

	 Nir	Adar underwar@hotmail.com
	 Rotem	Grosman rotemrpg@yahoo.com

	 2004 	

VAX11	simulator
By	Nir	Adar	and	Rotem	Grosman

mailto:underwar@hotmail.com
mailto:rotemrpg@yahoo.com

Welcome
	
VAX11	is	a	32-bit	word	length	computer	dating	from	the	80’s.
Currently,	it	has	almost	entirely	been	replaced.		However,	the	Technion
University	among	other	institutions	uses	it	as	an	initial	teaching	tool	to	introduce
the	world	of	assembler	to	students.
The	VAX11	Simulator	makes	it	possible	compile	VAX-11	assembly	programs
and	to	test	these	programs.
The	simulator	comes	with	many	features	to	make	your	work	effective	and
productive:
	
Familiar	interface:
	

·								The	environment	looks	like	Visual	Studio	.Net
·								Advanced	editor	including	syntax	highlight,	working	on	multiple

documents
·								Debug	tools
·								Significant	documentation

	
	
Simulate	many	hardware	aspects:
	

·								Registers
·								Virtual	memory
·								Interrupts
·								Clock	cycles
·								Machine	language

	
And	many	other	features…

	
	
The	simulator	was	written	by	Software	Laboratory	-	Technion,	Faculty	of
Electrical	Engineering.
	
	

Get	Started
	

1.				Introduction

	
The	working	environment	contains	several	connected	components:	Text	Editor,
Assembler	and	Simulator.	Using	those	components	we	are	able	to	write	VAX11
code,	compile	it	and	run	it.	The	environment	also	gives	us	the	ability	to	run	the
program	step	by	step	and	debug	it.
The	interface	is	simulator	to	Visual	Studio	.Net	and	to	make	it	easy	for	new	users
to	work	with	the	simulator.
	

2.				Main	Features
	
Text	Editor:

Contains	Syntax	Highlight	option	for	writing	VAX11	code.
Allows	working	on	several	files	simultaneously

	
Assembler:

Detailed	Error	Messages
Code	optimization	option	-	resulting	in	shorter	code	than	the	old	simulator.
Can	generate	output	file	containing	the	user	code	and	the	machine	code.

	
Simulator:

Supports	many	of	the	VAX11	opcodes.
Supports	many	VAX	system-calls.
Supports	Interrupts	and	Exceptions
Virtual	memory	support,	giving	4GB	addresses	space.
Contains	simulation	for	physical	memory	and	page	faults.
Option	to	analyze	the	program	running	time.

	
Debugger:

Running	the	program	in	Step-By-Step	Mode
Supports	Break-Points
Displays	registers	status,	memory	and	stack.

	

3.				Start	Working
	
When	opening	the	working	environment,	the	main	application	window	will
appear.

VAX11	Simulator	Opening	Screen
	
	
	
Document	Window	is	the	place	where	the	user	writes	the	program's	code.	This
window	is	operating	as	simple	text	editor.
The	Task	Window	is	used	by	the	assembler.	If	it	finds	errors	in	the	user's	code,
the	task	window	will	contain	it,	and	will	give	the	user	to	jump	directly	to	that
line.
Near	the	task	list	we	can	find	the	Output	Window,	where	the	assembler	and	the
simulator	sends	information	about	the	compilation	status	or	the	running	status.
	

4.				Text	Editor
	
The	working	environment	allows	the	user	to	write	text	files	which	contains	VAX
code.	Every	document	(program)	appears	on	its	own	window,	and	the	user	is
able	to	switch	between	the	open	documents.
The	editor	colors	the	code	as	we	type	it,	to	make	it	easier	to	read	the	source.
We	are	able	to	customize	the	colors	via	the	environment	menus.

Three	open	documents
	
	
	
The	working	environment	also	let	us	to	split	the	open	documents	and	view	each
one	of	it	on	part	of	the	screen.	Splitting	the	view	is	done	by	dragging	the
document	name	from	the	documents	tab	to	the	desire	place.

Splitting	the	windows

	
	

	
	
The	editor	contains	finding	tool	in	the	text.	To	use	it,	select	"Find"	under	the
"Edit"	menu,	or	press	Ctrl+F.	Then	enter	the	text	to	be	searched.

Find	Window
	
	

	
	
Jumping	to	specific	line	in	the	text	can	be	done	using	"Go	To"	option	in	the
"Edit"	window,	or	using	the	Ctrl+G	keys.

Go	To	Line	Window
	

	
	

5.				Options	Window
	

Options	Window	–	Environment	Settings
	
	
Many	aspects	of	the	environment,	assembler	and	simulator	can	be	personalize.
The	options	window	let	the	user	change	the	different	settings	of	the	system.
	

5.1.										Working	Environment
	
Colors 	
Parameter Meaning
Text	Color Normal	text	color
Comments	Color Comments	start	after	#	sign.

Labels	Color Labels	are	identifiers	following	by	:	that	appears
on	start	of	lines.

OS	Functions	Color

The	simulator	supports	some	high-level	functions,
as	printf,	getchar,	etc.
These	functions	are	known	as	operation	system
functions.
Directives	are	commands	meant	for	the	assembler,

Directives	Color that	doesn't	appear	on	the	final	machine	code.
Examples:	.word,	.space

Commands	Color VAX11	commands	(opcodes)	color
Strings	Color Strings	are	text	appear	betweens	"".
Background	Color Documents	Background	Color

Current	Line	Color Color	of	the	next	line	that	will	be	executed	(debug
mode)

BreakPoint	Color BreakPoint	Color
Color	Scheme Select	one	of	pre-defined	colors	sets
General 	
Parameter Meaning
Do	Syntax
Hightlight

Select	if	the	environment	should	highlight	special
VAX11	words.

Show	LST	file	after
compile

If	set,	the	LST	file	created	during	the	compilation
will	be	displayed	after	compile	ends	successfully.

Show	agent	on
startup

The	agent,	Merlin,	is	welcome	the	users	of
VAX11	Simulator	every	time	the	program	runs.

	
	

The	working	environment	with	custom	colors	settings

	
	

5.2.										Assembler

	
General 	
Parameter Meaning

Optimize	Code

VAX11	Simulator	generates	smaller	code	than	the
old	SIM	simulator	used	by	the	Technion.	Set	this
option	to	false	if	you	wish	the	assembler	to
generate	code	as	SIM	does,	without	its
enhancements.

Save	LST	file	after
compile

Select	if	the	assembler	should	save	LST	file	after
successful	compilation.	LST	file	is	text	file
containing	the	machine	code	and	the	source	code
of	the	compiled	program.

	
	
	

5.3.										Simulator
	
The	simulator	simulate	a	physical	memory	that	divided	to	pages	and	supports
virtual	memory.	The	settings	that	related	to	memory	effects	the	simulation	of	that
memory.
The	console	is	the	input/output	window	of	each	running	program.
	
	
Console 	
Parameter Meaning
Text	Color The	color	of	the	console's	output.
Background	Color Background	color	for	the	console.

If	selected,	the	console	window	of	debugged

Always	on	top	on	debug
mode

application	will	be	above	all	other	windows,
even	when	deactivate.

General 	
Parameter Meaning

Show	Registers	in	Hex
If	true,	while	debugging,	the	registers	values
will	be	displayed	in	Hex	basis.	Else	it	will	be
displayed	as	decimal	numbers.

Show	Special	Registers
If	true,	while	debugging,	the	special	VAX11
registers	will	be	displayed	among	the	general
registers.

Show	Debug
Information

If	selected,	the	simulator	will	generate
detailed	information	about	the	simulator	state
in	case	of	errors	in	the	user's	program.

Memory 	
Parameter Meaning
Page	Size Memory	Page	Size

Physical	Memory	Size Physical	Memory	Size.	The	memory	size
should	be	multiple	of	the	page	size.

Show	Memory	Accesses
If	selected,	the	simulator	will	display
information	about	accesses	to	memory	after
each	command.

Show	Physical
Addresses

If	selected,	the	simulator	will	show
"physical"	addressing	for	every	virtual
address.

Show	Page	Faults If	selected,	the	simulator	will	display
message	when	page-fault	occurs.

Fill	Memory	With
Garbage

If	true,	uninitalize	memory	cells	will	contain
garbage.	If	false,	it	will	contain	zeros

	
	
	

6.				The	Assembler
	
After	we	wrote	an	assembler	code,	we	can	compile	it	using	the	"Compile"	option
under	"Build"	menu.	In	case	we	have	errors	in	our	code,	list	of	the	errors	will
appear	on	the	task	window,	and	we	will	be	able	to	fix	it.

	

Code	With	Errors	–	The	Errors	appears	on	the	Task	Window

	
	
	
LST	files	are	files	contain	the	user	code	and	the	machine	code	of	the	program.
The	working	environment	lets	the	user	watch	and	save	the	LST	files.
To	do	so,	we	need	to	press	on	"View	LST	File"	option	under	the	"Build"	menu.
Note	that	we	can	view	that	file	even	if	we	have	errors	on	our	code.
	
	

LST	File
	

7.				The	Simulator
	
The	simulator	is	able	to	execute	VAX11	programs.	It	simulate	many	hardware
aspects,	including	memory,	registers,	interrupts,	exceptions	and	more.
In	order	to	execute	our	program,	we	need	to	select	"Execute"	option	from	the
"Build"	menu.	After	we	will	press	that	option,	a	console	window	will	appear	and
our	program	will	start.

	

Console	window	containing	program	that	displays	Fibonacci	numbers

	
	

	
	

The	simulator	let	us	selecting	input	and	output	files	for	out	program,	using	"	Set
Input/Output	Files"	in	the	"Build"	menu.
Pay	attention	that	the	input	and	output	files	can	be	set	for	each	open	document
separately.

Append	option	let	us	adding	output	to	existing	file.
	

Set	Input/Output	Files	Window
	

	

	
	

	
The	debug	menu	allows	us	running	the	program	in	Step-By-Step	mode,	in	order
to	fix	problems	in	our	program.	Starting	the	program	in	Step-By-Step	mode	is
done	by	pressing	on	"Step"	option	under	the	"Debug"	menu.
When	the	debug	starts	several	windows	will	appears	to	displays	the	system
status:	registers	windows,	memory	and	stack	windows.	Also	the	next	line	to	be
performed	will	be	marked	using	a	color.
	

	
	
	
	
A	console	window	will	be	opened	too	to	display	the	program's	output.

	

	
	
	
Another	useful	option	is	right-clicking	on	the	console.	A	popup	menu	will
appear	with	several	options:	Setting	the	window	as	"Always	in	Top",	saving	the
program's	output,	and	pasting	data	to	the	running	program.
	

The	Basic	structure	of	VAX-11	Computer
	

	
This	section	will	describe	the	different	parts	of	the	computer.
	

The	memory	system
	
The	memory	contains	programs	and	data.	In	the	original	VAX11,	the	cache
memory	is	used	to	speed-up	the	access	time	to	the	memory.
From	the	user’s	point	of	view,	VAX-11	memory	is	consecutive.
The	addresses	of	the	VAX-11	are	32	bit	addresses;	therefore	each	program	can
use	up	to	4096MB	of	memory	space.
	

Central	Processing	Unit	(CPU)
	
The	VAX-11	ALU	supports	the	basic	math	operations	(+,	-,	*,	/)	for	integers
only.
It	also	supports	logic	operations:	shift,	rotate,	and,	or	and	not.
	
The	control	unit	reads	commands	from	the	memory	and	executing	it.
PC,	the	Program	Counter,	contains	the	address	of	the	next	command	to	be
executed.
The	value	of	the	PC	is	advanced	during	the	decoding	of	the	opcode	and	the
operands.
	
	

Processor	Status	Word	(PSW)
	
The	Processor	Status	Word	(the	lower	word	of	the	Processor	Status	Longword)
is	a	special	processor	register	that	a	program	uses	to	check	its	status	and	to
control	synchronous	error	conditions.	The	Processor	Status	Word	contains	two
sets	of	bit	fields:
1.	 The	condition	codes.
2.	 The	trap	enabled	flag.

