possible	discount.

The	DMin	function	returns	the	minimum	value	that	satisfy	criteria.	If	expr
identifies	numeric	data,	the	DMin	function	returns	numeric	values.	If	expr
identifies	string	data,	they	return	the	string	that	is	first	or	last	alphabetically.

The	DMin	function	ignores	Null	values	in	the	field	referenced	by	expr.
However,	if	no	record	satisfies	criteria	or	if	domain	contains	no	records,	the
DMin	function	returns	a	Null.

When	you	use	the	DMin	function	in	a	macro,	module,	query	expression,	or
calculated	control,	you	must	construct	the	criteria	argument	carefully	to	ensure
that	it	will	be	evaluated	correctly.

You	can	use	the	DMin	function	to	specify	criteria	in	the	Criteria	row	of	a	query,
in	a	calculated	field	expression	in	a	query,	or	in	the	Update	To	row	of	an	update
query.

Note			You	can	use	the	DMin	function	or	the	Min	function	in	a	calculated	field
expression	in	a	totals	query.	If	you	use	the	DMin	function,	values	are	evaluated
before	the	data	is	grouped.	If	you	use	the	Min	function,	the	data	is	grouped
before	values	in	the	field	expression	are	evaluated.

Use	the	DMin	function	in	a	calculated	control	when	you	need	to	specify	criteria
to	restrict	the	range	of	data	on	which	the	function	is	performed.	For	example,	to
display	the	minimum	freight	charged	for	an	order	shipped	to	California,	set	the
ControlSource	property	of	a	text	box	to	the	following	expression:

=DMin("[Freight]",	"Orders",	"[ShipRegion]	=	'CA'")

If	you	simply	want	to	find	the	minimum	value	of	all	records	in	domain,	use	the
Min	function.

You	can	use	the	DMin	function	in	a	module	or	macro	or	in	a	calculated	control
on	a	form	if	the	field	that	you	need	to	display	is	not	in	the	record	source	on
which	your	form	is	based.

Tip			Although	you	can	use	the	DMin	function	to	find	the	minimum	value	from
a	field	in	a	foreign	table,	it	may	be	more	efficient	to	create	a	query	that	contains
the	fields	that	you	need	from	both	tables,	and	base	your	form	or	report	on	that
query.

Note			Unsaved	changes	to	records	in	domain	aren't	included	when	you	use	these
functions.	If	you	want	the	DMin	function	to	be	based	on	the	changed	values,	you
must	first	save	the	changes	by	clicking	Save	Record	on	the	File	menu,	moving
the	focus	to	another	record,	or	by	using	the	Update	method.

mk:@MSITStore:ado210.chm::/htm/mdmthUpdate.htm

Example

The	following	example	returns	the	lowest	value	from	the	Freight	field	for	orders
shipped	to	the	United	Kingdom.	The	domain	is	an	Orders	table.	The	criteria
argument	restricts	the	resulting	set	of	records	to	those	for	which	ShipCountry
equals	UK.

Dim	curX	As	Currency,	curY	As	Currency

curX	=	DMin("[Freight]",	"Orders",	"[ShipCountry]	=	'UK'")

In	the	next	example,	the	criteria	expression	includes	a	variable,	dteOrderDate.
Note	that	number	signs	(#)	are	included	in	the	string	expression,	so	that	when	the
strings	are	concatenated,	they	will	enclose	the	date.

Dim	dteOrderDate	As	Date,	curX	As	Currency

dteOrderDate	=	#3/30/95#

curX	=	DMin("[Freight]",	"Orders",	_

				"[OrderDate]	=	#"	&	dteOrderDate	&	"#")

Show	All

DoMenuItem	Method
							

Displays	the	appropriate	menu	or	toolbar	command	for	Microsoft	Access.

expression.DoMenuItem(MenuBar,	MenuName,	Command,	Subcommand,
Version)

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

MenuBar		Required	Variant.	Use	the	intrinsic	constant	acFormBar	for	the
menu	bar	in	Form	view.	For	other	views,	use	the	number	of	the	view	in	the	menu
bar	argument	list,	as	shown	in	the	Macro	window	in	previous	versions	of
Microsoft	Access	(count	down	the	list,	starting	from	0).

MenuName		Required	Variant.	You	can	use	one	of	the	following	intrinsic
constants.

Intrinsic	constants:
acFile
acEditMenu

acRecordsMenu

You	can	use	acRecordsMenu	only	for	the	Form	view	menu	bar	in	Microsoft
Access	version	2.0	and	Microsoft	Access	95	databases.	For	other	menus,	use	the
number	of	the	menu	in	the	menu	name	argument	list,	as	shown	in	the	Macro
window	in	previous	versions	of	Microsoft	Access	(count	down	the	list,	starting
from	0).

Command		Required	Variant.	You	can	use	one	of	the	following	intrinsic
constants.

Intrinsic	constants:

acNew
acSaveForm

acSaveFormAs

acSaveRecord

acUndo

acCut

acCopy

acPaste

acDelete

acSelectRecord

acSelectAllRecords

acObject

acRefresh

For	other	commands,	use	the	number	of	the	command	in	the	command
argument	list,	as	shown	in	the	Macro	window	in	previous	versions	of	Microsoft
Access	(count	down	the	list,	starting	from	0).

Subcommand		Optional	Variant.	You	can	use	one	of	the	following	intrinsic
constants.

Intrinsic	constants:
acObjectVerb
acObjectUpdate

The	acObjectVerb	constant	represents	the	first	command	on	the	submenu	of
the	Object	command	on	the	Edit	menu.	The	type	of	object	determines	the	first
command	on	the	submenu.	For	example,	this	command	is	Edit	for	a	Paintbrush

object	that	can	be	edited.

For	other	commands	on	submenus,	use	the	number	of	the	subcommand	in	the
subcommand	argument	list,	as	shown	in	the	Macro	window	in	previous	versions
of	Microsoft	Access	(count	down	the	list,	starting	from	0).

Version		Optional	Variant.	Use	the	intrinsic	constant	acMenuVer70	for	code
written	for	Microsoft	Access	95	databases,	the	intrinsic	constant	acMenuVer20
for	code	written	for	Microsoft	Access	version	2.0	databases,	and	the	intrinsic
constant	acMenuVer1X	for	code	written	for	Microsoft	Access	version	1.x
databases.	This	argument	is	available	only	in	Visual	Basic.

Note		The	default	for	this	argument	is	acMenuVer1X,	so	that	any	code	written
for	Microsoft	Access	version	1.x	databases	will	run	unchanged.	If	you're	writing
code	for	a	Microsoft	Access	95	or	version	2.0	database	and	want	to	use	the
Microsoft	Access	95	or	version	2.0	menu	commands	with	the	DoMenuItem
method,	you	must	set	this	argument	to	acMenuVer70	or	acMenuVer20.

Also,	when	you	are	counting	down	the	lists	for	the	Menu	Bar,	Menu	Name,
Command,	and	Subcommand	action	arguments	in	the	Macro	window	to	get	the
numbers	to	use	for	the	arguments	in	the	DoMenuItem	method,	you	must	use	the
Microsoft	Access	95	lists	if	the	Version	argument	is	acMenuVer70,	the
Microsoft	Access	version	2.0	lists	if	the	Version	argument	is	acMenuVer20,	and
the	Microsoft	Access	version	1.x	lists	if	Version	is	acMenuVer1X	(or	blank).

Note			There	is	no	acMenuVer80	setting	for	this	argument.	You	can't	use	the
DoMenuItem	method	to	display	Microsoft	Access	97	or	Microsoft	Access	2000
commands	(although	existing	DoMenuItem	methods	in	Visual	Basic	code	will
still	work).	Use	the	RunCommand	method	instead.

Remarks

Note			In	Microsoft	Access	97,	the	DoMenuItem	method	was	replaced	by	the
RunCommand	method.	The	DoMenuItem	method	is	included	in	this	version	of
Microsoft	Access	only	for	compatibility	with	previous	versions.	When	you	run
existing	Visual	Basic	code	containing	a	DoMenuItem	method,	Microsoft	Access
will	display	the	appropriate	menu	or	toolbar	command	for	Microsoft	Access
2000.	However,	unlike	the	DoMenuItem	action	in	a	macro,	a	DoMenuItem
method	in	Visual	Basic	code	isn't	converted	to	a	RunCommand	method	when
you	convert	a	database	created	in	a	previous	version	of	Microsoft	Access.

Some	commands	from	previous	versions	of	Microsoft	Access	aren't	available	in
Microsoft	Access	2000,	and	DoMenuItem	methods	that	run	these	commands
will	cause	an	error	when	they're	executed	in	Visual	Basic.	You	must	edit	your
Visual	Basic	code	to	replace	or	delete	occurrences	of	such	DoMenuItem
methods.

The	selections	in	the	lists	for	the	menu	name,	command,	and	subcommand
action	arguments	in	the	Macro	window	depend	on	what	you've	selected	for	the
previous	arguments.	You	must	use	numbers	or	intrinsic	constants	that	are
appropriate	for	each	MenuBar,	MenuName,	Command,	and	Subcommand
argument.

If	you	leave	the	Subcommand	argument	blank	but	specify	the	Version	argument,
you	must	include	the	Subcommand	argument's	comma.	If	you	leave	the
Subcommand	and	Version	arguments	blank,	don't	use	a	comma	following	the
Command	argument.

Example

The	following	example	uses	the	DoMenuItem	method	to	carry	out	the	Paste
command	on	the	Edit	menu	in	Form	view	in	a	Microsoft	Access	95	database:

DoCmd.DoMenuItem	acFormBar,	acEditMenu,	acPaste,	,	acMenuVer70

The	next	example	carries	out	the	Tile	command	on	the	Window	menu	in	Form
view	in	a	Microsoft	Access	version	2.0	database:

DoCmd.DoMenuItem	acFormBar,	4,	0,	,	acMenuVer20

Show	All

Dropdown	Method
							

You	can	use	the	Dropdown	method	to	force	the	list	in	the	specified	combo	box
to	drop	down.

expression.Dropdown

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

Remarks

For	example,	you	can	use	this	method	to	cause	a	combo	box	listing	vendor	codes
to	drop	down	when	the	vendor	code	control	receives	the	focus	during	data	entry.

If	the	specified	combo	box	control	doesn't	have	the	focus,	an	error	occurs.	The
use	of	this	method	is	identical	to	pressing	the	F4	key	when	the	control	has	the
focus.

Example

The	following	example	shows	how	you	can	use	the	Dropdown	method	within
the	GotFocus	event	procedure	to	force	a	combo	box	named	SupplierID	to	drop
down	when	it	receives	the	focus.

Private	Sub	SupplierID_GotFocus()

				Me!SupplierID.Dropdown

End	Sub

Show	All

DStDev	Method
							

You	can	use	the	DStDev	function	to	estimate	the	standard	deviation	across	a	set
of	values	in	a	specified	set	of	records	(a	domain).	Use	the	DStDev	and	function
in	Visual	Basic,	a	macro,	a	query	expression,	or	a	calculated	control	on	a	form	or
report.	Variant.

expression.DStDev(Expr,	Domain,	Criteria)

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

Expr		Required	String.	An	expression	that	identifies	the	numeric	field	on	which
you	want	to	find	the	standard	deviation.	It	can	be	a	string	expression	identifying
a	field	from	a	table	or	query,	or	it	can	be	an	expression	that	performs	a
calculations	on	data	in	that	field.	In	expr,	you	can	include	the	name	of	a	field	in	a
table,	a	control	on	a	form,	a	constant,	or	a	function.	If	expr	includes	a	function,	it
can	be	either	built-in	or	user-defined,	but	not	another	domain	aggregate	or	SQL
aggregate	function.

Domain		Required	String.	A	string	expression	identifying	the	set	of	records	that
constitutes	the	domain.	It	can	be	a	table	name	or	a	query	name.

Criteria		Optional	Variant.	An	optional	string	expression	used	to	restrict	the
range	of	data	on	which	the	DStDev	function	is	performed.	For	example,	criteria
is	often	equivalent	to	the	WHERE	clause	in	an	SQL	expression,	without	the
word	WHERE.	If	criteria	is	omitted,	the	DStDev	function	evaluates	expr	against
the	entire	domain.	Any	field	that	is	included	in	criteria	must	also	be	a	field	in
domain;	otherwise,	the	DStDev	function	will	return	a	Null.

Remarks

Use	the	DStDev	function	to	evaluate	a	population	sample.

For	example,	you	could	use	the	DStDev	function	in	a	module	to	calculate	the
standard	deviation	across	a	set	of	students'	test	scores.

If	domain	refers	to	fewer	than	two	records	or	if	fewer	than	two	records	satisfy
criteria,	the	DStDev	function	returns	a	Null,	indicating	that	a	standard	deviation
can't	be	calculated.

When	you	use	the	DStDev	function	in	a	macro,	module,	query	expression,	or
calculated	control,	you	must	construct	the	criteria	argument	carefully	to	ensure
that	it	will	be	evaluated	correctly.

You	can	use	the	DStDev	function	to	specify	criteria	in	the	criteria	row	of	a
select	query.	For	example,	you	could	create	a	query	on	an	Orders	table	and	a
Products	table	to	display	all	products	for	which	the	freight	cost	fell	above	the
mean	plus	the	standard	deviation	for	freight	cost.	The	criteria	row	beneath	the
Freight	field	would	contain	the	following	expression:

>(DStDev("[Freight]",	"Orders")	+	DAvg("[Freight]",	"Orders"))

You	can	use	the	DStDev	function	within	a	calculated	field	expression	in	a	query,
or	in	the	Update	To	row	of	an	update	query.

Note			You	can	use	the	DStDev	function	or	the	StDev	function	in	a	calculated
field	expression	in	a	totals	query.	If	you	use	the	DStDev	function,	the	value	is
calculated	before	data	is	grouped.	If	you	use	the	StDev	function,	the	data	is
grouped	before	values	in	the	field	expression	are	evaluated.

Use	the	DStDev	function	in	a	calculated	control	when	you	need	to	specify
criteria	to	restrict	the	range	of	data	on	which	the	function	is	performed.	For
example,	to	display	standard	deviation	for	orders	to	be	shipped	to	California,	set
the	ControlSource	property	of	a	text	box	to	the	following	expression:

=DStDev("[Freight]",	"Orders",	"[ShipRegion]	=	'CA'")

If	you	simply	want	to	find	the	standard	deviation	across	all	records	in	domain,

use	the	StDev	function.

Tip			If	the	data	type	of	the	field	from	which	expr	is	derived	is	a	number,	the
DStDev	function	to	return	a	Double	data	type.	If	you	use	the	DStDev	function
in	a	calculated	control,	include	a	data	type	conversion	function	in	the	expression
to	improve	performance.

Note			Unsaved	changes	to	records	in	domain	are	not	included	when	you	use
these	functions.	If	you	want	the	DStDev	function	to	be	based	on	the	changed
values,	you	must	first	save	the	changes	by	clicking	Save	Record	on	the	File
menu,	moving	the	focus	to	another	record,	or	by	using	the	Update	method.

Example

The	following	example	returns	estimates	of	the	standard	deviation	for	a
population	and	a	population	sample	for	orders	shipped	to	the	United	Kingdom.
The	domain	is	an	Orders	table.	The	criteria	argument	restricts	the	resulting	set	of
records	to	those	for	which	the	ShipCountry	is	UK.

Dim	dblX	As	Double,	dblY	As	Double

'	Sample	estimate.

dblX	=	DStDev("[Freight]",	"Orders",	"[ShipCountry]	=	'UK'")

'	Population	estimate.

dblY	=	DStDevP("[Freight]",	"Orders",	"[ShipCountry]	=	'UK'")

The	next	example	calculates	the	same	estimates	by	using	a	variable,	strCountry,
in	the	criteria	argument.	Note	that	single	quotation	marks	(')	are	included	in	the
string	expression,	so	that	when	the	strings	are	concatenated,	the	string	literal	UK
will	be	enclosed	in	single	quotation	marks.

Dim	strCountry	As	String,	dblX	As	Double,	dblY	As	Double

strCountry	=	"UK"

dblX	=	DStDev("[Freight]",	"Orders",	_

				"[ShipCountry]	=	'"	&	strCountry	&	"'")

dblY	=	DStDevP("[Freight]",	"Orders",	_

				"[ShipCountry]	=	'"	&	strCountry	&	"'")

Show	All

DStDevP	Method
							

You	can	use	the	DStDevP	function	to	estimate	the	standard	deviation	across	a
set	of	values	in	a	specified	set	of	records	(a	domain).	Use	the	DStDevP	functions
in	Visual	Basic,	a	macro,	a	query	expression,	or	a	calculated	control	on	a	form	or
report.	Variant.

expression.DStDevP(Expr,	Domain,	Criteria)

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

Expr		Required	String.	An	expression	that	identifies	the	numeric	field	on	which
you	want	to	find	the	standard	deviation.	It	can	be	a	string	expression	identifying
a	field	from	a	table	or	query,	or	it	can	be	an	expression	that	performs	a
calculations	on	data	in	that	field.	In	expr,	you	can	include	the	name	of	a	field	in	a
table,	a	control	on	a	form,	a	constant,	or	a	function.	If	expr	includes	a	function,	it
can	be	either	built-in	or	user-defined,	but	not	another	domain	aggregate	or	SQL
aggregate	function.

Domain		Required	String.	A	string	expression	identifying	the	set	of	records	that
constitutes	the	domain.	It	can	be	a	table	name	or	a	query	name.

Criteria		Optional	Variant.	An	optional	string	expression	used	to	restrict	the
range	of	data	on	which	the	DStDevP	function	is	performed.	For	example,
criteria	is	often	equivalent	to	the	WHERE	clause	in	an	SQL	expression,	without
the	word	WHERE.	If	criteria	is	omitted,	the	DStDevP	function	evaluates	expr
against	the	entire	domain.	Any	field	that	is	included	in	criteria	must	also	be	a
field	in	domain;	otherwise,	the	DStDevP	function	will	return	a	Null.

Remarks

Use	the	DStDevP	function	to	evaluate	a	population.

If	domain	refers	to	fewer	than	two	records	or	if	fewer	than	two	records	satisfy
criteria,	the	DStDevP	function	returns	a	Null,	indicating	that	a	standard
deviation	can't	be	calculated.

When	you	use	the	DStDevP	function	in	a	macro,	module,	query	expression,	or
calculated	control,	you	must	construct	the	criteria	argument	carefully	to	ensure
that	it	will	be	evaluated	correctly.

You	can	use	the	DStDevP	function	to	specify	criteria	in	the	criteria	row	of	a
select	query.

You	can	use	the	DStDevP	function	within	a	calculated	field	expression	in	a
query,	or	in	the	Update	To	row	of	an	update	query.

Note			You	can	use	the	DStDevP	function	or	the	StDevP	function	in	a	calculated
field	expression	in	a	totals	query.	If	you	use	the	DStDevP	function,	values	are
calculated	before	data	is	grouped.	If	you	use	the	StDevP	function,	the	data	is
grouped	before	values	in	the	field	expression	are	evaluated.

Use	the	DStDevP	function	in	a	calculated	control	when	you	need	to	specify
criteria	to	restrict	the	range	of	data	on	which	the	function	is	performed.

If	you	simply	want	to	find	the	standard	deviation	across	all	records	in	domain,
use	the	StDevP	function.

Tip			If	the	data	type	of	the	field	from	which	expr	is	derived	is	a	number,	the
DStDevP	function	returns	a	Double	data	type.	If	you	use	the	DStDevP	function
in	a	calculated	control,	include	a	data	type	conversion	function	in	the	expression
to	improve	performance.

Note			Unsaved	changes	to	records	in	domain	are	not	included	when	you	use
these	functions.	If	you	want	the	DStDevP	function	to	be	based	on	the	changed
values,	you	must	first	save	the	changes	by	clicking	Save	Record	on	the	File
menu,	moving	the	focus	to	another	record,	or	by	using	the	Update	method.

Example

The	following	example	returns	estimates	of	the	standard	deviation	for	a
population	and	a	population	sample	for	orders	shipped	to	the	United	Kingdom.
The	domain	is	an	Orders	table.	The	criteria	argument	restricts	the	resulting	set	of
records	to	those	for	which	the	ShipCountry	is	UK.

Dim	dblX	As	Double,	dblY	As	Double

'	Sample	estimate.

dblX	=	DStDev("[Freight]",	"Orders",	"[ShipCountry]	=	'UK'")

'	Population	estimate.

dblY	=	DStDevP("[Freight]",	"Orders",	"[ShipCountry]	=	'UK'")

The	next	example	calculates	the	same	estimates	by	using	a	variable,	strCountry,
in	the	criteria	argument.	Note	that	single	quotation	marks	(')	are	included	in	the
string	expression,	so	that	when	the	strings	are	concatenated,	the	string	literal	UK
will	be	enclosed	in	single	quotation	marks.

Dim	strCountry	As	String,	dblX	As	Double,	dblY	As	Double

strCountry	=	"UK"

dblX	=	DStDev("[Freight]",	"Orders",	_

				"[ShipCountry]	=	'"	&	strCountry	&	"'")

dblY	=	DStDevP("[Freight]",	"Orders",	_

				"[ShipCountry]	=	'"	&	strCountry	&	"'")

Show	All

DSum	Method
							

You	can	use	the	DSum	functions	to	calculate	the	sum	of	a	set	of	values	in	a
specified	set	of	records	(a	domain).	Use	the	DSum	function	in	Visual	Basic,	a
macro,	a	query	expression,	or	a	calculated	control.	Variant.

expression.DSum(Expr,	Domain,	Criteria)

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

Expr		Required	String.	An	expression	that	identifies	the	numeric	field	whose
values	you	want	to	total.	It	can	be	a	string	expression	identifying	a	field	in	a
table	or	query,	or	it	can	be	an	expression	that	performs	a	calculation	on	data	in
that	field.	In	expr,	you	can	include	the	name	of	a	field	in	a	table,	a	control	on	a
form,	a	constant,	or	a	function.	If	expr	includes	a	function,	it	can	be	either	built-
in	or	user-defined,	but	not	another	domain	aggregate	or	SQL	aggregate	function.

Domain		Required	String.	A	string	expression	identifying	the	set	of	records	that
constitutes	the	domain.	It	can	be	a	table	name	or	a	query	name.

Criteria		Optional	Variant.	An	optional	string	expression	used	to	restrict	the
range	of	data	on	which	the	DSum	function	is	performed.	For	example,	criteria	is
often	equivalent	to	the	WHERE	clause	in	an	SQL	expression,	without	the	word
WHERE.	If	criteria	is	omitted,	the	DSum	function	evaluates	expr	against	the
entire	domain.	Any	field	that	is	included	in	criteria	must	also	be	a	field	in
domain;	otherwise,	the	DSum	function	returns	a	Null.

Remarks

For	example,	you	could	use	the	DSum	function	in	a	calculated	field	expression
in	a	query	to	calculate	the	total	sales	made	by	a	particular	employee	over	a
period	of	time.	Or	you	could	use	the	DSum	function	in	a	calculated	control	to
display	a	running	sum	of	sales	for	a	particular	product.

If	no	record	satisfies	the	criteria	argument	or	if	domain	contains	no	records,	the
DSum	function	returns	a	Null.

Whether	you	use	the	DSum	function	in	a	macro,	module,	query	expression,	or
calculated	control,	you	must	construct	the	criteria	argument	carefully	to	ensure
that	it	will	be	evaluated	correctly.

You	can	use	the	DSum	function	to	specify	criteria	in	the	Criteria	row	of	a
query,	in	a	calculated	field	in	a	query	expression,	or	in	the	Update	To	row	of	an
update	query.

Note			You	can	use	either	the	DSum	or	Sum	function	in	a	calculated	field
expression	in	a	totals	query.	If	you	use	the	DSum	function,	values	are	calculated
before	data	is	grouped.	If	you	use	the	Sum	function,	the	data	is	grouped	before
values	in	the	field	expression	are	evaluated.

You	may	want	to	use	the	DSum	function	when	you	need	to	display	the	sum	of	a
set	of	values	from	a	field	that	is	not	in	the	record	source	for	your	form	or	report.
For	example,	suppose	you	have	a	form	that	displays	information	about	a
particular	product.	You	could	use	the	DSum	function	to	maintain	a	running	total
of	sales	of	that	product	in	a	calculated	control.

Tip			If	you	need	to	maintain	a	running	total	in	a	control	on	a	report,	you	can	use
the	RunningSum	property	of	that	control	if	the	field	on	which	it	is	based	is
included	in	the	record	source	for	the	report.	Use	the	DSum	function	to	maintain
a	running	sum	on	a	form.

Note			Unsaved	changes	to	records	in	domain	aren't	included	when	you	use	this
function.	If	you	want	the	DSum	function	to	be	based	on	the	changed	values,	you
must	first	save	the	changes	by	clicking	Save	Record	on	the	File	menu,	moving
the	focus	to	another	record,	or	by	using	the	Update	method.

mk:@MSITStore:ado210.chm::/htm/mdmthUpdate.htm

Example

The	following	example	returns	the	summation	of	the	Freight	field	for	orders
shipped	to	the	United	Kingdom.	The	domain	is	an	Orders	table.	The	criteria
argument	restricts	the	resulting	set	of	records	to	those	for	which	ShipCountry
equals	UK.

Dim	curX	As	Currency

curX	=	DSum	("[Orders]![Freight]	",	"[Orders]",	"[ShipCountry]	=	'UK'"

Show	All

DVar	Method
							

You	can	use	the	DVar	function	to	estimate	variance	across	a	set	of	values	in	a
specified	set	of	records.	Use	the	DVar	function	in	Visual	Basic,	a	macro,	a	query
expression,	or	a	calculated	control	on	a	form	or	report.

Use	the	DVar	function	to	evaluate	variance	across	a	population	sample.	For
example,	you	could	use	the	DVar	function	to	calculate	the	variance	across	a	set
of	students'	test	scores.

expression.DVar(Expr,	Domain,	Criteria)

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

Expr		Required	String.	An	expression	that	identifies	the	numeric	field	on	which
you	want	to	find	the	variance.	It	can	be	a	string	expression	identifying	a	field
from	a	table	or	query,	or	it	can	be	an	expression	that	performs	a	calculation	on
data	in	that	field.	In	expr,	you	can	include	the	name	field	in	a	table,	a	control	on
a	form,	a	constant,	or	a	function.	If	expr	includes	a	function,	it	can	be	either
built-in	or	user-defined,	but	not	another	domain	aggregate	or	SQL	aggregate
function.	Any	field	included	in	expr	must	be	a	numeric	field.

Domain		Required	String.	A	string	expression	identifying	the	set	of	records	that
constitutes	the	domain.	It	can	be	a	table	name	or	a	query	name.

Criteria		Optional	Variant.	An	optional	string	expression	used	to	restrict	the
range	of	data	on	which	the	DVar	function	is	performed.	For	example,	criteria	is
often	equivalent	to	the	WHERE	clause	in	an	SQL	expression,	without	the	word
WHERE.	If	criteria	is	omitted,	the	DVar	function	evaluates	expr	against	the
entire	domain.	Any	field	that	is	included	in	criteria	must	also	be	a	field	in
domain;	otherwise	the	DVar	function	returns	a	Null.

Remarks

If	domain	refers	to	fewer	than	two	records	or	if	fewer	than	two	records	satisfy
criteria,	the	DVar	function	return	a	Null,	indicating	that	a	variance	can't	be
calculated.

When	you	use	the	DVar	function	in	a	macro,	module,	query	expression,	or
calculated	control,	you	must	construct	the	criteria	argument	carefully	to	ensure
that	it	will	be	evaluated	correctly.

You	can	use	the	DVar	function	to	specify	criteria	in	the	Criteria	row	of	a	select
query,	in	a	calculated	field	expression	in	a	query,	or	in	the	Update	To	row	of	an
update	query.

Note			You	can	use	the	DVar	function	or	the	Var	function	in	a	calculated	field
expression	in	a	totals	query.	If	you	use	the	DVar	function,	values	are	calculated
before	data	is	grouped.	If	you	use	the	Var	function,	the	data	is	grouped	before
values	in	the	field	expression	are	evaluated.

Use	the	DVar	function	in	a	calculated	control	when	you	need	to	specify	criteria
to	restrict	the	range	of	data	on	which	the	function	is	performed.	For	example,	to
display	a	variance	for	orders	to	be	shipped	to	California,	set	the	ControlSource
property	of	a	text	box	to	the	following	expression:

=DVar("[Freight]",	"Orders",	"[ShipRegion]	=	'CA'")

If	you	simply	want	to	find	the	standard	deviation	across	all	records	in	domain,
use	the	Var	function.

Note			Unsaved	changes	to	records	in	domain	are	not	included	when	you	use
these	functions.	If	you	want	the	DVar	function	to	be	based	on	the	changed
values,	you	must	first	save	the	changes	by	clicking	Save	Record	on	the	File
menu,	moving	the	focus	to	another	record,	or	by	using	the	Update	method.

mk:@MSITStore:dao360.chm::/htm/damthUpdate.htm

Example

The	following	example	returns	estimates	of	the	variance	for	a	population	and	a
population	sample	for	orders	shipped	to	the	United	Kingdom.	The	domain	is	an
Orders	table.	The	criteria	argument	restricts	the	resulting	set	of	records	to	those
for	which	ShipCountry	equals	UK.

Dim	dblX	As	Double,	dblY	As	Double

'	Sample	estimate.

dblX	=	DVar("[Freight]",	"Orders",	"[ShipCountry]	=	'UK'")

'	Population	estimate.

dblY	=	DVarP("[Freight]",	"Orders",	"[ShipCountry]	=	'UK'")

The	next	example	returns	estimates	by	using	a	variable,	strCountry,	in	the
criteria	argument.	Note	that	single	quotation	marks	(')	are	included	in	the	string
expression,	so	that	when	the	strings	are	concatenated,	the	string	literal	UK	will	be
enclosed	in	single	quotation	marks.

Dim	strCountry	As	String,	dblX	As	Double

strCountry	=	"UK"

dblX	=	DVar("[Freight]",	"Orders",	"[ShipCountry]	=	'"	_

				&	strCountry	&	"'")

Show	All

DVarP	Method
							

You	can	use	the	DVarP	function	to	estimate	variance	across	a	set	of	values	in	a
specified	set	of	records.	Use	the	DVarP	function	in	Visual	Basic,	a	macro,	a
query	expression,	or	a	calculated	control	on	a	form	or	report.

Use	the	DVarP	function	to	evaluate	variance	across	a	population.

expression.DVarP(Expr,	Domain,	Criteria)

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

Expr		Required	String.	An	expression	that	identifies	the	numeric	field	on	which
you	want	to	find	the	variance.	It	can	be	a	string	expression	identifying	a	field
from	a	table	or	query,	or	it	can	be	an	expression	that	performs	a	calculation	on
data	in	that	field.	In	expr,	you	can	include	the	name	field	in	a	table,	a	control	on
a	form,	a	constant,	or	a	function.	If	expr	includes	a	function,	it	can	be	either
built-in	or	user-defined,	but	not	another	domain	aggregate	or	SQL	aggregate
function.	Any	field	included	in	expr	must	be	a	numeric	field.

Domain		Required	String.	A	string	expression	identifying	the	set	of	records	that
constitutes	the	domain.	It	can	be	a	table	name	or	a	query	name.

Criteria		Optional	Variant.	An	optional	string	expression	used	to	restrict	the
range	of	data	on	which	the	DVarP	function	is	performed.	For	example,	criteria
is	often	equivalent	to	the	WHERE	clause	in	an	SQL	expression,	without	the
word	WHERE.	If	criteria	is	omitted,	the	DVarP	function	evaluates	expr	against
the	entire	domain.	Any	field	that	is	included	in	criteria	must	also	be	a	field	in
domain;	otherwise	the	DVarP	function	returns	a	Null.

Remarks

If	domain	refers	to	fewer	than	two	records	or	if	fewer	than	two	records	satisfy
criteria,	the	DVarP	function	returns	a	Null,	indicating	that	a	variance	can't	be
calculated.

You	must	construct	the	criteria	argument	carefully	to	ensure	that	it	will	be
evaluated	correctly.

You	can	use	the	DVarP	function	to	specify	criteria	in	the	Criteria	row	of	a
select	query,	in	a	calculated	field	expression	in	a	query,	or	in	the	Update	To	row
of	an	update	query.

Note			You	can	use	the	DVarP	function	or	the	VarP	functions	in	a	calculated
field	expression	in	a	totals	query.	If	you	use	the	DVarP	function,	values	are
calculated	before	data	is	grouped.	If	you	use	the	VarP	function,	the	data	is
grouped	before	values	in	the	field	expression	are	evaluated.

Use	the	DVarP	function	in	a	calculated	control	when	you	need	to	specify
criteria	to	restrict	the	range	of	data	on	which	the	function	is	performed.	For
example,	to	display	a	variance	for	orders	to	be	shipped	to	California,	set	the
ControlSource	property	of	a	text	box	to	the	following	expression:

=DVarP("[Freight]",	"Orders",	"[ShipRegion]	=	'CA'")

If	you	simply	want	to	find	the	standard	deviation	across	all	records	in	domain,
use	the	VarP	function.

Note			Unsaved	changes	to	records	in	domain	are	not	included	when	you	use
these	functions.	If	you	want	the	DVarP	function	to	be	based	on	the	changed
values,	you	must	first	save	the	changes	by	clicking	Save	Record	on	the	File
menu,	moving	the	focus	to	another	record,	or	by	using	the	Update	method.

mk:@MSITStore:dao360.chm::/htm/damthUpdate.htm

Example

The	following	example	returns	estimates	of	the	variance	for	a	population	and	a
population	sample	for	orders	shipped	to	the	United	Kingdom.	The	domain	is	an
Orders	table.	The	criteria	argument	restricts	the	resulting	set	of	records	to	those
for	which	ShipCountry	equals	UK.

Dim	dblX	As	Double,	dblY	As	Double

'	Sample	estimate.

dblX	=	DVar("[Freight]",	"Orders",	"[ShipCountry]	=	'UK'")

'	Population	estimate.

dblY	=	DVarP("[Freight]",	"Orders",	"[ShipCountry]	=	'UK'")

Show	All

Echo	Method
							

Echo	method	as	it	applies	to	the	Application	object.

The	Echo	method	specifies	whether	Microsoft	Access	repaints	the	display
screen.

expression.Echo(EchoOn,	bstrStatusBarText)

expression			Required.	An	expression	that	returns	an	Application	object.

EchoOn		Required	Integer.	True	(default)	indicates	that	the	screen	is	repainted.

bstrStatusBarText		Optional	String.	A	string	expression	that	specifies	the	text	to
display	in	the	status	bar	when	repainting	is	turned	on	or	off.

Remarks

If	you	are	running	Visual	Basic	code	that	makes	a	number	of	changes	to	objects
displayed	on	the	screen,	your	code	may	work	faster	if	you	turn	off	screen
repainting	until	the	procedure	has	finished	running.	You	may	also	want	to	turn
repainting	off	if	your	code	makes	changes	that	the	user	shouldn't	or	doesn't	need
to	see.

The	Echo	method	doesn't	suppress	the	display	of	modal	dialog	boxes,	such	as
error	messages,	or	pop-up	forms,	such	as	property	sheets.

If	you	turn	screen	repainting	off,	the	screen	won't	show	any	changes,	even	if	the
user	presses	CTRL+BREAK	or	Visual	Basic	encounters	a	breakpoint.	You	may
want	to	create	a	macro	that	turns	repainting	on	and	then	assign	the	macro	to	a
key	or	custom	menu	command.	You	can	then	use	the	key	combination	or	menu
command	to	turn	repainting	on	if	it	has	been	turned	off	in	Visual	Basic.

If	you	turn	screen	repainting	off	and	then	try	to	step	through	the	code,	you	won't
be	able	to	see	progress	through	the	code	or	any	other	visual	cues	until	repainting
is	turned	back	on.	However,	your	code	will	continue	to	execute.

Note			Don't	confuse	the	Echo	method	with	the	Repaint	method.	The	Echo
method	turns	screen	repainting	on	or	off.	The	Repaint	method	forces	an
immediate	screen	repainting.

Echo	method	as	it	applies	to	the	DoCmd	object.

The	Echo	method	of	the	DoCmd	object	carries	out	the	Echo	action	in	Visual
Basic.

expression.Echo(EchoOn,	StatusBarText)

expression			Required.	An	expression	that	returns	a	DoCmd	object.

EchoOn		Required	Variant.	Use	True	to	turn	echo	on	and	False	to	turn	it	off.

StatusBarText		Optional	Variant.	A	string	expression	indicating	the	text	that
appears	in	the	status	bar.

mk:@MSITStore:acmain10.chm::/html/acactEcho.htm

Remarks

If	you	leave	the	StatusBarText	argument	blank,	don't	use	a	comma	following	the
echoon	argument.

If	you	turn	echo	off	in	Visual	Basic,	you	must	turn	it	back	on	or	it	will	remain
off,	even	if	the	user	presses	CTRL+BREAK	or	if	Visual	Basic	encounters	a
breakpoint.	You	may	want	to	create	a	macro	that	turns	echo	on	and	then	assign
that	macro	to	a	key	combination	or	a	custom	menu	command.	You	could	then
use	the	key	combination	or	menu	command	to	turn	echo	on	if	it	has	been	turned
off	in	Visual	Basic.

The	Echo	method	of	the	DoCmd	object	was	added	to	provide	backward
compatibility	for	running	the	Echo	action	in	Visual	Basic	code	in	Microsoft
Access	for	Windows	95.	It's	recommended	that	you	use	the	existing	Echo
method	of	the	Application	object	instead.

Example

As	it	applies	to	the	Application	object.

The	following	example	uses	the	Echo	method	to	prevent	the	screen	from	being
repainted	while	certain	operations	are	underway.	While	the	procedure	opens	a
form	and	minimizes	it,	the	user	only	sees	an	hourglass	icon	indicating	that
processing	is	taking	place,	and	the	screen	isn't	repainted.	When	this	task	is
completed,	the	hourglass	changes	back	to	a	pointer	and	screen	repainting	is
turned	back	on.

Public	Sub	EchoOff()

	'	Open	the	Employees	form	minimized.

				Application.Echo	False

				DoCmd.Hourglass	True

				DoCmd.OpenForm	"Employees",	acNormal

				DoCmd.Minimize

				Application.Echo	True

				DoCmd.Hourglass	False

End	Sub

As	it	applies	to	the	DoCmd	object.

The	following	example	uses	the	Echo	method	to	turn	echo	off	and	display	the
specified	text	in	the	status	bar	while	Visual	Basic	code	is	executing:

DoCmd.Echo	False,	"Visual	Basic	code	is	executing."

Show	All

EuroConvert	Function
							

You	can	use	the	EuroConvert	function	to	convert	a	number	to	euro	or	from	euro
to	a	participating	currency.	You	can	also	use	it	to	convert	a	number	from	one
participating	currency	to	another	by	using	the	euro	as	an	intermediary
(triangulation).	The	EuroConvert	function	uses	fixed	conversion	rates
established	by	the	European	Union.

EuroConvert(number,	sourcecurrency,	targetcurrency,	[fullprecision,
triangulationprecision])

Argument Description

number The	number	you	want	to	convert,	or	a	reference	to	a	field
containing	the	number.

sourcecurrency

A	string	expression,	or	reference	to	a	field	containing	the
string,	corresponding	to	the	International	Standards
Organization	(ISO)	acronym	for	the	currency	you	want
to	convert.	Can	be	one	of	the	ISO	codes	listed	in	the
following	table.

	 Currency ISO	Code Calculation
Precision

Display
Precision

	 Belgian	franc BEF 0 0

	 Luxembourg
franc LUF 0 0

	 Deutsche	mark DEM 2 2
	 Spanish	peseta ESP 0 0
	 French	franc FRF 2 2
	 Irish	punt IEP 2 2
	 Italian	lira ITL 0 0

	 Netherlands
guilder NLG 2 2

Austrian

	 schilling ATS 2 2

	 Portuguese
escudo PTE 1 2

	 Finnish	Markka FIM 2 2
	 euro EUR 2 2

	

In	the	preceding	table,	the	calculation	precision
determines	what	currency	unit	to	round	the	result	to
based	on	the	conversion	currency.	For	example,	when
converting	to	Deutsche	marks,	the	calculation	precision
is	2,	and	the	result	is	rounded	to	the	nearest	pfennig,	100
pfennigs	to	a	mark.	The	display	precision	determines
how	many	decimal	places	appear	in	the	field	containing
the	result.

	

Later	versions	of	the	EuroConvert	function	may	support
additional	currencies.	For	information	about	new
participating	currencies	and	updates	to	the	EuroConvert
function,	see	the	Microsoft	Office	Euro	Currency	Web
site.

	 Currency ISO	Code
	 Danish	Krone DKK
	 Drachma GRD
	 Swedish	Krona SEK
	 Pound	Sterling GBP

targetcurrency

A	string	expression,	or	reference	to	a	field	containing	the
string,	corresponding	to	the	ISO	code	of	the	currency	to
which	you	want	to	convert	the	number.	For	a	list	of	ISO
codes,	see	the	sourcecurrency	argument	description.

fullprecision

Optional.	A	Boolean	value	where	True	(1)	ignores	the
currency-specific	rounding	rules	(called	display
precision	in	sourcecurrency	argument	description)	and
uses	the	6-significant-digit	conversion	factor	with	no
follow-up	rounding.	False	(0)	uses	the	currency-specific
rounding	rules	to	display	the	result.	If	the	parameter	is
omitted,	the	default	value	is	False.
Optional.	An	Integer	value	greater	than	or	equal	to	3

triangulationprecision that	specifies	the	number	of	significant	digits	in	the
calculation	precision	used	for	the	intermediate	euro	value
when	converting	between	two	national	currencies.

Remarks

Any	trailing	zeros	are	truncated	and	invalid	parameters	return	#Error.

If	the	source	ISO	code	is	the	same	as	the	target	ISO	code,	the	original	value	of
the	number	is	active.

This	function	does	not	apply	a	format.

The	EuroConvert	function	uses	the	current	rates	established	by	the	European
Union.	If	the	rates	change,	Microsoft	will	update	the	function.	To	get	full
information	about	the	rules	and	the	rates	currently	in	effect,	see	the	European
Commission	publications	about	the	euro.	For	information	about	obtaining	these
publications,	see	the	Microsoft	Office	Euro	Currency	Web	site.

Example

The	first	example	converts	1.20	Deutsche	marks	to	a	euro	dollar	value	(answer	=
0.61).	The	second	example	converts	1.47	French	francs	to	Deutsche	marks
(answer	=	0.44	DM).	They	assume	conversion	rates	of	1	euro	=	6.55858	French
francs	and	1.92974	Deutsche	marks.

EuroConvert(1.20,"DEM","EUR")

EuroConvert(1.47,"FRF","DEM",TRUE,3)

Show	All

Eval	Method
							

You	can	use	the	Eval	function	to	evaluate	an	expression	that	results	in	a	text
string	or	a	numeric	value.	Variant.

expression.Eval(StringExpr)

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

StringExpr		Required	String.	The	stringexpr	argument	is	an	expression	that
evaluates	to	an	alphanumeric	text	string.	For	example,	stringexpr	can	be	a
function	that	returns	a	string	or	a	numeric	value.	Or	it	can	be	a	reference	to	a
control	on	a	form.	The	stringexpr	argument	must	evaluate	to	a	string	or	numeric
value;	it	can't	evaluate	to	a	Microsoft	Access	object.

Remarks

You	can	construct	a	string	and	then	pass	it	to	the	Eval	function	as	if	the	string
were	an	actual	expression.	The	Eval	function	evaluates	the	string	expression	and
returns	its	value.	For	example,	Eval("1	+	1")	returns	2.

If	you	pass	to	the	Eval	function	a	string	that	contains	the	name	of	a	function,	the
Eval	function	returns	the	return	value	of	the	function.	For	example,
Eval("Chr$(65)")	returns	"A".

Note			If	you	are	passing	the	name	of	a	function	to	the	Eval	function,	you	must
include	parentheses	after	the	name	of	the	function	in	the	stringexpr	argument.
For	example:

'	ShowNames	is	user-defined	function.

Debug.Print	Eval("ShowNames()")				

Debug.Print	Eval("StrComp(""Joe"",""joe"",	1)")

Debug.Print	Eval("Date()")

You	can	use	the	Eval	function	in	a	calculated	control	on	a	form	or	report,	or	in	a
macro	or	module.	The	Eval	function	returns	a	Variant	that	is	either	a	string	or	a
numeric	type.

The	argument	stringexpr	must	be	an	expression	that	is	stored	in	a	string.	If	you
pass	to	the	Eval	function	a	string	that	doesn't	contain	a	numeric	expression	or	a
function	name	but	only	a	simple	text	string,	a	run-time	error	occurs.	For
example,	Eval("Smith")	results	in	an	error.

You	can	use	the	Eval	function	to	determine	the	value	stored	in	the	Value
property	of	a	control.	The	following	example	passes	a	string	containing	a	full
reference	to	a	control	to	the	Eval	function.	It	then	displays	the	current	value	of
the	control	in	a	dialog	box.

Dim	ctl	As	Control,	strCtl	As	String

Set	ctl	=	Forms!Employees!LastName

strCtl	=	"Forms!Employees!LastName"

MsgBox	("The	current	value	of	"	&	ctl.Name	&	"	is	"	&	Eval(strCtl))

You	can	use	the	Eval	function	to	access	expression	operators	that	aren't
ordinarily	available	in	Visual	Basic.	For	example,	you	can't	use	the	SQL
operators	Between...And	or	In	directly	in	your	code,	but	you	can	use	them	in	an
expression	passed	to	the	Eval	function.

The	next	example	determines	whether	the	value	of	a	ShipRegion	control	on	an
Orders	form	is	one	of	several	specified	state	abbreviations.	If	the	field	contains
one	of	the	abbreviations,	intState	will	be	True	(–1).	Note	that	you	use	single
quotation	marks	(')	to	include	a	string	within	another	string.

Dim	intState	As	Integer

intState	=	Eval("Forms!Orders!ShipRegion	In	"	_

				&	"('AK',	'CA',	'ID',	'WA',	'MT',	'NM',	'OR')")

Show	All

ExportXML	Method
							

Exports	data,	schema,	and/or	presentation	information	for	the	specified
Microsoft	Access	object	as	XML	files.

expression.ExportXML(ObjectType,	DataSource,	DataTarget,	DataTransform,
SchemaTarget,	SchemaFormat,	SchemaTransform,	PresentationTarget,
PresentationTransform,	ImageTarget,	LiveReportSource,	Encoding,
OtherFlags)

expression			Required.	An	expression	that	returns	an	Application	object.

ObjectType		Required	AcExportXMLObjectType.	The	type	of	Access	object	to
export.

AcExportXMLObjectType	can	be	one	of	these	AcExportXMLObjectType
constants.
acExportDataAccessPage
acExportForm
acExportFunction
acExportQuery
acExportReport
acExportServerView
acExportStoredProcedure
acExportTable

DataSource		Required	String.	The	name	of	the	Access	object	to	export.	The
default	is	the	currently	open	object	of	the	type	specified	by	ObjectType.

DataTarget		Optional	String.	The	file	name	and	path	for	the	exported	data.	If
this	argument	is	omitted,	data	is	not	exported.

DataTransform		Optional	String.	The	name	of	the	XSL	file	to	apply	to	the	data
before	it	is	written	to	the	target	file.

SchemaTarget		Optional	String.	The	file	name	and	path	for	the	exported	schema
information.	If	this	argument	is	omitted,	schema	information	is	embedded	in	the
data	document.

SchemaFormat		Optional	AcExportXMLSchemaFormat.	The	format	in	which
schema	information	is	exported.

AcExportXMLSchemaFormat	can	be	one	of	these
AcExportXMLSchemaFormat	constants.
acSchemaNone	default
acSchemaXSD

SchemaTransform		Optional	String.	The	name	of	the	XSL	file	to	apply	to	the
schema	information	before	it	is	written	to	the	target	file.

PresentationTarget		Optional	String.	The	file	name	and	path	for	the	exported
presentation	information.	If	this	argument	is	omitted,	presentation	information	is
not	exported.

PresentationTransform		Optional	String.	The	name	of	the	XSL	file	to	apply	to
the	presentation	information	before	it	is	written	to	the	target	file.

ImageTarget		Optional	String.	The	path	for	exported	images.	If	this	argument	is
omitted,	images	are	not	exported.

LiveReportSource		Optional	String.	Connection	information	for	a	report
containing	live	data.	This	may	be	a	reference	to	an	.odc	file	or	an	XMLSQL
request.	This	argument	is	ignored	if	ObjectType	is	not	acExportReport.

Encoding		Optional	AcExportXMLEncoding.	The	text	encoding	to	use	for	the
exported	XML.

AcExportXMLEncoding	can	be	one	of	these	AcExportXMLEncoding
constants.
acEUCJ
acUCS2
acUCS4
acUTF16

acUTF8	default

OtherFlags		Optional	Long.	A	bit	mask	which	specifies	other	behaviors
associated	with	exporting	to	XML.	The	following	table	describes	the	behavior
that	results	from	specific	values;	values	can	be	added	to	specify	a	combination	of
behaviors.

Value Description
1 Related	tables		Includes	the	"many"	tables	for	the	object	specified	by	DataSource.

2 Relational	properties		Creates	relational	schema	properties.

4 Run	from	server		Creates	an	ASP	wrapper;	otherwise,	default	is	an	HTML	wrapper.	Only	applies	when
exporting	reports.

8 Special	properties		Creates	extended	property	schema	properties.

Remarks

When	the	ExportXML	method	is	called	from	within	an	Access	object,	the
default	behavior	is	to	overwrite	any	existing	files	specified	in	any	of	the
arguments.	When	the	ExportXML	method	is	called	from	within	a	data	access
page,	the	default	behavior	is	to	prompt	the	user	before	overwriting	any	existing
files	specified	in	any	of	the	arguments.

Example

The	following	example	exports	the	table	called	Customers	in	the	current
database	as	XML.	The	data	and	schema	are	exported	as	separate	files,	and	the
schema	is	in	XSD	format.	Existing	files	are	overwritten.

Application.ExportXML	_

				ObjectType:=acExportTable,	_

				DataSource:="Customers",	_

				DataTarget:="Customers.xml",	_

				SchemaTarget:="CustomersSchema.xml",	_

				SchemaFormat:=acSchemaXSD,	_

				OtherFlags:=1

Show	All

Find	Method
							

Finds	specified	text	in	a	standard	module	or	class	module.

expression.Find(Target,	StartLine,	StartColumn,	EndLine,	EndColumn,
WholeWord,	MatchCase,	PatternSearch)

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

Target		Required	String.	A	string	expression	that	evaluates	to	the	text	that	you
want	to	find.

StartLine		Required	Long.	The	line	on	which	to	begin	searching.	If	a	match	is
found,	the	value	of	the	StartLine	argument	is	set	to	the	line	on	which	the
beginning	character	of	the	matching	text	is	found.

StartColumn		Required	Long.	The	column	on	which	to	begin	searching.	Each
character	in	a	line	is	in	a	separate	column,	beginning	with	zero	on	the	left	side	of
the	module.	If	a	match	is	found,	the	value	of	the	StartColumn	argument	is	set	to
the	column	on	which	the	beginning	character	of	the	matching	text	is	found.

EndLine		Required	Long.	The	line	on	which	to	stop	searching.	If	a	match	is
found,	the	value	of	the	EndLine	argument	is	set	to	the	line	on	which	the	ending
character	of	the	matching	text	is	found.

EndColumn		Required	Long.	The	column	on	which	to	stop	searching.	If	a
match	is	found,	the	value	of	the	EndColumn	argument	is	set	to	the	column	on
which	the	beginning	character	of	the	matching	text	is	found.

WholeWord		Optional	Boolean.	True	results	in	a	search	for	whole	words	only.
The	default	is	False.

MatchCase		Optional	Boolean.	True	results	in	a	search	for	words	with	case
matching	the	Target	argument.	The	default	is	False.

PatternSearch		Optional	Boolean.	True	results	in	a	search	in	which	the	Target
argument	may	contain	wildcard	characters	such	as	an	asterisk	(*)	or	a	question
mark	(?).	The	default	is	False.

Remarks

The	Find	method	searches	for	the	specified	text	string	in	a	Module	object.	If	the
string	is	found,	the	Find	method	returns	True.

To	determine	the	position	in	the	module	at	which	the	search	text	was	found,	pass
empty	variables	to	the	Find	method	for	the	StartLine,	StartColumn,	EndLine,
and	EndColumn	arguments.	If	a	match	is	found,	these	arguments	will	contain
the	line	number	and	column	position	at	which	the	search	text	begins	(StartLine,
StartColumn)	and	ends	(EndLine,	EndColumn).

For	example,	if	the	search	text	is	found	on	line	5,	begins	at	column	10,	and	ends
at	column	20,	the	values	of	these	arguments	will	be:	StartLine	=	5,	StartColumn
=	10,	EndLine	=	5,	EndColumn	=	20.

Example

The	following	function	finds	a	specified	string	in	a	module	and	replaces	the	line
that	contains	that	string	with	a	new	specified	line.

Function	FindAndReplace(strModuleName	As	String,	_

				strSearchText	As	String,	_

				strNewText	As	String)	As	Boolean

				Dim	mdl	As	Module

				Dim	lngSLine	As	Long,	lngSCol	As	Long

				Dim	lngELine	As	Long,	lngECol	As	Long

				Dim	strLine	As	String,	strNewLine	As	String

				Dim	intChr	As	Integer,	intBefore	As	Integer,	_

								intAfter	As	Integer

				Dim	strLeft	As	String,	strRight	As	String

				'	Open	module.

				DoCmd.OpenModule	strModuleName

				'	Return	reference	to	Module	object.

				Set	mdl	=	Modules(strModuleName)

				'	Search	for	string.

				If	mdl.Find(strSearchText,	lngSLine,	lngSCol,	lngELine,	_

								lngECol)	Then

								'	Store	text	of	line	containing	string.

								strLine	=	mdl.Lines(lngSLine,	Abs(lngELine	-	lngSLine)	+	1)

								'	Determine	length	of	line.

								intChr	=	Len(strLine)

								'	Determine	number	of	characters	preceding	search	text.

								intBefore	=	lngSCol	-	1

								'	Determine	number	of	characters	following	search	text.

								intAfter	=	intChr	-	CInt(lngECol	-	1)

								'	Store	characters	to	left	of	search	text.

								strLeft	=	Left$(strLine,	intBefore)

								'	Store	characters	to	right	of	search	text.

								strRight	=	Right$(strLine,	intAfter)

								'	Construct	string	with	replacement	text.

								strNewLine	=	strLeft	&	strNewText	&	strRight

								'	Replace	original	line.

								mdl.ReplaceLine	lngSLine,	strNewLine

								FindAndReplace	=	True

				Else

								MsgBox	"Text	not	found."

								FindAndReplace	=	False

				End	If

Exit_FindAndReplace:

				Exit	Function

Error_FindAndReplace:

MsgBox	Err	&	":	"	&	Err.Description

				FindAndReplace	=	False

				Resume	Exit_FindAndReplace

End	Function

Show	All

FindNext	Method
							

The	FindNext	method	carries	out	the	FindNext	action	in	Visual	Basic.

expression.FindNext

expression			Required.	An	expression	that	returns	a	DoCmd	object.

mk:@MSITStore:acmain10.chm::/html/acactFindNext.htm

Remarks

This	method	has	no	arguments	and	can	be	called	using	the	syntax
DoCmd.FindNext.

You	can	use	the	FindNext	method	to	find	the	next	record	that	meets	the	criteria
specified	by	the	previous	FindRecord	method	or	the	Find	In	Field	dialog	box,
available	by	clicking	Find	on	the	Edit	menu.	You	can	use	the	FindNext	method
to	search	repeatedly	for	records.	For	example,	you	can	move	successively
through	all	the	records	for	a	specific	customer.

mk:@MSITStore:acmain10.chm::/html/acactFindRecord.htm

Show	All

FindRecord	Method
							

The	FindRecord	method	carries	out	the	FindRecord	action	in	Visual	Basic.

expression.FindRecord(FindWhat,	Match,	MatchCase,	Search,
SearchAsFormatted,	OnlyCurrentField,	FindFirst)

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

FindWhat		Required	Variant.	An	expression	that	evaluates	to	text,	a	number,	or
a	date.	The	expression	contains	the	data	to	search	for.

Match		Optional	AcFindMatch.

AcFindMatch	can	be	one	of	these	AcFindMatch	constants.
acAnywhere
acEntire	default
acStart

If	you	leave	this	argument	blank,	the	default	constant	(acEntire)	is	assumed.

MatchCase		Optional	Variant.	Use	True	for	a	case-sensitive	search	and	False
for	a	search	that's	not	case-sensitive.	If	you	leave	this	argument	blank,	the	default
(False)	is	assumed.

Search		Optional	AcSearchDirection.

AcSearchDirection	can	be	one	of	these	AcSearchDirection	constants.
acDown
acSearchAll	default
acUp

mk:@MSITStore:acmain10.chm::/html/acactFindRecord.htm

If	you	leave	this	argument	blank,	the	default	constant	(acSearchAll)	is	assumed.

SearchAsFormatted		Optional	Variant.	Use	True	to	search	for	data	as	it's
formatted	and	False	to	search	for	data	as	it's	stored	in	the	database.	If	you	leave
this	argument	blank,	the	default	(False)	is	assumed.

OnlyCurrentField		Optional	AcFindField.

AcFindField	can	be	one	of	these	AcFindField	constants.
acAll
acCurrent	default

If	you	leave	this	argument	blank,	the	default	constant	(acCurrent)	is	assumed.

FindFirst		Optional	Variant.	Use	True	to	start	the	search	at	the	first	record.	Use
False	to	start	the	search	at	the	record	following	the	current	record.	If	you	leave
this	argument	blank,	the	default	(True)	is	assumed.

Remarks

For	more	information	on	how	the	action	and	its	arguments	work,	see	the	action
topic.

You	can	leave	an	optional	argument	blank	in	the	middle	of	the	syntax,	but	you
must	include	the	argument's	comma.	If	you	leave	one	or	more	trailing	arguments
blank,	don't	use	a	comma	following	the	last	argument	you	specify.

Example

The	following	example	finds	the	first	occurrence	in	the	records	of	the	name
Smith	in	the	current	field.	It	doesn't	find	occurrences	of	smith	or	Smithson.

DoCmd.FindRecord	"Smith",,	True,,	True

Show	All

Follow	Method
							

The	Follow	method	opens	the	document	or	Web	page	specified	by	a	hyperlink
address	associated	with	a	control	on	a	form	or	report.

expression.Follow(NewWindow,	AddHistory,	ExtraInfo,	Method,	HeaderInfo)

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

NewWindow		Optional	Boolean.	A	Boolean	value	where	True	(–1)	opens	the
document	in	a	new	window	and	False	(0)	opens	the	document	in	the	current
window.	The	default	is	False.

AddHistory		Optional	Boolean.	A	Boolean	value	where	True	adds	the	hyperlink
to	the	History	folder	and	False	doesn't	add	the	hyperlink	to	the	History	folder.
The	default	is	True.

ExtraInfo		Optional	Variant.	A	string	or	an	array	of	Byte	data	that	specifies
additional	information	for	navigating	to	a	hyperlink.	For	example,	this	argument
may	be	used	to	specify	a	search	parameter	for	an	.ASP	or	.IDC	file.	In	your	Web
browser,	the	extrainfo	argument	may	appear	after	the	hyperlink	address,
separated	from	the	address	by	a	question	mark	(?).	You	don't	need	to	include	the
question	mark	when	you	specify	the	extrainfo	argument.

Method		Optional	MsoExtraInfoMethod.	An	Integer	value	that	specifies	how
the	extrainfo	argument	is	attached.	The	method	argument	may	be	one	of	the
following	intrinsic	constants.

MsoExtraInfoMethod	can	be	one	of	these	MsoExtraInfoMethod	constants.
msoMethodGet	default.	The	extrainfo	argument	is	appended	to	the	hyperlink
address	and	can	only	be	a	string.	This	value	is	passed	by	default.
msoMethodPost.	The	extrainfo	argument	is	posted,	either	as	a	string	or	as	an
array	of	type	Byte.

HeaderInfo		Optional	String.	A	string	that	specifies	header	information.	By
default	the	headerinfo	argument	is	a	zero-length	string	("	").

Remarks

The	Follow	method	has	the	same	effect	as	clicking	a	hyperlink.

You	can	include	the	Follow	method	in	an	event	procedure	if	you	want	to	open	a
hyperlink	in	response	to	a	user	action.	For	example,	you	may	want	to	open	a	web
page	with	reference	information	when	a	user	opens	a	particular	form.

When	you	use	the	Follow	method,	you	don't	need	to	know	the	address	specified
by	a	control's	HyperlinkAddress	property.	You	only	need	to	know	the	name	of
the	control	that	contains	the	hyperlink.	Conversely,	when	you	use	the
FollowHyperlink	method,	you	need	to	specify	the	address	for	the	particular
hyperlink	you	wish	to	follow.

Example

The	following	example	sets	the	HyperlinkAddress	property	of	a	command
button	and	then	opens	the	hyperlink	when	the	form	is	loaded.

To	try	this	example,	create	a	form	and	add	a	command	button	named
Command0.	Paste	the	following	code	into	the	form's	module	and	switch	to	Form
view:

Private	Sub	Form_Load()

				Dim	ctl	As	CommandButton

				Set	ctl	=	Me!Command0

				With	ctl

								.Visible	=	False

								.HyperlinkAddress	=	"http://www.microsoft.com/"

								.Hyperlink.Follow

				End	With

End	Sub

Show	All

FollowHyperlink	Method
							

The	FollowHyperlink	method	opens	the	document	or	Web	page	specified	by	a
hyperlink	address.

expression.FollowHyperlink(Address,	SubAddress,	NewWindow,	AddHistory,
ExtraInfo,	Method,	HeaderInfo)

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

Address		Required	String.	A	string	expression	that	evaluates	to	a	valid	hyperlink
address.

SubAddress		Optional	String.	A	string	expression	that	evaluates	to	a	named
location	in	the	document	specified	by	the	address	argument.	The	default	is	a
zero-length	string	("	").

NewWindow		Optional	Boolean.	A	Boolean	value	where	True	(–1)	opens	the
document	in	a	new	window	and	False	(0)	opens	the	document	in	the	current
window.	The	default	is	False.

AddHistory		Optional	Boolean.	A	Boolean	value	where	True	adds	the	hyperlink
to	the	History	folder	and	False	doesn't	add	the	hyperlink	to	the	History	folder.
The	default	is	True.

ExtraInfo		Optional	Variant.	A	string	or	an	array	of	Byte	data	that	specifies
additional	information	for	navigating	to	a	hyperlink.	For	example,	this	argument
may	be	used	to	specify	a	search	parameter	for	an	.asp	or	.idc	file.	In	your	Web
browser,	the	extrainfo	argument	may	appear	after	the	hyperlink	address,
separated	from	the	address	by	a	question	mark	(?).	You	don't	need	to	include	the
question	mark	when	you	specify	the	extrainfo	argument.

Method		Optional	MsoExtraInfoMethod.	An	Integer	value	that	specifies	how
the	extrainfo	argument	is	attached.	The	method	argument	may	be	one	of	the

following	intrinsic	constants.

MsoExtraInfoMethod	can	be	one	of	these	MsoExtraInfoMethod	constants.
msoMethodGet	default.	The	extrainfo	argument	is	appended	to	the	hyperlink
address	and	can	only	be	a	string.	This	value	is	passed	by	default.
msoMethodPost.	The	extrainfo	argument	is	posted,	either	as	a	string	or	as	an
array	of	type	Byte.

HeaderInfo		Optional	String.	A	string	that	specifies	header	information.	By
default	the	headerinfo	argument	is	a	zero-length	string.

Remarks

By	using	the	FollowHyperlink	method,	you	can	follow	a	hyperlink	that	doesn't
exist	in	a	control.	This	hyperlink	may	be	supplied	by	you	or	by	the	user.	For
example,	you	can	prompt	a	user	to	enter	a	hyperlink	address	in	a	dialog	box,
then	use	the	FollowHyperlink	method	to	follow	that	hyperlink.

You	can	use	the	extrainfo	and	method	arguments	to	supply	additional
information	when	navigating	to	a	hyperlink.	For	example,	you	can	supply
parameters	to	a	search	engine.

You	can	use	the	Follow	method	to	follow	a	hyperlink	associated	with	a	control.

Example

The	following	function	prompts	a	user	for	a	hyperlink	address	and	then	follows
the	hyperlink:

Function	GetUserAddress()	As	Boolean

				Dim	strInput	As	String

				On	Error	GoTo	Error_GetUserAddress

				strInput	=	InputBox("Enter	a	valid	address")

				Application.FollowHyperlink	strInput,	,	True

				GetUserAddress	=	True

Exit_GetUserAddress:

				Exit	Function

Error_GetUserAddress:

				MsgBox	Err	&	":	"	&	Err.Description

				GetUserAddress	=	False

				Resume	Exit_GetUserAddress

End	Function

You	could	call	this	function	with	a	procedure	such	as	the	following:

Sub	CallGetUserAddress()

				If	GetUserAddress	=	True	Then

								MsgBox	"Successfully	followed	hyperlink."

				Else

								MsgBox	"Could	not	follow	hyperlink."

				End	If

End	Sub

Show	All

GetHiddenAttribute	Method
							
The	GetHiddenAttribute	method	returns	the	value	of	hidden	attribute	of	a
Microsoft	Access	object	in	the	object's	Properties	dialog	box,	available	by
selecting	the	object	in	the	Database	window	and	clicking	Properties	on	the
View	menu.

object.GetHiddenAttribute(objecttype,	objectname)

The	GetHiddenAttribute	method	has	the	following	arguments.

Argument Description
object Optional.	The	Application	object.

objecttype

One	of	the	following	intrinsic	constants:

acDataAccessPage
acDiagram
acForm
acMacro
acModule
acQuery
acReport
acServerView
acStoredProcedure
acTable

	 You	must	enter	a	constant	for	the	objecttype	argument,
acDefault	is	not	a	valid	entry.

objectname A	string	expression	identifying	the	name	of	the	Access
object.

Remarks

The	GetHiddenAttribute	method	(along	with	the	SetHiddenAttribute	method)
provide	a	means	of	changing	an	object's	hidden	attribute	from	Visual	Basic	code.
With	these	methods,	you	can	set	or	read	the	hidden	option	available	in	the
object's	Properties	dialog	box.

Since	the	hidden	attributes	that	the	user	can	set	by	selecting	or	clearing	a	check
box,	the	GetHiddenAttribute	method	returns	True	if	the	option	setting	is	Yes
(the	check	box	is	selected)	or	False	if	the	option	setting	is	No	(the	check	box	is
cleared).	For	example,	to	set	an	option	of	this	kind	by	using	the
SetHiddenAttribute	method,	specify	True	or	False	for	the	setting	argument,	as
in	the	following:

Application.SetHiddenAttribute	acTable,"Customers",	True

							

Show	All

GetOption	Method
							

The	GetOption	method	returns	the	current	value	of	an	option	in	the	Options
dialog	box,	available	by	clicking	Options	on	the	Tools	menu.	Variant.

expression.GetOption(OptionName)

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

OptionName		Required	String.	The	name	of	the	option.	For	a	list	of	optionname
argument	strings,	see	Set	Options	from	Visual	Basic.

Remarks

The	GetOption	and	SetOption	methods	provide	a	means	of	changing
environment	options	from	Visual	Basic	code.	With	these	methods,	you	can	set	or
read	any	option	available	in	the	Options	dialog	box,	except	for	options	on	the
Modules	tab.

The	available	option	settings	depend	on	the	type	of	option	being	set.	There	are
three	general	types	of	options:

Yes/No	options	that	can	be	set	by	selecting	or	clearing	a	check	box.

Options	that	can	be	set	by	entering	a	string	or	numeric	value.

Predefined	options	that	can	be	chosen	from	a	list	box,	combo	box,	or	option
group.

For	options	that	the	user	sets	by	selecting	or	clearing	a	check	box,	the
GetOption	method	returns	True	(–1)	if	the	option	setting	is	Yes	(the	check	box
is	selected)	or	False	(0)	if	the	option	setting	is	No	(the	check	box	is	cleared).	To
set	an	option	of	this	kind	by	using	the	SetOption	method,	specify	True	or	False
for	the	setting	argument,	as	in	the	following	example:

Application.SetOption	"Show	Status	Bar",	True

For	options	that	the	user	sets	by	typing	a	string	or	numeric	value,	the	GetOption
method	returns	the	setting	as	it's	displayed	in	the	dialog	box.	The	following
example	returns	a	string	containing	the	left	margin	setting:

Dim	varSetting	As	Variant

varSetting	=	Application.GetOption("Left	Margin")

To	set	this	type	of	option	by	using	the	SetOption	method,	specify	the	string	or
numeric	value	that	would	be	typed	in	the	dialog	box.	The	following	example	sets
the	default	form	template	to	OrderTemplate:

Application.SetOption	"Form	Template",	"OrderTemplate"

For	options	with	settings	that	are	choices	in	list	boxes	or	combo	boxes,	the

GetOption	method	returns	a	number	corresponding	to	the	position	of	the	setting
in	the	list.	Indexing	begins	with	zero,	so	the	GetOption	method	returns	zero	for
the	first	item,	1	for	the	second	item,	and	so	on.	For	example,	if	the	Default	Field
Type	option	on	the	Tables/Queries	tab	is	set	to	AutoNumber,	the	sixth	item	in
the	list,	the	GetOption	method	returns	5.

To	set	this	type	of	option,	specify	the	option's	numeric	position	within	the	list	as
the	setting	argument	for	the	SetOption	method.	The	following	example	sets	the
Default	Field	Type	option	to	AutoNumber:

Application.SetOption	"Default	Field	Type",	5

Other	options	are	set	by	clicking	on	an	option	button	in	an	option	group	in	the
Options	dialog	box.	In	Visual	Basic,	these	options	are	also	set	by	specifying	a
particular	option's	position	within	the	option	group.	The	first	option	in	the	group
is	numbered	zero,	the	second,	1,	and	so	on.	For	example,	if	the	Selection
Behavior	option	on	the	Forms/Reports	tab	is	set	to	Partially	Enclosed,	the
GetOption	method	returns	zero,	as	in	the	following	example:

Debug.Print	Application.GetOption("Selection	Behavior")

To	set	an	option	that's	a	member	of	an	option	group,	specify	the	index	number	of
the	option	within	the	group.	The	following	example	sets	Selection	Behavior	to
Fully	Enclosed:

Application.SetOption	"Selection	Behavior",	1

Notes

When	you	use	the	GetOption	method	or	the	SetOption	method	to	set	an
option	in	the	Options	dialog	box,	you	don't	need	to	specify	the	individual
tab	on	which	the	option	is	found.

You	can't	use	the	GetOption	method	or	the	SetOption	method	to	read	or
set	any	of	the	options	found	on	the	Module	tab	of	the	Options	dialog	box.

If	the	return	value	of	the	GetOption	method	is	assigned	to	a	variable,	the
variable	must	be	declared	as	a	Variant.

If	your	database	may	run	on	a	version	of	Microsoft	Access	for	a	language

other	than	the	one	in	which	you	created	it,	then	you	must	supply	the
arguments	for	the	GetOption	and	SetOption	methods	in	English.

When	you	quit	Microsoft	Access,	you	can	reset	all	options	to	their	original
settings	by	using	the	SetOption	method	on	all	changed	options.	You	may	want
to	create	public	variables	to	store	the	values	of	the	original	settings.	You	might
include	code	to	reset	options	in	the	Close	event	procedure	for	a	form,	or	in	a
custom	exit	procedure	that	the	user	must	run	to	quit	the	application.

Show	All

GoToControl	Method
							

The	GoToControl	method	carries	out	the	GoToControl	action	in	Visual	Basic.

expression.GoToControl(ControlName)

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

ControlName		Required	Variant.	A	string	expression	that's	the	name	of	a
control	on	the	active	form	or	datasheet.

mk:@MSITStore:acmain10.chm::/html/acactGoToControl.htm

Remarks

For	more	information	on	how	the	action	and	its	argument	work,	see	the	action
topic.

Use	only	the	name	of	the	control	for	the	controlname	argument,	not	the	full
syntax.

You	can	also	use	a	variable	declared	as	a	Control	data	type	for	this	argument.

Dim	ctl	As	Control

Set	ctl	=	Forms!Form1!Field3

DoCmd.GoToControl	ctl.Name

You	can	also	use	the	SetFocus	method	to	move	the	focus	to	a	control	on	a	form
or	any	of	its	subforms,	or	to	a	field	in	an	open	table,	query,	or	form	datasheet.
This	is	the	preferred	method	for	moving	the	focus	in	Visual	Basic,	especially	to
controls	on	subforms	and	nested	subforms,	because	you	can	use	the	full	syntax
to	specify	the	control	you	want	to	move	to.

Example

The	following	example	uses	the	GoToControl	method	to	move	the	focus	to	the
EmployeeID	field:

DoCmd.GoToControl	"EmployeeID"

Show	All

GoToPage	Method
							

GoToPage	method	as	it	applies	to	the	Form	object.

The	GoToPage	method	moves	the	focus	to	the	first	control	on	a	specified	page
in	the	active	form.

expression.GoToPage(PageNumber,	Right,	Down)

expression			Required.	An	expression	that	returns	one	of	the	above	objects.

PageNumber		Required	Long.	A	numeric	expression	that's	a	valid	page	number
for	the	active	form.

Right		Optional	Long.	A	numeric	expression	that's	a	valid	horizontal	offset	(in
twips)	from	the	left	side	of	the	window	to	the	part	of	the	page	to	be	viewed.

Down		Optional	Long.	A	numeric	expression	that's	a	valid	vertical	offset	(in
twips)	from	the	top	of	the	window	to	the	part	of	the	page	to	be	viewed.

GoToPage	method	as	it	applies	to	the	DoCmd	object.

The	GoToPage	method	of	the	DoCmd	object	carries	out	the	GoToPage	action	in
Visual	Basic.	For	more	information	on	how	the	action	and	its	arguments	work,
see	the	action	topic.

expression.GoToPage(PageNumber,	Right,	Down)

expression			Required.	An	expression	that	returns	one	of	the	above	objects.

PageNumber		Required	Variant.	A	numeric	expression	that's	a	valid	page
number	for	the	active	form.	If	you	leave	this	argument	blank,	the	focus	stays	on
the	current	page.	You	can	use	the	right	and	down	arguments	to	display	the	part	of
the	page	you	want	to	see.

Right		Optional	Variant.	A	numeric	expression	that's	a	valid	horizontal	offset

mk:@MSITStore:acmain10.chm::/html/acactGoToPage.htm

for	the	page.

Down		Optional	Variant.	A	numeric	expression	that's	a	valid	vertical	offset	for
the	page.

Remarks

Remarks	as	it	applies	to	the	Form	object.

When	you	use	this	method	to	move	to	a	specified	page	of	a	form,	the	focus	is	set
to	the	first	control	on	the	page,	as	defined	by	the	form's	tab	order.	To	move	to	a
particular	control	on	the	form,	use	the	SetFocus	method.

You	can	use	the	GoToPage	method	if	you've	created	page	breaks	on	a	form	to
group	related	information.	For	example,	you	might	have	an	Employees	form
with	personal	information	on	the	first	page,	office	information	on	the	second
page,	and	sales	information	on	the	third	page.	You	can	use	the	GoToPage
method	to	move	to	the	desired	page.

You	can	use	the	right	and	down	arguments	for	forms	with	pages	larger	than	the
Microsoft	Access	window.	Use	the	pagenumber	argument	to	move	to	the	desired
page,	and	then	use	the	right	and	down	arguments	to	display	the	part	of	the	page
you	want	to	see.	Microsoft	Access	displays	the	part	of	the	page	that's	offset	from
the	upper-left	corner	of	the	window	by	the	distance	specified	in	the	right	and
down	arguments.

Remarks	as	it	applies	to	the	DoCmd	object.

The	units	for	the	right	and	down	arguments	are	expressed	in	twips.

If	you	specify	the	right	and	down	arguments	and	leave	the	pagenumber
argument	blank,	you	must	include	the	pagenumber	argument's	comma.	If	you
don't	specify	the	right	and	down	arguments,	don't	use	a	comma	following	the
pagenumber	argument.

The	GoToPage	method	of	the	DoCmd	object	was	added	to	provide	backwards
compatibility	for	running	the	GoToPage	action	in	Visual	Basic	code	in	Microsoft
Access	95.	It's	recommended	that	you	use	the	existing	GoToPage	method	of	the
Form	object	instead.

Example

Exmaple	as	it	applies	to	the	Form	object.

The	following	example	uses	the	GoToPage	method	to	move	the	focus	to	the
second	page	of	the	Customer	form	at	the	position	specified	by	the	right	and
down	arguments:

Forms!Customer.GoToPage	2,	1440,	600

Example	as	it	applies	to	the	DoCmd	object.

The	following	example	uses	the	GoToPage	method	to	move	the	focus	to	the
position	specified	by	the	horizontal	and	vertical	offsets	on	the	second	page	of	the
active	form:

DoCmd.GoToPage	2,	1440,	567

Show	All

GoToRecord	Method
							

The	GoToRecord	method	carries	out	the	GoToRecord	action	in	Visual	Basic.

expression.GoToRecord(ObjectType,	ObjectName,	Record,	Offset)

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

ObjectType		Optional	AcDataObjectType.

AcDataObjectType	can	be	one	of	these	AcDataObjectType	constants.
acActiveDataObject	default
acDataForm
acDataFunction
acDataQuery
acDataServerView
acDataStoredProcedure
acDataTable

ObjectName		Optional	Variant.	A	string	expression	that's	the	valid	name	of	an
object	of	the	type	selected	by	the	objecttype	argument.

Record		Optional	AcRecord.

AcRecord	can	be	one	of	these	AcRecord	constants.
acFirst
acGoTo
acLast
acNewRec
acNext	default
acPrevious

mk:@MSITStore:acmain10.chm::/html/acactGotoRecord.htm

If	you	leave	this	argument	blank,	the	default	constant	(acNext)	is	assumed.

Offset		Optional	Variant.	A	numeric	expression	that	represents	the	number	of
records	to	move	forward	or	backward	if	you	specify	acNext	or	acPrevious	for
the	record	argument,	or	the	record	to	move	to	if	you	specify	acGoTo	for	the
record	argument.	The	expression	must	result	in	a	valid	record	number.

Remarks

For	more	information	on	how	the	action	and	its	arguments	work,	see	the	action
topic.

If	you	leave	the	objecttype	and	objectname	arguments	blank	(the	default
constant,	acActiveDataObject,	is	assumed	for	objecttype),	the	active	object	is
assumed.

You	can	leave	an	optional	argument	blank	in	the	middle	of	the	syntax,	but	you
must	include	the	argument's	comma.	If	you	leave	one	or	more	trailing	arguments
blank,	don't	use	a	comma	following	the	last	argument	you	specify.

Example

The	following	example	uses	the	GoToRecord	method	to	make	the	seventh
record	in	the	form	Employees	current:

DoCmd.GoToRecord	acDataForm,	"Employees",	acGoTo,	7

Show	All

GUIDFromString	Method
							

The	GUIDFromString	function	converts	a	string	to	a	GUID,	which	is	an	array
of	type	Byte.	Variant.

expression.GUIDFromString(String)

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

String		Required	Variant.	A	string	expression	which	evaluates	to	a	GUID	in
string	form.

Remarks

The	Microsoft	Jet	database	engine	stores	GUIDs	as	arrays	of	type	Byte.
However,	Microsoft	Access	can't	return	Byte	data	from	a	control	on	a	form	or
report.	In	order	to	return	the	value	of	a	GUID	from	a	control,	you	must	convert	it
to	a	string.	To	convert	a	GUID	to	a	string,	use	the	StringFromGUID	function.
To	convert	a	string	to	a	GUID,	use	the	GUIDFromString	function.

Hourglass	Method
							

The	Hourglass	method	carries	out	the	Hourglass	action	in	Visual	Basic.

expression.Hourglass(HourglassOn)

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

HourglassOn		Required	Variant.	Use	True	(–1)	to	display	the	hourglass	icon
(or	another	icon	you've	chosen).	Use	False	(0)	to	display	the	normal	mouse
pointer.

mk:@MSITStore:acmain10.chm::/html/acactHourglass.htm

Remarks

For	more	information	on	how	the	action	and	its	argument	work,	see	the	action
topic.

Example

The	following	example	uses	the	Hourglass	method	to	display	an	hourglass	icon
(or	another	icon	you've	chosen)	while	your	Visual	Basic	code	is	executing:

DoCmd.Hourglass	True

Show	All

hWndAccessApp	Method
							

You	can	use	the	hWndAccessApp	method	to	determine	the	handle	assigned	by
Microsoft	Windows	to	the	main	Microsoft	Access	window.

expression.hWndAccessApp

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

Remarks

The	hWndAccessApp	method	returns	a	Long	Integer	value	set	by	Microsoft
Access	and	is	read-only.

You	can	use	this	method	by	using	Visual	Basic	when	making	calls	to	Windows
application	programming	interface	(API)	functions	or	other	external	procedures
that	require	a	window	handle	as	an	argument.

To	get	the	handle	to	a	window	containing	a	Microsoft	Access	object	such	as	a
Form	or	Report,	use	the	hWnd	property.

Show	All

HyperlinkPart	Method
							

The	HyperlinkPart	method	returns	information	about	data	stored	as	a	Hyperlink
data	type.	String.

expression.HyperlinkPart(Hyperlink,	Part)

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

Hyperlink		Required	Variant.	A	Variant	representing	the	data	stored	in	a
Hyperlink	field.

Part		Optional	AcHyperlinkPart.	The	value	for	the	part	argument	is	an	intrinsic
constant	representing	the	information	you	want	returned	by	the	HyperlinkPart
method.

AcHyperlinkPart	can	be	one	of	these	AcHyperlinkPart	constants.
acAddress.	The	address	part	of	a	Hyperlink	field.
acDisplayedValue	default.	The	underlined	text	displayed	in	a	hyperlink.
acDisplayText.	The	displaytext	part	of	a	Hyperlink	field.
acFullAddress.	The	address	and	subaddress	parts	of	a	Hyperlink	field
delimited	by	a	"#"	character.
acScreenTip.	The	tooltip	part	of	a	Hyperlink	field.
acSubAddress.	The	subaddress	part	of	a	Hyperlink	field.

Remarks

You	use	the	HyperlinkPart	method	to	return	one	of	three	values	from	a
Hyperlink	field	or	the	displayed	value.	The	value	returned	depends	on	the	setting
of	the	part	argument.	The	part	argument	is	optional.	If	it's	not	used,	the	function
returns	the	value	Microsoft	Access	displays	for	the	hyperlink	(which
corresponds	to	the	acDisplayedValue	setting	for	the	part	argument).	The
returned	values	can	be	one	of	the	four	parts	of	the	Hyperlink	field	(displaytext,
address,	subaddress,	or	screentip),	the	full	address,	address#subaddress,	or	the
value	Microsoft	Access	displays	for	the	hyperlink.

Note			If	you	use	the	HyperlinkPart	method	in	a	query,	the	part	argument	is
required	and	you	can't	use	the	constants	listed	above	but	must	use	the	actual
value	instead.

When	a	value	is	provided	in	the	displaytext	part	of	a	Hyperlink	field,	the	value
displayed	by	Microsoft	Access	will	be	the	same	as	the	displaytext	setting.	When
there's	no	value	in	the	displaytext	part	of	a	Hyperlink	field,	the	value	displayed
will	be	the	address	or	subaddress	part	of	the	Hyperlink	field,	depending	on
which	value	is	first	present	in	the	field.

The	following	table	shows	the	values	returned	by	the	HyperlinkPart	method	for
data	stored	in	a	Hyperlink	field.

Hyperlink	field	data HyperlinkPart	method	returned
values

#http://www.microsoft.com#

acDisplayedValue:
http://www.microsoft.com

acDisplayText:

acAddress:
http://www.microsoft.com

acSubAddress:

acScreenTip:

acFullAddress:
http://www.microsoft.com

Microsoft#http://www.microsoft.com#

acDisplayedValue:	Microsoft

acDisplayText:	Microsoft

acAddress:
http://www.microsoft.com

acSubAddress:

acScreenTip:

acFullAddress:
http://www.microsoft.com

Customers#http://www.microsoft.com#Form
Customers

acDisplayedValue:	Customers

acDisplayText:	Customers

acAddress:
http://www.microsoft.com

acSubAddress:	Form	Customers

acScreenTip:

acFullAddress:
http://www.microsoft.com#Form
Customer

##Form	Customers#Enter	Information

acDisplayedValue:	Form
Customers

acDisplayText:

acAddress:

acSubAddress:	Form	Customers

acScreenTip:	Enter	Information

acFullAddress:	#FormCustomer

When	you	add	an	address	part	to	a	Hyperlink	field	by	using	the	Insert
Hyperlink	dialog	box	(available	by	clicking	Hyperlink	on	the	Insert	menu)	or
by	typing	an	address	part	directly	into	a	Hyperlink	field,	Microsoft	Access	adds
the	two	#	symbols	that	delimit	parts	of	the	hyperlink	data.

You	can	add	or	edit	the	displaytext	part	of	a	hyperlink	field	by	right-clicking	a
hyperlink	in	a	table,	form,	or	report,	pointing	to	Hyperlink	on	the	shortcut
menu,	and	then	typing	the	display	text	in	the	Text	to	display	box.

When	you	add	data	to	a	Hyperlink	field	directly,	you	must	include	the	two	#
symbols	to	delimit	the	parts	of	the	hyperlink	data.

Example

The	following	example	uses	all	four	of	the	part	argument	constants	to	display
information	returned	by	the	HyperlinkPart	method	for	each	record	in	a	table
containing	a	Hyperlink	field.	To	try	this	example,	paste	the
DisplayHyperlinkParts	procedure	into	the	Declarations	section	of	a	module.	You
can	call	the	DisplayHyperlinkParts	procedure	from	the	Debug	window,	passing
to	it	the	name	of	a	table	containing	hyperlinks	and	the	name	of	the	field
containing	Hyperlink	data.	For	example:

:DisplayHyperlinkParts	"MyHyperlinkTableName",	"MyHyperlinkFieldName"

Public	Sub	DisplayHyperlinkParts(ByVal	strTable	As	String,	_

																																	ByVal	strField	As	String)

				

				Dim	rst	As	New	ADODB.Recordset

				Dim	strMsg	As	String

								

				rst.Open	strTable,	CurrentProject.Connection,	_

													adOpenForwardOnly,	adLockReadOnly

				'	For	each	record	in	table.

				Do	Until	rst.EOF

								strMsg	=	"DisplayValue	=	"	_

												&	HyperlinkPart(rst(strField),	acDisplayedValue)	_

												&	vbCrLf	&	"DisplayText	=	"	_

												&	HyperlinkPart(rst(strField),	acDisplayText)	_

												&	vbCrLf	&	"Address	=	"	_

												&	HyperlinkPart(rst(strField),	acAddress)	_

												&	vbCrLf	&	"SubAddress	=	"	_

												&	HyperlinkPart(rst(strField),	acSubAddress)	_

												&	vbCrLf	&	"ScreenTip	=	"	_

												&	HyperlinkPart(rst(strField),	acScreenTip)	_

												&	vbCrLf	&	"Full	Address	=	"	_

												&	HyperlinkPart(rst(strField),	acFullAddress)

												

								'	Show	parts	returned	by	HyperlinkPart	function.

								MsgBox	strMsg

								rst.MoveNext

				Loop

				

End	Sub

When	you	use	the	HyperlinkPart	method	in	a	query,	the	part	argument	is
required.	For	example,	the	following	SQL	statement	uses	the	HyperlinkPart
method	to	return	information	about	data	stored	as	a	Hyperlink	data	type	in	the
URL	field	of	the	Links	table:

SELECT	Links.URL,	HyperlinkPart([URL],0)

				AS	Display,	HyperlinkPart([URL],1)

				AS	Name,	HyperlinkPart([URL],2)

				AS	Addr,	HyperlinkPart([URL],3)

				AS	SubAddr,	HyperlinkPart([URL],4)

				AS	ScreenTip

				FROM	Links

ImportXML	Method
							

Imports	data	and/or	presentation	information	for	a	Microsoft	Access	object	from
an	XML	file	or	files.

expression.ImportXML(DataSource,	DataTransform,	OtherFlags)

expression			Required.	An	expression	that	returns	an	Application	object.

DataSource		Required	String.	The	name	and	path	of	the	XML	file	to	import.

DataTransform		Optional	String.	The	name	of	the	XSL	file	to	apply	to	the
incoming	XML	data.

OtherFlags		Optional	Long.	A	bit	mask	which	specifies	other	behaviors
associated	with	importing	from	XML.	The	following	table	describes	the
behavior	that	results	from	specific	values;	values	can	be	added	to	specify	a
combination	of	behaviors.

Value Description
1 Overwrite		The	import	file	silently	overwrites	the	target	should	it	already	exist.

2 Don't	create	structure		By	default,	new	structures	are	created.	If	Overwrite	is	not	set,	an	alert	asks	the	user
for	permission	to	overwrite.

4 Don't	import	data		By	default,	data	is	imported	when	a	data	document	is	used	to	create	a	schema.

Example

The	following	example	imports	an	XML	file	representing	a	table	called	Invoices
into	the	current	database.	Access	overwrites	the	Invoices	table	if	it	already
exists.

Application.ImportXML	_

				DataSource:="C:\XMLData\Invoices.xml",	_

				OtherFlags:=1

Show	All

InsertLines	Method
							

The	InsertLines	method	inserts	a	line	or	group	of	lines	of	code	in	a	standard
module	or	a	class	module.

expression.InsertLines(Line,	String)

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

Line		Required	Long.	The	number	of	the	line	at	which	to	begin	inserting.

String		Required	String.	The	text	to	be	inserted	into	the	module.

Remarks

When	you	use	the	InsertLines	method,	any	existing	code	at	the	line	specified	by
the	line	argument	moves	down.

To	add	multiple	lines,	include	the	intrinsic	constant	vbCrLf	at	the	desired	line
breaks	within	the	string	that	makes	up	the	string	argument.	This	constant	forces
a	carriage	return	and	line	feed.

Lines	in	a	module	are	numbered	beginning	with	one.	To	determine	the	number
of	lines	in	a	module,	use	the	CountOfLines	property.

Example

The	following	example	creates	a	new	form,	adds	a	command	button,	and	creates
a	Click	event	procedure	for	the	command	button:

Function	ClickEventProc()	As	Boolean

				Dim	frm	As	Form,	ctl	As	Control,	mdl	As	Module

				Dim	lngReturn	As	Long

				On	Error	GoTo	Error_ClickEventProc

				'	Create	new	form.

				Set	frm	=	CreateForm

				'	Create	command	button	on	form.

				Set	ctl	=	CreateControl(frm.Name,	acCommandButton,	,	,	,	_

									1000,	1000)

				ctl.Caption	=	"Click	here"

				'	Return	reference	to	form	module.

				Set	mdl	=	frm.Module

				'	Add	event	procedure.

				lngReturn	=	mdl.CreateEventProc("Click",	ctl.Name)

				'	Insert	text	into	body	of	procedure.

				mdl.InsertLines	lngReturn	+	1,	vbTab	&	"MsgBox	""Way	cool!"""

				ClickEventProc	=	True

Exit_ClickEventProc:

				Exit	Function

Error_ClickEventProc:

				MsgBox	Err	&	"	:"	&	Err.Description

				ClickEventProc	=	False

				Resume	Exit_ClickEventProc

End	Function

Show	All

InsertText	Method
							

InsertText	method	as	it	applies	to	the	Module	object.

The	InsertText	method	inserts	a	specified	string	of	text	into	a	standard	module
or	a	class	module.

expression.InsertText(Text)

expression			Required.	An	expression	that	returns	one	of	the	above	objects.

Text		Required	String.	The	text	to	be	inserted	into	the	module.

InsertText	method	as	it	applies	to	the	Application	object.

The	InsertText	method	inserts	a	specified	string	of	text	into	an	application.

expression.InsertText(Text,	ModuleName)

expression			Required.	An	expression	that	returns	one	of	the	above	objects.

Text		Required	String.	The	text	to	be	inserted	into	the	module.

ModuleName		Required	String.		The	name	of	the	module	for	the	application.

Remarks

When	you	insert	a	string	by	using	the	InsertText	method,	Microsoft	Access
places	the	new	text	at	the	end	of	the	module,	after	all	other	procedures.

To	add	multiple	lines,	include	the	intrinsic	constant	vbCrLf	at	the	desired	line
breaks	within	the	string	that	makes	up	the	text	argument.	This	constant	forces	a
carriage	return	and	line	feed.

To	specify	at	which	line	the	text	is	inserted,	use	the	InsertLines	method.	To
insert	code	into	the	Declarations	section	of	the	module,	use	the	InsertLines
method	rather	than	the	InsertText	method.

Note			In	previous	versions	of	Microsoft	Access,	the	InsertText	method	was	a
method	of	the	Application	object.	You	can	still	use	the	InsertText	method	of
the	Application	object,	but	it's	recommended	that	you	use	the	InsertText
method	of	the	Module	object	instead.

Example

As	it	applies	to	the	Module	object.

The	following	example	inserts	a	string	of	text	into	a	standard	module:

Function	InsertProc(strModuleName)	As	Boolean

				Dim	mdl	As	Module,	strText	As	String

				On	Error	GoTo	Error_InsertProc

				'	Open	module.

				DoCmd.OpenModule	strModuleName

				'	Return	reference	to	Module	object.

				Set	mdl	=	Modules(strModuleName)

				'	Initialize	string	variable.

				strText	=	"Sub	DisplayMessage()"	&	vbCrLf	_

								&	vbTab	&	"MsgBox	""Wild!"""	&	vbCrLf	_

								&	"End	Sub"

				'	Insert	text	into	module.

				mdl.InsertText	strText

				InsertProc	=	True

Exit_InsertProc:

				Exit	Function

Error_InsertProc:

				MsgBox	Err	&	":	"	&	Err.Description

				InsertProc	=	False

				Resume	Exit_InsertProc

End	Function

Show	All

Item	Method
							

The	Item	method	returns	a	specific	member	of	a	collection	either	by	position	or
by	key.	Reference	object.

expression.Item(var)

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

var		Required	Variant.	An	expression	that	specifies	the	position	of	a	member	of
the	collection	referred	to	by	the	expression	argument.	If	a	numeric	expression,
the	var	argument	must	be	a	number	from	1	to	the	value	of	the	collection's	Count
property.	If	a	string	expression,	the	var	argument	must	be	the	name	of	a	member
of	the	collection.

Remarks

If	the	value	provided	for	the	var	argument	doesn't	match	any	existing	member	of
the	collection,	an	error	occurs.

The	Item	method	is	the	default	member	of	the	References	collection,	so	you
don't	have	to	specify	it	explicitly.	For	example,	the	following	two	lines	of	code
are	equivalent:

Debug.Print	References(1).Name

Debug.Print	References.Item(1).Name

Show	All

Line	Method
							

The	Line	method	draws	lines	and	rectangles	on	a	Report	object	when	the	Print
event	occurs.

expression.Line(flags,	x1,	y1,	x2,	y2,	color)

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

flags		Required	Integer.

x1		Required	Single.	The	value	indicating	the	coordinate	of	the	starting	point	for
the	line	or	rectangle.	The	Scale	properties	(ScaleMode,	ScaleLeft,	ScaleTop,
ScaleHeight,	and	ScaleWidth)	of	the	Report	object	specified	by	the	object
argument	determine	the	unit	of	measure	used.	If	this	argument	is	omitted,	the
line	begins	at	the	position	indicated	by	the	CurrentX	property.

y1		Required	Single.	The	value	indicating	the	coordinate	of	the	starting	point	for
the	line	or	rectangle.	The	Scale	properties	(ScaleMode,	ScaleLeft,	ScaleTop,
ScaleHeight,	and	ScaleWidth)	of	the	Report	object	specified	by	the	object
argument	determine	the	unit	of	measure	used.	If	this	argument	is	omitted,	the
line	begins	at	the	position	indicated	by	the	CurrentY	property.

x2		Required	Single.	The	value	indicating	the	coordinate	of	the	end	point	for	the
line	to	draw.	This	argument	is	required.

y2		Required	Single.	The	value	indicating	the	coordinate	of	the	end	point	for	the
line	to	draw.	This	argument	is	required.

color		Required	Long.	The	value	indicating	the	RGB	(red-green-blue)	color	used
to	draw	the	line.	If	this	argument	is	omitted,	the	value	of	the	ForeColor	property
is	used.	You	can	also	use	the	RGB	function	or	QBColor	function	to	specify	the
color.

Remarks

You	can	use	this	method	only	in	an	event	procedure	or	a	macro	specified	by	the
OnPrint	or	OnFormat	event	property	for	a	report	section,	or	the	OnPage	event
property	for	a	report.

To	connect	two	drawing	lines,	make	sure	that	one	line	begins	at	the	end	point	of
the	previous	line.

The	width	of	the	line	drawn	depends	on	the	DrawWidth	property	setting.	The
way	a	line	or	rectangle	is	drawn	on	the	background	depends	on	the	settings	of
the	DrawMode	and	DrawStyle	properties.

When	you	apply	the	Line	method,	the	CurrentX	and	CurrentY	properties	are
set	to	the	end	point	specified	by	the	x2	and	y2	arguments.

Example

The	following	example	uses	the	Line	method	to	draw	a	red	rectangle	five	pixels
inside	the	edge	of	a	report	named	EmployeeReport.	The	RGB	function	is	used	to
make	the	line	red.

To	try	this	example	in	Microsoft	Access,	create	a	new	report.	Paste	the	following
code	in	the	declarations	section	of	the	report's	module,	then	switch	to	Print
Preview.

Private	Sub	Detail_Print(Cancel	As	Integer,	PrintCount	As	Integer)

				'	Call	the	Drawline	procedure

				DrawLine

End	Sub

Sub	DrawLine()

				Dim	rpt	As	Report,	lngColor	As	Long

				Dim	sngTop	As	Single,	sngLeft	As	Single

				Dim	sngWidth	As	Single,	sngHeight	As	Single

				Set	rpt	=	Reports!EmployeeReport

				'	Set	scale	to	pixels.

				rpt.ScaleMode	=	3

				'	Top	inside	edge.

				sngTop	=	rpt.ScaleTop	+	5

				'	Left	inside	edge.

				sngLeft	=	rpt.ScaleLeft	+	5

				'	Width	inside	edge.

				sngWidth	=	rpt.ScaleWidth	-	10

				'	Height	inside	edge.

				sngHeight	=	rpt.ScaleHeight	-	10

				'	Make	color	red.

				lngColor	=	RGB(255,0,0)

				'	Draw	line	as	a	box.

				rpt.Line(sngTop,	sngLeft)	-	(sngWidth,	sngHeight),	lngColor,	BEnd	Sub

Show	All

LoadPicture	Method
							

The	LoadPicture	method	loads	a	graphic	into	an	ActiveX	control.

expression.LoadPicture(FileName)

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

FileName		Required	String.	The	file	name	of	the	graphic	to	be	loaded.	The
graphic	can	be	a	bitmap	file	(.bmp),	icon	file	(.ico),	run-length	encoded	file
(.rle),	or	metafile	(.wmf).

Remarks

Assign	the	return	value	of	the	LoadPicture	method	to	the	Picture	property	of	an
ActiveX	control	to	dynamically	load	a	graphic	into	the	control.	The	following
example	loads	a	bitmap	into	a	control	called	OLECustomControl	on	an	Orders
form:

Set	Forms!Orders!OLECustomControl.Picture	=	_

				LoadPicture("Stars.bmp")

The	LoadPicture	method	returns	an	object	of	type	Picture.	You	can	assign	this
value	to	a	variable	of	type	Object	by	using	the	Set	statement.

The	Picture	object	is	not	a	Microsoft	Access	object,	but	it	is	available	to
procedures	in	Microsoft	Access.

Note			You	can't	use	the	LoadPicture	method	to	set	the	Picture	property	of	an
image	control.	This	method	works	with	ActiveX	controls	only.	To	set	the
Picture	property	of	an	image	control,	simply	assign	to	it	a	string	specifying	the
file	name	and	path	of	the	desired	graphic.

Maximize	Method
							

The	Maximize	method	carries	out	the	Maximize	action	in	Visual	Basic.

expression.Maximize

expression			Required.	An	expression	that	returns	a	DoCmd	object.

mk:@MSITStore:acmain10.chm::/html/acactMaximize.htm

Remarks

This	method	has	no	arguments	and	can	be	called	directly	using	the	syntax
DoCmd.Maximize.

Note			This	method	cannot	be	applied	to	module	windows	in	the	Visual	Basic
Editor	(VBE).	For	information	about	how	to	affect	module	windows	see	the
WindowState	property	topic.

Minimize	Method
							

The	Minimize	method	carries	out	the	Minimize	action	in	Visual	Basic.

expression.Minimize

expression			Required.	An	expression	that	returns	a	DoCmd	object.

mk:@MSITStore:acmain10.chm::/html/acactMinimize.htm

Remarks

This	method	has	no	arguments	and	be	called	directly	using	the	syntax
DoCmd.Minimize.

Note			This	method	cannot	be	applied	to	module	windows	in	the	Visual	Basic
Editor	(VBE).	For	information	about	how	to	affect	module	windows	see	the
WindowState	property	topic.

Show	All

Modify	Method
							

You	can	use	the	Modify	method	to	change	the	format	conditions	of	a
FormatCondition	object	in	the	FormatConditions	collection	of	a	combo	box
or	text	box	control.

expression.Modify(Type,	Operator,	Expression1,	Expression2)

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

Type		Required	AcFormatConditionType.

AcFormatConditionType	can	be	one	of	these	AcFormatConditionType
constants.
acExpression
acFieldHasFocus
acFieldValue

Operator		Optional	AcFormatConditionOperator.

AcFormatConditionOperator	can	be	one	of	these	AcFormatConditionOperator
constants.
acBetween	default
acEqual
acGreaterThan
acGreaterThanOrEqual
acLessThan
acLessThanOrEqual
acNotBetween
acNotEqual

If	the	type	argument	is	acExpression,	the	operator	argument	is	ignored.	If	you

leave	this	argument	blank,	the	default	constant	(acBetween)	is	assumed.

Expression1		Optional	Variant.	A	Variant	value	or	expression	associated	with
the	first	part	of	the	conditional	format.	Can	be	a	constant	value	or	a	string	value.

Expression2		Optional	Variant.	A	Variant	value	or	expression	associated	with
the	second	part	of	the	conditional	format	when	the	operator	argument	is
acBetween	or	acNotBetween	(otherwise,	this	argument	is	ignored).	Can	be	a
constant	value	or	a	string	value.

Move	Method
							

Moves	the	specified	object	to	the	coordinates	specified	by	the	argument	values.

expression.Move(Left,	Top,	Width,	Height)

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

Left		Required	Variant.	The	screen	position	in	twips	for	the	left	edge	of	the
object	relative	to	the	left	edge	of	the	Microsoft	Access	window.

Top		Optional	Variant.	The	screen	position	in	twips	for	the	top	edge	of	the
object	relative	to	the	top	edge	of	the	Microsoft	Access	window.

Width		Optional	Variant.	The	desired	width	in	twips	of	the	object.

Height		Optional	Variant.	The	desired	height	in	twips	of	the	object.

Remarks

Only	the	Left	argument	is	required.	However,	to	specify	any	other	arguments,
you	must	specify	all	the	arguments	that	precede	it.	For	example,	you	cannot
specify	Width	without	specifying	Left	and	Top.	Any	trailing	arguments	that	are
unspecified	remain	unchanged.

This	method	overrides	the	Moveable	property.

If	a	form	or	report	is	modal,	it	is	still	positioned	relative	to	the	Access	window,
but	the	values	for	Left	and	Top	can	be	negative.

In	Datasheet	View	or	Print	Preview,	changes	made	using	the	Move	method	are
saved	if	the	user	explicitly	saves	the	database,	but	Access	does	not	prompt	the
user	to	save	such	changes.

Example

The	following	example	determines	whether	or	not	the	first	form	in	the	current
project	can	be	moved;	if	it	can,	the	example	moves	the	form.

If	Forms(0).Moveable	Then

				Forms(0).Move	_

								Left:=0,	Top:=0,	Width:=400,	Height:=300

Else

				MsgBox	"The	form	cannot	be	moved."

End	If

Show	All

MoveSize	Method
							

The	MoveSize	method	carries	out	the	MoveSize	action	in	Visual	Basic.

expression.MoveSize(Right,	Down,	Width,	Height)

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

Right		Optional	Variant.	A	numeric	expression.

Down		Optional	Variant.	A	numeric	expression.

Width		Optional	Variant.	A	numeric	expression.

Height		Optional	Variant.	A	numeric	expression.

mk:@MSITStore:acmain10.chm::/html/acactMoveSize.htm

Remarks

For	more	information	on	how	the	action	and	its	arguments	work,	see	the	action
topic.

You	must	include	at	least	one	argument	for	the	MoveSize	method.	If	you	leave
an	argument	blank,	the	current	setting	for	the	window	is	used.

You	can	leave	an	optional	argument	blank	in	the	middle	of	the	syntax,	but	you
must	include	the	argument's	comma.	If	you	leave	one	or	more	trailing	arguments
blank,	don't	use	a	comma	following	the	last	argument	you	specify.

The	units	for	the	arguments	are	twips.

Example

The	following	example	moves	the	active	window	and	changes	its	height,	but
leaves	its	width	unchanged:

DoCmd.MoveSize	1440,	2400,	,	2000

Show	All

NewAccessProject	Method
							

You	can	use	the	NewAccessProject	method	to	create	and	open	a	new	Microsoft
Access	project	(.adp)	as	the	current	Access	project	in	the	Microsoft	Access
window.

expression.NewAccessProject(filepath,	Connect)

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

filepath		Required	String.	A	string	expression	that	is	the	name	of	the	new
Access	project,	including	the	path	name	and	the	file	name	extension.	If	your
network	supports	it,	you	can	also	specify	a	network	path	in	the	following	form:
\\Server\Share\Folder\Filename.adp

Connect		Optional	Variant.	A	string	expression	that's	the	valid	connection	string
for	the	Access	project.	See	the	ADO	ConnectionString	property	for	details
about	this	string.

mk:@MSITStore:ado210.chm::/htm/mdproConnectionString.htm

Remarks

The	NewAccessProject	method	enables	you	to	create	a	new	Access	project	from
within	Microsoft	Access	or	another	application	through	Automation,	formally
called	OLE	Automation.	For	example,	you	can	use	the	NewAccessProject
method	from	Microsoft	Excel	to	create	a	new	Access	project	in	the	Access
window.	Once	you	have	created	an	instance	of	Microsoft	Access	from	another
application,	you	must	also	create	a	new	Access	project.	This	Access	project
opens	in	the	Microsoft	Access	window.

If	the	Access	project	identified	by	projname	already	exists,	an	error	occurs.

The	new	Access	project	is	opened	under	the	Admin	user	account.

Note			To	open	an	Access	database	(.mdb),	use	the	NewCurrentDatabase
method	of	the	Application	object.

mk:@MSITStore:acmain10.chm::/html/achowCreateSecurityUserAccountS.htm

Show	All

NewCurrentDatabase	Method
							

You	can	use	the	NewCurrentDatabase	method	to	create	a	new	Microsoft
Access	database	(.mdb)	in	the	Microsoft	Access	window.

expression.NewCurrentDatabase(filepath)

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

filepath		Required	String.	A	string	expression	that	is	the	name	of	a	new	database
file,	including	the	path	name	and	the	file	name	extension.	If	your	network
supports	it,	you	can	also	specify	a	network	path	in	the	following	form:
\\Server\Share\Folder\Filename

Note			If	you	don't	supply	the	filename	extension,	.mdb	is	appended	to	the
filename

Remarks

You	can	use	this	method	to	create	a	new	database	from	another	application	that
is	controlling	Microsoft	Access	through	Automation,	formerly	called	OLE
Automation.	For	example,	you	can	use	the	NewCurrentDatabase	method	from
Microsoft	Excel	to	create	a	new	database	in	the	Microsoft	Access	window.

Note			You	can	use	the	NewAccessProject	method	to	create	a	new	Microsoft
Access	project	(.adp)	in	the	Access	window.

The	NewCurrentDatabase	method	enables	you	to	create	a	new	Microsoft
Access	database	from	another	application	through	Automation.	Once	you	have
created	an	instance	of	Microsoft	Access	from	another	application,	you	must	also
create	a	new	database.	This	database	opens	in	the	Microsoft	Access	window.

If	the	database	identified	by	dbname	already	exists,	an	error	occurs.

The	new	database	is	opened	under	the	Admin	user	account.

mk:@MSITStore:acmain10.chm::/html/achowCreateSecurityUserAccountS.htm

Example

The	following	example	creates	a	new	Microsoft	Access	database	from	another
application	through	Automation,	and	then	creates	a	new	table	in	that	database.

You	can	enter	this	code	in	a	Visual	Basic	module	in	any	application	that	can	act
as	a	COM	component.	For	example,	you	might	run	the	following	code	from
Microsoft	Excel,	Microsoft	Visual	Basic,	or	Microsoft	Access.

When	the	variable	pointing	to	the	Application	object	goes	out	of	scope,	the
instance	of	Microsoft	Access	that	it	represents	closes	as	well.	Therefore,	you
should	declare	this	variable	at	the	module	level.

'	Include	following	in	Declarations	section	of	module.

Dim	appAccess	As	Access.Application

Sub	NewAccessDatabase()

				Dim	dbs	As	Object,	tdf	As	Object,	fld	As	Variant

				Dim	strDB	As	String

				Const	DB_Text	As	Long	=	10

				Const	FldLen	As	Integer	=	40

				'	Initialize	string	to	database	path.

				strDB	=	"C:\My	Documents\Newdb.mdb"

				'	Create	new	instance	of	Microsoft	Access.

				Set	appAccess	=	_

								CreateObject("Access.Application.9")

				'	Open	database	in	Microsoft	Access	window.

				appAccess.NewCurrentDatabase	strDB

				'	Get	Database	object	variable.

				Set	dbs	=	appAccess.CurrentDb

				'	Create	new	table.

				Set	tdf	=	dbs.CreateTableDef("Contacts")

				'	Create	field	in	new	table.

				Set	fld	=	tdf.	_

								CreateField("CompanyName",	DB_Text,	FldLen)

				'	Append	Field	and	TableDef	objects.

				tdf.Fields.Append	fld

				dbs.TableDefs.Append	tdf

				Set	appAccess	=	Nothing

End	Sub

Show	All

Nz	Function
							

You	can	use	the	Nz	function	to	return	zero,	a	zero-length	string	("	"),	or	another
specified	value	when	a	Variant	is	Null.	Variant.

expression.Nz(Value,	ValueIfNull)

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

Value		Required	Variant.	A	variable	of	data	type	Variant.

ValueIfNull		Optional	Variant.	Optional	(unless	used	in	a	query).	A	Variant
that	supplies	a	value	to	be	returned	if	the	variant	argument	is	Null.	This
argument	enables	you	to	return	a	value	other	than	zero	or	a	zero-length	string.
Note			If	you	use	the	Nz	function	in	an	expression	in	a	query	without	using	the
valueifnull	argument,	the	results	will	be	a	zero-length	string	in	the	fields	that
contain	null	values.

Remarks

For	example,	you	can	use	this	function	to	convert	a	Null	value	to	another	value
and	prevent	it	from	propagating	through	an	expression.

If	the	value	of	the	variant	argument	is	Null,	the	Nz	function	returns	the	number
zero	or	a	zero-length	string	(always	returns	a	zero-length	string	when	used	in	a
query	expression),	depending	on	whether	the	context	indicates	the	value	should
be	a	number	or	a	string.	If	the	optional	valueifnull	argument	is	included,	then	the
Nz	function	will	return	the	value	specified	by	that	argument	if	the	variant
argument	is	Null.	When	used	in	a	query	expression,	the	NZ	function	should
always	include	the	valueifnull	argument,

If	the	value	of	variant	isn't	Null,	then	the	Nz	function	returns	the	value	of
variant.

The	Nz	function	is	useful	for	expressions	that	may	include	Null	values.	To	force
an	expression	to	evaluate	to	a	non-Null	value	even	when	it	contains	a	Null
value,	use	the	Nz	function	to	return	a	zero,	a	zero-length	string,	or	a	custom
return	value.

For	example,	the	expression	2	+	varX	will	always	return	a	Null	value	when	the
Variant	varX	is	Null.	However,	2	+	Nz(varX)	returns	2.

You	can	often	use	the	Nz	function	as	an	alternative	to	the	IIf	function.	For
example,	in	the	following	code,	two	expressions	including	the	IIf	function	are
necessary	to	return	the	desired	result.	The	first	expression	including	the	IIf
function	is	used	to	check	the	value	of	a	variable	and	convert	it	to	zero	if	it	is
Null.

varTemp	=	IIf(IsNull(varFreight),	0,	varFreight)

varResult	=	IIf(varTemp	>	50,	"High",	"Low")

In	the	next	example,	the	Nz	function	provides	the	same	functionality	as	the	first
expression,	and	the	desired	result	is	achieved	in	one	step	rather	than	two.

varResult	=	IIf(Nz(varFreight)	>	50,	"High",	"Low")

If	you	supply	a	value	for	the	optional	argument	valueifnull,	that	value	will	be

returned	when	variant	is	Null.	By	including	this	optional	argument,	you	may	be
able	to	avoid	the	use	of	an	expression	containing	the	IIf	function.	For	example,
the	following	expression	uses	the	IIf	function	to	return	a	string	if	the	value	of
varFreight	is	Null.

varResult	=	IIf(IsNull(varFreight),	_

				"No	Freight	Charge",	varFreight)

In	the	next	example,	the	optional	argument	supplied	to	the	Nz	function	provides
the	string	to	be	returned	if	varFreight	is	Null.

varResult	=	Nz(varFreight,	"No	Freight	Charge")

This	keyword	is	not	implemented.	It	is	reserved	for	future	use.

Show	All

OpenAccessProject	Method
							

You	can	use	the	OpenAccessProject	method	to	open	an	existing	Microsoft
Access	project	(.adp)	as	the	current	Access	project	in	the	Microsoft	Access
window.

expression.OpenAccessProject(filepath,	Exclusive)

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

filepath		Required	String.	A	string	expression	that	is	the	name	of	the	existing
Access	project,	including	the	path	name	and	the	file	name	extension.	If	your
network	supports	it,	you	can	also	specify	a	network	path	in	the	following	form:
//Server/Share/Folder/Filename.adp

Note			If	you	don't	supply	the	filename	extension,	.adp	is	appended	to	the
filename.	You	can	use	this	method	or	the	OpenCurrentDatabase	method	to
open	.adp	files.

Exclusive		Optional	Boolean.

Remarks

The	OpenAccessProject	method	enables	you	to	open	an	existing	project	from
within	Microsoft	Access	or	another	application	through	Automation,	formally
called	OLE	Automation.	For	example,	you	can	use	the	OpenAccessProject
method	from	Microsoft	Excel	to	open	the	Northwind.adp	sample	database	in	the
Microsoft	Access	window.	Once	you	have	created	an	instance	of	Microsoft
Access	from	another	application,	you	must	also	create	a	new	Access	project	or
specify	a	particular	Access	project	to	open.	This	Access	project	opens	in	the
Microsoft	Access	window.

If	you	have	already	opened	a	project	and	wish	to	open	another	project	in	the
Microsoft	Access	window,	you	can	use	the	CloseCurrentDatabase	method	to
close	the	first	Access	project	before	opening	another.

Note			To	open	an	Access	database	(.mdb),	use	the	OpenCurrentDatabase
method	of	the	Application	object.

Show	All

OpenConnection	Method
							

You	can	use	the	OpenConnection	method	to	open	an	ADO	connection	to	an
existing	Microsoft	Access	project	(.adp)	or	Access	database	(.mdb)	as	the
current	Access	project	or	database	in	the	Microsoft	Access	window.

expression.OpenConnection(BaseConnectionString,	UserID,	Password)

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

BaseConnectionString		Optional	Variant.	A	string	expression	that	is	the	base
connection	string	of	the	database.

UserID		Optional	Variant.	A	string	expression	that	is	the	name	of	the	existing
Access	project,	including	the	path	name	and	the	file	name	extension.	If	your
network	supports	it,	you	can	also	specify	a	network	path	in	the	following	form:
\\Server\Share\Folder\Filename.adp

Password		Optional	Variant.	Note			If	you	don't	supply	the	filename	extension,
.adp	is	appended	to	the	filename.	You	can	use	this	method	or	the
OpenCurrentDatabase	method	to	open	.adp	files.

Remarks

The	OpenConnection	method	is	similar	to	the	Open	method	of	an	ADO
Connection	object.	This	method	establishes	the	physical	connection	to	the	data
source.	After	this	method	successfully	completes,	the	connection	is	live,	the
Connection	and	BaseConnectionString	properties	are	set,	and	the	Database
window	or	data	access	page	should	be	repopulated	with	data	from	the	new
connection.	All	parameters	of	this	method	are	optional.	If	no	base	connection
string	is	supplied,	then	the	connection	is	re-established	using	the	previous	base
connection	string	(but	the	user	must	call	CloseConnection	before	calling
OpenConnection	again).	In	the	case	of	an	Access	project,	the
BaseConnectionString	property	can	only	specify	the	SQL	Server	OLE	DB
Provider.

mk:@MSITStore:ado210.chm::/htm/mdmthCnnOpen.htm
mk:@MSITStore:ado210.chm::/htm/mdobjConnection.htm

Show	All

OpenCurrentDatabase	Method
							

You	can	use	the	OpenCurrentDatabase	method	to	open	an	existing	Microsoft
Access	database	(.mdb)	as	the	current	database.

expression.OpenCurrentDatabase(filepath,	Exclusive,	bstrPassword)

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

filepath		Required	String.	A	string	expression	that	is	the	name	of	an	existing
database	file,	including	the	path	name	and	the	file	name	extension.	If	your
network	supports	it,	you	can	also	specify	a	network	path	in	the	following	form:
\\Server\Share\Folder\Filename

Note			If	you	don't	supply	the	filename	extension,	.mdb	is	appended	to	the
filename.

Exclusive		Optional	Boolean.	Specifies	whether	you	want	to	open	the	database
in	exclusive	mode.	The	default	value	is	False,	which	specifies	that	the	database
should	be	opened	in	shared	mode.

bstrPassword		Optional	String.	The	password	to	open	the	specified	database.

Remarks

You	can	use	this	method	to	open	a	database	from	another	application	that	is
controlling	Microsoft	Access	through	Automation,	formerly	called	OLE
Automation.	For	example,	you	can	use	the	OpenCurrentDatabase	method	from
Microsoft	Excel	to	open	the	Northwind.mdb	sample	database	in	the	Microsoft
Access	window.	Once	you	have	created	an	instance	of	Microsoft	Access	from
another	application,	you	must	also	create	a	new	database	or	specify	a	particular
database	to	open.	This	database	opens	in	the	Microsoft	Access	window.

Note			Use	the	OpenAccessProject	method	to	open	an	existing	Microsoft
Access	project	(.adp)	as	the	current	database.

If	you	have	already	opened	a	database	and	wish	to	open	another	database	in	the
Microsoft	Access	window,	you	can	use	the	CloseCurrentDatabase	method	to
close	the	first	database	before	opening	another.

Set	the	Exclusive	argument	to	True	to	open	the	database	in	exclusive	mode.	If
you	omit	this	argument,	the	database	will	open	in	shared	mode.

Note			Don't	confuse	the	OpenCurrentDatabase	method	with	the	ActiveX	Data
Objects	(ADO)	Open	method	or	the	Data	Access	Object	(DAO)	OpenDatabase
method.	The	OpenCurrentDatabase	method	opens	a	database	in	the	Microsoft
Access	window.	The	ADO	Open	method	returns	a	Connection	object	variable,
and	the	DAO	OpenDatabase	method	returns	a	Database	object	variable,	both
of	which	represent	a	particular	database	but	don't	actually	open	that	database	in
the	Microsoft	Access	window.

mk:@MSITStore:ado210.chm::/htm/mdmthCnnOpen.htm
mk:@MSITStore:dao360.chm::/htm/damthOpenDatabase.htm

Example

The	following	example	opens	a	Microsoft	Access	database	from	another
application	through	Automation	and	then	opens	a	form	in	that	database.

You	can	enter	this	code	in	a	Visual	Basic	module	in	any	application	that	can	act
as	a	COM	component.	For	example,	you	might	run	the	following	code	from
Microsoft	Excel,	Microsoft	Visual	Basic,	or	Microsoft	Access.

When	the	variable	pointing	to	the	Application	object	goes	out	of	scope,	the
instance	of	Microsoft	Access	that	it	represents	closes	as	well.	Therefore,	you
should	declare	this	variable	at	the	module	level.

'	Include	the	following	in	Declarations	section	of	module.

Dim	appAccess	As	Access.Application

Sub	DisplayForm()

				'	Initialize	string	to	database	path.

				Const	strConPathToSamples	=	"C:\Program	"	_

								&	"Files\Microsoft	Office\Office\Samples\"

				strDB	=	strConPathToSamples	&	"Northwind.mdb"

				'	Create	new	instance	of	Microsoft	Access.

				Set	appAccess	=	_

								CreateObject("Access.Application")

				'	Open	database	in	Microsoft	Access	window.

				appAccess.OpenCurrentDatabase	strConPathToSamples

				'	Open	Orders	form.

				appAccess.DoCmd.OpenForm	"Orders"

End	Sub

Show	All

OpenDataAccessPage	Method
							

The	OpenDataAccessPage	method	carries	out	the	OpenDataAccessPage	action
in	Visual	Basic.

expression.OpenDataAccessPage(DataAccessPageName,	View)

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

DataAccessPageName		Required	Variant.	A	string	expression	that's	the	valid
name	of	a	data	access	page	in	the	current	database.	If	you	execute	Visual	Basic
code	containing	the	OpenDataAccessPage	method	in	a	library	database,
Microsoft	Access	looks	for	the	form	with	this	name,	first	in	the	library	database,
then	in	the	current	database.

View		Optional	AcDataAccessPageView.	The	view	in	which	to	open	the	data
access	page.

AcDataAccessPageView	can	be	one	of	these	AcDataAccessPageView
constants.
acDataAccessPageBrowse	default		Opens	the	form	in	Page	view.
acDataAccessPageDesign		Opens	the	form	in	Design	view.

mk:@MSITStore:acmain10.chm::/html/acactOpenDataAccessPage.htm

Remarks

For	more	information	on	how	the	action	and	its	arguments	work,	see	the	action
topic.

If	the	connection	password	was	not	contained	in	the	connection	information	for
the	data	access	page	when	it	was	created,	the	user	is	prompted	to	provide	a
password	when	the	OpenDataAccessPage	method	is	used.

Example

The	following	example	opens	the	Employees	data	access	page	in	Design	view.

DoCmd.OpenDataAccessPage	"Employees",	acDataAccessPageDesign

Show	All

OpenDiagram	Method
							

The	OpenDiagram	method	carries	out	the	OpenDiagram	action	in	Visual	Basic.

expression.OpenDiagram(DiagramName)

expression			Required.	An	expression	that	returns	a	DoCmd	object.

DiagramName		Required	Variant.	A	string	expression	that's	the	valid	name	of	a
database	diagram	in	the	current	database.	If	you	execute	Visual	Basic	code
containing	the	OpenDiagram	method	in	a	library	database,	Microsoft	Access
looks	for	the	database	diagram	with	this	name	first	in	the	library	database,	then
in	the	current	database.

mk:@MSITStore:acmain10.chm::/html/acactOpenDiagram.htm

Example

The	following	example	opens	the	database	diagram	named	"Data	Model".

DoCmd.OpenDiagram	"	Data	Model"

Show	All

OpenForm	Method
							

The	OpenForm	method	carries	out	the	OpenForm	action	in	Visual	Basic.

expression.OpenForm(FormName,	View,	FilterName,	WhereCondition,
DataMode,	WindowMode,	OpenArgs)

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

FormName		Required	Variant.	A	string	expression	that's	the	valid	name	of	a
form	in	the	current	database.	If	you	execute	Visual	Basic	code	containing	the
OpenForm	method	in	a	library	database,	Microsoft	Access	looks	for	the	form
with	this	name	first	in	the	library	database,	then	in	the	current	database.

View		Optional	AcFormView.

AcFormView	can	be	one	of	these	AcFormView	constants.
acDesign
acFormDS
acFormPivotChart
acFormPivotTable
acNormal	default.	Opens	the	form	in	Form	view.
acPreview

If	you	leave	this	argument	blank,	the	default	constant	(acNormal)	is	assumed.

FilterName		Optional	Variant.	A	string	expression	that's	the	valid	name	of	a
query	in	the	current	database.

WhereCondition		Optional	Variant.	A	string	expression	that's	a	valid	SQL
WHERE	clause	without	the	word	WHERE.

mk:@MSITStore:acmain10.chm::/html/acactOpenForm.htm

DataMode		Optional	AcFormOpenDataMode.

AcFormOpenDataMode	can	be	one	of	these	AcFormOpenDataMode	constants.
acFormAdd
acFormEdit
acFormPropertySettings	default
acFormReadOnly

If	you	leave	this	argument	blank	(the	default	constant,
acFormPropertySettings,	is	assumed),	Microsoft	Access	opens	the	form	in	the
data	mode	set	by	the	form's	AllowEdits,	AllowDeletions,	AllowAdditions,	and
DataEntry	properties.

WindowMode		Optional	AcWindowMode.

AcWindowMode	can	be	one	of	these	AcWindowMode	constants.
acDialog
acHidden
acIcon
acWindowNormal	default

If	you	leave	this	argument	blank,	the	default	constant
(acWindowNormal)	is	assumed.

OpenArgs		Optional	Variant.	A	string	expression.	This	expression	is	used	to	set
the	form's	OpenArgs	property.	This	setting	can	then	be	used	by	code	in	a	form
module,	such	as	the	Open	event	procedure.	The	OpenArgs	property	can	also	be
referred	to	in	macros	and	expressions.

For	example,	suppose	that	the	form	you	open	is	a	continuous-form	list	of	clients.
If	you	want	the	focus	to	move	to	a	specific	client	record	when	the	form	opens,
you	can	specify	the	client	name	with	the	openargs	argument,	and	then	use	the
FindRecord	method	to	move	the	focus	to	the	record	for	the	client	with	the
specified	name.

This	argument	is	available	only	in	Visual	Basic.

Remarks

For	more	information	on	how	the	action	and	its	arguments	work,	see	the	action
topic.

The	maximum	length	of	the	wherecondition	argument	is	32,768	characters
(unlike	the	Where	Condition	action	argument	in	the	Macro	window,	whose
maximum	length	is	256	characters).

You	can	leave	an	optional	argument	blank	in	the	middle	of	the	syntax,	but	you
must	include	the	argument's	comma.	If	you	leave	a	trailing	argument	blank,	don't
use	a	comma	following	the	last	argument	you	specify.

Example

The	following	example	opens	the	Employees	form	in	Form	view	and	displays
only	records	with	King	in	the	LastName	field.	The	displayed	records	can	be
edited,	and	new	records	can	be	added.

DoCmd.OpenForm	"Employees",	,	,"LastName	=	'King'"

Show	All

OpenFunction	Method
							

Opens	a	user-defined	function	in	a	Microsoft	SQL	Server	database	for	viewing
in	Microsoft	Access.

expression.OpenFunction(FunctionName,	View,	DataMode)

expression			Required.	An	expression	that	returns	a	DoCmd	object.

FunctionName		Required	Variant.	The	name	of	the	function	to	open.

View		Optional	AcView.	The	view	in	which	to	open	the	function.

AcView	can	be	one	of	these	AcView	constants.
acViewDesign		Opens	the	function	in	Design	View.
acViewNormal	default		Opens	the	function	in	Datasheet	View.
acViewPivotChart		Opens	the	function	in	PivotChart	View.
acViewPivotTable		Opens	the	function	in	PivotTable	View.
acViewPreview		Opens	the	function	in	Print	Preview.

DataMode		Optional	AcOpenDataMode.	The	mode	in	which	to	open	the
function.

AcOpenDataMode	can	be	one	of	these	AcOpenDataMode	constants.
acAdd		Opens	the	function	for	data	entry.
acEdit	default		Opens	the	function	for	updating	existing	data.
acReadOnly		Opens	the	function	in	read-only	mode.

Remarks

Use	the	AllFunctions	collection	to	retrieve	information	about	the	available	user-
defined	functions	in	a	SQL	Server	database.

Example

The	following	example	opens	the	first	user-defined	function	in	the	current
database	in	Design	View	and	read-only	mode.

Dim	objFunction	As	AccessObject

Dim	strFunction	As	String

Set	objFunction	=	Application.AllFunctions(0)

DoCmd.OpenFunction	FunctionName:=objFunction.Name,	_

				View:=acViewDesign,	Mode:=acReadOnly

Show	All

OpenModule	Method
							

The	OpenModule	method	carries	out	the	OpenModule	action	in	Visual	Basic.

expression.OpenModule(ModuleName,	ProcedureName)

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

ModuleName		Optional	Variant.	A	string	expression	that's	the	valid	name	of	the
Visual	Basic	module	you	want	to	open.	If	you	leave	this	argument	blank,
Microsoft	Access	searches	all	the	standard	modules	in	the	database	for	the
procedure	you	selected	with	the	procedurename	argument	and	opens	the	module
containing	the	procedure	to	that	procedure.	If	you	execute	Visual	Basic	code
containing	the	OpenModule	method	in	a	library	database,	Microsoft	Access
looks	for	the	module	with	this	name	first	in	the	library	database,	then	in	the
current	database.

ProcedureName		Optional	Variant.	A	string	expression	that's	the	valid	name	for
the	procedure	you	want	to	open	the	module	to.	If	you	leave	this	argument	blank,
the	module	opens	to	the	Declarations	section.

mk:@MSITStore:acmain10.chm::/html/acactOpenModule.htm

Remarks

You	must	include	at	least	one	of	the	two	OpenModule	action	arguments.	If	you
enter	a	value	for	both	arguments,	Microsoft	Access	opens	the	specified	module
at	the	specified	procedure.

If	you	leave	the	procedurename	argument	blank,	don't	use	a	comma	following
the	modulename	argument.

Example

The	following	example	opens	the	Utility	Functions	module	to	the	IsLoaded()
Function	procedure:

DoCmd.OpenModule	"Utility	Functions",	"IsLoaded"

Show	All

OpenQuery	Method
							

The	OpenQuery	method	carries	out	the	OpenQuery	action	in	Visual	Basic.

expression.OpenQuery(QueryName,	View,	DataMode)

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

QueryName		Required	Variant.	A	string	expression	that's	the	valid	name	of	a
query	in	the	current	database.	If	you	execute	Visual	Basic	code	containing	the
OpenQuery	method	in	a	library	database,	Microsoft	Access	looks	for	the	query
with	this	name	first	in	the	library	database,	then	in	the	current	database.

View		Optional	AcView.

AcView	can	be	one	of	these	AcView	constants.
acViewDesign
acViewNormal	default
acViewPivotChart
acViewPivotTable
acViewPreview

If	the	queryname	argument	is	the	name	of	a	select,	crosstab,	union,	or	pass-
through	query	whose	ReturnsRecords	property	is	set	to	–1,	acViewNormal
displays	the	query's	result	set.	If	the	queryname	argument	refers	to	an	action,
data-definition,	or	pass-through	query	whose	ReturnsRecords	property	is	set	to
0,	acViewNormal	runs	the	query.

If	you	leave	this	argument	blank,	the	default	constant	(acViewNormal)	is
assumed.

DataMode		Optional	AcOpenDataMode.

mk:@MSITStore:acmain10.chm::/html/acactOpenQuery.htm

AcOpenDataMode	can	be	one	of	these	AcOpenDataMode	constants.
acAdd
acEdit	default
acReadOnly

If	you	leave	this	argument	blank,	the	default	constant	(acEdit)	is	assumed.

Remarks

For	more	information	on	how	the	action	and	its	arguments	work,	see	the	action
topic.

Note			This	method	is	only	available	in	the	Microsoft	Access	database
environment	(.mdb).	See	the	OpenView	or	OpenStoredProcedure	methods	if
using	the	Microsoft	Access	Project	environment	(.adp).

If	you	specify	the	datamode	argument	and	leave	the	view	argument	blank,	you
must	include	the	view	argument's	comma.	If	you	leave	a	trailing	argument	blank,
don't	use	a	comma	following	the	last	argument	you	specify.

Example

The	following	example	opens	Sales	Totals	Query	in	Datasheet	view	and	enables
the	user	to	view	but	not	to	edit	or	add	records:

DoCmd.OpenQuery	"Sales	Totals	Query",	,	acReadOnly

Show	All

OpenReport	Method
							

The	OpenReport	method	carries	out	the	OpenReport	action	in	Visual	Basic.

expression.OpenReport(ReportName,	View,	FilterName,	WhereCondition,
WindowMode,	OpenArgs)

expression			Required.	An	expression	that	returns	a	DoCmd	object.

ReportName		Required	Variant.	A	string	expression	that's	the	valid	name	of	a
report	in	the	current	database.	If	you	execute	Visual	Basic	code	containing	the
OpenReport	method	in	a	library	database,	Microsoft	Access	looks	for	the	report
with	this	name,	first	in	the	library	database,	then	in	the	current	database.

View		Optional	AcView.	The	view	to	apply	to	the	specified	report.

AcView	can	be	one	of	these	AcView	constants.
acViewDesign
acViewNormal	default		Prints	the	report	immediately.
acViewPivotChart		Not	supported.
acViewPivotTable		Not	supported.
acViewPreview

FilterName		Optional	Variant.	A	string	expression	that's	the	valid	name	of	a
query	in	the	current	database.

WhereCondition		Optional	Variant.	A	string	expression	that's	a	valid	SQL
WHERE	clause	without	the	word	WHERE.

WindowMode		Optional	AcWindowMode.

AcWindowMode	can	be	one	of	these	AcWindowMode	constants.
acDialog
acHidden

mk:@MSITStore:acmain10.chm::/html/acactOpenReport.htm

acIcon
acWindowNormal	default

OpenArgs		Optional	Variant.	Sets	the	OpenArgs	property.

Remarks

For	more	information	on	how	the	action	and	its	arguments	work,	see	the	action
topic.

The	maximum	length	of	the	WhereCondition	argument	is	32,768	characters
(unlike	the	Where	Condition	action	argument	in	the	Macro	window,	whose
maximum	length	is	256	characters).

You	can	leave	an	optional	argument	blank	in	the	middle	of	the	syntax,	but	you
must	include	the	argument's	comma.	If	you	leave	one	or	more	trailing	arguments
blank,	don't	use	a	comma	following	the	last	argument	you	specify.

Example

The	following	example	prints	Sales	Report	while	using	the	existing	query	Report
Filter.

DoCmd.OpenReport	"Sales	Report",	acViewNormal,	"Report	Filter"

Show	All

OpenStoredProcedure	Method
							

The	OpenView	method	carries	out	the	OpenStoredProcedure	action	in	Visual
Basic.

expression.OpenStoredProcedure(ProcedureName,	View,	DataMode)

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

ProcedureName		Required	Variant.	A	string	expression	that's	the	valid	name	of
a	stored	procedure	in	the	current	database.	If	you	execute	Visual	Basic	code
containing	the	OpenStoredProcedure	method	in	a	library	database,	Microsoft
Access	looks	for	the	stored	procedure	with	this	name	first	in	the	library	database,
then	in	the	current	database.

View		Optional	AcView.

AcView	can	be	one	of	these	AcView	constants.
acViewDesign
acViewNormal	default
acViewPivotChart
acViewPivotTable
acViewPreview

If	you	leave	this	argument	blank,	the	default	constant	(acViewNormal)	is
assumed.

DataMode		Optional	AcOpenDataMode.

AcOpenDataMode	can	be	one	of	these	AcOpenDataMode	constants.
acAdd
acEdit	default

mk:@MSITStore:acmain10.chm::/html/acactOpenStoredProcedure.htm

acReadOnly

If	you	leave	this	argument	blank,	the	default	constant	(acEdit)	is	assumed.

Remarks

For	more	information	on	how	the	action	and	its	arguments	work,	see	the	action
topic.

Example

The	following	example	opens	the	Employees	stored	procedure	in	Design	view.

DoCmd.OpenStoredProcedure	"Employees",	1

Show	All

OpenTable	Method
							

The	OpenTable	method	carries	out	the	OpenTable	action	in	Visual	Basic.

expression.OpenTable(TableName,	View,	DataMode)

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

TableName		Required	Variant.	A	string	expression	that's	the	valid	name	of	a
table	in	the	current	database.	If	you	execute	Visual	Basic	code	containing	the
OpenTable	method	in	a	library	database,	Microsoft	Access	looks	for	the	table
with	this	name	first	in	the	library	database,	then	in	the	current	database.

View		Optional	AcView.

AcView	can	be	one	of	these	AcView	constants.
acViewDesign
acViewNormal	default.	Opens	the	table	in	Datasheet	view.
acViewPivotChart
acViewPivotTable
acViewPreview

If	you	leave	this	argument	blank,	the	default	constant	(acViewNormal)	is
assumed.

DataMode		Optional	AcOpenDataMode.

AcOpenDataMode	can	be	one	of	these	AcOpenDataMode	constants.
acAdd
acEdit	default
acReadOnly

mk:@MSITStore:acmain10.chm::/html/acactOpenTable.htm

If	you	leave	this	argument	blank,	the	default	constant	(acEdit)	is	assumed.

Remarks

For	more	information	on	how	the	action	and	its	arguments	work,	see	the	action
topic.

If	you	specify	the	datamode	argument	and	leave	the	view	argument	blank,	you
must	include	the	view	argument's	comma.	If	you	leave	a	trailing	argument	blank,
don't	use	a	comma	following	the	last	argument	you	specify.

Example

The	following	example	opens	the	Employees	table	in	Print	Preview:

DoCmd.OpenTable	"Employees",	acViewPreview

Show	All

OpenView	Method
							

The	OpenView	method	carries	out	the	OpenView	action	in	Visual	Basic.

expression.OpenView(ViewName,	View,	DataMode)

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

ViewName		Required	Variant.		A	string	expression	that's	the	valid	name	of	a
view	in	the	current	database.	If	you	execute	Visual	Basic	code	containing	the
OpenView	method	in	a	library	database,	Microsoft	Access	looks	for	the	view
with	this	name	first	in	the	library	database,	then	in	the	current	database.

View		Optional	AcView.

AcView	can	be	one	of	these	AcView	constants.
acViewDesign
acViewNormal	default
acViewPivotChart
acViewPivotTable
acViewPreview

If	you	leave	this	argument	blank,	the	default	constant	(acViewNormal)	is
assumed.

DataMode		Optional	AcOpenDataMode.

AcOpenDataMode	can	be	one	of	these	AcOpenDataMode	constants.
acAdd
acEdit	default
acReadOnly

mk:@MSITStore:acmain10.chm::/html/acactOpenView.htm

If	you	leave	this	argument	blank,	the	default	constant	(acEdit)	is	assumed.

Remarks

For	more	information	on	how	the	action	and	its	arguments	work,	see	the	action
topic.

Example

The	following	example	opens	the	Employees	view.

DoCmd.OpenView	"Employees"

Show	All

OutputTo	Method
							

The	OutputTo	method	carries	out	the	OutputTo	action	in	Visual	Basic.

expression.OutputTo(ObjectType,	ObjectName,	OutputFormat,	OutputFile,
AutoStart,	TemplateFile,	Encoding)

expression			Required.	An	expression	that	returns	a	DoCmd	object.

ObjectType		Required	AcOutputObjectType.	The	type	of	object	to	output.

AcOutputObjectType	can	be	one	of	these	AcOutputObjectType	constants.
acOutputDataAccessPage		Not	supported.
acOutputForm
acOutputFunction
acOutputModule
acOutputQuery
acOutputReport
acOutputServerView
acOutputStoredProcedure
acOutputTable

ObjectName		Optional	Variant.	A	string	expression	that's	the	valid	name	of	an
object	of	the	type	selected	by	the	ObjectType	argument.	If	you	want	to	output	the
active	object,	specify	the	object's	type	for	the	ObjectType	argument	and	leave
this	argument	blank.	If	you	run	Visual	Basic	code	containing	the	OutputTo
method	in	a	library	database,	Microsoft	Access	looks	for	the	object	with	this
name,	first	in	the	library	database,	then	in	the	current	database.

OutputFormat		Optional	Variant.	The	output	format,	expressed	as	an
AcFormat	constant.	If	you	omit	this	argument,	Microsoft	Access	prompts	you
for	the	output	format.

mk:@MSITStore:acmain10.chm::/html/acactOutputTo.htm

AcFormat	can	be	one	of	these	AcFormat	constants.
acFormatASP
acFormatDAP
acFormatHTML
acFormatIIS
acFormatRTF
acFormatSNP
acFormatTXT
acFormatXLS

OutputFile		Optional	Variant.	A	string	expression	that's	the	full	name,	including
the	path,	of	the	file	you	want	to	output	the	object	to.	If	you	leave	this	argument
blank,	Microsoft	Access	prompts	you	for	an	output	file	name.

AutoStart		Optional	Variant.	Use	True	(–1)	to	start	the	appropriate	Microsoft
Windows–based	application	immediately,	with	the	file	specified	by	the
OutputFile	argument	loaded.	Use	False	(0)	if	you	don't	want	to	start	the
application.	This	argument	is	ignored	for	Microsoft	Internet	Information	Server
(.htx,	.idc)	files	and	Microsoft	ActiveX	Server	(*.asp)	files.	If	you	leave	this
argument	blank,	the	default	(False)	is	assumed.

TemplateFile		Optional	Variant.	A	string	expression	that's	the	full	name,
including	the	path,	of	the	file	you	want	to	use	as	a	template	for	an	HTML,	HTX,
or	ASP	file.

Encoding		Optional	Variant.

Remarks

For	more	information	on	how	the	action	and	its	arguments	work,	see	the	action
topic.

Modules	can	be	output	only	in	MS-DOS	Text	format,	so	if	you	specify
acOutputModule	for	the	ObjectType	argument,	you	must	specify
acFormatTXT	for	the	OutputFormat	argument.	Microsoft	Internet	Information
Server	and	Microsoft	ActiveX	Server	formats	are	available	only	for	tables,
queries,	and	forms,	so	if	you	specify	acFormatIIS	or	acFormatASP	for	the
OutputFormat	argument,	you	must	specify	acOutputTable,	acOutputQuery,
or	acOutputForm	for	the	ObjectType	argument.

You	can	leave	an	optional	argument	blank	in	the	middle	of	the	syntax,	but	you
must	include	the	argument's	comma.	If	you	leave	a	trailing	argument	blank,	don't
use	a	comma	following	the	last	argument	you	specify.

Example

The	following	example	outputs	the	Employees	table	in	rich-text	format	(.rtf)	to
the	Employee.rtf	file	and	immediately	opens	the	file	in	Microsoft	Word	for
Windows.

DoCmd.OutputTo	acOutputTable,	"Employees",	_

				acFormatRTF,	"Employee.rtf",	True

Show	All

Print	Method
							

The	Print	method	prints	text	on	a	Report	object	using	the	current	color	and
font.

expression.Print(Expr)

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

Expr		Required	String.	The	string	expressions	to	print.	If	this	argument	is
omitted,	the	Print	method	prints	a	blank	line.	Multiple	expressions	can	be
separated	with	a	space,	a	semicolon	(;),	or	a	comma.	A	space	has	the	same	effect
as	a	semicolon.

Remarks

You	can	use	this	method	only	in	a	event	procedure	or	macro	specified	by	a
section's	OnPrint	event	property	setting.

The	expressions	specified	by	the	Expr	argument	are	printed	on	the	object	starting
at	the	position	indicated	by	the	CurrentX	and	CurrentY	property	settings.

When	the	Expr	argument	is	printed,	a	carriage	return	is	usually	appended	so	that
the	next	Print	method	begins	printing	on	the	next	line.	When	a	carriage	return
occurs,	the	CurrentY	property	setting	is	increased	by	the	height	of	the	Expr
argument	(the	same	as	the	value	returned	by	the	TextHeight	method)	and	the
CurrentX	property	is	set	to	0.

When	a	semicolon	follows	the	Expr	argument,	no	carriage	return	is	appended,
and	the	next	Print	method	prints	on	the	same	line	that	the	current	Print	method
printed	on.	The	CurrentX	and	CurrentY	properties	are	set	to	the	point
immediately	after	the	last	character	printed.	If	the	Expr	argument	itself	contains
carriage	returns,	each	such	embedded	carriage	return	sets	the	CurrentX	and
CurrentY	properties	as	described	for	the	Print	method	without	a	semicolon.

When	a	comma	follows	the	Expr	argument,	the	CurrentX	and	CurrentY
properties	are	set	to	the	next	print	zone	on	the	same	line.

When	the	Expr	argument	is	printed	on	a	Report	object,	lines	that	can't	fit	in	the
specified	position	don't	scroll.	The	text	is	clipped	to	fit	the	object.

Because	the	Print	method	usually	prints	with	proportionally	spaced	characters,
it's	important	to	remember	that	there's	no	correlation	between	the	number	of
characters	printed	and	the	number	of	fixed-width	columns	those	characters
occupy.	For	example,	a	wide	letter	(such	as	W)	occupies	more	than	one	fixed-
width	column,	whereas	a	narrow	letter	(such	as	I)	occupies	less.	You	should
make	sure	that	your	tabular	columns	are	positioned	far	enough	apart	to
accommodate	the	text	you	wish	to	print.	Alternately,	you	can	print	with	a	fixed-
pitch	font	(such	as	Courier)	to	ensure	that	each	character	uses	only	one	column.

Example

The	following	example	uses	the	Print	method	to	display	text	on	a	report	named
Report1.	It	uses	the	TextWidth	and	TextHeight	methods	to	center	the	text
vertically	and	horizontally.

Private	Sub	Detail_Format(Cancel	As	Integer,	_

								FormatCount	As	Integer)

				Dim	rpt	as	Report

				Dim	strMessage	As	String

				Dim	intHorSize	As	Integer,	intVerSize	As	Integer

				Set	rpt	=	Me

				strMessage	=	"DisplayMessage"

				With	rpt

								'Set	scale	to	pixels,	and	set	FontName	and

								'FontSize	properties.

								.ScaleMode	=	3

								.FontName	=	"Courier"

								.FontSize	=	24

				End	With

				'	Horizontal	width.

				intHorSize	=	Rpt.TextWidth(strMessage)

				'	Vertical	height.

				intVerSize	=	Rpt.TextHeight(strMessage)

				'	Calculate	location	of	text	to	be	displayed.

				Rpt.CurrentX	=	(Rpt.ScaleWidth/2)	-	(intHorSize/2)

				Rpt.CurrentY	=	(Rpt.ScaleHeight/2)	-	(intVerSize/2)

				'	Print	text	on	Report	object.

				Rpt.Print	strMessage

End	Sub

Show	All

PrintOut	Method
							

The	PrintOut	method	carries	out	the	PrintOut	action	in	Visual	Basic.

expression.PrintOut(PrintRange,	PageFrom,	PageTo,	PrintQuality,	Copies,
CollateCopies)

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

PrintRange		Optional	AcPrintRange.

AcPrintRange	can	be	one	of	these	AcPrintRange	constants.
acPages
acPrintAll	default
acSelection

If	you	leave	this	argument	blank,	the	default	constant	(acPrintAll)	is	assumed.

PageFrom		Optional	Variant.	A	numeric	expression	that's	a	valid	page	number
in	the	active	form	or	datasheet.	This	argument	is	required	if	you	specify	acPages
for	the	printrange	argument.

PageTo		Optional	Variant.	A	numeric	expression	that's	a	valid	page	number	in
the	active	form	or	datasheet.	This	argument	is	required	if	you	specify	acPages
for	the	printrange	argument.

PrintQuality		Optional	AcPrintQuality.

AcPrintQuality	can	be	one	of	these	AcPrintQuality	constants.
acDraft
acHigh	default
acLow

mk:@MSITStore:acmain10.chm::/html/acactPrint.htm

acMedium

If	you	leave	this	argument	blank,	the	default	constant	(acHigh)	is	assumed.

Copies		Optional	Variant.	A	numeric	expression.	If	you	leave	this	argument
blank,	the	default	(1)	is	assumed.

CollateCopies		Optional	Variant.	Use	True	(–1)	to	collate	copies	and	False	(0)
to	print	without	collating.	If	you	leave	this	argument	blank,	the	default	(True)	is
assumed.

Remarks

For	more	information	on	how	the	action	and	its	arguments	work,	see	the	action
topic.

You	can	leave	an	optional	argument	blank	in	the	middle	of	the	syntax,	but	you
must	include	the	argument's	comma.	If	you	leave	one	or	more	trailing	arguments
blank,	don't	use	a	comma	following	the	last	argument	you	specify.

Example

The	following	example	prints	two	collated	copies	of	the	first	four	pages	of	the
active	form	or	datasheet:

DoCmd.PrintOut	acPages,	1,	4,	,	2

Show	All

PSet	Method
							

The	PSet	method	sets	a	point	on	a	Report	object	to	a	specified	color	when	the
Print	event	occurs.

expression.PSet(flags,	X,	Y,	color)

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

flags		Required	Integer.	A	keyword	that	indicates	the	coordinates	are	relative	to
the	current	graphics	position	given	by	the	settings	for	the	CurrentX	and
CurrentY	properties	of	the	object	argument.

X		Required	Single.	Single	value	indicating	the	horizontal	coordinate	of	the
point	to	set.

Y		Required	Single.	Single	value	indicating	the	vertical	coordinate	of	the	point	to
set.

color		Required	Long.	A	Long	value	indicating	the	RGB	(red-green-blue)	color
to	set	the	point	to.	If	this	argument	is	omitted,	the	value	of	the	ForeColor
property	is	used.	You	can	also	use	the	RGB	function	or	QBColor	function	to
specify	the	color.

Remarks

The	size	of	the	point	depends	on	the	DrawWidth	property	setting.	When	the
DrawWidth	property	is	set	to	1,	the	PSet	method	sets	a	single	pixel	to	the
specified	color.	When	the	DrawWidth	property	is	greater	than	1,	the	point	is
centered	on	the	specified	coordinates.

The	way	the	point	is	drawn	depends	on	the	settings	of	the	DrawMode	and
DrawStyle	properties.

When	you	apply	the	PSet	method,	the	CurrentX	and	CurrentY	properties	are
set	to	the	point	specified	by	the	x	and	y	arguments.

To	clear	a	single	pixel	with	the	PSet	method,	specify	the	coordinates	of	the	pixel
and	use	&HFFFFFF	(white)	as	the	color	argument.

Tip			It's	faster	to	draw	a	line	by	using	the	Line	method	rather	than	the	PSet
method.

Example

The	following	example	uses	the	PSet	method	to	draw	a	line	through	the
horizontal	axis	of	a	report.

To	try	this	example	in	Microsoft	Access,	create	a	new	report.	Set	the	OnPrint
property	of	the	Detail	section	to	[Event	Procedure].	Enter	the	following	code	in
the	report's	module,	then	switch	to	Print	Preview.

Sub	Detail_Print(Cancel	As	Integer,	PrintCount	As	Integer)

				Dim	sngMidPt	As	Single,	intI	As	Integer

				'	Set	scale	to	pixels.

				Me.ScaleMode	=	3

				'	Calculate	midpoint.

				sngMidPt	=	Me.ScaleHeight	/	2

				'	Loop	to	draw	line	down	horizontal	axis	pixel	by	pixel.

				For	intI	=	1	To	Me.ScaleWidth

								Me.PSet(intI,	sngMidPt)

				Next	intI

End	Sub

Show	All

Quit	Method
							

Quit	method	as	it	applies	to	the	Application	object.

The	Quit	method	quits	Microsoft	Access.	You	can	select	one	of	several	options
for	saving	a	database	object	before	quitting.

expression.Quit(Option)

expression			Required.	An	expression	that	returns	an	Application	object.

Option		Optional	AcQuitOption.	The	quit	option.

AcQuitOption	can	be	one	of	these	AcQuitOption	constants.
acQuitPrompt		Displays	a	dialog	box	that	asks	whether	you	want	to	save	any
database	objects	that	have	been	changed	but	not	saved.	(Formerly	acPrompt).
acQuitSaveAll	default		Saves	all	objects	without	displaying	a	dialog	box.
(Formerly	acSaveYes).
acQuitSaveNone		Quits	Microsoft	Access	without	saving	any	objects.
(Formerly	acExit).

Remarks

The	Quit	method	has	the	same	effect	as	clicking	Exit	on	the	File	menu.	You	can
create	a	custom	menu	command	or	a	command	button	on	a	form	with	a
procedure	that	includes	the	Quit	method.	For	example,	you	can	place	a	Quit
button	on	a	form	and	include	a	procedure	in	the	button's	Click	event	that	uses
the	Quit	method	with	the	Option	argument	set	to	acQuitSaveAll.

Quit	method	as	it	applies	to	the	DoCmd	object.

The	Quit	method	of	the	DoCmd	object	carries	out	the	Quit	action	in	Visual
Basic.

expression.Quit(Options)

expression			Required.	An	expression	that	returns	a	DoCmd	object.

Options		Optional	AcQuitOption.	The	quit	option.

AcQuitOption	can	be	one	of	these	AcQuitOption	constants.
acQuitPrompt		Displays	a	dialog	box	that	asks	whether	you	want	to	save	any
database	objects	that	have	been	changed	but	not	saved.
acQuitSaveAll	default		Saves	all	objects	without	displaying	a	dialog	box.
acQuitSaveNone		Quits	Microsoft	Access	without	saving	any	objects.

mk:@MSITStore:acmain10.chm::/html/acactQuit.htm

Remarks

The	Quit	method	of	the	DoCmd	object	was	added	to	provide	backward
compatibility	for	running	the	Quit	action	in	Visual	Basic	code	in	Microsoft
Access	95.	It's	recommended	that	you	use	the	existing	Quit	method	of	the
Application	object	instead.

Example

As	it	applies	to	the	Application	object.

The	following	example	shows	the	Click	event	procedure	for	a	command	button
named	AppExit.	After	the	AppExit	button	is	clicked,	a	dialog	box	prompts	the
user	to	save	changes	and	the	procedure	quits	Microsoft	Access.

Private	Sub	AppExit_Click()

				Application.Quit	acQuitPrompt

End	Sub

As	it	applies	to	the	DoCmd	object.

The	following	example	displays	a	dialog	box	or	dialog	boxes	that	ask	if	users
want	to	save	any	changed	objects	before	they	quit	Microsoft	Access.

DoCmd.Quit	acQuitPrompt

Show	All

Recalc	Method
							

The	Recalc	method	immediately	updates	all	calculated	controls	on	a	form.

expression.Recalc

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

Remarks

Using	this	method	is	equivalent	to	pressing	the	F9	key	when	a	form	has	the
focus.	You	can	use	this	method	to	recalculate	the	values	of	controls	that	depend
on	other	fields	for	which	the	contents	may	have	changed.

Example

The	following	example	uses	the	Recalc	method	to	update	controls	on	an	Orders
form.	This	form	includes	the	Freight	text	box,	which	displays	the	freight	cost,
and	a	calculated	control	that	displays	the	total	cost	of	an	order	including	freight.
If	the	statement	containing	the	Recalc	method	is	placed	in	the	AfterUpdate	event
procedure	for	the	Freight	text	box,	the	total	cost	of	an	order	is	recalculated	every
time	a	new	freight	amount	is	entered.

Sub	Freight_AfterUpdate()

				Me.Recalc

End	Sub

Show	All

Refresh	Method
							

The	Refresh	method	immediately	updates	the	records	in	the	underlying	record
source	for	a	specified	form	or	datasheet	to	reflect	changes	made	to	the	data	by
you	and	other	users	in	a	multiuser	environment.

expression.Refresh

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

Remarks

Using	the	Refresh	method	is	equivalent	to	clicking	Refresh	on	the	Records
menu.

Microsoft	Access	refreshes	records	automatically,	based	on	the	Refresh	Interval
setting	on	the	Advanced	tab	of	the	Options	dialog	box,	available	by	clicking
Options	on	the	Tools	menu.	ODBC	data	sources	are	refreshed	based	on	the
ODBC	Refresh	Interval	setting	on	the	Advanced	tab	of	the	Options	dialog
box.	You	can	use	the	Refresh	method	to	view	changes	that	have	been	made	to
the	current	set	of	records	in	a	form	or	datasheet	since	the	record	source
underlying	the	form	or	datasheet	was	last	refreshed.

The	Refresh	method	shows	only	changes	made	to	records	in	the	current	set.
Since	the	Refresh	method	doesn't	actually	requery	the	database,	the	current	set
won't	include	records	that	have	been	added	or	exclude	records	that	have	been
deleted	since	the	database	was	last	requeried.	Nor	will	it	exclude	records	that	no
longer	satisfy	the	criteria	of	the	query	or	filter.	To	requery	the	database,	use	the
Requery	method.	When	the	record	source	for	a	form	is	requeried,	the	current	set
of	records	will	accurately	reflect	all	data	in	the	record	source.

Notes

It's	often	faster	to	refresh	a	form	or	datasheet	than	to	requery	it.	This	is
especially	true	if	the	initial	query	was	slow	to	run.
Don't	confuse	the	Refresh	method	with	the	Repaint	method,	which
repaints	the	screen	with	any	pending	visual	changes.

Example

The	following	example	uses	the	Refresh	method	to	update	the	records	in	the
underlying	record	source	for	the	form	Customers	whenever	the	form	receives	the
focus:

Private	Sub	Form_Activate()

				Me.Refresh

End	Sub

Show	All

RefreshDatabaseWindow	Method
							

The	RefreshDatabaseWindow	method	updates	the	Database	window	after	a
database	object	has	been	created,	deleted,	or	renamed.

expression.RefreshDatabaseWindow

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

Remarks

You	can	use	the	RefreshDatabaseWindow	method	to	immediately	reflect
changes	to	objects	in	Microsoft	Access	in	the	Database	window.	For	example,	if
you	add	a	new	form	from	Visual	Basic	and	save	it,	you	can	use	the
RefreshDatabaseWindow	method	to	display	the	name	of	the	new	form	on	the
Forms	tab	of	the	Database	window	immediately	after	it	has	been	saved.

Example

The	following	example	creates	a	new	form,	saves	it,	and	refreshes	the	Database
window:

Sub	CreateFormAndRefresh()

				Dim	frm	As	Form

				Set	frm	=	CreateForm

				DoCmd.Save	,	"NewForm"

				RefreshDatabaseWindow

End	Sub

Show	All

RefreshTitleBar	Method
							

The	RefreshTitleBar	method	refreshes	the	Microsoft	Access	title	bar	after	the
AppTitle	or	AppIcon	property	has	been	set	in	Visual	Basic.

expression.RefreshTitleBar

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

Remarks

For	example,	you	can	change	the	caption	in	the	Microsoft	Access	title	bar	to
"Contacts	Database"	by	setting	the	AppTitle	property.

The	AppTitle	and	AppIcon	properties	enable	you	to	customize	your	application
by	changing	the	title	and	icon	that	appear	in	the	Microsoft	Access	title	bar.	The
title	bar	is	not	automatically	updated	after	you	have	set	these	properties.	In	order
for	the	change	to	the	title	bar	to	appear,	you	must	use	the	RefreshTitleBar
method.

Note			In	a	Microsoft	Access	database	(.mdb),	you	can	reset	the	AppTitle	and
AppIcon	properties	to	their	default	value	by	deleting	them	from	the	Properties
collection	representing	the	current	database.	After	you	delete	these	properties,
you	must	use	the	RefreshTitleBar	method	to	restore	the	Microsoft	Access
defaults	to	the	title	bar.

mk:@MSITStore:dao360.chm::/htm/dacolProperty.htm

Example

The	following	example	sets	the	AppTitle	property	of	the	current	database	and
applies	the	RefreshTitleBar	method	to	update	the	title	bar.

Sub	ChangeTitle()

				Dim	obj	As	Object

				Const	conPropNotFoundError	=	3270

				

				On	Error	GoTo	ErrorHandler

				'	Return	Database	object	variable	pointing	to

				'	the	current	database.

				Set	dbs	=	CurrentDb

				'	Change	title	bar.

				dbs.Properties!AppTitle	=	"Contacts	Database"

				'	Update	title	bar	on	screen.

				Application.RefreshTitleBar

				Exit	Sub

				

ErrorHandler:

				If	Err.Number	=	conPropNotFoundError	Then

								Set	obj	=	dbs.CreateProperty("AppTitle",	dbText,	"Contacts	Database")

								dbs.Properties.Append	obj

				Else

								MsgBox	"Error:	"	&	Err.Number	&	vbCrLf	&	Err.Description

				End	If

				Resume	Next

End	Sub

Show	All

Remove	Method
							

Some	of	the	content	in	this	topic	may	not	be	applicable	to	some	languages.

Remove	method	as	it	applies	to	the	AccessObjectProperties	collection	object.

You	can	use	the	Remove	method	to	remove	an	AccessObjectProperty	object
from	the	AccessObjectProperties	collection	of	an	AccessObject	object.

expression.Remove(Item)

expression			Required.	An	expression	that	returns	an	AccessObjectProperties
collection	object.

Item		Required	Variant.	An	expression	that	specifies	the	position	of	a	member
of	the	collection	referred	to	by	the	object	argument.	If	a	numeric	expression,	the
index	argument	must	be	a	number	from	0	to	the	value	of	the	collection's	Count
property	minus	1.	If	a	string	expression,	the	index	argument	must	be	the	name	of
a	member	of	the	collection.

Remove	method	as	it	applies	to	the	Pages	collection	object.

The	Remove	method	removes	a	Page	object	from	the	Pages	collection	of	a	tab
control.

expression.Remove(Item)

expression			Required.	An	expression	that	returns	a	Pages	collection	object.

Item		Optional	Variant.	An	integer	that	specifies	the	index	of	the	Page	object	to
be	removed.	The	index	of	the	Page	object	corresponds	to	the	value	of	the
PageIndex	property	for	that	Page	object.	If	you	omit	this	argument,	the	last
Page	object	in	the	collection	is	removed.

Remarks

The	Pages	collection	is	indexed	beginning	with	zero.	The	leftmost	page	in	the
tab	control	has	an	index	of	0,	the	page	immediately	to	the	right	of	the	leftmost
page	has	an	index	of	1,	and	so	on.

You	can	remove	a	Page	object	from	the	Pages	collection	of	a	tab	control	only
when	the	form	is	in	Design	view.

Remove	method	as	it	applies	to	the	References	collection	object.

The	Remove	method	removes	a	Reference	object	from	the	References
collection.

expression.Remove(Reference)

expression			Required.	An	expression	that	returns	a	References	collection	object.

Reference		Required	Reference	object.	The	Reference	object	that	represents	the
reference	you	wish	to	remove.

Remarks

To	determine	the	name	of	the	Reference	object	you	wish	to	remove,	check	the
Project/Library	box	in	the	Object	Browser.	The	names	of	all	references	that	are
currently	set	appear	there.	These	names	correspond	to	the	value	of	the	Name
property	of	a	Reference	object.

Example

As	it	applies	to	the	Pages	object.

The	following	example	removes	pages	from	a	tab	control:

Function	RemovePage()	As	Boolean

				Dim	frm	As	Form

				Dim	tbc	As	TabControl,	pge	As	Page

				On	Error	GoTo	Error_RemovePage

				Set	frm	=	Forms!Form1

				Set	tbc	=	frm!TabCtl0

				tbc.Pages.Remove

				RemovePage	=	True

Exit_RemovePage:

				Exit	Function

Error_RemovePage:

				MsgBox	Err	&	":	"	&	Err.Description

				RemovePage	=	False

				Resume	Exit_RemovePage

End	Function

As	it	applies	to	the	References	object.

The	first	of	the	following	two	functions	adds	a	reference	to	the	calendar	control
for	the	References	collection.	The	second	function	removes	the	reference	to	the
calendar	control.

Function	AddReference()	As	Boolean

				Dim	ref	As	Reference,	strFile	As	String

				On	Error	GoTo	Error_AddReference

				strFile	=	"C:\Windows\System\Mscal.ocx"

				'	Create	reference	to	calendar	control.

				Set	ref	=	References.AddFromFile(strFile)

				AddReference	=	True

Exit_AddReference:

				Exit	Function

Error_AddReference:

				MsgBox	Err	&	":	"	&	Err.Description

				AddReference	=	False

				Resume	Exit_AddReference

End	Function

Function	RemoveReference()	As	Boolean

				Dim	ref	As	Reference

				On	Error	GoTo	Error_RemoveReference

				Set	ref	=	References!MSCAL

				'	Remove	calendar	control	reference.

				References.Remove	ref

				RemoveReference	=	True

Exit_RemoveReference:

				Exit	Function

Error_RemoveReference:

				MsgBox	Err	&	":	"	&	Err.Description

				RemoveReference	=	False

				Resume	Exit_RemoveReference

End	Function

RemoveItem	Method
							

Removes	an	item	from	the	list	of	values	displayed	by	the	specified	list	box
control	or	combo	box	control.

expression.RemoveItem(Index)

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

Index		Required	Variant.	The	item	to	be	removed	from	the	list,	expressed	as
either	an	item	number	or	the	list	item	text.

Remarks

This	method	is	only	valid	for	list	box	or	combo	box	controls	on	forms.	Also,	the
RowSourceType	property	of	the	control	must	be	set	to	"Value	List".

List	item	numbers	start	from	zero.	If	the	value	of	the	Index	argument	doesn't
correspond	to	an	existing	item	number	or	the	text	of	an	existing	item,	an	error
occurs.

Use	the	AddItem	method	to	add	items	to	the	list	of	values.

Example

This	example	removes	the	specified	item	from	the	list	in	a	list	box	control.	For
the	function	to	work,	you	must	pass	it	a	ListBox	object	representing	a	list	box
control	on	a	form	and	a	Variant	value	representing	the	item	to	be	removed.

Function	RemoveListItem(ctrlListBox	As	ListBox,	_

								ByVal	varItem	As	Variant)	As	Boolean

				'	Trap	for	errors.

				On	Error	GoTo	ERROR_HANDLER

				'	Remove	the	list	box	item	and	set	the	return	value

				'	to	True,	indicating	success.

				ctrlListBox.RemoveItem	Index:=varItem

				RemoveListItem	=	True

				'	Reset	the	error	trap	and	exit	the	function.

				On	Error	GoTo	0

				Exit	Function

'	Return	False	if	an	error	occurs.

ERROR_HANDLER:

				RemoveListItem	=	False

End	Function

Show	All

Rename	Method
							

The	Rename	method	carries	out	the	Rename	action	in	Visual	Basic.

expression.Rename(NewName,	ObjectType,	OldName)

expression			Required.	An	expression	that	returns	a	DoCmd	object.

NewName		Required	Variant.	A	string	expression	that's	the	new	name	for	the
object	you	want	to	rename.	The	name	must	follow	the	object-naming	rules	for
Microsoft	Access	objects.

ObjectType		Optional	AcObjectType.	The	type	of	object	to	rename.

AcObjectType	can	be	one	of	these	AcObjectType	constants.
acDataAccessPage
acDefault	default
acDiagram
acForm
acFunction
acMacro
acModule
acQuery
acReport
acServerView
acStoredProcedure
acTable

OldName		Optional	Variant.	A	string	expression	that's	the	valid	name	of	an
object	of	the	type	specified	by	the	ObjectType	argument.	If	you	execute	Visual
Basic	code	containing	the	Rename	method	in	a	library	database,	Microsoft
Access	looks	for	the	object	with	this	name,	first	in	the	library	database,	then	in
the	current	database.

mk:@MSITStore:acmain10.chm::/html/acactRename.htm

Remarks

For	more	information	on	how	the	action	and	its	arguments	work,	see	the	action
topic.

If	you	leave	the	ObjectType	and	OldName	arguments	blank	(the	default
constant,	acDefault,	is	assumed	for	ObjectType),	Microsoft	Access	renames	the
object	selected	in	the	Database	window.	To	select	an	object	in	the	Database
window,	you	can	use	the	SelectObject	action	or	SelectObject	method	with	the	In
Database	Window	argument	set	to	Yes	(True).

If	you	leave	the	ObjectType	and	OldName	arguments	blank,	don't	use	a	comma
following	the	NewName	argument.

mk:@MSITStore:acmain10.chm::/html/acactSelectObject.htm

Example

The	following	example	renames	the	Employees	table.

DoCmd.Rename	"Old	Employees	Table",	acTable,	"Employees"

Show	All

Repaint	Method
							

The	Repaint	method	completes	any	pending	screen	updates	for	a	specified	form.
When	performed	on	a	form,	the	Repaint	method	also	completes	any	pending
recalculations	of	the	form's	controls.

expression.Repaint

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

Remarks

Microsoft	Access	sometimes	waits	to	complete	pending	screen	updates	until	it
finishes	other	tasks.	With	the	Repaint	method,	you	can	force	immediate
repainting	of	the	controls	on	the	specified	form.	You	can	use	the	Repaint
method:

When	you	change	values	in	a	number	of	fields.	Unless	you	force	a	repaint,
Microsoft	Access	might	not	display	the	changes	immediately,	especially	if
other	fields,	such	as	those	in	an	expression	in	a	calculated	control,	depend
on	values	in	the	changed	fields.

When	you	want	to	make	sure	that	a	form	displays	data	in	all	of	its	fields.
For	example,	fields	containing	OLE	objects	often	don't	display	their	data
immediately	after	you	open	a	form.

This	method	doesn't	cause	a	requery	of	the	database,	nor	does	it	show	new	or
changed	records	in	the	form's	underlying	record	source.	You	can	use	the
Requery	method	to	requery	the	source	of	data	for	the	form	or	one	of	its	controls.

Notes

Don't	confuse	the	Repaint	method	with	the	Refresh	method,	or	with	the
Refresh	command	on	the	Records	menu.	The	Refresh	method	and
Refresh	command	show	changes	you	or	other	users	have	made	to	the
underlying	record	source	for	any	of	the	currently	displayed	records	in	forms
and	datasheets.	The	Repaint	method	simply	updates	the	screen	when
repainting	has	been	delayed	while	Microsoft	Access	completes	other	tasks.

The	Repaint	method	differs	from	the	Echo	method	in	that	the	Repaint
method	forces	a	single	immediate	repaint,	while	the	Echo	method	turns
repainting	on	or	off.

Example

The	following	example	uses	the	Repaint	method	to	repaint	a	form	when	the
form	receives	the	focus:

Private	Sub	Form_Activate()

				Me.Repaint

End	Sub

Show	All

RepaintObject	Method
							

The	RepaintObject	method	carries	out	the	RepaintObject	action	in	Visual	Basic.

expression.RepaintObject(ObjectType,	ObjectName)

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

ObjectType		Optional	AcObjectType.

AcObjectType	can	be	one	of	these	AcObjectType	constants.
acDataAccessPage
acDefault	default
acDiagram
acForm
acFunction
acMacro
acModule
acQuery
acReport
acServerView
acStoredProcedure
acTable

ObjectName		Optional	Variant.	A	string	expression	that's	the	valid	name	of	an
object	of	the	type	selected	by	the	objecttype	argument.

mk:@MSITStore:acmain10.chm::/html/acactRepaintObject.htm

Remarks

For	more	information	on	how	the	action	and	its	arguments	work,	see	the	action
topic.

Using	the	RepaintObject	method	with	no	arguments	(the	default	constant,
acDefault,	is	assumed	for	the	objecttype	argument)	repaints	the	active	window.

The	RepaintObject	method	of	the	DoCmd	object	was	added	to	provide
backwards	compatibility	for	running	the	RepaintObject	method	in	Visual	Basic
code	in	Microsoft	Access	95.	If	you	want	to	repaint	a	form,	it's	recommended
that	you	use	the	existing	Repaint	method	of	the	Form	object	instead.

Example

The	following	example	repaints	the	table	Customers:

DoCmd.RepaintObject	acTable,	"Customers"

Show	All

ReplaceLine	Method
							

The	ReplaceLine	method	replaces	a	specified	line	in	a	standard	module	or	a
class	module.

expression.ReplaceLine(Line,	String)

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

Line		Required	Long.	A	Long	value	that	specifies	the	number	of	the	line	to	be
replaced.

String		Required	String.	The	text	that	is	to	replace	the	existing	line.

Remarks

Lines	in	a	module	are	numbered	beginning	with	one.	To	determine	the	number
of	lines	in	a	module,	use	the	CountOfLines	property.

Show	All

Requery	Method
							

Requery	method	as	it	applies	to	the	DoCmd	object.

The	Requery	method	of	the	DoCmd	object	carries	out	the	Requery	action	in
Visual	Basic.

expression.Requery(ControlName)

expression			Required.	An	expression	that	returns	one	of	the	above	objects.

ControlName		Optional	Variant.	A	string	expression	that's	the	name	of	a	control
on	the	active	object.

Requery	method	as	it	applies	to	all	other	objects	in	the	Applies	To	list.

The	Requery	method	updates	the	data	underlying	a	specified	form	or	a	control
that's	on	the	active	form	by	requerying	the	source	of	data	for	the	form	or	control.

expression.Requery

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

mk:@MSITStore:acmain10.chm::/html/acactRequery.htm

Remarks

You	can	use	this	method	to	ensure	that	a	form	or	control	displays	the	most	recent
data.

The	Requery	method	does	one	of	the	following:

Reruns	the	query	on	which	the	form	or	control	is	based.
Displays	any	new	or	changed	records	or	removes	deleted	records	from	the
table	on	which	the	form	or	control	is	based.
Updates	records	displayed	based	on	any	changes	to	the	Filter	property	of
the	form.

Controls	based	on	a	query	or	table	include:

List	boxes	and	combo	boxes.
Subform	controls.
OLE	objects,	such	as	charts.
Controls	for	which	the	ControlSource	property	setting	includes	domain
aggregate	functions	or	SQL	aggregate	function.

If	you	specify	any	other	type	of	control	for	the	object	specified	by	expression,
the	record	source	for	the	form	is	requeried.

If	the	object	specified	by	expression	isn't	bound	to	a	field	in	a	table	or	query,	the
Requery	method	forces	a	recalculation	of	the	control.

If	you	omit	the	object	specified	by	expression,	the	Requery	method	requeries
the	underlying	data	source	for	the	form	or	control	that	has	the	focus.	If	the
control	that	has	the	focus	has	a	record	source	or	row	source,	it	will	be	requeried;
otherwise,	the	control's	data	will	simply	be	refreshed.

If	a	subform	control	has	the	focus,	this	method	only	requeries	the	record	source
for	the	subform,	not	the	parent	form.

Notes

The	Requery	method	updates	the	data	underlying	a	form	or	control	to

reflect	records	that	are	new	to	or	deleted	from	the	record	source	since	it	was
last	queried.	The	Refresh	method	shows	only	changes	that	have	been	made
to	the	current	set	of	records;	it	doesn't	reflect	new	or	deleted	records	in	the
record	source.	The	Repaint	method	simply	repaints	the	specified	form	and
its	controls.
The	Requery	method	doesn't	pass	control	to	the	operating	system	to	allow
Windows	to	continue	processing	messages.	Use	the	DoEvents	function	if
you	need	to	relinquish	temporary	control	to	the	operating	system.
The	Requery	method	is	faster	than	the	Requery	action.	When	you	use	the
Requery	action,	Microsoft	Access	closes	the	query	and	reloads	it	from	the
database.	When	you	use	the	Requery	method,	Microsoft	Access	reruns	the
query	without	closing	and	reloading	it.

mk:@MSITStore:acmain10.chm::/html/acactRequery.htm

Example

As	it	applies	to	the	DoCmd	object.

The	following	example	uses	the	Requery	method	to	update	the	EmployeeList
control:

DoCmd.Requery	"EmployeeList"

As	it	applies	to	all	other	objects	in	the	Applies	To	list.	

The	following	example	uses	the	Requery	method	to	requery	the	data	from	the
EmployeeList	list	box	on	an	Employees	form:

Public	Sub	RequeryList()

				Dim	ctlCombo	As	Control

				'	Return	Control	object	pointing	to	a	combo	box.

				Set	ctlCombo	=	Forms!Employees!ReportsTo

				'	Requery	source	of	data	for	list	box.

				ctlCombo.Requery

End	Sub

Restore	Method
							

The	Restore	method	carries	out	the	Restore	action	in	Visual	Basic.

expression.Restore

expression			Required.	An	expression	that	returns	a	DoCmd	object.

mk:@MSITStore:acmain10.chm::/html/acactRestore.htm

Remarks

This	method	has	no	arguments	and	be	called	directly	using	the	syntax
DoCmd.Restore.

Note			This	method	cannot	be	applied	to	module	windows	in	the	Visual	Basic
Editor	(VBE).	For	information	about	how	to	affect	module	windows	see	the
WindowState	property	topic.

Show	All

Run	Method
							

You	can	use	the	Run	method	to	carry	out	a	specified	Microsoft	Access	or	user-
defined	Function	or	Sub	procedure.	Variant.

expression.Run(Procedure,	Arg1,	Arg2,	Arg3,	Arg4,	Arg5,	Arg6,	Arg7,	Arg8,
Arg9,	Arg10,	Arg11,	Arg12,	Arg13,	Arg14,	Arg15,	Arg16,	Arg17,	Arg18,
Arg19,	Arg20,	Arg21,	Arg22,	Arg23,	Arg24,	Arg25,	Arg26,	Arg27,	Arg28,
Arg29,	Arg30)

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

Procedure		Required	String.	The	name	of	the	Function	or	Sub	procedure	to	be
run.	If	you	are	calling	a	procedure	in	another	database	use	the	project	name	and
the	procedure	name	separated	by	a	dot	in	the	form:
"projectname.procedurename".	If	you	execute	Visual	Basic	code	containing	the
Run	method	in	a	library	database,	Microsoft	Access	looks	for	the	procedure	first
in	the	library	database,	then	in	the	current	database.

Arg1		Optional	Variant.

Arg2		Optional	Variant.

Arg3		Optional	Variant.

Arg4		Optional	Variant.

Arg5		Optional	Variant.

Arg6		Optional	Variant.

Arg7		Optional	Variant.

Arg8		Optional	Variant.

Arg9		Optional	Variant.

Arg10		Optional	Variant.

Arg11		Optional	Variant.

Arg12		Optional	Variant.

Arg13		Optional	Variant.

Arg14		Optional	Variant.

Arg15		Optional	Variant.

Arg16		Optional	Variant.

Arg17		Optional	Variant.

Arg18		Optional	Variant.

Arg19		Optional	Variant.

Arg20		Optional	Variant.

Arg21		Optional	Variant.

Arg22		Optional	Variant.

Arg23		Optional	Variant.

Arg24		Optional	Variant.

Arg25		Optional	Variant.

Arg26		Optional	Variant.

Arg27		Optional	Variant.

Arg28		Optional	Variant.

Arg29		Optional	Variant.

Arg30		Optional	Variant.

Remarks

This	method	is	useful	when	you	are	controlling	Microsoft	Access	from	another
application	through	Automation,	formerly	called	OLE	Automation.	For	example,
you	can	use	the	Run	method	from	an	ActiveX	component	to	carry	out	a	Sub
procedure	that	is	defined	within	a	Microsoft	Access	database.

You	can	set	a	reference	to	the	Microsoft	Access	type	library	from	any	other
ActiveX	component	and	use	the	objects,	methods,	and	properties	defined	in	that
library	in	your	code.	However,	you	can't	set	a	reference	to	an	individual
Microsoft	Access	database	from	any	application	other	than	Microsoft	Access.

For	example,	suppose	you	have	defined	a	procedure	named	NewForm	in	a
database	with	its	ProjectName	property	set	to	"WizCode."	The	NewForm
procedure	takes	a	string	argument.	You	can	call	NewForm	in	the	following
manner	from	Visual	Basic:

Dim	appAccess	As	New	Access.Application

appAccess.OpenCurrentDatabase	("C:\My	Documents\WizCode.mdb")

appAccess.Run	"WizCode.NewForm",	"Some	String"

If	another	procedure	with	the	same	name	may	reside	in	a	different	database,
qualify	the	procedure	argument,	as	shown	in	the	preceding	example,	with	the
name	of	the	database	in	which	the	desired	procedure	resides.

You	can	also	use	the	Run	method	to	call	a	procedure	in	a	referenced	Microsoft
Access	database	from	another	database.

Example

The	following	example	runs	a	user-defined	Sub	procedure	in	a	module	in	a
Microsoft	Access	database	from	another	application	that	acts	as	an	Active	X
component.

To	try	this	example,	create	a	new	database	called	WizCode.mdb	and	set	its
ProjectName	property	to	WizCode.	Open	a	new	module	in	that	database	and
enter	the	following	code.	Save	the	module,	and	close	the	database.

Note	You	set	the	ProjectName	be	selecting	Tools,	WizCode	Properties...	from
the	VBE	main	menu.

Public	Sub	Greeting(ByVal	strName	As	String)

				MsgBox	("Hello,	"	&	strName	&	"!"),	vbInformation,	"Greetings"

End	Sub

Once	you	have	completed	this	step,	run	the	following	code	from	Microsoft	Excel
or	Microsoft	Visual	Basic.	Make	sure	that	you	have	added	a	reference	to	the
Microsoft	Access	type	library	by	clicking	References	on	the	Tools	menu	and
selecting	Microsoft	Access	10.0	Object	Library	in	the	References	dialog	box.

Private	Sub	RunAccessSub()

				

				Dim	appAccess	As	Access.Application

				'	Create	instance	of	Access	Application	object.

				Set	appAccess	=	CreateObject("Access.Application")

				

				'	Open	WizCode	database	in	Microsoft	Access	window.

				appAccess.OpenCurrentDatabase	"C:\My	Documents\WizCode.mdb",	False

				

				'	Run	Sub	procedure.

				appAccess.Run	"Greeting",	"Joe"

				Set	appAccess	=	Nothing

				

End	Sub

Show	All

RunCommand	Method
							

The	RunCommand	method	runs	a	built-in	menu	or	toolbar	command.

expression.RunCommand(Command)

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

Command		Required	AcCommand.	An	intrinsic	constant	that	specifies	which
built-in	menu	or	toolbar	command	is	to	be	run.

AcCommand	can	be	one	of	these	AcCommand	constants.
acCmdAboutMicrosoftAccess
acCmdAddInManager
acCmdAddToNewGroup
acCmdAddWatch
acCmdAdvancedFilterSort
acCmdAlignBottom
acCmdAlignCenter
acCmdAlignLeft
acCmdAlignmentAndSizing
acCmdAlignMiddle
acCmdAlignRight
acCmdAlignToGrid
acCmdAlignTop
acCmdAlignToShortest
acCmdAlignToTallest
acCmdAnalyzePerformance
acCmdAnalyzeTable
acCmdAnswerWizard

acCmdApplyDefault
acCmdApplyFilterSort
acCmdAppMaximize
acCmdAppMinimize
acCmdAppMove
acCmdAppRestore
acCmdAppSize
acCmdArrangeIconsAuto
acCmdArrangeIconsByCreated
acCmdArrangeIconsByModified
acCmdArrangeIconsByName
acCmdArrangeIconsByType
acCmdAutoCorrect
acCmdAutoDial
acCmdAutoFormat
acCmdBackgroundPicture
acCmdBackgroundSound
acCmdBackup
acCmdBookmarksClearAll
acCmdBookmarksNext
acCmdBookmarksPrevious
acCmdBookmarksToggle
acCmdBringToFront
acCmdCallStack
acCmdChangeToCheckBox
acCmdChangeToComboBox
acCmdChangeToCommandButton
acCmdChangeToImage
acCmdChangeToLabel
acCmdChangeToListBox
acCmdChangeToOptionButton
acCmdChangeToTextBox
acCmdChangeToToggleButton

acCmdChartSortAscByTotal
acCmdChartSortDescByTotal
acCmdClearAll
acCmdClearAllBreakpoints
acCmdClearGrid
acCmdClearHyperlink
acCmdClearItemDefaults
acCmdClose
acCmdCloseWindow
acCmdColumnWidth
acCmdCompactDatabase
acCmdCompileAllModules
acCmdCompileAndSaveAllModules
acCmdCompileLoadedModules
acCmdCompleteWord
acCmdConditionalFormatting
acCmdConnection
acCmdControlWizardsToggle
acCmdConvertDatabase
acCmdConvertMacrosToVisualBasic
acCmdCopy
acCmdCopyDatabaseFile
acCmdCopyHyperlink
acCmdCreateMenuFromMacro
acCmdCreateRelationship
acCmdCreateReplica
acCmdCreateShortcut
acCmdCreateShortcutMenuFromMacro
acCmdCreateToolbarFromMacro
acCmdCut
acCmdDataAccessPageAddToPage
acCmdDataAccessPageBrowse
acCmdDataAccessPageDesignView

acCmdDataAccessPageFieldListRefresh
acCmdDatabaseProperties
acCmdDatabaseSplitter
acCmdDataEntry
acCmdDataOutline
acCmdDatasheetView
acCmdDateAndTime
acCmdDebugWindow
acCmdDelete
acCmdDeleteGroup
acCmdDeletePage
acCmdDeleteQueryColumn
acCmdDeleteRecord
acCmdDeleteRows
acCmdDeleteTab
acCmdDeleteTable
acCmdDeleteTableColumn
acCmdDeleteWatch
acCmdDemote
acCmdDesignView
acCmdDiagramAddRelatedTables
acCmdDiagramAutosizeSelectedTables
acCmdDiagramDeleteRelationship
acCmdDiagramLayoutDiagram
acCmdDiagramLayoutSelection
acCmdDiagramModifyUserDefinedView
acCmdDiagramNewLabel
acCmdDiagramNewTable
acCmdDiagramRecalculatePageBreaks
acCmdDiagramShowRelationshipLabels
acCmdDiagramViewPageBreaks
acCmdDocMaximize
acCmdDocMinimize

acCmdDocMove
acCmdDocRestore
acCmdDocSize
acCmdDocumenter
acCmdDropSQLDatabase
acCmdDuplicate
acCmdEditHyperlink
acCmdEditingAllowed
acCmdEditRelationship
acCmdEditTriggers
acCmdEditWatch
acCmdEncryptDecryptDatabase
acCmdEnd
acCmdExit
acCmdExport
acCmdFavoritesAddTo
acCmdFavoritesOpen
acCmdFieldList
acCmdFilterByForm
acCmdFilterBySelection
acCmdFilterExcludingSelection
acCmdFind
acCmdFindNext
acCmdFindNextWordUnderCursor
acCmdFindPrevious
acCmdFindPrevWordUnderCursor
acCmdFitToWindow
acCmdFont
acCmdFormatCells
acCmdFormHdrFtr
acCmdFormView
acCmdFreezeColumn
acCmdGoBack

acCmdGoContinue
acCmdGoForward
acCmdGroupByTable
acCmdGroupControls
acCmdHideColumns
acCmdHidePane
acCmdHideTable
acCmdHorizontalSpacingDecrease
acCmdHorizontalSpacingIncrease
acCmdHorizontalSpacingMakeEqual
acCmdHyperlinkDisplayText
acCmdImport
acCmdIndent
acCmdIndexes
acCmdInsertActiveXControl
acCmdInsertChart
acCmdInsertFile
acCmdInsertFileIntoModule
acCmdInsertHyperlink
acCmdInsertLookupColumn
acCmdInsertLookupField
acCmdInsertMovieFromFile
acCmdInsertObject
acCmdInsertPage
acCmdInsertPicture
acCmdInsertPivotTable
acCmdInsertProcedure
acCmdInsertQueryColumn
acCmdInsertRows
acCmdInsertSpreadsheet
acCmdInsertSubdatasheet
acCmdInsertTableColumn
acCmdInsertUnboundSection

acCmdInvokeBuilder
acCmdJoinProperties
acCmdLastPosition
acCmdLayoutPreview
acCmdLineUpIcons
acCmdLinkedTableManager
acCmdLinkTables
acCmdListConstants
acCmdLoadFromQuery
acCmdMacroConditions
acCmdMacroNames
acCmdMakeMDEFile
acCmdMaximiumRecords
acCmdMicrosoftAccessHelpTopics
acCmdMicrosoftOnTheWeb
acCmdMicrosoftScriptEditor
acCmdMoreWindows
acCmdNewDatabase
acCmdNewGroup
acCmdNewObjectAutoForm
acCmdNewObjectAutoReport
acCmdNewObjectClassModule
acCmdNewObjectDataAccessPage
acCmdNewObjectDiagram
acCmdNewObjectForm
acCmdNewObjectFunction
acCmdNewObjectMacro
acCmdNewObjectModule
acCmdNewObjectQuery
acCmdNewObjectReport
acCmdNewObjectStoredProcedure
acCmdNewObjectTable
acCmdNewObjectView

acCmdObjBrwFindWholeWordOnly
acCmdObjBrwGroupMembers
acCmdObjBrwHelp
acCmdObjBrwShowHiddenMembers
acCmdObjBrwViewDefinition
acCmdObjectBrowser
acCmdOfficeClipboard
acCmdOLEDDELinks
acCmdOLEObjectConvert
acCmdOLEObjectDefaultVerb
acCmdOpenDatabase
acCmdOpenHyperlink
acCmdOpenNewHyperlink
acCmdOpenSearchPage
acCmdOpenStartPage
acCmdOpenTable
acCmdOpenURL
acCmdOptions
acCmdOutdent
acCmdOutputToExcel
acCmdOutputToRTF
acCmdOutputToText
acCmdPageHdrFtr
acCmdPageNumber
acCmdPageProperties
acCmdPageSetup
acCmdParameterInfo
acCmdPartialReplicaWizard
acCmdPaste
acCmdPasteAppend
acCmdPasteAsHyperlink
acCmdPasteSpecial
acCmdPivotAutoAverage

acCmdPivotAutoCount
acCmdPivotAutoFilter
acCmdPivotAutoMax
acCmdPivotAutoMin
acCmdPivotAutoStdDev
acCmdPivotAutoStdDevP
acCmdPivotAutoSum
acCmdPivotAutoVar
acCmdPivotAutoVarP
acCmdPivotChartByRowByColumn
acCmdPivotChartDrillInto
acCmdPivotChartDrillOut
acCmdPivotChartMultiplePlots
acCmdPivotChartMultiplePlotsUnifiedScale
acCmdPivotChartShowLegend
acCmdPivotChartType
acCmdPivotChartUndo
acCmdPivotChartView
acCmdPivotCollapse
acCmdPivotDelete
acCmdPivotDropAreas
acCmdPivotExpand
acCmdPivotRefresh
acCmdPivotShowAll
acCmdPivotShowBottom1
acCmdPivotShowBottom10
acCmdPivotShowBottom10Percent
acCmdPivotShowBottom1Percent
acCmdPivotShowBottom2
acCmdPivotShowBottom25
acCmdPivotShowBottom25Percent
acCmdPivotShowBottom2Percent
acCmdPivotShowBottom5

acCmdPivotShowBottom5Percent
acCmdPivotShowBottomOther
acCmdPivotShowTop1
acCmdPivotShowTop10
acCmdPivotShowTop10Percent
acCmdPivotShowTop1Percent
acCmdPivotShowTop2
acCmdPivotShowTop25
acCmdPivotShowTop25Percent
acCmdPivotShowTop2Percent
acCmdPivotShowTop5
acCmdPivotShowTop5Percent
acCmdPivotShowTopOther
acCmdPivotTableClearCustomOrdering
acCmdPivotTableCreateCalcField
acCmdPivotTableCreateCalcTotal
acCmdPivotTableDemote
acCmdPivotTableExpandIndicators
acCmdPivotTableExportToExcel
acCmdPivotTableFilterBySelection
acCmdPivotTableGroupItems
acCmdPivotTableHideDetails
acCmdPivotTableMoveToColumnArea
acCmdPivotTableMoveToDetailArea
acCmdPivotTableMoveToFilterArea
acCmdPivotTableMoveToRowArea
acCmdPivotTablePercentColumnTotal
acCmdPivotTablePercentGrandTotal
acCmdPivotTablePercentParentColumnItem
acCmdPivotTablePercentParentRowItem
acCmdPivotTablePercentRowTotal
acCmdPivotTablePromote
acCmdPivotTableRemove

acCmdPivotTableShowAsNormal
acCmdPivotTableShowDetails
acCmdPivotTableSubtotal
acCmdPivotTableUngroupItems
acCmdPivotTableView
acCmdPreviewEightPages
acCmdPreviewFourPages
acCmdPreviewOnePage
acCmdPreviewTwelvePages
acCmdPreviewTwoPages
acCmdPrimaryKey
acCmdPrint
acCmdPrintPreview
acCmdPrintRelationships
acCmdProcedureDefinition
acCmdPromote
acCmdProperties
acCmdPublish
acCmdPublishDefaults
acCmdQueryAddToOutput
acCmdQueryGroupBy
acCmdQueryParameters
acCmdQueryTotals
acCmdQueryTypeAppend
acCmdQueryTypeCrosstab
acCmdQueryTypeDelete
acCmdQueryTypeMakeTable
acCmdQueryTypeSelect
acCmdQueryTypeSQLDataDefinition
acCmdQueryTypeSQLPassThrough
acCmdQueryTypeSQLUnion
acCmdQueryTypeUpdate
acCmdQuickInfo

acCmdQuickPrint
acCmdQuickWatch
acCmdRecordsGoToFirst
acCmdRecordsGoToLast
acCmdRecordsGoToNew
acCmdRecordsGoToNext
acCmdRecordsGoToPrevious
acCmdRecoverDesignMaster
acCmdRedo
acCmdReferences
acCmdRefresh
acCmdRefreshPage
acCmdRegisterActiveXControls
acCmdRelationships
acCmdRemove
acCmdRemoveFilterSort
acCmdRemoveTable
acCmdRename
acCmdRenameColumn
acCmdRenameGroup
acCmdRepairDatabase
acCmdReplace
acCmdReportHdrFtr
acCmdReset
acCmdResolveConflicts
acCmdRestore
acCmdRowHeight
acCmdRun
acCmdRunMacro
acCmdRunOpenMacro
acCmdSave
acCmdSaveAllModules
acCmdSaveAllRecords

acCmdSaveAs
acCmdSaveAsASP
acCmdSaveAsDataAccessPage
acCmdSaveAsHTML
acCmdSaveAsIDC
acCmdSaveAsQuery
acCmdSaveAsReport
acCmdSaveLayout
acCmdSaveModuleAsText
acCmdSaveRecord
acCmdSelectAll
acCmdSelectAllRecords
acCmdSelectDataAccessPage
acCmdSelectForm
acCmdSelectRecord
acCmdSelectReport
acCmdSend
acCmdSendToBack
acCmdServerFilterByForm
acCmdServerProperties
acCmdSetControlDefaults
acCmdSetDatabasePassword
acCmdSetNextStatement
acCmdShowAllRelationships
acCmdShowDirectRelationships
acCmdShowEnvelope
acCmdShowMembers
acCmdShowNextStatement
acCmdShowOnlyWebToolbar
acCmdShowTable
acCmdSingleStep
acCmdSizeToFit
acCmdSizeToFitForm

acCmdSizeToGrid
acCmdSizeToNarrowest
acCmdSizeToWidest
acCmdSnapToGrid
acCmdSortAscending
acCmdSortDescending
acCmdSortingAndGrouping
acCmdSpeech
acCmdSpelling
acCmdSQLView
acCmdStartupProperties
acCmdStepInto
acCmdStepOut
acCmdStepOver
acCmdStepToCursor
acCmdStopLoadingPage
acCmdSubdatasheetCollapseAll
acCmdSubdatasheetExpandAll
acCmdSubdatasheetRemove
acCmdSubformDatasheet
acCmdSubformDatasheetView
acCmdSubformFormView
acCmdSubformInNewWindow
acCmdSubformPivotChartView
acCmdSubformPivotTableView
acCmdSwitchboardManager
acCmdSynchronizeNow
acCmdTabControlPageOrder
acCmdTableAddTable
acCmdTableCustomView
acCmdTableNames
acCmdTabOrder
acCmdTestValidationRules

acCmdTileHorizontally
acCmdTileVertically
acCmdToggleBreakpoint
acCmdToggleFilter
acCmdToolbarControlProperties
acCmdToolbarsCustomize
acCmdTransferSQLDatabase
acCmdTransparentBackground
acCmdTransparentBorder
acCmdUndo
acCmdUndoAllRecords
acCmdUnfreezeAllColumns
acCmdUngroupControls
acCmdUnhideColumns
acCmdUpsizingWizard
acCmdUserAndGroupAccounts
acCmdUserAndGroupPermissions
acCmdUserLevelSecurityWizard
acCmdVerticalSpacingDecrease
acCmdVerticalSpacingIncrease
acCmdVerticalSpacingMakeEqual
acCmdViewCode
acCmdViewDataAccessPages
acCmdViewDetails
acCmdViewDiagrams
acCmdViewFieldList
acCmdViewForms
acCmdViewFunctions
acCmdViewGrid
acCmdViewLargeIcons
acCmdViewList
acCmdViewMacros
acCmdViewModules

acCmdViewQueries
acCmdViewReports
acCmdViewRuler
acCmdViewShowPaneDiagram
acCmdViewShowPaneGrid
acCmdViewShowPaneSQL
acCmdViewSmallIcons
acCmdViewStoredProcedures
acCmdViewTableColumnNames
acCmdViewTableColumnProperties
acCmdViewTableKeys
acCmdViewTableNameOnly
acCmdViewTables
acCmdViewTableUserView
acCmdViewToolbox
acCmdViewVerifySQL
acCmdViewViews
acCmdVisualBasicEditor
acCmdWebPagePreview
acCmdWebPageProperties
acCmdWebTheme
acCmdWindowArrangeIcons
acCmdWindowCascade
acCmdWindowHide
acCmdWindowSplit
acCmdWindowUnhide
acCmdWordMailMerge
acCmdWorkgroupAdministrator
acCmdZoom10
acCmdZoom100
acCmdZoom1000
acCmdZoom150
acCmdZoom200

acCmdZoom25
acCmdZoom50
acCmdZoom500
acCmdZoom75
acCmdZoomBox
acCmdZoomSelection

Remarks

Each	menu	and	toolbar	command	in	Microsoft	Access	has	an	associated	constant
that	you	can	use	with	the	RunCommand	method	to	run	that	command	from
Visual	Basic.

You	can't	use	the	RunCommand	method	to	run	a	command	on	a	custom	menu
or	toolbar.	You	can	only	use	it	with	built-in	menus	and	toolbars.

The	RunCommand	method	replaces	the	DoMenuItem	method	of	the	DoCmd
object.

Example

The	following	example	uses	the	RunCommand	method	to	open	the	Options
dialog	box	(Tools	menu).

Public	Function	OpenOptionsDialog()	As	Boolean

On	Error	GoTo	Error_OpenOptionsDialog

				DoCmd.RunCommand	acCmdOptions

				OpenOptionsDialog	=	True

Exit_OpenOptionsDialog:

				Exit	Function

Error_OpenOptionsDialog:

				MsgBox	Err	&	":	"	&	Err.Description

				OpenOptionsDialog	=	False

				Resume	Exit_OpenOptionsDialog

End	Function

Show	All

RunMacro	Method
							

The	RunMacro	method	carries	out	the	RunMacro	action	in	Visual	Basic.

expression.RunMacro(MacroName,	RepeatCount,	RepeatExpression)

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

MacroName		Required	Variant.	A	string	expression	that's	the	valid	name	of	a
macro	in	the	current	database.	If	you	run	Visual	Basic	code	containing	the
RunMacro	method	in	a	library	database,	Microsoft	Access	looks	for	the	macro
with	this	name	in	the	library	database	and	doesn't	look	for	it	in	the	current
database.

RepeatCount		Optional	Variant.	A	numeric	expression	that	evaluates	to	an
integer,	which	is	the	number	of	times	the	macro	will	run.

RepeatExpression		Optional	Variant.	A	numeric	expression	that's	evaluated
each	time	the	macro	runs.	When	it	evaluates	to	False	(0),	the	macro	stops
running.

mk:@MSITStore:acmain10.chm::/html/acactRunMacro.htm

Remarks

For	more	information	on	how	the	action	and	its	arguments	work,	see	the	action
topic.

You	can	use	macrogroupname.macroname	syntax	for	the	macroname	argument
to	run	a	particular	macro	in	a	macro	group.

If	you	specify	the	repeatexpression	argument	and	leave	the	repeatcount
argument	blank,	you	must	include	the	repeatcount	argument's	comma.	If	you
leave	a	trailing	argument	blank,	don't	use	a	comma	following	the	last	argument
you	specify.

Example

The	following	example	runs	the	macro	Print	Sales	that	will	print	the	sales	report
twice:

DoCmd.RunMacro	"Print	Sales",	2

Show	All

RunSQL	Method
							

The	RunSQL	method	carries	out	the	RunSQL	action	in	Visual	Basic.

expression.RunSQL(SQLStatement,	UseTransaction)

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

SQLStatement		Required	Variant.	A	string	expression	that's	a	valid	SQL
statement	for	an	action	query	or	a	data-definition	query.	It	uses	an	INSERT
INTO,	DELETE,	SELECT...INTO,	UPDATE,	CREATE	TABLE,	ALTER
TABLE,	DROP	TABLE,	CREATE	INDEX,	or	DROP	INDEX	statement.	Include
an	IN	clause	if	you	want	to	access	another	database.

UseTransaction		Optional	Variant.	Use	True	(–1)	to	include	this	query	in	a
transaction.	Use	False	(0)	if	you	don't	want	to	use	a	transaction.	If	you	leave	this
argument	blank,	the	default	(True)	is	assumed.

mk:@MSITStore:acmain10.chm::/html/acactRunSQL.htm
mk:@MSITStore:dao360.chm::/htm/dasqlIN.htm

Remarks

For	more	information	on	how	the	action	and	its	arguments	work,	see	the	action
topic.

This	method	only	applies	to	Microsoft	Access	databases	(.mdb).

The	maximum	length	of	the	sqlstatement	argument	is	32,768	characters	(unlike
the	SQL	Statement	action	argument	in	the	Macro	window,	whose	maximum
length	is	256	characters).

If	you	leave	the	usetransaction	argument	blank,	don't	use	a	comma	following	the
sqlstatement	argument.

Example

The	following	example	updates	the	Employees	table,	changing	each	sales
manager's	title	to	Regional	Sales	Manager:

Public	Sub	DoSQL()

				Dim	SQL	As	String

				

				SQL	=	"UPDATE	Employees	"	&	_

										"SET	Employees.Title	=	'Regional	Sales	Manager'	"	&	_

										"WHERE	Employees.Title	=	'Sales	Manager'"

				DoCmd.RunSQL	SQL

				

End	Sub

Show	All

Save	Method
							

The	Save	method	carries	out	the	Save	action	in	Visual	Basic.

expression.Save(ObjectType,	ObjectName)

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

ObjectType		Optional	AcObjectType.

AcObjectType	can	be	one	of	these	AcObjectType	constants.
acDataAccessPage
acDefault	default
acDiagram
acForm
acFunction
acMacro
acModule
acQuery
acReport
acServerView
acStoredProcedure
acTable

Note			If	closing	a	module	in	the	Visual	Basic	Editor	(VBE),	you	must	use
acModule	in	the	objecttype	argument.

ObjectName		Optional	Variant.	A	string	expression	that's	the	valid	name	of	an
object	of	the	type	selected	by	the	objecttype	argument.

mk:@MSITStore:acmain10.chm::/html/acactSave.htm

Remarks

For	more	information	on	how	the	action	and	its	arguments	work,	see	the	action
topic.

If	you	leave	the	objecttype	and	objectname	arguments	blank	(the	default
constant,	acDefault,	is	assumed	for	the	objecttype	argument),	Microsoft	Access
saves	the	active	object.	If	you	leave	the	objecttype	argument	blank,	but	enter	a
name	in	the	objectname	argument,	Microsoft	Access	saves	the	active	object	with
the	specified	name.	If	you	enter	an	object	type	in	the	objecttype	argument,	you
must	enter	an	existing	object's	name	in	the	objectname	argument.

If	you	leave	the	objecttype	argument	blank,	but	enter	a	name	in	the	objectname
argument,	you	must	include	the	objecttype	argument's	comma.

Note			You	can't	use	the	Save	method	to	save	any	of	the	following	with	a	new
name:

A	form	in	Form	view	or	Datasheet	view.

A	report	in	Print	Preview.

A	module.

A	data	access	page	in	Page	view.

A	server	view	in	Datasheet	view	or	Print	Preview.

A	table	in	Datasheet	view	or	Print	Preview.

A	query	in	Datasheet	view	or	Print	Preview.

A	stored	procedure	in	Datasheet	view	or	Print	Preview.

The	Save	method,	whether	it's	run	in	the	current	database	or	in	a	library
database,	always	saves	the	specified	object	or	the	active	object	in	the	database	in
which	the	object	was	created.

Example

The	following	example	uses	the	Save	method	to	save	the	form	named	"New
Employees	Form".	This	form	must	be	open	when	the	code	containing	this
method	runs.

DoCmd.Save	acForm,	"New	Employees	Form"

Show	All

Scale	Method
							

The	Scale	method	defines	the	coordinate	system	for	a	Report	object.

expression.Scale(flags,	x1,	y1,	x2,	y2)

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

flags		Required	Integer.

x1		Required	Single.	A	value	for	the	horizontal	coordinate	that	defines	the
position	of	the	upper-left	corner	of	the	object.

y1		Required	Single.	A	value	for	the	vertical	coordinate	that	defines	the	position
of	the	upper-left	corner	of	the	object.

x2		Required	Single.	A	value	for	the	horizontal	coordinate	that	defines	the
position	of	the	lower-right	corner	of	the	object.

y2		Required	Single.	A	value	for	the	vertical	coordinate	that	defines	the	position
of	the	lower-right	corner	of	the	object.

Remarks

You	can	use	this	method	only	in	an	event	procedure	or	a	macro	specified	by	the
OnPrint	or	OnFormat	event	property	for	a	report	section,	or	the	OnPage	event
property	for	a	report.

You	can	use	the	Scale	method	to	reset	the	coordinate	system	to	any	scale	you
choose.	Using	the	Scale	method	with	no	arguments	resets	the	coordinate	system
to	twips.	The	Scale	method	affects	the	coordinate	system	for	the	Print	method
and	the	report	graphics	methods,	which	include	the	Circle,	Line,	and	PSet
methods.

Example

The	following	example	draws	a	circle	with	one	scale,	then	uses	the	Scale	method
to	change	the	scale	and	draw	another	circle	with	the	new	scale.

Private	Sub	Detail_Print(Cancel	As	Integer,	PrintCount	As	Integer)

				DrawCircle

End	Sub

Sub	DrawCircle()

				Dim	sngHCtr	As	Single,	sngVCtr	As	Single

				Dim	sngNewH	As	Single,	sngNewV	As	Single

				Dim	sngRadius	As	Single

				Me.ScaleMode	=	3																					'	Set	scale	to	pixels.

				sngHCtr	=	Me.ScaleWidth	/	2					'	Horizontal	center.

				sngVCtr	=	Me.ScaleHeight	/	2					'	Vertical	center.

				sngRadius	=	Me.ScaleHeight	/	3					'	Circle	radius.

				'	Draw	circle.

				Me.Circle	(sngHCtr,	sngVCtr),	sngRadius

				'	New	horizontal	scale.

				sngNewH	=	Me.ScaleWidth	*	0.9

				'	New	vertical	scale.

				sngNewV	=	Me.ScaleHeight	*	0.9

				'	Change	to	new	scale.

				Me.Scale(0,	0)-(sngNewH,	sngNewV)

				'	Draw	circle.

				Me.Circle	(sngHCtr	+	100,	sngVCtr),	sngRadius,	RGB(0,	256,	0)

End	Sub

Show	All

SelectObject	Method
							

The	SelectObject	method	carries	out	the	SelectObject	action	in	Visual	Basic.

expression.SelectObject(ObjectType,	ObjectName,	InDatabaseWindow)

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

ObjectType		Required	AcObjectType.

AcObjectType	can	be	one	of	these	AcObjectType	constants.
acDataAccessPage
acDefault
acDiagram
acForm
acFunction
acMacro
acModule
acQuery
acReport
acServerView
acStoredProcedure
acTable

Note			The	constant	acDefault,	which	appears	in	the	Auto	List	Members	list	for
this	argument,	is	invalid	for	this	argument.	You	must	choose	one	of	the
constants	listed	above.

ObjectName		Optional	Variant.	A	string	expression	that's	the	valid	name	of	an
object	of	the	type	selected	by	the	objecttype	argument.	This	is	a	required
argument,	unless	you	specify	True	(–1)	for	the	indatabasewindow	argument.	If

mk:@MSITStore:acmain10.chm::/html/acactSelectObject.htm

you	specify	True	for	the	indatabasewindow	argument	and	leave	the	objectname
argument	blank,	Microsoft	Access	selects	the	tab	in	the	Database	window	that
corresponds	to	the	database	object	you	specify	in	the	objecttype	argument.

InDatabaseWindow		Optional	Variant.	Use	True	to	select	the	object	in	the
Database	window.	Use	False	(0)	to	select	an	object	that's	already	open.	If	you
leave	this	argument	blank,	the	default	(False)	is	assumed.

Remarks

For	more	information	on	how	the	action	and	its	arguments	work,	see	the	action
topic.

If	you	set	the	indatabasewindow	argument	to	True	and	leave	the	objectname
argument	blank,	you	must	include	the	objectname	argument's	comma.	If	you
leave	a	trailing	argument	blank,	don't	use	a	comma	following	the	last	argument
you	specify.

Example

The	following	example	selects	the	form	Customers	in	the	Database	window:

DoCmd.SelectObject	acForm,	"Customers",	True

Show	All

SendObject	Method
							

The	SendObject	method	carries	out	the	SendObject	action	in	Visual	Basic.

expression.SendObject(ObjectType,	ObjectName,	OutputFormat,	To,	Cc,	Bcc,
Subject,	MessageText,	EditMessage,	TemplateFile)

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

ObjectType		Optional	AcSendObjectType.

AcSendObjectType	can	be	one	of	these	AcSendObjectType	constants.
acSendDataAccessPage
acSendForm
acSendModule
acSendNoObject	default
acSendQuery
acSendReport
acSendTable

ObjectName		Optional	Variant.	A	string	expression	that's	the	valid	name	of	an
object	of	the	type	selected	by	the	objecttype	argument.	If	you	want	to	include	the
active	object	in	the	mail	message,	specify	the	object's	type	with	the	objecttype
argument	and	leave	this	argument	blank.	If	you	leave	both	the	objecttype	and
objectname	arguments	blank	(the	default	constant,	acSendNoObject,	is	assumed
for	the	objecttype	argument),	Microsoft	Access	sends	a	message	to	the	electronic
mail	application	without	an	included	database	object.	If	you	run	Visual	Basic
code	containing	the	SendObject	method	in	a	library	database,	Microsoft	Access
looks	for	the	object	with	this	name	first	in	the	library	database,	then	in	the
current	database.

OutputFormat		Optional	Variant.

mk:@MSITStore:acmain10.chm::/html/acactSendObject.htm

OutputFormat		Optional	AcFormatType.

XlSendObjectOutputFormat	can	be	one	of	these	XlSendObjectOutputFormat
constants.
acFormatDAP
acFormatHTML

acFormatRTF

acFormatTXT

acFormatXLS

If	you	leave	this	argument	blank,	Microsoft	Access	prompts	you	for	the	output
format.

To		Optional	Variant.	A	string	expression	that	lists	the	recipients	whose	names
you	want	to	put	on	the	To	line	in	the	mail	message.	Separate	the	recipient	names
you	specify	in	this	argument	and	in	the	cc	and	bcc	arguments	with	a	semicolon
(;)	or	with	the	list	separator	set	on	the	Number	tab	of	the	Regional	Settings
Properties	dialog	box	in	Windows	Control	Panel.	If	the	recipient	names	aren't
recognized	by	the	mail	application,	the	message	isn't	sent	and	an	error	occurs.	If
you	leave	this	argument	blank,	Microsoft	Access	prompts	you	for	the	recipients.

Cc		Optional	Variant.	A	string	expression	that	lists	the	recipients	whose	names
you	want	to	put	on	the	Cc	line	in	the	mail	message.	If	you	leave	this	argument
blank,	the	Cc	line	in	the	mail	message	is	blank.

Bcc		Optional	Variant.	A	string	expression	that	lists	the	recipients	whose	names
you	want	to	put	on	the	Bcc	line	in	the	mail	message.	If	you	leave	this	argument
blank,	the	Bcc	line	in	the	mail	message	is	blank.

Subject		Optional	Variant.	A	string	expression	containing	the	text	you	want	to
put	on	the	Subject	line	in	the	mail	message.	If	you	leave	this	argument	blank,	the
Subject	line	in	the	mail	message	is	blank.

MessageText		Optional	Variant.	A	string	expression	containing	the	text	you
want	to	include	in	the	body	of	the	mail	message,	after	the	object.	If	you	leave

this	argument	blank,	the	object	is	all	that's	included	in	the	body	of	the	mail
message.

EditMessage		Optional	Variant.	Use	True	(–1)	to	open	the	electronic	mail
application	immediately	with	the	message	loaded,	so	the	message	can	be	edited.
Use	False	(0)	to	send	the	message	without	editing	it.	If	you	leave	this	argument
blank,	the	default	(True)	is	assumed.

TemplateFile		Optional	Variant.	A	string	expression	that's	the	full	name,
including	the	path,	of	the	file	you	want	to	use	as	a	template	for	an	HTML	file.

Remarks

For	more	information	on	how	the	action	and	its	arguments	work,	see	the	action
topic.

Modules	can	be	sent	only	in	MS-DOS	Text	format,	so	if	you	specify
acSendModule	for	the	objecttype	argument,	you	must	specify	acFormatTXT
for	the	outputformat	argument.

You	can	leave	an	optional	argument	blank	in	the	middle	of	the	syntax,	but	you
must	include	the	argument's	comma.	If	you	leave	a	trailing	argument	blank,	don't
use	a	comma	following	the	last	argument	you	specify.

Example

The	following	example	includes	the	Employees	table	in	a	mail	message	in
Microsoft	Excel	format	and	specifies	To,	Cc,	and	Subject	lines	in	the	mail
message.	The	mail	message	is	sent	immediately,	without	editing.

DoCmd.SendObject	acSendTable,	"Employees",	acFormatXLS,	_

				"Nancy	Davolio;	Andrew	Fuller",	"Joan	Weber",	,	_

				"Current	Spreadsheet	of	Employees",	,	False

SetDefaultWorkgroupFile	Method
							

Sets	the	default	workgroup	file	to	the	specified	file.

expression.SetDefaultWorkgroupFile(Path)

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

Path		Required	String.	The	full	path	and	file	name	of	the	workgroup	file	to	use
as	the	default.

Remarks

If	the	file	specified	by	Path	does	not	exist,	an	error	occurs.

Example

The	following	example	sets	the	default	workgroup	file	to	the	file	system.mdw	in
the	directory	C:\Documents	and	Settings\Wendy	Vasse\Application
Data\Microsoft\Access.

Application.SetDefaultWorkgroupFile	_

				Path:="C:\Documents	and	Settings\Wendy	Vasse\"	_

				&	"Application	Data\Microsoft\Access\system.mdw"

Show	All

SetFocus	Method
							

The	SetFocus	method	moves	the	focus	to	the	specified	form,	the	specified
control	on	the	active	form,	or	the	specified	field	on	the	active	datasheet.

expression.SetFocus

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

Remarks

You	can	use	the	SetFocus	method	when	you	want	a	particular	field	or	control	to
have	the	focus	so	that	all	user	input	is	directed	to	this	object.

In	order	to	read	some	of	the	properties	of	a	control,	you	need	to	ensure	that	the
control	has	the	focus.	For	example,	a	text	box	must	have	the	focus	before	you
can	read	its	Text	property.

Other	properties	can	be	set	only	when	a	control	doesn't	have	the	focus.	For
example,	you	can't	set	a	control's	Visible	or	Enabled	properties	to	False	(0)
when	that	control	has	the	focus.

You	can	also	use	the	SetFocus	method	to	navigate	in	a	form	according	to	certain
conditions.	For	example,	if	the	user	selects	Not	applicable	for	the	first	of	a	set
of	questions	on	a	form	that's	a	questionnaire,	your	Visual	Basic	code	might	then
automatically	skip	the	questions	in	that	set	and	move	the	focus	to	the	first	control
in	the	next	set	of	questions.

You	can	move	the	focus	only	to	a	visible	control	or	form.	A	form	and	controls	on
a	form	aren't	visible	until	the	form's	Load	event	has	finished.	Therefore,	if	you
use	the	SetFocus	method	in	a	form's	Load	event	to	move	the	focus	to	that	form,
you	must	use	the	Repaint	method	before	the	SetFocus	method.

You	can't	move	the	focus	to	a	control	if	its	Enabled	property	is	set	to	False.	You
must	set	a	control's	Enabled	property	to	True	(–1)	before	you	can	move	the
focus	to	that	control.	You	can,	however,	move	the	focus	to	a	control	if	its
Locked	property	is	set	to	True.

If	a	form	contains	controls	for	which	the	Enabled	property	is	set	to	True,	you
can't	move	the	focus	to	the	form	itself.	You	can	only	move	the	focus	to	controls
on	the	form.	In	this	case,	if	you	try	to	use	SetFocus	to	move	the	focus	to	a	form,
the	focus	is	set	to	the	control	on	the	form	that	last	received	the	focus.

Tip			You	can	use	the	SetFocus	method	to	move	the	focus	to	a	subform,	which	is
a	type	of	control.	You	can	also	move	the	focus	to	a	control	on	a	subform	by
using	the	SetFocus	method	twice,	moving	the	focus	first	to	the	subform	and	then
to	the	control	on	the	subform.

Example

The	following	example	uses	the	SetFocus	method	to	move	the	focus	to	an
EmployeeID	text	box	on	an	Employees	form:

Forms!Employees!EmployeeID.SetFocus

Show	All

SetHiddenAttribute	Method
							

The	SetHiddenAttribute	method	sets	the	hidden	attribute	of	an	Access	object.

expression.SetHiddenAttribute(ObjectType,	ObjectName,	fHidden)

expression			Required.	An	expression	that	returns	an	Application	object.

ObjectType		Required	AcObjectType.	You	must	enter	a	constant	for	the
ObjectType	argument;	acDefault	is	not	a	valid	entry.

AcObjectType	can	be	one	of	these	AcObjectType	constants.
acDataAccessPage
acDefault
acDiagram
acForm
acFunction
acMacro
acModule
acQuery
acReport
acServerView
acStoredProcedure
acTable

ObjectName		Required	String.	A	string	expression	identifying	the	name	of	the
Access	object.

fHidden		Required	Boolean.	True	sets	the	hidden	attribute	and	False	clears	the
attribute.

Remarks

Together	with	the	GetHiddenAttribute	method,	the	SetHiddenAttribute
method	provides	a	means	of	changing	an	object's	visibility	from	Visual	Basic
code.	With	these	methods,	you	can	set	or	read	the	Hidden	property	available	in
the	object's	Properties	dialog	box.

To	set	this	option	by	using	the	SetHiddenAttribute	method,	specify	True	or
False	for	the	setting,	as	in	the	following	example.

Application.SetHiddenAttribute	acTable,"Customers",	True

Show	All

SetMenuItem	Method
							

The	SetMenuItem	method	carries	out	the	SetMenuItem	action	in	Visual	Basic.

expression.SetMenuItem(MenuIndex,	CommandIndex,	SubcommandIndex,
Flag)

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

MenuIndex		Required	Variant.	An	integer,	counting	from	0,	that's	the	valid
index	of	a	menu	on	the	custom	menu	bar	or	global	menu	bar	for	the	active
window,	as	defined	in	the	menu	bar	macro	for	the	custom	menu	bar	or	global
menu	bar.	If	you	select	a	menu	with	this	argument	and	leave	the	commandindex
and	subcommandindex	arguments	blank	(or	set	them	to	–1),	you	can	enable	or
disable	the	menu	name	itself.	You	can't,	however,	check	or	uncheck	a	menu
name	(Microsoft	Access	ignores	the	acMenuCheck	and	acMenuUncheck
settings	for	the	flag	argument	for	menu	names).

CommandIndex		Optional	Variant.	An	integer,	counting	from	0,	that's	the	valid
index	of	a	command	on	the	menu	selected	by	the	menuindex	argument,	as
defined	in	the	macro	group	that	defines	the	selected	menu	for	the	custom	menu
bar	or	global	menu	bar	for	the	active	window.

SubcommandIndex		Optional	Variant.	An	integer,	counting	from	0,	that's	the
valid	index	of	a	subcommand	in	the	submenu	selected	by	the	commandindex
argument,	as	defined	in	the	macro	group	that	defines	the	selected	submenu	for
the	custom	menu	bar	or	global	menu	bar	for	the	active	window.

Flag		Optional	AcMenuType.

AcMenuType	can	be	one	of	these	AcMenuType	constants.
acMenuCheck
acMenuGray

mk:@MSITStore:acmain10.chm::/html/acactSetMenuItem.htm

acMenuUncheck

acMenuUngray	default

If	you	leave	this	argument	blank,	the	default	constant
(acMenuUngray)	is	assumed.

Remarks

For	more	information	on	how	the	action	and	its	arguments	work,	see	the	action
topic.

Note			The	SetMenuItem	method	works	only	with	custom	menu	bars	and	global
menu	bars	created	by	using	menu	bar	macros.	The	SetMenuItem	method	is
included	in	this	version	of	Microsoft	Access	only	for	compatibility	with	versions
prior	to	Microsoft	Access	97.	It	doesn't	work	with	the	new	command	bars
functionality.	In	the	current	version	of	Microsoft	Access,	you	must	use	the
properties	and	methods	of	the	CommandBars	collection	object	to	enable	or
disable	top	level	menu	items.

You	can	leave	an	optional	argument	blank	in	the	middle	of	the	syntax,	but	you
must	include	the	argument's	comma.	If	you	leave	a	trailing	argument	blank,	don't
use	a	comma	following	the	last	argument	you	specify.

mk:@MSITStore:vbaof10.chm::/html/ofobjCommandBars.htm

Example

The	following	example	uses	the	SetMenuItem	method	to	disable	the	second
command	in	the	first	menu	on	the	custom	menu	bar	for	the	active	window:

DoCmd.SetMenuItem	0,	1,	,	acMenuGray

Show	All

SetOption	Method
							

The	SetOption	method	sets	the	current	value	of	an	option	in	the	Options	dialog
box.

expression.SetOption(OptionName,	Setting)

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

OptionName		Required	String.	The	name	of	the	option.	For	a	list	of	optionname
argument	strings,	see	Set	Options	from	Visual	Basic.

Setting		Required	Variant.	A	Variant	value	corresponding	to	the	option	setting.
The	value	of	the	setting	argument	depends	on	the	possible	settings	for	a
particular	option.

Remarks

The	SetOption	method	provides	a	means	of	changing	environment	options	from
Visual	Basic	code.	With	this	method,	you	can	set	or	read	any	option	available	in
the	Options	dialog	box,	except	for	options	on	the	Modules	tab.

The	available	option	settings	depend	on	the	type	of	option	being	set.	There	are
three	general	types	of	options:

Yes/No	options	that	can	be	set	by	selecting	or	clearing	a	check	box.

Options	that	can	be	set	by	entering	a	string	or	numeric	value.

Predefined	options	that	can	be	chosen	from	a	list	box,	combo	box,	or	option
group.

For	options	that	the	user	sets	by	selecting	or	clearing	a	check	box,	using	the
SetOption	method,	specify	True	or	False	for	the	setting	argument,	as	in	the
following	example:

Application.SetOption	"Show	Status	Bar",	True

To	set	a	type	of	option	using	the	SetOption	method,	specify	the	string	or
numeric	value	that	would	be	typed	in	the	dialog	box.	The	following	example	sets
the	default	form	template	to	OrderTemplate:

Application.SetOption	"Form	Template",	"OrderTemplate"

For	options	with	settings	that	are	choices	in	list	boxes	or	combo	boxes,	specify
the	option's	numeric	position	within	the	list	as	the	setting	argument	for	the
SetOption	method.	The	following	example	sets	the	Default	Field	Type	option
to	AutoNumber:

Application.SetOption	"Default	Field	Type",	5

To	set	an	option	that's	a	member	of	an	option	group,	specify	the	index	number	of
the	option	within	the	group.	The	following	example	sets	Selection	Behavior	to
Fully	Enclosed:

Application.SetOption	"Selection	Behavior",	1

Notes

When	you	use	the	SetOption	method	to	set	an	option	in	the	Options	dialog
box,	you	don't	need	to	specify	the	individual	tab	on	which	the	option	is
found.

You	can't	use	the	SetOption	method	to	read	or	set	any	of	the	options	found
on	the	Module	tab	of	the	Options	dialog	box.

If	your	database	may	run	on	a	version	of	Microsoft	Access	for	a	language
other	than	the	one	in	which	you	created	it,	then	you	must	supply	the
arguments	for	the	SetOption	method	in	English.

When	you	quit	Microsoft	Access,	you	can	reset	all	options	to	their	original
settings	by	using	the	SetOption	method	on	all	changed	options.	You	may	want
to	create	public	variables	to	store	the	values	of	the	original	settings.	You	might
include	code	to	reset	options	in	the	Close	event	procedure	for	a	form,	or	in	a
custom	exit	procedure	that	the	user	must	run	to	quit	the	application.

Show	All

SetWarnings	Method
							

The	SetWarnings	method	carries	out	the	SetWarnings	action	in	Visual	Basic.

expression.SetWarnings(WarningsOn)

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

WarningsOn		Required	Variant.	Use	True	(–1)	to	turn	on	the	display	of	system
messages	and	False	(0)	to	turn	it	off.

mk:@MSITStore:acmain10.chm::/html/acactSetWarnings.htm

Remarks

For	more	information	on	how	the	action	and	its	argument	work,	see	the	action
topic.

If	you	turn	the	display	of	system	messages	off	in	Visual	Basic,	you	must	turn	it
back	on,	or	it	will	remain	off,	even	if	the	user	presses	CTRL+BREAK	or	Visual
Basic	encounters	a	breakpoint.	You	may	want	to	create	a	macro	that	turns	the
display	of	system	messages	on	and	then	assign	that	macro	to	a	key	combination
or	a	custom	menu	command.	You	could	then	use	the	key	combination	or	menu
command	to	turn	the	display	of	system	messages	on	if	it	has	been	turned	off	in
Visual	Basic.

Example

The	following	example	turns	the	display	of	system	messages	off:

DoCmd.SetWarnings	False

ShowAllRecords	Method
							

The	ShowAllRecords	method	carries	out	the	ShowAllRecords	action	in	Visual
Basic.

expression.ShowAllRecords

expression			Required.	An	expression	that	returns	a	DoCmd	object.

mk:@MSITStore:acmain10.chm::/html/acactShowAllRecords.htm

Remarks

This	method	removes	any	existing	filters	that	may	exist	on	the	current	table,
query,	or	form.	It	can	be	called	directly	using	the	syntax	DoCmd.ShowAllRecords.

Note			This	method	only	applies	to	tables,	queries,	and	forms	within	a	Microsoft
database	(.mdb).

Show	All

ShowToolbar	Method
							

The	ShowToolbar	method	carries	out	the	ShowToolbar	action	in	Visual	Basic.

expression.ShowToolbar(ToolbarName,	Show)

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

ToolbarName		Required	Variant.	A	string	expression	that's	the	valid	name	of	a
Microsoft	Access	built-in	toolbar	or	a	custom	toolbar	you've	created.	If	you	run
Visual	Basic	code	containing	the	ShowToolbar	method	in	a	library	database,
Microsoft	Access	looks	for	the	toolbar	with	this	name	first	in	the	library
database,	then	in	the	current	database.

Show		Optional	AcShowToolbar.

AcShowToolbar	can	be	one	of	these	AcShowToolbar	constants.
acToolbarNo
acToolbarWhereApprop
acToolbarYes	default

If	you	leave	this	argument	blank,	the	default	constant	(acToolbarYes)	is
assumed.

mk:@MSITStore:acmain10.chm::/html/acactShowToolbar.htm

Remarks

For	more	information	on	how	the	action	and	its	arguments	work,	see	the	action
topic.

If	you	leave	the	show	argument	blank,	don't	use	a	comma	following	the
toolbarname	argument.

Example

The	following	example	displays	the	custom	toolbar	named	CustomToolbar	in	all
Microsoft	Access	windows	that	become	active:

DoCmd.ShowToolbar	"CustomToolbar",	acToolbarYes

Show	All

SizeToFit	Method
							

You	can	use	the	SizeToFit	method	to	size	a	control	so	it	fits	the	text	or	image
that	it	contains.

expression.SizeToFit

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

Remarks

For	example,	you	can	apply	the	SizeToFit	method	to	a	command	button	that	is
too	small	to	display	all	the	text	in	its	Caption	property.

The	use	of	the	SizeToFit	method	is	equivalent	to	selecting	a	control	on	a	form	or
report,	pointing	to	Size	on	the	Format	menu,	and	clicking	To	Fit.	You	can	apply
the	SizeToFit	method	to	controls	only	in	form	Design	view	or	report	Design
view.

The	SizeToFit	method	will	make	a	control	larger	or	smaller,	depending	on	the
size	of	the	text	or	image	it	contains.

You	can	use	the	SizeToFit	method	in	conjunction	with	the	CreateControl
method	to	size	new	controls	that	you	have	created	in	code.

Note			Not	all	controls	that	contain	text	or	an	image	can	be	sized	by	the
SizeToFit	method.	Several	controls	are	bound	to	data	that	can	vary	in	size	from
one	record	to	the	next.	These	controls	include	the	text	box,	list	box,	combo	box,
and	bound	object	frame	controls.	The	SizeToFit	method	does	not	apply	to
controls	on	data	access	pages.

Example

The	following	example	creates	a	new	form	and	creates	a	new	command	button
on	the	form.	The	procedure	then	sets	the	control's	Caption	property	and	sizes	the
control	to	fit	the	caption.

Sub	SizeNewControl()

				Dim	frm	As	Form,	ctl	As	Control

				'	Create	new	form.

				Set	frm	=	CreateForm

				'	Create	new	command	button.

				Set	ctl	=	CreateControl(frm.Name,	_

								acCommandButton,	,	,	,	500,	500)

				'	Restore	form.

				DoCmd.Restore

				'	Set	control's	Caption	property.

				ctl.Caption	=	"Extremely	Long	Control	Caption"

				'	Size	control	to	fit	caption.

				ctl.SizeToFit

End	Sub

Show	All

StringFromGUID	Method
							

The	StringFromGUID	function	converts	a	GUID,	which	is	an	array	of	type
Byte,	to	a	string.	Variant.

expression.StringFromGUID(Guid)

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

Guid		Required	Variant.	An	array	of	Byte	data	used	to	uniquely	identify	an
application,	component,	or	item	of	data	to	the	operating	system.

Remarks

The	Microsoft	Jet	database	engine	stores	GUIDs	as	arrays	of	type	Byte.
However,	Microsoft	Access	can't	return	Byte	data	from	a	control	on	a	form	or
report.	In	order	to	return	the	value	of	a	GUID	from	a	control,	you	must	convert	it
to	a	string.	To	convert	a	GUID	to	a	string,	use	the	StringFromGUID	function.
To	convert	a	string	back	to	a	GUID,	use	the	GUIDFromString	function.

For	example,	you	may	need	to	refer	to	a	field	that	contains	a	GUID	when	using
database	replication.	To	return	the	value	of	a	control	on	a	form	bound	to	a	field
that	contains	a	GUID,	use	the	StringFromGUID	function	to	convert	the	GUID
to	a	string.

Note	that	in	order	to	bind	a	control	to	the	s_GUID	field	of	a	replicated	table,	you
must	click	Options	on	the	Tools	menu	and	select	the	System	Objects	check	box
on	the	View	tab	of	the	Options	dialog	box.

Show	All

SysCmd	Method
							

You	can	use	the	SysCmd	method	to,	display	a	progress	meter	or	optional
specified	text	in	the	status	bar,	return	information	about	Microsoft	Access	and	its
associated	files,	or	return	the	state	of	a	specified	database	object	(to	indicate
whether	the	object	is	open,	is	a	new	object,	or	has	been	changed	but	not	saved).
Variant.

expression.SysCmd(Action,	Argument2,	Argument3)

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

Action		Required	AcSysCmdAction.	One	of	the	following	intrinsic	constants
identifying	the	type	of	action	to	take.	The	following	set	of	constants	applies	to	a
progress	meter.	The	SysCmd	method	returns	a	Null	if	these	actions	are
successful.	Otherwise,	Microsoft	Access	generates	a	run-time	error.

AcSysCmdAction	can	be	one	of	these	AcSysCmdAction	constants.
acSysCmdAccessDir.	Returns	the	name	of	the	directory	where	Msaccess.exe	is
located.
acSysCmdAccessVer.	Returns	the	version	number	of	Microsoft	Access.
acSysCmdClearHelpTopic
acSysCmdClearStatus.	The	following	constant	provides	information	on	the
state	of	a	database	object.
acSysCmdGetObjectState.	Returns	the	state	of	the	specified	database	object.
You	must	specify	argument1	and	argument2		when	you	use	this	action	value.
acSysCmdGetWorkgroupFile.	Returns	the	path	to	the	workgroup	file
(System.mdw).
acSysCmdIniFile.	Returns	the	name	of	the	.ini	file	associated	with	Microsoft
Access.
acSysCmdInitMeter.	Initializes	the	progress	meter.	You	must	specify	the
argument1	and	argument2	arguments	when	you	use	this	action.

acSysCmdProfile.	Returns	the	/profile	setting	specified	by	the	user	when
starting	Microsoft	Access	from	the	command	line.
acSysCmdRemoveMeter.	Removes	the	progress	meter.
acSysCmdRuntime.	Returns	True	(–1)	if	a	run-time	version	of	Microsoft
Access	is	running.
acSysCmdSetStatus.	Sets	the	status	bar	text	to	the	text	argument.
acSysCmdUpdateMeter.	Updates	the	progress	meter	with	the	specified	value.
You	must	specify	the	text	argument	when	you	use	this	action.

Argument2		Optional	Variant.	A	string	expression	identifying	the	text	to	be
displayed	left-aligned	in	the	status	bar.	This	argument	is	required	when	the
action	argument	is	acSysCmdInitMeter,	acSysCmdUpdateMeter,	or
acSysCmdSetStatus;	this	argument	isn't	valid	for	other	action	argument	values.

Note		When	using	the	acSysCmdGetObjectState	argument,	Excel	requires	the
use	of	Argument2	with	one	of	the	following	intrinsic	constants.

acTable
acQuery
acForm

acReport

acMacro

acModule

acDataAccessPage

acDefault

acDiagram

acServerView

acStoreProcedure

This	argument	isn't	valid	for	other	action	argument	values.

Argument3		Optional	Variant.	A	numeric	expression	that	controls	the	display	of
the	progress	meter.	This	argument	is	required	when	the	action	argument	is
acSysCmdInitMeter;	this	argument	isn't	valid	for	other	action	argument	values.

Note		When	using	the	acSysCmdGetObjectState	argument,	Excel	requires	the
use	of	Argument3.	A	string	expression	that	is	the	valid	name	of	a	database	object
of	the	type	specified	by	Argument2.	This	argument	isn't	valid	for	other	action
argument	values.

Remarks

For	example,	if	you	are	building	a	custom	wizard	that	creates	a	new	form,	you
can	use	the	SysCmd	method	to	display	a	progress	meter	indicating	the	progress
of	your	wizard	as	it	constructs	the	form.

By	calling	the	SysCmd	method	with	the	various	progress	meter	actions,	you	can
display	a	progress	meter	in	the	status	bar	for	an	operation	that	has	a	known
duration	or	number	of	steps,	and	update	it	to	indicate	the	progress	of	the
operation.

To	display	a	progress	meter	in	the	status	bar,	you	must	first	call	the	SysCmd
method	with	the	acSysCmdInitMeter	action	argument,	and	the	text	and	value
arguments.	When	the	action	argument	is	acSysCmdInitMeter,	the	value
argument	is	the	maximum	value	of	the	meter,	or	100	percent.

To	update	the	meter	to	show	the	progress	of	the	operation,	call	the	SysCmd
method	with	the	acSysCmdUpdateMeter	action	argument	and	the	value
argument.	When	the	action	argument	is	acSysCmdUpdateMeter,	the	SysCmd
method	uses	the	value	argument	to	calculate	the	percentage	displayed	by	the
meter.	For	example,	if	you	set	the	maximum	value	to	200	and	then	update	the
meter	with	a	value	of	100,	the	progress	meter	will	be	half-filled.

You	can	also	change	the	text	that's	displayed	in	the	status	bar	by	calling	the
SysCmd	method	with	the	acSysCmdSetStatus	action	argument	and	the	text
argument.	For	example,	during	a	sort	you	might	change	the	text	to	"Sorting...".
When	the	sort	is	complete,	you	would	reset	the	status	bar	by	removing	the	text.
The	text	argument	can	contain	approximately	80	characters.	Because	the	status
bar	text	is	displayed	by	using	a	proportional	font,	the	actual	number	of	characters
you	can	display	is	determined	by	the	total	width	of	all	the	characters	specified	by
the	text	argument.

As	you	increase	the	width	of	the	status	bar	text,	you	decrease	the	length	of	the
meter.	If	the	text	is	longer	than	the	status	bar	and	the	action	argument	is
acSysCmdInitMeter,	the	SysCmd	method	ignores	the	text	and	doesn't	display
anything	in	the	status	bar.	If	the	text	is	longer	than	the	status	bar	and	the	action
argument	is	acSysCmdSetStatus,	the	SysCmd	method	truncates	the	text	to	fit
the	status	bar.

You	can't	set	the	status	bar	text	to	a	zero-length	string	("	").	If	you	want	to
remove	the	existing	text	from	the	status	bar,	set	the	text	argument	to	a	single
space.	The	following	examples	illustrate	ways	to	remove	the	text	from	the	status
bar:

varReturn	=	SysCmd(acSysCmdInitMeter,	"	",	100)

varReturn	=	SysCmd(acSysCmdSetStatus,	"	")

If	the	progress	meter	is	already	displayed	when	you	set	the	text	by	calling	the
SysCmd	method	with	the	acSysCmdSetStatus	action	argument,	the	SysCmd
method	automatically	removes	the	meter.

Call	the	SysCmd	method	with	other	actions	to	determine	system	information
about	Microsoft	Access,	including	which	version	number	of	Microsoft	Access	is
running,	whether	it	is	a	run-time	version,	the	location	of	the	Microsoft	Access
executable	file,	the	setting	for	the	/profile	argument	specified	in	the	command
line,	and	the	name	of	an	.ini	file	associated	with	Microsoft	Access.

Note			Both	general	and	customized	settings	for	Microsoft	Access	are	now
stored	in	the	Windows	Registry,	so	you	probably	won't	need	an	.ini	file	with
your	Microsoft	Access	application.	The	acSysCmdIniFile	action	argument
exists	for	compatibility	with	earlier	versions	of	Microsoft	Access.

Call	the	SysCmd	method	with	the	acSysCmdGetObjectState	action	argument
and	the	objecttype	and	objectname	arguments	to	return	the	state	of	a	specified
database	object.	An	object	can	be	in	one	of	four	possible	states:	not	open	or
nonexistent,	open,	new,	or	changed	but	not	saved.

For	example,	if	you	are	designing	a	wizard	that	inserts	a	new	field	in	a	table,	you
need	to	determine	whether	the	structure	of	the	table	has	been	changed	but	not	yet
saved,	so	that	you	can	save	it	before	modifying	its	structure.	You	can	check	the
value	returned	by	the	SysCmd	method	to	determine	the	state	of	the	table.

The	SysCmd	method	with	the	acSysCmdGetObjectState	action	argument	can
return	any	combination	of	the	following	constants.

Constant State	of	database	object Value
acObjStateOpen Open 1
acObjStateDirty Changed	but	not	saved 2

acObjStateNew New 4

Note			If	the	object	referred	to	by	the	objectname	argument	is	either	not	open	or
doesn't	exist,	the	SysCmd	method	returns	a	value	of	zero.

TextHeight	Method
							

The	TextHeight	method	returns	the	height	of	a	text	string	as	it	would	be	printed
in	the	current	font	of	a	Report	object.

expression.TextHeight(Expr)

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

Expr		Required	String.	The	text	string	for	which	the	text	height	will	be
determined.

Remarks

You	can	use	the	TextHeight	method	to	determine	the	amount	of	vertical	space	a
text	string	will	require	in	the	current	font	when	the	report	is	formatted	and
printed.	For	example,	a	text	string	formatted	in	9-point	Arial	will	require	a
different	amount	of	space	than	one	formatted	in	12-point	Courier.	To	determine
the	current	font	and	font	size	for	text	in	a	report,	check	the	settings	for	the
report's	FontName	and	FontSize	properties.

The	value	returned	by	the	TextHeight	method	is	expressed	in	terms	of	the
coordinate	system	in	effect	for	the	report,	as	defined	by	the	Scale	method.	You
can	use	the	ScaleMode	property	to	determine	the	coordinate	system	currently	in
effect	for	the	report.

If	the	strexpr	argument	contains	embedded	carriage	returns,	the	TextHeight
method	returns	the	cumulative	height	of	the	lines,	including	the	leading	space
above	and	below	each	line.	You	can	use	the	value	returned	by	the	TextHeight
method	to	calculate	the	necessary	space	and	positioning	for	multiple	lines	of	text
within	a	report.

Example

The	following	example	uses	the	TextHeight	and	TextWidth	methods	to
determine	the	amount	of	vertical	and	horizontal	space	required	to	print	a	text
string	in	the	report's	current	font.

To	try	this	example	in	Microsoft	Access,	create	a	new	report.	Set	the	OnPrint
property	of	the	Detail	section	to	[Event	Procedure].	Enter	the	following	code	in
the	report's	module,	then	switch	to	Print	Preview.

Private	Sub	Detail_Print(Cancel	As	Integer,	_

				PrintCount	As	Integer)

				'	Set	unit	of	measure	to	twips	(default	scale).

				Me.Scalemode	=	1

				'	Print	name	and	font	size	of	report	font.

				Debug.Print	"Report	Font:	";	Me.FontName

				Debug.Print	"Report	Font	Size:	";	Me.FontSize

				'	Print	height	and	width	required	for	text	string.

				Debug.Print	"Text	Height	(Twips):	";	_

								Me.TextHeight("Product	Report")

				Debug.Print	"Text	Width	(Twips):	";	_

								Me.TextWidth("Product	Report")

End	Sub

TextWidth	Method
							

The	TextWidth	method	returns	the	width	of	a	text	string	as	it	would	be	printed
in	the	current	font	of	a	Report	object.

expression.TextWidth(Expr)

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

Expr		Required	String.	The	text	string	for	which	the	text	width	will	be
determined.

Remarks

You	can	use	the	TextWidth	method	to	determine	the	amount	of	horizontal	space
a	text	string	will	require	in	the	current	font	when	the	report	is	formatted	and
printed.	For	example,	a	text	string	formatted	in	9-point	Arial	will	require	a
different	amount	of	space	than	one	formatted	in	12-point	Courier.	To	determine
the	current	font	and	font	size	for	text	in	a	report,	check	the	settings	for	the
report's	FontName	and	FontSize	properties.

The	value	returned	by	the	TextWidth	method	is	expressed	in	terms	of	the
coordinate	system	in	effect	for	the	report,	as	defined	by	the	Scale	method.	You
can	use	the	ScaleMode	property	to	determine	the	coordinate	system	currently	in
effect	for	the	report.

If	the	strexpr	argument	contains	embedded	carriage	returns,	the	TextWidth
method	returns	the	width	of	the	longest	line,	from	the	beginning	of	the	line	to	the
carriage	return.	You	can	use	the	value	returned	by	the	TextWidth	method	to
calculate	the	necessary	space	and	positioning	for	multiple	lines	of	text	within	a
report.

Show	All

TransferDatabase	Method
							

The	TransferDatabase	method	carries	out	the	TransferDatabase	action	in	Visual
Basic.

expression.TransferDatabase(TransferType,	DatabaseType,	DatabaseName,
ObjectType,	Source,	Destination,	StructureOnly,	StoreLogin)

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

TransferType		Optional	AcDataTransferType.

AcDataTransferType	can	be	one	of	these	AcDataTransferType	constants.
acExport
acImport	default
acLink

If	you	leave	this	argument	blank,	the	default	constant	(acImport)	is	assumed.

Note			The	acLink	transfer	type	is	not	supported	for	Microsoft	Access	projects
(.adp).

DatabaseType		Optional	Variant.	A	string	expression	that's	the	name	of	one	of
the	types	of	databases	you	can	use	to	import,	export,	or	link	data.

Types	of	databases:
Microsoft	Access	(default)
Jet	2.x
Jet	3.x
dBase	III
dBase	IV
dBase	5.0

mk:@MSITStore:acmain10.chm::/html/acactTransferDatabase.htm

Paradox	3.x
Paradox	4.x
Paradox	5.x
Paradox	7.x
ODBC	Databases

In	the	Macro	window,	you	can	view	the	database	types	in	the	list	for	the
Database	Type	action	argument	of	the	TransferDatabase	action.

DatabaseName		Optional	Variant.	A	string	expression	that's	the	full	name,
including	the	path,	of	the	database	you	want	to	use	to	import,	export,	or	link
data.

ObjectType		Optional	AcObjectType.

AcObjectType	can	be	one	of	these	AcObjectType	constants.
acDataAccessPage
acDefault
acDiagram
acForm
acFunction
acMacro
acModule
acQuery
acReport
acServerView
acStoredProcedure
acTable	default

This	is	the	type	of	object	whose	data	you	want	to	import,	export,	or	link.	You
can	specify	an	object	other	than	acTable	only	if	you	are	importing	or	exporting
data	between	two	Microsoft	Access	databases.	If	you	are	exporting	the	results
of	a	Microsoft	Access	select	query	to	another	type	of	database,	specify	acTable
for	this	argument.

If	you	leave	this	argument	blank,	the	default	constant	(acTable)	is	assumed.

Note			The	constant	acDefault,	which	appears	in	the	Auto	List	Members	list	for
this	argument,	is	invalid	for	this	argument.	You	must	choose	one	of	the
constants	listed	above.

Source		Optional	Variant.	A	string	expression	that's	the	name	of	the	object
whose	data	you	want	to	import,	export,	or	link.

Destination		Optional	Variant.	A	string	expression	that's	the	name	of	the
imported,	exported,	or	linked	object	in	the	destination	database.

StructureOnly		Optional	Variant.	Use	True	(–1)	to	import	or	export	only	the
structure	of	a	database	table.	Use	False	(0)	to	import	or	export	the	structure	of
the	table	and	its	data.	If	you	leave	this	argument	blank,	the	default	(False)	is
assumed.

StoreLogin		Optional	Variant.	Use	True	to	store	the	login	identification	(ID)
and	password	for	an	ODBC	database	in	the	connection	string	for	a	linked	table
from	the	database.	If	you	do	this,	you	don't	have	to	log	in	each	time	you	open	the
table.	Use	False	if	you	don't	want	to	store	the	login	ID	and	password.	If	you
leave	this	argument	blank,	the	default	(False)	is	assumed.	This	argument	is
available	only	in	Visual	Basic.

Remarks

For	more	information	on	how	the	action	and	its	arguments	work,	see	the	action
topic.

You	can	leave	an	optional	argument	blank	in	the	middle	of	the	syntax,	but	you
must	include	the	argument's	comma.	If	you	leave	a	trailing	argument	blank,	don't
use	a	comma	following	the	last	argument	you	specify.

The	administrator	of	an	ODBC	database	can	disable	the	feature	provided	by	the
saveloginid	argument,	requiring	all	users	to	enter	the	login	ID	and	password	each
time	they	connect	to	the	ODBC	database.

Note			You	can	also	use	ActiveX	Data	Objects	(ADO)	to	create	a	link	by	using
the	ActiveConnection	property	for	the	Recordset	object.

mk:@MSITStore:ado210.chm::/htm/mdproActiveCon.htm
mk:@MSITStore:ado210.chm::/htm/mdobjODBRec.htm

Example

The	following	example	imports	the	NW	Sales	for	April	report	from	the
Microsoft	Access	database	NWSales.mdb	into	the	Corporate	Sales	for	April
report	in	the	current	database:

DoCmd.TransferDatabase	acImport,	"Microsoft	Access",	_

				"C:\My	Documents\NWSales.mdb",	acReport,	"NW	Sales	for	April",	_

				"Corporate	Sales	for	April"

The	next	example	links	the	ODBC	database	table	Authors	to	the	current
database:

DoCmd.TransferDatabase	acLink,	"ODBC	Database",	_

				"ODBC;DSN=DataSource1;UID=User2;PWD=www;LANGUAGE=us_english;"	_

				&	"DATABASE=pubs",	acTable,	"Authors",	"dboAuthors"

Show	All

TransferSpreadsheet	Method
							

The	TransferSpreadsheet	method	carries	out	the	TransferSpreadsheet	action	in
Visual	Basic.

expression.TransferSpreadsheet(TransferType,	SpreadsheetType,	TableName,
FileName,	HasFieldNames,	Range,	UseOA)

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

TransferType		Optional	AcDataTransferType.

AcDataTransferType	can	be	one	of	these	AcDataTransferType	constants.
acExport
acImport	default
acLink

If	you	leave	this	argument	blank,	the	default	constant	(acImport)	is	assumed.

SpreadsheetType		Optional	AcSpreadSheetType.

AcSpreadSheetType	can	be	one	of	these	AcSpreadSheetType	constants.
acSpreadsheetTypeExcel3
acSpreadsheetTypeExcel4
acSpreadsheetTypeExcel5
acSpreadsheetTypeExcel7
acSpreadsheetTypeExcel8	default
acSpreadsheetTypeExcel9	default
acSpreadsheetTypeLotusWJ2	-	Japanese	version	only
acSpreadsheetTypeLotusWK1
acSpreadsheetTypeLotusWK3

mk:@MSITStore:acmain10.chm::/html/acactTransferSpreadsheet.htm

acSpreadsheetTypeLotusWK4

Note			You	can	link	to	data	in	a	Lotus	1-2-3	spreadsheet	file,	but	this	data	is
read-only	in	Microsoft	Access.	You	can	import	from	and	link	(read-only)	to
Lotus	.WK4	files,	but	you	can't	export	Microsoft	Access	data	to	this	spreadsheet
format.	Microsoft	Access	also	no	longer	supports	importing,	exporting,	or
linking	data	from	Lotus	.WKS	or	Microsoft	Excel	version	2.0	spreadsheets	by
using	this	method.

If	you	leave	this	argument	blank,	the	default	constant
(acSpreadsheetTypeExcel8)	is	assumed.

TableName		Optional	Variant.	A	string	expression	that's	the	name	of	the
Microsoft	Access	table	you	want	to	import	spreadsheet	data	into,	export
spreadsheet	data	from,	or	link	spreadsheet	data	to,	or	the	Microsoft	Access	select
query	whose	results	you	want	to	export	to	a	spreadsheet.

FileName		Optional	Variant.	A	string	expression	that's	the	file	name	and	path	of
the	spreadsheet	you	want	to	import	from,	export	to,	or	link	to.

HasFieldNames		Optional	Variant.	Use	True	(–1)	to	use	the	first	row	of	the
spreadsheet	as	field	names	when	importing	or	linking.	Use	False	(0)	to	treat	the
first	row	of	the	spreadsheet	as	normal	data.	If	you	leave	this	argument	blank,	the
default	(False)	is	assumed.	When	you	export	Microsoft	Access	table	or	select
query	data	to	a	spreadsheet,	the	field	names	are	inserted	into	the	first	row	of	the
spreadsheet	no	matter	what	you	enter	for	this	argument.

Range		Optional	Variant.	A	string	expression	that's	a	valid	range	of	cells	or	the
name	of	a	range	in	the	spreadsheet.	This	argument	applies	only	to	importing.
Leave	this	argument	blank	to	import	the	entire	spreadsheet.	When	you	export	to
a	spreadsheet,	you	must	leave	this	argument	blank.	If	you	enter	a	range,	the
export	will	fail.

UseOA		Optional	Variant.

Remarks

For	more	information	on	how	the	action	and	its	arguments	work,	see	the	action
topic.

You	can	leave	an	optional	argument	blank	in	the	middle	of	the	syntax,	but	you
must	include	the	argument's	comma.	If	you	leave	a	trailing	argument	blank,	don't
use	a	comma	following	the	last	argument	you	specify.

Note			You	can	also	use	ActiveX	Data	Objects	(ADO)	to	create	a	link	by	using
the	ActiveConnection	property	for	the	Recordset	object.

mk:@MSITStore:ado210.chm::/htm/mdproActiveCon.htm
mk:@MSITStore:ado210.chm::/htm/mdobjODBRec.htm

Example

The	following	example	imports	the	data	from	the	specified	range	of	the	Lotus
spreadsheet	Newemps.wk3	into	the	Microsoft	Access	Employees	table.	It	uses
the	first	row	of	the	spreadsheet	as	field	names.

DoCmd.TransferSpreadsheet	acImport,	3,	_

				"Employees","C:\Lotus\Newemps.wk3",	True,	"A1:G12"

TransferSQLDatabase	Method
							

Transfers	the	entire	specified	Microsoft	SQL	Server	database	to	another	SQL
Server	database.

expression.TransferSQLDatabase(Server,	Database,	UseTrustedConnection,
Login,	Password,	TransferCopyData)

expression			Required.	An	expression	that	returns	a	DoCmd	object.

Server		Required	Variant.	The	name	of	the	SQL	Server	to	which	the	database
will	be	transferred.

Database		Required	Variant.	The	name	of	the	new	database	on	the	specified
server.

UseTrustedConnection		Optional	Variant.	True	if	the	current	connection	is
using	a	login	with	system	administrator	privileges.	If	this	argument	is	not	True,
you	must	specify	a	login	and	password	in	the	Login	and	Password	arguments.

Login		Optional	Variant.	The	name	of	a	login	on	the	destination	server	with
system	administrator	privileges.	If	UseTrustedConnection	is	True,	this
argument	is	ignored.

Password		Optional	Variant.	The	password	for	the	login	specified	in	Login.	If
UseTrustedConnection	is	True,	this	argument	is	ignored.

TransferCopyData		Optional	Variant.	True	if	all	data	in	the	database	is
transferred	to	the	destination	database.	If	this	argument	is	not	True,	only	the
database	schema	will	be	transferred.

Remarks

The	following	conditions	must	be	met	or	else	an	error	occurs:

The	current	and	destination	servers	are	SQL	Server	version	7.0	or	later.

The	user	has	system	administrator	login	rights	on	the	destination	server.

The	destination	database	doesn't	already	exist	on	the	destination	server.

Example

This	example	transfers	the	current	SQL	Server	database	to	a	new	SQL	Server
database	called	Inventory	on	the	server	MainOffice.	(It	is	assumed	that	the	user
has	system	administrator	privileges	on	MainOffice.)	The	data	is	copied	along
with	the	database	schema.

DoCmd.TransferCompleteSQLDatabase	_

				Server:="MainOffice",	_

				Database:="Inventory",	_

				UseTrustedConnection:=True,	_

				TransferCopyData:=False

Show	All

TransferText	Method
							

The	TransferText	method	carries	out	the	TransferText	action	in	Visual	Basic.

expression.TransferText(TransferType,	SpecificationName,	TableName,
FileName,	HasFieldNames,	HTMLTableName,	CodePage)

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

TransferType		Optional	AcTextTransferType.

AcTextTransferType	can	be	one	of	these	AcTextTransferType	constants.
acExportDelim
acExportFixed
acExportHTML
acExportMerge
acImportDelim	default
acImportFixed
acImportHTML
acLinkDelim
acLinkFixed
acLinkHTML

If	you	leave	this	argument	blank,	the	default	constant	(acImportDelim)	is
assumed.

Notes			You	can	link	to	data	in	a	text	file	or	HTML	file,	but	this	data	is	read-
only	in	Microsoft	Access.

Only	acImportDelim,	acImportFixed,	acExportDelim,	acExportFixed,	or
acExportMerge	transfer	types	are	supported	in	a	Microsoft	Access	project
(.adp).

mk:@MSITStore:acmain10.chm::/html/acactTransferText.htm

SpecificationName		Optional	Variant.	A	string	expression	that's	the	name	of	an
import	or	export	specification	you've	created	and	saved	in	the	current	database.
For	a	fixed-width	text	file,	you	must	either	specify	an	argument	or	use	a
schema.ini	file,	which	must	be	stored	in	the	same	folder	as	the	imported,	linked,
or	exported	text	file.	To	create	a	schema	file,	you	can	use	the	text	import/export
wizard	to	create	the	file.	For	delimited	text	files	and	Microsoft	Word	mail	merge
data	files,	you	can	leave	this	argument	blank	to	select	the	default	import/export
specifications.

TableName		Optional	Variant.	A	string	expression	that's	the	name	of	the
Microsoft	Access	table	you	want	to	import	text	data	to,	export	text	data	from,	or
link	text	data	to,	or	the	Microsoft	Access	query	whose	results	you	want	to	export
to	a	text	file.

FileName		Optional	Variant.	A	string	expression	that's	the	full	name,	including
the	path,	of	the	text	file	you	want	to	import	from,	export	to,	or	link	to.

HasFieldNames		Optional	Variant.	Use	True	(–1)	to	use	the	first	row	of	the	text
file	as	field	names	when	importing,	exporting,	or	linking.	Use	False	(0)	to	treat
the	first	row	of	the	text	file	as	normal	data.	If	you	leave	this	argument	blank,	the
default	(False)	is	assumed.	This	argument	is	ignored	for	Microsoft	Word	mail
merge	data	files,	which	must	always	contain	the	field	names	in	the	first	row.

HTMLTableName		Optional	Variant.	A	string	expression	that's	the	name	of	the
table	or	list	in	the	HTML	file	that	you	want	to	import	or	link.	This	argument	is
ignored	unless	the	transfertype	argument	is	set	to	acImportHTML	or
acLinkHTML.	If	you	leave	this	argument	blank,	the	first	table	or	list	in	the
HTML	file	is	imported	or	linked.	The	name	of	the	table	or	list	in	the	HTML	file
is	determined	by	the	text	specified	by	the	<CAPTION>	tag,	if	there's	a
<CAPTION>	tag.	If	there's	no	<CAPTION>	tag,	the	name	is	determined	by	the
text	specified	by	the	<TITLE>	tag.	If	more	than	one	table	or	list	has	the	same
name,	Microsoft	Access	distinguishes	them	by	adding	a	number	to	the	end	of
each	table	or	list	name;	for	example,	Employees1	and	Employees2.

CodePage		Optional	Variant.	A	Long	value	indicating	the	character	set	of	the
code	page.

Remarks

For	more	information	on	how	the	action	and	its	arguments	work,	see	the	action
topic.

You	can	leave	an	optional	argument	blank	in	the	middle	of	the	syntax,	but	you
must	include	the	argument's	comma.	If	you	leave	a	trailing	argument	blank,	don't
use	a	comma	following	the	last	argument	you	specify.

Note			You	can	also	use	ActiveX	Data	Objects	(ADO)	to	create	a	link	by	using
ActiveConnection	property	for	the	Recordset	object.

mk:@MSITStore:ado210.chm::/htm/mdproActiveCon.htm
mk:@MSITStore:ado210.chm::/htm/mdobjODBRec.htm

Example

The	following	example	exports	the	data	from	the	Microsoft	Access	table
External	Report	to	the	delimited	text	file	April.doc	by	using	the	specification
Standard	Output:

DoCmd.TransferText	acExportDelim,	"Standard	Output",	_

				"External	Report",	"C:\Txtfiles\April.doc"

Show	All

Undo	Method
							

You	can	use	the	Undo	method	to	reset	a	control	or	form	when	its	value	has	been
changed.

expression.Undo

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

Remarks

For	example,	you	can	use	the	Undo	method	to	clear	a	change	to	a	record	that
contains	an	invalid	entry.

If	the	Undo	method	is	applied	to	a	form,	all	changes	to	the	current	record	are
lost.	If	the	Undo	method	is	applied	to	a	control,	only	the	control	itself	is
affected.

This	method	must	be	applied	before	the	form	or	control	is	updated.	You	may
want	to	include	this	method	in	a	form's	BeforeUpdate	event	or	in	a	control's
Change	event.

The	Undo	method	offers	an	alternative	to	using	the	SendKeys	statement	to	send
the	value	of	the	ESC	key	in	an	event	procedure.

Example

The	following	example	shows	how	you	can	use	the	Undo	method	within	a
control's	Change	event	procedure	to	force	a	field	named	LastName	to	reset	to	its
original	value,	if	it	changed.

Private	Sub	LastName_Change()

				Me!LastName.Undo

End	Sub

The	next	example	uses	the	Undo	method	to	reset	all	changes	to	a	form	before
the	form	is	updated.

Private	Sub	Form_BeforeUpdate(Cancel	As	Integer)

				Me.Undo

End	Sub

Show	All

UseDefaultFolderSuffix	Method
							

You	can	use	the	UseDefaultFolderSuffix	method	to	set	the	folder	suffix	for	the
specified	data	access	page	to	the	default	suffix	for	the	language	support	you	have
selected	or	installed.

expression.UseDefaultFolderSuffix

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

Remarks

Microsoft	Access	uses	the	folder	suffix	when	you	save	a	document	as	a	Web
page,	use	long	file	names,	and	choose	to	save	supporting	files	in	a	separate
folder	(that	is,	if	the	UseLongFileNames	and	OrganizeInFolder	properties	are
set	to	True).

The	suffix	appears	in	the	folder	name	after	the	data	access	page	name.	For
example,	if	the	data	access	page	is	called	"Book1"	and	the	language	is	English,
the	folder	name	is	Book1_files.	The	available	folder	suffixes	are	listed	in	the
FolderSuffix	property	topic.

Example

This	example	sets	the	folder	suffix	for	the	data	access	page	("Inventory")	to	the
default	suffix.

DataAccessPages("Inventory").WebOptions.UseDefaultFolderSuffix

Show	All

About	Property
							

Returns	or	sets	a	String	representing	version	and	copyright	information	for	an
ActiveX	control.	Read/write.

expression.About

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

Remarks

To	view	an	About	box	showing	version	and	copyright	information	for	an
ActiveX	control,	click	the	About	property	box	in	the	Microsoft	Access	property
sheet.	Then	click	the	Build	button	to	the	right	of	the	property	box.

Note			The	About	box	is	not	available	for	ActiveX	controls	on	a	data	access
page.

Show	All

Action	Property
							

You	can	use	the	Action	property	in	Visual	Basic	to	specify	the	operation	to
perform	on	an	OLE	object.	Read/write	Integer.

expression.Action

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

Setting

The	Action	property	uses	the	following	settings.

Constant Description

acOLECreateEmbed
(0)

Creates	an	embedded	object.	To	use	this	setting,	you
must	first	set	the	control's	OLETypeAllowed	property
to	acOLEEmbedded	or	acOLEEither.	Set	the	Class
property	to	the	type	of	OLE	object	you	want	to	create.
You	can	use	the	SourceDoc	property	to	use	an	existing
file	as	a	template.

acOLECreateLink	(1)

Creates	a	linked	OLE	object	from	the	contents	of	a
file.	To	use	this	setting,	you	must	first	set	the	control's
OLETypeAllowed	and	SourceDoc	properties.	Set	the
OLETypeAllowed	property	to	acOLELinked	or
acOLEEither.	The	SourceDoc	property	specifies	the
file	used	to	create	the	OLE	object.	You	can	also	set	the
control's	SourceItem	property	(for	example,	to	specify
a	row-and-column	range	if	the	object	you're	creating	is
a	Microsoft	Excel	worksheet).	When	you	create	an
OLE	object	by	using	this	setting,	the	control	displays	a
metafile	graphic	image	of	the	file	specified	by	the
control's	SourceDoc	property.	If	you	save	the	OLE
object,	only	the	link	information,	such	as	the	name	of
the	application	that	supplied	the	object	and	the	name
of	the	linked	file,	is	saved	because	the	control	contains
an	image	of	the	data	but	no	source	data.

acOLECopy	(4)

Copies	the	object	to	the	Clipboard.	When	you	copy	an
OLE	object	to	the	Clipboard,	all	the	data	and	link
information	associated	with	the	object	is	placed	on	the
Clipboard	as	well.	You	can	copy	both	linked	and
embedded	objects	onto	the	Clipboard.	Using	this
setting	is	equivalent	to	clicking	Copy	on	the	Edit
menu.
Pastes	data	from	the	Clipboard	to	the	control.	If	the
paste	operation	is	successful,	the	control's	OLEType

acOLEPaste	(5) property	is	set	to	acOLELinked	or
acOLEEmbedded.	If	the	paste	operation	isn't
successful,	the	OLEType	property	is	set	to
acOLENone.	Using	the	acOLEPaste	setting	is
equivalent	to	clicking	Paste	on	the	Edit	menu.

acOLEUpdate	(6)
Retrieves	the	current	data	from	the	application	that
supplied	the	object	and	displays	that	data	as	a	metafile
graphic	in	the	control.

acOLEActivate	(7)

Opens	an	OLE	object	for	an	operation,	such	as	editing.
To	use	this	setting,	you	must	first	set	the	control's	Verb
property.	The	Verb	property	specifies	the	operation	to
perform	when	the	OLE	object	is	activated.

acOLEClose	(9)

Closes	an	OLE	object	and	ends	the	connection	with
the	application	that	supplied	the	object.	This	setting
applies	to	embedded	objects	only.	Using	this	setting	is
equivalent	to	clicking	Close	on	the	object's	Control
menu.

acOLEDelete	(10)

Deletes	the	specified	OLE	object	and	frees	the
associated	memory.	This	setting	enables	you	to
explicitly	delete	an	OLE	object.	Objects	are
automatically	deleted	when	a	form	is	closed	or	when
the	object	is	updated	to	a	new	object.	You	can't	use	the
Action	property	to	delete	a	bound	OLE	object	from	its
underlying	table	or	query.

acOLEInsertObjDlg
(14)

Displays	the	Insert	Object	dialog	box.	In	Form	view
or	Datasheet	view,	you	display	this	dialog	box	to
enable	the	user	to	create	a	new	object	or	to	link	or
embed	an	existing	object.	You	can	use	the	control's
OLETypeAllowed	property	to	determine	the	type	of
object	the	user	can	create	(with	the	constant
acOLELinked,	acOLEEmbedded,	or	acOLEEither)
by	using	this	dialog	box.

acOLEPasteSpecialDlg
(15)

Displays	the	Paste	Special	dialog	box.	In	Form	view
or	Datasheet	view,	you	display	this	dialog	box	to
enable	the	user	to	paste	an	object	from	the	Clipboard.
The	dialog	box	provides	several	options,	including
pasting	either	a	linked	or	embedded	object.	You	can
use	the	control's	OLETypeAllowed	property	to

determine	the	type	of	object	that	can	be	pasted	(with
the	constant	acOLELinked,	acOLEEmbedded,	or
acOLEEither)	by	using	this	dialog	box.

acOLEFetchVerbs	(17)
Updates	the	list	of	verbs	an	OLE	object	supports.	To
display	the	list	of	verbs,	use	the	ObjectVerbs	and
ObjectVerbsCount	properties.

You	can	set	the	Action	property	only	by	using	Visual	Basic.	The	Action
property	setting	is	an	Integer	data	type	value.

The	Action	property	isn't	available	in	Design	view	but	can	be	read	or	set	in	other
views.

Remarks

When	a	control's	Enabled	property	is	set	to	No	or	its	Locked	property	is	set	to
Yes,	you	can't	use	some	Action	property	settings.	The	following	table	indicates
which	settings	are	allowed	or	not	allowed	under	these	conditions.

Setting Enabled	=	No Locked	=	Yes
acOLECreateEmbed	(0) Not	allowed Not	allowed
acOLECreateLink	(1) Not	allowed Not	allowed
acOLECopy	(4) Allowed Allowed
acOLEPaste	(5) Not	allowed Not	allowed
acOLEUpdate	(6) Not	allowed Not	allowed
acOLEActivate	(7) Allowed Allowed
acOLEClose	(9) Not	allowed Allowed
acOLEDelete	(10) Not	allowed Not	allowed
acOLEInsertObjDlg	(14) Not	allowed Not	allowed
acOLEPasteSpecialDlg	(15) Not	allowed Not	allowed
acOLEFetchVerbs	(17) Not	allowed Allowed

Show	All

ActiveControl	Property
							

You	can	use	the	ActiveControl	property	together	with	the	Screen	object	to
identify	or	refer	to	the	control	that	has	the	focus.	Read-only	Control	object.

expression.ActiveControl

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

Setting

This	property	setting	contains	a	reference	to	the	Control	object	that	has	the
focus	at	run	time.

This	property	is	available	by	using	a	macro	or	Visual	Basic	and	is	read-only	in
all	views.

Remarks

You	can	use	the	ActiveControl	property	to	refer	to	the	control	that	has	the	focus
at	run	time	together	with	one	of	its	properties	or	methods.	The	following
example	assigns	the	name	of	the	control	with	the	focus	to	the	strControlName
variable.

Dim	ctlCurrentControl	As	Control

Dim	strControlName	As	String

Set	ctlCurrentControl	=	Screen.ActiveControl

strControlName	=	ctlCurrentControl.Name

If	no	control	has	the	focus	when	you	use	the	ActiveControl	property,	or	if	all	of
the	active	form's	controls	are	hidden	or	disabled,	an	error	occurs.

Example

The	following	example	assigns	the	active	control	to	the	ctlCurrentControl
variable	and	then	takes	different	actions	depending	on	the	value	of	the	control's
Name	property.

Dim	ctlCurrentControl	As	Control

Set	ctlCurrentControl	=	Screen.ActiveControl

If	ctlCurrentControl.Name	=	"txtCustomerID"	Then

				.

				.	'	Do	something	here.

				.

ElseIf	ctlCurrentControl.Name	=	"btnCustomerDetails"	Then

				.

				.	'	Do	something	here.

				.

End	If

Show	All

ActiveDataAccessPage	Property
							

You	can	use	the	ActiveDataAccessPage	property	to	identify	or	refer	to	the	data
access	page	that	has	the	focus.	Read-only	DataAccessPage	object.

expression.ActiveDataAccessPage

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

Setting

The	ActiveDataAccessPage	property	setting	contains	a	reference	to	the
DataAccessPage	object	that	has	the	focus	at	run	time.

This	property	is	available	by	using	a	macro	or	Visual	Basic	and	is	read-only.

Remarks

Use	the	ActiveDataAccessPage	property	to	refer	to	an	active	data	access	page
together	with	one	of	its	properties	or	methods.	The	following	example	displays
the	Name	property	setting	of	the	active	data	access	page:

Dim	pgCurrentPage	As	DataAccessPage

Set	pgCurrentPage	=	Screen.ActiveDataAccessPage

MsgBox	"Current	Data	Page	is	"	&	pgCurrentPage.Name

If	no	data	access	page	has	the	focus	when	you	use	the	ActiveDataAccessPage
property,	an	error	occurs.

Show	All

ActiveDatasheet	Property
							

You	can	use	the	ActiveDatasheet	property	together	with	the	Screen	object	to
identify	or	refer	to	the	datasheet	that	has	the	focus.	Read-only	Form	object.

expression.ActiveDatasheet

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

Setting

The	ActiveDatasheet	property	setting	contains	the	datasheet	object	that	has	the
focus	at	run	time.

This	property	is	available	by	using	a	macro	or	Visual	Basic	and	is	read-only	in
all	views.

Remarks

You	can	use	this	property	to	refer	to	an	active	datasheet	together	with	one	of	its
properties	or	methods.	For	example,	the	following	code	uses	the
ActiveDatasheet	property	to	reference	the	top	row	of	the	selection	in	the	active
datasheet.

TopRow	=	Screen.ActiveDatasheet.SelTop

Example

The	following	example	uses	the	ActiveDatasheet	property	to	identify	the
datasheet	cell	with	the	focus,	or	if	more	than	one	cell	is	selected,	the	location	of
the	first	row	and	column	in	the	selection.

Public	Sub	GetSelection()

				'	This	procedure	demonstrates	how	to	get	a	pointer	to	the

				'	current	active	datasheet.

				Dim	objDatasheet	As	Object

				Dim	lngFirstRow	As	Long

				Dim	lngFirstColumn	As	Long

				Const	conNoActiveDatasheet	=	2484

				

				On	Error	GoTo	GetSelection_Err

				

				Set	objDatasheet	=	Screen.ActiveDatasheet

				

				lngFirstRow	=	objDatasheet.SelTop

				lngFirstColumn	=	objDatasheet.SelLeft

				MsgBox	"The	first	item	in	this	selection	is	located	at	"	&	_

								"Row	"	&	lngFirstRow	&	",	Column	"	&	_

								lngFirstColumn,	vbInformation

								

GetSelection_Bye:

				Exit	Sub

GetSelection_Err:

				If	Err	=	conNoActiveDatasheet	Then

								MsgBox	"No	data	sheet	is	active.",	vbExclamation

								Resume	GetSelection_Bye

				End	If

End	Sub

Show	All

ActiveForm	Property
							

You	can	use	the	ActiveForm	property	together	with	the	Screen	object	to
identify	or	refer	to	the	form	that	has	the	focus.	Read-only	Form	object.

expression.ActiveForm

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

Setting

This	property	setting	contains	a	reference	to	the	Form	object	that	has	the	focus
at	run	time.

This	property	is	available	by	using	a	macro	or	Visual	Basic	and	is	read-only	in
all	views.

Remarks

You	can	use	the	ActiveForm	property	to	refer	to	an	active	form	together	with
one	of	its	properties	or	methods.	The	following	example	displays	the	Name
property	setting	of	the	active	form.

Dim	frmCurrentForm	As	Form

Set	frmCurrentForm	=	Screen.ActiveForm

MsgBox	"Current	form	is	"	&	frmCurrentForm.Name

If	a	subform	has	the	focus,	ActiveForm	refers	to	the	main	form.	If	no	form	or
subform	has	the	focus	when	you	use	the	ActiveForm	property,	an	error	occurs.

Show	All

ActiveReport	Property
							

You	can	use	the	ActiveReport	property	together	with	the	Screen	object	to
identify	or	refer	to	the	report	that	has	the	focus.	Read-only	Report	object.

expression.ActiveReport

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

Setting

This	property	setting	contains	a	reference	to	the	Report	object	that	has	the	focus
at	run	time.

This	property	is	available	only	by	using	a	macro	or	Visual	Basic	and	is	read-only
in	all	views.

Remarks

You	can	use	the	ActiveReport	property	to	refer	to	an	active	report	together	with
one	of	its	properties	or	methods.	The	following	example	displays	the	Name
property	setting	of	the	active	report.

Dim	rptCurrentReport	As	Report

Set	rptCurrentReport	=	Screen.ActiveReport

MsgBox	"Current	report	is	"	&	rptCurrentReport.Name

If	no	report	has	the	focus	when	you	use	the	ActiveReport	property,	an	error
occurs.

Show	All

AddColon	Property
							

The	AddColon	property	specifies	whether	a	colon	follows	the	text	in	labels	for
new	controls.
	Read/write	Boolean.

expression.AddColon

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

Setting

The	AddColon	property	uses	the	following	settings.
Setting Description

Yes A	colon	follows	the	text	in	labels	for	new	controls.

No A	colon	doesn't	follow	the	text	in	labels	for	new
controls.

You	can	set	these	properties	only	by	using	a	control's	default	control	style	or	the
DefaultControl	method	in	Visual	Basic.

Remarks

Changes	to	the	default	control	style	setting	affect	only	controls	created	on	the
current	form	or	report.	To	change	the	default	control	style	for	all	new	forms	or
reports	that	you	create	without	using	a	Microsoft	Access	wizard,	see	Specify	a
new	template	for	forms	and	reports.

mk:@MSITStore:acmain10.chm::/html/achowCreateNewTemplateFormsReportsS.htm

Show	All

Address	Property
							

You	can	use	the	Address	property	to	specify	or	determine	the	path	to	an	object,
document,	Web	page	or	other	destination	for	a	Hyperlink	object	associated	with
a	command	button,	image	control,	or	label	control.	Read/write	String.

expression.Address

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

Setting

The	Address	property	is	a	string	expression	representing	the	HyperlinkAddress
property's	path	to	a	file	(UNC	path)	or	Web	page	(URL).

The	Address	property	is	only	available	by	using	Visual	Basic.	When	you	set	the
Address	property,	you	automatically	specify	the	HyperlinkAddress	property
for	the	control	associated	with	the	hyperlink.

Remarks

For	more	information	about	hyperlink	addresses	and	their	format,	see	the
HyperlinkAddress	and	HyperlinkSubAddress	property	topics.

Show	All

AfterBeginTransaction	Property
							

Returns	or	sets	a	String	indicating	which	macro,	event	procedure,	or	user-
defined	function	runs	when	the	AfterBeginTransaction	event	occurs.	Read/write.

expression.AfterBeginTransaction

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

Remarks

This	event	applies	to	Access	project	forms	whose	BatchUpdates	properties	are
set	to	True.

Valid	values	for	this	property	are	"macroname"	where	macroname	is	the	name	of
macro,	"[Event	Procedure]"	which	indicates	the	event	procedure	associated	with
the	AfterBeginTransaction	event	for	the	specified	object,	or	"=functionname()"
where	functionname	is	the	name	of	a	user-defined	function.	For	a	more	detailed
discussion	of	event	properties,	see	"Event	Properties."

Example

The	following	example	specifies	that	when	the	AfterBeginTransaction	event
occurs	on	the	first	form	of	the	current	project,	the	associated	event	procedure
should	run.

Forms(0).AfterBeginTransaction	=	"[Event	Procedure]"

Show	All

AfterCommitTransaction	Property
							

Returns	or	sets	a	String	indicating	which	macro,	event	procedure,	or	user-
defined	function	runs	when	the	AfterCommitTransaction	event	occurs.
Read/write.

expression.AfterCommitTransaction

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

Remarks

This	event	applies	to	Access	project	forms	whose	BatchUpdates	properties	are
set	to	True.

Valid	values	for	this	property	are	"macroname"	where	macroname	is	the	name	of
macro,	"[Event	Procedure]"	which	indicates	the	event	procedure	associated	with
the	AfterCommitTransaction	event	for	the	specified	object,	or	"=functionname()"
where	functionname	is	the	name	of	a	user-defined	function.	For	a	more	detailed
discussion	of	event	properties,	see	"Event	Properties."

Example

The	following	example	specifies	that	when	the	AfterCommitTransaction	event
occurs	on	the	first	form	of	the	current	project,	the	associated	event	procedure
should	run.

Forms(0).AfterCommitTransaction	=	"[Event	Procedure]"

AfterDelConfirm	Property
							

Returns	or	sets	a	String	indicating	which	macro,	event	procedure,	or	user-
defined	function	runs	when	the	AfterDelConfirm	event	occurs.	Read/write.

expression.AfterDelConfirm

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

Remarks

Valid	values	for	this	property	are	"macroname"	where	macroname	is	the	name	of
macro,	"[Event	Procedure]"	which	indicates	the	event	procedure	associated	with
the	AfterDelConfirm	event	for	the	specified	object,	or	"=functionname()"	where
functionname	is	the	name	of	a	user-defined	function.	For	a	more	detailed
discussion	of	event	properties,	see	"Event	Properties."

Example

The	following	example	specifies	that	when	the	AfterDelConfirm	event	occurs	on
the	first	form	of	the	current	project,	the	associated	event	procedure	should	run.

Forms(0).After	DelConfirm	=	"[Event	Procedure]"

AfterFinalRender	Property
							

Returns	or	sets	a	String	indicating	which	macro,	event	procedure,	or	user-
defined	function	runs	when	the	AfterFinalRender	event	occurs.	Read/write.

expression.AfterFinalRender

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

Remarks

Valid	values	for	this	property	are	"macroname"	where	macroname	is	the	name	of
macro,	"[Event	Procedure]"	which	indicates	the	event	procedure	associated	with
the	AfterFinalRender	event	for	the	specified	object,	or	"=functionname()"	where
functionname	is	the	name	of	a	user-defined	function.	For	a	more	detailed
discussion	of	event	properties,	see	"Event	Properties."

Example

The	following	example	specifies	that	when	the	AfterFinalRender	event	occurs
on	the	first	form	of	the	current	project,	the	associated	event	procedure	should
run.

Forms(0).AfterFinalRender	=	"[Event	Procedure]"

AfterInsert	Property
							

Returns	or	sets	a	String	indicating	which	macro,	event	procedure,	or	user-
defined	function	runs	when	the	AfterInsert	event	occurs.	Read/write.

expression.AfterInsert

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

Remarks

Valid	values	for	this	property	are	"macroname"	where	macroname	is	the	name	of
macro,	"[Event	Procedure]"	which	indicates	the	event	procedure	associated	with
the	AfterInsert	event	for	the	specified	object,	or	"=functionname()"	where
functionname	is	the	name	of	a	user-defined	function.	For	a	more	detailed
discussion	of	event	properties,	see	"Event	Properties."

Example

The	following	example	specifies	that	when	the	AfterInsert	event	occurs	on	the
first	form	of	the	current	project,	the	associated	event	procedure	should	run.

Forms(0).After	Insert	=	"[Event	Procedure]"

AfterLayout	Property
							

Returns	or	sets	a	String	indicating	which	macro,	event	procedure,	or	user-
defined	function	runs	when	the	AfterLayout	event	occurs.	Read/write.

expression.AfterLayout

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

Remarks

Valid	values	for	this	property	are	"macroname"	where	macroname	is	the	name	of
macro,	"[Event	Procedure]"	which	indicates	the	event	procedure	associated	with
the	AfterLayout	event	for	the	specified	object,	or	"=functionname()"	where
functionname	is	the	name	of	a	user-defined	function.	For	a	more	detailed
discussion	of	event	properties,	see	"Event	Properties."

Example

The	following	example	specifies	that	when	the	AfterLayout	event	occurs	on	the
first	form	of	the	current	project,	the	associated	event	procedure	should	run.

Forms(0).AfterLayout	=	"[Event	Procedure]"

AfterRender	Property
							

Returns	or	sets	a	String	indicating	which	macro,	event	procedure,	or	user-
defined	function	runs	when	the	AfterRender	event	occurs.	Read/write.

expression.AfterRender

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

Remarks

Valid	values	for	this	property	are	"macroname"	where	macroname	is	the	name	of
macro,	"[Event	Procedure]"	which	indicates	the	event	procedure	associated	with
the	AfterRender	event	for	the	specified	object,	or	"=functionname()"	where
functionname	is	the	name	of	a	user-defined	function.	For	a	more	detailed
discussion	of	event	properties,	see	"Event	Properties."

Example

The	following	example	specifies	that	when	the	AfterRender	event	occurs	on	the
first	form	of	the	current	project,	the	associated	event	procedure	should	run.

Forms(0).AfterRender	=	"[Event	Procedure]"

AfterUpdate	Property
							

Returns	or	sets	a	String	indicating	which	macro,	event	procedure,	or	user-
defined	function	runs	when	the	AfterUpdate	event	occurs.	Read/write.

expression.AfterUpdate

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

Remarks

Valid	values	for	this	property	are	"macroname"	where	macroname	is	the	name	of
macro,	"[Event	Procedure]"	which	indicates	the	event	procedure	associated	with
the	AfterUpdate	event	for	the	specified	object,	or	"=functionname()"	where
functionname	is	the	name	of	a	user-defined	function.	For	a	more	detailed
discussion	of	event	properties,	see	"Event	Properties."

Example

The	following	example	specifies	that	when	the	AfterUpdate	event	occurs	on	the
first	form	of	the	current	project,	the	associated	event	procedure	should	run.

Forms(0).AfterUpdate	=	"[Event	Procedure]"

AllDataAccessPages	Property
							

You	can	use	the	AllDataAccessPages	property	to	reference	the
AllDataAccessPages	collection	and	its	related	properties.	Read-only
AllDataAccessPages	object.

expression.AllDataAccessPages

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

Remarks

The	AllDataAccessPage	property	is	available	only	by	using	Visual	Basic	and	is
read-only.

AllDatabaseDiagrams	Property
							

You	can	use	the	AllDatabaseDiagrams	property	to	reference	the
AllDatabaseDiagrams	collection	and	its	related	properties.	Read-only
AllDatabaseDiagrams	object.

expression.AllDatabaseDiagrams

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

Remarks

The	AllDatabaseDiagrams	property	is	available	only	by	using	Visual	Basic	and
is	read-only.

AllForms	Property
							

You	can	use	the	AllForms	property	to	reference	the	AllForms	collection	and	its
related	properties.	Read-only	AllForms	object.

expression.AllForms

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

Remarks

The	AllForms	property	is	available	only	by	using	Visual	Basic	and	is	read-only.

AllFunctions	Property
							

Returns	an	AllFunctions	collection	representing	all	the	user-defined	functions	in
a	Microsoft	SQL	Server	database.

expression.AllFunctions

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

Remarks

You	can	use	the	AllFunctions	property	to	reference	the	AllFunctions	collection
and	its	related	properties.

Example

The	following	example	prints	the	name	of	each	open	AccessObject	object	in	the
AllFunctions	collection.

Dim	objFunction	As	AccessObject

Debug.Print	"Currently	loaded	functions:"

For	Each	objFunction	In	Application.CurrentData.AllFunctions

				If	objFunction.IsLoaded	=	msoTrue	Then

								Debug.Print	objFunction.Name

				End	If

Next	objFunction

AllMacros	Property
							

You	can	use	the	AllMacros	property	to	reference	the	AllMacros	collection	and
its	related	properties.	Read-only	AllMacros	object.

expression.AllMacros

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

Remarks

The	AllMacros	property	is	available	only	by	using	Visual	Basic	and	is	read-
only.

AllModules	Property
							

You	can	use	the	AllModules	property	to	reference	the	AllModules	collection
and	its	related	properties.	Read-only	AllModules	object.

expression.AllModules

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

Remarks

The	AllModules	property	is	available	only	by	using	Visual	Basic	and	is	read-
only.

Show	All

AllowAdditions	Property
							

You	can	use	the	AllowAdditions	property	to	specify	whether	a	user	can	add	a
record	when	using	a	form.	Read/write	Boolean.

expression.AllowAdditions

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

Setting

The	AllowAdditions	property	uses	the	following	settings.

Setting Visual	Basic Description

Yes True		 (Default)	The	user	can	add	new
records.

No False The	user	can't	add	new	records.

You	can	set	the	AllowAdditions	property	by	using	the	form's	property	sheet,	a
macro,	or	Visual	Basic.

Remarks

Set	the	AllowAdditions	property	to	No	to	allow	users	to	view	or	edit	existing
records	but	not	add	new	records.

If	you	want	to	prevent	changes	to	existing	records	(make	a	form	read-only),	set
the	AllowAdditions,	AllowDeletions,	and	AllowEdits	properties	to	No.	You	can
also	make	records	read-only	by	setting	the	RecordsetType	property	to	Snapshot.

If	you	want	to	open	a	form	for	data	entry	only,	set	the	form's	DataEntry
property	to	Yes.

When	the	AllowAdditions	property	is	set	to	No,	the	Data	Entry	command	on
the	Records	menu	isn't	available.

Note			When	the	Data	Mode	argument	of	the	OpenForm	action	is	used,
Microsoft	Access	will	override	a	number	of	form	property	settings.	If	the	Data
Mode	argument	of	the	OpenForm	action	is	set	to	Edit,	Microsoft	Access	will
open	the	form	with	the	following	property	settings:

AllowEdits	—	Yes
AllowDeletions	—	Yes
AllowAdditions	—	Yes
DataEntry	—	No

To	prevent	the	OpenForm	action	from	overriding	any	of	these	existing	property
settings,	omit	the	Data	Mode	argument	setting	so	that	Microsoft	Access	will	use
the	property	settings	defined	by	the	form.

mk:@MSITStore:acmain10.chm::/html/acactOpenForm.htm

Example

The	following	example	examines	the	ControlType	property	for	all	controls	on	a
form.	For	each	label	and	text	box	control,	the	procedure	toggles	the
SpecialEffect	property	for	those	controls.	When	the	label	controls'
SpecialEffect	property	is	set	to	Shadowed	and	the	text	box	controls'
SpecialEffect	property	is	set	to	Normal	and	the	AllowAdditions,
AllowDeletions,	and	AllowEdits	properties	are	all	set	to	True,	the	intCanEdit
variable	is	toggled	to	allow	editing	of	the	underlying	data.

Sub	ToggleControl(frm	As	Form)

				Dim	ctl	As	Control

				Dim	intI	As	Integer,	intCanEdit	As	Integer

				Const	conTransparent	=	0

				Const	conWhite	=	16777215

				For	Each	ctl	in	frm.Controls

								With	ctl

												Select	Case	.ControlType

																Case	acLabel

																				If	.SpecialEffect	=	acEffectShadow	Then

																								.SpecialEffect	=	acEffectNormal

																								.BorderStyle	=	conTransparent

																								intCanEdit	=	True

																				Else

																								.SpecialEffect	=	acEffectShadow

																								intCanEdit	=	False

																				End	If

																Case	acTextBox

																				If	.SpecialEffect	=	acEffectNormal	Then

																								.SpecialEffect	=	acEffectSunken

																								.BackColor	=	conWhite

																				Else

																								.SpecialEffect	=	acEffectNormal

																								.BackColor	=	frm.Detail.BackColor

																				End	If

												End	Select

								End	With

				Next	ctl

				If	intCanEdit	=	IFalse	Then

								With	frm

												.AllowAdditions	=	False

												.AllowDeletions	=	False

												.AllowEdits	=	False

								End	With

				Else

								With	frm

												.AllowAdditions	=	True

												.AllowDeletions	=	True

												.AllowEdits	=	True

								End	With

				End	If

End	Sub

Show	All

AllowAutoCorrect	Property
							

You	can	use	the	AllowAutoCorrect	property	to	specify	whether	a	text	box	or	a
combo	box	control	will	automatically	correct	entries	made	by	the	user.
Read/write	Boolean.

expression.AllowAutoCorrect

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

Setting

The	AllowAutoCorrect	property	uses	the	following	settings.

Setting Visual	Basic Description

Yes True		
(Default)	Entries	are	automatically	corrected
according	to	the	settings	in	the	AutoCorrect
dialog	box.

No False Entries	aren't	corrected.

You	can	set	the	AllowAutoCorrect	property	by	using	a	control's	property	sheet,
a	macro,	or	Visual	Basic.	You	can	set	the	default	for	this	property	by	using	a
control's	default	control	style	or	the	DefaultControl	method	in	Visual	Basic.

AllowDatasheetView	Property
							

Returns	or	sets	a	Boolean	indicating	whether	the	specified	form	may	be	viewed
in	Datasheet	View.	True	if	Datasheet	View	is	allowed.	Read/write.

expression.AllowDatasheetView

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

Remarks

Use	the	AllowDatasheetView,	AllowFormView,	AllowPivotChartView,	or
AllowPivotTableView	properties	to	control	which	views	are	allowed	for	a	form.

Example

The	following	example	makes	Datasheet	View	valid	for	the	specified	form	and
then	opens	the	form	in	Datasheet	View.

Forms(0).AllowDatasheetView	=	True

DoCmd.OpenForm	FormName:=Forms(0).Name,	View:=acFormDS

Show	All

AllowDeletions	Property
							

You	can	use	the	AllowDeletions	property	to	specify	whether	a	user	can	delete	a
record	when	using	a	form.	Read/write	Boolean.

expression.AllowDeletions

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

Setting

The	AllowDeletions	property	uses	the	following	settings.

Setting Visual	Basic Description
Yes True		 (Default)	The	user	can	delete	records.
No False The	user	can't	delete	records.

You	can	set	the	AllowDeletions	property	by	using	the	form's	property	sheet,	a
macro,	or	Visual	Basic.

Remarks

You	can	set	this	property	to	No	to	allow	users	to	view	and	edit	existing	records
but	not	to	delete	them.	When	AllowDeletions	is	set	to	Yes,	records	may	be
deleted	so	long	as	existing	referential	integrity	rules	aren't	broken.

If	you	want	to	prevent	changes	to	existing	records	(make	a	form	read-only),	set
the	AllowAdditions,	AllowDeletions,	and	AllowEdits	properties	to	No.	You	can
also	make	records	read-only	by	setting	the	RecordsetType	property	to	Snapshot.

When	the	AllowDeletions	property	is	set	to	No,	the	Delete	Record	command	on
the	Edit	menu	isn't	available.

Note			When	the	Data	Mode	argument	of	the	OpenForm	action	is	set,	Microsoft
Access	will	override	a	number	of	form	property	settings.	If	the	Data	Mode
argument	of	the	OpenForm	action	is	set	to	Edit,	Microsoft	Access	will	open	the
form	with	the	following	property	settings:

AllowEdits	—	Yes

AllowDeletions	—	Yes

AllowAdditions	—	Yes

DataEntry	—	No

To	prevent	the	OpenForm	action	from	overriding	any	of	these	existing	property
settings,	omit	the	Data	Mode	argument	setting	so	that	Microsoft	Access	will	use
the	property	settings	defined	by	the	form.

mk:@MSITStore:acmain10.chm::/html/acactOpenForm.htm

Example

The	following	example	examines	the	ControlType	property	for	all	controls	on	a
form.	For	each	label	and	text	box	control,	the	procedure	toggles	the
SpecialEffect	property	for	those	controls.	When	the	label	controls'
SpecialEffect	property	is	set	to	Shadowed	and	the	text	box	controls'
SpecialEffect	property	is	set	to	Normal	and	the	AllowAdditions,
AllowDeletions,	and	AllowEdits	properties	are	all	set	to	True,	the	intCanEdit
variable	is	toggled	to	allow	editing	of	the	underlying	data.

Sub	ToggleControl(frm	As	Form)

				Dim	ctl	As	Control

				Dim	intI	As	Integer,	intCanEdit	As	Integer

				Const	conTransparent	=	0

				Const	conWhite	=	16777215

				For	Each	ctl	in	frm.Controls

								With	ctl

												Select	Case	.ControlType

																Case	acLabel

																				If	.SpecialEffect	=	acEffectShadow	Then

																								.SpecialEffect	=	acEffectNormal

																								.BorderStyle	=	conTransparent

																								intCanEdit	=	True

																				Else

																								.SpecialEffect	=	acEffectShadow

																								intCanEdit	=	False

																				End	If

																Case	acTextBox

																				If	.SpecialEffect	=	acEffectNormal	Then

																								.SpecialEffect	=	acEffectSunken

																								.BackColor	=	conWhite

																				Else

																								.SpecialEffect	=	acEffectNormal

																								.BackColor	=	frm.Detail.BackColor

																				End	If

												End	Select

								End	With

				Next	ctl

				If	intCanEdit	=	IFalse	Then

								With	frm

												.AllowAdditions	=	False

												.AllowDeletions	=	False

												.AllowEdits	=	False

								End	With

				Else

								With	frm

												.AllowAdditions	=	True

												.AllowDeletions	=	True

												.AllowEdits	=	True

								End	With

				End	If

End	Sub

Show	All

AllowDesignChanges	Property
							

You	can	use	the	AllowDesignChanges	property	to	specify	or	determine	if	design
changes	can	be	made	to	a	form	in	all	views	or	Design	view	only.	Read/write
Boolean.

expression.AllowDesignChanges

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

Setting

The	AllowDesignChanges	property	uses	the	following	settings.

Setting Visual	Basic Description

All	Views True		 (Default)	Design	changes	can	be	made	in	all
form	views.

Design	View	Only False Design	changes	can	be	made	in	Design
view	only.

The	AllowDesignChanges	property	can	be	set	by	using	the	form's	property
sheet	or	Visual	Basic.

Show	All

AllowEdits	Property
							

You	can	use	the	AllowEdits	property	to	specify	whether	a	user	can	edit	saved
records	when	using	a	form.	Read/write	Boolean.

expression.AllowEdits

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

Setting

The	AllowEdits	property	uses	the	following	settings.

Setting Visual	Basic Description

Yes True		 (Default)	The	user	can	edit	saved
records.

No False The	user	can't	edit	saved	records.

You	can	set	the	AllowEdits	property	by	using	the	form's	property	sheet,	a	macro,
or	Visual	Basic.

Remarks

You	can	use	the	AllowEdits	property	to	prevent	changes	to	existing	data
displayed	by	a	form.	If	you	want	to	prevent	changes	to	data	in	a	specific	control,
use	the	Enabled	or	Locked	property.

If	you	want	to	prevent	changes	to	existing	records	(make	a	form	read-only),	set
the	AllowAdditions,	AllowDeletions,	and	AllowEdits	properties	to	No.	You	can
also	make	records	read-only	by	setting	the	RecordsetType	property	to	Snapshot.

When	the	AllowEdits	property	is	set	to	No,	the	Delete	Record	and	Data	Entry
menu	commands	aren't	available	for	existing	records.	(They	may	still	be
available	for	new	records	if	the	AllowAdditions	property	is	set	to	Yes.)

Changing	a	field	value	programmatically	causes	the	current	record	to	be
editable,	regardless	of	the	AllowEdits	property	setting.	If	you	want	to	prevent
the	user	from	making	changes	to	a	record	(AllowEdits	is	No)	that	you	need	to
edit	programmatically,	save	the	record	after	any	programmatic	changes;	the
AllowEdits	property	setting	will	be	honored	once	again	after	any	unsaved
changes	to	the	current	record	are	saved.

Note			When	the	Data	Mode	argument	of	the	OpenForm	action	is	set,	Microsoft
Access	will	override	a	number	of	form	property	settings.	If	the	Data	Mode
argument	of	the	OpenForm	action	is	set	to	Edit,	Microsoft	Access	will	open	the
form	with	the	following	property	settings:

AllowEdits	—	Yes
AllowDeletions	—	Yes
AllowAdditions	—	Yes
DataEntry	—	No

To	prevent	the	OpenForm	action	from	overriding	any	of	these	existing	property
settings,	omit	the	Data	Mode	argument	setting	so	that	Microsoft	Access	will	use
the	property	settings	defined	by	the	form.

mk:@MSITStore:acmain10.chm::/html/acactOpenForm.htm

Example

The	following	example	examines	the	ControlType	property	for	all	controls	on	a
form.	For	each	label	and	text	box	control,	the	procedure	toggles	the
SpecialEffect	property	for	those	controls.	When	the	label	controls'
SpecialEffect	property	is	set	to	Shadowed	and	the	text	box	controls'
SpecialEffect	property	is	set	to	Normal	and	the	AllowAdditions,
AllowDeletions,	and	AllowEdits	properties	are	all	set	to	True,	the	intCanEdit
variable	is	toggled	to	allow	editing	of	the	underlying	data.

Sub	ToggleControl(frm	As	Form)

				Dim	ctl	As	Control

				Dim	intI	As	Integer,	intCanEdit	As	Integer

				Const	conTransparent	=	0

				Const	conWhite	=	16777215

				For	Each	ctl	in	frm.Controls

								With	ctl

												Select	Case	.ControlType

																Case	acLabel

																				If	.SpecialEffect	=	acEffectShadow	Then

																								.SpecialEffect	=	acEffectNormal

																								.BorderStyle	=	conTransparent

																								intCanEdit	=	True

																				Else

																								.SpecialEffect	=	acEffectShadow

																								intCanEdit	=	False

																				End	If

																Case	acTextBox

																				If	.SpecialEffect	=	acEffectNormal	Then

																								.SpecialEffect	=	acEffectSunken

																								.BackColor	=	conWhite

																				Else

																								.SpecialEffect	=	acEffectNormal

																								.BackColor	=	frm.Detail.BackColor

																				End	If

												End	Select

								End	With

				Next	ctl

				If	intCanEdit	=	IFalse	Then

								With	frm

												.AllowAdditions	=	False

												.AllowDeletions	=	False

												.AllowEdits	=	False

								End	With

				Else

								With	frm

												.AllowAdditions	=	True

												.AllowDeletions	=	True

												.AllowEdits	=	True

								End	With

				End	If

End	Sub

Show	All

AllowFilters	Property
							

You	can	use	the	AllowFilters	property	to	specify	whether	records	in	a	form	can
be	filtered.	Read/write	Boolean.

expression.AllowFilters

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

Settings

The	AllowFilters	property	uses	the	following	settings.

Setting Visual	Basic Description
Yes True (Default)	Records	can	be	filtered.
No False Records	can't	be	filtered.

You	can	set	this	property	by	using	the	form's	property	sheet,	a	macro,	or	Visual
Basic.

Remarks

Filters	are	commonly	used	to	view	a	temporary	subset	of	the	records	in	a
database.	When	you	use	a	filter,	you	apply	criteria	to	display	only	records	that
meet	specific	conditions.	In	an	Employees	form,	for	example,	you	can	use	a
filter	to	display	only	records	of	employees	with	over	5	years	of	service.	You	can
also	use	a	filter	to	restrict	access	to	records	containing	sensitive	information,
such	as	financial	or	medical	data.

Note			Setting	the	AllowFilters	property	to	No	does	not	affect	the	Filter,
FilterOn,	ServerFilter,	or	ServerFilterByForm	properties.	You	can	still	use
these	properties	to	set	and	remove	filters.	You	can	also	still	use	the	following
actions	or	methods	to	apply	and	remove	filters.

Actions Methods
ApplyFilter ApplyFilter
OpenForm OpenForm
ShowAllRecords ShowAllRecords

mk:@MSITStore:acmain10.chm::/html/acactApplyFilter.htm
mk:@MSITStore:acmain10.chm::/html/acactOpenForm.htm
mk:@MSITStore:acmain10.chm::/html/acactShowAllRecords.htm

AllowFormView	Property
							

Returns	or	sets	a	Boolean	indicating	whether	the	specified	form	may	be	viewed
in	Form	View.	True	if	Form	View	is	allowed.	Read/write.

expression.AllowFormView

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

Remarks

Use	the	AllowDatasheetView,	AllowFormView,	AllowPivotChartView,	or
AllowPivotTableView	properties	to	control	which	views	are	allowed	for	a	form.

Example

The	following	example	makes	Form	View	valid	for	the	specified	form	and	then
opens	the	form	in	Form	View.

Forms(0).AllowFormView	=	True

DoCmd.OpenForm	FormName:=Forms(0).Name,	View:=acNormal

AllowPivotChartView	Property
							

Returns	or	sets	a	Boolean	indicating	whether	the	specified	form	may	be	viewed
in	PivotChart	View.	True	if	PivotChart	View	is	allowed.	Read/write.

expression.AllowPivotChartView

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

Remarks

Use	the	AllowDatasheetView,	AllowFormView,	AllowPivotChartView,	or
AllowPivotTableView	properties	to	control	which	views	are	allowed	for	a	form.

Example

The	following	example	makes	PivotChart	View	valid	for	the	specified	form	and
then	opens	the	form	in	PivotChart	View.

Forms(0).AllowPivotChartView	=	True

DoCmd.OpenForm	FormName:=Forms(0).Name,	View:=acFormPivotChart

AllowPivotTableView	Property
							

Returns	or	sets	a	Boolean	indicating	whether	the	specified	form	may	be	viewed
in	PivotTable	View.	True	if	PivotTable	View	is	allowed.	Read/write.

expression.AllowPivotTableView

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

Remarks

Use	the	AllowDatasheetView,	AllowFormView,	AllowPivotChartView,	or
AllowPivotTableView	properties	to	control	which	views	are	allowed	for	a	form.

Example

The	following	example	makes	PivotTable	View	valid	for	the	specified	form	and
then	opens	the	form	in	PivotTable	View.

Forms(0).AllowPivotTableView	=	True

DoCmd.OpenForm	FormName:=Forms(0).Name,	View:=acFormPivotTable

AllQueries	Property
							

You	can	use	the	AllQueries	property	to	reference	the	AllQueries	collection	and
its	related	properties.	Read-only	AllQueries	object.

expression.AllQueries

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

Remarks

The	AllQueries	property	is	available	only	by	using	Visual	Basic	and	is	read-
only.

AllReports	Property
							

You	can	use	the	AllReports	property	to	reference	the	AllReports	collection	and
its	related	properties.	Read-only	AllReports	object.

expression.AllReports

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

Remarks

The	AllReports	property	is	available	only	by	using	Visual	Basic	and	is	read-
only.

AllStoredProcedures	Property
							

You	can	use	the	AllStoredProcedures	property	to	reference	the
AllStoredProcedures	collection	and	its	related	properties.	Read-only
AllStoredProcedures	object.

expression.AllStoredProcedures

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

Remarks

The	AllStoredProcedures	property	is	available	only	by	using	Visual	Basic	and
is	read-only.

AllTables	Property
							

You	can	use	the	AllTables	property	to	reference	the	AllTables	collection	and	its
related	properties.	Read-only	AllTables	object.

expression.AllTables

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

Remarks

The	AllTables	property	is	available	only	by	using	Visual	Basic	and	is	read-only.

AllViews	Property
							

You	can	use	the	AllViews	property	to	reference	the	AllViews	collection	and	its
related	properties.	Read-only	AllViews	object.

expression.AllViews

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

Remarks

The	AllViews	property	is	available	only	by	using	Visual	Basic	and	is	read-only.

AlwaysSaveInDefaultEncoding
Property
							

You	can	use	the	AlwaysSaveInDefaultEncoding	property	to	specify	or
determine	whether	the	Web	browser	opens	a	data	access	page	with	its	default	or
original	encoding	(character	set).	Read/write	Boolean.

expression.AlwaysSaveInDefaultEncoding

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

Remarks

The	AlwaysSaveInDefaultEncoding	property	uses	the	following	settings.

Setting Visual	Basic Description

Yes True		 Use	the	default	encoding	specified	by	the
Encoding	when	saving	a	data	access	page.

No False (Default)	Use	the	original	encoding	of	the	data
access	page.

The	AlwaysSaveInDefaultEncoding	property	is	available	only	by	using	Visual
Basic.

The	Encoding	property	can	be	used	to	set	the	default	encoding.

Example

This	example	sets	the	encoding	to	the	default	encoding.	The	encoding	is	used
when	you	save	the	data	access	page	as	a	Web	page.

Application.DefaultWebOptions.AlwaysSaveInDefaultEncoding	=	True

Show	All

AnswerWizard	Property
							

You	can	use	the	AnswerWizard	property	to	return	a	reference	to	the	current
AnswerWizard	object	and	its	related	properties.	Read-only	AnswerWizard
object.

expression.AnswerWizard

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

Remarks

The	AnswerWizard	property	is	available	only	by	using	Visual	Basic.

Once	you	establish	a	reference	to	the	AnswerWizard	object,	you	can	access	all
the	properties	and	methods	of	the	object.	You	can	set	a	reference	to	the
AnswerWizard	object	by	clicking	References	on	the	Tools	menu	while	in
module	Design	view.	Then	set	a	reference	to	the	Microsoft	Office	9.0	Object
Library	in	the	References	dialog	box	by	selecting	the	appropriate	check	box.
Microsoft	Access	can	set	this	reference	for	you	if	you	use	a	Microsoft	Office	9.0
Object	Library	constant	to	set	an	AnswerWizard	object's	property	or	as	an
argument	to	an	AnswerWizard	object's	method.

mk:@MSITStore:vbaof10.chm::/html/ofobjAnswerWizard.htm

Application	Property
							

You	can	use	the	Application	property	in	Visual	Basic	to	access	the	active
Microsoft	Access	Application	object	and	its	related	properties.	Read-only
Application	object.

expression.Application

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

Setting

The	Application	property	is	set	by	Microsoft	Access	and	is	read-only	in	all
views.

Remarks

Each	Microsoft	Access	object	has	an	Application	property	that	returns	the
current	Application	object.	You	can	use	this	property	to	access	any	of	the
object's	properties.	For	example,	you	could	refer	to	the	menu	bar	for	the
Application	object	from	the	current	form	by	using	the	following	syntax:

Me.Application.MenuBar

Example

The	following	example	demonstrates	how	to	change	the	cursor	to	an	hourglass
and	back	again	to	signify	that	some	background	activity	is	occurring.

Application.Screen.MousePointer	=	11	'	Hourglass

'	Do	some	background	activity.

Application.Screen.MousePointer	=	0	'	Back	to	normal

AsianLineBreak	Property
							

Returns	or	sets	a	Boolean	indicating	whether	line	breaks	in	text	boxes	follow
rules	governing	East	Asian	languages.	True	to	control	line	breaks	based	on	East
Asian	language	rules.	Read/write.

expression.AsianLineBreak

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

Remarks

Setting	the	AsianLineBreak	property	to	True	moves	any	punctuation	marks	and
closing	parentheses	at	the	beginning	of	a	line	to	the	end	of	the	previous	line,	and
moves	opening	parentheses	at	the	end	of	a	line	to	the	beginning	of	the	next	line.

Example

This	example	sets	all	the	text	boxes	on	the	specified	form	to	break	lines
according	to	East	Asian	language	rules.

Dim	ctlLoop	As	Control

For	Each	ctlLoop	In	Forms(0).Controls

				If	ctlLoop.ControlType	=	acTextBox	Then

								ctlLoop.AsianLineBreak	=	True

				End	If

Next	ctlLoop

Assistant	Property
							

You	can	use	the	Assistant	property	to	return	a	reference	to	the	Assistant	object.
Read-only	Assistant	object.

expression.Assistant

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

mk:@MSITStore:vbaof10.chm::/html/ofobjAssistant.htm

Example

The	following	example	uses	the	Assistant	property	of	the	Application	object	to
manipulate	various	properties	and	methods	of	the	Assistant	object.

Public	Sub	AnimateAssistant()

				Dim	blnState	As	Boolean

				With	Assistant

								'	Save	Assistant's	visible	state.

								blnState	=	.Visible

								'	Make	Assistant	visible.

								If	blnState	=	False	Then	.Visible	=	True

								'	Animate	Assistant.

								.Animation	=	msoAnimationAppear

								'	Display	Assistant	object's	Item	and	FileName	properties.

								MsgBox	"Hello,	my	name	is	"	&	.Item	&	".	I	live	in	"	&	_

																	.FileName,	,	"Assistant	Information:"

								'	Return	Assistant's	visible	state	to	original	setting.

								.Visible	=	blnState

				End	With

End	Sub

Show	All

AutoActivate	Property
							

You	can	use	the	AutoActivate	property	to	specify	how	the	user	can	activate	an
OLE	object.	Read/write	Integer.

expression.AutoActivate

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

Setting

The	AutoActivate	property	uses	the	following	settings.

Setting Constant Description

Manual acOLEActivateManual	(0)

The	OLE	object	isn't	activated	when
it	receives	the	focus	or	when	the
user	double-clicks	the	control.	You
can	activate	an	OLE	object	only	by
using	Visual	Basic	to	set	the
control's	Action	property	to
acOLEActivate.

GetFocus acOLEActivateGetFocus
(1)

(For	unbound	object	frame	and
chart	controls	only)	If	the	control
contains	an	OLE	object,	the
application	that	supplied	the	object
is	activated	when	the	control
receives	the	focus.

Double-
Click

acOLEActivateDoubleClick
(2)

(Default)	If	the	control	contains	an
OLE	object,	the	application	that
supplied	the	object	is	activated
when	the	user	double-clicks	the
control	or	presses	CTRL+ENTER
when	the	control	has	the	focus.

You	can	set	this	property	by	using	the	control's	property	sheet,	a	macro,	or
Visual	Basic.

The	AutoActivate	property	can	be	set	only	in	Design	view.

Remarks

Some	OLE	objects	can	be	activated	from	within	the	control.	When	such	an
object	is	activated,	the	object	can	be	edited	(or	some	other	operation	can	be
performed)	from	inside	the	boundaries	of	the	control.	This	feature	is	called	in-
place	activation.	If	an	object	supports	in-place	activation,	see	the	documentation
for	the	application	that	was	used	to	create	the	object	for	information	about	using
this	feature.

With	Visual	Basic,	you	can	determine	if	a	control	contains	an	object	by	checking
the	setting	of	its	OLEType	property.

Note			If	you	set	a	control's	AutoActivate	property	to	Double-Click	and	specify
a	DblClick	event	for	the	control,	the	DblClick	event	occurs	before	the	object	is
activated.

Show	All

AutoCenter	Property
							

Returns	or	sets	a	Boolean	indicating	whether	a	form	will	be	centered
automatically	in	the	application	window	when	the	form	is	opened.	Read/write.

expression.AutoCenter

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

Setting

The	AutoCenter	property	uses	the	following	settings.

Setting Visual	Basic Description

Yes True		 The	form	will	be	centered	automatically	on
opening.

No False
(Default)	The	form's	upper-left	corner	will	be
in	the	same	location	as	when	the	form	was	last
saved.

You	can	set	this	property	by	using	the	form's	property	sheet,	a	macro,	or	Visual
Basic.

You	can	set	this	property	only	in	Design	view.

Remarks

Depending	on	the	size	and	placement	of	the	application	window,	forms	can
appear	off	to	one	side	of	the	application	window,	hiding	part	of	the	form.
Centering	the	form	automatically	when	it's	opened	makes	it	easier	to	view	and
use.

If	you	make	any	changes	in	Design	view	to	a	form	whose	AutoResize	property
is	set	to	No	and	whose	AutoCenter	property	is	set	to	Yes,	switch	to	Form	view
before	saving	the	form.	If	you	don't,	Microsoft	Access	clips	the	form	on	the	right
and	bottom	edges	the	next	time	you	open	the	form.

Show	All

AutoExpand	Property
							

You	can	use	the	AutoExpand	property	to	specify	whether	Microsoft	Access
automatically	fills	the	text	box	portion	of	a	combo	box	with	a	value	from	the
combo	box	list	that	matches	the	characters	you	enter	as	you	type	in	the	combo
box.	This	lets	you	quickly	enter	an	existing	value	in	a	combo	box	without
displaying	the	list	box	portion	of	the	combo	box.	Read/write	Boolean.

expression.AutoExpand

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

Setting

The	AutoExpand	property	uses	the	following	settings.

Setting Visual	Basic Description

Yes True		

(Default)	Microsoft	Access	fills	in	the	combo
box	from	the	list	with	the	first	value	matching
the	first	character	that	you	type.	As	you	type
additional	characters,	Microsoft	Access
changes	the	value	displayed	to	match	all	the
characters	typed.

No False You	must	select	a	value	from	the	list	or	type	the
entire	value.

You	can	set	the	AutoExpand	property	by	using	the	combo	box's	property	sheet,
a	macro,	or	Visual	Basic.

Remarks

When	you	enter	characters	in	the	text	box	portion	of	a	combo	box,	Microsoft
Access	searches	the	values	in	the	list	to	find	those	that	match	the	characters	you
have	typed.	If	the	AutoExpand	property	is	set	to	Yes,	Microsoft	Access
automatically	displays	the	first	underlying	value	that	matches	the	characters
entered	so	far.

When	the	LimitToList	property	is	set	to	Yes	and	the	combo	box	list	is	dropped
down,	Microsoft	Access	selects	matching	values	in	the	list	as	the	user	enters
characters	in	the	text	box	portion	of	the	combo	box,	even	if	the	AutoExpand
property	is	set	to	No.	If	the	user	presses	ENTER	or	moves	to	another	control	or
record,	the	selected	value	appears	in	the	combo	box.

Show	All

AutoLabel	Property
							

The	AutoLabel	property	specifies	whether	labels	are	automatically	created	and
attached	to	new	controls.	Read/write	Boolean.

expression.AutoLabel

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

Setting

The	AutoLabel	property	uses	the	following	settings.

Setting Description
Yes A	label	is	attached	to	new	controls.

No A	label	isn't	attached	to	new
controls.

You	can	set	these	properties	only	by	using	a	control's	default	control	style	or	the
DefaultControl	method	in	Visual	Basic.

Remarks

Changes	to	the	default	control	style	setting	affect	only	controls	created	on	the
current	form	or	report.	To	change	the	default	control	style	for	all	new	forms	or
reports	that	you	create	without	using	a	Microsoft	Access	wizard,	see	Specify	a
new	template	for	forms	and	reports.

mk:@MSITStore:acmain10.chm::/html/achowCreateNewTemplateFormsReportsS.htm

Show	All

AutoRepeat	Property
							

You	can	use	the	AutoRepeat	property	to	specify	whether	an	event	procedure	or
macro	runs	repeatedly	while	a	command	button	on	a	form	remains	pressed	in.
Read/write	Boolean.

expression.AutoRepeat

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

Setting

The	AutoRepeat	property	uses	the	following	settings.

Setting Visual	Basic Description

Yes True		
The	macro	or	event	procedure	in	the	Click
event	runs	repeatedly	while	the	command
button	remains	pressed	in.

No False (Default)	The	macro	or	event	procedure	runs
once.

You	can	set	this	property	by	using	the	command	button's	property	sheet,	a
macro,	or	Visual	Basic.

Remarks

The	initial	repeat	of	the	event	procedure	or	macro	occurs	0.5	seconds	after	it	first
runs.	Subsequent	repeats	occur	either	0.25	seconds	apart	or	the	duration	of	the
event	procedure	or	macro,	whichever	is	longer.

If	the	code	attached	to	the	command	button	causes	the	current	record	to	change,
the	AutoRepeat	property	has	no	effect.

If	the	code	attached	to	the	command	button	causes	changes	to	another	control	on
a	form,	use	the	DoEvents	function	to	ensure	proper	screen	updating.

Show	All

AutoResize	Property
							

Returns	or	sets	a	Boolean	indicating	whether	a	Form	window	opens
automatically	sized	to	display	complete	records.	Read/write.

expression.AutoResize

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

Setting

The	AutoResize	property	uses	the	following	settings.

Setting Visual	Basic Description

Yes True		 (Default)	The	Form	window	is	automatically
sized	to	display	a	complete	record.

No False

When	opened,	the	Form	window	has	the	last
saved	size.	To	save	a	Form	window's	size,	open
the	form,	size	the	window,	save	the	form	by
clicking	Save	on	the	File	menu,	and	close	the
form.	When	you	next	open	the	form,	it	will	be
the	saved	window	size.

You	can	set	this	property	by	using	the	form's	property	sheet,	a	macro,	or	Visual
Basic.

This	property	can	be	set	only	in	Design	view.

Remarks

The	Form	window	resizes	only	if	opened	in	Form	view.	If	you	open	the	form
first	in	Design	view	or	Datasheet	view	and	then	change	to	Form	view,	the	Form
window	won't	resize.

If	you	make	any	changes	in	Design	view	to	a	form	whose	AutoResize	property
is	set	to	No	and	whose	AutoCenter	property	is	set	to	Yes,	switch	to	Form	view
before	saving	the	form.	If	you	don't,	Microsoft	Access	clips	the	form	on	the	right
and	bottom	edges	the	next	time	you	open	the	form.

If	the	AutoCenter	property	is	set	to	No,	a	Form	window	opens	with	its	upper-
left	corner	in	the	same	location	as	when	it	was	closed.

Show	All

AutoTab	Property
							

You	can	use	the	AutoTab	property	to	specify	whether	an	automatic	tab	occurs
when	the	last	character	permitted	by	a	text	box	control's	input	mask	is	entered.
An	automatic	tab	moves	the	focus	to	the	next	control	in	the	form's	tab	order.
Read/write	Boolean.

expression.AutoTab

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

Setting

The	AutoTab	property	uses	the	following	settings.

Setting Visual	Basic Description

Yes True		 Generates	a	tab	when	the	last	allowable
character	in	a	text	box	is	entered.

No False (Default)	Doesn't	generate	a	tab	when	the	last
allowable	character	in	a	text	box	is	entered.

You	can	set	this	property	by	using	a	form's	property	sheet,	a	macro,	or	Visual
Basic.

You	can	set	the	default	for	this	property	by	using	the	control's	default	control
style	or	the	DefaultControl	method	in	Visual	Basic.

The	AutoTab	property	affects	tab	behavior	in	both	Form	view	and	Datasheet
view.

Remarks

You	create	an	input	mask	for	a	control	by	using	the	InputMask	property.

You	can	also	create	an	input	mask	for	a	text	box	control	bound	to	a	field	by
setting	the	InputMask	property	for	the	field	in	the	form's	underlying	table	or
query.	If	the	field	is	dragged	to	a	form	from	the	field	list,	the	field's	input	mask	is
inherited	by	the	text	box	control.

You	could	use	the	AutoTab	property	if	you	have	a	text	box	on	a	form	for	which
you	usually	enter	the	maximum	number	of	characters	for	each	record.	After	you
have	entered	the	maximum	number	of	characters,	focus	automatically	moves	to
the	next	control	in	the	tab	order.	For	example,	you	could	use	this	property	for	a
CategoryType	field	that	must	always	be	five	characters	long.

Show	All

BackColor	Property
							

You	can	use	the	BackColor	property	to	specify	the	color	for	the	interior	of	a
control	or	section.	Read/write	Long.

expression.BackColor

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

Setting

The	BackColor	property	contains	a	numeric	expression	that	corresponds	to	the
color	used	to	fill	a	control's	or	section's	interior.

You	can	use	the	Color	Builder	to	set	this	property	by	clicking	the	Build	button	to
the	right	of	the	property	box	in	the	property	sheet.	Using	the	Color	Builder
enables	you	to	define	custom	back	colors	for	controls	or	sections.

You	can	also	set	this	property	by	using	Fill/Back	Color	on	the	Formatting
(Form/Report)	toolbar,	a	control's	or	section's	property	sheet,	a	macro,	or	Visual
Basic.

In	Visual	Basic,	use	a	numeric	expression	to	set	this	property.	This	property
setting	has	a	data	type	of	Long.

You	can	set	the	default	for	this	property	by	using	a	control's	default	control	style
or	the	DefaultControl	method	in	Visual	Basic.

For	Table	objects	you	can	set	this	property	using	Fill/Back	Color	on	the
Formatting	(Datasheet)	toolbar,	or	in	Visual	Basic	by	using	the
DatasheetBackColor	property.

mk:@MSITStore:ado210.chm::/htm/adobjTable.htm

Remarks

To	use	the	BackColor	property,	the	BackStyle	property,	if	available,	must	be	set
to	Normal.

Example

The	following	example	uses	the	RGB	function	to	set	the	BorderColor,
BackColor,	and	ForeColor	properties	depending	on	the	value	of	the
txtPastDue	text	box.	You	can	also	use	the	QBColor	function	to	set	these
properties.	Putting	the	following	code	in	the	Form_Current()	event	sets	the
control	display	characteristics	as	soon	as	the	user	opens	a	form	or	moves	to	a
new	record.

Sub	Form_Current()

				Dim	curAmntDue	As	Currency,	lngBlack	As	Long

				Dim	lngRed	As	Long,	lngYellow	As	Long,	lngWhite	As	Long

				If	Not	IsNull(Me!txtPastDue.Value)	Then

								curAmntDue	=	Me!txtPastDue.Value

				Else

								Exit	Sub

				End	If

				lngRed	=	RGB(255,	0,	0)

				lngBlack	=	RGB(0,	0,	0)

				lngYellow	=	RGB(255,	255,	0)

				lngWhite	=	RGB(255,	255,	255)

				If	curAmntDue	>	100	Then

								Me!txtPastDue.BorderColor	=	lngRed

								Me!txtPastDue.ForeColor	=	lngRed

								Me!txtPastDue.BackColor	=	lngYellow

				Else

								Me!txtPastDue.BorderColor	=	lngBlack

								Me!txtPastDue.ForeColor	=	lngBlack

								Me!txtPastDue.BackColor	=	lngWhite

				End	If

End	Sub

Show	All

BackStyle	Property
							

You	can	use	the	BackStyle	property	to	specify	whether	a	control	will	be
transparent.	Read/write	Byte.

expression.BackStyle

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

Setting

The	BackStyle	property	uses	the	following	settings.

Setting Visual	Basic Description

Normal 1
(Default	for	all	controls	except	option	group)
The	control	has	its	interior	color	set	by	the
BackColor	property.

Transparent 0
(Default	for	option	group)	The	control	is
transparent.	The	color	of	the	form	or	report
behind	the	control	is	visible.

You	can	set	this	property	by	using	Fill/Back	Color	on	the	Formatting
(Form/Report)	toolbar,	a	control's	property	sheet,	a	macro,	or	Visual	Basic.

You	can	set	the	default	for	this	property	by	using	a	control's	default	control	style
or	the	DefaultControl	method	in	Visual	Basic.

Remarks

If	the	Transparent	button	on	the	Back	Color	button	palette	is	selected,	the
BackStyle	property	is	set	to	Transparent;	otherwise	the	BackStyle	property	is
set	to	Normal.

Tip			To	make	a	command	button	invisible,	set	its	Transparent	property	to	Yes.

Show	All

BaseConnectionString	Property
							

You	can	use	the	BaseConnectionString	property	to	return	the	base	connection
string	for	the	CurrentProject	or	CodeProject	object.	Read-only	String.

expression.BaseConnectionString

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

Remarks

The	BaseConnectionString	property	is	available	only	by	using	Visual	Basic	and
is	read-only.

The	BaseConnectionString	property	returns	the	connection	string	that	was	set
through	the	OpenConnection	method	or	by	clicking	Connection	on	the	File
menu.	When	making	a	connection,	Microsoft	Access	project	modifies	the
BaseConnectionString	property	for	use	with	the	ADO	environment.

Example

The	following	example	displays	the	BaseConnectionString	property	setting	of
the	current	project:

Public	Sub	ShowConnectString()

				Dim	objCurrent	As	Object

				Set	objCurrent	=	Application.CurrentProject

				MsgBox	"The	current	base	connection	is	"	&	objCurrent.BaseConnectionString

End	Sub

BatchUpdates	Property
							

Returns	or	sets	a	Boolean	indicating	whether	the	specified	form	supports
transacted	batch	updates.	True	if	batch	updates	are	supported.	Read/write.

expression.BatchUpdates

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

Remarks

This	property	can	only	be	changed	during	design	time.	During	run	time,	it	is
read-only.

Example

The	following	example	checks	the	specified	form	to	see	if	it	supports	batch
updates	and	displays	a	message	reporting	the	result.

With	Forms(0)

				If	.BatchUpdates	=	True	Then

								MsgBox	"The	"""	&	.Name	&	"""	form	supports	batch	updates."

				Else

								MsgBox	"The	"""	&	.Name	&	"""	form	does	not	support	batch	updates."

				End	If

End	With

Show	All

BeforeBeginTransaction	Property
					

Returns	or	sets	a	String	indicating	which	macro,	event	procedure,	or	user-
defined	function	runs	when	the	BeforeBeginTransaction	event	occurs.
Read/write.

expression.BeforeBeginTransaction

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

Remarks

This	event	applies	to	Access	project	forms	whose	BatchUpdates	properties	are
set	to	True.

Valid	values	for	this	property	are	"macroname"	where	macroname	is	the	name	of
macro,	"[Event	Procedure]"	which	indicates	the	event	procedure	associated	with
the	BeforeBeginTransaction	event	for	the	specified	object,	or	"=functionname()"
where	functionname	is	the	name	of	a	user-defined	function.	For	a	more	detailed
discussion	of	event	properties,	see	"Event	Properties."

Example

The	following	example	specifies	that	when	the	BeforeBeginTransaction	event
occurs	on	the	first	form	of	the	current	project,	the	associated	event	procedure
should	run.

Forms(0).BeforeBeginTransaction	=	"[Event	Procedure]"

Show	All

BeforeCommitTransaction	Property
							

Returns	or	sets	a	String	indicating	which	macro,	event	procedure,	or	user-
defined	function	runs	when	the	BeforeCommitTransaction	event	occurs.
Read/write.

expression.BeforeCommitTransaction

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

Remarks

This	event	applies	to	Access	project	forms	whose	BatchUpdates	properties	are
set	to	True.

Valid	values	for	this	property	are	"macroname"	where	macroname	is	the	name	of
macro,	"[Event	Procedure]"	which	indicates	the	event	procedure	associated	with
the	BeforeCommitTransaction	event	for	the	specified	object,	or
"=functionname()"	where	functionname	is	the	name	of	a	user-defined	function.
For	a	more	detailed	discussion	of	event	properties,	see	"Event	Properties."

Example

The	following	example	specifies	that	when	the	BeforeCommitTransaction	event
occurs	on	the	first	form	of	the	current	project,	the	associated	event	procedure
should	run.

Forms(0).BeforeCommitTransaction	=	"[Event	Procedure]"

BeforeDelConfirm	Property
							

Returns	or	sets	a	String	indicating	which	macro,	event	procedure,	or	user-
defined	function	runs	when	the	BeforeDelConfirm	event	occurs.	Read/write.

expression.BeforeDelConfirm

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

Remarks

Valid	values	for	this	property	are	"macroname"	where	macroname	is	the	name	of
macro,	"[Event	Procedure]"	which	indicates	the	event	procedure	associated	with
the	BeforeDelConfirm	event	for	the	specified	object,	or	"=functionname()"
where	functionname	is	the	name	of	a	user-defined	function.	For	a	more	detailed
discussion	of	event	properties,	see	"Event	Properties."

Example

The	following	example	specifies	that	when	the	BeforeDelConfirm	event	occurs
on	the	first	form	of	the	current	project,	the	associated	event	procedure	should
run.

Forms(0).BeforeDelConfirm	=	"[Event	Procedure]"

BeforeInsert	Property
							

Returns	or	sets	a	String	indicating	which	macro,	event	procedure,	or	user-
defined	function	runs	when	the	BeforeInsert	event	occurs.	Read/write.

expression.BeforeInsert

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

Remarks

Valid	values	for	this	property	are	"macroname"	where	macroname	is	the	name	of
macro,	"[Event	Procedure]"	which	indicates	the	event	procedure	associated	with
the	BeforeInsert	event	for	the	specified	object,	or	"=functionname()"	where
functionname	is	the	name	of	a	user-defined	function.	For	a	more	detailed
discussion	of	event	properties,	see	"Event	Properties."

Example

The	following	example	specifies	that	when	the	BeforeInsert	event	occurs	on	the
first	form	of	the	current	project,	the	associated	event	procedure	should	run.

Forms(0).BeforeInsert	=	"[Event	Procedure]"

BeforeQuery	Property
							

Returns	or	sets	a	String	indicating	which	macro,	event	procedure,	or	user-
defined	function	runs	when	the	BeforeQuery	event	occurs.	Read/write.

expression.BeforeQuery

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

Remarks

Valid	values	for	this	property	are	"macroname"	where	macroname	is	the	name	of
macro,	"[Event	Procedure]"	which	indicates	the	event	procedure	associated	with
the	BeforeQuery	event	for	the	specified	object,	or	"=functionname()"	where
functionname	is	the	name	of	a	user-defined	function.	For	a	more	detailed
discussion	of	event	properties,	see	"Event	Properties."

Example

The	following	example	specifies	that	when	the	BeforeQuery	event	occurs	on	the
first	form	of	the	current	project,	the	associated	event	procedure	should	run.

Forms(0)

.BeforeQuery	=	"[Event	Procedure]"

BeforeRender	Property
							

Returns	or	sets	a	String	indicating	which	macro,	event	procedure,	or	user-
defined	function	runs	when	the	BeforeRender	event	occurs.	Read/write.

expression.BeforeRender

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

Remarks

Valid	values	for	this	property	are	"macroname"	where	macroname	is	the	name	of
macro,	"[Event	Procedure]"	which	indicates	the	event	procedure	associated	with
the	BeforeRender	event	for	the	specified	object,	or	"=functionname()"	where
functionname	is	the	name	of	a	user-defined	function.	For	a	more	detailed
discussion	of	event	properties,	see	"Event	Properties."

Example

The	following	example	specifies	that	when	the	BeforeRender	event	occurs	on
the	first	form	of	the	current	project,	the	associated	event	procedure	should	run.

Forms(0)

.BeforeRender	=	"[Event	Procedure]"

BeforeScreenTip	Property
							

Returns	or	sets	a	String	indicating	which	macro,	event	procedure,	or	user-
defined	function	runs	when	the	BeforeScreenTip	event	occurs.	Read/write.

expression.BeforeScreenTip

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

Remarks

Valid	values	for	this	property	are	"macroname"	where	macroname	is	the	name	of
macro,	"[Event	Procedure]"	which	indicates	the	event	procedure	associated	with
the	BeforeScreenTip	event	for	the	specified	object,	or	"=functionname()"	where
functionname	is	the	name	of	a	user-defined	function.	For	a	more	detailed
discussion	of	event	properties,	see	"Event	Properties."

Example

The	following	example	specifies	that	when	the	BeforeScreenTip	event	occurs	on
the	first	form	of	the	current	project,	the	associated	event	procedure	should	run.

Forms(0)

.BeforeScreenTip	=	"[Event	Procedure]"

BeforeUpdate	Property
							

Returns	or	sets	a	String	indicating	which	macro,	event	procedure,	or	user-
defined	function	runs	when	the	BeforeUpdate	event	occurs.	Read/write.

expression.BeforeUpdate

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

Remarks

Valid	values	for	this	property	are	"macroname"	where	macroname	is	the	name	of
macro,	"[Event	Procedure]"	which	indicates	the	event	procedure	associated	with
the	BeforeUpdate	event	for	the	specified	object,	or	"=functionname()"	where
functionname	is	the	name	of	a	user-defined	function.	For	a	more	detailed
discussion	of	event	properties,	see	"Event	Properties."

Example

The	following	example	specifies	that	when	the	BeforeUpdate	event	occurs	on
the	first	form	of	the	current	project,	the	associated	event	procedure	should	run.

Forms(0).BeforeUpdate	=	"[Event	Procedure]"

Show	All

BeginBatchEdit	Property
							

Returns	or	sets	a	String	indicating	which	macro,	event	procedure,	or	user-
defined	function	runs	when	the	BeginBatchEdit	event	occurs.	Read/write.

expression.BeginBatchEdit

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

Remarks

This	event	applies	to	Access	project	forms	whose	BatchUpdates	properties	are
set	to	True.

Valid	values	for	this	property	are	"macroname"	where	macroname	is	the	name	of
macro,	"[Event	Procedure]"	which	indicates	the	event	procedure	associated	with
the	BeginBatchEdit	event	for	the	specified	object,	or	"=functionname()"	where
functionname	is	the	name	of	a	user-defined	function.	For	a	more	detailed
discussion	of	event	properties,	see	"Event	Properties."

Example

The	following	example	specifies	that	when	the	BeginBatchEdit	event	occurs	on
the	first	form	of	the	current	project,	the	associated	event	procedure	should	run.

Forms(0)

.BeginBatchEdit	=	"[Event	Procedure]"

Show	All

Bookmark	Property
							

You	can	use	the	Bookmark	property	with	forms	to	set	a	bookmark	that	uniquely
identifies	a	particular	record	in	the	form's	underlying	table,	query,	or	SQL
statement.	Read/write	Variant.

expression.Bookmark

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

Setting

The	Bookmark	property	contains	a	string	expression	created	by	Microsoft
Access.

You	can	set	this	property	by	using	a	macro	or	Visual	Basic.

Note			You	get	or	set	the	form's	Bookmark	property	separately	from	the	ADO
Bookmark	or	DAO	Bookmark	property	of	the	underlying	table	or	query.

Remarks

When	a	bound	form	is	opened	in	Form	view,	each	record	is	assigned	a	unique
bookmark.	In	Visual	Basic,	you	can	save	the	bookmark	for	the	current	record	by
assigning	the	value	of	the	form's	Bookmark	property	to	a	string	variable.	To
return	to	a	saved	record	after	moving	to	a	different	record,	set	the	form's
Bookmark	property	to	the	value	of	the	saved	string	variable.	You	can	use	the
StrComp	function	to	compare	a	Variant	or	string	variable	to	a	bookmark,	or
when	comparing	a	bookmark	against	a	bookmark.	The	third	argument	for	the
StrComp	function	must	be	set	to	a	value	of	zero.

Note			Bookmarks	are	not	saved	with	the	records	they	represent	and	are	only
valid	while	the	form	is	open.	They	are	re-created	by	Microsoft	Access	each	time
a	bound	form	is	opened.

There	is	no	limit	to	the	number	of	bookmarks	you	can	save	if	each	is	saved	with
a	unique	string	variable.

The	Bookmark	property	is	only	available	for	the	form's	current	record.	To	save
a	bookmark	for	a	record	other	than	the	current	record,	move	to	the	desired	record
and	assign	the	value	of	the	Bookmark	property	to	a	string	variable	that
identifies	this	record.

You	can	use	bookmarks	in	any	form	that	is	based	entirely	on	Microsoft	Access
tables.	However,	other	database	products	may	not	support	bookmarks.	For
example,	you	can't	use	bookmarks	in	a	form	based	on	a	linked	table	that	has	no
primary	index.

Requerying	a	form	invalidates	any	bookmarks	set	on	records	in	the	form.
However,	clicking	Refresh	on	the	Records	menu	doesn't	affect	bookmarks.

Since	Microsoft	Access	creates	a	unique	bookmark	for	each	record	in	a	form's
recordset	when	a	form	is	opened,	a	form's	bookmark	will	not	work	on	another
recordset,	even	when	the	two	recordsets	are	based	on	the	same	table,	query,	or
SQL	statement.	For	example,	suppose	you	open	a	form	bound	to	the	Customers
table.	If	you	then	open	the	Customers	table	by	using	Visual	Basic	and	use	the
ADO	Seek	or	DAO	Seek	method	to	locate	a	specific	record	in	the	table,	you
can't	set	the	form's	Bookmark	property	to	the	current	table	record.	To	perform

this	kind	of	operation	you	can	use	the	ADO	Find	method	or	DAO	Find	methods
with	the	form's	RecordsetClone	property.

An	error	occurs	if	you	set	the	Bookmark	property	to	a	string	variable	and	then
try	to	return	to	that	record	after	the	record	has	been	deleted.

The	value	of	the	Bookmark	property	isn't	the	same	as	a	record	number.

Example

To	test	the	following	example	with	the	Northwind	sample	database,	you	need	to
add	a	command	button	named	cmdFindContactName	to	the	Suppliers	form,	and
then	add	the	following	code	to	the	button's	Click	event.	When	the	button	is
clicked,	the	user	is	asked	to	enter	a	portion	of	the	contact	name	to	find.	If	the
name	is	found,	the	form's	Bookmark	property	is	set	to	the	Recordset	object's
DAO	Bookmark	property,	which	moves	the	form's	current	record	to	the	found
name.

Private	Sub	cmdFindContactName_Click()

				Dim	rst	As	DAO.Recordset

				Dim	strCriteria	As	String

				strCriteria	=	"[ContactName]	Like	'*"	&	InputBox("Enter	the	"	_

								&	"first	few	letters	of	the	name	to	find")	&	"*'"

				Set	rst	=	Me.RecordsetClone

				rst.FindFirst	strCriteria

				If	rst.NoMatch	Then

								MsgBox	"No	entry	found.",	vbInformation

				Else

								Me.Bookmark	=	rst.Bookmark

				End	If

				Set	rst	=	Nothing

End	Sub

Show	All

BorderColor	Property
							

You	can	use	the	BorderColor	property	to	specify	the	color	of	a	control's	border.
Read/write	Long.

expression.BorderColor

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

Setting

The	BorderColor	property	setting	is	a	numeric	expression	that	corresponds	to
the	color	you	want	to	use	for	a	control's	border.

You	can	use	the	Color	Builder	to	set	this	property	by	clicking	the	Build	button	to
the	right	of	the	property	box	in	the	property	sheet.	Using	the	Color	Builder
enables	you	to	define	custom	border	colors	for	controls.

You	can	also	set	this	property	by	using	Line/Border	Color	on	the	Formatting
(Form/Report)	toolbar,	a	macro,	or	Visual	Basic.

You	can	set	the	default	for	this	property	by	using	a	control's	default	control	style
or	the	DefaultControl	method	in	Visual	Basic.

Remarks

A	control's	border	color	is	visible	only	when	its	SpecialEffect	property	is	set	to
Flat	or	Shadowed.	If	the	SpecialEffect	property	is	set	to	something	other	than
Flat	or	Shadowed,	setting	the	BorderColor	property	changes	the	SpecialEffect
property	setting	to	Flat.

Example

The	following	example	uses	the	RGB	function	to	set	the	BorderColor,
BackColor,	and	ForeColor	properties	depending	on	the	value	of	the
txtPastDue	text	box.	You	can	also	use	the	QBColor	function	to	set	these
properties.	Putting	the	following	code	in	the	Form_Current()	event	sets	the
control	display	characteristics	as	soon	as	the	user	opens	a	form	or	moves	to	a
new	record.

Sub	Form_Current()

				Dim	curAmntDue	As	Currency,	lngBlack	As	Long

				Dim	lngRed	As	Long,	lngYellow	As	Long,	lngWhite	As	Long

				If	Not	IsNull(Me!txtPastDue.Value)	Then

								curAmntDue	=	Me!txtPastDue.Value

				Else

								Exit	Sub

				End	If

				lngRed	=	RGB(255,	0,	0)

				lngBlack	=	RGB(0,	0,	0)

				lngYellow	=	RGB(255,	255,	0)

				lngWhite	=	RGB(255,	255,	255)

				If	curAmntDue	>	100	Then

								Me!txtPastDue.BorderColor	=	lngRed

								Me!txtPastDue.ForeColor	=	lngRed

								Me!txtPastDue.BackColor	=	lngYellow

				Else

								Me!txtPastDue.BorderColor	=	lngBlack

								Me!txtPastDue.ForeColor	=	lngBlack

								Me!txtPastDue.BackColor	=	lngWhite

				End	If

End	Sub

Show	All

BorderStyle	Property
							

Forms.	Specifies	the	type	of	border	and	border	elements	(title	bar,	Control
menu,	Minimize	and	Maximize	buttons,	or	Close	button)	to	use	for	the
form.	You	typically	use	different	border	styles	for	normal	forms,	pop-up
forms,	and	custom	dialog	boxes.
Controls.	Specifies	how	a	control's	border	appears.

	Read/write	Byte.

expression.BorderStyle

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

Setting

For	forms,	the	BorderStyle	property	uses	the	following	settings.
Setting Visual	Basic Description

None 0 The	form	has	no	border	or	related	border
elements.	The	form	isn't	resizable.

Thin 1

The	form	has	a	thin	border	and	can	include
any	of	the	border	elements.	The	form	isn't
resizable	(the	Size	command	on	the	Control
menu	isn't	available).	You	often	use	this
setting	for	pop-up	forms.	(If	you	want	a	form
to	remain	on	top	of	all	Microsoft	Access
windows,	you	must	also	set	its	PopUp
property	to	Yes.)

Sizable 2

(Default)	The	form	has	the	default	border	for
Microsoft	Access	forms,	can	include	any	of
the	border	elements,	and	can	be	resized.	You
often	use	this	setting	for	normal	Microsoft
Access	forms.

Dialog 3

The	form	has	a	thick	(double)	border	and	can
include	only	a	title	bar,	Close	button,	and
Control	menu.	The	form	can't	be	maximized,
minimized,	or	resized	(the	Maximize,
Minimize,	and	Size	commands	aren't
available	on	the	Control	menu).	You	often
use	this	setting	for	custom	dialog	boxes.	(If
you	want	a	form	to	be	modal,	however,	you
must	also	set	its	Modal	property	to	Yes.	If
you	want	it	to	be	a	modal	pop-up	form,	like
most	dialog	boxes,	you	must	set	both	its
PopUp	and	Modal	properties	to	Yes.)

You	can	set	the	BorderStyle	property	for	a	form	only	in	form	Design	view	by
using	the	form's	property	sheet,	a	macro,	or	Visual	Basic.

For	controls,	the	BorderStyle	property	uses	the	following	settings.

Setting Visual	Basic Description

Transparent 0 (Default	only	for	label,	chart,	and	subreport)
Transparent

Solid 1 (Default)	Solid	line
Dashes 2 Dashed	line
Short	dashes 3 Dashed	line	with	short	dashes
Dots 4 Dotted	line
Sparse	dots 5 Dotted	line	with	dots	spaced	far	apart
Dash	dot 6 Line	with	a	dash-dot	combination
Dash	dot	dot 7 Line	with	a	dash-dot-dot	combination
Double	solid 8 Double	solid	lines

You	can	set	the	BorderStyle	property	for	a	control	by	using	the	control's
property	sheet,	a	macro,	or	Visual	Basic.

You	can	set	the	default	for	this	property	by	using	a	control's	default	control	style
or	the	DefaultControl	method	in	Visual	Basic.

Remarks

A	control's	border	style	is	visible	only	when	its	SpecialEffect	property	is	set	to
Flat	or	Shadowed.	If	the	SpecialEffect	property	is	set	to	something	other	than
Flat	or	Shadowed,	setting	the	BorderStyle	property	changes	the	SpecialEffect
property	setting	to	Flat.

For	a	form,	the	BorderStyle	property	establishes	the	characteristics	that	visually
identify	the	form	as	a	normal	form,	a	pop-up	form,	or	a	custom	dialog	box.	You
may	also	set	the	Modal	and	PopUp	properties	to	further	define	the	form's
characteristics.

You	may	also	want	to	set	the	form's	ControlBox,	CloseButton,
MinMaxButtons,	ScrollBars,	NavigationButtons,	and	RecordSelectors
properties.	These	properties	interact	in	the	following	ways:

If	the	BorderStyle	property	is	set	to	None	or	Dialog,	the	form	doesn't	have
Maximize	or	Minimize	buttons,	regardless	of	its	MinMaxButtons
property	setting.
If	the	BorderStyle	property	is	set	to	None,	the	form	doesn't	have	a	Control
menu,	regardless	of	its	ControlBox	property	setting.
The	BorderStyle	property	setting	doesn't	affect	the	display	of	the	scroll
bars,	navigation	buttons,	record	number	box,	or	record	selectors.

The	BorderStyle	property	takes	effect	only	in	Form	view.	The	property	setting
is	ignored	in	form	Design	view.

If	you	set	the	BorderStyle	property	of	a	pop-up	form	to	None,	you	won't	be	able
to	close	the	form	unless	you	add	a	Close	button	to	it	that	runs	a	macro	containing
the	Close	action	or	an	event	procedure	in	Visual	Basic	that	uses	the	Close
method.

Pop-up	forms	are	typically	fixed	in	size,	but	you	can	make	a	pop-up	form	sizable
by	setting	its	PopUp	property	to	Yes	and	its	BorderStyle	property	to	Sizable.

You	can	also	use	the	Dialog	setting	of	the	Window	Mode	action	argument	of	the
OpenForm	action	to	open	a	form	with	its	Modal	and	PopUp	properties	set	to
Yes.

mk:@MSITStore:acmain10.chm::/html/acactClose.htm
mk:@MSITStore:acmain10.chm::/html/acactOpenForm.htm

Show	All

BorderWidth	Property
							

You	can	use	the	BorderWidth	property	to	specify	the	width	of	a	control's
border.	Read/write	Byte.

expression.BorderWidth

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

Setting

The	BorderWidth	property	uses	the	following	settings.

Setting Visual	Basic Description

Hairline 0 (Default)	The	narrowest	border	possible	on
your	system.

1	pt	to	6	pt 1	to	6 The	width	as	indicated	in	points.

You	can	set	this	property	by	using	Line/Border	Width	 	on	the	Formatting
(Form/Report)	toolbar,	the	control's	property	sheet,	a	macro,	or	Visual	Basic.

You	can	set	the	default	for	this	property	by	using	the	control's	default	control
style	or	the	DefaultControl	method	in	Visual	Basic.

Remarks

To	use	the	BorderWidth	property,	the	SpecialEffect	property	must	be	set	to	Flat
or	Shadowed	and	the	BorderStyle	property	must	not	be	set	to	Transparent.	If	the
SpecialEffect	property	is	set	to	any	other	value	and/or	the	BorderStyle	property
is	set	to	Transparent,	and	you	set	the	BorderWidth	property,	the	SpecialEffect
property	is	automatically	reset	to	Flat	and	the	BorderStyle	property	is
automatically	reset	to	Solid.

The	exact	border	width	depends	on	your	computer	and	printer.	On	some	systems,
the	hairline	and	1-point	widths	appear	the	same.

Show	All

BottomMargin	Property
							

BottomMargin	property	as	it	applies	to	the	Label	and	TextBox	objects.

Along	with	the	LeftMargin,	RightMargin,	and	TopMargin	properties,
specifies	the	location	of	information	displayed	within	a	label	or	text	box	control.
Read/write	Integer.

expression.BottomMargin

expression			Required.	An	expression	that	returns	one	of	the	above	objects.

Remarks

A	control's	displayed	information	location	is	the	distance	measured	from	the
control's	left,	top,	right,	or	bottom	border	to	the	left,	top,	right,	or	bottom	edge	of
the	displayed	information.	To	use	a	unit	of	measurement	different	from	the
setting	in	the	regional	settings	of	Windows,	specify	the	unit	(for	example,	cm	or
in).

In	Visual	Basic,	use	a	numeric	expression	to	set	the	value	of	this	property.	Values
are	expressed	in	twips.

You	can	set	these	properties	by	using	the	property	sheet,	a	macro,	or	Visual
Basic.

BottomMargin	property	as	it	applies	to	the	Printer	object.

Along	with	the	TopMargin,	RightMargin,	and	LeftMargin	properties,
specifies	the	margins	for	a	printed	page.	Read/write	Long.

expression.BottomMargin

expression			Required.	An	expression	that	returns	a	Printer	object.

Example

As	it	applies	to	the	Label	and	TextBox	objects.

The	following	example	offsets	the	caption	in	the	label	"EmployeeID_Label"	of
the	"Purchase	Orders"	form	by	100	twips	from	the	bottom	of	the	label's	border.

With	Forms.Item("Purchase	Orders").Controls.Item("EmployeeID_Label")

				.BottomMargin	=	100

End	With

Show	All

BoundColumn	Property
							

When	you	make	a	selection	from	a	list	box	or	combo	box,	the	BoundColumn
property	tells	Microsoft	Access	which	column's	values	to	use	as	the	value	of	the
control.	If	the	control	is	bound	to	a	field,	the	value	in	the	column	specified	by	the
BoundColumn	property	is	stored	in	the	field	named	in	the	ControlSource
property.	Read/write	Long.

expression.BoundColumn

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

Setting

The	BoundColumn	property	uses	the	following	settings.

Setting Description

0

The	ListIndex	property	value,	rather	than	the	column	value,	is
stored	in	the	current	record.	The	ListIndex	property	value	of
the	first	row	is	0,	the	second	row	is	1,	and	so	on.	Microsoft
Access	sets	the	ListIndex	property	when	an	item	is	selected
from	a	list	box	or	the	list	box	portion	of	a	combo	box.	Setting
the	BoundColumn	property	to	0	and	using	the	ListIndex
property	value	of	the	control	might	be	useful	if,	for	example,
you	are	only	interested	in	storing	a	sequence	of	numbers.

1	or	greater

(Default	is	1)	The	value	in	the	specified	column	becomes	the
control's	value.	If	the	control	is	bound	to	a	field,	then	this
setting	is	stored	in	that	field	in	the	current	record.	The
BoundColumn	property	can't	be	set	to	a	value	larger	than	the
setting	of	the	ColumnCount	property.

You	can	set	the	BoundColumn	property	by	using	the	control's	property	sheet,	a
macro,	or	Visual	Basic.

For	table	fields,	you	can	set	this	property	on	the	Lookup	tab	in	the	Field
Properties	section	of	table	Design	view	for	fields	with	the	DisplayControl
property	set	to	Combo	Box	or	List	Box.

Tip			Microsoft	Access	sets	the	BoundColumn	property	automatically	when	you
select	Lookup	Wizard	as	the	data	type	for	a	field	in	table	Design	view.

In	Visual	Basic,	set	the	BoundColumn	property	by	using	a	number	or	a	numeric
expression	equal	to	a	value	from	0	to	the	setting	of	the	ColumnCount	property.

Remarks

The	leftmost	visible	column	in	a	combo	box	(the	leftmost	column	whose	setting
in	the	combo	box's	ColumnWidths	property	is	not	0)	contains	the	data	that
appears	in	the	text	box	part	of	the	combo	box	in	Form	view	or	in	a	report.	The
BoundColumn	property	determines	which	column's	value	in	the	text	box	or
combo	box	list	will	be	stored	when	you	make	a	selection.	This	allows	you	to
display	different	data	than	you	store	as	the	value	of	the	control.

Note			If	the	bound	column	is	not	the	same	as	the	leftmost	visible	column	in	the
control	(or	if	you	set	the	BoundColumn	property	to	0),	the	LimitToList
property	is	set	to	Yes.

Microsoft	Access	uses	zero-based	numbers	to	refer	to	columns	in	the	Column
property.	That	is,	the	first	column	is	referenced	by	using	the	expression
Column(0);	the	second	column	is	referenced	by	using	the	expression	Column(1);
and	so	on.	However,	the	BoundColumn	property	uses	1-based	numbers	to	refer
to	the	columns.	This	means	that	if	the	BoundColumn	property	is	set	to	1,	you
could	access	the	value	stored	in	that	column	by	using	the	expression	Column(0).

If	the	AutoExpand	property	is	set	to	Yes,	Microsoft	Access	automatically	fills
in	a	value	in	the	text	box	portion	of	the	combo	box	that	matches	a	value	in	the
combo	box	list	as	you	type.

BrokenReference	Property
							

Returns	a	Boolean	indicating	whether	the	current	database	has	any	broken
references	to	databases	or	type	libraries.	True	if	there	are	any	broken	references.
Read-only.

expression.BrokenReference

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

Remarks

To	test	the	validity	of	a	specific	reference,	use	the	IsBroken	property	of	the
Reference	object.

Example

This	example	checks	to	see	if	there	are	any	broken	references	in	the	current
database	and	reports	the	results	to	the	user.

'	Looping	variable.

Dim	refLoop	As	Reference

'	Output	variable.

Dim	strReport	As	String

'	Test	whether	there	are	broken	references.

If	Application.BrokenReference	=	True	Then

				strReport	=	"The	following	references	are	broken:"	&	vbCr

				'	Test	validity	of	each	reference.

				For	Each	refLoop	In	Application.References

								If	refLoop.IsBroken	=	True	Then

												strReport	=	strReport	&	"				"	&	refLoop.Name	&	vbCr

								End	If

				Next	refLoop

Else

				strReport	=	"All	references	in	the	current	database	are	valid."

End	If

'	Display	results.

MsgBox	strReport

Build	Property
							

Returns	as	a	Long	representing	the	build	number	of	the	currently	installed	copy
of	Microsoft	Access.	Read-only.

expression.Build

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

Example

The	following	example	displays	the	version	and	build	number	of	the	currently-
installed	copy	of	Microsoft	Access.

MsgBox	"You	are	currently	running	Microsoft	Access,	"	_

				&	"	version	"	&	Application.Version	&	",	build	"	_

				&	Application.Build	&	"."

Show	All

BuiltIn	Property
							

The	BuiltIn	property	returns	a	Boolean	value	indicating	whether	a	Reference
object	points	to	a	default	reference	that's	necessary	for	Microsoft	Access	to
function	properly.	Read-only	Boolean.

expression.BuiltIn

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

Setting

The	BuiltIn	property	is	available	only	by	using	Visual	Basic	and	is	read-only.

The	BuiltIn	property	returns	the	following	values.

Value Description

True	(–1) The	Reference	object	refers	to	a	default	reference	that	can't	be
removed.

False	(0) The	Reference	object	refers	to	a	nondefault	reference	that	isn't
necessary	for	Microsoft	Access	to	function	properly.

Remarks

The	default	references	in	Microsoft	Access	include	the	Microsoft	Access	10.0
object	library,	the	Visual	Basic	For	Applications	library,	OLE	Automation
library,	and	Microsoft	ActiveX	Data	Objects	2.1	library.

Example

The	following	example	prints	the	default	references	in	the	References
collection:

Sub	ReferenceBuiltInOnly()

				Dim	ref	As	Reference

				'	Enumerate	through	References	collection.

				For	Each	ref	In	References

								'	Check	BuiltIn	property.

								If	ref.BuiltIn	=	True	Then

												Debug.Print	ref.Name

								End	If

				Next	ref

End	Sub

Show	All

Cancel	Property
							

You	can	use	the	Cancel	property	to	specify	whether	a	command	button	is	also
the	Cancel	button	on	a	form.	Read/write	Boolean.

expression.Cancel

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

Setting

The	Cancel	property	uses	the	following	settings.

Setting Visual	Basic Description
Yes True The	command	button	is	the	Cancel	button.

No False (Default)	The	command	button	isn't	the	Cancel
button.

You	can	set	this	property	by	using	the	command	button's	property	sheet,	a
macro,	or	Visual	Basic.

Remarks

Setting	the	Cancel	property	to	Yes	makes	the	command	button	the	Cancel	button
in	the	form.	However,	you	must	still	write	the	macro	or	Visual	Basic	event
procedure	that	performs	whatever	action	or	actions	you	want	the	Cancel	button
to	carry	out	(for	example,	closing	the	form	without	saving	any	changes	to	it).	Set
the	command	button's	OnClick	event	property	to	the	name	of	the	macro	or	event
procedure.

When	a	command	button's	Cancel	property	setting	is	Yes	and	the	Form	window
is	active,	the	user	can	choose	the	command	button	by	pressing	ESC,	by	pressing
ENTER	when	the	command	button	has	the	focus,	or	by	clicking	the	command
button.

Note			If	a	text	box	has	the	focus	when	the	user	presses	ESC,	any	changes	made
to	the	data	in	the	text	box	will	be	lost,	and	the	original	data	will	be	restored.

When	the	Cancel	property	is	set	to	Yes	for	one	command	button	on	a	form,	it	is
automatically	set	to	No	for	all	other	command	buttons	on	the	form.

Tip			For	a	form	that	supports	irreversible	operations,	such	as	deletions,	it's	a
good	idea	to	make	the	Cancel	button	the	default	command	button.	To	do	this,	set
both	the	Cancel	property	and	the	Default	property	to	Yes.

Show	All

CanGrow	Property
							

You	can	use	the	CanGrow	property	to	control	the	appearance	of	sections	or
controls	on	forms	and	reports	that	are	printed	or	previewed.	For	example,	if	you
set	the	property	to	Yes,	a	section	or	control	automatically	adjusts	vertically	to
print	or	preview	all	the	data	the	section	or	control	contains.

Notes

The	CanGrow	property	does	not	apply	to	a	form	or	report	page	header	and
page	footer	sections,	although	it	does	apply	to	controls	in	such	sections.
This	property	affects	the	display	of	form	sections	and	controls	only	when
the	form	is	printed	or	previewed,	not	when	the	form	is	displayed	in	Form
view,	Datasheet	view,	or	Design	view.

Read/write	Boolean.

expression.CanGrow

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

Setting

The	CanGrow	property	uses	the	following	settings.

Setting Visual	Basic Description

Yes True	(–1) The	section	or	control	grows	vertically	so	that
all	data	it	contains	can	be	printed	or	previewed.

No False	(0)

(Default)	The	section	or	control	doesn't	grow.
Data	that	doesn't	fit	within	the	fixed	size	of	the
section	or	control	won't	be	printed	or
previewed.

You	can	set	this	property	only	by	using	the	section	or	control's	property	sheet.

For	controls,	you	can	set	the	default	for	these	properties	by	using	the	default
control	style	or	the	DefaultControl	method	in	Visual	Basic.

This	property	setting	is	read-only	in	a	macro	or	Visual	Basic	in	any	view	but
Design	view.

Remarks

You	can	use	this	property	to	control	the	appearance	of	printed	forms	and	reports.
When	you	set	the	property	to	Yes,	the	object	automatically	adjusts	so	any
amount	of	data	can	be	printed.	When	a	control	grows,	the	controls	below	it	move
down	the	page.

If	you	set	a	control's	CanGrow	property	to	Yes,	Microsoft	Access	automatically
sets	the	CanGrow	property	of	the	section	containing	the	control	to	Yes.

Sections	grow	vertically	across	their	entire	width.	To	grow	the	data
independently,	you	can	place	two	subform	or	subreport	controls	side	by	side,	and
set	their	CanGrow	property	to	Yes.

When	you	use	the	CanGrow	property,	remember	that:

The	property	settings	don't	affect	the	horizontal	spacing	between	controls;
they	affect	only	the	vertical	space	the	controls	occupy.
Overlapping	controls	can't	grow.

Show	All

CanShrink	Property
							

You	can	use	the	CanShrink	property	to	control	the	appearance	of	sections	or
controls	on	forms	and	reports	that	are	printed	or	previewed.	For	example,	if	you
set	the	property	to	Yes,	a	section	or	control	automatically	adjusts	vertically	to
print	or	preview	all	the	data	the	section	or	control	contains.

Notes

The	CanShrink	property	does	not	apply	to	form	or	report	page	header	and
page	footer	sections,	although	it	does	apply	to	controls	in	such	sections.
This	property	affects	the	display	of	form	sections	and	controls	only	when
the	form	is	printed	or	previewed,	not	when	the	form	is	displayed	in	Form
view,	Datasheet	view,	or	Design	view.

Read/write	Boolean.

expression.CanShrink

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

Setting

The	CanShrink	property	uses	the	following	settings.

Setting Visual	Basic Description

Yes True
The	section	or	control	shrinks	vertically	so	that
the	data	it	contains	can	be	printed	or	previewed
without	leaving	blank	lines.

No False (Default)	The	section	or	control	doesn't	shrink.

You	can	set	this	property	only	by	using	the	section	or	control's	property	sheet.

For	controls,	you	can	set	the	default	for	this	property	by	using	the	default	control
style	or	the	DefaultControl	method	in	Visual	Basic.

This	property	setting	id	read-only	in	a	macro	or	Visual	Basic	in	any	view	but
Design	view.

Remarks

You	can	use	this	property	to	control	the	appearance	of	printed	forms	and	reports.
When	you	set	the	property	to	Yes,	the	object	automatically	adjusts	so	any
amount	of	data	can	be	printed.	When	a	control	shrinks,	the	controls	below	it
move	up	the	page.

If	you	set	a	control's	CanShrink	property	to	Yes,	Microsoft	Access	does	not	set
the	section's	CanShrink	property	to	Yes.

Sections	shrink	vertically	across	their	entire	width.	For	example,	suppose	a	form
has	two	text	boxes	side	by	side	in	a	section,	and	each	control	has	its	CanShrink
property	set	to	Yes.	If	one	text	box	contains	one	line	of	data	and	the	other	text
box	contains	two	lines	of	data,	both	text	boxes	will	be	two	lines	long	because	the
section	is	sized	across	its	entire	width.	To	shrink	the	data	independently,	you	can
place	two	subform	or	subreport	controls	side	by	side,	and	set	their	CanShrink
property	to	Yes.

When	you	use	the	CanShrink	property,	remember	that:

The	property	settings	don't	affect	the	horizontal	spacing	between	controls;
they	affect	only	the	vertical	space	the	controls	occupy.
Overlapping	controls	can't	shrink.
The	height	of	a	large	control	can	prevent	controls	beside	it	from	shrinking.
For	example,	if	several	short	controls	are	on	the	left	side	of	a	report's	detail
section	and	one	tall	control,	such	as	an	unbound	object	frame,	is	on	the	right
side,	the	controls	on	the	left	won't	shrink,	even	if	they	contain	no	data.

Show	All

Caption	Property
							

You	can	use	the	Caption	property	to	provide	helpful	information	to	the	user
through	captions	on	objects	in	various	views:

Field	captions	specify	the	text	for	labels	attached	to	controls	created	by
dragging	a	field	from	the	field	list	and	serves	as	the	column	heading	for	the
field	in	table	or	query	Datasheet	view.
Form	captions	specify	the	text	that	appears	in	the	title	bar	in	Form	view.
Report	captions	specify	the	title	of	the	report	in	Print	Preview.
Button	and	label	captions	specify	the	text	that	appears	in	the	control.

Read/write	String.

expression.Caption

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

Setting

The	Caption	property	is	a	string	expression	that	can	contain	up	to	2,048
characters.	Captions	for	forms	and	reports	that	are	too	long	to	display	in	the	title
bar	are	truncated.

For	controls,	you	can	set	this	property	by	using	the	property	sheet.	For	fields,
you	can	set	this	property	by	using	the	property	sheet	in	table	Design	view	or	in
the	Query	window	(in	the	Field	Properties	property	sheet).	You	can	also	set	this
property	by	using	a	macro	or	Visual	Basic.

Remarks

If	you	don't	specify	a	caption	for	a	table	field,	the	field's	FieldName	property
setting	will	be	used	as	the	caption	of	a	label	attached	to	a	control	or	as	the
column	heading	in	Datasheet	view.	If	you	don't	specify	the	caption	for	a	query
field,	the	caption	for	the	underlying	table	field	will	be	used.	If	you	don't	set	a
caption	for	a	form,	button,	or	label,	Microsoft	Access	will	assign	the	object	a
unique	name	based	on	the	object,	such	as	"Form1".

If	you	create	a	control	by	dragging	a	field	from	the	field	list	and	haven't
specified	a	Caption	property	setting	for	the	field,	the	field's	FieldName	property
setting	will	be	copied	to	the	control's	Name	property	box	and	will	also	appear	in
the	label	of	the	control	created.

Note			The	text	of	the	Caption	property	for	a	label	or	command	button	control	is
the	hyperlink	display	text	when	the	HyperlinkAddress	or
HyperlinkSubAddress	property	is	set	for	the	control.

You	can	use	the	Caption	property	to	assign	an	access	key	to	a	label	or	command
button.	In	the	caption,	include	an	ampersand	(&)	immediately	preceding	the
character	you	want	to	use	as	an	access	key.	The	character	will	be	underlined.
You	can	press	ALT	plus	the	underlined	character	to	move	the	focus	to	that
control	on	a	form.

Tip			Include	two	ampersands	(&&)	in	the	setting	for	a	caption	if	you	want	to
display	an	ampersand	itself	in	the	caption	text.	For	example,	to	display	"Save	&
Exit",	you	should	type	Save	&&	Exit	in	the	Caption	property	box.

ChartSpace	Property
							

Returns	a	ChartSpace	object.

expression.ChartSpace

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

mk:@MSITStore:owcvba10.chm::/html/ocobjchartspace.htm

Remarks

You	must	set	a	reference	to	the	Microsoft	Office	Web	Components	type	library
in	order	to	use	this	property.

Example

This	example	reports	the	version	of	Microsoft	Office	Web	Components	in	use
for	the	specified	form.

Dim	objChartSpace	As	ChartSpace

Set	objChartSpace	=	Forms(0).ChartSpace

MsgBox	"Current	version	of	Office	Web	Components:	"	_

				&	objChartSpace.Version

CheckIfOfficeIsHTMLEditor
Property
							

You	can	use	the	CheckIfOfficeIsHTMLEditor	property	to	specify	or	determine
if	the	default	system	HTML	editor	is	used	when	editing	a	Web	page.	Read/write
Boolean.

expression.CheckIfOfficeIsHTMLEditor

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

Remarks

The	CheckIfOfficeIsHTMLEditor	property	uses	the	following	settings.

Setting Visual	Basic Description

Yes True		
(Default)	Check	to	see	whether	an	Office
application	is	the	default	HTML	editor	when
starting	Microsoft	Access.

No False		 Check	is	not	performed..
The	CheckIfOfficeIsHTMLEditor	property	is	available	only	by	using	Visual
Basic.

The	CheckIfOfficeIsHTMLEditor	property	is	used	only	if	the	Web	browser
you	are	using	supports	HTML	editing	and	HTML	editors.

To	use	a	different	HTML	editor,	you	must	set	this	property	to	False	and	then
register	the	editor	as	the	default	system	HTML	editor.

Example

This	example	causes	the	default	system	HTML	editor	to	be	used	(instead	of
Office	applications)	when	editing	a	Web	page.

Application.DefaultWebOptions.CheckIfOfficeIsHTMLEditor	=	False

Show	All

Class	Property
							

You	can	use	the	Class	property	to	specify	or	determine	the	class	name	of	an
embedded	OLE	object.	Read/write	String.

expression.Class

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

Setting

The	Class	property	setting	is	a	string	expression	supplied	by	you	or	Microsoft
Access	when	you	create	or	paste	an	OLE	object.

You	can	set	the	Class	property	by	using	the	control's	property	sheet,	a	macro,	or
Visual	Basic.

Remarks

A	class	name	defines	the	type	of	OLE	object.	For	example,	Microsoft	Excel
supports	several	types	of	OLE	objects,	including	worksheets	and	charts.	Their
class	names	are	"Excel.Sheet"	and	"Excel.Chart"	respectively.	When	you	create
an	OLE	object	in	Design	view	by	clicking	Paste	Special	on	the	Edit	menu	or
Object	on	the	Insert	menu,	Microsoft	Access	enters	the	class	name	of	the	new
object	in	the	property	sheet.

Note			To	determine	the	class	name	of	an	OLE	object,	see	the	documentation	for
the	application	supplying	the	object.

The	Class	property	setting	is	updated	when	you	copy	an	object	from	the
Clipboard.	For	example,	if	you	paste	a	Microsoft	Excel	chart	from	the	Clipboard
into	an	OLE	object	that	previously	contained	a	Microsoft	Excel	worksheet,	the
Class	property	setting	changes	from	"Excel.Sheet"	to	"Excel.Chart".	You	can
paste	an	object	from	the	Clipboard	by	using	Visual	Basic	to	set	the	control's
Action	property	to	acOLEPaste	or	acOLEPasteSpecialDlg.

Note			The	OLEClass	property	and	the	Class	property	are	similar	but	not
identical.	The	OLEClass	property	setting	is	a	general	description	of	the	OLE
object	whereas	the	Class	property	setting	is	the	name	used	to	refer	to	the	OLE
object	in	Visual	Basic.	Examples	of	OLEClass	property	settings	are	Microsoft
Excel	Chart,	Microsoft	Word	Document,	and	Paintbrush	Picture.

Example

The	following	example	creates	a	linked	OLE	object	using	an	unbound	object
frame	named	OLE1	and	sizes	the	control	to	display	the	object's	entire	contents
when	the	user	clicks	a	command	button.

Sub	Command1_Click

				OLE1.Class	=	"Excel.Sheet"				'	Set	class	name.

				'	Specify	type	of	object.

				OLE1.OLETypeAllowed	=	acOLELinked

				'	Specify	source	file.

				OLE1.SourceDoc	=	"C:\Excel\Oletext.xls"

				'	Specify	data	to	create	link	to.

				OLE1.SourceItem	=	"R1C1:R5C5"

				'	Create	linked	object.

				OLE1.Action	=	acOLECreateLink

				'	Adjust	control	size.

				OLE1.SizeMode	=	acOLESizeZoom

End	Sub

Show	All

CloseButton	Property
							

Specifies	whether	the	Close	button	on	a	form	is	enabled.	Read/write	Boolean.

expression.CloseButton

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

Setting

The	CloseButton	property	uses	the	following	settings.

Setting Visual	Basic Description
Yes True (Default)	The	Close	button	is	enabled.

No False The	Close	button	is	disabled	and	the	Close
command	isn't	available	on	the	Control	menu.

You	can	set	the	CloseButton	property	by	using	the	form's	property	sheet,	a
macro,	or	Visual	Basic.

You	can	set	the	CloseButton	property	only	in	form	Design	view.

Remarks

If	you	set	the	CloseButton	property	to	No,	the	Close	button	remains	visible	but
appears	dimmed	(grayed),	and	you	must	provide	some	other	way	to	close	the
form	—	for	example,	a	command	button	or	custom	menu	command	that	runs	a
macro	or	event	procedure	that	closes	the	form.

Tip

You	can	also	close	the	form	by	pressing	ALT+F4.

Show	All

CodeContextObject	Property
							

You	can	use	the	CodeContextObject	property	to	determine	the	object	in	which
a	macro	or	Visual	Basic	code	is	executing.	Read-only	Object.

expression.CodeContextObject

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

Setting

The	CodeContextObject	property	is	set	by	Microsoft	Access	and	is	read-only	in
all	views.

Remarks

The	ActiveControl,	ActiveDataAccessPage,	ActiveDatasheet,	ActiveForm,
and	ActiveReport	properties	of	the	Screen	object	always	return	the	object	that
currently	has	the	focus.	The	object	with	the	focus	may	or	may	not	be	the	object
where	a	macro	or	Visual	Basic	code	is	currently	running,	for	example,	when
Visual	Basic	code	runs	in	the	Timer	event	on	a	hidden	form.

Example

In	the	following	example	the	CodeContextObject	property	is	used	in	a	function
to	identify	the	name	of	the	object	in	which	an	error	occurred.	The	object	name	is
then	used	in	the	message	box	title	as	well	as	in	the	body	of	the	error	message.
The	Error	statement	is	used	in	the	command	button's	click	event	to	generate	the
error	for	this	example.

Private	Sub	Command1_Click()

				On	Error	GoTo	Command1_Err

				Error	11																				'	Generate	divide-by-zero	error.

				Exit	Sub

				Command1_Err:

								If	ErrorMessage("Command1_Click()	Event",	vbYesNo	+	_

																vbInformation,	Err)	=	vbYes	Then

												Exit	Sub

								Else

												Resume

								End	If

End	Sub

Function	ErrorMessage(strText	As	String,	intType	As	Integer,	_

								intErrVal	As	Integer)	As	Integer

				Dim	objCurrent	As	Object

				Dim	strMsgboxTitle	As	String

				Set	objCurrent	=	CodeContextObject

				strMsgboxTitle	=	"Error	in	"	&	objCurrent.Name

				strText	=	strText	&	"Error	#"	&	intErrVal	_

								&	"	occured	in	"	&	objCurrent.Name

				ErrorMessage	=	MsgBox(strText,	intType,	strMsgboxTitle)

				Err	=	0

End	Function

CodeData	Property
							

You	can	use	the	CodeData	property	to	access	the	CodeData	object	and	its
related	collections.	Read-only	CodeData	object.

expression.CodeData

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

Setting

The	CodeData	property	is	available	only	by	using	Visual	Basic	and	is	read-only.

Remarks

Use	the	CodeData	property	to	refer	to	one	of	the	following	code	database
collections	together	with	one	of	its	properties	or	methods.

AllTables AllQueries
AllViews AllStoredProcedures
AllDatabaseDiagrams 	

CodeProject	Property
							

You	can	use	the	CodeProject	property	to	access	the	CodeProject	object	and	its
related	collections,	properties,	and	methods.	Read-only	CodeProject	object.

expression.CodeProject

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

Setting

The	CodeProject	property	is	available	only	by	using	Visual	Basic	and	is	read-
only.

Remarks

Use	the	CodeProject	property	to	refer	to	one	of	the	following	code	database
collections	together	with	one	of	its	properties	or	methods.

AllForms AllReports
AllDataAccessPages AllMacros
AllModules AccessObjectProperties

Collection	Property
							

The	Collection	property	returns	a	reference	to	the	collection	that	contains	an
object.	Read-only	References	object.

expression.Collection

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

Remarks

The	Collection	property	is	available	only	by	using	Visual	Basic	and	is	read-only.

You	can	use	the	Collection	property	to	access	the	collection	to	which	an	object
belongs.	For	example,	the	Collection	property	of	a	Reference	object	returns	an
object	reference	to	the	References	collection.

The	Collection	property	is	similar	to	the	Parent	property.

Show	All

ColorMode	Property
							

Returns	or	sets	an	AcPrintColor	constant	representing	whether	the	specified
printer	should	print	output	in	color	or	monochrome.	Read/write.

AcPrintColor	can	be	one	of	these	AcPrintColor	constants.
acPRCMColor
acPRCMMonochrome

expression.ColorMode

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

Example

The	following	example	sets	a	variety	of	printer	settings	for	the	first	form	in	the
current	project.

With	Forms(0).Printer

				.TopMargin	=	1440

				.BottomMargin	=	1440

				.LeftMargin	=	1440

				.RightMargin	=	1440

				.ColumnSpacing	=	360

				.RowSpacing	=	360

				.ColorMode	=	acPRCMColor

				.DataOnly	=	False

				.DefaultSize	=	False

				.ItemSizeHeight	=	2880

				.ItemSizeWidth	=	2880

				.ItemLayout	=	acPRVerticalColumnLayout

				.ItemsAcross	=	6

				.Copies	=	1

				.Orientation	=	acPRORLandscape

				.Duplex	=	acPRDPVertical

				.PaperBin	=	acPRBNAuto

				.PaperSize	=	acPRPSLetter

				.PrintQuality	=	acPRPQMedium

End	With

Show	All

Column	Property
							

You	can	use	the	Column	property	to	refer	to	a	specific	column,	or	column	and
row	combination,	in	a	multiple-column	combo	box	or	list	box.	Read-only
Variant.

expression.Column(Index,	Row)

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

Index		Required	Long.	A	long	integer	that	can	range	from	0	to	the	setting	of	the
ColumnCount	property	minus	one.

Row		Optional	Variant.	An	integer	that	can	range	from	0	to	the	setting	of	the
ListCount	property	minus	1.

This	property	setting	is	only	available	by	using	a	macro	or	Visual	Basic.	This
property	setting	isn't	available	in	Design	view	and	is	read-only	in	other	views.