	
The	condition	codes	indicate	the	outcome	of	a	particular	logical	or	arithmetic
operation.
There	are	two	kinds	of	traps	that	concern	the	user	process:	trace	traps	and
arithmetic	traps.	The	trace	trap	is	used	by	debugging	programs	or	performance
evaluators.	Arithmetic	traps	include:

Integer,	floating	point,	or	decimal	string	overflow,	in	which	the	result	was
too	large	to	be	stored	in	the	given	format.
Integer,	floating	point,	or	decimal	string	divide	by	zero,	in	which	the	divisor
supplied	was	zero.

	

Processor	Status	Longword	(PSL)
	
There	are	a	number	of	processor	state	variables	associated	with	each	process,
which	VAX-11	groups	together	into	the	32-bit	Processor	Status	Longword.	Bit
15-0	of	the	PSL	are	referred	to	separately	as	Processor	Status	Word	(PSW).	The
PSW	contains	unprivileged	information,	and	those	bits	of	the	PSW	which	have
defined	meaning	are	freely	controllable	by	any	program.	Bits	31-15	of	the	PSL
contain	privileged	status,	and	while	any	program	can	perform	the	REI	instruction
(which	loads	PSL),	REI	will	refuse	to	load	any	PSL	which	increase	the
privileged	of	a	process,	or	create	an	undefined	state	in	the	processor.
	
31 30 29																												21 20												16 15																												8 7 6 5 4 3 2 1 0
CM TP Others IPL Unused DV FU IV T N Z V C

	
The	PSL

	
Bits	3:0	of	the	PSL	are	termed	the	condition	codes;	in	general	they	reflect	the
result	status	of	the	most	recent	instruction	which	affects	them.	The	condition
codes	are	tested	by	the	conditional	branch	instructions.
	

N	Bit	(Negative):	Bit	3	is	the	Negative	condition	code.	In	general	it	is
set	by	instructions	in	which	result	stored	is	negative,	and	cleared	by
instructions	in	which	the	result	is	zero	or	positive.
	Z	Bit	(Zero):	Bit	2	is	the	Zero	condition	code.	In	general	it	is	set	by
instructions	in	which	result	stored	is	zero,	and	cleared	by	instructions
in	which	the	result	is	not	zero.
V	Bit	(Overflow):	Bit	1	is	the	Overflow	condition	code;	In	general	it	is
set	after	arithmetic	operations	in	which	the	magnitude	of	the
algebraically	correct	result	is	too	large	to	be	represented	in	the
available	space,	and	cleared	after	operations	whose	result	fits.

C	Bit	(Carry):	Bit	0	is	the	Carry	condition	code;	In	general	it	is	set
after	arithmetic	operations	in	which	a	carry	out	of,	or	borrow	into,	the
most	significant	bit	occurred.	C	is	cleared	after	arithmetic	operations
which	had	no	carry	or	borrow,	and	either	cleared	or	unaffected	by
other	instructions.

	
Bits	7:4	of	the	PSL	are	trap-enable	flags,	which	cause	traps	to	occur	under
special	circumstances.
	

T	Bit	(Trace):	Bit	4	is	the	trace	bit;	when	set,	it	causes	a	trace	trap	to
occur	after	execution	of	the	next	instruction.
IV	Bit	(Integer	Overflow):	Bit	5	is	the	Integer	overflow	trap	enable;
when	set,	it	causes	an	integer	overflow	trap	after	an	instruction	which
produced	an	integer	result	that	could	not	be	correctly	represented	in
the	space	provided.	When	bit	5	is	clear,	no	integer	overflow	trap
occurs.
FU	bit	(Floating	Underflow):	Bit	6	is	the	Floating	Underflow	bit.	Our
simulator	doesn't	support	this	bit.
DV	Bit	(Decimal	Overflow):	Bit	7	is	the	Decimal	Overflow	trap
enable.	When	set,	it	causes	a	decimal	overflow	trap	after	the
execution	of	any	instruction	which	produces	a	decimal	result	whose
absolute	value	is	too	large	to	be	represented	in	the	destination	space
provided.

	
IPL	Bits:	Bits	16-20	represent	the	processor's	Interrupt	Priority	level.
An	interrupt,	in	order	to	be	acknowledged	by	the	processor,	must	be
at	a	priority	higher	than	the	current	IPL.
TP	Bit:	Bit	30	is	the	Trace	Pending	bit,	which	is	used	by	the	processor
to	ensure	that	one,	and	only	one,	trace	trap	occurs	for	each	instruction
performed	with	the	Trace	bit	(bit	4)	set.

	

Registers
	
A	Register	is	special	hardware	within	the	processor	that	can	be	used	for
temporary	data	storage	and	addressing.	Instruction	operands	are	often	stored	in
the	processor's	general	registers	or	accessed	through	them.
The	VAX-11	computer	has	16	32-bit	Registers,	named	r0...r15.
r0…r11	are	general	purpose	registers,	while	r12…r15	are	special	control
registers.
	

Register Alternative
Name Description

r12 AP
Argument	Pointer	-	contains	the	address	of	the	base
of	a	software	data	structure	called	the	argument
list,	which	is	maintained	for	procedure	calls.

r13 FP

Frame	Pointer	-	contains	the	address	of	the	base	of
a	software	data	structure	stored	on	the	stack	called
the	stack	frame,	which	is	maintained	for	procedure
calls.

r14 SP
Stack	Pointer	-	contains	the	address	of	the	base
(also	called	the	top)	of	a	stack	maintained	for
subroutine	and	procedure	calls.

r15 PC Program	Counter	-	contains	the	address	of	the	next
byte	to	be	processed	in	the	instruction	stream.

Input/Output	Devices
	
The	simulator	supports	serial	input	/	output	devices.
Input:															The	keyboard	(KBD)	or	input	file.
Output:												The	monitor	(CRT)	or	output	file.
	

VAX-11	Information	Unit
	
VAX-11	Information	units	are:	Byte(1),	Word(2),	Long(4),	Quad(8).
Data	stored	in	the	memory	in	Little-Endian	–	The	first	byte	is	always	the	LSB.
The	CPU	always	considers	the	numbers	as	signed.
	

Instruction	Format
	
The	first	byte	denotes:

The	operation	type.
The	number	of	operands	and	their	size.

	
The	following	bytes	of	the	instruction	contain	the	operands,	each	of	which	may
use	a	different	addressing	mode.
	
The	VAX-11	instruction	length	is	variable.
	

Addressing	Modes
	
	 Addressing	Mode Assembly	Code Machine	Implementation
1 Register rNUMBER 50+Number 	
2 Register	Deferred (rNUMBER) 60+Number 	
3 Autoincrement (rNUMBER)+ 80+Number 	
4 Autodecrement -(rNUMBER) 70+Number 	
5 Autoincrement	Deferred *(rNUMBER)+ 90+Number 	
6a
6b
6c

Displacement
OFFSET(rNUMBER)
or
OFFSET[rNUMBER]

A0+Number
C0+Number
E0+Number

Byte	Offset
Word	Offset
Long	Offset

7a
7b
7c

Displacement	Deferred *OFFSET(rNUMBER)
B0+Number
D0+Number
F0+Number

Byte	Offset
Word	Offset
Long	Offset

8a
8b
8c
8d
8e
8f

Index

(rBASE)[rINDEX]
(rBASE)+[rINDEX]
-(rBASE)[rINDEX]
*(rBASE)+[rINDEX]
OFFSET(rBASE)[rINDEX]
*OFFSET(rBASE)[rINDEX]

40+Index

Depending	on	
the	BASE
addressing
mode.

9 Literal $VALUE		(<64) 00+VALUE 	
10 Immediate $VALUE 8F Long	Number
11 Absolute *$ADDRESS 9F Long	Address
12 Relative ADDRESS EF Long	Address
13 Relative	Deferred *ADDRESS FF Long	Address

	
We	can	see	that	addressing	modes	1-9	are	the	only	real	addressing	modes.
Addressing	modes	10-13	uses	the	previous	addressing	modes	to	achieve	some
special	effects	using	PC	register.
	
To	show	the	meaning	of	the	different	addressing	modes	more	clearly,	we	put
here	the	nine	basic	addressing	modes,	and	their	"equivalents"	on	C	language:
	
	 Addressing	Mode Assembly	Code C	Code
1 Register rNUMBER r
2 Register	Deferred (rNUMBER) *r
3 Autoincrement (rNUMBER)+ *(r++)
4 Autodecrement -(rNUMBER) *(--r)
5 Autoincrement	Deferred *(rNUMBER)+ **(r++)
6 Displacement OFFSET(rNUMBER) *((char*)r+OFFSET)
7 Displacement	Deferred *OFFSET(rNUMBER) **((char*)r+OFFSET)

*(rBASE+rINDEX)

8 Index

(rBASE)[rINDEX]
(rBASE)+[rINDEX]
-(rBASE)[rINDEX]
*(rBASE)+[rINDEX]
OFFSET(rBASE)[rINDEX]
*OFFSET(rBASE)[rINDEX]

*((rBASE++)+rINDEX)
*((--rBASE)+rINDEX)
**(rBASE+rINDEX)
*((OFFSET+
(char*)rBASE)+rINDEX)
((OFFSET+
(char*)rBASE)+rINDEX)

9 Literal $VALUE		(<64) VALUE
	

Function	Calls
	
VAX-11	supplies	several	mechanisms	for	calling	to	functions.
	
Calling	using	JSB
	
Syntax:	JSB	<function_name>
	
Actions:
1.	 Push	PC
2.	 Update	PC	to	new	value.

	
Remarks:

Returning	from	the	function	using	RSB.
	

Calling	using	CALLS
	
Syntax:	CALLS	<parameters_number>,	<function_name>
	

F E D C B A 9 8 7 6 5 4 3 2 1 0
Flags:	N,	Z,	V,	C,	T,	More...
SPA S 0 Register	Mask	for	r0-r11

S	is	1	for	calls.

Actions:
Caller	Pushes	parameters.
Push	parameters	number	(N).	Max:	255
The	2	lsb	bits	of	SP	goes	to	SPA.	Also	tempßsp
Using	SPA,	we	decide	to	fill	0-3	bytes,	to	align
the	stack.
Pushing	r0-r11	according	to	the	mask.
Pushing	pc,	fp,	ap	(Returning	Address).
Resetting	PSW	Flags.
Push	PSW+Misc.
Push	0	to	mark	the	frame's	end.
FPßSP,	APßtemp
PCßFunction	Address	+	2

0 ßsp(r14),
fp(r13)

Misc. PSW 	
ap(r12) 	
fp(r13) 	
pc(r15) 	
r0 	
r1 	
... 	
r11 	

Fill	(0-3
bytes,

according
to	SPA)

	 ßap(r12)

0 0 0 N 	

arg1 Parameters
List

arg2 	
... 	

argN 	
… 	

	 	

	

	
	 F E D C B A 9 8 7 6 5 4 3 2 1 0
PSW Flags:	N,	Z,	V,	C,	T,	More...
Misc. SPA S 0 Register	Mask	for	r0-r11

	
S	is	0	for	callg.
	
Actions:
0.				Preparing	parameters	list	on	the	global
memory.

1.				Including	parameters	number	(N).	Max:	255
2.				The	2	lsb	bits	of	SP	goes	to	SPA.
3.				Using	SPA,	we	decide	to	fill	0-3	bytes,	to	align
the	stack.

4.				Pushing	r0-r11	according	to	the	mask.
5.				Pushing	pc,	fp,	ap	(Returning	Address).
6.				Resetting	PSW	Flags.
7.				Push	PSW+Misc.
8.				Push	0	to	mark	the	frame's	end.
9.				FPßSP,	APßglobal	section	address.
10.	PCßFunction	Address	+	2

0 	
Misc. PSW 	

ap(r12) 	
fp(r13) 	
pc(r15) 	
r0 	
r1 	
... 	
r11 	

Fill	(0-3
bytes,

according
to	SPA)

	 	

	

	

Calling	using	CALLG
	
Syntax:	CALLG	<global_section>,	<function	name>
	

·								Uses	global	section	to	pass	parameters.
·								The	global	section	should	be	similar	to

the	one	in	the	CALLS

0 0 0 N
arg1
arg2
...

argN
Stack	structure	after	CALLG:

	

callg	doesn’t	fit	for	recursive	functions.