Remarks

Use	0	to	refer	to	the	first	column,	1	to	refer	to	the	second	column,	and	so	on.	Use
0	to	refer	to	the	first	row,	1	to	refer	to	the	second	row,	and	so	on.	For	example,	in
a	list	box	containing	a	column	of	customer	IDs	and	a	column	of	customer	names,
you	could	refer	to	the	customer	name	in	the	second	column	and	fifth	row	as:

Forms!Contacts!Customers.Column(1,	4)

You	can	use	the	Column	property	to	assign	the	contents	of	a	combo	box	or	list
box	to	another	control,	such	as	a	text	box.	For	example,	to	set	the
ControlSource	property	of	a	text	box	to	the	value	in	the	second	column	of	a	list
box,	you	could	use	the	following	expression:

=Forms!Customers!CompanyName.Column(1)

If	the	user	has	made	no	selection	when	you	refer	to	a	column	in	a	combo	box	or
list	box,	the	Column	property	setting	will	be	Null.	You	can	use	the	IsNull
function	to	determine	if	a	selection	has	been	made,	as	in	the	following	example:

If	IsNull(Forms!Customers!Country)

				Then	MsgBox	"No	selection."

End	If

Note			To	determine	how	many	columns	a	combo	box	or	list	box	has,	you	can
inspect	the	ColumnCount	property	setting.

Example

The	following	example	uses	the	Column	property	and	the	ColumnCount
property	to	print	the	values	of	a	list	box	selection.

Public	Sub	Read_ListBox()

				Dim	intNumColumns	As	Integer

				Dim	intI	As	Integer

				Dim	frmCust	As	Form

				Set	frmCust	=	Forms!frmCustomers

				If	frmCust!lstCustomerNames.ItemsSelected.Count	>	0	Then

								'	Any	selection?

								intNumColumns	=	frmCust!lstCustomerNames.ColumnCount

								Debug.Print	"The	list	box	contains	";	intNumColumns;	_

												IIf(intNumColumns	=	1,	"	column",	"	columns");	_

													"	of	data."

								Debug.Print	"The	current	selection	contains:"

								For	intI	=	0	To	intNumColumns	-	1

												'	Print	column	data.

												Debug.Print	frmCust!lstCustomerNames.Column(intI)

								Next	intI

				Else

								Debug.Print	"You	haven't	selected	an	entry	in	the	"	_

												&	"list	box."

				End	If

				Set	frmCust	=	Nothing

End	Sub

Show	All

ColumnCount	Property
							

You	can	use	the	ColumnCount	property	to	specify	the	number	of	columns
displayed	in	a	list	box	or	in	the	list	box	portion	of	a	combo	box,	or	sent	to	OLE
objects	in	a	chart	control	or	unbound	object	frame.	Read/write	Integer.

expression.ColumnCount

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

Setting

The	ColumnCount	property	holds	an	integer	between	1	and	the	maximum
number	of	fields	in	the	table,	query,	or	SQL	statement,	or	the	maximum	number
of	values	in	the	value	list,	specified	in	the	RowSource	property	of	the	control.

You	can	set	the	ColumnCount	property	by	using	the	control's	property	sheet,	a
macro,	or	Visual	Basic.

For	table	fields,	you	can	set	this	property	on	the	Lookup	tab	in	the	Field
Properties	section	of	table	Design	view	for	fields	with	the	DisplayControl
property	set	to	Combo	Box	or	List	Box.

Tip			Microsoft	Access	sets	the	ColumnCount	property	automatically	when	you
select	Lookup	Wizard	as	the	data	type	for	a	field	in	table	Design	view.

Remarks

For	example,	if	you	set	the	ColumnCount	property	for	a	list	box	on	an
Employees	form	to	3,	one	column	can	list	last	names,	another	can	list	first
names,	and	the	third	can	list	employee	ID	numbers.

A	combo	box	or	list	box	can	have	multiple	columns.	If	the	control's	RowSource
property	contains	the	name	of	a	table,	query,	or	SQL	statement,	a	combo	box	or
list	box	will	display	the	fields	from	that	source,	from	left	to	right,	up	to	the
number	specified	by	the	ColumnCount	property.

To	display	a	different	combination	of	fields,	create	either	a	new	query	or	a	new
SQL	statement	for	the	RowSource	property,	specifying	the	fields	and	the	order
you	want.

If	the	RowSource	property	contains	a	list	of	values	(the	RowSourceType
property	is	set	to	Value	List),	the	values	are	put	into	the	rows	and	columns	of	the
combo	box	or	list	box	in	the	order	they	are	listed	in	the	RowSource	property.
For	example,	if	the	RowSource	property	contains	the	list	"Red;	Green;	Blue;
Yellow"	and	the	ColumnCount	property	is	set	to	2,	the	first	row	of	the	combo
box	or	list	box	list	will	contain	"Red"	in	the	first	column	and	"Green"	in	the
second	column.	The	second	row	will	contain	"Blue"	in	the	first	column	and
"Yellow"	in	the	second	column.

You	can	use	the	ColumnWidths	property	to	set	the	width	of	the	columns
displayed	in	the	control,	or	to	hide	columns.

Example

The	following	example	uses	the	Column	property	and	the	ColumnCount
property	to	print	the	values	of	a	list	box	selection.

Public	Sub	Read_ListBox()

				Dim	intNumColumns	As	Integer

				Dim	intI	As	Integer

				Dim	frmCust	As	Form

				Set	frmCust	=	Forms!frmCustomers

				If	frmCust!lstCustomerNames.ItemsSelected.Count	>	0	Then

								'	Any	selection?

								intNumColumns	=	frmCust!lstCustomerNames.ColumnCount

								Debug.Print	"The	list	box	contains	";	intNumColumns;	_

												IIf(intNumColumns	=	1,	"	column",	"	columns");	_

													"	of	data."

								Debug.Print	"The	current	selection	contains:"

								For	intI	=	0	To	intNumColumns	-	1

												'	Print	column	data.

												Debug.Print	frmCust!lstCustomerNames.Column(intI)

								Next	intI

				Else

								Debug.Print	"You	haven't	selected	an	entry	in	the	"	_

												&	"list	box."

				End	If

				Set	frmCust	=	Nothing

End	Sub

Show	All

ColumnHeads	Property
							

You	can	use	the	ColumnHeads	property	to	display	a	single	row	of	column
headings	for	list	boxes,	combo	boxes,	and	OLE	objects	that	accept	column
headings.	You	can	also	use	this	property	to	create	a	label	for	each	entry	in	a	chart
control.	What	is	actually	displayed	as	the	first-row	column	heading	depends	on
the	object's	RowSourceType	property	setting.	Read/write	Boolean.

expression.ColumnHeads

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

Setting

The	ColumnHeads	property	uses	the	following	settings.

Setting Visual	Basic Description

Yes True		

Column	headings	are	enabled	and	either	field
captions,	field	names,	or	the	first	row	of	data
items	are	used	as	column	headings	or	chart
labels.

No False (Default)	Column	headings	are	not	enabled.

You	can	set	the	ColumnHeads	property	by	using	the	control's	property	sheet,	a
macro,	or	Visual	Basic.

For	table	fields,	you	can	set	this	property	on	the	Lookup	tab	of	the	Field
Properties	section	of	table	Design	view	for	fields	with	the	DisplayControl
property	set	to	Combo	Box	or	List	Box.

Tip			Microsoft	Access	sets	the	ColumnHeads	property	automatically	when	you
select	Lookup	Wizard	as	the	data	type	for	a	field	in	table	Design	view.

Remarks

The	RowSourceType	property	specifies	whether	field	names	or	the	first	row	of
data	items	are	used	to	create	column	headings.	If	the	RowSourceType	property
is	set	to	Table/Query,	the	field	names	are	used	as	column	headings.	If	the	field
has	a	caption,	then	the	caption	is	displayed.	For	example,	if	a	list	box	has	three
columns	(the	ColumnCount	property	is	set	to	3)	and	the	RowSourceType
property	is	set	to	Table/Query,	the	first	three	field	names	(or	captions)	are	used
as	headings.

If	the	RowSourceType	property	is	set	to	Value	List,	the	first	row	of	data	items
entered	in	the	value	list	(as	the	setting	of	the	RowSource	property)	will	be
column	headings.	For	example,	if	a	list	box	has	three	columns	and	the
RowSourceType	property	is	set	to	Value	List,	the	first	three	items	in	the
RowSource	property	setting	are	used	as	column	headings.

Tip			If	you	can't	select	the	first	row	of	a	list	box	or	combo	box	in	Form	view,
check	to	see	if	the	ColumnHeads	property	is	set	to	Yes.

Headings	in	combo	boxes	appear	only	when	displaying	the	list	in	the	control.

Show	All

ColumnHidden	Property
							

You	can	use	the	ColumnHidden	property	to	show	or	hide	a	specified	column	in
Datasheet	view.	Read/write	Boolean.

expression.ColumnHidden

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

Setting

You	can	set	the	ColumnHidden	property	by	clicking	Hide	Columns	or	Unhide
Columns	on	the	Format	menu	in	Datasheet	view.

You	can	also	set	this	property	in	a	Microsoft	Access	database	(.mdb)	by	using	a
Long	Integer	value	in	Visual	Basic	to	specify	the	following	settings.

Setting Description
True		 The	column	is	hidden.
False		 (Default)	The	column	is	visible.
To	set	or	change	this	property	for	a	table	or	query	by	using	Visual	Basic,	you
must	use	a	column's	Properties	collection.	For	details	on	using	the	Properties
collection,	see	Properties.

Note			The	ColumnHidden	property	is	not	available	in	Design	view.

mk:@MSITStore:dao360.chm::/htm/dacolProperty.htm

Remarks

For	example,	you	might	want	to	hide	a	CustomerAddress	field	that's	too	wide	so
you	can	view	the	CustomerName	and	PhoneNumber	fields.

Note			The	ColumnHidden	property	applies	to	all	fields	in	Datasheet	view	and
to	form	controls	when	the	form	is	in	Datasheet	view.

Hiding	a	column	with	the	ColumnHidden	property	in	Datasheet	view	doesn't
hide	fields	from	the	same	column	in	Form	view.	Similarly,	setting	a	control's
Visible	property	to	False	in	Form	view	doesn't	hide	the	corresponding	column	in
Datasheet	view.

You	can	display	a	field	in	a	query	even	though	the	column	for	the	field	is	hidden
in	table	Datasheet	view.

You	can	use	values	from	a	hidden	column	as	the	criteria	for	a	filter	even	though
the	column	remains	hidden	after	the	filter	is	applied.

You	can't	use	the	Copy,	Paste,	Find,	and	Replace	commands	on	the	Edit	menu
to	affect	hidden	columns.

Setting	a	field's	ColumnWidth	property	to	0,	or	resizing	the	field	to	a	zero
width	in	Datasheet	view,	causes	Microsoft	Access	to	set	the	corresponding
ColumnHidden	property	to	True.	Unhiding	a	column	restores	the
ColumnWidth	property	to	the	value	it	had	before	the	field	was	hidden.

Example

The	following	example	hides	the	ProductID	field	in	Datasheet	view	of	the
Products	form.

Forms!Products!ProductID.ColumnHidden	=	-1

The	next	example	also	hides	the	ProductID	field	in	Datasheet	view	of	the
Products	table.

Public	Sub	SetColumnHidden()

				Dim	dbs	As	DAO.Database

				Dim	fld	As	DAO.Field

				Dim	prp	As	DAO.Property

				Const	conErrPropertyNotFound	=	3270

				'	Turn	off	error	trapping.

				On	Error	Resume	Next

				Set	dbs	=	CurrentDb

				

				'	Set	field	property.

				Set	fld	=	dbs.TableDefs!Products.Fields!ProductID

				fld.Properties("ColumnHidden")	=	True

				

				'	Error	may	have	occurred	when	value	was	set.

				If	Err.Number	<>	0	Then

								If	Err.Number	<>	conErrPropertyNotFound	Then

												On	Error	GoTo	0

												MsgBox	"Couldn't	set	property	'ColumnHidden'	"	&	_

																			"on	field	'"	&	fld.Name	&	"'",	vbCritical

								Else

												On	Error	GoTo	0

												Set	prp	=	fld.CreateProperty("ColumnHidden",	dbLong,	True)

												fld.Properties.Append	prp

								End	If

				End	If

				

				Set	prp	=	Nothing

				Set	fld	=	Nothing

				Set	dbs	=	Nothing

				

End	Sub

Show	All

ColumnOrder	Property
							

You	can	use	the	ColumnOrder	property	to	specify	the	order	of	the	columns	in
Datasheet	view.	Read/write	Integer.

expression.ColumnOrder

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

Setting

You	can	set	this	property	by	selecting	a	column	in	Datasheet	view	and	dragging
it	to	a	new	position.

You	can	also	set	this	property	in	a	Microsoft	Access	database	(.mdb)	by	using	a
Long	Integer	value	in	Visual	Basic.

To	set	or	change	this	property	for	a	table	or	query	by	using	Visual	Basic,	you
must	use	a	column's	Properties	collection.	For	details	on	using	the	Properties
collection,	see	Properties.

Note			The	ColumnOrder	property	isn't	available	in	Design	view.

Remarks

Note			The	ColumnOrder	property	applies	to	all	fields	in	Datasheet	view	and	to
form	controls	when	the	form	is	in	Datasheet	view.

In	Datasheet	view,	a	field's	ColumnOrder	property	setting	is	determined	by	the
field's	position.	For	example,	the	field	in	the	leftmost	column	in	Datasheet	view
has	a	ColumnOrder	property	setting	of	1,	the	next	field	has	a	setting	of	2,	and
so	on.	Changing	a	field's	ColumnOrder	property	resets	the	property	for	that
field	and	every	field	to	the	left	of	its	original	position	in	Datasheet	view.

In	other	views,	the	property	setting	is	0	unless	you	explicitly	change	the	order	of
one	or	more	fields	in	Datasheet	view	(either	by	dragging	the	fields	to	new
positions	or	by	changing	their	ColumnOrder	property	settings).	Fields	to	the
right	of	the	moved	field's	new	position	will	have	a	property	setting	of	0	in	views
other	than	Datasheet	view.

The	order	of	the	fields	in	Datasheet	view	doesn't	affect	the	order	of	the	fields	in
table	Design	view	or	Form	view.

Example

The	following	example	displays	the	ProductName	and	QuantityPerUnit	fields	in
the	first	two	columns	in	Datasheet	view	of	the	Products	form.

Forms!Products!ProductName.ColumnOrder	=	1

Forms!Products!QuantityPerUnit.ColumnOrder	=	2

The	next	example	displays	the	ProductName	and	QuantityPerUnit	fields	in	the
first	two	columns	of	the	Products	table	in	Datasheet	view.	To	set	the
ColumnOrder	property,	the	example	uses	the	SetFieldProperty	procedure.	If
this	procedure	is	run	while	the	table	is	open,	changes	will	not	be	displayed	until
it	is	closed	and	reopened.

Public	Sub	SetColumnOrder()

				

				Dim	dbs	As	DAO.Database

				Dim	tdf	As	DAO.TableDef

				

				Set	dbs	=	CurrentDb

				Set	tdf	=	dbs!Products

				

				'	Call	the	procedure	to	set	the	ColumnOrder	property.

				SetFieldProperty	tdf!ProductName,	"ColumnOrder",	dbLong,	2

				SetFieldProperty	tdf!QuantityPerUnit,	"ColumnOrder",	dbLong,	3

				

				Set	tdf	=	Nothing

				Set	dbs	=	Nothing

End	Sub

Private	Sub	SetFieldProperty(ByRef	fld	As	DAO.Field,	_

																													ByVal	strPropertyName	As	String,	_

																													ByVal	intPropertyType	As	Integer,	_

																													ByVal	varPropertyValue	As	Variant)

				'	Set	field	property	without	producing	nonrecoverable	run-time	error.

				Const	conErrPropertyNotFound	=	3270

				Dim	prp	As	Property

				

				'	Turn	off	error	handling.

				On	Error	Resume	Next

				

				fld.Properties(strPropertyName)	=	varPropertyValue

				

				'	Check	for	errors	in	setting	the	property.

				If	Err	<>	0	Then

								If	Err	<>	conErrPropertyNotFound	Then

												On	Error	GoTo	0

												MsgBox	"Couldn't	set	property	'"	&	strPropertyName	&	_

																			"'	on	field	'"	&	fld.Name	&	"'",	vbCritical

								Else

												On	Error	GoTo	0

												Set	prp	=	fld.CreateProperty(strPropertyName,	intPropertyType,	_

																						varPropertyValue)

												fld.Properties.Append	prp

								End	If

				End	If

				

				Set	prp	=	Nothing

				

End	Sub

ColumnSpacing	Property
							

Returns	or	sets	a	Long	representing	the	vertical	space	between	detail	sections	in
twips.	Read/write.

expression.ColumnSpacing

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

Example

The	following	example	sets	a	variety	of	printer	settings	for	the	first	form	in	the
current	project.

With	Forms(0).Printer

				.TopMargin	=	1440

				.BottomMargin	=	1440

				.LeftMargin	=	1440

				.RightMargin	=	1440

				.ColumnSpacing	=	360

				.RowSpacing	=	360

				.ColorMode	=	acPRCMColor

				.DataOnly	=	False

				.DefaultSize	=	False

				.ItemSizeHeight	=	2880

				.ItemSizeWidth	=	2880

				.ItemLayout	=	acPRVerticalColumnLayout

				.ItemsAcross	=	6

				.Copies	=	1

				.Orientation	=	acPRORLandscape

				.Duplex	=	acPRDPVertical

				.PaperBin	=	acPRBNAuto

				.PaperSize	=	acPRPSLetter

				.PrintQuality	=	acPRPQMedium

End	With

Show	All

ColumnWidth	Property
							

You	can	use	the	ColumnWidth	property	to	specify	the	width	of	a	column	in
Datasheet	view.	Read/write	Integer.

expression.ColumnWidth

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

Setting

You	can	set	this	property	by	dragging	the	right	border	of	the	column	selector	or
by	clicking	Column	Width	on	the	Format	menu	in	Datasheet	view	and	entering
the	desired	value.	When	you	set	the	ColumnWidth	property	by	using	the
ColumnWidth	command,	the	value	is	expressed	in	points.

In	Visual	Basic,	the	ColumnWidth	property	setting	is	an	Integer	value	that
represents	the	column	width	in	twips.	You	can	specify	a	width	or	use	one	of	the
following	predefined	settings.

Setting Description
0 Hides	the	column.

–1 (Default)	Sizes	the	column	to	the	default
width.

Remarks

Note			The	ColumnWidth	property	applies	to	all	fields	in	Datasheet	view	and	to
form	controls	when	the	form	is	in	Datasheet	view.

Setting	this	property	to	0,	or	resizing	the	field	to	a	zero	width	in	Datasheet	view,
sets	the	field's	ColumnHidden	property	to	True	(–1)	and	hides	the	field	in
Datasheet	view.

Setting	a	field's	ColumnHidden	property	to	False	(0)	restores	the	field's
ColumnWidth	property	to	the	value	it	had	before	the	field	was	hidden.	For
example,	if	the	ColumnWidth	property	was	–1	prior	to	the	field	being	hidden
by	setting	the	property	to	0,	changing	the	field's	ColumnHidden	property	to
False	resets	the	ColumnWidth	to	–1.

The	ColumnWidth	property	for	a	field	isn't	available	when	the	field's
ColumnHidden	property	is	set	to	True.

Example

This	example	takes	effect	in	Datasheet	view	of	the	open	Customers	form.	It	sets
the	row	height	to	450	twips	and	sizes	the	column	to	fit	the	size	of	the	visible	text.

Forms![Customers].RowHeight	=	450

Forms![Customers]![Address].ColumnWidth	=	-2

Show	All

ColumnWidths	Property
							

You	can	use	the	ColumnWidths	property	to	specify	the	width	of	each	column	in
a	multiple-column	combo	box	or	list	box.	Read/write	String.

expression.ColumnWidths

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

Setting

The	ColumnWidths	property	holds	a	value	specifying	the	width	of	each	column
in	inches	or	centimeters,	depending	on	the	measurement	system	(U.S.	or	Metric)
selected	in	the	Measurement	system	box	on	the	Number	tab	of	the	Regional
Options	dialog	box	of	Windows	Control	Panel.	The	default	setting	is	1	inch	or
2.54	centimeters.	The	ColumnWidths	property	setting	must	be	a	value	from	0	to
22	inches	(55.87	cm)	for	each	column	in	the	list	box	or	combo	box.

To	separate	your	column	entries,	use	semicolons	(;)	as	list	separators	(or	the	list
separator	selected	in	the	List	separator	box	on	the	Number	tab	of	the	Regional
Options	dialog	box).

A	width	of	0	hides	a	column.	Any	or	all	of	the	ColumnWidths	property	settings
can	be	blank.	You	create	a	blank	setting	by	typing	a	list	separator	without	a
preceding	value.	Blank	values	result	in	Microsoft	Access	automatically	setting	a
default	column	width	that	varies	depending	on	the	number	of	columns	and	the
width	of	the	combo	box	or	list	box.

Note			In	a	combo	box,	the	first	visible	column	is	displayed	in	the	text	box
portion	of	the	control.

You	can	set	the	ColumnWidths	property	by	using	the	control's	property	sheet,	a
macro,	or	Visual	Basic.

For	table	fields,	you	can	set	this	property	on	the	Lookup	tab	of	the	Field
Properties	section	of	table	Design	view	for	fields	with	the	DisplayControl
property	set	to	Combo	Box	or	List	Box.

Tip			Microsoft	Access	sets	the	ColumnWidths	property	automatically	when
you	select	Lookup	Wizard	as	the	data	type	for	a	field	in	table	Design	view.

In	Visual	Basic,	use	a	string	expression	to	set	the	column	width	values	in	twips.
Column	widths	are	separated	by	semicolons.	To	specify	a	different	unit	of
measurement,	include	the	unit	of	measure	(cm	or	in).	For	example,	the	following
string	expression	specifies	three	column	widths	in	centimeters.

"6	cm;0;6	cm"

Remarks

You	can	also	use	this	property	to	hide	one	or	more	columns.

If	you	leave	the	ColumnWidths	property	setting	blank,	Microsoft	Access	sets
the	width	of	each	column	as	the	overall	width	of	the	list	box	or	combo	box
divided	by	the	number	of	columns.

If	the	column	widths	you	set	are	too	wide	to	be	fully	displayed	within	the	combo
box	or	list	box,	the	rightmost	columns	are	hidden	and	a	horizontal	scroll	bar
appears.

If	you	specify	the	width	for	some	columns	but	leave	the	setting	for	others	blank,
Microsoft	Access	divides	the	remaining	width	by	the	number	of	columns	for
which	you	haven't	specified	a	width.	The	minimum	calculated	column	width	is
1,440	twips	(1	inch).

For	example,	the	following	settings	are	applied	to	a	4-inch	list	box	with	three
columns.

Setting Description

1.5	in;0;2.5	in The	first	column	is	1.5	inches,	the	second	column	is	hidden,
and	the	third	column	is	2.5	inches.

2	in;;2	in
The	first	column	is	2	inches,	the	second	column	is	1	inch
(default),	and	the	third	column	is	2	inches.	Because	only	half
of	the	third	column	is	visible,	a	horizontal	scroll	bar	appears.

(Blank) The	three	columns	are	the	same	width	(1.33	inches).
Note			This	property	is	different	than	the	ColumnWidth	property,	which
specifies	the	width	of	a	specified	column	in	a	datasheet.

Show	All

COMAddIns	Property
							

You	can	use	the	COMAddIns	property	to	return	a	reference	to	the	current
COMAddIns	collection	object	and	its	related	properties.	Read-only
COMAddIns	object.

expression.COMAddIns

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

mk:@MSITStore:vbaof10.chm::/html/ofobjCOMAddIns.htm

Remarks

The	COMAddIns	property	is	available	only	by	using	Visual	Basic	and	is	read-
only.

The	COMAddIns	collection	object	is	the	collection	of	all	currently	registered
COM	add-ins	of	an	application.	You	can	refer	to	individual	members	of	the
collection	by	using	the	member	object's	index	or	a	string	expression	that	is	the
name	of	the	member	object.	The	first	member	object	in	the	collection	has	an
index	value	of	1	and	the	total	number	of	member	objects	in	the	collection	is	the
value	of	the	COMAddIns	collection's	Count	property.

Once	you	establish	a	reference	to	the	COMAddIns	collection	object,	you	can
access	all	the	properties	and	methods	of	the	object.	You	can	set	a	reference	to	the
COMAddIns	collection	object	by	clicking	References	on	the	Tools	menu	while
in	module	Design	view.	Then	set	a	reference	to	the	Microsoft	Office	9.0	Object
Library	in	the	References	dialog	box	by	selecting	the	appropriate	check	box.
Microsoft	Access	can	set	this	reference	for	you	if	you	use	a	Microsoft	Office	9.0
Object	Library	constant	to	set	a	COMAddIns	collection	object's	property	or	as
an	argument	to	a	COMAddIns	collection	object's	method.

mk:@MSITStore:vbaof10.chm::/html/ofproCount.htm

Show	All

CommandBars	Property
							

You	can	use	the	CommandBars	property	to	return	a	reference	to	the
CommandBars	collection	object.	Read-only	CommandBars	object.

expression.CommandBars

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

mk:@MSITStore:vbaof10.chm::/html/ofobjCommandBars.htm

Remarks

The	CommandBars	property	is	available	only	by	using	Visual	Basic.

The	CommandBars	collection	object	is	the	collection	of	all	built-in	and	custom
command	bars	in	an	application.	You	can	refer	to	individual	members	of	the
collection	by	using	the	member	object's	index	or	a	string	expression	that	is	the
name	of	the	member	object.	The	first	member	object	in	the	collection	has	an
index	value	of	1	and	the	total	number	of	member	objects	in	the	collection	is	the
value	of	the	CommandBars	collection's	Count	property.

Once	you	establish	a	reference	to	the	CommandBars	collection	object,	you	can
access	all	the	properties	and	methods	of	the	object.	You	can	set	a	reference	to	the
CommandBars	collection	object	by	clicking	References	on	the	Tools	menu
while	in	module	Design	view.	Set	a	reference	to	the	Microsoft	Office	9.0	Object
Library	in	the	References	dialog	box	by	selecting	the	appropriate	check	box.

mk:@MSITStore:vbaof10.chm::/html/ofproCount.htm

CommandBeforeExecute	Property
							

Returns	or	sets	a	String	indicating	which	macro,	event	procedure,	or	user-
defined	function	runs	when	the	CommandBeforeExecute	event	occurs.
Read/write.

expression.CommandBeforeExecute

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

Remarks

Valid	values	for	this	property	are	"macroname"	where	macroname	is	the	name	of
macro,	"[Event	Procedure]"	which	indicates	the	event	procedure	associated	with
the	CommandBeforeExecute	event	for	the	specified	object,	or
"=functionname()"	where	functionname	is	the	name	of	a	user-defined	function.
For	a	more	detailed	discussion	of	event	properties,	see	"Event	Properties."

Example

The	following	example	specifies	that	when	the	CommandBeforeExecute	event
occurs	on	the	first	form	of	the	current	project,	the	associated	event	procedure
should	run.

Forms(0)

.CommandBeforeExecute	=	"[Event	Procedure]"

CommandChecked	Property
							

Returns	or	sets	a	String	indicating	which	macro,	event	procedure,	or	user-
defined	function	runs	when	the	CommandChecked	event	occurs.	Read/write.

expression.CommandChecked

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

Remarks

Valid	values	for	this	property	are	"macroname"	where	macroname	is	the	name	of
macro,	"[Event	Procedure]"	which	indicates	the	event	procedure	associated	with
the	CommandChecked	event	for	the	specified	object,	or	"=functionname()"
where	functionname	is	the	name	of	a	user-defined	function.	For	a	more	detailed
discussion	of	event	properties,	see	"Event	Properties."

Example

The	following	example	specifies	that	when	the	CommandChecked	event	occurs
on	the	first	form	of	the	current	project,	the	associated	event	procedure	should
run.

Forms(0).CommandChecked	=	"[Event	Procedure]"

CommandEnabled	Property
							

Returns	or	sets	a	String	indicating	which	macro,	event	procedure,	or	user-
defined	function	runs	when	the	CommandEnabled	event	occurs.	Read/write.

expression.CommandEnabled

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

Remarks

Valid	values	for	this	property	are	"macroname"	where	macroname	is	the	name	of
macro,	"[Event	Procedure]"	which	indicates	the	event	procedure	associated	with
the	CommandEnabled	event	for	the	specified	object,	or	"=functionname()"
where	functionname	is	the	name	of	a	user-defined	function.	For	a	more	detailed
discussion	of	event	properties,	see	"Event	Properties."

Example

The	following	example	specifies	that	when	the	CommandEnabled	event	occurs
on	the	first	form	of	the	current	project,	the	associated	event	procedure	should
run.

Forms(0).CommandEnabled	=	"[Event	Procedure]"

CommandExecute	Property
							

Returns	or	sets	a	String	indicating	which	macro,	event	procedure,	or	user-
defined	function	runs	when	the	CommandExecute	event	occurs.	Read/write.

expression.CommandExecute

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

Remarks

Valid	values	for	this	property	are	"macroname"	where	macroname	is	the	name	of
macro,	"[Event	Procedure]"	which	indicates	the	event	procedure	associated	with
the	CommandExecute	event	for	the	specified	object,	or	"=functionname()"	where
functionname	is	the	name	of	a	user-defined	function.	For	a	more	detailed
discussion	of	event	properties,	see	"Event	Properties."

Example

The	following	example	specifies	that	when	the	CommandExecute	event	occurs
on	the	first	form	of	the	current	project,	the	associated	event	procedure	should
run.

Forms(0).CommandExecute	=	"[Event	Procedure]"

CommitOnClose	Property
							

Returns	or	sets	a	Byte	indicating	whether	the	specified	form	saves	changed
records	when	the	form	closes.	Read/write.

expression.CommitOnClose

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

Remarks

The	value	of	the	CommitOnClose	property	can	be	one	of	the	following.

Setting Description
0 Closing	the	form	discards	any	unsaved	changes.

1 (Default)	Closing	the	form	saves	any	unsaved	changes	on
the	form.

2 Closing	the	form	causes	Microsoft	Access	to	prompt	the
user	whether	to	save	changes.

This	property	can	only	be	changed	during	design	time.	During	run	time,	it	is
read-only.

Example

The	following	example	checks	the	specified	form	to	see	if	changes	are	saved
when	the	form	is	closed	and	displays	a	message	reporting	the	result.

With	Forms(0)

				Select	Case	.CommitOnClose

								Case	0

												MsgBox	"The	"""	&	.Name	&	"""	form	discards	"	_

																&	"unsaved	changes	when	you	close	it."

								Case	1

												MsgBox	"The	"""	&	.Name	&	"""	form	saves	"	_

																&	"changes	when	you	close	it."

								Case	2

												MsgBox	"The	"""	&	.Name	&	"""	form	asks	you	"	_

																&	"whether	to	save	changes	when	you	close	it."

				End	Select

End	With

CommitOnNavigation	Property
							

Returns	or	sets	a	Boolean	indicating	whether	the	specified	form	saves	changed
records	when	you	navigate	from	one	record	to	another.	True	if	changes	are
saved	when	you	navigate	to	another	record;	otherwise,	changes	are	queued	until
explicitly	saved	to	the	underlying	database.	Read/write.

expression.CommitOnNavigation

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

Remarks

This	property	can	only	be	changed	during	design	time.	During	run	time,	it	is
read-only.

Example

The	following	example	checks	the	specified	form	to	see	if	changes	are	saved
when	the	user	navigates	to	another	record	and	displays	a	message	box	reporting
the	result.

With	Forms(0)

				If	.CommitOnNavigation	=	True	Then

								MsgBox	"The	"""	&	.Name	&	"""	form	saves	"	_

												&	"changes	when	you	navigate	to	a	new	record."

				Else

								MsgBox	"The	"""	&	.Name	&	"""	form	queues	"	_

												&	"changes	as	you	move	from	record	to	record."

				End	If

End	With

Show	All

Connection	Property
							

You	can	use	the	Connection	property	to	return	a	reference	to	the	current
ActiveX	Data	Objects	(ADO)	Connection	object	and	its	related	properties.
Read-only	Connection.

expression.Connection

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

mk:@MSITStore:ado210.chm::/htm/mdobjConnection.htm

Remarks

The	Connection	property	is	available	only	by	using	Visual	Basic	and	is	read-
only.

Use	the	Connection	property	of	the	CurrentProject	object	to	refer	to	the
Connection	object	of	the	current	Microsoft	Access	project	(.adp)	or	Access
database	(.mdb)	object.	Use	the	Connection	property	of	the	CodeProject	object
to	refer	to	the	Connection	object	of	the	Access	project	or	Access	database	code
database	object.	You	can	use	the	Connection	property	to	call	methods	on	the
Connection	object	such	as	BeginTrans	and	CommitTrans.

Notes			The	Connection	property	actually	returns	a	reference	to	a	copy	of	the
ActiveX	Data	Object	(ADO)	connection	for	the	active	database.	Thus,	applying
the	Close	method	or	in	anyway	attempting	to	alter	the	connection	through	the
Connection	object’s	methods	or	properties	will	have	no	affect	on	the	actual
connection	object	used	by	Microsoft	Access	to	hold	a	live	connection	to	the
current	database.	Since	the	Connection	property	is	the	main	Shape	provider
connection,	the	following	information	is	necessary	when	using	this	property.

1.	 MSDataShape	uses	Recordset.CursorLocation	=	adUseClient.	Do	not	set
CursorLocation	prior	to	assigning	a	recordset	to	CurrentProject.Connect.

2.	 MSDataShape	uses	Recordset.CursorType	=	adOpenStatic.	Do	not	set
CursorType	prior	to	assinging	a	recordset	to	CurrentProject.Connection.

3.	 MSDataShape	accepts	Recordset.LockType	=	adLockOptimistic,
adLockBatchOptimistic,	or	adLockReadOnly	(default).	If	set	to
adLockPessimistic,	it	is	changed	to	adLockOptimistic.

4.	 The	shape	connection	does	not	support	the	all	ADOX	operation,
specifically	the	Columns.Properties	collection	is	not	supported.

5.	 In	order	to	ensure	that	a	shape	connection	will	work	correctly,	the
Command.CommandType	must	be	set	to	adCmdTable.

mk:@MSITStore:ado210.chm::/htm/mdmthBeginTrans.htm
mk:@MSITStore:ado210.chm::/htm/mdmthBeginTrans.htm
mk:@MSITStore:ado210.chm::/htm/mdmthClose.htm

Show	All

ConnectionString	Property
							

You	can	use	the	ConnectionString	property	returns	the	base	connection	string
for	the	DataAccessPage	object.	Read/write	String.

expression.ConnectionString

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

Remarks

The	ConnectionString	property	is	available	only	by	using	Visual	Basic	and	is
read-only.

The	ConnectionString	property	returns	the	connection	string	that	was	set
through	the	OpenConnection	method	or	by	clicking	Connection	on	the	File
menu.	When	making	a	connection,	Microsoft	Access	project	modifies	the
ConnectionString	property	for	use	with	the	ADO	environment.	The	Microsoft
Office	Data	Source	Control	(MSODSC)	likewise	modifies	the
ConnectionString.

Example

The	following	example	displays	the	ConnectionString	property	setting	of	the
currently	active	data	access	page:

Dim	objCurrent	As	Object

Set	objCurrent	=	Application.DataAccessPages(0)

MsgBox	"The	current	base	connection	is	"	_

				&	objCurrent.ConnectionString

Show	All

ControlBox	Property
							

Specifies	whether	a	form	has	a	Control	menu	in	Form	view	and	Datasheet	view.
Read/write	Boolean.

expression.ControlBox

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

Setting

The	ControlBox	property	uses	the	following	settings.

Setting Visual	Basic Description

Yes True	(–1) (Default)	The	form	has	a	Control	menu	in
Form	view	and	Datasheet	view.

No False	(0) The	form	doesn't	have	a	Control	menu	in	Form
view	and	Datasheet	view.

Note			Setting	the	ControlBox	property	to	No	also	removes	the	Minimize,
Maximize,	and	Close	buttons	on	a	form.

You	can	set	this	property	by	using	the	form's	property	sheet,	a	macro,	or	Visual
Basic.

It	can	only	be	set	in	form	Design	view.

Remarks

To	display	a	Control	menu	on	a	form,	the	ControlBox	property	must	be	set	to
Yes	and	the	form's	BorderStyle	property	must	be	set	to	Thin,	Sizable,	or	Dialog.

Even	when	a	form's	ControlBox	property	is	set	to	No,	the	form	always	has	a
Control	menu	when	opened	in	Design	view.

Setting	the	ControlBox	property	to	No	suppresses	the	Control	menu	when	you:

Open	the	form	in	Form	view	from	the	Database	window.
Open	the	form	from	a	macro.
Open	the	form	from	Visual	Basic.
Open	the	form	in	Datasheet	view.
Switch	to	Form	or	Datasheet	view	from	Design	view.

Example

The	following	example	sets	the	ControlBox	property	on	the	WarningDialog
form	to	False	(0):

Forms!WarningDialog.ControlBox	=	False

Show	All

Controls	Property
							

Returns	the	Controls	collection	of	a	form,	subform,	report	or	section.

expression.Controls

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

Remarks

Use	the	Controls	property	to	refer	to	one	of	the	controls	on	a	form,	subform,
report,	or	section	within	or	attached	to	another	control.	For	example,	the	first
code	syntax	below	returns	the	number	of	controls	located	on	Form1.	The	second
references	the	name	of	a	property	within	a	control.

Forms("Form1").Controls.Count

Forms("Form1").Controls("Textbox1").Properties(5).Name

The	Controls	property	is	available	only	by	using	Visual	Basic.

Show	All

ControlSource	Property
							

You	can	use	the	ControlSource	property	to	specify	what	data	appears	in	a
control.	You	can	display	and	edit	data	bound	to	a	field	in	a	table,	query,	or	SQL
statement.	You	can	also	display	the	result	of	an	expression.	Read/write	String.

expression.ControlSource

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

Setting

The	ControlSource	property	uses	the	following	settings.

Setting Description

A	field	name

The	control	is	bound	to	a	field	in	a	table,	query,	or	SQL
statement.	Data	from	the	field	is	displayed	in	the	control.
Changes	to	the	data	inside	the	control	change	the
corresponding	data	in	the	field.	(To	make	the	control	read-
only,	set	the	Locked	property	to	Yes.)	If	you	click	a	control
bound	to	a	field	that	has	a	Hyperlink	data	type,	you	jump	to
the	destination	specified	in	the	hyperlink	address.

An	expression
The	control	displays	data	generated	by	an	expression.	This
data	can	be	changed	by	the	user	but	isn't	saved	in	the
database.

You	can	set	the	ControlSource	property	for	a	control	by	using	the	control's
property	sheet,	a	macro,	or	Visual	Basic.

You	can	also	set	the	ControlSource	property	for	a	text	box	by	typing	a	field
name	or	expression	directly	in	the	text	box	in	form	Design	view	or	report	Design
view.

For	a	report,	you	can	set	this	property	by	selecting	a	field	or	typing	an	expression
in	the	Field/Expression	column	of	the	Sorting	And	Grouping	box.	For	details,
see	the	GroupLevel	property.

In	Visual	Basic,	use	a	string	expression	to	set	the	value	of	this	property.

Remarks

For	a	report	group	level,	the	ControlSource	property	determines	the	field	or
expression	to	group	on.

Note			The	ControlSource	property	doesn't	apply	to	check	box,	option	button,	or
toggle	button	controls	in	an	option	group.	It	applies	only	to	the	option	group
itself.

For	reports,	the	ControlSource	property	applies	only	to	report	group	levels.

Forms	and	reports	act	as	"windows"	into	your	database.	You	specify	the	primary
source	of	data	for	a	form	or	report	by	setting	its	RecordSource	property	to	a
table,	query,	or	SQL	statement.	You	can	then	set	the	ControlSource	property	to
a	field	in	the	source	of	data	or	to	an	expression.	If	the	ControlSource	property
setting	is	an	expression,	the	value	displayed	is	read-only	and	not	saved	in	the
database.	For	example,	you	can	use	the	following	settings.

Sample	setting Description

LastName

For	a	control,	data	from	the	LastName
field	is	displayed	in	the	control.	For	a
report	group	level,	Microsoft	Access
groups	the	data	on	last	name.

=Date()	+	7

For	a	control,	this	expression	displays	a
date	seven	days	from	today	in	the
control.

=DatePart("q",ShippedDate)

For	a	control,	this	expression	displays
the	quarter	of	the	shipped	date.	For	a
report	group	level,	Microsoft	Access
groups	the	data	on	the	quarter	of	the
shipped	date.

Example

The	following	example	sets	the	ControlSource	property	for	a	text	box	named
AddressPart	to	a	field	named	City:

Forms!Customers!AddressPart.ControlSource	=	"City"

The	next	example	sets	the	ControlSource	property	for	a	text	box	named
Expected	to	the	expression	=Date()	+	7.

Me!Expected.ControlSource	=	"=Date()	+	7"

Show	All

ControlTipText	Property
							

You	can	use	the	ControlTipText	property	to	specify	the	text	that	appears	in	a
ScreenTip	when	you	hold	the	mouse	pointer	over	a	control.	Read/write	String.

expression.ControlTipText

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

Setting

You	set	the	ControlTipText	property	by	using	a	string	expression	up	to	255
characters	long.

You	can	set	the	ControlTipText	property	by	using	the	control's	property	sheet,	a
macro,	or	Visual	Basic.

For	controls	on	forms,	you	can	set	the	default	for	this	property	by	using	the
default	control	style	or	the	DefaultControl	method	in	Visual	Basic.

You	can	set	the	ControlTipText	property	in	any	view.

Remarks

The	ControlTipText	property	provides	an	easy	way	to	provide	helpful
information	about	controls	on	a	form.

There	are	other	ways	to	provide	information	about	a	form	or	a	control	on	a	form.
You	can	use	the	StatusBarText	property	to	display	information	in	the	status	bar
about	a	control.	To	provide	more	extensive	help	for	a	form	or	control,	use	the
HelpFile	and	HelpContextID	properties.

Show	All

ControlType	Property
							

You	can	use	the	ControlType	property	in	Visual	Basic	to	determine	the	type	of	a
control	on	a	form	or	report.	Read/write	Byte.

expression.ControlType

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

Setting

The	ControlType	property	setting	is	an	intrinsic	constant	that	specifies	the
control	type.

Constant Control
acBoundObjectFrame Bound	object	frame
acCheckBox Check	box
acComboBox Combo	box
acCommandButton Command	button
acCustomControl ActiveX	(custom)	control
acImage Image
acLabel Label
acLine Line
acListBox List	box
acObjectFrame Unbound	object	frame	or	chart
acOptionButton Option	button
acOptionGroup Option	group
acPage Page
acPageBreak Page	break
acRectangle Rectangle
acSubform Subform/subreport
acTabCtl Tab
acTextBox Text	box
acToggleButton Toggle	button
The	ControlType	property	can	only	be	set	by	using	Visual	Basic	in	form	Design
view	or	report	Design	view,	but	it	can	be	read	in	all	views.

Remarks

The	ControlType	property	is	useful	not	only	for	checking	for	a	specific	control
type	in	code,	but	also	for	changing	the	type	of	control	to	another	type.	For
example,	you	can	change	a	text	box	to	a	combo	box	by	setting	the	ControlType
property	for	the	text	box	to	acComboBox	while	in	form	Design	view.

You	can	use	the	ControlType	property	to	change	characteristics	of	similar
controls	on	a	form	according	to	certain	conditions.	For	example,	if	you	don't
want	users	to	edit	existing	data	in	text	boxes,	you	can	set	the	SpecialEffect
property	for	all	text	boxes	to	Flat	and	set	the	form's	AllowEdits	property	to	No.
(The	SpecialEffect	property	doesn't	affect	whether	data	can	be	edited;	it's	used
here	to	provide	a	visual	cue	that	the	control	behavior	has	changed.)

The	ControlType	property	is	also	used	to	specify	the	type	of	control	to	create
when	you	are	using	the	CreateControl	method.

Example

The	following	example	examines	the	ControlType	property	for	all	controls	on	a
form.	For	each	label	and	text	box	control,	the	procedure	toggles	the
SpecialEffect	property	for	those	controls.	When	the	label	controls'
SpecialEffect	property	is	set	to	Shadowed	and	the	text	box	controls'
SpecialEffect	property	is	set	to	Normal	and	the	AllowAdditions,
AllowDeletions,	and	AllowEdits	properties	are	all	set	to	True,	the	intCanEdit
variable	is	toggled	to	allow	editing	of	the	underlying	data.

Sub	ToggleControl(frm	As	Form)

				Dim	ctl	As	Control

				Dim	intI	As	Integer,	intCanEdit	As	Integer

				Const	conTransparent	=	0

				Const	conWhite	=	16777215

				For	Each	ctl	in	frm.Controls

								With	ctl

												Select	Case	.ControlType

																Case	acLabel

																				If	.SpecialEffect	=	acEffectShadow	Then

																								.SpecialEffect	=	acEffectNormal

																								.BorderStyle	=	conTransparent

																								intCanEdit	=	True

																				Else

																								.SpecialEffect	=	acEffectShadow

																								intCanEdit	=	False

																				End	If

																Case	acTextBox

																				If	.SpecialEffect	=	acEffectNormal	Then

																								.SpecialEffect	=	acEffectSunken

																								.BackColor	=	conWhite

																				Else

																								.SpecialEffect	=	acEffectNormal

																								.BackColor	=	frm.Detail.BackColor

																				End	If

												End	Select

								End	With

				Next	ctl

				If	intCanEdit	=	IFalse	Then

								With	frm

												.AllowAdditions	=	False

												.AllowDeletions	=	False

												.AllowEdits	=	False

								End	With

				Else

								With	frm

												.AllowAdditions	=	True

												.AllowDeletions	=	True

												.AllowEdits	=	True

								End	With

				End	If

End	Sub

Copies	Property
							

Returns	or	sets	a	Long	indicating	the	number	of	copies	to	be	printed.	Read/write.

expression.Copies

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

Example

The	following	example	sets	a	variety	of	printer	settings	for	the	first	form	in	the
current	project.

With	Forms(0).Printer

				.TopMargin	=	1440

				.BottomMargin	=	1440

				.LeftMargin	=	1440

				.RightMargin	=	1440

				.ColumnSpacing	=	360

				.RowSpacing	=	360

				.ColorMode	=	acPRCMColor

				.DataOnly	=	False

				.DefaultSize	=	False

				.ItemSizeHeight	=	2880

				.ItemSizeWidth	=	2880

				.ItemLayout	=	acPRVerticalColumnLayout

				.ItemsAcross	=	6

				.Copies	=	1

				.Orientation	=	acPRORLandscape

				.Duplex	=	acPRDPVertical

				.PaperBin	=	acPRBNAuto

				.PaperSize	=	acPRPSLetter

				.PrintQuality	=	acPRPQMedium

End	With

Show	All

Count	Property
							

Count	property	as	it	applies	to	the	Form	and	Report	objects.

You	can	use	the	Count	property	to	determine	the	number	of	items	in	a	specified
collection.	Read/write	Integer.

expression.Count

expression			Required.	An	expression	that	returns	one	of	the	above	objects.

Count	property	as	it	applies	to	the	AccessObjectProperties,
AllDataAccessPages,	AllDatabaseDiagrams,	AllForms,	AllFunctions,
AllMacros,	AllModules,	AllObjects,	AllQueries,	AllReports,
AllStoredProcedures,	AllTables,	AllViews,	Controls,	DataAccessPages,
FormatConditions,	Forms,	Modules,	Pages,	Printers,	Properties,
References,	and	Reports	objects.

You	can	use	the	Count	property	to	determine	the	number	of	items	in	a	specified
collection.	Read-only	Long.

expression.Count

expression			Required.	An	expression	that	returns	one	of	the	above	objects.

Setting

The	Count	property	setting	is	an	Integer	value	and	is	read-only	in	all	views.

You	can	determine	the	Count	property	for	an	object	by	using	a	macro	or	Visual
Basic.

Remarks

For	example,	if	you	want	to	determine	the	number	of	forms	currently	open	or
existing	on	the	database,	you	would	use	the	following	code	strings:

'	Determine	the	number	of	open	forms.

forms.count

'	Determine	the	number	of	forms	(open	or	closed)

'	in	the	current	database.

currentproject.allforms.count

Example

The	following	example	uses	the	Count	property	to	control	a	loop	that	prints
information	about	all	open	forms	and	their	controls.

Sub	Print_Form_Controls()

				Dim	frm	As	Form,	intI	As	Integer

				Dim	intJ	As	Integer

				Dim	intControls	As	Integer,	intForms	As	Integer

				intForms	=	Forms.Count								'	Number	of	open	forms.

				If	intForms	>	0	Then

								For	intI	=	0	To	intForms	-	1

												Set	frm	=	Forms(intI)

												Debug.Print	frm.Name

												intControls	=	frm.Count

												If	intControls	>	0	Then

																For	intJ	=	0	To	intControls	-	1

																				Debug.Print	vbTab;	frm(intJ).Name

																Next	intJ

												Else

																Debug.Print	vbTab;	"(no	controls)"

												End	If

								Next	intI

				Else

								MsgBox	"No	open	forms.",	vbExclamation,	"Form	Controls"

				End	If

End	Sub

The	next	example	determines	the	number	of	controls	on	a	form	and	a	report	and
assigns	the	number	to	a	variable.

Dim	intFormControls	As	Integer

Dim	intReportControls	As	Integer

intFormControls	=	Forms!Employees.Count

intReportControls	=	Reports!FreightCharges.Count

Show	All

CountOfDeclarationLines	Property
							

The	CountOfDeclarationLines	property	returns	a	Long	value	indicating	the
number	of	lines	of	code	in	the	Declarations	section	in	a	standard	module	or	class
module.	Read-only	Long.

expression.CountOfDeclarationLines

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

Setting

The	CountOfDeclarationLines	property	is	available	only	by	using	Visual	Basic
and	is	read-only.

Remarks

Lines	in	a	module	are	numbered	beginning	with	1.

The	value	of	the	CountOfDeclarationLines	property	is	equal	to	the	line	number
of	the	last	line	of	the	Declarations	section.	You	can	use	this	property	to
determine	where	the	Declarations	section	ends	and	the	body	of	the	module
begins.

Example

The	following	example	counts	the	number	of	lines	and	declaration	lines	in	each
standard	module	in	the	Modules	collection.	Note	that	the	Modules	collection
contains	only	modules	that	are	open	in	the	module	editor.

Public	Sub	ModuleLineTotal(ByVal	strModuleName	As	String)

				Dim	mdl	As	Module

				'	Open	module	to	include	in	Modules	collection.

				DoCmd.OpenModule	strModuleName

				

				'	Return	reference	to	Module	object.

				Set	mdl	=	Modules(strModuleName)

				

				'	Print	number	of	lines	in	module.

				Debug.Print	"Number	of	lines:	",	mdl.CountOfLines

				

				'	Print	number	of	declaration	lines.

				Debug.Print	"Number	of	declaration	lines:	",	_

								mdl.CountOfDeclarationLines

								

End	Sub

Show	All

CountOfLines	Property
							

The	CountOfLines	property	returns	a	Long	value	indicating	the	number	of	lines
of	code	in	a	standard	module	or	class	module.	Read-only	Long.

expression.CountOfLines

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

Setting

The	CountOfLines	property	is	available	only	by	using	Visual	Basic	and	is	read-
only.

Remarks

Lines	in	a	module	are	numbered	beginning	with	1.

The	line	number	of	the	last	line	in	a	module	is	the	value	of	the	CountOfLines
property.

Example

The	following	example	counts	the	number	of	lines	and	declaration	lines	in	each
standard	module	in	the	Modules	collection.	Note	that	the	Modules	collection
contains	only	modules	that	are	open	in	the	module	editor.

Public	Sub	ModuleLineTotal(ByVal	strModuleName	As	String)

				Dim	mdl	As	Module

				'	Open	module	to	include	in	Modules	collection.

				DoCmd.OpenModule	strModuleName

				

				'	Return	reference	to	Module	object.

				Set	mdl	=	Modules(strModuleName)

				

				'	Print	number	of	lines	in	module.

				Debug.Print	"Number	of	lines:	",	mdl.CountOfLines

				

				'	Print	number	of	declaration	lines.

				Debug.Print	"Number	of	declaration	lines:	",	_

								mdl.CountOfDeclarationLines

								

End	Sub

CurrentData	Property
							

You	can	use	the	CurrentData	property	to	access	the	CurrentData	object	and	its
related	collections.	Read-only	CurrentData	object.

expression.CurrentData

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

Remarks

This	property	is	available	only	by	using	Visual	Basic	and	is	read-only.

Use	the	CurrentData	property	to	refer	to	one	of	the	following	current	database
collections	together	with	one	of	its	properties	or	methods.

AllTables AllQueries
AllViews AllStoredProcedures
AllDatabaseDiagrams 	

Show	All

CurrentObjectName	Property
							

You	can	use	the	CurrentObjectName	property	with	the	Application	object	to
determine	the	name	of	the	active	database	object.	The	active	database	object	is
the	object	that	has	the	focus	or	in	which	code	is	running.	Read-only	String.

expression.CurrentObjectName

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

Remarks

The	CurrentObjectName	property	is	set	by	Microsoft	Access	to	a	string
expression	containing	the	name	of	the	active	object.

This	property	is	available	only	by	using	Visual	Basic.

The	following	conditions	determine	which	object	is	considered	the	active	object:

If	the	active	object	is	a	property	sheet,	command	bar,	menu,	palette,	or	field
list	of	an	object,	the	CurrentObjectName	property	returns	the	name	of	the
underlying	object.
If	the	active	object	is	a	pop-up	form,	the	CurrentObjectName	property
refers	to	the	pop-up	form	itself,	not	the	form	from	which	it	was	opened.
If	the	active	object	is	the	Database	window,	the	CurrentObjectName
property	returns	the	item	selected	in	the	Database	window.
If	no	object	is	selected,	the	CurrentObjectName	property	returns	a	zero-
length	string	("	").
If	the	current	state	is	ambiguous	(the	active	object	isn't	a	table,	query,	form,
report,	macro,	or	module)	for	example,	if	a	dialog	box	has	the	focus	the
CurrentObjectName	property	returns	the	dialog	box	name.

You	can	use	this	property	with	the	SysCmd	method	to	determine	the	active
object	and	its	state	(for	example,	if	the	object	is	open,	new,	or	has	been	changed
but	not	saved).

Example

The	following	example	uses	the	CurrentObjectType	and	CurrentObjectName
properties	with	the	SysCmd	function	to	determine	if	the	active	object	is	the
Products	form	and	if	this	form	is	open	and	has	been	changed	but	not	saved.	If
these	conditions	are	true,	the	form	is	saved	and	then	closed.

Public	Sub	CheckProducts()

				

				Dim	intState	As	Integer

				Dim	intCurrentType	As	Integer

				Dim	strCurrentName	As	String

				intCurrentType	=	Application.CurrentObjectType

				strCurrentName	=	Application.CurrentObjectName

				

				If	intCurrentType	=	acForm	And	strCurrentName	=	"Products"	Then

								intState	=	SysCmd(acSysCmdGetObjectState,	intCurrentType,	_

																			strCurrentName)

													

								'	Products	form	changed	but	not	saved.

								If	intState	=	acObjStateDirty	+	acObjStateOpen	Then

												

												'	Close	Products	form	and	save	changes.

												DoCmd.Close	intCurrentType,	strCurrentName,	acSaveYes

								End	If

				End	If

End	Sub

Show	All

CurrentObjectType	Property
							

You	can	use	the		CurrentObjectType	property	together	with	the	Application
object	to	determine	the	type	of	the	active	database	object	(table,	query,	form,
report,	macro,	module,	data	access	page,	server	view,	database	diagram,	or
stored	procedure).	The	active	database	object	is	the	object	that	has	the	focus	or
in	which	code	is	running.

The	CurrentObjectType	property	is	set	by	Microsoft	Access	to	one	of	the
following	Microsoft	Access	intrinsic	constants.

Setting Description
acTable	(0) The	active	object	is	a	table.
acQuery	(1) The	active	object	is	a	query.
acForm	(2) The	active	object	is	a	form.
acReport	(3) The	active	object	is	a	report.
acMacro	(4) The	active	object	is	a	macro.
acModule	(5) The	active	object	is	a	module.
acDataAccessPage	(6) The	active	object	is	a	data	access	page.
acServerView	(7) The	active	object	is	a	server	view.
acDiagram	(8) The	active	object	is	a	database	diagram.
acStoredProcedure	(9) The	active	object	is	a	stored	procedure.

The	following	conditions	determine	which	object	is	considered	the	active	object:

If	the	active	object	is	a	property	sheet,	command	bar,	menu,	palette,	or	field
list	of	an	object,	the	CurrentObjectType	property	returns	the	type	of	the
underlying	object.

If	the	active	object	is	a	pop-up	form,	the	CurrentObjectType	property
refers	to	the	pop-up	form	itself,	not	the	form	from	which	it	was	opened.

If	the	active	object	is	the	Database	window,	the	CurrentObjectType

property	returns	the	item	selected	in	the	Database	window.

If	no	object	is	selected,	the	CurrentObjectType	property	returns	True.

If	the	current	state	is	ambiguous	(the	active	object	isn't	a	table,	query,	form,
report,	macro,	or	module)	for	example,	if	a	dialog	box	has	the	focus	the
CurrentObjectType	property	returns	True.

You	can	use	this	property	with	the	SysCmd	method	to	determine	the	active
object	and	its	state	(for	example,	if	the	object	is	open,	new,	or	has	been	changed
but	not	saved).

Example

The	following	example	uses	the	CurrentObjectType	and	CurrentObjectName
properties	with	the	SysCmd	function	to	determine	if	the	active	object	is	the
Products	form	and	if	this	form	is	open	and	has	been	changed	but	not	saved.	If
these	conditions	are	true,	the	form	is	saved	and	then	closed.

Public	Sub	CheckProducts()

				

				Dim	intState	As	Integer

				Dim	intCurrentType	As	Integer

				Dim	strCurrentName	As	String

				intCurrentType	=	Application.CurrentObjectType

				strCurrentName	=	Application.CurrentObjectName

				

				If	intCurrentType	=	acForm	And	strCurrentName	=	"Products"	Then

								intState	=	SysCmd(acSysCmdGetObjectState,	intCurrentType,	_

																			strCurrentName)

													

								'	Products	form	changed	but	not	saved.

								If	intState	=	acObjStateDirty	+	acObjStateOpen	Then

												

												'	Close	Products	form	and	save	changes.

												DoCmd.Close	intCurrentType,	strCurrentName,	acSaveYes

								End	If

				End	If

End	Sub

							

CurrentProject	Property
							

You	can	use	the	CurrentProject	property	to	access	the	CurrentProject	object
and	its	related	collections,	properties,	and	methods.	Read-only	CurrentProject
object.

expression.CurrentProject

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

Setting

The	CurrentProject	property	setting	contains	a	reference	to	the	CurrentProject
for	the	current	code	database.

This	property	is	available	only	by	using	Visual	Basic	and	is	read-only.

Remarks

Use	the	CurrentProject	property	to	refer	to	one	of	the	following	current
database	collections	together	with	one	of	its	properties	or	methods.

AllForms AllReports
AllDataAccessPages AllMacros
AllModules AccessObjectProperties

Show	All

CurrentRecord	Property
							

You	can	use	the	CurrentRecord	property	to	identify	the	current	record	in	the
recordset	being	viewed	on	a	form.	Read/write	Long.

expression.CurrentRecord

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

Setting

Microsoft	Access	sets	this	property	to	a	Long	Integer	value	that	represents	the
current	record	number	displayed	on	a	form.

The	CurrentRecord	property	is	read-only	in	Form	view	and	Datasheet	view.	It's
not	available	in	Design	view.	This	property	is	available	only	by	using	a	macro	or
Visual	Basic.

Remarks

The	value	specified	by	this	property	corresponds	to	the	value	shown	in	the
record	number	box	found	in	the	lower-left	corner	of	the	form.

Example

The	following	example	shows	how	to	use	the	CurrentRecord	property	to
determine	the	record	number	of	the	current	record	being	displayed.	The	general-
purpose	CurrentFormRecord	procedure	assigns	the	value	of	the	current	record	to
the	variable	lngrecordnum.

Sub	CurrentFormRecord(frm	As	Form)

				Dim	lngrecordnum	As	Long

				lngrecordnum	=	frm.CurrentRecord

End	Sub

Show	All

CurrentSectionLeft	Property
							

You	can	use	this	property	to	determine	the	distance	in	twips	from	the	left	side	of
the	current	section	to	the	left	side	of	the	form.	Read/write	Integer.

expression.CurrentSectionLeft

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

Remarks

This	property	setting	is	available	only	by	using	a	macro	or	Visual	Basic.

The	CurrentSectionLeft	property	setting	changes	whenever	a	user	scrolls
through	a	form.

For	forms	whose	DefaultView	property	is	set	to	Single	Form,	if	the	user	scrolls
to	the	right	of	the	left	edge	of	the	form,	the	property	setting	is	a	negative	value.

The	CurrentSectionLeft	property	is	useful	for	finding	the	positions	of	detail
sections	displayed	in	Form	view	as	continuous	forms	or	in	Datasheet	view.

Example

The	following	example	displays	the	CurrentSectionLeft	and
CurrentSectionTop	property	settings	for	a	control	on	a	continuous	form.
Whenever	the	user	moves	to	a	new	record,	the	property	settings	for	the	current
section	are	displayed	in	the	lblStatus	label	in	the	form's	header.

Private	Sub	Form_Current()

				Dim	intCurTop	As	Integer

				Dim	intCurLeft	As	Integer

				intCurTop	=	Me.CurrentSectionTop

				intCurLeft	=	Me.CurrentSectionLeft

				Me!lblStatus.Caption	=	intCurLeft	&	"	,	"	&	intCurTop

End	Sub

Show	All

CurrentSectionTop	Property
							

You	can	use	this	property	to	determine	the	distance	in	twips	from	the	top	edge	of
the	current	section	to	the	top	edge	of	the	form.

expression.CurrentSectionTop

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

Remarks

This	property	setting	is	available	only	by	using	a	macro	or	Visual	Basic.

The	CurrentSectionTop	property	setting	changes	whenever	a	user	scrolls
through	a	form.

For	forms	whose	DefaultView	property	is	set	to	Single	Form,	if	the	user	scrolls
above	the	upper-left	corner	of	the	section,	the	property	settings	are	negative
values.

For	forms	whose	DefaultView	property	is	set	to	Continuous	Forms,	if	a	section
isn't	visible,	the	CurrentSectionTop	property	is	equal	to	the	InsideHeight
property	of	the	form.

The	CurrentSectionTop	property	is	useful	for	finding	the	positions	of	detail
sections	displayed	in	Form	view	as	continuous	forms	or	in	Datasheet	view.	Each
detail	section	has	a	different	CurrentSectionTop	property	setting,	depending	on
the	section's	position	on	the	form.

Example

The	following	example	displays	the	CurrentSectionLeft	and
CurrentSectionTop	property	settings	for	a	control	on	a	continuous	form.
Whenever	the	user	moves	to	a	new	record,	the	property	settings	for	the	current
section	are	displayed	in	the	lblStatus	label	in	the	form's	header.

Private	Sub	Form_Current()

				Dim	intCurTop	As	Integer

				Dim	intCurLeft	As	Integer

				intCurTop	=	Me.CurrentSectionTop

				intCurLeft	=	Me.CurrentSectionLeft

				Me!lblStatus.Caption	=	intCurLeft	&	"	,	"	&	intCurTop

End	Sub

Show	All

CurrentView	Property
							

CurrentView	property	as	it	applies	to	the	AccessObject	object.

Returns	the	current	view	for	the	specified	Microsoft	Access	object.	Read-only
AcCurrentView.

AcCurrentView	can	be	one	of	these	AcCurrentView	constants.
acCurViewDatasheet
acCurViewDesign
acCurViewFormBrowse
acCurViewPivotChart
acCurViewPivotTable
acCurViewPreview

expression.CurrentView

expression			Required.	An	expression	that	returns	an	AccessObject	object.

CurrentView	property	as	it	applies	to	the	DataAccessPage	object.

You	can	use	the	CurrentView	property	to	determine	how	a	data	access	page	is
currently	displayed.	Read-only	Integer.

expression.CurrentView

expression			Required.	An	expression	that	returns	a	DataAccessPage	object.

CurrentView	property	as	it	applies	to	the	Form	object.

You	can	use	the	CurrentView	property	to	determine	how	a	form	is	currently
displayed.	Read/write	Integer.

expression.CurrentView

expression			Required.	An	expression	that	returns	a	Form	object.

Settings

The	CurrentView	property	uses	the	following	settings.

Setting Form	Displayed	In: Data	Access	Page	Displayed	In:
0 Design	view Design	view
1 Form	view Page	view
2 Datasheet	view Not	applicable
This	property	is	available	only	by	using	a	macro	or	Visual	Basic	and	is	read-only
in	all	views.

Remarks

Use	this	property	to	perform	different	tasks	depending	on	the	current	view.	For
example,	an	event	procedure	could	determine	which	view	the	form	is	displayed
in	and	perform	one	task	if	the	form	is	displayed	in	Form	view	or	another	task	if
it's	displayed	in	Datasheet	view.

Example

The	following	example	uses	the	GetCurrentView	subroutine	to	determine
whether	a	form	is	in	Form	or	Datasheet	view.	If	it's	in	Form	view,	a	message	to
the	user	is	displayed	in	a	text	box	on	the	form;	if	it's	in	Datasheet	view,	the	same
message	is	displayed	in	a	message	box.

GetCurrentView	Me,	"Please	contact	system	administrator."

Sub	GetCurrentView(frm	As	Form,	strDisplayMsg	As	String)

				Const	conFormView	=	1

				Const	conDataSheet	=	2

				Dim	intView	As	Integer

				intView	=	frm.CurrentView

				Select	Case	intView

								Case	conFormView

												frm!MessageTextBox.SetFocus

												'	Display	message	in	text	box.

												frm!MessageTextBox	=	strDisplayMsg

								Case	conDataSheet

												'	Display	message	in	message	box.

												MsgBox	strDisplayMsg

				End	Select

End	Sub

Show	All

CurrentX	Property
							

You	can	use	the	CurrentX	property	(along	with	the	CurrentY	property)	to
specify	the	horizontal	and	vertical	coordinates	for	the	starting	position	of	the
next	printing	and	drawing	method	on	a	report.

expression.CurrentX

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

Remarks

For	example,	you	can	use	these	properties	to	determine	where	the	center	point	of
a	circle	is	drawn	on	a	report	section.

The	CurrentX	property	specifies	a	Single	value	used	in	a	numeric	expression	to
set	the	horizontal	coordinate	of	the	next	printing	drawing	method.

The	coordinates	are	measured	from	the	upper-left	corner	of	the	report	section
that	contains	the	reference	to	the	CurrentX	or	CurrentY	property.	The
CurrentX	property	setting	is	0	at	the	section's	left	edge,	and	the	CurrentY
property	setting	is	0	at	its	top	edge.

You	can	set	the	CurrentX	and	CurrentY	properties	by	using	a	macro	or	a
Visual	Basic	event	procedure	specified	by	the	OnPrint	property	setting	of	a
report	section.

Use	the	ScaleMode	property	to	define	the	unit	of	measure,	such	as	points,
pixels,	characters,	inches,	millimeters,	or	centimeters,	that	the	coordinates	will
be	based	on.

When	you	use	the	following	graphics	methods,	the	CurrentX	and	CurrentY
property	settings	are	changed	as	indicated.

Method Sets	CurrentX,	CurrentY	properties	to
Circle The	center	of	the	object.

Line The	end	point	of	the	line	(the	x2,	y2
coordinates).

Print The	next	print	position.

Example

The	following	example	uses	the	Print	method	to	display	text	on	a	report	named
Report1.	It	uses	the	TextWidth	and	TextHeight	methods	to	center	the	text
vertically	and	horizontally.

Private	Sub	Detail_Format(Cancel	As	Integer,	_

								FormatCount	As	Integer)

				Dim	rpt	as	Report

				Dim	strMessage	As	String

				Dim	intHorSize	As	Integer,	intVerSize	As	Integer

				Set	rpt	=	Me

				strMessage	=	"DisplayMessage"

				With	rpt

								'Set	scale	to	pixels,	and	set	FontName	and

								'FontSize	properties.

								.ScaleMode	=	3

								.FontName	=	"Courier"

								.FontSize	=	24

				End	With

				'	Horizontal	width.

				intHorSize	=	Rpt.TextWidth(strMessage)

				'	Vertical	height.

				intVerSize	=	Rpt.TextHeight(strMessage)

				'	Calculate	location	of	text	to	be	displayed.

				Rpt.CurrentX	=	(Rpt.ScaleWidth/2)	-	(intHorSize/2)

				Rpt.CurrentY	=	(Rpt.ScaleHeight/2)	-	(intVerSize/2)

				'	Print	text	on	Report	object.

				Rpt.Print	strMessage

End	Sub

Show	All

CurrentY	Property
							

You	can	use	the	CurrentY	property	(along	with	the	CurrentX	property)	to
specify	the	horizontal	and	vertical	coordinates	for	the	starting	position	of	the
next	printing	and	drawing	method	on	a	report.

expression.CurrentY

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

Remarks

For	example,	you	can	use	these	properties	to	determine	where	the	center	point	of
a	circle	is	drawn	on	a	report	section.

The	CurrentY	property	specifies	a	Single	value	used	in	a	numeric	expression	to
set	the	vertical	coordinate	of	the	next	printing	drawing	method.

The	coordinates	are	measured	from	the	upper-left	corner	of	the	report	section
that	contains	the	reference	to	the	CurrentX	or	CurrentY	property.	The
CurrentX	property	setting	is	0	at	the	section's	left	edge,	and	the	CurrentY
property	setting	is	0	at	its	top	edge.

You	can	set	the	CurrentX	and	CurrentY	properties	by	using	a	macro	or	a
Visual	Basic	event	procedure	specified	by	the	OnPrint	property	setting	of	a
report	section.

Use	the	ScaleMode	property	to	define	the	unit	of	measure,	such	as	points,
pixels,	characters,	inches,	millimeters,	or	centimeters,	that	the	coordinates	will
be	based	on.

When	you	use	the	following	graphics	methods,	the	CurrentX	and	CurrentY
property	settings	are	changed	as	indicated.

Method Sets	CurrentX,	CurrentY	properties	to
Circle The	center	of	the	object.

Line The	end	point	of	the	line	(the	x2,	y2
coordinates).

Print The	next	print	position.

Example

The	following	example	uses	the	Print	method	to	display	text	on	a	report	named
Report1.	It	uses	the	TextWidth	and	TextHeight	methods	to	center	the	text
vertically	and	horizontally.

Private	Sub	Detail_Format(Cancel	As	Integer,	_

								FormatCount	As	Integer)

				Dim	rpt	as	Report

				Dim	strMessage	As	String

				Dim	intHorSize	As	Integer,	intVerSize	As	Integer

				Set	rpt	=	Me

				strMessage	=	"DisplayMessage"

				With	rpt

								'Set	scale	to	pixels,	and	set	FontName	and

								'FontSize	properties.

								.ScaleMode	=	3

								.FontName	=	"Courier"

								.FontSize	=	24

				End	With

				'	Horizontal	width.

				intHorSize	=	Rpt.TextWidth(strMessage)

				'	Vertical	height.

				intVerSize	=	Rpt.TextHeight(strMessage)

				'	Calculate	location	of	text	to	be	displayed.

				Rpt.CurrentX	=	(Rpt.ScaleWidth/2)	-	(intHorSize/2)

				Rpt.CurrentY	=	(Rpt.ScaleHeight/2)	-	(intVerSize/2)

				'	Print	text	on	Report	object.

				Rpt.Print	strMessage

End	Sub

Show	All

Custom	Property
							

Returns	or	sets	a	String	representing	the	custom	properties	dialog	box	for	an
ActiveX	control.	Read/write.

expression.Custom

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

Remarks

Not	all	ActiveX	controls	provide	a	custom	properties	dialog	box.	To	see	whether
a	control	provides	this	custom	properties	dialog	box,	look	for	the	Custom
property	in	the	Microsoft	Access	property	sheet	for	this	control.	If	the	list	of
properties	contains	the	name	Custom,	then	the	control	provides	the	custom
properties	dialog	box.

After	you	click	the	Custom	property	box	in	the	Microsoft	Access	property	sheet,
click	the	Build	button	to	the	right	of	the	property	box	to	display	the	control's
custom	properties	dialog	box,	often	presented	as	a	tabbed	dialog	box.	Choose	the
tab	that	contains	the	interface	for	setting	the	properties	that	you	want	to	set.

After	you	make	changes	on	one	tab,	you	can	often	apply	those	changes
immediately	by	clicking	the	Apply	button	(if	provided).	You	can	click	other	tabs
to	set	other	properties	as	needed.	To	approve	all	changes	made	in	the	custom
properties	dialog	box,	click	the	OK	button.	To	return	to	the	Microsoft	Access
property	sheet	without	changing	any	property	settings,	click	the	Cancel	button.

You	can	also	view	the	custom	properties	dialog	box	by	clicking	the	Properties
subcommand	of	the	ActiveX	control	Object	command	(for	example,	Calendar
Control	Object)	on	the	Edit	menu,	or	by	clicking	this	same	subcommand	on	the
shortcut	menu	for	the	ActiveX	control.	In	addition,	some	properties	in	the
Microsoft	Access	property	sheet	for	the	ActiveX	control,	like	the
GridFontColor	property	of	the	Calendar	control,	have	a	Build	button	to	the
right	of	the	property	box.	When	you	click	the	Build	button,	the	custom
properties	dialog	box	is	displayed,	with	the	appropriate	tab	selected	(for
example,	Colors).

Show	All

Cycle	Property
							

You	can	use	the	Cycle	property	to	specify	what	happens	when	you	press	the
TAB	key	and	the	focus	is	in	the	last	control	on	a	bound	form.	Read/write	Byte.

expression.Cycle

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

Remarks

The	Cycle	property	uses	the	following	settings.

Setting Visual	Basic Description

All	Records 0

(Default)	Pressing	the	TAB	key	from	the
last	control	on	a	form	moves	the	focus	to
the	first	control	in	the	tab	order	in	the	next
record.

Current	Record 1
Pressing	the	TAB	key	from	the	last	control
on	a	record	moves	the	focus	to	the	first
control	in	the	tab	order	in	the	same	record.

Current	Page 2
Pressing	the	TAB	key	from	the	last	control
on	a	page	moves	the	focus	back	to	the	first
control	in	the	tab	order	on	the	page.

You	can	set	the	Cycle	property	by	using	the	form's	property	sheet,	a	macro,	or
Visual	Basic.

You	can	set	the	Cycle	property	in	any	view.

When	you	press	the	TAB	key	on	a	form,	the	focus	moves	through	the	controls	on
the	form	according	to	each	control's	place	in	the	tab	order.

You	can	set	the	Cycle	property	to	All	Records	for	forms	designed	for	data	entry.
This	allows	the	user	to	move	to	a	new	record	by	pressing	the	TAB	key.

Note			The	Cycle	property	only	controls	the	TAB	key	behavior	on	the	form
where	the	property	is	set.	If	a	subform	control	is	in	the	tab	order,	once	the
subform	control	receives	the	focus,	the	Cycle	property	setting	for	the	subform
determines	what	happens	when	you	press	the	TAB	key.

To	move	the	focus	outside	a	subform	control,	press	CTRL+TAB.

DataAccessPages	Property
							

You	can	use	the	DataAccessPages	property	to	reference	the	read-only
DataAccessPages	collection	and	its	related	properties.

expression.DataAccessPages

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

Remarks

The	DataAccessPage	property	is	available	only	by	using	Visual	Basic.

DataChange	Property
							

Returns	or	sets	a	String	indicating	which	macro,	event	procedure,	or	user-
defined	function	runs	when	the	DataChange	event	occurs.	Read/write.

expression.DataChange

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

Remarks

Valid	values	for	this	property	are	"macroname"	where	macroname	is	the	name	of
macro,	"[Event	Procedure]"	which	indicates	the	event	procedure	associated	with
the	DataChange	event	for	the	specified	object,	or	"=functionname()"	where
functionname	is	the	name	of	a	user-defined	function.	For	a	more	detailed
discussion	of	event	properties,	see	"Event	Properties."

Example

The	following	example	specifies	that	when	the	DataChange	event	occurs	on	the
first	form	of	the	current	project,	the	associated	event	procedure	should	run.

Forms(0).DataChange	=	"[Event	Procedure]"

Show	All

DataEntry	Property
							

You	can	use	the	DataEntry	property	to	specify	whether	a	bound	form	opens	to
allow	data	entry	only.	The	Data	Entry	property	doesn't	determine	whether
records	can	be	added;	it	only	determines	whether	existing	records	are	displayed.
Read/write	Boolean.

expression.DataEntry

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

Remarks

The	DataEntry	property	uses	the	following	settings.

Setting Visual	Basic Description
Yes True	 The	form	opens	showing	only	a	blank	record.

No False	 (Default)	The	form	opens	showing	existing
records.

You	can	set	the	DataEntry	property	by	using	a	form's	property	sheet,	a	macro,
or	Visual	Basic.

This	property	can	be	set	in	any	view.

The	DataEntry	property	has	an	effect	only	when	the	AllowAdditions	property
is	set	to	Yes.

Setting	the	DataEntry	property	to	Yes	by	using	Visual	Basic	has	the	same	effect
as	clicking	Data	Entry	on	the	Records	menu.	Setting	it	to	No	by	using	Visual
Basic	is	equivalent	to	clicking	Remove	Filter/Sort	on	the	Records	menu.

Note			When	the	Data	Mode	argument	of	the	OpenForm	action	is	set,	Microsoft
Access	will	override	a	number	of	form	property	settings.	If	the	Data	Mode
argument	of	the	OpenForm	action	is	set	to	Edit,	Microsoft	Access	will	open	the
form	with	the	following	property	settings:

AllowEdits	—	Yes

AllowDeletions	—	Yes

AllowAdditions	—	Yes

DataEntry	—	No

To	prevent	the	OpenForm	action	from	overriding	any	of	these	existing	property
settings,	omit	the	Data	Mode	argument	setting	so	that	Microsoft	Access	will	use
the	property	settings	defined	by	the	form

mk:@MSITStore:acmain10.chm::/html/acactOpenForm.htm

DataOnly	Property
							

True	if	Microsoft	Access	prints	only	the	data	from	a	table	or	query	in	Datasheet
View	and	not	the	labels,	control	borders,	gridlines,	and	display	graphics.
Read/write	Boolean.

expression.DataOnly

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

Example

The	following	example	sets	a	variety	of	printer	settings	for	the	first	form	in	the
current	project.

With	Forms(0).Printer

				.TopMargin	=	1440

				.BottomMargin	=	1440

				.LeftMargin	=	1440

				.RightMargin	=	1440

				.ColumnSpacing	=	360

				.RowSpacing	=	360

				.ColorMode	=	acPRCMColor

				.DataOnly	=	False

				.DefaultSize	=	False

				.ItemSizeHeight	=	2880

				.ItemSizeWidth	=	2880

				.ItemLayout	=	acPRVerticalColumnLayout

				.ItemsAcross	=	6

				.Copies	=	1

				.Orientation	=	acPRORLandscape

				.Duplex	=	acPRDPVertical

				.PaperBin	=	acPRBNAuto

				.PaperSize	=	acPRPSLetter

				.PrintQuality	=	acPRPQMedium

End	With

DataSetChange	Property
							

Returns	or	sets	a	String	indicating	which	macro,	event	procedure,	or	user-
defined	function	runs	when	the	DataSetChange	event	occurs.	Read/write.

expression.DataSetChange

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

Remarks

Valid	values	for	this	property	are	"macroname"	where	macroname	is	the	name	of
macro,	"[Event	Procedure]"	which	indicates	the	event	procedure	associated	with
the	DataSetChange	event	for	the	specified	object,	or	"=functionname()"	where
functionname	is	the	name	of	a	user-defined	function.	For	a	more	detailed
discussion	of	event	properties,	see	"Event	Properties."

Example

The	following	example	specifies	that	when	the	DataSetChange	event	occurs	on
the	first	form	of	the	current	project,	the	associated	event	procedure	should	run.

Forms(0).DataSetChange	=	"[Event	Procedure]"

Show	All

DatasheetBackColor	Property
							

You	can	use	the	DatasheetBackColor	property	in	Visual	Basic	to	specify	or
determine	the	background	color	of	an	entire	table,	query,	or	form	in	Datasheet
view	within	a	Microsoft	Access	database	(.mdb).	Read/write	Long.

expression.DatasheetBackColor

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

Remarks

The	DatasheetBackColor	property	is	a	Long	Integer	value	representing	the
background	color	and	font	color	setting	for	a	datasheet.

The	following	setting	information	applies	to	both	Microsoft	Access	database	and
Access	projects	(.adp):

You	can	also	set	this	property	by	clicking	Fill/BackColor	on	the
Formatting	(Datasheet)	toolbar	and	clicking	the	desired	color	displayed
on	the	color	palette.

You	can	also	set	the	default	DatasheetBackColor	property	by	using	the
Datasheet	tab	of	the	Options	dialog	box,	available	by	clicking	Options	on
the	Tools	menu.

Setting	the	DatasheetBackColor	property	for	a	table	or	query	won't	affect	this
property	setting	for	a	form	that	uses	the	table	or	query	as	its	source	of	data.

The	following	table	contains	the	properties	that	don't	exist	in	the	DAO
Properties	collection	of	until	you	set	them	by	using	the	Formatting
(Datasheet)	toolbar	or	you	can	add	them	in	an	Access	database	(.mdb)	by	using
the	CreateProperty	method	and	append	it	to	the	DAO	Properties	collection.

DatasheetBackColor DatasheetFontUnderline*
DatasheetCellsEffect DatasheetFontWeight*
DatasheetFontHeight* DatasheetForeColor*
DatasheetFontItalic* DatasheetGridlinesBehavior
DatasheetFontName* DatasheetGridlinesColor

Note			When	you	add	or	set	any	property	listed	with	an	asterisk,	Microsoft
Access	automatically	adds	it	to	the	Properties	collection.

mk:@MSITStore:dao360.chm::/htm/dacolProperty.htm
mk:@MSITStore:dao360.chm::/htm/damthCreateProperty.htm

Example

The	following	example	uses	the	SetTableProperty	procedure	to	set	a	table's	font
color	to	dark	blue	and	its	background	color	to	light	gray.	If	a	"Property	not
found"	error	occurs	when	the	property	is	set,	the	CreateProperty	method	is	used
to	add	the	property	to	the	object's	Properties	collection.

Dim	dbs	As	Object,	objProducts	As	Object

Const	lngForeColor	As	Long	=	8388608								'	Dark	blue.

Const	lngBackColor	As	Long	=	12632256								'	Light	gray.

Const	DB_Long	As	Long	=	4

Set	dbs	=	CurrentDb

Set	objProducts	=	dbs!Products

SetTableProperty	objProducts,	"DatasheetBackColor",	DB_Long,	lngBackColor

SetTableProperty	objProducts,	"DatasheetForeColor",	DB_Long,	lngForeColor

Sub	SetTableProperty(objTableObj	As	Object,	strPropertyName	As	String,	_

								intPropertyType	As	Integer,	varPropertyValue	As	Variant)

				Const	conErrPropertyNotFound	=	3270

				Dim	prpProperty	As	Variant

				On	Error	Resume	Next																'	Don't	trap	errors.

				objTableObj.Properties(strPropertyName)	=	varPropertyValue

				If	Err	<>	0	Then																				'	Error	occurred	when	value	set.

								If	Err	<>	conErrPropertyNotFound	Then

												'	Error	is	unknown.

												MsgBox	"Couldn't	set	property	'"	&	strPropertyName	_

																&	"'	on	table	'"	&	tdfTableObj.Name	&	"'",	vbExclamation,	Err.Description

												Err.Clear

								Else

												'	Error	is	"Property	not	found",	so	add	it	to	collection.

												Set	prpProperty	=	objTableObj.CreateProperty(strPropertyName,	_

																intPropertyType,	varPropertyValue)

												objTableObj.Properties.Append	prpProperty

												Err.Clear

								End	If

				End	If

				objTableObj.Properties.Refresh

End	Sub

DatasheetBorderLineStyle	Property
							

Returns	or	sets	a	Byte	indicating	the	line	style	to	use	for	the	border	of	the
specified	datasheet.	Read/write.

expression.DatasheetBorderLineStyle

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

Remarks

Valid	values	are	between	zero	and	eight.	Values	greater	than	eight	are	ignored;
negative	values	or	values	above	255	cause	an	error.

Value Description
0 Transparent	border
1 Solid
2 Dashes
3 Short	dashes
4 Dots
5 Sparse	dots
6 Dash-dot
7 Dash-dot-dot
8 Double	solid

This	property	is	not	supported	when	saving	a	form	as	a	data	access	page.

Example

This	example	sets	the	datasheet	border	line	style	on	the	first	open	form	to	short
dashes.	The	form	must	be	set	to	Datasheet	View	in	order	for	you	to	see	the
change.

Forms(0).DatasheetBorderLineStyle	=	3

Show	All

DatasheetCellsEffect	Property
							

You	can	use	the	DatasheetCellsEffect	property	to	specify	whether	special
effects	are	applied	to	cells	in	a	datasheet.	Read/write	Byte.

expression.DatasheetCellsEffect

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

Remarks

The	DatasheetCellsEffect	property	applies	only	to	objects	in	Datasheet	view.

This	property	is	only	available	in	Visual	Basic	within	a	Microsoft	Access
database	(.mdb)

The	DatasheetCellsEffect	property	uses	the	following	settings.

Setting Visual	Basic Description

Flat acEffectNormal	 (Default)	No	special	effects	are	applied	to
the	cells	in	the	datasheet.

Raised acEffectRaised	 Cells	in	the	datasheet	appear	raised.
Sunken acEffectSunken	 Cells	in	the	datasheet	appear	sunken.
You	can	set	this	property	by	using	Special	Effect	button	on	the	Formatting
(Datasheet)	toolbar,	and	in	an	Access	database	(.mdb),	by	using	a	macro,	or	by
using	Visual	Basic.

The	following	setting	information	applies	to	both	Access	databases	(.mdb)	and
Access	projects	(.adp):

You	can	also	set	this	property	by	selecting	the	type	of	cell	effect	under	Cell
Effect	in	the	Cells	Effects	dialog	box,	available	by	clicking	Cells	on	the	Format
menu.

You	can	set	the	default	DatasheetCellsEffect	property	by	using	the	settings
under	Default	Cell	Effect	on	the	Datasheet	tab	of	the	Options	dialog	box,
available	by	clicking	Options	on	the	Tools	menu.

This	property	applies	the	selected	effect	to	the	entire	datasheet.

When	this	property	is	set	to	Raised	or	Sunken,	gridlines	will	be	visible	on	the
datasheet	regardless	of	the	DatasheetGridlinesBehavior	property	setting.

The	following	table	contains	the	properties	that	don't	exist	in	the	DAO
Properties	collection	of	until	you	set	them	by	using	the	Formatting
(Datasheet)	toolbar	or	you	can	add	them	in	an	Access	database	(.mdb)	by	using
the	CreateProperty	method	and	append	it	to	the	DAO	Properties	collection.

mk:@MSITStore:dao360.chm::/htm/dacolProperty.htm
mk:@MSITStore:dao360.chm::/htm/damthCreateProperty.htm

DatasheetFontItalic* DatasheetForeColor*
DatasheetFontHeight* DatasheetBackColor
DatasheetFontName* DatasheetGridlinesColor
DatasheetFontUnderline* DatasheetGridlinesBehavior
DatasheetFontWeight* DatasheetCellsEffect

Note			When	you	add	or	set	any	property	listed	with	an	asterisk,	Microsoft
Access	automatically	adds	all	the	properties	listed	with	an	asterisk	to	the
Properties	collection	in	the	database.

DatasheetColumnHeaderUnderlineStyle
Property
							

Returns	or	sets	a	Byte	indicating	the	line	style	to	use	for	the	bottom	edge	of	the
column	headers	on	the	specified	datasheet.	Read/write.

expression.DatasheetColumnHeaderUnderlineStyle

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

Remarks

Valid	values	are	between	zero	and	eight.	Values	greater	than	eight	are	ignored;
negative	values	or	values	above	255	cause	an	error.

Value Description
0 Transparent	border
1 Solid
2 Dashes
3 Short	dashes
4 Dots
5 Sparse	dots
6 Dash-dot
7 Dash-dot-dot
8 Double	solid

This	property	is	not	supported	when	saving	a	form	as	a	data	access	page.

Example

This	example	sets	the	column	header	underline	style	for	the	first	open	form	to
sparse	dots.	The	form	must	be	set	to	Datasheet	View	in	order	for	you	to	see	the
change.

Forms(0).DatasheetColumnHeaderUnderlineStyle	=	5

Show	All

DatasheetFontHeight	Property
							

You	can	use	the	DatasheetFontHeight	property	to	specify	the	font	point	size
used	to	display	and	print	field	names	and	data	in	Datasheet	view.	Read/write
Integer.

expression.DatasheetFontHeight

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

Remarks

This	property	is	only	available	in	Visual	Basic	within	a	Microsoft	Access
database	(.mdb)

You	can	set	this	property	by	selecting	the	font	size	from	the	Font	Size	box	on	the
Formatting	(Datasheet)	toolbar.

You	can	also	set	this	property	with	the	Size	boxes	in	the	Font	dialog	box,
available	by	clicking	Font	on	the	Format	menu	in	Datasheet	view.

For	the	DatasheetFontHeight	property,	the	font	size	you	specify	must	be	valid
for	the	font	specified	by	the	DatasheetFontName	property.	For	example,	MS
Sans	Serif	is	available	only	in	sizes	8,	10,	12,	14,	18,	and	24	points.

You	can	set	the	default	DatasheetFontHeight	property	by	using	the	settings
under	Default	Font	on	the	Datasheet	tab	of	the	Options	dialog	box,	available
by	clicking	Options	on	the	Tools	menu.

The	following	table	contains	the	properties	that	don't	exist	in	the	DAO
Properties	collection	of	until	you	set	them	by	using	the	Formatting
(Datasheet)	toolbar	or	you	can	add	them	in	an	Access	database	(.mdb)	by	using
the	CreateProperty	method	and	append	it	to	the	DAO	Properties	collection.

DatasheetFontItalic* DatasheetForeColor*
DatasheetFontHeight* DatasheetBackColor
DatasheetFontName* DatasheetGridlinesColor
DatasheetFontUnderline* DatasheetGridlinesBehavior
DatasheetFontWeight* DatasheetCellsEffect

Note			When	you	add	or	set	any	property	listed	with	an	asterisk,	Microsoft
Access	automatically	adds	all	the	properties	listed	with	an	asterisk	to	the
Properties	collection	of	the	database.

mk:@MSITStore:dao360.chm::/htm/dacolProperty.htm
mk:@MSITStore:dao360.chm::/htm/damthCreateProperty.htm

Example

The	following	example	sets	the	font	to	MS	Serif,	the	font	size	to	10	points,	and
the	font	weight	to	medium	(500)	in	Datasheet	view	of	the	Products	table.

To	set	these	properties,	the	example	uses	the	SetTableProperty	procedure,	which
is	shown	in	the	DatasheetFontItalic,	DatasheetFontUnderline	properties
example.

Dim	dbs	As	Object,	objProducts	As	Object

Set	dbs	=	CurrentDb

Const	DB_Text	As	Long	=	10

Const	DB_Integer	As	Long	=	3

Set	objProducts	=	dbs!Products

SetTableProperty	objProducts,	"DatasheetFontName",	DB_Text,	"MS	Serif"

SetTableProperty	objProducts,	"DatasheetFontHeight",	DB_Integer,	10

SetTableProperty	objProducts,	"DatasheetFontWeight",	DB_Integer,	500

The	next	example	makes	the	same	changes	as	the	preceding	example	in
Datasheet	view	of	the	open	Products	form.

Forms!Products.DatasheetFontName	=	"MS	Serif"

Forms!Products.DatasheetFontHeight	=	10

Forms!Products.DatasheetFontWeight	=	500

Show	All

DatasheetFontItalic	Property
							

You	can	use	the	DatasheetFontItalic	property	to	specify	an	italicized
appearance	for	field	names	and	data	in	Datasheet	view.	Read/write	Boolean.

expression.DatasheetFontItalic

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

Remarks

The	DatasheetFontItalic	property	applies	to	all	fields	in	Datasheet	view	and	to
form	controls	when	the	form	is	in	Datasheet	view.

This	property	is	only	available	in	Visual	Basic	within	a	Microsoft	Access
database	(.mdb).

In	Visual	Basic,	the	DatasheetFontItalic	property	uses	the	following	settings.

Setting Description
True The	text	is	italicized.

False (Default)	The	text	isn't
italicized.

You	can	set	this	property	by	clicking	Italic	on	the	Formatting	(Datasheet)
toolbar.

You	can	also	set	this	property	in	the	Font	dialog	box,	available	by	clicking	Font
on	the	Format	menu	in	Datasheet	view.

The	following	table	contains	the	properties	that	don't	exist	in	the	DAO
Properties	collection	of	until	you	set	them	by	using	the	Formatting
(Datasheet)	toolbar	or	you	can	add	them	in	an	Access	database	(.mdb)	by	using
the	CreateProperty	method	and	append	it	to	the	DAO	Properties	collection.

DatasheetFontItalic* DatasheetForeColor*
DatasheetFontHeight* DatasheetBackColor
DatasheetFontName* DatasheetGridlinesColor
DatasheetFontUnderline* DatasheetGridlinesBehavior
DatasheetFontWeight* DatasheetCellsEffect

Note			When	you	add	or	set	any	property	listed	with	an	asterisk,	Microsoft
Access	automatically	adds	all	the	properties	listed	with	an	asterisk	to	the
Properties	collection	of	the	database.

mk:@MSITStore:dao360.chm::/htm/dacolProperty.htm
mk:@MSITStore:dao360.chm::/htm/damthCreateProperty.htm

Example

The	following	example	displays	the	data	and	field	names	in	Datasheet	view	of
the	Products	form	as	italic	and	underlined.

Forms![Products].DatasheetFontItalic	=	True

Forms![Products].DatasheetFontUnderline	=	True

The	next	example	displays	the	data	and	field	names	in	Datasheet	view	of	the
Products	table	as	italic	and	underlined.

To	set	the	DatasheetFontItalic	and	DatasheetFontUnderline	properties,	the
example	uses	the	SetTableProperty	procedure,	which	is	in	the	database's
standard	module.

Dim	dbs	As	Object,	objProducts	As	Object

Const	DB_Boolean	As	Long	=	1

Set	dbs	=	CurrentDb

Set	objProducts	=	dbs![Products]

SetTableProperty	objProducts,	"DatasheetFontItalic",	DB_Boolean,	True

SetTableProperty	objProducts,	"DatasheetFontUnderline",	DB_Boolean,	True

Sub	SetTableProperty(objTableObj	As	Object,	strPropertyName	As	String,	_

								intPropertyType	As	Integer,	varPropertyValue	As	Variant)

				'	Set	Microsoft	Access-defined	table	property	without	causing

				'	nonrecoverable	run-time	error.

				Const	conErrPropertyNotFound	=	3270

				Dim	prpProperty	As	Variant

				On	Error	Resume	Next																'	Don't	trap	errors.

				objTableObj.Properties(strPropertyName)	=	varPropertyValue

				If	Err	<>	0	Then																				'	Error	occurred	when	value	set.

								If	Err	<>	conErrPropertyNotFound	Then

												On	Error	GoTo	0

												MsgBox	"Couldn't	set	property	'"	&	strPropertyName	_

																&	"'	on	table	'"	&	objTableObj.Name	&	"'",	48,	"SetTableProperty"

								Else

												On	Error	GoTo	0

												Set	prpProperty	=	objTableObj.CreateProperty(strPropertyName,	_

																intPropertyType,	varPropertyValue)

												objTableObj.Properties.Append	prpProperty

								End	If

				End	If

				objTableObj.Properties.Refresh

End	Sub

Show	All

DatasheetFontName	Property
							

You	can	use	the	DatasheetFontName	property	to	specify	the	font	used	to
display	and	print	field	names	and	data	in	Datasheet	view.

Remarks

The	DatasheetFontName	property	applies	to	all	fields	in	Datasheet	view	and	to
form	controls	when	the	form	is	in	Datasheet	view.

This	property	is	only	available	in	Visual	Basic	within	a	Microsoft	Access
database	(.mdb).

You	can	set	this	property	by	selecting	the	font	name	from	the	Font	box	on	the
Formatting	(Datasheet)	toolbar.

You	can	also	set	this	property	with	the	Font	box	in	the	Font	dialog	box,
available	by	clicking	Font	on	the	Format	menu	in	Datasheet	view.

For	the	DatasheetFontName	property,	the	font	names	you	can	specify	depend
on	the	fonts	installed	on	your	system	and	for	your	printer.	If	you	specify	a	font
that	your	system	can't	display	or	that	isn't	installed,	Microsoft	Windows	will
substitute	a	similar	font.

You	can	set	the	default	DatasheetFontName	property	by	using	the	settings
under	Default	Font	on	the	Datasheet	tab	of	the	Options	dialog	box,	available
by	clicking	Options	on	the	Tools	menu.

The	following	table	contains	the	properties	that	don't	exist	in	the	DAO
Properties	collection	of	until	you	set	them	by	using	the	Formatting
(Datasheet)	toolbar	or	you	can	add	them	in	an	Access	database	(.mdb)	by	using
the	CreateProperty	method	and	append	it	to	the	DAO	Properties	collection.

DatasheetFontItalic* DatasheetForeColor*
DatasheetFontHeight* DatasheetBackColor
DatasheetFontName* DatasheetGridlinesColor
DatasheetFontUnderline* DatasheetGridlinesBehavior
DatasheetFontWeight* DatasheetCellsEffect

Note			When	you	add	or	set	any	property	listed	with	an	asterisk,	Microsoft
Access	automatically	adds	all	the	properties	listed	with	an	asterisk	to	the
Properties	collection	of	the	database.	

mk:@MSITStore:dao360.chm::/htm/dacolProperty.htm
mk:@MSITStore:dao360.chm::/htm/damthCreateProperty.htm

Show	All

DatasheetFontUnderline	Property
							

You	can	use	the	DatasheetFontUnderline	property	to	specify	an	underlined
appearance	for	field	names	and	data	in	Datasheet	view.	Read/write	Boolean.

expression.DatasheetFontUnderline

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

Remarks

The	DatasheetFontUnderline	property	applies	to	all	fields	in	Datasheet	view
and	to	form	controls	when	the	form	is	in	Datasheet	view.

This	property	is	only	available	in	Visual	Basic	within	a	Microsoft	Access
database	(.mdb).

In	Visual	Basic,	the	DatasheetFontUnderline	property	uses	the	following
settings.

Setting Description
True The	text	is	underlined.
False (Default)	The	text	isn't	underlined.
You	can	set	this	property	by	clicking	Underline	on	the	Formatting	(Datasheet)
toolbar.

You	can	also	set	this	property	in	the	Font	dialog	box,	available	by	clicking	Font
on	the	Format	menu	in	Datasheet	view.

The	following	table	contains	the	properties	that	don't	exist	in	the	DAO
Properties	collection	of	until	you	set	them	by	using	the	Formatting
(Datasheet)	toolbar	or	you	can	add	them	in	an	Access	database	(.mdb)	by	using
the	CreateProperty	method	and	append	it	to	the	DAO	Properties	collection.

DatasheetFontItalic* DatasheetForeColor*
DatasheetFontHeight* DatasheetBackColor
DatasheetFontName* DatasheetGridlinesColor
DatasheetFontUnderline* DatasheetGridlinesBehavior
DatasheetFontWeight* DatasheetCellsEffect

Note			When	you	add	or	set	any	property	listed	with	an	asterisk,	Microsoft
Access	automatically	adds	all	the	properties	listed	with	an	asterisk	to	the
Properties	collection	of	the	database.

mk:@MSITStore:dao360.chm::/htm/dacolProperty.htm
mk:@MSITStore:dao360.chm::/htm/damthCreateProperty.htm

Example

The	following	example	displays	the	data	and	field	names	in	Datasheet	view	of
the	Products	form	as	italic	and	underlined.

Forms![Products].DatasheetFontItalic	=	True

Forms![Products].DatasheetFontUnderline	=	True

The	next	example	displays	the	data	and	field	names	in	Datasheet	view	of	the
Products	table	as	italic	and	underlined.

To	set	the	DatasheetFontItalic	and	DatasheetFontUnderline	properties,	the
example	uses	the	SetTableProperty	procedure,	which	is	in	the	database's
standard	module.

Dim	dbs	As	Object,	objProducts	As	Object

Const	DB_Boolean	As	Long	=	1

Set	dbs	=	CurrentDb

Set	objProducts	=	dbs![Products]

SetTableProperty	objProducts,	"DatasheetFontItalic",	DB_Boolean,	True

SetTableProperty	objProducts,	"DatasheetFontUnderline",	DB_Boolean,	True

Sub	SetTableProperty(objTableObj	As	Object,	strPropertyName	As	String,	_

								intPropertyType	As	Integer,	varPropertyValue	As	Variant)

				'	Set	Microsoft	Access-defined	table	property	without	causing

				'	nonrecoverable	run-time	error.

				Const	conErrPropertyNotFound	=	3270

				Dim	prpProperty	As	Variant

				On	Error	Resume	Next																'	Don't	trap	errors.

				objTableObj.Properties(strPropertyName)	=	varPropertyValue

				If	Err	<>	0	Then																				'	Error	occurred	when	value	set.

								If	Err	<>	conErrPropertyNotFound	Then

												On	Error	GoTo	0

												MsgBox	"Couldn't	set	property	'"	&	strPropertyName	_

																&	"'	on	table	'"	&	objTableObj.Name	&	"'",	48,	"SetTableProperty"

								Else

												On	Error	GoTo	0

												Set	prpProperty	=	objTableObj.CreateProperty(strPropertyName,	_

																intPropertyType,	varPropertyValue)

												objTableObj.Properties.Append	prpProperty

								End	If

				End	If

				objTableObj.Properties.Refresh

End	Sub

Show	All

DatasheetFontWeight	Property
							

You	can	use	the	DatasheetFontWeight	property	to	specify	the	line	width	of	the
font	used	to	display	and	print	characters	for	field	names	and	data	in	Datasheet
view.	Read/write	Integer.

expression.DatasheetFontWeight

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

Remarks

The	DatasheetFontWeight	property	applies	to	all	fields	in	Datasheet	view	and
to	form	controls	when	the	form	is	in	Datasheet	view.

These	properties	are	only	available	in	Visual	Basic	within	a	Microsoft	Access
database	(.mdb)

In	Visual	Basic,	the	DatasheetFontWeight	property	setting	uses	the	following
Integer	values.

Setting Description
100 Thin
200 Extra	Light
300 Light
400 (Default)	Normal
500 Medium
600 Semi-bold
700 Bold
800 Extra	Bold
900 Heavy

The	following	setting	information	applies	to	both	Access	databases	(.mdb)	and
Access	projects	(.adp):

You	can	also	set	Normal	and	Bold	for	this	property	in	the	Font	dialog	box,
available	by	clicking	Font	on	the	Format	menu	in	Datasheet	view.	In	the
Font	dialog	box's	Font	Style	box,	the	only	available	font	weight	settings
are	Regular	(identical	to	Normal)	and	Bold.

Another	method	of	setting	only	the	Regular	and	Bold	settings	is	to	click
Bold	on	the	Formatting	(Datasheet)	toolbar.

You	can	set	the	default	DatasheetFontWeight	property	by	using	the
settings	under	Default	Font	on	the	Datasheet	tab	of	the	Options	dialog
box,	available	by	clicking	Options	on	the	Tools	menu.

Remarks

The	following	table	contains	the	properties	that	don't	exist	in	the	DAO
Properties	collection	of	until	you	set	them	by	using	the	Formatting
(Datasheet)	toolbar	or	you	can	add	them	in	an	Access	database	(.mdb)	by	using
the	CreateProperty	method	and	append	it	to	the	DAO	Properties	collection.

DatasheetFontItalic* DatasheetForeColor*
DatasheetFontHeight* DatasheetBackColor
DatasheetFontName* DatasheetGridlinesColor
DatasheetFontUnderline* DatasheetGridlinesBehavior
DatasheetFontWeight* DatasheetCellsEffect

Note			When	you	add	or	set	any	property	listed	with	an	asterisk,	Microsoft
Access	automatically	adds	all	the	properties	listed	with	an	asterisk	to	the
Properties	collection	of	the	database.

mk:@MSITStore:dao360.chm::/htm/dacolProperty.htm
mk:@MSITStore:dao360.chm::/htm/damthCreateProperty.htm

Example

The	following	example	sets	the	font	to	MS	Serif,	the	font	size	to	10	points,	and
the	font	weight	to	medium	(500)	in	Datasheet	view	of	the	Products	table.

To	set	these	properties,	the	example	uses	the	SetTableProperty	procedure,	which
is	shown	in	the	DatasheetFontItalic,	DatasheetFontUnderline	properties
example.

Dim	dbs	As	Object,	objProducts	As	Object

Set	dbs	=	CurrentDb

Const	DB_Text	As	Long	=	10

Const	DB_Integer	As	Long	=	3

Set	objProducts	=	dbs!Products

SetTableProperty	objProducts,	"DatasheetFontName",	DB_Text,	"MS	Serif"

SetTableProperty	objProducts,	"DatasheetFontHeight",	DB_Integer,	10

SetTableProperty	objProducts,	"DatasheetFontWeight",	DB_Integer,	500

The	next	example	makes	the	same	changes	as	the	preceding	example	in
Datasheet	view	of	the	open	Products	form.

Forms!Products.DatasheetFontName	=	"MS	Serif"

Forms!Products.DatasheetFontHeight	=	10

Forms!Products.DatasheetFontWeight	=	500

Show	All

DatasheetForeColor	Property
							

You	can	use	the	DatasheetForeColor	property	in	Visual	Basic	to	specify	or
determine	the	color	of	all	text	in	a	table,	query,	or	form	in	Datasheet	view	within
an	Access	database	(.mdb).	Read/write	Long.

expression.DatasheetForeColor

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

Remarks

The	following	setting	information	applies	to	both	Microsoft	Access	database	and
Access	projects	(.adp):

You	can	also	set	this	property	by	clicking	Font/ForeColor	on	the
Formatting	(Datasheet)	toolbar	and	clicking	the	desired	color	displayed
on	the	color	palette.

You	can	also	set	the	default	DatasheetForeColor	property	by	using	the
Datasheet	tab	of	the	Options	dialog	box,	available	by	clicking	Options	on
the	Tools	menu.

Remarks

Setting	the	DatasheetForeColor	property	for	a	table	or	query	won't	affect	this
property	setting	for	a	form	that	uses	the	table	or	query	as	its	source	of	data.

The	following	table	contains	the	properties	that	don't	exist	in	the	DAO
Properties	collection	of	until	you	set	them	by	using	the	Formatting
(Datasheet)	toolbar	or	you	can	add	them	in	an	Access	database	(.mdb)	by	using
the	CreateProperty	method	and	append	it	to	the	DAO	Properties	collection.

DatasheetBackColor DatasheetFontUnderline*
DatasheetCellsEffect DatasheetFontWeight*
DatasheetFontHeight* DatasheetForeColor*
DatasheetFontItalic* DatasheetGridlinesBehavior
DatasheetFontName* DatasheetGridlinesColor

Note			When	you	add	or	set	any	property	listed	with	an	asterisk,	Microsoft
Access	automatically	adds	it	to	the	Properties	collection.

mk:@MSITStore:dao360.chm::/htm/dacolProperty.htm
mk:@MSITStore:dao360.chm::/htm/damthCreateProperty.htm

Example

The	following	example	uses	the	SetTableProperty	procedure	to	set	a	table's	font
color	to	dark	blue	and	its	background	color	to	light	gray.	If	a	"Property	not
found"	error	occurs	when	the	property	is	set,	the	CreateProperty	method	is	used
to	add	the	property	to	the	object's	Properties	collection.

Dim	dbs	As	Object,	objProducts	As	Object

Const	lngForeColor	As	Long	=	8388608								'	Dark	blue.

Const	lngBackColor	As	Long	=	12632256								'	Light	gray.

Const	DB_Long	As	Long	=	4

Set	dbs	=	CurrentDb

Set	objProducts	=	dbs!Products

SetTableProperty	objProducts,	"DatasheetBackColor",	DB_Long,	lngBackColor

SetTableProperty	objProducts,	"DatasheetForeColor",	DB_Long,	lngForeColor

Sub	SetTableProperty(objTableObj	As	Object,	strPropertyName	As	String,	_

								intPropertyType	As	Integer,	varPropertyValue	As	Variant)

				Const	conErrPropertyNotFound	=	3270

				Dim	prpProperty	As	Variant

				On	Error	Resume	Next																'	Don't	trap	errors.

				objTableObj.Properties(strPropertyName)	=	varPropertyValue

				If	Err	<>	0	Then																				'	Error	occurred	when	value	set.

								If	Err	<>	conErrPropertyNotFound	Then

												'	Error	is	unknown.

												MsgBox	"Couldn't	set	property	'"	&	strPropertyName	_

																&	"'	on	table	'"	&	tdfTableObj.Name	&	"'",	vbExclamation,	Err.Description

												Err.Clear

								Else

												'	Error	is	"Property	not	found",	so	add	it	to	collection.

												Set	prpProperty	=	objTableObj.CreateProperty(strPropertyName,	_

																intPropertyType,	varPropertyValue)

												objTableObj.Properties.Append	prpProperty

												Err.Clear

								End	If

				End	If

				objTableObj.Properties.Refresh

End	Sub

DateCreated	Property
							

Returns	a	Date	indicating	the	date	and	time	when	the	design	of	the	specified
object	was	last	modified.	Read-only.

expression.DateCreated

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

Example

The	following	example	lists	all	the	reports	in	the	current	database	and	when	their
designs	were	created	and	modified.

Dim	acobjLoop	As	AccessObject

For	Each	acobjLoop	In	CurrentProject.AllReports

				With	acobjLoop

								Debug.Print	.Name	&	"	-	Created	"	&	.DateCreated	_

												&	"	-	Modified	"	&	.DateModified

				End	With

Next	acobjLoop

Show	All

DateGrouping	Property
							

You	can	use	the	DateGrouping	property	to	specify	how	you	want	to	group	dates
in	a	report.	Read/write	Byte.

expression.DateGrouping

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

Remarks

For	example,	using	the	US	Defaults	setting	will	cause	the	week	to	begin	on
Sunday.	If	you	set	a	Date/Time	field's	GroupOn	property	to	Week,	the	report
will	group	dates	from	Sunday	to	Saturday.

Note			The	DateGrouping	property	setting	applies	to	the	entire	report,	not	to	a
particular	group	in	the	report.

The	DateGrouping	property	uses	the	following	settings.

Setting Visual	Basic Description

US	Defaults 0

Microsoft	Access	uses	the	U.S.	settings
for	the	first	day	of	the	week	(Sunday)
and	the	first	week	of	the	year	(starts	on
January	1).

Use	System	Settings 1

(Default)	Microsoft	Access	uses
settings	based	on	the	locale	selected	in
the	Regional	Options	dialog	box	in
Windows	Control	Panel.

You	can	set	this	property	by	using	the	report's	property	sheet,	a	macro,	or	Visual
Basic.

You	can	set	the	DateGrouping	property	only	in	report	Design	view	or	in	the
Open	event	procedure	of	a	report.

The	sort	order	used	in	a	report	isn't	affected	by	the	DateGrouping	property
setting.

DateModified	Property
							

Returns	a	Date	indicating	the	date	and	time	when	the	design	of	the	specified
object	was	last	modified.	Read-only.

expression.DateModified

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

Example

The	following	example	lists	all	the	reports	in	the	current	database	and	when	their
designs	were	created	and	modified.

Dim	acobjLoop	As	AccessObject

For	Each	acobjLoop	In	CurrentProject.AllReports

				With	acobjLoop

								Debug.Print	.Name	&	"	-	Created	"	&	.DateCreated	_

												&	"	-	Modified	"	&	.DateModified

				End	With

Next	acobjLoop

DBEngine	Property
							

You	can	use	the	DBEngine	property	in	Visual	Basic	to	access	the	current
DBEngine	object	and	its	related	properties.

expression.DBEngine

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

mk:@MSITStore:dao360.chm::/htm/daobjDBEngine.htm

Remarks

The	DBEngine	property	is	set	by	Microsoft	Access	and	is	read-only	in	all	views.

The	DBEngine	property	of	the	Application	object	represents	the	Microsoft	Jet
database	engine.	The	DBEngine	object	is	the	top-level	object	in	the	Data	Access
Objects	(DAO)	model	and	it	contains	and	controls	all	other	objects	in	the
hierarchy	of	Data	Access	Objects.

Example

The	following	example	displays	the	DBEngine	properties	in	a	message	box.

Private	Sub	Command1_Click()

				DisplayApplicationInfo	Me

End	Sub

Function	DisplayApplicationInfo(obj	As	Object)	As	Integer

				Dim	objApp	As	Object,	intI	As	Integer,	strProps	As	String

				On	Error	Resume	Next

								'	Form	Application	property.

								Set	objApp	=	obj.Application

								MsgBox	"Application	Visible	property	=	"	&	objApp.Visible

								If	objApp.UserControl	=	True	Then

								For	intI	=	0	To	objApp.DBEngine.Properties.Count	-	1

												strProps	=	strProps	&	objApp.DBEngine.Properties(intI).Name	&	",	"

								Next	intI

								End	If

								MsgBox	Left(strProps,	Len(strProps)	-	2)	&	".",	vbOK,	"DBEngine	Properties"

End	Function

Show	All

DecimalPlaces	Property
							

You	can	use	the	DecimalPlaces	property	to	specify	the	number	of	decimal
places	Microsoft	Access	uses	to	display	numbers.	Read/write	Byte.

expression.DecimalPlaces

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

Remarks

The	DecimalPlaces	property	uses	the	following	settings.

Setting Visual	Basic Description

Auto 255 (Default)	Numbers	appear	as	specified	by	the
Format	property	setting.

0	to	15 0	to	15

Digits	to	the	right	of	the	decimal	separator
appear	with	the	specified	number	of	decimal
places;	digits	to	the	left	of	the	decimal
separator	appear	as	specified	by	the	Format
property	setting.

You	can	set	this	property	for	text	boxes	and	combo	boxes	by	using	the	control's
property	sheet	and	for	table	fields	by	using	the	table's	property	sheet.	You	can
also	set	this	property	in	the	Field	Properties	property	sheet	in	query	Design	view.

Tip			You	should	set	the	DecimalPlaces	property	in	the	table's	property	sheet.	A
bound	control	you	create	on	a	form	or	report	inherits	the	DecimalPlaces
property	set	in	the	field	in	the	underlying	table	or	query,	so	you	won't	have	to
specify	the	property	individually	for	every	bound	control	you	create.

For	controls,	you	can	also	set	this	property	by	using	a	macro	or	Visual	Basic.

Note			The	DecimalPlaces	property	setting	has	no	effect	if	the	Format	property
is	blank	or	is	set	to	General	Number.

The	DecimalPlaces	property	affects	only	the	number	of	decimal	places	that
display,	not	how	many	decimal	places	are	stored.	To	change	the	way	a	number	is
stored	you	must	change	the	FieldSize	property	in	table	Design	view.

You	can	use	the	DecimalPlaces	property	to	display	numbers	differently	from	the
Format	property	setting	or	from	the	way	they	are	stored.	For	example,	the
Currency	setting	of	the	Format	property	displays	only	two	decimal	places
($5.35).	To	display	Currency	numbers	with	four	decimal	places	(for	example,
$5.3523),	set	the	DecimalPlaces	property	to	4.

Show	All

Default	Property
							

You	can	use	the	Default	property	to	specify	whether	a	command	button	is	the
default	button	on	a	form.	Read/write	Boolean.

expression.Default

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

Remarks

The	Default	property	uses	the	following	settings.

Setting Visual	Basic Description
Yes True	 The	command	button	is	the	default	button.

No False	 (Default)	The	command	button	isn't	the	default
button.

You	can	set	this	property	by	using	the	command	button's	property	sheet,	a
macro,	or	Visual	Basic.

When	the	command	button's	Default	property	setting	is	Yes	and	the	Form
window	is	active,	the	user	can	choose	the	command	button	by	pressing	ENTER
(if	no	other	command	button	has	the	focus)	as	well	as	by	clicking	the	command
button.

Only	one	command	button	on	a	form	can	be	the	default	button.	When	the
Default	property	is	set	to	Yes	for	one	command	button,	it	is	automatically	set	to
No	for	all	other	command	buttons	on	the	form.

Tip			For	a	form	that	supports	irreversible	operations,	such	as	deletions,	it's	a
good	idea	to	make	the	Cancel	button	the	default	command	button.	To	do	this,	set
both	the	Default	property	and	the	Cancel	property	to	Yes.

Show	All

DefaultControl	Property
							

The	DefaultControl	property	returns	a	Control	object	with	which	you	can	set
the	default	properties	for	a	particular	type	of	control	on	a	particular	form	or
report.	For	example,	before	you	create	a	text	box	on	a	form,	you	might	want	to
set	the	default	properties	for	the	text	box.	Then	you	can	create	a	number	of	text
boxes	that	have	the	same	base	property	settings,	rather	than	having	to	set
properties	for	each	text	box	individually	once	it	has	been	created.

expression.DefaultControl(controltype)

The	DefaultControl	property	has	the	following	arguments.

Argument Description

expression

An	expression	that	evaluates	to	a	Form	or	Report	object
on	which	controls	are	to	be	created.	The	default	property
settings	defined	for	a	type	of	control	apply	only	to	controls
of	the	same	type	created	on	this	form	or	report.

controltype An	intrinsic	constant	indicating	the	type	of	control	for
which	default	property	settings	are	to	be	set.

Remarks

The	DefaultControl	property	enables	you	to	set	a	control's	default	properties
from	code.	Once	you	have	set	the	default	properties	for	a	particular	type	of
control,	each	subsequently	created	control	of	that	type	will	have	the	same	default
values.

For	example,	if	you	set	the	FontSize	property	of	the	default	command	button	to
12,	each	new	command	button	will	have	a	font	size	of	12	points.

Not	all	of	a	control's	properties	are	available	as	default	properties.	The	default
properties	available	for	a	control	depend	on	the	type	of	control.

The	DefaultControl	property	returns	a	Control	object	of	the	type	specified	by
the	controltype	argument.	This	Control	object	doesn't	represent	an	actual	control
on	a	form,	but	rather	a	default	control	that	is	a	template	for	all	subsequently
created	controls	of	that	type.	You	set	the	default	control	properties	for	the
Control	object	returned	by	the	DefaultControl	property	in	the	same	manner	that
you	would	set	properties	for	an	individual	control	on	a	form.

For	a	list	of	intrinsic	constants	that	can	be	passed	as	the	controltype	argument,
see	the	CreateControl	function.

The	DefaultControl	property	can	be	used	only	in	form	Design	view	or	report
Design	view.	If	you	try	to	apply	this	property	to	a	form	or	report	that	is	not	in
Design	view,	a	run-time	error	will	result.

If	you	try	to	set	a	property	that	can't	be	set	as	a	default	property	with	the
DefaultControl	property,	a	run-time	error	will	result.	To	determine	which
properties	can	be	default	properties,	list	the	Properties	collection	of	the	Control
object	returned	by	the	DefaultControl	property.

Example

The	following	example	creates	a	new	form	and	uses	the	DefaultControl
property	to	return	a	Control	object	representing	the	default	command	button.
The	procedure	sets	some	of	the	default	properties	for	the	command	button,	then
creates	a	new	command	button	on	the	form.

Sub	SetDefaultProperties()

				Dim	frm	As	Form,	ctlDefault	As	Control,	ctlNew	As	Control

				'	Create	new	form.

				Set	frm	=	CreateForm

				'	Return	Control	object	representing	default	command	button.

				Set	ctlDefault	=	frm.DefaultControl(acCommandButton)

				'	Set	some	default	properties.

				With	ctlDefault

								.FontWeight	=	700

								.FontSize	=	12

								.Width	=	3000

								.Height	=	1000

				End	With

				'	Create	new	command	button.

				Set	ctlNew	=	CreateControl(frm.Name,	acCommandButton,	,	,	,	500,	500)

				'	Set	control's	caption.

				ctlNew.caption	=	"New	Command	Button"

				'	Restore	form.

				DoCmd.Restore

End	Sub

DefaultSize	Property
							

True	if	the	size	of	the	detail	section	in	Design	View	is	used	for	printing;
otherwise,	the	values	of	the	ItemSizeHeight	and	ItemSizeWidth	properties	are
used.	Read/write	Boolean.

expression.DefaultSize

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

Remarks

When	this	property	is	True,	the	ItemSizeHeight	and	ItemSizeWidth	properties
are	ignored.

Example

The	following	example	sets	a	variety	of	printer	settings	for	the	first	form	in	the
current	project.

With	Forms(0).Printer

				.TopMargin	=	1440

				.BottomMargin	=	1440

				.LeftMargin	=	1440

				.RightMargin	=	1440

				.ColumnSpacing	=	360

				.RowSpacing	=	360

				.ColorMode	=	acPRCMColor

				.DataOnly	=	False

				.DefaultSize	=	False

				.ItemSizeHeight	=	2880

				.ItemSizeWidth	=	2880

				.ItemLayout	=	acPRVerticalColumnLayout

				.ItemsAcross	=	6

				.Copies	=	1

				.Orientation	=	acPRORLandscape

				.Duplex	=	acPRDPVertical

				.PaperBin	=	acPRBNAuto

				.PaperSize	=	acPRPSLetter

				.PrintQuality	=	acPRPQMedium

End	With

Show	All

DefaultValue	Property
							

Specifies	a	String	value	that	is	automatically	entered	in	a	field	when	a	new
record	is	created.	For	example,	in	an	Addresses	table	you	can	set	the	default
value	for	the	City	field	to	New	York.	When	users	add	a	record	to	the	table,	they
can	either	accept	this	value	or	enter	the	name	of	a	different	city.	Read/write.

expression.DefaultValue

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

Remarks

The	DefaultValue	property	doesn't	apply	to	check	box,	option	button,	or
toggle	button	controls	when	they	are	in	an	option	group.	It	does	however
apply	to	the	option	group	itself.
The	DefaultValue	property	applies	to	all	table	fields	except	those	fields
with	the	data	type	of	AutoNumber	or	OLE	Object.

The	DefaultValue	property	specifies	text	or	an	expression	that's	automatically
entered	in	a	control	or	field	when	a	new	record	is	created.	For	example,	if	you
set	the	DefaultValue	property	for	a	text	box	control	to	=Now(),	the	control
displays	the	current	date	and	time.	The	maximum	length	for	a	DefaultValue
property	setting	is	255	characters.

For	a	control,	you	can	set	this	property	in	the	control's	property	sheet.	For	a	field,
you	can	set	this	property	in	table	Design	view	(in	the	Field	Properties	section),	in
a	macro,	or	by	using	Visual	Basic.

In	Visual	Basic,	use	a	string	expression	to	set	the	value	of	this	property.	For
example,	the	following	code	sets	the	DefaultValue	property	for	a	text	box
control	named	PaymentMethod	to	"Cash":

Forms!frmInvoice!PaymentMethod.DefaultValue	=	"""Cash"""

Note			To	set	this	property	for	a	field	by	using	Visual	Basic,	use	the	ADO
DefaultValue	property	or	the	DAO	DefaultValue	property.

The	DefaultValue	property	is	applied	only	when	you	add	a	new	record.	If	you
change	the	DefaultValue	property,	the	change	isn't	automatically	applied	to
existing	records.

If	you	set	the	DefaultValue	property	for	a	form	control	that's	bound	to	a	field
that	also	has	a	DefaultValue	property	setting	defined	in	the	table,	the	control
setting	overrides	the	table	setting.

If	you	create	a	control	by	dragging	a	field	from	the	field	list,	the	field's
DefaultValue	property	setting,	as	defined	in	the	table,	is	applied	to	the	control
on	the	form	although	the	control's	DefaultValue	property	setting	will	remain

blank.

One	control	can	provide	the	default	value	for	another	control.	For	example,	if
you	set	the	DefaultValue	property	for	a	control	to	the	following	expression,	the
control's	default	value	is	set	to	the	DefaultValue	property	setting	for	the
txtShipTo	control.

=Forms!frmInvoice!txtShipTo

If	the	controls	are	on	the	same	form,	the	control	that's	the	source	of	the	default
value	must	appear	earlier	in	the	tab	order	than	the	control	containing	the
expression.

Show	All

DefaultView	Property
							

You	can	use	the	DefaultView	property	to	specify	the	opening	view	of	a	form.

Remarks

The	DefaultView	property	uses	the	following	settings.
Setting Visual	Basic Description

Single	Form 0 (Default)	Displays	one	record	at	a	time.

Continuous	Forms 1
Displays	multiple	records	(as	many	as
will	fit	in	the	current	window),	each	in
its	own	copy	of	the	form's	detail	section.

Datasheet 2 Displays	the	form	fields	arranged	in
rows	and	columns	like	a	spreadsheet.

The	views	displayed	in	the	View	button	list	and	on	the	View	menu	depend	on	the
setting	of	the	ViewsAllowed	property.	For	example,	if	the	ViewsAllowed
property	is	set	to	Datasheet,	Form	View	is	disabled	in	the	View	button	list	and
on	the	View	menu.

The	combination	of	these	properties	creates	the	following	conditions.

DefaultView ViewsAllowed Description
Single,	Continuous
Forms,	or	Datasheet Both

Users	can	switch	between	Form	view
and	Datasheet	view.

Single	or
Continuous	Forms Form Users	can't	switch	from	Form	view	to

Datasheet	view.
Single	or
Continuous	Forms Datasheet Users	can	switch	from	Form	view	to

Datasheet	view	but	not	back	again.

Datasheet Form Users	can	switch	from	Datasheet	view
to	Form	view	but	not	back	again.

Datasheet Datasheet Users	can't	switch	from	Datasheet
view	to	Form	view.

DefaultWebOptions	Property
							

You	can	use	the	DefaultWebOptions	property	to	reference	the	read-only
DefaultWebOptions	object	and	its	related	properties.

expression.DefaultWebOptions

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

Remarks

The	DefaultWebOptions	property	is	available	by	using	Visual	Basic.

DefaultWebOptions	property	to	identify	or	set	the	Application	object's
DefaultWebOptions	object	properties.	These	properties	can	be	used	to	set	or
change	the	default	web	page	settings	available	in	the	Web	Options	dialog	box.
To	display	this	dialog	box,	click	Options	on	the	Tools	menu.	Click	the	General
tab	and	click	the	Web	Pages	button.

Example

The	following	example	checks	to	see	whether	Microsoft	Office	Web	components
are	downloaded	when	a	saved	data	access	page	is	displayed	and	sets	the
download	flag	accordingly.

Set	objAppWebOptions	=	Application.DefaultWebOptions

With	objAppWebOptions

				If	.DownloadComponents	=	True	Then

								strCompDownload	=	"Loaded"

				Else

								strCompDownload	=	"Not	Loaded"

				End	If

End	With

DeviceName	Property
							

Returns	a	String	indicating	name	of	the	specified	printer	device.	Read-only.

expression.DeviceName

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

Example

The	following	example	displays	information	about	all	the	printers	available	to
the	system.

Dim	prtLoop	As	Printer

For	Each	prtLoop	In	Application.Printers

				With	prtLoop

								MsgBox	"Device	name:	"	&	.DeviceName	&	vbCr	_

												&	"Driver	name:	"	&	.DriverName	&	vbCr	_

												&	"Port:	"	&	.Port

				End	With

Next	prtLoop

Show	All

Dirty	Property
							

You	can	use	the	Dirty	property	to	determine	whether	the	current	record	has	been
modified	since	it	was	last	saved.	For	example,	you	may	want	to	ask	the	user
whether	changes	to	a	record	were	intended	and,	if	not,	allow	the	user	to	move	to
the	next	record	without	saving	the	changes.	Read/write	Boolean.

expression.Dirty

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

Remarks

The	Dirty	property	uses	the	following	settings.

Setting Visual	Basic Description
True True	 The	current	record	has	been	changed.
False False	 The	current	record	has	not	been	changed.

This	property	is	available	in	Form	view	and	Datasheet	view.

This	property	set	or	read	using	a	macro	or	Visual	Basic.

When	a	record	is	saved,	Microsoft	Access	sets	the	Dirty	property	to	False.
When	a	user	makes	changes	to	a	record,	the	property	is	set	to	True.

Example

The	following	example	enables	the	btnUndo	button	when	data	is	changed.	The
UndoEdits()	subroutine	is	called	from	the	AfterUpdate	event	of	text	box
controls.	Clicking	the	enabled	btnUndo	button	restores	the	original	value	of	the
control	by	using	the	OldValue	property.

Sub	UndoEdits()

				If	Me.Dirty	Then

								Me!btnUndo.Enabled	=	True				'	Enable	button.

				Else

								Me!btnUndo.Enabled	=	False				'	Disable	button.

				End	If

End	Sub

Sub	btnUndo_Click()

				Dim	ctlC	As	Control

								'	For	each	control.

								For	Each	ctlC	in	Me.Controls

												If	ctlC.ControlType	=	acTextBox	Then

																'	Restore	Old	Value.

																ctlC.Value	=	ctlC.OldValue

												End	If

								Next	ctlC

End	Sub

Show	All

DisplayType	Property
							

You	can	use	the	DisplayType	property	to	specify	whether	Microsoft	Access
displays	an	OLE	object's	content	or	an	icon.	Read/write	Boolean.

expression.DisplayType

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

Remarks

For	example,	if	the	OLE	object	is	a	Microsoft	Word	document	and	you	set	this
property	to	Content,	the	control	displays	the	Word	document;	if	you	set	this
property	to	Icon,	the	control	displays	the	Microsoft	Word	icon.

The	DisplayType	property	uses	the	following	settings.

Setting Visual	Basic Description

Content acOLEDisplayContent	

(Default)	When	the	control
contains	an	OLE	object,	the	control
displays	the	object's	data,	such	as	a
document	or	spreadsheet.

Icon acOLEDisplayIcon	
When	the	control	contains	an	OLE
object,	the	control	displays	the
object's	icon.

You	can	set	the	DisplayType	property	in	a	property	sheet,	in	a	macro,	or	by
using	Visual	Basic.	You	can	set	the	default	for	this	property	by	using	a	control's
default	control	style	or	the	DefaultControl	method	in	Visual	Basic.

For	a	bound	object	frame,	the	DisplayType	property	can	be	set	either	in	Design
view	or	in	Form	view	or	Datasheet	view	for	new	records	while	they	are	being
added;	it	can	be	read	in	all	views.	For	an	unbound	object	frame	or	chart,	the
property	can	be	set	in	the	Insert	Object	dialog	box	when	the	object	is	created
(the	default	setting	is	Content	or,	if	you	select	the	Display	As	Icon	check	box,
the	setting	is	Icon).

The	DisplayType	property	determines	the	default	setting	of	the	Display	As	Icon
check	box	in	the	Paste	Special	dialog	box,	available	by	clicking	Paste	Special
on	the	Edit	menu,	and	the	Insert	Object	dialog	box,	displayed	when	inserting
an	unbound	object	frame.	When	you	display	these	dialog	boxes	in	Form	view,
Datasheet	view,	or	Design	view,	the	Display	As	Icon	check	box	is	automatically
selected	if	the	DisplayType	property	is	set	to	Icon.	For	example,	you	will	see
these	boxes	selected	when	using	Visual	Basic	to	set	the	control's	Action	property
to	acOLEInsertObjDlg	or	acOLEPasteSpecialDlg.

The	DisplayType	property	setting	has	no	effect	on	the	state	of	the	Display	As

Icon	check	box	in	the	Object	dialog	box	when	you	insert	an	object	into	an
unbound	object	frame.	When	you	paste	an	object	from	the	Clipboard,	the
Display	As	Icon	check	box	reflects	the	state	of	the	object	on	the	Clipboard.

Changing	the	DisplayType	property	of	a	bound	object	frame	doesn't	affect	the
display	of	existing	objects	in	the	control.	However,	it	will	affect	new	objects	that
you	add	to	the	control	by	using	the	Object	command	on	the	Insert	menu.

Show	All

DisplayWhen	Property
							

You	can	use	the	DisplayWhen	property	to	specify	which	of	a	form's	sections	or
controls	you	want	displayed	on	screen	and	in	print.	Read/write	Byte.

expression.DisplayWhen

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

Remarks

The	DisplayWhen	property	applies	only	to	the	following	form	sections:	detail,
form	header,	and	form	footer.	It	also	applies	to	all	controls	(except	page	breaks)
on	a	form.

The	DisplayWhen	property	uses	the	following	settings.

Setting Visual	Basic Description

Always 0 (Default)	The	object	appears	in	Form	view	and
when	printed.

Print	Only 1 The	object	is	hidden	in	Form	view	but	appears
when	printed.

Screen	Only 2 The	object	appears	in	Form	view	but	not	when
printed.

You	can	set	this	property	by	using	the	object's	property	sheet,	a	macro,	or	Visual
Basic.

For	controls,	you	can	set	the	default	for	this	property	by	using	the	default	control
style	or	the	DefaultControl	method	in	Visual	Basic.

In	many	cases,	certain	controls	are	useful	only	in	Form	view.	To	prevent
Microsoft	Access	from	printing	these	controls,	you	can	set	their	DisplayWhen
property	to	Screen	Only.	For	example,	you	might	have	a	command	button	or
instructions	on	a	form	that	you	don't	want	printed.	Or	you	might	have	form
header	and	form	footer	sections	that	you	don't	want	displayed	on	screen	but	that
you	do	want	printed.	In	this	case,	you	should	set	the	DisplayWhen	property	to
Print	Only.

Tip			For	reports,	use	the	Format	and	Retreat	events	to	specify	an	event
procedure	or	macro	that	sets	the	Visible	property	of	controls	you	don't	want
printed.	You	can	also	cancel	the	Format	or	Print	event	for	a	report	section	to
prevent	the	section	from	being	printed.

Show	All

DividingLines	Property
							

You	can	use	the	DividingLines	property	to	specify	whether	dividing	lines	will
separate	sections	on	a	form	or	records	displayed	on	a	continuous	form.
Read/write	Boolean.

expression.DividingLines

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

Remarks

The	DividingLines	property	uses	the	following	settings.

Setting Visual	Basic Description

Yes True		 (Default)	Dividing	lines	will	separate	sections
and	records	on	continuous	forms.

No False	 There	are	no	dividing	lines.
You	can	set	the	DividingLines	property	by	using	the	form's	property	sheet,	a
macro,	or	Visual	Basic.

This	property	can	be	set	in	any	view.

DoCmd	Property
							

You	can	use	the	DoCmd	property	to	access	the	read-only	DoCmd	object	and	its
related	methods.

expression.DoCmd

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

Remarks

This	property	is	available	only	by	using	Visual	Basic.

Example

The	following	example	opens	a	form	in	Form	view	and	moves	to	a	new	record.

Sub	ShowNewRecord()

				DoCmd.OpenForm	"Employees",	acNormal

				DoCmd.GoToRecord	,	,	acNewRec

End	Sub

Document	Property
							

You	can	use	the	Document	property	to	access	the	Microsoft	Internet	Explorer
Dynamic	HTML	Document	object	for	HTML	pages.

expression.Document

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

mk:@MSITStore:htmlref.chm::/inet401/help/dhtml/references/objects/obj_document.htm

Remarks

This	property	is	available	only	by	using	Visual	Basic.

For	more	information	about	the	DHTML	and	the	Document	object	model,	see
the	following	topics:

DHTML	Tutorials

Document	Object	Model

Document	Object	References

mk:@MSITStore:htmlref.chm::/inet401/help/dhtml/howto/howto.htm
mk:@MSITStore:htmlref.chm::/inet401/help/dhtml/doc_object/doc_object.htm
mk:@MSITStore:htmlref.chm::/inet401/help/dhtml/references/domrefs.htm

Example

This	procedure	illustrates	how	to	use	VBA	code	to	add	text	to	a	data	access	page.
The	following	information	is	supplied	in	the	arguments	to	this	procedure:

strPageName The	name	of	an	existing	data	access	page.

strID The	ID	property	(attribute)	for	the	tag	that	contains	the	text
you	want	to	work	with.

strText The	text	to	insert.
blnReplace Whether	to	replace	existing	text	in	the	tag.

Function	DAPInsertText(strPageName	As	String,	_

				strID	As	Variant,	strText	As	String,	_

				Optional	blnReplace	As	Boolean	=	True)	As	Boolean

				Dim	blnWasLoaded	As	Boolean

				On	Error	GoTo	DAPInsertText_Err

				'	Determine	if	the	page	exists	and	whether	it	is

				'	currently	open.	If	not	open	then	open	it	in

				'	design	view.

				If	DAPExists(strPageName)	=	True	Then

								If	CurrentProject.AllDataAccessPages(strPageName)	_

												.IsLoaded	=	False	Then

												blnWasLoaded	=	False

												With	DoCmd

																.Echo	False

																.OpenDataAccessPage	strPageName,	_

																				acDataAccessPageDesign

												End	With

								Else

												blnWasLoaded	=	True

								End	If

				Else

								DAPInsertText	=	False

								Exit	Function

				End	If

				'	Add	the	new	text	to	the	specified	tag.

				With	DataAccessPages(strPageName).Document

								If	blnReplace	=	True	Then

												.All(strID).innerText	=	strText

								Else

												.All(strID).innerText	=	.All(strID).innerText	&	strText

								End	If

								'	Make	sure	the	text	is	visible.

								With	.All(strID).Style

												If	.display	=	"none"	Then	.display	=	""

								End	With

				End	With

				'	Clean	up	after	yourself.

				With	DoCmd

								If	blnWasLoaded	=	True	Then

								.Save

				Else

								.Close	acDataAccessPage,	strPageName,	acSaveYes

								End	If

				End	With

				DAPInsertText	=	True

DAPInsertText_End:

				DoCmd.Echo	True

				Exit	Function

DAPInsertText_Err:

				MsgBox	"Error	#"	&	Err.Number	&	":	"	&	Err.Description

				DAPInsertText	=	False

				Resume	DAPInsertText_End

End	Function

Show	All

DownloadComponents	Property
							

You	can	use	the	DownloadComponents	property	to	specify	or	determine	if	the
Microsoft	Office	tools	are	automatically	downloaded	with	the	Web	page.
Read/write	Boolean.

expression.DownloadComponents

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

Remarks

The	DownloadComponents	property	uses	the	following	settings.

Setting Visual	Basic Description

Yes True	
The	necessary	Office	controls	are	downloaded
when	you	view	the	saved	document	in	a	Web
browser.

No False	 (Default)	Do	not	download	the	controls.
The	DownloadComponents	property	is	available	only	by	using	Visual	Basic.

You	can	set	the	LocationOfComponents	property	to	a	central	URL	where	the
controls	can	be	downloaded	by	authorized	users	viewing	your	saved	data	access
page.	The	path	must	be	valid	and	must	point	to	a	location	that	contains	the
necessary	components,	and	the	user	must	have	a	valid	Microsoft	Office	license.

Office	Web	components	add	interactivity	to	data	access	pages	that	you	save	as
Web	pages.	If	you	view	a	Web	page	in	a	browser	on	a	computer	that	does	not
have	the	components	installed,	the	interactive	portions	of	the	page	will	be	static.

Example

This	example	allows	the	Office	Web	components	to	be	downloaded	with	the
specified	Web	page,	if	they	are	not	already	installed.

Application.DefaultWebOptions.DownloadComponents	=	True

Application.DefaultWebOptions.LocationOfComponents	=	_

				Application.CurrentProject	&	"\foo"

Show	All

DrawMode	Property
							

You	can	use	the	DrawMode	property	to	specify	how	the	pen	(the	color	used	in
drawing)	interacts	with	existing	background	colors	on	a	report	when	the	Line,
Circle,	or	Pset	method	is	used	to	draw	on	a	report	when	printing.	Read/write
Integer.

expression.DrawMode

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

Remarks

The	DrawMode	property	uses	the	following	settings.

Setting Description
1 Black	pen	color.
2 The	inverse	of	setting	15	(NotMergePen).

3 The	combination	of	the	colors	common	to	the	background
color	and	the	inverse	of	the	pen	(MaskNotPen).

4 The	inverse	of	setting	13	(NotCopyPen).

5 The	combination	of	the	colors	common	to	both	the	pen	and	the
inverse	of	the	display	(MaskPenNot).

6 The	inverse	of	the	display	color	(Invert).

7 The	combination	of	the	colors	in	the	pen	and	in	the	display
color,	but	not	in	both	(XorPen).

8 The	inverse	of	setting	9	(NotMaskPen).

9 The	combination	of	the	colors	common	to	both	the	pen	and	the
display	(MaskPen).

10 The	inverse	of	setting	7	(NotXorPen).

11 No	operation	—	the	output	remains	unchanged.	In	effect,	this
setting	turns	drawing	off	(Nop).

12 The	combination	of	the	display	color	and	the	inverse	of	the
pen	color	(MergeNotPen).

13 (Default)	The	color	specified	by	the	ForeColor	property
(CopyPen).

14 The	combination	of	the	pen	color	and	the	inverse	of	the
display	color	(MergePenNot).

15 The	combination	of	the	pen	color	and	the	display	color
(MergePen).

16 White	pen	color.
The	DrawMode	property	setting	is	an	Integer	value.

You	can	set	the	DrawMode	property	by	using	a	macro	or	a	Visual	Basic	event
procedure	specified	by	a	section's	OnPrint	property	setting.

Use	this	property	to	produce	visual	effects	when	drawing	on	a	report.	Microsoft
Access	compares	each	pixel	in	the	draw	pattern	to	the	corresponding	pixel	in	the
existing	background	to	determine	how	the	drawing	appears	on	the	report.	For
example,	setting	7	uses	the	Xor	operator	to	combine	a	draw-pattern	pixel	with	a
background	pixel.

Show	All

DrawStyle	Property
							

You	can	use	the	DrawStyle	property	to	specify	the	line	style	when	using	the
Line	and	Circle	methods	to	print	lines	on	reports.	Read/write	Integer.

expression.DrawStyle

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

Remarks

The	DrawStyle	property	uses	the	following	settings.

Setting Description

0 (Default)	Solid	line,	transparent
interior

1 Dash,	transparent	interior
2 Dot,	transparent	interior
3 Dash-dot,	transparent	interior
4 Dash-dot-dot,	transparent	interior
5 Invisible	line,	transparent	interior
6 Invisible	line,	solid	interior
You	can	set	this	property	by	using	a	macro	or	a	Visual	Basic	event	procedure
specified	by	a	section's	OnPrint	property	setting.

The	DrawStyle	property	produces	the	results	described	in	the	preceding	table	if
the	DrawWidth	property	is	set	to	1.	If	the	DrawWidth	property	setting	is
greater	than	3,	the	DrawStyle	property	settings	1	through	4	produce	a	solid	line
(the	DrawStyle	property	value	isn't	changed).

Show	All

DrawWidth	Property
							

You	can	use	the	DrawWidth	property	to	specify	the	line	width	for	the	Line,
Circle,	and	Pset	methods	to	print	lines	on	reports.	Read/write	Integer.

expression.DrawWidth

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

Remarks

You	can	set	the	DrawWidth	property	to	an	Integer	value	of	1	through	32,767.
This	value	represents	the	width	of	the	line	in	pixels.	The	default	is	1,	or	1	pixel
wide.

You	can	set	this	property	by	using	a	macro	or	a	Visual	Basic	event	procedure
specified	by	a	section's	OnPrint	property	setting.

Increase	the	value	of	this	property	to	increase	the	width	of	the	line.	If	the
DrawWidth	property	setting	is	greater	than	3,	DrawStyle	property	settings	1
through	4	produce	a	solid	line	(the	DrawStyle	property	setting	isn't	changed).
Setting	the	DrawWidth	property	to	1	enables	the	DrawStyle	property	to
produce	the	results	shown	in	the	setting	table	of	the	DrawStyle	property.

DriverName	Property
							

Returns	a	String	indicating	the	name	of	the	driver	used	by	the	specified	printer.
Read-only.

expression.DriverName

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

Example

The	following	example	displays	information	about	all	the	printers	available	to
the	system.

Dim	prtLoop	As	Printer

For	Each	prtLoop	In	Application.Printers

				With	prtLoop

								MsgBox	"Device	name:	"	&	.DeviceName	&	vbCr	_

												&	"Driver	name:	"	&	.DriverName	&	vbCr	_

												&	"Port:	"	&	.Port

				End	With

Next	prtLoop

Show	All

Duplex	Property
							

Returns	or	sets	an	AcPrintDuplex	constant	indicating	how	the	specified	printer
handles	duplex	printing.	Read/write.

AcPrintDuplex	can	be	one	of	these	AcPrintDuplex	constants.
acPRDPHorizontal
acPRDPSimplex
acPRDPVertical

expression.Duplex

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

Example

The	following	example	sets	a	variety	of	printer	settings	for	the	first	form	in	the
current	project.

With	Forms(0).Printer

				.TopMargin	=	1440

				.BottomMargin	=	1440

				.LeftMargin	=	1440

				.RightMargin	=	1440

				.ColumnSpacing	=	360

				.RowSpacing	=	360

				.ColorMode	=	acPRCMColor

				.DataOnly	=	False

				.DefaultSize	=	False

				.ItemSizeHeight	=	2880

				.ItemSizeWidth	=	2880

				.ItemLayout	=	acPRVerticalColumnLayout

				.ItemsAcross	=	6

				.Copies	=	1

				.Orientation	=	acPRORLandscape

				.Duplex	=	acPRDPVertical

				.PaperBin	=	acPRBNAuto

				.PaperSize	=	acPRPSLetter

				.PrintQuality	=	acPRPQMedium

End	With

Show	All

EmailSubject	Property
							

You	can	use	the	EmailSubject	property	to	specify	or	determine	return	the	email
subject	line	of	a	hyperlink	to	an	object,	document,	Web	page	or	other	destination
for	a	command	button,	image	control,	or	label	control.	Read/write	String.

expression.EmailSubject

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

Remarks

The	EmailSubject	property	is	a	string	expression	representing	the	subject	line
within	a	file	(UNC	path)	or	Web	page	(URL).

You	can	set	the	EmailSubject	property	by	using	a	macro	or	Visual	Basic.

You	can	also	use	the	Insert	Hyperlink	dialog	box	to	set	this	property	by
clicking	the	Build	button	to	the	right	of	the	property	box	in	the	property	sheet.

Note			When	you	create	a	hyperlink	by	using	the	Insert	Hyperlink	dialog	box,
Microsoft	Access	automatically	sets	the	EmailSubject	property	to	the	location
specified	in	the	Subject	box	of	the	E-Mail	Address	tab.

When	you	move	the	cursor	over	a	command	button,	image	control,	or	label
control	whose	HyperlinkAddress	property	is	set,	the	cursor	changes	to	an
upward-pointing	hand.	Clicking	the	control	displays	the	object	or	Web	page
specified	by	the	link.

To	open	objects	in	the	current	database,	leave	the	HyperlinkAddress	property
blank	and	specify	the	object	type	and	object	name	you	want	to	open	in	the
HyperlinkSubAddress	property	by	using	the	syntax	"objecttype	objectname".	If
you	want	to	open	an	object	contained	in	another	Microsoft	Access	database,
enter	the	database	path	and	file	name	in	the	HyperlinkAddress	property	and
specify	the	database	object	to	open	by	using	the	HyperlinkSubAddress
property.

The	HyperlinkAddress	property	can	contain	an	absolute	or	a	relative	path	to	a
target	document.	An	absolute	path	is	a	fully	qualified	URL	or	UNC	path	to	a
document.	A	relative	path	is	a	path	related	to	the	base	path	specified	in	the
Hyperlink	Base	setting	in	the	DatabaseName	Properties	dialog	box	(available
by	clicking	Database	Properties	on	the	File	menu)	or	to	the	current	database
path.	If	Microsoft	Access	can't	resolve	the	HyperlinkAddress	property	setting
to	a	valid	URL	or	UNC	path,	it	will	assume	you've	specified	a	path	relative	to
the	base	path	contained	in	the	Hyperlink	Base	setting	or	the	current	database
path.

Note			When	you	follow	a	hyperlink	to	another	Microsoft	Access	database

object,	the	database	Startup	properties	are	applied.	For	example,	if	the
destination	database	has	a	Display	form	set,	that	form	is	displayed	when	the
database	opens.

Enabled	Property
							

You	can	use	the	Enabled	property	to	set	or	return	the	status	of	the	conditional
format	in	the	FormatCondition	object.	Read/write	Boolean.

expression.Enabled

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

Remarks

The	Enabled	property	setting	is	a	value	that	indicates	whether	the	conditional
format	is	enabled	or	disabled.	True	enables	the	conditional	format.	False
disables	the	conditional	format.	The	default	is	True.

The	Enabled	property	is	available	only	by	using	Visual	Basic.

When	the	Enabled	property	is	True,	the	conditional	format	can	be	displayed	in
the	Conditional	Formatting	dialog	box.	The	Conditional	Formatting	dialog
box	is	available	by	clicking	Conditional	Formatting	on	the	Format	menu.

Encoding	Property
							

You	can	use	the	Encoding	property	to	specify	or	determine	the	data	access	page
encoding	(code	page	or	character	set)	to	be	used	by	the	Web	browser	when	you
view	the	saved	data	access	page.	Read/write	MsoEncoding.

MsoEncoding	can	be	one	of	these	MsoEncoding	constants.
msoEncodingArabic
msoEncodingArabicASMO
msoEncodingArabicAutoDetect
msoEncodingArabicTransparentASMO
msoEncodingAutoDetect
msoEncodingBaltic
msoEncodingCentralEuropean
msoEncodingCyrillic
msoEncodingCyrillicAutoDetect
msoEncodingEBCDICArabic
msoEncodingEBCDICDenmarkNorway
msoEncodingEBCDICFinlandSweden
msoEncodingEBCDICFrance
msoEncodingEBCDICGermany
msoEncodingEBCDICGreek
msoEncodingEBCDICGreekModern
msoEncodingEBCDICHebrew
msoEncodingEBCDICIcelandic
msoEncodingEBCDICInternational
msoEncodingEBCDICItaly
msoEncodingEBCDICJapaneseKatakanaExtended
msoEncodingEBCDICJapaneseKatakanaExtendedAndJapanese
msoEncodingEBCDICJapaneseLatinExtendedAndJapanese

msoEncodingEBCDICKoreanExtended
msoEncodingEBCDICKoreanExtendedAndKorean
msoEncodingEBCDICLatinAmericaSpain
msoEncodingEBCDICMultilingualROECELatin2
msoEncodingEBCDICRussian
msoEncodingEBCDICSerbianBulgarian
msoEncodingEBCDICSimplifiedChineseExtendedAndSimplifiedChinese
msoEncodingEBCDICThai
msoEncodingEBCDICTurkish
msoEncodingEBCDICTurkishLatin5
msoEncodingEBCDICUnitedKingdom
msoEncodingEBCDICUSCanada
msoEncodingEBCDICUSCanadaAndJapanese
msoEncodingEBCDICUSCanadaAndTraditionalChinese
msoEncodingEUCChineseSimplifiedChinese
msoEncodingEUCJapanese
msoEncodingEUCKorean
msoEncodingEUCTaiwaneseTraditionalChinese
msoEncodingEuropa3
msoEncodingExtAlphaLowercase
msoEncodingGreek
msoEncodingGreekAutoDetect
msoEncodingHebrew
msoEncodingHZGBSimplifiedChinese
msoEncodingIA5German
msoEncodingIA5IRV
msoEncodingIA5Norwegian
msoEncodingIA5Swedish
msoEncodingISO2022CNSimplifiedChinese
msoEncodingISO2022CNTraditionalChinese
msoEncodingISO2022JPJISX02011989
msoEncodingISO2022JPJISX02021984
msoEncodingISO2022JPNoHalfwidthKatakana

msoEncodingISO2022KR
msoEncodingISO6937NonSpacingAccent
msoEncodingISO885915Latin9
msoEncodingISO88591Latin1
msoEncodingISO88592CentralEurope
msoEncodingISO88593Latin3
msoEncodingISO88594Baltic
msoEncodingISO88595Cyrillic
msoEncodingISO88596Arabic
msoEncodingISO88597Greek
msoEncodingISO88598Hebrew
msoEncodingISO88599Turkish
msoEncodingJapaneseAutoDetect
msoEncodingJapaneseShiftJIS
msoEncodingKOI8R
msoEncodingKOI8U
msoEncodingKorean
msoEncodingKoreanAutoDetect
msoEncodingKoreanJohab
msoEncodingMacArabic
msoEncodingMacCroatia
msoEncodingMacCyrillic
msoEncodingMacGreek1
msoEncodingMacHebrew
msoEncodingMacIcelandic
msoEncodingMacJapanese
msoEncodingMacKorean
msoEncodingMacLatin2
msoEncodingMacRoman
msoEncodingMacRomania
msoEncodingMacSimplifiedChineseGB2312
msoEncodingMacTraditionalChineseBig5
msoEncodingMacTurkish

msoEncodingMacUkraine
msoEncodingOEMArabic
msoEncodingOEMBaltic
msoEncodingOEMCanadianFrench
msoEncodingOEMCyrillic
msoEncodingOEMCyrillicII
msoEncodingOEMGreek437G
msoEncodingOEMHebrew
msoEncodingOEMIcelandic
msoEncodingOEMModernGreek
msoEncodingOEMMultilingualLatinI
msoEncodingOEMMultilingualLatinII
msoEncodingOEMNordic
msoEncodingOEMPortuguese
msoEncodingOEMTurkish
msoEncodingOEMUnitedStates
msoEncodingSimplifiedChineseAutoDetect
msoEncodingSimplifiedChineseGBK
msoEncodingT61
msoEncodingTaiwanCNS
msoEncodingTaiwanEten
msoEncodingTaiwanIBM5550
msoEncodingTaiwanTCA
msoEncodingTaiwanTeleText
msoEncodingTaiwanWang
msoEncodingThai
msoEncodingTraditionalChineseAutoDetect
msoEncodingTraditionalChineseBig5
msoEncodingTurkish
msoEncodingUnicodeBigEndian
msoEncodingUnicodeLittleEndian
msoEncodingUSASCII
msoEncodingUTF7

msoEncodingUTF8
msoEncodingVietnamese
msoEncodingWestern

expression.Encoding

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

Example

This	example	checks	to	see	whether	the	default	document	encoding	is	Western.

If	Application.DefaultWebOptions.Encoding	=	msoEncodingWestern	Then

				strDocEncoding	=	"Western"

Else

				strDocEncoding	=	"Other"

End	If

Show	All

EnterKeyBehavior	Property
							

You	can	use	the	EnterKeyBehavior	property	to	specify	what	happens	when	you
press	ENTER	in	a	text	box	control	in	Form	view	or	Datasheet	view.	Read/write
Boolean.

expression.EnterKeyBehavior

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

Remarks

For	example,	you	can	use	this	property	if	you	have	a	control	bound	to	a	Memo
field	in	a	table	to	make	entering	multiple-line	text	easier.	If	you	don't	set	this
property	to	New	Line	In	Field,	you	must	press	CTRL+ENTER	to	enter	a	new
line	in	the	text	box.

The	EnterKeyBehavior	property	uses	the	following	settings.

Setting Visual	Basic Description

Default False		

(Default)	Microsoft	Access	uses	the	result
specified	under	Move	after	enter	area	on
the	Keyboard	tab	of	the	Options	dialog
box,	available	by	clicking	Options	on	the
Tools	menu.	For	details,	see	the	Remarks
section.

New	Line	In	Field True		
Pressing	ENTER	in	the	control	creates	a
new	line	in	the	control	so	you	can	enter
additional	text.

You	can	set	this	property	by	using	a	form's	property	sheet,	a	macro,	or	Visual
Basic.

You	can	set	the	default	for	this	property	by	using	the	control's	default	control
style	or	the	DefaultControl	method	in	Visual	Basic.

The	following	options	are	available	under	Move	after	enter	area	on	the
Keyboard	tab	of	the	Options	dialog	box.

Option Description
Don't	move Pressing	ENTER	has	no	effect.

Next	field Pressing	ENTER	moves	the	insertion	point	to	the	next	control
or	field	in	the	form	or	datasheet	in	the	tab	order.

Next	record Pressing	ENTER	moves	the	insertion	point	to	the	first	control
or	field	in	the	next	record	on	the	form	or	datasheet.

Show	All

EventProcPrefix	Property
							

You	can	use	the	EventProcPrefix	property	to	get	the	prefix	portion	of	an	event
procedure	name.	Read/write	String.

expression.EventProcPrefix

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

Remarks

For	example,	if	you	have	a	command	button	with	an	event	procedure	named
Details_Click,	the	EventProcPrefix	property	returns	the	string	"Details".

The	EventProcPrefix	property	setting	is	a	string	expression.

This	property	is	available	only	by	using	a	macro	or	Visual	Basic	and	is	read-only
in	all	views.

Microsoft	Access	adds	the	prefix	portion	of	an	event	procedure	name	to	the
event	name	with	an	underscore	character	(_).

Show	All

Expression1	Property
							

You	can	use	the	Expression1	property	to	return	the	values	of	a	conditional
format	within	a	FormatCondition	object.	Read-only	String.

expression.Expression1

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

Remarks

The	Expression1	property	returns	a	Variant	value	or	expression	associated	with
the	first	part	of	the	conditional	format.

The	Expression1	property	is	available	only	by	using	Visual	Basic.

Conditional	formatting	can	also	be	set	on	a	combo	box	or	text	box	from	the
Conditional	Formatting	dialog	box.	The	Conditional	Formatting	dialog	box
is	available	by	clicking	Conditional	Formatting	on	the	Format	menu	when	a
form	is	in	Design	view.

Expression2	Property
							

You	can	use	the	Expression2	property	to	return	the	values	of	a	conditional
format	within	a	FormatCondition	object.	Read-only	String.

expression.Expression2

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

Remarks

The	Expression2	property	returns	a	Variant	value	or	expression	associated	with
the	second	part	of	the	conditional	format	when	the	Operator	property	of	the
FormatCondition	object	is	acBetween	or	acNotBetween,	otherwise,	the
Expression2	property	is	NULL.

The	Expression2	property	is	available	only	by	using	Visual	Basic.

Conditional	formatting	can	also	be	set	on	a	combo	box	or	text	box	from	the
Conditional	Formatting	dialog	box.	The	Conditional	Formatting	dialog	box
is	available	by	clicking	Conditional	Formatting	on	the	Format	menu	when	a
form	is	in	Design	view.

Show	All

FastLaserPrinting	Property
							

You	can	use	the	FastLaserPrinting	property	to	specify	whether	lines	and
rectangles	are	replaced	by	text	character	lines	—	similar	to	the	underscore	(_)
and	vertical	bar	(|)	characters	—	when	you	print	a	form	or	report	using	most
laser	printers.	Replacing	lines	and	rectangles	with	text	character	lines	can	make
printing	much	faster.	Read/write	Boolean.

expression.FastLaserPrinting

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

Remarks

The	FastLaserPrinting	property	uses	the	following	settings.

Setting Visual	Basic Description

Yes True (Default)	Lines	and	rectangles	are	replaced	by
text	character	lines.

No False Lines	and	rectangles	aren't	replaced	by	text
character	lines.

You	can	set	this	property	by	using	a	form's	or	report's	property	sheet,	a	macro,	or
Visual	Basic.

The	FastLaserPrinting	property	affects	any	line	or	rectangle	on	a	form	or
report,	including	controls	that	have	these	shapes	(for	example,	a	border	around	a
text	box).

Note			This	property	has	no	effect	on	PostScript	printers,	dot-matrix	printers,	or
earlier	versions	of	laser	printers	that	don't	support	text	character	lines.

When	this	property	is	set	to	Yes	and	the	form	or	report	being	printed	has
overlapping	rectangles	or	lines,	the	rectangles	or	lines	on	top	don't	erase	the
rectangles	or	lines	they	overlap.	If	you	require	overlapping	graphics	on	your
report,	set	the	FastLaserPrinting	property	to	No.

Example

The	following	example	shows	how	to	set	the	FastLaserPrinting	property	for
the	Invoice	report	while	in	report	Design	view:

DoCmd.OpenReport	"Invoice",	acDesign

Reports!Invoice.FastLaserPrinting	=	True

DoCmd.Close	acReport,	"Invoice",	acSaveYes

FeatureInstall	Property
							

You	can	use	the	FeatureInstall	property	to	specify	or	determine	how	Microsoft
Access	handles	calls	to	methods	and	properties	that	require	features	not	yet
installed.	Read/write	MsoFeatureInstall.

MsoFeatureInstall	can	be	one	of	these	MsoFeatureInstall	constants.
msoFeatureInstallNone	(Default)	An	Automation	error	occurs	at	run	time
when	uninstalled	features	are	called.
msoFeatureInstallOnDemand	The	user	is	prompted	to	install	new	features.
msoFeatureInstallOnDemandWithUI	The	feature	is	installed	automatically
and	a	progress	meter	is	displayed	during	installation.	The	user	isn't	prompted	to
install	new	features.

expression.FeatureInstall

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

Remarks

When	VBA	code	references	an	object	that	is	not	installed	the	Microsoft	Installer
technology	will	attempt	to	install	the	required	feature.	You	use	the
FeatureInstall	property	to	control	what	happens	when	an	uninstalled	object	is
referenced.	When	this	property	is	set	to	the	default,	any	attempt	to	use	an
uninstalled	object	causes	the	Installer	technology	to	try	to	install	the	requested
feature.	In	some	circumstances	this	may	take	some	time,	and	the	user	may
believe	that	the	machine	has	stopped	responding	to	additional	commands.

You	can	set	the	FeatureInstall	property	to
msoFeatureInstallOnDemandWithUI	so	users	can	see	that	something	is
happening	as	the	feature	is	being	installed.	You	can	set	the	FeatureInstall
property	to	msoFeatureInstallNone	if	you	want	to	trap	the	error	that	is	returned
and	display	your	own	dialog	box	to	the	user	or	take	some	other	custom	action.

If	you	have	the	UserControl	property	set	to	False,	users	will	not	be	prompted	to
install	new	features	even	if	the	FeatureInstall	property	is	set	to
msoFeatureInstallOnDemand.	If	the	UserControl	property	is	set	to	True,	an
installation	progress	meter	will	appear	if	the	FeatureInstall	property	is	set	to
msoFeatureInstallOnDemand.

Example

This	example	checks	the	value	of	the	FeatureInstall	property.	If	the	property	is
set	to	msoFeatureInstallNone,	the	code	displays	a	message	box	that	asks	the
user	whether	they	want	to	change	the	property	setting.	If	the	user	responds
"Yes",	the	property	is	set	to	msoFeatureInstallOnDemand.	The	example	uses
an	object	variable	named	MyOfficeApp	that	is	dimensioned	as	an	application
object.

With	MyOfficeApp

				If	.FeatureInstall	=	msoFeatureInstallNone	Then

								Reply	=	MsgBox("Uninstalled	features	for	"	_

												&	"this	application	may	"	&	vbCrLf	_

												&	"cause	a	run-time	error	when	called."	_

												&	vbCrLf	&	vbCrLf	_

												&	"Would	you	like	to	change	this	setting"	&	vbCrLf	_

												&	"to	automatically	install	missing	features?",	_

												vbYesNo,	"Feature	Install	Setting")

												If	Reply	=	vbYes	Then

																.FeatureInstall	=	msoFeatureInstallOnDemand

												End	If

				End	If

End	With

	

FetchDefaults	Property
							

Returns	or	sets	a	Boolean	indicating	whether	Microsoft	Access	shows	default
values	for	new	rows	on	the	specified	form	before	the	row	is	saved.	True	if
Access	shows	the	default	values	for	new	rows	on	the	specified	form.	Read/write.

expression.FetchDefaults

expression			Required.	An	expression	that	returns	a	Form	object.

Example

The	following	example	sets	a	form	to	show	default	values	for	new	rows.

Forms(0).FetchDefaults	=	True

Show	All

FileDialog	Property
							

Returns	a	FileDialog	object	which	represents	a	single	instance	of	a	file	dialog
box.

expression.FileDialog(dialogType)

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

dialogType		Required	MsoFileDialogType.	The	type	of	file	dialog	box.

MsoFileDialogType	can	be	one	of	these	MsoFileDialogType	constants.
msoFileDialogFilePicker
msoFileDialogFolderPicker
msoFileDialogOpen
msoFileDialogSaveAs

mk:@MSITStore:vbaof10.chm::/html/ofobjfiledialog.htm

Example

This	example	displays	the	Save	As	dialog	box.

Dim	dlgSaveAs	As	FileDialog

Set	dlgSaveAs	=	Application.FileDialog(_

				FileDialogType:=msoFileDialogSaveAs)

dlgSaveAs.Show

This	example	displays	the	Open	dialog	box	and	allows	a	user	to	select	multiple
files	to	open.

Dim	dlgOpen	As	FileDialog

Set	dlgOpen	=	Application.FileDialog(_

				FileDialogType:=msoFileDialogOpen)

With	dlgOpen

				.AllowMultiSelect	=	True

				.Show

End	With

Show	All

FileFormat	Property
							

Returns	an	AcFileFormat	constant	indicating	the	Microsoft	Access	version
format	of	the	specified	project.	Read-only.

AcFileFormat	can	be	one	of	these	AcFileFormat	constants.
acFileFormatAccess2
acFileFormatAccess2000
acFileFormatAccess2002
acFileFormatAccess95
acFileFormatAccess97

expression.FileFormat

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

Remarks

Use	the	ConvertAccessProject	method	to	convert	an	Access	project	from	one
version	to	another.

Example

This	example	evaluates	the	current	project	and	displays	a	message	indicating	to
which	version	of	Microsoft	Access	its	file	format	corresponds.

Dim	strFormat	As	String

Select	Case	CurrentProject.FileFormat

				Case	acFileFormatAccess2

								strFormat	=	"Microsoft	Access	2"

				Case	acFileFormatAccess95

								strFormat	=	"Microsoft	Access	95"

				Case	acFileFormatAccess97

								strFormat	=	"Microsoft	Access	97"

				Case	acFileFormatAccess2000

								strFormat	=	"Microsoft	Access	2000"

				Case	acFileFormatAccess2002

								strFormat	=	"Access	2002"

End	Select

MsgBox	"This	is	a	"	&	strFormat	&	"	project."

Show	All

FileSearch	Property
							

You	can	use	the	FileSearch	property	to	return	a	read-only	reference	to	the
current	FileSearch	object	and	its	related	properties	and	methods.

expression.FileSearch

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

mk:@MSITStore:vbaof10.chm::/html/ofobjFileSearch.htm

Remarks

The	FileSearch	property	is	available	only	by	using	Visual	Basic.

Once	you	establish	a	reference	to	the	FileSearch	object,	you	can	access	all	the
properties	and	methods	of	the	object.	You	can	set	a	reference	to	the	FileSearch
object	by	clicking	References	on	the	Tools	menu	while	in	module	Design	view.
Then	set	a	reference	to	the	Microsoft	Office	Object	Library	in	the	References
dialog	box	by	selecting	the	appropriate	check	box.	Microsoft	Access	can	set	this
reference	for	you	if	you	use	a	Microsoft	Office	Object	Library	constant	to	set	a
FileSearch	object's	property	or	as	an	argument	to	a	FileSearch	object's	method.

Show	All

FillColor	Property
							

You	use	the	FillColor	property	to	specify	the	color	that	fills	in	boxes	and	circles
drawn	on	reports	with	the	Line	and	Circle	methods.	You	can	also	use	this
property	with	Visual	Basic	to	create	special	visual	effects	on	custom	reports
when	you	print	using	a	color	printer	or	preview	the	reports	on	a	color	monitor.
Read/write	Long.

expression.FillColor

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

Remarks

The	FillColor	property	contains	a	numeric	expression	that	specifies	the	fill	color
for	all	boxes	and	circles.

You	can	set	this	property	only	by	using	a	macro	or	a	Visual	Basic	event
procedure	specified	by	a	section's	OnPrint	event	property.

You	can	use	the	RGB	or	QBColor	functions	to	set	this	property.	The	FillColor
property	setting	has	a	data	type	of	Long.

Example

The	following	example	uses	the	Circle	method	to	draw	a	circle	and	create	a	pie
slice	within	the	circle.	Then	it	uses	the	FillColor	and	FillStyle	properties	to
color	the	pie	slice	red.	It	also	draws	a	line	from	the	upper	left	to	the	center	of	the
circle.

To	try	this	example	in	Microsoft	Access,	create	a	new	report.	Set	the	OnPrint
property	of	the	Detail	section	to	[Event	Procedure].	Enter	the	following	code	in
the	report's	module,	then	switch	to	Print	Preview.

Private	Sub	Detail_Print(Cancel	As	Integer,	PrintCount	As	Integer)

				Const	conPI	=	3.14159265359

				Dim	sngHCtr	As	Single

				Dim	sngVCtr	As	Single

				Dim	sngRadius	As	Single

				Dim	sngStart	As	Single

				Dim	sngEnd	As	Single

				sngHCtr	=	Me.ScaleWidth	/	2															'	Horizontal	center.

				sngVCtr	=	Me.ScaleHeight	/	2														'	Vertical	center.

				sngRadius	=	Me.ScaleHeight	/	3												'	Circle	radius.

				Me.Circle	(sngHCtr,	sngVCtr),	sngRadius			'	Draw	circle.

				sngStart	=	-0.00000001																				'	Start	of	pie	slice.

				sngEnd	=	-2	*	conPI	/	3																			'	End	of	pie	slice.

				Me.FillColor	=	RGB(255,	0,	0)													'	Color	pie	slice	red.

				Me.FillStyle	=	0																										'	Fill	pie	slice.

				

				'	Draw	Pie	slice	within	circle

				Me.Circle	(sngHCtr,	sngVCtr),	sngRadius,	,	sngStart,	sngEnd

				'	Draw	line	to	center	of	circle.

				Dim	intColor	As	Integer

				Dim	sngTop	As	Single,	sngLeft	As	Single

				Dim	sngWidth	As	Single,	sngHeight	As	Single

				Me.ScaleMode	=	3																										'	Set	scale	to	pixels.

				sngTop	=	Me.ScaleTop																						'	Top	inside	edge.

				sngLeft	=	Me.ScaleLeft																				'	Left	inside	edge.

				sngWidth	=	Me.ScaleWidth	/	2														'	Width	inside	edge.

				sngHeight	=	Me.ScaleHeight	/	2												'	Height	inside	edge.

				intColor	=	RGB(255,	0,	0)																	'	Make	color	red.

				'	Draw	line.

				Me.Line	(sngTop,	sngLeft)-(sngWidth,	sngHeight),	intColor

End	Sub

Show	All

FillStyle	Property
							

You	can	use	the	FillStyle	property	to	specify	whether	a	circle	or	line	drawn	by
the	Circle	or	Line	method	on	a	report	is	transparent,	opaque,	or	filled	with	a
pattern.	Read/write	Integer.

expression.FillStyle

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

Remarks

The	FillStyle	property	uses	the	following	settings.

Setting Description
0 Opaque
1 (Default)	Transparent
2 Horizontal	Line
3 Vertical	Line
4 Upward	Diagonal
5 Downward	Diagonal
6 Cross
7 Diagonal	Cross
You	can	set	the	FillStyle	property	by	using	a	macro	or	a	Visual	Basic	event
procedure	specified	by	a	section's	OnPrint	property	setting.

When	the	FillStyle	property	is	set	to	0,	a	circle	or	line	has	the	color	set	by	the
FillColor	property.	When	the	FillStyle	property	is	set	to	1,	the	interior	of	the
circle	or	line	is	transparent	and	has	the	color	of	the	report	behind	it.

To	use	the	FillStyle	property,	the	SpecialEffect	property	must	be	set	to	Normal.

Example

The	following	example	uses	the	Circle	method	to	draw	a	circle	and	create	a	pie
slice	within	the	circle.	Then	it	uses	the	FillColor	and	FillStyle	properties	to
color	the	pie	slice	red.	It	also	draws	a	line	from	the	upper	left	to	the	center	of	the
circle.

To	try	this	example	in	Microsoft	Access,	create	a	new	report.	Set	the	OnPrint
property	of	the	Detail	section	to	[Event	Procedure].	Enter	the	following	code	in
the	report's	module,	then	switch	to	Print	Preview.

Private	Sub	Detail_Print(Cancel	As	Integer,	PrintCount	As	Integer)

				Const	conPI	=	3.14159265359

				Dim	sngHCtr	As	Single

				Dim	sngVCtr	As	Single

				Dim	sngRadius	As	Single

				Dim	sngStart	As	Single

				Dim	sngEnd	As	Single

				sngHCtr	=	Me.ScaleWidth	/	2															'	Horizontal	center.

				sngVCtr	=	Me.ScaleHeight	/	2														'	Vertical	center.

				sngRadius	=	Me.ScaleHeight	/	3												'	Circle	radius.

				Me.Circle	(sngHCtr,	sngVCtr),	sngRadius			'	Draw	circle.

				sngStart	=	-0.00000001																				'	Start	of	pie	slice.

				sngEnd	=	-2	*	conPI	/	3																			'	End	of	pie	slice.

				Me.FillColor	=	RGB(255,	0,	0)													'	Color	pie	slice	red.

				Me.FillStyle	=	0																										'	Fill	pie	slice.

				

				'	Draw	Pie	slice	within	circle

				Me.Circle	(sngHCtr,	sngVCtr),	sngRadius,	,	sngStart,	sngEnd

				'	Draw	line	to	center	of	circle.

				Dim	intColor	As	Integer

				Dim	sngTop	As	Single,	sngLeft	As	Single

				Dim	sngWidth	As	Single,	sngHeight	As	Single

				Me.ScaleMode	=	3																										'	Set	scale	to	pixels.

				sngTop	=	Me.ScaleTop																						'	Top	inside	edge.

				sngLeft	=	Me.ScaleLeft																				'	Left	inside	edge.

				sngWidth	=	Me.ScaleWidth	/	2														'	Width	inside	edge.

				sngHeight	=	Me.ScaleHeight	/	2												'	Height	inside	edge.

				intColor	=	RGB(255,	0,	0)																	'	Make	color	red.

				'	Draw	line.

				Me.Line	(sngTop,	sngLeft)-(sngWidth,	sngHeight),	intColor

End	Sub

Show	All

Filter	Property
							

You	can	use	the	Filter	property	to	specify	a	subset	of	records	to	be	displayed
when	a	filter	is	applied	to	a	form,	report	query,	or	table.	Read/write	String.

expression.Filter

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

Remarks

If	you	want	to	specify	a	server	filter	within	a	Microsoft	Access	project	(.adp)	for
data	located	on	a	server,	use	the	ServerFilter	property.

The	Filter	property	is	a	string	expression	consisting	of	a	WHERE	clause	without
the	WHERE	keyword.	For	example,	the	following	Visual	Basic	code	defines	and
applies	a	filter	to	show	only	customers	from	the	USA:

Me.Filter	=	"Country	=	'USA'"

Me.FilterOn	=	True

You	can	set	this	property	by	using	a	table's	or	form's	property	sheet,	a	macro,	or
Visual	Basic.

You	can	also	set	this	property	in	Form	view	or	Datasheet	view	by	pointing	to
Filter	on	the	Records	menu	and	clicking	one	of	the	commands	on	the	submenu.

Note			Setting	the	Filter	property	has	no	effect	on	the	ADO	Filter	property.

You	can	use	the	Filter	property	to	save	a	filter	and	apply	it	at	a	later	time.	Filters
are	saved	with	the	objects	in	which	they	are	created.	They	are	automatically
loaded	when	the	object	is	opened,	but	they	aren't	automatically	applied.

When	a	new	object	is	created,	it	inherits	the	RecordSource,	Filter,	OrderBy,
and	OrderByOn	properties	of	the	table	or	query	it	was	created	from.

To	apply	a	saved	filter	to	a	form,	query,	or	table,	you	can	click	Apply	Filter	on
the	toolbar,	click	Apply	Filter/Sort	on	the	Records	menu,	or	use	a	macro	or
Visual	Basic	to	set	the	FilterOn	property	to	True.	For	reports,	you	can	apply	a
filter	by	setting	the	FilterOn	property	to	Yes	in	the	report's	property	sheet.

The	Apply	Filter	button	indicates	the	state	of	the	Filter	and	FilterOn
properties.	The	button	remains	disabled	until	there	is	a	filter	to	apply.	If	an
existing	filter	is	currently	applied,	the	Apply	Filter	button	appears	pressed	in.

To	apply	a	filter	automatically	when	a	form	is	opened,	specify	in	the	OnOpen
event	property	setting	of	the	form	either	a	macro	that	uses	the	ApplyFilter	action
or	an	event	procedure	that	uses	the	ApplyFilter	method	of	the	DoCmd	object.

mk:@MSITStore:ado210.chm::/htm/mdproFilter.htm

You	can	remove	a	filter	by	clicking	the	pressed-in	Apply	Filter	button,	clicking
Remove	Filter/Sort	on	the	Records	menu,	or	using	Visual	Basic	to	set	the
FilterOn	property	to	False.

Note			You	can	save	a	filter	as	a	query	by	clicking	Save	As	Query	on	the	File
menu	while	in	the	Filter	By	Form	window	or	the	Advanced	Filter/Sort	window.

When	the	Filter	property	is	set	in	form	Design	view,	Microsoft	Access	does	not
attempt	to	validate	the	SQL	expression.	If	the	SQL	expression	is	invalid,	an	error
occurs	when	the	filter	is	applied.

Show	All

FilterLookup	Property
							

You	can	use	the	FilterLookup	property	to	specify	whether	values	appear	in	a
bound	text	box	control	when	using	the	Filter	By	Form	or	Server	Filter	By	Form
window.	Read/write	Byte.

expression.FilterLookup

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

Remarks

The	FilterLookup	property	uses	the	following	settings.

Setting Visual	Basic Description

Never 0
The	field	values	aren't	displayed.	You
can	specify	whether	the	filtered	records
can	contain	Null	values.

Database	Default 1

(Default)	The	field	values	are	displayed
according	to	the	settings	under	Filter	by
form	defaults	on	the	Edit/Find	tab	of
the	Option	dialog	box,	available	by
clicking	Options	on	the	Tools	menu.

Always 2 The	field	values	are	always	displayed.

You	can	set	the	FilterLookup	property	by	using	the	text	box's	property	sheet,	a
macro,	or	Visual	Basic.

You	can	set	the	default	for	this	property	by	using	the	text	box	control's	default
control	style	or	the	DefaultControl	method	in	Visual	Basic.

If	you	want	to	limit	the	types	of	fields	to	display,	clear	the	appropriate	check	box
under	Filter	by	form	defaults	on	the	Edit/Find	tab	of	the	Option	dialog	box,
available	by	clicking	Options	on	the	Tools	menu.	If	field	lists	aren't	displayed,
you	should	increase	the	number	in	the	Don't	display	lists	where	more	than	this
number	of	records	read	box	so	the	setting	is	greater	than	or	equal	to	the
maximum	number	of	records	in	any	field	in	the	underlying	source	of	records.

Show	All

FilterOn	Property
							

You	can	use	the	FilterOn	property	to	specify	or	determine	whether	the	Filter
property	for	a	form	or	report	is	applied.	Read/write	Boolean.

expression.FilterOn

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

Remarks

If	you	have	specified	a	server	filter	within	a	Microsoft	Access	project	(.adp),	use
the	ServerFilterByForm	property.

The	FilterOn	property	uses	the	following	settings.

Setting Visual	Basic Description
Yes True	 The	object's	Filter	property	is	applied.

No False	 (Default)	The	object's	Filter	property	isn't
applied.

For	reports,	you	can	set	the	FilterOn	property	by	using	the	report's	property
sheet	or	Visual	Basic.

For	forms,	you	can	set	the	FilterOn	property	in	a	macro	or	by	using	Visual
Basic.	You	can	also	set	this	property	by	clicking	Apply	Filter	on	the	Form	View
toolbar	or	the	Filter/Sort	toolbar.

To	apply	a	saved	filter,	press	the	Apply	Filter	button	for	forms,	or	apply	the
filter	by	using	a	macro	or	Visual	Basic	by	setting	the	FilterOn	property	to	True
for	forms	or	reports.	For	reports,	you	can	set	the	FilterOn	property	to	Yes	in	the
report's	property	sheet.

The	Apply	Filter	button	indicates	the	state	of	the	Filter	and	FilterOn
properties.	The	button	remains	disabled	until	there	is	a	filter	to	apply.	If	an
existing	filter	is	currently	applied,	the	Apply	Filter	button	appears	pressed	in.	To
apply	a	filter	automatically	when	a	form	or	report	is	opened,	specify	in	the
OnOpen	event	property	setting	of	the	form	either	a	macro	that	uses	the
ApplyFilter	action	or	an	event	procedure	that	uses	the	ApplyFilter	method	of
the	DoCmd	object.

You	can	remove	a	filter	by	clicking	the	pressed-in	Apply	Filter	button,	clicking
Remove	Filter/Sort	on	the	Records	menu,	or	by	using	Visual	Basic	to	set	the
FilterOn	property	to	False.	For	reports,	you	can	remove	a	filter	by	setting	the
FilterOn	property	to	No	in	the	report's	property	sheet.

Note			When	a	new	object	is	created,	it	inherits	the	RecordSource,	Filter,

ServerFilter.	OrderBy,	and	OrderByOn	properties	of	the	table	or	query	it	was
created	from.	For	forms	and	reports,	inherited	filters	aren't	automatically	applied
when	an	object	is	opened.

FolderSuffix	Property
							

You	can	use	the	FolderSuffix	property	to	determine	the	folder	suffix	that
Microsoft	Access	uses	when	you	save	a	data	access	page	as	a	Web	page,	use
long	file	names,	and	choose	to	save	supporting	files	in	a	separate	folder	(that	is,
if	the	UseLongFileNames	and	OrganizeInFolder	properties	are	set	to	True.)
Read-only	String.

expression.FolderSuffix

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

Remarks

The	FolderSuffix	property	represents	the	text	displayed	as	a	hyperlink.

This	property	is	available	only	by	using	Visual	Basic.

Newly	created	data	access	pages	use	the	suffix	returned	by	the	FolderSuffix
property	of	the	DefaultWebOptions	object.	The	value	of	the	FolderSuffix
property	of	the	WebOptions	object	may	differ	from	that	of	the
DefaultWebOptions	object	if	the	data	access	page	was	previously	edited	in	a
different	language	version	of	Microsoft	Access.	You	can	use	the
UseDefaultFolderSuffix	method	to	change	the	suffix	to	the	language	you	are
currently	using	in	Microsoft	Office.

By	default,	the	name	of	the	supporting	folder	is	the	name	of	the	Web	page	plus
an	underscore	(_),	a	period	(.),	or	a	hyphen	(-)	and	the	word	"files"	(appearing	in
the	language	of	the	version	of	Microsoft	Access	in	which	the	file	was	saved	as	a
Web	page).	For	example,	suppose	that	you	use	the	Dutch	language	version	of
Access	to	save	a	file	called	"Page1"	as	a	Web	page.	The	default	name	of	the
supporting	folder	would	be	Page1_bestanden.

The	following	table	lists	each	language	version	of	Office,	and	gives	its
corresponding	LanguageID	property	value	and	folder	suffix.	For	the	languages
that	are	not	listed	in	the	table,	the	suffix	".files"	is	used.

Language

Language LanguageID Folder	suffix
Arabic 1025 .files
Basque 1069 _fitxategiak
Brazilian 1046 _arquivos
Bulgarian 1026 .files
Catalan 1027 _fitxers
Chinese	-	Simplified 2052 .files
Chinese	-	Traditional 1028 .files
Croatian 1050 _datoteke

mk:@MSITStore:vbaof10.chm::/html/ofproLanguageID.htm

Czech 1029 _soubory
Danish 1030 -filer
Dutch 1043 _bestanden
English 1033 _files
Estonian 1061 _failid
Finnish 1035 _tiedostot
French 1036 _fichiers
German 1031 -Dateien
Greek 1032 .files
Hebrew 1037 .files
Hungarian 1038 _elemei
Italian 1040 -file
Japanese 1041 .files
Korean 1042 .files
Latvian 1062 _fails
Lithuanian 1063 _bylos
Norwegian 1044 -filer
Polish 1045 _pliki
Portuguese 2070 _ficheiros
Romanian 1048 .files
Russian 1049 .files
Serbian	(Cyrillic) 3098 .files
Serbian	(Latin) 2074 _fajlovi
Slovakian 1051 .files
Slovenian 1060 _datoteke
Spanish 3082 _archivos
Swedish 1053 -filer
Thai 1054 .files
Turkish 1055 _dosyalar
Ukranian 1058 .files
Vietnamese 1066 .files

Example

This	example	returns	the	folder	suffix	used	by	the	data	access	page
("Inventory").	The	suffix	is	returned	in	the	string	variable	strFolderSuffix.

strFolderSuffix	=	DataAccessPages("Inventory").WebOptions.FolderSuffix

Show	All

FollowedHyperlinkColor	Property
							

You	can	use	the	FollowedHyperlinkColor	property	to	specify	or	determine	the
default	color	of	all	followed	hyperlinks	within	the	Application	object.

Remarks

The	FollowedHyperlinkColor	property	uses	the	following	settings.

Setting Visual	Basic
Black acColorIndexBlack	(0)
Maroon acColorIndexMaroon	(1)
Green acColorIndexGreen	(2)
Olive acColorIndexOlive	(3)
Dark	Blue acColorIndexDarkBlue	(4)
Violet	(default) acColorIndexViolet	(5)
Teal acColorIndexTeal	(6)
Gray acColorIndexGray	(7)
Silver acColorIndexSilver	(8)
Red acColorIndexRed	(9)

Bright	Green acColorIndexBrightGreen
(10)

Yellow acColorIndexYellow	(11)
Blue acColorIndexBlue	(12)
Fushia acColorIndexFushia	(13)
Aqua acColorIndexAqua	(14)
White acColorIndexWhite	(15)
You	can	set	the	FollowedHyperlinkColor	property	through	the
DefaultWebOptions	property	or	the	SetOption	method	by	using	Visual	Basic.

You	can	to	set	or	change	the	default	followed	hyperlink	color	available	in	the
Web	Options	dialog	box.	To	display	this	dialog	box,	click	Options	on	the	Tools
menu.	Click	the	General	tab	and	click	the	Web	Pages	button.

The	default	color	of	a	hyperlink	is	changed	to	the	followed	hyperlink	color	when
a	hyperlink	control	has	been	pressed.

Use	the	DefaultWebOptions	property	to	identify	or	set	the	Application	object's
DefaultWebOptions	object	properties.

Show	All

FontBold	Property
							

You	can	use	the	FontBold	property	to	specify	whether	a	font	appears	in	a	bold
style	in	the	following	situations:

When	displaying	or	printing	controls	on	forms	and	reports.

When	using	the	Print	method	on	a	report.

Remarks

The	FontBold	property	uses	the	following	settings.

Setting Description
True	 The	text	is	bold.
False	 (Default)	The	text	isn't	bold.

You	can	set	the	FontBold	property	only	by	using	a	macro	or	Visual	Basic.

To	use	the	FontBold	property	on	a	report,	first	create	a	Print	event	procedure
that	prints	the	desired	text.

A	font's	appearance	on	screen	and	in	print	may	differ,	depending	on	your
computer	and	printer.

The	FontWeight	property,	which	is	available	in	the	property	sheet	for	controls,
can	also	be	used	to	set	the	line	width	for	a	control's	text.	The	FontBold	property
gives	you	a	quick	way	to	make	text	bold;	the	FontWeight	property	gives	you
finer	control	over	the	line	width	setting	for	text.	The	following	table	shows	the
relationship	between	these	properties'	settings.

If Then
FontBold	=	False FontWeight	=	Normal	(400)
FontBold	=	True FontWeight	=	Bold	(700)

FontWeight	<	700 FontBold	=	False
FontWeight	>	=	700 FontBold	=	True

Example

The	following	Print	event	procedure	prints	a	report	title	and	the	current	date	in	a
bold	style	on	a	report	at	the	coordinates	specified	by	the	CurrentX	and
CurrentY	property	settings.

Private	Sub	ReportHeader0_Print(Cancel	As	Integer,	_

					PrintCount	As	Integer)

				Dim	MyDate

				MyDate	=	Date

				Me.FontBold	=	True

				'	Print	report	title	in	bold.

				Me.Print("Sales	Management	Report")

				Me.Print(MyDate)

End	Sub

Show	All

FontItalic	Property
							

You	can	use	the	FontItalic	property	to	specify	whether	text	is	italic	in	the
following	situations:

When	displaying	or	printing	controls	on	forms	and	reports.

When	using	the	Print	method	on	a	report.

Read/write	Boolean	for	the	following	objects:	ComboBox,	CommandButton,
FormatCondition,	Label,	ListBox,	TabControl,	TextBox,	and	ToggleButton.
Read/write	Integer	for	the	Report	object.

expression.FontItalic

expression			Required.	An	expression	that	returns	one	of	the	above	objects.

	Remarks;

The	FontItalic	property	uses	the	following	settings.

Setting Visual	Basic Description
Yes True	(–1) The	text	is	italic.
No False	(0) (Default)	The	text	isn't	italic.

For	controls	on	forms	and	reports,	you	can	set	this	property	by	using	the
control's	property	sheet,	a	macro,	or	Visual	Basic.

For	reports,	you	can	use	this	property	only	in	an	event	procedure	or	in	a	macro
specified	by	the	OnPrint	event	property	setting.

You	can	also	set	this	property	by	clicking	Italic	on	the	Formatting
(Form/Report)	toolbar.

You	can	set	the	default	for	this	property	by	using	the	default	control	style	or	the

DefaultControl	method	in	Visual	Basic.

Show	All

FontName	Property
							

You	can	use	the	FontName	property	to	specify	the	font	for	text	in	the	following
situations:

When	displaying	or	printing	controls	on	forms	and	reports.

When	using	the	Print	method	on	a	report.

Read/write	String.

expression.FontName

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

Remarks

The	FontName	property	setting	is	the	name	of	the	font	that	the	text	is	displayed
in.

For	controls	on	forms	and	reports,	you	can	set	this	property	by	using	the
property	sheet,	a	macro,	or	Visual	Basic.

You	can	also	set	this	property	by	clicking	the	Font	box	on	the	Formatting
(Form/Report)	toolbar.

You	can	set	the	default	for	this	property	by	using	a	control's	default	control	style
or	the	DefaultControl	method	in	Visual	Basic.

For	reports,	you	can	set	this	property	only	in	an	event	procedure	or	in	a	macro
specified	by	the	OnPrint	event	property	setting.

In	Visual	Basic,	you	set	the	FontName	property	by	using	a	string	expression	that
is	the	name	of	the	desired	font.

Font	availability	depends	on	your	system	and	printer.	If	you	select	a	font	that
your	system	can't	display	or	that	isn't	installed,	Windows	substitutes	a	similar
font.

Example

The	following	example	uses	the	Print	method	to	display	text	on	a	report	named
Report1.	It	uses	the	TextWidth	and	TextHeight	methods	to	center	the	text
vertically	and	horizontally.

Private	Sub	Detail_Format(Cancel	As	Integer,	_

								FormatCount	As	Integer)

				Dim	rpt	as	Report

				Dim	strMessage	As	String

				Dim	intHorSize	As	Integer,	intVerSize	As	Integer

				Set	rpt	=	Me

				strMessage	=	"DisplayMessage"

				With	rpt

								'Set	scale	to	pixels,	and	set	FontName	and

								'FontSize	properties.

								.ScaleMode	=	3

								.FontName	=	"Courier"

								.FontSize	=	24

				End	With

				'	Horizontal	width.

				intHorSize	=	Rpt.TextWidth(strMessage)

				'	Vertical	height.

				intVerSize	=	Rpt.TextHeight(strMessage)

				'	Calculate	location	of	text	to	be	displayed.

				Rpt.CurrentX	=	(Rpt.ScaleWidth/2)	-	(intHorSize/2)

				Rpt.CurrentY	=	(Rpt.ScaleHeight/2)	-	(intVerSize/2)

				'	Print	text	on	Report	object.

				Rpt.Print	strMessage

End	Sub

Show	All

FontSize	Property
							

You	can	use	the	FontSize	property	to	specify	the	point	size	for	text	in	the
following	situations:

When	displaying	or	printing	controls	on	forms	and	reports.

When	using	the	Print	method	on	a	report.

Read/write	Integer.

expression.FontSize

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

Remarks

The	FontSize	property	uses	the	following	settings.

Setting Description

8 (Default	for	all	reports	and	controls	except	command	buttons)
The	text	is	8-point	type.

10 (Default	for	command	buttons)	The	text	is	10-point	type.
Other	sizes The	text	is	the	indicated	size.

For	controls	on	forms	and	reports,	you	can	set	this	property	by	using	the
property	sheet,	a	macro,	or	Visual	Basic.

You	can	also	set	this	property	by	clicking	the	Font	Size	box	on	the	Formatting
(Form/Report)	toolbar.

You	can	set	the	default	for	this	property	by	using	a	control's	default	control	style
or	the	DefaultControl	method	in	Visual	Basic.

For	reports,	you	can	set	this	property	only	in	an	event	procedure	or	in	a	macro
specified	by	the	OnPrint	event	property	setting.

In	Visual	Basic,	you	set	the	FontSize	property	by	using	a	numeric	expression
equal	to	the	desired	size	of	the	font.	The	setting	for	the	FontSize	property	can	be
between	1	and	127,	inclusive.

Example

The	following	example	uses	the	Print	method	to	display	text	on	a	report	named
Report1.	It	uses	the	TextWidth	and	TextHeight	methods	to	center	the	text
vertically	and	horizontally.

Private	Sub	Detail_Format(Cancel	As	Integer,	_

								FormatCount	As	Integer)

				Dim	rpt	as	Report

				Dim	strMessage	As	String

				Dim	intHorSize	As	Integer,	intVerSize	As	Integer

				Set	rpt	=	Me

				strMessage	=	"DisplayMessage"

				With	rpt

								'Set	scale	to	pixels,	and	set	FontName	and

								'FontSize	properties.

								.ScaleMode	=	3

								.FontName	=	"Courier"

								.FontSize	=	24

				End	With

				'	Horizontal	width.

				intHorSize	=	Rpt.TextWidth(strMessage)

				'	Vertical	height.

				intVerSize	=	Rpt.TextHeight(strMessage)

				'	Calculate	location	of	text	to	be	displayed.

				Rpt.CurrentX	=	(Rpt.ScaleWidth/2)	-	(intHorSize/2)

				Rpt.CurrentY	=	(Rpt.ScaleHeight/2)	-	(intVerSize/2)

				'	Print	text	on	Report	object.

				Rpt.Print	strMessage

End	Sub

Show	All

FontUnderline	Property
							

You	can	use	the	FontUnderline	properties	to	specify	whether	text	is	underlined
in	the	following	situations:

When	displaying	or	printing	controls	on	forms	and	reports.

When	using	the	Print	method	on	a	report.

Read/write	Boolean	for	the	following	objects:	ComboBox,	CommandButton,
FormatCondition,	Label,	ListBox,	TabControl,	TextBox,	and	ToggleButton.
Read/write	Integer	for	the	Report	object.

expression.FontUnderline

expression			Required.	An	expression	that	returns	one	of	the	above	objects.	

Remarks

The	FontUnderline	property	uses	the	following	settings.

Setting Visual	Basic Description
Yes True	(-1) The	text	is	underlined.
No False	(0) (Default)	The	text	isn't	underlined.

For	controls	on	forms	and	reports,	you	can	set	this	property	by	using	the
control's	property	sheet,	a	macro,	or	Visual	Basic.

For	reports,	you	can	use	this	property	only	in	an	event	procedure	or	in	a	macro
specified	by	the	OnPrint	event	property	setting.

You	can	also	set	this	property	by	clicking	Underline	on	the	Formatting
(Form/Report)	toolbar.

You	can	set	the	default	for	this	property	by	using	the	default	control	style	or	the
DefaultControl	method	in	Visual	Basic.

For	a	text	box,	combo	box,	label,	or	command	button	that	contains	a	hyperlink,
Microsoft	Access	automatically	sets	the	FontUnderline	property	to	Yes	if	the
Underline	Hyperlinks	box	is	checked	on	the	Hyperlinks/HTML	tab	of	the
Options	dialog	box,	available	by	clicking	Options	on	the	Tools	menu.	If	you
remove	the	hyperlink	from	the	control	(for	example,	by	changing	the
ControlSource	property	of	a	bound	text	box	to	a	source	that	isn't	a	Hyperlink
field),	Microsoft	Access	sets	the	FontUnderline	property	back	to	the	default
control	style.	For	command	buttons,	the	FontUnderline	property	setting	takes
effect	only	if	the	command	button	contains	a	caption	rather	than	a	picture.

Show	All

FontWeight	Property
							

Use	the	FontWeight	property	to	specify	the	line	width	that	Windows	uses	to
display	and	print	characters	in	a	control.	Read/write	Integer.

expression.FontWeight

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

Remarks

The	FontWeight	property	uses	the	following	settings.

Setting Visual	Basic
Thin 100
Extra	Light 200
Light 300
Normal 400
Medium 500
Semi-bold 600
Bold 700
Extra	Bold 800
Heavy 900
You	can	set	this	property	by	using	the	control's	property	sheet,	a	macro,	or
Visual	Basic.	You	can	also	click	Bold	on	the	Formatting	(Form/Report)
toolbar.	This	sets	the	FontWeight	property	to	Bold	(700).

You	can	set	the	default	for	this	property	by	using	a	control's	default	control	style
or	the	DefaultControl	method	in	Visual	Basic.

A	font's	appearance	on	screen	and	in	print	may	differ,	depending	on	your
computer	and	printer.	For	example,	a	FontWeight	property	setting	of	Thin	may
look	identical	to	Normal	on	screen	but	appear	lighter	when	printed.

The	FontBold	property,	which	is	available	only	in	Visual	Basic	and	macros,	can
also	be	used	to	set	the	line	width	for	a	control's	or	report's	text	to	bold.	The
FontBold	property	gives	you	a	quick	way	to	make	text	bold;	the	FontWeight
property	gives	you	finer	control	over	the	line	width	setting	for	text.	The
following	table	shows	the	relationship	between	these	properties'	settings.

If Then
FontBold	=	False		 FontWeight	=	Normal	(400)
FontBold	=	True		 FontWeight	=	Bold	(700)
FontWeight	<	700 FontBold	=	False

FontWeight	>	=	700 FontBold	=	True

ForceNewPage	Property
							

You	can	use	the	ForceNewPage	property	to	specify	whether	form	sections
detail,	footer)	or	report	sections	(header,	detail,	footer)	print	on	a	separate	page,
rather	than	on	the	current	page.	Read/write	Byte.

expression.ForceNewPage

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

Remarks

For	example,	you	may	have	designed	the	last	page	of	a	report	as	an	order	form.
If	the	report	footer's	ForceNewPage	property	is	set	to	Before	Section,	the	order
form	is	always	printed	on	a	new	page.

Note			The	ForceNewPage	property	does	not	apply	to	page	headers	or	page
footers.

The	ForceNewPage	property	uses	the	following	settings.

Setting Visual	Basic Description

None 0
(Default)	The	current	section	(the	section	for
which	you're	setting	the	property)	is	printed
on	the	current	page.

Before	Section 1 The	current	section	is	printed	at	the	top	of	a
new	page.

After	Section 2
The	section	immediately	following	the
current	section	is	printed	at	the	top	of	a	new
page.

Before	&	After 3
The	current	section	is	printed	at	the	top	of	a
new	page,	and	the	next	section	is	printed	at
the	top	of	a	new	page.

You	can	set	this	property	by	using	the	section's	property	sheet,	a	macro,	or
Visual	Basic.

Here	are	some	examples	of	the	ForceNewPage	property	setting.

Section Sample	setting Description
A	group	header
displaying	the
year

Before	Section
The	group	header	is	printed	at	the	top
of	the	page,	followed	by	the	detail
section,	group	footer,	and	page	footer.

A	report	detail
section After	Section The	group	footer	is	printed	at	the	top	of

a	new	page.
A	report	header
containing	the The	report	title	and	logo	are	printed	on

report	title	and
company	logo.

After	Section a	separate	page	at	the	beginning	of	the
report.

Example

The	following	example	returns	the	ForceNewPage	property	setting	for	the	detail
section	of	the	Sales	By	Date	report	and	assigns	it	to	the	intGetVal	variable.

Dim	intGetVal	As	Integer

intGetVal	=	Reports![Sales	By	Year].Section(acDetail).ForceNewPage

Show	All

ForeColor	Property
							

You	can	use	the	ForeColor	property	to	specify	the	color	for	text	in	a	control.
Read/write	Long.

expression.ForeColor

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

Remarks

You	can	use	this	property	for	controls	on	forms	or	reports	to	make	them	easy	to
read	or	to	convey	a	special	meaning.	For	example,	you	can	change	the	color	of
the	text	in	the	UnitsInStock	control	when	its	value	falls	below	the	reorder	level.

You	can	also	use	this	property	on	reports	to	create	special	visual	effects	when
you	print	with	a	color	printer.	When	used	on	a	report,	this	property	specifies	the
printing	and	drawing	color	for	the	Print,	Line,	and	Circle	methods.

The	ForeColor	property	contains	a	numeric	expression	that	represents	the	value
of	the	text	color	in	the	control.

You	can	use	the	Color	Builder	to	set	this	property	by	clicking	the	Build	button	to
the	right	of	the	property	box	in	the	property	sheet.	Using	the	Color	Builder
enables	you	to	define	custom	colors	for	text	in	controls.

For	controls,	you	can	set	this	property	by	using	Font/Fore	Color	on	the
Formatting	(Form/Report)	toolbar,	the	control's	property	sheet,	a	macro,	or
Visual	Basic.

You	can	set	the	default	for	this	property	by	using	a	control's	default	control	style
or	the	DefaultControl	method	in	Visual	Basic.

For	reports,	you	can	set	the	ForeColor	property	only	by	using	a	macro	or	a
Visual	Basic	event	procedure	specified	in	a	section's	OnPrint	event	property
setting.

For	Table	objects,	you	can	set	this	property	using	Font/Fore	Color	on	the
Formatting	(Datasheet)	toolbar,	or	in	Visual	Basic	by	using	the
DatasheetForeColor	property.

For	a	text	box,	combo	box,	label,	or	command	button	that	contains	a	hyperlink,
Microsoft	Access	automatically	sets	the	ForeColor	property	to	the	color
specified	in	the	Followed	Hyperlink	Color	or	Hyperlink	Color	box	on	the
Hyperlinks/HTML	tab	of	the	Options	dialog	box,	available	by	clicking
Options	on	the	Tools	menu.	If	you	remove	the	hyperlink	from	the	control	(for
example,	by	changing	the	ControlSource	property	of	a	bound	text	box	to	a

mk:@MSITStore:ado210.chm::/htm/adobjTable.htm

source	that	isn't	a	Hyperlink	field),	Microsoft	Access	sets	the	ForeColor
property	back	to	the	default	control	style.	For	command	buttons,	the	ForeColor
property	setting	takes	effect	only	if	the	command	button	contains	a	caption
rather	than	a	picture.

Example

The	following	example	uses	the	RGB	function	to	set	the	BorderColor,
BackColor,	and	ForeColor	properties	depending	on	the	value	of	the
txtPastDue	text	box.	You	can	also	use	the	QBColor	function	to	set	these
properties.	Putting	the	following	code	in	the	Form_Current()	event	sets	the
control	display	characteristics	as	soon	as	the	user	opens	a	form	or	moves	to	a
new	record.

Sub	Form_Current()

				Dim	curAmntDue	As	Currency,	lngBlack	As	Long

				Dim	lngRed	As	Long,	lngYellow	As	Long,	lngWhite	As	Long

				If	Not	IsNull(Me!txtPastDue.Value)	Then

								curAmntDue	=	Me!txtPastDue.Value

				Else

								Exit	Sub

				End	If

				lngRed	=	RGB(255,	0,	0)

				lngBlack	=	RGB(0,	0,	0)

				lngYellow	=	RGB(255,	255,	0)

				lngWhite	=	RGB(255,	255,	255)

				If	curAmntDue	>	100	Then

								Me!txtPastDue.BorderColor	=	lngRed

								Me!txtPastDue.ForeColor	=	lngRed

								Me!txtPastDue.BackColor	=	lngYellow

				Else

								Me!txtPastDue.BorderColor	=	lngBlack

								Me!txtPastDue.ForeColor	=	lngBlack

								Me!txtPastDue.BackColor	=	lngWhite

				End	If

End	Sub

Show	All

Form	Property
							

You	can	use	the	Form	property	to	refer	to	a	form	or	to	refer	to	the	form
associated	with	a	subform	control.

Remarks

This	property	refers	to	a	form	object.	It	is	read-only	in	all	views.

You	can	use	this	property	by	using	a	macro	or	Visual	Basic.

This	property	is	typically	used	to	refer	to	the	form	or	report	contained	in	a
subform	control.	For	example,	the	following	code	uses	the	Form	property	to
access	the	OrderID	control	on	a	subform	contained	in	the	OrderDetails	subform
control.

Dim	intOrderID	As	Integer

intOrderID	=	Forms!Orders!OrderDetails.Form!OrderID

The	next	example	calls	a	function	from	a	property	sheet	by	using	the	Form
property	to	refer	to	the	active	form	that	contains	the	control	named	CustomerID.

=MyFunction(Form!CustomerID)

When	you	use	the	Form	property	in	this	manner,	you	are	referring	to	the	active
form,	and	the	name	of	the	form	isn't	necessary.

The	next	example	is	the	Visual	Basic	equivalent	of	the	preceding	example.

X	=	MyFunction(Forms!Customers!CustomerID)

Note			When	you	use	the	Forms	collection,	you	must	specify	the	name	of	the
form.

Example

The	following	example	uses	the	Form	property	to	refer	to	a	control	on	a
subform.

Dim	curTotalAmount	As	Currency

curTotalAmount	=	Forms!Orders!OrderDetails.Form!TotalAmount

Show	All

Format	Property
							

You	can	use	the	Format	property	to	customize	the	way	numbers,	dates,	times,
and	text	are	displayed	and	printed.	Read/write	String.

expression.Format

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

Remarks

You	can	use	one	of	the	predefined	formats	or	you	can	create	a	custom	format	by
using	formatting	symbols.

The	Format	property	uses	different	settings	for	different	data	types.	For
information	about	settings	for	a	specific	data	type,	see	one	of	the	following
topics:

Date/Time	Data	Type	
Number	and	Currency	Data	Types

Text	and	Memo	Data	Types

Yes/No	Data	Type

For	a	control,	you	can	set	this	property	in	the	control's	property	sheet.	For	a	field,
you	can	set	this	property	in	table	Design	view	(in	the	Field	Properties	section)	or
in	Design	view	of	the	Query	window	(in	the	Field	Properties	property	sheet).
You	can	also	use	a	macro	or	Visual	Basic.

Note			In	Visual	Basic,	enter	a	string	expression	that	corresponds	to	one	of	the
predefined	formats	or	enter	a	custom	format.

The	Format	property	affects	only	how	data	is	displayed.	It	doesn't	affect	how
data	is	stored.

Microsoft	Access	provides	predefined	formats	for	Date/Time,	Number	and
Currency,	Text	and	Memo,	and	Yes/No	data	types.	The	predefined	formats
depend	on	the	country/region	specified	by	double-clicking	Regional	Options	in
Windows	Control	Panel.	Microsoft	Access	displays	formats	appropriate	for	the
country/region	selected.	For	example,	with	English	(United	States)	selected	on
the	General	tab,	1234.56	in	the	Currency	format	appears	as	$1,234.56,	but	when
English	(British)	is	selected	on	the	General	tab,	the	number	appears	as
£1,234.56.

If	you	set	a	field's	Format	property	in	table	Design	view,	Microsoft	Access	uses
that	format	to	display	data	in	datasheets.	It	also	applies	the	field's	Format

property	to	new	controls	on	forms	and	reports.

You	can	use	the	following	symbols	in	custom	formats	for	any	data	type.

Symbol Meaning
(space) Display	spaces	as	literal	characters.

"ABC" Display	anything	inside	quotation	marks	as	literal
characters.

! Force	left	alignment	instead	of	right	alignment.
* Fill	available	space	with	the	next	character.

\
Display	the	next	character	as	a	literal	character.	You	can
also	display	literal	characters	by	placing	quotation	marks
around	them.

[color]
Display	the	formatted	data	in	the	color	specified	between
the	brackets.	Available	colors:	Black,	Blue,	Green,	Cyan,
Red,	Magenta,	Yellow,	White.

You	can't	mix	custom	formatting	symbols	for	the	Number	and	Currency	data
types	with	Date/Time,	Yes/No,	or	Text	and	Memo	formatting	symbols.

When	you	have	defined	an	input	mask	and	set	the	Format	property	for	the	same
data,	the	Format	property	takes	precedence	when	the	data	is	displayed	and	the
input	mask	is	ignored.	For	example,	if	you	create	a	Password	input	mask	in	table
Design	view	and	also	set	the	Format	property	for	the	same	field,	either	in	the
table	or	in	a	control	on	a	form,	the	Password	input	mask	is	ignored	and	the	data
is	displayed	according	to	the	Format	property.

Example

The	following	three	examples	set	the	Format	property	by	using	a	predefined
format:

Me!Date.Format	=	"Medium	Date"

Me!Time.Format	=	"Long	Time"

Me!Registered.Format	=	"Yes/No"

The	next	example	sets	the	Format	property	by	using	a	custom	format.	This
format	displays	a	date	as:	Jan	1995.

Forms!Employees!HireDate.Format	=	"mmm	yyyy"

The	following	example	demonstrates	a	Visual	Basic	function	that	formats
numeric	data	by	using	the	Currency	format	and	formats	text	data	entirely	in
capital	letters.	The	function	is	called	from	the	OnLostFocus	event	of	an	unbound
control	named	TaxRefund.

Function	FormatValue()	As	Integer

				Dim	varEnteredValue	As	Variant

				varEnteredValue	=	Forms!Survey!TaxRefund.Value

				If	IsNumeric(varEnteredValue)	=	True	Then

								Forms!Survey!TaxRefund.Format	=	"Currency"

				Else

								Forms!Survey!TaxRefund.Format	=	">"

				End	If

End	Function

FormatConditions	Property
							

You	can	use	the	FormatConditions	property	to	return	a	read-only	reference	to
the	FormatConditions	collection	and	its	related	properties.

expression.FormatConditions

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

Remarks

This	property	is	available	only	by	using	Visual	Basic.

Conditional	formatting	can	also	be	set	on	a	combo	box	or	text	box	from	the
Conditional	Formatting	dialog	box.	The	Conditional	Formatting	dialog	box
is	available	by	clicking	Conditional	Formatting	on	the	Format	menu	when	a
form	is	in	Design	view.

Example

The	following	example	sets	format	properties	for	an	existing	conditional	format
for	the	"Textbox1"	control.

With	forms("forms1").Controls("Textbox1").FormatConditions(1)

				.BackColor	=	RGB(255,255,255)

				.FontBold	=	True

				.ForeColor	=	RGB(255,0,0)

End	With

Show	All

FormatCount	Property
							

You	can	use	the	FormatCount	property	to	determine	the	number	of	times	the
OnFormat	property	has	been	evaluated	for	the	current	section	on	a	report.
Read/write	Integer.

expression.FormatCount

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

Remarks

You	can	use	this	property	only	in	a	macro	or	an	Visual	Basic	event	procedure
specified	by	a	section's	OnFormat	property	setting.

This	property	isn't	available	in	report	Design	view.

Microsoft	Access	increments	the	FormatCount	property	each	time	the
OnFormat	property	setting	is	evaluated	for	the	current	section.	As	the	next
section	is	formatted,	Microsoft	Access	resets	the	FormatCount	property	to	1.

Under	some	circumstances,	Microsoft	Access	formats	a	section	more	than	once.
For	example,	you	might	design	a	report	in	which	the	KeepTogether	property	for
the	detail	section	is	set	to	Yes.	When	Microsoft	Access	reaches	the	bottom	of	a
page,	it	formats	the	current	detail	section	once	to	see	if	it	will	fit.	If	it	doesn't	fit,
Microsoft	Access	moves	to	the	next	page	and	formats	the	detail	section	again.	In
this	case,	the	setting	for	the	FormatCount	property	for	the	detail	section	is	2
because	it	was	formatted	twice	before	it	was	printed.

You	can	use	the	FormatCount	property	to	ensure	that	an	operation	that	affects
formatting	gets	executed	only	once	for	a	section.

Example

In	the	following	example,	the	DLookup	function	is	evaluated	only	when	the
FormatCount	property	is	set	to	1:

Private	Sub	Detail_Format(Cancel	As	Integer,	_

					FormatCount	As	Integer)

				Const	conBold	=	700

				Const	conNormal	=	400

				If	FormatCount	=	1	Then

								If	DLookup("CompanyName",	_

																"Customers",	"CustomerID	=	Reports!"	_

																&	"[Customer	Labels]!CustomerID")	_

																Like	"B*"	Then

												CompanyNameLine.FontWeight	=	conBold

								Else

												CompanyNameLine.FontWeight	=	conNormal

								End	If

				End	If

End	Sub

Forms	Property
							

You	can	use	the	Forms	property	to	return	a	read-only	reference	to	the	Forms
collection	and	its	related	properties.

expression.Forms

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

Remarks

This	property	is	available	only	by	using	Visual	Basic.

The	properties	of	the	Forms	collection	in	Visual	Basic	refer	to	forms	that	are
currently	open.

Show	All

FrozenColumns	Property
							

You	can	use	the	FrozenColumns	property	to	determine	how	many	columns	in	a
datasheet	are	frozen.	Read/write	Integer.

expression.FrozenColumns

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

Remarks

Frozen	columns	are	displayed	on	the	left	side	of	the	datasheet	and	don't	move
when	you	scroll	horizontally	through	the	datasheet.

Note			The	FrozenColumns	property	applies	only	to	tables,	forms,	and	queries
in	Datasheet	view.

The	FrozenColumns	property	is	set	by	Microsoft	Access	when	you	click	Freeze
Columns	on	the	Format	menu.

In	Visual	Basic,	this	property	setting	is	an	Integer	value	indicating	the	number
of	columns	in	the	datasheet	that	have	been	frozen	by	using	the	Freeze	Columns
command.	The	record	selector	column	is	always	frozen,	so	the	default	value	is	1.
Consequently,	if	you	freeze	one	column,	the	FrozenColumns	property	is	set	to
2;	if	you	freeze	two	columns,	it's	set	to	3;	and	so	on.

This	property	setting	is	read-only	in	all	views.

When	you	freeze	columns	by	using	the	Freeze	Columns	command,	Microsoft
Access	automatically	moves	the	columns	to	the	leftmost	edge	of	the	datasheet	in
the	order	in	which	you	freeze	them.	For	example,	if	you	freeze	three	columns,
these	become	the	first,	second,	and	third	columns	in	the	datasheet.	Because	the
record	selector	column	is	always	frozen,	the	FrozenColumns	property	in	this
case	will	be	set	to	4.	The	three	columns	you	freeze	will	have	their
ColumnOrder	properties	set	to	1,	2,	and	3	(in	the	order	they	are	frozen).

If	you	click	Unfreeze	All	Columns	on	the	Format	menu,	all	frozen	columns
will	be	unfrozen,	and	the	FrozenColumns	property	will	be	set	to	1.

Note			The	Unfreeze	All	Columns	command	will	not	restore	the	original	order
of	columns	if	the	Freeze	Columns	command	caused	the	column	order	to
change.

Example

The	following	example	uses	the	FrozenColumns	property	to	determine	how
many	columns	are	frozen	in	a	table	in	Datasheet	view.	If	more	than	three
columns	are	frozen,	the	table	size	is	maximized	so	you	can	see	as	many	unfrozen
columns	as	possible.

Sub	CheckFrozen(strTableName	As	String)

				Dim	dbs	As	Object

				Dim	tdf	As	Object

				Dim	prp	As	Variant

				Const	DB_Integer	As	Integer	=	3

				Const	conPropertyNotFound	=	3270		'	Property	not	found	error.

				Set	dbs	=	CurrentDb						'	Get	current	database.

				Set	tdf	=	dbs.TableDefs(strTableName)						'	Get	object	for	table.

				DoCmd.OpenTable	strTableName,	acNormal		'	Open	table.

				tdf.Properties.Refresh

				On	Error	GoTo	Frozen_Err

				If	tdf.Properties("FrozenColumns")	>	3	Then			'	Check	property.

								DoCmd.Maximize

				End	If

Frozen_Bye:

				Exit	Sub

Frozen_Err:

				If	Err	=	conPropertyNotFound	Then						'	Property	not	in	collection.

								Set	prp	=	tdf.CreateProperty("FrozenColumns",	DB_Integer,	1)

								tdf.Properties.Append	prp

								Resume	Frozen_Bye

				End	If

End	Sub

FullName	Property
							

Sets	or	returns	the	full	path	(including	file	name)	of	a	specific	object.	Read/write
String	for	the	AccessObject	object;	read-only	String	for	the	CodeProject	and
CurrentProject	objects.

expression.FullName

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

Example

The	following	example	iterates	through	the	AllDataAccessPages	collection	and
returns	the	name	of	the	link	and	the	path	of	each	data	access	page	in	the	current
project.

Sub	PrintDAPLocationInfo()

				Dim	dapObject	As	AccessObject

				For	Each	dapObject	In	CurrentProject.AllDataAccessPages

								Debug.Print	"The	'"	&	dapObject.Name	&	_

								"'	is	located	at:	";	dapObject.FullName

				Next	dapObject

End	Sub

Show	All

FullPath	Property
							

The	FullPath	property	returns	a	string	containing	the	path	and	file	name	of	the
referenced	type	library.

expression.FullPath

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

Remarks

The	FullPath	property	is	available	only	by	using	Visual	Basic	and	is	read-only.

Type	libraries	reside	in	files.	The	following	table	shows	the	file	extensions	for
files	that	commonly	contain	type	libraries.

File	extension Type	of	file
.olb,	.tlb Type	library	file
.adp,	.ade,	.mdb,	.mda,	.mde Database
.exe,	.dll Executable	file
.ocx ActiveX	control
	

If	the	IsBroken	property	setting	of	a	Reference	object	is	True,	reading	the
FullPath	property	generates	an	error.

Example

The	following	example	prints	the	value	of	the	FullPath,	GUID,	IsBroken,
Major,	and	Minor	properties	for	each	Reference	object	in	the	References
collection:

Sub	ReferenceProperties()

				Dim	ref	As	Reference

				'	Enumerate	through	References	collection.

				For	Each	ref	In	References

								'	Check	IsBroken	property.

								If	ref.IsBroken	=	False	Then

												Debug.Print	"Name:	",	ref.Name

												Debug.Print	"FullPath:	",	ref.FullPath

												Debug.Print	"Version:	",	ref.Major	&	"."	&	ref.Minor

								Else

												Debug.Print	"GUIDs	of	broken	references:"

												Debug.Print	ref.GUID

								EndIf

				Next	ref

End	Sub

FuriganaControl	Property
							

Language-specific	information

You	can	use	the	FuriganaControl	property	to	indicate	a	target	control	and
automatically	create	furigana	for	text	entered	in	a	text	box.	Read/write	String.

expression.FuriganaControl

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

Remarks

The	setting	value	is	the	name	of	the	control	for	entering	furigana.

You	can	set	this	property	by	using	the	property	sheet,	a	macro,	or	Visual	Basic.

If	the	FuriganaControl	property	is	set	in	the	control,	furigana	will	automatically
be	created,	and	can	be	displayed	in	a	separately	designated	control.	Only	if	a
control	name	in	the	same	form	is	set	with	the	FuriganaControl	property	will	the
form	run	properly	when	executed.	If	text	is	entered	in	a	control	other	than	the
designated	control	name	in	the	same	form,	an	error	will	occur.	The	type	of
furigana	characters	is	determined	by	the	IMEMode/KanjiConversionMode
property	settings	in	the	control.

FuriganaControl	property	in	ADP

When	you	use	FuriganaControl	property	in	ADP	file,	be	sure	to	change	the
data	type	from	CHAR/NCHAR	to	VARCHAR/NVARCHR.	Otherwise,	you
cannot	insert	any	furigana	string	into	the	target	field.	The	FuriganaControl
property	inserts	furigana	strings	to	an	existing	target	field,	but	if	the	data	type
definition	of	the	field	stays	as	CHAR/NCHAR,	any	string	insertion	fails	because
the	field	length	is	fixed,	which	result	in	an	error	message.

Note			If	you	enter	text	in	the	target	control,	the	furigana	of	the	newly	entered
text	is	automatically	added	to	the	end	of	the	designated	target	control	content.
Even	if	the	text	of	the	target	control	is	revised	or	deleted,	the	characters	before
the	change	in	the	target	control	will	not	be	revised	or	deleted.	Changing	the
content	of	the	target	control	revises	the	text	in	the	furigana	control	as	necessary.
The	FuriganaControl	property	will	not	run	if	text	is	pasted	into	the	target
control.

Show	All

GridX	Property
							

You	can	use	the	GridX	property	(along	with	the	GridY	property)	to	specify	the
horizontal	and	vertical	divisions	of	the	alignment	grid	in	form	Design	view	and
report	Design	view.	Read/write	Integer.

expression.GridX

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

Remarks

Enter	an	integer	between	1	and	64	representing	the	number	of	subdivisions	per
unit	of	measurement.	If	the	Measurement	system	box	is	set	to	U.S.	on	the
Numbers	tab	of	the	Regional	Options	dialog	box	of	Windows	Control	Panel,
the	default	setting	is	24	for	the	GridX	property	(horizontal)	and	24	for	the
GridY	property	(vertical).

You	can	set	this	property	by	using	the	property	sheet,	a	macro,	or	Visual	Basic.

In	Visual	Basic,	you	set	this	property	by	using	a	numeric	expression.

The	GridX	and	GridY	properties	provide	control	over	the	placement	and
alignment	of	objects	on	a	form	or	report.	You	can	adjust	the	grid	for	greater	or
lesser	precision.	To	see	the	grid,	click	Grid	on	the	View	menu.	If	the	setting	for
either	the	GridX	or	GridY	properties	is	greater	than	24,	the	grid	points
disappear	from	view	(although	the	grid	lines	are	still	displayed).

Show	All

GridY	Property
							

You	can	use	the	GridY	property	(along	with	the	GridX	propery)	to	specify	the
horizontal	and	vertical	divisions	of	the	alignment	grid	in	form	Design	view	and
report	Design	view.	Read/write	Integer.

expression.GridY

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

Remarks

Enter	an	integer	between	1	and	64	representing	the	number	of	subdivisions	per
unit	of	measurement.	If	the	Measurement	system	box	is	set	to	U.S.	on	the
Numbers	tab	of	the	Regional	Options	dialog	box	of	Windows	Control	Panel,
the	default	setting	is	24	for	the	GridX	property	(horizontal)	and	24	for	the
GridY	property	(vertical).

You	can	set	this	property	by	using	the	property	sheet,	a	macro,	or	Visual	Basic.

In	Visual	Basic,	you	set	this	property	by	using	a	numeric	expression.

The	GridX	and	GridY	properties	provide	control	over	the	placement	and
alignment	of	objects	on	a	form	or	report.	You	can	adjust	the	grid	for	greater	or
lesser	precision.	To	see	the	grid,	click	Grid	on	the	View	menu.	If	the	setting	for
either	the	GridX	or	GridY	properties	is	greater	than	24,	the	grid	points
disappear	from	view	(although	the	grid	lines	are	still	displayed).

Show	All

GroupFooter	Property
							

You	can	use	the	GroupFooter	property	(along	with	the	GroupHeader	property)
to	create	a	group	header	or	a	group	footer	for	a	selected	field	or	expression	in	a
report.	Read/write	Boolean.

expression.GroupFooter

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

Remarks

You	can	use	group	headers	and	footers	to	label	or	summarize	data	in	a	group	of
records.	For	example,	if	you	set	the	GroupHeader	property	to	Yes	for	the
Categories	field,	each	group	of	products	will	begin	with	its	category	name.

The	GroupHeader	and	GroupFooter	properties	use	the	following	settings.

Setting Description
Yes Creates	a	group	header	or	footer.
No (Default)	Doesn't	create	a	group	header	or	footer.
You	set	these	properties	in	the	Sorting	And	Grouping	box.

You	can	set	these	properties	only	in	report	Design	view.

Note			You	can't	set	or	refer	to	these	properties	directly	in	Visual	Basic.	To	create
a	group	header	or	footer	for	a	field	or	expression	in	Visual	Basic,	use	the
CreateGroupLevel	method.

To	set	the	grouping	properties	—	GroupOn,	GroupInterval,	and
KeepTogether	—	to	other	than	their	default	values,	you	must	first	set	the
GroupHeader	or	GroupFooter	property	or	both	to	Yes	for	the	selected	field	or
expression.

Show	All

GroupHeader	Property
							

You	can	use	the	GroupHeader	property	(along	with	the	GroupFooter	property)
to	create	a	group	header	or	a	group	footer	for	a	selected	field	or	expression	in	a
report.	Read/write	Boolean.

expression.GroupHeader

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

Remarks

You	can	use	group	headers	and	footers	to	label	or	summarize	data	in	a	group	of
records.	For	example,	if	you	set	the	GroupHeader	property	to	Yes	for	the
Categories	field,	each	group	of	products	will	begin	with	its	category	name.

The	GroupHeader	and	GroupFooter	properties	use	the	following	settings.

Setting Description
Yes Creates	a	group	header	or	footer.
No (Default)	Doesn't	create	a	group	header	or	footer.
You	set	these	properties	in	the	Sorting	And	Grouping	box.

You	can	set	these	properties	only	in	report	Design	view.

Note			You	can't	set	or	refer	to	these	properties	directly	in	Visual	Basic.	To	create
a	group	header	or	footer	for	a	field	or	expression	in	Visual	Basic,	use	the
CreateGroupLevel	method.

To	set	the	grouping	properties	—	GroupOn,	GroupInterval,	and
KeepTogether	—	to	other	than	their	default	values,	you	must	first	set	the
GroupHeader	or	GroupFooter	property	or	both	to	Yes	for	the	selected	field	or
expression.

Show	All

GroupInterval	Property
							

You	can	use	the	GroupInterval	property	with	the	GroupOn	property	to	specify
how	records	are	grouped	in	a	report.	Read/write	Long.

expression.GroupInterval

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

Remarks

The	GroupInterval	property	specifies	an	interval	value	that	records	are	grouped
by.	This	interval	differs	depending	on	the	data	type	and	GroupOn	property
setting	of	the	field	or	expression	you're	grouping	on.	For	example,	you	can	set
the	GroupInterval	property	to	1	if	you	want	to	group	records	by	the	first
character	of	a	Text	field,	such	as	ProductName.

The	GroupInterval	property	settings	are	Long	values	that	depend	on	the	field's
data	type	and	its	GroupOn	property	setting.	The	default	GroupInterval	setting
is	1.

You	can	set	this	property	by	using	the	Sorting	And	Grouping	box,	a	macro,	or
Visual	Basic.

You	can	set	the	GroupInterval	property	only	in	report	Design	view	or	in	the
Open	event	procedure	of	a	report.

Here	are	examples	of	GroupInterval	property	settings	for	different	field	data
types.

Field	data	type GroupOn	setting GroupInterval	setting
All Each	value (Default)	Set	to	1.

Text Prefix	characters

Set	to	3	for	grouping	by	the	first	three
characters	in	the	field	(for	example,
Chai,	Chartreuse,	and	Chang	would	be
grouped	together).

Date/Time Week Set	to	2	to	return	data	in	biweekly
groups.

Date/Time Hour Set	to	12	to	return	data	in	half-day
groups.

To	set	the	GroupInterval	property	to	a	value	other	than	its	default	setting	(1),
you	must	first	set	the	GroupHeader	or	GroupFooter	property	or	both	to	Yes	for
the	selected	field	or	expression.

Example

The	following	example	sets	the	SortOrder	and	grouping	properties	for	the	first
group	level	in	the	Products	By	Category	report	to	create	an	alphabetical	list	of
products.

Private	Sub	Report_Open(Cancel	As	Integer)

				'	Set	SortOrder	property	to	ascending	order.

				Me.GroupLevel(0).SortOrder	=	False

				'	Set	GroupOn	property.

				Me.GroupLevel(0).GroupOn	=	1

				'	Set	GroupInterval	property	to	1.

				Me.GroupLevel(0).GroupInterval	=	1

				'	Set	KeepTogether	property	to	With	First	Detail.

				Me.GroupLevel(0).KeepTogether	=	2

End	Sub

Show	All

GroupLevel	Property
							

You	can	use	the	GroupLevel	property	in	Visual	Basic	to	refer	to	the	group	level
you	are	grouping	or	sorting	on	in	a	report.	Read-only	GroupLevel	object.

expression.GroupLevel(Index)

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

Index		Required	Long.	The	group	level,	starting	with	0.	The	first	field	or
expression	you	group	on	is	group	level	0,	the	second	is	group	level	1,	and	so	on.

Remarks

The	GroupLevel	property	setting	is	an	array	in	which	each	entry	identifies	a
group	level.	You	can	have	up	to	10	group	levels	(0	to	9).

The	following	sample	settings	show	how	you	use	the	GroupLevel	property	to
refer	to	a	group	level.

Group	level Refers	to
GroupLevel(0) The	first	field	or	expression	you	sort	or	group	on.

GroupLevel(1) The	second	field	or	expression	you	sort	or	group
on.

GroupLevel(2) The	third	field	or	expression	you	sort	or	group	on.
You	can	use	this	property	only	by	using	Visual	Basic	to	set	the	SortOrder,
GroupOn,	GroupInterval,	KeepTogether,	and	ControlSource	properties.	You
set	these	properties	in	the	Open	event	procedure	of	a	report.

In	reports,	you	can	group	or	sort	on	more	than	one	field	or	expression.	Each	field
or	expression	you	group	or	sort	on	is	a	group	level.

You	specify	the	fields	and	expressions	to	sort	and	group	on	by	using	the
CreateGroupLevel	method.

If	a	group	is	already	defined	for	a	report	(the	GroupLevel	property	is	set	to	0),
then	you	can	use	the	ControlSource	property	to	change	the	group	level	in	the
report's	Open	event	procedure.

Example

The	following	code	changes	the	ControlSource	property	to	a	value	contained	in
the	txtPromptYou	text	box	on	the	open	form	named	SortForm:

Private	Sub	Report_Open(Cancel	As	Integer)

				Me.GroupLevel(0).ControlSource	_

								=	Forms!SortForm!txtPromptYou

End	Sub

Show	All

GroupOn	Property
							

You	can	use	the	GroupOn	property	in	a	report	to	specify	how	to	group	data	in	a
field	or	expression	by	data	type.	For	example,	this	property	lets	you	group	a	Date
field	by	month.	Read/write	Integer.

expression.GroupOn

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

Remarks

The	GroupOn	property	settings	available	for	a	field	depend	on	its	data	type,	as
the	following	table	shows.	For	an	expression,	all	of	the	settings	are	available.
The	default	setting	for	all	data	types	is	Each	Value.

Field	data	type Setting Groups	records	with Visual	Basic

Text (Default)	Each	Value The	same	value	in	the
field	or	expression. 0

	 Prefix	Characters
The	same	first	n
number	of	characters	in
the	field	or	expression.

1

Date/Time (Default)	Each	Value The	same	value	in	the
field	or	expression. 0

	 Year Dates	in	the	same
calendar	year. 2

	 Qtr Dates	in	the	same
calendar	quarter. 3

	 Month Dates	in	the	same
month. 4

	 Week Dates	in	the	same
week. 5

	 Day Dates	on	the	same	date. 6

	 Hour Times	in	the	same
hour. 7

	 Minute Times	in	the	same
minute. 8

AutoNumber,
Currency,
Number

(Default)	Each	Value The	same	value	in	the
field	or	expression. 0

	 Interval Values	within	an
interval	you	specify. 9

You	can	set	the	GroupOn	property	by	using	the	Sorting	And	Grouping	box,	a
macro,	or	Visual	Basic.

In	Visual	Basic,	you	set	this	property	in	the	Open	event	procedure	of	a	report.

To	set	the	GroupOn	property	to	a	value	other	than	Each	Value,	you	must	first
set	the	GroupHeader	or	GroupFooter	property	or	both	to	Yes	for	the	selected
field	or	expression.

Example

The	following	example	sets	the	SortOrder	and	grouping	properties	for	the	first
group	level	in	the	Products	By	Category	report	to	create	an	alphabetical	list	of
products.

Private	Sub	Report_Open(Cancel	As	Integer)

				'	Set	SortOrder	property	to	ascending	order.

				Me.GroupLevel(0).SortOrder	=	False

				'	Set	GroupOn	property.

				Me.GroupLevel(0).GroupOn	=	1

				'	Set	GroupInterval	property	to	1.

				Me.GroupLevel(0).GroupInterval	=	1

				'	Set	KeepTogether	property	to	With	First	Detail.

				Me.GroupLevel(0).KeepTogether	=	2

End	Sub

Show	All

GrpKeepTogether	Property
							

You	can	use	the	GrpKeepTogether	property	to	specify	whether	groups	in	a
multiple	column	report	that	have	their	KeepTogether	property	for	a	group	set	to
Whole	Group	or	With	First	Detail	will	be	kept	together	by	page	or	by	column.
Read/write	Byte.

expression.GrpKeepTogether

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

Remarks

The	GrpKeepTogether	property	uses	the	following	settings.

Setting Visual	Basic Description
Per	Page 0 Groups	are	kept	together	by	page.

Per	Column 1 (Default)	Groups	are	kept	together	by
column.

You	can	set	the	GrpKeepTogether	property	by	using	the	report's	property	sheet,
a	macro,	or	Visual	Basic.

This	property	can	be	set	only	in	report	Design	view.

You	can	use	this	property	to	specify	whether	all	the	data	for	a	group	will	appear
in	the	same	column.	For	example,	if	you	have	a	list	of	employees	by	department
in	a	multiple-column	format,	you	can	use	this	property	to	keep	all	members	of
the	same	department	in	the	same	column.

The	GrpKeepTogether	property	setting	has	no	effect	if	the	KeepTogether
property	for	a	group	is	set	to	No.

HasContinued	Property
							

You	can	use	the	HasContinued	property	to	determine	if	part	of	the	current
section	begins	on	the	previous	page.	Read/write	Boolean.

expression.HasContinued

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

Remarks

The	HasContinued	property	is	set	by	Microsoft	Access	and	is	read-only	in	all
views.

Value Description
True		 Part	of	the	current	section	has	been	printed	on	the	previous	page.

False Part	of	the	current	section	hasn't	been	printed	on	the	previous
page.

You	can	get	the	value	of	the	HasContinued	property	by	using	a	macro	or	Visual
Basic.

You	can	use	this	property	to	determine	whether	to	show	or	hide	certain	controls
depending	on	the	value	of	the	property.	For	example,	you	may	have	a	hidden
label	in	a	page	header	containing	the	text	"Continued	from	previous	page".	If	the
value	of	the	HasContinued	property	is	True,	you	can	make	the	hidden	label
visible.

Show	All

HasData	Property
							

You	can	use	the	HasData	property	to	determine	if	a	form	or	report	is	bound	to
an	empty	recordset.	Read/write	Long.

expression.HasData

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

Remarks

The	HasData	property	is	set	by	Microsoft	Access.	The	value	of	this	property	can
be	read	only	while	printing	or	while	in	Print	Preview.

Value Description
–1 The	object	has	data.

0 The	object	doesn't	have
data.

1 The	object	is	unbound.
You	can	get	the	value	of	the	HasData	property	by	using	a	macro	or	Visual	Basic.

You	can	use	this	property	to	determine	whether	to	hide	a	subreport	that	has	no
data.	For	example,	the	following	expression	hides	the	subreport	control	when	its
report	has	no	data.

Me!SubReportControl.Visible	=	Me!SubReportControl.Report.HasData

Show	All

HasModule	Property
							

You	can	use	the	HasModule	property	to	specify	or	determine	whether	a	form	or
report	has	a	class	module.	Setting	this	property	to	No	can	improve	the
performance	and	decrease	the	size	of	your	database.	Read/write	Boolean.

expression.HasModule

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

Remarks

The	HasModule	property	uses	the	following	settings.

Setting Visual	Basic Description
Yes True		 The	form	or	report	has	a	class	module.

No False (Default)	The	form	or	report	doesn't	have	a	class
module.

You	can	set	the	HasModule	property	by	using	the	form	or	report's	property
sheet,	a	macro,	or	Visual	Basic.

The	HasModule	property	can	be	set	only	in	form	or	report	Design	view	but	can
be	read	in	any	view.

Forms	or	reports	that	have	the	HasModule	property	set	to	No	are	considered
lightweight	objects.	Lightweight	objects	are	smaller	and	typically	load	and
display	faster	than	objects	with	associated	class	modules.	In	many	cases,	a	form
or	report	doesn't	need	to	use	event	procedures	and	doesn't	require	a	class
module.

If	your	application	uses	a	switchboard	form	to	navigate	to	other	forms,	instead	of
using	command	buttons	with	event	procedures,	you	can	use	a	command	button
with	a	macro	or	hyperlink.	For	example,	to	open	the	Employees	form	from	a
command	button	on	a	switchboard,	you	can	set	the	control's
HyperlinkSubAddress	property	to	"Form	Employees".

Lightweight	objects	don't	appear	in	the	Object	Browser	and	you	can't	use	the
New	keyword	to	create	a	new	instance	of	the	object.	A	lightweight	form	or
report	can	be	used	as	a	subform	or	subreport	and	will	appear	in	the	Forms	or
Reports	collection.	Lightweight	objects	support	the	use	of	macros,	and	public
procedures	that	exist	in	standard	modules	when	called	from	the	object's	property
sheet.

Microsoft	Access	sets	the	HasModule	property	to	True	as	soon	as	you	attempt
to	view	an	object's	module,	even	if	no	code	is	actually	added	to	the	module.	For
example,	selecting	Code	from	the	View	menu	for	a	form	in	Design	view	causes
Microsoft	Access	to	add	a	class	module	to	the	Form	object	and	set	its

HasModule	property	to	True.	You	can	add	a	class	module	to	an	object	in	the
same	way	by	setting	the	HasModule	property	to	Yes	in	an	object's	property
sheet.

Warning			If	you	set	the	HasModule	property	to	No	by	using	an	object's
property	sheet	or	set	it	to	False	by	using	Visual	Basic,	Microsoft	Access	deletes
the	object's	class	module	and	any	code	it	may	contain.

When	you	use	a	method	of	the	Module	object	or	refer	to	the	Module	property
for	a	form	or	report	in	Design	view,	Microsoft	Access	creates	the	associated
module	and	sets	the	object's	HasModule	property	to	True.	If	you	refer	to	the
Module	property	of	a	form	or	report	at	run-time	and	the	object	has	its
HasModule	property	set	to	False,	an	error	will	occur.

Objects	created	by	using	the	CreateForm	or	CreateReport	methods	are
lightweight	by	default.

Show	All

Height	Property
							

	You	can	use	the	Height	property	(along	with	the	Width	property)	to	size	an
object	to	specific	dimensions.	Read/write	Integer	for	all	objects	in	the	Applies
To	list	except	for	the	Report	object,	which	is	a	read/write	Long.

expression.Height

expression			Required.	An	expression	that	returns	one	of	the	above	objects.

	Remarks;

The	Height	property	applies	only	to	form	sections	and	report	sections,	not	to
forms	and	reports.

Enter	a	number	for	the	desired	height	in	the	current	unit	of	measurement.	To	use
a	unit	of	measurement	different	from	the	setting	in	the	Regional	Options	dialog
box	in	Windows	Control	Panel,	specify	the	unit,	such	as	cm	or	in	(for	example,	5
cm	or	3	in).

You	can	set	this	property	by	using	the	object's	property	sheet,	a	macro,	or	Visual
Basic.

For	controls,	you	can	set	the	default	for	this	property	by	using	the	default	control
style	or	the	DefaultControl	method	in	Visual	Basic.

In	Visual	Basic,	use	a	numeric	expression	to	set	the	value	of	this	property.	Values
are	expressed	in	twips.

For	report	sections,	you	can't	use	a	macro	or	Visual	Basic	to	set	the	Height
property	when	you	print	or	preview	a	report.	For	report	controls,	you	can	set	the
Height	property	when	you	print	or	preview	a	report	only	by	using	a	macro	or	an
event	procedure	specified	in	a	section's	OnFormat	event	property	setting.

You	can't	set	this	propery	for	an	object	once	the	print	process	has	started.	For
example,	attempting	to	set	the	Height	property	in	a	report's	Print	event	generates

an	error.

Microsoft	Access	automatically	sets	the	Height	property	when	you	create	or	size
a	control	or	when	you	size	a	window	in	form	Design	View	or	report	Design
view.

The	height	of	sections	is	measured	from	the	inside	of	their	borders.	The	height	of
controls	is	measured	from	the	center	of	their	borders	so	controls	with	different
border	widths	align	correctly.	The	margins	for	forms	and	reports	are	set	in	the
Page	Setup	dialog	box,	available	by	clicking	Page	Setup	on	the	File	menu.

Note			To	set	the	left	and	top	location	of	an	object,	use	the	Left	and	Top
properties.

Example

The	following	code	resizes	a	command	button	to	a	1-inch	by	1-inch	square
button	(the	default	unit	of	measurement	in	Visual	Basic	is	twips;	1440	twips
equals	one	inch):

Me!cmdSizeButton.Height	=	1440				'	1440	twips	=	1	inch.

Me!cmdSizeButton.Width	=	1440

Show	All

HelpContextId	Property
							

The	HelpContextID	property	specifies	the	context	ID	of	a	topic	in	the	custom
Help	file	specified	by	the	HelpFile	property	setting.	Read/write	Long.

expression.HelpContextId

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

Remarks

For	the	HelpContextID	property,	enter	a	Long	Integer	value	between	0	and
2,147,483,647	representing	the	context	ID	of	the	Help	file	topic	you	want	to
display.	The	default	setting	is	0.

Note			If	you	enter	the	context	ID	of	the	Help	file	topic	as	a	positive	number,	the
help	topic	will	display	in	a	"full"	help	topic	window.	If	you	add	a	minus	sign	("-
")	in	front	of	the	context	ID,	the	help	topic	will	be	displayed	in	a	"pop-up"
window.	It	is	important	to	note	the	the	context	id	does	not	have	to	have	a
negative	number	when	authored	in	Microsoft	Help	Workshop.	You	must	add	the
minus	sign	when	setting	the	property	to	make	the	topic	display	in	the	pop-up
window.

You	can	create	a	custom	Help	file	to	document	forms,	reports,	or	applications
you	create	with	Microsoft	Access.

When	you	press	the	F1	key	in	Form	view,	Microsoft	Access	calls	the	Microsoft
Help	Workshop	or	Microsoft	HTML	Help	Workshop	application,	loads	the
custom	Help	file	specified	by	the	HelpFile	property	setting	for	the	form	or
report,	and	displays	the	Help	topic	specified	by	the	HelpContextID	property
setting.

If	a	control's	HelpContextID	property	setting	is	0	(the	default),	Microsoft
Access	uses	the	form's	HelpContextID	and	HelpFile	properties	to	identify	the
Help	topic	to	display.	If	you	press	F1	in	a	view	other	than	Form	view	or	if	the
HelpContextID	property	setting	for	both	the	form	and	the	control	is	0,	a
Microsoft	Access	Help	topic	is	displayed.

Example

This	example	uses	the	HelpContext	property	of	the	Err	object	to	show	the
Visual	Basic	Help	topic	for	the	Overflow	error.

Dim	Msg

Err.Clear

On	Error	Resume	Next

Err.Raise	6	'	Generate	"Overflow"	error.

If	Err.Number	<>	0	Then

				Msg	=	"Press	F1	or	HELP	to	see	"	&	Err.HelpFile	&	"	topic	for"	&	_

				"	the	following	HelpContext:	"	&	Err.HelpContext

				MsgBox	Msg,	,	"Error:	"	&	Err.Description,	Err.HelpFile,	_

Err.HelpContext

End	If

Show	All

HelpFile	Property
							

The	name	of	a	help	file	associated	with	a	form	or	report.	Read/write	String.

expression.HelpFile

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

Remarks

In	Microsoft	Access,	you	can	use	the	Toolbar	Control	Properties	dialog	box	for
command	bar	controls	to	set	the	HelpFile	property	for	a	control	on	a	command
bar.	Display	the	Customize	dialog	box	by	pointing	to	Toolbars	on	the	View
menu	and	clicking	Customize.	For	menu	bar	and	toolbar	controls,	display	the
menu	bar	or	toolbar,	and	then	right-click	the	control	whose	HelpFile	property
you	want	to	set.	For	shortcut	menu	controls,	select	the	Shortcut	Menus	check
box	on	the	Toolbars	tab	of	the	Customize	dialog	box,	then	find	the	shortcut
menu	control	you	want	on	the	menu	bar	that's	displayed	and	right-click	the
control.	Click	the	Properties	command.	Enter	the	name	of	the	Help	file	you
want	in	the	Help	File	box.

Example

This	example	adds	a	custom	command	bar	with	a	combo	box	that	tracks	stock
data.	The	example	also	specifies	the	Help	topic	to	be	displayed	for	the	combo
box	when	the	user	presses	SHIFT+F1.

Set	myBar	=	CommandBars	_

				.Add(Name:="Custom",	Position:=msoBarTop,	_

				Temporary:=True)

With	myBar

				.Controls.Add	Type:=msoControlComboBox,	ID:=1

				.Visible	=	True

End	With

With	CommandBars("Custom").Controls(1)

				.AddItem	"Get	Stock	Quote",	1

				.AddItem	"View	Chart",	2

				.AddItem	"View	Fundamentals",	3

				.AddItem	"View	News",	4

				.Caption	=	"Stock	Data"

				.DescriptionText	=	"View	Data	For	Stock"

				.HelpFile	=	"C:\corphelp\custom.hlp"

				.HelpContextID	=	47

End	With

Show	All

HideDuplicates	Property
							

You	can	use	the	HideDuplicates	property	to	hide	a	control	on	a	report	when	its
value	is	the	same	as	in	the	preceding	record.	Read/write	Boolean.

expression.HideDuplicates

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

Remarks

The	HideDuplicates	property	applies	only	to	controls	(check	box,	combo	box,
list	box,	option	button,	option	group,	text	box,	toggle	button)	on	a	report.

The	property	doesn't	apply	to	check	boxes,	option	buttons,	or	toggle	buttons
when	they	appear	in	an	option	group.	It	does	apply	to	the	option	group	itself.

The	HideDuplicates	property	uses	the	following	settings.

Setting Visual	Basic Description

Yes True		
If	the	value	of	a	control	or	the	data	it	contains	is
the	same	as	in	the	preceding	record,	the	control
is	hidden.

No False (Default)	The	control	is	visible	regardless	of	the
value	in	the	preceding	record.

You	can	set	this	property	by	using	the	control's	property	sheet,	a	macro,	or
Visual	Basic.

You	can	set	the	HideDuplicates	property	only	in	report	Design	view.

You	can	use	the	HideDuplicates	property	to	create	a	grouped	report	by	using
only	the	detail	section	rather	than	a	group	header	and	the	detail	section.

Example

The	following	example	returns	the	HideDuplicates	property	setting	for	the
CategoryName	text	box	and	assigns	the	value	to	the	intCurVal	variable.

Dim	intCurVal	As	Integer

intCurVal	=	Me!CategoryName.HideDuplicates

HorizontalDatasheetGridlineStyle
Property
							

Returns	or	sets	a	Byte	indicating	the	line	style	to	use	for	horizontal	gridlines	on
the	specified	datasheet.	Read/write.

expression.HorizontalDatasheetGridlineStyle

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

Remarks

Valid	values	are	between	zero	and	seven.	Values	greater	than	seven	are	ignored;
negative	values	or	values	above	255	cause	an	error.

Value Description
0 Transparent	border
1 Solid
2 Dashes
3 Short	dashes
4 Dots
5 Sparse	dots
6 Dash-dot
7 Dash-dot-dot

This	property	is	not	supported	when	saving	a	form	as	a	data	access	page.

Example

This	example	sets	the	horizontal	gridline	style	on	the	first	open	form	to	dash-dot.
The	form	must	be	set	to	Datasheet	View	in	order	for	you	to	see	the	change.

Forms(0).HorizontalDatasheetGridlineStyle	=	6

Show	All

Hyperlink	Property
							

You	can	use	the	Hyperlink	property	to	return	a	reference	to	a	Hyperlink	object.
You	can	use	the	Hyperlink	property	to	access	the	properties	and	methods	of	a
Hyperlink	object	associated	with	a	command	button,	image,	or	label	control.
Read-only.

expression.Hyperlink

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

Remarks

The	Hyperlink	property	is	available	only	by	using	Visual	Basic.

Example

The	CreateHyperlink	procedure	in	the	following	example	sets	the	hyperlink
properties	for	a	command	button,	label,	or	image	control	to	the	address	and
subaddress	values	passed	to	the	procedure.	The	address	setting	is	an	optional
argument,	because	a	hyperlink	to	an	object	in	the	current	database	uses	only	the
subaddress	setting,	To	try	this	example,	create	a	form	with	two	text	box	controls
(txtAddress	and	txtSubAddress)	and	a	command	button	(cmdFollowLink)	and
paste	the	following	into	the	Declarations	section	of	the	form's	module:

Private	Sub	cmdFollowLink_Click()

				CreateHyperlink	Me!cmdFollowLink,	Me!txtSubAddress,	_

									Me!txtAddress

End	Sub

Sub	CreateHyperlink(ctlSelected	As	Control,	_

					strSubAddress	As	String,	Optional	strAddress	As	String)

				Dim	hlk	As	Hyperlink

				Select	Case	ctlSelected.ControlType

								Case	acLabel,	acImage,	acCommandButton

												Set	hlk	=	ctlSelected.Hyperlink

												With	hlk

																If	Not	IsMissing(strAddress)	Then

																				.Address	=	strAddress

																Else

																				.Address	=	""

																End	If

																.SubAddress	=	strSubAddress

																.Follow

																.Address	=	""

																.SubAddress	=	""

												End	With

								Case	Else

												MsgBox	"The	control	'"	&	ctlSelected.Name	_

																	&	"'	does	not	support	hyperlinks."

				End	Select

End	Sub

Show	All

HyperlinkAddress	Property
							

You	can	use	the	HyperlinkAddress	property	to	specify	or	determine	the	path	to
an	object,	document,	Web	page	or	other	destination	for	a	hyperlink	associated
with	a	command	button,	image	control,	or	label	control.	Read/write	String.

expression.HyperlinkAddress

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

Remarks

The	HyperlinkAddress	property	is	a	string	expression	representing	the	path	to	a
file	(UNC	path)	or	Web	page	(URL).

You	can	set	the	HyperlinkAddress	property	by	using	the	control's	property
sheet,	a	macro,	or	Visual	Basic.

Note			When	you	set	the	HyperlinkAddress	property,	you	automatically	specify
the	Address	property	for	the	Hyperlink	object	associated	with	the	control.

You	can	also	use	the	Insert	Hyperlink	dialog	box	to	set	this	property	by
clicking	the	Build	button	to	the	right	of	the	property	box	in	the	property	sheet.

Note			When	you	create	a	hyperlink	by	using	the	Insert	Hyperlink	dialog	box,
Microsoft	Access	automatically	sets	the	HyperlinkAddress	property	and
HyperlinkSubAddress	to	the	location	specified	in	the	Type	the	file	or	Web
page	name	box.	The	HyperlinkSubAddress	property	can	also	be	set	to	the
location	specified	in	the	Select	an	object	in	this	database	box.

If	you	copy	a	hyperlink	from	another	application	and	paste	it	into	a	form	or
report,	Microsoft	Access	creates	a	label	control	with	its	Caption	property,
HyperlinkAddress	property,	and	HyperlinkSubAddress	property	automatically
set.

When	you	move	the	cursor	over	a	command	button,	image	control,	or	label
control	whose	HyperlinkAddress	property	is	set,	the	cursor	changes	to	an
upward-pointing	hand.	Clicking	the	control	displays	the	object	or	Web	page
specified	by	the	link.

To	open	objects	in	the	current	database,	leave	the	HyperlinkAddress	property
blank	and	specify	the	object	type	and	object	name	you	want	to	open	in	the
HyperlinkSubAddress	property	by	using	the	syntax	"objecttype	objectname".	If
you	want	to	open	an	object	contained	in	another	Microsoft	Access	database,
enter	the	database	path	and	file	name	in	the	HyperlinkAddress	property	and
specify	the	database	object	to	open	by	using	the	HyperlinkSubAddress
property.

The	HyperlinkAddress	property	can	contain	an	absolute	or	a	relative	path	to	a
target	document.	An	absolute	path	is	a	fully	qualified	URL	or	UNC	path	to	a
document.	A	relative	path	is	a	path	related	to	the	base	path	specified	in	the
Hyperlink	Base	setting	in	the	DatabaseName	Properties	dialog	box	(available
by	clicking	Database	Properties	on	the	File	menu)	or	to	the	current	database
path.	If	Microsoft	Access	can't	resolve	the	HyperlinkAddress	property	setting
to	a	valid	URL	or	UNC	path,	it	will	assume	you've	specified	a	path	relative	to
the	base	path	contained	in	the	Hyperlink	Base	setting	or	the	current	database
path.

Note			When	you	follow	a	hyperlink	to	another	Microsoft	Access	database
object,	the	database	Startup	properties	are	applied.	For	example,	if	the
destination	database	has	a	Display	form	set,	that	form	is	displayed	when	the
database	opens.

The	following	table	contains	examples	of	HyperlinkAddress	and
HyperlinkSubAddress	property	settings.

HyperlinkAddress HyperlinkSubAddress Description

http://www.microsoft.com/ 	 The	Microsoft	home
page	on	the	Web.

C:\Program	Files\Microsoft
Office\Office\Samples\Cajun.htm 	

The	Cajun	Delights
page	in	the	Access
sample	applications
subdirectory.

C:\Program	Files\Microsoft
Office\Office\Samples\Cajun.htm NewProducts

The	"NewProducts"
Name	tag	in	the
Cajun	Delights	page.

C:\Personal\MyResume.doc References

The	bookmark
named	"References"
in	the	Microsoft
Word	document
"MyResume.doc".

C:\Finance\First	Quarter.xls Sheet1!TotalSales

The	range	named
"TotalSales"	in	the
Microsoft	Excel
spreadsheet	"First
Quarter.xls".

C:\Presentation\NewPlans.ppt 10

The	10th	slide	in	the
Microsoft
PowerPoint
document
"NewPlans.ppt".

Show	All

HyperlinkColor	Property
							

You	can	use	the	HyperlinkColor	property	to	specify	or	determine	the	default
color	of	all	hyperlinks	within	the	Application	object.	Read/write
AcColorIndex.

AcColorIndex	can	be	one	of	these	AcColorIndex	constants.
acColorIndexAqua	
acColorIndexBlack	
acColorIndexBlue	Default.
acColorIndexBrightGreen
acColorIndexDarkBlue
acColorIndexFuschia
acColorIndexGray
acColorIndexGreen
acColorIndexMaroon
acColorIndexOlive
acColorIndexRed
acColorIndexSilver
acColorIndexTeal
acColorIndexViolet
acColorIndexWhite
acColorIndexYellow

expression.HyperlinkColor

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

Remarks

You	can	set	the	HyperlinkColor	property	through	the	DefaultWebOptions
property	or	the	SetOption	method	by	using	Visual	Basic.

You	can	set	or	change	the	default	hyperlink	color	available	in	the	Web	Options
dialog	box.	To	display	this	dialog	box,	click	Options	on	the	Tools	menu.	Click
the	General	tab	and	click	the	Web	Pages	button.

The	default	color	of	a	hyperlink	is	changed	to	the	followed	hyperlink	color	when
a	hyperlink	control	has	been	pressed.

Use	the	DefaultWebOptions	property	to	identify	or	set	the	Application	object's
DefaultWebOptions	object	properties.

Show	All

HyperlinkSubAddress	Property
							

You	can	use	the	HyperlinkSubAddress	property	to	specify	or	determine	a
location	within	the	target	document	specified	by	the	HyperlinkAddress
property.	Read/write	String.

expression.HyperlinkSubAddress

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

Remarks

The	HyperlinkSubAddress	property	can	be	an	object	within	a	Microsoft	Access
database,	a	bookmark	within	a	Microsoft	Word	document,	a	named	range	within
a	Microsoft	Excel	spreadsheet,	a	slide	within	a	Microsoft	PowerPoint
presentation,	or	a	location	within	an	HTML	document.

The	HyperlinkSubAddress	property	is	a	string	expression	representing	a	named
location	within	the	target	document	specified	by	the	HyperlinkAddress
property.

You	can	set	the	HyperlinkSubAddress	property	by	using	a	control's	property
sheet,	a	macro,	or	Visual	Basic.

You	can	also	use	the	Insert	Hyperlink	dialog	box	to	set	this	property	by
clicking	the	Build	button	to	the	right	of	the	property	box	in	the	property	sheet.

Note			When	you	create	a	hyperlink	by	using	the	Insert	Hyperlink	dialog	box,
Microsoft	Access	automatically	sets	the	HyperlinkAddress	property	and
HyperlinkSubAddress	to	the	location	specified	in	the	Type	the	file	or	Web	page
name	box.	The	HyperlinkSubAddress	property	is	set	to	the	location	specified
in	the	Select	an	object	in	this	database	box.

When	you	move	the	cursor	over	a	command	button,	image	control,	or	label
control	whose	HyperlinkSubAddress	property	is	set,	the	cursor	changes	to	an
upward-pointing	hand.	Clicking	the	control	displays	the	object	or	Web	page
specified	by	the	link.

To	open	objects	in	the	current	database,	leave	the	HyperlinkAddress	property
blank	and	specify	the	object	type	and	object	name	you	want	to	open	in	the
HyperlinkSubAddress	property	in	the	format	"objecttype	objectname".	For
example,	to	create	a	hyperlink	for	a	command	button	that	opens	the	Employees
form	you	could	set	the	control's	HyperlinkSubAddress	property	to	"Form
Employees".	If	you	want	to	open	an	object	contained	in	another	Microsoft
Access	database,	enter	the	database	path	and	file	name	in	the	HyperlinkAddress
property	and	specify	the	database	object	to	open	by	using	the
HyperlinkSubAddress	property.

Note			When	you	follow	a	hyperlink	to	another	Microsoft	Access	database
object,	the	database	Startup	properties	are	applied.	For	example,	if	the
destination	database	has	a	Display	form	set,	that	form	is	displayed	when	the
database	opens.

The	following	table	contains	shows	examples	of	HyperlinkAddress	and
HyperlinkSubAddress	property	settings.

HyperlinkAddress HyperlinkSubAddress Description

http://www.microsoft.com/ 	 The	Microsoft	home
page	on	the	Web.

C:\Program	Files\Microsoft
Office\Office\Samples\Cajun.htm 	

The	Cajun	Delights
page	in	the	Access
sample	applications
subdirectory.

C:\Program	Files\Microsoft
Office\Office\Samples\Cajun.htm NewProducts

The	"NewProducts"
Name	tag	in	the
Cajun	Delights	page.

C:\Personal\MyResume.doc References

The	bookmark
named	"References"
in	the	Microsoft
Word	document
"MyResume.doc".

C:\Finance\First	Quarter.xls Sheet1!TotalSales

The	range	named
"TotalSales"	in	the
Microsoft	Excel
spreadsheet	"First
Quarter.xls".

C:\Presentation\NewPlans.ppt 10

The	10th	slide	in	the
Microsoft
PowerPoint
document
"NewPlans.ppt".

Show	All

ImageHeight	Property
							

You	can	use	the	ImageHeight	property	in	Visual	Basic	to	determine	the	height
in	twips	of	the	picture	in	an	image	control.	Read/write	Long.

expression.ImageHeight

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

Remarks

The	ImageHeight	property	is	an	Integer	value	equal	to	the	height	of	a	picture	in
twips.

This	property	is	read-only	in	all	views.

You	can	use	the	ImageHeight	property	together	with	the	ImageWidth	property
to	determine	the	size	of	a	picture	in	an	image	control.	You	could	then	use	this
information	to	change	the	image	control's	Height	and	Width	properties	to	match
the	size	of	the	picture	displayed.

Example

The	following	example	prompts	the	user	to	enter	the	name	of	a	bitmap	and	then
assigns	that	bitmap	to	the	Picture	property	of	the	Image1	image	control.	The
ImageHeight	and	ImageWidth	properties	are	used	to	resize	the	image	control
to	fit	the	size	of	the	bitmap.

Sub	GetNewPicture(frm	As	Form)

				Dim	ctlImage	As	Control

				Set	ctlImage	=	frm!Image1

				ctlImage.Picture	=	InputBox("Enter	path	and	"	_

								&	"file	name	for	new	bitmap")

				ctlImage.Height	=	ctlImage.ImageHeight

				ctlImage.Width	=	ctlImage.ImageWidth

End	Sub

Show	All

ImageWidth	Property
							

You	can	use	the	ImageWidth	property	in	Visual	Basic	to	determine	the	width	in
twips	of	a	picture	in	an	image	control.	Read/write	Long.

expression.ImageWidth

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

Remarks

The	ImageWidth	property	is	an	Integer	value	equal	to	the	width	of	a	picture	in
twips.

This	property	is	read-only	in	all	views.

You	can	use	the	ImageWidth	property	together	with	the	ImageHeight	property
to	determine	the	size	of	a	picture	in	an	image	control.	You	could	then	use	this
information	to	change	the	image	control's	Height	and	Width	properties	to	match
the	size	of	the	picture	displayed.

Example

The	following	example	prompts	the	user	to	enter	the	name	of	a	bitmap	and	then
assigns	that	bitmap	to	the	Picture	property	of	the	Image1	image	control.	The
ImageHeight	and	ImageWidth	properties	are	used	to	resize	the	image	control
to	fit	the	size	of	the	bitmap.

Sub	GetNewPicture(frm	As	Form)

				Dim	ctlImage	As	Control

				Set	ctlImage	=	frm!Image1

				ctlImage.Picture	=	InputBox("Enter	path	and	"	_

								&	"file	name	for	new	bitmap")

				ctlImage.Height	=	ctlImage.ImageHeight

				ctlImage.Width	=	ctlImage.ImageWidth

End	Sub

Show	All

IMEHold/HoldKanjiConversionMode
Property
							

Language-specific	information

You	can	use	the	IMEHold/Hold	KanjiConversionMode	property	to	show
whether	the	Kanji	Conversion	Mode	is	maintained	when	the	control	loses	the
focus.

Remarks

The	IMEHold/Hold	KanjiConversionMode	property	uses	the	following
settings.

Settings Description Visual	Basic

Yes Maintains	the	Kanji	Conversion	Mode	set	in	the
last	control. True

No Does	not	maintain	the	Kanji	Conversion	Mode	set
in	the	last	control	(default). False

	

You	can	set	this	property	by	using	the	property	sheet,	a	macro,	or	Visual	Basic.

By	setting	the	IMEHold/Hold	KanjiConversionMode	property,	you	can
designate	whether	or	not	the	Kanji	Conversion	Mode	is	maintained	when	the
control	loses	the	focus.	If	this	property	is	set	to	Yes,	the	Kanji	Conversion	Mode
setting	is	maintained	when	the	control	loses	the	focus	and	once	that	control
regains	the	focus,	the	Kanji	Conversion	Mode	setting	for	that	control	is	restored.
If	this	property	is	set	to	No	(default	setting),	the	Kanji	Conversion	Mode	will	be
set	by	the	IMEMode/KanjiConversionMode	property	for	that	control.

Note			To	set	the	Kanji	Conversion	Mode	when	the	focus	shifts	to	the	control,	set
the	IMEMode/KanjiConversionMode	property.

Show	All

IMEMode/KanjiConversion	Property
							

You	can	use	the	IMEMode	property	to	set	a	control's	Kanji	Conversion	Mode
when	the	focus	shifts	to	the	control.

Remarks

The	IMEMode	property	uses	the	following	settings.

Setting Description Visual	Basic

No	Control Kanji	Conversion	Mode	not	set
(default). 0

On Turns	on	Kanji	Conversion	Mode. 1
Off Turns	off	Kanji	Conversion	Mode. 2
Disable Disables	Kanji	Conversion	Mode. 3
Hiragana Sets	full	pitch	hiragana 4
Full	pitch	Katakana Sets	full	pitch	katakana. 5
Half	pitch	Katakana Sets	half	pitch	katakana. 6
Full	pitch	Alpha/Num Sets	full	pitch	letters/numbers. 7
Half	pitch	Alpha/Num Sets	half	pitch	letters/numbers. 8
HangulFull Sets	full	pitch	hangul. 9
Hangul Sets	half	pitch	hangul. 10
You	can	set	this	property	by	using	the	property	sheet,	a	macro,	or	Visual	Basic.

You	can	specify	the	Kanji	Conversion	Mode	when	the	focus	shifts	to	control	by
setting	the	IMEMode	property.	If	set	to	No	Control	(default)	the	setting	before
the	focus	shifted	to	that	control	is	used.	For	any	other	setting,	the	Kanji
Conversion	Mode	setting	for	that	control	is	used.	For	example,	if	the	IMEMode
property	is	set	to	Off,	the	Kanji	Conversion	Mode	is	turned	off,	and	if	the
IMEMode	property	is	set	to	On,	the	Kanji	Conversion	Mode	is	turned	on.	The
Kanji	Conversion	Mode	automatically	changes	each	time	the	focus	shifts
between	controls.

Note			If	set	to	Disable,	the	Kanji	Conversion	Mode	settings	cannot	be	changed.
If	any	other	setting	is	used,	the	Kanji	Conversion	Mode	can	be	changed,	but
when	the	focus	changes,	the	settings	are	lost.	If	you	want	to	save	the	settings
before	the	control	loses	the	focus,	set	the
IMEHold/HoldKanjiConversionMode	property.

IMESentenceMode	Property
							

Language-specific	information

You	can	use	the	IMESentenceMode	property	to	specify	or	determine	the	IME
Sentence	Mode	of	fields	of	a	table	or	controls	of	a	form	that	switch	when	the
focus	moves.

Remarks

The	IMESentenceMode	property	uses	the	following	settings.

Setting Description Visual	Basic

Normal (Default)	Set	IME	Sentence	Mode	to
“Normal”	mode. 0

Plural Set	IME	Sentence	Mode	to	“Plural”	mode. 1

Speaking Set	IME	Sentence	Mode	to	“Speaking”
mode. 2

No	Conversion Doesn’t	set	IME	Sentence	Mode. 3
You	can	set	this	property	by	using	the	property	sheet,	a	macro,	or	Visual	Basic.

Normal	mode

Use	this	mode	when	creating	a	literary	Japanese	document.

Plural	mode

Use	this	mode	when	entering	name	or	address	data.	In	this	mode,	two	additional
dictionaries	are	available.	The	“Biographical/Geographical	Dictionary”	contains
names	not	covered	in	the	normal	dictionary	and	the	“Postal	Code	Dictionary”,
useful	in	creating	addresses.	(Factory	setting.)

Speaking	mode

Use	this	mode	when	entering	data	that	contains	conversational	language.

No	Conversion

In	this	mode,	inputted	characters	are	settled	without	conversion.

Show	All

InputMask	Property
							

You	can	use	the	InputMask	property	to	make	data	entry	easier	and	to	control	the
values	users	can	enter	in	a	text	box	control.	Read/write	String.

expression.InputMask

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

Remarks

Input	masks	are	helpful	for	data-entry	operations	such	as	an	input	mask	for	a
Phone	Number	field	that	shows	you	exactly	how	to	enter	a	new	number:	(___)
___-____.	It	is	often	easier	to	use	the	Input	Mask	Wizard	to	set	the	property	for
you.

The	InputMask	property	can	contain	up	to	three	sections	separated	by
semicolons	(;).

Section Description

First
Specifies	the	input	mask	itself;	for	example,	!(999)	999-
9999.	For	a	list	of	characters	you	can	use	to	define	the	input
mask,	see	the	following	table.

Second

Specifies	whether	Microsoft	Access	stores	the	literal
display	characters	in	the	table	when	you	enter	data.	If	you
use	0	for	this	section,	all	literal	display	characters	(for
example,	the	parentheses	in	a	phone	number	input	mask)
are	stored	with	the	value;	if	you	enter	1	or	leave	this	section
blank,	only	characters	typed	into	the	control	are	stored.

Third

Specifies	the	character	that	Microsoft	Access	displays	for
the	space	where	you	should	type	a	character	in	the	input
mask.	For	this	section,	you	can	use	any	character;	to	display
an	empty	string,	use	a	space	enclosed	in	quotation	marks	("
").

In	Visual	Basic	you	use	a	string	expression	to	set	this	property.	For	example,	the
following	specifies	an	input	mask	for	a	text	box	control	used	for	entering	a
phone	number:

Forms!Customers!Telephone.InputMask	=	"(###)	###-####"

When	you	create	an	input	mask,	you	can	use	special	characters	to	require	that
certain	data	be	entered	(for	example,	the	area	code	for	a	phone	number)	and	that
other	data	be	optional	(such	as	a	telephone	extension).	These	characters	specify
the	type	of	data,	such	as	a	number	or	character,	that	you	must	enter	for	each
character	in	the	input	mask.

mk:@MSITStore:acmain10.chm::/html/acdecCreateInputMaskFieldControl.htm

You	can	define	an	input	mask	by	using	the	following	characters.

Character Description

0 Digit	(0	to	9,	entry	required,	plus	[+]	and	minus	[–]	signs
not	allowed).

9 Digit	or	space	(entry	not	required,	plus	and	minus	signs	not
allowed).

#
Digit	or	space	(entry	not	required;	spaces	are	displayed	as
blanks	while	in	Edit	mode,	but	blanks	are	removed	when
data	is	saved;	plus	and	minus	signs	allowed).

L Letter	(A	to	Z,	entry	required).
? Letter	(A	to	Z,	entry	optional).
A Letter	or	digit	(entry	required).
a Letter	or	digit	(entry	optional).
& Any	character	or	a	space	(entry	required).
C Any	character	or	a	space	(entry	optional).

.	,	:	;	-	/

Decimal	placeholder	and	thousand,	date,	and	time
separators.	(The	actual	character	used	depends	on	the
settings	in	the	Regional	Settings	Properties	dialog	box	in
Windows	Control	Panel).

< Causes	all	characters	to	be	converted	to	lowercase.
> Causes	all	characters	to	be	converted	to	uppercase.

!

Causes	the	input	mask	to	display	from	right	to	left,	rather
than	from	left	to	right.	Characters	typed	into	the	mask
always	fill	it	from	left	to	right.	You	can	include	the
exclamation	point	anywhere	in	the	input	mask.

\ Causes	the	character	that	follows	to	be	displayed	as	the
literal	character	(for	example,	\A	is	displayed	as	just	A).

Note			Setting	the	InputMask	property	to	the	word	"Password"	creates	a
password-entry	control.	Any	character	typed	in	the	control	is	stored	as	the
character	but	is	displayed	as	an	asterisk	(*).	You	use	the	Password	input	mask	to
prevent	displaying	the	typed	characters	on	the	screen.

For	a	control,	you	can	set	this	property	in	the	control's	property	sheet.	For	a	field
in	a	table,	you	can	set	the	property	in	table	Design	view	(in	the	Field	Properties

section)	or	in	Design	view	of	the	Query	window	(in	the	Field	Properties	property
sheet).

You	can	also	set	the	InputMask	property	by	using	a	macro	or	Visual	Basic.

When	you	type	data	in	a	field	for	which	you've	defined	an	input	mask,	the	data	is
always	entered	in	Overtype	mode.	If	you	use	the	BACKSPACE	key	to	delete	a
character,	the	character	is	replaced	by	a	blank	space.

If	you	move	text	from	a	field	for	which	you've	defined	an	input	mask	onto	the
Clipboard,	the	literal	display	characters	are	copied,	even	if	you	have	specified
that	they	not	be	saved	with	data.

Note			Only	characters	that	you	type	directly	in	a	control	or	combo	box	are
affected	by	the	input	mask.	Microsoft	Access	ignores	any	input	masks	when	you
import	data,	run	an	action	query,	or	enter	characters	in	a	control	by	setting	the
control's	Text	property	in	Visual	Basic	or	by	using	the	SetValue	action	in	a
macro.

When	you've	defined	an	input	mask	and	set	the	Format	property	for	the	same
field,	the	Format	property	takes	precedence	when	the	data	is	displayed.	This
means	that	even	if	you've	saved	an	input	mask,	the	input	mask	is	ignored	when
data	is	formatted	and	displayed.	The	data	in	the	underlying	table	itself	isn't
changed;	the	Format	property	affects	only	how	the	data	is	displayed.

mk:@MSITStore:acmain10.chm::/html/acactSetValue.htm

Example

The	following	table	shows	some	useful	input	masks	and	the	type	of	values	you
can	enter	in	them.

Input	mask Sample	values
(000)	000-0000 (206)	555-0248
(999)	999-9999 (206)	555-0248
	 ()	555-0248
(000)	AAA-AAAA (206)	555-TELE
#999 –20
	 2000
>L????L?000L0 GREENGR339M3
	 MAY	R	452B7
>L0L	0L0 T2F	8M4
00000-9999 98115-
	 98115-3007
>L<?????????????? Maria
	 Brendan
SSN	000-00-0000 SSN	555-55-5555
>LL00000-0000 DB51392-0493

Show	All

InputParameters	Property
							

You	can	use	the	InputParameters	property	to	specify	or	determine	the	input
parameters	that	are	passed	to	a	SQL	statement	in	the	RecordSource	property	of
a	form	or	report	or	a	stored	procedure	when	used	as	the	record	source	within	a
Microsoft	Access	project	(.adp).	Read/write	String.

expression.InputParameters

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

Remarks

You	can	set	this	property	by	using	the	property	sheet	or	Visual	Basic.

When	used	with	a	RecordSource	property:

An	example	InputParameter	property	string	used	with	a	SQL	statement	in	the
RecordSource	property	would	use	the	following	syntax.

state	char=[Form]![StateList],	salesyear	smallint=[Enter	year	of	interest]

This	would	result	in	the	state	parameter	being	set	to	the	current	value	of	the
StateList	control,	and	the	user	getting	prompted	for	the	salesyear	parameter.	If
there	were	any	other	parameters	that	were	not	in	this	list,	they	would	get	default
values	assigned.

The	query	should	be	executed	with	one	?	marker	for	each	non-default	parameter
in	the	InputParameter	list.

A	refresh	or	requery	command	(via	menu,	keyboard,	or	Navigation	Bar)	in
Access	should	trigger	a	reexecute	of	the	query.	Users	can	do	this	in	code	by
calling	the	standard	Recordset.Requery	method.	If	the	value	of	a	parameter	is
bound	to	a	control	on	the	form,	the	current	value	of	the	control	is	used	at	requery
time.	The	query	is	not	automatically	reexecuted	when	the	value	of	the	control
changes.

When	used	with	a	stored	procedure:

An	example	InputParameter	property	string	used	with	stored	procedure	would
be:

@state	char=[Form]![StateList],	@salesyear	smallint=[Enter	year	of	interest]

This	would	result	in	the	@state	parameter	being	set	to	the	current	value	of	the
StateList	control,	and	the	user	getting	prompted	for	the	@salesyear	parameter.	If
there	were	any	other	parameters	to	the	stored	proc	that	were	not	in	this	list,	they
would	get	default	values	assigned.

The	stored	procedure	should	be	executed	using	a	command	string	containing	the

{call	}	syntax	with	one	?	marker	for	each	non-default	parameter	in	the
InputParameter	list.

A	refresh	or	requery	command	(via	menu,	keyboard,	or	Navigation	Bar)	in
Access	should	trigger	a	reexecute	of	the	stored	procedure.	Users	can	do	this	in
code	by	calling	the	standard	Recordset.Requery	method.	If	the	value	of	a
parameter	is	bound	to	a	control	on	the	form,	the	current	value	of	the	control	is
used	at	requery	time.	The	stored	procedure	is	not	automatically	reexecuted	when
the	value	of	the	control	changes.

This	builder	dialog	is	invoked	when	a	stored	procedure	is	first	selected	as	the
record	source	of	a	form	if	the	stored	procedure	has	any	parameters.	After	initial
creation	of	the	InputParameters	string,	this	same	dialog	is	used	as	a	builder	for
changing	the	string.	In	this	case	however	the	list	of	parameters	comes	from	what
already	exists	in	the	string.

Parameter	values	are	also	settable	in	code	using	the	ActiveX	Data	Object's
(ADO)	Command	and	Parameter	objects.	If	the	result	returns	a	result	set,	a
form	can	be	bound	to	it	by	setting	the	form's	Recordset	property.	ADO	coding	is
the	only	way	to	handle	stored	procedures	that	do	not	return	result	sets	such	as
action	queries,	those	that	return	output	parameters,	or	those	that	return	multiple
result	sets.

mk:@MSITStore:ado210.chm::/htm/mdobjCommand.htm
mk:@MSITStore:ado210.chm::/htm/mdobjParameter.htm

Show	All

InSelection	Property
							

You	can	use	the	InSelection	property	to	determine	or	specify	whether	a	control
on	a	form	in	Design	view	is	selected.	Read/write	Boolean.

expression.InSelection

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

Remarks

The	InSelection	property	uses	the	following	settings.

Setting Description
True	 The	control	is	selected.
False The	control	isn't	selected.
This	property	is	available	only	by	using	a	macro	or	Visual	Basic.

When	a	control	is	selected,	its	sizing	handles	are	visible	and	it	can	be	resized	by
the	user.	More	than	one	control	can	be	selected	at	a	time.

Example

The	following	function	uses	the	InSelection	property	to	determine	whether	the
strControlName	control	on	a	form	is	selected.

To	test	this	code,	paste	the	IsControlSelected	function	code	in	the	Declarations
section	of	a	code	module	in	the	Northwind	sample	database,	open	the	Customers
form	in	Design	view,	and	select	the	CompanyName	control.	Then	enter	the
following	line	in	the	Debug	window:

?	IsControlSelected	(Forms!Customers,	"CompanyName")

Function	IsControlSelected(frm	As	Form,	_

					strControlName	As	String)	As	Integer

				Dim	intI	As	Integer,	ctl	As	Control

				If	frm.CurrentView	<>	0	Then

								'	Form	is	not	in	Design	view.

								Exit	Function

				Else

								For	intI	=	0	To	frm.Count	-	1

												Set	ctl	=	frm(intI)

												If	ctl.InSelection	=	True	Then

																'	Is	desired	control	selected?

																If	UCase(ctl.Name)	=	UCase(strControlName)	Then

																				IsControlSelected	=	True

																				Exit	Function

																End	If

												Else

																IsControlSelected	=	False

												End	If

								Next	intI

				End	If

End	Function

Show	All

InsideHeight	Property
							

You	can	use	the	InsideHeight	property	(along	with	the	InsideWidth	property)
to	determine	the	height	and	width	(in	twips)	of	the	window	containing	a	form.
Read/write	Long.

expression.InsideHeight

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

Remarks

The	InsideHeight	and	InsideWidth	properties	are	available	only	by	using	a
macro	or	Visual	Basic	and	can	be	set	at	any	time.

If	you	want	to	determine	the	interior	dimensions	of	the	form	itself,	you	use	the
Width	property	to	determine	the	form	width	and	the	sum	of	the	heights	of	the
form's	visible	sections	to	determine	its	height	(the	Height	property	applies	only
to	form	sections,	not	to	forms).	The	interior	of	a	form	is	the	region	inside	the
form,	excluding	the	scroll	bars	and	the	record	selectors.

You	can	also	use	the	WindowHeight	and	WindowWidth	properties	to
determine	the	height	and	width	of	the	window	containing	a	form.

If	a	window	is	maximized,	setting	these	properties	doesn't	have	any	effect	until
the	window	is	restored	to	its	normal	size.

Example

The	following	example	shows	how	to	use	the	InsideHeight	and	InsideWidth
properties	to	compare	the	inside	height	and	width	of	a	form	with	the	height	and
width	of	the	form's	window.	If	the	window's	dimensions	don't	equal	the	size	of
the	form,	then	the	window	is	resized	to	match	the	form's	height	and	width.

Sub	ResetWindowSize(frm	As	Form)

				Dim	intWindowHeight	As	Integer

				Dim	intWindowWidth	As	Integer

				Dim	intTotalFormHeight	As	Integer

				Dim	intTotalFormWidth	As	Integer

				Dim	intHeightHeader	As	Integer

				Dim	intHeightDetail	As	Integer

				Dim	intHeightFooter	As	Integer

				'	Determine	form's	height.

				intHeightHeader	=	frm.Section(acHeader).Height

				intHeightDetail	=	frm.Section(acDetail).Height

				intHeightFooter	=	frm.Section(acFooter).Height

				intTotalFormHeight	=	intHeightHeader	_

								+	intHeightDetail	+	intHeightFooter

				'	Determine	form's	width.

				intTotalFormWidth	=	frm.Width

				'	Determine	window's	height	and	width.

				intWindowHeight	=	frm.InsideHeight

				intWindowWidth	=	frm.InsideWidth

				If	intWindowWidth	<>	intTotalFormWidth	Then

								frm.InsideWidth	=	intTotalFormWidth

				End	If

				If	intWindowHeight	<>	intTotalFormHeight	Then

								frm.InsideHeight	=	intTotalFormHeight

				End	If

End	Sub

Show	All

InsideWidth	Property
							

You	can	use	the	InsideWidth	property	(along	with	the	InsideHeight	property)
to	determine	the	height	and	width	(in	twips)	of	the	window	containing	a	form.
Read/write	Long.

expression.InsideWidth

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

Remarks

The	InsideHeight	and	InsideWidth	properties	are	available	only	by	using	a
macro	or	Visual	Basic	and	can	be	set	at	any	time.

If	you	want	to	determine	the	interior	dimensions	of	the	form	itself,	you	use	the
Width	property	to	determine	the	form	width	and	the	sum	of	the	heights	of	the
form's	visible	sections	to	determine	its	height	(the	Height	property	applies	only
to	form	sections,	not	to	forms).	The	interior	of	a	form	is	the	region	inside	the
form,	excluding	the	scroll	bars	and	the	record	selectors.

You	can	also	use	the	WindowHeight	and	WindowWidth	properties	to
determine	the	height	and	width	of	the	window	containing	a	form.

If	a	window	is	maximized,	setting	these	properties	doesn't	have	any	effect	until
the	window	is	restored	to	its	normal	size.

Example

The	following	example	shows	how	to	use	the	InsideHeight	and	InsideWidth
properties	to	compare	the	inside	height	and	width	of	a	form	with	the	height	and
width	of	the	form's	window.	If	the	window's	dimensions	don't	equal	the	size	of
the	form,	then	the	window	is	resized	to	match	the	form's	height	and	width.

Sub	ResetWindowSize(frm	As	Form)

				Dim	intWindowHeight	As	Integer

				Dim	intWindowWidth	As	Integer

				Dim	intTotalFormHeight	As	Integer

				Dim	intTotalFormWidth	As	Integer

				Dim	intHeightHeader	As	Integer

				Dim	intHeightDetail	As	Integer

				Dim	intHeightFooter	As	Integer

				'	Determine	form's	height.

				intHeightHeader	=	frm.Section(acHeader).Height

				intHeightDetail	=	frm.Section(acDetail).Height

				intHeightFooter	=	frm.Section(acFooter).Height

				intTotalFormHeight	=	intHeightHeader	_

								+	intHeightDetail	+	intHeightFooter

				'	Determine	form's	width.

				intTotalFormWidth	=	frm.Width

				'	Determine	window's	height	and	width.

				intWindowHeight	=	frm.InsideHeight

				intWindowWidth	=	frm.InsideWidth

				If	intWindowWidth	<>	intTotalFormWidth	Then

								frm.InsideWidth	=	intTotalFormWidth

				End	If

				If	intWindowHeight	<>	intTotalFormHeight	Then

								frm.InsideHeight	=	intTotalFormHeight

				End	If

End	Sub

Show	All

IsBroken	Property
							

The	IsBroken	property	returns	a	Boolean	value	indicating	whether	a	Reference
object	points	to	a	valid	reference	in	the	Windows	Registry.	Read-only	Boolean.

expression.IsBroken

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

Remarks

The	IsBroken	property	is	available	only	by	using	Visual	Basic	and	is	read-only.

The	default	value	of	the	IsBroken	property	is	False.	The	IsBroken	property
returns	True	only	if	the	Reference	object	no	longer	points	to	a	valid	reference	in
the	Registry.

By	evaluating	the	IsBroken	property,	you	can	determine	whether	or	not	the	file
associated	with	a	particular	Reference	object	has	been	moved	to	a	different
directory	or	deleted.

If	the	IsBroken	property	is	True,	Microsoft	Access	generates	an	error	when	you
try	to	read	the	Name	or	FullPath	properties.

Example

The	following	example	prints	the	value	of	the	FullPath,	GUID,	IsBroken,
Major,	and	Minor	properties	for	each	Reference	object	in	the	References
collection:

Sub	ReferenceProperties()

				Dim	ref	As	Reference

				'	Enumerate	through	References	collection.

				For	Each	ref	In	References

								'	Check	IsBroken	property.

								If	ref.IsBroken	=	False	Then

												Debug.Print	"Name:	",	ref.Name

												Debug.Print	"FullPath:	",	ref.FullPath

												Debug.Print	"Version:	",	ref.Major	&	"."	&	ref.Minor

								Else

												Debug.Print	"GUIDs	of	broken	references:"

												Debug.Print	ref.GUID

								EndIf

				Next	ref

End	Sub

Show	All

IsCompiled	Property
							

The	IsCompiled	property	returns	a	Boolean	value	indicating	whether	the	Visual
Basic	project	is	in	a	compiled	state.	Read-only	Boolean.

expression.IsCompiled

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

Remarks

The	IsCompiled	property	is	available	only	by	using	Visual	Basic.

The	IsCompiled	property	returns	True	if	the	project	is	in	a	compiled	state.

The	IsCompiled	property	of	the	Application	object	is	False	when	the	project
has	never	been	fully	compiled,	if	a	module	has	been	added,	edited,	or	deleted
after	compilation,	or	if	a	module	hasn't	been	saved	in	a	compiled	state.

IsConnected	Property
							

You	can	use	the	IsConnected	property	to	determine	if	the	CurrentProject	or
CodeProject	object	is	currently	connected.	Read-only	Boolean.

expression.IsConnected

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

Remarks

The	IsConnected	property	uses	the	following	settings.

Setting Visual	Basic Description

Yes True The	CurrentProject	or	CodeProject	object	is
currently	connected.

No False	 The	CurrentProject	or	CodeProject	object	is
not	connected

The	IsConnected	property	is	available	only	by	using	Visual	Basic.

Show	All

IsHyperlink	Property
							

You	can	use	the	IsHyperlink	property	to	specify	or	determine	if	the	data
contained	in	a	text	box	or	combo	box	is	a	hyperlink.	Read/write	Boolean.

expression.IsHyperlink

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

Remarks

The	IsHyperlink	property	uses	the	following	settings.

Setting Visual	Basic Description
Yes True	 The	data	displayed	is	a	hyperlink.
No False	 The	data	displayed	is	not	a	hyperlink.
You	can	set	the	IsHyperlink	property	by	using	the	property	sheet,	a	macro,	or
Visual	Basic.

IsLoaded	Property
							

You	can	use	the	IsLoaded	property	to	determine	if	an	AccessObject	is	currently
loaded.	Read-only	Boolean.

expression.IsLoaded

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

Remarks

The	IsLoaded	property	uses	the	following	settings.

Setting Visual	Basic Description
Yes True		 The	specified	AccessObject	is	loaded.
No False The	specified	AccessObject	is	not	loaded.
The	IsLoaded	property	is	available	only	by	using	Visual	Basic	and	is	read-only.

Example

This	procedure	illustrates	how	to	use	VBA	code	to	add	text	to	a	data	access	page.
The	following	information	is	supplied	in	the	arguments	to	this	procedure:

strPageName The	name	of	an	existing	data	access	page.

strID The	ID	property	(attribute)	for	the	tag	that	contains	the	text
you	want	to	work	with.

strText The	text	to	insert.
blnReplace Whether	to	replace	existing	text	in	the	tag.

Function	DAPInsertText(strPageName	As	String,	_

				strID	As	Variant,	strText	As	String,	_

				Optional	blnReplace	As	Boolean	=	True)	As	Boolean

				Dim	blnWasLoaded	As	Boolean

				On	Error	GoTo	DAPInsertText_Err

				'	Determine	if	the	page	exists	and	whether	it	is

				'	currently	open.	If	not	open	then	open	it	in

				'	design	view.

				If	DAPExists(strPageName)	=	True	Then

								If	CurrentProject.AllDataAccessPages(strPageName)	_

												.IsLoaded	=	False	Then

												blnWasLoaded	=	False

												With	DoCmd

																.Echo	False

																.OpenDataAccessPage	strPageName,	_

																				acDataAccessPageDesign

												End	With

								Else

												blnWasLoaded	=	True

								End	If

				Else

								DAPInsertText	=	False

								Exit	Function

				End	If

				'	Add	the	new	text	to	the	specified	tag.

				With	DataAccessPages(strPageName).Document

								If	blnReplace	=	True	Then

												.All(strID).innerText	=	strText

								Else

												.All(strID).innerText	=	.All(strID).innerText	&	strText

								End	If

								'	Make	sure	the	text	is	visible.

								With	.All(strID).Style

												If	.display	=	"none"	Then	.display	=	""

								End	With

				End	With

				'	Clean	up	after	yourself.

				With	DoCmd

								If	blnWasLoaded	=	True	Then

								.Save

				Else

								.Close	acDataAccessPage,	strPageName,	acSaveYes

								End	If

				End	With

				DAPInsertText	=	True

DAPInsertText_End:

				DoCmd.Echo	True

				Exit	Function

DAPInsertText_Err:

				MsgBox	"Error	#"	&	Err.Number	&	":	"	&	Err.Description

				DAPInsertText	=	False

				Resume	DAPInsertText_End

End	Function

Show	All

IsVisible	Property
							

You	can	use	the	IsVisible	property	in	Visual	Basic	to	determine	whether	a
control	on	a	report	is	visible.	Read/write	Boolean.

expression.IsVisible

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

Remarks

The	IsVisible	property	uses	the	following	settings.

Setting Description
True		 (Default)	The	control	is	visible.
False The	control	isn't	visible.
You	can	set	the	IsVisible	property	only	in	the	Print	event	of	a	report	section	that
contains	the	control.

You	can	use	the	IsVisible	property	together	with	the	HideDuplicates	property	to
determine	when	a	control	on	a	report	is	visible	and	show	or	hide	other	controls
as	a	result.	For	example,	you	could	hide	a	line	control	when	a	text	box	control	is
hidden	because	it	contains	duplicate	values.

Example

The	following	example	uses	the	IsVisible	property	of	a	text	box	to	control	the
display	of	a	line	control	on	a	report.	The	report	is	based	on	a	Products	table	and
uses	three	controls	with	the	following	properties.

Properties Line	control Text	box	#1 Text	box	#2
Name Line0 CategoryID ProductName
ControlSource 	 CategoryID ProductName
HideDuplicates 	 Yes No
Left 0 0 2.0
Top 0 .1 .1
Width 4.0 1.0 1.0

Paste	the	following	code	into	the	Declarations	section	of	the	report	module,	and
then	view	the	report	to	see	the	line	formatting	controlled	by	the	IsVisible
property:

Private	Sub	Detail_Print(Cancel	As	Integer,	PrintCount	As	Integer)

				If	Me!CategoryID.IsVisible	Then

								Me!Line0.Visible	=	True

				Else

								Me!Line0.Visible	=	False

				End	If

End	Sub

Show	All

Item	Property
							

The	Item	property	returns	a	specific	member	of	a	collection	either	by	position	or
by	index.	This	property	is	read-only	for	all	objects	in	the	Applies	To	list	except
the	ObjectFrame	object,	which	is	read/write.

expression.Item(Index)

expression			Required.	An	expression	that	returns	one	of	the	above	objects.

Index		Required	Variant.	An	expression	that	specifies	the	position	of	a	member
of	the	collection	referred	to	by	the	expression	argument.	If	a	numeric	expression,
the	index	argument	must	be	a	number	from	0	to	the	value	of	the	collection's
Count	property	minus	1.	If	a	string	expression,	the	index	argument	must	be	the
name	of	a	member	of	the	collection.

Remarks

The	Item	property	is	available	only	by	using	Visual	Basic.

If	the	value	provided	for	the	index	argument	doesn't	match	any	existing	member
of	the	collection,	an	error	occurs.

The	Item	property	is	the	default	member	of	a	collection,	so	you	don't	have	to
specify	it	explicitly.	For	example,	the	following	two	lines	of	code	are	equivalent:

Debug.Print	Modules(0)

Debug.Print	Modules.Item(0)

Show	All

ItemData	Property
							

The	ItemData	property	returns	the	data	in	the	bound	column	for	the	specified
row	in	a	combo	box	or	list	box.	Read-only	Variant.

expression.ItemData(Index)

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

Index		Required	Long.	The	row	in	the	combo	box	or	list	box	containing	the	data
you	want	to	return.	Rows	in	combo	and	list	boxes	are	indexed	starting	with	zero.
For	example,	to	return	the	item	in	the	sixth	row	of	a	combo	box,	you'd	specify	5
for	the	rowindex	argument.

Remarks

The	ItemData	property	enables	you	to	iterate	through	the	list	of	entries	in	a
combo	box	or	list	box.	For	example,	suppose	you	wanted	to	iterate	through	all	of
the	items	in	a	list	box	to	search	for	a	particular	entry.	You	can	use	the	ListCount
property	to	determine	the	number	of	rows	in	the	list	box,	and	then	use	the
ItemData	property	to	return	the	data	for	the	bound	column	in	each	row.

You	can	also	use	the	ItemData	property	to	return	data	only	from	selected	rows
in	a	list	box.	You	can	iterate	through	the	ItemsSelected	collection	to	determine
which	row	or	rows	in	the	list	box	have	been	selected,	and	use	the	ItemData
property	to	return	the	data	in	those	rows.	You	must	set	the	MultiSelect	property
of	the	list	box	to	Simple	or	Extended	to	enable	the	user	to	select	more	than	one
row	at	a	time.

Tip			You	can	use	the	Column	property	to	return	data	from	a	specified	row	and
column,	even	if	the	specified	column	isn't	the	bound	column.

Example

The	following	example	prints	the	value	of	the	bound	column	for	each	selected
row	in	a	list	box	EmployeeList	on	an	Employees	form.	The	list	box's
MultiSelect	property	must	be	set	to	Simple	or	Extended.

Sub	RowsSelected()

				Dim	ctlList	As	Control,	varItem	As	Variant

				'	Return	Control	object	variable	pointing	to	list	box.

				Set	ctlList	=	Forms!Employees!EmployeeList

				'	Enumerate	through	selected	items.

				For	Each	varItem	in	ctlList.ItemsSelected

								'	Print	value	of	bound	column.

								Debug.Print	ctlList.ItemData(varItem)

				Next	varItem

End	Sub

Show	All

ItemLayout	Property
							

Returns	or	sets	an	AcPrintItemLayout	constant	indicating	whether	the	printer
lays	columns	across,	then	down,	or	down,	then	across.	Read/write.

AcPrintItemLayout	can	be	one	of	these	AcPrintItemLayout	constants.
acPRHorizontalColumnLayout		Columns	are	laid	across,	then	down.	
acPRVerticalColumnLayout		Columns	are	laid	down,	then	across.

expression.ItemLayout

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

Example

The	following	example	sets	a	variety	of	printer	settings	for	the	first	form	in	the
current	project.

With	Forms(0).Printer

				.TopMargin	=	1440

				.BottomMargin	=	1440

				.LeftMargin	=	1440

				.RightMargin	=	1440

				.ColumnSpacing	=	360

				.RowSpacing	=	360

				.ColorMode	=	acPRCMColor

				.DataOnly	=	False

				.DefaultSize	=	False

				.ItemSizeHeight	=	2880

				.ItemSizeWidth	=	2880

				.ItemLayout	=	acPRVerticalColumnLayout

				.ItemsAcross	=	6

				.Copies	=	1

				.Orientation	=	acPRORLandscape

				.Duplex	=	acPRDPVertical

				.PaperBin	=	acPRBNAuto

				.PaperSize	=	acPRPSLetter

				.PrintQuality	=	acPRPQMedium

End	With

ItemsAcross	Property
							

Returns	or	sets	a	Long	indicating	the	number	of	columns	to	print	across	a	page
for	multiple-column	reports	or	labels.	Read/write.

expression.ItemsAcross

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

Example

The	following	example	sets	a	variety	of	printer	settings	for	the	first	form	in	the
current	project.

With	Forms(0).Printer

				.TopMargin	=	1440

				.BottomMargin	=	1440

				.LeftMargin	=	1440

				.RightMargin	=	1440

				.ColumnSpacing	=	360

				.RowSpacing	=	360

				.ColorMode	=	acPRCMColor

				.DataOnly	=	False

				.DefaultSize	=	False

				.ItemSizeHeight	=	2880

				.ItemSizeWidth	=	2880

				.ItemLayout	=	acPRVerticalColumnLayout

				.ItemsAcross	=	6

				.Copies	=	1

				.Orientation	=	acPRORLandscape

				.Duplex	=	acPRDPVertical

				.PaperBin	=	acPRBNAuto

				.PaperSize	=	acPRPSLetter

				.PrintQuality	=	acPRPQMedium

End	With

ItemSizeHeight	Property
							

Returns	or	sets	a	Long	indicating	the	height	of	the	detail	section	of	a	form	or
report	in	twips.	Read/write.

expression.ItemSizeHeight

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

Remarks

If	the	DefaultSize	property	is	True,	this	property	is	ignored.

Example

The	following	example	sets	a	variety	of	printer	settings	for	the	first	form	in	the
current	project.

With	Forms(0).Printer

				.TopMargin	=	1440

				.BottomMargin	=	1440

				.LeftMargin	=	1440

				.RightMargin	=	1440

				.ColumnSpacing	=	360

				.RowSpacing	=	360

				.ColorMode	=	acPRCMColor

				.DataOnly	=	False

				.DefaultSize	=	False

				.ItemSizeHeight	=	2880

				.ItemSizeWidth	=	2880

				.ItemLayout	=	acPRVerticalColumnLayout

				.ItemsAcross	=	6

				.Copies	=	1

				.Orientation	=	acPRORLandscape

				.Duplex	=	acPRDPVertical

				.PaperBin	=	acPRBNAuto

				.PaperSize	=	acPRPSLetter

				.PrintQuality	=	acPRPQMedium

End	With

ItemSizeWidth	Property
							

Returns	or	sets	a	Long	indicating	the	height	of	the	detail	section	of	a	form	or
report	in	twips.	Read/write.

expression.ItemSizeWidth

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

Remarks

If	the	DefaultSize	property	is	True,	this	property	is	ignored.

Example

The	following	example	sets	a	variety	of	printer	settings	for	the	first	form	in	the
current	project.

With	Forms(0).Printer

				.TopMargin	=	1440

				.BottomMargin	=	1440

				.LeftMargin	=	1440

				.RightMargin	=	1440

				.ColumnSpacing	=	360

				.RowSpacing	=	360

				.ColorMode	=	acPRCMColor

				.DataOnly	=	False

				.DefaultSize	=	False

				.ItemSizeHeight	=	2880

				.ItemSizeWidth	=	2880

				.ItemLayout	=	acPRVerticalColumnLayout

				.ItemsAcross	=	6

				.Copies	=	1

				.Orientation	=	acPRORLandscape

				.Duplex	=	acPRDPVertical

				.PaperBin	=	acPRBNAuto

				.PaperSize	=	acPRPSLetter

				.PrintQuality	=	acPRPQMedium

End	With

Show	All

ItemsSelected	Property
							

You	can	use	the	ItemsSelected	property	to	return	a	read-only	reference	to	the
hidden	ItemsSelected	collection.	This	hidden	collection	can	be	used	to	access
data	in	the	selected	rows	of	a	multiselect	list	box	control.

expression.ItemsSelected

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

Remarks

The	ItemsSelected	collection	is	unlike	other	collections	in	that	it	is	a	collection
of	Variants	rather	than	of	objects.	Each	Variant	is	an	integer	index	referring	to	a
selected	row	in	a	list	box	or	combo	box.

Use	the	ItemsSelected	collection	in	conjunction	with	the	Column	property	or
the	ItemData	property	to	retrieve	data	from	selected	rows	in	a	list	box	or	combo
box.	You	can	list	the	ItemsSelected	collection	by	using	the	For	Each...Next
statement.

For	example,	if	you	have	an	Employees	list	box	on	a	form,	you	can	list	the
ItemsSelected	collection	and	use	the	control's	ItemData	property	to	return	the
value	of	the	bound	column	for	each	selected	row	in	the	list	box.

Tip			To	enable	multiple	selection	of	rows	in	a	list	box,	set	the	control's
MultiSelect	property	to	Simple	or	Extended.

The	ItemsSelected	collection	has	no	methods	and	two	properties,	the	Count	and
Item	properties.

Example

The	following	example	prints	the	value	of	the	bound	column	for	each	selected
row	in	a	Names	list	box	on	a	Contacts	form.	To	try	this	example,	create	the	list
box	and	set	its	BoundColumn	property	as	desired	and	its	MultiSelect	property
to	Simple	or	Extended.	Switch	to	Form	view,	select	several	rows	in	the	list	box,
and	run	the	following	code:

Sub	BoundData()

				Dim	frm	As	Form,	ctl	As	Control

				Dim	varItm	As	Variant

				Set	frm	=	Forms!Contacts

				Set	ctl	=	frm!Names

				For	Each	varItm	In	ctl.ItemsSelected

								Debug.Print	ctl.ItemData(varItm)

				Next	varItm

End	Sub

The	next	example	uses	the	same	list	box	control,	but	prints	the	values	of	each
column	for	each	selected	row	in	the	list	box,	instead	of	only	the	values	in	the
bound	column.

Sub	AllSelectedData()

				Dim	frm	As	Form,	ctl	As	Control

				Dim	varItm	As	Variant,	intI	As	Integer

				Set	frm	=	Forms!Contacts

				Set	ctl	=	frm!Names

				For	Each	varItm	In	ctl.ItemsSelected

								For	intI	=	0	To	ctl.ColumnCount	-	1

												Debug.Print	ctl.Column(intI,	varItm)

								Next	intI

								Debug.Print

				Next	varItm

End	Sub

Show	All

KeepTogether	Property
							

KeepTogether	property	as	it	applies	to	the	Section	object.

You	can	use	the	KeepTogether	property	for	a	section	to	print	a	form	or	report
section	all	on	one	page.	For	example,	you	might	have	a	group	of	related
information	that	you	don't	want	printed	across	two	pages.	The	KeepTogether
property	applies	only	to	form	and	report	sections	(except	page	headers	and	page
footers).	Read/write	Boolean.

expression.KeepTogether

expression			Required.	An	expression	that	returns	one	of	the	above	objects.

Remarks

The	KeepTogether	property	for	a	section	uses	the	following	settings.
Setting Visual	Basic Description

Yes True		
Microsoft	Access	starts	printing	the	section	at
the	top	of	the	next	page	if	it	can't	print	the
entire	section	on	the	current	page.

No False
(Default)	Microsoft	Access	prints	as	much	of
the	section	as	possible	on	the	current	page	and
prints	the	rest	on	the	next	page.

You	can	set	this	property	by	using	the	section's	property	sheet,	a	macro,	or
Visual	Basic.

You	can	set	the	KeepTogether	property	for	a	section	only	in	form	Design	view
or	report	Design	view.

Usually,	when	a	page	break	occurs	while	a	section	is	being	printed,	Microsoft
Access	continues	printing	the	section	on	the	next	page.	By	using	the	section's
KeepTogether	property,	you	can	print	the	section	all	on	one	page.	If	a	section	is
longer	than	one	page,	Microsoft	Access	starts	printing	it	on	the	next	page	and
continues	on	the	following	page.

If	the	KeepTogether	property	for	a	group	is	set	to	Whole	Group	or	With	First
Detail	and	the	KeepTogether	property	for	a	section	is	set	to	No,	the
KeepTogether	property	setting	for	the	section	is	ignored.

KeepTogether	property	as	it	applies	to	the	GroupLevel	object.

You	can	use	the	KeepTogether	property	for	a	group	in	a	report	to	keep	parts	of	a
group	—	including	the	group	header,	detail	section,	and	group	footer	—	together
on	the	same	page.	For	example,	you	might	want	a	group	header	to	always	be
printed	on	the	same	page	with	the	first	detail	section.	Read/write	Byte.

expression.KeepTogether

expression			Required.	An	expression	that	returns	one	of	the	above	objects.

Remarks

The	KeepTogether	property	for	a	group	uses	the	following	settings.

Setting Visual	Basic Description

No 0
(Default)	Prints	the	group	without
keeping	the	group	header,	detail	section,
and	group	footer	on	the	same	page.

Whole	Group 1 Prints	the	group	header,	detail	section,
and	group	footer	on	the	same	page.

With	First	Detail 2 Prints	the	group	header	on	a	page	only	if
it	can	also	print	the	first	detail	record.

You	can	set	the	KeepTogether	property	for	a	group	by	using	the	Sorting	And
Grouping	box,	a	macro,	or	Visual	Basic.

In	Visual	Basic,	you	set	the	KeepTogether	property	for	a	group	in	report	Design
view	or	the	Open	event	procedure	of	a	report	by	using	the	GroupLevel	property.

To	set	the	KeepTogether	property	for	a	group	to	a	value	other	than	No,	you
must	set	the	GroupHeader	or	GroupFooter	property	or	both	to	Yes	for	the
selected	field	or	expression.

A	group	includes	the	group	header,	detail	section,	and	group	footer.	If	you	set	the
KeepTogether	property	for	a	group	to	Whole	Group	and	the	group	is	too	large
to	fit	on	one	page,	Microsoft	Access	will	ignore	the	setting	for	that	group.
Similarly,	if	you	set	this	property	to	With	First	Detail	and	either	the	group	header
or	detail	record	is	too	large	to	fit	on	one	page,	the	setting	will	be	ignored.

If	the	KeepTogether	property	for	a	section	is	set	to	No	and	the	KeepTogether
property	for	a	group	is	set	to	Whole	Group	or	With	First	Detail,	the
KeepTogether	property	setting	for	the	section	is	ignored.

Example

As	it	applies	to	the	Section	object.

The	following	example	returns	the	KeepTogether	property	setting	for	a	report's
detail	section	and	assigns	the	value	to	the	intGetVal	variable.

Dim	intGetVal	As	Integer

intGetVal	=	Me.Section(acDetail).KeepTogether

KeyboardLanguage	Property
							

Language-specific	information

You	can	use	the	KeyboardLanguage	property	to	specify	or	determine	the
keyboard	language	on	entry	into	a	control.	Read/write	Byte.

expression.KeyboardLanguage

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

Remarks

You	can	set	this	property	by	using	the	property	sheet	or	Visual	Basic.

Valid	values	for	this	property	are	0	(zero),	which	corresponds	to	the	default
system	language,	or	plid	+	2	where	plid	is	the	primary	language	ID	of	a	language
installed	on	the	current	system.	For	example,	the	primary	language	ID	of	English
is	9,	so	the	corresponding	KeyboardLanguage	setting	is	11.	For	a	list	of
languages	and	their	primary	language	IDs,	search	for	"Primary	Language	IDs"	in
the	MSDN	library.	(An	exception	to	this	list	is	Traditional	Chinese	which	is
represented	by	the	value	200.)

Setting	this	property	to	a	language	that	is	not	installed	may	either	have	no	effect
or	cause	an	error.

http://officeupdate.microsoft.com/office/redirect/10/Helplinks.asp?AppName=ACCESS&HelpLCID=1033&LinkNum=26982901&Version=0,

Show	All

KeyPreview	Property
							

You	can	use	the	KeyPreview	property	to	specify	whether	the	form-level
keyboard	event	procedures	are	invoked	before	a	control's	keyboard	event
procedures.	Read/write	Boolean.

expression.KeyPreview

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

Remarks

The	KeyPreview	property	uses	the	following	settings.

Setting Visual	Basic Description

Yes True		 The	form	receives	keyboard	events	first,	then
the	active	control	receives	keyboard	events.

No False (Default)	Only	the	active	control	receives
keyboard	events.

You	can	set	the	KeyPreview	property	by	using	the	form's	property	sheet,	a
macro,	or	Visual	Basic.

You	can	set	the	KeyPreview	property	in	any	view.

You	can	use	the	KeyPreview	property	to	create	a	keyboard-handling	procedure
for	a	form.	For	example,	when	an	application	uses	function	keys,	setting	the
KeyPreview	property	to	True	allows	you	to	process	keystrokes	at	the	form	level
rather	than	writing	code	for	each	control	that	might	receive	keystroke	events.

To	handle	keyboard	events	only	at	the	form	level	and	prevent	controls	from
receiving	keyboard	events,	set	the	KeyAscii	argument	to	0	in	the	form's
KeyPress	event	procedure,	and	set	the	KeyCode	argument	to	0	in	the	form's
KeyDown	and	KeyUp	event	procedures.

If	a	form	has	no	visible	or	enabled	controls,	it	automatically	receives	all
keyboard	events.

Example

In	the	following	example,	the	KeyPreview	property	is	set	to	True	in	the	form's
Load	event	procedure.	This	causes	the	form	to	receive	keyboard	events	before
they	are	received	by	any	control.	The	form	KeyDown	event	then	checks	the
KeyCode	argument	value	to	determine	if	the	F2,	F3,	or	F4	keys	were	pushed.

Private	Sub	Form_Load()

				Me.KeyPreview	=	True

End	Sub

Private	Sub	Form_KeyDown(KeyCode	As	Integer,	Shift	As	Integer)

				Select	Case	KeyCode

								Case	vbKeyF2

												'	Process	F2	key	events.

								Case	vbKeyF3

												'	Process	F3	key	events.

								Case	vbKeyF4

												'	Process	F4	key	events.

								Case	Else

				End	Select

End	Sub

Kind	Property
							

The	Kind	property	indicates	the	type	of	reference	that	a	Reference	object
represents.	Read-only	vbext_RefKind.

expression.Kind

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

Remarks

The	Kind	property	is	read-only	and	can	be	read	only	from	Visual	Basic.

The	Kind	property	returns	the	following	values:

Value Description
vbext_rk_Project
(Project)

The	Reference	object	represents	a	reference	to	a	Visual
Basic	project.

vbext_rk_TypeLib
(TypeLib)

The	Reference	object	represents	a	reference	to	a	file	that
contains	a	type	library.

Show	All

LabelAlign	Property
							

The	LabelAlign	property	specifies	the	text	alignment	within	attached	labels	on
new	controls.	Read/write	Byte.

expression.LabelAlign

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

Remarks

The	LabelAlign	property	uses	the	following	settings.
Setting Visual	Basic Description

General 0 (Default)	The	label	text	aligns	to	the
left.

Left 1 The	label	text	aligns	to	the	left.
Center 2 The	label	text	is	centered.
Right 3 The	label	text	aligns	to	the	right.
Distribute 4 The	label	text	is	evenly	distributed.

You	can	set	the	LabelAlign	property	by	using	a	control's	default	control	style	or
the	DefaultControl	method	in	Visual	Basic.

When	created,	controls	have	an	attached	label	(as	long	as	their	AutoLabel
property	is	set	to	Yes).	Changes	to	the	LabelAlign	default	control	style	setting
affect	only	controls	created	on	the	current	form	or	report.	To	change	the	default
control	style	for	all	new	forms	or	reports	that	you	create	without	using	a
Microsoft	Access	wizard,	see	Specify	a	new	template	for	forms	and	reports.

mk:@MSITStore:acmain10.chm::/html/achowCreateNewTemplateFormsReportsS.htm

LabelX	Property
							

Language-specific	information

The	LabelX	property	(along	with	the	LabelY	property)	specifies	the	placement
of	the	label	for	a	new	control.	Read/write	Integer.

expression.LabelX

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

Remarks

If	the	orientation	is	left	to	right	for	a	form	or	report,	LabelX	and	LabelY
behavior	matches	standard	Microsoft	Access	left-to-right	orientation.	For	more
information	about	orientation,	see	the	Orientation	property.

If	orientation	is	right	to	left,	the	origin	of	the	coordinate	system	for	LabelX	and
LabelY	is	the	upper	right	corner	of	the	attached	control.	A	negative	number	for
LabelX	places	the	label	to	the	right	of	the	control.	A	negative	number	for
LabelY	places	the	label	above	the	control.

For	General	and	Right	alignment	when	orientation	is	RTL,	LabelX	and	LabelY
specify	the	location	of	the	upper-right	corner	of	the	label	relative	to	the	upper-
right	corner	of	the	label’s	attached	control.	For	Left	and	Center	alignment,
LabelX	and	LabelY	specify	the	location	of	the	upper-left	corner	and	top	center,
respectively,	of	the	label	relative	to	the	upper-right	corner	of	the	label’s	attached
control.

LabelY	Property
							

Language-specific	information

The	LabelY	property	(along	with	the	LabelX	property)	specifies	the	placement
of	the	label	for	a	new	control.	Read/write	Integer.

expression.LabelY

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

Remarks

If	the	orientation	is	left	to	right	for	a	form	or	report,	LabelX	and	LabelY
behavior	matches	standard	Microsoft	Access	left-to-right	orientation.	For	more
information	about	orientation,	see	the	Orientation	property.

If	orientation	is	right	to	left,	the	origin	of	the	coordinate	system	for	LabelX	and
LabelY	is	the	upper	right	corner	of	the	attached	control.	A	negative	number	for
LabelX	places	the	label	to	the	right	of	the	control.	A	negative	number	for
LabelY	places	the	label	above	the	control.

For	General	and	Right	alignment	when	orientation	is	RTL,	LabelX	and	LabelY
specify	the	location	of	the	upper-right	corner	of	the	label	relative	to	the	upper-
right	corner	of	the	label’s	attached	control.	For	Left	and	Center	alignment,
LabelX	and	LabelY	specify	the	location	of	the	upper-left	corner	and	top	center,
respectively,	of	the	label	relative	to	the	upper-right	corner	of	the	label’s	attached
control.

Show	All

LanguageSettings	Property
							

You	can	use	the	LanguageSettings	property	to	return	a	read-only	reference	to
the	current	LanguageSettings	object	and	its	related	properties.

expression.LanguageSettings

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

mk:@MSITStore:vbaof10.chm::/html/ofobjLanguageSettings.htm

Remarks

The	LanguageSettings	property	is	available	only	by	using	Visual	Basic.

Once	you	establish	a	reference	to	the	LanguageSettings	object,	you	can	access
all	the	properties	and	methods	of	the	object.	You	can	set	a	reference	to	the
LanguageSettings	object	by	clicking	References	on	the	Tools	menu	while	in
module	Design	view.	Then	set	a	reference	to	the	Microsoft	Office	Object	Library
in	the	References	dialog	box	by	selecting	the	appropriate	check	box.	Microsoft
Access	can	set	this	reference	for	you	if	you	use	a	Microsoft	Office	Object
Library	constant	to	set	a	LanguageSettings	object's	property	or	as	an	argument
to	a	LanguageSettings	object's	method.

Example

The	following	example	displays	a	message	indicating	the	language	Access	uses
for	Help	on	the	user's	machine.	A	listing	of	all	the	available	languages	and	their
identification	numbers	is	available	in	the	Visual	Basic	Editor	by	selecting	Object
Browser	from	the	View	menu,	typing	the	word	"MsoLanguageID"	in	the	Search
Text	box,	and	clicking	the	Search	button.

Dim	mli	As	MsoLanguageID

mli	=	Application.LanguageSettings.LanguageID(msoLanguageIDHelp)

MsgBox	"The	language	ID	used	for	Access	Help	is	"	&	mli

Show	All

LayoutForPrint	Property
							

You	can	use	the	LayoutForPrint	property	to	specify	whether	the	form	or	report
uses	printer	or	screen	fonts.	Read/write	Boolean.

expression.LayoutForPrint

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

Remarks

The	LayoutForPrint	property	uses	the	following	settings.

Setting Visual	Basic Description
Yes True		 (Default	for	reports)	Uses	printer	fonts.
No False (Default	for	forms)	Uses	screen	fonts.
You	can	set	this	property	by	using	the	form's	or	report's	property	sheet,	a	macro,
or	Visual	Basic.

The	property	can	be	set	only	in	form	Design	view	or	report	Design	view.

When	you	choose	a	font	in	Microsoft	Access,	you	are	choosing	either	a	screen
font	or	a	printer	font,	depending	on	the	setting	of	the	LayoutForPrint	property.
Remember	that	printer	fonts	and	screen	fonts	can	differ,	and	characters	on	screen
may	not	look	exactly	like	those	displayed	on	the	printed	page.

Tip			If	you	select	a	scalable	font,	such	as	a	TrueType	font,	the	screen	and	printer
characters	will	look	nearly	the	same.

Screen	fonts	are	the	images	of	letters,	numbers,	and	symbols	that	are	installed	on
your	system	to	be	displayed	on	the	screen.	If	you	installed	a	printer,	additional
screen	fonts	may	have	been	installed	automatically.

Printer	fonts	are	the	letters,	numbers,	and	symbols	that	are	produced	when	you
print	a	report	or	a	form.	The	available	fonts	are	those	fonts	that	were	installed	as
part	of	your	printer's	setup,	and	depend	on	your	printer.

If	you	set	the	LayoutForPrint	property	to	Yes,	the	Formatting	(Form/Report)
toolbar	displays	the	fonts	and	point	sizes	available	for	your	printer.

If	you	design	a	form	or	report	on	a	system	with	a	different	printer	than	the	one
you	will	use	to	print,	Microsoft	Access	displays	a	message	when	you	print	the
form	or	report	to	let	you	know	that	it	was	designed	for	another	kind	of	printer.	If
you	print	the	form	or	report	anyway,	your	printer	may	substitute	different	fonts.
Similarly,	Microsoft	Access	may	substitute	fonts	if	you	change	the
LayoutForPrint	property	setting.	For	example,	you	might	design	a	form	or
report	with	LayoutForPrint	set	to	No,	then	change	the	setting	to	Yes.	You	can

reselect	the	font	for	each	control	to	specify	the	appearance	of	the	form	or	report.

Example

The	following	example	instructs	Microsoft	Access	to	use	screen	fonts	for	a	given
form.

Forms("Purchase	Orders").LayoutForPrint	=	False	

Show	All

Left	Property
							

You	can	use	the	Left	property	to	specify	an	object's	location	on	a	form	or	report.
Read/write	Integer	for	all	of	the	items	in	the	Applies	To	list	except	for	the	the
Report	object,	which	is	read/write	Long.

expression.Left

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

Remarks

A	control's	location	is	the	distance	measured	from	its	left	or	top	border	to	the	left
or	top	edge	of	the	section	containing	the	control.	Setting	the	Left	property	to	0
places	the	control's	edge	at	the	very	left	of	the	section.	To	use	a	unit	of
measurement	different	from	the	setting	in	the	Regional	Options	dialog	box	in
Windows	Control	Panel,	specify	the	unit,	such	as	cm	or	in	(for	example,	3	cm	or
2	in).

In	Visual	Basic,	use	a	numeric	expression	to	set	the	value	of	this	property.	Values
are	expressed	in	twips.

For	controls,	you	can	set	these	properties	by	using	a	control's	property	sheet,	a
macro,	or	Visual	Basic.

For	reports,	you	can	set	these	properties	only	by	using	a	macro	or	event
procedure	in	Visual	Basic	while	the	report	is	in	Print	Preview	or	being	printed.

When	you	move	a	control,	its	new	Left	property	setting	is	automatically	entered
in	the	property	sheet.	When	you	view	a	form	or	report	in	Print	Preview	or	when
you	print	a	form,	a	control's	location	is	determined	by	its	Left	property	setting
along	with	the	margin	settings	in	the	Page	Setup	dialog	box,	available	by
clicking	Page	Setup	on	the	File	menu.

For	reports,	the	Left	property	setting	is	the	amount	the	current	section	is	offset
from	the	left	of	the	page.	This	property	is	expressed	in	twips.	You	can	use	this
property	to	specify	how	far	down	the	page	you	want	a	section	to	print	in	the
section's	Format	event	procedure.

Example

The	following	example	checks	the	Left	property	setting	for	the	current	report.	If
the	value	is	less	than	the	minimum	margin	setting,	the	NextRecord	and
PrintSection	properties	are	set	to	False	(0).	The	section	doesn't	advance	to	the
next	record,	and	the	next	section	isn't	printed.

Sub	Detail1_Format(Cancel	As	Integer,	FormatCount	As	Integer)

				Const	conLeftMargin	=	1880

				'	Don't	advance	to	next	record	or	print	next	section

				'	if	Left	property	setting	is	less	than	1880	twips.

								If	Me.Left	<	conLeftMargin	Then

												Me.NextRecord	=	False

												Me.PrintSection	=	False

								End	If

End	Sub

Show	All

LeftMargin	Property
							

LeftMargin	property	as	it	applies	to	the	Label	and	TextBox	objects.

Along	with	the	TopMargin,	RightMargin,	and	BottomMargin	properties.
specifies	the	location	of	information	displayed	within	a	label	or	text	box	control.
Read/write	Integer.		

expression.LeftMargin

expression			Required.	An	expression	that	returns	one	of	the	above	objects.

Remarks

A	control's	displayed	information	location	is	measured	from	the	control's	left,
top,	right,	or	bottom	border	to	the	left,	top,	right,	or	bottom	edge	of	the	displayed
information.	Setting	the	LeftMargin	or	TopMargin	property	to	0	places	the
displayed	information's	edge	at	the	very	left	or	top	of	the	control.	To	use	a	unit
of	measurement	different	from	the	setting	in	the	regional	settings	of	Windows,
specify	the	unit	(for	example,	cm	or	in).

In	Visual	Basic,	use	a	numeric	expression	to	set	the	value	of	this	property.	Values
are	expressed	in	twips.

You	can	set	these	properties	by	using	the	property	sheet,	a	macro,	or	Visual
Basic.

LeftMargin	property	as	it	applies	to	the	Printer	object.

Along	with	the	TopMargin,	RightMargin,	and	BottomMargin	properties,
specifies	the	margins	for	a	printed	page.	Read/write	Long.

expression.LeftMargin

expression			Required.	An	expression	that	returns	a	Printer	object.

Example

As	it	applies	to	the	Label	and	TextBox	objects.

The	following	example	offsets	the	caption	in	the	label	"EmployeeID_Label"	in
the	"Purchase	Orders"	form	by	100	twips	from	the	left	of	the	label's	border.

With	Forms.Item("Purchase	Orders").Controls.Item("EmployeeID_Label")

				.LeftMargin	=	100

End	With

Show	All

LimitToList	Property
							

You	can	use	the	LimitToList	property	to	limit	a	combo	box's	values	to	the	listed
items.	Read/write	Boolean.

expression.LimitToList

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

Remarks

The	LimitToList	property	uses	the	following	settings.

Setting Visual	Basic Description

Yes True		

If	the	user	selects	an	item	from	the	list	in	the
combo	box	or	enters	text	that	matches	a	listed
item,	Microsoft	Access	accepts	it.	If	the	entered
text	doesn't	match	a	listed	item,	the	text	isn't
accepted	and	the	user	must	then	retype	the
entry,	select	a	listed	item,	press	ESC,	or	click
Undo	on	the	Edit	menu.

No False		 (Default)	Microsoft	Access	accepts	any	text
that	conforms	to	the	ValidationRule	property.

You	can	set	the	LimitToList	property	by	using	the	combo	box's	property	sheet,	a
macro,	or	Visual	Basic.

For	table	fields,	you	can	set	this	property	on	the	Lookup	tab	of	the	Field
Properties	section	of	table	Design	view	for	fields	with	the	DisplayControl
property	set	to	Combo	Box.

Tip			Microsoft	Access	sets	the	LimitToList	property	automatically	when	you
select	Lookup	Wizard	as	the	data	type	for	a	field	in	table	Design	view.

When	the	LimitToList	property	of	a	bound	combo	box	is	set	to	No,	you	can
enter	a	value	in	the	combo	box	that	isn't	included	in	the	list.	Microsoft	Access
stores	the	new	value	in	the	form's	underlying	table	or	query	(in	the	field
specified	in	the	combo	box's	ControlSource	property),	not	the	table	or	query	set
for	the	combo	box	by	the	RowSource	property.	To	have	newly	entered	values
appear	in	the	combo	box,	you	must	add	the	new	value	to	the	table	or	query	set	in
the	RowSource	property	by	using	a	macro	or	Visual	Basic	event	procedure	that
runs	when	the	NotInList	event	occurs.

Note			If	you	set	the	combo	box's	BoundColumn	property	to	any	column	other
than	the	first	visible	column	(or	if	you	set	BoundColumn	to	0),	the	LimitToList
property	is	automatically	set	to	Yes.

Setting	both	the	LimitToList	property	and	the	AutoExpand	property	to	Yes	lets
Microsoft	Access	find	matching	values	from	the	list	as	the	user	enters	characters
in	the	text	box	portion	of	the	combo	box,	and	restricts	the	entries	to	only	those
values.

When	the	LimitToList	property	is	set	to	Yes	and	the	user	clicks	the	arrow	next
to	the	combo	box,	Microsoft	Access	selects	matching	values	in	the	list	as	the
user	enters	characters	in	the	text	box	portion	of	the	combo	box,	even	if	the
AutoExpand	property	is	set	to	No.	If	the	user	presses	ENTER	or	moves	to
another	control	or	record,	the	selected	value	appears	in	the	combo	box.

Combo	boxes	accept	Null	values	when	the	LimitToList	property	is	set	to	Yes	or
True,	whether	or	not	the	list	contains	Null	values.	If	you	want	to	prevent	users
from	entering	a	Null	value	in	a	combo	box,	set	the	Required	property	of	the
field	in	the	table	to	which	the	combo	box	is	bound	to	Yes.

Example

The	following	example	limits	a	given	combo	box's	values	to	its	listed	items.

Forms("Order	Entry").Controls("States").LimitToList	=	True	

Show	All

Lines	Property
							

The	Lines	property	returns	a	string	containing	the	contents	of	a	specified	line	or
lines	in	a	standard	module	or	a	class	module.	Read-only	String.

expression.Lines(Line,	NumLines)

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

Line		Required	Long.	The	line	number	of	the	first	line	to	return.

NumLines		Required	Long.	The	number	of	lines	to	return.

Remarks

The	Lines	property	is	available	only	by	using	Visual	Basic.

Lines	in	a	module	are	numbered	beginning	with	1.	For	example,	if	you	read	the
Lines	property	with	a	value	of	1	for	the	line	argument	and	1	for	the	numlines
argument,	the	Lines	property	returns	a	string	containing	the	text	of	the	first	line
in	the	module.

To	insert	a	line	of	text	into	a	module,	use	the	InsertLines	method.

Example

The	following	example	deletes	a	specified	line	from	a	module.

Function	DeleteWholeLine(strModuleName,	strText	As	String)	_

					As	Boolean

				Dim	mdl	As	Module,	lngNumLines	As	Long

				Dim	lngSLine	As	Long,	lngSCol	As	Long

				Dim	lngELine	As	Long,	lngECol	As	Long

				Dim	strTemp	As	String

				

				On	Error	GoTo	Error_DeleteWholeLine

				DoCmd.OpenModule	strModuleName

				Set	mdl	=	Modules(strModuleName)

				

				If	mdl.Find(strText,	lngSLine,	lngSCol,	lngELine,	lngECol)	Then

								lngNumLines	=	Abs(lngELine	-	lngSLine)	+	1

								strTemp	=	LTrim$(mdl.Lines(lngSLine,	lngNumLines))

								strTemp	=	RTrim$(strTemp)

								If	strTemp	=	strText	Then

												mdl.DeleteLines	lngSLine,	lngNumLines

								Else

												MsgBox	"Line	contains	text	in	addition	to	'"	_

																&	strText	&	"'."

								End	If

				Else

								MsgBox	"Text	'"	&	strText	&	"'	not	found."

				End	If

				DeleteWholeLine	=	True

				

Exit_DeleteWholeLine:

				Exit	Function

				

Error_DeleteWholeLine:

				MsgBox	Err	&	"	:"	&	Err.Description

				DeleteWholeLine	=	False

				Resume	Exit_DeleteWholeLine

End	Function

You	could	call	this	function	from	a	procedure	such	as	the	following,	which
searches	the	module	Module1	for	a	constant	declaration	and	deletes	it.

Sub	DeletePiConst()

				If	DeleteWholeLine("Module1",	"Const	conPi	=	3.14")	Then

								Debug.Print	"Constant	declaration	deleted	successfully."

				Else

								Debug.Print	"Constant	declaration	not	deleted."

				End	If

End	Sub

Show	All

LineSlant	Property
							

You	use	the	LineSlant	property	to	specify	whether	a	line	control	slants	from
upper	left	to	lower	right	or	from	upper	right	to	lower	left.	Read/write	Boolean.

expression.LineSlant

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

Remarks

The	LineSlant	property	uses	the	following	settings.

Setting Visual	Basic Description
\ False		 (Default)	Upper	left	to	lower	right
/ True		 Upper	right	to	lower	left
You	can	set	this	property	by	using	the	control's	property	sheet,	a	macro,	or
Visual	Basic.

Use	the	LineSlant	property	to	change	a	line's	direction.	To	position	and	size	the
line	on	your	form	or	report,	use	the	mouse.

Example

The	following	example	slants	a	line	on	a	form	from	upper	right	to	lower	left.

Forms("Purchase	Orders").Controls("Section	Separator").LineSlant	=	True		

Show	All

LineSpacing	Property
							

You	can	use	the	LineSpacing	property	to	specify	or	determine	the	location	of
information	displayed	within	a	label	or	text	box	control.	Read/write	Integer.

expression.LineSpacing

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

Remarks

A	control's	displayed	information	location	is	the	distance	measured	between	each
line	of	the	displayed	information.	To	use	a	unit	of	measurement	different	from
the	setting	in	the	Regional	Options	dialog	box	in	Windows	Control	Panel,
specify	the	unit,	such	as	cm	or	in	(for	example,	3	cm	or	2	in).

In	Visual	Basic,	use	a	numeric	expression	to	set	the	value	of	this	property.	Values
are	expressed	in	twips.

You	can	set	these	properties	by	using	the	property	sheet,	a	macro,	or	Visual
Basic.

Example

The	following	example	sets	the	line	spacing	to	0.25	inches	for	the	text	box
"PurchaseOrderInformation"	on	the	"Purchase	Order	Form"

'	0.25	inches	=	360/1440	twips.

Forms("Purchase

Orders").Controls("PurchaseOrderDescription").LineSpacing	=	360

Show	All

LinkChildFields	Property
							

You	can	use	the	LinkChildFields	property	(along	with	the	LinkMasterFields
property)	together	to	specify	how	Microsoft	Access	links	records	in	a	form	or
report	to	records	in	a	subform,	subreport,	or	embedded	object,	such	as	a	chart.	If
these	properties	are	set,	Microsoft	Access	automatically	updates	the	related
record	in	the	subform	when	you	change	to	a	new	record	in	a	main	form.
Read/write	String.

expression.LinkChildFields

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

Remarks

You	can	set	the	LinkChildFields	and	LinkMasterFields	properties	for	the
subform,	subreport,	or	embedded	object	as	follows:

The	LinkChildFields	property.	Enter	the	name	of	one	or	more	linking
fields	in	the	subform,	subreport,	or	embedded	object.

The	LinkMasterFields	property.	Enter	the	name	of	one	or	more	linking
fields	or	controls	in	the	main	form	or	report.

You	can	use	the	Subform/Subreport	Field	Linker	to	set	these	properties	by
clicking	the	Build	button	to	the	right	of	the	property	box	in	the	property	sheet.

You	can	also	set	these	properties	by	using	a	string	expression	in	a	macro	or
Visual	Basic.

The	properties	can	only	be	set	in	Design	view	or	during	the	Open	event	of	a
form	or	report.

The	fields	or	controls	you	use	to	set	these	properties	don't	need	to	have	the	same
names,	but	they	must	contain	the	same	kind	of	data	and	have	the	same	or	a
compatible	data	type	and	field	size.	For	example,	an	AutoNumber	field	is
compatible	with	a	Number	field	if	the	FieldSize	property	for	the	Number	field	is
set	to	Long	Integer.

You	can	use	the	name	of	a	control	(including	the	name	of	a	calculated	control)	to
set	the	LinkMasterFields	property,	but	you	can't	use	the	name	of	a	control	to	set
the	LinkChildFields	property.	If	you	want	to	use	a	calculated	value	as	the	link
for	a	subform,	subreport,	or	embedded	object,	define	a	calculated	field	in	the
child	object's	underlying	query	and	set	the	LinkChildFields	property	to	the
field.

When	you	specify	more	than	one	field	or	control	name	for	these	property
settings,	you	must	enter	the	same	number	of	fields	or	controls	for	each	property
setting	and	separate	the	names	with	a	semicolon	(;).

When	you	create	a	subform	or	subreport	by	dragging	a	form	or	report	from	the

Database	window	onto	another	form	or	report	or	by	using	the	Form	Wizard,
Microsoft	Access	automatically	sets	the	LinkChildFields	and
LinkMasterFields	properties	under	the	following	conditions:

Both	the	main	form	or	report	and	the	child	object	are	based	on	tables,	and	a
relationship	between	those	tables	has	been	defined	with	the	Relationships
command.	Microsoft	Access	uses	the	fields	that	relate	the	two	tables	as	the
linking	fields.

The	main	form	or	report	is	based	on	a	table	with	a	primary	key,	and	the
subform	or	subreport	is	based	on	a	table	or	query	that	contains	a	field	with
the	same	name	and	the	same	or	a	compatible	data	type	as	the	primary	key.
Microsoft	Access	uses	the	primary	key	from	the	main	object's	underlying
table	and	the	identically	named	field	from	the	child	object's	underlying
table	or	query	as	the	linking	fields.

Note			The	linking	fields	don't	have	to	be	included	in	the	main	object	or	in	the
child	object.	As	long	as	they	are	contained	in	the	objects'	underlying	tables	or
queries,	you	can	use	the	fields	to	link	the	objects.	When	you	use	a	wizard,
Microsoft	Access	automatically	includes	the	linking	fields.

Show	All

LinkMasterFields	Property
							

You	can	use	the	LinkMasterFields	property	(along	with	the	LinkChildFields
property)	together	to	specify	how	Microsoft	Access	links	records	in	a	form	or
report	to	records	in	a	subform,	subreport,	or	embedded	object,	such	as	a	chart.	If
these	properties	are	set,	Microsoft	Access	automatically	updates	the	related
record	in	the	subform	when	you	change	to	a	new	record	in	a	main	form.
Read/write	String.

expression.LinkMasterFields

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

Remarks

You	can	set	the	LinkChildFields	and	LinkMasterFields	properties	for	the
subform,	subreport,	or	embedded	object	as	follows:

The	LinkChildFields	property.	Enter	the	name	of	one	or	more	linking
fields	in	the	subform,	subreport,	or	embedded	object.

The	LinkMasterFields	property.	Enter	the	name	of	one	or	more	linking
fields	or	controls	in	the	main	form	or	report.

You	can	use	the	Subform/Subreport	Field	Linker	to	set	these	properties	by
clicking	the	Build	button	to	the	right	of	the	property	box	in	the	property	sheet.

You	can	also	set	these	properties	by	using	a	string	expression	in	a	macro	or
Visual	Basic.

The	properties	can	only	be	set	in	Design	view	or	during	the	Open	event	of	a
form	or	report.

The	fields	or	controls	you	use	to	set	these	properties	don't	need	to	have	the	same
names,	but	they	must	contain	the	same	kind	of	data	and	have	the	same	or	a
compatible	data	type	and	field	size.	For	example,	an	AutoNumber	field	is
compatible	with	a	Number	field	if	the	FieldSize	property	for	the	Number	field	is
set	to	Long	Integer.

You	can	use	the	name	of	a	control	(including	the	name	of	a	calculated	control)	to
set	the	LinkMasterFields	property,	but	you	can't	use	the	name	of	a	control	to	set
the	LinkChildFields	property.	If	you	want	to	use	a	calculated	value	as	the	link
for	a	subform,	subreport,	or	embedded	object,	define	a	calculated	field	in	the
child	object's	underlying	query	and	set	the	LinkChildFields	property	to	the
field.

When	you	specify	more	than	one	field	or	control	name	for	these	property
settings,	you	must	enter	the	same	number	of	fields	or	controls	for	each	property
setting	and	separate	the	names	with	a	semicolon	(;).

When	you	create	a	subform	or	subreport	by	dragging	a	form	or	report	from	the

Database	window	onto	another	form	or	report	or	by	using	the	Form	Wizard,
Microsoft	Access	automatically	sets	the	LinkChildFields	and
LinkMasterFields	properties	under	the	following	conditions:

Both	the	main	form	or	report	and	the	child	object	are	based	on	tables,	and	a
relationship	between	those	tables	has	been	defined	with	the	Relationships
command.	Microsoft	Access	uses	the	fields	that	relate	the	two	tables	as	the
linking	fields.

The	main	form	or	report	is	based	on	a	table	with	a	primary	key,	and	the
subform	or	subreport	is	based	on	a	table	or	query	that	contains	a	field	with
the	same	name	and	the	same	or	a	compatible	data	type	as	the	primary	key.
Microsoft	Access	uses	the	primary	key	from	the	main	object's	underlying
table	and	the	identically	named	field	from	the	child	object's	underlying
table	or	query	as	the	linking	fields.

Note			The	linking	fields	don't	have	to	be	included	in	the	main	object	or	in	the
child	object.	As	long	as	they	are	contained	in	the	objects'	underlying	tables	or
queries,	you	can	use	the	fields	to	link	the	objects.	When	you	use	a	wizard,
Microsoft	Access	automatically	includes	the	linking	fields.

Show	All

ListCount	Property
							

You	can	use	the	ListCount	property	to	determine	the	number	of	rows	in	a	list
box	or	the	list	box	portion	of	a	combo	box.	Read/write	Long.

expression.ListCount

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

Remarks

Microsoft	Access	sets	the	ListCount	property	to	the	number	of	rows	in	the	list
box	or	the	list	box	portion	of	the	combo	box.	The	value	of	the	ListCount
property	is	read-only	and	can't	be	set	by	the	user.

This	property	is	available	only	by	using	a	macro	or	Visual	Basic.	You	can	read
this	property	only	in	Form	view	and	Datasheet	view.

The	ListCount	property	setting	contains	the	total	number	of	rows	in	the	combo
box	list	or	list	box,	as	determined	by	the	control's	RowSource	and
RowSourceType	properties.	If	the	control	is	based	on	a	table	or	query	(the
RowSourceType	property	is	set	to	Table/Query	and	the	RowSource	property	is
set	to	a	particular	table	or	query),	the	ListCount	property	setting	contains	the
number	of	records	in	the	table	or	query	result	set.	If	the	RowSourceType
property	is	set	to	Value	List,	the	ListCount	property	setting	contains	the	number
of	rows	the	value	list	specified	in	the	RowSource	property	results	in	(this
depends	on	the	value	list	and	the	number	of	columns	in	the	list	box	or	combo
box	list,	as	set	by	the	ColumnCount	property).

If	you	set	the	ColumnHeads	property	to	Yes,	the	row	of	column	headings	is
included	in	the	number	of	rows	returned	by	the	ListCount	property.	For	combo
boxes	and	list	boxes	based	on	a	table	or	query,	adding	column	headings	adds	an
additional	row.	For	combo	boxes	and	list	boxes	based	on	a	value	list,	adding
column	headings	leaves	the	number	of	rows	unchanged	(the	first	row	of	values
becomes	the	column	headings).

You	can	use	the	ListCount	property	with	the	ListRows	property	to	specify	how
many	rows	you	want	to	display	in	the	list	box	portion	of	a	combo	box.

Example

The	following	example	uses	the	ListCount	property	to	find	the	number	of	rows
in	the	list	box	portion	of	the	CustomerList	combo	box	on	a	Customers	form.	It
then	sets	the	ListRows	property	to	display	a	specified	number	of	rows	in	the	list.

Public	Sub	SizeCustomerList()

				Dim	ListControl	As	Control

				Set	ListControl	=	Forms!Customers!CustomerList

				With	ListControl

								If	.ListCount	<	8	Then

												.ListRows	=	.ListCount

								Else

												.ListRows	=	8

								End	If

				End	With

				

End	Sub

Show	All

ListIndex	Property
							

You	can	use	the	ListIndex	property	to	determine	which	item	is	selected	in	a	list
box	or	combo	box.	Read/write	Long.

expression.ListIndex

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

Remarks

The	ListIndex	property	is	an	integer	from	0	to	the	total	number	of	items	in	a	list
box	or	combo	box	minus	1.	Microsoft	Access	sets	the	ListIndex	property	value
when	an	item	is	selected	in	a	list	box	or	list	box	portion	of	a	combo	box.	The
ListIndex	property	value	of	the	first	item	in	a	list	is	0,	the	value	of	the	second
item	is	1,	and	so	on.

This	property	is	available	only	by	using	a	macro	or	Visual	Basic.	You	can	read
this	property	only	in	Form	view	and	Datasheet	view.	This	property	is	read-only
and	isn't	available	in	other	views.

The	ListIndex	property	value	is	also	available	by	setting	the	BoundColumn
property	to	0	for	a	combo	box	or	list	box.	If	the	BoundColumn	property	is	set	to
0,	the	underlying	table	field	to	which	the	combo	box	or	list	box	is	bound	will
contain	the	same	value	as	the	ListIndex	property	setting.

List	boxes	also	have	a	MultiSelect	property	that	allows	the	user	to	select
multiple	items	from	the	control.	When	multiple	selections	are	made	in	a	list	box,
you	can	determine	which	items	are	selected	by	using	the	Selected	property	of
the	control.	The	Selected	property	is	an	array	of	values	from	0	to	the	ListCount
property	value	minus	1.	For	each	item	in	the	list	box	the	Selected	property	will
be	True	if	the	item	is	selected	and	False	if	it	is	not	selected.

The	ItemsSelected	collection	also	provides	a	way	to	access	data	in	the	selected
rows	of	a	list	box	or	combo	box.

Example

To	return	the	value	of	the	ListIndex	property,	you	can	use	the	following:

Dim	l	As	Long

l	=	Forms(formname).Controls(controlname).ListIndex

To	set	the	ListIndex	property	value,	you	can	use	the	following:

Forms(formname).Controls(controlname).ListIndex	=	index	

Where	formname	and	controlname	are	the	names	of	the	form	and	list	box	or
combo	box	control,	respectively,	expressed	as	String	values,	and	index	is	the
index	value	of	the	item.

Show	All

ListRows	Property
							

You	can	use	the	ListRows	property	to	set	the	maximum	number	of	rows	to
display	in	the	list	box	portion	of	a	combo	box.	Read/write	Integer.

expression.ListRows

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

Remarks

The	ListRows	property	holds	an	integer	that	indicates	the	maximum	number	of
rows	to	display.	The	default	setting	is	8.	The	setting	for	the	ListRows	property
must	be	from	1	to	255.

You	can	set	this	property	by	using	the	combo	box's	property	sheet,	a	macro,	or
Visual	Basic.

For	table	fields,	you	can	set	this	property	on	the	Lookup	tab	of	the	Field
Properties	section	of	table	Design	view	for	fields	with	the	DisplayControl
property	set	to	Combo	Box.

Tip			Microsoft	Access	sets	the	ListRows	property	automatically	when	you
select	Lookup	Wizard	as	the	data	type	for	a	field	in	table	Design	view.

In	Visual	Basic,	use	a	numeric	expression	to	set	the	value	of	this	property.

You	can	set	the	default	for	this	property	by	using	a	combo	box's	default	control
style	or	the	DefaultControl	method	in	Visual	Basic.

If	the	actual	number	of	rows	exceeds	the	number	specified	by	the	ListRows
property	setting,	a	vertical	scroll	bar	appears	in	the	list	box	portion	of	the	combo
box.

Example

The	following	example	uses	the	ListCount	property	to	find	the	number	of	rows
in	the	list	box	portion	of	the	CustomerList	combo	box	on	a	Customers	form.	It
then	sets	the	ListRows	property	to	display	a	specified	number	of	rows	in	the	list.

Public	Sub	SizeCustomerList()

				Dim	ListControl	As	Control

				Set	ListControl	=	Forms!Customers!CustomerList

				With	ListControl

								If	.ListCount	<	8	Then

												.ListRows	=	.ListCount

								Else

												.ListRows	=	8

								End	If

				End	With

				

End	Sub

Show	All

ListWidth	Property
							

You	can	use	the	ListWidth	property	to	set	the	width	of	the	list	box	portion	of	a
combo	box.	Read/write	String.

expression.ListWidth

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

Remarks

The	ListWidth	property	holds	a	value	specifying	the	width	of	the	list	box
portion	of	a	combo	box	in	inches	or	centimeters,	depending	on	the	measurement
system	(U.S.	or	Metric)	selected	in	the	Measurement	system	box	on	the
Numbers	tab	of	the	Regional	Options	dialog	box	of	Windows	Control	Panel.
To	use	a	unit	other	than	the	default,	include	a	measurement	indicator,	such	as	cm
or	in.	The	default	setting	(Auto)	makes	the	list	box	portion	of	the	combo	box	the
same	width	as	the	combo	box.

You	can	set	the	ListWidth	property	by	using	the	combo	box's	property	sheet,	a
macro,	or	Visual	Basic.

For	table	fields,	you	can	set	this	property	on	the	Lookup	tab	of	the	Field
Properties	section	of	table	Design	view	for	fields	with	the	DisplayControl
property	set	to	Combo	Box.

Tip			Microsoft	Access	sets	the	ListWidth	property	automatically	when	you
select	Lookup	Wizard	as	the	data	type	for	a	field	in	table	Design	view.

In	Visual	Basic,	use	a	numeric	expression	to	set	the	value	of	this	property.	The
default	unit	of	measurement	in	Visual	Basic	is	twips.

You	can	also	set	the	default	for	this	property	by	using	a	combo	box's	default
control	style	or	the	DefaultControl	method	in	Visual	Basic.

The	list	portion	of	the	combo	box	can	be	wider	than	the	combo	box	but	can't	be
narrower.

If	you	want	to	display	a	multiple-column	list,	enter	a	value	that	will	make	the	list
box	wide	enough	to	show	all	the	columns.

Tip			When	designing	combo	boxes,	be	sure	to	leave	enough	space	to	display
your	data	and	for	Microsoft	Access	to	insert	a	vertical	scroll	bar.

Example

The	following	example	returns	the	value	of	the	ListWidth	property	for	the
"States"	combo	box	on	the	"Order	Entry"	form.

Dim	str	As	String

str	=	Forms("Order	Entry").Controls("States").ListWidth

Show	All

LocationOfComponents	Property
							

You	can	use	the	LocationOfComponents	property	to	specify	or	determine	the
central	URL	or	path	where	Microsoft	Office	controls	can	be	downloaded	by
authorized	users	viewing	your	saved	database.	Read/write	String.

expression.LocationOfComponents

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

Remarks

The	LocationOfComponents	property	is	available	only	by	using	Visual	Basic	.

The	Microsoft	Office	controls	are	automatically	downloaded	with	the	Web	page
if	the	DownloadComponents	property	is	True,	the	components	are	not	already
installed,	the	path	is	valid	and	points	to	a	location	that	contains	the	necessary
components,	and	the	user	has	a	valid	Microsoft	Office	license.

Example

This	example	sets	the	path	where	Office	components	are	downloaded.

Application.DefaultWebOptions.LocationOfComponents	=	_

				"\\Server1\CompLoc"

Show	All

Locked	Property
							
The	Locked	property	specifies	whether	you	can	edit	data	in	a	control	in	Form
view.	Read/write	Boolean.

expression.Locked

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

Remarks

The	Locked	property	uses	the	following	settings.

Setting Visual	Basic Description

Yes True
(Default	for	unbound	object	frames)	The
control	functions	normally	but	doesn't	allow
editing,	adding,	or	deleting	data.

No False
(Default	for	all	controls	except	unbound	object
frames)	The	control	functions	normally	and
allows	editing,	adding,	and	deleting	data.

You	can	set	these	properties	by	using	a	form's	property	sheet,	a	macro,	or	Visual
Basic.

Use	the	Locked	property	to	protect	data	in	a	field	by	making	it	read-only.	For
example,	you	might	want	a	control	to	only	display	information	without	allowing
editing,	or	you	might	want	to	lock	a	control	until	a	specific	condition	is	met.

Example

The	following	example	toggles	the	Enabled	property	of	a	command	button	and
the	Enabled	and	Locked	properties	of	a	control,	depending	on	the	type	of
employee	displayed	in	the	current	record.	If	the	employee	is	a	manager,	then	the
SalaryDetails	button	is	enabled	and	the	PersonalInfo	control	is	unlocked	and
enabled.

Sub	Form_Current()

				If	Me!EmployeeType	=	"Manager"	Then

								Me!SalaryDetails.Enabled	=	True

								Me!PersonalInfo.Enabled	=	True

								Me!PersonalInfo.Locked	=	False

				Else

								Me!SalaryDetails.Enabled	=	False

								Me!PersonalInfo.Enabled	=	False

								Me!PersonalInfo.Locked	=	True

				End	If

End	Sub

MailEnvelope	Property
							

Returns	an	MsoEnvelope	object	that	represents	an	e-mail	header	for	a	data
access	page.

expression.MailEnvelope

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

mk:@MSITStore:vbaof10.chm::/html/ofobjmsoenvelope.htm

Example

This	example	sets	the	comments	for	the	e-mail	header	of	the	specified	data
access	page.

Dim	envDAP	As	MsoEnvelope

Set	envDAP	=	DataAccessPages(0).MailEnvelope

envDAP.Introduction	=	_

				"Please	review	this	report	and	let	me	know	"	&	_

				"what	you	think.	I	need	your	input	by	Friday.	"	&	_

				"Thanks."

Show	All

Major	Property
							

The	Major	property	of	a	Reference	object	returns	a	read-only	Long	value
indicating	the	major	version	number	of	an	application	to	which	you	have	set	a
reference.

expression.Major

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

Remarks

The	Major	property	is	available	only	by	using	Visual	Basic.

The	Major	property	returns	the	value	to	the	left	of	the	decimal	point	in	a	version
number.	For	example,	if	you've	set	a	reference	to	an	application	whose	version
number	is	2.5,	the	Major	property	returns	2.

Example

The	following	example	displays	a	message	with	information	about	all	the
references	in	the	current	project.

Dim	r	As	Reference

Dim	strInfo	As	String

For	Each	r	In	Application.References

				strInfo	=	strInfo	&	r.Name	&	"	"	&	r.Major	&	"."	&	r.Minor	&	vbCrLf

Next

MsgBox	"Current	References:	"	&	vbCrLf	&	strInfo

Show	All

MaxRecButton	Property
							

You	can	use	the	MaxRecButton	property	to	specify	or	determine	if	the
maximum	record	limit	button	is	available	on	the	navigation	bar	of	a	form	in
Datasheet	view	or	Form	view.	This	property	is	only	available	for	forms	within	a
Microsoft	Access	project	(.adp).	Read/write	Boolean.

expression.MaxRecButton

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

Remarks

The	MaxRecButton	property	uses	the	following	settings.

Setting Visual	Basic Description

Yes True	 (Default)	The	maximum	record	limit	button	is
available	to	the	user.

No False The	maximum	record	limit	button	is
unavailable	to	the	user.

You	can	set	this	property	by	using	the	property	sheet,	or	Visual	Basic.

Example

This	example	makes	the	maximum	record	limit	button	on	the	"Order	Entry"
form	unavailable	to	the	user.

Forms("Order	Entry").MaxRecButton	=	False	

Show	All

MaxRecords	Property
							

Specifies	the	maximum	number	of	records	that	will	be	returned	by:

A	query	that	returns	data	from	an	ODBC	database	to	an	Microsoft	Access
database	(.mdb).
A	view	that	returns	data	from	a	SQL	database	to	an	Access	project	(.adp).

expression.MaxRecords

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

Remarks

The	MaxRecords	property	setting	is	a	Long	Integer	value	representing	the
number	of	records	that	will	be	returned.

In	a	Microsoft	Access	database,	you	can	set	this	property	by	using	the	query's
property	sheet	or	Visual	Basic.

When	you	set	this	property	in	Visual	Basic	you	use	the	ADO	MaxRecords
property.

Records	are	returned	in	the	order	specified	by	the	query's	ORDER	BY	clause.

You	can	use	the	MaxRecords	property	in	situations	where	limited	system
resources	might	prohibit	a	large	number	of	returned	records.

mk:@MSITStore:ado210.chm::/htm/mdproMaxRecords.htm

Example

To	return	the	MaxRecords	property	for	a	form,	you	can	use	the	following:

Dim	l	As	Long

l	=	Forms(formname).MaxRecords

To	set	the	MaxRecords	property,	you	can	use	the	following:

Forms(formname).MaxRecords	=	numrecords

where	formname	is	the	name	of	the	form	expressed	as	a	String,	and	numrecords
is	a	Long	Integer	value	representing	the	number	of	records	that	will	be	returned.

Show	All

MenuBar	Property
							

You	can	use	the	MenuBar	property	to	specify	the	menu	bar	to	use	for	a
Microsoft	Access	database	(.mdb),	Access	project	(.adp),	form,	or	report.	You
can	also	use	the	MenuBar	property	to	specify	the	menu	bar	macro	that	will	be
used	to	display	a	custom	menu	bar	for	a	database,	form,	or	report.	Read/write
String.

expression.MenuBar

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

Remarks

Enter	the	name	of	the	menu	bar	you	want	to	display.	If	you	leave	the	MenuBar
property	setting	blank,	Microsoft	Access	displays	the	built-in	(default)	menu	bar
or	the	application's	global	menu	bar.	If	you	set	the	MenuBar	property	to	a	value
that	is	not	the	name	of	an	existing	menu	bar	or	menu	bar	macro,	the	form	or
report	will	not	have	a	menu	bar	(the	default	menu	bar	will	not	be	shown).

You	can	set	this	property	by	using	the	object's	property	sheet,	a	macro,	or	Visual
Basic.

In	Visual	Basic,	set	this	property	by	using	a	string	expression	that	is	the	name	of
the	menu	bar	you	want	to	display.

To	display	the	built-in	menu	bar	or	global	menu	bar	for	a	database,	form,	or
report	by	using	a	macro	or	Visual	Basic,	set	the	property	to	a	zero-length	string
("	").

When	you	use	the	MenuBar	property	with	forms	and	reports,	Microsoft	Access
displays	the	specified	menu	bar	when	the	form	or	report	is	opened.	This	menu
bar	is	displayed	whenever	the	form	or	report	has	the	focus.

When	used	with	the	Application	object,	the	MenuBar	property	enables	you	to
display	a	custom	menu	bar	throughout	the	database.	However,	if	you've	set	the
MenuBar	property	for	a	form	or	report	in	the	database,	the	custom	menu	bar	of
the	form	or	report	will	be	displayed	in	place	of	the	database's	custom	menu	bar
whenever	the	form	or	report	has	the	focus.	When	the	form	or	report	loses	the
focus,	the	custom	menu	bar	for	the	database	is	displayed.

Note			You	can	switch	between	a	database's	custom	menu	bar	and	the	built-in
menu	bar	by	pressing	CTRL+F11.

Example

The	following	example	sets	the	MenuBar	property	to	a	menu	bar	named
CustomerMenu:

Forms!Customers.MenuBar	=	"CustomerMenu"

To	display	the	built-in	menu	bar	for	the	form	or	the	application	global	menu	bar,
you	set	the	MenuBar	property	to	a	zero-length	string	("	").

Forms!Customers.MenuBar	=	""

Show	All

MinMaxButtons	Property
							

You	can	use	the	MinMaxButtons	property	to	specify	whether	the	Maximize
and	Minimize	buttons	will	be	visible	on	a	form.	Read/write	Byte.

expression.MinMaxButtons

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

Remarks

The	MinMaxButtons	property	uses	the	following	settings.

Setting Visual	Basic Description

None 0 The	Maximize	and	Minimize	buttons	aren't
visible.

Min	Enabled 1 Only	the	Minimize	button	is	visible.
Max	Enabled 2 Only	the	Maximize	button	is	visible.

Both	Enabled 3 (Default)	Both	the	Minimize	and	Maximize
buttons	are	visible.

You	can	set	these	properties	by	using	the	form's	property	sheet,	a	macro,	or
Visual	Basic.

You	can	set	the	MinMaxButtons	property	only	in	form	Design	view.

Clicking	a	form's	Maximize	button	enlarges	the	form	so	it	fills	the	Microsoft
Access	window.	Clicking	a	form's	Minimize	button	reduces	the	form	to	a	short
title	bar	at	the	bottom	of	the	Microsoft	Access	window.

To	display	the	Maximize	and	Minimize	buttons	on	a	form,	you	must	set	the
form's	BorderStyle	property	to	Thin	or	Sizable	and	the	ControlBox	property	to
Yes.	If	you	set	the	BorderStyle	property	to	None	or	Dialog,	or	if	you	set	the
ControlBox	property	to	No,	the	form	won't	have	Maximize	or	Minimize
buttons,	regardless	of	the	MinMaxButtons	property	setting.

Even	when	the	MinMaxButtons	property	is	set	to	None,	a	form	always	has
Maximize	and	Minimize	buttons	in	Design	view.

If	a	form's	MinMaxButtons	property	is	set	to	None,	the	Maximize	and
Minimize	commands	aren't	available	on	the	form's	Control	menu.

Example

The	following	example	returns	the	value	of	the	MinMaxButtons	property	for
the	"Order	Entry"	form.

Dim	b	As	Byte

b	=	Forms("Order	Entry").MinMaxButtons

Show	All

Minor	Property
							

The	Minor	property	of	a	Reference	object	returns	a	Long	value	indicating	the
minor	version	number	of	the	application	to	which	you	have	set	a	reference.

expression.Minor

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

Remarks

The	Minor	property	is	available	only	by	using	Visual	Basic	and	is	read-only.

The	Minor	property	returns	the	value	to	the	right	of	the	decimal	point	in	a
version	number.	For	example,	if	you've	set	a	reference	to	an	application	whose
version	number	is	2.5,	the	Minor	property	returns	5.

Example

The	following	example	displays	a	message	with	information	about	all	the
references	in	the	current	project.

Dim	r	As	Reference

Dim	strInfo	As	String

For	Each	r	In	Application.References

				strInfo	=	strInfo	&	r.Name	&	"	"	&	r.Major	&	"."	&	r.Minor	&	vbCrLf

Next

MsgBox	"Current	References:	"	&	vbCrLf	&	strInfo

Show	All

Modal	Property
							

You	can	use	the	Modal	property	to	specify	whether	a	form	opens	as	a	modal
form.	When	a	form	opens	as	a	modal	form,	you	must	close	the	form	before	you
can	move	the	focus	to	another	object.	Read/write	Boolean.

expression.Modal

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

Remarks

The	Modal	property	uses	the	following	settings.

Setting Visual	Basic Description
Yes True		 The	form	opens	as	a	modal	form	in	Form	view.

No False		 (Default)	The	form	opens	as	a	non-modal	form
in	Form	view.

You	can	set	this	property	by	using	the	form's	property	sheet,	a	macro,	or	Visual
Basic.

When	you	open	a	modal	form,	other	windows	in	Microsoft	Access	are	disabled
until	you	close	the	form	(although	you	can	switch	to	windows	in	other
applications).	To	disable	menus	and	toolbars	in	addition	to	other	windows,	set
both	the	form's	Modal	and	PopUp	properties	to	Yes.

You	can	use	the	BorderStyle	property	to	specify	the	kind	of	border	a	form	will
have.	Typically,	modal	forms	have	the	BorderStyle	property	set	to	Dialog.

Tip			You	can	use	the	Modal,	PopUp,	and	BorderStyle	properties	to	create	a
custom	dialog	box.	You	can	set	Modal	to	Yes,	PopUp	to	Yes,	and	BorderStyle
to	Dialog	for	custom	dialog	boxes.

Setting	the	Modal	property	to	Yes	makes	the	form	modal	only	when	you:

Open	it	in	Form	view	from	the	Database	window.
Open	it	in	Form	view	by	using	a	macro	or	Visual	Basic.
Switch	from	Design	view	to	Form	view.

When	the	form	is	modal,	you	can't	switch	to	Datasheet	view	from	Form	view,
although	you	can	switch	to	Design	view	and	then	to	Datasheet	view.

The	form	isn't	modal	in	Design	view	or	Datasheet	view	and	also	isn't	modal	if
you	switch	from	Datasheet	view	to	Form	view.

Note			You	can	use	the	Dialog	setting	of	the	Window	Mode	action	argument	of
the	OpenForm	action	to	open	a	form	with	its	Modal	and	PopUp	properties	set	to
Yes.

mk:@MSITStore:acmain10.chm::/html/acactOpenForm.htm

Example

To	return	the	value	of	the	Modal	property	for	the	"Order	Entry"	form,	you	can
use	the	following:

Dim	b	As	Boolean

b	=	Forms("Order	Entry").Modal

To	set	the	value	of	the	Modal	property,	you	can	use	the	following:

Forms("Order	Entry").Modal	=	True

Show	All

Module	Property
							

You	can	use	the	Module	property	to	specify	a	form	module	or	report	module.
Read-only	Module	object.

expression.Module

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

Remarks

The	Module	property	is	available	only	by	using	Visual	Basic	and	is	read-only	in
all	views.

The	Module	property	also	returns	a	reference	to	a	specified	Module	object.

Use	the	Module	property	to	access	the	properties	and	methods	of	a	Module
object	associated	with	a	Form	or	Report	object.

The	setting	of	the	HasModule	property	of	a	form	or	report	determines	whether	it
has	an	associated	module.	If	the	HasModule	property	is	False,	the	form	or
report	does	not	have	an	associated	module.	When	you	refer	to	the	Module
property	of	that	form	or	report	while	in	design	view,	Microsoft	Access	creates
the	associated	module	and	sets	the	HasModule	property	to	True.	If	you	refer	to
the	Module	property	of	a	form	or	report	at	run-time	and	the	object	has	its
HasModule	property	set	to	False,	an	error	will	occur.

You	could	use	this	property	with	any	of	the	properties	and	methods	of	the
module	object.

Example

The	following	example	uses	the	Module	property	to	insert	the	Beep	method	in	a
form's	Open	event.

Dim	strFormOpenCode	As	String

Dim	mdl	As	Module

Set	mdl	=	Forms!MyForm.Module

strFormOpenCode	=	"Sub	Form_Open(Cancel	As	Integer)"	_

				&	vbCrLf	&	"Beep"	&	vbCrLf	&	"End	Sub"

				With	mdl

								.InsertText	strFormOpenCode

				End	With

Show	All

Modules	Property
							

You	can	use	the	Modules	property	to	access	the	Modules	collection	and	its
related	properties.	Read-only	Modules	object.

expression.Modules

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

Remarks

This	property	is	available	only	by	using	Visual	Basic.

Use	the	properties	of	the	Modules	collection	in	Visual	Basic	to	refer	to	all	open
standard	modules	and	class	modules.

Example

The	following	example	uses	the	Module	property	to	insert	the	Beep	method	in	a
form's	Open	event.

Dim	strFormOpenCode	As	String

Dim	mdl	As	Module

Set	mdl	=	Forms!MyForm.Module

strFormOpenCode	=	"Sub	Form_Open(Cancel	As	Integer)"	_

				&	vbCrLf	&	"Beep"	&	vbCrLf	&	"End	Sub"

				With	mdl

								.InsertText	strFormOpenCode

				End	With

Show	All

MousePointer	Property
							

You	can	use	the	MousePointer	property	together	with	the	Screen	object	to
specify	or	determine	the	type	of	mouse	pointer	currently	displayed.	Read/write
Integer.

expression.MousePointer

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

Remarks

The	setting	for	the	MousePointer	property	is	an	Integer	value	representing	one
of	the	following	pointers.

Setting Description

0 (Default)	The	shape	is	determined	by	Microsoft
Access

1 Normal	Select	(Arrow)
3 Text	Select	(I-Beam)
7 Vertical	Resize	(Size	N,	S)
9 Horizontal	Resize	(Size	E,	W)
11 Busy	(Hourglass)
Note			Setting	the	MousePointer	property	to	an	integer	other	than	one	that
appears	in	the	preceding	table	will	cause	the	property	to	be	set	to	0.

You	can	set	the	MousePointer	property	only	by	using	Visual	Basic.

The	MousePointer	property	affects	the	appearance	of	the	mouse	pointer	over
the	entire	screen.	Some	custom	controls	have	a	MousePointer	property	that,	if
set,	will	specify	how	the	mouse	pointer	is	displayed	when	it's	positioned	over	the
control.

You	could	use	the	MousePointer	property	to	indicate	that	your	application	is
busy	by	setting	the	property	to	11	to	display	an	hourglass	icon.	You	can	also	read
the	MousePointer	property	to	determine	what's	being	displayed.	This	could	be
useful	if	you	wanted	to	prevent	a	user	from	clicking	a	command	button	while	the
mouse	pointer	is	displaying	an	hourglass	icon.

Setting	the	MousePointer	property	to	11	is	the	same	as	passing	the	True	(–1)
argument	to	the	Hourglass	method	of	the	DoCmd	object.	Conversely,	passing
the	True	argument	to	the	Hourglass	method	also	sets	the	MousePointer
property	to	11.

Example

The	following	example	changes	the	mouse	pointer	to	an	hourglass.

Screen.MousePointer	=	11

MouseWheel	Property
							

Returns	or	sets	a	String	indicating	which	macro,	event	procedure,	or	user-
defined	function	runs	when	the	MouseWheel	event	occurs.	Read/write.

expression.MouseWheel

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

Remarks

Valid	values	for	this	property	are	"macroname"	where	macroname	is	the	name	of
macro,	"[Event	Procedure]"	which	indicates	the	event	procedure	associated	with
the	MouseWheel	event	for	the	specified	object,	or	"=functionname()"	where
functionname	is	the	name	of	a	user-defined	function.	For	a	more	detailed
discussion	of	event	properties,	see	"Event	Properties."

Example

The	following	example	specifies	that	when	the	MouseWheel	event	occurs	on	the
first	form	of	the	current	project,	the	associated	event	procedure	should	run.

Forms(0).MouseWheel	=	"[Event	Procedure]"

Moveable	Property
							

Returns	or	sets	a	Boolean	indicating	whether	the	specified	form	or	report	can	be
moved	by	the	user;	True	if	it	can	be	moved.	Read/write.

expression.Moveable

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

Remarks

You	can	use	the	Move	method	to	programmatically	move	a	form	or	report
regardless	of	the	value	of	the	Moveable	property.

Example

The	following	example	determines	whether	or	not	the	first	form	in	the	current
project	can	be	moved.

If	Forms(0).Moveable	Then

				MsgBox	"You	may	move	the	form."

Else

				MsgBox	"The	form	cannot	be	moved."

End	If

MoveLayout	Property
							

The	MoveLayout	property	specifies	whether	Microsoft	Access	should	move	to
the	next	printing	location	on	the	page.	Read/write	Boolean.

expression.MoveLayout

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

Remarks

The	MoveLayout	property	uses	the	following	settings.

Setting Description

True	 (Default)	The	section's	Left	and	Top	properties	are	advanced	to
the	next	print	location.

False	 The	section's	Left	and	Top	properties	are	unchanged.

To	set	this	property,	specify	a	macro	or	event	procedure	for	a	section's
OnFormat	property.

Microsoft	Access	sets	this	property	to	True	before	each	section's	Format	event.

Example

The	following	example	sets	the	MoveLayout	property	for	the	"Purchase	Order"
report	to	its	default	setting.

Reports("Purchase	Order").MoveLayout	=	True

	

MSODSC	Property
							

Returns	a	DataSourceControl	object.

expression.MSODSC

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

mk:@MSITStore:owcvba10.chm::/html/ocobjdatasourcecontrol.htm

Remarks

You	must	set	a	reference	to	the	Microsoft	Office	Web	Components	type	library
in	order	to	use	this	property.

Example

This	example	reports	the	version	of	Microsoft	Office	Web	Components	in	use
for	the	specified	form.	This	example	assumes	that	the	current	project	contains	a
data	access	page,	and	that	the	data	access	page	has	a	Microsoft	Office	Data
Source	control.

Dim	objMSODSC	As	DataSourceControl

Set	objMSODSC	=	DataAccessPages(0).MSODSC

MsgBox	"Current	version	of	Office	Web	Components:	"	_

				&	objMSODSC.Version

Show	All

MultiRow	Property
							

You	can	use	the	MultiRow	property	to	specify	or	determine	whether	a	tab
control	can	display	more	than	one	row	of	tabs.	Read/write	Boolean.

expression.MultiRow

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

Remarks

The	MultiRow	property	uses	the	following	settings.

Setting Visual	Basic Description
Yes True		 Multiple	rows	are	allowed.

No False		 (Default)	Multiple	rows	aren't
allowed.

You	can	set	the	MultiRow	property	by	using	the	control's	property	sheet,	a
macro,	or	Visual	Basic.

You	can	also	set	the	default	for	this	property	by	using	a	control's	default	control
style	or	the	DefaultControl	method	in	Visual	Basic.

When	the	MultiRow	property	is	set	to	True,	the	number	of	rows	is	determined
by	the	width	and	number	of	tabs.	The	number	of	rows	may	change	if	the	control
is	resized	or	if	additional	tabs	are	added	to	the	control.

When	the	MultiRow	property	is	set	to	False	and	the	width	of	the	tabs	exceeds
the	width	of	the	control,	navigation	buttons	appear	on	the	right	side	of	the	tab
control.	You	can	use	the	navigation	buttons	to	scroll	through	all	the	tabs	on	the
tab	control.

Example

To	return	the	value	of	the	MultiRow	property	for	a	tab	control	named	"Details"
on	the	"Order	Entry"	form,	you	can	use	the	following:

Dim	b	As	Boolean

b	=	Forms("Order	Entry").Controls("Details").MultiRow

To	set	the	value	of	the	MultiRow	property,	you	can	use	the	following:

Forms("Order	Entry").Controls("Details").MultiRow	=	True

Show	All

MultiSelect	Property
							

You	can	use	the	MultiSelect	property	to	specify	whether	a	user	can	make
multiple	selections	in	a	list	box	on	a	form	and	how	the	multiple	selections	can	be
made.	Read/write	Byte.

expression.MultiSelect

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

Remarks

The	MultiSelect	property	uses	the	following	settings.

Setting Visual	Basic Description
None 0 (Default)	Multiple	selection	isn't	allowed.

Simple 1
Multiple	items	are	selected	or	deselected	by
clicking	them	with	the	mouse	or	pressing	the
SPACEBAR.

Extended 2

Multiple	items	are	selected	by	holding	down
SHIFT	and	clicking	them	with	the	mouse	or	by
holding	down	SHIFT	and	pressing	an	arrow
key	to	extend	the	selection	from	the	previously
selected	item	to	the	current	item.	You	can	also
select	items	by	dragging	with	the	mouse.
Holding	down	CTRL	and	clicking	an	item
selects	or	deselects	that	item.

You	can	set	the	MultiSelect	property	by	using	the	list	box's	property	sheet,	a
macro,	or	Visual	Basic.

This	property	can	be	set	only	in	form	Design	view.

You	can	use	the	ListIndex	property	to	return	the	index	number	for	the	selected
item.	When	the	MultiSelect	property	is	set	to	Extended	or	Simple,	you	can	use
the	list	box's	Selected	property	or	ItemsSelected	collection	to	determine	the
items	that	are	selected.	In	addition,	when	the	MultiSelect	property	is	set	to
Extended	or	Simple,	the	value	of	the	list	box	control	will	always	be	Null.

If	the	MultiSelect	property	is	set	to	Extended,	requerying	the	list	box	clears	any
selections	made	by	the	user.

Example

To	return	the	value	of	the	MultiSelect	property	for	a	list	box	named	"Country"
on	the	"Order	Entry"	form,	you	can	use	the	following:

Dim	b	As	Byte

b	=	Forms("Order	Entry").Controls("Country").MultiSelect

To	set	the	MultiSelect	property,	you	can	use	the	following:

Forms("Order	Entry").Controls("Country").MultiSelect	=	2	'

Extended.

Show	All

Name	Property
							

You	can	use	the	Name	property	to	specify	or	determine	the	string	expression	that
identifies	the	name	of	an	object.	Read/write	String	for	the	following	objects:
BoundObjectFrame,	CheckBox,	ComboBox,	CommandButton,
CustomControl,	Form,	Image,	Label,	Line,	ListBox,	Module,	ObjectFrame,
OptionButton,	OptionGroup,	Page,	PageBreak,	Rectangle,	Report,	Section,
SubForm,	TabControl,	TextBox,	and	ToggleButton.	Read-only	String	for	the
following	objects:	AccessObject,	AccessObjectProperty,	Application,
CodeProject,	CurrentProject,	DataAccessPage,	and	Reference.

expression.Name

expression			Required.	An	expression	that	returns	one	of	the	above	objects.

Remarks

A	valid	name	must	conform	to	the	standard	naming	conventions	for	Microsoft
Access.	For	Microsoft	Access	objects,	the	name	may	be	up	to	64	characters	long.
For	controls,	the	name	may	be	as	long	as	255	characters.

For	objects,	set	the	Name	property	by	clicking	Save	on	the	File	menu	in	Design
view	and	entering	a	valid	name.	To	change	the	name	of	an	existing	object	in	the
Database	window,	click	the	name,	then	either	click	Rename	on	the	Edit	menu
or	click	the	name	again.	You	can	also	change	the	name	by	right-clicking	it	and
clicking	Rename	on	the	shortcut	menu.	To	change	the	name	of	an	existing
object	when	the	object	is	open,	click	Save	As	or	Export	on	the	File	menu.

For	a	section	or	control,	you	can	set	this	property	by	using	the	property	sheet,	a
macro,	or	Visual	Basic.	You	can	use	the	Name	property	in	expressions	for
objects.

The	default	name	for	new	objects	is	the	object	name	plus	a	unique	integer.	For
example,	the	first	new	form	is	Form1,	the	second	new	form	is	Form2,	and	so	on.
A	form	can't	have	the	same	name	as	another	system	object,	such	as	the	Screen
object.

For	an	unbound	control,	the	default	name	is	the	type	of	control	plus	a	unique
integer.	For	example,	if	the	first	control	you	add	to	a	form	is	a	text	box,	its	Name
property	setting	is	Text1.

For	a	bound	control,	the	default	name	is	the	name	of	the	field	in	the	underlying
source	of	data.	If	you	create	a	control	by	dragging	a	field	from	the	field	list,	the
field's	FieldName	property	setting	is	copied	to	the	control's	Name	property	box.

You	can't	use	"Form"	or	"Report"	to	name	a	control	or	section.

Controls	on	the	same	form,	report,	or	data	access	page	can't	have	the	same	name,
but	controls	on	different	forms,	reports	or	data	access	pages	can	have	the	same
name.	A	control	and	a	section	on	the	same	form	can't	share	the	same	name.

Example

The	following	example	returns	the	Name	property	for	the	first	form	in	the
Forms	collection.

Dim	strFormName	As	String

strFormName	=	Forms(0).Name

Show	All

NavigationButtons	Property
							

You	can	use	the	NavigationButtons	property	to	specify	whether	navigation
buttons	and	a	record	number	box	are	displayed	on	a	form.	Read/write	Boolean.

expression.NavigationButtons

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

Remarks

The	NavigationButtons	property	uses	the	following	settings.

Setting Visual	Basic Description

Yes True	 (Default)	The	form	has	navigation	buttons	and
a	record	number	box.

No False	 The	form	doesn't	have	navigation	buttons	or	a
record	number	box.

You	can	set	this	property	by	using	the	form's	property	sheet,	a	macro,	or	Visual
Basic.

Navigation	buttons	provide	an	efficient	way	to	move	to	the	first,	previous,	next,
last,	or	blank	(new)	record.	The	record	number	box	displays	the	number	of	the
current	record.	The	total	number	of	records	is	displayed	next	to	the	navigation
buttons.	You	can	enter	a	number	in	the	record	number	box	to	move	to	a
particular	record.

If	you	remove	the	navigation	buttons	from	a	form	and	want	to	create	your	owns
means	of	navigation	for	the	form,	you	can	create	custom	navigation	buttons	and
add	them	to	the	form.

Example

The	following	example	returns	the	value	of	the	Navigation	Buttons	property	for
the	"Order	Entry"	form.

Dim	b	As	Boolean

b	=	Forms("Order	Entry").NavigationButtons

NewFileTaskPane	Property
							

Returns	a	NewFile	object	that	represents	a	document	listed	on	the	New	File	task
pane.

expression.NewFile

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

mk:@MSITStore:vbaof10.chm::/html/ofobjNewFile.htm

Example

This	example	creates	a	file	list	item	on	the	New	File	task	pane	in	the	New	from
existing	file	section.