Can	be	used	for	RPC	(Remote	Procedure	Call)	-	Function	that	is
called	by	another	process.

	
	

Returning	from	function	using	RET
	
1.				spßfp+4
2.				tempßMisc.	+	PSW
3.				Restoring	the	pc,	fp,	ap	registers.
4.				Restoring	r0-r11	according	to	the	mask.
5.				Restoring	SP	using	SPA	from	temp.
6.				Restoring	PSW	from	temp.
7.				Skipping	the	fill	using	SPA.
8.				If	S	=	1,	then	read	N	and	jump	over	the	parameters.	(Assuming	each
parameter	is	exact	one	longword).

	
	
Local	Variables
	
We	can	allocate	space	for	N	local	variables	using:	"subl2	$N,	sp".
We	can	use	the	variables	using	negative	offset	from	fp:

-4(fp)	for	the	first	word.
-8(fp)	for	the	second	word.
etc...

	

	
	
Operand	Descriptors
	
An	operand	descriptor	is	a	string	of	characters	consisting	of	three	components:
<name>.<access	type><datatype	context>
The	three	components	and	their	possible	values	are	as	follows.
	
(a)	name

The	name	component	of	a	descriptor	is	any	word	or	abbreviation	which	is
descriptive	of	the	operand	involved.	Names	such	as	src	(“source”),	dst
(“destination”),	pos	('position”),	and	so	on,	are	used	to	give	some
indication	as	to	the	significance	of	the	operand.

	
(b)	access	type
The	access	type	component	of	a	descriptor	can	take	on	a	number	of	possible
values.

r	read-only.	The	operand	is	a	structure	(byte,	word,	and	so	on,	depending
on	the	operations	context)	whose	location	is	specified	by	any	general
register	or	program	counter	addressing	mode.	The	operand	is	read	by	the
processor,	but	is	not	written	by	it.
w	written-only.	The	operand	is	a	structure	(byte,	word,	and	so	on,
depending	on	the	operation's	context)	whose	location	is	specified	by	any
addressing	mode	except	0,	1,	2,	or	3	(short	literal)	or	program	counter
mode	8	(immediate).	The	operand	is	written	by	the	processor,	but	is	not
read	by	it.
m	modified.	The	operand	is	a	structure	(byte,	word,	and	so	on,	depending
on	the	operation's	context)	whose	location	is	specified	by	any	addressing
mode	except	0,	1,2,	or	3	(short	literal)	or	program	counter	mode	8
(immediate).	The	operand	is	read	by	the	processor,	and	it	may	be	modified
and	its	new	value	written	back	to	its	location.
b	branch	displacement.	There	is	no	structure	reference.	Rather,	the
operand	is	a	program	counter	displacement,	whose	size	is	determined	by
the	operation's	context,	and	whose	value	is	sign	extended	to	a	longword
upon	execution.
a	address	access.	The	operand	is	the	address	of	a	structure	(byte,	word,
arid	so	on,	depending	on	the	operation's	context).	The	operand	may	be
specified	by	any	addressing	mode	except	0,	1,	2,	3	(short	literal);	general

register	mode	5	(register);	and	program	counter	mode	8	(immediate).
Regardless	of	the	operation's	context,	the	operand	is	always	a	longword
(since	it	is	an	address).	The	context	of	the	address	calculation	is
determined	by	the	operation's	context.
v	bit	field.	The	operand	is	one	of	the	following.

1.	The	address	of	a	structure	(byte,	word,	and	so	on,	depending	on
the	operation's	ontext).	The	operand	may	be	specified	by	any
addressing	mode	except	0,	1,	2,	3	(short	literal);	general	register
mode	5	(register);	and	program	counter	mode	8	(immediate).
Regardless	of	the	operations	context,	the	operand	is	always	a
longword	(since	it	is	an	address).	The	context	of	the	address
calculation	is	determined	by	the	operation's	context.
2.	The	contents	of	a	register,	the	operand	being	specified	by	a
general	register	mode	5	construction–Rn.	The	operand	is	the
contents	of	Rn,	or	of	R[n	+	l]'R[n]

	
(c)	datatype	context
The	datatype	context	component	of	the	descriptor	specifies	the	operation's
context	and	is	used	to	determine	side	effects,	to	calculate	addresses,	and	to
determine	the	factor	by	which	register	contents	are	multiplied	in	index	mode
instruction.	The	possible	datatype	descriptors	are	the	following.

b							byte
w							word
l							longword
q						quadword
o						octaword
x						datatype	of	the	first	(or	only)	operand	specified	by	the	operation
y						datatype	of	the	second	operand	specified	by	the	operation

NOTATION
	

<— is	given	the	value

{.	.	.} =	1,	if...	is	TRUE;
=	0,	if	...	is	FALSE

—(SP)	<— is	pushed	onto	the	stack
<—	(SP)+ is	popped	off	the	stack
+ addition
— subtraction,	or	unary	minus
* multiplication
/ division
** exponentiation
c(.	.	.) contents	of

SEXT(.	.	.) the	value	of	.	.	.	,	sign	extended	to	a	longer
structure

ZEXT(.	.	.) the	value	of	.	.	.	,	zero	extended	to	a	longer
structure

m:	n the	bit	field	of	a	structure,	consisting	of	bits	m,	m	-
1,	m	-	2,	.	.	.,	n	+	1,	n

x<n> bit	n	of	the	structure	x
x<m	:	n> bits	m:n	of	the	structure	x
a[b] the	address	a	indexed	by	the	value	b
MAX(x,y) the	maximum	of	the	numbers	x	and	y
MI	N	(x	,y) the	minimum	of	the	numbers	x	and	y
EQL equal	to,	signed	or	unsigned
GEQ greater	than	or	equal	to,	signed
GEQU greater	than	or	equal	to,	unsigned
GTR greater	than,	signed
GTRU greater	than,	unsigned
LEQ less	than	or	equal	to,	signed
LEQU less	than	or	equal	to,	unsigned
LSS less	than,	signed
LSSU less	than,	unsigned
NEQL not	equal	to,	signed	or	unsigned

	
	

	

ACB								ADD	COMPARE	AND	BRANCH
	

Purpose maintain	loop	count	and	loop

Format opcode	limit.rx,	add.rx,	index.mx,	displ.bw

Operation

index	ß	index	+	add;
if	{{add	GEQ	0}	AND	{index	LEQ	limit}}	OR
{{add	LSS	0}	AND	{index	GEQ	limit}}	then
PC	ß	PC	+	SEXT	(displ);

Condition	codes

N	ß	index	LSS	0;
Z	ß	index	EQL	0;
V	ß	{integer	or	floating	overflow};
C	ß	C;

Exceptions

integer	overflow
floating	overflow
floating	underflow
reserved	operand

Opcodes

9D							ACBB														Add	Compare	and	Branch	Byte
3D							ACBW												Add	Compare	and	Branch	Word
Fl									ACBL														Add	Compare	and	Branch	Long
4F								ACBF														Add	Compare	and	Branch
Floating
6F								ACBD													Add	Compare	and	Branch	Double

Description

The	addend	operand	is	added	to	the	index	operand	and
the	index	operand	is	replaced	by	the	result.	The	index
operand	is	compared	with	the	limit	operand.	If	the
addend	operand	is	positive	(or	0)	and	the	comparison	is
less	than	or	equal	or	if	the	addend	is	negative	and	the
comparison	is	greater	than	or	equal,	the	sign-extended
branch	displacement	is	added	to	PC	and	PC	is	replaced

by	the	result.

Notes

1.	ACB	efficiently	implements	the	general	FOR	or	DO
loops	in	high-level	languages	since	the	sense	of	the
comparison	between	index	and	limit	is	dependent	on	the
sign	of	the	addend.
2.	On	integer	overflow,	the	index	operand	is	replaced	by
the	low	order	bits	of	the	true	result.	Comparison	and
branch	determination	proceed	normally	on	the	updated
index	operand.
3.	On	floating	underflow,	the	index	operand	is	replaced
by	0.	Comparison	and	branch	determination	proceed
normally.
4.	On	floating	overflow,	the	index	operand	is	replaced	by
an	operand	of	all	bits	0	except	for	a	sign	bit	of	1
(reserved	operand).	N	ß	1;	Z	ß	0	V	ß	1.	The	branch	is	not
taken.
5.	On	a	reserved	operand	fault,	the	index	operand	is
unaffected	and	the	condition	codes	are	unpredictable
6.	Except	for	5,	above,	the	C-bit	is	unaffected
7.	On	a	trap,	the	branch	condition	will	be	tested	and	the
PC	potentially	updated	before	the	exception	is	taken
Thus	the	PC	might	point	to	the	start	of	the	loop	and	not
the	next	consecutive	instruction.

	
Example	1
	
The	program	prints	the	numbers	0	to	10	on	the	screen.
	
.text
	
main:	.word	0
						movl	$10,	r1
						movl	$0,	r2
	
forLoop:
						pushl	r2

						pushal	format
						calls	$2,	.printf
						acbl	r1,	$1,	r2,	forLoop
	
						pushl	$0
						calls	$1,	.exit
.data
format:	.asciz	"%d	"
	
	

	

ADAWI				ADD	ALIGNED	WORD				INTERLOCKED
Purpose maintain	operating	system	resource	usage	counts

Format opcode	add.rw,	sum.mw

Operation

tmp	ß	add;
{set	interlock};
sum	ß	sum	+	tmp;
{released	interlock};

Condition	codes

N	ß	sum	LSS	0;
Z	ß	sum	EQL	0;
V	ß	{integer	overflow};
C	ß	{carry	from	most	significant	bit};

Exceptions
reserved	operand	fault
integer	overflow

Opcodes 58								ADAWI											Add	Aligned	Word	Interlocked

Description

The	addend	operand	is	added	to	the	sum	operand	and	the
sum	operand	is	replaced	by	the	result.	The	operation	is
interlocked	against	ADAWI	operations	by	other
processors	or	devices	in	the	system.	The	destination	must
be	aligned	on	a	word	boundary	i.e.,	bit	zero	of	the	sum
operand	address	must	be	zero.	If	it	is	not,	a	reserved
operand	fault	is	taken.

Notes

1.	Integer	overflow	occurs	if	the	input	operands	to	the
add	have	the	same	sign	and	the	result	has	the	opposite
sign.	On	overflow,	the	sum	operand	is	replaced	by	the
low	order	bits	of	the	true	result.
2.	If	the	addend	and	the	sum	operand	overlap,	the	result
and	the	condition	codes	are	UNPREDICTABLE.

	
	

Example	1
	
The	example	shows	how	we	sum	two	registers	using	this	opcode.
	
.text
main:	.word	0
						movw								$4,	r0
						movw								$5,	r1
						adawi							r0,	r1
						pushl							r1
						pushal						format
						calls							$2,	.printf
	
						pushl							$0
						calls							$1,	.exit
	
.data
format:	.asciz	"R1	is	%d\n"

	
	
	

	

ADD								ADD
	
Purpose perform	arithmetic	addition

Format
opcode	add.rx,	sum.mx																								2	operand
opcode	addl.rx,	add2.rx,	sum.wx										3	operand

Operation
sum	ßsum	+	add;																																2	operand								
sum	ß	add1	+	add2;																											3	operand

Condition	codes

N	ß	sum	LSS	0;								
Z	ß	sum	EQL	0;								
Vßoverflow;
C	ß	carry	from	most	significant	bit	(integer);
C	ß	0	(floating);

Exceptions

Integer	overflow										
Floating	overflow									
Floating	underflow
Reserved	operand

Opcodes

80								ADDB2											Add	Byte	2	Operand			
81								ADDB3											Add	Byte	3	Operand
A0							ADDW2										Add	Word	2	Operand
Al									ADDW3										Add	Word	3	Operand
C0							ADDL2												Add	Long	2	Operand
C1							ADDL3												Add	Long	3	Operand
40								ADDF2												Add	Floating	2	Operand
41								ADDF3												Add	Floating	3	Operand
60								ADDD2											Add	Double	2	Operand
61								ADDD3											Add	Double	3	Operand
In	2	operand	format,	the	addend	operand	is	added	to	the
sum	operand	and	the	sum	operand	is	replaced	by	the

Description result.	In	3	operand	format,	the	addend	1	operand	is
added	to	the	addend	2	operand	and	the	sum	operand	is
replaced	by	the	result.	In	floating	point	format,	the	result
is	rounded.

Notes

1.	Integer	overflow	occurs	if	the	input	operands	to	the
add	have	the	same	sign	and	the	result	has	the	opposite
sign.	On	overflow,	the	sum	operand	is	replaced	by	the
low	order	bits	of	the	true	result.
2.									On	a	floating	reserved	operand	fault,	the	sum
operand	is	unaffected	and	the	condition	codes	are
unpredictable.
3.									On	floating	underflow,	the	sum	operand	is
replaced	by	0.
4.									On	floating	overflow,	the	sum	operand	is	replaced
by	an	operand	of	all	bits	0	except	for	a	sign	bit	of	1	(a
reserved	operand).	N	ß1;	Z	ß	0;	V	ß	1;	and	C	ß	0.

	
	
Example	1
	
The	following	program	puts	the	value	3	in	R1	and	4	in	R2,	and	then	sums	it	and
prints	the	result.	At	the	end	of	this	program,	R2	is	7.
	
.text
main:	.word	0
						movl	$3,	r1
						movl	$4,	r2
						addl2	r1,	r2
						pushl	r2
						pushal	format
						calls	$2,	.printf
	
						pushl	$0
						calls	$1,	.exit
.data
format:	.asciz	"R2	is	%d"

	

	
Example	2
	
The	following	program	puts	the	value	3	in	R1	and	4	in	R2,	and	then	sums	it	and
puts	the	value	in	R3.	We	then	print	the	content	of	R3.
	
.text
main:	.word	0
						movl	$3,	r1
						movl	$4,	r2
						addl3	r1,	r2,	r3
						pushl	r3
						pushal	format
						calls	$2,	.printf
	
						pushl	$0
						calls	$1,	.exit
.data
format:	.asciz	"R3	is	%d"

	
Example	3
	
This	example	comes	to	present	the	changes	of	the	flags	during	calls	to	add
opcode.
	
.text
	
main:	.word	0
movb	$0x7C,	r0
addb2	$1,	r0						#	N	=	0,	V	=	0
addb2	$1,	r0
addb2	$1,	r0
addb2	$1,	r0						#	N	=	1,	V	=	1
addl2	$1,	r0						#	N	=	0,	V	=	0
addb2	$1,	r0						#	N	=	1,	V	=	0
addb2	$1,	r0
addb2	$1,	r0
movb	$0xFD,	r0
addb2	$1,	r0						#	N	=	1
addb2	$1,	r0
addb2	$1,	r0						#	Z	=	1,	C	=	1
addb2	$1,	r0
pushl	$0

calls	$1,	.exit

	
	
Example	4
	
Another	flags	example:
	
.text
	
main:	.word	0
movb	$0x7C,	r0
addb3	$-1,	$1,	r0							#	Z	=	1,	C	=	1
	
pushl	$0
calls	$1,	.exit
	

	

ADWC	ADD	WITH	CARRY
	
Purpose perform	extended-precision	addition
Format opcode	add.rl,	sum.ml

Operation sum	ß	sum	+	add	+	C;

Condition	codes

N	ß	sum	LSS	0;
Z	ß	sum	EQL	0;
V	ß	{integer	overlow};
C	ß	{carry	from	most	significant	bit};

Exceptions Integer	overflow

Opcodes D8							ADWC																																				Add	with	Carry

Description
The	contents	of	the	condition	code	C	bit	and	the	addend
operand	are	added	to	the	sum	operand	and	the	sum
operand	is	replaced	by	the	result.

Notes

1.									On	overflow,	the	sum	operand	is	replaced	by	the
low	order	bits	of	the	results.
2.									The	two	additions	in	the	operation	are	performed
simultaneously.

	
	
Example	1
	
This	example	shows	how	ADWC	changes	the	flags	of	VAX11.
	
.text
main:	.word	0

movb	$0x7C,	r0
addb3	$-1,	$1,	r0							#	Z	=	1,	C	=	1
adwc	$0x7FFFFFFF,	r1				#	V	=	1,	N	=	1

	
pushl	$0
calls	$1,	.exit

	
	

	

AOB							ADD	ONE	AND	BRANCH
	
Purpose increment	integer	loop	count	and	loop

Format opcode	limit.rl,	index.ml,	displ.bb

Operation

index	ß	index	+	1;
if	index	LSS	limit																																																										
AOBLSS
then	PC	ß	PC	+	SEXT	(displ);
if	index	LEQ	limit																																																									
AOBLEQ
then	PC	ß	PC	+	SEXT	(displ);

Condition	codes

N	ß	index	LSS	0;
Z	ß	index	equal	0;
C	ß	{integer	overflow};
C	ß	C;

Exceptions integer	overflow

Opcodes
F2	AOBLSS																Add	One	and	Branch	Less	Than
F3	AOBLEQ															Add	One	and	Branch	Less	Than	or
Equal

Description

One	is	added	to	the	index	operand	and	the	index	operand
is	replaced	by	the	result.	The	index	operand	is	compared
with	the	limit	operand.	On	AOBLSS,	if	it	is	less	than,	the
branch	is	taken.	On	AOBLEQ,	if	it	is	less	than	or	equal,
the	branch	is	taken.	If	the	branch	is	taken,	the	sign
extended	branch	displacement	is	added	to	the	PC	and	the
PC	is	replaced	by	the	result.

Notes

1.	Integer	overflow	occurs	if	the	index	operand	before
addition	is	the	largest	positive	integer.	On	overflow,	the
index	operand	is	replaced	by	the	largest	negative	integer,
and	thus	(unless	the	limit	operand	is	the	largest	negative
integer	on	AOBLSS)	the	branch	is	taken.

2.	The	C-bit	is	unaffected.
	
	
Example	1
	
The	following	prints	the	number	1	to	9	on	the	screen:
	
.text
	
main:	.word	0
						movl	$1,	r1
	
forLoop:
						pushl	r1
						pushal	format
						calls	$2,	.printf
						aoblss	$10,	r1,	forLoop
	
						pushl	$0
						calls	$1,	.exit
.data
format:	.asciz	"%d	"

	
	

	

ASH								ARITHMETIC	SHIFT
	
Purpose shift	of	integer

Format opcode	cnt.rb,	src.rx,	dst.wx

Operation dst	ß	src	shifted	cnt	bits;

Condition	codes

N	ß	dst	LSS	0;
Z	ß	dst	EQL	0;
V	ß	{integer	overflow};
C	ß	0;

Exceptions Integer	overflow

Opcodes
78								ASHL		Arithmetic	Shift	Long
79								ASHQ	Arithmetic	Shift	Quad

Description

The	source	operand	is	arithmetically	shifted	by	the
number	of	bits	specified	by	the	count	operand	and	the
destination	operand	is	replaced	by	the	result.	The	source
operand	is	unaffected.	A	positive	count	operand	shifts	to
the	left	bringing	Os	into	the	least	significant	bit.	A
negative	count	operand	shifts	to	the	right	bringing	in
copies	of	the	most	significant	(sign)	bit	into	the	most
significant	bit	position.	A	zero	count	operand	replaces
the	destination	operand	with	the	unshifted	source
operand.

Notes

1.	Integer	overflow	occurs	on	a	left	shift	if	any	bit	shifted
into	the	sign	bit	position	differs	from	the	sign	bit	of	the
source	operand.	On	overflow,	the	destination	operand	is
replaced	by	the	low	order	bits	of	the	true	result.
2.	If	cnt	GEQ	32	(ASHL)	or	cnt	GEQ	64	(ASHQ);	the
destination	operand	is	replaced	by	0
3.	If	cnt	LEQ	-32	(ASHL)	or	cnt	LEQ	-63	(ASHQ);	all
the	bits	of	the	destination	operand	are	copies	of	the	sign
bit	of	the	source	operand.

4.	A	left	shift	is	equivalent	to	a	multiply	by	the
corresponding	power	of	two.	A	right	shift	is	not,
however,	equivalent	to	a	divide	because	negative
numbers	are	rounded	away	from	zero.

	
	
	
Example	1
	
The	program	demonstrates	several	usages	of	ASHL	opcode.
	
.text
main:	.word	0
	
						movb	$1,	r1
						ashl	$4,	r1,	r2
						pushl	r2
						pushal	format
						calls	$2,	.printf							#	Prints	16
					
	
						movb	$0x10,	r1
						ashl	$-4,	r1,	r2
						pushl	r2
						pushal	format
						calls	$2,	.printf							#	Prints	1
	
						movl	$0xFFFFFFFF,	r1
						ashl	$4,	r1,	r2
						pushl	r2
						pushal	format2
						calls	$2,	.printf							#	Prints	FFFFFFF0
	
	
						movl	$0xFFF00FFF,	r1
						ashl	$-4,	r1,	r2
						pushl	r2
						pushal	format2
						calls	$2,	.printf							#	Prints	FFFF00FF
	
						movl	$0xF0FFFFFF,	r1
						ashl	$4,	r1,	r2
						pushl	r2
						pushal	format2
						calls	$2,	.printf							#	Prints	FFFFFF0
	

						pushl	$0
						calls	$1,	.exit
	
.data
format:	.asciz	"R2	is	%d\n"
format2:	.asciz	"R2	is	%8lX\n"
	
	
	

	

B									BRANCH	ON	(CONDTION)
	
Purpose test	condition	code

Format opcode	displ.bb

Operation if	condition	then	PC	ß	PC	+	SEXT	(displ);

Condition	codes

N	ß	N;
Z	ß	Z;
V	ß	V;
C	ß	C;

Exceptions none

Opcodes

CONDITION													
12	Z	EQL	0																	BNEQ,												Branch	on	Not
Equal	(signed)
																																				BNEQU,	Branch	on	Not	Equal
Unsigned
13	Z	EQL	1																	BEQL,	Branch	on	Equal	(signed)
																																				BEOLU,	Branch	on	Equal
Unsigned
14	{N	OR	Z}EQL	0				BGTR,	Branch	on	Greater	Than
(signed)
15	{N	OR	Z}EQL	1				BLEQ,	Branch	on	Less	Than	or
Equal																										(signed)
18	N	EQL	0																	BGEQ,	Branch	on	Greater	Than
or	Equal																																	(signed)
19	N	EQL	1																	BLSS,		Branch	on	Less	Than
(signed)
1A	{C	OR	Z}EQL	0				BGTRU,	Branch	on	Greater	Than
																																												Unsigned
1B	{C	OR	Z}EQL	1				BLEQU,	Branch	Less	Than	or
Equal																												Unsigned

1C	V	EQL	0																BVC,	Branch	on	Overflow	Clear
1D	V	EQL	1																BVS,	Branch	on	Overflow	Set
1E	C	EQL	0																	BGEQU,	Branch	on	Greater	Than
or	Equal																															unsigned
																																				BCC				Branch	on	Carry	Clear
1F	C	EQL	1																	BLSSU,	Branch	on	Less	Than
Unsigned
																																				BSC					Branch	on	Carry	Set

Description

The	condition	codes	are	tested	and	if	the	condition
indicated	by	the	instruction	is	met,	the	sign-extended
branch	displacement	is	added	to	the	PC	and	PC	is
replaced	by	the	result.