Dim	nftpTemp	As	Office.NewFile

Set	nftpTemp	=	Application.NewFileTaskPane

nftpTemp.Add	FileName:="C:\Sales_Quarterly.mdb",	_

				Section:=msoNewfromExistingFile,	DisplayName:="Quarterly	Sales",	_

				Action:=msoCreateNewFile

Show	All

NewRecord	Property
							

You	can	use	the	NewRecord	property	to	determine	whether	the	current	record	is
a	new	record.	Read-only	Integer.

expression.NewRecord

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

Remarks

The	NewRecord	property	uses	the	following	settings.

Setting Description
True The	current	record	is	new.
False The	current	record	isn't	new.
The	NewRecord	property	is	read-only	in	Form	view	and	Datasheet	view.	It	isn't
available	in	Design	view.	This	property	is	available	only	by	using	a	macro	or
Visual	Basic.

When	a	user	has	moved	to	a	new	record,	the	NewRecord	property	setting	will
be	True	whether	the	user	has	started	to	edit	the	record	or	not.

Example

The	following	example	shows	how	to	use	the	NewRecord	property	to	determine
if	the	current	record	is	a	new	record.	The	NewRecordMark	procedure	sets	the
current	record	to	the	variable	intnewrec.	If	the	record	is	new,	a	message	is
displayed	notifying	the	user	of	this.	You	could	run	this	procedure	when	the
Current	event	for	a	form	occurs.

Sub	NewRecordMark(frm	As	Form)

				Dim	intnewrec	As	Integer

				intnewrec	=	frm.NewRecord

				If	intnewrec	=	True	Then

				MsgBox	"You're	in	a	new	record."	_

								&	"@Do	you	want	to	add	new	data?"	_

								&	"@If	not,	move	to	an	existing	record."

				End	If

End	Sub

Show	All

NewRowOrCol	Property
							

You	can	use	the	NewRowOrCol	property	to	specify	whether	a	section	and	its
associated	data	is	printed	in	a	new	row	or	column	within	a	multiple-column
report	or	multiple-column	form.	Read/write	Byte.

expression.NewRowOrCol

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

mk:@MSITStore:acmain10.chm::/html/achowCreateSnakingcolumnReportS.htm

Remarks

The	NewRowOrCol	property	uses	the	following	settings.

Setting Visual	Basic Description

None 0

(Default)	The	row	or	column	breaks	are
determined	by	the	settings	in	the	Page	Setup
dialog	box	(available	by	clicking	Page
Setup	on	the	File	menu)	and	the	available
space	on	the	page.

Before	Section 1

Microsoft	Access	starts	printing	the	current
section	(the	section	for	which	you're	setting
the	property,	such	as	a	group	header	section)
in	a	new	row	or	column.	It	then	prints	the
next	section,	such	as	a	detail	section,	in	that
same	row	or	column.

After	Section 2

Microsoft	Access	starts	printing	the	current
section,	such	as	a	group	header	section,	in
the	current	row	or	column.	It	starts	printing
the	next	section,	such	as	a	detail	section,	in
the	next	row	or	column.

Before	&	After 3

Microsoft	Access	starts	printing	the	current
section	in	a	new	row	or	column.	It	starts
printing	the	following	section	in	the	next	row
or	column.

You	can	set	this	property	by	using	the	section's	property	sheet,	a	macro,	or
Visual	Basic.

You	can	set	the	NewRowOrCol	property	only	in	form	Design	view	or	report
Design	view.

The	following	items	are	some	sample	settings	for	a	group	header	section	in	a
multiple-column	report.	Make	sure	Down,	Then	Across	is	selected	under
Column	Layout	on	the	Columns	tab	of	the	Page	Setup	dialog	box.

Sample	setting Result

Before	Section The	group	header	is	printed	at	the	top	of	a	new	column.
After	Section The	detail	section	is	printed	at	the	top	of	a	new	column.

Before	&	After The	group	header	is	printed	in	a	column	by	itself,	and	the
detail	section	is	printed	at	the	top	of	a	new	column.

Sections	in	a	form	or	report	are	normally	printed	vertically	down	a	page.	The
default	Column	Layout	option	is	Across,	then	Down.	You	can	print	the
sections	in	multiple	columns	across	a	page	by	clicking	Down,	then	Across
under	Column	Layout	on	the	Columns	tab	of	the	Page	Setup	dialog	box.

If	you	set	the	NewRowOrCol	property	to	Before	Section,	the	vertical	or
horizontal	orientation	of	the	page	affects	how	the	section	appears	when	printed.
If	you	click	Across,	then	Down	under	Column	Layout	on	the	Columns	tab	of
the	Page	Setup	dialog	box,	Microsoft	Access	starts	printing	the	section	at	the
beginning	of	a	new	row;	if	you	click	Down,	then	Across,	Microsoft	Access
starts	printing	the	section	at	the	beginning	of	a	new	column.

Example

The	following	example	returns	the	NewRowOrCol	property	setting	and	assigns
it	to	the	intGetVal	variable.

Dim	intGetVal	As	Integer

intGetVal	=	Me.Section(1).NewRowOrCol

The	next	example	presents	two	layouts	for	a	report	that	divides	data	into	four
groups	(Head1	to	Head4).	Each	group	includes	three	to	six	records,	and	each
record	has	field	a	and	field	b.	The	layouts	differ	only	in	their	settings	under
Column	Layout	on	the	Columns	tab	of	the	Page	Setup	dialog	box	and	the
values	of	their	NewRowOrCol	properties.	Note	that	the	Width	box	under
Column	Size	on	the	Columns	tab	must	be	set	to	the	actual	width	of	the	field.
Also,	the	Before	Section	setting	of	the	NewRowOrCol	property	requires	a	page
header	section	greater	than	zero	for	the	Down,	then	Across	option	to	function
correctly.

Column	Layout	—	Across,	then
Down

	

Head1

1a	1b					2a	2b					3a	3b					4a	4b

5a	5b

Head2

1a	1b					2a	2b					3a	3b					4a	4b

Head3

1a	1b					2a	2b					3a	3b

Head4

Column	Layout	—	Down,	then
Across

	

Head1					Head2					Head3				
Head4

1a	1b						1a	1b							1a	1b						1a	1b

2a	2b						2a	2b							2a	2b						2a	2b

3a	3b						3a	3b							3a	3b						3a	3b

4a	4b						4a	4b							4a	4b

5a	5b						5a	5b

1a	1b					2a	2b					3a	3b					4a	4b

5a	5b					6a	6b

Grid	Settings	—	Number	of
Columns	set	to	4

NewRowOrCol	property	setting
for	group	header	section	—	Before
&	After

6a	6b

Grid	Settings	—	Number	of
Columns	set	to	4

NewRowOrCol	property	setting
for	group	header	section	—	Before
Section

	

NextRecord	Property
							

The	NextRecord	property	specifies	whether	a	section	should	advance	to	the	next
record.	Read/write	Boolean.

expression.NextRecord

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

Remarks

The	NextRecord	property	uses	the	following	settings.

Setting Description

True (Default)	The	section	advances	to	the	next
record.

False The	section	doesn't	advance	to	the	next	record.

To	set	this	property,	specify	a	macro	or	event	procedure	for	a	section's
OnFormat	property.

Microsoft	Access	sets	this	property	to	True	before	each	section's	Format	event.

Example

The	following	example	sets	the	NextRecord	property	to	False	for	a	given
report.

Public	Sub	ChangeNextRecord(r	As	Report)

				r.NextRecord	=	False

End	Sub

Show	All

NumeralShapes	Property
							

Language-specific	information

You	can	use	the	NumeralShapes	property	to	specify	or	determine	numeral
shapes	to	be	displayed	and	printed	in	a	combo	box,	label,	list	box,	or	text	box.
Read/write	Byte.

expression.NumeralShapes

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

Remarks

The	NumeralShapes	property	uses	the	following	settings.

Setting Visual
Basic Description

System 0 Numeral	shapes	determined	by	the	Numeral	Shapes	system
setting.

Arabic 1 Arabic	digit	shapes	will	be	used	to	display	and	print
numerals.

Hindi 2 Hindi	digit	shapes	will	be	used	to	display	and	print
numerals.

Context 3 Numeral	shapes	determined	by	Unicode	context	rules	for
adjacent	text.

You	can	set	this	property	by	using	the	property	sheet	or	Visual	Basic.

Example

The	following	example	changes	the	NumeralShapes	property	for	the	selected
control	to	0	(numeral	shapes	will	be	determined	by	the	Numeral	Shapes	system
setting).

Public	Sub	ChangeNumeralShapes(ctl	As	Control)

					ctl.NumeralShapes	=	0

End	Sub

Show	All

Object	Property
							

You	can	use	the	Object	property	in	Visual	Basic	to	return	a	reference	to	the
ActiveX	object	that	is	associated	with	a	linked	or	embedded	OLE	object	in	a
control.	By	using	this	reference,	you	can	access	the	properties	or	invoke	the
methods	of	the	OLE	object.

expression.Object

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

Remarks

The	Object	property	returns	a	reference	to	an	ActiveX	object.	You	can	use	the
Set	statement	to	assign	this	ActiveX	object	to	an	object	variable.	The	type	of
object	reference	returned	depends	on	which	application	created	the	OLE	object.

The	Object	property	setting	is	read-only	in	all	views.

When	you	embed	or	link	an	OLE	object	in	a	Microsoft	Access	form,	you	can	set
properties	that	determine	the	type	of	object	and	the	behavior	of	the	container
control.	However,	you	can't	directly	set	or	read	the	OLE	object's	properties	or
apply	its	methods,	as	you	can	when	performing	Automation.	The	Object
property	returns	a	reference	to	an	Automation	object	that	represents	the	linked	or
embedded	OLE	object.	By	using	this	reference,	you	can	change	the	OLE	object
by	setting	or	reading	its	properties	or	applying	its	methods.	For	example,
Microsoft	Excel	is	an	COM	component	that	supports	Automation.	If	you've
embedded	a	Microsoft	Excel	worksheet	in	a	Microsoft	Access	form,	you	can	use
the	Object	property	to	set	a	reference	to	the	Worksheet	object	associated	with
that	worksheet.	You	can	then	use	any	of	the	properties	and	methods	of	the
Worksheet	object.

For	information	on	which	properties	and	methods	an	ActiveX	object	supports,
see	the	documentation	for	the	application	that	was	used	to	create	the	OLE	object.

Example

The	following	example	uses	the	Object	property	of	an	unbound	object	frame
named	OLE1.	Customer	name	and	address	information	is	inserted	in	an
embedded	Microsoft	Word	document	formatted	as	a	form	letter	with
placeholders	for	the	name	and	address	information	and	boilerplate	text	in	the
body	of	the	letter.	The	procedure	replaces	the	placeholder	information	for	each
record	and	prints	the	form	letter.	It	doesn't	save	copies	of	the	printed	form	letter.

Sub	PrintFormLetter_Click()

				Dim	objWord	As	Object

				Dim	strCustomer	As	String,	strAddress	As	String

				Dim	strCity	As	String,	strRegion	As	String

				'	Assign	object	property	of	control	to	variable.

				Set	objWord	=	Me!OLE1.Object.Application.Wordbasic

				'	Assign	customer	address	to	variables.

				strCustomer	=	Me!CompanyName

				strAddress	=	Me!Address

				strCity	=	Me!City	&	",	"

				If	Not	IsNull(Me!Region)	Then

								strRegion	=	Me!Region

				Else

								strRegion	=	Me!Country

				End	If

				'	Activate	ActiveX	control.

				Me!OLE1.Action	=	acOLEActivate

				With	objWord

								.StartOfDocument

								'	Go	to	first	placeholder.

								.LineDown	2

								'	Highlight	placeholder	text.

								.EndOfLine	1

								'	Insert	customer	name.

								.Insert	strCustomer

								'	Go	to	next	placeholder.

								.LineDown

								.StartOfLine

								'	Highlight	placeholder	text.

								.EndOfLine	1

								'	Insert	address.

								.Insert	strAddress

								'	Go	to	last	placeholder.

								.LineDown

								.StartOfLine

								'	Highlight	placeholder	text.

								.EndOfLine	1

								'	Insert	City	and	Region.

								.Insert	strCity	&	strRegion

								.FilePrint

								.FileClose

				End	With

				Set	objWord	=	Nothing

End	Sub

Show	All

ObjectPalette	Property
							

The	ObjectPalette	property	specifies	the	palette	in	the	application	used	to
create:

An	OLE	object	contained	in	a	bound	object	frame,	chart,	or	unbound	object
frame.

A	bitmap	or	other	graphic	that	is	loaded	into	a	command	button,	image
control,	or	toggle	button	by	using	the	Picture	property.

expression.ObjectPalette

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

Remarks

Microsoft	Access	sets	the	value	of	the	ObjectPalette	property	to	a	String	data
type	containing	the	palette	information.	You	can	use	this	setting	to	set	the	value
of	the	PaintPalette	property	for	a	form	or	report.

For	the	following	objects,	views,	and	controls,	the	ObjectPalette	property
setting	is	read-only.	This	property	setting	is	unavailable	for	these	controls	in
other	views.

Object View Control

Forms Form	Design	view	and
Form	view

Command	button,	chart,	image
control,	toggle	button,	and	unbound
object	frame.

	 Form	view Bound	object	frame.

Reports Report	Design	view

Command	button,	chart,	image
control,	toggle	button,	and	unbound
object	frame.	This	property	setting	is
unavailable	for	a	bound	object	frame
in	all	views	on	a	report.

You	can	use	the	setting	of	this	property	only	in	a	macro	or	Visual	Basic.

If	the	application	associated	with	the	OLE	object,	bitmap,	or	other	graphic
doesn't	have	an	associated	palette,	the	ObjectPalette	property	is	set	to	an	zero-
length	string.

The	setting	of	the	ObjectPalette	property	makes	the	palette	of	the	application
associated	with	the	OLE	object,	bitmap,	or	other	graphic	contained	in	a	control
available	to	the	PaintPalette	property	of	a	form	or	report.	For	example,	to	make
the	palette	used	in	Microsoft	Graph	available	when	you're	designing	a	form	in
Microsoft	Access,	you	set	the	form's	PaintPalette	property	to	the	ObjectPalette
value	of	an	existing	chart	control.

Note			Windows	can	have	only	one	color	palette	active	at	a	time.	Microsoft
Access	allows	you	to	have	multiple	graphics	on	a	form,	each	using	a	different
color	palette.	The	PaintPalette	and	PaletteSource	properties	let	you	specify

which	color	palette	a	form	should	use	when	displaying	graphics.

Example

The	following	example	sets	the	PaintPalette	property	of	the	Seascape	form	to
the	ObjectPalette	property	of	the	Ocean	control	on	the	DisplayPictures	form.
(Ocean	can	be	a	bound	object	frame,	command	button,	chart,	toggle	button,	or
unbound	object	frame.)

Forms!Seascape.PaintPalette	=	_

					Forms!DisplayPictures!Ocean.ObjectPalette

Show	All

ObjectVerbs	Property
							

You	can	use	the	ObjectVerbs	property	in	Visual	Basic	to	determine	the	list	of
verbs	an	OLE	object	supports.	Read-only	String.

expression.ObjectVerbs(Index)

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

Index		Required	Long.	An	element	in	the	array	of	supported	verbs.	This	is	a
zero-based	index,	meaning	zero	(0)	represents	the	first	verb	in	the	array,	one	(1)
represents	the	second	verb	in	the	array,	and	so	on.

Remarks

This	property	setting	isn't	available	in	Design	view.

You	can	use	the	ObjectVerbs	property	with	the	ObjectVerbsCount	property	to
display	a	list	of	the	verbs	supported	by	an	OLE	object.	The	Verb	property	uses
this	list	of	verbs	to	determine	which	operation	to	perform	when	an	OLE	object	is
activated	(when	the	Action	property	is	set	to	acOLEActivate).

The	Verb	property	setting	is	the	position	of	a	particular	verb	in	the	list	of	verbs
returned	by	the	ObjectVerbs	property.	For	example,	1	specifies	the	first	verb	in
the	list	(the	Visual	Basic	command	ObjectVerbs(0),	or	the	first	verb	in	the
ObjectVerbs	property	array),	2	specifies	the	second	verb	in	the	list	(the	Visual
Basic	command	ObjectVerbs(1),	or	the	second	verb	in	the	ObjectVerbs
property	array),	and	so	on.

The	first	verb	in	the	ObjectVerbs	property	array,	called	by	the	Visual	Basic
command	ObjectVerbs(0),	is	the	default	verb.	If	the	Verb	property	hasn't	been
set,	this	verb	specifies	the	operation	performed	when	the	OLE	object	is
activated.

Applications	that	expose	OLE	objects	typically	include	the	Object	command	on
the	Edit	menu.	When	the	user	points	to	the	Object	command,	a	submenu
displays	the	object's	verbs.	You	can	use	the	ObjectVerbs	and
ObjectVerbsCount	properties	to	display	a	list	of	verbs	in	a	form	or	report
instead	of	on	a	menu.

The	list	of	verbs	an	object	supports	varies,	depending	on	the	state	of	the	object.
To	update	the	list	of	verbs	an	object	supports,	set	the	control's	Action	property	to
acOLEFetchVerbs.	Be	sure	to	update	the	list	of	verbs	before	presenting	it	to	the
user.

Example

The	following	example	returns	the	verbs	supported	by	the	OLE	object	in	the
OLE1	control	and	displays	each	verb	in	a	message	box.

Sub	GetVerbList(frm	As	Form,	OLE1	As	Control)

				Dim	intX	As	Integer,	intNumVerbs	As	Integer

				Dim	strVerbList	As	String

				'	Update	verb	list.

				With	frm!OLE1

								.Action	=	acOLEFetchVerbs

								intNumVerbs	=	.ObjectVerbsCount

								For	intX	=	0	To	intNumVerbs	-	1

												strVerbList	=	strVerbList	&	.ObjectVerbs(intX)	&	";	"

								Next	intX

				End	With

				'	Display	verbs	in	message	box.

				MsgBox	Left(strVerbList,	Len(strVerbList)	-	2)

End	Sub

Show	All

ObjectVerbsCount	Property
							

You	can	use	the	ObjectVerbsCount	property	in	Visual	Basic	to	determine	the
number	of	verbs	supported	by	an	OLE	object.	Read/write	Long.

expression.ObjectVerbsCount

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

Remarks

The	ObjectVerbsCount	property	setting	is	a	alue	that	specifies	the	number	of
elements	in	the	ObjectVerbs	property	array.

This	property	setting	isn't	available	in	Design	view.

The	list	of	verbs	an	OLE	object	supports	may	vary,	depending	on	the	state	of	the
object.	To	update	the	list	of	supported	verbs,	set	the	control's	Action	property	to
acOLEFetchVerbs.

Example

The	following	example	returns	the	verbs	supported	by	the	OLE	object	in	the
OLE1	control	and	displays	each	verb	in	a	message	box.

Sub	GetVerbList(frm	As	Form,	OLE1	As	Control)

				Dim	intX	As	Integer,	intNumVerbs	As	Integer

				Dim	strVerbList	As	String

				'	Update	verb	list.

				With	frm!OLE1

								.Action	=	acOLEFetchVerbs

								intNumVerbs	=	.ObjectVerbsCount

								For	intX	=	0	To	intNumVerbs	-	1

												strVerbList	=	strVerbList	&	.ObjectVerbs(intX)	&	";	"

								Next	intX

				End	With

				'	Display	verbs	in	message	box.

				MsgBox	Left(strVerbList,	Len(strVerbList)	-	2)

End	Sub

Show	All

OldBorderStyle	Property
							

You	can	use	this	property	to	set	or	returns	the	unedited	value	of	the	BorderStyle
property	for	a	form	or	control.	This	property	is	useful	if	you	need	to	revert	to	an
unedited	or	preferred	border	style.	Read/write	Byte.

expression.OldBorderStyle

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

Remarks

For	forms,	the	BorderStyle	property	uses	the	following	settings.
Setting Visual	Basic Description

None 0 The	form	has	no	border	or	related	border
elements.	The	form	isn't	resizable.

Thin 1

The	form	has	a	thin	border	and	can	include
any	of	the	border	elements.	The	form	isn't
resizable	(the	Size	command	on	the	Control
menu	isn't	available).	You	often	use	this
setting	for	pop-up	forms.	(If	you	want	a	form
to	remain	on	top	of	all	Microsoft	Access
windows,	you	must	also	set	its	PopUp
property	to	Yes.)

Sizable 2

(Default)	The	form	has	the	default	border	for
Microsoft	Access	forms,	can	include	any	of
the	border	elements,	and	can	be	resized.	You
often	use	this	setting	for	normal	Microsoft
Access	forms.

Dialog 3

The	form	has	a	thick	(double)	border	and	can
include	only	a	title	bar,	a	Close	button,	and	a
Control	menu.	The	form	can't	be	maximized,
minimized,	or	resized	(the	Maximize,
Minimize,	and	Size	commands	aren't
available	on	the	Control	menu).	You	often
use	this	setting	for	custom	dialog	boxes.	(If
you	want	a	form	to	be	modal,	however,	you
must	also	set	its	Modal	property	to	Yes.	If
you	want	it	to	be	a	modal	pop-up	form,	which
dialog	boxes	typically	are,	you	must	set	both
its	PopUp	and	Modal	properties	to	Yes.)

For	controls,	the	OldBorderStyle	property	uses	the	following	settings.
Setting Visual	Basic Description

Transparent 0 (Default	only	for	label,	chart,	and	subreport)
Transparent

Solid 1 (Default)	Solid	line
Dashes 2 Dashed	line
Short	dashes 3 Dashed	line	with	short	dashes
Dots 4 Dotted	line
Sparse	dots 5 Dotted	line	with	dots	spaced	far	apart
Dash	dot 6 Line	with	a	dash-dot	combination
Dash	dot	dot 7 Line	with	a	dash-dot-dot	combination
Double	solid 8 Double	solid	lines

If	the	OldBorderStyle	property	is	set	to	None	or	Dialog,	the	form	doesn't
have	Maximize	or	Minimize	buttons,	regardless	of	its	MinMaxButtons
property	setting.

If	the	OldBorderStyle	property	is	set	to	None,	the	form	doesn't	have	a
Control	menu,	regardless	of	its	ControlBox	property	setting.

The	OldBorderStyle	property	setting	doesn't	affect	the	display	of	the	scroll
bars,	navigation	buttons,	the	record	number	box,	or	record	selectors.

Example

The	following	example	demonstrates	the	effect	of	changing	a	control's
BorderStyle	property,	while	leaving	the	OldBorderStyle	unaffected.	The
example	concludes	with	setting	the	BorderStyle	property	to	its	original	unedited
value.

With	Forms("Order	Entry").Controls("Zip	Code")

				.BorderStyle	=	3	'	Short	dashed	border.

	

				MsgBox	"BorderStyle	=	"	&	.BorderStyle	&	vbCrLf	&	_

								"OldBorderStyle	=	"	&	.OldBorderStyle		'	Prints	3,	1.

				.BorderStyle	=	2	'	Dashed	border.

	

				MsgBox	"BorderStyle	=	"	&	.BorderStyle	&	vbCrLf	&	_

								"OldBorderStyle	=	"	&	.OldBorderStyle		'	Prints	2,	1

	

				.BorderStyle	=	.OldBorderStyle	'	Solid	(default)	border.

								

				MsgBox	"BorderStyle	=	"	&	.BorderStyle	&	vbCrLf	&	_

								"OldBorderStyle	=	"	&	.OldBorderStyle		'	Prints	1,	1

End	With

Show	All

OldValue	Property
							

You	can	use	the	OldValue	property	to	determine	the	unedited	value	of	a	bound
control.	Read-only	Variant.

expression.OldValue

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

Remarks

The	OldValue	property	contains	the	unedited	data	from	a	bound	control	and	is
read-only	in	all	views.

You	can	access	this	property	only	by	using	a	macro	or	Visual	Basic.

The	OldValue	property	can	be	assigned	to	a	variable	by	using	the	following
syntax:

OriginalValue	=	Forms!Customers!AmountPaid.OldValue

Microsoft	Access	uses	the	OldValue	property	to	store	the	original	value	of	a
bound	control.	When	you	edit	a	bound	control	on	a	form,	your	changes	aren't
saved	until	you	move	to	another	record.	The	OldValue	property	contains	the
unedited	version	of	the	underlying	data.

You	can	provide	your	own	undo	capability	by	assigning	the	OldValue	property
setting	to	a	control.	The	following	example	shows	how	you	can	undo	any
changes	to	text	box	controls	on	a	form:

Private	Sub	btnUndo_Click()

					Dim	ctlTextbox	As	Control

					For	Each	ctlTextbox	in	Me.Controls

					If	ctlTextbox.ControlType	=	acTextBox	Then

								ctlTextbox.Value	=	ctl.OldValue

					End	If

					Next	ctlTextbox

End	Sub

If	the	control	hasn't	been	edited,	this	code	has	no	effect.	When	you	move	to
another	record,	the	record	source	is	updated,	so	the	current	value	and	the
OldValue	property	will	be	the	same.

The	OldValue	property	setting	has	the	same	data	type	as	the	field	to	which	the
control	is	bound.

Example

The	following	example	checks	to	determine	if	new	data	entered	in	a	field	is
within	10	percent	of	the	value	of	the	original	data.	If	the	change	is	greater	than
10	percent,	the	OldValue	property	is	used	to	restore	the	original	value.	This
procedure	could	be	called	from	the	BeforeUpdate	event	of	the	control	that
contains	data	you	want	to	validate.

Public	Sub	Validate_Field()

				Dim	curNewValue	As	Currency

				Dim	curOriginalValue	As	Currency

				Dim	curChange	As	Currency

				Dim	strMsg	As	String

				

				curNewValue	=	Forms!Products!UnitPrice

				curOriginalValue	=	Forms!Products!UnitPrice.OldValue

				curChange	=	Abs(curNewValue	-	curOriginalValue)

				If	curChange	>	(curOriginalValue	*	.1)	Then

								strMsg	=	"Change	is	more	than	10%	of	original	unit	price.	"	_	

								&	"Restoring	original	unit	price."

								MsgBox	strMsg,	vbExclamation,	"Invalid	change."

								Forms!Products!UnitPrice	=	curOriginalValue

				End	If

End	Sub

Show	All

OLEClass	Property
							

You	can	use	the	OLEClass	property	to	obtain	a	description	of	the	kind	of	OLE
object	contained	in	a	chart	control	or	an	unbound	object	frame.	Read/write
String.

expression.OLEClass

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

Remarks

This	property	is	set	automatically	in	the	control's	property	sheet	to	a	string
expression	when	you	click	Object	on	the	Insert	menu	to	add	an	OLE	object	to	a
form.	The	OLEClass	property	setting	is	read-only	in	all	views.

Note			If	you	are	using	Automation	(formerly	called	OLE	Automation)	and	need
to	specify	a	name	to	refer	to	the	OLE	object,	use	the	Class	property.

The	OLEClass	property	and	the	Class	property	are	similar	but	not	identical.	The
OLEClass	property	setting	is	a	general	description	of	the	OLE	object	whereas
the	Class	property	setting	is	the	name	used	to	refer	to	the	OLE	object	in	Visual
Basic.	Examples	of	OLEClass	property	settings	are	Microsoft	Excel	Chart,
Microsoft	Word	Document,	and	Paintbrush	Picture.

Example

The	following	example	displays	a	message	indicating	the	OLE	class	for	the
"Customer	Picture"	unbound	object	frame	on	the	"Order	Entry"	form.

MsgBox	"The	OLE	class	=	"	&	Forms("Order	Entry").Controls("Customer	Picture").

OnActivate	Property
							

Sets	or	returns	the	value	of	the	On	Activate	box	in	the	Properties	window	of	a
form	or	report.	Read/write	String.

expression.OnActivate

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

Remarks

This	property	is	helpful	for	programmatically	changing	the	action	Microsoft
Access	takes	when	an	event	is	triggered.	For	example,	between	event	calls	you
may	want	to	change	an	expression's	parameters,	or	switch	from	an	event
procedure	to	an	expression	or	macro,	depending	on	the	circumstances	under
which	the	event	was	triggered.

The	Activate	event	occurs	when	the	form	or	report	receives	the	focus	and
becomes	the	active	window.

The	OnActivate	value	will	be	one	of	the	following,	depending	on	the	selection
chosen	in	the	Choose	Builder	window	(accessed	by	clicking	the	Build	button
next	to	the	On	Activate	box	in	the	form	or	report's	Properties	window):

If	Expression	Builder	is	chosen,	the	value	will	be	"=expression",	where
expression	is	the	expression	from	the	Expression	Builder	window.	
If	Macro	Builder	is	chosen,	the	value	is	the	name	of	the	macro.	
If	Code	Builder	is	chosen,	the	value	will	be	"[Event	Procedure]".	

If	the	On	Activate	box	is	blank,	the	property	value	is	an	empty	string.

Example

The	following	example	associates	the	Activate	event	with	the	macro
"Activate_Macro"	for	the	"Order	Entry"	form.

Forms("Order	Entry").OnActivate	=	"Activate_Macro"	

OnApplyFilter	Property
							

Sets	or	returns	the	value	of	the	On	Apply	Filter	box	in	the	Properties	window
of	a	form.	Read/write	String.

expression.OnApplyFilter

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

Remarks

This	property	is	helpful	for	programmatically	changing	the	action	Microsoft
Access	takes	when	an	event	is	triggered.	For	example,	between	event	calls	you
may	want	to	change	an	expression's	parameters,	or	switch	from	an	event
procedure	to	an	expression	or	macro,	depending	on	the	circumstances	under
which	the	event	was	triggered.

The	Apply	Filter	event	occurs	when	a	filter	is	applied	or	removed.

The	OnApplyFilter	value	will	be	one	of	the	following,	depending	on	the
selection	chosen	in	the	Choose	Builder	window	(accessed	by	clicking	the	Build
button	next	to	the	On	Apply	Filter	box	in	the	form's	Properties	window):

If	Expression	Builder	is	chosen,	the	value	will	be	"=expression",	where
expression	is	the	expression	from	the	Expression	Builder	window.	
If	Macro	Builder	is	chosen,	the	value	is	the	name	of	the	macro.	
If	Code	Builder	is	chosen,	the	value	will	be	"[Event	Procedure]".	

If	the	On	Apply	Filter	box	is	blank,	the	property	value	is	an	empty	string.

Example

The	following	example	associates	the	OnApplyFilter	property	for	the	"Order
Entry"	form	to	the	event	"Form_ApplyFilter".

Forms("Order	Entry").OnFilter	=	"[Event	Procedure]"

OnChange	Property
							
Sets	or	returns	the	value	of	the	On	Change	box	in	the	Properties	window	of	one
of	the	objects	in	the	Applies	To	list.	Read/write	String.

expression.OnChange

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

Remarks

This	property	is	helpful	for	programmatically	changing	the	action	Microsoft
Access	takes	when	an	event	is	triggered.	For	example,	between	event	calls	you
may	want	to	change	an	expression's	parameters,	or	switch	from	an	event
procedure	to	an	expression	or	macro,	depending	on	the	circumstances	under
which	the	event	was	triggered.

The	Change	event	occurs	when	the	contents	of	a	text	box	or	the	text	portion	of	a
combo	box	changes.	It	also	occurs	when	you	move	from	one	page	to	another
page	in	a	tab	control.

The	OnChange	value	will	be	one	of	the	following,	depending	on	the	selection
chosen	in	the	Choose	Builder	window	(accessed	by	clicking	the	Build	button
next	to	the	On	Change	box	in	the	object's	Properties	window):

If	Expression	Builder	is	chosen,	the	value	will	be	"=expression",	where
expression	is	the	expression	from	the	Expression	Builder	window.	
If	Macro	Builder	is	chosen,	the	value	is	the	name	of	the	macro.	
If	Code	Builder	is	chosen,	the	value	will	be	"[Event	Procedure]".	

If	the	On	Change	box	is	blank,	the	property	value	is	an	empty	string.

Example

The	following	example	prints	the	value	of	the	OnChange	property	in	the
Immediate	window	for	the	"Address"	text	box	on	the	"Order	Entry"	form.

Debug.Print	Forms("Order	Entry").Controls("Address").OnChange

OnClick	Property
							

Sets	or	returns	the	value	of	the	On	Click	box	in	the	Properties	window	of	one
of	the	objects	in	the	Applies	To	list.	Read/write	String.

expression.OnClick

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

Remarks

This	property	is	helpful	for	programmatically	changing	the	action	Microsoft
Access	takes	when	an	event	is	triggered.	For	example,	between	event	calls	you
may	want	to	change	an	expression's	parameters,	or	switch	from	an	event
procedure	to	an	expression	or	macro,	depending	on	the	circumstances	under
which	the	event	was	triggered.

The	Click	event	occurs	when	a	user	presses	and	releases	the	left	mouse	button
over	an	object.

The	OnClick	value	will	be	one	of	the	following,	depending	on	the	selection
chosen	in	the	Choose	Builder	window	(accessed	by	clicking	the	Build	button
next	to	the	On	Click	box	in	the	object's	Properties	window):

If	Expression	Builder	is	chosen,	the	value	will	be	"=expression",	where
expression	is	the	expression	from	the	Expression	Builder	window.	
If	Macro	Builder	is	chosen,	the	value	is	the	name	of	the	macro.	
If	Code	Builder	is	chosen,	the	value	will	be	"[Event	Procedure]".	

If	the	On	Click	box	is	blank,	the	property	value	is	an	empty	string.

Example

The	following	example	associates	the	Click	event	with	the	"OK_Click"	event
procedure	for	the	button	named	"OK"	on	the	"Order	Entry"	form,	if	there	is
currently	no	association.

With	Forms("Order	Entry").Controls("OK")

				If	.OnClick	=	""	Then

								.OnClick	=	"[Event	Procedure]"

				End	If

End	With

OnClose	Property
							

Sets	or	returns	the	value	of	the	On	Close	box	in	the	Properties	window	of	a
form	or	report.	Read/write	String.

expression.OnClose

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

Remarks

This	property	is	helpful	for	programmatically	changing	the	action	Microsoft
Access	takes	when	an	event	is	triggered.	For	example,	between	event	calls	you
may	want	to	change	an	expression's	parameters,	or	switch	from	an	event
procedure	to	an	expression	or	macro,	depending	on	the	circumstances	under
which	the	event	was	triggered.

The	Close	event	occurs	when	a	form	or	report	is	closed	and	removed	from	the
screen.

The	OnClose	value	will	be	one	of	the	following,	depending	on	the	selection
chosen	in	the	Choose	Builder	window	(accessed	by	clicking	the	Build	button
next	to	the	On	Close	box	in	the	form	or	report's	Properties	window):

If	Expression	Builder	is	chosen,	the	value	will	be	"=expression",	where
expression	is	the	expression	from	the	Expression	Builder	window.	
If	Macro	Builder	is	chosen,	the	value	is	the	name	of	the	macro.	
If	Code	Builder	is	chosen,	the	value	will	be	"[Event	Procedure]".	

If	the	On	Close	box	is	blank,	the	property	value	is	an	empty	string.

Example

The	following	example	prints	the	value	of	the	OnOpen	property	in	the
Immediate	window	for	the	"Purchase	Order"	report.

Debug.Print	Reports("Purchase	Order").OnClose

OnConnect	Property
							

Returns	or	sets	a	String	indicating	which	macro,	event	procedure,	or	user-
defined	function	runs	when	the	OnConnect	event	occurs.	Read/write.

expression.OnConnect

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

Remarks

Valid	values	for	this	property	are	"macroname"	where	macroname	is	the	name	of
macro,	"[Event	Procedure]"	which	indicates	the	event	procedure	associated	with
the	OnConnect	event	for	the	specified	object,	or	"=functionname()"	where
functionname	is	the	name	of	a	user-defined	function.	For	a	more	detailed
discussion	of	event	properties,	see	"Event	Properties."

Example

The	following	example	specifies	that	when	the	OnConnect	event	occurs	on	the
first	form	of	the	current	project,	the	associated	event	procedure	should	run.

Forms(0).OnConnect	=	"[Event	Procedure]"

OnCurrent	Property
							

Sets	or	returns	the	value	of	the	On	Current	box	in	the	Properties	window	of	a
form.	Read/write	String.

expression.OnCurrent

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

Remarks

This	property	is	helpful	for	programmatically	changing	the	action	Microsoft
Access	takes	when	an	event	is	triggered.	For	example,	between	event	calls	you
may	want	to	change	an	expression's	parameters,	or	switch	from	an	event
procedure	to	an	expression	or	macro,	depending	on	the	circumstances	under
which	the	event	was	triggered.

The	Current	event	occurs	when	the	focus	moves	to	a	record,	making	it	the
current	record,	or	when	the	form	is	refreshed	or	requeried.

The	OnCurrent	value	will	be	one	of	the	following,	depending	on	the	selection
chosen	in	the	Choose	Builder	window	(accessed	by	clicking	the	Build	button
next	to	the	On	Current	box	in	the	form	or	report's	Properties	window):

If	Expression	Builder	is	chosen,	the	value	will	be	"=expression",	where
expression	is	the	expression	from	the	Expression	Builder	window.	
If	Macro	Builder	is	chosen,	the	value	is	the	name	of	the	macro.	
If	Code	Builder	is	chosen,	the	value	will	be	"[Event	Procedure]".	

If	the	On	Current	box	is	blank,	the	property	value	is	an	empty	string.

Example

The	following	example	associates	the	Current	event	with	the	macro
"Current_Macro"	for	the	"Order	Entry"	form.

Forms("Order	Entry").OnDeactivate	=	"Current_Macro"	

OnDblClick	Property
							

Sets	or	returns	the	value	of	the	On	Dbl	Click	box	in	the	Properties	window	of
one	of	the	objects	in	the	Applies	To	list.	Read/write	String.

expression.OnDblClick

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

Remarks

This	property	is	helpful	for	programmatically	changing	the	action	Microsoft
Access	takes	when	an	event	is	triggered.	For	example,	between	event	calls	you
may	want	to	change	an	expression's	parameters,	or	switch	from	an	event
procedure	to	an	expression	or	macro,	depending	on	the	circumstances	under
which	the	event	was	triggered.

The	DblClick	event	occurs	when	a	user	presses	and	releases	the	left	mouse
button	twice	over	an	object	within	the	double-click	time	limit	of	the	system.

The	OnDblClick	value	will	be	one	of	the	following,	depending	on	the	selection
chosen	in	the	Choose	Builder	window	(accessed	by	clicking	the	Build	button
next	to	the	On	Dbl	Click	box	in	the	object's	Properties	window):

If	Expression	Builder	is	chosen,	the	value	will	be	"=expression",	where
expression	is	the	expression	from	the	Expression	Builder	window.	
If	Macro	Builder	is	chosen,	the	value	is	the	name	of	the	macro.	
If	Code	Builder	is	chosen,	the	value	will	be	"[Event	Procedure]".	

If	the	On	Dbl	Click	box	is	blank,	the	property	value	is	an	empty	string.

Example

The	following	example	associates	the	DblClick	event	with	the	"OK_DblClick"
event	procedure	for	the	button	named	"OK"	on	the	"Order	Entry"	form,	if	there
is	currently	no	association.

With	Forms("Order	Entry").Controls("OK")

				If	.OnDblClick	=	""	Then

								.OnDblClick	=	"[Event	Procedure]"

				End	If

End	With

	

OnDeactivate	Property
							

Sets	or	returns	the	value	of	the	On	Deactivate	box	in	the	Properties	window	of
a	form	or	report.	Read/write	String.

expression.OnDeactivate

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

Remarks

This	property	is	helpful	for	programmatically	changing	the	action	Microsoft
Access	takes	when	an	event	is	triggered.	For	example,	between	event	calls	you
may	want	to	change	an	expression's	parameters,	or	switch	from	an	event
procedure	to	an	expression	or	macro,	depending	on	the	circumstances	under
which	the	event	was	triggered.

The	Deactivate	event	occurs	when	the	form	or	report	loses	the	focus	to	a	Table,
Query,	Form,	Report,	Macro,	or	Module	window,	or	to	the	Database	window.

The	OnDeactivate	value	will	be	one	of	the	following,	depending	on	the
selection	chosen	in	the	Choose	Builder	window	(accessed	by	clicking	the	Build
button	next	to	the	On	Deactivate	box	in	the	form	or	report's	Properties
window):

If	Expression	Builder	is	chosen,	the	value	will	be	"=expression",	where
expression	is	the	expression	from	the	Expression	Builder	window.	
If	Macro	Builder	is	chosen,	the	value	is	the	name	of	the	macro.	
If	Code	Builder	is	chosen,	the	value	will	be	"[Event	Procedure]".	

If	the	On	Deactivate	box	is	blank,	the	property	value	is	an	empty	string.

Example

The	following	example	associates	the	Deactivate	event	with	the	macro
"Deactivate_Macro"	for	the	"Order	Entry"	form.

Forms("Order	Entry").OnDeactivate	=	"Deactivate_Macro"	

OnDelete	Property
							

Sets	or	returns	the	value	of	the	On	Delete	box	in	the	Properties	window	of	a
form.	Read/write	String.

expression.OnDelete

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

Remarks

This	property	is	helpful	for	programmatically	changing	the	action	Microsoft
Access	takes	when	an	event	is	triggered.	For	example,	between	event	calls	you
may	want	to	change	an	expression's	parameters,	or	switch	from	an	event
procedure	to	an	expression	or	macro,	depending	on	the	circumstances	under
which	the	event	was	triggered.

The	Delete	event	occurs	when	the	user	performs	some	action,	such	as	pressing
the	DEL	key	to	delete	a	record,	but	before	the	record	is	actually	deleted.

The	OnDelete	value	will	be	one	of	the	following,	depending	on	the	selection
chosen	in	the	Choose	Builder	window	(accessed	by	clicking	the	Build	button
next	to	the	On	Delete	box	in	the	form's	Properties	window):

If	Expression	Builder	is	chosen,	the	value	will	be	"=expression",	where
expression	is	the	expression	from	the	Expression	Builder	window.	
If	Macro	Builder	is	chosen,	the	value	is	the	name	of	the	macro.	
If	Code	Builder	is	chosen,	the	value	will	be	"[Event	Procedure]".	

If	the	On	Delete	box	is	blank,	the	property	value	is	an	empty	string.

Example

The	following	example	associates	the	Delete	event	with	the	"Form_Delete"
event	for	the	"Order	Entry"	form.

Forms("Order	Entry").OnDelete	=	"[Event	Procedure]"

OnDirty	Property
							

Sets	or	returns	the	value	of	the	On	Dirty	box	in	the	Properties	window	of	one
of	the	objects	in	the	Applies	To	list.	Read/write	String.

expression.OnDirty

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

Remarks

This	property	is	helpful	for	programmatically	changing	the	action	Microsoft
Access	takes	when	an	event	is	triggered.	For	example,	between	event	calls	you
may	want	to	change	an	expression's	parameters,	or	switch	from	an	event
procedure	to	an	expression	or	macro,	depending	on	the	circumstances	under
which	the	event	was	triggered.

The	Dirty	event	occurs	when	the	contents	of	a	form	or	the	text	portion	of	a
combo	box	changes.	It	also	occurs	when	you	move	from	one	page	to	another
page	in	a	tab	control.

The	OnDirty	value	will	be	one	of	the	following,	depending	on	the	selection
chosen	in	the	Choose	Builder	window	(accessed	by	clicking	Build	in	the
object's	Properties	window):

If	Expression	Builder	is	chosen,	the	value	will	be	"=expression",	where
expression	is	the	expression	from	the	Expression	Builder	window.	
If	Macro	Builder	is	chosen,	the	value	is	the	name	of	the	macro.	
If	Code	Builder	is	chosen,	the	value	will	be	"[Event	Procedure]".	

If	the	On	Dirty	box	is	blank,	the	property	value	is	an	empty	string.

Example

The	following	example	prints	the	value	of	the	OnDirty	property	in	the
Immediate	window	for	the	"Order	Entry"	form.

Debug.Print	Forms("Order	Entry").OnDirty

OnDisconnect	Property
							

Returns	or	sets	a	String	indicating	which	macro,	event	procedure,	or	user-
defined	function	runs	when	the	OnDisconnect	event	occurs.	Read/write.

expression.OnDisconnect

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

Remarks

Valid	values	for	this	property	are	"macroname"	where	macroname	is	the	name	of
macro,	"[Event	Procedure]"	which	indicates	the	event	procedure	associated	with
the	OnDisconnect	event	for	the	specified	object,	or	"=functionname()"	where
functionname	is	the	name	of	a	user-defined	function.	For	a	more	detailed
discussion	of	event	properties,	see	"Event	Properties."

Example

The	following	example	specifies	that	when	the	OnDisconnect	event	occurs	on
the	first	form	of	the	current	project,	the	associated	event	procedure	should	run.

Forms(0).OnDisconnect	=	"[Event	Procedure]"

OnEnter	Property
							

Sets	or	returns	the	value	of	the	On	Enter	box	in	the	Properties	window	of	one
of	the	objects	in	the	Applies	To	list.	Read/write	String.

expression.OnEnter

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

Remarks

This	property	is	helpful	for	programmatically	changing	the	action	Microsoft
Access	takes	when	an	event	is	triggered.	For	example,	between	event	calls	you
may	want	to	change	an	expression's	parameters,	or	switch	from	an	event
procedure	to	an	expression	or	macro,	depending	on	the	circumstances	under
which	the	event	was	triggered.

The	Enter	event	occurs	before	a	control	actually	receives	the	focus	from	a
control	on	the	same	form.

The	OnEnter	value	will	be	one	of	the	following,	depending	on	the	selection
chosen	in	the	Choose	Builder	window	(accessed	by	clicking	the	Build	button
next	to	the	On	Enter	box	in	the	object's	Properties	window):

If	Expression	Builder	is	chosen,	the	value	will	be	"=expression",	where
expression	is	the	expression	from	the	Expression	Builder	window.	
If	Macro	Builder	is	chosen,	the	value	is	the	name	of	the	macro.	
If	Code	Builder	is	chosen,	the	value	will	be	"[Event	Procedure]".	

If	the	On	Enter	box	is	blank,	the	property	value	is	an	empty	string.

Example

The	following	example	associates	the	Enter	event	with	the	macro
"Enter_Macro"	for	the	button	named	"OK"	on	the	"Order	Entry"	form.

Forms("Order	Entry").Controls("OK").OnEnter	=	"Enter_Macro"

OnError	Property
							

Sets	or	returns	the	value	of	the	OnError	box	in	the	Properties	window	for	a
form	or	report.	Read/write	String.

expression.OnError

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

Remarks

This	property	is	helpful	for	programmatically	changing	the	action	Microsoft
Access	takes	when	an	event	is	triggered.	For	example,	between	event	calls	you
may	want	to	change	an	expression's	parameters,	or	switch	from	an	event
procedure	to	an	expression	or	macro,	depending	on	the	circumstances	under
which	the	event	was	triggered.

The	Error	event	occurs	when	a	run-time	error	is	produced	in	Microsoft	Access
when	a	form	or	report	has	the	focus.	This	includes	Microsoft	Jet	database	engine
errors,	but	not	run-time	errors	in	Visual	Basic.

The	OnError	value	will	be	one	of	the	following,	depending	on	the	selection
chosen	in	the	Choose	Builder	window	(accessed	by	clicking	the	Build	button
next	to	the	On	Error	box	in	the	form	or	report's	Properties	window):

If	Expression	Builder	is	chosen,	the	value	will	be	"=expression",	where
expression	is	the	expression	from	the	Expression	Builder	window.	
If	Macro	Builder	is	chosen,	the	value	is	the	name	of	the	macro.	
If	Code	Builder	is	chosen,	the	value	will	be	"[Event	Procedure]".	

If	the	On	Error	box	is	blank,	the	property	value	is	an	empty	string.

Example

The	following	example	associates	the	Error	event	with	the	macro
"Error_Handler_Macro"	for	the	"Order	Entry"	form.

Forms("Order	Entry").OnError	=	"Error_Handler_Macro"

OnExit	Property
							

Sets	or	returns	the	value	of	the	On	Exit	box	in	the	Properties	window	of	one	of
the	objects	in	the	Applies	To	list.	Read/write	String.

expression.OnExit

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

Remarks

This	property	is	helpful	for	programmatically	changing	the	action	Microsoft
Access	takes	when	an	event	is	triggered.	For	example,	between	event	calls	you
may	want	to	change	an	expression's	parameters,	or	switch	from	an	event
procedure	to	an	expression	or	macro,	depending	on	the	circumstances	under
which	the	event	was	triggered.

The	Exit	event	occurs	just	before	a	control	loses	the	focus	to	another	control	on
the	same	form.

The	OnExit	value	will	be	one	of	the	following,	depending	on	the	selection
chosen	in	the	Choose	Builder	window	(accessed	by	clicking	the	Build	button
next	to	the	On	Exit	box	in	the	object's	Properties	window):

If	Expression	Builder	is	chosen,	the	value	will	be	"=expression",	where
expression	is	the	expression	from	the	Expression	Builder	window.	
If	Macro	Builder	is	chosen,	the	value	is	the	name	of	the	macro.	
If	Code	Builder	is	chosen,	the	value	will	be	"[Event	Procedure]".	

If	the	On	Exit	box	is	blank,	the	property	value	is	an	empty	string.

Example

The	following	example	associates	the	Exit	event	with	the	macro	"Exit_Macro"
for	the	button	named	"OK"	on	the	"Order	Entry"	form.

Forms("Order	Entry").Controls("OK").OnExit	=	"Exit_Macro"

OnFilter	Property
							

Sets	or	returns	the	value	of	the	On	Filter	box	in	the	Properties	window	of	a
form.	Read/write	String.

expression.OnFilter

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

Remarks

This	property	is	helpful	for	programmatically	changing	the	action	Microsoft
Access	takes	when	an	event	is	triggered.	For	example,	between	event	calls	you
may	want	to	change	an	expression's	parameters,	or	switch	from	an	event
procedure	to	an	expression	or	macro,	depending	on	the	circumstances	under
which	the	event	was	triggered.

The	Filter	event	occurs	when	a	form	is	opened	and	its	records	are	displayed.

The	OnFilter	value	will	be	one	of	the	following,	depending	on	the	selection
chosen	in	the	Choose	Builder	window	(accessed	by	clicking	the	Build	button
next	to	the	On	Filter	box	in	the	form's	Properties	window):

If	Expression	Builder	is	chosen,	the	value	will	be	"=expression",	where
expression	is	the	expression	from	the	Expression	Builder	window.	
If	Macro	Builder	is	chosen,	the	value	is	the	name	of	the	macro.	
If	Code	Builder	is	chosen,	the	value	will	be	"[Event	Procedure]".	

If	the	On	Filter	box	is	blank,	the	property	value	is	an	empty	string.

Example

The	following	example	associates	the	Filter	property	for	the	"Order	Entry"	form
to	the	event	"Form_Filter".

Forms("Order	Entry").OnFilter	=	"[Event	Procedure]"

OnFormat	Property
							

Sets	or	returns	the	value	of	the	On	Format	box	in	the	Properties	window	of	a
report	section.	Read/write	String.

expression.OnFormat

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

Remarks

This	property	is	helpful	for	programmatically	changing	the	action	Microsoft
Access	takes	when	an	event	is	triggered.	For	example,	between	event	calls	you
may	want	to	change	an	expression's	parameters,	or	switch	from	an	event
procedure	to	an	expression	or	macro,	depending	on	the	circumstances	under
which	the	event	was	triggered.

The	Format	event	occurs	when	Microsoft	Access	determines	which	data
belongs	in	a	report	section,	but	before	Access	formats	the	section	for	previewing
or	printing.

The	OnFormat	value	will	be	one	of	the	following,	depending	on	the	selection
chosen	in	the	Choose	Builder	window	(accessed	by	clicking	the	Build	button
next	to	the	On	Format	box	in	the	report	section's	Properties	window):

If	Expression	Builder	is	chosen,	the	value	will	be	"=expression",	where
expression	is	the	expression	from	the	Expression	Builder	window.	
If	Macro	Builder	is	chosen,	the	value	is	the	name	of	the	macro.	
If	Code	Builder	is	chosen,	the	value	will	be	"[Event	Procedure]".	

If	the	On	Format	box	is	blank,	the	property	value	is	an	empty	string.

Example

The	following	example	prints	the	value	of	the	OnFormat	property	in	the
Immediate	window	for	the	"GroupHeader0"	section	in	the	"Purchase	Order"
report.

Debug.Print	Reports("Purchase	Order").Section("GroupHeader0").OnFormat

OnGotFocus	Property
							

Sets	or	returns	the	value	of	the	On	Got	Focus	box	in	the	Properties	window	of
one	of	the	objects	in	the	Applies	To	list.	Read/write	String.

expression.OnGotFocus

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

Remarks

This	property	is	helpful	for	programmatically	changing	the	action	Microsoft
Access	takes	when	an	event	is	triggered.	For	example,	between	event	calls	you
may	want	to	change	an	expression's	parameters,	or	switch	from	an	event
procedure	to	an	expression	or	macro,	depending	on	the	circumstances	under
which	the	event	was	triggered.

The	GotFocus	event	occurs	when	the	object	receives	the	focus.

The	OnGotFocus	value	will	be	one	of	the	following,	depending	on	the	selection
chosen	in	the	Choose	Builder	window	(accessed	by	clicking	the	Build	button
next	to	the	On	Got	Focus	box	in	the	object's	Properties	window):

If	Expression	Builder	is	chosen,	the	value	will	be	"=expression",	where
expression	is	the	expression	from	the	Expression	Builder	window.	
If	Macro	Builder	is	chosen,	the	value	is	the	name	of	the	macro.	
If	Code	Builder	is	chosen,	the	value	will	be	"[Event	Procedure]".	

If	the	On	Got	Focus	box	is	blank,	the	property	value	is	an	empty	string.

Example

The	following	example	prints	the	value	of	the	OnGotFocus	property	in	the
Immediate	window	for	the	button	named	"OK"	on	the	"Order	Entry"	form.

Debug.Print	Forms("Order	Entry").Controls("OK").OnGotFocus

OnInsert	Property
							

Sets	or	returns	the	value	of	the	Before	Insert	box	in	the	Properties	window	of	a
form.	Read/write	String.

expression.OnInsert

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

Remarks

This	property	is	helpful	for	programmatically	changing	the	action	Microsoft
Access	takes	when	an	event	is	triggered.	For	example,	between	event	calls	you
may	want	to	change	an	expression's	parameters,	or	switch	from	an	event
procedure	to	an	expression	or	macro,	depending	on	the	circumstances	under
which	the	event	was	triggered.

Although	the	name	of	this	property	is	OnInsert,	setting	this	property	actually
sets	the	value	of	the	Before	Insert	box.

The	BeforeInsert	event	occurs	when	the	user	types	the	first	character	in	a	new
record,	but	before	the	record	is	actually	created.

The	OnInsert	value	will	be	one	of	the	following,	depending	on	the	selection
chosen	in	the	Choose	Builder	window	(accessed	by	clicking	the	Build	button
next	to	the	Before	Insert	box	in	the	form's	Properties	window):

If	Expression	Builder	is	chosen,	the	value	will	be	"=expression",	where
expression	is	the	expression	from	the	Expression	Builder	window.	
If	Macro	Builder	is	chosen,	the	value	is	the	name	of	the	macro.	
If	Code	Builder	is	chosen,	the	value	will	be	"[Event	Procedure]".	

If	the	Before	Insert	box	is	blank,	the	property	value	is	an	empty	string.

Example

The	following	example	prints	the	value	of	the	OnInsert	property	in	the
Immediate	window	for	the	"Order	Entry"	form.

Debug.Print	Forms("Order	Entry").OnInsert	

OnKeyDown	Property
							

Sets	or	returns	the	value	of	the	On	Key	Down	box	in	the	Properties	window	of
one	of	the	objects	in	the	Applies	To	list.	Read/write	String.

expression.OnKeyDown

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

Remarks

This	property	is	helpful	for	programmatically	changing	the	action	Microsoft
Access	takes	when	an	event	is	triggered.	For	example,	between	event	calls	you
may	want	to	change	an	expression's	parameters,	or	switch	from	an	event
procedure	to	an	expression	or	macro,	depending	on	the	circumstances	under
which	the	event	was	triggered.

The	KeyDown	event	occurs	when	a	user	presses	a	key	while	a	form	or	control
has	the	focus.	This	event	also	occurs	if	you	send	a	keystroke	to	a	form	or	control
by	using	the	SendKeys	action	in	a	macro	or	the	SendKeys	statement	in	Visual
Basic.

The	OnKeyDown	value	will	be	one	of	the	following,	depending	on	the	selection
chosen	in	the	Choose	Builder	window	(accessed	by	clicking	the	Build	button
next	to	the	On	Key	Down	box	in	the	object's	Properties	window):

If	Expression	Builder	is	chosen,	the	value	will	be	"=expression",	where
expression	is	the	expression	from	the	Expression	Builder	window.	
If	Macro	Builder	is	chosen,	the	value	is	the	name	of	the	macro.	
If	Code	Builder	is	chosen,	the	value	will	be	"[Event	Procedure]".	

If	the	On	Key	Down	box	is	blank,	the	property	value	is	an	empty	string.

Example

The	following	example	prints	the	value	of	the	OnKeyDown	property	in	the
Immediate	window	for	the	button	named	"OK"	on	the	"Order	Entry"	form.

Debug.Print	Forms("Order	Entry").Controls("OK").OnKeyDown

OnKeyPress	Property
							

Sets	or	returns	the	value	of	the	On	Key	Press	box	in	the	Properties	window	of
one	of	the	objects	in	the	Applies	To	list.	Read/write	String.

expression.OnKeyPress

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

Remarks

This	property	is	helpful	for	programmatically	changing	the	action	Microsoft
Access	takes	when	an	event	is	triggered.	For	example,	between	event	calls	you
may	want	to	change	an	expression's	parameters,	or	switch	from	an	event
procedure	to	an	expression	or	macro,	depending	on	the	circumstances	under
which	the	event	was	triggered.

The	KeyPress	event	occurs	when	a	user	presses	and	releases	a	key	or	key
combination	that	corresponds	to	an	ANSI	code	while	a	form	or	control	has	the
focus.	This	event	also	occurs	if	you	send	an	ANSI	keystroke	to	a	form	or	control
by	using	the	SendKeys	action	in	a	macro	or	the	SendKeys	statement	in	Visual
Basic.

The	OnKeyPress	value	will	be	one	of	the	following,	depending	on	the	selection
chosen	in	the	Choose	Builder	window	(accessed	by	clicking	the	Build	button
next	to	the	On	Key	Press	box	in	the	object's	Properties	window):

If	Expression	Builder	is	chosen,	the	value	will	be	"=expression",	where
expression	is	the	expression	from	the	Expression	Builder	window.	
If	Macro	Builder	is	chosen,	the	value	is	the	name	of	the	macro.	
If	Code	Builder	is	chosen,	the	value	will	be	"[Event	Procedure]".	

If	the	On	Key	Press	box	is	blank,	the	property	value	is	an	empty	string.

Example

The	following	example	prints	the	value	of	the	OnKeyPress	property	in	the
Immediate	window	for	the	button	named	"OK"	on	the	"Order	Entry"	form.

Debug.Print	Forms("Order	Entry").Controls("OK").OnKeyPress

OnKeyUp	Property
							

Sets	or	returns	the	value	of	the	On	Key	Up	box	in	the	Properties	window	of	one
of	the	objects	in	the	Applies	To	list.	Read/write	String.

expression.OnKeyUp

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

Remarks

This	property	is	helpful	for	programmatically	changing	the	action	Microsoft
Access	takes	when	an	event	is	triggered.	For	example,	between	event	calls	you
may	want	to	change	an	expression's	parameters,	or	switch	from	an	event
procedure	to	an	expression	or	macro,	depending	on	the	circumstances	under
which	the	event	was	triggered.

The	KeyUp	event	occurs	when	a	user	releases	a	key	while	a	form	or	control	has
the	focus.	This	event	also	occurs	if	you	send	a	keystroke	to	a	form	or	control	by
using	the	SendKeys	action	in	a	macro	or	the	SendKeys	statement	in	Visual
Basic.

The	OnKeyUp	value	will	be	one	of	the	following,	depending	on	the	selection
chosen	in	the	Choose	Builder	window	(accessed	by	clicking	the	Build	button
next	to	the	On	Key	Up	box	in	the	object's	Properties	window):

If	Expression	Builder	is	chosen,	the	value	will	be	"=expression",	where
expression	is	the	expression	from	the	Expression	Builder	window.	
If	Macro	Builder	is	chosen,	the	value	is	the	name	of	the	macro.	
If	Code	Builder	is	chosen,	the	value	will	be	"[Event	Procedure]".	

If	the	On	Key	Up	box	is	blank,	the	property	value	is	an	empty	string.

Example

The	following	example	prints	the	value	of	the	OnKeyUp	property	in	the
Immediate	window	for	the	button	named	"OK"	on	the	"Order	Entry"	form.

Debug.Print	Forms("Order	Entry").Controls("OK").OnKeyUp

OnLoad	Property
							

Sets	or	returns	the	value	of	the	On	Load	box	in	the	Properties	window	of	a
form.	Read/write	String.

expression.OnLoad

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

Remarks

This	property	is	helpful	for	programmatically	changing	the	action	Microsoft
Access	takes	when	an	event	is	triggered.	For	example,	between	event	calls	you
may	want	to	change	an	expression's	parameters,	or	switch	from	an	event
procedure	to	an	expression	or	macro,	depending	on	the	circumstances	under
which	the	event	was	triggered.

The	Load	event	occurs	when	a	form	is	opened	and	its	records	are	displayed.

The	OnLoad	value	will	be	one	of	the	following,	depending	on	the	selection
chosen	in	the	Choose	Builder	window	(accessed	by	clicking	the	Build	button
next	to	the	On	Load	box	in	the	form's	Properties	window):

If	Expression	Builder	is	chosen,	the	value	will	be	"=expression",	where
expression	is	the	expression	from	the	Expression	Builder	window.	
If	Macro	Builder	is	chosen,	the	value	is	the	name	of	the	macro.	
If	Code	Builder	is	chosen,	the	value	will	be	"[Event	Procedure]".	

If	the	On	Load	box	is	blank,	the	property	value	is	an	empty	string.

Example

The	following	example	prints	the	value	of	the	OnLoad	property	in	the
Immediate	window	for	the	"Order	Entry"	form.

Debug.Print	Forms("Order	Entry").OnLoad	

OnLostFocus	Property
							

Sets	or	returns	the	value	of	the	On	Lost	Focus	box	in	the	Properties	window	of
one	of	the	objects	in	the	Applies	To	list.	Read/write	String.

expression.OnLostFocus

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

Remarks

This	property	is	helpful	for	programmatically	changing	the	action	Microsoft
Access	takes	when	an	event	is	triggered.	For	example,	between	event	calls	you
may	want	to	change	an	expression's	parameters,	or	switch	from	an	event
procedure	to	an	expression	or	macro,	depending	on	the	circumstances	under
which	the	event	was	triggered.

The	LostFocus	event	occurs	when	the	object	loses	the	focus.

The	OnLostFocus	value	will	be	one	of	the	following,	depending	on	the
selection	chosen	in	the	Choose	Builder	window	(accessed	by	clicking	the	Build
button	next	to	the	On	Lost	Focus	box	in	the	object's	Properties	window):

If	Expression	Builder	is	chosen,	the	value	will	be	"=expression",	where
expression	is	the	expression	from	the	Expression	Builder	window.	
If	Macro	Builder	is	chosen,	the	value	is	the	name	of	the	macro.	
If	Code	Builder	is	chosen,	the	value	will	be	"[Event	Procedure]".	

If	the	On	Lost	Focus	box	is	blank,	the	property	value	is	an	empty	string.

Example

The	following	example	prints	the	value	of	the	OnLostFocus	property	in	the
Immediate	window	for	the	button	named	"OK"	on	the	"Order	Entry"	form.

Debug.Print	Forms("Order	Entry").Controls("OK").OnLostFocus

OnMenu	Property
							

Sets	or	returns	the	value	of	the	On	Menu	box	in	the	Properties	window	of	a
form	or	report.	Read/write	String.

expression.OnMenu

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

Remarks

This	property	is	helpful	for	programmatically	changing	the	action	Microsoft
Access	takes	when	an	event	is	triggered.	For	example,	between	event	calls	you
may	want	to	change	an	expression's	parameters,	or	switch	from	an	event
procedure	to	an	expression	or	macro,	depending	on	the	circumstances	under
which	the	event	was	triggered.

The	OnMenu	value	will	be	one	of	the	following,	depending	on	the	selection
chosen	in	the	Choose	Builder	window	(accessed	by	clicking	the	Build	button
next	to	the	On	Menu	box	in	the	form	or	report's	Properties	window):

If	Expression	Builder	is	chosen,	the	value	will	be	"=expression",	where
expression	is	the	expression	from	the	Expression	Builder	window.	
If	Macro	Builder	is	chosen,	the	value	is	the	name	of	the	macro.	
If	Code	Builder	is	chosen,	the	value	will	be	"[Event	Procedure]".	

If	the	On	Menu	box	is	blank,	the	property	value	is	an	empty	string.

Example

The	following	example	prints	the	value	of	the	OnMenu	property	in	the
Immediate	window	for	the	"Purchase	Order"	report.

Debug.Print	Reports("Purchase	Order").OnMenu

OnMouseDown	Property
							

Sets	or	returns	the	value	of	the	On	Mouse	Down	box	in	the	Properties	window
of	one	of	the	objects	in	the	Applies	To	list.	Read/write	String.

expression.OnMouseDown

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

Remarks

This	property	is	helpful	for	programmatically	changing	the	action	Microsoft
Access	takes	when	an	event	is	triggered.	For	example,	between	event	calls	you
may	want	to	change	an	expression's	parameters,	or	switch	from	an	event
procedure	to	an	expression	or	macro,	depending	on	the	circumstances	under
which	the	event	was	triggered.

The	MouseDown	event	occurs	when	the	user	clicks	the	mouse	button	while	the
mouse	pointer	rests	over	the	object.

The	OnMouseDown	value	will	be	one	of	the	following,	depending	on	the
selection	chosen	in	the	Choose	Builder	window	(accessed	by	clicking	the	Build
button	next	to	the	On	Mouse	Down	box	in	the	object's	Properties	window):

If	Expression	Builder	is	chosen,	the	value	will	be	"=expression",	where
expression	is	the	expression	from	the	Expression	Builder	window.	
If	Macro	Builder	is	chosen,	the	value	is	the	name	of	the	macro.	
If	Code	Builder	is	chosen,	the	value	will	be	"[Event	Procedure]".	

If	the	On	Mouse	Down	box	is	blank,	the	property	value	is	an	empty	string.

Example

The	following	example	prints	the	value	of	the	OnMouseDown	property	in	the
Immediate	window	for	the	button	named	"OK"	on	the	"Order	Entry"	form.

Debug.Print	Forms("Order	Entry").Controls("OK").OnMouseDown

OnMouseMove	Property
							

Sets	or	returns	the	value	of	the	On	Mouse	Move	box	in	the	Properties	window
of	one	of	the	objects	in	the	Applies	To	list.	Read/write	String.

expression.OnMouseMove

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

Remarks

This	property	is	helpful	for	programmatically	changing	the	action	Microsoft
Access	takes	when	an	event	is	triggered.	For	example,	between	event	calls	you
may	want	to	change	an	expression's	parameters,	or	switch	from	an	event
procedure	to	an	expression	or	macro,	depending	on	the	circumstances	under
which	the	event	was	triggered.

The	MouseMove	event	occurs	when	the	user	moves	the	mouse	over	the	object.

The	OnMouseMove	value	will	be	one	of	the	following,	depending	on	the
selection	chosen	in	the	Choose	Builder	window	(accessed	by	clicking	the	Build
button	next	to	the	On	Mouse	Move	box	in	the	object's	Properties	window):

If	Expression	Builder	is	chosen,	the	value	will	be	"=expression",	where
expression	is	the	expression	from	the	Expression	Builder	window.	
If	Macro	Builder	is	chosen,	the	value	is	the	name	of	the	macro.	
If	Code	Builder	is	chosen,	the	value	will	be	"[Event	Procedure]".	

If	the	On	Mouse	Move	box	is	blank,	the	property	value	is	an	empty	string.

Example

The	following	example	prints	the	value	of	the	OnMouseMove	property	in	the
Immediate	window	for	the	button	named	"OK"	on	the	"Order	Entry"	form.

Debug.Print	Forms("Order	Entry").Controls("OK").OnMouseMove

OnMouseUp	Property
							

Sets	or	returns	the	value	of	the	On	Mouse	Up	box	in	the	Properties	window	of
one	of	the	objects	in	the	Applies	To	list.	Read/write	String.

expression.OnMouseUp

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

Remarks

This	property	is	helpful	for	programmatically	changing	the	action	Microsoft
Access	takes	when	an	event	is	triggered.	For	example,	between	event	calls	you
may	want	to	change	an	expression's	parameters,	or	switch	from	an	event
procedure	to	an	expression	or	macro,	depending	on	the	circumstances	under
which	the	event	was	triggered.

The	MouseUp	event	occurs	when	the	user	releases	a	mouse	button.

The	OnMouseUp	value	will	be	one	of	the	following,	depending	on	the	selection
chosen	in	the	Choose	Builder	window	(accessed	by	clicking	the	Build	button
next	to	the	On	Mouse	Up	box	in	the	object's	Properties	window):

If	Expression	Builder	is	chosen,	the	value	will	be	"=expression",	where
expression	is	the	expression	from	the	Expression	Builder	window.	
If	Macro	Builder	is	chosen,	the	value	is	the	name	of	the	macro.	
If	Code	Builder	is	chosen,	the	value	will	be	"[Event	Procedure]".	

If	the	On	Mouse	Up	box	is	blank,	the	property	value	is	an	empty	string.

Example

The	following	example	prints	the	value	of	the	OnMouseUp	property	in	the
Immediate	window	for	the	button	named	"OK"	on	the	"Order	Entry"	form.

Debug.Print	Forms("Order	Entry").Controls("OK").OnMouseUp

OnNoData	Property
							

Sets	or	returns	the	value	of	the	On	No	Data	box	in	the	Properties	window	of	a
report.	Read/write	String.

expression.OnNoData

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

Remarks

This	property	is	helpful	for	programmatically	changing	the	action	Microsoft
Access	takes	when	an	event	is	triggered.	For	example,	between	event	calls	you
may	want	to	change	an	expression's	parameters,	or	switch	from	an	event
procedure	to	an	expression	or	macro,	depending	on	the	circumstances	under
which	the	event	was	triggered.

The	NoData	event	occurs	after	Microsoft	Access	formats	a	report	for	printing
that	has	no	data	(the	report	is	bound	to	an	empty	recordset),	but	before	the	report
is	printed.

The	OnNoData	value	will	be	one	of	the	following,	depending	on	the	selection
chosen	in	the	Choose	Builder	window	(accessed	by	clicking	the	Build	button
next	to	the	On	No	Data	box	in	the	report's	Properties	window):

If	Expression	Builder	is	chosen,	the	value	will	be	"=expression",	where
expression	is	the	expression	from	the	Expression	Builder	window.	
If	Macro	Builder	is	chosen,	the	value	is	the	name	of	the	macro.	
If	Code	Builder	is	chosen,	the	value	will	be	"[Event	Procedure]".	

If	the	On	No	Data	box	is	blank,	the	property	value	is	an	empty	string.

Example

The	following	example	prints	the	value	of	the	OnNoData	property	in	the
Immediate	window	for	the	"Purchase	Order"	report.

Debug.Print	Reports("Purchase	Order").OnNoData

OnNotInList	Property
							

Sets	or	returns	the	value	of	the	On	Not	in	List	box	in	the	Properties	window	of
a	combo	box.	Read/write	String.

expression.OnNotInList

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

Remarks

This	property	is	helpful	for	programmatically	changing	the	action	Microsoft
Access	takes	when	an	event	is	triggered.	For	example,	between	event	calls	you
may	want	to	change	an	expression's	parameters,	or	switch	from	an	event
procedure	to	an	expression	or	macro,	depending	on	the	circumstances	under
which	the	event	was	triggered.

The	NotInList	event	occurs	when	the	user	enters	a	value	in	the	text	box	portion
of	a	combo	box	that	isn't	in	the	combo	box	list.

The	OnNotInList	value	will	be	one	of	the	following,	depending	on	the	selection
chosen	in	the	Choose	Builder	window	(accessed	by	clicking	the	Build	button
next	to	the	On	Not	in	List	box	in	the	combo	box's	Properties	window):

If	Expression	Builder	is	chosen,	the	value	will	be	"=expression",	where
expression	is	the	expression	from	the	Expression	Builder	window.	
If	Macro	Builder	is	chosen,	the	value	is	the	name	of	the	macro.	
If	Code	Builder	is	chosen,	the	value	will	be	"[Event	Procedure]".	

If	the	On	Not	in	List	box	is	blank,	the	property	value	is	an	empty	string.

Example

The	following	example	prints	the	value	of	the	OnNotInList	property	in	the
Immediate	window	for	the	"State"	combo	box	in	the	"Order	Entry"	form.

Debug.Print	Forms("Order	Entry").Controls("State").OnNotInList

OnOpen	Property
							

Sets	or	returns	the	value	of	the	On	Open	box	in	the	Properties	window	of	a
form	or	report.	Read/write	String.

expression.OnOpen

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

Remarks

This	property	is	helpful	for	programmatically	changing	the	action	Microsoft
Access	takes	when	an	event	is	triggered.	For	example,	between	event	calls	you
may	want	to	change	an	expression's	parameters,	or	switch	from	an	event
procedure	to	an	expression	or	macro,	depending	on	the	circumstances	under
which	the	event	was	triggered.

The	Open	event	occurs	when	a	form	is	opened,	but	before	the	first	record	is
displayed.	For	reports,	the	event	occurs	before	a	report	is	previewed	or	printed.

The	OnOpen	value	will	be	one	of	the	following,	depending	on	the	selection
chosen	in	the	Choose	Builder	window	(accessed	by	clicking	the	Build	button
next	to	the	On	Open	box	in	the	form	or	report's	Properties	window):

If	Expression	Builder	is	chosen,	the	value	will	be	"=expression",	where
expression	is	the	expression	from	the	Expression	Builder	window.	
If	Macro	Builder	is	chosen,	the	value	is	the	name	of	the	macro.	
If	Code	Builder	is	chosen,	the	value	will	be	"[Event	Procedure]".	

If	the	On	Open	box	is	blank,	the	property	value	is	an	empty	string.

Example

The	following	example	prints	the	value	of	the	OnOpen	property	in	the
Immediate	window	for	the	"Purchase	Order"	report.

Debug.Print	Reports("Purchase	Order").OnOpen

OnPage	Property
							

Sets	or	returns	the	value	of	the	On	Page	box	in	the	Properties	window	of	a
report.	Read/write	String.

expression.OnPage

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

Remarks

This	property	is	helpful	for	programmatically	changing	the	action	Microsoft
Access	takes	when	an	event	is	triggered.	For	example,	between	event	calls	you
may	want	to	change	an	expression's	parameters,	or	switch	from	an	event
procedure	to	an	expression	or	macro,	depending	on	the	circumstances	under
which	the	event	was	triggered.

The	Page	event	occurs	after	Microsoft	Access	formats	a	page	of	a	report	for
printing,	but	before	the	page	is	printed.

The	OnPage	value	will	be	one	of	the	following,	depending	on	the	selection
chosen	in	the	Choose	Builder	window	(accessed	by	clicking	the	Build	button
next	to	the	On	Page	box	in	the	report's	Properties	window):

If	Expression	Builder	is	chosen,	the	value	will	be	"=expression",	where
expression	is	the	expression	from	the	Expression	Builder	window.	
If	Macro	Builder	is	chosen,	the	value	is	the	name	of	the	macro.	
If	Code	Builder	is	chosen,	the	value	will	be	"[Event	Procedure]".	

If	the	On	Page	box	is	blank,	the	property	value	is	an	empty	string.

Example

The	following	example	prints	the	value	of	the	OnPage	property	in	the
Immediate	window	for	the	"Purchase	Order"	report.

Debug.Print	Reports("Purchase	Order").OnPage

OnPrint	Property
							

Sets	or	returns	the	value	of	the	On	Print	box	in	the	Properties	window	of	a
report	section.	Read/write	String.

expression.OnPrint

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

Remarks

This	property	is	helpful	for	programmatically	changing	the	action	Microsoft
Access	takes	when	an	event	is	triggered.	For	example,	between	event	calls	you
may	want	to	change	an	expression's	parameters,	or	switch	from	an	event
procedure	to	an	expression	or	macro,	depending	on	the	circumstances	under
which	the	event	was	triggered.

The	Print	event	occurs	after	data	in	a	report	section	is	formatted	for	printing,	but
before	the	section	is	printed.

The	OnPrint	value	will	be	one	of	the	following,	depending	on	the	selection
chosen	in	the	Choose	Builder	window	(accessed	by	clicking	the	Build	button
next	to	the	On	Print	box	in	the	report	section's	Properties	window):

If	Expression	Builder	is	chosen,	the	value	will	be	"=expression",	where
expression	is	the	expression	from	the	Expression	Builder	window.	
If	Macro	Builder	is	chosen,	the	value	is	the	name	of	the	macro.	
If	Code	Builder	is	chosen,	the	value	will	be	"[Event	Procedure]".	

If	the	On	Print	box	is	blank,	the	property	value	is	an	empty	string.

Example

The	following	example	prints	the	value	of	the	OnPrint	property	in	the
Immediate	window	for	the	"GroupHeader0"	section	in	the	"Purchase	Order"
report.

Debug.Print	Reports("Purchase	Order").Section("GroupHeader0").OnPrint

OnPush	Property
							

Sets	or	returns	the	value	of	the	On	Click	box	in	the	Properties	window	of	a
command	button.	Read/write	String.

expression.OnPush

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

Remarks

This	property	is	helpful	for	programmatically	changing	the	action	Microsoft
Access	takes	when	an	event	is	triggered.	For	example,	between	event	calls	you
may	want	to	change	an	expression's	parameters,	or	switch	from	an	event
procedure	to	an	expression	or	macro,	depending	on	the	circumstances	under
which	the	event	was	triggered.

Although	the	name	of	this	property	is	OnPush,	setting	this	property	actually	sets
the	value	of	the	On	Click	box.

The	OnPush	value	will	be	one	of	the	following,	depending	on	the	selection
chosen	in	the	Choose	Builder	window	(accessed	by	clicking	the	Build	button
next	to	the	On	Click	box	in	the	command	button's	Properties	window):

If	Expression	Builder	is	chosen,	the	value	will	be	"=expression",	where
expression	is	the	expression	from	the	Expression	Builder	window.	
If	Macro	Builder	is	chosen,	the	value	is	the	name	of	the	macro.	
If	Code	Builder	is	chosen,	the	value	will	be	"[Event	Procedure]".	

If	the	On	Click	box	is	blank,	the	property	value	is	an	empty	string.

Example

The	following	example	prints	the	value	of	the	OnPush	property	in	the
Immediate	window	for	the	"OK"	button	on	the	"Order	Entry"	form.

Debug.Print	Forms("Order	Entry").Controls("OK").OnResize	

OnRecordExit	Property
							

Returns	or	sets	a	String	indicating	which	macro,	event	procedure,	or	user-
defined	function	runs	when	the	RecordExit	event	occurs.	Read/write.

expression.OnRecordExit

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

Remarks

Valid	values	for	this	property	are	"macroname"	where	macroname	is	the	name	of
macro,	"[Event	Procedure]"	which	indicates	the	event	procedure	associated	with
the	RecordExit	event	for	the	specified	object,	or	"=functionname()"	where
functionname	is	the	name	of	a	user-defined	function.	For	a	more	detailed
discussion	of	event	properties,	see	"Event	Properties."

Example

The	following	example	specifies	that	when	the	RecordExit	event	occurs	on	the
first	form	of	the	current	project,	the	associated	event	procedure	should	run.

Forms(0).OnRecordExit	=	"[Event	Procedure]"

OnResize	Property
							

Sets	or	returns	the	value	of	the	On	Resize	box	in	the	Properties	window	of	a
form.	Read/write	String.

expression.OnResize

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

Remarks

This	property	is	helpful	for	programmatically	changing	the	action	Microsoft
Access	takes	when	an	event	is	triggered.	For	example,	between	event	calls	you
may	want	to	change	an	expression's	parameters,	or	switch	from	an	event
procedure	to	an	expression	or	macro,	depending	on	the	circumstances	under
which	the	event	was	triggered.	

The	Resize	event	occurs	when	a	form	is	opened	and	whenever	the	size	of	a	form
changes.

The	OnResize	value	will	be	one	of	the	following,	depending	on	the	selection
chosen	in	the	Choose	Builder	window	(accessed	by	clicking	the	Build	button
next	to	the	On	Resize	box	in	the	form's	Properties	window):

If	Expression	Builder	is	chosen,	the	value	will	be	"=expression",	where
expression	is	the	expression	from	the	Expression	Builder	window.	
If	Macro	Builder	is	chosen,	the	value	is	the	name	of	the	macro.	
If	Code	Builder	is	chosen,	the	value	will	be	"[Event	Procedure]".	

If	the	On	Resize	box	is	blank,	the	property	value	is	an	empty	string.

Example

The	following	example	prints	the	value	of	the	OnResize	property	in	the
Immediate	window	for	the	"Order	Entry"	form.

Debug.Print	Forms("Order	Entry").OnResize	

OnRetreat	Property
							

Sets	or	returns	the	value	of	the	On	Retreat	box	in	the	Properties	window	of	a
report	section.	Read/write	String.

expression.OnRetreat

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

Remarks

This	property	is	helpful	for	programmatically	changing	the	action	Microsoft
Access	takes	when	an	event	is	triggered.	For	example,	between	event	calls	you
may	want	to	change	an	expression's	parameters,	or	switch	from	an	event
procedure	to	an	expression	or	macro,	depending	on	the	circumstances	under
which	the	event	was	triggered.

The	Retreat	event	occurs	when	Microsoft	Access	returns	to	a	previous	report
section	during	report	formatting.

The	OnRetreat	value	will	be	one	of	the	following,	depending	on	the	selection
chosen	in	the	Choose	Builder	window	(accessed	by	clicking	the	Build	button
next	to	the	On	Retreat	box	in	the	report	section's	Properties	window):

If	Expression	Builder	is	chosen,	the	value	will	be	"=expression",	where
expression	is	the	expression	from	the	Expression	Builder	window.	
If	Macro	Builder	is	chosen,	the	value	is	the	name	of	the	macro.	
If	Code	Builder	is	chosen,	the	value	will	be	"[Event	Procedure]".	

If	the	On	Retreat	box	is	blank,	the	property	value	is	an	empty	string.

Example

The	following	example	prints	the	value	of	the	OnRetreat	property	in	the
Immediate	window	for	the	"GroupHeader0"	section	in	the	"Purchase	Order"
report.

Debug.Print	Reports("Purchase	Order").Section("GroupHeader0").OnRetreat

OnTimer	Property
							

Sets	or	returns	the	value	of	the	On	Timer	box	in	the	Properties	window	of	a
form.	Read/write	String.

expression.OnTimer

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

Remarks

This	property	is	helpful	for	programmatically	changing	the	action	Microsoft
Access	takes	when	an	event	is	triggered.	For	example,	between	event	calls	you
may	want	to	change	an	expression's	parameters,	or	switch	from	an	event
procedure	to	an	expression	or	macro,	depending	on	the	circumstances	under
which	the	event	was	triggered.

The	Timer	event	occurs	for	a	form	at	regular	intervals	as	specified	by	the	form's
TimerInterval	property.

The	OnTimer	value	will	be	one	of	the	following,	depending	on	the	selection
chosen	in	the	Choose	Builder	window	(accessed	by	clicking	the	Build	button
next	to	the	On	Timer	box	in	the	form's	Properties	window):

If	Expression	Builder	is	chosen,	the	value	will	be	"=expression",	where
expression	is	the	expression	from	the	Expression	Builder	window.	
If	Macro	Builder	is	chosen,	the	value	is	the	name	of	the	macro.	
If	Code	Builder	is	chosen,	the	value	will	be	"[Event	Procedure]".	

If	the	On	Timer	box	is	blank,	the	property	value	is	an	empty	string.

Example

The	following	example	prints	the	value	of	the	OnTimer	property	in	the
Immediate	window	for	the	"Order	Entry"	form.

Debug.Print	Forms("Order	Entry").OnTimer	

OnUndo	Property
							

Returns	or	sets	a	String	indicating	which	macro,	event	procedure,	or	user-
defined	function	runs	when	the	Undo	event	occurs.	Read/write.

expression.OnUndo

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

Remarks

Valid	values	for	this	property	are	"macroname"	where	macroname	is	the	name	of
macro,	"[Event	Procedure]"	which	indicates	the	event	procedure	associated	with
the	Undo	event	for	the	specified	object,	or	"=functionname()"	where
functionname	is	the	name	of	a	user-defined	function.	For	a	more	detailed
discussion	of	event	properties,	see	"Event	Properties."

Example

The	following	example	specifies	that	when	the	Undo	event	occurs	on	the	first
form	of	the	current	project,	the	associated	event	procedure	should	run.

Forms(0).OnUndo	=	"[Event	Procedure]"

The	following	example	specifies	that	when	the	Undo	event	occurs	in	any	text
box	on	the	first	form	of	the	current	project,	the	associated	event	procedure
should	run.

Dim	ctlLoop	As	Control

For	Each	ctlLoop	In	Forms(0).Controls

				If	ctlLoop.Type	=	acTextBox	Then

								ctlLoop.OnUndo	=	"[Event	Procedure]"

				End	If

Next	ctlLoop

OnUnload	Property
							

Sets	or	returns	the	value	of	the	On	Unload	box	in	the	Properties	window	of	a
form.	Read/write	String.

expression.OnUnload

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

Remarks

This	property	is	helpful	for	programmatically	changing	the	action	Microsoft
Access	takes	when	an	event	is	triggered.	For	example,	between	event	calls	you
may	want	to	change	an	expression's	parameters,	or	switch	from	an	event
procedure	to	an	expression	or	macro,	depending	on	the	circumstances	under
which	the	event	was	triggered.

The	Unload	event	occurs	after	a	form	is	closed	but	before	it's	removed	from	the
screen.

The	OnUnload	value	will	be	one	of	the	following,	depending	on	the	selection
chosen	in	the	Choose	Builder	window	(accessed	by	clicking	the	Build	button
next	to	the	On	Unload	box	in	the	form's	Properties	window):

If	Expression	Builder	is	chosen,	the	value	will	be	"=expression",	where
expression	is	the	expression	from	the	Expression	Builder	window.	
If	Macro	Builder	is	chosen,	the	value	is	the	name	of	the	macro.	
If	Code	Builder	is	chosen,	the	value	will	be	"[Event	Procedure]".	

If	the	On	Unload	box	is	blank,	the	property	value	is	an	empty	string.

Example

The	following	example	prints	the	value	of	the	OnUnload	property	in	the
Immediate	window	for	the	"Order	Entry"	form.

Debug.Print	Forms("Order	Entry").OnUnload	

OnUpdated	Property
							

Sets	or	returns	the	value	of	the	On	Updated	box	in	the	Properties	window	of	an
OLE	container	control	(such	as	a	bound	or	unbound	object	frame	or	custom
control).	Read/write	String.

expression.OnUpdated

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

Remarks

This	property	is	helpful	for	programmatically	changing	the	action	Microsoft
Access	takes	when	an	event	is	triggered.	For	example,	between	event	calls	you
may	want	to	change	an	expression's	parameters,	or	switch	from	an	event
procedure	to	an	expression	or	macro,	depending	on	the	circumstances	under
which	the	event	was	triggered.

The	OnUpdated	value	will	be	one	of	the	following,	depending	on	the	selection
chosen	in	the	Choose	Builder	window	(accessed	by	clicking	the	Build	button
next	to	the	On	Updated	box	in	the	control's	Properties	window):

If	Expression	Builder	is	chosen,	the	value	will	be	"=expression",	where
expression	is	the	expression	from	the	Expression	Builder	window.	
If	Macro	Builder	is	chosen,	the	value	is	the	name	of	the	macro.	
If	Code	Builder	is	chosen,	the	value	will	be	"[Event	Procedure]".	

If	the	On	Updated	box	is	blank,	the	property	value	is	an	empty	string.

Example

The	following	example	prints	the	value	of	the	OnUpdated	property	in	the
Immediate	window	for	the	"Customer	Picture"	control	on	the	"Order	Entry"
form.

Debug.Print	Forms("Order	Entry").Controls("Customer	Picture").OnUpdated

Show	All

OpenArgs	Property
							

Determines	the	string	expression	specified	by	the	OpenArgs	argument	of	the
OpenForm	method	that	opened	a	form.	Read/write	Variant.

expression.OpenArgs

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

Remarks

This	property	is	available	only	by	using	a	macro	or	by	using	Visual	Basic	with
the	OpenForm	method	of	the	DoCmd	object.	This	property	setting	is	read-only
in	all	views.

To	use	the	OpenArgs	property,	open	a	form	by	using	the	OpenForm	method	of
the	DoCmd	object	and	set	the	OpenArgs	argument	to	the	desired	string
expression.	The	OpenArgs	property	setting	can	then	be	used	in	code	for	the
form,	such	as	in	an	Open	event	procedure.	You	can	also	refer	to	the	property
setting	in	a	macro,	such	as	an	Open	macro,	or	an	expression,	such	as	an
expression	that	sets	the	ControlSource	property	for	a	control	on	the	form.

For	example,	suppose	that	the	form	you	open	is	a	continuous-form	list	of	clients.
If	you	want	the	focus	to	move	to	a	specific	client	record	when	the	form	opens,
you	can	set	the	OpenArgs	property	to	the	client's	name,	and	then	use	the
FindRecord	action	in	an	Open	macro	to	move	the	focus	to	the	record	for	the
client	with	the	specified	name.

mk:@MSITStore:acmain10.chm::/html/acactFindRecord.htm

Example

The	following	example	uses	the	OpenArgs	property	to	open	the	Employees
form	to	a	specific	employee	record	and	demonstrates	how	the	OpenForm
method	sets	the	OpenArgs	property.	You	can	run	this	procedure	as
appropriate	—	for	example,	when	the	AfterUpdate	event	occurs	for	a	custom
dialog	box	used	to	enter	new	information	about	an	employee.

Sub	OpenToCallahan()

				DoCmd.OpenForm	"Employees",	acNormal,	,	,	acReadOnly,	_

					,	"Callahan"

End	Sub

Sub	Form_Open(Cancel	As	Integer)

				Dim	strEmployeeName	As	String

				'	If	OpenArgs	property	contains	employee	name,	find

				'	corresponding	employee	record	and	display	it	on	form.	For

				'	example,if	the	OpenArgs	property	contains	"Callahan",

				'	move	to	first	"Callahan"	record.

				strEmployeeName	=	Forms!Employees.OpenArgs

				If	Len(strEmployeeName)	>	0	Then

								DoCmd.GoToControl	"LastName"

								DoCmd.FindRecord	strEmployeeName,	,	True,	,	True,	,	True

				End	If

End	Sub

The	next	example	uses	the	FindFirst	method	to	locate	the	employee	named	in
the	OpenArgs	property.

Private	Sub	Form_Open(Cancel	As	Integer)

				If	Not	IsNull(Me.OpenArgs)	Then

								Dim	strEmployeeName	As	String

								strEmployeeName	=	Me.OpenArgs

								Dim	RS	As	DAO.Recordset

								Set	RS	=	Me.RecordsetClone

								RS.FindFirst	"LastName	=	'"	&	strEmployeeName	&	"'"

								If	Not	RS.NoMatch	Then

												Me.Bookmark	=	RS.Bookmark

								End	If

				End	If

End	Sub

Operator	Property
							

You	can	use	the	Operator	property	to	return	the	operator	value	for	the
conditional	format	or	data	validation	of	a	FormatCondition	object.	Read-only
AcFormatConditionOperator.

AcFormatConditionOperator	can	be	one	of	these	AcFormatConditionOperator
constants.
acBetween
acEqual
acGreaterThan
acGreaterThanOrEqual
acLessThan
acLessThanOrEqual
acNotBetween
acNotEqual

expression.Operator

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

Remarks

The	Operator	property	is	available	only	by	using	Visual	Basic.

The	Operator	property's	intrinsic	constants	are	used	in	conjunction	with	the
Expression1	and	Expression2	properties	and	the	Add	method	of	the
FormatConditions	object	for	conditional	formatting	and	data	validation.

Show	All

OptionValue	Property
							

Each	control	in	an	option	group	has	a	numeric	value	that	you	can	set	with	the
OptionValue	property.	Read/write	Long.

expression.OptionValue

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

Remarks

When	the	control	is	selected,	the	number	is	assigned	to	the	option	group.	If	the
option	group	is	bound	to	a	field,	the	value	of	the	selected	control's	OptionValue
property	is	stored	in	the	field.

For	example,	this	Region	option	group	is	bound	to	the	Region	field	in	a	table.
The	Europe	button	has	an	OptionValue	property	setting	of	1,	the	Asia	button
has	a	setting	of	2,	and	the	Africa	button	has	a	setting	of	3.	When	one	of	these
buttons	is	selected,	the	Region	option	group	value	will	be	the	same	as	the
OptionValue	property	setting	for	the	selected	control.	In	this	case,	because	the
Region	option	group	is	bound	to	the	Region	field,	the	value	of	this	field	in	the
table	also	equals	2.

Note			The	OptionValue	property	applies	only	to	the	check	box,	option	button,
and	toggle	button	controls	in	an	option	group.

You	can	set	the	OptionValue	property	by	using	the	control's	property	sheet,	a
macro,	or	Visual	Basic.

Unless	you	change	the	OptionValue	property	yourself,	the	first	control	you
place	in	an	option	group	has	a	value	of	1,	the	second	control	has	a	value	of	2,
and	so	on.

The	OptionValue	property	is	only	available	when	the	control	is	placed	inside	an
option	group	control.	When	a	check	box,	a	toggle	button,	or	an	option	button
isn't	in	an	option	group,	the	control	has	no	OptionValue	property.	Instead,	each
such	control	has	a	ControlSource	property,	and	the	value	of	each	control	will	be
either	True	if	selected	or	False	if	not	selected.

Example

The	following	example	sets	the	OptionValue	property	for	three	option	buttons
in	the	"Ship	Method	Group"	option	group	when	a	form	opens.	When	an	option
button	is	selected	in	the	option	group,	a	message	displays	indicating	the	shipper's
assigned	ID	number.

Private	Sub	Form_Open(Cancel	As	Integer)

	

				Me.Controls("ABC	Couriers").OptionValue	=	15876

				Me.Controls("Speedy	Delivery").OptionValue	=	742

				Me.Controls("Lightning	Express").OptionValue	=	1256

		

End	Sub

	

Private	Sub	Ship_Method_Group_Click()

	

				MsgBox	"The	ID	for	the	selected	shipper	is	"	&	

									Me.Controls("Ship	Method	Group").Value

End	Sub

Show	All

OrderBy	Property
							

You	can	use	the	OrderBy	property	to	specify	how	you	want	to	sort	records	in	a
form,	query,	report,	or	table.	Read/write	String.

expression.OrderBy

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

Remarks

The	OrderBy	property	is	a	string	expression	that	is	the	name	of	the	field	or
fields	on	which	you	want	to	sort	records.	When	you	use	more	than	one	field
name,	separate	the	names	with	a	comma	(,).	Use	the	OrderBy	property	to	save
an	ordering	value	and	apply	it	at	a	later	time.	OrderBy	values	are	saved	with	the
objects	in	which	they	are	created.	They	are	automatically	loaded	when	the	object
is	opened,	but	they	aren't	automatically	applied.

When	you	set	the	OrderBy	property	by	entering	one	or	more	field	names,	the
records	are	sorted	in	ascending	order.	Similarly,	Visual	Basic	sorts	these	fields	in
ascending	order	by	default.

If	you	want	to	sort	records	in	descending	order,	type	DESC	at	the	end	of	the
string	expression.	For	example,	to	sort	customer	records	in	descending	order	by
contact	name,	set	the	OrderBy	property	to	"ContactName	DESC".

You	can	set	the	OrderBy	property	by	using	the	object's	property	sheet,	a	macro,
or	Visual	Basic.

For	reports,	the	OrderByOn	property	must	be	set	to	Yes	to	apply	the	sort	order
specified	by	the	object's	OrderBy	property.	For	forms,	select	the	field	by	which
you	want	to	sort	the	records	and	either	click	the	appropriate	Sort	button	on	the
toolbar,	or	point	to	Sort	on	the	Records	menu	and	click	the	appropriate
command	on	the	submenu.	You	can	also	set	the	OrderByOn	property	for	either
forms	or	reports	by	using	Visual	Basic.

Setting	the	OrderBy	property	for	an	open	report	will	run	the	report's	Close	and
Open	event	procedures.

Note			When	a	new	object	is	created,	it	inherits	the	RecordSource,	Filter,
OrderBy,	and	OrderByOn	properties	of	the	table	or	query	it	was	created	from.
For	forms	and	reports,	inherited	filters	aren't	automatically	applied	when	an
object	is	opened.

Show	All

OrderByOn	Property
							

You	can	use	the	OrderByOn	property	to	specify	whether	an	object's	OrderBy
property	setting	is	applied.	Read/write	Boolean.

expression.OrderByOn

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

Remarks

The	OrderByOn	property	uses	the	following	settings.

Setting Visual	Basic Description

Yes True	 The	OrderBy	property	setting	is	applied	when
the	object	is	opened.

No False	 (Default)	The	OrderBy	property	setting	isn't
applied	when	the	object	is	opened.

For	reports,	you	can	set	the	OrderByOn	property	by	using	the	report's	property
sheet,	a	macro,	or	Visual	Basic.

For	all	other	objects,	you	can	set	the	OrderByOn	property	by	clicking	a	Sort
button	on	the	toolbar	or	by	using	Visual	Basic.

When	a	new	object	is	created,	it	inherits	the	RecordSource,	Filter,	OrderBy,
OrderByOn,	and	FilterOn	properties	of	the	table	or	query	it	was	created	from.

Example

The	following	example	displays	a	message	indicating	the	state	of	the
OrderByOn	property	for	the	"Mailing	List"	form.

MsgBox	"OrderByOn	property	is	"	&	Forms("Mailing	List").OrderByOn

Show	All

OrganizeInFolder	Property
							

You	can	use	the	OrganizeInFolder	property	to	specify	or	determine	if	all
supporting	files,	such	as	image	files	are	stored	in	their	own	folder	or	with	the
data	access	page.	Read/write	Boolean.

expression.OrganizeInFolder

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

Remarks

The	OrganizeInFolder	property	uses	the	following	settings.

Setting Visual	Basic Description

Yes True	
(Default)	The	supporting	files	are	organized	in
a	folder	when	you	save	the	document	as	a	data
access	page.

No False	 The	supporting	files	are	saved	in	the	same
folder	as	the	data	access	page.

The	OrganizeInFolder	property	is	available	only	by	using	Visual	Basic.

The	new	folder	is	created	in	the	folder	where	you	have	saved	the	Web	page,	and
is	named	after	the	document.	If	long	file	names	are	used,	a	suffix	is	added	to	the
folder	name.	The	FolderSuffix	property	returns	the	folder	suffix	for	the
language	support	you	have	selected	or	installed,	or	the	default	folder	suffix.

If	you	save	a	document	that	was	previously	saved	with	the	OrganizeInFolder
property	set	to	a	different	value,	Microsoft	Access	automatically	moves	the
supporting	files	into	or	out	of	the	folder,	as	appropriate.

If	you	don't	use	long	file	names	(that	is,	if	the	UseLongFileNames	property	is
set	to	False),	Microsoft	Access	automatically	saves	any	supporting	files	in	a
separate	folder.	The	files	cannot	be	saved	in	the	same	folder	as	the	Web	page.

Example

This	example	specifies	that	all	image	files	are	saved	in	the	same	folder	when	the
document	is	saved	as	a	Web	page.

Application.DefaultWebOptions.OrganizeInFolder	=	False

Show	All

Orientation	Property
							

Orientation	property	as	it	applies	to	the	Printer	object.

You	can	use	the	Orientation	property	to	specify	or	determine	the	print
orientation.	Read/write	AcPrintOrientation.

AcPrintOrientation	can	be	one	of	these	AcPrintOrientation	constants.
acPRORLandscape
acPRORPortrait

expression.Orientation

expression			Required.	An	expression	that	returns	one	of	the	above	objects.

Orientation	property	as	it	applies	to	the	Form	and	Report	objects.

You	can	use	the	Orientation	property	to	specify	or	determine	the	view
orientation.	Read/write	Byte.

expression.Orientation

expression			Required.	An	expression	that	returns	one	of	the	above	objects.

Remarks

The	Orientation	property	uses	the	following	settings.
Setting Visual	Basic Description

Left-to-Right 0 Sets	the	view	orientation	to	left	to
right.

Right-to-Left 1 Sets	the	view	orientation	to	right	to
left.

You	can	set	this	property	by	using	the	property	sheet	or	Visual	Basic.	

Example

As	it	applies	to	the	Printer	object.

The	following	example	sets	the	print	orientation	to	landscape.

Printer.Orientation	=	acPROLandscape	

As	it	applies	to	the	Form	and	Report	objects.

The	following	example	sets	the	view	orientation	to	right-to-left	for	the	"Purchase
Order"	report.

Reports("Purchase	Order").Orientation	=	1	

Show	All

Page	Property
							

The	Page	property	specifies	the	current	page	number	when	a	form	or	report	is
being	printed.	Read/write	Long.

expression.Page

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

Remarks

Although	you	can	set	the	Page	property	to	a	value,	you	most	often	use	this
property	to	return	information	about	page	numbers.

You	can	use	the	Page	property	in	an	expression,	a	macro,	or	Visual	Basic.

This	property	is	only	available	in	Print	Preview	or	when	printing.

Example

The	following	example	updates	the	report's	caption	to	display	the	current
position	in	the	report	as	the	user	pages	back	and	forth	in	the	report.

Private	Sub	Report_Page()

				Me.Caption	=	"Now	Viewing	Page	"	&	Me.Page	&	"	Of	"	&	Me.Pages

&	"	Page(s)"

End	Sub

Show	All

PageFooter	Property
							

You	can	use	the	PageFooter	property	to	specify	whether	a	report's	page	footer	is
printed	on	the	same	page	as	a	report	footer.	Read/write	Byte.

expression.PageFooter

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

Remarks

The	PageHeader	and	PageFooter	properties	use	the	following	settings.

Setting Visual	Basic Description

All	Pages 0 (Default)	The	page	footer	is	printed	on
all	pages	of	a	report.

Not	With	Rpt	Hdr 1 The	page	footer	isn't	printed	on	the
same	page	as	the	report	header.

Not	With	Rpt	Ftr 2

The	page	footer	isn't	printed	on	the
same	page	as	the	report	footer.
Microsoft	Access	prints	the	report
footer	on	a	new	page.

Not	With	Rpt	Hdr/Ftr 3

The	page	footer	isn't	printed	on	a	page
that	has	either	a	report	header	or	a
report	footer.	Microsoft	Access	prints
the	report	footer	on	a	new	page.

You	can	set	these	properties	by	using	the	report's	property	sheet,	a	macro,	or
Visual	Basic.

You	can	set	the	PageFooter	property	only	in	report	Design	view.

Microsoft	Access	normally	prints	report	page	footers	on	every	page	in	a	report,
including	the	first	and	last.

In	report	Design	view,	click	Page	Header/Footer	on	the	View	menu	to	display
the	page	footer	sections.

Note			When	forms	are	printed,	page	footers	are	always	printed	on	all	pages.

Example

The	following	example	sets	the	PageFooter	property	for	a	report	to	Not	With
Rpt	Hdr.	To	run	this	example,	type	the	following	line	in	the	Debug	window	for	a
report	named	Report1.

Reports!Report1.PageFooter	=	1

Show	All

PageHeader	Property
							

You	can	use	the	PageHeader	property	to	specify	whether	a	report's	page	header
is	printed	on	the	same	page	as	a	report	header.	Read/write	Byte.

expression.PageHeader

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

Remarks

The	PageHeader	property	use	the	following	settings.

Setting Visual	Basic Description

All	Pages 0 (Default)	The	page	header	is	printed	on
all	pages	of	a	report.

Not	With	Rpt	Hdr 1 The	page	header	isn't	printed	on	the
same	page	as	the	report	header.

Not	With	Rpt	Ftr 2

The	page	header	isn't	printed	on	the
same	page	as	the	report	footer.
Microsoft	Access	prints	the	report
footer	on	a	new	page.

Not	With	Rpt	Hdr/Ftr 3

The	page	header	isn't	printed	on	a	page
that	has	either	a	report	header	or	a
report	footer.	Microsoft	Access	prints
the	report	footer	on	a	new	page.

You	can	set	these	properties	by	using	the	report's	property	sheet,	a	macro,	or
Visual	Basic.

You	can	set	the	PageHeader	property	only	in	report	Design	view.

Microsoft	Access	normally	prints	report	page	headers	on	every	page	in	a	report,
including	the	first	and	last.

In	report	Design	view,	click	Page	Header/Footer	on	the	View	menu	to	display
the	page	header	and	page	footer	sections.

Note			When	forms	are	printed,	page	headers	are	always	printed	on	all	pages.

Example

The	following	example	sets	the	PageHeader	property	for	a	report	to	Not	With
Rpt	Hdr.	To	run	this	example,	type	the	following	line	in	the	Debug	window	for	a
report	named	Report1.

Reports!Report1.PageHeader	=	1

Show	All

PageIndex	Property
							

You	can	use	the	PageIndex	property	to	specify	or	determine	the	position	of	a
Page	object	within	a	Pages	collection.	The	PageIndex	property	specifies	the
order	in	which	the	pages	on	a	tab	control	appear.	Read/write	Integer.

expression.PageIndex

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

Remarks

The	PageIndex	property	setting	is	an	Integer	value	between	0	and	the	Pages
collection	Count	property	setting	minus	1.

You	can	set	the	PageIndex	property	by	using	a	Page	object's	property	sheet,	a
macro,	or	Visual	Basic.

The	PageIndex	property	can	be	set	in	any	view.

Changing	the	value	of	the	PageIndex	property	changes	the	location	of	a	Page
object	in	the	Pages	collection	and	visually	changes	the	order	of	pages	on	a	tab
control.

You	can	also	change	the	order	of	Page	objects	in	the	Pages	collection	by	using
the	Page	Order	dialog	box	available	by	right-clicking	the	tab	control	in	Design
view	and	then	clicking	Page	Order.

Example

The	following	example	moves	the	page	named	"Notes"	on	the	tab	control	named
"Information"	on	the	"Order	Entry"	form	to	the	first	page.

Forms("Order	Entry").Controls("Information").Pages("Notes").PageIndex

	

Show	All

Pages	Property
							

Pages	property	as	it	applies	to	the	Form	and	Report	objects.

You	can	use	the	Pages	property	to	return	information	needed	to	print	page
numbers	in	a	form	or	report.	Read/write	Integer.

expression.Pages

expression			Required.	An	expression	that	returns	one	of	the	above	objects.

Remarks

You	can	use	the	Pages	properties	in	an	expression,	a	macro,	or	Visual	Basic.

This	property	is	only	available	in	Print	Preview	or	when	printing.

To	refer	to	the	Pages	property	in	a	macro	or	Visual	Basic,	the	form	or	report
must	include	a	text	box	whose	ControlSource	property	is	set	to	an	expression
that	uses	Pages.	For	example,	you	can	use	the	following	expressions	as	the
ControlSource	property	setting	for	a	text	box	in	a	page	footer.

This	expression Prints

=Page A	page	number	(for	example,	1,	2,	3)	in	the
page	footer.

="Page	"	&	Page	&	"	of	"	&
Pages

"Page	n	of	nn"	(for	example,	Page	1	of	5,
Page	2	of	5)	in	the	page	footer.

=Pages The	total	number	pages	in	the	form	or	report
(for	example,	5).

Pages	property	as	it	applies	to	the	Control	and	TabControl	objects.

Returns	the	number	of	pages	in	a	control	that	supports	tabbed	pages	(for
example,	a	TabControl	object).	Read-only.

expression.Pages

expression			Required.	An	expression	that	returns	one	of	the	above	objects.

Example

As	it	applies	to	the	Form	and	Report	objects.

The	following	example	displays	a	message	that	tells	how	many	pages	the	report
contains.	For	this	example	to	work,	the	report	must	include	a	text	box	for	which
the	ControlSource	property	is	set	to	the	expression	=Pages.	To	test	this
example,	paste	the	following	code	into	the	Page	Event	for	the	Alphabetical	List
of	Products	form.

Dim	intTotalPages	As	Integer

Dim	strMsg	As	String

intTotalPages	=	Me.Pages

strMsg	=	"This	report	contains	"	&	intTotalPages	&	"	pages."

MsgBox	strMsg

As	it	applies	to	the	Control	and	TabControl	objects.

The	following	example	displays	a	message	indicating	the	number	of	tabbed
pages	on	tab	control	TabCtl1.

MsgBox	"Number	of	pages	in	TabCtl1:"	&	TabCtl1.Pages.Count

Show	All

Painting	Property
							

You	can	use	the	Painting	property	to	specify	whether	forms	or	reports	are
repainted.	Read/write	Boolean.

expression.Painting

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

Remarks

The	Painting	property	uses	the	following	settings.

Setting Description
True		 (Default)	The	form	or	report	is	repainted.
False		 The	form	or	report	isn't	repainted.
You	can	set	this	property	by	using	a	macro	or	Visual	Basic.

This	property	can	be	set	and	applies	only	in	Form	view	and	is	unavailable	in
other	views.

The	Painting	property	is	similar	to	the	Echo	action.	However,	the	Painting
property	prevents	repainting	of	a	single	form	or	report,	whereas	the	Echo	action
prevents	repainting	of	all	open	windows	in	an	application.

Setting	the	Painting	property	for	a	form	or	report	to	False	also	prevents	all
controls	(except	subform	or	subreport	controls)	on	a	form	or	report	from	being
repainted.	To	prevent	a	subform	or	subreport	control	from	being	repainted,	you
must	set	the	Painting	property	for	the	subform	or	subreport	to	False.	(Note	that
you	set	the	Painting	property	for	the	subform	or	subreport,	not	the	subform	or
subreport	control.)

The	Painting	property	is	automatically	set	to	True	whenever	the	form	or	report
gets	or	loses	the	focus.	You	can	set	this	property	to	False	while	you	are	working
on	a	form	or	report	if	you	don't	want	to	see	changes	to	the	form	or	report	or	to	its
controls.	For	example,	if	a	form	has	a	set	of	controls	that	are	automatically
resized	when	the	form	is	resized	and	you	don't	want	the	user	to	see	each
individual	control	move,	you	can	turn	Painting	off,	and	then	move	all	of	the
controls,	then	turn	Painting	back	on.

mk:@MSITStore:acmain10.chm::/html/acactEcho.htm

Example

The	following	example	uses	the	Painting	property	to	enable	or	disable	form
painting	depending	on	whether	the	SetPainting	variable	is	set	to	True	or	False.
If	form	painting	is	turned	off,	Microsoft	Access	displays	the	hourglass	icon
while	painting	is	turned	off.

Public	Sub	EnablePaint(ByRef	frmName	As	Form,	_

																							ByVal	SetPainting	As	Integer)

				frmName.Painting	=	SetPainting

				

				'	Form	painting	is	turned	off.

				If	SetPainting	=	False	Then

								DoCmd.Hourglass	True

				Else

								DoCmd.Hourglass	False

				End	If

				

End	Sub

Show	All

PaintPalette	Property
							

You	can	use	the	PaintPalette	property	to	specify	a	palette	to	be	used	by	a	form
or	report.	Read/write	Variant.

expression.PaintPalette

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

Remarks

You	can	set	the	PaintPalette	property	by	using	a	macro	or	Visual	Basic.	The
property	setting	must	be	a	String	data	type	containing	the	palette	information.

You	can	set	the	PaintPalette	property	by	assigning	the	value	of	the
ObjectPalette	property	to	the	PaintPalette	property	in	a	macro	or	Visual	Basic,
by	setting	the	PaletteSource	property	(in	which	case	Microsoft	Access
automatically	sets	the	PaintPalette	property	to	this	PaletteSource),	or	by	setting
the	PaintPalette	property	of	one	form	or	report	to	the	PaintPalette	property	of
another	form	or	report.

For	a	form,	you	can	set	the	PaintPalette	property	in	form	Design	view	and	Form
view.

For	a	report,	you	can	set	the	PaintPalette	property	in	report	Design	view	only.

When	you	set	the	PaintPalette	property,	Microsoft	Access	makes	a	copy	of	the
palette	that	you	specify	and	saves	it	with	the	form	or	report.	The	palette	is	then
available	if	you	modify	that	form	or	report.

Changes	to	the	palette	you	specified	when	you	set	the	PaintPalette	property
don't	affect	the	copy	of	the	palette	stored	with	the	form	or	report.	If	you	want	to
update	the	copy	of	the	palette	stored	with	the	form	or	report,	you	must	rerun	the
code	or	macro	that	sets	the	PaintPalette	property	or	reset	the	PaletteSource
property	when	the	form	or	report	is	open.

When	you	set	the	PaintPalette	property	for	a	form	or	report,	Microsoft	Access
automatically	updates	its	PaletteSource	property.	Conversely,	when	you	set	the
PaletteSource	property	for	a	form	or	report,	the	PaintPalette	property	is	also
updated.	For	example,	when	you	specify	a	custom	palette	with	the	PaintPalette
property,	the	PaletteSource	property	setting	is	changed	to	(Custom).	The
PaintPalette	property	(which	is	available	only	in	a	macro	or	Visual	Basic)	is
used	to	set	the	palette	for	the	form	or	report.	The	PaletteSource	property	gives
you	a	way	to	set	the	palette	for	the	form	or	report	in	the	property	sheet	by	using
an	existing	graphics	file.

Note			Windows	can	have	only	one	color	palette	active	at	a	time.	Microsoft

Access	allows	you	to	have	multiple	graphics	on	a	form,	each	using	a	different
color	palette.	The	PaintPalette	and	PaletteSource	properties	let	you	specify
which	color	palette	a	form	should	use	when	displaying	graphics.

You	can	use	the	ObjectPalette	property	to	make	the	palette	of	an	application
associated	with	an	OLE	object,	bitmap,	or	other	graphic	contained	in	a	control
on	a	form	or	report	available	to	the	PaintPalette	property.	For	example,	to	make
the	palette	used	in	Microsoft	Graph	available	when	you're	designing	a	form	in
Microsoft	Access,	you	set	the	form's	PaintPalette	property	to	the	ObjectPalette
value	of	an	existing	chart	control.

Example

The	ObjectPalette	and	PaintPalette	properties	are	useful	for	programmatically
altering	the	color	palette	in	use	by	an	open	form	at	run	time.	A	common	use	of
these	properties	is	to	set	the	current	form's	PaintPalette	property	to	the	palette
of	a	graphic	displayed	in	a	control	that	has	the	focus.

For	example,	you	can	have	a	form	with	an	ocean	picture,	showing	many	shades
of	blue,	and	a	sunset	picture,	showing	many	shades	of	red.	Since	Windows	only
allows	one	color	palette	active	at	a	time,	one	picture	will	look	much	better	than
the	other.	The	following	example	uses	a	control's	Enter	event	for	setting	the
form's	PaintPalette	property	to	the	control's	ObjectPalette	property	so	the
graphic	that	has	the	focus	will	have	an	optimal	appearance.

Sub	OceanPicture_Enter()

				Me.PaintPalette	=	Me!OceanPicture.ObjectPalette

End	Sub

Sub	SunsetPicture_Enter()

				Me.PaintPalette	=	Me!SunsetPicture.ObjectPalette

End	Sub

Show	All

PaletteSource	Property
							

You	can	use	the	PaletteSource	property	to	specify	the	palette	for	a	form	or
report.	Read/write	String.

expression.PaletteSource

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

Remarks

Enter	the	path	and	file	name	of	one	of	the	following	file	types:

.dib	(device-independent	bitmap	file)

.pal	(Windows	palette	file)

.ico	(Windows	icon	file)

.bmp	(Windows	bitmap	file)

.wmf	or	.emf	file,	or	other	graphics	file	for	which	you	have	a	graphics	filter

The	default	setting	is	(Default),	which	specifies	the	palette	included	with
Microsoft	Access.	If	you	change	this	setting	by	entering	a	path	and	file	name,	the
property	setting	displays	(Custom).

You	can	set	this	property	by	using	the	form's	or	report's	property	sheet,	a	macro,
or	Visual	Basic.

For	a	form,	you	can	set	the	PaletteSource	property	in	form	Design	view	and
Form	view.	The	property	setting	is	unavailable	in	other	views.

For	a	report,	you	can	set	the	PaletteSource	property	only	in	report	Design	view.
The	property	setting	is	unavailable	in	other	views.

Windows	can	have	only	one	color	palette	active	at	a	time.	Microsoft	Access
allows	you	to	have	multiple	graphics	on	a	form,	each	using	a	different	color
palette.	The	PaletteSource	and	PaintPalette	properties	let	you	specify	which
color	palette	a	form	uses	when	displaying	graphics.

When	you	set	the	PaletteSource	property	for	a	form	or	report,	Microsoft	Access
automatically	updates	its	PaintPalette	property.	Conversely,	when	you	set	a
form's	or	report's	PaintPalette	property,	the	PaletteSource	property	is	also
updated.	For	example,	when	you	specify	a	custom	palette	with	the	PaintPalette
property,	the	PaletteSource	property	setting	changes	to	(Custom).	The
PaintPalette	property	(which	is	available	only	in	a	macro	or	Visual	Basic)	is

used	to	set	the	palette	for	the	form	or	report.	The	PaletteSource	property	gives
you	a	way	to	set	the	palette	for	the	form	or	report	in	the	property	sheet	by	using
an	existing	graphics	file.

Example

The	following	example	sets	the	PaintPalette	property	of	the	Seascape	form	to
the	ObjectPalette	property	of	the	Ocean	control	on	the	DisplayPictures	form.
(Ocean	can	be	a	bound	object	frame,	command	button,	chart,	toggle	button,	or
unbound	object	frame.)

Forms!Seascape.PaintPalette	=	_

					Forms!DisplayPictures!Ocean.ObjectPalette

The	ObjectPalette	and	PaintPalette	properties	are	useful	for	programmatically
altering	the	color	palette	in	use	by	an	open	form	at	run	time.	A	common	use	of
these	properties	is	to	set	the	current	form's	PaintPalette	property	to	the	palette
of	a	graphic	displayed	in	a	control	that	has	the	focus.

For	example,	you	can	have	a	form	with	an	ocean	picture,	showing	many	shades
of	blue,	and	a	sunset	picture,	showing	many	shades	of	red.	Since	Windows	only
allows	one	color	palette	active	at	a	time,	one	picture	will	look	much	better	than
the	other.	The	following	example	uses	a	control's	Enter	event	for	setting	the
form's	PaintPalette	property	to	the	control's	ObjectPalette	property	so	the
graphic	that	has	the	focus	will	have	an	optimal	appearance.

Sub	OceanPicture_Enter()

				Me.PaintPalette	=	Me!OceanPicture.ObjectPalette

End	Sub

Sub	SunsetPicture_Enter()

				Me.PaintPalette	=	Me!SunsetPicture.ObjectPalette

End	Sub

Show	All

PaperBin	Property
							

Returns	or	sets	an	AcPrintPaperBin	constant	indicating	which	paper	bin	the
specified	printer	should	use.	Read/write.

AcPrintPaperBin	can	be	one	of	these	AcPrintPaperBin	constants.
acPRBNAuto
acPRBNCassette
acPRBNEnvelope
acPRBNEnvManual
acPRBNFormSource
acPRBNLargeCapacity
acPRBNLargeFmt
acPRBNLower
acPRBNManual
acPRBNMiddle
acPRBNSmallFmt
acPRBNTractor
acPRBNUpper

expression.PaperBin

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

Example

The	following	example	sets	a	variety	of	printer	settings	for	the	first	form	in	the
current	project.

With	Forms(0).Printer

				.TopMargin	=	1440

				.BottomMargin	=	1440

				.LeftMargin	=	1440

				.RightMargin	=	1440

				.ColumnSpacing	=	360

				.RowSpacing	=	360

				.ColorMode	=	acPRCMColor

				.DataOnly	=	False

				.DefaultSize	=	False

				.ItemSizeHeight	=	2880

				.ItemSizeWidth	=	2880

				.ItemLayout	=	acPRVerticalColumnLayout

				.ItemsAcross	=	6

				.Copies	=	1

				.Orientation	=	acPRORLandscape

				.Duplex	=	acPRDPVertical

				.PaperBin	=	acPRBNAuto

				.PaperSize	=	acPRPSLetter

				.PrintQuality	=	acPRPQMedium

End	With

Show	All

PaperSize	Property
							

Returns	or	sets	an	AcPrintPaperSize	constant	indicating	the	paper	size	to	use
when	printing.	Read/write.

AcPrintPaperSize	can	be	one	of	these	AcPrintPaperSize	constants.
acPRPS10x14
acPRPS11x17
acPRPSA3
acPRPSA4
acPRPSA4Small
acPRPSA5
acPRPSB4
acPRPSB5
acPRPSCSheet
acPRPSDSheet
acPRPSEnv10
acPRPSEnv11
acPRPSEnv12
acPRPSEnv14
acPRPSEnv9
acPRPSEnvB4
acPRPSEnvB5
acPRPSEnvB6
acPRPSEnvC3
acPRPSEnvC4
acPRPSEnvC5
acPRPSEnvC6
acPRPSEnvC65
acPRPSEnvDL

acPRPSEnvItaly
acPRPSEnvMonarch
acPRPSEnvPersonal
acPRPSESheet
acPRPSExecutive
acPRPSFanfoldLglGerman
acPRPSFanfoldStdGerman
acPRPSFanfoldUS
acPRPSFolio
acPRPSLedger
acPRPSLegal
acPRPSLetter
acPRPSLetterSmall
acPRPSNote
acPRPSQuarto
acPRPSStatement
acPRPSTabloid
acPRPSUser

expression.PaperSize

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

Example

The	following	example	sets	a	variety	of	printer	settings	for	the	first	form	in	the
current	project.

With	Forms(0).Printer

				.TopMargin	=	1440

				.BottomMargin	=	1440

				.LeftMargin	=	1440

				.RightMargin	=	1440

				.ColumnSpacing	=	360

				.RowSpacing	=	360

				.ColorMode	=	acPRCMColor

				.DataOnly	=	False

				.DefaultSize	=	False

				.ItemSizeHeight	=	2880

				.ItemSizeWidth	=	2880

				.ItemLayout	=	acPRVerticalColumnLayout

				.ItemsAcross	=	6

				.Copies	=	1

				.Orientation	=	acPRORLandscape

				.Duplex	=	acPRDPVertical

				.PaperBin	=	acPRBNAuto

				.PaperSize	=	acPRPSLetter

				.PrintQuality	=	acPRPQMedium

End	With

Show	All

Parent	Property
							

You	can	use	the	Parent	property	to	refer	to	the	parent	of	a	control,	section,	or
control	that	contains	other	controls.	The	Parent	property	returns	a	control	object
if	the	parent	is	a	control;	it	returns	a	AccessObject	object	if	the	parent	is	an
Microsoft	Access	object.	Read-only.

expression.Parent

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

Remarks

You	can	use	the	Parent	property	to	determine	which	form	or	report	is	currently
the	parent	when	you	have	a	subform	or	subreport	that	has	been	inserted	in
multiple	forms	or	reports.

For	example,	you	might	insert	an	OrderDetails	subform	into	both	a	form	and	a
report.	The	following	example	uses	the	Parent	property	to	refer	to	the	OrderID
field,	which	is	present	on	the	main	form	and	report.	You	can	enter	this
expression	in	a	bound	control	on	the	subform.

=Parent!OrderID

The	Parent	property	of	a	label	control	is	the	control	the	label	is	linked	to.	The
Parent	property	for	a	check	box,	option	button,	or	toggle	button	in	an	option
group	is	the	name	of	the	option	group	control.	The	Parent	property	of	an	option
group	control	is	the	name	of	the	form.

Example

The	following	example	uses	the	Parent	property	to	examine	the	parent	of	the
Speedy	Label	label	control,	the	Speedy	check	box	control,	and	the	ShipVia
option	group.	To	run	this	example,	open	the	Orders	form	in	the	Northwind
sample	database	then	run	this	code.

Public	Sub	ShowParent()

				Dim	frm	As	Form

				Dim	ctl	As	Control

				

				Set	frm	=	Forms!Orders

				Set	ctl	=	frm.[Speedy	Label]

				

				'	Returns	name	of	control	attached	to	label.

				MsgBox	"The	parent	control	is	"	&	ctl.Parent.Name

				Set	ctl	=	frm.Speedy

				

				'	Returns	name	of	control	containing	control.

				MsgBox	"The	parent	control	is	"	&	ctl.Parent.Name

				Set	ctl	=	frm.ShipVia

				

				'	Returns	name	of	form	containing	option	group	control.

				MsgBox	"The	parent	control	is	"	&	ctl.Parent.Name

End	Sub

The	next	example	also	returns	the	name	of	the	form	containing	the	option	group
control.

MsgBox	Forms!Orders![Speedy	Label].Parent.Parent.Parent.Name

Show	All

Path	Property
							

You	can	use	the	Path	property	to	determine	the	location	where	data	is	stored	for
a	Microsoft	Access	project	(.adp)	or	Microsoft	Access	database	(.mdb).	Read-
only	String.

expression.Path

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

Remarks

The	Path	property	is	a	string	expression	that	is	the	pathname	to	the	disk	location
where	data	is	stored	for	an	Access	database.

This	property	is	available	only	by	using	Visual	Basic.

You	can	use	the	Path	property	to	determine	the	location	of	information	stored
through	the	CurrentProject	or	CodeProject	objects	of	a	project	or	database.

Example

The	following	example	displays	a	message	indicating	the	disk	location	of	the
current	Access	project	or	database.

MsgBox	"The	current	database	is	located	at	"	&	Application.CurrentProject.

	

Show	All

Picture	Property
							

You	can	use	the	Picture	property	to	specify	a	bitmap	or	other	type	of	graphic	to
be	displayed	on	a	command	button,	image	control,	toggle	button,	page	on	a	tab
control	or	as	a	background	picture	on	a	form	or	report.	Read/write	String.

expression.Picture

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

Remarks

The	Picture	property	contains	(bitmap)	or	the	path	and	file	name	of	a	bitmap	or
other	type	of	graphic	to	be	displayed.

You	can	set	this	property	by	using:

The	property	sheet.	Click	the	Build	button	to	the	right	of	the	property	box
(for	command	buttons	and	toggle	buttons).	When	you	select	one	of	the
bitmap	files	from	the	Available	Pictures	list,	the	property	setting	is
(bitmap).

A	macro.

Visual	Basic.	You	can	use	a	string	expression	that	includes	the	path	and	the
name	of	the	graphic,	as	in	the	following	example:

btnShowLogo.Picture	=	"C:\Windows\Winlogo.bmp"

The	Picture	command	on	the	Insert	menu	(for	image	controls	or
background	pictures	on	forms	and	reports)	to	select	a	bitmap	or	other	type
of	graphic.

The	default	setting	is	(none).	After	the	graphic	is	loaded	into	the	object,	the
property	setting	is	(bitmap)	or	the	path	and	file	name	of	the	graphic.	If	you	delete
(bitmap)	or	the	path	and	file	name	of	the	graphic	from	the	property	setting,	the
picture	is	deleted	from	the	object	and	the	property	setting	is	again	(none).

If	the	PictureType	property	is	set	to	Embedded,	the	graphic	is	stored	with	the
object.

You	can	create	custom	bitmaps	by	using	Microsoft	Paintbrush	or	another
application	that	creates	bitmap	files.	A	bitmap	file	must	have	a	.bmp,	.ico,	or	.dib
extension.	You	can	also	use	graphics	files	in	the	.wmf	or	.emf	formats,	or	any
other	graphic	file	type	for	which	you	have	a	graphics	filter.	Forms,	reports,	and
image	controls	support	all	graphics.	Command	buttons	and	toggle	buttons	only
support	bitmaps.

Buttons	can	display	either	a	caption	or	a	picture.	If	you	assign	both	to	a	button,

the	picture	will	be	visible,	the	caption	won't.	If	the	picture	is	deleted,	the	caption
reappears.	Microsoft	Access	displays	the	picture	centered	on	the	button	and
clipped	if	the	picture	is	larger	than	the	button.

Tip			To	create	a	command	button	or	toggle	button	with	a	caption	and	a	picture,
you	could	include	the	desired	caption	as	part	of	the	bitmap	and	assign	the	bitmap
to	the	Picture	property	of	the	control.

Example

The	following	example	sets	the	background	picture	"Logo.gif"	for	the	"Purchase
Order"	report.

Reports("Purchase	Order").Picture	=	"C:\Picture	Files\Logo.gif"

				

Show	All

PictureAlignment	Property
							

You	can	use	the	PictureAlignment	property	to	specify	where	a	background
picture	will	appear	in	an	image	control	or	on	a	form	or	report.	Read/write	Byte.

expression.PictureAlignment

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

Remarks

The	PictureAlignment	property	uses	the	following	settings.

Setting Visual	Basic Description

Top	Left 0
The	picture	is	displayed	in	the	top-left	corner
of	the	image	control,	Form	window,	or	page	of
a	report.

Top	Right 1
The	picture	is	displayed	in	the	top-right	corner
of	the	image	control,	Form	window,	or	page	of
a	report.

Center 2 (Default)	The	picture	is	centered	in	the	image
control,	Form	window,	or	page	of	a	report.

Bottom	Left 3
The	picture	is	displayed	in	the	bottom-left
corner	of	the	image	control,	Form	window,	or
page	of	a	report.

Bottom	Right 4
The	picture	is	displayed	in	the	bottom-right
corner	of	the	image	control,	Form	window,	or
page	of	a	report.

Form	Center 5

(Forms	only)	The	form's	picture	is	centered
horizontally	in	relation	to	the	width	of	the
form	and	vertically	in	relation	to	the	height	the
entire	form.

You	can	set	the	PictureAlignment	property	by	using	a	form's	or	report's
property	sheet,	a	macro,	or	Visual	Basic.

You	can	also	set	the	default	for	this	property	by	using	a	control's	default	control
style	or	the	DefaultControl	method	in	Visual	Basic.

This	property	can	be	set	in	any	view.

The	Form	Center	setting	aligns	a	form's	picture	in	the	center	of	the	form	itself.
All	other	PictureAlignment	property	settings	align	a	form's	picture	in	relation	to
the	Form	window.	If	you	want	to	make	sure	that	a	form's	picture	is	displayed
only	on	the	form	or	tiled	across	only	the	form,	set	the	PictureAlignment
property	to	Form	Center.

For	reports,	the	picture	appears	relative	to	a	full	page	and	not	in	relation	to	the
size	of	the	actual	report.	If	your	report	is	less	than	a	full	page	and	you	want	a
picture	to	appear	at	a	location	not	available	through	the	PictureAlignment
property	settings,	use	an	image	control	instead.

When	you	set	the	PictureTiling	property	to	Yes,	tiling	of	the	picture	will	begin
from	the	PictureAlignment	property	setting.

Example

The	following	example	displays	the	picture	"Logo.gif"	in	the	top	left	corner	of
the	"Purchase	Order"	report.

With	Reports("Purchase	Order")

				.Picture	=	"C:\Picture	Files\Logo.gif"

				.PictureAlignment	=	0

End	With

Show	All

PictureData	Property
							

You	can	use	the	PictureData	property	to	copy	the	picture	in	a	form,	report,	or
control	to	another	object	that	supports	the	Picture	property.	Read/write	Variant.

expression.PictureData

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

Remarks

The	PictureData	property	setting	is	the	PictureData	property	of	another	image
control,	command	button,	toggle	button,	form,	or	report.

You	set	this	property	by	using	Visual	Basic.

You	can	use	this	property	to	display	different	background	pictures	in	a	form,
depending	on	actions	taken	by	the	user.	For	example,	you	might	open	a
Customers	form	using	a	different	background	picture	depending	on	whether	the
form	is	opened	for	data	entry	or	for	browsing.

You	can	also	use	the	PictureData	property	together	with	the	Timer	event	and	the
TimerInterval	property	to	perform	simple	animation	on	a	form.

Example

The	following	example	uses	three	image	controls	to	animate	a	butterfly	image
across	a	form.	The	Hidden1	image	control	contains	a	picture	of	a	butterfly	with
its	wings	up	and	the	Hidden2	image	control	contains	a	picture	of	the	same
butterfly	with	its	wings	down.	Both	image	controls	have	their	Visible	property
set	to	False.	The	TimerInterval	property	is	set	to	200.	Each	time	the	Timer
event	occurs,	the	picture	in	the	image	control	Visible1	is	changed	by	using	the
PictureData	property	of	the	hidden	image	controls,	and	the	visible	image
control	is	moved	200	twips	to	the	right.	The	visible	image	control	is	moved	back
to	the	left	side	of	the	form	when	its	Left	property	value	is	greater	than	the	width
of	the	form	stored	in	the	public	variable	gfrmWidth.	The	value	of	gfrmWidth	is
set	to	Me.Width	in	the	form's	open	event.

Private	Sub	Form_Timer()

				Static	intPic	As	Integer

				Select	Case	intPic

								Case	Is	=	1

												Me!Visible1.PictureData	=	Me!Hidden1.PictureData

								Case	Is	=	2

												Me!Visible1.PictureData	=	Me!Hidden2.PictureData

								Case	Else

				End	Select

				If	intPic	=	2	Then	intPic	=	0

				intPic	=	intPic	+	1

				If	(Me!Visible1.Left	>	gfrmWidth)	Then	Me!Visible1.Left	=	0

				Me!Visible1.Left	=	Me!Visible1.Left	+	200

End	Sub

PicturePages	Property
							

You	can	use	the	PicturePages	property	to	specify	on	which	page	or	pages	of	a
report	a	picture	will	be	displayed.	Read/write	Byte.

expression.PicturePages

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

Remarks

The	PicturePages	property	uses	the	following	settings.

Setting Visual	Basic Description

All	Pages 0 (Default)	The	picture	appears	on	all	pages	of
the	report.

First	Page 1 The	picture	appears	only	on	the	first	page	of
the	report.

No	Pages 2 The	picture	doesn't	appear	on	the	report.
	

You	can	set	the	PicturePages	property	by	using	a	report's	property	sheet,	a
macro,	or	Visual	Basic.

Example

The	following	example	prints	a	stretched	version	of	the	picture	"Logo.gif"	on
only	the	first	page	of	the	"Purchase	Order"	report.

With	Reports("Purchase	Order")

				.Picture	=	"C:\Picture	Files\Logo.gif"

				.PictureSizeMode	=	1

				.PicturePages	=	1

End	With

PictureSizeMode	Property
							

You	can	use	the	PictureSizeMode	property	to	specify	how	a	picture	for	a	form
or	report	is	sized.	Read/write.

expression.PictureSizeMode

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

Remarks

The	PictureSizeMode	property	uses	the	following	settings.

Setting Visual	Basic Description

Clip 0
(Default)	The	picture	is	displayed	in	its	actual
size.	If	the	picture	is	larger	than	the	form	or
report,	then	the	picture	is	clipped.

Stretch 1
The	picture	is	stretched	horizontally	and
vertically	to	fill	the	entire	form,	even	if	its
original	ratio	of	height	to	width	is	distorted.

Zoom 3
The	picture	is	enlarged	to	the	maximum	extent
possible	while	keeping	its	original	ratio	of
height	to	width.

You	can	set	the	PictureSizeMode	property	by	using	a	form's	or	report's	property
sheet,	a	macro,	or	Visual	Basic.

When	a	small	picture	is	used	for	the	Picture	property	of	a	form	or	report,	setting
the	PictureSizeMode	property	to	Stretch	or	Zoom	can	cause	substantial
distortion	of	its	resolution.	Smaller	pictures	can	be	tiled	across	the	entire	form	or
report	by	using	the	PictureTiling	property.

Example

The	following	example	sets	the	background	picture	of	the	"Order	Entry"	form	to
"Contacts.gif",	and	stretches	the	picture	to	fit	the	entire	form's	background.

With	Forms("Order	Entry")

				.Picture	=	"C:\Picture	Files\Contacts.gif"

				.PictureSizeMode	=	1

End	With

Show	All

PictureTiling	Property
							

You	can	use	the	PictureTiling	property	to	specify	whether	a	background	picture
is	tiled	across	the	entire	image	control,	Form	window,	form,	or	page	of	a	report.
Read/write	Boolean.

expression.PictureTiling

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

Remarks

The	PictureTiling	property	uses	the	following	settings.

Setting Visual	Basic Description
Yes True		 The	picture	is	tiled.
No False		 (Default)	The	picture	isn't	tiled.
You	can	set	the	PictureTiling	property	by	using	the	object's	property	sheet,	a
macro,	or	Visual	Basic.

You	can	also	set	the	default	for	this	property	by	using	a	control's	default	control
style	or	the	DefaultControl	method	in	Visual	Basic.

You	can	create	interesting	effects	by	placing	a	picture	on	a	form	or	report	and
setting	the	PictureTiling	property	to	Yes.	The	alignment	of	the	tiled	images	is
affected	by	the	PictureAlignment	property	setting.	For	example,	if	the
PictureAlignment	property	is	set	to	Top	Left,	tiling	begins	at	the	top	left	of	the
image	control,	Form	window,	or	page	of	a	report.

Note			If	the	PictureAlignment	property	is	set	to	Form	Center	and	the
PictureTiling	property	is	set	to	Yes,	the	background	picture	of	a	form	will	be
tiled	across	the	form,	not	across	the	Form	window.

Example

The	following	example	tiles	the	picture	in	the	"CustomerPhoto"	image	control
on	the	"Order	Entry"	form.

Forms("Order	Entry").Controls("CustomerPhoto").PictureTiling	=	True

	

Show	All

PictureType	Property
							

You	can	use	the	PictureType	property	to	specify	whether	Microsoft	Access
stores	an	object's	picture	as	a	linked	or	an	embedded	object.	Read/write.

expression.PictureType

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

Remarks

The	PictureType	property	uses	the	following	settings.

Setting Visual	Basic Description

Embedded 0 (Default)	The	picture	is	embedded	in	the	object
and	becomes	part	of	the	database	file.

Linked 1
The	picture	is	linked	to	the	object.	Microsoft
Access	stores	a	pointer	to	the	location	of	the
picture	on	the	disk.

You	can	set	the	PictureType	property	by	using	the	object's	property	sheet,	a
macro,	or	Visual	Basic.

This	property	can	be	set	only	in	form	Design	view	or	report	Design	view.

For	controls,	you	can	set	the	default	for	this	property	by	using	the	default	control
style	or	the	DefaultControl	method	in	Visual	Basic.

When	this	property	is	set	to	Embedded,	the	size	of	the	database	increases	by	the
size	of	the	picture	file	and,	with	some	.wmf	files,	the	size	may	increase	as	much
as	twice	the	size	of	the	picture	file.	When	this	property	is	set	to	Linked,	there	is
no	increase	in	the	size	of	the	database	because	Microsoft	Access	only	saves	a
pointer	to	the	picture's	location	on	the	disk.

Note			If	a	linked	file	is	moved	to	another	location	on	the	disk,	you	must	re-
establish	the	link	by	using	the	object's	Picture	property.

For	embedded	pictures,	the	object's	PictureData	property	stores	the	individual
bits	that	make	up	a	picture's	image.	For	linked	pictures,	this	property	stores	the
path	to	the	picture's	file.

You	can	modify	a	linked	picture	by	using	a	separate	application	and	changes	to
the	picture	will	appear	the	next	time	the	object	containing	that	picture	is
displayed	in	the	database.

Example

The	following	example	links	the	picture	in	the	"Customer	Photo"	image	control
on	the	"Order	Entry"	form	to	the	picture	on	the	disk.	The	picture	is	not	part	of
the	database	file.

Forms("Order	Entry").Controls("Customer	Photo").PictureType	=	1

	

PivotTable	Property
							

Returns	a	PivotTable	object	representing	a	PivotTable	View	on	a	form.

expression.PivotTable

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

mk:@MSITStore:owcvba10.chm::/html/ocobjpivottable.htm

Example

This	example	reports	the	version	of	Microsoft	Office	Web	Components	in	use
for	the	specified	form,	assuming	that	there	is	a	PivotTable	View	on	the	form.

Dim	objChartSpace	As	PivotTable

Set	objChartSpace	=	Forms(0).PivotTable

MsgBox	"Current	version	of	Office	Web	Components:	"	_

				&	objChartSpace.Version

PivotTableChange	Property
							

Returns	or	sets	a	String	indicating	which	macro,	event	procedure,	or	user-
defined	function	runs	when	the	PivotTableChange	event	occurs.	Read/write.

expression.PivotTableChange

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

Remarks

Valid	values	for	this	property	are	"macroname"	where	macroname	is	the	name	of
macro,	"[Event	Procedure]"	which	indicates	the	event	procedure	associated
with	the	PivotTableChange	event	for	the	specified	object,	or	"=functionname()"
where	functionname	is	the	name	of	a	user-defined	funciton.	For	a	more	detailed
discussion	of	event	properties,	see	"Event	Properties."

Example

The	following	example	specifies	that	when	the	PivotTableChange	event	occurs
on	the	first	form	of	the	current	project,	the	associated	event	procedure	should
run.

Forms(0).PivotTableChange	=	"[Event	Procedure]"

Show	All

PopUp	Property
							

Specifies	whether	a	form	opens	as	a	pop-up	form.	Read/write	Boolean.

expression.PopUp

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

Remarks

The	PopUp	property	uses	the	following	settings.

Setting Visual	Basic Description

Yes True		
The	form	opens	as	a	pop-up	form	in	Form
view.	It	remains	on	top	of	all	other	Microsoft
Access	windows.

No False		 (Default)	The	form	isn't	a	pop-up	form.
You	can	set	this	property	by	using	the	form's	property	sheet,	a	macro,	or	Visual
Basic.

The	PopUp	property	can	be	set	only	in	form	Design	view.

To	specify	the	type	of	border	you	want	on	a	pop-up	form,	use	the	BorderStyle
property.	You	typically	set	the	BorderStyle	property	to	Thin	for	pop-up	forms.

Tip			To	create	a	custom	dialog	box,	set	the	Modal	property	to	Yes,	the	PopUp
property	to	Yes,	and	the	BorderStyle	property	to	Dialog.

Setting	the	PopUp	property	to	Yes	makes	the	form	a	pop-up	form	only	when	you
do	one	of	the	following:

Open	it	in	Form	view	from	the	Database	window.
Open	it	in	Form	view	by	using	a	macro	or	Visual	Basic.
Switch	from	Design	view	to	Form	view.

When	the	PopUp	property	is	set	to	Yes,	you	can't	switch	to	other	views	from
Form	view	because	the	form's	toolbar	isn't	available.	(You	can't	switch	a	pop-up
form	from	Form	view	to	Datasheet	view,	even	in	a	macro	or	Visual	Basic.)	You
must	close	the	form	and	reopen	it	in	Design	or	Datasheet	view.

The	form	isn't	a	pop-up	form	in	Design	or	Datasheet	view,	and	also	isn't	if	you
switch	from	Datasheet	to	Form	view.

Note			You	can	use	the	Dialog	setting	of	the	Window	Mode	argument	of	the
OpenForm	action	to	open	a	form	with	its	PopUp	and	Modal	properties	set	to
Yes.

mk:@MSITStore:acmain10.chm::/html/acactOpenForm.htm

Tip			When	you	maximize	a	window	in	Microsoft	Access,	all	other	windows	are
also	maximized	when	you	open	them	or	switch	to	them.	However,	pop-up	forms
aren't	maximized.	If	you	want	a	form	to	maintain	its	size	when	other	windows
are	maximized,	set	its	PopUp	property	to	Yes.

Example

The	following	example	sets	the	"Switchboard"	form	to	be	a	modal	pop-up	form
that	has	just	a	Close	button.

With	Forms("Switchboard")

				.PopUp	=	True

				.Modal	=	True

				.BorderStyle	=	3	'	Dialog	style.

End	With

Port	Property
							

Returns	a	String	indicating	the	port	name	of	the	specified	printer.	Read-only.

expression.Port

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

Example

The	following	example	displays	information	about	all	the	printers	available	to
the	system.

Dim	prtLoop	As	Printer

For	Each	prtLoop	In	Application.Printers

				With	prtLoop

								MsgBox	"Device	name:	"	&	.DeviceName	&	vbCr	_

												&	"Driver	name:	"	&	.DriverName	&	vbCr	_

												&	"Port:	"	&	.Port

				End	With

Next	prtLoop

PostalAddress	Property
							

You	can	use	the	PostalAddress	Property	property	to	specify	or	determine	the
postal	code	and	the	Customer	Barcode	data	corresponding	to	the	address
information	displayed	in	a	specified	field/textbox.	The	PostalAddress	Property
wizard	enables	the	setting	of	these	properties.	Read/write	String.

expression.PostalAddress	Property

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

Remarks

For	processing	the	conversion,	correct	settings	are	necessary	for	all	properties	of
field/textbox	that	will	contain	postal	code,	address,	Customer	Barcode	data.

For	settings,	use	section	1	to	3,	delimiting	with	semicolon	(;).

Setting	for	field/textbox	for	Postal	code

Specifies	the	type	of	postal	code	for	the	field/textbox.

Section Description
1 Specifies	field/textbox	for	Prefecture	names
2 Specifies	field/textbox	for	City/Ward/County
3 Specifies	field/textbox	for	Street/Town/Village
Setting	for	field/textbox	for	address

Specifies	the	field/textbox	contains	a	postal	code	or	Customer	Barcode	data.

Section Description
1 Specifies	field/textbox	for	postal	code
2 Specifies	field/textbox	for	Customer	Barcode	data

Note			Two	semicolons	are	required	at	the	end	of	the	value.

Setting	for	field/textbox	for	Customer	Barcode	data

Specifies	the	type	of	Customer	Barcode	data	in	the	field/textbox.	This	setting	is
the	same	as	the	field/textbox	for	postal	code.

Section Description
1 Specifies	field/textbox	for	Prefecture	names
2 Specifies	field/textbox	for	City/Ward/County
3 Specifies	field/textbox	for	Street/Town/Village

The	postal	code	consists	of	3	address	items;	Prefecture,	City/Ward/County,
Street/Town/Village.	Sections	in	PostalAddress	Property	property	of
field/textbox	for	a	postal	code	can	be	omitted.	The	following	table	shows	how	to
omit	sections	from	the	property	setting.

Property	Settings Address	input	in	field/textbox
	 Address1
Address1 Prefecture+City/Ward/County+Street/Town/Village
Address1; Prefecture
;Address1 City/Ward/County+Street/Town/Village
;Address1; City/Ward/County
;;Address1 Street/Town/Village
Address1;Address2 Prefecture
Address1;Address1 Prefecture+City/Ward/County+Street/Town/Village
Address1;Address2; Prefecture
Address1;Address1; Prefecture+City/Ward/County
;Address1;Address2 City/Ward/County
;Address1;Address1 City/Ward/County+Street/Town/Village
Address1;Address2;Address3 Prefecture
Address1;Address2;Address2 Prefecture
Address1;Address1;Address2 Prefecture+City/Ward/County
Address1;Address1;Address1 Prefecture+City/Ward/County+Street/Town/Village

The	postal	code	converter	program	has	been	developed	and	licensed	by
Advanced	Giken	Corporation	for	Microsoft	Corporation.	

Show	All

PreviousControl	Property
							

You	can	use	the	PreviousControl	property	with	the	Screen	object	to	return	a
reference	to	the	control	that	last	received	the	focus.	Read-only.

expression.PreviousControl

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

Remarks

The	PreviousControl	property	contains	a	reference	to	the	control	that	last	had
the	focus.	Once	you	establish	a	reference	to	the	control,	you	can	access	all	the
properties	and	methods	of	the	control.

This	property	is	available	only	by	using	a	macro	or	Visual	Basic.

You	can't	use	the	PreviousControl	property	until	more	than	one	control	on	any
form	has	received	the	focus	after	a	form	is	opened.	Microsoft	Access	generates
an	error	if	you	attempt	to	use	this	property	when	only	one	control	on	a	form	has
received	the	focus.

Example

The	following	example	displays	a	message	if	the	control	that	last	received	the
focus	wasn't	the	txtFinalEntry	text	box.

Public	Function	ProcessData()	As	Integer

				'	No	previous	control	error.

				Const	conNoPreviousControl	=	2483

				Dim	ctlPrevious	As	Control

				

				On	Error	GoTo	Process_Err

				

				Set	ctlPrevious	=	Screen.PreviousControl

				If	ctlPrevious.Name	=	"txtFinalEntry"	Then

								'

								'	Process	Data	Here.

								'

								ProcessData	=	True

				Else

								'	Set	focus	to	txtFinalEntry	and	display	message.

								Me!txtFinalEntry.SetFocus

								MsgBox	"Please	enter	a	value	here."

								ProcessData	=	False

				End	If

				

Process_Exit:

				Set	ctlPrevious	=	Nothing

				Exit	Function

				

Process_Err:

				If	Err	=	conNoPreviousControl	Then

								Me!txtFinalEntry.SetFocus

								MsgBox	"Please	enter	a	value	to	process.",	vbInformation

								ProcessData	=	False

				End	If

				Resume	Process_Exit

				

End	Function

Show	All

PrintCount	Property
							

You	can	use	the	PrintCount	property	to	identify	the	number	of	times	the
OnPrint	property	has	been	evaluated	for	the	current	section	of	a	report.
Read/write	Integer.

expression.PrintCount

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

Remarks

You	can	use	this	property	only	in	a	macro	or	an	event	procedure	specified	by	a
section's	OnPrint	property	setting.

This	property	isn't	available	in	report	Design	view.

Microsoft	Access	increments	the	PrintCount	property	each	time	the	OnPrint
property	setting	is	evaluated	for	the	current	section.	As	the	next	section	is
printed,	Microsoft	Access	resets	the	PrintCount	property	to	0.

The	PrintCount	property	is	incremented,	for	example,	when	the	KeepTogether
property	is	set	to	No	for	the	current	section	and	the	section	is	printed	on	more
than	one	page.	If	you	print	a	report	containing	order	information,	you	might	keep
a	running	total	of	the	order	amounts.

Example

The	following	example	shows	how	you	can	use	the	PrintCount	property	to
make	sure	the	value	in	the	OrderAmount	control	is	added	only	once	to	the
running	total:

Private	Sub	Detail_Format(Cancel	As	Integer,	FormatCount	As	Integer)

				If	PrintCount	=	1	Then

								RunningTotal	=	RunningTotal	+	OrderAmount

				End	If

End	Sub

In	the	previous	example,	RunningTotal	can	be	a	public	variable	or	the	name	of
an	unbound	control	that	is	incremented	each	time	a	section	is	printed.

Printer	Property
							

Returns	or	sets	a	Printer	object	representing	the	default	printer	on	the	current
system.	Read/write.

expression.Printer

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

Example

The	following	example	makes	the	first	printer	in	the	Printers	collection	the
default	printer	for	the	system,	and	then	reports	its	name,	driver	information,	and
port	information.

Dim	prtDefault	As	Printer

Set	Application.Printer	=	Application.Printers(0)

Set	prtDefault	=	Application.Printer

With	prtDefault

				MsgBox	"Device	name:	"	&	.DeviceName	&	vbCr	_

								&	"Driver	name:	"	&	.DriverName	&	vbCr	_

								&	"Port:	"	&	.Port

End	With

Printers	Property
							

Returns	the	Printers	collection	representing	all	the	available	printers	on	the
current	system.

expression.Printers

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

Example

The	following	example	displays	information	about	all	the	printers	available	on
the	current	system.

Dim	prtLoop	As	Printer

For	Each	prtLoop	In	Application.Printers

				With	prtLoop

								MsgBox	"Device	name:	"	&	.DeviceName	&	vbCr	_

												&	"Driver	name:	"	&	.DriverName	&	vbCr	_

												&	"Port:	"	&	.Port

				End	With

Next	prtLoop

Show	All

PrintQuality	Property
							

Returns	or	sets	an	AcPrintObjQuality	constant	indicating	the	resolution	at
which	the	specified	printer	should	print	jobs.	Read/write.

AcPrintObjQuality	can	be	one	of	these	AcPrintObjQuality	constants.
acPRPQDraft
acPRPQHigh
acPRPQLow
acPRPQMedium

expression.PrintQuality

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

Example

The	following	example	sets	a	variety	of	printer	settings	for	the	first	form	in	the
current	project.

With	Forms(0).Printer

				.TopMargin	=	1440

				.BottomMargin	=	1440

				.LeftMargin	=	1440

				.RightMargin	=	1440

				.ColumnSpacing	=	360

				.RowSpacing	=	360

				.ColorMode	=	acPRCMColor

				.DataOnly	=	False

				.DefaultSize	=	False

				.ItemSizeHeight	=	2880

				.ItemSizeWidth	=	2880

				.ItemLayout	=	acPRVerticalColumnLayout

				.ItemsAcross	=	6

				.Copies	=	1

				.Orientation	=	acPRORLandscape

				.Duplex	=	acPRDPVertical

				.PaperBin	=	acPRBNAuto

				.PaperSize	=	acPRPSLetter

				.PrintQuality	=	acPRPQMedium

End	With

PrintSection	Property
							
The	PrintSection	property	specifies	whether	a	section	should	be	printed.
Read/write	Boolean.

expression.PrintSection

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

Remarks

The	PrintSection	property	uses	the	following	settings.

Setting Description

True (Default)	The	section	is
printed.

False The	section	isn't	printed.

To	set	this	property,	specify	a	macro	or	event	procedure	for	a	section's
OnFormat	property.

Microsoft	Access	sets	this	property	to	True	before	each	section's	Format	event.

Example

The	following	example	does	not	print	the	section	"PageHeaderSection"	of	the
"Product	Summary"	report.

Private	Sub	PageHeaderSection_Format(Cancel	As	Integer,	FormatCount	As	Integer)

	

				Reports("Product	Summary").PrintSection	=	False

	

End	Sub

Show	All

ProcBodyLine	Property
							

The	ProcBodyLine	property	returns	a	Long	value	containing	the	number	of	the
line	at	which	the	body	of	a	specified	procedure	begins	in	a	standard	module	or	a
class	module.	Read-only.

expression.ProcBodyLine(ProcName,	ProcKind)

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

ProcName		Required	String.	The	name	of	a	procedure	in	the	module.

ProcKind		Required	vbext_ProcKind.	The	type	of	procedure.	The	constant	may
be	one	of	the	following	values.

Constant Description
vbext_pk_Get A	Property	Get	procedure.
vbext_pk_Let A	Property	Let	procedure.
vbext_pk_Proc A	Sub	or	Function	procedure.
vbext_pk_Set A	Property	Set	procedure.

Remarks

The	ProcBodyLine	property	is	available	only	by	using	Visual	Basic.

The	body	of	a	procedure	begins	with	the	procedure	definition,	denoted	by	one	of
the	following:

A	Sub	statement.

A	Function	statement.

A	Property	Get	statement.

A	Property	Let	statement.

A	Property	Set	statement.

The	ProcBodyLine	property	returns	a	number	that	identifies	the	line	on	which
the	procedure	definition	begins.	In	contrast,	the	ProcStartLine	property	returns
a	number	that	identifies	the	line	at	which	a	procedure	is	separated	from	the
preceding	procedure	in	a	module.	Any	comments	or	compilation	constants	that
precede	the	procedure	definition	(the	body	of	a	procedure)	are	considered	part	of
the	procedure,	but	the	ProcBodyLine	property	ignores	them.

Note			The	ProcBodyLine	property	treats	Sub	and	Function	procedures
similarly,	but	distinguishes	between	each	type	of	Property	procedure.

Example

The	following	example	displays	a	message	indicating	on	which	line	the
procedure	definition	begins.

Dim	strForm	As	String

Dim	strProc	As	String

strForm	=	"Products"

strProc	=	"Products_Subform_Enter"

	

MsgBox	"The	definition	of	the	"	&	strProc	&	"	procedure	begins	on	line	"	&	_

				Forms(strForm).Module.ProcStartLine(strProc,	vbext_pk_Proc)	&	"."

Show	All

ProcCountLines	Property
							

The	ProcCountLines	property	returns	a	Long	value	containing	the	number	of
lines	in	a	specified	procedure	in	a	standard	module	or	a	class	module.	Read-only.

expression.ProcCountLines(ProcName,	ProcKind)

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

ProcName		Required	String.	The	name	of	a	procedure	in	the	module.

ProcKind		Required	vbext_ProcKind.	The	type	of	procedure.	The	constant	may
be	one	of	the	following	values.

Constant Description
vbext_pk_Get A	Property	Get	procedure.
vbext_pk_Let A	Property	Let	procedure.
vbext_pk_Proc A	Sub	or	Function	procedure.
vbext_pk_Set A	Property	Set	procedure.

Remarks

The	ProcCountLines	property	is	available	only	by	using	Visual	Basic.

The	procedure	begins	with	any	comments	and	compilation	constants	that
immediately	precede	the	procedure	definition,	denoted	by	one	of	the	following:

A	Sub	statement.

A	Function	statement.

A	Property	Get	statement.

A	Property	Let	statement.

A	Property	Set	statement.

The	ProcCountLines	property	returns	the	number	of	lines	in	a	procedure,
beginning	with	the	line	returned	by	the	ProcStartLine	property	and	ending	with
the	line	that	ends	the	procedure.	The	procedure	may	be	ended	with	End	Sub,	End
Function,	or	End	Property.

Note			The	ProcCountLines	property	treats	Sub	and	Function	procedures
similarly,	but	distinguishes	between	each	type	of	Property	procedure.

Example

The	following	example	displays	a	message	indicating	the	number	of	lines	in	a
given	procedure.

Dim	strForm	As	String

Dim	strProc	As	String

	

strForm	=	"Products"

strProc	=	"Form_Activate"

	

MsgBox	"There	are	"	&	Forms(strForm).Module.ProcCountLines(strProc,	vbext_pk_Proc)	&	_

				"	lines	in	the	"	&	strProc	&	"	procedure."

Show	All

ProcOfLine	Property
							

The	ProcOfLine	property	returns	a	read-only	string	containing	the	name	of	the
procedure	that	contains	a	specified	line	in	a	standard	module	or	a	class	module.

expression.ProcOfLine(Line,	pprockind)

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

Line		Required	Long.	The	number	of	a	line	in	the	module.

pprockind		Required	vbext_ProcKin	d.	The	type	of	procedure	containing	the
line	specified	by	the	Line	argument.	The	constant	may	be	one	of	the	following
values.

Constant Description
vbext_pk_Get A	Property	Get	procedure.
vbext_pk_Let A	Property	Let	procedure.
vbext_pk_Proc A	Sub	or	Function	procedure.
vbext_pk_Set A	Property	Set	procedure.

Remarks

The	ProcOfLine	property	is	available	only	by	using	Visual	Basic.

For	any	given	line	number,	the	ProcOfLine	property	returns	the	name	of	the
procedure	that	contains	that	line.	Since	comments	and	compilation	constants
immediately	preceding	a	procedure	definition	are	considered	part	of	that
procedure,	the	ProcOfLine	property	may	return	the	name	of	a	procedure	for	a
line	that	isn't	within	the	body	of	the	procedure.	The	ProcStartLine	property
indicates	the	line	on	which	a	procedure	begins;	the	ProcBodyLine	property
indicates	the	line	on	which	the	procedure	definition	begins	(the	body	of	the
procedure).

Note	that	the	pprockind	argument	indicates	whether	the	line	belongs	to	a	Sub	or
Function	procedure,	a	Property	Get	procedure,	a	Property	Let	procedure,	or	a
Property	Set	procedure.	To	determine	what	type	of	procedure	a	line	is	in,	pass	a
variable	of	type	Long	to	the	ProcOfLine	property,	then	check	the	value	of	that
variable.

Note			The	ProcBodyLine	property	treats	Sub	and	Function	procedures
similarly,	but	distinguishes	between	each	type	of	Property	procedure.

Example

The	following	function	procedure	lists	the	names	of	all	procedures	in	a	specified
module:

Public	Function	AllProcs(ByVal	strModuleName	As	String)

				Dim	mdl	As	Module

				Dim	lngCount	As	Long

				Dim	lngCountDecl	As	Long

				Dim	lngI	As	Long

				Dim	strProcName	As	String

				Dim	astrProcNames()	As	String

				Dim	intI	As	Integer

				Dim	strMsg	As	String

				Dim	lngR	As	Long

				'	Open	specified	Module	object.

				DoCmd.OpenModule	strModuleName

				

				'	Return	reference	to	Module	object.

				Set	mdl	=	Modules(strModuleName)

				

				'	Count	lines	in	module.

				lngCount	=	mdl.CountOfLines

				

				'	Count	lines	in	Declaration	section	in	module.

				lngCountDecl	=	mdl.CountOfDeclarationLines

				

				'	Determine	name	of	first	procedure.

				strProcName	=	mdl.ProcOfLine(lngCountDecl	+	1,	lngR)

				

				'	Initialize	counter	variable.

				intI	=	0

				

				'	Redimension	array.

				ReDim	Preserve	astrProcNames(intI)

				

				'	Store	name	of	first	procedure	in	array.

				astrProcNames(intI)	=	strProcName

				

				'	Determine	procedure	name	for	each	line	after	declarations.

				For	lngI	=	lngCountDecl	+	1	To	lngCount

								'	Compare	procedure	name	with	ProcOfLine	property	value.

								If	strProcName	<>	mdl.ProcOfLine(lngI,	lngR)	Then

												'	Increment	counter.

												intI	=	intI	+	1

												strProcName	=	mdl.ProcOfLine(lngI,	lngR)

												ReDim	Preserve	astrProcNames(intI)

												'	Assign	unique	procedure	names	to	array.

												astrProcNames(intI)	=	strProcName

								End	If

				Next	lngI

				

				strMsg	=	"Procedures	in	module	'"	&	strModuleName	&	"':	"	&	vbCrLf	&	vbCrLf

				For	intI	=	0	To	UBound(astrProcNames)

								strMsg	=	strMsg	&	astrProcNames(intI)	&	vbCrLf

				Next	intI

				

				'	Message	box	listing	all	procedures	in	module.

				MsgBox	strMsg

End	Function

You	could	call	this	function	with	a	procedure	such	as	the	following:

Public	Sub	GetAllProcs()

				AllProcs	"Utility	Functions"

End	Sub

Show	All

ProcStartLine	Property
							

The	ProcStartLine	property	returns	a	read-only	Long	value	identifying	the	line
at	which	a	specified	procedure	begins	in	a	standard	module	or	a	class	module.

expression.ProcStartLine(ProcName,	ProcKind)

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

ProcName		Required	String.	The	name	of	a	procedure	in	the	module.

ProcKind		Required	vbext_ProcKind.	An	intrinsic	constant	that	specifies	the
type	of	procedure.	The	constant	may	be	one	of	the	following	values.

Constant Description
vbext_pk_Get A	Property	Get	procedure.
vbext_pk_Let A	Property	Let	procedure.
vbext_pk_Proc A	Sub	or	Function	procedure.
vbext_pk_Set A	Property	Set	procedure.

Remarks

The	ProcStartLine	property	is	available	only	by	using	Visual	Basic.

A	procedure	begins	with	any	comments	and	compilation	constants	that
immediately	precede	the	procedure	definition,	denoted	by	one	of	the	following:

A	Sub	statement.

A	Function	statement.

A	Property	Get	statement.

A	Property	Let	statement.

A	Property	Set	statement.

The	ProcStartLine	property	returns	the	number	of	the	line	on	which	the
specified	procedure	begins.	The	beginning	of	the	procedure	may	include
comments	or	compilation	constants	that	precede	the	procedure	definition.

To	determine	the	line	on	which	the	procedure	definition	begins,	use	the
ProcBodyLine	property.	This	property	returns	the	number	of	the	line	that	begins
with	a	Sub,	Function,	Property	Get,	Property	Let,	or	Property	Set	statement.

The	ProcStartLine	and	ProcBodyLine	properties	can	have	the	same	value,	if
the	procedure	definition	is	the	first	line	of	the	procedure.	If	the	procedure
definition	isn't	the	first	line	of	the	procedure,	the	ProcBodyLine	property	will
have	a	greater	value	than	the	ProcStartLine	property.

It	may	be	easier	to	determine	where	a	procedure	begins	if	you	have	the
Procedure	Separator	option	selected.	With	this	option	selected,	there	is	a	line
between	the	end	of	a	procedure	and	the	beginning	of	the	next	procedure.	The
first	line	of	code	(or	blank	line)	below	the	procedure	separator	is	the	first	line	of
the	following	procedure,	which	is	the	line	returned	by	the	ProcStartLine
property.	The	Procedure	Separator	option	is	located	on	the	Editor	tab	of	the
Options	dialog	box,	available	by	clicking	Options	on	the	Tools	menu.

The	ProcStartLine	property	treats	Sub	and	Function	procedures	similarly,	but
distinguishes	between	each	type	of	Property	procedure.

Example

The	following	example	displays	a	message	indicating	where	a	particular
procedure	starts	in	a	particular	form	module.

Dim	strForm	As	String

Dim	strProc	As	String

		

strForm	=	"Products"

strProc	=	"Form_Activate"

	

MsgBox	"The	procedure	"	&	strProc	&	"	starts	on	line	"	&	_

				Forms(strForm).Module.ProcStartLine(strProc,	vbext_pk_Proc)	&	"."

Show	All

ProductCode	Property
							

You	can	use	the	ProductCode	property	to	determine	the	Microsoft	Access
globally	unique	identifier	(GUID).	Read-only	String.

expression.ProductCode

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

Remarks

The	ProductCode	property	is	a	string	expression	that	is	the	GUID	of	the
Microsoft	Access	product.

This	property	is	available	only	by	using	Visual	Basic.

Example

The	following	example	displays	a	message	indicating	the	GUID	for	Microsoft
Access	for	the	user's	computer.

MsgBox	"The	GUID	for	Microsoft	Access	on	this	computer	is	"	&	Application.

ProjectType	Property
							

You	can	use	the	ProjectType	property	to	determine	the	type	of	project	that	is
currently	open	through	the	CurrentProject	or	CodeProject	objects.	Read-only
AcProjectType.

AcProjectType	can	be	one	of	these	AcProjectType	constants.
acADP
acMDB
acNull

expression.ProjectType

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

Remarks

The	ProjectType	property	is	available	only	by	using	Visual	Basic.

Example

The	following	example	displays	a	message	with	details	about	the	type	of	project
that	is	currently	open.

Dim	intProjType	As	Integer

	

intProjType	=	Application.CurrentProject.ProjectType

	

Select	Case	intProjType

				Case	0	'	acNull

								MsgBox	"ProjectType	is	acNull"

				Case	1	'	acADP

								MsgBox	"ProjectType	is	acADP"

				Case	2	'	acMDB

								MsgBox	"ProjectType	is	acMDB"

				Case	Else

	 MsgBox	"Can't	determine	ProjectType"	

End	Select

Show	All

Properties	Property
							

Properties	property	as	it	applies	to	the	AccessObject,	CodeProject,	and
CurrentProject	objects.

Returns	a	reference	to	an	AccessObject,	CurrentProject,	or	CodeProject
object's	AccessObjectProperties	collection.

expression.Properties

expression			Required.	An	expression	that	returns	one	of	the	above	objects.

Remarks

The	AccessObjectProperties	collection	object	is	the	collection	of	all	the
properties	related	to	an	AccessObject,	CurrentProject,	or	CodeProject	object.
You	can	refer	to	individual	members	of	the	collection	by	using	the	member
object's	index	or	a	string	expression	that	is	the	name	of	the	member	object.	The
first	member	object	in	the	collection	has	an	index	value	of	0	and	the	total
number	of	member	objects	in	the	collection	is	the	value	of	the
AccessObjectProperties	collection's	Count	property	minus	1.

You	cannot	use	the	Properties	property	to	return	properties	from	an
AccessObject	object	which	is	a	member	of	a	collection	accessed	from	a	
CurrentData	object.

Properties	property	as	it	applies	to	all	other	objects	in	the	Applies	To	list.	

Return	a	reference	to	a	control's	Properties	collection	object.

expression.Properties

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

Remarks

The	Properties	collection	object	is	the	collection	of	all	the	properties	related	to	a
control.	You	can	refer	to	individual	members	of	the	collection	by	using	the
member	object's	index	or	a	string	expression	that	is	the	name	of	the	member
object.	The	first	member	object	in	the	collection	has	an	index	value	of	0	and	the
total	number	of	member	objects	in	the	collection	is	the	value	of	the	Properties
collection's	Count	property	minus	1.

mk:@MSITStore:dao360.chm::/htm/daproCount.htm

Example

The	following	procedure	uses	the	Properties	property	to	print	all	the	properties
associated	with	the	controls	on	a	form	to	the	Debug	window.	To	run	this	code,
place	a	command	button	named	cmdListProperties	on	a	form	and	paste	the
following	code	into	the	form's	Declarations	section.	Click	the	command	button
to	print	the	list	of	properties	in	the	Debug	window.

Private	Sub	cmdListProperties_Click()

				ListControlProps	Me

End	Sub

Public	Sub	ListControlProps(ByRef	frm	As	Form)

				Dim	ctl	As	Control

				Dim	prp	As	Property

				On	Error	GoTo	props_err

				For	Each	ctl	In	frm.Controls

								Debug.Print	ctl.Properties("Name")

								For	Each	prp	In	ctl.Properties

												Debug.Print	vbTab	&	prp.Name	&	"	=	"	&	prp.Value

								Next	prp

				Next	ctl

props_exit:

				Set	ctl	=	Nothing

				Set	prp	=	Nothing

Exit	Sub

props_err:

				If	Err	=	2187	Then

								Debug.Print	vbTab	&	prp.Name	&	"	=	Only	available	at	design	time."

								Resume	Next

				Else

								Debug.Print	vbTab	&	prp.Name	&	"	=	Error	Occurred:	"	&	Err.Description

								Resume	Next

				End	If

End	Sub

Show	All

PrtDevMode	Property
							

You	can	use	the	PrtDevMode	property	to	set	or	return	printing	device	mode
information	specified	for	a	form	or	report	in	the	Print	dialog	box.	Read/write
Variant.

expression.PrtDevMode

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

Remarks

It	is	strongly	recommended	that	you	consult	the	Win32	Software	Development
Kit	for	complete	documentation	on	the	PrtDevMode,	PrtDevNames,	and
PrtMip	properties.

The	PrtDevMode	property	setting	is	a	94-byte	structure	that	mirrors	the
DEVMODE	structure	defined	in	the	Win32	Software	Development	Kit.	For
complete	information	on	the	PrtDevMode	property	members,	consult	the	Win32
Software	Development	Kit.

The	PrtDevMode	property	uses	the	following	members.

Member Description

DeviceName

A	string	with	a	maximum	of	32	bytes	that	specifies	the	name
of	the	device	the	driver	supports	—	for	example,	"HP	LaserJet
IIISi"	if	the	Hewlett-Packard	LaserJet	IIISi	is	the	specified
printer.	Each	printer	driver	has	a	unique	string.

SpecVersion
An	Integer	that	specifies	the	version	number	of	the
DEVMODE	structure	in	the	Win32	Software	Development
Kit.

DriverVersion An	Integer	that	specifies	the	printer	driver	version	number
assigned	by	the	printer	driver	developer.

Size

An	Integer	that	specifies	the	size,	in	bytes,	of	the
DEVMODE	structure.	(This	value	doesn't	include	the	optional
dmDriverData	member	for	device-specific	data,	which	can
follow	this	structure.)	If	an	application	manipulates	only	the
driver-independent	portion	of	the	data,	you	can	use	this
member	to	find	out	the	length	of	this	structure	without	having
to	account	for	different	versions.

DriverExtra

An	Integer	that	specifies	the	size,	in	bytes,	of	the	optional
dmDriverData	member	for	device-specific	data,	which	can
follow	this	structure.	If	an	application	doesn't	use	device-
specific	information,	you	set	this	member	to	0.

Fields A	Long	value	that	specifies	which	of	the	remaining	members
in	the	DEVMODE	structure	have	been	initialized.	

Orientation An	Integer	that	specifies	the	orientation	of	the	paper.	It	can
be	either	1	(portrait)	or	2	(landscape).

PaperSize

An	Integer	that	specifies	the	size	of	the	paper	to	print	on.	If
you	set	this	member	to	0	or	256,	the	length	and	width	of	the
paper	are	specified	by	the	PaperLength	and	PaperWidth
members,	respectively.	Otherwise,	you	can	set	the	PaperSize
member	to	a	predefined	value.	For	available	values,	see	the
PaperSize	member	values.

PaperLength

An	Integer	that	specifies	the	paper	length	in	units	of	1/10	of	a
millimeter.	This	member	overrides	the	paper	length	specified
by	the	PaperSize	member	for	custom	paper	sizes	or	for
devices	such	as	dot-matrix	printers	that	can	print	on	a	variety
of	paper	sizes.

PaperWidth
An	Integer	that	specifies	the	paper	width	in	units	of	1/10	of	a
millimeter.	This	member	overrides	the	paper	width	specified
by	the	PaperSize	member.

Scale

An	Integer	that	specifies	the	factor	by	which	the	printed
output	will	be	scaled.	The	apparent	page	size	is	scaled	from
the	physical	page	size	by	a	factor	of	scale/100.	For	example,	a
piece	of	paper	measuring	8.5	by	11	inches	(letter-size)	with	a
Scale	value	of	50	would	contain	as	much	data	as	a	page
measuring	17	by	22	inches	because	the	output	text	and
graphics	would	be	half	their	original	height	and	width.

Copies An	Integer	that	specifies	the	number	of	copies	printed	if	the
printing	device	supports	multiple-page	copies.

DefaultSource
An	Integer	that	specifies	the	default	bin	from	which	the	paper
is	fed.	For	available	values,	see	the	DefaultSource	member
values.

PrintQuality An	Integer	that	specifies	the	printer	resolution.	The	values
are	–4	(high),	–3	(medium),	–2	(low),	and	–1	(draft).

Color
An	Integer.	For	a	color	printer,	specifies	whether	the	output	is
printed	in	color.	The	values	are	1	(color)	and	2
(monochrome).

Duplex
An	Integer.	For	a	printer	capable	of	duplex	printing,	specifies
whether	the	output	is	printed	on	both	sides	of	the	paper.	The
values	are	1	(simplex),	2	(horizontal),	and	3	(vertical).
An	Integer	that	specifies	the	y-resolution	of	the	printer	in

YResolution dots	per	inch	(dpi).	If	the	printer	initializes	this	member,	the
PrintQuality	member	specifies	the	x-resolution	of	the	printer
in	dpi.

TTOption An	Integer	that	specifies	how	TrueType	fonts	will	be	printed.
For	available	values,	see	the	TTOption	member	values.

Collate

An	Integer	that	specifies	whether	collation	should	be	used
when	printing	multiple	copies.	Using	uncollated	copies
provides	faster,	more	efficient	output,	since	the	data	is	sent	to
the	printer	just	once.

FormName A	string	with	a	maximum	of	16	characters	that	specifies	the
size	of	paper	to	use;	for	example,	"Letter"	or	"Legal".

Pad A	Long	value	that	is	used	to	pad	out	spaces,	characters,	or
values	for	future	versions.

Bits A	Long	value	that	specifies	in	bits	per	pixel	the	color
resolution	of	the	display	device.

PW A	Long	value	that	specifies	the	width,	in	pixels,	of	the	visible
device	surface	(screen	or	printer).

PH A	Long	value	that	specifies	the	height,	in	pixels,	of	the	visible
device	surface	(screen	or	printer).

DFI A	Long	value	that	specifies	the	device's	display	mode.

DFR A	Long	value	that	specifies	the	frequency,	in	hertz	(cycles	per
second),	of	the	display	device	in	a	particular	mode.

You	can	set	the	PrtDevMode	property	using	Visual	Basic.

This	property	setting	is	read/write	in	Design	view	and	read-only	in	other	views.

Caution			Printer	drivers	can	add	device-specific	data	immediately	following	the
94	bytes	of	the	DEVMODE	structure.	For	this	reason,	it	is	important	that	the
DEVMODE	data	outlined	above	not	exceed	94	bytes.

Only	printer	drivers	that	export	the	ExtDeviceMode	function	use	the
DEVMODE	structure.

An	application	can	retrieve	the	paper	sizes	and	names	supported	by	a	printer	by
using	the	DC_PAPERS,	DC_PAPERSIZE,	and	DC_PAPERNAMES	values	to
call	the	DeviceCapabilities	function.

Before	setting	the	value	of	the	TTOption	member,	applications	should	find	out

how	a	printer	driver	can	use	TrueType	fonts	by	using	the	DC_TRUETYPE	value
to	call	the	DeviceCapabilities	function.

Example

The	following	example	uses	the	PrtDevMode	property	to	check	the	user-defined
page	size	for	a	report:

Private	Type	str_DEVMODE

				RGB	As	String	*	94

End	Type

Private	Type	type_DEVMODE

				strDeviceName	As	String	*	32

				intSpecVersion	As	Integer

				intDriverVersion	As	Integer

				intSize	As	Integer

				intDriverExtra	As	Integer

				lngFields	As	Long

				intOrientation	As	Integer

				intPaperSize	As	Integer

				intPaperLength	As	Integer

				intPaperWidth	As	Integer

				intScale	As	Integer

				intCopies	As	Integer

				intDefaultSource	As	Integer

				intPrintQuality	As	Integer

				intColor	As	Integer

				intDuplex	As	Integer

				intResolution	As	Integer

				intTTOption	As	Integer

				intCollate	As	Integer

				strFormName	As	String	*	32

				lngPad	As	Long

				lngBits	As	Long

				lngPW	As	Long

				lngPH	As	Long

				lngDFI	As	Long

				lngDFr	As	Long

End	Type

Public	Sub	CheckCustomPage(ByVal	rptName	As	String)

				Dim	DevString	As	str_DEVMODE

				Dim	DM	As	type_DEVMODE

				Dim	strDevModeExtra	As	String

				Dim	rpt	As	Report

				Dim	intResponse	As	Integer

				

				'	Opens	report	in	Design	view.

				DoCmd.OpenReport	rptName,	acDesign

				Set	rpt	=	Reports(rptName)

				

				If	Not	IsNull(rpt.PrtDevMode)	Then

								strDevModeExtra	=	rpt.PrtDevMode

								

								'	Gets	current	DEVMODE	structure.

								DevString.RGB	=	strDevModeExtra

								LSet	DM	=	DevString

								If	DM.intPaperSize	=	256	Then

								

												'	Display	user-defined	size.

												intResponse	=	MsgBox("The	current	custom	page	size	is	"	&	_

																										DM.intPaperWidth	/	254	&	"	inches	wide	by	"	&	_

																										DM.intPaperLength	/	254	&	"	inches	long.	Do	you	want	"	&	_

																										"to	change	the	settings?",	vbYesNo	+	vbQuestion)

								Else

												'	Currently	not	user-defined.

												intResponse	=	MsgBox("The	report	does	not	have	a	custom	page	size.	"	&	_

																										"Do	you	want	to	define	one?",	vbYesNo	+	vbQuestion)

								End	If

								

								If	intResponse	=	vbYes	Then

												'	User	wants	to	change	settings.	Initialize	fields.

												DM.lngFields	=	DM.lngFields	Or	DM.intPaperSize	Or	_

																											DM.intPaperLength	Or	DM.intPaperWidth

																

												'	Set	custom	page.

												DM.intPaperSize	=	256

												

												'	Prompt	for	length	and	width.

												DM.intPaperLength	=	InputBox("Please	enter	page	length	in	inches.")	*	254

												DM.intPaperWidth	=	InputBox("Please	enter	page	width	in	inches.")	*	254

												

												'	Update	property.

												LSet	DevString	=	DM

												Mid(strDevModeExtra,	1,	94)	=	DevString.RGB

												rpt.PrtDevMode	=	strDevModeExtra

								End	If

				End	If

				

				Set	rpt	=	Nothing

				

End	Sub

The	following	example	shows	how	to	change	the	orientation	of	the	report.	This
example	will	switch	the	orientation	from	portrait	to	landscape	or	landscape	to
portrait	depending	on	the	report's	current	orientation.

Public	Sub	SwitchOrient(ByVal	strName	As	String)

				Const	DM_PORTRAIT	=	1

				Const	DM_LANDSCAPE	=	2

				Dim	DevString	As	str_DEVMODE

				Dim	DM	As	type_DEVMODE

				Dim	strDevModeExtra	As	String

				Dim	rpt	As	Report

				

				'	Opens	report	in	Design	view.

				DoCmd.OpenReport	strName,	acDesign

				Set	rpt	=	Reports(strName)

				

				If	Not	IsNull(rpt.PrtDevMode)	Then

								strDevModeExtra	=	rpt.PrtDevMode

								DevString.RGB	=	strDevModeExtra

								LSet	DM	=	DevString

								DM.lngFields	=	DM.lngFields	Or	DM.intOrientation

													

								'	Initialize	fields.

								If	DM.intOrientation	=	DM_PORTRAIT	Then

												DM.intOrientation	=	DM_LANDSCAPE

								Else

												DM.intOrientation	=	DM_PORTRAIT

								End	If

								

								'	Update	property.

								LSet	DevString	=	DM

								Mid(strDevModeExtra,	1,	94)	=	DevString.RGB

								rpt.PrtDevMode	=	strDevModeExtra

				End	If

				

				Set	rpt	=	Nothing

				

End	Sub

PrtDevNames	Property
							

You	can	use	the	PrtDevNames	property	to	set	or	return	information	about	the
printer	selected	in	the	Print	dialog	box	for	a	form	or	report.	Read/write	Variant.

expression.PrtDevNames

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

Remarks

It	is	strongly	recommended	that	you	consult	the	Win32	Software	Development
Kit	for	complete	documentation	on	the	PrtDevMode,	PrtDevNames,	and
PrtMip	properties.

The	PrtDevNames	property	is	a	variable-length	structure	that	mirrors	the
DEVNAMES	structure	defined	in	the	Win32	Software	Development	Kit.

The	PrtDevNames	property	uses	the	following	members.

Member Description

DriverOffset

Specifies	the	offset	from	the	beginning	of	the	structure	to	a
Null-terminated	string	that	specifies	the	file	name	(without	an
extension)	of	the	device	driver.	This	string	is	used	to	specify
which	printer	is	initially	displayed	in	the	Print	dialog	box.

DeviceOffset

Specifies	the	offset	from	the	beginning	of	the	structure	to	the
Null-terminated	string	that	specifies	the	name	of	the	device.
This	string	can't	be	longer	than	32	bytes	(including	the	null
character)	and	must	be	identical	to	the	DeviceName	member
of	the	DEVMODE	structure.

OutputOffset

Specifies	the	offset	from	the	beginning	of	the	structure	to	the
Null-terminated	string	that	specifies	the	MS-DOS	device	name
for	the	physical	output	medium	(output	port);	for	example,
"LPT1:".

Default

Specifies	whether	the	strings	specified	in	the	DEVNAMES
structure	identify	the	default	printer.	Before	the	Print	dialog
box	is	displayed,	if	Default	is	set	to	1	and	all	of	the	values	in
the	DEVNAMES	structure	match	the	current	default	printer,
the	selected	printer	is	set	to	the	default	printer.	Default	is	set	to
1	if	the	current	default	printer	has	been	selected.

Microsoft	Access	sets	the	PrtDevNames	property	when	you	make	selections	in
the	Printer	section	of	the	Print	dialog	box.	You	can	also	set	the	property	by
using	Visual	Basic.

Microsoft	Access	uses	the	DEVNAMES	structure	to	initialize	the	Print	dialog

box.	When	the	user	chooses	OK	to	close	the	dialog	box,	information	about	the
selected	printer	is	returned	by	the	PrtDevNames	property.

Show	All

PrtMip	Property
							

You	can	use	the	PrtMip	property	in	Visual	Basic	to	set	or	return	the	device
mode	information	specified	for	a	form	or	report	in	the	Print	dialog	box.

expression.PrtMip

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

Remarks

The	PrtMip	property	setting	is	a	28-byte	structure	that	maps	to	settings	on	the
Margins	tab	for	a	form	or	report	in	the	Page	Setup	dialog	box.

The	PrtMip	property	has	the	following	members.

Member Description
LeftMargin,
RightMargin,
TopMargin,
BottomMargin

A	Long	that	specifies	the	distance	between	the	edge	of	the
page	and	the	item	to	be	printed	in	twips.

DataOnly

A	Long	that	specifies	the	elements	to	be	printed.	When
True,	prints	only	the	data	in	a	table	or	query	in	Datasheet
view,	form,	or	report,	and	suppresses	labels,	control
borders,	grid	lines,	and	display	graphics	such	as	lines	and
boxes.	When	False,	prints	data,	labels,	and	graphics.

ItemsAcross

A	Long	that	specifies	the	number	of	columns	across	for
multiple-column	reports	or	labels.	This	member	is
equivalent	to	the	value	of	the	Number	of	Columns	box
under	Grid	Settings	on	the	Columns	tab	of	the	Page	Setup
dialog	box.

RowSpacing A	Long	that	specifies	the	horizontal	space	between	detail
sections	in	units	of	1/20	of	a	point.

ColumnSpacing A	Long	that	specifies	the	vertical	space	between	detail
sections	in	twips.

DefaultSize
A	Long.	When	True,	uses	the	size	of	the	detail	section	in
Design	view.	When	False,	uses	the	values	specified	by	the
ItemSizeWidth	and	ItemSizeHeight	members.

ItemSizeWidth

A	Long	that	specifies	the	width	of	the	detail	section	in
twips.	This	member	is	equivalent	to	the	value	of	the	Width
box	under	Column	Size	on	the	Columns	tab	of	the	Page
Setup	dialog	box.

ItemSizeHeight

A	Long	that	specifies	the	height	of	the	detail	section	twips.
This	member	is	equivalent	to	the	value	of	the	Height	box
under	Column	Size	on	the	Columns	tab	of	the	Page	Setup

dialog	box.

ItemLayout

A	Long	that	specifies	horizontal	(1953)	or	vertical	(1954)
layout	of	columns.	This	member	is	equivalent	to	Across,
then	Down	or	Down,	then	Across	respectively	under
Column	Layout	on	the	Columns	tab	of	the	Page	Setup
dialog	box.

FastPrint Reserved.
Datasheet Reserved.
The	PrtMip	property	setting	is	read/write	in	Design	view	and	read-only	in	other
views.

Example

The	following	PrtMip	property	example	demonstrates	how	to	set	up	the	report
with	two	horizontal	columns.

Private	Type	str_PRTMIP

				strRGB	As	String	*	28

End	Type

Private	Type	type_PRTMIP

				xLeftMargin	As	Long

				yTopMargin	As	Long

				xRightMargin	As	Long

				yBotMargin	As	Long

				fDataOnly	As	Long

				xWidth	As	Long

				yHeight	As	Long

				fDefaultSize	As	Long

				cxColumns	As	Long

				yColumnSpacing	As	Long

				xRowSpacing	As	Long

				rItemLayout	As	Long

				fFastPrint	As	Long

				fDatasheet	As	Long

End	Type

Public	Sub	PrtMipCols(ByVal	strName	As	String)

				Dim	PrtMipString	As	str_PRTMIP

				Dim	PM	As	type_PRTMIP

				Dim	rpt	As	Report

				Const	PM_HORIZONTALCOLS	=	1953

				Const	PM_VERTICALCOLS	=	1954

				

				'	Open	the	report.

				DoCmd.OpenReport	strName,	acDesign

				Set	rpt	=	Reports(strName)

				PrtMipString.strRGB	=	rpt.PrtMip

				LSet	PM	=	PrtMipString

				

				'	Create	two	columns.

				PM.cxColumns	=	2

				

				'	Set	0.25	inch	between	rows.

				PM.xRowSpacing	=	0.25	*	1440

				

				'	Set	0.5	inch	between	columns.

				PM.yColumnSpacing	=	0.5	*	1440

				PM.rItemLayout	=	PM_HORIZONTALCOLS

				

				'	Update	property.

				LSet	PrtMipString	=	PM

				rpt.PrtMip	=	PrtMipString.strRGB

				

				Set	rpt	=	Nothing

				

End	Sub

The	next	PrtMip	property	example	shows	how	to	set	all	margins	to	1	inch.