Notes

The	VAX-	conditional	branch	instructions	permit
considerable	flexibility	in	branching	but	require	care	in
choosing	the	correct	branch	instruction.	The	conditional
branch	instructions	are	divided	into	3	overlapping
groups:
1.	Overflow	and	Carry	Group
												BVS																	V	EQL	1
												BVC																V	EQL	0
												BCS																	C	EQL	1
												BCC																C	EQL	0
These	instructions	are	typically	used	to	check	for
overflow	(when	overflow	traps	are	not	enabled),	for
multiprecision	arithmetic,	and	for	other	special	purposes.
2.	Unsigned	Group
												BLSSU												C	EQL	1
												BLEQU											{C	or	Z}	EQL	1
												BEQLU											Z	EQL	1
												BNEQU											Z	EQL	0
												BGEQU											C	EOL	0
												BGTRU											{C	OR	Z}	EQL	0

These	instructions	typically	follow	integer	and	field	in
structions	where	the	operands	are	treated	as	unsigned
integers,	addressed	instructions,	and	character	string	in
structions.
3.	Signed	Group
												BLSS															N	EQL	1
												BLEQ														{N	OR	Z}	EQL	1
												BEQL														Z	EQL	1
												BNEQ													Z	EQL	0
												BGEQ														N	EQL	0
												BGTR														{N	OR	Z}	EQL	0
These	instructions	typically	follow	integer	and	field
instructions	where	the	operands	are	being	treated	as
signed	integers,	floating	point	instructions,	and	decimal
string	instructions.

	
	
	
Example	1	-	BEQL
	
The	following	program	shows	the	usage	of	BEQL	opcode.
	
.text
	
main:	.word	0
	
						#	first	case	-	Z	should	be	1	(Equal)
						movb	$0,	r1
						beql	eq1
						calls	$0,	prn_not_eq
						jmp	next_stage
eq1:		calls	$0,	prn_eq
	
						#	second	case	-	Z	should	be	0	(Not	Equal)
next_stage:
						movb	$1,	r1
						beql	eq2
						calls	$0,	prn_not_eq

						jmp	end_prog
eq2:		calls	$0,	prn_eq
	
end_prog:
						pushl	$0
						calls	$1,	.exit
	
prn_not_eq:	.word	0
						pushal	not_eq
						pushal	format
						calls	$2,	.printf
						ret
prn_eq:	.word	0
						pushal	eq
						pushal	format
						calls	$2,	.printf
						ret
	
.data
	
eq:									.asciz	"Equal"
not_eq:					.asciz	"Not	Equal"
format:					.asciz	"%s\n"
	
	
	
	

	
Example	2	–	BNEQ,	BNEQU
	
Almost	the	same	as	the	previous	example,	this	program	shows	the	usage	of
BNEQ,	BNEQU	opcodes.
	
	
.text
	
main:	.word	0
	
						#	first	case	-	Z	should	be	0	(Not	Equal)
						movb	$0,	r1
						bneq	eq1
						calls	$0,	prn_not_eq
						jmp	next_stage
eq1:		calls	$0,	prn_eq
	
						#	second	case	-	Z	should	be	1	(Equal)
next_stage:
						movb	$1,	r1
						bnequ	eq2
						calls	$0,	prn_not_eq
						jmp	end_prog
eq2:		calls	$0,	prn_eq
	
end_prog:
						pushl	$0
						calls	$1,	.exit
	
prn_not_eq:	.word	0
						pushal	not_eq
						pushal	format
						calls	$2,	.printf
						ret
prn_eq:	.word	0
						pushal	eq
						pushal	format
						calls	$2,	.printf
						ret
	
.data
	
eq:									.asciz	"Equal"
not_eq:					.asciz	"Not	Equal"
format:					.asciz	"%s\n"

	
	

	
Example	3	–	BGTR
	
.text
	
main:	.word	0
	
						movb	$10,	r1
						movb	$5,	r2
	
						#	first	case	-	should	be	True
						cmpb	r1,	r2
						bgtr	eq1
						calls	$0,	prn_false
						jmp	next_stage
eq1:		calls	$0,	prn_true
	
						#	second	case	-	should	be	False
next_stage:
						cmpb	r2,	r1
						bgtr	eq2
						calls	$0,	prn_false
						jmp	end_prog
eq2:		calls	$0,	prn_true
	
end_prog:
						pushl	$0
						calls	$1,	.exit
	
prn_false:	.word	0
						pushal	lbl_false
						pushal	format
						calls	$2,	.printf
						ret
prn_true:	.word	0
						pushal	lbl_true
						pushal	format
						calls	$2,	.printf
						ret
	
.data
	
lbl_true:			.asciz	"True"
lbl_false:	.asciz	"False"
format:					.asciz	"%s\n"
	

	

Example	4	–	BGEQ
	
.text
	
main:	.word	0
	
						movb	$10,	r1
						movb	$5,	r2
	
						#	first	case	-	should	be	True
						cmpb	r1,	r2
						bgeq	eq1
						calls	$0,	prn_false
						jmp	next_stage
eq1:		calls	$0,	prn_true
	
						#	second	case	-	should	be	False
next_stage:
						cmpb	r2,	r1
						bgeq	eq2
						calls	$0,	prn_false
						jmp	end_prog
eq2:		calls	$0,	prn_true
	
end_prog:
						pushl	$0
						calls	$1,	.exit
	
prn_false:	.word	0
						pushal	lbl_false
						pushal	format
						calls	$2,	.printf
						ret
prn_true:	.word	0
						pushal	lbl_true
						pushal	format
						calls	$2,	.printf
						ret
	
.data
	
lbl_true:			.asciz	"True"
lbl_false:	.asciz	"False"
format:					.asciz	"%s\n"
	
	

	

BB							BRANCH	ON	BIT
	
Purpose test	selected	bit

Format opcode	pos.rl,	base.vb,	displ.bb

Operation

teststate	=	if	{BBS}	then	1	else	0;
if	FIELD	(pos,	1,	base)	EQL	teststate	then
PC	ß	PC	+	SEXT	(displ);

Condition	codes

N	ß	N;
Z	ß	Z;
V	ß	V;
C	ß	C;

Exceptions reserved	operand

Opcodes
E0								BBS																	Branch	on	Bit	Set
El									BBC																Branch	on	Bit	Clear

Description

The	single	bit	field	specified	by	the	position	and	base
operands	is	tested.	If	it	is	in	the	test	state	indicated	by	the
instruction,	the	sign-extended	branch	displacement	is
added	to	PC	and	PC	is	replaced	by	the	result.

Notes

1.									A	reserved	operand	fault	occurs	if	pos	GTRU	31
and	the	bit	is	contained	in	a	register.
2.									On	a	reserved	operand	fault,	the	condition	codes
are	unpredictable.
3.									The	modification	of	the	bit	is	not	an	interlocked
operation.
See	BBSSII	and	BBCCI	for	interlocking	instructions.

	
	
	
Example	1

	
.text
main:	.word	0
						movb	$0x80,	r1
						bbs	$7,	r1,	prn_true
						calls	$0,	prn_false
						jmp	end_prog
eq2:		calls	$0,	prn_false
	
end_prog:
						pushl	$0
						calls	$1,	.exit
	
prn_false:	.word	0
						pushal	lbl_false
						pushal	format
						calls	$2,	.printf
						ret
prn_true:
						pushal	lbl_true
						pushal	format
						calls	$2,	.printf
						jmp	end_prog
	
.data
	
lbl_true:			.asciz	"True"
lbl_false:	.asciz	"False"
format:					.asciz	"%s\n"

	
	
	
	

BB							BRANCH	ON	BIT	(AND	MODIFY	WITHOUT
INTERLOCKED)

	
Purpose test	and	modify	selected	bit

Format opcode	pos.rl,	base.vb,	displ.bb

Operation

teststate	=	if	{BBSS	or	BBSC}	then	1	else	0;
newstate	=	if	{BBSS	or	BBCS}	then	1	else	0;
temp	ß	FIELD	(pos,	1,	base);
FIELD	(pos,	1,	base)	ß	newstate;

	if	tmp	EQL	teststate	then
PC	ß	PC	+	SEXT	(displ);

Condition	codes

N	ß	N:
Z	ß	Z;
V	ß	V;
C	ß	C;

Exceptions reserved	operand

Opcodes

E2								BBSS																											Branch	on	Bit	Set	and	Set
E3								BBCS																										Branch	on	Bit	Clear	and
Set
E4								BBSC																										Branch	on	Bit	Set	and
Clear
E5								BBCC																										Branch	on	Bit	Clear	and
Clear

Description

The	single	bit	field	specified	by	the	position	and	base
operands	is	tested.	If	it	is	in	the	test	state	indicated	by	the
instruction,	the	sign-extended	branch	displacement	is
added	to	PC	and	PC	is	replaced	by	the	result.	Regardless
of	whether	the	branch	is	taken	or	not,	the	tested	bit	is	put
in	the	new	state	as	indicated	by	the	instruction.

Notes

1.	A	reserved	operand	fault	occurs	if	0	BTRU	31	and	the
bit	is	contained	in	a	register.
2.	On	a	reserved	operand	fault,	the	field	is	unaffected	and
the	condition	codes	are	unpredictable.
3.	The	modification	of	the	bit	is	not	an	interlocked
operation.	See	BBSSI	and	BBCCI	for	interlocking
instructions.

	

	

BB							BRANCH	ON	BIT	INTERLOCKED
	
Purpose test	and	modify	selected	bit	under	memory	interlock

Format opcode	pos.rl,	base.vb,	displ.bb

Operation

teststate	=	if	{BBSSI}	the	1	else	0;
newstafe	=	teststate;
{set	interlock};
temp	ß	FIELD	(pos,	1,	base);
FIELD	(pos,	1,	base)	ß	newstate;
{release	interlock};
if	tmp	EQL	teststate	then
PC	ß	PC	+	SEXT	(displ);

Condition	codes

N	ß	N;
Z	ß	Z;
V	ß	V;
C	ß	C;

Exceptions reserved	operand

Opcodes

E6								BBSSI													Branch	on	Bit	Set	and	Set
Interlocked
E7								BBCCI												Branch	on	Bit	Clear	and	Clear
Interlocked

Description

The	single	bit	field	specified	by	the	position	and	base
operands	is	tested.	If	it	is	in	the	test	state	indicated	by	the
instruction,	the	sign-extended	branch	displacement	is
added	to	the	PC	and	PC	is	replaced	by	the	result.
Regardless	of	whether	the	branch	is	effected	or	not,	the
tested	bit	is	put	in	the	new	state	as	indicated	by	the
instruction.	If	the	bit	is	contained	in	memory,	the	reading
of	the	state	of	the	bit	and	the	setting	of	it	to	the	new	state

is	an	interlocked	operation.	The	operation	is	interlocked
against	similar	operations	by	other	processors	or	devices
in	the	system.

Notes

1.	A	reserved	operand	fault	occurs	if	pos	GTRU	31	and
the	bit	is	contained	in	registers.
2.	On	a	reserved	operand	fault,	the	field	is	unaffected	and
the	condition	codes	are	unpredictable.
3.	Except	for	memory	interlocking	BBSSI	is	equivalent
to	BBSS	and	BBCCI	is	equivalent	to	BBCC.

	
	

	

BIC									BIT	CLEAR
	
Purpose perform	complemented	AND	of	two	integers

Format
opcode	mask.rx,	dst.mx																																				2	operand
opcode	mask.rx,	src.rx,	dst.wx													3	operand

Operation
dst	ßdst	AND	{NOT	mask};																										2	operand
dst	ß	src	AND	{NOT	mask};													3	operand

Condition	codes

N	ß	dst	LSS	0;
Z	ß	dst	EQL	0;
V	ß	0;
C	ß	C;

Exceptions None

Opcodes

8A							BICB2													Bit	Clear	Byte;	2	operand
8B								BICB3													Bit	Clear	Byte;	3	operand
AA							BICW2												Bit	Clear	Word;	2	operand
AB							BICW3												Bit	Clear	Word;	3	operand
CA							BICL2													Bit	Clear	Long;	2	operand
GB							BICL3													Bit	Clear	Long;	3	operand

Description

In	2	operand	format,	the	destination	operand	is	ANDed
with	the	ones	complement	of	the	mask	operand	and	the
destination	operand	is	replaced	by	the	result.	In	3
operand	format,	the	source	operand	is	ANDed	with	the
l’s	ones	complement	of	the	mask	operand	and	the
destination	operand	is	replaced	by	the	result.

Notes 	
	
	
Example	1
	

The	following	program	reset	the	first	byte	of	r5	using	bicl2.
	
.text
	
main:	.word	0
movl	$0xFFFFFFFF,	r5
bicl2	$0xFF,	r5
pushl	r5
pushal	format
calls	$2,	.printf
	
pushl	$0
calls	$1,	.exit
	
.data
format:	.asciz	"%X\n"

	
	
Example	2
	
The	following	program	resets	the	first	byte	of	r5	using	bicl3	and	stores	the	result
on	r6.
	
.text
	
main:	.word	0
movl	$0xFFFFFFFF,	r5
bicl3	$0xFF,	r5,	r6
pushl	r6
pushal	format
calls	$2,	.printf
	
pushl	$0
calls	$1,	.exit
	
.data
format:	.asciz	"%lX\n"
	
	

	
Example	3
	
The	following	example	demonstrates	the	effects	of	BIS	and	BIC	on	VAX11
flags.
	
.text
	
main:	.word	0
	
						movb	$0,	r4
						bisb2	$0xf		,	r4								#	All	flags	are	zero,	r4	=	0xF
						bisb2	$0xf0	,	r4								#	N	=	1,	r4	=	0xFF
						bisl2	$0xf0	,	r4								#	All	flags	are	zero,	r4	=	0xFF
						bicb2	$0xff	,	r4								#	Z	=	1,	r4	=	0x00
						bicb2	$0xff	,	r4								#	Z	=	1,	r4	=	0x00
	
						movb	$0xFF		,	r1
						incb	r1
						bisl2	$0x80000000	,	r4		#	N	=	1,	C	=	1
	
						bisw2	$0x0F0F					,	r4		#	N	=	0,	C	=	1,	r4	=	0x80000F0F
	
						bicl2	$0xFFFFFFFF,	r4			#	Z	=	1,	C	=	1
	
						halt

	

	

BIS						BIT	SET
	
Purpose perform	logical	inclusive	OR	of	two	integers

Format
opcode	mask.rx,	dst.mx																																				2	operand
opcode	mask.rx,	src.rx,	dst.wx													3	operand

Operation
dst	.	ß	dst	OR	mask;																																							2	operand
dst	ß	src	OR	mask;																																									3	operand

Condition	codes

N	ß	dst	LSS	0;
Z	ß	dst	EQL	0;
V	ß	0;
C	ß	C;

Exceptions None

Opcodes

88								BISB2														Bit	Set	Byte	2	Operand
89								BISB3														Bit	Set	Byte	3	Operand
A8							BISW2												Bit	Set	Word	2	Operand
A9							BISW3												Bit	Set	Word	3	Operand
C8							BISL2														Bit	Set	Long	2	Operand
C9							BISL3														Bit	Set	Long	3	Operand

Description

In	2	operand	format,	the	mask	operand	is	ORed	with	the
destination	operand	and	the	destination	operand	is
replaced	by	the	result.	In	3	operand	format,	the	mask
operand	is	ORed	with	the	source	operand	and	the
destination	operand	is	replaced	by	the	result.

Notes 	
	
	
Example	1
	

Example	of	using	the	bisl2	opcode:
	
.text
	
main:	.word	0
movl	$0xF0F0F0F0,	r5
bisl2	$0x0A0B0C0D,	r5
pushl	r5
pushal	format
calls	$2,	.printf
	
pushl	$0
calls	$1,	.exit
	
.data
format:	.asciz	"%lX\n"

	
The	output	of	the	program	is	FAFBFCFD.
	
	
Example	2
	
Example	of	using	the	bisl3	opcode.	The	output	is	the	same	as	the	previous
example.
	
.text
	
main:	.word	0
movl	$0xF0F0F0F0,	r5
bisl3	$0x0A0B0C0D,	r5,	r6
pushl	r6
pushal	format
calls	$2,	.printf
	
pushl	$0
calls	$1,	.exit
	
.data
format:	.asciz	"%lX\n"

	
	

	
Example	3
	
The	following	example	demonstrates	the	effects	of	BIS	and	BIC	on	VAX11
flags.
	
.text
	
main:	.word	0
	
						movb	$0,	r4
						bisb2	$0xf		,	r4								#	All	flags	are	zero,	r4	=	0xF
						bisb2	$0xf0	,	r4								#	N	=	1,	r4	=	0xFF
						bisl2	$0xf0	,	r4								#	All	flags	are	zero,	r4	=	0xFF
						bicb2	$0xff	,	r4								#	Z	=	1,	r4	=	0x00
						bicb2	$0xff	,	r4								#	Z	=	1,	r4	=	0x00
	
						movb	$0xFF		,	r1
						incb	r1
						bisl2	$0x80000000	,	r4		#	N	=	1,	C	=	1
	
						bisw2	$0x0F0F					,	r4		#	N	=	0,	C	=	1,	r4	=	0x80000F0F
	
						bicl2	$0xFFFFFFFF,	r4			#	Z	=	1,	C	=	1
	
						halt

	
	

	

BISPSW,	BICPSW					BIT	SET	PSW,	BIT	CLEAR	PSW	PSL
Purpose set	or	clear	trap	enables

Format opcode	mask.rw

Operation

PSW	ß	PSW	OR	mask;																																												
BISPSW
PSW	ß	PSW	AND	{NOT	mask};																												
BICPSW

Condition	codes

N	ß	N	OR	mask	<3>;																																															
BISPSW
Z	ß	Z	OR	mask	<2>;
V	ß	V	OR	mask	<1>;
C	ß	C	OR	mask	<0>;
N	ß	N	AND	{NOT	mask}	<3>;																															
BICPSW
Z	ß	Z	AND	{NOT	mask}	<2>;
V	ß	VAND	{NOT	mask}	<1>;
C	ß	C	AND	{NOT	mask}	<0>;

Exceptions Reserved	Operand

Opcodes
B8								BISPSW										Bit	set	PSW
B9								BICPSW									Bit	clear	PSW

Description

On	BISPSW,	the	processor	status	longword	is	ORed	with
the	16-bit	mask	operand	and	the	PSW	is	replaced	by	the
result.	On	BICPSW,	the	processor	status	longword	is
ANDed	with	the	l’s	complement	of	the	16-bit	mask
operand	and	the	PSW	is	replaced	by	the	result.

Notes
A	reserved	operand	fault	occurs	if	mask	<15:8>	is	not
zero.	On	a	reserved	operand	fault,	the	PSW	is	not
affected.

	

Example	1
	
.text
	
main:	.word	0
						bispsw	$0x55
						bicpsw	$5
	
						halt

	

	

BIT							BIT	TEST
	
Purpose test	a	set	of	bits	for	all	zero

Format opcode	mask.rx,	src.rx

Operation tmp	ß	src	AND	mask;

Condition	codes

N	ß	tmp	LSS	0;
Z	ß	tmp	EQL	0;
V	ß	0;
C	ß	C;

Exceptions None

Opcodes

93								BITB				Bit	Test	Byte
B3								BITW		Bit	Test	Word
D3							BITL				Bit	Test	Long

Description
The	mask	operand	is	ANDed	with	the	source	operand.
Both	operands	are	unaffected.	The	only	action	is	to	affect
condition	codes.

Notes 																																				

	
	
Example	1
	
The	program	displays	message	on	the	screen,	which	effected	from	the	result	of
BITL	command.
	
	
.text
	
main:	.word	0
	
						movl	$0xFF,	r2

						movl	$0xFF,	r3
	
						#	first	case	-	should	be	True
						bitl	r2,	r3
						bneq	eq1
						calls	$0,	prn_false
						jmp	next_stage
eq1:		calls	$0,	prn_true
	
						#	second	case	-	should	be	False
next_stage:
						movl	$0x0F,	r2
						movl	$0xF0,	r3
	
						bitl	r2,	r3
						bneq	eq2
						calls	$0,	prn_false
						jmp	end_prog
eq2:		calls	$0,	prn_true
	
end_prog:
						pushl	$0
						calls	$1,	.exit
	
prn_false:	.word	0
						pushal	lbl_false
						pushal	format
						calls	$2,	.printf
						ret
prn_true:	.word	0
						pushal	lbl_true
						pushal	format
						calls	$2,	.printf
						ret
	
.data
	
lbl_true:			.asciz	"True"
lbl_false:	.asciz	"False"
format:					.asciz	"%s\n"
	
	
	

	

BLB								BRANCH	ON	LOW	BIT
	

Purpose test	bit

Format opcode	src.rl,	displ.bb

Operation

teststate	=	if	{BLBS}	then	1	else	0;
if	src<0>	EQL	teststate	then
PC	ß	PC	+	SEXT	(displ);

Condition	codes

N	ß	N;
Z	ß	Z;
V	ß	V;
C	ß	C;

Exceptions none

Opcodes
E8								BLBS																											Branch	on	Low	Bit	Set
E9								BLBC																										Branch	on	Low	Bit	Clear

Description

The	low	bit	(bit	0)	of	the	source	operand	is	tested	and	if
it	is	equal	to	the	test	state	indicated	by	the	instruction,	the
sign-extended	branch	displacement	is	added	to	PC	and
PC	os	replaced	by	the	result.

Notes
The	source	operand	is	taken	with	longword	context
although	only	one	bit	is	tested.

	
	
Example	1
	
The	example	checks	the	first	bit	of	r1	and	jump	to	prn_true,	as	it	contains	1.
	
.text
main:	.word	0
						movb	$1,	r1
						blbs	r1,	prn_true

prn_false:
						pushal	lbl_false
						pushal	format
						calls	$2,	.printf
						halt
	
prn_true:
						pushal	lbl_true
						pushal	format
						calls	$2,	.printf
						halt
	
.data
	
lbl_true:			.asciz	"True"
lbl_false:	.asciz	"False"
format:					.asciz	"%s\n"
	
	

	

BR,	JMP	BRANCH,	JUMP
	
Purpose transfer	control

Format
opcode	displ.bx																																																											
Branch
opcode	dst.ab																																																														Jump

Operation
PC	ß	PC	+SEXT	(displ);																																												Branch
PC	ß	dst;																																																																				Jump

Condition	codes

N	ß	N;
Z	ß	Z;
V	ß	V;
C	ß	C;

Exceptions none

Opcodes

11								BRB					Branch	With	Byte	Displacement
31								BRW			Branch	With	Word	Displacement
17								JMP					Jump

Description
For	branch,	the	sign-extended	branch	displacement	is
added	to	PC	and	PC	is	replaced	by	the	result.	For	Jump,	the
PC	is	replaced	by	the	destination	operand.

	
	

	

BPT					BREAKPOINT	FAULT
	

Purpose stop	for	debugging

Format opcode

Operation PSL<TP>ß0;

Condition	codes

N	ß	0;
Z	ß	0;
V	ß	0;
C	ß	0;

Exceptions none

Opcodes 03								BPT																													Breakpoint	Fault

Description
This	instruction	is	used,	together	with	the	T-bit,	to
implement	debugging	facilities.