Public	Sub	SetMarginsToDefault(ByVal	strName	As	String)

				Dim	PrtMipString	As	str_PRTMIP

				Dim	PM	As	type_PRTMIP

				Dim	rpt	As	Report

				

				'	Open	the	report.

				DoCmd.OpenReport	strName,	acDesign

				Set	rpt	=	Reports(strName)

				PrtMipString.strRGB	=	rpt.PrtMip

				LSet	PM	=	PrtMipString

				

				'	Set	margins.

				PM.xLeftMargin	=	1	*	1440

				PM.yTopMargin	=	1	*	1440

				PM.xRightMargin	=	1	*	1440

				PM.yBotMargin	=	1	*	1440

				

				'	Update	property.

				LSet	PrtMipString	=	PM

				rpt.PrtMip	=	PrtMipString.strRGB

				

				Set	rpt	=	Nothing

				

End	Sub

Query	Property
							

Returns	or	sets	a	String	indicating	which	macro,	event	procedure,	or	user-
defined	function	runs	when	the	Query	event	occurs.	Read/write.

expression.Query

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

Remarks

Valid	values	for	this	property	are	"macroname"	where	macroname	is	the	name	of
macro,	"[Event	Procedure]"	which	indicates	the	event	procedure	associated	with
the	Query	event	for	the	specified	object,	or	"=functionname()"	where
functionname	is	the	name	of	a	user-defined	function.	For	a	more	detailed
discussion	of	event	properties,	see	"Event	Properties."

Example

The	following	example	specifies	that	when	the	Query	event	occurs	on	the	first
form	of	the	current	project,	the	associated	event	procedure	should	run.

Forms(0).Query	=	"[Event	Procedure]"

ReadingOrder	Property
							

You	can	use	the	ReadingOrder	property	to	specify	or	determine	the	reading
order	of	words	in	text.	Read/write.

expression.ReadingOrder

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

Remarks

The	ReadingOrder	property	uses	the	following	settings.

Setting Visual	Basic Description

Context 0

Reading	order	is	determined	by	the	language	of
the	first	character	entered.	If	a	right-to-left
language	character	is	entered	first,	reading
order	is	right	to	left.	If	a	left-to-right	language
character	is	entered	first,	reading	order	is	left	to
right.

Left-to-Right 1 Sets	the	reading	order	to	left	to	right.
Right-to-Left 2 Sets	the	reading	order	to	right	to	left.
You	can	set	this	property	by	using	the	property	sheet	or	Visual	Basic.

In	a	combo	box	or	list	box,	the	ReadingOrder	property	determines	reading
order	behavior	for	both	the	text	box	and	list	box	components	of	the	control.

Example

The	following	example	sets	the	reading	order	to	right	to	left	for	the	"Address"
text	box	on	the	"International	Shipping"	form.

Forms("International	Shipping").Controls("Address").ReadingOrder	=	2

Show	All

RecordLocks	Property
							

You	can	use	the	RecordLocks	property	to	determine	how	records	are	locked	and
what	happens	when	two	users	try	to	edit	the	same	record	at	the	same	time.
Read/write.

expression.RecordLocks

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

Remarks

When	you	edit	a	record,	Microsoft	Access	can	automatically	lock	that	record	to
prevent	other	users	from	changing	it	before	you	are	finished.

Forms.	Specifies	how	records	in	the	underlying	table	or	query	are	locked
when	data	in	a	multiuser	database	is	updated.

Reports.	Specifies	whether	records	in	the	underlying	table	or	query	are
locked	while	a	report	is	previewed	or	printed.

Queries.	Specifies	whether	records	in	a	query	(typically	an	action	query	in	a
multiuser	database)	are	locked	while	the	query	is	run.

Note			The	RecordLocks	property	only	applies	to	forms,	reports,	or	queries	in	a
Microsoft	Access	database	(.mdb).

The	RecordLocks	property	uses	the	following	settings.

Setting Visual	Basic Description

No	Locks 0

(Default)	In	forms,	two	or	more	users	can	edit
the	same	record	simultaneously.	This	is	also
called	"optimistic"	locking.	If	two	users
attempt	to	save	changes	to	the	same	record,
Microsoft	Access	displays	a	message	to	the
user	who	tries	to	save	the	record	second.	This
user	can	then	discard	the	record,	copy	the
record	to	the	Clipboard,	or	replace	the
changes	made	by	the	other	user.	This	setting
is	typically	used	on	read-only	forms	or	in
single-user	databases.	It	is	also	used	in
multiuser	databases	to	permit	more	than	one
user	to	be	able	to	make	changes	to	the	same
record	at	the	same	time.

In	reports,	records	aren't	locked	while	the
report	is	previewed	or	printed.

In	queries,	records	aren't	locked	while	the
query	is	run.

All	Records 1

All	records	in	the	underlying	table	or	query
are	locked	while	the	form	is	open	in	Form
view	or	Datasheet	view,	while	the	report	is
previewed	or	printed,	or	while	the	query	is
run.	Although	users	can	read	the	records,	no
one	can	edit,	add,	or	delete	any	records	until
the	form	is	closed,	the	report	has	finished
printing,	or	the	query	has	finished	running.

Edited	Record 2

(Forms	and	queries	only)	A	page	of	records	is
locked	as	soon	as	any	user	starts	editing	any
field	in	the	record	and	stays	locked	until	the
user	moves	to	another	record.	Consequently,	a
record	can	be	edited	by	only	one	user	at	a
time.	This	is	also	called	"pessimistic"	locking.

You	can	set	this	property	by	using	a	form's	property	sheet,	a	macro,	or	Visual
Basic.

Note			Changing	the	RecordLocks	property	of	an	open	form	or	report	causes	an
automatic	recreation	of	the	recordset.

You	can	use	the	No	Locks	setting	for	forms	if	only	one	person	uses	the
underlying	tables	or	queries	or	makes	all	the	changes	to	the	data.

In	a	multiuser	database,	you	can	use	the	No	Locks	setting	if	you	want	to	use
optimistic	locking	and	warn	users	attempting	to	edit	the	same	record	on	a	form.
You	can	use	the	Edited	Record	setting	if	you	want	to	prevent	two	or	more	users
editing	data	at	the	same	time.

You	can	use	the	All	Records	setting	when	you	need	to	ensure	that	no	changes	are
made	to	data	after	you	start	to	preview	or	print	a	report	or	run	an	append,	delete,
make-table,	or	update	query.

In	Form	view	or	Datasheet	view,	each	locked	record	has	a	locked	indicator	in	its
record	selector.

Tip			To	change	the	default	RecordLocks	property	setting	for	forms,	click
Options	on	the	Tools	menu,	click	the	Advanced	tab	on	the	Options	dialog	box,
and	then	select	the	desired	option	under	Default	record	locking.

Data	in	a	form,	report,	or	query	from	an	Open	Database	Connectivity	(ODBC)
database	is	treated	as	if	the	No	Locks	setting	were	chosen,	regardless	of	the
RecordLocks	property	setting.

Example

The	following	example	sets	the	RecordLocks	property	of	the	"Employees"	form
to	Edited	Record	(a	page	of	records	is	locked	as	soon	as	any	user	starts	editing
any	field	in	the	record	and	stays	locked	until	the	user	moves	to	another	record).

Forms("Employees").RecordLocks	=	2

Show	All

RecordSelectors	Property
							

You	can	use	the	RecordSelectors	property	to	specify	whether	a	form	displays
record	selectors	in	Form	view.	Read/write	Boolean.

expression.RecordSelectors

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

Remarks

The	RecordSelectors	property	uses	the	following	settings.

Setting Visual	Basic Description

Yes True		 (Default)	Each	record	has	a	record
selector.

No False		 No	record	has	a	record	selector.
You	can	set	this	property	by	using	the	form's	property	sheet,	a	macro,	or	Visual
Basic.

You	can	use	this	property	to	remove	record	selectors	when	you	create	or	use	a
form	as	a	custom	dialog	box	or	a	palette.	You	can	also	use	this	property	for
forms	whose	DefaultView	property	is	set	to	Single	Form.

The	record	selector	displays	the	unsaved	record	indicator	when	a	record	is	being
edited.	When	the	RecordSelectors	property	is	set	to	No	and	the	RecordLocks
property	is	set	to	Edited	Record	(record	locking	is	"pessimistic"	—	only	one
person	can	edit	a	record	at	a	time),	there	is	no	visual	clue	that	the	record	is
locked.

Example

The	following	example	specifies	that	no	record	has	a	record	selector	in	the
"Employees"	form.

Forms("Employees").RecordSelectors	=	False

Show	All

Recordset	Property
							

Returns	or	sets	the	ADO	Recordset	or	DAO	Recordset	object	representing	the
record	source	for	the	specified	form,	report,	list	box	control,	or	combo	box
control.	Read/write.

expression.Recordset

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

mk:@MSITStore:ado210.chm::/htm/mdobjODBRec.htm
mk:@MSITStore:dao360.chm::/htm/daobjRecordset.htm

Remarks

You	cannot	use	this	property	with	ODBCDirect	recordset	types	in	DAO.

The	Recordset	property	returns	the	recordset	object	that	provides	the	data	being
browsed	in	a	form,	report,	list	box	control,	or	combo	box	control.	If	a	form	is
based	on	a	query,	for	example,	referring	to	the	Recordset	property	is	the
equivalent	of	cloning	a	Recordset	object	by	using	the	same	query.	However,
unlike	using	the	RecordsetClone	property,	changing	which	record	is	current	in
the	recordset	returned	by	the	form's	Recordset	property	also	sets	the	current
record	of	the	form.

This	property	is	available	only	by	using	Visual	Basic.

The	read/write	behavior	of	the	Recordset	property	is	determined	by	the	type	of
recordset	(ADO	or	DAO)	and	the	type	of	data	(Jet	or	SQL)	contained	in	the
recordset	identified	by	the	property.

Recordset	type Based	on	SQL	data Based	on	Jet	data
ADO Read/Write Read/Write
DAO N/A Read/Write
	

The	following	example	opens	a	form,	opens	a	recordset,	and	then	binds	the	form
to	the	recordset	by	setting	the	form's	Recordset	property	to	the	newly	created
Recordset	object.

Global	rstSuppliers	As	ADODB.Recordset

Sub	MakeRW()

				DoCmd.OpenForm	"Suppliers"

				Set	rstSuppliers	=	New	ADODB.Recordset

				rstSuppliers.CursorLocation	=	adUseClient

				rstSuppliers.Open	"Select	*	From	Suppliers",	_

								CurrentProject.Connection,	adOpenKeyset,	adLockOptimistic

				Set	Forms("Suppliers").Recordset	=	rstSuppliers

End	Sub

Use	the	Recordset	property:

To	bind	multiple	forms	to	a	common	data	set.	This	allows	synchronization
of	multiple	forms.	For	example,

				Set	Me.Recordset	=	Forms!Form1.Recordset

To	use	methods	with	the	Recordset	object	that	aren't	directly	supported	on
forms.	For	example,	you	can	use	the	Recordset	property	with	the	ADO
Find	or	DAO	Find	methods	in	a	custom	dialog	for	finding	a	record.
To	wrap	a	transaction	(which	can	be	rolled	back)	around	a	set	of	edits	that
affect	multiple	forms.

Changing	a	form's	Recordset	property	may	also	change	the	RecordSource,
RecordsetType,	and	RecordLocks	properties.	Also,	some	data-related
properties	may	be	overridden,	for	example,	the	Filter,	FilterOn,	OrderBy,	and
OrderByOn	properties.

Calling	the	Requery	method	of	a	form's	recordset	(for	example,
Forms(0).Recordset.Requery)	can	cause	the	form	to	become	unbound.	To
refresh	the	data	in	a	form	bound	to	a	recordset,	set	the	RecordSource	property
of	the	form	to	itself	(Forms(0).RecordSource	=	Forms(0).RecordSource).

When	a	form	is	bound	to	a	recordset,	an	error	occurs	if	you	use	the	Filter	by
Form	command.

mk:@MSITStore:ado210.chm::/htm/mdmthFindMethodADO.htm
mk:@MSITStore:dao360.chm::/htm/damthFindFirst.htm

Example

The	following	example	uses	the	Recordset	property	to	create	a	new	copy	of	the
Recordset	object	from	the	current	form	and	then	prints	the	names	of	the	fields	in
the	Debug	window.

Sub	Print_Field_Names()

				Dim	rst	As	DAO.Recordset,	intI	As	Integer

				Dim	fld	As	Field

				Set	rst	=	Me.Recordset

				For	Each	fld	in	rst.Fields

								'	Print	field	names.

								Debug.Print	fld.Name

				Next

End	Sub

The	next	example	uses	the	Recordset	property	and	the	Recordset	object	to
synchronize	a	recordset	with	the	form's	current	record.	When	a	company	name	is
selected	from	a	combo	box,	the	FindFirst	method	is	used	to	locate	the	record	for
that	company,	causing	the	form	to	display	the	found	record.

Sub	SupplierID_AfterUpdate()

				Dim	rst	As	DAO.Recordset

				Dim	strSearchName	As	String

				Set	rst	=	Me.Recordset

				strSearchName	=	CStr(Me!SupplierID)

				rst.FindFirst	"SupplierID	=	"	&	strSearchName

				If	rst.NoMatch	Then

								MsgBox	"Record	not	found"

				End	If

				rst.Close

End	Sub

The	following	code	helps	to	determine	what	type	of	recordset	is	returned	by	the
Recordset	property	under	different	conditions.

Sub	CheckRSType()

				Dim	rs	as	Object

				Set	rs=Forms(0).Recordset

				If	TypeOf	rs	Is	DAO.Recordset	Then

								MsgBox	"DAO	Recordset"

				ElseIf	TypeOf	rs	is	ADODB.Recordset	Then

								MsgBox	"ADO	Recordset"

				End	If

End	Sub

Show	All

RecordsetClone	Property
							

You	can	use	the	RecordsetClone	property	to	refer	to	a	form's	Recordset	object
specified	by	the	form's	RecordSource	property.	Read-only.

expression.RecordsetClone

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

mk:@MSITStore:dao360.chm::/htm/daobjRecordset.htm

Remarks

The	RecordsetClone	property	setting	is	a	copy	of	the	underlying	query	or	table
specified	by	the	form's	RecordSource	property.	If	a	form	is	based	on	a	query,
for	example,	referring	to	the	RecordsetClone	property	is	the	equivalent	of
cloning	a	Recordset	object	by	using	the	same	query.	If	you	then	apply	a	filter	to
the	form,	the	Recordset	object	reflects	the	filtering.

This	property	is	available	only	by	using	Visual	Basic	and	is	read-only	in	all
views.

You	use	the	RecordsetClone	property	to	navigate	or	operate	on	a	form's	records
independent	of	the	form	itself.	For	example,	you	can	use	the	RecordsetClone
property	when	you	want	to	use	a	method,	such	as	the	DAO	Find	methods,	that
can't	be	used	with	forms.

When	a	new	Recordset	object	is	opened,	its	first	record	is	the	current	record.	If
you	one	of	the	Find	method	or	one	of	the	Move	methods	to	make	any	other
record	in	the	Recordset	object	current,	you	must	synchronize	the	current	record
in	the	Recordset	object	with	the	form's	current	record	by	assigning	the	value	of
the	DAO	Bookmark	property	to	the	form's	Bookmark	property.

You	can	use	the	RecordCount	property	to	count	the	number	of	records	in	a
Recordset	object.	The	following	example	shows	how	you	can	combine	the
RecordCount	property	and	the	RecordsetClone	property	to	count	the	records	in
a	form:

Forms!Orders.RecordsetClone.MoveLast

MsgBox	"My	form	contains	"	_

				&	Forms!Orders.RecordsetClone.RecordCount	_

				&	"	records.",	vbInformation,	"Record	Count"

Note			If	you	close	the	form	or	if	you	change	the	form's	RecordSource	property,
the	Recordset	object	is	no	longer	valid.	If	you	subsequently	refer	to	the
Recordset	object	or	to	previously	saved	bookmarks	in	the	form	or	the
Recordset	object,	an	error	will	occur.

mk:@MSITStore:dao360.chm::/htm/damthFindFirst.htm
mk:@MSITStore:dao360.chm::/htm/damthMove.htm
mk:@MSITStore:dao360.chm::/htm/daproBookmark.htm
mk:@MSITStore:dao360.chm::/htm/daproRecordCount.htm

Example

The	following	example	uses	the	RecordsetClone	property	to	create	a	new	clone
of	the	Recordset	object	from	the	Orders	form	and	then	prints	the	names	of	the
fields	in	the	Immediate	window.

Sub	Print_Field_Names()

				Dim	rst	As	Recordset,	intI	As	Integer

				Dim	fld	As	Field

				Set	rst	=	Me.RecordsetClone

				For	Each	fld	in	rst.Fields

								'	Print	field	names.

								Debug.Print	fld.Name

				Next

End	Sub

The	next	example	uses	the	RecordsetClone	property	and	the	Recordset	object
to	synchronize	a	recordset's	record	with	the	form's	current	record.	When	a
company	name	is	selected	from	a	combo	box,	the	FindFirst	method	is	used	to
locate	the	record	for	that	company	and	the	Recordset	object's	DAO	Bookmark
property	is	assigned	to	the	form's	Bookmark	property,	causing	the	form	to
display	the	found	record.

Sub	SupplierID_AfterUpdate()

				Dim	rst	As	Recordset

				Dim	strSearchName	As	String

				Set	rst	=	Me.RecordsetClone

				strSearchName	=	Str(Me!SupplierID)

				rst.FindFirst	"SupplierID	=	"	&	strSearchName

								If	rst.NoMatch	Then

												MsgBox	"Record	not	found"

								Else

												Me.Bookmark	=	rst.Bookmark

								End	If

				rst.Close

End	Sub

Show	All

RecordsetType	Property
							

You	can	use	the	RecordsetType	property	to	specify	what	kind	of	recordset	is
made	available	to	a	form.	Read/write.

expression.RecordsetType

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

Remarks

The	RecordsetType	property	uses	the	following	settings	in	a	Microsoft	Access
database	(.mdb).

Setting Visual	Basic Description

Dynaset 0

(Default)	You	can	edit	bound	controls	based
on	a	single	table	or	tables	with	a	one-to-one
relationship.	For	controls	bound	to	fields
based	on	tables	with	a	one-to-many
relationship,	you	can't	edit	data	from	the	join
field	on	the	"one"	side	of	the	relationship
unless	cascade	update	is	enabled	between	the
tables.	For	more	information,	see	the	topic
that	explains	when	you	can	update	records
from	a	query.

Dynaset
(Inconsistent
Updates)

1 All	tables	and	controls	bound	to	their	fields
can	be	edited.

Snapshot 2 No	tables	or	the	controls	bound	to	their
fields	can	be	edited.

If	you	don't	want	data	in	bound	controls	to	be	edited	when	a	form	is	in	Form
view	or	Datasheet	view,	you	can	set	the	RecordsetType	property	to	Snapshot.

The	RecordsetType	property	uses	the	following	settings	in	a	Microsoft	Access
project	(.adp).

Setting Visual	Basic Description

Snapshot 3 No	tables	or	the	controls	bound	to	their
fields	can	be	edited.

Updatable
Snapshot 4 (Default)	All	tables	and	controls	bound	to

their	fields	can	be	edited.

You	can	set	this	property	by	using	a	form's	property	sheet,	a	macro,	or	Visual
Basic.

mk:@MSITStore:acmain10.chm::/html/acconDeterminingWhenCanUpdateDataQueryS.htm

Note			Changing	the	RecordsetType	property	of	an	open	form	or	report	causes
an	automatic	recreation	of	the	recordset.

You	can	create	forms	based	on	multiple	underlying	tables	with	fields	bound	to
controls	on	the	forms.	Depending	on	the	RecordsetType	property	setting,	you
can	limit	which	of	these	bound	controls	can	be	edited.

In	addition	to	the	editing	control	provided	by	RecordsetType,	each	control	on	a
form	has	a	Locked	property	that	you	can	set	to	specify	whether	the	control	and
its	underlying	data	can	be	edited.	If	the	Locked	property	is	set	to	Yes,	you	can't
edit	the	data.

Example

In	the	following	example,	only	if	the	user	ID	is	ADMIN	can	records	be	updated.
This	code	sample	sets	the	RecordsetType	property	to	Snapshot	if	the	public
variable	gstrUserID	value	is	not	ADMIN.

Sub	Form_Open(Cancel	As	Integer)

				Const	conSnapshot	=	2

				If	gstrUserID	<>	"ADMIN"	Then

								Forms!Employees.RecordsetType	=	conSnapshot

				End	If

End	Sub

Show	All

RecordSource	Property
							

You	can	use	the	RecordSource	property	to	specify	the	source	of	the	data	for	a
form	or	report.	Read/write	String.

expression.RecordSource

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

Remarks

The	RecordSource	property	setting	can	be	a	table	name,	a	query	name,	or	an
SQL	statement.	For	example,	you	can	use	the	following	settings.

Sample	setting Description

Employees A	table	name	specifying	the	Employees
table	as	the	source	of	data.

SELECT	Orders!OrderDate	FROM

Orders;

An	SQL	statement	specifying	the	OrderDate
field	on	the	Orders	table	as	the	source	of
data.	You	can	bind	a	control	on	the	form	or
report	to	the	OrderDate	field	in	the	Orders
table	by	setting	the	control's	ControlSource
property	to	OrderDate.

You	can	set	the	RecordSource	property	by	using	the	form's	or	report's	property
sheet,	a	macro,	or	Visual	Basic.

In	Visual	Basic,	use	a	string	expression	to	set	this	property.

Note			Changing	the	record	source	of	an	open	form	or	report	causes	an	automatic
requery	of	the	underlying	data.	If	a	form's	Recordset	property	is	set	at	runtime,
the	form's	RecordSource	property	is	updated.

After	you	have	created	a	form	or	report,	you	can	change	its	source	of	data	by
changing	the	RecordSource	property.	The	RecordSource	property	is	also	useful
if	you	want	to	create	a	reusable	form	or	report.	For	example,	you	could	create	a
form	that	incorporates	a	standard	design,	then	copy	the	form	and	change	the
RecordSource	property	to	display	data	from	a	different	table,	query,	or	SQL
statement.

Limiting	the	number	of	records	contained	in	a	form's	record	source	can	enhance
performance,	especially	when	your	application	is	running	on	a	network.	For
example,	you	can	set	a	form's	RecordSource	property	to	an	SQL	statement	that
returns	a	single	record	and	change	the	form's	record	source	depending	on	criteria
selected	by	the	user.

Example

The	following	example	sets	a	form's	RecordSource	property	to	the	Customers
table:

Forms!frmCustomers.RecordSource	=	"Customers"

The	next	example	changes	a	form's	record	source	to	a	single	record	in	the
Customers	table,	depending	on	the	company	name	selected	in	the
cmboCompanyName	combo	box	control.	The	combo	box	is	filled	by	an	SQL
statement	that	returns	the	customer	ID	(in	the	bound	column)	and	the	company
name.	The	CustomerID	has	a	Text	data	type.

Sub	cmboCompanyName_AfterUpdate()

				Dim	strNewRecord	As	String

				strNewRecord	=	"SELECT	*	FROM	Customers	"	_

								&	"	WHERE	CustomerID	=	'"	_

								&	Me!cmboCompanyName.Value	&	"'"

				Me.RecordSource	=	strNewRecord

End	Sub

RecordSourceQualifier	Property
							

Returns	or	sets	a	String	indicating	the	SQL	Server	owner	name	of	the	record
source	for	the	specified	form	or	report.	Read/write.

expression.RecordSourceQualifier

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

Example

The	following	example	displays	all	the	record	source	information	for	the
specified	form.

With	Forms(0)

				MsgBox	"Record	Source:	"	&	.RecordSource	&	vbCr	_

								&	"Record	Source	Qualifier:	"	_

								&	.RecordSourceQualifier

End	With

References	Property
							

You	can	use	the	References	property	to	access	the	References	collection	and	its
related	properties,	methods,	and	events.

expression.References

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

Remarks

This	property	is	available	only	by	using	Visual	Basic	and	is	read-only.

The	References	collection	corresponds	to	the	list	of	references	in	the
References	dialog	box,	available	by	clicking	References	on	the	Tools	menu.
Each	Reference	object	represents	one	selected	reference	in	the	list.	References
that	appear	in	the	References	dialog	box	but	haven't	been	selected	aren't	in	the
References	collection.

Example

The	following	example	displays	a	message	indicating	the	number	of	boxes
checked	in	the	References	dialog	box.

MsgBox	"There	are	"	&	Application.References.Count	&	"	references."

RemovePersonalInformation
Property
							

Returns	or	sets	a	Boolean	indicating	whether	personal	information	about	the
user	is	stored	in	the	specified	project	or	data	access	page.	True	if	personal
information	is	removed.	Read-write.

expression.RemovePersonalInformation

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

Example

This	example	sets	Microsoft	Access	to	remove	personal	information	from	the
current	project	the	next	time	the	user	saves	it.

CurrentProject.RemovePersonalInformation	=	True

This	example	sets	Microsoft	Access	to	remove	personal	information	from	the
active	data	access	page	the	next	time	the	user	saves	it.

Screen.ActiveDataAccessPage	_

				.RemovePersonalInformation	=	True

RepeatSection	Property
							

You	can	use	the	RepeatSection	property	to	specify	whether	a	group	header	is
repeated	on	the	next	page	or	column	when	a	group	spans	more	than	one	page	or
column.	Read/write	Boolean.

expression.RepeatSection

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

Remarks

The	RepeatSection	property	only	applies	to	group	headers	on	a	report.

The	RepeatSection	property	uses	the	following	settings.

Setting Visual	Basic Description
Yes True		 The	group	header	is	repeated.

No False		 (Default)	The	group	header	isn't
repeated.

You	can	set	the	RepeatSection	property	by	using	the	group	header	section's
property	sheet,	a	macro,	or	Visual	Basic.

When	printing	a	report	that	contains	a	subreport,	the	subreport's	RepeatSection
property	will	determine	if	the	subreport	group	headers	are	repeated	across	pages
or	columns.

Example

The	following	example	prints	the	group	header	"GroupHeader0"	at	the	top	of
each	page.

Reports("Purchase	Order").Section("GroupHeader0").RepeatSection	=	True

Show	All

Report	Property
							

You	can	use	the	Report	property	to	refer	to	a	report	or	to	refer	to	the	report
associated	with	a	subreport	control.

expression.Report

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

Remarks

This	property	refers	to	a	report	object.	It	is	read-only	in	all	views.

You	can	use	this	property	by	using	a	macro	or	Visual	Basic.

This	property	is	typically	used	to	refer	to	the	report	contained	in	a	subreport
control.

Note			When	you	use	the	Reports	collection,	you	must	specify	the	name	of	the
report.

Example

The	following	example	uses	the	Report	property	to	refer	to	a	control	on	a
subreport.

Dim	curTotalSales	As	Currency

curTotalSales	=	Reports!Sales!Employees.Report!TotalSales

Show	All

Reports	Property
							

You	can	use	the	Reports	property	to	access	the	read-only	Reports	collection	and
its	related	properties.

expression.Reports

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

Remarks

This	property	is	available	only	by	using	Visual	Basic	and	is	read-only.

The	Reports	collection	contains	all	of	the	currently	open	reports	in	a	Microsoft
Access	database	(.mdb)	or	Microsoft	Access	project	(.adp).

Show	All

ResyncCommand	Property
							

You	can	use	the	ResyncCommand	property	to	specify	or	determine	the	SQL
statement	or	stored	procedure	that	will	be	used	in	an	updateable	snapshot	of	a
table.	Read/write	String.

expression.ResyncCommand

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

Remarks

The	ResyncCommand	property	is	a	string	expression	representing	a	SQL
statement	or	stored	procedure	that	is	parameterized	by	the	key	columns	from	the
Unique	Table	in	the	output	cursor,	using	?	as	parameter	markers.

You	can	set	this	property	by	using	the	property	sheet	or	Visual	Basic.

The	parameters	must	match	in	number	and	ordering	to	the	set	of	key	columns	for
the	table	identified	by	the	UniqueTable	property.	The	purpose	of	the
ResyncCommand	property	is	to	pull	in	the	"fixed	up"	values	of	a	row	in	a
recordset	after	an	update	has	been	made,	including	an	update	to	a	join	column.

For	data	access	pages	and	for	forms	based	on	views	or	non-parameterized	SQL
queries	containing	a	join,	if	the	ResyncCommand	property	is	null,	Microsoft
Access	determines	an	appropriate	query	to	use	for	the	resync	operation.	For	data
access	pages	and	forms	based	on	stored	procedures	or	parameterized	SQL
statements,	Access	cannot	determine	an	appropriate	resync	query	at	run	time,	so
the	user	must	supply	the	ResyncCommand	string	in	order	to	get	the	correct	row
fix	up	behavior.	If	the	ResyncCommand	property	is	empty	and	Access	cannot
determine	an	appropriate	query	to	use,	the	default	ADO	resync	operation	(to
display	the	current	values)	occurs	after	an	update	or	insert.

Show	All

RightMargin	Property
							

RightMargin	property	as	it	applies	to	the	Label	and	TextBox	objects.

Along	with	the	TopMargin,	Left	Margin,	and	BottomMargin	properties,
specifies	the	location	of	information	displayed	within	a	label	or	text	box	control.
Read/write	Integer.	Read/write	Integer.

expression.RightMargin

expression			Required.	An	expression	that	returns	one	of	the	above	objects.

Remarks

A	control's	displayed	information	location	is	measured	from	the	control's	left,
top,	right,	or	bottom	border	to	the	left,	top,	right,	or	bottom	edge	of	the	displayed
information.	To	use	a	unit	of	measurement	different	from	the	setting	in	the
regional	settings	of	Windows,	specify	the	unit	(for	example,	cm	or	in).

In	Visual	Basic,	use	a	numeric	expression	to	set	the	value	of	this	property.	Values
are	expressed	in	twips.

You	can	set	these	properties	by	using	the	property	sheet,	a	macro,	or	Visual
Basic.

RightMargin	property	as	it	applies	to	the	Printer	object.

Along	with	the	TopMargin,	LeftMargin,	and	BottomMargin	properties,
specifies	the	margins	for	a	printed	page.	Read/write	Long.

expression.RightMargin

expression			Required.	An	expression	that	returns	a	Printer	object.

Example

As	it	applies	to	the	Label	and	TextBox	objects.

The	following	example	offsets	the	caption	in	the	label	"EmployeeID_Label"	in
the	"Purchase	Orders"	form	by	100	twips	from	the	right	of	the	label's	border.

With	Forms.Item("Purchase	Orders").Controls.Item("EmployeeID_Label")

				.RightMargin	=	100

End	With

Show	All

RollbackTransaction	Property
							

Returns	or	sets	a	String	indicating	which	macro,	event	procedure,	or	user-
defined	function	runs	when	the	RollbackTransaction	event	occurs.	Read/write.

expression.RollbackTransaction

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

Remarks

This	event	applies	to	Access	project	forms	whose	BatchUpdates	properties	are
set	to	True.

Valid	values	for	this	property	are	"macroname"	where	macroname	is	the	name	of
macro,	"[Event	Procedure]"	which	indicates	the	event	procedure	associated	with
the	RollbackTransaction	event	for	the	specified	object,	or	"=functionname()"
where	functionname	is	the	name	of	a	user-defined	function.	For	a	more	detailed
discussion	of	event	properties,	see	"Event	Properties."

Example

The	following	example	specifies	that	when	the	RollbackTransaction	event
occurs	on	the	first	form	of	the	current	project,	the	associated	event	procedure
should	run.

Forms(0).RollbackTransaction	=	"[Event	Procedure]"

Show	All

RowHeight	Property
							

You	can	use	the	RowHeight	property	to	specify	the	height	of	all	rows	in
Datasheet	view.	Read/write	Integer.

expression.RowHeight

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

Remarks

The	RowHeight	property	applies	to	all	fields	in	Datasheet	view	and	to	form
controls	when	the	form	is	in	Datasheet	view.

You	can	set	the	RowHeight	property	in	Datasheet	view	by	dragging	the	lower
border	of	the	record	selector	or	by	clicking	Row	Height	on	the	Format	menu.
When	you	set	the	RowHeight	property	by	using	the	Row	Height	command,	the
value	is	expressed	in	points.

In	Visual	Basic,	the	RowHeight	property	setting	is	a	Long	Integer	value	that
represents	the	datasheet	row	height	in	twips.	To	specify	the	default	height	for	the
current	font,	you	can	set	the	RowHeight	property	to	True.

Example

This	example	takes	effect	in	Datasheet	view	of	the	open	Customers	form.	It	sets
the	row	height	to	450	twips	and	sizes	the	column	to	fit	the	size	of	the	visible	text.

Forms![Customers].RowHeight	=	450

Forms![Customers]![Address].ColumnWidth	=	-2

Show	All

RowSource	Property
							

You	can	use	the	RowSource	property	(along	with	the	RowSourceType
property)	to	tell	Microsoft	Access	how	to	provide	data	to	a	list	box,	a	combo
box,	or	an	unbound	OLE	object	such	as	a	chart.	For	example,	to	display	rows	of
data	in	a	list	box	from	a	query	named	CustomerList,	set	the	list	box's
RowSourceType	property	to	Table/Query	and	its	RowSource	property	to	the
query	named	CustomerList.	Read/write	String.

expression.RowSource

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

Remarks

The	RowSource	property	setting	depends	on	the	RowSourceType	property
setting.

For	this	RowSourceType	setting Enter	this	RowSource	setting

Table/Query A	table	name,	query	name,	or	SQL
statement.

Value	List A	list	of	items	with	semicolons	(;)	as
separators.

Field	List A	table	name,	query	name,	or	SQL
statement.

Note			If	the	RowSourceType	property	is	set	to	a	user-defined	function,	the
RowSource	property	can	be	left	blank.

You	can	set	the	RowSource	property	by	using	the	control's	property	sheet,	a
macro,	or	Visual	Basic.

For	table	fields,	you	can	set	these	properties	on	the	Lookup	tab	in	the	Field
Properties	section	of	table	Design	view	for	fields	with	the	DisplayControl
property	set	to	Combo	Box	or	List	Box.

Note			Microsoft	Access	sets	these	properties	automatically	when	you	select
Lookup	Wizard	as	the	data	type	for	a	field	in	table	Design	view.

In	Visual	Basic,	set	the	RowSourceType	property	by	using	a	string	expression
with	one	of	these	values:	"Table/Query",	"Value	List",	or	"Field	List".	You
also	use	a	string	expression	to	set	the	value	of	the	RowSource	property.	To	set
the	RowSourceType	property	to	a	user-defined	function,	enter	the	name	of	the
function.

When	you	have	a	limited	number	of	values	that	don't	change,	you	can	set	the
RowSourceType	property	to	Value	List	and	then	enter	the	values	that	make	up
the	list	in	the	RowSource	property.

Example

The	following	example	sets	the	RowSourceType	property	for	a	combo	box	to
Table/Query,	and	it	sets	the	RowSource	property	to	a	query	named
EmployeeList.

Forms!Employees!cmboNames.RowSourceType	=	"Table/Query"

Forms!Employees!cmboNames.RowSource	=	"EmployeeList"

Show	All

RowSourceType	Property
							

You	can	use	the	RowSourceType	property	(along	with	the	RowSource
property)	to	tell	Microsoft	Access	how	to	provide	data	to	a	list	box,	a	combo
box,	or	an	unbound	OLE	object	such	as	a	chart.	For	example,	to	display	rows	of
data	in	a	list	box	from	a	query	named	CustomerList,	set	the	list	box's
RowSourceType	property	to	Table/Query	and	its	RowSource	property	to	the
query	named	CustomerList.	Read/write	String.

expression.RowSourceType

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

Remarks

The	RowSourceType	property	uses	the	following	settings.

Setting Description

Table/Query (Default)	The	data	is	from	a	table,	query,	or	SQL	statement
specified	by	the	RowSource	setting.

Value	List The	data	is	a	list	of	items	specified	by	the	RowSource
setting.

Field	List The	data	is	a	list	of	field	names	from	a	table,	query,	or	SQL
statement	specified	by	the	RowSource	setting.

Note			You	can	also	set	the	RowSourceType	property	with	a	user-defined
function.	The	function	name	is	entered	without	a	preceding	equal	sign	(=)	and
without	the	trailing	pair	of	parentheses.	You	must	provide	specific	function	code
arguments	to	tell	Microsoft	Access	how	to	fill	the	control.

You	can	set	the	RowSourceType	property	by	using	the	control's	property	sheet,
a	macro,	or	Visual	Basic.	In	Visual	Basic,	set	the	RowSourceType	property	by
using	a	string	expression	with	one	of	these	values:	"Table/Query",	"Value
List",	or	"Field	List".	To	set	the	RowSourceType	property	to	a	user-defined
function,	enter	the	name	of	the	function.

When	you	have	a	limited	number	of	values	that	don't	change,	you	can	set	the
RowSourceType	property	to	Value	List	and	then	enter	the	values	that	make	up
the	list	in	the	RowSource	property.

When	you	create	a	user-defined	function	to	insert	items	into	a	list	box	or	combo
box,	Microsoft	Access	calls	the	function	repeatedly	to	get	the	information	it
needs.	User-defined	RowSourceType	functions	must	be	written	in	a	very
specific	function	format.

Example

The	following	example	sets	the	RowSourceType	property	for	a	combo	box	to
Table/Query,	and	it	sets	the	RowSource	property	to	a	query	named
EmployeeList.

Forms!Employees!cmboNames.RowSourceType	=	"Table/Query"

Forms!Employees!cmboNames.RowSource	=	"EmployeeList"

RowSpacing	Property
							

Returns	or	sets	a	Long	indicating	the	horizontal	space	between	detail	sections	in
twips.	Read/write.

expression.RowSpacing

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

Example

The	following	example	sets	a	variety	of	printer	settings	for	the	first	form	in	the
current	project.

With	Forms(0).Printer

				.TopMargin	=	1440

				.BottomMargin	=	1440

				.LeftMargin	=	1440

				.RightMargin	=	1440

				.ColumnSpacing	=	360

				.RowSpacing	=	360

				.ColorMode	=	acPRCMColor

				.DataOnly	=	False

				.DefaultSize	=	False

				.ItemSizeHeight	=	2880

				.ItemSizeWidth	=	2880

				.ItemLayout	=	acPRVerticalColumnLayout

				.ItemsAcross	=	6

				.Copies	=	1

				.Orientation	=	acPRORLandscape

				.Duplex	=	acPRDPVertical

				.PaperBin	=	acPRBNAuto

				.PaperSize	=	acPRPSLetter

				.PrintQuality	=	acPRPQMedium

End	With

Show	All

RunningSum	Property
							

You	can	use	the	RunningSum	property	to	calculate	record-by-record	or	group-
by-group	totals	in	a	report.	Read/write.

expression.RunningSum

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

Remarks

The	RunningSum	property	specifies	whether	a	text	box	on	a	report	displays	a
running	total	and	lets	you	set	the	range	over	which	values	are	accumulated.	For
example,	you	can	group	data	by	month	and	show	the	sum	of	each	month's	sales
in	the	group	footer.	You	can	show	the	running	sum	of	accumulated	sales	over	the
entire	report	(sales	for	January	in	the	January	footer,	sales	for	January	plus
February	in	the	February	footer,	and	so	on)	by	adding	a	text	box	to	the	footer
that	shows	the	sum	of	sales	and	setting	its	RunningSum	property	to	Over	All.

Note			The	RunningSum	property	applies	only	to	a	text	box	on	a	report.

The	RunningSum	property	uses	the	following	settings.

Setting Visual	Basic Description

No 0 (Default)	The	text	box	displays	the	data	from
the	underlying	field	for	the	current	record.

Over	Group 1

The	text	box	displays	a	running	sum	of	values
in	the	same	group	level.	The	value
accumulates	until	another	group	level	section
is	encountered.

Over	All 2
The	text	box	displays	a	running	sum	of	values
in	the	same	group	level.	The	value
accumulates	until	the	end	of	the	report.

You	can	set	the	RunningSum	property	by	using	the	text	box's	property	sheet,	a
macro,	or	Visual	Basic.	You	can	set	the	RunningSum	property	only	in	Design
view.

Place	the	text	box	in	the	Detail	section	to	calculate	a	record-by-record	total.	For
example,	to	number	the	records	appearing	in	a	detail	section	of	a	report,	set	the
ControlSource	property	for	the	text	box	to	"=1",	and	set	the	RunningSum
property	to	Over	Group.

Place	the	text	box	in	a	group	header	or	group	footer	to	calculate	a	group-by-
group	total.

You	can	have	up	to	10	nested	group	levels	in	a	report.

Example

The	following	example	sets	the	RunningSum	property	for	a	text	box	named
SalesTotal	to	2	(Over	All):

Reports!rptSales!SalesTotal.RunningSum	=	2

Show	All

ScaleHeight	Property
							

You	can	use	the	ScaleHeight	property	to	specify	the	number	of	units	for	the
vertical	measurement	of	the	page	when	the	Circle,	Line,	Pset,	or	Print	method
is	used	while	a	report	is	printed	or	previewed,	or	its	output	is	saved	to	a	file.
Read/write	Single.

expression.ScaleHeight

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

Remarks

The	default	setting	is	the	internal	height	of	a	report	page	in	twips.

You	can	set	the	ScaleHeight	property	by	using	a	macro	or	a	Visual	Basic	event
procedure	specified	by	a	section's	OnPrint	property	setting.

You	can	use	the	ScaleHeight	property	to	create	a	custom	coordinate	scale	for
drawing	or	printing.	For	example,	the	statement	ScaleHeight	=	100	defines	the
internal	height	of	the	section	as	100	units,	or	one	vertical	unit	as	one	one-
hundredth	of	the	height.

Use	the	ScaleMode	property	to	define	a	scale	based	on	a	standard	unit	of
measurement,	such	as	points,	pixels,	characters,	inches,	millimeters,	or
centimeters.

Setting	the	ScaleHeight	property	to	a	positive	value	makes	coordinates	increase
in	value	from	top	to	bottom.	Setting	it	to	a	negative	value	makes	coordinates
increase	in	value	from	bottom	to	top.

By	using	these	properties	and	the	related	ScaleLeft	and	ScaleTop	properties,
you	can	set	up	a	custom	coordinate	system	with	both	positive	and	negative
coordinates.	All	four	of	these	Scale	properties	interact	with	the	ScaleMode
property	in	the	following	ways:

Setting	any	other	Scale	property	to	any	value	automatically	sets	the
ScaleMode	property	to	0.

Setting	the	ScaleMode	property	to	a	number	greater	than	0	changes	the
ScaleHeight	and	ScaleWidth	properties	to	the	new	unit	of	measurement
and	sets	the	ScaleLeft	and	ScaleTop	properties	to	0.	Also,	the	CurrentX
and	CurrentY	property	settings	change	to	reflect	the	new	coordinates	of
the	current	point.

You	can	also	use	the	Scale	method	to	set	the	ScaleHeight,	ScaleWidth,
ScaleLeft,	and	ScaleTop	properties	in	one	statement.

Note			The	ScaleHeight	property	isn't	the	same	as	the	Height	property.

Example

The	following	example	uses	the	Print	method	to	display	text	on	a	report	named
Report1.	It	uses	the	TextWidth	and	TextHeight	methods	to	center	the	text
vertically	and	horizontally.

Private	Sub	Detail_Format(Cancel	As	Integer,	_

								FormatCount	As	Integer)

				Dim	rpt	as	Report

				Dim	strMessage	As	String

				Dim	intHorSize	As	Integer,	intVerSize	As	Integer

				Set	rpt	=	Me

				strMessage	=	"DisplayMessage"

				With	rpt

								'Set	scale	to	pixels,	and	set	FontName	and

								'FontSize	properties.

								.ScaleMode	=	3

								.FontName	=	"Courier"

								.FontSize	=	24

				End	With

				'	Horizontal	width.

				intHorSize	=	Rpt.TextWidth(strMessage)

				'	Vertical	height.

				intVerSize	=	Rpt.TextHeight(strMessage)

				'	Calculate	location	of	text	to	be	displayed.

				Rpt.CurrentX	=	(Rpt.ScaleWidth/2)	-	(intHorSize/2)

				Rpt.CurrentY	=	(Rpt.ScaleHeight/2)	-	(intVerSize/2)

				'	Print	text	on	Report	object.

				Rpt.Print	strMessage

End	Sub

Show	All

ScaleLeft	Property
							

You	can	use	the	ScaleLeft	property	to	specify	the	units	for	the	horizontal
coordinates	that	describe	the	location	of	the	left	edge	of	a	page	when	the	Circle,
Line,	Pset,	or	Print	method	is	used	while	a	report	is	previewed,	printed,	or	its
output	is	saved	to	a	file.	Read	/	write	Single.

expression.ScaleLeft

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

Remarks

You	can	set	the	ScaleLeft	property	by	using	a	macro	or	a	Visual	Basic	event
procedure	specified	by	a	section's	OnPrint	property	setting.

By	using	these	properties	and	the	related	ScaleHeight	and	ScaleWidth
properties,	you	can	set	up	a	custom	coordinate	system	with	both	positive	and
negative	coordinates.	All	four	of	these	Scale	properties	interact	with	the
ScaleMode	property	in	the	following	ways:

Setting	any	other	Scale	property	to	any	value	automatically	sets	the
ScaleMode	property	to	0.

Setting	the	ScaleMode	property	to	a	number	greater	than	0	changes	the
ScaleHeight	and	ScaleWidth	property	settings	to	the	new	unit	of
measurement	and	sets	the	ScaleLeft	and	ScaleTop	properties	to	0.	Also,	the
CurrentX	and	CurrentY	property	settings	change	to	reflect	the	new
coordinates	of	the	current	point.

You	can	also	use	the	Scale	method	to	set	the	ScaleHeight,	ScaleWidth,
ScaleLeft,	and	ScaleTop	properties	in	one	statement.

Note			The	ScaleLeft	property	isn't	the	same	as	the	Left	property.

Example

The	following	example	uses	the	Circle	method	to	draw	a	circle	and	create	a	pie
slice	within	the	circle.	Then	it	uses	the	FillColor	and	FillStyle	properties	to
color	the	pie	slice	red.	It	also	draws	a	line	from	the	upper	left	to	the	center	of	the
circle.

To	try	this	example	in	Microsoft	Access,	create	a	new	report.	Set	the	OnPrint
property	of	the	Detail	section	to	[Event	Procedure].	Enter	the	following	code	in
the	report's	module,	then	switch	to	Print	Preview.

Private	Sub	Detail_Print(Cancel	As	Integer,	PrintCount	As	Integer)

				Const	conPI	=	3.14159265359

				Dim	sngHCtr	As	Single

				Dim	sngVCtr	As	Single

				Dim	sngRadius	As	Single

				Dim	sngStart	As	Single

				Dim	sngEnd	As	Single

				sngHCtr	=	Me.ScaleWidth	/	2															'	Horizontal	center.

				sngVCtr	=	Me.ScaleHeight	/	2														'	Vertical	center.

				sngRadius	=	Me.ScaleHeight	/	3												'	Circle	radius.

				Me.Circle	(sngHCtr,	sngVCtr),	sngRadius			'	Draw	circle.

				sngStart	=	-0.00000001																				'	Start	of	pie	slice.

				sngEnd	=	-2	*	conPI	/	3																			'	End	of	pie	slice.

				Me.FillColor	=	RGB(255,	0,	0)													'	Color	pie	slice	red.

				Me.FillStyle	=	0																										'	Fill	pie	slice.

				

				'	Draw	Pie	slice	within	circle

				Me.Circle	(sngHCtr,	sngVCtr),	sngRadius,	,	sngStart,	sngEnd

				'	Draw	line	to	center	of	circle.

				Dim	intColor	As	Integer

				Dim	sngTop	As	Single,	sngLeft	As	Single

				Dim	sngWidth	As	Single,	sngHeight	As	Single

				Me.ScaleMode	=	3																										'	Set	scale	to	pixels.

				sngTop	=	Me.ScaleTop																						'	Top	inside	edge.

				sngLeft	=	Me.ScaleLeft																				'	Left	inside	edge.

				sngWidth	=	Me.ScaleWidth	/	2														'	Width	inside	edge.

				sngHeight	=	Me.ScaleHeight	/	2												'	Height	inside	edge.

				intColor	=	RGB(255,	0,	0)																	'	Make	color	red.

				'	Draw	line.

				Me.Line	(sngTop,	sngLeft)-(sngWidth,	sngHeight),	intColor

End	Sub

Show	All

ScaleMode	Property
							

You	can	use	the	ScaleMode	property	in	Visual	Basic	to	specify	the	unit	of
measurement	for	coordinates	on	a	page	when	the	Circle,	Line,	Pset,	or	Print
method	is	used	while	a	report	is	previewed	or	printed,	or	its	output	is	saved	to	a
file.	Read/write	Integer.

expression.ScaleMode

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

Remarks

The	ScaleMode	property	uses	the	following	settings.

Setting Description

0 Custom	values	used	by	one	or	more	of	the	ScaleHeight,
ScaleWidth,	ScaleLeft,	and	ScaleTop	properties

1 (Default)	Twips
2 Points
3 Pixels

4 Characters	(horizontal	=	120	twips	per	unit;	vertical	=	240
twips	per	unit)

5 Inches
6 Millimeters
7 Centimeters

The	property	setting	has	an	Integer	value.

You	can	set	the	ScaleMode	property	by	using	a	macro	or	a	Visual	Basic	event
procedure	specified	by	a	section's	OnPrint	property	setting.

By	using	the	related	ScaleHeight,	ScaleWidth,	ScaleLeft,	and	ScaleTop
properties,	you	can	create	a	custom	coordinate	system	with	both	positive	and
negative	coordinates.	All	four	properties	interact	with	the	ScaleMode	property
in	the	following	ways:

Setting	any	other	Scale	property	to	any	value	automatically	sets	the
ScaleMode	property	to	0.

Setting	the	ScaleMode	property	to	a	number	greater	than	0	changes	the
ScaleHeight	and	ScaleWidth	property	settings	to	the	new	unit	of
measurement	and	sets	the	ScaleLeft	and	ScaleTop	properties	to	0.	Also,	the
CurrentX	and	CurrentY	property	settings	change	to	reflect	the	new
coordinates	of	the	current	point.

Show	All

ScaleTop	Property
							

You	can	use	the	ScaleTop	property	to	specify	the	units	for	the	vertical
coordinates	that	describe	the	location	of	the	top	edge	of	a	page	when	the	Circle,
Line,	Pset,	or	Print	method	is	used	while	a	report	is	previewed,	printed,	or	its
output	is	saved	to	a	file.	Read	/	write	Single.

expression.ScaleTop

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

Remarks

You	can	set	the	ScaleTop	property	by	using	a	macro	or	a	Visual	Basic	event
procedure	specified	by	a	section's	OnPrint	property	setting.

By	using	these	properties	and	the	related	ScaleHeight	and	ScaleWidth
properties,	you	can	set	up	a	custom	coordinate	system	with	both	positive	and
negative	coordinates.	All	four	of	these	Scale	properties	interact	with	the
ScaleMode	property	in	the	following	ways:

Setting	any	other	Scale	property	to	any	value	automatically	sets	the
ScaleMode	property	to	0.

Setting	the	ScaleMode	property	to	a	number	greater	than	0	changes	the
ScaleHeight	and	ScaleWidth	property	settings	to	the	new	unit	of
measurement	and	sets	the	ScaleLeft	and	ScaleTop	properties	to	0.	Also,	the
CurrentX	and	CurrentY	property	settings	change	to	reflect	the	new
coordinates	of	the	current	point.

You	can	also	use	the	Scale	method	to	set	the	ScaleHeight,	ScaleWidth,
ScaleLeft,	and	ScaleTop	properties	in	one	statement.

Note			The	ScaleTop	property	isn't	the	same	as	the	Top	property.

Example

The	following	example	uses	the	Circle	method	to	draw	a	circle	and	create	a	pie
slice	within	the	circle.	Then	it	uses	the	FillColor	and	FillStyle	properties	to
color	the	pie	slice	red.	It	also	draws	a	line	from	the	upper	left	to	the	center	of	the
circle.

To	try	this	example	in	Microsoft	Access,	create	a	new	report.	Set	the	OnPrint
property	of	the	Detail	section	to	[Event	Procedure].	Enter	the	following	code	in
the	report's	module,	then	switch	to	Print	Preview.

Private	Sub	Detail_Print(Cancel	As	Integer,	PrintCount	As	Integer)

				Const	conPI	=	3.14159265359

				Dim	sngHCtr	As	Single

				Dim	sngVCtr	As	Single

				Dim	sngRadius	As	Single

				Dim	sngStart	As	Single

				Dim	sngEnd	As	Single

				sngHCtr	=	Me.ScaleWidth	/	2															'	Horizontal	center.

				sngVCtr	=	Me.ScaleHeight	/	2														'	Vertical	center.

				sngRadius	=	Me.ScaleHeight	/	3												'	Circle	radius.

				Me.Circle	(sngHCtr,	sngVCtr),	sngRadius			'	Draw	circle.

				sngStart	=	-0.00000001																				'	Start	of	pie	slice.

				sngEnd	=	-2	*	conPI	/	3																			'	End	of	pie	slice.

				Me.FillColor	=	RGB(255,	0,	0)													'	Color	pie	slice	red.

				Me.FillStyle	=	0																										'	Fill	pie	slice.

				

				'	Draw	Pie	slice	within	circle

				Me.Circle	(sngHCtr,	sngVCtr),	sngRadius,	,	sngStart,	sngEnd

				'	Draw	line	to	center	of	circle.

				Dim	intColor	As	Integer

				Dim	sngTop	As	Single,	sngLeft	As	Single

				Dim	sngWidth	As	Single,	sngHeight	As	Single

				Me.ScaleMode	=	3																										'	Set	scale	to	pixels.

				sngTop	=	Me.ScaleTop																						'	Top	inside	edge.

				sngLeft	=	Me.ScaleLeft																				'	Left	inside	edge.

				sngWidth	=	Me.ScaleWidth	/	2														'	Width	inside	edge.

				sngHeight	=	Me.ScaleHeight	/	2												'	Height	inside	edge.

				intColor	=	RGB(255,	0,	0)																	'	Make	color	red.

				'	Draw	line.

				Me.Line	(sngTop,	sngLeft)-(sngWidth,	sngHeight),	intColor

End	Sub

Show	All

ScaleWidth	Property
							

You	can	use	the	ScaleWidth	property	to	specify	the	number	of	units	for	the
horizontal	measurement	of	the	page	when	the	Circle,	Line,	Pset,	or	Print
method	is	used	while	a	report	is	printed	or	previewed,	or	its	output	is	saved	to	a
file.	Read/write	Single.

expression.ScaleWidth

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

Remarks

The	default	setting	is	the	internal	width	of	a	report	page	in	twips.

You	can	set	the	ScaleWidth	property	by	using	a	macro	or	a	Visual	Basic	event
procedure	specified	by	a	section's	OnPrint	property	setting.

You	can	use	the	ScaleWidth	property	to	create	a	custom	coordinate	scale	for
drawing	or	printing.	For	example,	the	statement	ScaleWidth	=	100	defines	the
internal	width	of	the	section	as	100	units,	or	one	horizontal	unit	as	one	one-
hundredth	of	the	width.

Use	the	ScaleMode	property	to	define	a	scale	based	on	a	standard	unit	of
measurement,	such	as	points,	pixels,	characters,	inches,	millimeters,	or
centimeters.

Setting	the	ScaleWidth	property	to	a	positive	value	makes	coordinates	increase
in	value	from	left	to	right.	Setting	it	to	a	negative	value	makes	coordinates
increase	in	value	from	right	to	left.

By	using	these	properties	and	the	related	ScaleLeft	and	ScaleTop	properties,
you	can	set	up	a	custom	coordinate	system	with	both	positive	and	negative
coordinates.	All	four	of	these	Scale	properties	interact	with	the	ScaleMode
property	in	the	following	ways:

Setting	any	other	Scale	property	to	any	value	automatically	sets	the
ScaleMode	property	to	0.

Setting	the	ScaleMode	property	to	a	number	greater	than	0	changes	the
ScaleHeight	and	ScaleWidth	properties	to	the	new	unit	of	measurement
and	sets	the	ScaleLeft	and	ScaleTop	properties	to	0.	Also,	the	CurrentX
and	CurrentY	property	settings	change	to	reflect	the	new	coordinates	of
the	current	point.

You	can	also	use	the	Scale	method	to	set	the	ScaleHeight,	ScaleWidth,
ScaleLeft,	and	ScaleTop	properties	in	one	statement.

Note			The	ScaleWidth	properties	isn't	the	same	as	the	Width	property.

Example

The	following	example	uses	the	Print	method	to	display	text	on	a	report	named
Report1.	It	uses	the	TextWidth	and	TextHeight	methods	to	center	the	text
vertically	and	horizontally.

Private	Sub	Detail_Format(Cancel	As	Integer,	_

								FormatCount	As	Integer)

				Dim	rpt	as	Report

				Dim	strMessage	As	String

				Dim	intHorSize	As	Integer,	intVerSize	As	Integer

				Set	rpt	=	Me

				strMessage	=	"DisplayMessage"

				With	rpt

								'Set	scale	to	pixels,	and	set	FontName	and

								'FontSize	properties.

								.ScaleMode	=	3

								.FontName	=	"Courier"

								.FontSize	=	24

				End	With

				'	Horizontal	width.

				intHorSize	=	Rpt.TextWidth(strMessage)

				'	Vertical	height.

				intVerSize	=	Rpt.TextHeight(strMessage)

				'	Calculate	location	of	text	to	be	displayed.

				Rpt.CurrentX	=	(Rpt.ScaleWidth/2)	-	(intHorSize/2)

				Rpt.CurrentY	=	(Rpt.ScaleHeight/2)	-	(intVerSize/2)

				'	Print	text	on	Report	object.

				Rpt.Print	strMessage

End	Sub

Scaling	Property
							

Controls	how	the	contents	of	an	object	frame	control	are	displayed.	Read/write
Byte.

expression.Scaling

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

Remarks

The	Scaling	property	corresponds	to	the	Size	Mode	box	in	the	object	frame's
Properties	window.	This	property	accepts	the	following	values.

0	(Clip)	If	the	object	exceeds	the	control's	boundaries,	the	object	is	clipped
at	the	boundaries	of	the	control.	
1	(Stretch)	If	the	object	does	not	exceed	the	control's	boundaries,	the	object
is	stretched	to	the	edges	of	the	control's	boundary.
2	(Zoom)	The	object	is	zoomed	in	or	out	to	fit	the	control's	boundaries.	This
is	different	from	the	Stretch	setting,	in	that	the	object	is	not	necessarily
distorted	to	touch	all	boundaries	of	the	control.	In	other	words,	the	object
may	touch	the	horizontal	edges	of	the	control,	but	not	necessarily	the
vertical	edges	of	the	control,	and	vice	versa.	

Example

The	following	example	sets	the	size	mode	of	the	OLE	control	"Customer
Picture"	on	the	"Order	Entry"	form	to	zoomed.

Forms("Order	Entry").Controls("Customer	Picture").Scaling	=	2	

Show	All

Screen	Property
							

You	can	use	the	Screen	property	to	return	a	reference	the	Screen	object	and	its
related	properties.	Read-only.

expression.Screen

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

Remarks

This	property	is	available	only	by	using	Visual	Basic	and	is	read-only.	Use	the
Screen	object	to	refer	to	a	particular	form,	report,	or	control	that	has	the	focus.

Example

The	following	example	demonstrates	how	to	change	the	cursor	to	an	hourglass
and	back	again	to	signify	that	some	background	activity	is	occurring.

Application.Screen.MousePointer	=	11	'	Hourglass

'	Do	some	background	activity.

Application.Screen.MousePointer	=	0	'	Back	to	normal

Show	All

ScreenTip	Property
							

You	can	use	the	ScreenTip	property	to	specify	or	determine	the	text	that	is
displayed	when	you	move	the	cursor	over	a	hyperlink	control.	Read/write
String.

expression.ScreenTip

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

Remarks

The	ScreenTip	property	is	a	string	expression	displayed	as	a	screen	tip.

You	can	set	the	HyperlinkSubAddress	property	with	the	SubAddress	property
by	using	Visual	Basic.

Note			You	can	set	the	HyperlinkSubAddress	property	by	using	a	control's
property	sheet,	a	macro,	or	Visual	Basic.

When	you	move	the	cursor	over	a	hyperlink	control	whose
HyperlinkSubAddress	property	is	set,	Microsoft	Access	changes	the	cursor	to
an	upward-pointing	hand	and	displays	the	text	string	defined	by	the	ScreenTip
property.	Clicking	the	control	displays	the	object	or	Web	page	specified	by	the
link.

For	more	information	about	hyperlink	addresses	and	their	format,	see	the
HyperlinkAddress	and	HyperlinkSubAddress	property	topics.

Example

The	following	example	displays	the	message	"Go	to	Home	page"	when	the
cursor	hovers	over	the	hyperlink	named	"HomePage"	on	the	"Order	Entry"	form.

Forms("Order	Entry").Controls("HomePage").Hyperlink.ScreenTip	=	"Go	to	Home	page"

ScrollBarAlign	Property
							

You	can	use	the	ScrollBarAlign	to	specify	or	determine	the	alignment	of	a
vertical	scroll	bar.	Read/write	Byte.

expression.ScrollBarAlign

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

Remarks

The	ScrollBarAlign	property	uses	the	following	settings.

Setting Visual	Basic Description

System 0

Vertical	scroll	bar	is	placed	on	the	left	if	the	form
or	report	Orientation	property	is	right	to	left;
and	on	the	right	if	the	form	or	report	Orientation
property	is	left	to	right.

Right 1 Aligns	vertical	scroll	bar	on	the	right	side	of	the
control.

Left 2 Aligns	vertical	scroll	bar	on	the	left	side	of	the
control.

You	can	set	this	property	by	using	the	property	sheet	or	Visual	Basic.

Remarks

For	combo	and	list	boxes,	ScrollBarAlign	also	controls	the	placement	of	the	box
button	above	the	scroll	bar.

Example

The	following	example	aligns	the	vertical	scroll	bar	on	the	left	side	of	the
"Country"	combo	box	in	the	"International	Shipping"	form.

Forms("International	Shipping").Controls("Country").ScrollBarAlign	=	2

Show	All

ScrollBars	Property
							

You	can	use	the	ScrollBars	property	to	specify	whether	scroll	bars	appear	on	a
form	or	in	a	text	box	control.	Read/write	Byte.

expression.ScrollBars

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

Setting

The	ScrollBars	property	uses	the	following	settings.

Setting Visual	Basic Description
Neither	(forms)
None	(text	boxes) 0 (Default	for	text	boxes)	No	scroll

bars	appear	on	the	form	or	text	box.

Horizontal	Only	(forms) 1 Horizontal	scroll	bar	appears	on	the
form.	Not	applicable	to	text	boxes.

Vertical	Only	(forms)
Vertical	(text	boxes) 2 Vertical	scroll	bar	appears	on	the

form	or	text	box.

Both	(forms) 3
(Default	for	forms)	Vertical	and
horizontal	scroll	bars	appear	on	the
form.	Not	applicable	to	text	boxes.

You	can	set	this	property	by	using	the	form's	or	control's	property	sheet,	a	macro,
or	Visual	Basic.

For	a	text	box,	you	can	set	the	default	for	this	property	by	using	the	default
control	style	or	the	DefaultControl	method	in	Visual	Basic.

Remarks

If	your	form	is	larger	than	the	available	display	window,	you	can	use	the

ScrollBars	property	to	allow	the	user	to	view	the	entire	form.

You	can	use	the	NavigationButtons	property	to	control	record	navigation.

Show	All

Section	Property
							

Section	property	as	it	applies	to	controls	on	a	form	or	report.

You	can	identify	these	controls	by	the	section	of	a	form	or	report	where	the
control	appears.	Read/write	Integer.

expression.Section

expression			Required.	An	expression	that	returns	one	of	the	above	objects.

Remarks

For	controls,	you	can	use	the	Section	property	to	determine	which	section	of	a
form	or	report	a	control	is	in.

Section	property	as	it	applies	to	the	Form	and	Report	objects.

You	can	use	the	Section	property	to	identify	a	section	of	a	form	or	report	and
provide	access	to	the	properties	of	that	section.	Read-only	Section	object.

expression.Section(Index)

expression			Required.	An	expression	that	returns	one	of	the	above	objects.

Index		Required	Variant.	The	section	number	or	name.

Remarks

The	Section	property	corresponds	to	a	particular	section.	You	can	use	the
following	constants	listed	below.	It	is	recommended	that	you	use	the	constants	to
make	your	code	easier	to	read.

Setting Constant Description
0 acDetail Form	detail	section	or	report	detail	section
1 acHeader Form	or	report	header	section
2 acFooter Form	or	report	footer	section
3 acPageHeader Form	or	report	page	header	section
4 acPageFooter Form	or	report	page	footer	section
5 acGroupLevel1Header Group-level	1	header	section	(reports	only)
6 acGroupLevel1Footer Group-level	1	footer	section	(reports	only)
7 acGroupLevel2Header Group-level	2	header	section	(reports	only)
8 acGroupLevel2Footer Group-level	2	footer	section	(reports	only)
If	a	report	has	additional	group-level	sections,	the	header/footer	pairs	are
numbered	consecutively	beginning	with	9.

For	forms	and	reports,	the	Section	property	is	an	array	of	all	existing	sections	in
the	form	or	report	specified	by	the	section	number.	For	example,	Section(0)
refers	to	a	form's	detail	section	and	Section(3)	refers	to	a	form's	page	header
section.

You	can	also	refer	to	a	section	by	name.	The	following	statements	refer	to	the
Detail0	section	for	the	Customers	form	and	are	equivalent.

Forms!Customers.Section(acDetail).Visible

Forms!Customers.Section(0).Visible

Forms!Customers.Detail0.Visible

For	forms	and	reports,	you	must	combine	the	Section	property	with	other
properties	that	apply	to	form	or	report	sections.	

Example

As	it	applies	to	controls	on	a	form	or	report.

The	following	example	uses	the	Section	property	to	determine	which	section
contains	the	CustomerID	control.

Dim	intSectionNumber	As	Integer

intSectionNumber	=	Forms!Customers!CustomerID.Section

As	it	applies	to	the	Form	and	Report	objects.

The	following	example	shows	how	to	refer	to	the	Visible	property	of	the	page
header	section	of	the	Customers	form.

Forms!Customers.Section(acPageHeader).Visible

Forms!Customers.Section(3).Visible

Show	All

Selected	Property
							

You	can	use	the	Selected	property	in	Visual	Basic	to	determine	if	an	item	in	a
list	box	is	selected.	Read/write	Long.

expression.Selected(lRow)

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

lRow		Required	Long.	The	item	in	the	list	box.	The	first	item	is	represented	by	a
zero	(0),	the	second	by	a	one	(1),	and	so	on.

Remarks

The	Selected	property	is	a	zero-based	array	that	contains	the	selected	state	of
each	item	in	a	list	box.

Setting Description
True The	list	box	item	is	selected.

False		 The	list	box	item	isn'tselected.
You	can	get	or	set	the	Selected	property	by	using	Visual	Basic.

This	property	is	available	only	at	run	time.

When	a	list	box	control's	MultiSelect	property	is	set	to	None,	only	one	item	can
have	its	Selected	property	set	to	True.	When	a	list	box	control's	MultiSelect
property	is	set	to	Simple	or	Extended,	any	or	all	of	the	items	can	have	their
Selected	property	set	to	True.	A	multiple-selection	list	box	bound	to	a	field	will
always	have	a	Value	property	equal	to	Null.	You	use	the	Selected	property	or
the	ItemsSelected	collection	to	retrieve	information	about	which	items	are
selected.

You	can	use	the	Selected	property	to	select	items	in	a	list	box	by	using	Visual
Basic.	For	example,	the	following	expression	selects	the	fifth	item	in	the	list:

Me!Listbox.Selected(4)	=	True

Example

The	following	example	uses	the	Selected	property	to	move	selected	items	in	the
lstSource	list	box	to	the	lstDestination	list	box.	The	lstDestination	list	box's
RowSourceType	property	is	set	to	Value	List	and	the	control's	RowSource
property	is	constructed	from	all	the	selected	items	in	the	lstSource	control.	The
lstSource	list	box's	MultiSelect	property	is	set	to	Extended.	The	CopySelected()
procedure	is	called	from	the	cmdCopyItem	command	button.

Private	Sub	cmdCopyItem_Click()

				CopySelected	Me

End	Sub

Public	Sub	CopySelected(ByRef	frm	As	Form)

				Dim	ctlSource	As	Control

				Dim	ctlDest	As	Control

				Dim	strItems	As	String

				Dim	intCurrentRow	As	Integer

				

				Set	ctlSource	=	frm!lstSource

				Set	ctlDest	=	frm!lstDestination

				

				For	intCurrentRow	=	0	To	ctlSource.ListCount	-	1

								If	ctlSource.Selected(intCurrentRow)	Then

												strItems	=	strItems	&	ctlSource.Column(0,	_

																	intCurrentRow)	&	";"

								End	If

				Next	intCurrentRow

				

				'	Reset	destination	control's	RowSource	property.

				ctlDest.RowSource	=	""

				ctlDest.RowSource	=	strItems

				

				Set	ctlSource	=	Nothing

				Set	ctlDest	=	Nothing

End	Sub

SelectionChange	Property
							

Returns	or	sets	a	String	indicating	which	macro,	event	procedure,	or	user-
defined	function	runs	when	the	SelectionChange	event	occurs.	Read/write.

expression.SelectionChange

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

Remarks

Valid	values	for	this	property	are	"macroname"	where	macroname	is	the	name	of
macro,	"[Event	Procedure]"	which	indicates	the	event	procedure	associated	with
the	SelectionChange	event	for	the	specified	object,	or	"=functionname()"	where
functionname	is	the	name	of	a	user-defined	function.	For	a	more	detailed
discussion	of	event	properties,	see	"Event	Properties."

Example

The	following	example	specifies	that	when	the	SelectionChange	event	occurs	on
the	first	form	of	the	current	project,	the	associated	event	procedure	should	run.

Forms(0).SelectionChange	=	"[Event	Procedure]"

Show	All

SelHeight	Property
							

You	can	use	the	SelHeight	property	to	specify	or	determine	the	number	of
selected	rows	(records)	in	the	current	selection	rectangle	in	a	table,	query,	or
form	datasheet,	or	the	number	of	selected	records	in	a	continuous	form.	The
SelHeight	property	returns	a	Long	Integer	value	between	0	and	the	number	of
records	in	the	datasheet	or	continuous	form.	The	setting	of	this	property	specifies
or	returns	the	number	of	selected	rows	in	the	selection	rectangle	or	the	number
of	selected	records	in	the	continuous	form.

This	property	isn't	available	in	Design	view.	This	property	is	only	available	by
using	a	macro	or	Visual	Basic.

Remarks

If	there's	no	selection,	the	value	returned	by	this	property	will	be	zero.	Setting
this	property	to	0	removes	the	selection	from	the	datasheet	or	form.

If	you've	selected	one	or	more	columns	in	a	datasheet	(using	the	column
headings),	you	can't	change	the	setting	of	the	SelHeight	property	(except	to	set	it
to	0).

You	can	use	these	properties	with	the	SelTop	and	SelLeft	properties	to	specify
or	determine	the	actual	position	of	the	selection	rectangle	on	the	datasheet.	If
there's	no	selection,	then	the	SelTop	and	SelLeft	properties	return	the	row
number	and	column	number	of	the	cell	with	the	focus.

The	SelHeight	and	SelWidth	properties	contain	the	position	of	the	lower-right
corner	of	the	selection	rectangle.	The	SelTop	and	SelLeft	property	values
determine	the	upper-left	corner	of	the	selection	rectangle.

Show	All

SelLeft	Property
							

You	can	use	the	SelLeft	property	to	specify	or	determine	which	column	(field)	is
leftmost	in	the	current	selection	rectangle.	Read/write	Long	between	1	and	the
number	of	columns	in	the	datasheet.	The	setting	of	this	property	specifies	or
returns	the	number	of	the	leftmost	column	in	the	current	selection	rectangle.

expression.SelLeft

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

Remarks

This	property	isn't	available	in	Design	view.	This	property	is	available	only	by
using	a	macro	or	Visual	Basic.

If	there's	no	selection,	the	value	returned	by	these	properties	is	the	row	and
column	of	the	cell	with	the	focus.	If	you've	selected	one	or	more	records	in	the
datasheet	(using	the	record	selectors),	you	can't	change	the	setting	of	the	SelLeft
property.

You	can	use	these	properties	with	the	SelHeight	and	SelWidth	properties	to
specify	or	determine	the	actual	size	of	the	selection	rectangle.	The	SelTop	and
SelLeft	properties	determine	the	position	of	the	upper-left	corner	of	the	selection
rectangle.	The	SelHeight	and	SelWidth	properties	determine	the	lower-right
corner	of	the	selection	rectangle.

Example

The	following	example	shows	how	to	use	the	SelHeight,	SelWidth,	SelTop,	and
SelLeft	properties	to	determine	the	position	and	size	of	a	selection	rectangle	in
datasheet	view.	The	SetHeightWidth	procedure	assigns	the	height	and	width	of
the	current	selection	rectangle	to	the	variables	lngNumRows,	lngNumColumns,
lngTopRow,	and	lngLeftColumn,	and	displays	those	values	in	a	message	box.

Public	Sub	SetHeightWidth(ByRef	frm	As	Form)

				Dim	lngNumRows	As	Long

				Dim	lngNumColumns	As	Long

				Dim	lngTopRow	As	Long

				Dim	lngLeftColumn	As	Long

				Dim	strMsg	As	String

				'	Form	is	in	Datasheet	view.

				If	frm.CurrentView	=	2	Then

				

								'	Number	of	rows	selected.

								lngNumRows	=	frm.SelHeight

								

								'	Number	of	columns	selected.

								lngNumColumns	=	frm.SelWidth

								

								'	Topmost	row	selected.

								lngTopRow	=	frm.SelTop

								

								'	Leftmost	column	selected.

								lngLeftColumn	=	frm.SelLeft

								

								'	Display	message.

								strMsg	=	"Number	of	rows:	"	&	lngNumRows	&	vbCrLf

								strMsg	=	strMsg	&	"Number	of	columns:	"	_

													&	lngNumColumns	&	vbCrLf

								strMsg	=	strMsg	&	"Top	row:	"	&	lngTopRow	&	vbCrLf

								strMsg	=	strMsg	&	"Left	column:	"	&	lngLeftColumn

								MsgBox	strMsg,	vbInformation

				End	If

				

End	Sub

Show	All

SelLength	Property
							
The	SelLength	property	specifies	or	determines	the	number	of	characters
selected	in	a	text	box	or	the	text	box	portion	of	a	combo	box.	The	SelLength
property	uses	an	Integer	in	the	range	0	to	the	total	number	of	characters	in	a	text
box	or	text	box	portion	of	a	combo	box.

Remarks

You	can	set	the	SelLength	property	by	using	a	macro	or	Visual	Basic.

To	set	or	return	this	property	for	a	control,	the	control	must	have	the	focus.	To
move	the	focus	to	a	control,	use	the	SetFocus	method.

Setting	the	SelLength	property	to	a	number	less	than	0	produces	a	run-time
error.

Example

The	following	example	uses	two	event	procedures	to	search	for	text	specified	by
a	user.	The	text	to	search	is	set	in	the	form's	Load	event	procedure.	The	Click
event	procedure	for	the	Find	button	(which	the	user	clicks	to	start	the	search)
prompts	the	user	for	the	text	to	search	for	and	selects	the	text	in	the	text	box	if
the	search	is	successful.

Private	Sub	Form_Load()

				

				Dim	ctlTextToSearch	As	Control

				Set	ctlTextToSearch	=	Forms!Form1!Textbox1

				

				'	SetFocus	to	text	box.

				ctlTextToSearch.SetFocus

				ctlTextToSearch.Text	=	"This	company	places	large	orders	twice	"	&	_

																											"a	year	for	garlic,	oregano,	chilies	and	cumin."

				Set	ctlTextToSearch	=	Nothing

				

End	Sub

Public	Sub	Find_Click()

				

				Dim	strSearch	As	String

				Dim	intWhere	As	Integer

				Dim	ctlTextToSearch	As	Control

				

				'	Get	search	string	from	user.

				With	Me!Textbox1

								strSearch	=	InputBox("Enter	text	to	find:")

								

								'	Find	string	in	text.

								intWhere	=	InStr(.Value,	strSearch)

								If	intWhere	Then

												'	If	found.

												.SetFocus

												.SelStart	=	intWhere	-	1

												.SelLength	=	Len(strSearch)

								Else

												'	Notify	user.

												MsgBox	"String	not	found."

								End	If

				End	With

				

End	Sub

Show	All

SelStart	Property
							

The	SelStart	property	specifies	or	determines	the	starting	point	of	the	selected
text	or	the	position	of	the	insertion	point	if	no	text	is	selected.	Read/write
Integer.

expression.SelStart

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

Remarks

The	SelStart	property	uses	an	Integer	in	the	range	0	to	the	total	number	of
characters	in	a	text	box	or	text	box	portion	of	a	combo	box.	You	can	set	the
SelStart	property	by	using	a	macro	or	Visual	Basic.

To	set	or	return	this	property	for	a	control,	the	control	must	have	the	focus.	To
move	the	focus	to	a	control,	use	the	SetFocus	method.

Changing	the	SelStart	property	cancels	the	selection,	places	an	insertion	point	in
the	text,	and	sets	the	SelLength	property	to	0.

Example

The	following	example	uses	two	event	procedures	to	search	for	text	specified	by
a	user.	The	text	to	search	is	set	in	the	form's	Load	event	procedure.	The	Click
event	procedure	for	the	Find	button	(which	the	user	clicks	to	start	the	search)
prompts	the	user	for	the	text	to	search	for	and	selects	the	text	in	the	text	box	if
the	search	is	successful.

Private	Sub	Form_Load()

				

				Dim	ctlTextToSearch	As	Control

				Set	ctlTextToSearch	=	Forms!Form1!Textbox1

				

				'	SetFocus	to	text	box.

				ctlTextToSearch.SetFocus

				ctlTextToSearch.Text	=	"This	company	places	large	orders	twice	"	&	_

																											"a	year	for	garlic,	oregano,	chilies	and	cumin."

				Set	ctlTextToSearch	=	Nothing

				

End	Sub

Public	Sub	Find_Click()

				

				Dim	strSearch	As	String

				Dim	intWhere	As	Integer

				Dim	ctlTextToSearch	As	Control

				

				'	Get	search	string	from	user.

				With	Me!Textbox1

								strSearch	=	InputBox("Enter	text	to	find:")

								

								'	Find	string	in	text.

								intWhere	=	InStr(.Value,	strSearch)

								If	intWhere	Then

												'	If	found.

												.SetFocus

												.SelStart	=	intWhere	-	1

												.SelLength	=	Len(strSearch)

								Else

												'	Notify	user.

												MsgBox	"String	not	found."

								End	If

				End	With

				

End	Sub

Show	All

SelText	Property
							

The	SelText	property	returns	a	string	containing	the	selected	text.	If	no	text	is
selected,	the	SelText	property	contains	a	Null	value.	Read/write	String.

expression.SelText

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

Remarks

The	SelText	property	uses	a	string	expression	that	contains	the	text	selected	in
the	control.	If	the	control	contains	selected	text	when	this	property	is	set,	the
selected	text	is	replaced	by	the	new	SelText	setting.

To	set	or	return	this	property	for	a	control,	the	control	must	have	the	focus.	To
move	the	focus	to	a	control,	use	the	SetFocus	method.

Example

The	following	example	uses	two	event	procedures	to	search	for	text	specified	by
a	user.	The	text	to	search	is	set	in	the	form's	Load	event	procedure.	The	Click
event	procedure	for	the	Find	button	(which	the	user	clicks	to	start	the	search)
prompts	the	user	for	the	text	to	search	for	and	selects	the	text	in	the	text	box	if
the	search	is	successful.

Sub	Form_Load()

				Dim	ctlTextToSearch	As	Control

				Set	ctlTextToSearch	=	Forms!Form1!TextBox1

				ctlTextToSearch.SetFocus						'	SetFocus	to	text	box.

				ctlTextToSearch.SelText	=	"This	company	places	large	orders	"	_

								&	"twice	a	year	for	garlic,	oregano,	chilies	and	cumin."

End	Sub

Sub	Find_Click()

				Dim	strSearch	As	String,	intWhere	As	Integer

				Dim	ctlTextToSearch	As	Control

				'	Get	search	string	from	user.

				With	Me!Textbox1

								strSearch	=	InputBox("Enter	text	to	find:")

								'	Find	string	in	text.

								intWhere	=	InStr(.Value,	strSearch)

								If	intWhere	Then

												'	If	found.

												.SetFocus

												.SelStart	=	intWhere	-	1

												.SelLength	=	Len(strSearch)

								Else

												'	Notify	user.

												MsgBox	"String	not	found."

								End	If

				End	With

End	Sub

Show	All

SelTop	Property
							

You	can	use	the	SelTop	property	to	specify	or	determine	which	row	(record)	is
topmost	in	the	current	selection	rectangle	in	a	table,	query,	or	form	datasheet,	or
which	selected	record	is	topmost	in	a	continuous	form.	The	SelTop	property
returns	a	Long	Integer	value	between	1	and	the	number	of	records	in	the
datasheet	or	continuous	form.	The	setting	of	this	property	specifies	or	returns	the
number	of	the	topmost	row	in	the	current	selection	rectangle	or	the	number	of
the	topmost	selected	record	in	the	continuous	form.

Remarks

This	property	isn't	available	in	Design	view.	This	property	is	available	only	by
using	a	macro	or	Visual	Basic.

If	there's	no	selection,	the	value	returned	by	this	property	is	the	row	and	column
of	the	cell	with	the	focus.

If	you've	selected	one	or	more	columns	(using	the	column	headings),	you	can't
change	the	setting	of	the	SelTop	property.

You	can	use	these	properties	with	the	SelHeight	and	SelWidth	properties	to
specify	or	determine	the	actual	size	of	the	selection	rectangle.	The	SelTop	and
SelLeft	properties	determine	the	position	of	the	upper-left	corner	of	the	selection
rectangle.	The	SelHeight	and	SelWidth	properties	determine	the	lower-right
corner	of	the	selection	rectangle.

Show	All

SelWidth	Property
							

You	can	use	the	SelWidth	property	to	specify	or	determine	the	number	of
selected	columns	(fields)	in	the	current	selection	rectangle.	Read/write	Long
between	0	and	the	number	of	columns	in	the	datasheet.	The	setting	of	this
property	specifies	or	returns	the	number	of	selected	columns	in	the	selection
rectangle.

expression.SelWidth

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

Remarks

This	property	isn't	available	in	Design	view.	This	property	is	only	available	by
using	a	macro	or	Visual	Basic.

If	there's	no	selection,	the	value	returned	by	this	property	will	be	zero.	Setting
this	property	to	0	removes	the	selection	from	the	datasheet	or	form.

If	you've	selected	one	or	more	records	in	the	datasheet	(using	the	record
selectors),	you	can't	change	the	setting	of	the	SelWidth	property	(except	to	set	it
to	0).

You	can	use	these	properties	with	the	SelTop	and	SelLeft	properties	to	specify
or	determine	the	actual	position	of	the	selection	rectangle	on	the	datasheet.	If
there's	no	selection,	then	the	SelTop	and	SelLeft	properties	return	the	row
number	and	column	number	of	the	cell	with	the	focus.

The	SelHeight	and	SelWidth	properties	contain	the	position	of	the	lower-right
corner	of	the	selection	rectangle.	The	SelTop	and	SelLeft	property	values
determine	the	upper-left	corner	of	the	selection	rectangle.

Example

The	following	example	shows	how	to	use	the	SelHeight,	SelWidth,	SelTop,	and
SelLeft	properties	to	determine	the	position	and	size	of	a	selection	rectangle	in
datasheet	view.	The	SetHeightWidth	procedure	assigns	the	height	and	width	of
the	current	selection	rectangle	to	the	variables	lngNumRows,	lngNumColumns,
lngTopRow,	and	lngLeftColumn,	and	displays	those	values	in	a	message	box.

Public	Sub	SetHeightWidth(ByRef	frm	As	Form)

				Dim	lngNumRows	As	Long

				Dim	lngNumColumns	As	Long

				Dim	lngTopRow	As	Long

				Dim	lngLeftColumn	As	Long

				Dim	strMsg	As	String

				'	Form	is	in	Datasheet	view.

				If	frm.CurrentView	=	2	Then

				

								'	Number	of	rows	selected.

								lngNumRows	=	frm.SelHeight

								

								'	Number	of	columns	selected.

								lngNumColumns	=	frm.SelWidth

								

								'	Topmost	row	selected.

								lngTopRow	=	frm.SelTop

								

								'	Leftmost	column	selected.

								lngLeftColumn	=	frm.SelLeft

								

								'	Display	message.

								strMsg	=	"Number	of	rows:	"	&	lngNumRows	&	vbCrLf

								strMsg	=	strMsg	&	"Number	of	columns:	"	_

													&	lngNumColumns	&	vbCrLf

								strMsg	=	strMsg	&	"Top	row:	"	&	lngTopRow	&	vbCrLf

								strMsg	=	strMsg	&	"Left	column:	"	&	lngLeftColumn

								MsgBox	strMsg,	vbInformation

				End	If

				

End	Sub

Show	All

ServerFilter	Property
							

You	can	use	the	ServerFilter	property	to	specify	a	subset	of	records	to	be
displayed	when	a	server	filter	is	applied	to	a	form	or	report	within	a	Microsoft
Access	project	(.adp)	or	a	data	access	page	in	a	Microsoft	Access	project	(.adp)
or	database	(.mdb).	Read/write	String.

expression.ServerFilter

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

Remarks

The	ServerFilter	property	is	a	string	expression	consisting	of	a	WHERE	clause
without	the	WHERE	keyword.	For	example,	the	following	Visual	Basic	code
defines	and	applies	a	filter	to	show	only	customers	from	the	USA:

Me.ServerFilter	=	"Country	=	'USA'"

Me.Refresh

The	easiest	way	to	set	this	property	is	by	using	a	form	or	report's	property	sheet.
You	can	also	set	this	property	on	a	form	or	report	by	using	Visual	Basic.

To	set	the	ServerFilter	property,	you	must	first	either:

Set	the	property	value	in	the	form's	property	sheet.

Set	the	property	in	Visual	Basic	by	typing

Forms(0).ServerFilter	=	"fieldname	=	value"

Note			Setting	the	ServerFilter	property	has	no	effect	on	the	ADO	Filter
property.

You	can	use	the	ServerFilter	property	to	save	a	filter	and	apply	it	at	a	later	time.
Filters	are	saved	with	the	objects	in	which	they	are	created.	They	are
automatically	loaded	when	the	object	is	opened,	but	they	aren't	automatically
applied.

To	apply	a	saved	filter	to	a	form,	you	can	click	Apply	Server	Filter	on	the
toolbar,	click	Apply	Filter/Sort	on	the	Records	menu,	or	use	a	macro	or	Visual
Basic	to	set	the	ServerFilterByForm	property	to	True.

The	Apply	Server	Filter	button	indicates	the	state	of	the	ServerFilter	and
ServerFilterByForm	properties.	The	button	remains	disabled	until	there	is	a
filter	to	apply.	If	an	existing	filter	is	currently	applied,	the	Apply	Server	Filter
button	appears	pressed	in.

To	apply	a	filter	automatically	when	a	form	is	opened,	specify	in	the	OnOpen
event	property	setting	of	the	form	either	a	macro	that	uses	the	ApplyFilter	action

mk:@MSITStore:ado210.chm::/htm/mdproFilter.htm

or	an	event	procedure	that	uses	the	ApplyFilter	method	of	the	DoCmd	object.
In	either	case,	the	form	opens	in	the	Server	Filter	By	Form	window.

You	can	only	remove	a	server	filter	by	using	Visual	Basic	to	set	the
ServerFilterByForm	property	to	False	or	clear	all	filter	criteria	in	the	Server
Filter	By	Form	window	and	then	click	Apply	Server	Filter.

When	the	ServerFilter	property	is	set	in	form	Design	view,	Microsoft	Access
does	not	attempt	to	validate	the	SQL	expression.	If	the	SQL	expression	is
invalid,	an	error	occurs	when	the	filter	is	applied.

Notes

When	a	new	object	is	created,	it	inherits	the	RecordSource,	Filter,
ServerFilter,	OrderBy,	and	OrderByOn	properties	of	the	table	or	query	it
was	created	from.

The	ServerFilter	property	setting	is	ignored	if	the	form's	record	source	is	a
stored	procedure.

Show	All

ServerFilterByForm	Property
							

You	can	use	the	ServerFilterByForm	property	to	specify	or	determine	whether
a	form	is	opened	in	the	Server	Filter	By	Form	window.	Read/write	Boolean.

expression.ServerFilterByForm

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

Remarks

The	ServerFilterByForm	property	uses	the	following	settings.

Setting Visual	Basic Description

Yes True	 The	form	is	opened	in	the	Server	Filter	By
Form	window.

	 	
Note			When	the	ServerFilterByForm
property	is	True,	the	Filter	By	Form	feature	is
disabled.

No False (Default)	The	form	is	not	opened	in	the	Server
Filter	By	Form	window.

The	easiest	way	to	set	the	ServerFilterByForm	property	is	by	using	a	form's
property	sheet.	You	can	set	this	property	by	using	Visual	Basic.

To	set	the	ServerFilterByForm	property,	you	must	first	either:

Set	the	property	in	the	form's	property	sheet.

Set	the	property	in	Visual	Basic	by	typing

Forms(0).ServerFilterByForm	=	True	

If	the	ServerFilter	property	has	been	set,	you	can	also	set	this	property	by
clicking	Apply	Server	Filter	on	the	Form	View	toolbar	or	the	Filter/Sort
toolbar.

To	apply	a	saved	filter	to	a	form,	press	the	Apply	Server	Filter	button,	or	apply
the	filter	by	using	a	macro	or	Visual	Basic	by	setting	the	ServerFilterByForm
property	to	True.

The	Apply	Server	Filter	button	indicates	the	state	of	the	ServerFilter	and
ServerFilterByForm	properties.	The	button	remains	disabled	until	there	is	a
filter	to	apply.	If	an	existing	filter	is	currently	applied,	the	Apply	Server	Filter
button	appears	pressed	in.	To	apply	a	filter	automatically	when	a	form	opened,
specify	in	the	OnOpen	event	property	setting	of	the	form	either	a	macro	that
uses	the	ApplyFilter	action	or	an	event	procedure	that	uses	the	ApplyFilter
method	of	the	DoCmd	object.

You	can	remove	a	filter	by	using	Visual	Basic	to	set	the	ServerFilterByForm
property	to	False	or	clear	all	filter	criteria	in	the	Server	Filter	By	Form	window
and	then	click	Apply	Server	Filter.

Notes		

When	a	new	object	is	created,	it	inherits	the	RecordSource,	Filter,
ServerFilter,	OrderBy,	and	OrderByOn	properties	of	the	table	or	query	it
was	created	from.	For	forms	and	reports,	inherited	filters	aren't
automatically	applied	when	an	object	is	opened.

The	ServerFilterByForm	property	setting	is	ignored	if	the	form's	record
source	is	a	stored	procedure.

Example

The	following	example	enables	the	"Order	Lookup"	form	to	be	opened	in	a
Microsoft	Access	Data	Project	in	the	Server	Filter	By	Form	window.

Forms("Order	Lookup").ServerFilterByForm	=	True

Shape	Property
							

Returns	a	String	representing	the	shape	command	corresponding	to	the	sorting
and	grouping	of	the	specified	report.	Read-only.

expression.Shape

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

Remarks

Analyzing	the	shape	command	for	a	particular	report	can	make	it	easier	to	create
ADO	recordsets	that	can	be	used	with	the	report.

Example

The	following	example	reads	the	shape	command	of	the	specified	report	and
stores	it	to	a	string	variable.

Dim	strShape	As	String

strShape	=	Reports(0).Shape

Show	All

ShortcutMenu	Property
							

You	can	use	the	ShortcutMenu	property	to	specify	whether	a	shortcut	menu	is
displayed	when	you	right-click	an	object	on	a	form.	For	example,	you	might
want	to	disable	a	shortcut	menu	to	prevent	the	user	from	changing	the	form's
underlying	record	source	by	using	one	of	the	filtering	commands	on	the	form's
shortcut	menu.	Read/write	Boolean.

expression.ShortcutMenu

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

Remarks

The	ShortcutMenu	property	uses	the	following	settings.

Setting Visual	Basic Description

Yes True		 (Default)	Shortcut	menus	are
displayed.

No False		 Shortcut	menus	aren't	displayed.

You	can	set	this	property	by	using	the	form's	property	sheet,	a	macro,	or	Visual
Basic.

This	property	controls	the	displaying	of	the	shortcut	menus	for	a	form	and	for
any	of	its	controls.	If	the	ShortcutMenu	property	is	set	to	No,	shortcut	menus
aren't	displayed	when	you	right-click	a	form	or	any	of	its	controls.

If	you're	developing	a	wizard,	you	might	want	to	hide	shortcut	menus	on	your
wizard	forms	to	prevent	the	user	from	viewing	or	using	them.	This	is	especially
true	for	forms	that	display	choices.	For	example,	the	ShortcutMenu	property	for
the	Startup	form	in	the	Northwind	sample	database	is	set	to	No.	This	prevents
users	from	displaying	shortcut	menus	for	the	form	or	controls	on	the	form.

Example

The	following	example	disables	the	shortcut	menus	for	the	Invoice	form	and	its
controls:

Forms!Invoice.ShortcutMenu	=	False

Show	All

ShortcutMenuBar	Property
							

You	can	use	the	ShortcutMenuBar	property	to	specify	the	shortcut	menu	that
will	appear	when	you	right-click	on	a	form,	report,	or	control	on	a	form.
Read/write	String.

expression.ShortcutMenuBar

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

Remarks

You	create	these	shortcut	menus	by	pointing	to	Toolbars	on	the	View	menu	and
then	clicking	Customize.	For	more	information	about	creating	custom	toolbars,
see	Create	a	custom	shortcut	menu	for	the	current	database.

Note			The	ShortcutMenuBar	property	applies	only	to	controls	on	a	form,	not
controls	on	a	report.

You	can	also	use	the	ShortcutMenuBar	property	to	specify	the	menu	bar	macro
that	will	be	used	to	display	a	shortcut	menu	for	a	datasheet,	form,	form	control,
or	report.

Note			In	versions	of	Microsoft	Access	prior	to	Microsoft	Access	97,	you	created
a	custom	shortcut	menu	by	setting	the	ShortcutMenuBar	property	to	the	name
of	a	menu	bar	macro.	You	then	created	a	macro	group	containing	the	commands
for	this	menu.	This	functionality	is	still	supported	in	Microsoft	Access.	However,
it	is	strongly	recommended	that	you	use	the	new	Customize	dialog	box,
available	by	pointing	to	Toolbars	on	the	View	menu,	and	then	clicking
Customize,	to	create	custom	shortcut	menus.

Enter	the	name	of	the	shortcut	menu	you	want	to	display.	A	shortcut	menu	can
be	any	command	bar	whose	Type	property	is	set	to	Popup.	If	you	leave	the
ShortcutMenuBar	property	setting	blank,	Microsoft	Access	displays	the	built-
in	(default)	shortcut	menu	or	the	application's	global	shortcut	menu.	If	you	set
the	ShortcutMenuBar	property	to	a	value	that	isn't	the	name	of	an	existing
shortcut	menu	or	menu	bar	macro,	the	form,	form	control,	or	report	won't	have	a
shortcut	menu	(the	default	shortcut	menu	won't	be	shown).

You	can	set	this	property	by	using	the	object's	property	sheet,	a	macro,	or	Visual
Basic.

In	Visual	Basic,	you	set	this	property	by	using	a	string	expression	that	is	the
name	of	the	shortcut	menu	you	want	to	display.

To	display	the	built-in	shortcut	menu	for	a	database,	form,	form	control,	or
report	by	using	a	macro	or	Visual	Basic,	set	the	property	to	a	zero-length	string
("	").

mk:@MSITStore:acmain10.chm::/html/achowCreateCustomShortcutMenuForCurrentDatabase.htm

You	create	a	custom	shortcut	menu	by	first	creating	a	toolbar	that	includes	all	the
commands	you	want	to	appear	on	your	custom	shortcut	menu.	Then	open	the
Toolbar	Properties	dialog	box	by	selecting	the	toolbar	in	the	Customize	dialog
box	and	clicking	the	Properties	button.	In	the	Toolbar	Properties	dialog	box,
set	the	Type	property	to	Popup.	This	toolbar	will	now	be	available	in	the
ShortcutMenuBar	property	box	in	the	property	sheet	for	a	form,	form	control,
or	report.

When	used	with	the	Application	object,	the	ShortcutMenuBar	property
enables	you	to	display	a	custom	shortcut	menu	as	a	global	shortcut	menu.
However,	if	you've	set	the	ShortcutMenuBar	property	for	a	form,	form	control,
or	report	in	the	database,	the	custom	shortcut	menu	of	that	object	will	be
displayed	in	place	of	the	database's	global	shortcut	menu.	You	can	display	a
different	custom	shortcut	menu	for	a	specific	form,	form	control,	or	report	by
setting	its	ShortcutMenuBar	property	to	a	different	shortcut	menu.	When	the
form,	form	control,	or	report	has	the	focus,	the	custom	shortcut	menu	for	that
object	is	displayed	when	the	user	clicks	the	right	mouse	button;	otherwise,	the
global	shortcut	menu	for	the	database	is	displayed.

Shortcut	menus	aren't	available	to	any	object	if	the	AllowShortcutMenus
property	is	set	to	False.

Example

The	following	example	sets	the	"Suppliers_Toolbar"	as	the	custom	shortcut
menu	to	display	when	the	user	clicks	the	right	mouse	button	on	the	"Suppliers"
form.

Forms("Suppliers").ShortcutMenuBar	=	"Suppliers_Toolbar"

Show	All

SizeMode	Property
							

You	can	use	the	SizeMode	property	to	specify	how	to	size	a	picture	or	other
object	in	a	bound	object	frame,	an	unbound	object	frame,	or	an	image	control.

expression.SizeMode

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

Remarks

The	SizeMode	property	uses	the	following	settings.

Setting Visual	Basic Description

Clip acOLESizeClip		

(Default)	Displays	the	object	at	actual
size.	If	the	object	is	larger	than	the
control,	its	image	is	clipped	on	the	right
and	bottom	by	the	control's	borders.

Stretch acOLESizeStretch		
Sizes	the	object	to	fill	the	control.	This
setting	may	distort	the	proportions	of
the	object.

Zoom acOLESizeZoom		

Displays	the	entire	object,	resizing	it	as
necessary	without	distorting	the
proportions	of	the	object.	This	setting
may	leave	extra	space	in	the	control	if
the	control	is	resized.

You	can	set	the	SizeMode	property	in	a	property	sheet,	in	a	macro,	or	by	using
Visual	Basic.	You	can	set	the	default	for	this	property	by	using	a	control's	default
control	style	or	the	DefaultControl	method	in	Visual	Basic.

Tip			Use	the	Clip	setting	for	the	fastest	display.	You	can	use	the	Stretch	setting
for	bar	graphs	and	line	graphs	without	concern	for	size	adjustments.	The	Stretch
setting	can	distort	circles	and	photos.

Example

The	following	example	creates	a	linked	OLE	object	using	an	unbound	object
frame	named	OLE1	and	sizes	the	control	to	display	the	object's	entire	contents
when	the	user	clicks	a	command	button.

Sub	Command1_Click

				OLE1.Class	=	"Excel.Sheet"				'	Set	class	name.

				'	Specify	type	of	object.

				OLE1.OLETypeAllowed	=	acOLELinked

				'	Specify	source	file.

				OLE1.SourceDoc	=	"C:\Excel\Oletext.xls"

				'	Specify	data	to	create	link	to.

				OLE1.SourceItem	=	"R1C1:R5C5"

				'	Create	linked	object.

				OLE1.Action	=	acOLECreateLink

				'	Adjust	control	size.

				OLE1.SizeMode	=	acOLESizeZoom

End	Sub

Show	All

SortOrder	Property
							

You	use	the	SortOrder	property	to	specify	the	sort	order	for	fields	and
expressions	in	a	report.	For	example,	if	you're	printing	a	list	of	suppliers,	you
can	sort	the	records	alphabetically	by	company	name.	Read/write	Boolean.

expression.SortOrder

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

Remarks

The	SortOrder	property	uses	the	following	settings.

Setting Visual	Basic Description

Ascending False		 (Default)	Sorts	values	in	ascending	(A	to	Z,
0	to	9)	order.

Descending True		 Sorts	values	in	descending	(Z	to	A,	9	to	0)
order.

You	can	set	the	SortOrder	property	by	using	the	Sorting	And	Grouping	box,	a
macro,	or	Visual	Basic.

In	Visual	Basic,	you	set	the	SortOrder	property	in	report	Design	view	or	in	the
Open	event	procedure	of	a	report	by	using	the	GroupLevel	property.

Example

The	following	example	sets	the	sort	order	to	ascending	for	the	first	group	level	in
the	"Product	Summary"	report.

Reports("Product	Summary").GroupLevel(0).SortOrder	=	False		

Show	All

SourceDoc	Property
							

You	can	use	the	SourceDoc	property	to	specify	the	file	to	create	a	link	to	or	to
embed	when	you	create	a	linked	object	or	embedded	object	by	using	the	Action
property	in	Visual	Basic.	Read/write	String.

expression.SourceDoc

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

Remarks

For	an	embedded	object,	enter	the	full	path	and	file	name	for	the	file	you	want	to
use	as	a	template	and	set	the	Action	property	to	acOLECreateEmbed.

For	a	linked	object,	enter	the	full	path	and	file	name	of	the	file	to	create	a	link	to
and	set	the	Action	property	to	acOLECreateLink.

You	can	set	this	property	in	a	property	sheet,	in	a	macro,	or	by	using	Visual
Basic.

Note			While	this	property	appears	in	the	property	sheet,	it	takes	effect	only	after
the	Action	property	is	set	in	a	macro	or	by	using	Visual	Basic.

You	can	use	the	SourceDoc	property	to	specify	the	file	to	create	a	link	to	and	the
control's	SourceItem	property	to	specify	the	data	within	that	file.	If	you	want	to
create	a	link	to	the	entire	object,	leave	the	SourceItem	property	blank.

When	a	linked	unbound	object	is	created,	the	control's	SourceItem	property
setting	is	concatenated	with	its	SourceDoc	property	setting.	In	Form	view,
Datasheet	view,	and	Print	Preview,	the	control's	SourceItem	property	setting	is
a	zero-length	string	("	"),	and	its	SourceDoc	property	setting	is	the	full	path	to
the	linked	file,	followed	by	an	exclamation	point	(!)	or	a	backslash	(\)	and	the
SourceItem	property	setting,	as	in	the	following	example:

"C:\Work\Qtr1\Revenue.xls!R1C1:R30C15"

Example

The	following	example	creates	a	linked	OLE	object	using	an	unbound	object
frame	named	OLE1	and	sizes	the	control	to	display	the	object's	entire	contents
when	the	user	clicks	a	command	button.

Sub	Command1_Click

				OLE1.Class	=	"Excel.Sheet"				'	Set	class	name.

				'	Specify	type	of	object.

				OLE1.OLETypeAllowed	=	acOLELinked

				'	Specify	source	file.

				OLE1.SourceDoc	=	"C:\Excel\Oletext.xls"

				'	Specify	data	to	create	link	to.

				OLE1.SourceItem	=	"R1C1:R5C5"

				'	Create	linked	object.

				OLE1.Action	=	acOLECreateLink

				'	Adjust	control	size.

				OLE1.SizeMode	=	acOLESizeZoom

End	Sub

Show	All

SourceItem	Property
							

You	can	use	the	SourceItem	property	to	specify	the	data	within	a	file	to	be
linked	when	you	create	a	linked	OLE	object.	Read/write	String.

expression.SourceItem

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

Remarks

You	can	set	the	SourceItem	property	by	specifying	data	in	units	recognized	by
the	application	supplying	the	object.	For	example,	when	you	link	to	Microsoft
Excel,	you	specify	the	SourceItem	property	setting	by	using	a	cell	or	cell-range
reference	such	as	R1C1	or	R3C4:R9C22	or	a	named	range	such	as	Revenues.

Note			To	determine	the	syntax	to	describe	a	unit	of	data	for	a	particular	object,
see	the	documentation	for	the	application	that	was	used	to	create	the	object.

You	can	set	this	property	by	using	the	control's	property	sheet,	a	macro,	or
Visual	Basic.

In	Visual	Basic,	you	set	this	property	by	using	a	string	expression.

The	control's	OLETypeAllowed	property	must	be	set	to	Linked	or	Either	when
you	use	this	property.	Use	the	control's	SourceDoc	property	to	specify	the	file	to
link.

Example

The	following	example	creates	a	linked	OLE	object	using	an	unbound	object
frame	named	OLE1	and	sizes	the	control	to	display	the	object's	entire	contents
when	the	user	clicks	a	command	button.

Sub	Command1_Click

				OLE1.Class	=	"Excel.Sheet"				'	Set	class	name.

				'	Specify	type	of	object.

				OLE1.OLETypeAllowed	=	acOLELinked

				'	Specify	source	file.

				OLE1.SourceDoc	=	"C:\Excel\Oletext.xls"

				'	Specify	data	to	create	link	to.

				OLE1.SourceItem	=	"R1C1:R5C5"

				'	Create	linked	object.

				OLE1.Action	=	acOLECreateLink

				'	Adjust	control	size.

				OLE1.SizeMode	=	acOLESizeZoom

End	Sub

Show	All

SourceObject	Property
							

You	can	use	the	SourceObject	property	to	identify	the	form	or	report	that	is	the
source	of	the	subform	or	subreport	on	a	form	or	report.	You	can	also	use	this
property	for	linked	unbound	object	frames	to	determine	the	complete	path	and
file	name	of	the	file	that	contains	the	data	linked	to	the	object	frame.	Read/write
String.

expression.SourceObject

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

Remarks

Enter	the	name	of	the	form	or	report	that	is	the	source	of	the	subform	or
subreport	in	the	control's	property	sheet.	If	you	add	a	subform	or	subreport	to	the
form	or	report	by	dragging	it	from	the	Database	window,	the	SourceObject
property	is	set	automatically	in	the	property	sheet.

For	unbound	object	frames,	the	SourceObject	property	is	set	automatically
when	you	use	the	Object	command	on	the	Insert	menu	to	insert	a	linked	OLE
object.

For	a	subform	or	subreport,	you	can	set	this	property	by	using	the	control's
property	sheet,	a	macro,	or	Visual	Basic.

In	Visual	Basic,	you	set	this	property	by	using	a	string	expression	that	is	a	name
of	a	form	or	report.

For	linked	unbound	object	frames,	the	SourceObject	property	can't	be	set	in	any
view.

Note			You	can't	set	or	change	the	SourceObject	property	in	the	Open	or	Format
events	of	a	report.

If	you	delete	the	SourceObject	property	setting	in	the	property	sheet	for	a
subform	or	subreport,	the	control	remains	on	the	form	but	is	no	longer	bound	to
the	source	form	or	report.

Example

The	following	example	displays	the	name	of	the	form	that	is	the	source	of	the
ProductList	subform	control	in	the	Debug	window.

Debug.Print	Forms!Categories!	_

				[Product	List].SourceObject

Show	All

SpecialEffect	Property
							

You	can	use	the	SpecialEffect	property	to	specify	whether	special	formatting
will	apply	to	a	section	or	control.

expression.SpecialEffect

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

Remarks

The	SpecialEffect	property	uses	the	following	settings.

Setting Visual	Basic Description

Flat 0
The	object	appears	flat	and	has	the
system's	default	colors	or	custom	colors
that	were	set	in	Design	view.

Raised 1
The	object	has	a	highlight	on	the	top	and
left	and	a	shadow	on	the	bottom	and
right.

Sunken 2
The	object	has	a	shadow	on	the	top	and
left	and	a	highlight	on	the	bottom	and
right.

Etched 3 The	object	has	a	sunken	line	surrounding
the	control.

Shadowed 4 The	object	has	a	shadow	below	and	to	the
right	of	the	control.

Chiseled 5 The	object	has	a	sunken	line	below	the
control.

You	can	set	this	property	by	using	the	Special	Effect	button	on	the	Formatting
(Form/Report)	toolbar,	the	object's	property	sheet,	a	macro,	or	Visual	Basic.

For	controls,	you	can	set	the	default	for	this	property	by	using	the	default	control
style	or	the	DefaultControl	method	in	Visual	Basic.

The	SpecialEffect	property	setting	affects	related	property	settings	for	the
BorderStyle,	BorderColor,	and	BorderWidth	properties.	For	example,	if	the
SpecialEffect	property	is	set	to	Raised,	the	settings	for	the	BorderStyle,
BorderColor,	and	BorderWidth	properties	are	ignored.	In	addition,	changing
or	setting	the	BorderStyle,	BorderColor,	and	BorderWidth	properties	may
cause	Microsoft	Access	to	change	the	SpecialEffect	property	setting	to	Flat.

Note			When	you	set	the	SpecialEffect	property	of	a	text	box	to	Shadowed,	the
vertical	height	of	the	text	display	area	is	reduced.	You	can	adjust	the	Height

property	of	the	text	box	to	increase	the	size	of	the	text	display	area.

Example

The	following	example	sets	the	appearance	of	the	text	box	"OrganizationName1"
on	the	"Mailing	List"	form	to	raised.

Forms("Mailing	List").Controls("OrganizationName1").SpecialEffect	=	1

Show	All

StatusBarText	Property
							

You	can	use	the	StatusBarText	property	to	specify	the	text	that	is	displayed	in
the	status	bar	when	a	control	is	selected.	Read/write	String.

expression.StatusBarText

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

Remarks

The	StatusBarText	property	applies	only	to	controls	on	a	form,	not	controls	on
a	report.

You	set	the	StatusBarText	property	by	using	a	string	expression	up	to	255
characters	long.

You	can	set	this	property	by	using	the	control's	property	sheet,	a	macro,	or
Visual	Basic.

Note			The	length	of	the	text	you	can	display	in	the	status	bar	depends	on	your
computer	hardware	and	video	display.

You	can	use	the	StatusBarText	property	to	provide	specific	information	about	a
control.	For	example,	when	a	text	box	has	the	focus,	a	brief	instruction	can	tell
the	user	what	kind	of	data	to	enter.

Note			You	can	also	use	the	ControlTipText	property	to	display	a	ScreenTip	for
a	control.

If	you	create	a	control	by	dragging	a	field	from	the	field	list,	the	value	in	a	field's
Description	property	is	copied	to	the	StatusBarText	property.

Example

The	following	example	sets	the	status	bar	text	to	be	displayed	when	the
"Address_TextBox"	control	in	the	"Mailing	List"	form	has	the	focus	in	Form
View.

Forms("Mailing	List").Controls("Address_TextBox").	_

				StatusBarText	=	"Enter	the	company's	mailing	address."

Show	All

Style	Property
							

You	can	use	the	Style	property	to	specify	or	determine	the	appearance	of	tabs	on
a	tab	control.

expression.Style

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

Remarks

The	Style	property	uses	the	following	settings.

Setting Visual	Basic Description
Tabs 0 (Default)	Tabs	appear	as	tabs.
Buttons 1 Tabs	appear	as	buttons.
None 2 No	tabs	appear	in	the	control.
You	can	set	the	Style	property	by	using	the	tab	control's	property	sheet,	a	macro,
or	Visual	Basic.

You	can	also	set	the	default	for	this	property	by	using	a	control's	default	control
style	or	the	DefaultControl	method	in	Visual	Basic.

You	can	set	the	Style	property	in	any	view.

When	the	tab	control's	Style	property	is	set	to	Tabs	or	Buttons,	the	appearance	of
the	tabs	is	determined	by	the	TabFixedHeight,	TabFixedWidth,	and	MultiRow
properties.

You	could	set	the	tab	control's	Style	property	to	None	if	you	wanted	complete
control	over	when	a	user	could	move	between	tabs.	In	prior	versions	of
Microsoft	Access,	wizard	dialogs	were	created	by	using	multiple-page	forms.
You	can	now	use	a	tab	control	create	your	own	wizard	with	each	page	of	the
wizard	contained	on	a	separate	page	of	a	tab	control	with	its	Style	property	set	to
None.

Example

The	following	example	causes	tabs	to	appear	as	buttons	on	the	tab	control	named
"TabCtl1"	on	the	"Mailing	List"	form.

Forms("Mailing	List").Controls("TabCtl1").Style	=	1

Show	All

SubAddress	Property
							

You	can	use	the	SubAddress	property	to	specify	or	determine	a	location	within
the	target	document	specified	by	the	Address	property.	The	SubAddress
property	can	be	an	object	within	a	Microsoft	Access	database,	a	bookmark
within	a	Microsoft	Word	document,	a	named	range	within	a	Microsoft	Excel
spreadsheet,	a	slide	within	a	Microsoft	PowerPoint	presentation,	or	a	location
within	an	HTML	document.	Read/write	String.

expression.SubAddress

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

Remarks

The	SubAddress	property	is	a	string	expression	representing	the
HyperlinkSubAddress	property	of	a	named	location	within	the	target	document
specified	by	the	HyperlinkAddress	property

You	can	set	the	HyperlinkSubAddress	property	with	the	SubAddress	property
by	using	Visual	Basic.

Note			You	can	set	the	HyperlinkSubAddress	property	by	using	a	control's
property	sheet,	a	macro,	or	Visual	Basic.

When	you	move	the	cursor	over	a	command	button,	image	control,	or	label
control	whose	HyperlinkSubAddress	property	is	set,	the	cursor	changes	to	an
upward-pointing	hand.	Clicking	the	control	displays	the	object	or	Web	page
specified	by	the	link.

For	more	information	about	hyperlink	addresses	and	their	format,	see	the
HyperlinkAddress	and	HyperlinkSubAddress	property	topics.

Example

The	following	example	turns	a	label	named	"Label20"	on	the	"Suppliers"	form
into	an	active	hyperlink.	When	the	user	click	the	hyperlink,	Access	opens	the
"Mailing	List"	form	in	the	"Postal	Operations"	database.

With	Forms("Suppliers").Controls("Label20").Hyperlink

				.Address	=	"PostalOperations.mdb"

				.SubAddress	=	"Form	Mailing	List"

End	With

Show	All

SubdatasheetExpanded	Property
							

You	can	use	the	SubdatasheetExpanded	property	to	specify	or	determine	the
saved	state	of	all	subdatasheets	within	a	table	or	query.	Read/write	Boolean.

expression.SubdatasheetExpanded

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

Remarks

The	SubdatasheetExpanded	property	applies	only	to	tables	and	queries	within
a	Microsoft	Access	database	(.mdb).

The	SubdatasheetExpanded	property	uses	the	following	settings.

Setting Visual	Basic Description

Yes True	 The	saved	state	of	all	subdatasheets	in	the	table
is	expanded.

No False	 (Default)	The	saved	state	of	all	subdatasheets
in	the	table	is	closed.

The	easiest	way	to	set	the	SubdatasheetExpanded	property	is	by	using	a	table's
property	sheet.	You	can	set	this	property	by	using	Visual	Basic.

To	set	the	SubdatasheetExpanded	property	by	using	Visual	Basic,	you	must
first	either:

Set	the	property	in	table	Design	view	by	pointing	to	Properties	on	the
View	menu.

Create	the	property	by	using	the	DAO	CreateProperty	method.

The	value	of	the	SubdatasheetExpanded	property	is	displayed	in	the	Table
Properties	property	sheet.

The	SubdatasheetExpanded	and	SubdatasheetHeight	properties	take	effect	on
the	subform	control	when	the	form	is	in	datasheet	view.

mk:@MSITStore:dao360.chm::/htm/damthCreateProperty.htm

Example

The	following	example	turns	subdatasheet	expansion	on	or	off	for	the	"Purchase
Orders"	form.

Dim	strExpand	As	String

With	Forms("Purchase	Orders")

				

				strExpand	=	InputBox("Expand	subdatasheets?	Y/N")

				

				Select	Case	strExpand

								Case	"Y"

												.SubdatasheetExpanded	=	True

								Case	"N"

												.SubdatasheetExpanded	=	False

								Case	Else

												MsgBox	"Can't	determine	subdatasheet	expansion	state."

				End	Select

End	With

To	try	this	example	yourself,	open	a	form	(containing	a	subform)	in	Design	view,
click	the	Builder	button	next	to	the	On	Load	property	box	in	the	form's	property
window,	paste	this	code	into	the	form's	Form_Load	event	(removing	the
reference	to	the	"Purchase	Orders"	form),	and	then	open	the	form	in	Datasheet
view.

Show	All

SubdatasheetHeight	Property
							

You	can	use	the	SubdatasheetHeight	property	to	specify	or	determine	the
display	height	of	a	subdatasheet	when	expanded.	Read/write	Integer.

expression.SubdatasheetHeight

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

Remarks

The	SubdatasheetHeight	property	applies	only	to	tables	and	queries	within	a
Microsoft	Access	database	(.mdb).

The	SubdatasheetHeight	property	in	a	numeric	expression	representing	the
default	height	to	display	in	the	subdatasheet.

The	easiest	way	to	set	the	SubdatasheetHeight	property	is	by	using	a	table's
property	sheet.	You	can	set	this	property	by	using	Visual	Basic.	In	Visual	Basic,
the	property's	value	is	expressed	in	twips.

To	set	the	SubdatasheetHeight	property	by	using	Visual	Basic,	you	must	first
either:

Set	the	property	in	table	Design	view	by	pointing	to	Properties	on	the
View	menu.

Create	the	property	by	using	the	DAO	CreateProperty	method.

If	the	subdatasheet	includes	more	records	than	the	height	setting	can
accommodate,	a	vertical	scrollbar	is	displayed.

The	SubdatasheetHeight	property	setting	includes	the	New	Record	row	if
adding	new	records	is	supported.	It	does	not	include	the	column	header	row	or
scrollbar	region.

The	SubdatasheetHeight	and	SubdatasheetExpanded	properties	take	effect	on
the	subform	control	when	the	form	is	in	datasheet	view.

mk:@MSITStore:dao360.chm::/htm/damthCreateProperty.htm

Example

The	following	example	resizes	the	height	of	the	subdatasheet	in	the	"Purchase
Orders"	form	(containing	a	subform)	to	show	only	one	line	of	the	subdatasheet	at
a	time	(measured	at	about	400	twips),	accompanied	by	a	vertical	scrollbar.	The
number	400	is	arbitrary,	and	will	vary	based	on	monitor	resolution	and	default
font	size.	This	behavior	can	only	be	seen	in	Datasheet	View.

Forms("Purchase	Orders").SubdatasheetHeight	=	400

Show	All

TabFixedHeight	Property
							

You	can	use	the	TabFixedHeight	property	to	specify	or	determine	the	height	of
the	tabs	on	a	tab	control.	Read/write	Integer.

expression.TabFixedHeight

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

Remarks

The	TabFixedHeight	property	setting	is	a	value	that	represents	the	height	of	tabs
in	the	unit	of	measurement	specified	in	the	Regional	Options	dialog	box	in
Windows	Control	Panel.	If	you	set	this	property	to	zero,	the	tabs	automatically
adjust	to	the	height	of	the	tab	contents.

You	can	set	this	property	by	using	the	tab	control's	property	sheet,	a	macro,	or
Visual	Basic.

You	can	also	set	the	default	for	this	property	by	using	a	control's	default	control
style	or	the	DefaultControl	method	in	Visual	Basic.

In	Visual	Basic	this	property	uses	a	Long	Integer	value	representing	the	height
of	the	tabs	in	twips	and	can	be	set	in	any	view.

Note			To	use	a	unit	of	measurement	different	from	the	setting	in	the	Regional
Options	dialog	box	in	Windows	Control	Panel,	specify	the	unit,	such	as	cm	or	in
(for	example,	5	cm	or	3	in).

You	can't	change	the	color	of	a	tab	control.	If	the	tabs	don't	cover	the	height	of
the	tab	control,	the	area	behind	the	tabs	is	displayed.	If	you	place	a	tab	control	on
an	object	with	a	different	color	than	the	tab	control,	you	should	make	sure	that
the	tabs	cover	the	control's	background	area.

Example

The	following	example	sets	the	height	of	each	tab	in	the	tab	control	"TabCtl1"
on	the	"Mailing	List"	form	to	500	twips.

Forms("Mailing	List").Controls("TabCtl1").TabFixedWidth	=	500

Show	All

TabFixedWidth	Property
							

You	can	use	the	TabFixedWidth	property	to	specify	or	determine	the	width	of
the	tabs	on	a	tab	control.	Read/write	Integer.

expression.TabFixedWidth

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

Remarks

The	TabFixedWidth	property	setting	is	a	value	that	represents	the	width	of	tabs
in	the	unit	of	measurement	specified	in	the	Regional	Options	dialog	box	in
Windows	Control	Panel.	If	you	set	this	property	to	zero,	the	tabs	automatically
adjust	to	the	width	of	the	tab	contents.

You	can	set	this	property	by	using	the	tab	control's	property	sheet,	a	macro,	or
Visual	Basic.

You	can	also	set	the	default	for	this	property	by	using	a	control's	default	control
style	or	the	DefaultControl	method	in	Visual	Basic.

In	Visual	Basic	this	property	uses	a	Long	Integer	value	representing	the	width
of	the	tabs	in	twips	and	can	be	set	in	any	view.

Note			To	use	a	unit	of	measurement	different	from	the	setting	in	the	Regional
Options	dialog	box	in	Windows	Control	Panel,	specify	the	unit,	such	as	cm	or	in
(for	example,	5	cm	or	3	in).

You	can't	change	the	color	of	a	tab	control.	If	the	tabs	don't	cover	the	width	of
the	tab	control,	the	area	behind	the	tabs	is	displayed.	If	you	place	a	tab	control	on
an	object	with	a	different	color	than	the	tab	control,	you	should	make	sure	that
the	tabs	cover	the	control's	background	area.

Example

The	following	example	sets	the	width	of	each	tab	in	the	tab	control	"TabCtl1"	on
the	"Mailing	List"	form	to	2000	twips.

Forms("Mailing	List").Controls("TabCtl1").TabFixedWidth	=	2000

Show	All

TabIndex	Property
							

You	can	use	the	TabIndex	property	to	specify	a	control's	place	in	the	tab	order
on	a	form.	Read/write	Integer.

expression.TabIndex

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

Remarks

The	TabIndex	property	applies	only	to	controls	on	a	form,	not	controls	on	a
report.

You	can	set	the	TabIndex	property	to	an	integer	representing	the	position	of	the
control	within	the	tab	order	of	the	form.	Valid	settings	are	0	for	the	first	tab
position,	up	to	the	total	number	of	controls	minus	1	for	the	last	tab	position.	For
example,	if	a	form	has	three	controls	that	each	have	a	TabIndex	property,	valid
TabIndex	property	settings	are	0,	1,	and	2.

Setting	the	TabIndex	property	to	an	integer	less	than	0	produces	an	error.

You	can	set	this	property	by	using	the	control's	property	sheet,	a	macro,	or
Visual	Basic.

Note			You	can	also	set	the	tab	order	of	controls	on	a	form	by	using	the	Tab
Order	command	on	the	View	menu.	This	also	sets	the	TabOrder	property	for
the	controls.

By	default,	Microsoft	Access	assigns	a	tab	order	to	controls	in	the	order	that	you
create	them	on	a	form.	Each	new	control	is	placed	last	in	the	tab	order.	If	you
change	the	setting	of	a	control's	TabIndex	property	to	adjust	the	tab	order,
Microsoft	Access	automatically	renumbers	the	TabIndex	property	setting	of
other	controls	to	reflect	insertions	and	deletions.

In	Form	view,	invisible	or	disabled	controls	remain	in	the	tab	order	but	are
skipped	when	you	press	the	TAB	key.

Changing	the	tab	order	of	other	controls	on	the	form	doesn't	affect	what	happens
when	you	press	a	control's	access	key.	For	example,	if	you've	created	an	access
key	for	the	label	of	a	text	box,	the	focus	will	move	to	the	text	box	whenever	you
press	the	label's	access	key	—	even	if	you	change	the	TabIndex	property	setting
for	the	text	box.

If	you	press	an	access	key	for	a	control	such	as	a	label	that	doesn't	have	a
TabIndex	property	(and	thus	isn't	in	the	tab	order),	the	focus	moves	to	the	next
control	in	the	tab	order	that	can	receive	the	focus.

Example

The	following	example	reverses	the	tab	order	of	a	command	button	and	a	text
box.	Because	TextBox1	was	created	first,	it	has	a	TabIndex	property	setting	of	0
and	Command1	has	a	setting	of	1.

Sub	Form_Click()

				Me!Command1.TabIndex	=	0

				Me!TextBox1.TabIndex	=	1

End	Sub

Show	All

TabStop	Property
							

You	can	use	the	TabStop	property	to	specify	whether	you	can	use	the	TAB	key
to	move	the	focus	to	a	control	in	Form	view.	Read/write	Boolean.

expression.TabStop

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

Remarks

The	TabStop	property	applies	only	to	controls	on	a	form,	not	controls	on	a
report.

This	property	doesn't	apply	to	check	box,	option	button,	or	toggle	button	controls
when	they	appear	in	an	option	group.	It	applies	only	to	the	option	group	itself.

The	TabStop	property	uses	the	following	settings.

Setting Visual	Basic Description

Yes True	 (Default)	You	can	move	the	focus	to	the	control
by	pressing	the	TAB	key.

No False	 You	can't	move	the	focus	to	the	control	by
pressing	the	TAB	key.

You	can	set	this	property	by	using	the	control's	property	sheet,	a	macro,	or
Visual	Basic.

When	you	create	a	control	on	a	form,	Microsoft	Access	automatically	assigns
the	control	a	position	in	the	form's	tab	order.	Each	new	control	is	placed	last	in
the	tab	order.	If	you	want	to	prevent	a	control	from	being	available	when	you	tab
through	the	controls	in	a	form,	set	the	control's	TabStop	property	to	No.

In	Form	view,	hidden	or	disabled	controls	remain	in	the	tab	order	but	are	skipped
when	you	move	through	the	controls	by	pressing	TAB,	even	if	their	TabStop
properties	are	set	to	Yes.

As	long	as	a	control's	Enabled	property	is	set	to	Yes,	you	can	click	the	control	or
use	an	access	key	to	select	it,	regardless	of	its	TabStop	property	setting.	For
example,	you	can	set	the	TabStop	property	of	a	command	button	to	No	to
prevent	users	from	selecting	the	button	by	pressing	TAB.	However,	they	can	still
click	the	command	button	to	choose	it.

Example

The	following	example	disables	the	ability	to	move	the	focus	to	the	"City"	text
box	on	the	"Suppliers"	form	by	using	the	TAB	key.

Forms("Suppliers").Controls("City").TabStop	=	False

Show	All

Tag	Property
							

Stores	extra	information	about	a	form,	report,	data	access	page,	section,	or
control	needed	by	a	Microsoft	Access	application.	Read/write	String.

expression.Tag

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

Remarks

You	can	enter	a	string	expression	up	to	2048	characters	long.	The	default	setting
is	a	zero-length	string	("	").

You	can	set	this	property	by	using	the	object's	property	sheet,	a	macro,	or	Visual
Basic.

Unlike	other	properties,	the	Tag	property	setting	doesn't	affect	any	of	an	object's
attributes.

You	can	use	this	property	to	assign	an	identification	string	to	an	object	without
affecting	any	of	its	other	property	settings	or	causing	other	side	effects.	The	Tag
property	is	useful	when	you	need	to	check	the	identity	of	a	form,	report,	data
access	page,	section,	or	control	that	is	passed	as	a	variable	to	a	procedure.

Example

The	following	example	uses	the	Tag	property	to	display	custom	messages	about
controls	on	a	form.	When	a	control	has	the	focus,	descriptive	text	is	displayed	in
a	label	control	called	lblMessage.	You	specify	the	text	for	the	message	by
setting	the	Tag	property	for	each	control	to	a	short	text	string.	When	a	control
receives	the	focus,	its	Tag	property	is	assigned	to	the	label	control's	Caption
property.	This	example	displays	the	descriptive	text	for	a	text	box	named
txtDescription	and	a	command	button	named	cmdButton	on	a	form.

Sub	Form_Load()

				Dim	frmMessageForm	As	Form

				Set	frmMessageForm	=	Forms!Form1

				frmMessageForm!lblMessage.Caption	=	""									'	Clear	text.

				frmMessageForm!txtDescription.Tag	=	"Help	text	for	the	text	box."

				frmMessageForm!cmdButton.Tag	=	"Help	text	for	the	command	button."

End	Sub

Sub	txtDescription_GotFocus()

				'	Tag	property	setting	as	caption.

				Me!lblMessage.Caption	=	Me!txtDescription.Tag

End	Sub

Sub	txtDescription_LostFocus()

				Me!lblMessage.Caption	=	""

End	Sub

Sub	cmdButton_GotFocus()

				'	Tag	property	setting	as	caption.

				Me!lblMessage.Caption	=	Me!cmdButton.Tag									

End	Sub

Sub	cmdButton_LostFocus()

				Me.lblMessage.Caption	=	"	"

End	Sub

Show	All

TargetBrowser	Property
							

Returns	or	sets	an	MsoTargetBrowser	constant	indicating	which	Web	browser
is	the	intended	target	for	the	specified	data	access	page	or	for	all	data	access
pages.	Read/write.

MsoTargetBrowser	can	be	one	of	these	MsoTargetBrowser	constants.
msoTargetBrowserIE4		Microsoft	Internet	Explorer	version	4.
msoTargetBrowserIE5		Internet	Explorer	version	5.
msoTargetBrowserIE6		Internet	Explorer	version	6.
msoTargetBrowserV3		Netscape	Navigator	version	3.
msoTargetBrowserV4		Netscape	Navigator	version	4.

expression.TargetBrowser

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

Example

This	example	sets	the	target	browser	for	the	active	data	access	page	to	Microsoft
Internet	Explorer	6	if	the	current	target	browser	is	an	earlier	version	of	Internet
Explorer.

With	Screen.ActiveDataAccessPage.WebOptions

				If	.TargetBrowser	=	msoTargetBrowserIE4	Or	_

												.TargetBrowser	=	msoTargetBrowserIE5	Then

								.TargetBrowser	=	msoTargetBrowserIE6

				End	If

End	With

This	example	sets	the	target	browser	for	all	data	access	pages	to	Internet
Explorer	6.

Application.DefaultWebOptions	_

				.TargetBrowser	=	msoTargetBrowserIE6

Show	All

Text	Property
							

You	can	use	the	Text	property	to	set	or	return	the	text	contained	in	a	text	box	or
in	the	text	box	portion	of	a	combo	box.	Read/write	String.

expression.Text

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

Remarks

You	can	set	the	Text	property	to	the	text	you	want	to	display	in	the	control.	You
can	also	use	the	Text	property	to	read	the	text	currently	in	the	control.

You	can	set	or	read	this	property	only	by	using	a	macro	or	Visual	Basic.

Note			To	set	or	return	a	control's	Text	property,	the	control	must	have	the	focus,
or	an	error	occurs.	To	move	the	focus	to	a	control,	you	can	use	the	SetFocus
method	or	GoToControl	action.

While	the	control	has	the	focus,	the	Text	property	contains	the	text	data	currently
in	the	control;	the	Value	property	contains	the	last	saved	data	for	the	control.
When	you	move	the	focus	to	another	control,	the	control's	data	is	updated,	and
the	Value	property	is	set	to	this	new	value.	The	Text	property	setting	is	then
unavailable	until	the	control	gets	the	focus	again.	If	you	use	the	Save	Record
command	on	the	Records	menu	to	save	the	data	in	the	control	without	moving
the	focus,	the	Text	property	and	Value	property	settings	will	be	the	same.

mk:@MSITStore:acmain10.chm::/html/acactGoToControl.htm

Example

The	following	example	uses	the	Text	property	to	enable	a	Next	button	named
btnNext	whenever	the	user	enters	text	into	a	text	box	named	txtName.	Anytime
the	text	box	is	empty,	the	Next	button	is	disabled.

Sub	txtName_Change()

				btnNext.Enabled	=	Len(Me!txtName.Text	&	"")<>0

End	Sub

TextAlign	Property
							

The	TextAlign	property	specifies	the	text	alignment	in	new	controls.	Read/write
Byte.

expression.TextAlign

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

Remarks

The	TextAlign	property	uses	the	following	settings.

Setting Visual	Basic Description

General 0 (Default)	The	text	aligns	to	the	left;	numbers
and	dates	align	to	the	right.

Left 1 The	text,	numbers,	and	dates	align	to	the	left.
Center 2 The	text,	numbers,	and	dates	are	centered.
Right 3 The	text,	numbers,	and	dates	align	to	the	right.

Distribute 4 The	text,	numbers,	and	dates	are	evenly
distributed.

You	can	set	the	TextAlign	property	by	using	the	control's	property	sheet,	a
macro,	or	Visual	Basic.

You	can	also	set	the	TextAlign	property	by	clicking	Align	Left,	Center,	and
Align	Right	on	the	Formatting	(Form/Report)	toolbar.

You	can	set	the	default	for	the	TextAlign	property	by	using	a	control's	default
control	style	or	the	DefaultControl	method	in	Visual	Basic.

Example

The	following	example	aligns	the	text	in	the	"Address"	text	box	on	the
"Suppliers"	form	to	the	right.

Forms("Suppliers").Controls("Address").TextAlign	=	3

Show	All

TextToDisplay	Property
							

You	can	use	the	TextToDisplay	property	to	specify	or	determine	the	display	text
for	a	hyperlink.	Read/write	String.

expression.TextToDisplay

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

Remarks

The	TextToDisplay	property	is	a	string	expression	representing	the	text
displayed	as	a	hyperlink.

The	TextToDisplay	property	can	be	set	by	using	the	form's	property	sheet	or
Visual	Basic.

Example

The	following	example	displays	the	words	"Go	to	Home	page"	as	an	active
hyperlink	in	the	label	named	"Label20"	on	the	"Suppliers"	form.	Clicking	the
hyperlink	takes	the	user	to	the	address	specified	in	the	label's
HyperlinkAddress	property.

Forms.Item("Suppliers").Controls.Item("Label20").Hyperlink.	_

				TextToDisplay	=	"Go	to	Home	page"

Show	All

TimerInterval	Property
							

You	can	use	the	TimerInterval	property	to	specify	the	interval,	in	milliseconds,
between	Timer	events	on	a	form.	Read/write	Long.

expression.TimerInterval

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

Remarks

The	TimerInterval	property	setting	is	a	Long	Integer	value	between	0	and
2,147,483,647.

You	can	set	this	property	by	using	the	form's	property	sheet,	a	macro,	or	Visual
Basic.

Note			When	using	Visual	Basic,	you	set	the	TimerInterval	property	in	the
form's	Load	event.

To	run	Visual	Basic	code	at	intervals	specified	by	the	TimerInterval	property,
put	the	code	in	the	form's	Timer	event	procedure.	For	example,	to	requery
records	every	30	seconds,	put	the	code	to	requery	the	records	in	the	form's	Timer
event	procedure,	and	then	set	the	TimerInterval	property	to	30000.

Example

The	following	example	shows	how	to	create	a	flashing	button	on	a	form	by
displaying	and	hiding	an	icon	on	the	button.	The	form's	Load	event	procedure
sets	the	form's	TimerInterval	property	to	1000	so	the	icon	display	is	toggled
once	every	second.

Sub	Form_Load()

				Me.TimerInterval	=	1000

End	Sub

Sub	Form_Timer()

				Static	intShowPicture	As	Integer

				If	intShowPicture	Then

								'	Show	icon.

								Me!btnPicture.Picture	=	"C:\Icons\Flash.ico"

				Else

								'	Don't	show	icon.

								Me!btnPicture.Picture	=	""

				End	If

				intShowPicture	=	Not	intShowPicture

End	Sub

Show	All

Toolbar	Property
							

You	can	use	the	Toolbar	property	to	specify	the	toolbar	to	use	for	a	form	or
report.	You	create	these	toolbars	by	using	the	Customize	subcommand	of	the
Toolbars	command	on	the	View	menu.	For	more	information	on	creating
customized	toolbars,	see	Create	a	custom	toolbar	for	the	current	database.
Read/write	String.

expression.Toolbar

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

Remarks

The	Toolbar	property	setting	is	the	name	of	the	custom	toolbar	you	want	to
display.	If	you	leave	the	Toolbar	property	setting	blank,	Microsoft	Access
displays	the	form's	or	report's	built-in	(default)	toolbar.

You	can	set	the	Toolbar	property	by	using	the	form's	or	report's	property	sheet,	a
macro,	or	Visual	Basic.

In	Visual	Basic,	set	this	property	by	using	a	string	expression	that's	the	name	of
the	toolbar	you	want	to	display.

To	display	the	built-in	toolbar	for	a	form	or	report	by	using	a	macro	or	Visual
Basic,	set	the	Toolbar	property	to	a	zero-length	string	("	").

When	you	set	the	Toolbar	property,	Microsoft	Access	displays	the	specified
custom	toolbar	when	the	form	or	report	is	opened.	This	toolbar	is	displayed
whenever	the	form	or	report	has	the	focus.

Example

The	following	example	displays	the	custom	toolbar	named	"Suppliers_Toolbar"
associated	with	the	"Suppliers"	form.

Forms.Item("Suppliers").Toolbar	=	"Suppliers_Toolbar"

Show	All

Top	Property
							
You	can	use	the	Top	property	to	specify	an	object's	location	on	a	form	or	report.
Read/write	Integer	for	all	of	the	objects	in	the	Applies	To	list	except	for	the
Report	object,	which	is	read/write	Long.

expression.Top

expression			Required.	An	expression	that	returns	one	of	the	above	objects.

Remarks

A	control's	location	is	the	distance	measured	from	its	left	or	top	border	to	the	left
or	top	edge	of	the	section	containing	the	control.	Setting	the	Top	property	to	0
places	the	control's	edge	at	the	very	top	of	the	section.	To	use	a	unit	of
measurement	different	from	the	setting	in	the	Regional	Options	dialog	box	in
Windows	Control	Panel,	specify	the	unit,	such	as	cm	or	in	(for	example,	3	cm	or
2	in).

In	Visual	Basic,	use	a	numeric	expression	to	set	the	value	of	this	property.	Values
are	expressed	in	twips.

For	controls,	you	can	set	this	property	by	using	a	control's	property	sheet,	a
macro,	or	Visual	Basic.

For	reports,	you	can	set	this	property	only	by	using	a	macro	or	event	procedure
in	Visual	Basic	while	the	report	is	in	Print	Preview	or	being	printed.

When	you	move	a	control,	its	new	Top	property	setting	is	automatically	entered
in	the	property	sheet.	When	you	view	a	form	or	report	in	Print	Preview	or	when
you	print	a	form,	a	control's	location	is	determined	by	its	Top	property	setting
along	with	the	margin	settings	in	the	Page	Setup	dialog	box,	available	by
clicking	Page	Setup	on	the	File	menu.

For	reports,	the	Top	property	setting	is	the	amount	the	current	section	is	offset
from	the	top	of	the	page.	This	property	setting	is	expressed	in	twips.	You	can	use
this	property	to	specify	how	far	down	the	page	you	want	a	section	to	print	in	the
section's	Format	event	procedure.

Example

The	following	example	checks	the	Top	property	setting	for	the	current	report.	If
the	value	is	less	than	the	minimum	margin	setting,	the	NextRecord	and
PrintSection	properties	are	set	to	False.	The	section	doesn't	advance	to	the	next
record,	and	the	next	section	isn't	printed.

Sub	Detail1_Format(Cancel	As	Integer,	FormatCount	As	Integer)

Const	conTopMargin	=	1880

'	Don't	advance	to	next	record	or	print	next	section

'	if	Top	property	setting	is	less	than	1880	twips.

				If	Me.Top	<	conTopMargin	Then

								Me.NextRecord	=	False

								Me.PrintSection	=	False

				End	If

End	Sub

Show	All

TopMargin	Property
							

TopMargin	property	as	it	applies	to	the	Label	and	TextBox	objects.

Along	with	the	LeftMargin,	RightMargin,	and	BottomMargin	properties,
specifies	the	location	of	information	displayed	within	a	label	or	text	box	control.
Read/write	Integer.

expression.TopMargin

expression			Required.	An	expression	that	returns	one	of	the	above	objects.

Remarks

A	control's	displayed	information	location	is	measured	from	the	control's	left,
top,	right,	or	bottom	border	to	the	left,	top,	right,	or	bottom	edge	of	the	displayed
information.	Setting	the	LeftMargin	or	TopMargin	property	to	0	places	the
displayed	information's	edge	at	the	very	left	or	top	of	the	control.	To	use	a	unit
of	measurement	different	from	the	setting	in	the	regional	settings	of	Windows,
specify	the	unit	(for	example,	cm	or	in).

In	Visual	Basic,	use	a	numeric	expression	to	set	the	value	of	this	property.	Values
are	expressed	in	twips.

You	can	set	these	properties	by	using	the	property	sheet,	a	macro,	or	Visual
Basic.

TopMargin	property	as	it	applies	to	the	Printer	object.

Along	with	the	LeftMargin,	RightMargin,	and	BottomMargin	properties,
specifies	the	margins	for	a	printed	page.	Read/write	Long.

expression.TopMargin

expression			Required.	An	expression	that	returns	a	Printer	object.

Example

As	it	applies	to	the	Label	and	TextBox	objects.

The	following	example	offsets	the	caption	in	the	label	"EmployeeID_Label"	in
the	"Purchase	Orders"	form	by	100	twips	from	the	top	of	the	label's	border.

With	Forms.Item("Purchase	Orders").Controls.Item("EmployeeID_Label")

				.TopMargin	=	100

End	With

Show	All

Transparent	Property
							

You	can	use	the	Transparent	property	to	specify	whether	a	command	button	is
solid	or	transparent.	Read/write	Boolean.

expression.Transparent

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

Remarks

Tip		Use	the	BackStyle	property	to	make	other	controls	solid	or	transparent.

The	Transparent	property	uses	the	following	settings.

Setting Visual	Basic Description
Yes True	 The	button	is	transparent.
No False	 (Default)	The	button	is	solid.
You	can	set	this	property	by	using	the	command	button's	property	sheet,	a
macro,	or	Visual	Basic.

You	can	use	this	property	to	place	a	transparent	command	button	over	another
control.	For	example,	you	could	place	several	transparent	buttons	over	a	picture
displayed	in	an	image	control	and	run	various	macros	or	Visual	Basic	event
procedures	depending	on	which	part	of	the	picture	the	user	clicks.

Note			To	hide	and	disable	a	button,	use	the	Visible	property.	To	disable	a	button
without	hiding	it,	use	the	Enabled	property.	To	hide	a	button	only	when	a	form
or	report	is	printed,	use	the	DisplayWhen	property.

Example

The	following	example	makes	the	command	button	"Preview"	on	the	"Purchase
Orders"	form	transparent.

Forms.Item("Purchase	Orders").Controls.Item("Preview").	_

				Transparent	=	True

Show	All

TripleState	Property
							

You	can	use	the	TripleState	property	to	specify	how	a	check	box,	toggle	button,
or	option	button	will	display	Null	values.	Read/write	Boolean.

expression.TripleState

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

Remarks

The	TripleState	property	uses	the	following	settings.

Setting Visual	Basic Description

Yes True	

The	control	will	cycle	through	states	for	Yes,
No,	and	Null	values.	The	control	appears
dimmed	(grayed)	when	its	Value	property	is	set
to	Null.

No False
(Default)	The	control	will	cycle	through	states
for	Yes	and	No	values.	Null	values	display	as	if
they	were	No	values.

You	can	set	the	TripleState	property	by	using	a	control's	property	sheet,	a
macro,	or	Visual	Basic.

This	property	can	be	set	in	any	view.

Example

The	following	example	displays	a	message	describing	in	detail	the	state	of	a
check	box	named	"Check1"	on	the	form	"frmOperations".

Dim	strTripleState	As	String

strTripleState	=	Forms.Item("frmOperations").Controls.Item("Check1").

Select	Case	strTripleState

				Case	True

								MsgBox	"For	Check1,	TripleState	=	"	&	strTripleState	&	_

												".	The	control	will	cycle	through	states	for	Yes,	No,	"	&	_

												"and	Null	values.	The	control	appears	dimmed	(grayed)	"	&	_

												"when	its	Value	property	is	set	to	Null."

				Case	False

								MsgBox	"For	Check1,	TripleState	=	"	&	strTripleState	&	_

												".	The	control	will	cycle	through	states	for	Yes	and	No	"	&	_

												"values.	Null	values	display	as	if	they	were	No	values."

				Case	Else

								MsgBox	"Can't	determine	the	TripleState	property	for	Check1."

End	Select	

Show	All

Type	Property
							

Type	property	as	it	applies	to	the	AccessObject	object.

Returns	the	value	of	an	AccessObject	object	type.	Read-only	AcObjectType.

AcObjectType	can	be	one	of	these	AcObjectType	constants.
acDataAccessPage
acDefault
acDiagram
acForm
acFunction
acMacro
acModule
acQuery
acReport
acServerView
acStoredProcedure
acTable

expression.Type

expression			Required.	An	expression	that	returns	an	AccessObject	object.

Type	property	as	it	applies	to	the	FormatCondition	object.

Returns	the	value	of	a	FormatCondition	object	type.	Read-only
AcFormatConditionType.

AcFormatConditionType	can	be	one	of	these	AcFormatConditionType
constants.
acExpression

acFieldHasFocus
acFieldValue

expression.Type

expression			Required.	An	expression	that	returns	a	FormatCondition	object.

Type	property	as	it	applies	to	the	Module	object.

Indicates	whether	a	module	is	a	standard	module	or	a	class	module.	Read-only
AcModuleType.

AcModuleType	can	be	one	of	these	AcModuleType	constants.
acClassModule
acStandardModule

expression.Type

expression			Required.	An	expression	that	returns	a	Module	object.

Example

As	it	applies	to	the	Module	object.

The	following	example	determines	whether	a	Module	object	represents	a
standard	module	or	a	class	module:

Function	CheckModuleType(strModuleName	As	String)	As	Integer

				Dim	mdl	As	Module

				'	Open	module	to	include	in	Modules	collection.

				DoCmd.OpenModule	strModuleName

				'	Return	reference	to	Module	object.

				Set	mdl	=	Modules(strModuleName)

				'	Check	Type	property.

				If	mdl.Type	=	acClassModule	Then

								'	Insert	comment.

								mdl.InsertLines	1,	"'	Class	module."

								CheckModuleType	=	acClassModule

				Else

								'	Insert	comment.

								mdl.InsertLines	1,	"'	Standard	module."

								CheckModuleType	=	acStandardModule

				End	If

End	Function

Show	All

UnderlineHyperlinks	Property
							

You	can	use	the	UnderlineHyperlink	property	to	specify	or	determine	if
hyperlinks	within	the	Application	object	should	be	underlined	when	displayed.
Read/write	Boolean.

expression.UnderlineHyperlinks

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

Remarks

The	UnderlineHyperlink	property	uses	the	following	settings.

Setting Visual	Basic Description
Yes True	 (Default)	Hyperlinks	will	be	underlined
No False	 Hyperlinks	will	not	be	underlined.

You	can	set	the	UnderlineHyperlink	property	through	the	DefaultWebOptions
property	or	the	SetOption	method	by	using	Visual	Basic.

You	can	set	or	change	the	underline	hyperlink	setting	in	the	Web	Options	dialog
box.	To	display	this	dialog	box,	click	Options	on	the	Tools	menu.	Click	the
General	tab	and	click	the	Web	Pages	button.

Use	the	DefaultWebOptions	property	to	identify	or	set	the	Application	object's
DefaultWebOptions	object	properties.

Example

The	following	example	displays	a	message	indicating	wither	hyperlinks	will	be
underlined.

MsgBox	"Hyperlinks	will	be	underlined:	"	&	_	

				Application.DefaultWebOptions.UnderlineHyperlinks

Show	All

UndoBatchEdit	Property
							

Returns	or	sets	a	String	indicating	which	macro,	event	procedure,	or	user-
defined	function	runs	when	the	UndoBatchEdit	event	occurs.	Read/write.

expression.UndoBatchEdit

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

Remarks

This	event	applies	to	Access	project	forms	whose	BatchUpdates	properties	are
set	to	True.

Valid	values	for	this	property	are	"macroname"	where	macroname	is	the	name	of
macro,	"[Event	Procedure]"	which	indicates	the	event	procedure	associated	with
the	UndoBatchEdit	event	for	the	specified	object,	or	"=functionname()"	where
functionname	is	the	name	of	a	user-defined	function.	For	a	more	detailed
discussion	of	event	properties,	see	"Event	Properties."

Example

The	following	example	specifies	that	when	the	UndoBatchEdit	event	occurs	on
the	first	form	of	the	current	project,	the	associated	event	procedure	should	run.

Forms(0).UndoBatchEdit	=	"[Event	Procedure]"

Show	All

UniqueTable	Property
							

Specifies	the	table	to	be	updateable	when:

A	form	or	data	access	page	is	bound	to	a	multiple	table	view	or	stored
procedure	within	a	Microsoft	Access	project	(.adp).
A	data	access	page	is	bound	to	a	multiple	table	query	within	a	Microsoft
Access	project	(.adp)	or	a	Microsoft	Access	database	(.mdb).

Read/write	String.

expression.UniqueTable

expression			Required.	An	expression	that	returns	a	Form	object.

Remarks

The	UniqueTable	property	is	a	string	expression	representing	the	unique	table	to
be	updatable.

You	can	set	this	property	by	using	the	property	sheet	or	Visual	Basic.

The	UniqueTable	property	identifies	the	"most	many"	table	of	a	join.	If	you
don't	set	the	UniqueTable	property,	a	form	that	is	bound	to	a	view	or	stored	proc
or	SQL	String	containing	a	join	is	read	only.	Also,	the	datasheet	produced	by
View.Open	or	StoredProc.Run	is	read	only	in	the	case	of	a	join	(because	there's
no	way	to	set	the	UniqueTable	property).	Once	you	set	the	UniqueTable
property,	only	fields	from	that	table	are	updatable,	and	inserts	and	deletes	can
only	be	made	to	that	table.

A	form	or	data	access	page	based	on	a	join	cursor	must	have	a	UniqueTable
property	string	in	order	for	the	recordset	to	be	an	updatable	snapshot.	The
Unique	Table	is	the	table	in	the	underlying	query	whose	rows	have	a	1-to-1
correspondence	with	rows	in	the	cursor.	In	a	simple	Patients	-	Doctors	join,
Patients	is	the	unique	table	because	every	row	of	the	cursor	corresponds	to	one
row	of	the	Patients	table.	Note	that	a	Many-to-Many	join	does	not	have	a	valid
UniqueTable	property,	and	is	thus	read-only.	The	UniqueTable	property	will	be
exposed	as	a	RecordsetDef	object	in	the	case	of	a	data	access	page.	The	purpose
of	the	UniqueTable	property	is:

To	enforce	the	correct	updatability	semantics:

The	key	columns	of	the	Unique	Table	must	be	present	in	the	select	list	of
the	query	that	forms	the	cursor,	even	for	SQL	Server.	(For	other	data
sources,	see	the	Remarks	section	in	the	ResyncCommand	property	topic.)

Deletion	of	a	row	in	a	join	cursor	deletes	the	row	from	the	Unique	Table
only.

Insertion	of	a	row	in	a	join	cursor	is	allowed	for	the	Unique	Table	only

Update	of	a	row	in	a	join	cursor	is	allowed	for	fields	in	the	Unique	Table
only.

To	provide	the	right	parameter	values	for	the	Resync	Query.	The	UniqueTable
property	of	a	form	or	a	RecordsetDef	supports	the	catalog.owner.tablename
notation	to	fully	qualify	a	base	table	from	others	in	the	same	cursor,	if	this	is
required.	For	example,	for	example,	if	dbo.authors	were	joined	to	user1.authors
in	a	cursor,	then	the	UniqueTable	would	need	to	be	specified	as	dbo.authors	or
user1.authors.

For	a	join	cursor,	if	the	UniqueTable	property	is	empty,	the	recordset	reverts	to
read	only	and	any	attempt	to	edit	results	in	a	beep	and	a	status	message,	"This
Recordset	is	not	updatable	because	the	UniqueTable	property	is	not	set."	If	there
is	a	non-empty	UniqueTable	property,	set	the	UniqueTable	property	(and
UniqueSchema,	UniqueCatalog	properties	if	necessary)	on	the	underlying
Recordset	or	Rowset.	Then,	go	through	and	mark	each	column	that	does	not
match	the	UniqueTable	property	as	read	only.

On	insert	and	update	operations,	only	the	fields	from	the	Unique	Table	are
available	for	editing.	When	the	user	tries	to	type	into	them	he	gets	a	beep	and	the
message	"Only	fields	from	the	Unique	Table	can	be	edited."	If	the	UniqueTable
property	has	been	set	incorrectly,	this	will	happen	for	all	columns.

Show	All

UpdateOptions	Property
							

You	can	use	the	UpdateOptions	property	to	specify	how	a	linked	OLE	object	is
updated.	Read/write	Integer.

expression.UpdateOptions

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

Remarks

The	UpdateOptions	property	uses	the	following	settings.

Setting Visual	Basic Description

Automatic acOLEUpdateAutomatic	 (Default)	Updates	the	object	each
time	the	linked	data	changes.

Manual acOLEUpdateManual	

Updates	the	object	only	when	the
control's	Action	property	is	set	to
acOLEUpdate	or	the	link	is
updated	with	the	OLE/DDE
Links	command	on	the	Edit
menu.

You	can	set	the	UpdateOptions	property	in	a	property	sheet,	in	a	macro,	or	by
using	Visual	Basic.	You	can	set	the	default	for	this	property	by	using	a	control's
default	control	style	or	the	DefaultControl	method	in	Visual	Basic.

The	UpdateOptions	property	setting	is	also	available	through	the	OLE/DDE
Links	command	on	the	Edit	menu.

Normally,	the	object	is	updated	automatically	whenever	the	linked	data	changes,
but	you	can	tell	Microsoft	Access	to	update	the	data	only	when	it	receives	a
specific	instruction	to	do	so.	For	example,	if	other	users	or	applications	can
access	or	change	linked	spreadsheet	data	on	a	form,	you	can	use	this	property	to
specify	that	the	linked	data	only	be	updated	when	the	database	is	opened	in
single-user	mode.

When	the	UpdateOptions	property	is	set	to	Manual,	updates	don't	occur	based
on	the	setting	of	the	Refresh	interval	box	on	the	Advanced	tab	of	the	Options
dialog	box,	available	by	clicking	Options	on	the	Tools	menu.

Note			When	an	object's	data	is	changed,	the	Updated	event	occurs.

Example

The	following	example	sets	the	UpdateOptions	property	for	an	unbound	object
frame	named	OLE1	to	update	manually,	and	then	uses	the	Action	property	to
force	an	update	of	the	OLE	object	in	the	control.

OLE1.UpdateOptions	=	acOLEUpdateManual

OLE1.Action	=	acOLEUpdate

Show	All

UseDefaultPrinter	Property
							

Returns	or	sets	a	Boolean	indicating	whether	the	specified	form	or	report	uses
the	default	printer	for	the	system;	True	if	the	form	or	report	uses	the	default
printer.	Read/write.

expression.UseDefaultPrinter

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

Remarks

This	property	is	read/write	in	Design	view	and	read-only	in	all	other	views.

When	this	property	is	True,	the	form	or	report	inherits	all	of	its	printer	settings
from	the	settings	of	the	default	printer.	Changing	the	printer	associated	with	a
form	or	report	by	assigning	its	Printer	property	to	a	Printer	object	sets	the
UseDefaultPrinter	property	to	False.

Example

The	following	example	checks	to	see	if	the	specified	form	is	using	the	default
printer;	if	not,	the	user	is	asked	if	it	should.

Function	CheckPrinter(frmTemp	As	Form)	As	Boolean

				If	frmTemp.UseDefaultPrinter	=	False	Then

								If	MsgBox("Should	this	form	use	"	_

																&	"the	default	printer?",	_

																vbYesNo)	=	vbYes	Then

												frmTemp.UseDefaultPrinter	=	True

								End	If

				End	If

End	Function

UseLongFileNames	Property
							

You	can	use	the	UseLongFileNames	property	to	specify	or	determine	whether
long	file	names	are	used	when	a	document	is	stored	as	a	data	access	page.
Read/write	Boolean.

expression.UseLongFileNames

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

Remarks

The	UseLongFileNames	property	uses	the	following	settings.

Setting Visual	Basic Description

Yes True	
(Default)	Use	long	file	names	whenever
possible	when	you	save	the	document	as	a	data
access	page.

No False	 Use	the	8.3	DOS	filename	format.

The	UseLongFileNames	property	is	available	only	by	using	Visual	Basic.

If	you	don't	use	long	file	names	and	your	data	access	page	has	supporting	files,
Microsoft	Access	automatically	organizes	those	files	in	a	separate	folder.
Otherwise,	use	the	OrganizeInFolder	property	to	determine	whether	supporting
files	are	organized	in	a	separate	folder.

Example

This	example	cancels	the	use	of	long	file	names	as	the	global	default	for	the
application.

Application.DefaultWebOptions.UseLongFileNames	=	False

Show	All

UserControl	Property
							

You	can	use	the	UserControl	property	to	determine	whether	the	current
Microsoft	Access	application	was	started	by	the	user	or	by	another	application
with	Automation,	formerly	called	OLE	Automation.	Read/write	Boolean.

expression.UserControl

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

Remarks

The	UserControl	property	uses	the	following	settings.

Setting Description
True	 The	current	application	was	started	by	the	user.

False	 The	current	application	was	started	by	another	application	with
Automation.

You	can	determine	the	UserControl	property	setting	only	by	using	Visual	Basic.

This	property	is	read-only	in	all	views	when	user	starts	the	Access	application.	If
Microsoft	Access	is	started	by	OLE	Automation,	the	UserControl	property	can
be	set	in	Visual	Basic.

When	an	application	is	launched	by	the	user,	the	Visible	and	UserControl
properties	of	the	Application	object	are	both	set	to	True.	When	the
UserControl	property	is	set	to	True,	it	isn't	possible	to	set	the	Visible	property
of	the	object	to	False.

When	an	Application	object	is	created	by	using	Automation,	the	Visible	and
UserControl	properties	of	the	object	are	both	set	to	False.

Example

The	following	example	displays	a	message	indicating	whether	Access	was
started	by	the	user.

MsgBox	"The	user	started	Access:		"	&	Application.UserControl

Show	All

ValidationRule	Property
							

You	can	use	the	ValidationRule	property	to	specify	requirements	for	data
entered	into	a	record,	field,	or	control.	When	data	is	entered	that	violates	the
ValidationRule	setting,	you	can	use	the	ValidationText	property	to	specify	the
message	to	be	displayed	to	the	user.

Note			The	ValidationRule	and	ValidationText	properties	don't	apply	to	check
box,	option	button,	or	toggle	button	controls	when	they	are	in	an	option	group.
They	apply	only	to	the	option	group	itself.

Remarks

Enter	an	expression	for	the	ValidationRule	property	setting	and	text	for	the
ValidationText	property	setting.	The	maximum	length	for	the	ValidationRule
property	setting	is	2048	characters.	The	maximum	length	for	the	ValidationText
property	setting	is	255	characters.

For	controls,	you	can	set	the	ValidationRule	property	to	any	valid	expression.
For	field	and	record	validation	rules,	the	expression	can't	contain	user-defined
functions,	domain	aggregate	or	aggregate	functions,	the	Eval	function,	or
CurrentUser	method,	or	references	to	forms,	queries,	or	tables.	In	addition,
field	validation	rules	can't	contain	references	to	other	fields.	For	records,
expressions	can	include	references	to	fields	in	that	table.

You	can	set	the	ValidationRule	and	ValidationText	properties	by	using:

The	Field	Properties	section	of	table	Design	view	(for	a	field	validation
rule).
The	property	sheet	for	a	table	by	clicking	Properties	on	the	View	menu	in
table	Design	view	(for	a	record	validation	rule).
The	property	sheet	for	a	control	on	a	form.
A	macro	or	Visual	Basic.	In	Visual	Basic,	use	a	string	expression	to	set
these	properties.

For	table	fields	and	records,	you	can	also	set	these	properties	in	Visual	Basic	by
using	the	DAO	ValidationRule	property.

Microsoft	Access	automatically	validates	values	based	on	a	field's	data	type;	for
example,	Microsoft	Access	doesn't	allow	text	in	a	numeric	field.	You	can	set
rules	that	are	more	specific	by	using	the	ValidationRule	property.

If	you	set	the	ValidationRule	property	but	not	the	ValidationText	property,
Microsoft	Access	displays	a	standard	error	message	when	the	validation	rule	is
violated.	If	you	set	the	ValidationText	property,	the	text	you	enter	is	displayed
as	the	error	message.

For	example,	when	a	record	is	added	for	a	new	employee,	you	can	enter	a
ValidationRule	property	requiring	that	the	value	in	the	employee's	StartDate

field	fall	between	the	company's	founding	date	and	the	current	date.	If	the	date
entered	isn't	in	this	range,	you	can	display	the	ValidationText	property	message:
"Start	date	is	incorrect."

If	you	create	a	control	by	dragging	a	field	from	the	field	list,	the	field's	validation
rule	remains	in	effect,	although	it	isn't	displayed	in	the	control's	ValidationRule
property	box	in	the	property	sheet.	This	is	because	a	field's	validation	rule	is
inherited	by	a	control	bound	to	that	field.

Control,	field,	and	record	validation	rules	are	applied	as	follows:

Validation	rules	you	set	for	fields	and	controls	are	applied	when	you	edit
the	data	and	the	focus	leaves	the	field	or	control.
Validation	rules	for	records	are	applied	when	you	move	to	another	record.
If	you	create	validation	rules	for	both	a	field	and	a	control	bound	to	the
field,	both	validation	rules	are	applied	when	you	edit	data	and	the	focus
leaves	the	control.

The	following	table	contains	expression	examples	for	the	ValidationRule	and
ValidationText	properties.

ValidationRule	property ValidationText	property
<>	0 Entry	must	be	a	nonzero	value.

>	1000	Or	Is	Null Entry	must	be	blank	or	greater
than	1000.

Like	"A????" Entry	must	be	5	characters	and
begin	with	the	letter	"A".

>=	#1/1/96#	And	<#1/1/97# Entry	must	be	a	date	in	1996.

DLookup("CustomerID",	"Customers",
"CustomerID	=
Forms!Customers!CustomerID")	Is	Null

Entry	must	be	a	unique
CustomerID	(domain	aggregate
functions	are	allowed	only	for
form-level	validation).

If	you	create	a	validation	rule	for	a	field,	Microsoft	Access	doesn't	normally
allow	a	Null	value	to	be	stored	in	the	field.	If	you	want	to	allow	a	Null	value,
add	"Is	Null"	to	the	validation	rule,	as	in	"<>	8	Or	Is	Null"	and	make	sure	the
Required	property	is	set	to	No.

You	can't	set	field	or	record	validation	rules	for	tables	created	outside	Microsoft
Access	(for	example,	dBASE,	Paradox,	or	SQL	Server).	For	these	kinds	of
tables,	you	can	create	validation	rules	for	controls	only.

Example

The	following	example	creates	a	validation	rule	for	a	field	that	allows	only
values	over	65	to	be	entered.	If	a	number	less	than	65	is	entered,	a	message	is
displayed.	The	properties	are	set	by	using	the	SetFieldValidation	function.

Dim	strTblName	As	String,	strFldName	As	String

Dim	strValidRule	As	String

Dim	strValidText	As	String,	intX	As	Integer

strTblName	=	"Customers"

strFldName	=	"Age"

strValidRule	=	">=	65"

strValidText	=	"Enter	a	number	greater	than	or	equal	to	65."

intX	=	SetFieldValidation(strTblName,	strFldName,	_

				strValidRule,	strValidText)

Function	SetFieldValidation(strTblName	As	String,	_

				strFldName	As	String,	strValidRule	As	String,	_

				strValidText	As	String)	As	Integer

				Dim	dbs	As	Database,	tdf	As	TableDef,	fld	As	Field

				Set	dbs	=	CurrentDb

				Set	tdf	=	dbs.TableDefs(strTblName)

				Set	fld	=	tdf.Fields(strFldName)

				fld.ValidationRule	=	strValidRule

				fld.ValidationText	=	strValidText

End	Function

The	next	example	uses	the	SetTableValidation	function	to	set	record-level
validation	to	ensure	that	the	value	in	the	EndDate	field	comes	after	the	value	in
the	StartDate	field.

Dim	strTblName	As	String,	strValidRule	As	String

Dim	strValidText	As	String

Dim	intX	As	Integer

strTblName	=	"Employees"

strValidRule	=	"EndDate	>	StartDate"

strValidText	=	"Enter	an	EndDate	that	is	later	than	the	StartDate."

intX	=	SetTableValidation(strTblName,	strValidRule,	strValidText)

Function	SetTableValidation(strTblName	As	String,	_

				strValidRule	As	String,	strValidText	As	String)	_

				As	Integer

				Dim	dbs	As	Database,	tdf	As	TableDef

				Set	dbs	=	CurrentDb

				Set	tdf	=	dbs.TableDefs(strTblName)

				tdf.ValidationRule	=	strValidRule

				tdf.ValidationText	=	strValidText

End	Function

Show	All

ValidationText	Property
							

Use	the	ValidationText	property	to	specify	a	message	to	be	displayed	to	the	user
when	data	is	entered	that	violates	a	ValidationRule	setting	for	a	record,	field,	or
control.	Read/write	String.

expression.ValidationText

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

Remarks

The	ValidationRule	and	ValidationText	properties	don't	apply	to	check	box,
option	button,	or	toggle	button	controls	when	they	are	in	an	option	group.	They
apply	only	to	the	option	group	itself.

Enter	an	expression	for	the	ValidationRule	property	setting	and	text	for	the
ValidationText	property	setting.	The	maximum	length	for	the	ValidationRule
property	setting	is	2048	characters.	The	maximum	length	for	the	ValidationText
property	setting	is	255	characters.

For	controls,	you	can	set	the	ValidationRule	property	to	any	valid	expression.
For	field	and	record	validation	rules,	the	expression	can't	contain	user-defined
functions,	domain	aggregate	or	aggregate	functions,	the	Eval	function,	or
CurrentUser	method,	or	references	to	forms,	queries,	or	tables.	In	addition,
field	validation	rules	can't	contain	references	to	other	fields.	For	records,
expressions	can	include	references	to	fields	in	that	table.

You	can	set	the	ValidationRule	and	ValidationText	properties	by	using:

The	Field	Properties	section	of	table	Design	view	(for	a	field	validation
rule).

The	property	sheet	for	a	table	by	clicking	Properties	on	the	View	menu	in
table	Design	view	(for	a	record	validation	rule).

The	property	sheet	for	a	control	on	a	form.

A	macro	or	Visual	Basic.	In	Visual	Basic,	use	a	string	expression	to	set
these	properties.

For	table	fields	and	records,	you	can	also	set	these	properties	in	Visual	Basic	by
using	the	DAO	ValidationRule	property.

Microsoft	Access	automatically	validates	values	based	on	a	field's	data	type;	for
example,	Microsoft	Access	doesn't	allow	text	in	a	numeric	field.	You	can	set
rules	that	are	more	specific	by	using	the	ValidationRule	property.

If	you	set	the	ValidationRule	property	but	not	the	ValidationText	property,
Microsoft	Access	displays	a	standard	error	message	when	the	validation	rule	is
violated.	If	you	set	the	ValidationText	property,	the	text	you	enter	is	displayed
as	the	error	message.

For	example,	when	a	record	is	added	for	a	new	employee,	you	can	enter	a
ValidationRule	property	requiring	that	the	value	in	the	employee's	StartDate
field	fall	between	the	company's	founding	date	and	the	current	date.	If	the	date
entered	isn't	in	this	range,	you	can	display	the	ValidationText	property	message:
"Start	date	is	incorrect."

If	you	create	a	control	by	dragging	a	field	from	the	field	list,	the	field's	validation
rule	remains	in	effect,	although	it	isn't	displayed	in	the	control's	ValidationRule
property	box	in	the	property	sheet.	This	is	because	a	field's	validation	rule	is
inherited	by	a	control	bound	to	that	field.

Control,	field,	and	record	validation	rules	are	applied	as	follows:

Validation	rules	you	set	for	fields	and	controls	are	applied	when	you	edit
the	data	and	the	focus	leaves	the	field	or	control.

Validation	rules	for	records	are	applied	when	you	move	to	another	record.

If	you	create	validation	rules	for	both	a	field	and	a	control	bound	to	the
field,	both	validation	rules	are	applied	when	you	edit	data	and	the	focus
leaves	the	control.

The	following	table	contains	expression	examples	for	the	ValidationRule	and
ValidationText	properties.

ValidationRule	property ValidationText	property
<>	0 Entry	must	be	a	nonzero	value.

>	1000	Or	Is	Null Entry	must	be	blank	or	greater
than	1000.

Like	"A????" Entry	must	be	5	characters	and
begin	with	the	letter	"A".

>=	#1/1/96#	And	<#1/1/97# Entry	must	be	a	date	in	1996.

DLookup("CustomerID",	"Customers",
Entry	must	be	a	unique

"CustomerID	=
Forms!Customers!CustomerID")	Is	Null

CustomerID	(domain	aggregate
functions	are	allowed	only	for
form-level	validation).

If	you	create	a	validation	rule	for	a	field,	Microsoft	Access	doesn't	normally
allow	a	Null	value	to	be	stored	in	the	field.	If	you	want	to	allow	a	Null	value,
add	"Is	Null"	to	the	validation	rule,	as	in	"<>	8	Or	Is	Null"	and	make	sure	the
Required	property	is	set	to	No.

You	can't	set	field	or	record	validation	rules	for	tables	created	outside	Microsoft
Access	(for	example,	dBASE,	Paradox,	or	SQL	Server).	For	these	kinds	of
tables,	you	can	create	validation	rules	for	controls	only.

Example

The	following	example	creates	a	validation	rule	for	a	field	that	allows	only
values	over	65	to	be	entered.	If	a	number	less	than	65	is	entered,	a	message	is
displayed.	The	properties	are	set	by	using	the	SetFieldValidation	function.

Dim	strTblName	As	String,	strFldName	As	String

Dim	strValidRule	As	String

Dim	strValidText	As	String,	intX	As	Integer

strTblName	=	"Customers"

strFldName	=	"Age"

strValidRule	=	">=	65"

strValidText	=	"Enter	a	number	greater	than	or	equal	to	65."

intX	=	SetFieldValidation(strTblName,	strFldName,	_

				strValidRule,	strValidText)

Function	SetFieldValidation(strTblName	As	String,	_

				strFldName	As	String,	strValidRule	As	String,	_

				strValidText	As	String)	As	Integer

				Dim	dbs	As	Database,	tdf	As	TableDef,	fld	As	Field

				Set	dbs	=	CurrentDb

				Set	tdf	=	dbs.TableDefs(strTblName)

				Set	fld	=	tdf.Fields(strFldName)

				fld.ValidationRule	=	strValidRule

				fld.ValidationText	=	strValidText

End	Function

The	next	example	uses	the	SetTableValidation	function	to	set	record-level
validation	to	ensure	that	the	value	in	the	EndDate	field	comes	after	the	value	in
the	StartDate	field.

Dim	strTblName	As	String,	strValidRule	As	String

Dim	strValidText	As	String

Dim	intX	As	Integer

strTblName	=	"Employees"

strValidRule	=	"EndDate	>	StartDate"

strValidText	=	"Enter	an	EndDate	that	is	later	than	the	StartDate."

intX	=	SetTableValidation(strTblName,	strValidRule,	strValidText)

Function	SetTableValidation(strTblName	As	String,	_

				strValidRule	As	String,	strValidText	As	String)	_

				As	Integer

				Dim	dbs	As	Database,	tdf	As	TableDef

				Set	dbs	=	CurrentDb

				Set	tdf	=	dbs.TableDefs(strTblName)

				tdf.ValidationRule	=	strValidRule

				tdf.ValidationText	=	strValidText

End	Function

Show	All

Value	Property
							

You	can	use	the	Value	property	to	determine	or	specify	if	a	control	is	selected,
the	selected	value	or	option	within	the	control,	the	text	contained	in	a	text	box
control,	or	the	value	of	a	custom	property.

Check	box,	option	button,	and	toggle	button	controls.	Determines	or
specifies	whether	or	not	the	control	is	selected.

Combo	box,	list	box,	and	option	group	controls.	Determines	or	specifies
which	value	or	option	in	the	control	is	selected.

Text	box	controls.	Determines	or	specifies	the	text	in	the	text	box.

Tab	control.	Determines	or	specifies	the	selected	Page	object.

Built-in	properties.	Determines	or	specifies	the	value	of	a	built-in	property
of	an	AccessObject	object.

Read/write	Variant.

expression.Value

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

Remarks

The	Value	property	uses	the	following	setting	depending	on	the	specified
control.

Control Setting Description Visual	Basic

Check	box
True

The	check	box	is	selected.

(Default)	The	check	box	is
True	

False cleared. False

Combo	box

[The	text	in	the
text	box
portion	of	the
control]

This	may	or	may	not	be	the
same	as	the	setting	for	the
Text	property	of	the	control.
The	current	setting	for	the
Text	property	is	what	is
displayed	in	the	text	box
portion	of	the	combo	box;	the
Value	property	is	set	to	the
Text	property	setting	only
after	this	text	is	saved.

	

List	box [The	list	box
item	value]

The	value	in	the	bound
column	for	the	item	selected
in	the	list.

	

Option	button
True

False

The	option	button	is	selected.

(Default)	The	option	button
isn't	selected.

True

False

Option	group

[The
OptionValue
property
setting]

The	OptionValue	property
setting	for	the	selected
control	in	the	group.

	

Text	box
[The	value	of
the	control's
Text	property]

The	Text	property	returns	the
formatted	string.	The	Text
property	may	be	different
than	the	Value	property	for	a
text	box	control.	The	Text
property	is	the	current
contents	of	the	control.	The
Value	property	is	the	saved
value	of	the	text	box	control.
The	Text	property	is	always
current	while	the	control	has
the	focus.

	

The	toggle	button	is	pressed

Toggle	button True

False

in.

The	toggle	button	isn't
pressed	in.

True

False

Tab	control

[An	Integer
value
representing
the	index
number	of	the
currently
selected	Page
object]

The	Value	property	of	a	tab
control	contains	the	index
number	of	the	current	Page
object.	There	is	one	Page
object	for	each	tab	in	a	tab
control.	The	first	Page	object
always	has	an	index	number
of	0,	the	second	has	an	index
number	of	1,	and	so	on.

	

Bound	object
frame	or	chart
control

	

The	Value	property	for	a
bound	object	frame	or	a
bound	chart	control	is	set	to
the	value	of	the	field	that	the
control	is	bound	to.	Since
these	fields	normally	contain
OLE	objects	or	chart	objects,
which	are	stored	as	binary
data,	this	value	is	usually
meaningless.

	

ActiveX
control 	

Some	ActiveX	controls
support	the	Value	property.
For	example,	the	Value
property	setting	for	a
Calendar	control	is	the
currently	selected	date	in	the
control.	For	more
information,	see	the
documentation	for	each
ActiveX	control.

	

A	Long	or

The	Value	property	of	a
custom	property	contains	the
value	of	the	specified	custom
property	of	an	AccessObject

Custom
properties

string
expression
representing
the	value	of	the
custom
property.

object.	For	more	information
about	custom	properties,	see
the	topics	about	the
AccessObject	object,
AccessObjectProperty
object,	and	the
AccessObjectProperties
collection.

	

You	can	set	this	property	by	using	a	macro	or	Visual	Basic.

The	Value	property	returns	or	sets	a	control's	default	property,	which	is	the
property	that	is	assumed	when	you	don't	explicitly	specify	a	property	name.
In	the	following	example,	because	the	default	value	of	the	text	box	is	the
value	of	the	Text	property,	you	can	refer	to	its	Text	property	setting	without
explicitly	specifying	the	name	of	the	property.

Forms!frmCustomers!txtLastName	=	"Smith"

This	means	that	the	following	two	statements	are	equivalent.

Forms!frmCustomers!optCreditApproved.Value	=	True

Forms!frmCustomers!optCreditApproved	=	True

Note			The	Value	property	is	not	the	same	as	the	DefaultValue	property,	which
specifies	the	value	that	a	property	is	assigned	when	a	new	record	is	created.

	

The	Value	property	can	also	return	or	set	a	custom	properties'	default
property,	which	is	the	property	that	is	assumed	when	you	don't	explicitly
specify	a	property	name.This	means	that	the	following	two	statements	are
equivalent.

CurrentProject.AllForms!optCreditApproved.Value	=	True

CurrentProject.AllForms!optCreditApproved	=	True

Example

The	following	example	shows	how	you	can	call	one	of	two	procedures,
depending	whether	the	Credit	check	box	on	the	Customers	form	is	selected	or
cleared.

Sub	PaymentType()

				If	Forms!Customers!Credit.Value	=	False	Then

								ProcessCash

				ElseIf	Forms!Customers!Credit.Value	=	True	Then

								ProcessCredit

				End	If

End	Sub

Show	All

VBE	Property
							

You	can	use	the	VBE	property	to	return	a	reference	to	the	current	VBE	object
and	its	related	properties.	The	VBE	property	of	the	Application	object
represents	the	Microsoft	Visual	Basic	for	Applications	editor.	Read-only	VBE
object.

expression.VBE

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

Remarks

The	VBE	property	is	available	only	by	using	Visual	Basic.

Once	you	establish	a	reference	to	the	VBE	object,	you	can	access	all	the
properties	and	methods	of	the	object.	You	can	set	a	reference	to	the	VBE	object
by	clicking	References	on	the	Tools	menu	while	in	module	Design	view.	Then
set	a	reference	to	the	Microsoft	Visual	Basic	for	Applications	Extensibility	5.3
Object	Library	in	the	References	dialog	box	by	selecting	the	appropriate	check
box.	Microsoft	Access	can	set	this	reference	for	you	if	you	use	a	Microsoft
Visual	Basic	for	Applications	Extensibility	5.3	Object	Library	constant	to	set	a
VBE	object's	property	or	as	an	argument	to	a	VBE	object's	method.

Example

This	example	displays	the	number	of	references	available	for	the	active	project.

MsgBox	"Number	of	References	=	"	&	VBE.ActiveVBProject	_

				.References.Count

Show	All

Verb	Property
							

You	can	use	the	Verb	property	to	specify	the	operation	to	perform	when	an	OLE
object	is	activated,	which	is	permitted	when	the	control's	Action	property	is	set
to	acOLEActivate.	Read/write	Long.

expression.Verb

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

Remarks

You	can	set	the	Verb	property	by	specifying	an	Integer	data	type	value
indicating	the	position	of	a	verb	in	the	list	of	verbs	returned	by	the	ObjectVerbs
property.	You	can	set	the	Verb	property	to	1	to	specify	the	first	verb	in	the	list,
you	can	set	it	to	2	to	specify	the	second	verb	in	the	list,	and	so	on.

You	can	set	the	Verb	property	by	using	the	control's	property	sheet,	a	macro,	or
Visual	Basic.	You	can	set	the	default	for	this	property	by	using	the	default
control	style	or	the	DefaultControl	method	in	Visual	Basic.

If	you	don't	use	the	ObjectVerbs	property	to	identify	a	specific	verb,	you	can	set
the	Verb	property	to	one	of	the	following	values	to	indicate	the	operation	to
perform.	These	values	specify	the	standard	verbs	supported	by	all	objects.

Constant Description
acOLEVerbPrimary	 Performs	the	default	operation	for	the	object.
acOLEVerbShow	 Activates	the	object	for	editing.
acOLEVerbOpen	 Opens	the	object	in	a	separate	application	window.

acOLEVerbHide	 For	embedded	objects,	hides	the	application	that
was	used	to	create	the	object.

With	some	applications'	objects,	you	can	use	these	additional	values.
Constant Description

acOLEVerbInPlaceUIActivate	

Activates	the	object	for	editing	within	the
control.	The	menus	and	toolbars	of	the
OLE	server	become	available	in	the	OLE
container.

acOLEVerbInPlaceActivate	
Activates	the	object	within	the	control.
The	menus	and	toolbars	of	the	OLE	server
aren't	available	in	the	OLE	container.

Each	object	supports	its	own	set	of	verbs.	For	example,	many	objects	support	the
verbs	Edit	and	Play.	You	can	use	the	ObjectVerbs	and	ObjectVerbsCount
properties	to	find	out	which	verbs	are	supported	by	an	object.

Microsoft	Access	automatically	uses	an	object's	default	verb	if	the	user	double-

clicks	an	object	for	which	the	AutoActivate	property	is	set	to	Double-Click.

Example

The	following	example	activates	the	control	"OLEUnbound0"	in	the	form
"frmOperations"	by	opening	up	the	OLE	object	in	its	own	application	window
for	editing.	In	this	case,	"OLEUnbound0"	contains	a	new	bitmap	image,	which	is
linked	to	the	Microsoft	Paint	program.

With	Forms.Item("frmOperations").Controls.Item("OLEUnbound0")

				.Action	=	acOLEActivate

				.Verb	=	acOLEVerbOpen

End	With

Version	Property
							

Returns	a	String	indicating	the	version	number	of	the	currently	installed	copy	of
Microsoft	Access.	Read-only.

expression.Version

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

Example

The	following	example	displays	the	version	and	build	number	of	the	currently-
installed	copy	of	Microsoft	Access.

MsgBox	"You	are	currently	running	Microsoft	Access,	"	_

				&	"	version	"	&	Application.Version	&	",	build	"	_

				&	Application.Build	&	"."

Vertical	Property
							

You	can	use	the	Vertical	property	to	set	a	form	control	for	vertical	display	and
editing	or	set	a	report	control	for	vertical	display	and	printing.	Read/write
Boolean.

expression.Vertical

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

Setting Visual	Basic Description
Yes True	 Displays,	edits,	and	prints	vertical	text.
No False	 Does	not	display,	edit,	or	print	vertical	text.	(default)

Remarks

You	can	set	the	Vertical	property	by	using	the	property	sheet,	a	macro,	or	Visual
Basic.

You	can	specify	how	vertical	text	will	be	displayed,	edited,	or	printed	in	the
control	by	setting	the	Vertical	property.	If	set	to	Yes,	the	starting	point	for
inputting	text	is	the	upper	right	corner	of	the	control	(the	ending	point	is	the
lower	left	corner	of	the	control).	If	using	full	pitch	characters,	the	display	and
print	directions	are	the	same	as	the	control	for	horizontal	text.	If	using	half	pitch
characters,	it	shifts	90	degrees	to	the	right.	The	cursor	is	also	rotated	90	degrees
to	the	right	in	a	vertical	text	control.

Note			Text	selection	using	key	combinations	is	different	for	vertical	text	control
and	horizontal	text	control.	Key	combinations	and	their	effect	on	range	selection
are	described	below.

Key	combination Selected	range

Shift+Up Vertical:	One	character	before	the	cursor.
Horizontal:	One	line	before	the	cursor.

Shift+Down Vertical:	One	character	after	the	cursor.
Horizontal:	One	line	after	the	cursor.

Shift+Right
Vertical:	One	line	after	the	cursor.
Horizontal:	One	character	before	the
cursor.

Shift+Left Vertical:	One	line	before	the	cursor.
Horizontal:	One	character	after	the	cursor.

Example

The	following	example	prints	a	message	in	the	Immediate	window	indicating
whether	the	control	"text13"	in	the	"Product	Summary"	report	displays,	edits,	or
prints	vertical	text.

Debug.Print	"Vertical	=	"	&	Reports.Item("Product	Summary").	_		

				Controls.Item("text13").Vertical

VerticalDatasheetGridlineStyle
Property
							

Returns	or	sets	a	Byte	indicating	the	line	style	to	use	for	vertical	gridlines	on	the
specified	datasheet.	Read/write.

expression.VerticalDatasheetGridlineStyle

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

Remarks

Valid	values	are	between	zero	and	seven.	Values	greater	than	seven	are	ignored;
negative	values	or	values	above	255	cause	an	error.

Value Description
0 Transparent	border
1 Solid
2 Dashes
3 Short	dashes
4 Dots
5 Sparse	dots
6 Dash-dot
7 Dash-dot-dot

This	property	is	not	supported	when	saving	a	form	as	a	data	access	page.

Example

This	example	sets	the	vertical	gridline	style	on	the	first	open	form	to	dashes.	The
form	must	be	set	to	Datasheet	View	in	order	for	you	to	see	the	change.

Forms(0).VerticalDatasheetGridlineStyle	=	2

ViewChange	Property
							

Returns	or	sets	a	String	indicating	which	macro,	event	procedure,	or	user-
defined	function	runs	when	the	ViewChange	event	occurs.	Read/write.

expression.ViewChange

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

Remarks

Valid	values	for	this	property	are	"macroname"	where	macroname	is	the	name	of
macro,	"[Event	Procedure]"	which	indicates	the	event	procedure	associated	with
the	ViewChange	event	for	the	specified	object,	or	"=functionname()"	where
functionname	is	the	name	of	a	user-defined	function.	For	a	more	detailed
discussion	of	event	properties,	see	"Event	Properties."

Example

The	following	example	specifies	that	when	the	ViewChange	event	occurs	on	the
first	form	of	the	current	project,	the	associated	event	procedure	should	run.

Forms(0).ViewChange	=	"[Event	Procedure]"

Show	All

ViewsAllowed	Property
							

You	can	use	the	ViewsAllowed	property	to	specify	whether	users	can	switch
between	Datasheet	view	and	Form	view	by	clicking	the	Form	View	or
Datasheet	View	command	on	the	View	menu	or	by	clicking	the	arrow	next	to
the	View	button	and	clicking	Form	View	or	Datasheet	View.	Read/write	Byte.

expression.ViewsAllowed

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

Remarks

The	ViewsAllowed	property	uses	the	following	settings.

Setting Visual	Basic Description

Both 0 (Default)	Users	can	switch	between
Form	view	and	Datasheet	view.

Form 1 Users	can't	switch	to	Datasheet	view
from	Form	view.

Datasheet 2 Users	can't	switch	to	Form	view	from
Datasheet	view.

Design	view	is	always	available	(unless	permissions	are	set	otherwise).

You	can	set	these	properties	by	using	the	form's	property	sheet,	a	macro,	or
Visual	Basic.

The	views	displayed	in	the	View	button	list	and	on	the	View	menu	depend	on	the
setting	of	the	ViewsAllowed	property.	For	example,	if	the	ViewsAllowed
property	is	set	to	Datasheet,	Form	View	is	disabled	in	the	View	button	list	and
on	the	View	menu.

The	combination	of	these	properties	creates	the	following	conditions.

DefaultView ViewsAllowed Description
Single,	Continuous
Forms,	or	Datasheet Both

Users	can	switch	between	Form	view
and	Datasheet	view.

Single	or
Continuous	Forms Form Users	can't	switch	from	Form	view	to

Datasheet	view.
Single	or
Continuous	Forms Datasheet Users	can	switch	from	Form	view	to

Datasheet	view	but	not	back	again.

Datasheet Form Users	can	switch	from	Datasheet	view
to	Form	view	but	not	back	again.

Datasheet Datasheet Users	can't	switch	from	Datasheet
view	to	Form	view.

Example

The	following	example	prints	a	message	in	the	Immediate	window	indicating	the
state	of	how	users	can	switch	between	Datasheet	view	and	Form	view	for	the
"Switchboard"	form.

Debug.Print	"ViewsAllowed	=	"	&	Forms.Item("Switchboard").ViewsAllowed

Show	All

Visible	Property
							

When	used	with	the	Application	object,	returns	or	sets	whether	a	Microsoft
Access	application	is	minimized.	You	can	also	use	the	Visible	property	to	show
or	hide	a	form,	report,	form	or	report	section,	data	access	page,	or	control.	This
may	be	useful	if	you	want	to	maintain	access	to	information	on	a	form	without	it
being	visible.	For	example,	you	could	use	the	value	of	a	control	on	a	hidden
form	as	the	criteria	for	a	query.	Read/write	Boolean;	True	if	visible/minimized,
False	if	not	visible/not	minimized.

expression.Visible

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

Remarks

For	the	Application	object:

You	can	set	the	Visible	property	of	the	Application	object	only	by	using
Visual	Basic.	You	can	set	the	default	for	this	property	by	using	a	control's
default	control	style	or	the	DefaultControl	method	in	Visual	Basic.

When	an	application	is	launched	by	the	user,	the	Visible	and	UserControl
properties	of	the	Application	object	are	both	set	to	True.	When	the
UserControl	property	is	set	to	True,	it	isn't	possible	to	set	the	Visible
property	of	the	object	to	False.

When	an	Application	object	is	created	by	using	Automation	(formerly
called	OLE	Automation),	the	Visible	and	UserControl	properties	of	the
object	are	both	set	to	False.

Note			When	the	Visible	property	of	the	Application	object	is	set	to	False,	the
application	is	minimized	but	isn't	hidden	from	the	user.

For	all	other	objects:

You	can	set	this	property	by	using	the	object's	property	sheet	(for	sections
and	all	controls	except	page	breaks),	a	macro,	or	Visual	Basic.

For	forms,	reports,	and	data	access	pages,	you	must	set	this	property	by
using	a	macro	or	Visual	Basic.

For	controls,	you	can	set	the	default	for	this	property	by	using	the	default
control	style	or	the	DefaultControl	method	in	Visual	Basic.

The	Visible	property	has	no	effect	on	a	column	in	Datasheet	view.	To
specify	whether	a	column	is	visible	in	Datasheet	view,	use	the
ColumnHidden	property.

To	hide	an	object	when	printing,	use	the	DisplayWhen	property.

You	can	use	the	Visible	property	to	hide	a	control	on	a	form	or	report	by
including	the	property	in	a	macro	or	event	procedure	that	runs	when	the

Current	event	occurs.	For	example,	you	can	show	or	hide	a	congratulatory
message	next	to	a	salesperson's	monthly	sales	total	in	a	sales	report,
depending	on	the	sales	total.

Show	All

WebOptions	Property
							

You	can	use	the	WebOptions	property	to	reference	a	WebOptions	object	and	its
related	properties.

expression.WebOptions

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

Remarks

The	WebOptions	property	is	available	by	using	Visual	Basic	and	is	read-only.

Use	the	WebOptions	object's	properties	to	set	web	options	for	the	active	data
access	page.

Example

The	following	example	displays	a	message	indicating	whether	long	filenames
will	be	used	for	the	data	access	page	named	"Switchboard".

MsgBox	DataAccessPages.Item("Switchboard").WebOptions.UseLongFileNames

Show	All

WhatsThisButton	Property
							

You	can	use	the	WhatsThisButton	property	to	specify	whether	a	What's	This
button	is	added	to	a	form's	title	bar.	Read/write	Boolean.

expression.WhatsThisButton

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

Remarks

The	WhatsThisButton	property	uses	the	following	values:

Setting Visual	Basic Description
Yes True	 A	What's	This	button	appears	on	the	title	bar.

No False	 (Default)	A	What's	This	button	doesn't	appear
on	the	title	bar.

You	can	set	the	WhatsThisButton	property	by	using	the	form's	property	sheet,	a
macro,	or	Visual	Basic.

This	property	can	be	set	only	in	form	Design	view.

You	can't	display	the	What's	This	button	on	the	title	bar	of	a	form	unless	the
MinMaxButtons	property	is	set	to	None.

Clicking	the	What's	This	button	on	the	title	bar	of	a	form	causes	the	question-
mark	mouse	pointer	to	appear.	With	the	question-mark	pointer,	you	can	click	any
control	to	access	its	custom	Help	topic	specified	by	the	control's	HelpContextID
property.	If	the	control	doesn't	have	a	custom	Help	topic,	the	form's	custom	Help
topic	is	displayed.	If	neither	the	form	or	the	control	has	a	custom	Help	topic,
Microsoft	Access	Help	is	displayed.

Example

The	following	example	places	a	What's	This	button	on	the	title	bar	of	the
"Switchboard"	form.	The	form	must	be	in	form	Design	view,	or	else	a	run-time
error	will	occur.

Forms.Item("Switchboard").MinMaxButtons	=	0	

Forms.Item("Switchboard").WhatsThisButton	=	True

Show	All

Width	Property
							

You	can	use	the	Height	and	Width	properties	to	size	an	object	to	specific
dimensions.	Read/write	Integer.

expression.Width

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

Remarks

The	Width	property	applies	only	to	forms	and	reports,	not	to	form	sections	and
report	sections.

Enter	a	number	for	the	desired	width	in	the	current	unit	of	measurement.	To	use
a	unit	of	measurement	different	from	the	setting	in	the	Regional	Options	dialog
box	in	Windows	Control	Panel,	specify	the	unit,	such	as	cm	or	in	(for	example,	5
cm	or	3	in).	The	setting	for	the	Width	property	must	be	a	value	from	0	to	22
inches	(55.87	cm).

You	can	set	this	property	by	using	the	object's	property	sheet,	a	macro,	or	Visual
Basic.

For	controls,	you	can	set	the	default	for	this	property	by	using	the	default	control
style	or	the	DefaultControl	method	in	Visual	Basic.

In	Visual	Basic,	use	a	numeric	expression	to	set	the	value	of	this	property.	Values
are	expressed	in	twips.

For	report	controls,	you	can	set	the	Width	property	when	you	print	or	preview	a
report	only	by	using	a	macro	or	an	event	procedure	specified	in	a	section's
OnFormat	event	property	setting.

You	can't	set	this	property	for	an	object	once	the	print	process	has	started.

Microsoft	Access	automatically	sets	the	Width	property	when	you	create	or	size
a	control	or	when	you	size	a	window	in	form	Design	View	or	report	Design
view.

The	width	of	forms	and	reports	is	measured	from	the	inside	of	their	borders.	The
width	of	controls	is	measured	from	the	center	of	their	borders	so	controls	with
different	border	widths	align	correctly.	The	margins	for	forms	and	reports	are	set
in	the	Page	Setup	dialog	box,	available	by	clicking	Page	Setup	on	the	File
menu.

Note			To	set	the	left	and	top	location	of	an	object,	use	the	Left	and	Top
properties.

Example

The	following	code	resizes	a	command	button	to	a	1-inch	by	1-inch	square
button	(the	default	unit	of	measurement	in	Visual	Basic	is	twips;	1440	twips
equals	one	inch):

Me!cmdSizeButton.Height	=	1440				'	1440	twips	=	1	inch.

Me!cmdSizeButton.Width	=	1440

WillContinue	Property
							

Determines	if	the	current	section	will	continue	on	the	following	page.	Read/write
Boolean.

expression.WillContinue

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

Value Description
True	 The	current	section	continues	on	the	following	page.
False The	current	section	doesn't	continue	on	the	following	page.

Remarks

You	can	use	this	property	to	determine	whether	to	show	or	hide	certain	controls,
depending	on	the	value	of	the	property.	For	example,	you	may	have	a	hidden
label	in	a	page	header	containing	the	text	"Continued	on	next	page".	If	the	value
of	the	WillContinue	property	is	True,	you	can	make	the	hidden	label	visible.

You	can	get	or	set	the	value	of	the	WillContinue	property	by	using	a	macro	or
Visual	Basic.

Example

The	following	example	displays	a	message	box	indicating	whether	the	page
header	for	the	report	"Product	Summary"	will	continue	on	the	following	page.

MsgBox	Reports("Product	Summary").Section("PageHeaderSection").WillContinue

Show	All

WindowHeight	Property
							

Returns	or	sets	the	height	of	a	form,	report,	or	data	access	page	in	twips,
depending	on	the	object.	Read/write	Integer	for	the	Form	and	Report	objects;
read-only	Long	for	the	DataAccessPage	object.

expression.WindowHeight

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

Remarks

The	WindowHeight	property	is	measured	from	the	upper-left	corner	of	the
form,	report,	or	data	access	page	to	its	lower-left	corner.

This	property	setting	is	available	only	by	using	a	macro	or	Visual	Basic.

Example

The	following	example	displays	a	message	box	indicating	the	height	of	the
window	(in	twips)	for	the	"Switchboard"	form.

MsgBox	Forms.Item("Switchboard").WindowHeight

WindowLeft	Property
							

Returns	an	Integer	indicating	the	screen	position	in	twips	of	the	left	edge	of	a
form	or	report	relative	to	the	left	edge	of	the	Microsoft	Access	window.	Read-
only.

expression.WindowLeft

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

Remarks

Use	the	Move	method	to	change	the	position	of	a	form	or	report.

Example

The	following	example	returns	the	screen	position	of	the	top	and	left	edges	of
the	first	form	in	the	current	project.

With	Forms(0)

				MsgBox	"The	form	is	"	&	.WindowLeft	_

								&	"	twips	from	the	left	edge	of	the	Access	window	and	"	_

								&	.WindowTop	_

								&	"	twips	from	the	top	edge	of	the	Access	window."

End	With

WindowTop	Property
							

Returns	an	Integer	indicating	the	screen	position	in	twips	of	the	top	edge	of	a
form	or	report	relative	to	the	top	of	the	Microsoft	Access	window.	Read-only.

expression.WindowTop

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

Remarks

Use	the	Move	method	to	change	the	position	of	a	form	or	report.

Example

The	following	example	returns	the	screen	position	of	the	top	and	left	edges	of
the	first	form	in	the	current	project.

With	Forms(0)

				MsgBox	"The	form	is	"	&	.WindowLeft	_

								&	"	twips	from	the	left	edge	of	the	Access	window	and	"	_

								&	.WindowTop	_

								&	"	twips	from	the	top	edge	of	the	Access	window."

End	With

Show	All

WindowWidth	Property
							

Returns	or	sets	the	width	of	a	form,	report,	or	data	access	page	in	twips,
depending	on	the	object.	Read/write	Integer	for	the	Form	and	Report	objects;
read-only	Long	for	the	DataAccessPage	object.

expression.WindowWidth

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

Remarks

The	WindowWidth	property	is	measured	from	the	upper	left	corner	of	the	form,
report,	or	data	access	page	to	its	upper-right	corner.

This	property	setting	is	available	only	by	using	a	macro	or	Visual	Basic.

Example

The	following	example	displays	a	message	box	indicating	the	width	of	the
window	(in	twips)	for	the	"Switchboard"	form.

MsgBox	Forms.Item("Switchboard").WindowWidth

Show	All

Activate	Event
							

The	Activate	event	occurs	when	a	form	or	report	receives	the	focus	and	becomes
the	active	window.

Remarks

Note			The	Activate	event	doesn't	occur	when	a	form	receives	focus	back	from	a
dialog	box,	popup,	or	another	form.

To	run	a	macro	or	event	procedure	when	these	events	occur,	set	the	OnActivate,
or	OnDeactivate	property	to	the	name	of	the	macro	or	to	[Event	Procedure].

You	can	make	a	form	or	report	active	by	opening	it,	clicking	it	or	a	control	on	it,
or	by	using	the	SetFocus	method	in	Visual	Basic	(for	forms	only).

The	Activate	event	can	occur	only	when	a	form	or	report	is	visible.

The	Activate	event	occurs	before	the	GotFocus	event;	the	Deactivate	event
occurs	after	the	LostFocus	event.

When	you	switch	between	two	open	forms,	the	Deactivate	event	occurs	for	the
form	being	switched	from,	and	the	Activate	event	occurs	for	the	form	being
switched	to.	If	the	forms	contain	no	visible,	enabled	controls,	the	LostFocus
event	occurs	for	the	first	form	before	the	Deactivate	event,	and	the	GotFocus
event	occurs	for	the	second	form	after	the	Activate	event.

When	you	first	open	a	form,	the	following	events	occur	in	this	order:

Open	 	Load	 	Resize	 	Activate	 	Current

When	you	close	a	form,	the	following	events	occur	in	this	order:

Unload	 	Deactivate	 	Close

Example

The	following	example	shows	how	to	display	a	custom	toolbar	named
CustomToolbar	when	a	form	receives	the	focus.

Private	Sub	Form_Activate()									

				DoCmd.ShowToolbar	"CustomToolbar",	acToolbarYes	

End	Sub

Show	All

AfterBeginTransaction	Event
							

Occurs	just	after	Microsoft	Access	signals	to	the	server	that	a	batch	transaction
is	beginning	with	a	batch	update.

Private	Sub	Form_AfterBeginTransaction(Connection	As
ADODB.Connection)

Connection			The	connection	on	which	the	batch	transaction	is	taking	place.

Remarks

This	event	applies	to	Access	project	forms	whose	BatchUpdates	properties	are
set	to	True.

This	event	is	used	for	any	processing	that	needs	to	happen	before	Access
commits	any	records	inside	a	batch	transaction.	Any	changes	to	the	data	made	at
this	point	are	made	inside	the	batch	transaction.

Example

The	following	example	demonstrates	the	syntax	for	a	subroutine	that	traps	the
AfterBeginTransaction	event.

Private	Sub	Form_AfterBeginTransaction(Connection	As	ADODB.Connection)

				MsgBox	"Access	has	signaled	to	"	&	Connection.Name	&	"	to	"	_

								&	"begin	a	batch	transaction	for	the	current	batch	of	updates,"	_

								&	"but	has	not	yet	committed	any	records	to	the	server."

End	Sub

Show	All

AfterCommitTransaction	Event
							

Occurs	just	after	Microsoft	Access	commits	changes	inside	a	batch	transaction	to
the	server.

Private	Sub	Form_AfterCommitTransaction(Connection	As
ADODB.Connection)

Connection			The	connection	on	which	the	batch	transaction	is	taking	place.

Remarks

This	event	applies	to	Access	project	forms	whose	BatchUpdates	properties	are
set	to	True.

This	event	occurs	only	if	the	batch	update	was	successful.	Any	changes	to	the
data	at	this	point	are	made	outside	the	batch	transaction.

Example

The	following	example	demonstrates	the	syntax	for	a	subroutine	that	traps	the
AfterCommitTransaction	event.

Private	Sub	Form_AfterCommitTransaction(Connection	As	ADODB.Connection)

				MsgBox	"Access	has	committed	all	pending	updates	to	"	_

								&	Connection.Name	&	".	The	batch	transaction	is	now	complete."

End	Sub

Show	All

AfterDelConfirm	Event
							

The	AfterDelConfirm	event	occurs	after	the	user	confirms	the	deletions	and	the
records	are	actually	deleted	or	when	the	deletions	are	canceled.

Remarks

To	run	a	macro	or	event	procedure	when	these	events	occur,	set	the
AfterDelConfirm	property	to	the	name	of	the	macro	or	to	[Event	Procedure].

After	a	record	is	deleted,	it's	stored	in	a	temporary	buffer.

The	AfterDelConfirm	event	occurs	after	a	record	or	records	are	actually	deleted
or	after	a	deletion	or	deletions	are	canceled.	If	the	BeforeDelConfirm	event	isn't
canceled,	the	AfterDelConfirm	event	occurs	after	the	Delete	Confirm	dialog
box	is	displayed.	The	AfterDelConfirm	event	occurs	even	if	the
BeforeDelConfirm	event	is	canceled.	The	AfterDelConfirm	event	procedure
returns	status	information	about	the	deletion.	For	example,	you	can	use	a	macro
or	event	procedure	associated	with	the	AfterDelConfirm	event	to	recalculate
totals	affected	by	the	deletion	of	records.

If	you	cancel	the	Delete	event,	the	AfterDelConfirm	event	does	not	occur	and
the	Delete	Confirm	dialog	box	isn't	displayed.

Note			The	AfterDelConfirm	event	does	not	occur	and	the	Delete	Confirm
dialog	box	isn't	displayed	if	you	clear	the	Record	Changes	check	box	under
Confirm	on	the	Edit/Find	tab	of	the	Options	dialog	box,	available	by	clicking
Options	on	the	Tools	menu.

By	running	a	macro	or	an	event	procedure	when	the	Delete	event	occurs,	you
can	prevent	a	record	from	being	deleted	or	allow	a	record	to	be	deleted	only
under	certain	conditions.	You	can	also	use	a	Delete	event	to	display	a	dialog	box
asking	whether	the	user	wants	to	delete	a	record	before	it's	deleted.

To	delete	a	record,	you	can	click	Delete	Record	on	the	Edit	menu.	This	deletes

the	current	record	(the	record	indicated	by	the	record	selector).	You	can	also
click	the	record	selector	or	click	Select	Record	on	the	Edit	menu	to	select	the
record,	and	then	press	the	DEL	key	to	delete	it.	If	you	click	Delete	Record,	the
record	selector	of	the	current	record,	or	Select	Record,	the	Exit	and	LostFocus
events	for	the	control	that	has	the	focus	occur.	If	you've	changed	any	data	in	the
record,	the	BeforeUpdate	and	AfterUpdate	events	for	the	record	occur	before	the
Exit	and	LostFocus	events.	If	you	click	the	record	selector	of	a	different	record,
the	Current	event	for	that	record	also	occurs.

After	you	delete	the	record,	the	focus	moves	to	the	next	record	following	the
deleted	record,	and	the	Current	event	for	that	record	occurs,	followed	by	the
Enter	and	GotFocus	events	for	the	first	control	in	that	record.

The	BeforeDelConfirm	event	then	occurs,	just	before	Microsoft	Access	displays
the	Delete	Confirm	dialog	box	asking	you	to	confirm	the	deletion.	After	you
respond	to	the	dialog	box	by	confirming	or	canceling	the	deletion,	the
AfterDelConfirm	event	occurs.

You	can	delete	one	or	more	records	at	a	time.	The	Delete	event	occurs	after	each
record	is	deleted.	This	enables	you	to	access	the	data	in	each	record	before	it's
actually	deleted,	and	selectively	confirm	or	cancel	each	deletion	in	the	Delete
macro	or	event	procedure.	When	you	delete	more	than	one	record,	the	Current
event	for	the	record	following	the	last	deleted	record	and	the	Enter	and	GotFocus
events	for	the	first	control	in	this	record	don't	occur	until	all	the	records	are
deleted.	In	other	words,	a	Delete	event	occurs	for	each	selected	record,	but	no
other	events	occur	until	all	the	selected	records	are	deleted.	The
AfterDelConfirm	event	also	does	not	occur	until	all	the	selected	records	are
deleted.

Example

The	following	example	shows	how	you	can	use	the	AfterDelConfirm	event
procedure	to	display	a	message	indicating	whether	the	deletion	progressed	in	the
usual	way	or	whether	it	was	canceled	in	Visual	Basic	or	by	the	user.

Private	Sub	Form_AfterDelConfirm(Status	As	Integer)						

				Select	Case	Status

								Case	acDeleteOK		

												MsgBox	"Deletion	occurred	normally."		

								Case	acDeleteCancel		

												MsgBox	"Programmer	canceled	the	deletion."		

								Case	acDeleteUserCancel		

												MsgBox	"User	canceled	the	deletion."					

				End	Select	

End	Sub

AfterFinalRender	Event
							

Occurs	after	all	elements	in	the	specified	PivotChart	view	have	been	rendered.

Private	Sub	Form_AfterFinalRender(ByVal	drawObject	As	Object)

drawObject			A	ChChartDraw	object.	Use	the	methods	and	properties	of	this
object	to	draw	objects	on	the	chart.

mk:@MSITStore:owcvba10.chm::/html/ocobjChChartDraw.htm

Example

The	following	example	demonstrates	the	syntax	for	a	subroutine	that	traps	the
AfterFinalRender	event.

Private	Sub	Form_AfterFinalRender(ByVal	drawObject	As	Object)

				MsgBox	"The	PivotChart	View	has	fully	rendered."

End	Sub

Show	All

AfterInsert	Event
							

The	AfterInsert	event	occurs	after	a	new	record	is	added.

Note			Setting	the	value	of	a	control	by	using	a	macro	or	Visual	Basic	doesn't
trigger	these	events.

Remarks

You	can	use	an	AfterInsert	event	procedure	or	macro	to	requery	a	recordset
whenever	a	new	record	is	added.

Example

This	example	shows	how	you	can	use	a	BeforeInsert	event	procedure	to	verify
that	the	user	wants	to	create	a	new	record,	and	an	AfterInsert	event	procedure	to
requery	the	record	source	for	the	Employees	form	after	a	record	has	been	added.

To	try	the	example,	add	the	following	event	procedure	to	a	form	named
Employees	that	is	based	on	a	table	or	query.	Switch	to	form	Datasheet	view	and
try	to	insert	a	record.

Private	Sub	Form_BeforeInsert(Cancel	As	Integer)

				If	MsgBox("Insert	new	record	here?",	_

								vbOKCancel)	=	vbCancel	Then

								Cancel	=	True

				End	If

End	Sub

Private	Sub	Form_AfterInsert()

				Forms!Employees.Requery

End	Sub

AfterLayout	Event
							

Occurs	after	all	charts	in	the	specfied	PivotChart	view	have	been	laid	out,	but
before	they	have	been	rendered.

Private	Sub	Form_AfterLayout(ByVal	drawObject	As	Object)

drawObject			A	ChChartDraw	object.	Use	the	methods	and	properties	of	this
object	to	draw	objects	on	the	chart.

mk:@MSITStore:owcvba10.chm::/html/ocobjChChartDraw.htm

Remarks

During	this	event,	you	can	reposition	the	ChTitle,	ChLegend,	ChChart,	and
ChAxis	objects	of	each	PivotChart	view	by	changing	their	Left	and	Top
properties.	You	can	reposition	the	ChPlotArea	object	by	changing	its	Left,	Top,
Right,	and	Bottom	properties.	These	properties	cannot	be	changed	outside	of
this	event.

Example

The	following	example	demonstrates	the	syntax	for	a	subroutine	that	traps	the
AfterLayout	event.

Private	Sub	Form_AfterLayout(ByVal	drawObject	As	Object)

				MsgBox	"The	PivotChart	view	has	been	laid	out."

End	Sub

AfterRender	Event
							

Occurs	after	the	object	represented	by	the	chartObject	argument	has	been
rendered.

Private	Sub	Form_AfterRender(ByVal	drawObject	As	Object,	ByVal
chartObject	As	Object)

drawObject			A	ChChartDraw	object.	Use	the	methods	and	properties	of	this
object	to	draw	objects	on	the	chart.

chartObject			The	object	that	has	just	been	rendered.	Use	the	TypeName
function	to	determine	what	type	of	object	has	just	been	rendered.

mk:@MSITStore:owcvba10.chm::/html/ocobjChChartDraw.htm

Example

The	following	example	demonstrates	the	syntax	for	a	subroutine	that	traps	the
AfterRender	event.

Private	Sub	Form_AfterRender(_

								ByVal	drawObject	As	Object,	ByVal	chartObject	As	Object)

				MsgBox	TypeName(chartObject)	&	"	has	been	rendered."

End	Sub

Show	All

AfterUpdate	Event
							

The	AfterUpdate	event	occurs	after	changed	data	in	a	control	or	record	is
updated.

Remarks

Notes

Changing	data	in	a	control	by	using	Visual	Basic	or	a	macro	containing	the
SetValue	action	doesn't	trigger	these	events	for	the	control.	However,	if	you
then	move	to	another	record	or	save	the	record,	the	form's	AfterUpdate
event	does	occur.
The	AfterUpdate	event	applies	only	to	controls	on	a	form,	not	controls	on	a
report.
This	event	does	not	apply	to	option	buttons,	check	boxes,	or	toggle	buttons
in	an	option	group.	It	applies	only	to	the	option	group	itself.

To	run	a	macro	or	event	procedure	when	this	event	occurs,	set	the	AfterUpdate
property	to	the	name	of	the	macro	or	to	[Event	Procedure].

The	AfterUpdate	event	is	triggered	when	a	control	or	record	is	updated.	Within	a
record,	changed	data	in	each	control	is	updated	when	the	control	loses	the	focus
or	when	the	user	presses	ENTER	or	TAB.	When	the	focus	leaves	the	record	or	if
the	user	clicks	Save	Record	on	the	Records	menu,	the	entire	record	is	updated,
and	the	data	is	saved	in	the	database.

When	you	enter	new	or	changed	data	in	a	control	on	a	form	and	then	move	to
another	record	or	save	the	record	by	clicking	Save	Record	on	the	Records
menu,	the	AfterUpdate	event	for	the	form	occur	immediately	after	the
AfterUpdate	event	for	the	control.	When	you	move	to	a	different	record,	the	Exit
and	LostFocus	events	for	the	control	occur,	followed	by	the	Current	event	for	the
record	you	moved	to,	and	the	Enter	and	GotFocus	events	for	the	first	control	in
this	record.	To	run	the	AfterUpdate	macro	or	event	procedure	without	running
the	Exit	and	LostFocus	macros	or	event	procedures,	save	the	record	by	using	the
Save	Record	command	on	the	Records	menu.

AfterUpdate	macros	and	event	procedures	run	only	if	you	change	the	data	in	a
control.	This	event	does	not	occur	when	a	value	changes	in	a	calculated	control.
AfterUpdate	macros	and	event	procedures	for	a	form	run	only	if	you	change	the
data	in	one	or	more	controls	in	the	record.

For	bound	controls,	the	OldValue	property	isn't	set	to	the	updated	value	until

mk:@MSITStore:acmain10.chm::/html/acactSetValue.htm

after	the	AfterUpdate	event	for	the	form	occurs.	Even	if	the	user	enters	a	new
value	in	the	control,	the	OldValue	property	setting	isn't	changed	until	the	data	is
saved	(the	record	is	updated).	If	you	cancel	an	update,	the	value	of	the	OldValue
property	replaces	the	existing	value	in	the	control.

Note			To	perform	simple	validations,	or	more	complex	validations	such	as
requiring	a	value	in	a	field	or	validating	more	than	one	control	on	a	form,	you
can	use	the	ValidationRule	property	for	controls	and	the	ValidationRule	and
Required	properties	for	fields	and	records	in	tables.

Show	All

ApplyFilter	Event
							

The	ApplyFilter	event	can	occur	within	a	Microsoft	Access	project	(.adp)	or
Access	database	(.mdb).

Within	an	Access	database,	an	ApplyFilter	event	occurs	when	the	user	does	one
of	the	following:

Clicks	Apply	Filter/Sort	on	the	Records	menu	in	Form	view,	clicks	Apply
Filter/Sort	on	the	Filter	menu	in	the	Filter	window,	or	clicks	Apply	Filter	
	on	the	toolbar.	This	applies	the	most	recently	created	filter	(created	by

using	either	the	Filter	By	Form	feature	or	the	Advanced	Filter/Sort
window).

On	the	Records	menu	in	Form	view,	points	to	Filter	and	clicks	Filter	By
Selection,	or	clicks	Filter	By	Selection	 	on	the	toolbar.	This	applies	a
filter	based	on	the	current	selection	in	the	form.

On	the	Records	menu	in	Form	view,	points	to	Filter	and	clicks	Filter
Excluding	Selection.	This	applies	a	filter	excluding	the	current	selection	in
the	form.

Clicks	Remove	Filter/Sort	on	the	Records	menu	in	Form	view,	or	clicks
Remove	Filter	 	on	the	toolbar.	This	removes	any	filter	(or	sort)	currently
applied	to	the	form.

Clicks	Filter	By	Selection,	Filter	Excluding	Selection,	or	Remove
Filter/Sort	or	enters	a	value	or	expression	in	the	Filter	For	box	on	the
shortcut	menu	when	a	bound	control	has	the	focus.

Closes	the	Advanced	Filter/Sort	window	or	the	Filter	By	Form	window.

Clicks	Advanced	Filter/Sort	on	the	Filter	menu	while	the	Filter	By	Form
window	is	open,	or	clicks	Filter	By	Form	on	the	Filter	menu	while	the

Advanced	Filter/Sort	window	is	open.	This	causes	the	ApplyFilter	event	to
occur	when	the	open	filter	window	is	closed,	and	then	the	Filter	event	to
occur	when	the	other	filter	window	is	opened.

Within	an	Access	project,	an	ApplyFilter	event	occurs	when	the	user	does	one	of
the	following:

Clicks	Apply	Filter/Sort	on	the	Records	menu	in	Form	view,	clicks	Apply
Filter/Sort	on	the	Filter	menu	in	the	Filter	window,	or	clicks	Apply	Filter	
	on	the	toolbar.	This	applies	the	most	recently	created	filter	(created	by

using	the	Filter	By	Form	feature).

Clicks	Apply	Server	Filter	on	the	Records	menu	in	Form	view,	clicks
Apply	Server	Filter	on	the	Filter	menu	in	the	Filter	window,	or	clicks
Apply	Server	Filter	 	on	the	toolbar.	This	applies	the	most	recently
created	filter	(created	by	using	the	Server	Filter	By	Form	feature).

On	the	Records	menu	in	Form	view,	points	to	Filter	and	clicks	Filter	By
Selection,	or	clicks	Filter	By	Selection	 	on	the	toolbar.	This	applies	a
filter	based	on	the	current	selection	in	the	form.

On	the	Records	menu	in	Form	view,	points	to	Filter	and	clicks	Filter
Excluding	Selection.	This	applies	a	filter	excluding	the	current	selection	in
the	form.

Clicks	Filter	By	Selection	or	Filter	Excluding	Selection	or	enters	a	value
or	expression	in	the	Filter	For	box	on	the	shortcut	menu	when	a	bound
control	has	the	focus.

Remarks

To	run	a	macro	or	event	procedure	when	this	event	occurs,	set	the
OnApplyFilter	property	to	the	name	of	the	macro	or	to	[Event	Procedure].

You	can	use	the	ApplyFilter	event	to:

Make	sure	the	filter	that	is	being	applied	is	correct.	For	example,	you	may
want	to	be	sure	that	any	filter	applied	to	an	Orders	form	includes	criteria
restricting	the	OrderDate	field.	To	do	this,	check	the	form's	Filter	or
ServerFilter	property	value	to	make	sure	this	criteria	is	included	in	the
WHERE	clause	expression.

Change	the	display	of	the	form	before	the	filter	is	applied.	For	example,
when	you	apply	a	certain	filter,	you	may	want	to	disable	or	hide	some	fields
that	aren't	appropriate	for	the	records	displayed	by	this	filter.

Undo	or	change	actions	you	took	when	the	Filter	event	occurred.	For
example,	you	can	disable	or	hide	some	controls	on	the	form	when	the	user
is	creating	the	filter,	because	you	don't	want	these	controls	to	be	included	in
the	filter	criteria.	You	can	then	enable	or	show	these	controls	after	the	filter
is	applied.

The	actions	in	the	ApplyFilter	macro	or	event	procedure	occur	before	the	filter	is
applied	or	removed;	or	after	the	Advanced	Filter/Sort,	Filter	By	Form,	or	Server
Filter	By	Form	window	is	closed,	but	before	the	form	is	redisplayed.	The	criteria
you've	entered	in	the	newly	created	filter	are	available	to	the	ApplyFilter	macro
or	event	procedure	as	the	setting	of	the	Filter	or	ServerFilter	property.

Note			The	ApplyFilter	event	doesn't	occur	when	the	user	does	one	of	the
following:

Applies	or	removes	a	filter	by	using	the	ApplyFilter,	OpenForm,	or
ShowAllRecords	actions	in	a	macro,	or	their	corresponding	methods	of	the
DoCmd	object	in	Visual	Basic.

Uses	the	Close	action	or	the	Close	method	of	the	DoCmd	object	to	close
the	Advanced	Filter/Sort,	Filter	By	Form,	or	Server	Filter	By	Form	window.

mk:@MSITStore:acmain10.chm::/html/acactApplyFilter.htm
mk:@MSITStore:acmain10.chm::/html/acactOpenForm.htm
mk:@MSITStore:acmain10.chm::/html/acactShowAllRecords.htm
mk:@MSITStore:acmain10.chm::/html/acactClose.htm

Sets	the	Filter	or	ServerFilter	property	or	FilterOn	or
ServerFilterByForm	property	in	a	macro	or	Visual	Basic	(although	you
can	set	these	properties	in	an	ApplyFilter	macro	or	event	procedure).

Example

The	following	example	shows	how	to	hide	the	AmountDue,	Tax,	and	TotalDue
controls	on	an	Orders	form	when	the	applied	filter	restricts	the	records	to	only
those	orders	that	have	been	paid	for.

To	try	this	example,	add	the	following	event	procedure	to	an	Orders	form	that
contains	AmountDue,	Tax,	and	TotalDue	controls.	Run	a	filter	that	lists	only
those	orders	that	have	been	paid	for.

Private	Sub	Form_ApplyFilter(Cancel	As	Integer,	ApplyType	As	Integer

				If	Not	IsNull(Me.Filter)	And	(InStr(Me.Filter,	"Orders.Paid	=	-1")>0	_

												Or	InStr(Me.Filter,	"Orders.Paid	=	True")>0)Then

								If	ApplyType	=	acApplyFilter	Then

												Forms!Orders!AmountDue.Visible	=	False

												Forms!Orders!Tax.Visible	=	False

												Forms!Orders!TotalDue.Visible	=	False

								ElseIf	ApplyType	=	acShowAllRecords	Then

												Forms!Orders!AmountDue.Visible	=	True

												Forms!Orders!Tax.Visible	=	True

												Forms!Orders!TotalDue.Visible	=	True

								End	If

				End	If

End	Sub

Show	All

BeforeBeginTransaction	Event
							

Occurs	just	before	Microsoft	Access	signals	to	the	server	that	a	batch	transaction
is	beginning.

Private	Sub	Form_BeforeBeginTransaction(Cancel	As	Integer,	Connection
As	ADODB.Connection)

Cancel			Setting	this	argument	to	True	cancels	the	batch	transaction	while
retaining	all	pending	changes	on	the	form.

Connection			The	connection	on	which	the	batch	transaction	is	taking	place.

Remarks

This	event	applies	to	Access	project	forms	whose	BatchUpdates	properties	are
set	to	True.

This	event	is	used	for	any	processing	that	needs	to	occur	before	Access	initiates
a	batch	update.	Any	changes	made	to	the	data	at	this	point	are	made	outside	the
batch	transaction.

Example

The	following	example	demonstrates	the	syntax	for	a	subroutine	that	traps	the
BeforeBeginTransaction	event.

Private	Sub	Form_BeforeBeginTransaction(_

								Cancel	As	Integer,	Connection	As	ADODB.Connection)

				Dim	intResponse	As	Integer

				Dim	strPrompt	As	String

				strPrompt	=	"Batch	transaction	about	to	begin	on	"	_

								&	Connection.Name	&	".	Do	you	wish	to	continue?"

				intResponse	=	MsgBox(strPrompt,	vbYesNo)

				If	intResponse	=	vbNo	Then

								Cancel	=	True

				Else

								Cancel	=	False

				End	If

End	Sub

Show	All

BeforeCommitTransaction	Event
							

Occurs	just	before	Microsoft	Access	signals	to	the	server	to	commit	all	the
changes	in	a	batch	transaction	to	the	underlying	data	on	the	server.

Private	Sub	Form_BeforeCommitTransaction(Cancel	As	Integer,
Connection	As	ADODB.Connection)

Cancel			Setting	this	argument	to	True	cancels	the	commitment	of	the	batch
transaction,	retains	all	pending	changes	on	the	form,	and	rolls	back	the	batch
transaction	on	the	server.

Connection			The	connection	on	which	the	batch	transaction	is	taking	place.

Remarks

This	event	applies	to	Access	project	forms	whose	BatchUpdates	properties	are
set	to	True.

When	this	event	occurs,	all	changes	have	been	made,	no	errors	have	occurred,
and	Access	is	ready	to	make	the	changes	permanent.	Any	changes	to	the	data	at
this	point	are	made	inside	the	batch	transaction.

Example

The	following	example	demonstrates	the	syntax	for	a	subroutine	that	traps	the
BeforeCommitTransaction	event.

Private	Sub	Form_BeforeCommitTransaction(_

								Cancel	As	Integer,	Connection	As	ADODB.Connection)

				Dim	intResponse	As	Integer

				Dim	strPrompt	As	String

				strPrompt	=	"Access	is	about	to	commit	the	batch	transaction	on	"	_

								&	Connection.Name	&	".	Do	you	wish	to	continue?"

				intResponse	=	MsgBox(strPrompt,	vbYesNo)

				If	intResponse	=	vbNo	Then

								Cancel	=	True

				Else

								Cancel	=	False

				End	If

End	Sub

Show	All

BeforeDelConfirm	Event
							

The	BeforeDelConfirm	event	occurs	after	the	user	deletes	to	the	buffer	one	or
more	records,	but	before	Microsoft	Access	displays	a	dialog	box	asking	the	user
to	confirm	the	deletions.

Remarks

To	run	a	macro	or	event	procedure	when	these	events	occur,	set	the
BeforeDelConfirm	property	to	the	name	of	the	macro	or	to	[Event	Procedure].

After	a	record	is	deleted,	it's	stored	in	a	temporary	buffer.	The
BeforeDelConfirm	event	occurs	after	the	Delete	event	(or	if	you've	deleted	more
than	one	record,	after	all	the	records	are	deleted,	with	a	Delete	event	occurring
for	each	record),	but	before	the	Delete	Confirm	dialog	box	is	displayed.
Canceling	the	BeforeDelConfirm	event	restores	the	record	or	records	from	the
buffer	and	prevents	the	Delete	Confirm	dialog	box	from	being	displayed.

The	AfterDelConfirm	event	occurs	after	a	record	or	records	are	actually	deleted
or	after	a	deletion	or	deletions	are	canceled.	If	the	BeforeDelConfirm	event	isn't
canceled,	the	AfterDelConfirm	event	occurs	after	the	Delete	Confirm	dialog
box	is	displayed.	The	AfterDelConfirm	event	occurs	even	if	the
BeforeDelConfirm	event	is	canceled.

If	you	cancel	the	Delete	event,	the	BeforeDelConfirm	event	does	not	occur	and
the	Delete	Confirm	dialog	box	isn't	displayed.

Note			The	BeforeDelConfirm	event	does	not	occur	and	the	Delete	Confirm
dialog	box	isn't	displayed	if	you	clear	the	Record	Changes	check	box	under
Confirm	on	the	Edit/Find	tab	of	the	Options	dialog	box,	available	by	clicking
Options	on	the	Tools	menu.

By	running	a	macro	or	an	event	procedure	when	the	Delete	event	occurs,	you
can	prevent	a	record	from	being	deleted	or	allow	a	record	to	be	deleted	only
under	certain	conditions.	You	can	also	use	a	Delete	event	to	display	a	dialog	box
asking	whether	the	user	wants	to	delete	a	record	before	it's	deleted.

To	delete	a	record,	you	can	click	Delete	Record	on	the	Edit	menu.	This	deletes
the	current	record	(the	record	indicated	by	the	record	selector).	You	can	also
click	the	record	selector	or	click	Select	Record	on	the	Edit	menu	to	select	the
record,	and	then	press	the	DEL	key	to	delete	it.	If	you	click	Delete	Record,	the
record	selector	of	the	current	record,	or	Select	Record,	the	Exit	and	LostFocus
events	for	the	control	that	has	the	focus	occur.	If	you've	changed	any	data	in	the
record,	the	BeforeUpdate	and	AfterUpdate	events	for	the	record	occur	before	the

Exit	and	LostFocus	events.	If	you	click	the	record	selector	of	a	different	record,
the	Current	event	for	that	record	also	occurs.

After	you	delete	the	record,	the	focus	moves	to	the	next	record	following	the
deleted	record,	and	the	Current	event	for	that	record	occurs,	followed	by	the
Enter	and	GotFocus	events	for	the	first	control	in	that	record.

The	BeforeDelConfirm	event	then	occurs,	just	before	Microsoft	Access	displays
the	Delete	Confirm	dialog	box	asking	you	to	confirm	the	deletion.	After	you
respond	to	the	dialog	box	by	confirming	or	canceling	the	deletion,	the
AfterDelConfirm	event	occurs.

You	can	delete	one	or	more	records	at	a	time.	The	Delete	event	occurs	after	each
record	is	deleted.	This	enables	you	to	access	the	data	in	each	record	before	it's
actually	deleted,	and	selectively	confirm	or	cancel	each	deletion	in	the	Delete
macro	or	event	procedure.	When	you	delete	more	than	one	record,	the	Current
event	for	the	record	following	the	last	deleted	record	and	the	Enter	and	GotFocus
events	for	the	first	control	in	this	record	don't	occur	until	all	the	records	are
deleted.	In	other	words,	a	Delete	event	occurs	for	each	selected	record,	but	no
other	events	occur	until	all	the	selected	records	are	deleted.	The
BeforeDelConfirm	event	does	not	occur	until	all	the	selected	records	are	deleted.

Example

The	following	example	shows	how	you	can	use	the	BeforeDelConfirm	event
procedure	to	suppress	the	Delete	Confirm	dialog	box	and	display	a	custom
dialog	box	when	a	record	is	deleted.

Private	Sub	Form_BeforeDelConfirm(Cancel	As	Integer,	_	

																																		Response	As	Integer)	

				'	Suppress	default	Delete	Confirm	dialog	box.	

				Response	=	acDataErrContinue					'	Display	custom	dialog	box.	

				If	MsgBox("Delete	this	record?",	vbOKCancel)	=	vbCancel	Then	

								Cancel	=	True					

				End	If	

End	Sub

Show	All

BeforeInsert	Event
							

The	BeforeInsert	event	occurs	when	the	user	types	the	first	character	in	a	new
record,	but	before	the	record	is	actually	created.

Remarks

Note			Setting	the	value	of	a	control	by	using	a	macro	or	Visual	Basic	doesn't
trigger	these	events.

To	run	a	macro	or	event	procedure	when	these	events	occur,	set	the	BeforeInsert
or	AfterInsert	property	to	the	name	of	the	macro	or	to	[Event	Procedure].

You	can	use	an	AfterInsert	event	procedure	or	macro	to	requery	a	recordset
whenever	a	new	record	is	added.

The	BeforeInsert	and	AfterInsert	events	are	similar	to	the	BeforeUpdate	and
AfterUpdate	events.	These	events	occur	in	the	following	order:

BeforeInsert	 	BeforeUpdate	 	AfterUpdate	 	AfterInsert.

The	following	table	summarizes	the	interaction	between	these	events.

Event Occurs	when

BeforeInsert User	types	the	first	character	in	a	new
record.

BeforeUpdate User	updates	the	record.
AfterUpdate Record	is	updated.
AfterInsert Record	updated	is	a	new	record.

If	the	first	character	in	a	new	record	is	typed	into	a	text	box	or	combo	box,	the
BeforeInsert	event	occurs	before	the	Change	event.

Example

This	example	shows	how	you	can	use	a	BeforeInsert	event	procedure	to	verify
that	the	user	wants	to	create	a	new	record,	and	an	AfterInsert	event	procedure	to
requery	the	record	source	for	the	Employees	form	after	a	record	has	been	added.

To	try	the	example,	add	the	following	event	procedure	to	a	form	named
Employees	that	is	based	on	a	table	or	query.	Switch	to	form	Datasheet	view	and
try	to	insert	a	record.

Private	Sub	Form_BeforeInsert(Cancel	As	Integer)

				If	MsgBox("Insert	new	record	here?",	_

								vbOKCancel)	=	vbCancel	Then

								Cancel	=	True

				End	If

End	Sub

Private	Sub	Form_AfterInsert()

				Forms!Employees.Requery

End	Sub

BeforeQuery	Event
							

Occurs	when	the	specified	PivotTable	view	queries	its	data	source.

Private	Sub	Form_BeforeQuery()

Remarks

This	event	occurs	quite	frequently.	Some	examples	of	actions	that	trigger	this
event	include	adding	fields	to	the	PivotTable	view,	moving	fields,	sorting,	or
filtering	data.

Example

The	following	example	demonstrates	the	syntax	for	a	subroutine	that	traps	the
BeforeQuery	event.

Private	Sub	Form_BeforeQuery()

				MsgBox	"The	PivotTable	view	is	about	to	query	its	data	source."

End	Sub

BeforeRender	Event
							

Occurs	before	any	object	in	the	specified	PivotChart	view	has	been	rendered.

Private	Sub	Form_BeforeRender(ByVal	drawObject	As	Object,	ByVal
chartObject	As	Object,	ByVal	Cancel	As	Object)

drawObject			A	reference	to	the	ChChartDraw	object.	Use	the	DrawType
property	of	the	returned	object	to	determine	what	type	of	rendering	is	about	to
occur.

chartObject			The	object	that	is	to	be	rendered.	Use	the	TypeName	function	to
determine	the	type	of	the	object.

Cancel			Set	the	Value	property	of	this	object	to	True	to	cancel	the	rendering	of
the	PivotChart	View	object.

mk:@MSITStore:owcvba10.chm::/html/ocobjChChartDraw.htm
mk:@MSITStore:owcvba10.chm::/html/ocproDrawType.htm

Example

The	following	example	demonstrates	the	syntax	for	a	subroutine	that	traps	the
BeforeRender	event.

Private	Sub	Form_BeforeRender(_

								ByVal	drawObject	As	Object,	_

								ByVal	chartObject	As	Object,	_

								ByVal	Cancel	As	Object)

				Dim	intResponse	As	Integer

				Dim	strPrompt	As	String

				strPrompt	=	"Cancel	render	of	current	object?"

				intResponse	=	MsgBox(strPrompt,	vbYesNo)

				If	intResponse	=	vbYes	Then

								Cancel.Value	=	True

				Else

								Cancel.Value	=	False

				End	If

End	Sub

BeforeScreenTip	Event
							

Occurs	before	a	ScreenTip	is	displayed	for	an	element	in	a	PivotChart	view	or
PivotTable	view.

Private	Sub	Form_BeforeScreenTip(TipText	As	String,	ByVal	ContextObject
As	Object)

TipText			The	default	text	of	the	ScreenTip.	Changing	this	argument	to	an	empty
string	effectively	hides	the	ScreenTip;	changing	it	to	any	other	text	displays	the
changed	text	in	the	ScreenTip.

ContextObject			The	object	that	generates	the	ScreenTip.

Example

The	following	example	hides	ScreenTips	for	all	data	labels	in	the	specified	form.

Private	Sub	Form_BeforeScreenTip(_

								TipText	As	String,	ByVal	ContextObject	As	Object)

				If	TypeName(ContextObject)	=	"ChDataLabel"	Then

								TipText	=	""

				End	If

End	Sub

Show	All

BeforeUpdate	Event
							

The	BeforeUpdate	event	occurs	before	changed	data	in	a	control	or	record	is
updated.

Remarks

Changing	data	in	a	control	by	using	Visual	Basic	or	a	macro	containing	the
SetValue	action	doesn't	trigger	these	events	for	the	control.	However,	if	you	then
move	to	another	record	or	save	the	record,	the	form's	BeforeUpdate	event	does
occur.

The	BeforeUpdate	event	applies	only	to	controls	on	a	form,	not	controls	on	a
report.

The	BeforeUpdate	event	does	not	apply	to	option	buttons,	check	boxes,	or	toggle
buttons	in	an	option	group.	It	applies	only	to	the	option	group	itself.

Remarks

To	run	a	macro	or	event	procedure	when	these	events	occur,	set	the
BeforeUpdate	property	to	the	name	of	the	macro	or	to	[Event	Procedure].

The	BeforeUpdate	event	is	triggered	when	a	control	or	record	is	updated.	Within
a	record,	changed	data	in	each	control	is	updated	when	the	control	loses	the
focus	or	when	the	user	presses	ENTER	or	TAB.	When	the	focus	leaves	the
record	or	if	the	user	clicks	Save	Record	on	the	Records	menu,	the	entire	record	is
updated,	and	the	data	is	saved	in	the	database.

When	you	enter	new	or	changed	data	in	a	control	on	a	form	and	then	move	to
another	record	or	save	the	record	by	clicking	Save	Record	on	the	Records	menu,
the	BeforeUpdate	event	for	the	form	occurs	immediately	after	the	BeforeUpdate
event	for	the	control.	When	you	move	to	a	different	record,	the	Exit	and
LostFocus	events	for	the	control	occur,	followed	by	the	Current	event	for	the
record	you	moved	to,	and	the	Enter	and	GotFocus	events	for	the	first	control	in
this	record.	To	run	the	BeforeUpdate	macros	or	event	procedures	without
running	the	Exit	and	LostFocus	macros	or	event	procedures,	save	the	record	by
using	the	Save	Record	command	on	the	Records	menu.

BeforeUpdate	macro	and	event	procedures	run	only	if	you	change	the	data	in	a
control.	These	events	don't	occur	when	a	value	changes	in	a	calculated	control.
BeforeUpdate	macro	and	event	procedures	for	a	form	run	only	if	you	change	the
data	in	one	or	more	controls	in	the	record.

mk:@MSITStore:acmain10.chm::/html/acactSetValue.htm

For	forms,	you	can	use	the	BeforeUpdate	event	to	cancel	updating	of	a	record
before	moving	to	another	record.

If	the	user	enters	a	new	value	in	the	control,	the	OldValue	property	setting	isn't
changed	until	the	data	is	saved	(the	record	is	updated).	If	you	cancel	an	update,
the	value	of	the	OldValue	property	replaces	the	existing	value	in	the	control.

You	often	use	the	BeforeUpdate	event	to	validate	data,	especially	when	you
perform	complex	validations,	such	as	those	that:

Involve	conditions	for	more	than	one	value	on	a	form.

Display	different	error	messages	for	different	data	entered.

Can	be	overridden	by	the	user.

Contain	references	to	controls	on	other	forms	or	contain	user-defined
functions.

Note			To	perform	simple	validations,	or	more	complex	validations	such	as
requiring	a	value	in	a	field	or	validating	more	than	one	control	on	a	form,	you
can	use	the	ValidationRule	property	for	controls	and	the	ValidationRule	and
Required	properties	for	fields	and	records	in	tables.

Example

The	following	example	shows	how	you	can	use	a	BeforeUpdate	event	procedure
to	check	whether	a	product	name	has	already	been	entered	in	the	database.	After
the	user	types	a	product	name	in	the	ProductName	box,	the	value	is	compared	to
the	ProductName	field	in	the	Products	table.	If	there	is	a	matching	value	in	the
Products	table,	a	message	is	displayed	that	informs	the	user	that	the	product	has
already	been	entered.

To	try	the	example,	add	the	following	event	procedure	to	a	form	named	Products
that	contains	a	text	box	called	ProductName.

Private	Sub	ProductName_BeforeUpdate(Cancel	As	Integer)

				If(Not	IsNull(DLookup("[ProductName]",	_

								"Products",	"[ProductName]	='"	_

								&	Me!ProductName	&	"'")))	Then

								MsgBox	"Product	has	already	been	entered	in	the	database."

								Cancel	=	True

								Me!ProductName.Undo

				End	If

End	Sub

Show	All

BeginBatchEdit	Event
							

Occurs	after	the	first	change	to	data	on	a	form	that	supports	batch	updates,	either
after	the	form	is	activated,	or	after	the	last	batch	transaction	was	committed.

Private	Sub	Form_BeginBatchEdit(Cancel	As	Integer)

Cancel			Setting	this	argument	to	True	cancels	the	pending	change,	and	thus	the
batch	update,	as	there	are	no	longer	any	pending	changes.

Remarks

This	event	applies	to	Access	project	forms	whose	BatchUpdates	properties	are
set	to	True.

This	event	is	analogous	to	the	Dirty	event,	but	for	an	entire	batch	instead	of	an
individual	record.	The	BeginBatchEdit	event	occurs	before	the	corresponding
OnDirty	event	for	the	form	and	control.

Editing	records	on	a	subform	does	not	trigger	this	event	for	the	main	form.

Example

The	following	example	demonstrates	the	syntax	for	a	subroutine	that	traps	the
BeginBatchEdit	event.

Private	Sub	Form_BeginBatchEdit(Cancel	As	Integer)

				Dim	intResponse	As	Integer

				Dim	strPrompt	As	String

				strPrompt	=	"Batch	update	about	to	begin.	"	_

								&	"Do	you	wish	to	continue?"

				intResponse	=	MsgBox(strPrompt,	vbYesNo)

				If	intResponse	=	vbNo	Then

								Cancel	=	True

				Else

								Cancel	=	False

				End	If

End	Sub

Show	All

Change	Event
							

The	Change	event	occurs	when	the	contents	of	a	text	box	or	the	text	portion	of	a
combo	box	changes.	It	also	occurs	when	you	move	from	one	page	to	another
page	in	a	tab	control.

Remarks

Examples	of	this	event	include	entering	a	character	directly	in	the	text	box	or
combo	box	or	changing	the	control's	Text	property	setting	by	using	a	macro	or
Visual	Basic.

Notes

Setting	the	value	of	a	control	by	using	a	macro	or	Visual	Basic	doesn't
trigger	this	event	for	the	control.	You	must	type	the	data	directly	into	the
control,	or	set	the	control's	Text	property.
This	event	applies	only	to	controls	on	a	form,	not	controls	on	a	report.

To	run	a	macro	or	event	procedure	when	this	event	occurs,	set	the	OnChange
property	to	the	name	of	the	macro	or	to	[Event	Procedure].

By	running	a	macro	or	event	procedure	when	a	Change	event	occurs,	you	can
coordinate	data	display	among	controls.	You	can	also	display	data	or	a	formula
in	one	control	and	the	results	in	another	control.

The	Change	event	doesn't	occur	when	a	value	changes	in	a	calculated	control	or
when	you	select	an	item	from	the	combo	box	list.

Note			A	Change	event	can	cause	a	cascading	event.	This	occurs	when	a	macro
or	event	procedure	that	runs	in	response	to	the	control's	Change	event	alters	the
control's	contents	—	for	example,	by	changing	a	property	setting	that	determines
the	control's	value,	such	as	the	Text	property	for	a	text	box.	To	prevent	a
cascading	event:

If	possible,	avoid	attaching	a	Change	macro	or	event	procedure	to	a	control
that	alters	the	control's	contents.

Avoid	creating	two	or	more	controls	having	Change	events	that	affect	each
other	—	for	example,	two	text	boxes	that	update	each	other.

Changing	the	data	in	a	text	box	or	combo	box	by	using	the	keyboard	causes
keyboard	events	to	occur	in	addition	to	control	events	like	the	Change	event.	For
example,	if	you	move	to	a	new	record	and	type	an	ANSI	character	in	a	text	box

in	the	record,	the	following	events	occur	in	this	order:

KeyDown	 	KeyPress	 	BeforeInsert	 	Change	 	KeyUp

The	BeforeUpdate	and	AfterUpdate	events	for	the	text	box	or	combo	box	control
occur	after	you	have	entered	the	new	or	changed	data	in	the	control	and	moved
to	another	control	(or	clicked	Save	Record	on	the	Records	menu),	and	therefore
after	all	of	the	Change	events	for	the	control.

In	combo	boxes	for	which	the	LimitToList	property	is	set	to	Yes,	the	NotInList
event	occurs	after	you	enter	a	value	that	isn't	in	the	list	and	attempt	to	move	to
another	control	or	save	the	record.	It	occurs	after	all	the	Change	events	for	the
combo	box.	In	this	case,	the	BeforeUpdate	and	AfterUpdate	events	for	the
combo	box	don't	occur,	because	Microsoft	Access	doesn't	accept	a	value	that	is
not	in	the	list.

Show	All

Click	Event
							

The	Click	event	occurs	when	the	user	presses	and	then	releases	a	mouse	button
over	an	object.

Remarks

The	Click	event	applies	only	to	forms,	form	sections,	and	controls	on	a
form,	not	controls	on	a	report.
This	event	doesn't	apply	to	check	boxes,	option	buttons,	or	toggle	buttons	in
an	option	group.	It	applies	only	to	the	option	group	itself.
This	event	doesn't	apply	to	a	label	attached	to	another	control,	such	as	the
label	for	a	text	box.	It	applies	only	to	"freestanding"	labels.	Clicking	an
attached	label	has	the	same	effect	as	clicking	the	associated	control.	The
normal	events	for	the	control	occur,	not	any	events	for	the	attached	label.
This	event	applies	to	a	control	containing	a	hyperlink.

To	run	a	macro	or	event	procedure	when	this	event	occurs,	set	the	OnClick
property	to	the	name	of	the	macro	or	to	[Event	Procedure].

On	a	form,	this	event	occurs	when	the	user	clicks	a	blank	area	or	record	selector
on	the	form.

For	a	control,	this	event	occurs	when	the	user:

Clicks	a	control	with	the	left	mouse	button.	Clicking	a	control	with	the	right
or	middle	mouse	button	does	not	trigger	this	event.

Clicks	a	control	containing	hyperlink	data	with	the	left	mouse	button.
Clicking	a	control	with	the	right	or	middle	mouse	button	does	not	trigger
this	event.	When	the	user	moves	the	mouse	pointer	over	a	control
containing	hyperlink	data,	the	mouse	pointer	changes	to	a	"hand"	icon.
When	the	user	clicks	the	mouse	button,	the	hyperlink	is	activated,	and	then
the	Click	event	occurs.

Selects	an	item	in	a	combo	box	or	list	box,	either	by	pressing	the	arrow
keys	and	then	pressing	the	ENTER	key	or	by	clicking	the	mouse	button.

Presses	SPACEBAR	when	a	command	button,	check	box,	option	button,	or
toggle	button	has	the	focus.

Presses	the	ENTER	key	on	a	form	that	has	a	command	button	whose
Default	property	is	set	to	Yes.

Presses	the	ESC	key	on	a	form	that	has	a	command	button	whose	Cancel
property	is	set	to	Yes.

Presses	a	control's	access	key.	For	example,	if	a	command	button's	Caption
property	is	set	to	&Go,	pressing	ALT+G	triggers	the	event.

Typically,	you	attach	a	Click	event	procedure	or	macro	to	a	command	button	to
carry	out	commands	and	command-like	actions.	For	the	other	applicable
controls,	use	this	event	to	trigger	actions	in	response	to	one	of	the	occurrences
discussed	earlier	in	this	topic.

For	a	command	button	only,	Microsoft	Access	runs	the	macro	or	event	procedure
specified	by	the	OnClick	property	when	the	user	chooses	the	command	button
by	pressing	the	ENTER	key	or	an	access	key.	The	macro	or	event	procedure	runs
once.	If	you	want	the	macro	or	event	procedure	to	run	repeatedly	while	the
command	button	is	pressed,	set	its	AutoRepeat	property	to	Yes.	For	other	types
of	controls,	you	must	click	the	control	by	using	the	mouse	button	to	trigger	the
Click	event.

The	Click	event	for	a	command	button	occurs	when	you	choose	the	command
button.	In	addition,	if	the	command	button	doesn't	already	have	the	focus	when
you	choose	it,	the	Enter	and	GotFocus	events	for	the	command	button	occur
before	the	Click	event.

Double-clicking	a	control	causes	both	the	DblClick	and	Click	events	to	occur.
For	command	buttons,	double-clicking	triggers	the	following	events,	in	this
order:

MouseDown	 	MouseUp	 	Click	 	DblClick	 	Click

You	can	use	a	CancelEvent	action	in	a	DblClick	macro	to	cancel	the	second
Click	event.	For	more	information,	see	the	DblClick	event	topic.

The	Click	event	for	an	option	group	occurs	after	you	change	the	value	of	one	of
the	controls	in	the	option	group	by	clicking	the	control.	For	example,	if	you	click
a	toggle	button,	option	button,	or	check	box	in	an	option	group,	the	Click	event
for	the	option	group	occurs	after	the	BeforeUpdate	and	AfterUpdate	events	for
the	option	group.

mk:@MSITStore:acmain10.chm::/html/acactCancelEvent.htm

Tip			To	distinguish	between	the	left,	right,	and	middle	mouse	buttons,	use	the
MouseDown	and	MouseUp	events.

Show	All

Close	Event
							

The	Close	event	occurs	when	a	form	or	report	is	closed	and	removed	from	the
screen.

Remarks

To	run	a	macro	or	event	procedure	when	this	event	occurs,	set	the	OnClose
property	to	the	name	of	the	macro	or	to	[Event	Procedure].

The	Close	event	occurs	after	the	Unload	event,	which	is	triggered	after	the	form
is	closed	but	before	it	is	removed	from	the	screen.

When	you	close	a	form,	the	following	events	occur	in	this	order:

Unload	 	Deactivate	 	Close

When	the	Close	event	occurs,	you	can	open	another	window	or	request	the	user's
name	to	make	a	log	entry	indicating	who	used	the	form	or	report.

The	Unload	event	can	be	canceled,	but	the	Close	event	can't.

CommandBeforeExecute	Event
							

Occurs	before	a	specified	command	is	executed.	Use	this	event	when	you	want
to	impose	certain	restrictions	before	a	particular	command	is	executed.

Private	Sub	Form_CommandBeforeExecute(ByVal	Command	As	Variant,
ByVal	Cancel	As	Object)

Command			The	command	that	is	going	to	be	executed.

Cancel			Set	the	Value	property	of	this	object	to	True	to	cancel	the	command.

Remarks

The	OCCommandId,	ChartCommandIdEnum,	and	PivotCommandId
constants	contain	lists	of	the	supported	commands	for	each	of	the	Microsoft
Office	Web	Components.

Example

The	following	example	demonstrates	the	syntax	for	a	subroutine	that	traps	the
CommandBeforeExecute	event.

Private	Sub	Form_CommandBeforeExecute(_

								ByVal	Command	As	Variant,	ByVal	Cancel	As	Object)

				Dim	intResponse	As	Integer

				Dim	strPrompt	As	String

				strPrompt	=	"Cancel	the	command?"

				intResponse	=	MsgBox(strPrompt,	vbYesNo)

				If	intResponse	=	vbYes	Then

								Cancel.Value	=	True

				Else

								Cancel.Value	=	False

				End	If

End	Sub

CommandChecked	Event
							

Occurs	when	the	specified	Microsoft	Office	Web	Component	determines
whether	the	specified	command	is	checked.

Private	Sub	Form_CommandChecked(ByVal	Command	As	Variant,	ByVal
Checked	As	Object)

Command			The	command	that	has	been	verified	as	being	checked.

Checked			Set	the	Value	property	of	this	object	to	False	to	uncheck	the
command.

Remarks

The	OCCommandId,	ChartCommandIdEnum,	and	PivotCommandId
constants	contain	lists	of	the	supported	commands	for	each	Web	component.

Example

The	following	example	demonstrates	the	syntax	for	a	subroutine	that	traps	the
CommandChecked	event.

Private	Sub	Form_CommandChecked(_

								ByVal	Command	As	Variant,	ByVal	Checked	As	Object)

				Dim	intResponse	As	Integer

				Dim	strPrompt	As	String

				strPrompt	=	"Uncheck	the	command?"

				intResponse	=	MsgBox(strPrompt,	vbYesNo)

				If	intResponse	=	vbYes	Then

								Checked.Value	=	False

				Else

								Checked.Value	=	True

				End	If

End	Sub

CommandEnabled	Event
							

Occurs	when	the	specified	Microsoft	Office	Web	Component	determines
whether	the	specified	command	is	enabled.

Private	Sub	Form_CommandEnabled(ByVal	Command	As	Variant,	ByVal
Enabled	As	Object)

Command			The	command	that	has	been	verified	as	being	enabled.

Enabled			Set	the	Value	property	of	this	object	to	False	to	disable	the	command.

Remarks

The	OCCommandId,	ChartCommandIdEnum,	and	PivotCommandId
constants	contain	lists	of	the	supported	commands	for	each	Web	component.

Example

The	following	example	demonstrates	the	syntax	for	a	subroutine	that	traps	the
CommandEnabled	event.

Private	Sub	Form_CommandEnabled(_

								ByVal	Command	As	Variant,	ByVal	Enabled	As	Object)

				Dim	intResponse	As	Integer

				Dim	strPrompt	As	String

				strPrompt	=	"Disable	the	command?"

				intResponse	=	MsgBox(strPrompt,	vbYesNo)

				If	intResponse	=	vbYes	Then

								Enabled.Value	=	False

				Else

								Enabled.Value	=	True

				End	If

End	Sub

CommandExecute	Event
							

Occurs	after	the	specified	command	is	executed.	Use	this	event	when	you	want
to	execute	a	set	of	commands	after	a	particular	command	is	executed.

Private	Sub	Form_CommandBeforeExecute(ByVal	Command	As	Variant)

Command			The	command	that	is	executed.

Remarks

The	OCCommandId,	ChartCommandIdEnum,	and	PivotCommandId
constants	contain	lists	of	the	supported	commands	for	each	of	the	Microsoft
Office	Web	Components.

Example

The	following	example	demonstrates	the	syntax	for	a	subroutine	that	traps	the
CommandExecute	event.

Private	Sub	Form_CommandExecute(ByVal	Command	As	Variant)

				MsgBox	"The	command	specified	by	"	_

								&	Command.Name	&	"	has	been	executed."

End	Sub

Show	All

Current	Event
							

The	Current	event	occurs	when	the	focus	moves	to	a	record,	making	it	the
current	record,	or	when	the	form	is	refreshed	or	requeried.

Remarks

To	run	a	macro	or	event	procedure	when	this	event	occurs,	set	the	OnCurrent
property	to	the	name	of	the	macro	or	to	[Event	Procedure].

This	event	occurs	both	when	a	form	is	opened	and	whenever	the	focus	leaves
one	record	and	moves	to	another.	Microsoft	Access	runs	the	Current	macro	or
event	procedure	before	the	first	or	next	record	is	displayed.

By	running	a	macro	or	event	procedure	when	a	form's	Current	event	occurs,	you
can	display	a	message	or	synchronize	records	in	another	form	related	to	the
current	record.	For	example,	when	a	customer	record	becomes	current,	you	can
display	the	customer's	previous	order.	When	a	supplier	record	becomes	current,
you	can	display	the	products	manufactured	by	the	supplier	in	a	Suppliers	form.
You	can	also	perform	calculations	based	on	the	current	record	or	change	the
form	in	response	to	data	in	the	current	record.

If	your	macro	or	event	procedure	runs	a	GoToControl	or	GoToRecord	action	or
the	corresponding	method	of	the	DoCmd	object	in	response	to	an	Open	event,
the	Current	event	occurs.

The	Current	event	also	occurs	when	you	refresh	a	form	or	requery	the	form's
underlying	table	or	query	—	for	example,	when	you	click	Remove	Filter/Sort
on	the	Records	menu	or	use	the	Requery	action	in	a	macro	or	the	Requery
method	in	Visual	Basic	code.

When	you	first	open	a	form,	the	following	events	occur	in	this	order:

Open	 	Load	 	Resize	 	Activate	 	Current

mk:@MSITStore:acmain10.chm::/html/acactGotoControl.htm
mk:@MSITStore:acmain10.chm::/html/acactGotoRecord.htm
mk:@MSITStore:acmain10.chm::/html/acactRequery.htm

Show	All

DataChange	Event
							

Occurs	when	certain	properties	are	changed	or	when	certain	methods	are
executed	in	the	specified	PivotTable	view.

Private	Sub	Form_DataChange(ByVal	Reason	As	Long)

Reason		Use	the	value	of	the	PivotDataReasonEnum	constant	to	determine	the
reason	that	this	event	was	triggered.

PivotDataResonEnum	can	be	one	of	these	PivotDataResonEnum	constants.
plDataReasonAdhocFieldAdded
plDataReasonAdhocFieldDeleted
plDataReasonAdhocMemberChanged
plDataReasonAllIncludeExcludeChange
plDataReasonAllowDetailsChange
plDataReasonAllowMultiFilterChange
plDataReasonAlwaysIncludeInCubeChange
plDataReasonCommandTextChange
plDataReasonConnectionStringChange
plDataReasonDataMemberChange
plDataReasonDataSourceChange
plDataReasonDisplayCalculatedMembersChange
plDataReasonDisplayCellColorChange
plDataReasonDisplayEmptyMembersChange
plDataReasonExcludedMembersChange
plDataReasonExpressionChange
plDataReasonFieldNameChange
plDataReasonFieldSetDeleted
plDataReasonFieldSetNameChange
plDataReasonFilterContextChange

plDataReasonFilterCrossJoinsChange
plDataReasonFilterFunctionChange
plDataReasonFilterFunctionValueChange
plDataReasonFilterOnChange
plDataReasonFilterOnScopeChange
plDataReasonGroupEndChange
plDataReasonGroupIntervalChange
plDataReasonGroupOnChange
plDataReasonGroupStartChange
plDataReasonIncludedMembersChange
plDataReasonInsertFieldSet
plDataReasonInsertTotal
plDataReasonIsFilteredChange
plDataReasonIsIncludedChange
plDataReasonMemberPropertyDisplayInChange
plDataReasonMemeberPropertyIsIncludedChange
plDataReasonOrderedMembersChange
plDataReasonRecordChanged
plDataReasonRefreshDataSource
plDataReasonRemoveFieldSet
plDataReasonRemoveTotal
plDataReasonSortDirectionChange
plDataReasonSortOnChange
plDataReasonSortOnScopeChange
plDataReasonSubtotalsChange
plDataReasonTotalAllMembersChange
plDataReasonTotalDeleted
plDataReasonTotalExpressionChange
plDataReasonTotalFunctionChange
plDataReasonTotalNameChange
plDataReasonTotalSolverOrderChange
plDataReasonUnknown
plDataReasonUser

Example

The	following	example	demonstrates	the	syntax	for	a	subroutine	that	traps	the
DataChange	event.	For	this	example	to	work,	a	reference	must	be	set	to	the
Microsoft	Office	Web	Components	10.0	type	library.

Private	Sub	Form_DataChange(Reason	As	Long)

				If	Reason	=	OWC.plDataReasonDisplayCellColorChange	Then

								MsgBox	"The	cell	display	color	was	changed."

				End	If

End	Sub

DataSetChange	Event
							

Occurs	whenever	the	specified	PivotTable	view	is	data-bound	and	the	data	set
changes	—	for	example,	when	a	filter	operation	takes	place.	This	event	also
occurs	when	initial	data	is	available	from	the	data	source.

Private	Sub	Form_DataSetChange()

Example

The	following	example	demonstrates	the	syntax	for	a	subroutine	that	traps	the
DataSetChange	event.

Private	Sub	Form_DataSetChange()

				MsgBox	"The	data	set	for	the	PivotChart	view	has	changed."

End	Sub

Show	All

DblClick	Event
							

The	DblClick	event	occurs	when	the	user	presses	and	releases	the	left	mouse
button	twice	over	an	object	within	the	double-click	time	limit	of	the	system.

Remarks

On	a	form,	the	DblClick	event	occurs	when	the	user	double-clicks	a	blank	area
or	record	selector	on	the	form.	For	a	control,	it	occurs	when	the	user	double-
clicks	a	control	or	its	label	in	Form	view.	The	DblClick	event	occurs	when	the
user	double-clicks	the	form	or	control	but	before	the	result	of	the	double-click
action	occurs	(for	example,	before	Microsoft	Access	selects	the	word	that	the
insertion	point	is	on	in	a	text	box).

The	DblClick	event	applies	only	to	forms,	form	sections,	and	controls	on	a
form,	not	controls	on	a	report.
This	event	doesn't	apply	to	check	boxes,	option	buttons,	or	toggle	buttons	in
an	option	group.	It	applies	only	to	the	option	group	itself.
This	event	doesn't	apply	to	a	label	attached	to	another	control,	such	as	the
label	for	a	text	box.	It	applies	only	to	"freestanding"	labels.	Double-clicking
an	attached	label	has	the	same	effect	as	double-clicking	the	associated
control.	The	normal	events	for	the	control	occur,	not	any	events	for	the
attached	label.

To	run	a	macro	or	event	procedure	when	this	event	occurs,	set	the	OnDblClick
property	to	the	name	of	the	macro	or	to	[Event	Procedure].

For	controls,	the	result	of	double-clicking	depends	on	the	control.	For	example,
double-clicking	a	word	in	a	text	box	selects	the	entire	word.	Double-clicking	a
control	containing	an	OLE	object	starts	the	application	used	to	create	the	object,
allowing	it	to	be	edited.

If	the	DblClick	event	doesn't	occur	within	the	double-click	time	limit	of	the
system,	the	form,	form	section,	or	control	recognizes	two	Click	events	instead	of
a	single	DblClick	event.	The	double-click	time	limit	depends	on	the	setting
under	Double-Click	Speed	on	the	Buttons	tab	of	the	Mouse	option	of	Windows
Control	Panel.

By	running	a	macro	or	an	event	procedure	when	the	DblClick	event	occurs,	you
can	open	a	window	or	document	when	an	icon	is	double-clicked.

Double-clicking	a	control	causes	both	Click	and	DblClick	events	to	occur.	If	the
control	doesn't	already	have	the	focus	when	you	double-click	it,	the	Enter	and

GotFocus	events	for	the	control	occur	before	the	Click	and	DblClick	events.

For	objects	that	receive	mouse	events,	the	events	occur	in	this	order:

MouseDown	 	MouseUp	 	Click	 	DblClick

When	you	double-click	a	command	button,	the	following	events	occur	in	this
order:

MouseDown	 	MouseUp	 	Click	 	DblClick	 	MouseUp	 	Click

The	second	click	may	have	no	effect	(for	example,	if	the	Click	macro	or	event
procedure	opens	a	modal	dialog	box	in	response	to	the	first	Click	event).	To
prevent	the	second	Click	macro	or	event	procedure	from	running,	put	a
CancelEvent	action	in	the	DblClick	macro	or	use	the	Cancel	argument	in	the
DblClick	event	procedure.	Note	that,	generally	speaking,	double-clicking	a
command	button	should	be	discouraged.

If	you	double-click	any	other	control	besides	a	command	button,	the	second
Click	event	doesn't	occur.

mk:@MSITStore:acmain10.chm::/html/acactCancelEvent.htm

Deactivate	Event
							

The	Deactivate	event	occurs	when	a	form	or	report	loses	the	focus	to	a	Table,
Query,	Form,	Report,	Macro,	or	Module	window,	or	to	the	Database	window.

Remarks

When	you	switch	between	two	open	forms,	the	Deactivate	event	occurs	for	the
form	being	switched	from,	and	the	Activate	event	occurs	for	the	form	being
switched	to.	If	the	forms	contain	no	visible,	enabled	controls,	the	LostFocus
event	occurs	for	the	first	form	before	the	Deactivate	event,	and	the	GotFocus
event	occurs	for	the	second	form	after	the	Activate	event.

When	you	first	open	a	form,	the	following	events	occur	in	this	order:

Open	 	Load	 	Resize	 	Activate	 	Current

When	you	close	a	form,	the	following	events	occur	in	this	order:

Unload	 	Deactivate	 	Close

Example

The	following	example	shows	how	to	hide	a	toolbar	when	the	focus	moves	to	a
different	window.

Private	Sub	Form_Deactivate()

				'	Hide	custom	toolbar.

				DoCmd.ShowToolbar	"CustomToolbar",	acToolbarNo

				End		

Sub

Show	All

Delete	Event
							

Occurs	when	the	user	performs	some	action,	such	as	pressing	the	DEL	key,	to
delete	a	record,	but	before	the	record	is	actually	deleted.

Remarks

To	run	a	macro	or	event	procedure	when	these	events	occur,	set	the	OnDelete,
BeforeDelConfirm,	or	AfterDelConfirm	property	to	the	name	of	the	macro	or
to	[Event	Procedure].

After	a	record	is	deleted,	it's	stored	in	a	temporary	buffer.	The
BeforeDelConfirm	event	occurs	after	the	Delete	event	(or	if	you've	deleted	more
than	one	record,	after	all	the	records	are	deleted,	with	a	Delete	event	occurring
for	each	record),	but	before	the	Delete	Confirm	dialog	box	is	displayed.
Canceling	the	BeforeDelConfirm	event	restores	the	record	or	records	from	the
buffer	and	prevents	the	Delete	Confirm	dialog	box	from	being	displayed.

The	AfterDelConfirm	event	occurs	after	a	record	or	records	are	actually	deleted
or	after	a	deletion	or	deletions	are	canceled.	If	the	BeforeDelConfirm	event	isn't
canceled,	the	AfterDelConfirm	event	occurs	after	the	Delete	Confirm	dialog
box	is	displayed.	The	AfterDelConfirm	event	occurs	even	if	the
BeforeDelConfirm	event	is	canceled.	The	AfterDelConfirm	event	procedure
returns	status	information	about	the	deletion.	For	example,	you	can	use	a	macro
or	event	procedure	associated	with	the	AfterDelConfirm	event	to	recalculate
totals	affected	by	the	deletion	of	records.

If	you	cancel	the	Delete	event,	the	BeforeDelConfirm	and	AfterDelConfirm
events	don't	occur	and	the	Delete	Confirm	dialog	box	isn't	displayed.

Note			The	BeforeDelConfirm	and	AfterDelConfirm	events	don't	occur	and	the
Delete	Confirm	dialog	box	isn't	displayed	if	you	clear	the	Record	Changes
check	box	under	Confirm	on	the	Edit/Find	tab	of	the	Options	dialog	box,
available	by	clicking	Options	on	the	Tools	menu.

By	running	a	macro	or	an	event	procedure	when	the	Delete	event	occurs,	you
can	prevent	a	record	from	being	deleted	or	allow	a	record	to	be	deleted	only
under	certain	conditions.	You	can	also	use	a	Delete	event	to	display	a	dialog	box
asking	whether	the	user	wants	to	delete	a	record	before	it's	deleted.

To	delete	a	record,	you	can	click	Delete	Record	on	the	Edit	menu.	This	deletes
the	current	record	(the	record	indicated	by	the	record	selector).	You	can	also
click	the	record	selector	or	click	Select	Record	on	the	Edit	menu	to	select	the

record,	and	then	press	the	DEL	key	to	delete	it.	If	you	click	Delete	Record,	the
record	selector	of	the	current	record,	or	Select	Record,	the	Exit	and	LostFocus
events	for	the	control	that	has	the	focus	occur.	If	you've	changed	any	data	in	the
record,	the	BeforeUpdate	and	AfterUpdate	events	for	the	record	occur	before	the
Exit	and	LostFocus	events.	If	you	click	the	record	selector	of	a	different	record,
the	Current	event	for	that	record	also	occurs.

After	you	delete	the	record,	the	focus	moves	to	the	next	record	following	the
deleted	record,	and	the	Current	event	for	that	record	occurs,	followed	by	the
Enter	and	GotFocus	events	for	the	first	control	in	that	record.

The	BeforeDelConfirm	event	then	occurs,	just	before	Microsoft	Access	displays
the	Delete	Confirm	dialog	box	asking	you	to	confirm	the	deletion.	After	you
respond	to	the	dialog	box	by	confirming	or	canceling	the	deletion,	the
AfterDelConfirm	event	occurs.

You	can	delete	one	or	more	records	at	a	time.	The	Delete	event	occurs	after	each
record	is	deleted.	This	enables	you	to	access	the	data	in	each	record	before	it's
actually	deleted,	and	selectively	confirm	or	cancel	each	deletion	in	the	Delete
macro	or	event	procedure.	When	you	delete	more	than	one	record,	the	Current
event	for	the	record	following	the	last	deleted	record	and	the	Enter	and	GotFocus
events	for	the	first	control	in	this	record	don't	occur	until	all	the	records	are
deleted.	In	other	words,	a	Delete	event	occurs	for	each	selected	record,	but	no
other	events	occur	until	all	the	selected	records	are	deleted.	The
BeforeDelConfirm	and	AfterDelConfirm	events	also	don't	occur	until	all	the
selected	records	are	deleted.

Example

The	following	example	shows	how	you	can	prevent	a	user	from	deleting	records
from	a	table.

To	try	this	example,	add	the	following	event	procedure	to	a	form	that	is	based	on
a	table.	Switch	to	form	Datasheet	view	and	try	to	delete	a	record.

Private	Sub	Form_Delete(Cancel	As	Integer)

				Cancel	=	True

				MsgBox	"This	record	can't	be	deleted."

End	Sub

Show	All

Dirty	Event
							

The	Dirty	event	occurs	when	the	contents	of	a	form	or	the	text	portion	of	a
combo	box	changes.	It	also	occurs	when	you	move	from	one	page	to	another
page	in	a	tab	control.

Private	Sub	Form_Dirty(Cancel	As	Integer)

The	Dirty	event	procedure	has	the	following	argument.

Argument Description

Cancel

The	setting	determines	if	the	Dirty	event	occurs.	Setting	the
Cancel	argument	to	True	cancels	the	Dirty	event.	You	can
also	use	the	CancelEvent	method	of	the	DoCmd	object	to
cancel	the	event.

	

Remarks

Examples	of	this	event	include	entering	a	character	directly	in	the	text	box	or
combo	box	or	changing	the	control's	Text	property	setting	by	using	a	macro	or
Visual	Basic.

Modifying	a	record	within	a	form	by	using	a	macro	or	Visual	Basic	doesn't
trigger	this	event.	You	must	type	the	data	directly	into	the	record	or	set	the
control's	Text	property.
This	event	applies	only	to	bound	forms,	not	an	unbound	form	or	report.

To	run	a	macro	or	event	procedure	when	this	event	occurs,	set	the	OnDirty
property	to	the	name	of	the	macro	or	to	[Event	Procedure].

By	running	a	macro	or	event	procedure	when	a	Dirty	event	occurs,	you	can
determine	if	the	record	can	be	changed.	You	can	also	display	a	message	and	ask
for	edit	permission.

Changing	the	data	in	a	record	by	using	the	keyboard	causes	keyboard	events	to
occur	in	addition	to	control	events	like	the	Dirty	event.	For	example,	if	you
move	to	a	new	record	and	type	an	ANSI	character	in	a	text	box	in	the	record,	the
following	events	occur	in	this	order:

KeyDown	>	KeyPress	>	BeforeInsert	>	Dirty	>	KeyUp

The	BeforeUpdate	and	AfterUpdate	events	for	a	record	occur	after	you	have
entered	the	new	or	changed	data	in	the	record	and	moved	to	another	record	(or
clicked	Save	Record	on	the	Records	menu),	and	therefore	after	the	Dirty	event
for	the	record.

Canceling	the	Dirty	event	will	cause	the	changes	to	the	current	record	to	be
rolled	back.	It	is	equivalent	to	pressing	the	ESC	key.

Example

The	following	example	enables	the	btnUndo	button	when	data	is	changed.	The
UndoEdits()	subroutine	is	called	from	the	Dirty	event	of	text	box	controls.
Clicking	the	enabled	btnUndo	button	restores	the	original	value	of	the	control	by
using	the	OldValue	property.

Private	Sub	Form_Dirty()

				If	Me.Dirty	Then

								Me!btnUndo.Enabled	=	True					'	Enable	button.

				Else

								Me!btnUndo.Enabled	=	False				'	Disable	button.

				End	If

End	Sub

Sub	btnUndo_Click()

				Dim	ctlC	As	Control

								'	For	each	control.

								For	Each	ctlC	in	Me.Controls

												If	ctlC.ControlType	=	acTextBox	Then

																'	Restore	Old	Value.

																ctlC.Value	=	ctlC.OldValue

												End	If

								Next	ctlC

End	Sub

Show	All

Enter	Event
							

The	Enter	event	occurs	before	a	control	actually	receives	the	focus	from	a
control	on	the	same	form.

Remarks

The	Enter	event	applies	only	to	controls	on	a	form,	not	controls	on	a	report.	This
event	does	not	apply	to	check	boxes,	option	buttons,	or	toggle	buttons	in	an
option	group.	It	applies	only	to	the	option	group	itself.

To	run	a	macro	or	event	procedure	when	these	events	occur,	set	the	OnEnter	or
OnExit	property	to	the	name	of	the	macro	or	to	[Event	Procedure].

Because	the	Enter	event	occurs	before	the	focus	moves	to	a	particular	control,
you	can	use	an	Enter	macro	or	event	procedure	to	display	instructions;	for
example,	you	could	use	a	macro	or	event	procedure	to	display	a	small	form	or
message	box	identifying	the	type	of	data	the	control	typically	contains,	or	giving
instructions	on	how	to	use	the	control.

The	Enter	event	occurs	before	the	GotFocus	event.	The	Exit	event	occurs	before
the	LostFocus	event.

Unlike	the	GotFocus	and	LostFocus	events,	the	Enter	and	Exit	events	don't	occur
when	a	form	receives	or	loses	the	focus.	For	example,	suppose	you	select	a
check	box	on	a	form,	and	then	click	a	report.	The	Enter	and	GotFocus	events
occur	when	you	select	the	check	box.	Only	the	LostFocus	event	occurs	when
you	click	the	report.	The	Exit	event	doesn't	occur	(because	the	focus	is	moving
to	a	different	window).	If	you	select	the	check	box	on	the	form	again	to	bring	it
to	the	foreground,	the	GotFocus	event	occurs,	but	not	the	Enter	event	(because
the	control	had	the	focus	when	the	form	was	last	active).	The	Exit	event	occurs
only	when	you	click	another	control	on	the	form.

If	you	move	the	focus	to	a	control	on	a	form,	and	that	control	doesn't	have	the
focus	on	that	form,	the	Exit	and	LostFocus	events	for	the	control	that	does	have
the	focus	on	the	form	occur	before	the	Enter	and	GotFocus	events	for	the	control
you	moved	to.

If	you	use	the	mouse	to	move	the	focus	from	a	control	on	a	main	form	to	a
control	on	a	subform	of	that	form	(a	control	that	doesn't	already	have	the	focus
on	the	subform),	the	following	events	occur:

Exit	(for	the	control	on	the	main	form)

LostFocus	(for	the	control	on	the	main	form)

Enter	(for	the	subform	control)

Exit	(for	the	control	on	the	subform	that	had	the	focus)

LostFocus	(for	the	control	on	the	subform	that	had	the	focus)

Enter	(for	the	control	on	the	subform	that	the	focus	moved	to)

GotFocus	(for	the	control	on	the	subform	that	the	focus	moved	to)

If	the	control	you	move	to	on	the	subform	previously	had	the	focus,	neither	its
Enter	event	nor	its	GotFocus	event	occurs,	but	the	Enter	event	for	the	subform
control	does	occur.	If	you	move	the	focus	from	a	control	on	a	subform	to	a
control	on	the	main	form,	the	Exit	and	LostFocus	events	for	the	control	on	the
subform	don't	occur,	just	the	Exit	event	for	the	subform	control	and	the	Enter
and	GotFocus	events	for	the	control	on	the	main	form.

Note			You	often	use	the	mouse	or	a	key	such	as	TAB	to	move	the	focus	to
another	control.	This	causes	mouse	or	keyboard	events	to	occur	in	addition	to	the
events	discussed	in	this	topic.

Example

In	the	following	example,	two	event	procedures	are	attached	to	the	LastName
text	box.	The	Enter	event	procedure	displays	a	message	specifying	what	type	of
data	the	user	can	enter	in	the	text	box.	The	Exit	event	procedure	displays	a
dialog	box	asking	the	user	if	changes	should	be	saved	before	the	focus	moves	to
another	control.	If	the	user	clicks	the	Cancel	button,	the	Cancel	argument	is	set
to	True	(–1),	which	moves	the	focus	to	the	text	box	without	saving	changes.	If
the	user	chooses	the	OK	button,	the	changes	are	saved,	and	the	focus	moves	to
another	control.

To	try	the	example,	add	the	following	event	procedure	to	a	form	that	contains	a
text	box	named	LastName.

Private	Sub	LastName_Enter()

				MsgBox	"Enter	your	last	name."

End	Sub

Private	Sub	LastName_Exit(Cancel	As	Integer)

				Dim	strMsg	As	String

				strMsg	=	"You	entered	'"	&	Me!LastName	_

					&	"'	as	your	last	name."	&	_

								vbCrLf	&	"Is	this	correct?"

				If	MsgBox(strMsg,	vbYesNo)	=	vbNo	Then

								Cancel	=	True												'	Cancel	exit.

				Else

								Exit	Sub																				'	Save	changes	and	exit.

				End	If

End	Sub

Show	All

Error	Event
							

The	Error	event	occurs	when	a	run-time	error	is	produced	in	Microsoft	Access
when	a	form	or	report	has	the	focus.

Remarks

This	includes	Microsoft	Jet	database	engine	errors,	but	not	run-time	errors	in
Visual	Basic.

To	run	a	macro	or	event	procedure	when	this	event	occurs,	set	the	OnError
property	to	the	name	of	the	macro	or	to	[Event	Procedure].

By	running	an	event	procedure	or	a	macro	when	an	Error	event	occurs,	you	can
intercept	a	Microsoft	Access	error	message	and	display	a	custom	message	that
conveys	a	more	specific	meaning	for	your	application.

Show	All

Exit	Event
							

The	Exit	event	occurs	just	before	a	control	loses	the	focus	to	another	control	on
the	same	form.

Remarks

The	Exit	event	applies	only	to	controls	on	a	form,	not	controls	on	a	report.	This
event	does	not	apply	to	check	boxes,	option	buttons,	or	toggle	buttons	in	an
option	group.	It	applies	only	to	the	option	group	itself.

To	run	a	macro	or	event	procedure	when	this	event	occurs,	set	the	OnExit
property	to	the	name	of	the	macro	or	to	[Event	Procedure].

Because	the	Enter	event	occurs	before	the	focus	moves	to	a	particular	control,
you	can	use	an	Enter	macro	or	event	procedure	to	display	instructions;	for
example,	you	could	use	a	macro	or	event	procedure	to	display	a	small	form	or
message	box	identifying	the	type	of	data	the	control	typically	contains,	or	giving
instructions	on	how	to	use	the	control.

The	Exit	event	occurs	before	the	LostFocus	event.

Unlike	the	LostFocus	event,	the	Exit	event	does	not	occur	when	a	form	loses	the
focus.	For	example,	suppose	you	select	a	check	box	on	a	form,	and	then	click	a
report.	The	Enter	and	GotFocus	events	occur	when	you	select	the	check	box.
Only	the	LostFocus	event	occurs	when	you	click	the	report.	The	Exit	event
doesn't	occur	(because	the	focus	is	moving	to	a	different	window).	If	you	select
the	check	box	on	the	form	again	to	bring	it	to	the	foreground,	the	GotFocus
event	occurs,	but	not	the	Enter	event	(because	the	control	had	the	focus	when	the
form	was	last	active).	The	Exit	event	occurs	only	when	you	click	another	control
on	the	form.

If	you	move	the	focus	to	a	control	on	a	form,	and	that	control	doesn't	have	the
focus	on	that	form,	the	Exit	and	LostFocus	events	for	the	control	that	does	have
the	focus	on	the	form	occur	before	the	Enter	and	GotFocus	events	for	the	control
you	moved	to.

If	you	use	the	mouse	to	move	the	focus	from	a	control	on	a	main	form	to	a
control	on	a	subform	of	that	form	(a	control	that	doesn't	already	have	the	focus
on	the	subform),	the	following	events	occur:

Exit	(for	the	control	on	the	main	form)

LostFocus	(for	the	control	on	the	main	form)

Enter	(for	the	subform	control)

Exit	(for	the	control	on	the	subform	that	had	the	focus)

LostFocus	(for	the	control	on	the	subform	that	had	the	focus)

Enter	(for	the	control	on	the	subform	that	the	focus	moved	to)

GotFocus	(for	the	control	on	the	subform	that	the	focus	moved	to)

If	the	control	you	move	to	on	the	subform	previously	had	the	focus,	neither	its
Enter	event	nor	its	GotFocus	event	occurs,	but	the	Enter	event	for	the	subform
control	does	occur.	If	you	move	the	focus	from	a	control	on	a	subform	to	a
control	on	the	main	form,	the	Exit	and	LostFocus	events	for	the	control	on	the
subform	don't	occur,	just	the	Exit	event	for	the	subform	control	and	the	Enter
and	GotFocus	events	for	the	control	on	the	main	form.

Note			You	often	use	the	mouse	or	a	key	such	as	TAB	to	move	the	focus	to
another	control.	This	causes	mouse	or	keyboard	events	to	occur	in	addition	to	the
events	discussed	in	this	topic.

Example

In	the	following	example,	two	event	procedures	are	attached	to	the	LastName
text	box.	The	Enter	event	procedure	displays	a	message	specifying	what	type	of
data	the	user	can	enter	in	the	text	box.	The	Exit	event	procedure	displays	a
dialog	box	asking	the	user	if	changes	should	be	saved	before	the	focus	moves	to
another	control.	If	the	user	clicks	the	Cancel	button,	the	Cancel	argument	is	set
to	True,	which	moves	the	focus	to	the	text	box	without	saving	changes.	If	the
user	chooses	the	OK	button,	the	changes	are	saved,	and	the	focus	moves	to
another	control.

To	try	the	example,	add	the	following	event	procedure	to	a	form	that	contains	a
text	box	named	LastName.

Private	Sub	LastName_Enter()

				MsgBox	"Enter	your	last	name."

End	Sub

Private	Sub	LastName_Exit(Cancel	As	Integer)

				Dim	strMsg	As	String

				strMsg	=	"You	entered	'"	&	Me!LastName	_

					&	"'	as	your	last	name."	&	_

								vbCrLf	&	"Is	this	correct?"

				If	MsgBox(strMsg,	vbYesNo)	=	vbNo	Then

								Cancel	=	True												'	Cancel	exit.

				Else

								Exit	Sub																				'	Save	changes	and	exit.

				End	If

End	Sub

Show	All

Filter	Event
							

The	Filter	event	can	occur	within	a	Microsoft	Access	project	(.adp)	or	Access
database	(.mdb).

Within	an	Access	database,	a	Filter	event	occurs	when	the	user	does	one	of	the
following:

On	the	Records	menu	in	Form	view,	points	to	Filter	and	then	clicks	Filter
By	Form,	or	clicks	Filter	By	Form	 	on	the	toolbar.	This	opens	the	Filter
By	Form	window,	where	you	can	create	a	filter	based	on	the	fields	in	the
form.
On	the	Records	menu	in	Form	view,	points	to	Filter	and	then	clicks
Advanced	Filter/Sort.	This	opens	the	Advanced	Filter/Sort	window,	where
you	can	create	complex	filters	for	the	form.
Clicks	Advanced	Filter/Sort	on	the	Filter	menu	while	the	Filter	By	Form
window	is	open,	or	clicks	Filter	By	Form	on	the	Filter	menu	while	the
Advanced	Filter/Sort	window	is	open.	This	causes	the	ApplyFilter	event	to
occur	when	the	open	filter	window	is	closed,	and	then	the	Filter	event	to
occur	when	the	other	filter	window	is	opened.

Within	an	Access	project,	a	Filter	event	occurs	when	the	user	does	one	of	the
following:

On	the	Records	menu	in	Form	view,	points	to	Filter	and	then	clicks	Filter
By	Form,	or	clicks	Filter	By	Form	 	on	the	toolbar.	This	opens	the	Filter
By	Form	window,	where	you	can	create	a	filter	based	on	the	fields	in	the
form.
On	the	Records	menu	in	Form	view,	points	to	Filter	and	then	clicks	Server
Filter	By	Form	 	on	the	toolbar.	This	opens	the	Server	Filter	By	Form
window,	where	you	can	quickly	create	a	server	filter	based	on	the	fields	in
the	form.
The	Advanced	Filter/Sort	window	is	not	available	in	an	Access	project.

Remarks

To	run	a	macro	or	event	procedure	when	this	event	occurs,	set	the	OnFilter
property	to	the	name	of	the	macro	or	to	[Event	Procedure].

You	can	use	the	Filter	event	to:

Remove	any	previous	filter	for	the	form.	To	do	this,	set	the	Filter	or
ServerFilter	property	of	the	form	to	a	zero-length	string	("	")	in	the	Filter
macro	or	event	procedure.	This	is	especially	useful	if	you	want	to	make
sure	extraneous	criteria	don't	appear	in	the	new	filter.	For	example,	when
you	use	the	Filter	By	Selection	feature,	the	criteria	you	use	(the	selected
text	in	the	form)	is	added	to	the	Filter	or	ServerFilter	property	WHERE
clause	expression,	and	appears	in	both	the	Filter	By	Form	window	and	the
Advanced	Filter/Sort	window	or	the	Server	Filter	By	Form	window.	You
can	remove	these	old	criteria	by	using	the	Filter	event.
Enter	default	settings	for	the	new	filter.	To	do	this,	set	the	Filter	or
ServerFilter	property	to	include	these	criteria.	For	example,	you	may	want
all	filters	for	a	Products	form	to	display	only	current	products	(products	for
which	the	Discontinued	control	in	the	Products	form	isn't	selected).
Use	your	own	custom	filter	window	instead	of	one	of	the	Microsoft	Access
filter	windows.	When	the	Filter	event	occurs,	you	can	open	your	own
custom	form	and	use	the	entries	on	this	form	to	set	the	Filter	or	ServerFilter
property	and	filter	the	original	form.	When	the	user	closes	this	custom
form,	set	the	FilterOn	or	ServerFilterByForm	property	of	the	original
form	to	True	(–1)	to	apply	the	filter.	Canceling	the	Filter	event	prevents	the
Microsoft	Access	filter	window	from	opening.
Prevent	certain	controls	on	the	form	from	appearing	or	being	used	in	the
Filter	By	Form	or	Server	Filter	By	Form	window.	If	you	hide	or	disable	a
control	in	the	Filter	macro	or	event	procedure,	the	control	is	hidden	or
disabled	in	the	Filter	By	Form	or	Server	Filter	By	Form	window,	and	can't
be	used	to	set	filter	criteria.	You	can	then	use	the	ApplyFilter	event	to	show
or	enable	this	control	after	the	filter	is	applied,	or	when	the	filter	is	removed
from	the	form.

Show	All

Format	Event
							

The	Format	event	occurs	when	Microsoft	Access	determines	which	data	belongs
in	a	report	section,	but	before	Microsoft	Access	formats	the	section	for
previewing	or	printing.

Remarks

To	run	a	macro	or	event	procedure	when	this	event	occurs,	set	the	OnFormat
property	to	the	name	of	the	macro	or	to	[Event	Procedure].

A	Format	event	occurs	for	each	section	in	a	report.	This	allows	you	to	create
complex	running	calculations	by	using	data	from	each	section,	including
sections	that	aren't	printed.

For	report	detail	sections,	the	Format	event	occurs	for	each	record	in	the	section
just	before	Microsoft	Access	formats	the	data	in	the	record.	A	Format	macro	or
event	procedure	has	access	to	the	data	in	the	current	record.

For	report	group	headers,	the	Format	event	occurs	for	each	new	group,	and	a
Format	macro	or	event	procedure	has	access	to	the	data	in	the	group	header	and
the	data	in	the	first	record	in	the	detail	section.	For	report	group	footers,	the
Format	event	occurs	for	each	new	group,	and	a	Format	macro	or	event	procedure
has	access	to	the	data	in	the	group	footer	and	the	data	in	the	last	record	in	the
detail	section.

By	running	a	macro	or	an	event	procedure	when	the	Format	event	occurs,	you
can	use	data	in	the	current	record	to	make	changes	to	the	report	that	affect	page
layout.	For	example,	you	can	display	or	hide	a	congratulatory	message	next	to	a
salesperson's	monthly	sales	total	in	a	sales	report,	depending	on	the	sales	total.
After	the	control	is	displayed	or	hidden,	Microsoft	Access	formats	the	section	by
using	the	values	of	format	properties,	such	as	CanGrow,	CanShrink,
HideDuplicates,	KeepTogether,	and	Visible.

For	changes	that	don't	affect	page	layout	or	for	event	procedures	or	macros	that
should	run	only	after	the	data	on	a	page	has	been	formatted,	such	as	a	macro	that
prints	page	totals,	use	the	Print	event	for	the	report	section.

There	are	times	when	Microsoft	Access	must	return	to	previous	sections	on	a
report	to	perform	multiple	formatting	passes.	When	this	happens,	the	Retreat
event	occurs	as	the	report	returns	to	each	previous	section,	and	the	Format	event
occurs	more	than	once	for	each	section.	You	can	run	a	macro	or	event	procedure
when	the	Retreat	event	occurs	to	undo	any	changes	that	you	made	when	the
Format	event	occurred	for	the	section.	This	is	useful	when	your	Format	macro	or

event	procedure	carries	out	actions,	such	as	calculating	page	totals	or	controlling
the	size	of	a	section,	that	you	want	to	perform	only	once	for	each	section.

Show	All

GotFocus	Event
							

The	GotFocus	event	occurs	when	a	form	or	control	receives	the	focus.

Remarks

Note			The	GotFocus	event	applies	only	to	forms	and	controls	on	a	form,	not
controls	on	a	report.

To	run	a	macro	or	event	procedure	when	these	events	occur,	set	the
OnGotFocus	property	to	the	name	of	the	macro	or	to	[Event	Procedure].

These	events	occur	when	the	focus	moves	in	response	to	a	user	action,	such	as
pressing	the	TAB	key	or	clicking	the	object,	or	when	you	use	the	SetFocus
method	in	Visual	Basic	or	the	SelectObject,	GoToRecord,	GoToControl,	or
GoToPage	action	in	a	macro.

A	control	can	receive	the	focus	only	if	its	Visible	and	Enabled	properties	are	set
to	Yes.	A	form	can	receive	the	focus	only	if	it	has	no	controls	or	if	all	visible
controls	are	disabled.	If	a	form	contains	any	visible,	enabled	controls,	the
GotFocus	event	for	the	form	doesn't	occur.

You	can	specify	what	happens	when	a	form	or	control	receives	the	focus	by
running	a	macro	or	an	event	procedure	when	the	GotFocus	event	occurs.	For
example,	by	attaching	a	GotFocus	event	procedure	to	each	control	on	a	form,
you	can	guide	the	user	through	your	application	by	displaying	brief	instructions
or	messages	in	a	text	box.	You	can	also	provide	visual	cues	by	enabling,
disabling,	or	displaying	controls	that	depend	on	the	control	with	the	focus.

Note			To	customize	the	order	in	which	the	focus	moves	from	control	to	control
on	a	form	when	you	press	the	TAB	key,	set	the	tab	order	or	specify	access	keys
for	the	controls.

The	GotFocus	event	differs	from	the	Enter	event	in	that	the	GotFocus	event
occurs	every	time	a	control	receives	the	focus.	For	example,	suppose	the	user
clicks	a	check	box	on	a	form,	then	clicks	a	report,	and	finally	clicks	the	check
box	on	the	form	to	bring	it	to	the	foreground.	The	GotFocus	event	occurs	both
times	the	check	box	receives	the	focus.	In	contrast,	the	Enter	event	occurs	only
the	first	time	the	user	clicks	the	check	box.	The	GotFocus	event	occurs	after	the
Enter	event.

If	you	move	the	focus	to	a	control	on	a	form,	and	that	control	doesn't	have	the

mk:@MSITStore:acmain10.chm::/html/acactSelectObject.htm
mk:@MSITStore:acmain10.chm::/html/acactGoToRecord.htm
mk:@MSITStore:acmain10.chm::/html/acactGoToControl.htm
mk:@MSITStore:acmain10.chm::/html/acactGoToPage.htm

focus	on	that	form,	the	Exit	and	LostFocus	events	for	the	control	that	does	have
the	focus	on	the	form	occur	before	the	Enter	and	GotFocus	events	for	the	control
you	moved	to.

If	you	use	the	mouse	to	move	the	focus	from	a	control	on	a	main	form	to	a
control	on	a	subform	of	that	form,	the	following	events	occur:

Exit	(for	the	control	on	the	main	form)

LostFocus	(for	the	control	on	the	main	form)

Enter	(for	the	subform	control)

Exit	(for	the	control	on	the	subform	that	had	the	focus)

LostFocus	(for	the	control	on	the	subform	that	had	the	focus)

Enter	(for	the	control	on	the	subform	that	the	focus	moved	to)

GotFocus	(for	the	control	on	the	subform	that	the	focus	moved	to)

If	the	control	you	move	to	on	the	subform	previously	had	the	focus,	neither	its
Enter	event	nor	its	GotFocus	event	occurs,	but	the	Enter	event	for	the	subform
control	does	occur.	If	you	move	the	focus	from	a	control	on	a	subform	to	a
control	on	the	main	form,	the	Exit	and	LostFocus	events	for	the	control	on	the
subform	don't	occur,	just	the	Exit	event	for	the	subform	control	and	the	Enter
and	GotFocus	events	for	the	control	on	the	main	form.

Note			You	often	use	the	mouse	or	a	key	such	as	TAB	to	move	the	focus	to
another	control.	This	causes	mouse	or	keyboard	events	to	occur	in	addition	to	the
events	discussed	in	this	topic.

When	you	switch	between	two	open	forms,	the	Deactivate	event	occurs	for	the
first	form,	and	the	Activate	event	occurs	for	the	second	form.	If	the	forms
contain	no	visible,	enabled	controls,	the	LostFocus	event	occurs	for	the	first
form	before	the	Deactivate	event,	and	the	GotFocus	event	occurs	for	the	second
form	after	the	Activate	event.

Example

The	following	example	displays	a	message	in	a	label	when	the	focus	moves	to	an
option	button.

To	try	the	example,	add	the	following	event	procedures	to	a	form	named
Contacts	that	contains	an	option	button	named	OptionYes	and	a	label	named
LabelYes.

Private	Sub	OptionYes_GotFocus()

				Me!LabelYes.Caption	=	"Option	button	'Yes'	has	the	focus."

End	Sub

Private	Sub	OptionYes_LostFocus()

				Me!LabelYes.Caption	=	""								'	Clear	caption.

End	Sub

Show	All

ItemAdded	Event
							

Some	of	the	content	in	this	topic	may	not	be	applicable	to	some	languages.

The	ItemAdded	event	occurs	when	a	reference	is	added	to	the	project	from
Visual	Basic.

Remarks

The	ItemAdded	event	applies	to	the	References	collection.	It	isn't
associated	with	a	control,	form,	or	report,	as	are	most	other	events.
Therefore,	in	order	to	create	a	procedure	definition	for	the	ItemAdded	event
procedure,	you	must	use	a	special	syntax.
The	ItemAdded	event	can	run	only	an	event	procedure	when	it	occurs,	it
cannot	run	a	macro.

This	event	occurs	only	when	you	add	a	reference	from	code.	It	doesn't	occur
when	you	add	a	reference	from	the	References	dialog	box,	available	by	clicking
References	on	the	Tools	menu	when	the	Module	window	is	the	active	window.

Example

The	following	example	includes	event	procedures	for	the	ItemAdded	and
ItemRemoved	events.	To	try	this	example,	first	create	a	new	class	module	by
clicking	Class	Module	on	the	Insert	menu.	Paste	the	following	code	into	the
class	module	and	save	the	module	as	RefEvents:

'	Declare	object	variable	to	represent	References	collection.

Public	WithEvents	evtReferences	As	References

'	When	instance	of	class	is	created,	initialize	evtReferences

'	variable.

Private	Sub	Class_Initialize()

				Set	evtReferences	=	Application.References

End	Sub

'	When	instance	is	removed,	set	evtReferences	to	Nothing.

Private	Sub	Class_Terminate()

				Set	evtReferences	=	Nothing

End	Sub

'	Display	message	when	reference	is	added.

Private	Sub	evtReferences_ItemAdded(ByVal	Reference	As	_

								Access.Reference)

				MsgBox	"Reference	to	"	&	Reference.Name	&	"	added."

End	Sub

'	Display	message	when	reference	is	removed.

Private	Sub	evtReferences_ItemRemoved(ByVal	Reference	As	_

								Access.Reference)

				MsgBox	"Reference	to	"	&	Reference.Name	&	"	removed."

End	Sub

The	following	Function	procedure	adds	a	specified	reference.	When	a	reference
is	added,	the	ItemAdded	event	procedure	defined	in	the	RefEvents	class	runs.

For	example,	to	set	a	reference	to	the	calendar	control,	you	could	pass	the	string
"C:\Windows\System\Mscal.ocx",	if	this	is	the	correct	location	for	the	calendar
control	on	your	computer.

'	Create	new	instance	of	RefEvents	class.

Dim	objRefEvents	As	New	RefEvents

'	Pass	file	name	and	path	of	type	library	to	this	procedure.

Function	AddReference(strFileName	As	String)	As	Boolean

				Dim	ref	As	Reference

				On	Error	GoTo	Error_AddReference

				'	Create	new	reference	on	References	object	variable.

				Set	ref	=	objRefEvents.evtReferences.AddFromFile(strFileName)

				AddReference	=	True

Exit_AddReference:

				Exit	Function

Error_AddReference:

				MsgBox	Err	&	":	"	&	Err.Description

				AddReference	=	False

				Resume	Exit_AddReference

End	Function

Show	All

ItemRemoved	Event
							

Some	of	the	content	in	this	topic	may	not	be	applicable	to	some	languages.

The	ItemRemoved	event	occurs	when	a	reference	is	removed	from	the	project.

Remarks

The	ItemRemoved	event	applies	to	the	References	collection.	It	isn't
associated	with	a	control,	form,	or	report,	as	are	most	other	events.
Therefore,	in	order	to	create	a	procedure	definition	for	the	ItemRemoved
event	procedure,	you	must	use	a	special	syntax.
The	ItemRemoved	event	can	run	only	an	event	procedure	when	it	occurs,	it
cannot	run	a	macro.

This	event	occurs	only	when	you	remove	a	reference	from	code.	It	doesn't	occur
when	you	remove	a	reference	from	the	References	dialog	box,	available	by
clicking	References	on	the	Tools	menu	when	the	Module	window	is	the	active
window.

Example

The	following	example	includes	event	procedures	for	the	ItemAdded	and
ItemRemoved	events.	To	try	this	example,	first	create	a	new	class	module	by
clicking	Class	Module	on	the	Insert	menu.	Paste	the	following	code	into	the
class	module	and	save	the	module	as	RefEvents:

'	Declare	object	variable	to	represent	References	collection.

Public	WithEvents	evtReferences	As	References

'	When	instance	of	class	is	created,	initialize	evtReferences

'	variable.

Private	Sub	Class_Initialize()

				Set	evtReferences	=	Application.References

End	Sub

'	When	instance	is	removed,	set	evtReferences	to	Nothing.

Private	Sub	Class_Terminate()

				Set	evtReferences	=	Nothing

End	Sub

'	Display	message	when	reference	is	added.

Private	Sub	evtReferences_ItemAdded(ByVal	Reference	As	_

								Access.Reference)

				MsgBox	"Reference	to	"	&	Reference.Name	&	"	added."

End	Sub

'	Display	message	when	reference	is	removed.

Private	Sub	evtReferences_ItemRemoved(ByVal	Reference	As	_

								Access.Reference)

				MsgBox	"Reference	to	"	&	Reference.Name	&	"	removed."

End	Sub

The	next	Function	procedure	removes	a	specified	reference.	When	a	reference	is
removed,	the	ItemRemoved	event	procedure	defined	in	the	RefEvents	class	runs.

For	example,	to	remove	a	reference	to	the	calendar	control,	you	could	pass	the
string	"MSACAL",	which	is	the	name	of	the	Reference	object	that	represents
the	calendar	control.

Function	RemoveReference(strRefName	As	String)	As	Boolean

				Dim	ref	As	Reference

				On	Error	GoTo	Error_RemoveReference

				'	Return	object	representing	existing	reference.

				Set	ref	=	objRefEvents.evtReferences(strRefName)

				'	Remove	reference	from	collection.

				objRefEvents.evtReferences.Remove	ref

				RemoveReference	=	True

Exit_RemoveReference:

				Exit	Function

Error_RemoveReference:

				MsgBox	Err	&	":	"	&	Err.Description

				RemoveReference	=	False

				Resume	Exit_RemoveReference

End	Function

Show	All

KeyDown	Event
							

The	KeyDown	event	occurs	when	the	user	presses	a	key	while	a	form	or	control
has	the	focus.	This	event	also	occurs	if	you	send	a	keystroke	to	a	form	or	control
by	using	the	SendKeys	action	in	a	macro	or	the	SendKeys	statement	in	Visual
Basic.

mk:@MSITStore:acmain10.chm::/html/acactSendKeys.htm

Remarks

Note			The	KeyDown	event	applies	only	to	forms	and	controls	on	a	form,	not
controls	on	a	report.

To	run	a	macro	or	event	procedure	when	these	events	occur,	set	the
OnKeyDown	property	to	the	name	of	the	macro	or	to	[Event	Procedure].

For	both	events,	the	object	with	the	focus	receives	all	keystrokes.	A	form	can
have	the	focus	only	if	it	has	no	controls	or	all	its	visible	controls	are	disabled.

A	form	will	also	receive	all	keyboard	events,	even	those	that	occur	for	controls,
if	you	set	the	KeyPreview	property	of	the	form	to	Yes.	With	this	property
setting,	all	keyboard	events	occur	first	for	the	form,	and	then	for	the	control	that
has	the	focus.	You	can	respond	to	specific	keys	pressed	in	the	form,	regardless	of
which	control	has	the	focus.	For	example,	you	may	want	the	key	combination
CTRL+X	to	always	perform	the	same	action	on	a	form.

If	you	press	and	hold	down	a	key,	the	KeyDown	and	KeyPress	events	alternate
repeatedly	(KeyDown,	KeyPress,	KeyDown,	KeyPress,	and	so	on)	until	you
release	the	key,	then	the	KeyUp	event	occurs.

Although	the	KeyDown	event	occurs	when	most	keys	are	pressed,	it	is	typically
used	to	recognize	or	distinguish	between:

Extended	character	keys,	such	as	function	keys.
Navigation	keys,	such	as	HOME,	END,	PAGE	UP,	PAGE	DOWN,	UP
ARROW,	DOWN	ARROW,	RIGHT	ARROW,	LEFT	ARROW,	and	TAB.
Combinations	of	keys	and	standard	keyboard	modifiers	(SHIFT,	CTRL,	or
ALT	keys).
The	numeric	keypad	and	keyboard	number	keys.

The	KeyDown	event	does	not	occur	when	you	press:

The	ENTER	key	if	the	form	has	a	command	button	for	which	the	Default
property	is	set	to	Yes.
The	ESC	key	if	the	form	has	a	command	button	for	which	the	Cancel
property	is	set	to	Yes.

Tip			To	find	out	the	ANSI	character	corresponding	to	the	key	pressed,	use	the
KeyPress	event.

The	KeyDown	event	occurs	when	you	press	or	send	an	ANSI	key.	The	KeyUp
event	occurs	after	any	event	for	a	control	caused	by	pressing	or	sending	the	key.
If	a	keystroke	causes	the	focus	to	move	from	one	control	to	another	control,	the
KeyDown	event	occurs	for	the	first	control,	while	the	KeyPress	and	KeyUp
events	occur	for	the	second	control.

For	more	information,	see	Order	of	events	for	keystrokes	and	mouse	clicks.

If	a	modal	dialog	box	is	displayed	as	a	result	of	pressing	or	sending	a	key,	the
KeyDown	and	KeyPress	events	occur,	but	the	KeyUp	event	doesn't	occur.

mk:@MSITStore:acmain10.chm::/html/acconWhenDoEventsOccurS.htm

Example

The	following	example	determines	whether	you	have	pressed	the	SHIFT,	CTRL,
or	ALT	key.

To	try	the	example,	add	the	following	event	procedure	to	a	form	containing	a
text	box	named	KeyHandler.

Private	Sub	KeyHandler_KeyDown(KeyCode	As	Integer,	_

					Shift	As	Integer)

				Dim	intShiftDown	As	Integer,	intAltDown	As	Integer

				Dim	intCtrlDown	As	Integer

				'	Use	bit	masks	to	determine	which	key	was	pressed.

				intShiftDown	=	(Shift	And	acShiftMask)	>	0

				intAltDown	=	(Shift	And	acAltMask)	>	0

				intCtrlDown	=	(Shift	And	acCtrlMask)	>	0

				'	Display	message	telling	user	which	key	was	pressed.

				If	intShiftDown	Then	MsgBox	"You	pressed	the	SHIFT	key."

				If	intAltDown	Then	MsgBox	"You	pressed	the	ALT	key."

				If	intCtrlDown	Then	MsgBox	"You	pressed	the	CTRL	key."

End	Sub

Show	All

KeyPress	Event
							

The	KeyPress	event	occurs	when	the	user	presses	and	releases	a	key	or	key
combination	that	corresponds	to	an	ANSI	code	while	a	form	or	control	has	the
focus.	This	event	also	occurs	if	you	send	an	ANSI	keystroke	to	a	form	or	control
by	using	the	SendKeys	action	in	a	macro	or	the	SendKeys	statement	in	Visual
Basic.

mk:@MSITStore:acmain10.chm::/html/acactSendKeys.htm

Remarks

Note			The	KeyPress	event	applies	only	to	forms	and	controls	on	a	form,	not
controls	on	a	report.

To	run	a	macro	or	event	procedure	when	this	event	occurs,	set	the	OnKeyPress
property	to	the	name	of	the	macro	or	to	[Event	Procedure].

The	object	with	the	focus	receives	all	keystrokes.	A	form	can	have	the	focus
only	if	it	has	no	controls	or	all	its	visible	controls	are	disabled.

A	form	will	also	receive	all	keyboard	events,	even	those	that	occur	for	controls,
if	you	set	the	KeyPreview	property	of	the	form	to	Yes.	With	this	property
setting,	all	keyboard	events	occur	first	for	the	form,	and	then	for	the	control	that
has	the	focus.	You	can	respond	to	specific	keys	pressed	in	the	form,	regardless	of
which	control	has	the	focus.	For	example,	you	may	want	the	key	combination
CTRL+X	to	always	perform	the	same	action	on	a	form.

If	you	press	and	hold	down	an	ANSI	key,	the	KeyDown	and	KeyPress	events
alternate	repeatedly	(KeyDown,	KeyPress,	KeyDown,	KeyPress,	and	so	on)	until
you	release	the	key,	then	the	KeyUp	event	occurs.

A	KeyPress	event	can	involve	any	printable	keyboard	character,	the	CTRL	key
combined	with	a	character	from	the	standard	alphabet	or	a	special	character,	and
the	ENTER	or	BACKSPACE	key.	You	can	use	the	KeyDown	and	KeyUp	event
procedures	to	handle	any	keystroke	not	recognized	by	the	KeyPress	event,	such
as	function	keys,	navigation	keys,	and	any	combinations	of	these	with	keyboard
modifiers	(ALT,	SHIFT,	or	CTRL	keys).	Unlike	the	KeyDown	and	KeyUp
events,	the	KeyPress	event	doesn't	indicate	the	physical	state	of	the	keyboard;
instead,	it	indicates	the	ANSI	character	that	corresponds	to	the	pressed	key	or
key	combinations.

KeyPress	interprets	the	uppercase	and	lowercase	of	each	character	as	separate
key	codes	and,	therefore,	as	two	separate	characters.

Note			The	BACKSPACE	key	is	part	of	the	ANSI	character	set,	but	the	DEL	key
isn't.	If	you	delete	a	character	in	a	control	by	using	the	BACKSPACE	key,	you
cause	a	KeyPress	event;	if	you	use	the	DEL	key,	you	don't.

The	KeyDown	and	KeyPress	events	occur	when	you	press	or	send	an	ANSI	key.
The	KeyUp	event	occurs	after	any	event	for	a	control	caused	by	pressing	or
sending	the	key.	If	a	keystroke	causes	the	focus	to	move	from	one	control	to
another	control,	the	KeyDown	event	occurs	for	the	first	control,	while	the
KeyPress	and	KeyUp	events	occur	for	the	second	control.

For	example,	if	you	go	to	a	new	record	and	type	a	character	in	the	first	control	in
the	record,	the	following	events	occur:

Current	(for	the	new	record)

Enter	(for	the	first	control	in	the	new	record)

GotFocus	(for	the	control)

KeyDown	(for	the	control)

KeyPress	(for	the	control)

BeforeInsert	(for	the	new	record	in	the	form)

Change	(for	the	control	if	it's	a	text	box	or	combo	box)

KeyUp	(for	the	control)

For	more	information,	see	Order	of	events	for	keystrokes	and	mouse	clicks.

mk:@MSITStore:acmain10.chm::/html/acconWhenDoEventsOccurS.htm

Example

The	following	example	converts	text	entered	in	a	text	box	to	uppercase	as	the
text	is	typed	in,	one	character	at	a	time.

To	try	the	example,	add	the	following	event	procedure	to	a	form	that	contains	a
text	box	named	ShipRegion.

Private	Sub	ShipRegion_KeyPress(KeyAscii	As	Integer)

				Dim	strCharacter	As	String

				'	Convert	ANSI	value	to	character	string.

				strCharacter	=	Chr(KeyAscii)

				'	Convert	character	to	upper	case,	then	to	ANSI	value.

				KeyAscii	=	Asc(UCase(strCharacter))

End	Sub

Show	All

KeyUp	Event
							

The	KeyUp	event	occurs	when	the	user	releases	a	key	while	a	form	or	control
has	the	focus.	This	event	also	occurs	if	you	send	a	keystroke	to	a	form	or	control
by	using	the	SendKeys	action	in	a	macro	or	the	SendKeys	statement	in	Visual
Basic.

Remarks

Note			The	KeyUp	event	applies	only	to	forms	and	controls	on	a	form,	not
controls	on	a	report.

To	run	a	macro	or	event	procedure	when	these	events	occur,	set	the	OnKeyUp
property	to	the	name	of	the	macro	or	to	[Event	Procedure].

For	this	event,	the	object	with	the	focus	receives	all	keystrokes.	A	form	can	have
the	focus	only	if	it	has	no	controls	or	all	its	visible	controls	are	disabled.

A	form	will	also	receive	all	keyboard	events,	even	those	that	occur	for	controls,
if	you	set	the	KeyPreview	property	of	the	form	to	Yes.	With	this	property
setting,	all	keyboard	events	occur	first	for	the	form,	and	then	for	the	control	that
has	the	focus.	You	can	respond	to	specific	keys	pressed	in	the	form,	regardless	of
which	control	has	the	focus.	For	example,	you	may	want	the	key	combination
CTRL+X	to	always	perform	the	same	action	on	a	form.

If	you	press	and	hold	down	a	key,	the	KeyDown	and	KeyPress	events	alternate
repeatedly	(KeyDown,	KeyPress,	KeyDown,	KeyPress,	and	so	on)	until	you
release	the	key,	then	the	KeyUp	event	occurs.

Although	the	KeyUp	event	occurs	when	most	keys	are	pressed,	they	are
typically	used	to	recognize	or	distinguish	between:

Extended	character	keys,	such	as	function	keys.

Navigation	keys,	such	as	HOME,	END,	PAGE	UP,	PAGE	DOWN,	UP
ARROW,	DOWN	ARROW,	RIGHT	ARROW,	LEFT	ARROW,	and	TAB.

Combinations	of	keys	and	standard	keyboard	modifiers	(SHIFT,	CTRL,	or
ALT	keys).

The	numeric	keypad	and	keyboard	number	keys.

The	KeyUp	event	does	not	occur	when	you	press:

The	ENTER	key	if	the	form	has	a	command	button	for	which	the	Default

property	is	set	to	Yes.

The	ESC	key	if	the	form	has	a	command	button	for	which	the	Cancel
property	is	set	to	Yes.

Tip			To	find	out	the	ANSI	character	corresponding	to	the	key	pressed,	use	the
KeyPress	event.

The	KeyUp	event	occurs	after	any	event	for	a	control	caused	by	pressing	or
sending	the	key.	If	a	keystroke	causes	the	focus	to	move	from	one	control	to
another	control,	the	KeyDown	event	occurs	for	the	first	control,	while	the
KeyPress	and	KeyUp	events	occur	for	the	second	control.

For	more	information,	see	Order	of	events	for	keystrokes	and	mouse	clicks.

If	a	modal	dialog	box	is	displayed	as	a	result	of	pressing	or	sending	a	key,	the
KeyDown	and	KeyPress	events	occur,	but	the	KeyUp	event	doesn't	occur.

mk:@MSITStore:acmain10.chm::/html/acconWhenDoEventsOccurS.htm

Show	All

Load	Event
							

The	Load	event	occurs	when	a	form	is	opened	and	its	records	are	displayed.

Remarks

To	run	a	macro	or	event	procedure	when	these	events	occur,	set	the	OnLoad
property	to	the	name	of	the	macro	or	to	[Event	Procedure].

The	Load	event	is	caused	by	user	actions	such	as:

Starting	an	application.
Opening	a	form	by	clicking	Open	in	the	Database	window.
Running	the	OpenForm	action	in	a	macro.

By	running	a	macro	or	an	event	procedure	when	a	form's	Load	event	occurs,	you
can	specify	default	settings	for	controls,	or	display	calculated	data	that	depends
on	the	data	in	the	form's	records.

By	running	a	macro	or	an	event	procedure	when	a	form's	Unload	event	occurs,
you	can	verify	that	the	form	should	be	unloaded	or	specify	actions	that	should
take	place	when	the	form	is	unloaded.	You	can	also	open	another	form	or	display
a	dialog	box	requesting	the	user's	name	to	make	a	log	entry	indicating	who	used
the	form.

When	you	first	open	a	form,	the	following	events	occur	in	this	order:

Open	 	Load	 	Resize	 	Activate	 	Current

If	you're	trying	to	decide	whether	to	use	the	Open	or	Load	event	for	your	macro
or	event	procedure,	one	significant	difference	is	that	the	Open	event	can	be
canceled,	but	the	Load	event	can't.	For	example,	if	you're	dynamically	building	a
record	source	for	a	form	in	an	event	procedure	for	the	form's	Open	event,	you
can	cancel	opening	the	form	if	there	are	no	records	to	display.

When	you	close	a	form,	the	following	events	occur	in	this	order:

Unload	 	Deactivate	 	Close

The	Unload	event	occurs	before	the	Close	event.	The	Unload	event	can	be
canceled,	but	the	Close	event	can't.

mk:@MSITStore:acmain10.chm::/html/acactOpenForm.htm

Note			When	you	create	macros	or	event	procedures	for	events	related	to	the
Load	event,	such	as	Activate	and	GotFocus,	be	sure	that	they	don't	conflict	(for
example,	make	sure	you	don't	cause	something	to	happen	in	one	macro	or
procedure	that	is	canceled	in	another)	and	that	they	don't	cause	cascading	events.

Example

The	following	example	displays	the	current	date	in	the	form's	caption	when	the
form	is	loaded.

To	try	the	example,	add	the	following	event	procedure	to	a	form:

Private	Sub	Form_Load()

				Me.Caption	=	Date

End	Sub

Show	All

LostFocus	Event
							

The	LostFocus	event	occurs	when	a	form	or	control	loses	the	focus.

Remarks

To	run	a	macro	or	event	procedure	when	these	events	occur,	set	the
OnLostFocus	property	to	the	name	of	the	macro	or	to	[Event	Procedure].

This	event	occurs	when	the	focus	moves	in	response	to	a	user	action,	such	as
pressing	the	TAB	key	or	clicking	the	object,	or	when	you	use	the	SetFocus
method	in	Visual	Basic	or	the	SelectObject,	GoToRecord,	GoToControl,	or
GoToPage	action	in	a	macro.

A	control	can	receive	the	focus	only	if	its	Visible	and	Enabled	properties	are	set
to	Yes.	A	form	can	receive	the	focus	only	if	it	has	no	controls	or	if	all	visible
controls	are	disabled.	If	a	form	contains	any	visible,	enabled	controls,	the
GotFocus	event	for	the	form	doesn't	occur.

Note			To	customize	the	order	in	which	the	focus	moves	from	control	to	control
on	a	form	when	you	press	the	TAB	key,	set	the	tab	order	or	specify	access	keys
for	the	controls.

The	LostFocus	event	differs	from	the	Exit	event	in	that	the	LostFocus	event
occurs	every	time	a	control	loses	the	focus.	The	Exit	event	occurs	only	before	a
control	loses	the	focus	to	another	control	on	the	same	form.	The	LostFocus	event
occurs	after	the	Exit	event.

If	you	move	the	focus	to	a	control	on	a	form,	and	that	control	doesn't	have	the
focus	on	that	form,	the	Exit	and	LostFocus	events	for	the	control	that	does	have
the	focus	on	the	form	occur	before	the	Enter	and	GotFocus	events	for	the	control
you	moved	to.

If	you	use	the	mouse	to	move	the	focus	from	a	control	on	a	main	form	to	a
control	on	a	subform	of	that	form,	the	following	events	occur:

Exit	(for	the	control	on	the	main	form)

LostFocus	(for	the	control	on	the	main	form)

mk:@MSITStore:acmain10.chm::/html/acactSelectObject.htm
mk:@MSITStore:acmain10.chm::/html/acactGoToRecord.htm
mk:@MSITStore:acmain10.chm::/html/acactGoToControl.htm
mk:@MSITStore:acmain10.chm::/html/acactGoToPage.htm

Enter	(for	the	subform	control)

Exit	(for	the	control	on	the	subform	that	had	the	focus)

LostFocus	(for	the	control	on	the	subform	that	had	the	focus)

Enter	(for	the	control	on	the	subform	that	the	focus	moved	to)

GotFocus	(for	the	control	on	the	subform	that	the	focus	moved	to)

If	the	control	you	move	to	on	the	subform	previously	had	the	focus,	neither	its
Enter	event	nor	its	GotFocus	event	occurs,	but	the	Enter	event	for	the	subform
control	does	occur.	If	you	move	the	focus	from	a	control	on	a	subform	to	a
control	on	the	main	form,	the	Exit	and	LostFocus	events	for	the	control	on	the
subform	don't	occur,	just	the	Exit	event	for	the	subform	control	and	the	Enter
and	GotFocus	events	for	the	control	on	the	main	form.

Note			You	often	use	the	mouse	or	a	key	such	as	TAB	to	move	the	focus	to
another	control.	This	causes	mouse	or	keyboard	events	to	occur	in	addition	to	the
events	discussed	in	this	topic.

When	you	switch	between	two	open	forms,	the	Deactivate	event	occurs	for	the
first	form,	and	the	Activate	event	occurs	for	the	second	form.	If	the	forms
contain	no	visible,	enabled	controls,	the	LostFocus	event	occurs	for	the	first
form	before	the	Deactivate	event,	and	the	GotFocus	event	occurs	for	the	second
form	after	the	Activate	event.

Example

The	following	example	displays	a	message	in	a	label	when	the	focus	moves	to	an
option	button.

To	try	the	example,	add	the	following	event	procedures	to	a	form	named
Contacts	that	contains	an	option	button	named	OptionYes	and	a	label	named
LabelYes.

Private	Sub	OptionYes_GotFocus()

				Me!LabelYes.Caption	=	"Option	button	'Yes'	has	the	focus."

End	Sub

Private	Sub	OptionYes_LostFocus()

				Me!LabelYes.Caption	=	""								'	Clear	caption.

End	Sub

Show	All

MouseDown	Event
							

The	MouseDown	event	occurs	when	the	user	presses	a	mouse	button.

Remarks

The	MouseDown	event	applies	only	to	forms,	form	sections,	and	controls
on	a	form,	not	controls	on	a	report.
This	event	does	not	apply	to	a	label	attached	to	another	control,	such	as	the
label	for	a	text	box.	It	applies	only	to	"freestanding"	labels.	Pressing	and
releasing	a	mouse	button	in	an	attached	label	has	the	same	effect	as	pressing
and	releasing	the	button	in	the	associated	control.	The	normal	events	for	the
control	occur;	no	separate	events	occur	for	the	attached	label.

To	run	a	macro	or	event	procedure	when	these	events	occur,	set	the
OnMouseDown	property	to	the	name	of	the	macro	or	to	[Event	Procedure].

You	can	use	a	MouseDown	event	to	specify	what	happens	when	a	particular
mouse	button	is	pressed	or	released.	Unlike	the	Click	and	DblClick	events,	the
MouseDown	event	enables	you	to	distinguish	between	the	left,	right,	and	middle
mouse	buttons.	You	can	also	write	code	for	mouse-keyboard	combinations	that
use	the	SHIFT,	CTRL,	and	ALT	keys.

To	cause	a	MouseDown	event	for	a	form	to	occur,	press	the	mouse	button	in	a
blank	area	or	record	selector	on	the	form.	To	cause	a	MouseDown	event	for	a
form	section	to	occur,	press	the	mouse	button	in	a	blank	area	of	the	form	section.

The	following	apply	to	MouseDown	events:

If	a	mouse	button	is	pressed	while	the	pointer	is	over	a	form	or	control,	that
object	receives	all	mouse	events	up	to	and	including	the	last	MouseUp
event.
If	mouse	buttons	are	pressed	in	succession,	the	object	that	receives	the
mouse	event	after	the	first	press	receives	all	mouse	events	until	all	buttons
are	released.

To	respond	to	an	event	caused	by	moving	the	mouse,	you	use	a	MouseMove
event.

Example

The	following	example	shows	how	you	can	find	out	which	mouse	button	caused
a	MouseDown	event.

To	try	the	example,	add	the	following	event	procedure	to	a	form:

Private	Sub	Form_MouseDown(Button	As	Integer,	_

									Shift	As	Integer,	X	As	Single,	_

									Y	As	Single)

				If	Button	=	acLeftButton	Then

								MsgBox	"You	pressed	the	left	button."

				End	If

				If	Button	=	acRightButton	Then

								MsgBox	"You	pressed	the	right	button."

				End	If

				If	Button	=	acMiddleButton	Then

								MsgBox	"You	pressed	the	middle	button."

				End	If

End	Sub

Show	All

MouseMove	Event
							

The	MouseMove	event	occurs	when	the	user	moves	the	mouse.

Remarks

The	MouseMove	event	applies	only	to	forms,	form	sections,	and	controls	on	a
form,	not	controls	on	a	report.

This	event	doesn't	apply	to	a	label	attached	to	another	control,	such	as	the	label
for	a	text	box.	It	applies	only	to	"freestanding"	labels.	Moving	the	mouse	pointer
over	an	attached	label	has	the	same	effect	as	moving	the	pointer	over	the
associated	control.	The	normal	events	for	the	control	occur;	no	separate	events
occur	for	the	attached	label.

To	run	a	macro	or	event	procedure	when	this	event	occurs,	set	the
OnMouseMove	property	to	the	name	of	the	macro	or	to	[Event	Procedure].

The	MouseMove	event	is	generated	continually	as	the	mouse	pointer	moves	over
objects.	Unless	another	object	generates	a	mouse	event,	an	object	recognizes	a
MouseMove	event	whenever	the	mouse	pointer	is	positioned	within	its	borders.

To	cause	a	MouseMove	event	for	a	form	to	occur,	move	the	mouse	pointer	over
a	blank	area,	record	selector,	or	scroll	bar	on	the	form.	To	cause	a	MouseMove
event	for	a	form	section	to	occur,	move	the	mouse	pointer	over	a	blank	area	of
the	form	section.

Notes

Moving	a	form	can	trigger	a	MouseMove	event	even	if	the	mouse	is
stationary.	MouseMove	events	are	generated	when	the	form	moves
underneath	the	pointer.	If	a	macro	or	event	procedure	moves	a	form	in
response	to	a	MouseMove	event,	the	event	can	cascade	(that	is,	continually
generate	MouseMove	events).

If	two	controls	are	very	close	together,	and	you	move	the	mouse	pointer
quickly	over	the	space	between	them,	the	MouseMove	event	may	not	occur
for	the	space	(for	example,	this	might	be	the	MouseMove	event	for	the	form
section).	In	such	cases,	you	may	need	to	respond	to	the	MouseMove	event
in	the	contiguous	control,	as	well	as	in	the	form	section.

To	run	a	macro	or	event	procedure	in	response	to	pressing	and	releasing	the

mouse	buttons,	you	use	the	MouseDown	and	MouseUp	events.

Show	All

MouseUp	Event
							

The	MouseUp	event	occurs	when	the	user	releases	a	mouse	button.

Remarks

The	MouseUp	events	apply	only	to	forms,	form	sections,	and	controls	on	a
form,	not	controls	on	a	report.
These	events	don't	apply	to	a	label	attached	to	another	control,	such	as	the
label	for	a	text	box.	They	apply	only	to	"freestanding"	labels.	Pressing	and
releasing	a	mouse	button	in	an	attached	label	has	the	same	effect	as	pressing
and	releasing	the	button	in	the	associated	control.	The	normal	events	for	the
control	occur;	no	separate	events	occur	for	the	attached	label.

Remarks

To	run	a	macro	or	event	procedure	when	these	events	occur,	set	the
OnMouseUp	property	to	the	name	of	the	macro	or	to	[Event	Procedure].

You	can	use	a	MouseUp	event	to	specify	what	happens	when	a	particular	mouse
button	is	pressed	or	released.	Unlike	the	Click	and	DblClick	events,	the
MouseUp	event	enables	you	to	distinguish	between	the	left,	right,	and	middle
mouse	buttons.	You	can	also	write	code	for	mouse-keyboard	combinations	that
use	the	SHIFT,	CTRL,	and	ALT	keys.

To	cause	a	MouseUp	event	for	a	form	to	occur,	press	the	mouse	button	in	a	blank
area	or	record	selector	on	the	form.	To	cause	a	MouseUp	event	for	a	form
section	to	occur,	press	the	mouse	button	in	a	blank	area	of	the	form	section.

The	following	applies	to	MouseUp	events:

If	a	mouse	button	is	pressed	while	the	pointer	is	over	a	form	or	control,	that
object	receives	all	mouse	events	up	to	and	including	the	last	MouseUp
event.
If	mouse	buttons	are	pressed	in	succession,	the	object	that	receives	the
mouse	event	after	the	first	press	receives	all	mouse	events	until	all	buttons
are	released.

To	respond	to	an	event	caused	by	moving	the	mouse,	you	use	a	MouseMove
event.

MouseWheel	Event
							

Occurs	when	the	user	rolls	the	mouse	wheel	in	Form	View,	Datasheet	View,
PivotChart	View,	or	PivotTable	View.

Private	Sub	Form_MouseWheel(ByVal	Page	As	Boolean,	ByVal	Count	As
Long)

Page			True	if	the	page	was	changed.

Count			The	number	of	lines	by	which	the	view	was	scrolled	with	the	mouse
wheel.

Example

The	following	example	demonstrates	the	syntax	for	a	subroutine	that	traps	the
MouseWheel	event.

Private	Sub	Form_MouseWheel(_

								ByVal	Page	As	Boolean,	ByVal	Count	As	Long)

				If	Page	=	True	Then

								MsgBox	"You've	moved	to	another	page."

				End	If

End	Sub

Show	All

NoData	Event
							

The	NoData	event	occurs	after	Microsoft	Access	formats	a	report	for	printing
that	has	no	data	(the	report	is	bound	to	an	empty	recordset),	but	before	the	report
is	printed.	You	can	use	this	event	to	cancel	printing	of	a	blank	report.

Remarks

To	run	a	macro	or	event	procedure	when	this	event	occurs,	set	the	OnNoData
property	to	the	name	of	the	macro	or	to	[Event	Procedure].

If	the	report	isn't	bound	to	a	table	or	query	(by	using	the	report's	RecordSource
property),	the	NoData	event	doesn't	occur.

This	event	occurs	after	the	Format	events	for	the	report,	but	before	the	first	Print
event.

This	event	doesn't	occur	for	subreports.	If	you	want	to	hide	controls	on	a
subreport	when	the	subreport	has	no	data,	so	that	the	controls	don't	print	in	this
case,	you	can	use	the	HasData	property	in	a	macro	or	event	procedure	that	runs
when	the	Format	or	Print	event	occurs.

The	NoData	event	occurs	before	the	first	Page	event	for	the	report.

Show	All

NotInList	Event
							

The	NotInList	event	occurs	when	the	user	enters	a	value	in	the	text	box	portion
of	a	combo	box	that	isn't	in	the	combo	box	list.

Remarks

The	NotInList	event	applies	only	to	controls	on	a	form,	not	controls	on	a	report.

To	run	a	macro	or	event	procedure	when	this	event	occurs,	set	the	OnNotInList
property	to	the	name	of	the	macro	or	to	[Event	Procedure].

This	event	enables	the	user	to	add	a	new	value	to	the	combo	box	list.

The	LimitToList	property	must	be	set	to	Yes	for	the	NotInList	event	to	occur.

The	NotInList	event	doesn't	trigger	the	Error	event.

The	NotInList	event	occurs	for	combo	boxes	whose	LimitToList	property	is	set
to	Yes,	after	you	enter	a	value	that	isn't	in	the	list	and	attempt	to	move	to	another
control	or	save	the	record.	The	event	occurs	after	all	the	Change	events	for	the
combo	box.

When	the	AutoExpand	property	is	set	to	Yes,	Microsoft	Access	selects
matching	values	in	the	list	as	the	user	enters	characters	in	the	text	box	portion	of
the	combo	box.	If	the	characters	the	user	types	match	the	first	characters	of	a
value	in	the	list	(for	example,	the	user	types	"Smith"	and	"Smithson"	is	a	value
in	the	list),	the	NotInList	event	will	not	occur	when	the	user	moves	to	another
control	or	saves	the	record.	However,	the	characters	that	Microsoft	Access	adds
to	the	characters	the	user	types	(in	the	example,	"son")	are	selected	in	the	text
box	portion	of	the	combo	box.	If	the	user	wants	the	NotInList	event	to	fire	in
such	cases	(for	example,	the	user	wants	to	add	the	new	name	"Smith"	to	the
combo	box	list),	the	user	can	enter	a	SPACE,	BACKSPACE,	or	DEL	character
after	the	last	character	in	the	new	value.

When	the	LimitToList	property	is	set	to	Yes	and	the	combo	box	list	is	dropped
down,	Microsoft	Access	selects	matching	values	in	the	list	as	the	user	enters
characters	in	the	text	box	portion	of	the	combo	box,	even	if	the	AutoExpand
property	is	set	to	No.	If	the	user	presses	ENTER	or	moves	to	another	control	or
record,	the	selected	value	appears	in	the	combo	box.	In	this	case,	the	NotInList
event	will	not	fire.	To	allow	the	NotInList	event	to	fire,	the	user	should	not	drop
down	the	combo	box	list.

OnConnect	Event
							

Occurs	when	the	specified	PivotTable	view	connects	to	a	data	source.

Private	Sub	Form_OnConnect()

Example

The	following	example	demonstrates	the	syntax	for	a	subroutine	that	traps	the
OnConnect	event.

Private	Sub	Form_OnConnect()

				MsgBox	"The	PivotTable	View	has	"	_

								&	"connected	to	its	data	source!"

End	Sub

OnDisconnect	Event
							

Occurs	when	the	specified	PivotTable	view	disconnects	from	a	data	source.

Private	Sub	Form_OnDisconnect()

Example

The	following	example	demonstrates	the	syntax	for	a	subroutine	that	traps	the
OnDisconnect	event.

Private	Sub	Form_OnDisconnect()

				MsgBox	"The	PivotTable	View	has	"	_

								&	"disconnected	from	its	data	source!"

End	Sub

Show	All

Open	Event
							

The	Open	event	occurs	when	a	form	is	opened,	but	before	the	first	record	is
displayed.	For	reports,	the	event	occurs	before	a	report	is	previewed	or	printed.

Remarks

To	run	a	macro	or	event	procedure	when	these	events	occur,	set	the	OnOpen
property	to	the	name	of	the	macro	or	to	[Event	Procedure].

By	running	a	macro	or	an	event	procedure	when	a	form's	Open	event	occurs,	you
can	close	another	window	or	move	the	focus	to	a	particular	control	on	a	form.
You	can	also	run	a	macro	or	an	event	procedure	that	asks	for	information	needed
before	the	form	or	report	is	opened	or	printed.	For	example,	an	Open	macro	or
event	procedure	can	open	a	custom	dialog	box	in	which	the	user	enters	the
criteria	for	the	set	of	records	to	display	on	a	form	or	the	date	range	to	include	for
a	report.

The	Open	event	doesn't	occur	when	you	activate	a	form	that's	already	open	—
for	example,	when	you	switch	to	the	form	from	another	window	in	Microsoft
Access	or	use	the	OpenForm	action	in	a	macro	to	bring	the	open	form	to	the	top.
However,	the	Activate	event	does	occur	in	these	situations.

When	you	open	a	form	based	on	an	underlying	query,	Microsoft	Access	runs	the
underlying	query	for	the	form	before	it	runs	the	Open	macro	or	event	procedure.
However,	when	you	open	a	report	based	on	an	underlying	query,	Microsoft
Access	runs	the	Open	macro	or	event	procedure	before	it	runs	the	underlying
query	for	the	report.	This	enables	the	user	to	specify	criteria	for	the	report	before
it	opens	—	for	example,	in	a	custom	dialog	box	you	display	when	the	Open
event	occurs.

If	your	application	can	have	more	than	one	form	loaded	at	a	time,	use	the
Activate	and	Deactivate	events	instead	of	the	Open	event	to	display	and	hide
custom	toolbars	when	the	focus	moves	to	a	different	form.

The	Open	event	occurs	before	the	Load	event,	which	is	triggered	when	a	form	is
opened	and	its	records	are	displayed.

When	you	first	open	a	form,	the	following	events	occur	in	this	order:

Open	 	Load	 	Resize	 	Activate	 	Current

The	Close	event	occurs	after	the	Unload	event,	which	is	triggered	after	the	form

mk:@MSITStore:acmain10.chm::/html/acactOpenForm.htm

is	closed	but	before	it	is	removed	from	the	screen.

When	you	close	a	form,	the	following	events	occur	in	this	order:

Unload	 	Deactivate	 	Close

When	the	Close	event	occurs,	you	can	open	another	window	or	request	the	user's
name	to	make	a	log	entry	indicating	who	used	the	form	or	report.

If	you're	trying	to	decide	whether	to	use	the	Open	or	Load	event	for	your	macro
or	event	procedure,	one	significant	difference	is	that	the	Open	event	can	be
canceled,	but	the	Load	event	can't.	For	example,	if	you're	dynamically	building	a
record	source	for	a	form	in	an	event	procedure	for	the	form's	Open	event,	you
can	cancel	opening	the	form	if	there	are	no	records	to	display.	Similarly,	the
Unload	event	can	be	canceled,	but	the	Close	event	can't.

Example

The	following	example	shows	how	you	can	cancel	the	opening	of	a	form	when
the	user	clicks	a	No	button.	A	message	box	prompts	the	user	to	enter	order
details.	If	the	user	clicks	No,	the	Order	Details	form	isn't	opened.

To	try	the	example,	add	the	following	event	procedure	to	a	form.

Private	Sub	Form_Open(Cancel	As	Integer)

				Dim	intReturn	As	Integer

				intReturn	=	MsgBox("Enter	order	details	now?",	vbYesNo)

				Select	Case	intReturn

								Case	vbYes

												'	Open	Order	Details	form.

												DoCmd.OpenForm	"Order	Details"

								Case	vbNo

												MsgBox	"Remember	to	enter	order	details	by	5	P.M."

												Cancel	=	True																				'	Cancel	Open	event.

				End	Select

End	Sub

Show	All

Page	Event
							

The	Page	event	occurs	after	Microsoft	Access	formats	a	page	of	a	report	for
printing,	but	before	the	page	is	printed.	You	can	use	this	event	to	draw	a	border
around	the	page,	or	add	other	graphic	elements	to	the	page.

Remarks

To	run	a	macro	or	event	procedure	when	this	event	occurs,	set	the	OnPage
property	to	the	name	of	the	macro	or	to	[Event	Procedure].

This	event	occurs	after	all	the	Format	events	for	the	report,	and	after	all	the	Print
events	for	the	page,	but	before	the	page	is	actually	printed.

You	normally	use	the	Line,	Circle,	or	PSet	methods	in	the	Page	event	procedure
to	create	the	desired	graphics	for	the	page.

The	NoData	event	occurs	before	the	first	Page	event	for	the	report.

Show	All

PivotTableChange	Event
							

Occurs	whenever	the	specified	PivotTable	view	field,	field	set,	or	total	is	added
or	deleted.

Private	Sub	Form_PivotTableChange(ByVal	Reason	As	Long)

Reason			Specifies	how	the	PivotTable	list	changed.	Can	be	one	of	the
PivotTableReasonEnum	constants.

plPivotTableReasonTotalAdded
plPivotTableReasonFieldSetAdded
plPivotTableReasonFieldAdded

Example

The	following	example	demonstrates	the	syntax	for	a	subroutine	that	traps	the
PivotTableChange	event.	For	this	example	to	work,	a	reference	must	be	set	to	the
Microsoft	Office	Web	Components	10.0	type	library.

Private	Sub	Form_PivotTableChange(Reason	As	Long)

				Select	Case	Reason

								Case	OWC.plPivotTableReasonTotalAdded

												MsgBox	"A	total	was	added!"

								Case	OWC.plPivotTableReasonFieldSetAdded

												MsgBox	"A	field	set	was	added!"

								Case	OWC.plPivotTableReasonFieldAdded

												MsgBox	"A	field	was	added!"

				End	Select

End	Sub

Show	All

Print	Event
							

The	Print	event	occurs	after	data	in	a	report	section	is	formatted	for	printing,	but
before	the	section	is	printed.

Remarks

To	run	a	macro	or	event	procedure	when	this	event	occurs,	set	the	OnPrint
property	to	the	name	of	the	macro	or	to	[Event	Procedure].

For	a	report	detail	section,	the	Print	event	occurs	for	each	record	in	the	section
just	before	Microsoft	Access	prints	the	data	in	the	record.	A	Print	event
procedure	or	macro	has	access	to	the	data	in	the	current	record.

For	report	group	headers,	the	Print	event	occurs	for	each	new	group,	and	a	Print
macro	or	event	procedure	has	access	to	the	data	in	the	group	header	and	the	data
in	the	first	record	in	the	detail	section.	For	report	group	footers,	the	Print	event
occurs	for	each	new	group,	and	a	Print	macro	or	event	procedure	has	access	to
the	data	in	the	group	footer	and	the	data	in	the	last	record	in	the	detail	section.

You	can	use	the	Print	event	to	run	a	macro	or	event	procedure	only	after
Microsoft	Access	has	prepared	data	for	printing	on	a	page.	For	example,	you	can
calculate	running	page	totals	that	are	printed	in	the	page	header	or	footer.

For	changes	that	affect	page	layout,	such	as	displaying	or	hiding	controls,	use	the
Format	event.

The	Print	event	occurs	only	for	sections	that	are	actually	printed.	If	you	need
access	to	data	from	sections	that	aren't	printed	(for	example,	you	are	keeping	a
running	sum,	but	are	only	printing	certain	pages),	use	the	Format	event	instead.

The	Page	event	occurs	after	all	the	Format	events	for	the	report,	and	after	all	the
Print	events	for	a	page,	but	before	the	page	is	actually	printed.

Query	Event
							

Occurs	whenever	the	specified	PivotTable	view	query	becomes	necessary.	The
query	may	not	occur	immediately;	it	may	be	delayed	until	the	new	data	is
displayed.

Private	Sub	Form_Query()

Example

The	following	example	demonstrates	the	syntax	for	a	subroutine	that	traps	the
Query	event.

Private	Sub	Form_Query()

				MsgBox	"A	query	has	become	necessary."

End	Sub

RecordExit	Event
							

Occurs	just	before	the	user	exits	the	current	record.

Private	Sub	Form_RecordExit(Cancel	As	Integer)

Cancel			Set	this	argument	to	True	to	prevent	the	user	from	exiting	the	current
record.

Remarks

The	event	occurs	after	the	user	has	done	something	to	move	away	from	the
current	record,	either	by	navigating	to	another	record,	closing	the	form,
refreshing	the	form,	or	requerying	the	form,	but	before	the	view	of	the	current
record	has	been	discarded.	Use	this	event	to	examine	records	before	they	are	no
longer	the	current	record	to	ensure	that	data	validation	rules	have	been	met.

Note			When	a	form	containing	a	subform	is	closed,	the	main	form	closes	before
the	subform.	Any	events	triggered	by	the	subform,	including	RecordExit,	occur
after	the	main	form	is	already	closed.	As	a	result,	the	Cancel	argument	will	have
no	effect	and	the	form	will	close.	Event-driven	validation	should	therefore	be
implemented	at	the	form	level.

Example

The	following	example	demonstrates	the	syntax	for	a	subroutine	that	traps	the
RecordExit	event.

Private	Sub	Form_RecordExit(Cancel	As	Integer)

				Dim	booValidated	As	Boolean

				'	Perform	some	sort	of	data	validation.

				If	booValidated	=	True	Then

								Cancel	=	False

				Else

								MsgBox	"Data	validation	failed!"

								Cancel	=	True

				End	If

End	Sub

Show	All

Resize	Event
							

The	Resize	event	occurs	when	a	form	is	opened	and	whenever	the	size	of	a	form
changes.

Remarks

To	run	a	macro	or	event	procedure	when	this	event	occurs,	set	the	OnResize
property	to	the	name	of	the	macro	or	to	[Event	Procedure].

This	event	occurs	if	you	change	the	size	of	the	form	in	a	macro	or	event
procedure	—	for	example,	if	you	use	the	MoveSize	action	in	a	macro	to	resize
the	form.

By	running	a	macro	or	an	event	procedure	when	a	Resize	event	occurs,	you	can
move	or	resize	a	control	when	the	form	it's	on	is	resized.	You	can	also	use	a
Resize	event	to	recalculate	variables	or	reset	properties	that	may	depend	on	the
size	of	the	form.

When	you	first	open	a	form,	the	following	events	occur	in	this	order:

Open	 	Load	 	Resize	 	Activate	 	Current

Note			You	need	to	be	careful	if	you	use	a	MoveSize,	Maximize,	Minimize,	or
Restore	action	(or	the	corresponding	methods	of	the	DoCmd	object)	in	a	Resize
macro	or	event	procedure.	These	actions	can	trigger	a	Resize	event	for	the	form,
and	thus	cause	a	cascading	event.

mk:@MSITStore:acmain10.chm::/html/acactMoveSize.htm
mk:@MSITStore:acmain10.chm::/html/acactMaximize.htm
mk:@MSITStore:acmain10.chm::/html/acactMinimize.htm
mk:@MSITStore:acmain10.chm::/html/acactRestore.htm

Show	All

Retreat	Event
							

The	Retreat	event	occurs	when	Microsoft	Access	returns	to	a	previous	report
section	during	report	formatting.

Remarks

The	Retreat	event	applies	to	all	report	sections	except	page	headers	and	footers.

To	run	a	macro	or	event	procedure	when	this	event	occurs,	set	the	OnRetreat
property	to	the	name	of	the	macro	or	to	[Event	Procedure].

Under	certain	circumstances,	Microsoft	Access	must	return	to	a	previous	report
section	to	determine	where	certain	controls	and	sections	are	on	a	report	and
whether	they	will	fit	in	a	given	space.	Examples	include:

Groups	(except	for	page	headers	and	footers)	for	which	the	KeepTogether
property	is	set	to	either	Whole	Group	or	With	First	Detail.
Subreports	or	subforms	for	which	the	CanGrow	and/or	CanShrink
property	is	set	to	Yes.
Sections	on	the	last	page	of	a	report.

In	these	situations,	the	Format	event	occurs	as	Microsoft	Access	determines	how
the	sections	will	fit	on	the	printed	page	(however,	a	Print	event	doesn't	occur
because	the	sections	aren't	being	printed	yet).	If	the	sections	can't	be	printed,
Microsoft	Access	backs	up	to	the	necessary	location	so	that	the	sections	can
actually	be	printed	on	the	following	page.	The	Retreat	event	occurs	for	each
section	past	which	Microsoft	Access	retreats.	The	Format	event	for	each	section
then	occurs	again	as	Microsoft	Access	prepares	to	actually	print	the	sections.

For	example,	whenever	Microsoft	Access	reaches	the	end	of	the	last	page	while
formatting	a	report,	the	Retreat	event	occurs	for	each	previous	section	until
Microsoft	Access	reaches	the	first	section	at	the	top	of	the	last	page.	Then	the
Format	event	occurs	again	for	each	section	on	the	page,	followed	by	the	Print
events.

You	can	run	an	event	procedure	or	macro	when	the	Retreat	event	occurs	to	undo
any	changes	that	you	made	when	the	Format	event	occurred	for	the	section.	This
is	useful	when	your	Format	event	procedure	or	macro	carries	out	actions,	such	as
calculating	page	totals	or	controlling	the	size	of	a	section,	that	you	want	to
perform	only	once	for	each	section.

The	Retreat	event	is	also	useful	for	maintaining	the	positioning	of	report	items.

For	example,	the	Sales	By	Year	report	in	the	Northwind	sample	database	uses
this	event	to	determine	if	a	page	header	is	printed	or	not	(the	page	header	is
printed	on	pages	following	a	page	where	the	group	header	has	been	printed,	and
the	page	header	isn't	printed	on	the	page	following	a	page	where	the	group	footer
has	been	printed).

Show	All

RollbackTransaction	Event
							

Occurs	just	after	Microsoft	Access	signals	to	the	server	that	a	batch	transaction
is	to	be	rolled	back.

Private	Sub	Form_RollbackTransaction(Connection	As
ADODB.Connection)

Connection			The	connection	on	which	the	batch	transaction	is	taking	place.

Remarks

This	event	applies	to	Access	project	forms	whose	BatchUpdates	properties	are
set	to	True.

This	event	occurs	if	a	batch	update	was	not	successful	because	some	error
occurred	while	trying	to	commit	the	batch	transaction.	Any	changes	to	the	data
made	at	this	point	are	made	outside	the	batch	transaction.

You	cannot	cancel	a	transaction	rollback;	any	attempt	to	correct	the	error	takes
place	inside	a	new	batch	transaction.

Example

The	following	example	demonstrates	the	syntax	for	a	subroutine	that	traps	the
RollbackTransaction	event.

Private	Sub	Form_RollbackTransaction(Connection	As	ADODB.Connection)

				MsgBox	"Access	has	rolled	back	the	batch	transaction	on	"	_

								&	Connection.Name	&	"."

End	Sub

SelectionChange	Event
							

Occurs	whenever	the	user	makes	a	new	selection	in	a	PivotChart	view	or
PivotTable	view.

Private	Sub	Form_SelectionChange()

Remarks

The	user	cannot	cancel	this	event.

Example

The	following	example	demonstrates	the	syntax	for	a	subroutine	that	traps	the
SelectionChange	event.

Private	Sub	Form_SelectionChange()

				MsgBox	"The	selection	has	changed!"

End	Sub

Show	All

Timer	Event
							

The	Timer	event	occurs	for	a	form	at	regular	intervals	as	specified	by	the	form's
TimerInterval	property.

Remarks

To	run	a	macro	or	event	procedure	when	this	event	occurs,	set	the	OnTimer
property	to	the	name	of	the	macro	or	to	[Event	Procedure].

By	running	a	macro	or	event	procedure	when	a	Timer	event	occurs,	you	can
control	what	Microsoft	Access	does	at	every	timer	interval.	For	example,	you
might	want	to	requery	underlying	records	or	repaint	the	screen	at	specified
intervals.

The	TimerInterval	property	setting	of	the	form	specifies	the	interval,	in
milliseconds,	between	Timer	events.	The	interval	can	be	between	0	and	65,535
milliseconds.	Setting	the	TimerInterval	property	to	0	prevents	the	Timer	event
from	occurring.

Undo	Event
							

Occurs	when	the	user	undoes	a	change	to	a	combo	box	control,	a	form,	or	a	text
box	control.

Private	Sub	object_Undo(Cancel	As	Integer)

object			A	variable	which	references	an	object	of	one	of	the	types	in	the	Applies
To	list.

Cancel			Set	this	argument	to	True	to	cancel	the	undo	operation	and	leave	the
control	or	form	in	its	edited	state.

Remarks

The	Undo	event	for	controls	occurs	whenever	the	user	returns	a	control	to	its
original	state	by	clicking	the	Undo	Field/Record	button	on	the	command	bar,
clicking	the	Undo	button,	pressing	the	ESC	key,	or	calling	the	Undo	method	of
the	specified	control.	The	control	needs	to	have	focus	in	all	three	cases.	The
event	does	not	occur	if	the	user	clicks	the	Undo	Typing	button	on	the	command
bar.

The	Undo	event	for	forms	occurs	whenever	the	user	returns	a	form	to	its	original
state	by	clicking	the	Undo	button,	pressing	the	ESC	key,	or	calling	the	Undo
method	of	the	specified	form.

Example

The	following	example	demonstrates	the	syntax	for	a	subroutine	that	traps	the
Undo	event	for	a	form.

Private	Sub	Form_Undo(Cancel	As	Integer)

				Dim	intResponse	As	Integer

				Dim	strPrompt	As	String

				strPrompt	=	"Cancel	the	undo	operation?"

				intResponse	=	MsgBox(strPrompt,	vbYesNo)

				If	intResponse	=	vbYes	Then

								Cancel	=	True

				Else

								Cancel	=	False

				End	If

End	Sub

Show	All

UndoBatchEdit	Event
							

Occurs	when	the	user	discards	all	pending	changes	using	the	Undo	All	Records
command.

Private	Sub	Form_UndoBatchEdit(Cancel	As	Integer)

Cancel			Setting	this	argument	to	True	cancels	the	undo	operation	and	retains	all
pending	changes	on	the	form.

Remarks

This	event	applies	to	Access	project	forms	whose	BatchUpdates	properties	are
set	to	True.

This	event	is	analogous	to	the	Undo	event,	but	for	an	entire	batch	instead	of	an
individual	record.	The	event	occurs	after	the	Undo	event	for	the	form	and	control
corresponding	to	the	most	recent	data	change.

The	Undo	event	for	the	form	only	occurs	for	the	last	row	edited.	Likewise,	only
the	most	recent	Undo	event	for	the	relevant	control	occurs	even	though	changes
are	potentially	discarded	for	more	than	one	control	when	an	undo	operation	is
carried	out	on	the	form.

Example

The	following	example	demonstrates	the	syntax	for	a	subroutine	that	traps	the
UndoBatchEdit	event.

Private	Sub	Form_UndoBatchEdit(Cancel	As	Integer)

				Dim	intResponse	As	Integer

				Dim	strPrompt	As	String

				strPrompt	=	"Access	is	about	to	discard	all	pending	changes.	"	_

								&	"Do	you	wish	to	continue?"

				intResponse	=	MsgBox(strPrompt,	vbYesNo)

				If	intResponse	=	vbNo	Then

								Cancel	=	True

				Else

								Cancel	=	False

				End	If

End	Sub

Show	All

Unload	Event
							

The	Unload	event	occurs	after	a	form	is	closed	but	before	it's	removed	from	the
screen.	When	the	form	is	reloaded,	Microsoft	Access	redisplays	the	form	and
reinitializes	the	contents	of	all	its	controls.

Remarks

To	run	a	macro	or	event	procedure	when	these	events	occur,	set	the	OnUnload
property	to	the	name	of	the	macro	or	to	[Event	Procedure].

The	Unload	event	is	caused	by	user	actions	such	as:

Clicking	a	Form	window's	Close	button	or	clicking	Close	on	the	File	menu
or	a	form's	Control	menu.

Running	the	Close	action	in	a	macro.

Quitting	an	application	by	right-clicking	the	application's	taskbar	button
and	then	clicking	Close.

Quitting	Windows	while	an	application	is	running.

By	running	a	macro	or	an	event	procedure	when	a	form's	Unload	event	occurs,
you	can	verify	that	the	form	should	be	unloaded	or	specify	actions	that	should
take	place	when	the	form	is	unloaded.	You	can	also	open	another	form	or	display
a	dialog	box	requesting	the	user's	name	to	make	a	log	entry	indicating	who	used
the	form.

When	you	close	a	form,	the	following	events	occur	in	this	order:

Unload	 	Deactivate	 	Close

The	Unload	event	occurs	before	the	Close	event.	The	Unload	event	can	be
canceled,	but	the	Close	event	can't.

Note			When	you	create	macros	or	event	procedures	for	events	related	to	the
Load	event,	such	as	Activate	and	GotFocus,	be	sure	that	they	don't	conflict	(for
example,	make	sure	you	don't	cause	something	to	happen	in	one	macro	or
procedure	that	is	canceled	in	another)	and	that	they	don't	cause	cascading	events.

mk:@MSITStore:acmain10.chm::/html/acactClose.htm

Example

This	example	prompts	the	user	to	verify	that	the	form	should	close.

To	try	the	example,	add	the	following	event	procedure	to	a	form.	In	Form	view,
close	the	form	to	display	the	dialog	box,	and	then	click	Yes	or	No.

Private	Sub	Form_Unload(Cancel	As	Integer)

				If	MsgBox("Close	form?",	vbYesNo)	=	vbYes	Then

								Exit	Sub

				Else

								Cancel	=	True

				End	If

End	Sub

Show	All

Updated	Event
							

Some	of	the	content	in	this	topic	may	not	be	applicable	to	some	languages.

The	Updated	event	occurs	when	an	OLE	object's	data	has	been	modified.

Remarks

The	Updated	event	applies	only	to	controls	on	a	form,	not	controls	on	a	report.

To	run	a	macro	or	event	procedure	when	this	event	occurs,	set	the	OnUpdated
property	to	the	name	of	the	macro	or	to	[Event	Procedure].

You	can	use	this	event	to	determine	if	an	object's	data	has	been	changed	since	it
was	last	saved.

The	Updated	event	occurs	when	the	data	in	an	OLE	object	has	been	modified.
This	update	can	come	from	the	application	in	which	the	object	was	created	or
from	one	of	the	linked	copies	of	this	object.	As	a	result,	this	event	is
asynchronous	with	other	Microsoft	Access	control	events.

Notes

The	Updated	event	and	the	BeforeUpdate	and	AfterUpdate	events	for
bound	and	unbound	object	frames	are	not	related.	The	Updated	event
occurs	when	an	OLE	object's	data	is	changed,	and	the	BeforeUpdate	and
AfterUpdate	events	occur	when	data	is	updated.	Although	not	related,	all
three	events	usually	occur	when	an	OLE	object's	data	is	changed.	The
Updated	event	generally	occurs	before	the	BeforeUpdate	and	AfterUpdate
events;	however,	this	may	not	happen	every	time.
The	Calendar	control	included	with	Microsoft	Access	97	no	longer	supports
the	Updated	event.	If	you	convert	a	database	that	includes	the	Calendar
control	from	a	previous	version	of	Microsoft	Access	to	Microsoft	Access
97,	you	should	move	any	code	in	the	Updated	event	of	the	Calendar	control
to	the	AfterUpdate	event.

ViewChange	Event
							

Occurs	whenever	the	specified	PivotChart	view	or	PivotTable	view	is	redrawn.

Private	Sub	Form_ViewChange(ByVal	Reason	As	Long)

Reason			The	PivotViewReasonEnum	constant	that	indicates	how	the	view	was
changed.	Reason	always	returns	–1	for	PivotChart	Views.

Example

The	following	example	demonstrates	the	syntax	for	a	subroutine	that	traps	the
ViewChange	event.	For	this	example	to	work,	a	reference	must	be	set	to	the
Microsoft	Office	Web	Components	10.0	type	library.

Private	Sub	Form_ViewChange(ByVal	Reason	As	Long)

				If	Reason	=	OWC.plViewReasonShowDetails	Then

								MsgBox	"You've	opted	to	show	details."

				End	If

End	Sub

Hidden	Properties
			

The	following	table	lists	properties	that	have	been	hidden	in	the	Microsoft
Access	2002	Visual	Basic	object	model	because	their	functionality	has	been
replaced	by	new	language	elements.	These	properties	are	supported	only	for
backward	compatibility;	for	new	code,	use	the	replacement	functionality
provided	in	Microsoft	Access	2002.	To	view	hidden	objects	in	the	Object
Browser,	right-click	in	the	Object	Browser	window	and	click	Show	Hidden
Members	on	the	shortcut	menu.

Object Hidden	Property Replacement
ComboBox,	TextBox AllowedText None
TextBox FELineBreak AsianLineBreak

Show	All

FieldSize	Property
			

You	can	use	the	FieldSize	property	to	set	the	maximum	size	for	data	stored	in	a
field	set	to	the	Text,	Number,	or	AutoNumber	data	type.

Setting

If	the	DataType	property	is	set	to	Text,	enter	a	number	from	0	to	255.	The
default	setting	is	50.

If	the	DataType	property	is	set	to	AutoNumber,	the	FieldSize	property	can	be
set	to	Long	Integer	or	Replication	ID.

If	the	DataType	property	is	set	to	Number,	the	FieldSize	property	settings	and
their	values	are	related	in	the	following	way.

Setting Description Decimal	precision Storage	size

Byte Stores	numbers	from	0	to
255	(no	fractions). None 1	byte

Decimal

Stores	numbers	from	–
10^38–1	through	10^38–1
(.adp)
Stores	numbers	from	–
10^28–1	through	10^28–1
(.mdb)

28 12bytes

Integer
Stores	numbers	from	–
32,768	to	32,767	(no
fractions).

None 2	bytes

Long	Integer

(Default)	Stores	numbers
from	–2,147,483,648	to
2,147,483,647	(no
fractions).

None 4	bytes

Single

Stores	numbers	from
–3.402823E38	to	–
1.401298E–45	
for	negative	values	and
from
1.401298E–45	to
3.402823E38	for	positive
values.

7 4	bytes

Stores	numbers	from

Double

–1.79769313486231E308
to
–4.94065645841247E–
324	
for	negative	values	and
from	
4.94065645841247E–324
to	
1.79769313486231E308
for	positive	values.

15 8	bytes

Replication	ID Globally	unique	identifier
(GUID) N/A 16	bytes

You	can	set	this	property	only	from	the	table's	property	sheet.

To	set	the	size	of	a	field	from	Visual	Basic,	use	the	DAO	Size	property	to	read
and	set	the	maximum	size	of	Text	fields	(for	data	types	other	than	Text,	the	ADO
Type	property	setting	automatically	determines	the	Size	property	setting).

Note			You	can	specify	the	default	field	sizes	for	Text	and	Number	fields	by
changing	the	values	under	Default	Field	Sizes	on	the	Tables/Queries	tab,
available	by	clicking	Options	on	the	Tools	menu.

Remarks

You	should	use	the	smallest	possible	FieldSize	property	setting	because	smaller
data	sizes	can	be	processed	faster	and	require	less	memory.

Caution			If	you	convert	a	large	FieldSize	setting	to	a	smaller	one	in	a	field	that
already	contains	data,	you	might	lose	data.	For	example,	if	you	change	the
FieldSize	setting	for	a	Text	data	type	field	from	255	to	50,	data	beyond	the	new
50-character	setting	will	be	discarded.

If	the	data	in	a	Number	data	type	field	doesn't	fit	in	a	new	FieldSize	setting,
fractional	numbers	may	be	rounded	or	you	might	get	a	Null	value.	For	example,
if	you	change	from	a	Single	to	an	Integer	field	size,	fractional	values	will	be
rounded	to	the	nearest	whole	number	and	values	greater	than	32,767	or	less	than
–32,768	will	result	in	null	fields.

You	can't	undo	changes	to	data	that	result	from	a	change	to	the	FieldSize
property	after	saving	those	changes	in	table	Design	view.

Tip			You	can	use	the	Currency	data	type	if	you	plan	to	perform	many
calculations	on	a	field	that	contains	data	with	one	to	four	decimal	places.	Single
and	Double	data	type	fields	require	floating-point	calculation.	Currency	data
type	fields	use	a	faster	fixed-point	calculation.

Show	All

Set	Form,	Report,	and	Control
Properties	in	Visual	Basic
			

Form,	Report,	and	Control	objects	are	Microsoft	Access	objects.	You	can	set
properties	for	these	objects	from	within	a	Sub,	Function,	or	event	procedure.
You	can	also	set	properties	for	form	and	report	sections.

To	set	a	property	of	a	form	or	report

Refer	to	the	individual	form	or	report	within	the	Forms	or	Reports	collection,
followed	by	the	name	of	the	property	and	its	value.	For	example,	to	set	the
Visible	property	of	the	Customers	form	to	True	(–1),	use	the	following	line	of
code:

Forms!Customers.Visible	=	True

You	can	also	set	a	property	of	a	form	or	report	from	within	the	object's	module
by	using	the	object's	Me	property.	Code	that	uses	the	Me	property	executes
faster	than	code	that	uses	a	fully	qualified	object	name.	For	example,	to	set	the
RecordSource	property	of	the	Customers	form	to	an	SQL	statement	that	returns
all	records	with	a	CompanyName	field	entry	beginning	with	"A"	from	within	the
Customers	form	module,	use	the	following	line	of	code:

Me!RecordSource	=	"SELECT	*	FROM	Customers	"	_

				&	"WHERE	CompanyName	Like	'A*'"

To	set	a	property	of	a	control

Refer	to	the	control	in	the	Controls	collection	of	the	Form	or	Report	object	on
which	it	resides.	You	can	refer	to	the	Controls	collection	either	implicitly	or
explicitly,	but	the	code	executes	faster	if	you	use	an	implicit	reference.	The
following	examples	set	the	Visible	property	of	a	text	box	called	CustomerID	on
the	Customers	form:

'	Faster	method.

Me!CustomerID.Visible	=	True

'	Slower	method.

Forms!Customers.Controls!CustomerID.Visible	=	True

The	fastest	way	to	set	a	property	of	a	control	is	from	within	an	object's	module
by	using	the	object's	Me	property.	For	example,	you	can	use	the	following	code
to	toggle	the	Visible	property	of	a	text	box	called	CustomerID	on	the	Customers
form:

With	Me!CustomerID

				.Visible	=	Not	.Visible

End	With

To	set	a	property	of	a	form	or	report	section

Refer	to	the	form	or	report	within	the	Forms	or	Reports	collection,	followed	by
the	Section	property	and	the	integer	or	constant	that	identifies	the	section.	The
following	examples	set	the	Visible	property	of	the	page	header	section	of	the
Customers	form	to	False:

Forms!Customers.Section(3).Visible	=	False

Me!Section(acPageHeader).Visible	=	False

Notes

For	each	property	you	want	to	set,	you	can	look	up	the	property	in	the	Help
index	to	find	information	about:

Whether	you	can	set	the	property	from	Visual	Basic.
Views	in	which	you	can	set	the	property.	Not	all	properties	can	be	set
in	all	views.	For	example,	you	can	set	a	form's	BorderStyle	property
only	in	form	Design	view.
Which	values	you	should	use	to	set	the	property.	You	often	use
different	settings	when	you	set	a	property	in	Visual	Basic	instead	of	in
the	property	sheet.	For	example,	if	the	property	settings	are	selections
from	a	list,	you	must	use	the	value	or	numeric	equivalent	for	each
selection.

To	set	default	properties	for	controls	from	Visual	Basic,	use	the
DefaultControl	property.

Show	All

Set	Properties	of	ActiveX	Data
Objects	in	Visual	Basic
			

ActiveX	Data	Objects	(ADO)	enable	you	to	manipulate	the	structure	of	your
database	and	the	data	it	contains	from	Visual	Basic.	Many	ADO	objects
correspond	to	objects	that	you	see	in	your	database	—	for	example,	a	Table
object	corresponds	to	a	Microsoft	Access	table.	A	Field	object	corresponds	to	a
field	in	a	table.

Most	of	the	properties	you	can	set	for	ADO	objects	are	ADO	properties.	These
properties	are	defined	by	the	Microsoft	Jet	database	engine	and	are	set	the	same
way	in	any	application	that	includes	the	Jet	database	engine.	Some	properties
that	you	can	set	for	ADO	objects	are	defined	by	Microsoft	Access,	and	aren't
automatically	recognized	by	the	Jet	database	engine.	How	you	set	properties	for
ADO	objects	depends	on	whether	a	property	is	defined	by	the	Jet	database
engine	or	by	Microsoft	Access.

Setting	ADO	Properties	for	ADO	Objects

To	set	a	property	that's	defined	by	the	Jet	database	engine,	refer	to	the	object	in
the	ADO	hierarchy.	The	easiest	and	fastest	way	to	do	this	is	to	create	object
variables	that	represent	the	different	objects	you	need	to	work	with,	and	refer	to
the	object	variables	in	subsequent	steps	in	your	code.	For	example,	the	following
code	creates	a	new	TableDef	object	and	sets	its	Name	property:

Dim	tbl	As	New	ADOX.Table

Dim	cnn	As	ADODB.Connection

Set	cnn	=	CurrentProject.Connection

tbl.Name	=	"Contacts"

Setting	Microsoft	Access	Properties	for	ADO	Objects

When	you	set	a	property	that's	defined	by	Microsoft	Access,	but	applies	to	a
ADO	object,	the	Jet	database	engine	doesn't	automatically	recognize	the
property	as	a	valid	property.	The	first	time	you	set	the	property,	you	must	create
the	property	and	append	it	to	the	Properties	collection	of	the	object	to	which	it
applies.	Once	the	property	is	in	the	Properties	collection,	it	can	be	set	in	the
same	manner	as	any	ADO	property.

If	the	property	is	set	for	the	first	time	in	the	user	interface,	it's	automatically
added	to	the	Properties	collection,	and	you	can	set	it	normally.

When	writing	procedures	to	set	properties	defined	by	Microsoft	Access,	you
should	include	error-handling	code	to	verify	that	the	property	you	are	setting
already	exists	in	the	Properties	collection.	See	the	Help	topic	about	the	Add
method	or	the	individual	property	topic	for	more	information.

Keep	in	mind	that	when	you	create	the	property,	you	must	correctly	specify	its
Type	property	before	you	append	it	to	the	Properties	collection.	You	can
determine	the	Type	property	based	on	the	information	in	the	Settings	section	of
the	Help	topic	for	the	individual	property.	The	following	table	provides	some
guidelines	for	determining	the	setting	of	the	Type	property.

If	the	property	setting	is Then	the	Type	property	setting	should	be
A	string adLongVarWChar	or	adVarWChar
True/False adBoolean
An	integer adInteger

The	following	table	lists	some	Microsoft	Access–defined	properties	that	apply	to
ADO	objects.

ADO	object Microsoft	Access–defined	properties

Connection

AppTitle,	AppIcon,	StartupShowDBWindow,
StartupShowStatusBar,	AllowShortcutMenus,
AllowFullMenus,	AllowBuiltInToolbars,
AllowToolbarChanges,	AllowBreakIntoCode,
AllowSpecialKeys,	Replicable,

ReplicationConflictFunction

Table

DatasheetBackColor,	DatasheetCellsEffect,
DatasheetFontHeight,	DatasheetFontItalic,
DatasheetFontName,	DatasheetFontUnderline,
DatasheetFontWeight,	DatasheetForeColor,
DatasheetGridlinesBehavior,
DatasheetGridlinesColor,	Description,
FrozenColumns,	RowHeight,	ShowGrid

QueryDef

DatasheetBackColor,	DatasheetCellsEffect,
DatasheetFontHeight,	DatasheetFontItalic,
DatasheetFontName,	DatasheetFontUnderline,
DatasheetFontWeight,	DatasheetForeColor,
DatasheetGridlinesBehavior,
DatasheetGridlinesColor,	Description,
FailOnError,	FrozenColumns,	LogMessages,
MaxRecords,	RecordLocks,	RowHeight,
ShowGrid,	UseTransaction

Field
Caption,	ColumnHidden,	ColumnOrder,
ColumnWidth,	DecimalPlaces,	Description,
Format,	InputMask

Show	All

Set	Properties	of	Data	Access	Objects
in	Visual	Basic
			

Data	Access	Objects	(DAO)	enable	you	to	manipulate	the	structure	of	your
database	and	the	data	it	contains	from	Visual	Basic.	Many	DAO	objects
correspond	to	objects	that	you	see	in	your	database	—	for	example,	a	TableDef
object	corresponds	to	a	Microsoft	Access	table.	A	Field	object	corresponds	to	a
field	in	a	table.

Most	of	the	properties	you	can	set	for	DAO	objects	are	DAO	properties.	These
properties	are	defined	by	the	Microsoft	Jet	database	engine	and	are	set	the	same
way	in	any	application	that	includes	the	Jet	database	engine.	Some	properties
that	you	can	set	for	DAO	objects	are	defined	by	Microsoft	Access,	and	aren't
automatically	recognized	by	the	Jet	database	engine.	How	you	set	properties	for
DAO	objects	depends	on	whether	a	property	is	defined	by	the	Jet	database
engine	or	by	Microsoft	Access.

Setting	DAO	Properties	for	DAO	Objects

To	set	a	property	that's	defined	by	the	Jet	database	engine,	refer	to	the	object	in
the	DAO	hierarchy.	The	easiest	and	fastest	way	to	do	this	is	to	create	object
variables	that	represent	the	different	objects	you	need	to	work	with,	and	refer	to
the	object	variables	in	subsequent	steps	in	your	code.	For	example,	the	following
code	creates	a	new	TableDef	object	and	sets	its	Name	property:

Dim	dbs	As	DAO.Database

Dim	tdf	As	DAO.TableDef

Set	dbs	=	CurrentDb

Set	tdf	=	dbs.CreateTableDef

tdf.Name	=	"Contacts"

Setting	Microsoft	Access	Properties	for	DAO	Objects

When	you	set	a	property	that's	defined	by	Microsoft	Access,	but	applies	to	a
DAO	object,	the	Jet	database	engine	doesn't	automatically	recognize	the
property	as	a	valid	property.	The	first	time	you	set	the	property,	you	must	create
the	property	and	append	it	to	the	Properties	collection	of	the	object	to	which	it
applies.	Once	the	property	is	in	the	Properties	collection,	it	can	be	set	in	the
same	manner	as	any	DAO	property.

If	the	property	is	set	for	the	first	time	in	the	user	interface,	it's	automatically
added	to	the	Properties	collection,	and	you	can	set	it	normally.

When	writing	procedures	to	set	properties	defined	by	Microsoft	Access,	you
should	include	error-handling	code	to	verify	that	the	property	you	are	setting
already	exists	in	the	Properties	collection.	See	the	Help	topic	about	the
CreateProperty	method	or	the	individual	property	topic	for	more	information.

Keep	in	mind	that	when	you	create	the	property,	you	must	correctly	specify	its
Type	property	before	you	append	it	to	the	Properties	collection.	You	can
determine	the	Type	property	based	on	the	information	in	the	Settings	section	of
the	Help	topic	for	the	individual	property.	The	following	table	provides	some
guidelines	for	determining	the	setting	of	the	Type	property.

If	the	property	setting	is Then	the	Type	property	setting	should	be
A	string dbText
True/False dbBoolean
An	integer dbInteger

The	following	table	lists	some	Microsoft	Access–defined	properties	that	apply	to
DAO	objects.

DAO	object Microsoft	Access–defined	properties

Database

AppTitle,	AppIcon,	StartupShowDBWindow,
StartupShowStatusBar,	AllowShortcutMenus,
AllowFullMenus,	AllowBuiltInToolbars,
AllowToolbarChanges,	AllowBreakIntoCode,
AllowSpecialKeys,	Replicable,

ReplicationConflictFunction

SummaryInfo	Container

Title,	Subject,	Author,	Manager,	Company,
Category,	Keywords,	Comments,	Hyperlink
Base

(See	the	Summary	tab	of	the	DatabaseName
Properties	dialog	box,	available	by	clicking
Database	Properties	on	the	File	menu.)

UserDefined	Container
(See	the	Summary	tab	of	the	DatabaseName
Properties	dialog	box,	available	by	clicking
Database	Properties	on	the	File	menu.)

TableDef

DatasheetBackColor,	DatasheetCellsEffect,
DatasheetFontHeight,	DatasheetFontItalic,
DatasheetFontName,	DatasheetFontUnderline,
DatasheetFontWeight,	DatasheetForeColor,
DatasheetGridlinesBehavior,
DatasheetGridlinesColor,	Description,
FrozenColumns,	RowHeight,	ShowGrid

QueryDef

DatasheetBackColor,	DatasheetCellsEffect,
DatasheetFontHeight,	DatasheetFontItalic,
DatasheetFontName,	DatasheetFontUnderline,
DatasheetFontWeight,	DatasheetForeColor,
DatasheetGridlinesBehavior,
DatasheetGridlinesColor,	Description,
FailOnError,	FrozenColumns,	LogMessages,
MaxRecords,	RecordLocks,	RowHeight,
ShowGrid,	UseTransaction

Field
Caption,	ColumnHidden,	ColumnOrder,
ColumnWidth,	DecimalPlaces,	Description,
Format,	InputMask

Show	All

Set	Data	Access	Page	Properties	in
Visual	Basic
			

DataAccessPage	objects	are	Microsoft	Access	objects.	You	can	set	properties
for	these	objects	from	within	a	Sub,	Function,	or	event	procedure.

To	set	a	property	of	a	data	access	page

Refer	to	the	individual	data	access	page	within	the	DataAccessPages	collection,
followed	by	the	name	of	the	property	and	its	value.	For	example,	to	set	the
Visible	property	of	the	Customers	data	access	page	to	True	(–1),	use	the
following	line	of	code:

DataAccessPages!Customers.Visible	=	True

Notes

For	each	property	you	want	to	set,	you	can	look	up	the	property	in	the	Help
index	to	find	information	about:

Whether	you	can	set	the	property	from	Visual	Basic.
Which	values	you	should	use	to	set	the	property.	You	often	use
different	settings	when	you	set	a	property	in	Visual	Basic	instead	of	in
the	property	sheet.	For	example,	if	the	property	settings	are	selections
from	a	list,	you	must	use	the	value	or	numeric	equivalent	for	each
selection.

Show	All

Set	Startup	Properties	from	Visual
Basic
			

In	a	Microsoft	Access	database	(.mdb),	startup	properties	are	properties	of	a
Database	object.	A	Database	object	is	a	DAO	object	supplied	by	the	Microsoft
Jet	database	engine,	but	startup	properties	are	defined	by	Microsoft	Access,	so
they	aren't	automatically	recognized	by	the	Jet	database	engine.	If	a	startup
property	hasn't	been	set	previously,	you	must	create	it	and	add	it	to	the
Properties	collection	of	the	Database	object.

In	a	Microsoft	Access	project	(.adp),	startup	properties	are	properties	of	a
CurrentProject	object	and	like	the	Database	object	in	an	Access	database
(.mdb),	startup	properties	aren't	automatically	recognized	by	the	Jet	database
engine.	If	a	startup	property	hasn't	been	set	previously,	you	must	create	it	and
add	it	to	the	AccessObjectProperties	collection	of	the	CurrentProject	object.

When	you	set	startup	properties	from	Visual	Basic,	you	should	include	error-
handling	code	to	verify	that	the	property	exists	in	the	Properties	or
AccessObjectProperties	collection.	For	more	information	about	setting
properties	defined	by	Microsoft	Access,	see	Set	Properties	of	Data	Access
Objects	in	Visual	Basic	or	Set	Properties	of	ActiveX	Data	Objects	in	Visual
Basic.

The	names	of	the	startup	properties	differ	from	the	text	that	appears	in	the
Startup	dialog	box,	available	by	clicking	Startup	on	the	Tools	menu.	The
following	table	provides	the	name	of	each	startup	property	as	it's	used	in	Visual
Basic	code.

Text	in	Startup	dialog	box Property	name
Application	Title AppTitle
Application	Icon AppIcon
Display	Form/Page StartupForm
Display	Database	Window StartupShowDBWindow

Display	Status	Bar StartupShowStatusBar
Menu	Bar StartupMenuBar
Shortcut	Menu	Bar StartupShortcutMenuBar
Allow	Full	Menus AllowFullMenus
Allow	Default	Shortcut	Menus AllowShortcutMenus
Allow	Built-In	Toolbars AllowBuiltInToolbars
Allow	Toolbar/Menu	Changes AllowToolbarChanges
Allow	Viewing	Code	After	Error AllowBreakIntoCode
Use	Access	Special	Keys AllowSpecialKeys

Domain	Aggregate	Functions
			

Aggregate	functions	provide	statistical	information	about	sets	of	records	(a
domain).	For	example,	you	can	use	an	aggregate	function	to	count	the	number	of
records	in	a	particular	set	of	records	or	to	determine	the	average	of	values	in	a
particular	field.

The	two	types	of	aggregate	functions,	domain	aggregate	functions	and	SQL
aggregate	functions,	provide	similar	functionality	but	are	used	in	different
situations.	The	SQL	aggregate	functions	can	be	included	in	the	syntax	of	an	SQL
statement	but	can't	be	called	directly	from	Visual	Basic.	Conversely,	the	domain
aggregate	functions	can	be	called	directly	from	Visual	Basic	code.	They	can	also
be	included	in	an	SQL	statement,	but	an	SQL	aggregate	function	is	generally
more	efficient.

If	you	are	performing	statistical	calculations	from	within	code,	you	must	use	the
domain	aggregate	functions.	You	can	also	use	the	domain	aggregate	functions	to
specify	criteria,	update	values,	or	create	calculated	fields	in	a	query	expression.
You	can	use	either	the	SQL	aggregate	or	domain	aggregate	functions	in	a
calculated	control	on	a	form	or	report.

The	domain	aggregate	functions	include:

DAvg	Function

DCount	Function

DLookup	Function

DFirst,	DLast	Functions

DMin,	DMax	Functions

DStDev,	DStDevP	Functions

DSum	Function

DVar,	DVarP	Functions

Show	All

DSum	Function
			

You	can	use	the	DSum	functions	to	calculate	the	sum	of	a	set	of	values	in	a
specified	set	of	records	(a	domain).	Use	the	DSum	function	in	Visual	Basic,	a
macro,	a	query	expression,	or	a	calculated	control.

For	example,	you	could	use	the	DSum	function	in	a	calculated	field	expression
in	a	query	to	calculate	the	total	sales	made	by	a	particular	employee	over	a
period	of	time.	Or	you	could	use	the	DSum	function	in	a	calculated	control	to
display	a	running	sum	of	sales	for	a	particular	product.