	
	

	

BSB,	JSB									SUBROUTINE	INSTRUCTIONS	JUMP,
BRANCH	TO	SUBROUTINE

	
Purpose transfer	control	to	subroutine

Format

opcode	displ.bx																																																branch	to
subroutine
opcode	dst.ab																																																		jump	to
subroutine

Operation

-(SP)	ß	PC;
PC	ß	PC	+	SEXT	(displ);																															branch	to
subroutine
PC	ß	dst;																																																								jump	to
subroutine

Condition	codes

N	ß	N;
Z	ß	Z;
V	ß	V;
C	ß	C;

Exceptions none

Opcodes

10								BSBB								Branch	to	Subroutine	with	Byte
Displacement
30								BSBW							Branch	to	Subroutine	with	Word
Displacement
16								JSB												Jump	to	Subroutine

Description

PC	is	pushed	on	the	stack	as	a	longword.	For	branch,	the
sign-extended	branch	displacement	is	added	to	PC	and
PC	is	replaced	by	the	result.	For	jump,	PC	is	replaced	by
the	destination	operand.

Notes

Since	the	operand	specifier	conventions	cause	the
evaluation	of	the	destination	operand	before	saving	PC,
JSB	can	be	used	for	co	routine	calls	with	the	stack	used

for	linkage.	The	form	of	such	a	call	is	JSB	*(SP)+.
	
	

	

CALLG	CALL	PROCEDURE	WITH	GENERAL
ARGUMENT	LIST

	

Purpose
invoke	a	procedure	with	actual	arguments	from	anywhere
in	memory

Format opcode	arglist.ab,	dst.ab

Operation

{align	stack};
{create	stack	frame);
{set	arithmetic	trap	enables};
{set	new	values	of	AP,	EP,	PC};

Condition	codes

N	ß	0;
Z	ß	0;
V	ß	0;
C	ß	0;

Exceptions reserved	operand

Opcodes
FA							CALLG											Call	Procedure	with	General
Argument	List

Description

SP	is	saved	in	a	temporary	and	then	bits	1:0	are	replaced
by	0	so	that	the	stack	is	longword	aligned.	The	procedure
entry	mask	is	scanned	from	bit	11	to	0	and	the	contents
of	registers	whose	number	corresponds	to	set	bits	in	the
mask	are	pushed	on	the	stack	as	longwords.	PC,	FP,	and
AP	are	pushed	on	the	stack	as	longwords.	The	condition
codes	are	cleared.	A	long-	word	containing	the	saved	two
low	bits	of	SP	in	bits	31:30,	a	0	in	bit	29	and	bit	28.	The
low	12	bits	of	the	procedure	entry	mask	in	bits	27:16,
and	the	PSW	in	bits	15:0	with	T	cleared	is	pushed	on	the
stack.	A	longword	0	is	pushed	on	the	stack.	FP	is	r	placed
by	SP.	AP	is	replaced	by	the	arglist	operand	which
specifies	the	address	of	the	actual	argument	list.	The	trap
enables	in	the	PSW	are	set	to	a	known	state.	Integer

overflow,	and	decimal	overflow	are	affected	according	to
bits	14	and	15	of	the	entry	mask	respectively;	floating
underflow	is	cleared.	7-	bit	is	unaffected.	PC	is	replaced
by	the	sum	of	destination	operand	plus	2	which	transfers
control	to	the	called	procedure	at	the	byte	beyond	the
entry	mask.

Notes

1.	If	bits	13:12	of	the	entry	mask	are	not	0,	a	reserved
operand	fault	occurs.
2.	On	a	reserved	operand	fault,	condition	codes	are
unpredictable.
The	procedure	calling	standard	and	the	condition
handling	facility	require	the	following	register	saving
conventions.	R0	and	R1	are	always	available	for	function
return	values	and	are	never	saved	in	the	entry	mask.	All
registers	R2	through	R11	which	are	modified	in	the
called	procedure	must	be	preserved	in	the	mask.

	

	

CALLS	CALL	PROCEDURE	WITH	STACK	ARGUMENT
LIST

	

Purpose
invoke	a	procedure	with	actual	arguments	or	addresses
on	the
stack

Format opcode	numarg.rl,	dst.ab

Operation

{push	arg	count};
{align	stack};
{create	stack	frame);
{set	arithmetic	trap	enables};
{set	new	values	of	AP,	EP,	PC};

Condition	codes

N	ß	0;
Z	ß	0;
V	ß	0;
C	ß	0;

Exceptions reserved	operand

Opcodes
FB							CALLS											Call	Procedure	With	Stack
Argument	List
The	numarg	operand	is	pushed	on	the	stack	as	a
longword	(byte	0	contains	the	number	of	arguments	high
order	24	bits	are	used	by	DIGITAL	software).	SP	is
saved	in	a	temporary	and	then	bits	1:0	of	SP	are	replaced
by	0	so	that	the	stack	is	long-	word	aligned.	The
procedure	entry	mask	is	scanned	from	bit	11	to	bit	0	and
the	contents	of	register	whose	number	corresponds	to	set
bits	in	the	mask	are	pushed	on	the	stack.	PC,	FP,	and	AP
are	pushed	on	the	stack	as	longwords.	The	condition
codes	are	cleared.	A	longword	containing	the	saved	two
low	bits	of	SP	in	bits	31:30,	a	1	in	bit	29,	a	0	in	bit	28,
the	low	12	bits	of	the	procedure	entry	mask	in	bits	27:16,

Description and	the	PSW	in	bits	15:0	with	T	cleared	is	pushed	on	the
stack.	A	longword	0	is	pushed	on	the	stack.	FP	is
replaced	by	SP.	AP	is	set	to	the	saved	SP	(the	value	of	the
stack	pointer	after	the	number	of	arguments	operand	was
pushed	on	the	stack).	The	trap	enables	in	the	PSW	are	set
to	a	known	state.	Integer	overflow	and	decimal	overflow
are	affected	according	to	bits	14	and	15	of	the	entry
mask,	respectively;	floating	underflow	is	cleared.	T	bit	is
unaffected.	AP	is	replaced	by	the	saved	SP.	PC	is
replaced	by	the	sum	of	destination	operand	plus	2	which
transfers	control	to	the	called	procedure	at	the	byte
beyond	the	entry	mask.

Notes

1.	If	bits	13:12	of	the	entry	mask	are	not	0,	a	reserved
operand	fault	occurs.
2.	On	a	reserved	operand	fault,	the	condition	codes	are
unpredictable.
3.	Normal	use	is	to	push	the	arglist	onto	the	stack	in
reverse	order	prior	to	the	CALLS.	On	return,	the	arglist
is	removed	from	the	stack	automatically.
4.	The	procedure	calling	standard	and	the	condition
handling	facility	require	the	following	register	saving
conventions.	R0	and	R1	are	always	available	for	function
return	values	and	are	never	saved	in	the	entry	mask.	All
registers	R2	and	R11	which	are	modified	in	the	called
procedure	must	be	preserved	in	the	entry	mask.

	
	
Example	1
	
The	following	program	demonstrate	3	functions	calls.
	
.text
main:	.word	0
						calls	$0,	func1
						calls	$0,	func1
						calls	$0,	func1

	
						pushl	$0
						calls	$1,	.exit		
	
func1:						.word	0
	
						movl	$99,	r1
						pushl	r1
						pushal	format
						calls	$2,	.printf
						ret
.data
format:	.asciz	"R1	is	%d\n"

	
	

	

CASE			CASE	INSTRUCTIONS
	

Purpose
perform	multi-way	branching	depending	on	arithmetic
input

Format
opcode	selector.rx,	base.rx,	limit.rx,
displ[0].bw,...,displ[limit].bw

Operation

tmp	ß	selector	-	base;
PC	ß	PC	+	if	tmp	LEQU	limit	then
SEXT	(displ	[tmp])	else	{2	+	2*	ZEST	(limit)};

Condition	codes

N	ß	temp	LSS	limit;
Z	ß	temp	EQL	limit;
V	ß	0;
C	ß	temp	LSSU	limit;

Exceptions none

Opcodes

8F								CASEB																							Case	Byte
AF							CASEW																						Case	Word
CF							CASEL																								Case	Long

Description

The	base	operand	is	subtracted	from	the	selector	operand
and	a	temporary	is	replaced												by	the	result.	The
temporary	is	compared	with	the	limit	operand	and	if	it	is
less	than	or	equal	unsigned,	a	branch	displacement
selected	by	the	temporary	value	is	added	to	PC	and	PC	is
replaced	by	the	result.	Otherwise,	2	times	the	sum	of	the
limit	operand	plus	1	is	added	to	PC	and	PC	is	replaced	by
the	result.	This	causes	PC	to	be	moved	past	the	array	of
branch	displacements.	Regardless	of	the	branch	taken,
the	condition	codes	are	affected	by	the	comparison	of	the
temporary	operand	with	the	limit	operand.
1.	After	operand	evaluation,	PC	is	pointing	at	displ	[0]
not	the	next	instruction.	The	branch	displacements	are
relative	to	the	address	of	displ	[0].

Notes 2.	The	selector	and	base	operands	can	both	be	considered
either	as	signed	or	unsigned	integers.
3.	The	limit	is	{the	number	of	choices}-1.

	
	
	

	

CLR					CLEAR
	
Purpose clear	a	scalar	quantity
Format opcode	dst.wx

Operation dst	ß	0;

Condition	codes

N	ß	0:
Z	ß	1;
V	ß	0;
C	ß	C;

Exceptions None

Opcodes

94								CLRB		Clear	Byte
B4								CLRW	Clear	Word
D4							CLRL		Clear	Long
D4							CLRF		Clear	Floating
7C							CLRQ		Clear	Quad
7C							CLRD		Clear	Double

Description The	destination	operand	is	replaced	by	0.

Notes CLRx	dst	is	equivalent	to	MOVx	0,dst,	but	is	shorter.

	
	
Example	1:
	
The	following	program's	output	is	"56780000	0".
	
.text
main:	.word	0
movl	$0x12345678,	r0
movl	$0x56781234,	r1
clrl	r0
clrw	r1
pushl	r0

pushl	r1
pushal	format
calls	$3,	.printf
halt
.data
format:	.asciz	"%lX	%lX\n"
	
	

	

CMP					COMPARE
	
Purpose arithmetic	comparison	between	two	scalar	quantities
Format opcode	srcl.rx,	src2.rx

Operation srcl	-	src2;

Condition	codes

N	ß	srcl	LSS	src2;
Z	ß	srcl	EQL	src2;
V	ß	0;
C	ß	srcl	LSSU	src2	(integer);
C	ß	C	(floating);

Exceptions None	(integer);	reserved	operand	(floating	point)

Opcodes

91								CMPB													Compare	Byte
Bi									CMPW												Compare	Word
Dl									CMPL													Compare	Long
51								CMPF													Compare	Floating
71								CMPD													Compare	Double

Description
The	source	1	operand	is	compared	with	the	source	2
operand.	The	only	action	is	to	affect	the	condition	codes.

Notes
On	a	floating	reserved	operand	fault,	the	condition	codes
are	unpredictable.

	
	
Example	1
	
The	following	program	demonstrates	condition	branches	that	effected	from	CMP
results.
	
.text
	
main:	.word	0

	
						movb	$10,	r1
						movb	$5,	r2
	
						#	first	case	-	should	be	True
						cmpb	r1,	r2
						bgtr	eq1
						calls	$0,	prn_false
						jmp	next_stage
eq1:		calls	$0,	prn_true
	
						#	second	case	-	should	be	False
next_stage:
						cmpb	r2,	r1
						bgtr	eq2
						calls	$0,	prn_false
						jmp	end_prog
eq2:		calls	$0,	prn_true
	
end_prog:
						pushl	$0
						calls	$1,	.exit
	
prn_false:	.word	0
						pushal	lbl_false
						pushal	format
						calls	$2,	.printf
						ret
prn_true:	.word	0
						pushal	lbl_true
						pushal	format
						calls	$2,	.printf
						ret
	
.data
	
lbl_true:			.asciz	"True"
lbl_false:	.asciz	"False"
format:					.asciz	"%s\n"
	
	

	

CMPC		COMPARE	CHARACTERS
	
Purpose to	compare	two	character	strings

Format

opcode	len.rw,	src1addr.ab,	src2addr.ab																						3
operand
	
opcode	src1len.rw,	src1addr.ab,	fill.rb,	src2len.rw								5
operand
src2addr.ab

Operation

Compare	bytes	in	order	from	start	of	string.
On	5	operand	opcode,	if	one	of	the	strings	is	shorter	than
the	second	one	we	use	fill	to	compare	to	the	rest	of	the
characters	of	the	second	string.