DSum(expr,	domain,	[criteria])

The	DSum	function	has	the	following	arguments.

Argument Description

expr

An	expression	that	identifies	the	numeric	field	whose
values	you	want	to	total.	It	can	be	a	string	expression
identifying	a	field	in	a	table	or	query,	or	it	can	be	an
expression	that	performs	a	calculation	on	data	in	that	field.
In	expr,	you	can	include	the	name	of	a	field	in	a	table,	a
control	on	a	form,	a	constant,	or	a	function.	If	expr	includes
a	function,	it	can	be	either	built-in	or	user-defined,	but	not
another	domain	aggregate	or	SQL	aggregate	function.

domain
A	string	expression	identifying	the	set	of	records	that
constitutes	the	domain.	It	can	be	a	table	name	or	a	query
name	for	a	query	that	does	not	require	a	parameter.

criteria

An	optional	string	expression	used	to	restrict	the	range	of
data	on	which	the	DSum	function	is	performed.	For
example,	criteria	is	often	equivalent	to	the	WHERE	clause
in	an	SQL	expression,	without	the	word	WHERE.	If
criteria	is	omitted,	the	DSum	function	evaluates	expr
against	the	entire	domain.	Any	field	that	is	included	in
criteria	must	also	be	a	field	in	domain;	otherwise,	the

DSum	function	returns	a	Null.

Remarks

If	no	record	satisfies	the	criteria	argument	or	if	domain	contains	no	records,	the
DSum	function	returns	a	Null.

Whether	you	use	the	DSum	function	in	a	macro,	module,	query	expression,	or
calculated	control,	you	must	construct	the	criteria	argument	carefully	to	ensure
that	it	will	be	evaluated	correctly.

You	can	use	the	DSum	function	to	specify	criteria	in	the	Criteria	row	of	a	query,
in	a	calculated	field	in	a	query	expression,	or	in	the	Update	To	row	of	an	update
query.

Note			You	can	use	either	the	DSum	or	Sum	function	in	a	calculated	field
expression	in	a	totals	query.	If	you	use	the	DSum	function,	values	are	calculated
before	data	is	grouped.	If	you	use	the	Sum	function,	the	data	is	grouped	before
values	in	the	field	expression	are	evaluated.

You	may	want	to	use	the	DSum	function	when	you	need	to	display	the	sum	of	a
set	of	values	from	a	field	that	is	not	in	the	record	source	for	your	form	or	report.
For	example,	suppose	you	have	a	form	that	displays	information	about	a
particular	product.	You	could	use	the	DSum	function	to	maintain	a	running	total
of	sales	of	that	product	in	a	calculated	control.

Tip			If	you	need	to	maintain	a	running	total	in	a	control	on	a	report,	you	can	use
the	RunningSum	property	of	that	control	if	the	field	on	which	it	is	based	is
included	in	the	record	source	for	the	report.	Use	the	DSum	function	to	maintain
a	running	sum	on	a	form.

Note			Unsaved	changes	to	records	in	domain	aren't	included	when	you	use	this
function.	If	you	want	the	DSum	function	to	be	based	on	the	changed	values,	you
must	first	save	the	changes	by	clicking	Save	Record	on	the	Records	menu,
moving	the	focus	to	another	record,	or	by	using	the	Update	method.

Example

The	following	example	totals	the	values	from	the	Freight	field	for	orders	shipped
to	the	United	Kingdom.	The	domain	is	an	Orders	table.	The	criteria	argument
restricts	the	resulting	set	of	records	to	those	for	which	ShipCountry	equals	UK.

Dim	curX	As	Currency

curX	=	DSum("[Freight]",	"Orders",	"[ShipCountry]	=	'UK'")

The	next	example	calculates	a	total	by	using	two	separate	criteria.	Note	that
single	quotation	marks	(')	and	number	signs	(#)	are	included	in	the	string
expression,	so	that	when	the	strings	are	concatenated,	the	string	literal	will	be
enclosed	in	single	quotation	marks,	and	the	date	will	be	enclosed	in	number
signs.

Dim	curX	As	Currency

curX	=	DSum("[Freight]",	"Orders",	_

				"[ShipCountry]	=	'UK'	AND	[ShippedDate]	>	#1-1-95#")

You	can	use	a	domain	function	in	the	Update	To	row	of	an	update	query.	For
example,	suppose	you	want	to	track	current	sales	by	product	in	a	Products	table.
You	could	add	a	new	field	called	SalesSoFar	to	the	Products	table,	and	run	an
update	query	to	calculate	the	correct	values	and	update	the	records.	Create	a	new
query	based	on	the	Products	table,	and	click	Update	on	the	Query	menu.	Add
the	SalesSoFar	field	to	the	query	grid,	and	enter	the	following	in	the	Update	To
row:

DSum("[Quantity]*[UnitPrice]",	"Order	Details",	"[ProductID]	=	"	_

				&	[ProductID])

When	the	query	is	run,	Microsoft	Access	calculates	the	total	amount	of	sales	for
each	product,	based	on	information	from	an	Order	Details	table.	The	sum	of
sales	for	each	product	is	added	to	the	Products	table.

Show	All

Required	Property
			

You	can	use	the	Required	property	to	specify	whether	a	value	is	required	in	a
field.	If	this	property	is	set	to	Yes,	when	you	enter	data	in	a	record,	you	must
enter	a	value	in	the	field	or	in	any	control	bound	to	the	field,	and	the	value
cannot	be	Null.	For	example,	you	might	want	to	be	sure	that	a	LastName	control
has	a	value	for	each	record.	When	you	want	to	permit	Null	values	in	a	field,	you
must	not	only	set	the	Required	property	to	No	but,	if	there	is	a	ValidationRule
property	setting,	it	must	also	explicitly	state	"validationrule	Or	Is	Null".

Note			The	Required	property	doesn't	apply	to	AutoNumber	fields.

Setting

The	Required	property	uses	the	following	settings.

Setting Visual	Basic Description
Yes True	(–1) The	field	requires	a	value.
No False	(0) (Default)	The	field	doesn't	require	a	value.

You	can	set	this	property	for	all	table	fields	(except	AutoNumber	data	type
fields)	by	using	the	table's	property	sheet	or	Visual	Basic.

Note			To	access	a	field's	Required	property	in	Visual	Basic,	use	the	DAO
Required	property.

Remarks

The	Required	property	is	enforced	at	the	table	level	by	the	Microsoft	Jet
database	engine.	If	you	set	this	property	to	Yes,	the	field	must	receive	or	already
contain	a	value	when	it	has	the	focus	—	when	a	user	enters	data	in	a	table	(or	in
a	form	or	datasheet	based	on	the	table),	when	a	macro	or	Visual	Basic	sets	the
value	of	the	field,	or	when	data	is	imported	into	the	table.

You	can	use	the	Required	and	AllowZeroLength	properties	to	differentiate
between	information	that	doesn't	exist	(stored	as	a	zero-length	string	("	")	in	the
field)	and	information	that	may	exist	but	is	unknown	(stored	as	a	Null	value	in
the	field).	If	you	set	the	AllowZeroLength	property	to	Yes,	a	zero-length	string
will	be	a	valid	entry	in	the	field	regardless	of	the	Required	property	setting.	If
you	set	Required	to	Yes	and	AllowZeroLength	to	No,	you	must	enter	a	value	in
the	field,	and	a	zero-length	string	won't	be	a	valid	entry.

Tip			You	can	use	an	input	mask	when	data	is	entered	in	a	field	to	distinguish
between	the	display	of	a	Null	value	and	a	zero-length	string.	For	example,	the
string	"None"	could	be	displayed	when	a	zero-length	string	is	entered.

The	following	table	shows	the	results	you	can	expect	when	you	combine	the
settings	of	the	Required	and	AllowZeroLength	properties.

Required AllowZeroLength User's	action Value	stored

No No
Presses	ENTER
Presses	SPACEBAR
Enters	a	zero-length	string

Null
Null
(not	allowed)

No Yes
Presses	ENTER
Presses	SPACEBAR
Enters	a	zero-length	string

Null
Null
Zero-length	string

Yes No
Presses	ENTER
Presses	SPACEBAR
Enters	a	zero-length	string

(not	allowed)
(not	allowed)
(not	allowed)

Yes Yes
Presses	ENTER
Presses	SPACEBAR
Enters	a	zero-length	string

(not	allowed)
Zero-length	string
Zero-length	string

If	you	set	the	Required	property	to	Yes	for	a	field	in	a	table	that	already	contains
data,	Microsoft	Access	gives	you	the	option	of	checking	whether	the	field	has	a
value	in	all	existing	records.	However,	you	can	require	that	a	value	be	entered	in
this	field	in	all	new	records	even	if	there	are	existing	records	with	Null	values	in
the	field.

Note			To	enforce	a	relationship	between	related	tables	that	don't	allow	Null
values,	set	the	Required	property	of	the	foreign	key	field	in	the	related	table	to
Yes.	The	Jet	database	engine	then	ensures	that	you	have	a	related	record	in	the
parent	table	before	you	can	create	a	record	in	the	child	table.	If	the	foreign	key
field	is	part	of	the	primary	key	of	the	child	table,	this	is	unnecessary,	because	a
primary	key	field	can't	contain	a	Null	value.

Show	All

DDEInitiate	Function
			

You	can	use	the	DDEInitiate	function	to	begin	a	dynamic	data	exchange	(DDE)
conversation	with	another	application.	The	DDEInitiate	function	opens	a	DDE
channel	for	transfer	of	data	between	a	DDE	server	and	client	application.

For	example,	if	you	wish	to	transfer	data	from	a	Microsoft	Excel	spreadsheet	to
a	Microsoft	Access	database,	you	can	use	the	DDEInitiate	function	to	open	a
channel	between	the	two	applications.	In	this	example,	Microsoft	Access	acts	as
the	client	application	and	Microsoft	Excel	acts	as	the	server	application.

DDEInitiate(application,	topic)

The	DDEInitiate	function	has	the	following	arguments.

Argument Description

application

A	string	expression	identifying	an	application	that	can
participate	in	a	DDE	conversation.	Usually,	the	application
argument	is	the	name	of	an	.exe	file	(without	the	.exe
extension)	for	a	Microsoft	Windows–based	application,	such
as	Microsoft	Excel.

topic
A	string	expression	that	is	the	name	of	a	topic	recognized	by
the	application	argument.	Check	the	application's
documentation	for	a	list	of	topics.

Remarks

If	successful,	the	DDEInitiate	function	begins	a	DDE	conversation	with	the
application	and	topic	specified	by	the	application	and	topic	arguments,	and	then
returns	a	Long	integer	value.	This	return	value	represents	a	unique	channel
number	identifying	a	channel	through	which	data	transfer	can	take	place.	This
channel	number	is	subsequently	used	with	other	DDE	functions	and	statements.

If	the	application	isn't	already	running	or	if	it's	running	but	doesn't	recognize	the
topic	argument	or	doesn't	support	DDE,	the	DDEInitiate	function	returns	a	run-
time	error.

The	value	of	the	topic	argument	depends	on	the	application	specified	by	the
application	argument.	For	applications	that	use	documents	or	data	files,	valid
topic	names	often	include	the	names	of	those	files.

Note			The	maximum	number	of	channels	that	can	be	open	simultaneously	is
determined	by	Microsoft	Windows	and	your	computer's	memory	and	resources.
If	you	aren't	using	a	channel,	you	should	conserve	resources	by	terminating	it
with	a	DDETerminate	or	DDETerminateAll	statement.

Tip			If	you	need	to	manipulate	another	application's	objects	from	Microsoft
Access,	you	may	want	to	consider	using	Automation.

Show	All

DEExecute	Statement

			

You	can	use	the	DDEExecute	statement	to	send	a	command	from	a	client	application	to	a	server
application	over	an	open	dynamic	data	exchange	(DDE)	channel.

For	example,	suppose	you've	opened	a	DDE	channel	in	Microsoft	Access	to	transfer	text	data
from	a	Microsoft	Excel	spreadsheet	into	a	Microsoft	Access	database.	Use	the	DDEExecute
statement	to	send	the	New	command	to	Microsoft	Excel	to	specify	that	you	wish	to	open	a	new
spreadsheet.	In	this	example,	Microsoft	Access	acts	as	the	client	application,	and	Microsoft	Excel
acts	as	the	server	application.

Syntax

DDEExecute(channum,	command)

The	DDEExecute	statement	has	the	following	arguments.

Argument Description
channum A	channel	number,	the	long	integer	returned	by	the	DDEInitiate	function.
command A	string	expression	specifying	a	command	recognized	by	the	server

application.	Check	the	server	application's	documentation	for	a	list	of	these
commands.

Remarks

The	value	of	the	command	argument	depends	on	the	application	and	topic	specified	when	the
channel	indicated	by	the	channum	argument	is	opened.	An	error	occurs	if	the	channum	argument
isn't	an	integer	corresponding	to	an	open	channel	or	if	the	other	application	can't	carry	out	the
specified	command.

From	Visual	Basic,	you	can	use	the	DDEExecute	statement	only	to	send	commands	to	another
application.	For	information	on	sending	commands	to	Microsoft	Access	from	another	application,
see	Use	Microsoft	Access	as	a	DDE	Server.

Tip			If	you	need	to	manipulate	another	application's	objects	from	Microsoft	Access,	you	may	want
to	consider	using	Automation.

	

Show	All

DDERequest	Function
			

You	can	use	the	DDERequest	function	over	an	open	dynamic	data	exchange
(DDE)	channel	to	request	an	item	of	information	from	a	DDE	server	application.

For	example,	if	you	have	an	open	DDE	channel		between	Microsoft	Access	and
Microsoft	Excel,	you	can	use	the	DDERequest	function	to	transfer	text	from	a
Microsoft	Excel	spreadsheet	to	a	Microsoft	Access	database.

DDERequest(channum,	item)

The	DDERequest	function	has	the	following	arguments.

Argument Description

channum A	channel	number,	the	integer	returned	by	the	DDEInitiate
function.

item

A	string	expression	that's	the	name	of	a	data	item	recognized
by	the	application	specified	by	the	DDEInitiate	function.
Check	the	application's	documentation	for	a	list	of	possible
items.

Remarks

The	channum	argument	specifies	the	channel	number	of	the	desired	DDE
conversation,	and	the	item	argument	identifies	which	data	should	be	retrieved
from	the	server	application.	The	value	of	the	item	argument	depends	on	the
application	and	topic	specified	when	the	channel	indicated	by	the	channum
argument	is	opened.	For	example,	the	item	argument	may	be	a	range	of	cells	in	a
Microsoft	Excel	spreadsheet.

The	DDERequest	function	returns	a	Variant	as	a	string	containing	the	requested
information	if	the	request	was	successful.

The	data	is	requested	in	alphanumeric	text	format.	Graphics	or	text	in	any	other
format	can't	be	transferred.

If	the	channum	argument	isn't	an	integer	corresponding	to	an	open	channel,	or	if
the	data	requested	can't	be	transferred,	a	run-time	error	occurs.

Tip			If	you	need	to	manipulate	another	application's	objects	from	Microsoft
Access,	you	may	want	to	consider	using	Automation.

Show	All

DDEPoke	Statement
			

You	can	use	the	DDEPoke	statement	to	supply	text	data	from	a	client
application	to	a	server	application	over	an	open	dynamic	data	exchange	(DDE)
channel.

For	example,	if	you	have	an	open	DDE	channel	between	Microsoft	Access	and
Microsoft	Excel,	you	can	use	the	DDEPoke	statement	to	transfer	text	from	a
Microsoft	Access	database	to	a	Microsoft	Excel	spreadsheet.	In	this	example,
Microsoft	Access	acts	as	the	client	application,	and	Microsoft	Excel	acts	as	the
server	application.

DDEPoke	(channum,	item,	data)

The	DDEPoke	statement	has	the	following	arguments.

Argument Description

channum A	channel	number,	an	integer	returned	by	the	DDEInitiate
function.

item

A	string	expression	that's	the	name	of	a	data	item	recognized
by	the	application	specified	by	the	DDEInitiate	function.
Check	the	application's	documentation	for	a	list	of	possible
items.

data A	string	containing	the	data	to	be	supplied	to	the	other
application.

Remarks

The	value	of	the	item	argument	depends	on	the	application	and	topic	specified
when	the	channel	indicated	by	the	channum	argument	is	opened.	For	example,
the	item	argument	may	be	a	range	of	cells	in	a	Microsoft	Excel	spreadsheet.

The	string	contained	in	the	data	argument	must	be	an	alphanumeric	text	string.
No	other	formats	are	supported.	For	example,	the	data	argument	could	be	a
number	to	fill	a	cell	in	a	specified	range	in	an	Excel	worksheet.

If	the	channum	argument	isn't	an	integer	corresponding	to	an	open	channel	or	if
the	other	application	doesn't	recognize	or	accept	the	specified	data,	a	run-time
error	occurs.

Tip			If	you	need	to	manipulate	another	application's	objects	from	Microsoft
Access,	you	may	want	to	consider	using	Automation.

Show	All

DDETerminate	Statement
			

You	can	use	the	DDETerminate	statement	to	close	a	specified	dynamic	data
exchange	(DDE)	channel.

For	example,	if	you've	opened	a	DDE	channel	to	transfer	data	between
Microsoft	Excel	and	Microsoft	Access,	you	can	use	the	DDETerminate
statement	to	close	that	channel	once	the	transfer	is	complete.

DDETerminate	(channum)

Remarks

The	channum	argument	specifies	the	channel	number	to	close.	It	refers	to	a
channel	opened	by	the	DDEInitiate	function.	If	the	channum	argument	isn't	an
integer	corresponding	to	an	open	channel,	a	run-time	error	occurs.

Once	a	channel	is	closed,	any	subsequent	DDE	functions	or	statements
performed	on	that	channel	cause	a	run-time	error.

The	DDETerminate	statement	has	no	effect	on	active	DDE	link	expressions	in
fields	on	forms	or	reports.

Tip			If	you	need	to	manipulate	another	application's	objects	from	Microsoft
Access,	you	may	want	to	consider	using	Automation.

Show	All

DDETerminateAll	Statement
			

You	can	use	the	DDETerminateAll	statement	to	close	all	open	dynamic	data
exchange	(DDE)	channels.

For	example,	suppose	you've	opened	two	DDE	channels	between	Microsoft
Excel	and	Microsoft	Access,	one	to	retrieve	system	information	about	Microsoft
Excel	and	one	to	transfer	data.	You	can	use	the	DDETerminateAll	statement	to
close	both	channels	simultaneously.

DDETerminateAll

Remarks

Using	the	DDETerminateAll	statement	is	equivalent	to	executing	a
DDETerminate	statement	for	each	open	channel	number.	Like	the
DDETerminate	statement,	the	DDETerminateAll	statement	has	no	effect	on
active	DDE	link	expressions	in	fields	on	forms	or	reports.

If	there	are	no	DDE	channels	open,	the	DDETerminateAll	statement	runs
without	causing	a	run-time	error.

Tips

If	you	interrupt	a	procedure	that	performs	DDE,	you	may	inadvertently
leave	channels	open.	To	avoid	exhausting	system	resources,	use	the
DDETerminateAll	statement	in	your	code	or	from	the	Immediate	(lower)
pane	of	the	Debug	window	while	debugging	code	that	performs	DDE.
If	you	need	to	manipulate	another	application's	objects	from	Microsoft
Access,	you	may	want	to	consider	using	Automation.

Show	All

Unbound	Object	Frame	Control
			

The	unbound	object	frame	control	displays	a	picture,	chart,	or	any	OLE	object
not	stored	in	a	table.	For	example,	you	can	use	an	unbound	object	frame	to
display	a	chart	that	you	created	and	stored	in	Microsoft	Graph.

Remarks

This	control	allows	you	to	create	or	edit	the	object	from	within	a	Microsoft
Access	form	or	report	by	using	the	application	in	which	the	object	was	originally
created.

To	display	objects	that	are	stored	in	a	Microsoft	Access	database,	use	a	bound
object	frame	control.

The	object	in	an	unbound	object	frame	is	the	same	for	every	record.

The	unbound	object	frame	can	display	linked	or	embedded	objects.

Tip			You	can	use	the	unbound	object	frame	or	an	image	control	to	display
unbound	pictures	in	a	form	or	report.	The	advantage	of	using	the	unbound	object
frame	is	that	you	can	edit	the	object	directly	from	the	form	or	report.	The
advantage	of	using	the	image	control	is	that	it's	faster	to	display.

Image	Control	(Forms	and	Reports)
			

The	image	control	can	add	a	picture	to	a	form	or	report.	For	example,	you	could
include	an	image	control	for	a	logo	on	an	Invoice	report.

Note			This	control	should	not	be	confused	with	the	Dynamic	HTML	image
control	used	on	a	data	access	page.	For	information	about	a	image	control	on	a
data	access	page,	see	Image	Control	(Data	Access	Page).

Remarks

You	can	use	the	image	control	or	an	unbound	object	frame	for	unbound	pictures.
The	advantage	of	using	the	image	control	is	that	it's	faster	to	display.	The
advantage	of	using	the	unbound	object	frame	is	that	you	can	edit	the	object
directly	from	the	form	or	report.

Show	All

Check	Box	Control	(Data	Access
Pages)
			

A	check	box	on	a	data	access	page	is	a	bound	control	that	displays	a	Yes/No
value	from	an	underlying	record	source.

Control: Tool:

Remarks

When	you	select	or	clear	a	check	box	that's	bound	to	a	Yes/No	field,	Microsoft
Access	displays	the	value	in	the	underlying	table	according	to	the	field's	Format
property	(Yes/No,	True/False,	or	On/Off).

You	can	also	use	check	boxes	in	an	option	group	to	display	values	to	choose
from.

It's	also	possible	to	use	an	unbound	check	box	in	a	custom	dialog	box	to	accept
user	input.

Show	All

Drop-down	List	Box	Control	(Data
Access	Pages)
			

The	drop-down	list	box	control	on	a	data	access	page	combines	some	of	the
features	of	a	text	box	and	a	list	box.	Use	a	drop-down	list	box	control	when	you
want	the	option	of	displaying	and	selecting	a	value	from	a	predefined	list.

Control: Tool:

Remarks

In	Page	view,	Microsoft	Access	doesn't	display	the	list	until	you	click	the	drop-
down	list	box	control's	arrow.

If	you	have	Control	Wizards	on	before	you	select	the	drop-down	list	box	control
tool,	you	can	create	a	drop-down	list	box	with	a	wizard.	To	turn	Control	Wizards
on	or	off,	click	the	Control	Wizards	tool	 	in	the	toolbox.

You	cannot	enter	values	that	aren't	in	the	list.

The	list	can	be	single-	or	multiple-column,	and	the	columns	can	appear	with	or
without	headings.

Show	All

Event	Properties
			

Event	properties	cause	a	macro	or	the	associated	Visual	Basic	event	procedure	to
run	when	a	particular	event	occurs.	For	example,	if	you	enter	the	name	of	a
macro	in	a	command	button's	OnClick	property,	that	macro	runs	when	the
command	button	is	clicked.

Setting

To	run	a	macro,	enter	the	name	of	the	macro.	You	can	choose	an	existing	macro
in	the	list.	If	the	macro	is	in	a	macro	group,	it	will	be	listed	under	the	macro
group	name,	as	macrogroupname.macroname.

To	run	the	event	procedure	associated	with	the	event,	select	[Event	Procedure]
in	the	list.

Note			Although	using	an	event	procedure	is	the	recommended	method	for
running	Visual	Basic	code	in	response	to	an	event,	you	can	also	run	a	user-
defined	function	when	an	event	occurs.	To	run	a	user-defined	function,	place	an
equal	sign	(=)	before	the	function	name	and	parentheses	after	it,	as	in
=functionname().

You	can	set	event	properties	in	the	property	sheet	for	an	object,	in	a	macro,	or	by
using	Visual	Basic.	Note	that	you	can't	set	any	event	properties	while	you're
formatting	or	printing	a	form	or	report.

Tip			You	can	use	builders	to	help	you	set	an	event	property.	To	use	them,	click
the	Build	button	 	to	the	right	of	the	property	box,	or	right-click	the	property
box	and	then	click	Build	on	the	shortcut	menu.	In	the	Choose	Builder	dialog
box,	select:

The	Macro	Builder	to	create	and	specify	a	macro	for	this	event	property.
You	can	also	use	the	Macro	Builder	to	edit	a	macro	already	specified	by	the
property.
The	Code	Builder	to	create	and	specify	an	event	procedure	for	this	event
property.	You	can	also	use	the	Code	Builder	to	edit	an	event	procedure
already	specified	by	the	property.
In	a	Microsoft	Access	database	(.mdb),	the	Expression	Builder	to	choose
and	specify	a	user-defined	function	for	this	event	property.

In	Visual	Basic,	set	the	property	to	a	string	expression.

To	run	this Use	this	syntax Example

Macro "macroname" Button1.OnClick	=	"MyMacro"

Event
procedure

"[Event
Procedure]" Button1.OnClick	=	"[Event	Procedure]"

User-defined
function

"=functionname(
)" Button1.OnClick	=	"=MyFunction()"

Example

The	following	example	shows	how	you	can	use	the	value	entered	in	the	Country
control	to	determine	which	of	two	different	macros	to	run	when	you	click	the
Print	Country	Report	button.

Private	Sub	Country_AfterUpdate()

				If	Country	=	"Canada"	Then

								[Print	Country	Report].OnClick	=	"PrintCanadaReport"

				ElseIf	Country	=	"USA"	Then

								[Print	Country	Report].OnClick	=	"PrintUSAReport"

				End	If

End	Sub

Show	All

Command	Button	Control	(Data
Access	Pages)
			

A	command	button	on	a	data	access	page	can	start	an	action	or	a	set	of	actions.
On	a	data	access	page,	code	written	in	either	JavaScript	or	Visual	Basic	Script	is
attached	to	a	command	button	using	the	Microsoft	Visual	Script	Editor.

Control: Tool:

Remarks

You	can	display	text	on	a	command	button	by	setting	its	Value	property.

Show	All

KeepTogether	Property	-	Groups
			

You	can	use	the	KeepTogether	property	for	a	group	in	a	report	to	keep	parts	of	a
group	—	including	the	group	header,	detail	section,	and	group	footer	—	together
on	the	same	page.	For	example,	you	might	want	a	group	header	to	always	be
printed	on	the	same	page	with	the	first	detail	section.

Setting

The	KeepTogether	property	for	a	group	uses	the	following	settings.

Setting Visual	Basic Description

No 0
(Default)	Prints	the	group	without
keeping	the	group	header,	detail	section,
and	group	footer	on	the	same	page.

Whole	Group 1 Prints	the	group	header,	detail	section,
and	group	footer	on	the	same	page.

With	First	Detail 2 Prints	the	group	header	on	a	page	only	if
it	can	also	print	the	first	detail	record.

You	can	set	the	KeepTogether	property	for	a	group	by	using	the	Sorting	And
Grouping	box,	a	macro,	or	Visual	Basic.

In	Visual	Basic,	you	set	the	KeepTogether	property	for	a	group	in	report	Design
view	or	the	Open	event	procedure	of	a	report	by	using	the	GroupLevel	property.

Remarks

To	set	the	KeepTogether	property	for	a	group	to	a	value	other	than	No,	you
must	set	the	GroupHeader	or	GroupFooter	property	or	both	to	Yes	for	the
selected	field	or	expression.

A	group	includes	the	group	header,	detail	section,	and	group	footer.	If	you	set	the
KeepTogether	property	for	a	group	to	Whole	Group	and	the	group	is	too	large
to	fit	on	one	page,	Microsoft	Access	will	ignore	the	setting	for	that	group.
Similarly,	if	you	set	this	property	to	With	First	Detail	and	either	the	group	header
or	detail	record	is	too	large	to	fit	on	one	page,	the	setting	will	be	ignored.

If	the	KeepTogether	property	for	a	section	is	set	to	No	and	the	KeepTogether
property	for	a	group	is	set	to	Whole	Group	or	With	First	Detail,	the
KeepTogether	property	setting	for	the	section	is	ignored.

Show	All

Image	Control	(Data	Access	Pages)
			

The	image	control	can	add	a	picture	to	a	data	access	page.	For	example,	you
could	include	an	image	control	for	a	logo	on	a	Sales	entry	page.

Control: Tool:

Remarks

You	can	use	the	image	control	or	an	unbound	object	frame	for	unbound	pictures.
The	advantage	of	using	the	image	control	is	that	it's	faster	to	display.

Show	All

Label	Control	(Data	Access	Pages)
			

Labels	on	an	data	access	page	display	descriptive	text	such	as	titles,	captions,	or
brief	instructions.	Labels	have	certain	characteristics:

Labels	don't	display	values	from	fields	or	expressions.
Labels	don't	change	as	you	move	from	record	to	record.

Control: Tool:

Remarks

A	label	can	be	attached	to	another	control.	When	you	create	a	text	box,	for
example,	it	has	an	attached	label	that	displays	a	caption	for	that	text	box.

When	you	create	a	label	by	using	the	Label	tool,	the	label	stands	on	its	own	it
isn't	attached	to	any	other	control.	You	use	stand-alone	labels	for	information
such	as	the	title,	or	for	other	descriptive	text.

Show	All

Line	Control	(Data	Access	Pages)
			

The	line	control	displays	a	horizontal,	vertical,	or	diagonal	line	on	a	data	access
page.

Control: Tool:

Remarks

You	can	use	the	Height	property	to	change	the	line	width.	You	can	use
Line/Border	Color	 	to	change	the	color	of	the	border	or	make	it	transparent.

Show	All

List	Box	Control	(Data	Access	Pages)
			

The	list	box	control	displays	a	list	of	values	or	alternatives.	In	many	cases,	it's
quicker	and	easier	to	select	a	value	from	a	list	than	to	remember	a	value	to	type.
A	list	of	choices	also	helps	ensure	that	the	value	that's	entered	in	a	field	is
correct.

Control: Tool:

The	list	in	a	list	box	consists	of	rows	of	data.	Rows	can	have	one	or	more
columns,	which	can	appear	with	or	without	headings.

Remarks

If	a	multiple-column	list	box	is	bound,	Microsoft	Access	stores	the	values	from
one	of	the	columns.

You	can	use	an	unbound	list	box	to	store	a	value	that	you	can	use	with	another
control.	For	example,	you	could	use	an	unbound	list	box	to	limit	the	values	in
another	list	box	or	in	a	custom	dialog	box.	You	could	also	use	an	unbound	list
box	to	find	a	record	based	on	the	value	you	select	in	the	list	box.

If	you	don't	have	room	on	your	form	to	display	a	list	box,	use	a	dropdown	box
instead	of	a	list	box.

Show	All

Bound	Object	Frame	Control
			

A	bound	object	frame	control	displays	a	picture,	chart,	or	any	OLE	object	stored
in	a	table	in	a	Microsoft	Access	database.	For	example,	if	you	store	pictures	of
your	employees	in	a	table	in	Microsoft	Access,	you	can	use	a	bound	object
frame	to	display	these	pictures	on	a	form	or	report.

Remarks

This	control	type	allows	you	to	create	or	edit	the	object	from	within	the	form	or
report	by	using	the	OLE	server.

A	bound	object	frame	is	bound	to	a	field	in	an	underlying	table.

The	field	in	the	underlying	table	to	which	the	bound	object	frame	is	bound	must
be	of	the	OLE	Object	data	type.

The	object	in	a	bound	object	frame	is	different	for	each	record.	The	bound	object
frame	can	display	linked	or	embedded	objects.	If	you	want	to	display	objects	not
stored	in	an	underlying	table,	use	an	unbound	object	frame	or	an	image	control.

Show	All

Option	Button	Control	(Data	Access
Pages)
			

An	option	button	on	a	data	access	page	is	a	stand-alone	control	used	to	display	a
Yes/No	value	from	an	underlying	record	source

Control: Tool:

Remarks

When	you	select	or	clear	an	option	button	that's	bound	to	a	Yes/No	field,
Microsoft	Access	displays	the	value	in	the	underlying	table	according	to	the
field's	Format	property	(Yes/No,	True/False,	or	On/Off).

You	can	also	use	option	buttons	in	an	option	group	to	display	values	to	choose
from.

It's	also	possible	to	use	an	unbound	option	button	in	a	custom	dialog	box	to
accept	user	input.

Show	All

Option	Group	Control	(Data	Access
Pages)
			

An	option	group	on	a	data	access	page	displays	a	limited	set	of	alternatives.	An
option	group	makes	selecting	a	value	easy	since	you	can	just	click	the	value	you
want.	Only	one	option	in	an	option	group	can	be	selected	at	a	time.

An	option	group	consists	of	a	group	frame	and	a	set	of	check	boxes,	toggle
buttons,	or	option	buttons.

Control: Tool:

Remarks

If	an	option	group	is	bound	to	a	field,	only	the	group	frame	itself	is	bound	to	the
field,	not	the	check	boxes,	toggle	buttons,	or	option	buttons	inside	the	frame.
Instead	of	setting	the	ControlSource	property	for	each	control	in	the	option
group,	you	set	the	Value	property	of	each	check	box,	toggle	button,	or	option
button	to	a	number	that's	meaningful	for	the	field	to	which	the	group	frame	is
bound.	When	you	select	an	option	in	an	option	group,	Microsoft	Access	sets	the
value	of	the	field	to	which	the	option	group	is	bound	to	the	value	of	the	selected
option's	Value	property.

Note			The	Value	property	is	set	to	a	number	because	the	value	of	an	option
group	can	only	be	a	number,	not	text.	Microsoft	Access	stores	this	number	in	the
underlying	table.	In	the	preceding	example,	if	you	want	to	display	the	name	of
the	shipper	instead	of	a	number	in	the	Orders	table,	you	can	create	a	separate
table	called	Shippers	that	stores	shipper	names,	and	then	make	the	ShipVia	field
in	the	Orders	table	a	Lookup	field	that	looks	up	data	in	the	Shippers	table.

An	option	group	can	also	be	set	to	an	expression,	or	it	can	be	unbound.	You	can
use	an	unbound	option	group	in	a	custom	dialog	box	to	accept	user	input	and
then	carry	out	an	action	based	on	that	input.

Show	All

Rectangle	Control	(Data	Access
Pages)
			

The	rectangle	control	displays	a	rectangle	on	a	data	access	page.

Control: Tool:

Remarks

You	can	move	a	rectangle	and	the	controls	in	it	as	a	single	unit	by	dragging	the
mouse	pointer	diagonally	across	the	entire	rectangle	to	select	all	of	the	controls.
The	entire	selection	can	then	be	moved	to	a	new	position.

Show	All

Text	Box	Control	(Data	Access	Pages)
			

Text	boxes	on	a	data	access	page	display	data	from	a	record	source.	This	type	of
text	box	is	called	a	bound	text	box	because	it's	bound	to	data	in	a	field.	Text
boxes	can	also	be	unbound.	For	example,	you	can	create	an	unbound	text	box	to
display	the	results	of	a	calculation,	or	to	accept	input	from	a	user.	Data	in	an
unbound	text	box	isn't	saved	with	the	database.

Control: Tool:

Show	All

Guid	Property
							

The	GUID	property	of	a	Reference	object	returns	a	GUID	that	identifies	a	type
library	in	the	Windows	Registry.	Read-only	String.

expression.Guid

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

Remarks

The	GUID	property	is	available	only	by	using	Visual	Basic.

Every	type	library	has	an	associated	GUID	which	is	stored	in	the	Registry.	When
you	set	a	reference	to	a	type	library,	Microsoft	Access	uses	the	type	library's
GUID	to	identify	the	type	library.

You	can	use	the	AddFromGUID	method	to	create	a	Reference	object	from	a
type	library's	GUID.

Example

The	following	example	prints	the	value	of	the	FullPath,	GUID,	IsBroken,
Major,	and	Minor	properties	for	each	Reference	object	in	the	References
collection:

Sub	ReferenceProperties()

				Dim	ref	As	Reference

				'	Enumerate	through	References	collection.

				For	Each	ref	In	References

								'	Check	IsBroken	property.

								If	ref.IsBroken	=	False	Then

												Debug.Print	"Name:	",	ref.Name

												Debug.Print	"FullPath:	",	ref.FullPath

												Debug.Print	"Version:	",	ref.Major	&	"."	&	ref.Minor

								Else

												Debug.Print	"GUIDs	of	broken	references:"

												Debug.Print	ref.GUID

								EndIf

				Next	ref

End	Sub

Line	Control	(Forms	and	Reports)
			

The	line	control	displays	a	horizontal,	vertical,	or	diagonal	line	on	a	form	or
report.

Note			This	control	should	not	be	confused	with	the	Dynamic	HTML	line	control
used	on	a	data	access	page.	For	information	about	a	line	control	on	a	data	access
page,	see	Line	Control	(Data	Access	Pages).

Remarks

You	can	use	Border	Width	to	change	the	line	width.	You	can	use	Border	Color
to	change	the	color	of	the	border	or	make	it	transparent.	You	can	change	the	line
style	(dots,	dashes,	and	so	on)	of	the	border	by	using	the	BorderStyle	property.

Show	All

Page	Break	Control
			

The	page	break	control	marks	the	start	of	a	new	screen	or	printed	page	on	a	form
or	report.

Remarks

In	a	form,	a	page	break	is	active	only	when	you	set	the	form's	DefaultView
property	to	Single	Form.	Page	breaks	don't	affect	a	form's	datasheet.

In	Form	view,	press	the	PAGE	UP	or	PAGE	DOWN	key	to	move	to	the	previous
or	next	page	break.

Position	page	breaks	above	or	below	other	controls.	Placing	a	page	break	on	the
same	line	as	another	control	splits	that	control's	data.

Rectangle	Control	(Forms	and
Reports)
			

The	rectangle	control	displays	a	rectangle	on	a	form	or	report.

Note			This	control	should	not	be	confused	with	the	Dynamic	HTML	rectangle
control	used	on	a	data	access	page.	For	information	about	a	rectangle	control	on
a	data	access	page,	see	Rectangle	Control	(Data	Access	Page).

Remarks

You	can	move	a	rectangle	and	the	controls	in	it	as	a	single	unit	by	dragging	the
mouse	pointer	diagonally	across	the	entire	rectangle	to	select	all	of	the	controls.
The	entire	selection	can	then	be	moved	to	a	new	position.

Show	All

Form	Section
			

A	form	section	is	part	of	a	form	such	as	a	header,	footer,	or	detail	section.

You	can	set	section	properties	which	are	attributes	of	a	form	that	affect	the
appearance	or	behavior	of	that	section.	For	example,	you	can	set	the	CanGrow
property	to	specify	whether	the	section	will	increase	vertically	to	print	all	the
data	the	section	contains.	Section	properties	are	set	in	form	Design	view.

Show	All

Report	Section
			

A	report	section	is	part	of	a	report	such	as	a	header,	footer,	or	detail	section.

You	can	set	report	section	properties	that	are	attributes	of	a	report	which	affect
the	appearance	or	behavior	of	a	specific	section.	For	example,	you	can	set	the
CanGrow	property	to	specify	whether	the	section	will	increase	vertically	to
print	all	the	data	the	section	contains.	Section	properties	are	set	in	report	Design
view.

Show	All

TopValues	Property
			

You	can	use	the	TopValues	property	to	return	a	specified	number	of	records	or	a
percentage	of	records	that	meet	the	criteria	you	specify.	For	example,	you	might
want	to	return	the	top	10	values	or	the	top	25	percent	of	all	values	in	a	field.

Note			The	TopValues	property	applies	only	to	append,	make-table,	and	select
queries.

Setting

The	TopValues	property	setting	is	an	Integer	value	representing	the	exact
number	of	values	to	return	or	a	number	followed	by	a	percent	sign	(%)
representing	the	percentage	of	records	to	return.	For	example,	to	return	the	top
10	values,	set	the	TopValues	property	to	10;	to	return	the	top	10	percent	of
values,	set	the	TopValues	property	to	10%.

You	can't	set	this	property	in	code	directly.	It's	set	in	SQL	view	of	the	Query
window	by	using	a	TOP	n	or	TOP	n	PERCENT	clause	in	the	SQL	statement.

You	can	also	set	the	TopValues	property	by	using	the	query's	property	sheet	or
the	Top	Values	box	on	the	Query	Design	toolbar.

Note			The	TopValues	property	in	the	query's	property	sheet	and	on	the	Query
Design	toolbar	is	a	combo	box	that	contains	a	list	of	values	and	percentage
values.	You	can	select	one	of	these	values	or	you	can	type	any	valid	setting	in
the	text	box	portion	of	this	control.

Remarks

Typically,	you	use	the	TopValues	property	setting	together	with	sorted	fields.
The	field	you	want	to	display	top	values	for	should	be	the	leftmost	field	that	has
the	Sort	box	selected	in	the	query	design	grid.	An	ascending	sort	returns	the
bottommost	records,	and	a	descending	sort	returns	the	topmost	records.	If	you
specify	that	a	specific	number	of	records	be	returned,	all	records	with	values	that
match	the	value	in	the	last	record	are	also	returned.

For	example,	suppose	a	set	of	employees	has	the	following	sales	totals.

Sales Salesperson
90,000 Leverling
80,000 Peacock
70,000 Davolio
70,000 King
60,000 Suyama
50,000 Buchanan

If	you	set	the	TopValues	property	to	3	with	a	descending	sort	on	the	Sales	field,
Microsoft	Access	returns	the	following	four	records.

Sales Salesperson
90,000 Leverling
80,000 Peacock
70,000 Davolio
70,000 King

Note			To	return	the	topmost	or	bottommost	values	without	displaying	duplicate
values,	set	the	UniqueValues	property	in	the	query's	property	sheet	to	Yes.

Example

The	following	example	assigns	an	SQL	string	that	returns	the	top	10	most
expensive	products	to	the	RecordSource	property	for	a	form	that	will	display
the	ten	most	expensive	products.

Dim	strGetSQL	As	String

strGetSQL	=	"SELECT	TOP	10	Products.[ProductName]	"	_

				&	"AS	TenMostExpensiveProducts,	Products.UnitPrice	FROM	Products	"	_

				&	"ORDER	BY	Products.[UnitPrice]	DESC;"

Me.RecordSource	=	strGetSQL

Show	All

StringFromGUID	Function
			

The	StringFromGUID	function	converts	a	GUID,	which	is	an	array	of	type
Byte,	to	a	string.

StringFromGUID(guid)

The	StringFromGUID	function	has	the	following	argument.

Argument Description

guid
An	array	of	Byte	data	used	to	uniquely	identify	an
application,	component,	or	item	of	data	to	the	operating
system.

Remarks

The	Microsoft	Jet	database	engine	stores	GUIDs	as	arrays	of	type	Byte.
However,	Microsoft	Access	can't	return	Byte	data	from	a	control	on	a	form	or
report.	In	order	to	return	the	value	of	a	GUID	from	a	control,	you	must	convert	it
to	a	string.	To	convert	a	GUID	to	a	string,	use	the	StringFromGUID	function.
To	convert	a	string	back	to	a	GUID,	use	the	GUIDFromString	function.

For	example,	you	may	need	to	refer	to	a	field	that	contains	a	GUID	when	using
database	replication.	To	return	the	value	of	a	control	on	a	form	bound	to	a	field
that	contains	a	GUID,	use	the	StringFromGUID	function	to	convert	the	GUID
to	a	string.

Note	that	in	order	to	bind	a	control	to	the	s_GUID	field	of	a	replicated	table,	you
must	select	the	System	objects	check	box	on	the	View	tab	of	the	Options	dialog
box	(Tools	menu).

Example

The	following	example	returns	the	value	of	the	s_GUID	control	on	an
Employees	form	in	string	form	and	assigns	it	to	a	string	variable.	The	s_GUID
control	is	bound	to	the	s_GUID	field,	one	of	the	system	fields	added	to	each
replicated	table	in	a	replicated	database.

Public	Sub	StringValueOfGUID()

				Dim	ctl	As	Control

				Dim	strGUID	As	String

				'	Get	the	GUID.

				Set	ctl	=	Forms!Employees!s_GUID

				Debug.Print	TypeName(ctl.Value)

				'	Convert	the	GUID	to	a	string.

				strGUID	=	StringFromGUID(ctl.Value)

				Debug.Print	TypeName(strGUID)

End	Sub

Show	All

Hwnd	Property
							

You	can	use	the	hWnd	property	to	determine	the	handle	(a	unique	Long	Integer
value)	assigned	by	Microsoft	Windows	to	the	current	window.	Read/write	Long.

expression.Hwnd

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

Remarks

This	property	is	available	only	by	using	a	macro	or	Visual	Basic.

You	can	use	this	property	in	Visual	Basic	when	making	calls	to	Windows
application	programming	interface	(API)	functions	or	other	external	routines	that
require	the	hWnd	property	as	an	argument.	Many	Windows	functions	require
the	hWnd	property	value	of	the	current	window	as	one	of	the	arguments.

Caution			Because	the	value	of	this	property	can	change	while	a	program	is
running,	don't	store	the	hWnd	property	value	in	a	public	variable.

Example

The	following	example	uses	the	hWnd	property	with	the	Windows	API
IsZoomed	function	to	determine	if	a	window	is	maximized.

'	Enter	on	single	line	in	Declarations	section	of	Module	window.

Declare	Function	IsZoomed	Lib	"user32"	(ByVal	hWnd	As	Long)	As	Long

Sub	Form_Activate()

				Dim	intWindowHandle	As	Long

				intWindowHandle	=	Screen.ActiveForm.hWnd

				If	Not	IsZoomed(intWindowHandle)	Then

								DoCmd.Maximize

				End	If

End	Sub

Show	All

ReturnsRecords	Property
			

You	can	use	the	ReturnsRecords	property	in	an	SQL	pass-through	query	to
specify	whether	the	query	returns	records.	For	example,	if	your	pass-through
query	is	SELECT	*	FROM	EMPLOYEES,	you	can	set	the	ReturnsRecords	property
to	Yes	to	display	all	employee	records	in	the	query's	datasheet.

Note			The	ReturnsRecords	property	applies	only	to	pass-through	queries.

Setting

The	ReturnsRecords	property	uses	the	following	settings.

Setting Visual	Basic Description

Yes True		 (Default)	The	query	returns	records	(as	a	select
query	does).

No False		 The	query	doesn't	return	records	(as	an	action
query	does).

You	can	set	this	property	by	using	the	query's	property	sheet	or	Visual	Basic.

Tip			You	can	access	a	pass-through	query's	ReturnsRecords	property	in	Visual
Basic,	but	the	preferred	method	is	to	use	the	DAO	ReturnsRecords	property.

Remarks

A	pass-through	query	can	return	records,	or	it	can	be	used	to	change	data,	create
a	database	object,	or	perform	an	action	as	an	action	query	does.

When	you	set	the	ReturnsRecords	property	to	Yes,	you	can	use	the	pass-
through	query	in	another	query	or	as	the	basis	for	a	combo	box,	list	box,	form,	or
report.	If	you	set	the	ReturnsRecords	property	to	No,	you	can't	use	the	query	as
the	basis	for	an	object	or	control	because	no	records	are	returned.

Show	All

AppTitle	Property
			

You	can	use	the	AppTitle	property	to	specify	the	text	that	appears	in	the
application	database's	title	bar.	For	example,	you	can	use	the	AppTitle	property
to	specify	that	the	string	"Inventory	Control"	appear	in	the	title	bar	of	your
Inventory	Control	database	application.

Setting

The	AppTitle	property	is	a	string	expression	containing	the	text	to	appear	in	the
title	bar.

The	easiest	way	to	set	this	property	is	by	using	the	Application	Title	option	in
the	Startup	dialog	box,	available	by	clicking	Startup	on	the	Tools	menu.	You
can	also	set	this	property	by	using	a	macro	or	Visual	Basic.

To	set	the	AppTitle	property	by	using	a	macro	or	Visual	Basic,	you	must	first
either	set	the	property	in	the	Startup	dialog	box	once	or	create	the	property	in
the	following	ways:

In	a	Microsoft	Access	database	(.mdb),	you	can	add	it	by	using	the
CreateProperty	method	and	append	it	to	the	Properties	collection	of	the
Database	object.
In	a	Microsoft	Access	project	(.adp),	you	can	add	it	to	the
AccessObjectProperties	collection	of	the	CurrentProject	object	by	using
the	Add	method.

You	must	also	use	the	RefreshTitleBar	method	to	make	any	changes	visible
immediately.

Remarks

If	this	property	isn't	set,	the	string	"Microsoft	Access"	appears	in	the	title	bar.

This	property's	setting	takes	effect	immediately	after	setting	the	property	in	code
(as	long	as	the	code	includes	the	RefreshTitleBar	method)	or	closing	the
Startup	dialog	box.

Show	All

AppIcon	Property
					

You	can	use	the	AppIcon	property	to	specify	the	name	of	the	bitmap	(.bmp)	or
icon	(.ico)	file	that	contains	the	application's	icon.	For	example,	you	can	use	the
AppIcon	property	to	specify	a	.bmp	file	that	contains	a	picture	of	an	automobile
to	represent	an	automotive	parts	application.

Setting

The	AppIcon	property	is	a	string	expression	that's	a	valid	bitmap	or	icon	file
name	(including	the	path).

The	easiest	way	to	set	this	property	is	by	using	the	Application	Icon	option	in
the	Startup	dialog	box,	available	by	clicking	Startup	on	the	Tools	menu.	You
can	also	set	this	property	by	using	a	macro	or	Visual	Basic.

To	set	the	AppIcon	property	by	using	a	macro	or	Visual	Basic,	you	must	first
either	set	the	property	in	the	Startup	dialog	box	once	or	create	the	property	in
the	following	ways:

In	a	Microsoft	Access	database	(.mdb),	you	can	add	it	by	using	the
CreateProperty	method	and	append	it	to	the	Properties	collection	of	the
Database	object.
In	a	Microsoft	Access	project	(.adp),	you	can	add	it	to	the
AccessObjectProperties	collection	of	the	CurrentProject	object	by	using
the	Add	method.

You	must	also	use	the	RefreshTitleBar	method	to	make	any	changes	visible
immediately.

Remarks

If	you	are	distributing	your	application,	it's	recommended	that	the	.bmp	or	.ico
file	containing	the	icon	reside	in	the	same	directory	as	your	Microsoft	Access
application.

If	the	AppIcon	property	isn't	set	or	is	invalid,	the	Microsoft	Access	icon	is
displayed.

This	property	setting	takes	effect	immediately	after	it's	set	in	code	(as	long	as	the
code	includes	the	RefreshTitleBar	method)	or	the	Startup	dialog	box	is	closed.

Example

The	following	example	shows	how	to	change	the	AppIcon	and	AppTitle
properties	in	a	Microsoft	Access	database	(.mdb).	If	the	properties	haven't
already	been	set	or	created,	you	must	create	them	and	append	them	to	the
Properties	collection	by	using	the	CreateProperty	method.

Sub	cmdAddProp_Click()

				Dim	intX	As	Integer

				Const	DB_Text	As	Long	=	10

				intX	=	AddAppProperty("AppTitle",	DB_Text,	"My	Custom	Application")

				intX	=	AddAppProperty("AppIcon",	DB_Text,	"C:\Windows\Cars.bmp")

				CurrentDb.Properties("UseAppIconForFrmRpt")	=	1

				Application.RefreshTitleBar

End	Sub

Function	AddAppProperty(strName	As	String,	_

								varType	As	Variant,	varValue	As	Variant)	As	Integer

				Dim	dbs	As	Object,	prp	As	Variant

				Const	conPropNotFoundError	=	3270

				Set	dbs	=	CurrentDb

				On	Error	GoTo	AddProp_Err

				dbs.Properties(strName)	=	varValue

				AddAppProperty	=	True

AddProp_Bye:

				Exit	Function

AddProp_Err:

				If	Err	=	conPropNotFoundError	Then

								Set	prp	=	dbs.CreateProperty(strName,	varType,	varValue)

								dbs.Properties.Append	prp

								Resume

				Else

								AddAppProperty	=	False

								Resume	AddProp_Bye

				End	If

End	Function

Show	All

Chart	Control	(Forms	and	Reports)
			

You	can	use	the	chart	control	to	embed	a	chart	that	displays	Microsoft	Access
data	from	a	form	or	report.	You	can	then	edit	the	chart	by	using	Microsoft	Graph
from	within	the	form	or	report.

Note			This	control	should	not	be	confused	with	the	Dynamic	HTML	image,
hotspot	image,	or	Office	chart,	or	Office	Spreadsheet	control	used	on	a	data
access	page.	For	information	about	these	control	on	a	data	access	page,	see
Image,	Image	Hyperlink,	Office	Chart,	or	Office	Spreadsheet	Control	(Data
Access	Pages).

Remarks

When	you	place	a	chart	control	on	a	form	or	report,	Microsoft	Access	displays
the	Chart	Wizard	to	help	you	create	the	chart.

Note			To	embed	or	link	a	chart	containing	data	from	other	applications,	use	an
unbound	object	frame	or	bound	object	frame	control.

Show	All

GUIDFromString	Function
			

The	GUIDFromString	function	converts	a	string	to	a	GUID,	which	is	an	array
of	type	Byte.

GUIDFromString(stringexpression)

The	GUIDFromString	function	has	the	following	argument.

Argument Description

stringexpression A	string	expression	which	evaluates	to	a	GUID	in	string
form.

Remarks

The	Microsoft	Jet	database	engine	stores	GUIDs	as	arrays	of	type	Byte.
However,	Microsoft	Access	can't	return	Byte	data	from	a	control	on	a	form	or
report.	In	order	to	return	the	value	of	a	GUID	from	a	control,	you	must	convert	it
to	a	string.	To	convert	a	GUID	to	a	string,	use	the	StringFromGUID	function.
To	convert	a	string	to	a	GUID,	use	the	GUIDFromString	function.

Example

The	following	example	uses	the	GUIDFromString	function	to	convert	a	string
to	a	GUID.	The	string	is	a	GUID	stored	in	string	form	in	a	replicated	Employees
table.	The	field,	s_GUID,	is	a	hidden	field	added	to	every	replicated	table	in	a
replicated	database.

Sub	CheckGUIDType()

				Dim	dbsConn	As	ADODB.Connection

				Dim	rstEmployees	As	ADODB.Recordset

				'	Make	a	connection	to	the	current	database.

				Set	dbsConn	=	Application.CurrentProject.Connection

				Set	rstEmployees	=	New	ADODB.Recordset

				rstEmployees.Open	"Employees",	dbsConn,	,	,	adCmdTable

				'	Print	the	GUID	to	the	immediate	window.

				Debug.Print	rst!s_GUID

				Debug.Print	TypeName(rst!s_GUID)

				Debug.Print	TypeName(GuidFromString(rst!s_GUID))

				Set	rstEmployees	=	Nothing

				Set	dbsConn	=	Nothing

End	Sub

Show	All

OLETypeAllowed	Property
							

You	can	use	the	OLETypeAllowed	property	to	specify	the	type	of	OLE	object	a
control	can	contain.	Read/write	Byte.

expression.OLETypeAllowed

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

Remarks

The	OLETypeAllowed	property	uses	the	following	settings.

Setting Constant Description

Linked acOLELinked	 The	control	can	contain	only	a	linked
object.

Embedded acOLEEmbedded The	control	can	contain	only	an
embedded	object.

Either acOLEEither (Default)	The	control	can	contain	either
a	linked	or	an	embedded	object.

You	can	set	the	OLETypeAllowed	property	by	using	the	control's	property
sheet,	a	macro,	or	Visual	Basic.	You	can	set	the	default	for	this	property	by	using
a	control's	default	control	style	or	the	DefaultControl	method	in	Visual	Basic.

Note			For	unbound	object	frames	and	charts,	you	can't	change	the
OLETypeAllowed	setting	after	an	object	is	created.	For	bound	object	frames,
you	can	change	the	setting	after	the	object	is	created.	Changing	the
OLETypeAllowed	property	setting	only	affects	new	objects	that	you	add	to	the
control.

To	determine	the	type	of	OLE	object	a	control	already	contains,	you	can	use	the
OLEType	property.

Example

The	following	example	creates	a	linked	OLE	object	using	an	unbound	object
frame	named	OLE1	and	sizes	the	control	to	display	the	object's	entire	contents
when	the	user	clicks	a	command	button.

Sub	Command1_Click

				OLE1.Class	=	"Excel.Sheet"				'	Set	class	name.

				'	Specify	type	of	object.

				OLE1.OLETypeAllowed	=	acOLELinked

				'	Specify	source	file.

				OLE1.SourceDoc	=	"C:\Excel\Oletext.xls"

				'	Specify	data	to	create	link	to.

				OLE1.SourceItem	=	"R1C1:R5C5"

				'	Create	linked	object.

				OLE1.Action	=	acOLECreateLink

				'	Adjust	control	size.

				OLE1.SizeMode	=	acOLESizeZoom

End	Sub

Show	All

OLEType	Property
							

You	can	use	the	OLEType	property	to	determine	if	a	control	contains	an	OLE
object,	and,	if	so,	whether	the	object	is	linked	or	embedded.	Read/write	Byte.

expression.OLEType

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

Remarks

The	OLEType	property	uses	the	following	settings.

Setting Constant Description

Linked acOLELinked	
The	control	contains	a	linked	object.	All
the	object's	data	is	managed	by	the
application	that	created	it.

Embedded acOLEEmbedded	
The	control	contains	an	embedded
object.	All	the	object's	data	is	managed
by	Microsoft	Access.

None acOLENone The	control	doesn't	contain	an	OLE
object.

When	creating	an	OLE	object,	use	the	OLETypeAllowed	property	to	determine
what	type	of	object	a	control	can	contain.

Example

The	following	example	illustrates	how	to	display	the	Insert	Object	dialog	box
and	how	to	display	an	error	message	if	the	Cancel	button	in	the	Insert	Object
dialog	box	is	clicked.

Sub	InsertObject_Click()

				Dim	conUserCancelled	As	Integer

				'	Error	message	returned	when	user	cancels.

				conUserCancelled	=	2001

				On	Error	GoTo	ButtonErr

				If	OLE1.OLEType	=	acOLENone	Then

								'	No	OLE	object	created.

								'	Display	Insert	Object	dialog	box.

								OLE1.Action	=	acOLEInsertObjDlg

				End	If

				Exit	Sub

ButtonErr:

				If	Err	=	conUserCancelled	Then	'	Display	message.

								MsgBox	"You	clicked	the	Cancel	button;	"	_

												&	"no	object	was	created."

				End	If

				Resume	Next

End	Sub

Show	All

Table	Field
			

Table	fields	are	separate	pieces	of	information	that	make	up	a	record	within	a
table.	You	can	control	the	appearance	of	data,	specify	default	values,	and	speed
up	searching	and	sorting	by	setting	field	properties	in	the	Field	Properties	section
of	table	Design	view.

Microsoft	Access	uses	field	properties	when	you	view	or	edit	data.	For	example,
the	Format,	InputMask,	and	Caption	properties	that	you	set	affect	the
appearance	of	table	and	query	databases.	The	controls	on	new	forms	and	reports
that	are	based	on	the	table	inherit	these	properties	by	default.	You	can	use	other
properties	to	set	rules	for	data	or	to	require	data	entry	in	your	fields,	which
Microsoft	Access	enforces	whenever	you	add	or	edit	data	in	a	table.

To	open	a	table	in	Design	view,	go	to	the	Database	window,	click	the	Tables	tab,
select	the	table	you	want	to	open,	and	then	click	Design.

Show	All

DisplayControl	Property
			

You	can	use	the	DisplayControl	property	in	table	Design	view	to	specify	the
default	control	you	want	to	use	for	displaying	a	field.

Setting

You	can	set	the	DisplayControl	property	in	the	table's	property	sheet	in	table
Design	view	by	clicking	the	Lookup	tab	in	the	Field	Properties	section.

This	property	contains	a	drop-down	list	of	the	available	controls	for	the	selected
field.	For	fields	with	a	Text	or	Number	data	type,	this	property	can	be	set	to	Text
Box,	List	Box,	or	Combo	Box.	For	fields	with	a	Yes/No	data	type,	this	property
can	be	set	to	Check	Box,	Text	Box,	or	Combo	Box.

Remarks

When	you	select	a	control	for	this	property,	any	additional	properties	needed	to
configure	the	control	are	also	displayed	on	the	Lookup	tab.

Tip			You	can	let	Microsoft	Access	set	the	DisplayControl	property	and	any
related	properties	for	you	when	you	select	the	Lookup	Wizard	as	the	data	type
for	a	field.

Setting	this	property	and	any	related	control	type	properties	will	affect	the	field
display	in	both	Datasheet	view	and	Form	view.	The	field	is	displayed	by	using
the	control	and	control	property	settings	set	in	table	Design	view.	If	a	field	had
its	DisplayControl	property	set	in	table	Design	view	and	you	drag	it	from	the
field	list	in	form	Design	view,	Microsoft	Access	copies	the	appropriate
properties	to	the	control's	property	sheet.

Show	All

FieldName	Property
			

You	can	use	the	FieldName	property	to	specify	the	name	of	a	field	within	a
table.	For	example,	you	can	specify	"Last	Name"	for	a	field	that	stores
employees'	last	names	within	the	Employees	table.

Setting

Enter	a	field	name,	following	Microsoft	Access	object	naming	rules.	The	name
can't	duplicate	any	other	field	name	in	the	table.

Note			Avoid	specifying	a	name	for	a	field	that	could	cause	a	conflict	with	built-
in	Microsoft	Access	function	or	property	names,	such	as	the	Name	property.

You	can	set	this	property	in	the	upper	portion	of	table	Design	view	or	by	using
Visual	Basic.

In	Visual	Basic,	use	the	ADO	Name	property	to	read	and	set	a	table's	field	name.

Remarks

Microsoft	Access	identifies	a	field	by	its	field	name.	Once	you	have	specified	a
field	name	in	table	Design	view,	you	can	use	that	name	in	expressions,	Visual
Basic	procedures,	and	SQL	statements.

Show	All

Check	Box	Control	(Forms	and
Reports)
			

A	check	box	on	a	form	or	report	is	a	stand-alone	control	that	display	a	Yes/No
value	from	an	underlying	record	source.

Note			This	control	should	not	be	confused	with	the	Dynamic	HTML	check	box
control	used	on	a	data	access	page.	For	information	about	a	check	box	control	on
a	data	access	page,	see	Check	Box	Control	(Data	Access	Pages).

Remarks

When	you	select	or	clear	a	check	box	that's	bound	to	a	Yes/No	field,	Microsoft
Access	displays	the	value	in	the	underlying	table	according	to	the	field's	Format
property	(Yes/No,	True/False,	or	On/Off).

You	can	also	use	check	boxes	in	an	option	group	to	display	values	to	choose
from.

It's	also	possible	to	use	an	unbound	check	box	in	a	custom	dialog	box	to	accept
user	input.

Show	All

Combo	Box	Control	(Forms)
			

The	combo	box	control	combines	the	features	of	a	text	box	and	a	list	box.	Use	a
combo	box	when	you	want	the	option	of	either	typing	a	value	or	selecting	a
value	from	a	predefined	list.

Note			This	control	should	not	be	confused	with	the	Dynamic	HTML	drop-down
list	box	control	used	on	a	data	access	page.	For	information	about	a	drop-down
list	box	control	on	a	data	access	page,	see	Drop-down	List	Box	Control	(Data
Access	Page).

Remarks

In	Form	view,	Microsoft	Access	doesn't	display	the	list	until	you	click	the
combo	box's	arrow.

If	you	have	Control	Wizards	on	before	you	select	the	combo	box	tool,	you	can
create	a	combo	box	with	a	wizard.	To	turn	Control	Wizards	on	or	off,	click	the
Control	Wizards	button	in	the	toolbox.

The	setting	of	the	LimitToList	property	determines	whether	you	can	enter
values	that	aren't	in	the	list.

The	list	can	be	single-	or	multiple-column,	and	the	columns	can	appear	with	or
without	headings.

Show	All

Command	Button	Control	(Forms)
			

A	command	button	on	a	form	can	start	an	action	or	a	set	of	actions.	For	example,
you	could	create	a	command	button	that	opens	another	form.	To	make	a
command	button	do	something,	you	write	a	macro	or	event	procedure	and	attach
it	to	the	button's	OnClick	property.

Note			This	control	should	not	be	confused	with	the	Dynamic	HTML	command
button	control	used	on	a	data	access	page.	For	information	about	a	command
button	control	on	a	data	access	page,	see	Command	Button	Control	(Data	Access
Pages).

Remarks

You	can	display	text	on	a	command	button	by	setting	its	Caption	property,	or
you	can	display	a	picture	by	setting	its	Picture	property.

Tip			You	can	create	over	30	different	types	of	command	buttons	with	the
Command	Button	Wizard.	When	you	use	the	Command	Button	Wizard,
Microsoft	Access	creates	the	button	and	the	event	procedure	for	you.

Show	All

ActiveX	Control	(Form)
			

Some	of	the	content	in	this	topic	may	not	be	applicable	to	some	languages.

In	addition	to	the	built-in	controls	that	appear	in	the	toolbox,	Microsoft	Access
supports	ActiveX	controls	(formerly	known	as	custom	or	OLE	controls).	An
ActiveX	control,	like	a	built-in	control,	is	an	object	that	you	place	on	a	form	to
enable	or	enhance	a	user's	interaction	with	an	application.	ActiveX	controls	have
events	and	can	be	incorporated	into	other	controls.	These	controls	have	an	.ocx
file	name	extension.	The	Calendar	control	is	an	example	of	an	ActiveX	control.

Control: Tool:

Note			This	control	should	not	be	confused	with	the	Dynamic	HTML	ActiveX
control	used	on	a	data	access	page.	For	information	about	a	ActiveXcontrol	on	a
data	access	page,	see	ActiveX	Control	(Data	Access	Pages).

Show	All

Label	Control	(Forms	and	Reports)
			

Labels	on	a	form	or	report	display	descriptive	text	such	as	titles,	captions,	or
brief	instructions.	Labels	have	certain	characteristics:

Labels	don't	display	values	from	fields	or	expressions.
Labels	are	always	unbound.
Labels	don't	change	as	you	move	from	record	to	record.

Note			This	control	should	not	be	confused	with	the	Dynamic	HTML	label
control	used	on	a	data	access	page.	For	information	about	a	label	control	on	a
data	access	page,	see	Label	Control	(Data	Access	Pages).

Remarks

A	label	can	be	attached	to	another	control.	When	you	create	a	text	box,	for
example,	it	has	an	attached	label	that	displays	a	caption	for	that	text	box.	This
label	appears	as	a	column	heading	in	the	Datasheet	view	of	a	form.

When	you	create	a	label	by	using	the	Label	tool,	the	label	stands	on	its	own	—	it
isn't	attached	to	any	other	control.	You	use	stand-alone	labels	for	information
such	as	the	title	of	a	form	or	report,	or	for	other	descriptive	text.	Stand-alone
labels	don't	appear	in	Datasheet	view.

Show	All

List	Box	Control	(Forms)
			

The	list	box	control	displays	a	list	of	values	or	alternatives.	In	many	cases,	it's
quicker	and	easier	to	select	a	value	from	a	list	than	to	remember	a	value	to	type.
A	list	of	choices	also	helps	ensure	that	the	value	that's	entered	in	a	field	is
correct.

The	list	in	a	list	box	consists	of	rows	of	data.	Rows	can	have	one	or	more
columns,	which	can	appear	with	or	without	headings.

Note			This	control	should	not	be	confused	with	the	Dynamic	HTML	list	box
control	used	on	a	data	access	page.	For	information	about	a	list	box	control	on	a
data	access	page,	see	List	Box	Control	(Data	Access	Pages).

Remarks

If	a	multiple-column	list	box	is	bound,	Microsoft	Access	stores	the	values	from
one	of	the	columns.

You	can	use	an	unbound	list	box	to	store	a	value	that	you	can	use	with	another
control.	For	example,	you	could	use	an	unbound	list	box	to	limit	the	values	in
another	list	box	or	in	a	custom	dialog	box.	You	could	also	use	an	unbound	list
box	to	find	a	record	based	on	the	value	you	select	in	the	list	box.

If	you	don't	have	room	on	your	form	to	display	a	list	box,	or	if	you	want	to	be
able	to	type	new	values	as	well	as	select	values	from	a	list,	use	a	combo	box
instead	of	a	list	box.

Show	All

Option	Button	Control	(Forms	and
Reports)
			

An	option	button	on	a	form	or	report	is	a	stand-alone	control	used	to	display	a
Yes/No	value	from	an	underlying	record	source

Note			This	control	should	not	be	confused	with	the	Dynamic	HTML	option
button	control	used	on	a	data	access	page.	For	information	about	a	option	button
control	on	a	data	access	page,	see	Option	Button	Control	(Data	Access	Pages).

Remarks

When	you	select	or	clear	an	option	button	that's	bound	to	a	Yes/No	field,
Microsoft	Access	displays	the	value	in	the	underlying	table	according	to	the
field's	Format	property	(Yes/No,	True/False,	or	On/Off).

You	can	also	use	option	buttons	in	an	option	group	to	display	values	to	choose
from.

It's	also	possible	to	use	an	unbound	option	button	in	a	custom	dialog	box	to
accept	user	input.

Show	All

Option	Group	Control	(Forms	and
Reports)
			

An	option	group	on	a	form	or	report	displays	a	limited	set	of	alternatives.	An
option	group	makes	selecting	a	value	easy	since	you	can	just	click	the	value	you
want.	Only	one	option	in	an	option	group	can	be	selected	at	a	time.

An	option	group	consists	of	a	group	frame	and	a	set	of	check	boxes,	toggle
buttons,	or	option	buttons.

Note			This	control	should	not	be	confused	with	the	Dynamic	HTML	option
group	control	used	on	a	data	access	page.	For	information	about	a	option	group
control	on	a	data	access	page,	see	Option	Group	Control	(Data	Access	Pages).

Remarks

If	an	option	group	is	bound	to	a	field,	only	the	group	frame	itself	is	bound	to	the
field,	not	the	check	boxes,	toggle	buttons,	or	option	buttons	inside	the	frame.
Instead	of	setting	the	ControlSource	property	for	each	control	in	the	option
group,	you	set	the	OptionValue	property	of	each	check	box,	toggle	button,	or
option	button	to	a	number	that's	meaningful	for	the	field	to	which	the	group
frame	is	bound.	When	you	select	an	option	in	an	option	group,	Microsoft	Access
sets	the	value	of	the	field	to	which	the	option	group	is	bound	to	the	value	of	the
selected	option's	OptionValue	property.

Note			The	OptionValue	property	is	set	to	a	number	because	the	value	of	an
option	group	can	only	be	a	number,	not	text.	Microsoft	Access	stores	this
number	in	the	underlying	table.	In	the	preceding	example,	if	you	want	to	display
the	name	of	the	shipper	instead	of	a	number	in	the	Orders	table,	you	can	create	a
separate	table	called	Shippers	that	stores	shipper	names,	and	then	make	the
ShipVia	field	in	the	Orders	table	a	Lookup	field	that	looks	up	data	in	the
Shippers	table.

An	option	group	can	also	be	set	to	an	expression,	or	it	can	be	unbound.	You	can
use	an	unbound	option	group	in	a	custom	dialog	box	to	accept	user	input	and
then	carry	out	an	action	based	on	that	input.

mk:@MSITStore:acmain10.chm::/html/acdecCreatingLookupAndListFieldsInTablesS.htm

Show	All

Subform/Subreport	Control
			

The	subform/subreport	control	embeds	a	form	in	a	form	or	a	report	in	a	report.

For	example,	you	can	use	a	form	with	a	subform	to	present	one-to-many
relationships,	such	as	one	product	category	with	the	items	that	fall	into	that
category.	In	this	case,	the	main	form	can	display	the	category	ID,	name,	and
description;	the	subform	can	display	the	available	products	in	that	category.

Tip			Instead	of	creating	the	main	form,	and	then	adding	the	subform	control	to
it,	you	can	simultaneously	create	the	main	form	and	subform	with	a	wizard.	You
can	also	create	a	subform	or	subreport	by	dragging	an	existing	form	or	report
from	the	Database	window	to	the	main	form	or	report.

Show	All

Tab	Control
			

A	tab	control	contains	multiple	pages	on	which	you	can	place	other	controls,
such	as	text	boxes	or	option	buttons.	When	a	user	clicks	the	corresponding	tab,
that	page	becomes	active.

With	the	tab	control,	you	can	construct	a	single	form	or	dialog	box	that	contains
several	different	tabs,	and	you	can	group	similar	options	or	data	on	each	tab's
page.	For	example,	you	might	use	a	tab	control	on	an	Employees	form	to
separate	general	and	personal	information.

Show	All

Text	Box	Control	(Forms	and
Reports)
			

Text	boxes	on	a	form	or	report	display	data	from	a	record	source.	This	type	of
text	box	is	called	a	bound	text	box	because	it's	bound	to	data	in	a	field.	Text
boxes	can	also	be	unbound.	For	example,	you	can	create	an	unbound	text	box	to
display	the	results	of	a	calculation,	or	to	accept	input	from	a	user.	Data	in	an
unbound	text	box	isn't	saved	with	the	database.

Note			This	control	should	not	be	confused	with	the	Dynamic	HTML	text	box
control	used	on	a	data	access	page.	For	information	about	a	text	box	control	on	a
data	access	page,	see	Text	Box	Control	(Data	Access	Pages).

Show	All

Toggle	Button	Control
			

A	toggle	button	on	a	form	is	a	stand-alone	control	used	to	display	a	Yes/No	value
from	an	underlying	record	source.

Remarks

When	you	click	a	toggle	button	that's	bound	to	a	Yes/No	field,	Microsoft	Access
displays	the	value	in	the	underlying	table	according	to	the	field's	Format
property	(Yes/No,	True/False,	or	On/Off).

Toggle	buttons	are	most	useful	when	used	in	an	option	group	with	other	buttons.

You	can	also	use	a	toggle	button	in	a	custom	dialog	box	to	accept	user	input.

Show	All

DatasheetGridlinesBehavior	Property
							

You	can	use	the	DatasheetGridlinesBehavior	property	to	specify	which
gridlines	will	appear	in	Datasheet	view.	Read/write	Byte.

expression.DatasheetGridlinesBehavior

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

Remarks

This	DatasheetGridlinesBehavior	property	applies	only	to	objects	in	Datasheet
view.

This	property	is	only	available	in	Visual	Basic	within	a	Microsoft	Access
database	(.mdb).

The	DatasheetGridlinesBehavior	property	uses	the	following	settings.

Setting Visual	Basic Description
None acGridlinesNone	 No	gridlines	are	displayed.
Horizontal acGridlinesHoriz	 Only	horizontal	gridlines	are	displayed.
Vertical acGridlinesVert	 Only	vertical	gridlines	are	displayed.

Both acGridlinesBoth	 (Default)	Horizontal	and	vertical
gridlines	are	displayed.

You	can	set	this	property	by	using	the	Gridlines	button	on	the	Formatting
(Datasheet)	toolbar,	and	in	an	Access	database	(.mdb),	by	using	a	macro,	or	by
using	Visual	Basic.

The	following	setting	information	applies	to	both	Access	databases	(.mdb)	and
Access	projects	(.adp):

You	can	also	set	this	property	by	selecting	the	settings	displayed	under	Gridlines
Shown	in	the	Cells	Effects	dialog	box,	available	by	clicking	Cells	on	the
Format	menu.

You	can	set	the	default	DatasheetGridlinesBehavior	property	by	using	the
settings	under	Default	Gridlines	Showing	on	the	Datasheet	tab	of	the	Options
dialog	box,	available	by	clicking	Options	on	the	Tools	menu.

Changes	to	this	property	will	be	visible	only	if	the	DatasheetCellsEffect
property	is	set	to	Flat.

The	following	table	contains	the	properties	that	don't	exist	in	the	DAO
Properties	collection	of	until	you	set	them	by	using	the	Formatting
(Datasheet)	toolbar	or	you	can	add	them	in	an	Access	database	(.mdb)	by	using

mk:@MSITStore:dao360.chm::/htm/dacolProperty.htm

the	CreateProperty	method	and	append	it	to	the	DAO	Properties	collection.

DatasheetFontItalic* DatasheetForeColor*
DatasheetFontHeight* DatasheetBackColor
DatasheetFontName* DatasheetGridlinesColor
DatasheetFontUnderline* DatasheetGridlinesBehavior
DatasheetFontWeight* DatasheetCellsEffect

Note			When	you	add	or	set	any	property	listed	with	an	asterisk,	Microsoft
Access	automatically	adds	all	the	properties	listed	with	an	asterisk	to	the
Properties	collection	in	the	database.

mk:@MSITStore:dao360.chm::/htm/damthCreateProperty.htm

Show	All

DatasheetGridlinesColor	Property
							

You	can	use	the	DatasheetGridlinesColor	property	to	specify	the	color	of
gridlines	in	a	datasheet.	Read/write	Long.

expression.DatasheetGridlinesColor

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

Remarks

The	DatasheetGridlinesColor	property	applies	only	to	objects	in	Datasheet
view.

This	property	is	only	available	in	Visual	Basic	within	a	Microsoft	Access
database	(.mdb).

The	DatasheetGridlinesColor	property	setting	is	a	Long	Integer	value.	In
Visual	Basic,	you	can	also	use	the	RGB	or	QBColor	functions	to	set	this
property.

You	can	set	this	property	by	using	Line	Color	on	the	Formatting	(Datasheet)
toolbar,	in	an	Access	database	(.mdb),	you	can	add	the	property	by	using	a
macro,	or	by	using	Visual	Basic.

The	following	setting	information	applies	to	both	Access	databases	(.mdb)	and
Access	projects	(.adp):

You	can	also	set	this	property	by	clicking	Cells	on	the	Format	menu	and
displaying	the	Cells	Effects	dialog	box.	You	can	then	select	an	available	color
from	the	drop-down	list	under	Gridline	color.

You	can	set	the	default	DatasheetGridlinesColor	property	by	using	the	settings
under	Default	Colors	on	the	Datasheet	tab	of	the	Options	dialog	box,	available
by	clicking	Options	on	the	Tools	menu.

This	property	setting	affects	the	gridline	color	for	the	entire	datasheet.	It's	not
possible	to	set	the	gridline	color	of	individual	cells	in	Datasheet	view.

The	following	table	contains	the	properties	that	don't	exist	in	the	DAO
Properties	collection	of	until	you	set	them	by	using	the	Formatting
(Datasheet)	toolbar	or	you	can	add	them	in	an	Access	database	(.mdb)	by	using
the	CreateProperty	method	and	append	it	to	the	DAO	Properties	collection.

DatasheetFontItalic* DatasheetForeColor*
DatasheetFontHeight* DatasheetBackColor
DatasheetFontName* DatasheetGridlinesColor

DatasheetFontUnderline* DatasheetGridlinesBehavior
DatasheetFontWeight* DatasheetCellsEffect
Note			When	you	add	or	set	any	property	listed	with	an	asterisk,	Microsoft
Access	automatically	adds	all	the	properties	listed	with	an	asterisk	to	the
Properties	collection	in	the	database.

Show	All

Format	Property	-	Date/Time	Data
Type
			

You	can	set	the	Format	property	to	predefined	date	and	time	formats	or	use
custom	formats	for	the	Date/Time	data	type.

Setting

Predefined	Formats

The	following	table	shows	the	predefined	Format	property	settings	for	the
Date/Time	data	type.

Setting Description

General	Date

(Default)	If	the	value	is	a	date	only,	no	time	is	displayed;	if
the	value	is	a	time	only,	no	date	is	displayed.	This	setting	is
a	combination	of	the	Short	Date	and	Long	Time	settings.

Examples:	4/3/93,	05:34:00	PM,	and	4/3/93	05:34:00	PM.

Long	Date

Same	as	the	Long	Date	setting	in	the	regional	settings	of
Windows.

Example:	Saturday,	April	3,	1993.

Medium	Date Example:	3-Apr-93.

Short	Date

Same	as	the	Short	Date	setting	in	the	regional	settings	of
Windows.

Example:	4/3/93.

Warning			The	Short	Date	setting	assumes	that	dates
between	1/1/00	and	12/31/29	are	twenty-first	century	dates
(that	is,	the	years	are	assumed	to	be	2000	to	2029).	Dates
between	1/1/30	and	12/31/99	are	assumed	to	be	twentieth
century	dates	(that	is,	the	years	are	assumed	to	be	1930	to
1999).

Long	Time

Same	as	the	setting	on	the	Time	tab	in	the	regional	settings
of	Windows.

Example:	5:34:23	PM.

Medium	Time Example:	5:34	PM.
Short	Time Example:	17:34.

Custom	Formats

You	can	create	custom	date	and	time	formats	by	using	the	following	symbols.

Symbol Description

:	(colon) Time	separator.	Separators	are	set	in	the	regional	settings	of
Windows.

/ Date	separator.
c Same	as	the	General	Date	predefined	format.

d Day	of	the	month	in	one	or	two	numeric	digits,	as	needed
(1	to	31).

dd Day	of	the	month	in	two	numeric	digits	(01	to	31).
ddd First	three	letters	of	the	weekday	(Sun	to	Sat).
dddd Full	name	of	the	weekday	(Sunday	to	Saturday).
ddddd Same	as	the	Short	Date	predefined	format.
dddddd Same	as	the	Long	Date	predefined	format.
w Day	of	the	week	(1	to	7).
ww Week	of	the	year	(1	to	53).

m Month	of	the	year	in	one	or	two	numeric	digits,	as	needed
(1	to	12).

mm Month	of	the	year	in	two	numeric	digits	(01	to	12).
mmm First	three	letters	of	the	month	(Jan	to	Dec).
mmmm Full	name	of	the	month	(January	to	December).
q Date	displayed	as	the	quarter	of	the	year	(1	to	4).
y Number	of	the	day	of	the	year	(1	to	366).
yy Last	two	digits	of	the	year	(01	to	99).
yyyy Full	year	(0100	to	9999).
h Hour	in	one	or	two	digits,	as	needed	(0	to	23).
hh Hour	in	two	digits	(00	to	23).
n Minute	in	one	or	two	digits,	as	needed	(0	to	59).
nn Minute	in	two	digits	(00	to	59).
s Second	in	one	or	two	digits,	as	needed	(0	to	59).
ss Second	in	two	digits	(00	to	59).

ttttt Same	as	the	Long	Time	predefined	format.

AM/PM Twelve-hour	clock	with	the	uppercase	letters	"AM"	or
"PM",	as	appropriate.

am/pm Twelve-hour	clock	with	the	lowercase	letters	"am"	or	"pm",
as	appropriate.

A/P Twelve-hour	clock	with	the	uppercase	letter	"A"	or	"P",	as
appropriate.

a/p Twelve-hour	clock	with	the	lowercase	letter	"a"	or	"p",	as
appropriate.

AMPM Twelve-hour	clock	with	the	appropriate	morning/afternoon
designator	as	defined	in	the	regional	settings	of	Windows.

Custom	formats	are	displayed	according	to	the	settings	specified	in	the	regional
settings	of	Windows.	Custom	formats	inconsistent	with	the	settings	specified	in
the	regional	settings	of	Windows	are	ignored.

Note			If	you	want	to	add	a	comma	or	other	separator	to	a	custom	format,
enclose	the	separator	in	quotation	marks	as	follows:	mmm	d",	"yyyy.

Example

The	following	are	examples	of	custom	date/time	formats.

Setting Display
ddd",	"mmm	d",	"yyyy Mon,	Jun	2,	1997
mmmm	dd",	"yyyy June	02,	1997
"This	is	week	number	"ww This	is	week	number	22
"Today	is	"dddd Today	is	Tuesday

You	could	use	a	custom	format	to	display	"A.D."	before	or	"B.C."	after	a	year
depending	on	whether	a	positive	or	negative	number	is	entered.	To	see	this
custom	format	work,	create	a	new	table	field,	set	its	data	type	to	Number,	and
enter	a	format	as	follows:

"A.D.	"	#;#	"	B.C."

Positive	numbers	are	displayed	as	years	with	an	"A.D."	before	the	year.	Negative
numbers	are	displayed	as	years	with	a	"B.C."	after	the	year.

Show	All

Format	Property	-	Number	and
Currency	Data	Types
			

You	can	set	the	Format	property	to	predefined	number	formats	or	custom
number	formats	for	the	Number	and	Currency	data	types.

Setting

Predefined	Formats

The	following	table	shows	the	predefined	Format	property	settings	for	numbers.

Setting Description
General	Number (Default)	Display	the	number	as	entered.

Currency
Use	the	thousand	separator;	follow	the	settings	specified	in
the	regional	settings	of	Windows	for	negative	amounts,
decimal	and	currency	symbols,	and	decimal	places.

Euro Use	the	euro	symbol	(),	regardless	of	the	currency	symbol
specified	in	the	regional	settings	of	Windows.

Fixed
Display	at	least	one	digit;	follow	the	settings	specified	in
the	regional	settings	of	Windows	for	negative	amounts,
decimal	and	currency	symbols,	and	decimal	places.

Standard
Use	the	thousand	separator;	follow	the	settings	specified	in
the	regional	settings	of	Windows	for	negative	amounts,
decimal	symbols,	and	decimal	places.

Percent

Multiply	the	value	by	100	and	append	a	percent	sign	(%);
follow	the	settings	specified	in	the	regional	settings	of
Windows	for	negative	amounts,	decimal	symbols,	and
decimal	places.

Scientific Use	standard	scientific	notation.

Custom	Formats

Custom	number	formats	can	have	one	to	four	sections	with	semicolons	(;)	as	the
list	separator.	Each	section	contains	the	format	specification	for	a	different	type
of	number.

Section Description
First The	format	for	positive	numbers.

Second The	format	for	negative
numbers.

Third The	format	for	zero	values.
Fourth The	format	for	Null	values.

For	example,	you	could	use	the	following	custom	Currency	format:

$#,##0.00[Green];($#,##0.00)[Red];"Zero";"Null"

This	number	format	contains	four	sections	separated	by	semicolons	and	uses	a
different	format	for	each	section.

If	you	use	multiple	sections	but	don't	specify	a	format	for	each	section,	entries
for	which	there	is	no	format	will	either	display	nothing	or	default	to	the
formatting	of	the	first	section.

You	can	create	custom	number	formats	by	using	the	following	symbols.

Symbol Description

.	(period) Decimal	separator.	Separators	are	set	in	the	regional
settings	in	Windows.

,	(comma) Thousand	separator.
0 Digit	placeholder.	Display	a	digit	or	0.
# Digit	placeholder.	Display	a	digit	or	nothing.
$ Display	the	literal	character	"$".

% Percentage.	The	value	is	multiplied	by	100	and	a	percent
sign	is	appended.

E–	or	e–
Scientific	notation	with	a	minus	sign	(–)	next	to	negative
exponents	and	nothing	next	to	positive	exponents.	This
symbol	must	be	used	with	other	symbols,	as	in	0.00E–00	or
0.00E00.

E+	or	e+

Scientific	notation	with	a	minus	sign	(–)	next	to	negative
exponents	and	a	plus	sign	(+)	next	to	positive	exponents.
This	symbol	must	be	used	with	other	symbols,	as	in
0.00E+00.

Remarks

You	can	use	the	DecimalPlaces	property	to	override	the	default	number	of
decimal	places	for	the	predefined	format	specified	for	the	Format	property.

The	predefined	currency	and	euro	formats	follow	the	settings	in	the	regional
settings	of	Windows.	You	can	override	these	by	entering	your	own	currency
format.

Example

The	following	are	examples	of	the	predefined	number	formats.

Setting Data Display

General	Number
3456.789
–3456.789
$213.21

3456.789
–3456.789
$213.21

Currency 3456.789
–3456.789

$3,456.79
($3,456.79)

Fixed
3456.789
–3456.789
3.56645

3456.79
–3456.79
3.57

Standard 3456.789 3,456.79

Percent 3
0.45

300%
45%

Scientific 3456.789
–3456.789

3.46E+03
–3.46E+03

The	following	are	examples	of	custom	number	formats.

Setting Description

0;(0);;"Null" Display	positive	values	normally;	display	negative	values
in	parentheses;	display	the	word	"Null"	if	the	value	is	Null.

+0.0;–0.0;0.0 Display	a	plus	(+)	or	minus	(–)	sign	with	positive	or
negative	numbers;	display	0.0	if	the	value	is	zero.

		

Show	All

Format	Property	-	Text	and	Memo
Data	Types
			

You	can	use	special	symbols	in	the	setting	for	the	Format	property	to	create
custom	formats	for	Text	and	Memo	fields.

Setting

You	can	create	custom	text	and	memo	formats	by	using	the	following	symbols.

Symbol Description

@ Text	character	(either	a	character	or	a	space)	is
required.

& Text	character	is	not	required.
< Force	all	characters	to	lowercase.
> Force	all	characters	to	uppercase.

Custom	formats	for	Text	and	Memo	fields	can	have	up	to	two	sections.	Each
section	contains	the	format	specification	for	different	data	in	a	field.

Section Description
First Format	for	fields	with	text.

Second Format	for	fields	with	zero-length	strings	and	Null
values.

For	example,	if	you	have	a	text	box	control	in	which	you	want	the	word	"None"
to	appear	when	there	is	no	string	in	the	field,	you	could	type	the	custom	format
@;"None"	as	the	control's	Format	property	setting.	The	@	symbol	causes	the
text	from	the	field	to	be	displayed;	the	second	section	causes	the	word	"None"	to
appear	when	there	is	a	zero-length	string	or	Null	value	in	the	field.

Note			You	can	use	the	Format	function	to	return	one	value	for	a	zero-length
string	and	another	for	a	Null	value,	and	you	can	similarly	use	the	Format
property	to	automatically	format	fields	in	table	Datasheet	view	or	controls	on	a
form	or	report.

Example

The	following	are	examples	of	text	and	memo	custom	formats.

Setting Data Display
@@@-@@-@@@@ 465043799 465-04-3799

@@@@@@@@@ 465-04-3799
465043799

465-04-3799
465043799

>
davolio
DAVOLIO
Davolio

DAVOLIO
DAVOLIO
DAVOLIO

<
davolio
DAVOLIO
Davolio

davolio
davolio
davolio

@;"Unknown" Null	value Unknown
	 Zero-length	string Unknown
	 Any	text Same	text	as	entered	is	displayed

		

Show	All

Format	Property	-	Yes/No	Data	Type
			

You	can	set	the	Format	property	to	the	Yes/No,	True/False,	or	On/Off
predefined	formats	or	to	a	custom	format	for	the	Yes/No	data	type.

Setting

Microsoft	Access	uses	a	check	box	control	as	the	default	control	for	the	Yes/No
data	type.	Predefined	and	custom	formats	are	ignored	when	a	check	box	control
is	used.	Therefore,	these	formats	apply	only	to	data	that	is	displayed	in	a	text	box
control.

Predefined	Formats

Yes,	True,	and	On	are	equivalent,	as	are	No,	False,	and	Off.	If	you	specify	one
predefined	format	and	then	enter	an	equivalent	value,	the	predefined	format	of
equivalent	value	will	be	displayed.	For	example,	if	you	enter	True	or	On	in	a
text	box	control	with	its	Format	property	set	to	Yes/No,	the	value	is
automatically	converted	to	Yes.

Custom	Formats

The	Yes/No	data	type	can	use	custom	formats	containing	up	to	three	sections.

Section Description

First This	section	has	no	effect	on	the	Yes/No	data	type.
However,	a	semicolon	(;)	is	required	as	a	placeholder.

Second The	text	to	display	in	place	of	Yes,	True,	or	On	values.
Third The	text	to	display	in	place	of	No,	False,	or	Off	values.

Example

The	following	example	shows	a	custom	yes/no	format	for	a	text	box	control.	The
control	displays	the	word	"Always"	in	blue	text	for	Yes,	True,	or	On,	and	the
word	"Never"	in	red	text	for	No,	False,	or	Off.

;"Always"[Blue];"Never"[Red]

Show	All

KeepTogether	Property	-	Sections
			

You	can	use	the	KeepTogether	property	for	a	section	to	print	a	form	or	report
section	all	on	one	page.	For	example,	you	might	have	a	group	of	related
information	that	you	don't	want	printed	across	two	pages.

Note			The	KeepTogether	property	applies	only	to	form	and	report	sections
(except	page	headers	and	page	footers).

Setting

The	KeepTogether	property	for	a	section	uses	the	following	settings.

Setting Visual	Basic Description

Yes True		
Microsoft	Access	starts	printing	the	section	at
the	top	of	the	next	page	if	it	can't	print	the
entire	section	on	the	current	page.

No False
(Default)	Microsoft	Access	prints	as	much	of
the	section	as	possible	on	the	current	page	and
prints	the	rest	on	the	next	page.

You	can	set	this	property	by	using	the	section's	property	sheet,	a	macro,	or
Visual	Basic.

The	KeepTogether	property	for	a	section	can	only	be	set	in	form	Design	view	or
report	Design	view.

Remarks

Usually,	when	a	page	break	occurs	while	a	section	is	being	printed,	Microsoft
Access	continues	printing	the	section	on	the	next	page.	By	using	the	section's
KeepTogether	property,	you	can	print	the	section	all	on	one	page.	If	a	section	is
longer	than	one	page,	Microsoft	Access	starts	printing	it	on	the	next	page	and
continues	on	the	following	page.

If	the	KeepTogether	property	for	a	group	is	set	to	Whole	Group	or	With	First
Detail	and	the	KeepTogether	property	for	a	section	is	set	to	No,	the
KeepTogether	property	setting	for	the	section	is	ignored.

Example

The	following	example	returns	the	KeepTogether	property	setting	for	a	report's
detail	section	and	assigns	the	value	to	the	variable	intGetVal	.

Dim	intGetVal	As	Integer

intGetVal	=	Me.Section(acDetail).KeepTogether

Show	All

DLookup	Function
			

You	can	use	the	DLookup	function	to	get	the	value	of	a	particular	field	from	a
specified	set	of	records	(a	domain).	Use	the	DLookup	function	in	Visual	Basic,
a	macro,	a	query	expression,	or	a	calculated	control	on	a	form	or	report.

You	can	use	the	DLookup	function	to	display	the	value	of	a	field	that	isn't	in	the
record	source	for	your	form	or	report.	For	example,	suppose	you	have	a	form
based	on	an	Order	Details	table.	The	form	displays	the	OrderID,	ProductID,
UnitPrice,	Quantity,	and	Discount	fields.	However,	the	ProductName	field	is	in
another	table,	the	Products	table.	You	could	use	the	DLookup	function	in	a
calculated	control	to	display	the	ProductName	on	the	same	form.

DLookup(expr,	domain,	[criteria])

The	DLookup	function	has	the	following	arguments.

Argument Description

expr

An	expression	that	identifies	the	field	whose	value	you
want	to	return.	It	can	be	a	string	expression	identifying	a
field	in	a	table	or	query,	or	it	can	be	an	expression	that
performs	a	calculation	on	data	in	that	field.	In	expr,	you	can
include	the	name	of	a	field	in	a	table,	a	control	on	a	form,	a
constant,	or	a	function.	If	expr	includes	a	function,	it	can	be
either	built-in	or	user-defined,	but	not	another	domain
aggregate	or	SQL	aggregate	function.

domain
A	string	expression	identifying	the	set	of	records	that
constitutes	the	domain.	It	can	be	a	table	name	or	a	query
name	for	a	query	that	does	not	require	a	parameter.

criteria

An	optional	string	expression	used	to	restrict	the	range	of
data	on	which	the	DLookup	function	is	performed.	For
example,	criteria	is	often	equivalent	to	the	WHERE	clause
in	an	SQL	expression,	without	the	word	WHERE.	If
criteria	is	omitted,	the	DLookup	function	evaluates	expr

against	the	entire	domain.	Any	field	that	is	included	in
criteria	must	also	be	a	field	in	domain;	otherwise,	the
DLookup	function	returns	a	Null.

Remarks

The	DLookup	function	returns	a	single	field	value	based	on	the	information
specified	in	criteria.	Although	criteria	is	an	optional	argument,	if	you	don't
supply	a	value	for	criteria,	the	DLookup	function	returns	a	random	value	in	the
domain.

If	no	record	satisfies	criteria	or	if	domain	contains	no	records,	the	DLookup
function	returns	a	Null.

If	more	than	one	field	meets	criteria,	the	DLookup	function	returns	the	first
occurrence.	You	should	specify	criteria	that	will	ensure	that	the	field	value
returned	by	the	DLookup	function	is	unique.	You	may	want	to	use	a	primary
key	value	for	your	criteria,	such	as	[EmployeeID]	in	the	following	example,	to
ensure	that	the	DLookup	function	returns	a	unique	value:

Dim	varX	As	Variant

varX	=	DLookup("[LastName]",	"Employees",	"[EmployeeID]	=	1")

Whether	you	use	the	DLookup	function	in	a	macro	or	module,	a	query
expression,	or	a	calculated	control,	you	must	construct	the	criteria	argument
carefully	to	ensure	that	it	will	be	evaluated	correctly.

You	can	use	the	DLookup	function	to	specify	criteria	in	the	Criteria	row	of	a
query,	within	a	calculated	field	expression	in	a	query,	or	in	the	Update	To	row	in
an	update	query.

You	can	also	use	the	DLookup	function	in	an	expression	in	a	calculated	control
on	a	form	or	report	if	the	field	that	you	need	to	display	isn't	in	the	record	source
on	which	your	form	or	report	is	based.	For	example,	suppose	you	have	an	Order
Details	form	based	on	an	Order	Details	table	with	a	text	box	called	ProductID
that	displays	the	ProductID	field.	To	look	up	ProductName	from	a	Products	table
based	on	the	value	in	the	text	box,	you	could	create	another	text	box	and	set	its
ControlSource	property	to	the	following	expression:

=DLookup("[ProductName]",	"Products",	"[ProductID]	="	_

					&	Forms![Order	Details]!ProductID)

Tips

Although	you	can	use	the	DLookup	function	to	display	a	value	from	a	field
in	a	foreign	table,	it	may	be	more	efficient	to	create	a	query	that	contains
the	fields	that	you	need	from	both	tables	and	then	to	base	your	form	or
report	on	that	query.
You	can	also	use	the	Lookup	Wizard	to	find	values	in	a	foreign	table.

Note			Unsaved	changes	to	records	in	domain	aren't	included	when	you	use	this
function.	If	you	want	the	DLookup	function	to	be	based	on	the	changed	values,
you	must	first	save	the	changes	by	clicking	Save	Record	on	the	Records	menu,
moving	the	focus	to	another	record,	or	by	using	the	Update	method.

Example

The	following	example	returns	name	information	from	the	CompanyName	field
of	the	record	satisfying	criteria.	The	domain	is	a	Shippers	table.	The	criteria
argument	restricts	the	resulting	set	of	records	to	those	for	which	ShipperID
equals	1.

Dim	varX	As	Variant

varX	=	DLookup("[CompanyName]",	"Shippers",	"[ShipperID]	=	1")

The	next	example	from	the	Shippers	table	uses	the	form	control	ShipperID	to
provide	criteria	for	the	DLookup	function.	Note	that	the	reference	to	the	control
isn't	included	in	the	quotation	marks	that	denote	the	strings.	This	ensures	that
each	time	the	DLookup	function	is	called,	Microsoft	Access	will	obtain	the
current	value	from	the	control.

Dim	varX	As	Variant

varX	=	DLookup("[CompanyName]",	"Shippers",	"[ShipperID]	=	"	_

				&	Forms!Shippers!ShipperID)

The	next	example	uses	a	variable,	intSearch,	to	get	the	value.

Dim	intSearch	As	Integer

Dim	varX	As	Variant

intSearch	=	1

varX	=	DLookup("[CompanyName]",	"Shippers",	_

				"[ShipperID]	=	"	&	intSearch)

Learn	about	language-specific
information
			

Language-specific	Help	topics	apply	only	if	the	language-specific	feature	is
available.	Learn	about	working	in	another	language	or	installing	the	proofing
tools	for	another	language,	or	see	your	system	administrator	for	more
information.

mk:@MSITStore:ofmain10.chm::/html/ofhowEnableEditingOfMultipleLanguagesInOfficeApplications.htm
mk:@MSITStore:ofmain10.chm::/html/ofconAboutLanguagePacks.htm

Values	for	the	PaperSize	Member
			
Value Paper	size
1 Letter	(8.5	x	11	in.)
2 Letter	Small	(8.5	x	11	in.)
3 Tabloid	(11	x	17	in.)
4 Ledger	(17	x	11	in.)
5 Legal	(8.5	x	14	in.)
6 Statement	(5.5	x	8.5	in.)
7 Executive	(7.25	x	10.5	in.)
8 A3	(297	x	420	mm)
9 A4	(210	x	297	mm)
10 A4	Small	(210	x	297	mm)
11 A5	(148	x	210	mm)
12 B4	(250	x	354	mm)
13 B5	(182	x	257	mm)
14 Folio	(8.5	x	13	in.)
15 Quarto	(215	x	275	mm)
16 11	x	17	in.
18 Note	(8.5	x	11	in.)
19 Envelope	#9	(3.875	x	8.875	in.)
20 Envelope	#10	(4.125	x	9.5	in.)
21 Envelope	#11	(4.5	x	10.375	in.)
22 Envelope	#12	(4.25	x	11	in.)
23 Envelope	#14	(5	x	11.5	in.)
24 C	size	sheet	(17	x	22	in.)
25 D	size	sheet	(22	x	34	in.)
26 E	size	sheet	(34	x	44	in.)
27 Envelope	DL	(110	x	220	mm)
28 Envelope	C5	(162	x	229	mm)

29 Envelope	C3	(324	x	458	mm)
30 Envelope	C4	(229	x	324	mm)
31 Envelope	C6	(114	x	162	mm)
32 Envelope	C65	(114	x	229	mm)
33 Envelope	B4	(250	x	353	mm)
34 Envelope	B5	(176	x	250	mm
35 Envelope	B6	(176	x	125	mm)
36 Envelope	(110	x	230	mm)
37 Envelope	Monarch	(3.875	x	7.5	in.)
38 6-3/4	Envelope	(3.625	x	6.5	in.)
39 US	Std	Fanfold	(14.875	x	11	in.)
40 German	Std	Fanfold	(8.5	x	12	in.)

41 German	Legal	Fanfold	(8.5	x	13
in.)

256 User-defined

Values	for	the	DefaultSource	Member
			
Value Meaning
1 Upper	or	only	one	bin
2 Lower	bin
3 Middle	bin
4 Manual	bin
5 Envelope	bin
6 Envelope	manual	bin
7 Automatic	bin
8 Tractor	bin
9 Small-format	bin
10 Large-format	bin
11 Large-capacity	bin
14 Cassette	bin
256 Device-specific	bins	start	here

Values	for	the	TTOption	Member
			

Value Meaning

1 Print	TrueType	fonts	as	graphics.	This	is	the	default	for	dot-matrix
printers.

2

Download	TrueType	fonts	as	soft	fonts	(fonts	that	are	loaded	into
the	printer's	memory	for	rendering).	This	is	the	default	for
Hewlett-Packard	printers	that	use	Printer	Control	Language
(PCL).

3 Substitute	device	fonts	for	TrueType	fonts.	This	is	the	default	for
PostScript	printers.

Show	All

RowSourceType	Property	(User-
Defined	Function)	-	Code	Argument
Values
			

The	Visual	Basic	function	you	create	must	accept	five	arguments.	The	first
argument	must	be	declared	as	a	control	and	the	remaining	arguments	as
Variants.	The	function	itself	must	return	a	Variant.

Function	functionname	(fld	As	Control,	id	As	Variant,	row	As	Variant,	col	As
Variant,	code	As	Variant)	As	Variant

The	Function	procedure	has	the	following	five	required	arguments.

Argument Description

fld A	control	variable	that	refers	to	the	list	box	or	combo	box
being	filled.

id

A	unique	value	that	identifies	the	control	being	filled.	This
is	useful	when	you	want	to	use	the	same	user-defined
function	for	more	than	one	list	box	or	combo	box	and	must
distinguish	between	them.	(The	example	sets	this	variable
to	the	value	of	the	Timer	function.)

row The	row	being	filled	(zero-based).
col The	column	being	filled	(zero-based).

code An	intrinsic	constant	that	specifies	the	kind	of	information
being	requested.

Note			Because	Microsoft	Access	calls	a	user-defined	function	several	times	to
insert	items	into	a	list,	often	you	must	preserve	information	from	call	to	call.	The
best	way	to	do	this	is	to	use	Static	variables.

Microsoft	Access	calls	the	user-defined	function	by	repeatedly	using	different
values	in	the	code	argument	to	specify	the	information	it	needs.	The	code

argument	can	use	the	following	intrinsic	constants.

Constant Meaning Function	returns

acLBInitialize Initialize
Nonzero	if	the	function	can	fill
the	list;	False	(0)	or	Null
otherwise.

acLBOpen Open
Nonzero	ID	value	if	the	function
can	fill	the	list;	False	or	Null
otherwise.

acLBGetRowCount Number	of	rows Number	of	rows	in	the	list	(can	be
zero);	–1	if	unknown.

acLBGetColumnCount Number	ofcolumns

Number	of	columns	in	the	list
(can't	be	zero);	must	match	the
property	sheet	value.

acLBGetColumnWidth Column	width
Width	(in	twips)	of	the	column
specified	by	the	col	argument;	–1
to	use	the	default	width.

acLBGetValue List	entry
List	entry	to	be	displayed	in	the
row	and	column	specified	by	the
row	and	col	arguments.

acLBGetFormat Format	string

Format	string	to	be	used	to	format
the	list	entry	displayed	in	the	row
and	column	specified	by	the	row
and	col	arguments;	–1	to	use	the
default	format.

acLBEnd

End	(the	last	call	to
a	user-defined
function	always
uses	this	value)

Nothing.

acLBClose (Not	used) Not	used.

Microsoft	Access	calls	your	user-defined	function	once	for	acLBInitialize,
acLBOpen,	acLBGetRowCount,	and	acLBGetColumnCount.	It	initializes	the
user-defined	function,	opens	the	query,	and	determines	the	number	of	rows	and
columns.

Microsoft	Access	calls	your	user-defined	function	twice	for
acLBGetColumnWidth	—	once	to	determine	the	total	width	of	the	list	box	or
combo	box	and	a	second	time	to	set	the	column	width.

The	number	of	times	your	user-defined	function	is	called	for	acLBGetValue	and
acLBGetFormat	to	get	list	entries	and	to	format	strings	varies	depending	on	the
number	of	entries,	the	user's	scrolling,	and	other	factors.

Microsoft	Access	calls	the	user-defined	function	for	acLBEnd	when	the	form	is
closed	or	each	time	the	list	box	or	combo	box	is	queried.

Whenever	a	particular	value	(such	as	the	number	of	columns)	is	required,
returning	Null	or	any	invalid	value	causes	Microsoft	Access	to	stop	calling	the
user-defined	function	with	that	code.

Tip			You	can	use	the	Select	Case	code	structure	from	the	example	as	a	template
for	your	own	RowSourceType	property	user-defined	functions.

Example

The	following	user-defined	function	returns	a	list	of	the	next	four	Mondays
following	today's	date.	To	call	this	function	from	a	list	box	control,	enter
ListMondays	as	the	RowSourceType	property	setting	and	leave	the
RowSource	property	setting	blank.

Function	ListMondays(fld	As	Control,id	As	Variant,	_

				row	As	Variant,col	As	Variant,code	As	Variant)	_

					As	Variant

				Dim	intOffset	As	Integer

				Select	Case	code

								Case	acLBInitialize												'	Initialize.

												ListMondays	=	True

								Case	acLBOpen																				'	Open.

												ListMondays	=	Timer								'	Unique	ID.

								Case	acLBGetRowCount												'	Get	rows.

												ListMondays	=	4

								Case	acLBGetColumnCount				'	Get	columns.

												ListMondays	=	1

								Case	acLBGetColumnWidth				'	Get	column	width.

												ListMondays	=	-1												'	Use	default	width.

								Case	acLBGetValue																'	Get	the	data.

												intOffset	=	Abs((9	-	Weekday(Now))Mod	7)

												ListMondays	=	Format(Now()	+	_

													intOffset	+	7	*	row,"mmmm	d")

				End	Select

End	Function

The	next	example	uses	a	static	array	to	store	the	names	of	the	databases	in	the
current	directory.	To	call	this	function,	enter	ListMDBs	as	the	RowSourceType
property	setting	and	leave	the	RowSource	property	setting	blank.

Function	ListMDBs(fld	As	Control,	id	As	Variant,	_

					row	As	Variant,	col	As	Variant,	_

					code	As	Variant)	As	Variant

				Static	dbs(127)	As	String,	Entries	As	Integer

				Dim	ReturnVal	As	Variant

				ReturnVal	=	Null

				Select	Case	code

								Case	acLBInitialize																'	Initialize.

												Entries	=	0

												dbs(Entries)	=	Dir("*.MDB")

												Do	Until	dbs(Entries)	=	""	Or	Entries	>=	127

																Entries	=	Entries+1

																dbs(Entries)	=	Dir

												Loop

												ReturnVal	=	Entries

								Case	acLBOpen																								'	Open.

												'	Generate	unique	ID	for	control.

												ReturnVal	=	Timer

								Case	acLBGetRowCount												'	Get	number	of	rows.

												ReturnVal	=	Entries

								Case	acLBGetColumnCount				'	Get	number	of	columns.

												ReturnVal	=	1

								Case	acLBGetColumnWidth				'	Column	width.

												'	-1	forces	use	of	default	width.

												ReturnVal	=	-1

								Case	acLBGetValue																				'	Get	data.

												ReturnVal	=	dbs(row)

								Case	acLBEnd																								'	End.

												Erase	dbs

				End	Select

				ListMDBs	=	ReturnVal

End	Function

Show	All

AllowShortcutMenus	Property
			

You	can	use	the	AllowShortcutMenus	property	to	specify	whether	or	not	your
application	allows	Microsoft	Access	to	display	built-in	shortcut	menus.	For
example,	you	can	use	the	AllowShortcutMenus	property	in	conjunction	with
the	AllowFullMenus	property	in	your	application	to	prevent	users	from	using
any	built-in	menu	bar,	toolbars,	or	shortcut	menu	commands	that	enable	users	to
change	the	design	of	database	objects.

Setting

The	AllowShortcutMenus	property	uses	the	following	settings.

Setting Description

True	(–1) Allow	Microsoft	Access	built-in	shortcut	menus	to	be
displayed.

False	(0) Don't	allow	Microsoft	Access	built-in	shortcut	menus	to	be
displayed.

The	easiest	way	to	set	this	property	is	by	using	the	Allow	Default	Shortcut
Menus	option	in	the	Startup	dialog	box,	available	by	clicking	Startup	on	the
Tools	menu.	You	can	also	set	this	property	by	using	a	macro	or	Visual	Basic.

To	set	the	AllowShortcutMenus	property	by	using	a	macro	or	Visual	Basic,	you
must	first	either	set	the	property	in	the	Startup	dialog	box	once	or	create	the
property	in	the	following	ways:

In	a	Microsoft	Access	database	(.mdb),	you	can	add	it	by	using	the
CreateProperty	method	and	append	it	to	the	Properties	collection	of	the
Database	object.
In	a	Microsoft	Access	project	(.adp),	you	can	add	it	to	the
AccessObjectProperties	collection	of	the	CurrentProject	object	by	using
the	Add	method.

Remarks

The	setting	of	this	property	doesn't	affect	custom	shortcut	menus	and	global
shortcut	menus.	You	can	use	the	ShortcutMenuBar	property	to	display	custom
shortcut	menus	for	forms,	form	controls,	and	reports,	and	the
StartupShortcutMenuBar	property	or	the	ShortcutMenuBar	property	of	the
Application	object	to	display	a	global	shortcut	menu.

If	you	want	to	display	built-in	shortcut	menus	in	your	application,	but	don't	want
the	user	to	be	able	to	change	them,	set	the	AllowShortcutMenus	property	to
True	and	set	the	AllowToolbarChanges	property	to	False.

This	property's	setting	doesn't	take	effect	until	the	next	time	the	database	opens.

Show	All

Description	Property
			

You	can	use	the	Description	property	to	provide	information	about	objects
contained	in	the	Database	window	as	well	as	about	individual	table	or	query
fields.

Setting

For	a	database	object,	click	Properties	on	the	View	menu	and	enter	the
description	text	in	the	Description	box.	For	tables	or	queries,	you	can	also	enter
the	description	in	the	table's	or	query's	property	sheet.	An	object's	description
appears	next	to	the	object's	name	in	the	Database	window	when	you	click
Details	on	the	View	menu.

For	individual	table	or	query	fields,	enter	the	field	description	in	the	upper
portion	of	table	Design	view	or	in	the	Field	Properties	property	sheet	in	the
Query	window.	The	maximum	length	is	255	characters.

In	Visual	Basic,	to	set	this	property	for	the	first	time	in	a	Microsoft	Access
project	(.adp),	you	must	create	an	application-defined	property	by	using	the	Add
method.	In	a	Microsoft	Access	database	(.mdb),	you	must	use	the	DAO
CreateProperty	method.

Remarks

An	object's	description	is	displayed	in	the	Description	column	in	the	Details
view	of	the	Database	window.

If	you	create	controls	by	dragging	a	field	from	the	field	list,	Microsoft	Access
copies	the	field's	Description	property	to	the	control's	StatusBarText	property.

Note			For	a	linked	table,	Microsoft	Access	displays	the	connection	information
in	the	Description	property.

Show	All

Eval	Function
			

You	can	use	the	Eval	function	to	evaluate	an	expression	that	results	in	a	text
string	or	a	numeric	value.

You	can	construct	a	string	and	then	pass	it	to	the	Eval	function	as	if	the	string
were	an	actual	expression.	The	Eval	function	evaluates	the	string	expression	and
returns	its	value.	For	example,	Eval("1	+	1")	returns	2.

If	you	pass	to	the	Eval	function	a	string	that	contains	the	name	of	a	function,	the
Eval	function	returns	the	return	value	of	the	function.	For	example,
Eval("Chr$(65)")	returns	"A".

Eval(stringexpr)

The	stringexpr	argument	is	an	expression	that	evaluates	to	an	alphanumeric	text
string.	For	example,	stringexpr	can	be	a	function	that	returns	a	string	or	a
numeric	value.	Or	it	can	be	a	reference	to	a	control	on	a	form.	The	stringexpr
argument	must	evaluate	to	a	string	or	numeric	value;	it	can't	evaluate	to	a
Microsoft	Access	object.

Note			If	you	are	passing	the	name	of	a	function	to	the	Eval	function,	you	must
include	parentheses	after	the	name	of	the	function	in	the	stringexpr	argument.
For	example:

'	ShowNames	is	user-defined	function.

Debug.Print	Eval("ShowNames()")				

Debug.Print	Eval("StrComp(""Joe"",""joe"",	1)")

Debug.Print	Eval("Date()")

Remarks

You	can	use	the	Eval	function	in	a	calculated	control	on	a	form	or	report,	or	in	a
macro	or	module.	The	Eval	function	returns	a	Variant	that	is	either	a	string	or	a
numeric	type.

The	argument	stringexpr	must	be	an	expression	that	is	stored	in	a	string.	If	you
pass	to	the	Eval	function	a	string	that	doesn't	contain	a	numeric	expression	or	a
function	name	but	only	a	simple	text	string,	a	run-time	error	occurs.	For
example,	Eval("Smith")	results	in	an	error.

You	can	use	the	Eval	function	to	determine	the	value	stored	in	the	Value
property	of	a	control.	The	following	example	passes	a	string	containing	a	full
reference	to	a	control	to	the	Eval	function.	It	then	displays	the	current	value	of
the	control	in	a	dialog	box.

Dim	ctl	As	Control

Dim	strCtl	As	String

Set	ctl	=	Forms!Employees!LastName

strCtl	=	"Forms!Employees!LastName"

MsgBox	("The	current	value	of	"	&	ctl.Name	&	"	is	"	&	Eval(strCtl))

You	can	use	the	Eval	function	to	access	expression	operators	that	aren't
ordinarily	available	in	Visual	Basic.	For	example,	you	can't	use	the	SQL
operators	Between...And	or	In	directly	in	your	code,	but	you	can	use	them	in	an
expression	passed	to	the	Eval	function.

The	next	example	determines	whether	the	value	of	a	ShipRegion	control	on	an
Orders	form	is	one	of	several	specified	state	abbreviations.	If	the	field	contains
one	of	the	abbreviations,	intState	will	be	True	(–1).	Note	that	you	use	single
quotation	marks	(')	to	include	a	string	within	another	string.

Dim	intState	As	Integer

intState	=	Eval("Forms!Orders!ShipRegion	In	"	_

				&	"('AK',	'CA',	'ID',	'WA',	'MT',	'NM',	'OR')")

Example

The	following	example	assumes	that	you	have	a	series	of	50	functions	defined	as
A1,	A2,	and	so	on.	This	example	uses	the	Eval	function	to	call	each	function	in
the	series.

Sub	CallSeries()

				Dim	intI	As	Integer

				For	intI	=	1	To	50

								Eval("A"	&	intI	&	"()")

				Next	intI

End	Sub

The	next	example	triggers	a	Click	event	as	if	the	user	had	clicked	a	button	on	a
form.	If	the	value	of	the	button's	OnClick	property	begins	with	an	equal	sign
(=),	signifying	that	it	is	the	name	of	a	function,	the	Eval	function	calls	the
function,	which	is	equivalent	to	triggering	the	Click	event.	If	the	value	doesn't
begin	with	an	equal	sign,	then	the	value	must	name	a	macro.	The	RunMacro
method	of	the	DoCmd	object	runs	the	named	macro.

Dim	ctl	As	Control

Dim	varTemp	As	Variant

Set	ctl	=	Forms!Contacts!HelpButton

If	(Left(ctl.OnClick,	1)	=	"=")	Then

				varTemp	=	Eval(Mid(ctl.OnClick,2))

Else

				DoCmd.RunMacro	ctl.OnClick

End	If

Show	All

DataType	Property
			

You	can	use	the	DataType	property	to	specify	the	type	of	data	stored	in	a	table
field.	Each	field	can	store	data	consisting	of	only	a	single	data	type.

Setting

The	DataType	property	uses	the	following	settings.

Setting Type	of	data Size

Text

(Default)	Text	or	combinations	of
text	and	numbers,	as	well	as
numbers	that	don't	require
calculations,	such	as	phone
numbers.

Up	to	255	characters	or	the
length	set	by	the	FieldSize
property,	whichever	is	less.
Microsoft	Access	does	not
reserve	space	for	unused
portions	of	a	text	field.

Memo Lengthy	text	or	combinations	of
text	and	numbers.

Up	to	65,535	characters.
(If	the	Memo	field	is
manipulated	through	DAO
and	only	text	and	numbers
[not	binary	data]	will	be
stored	in	it,	then	the	size	of
the	Memo	field	is	limited
by	the	size	of	the
database.)

Number

Numeric	data	used	in
mathematical	calculations.	For
more	information	on	how	to	set
the	specific	Number	type,	see	the
FieldSize	property	topic.

1,	2,	4,	or	8	bytes	(16	bytes
if	the	FieldSize	property	is
set	to	Replication	ID).

Date/Time Date	and	time	values	for	the
years	100	through	9999. 8	bytes.

Currency

Currency	values	and	numeric
data	used	in	mathematical
calculations	involving	data	with
one	to	four	decimal	places.
Accurate	to	15	digits	on	the	left
side	of	the	decimal	separator	and
to	4	digits	on	the	right	side.

8	bytes.

A	unique	sequential	(incremented
by	1)	number	or	random	number

AutoNumber
assigned	by	Microsoft	Access
whenever	a	new	record	is	added
to	a	table.	AutoNumber	fields
can't	be	updated.	For	more
information,	see	the	NewValues
property	topic.

4	bytes	(16	bytes	if	the
FieldSize	property	is	set	to
Replication	ID).

Yes/No
Yes	and	No	values	and	fields	that
contain	only	one	of	two	values
(Yes/No,	True/False,	or	On/Off).

1	bit.

OLE	Object

An	object	(such	as	a	Microsoft
Excel	spreadsheet,	a	Microsoft
Word	document,	graphics,
sounds,	or	other	binary	data)
linked	to	or	embedded	in	a
Microsoft	Access	table.

Up	to	1	gigabyte	(limited
by	available	disk	space)

Hyperlink

Text	or	combinations	of	text	and
numbers	stored	as	text	and	used
as	a	hyperlink	address.	A
hyperlink	address	can	have	up	to
three	parts:

text	to	display	—	the	text	that
appears	in	a	field	or	control.

address	—	the	path	to	a	file
(UNC	path)	or	page	(URL).

subaddress	—	a	location	within
the	file	or	page.

screentip	—	the	text	displayed	as
a	tooltip.

The	easiest	way	to	insert	a
hyperlink	address	in	a	field	or
control	is	to	click	Hyperlink	on
the	Insert	menu.

Each	part	of	the	three	parts
of	a	Hyperlink	data	type
can	contain	up	to	2048
characters.

Lookup	Wizard

Creates	a	field	that	allows	you	to
choose	a	value	from	another
table	or	from	a	list	of	values	by
using	a	list	box	or	combo	box.
Clicking	this	option	starts	the
Lookup	Wizard,	which	creates	a
Lookup	field.	After	you	complete
the	wizard,	Microsoft	Access	sets
the	data	type	based	on	the	values
selected	in	the	wizard.

The	same	size	as	the
primary	key	field	used	to
perform	the	lookup,
typically	4	bytes.

You	can	set	this	property	only	in	the	upper	portion	of	table	Design	view.

In	Visual	Basic,	you	can	use	the	ADO	Type	property	to	set	a	field's	data	type
before	appending	it	to	the	Fields	collection.

Remarks

Memo,	Hyperlink,	and	OLE	Object	fields	can't	be	indexed.

Tip			Use	the	Currency	data	type	for	a	field	requiring	many	calculations
involving	data	with	one	to	four	decimal	places.	Single	and	Double	data	type
fields	require	floating-point	calculation.	The	Currency	data	type	uses	a	faster
fixed-point	calculation.

Caution			Changing	a	field's	data	type	after	you	enter	data	in	a	table	causes	a
potentially	lengthy	process	of	data	conversion	when	you	save	the	table.	If	the
data	type	in	a	field	conflicts	with	a	changed	DataType	property	setting,	you	may
lose	some	data.

Set	the	Format	property	to	specify	a	predefined	display	format	for	Number,
Date/Time,	Currency,	and	Yes/No	data	types.

Show	All

StartupForm	Property
			

You	can	use	the	StartupForm	property	to	specify	the	name	of	the	form	that
opens	when	your	database	first	opens.	For	example,	you	can	use	this	property	to
display	a	specified	form	that	contains	a	menu	of	all	available	forms,	queries,	and
reports	within	a	Microsoft	Access	application	when	the	database	opens.

Setting

The	StartupForm	property	is	a	string	expression	that's	the	name	of	a	form	in	the
current	database.

The	easiest	way	to	set	this	property	is	by	using	the	Display	Form/Page	option	in
the	Startup	dialog	box,	available	by	clicking	Startup	on	the	Tools	menu.	You
can	also	set	this	property	by	using	a	macro	or	Visual	Basic.

To	set	the	StartupForm	property	by	using	a	macro	or	Visual	Basic,	you	must
first	either	set	the	property	in	the	Startup	dialog	box	once	or	create	the	property
in	the	following	ways:

In	a	Microsoft	Access	database	(.mdb),	you	can	add	it	by	using	the
CreateProperty	method	and	append	it	to	the	Properties	collection	of	the
Database	object.
In	a	Microsoft	Access	project	(.adp),	you	can	add	it	to	the
AccessObjectProperties	collection	of	the	CurrentProject	object	by	using
the	Add	method.

Remarks

The	StartupForm	property	is	preferred	over	the	OpenForm	action	in	the
AutoExec	macro.	Because	Microsoft	Access	runs	the	AutoExec	macro	after	it
parses	the	startup	properties,	your	application	shouldn't	use	an	OpenForm	action
in	its	AutoExec	macro	if	the	StartupForm	property	is	set.

If	this	property	is	blank,	the	Microsoft	Access	default	database	setting	is	used
(the	Database	window	opens).

This	property's	setting	doesn't	take	effect	until	the	next	time	the	application
database	opens.

Show	All

StartupShowDBWindow	Property
			

You	can	use	the	StartupShowDBWindow	property	to	specify	whether	or	not
the	Database	window	is	displayed	when	your	application	database	opens.	For
example,	you	can	open	a	main	form	when	your	application	database	opens	and
hide	the	Database	window.

Setting

The	StartupShowDBWindow	property	uses	the	following	settings.

Setting Description
True	(–1) Display	the	Database	window	at	startup.

False	(0) Don't	display	the	Database	window	at
startup.

The	easiest	way	to	set	this	property	is	by	using	the	Display	Database	Window
option	in	the	Startup	dialog	box,	available	by	clicking	Startup	on	the	Tools
menu.	ou	can	also	set	this	property	by	using	a	macro	or	Visual	Basic.

To	set	the	StartupShowDBWindow	property	by	using	a	macro	or	Visual	Basic,
you	must	first	either	set	the	property	in	the	Startup	dialog	box	once	or	create	the
property	in	the	following	ways:

In	a	Microsoft	Access	database	(.mdb),	you	can	add	it	by	using	the
CreateProperty	method	and	append	it	to	the	Properties	collection	of	the
Database	object.
In	a	Microsoft	Access	project	(.adp),	you	can	add	it	to	the
AccessObjectProperties	collection	of	the	CurrentProject	object	by	using
the	Add	method.

Remarks

You	can	set	the	StartupShowDBWindow	property	to	False	to	hide	the	Database
window	so	the	user	can't	see	the	tables,	queries,	macros,	and	modules	within
your	database.

If	the	Use	Access	Special	Keys	check	box	in	the	Startup	dialog	box	is	selected,
or	if	the	AllowSpecialKeys	property	is	set	to	True,	users	can	still	press	the	F11
key	to	display	the	Database	window.

Even	if	you	set	both	the	StartupShowDBWindow	and	AllowSpecialKeys
properties	to	False,	it's	possible	that	a	user	can	still	access	the	Database	window.
This	can	happen	if	a	user	tries	more	than	once	to	open	the	same	database	from
the	list	of	most-recently-used	databases,	which	automatically	appears	on	the	File
menu.	To	prevent	users	from	accessing	this	list,	replace	the	File	menu	with	your
own	custom	menu.

This	property's	setting	doesn't	take	effect	until	the	next	time	the	application
database	opens.

Show	All

StartupShowStatusBar	Property
			

You	can	use	the	StartupShowStatusBar	property	to	specify	whether	or	not	the
status	bar	should	appear	when	the	application	database	opens.	For	example,	you
can	use	the	StartupShowStatusBar	property	to	prevent	display	of	the	status	bar
if	you	don't	want	to	display	any	status	messages	in	your	application.

Setting

The	StartupShowStatusBar	property	uses	the	following	settings.

Setting Description
True	(–1) Display	the	status	bar	at	startup.
False	(0) Don't	display	the	status	bar	at	startup.

The	easiest	way	to	set	this	property	is	by	using	the	Display	Status	Bar	option	in
the	Startup	dialog	box,	available	by	clicking	Startup	on	the	Tools	menu.	You
can	also	set	this	property	by	using	a	macro	or	Visual	Basic.

To	set	the	StartupShowStatusBar	property	by	using	a	macro	or	Visual	Basic,
you	must	first	either	set	the	property	in	the	Startup	dialog	box	once	or	create	the
property	in	the	following	ways:

In	a	Microsoft	Access	database	(.mdb),	you	can	add	it	by	using	the
CreateProperty	method	and	append	it	to	the	Properties	collection	of	the
Database	object.
In	a	Microsoft	Access	project	(.adp),	you	can	add	it	to	the
AccessObjectProperties	collection	of	the	CurrentProject	object	by	using
the	Add	method.

Remarks

Setting	this	property	affects	the	display	of	the	status	bar	only	for	the	current
database.	You	can	also	control	whether	the	status	bar	is	shown	or	hidden	by
default	for	all	Microsoft	Access	databases.	To	do	this	click	Options	on	the	Tools
menu,	click	the	View	tab,	and	then	select	or	clear	the	Status	Bar	check	box
under	Show.	The	current	database	won't	display	a	status	bar	if	any	of	the
following	is	true:	the	Status	Bar	check	box	in	the	Options	dialog	box	is	cleared;
the	Display	Status	Bar	check	box	in	the	Startup	dialog	box	is	cleared;	or	the
StartupShowStatusBar	property	is	set	to	False.

This	property's	setting	doesn't	take	effect	until	the	next	time	the	application
database	opens.

Show	All

StartupMenuBar	Property
			

You	can	use	the	StartupMenuBar	property	to	specify	a	custom	menu	bar	to	use
as	the	global	menu	bar	for	your	application.	For	example,	you	can	use	the
StartupMenuBar	property	to	display	a	custom	menu	bar	that	doesn't	contain	the
Security	menu.	This	prevents	a	user	from	accessing	any	of	the	Security	menu
commands	from	the	menu	bar.	You	can	also	specify	a	menu	bar	macro	that
displays	the	custom	menu	bar	you	want	to	use	as	the	global	menu	bar.

Setting

The	StartupMenuBar	property	is	a	string	expression	that's	the	name	of	a
custom	menu	bar	or	menu	bar	macro	in	the	current	database.

The	easiest	way	to	set	this	property	is	by	using	the	Menu	Bar	option	in	the
Startup	dialog	box,	available	by	clicking	Startup	on	the	Tools	menu.	You	can
also	set	this	property	by	using	a	macro	or	Visual	Basic.

To	set	the	StartupMenuBar	property	by	using	a	macro	or	Visual	Basic,	you
must	first	either	set	the	property	in	the	Startup	dialog	box	once	or	or	create	the
property	in	the	following	ways:

In	a	Microsoft	Access	database	(.mdb),	you	can	add	it	by	using	the
CreateProperty	method	and	append	it	to	the	Properties	collection	of	the
Database	object.
In	a	Microsoft	Access	project	(.adp),	you	can	add	it	to	the
AccessObjectProperties	collection	of	the	CurrentProject	object	by	using
the	Add	method.

Remarks

If	you	are	setting	the	StartupMenuBar	property,	you	shouldn't	use	a	SetValue
action	in	the	AutoExec	macro	to	set	the	MenuBar	property	for	the	Application
object.	Since	Microsoft	Access	runs	the	AutoExec	macro	after	it	parses	the
startup	properties,	the	global	menu	bar	set	in	the	AutoExec	macro	would	replace
the	menu	bar	set	by	the	StartupMenuBar	property.

You	can	also	create	custom	menu	bars	by	using	the	MenuBar	property	for	forms
and	reports.	These	custom	menu	bars	are	displayed	when	a	specific	form	or
report	opens	and	replace	the	global	menu	bar	in	those	cases.

If	the	StartupMenuBar	property	is	blank	(which	it	is	by	default),	Microsoft
Access	displays	the	built-in	menu	bar.	If	this	property	is	set	to	the	name	of	a
custom	menu	bar,	then	the	setting	of	the	AllowFullMenus	property	has	no	effect
(the	built-in	full	menus	are	replaced	by	the	global	menu	bar).

Setting	this	property	has	the	same	effect	as	setting	the	MenuBar	property	of	the
Application	object	(except	the	MenuBar	property	setting	takes	effect
immediately).

If	the	Use	Access	Special	Keys	check	box	in	the	Startup	dialog	box	is	selected,
or	if	the	AllowSpecialKeys	property	is	set	to	True	(–1),	users	can	still	press
CTRL+F11	to	toggle	between	the	global	menu	bar	and	the	built-in	menu	bar.

This	property's	setting	doesn't	take	effect	until	the	next	time	the	application
database	opens.

Show	All

StartupShortcutMenuBar	Property
			

You	can	use	the	StartupShortcutMenuBar	property	to	specify	a	custom
shortcut	menu	to	use	as	the	global	shortcut	menu	for	your	application.	You	can
also	specify	a	menu	bar	macro	that	displays	the	custom	shortcut	menu	you	want
to	use	as	the	global	shortcut	menu.

Setting

The	StartupShortcutMenuBar	property	is	a	string	expression	that's	the	name	of
a	custom	shortcut	menu	or	a	menu	bar	macro	that	displays	a	custom	shortcut
menu.

The	easiest	way	to	set	this	property	is	by	using	the	Shortcut	Menu	Bar	option
in	the	Startup	dialog	box,	available	by	clicking	Startup	on	the	Tools	menu.	You
can	also	set	this	property	by	using	a	macro	or	Visual	Basic.

To	set	the	StartupShortcutMenuBar	property	by	using	a	macro	or	Visual
Basic,	you	must	first	either	set	the	property	in	the	Startup	dialog	box	once	or
create	the	property	in	the	following	ways:

In	a	Microsoft	Access	database	(.mdb),	you	can	add	it	by	using	the
CreateProperty	method	and	append	it	to	the	Properties	collection	of	the
Database	object.
In	a	Microsoft	Access	project	(.adp),	you	can	add	it	to	the
AccessObjectProperties	collection	of	the	CurrentProject	object	by	using
the	Add	method.

Remarks

If	you	are	setting	the	StartupShortcutMenuBar	property,	you	shouldn't	use	a
SetValue	action	in	the	AutoExec	macro	to	set	the	ShortcutMenuBar	property
for	the	Application	object.	Since	Microsoft	Access	runs	the	AutoExec	macro
after	it	parses	the	startup	properties,	the	global	shortcut	menu	set	in	the
AutoExec	macro	would	replace	the	shortcut	menu	set	in	the
StartupShortcutMenuBar	property.

You	can	also	create	custom	shortcut	menus	by	using	the	ShortcutMenuBar
property	for	forms,	reports,	and	form	controls.	These	custom	shortcut	menus	are
displayed	when	you	right-click	a	specific	form,	report,	or	form	control,	and
replace	the	global	shortcut	menu	in	those	cases.

If	this	property	is	blank,	Microsoft	Access	displays	the	built-in	shortcut	menus.

Setting	this	property	has	the	same	effect	as	setting	the	ShortcutMenuBar
property	of	the	Application	object	(except	the	ShortcutMenuBar	property
setting	takes	effect	immediately).

This	property's	setting	doesn't	take	effect	until	the	next	time	the	application
database	opens.

Show	All

AllowFullMenus	Property
			

You	can	use	the	AllowFullMenus	property	to	specify	whether	or	not	full
Microsoft	Access	built-in	menus	will	be	available	when	the	application	database
opens.	For	example,	you	can	use	the	AllowFullMenus	property	to	disable	menu
items	that	give	users	the	ability	to	modify	table,	form,	query,	or	report	structures.

Setting

The	AllowFullMenus	property	uses	the	following	settings.

Setting Description
True	(–1) Display	the	full	built-in	menus	at	startup.

False	(0) Don't	display	full	built-in	menus	at
startup.

The	easiest	way	to	set	this	property	is	by	using	the	Allow	Full	Menus	option	in
the	Startup	dialog	box,	available	by	clicking	Startup	on	the	Tools	menu.	You
can	also	set	this	property	by	using	a	macro	or	Visual	Basic.

To	set	the	AllowFullMenus	property	by	using	a	macro	or	Visual	Basic,	you
must	first	either	set	the	property	in	the	Startup	dialog	box	once	or	create	the
property	in	the	following	ways:

In	a	Microsoft	Access	database	(.mdb),	you	can	add	it	by	using	the
CreateProperty	method	and	append	it	to	the	Properties	collection	of	the
Database	object.
In	a	Microsoft	Access	project	(.adp),	you	can	add	it	to	the
AccessObjectProperties	collection	of	the	CurrentProject	object	by	using
the	Add	method.

Remarks

If	you	set	this	property	to	False,	a	predefined	subset	of	the	full	built-in	menus	is
displayed	in	your	database.	This	set	of	menus	doesn't	include	menus	and
commands	that	enable	users	to	change	the	design	of	database	objects.

Setting	this	property	to	False	also	disables	the	toolbar	buttons	that	correspond	to
the	disabled	menu	items.	However,	shortcut	menus	aren't	affected	(you	can	still
change	some	design	features	by	using	shortcut	menu	commands).	If	you	don't
want	users	to	have	access	to	the	commands	on	the	shortcut	menus,	you	can	set
the	AllowShortcutMenus	property	to	False.

This	property's	setting	doesn't	take	effect	until	the	next	time	the	database	opens.

Show	All

AllowBuiltInToolbars	Property
			

You	can	use	the	AllowBuiltInToolbars	property	to	specify	whether	or	not	the
user	can	display	Microsoft	Access	built-in	toolbars.	For	example,	you	can	use
the	AllowBuiltInToolbars	property	to	prevent	a	user	from	seeing	a	Microsoft
Access	built-in	toolbar	within	a	database	application.

Setting

The	AllowBuiltInToolbars	property	uses	the	following	settings.

Setting Description
True	(–1) Allow	built-in	toolbars	to	be	displayed.
False	(0) Don't	allow	built-in	toolbars	to	be	displayed.

The	easiest	way	to	set	this	property	is	by	using	the	Allow	Built-in	Toolbars
option	in	the	Startup	dialog	box,	available	by	clicking	Startup	on	the	Tools
menu.	You	can	also	set	this	property	by	using	a	macro	or	Visual	Basic.

To	set	the	AllowBuiltInToolbars	property	by	using	a	macro	or	Visual	Basic,
you	must	first	either	set	the	property	in	the	Startup	dialog	box	once	or	create	the
property	in	the	following	ways:

In	a	Microsoft	Access	database	(.mdb),	you	can	add	it	by	using	the
CreateProperty	method	and	append	it	to	the	Properties	collection	of	the
Database	object.
In	a	Microsoft	Access	project	(.adp),	you	can	add	it	to	the
AccessObjectProperties	collection	of	the	CurrentProject	object	by	using
the	Add	method.

Remarks

You	can	show	and	hide	specific	toolbars	by	using	the	Customize	dialog	box,
available	by	pointing	to	Toolbars	on	the	View	menu	and	clicking	Customize.

If	you	click	Toolbars	on	the	View	menu	when	the	AllowBuiltInToolbars
property	is	set	to	False,	Microsoft	Access	will	show	only	custom	toolbars	in	the
Toolbars	submenu.	If	you	click	Customize	in	this	submenu,	the	Customize
dialog	box	shows	the	built-in	toolbars,	but	you	can't	select	them	or	customize
them.

The	user	can	modify	built-in	toolbars	only	when	the	AllowToolbarChanges
property	is	set	to	True	and	the	AllowBuiltInToolbars	property	is	set	to	True.

If	the	AllowBuiltInToolbars	property	is	set	to	False,	you	can't	use	the
ShowToolbar	action	to	display	a	built-in	toolbar.

This	property's	setting	doesn't	take	effect	until	the	next	time	the	application
database	opens.

Show	All

AllowToolbarChanges	Property
			

You	can	use	the	AllowToolbarChanges	property	to	specify	whether	or	not	your
database	allows	users	to	customize	toolbars,	menu	bars,	and	shortcut	menus.	For
example,	you	can	use	the	AllowToolbarChanges	property	to	prevent	users	from
deleting	a	toolbar	button	or	an	entire	toolbar	from	your	application.

Setting

The	AllowToolbarChanges	property	uses	the	following	settings.

Setting Description
True	(–1) Allow	changes	to	toolbars,	menu	bars,	and	shortcut	menus.

False	(0) Don't	allow	changes	to	toolbars,	menu	bars,	and	shortcut
menus.

The	easiest	way	to	set	this	property	is	by	using	the	Allow	Toolbar/Menu
Changes	option	in	the	Startup	dialog	box,	available	by	clicking	Startup	on	the
Tools	menu.	You	can	also	set	this	property	by	using	a	macro	or	Visual	Basic.

To	set	the	AllowToolbarChanges	property	by	using	a	macro	or	Visual	Basic,
you	must	first	either	set	the	property	in	the	Startup	dialog	box	once	or	create	the
property	in	the	following	ways:

In	a	Microsoft	Access	database	(.mdb),	you	can	add	it	by	using	the
CreateProperty	method	and	append	it	to	the	Properties	collection	of	the
Database	object.
In	a	Microsoft	Access	project	(.adp),	you	can	add	it	to	the
AccessObjectProperties	collection	of	the	CurrentProject	object	by	using
the	Add	method.

Remarks

Setting	the	AllowToolbarChanges	property	to	False	prevents	users	from
modifying	any	toolbars,	menu	bars,	and	shortcut	menus.	It	disables	the
Customize	subcommand	of	the	Toolbars	command	on	the	View	menu	and	the
Customize	command	that's	displayed	when	you	right-click	a	toolbar	or	the	menu
bar.

If	you	set	this	property	to	False,	the	user	can	still	move,	size,	and	dock	toolbars
and	the	menu	bar.

The	user	can	modify	built-in	toolbars	only	when	the	AllowToolbarChanges
property	is	True	and	the	AllowBuiltInToolbars	property	is	True.

This	property's	setting	doesn't	take	effect	until	the	next	time	the	database	opens.

Show	All

AllowBreakIntoCode	Property
			

You	can	use	the	AllowBreakIntoCode	property	to	specify	whether	or	not	the
user	can	view	Visual	Basic	code	after	a	run-time	error	occurs	in	a	module.

Setting

The	AllowBreakIntoCode	property	uses	the	following	settings.

Setting Description

True	(–1) Enable	the	Debug	button	on	the	dialog	box	that	appears	when	a
run-time	error	occurs.

False	(0) Disable	the	Debug	button.

To	set	the	AllowBreakIntoCode	property	by	using	a	macro	or	Visual	Basic,	you
must	first	either	set	the	property	in	the	Startup	dialog	box	once	or	create	the
property	in	the	following	ways:

In	a	Microsoft	Access	database	(.mdb),	you	can	add	it	by	using	the
CreateProperty	method	and	append	it	to	the	Properties	collection	of	the
Database	object.
In	a	Microsoft	Access	project	(.adp),	you	can	add	it	to	the
AccessObjectProperties	collection	of	the	CurrentProject	object	by	using
the	Add	method.

Remarks

You	should	make	sure	the	AllowBreakIntoCode	property	is	set	to	True	when
debugging	an	application.

If	the	AllowSpecialKeys	property	is	set	to	True,	you	can	still	press
CTRL+BREAK	to	pause	execution	of	Visual	Basic	code,	even	if	the
AllowBreakIntoCode	property	is	set	to	False.

This	property's	setting	doesn't	take	effect	until	the	next	time	the	application
database	opens.

Show	All

AllowSpecialKeys	Property
			

You	can	use	the	AllowSpecialKeys	property	to	specify	whether	or	not	special
key	sequences	(ALT+F1	(F11),	CTRL+F11,	CTRL+BREAK,	and	CTRL+G)	are
disabled	or	enabled.	For	example,	you	can	use	the	AllowSpecialKeys	property
to	prevent	a	user	from	displaying	the	Database	window	by	pressing	F11,	entering
break	mode	within	a	Visual	Basic	module	by	pressing	CTRL+BREAK,	or
displaying	the	Immediate	window	by	pressing	CTRL+G.

Setting

The	AllowSpecialKeys	property	uses	the	following	settings.

Setting Description
True	(–1) Enable	the	special	key	sequences.
False	(0) Disable	the	special	key	sequences.

The	easiest	way	to	set	this	property	is	by	using	the	Use	Access	Special	Keys
option	in	the	Advanced	section	of	the	Startup	dialog	box,	available	by	clicking
Startup	on	the	Tools	menu.	In	a	Microsoft	Access	database	(.mdb),	you	can	also
set	this	property	by	using	a	macro	or	Visual	Basic.

To	set	the	AllowSpecialKeys	property	by	using	a	macro	or	Visual	Basic,	you
must	first	either	set	the	property	in	the	Startup	dialog	box	once	or	create	the
property	in	the	following	ways:

In	a	Microsoft	Access	database	(.mdb),	you	can	add	it	by	using	the
CreateProperty	method	and	append	it	to	the	Properties	collection	of	the
Database	object.
In	a	Microsoft	Access	project	(.adp),	you	can	add	it	to	the
AccessObjectProperties	collection	of	the	CurrentProject	object	by	using
the	Add	method.

Remarks

You	should	make	sure	the	AllowSpecialKeys	property	is	set	to	True	when
debugging	an	application.

The	AllowSpecialKeys	property	affects	the	following	key	sequences.

Key	sequences Effect
ALT+F1	(F11) Bring	the	Database	window	to	the	front.
CTRL+G Display	the	Immediate	window.

CTRL+F11 Toggle	between	the	custom	menu	bar	and	the	built-in	menu
bar.

CTRL+BREAK Enter	break	mode	and	display	the	current	module	in	the
Code	window.

If	you	set	the	UseSpecialKeys	property	to	False,	and	specify	a	global	menu	bar
by	using	the	StartupMenuBar	property	or	the	MenuBar	property	of	the
Application	object,	the	built-in	menu	bar	isn't	accessible.

This	property's	setting	doesn't	take	effect	until	the	next	time	the	application
database	opens.

Show	All

DAvg	Function
			

You	can	use	the	DAvg	function	to	calculate	the	average	of	a	set	of	values	in	a
specified	set	of	records	(a	domain).	Use	the	DAvg	function	in	Visual	Basic	code
or	in	a	macro,	in	a	query	expression,	or	in	a	calculated	control.

For	example,	you	could	use	the	DAvg	function	in	the	criteria	row	of	a	select
query	on	freight	cost	to	restrict	the	results	to	those	records	where	the	freight	cost
exceeds	the	average.	Or	you	could	use	an	expression	including	the	DAvg
function	in	a	calculated	control	and	display	the	average	value	of	previous	orders
next	to	the	value	of	a	new	order.

DAvg(expr,	domain,	[criteria])

The	DAvg	function	has	the	following	arguments.

Argument Description

expr

An	expression	that	identifies	the	field	containing	the
numeric	data	you	want	to	average.	It	can	be	a	string
expression	identifying	a	field	in	a	table	or	query,	or	it	can
be	an	expression	that	performs	a	calculation	on	data	in	that
field.	In	expr,	you	can	include	the	name	of	a	field	in	a	table,
a	control	on	a	form,	a	constant,	or	a	function.	If	expr
includes	a	function,	it	can	be	either	built-in	or	user-defined,
but	not	another	domain	aggregate	or	SQL	aggregate
function.

domain
A	string	expression	identifying	the	set	of	records	that
constitutes	the	domain.	It	can	be	a	table	name	or	a	query
name	for	a	query	that	does	not	require	a	parameter.

criteria

An	optional	string	expression	used	to	restrict	the	range	of
data	on	which	the	DAvg	function	is	performed.	For
example,	criteria	is	often	equivalent	to	the	WHERE	clause
in	an	SQL	expression,	without	the	word	WHERE.	If
criteria	is	omitted,	the	DAvg	function	evaluates	expr

against	the	entire	domain.	Any	field	that	is	included	in
criteria	must	also	be	a	field	in	domain;	otherwise	the	DAvg
function	returns	a	Null.

Remarks

Records	containing	Null	values	aren't	included	in	the	calculation	of	the	average.

Whether	you	use	the	DAvg	function	in	a	macro	or	module,	in	a	query
expression,	or	in	a	calculated	control,	you	must	construct	the	criteria	argument
carefully	to	ensure	that	it	will	be	evaluated	correctly.

You	can	use	the	DAvg	function	to	specify	criteria	in	the	Criteria	row	of	a	query.
For	example,	suppose	you	want	to	view	a	list	of	all	products	ordered	in
quantities	above	the	average	order	quantity.	You	could	create	a	query	on	the
Orders,	Order	Details,	and	Products	tables,	and	include	the	Product	Name	field
and	the	Quantity	field,	with	the	following	expression	in	the	Criteria	row	beneath
the	Quantity	field:

>DAvg("[Quantity]",	"Orders")

You	can	also	use	the	DAvg	function	within	a	calculated	field	expression	in	a
query,	or	in	the	Update	To	row	of	an	update	query.

Note			You	can	use	either	the	DAvg	or	Avg	function	in	a	calculated	field
expression	in	a	totals	query.	If	you	use	the	DAvg	function,	values	are	averaged
before	the	data	is	grouped.	If	you	use	the	Avg	function,	the	data	is	grouped
before	values	in	the	field	expression	are	averaged.

Use	the	DAvg	function	in	a	calculated	control	when	you	need	to	specify	criteria
to	restrict	the	range	of	data	on	which	the	DAvg	function	is	performed.	For
example,	to	display	the	average	cost	of	freight	for	shipments	sent	to	California,
set	the	ControlSource	property	of	a	text	box	to	the	following	expression:

=DAvg("[Freight]",	"Orders",	"[ShipRegion]	=	'CA'")

If	you	simply	want	to	average	all	records	in	domain,	use	the	Avg	function.

You	can	use	the	DAvg	function	in	a	module	or	macro	or	in	a	calculated	control
on	a	form	if	a	field	that	you	need	to	display	isn't	in	the	record	source	on	which
your	form	is	based.	For	example,	suppose	you	have	a	form	based	on	the	Orders
table,	and	you	want	to	include	the	Quantity	field	from	the	Order	Details	table	in
order	to	display	the	average	number	of	items	ordered	by	a	particular	customer.

You	can	use	the	DAvg	function	to	perform	this	calculation	and	display	the	data
on	your	form.

Tips

If	you	use	the	DAvg	function	in	a	calculated	control,	you	may	want	to	place
the	control	on	the	form	header	or	footer	so	that	the	value	for	this	control	is
not	recalculated	each	time	you	move	to	a	new	record.
If	the	data	type	of	the	field	from	which	expr	is	derived	is	a	number,	the
DAvg	function	returns	a	Double	data	type.	If	you	use	the	DAvg	function	in
a	calculated	control,	include	a	data	type	conversion	function	in	the
expression	to	improve	performance.
Although	you	can	use	the	DAvg	function	to	determine	the	average	of	values
in	a	field	in	a	foreign	table,	it	may	be	more	efficient	to	create	a	query	that
contains	all	of	the	fields	that	you	need	and	then	base	your	form	or	report	on
that	query.

Note			Unsaved	changes	to	records	in	domain	aren't	included	when	you	use	this
function.	If	you	want	the	DAvg	function	to	be	based	on	the	changed	values,	you
must	first	save	the	changes	by	clicking	Save	Record	on	the	Records	menu,
moving	the	focus	to	another	record,	or	by	using	the	Update	method.

Example

The	following	function	returns	the	average	freight	cost	for	orders	shipped	on	or
after	a	given	date.	The	domain	is	an	Orders	table.	The	criteria	argument	restricts
the	resulting	set	of	records	based	on	the	given	country	and	ship	date.	Note	that
the	keyword	AND	is	included	in	the	string	to	separate	the	multiple	fields	in	the
criteria	argument.	All	records	included	in	the	DAvg	function	calculation	will
have	both	of	these	criteria.

Public	Function	AvgFreightCost(ByVal	strCountry	As	String,	_

																															ByVal	dteShipDate	As	Date)	As	Double

				AvgFreightCost	=	DAvg("[Freight]",	"Orders",	_

																					"[ShipCountry]	=	'"	&	strCountry	&	_

																					"'AND	[ShippedDate]	>=	#"	&	dteShipDate	&	"#")

End	Function

To	call	the	function,	use	the	following	line	of	code	in	the	Immediate	window:

:AvgFreightCost	"UK",	#1/1/96#

Show	All

DCount	Function
			

You	can	use	the	DCount	function	to	determine	the	number	of	records	that	are	in
a	specified	set	of	records	(a	domain).	Use	the	DCount	function	in	Visual	Basic,
a	macro,	a	query	expression,	or	a	calculated	control.

For	example,	you	could	use	the	DCount	function	in	a	module	to	return	the
number	of	records	in	an	Orders	table	that	correspond	to	orders	placed	on	a
particular	date.

DCount(expr,	domain,	[criteria])

The	DCount	function	has	the	following	arguments.

Argument Description

expr

An	expression	that	identifies	the	field	for	which	you	want
to	count	records.	It	can	be	a	string	expression	identifying	a
field	in	a	table	or	query,	or	it	can	be	an	expression	that
performs	a	calculation	on	data	in	that	field.	In	expr,	you	can
include	the	name	of	a	field	in	a	table,	a	control	on	a	form,	a
constant,	or	a	function.	If	expr	includes	a	function,	it	can	be
either	built-in	or	user-defined,	but	not	another	domain
aggregate	or	SQL	aggregate	function.

domain
A	string	expression	identifying	the	set	of	records	that
constitutes	the	domain.	It	can	be	a	table	name	or	a	query
name	for	a	query	that	does	not	require	a	parameter.

criteria

An	optional	string	expression	used	to	restrict	the	range	of
data	on	which	the	DCount	function	is	performed.	For
example,	criteria	is	often	equivalent	to	the	WHERE	clause
in	an	SQL	expression,	without	the	word	WHERE.	If
criteria	is	omitted,	the	DCount	function	evaluates	expr
against	the	entire	domain.	Any	field	that	is	included	in
criteria	must	also	be	a	field	in	domain;	otherwise	the
DCount	function	returns	a	Null.

Remarks

Use	the	DCount	function	to	count	the	number	of	records	in	a	domain	when	you
don't	need	to	know	their	particular	values.	Although	the	expr	argument	can
perform	a	calculation	on	a	field,	the	DCount	function	simply	tallies	the	number
of	records.	The	value	of	any	calculation	performed	by	expr	is	unavailable.

Use	the	DCount	function	in	a	calculated	control	when	you	need	to	specify
criteria	to	restrict	the	range	of	data	on	which	the	function	is	performed.	For
example,	to	display	the	number	of	orders	to	be	shipped	to	California,	set	the
ControlSource	property	of	a	text	box	to	the	following	expression:

=DCount("[OrderID]",	"Orders",	"[ShipRegion]	=	'CA'")

If	you	simply	want	to	count	all	records	in	domain	without	specifying	any
restrictions,	use	the	Count	function.

Tip			The	Count	function	has	been	optimized	to	speed	counting	of	records	in
queries.	Use	the	Count	function	in	a	query	expression	instead	of	the	DCount
function,	and	set	optional	criteria	to	enforce	any	restrictions	on	the	results.	Use
the	DCount	function	when	you	must	count	records	in	a	domain	from	within	a
code	module	or	macro,	or	in	a	calculated	control.

You	can	use	the	DCount	function	to	count	the	number	of	records	containing	a
particular	field	that	isn't	in	the	record	source	on	which	your	form	or	report	is
based.	For	example,	you	could	display	the	number	of	orders	in	the	Orders	table
in	a	calculated	control	on	a	form	based	on	the	Products	table.

The	DCount	function	doesn't	count	records	that	contain	Null	values	in	the	field
referenced	by	expr	unless	expr	is	the	asterisk	(*)	wildcard	character.	If	you	use
an	asterisk,	the	DCount	function	calculates	the	total	number	of	records,
including	those	that	contain	Null	fields.	The	following	example	calculates	the
number	of	records	in	an	Orders	table.

intX	=	DCount("*",	"Orders")

If	domain	is	a	table	with	a	primary	key,	you	can	also	count	the	total	number	of
records	by	setting	expr	to	the	primary	key	field,	since	there	will	never	be	a	Null
in	the	primary	key	field.

If	expr	identifies	multiple	fields,	separate	the	field	names	with	a	concatenation
operator,	either	an	ampersand	(&)	or	the	addition	operator	(+).	If	you	use	an
ampersand	to	separate	the	fields,	the	DCount	function	returns	the	number	of
records	containing	data	in	any	of	the	listed	fields.	If	you	use	the	addition
operator,	the	DCount	function	returns	only	the	number	of	records	containing
data	in	all	of	the	listed	fields.	The	following	example	demonstrates	the	effects	of
each	operator	when	used	with	a	field	that	contains	data	in	all	records
(ShipName)	and	a	field	that	contains	no	data	(ShipRegion).

intW	=	DCount("[ShipName]",	"Orders")

intX	=	DCount("[ShipRegion]",	"Orders")

intY	=	DCount("[ShipName]	+	[ShipRegion]",	"Orders")

intZ	=	DCount("[ShipName]	&	[ShipRegion]",	"Orders")

Note			The	ampersand	is	the	preferred	operator	for	performing	string
concatenation.	You	should	avoid	using	the	addition	operator	for	anything	other
than	numeric	addition,	unless	you	specifically	wish	to	propagate	Nulls	through
an	expression.

Unsaved	changes	to	records	in	domain	aren't	included	when	you	use	this
function.	If	you	want	the	DCount	function	to	be	based	on	the	changed	values,
you	must	first	save	the	changes	by	clicking	Save	Record	on	the	Records	menu,
moving	the	focus	to	another	record,	or	by	using	the	Update	method.

Example

The	following	function	returns	the	number	of	orders	shipped	to	a	specified
country	after	a	specified	ship	date.	The	domain	is	an	Orders	table.

Public	Function	OrdersCount(ByVal	strCountry	As	String,	_

																												ByVal	dteShipDate	As	Date)	As	Integer

				OrdersCount	=	DCount("[ShippedDate]",	"Orders",	_

																		"[ShipCountry]	=	'"	&	strCountry	&	_

																		"'	AND	[ShippedDate]	>	#"	&	dteShipDate	&	"#")

End	Function

To	call	the	function,	use	the	following	line	of	code	in	the	Immediate	window:

:OrdersCount	"UK",	#1/1/96#

Show	All

DFirst,	DLast	Functions
			

You	can	use	the	DFirst	and	DLast	functions	to	return	a	random	record	from	a
particular	field	in	a	table	or	query	when	you	simply	need	any	value	from	that
field.	Use	the	DFirst	and	DLast	functions	in	a	macro,	module,	query	expression,
or	calculated	control	on	a	form	or	report.

DFirst(expr,	domain,	[criteria])

DLast(expr,	domain,	[criteria])

The	DFirst	and	DLast	functions	have	the	following	arguments.

Argument Description

expr

An	expression	that	identifies	the	field	from	which	you	want
to	find	the	first	or	last	value.	It	can	be	either	a	string
expression	identifying	a	field	in	a	table	or	query,	or	an
expression	that	performs	a	calculation	on	data	in	that	field.
In	expr,	you	can	include	the	name	of	a	field	in	a	table,	a
control	on	a	form,	a	constant,	or	a	function.	If	expr	includes
a	function,	it	can	be	either	built-in	or	user-defined,	but	not
another	domain	aggregate	or	SQL	aggregate	function.

domain A	string	expression	identifying	the	set	of	records	that
constitutes	the	domain.

criteria

An	optional	string	expression	used	to	restrict	the	range	of
data	on	which	the	DFirst	or	DLast	function	is	performed.
For	example,	criteria	is	often	equivalent	to	the	WHERE
clause	in	an	SQL	expression,	without	the	word	WHERE.	If
criteria	is	omitted,	the	DFirst	and	DLast	functions
evaluate	expr	against	the	entire	domain.	Any	field	that	is
included	in	criteria	must	also	be	a	field	in	domain;
otherwise,	the	DFirst	and	DLast	functions	return	a	Null.

Remarks

Note			If	you	want	to	return	the	first	or	last	record	in	a	set	of	records	(a	domain),
you	should	create	a	query	sorted	as	either	ascending	or	descending	and	set	the
TopValues	property	to	1.	For	more	information,	see	the	TopValues	property
topic.	From	Visual	Basic,	you	can	also	create	an	ADO	Recordset	object	and	use
the	MoveFirst	or	MoveLast	method	to	return	the	first	or	last	record	in	a	set	of
records.

Show	All

DMin,	DMax	Functions
			

You	can	use	the	DMin	and	DMax	functions	to	determine	the	minimum	and
maximum	values	in	a	specified	set	of	records	(a	domain).	Use	the	DMin	and
DMax	functions	in	Visual	Basic,	a	macro,	a	query	expression,	or	a	calculated
control.

For	example,	you	could	use	the	DMin	and	DMax	functions	in	calculated
controls	on	a	report	to	display	the	smallest	and	largest	order	amounts	for	a
particular	customer.	Or	you	could	use	the	DMin	function	in	a	query	expression
to	display	all	orders	with	a	discount	greater	than	the	minimum	possible	discount.

DMin(expr,	domain,	[criteria])

DMax(expr,	domain,	[criteria])

The	DMin	and	DMax	functions	have	the	following	arguments.

Argument Description

expr

An	expression	that	identifies	the	field	for	which	you	want
to	find	the	minimum	or	maximum	value.	It	can	be	a	string
expression	identifying	a	field	in	a	table	or	query,	or	it	can
be	an	expression	that	performs	a	calculation	on	data	in	that
field.	In	expr,	you	can	include	the	name	of	a	field	in	a	table,
a	control	on	a	form,	a	constant,	or	a	function.	If	expr
includes	a	function,	it	can	be	either	built-in	or	user-defined,
but	not	another	domain	aggregate	or	SQL	aggregate
function.

domain
A	string	expression	identifying	the	set	of	records	that
constitutes	the	domain.	It	can	be	a	table	name	or	a	query
name	for	a	query	that	does	not	require	a	parameter.
An	optional	string	expression	used	to	restrict	the	range	of
data	on	which	the	DMin	or	DMax	function	is	performed.
For	example,	criteria	is	often	equivalent	to	the	WHERE

criteria clause	in	an	SQL	expression,	without	the	word	WHERE.	If
criteria	is	omitted,	the	DMin	and	DMax	functions	evaluate
expr	against	the	entire	domain.	Any	field	that	is	included	in
criteria	must	also	be	a	field	in	domain,	otherwise	the	DMin
and	DMax	functions	returns	a	Null.

Remarks

The	DMin	and	DMax	functions	return	the	minimum	and	maximum	values	that
satisfy	criteria.	If	expr	identifies	numeric	data,	the	DMin	and	DMax	functions
return	numeric	values.	If	expr	identifies	string	data,	they	return	the	string	that	is
first	or	last	alphabetically.

The	DMin	and	DMax	functions	ignore	Null	values	in	the	field	referenced	by
expr.	However,	if	no	record	satisfies	criteria	or	if	domain	contains	no	records,
the	DMin	and	DMax	functions	return	a	Null.

Whether	you	use	the	DMin	or	DMax	function	in	a	macro,	module,	query
expression,	or	calculated	control,	you	must	construct	the	criteria	argument
carefully	to	ensure	that	it	will	be	evaluated	correctly.

You	can	use	the	DMin	and	DMax	function	to	specify	criteria	in	the	Criteria	row
of	a	query,	in	a	calculated	field	expression	in	a	query,	or	in	the	Update	To	row	of
an	update	query.

Note			You	can	use	the	DMin	and	DMax	functions	or	the	Min	and	Max
functions	in	a	calculated	field	expression	of	a	totals	query.	If	you	use	the	DMin
or	DMax	function,	values	are	evaluated	before	the	data	is	grouped.	If	you	use
the	Min	or	Max	function,	the	data	is	grouped	before	values	in	the	field
expression	are	evaluated.

Use	the	DMin	or	DMax	function	in	a	calculated	control	when	you	need	to
specify	criteria	to	restrict	the	range	of	data	on	which	the	function	is	performed.
For	example,	to	display	the	maximum	freight	charged	for	an	order	shipped	to
California,	set	the	ControlSource	property	of	a	text	box	to	the	following
expression:

=DMax("[Freight]",	"Orders",	"[ShipRegion]	=	'CA'")

If	you	simply	want	to	find	the	minimum	or	maximum	value	of	all	records	in
domain,	use	the	Min	or	Max	function.

You	can	use	the	DMin	or	DMax	function	in	a	module	or	macro	or	in	a
calculated	control	on	a	form	if	the	field	that	you	need	to	display	is	not	in	the

record	source	on	which	your	form	is	based.

Tip			Although	you	can	use	the	DMin	or	DMax	function	to	find	the	minimum	or
maximum	value	from	a	field	in	a	foreign	table,	it	may	be	more	efficient	to	create
a	query	that	contains	the	fields	that	you	need	from	both	tables	and	base	your
form	or	report	on	that	query.

Note			Unsaved	changes	to	records	in	domain	aren't	included	when	you	use	these
functions.	If	you	want	the	DMax	or	DMin	function	to	be	based	on	the	changed
values,	you	must	first	save	the	changes	by	clicking	Save	Record	on	the	Records
menu,	moving	the	focus	to	another	record,	or	by	using	the	Update	method.

Example

The	following	example	returns	the	lowest	and	highest	values	from	the	Freight
field	for	orders	shipped	to	the	United	Kingdom.	The	domain	is	an	Orders	table.
The	criteria	argument	restricts	the	resulting	set	of	records	to	those	for	which
ShipCountry	equals	UK.

Dim	curX	As	Currency

Dim	curY	As	Currency

curX	=	DMin("[Freight]",	"Orders",	"[ShipCountry]	=	'UK'")

curY	=	DMax("[Freight]",	"Orders",	"[ShipCountry]	=	'UK'")

In	the	next	example,	the	criteria	argument	includes	the	current	value	of	a	text
box	called	OrderDate.	The	text	box	is	bound	to	an	OrderDate	field	in	an	Orders
table.	Note	that	the	reference	to	the	control	isn't	included	in	the	double	quotation
marks	(")	that	denote	the	strings.	This	ensures	that	each	time	the	DMax	function
is	called,	Microsoft	Access	obtains	the	current	value	from	the	control.

Dim	curX	As	Currency

curX	=	DMax("[Freight]",	"Orders",	"[OrderDate]	=	#"	_

				&	Forms!Orders!OrderDate	&	"#")

In	the	next	example,	the	criteria	expression	includes	a	variable,	dteOrderDate.
Note	that	number	signs	(#)	are	included	in	the	string	expression,	so	that	when	the
strings	are	concatenated,	they	will	enclose	the	date.

Dim	dteOrderDate	As	Date

Dim	curX	As	Currency

dteOrderDate	=	#03/30/2000#

curX	=	DMin("[Freight]",	"Orders",	_

				"[OrderDate]	=	#"	&	dteOrderDate	&	"#")

Show	All

DStDev,	DStDevP	Functions
			

You	can	use	the	DStDev	and	DStDevP	functions	to	estimate	the	standard
deviation	across	a	set	of	values	in	a	specified	set	of	records	(a	domain).	Use	the
DStDev	and	DStDevP	functions	in	Visual	Basic,	a	macro,	a	query	expression,	or
a	calculated	control	on	a	form	or	report.

Use	the	DStDevP	function	to	evaluate	a	population	and	the	DStDev	function	to
evaluate	a	population	sample.

For	example,	you	could	use	the	DStDev	function	in	a	module	to	calculate	the
standard	deviation	across	a	set	of	students'	test	scores.

DStDev(expr,	domain,	[criteria])

DStDevP(expr,	domain,	[criteria])

The	DStDev	and	DStDevP	functions	have	the	following	arguments.

Argument Description

expr

An	expression	that	identifies	the	numeric	field	on	which
you	want	to	find	the	standard	deviation.	It	can	be	a	string
expression	identifying	a	field	from	a	table	or	query,	or	it
can	be	an	expression	that	performs	a	calculation	on	data	in
that	field.	In	expr,	you	can	include	the	name	of	a	field	in	a
table,	a	control	on	a	form,	a	constant,	or	a	function.	If	expr
includes	a	function,	it	can	be	either	built-in	or	user-defined,
but	not	another	domain	aggregate	or	SQL	aggregate
function.

domain
A	string	expression	identifying	the	set	of	records	that
constitutes	the	domain.	It	can	be	a	table	name	or	a	query
name	for	a	query	that	does	not	require	a	parameter.
An	optional	string	expression	used	to	restrict	the	range	of
data	on	which	the	DStDev	or	DStDevP	function	is

criteria

performed.	For	example,	criteria	is	often	equivalent	to	the
WHERE	clause	in	an	SQL	expression,	without	the	word
WHERE.	If	criteria	is	omitted,	the	DStDev	and	DStDevP
functions	evaluate	expr	against	the	entire	domain.	Any	field
that	is	included	in	criteria	must	also	be	a	field	in	domain;
otherwise,	the	DStDev	and	DStDevP	functions	will	return
a	Null.

Remarks

If	domain	refers	to	fewer	than	two	records	or	if	fewer	than	two	records	satisfy
criteria,	the	DStDev	and	DStDevP	functions	return	a	Null,	indicating	that	a
standard	deviation	can't	be	calculated.

Whether	you	use	the	DStDev	or	DStDevP	function	in	a	macro,	module,	query
expression,	or	calculated	control,	you	must	construct	the	criteria	argument
carefully	to	ensure	that	it	will	be	evaluated	correctly.

You	can	use	the	DStDev	and	DStDevP	functions	to	specify	criteria	in	the
Criteria	row	of	a	select	query.	For	example,	you	could	create	a	query	on	an
Orders	table	and	a	Products	table	to	display	all	products	for	which	the	freight
cost	fell	above	the	mean	plus	the	standard	deviation	for	freight	cost.	The	Criteria
row	beneath	the	Freight	field	would	contain	the	following	expression:

>(DStDev("[Freight]",	"Orders")	+	DAvg("[Freight]",	"Orders"))

You	can	use	the	DStDev	and	DStDevP	functions	in	a	calculated	field	expression
of	a	query,	or	in	the	Update	To	row	of	an	update	query.

Note			You	can	use	the	DStDev	and	DStDevP	functions	or	the	StDev	and
StDevP	functions	in	a	calculated	field	expression	of	a	totals	query.	If	you	use	the
DStDev	or	DStDevP	function,	values	are	calculated	before	data	is	grouped.	If
you	use	the	StDev	or	StDevP	function,	the	data	is	grouped	before	values	in	the
field	expression	are	evaluated.

Use	the	DStDev	and	DStDevP	function	in	a	calculated	control	when	you	need	to
specify	criteria	to	restrict	the	range	of	data	on	which	the	function	is	performed.
For	example,	to	display	standard	deviation	for	orders	to	be	shipped	to	California,
set	the	ControlSource	property	of	a	text	box	to	the	following	expression:

=DStDev("[Freight]",	"Orders",	"[ShipRegion]	=	'CA'")

If	you	simply	want	to	find	the	standard	deviation	across	all	records	in	domain,
use	the	StDev	or	StDevP	function.

Tip			If	the	data	type	of	the	field	from	which	expr	is	derived	is	a	number,	the
DStDev	and	DStDevP	functions	return	a	Double	data	type.	If	you	use	the

DStDev	or	DStDevP	function	in	a	calculated	control,	include	a	data	type
conversion	function	in	the	expression	to	improve	performance.

Note			Unsaved	changes	to	records	in	domain	are	not	included	when	you	use
these	functions.	If	you	want	the	DStDev	or	DStDevP	function	to	be	based	on	the
changed	values,	you	must	first	save	the	changes	by	clicking	Save	Record	on	the
Records	menu,	moving	the	focus	to	another	record,	or	by	using	the	Update
method.

Example

The	following	example	returns	estimates	of	the	standard	deviation	for	a
population	and	a	population	sample	for	orders	shipped	to	the	United	Kingdom.
The	domain	is	an	Orders	table.	The	criteria	argument	restricts	the	resulting	set	of
records	to	those	for	which	the	ShipCountry	value	is	UK.

Dim	dblX	As	Double

Dim	dblY	As	Double

'	Sample	estimate.

dblX	=	DStDev("[Freight]",	"Orders",	"[ShipCountry]	=	'UK'")

'	Population	estimate.

dblY	=	DStDevP("[Freight]",	"Orders",	"[ShipCountry]	=	'UK'")

The	next	example	calculates	the	same	estimates	by	using	a	variable,	strCountry,
in	the	criteria	argument.	Note	that	single	quotation	marks	(')	are	included	in	the
string	expression,	so	that	when	the	strings	are	concatenated,	the	string	literal	UK
will	be	enclosed	in	single	quotation	marks.

Dim	strCountry	As	String

Dim	dblX	As	Double

Dim	dblY	As	Double

strCountry	=	"UK"

dblX	=	DStDev("[Freight]",	"Orders",	_

				"[ShipCountry]	=	'"	&	strCountry	&	"'")

dblY	=	DStDevP("[Freight]",	"Orders",	_

				"[ShipCountry]	=	'"	&	strCountry	&	"'")

Show	All

DVar,	DVarP	Functions
			

You	can	use	the	DVar	and	DVarP	functions	to	estimate	variance	across	a	set	of
values	in	a	specified	set	of	records	(a	domain).	Use	the	DVar	and	DVarP
functions	in	Visual	Basic,	a	macro,	a	query	expression,	or	a	calculated	control	on
a	form	or	report.

Use	the	DVarP	function	to	evaluate	variance	across	a	population	and	the	DVar
function	to	evaluate	variance	across	a	population	sample.

For	example,	you	could	use	the	DVar	function	to	calculate	the	variance	across	a
set	of	students'	test	scores.

DVar(expr,	domain,	[criteria])

DVarP(expr,	domain,	[criteria])

The	DVar	and	DVarP	functions	have	the	following	arguments.

Argument Description

expr

An	expression	that	identifies	the	numeric	field	on	which
you	want	to	find	the	variance.	It	can	be	a	string	expression
identifying	a	field	from	a	table	or	query,	or	it	can	be	an
expression	that	performs	a	calculation	on	data	in	that	field.
In	expr,	you	can	include	the	name	field	in	a	table,	a	control
on	a	form,	a	constant,	or	a	function.	If	expr	includes	a
function,	it	can	be	either	built-in	or	user-defined,	but	not
another	domain	aggregate	or	SQL	aggregate	function.	Any
field	included	in	expr	must	be	a	numeric	field.

domain
A	string	expression	identifying	the	set	of	records	that
constitutes	the	domain.	It	can	be	a	table	name	or	a	query
name	for	a	query	that	does	not	require	a	parameter.
An	optional	string	expression	used	to	restrict	the	range	of
data	on	which	the	DVar	or	DVarP	function	is	performed.

criteria
For	example,	criteria	is	often	equivalent	to	the	WHERE
clause	in	an	SQL	expression,	without	the	word	WHERE.	If
criteria	is	omitted,	the	DVar	and	DVarP	functions	evaluate
expr	against	the	entire	domain.	Any	field	that	is	included	in
criteria	must	also	be	a	field	in	domain;	otherwise	the	DVar
and	DVarP	functions	return	a	Null.

Remarks

If	domain	refers	to	fewer	than	two	records	or	if	fewer	than	two	records	satisfy
criteria,	the	DVar	and	DVarP	functions	return	a	Null,	indicating	that	a	variance
can't	be	calculated.

Whether	you	use	the	DVar	or	DVarP	function	in	a	macro,	module,	query
expression,	or	calculated	control,	you	must	construct	the	criteria	argument
carefully	to	ensure	that	it	will	be	evaluated	correctly.

You	can	use	the	DVar	and	DVarP	function	to	specify	criteria	in	the	Criteria
row	of	a	select	query,	in	a	calculated	field	expression	in	a	query,	or	in	the
Update	To	row	of	an	update	query.

Note			You	can	use	the	DVar	and	DVarP	functions	or	the	Var	and	VarP
functions	in	a	calculated	field	expression	in	a	totals	query.	If	you	use	the	DVar
or	DVarP	function,	values	are	calculated	before	data	is	grouped.	If	you	use	the
Var	or	VarP	function,	the	data	is	grouped	before	values	in	the	field	expression
are	evaluated.

Use	the	DVar	and	DVarP	functions	in	a	calculated	control	when	you	need	to
specify	criteria	to	restrict	the	range	of	data	on	which	the	function	is	performed.
For	example,	to	display	a	variance	for	orders	to	be	shipped	to	California,	set	the
ControlSource	property	of	a	text	box	to	the	following	expression:

=DVar("[Freight]",	"Orders",	"[ShipRegion]	=	'CA'")

If	you	simply	want	to	find	the	standard	deviation	across	all	records	in	domain,
use	the	Var	or	VarP	function.

Note			Unsaved	changes	to	records	in	domain	are	not	included	when	you	use
these	functions.	If	you	want	the	DVar	or	DVarP	function	to	be	based	on	the
changed	values,	you	must	first	save	the	changes	by	clicking	Save	Record	on	the
Records	menu,	moving	the	focus	to	another	record,	or	by	using	the	Update
method.

Example

The	following	example	returns	estimates	of	the	variance	for	a	population	and	a
population	sample	for	orders	shipped	to	the	United	Kingdom.	The	domain	is	an
Orders	table.	The	criteria	argument	restricts	the	resulting	set	of	records	to	those
for	which	ShipCountry	equals	UK.

Dim	dblX	As	Double

Dim	dblY	As	Double

'	Sample	estimate.

dblX	=	DVar("[Freight]",	"Orders",	"[ShipCountry]	=	'UK'")

'	Population	estimate.

dblY	=	DVarP("[Freight]",	"Orders",	"[ShipCountry]	=	'UK'")

The	next	example	returns	estimates	by	using	a	variable,	strCountry,	in	the
criteria	argument.	Note	that	single	quotation	marks	(')	are	included	in	the	string
expression,	so	that	when	the	strings	are	concatenated,	the	string	literal	UK	will	be
enclosed	in	single	quotation	marks.

Dim	strCountry	As	String|

Dim	dblX	As	Double

strCountry	=	"UK"

dblX	=	DVar("[Freight]",	"Orders",	"[ShipCountry]	=	'"	_

				&	strCountry	&	"'")

Show	All

AllowZeroLength	Property
			

You	can	use	the	AllowZeroLength	property	to	specify	whether	a	zero-length
string	("	")	is	a	valid	entry	in	a	table	field.

Note			The	AllowZeroLength	property	applies	only	to	Text,	Memo,	and
Hyperlink	table	fields.

Setting

The	AllowZeroLength	property	uses	the	following	settings.

Setting Visual	Basic Description
Yes True		 A	zero-length	string	is	a	valid	entry.

No False (Default)	A	zero-length	string	is	an	invalid
entry.

You	can	set	this	property	by	using	the	table's	property	sheet	or	Visual	Basic.

Note			To	access	a	field's	AllowZeroLength	property	by	using	Visual	Basic,	use
the	DAO	AllowZeroLength	property	or	the	ADO	Column.Properties("Set
OLEDB:Allow	Zero	Length")	property.

Remarks

If	you	want	Microsoft	Access	to	store	a	zero-length	string	instead	of	a	Null	value
when	you	leave	a	field	blank,	set	both	the	AllowZeroLength	and	Required
properties	to	Yes.

The	following	table	shows	the	results	of	combining	the	settings	of	the
AllowZeroLength	and	Required	properties.

AllowZeroLength Required User's	action Value	stored

No No
Presses	ENTER
Presses	SPACEBAR
Enters	a	zero-length	string

Null
Null
(not	allowed)

Yes No
Presses	ENTER
Presses	SPACEBAR
Enters	a	zero-length	string

Null
Null
Zero-length	string

No Yes
Presses	ENTER
Presses	SPACEBAR
Enters	a	zero-length	string

(not	allowed)
(not	allowed)
(not	allowed)

Yes Yes
Presses	ENTER
Presses	SPACEBAR
Enters	a	zero-length	string

(not	allowed)
Zero-length	string
Zero-length	string

Tip			You	can	use	the	Format	property	to	distinguish	between	the	display	of	a
Null	value	and	a	zero-length	string.	For	example,	the	string	"None"	can	be
displayed	when	a	zero-length	string	is	entered.

The	AllowZeroLength	property	works	independently	of	the	Required	property.
The	Required	property	determines	only	whether	a	Null	value	is	valid	for	the
field.	If	the	AllowZeroLength	property	is	set	to	Yes,	a	zero-length	string	will	be
a	valid	value	for	the	field	regardless	of	the	setting	of	the	Required	property.

Show	All

UniqueValues	Property
					

You	can	use	the	UniqueValues	property	when	you	want	to	omit	records	that
contain	duplicate	data	in	the	fields	displayed	in	Datasheet	view.	For	example,	if
a	query's	output	includes	more	than	one	field,	the	combination	of	values	from	all
fields	must	be	unique	for	a	given	record	to	be	included	in	the	results.

Note			The	UniqueValues	property	applies	only	to	append	and	make-table	action
queries	and	select	queries.

Setting

The	UniqueValues	property	uses	the	following	settings.

Setting Description

Yes Displays	only	the	records	in	which	the	values	of	all	fields
displayed	in	Datasheet	view	are	unique.

No (Default)	Displays	all	records.

You	can	set	the	UniqueValues	property	in	the	query's	property	sheet	or	in	SQL
view	of	the	Query	window.

Note			You	can	set	this	property	when	you	create	a	new	query	by	using	an	SQL
statement.	The	DISTINCT	predicate	corresponds	to	the	UniqueValues	property
setting.	The	DISTINCTROW	predicate	corresponds	to	the	UniqueRecords
property	setting.

Remarks

When	you	set	the	UniqueValues	property	to	Yes,	the	results	of	the	query	aren't
updatable	and	won't	reflect	subsequent	changes	made	by	other	users.

The	UniqueValues	and	UniqueRecords	properties	are	related	in	that	only	one
of	them	can	be	set	to	Yes	at	a	time.	When	you	set	the	UniqueValues	property	to
Yes,	for	example,	Microsoft	Access	automatically	sets	the	UniqueRecords
property	to	No.	You	can,	however,	set	both	of	them	to	No.	When	both	properties
are	set	to	No,	all	records	are	returned.

Tip			If	you	want	to	count	the	number	of	instances	of	a	value	in	a	field,	create	a
totals	query.

Example

The	SELECT	statement	in	this	example	returns	a	list	of	the	countries/regions	in
which	there	are	customers.	Because	there	may	be	many	customers	in	each
country/region,	many	records	could	have	the	same	country/region	in	the
Customers	table.	However,	each	country/region	is	represented	only	once	in	the
query	results.

This	example	uses	the	Customers	table,	which	contains	the	following	data.

Country/Region Company	name
Brazil Familia	Arquibaldo
Brazil Gourmet	Lanchonetes
Brazil Hanari	Carnes
France Du	monde	entier
France Folies	gourmandes
Germany Frankenversand
Ireland Hungry	Owl	All-Night	Grocers

This	SQL	statement	returns	the	countries/regions	in	the	following	table:

SELECT	DISTINCT	Customers.Country

FROM	Customers;

Countries/Regions	returned
Brazil
France
Germany
Ireland

		

Show	All

Image	Hyperlink	Control
			

The	image	hyperlink	control	can	add	an	unbound	image	to	a	data	access	page.

Tool:

Remarks

Use	the	image	hyperlink	control	to	add	an	image	to	a	data	access	page	that,	when
clicked,	displays	another	Web	page	from	your	hard	drive,	the	Web,	or	another
location.	When	you	create	an	image	hyperlink	control,	you	select	the	image	to
display	on	the	page	and	the	address	of	the	file	to	jump	to.

The	Insert	Picture	dialog	box	displays	a	list	of	pictures	that	can	be	selected
as	the	image.
The	Insert	Hyperlink	dialog	box	allows	the	user	to	select	the	file	or	web
page	that	will	be	linked	to	the	image	control.

In	Page	view,	as	the	pointer	passes	over	the	image,	the	pointer	changes	to	a
hand,	indicating	that	the	image	is	a	link	that	you	can	click	to	go	to	another	page.
You	can	also	define	ScreenTips	and	alternate	text	for	the	image.	

Show	All

Office	Chart	Control
			

The	Office	chart	control	can	add	a	chart	to	a	data	access	page.

Tool:

Remarks

You	can	use	Microsoft	Office	Chart,	a	Microsoft	Office	Web	Component,	to
create	dynamic,	interactive	charts	in	a	data	access	page	that	you	can	make
available	on	Web	sites	for	viewing	in	a	browser.	For	example,	you	can	create	a
chart	using	data	in	a	table	that	stores	sales	figures.	When	you	update	the	sales
figures,	the	chart	updates	—	so	users	can	always	see	the	latest	information	on
their	Web	pages.

Microsoft	Internet	Explorer	5	or	later	is	required	to	create	a	chart	on	a	data
access	page,	but	users	with	Internet	Explorer	version	4.x	or	later	can	view	the
chart	and	see	the	chart	updated	in	response	to	changes	to	data.

Show	All

Office	Spreadsheet	Control
			

The	Office	spreadsheet	control	can	add	a	spreadsheet	with	some	of	the	features
of	a	Microsoft	Excel	spreadsheet	to	a	data	access	page.

Tool:

Remarks

You	can	add	a	spreadsheet	control	to	a	data	access	page	to	provide	some	of	the
same	capabilities	you	have	in	a	Microsoft	Excel	worksheet.	You	can	enter
values,	add	formulas,	apply	filters,	and	so	on.	Use	the	procedure	below	to	create
a	spreadsheet	in	which	you	enter	raw	data,	or	import	data	from	a	Web	page	or
text	file.	If	within	the	spreadsheet	you	want	to	use	data	from	other	controls	on
the	data	access	page,	you	need	to	refer	to	those	controls	in	the	appropriate
spreadsheet	cells.

Show	All

Understanding	ActiveX	Controls
(Data	Access	Pages)
			

Some	of	the	content	in	this	topic	may	not	be	applicable	to	some	languages.

In	addition	to	the	built-in	controls	that	appear	in	the	toolbox,	Microsoft	Access
supports	ActiveX	controls	(formerly	known	as	custom	or	OLE	controls).	An
ActiveX	control,	like	a	built-in	control,	is	an	object	that	you	place	on	a	form	to
enable	or	enhance	a	user's	interaction	with	an	application.	ActiveX	controls	have
events	and	can	be	incorporated	into	other	controls.	These	controls	have	an	.ocx
file	name	extension.	The	Calendar	control	is	an	example	of	an	ActiveX	control.

Show	All

NewValues	Property
			

You	can	use	the	NewValues	property	to	specify	how	AutoNumber	fields
increment	when	new	records	are	added	to	a	table.

Note			The	NewValues	property	applies	only	to	AutoNumber	fields.

Setting

The	NewValues	property	uses	the	following	settings.

Setting Description

Increment (Default)	AutoNumber	field	values	increment	by	1	for	new
records.

Random AutoNumber	field	values	are	assigned	a	random	Long	Integer
value	for	new	records.

You	can	set	this	property	in	the	table's	property	sheet	in	table	Design	view	by
clicking	the	General	tab	in	the	Field	Properties	section.

Remarks

When	you	replicate	a	database,	AutoNumber	field	settings	are	set	to	Random	to
ensure	that	new	records	entered	in	different	replicas	will	have	unique	values.

Show	All

UniqueRecords	Property
					

You	can	use	the	UniqueRecords	property	to	specify	whether	to	return	only
unique	records	based	on	all	fields	in	the	underlying	data	source,	not	just	those
fields	present	in	the	query	itself.

Note			The	UniqueRecords	property	applies	only	to	append	and	make-table
action	queries	and	select	queries.

Setting

The	UniqueRecords	property	uses	the	following	settings.

Setting Description
Yes Doesn't	return	duplicate	records.

No (Default)	Returns	duplicate
records.

You	can	set	the	UniqueRecords	property	in	the	query's	property	sheet	or	in	SQL
view	of	the	Query	window.

Note			You	set	this	property	when	you	create	a	new	query	by	using	an	SQL
statement.	The	DISTINCTROW	predicate	corresponds	to	the	UniqueRecords
property	setting.	The	DISTINCT	predicate	corresponds	to	the	UniqueValues
property	setting.

Remarks

You	can	use	the	UniqueRecords	property	when	you	want	to	omit	data	based	on
entire	duplicate	records,	not	just	duplicate	fields.	Microsoft	Access	considers	a
record	to	be	unique	as	long	as	the	value	in	one	field	in	the	record	differs	from	the
value	in	the	same	field	in	another	record.

The	UniqueRecords	property	has	an	effect	only	when	you	use	more	than	one
table	in	the	query	and	select	fields	from	the	tables	used	in	the	query.	The
UniqueRecords	property	is	ignored	if	the	query	includes	only	one	table.

The	UniqueRecords	and	UniqueValues	properties	are	related	in	that	only	one
of	them	can	be	set	to	Yes	at	a	time.	When	you	set	UniqueRecords	to	Yes,	for
example,	Microsoft	Access	automatically	sets	UniqueValues	to	No.	You	can,
however,	set	both	of	them	to	No.	When	both	properties	are	set	to	No,	all	records
are	returned.

Example

The	query	in	this	example	returns	a	list	of	customers	from	the	Customers	table
who	have	at	least	one	order	in	the	Orders	table.

Customers	Table

Company	name Customer	ID
Ernst	Handel ERNSH
Familia	Arquibaldo FAMIA
FISSA	Fabrica	Inter.	Salchichas	S.A. FISSA
Folies	gourmandes FOLIG

Orders	Table

Customer	ID Order	ID
ERNSH 10698
FAMIA 10512
FAMIA 10725
FOLIG 10763
FOLIG 10408

The	following	SQL	statement	returns	the	customer	names	in	the	following	table:

SELECT	DISTINCTROW	Customers.CompanyName,	Customers.CustomerID

FROM	Customers	INNER	JOIN	Orders

ON	Customers.CustomerID	=	Orders.CustomerID;

Customers	returned Customer	ID
Ernst	Handel ERNSH
Familia	Arquibaldo FAMIA
Folies	gourmandes FOLIG

		