Condition	codes

Final	Condition	codes	reflect	last	affecting	of	Condition
Codes	in	Operation	above.
	
N	ß	{first	byte}	LSS	{second	byte};
Z	ß	{first	byte}	EQL	{second	byte};
V	ß	0;
C	ß	{first	byte}	LSSU	{second	byte};
	

Exceptions None

Opcodes
29								CMPC3											Compare	Characters	3	Operand
2D							CMPC5											Compare	Characters	5	Operand
In	3	operand	format,	the	bytes	of	string	1	specified	by	the
length	and	address	1	operands	are	compared	with	the
bytes	of	string	2	specified	by	the	length	and	address	2
operands.	Comparison	proceeds	until	inequality	is
detected	or	all	the	bytes	of	the	strings	hare	been

Description

examined.	Condition	codes	are	affected	by	the	result	of
the	last	byte	comparison.	In	5	operand	format,	the	bytes
of	the	string	1	specified	by	the	length	1	and	address
operands	are	compared	with	the	bytes	of	string	2
specified	by	the	length	2	and	address	2	operands.	If	one
string	is	longer	than	the	other,	the	shorter	string	is
conceptually	extended	to	the	length	of	the	longer	by
appending	(at	higher	addresses)	bytes	equal	to	the	fill
operand.	Comparison	proceeds	until	inequality	is
detected	or	all	the	bytes	of	the	strings	have	been
examined.	Condition	codes	are	affected	by	the	result	of
the	last	byte	comparison.

Notes

1.	After	execution	of	CMPC3;
R0	=	number	of	bytes	remaining	in	string	1	(including
byte	which	terminated	comparison);	R0	is	zero	only	if
strings	are	equal.
Rl	=	address	of	the	byte	in	string	1	which	terminated
comparison;	if	strings	are	equal,	Al	=	address	of	one	byte
beyond	string	1.
R2	=	R0
R3	=	address	of	the	byte	in	string	2	which	terminated
comparison:	if	strings	are	equal,	R3	=	address	of	one
byte	beyond	string	2.
	
2.	After	execution	of	CMPC5:
R0	=	number	of	bytes	remaining	in	string	1	(including
byte	which	terminated	comparison);	R0	is	zero	Only	if
string	1	and	string	2	are	of	equal	length	and	equal	or
string	1	was	exhausted	before	comparison	terminated.
Rl	=	address	of	the	byte	in	string	1	which	terminated
comparison;	if	comparison	did	not	terminate	before
string	1	exhausted,	R1	=	address	of	one	byte	beyond
string	1.
R2	=	number	of	bytes	remaining	in	string	2	(including
byte	which	terminated	comparison):	R2	is	zero	only	if

string	2	and	string	1	are	of	equal	length	or	string	2	was
exhausted	before	comparison	terminated.
R3	=	address	of	the	byte	in	string	2	which	terminated
comparison;	if	comparison	did	not	terminate	before
string	2	was	exhausted,	
R3	=	address	of	one	byte	beyond	string.
3.	If	both	strings	have	zero	length,	Z	is	set	and	N	and	C
are	cleared	just	as	in	the	case	of	two	equal	strings.

	
	
	

	

CVT					CONVERT
	
Purpose convert	a	signed	quantity	to	a	different	signed	data	type
Format opcode	src.rx,	dst.wy
Operation dst	ß	conversion	of	src;

Condition	codes

N	ß	dst	LSS	0;
Z	ß	dst	EQL	0;
V	ß	{src	cannot	be	represented	in	dst};
C	ß	0;

Exceptions
Integer	overflow
Floating	overflow
Reserved	operand

Operation	codes

99								CVTBW										Convert	Byte	to	Word
98								CVTBL												Convert	Byte	to	Long
33								CVTWB										Convert	Word	to	Byte
32								CVTWL										Convert	Word	to	Long
F6								CVTLB												Convert	Long	to	Byte
F7								CVTLW										Convert	Long	to	Word
4C							CVTBF												Convert	Byte	to	Floating
6C							CVTBD											Convert	Byte	to	Double.
4D							CVTWF										Convert	Word	to	Floating
6D							CVTWD										Convert	Word	to	Double
4E								CVTLF												Convert	Long	to	Floating
6E								CVTLD											Convert	Long	to	Double
48								CVTFB												Convert	Floating	to	Byte
68								CVTDB											Convert	Double	to	Byte
49								CVTFW										Convert	Floating	to	Word
69								CVTDW										Convert	Double	to	Word

4A							CVTFL												Convert	Floating	to	Long
4B								CVTRFL									Convert	Rounded	Floating	to
Long
6A							CVTDL											Convert	Double	to	Long
6B								CVTRDL									Convert	Rounded	Double	to
Long
56								CVTFD											Convert	Floating	to	Double
76								CVTDF											Convert	Double	to	Floating

Description

The	source	operand	is	converted	to	the	data	type	of	the
destination	operand	and	the	destination	operand	is
replaced	by	the	result.	For	integer	format,	conversion	of
a	shorter	data	type	to	a	longer	is	done	by	sign	extension;
conversion	of	longer	to	a	shorter	is	done	by	truncation	of
the	higher	numbered	(most	significant)	bits.	For	floating
format,	the	form	of	the	con	version	is	as	follows:
CVTBF												exact																												CVTFW									
truncated
CVTBD											exact																												CVTDW									
truncated
CVTWF										exact																												CVTFL											
truncated
CVTWD										exact																												CVTRFL								
truncated
CVTLF												rounded																								CVTDL										
truncated
CVTLD											exact																												CVTRDL								
rounded
CVTFB												truncated																						CVTFD										
exact
CVTDB											truncated																						CVTDF										
rounded
1.	Integer	overflow	occurs	if	any	truncated	bits	of	the
source	operand	are	not	equal	to	the	sign	bit	of	the

Notes

destination	operand.
2.	Only	converts	with	an	integer	destination	operand	can
result	in	integer	overflow.	On	integer	overflow,	the
destination	operand	is	replaced	by	the	low	order	bits	of
the	true	results.
3.	Only	CVTDF	can	result	in	floating	overflow.	On
floating	overflow,	the	destination	operand	is	replaced	by
an	operand	of	all	0	bits	except	for	a	sign	bit	of	1	(a
reserved	operand).	N	ß	1;	Z	ß	0;	V	ß	1;	and	C	ß	0.
4.	Only	converts	with	a	floating	point	source	operand	can
result	in	a	reserved	operand	fault.	On	a	reserved	operand
fault,	the	destination	operand	in	unaffected	and	the
condition	codes	are	unpredictable.

	
Example	1
	
	
.text
main:	.word	0
	
						movb	$-1,	r1
						cvtbw	r1,	r2						#	r2	will	contain	0xFFFF
	
						clrl	r2
	
						movl	$0x123,	r1
						cvtlb	r1			,	r2			#	r2	will	contain	0x23.	V	=	1
	
						halt

	
	

	

DEC					DECREMENT
	
Purpose subtract	1	from	an	integer

Format opcode	dif.mx

Operation dif	ß	dif	-	1;

Condition	codes

N	ß	dif	LSS	0;
Z	ß	dif	EQL	0;
V	ß	{integer	overflow};
C	ß	{borrow	from	most	significant	bit};

Exceptions Integer	overflow

Opcodes

97								DECB																																						Decrement	Byte
B7								DECW																																					Decrement	Word
D7							DECL																																						Decrement	Long

Description
One	is	subtracted	from	the	difference	operand	and	the
difference	operand	is	replaced	by	the	result.

Notes

1.	Integer	overflow	occurs	if	the	largest	negative	integer
is	decremented.	On	overflow,	the	difference	operand	is	re
placed	by	the	largest	positive	integer.
2.	DECx	dif	is	equivalent	to	SUBx2	$1,	dif,	but	is
shorter.

	
	
Example	1:
	
.text
						.word	0
						movl	$7,	r0
						decl	r0
						pushl	r0
						pushal	format
						calls	$2,	.printf
						pushl	$0
						calls	$1,	.exit
format:	.asciz	"%d\n"

	
	
Example	2
	
Flags	example	-	the	following	program	demonstrate	the	different	values	for	flags
while	performing	DEC	commands:	We	can	say	that	N	and	Z	are	set	as	always.	V
is	set	if	80..0	is	decremented	to	7F..F.		C	is	set	if	0	is	decremented	to	FF..F.
	
.text
						.word	0
						movl	$3,	r0
						decl	r0
						decl	r0
						decl	r0					#	Z	=	1
						decl	r0					#	N	=	1,	C	=	1
					
						movb	$0x81,	r0
						decb	r0					#	N	=	1
						decb	r0					#	N	=	0,	C	=	0,	V	=	1
						decb	r0					#	N	=	0,	C	=	0,	V	=	0
	
						pushl	$0
						calls	$1,	.exit

	
	
Example	3
	
Another	flags	example
	
.text
main:	.word	0
	
						movb	$0,	r0
						decb	r0											#	N	=	1,	C	=	1
						movb	$0xFF,	r0
						decb	r0											#	N	=	1
						movw	$0x0000,	r0
						decw	r0											#	N	=	1,	C	=	1
						movl	$0x00000000,	r0
						decl	r0											#	N	=	1,	C	=	1
						movl	$0x80000000,	r0
						decl	r0											#	V	=	1

						movw	$0x8000,	r0
						decw	r0											#	V	=	1
						movb	$0x80,	r0
						decb	r0											#	V	=	1
					
						pushl	$0
						calls	$1,	.exit
	

	

DIV									DIVIDE
	
Purpose perform	arithmetic	division

Format
opcode	divr.rx,	quo.mx	2	operand
opcode	divr.rx,	divd.rx,	quo.wx												3	operand

Operation
quo	ß	quo	/	divr;									2	operand
quo	ß	divd	/	divr;								3	operand

Condition	codes

N	ß	quo	LSS	0;
Z	ß	quo	EQL	0;
V	ß	{overflow}	OR	{divr	EQL	0};
C	ß	0;

Exceptions

Integer	overflow
Divide	by	zero
Floating	overflow
Floating	underflow
Reserved	operand

Opcodes

86								DIVB2													Divide	Byte	2	Operand
87								DIVB3													Divide	Byte	3	Operand
A6							DIVW2												Divide	Word	2	Operand
A7							DIVW3												Divide	Word	3	Operand
C6							DIVL2													Divide	Long	2	Operand
07								DIVL3													Divide	Long	3	Operand
46								DIVF2													Divide	Floating	2	Operand
47								DIVF3													Divide	Floating	3	Operand
66								DIVD2													Divide	Double	2	Operand
67								DIVD3													Divide	Double	3	Operand
In	2	operand	format,	the	quotient	operand	is	divided	by
the	divisor	operand	and	the	quotient	operand	is	replaced

Description
by	the	result.	In	3	operand	format,	the	dividend	operand
is	divided	by	the	divisor	operand	and	the	quotient
operand	is	replaced	by	the	result.	In	floating	format,	the
quotient	operand	result	is	rounded	for	both	2	and	3
operand	format.

Notes

1.	Integer	division	is	performed	such	that	the	remainder
(unless	it	is	zero)	has	the	same	sign	as	the	dividend;	i.e.,
the	result	is	truncated	towards	0.
2.	Integer	overflow	occurs	if	and	only	if	the	largest
negative	integer	is	divided	by	-1.	On	overflow,	operands
are	affected	as	in	3	below.
3.	In	the	integer	divisor	operand	is	0,	then	in	2	operand
integer	format,	the	quotient	operand	is	not	affected;	in	3
operand	format	the	quotient	operand	is	replaced	by	the
dividend	operand.
4.	On	a	floating	reserved	operand	fault,	the	quotient
operand	is	unaffected	and	the	condition	codes	are	un
predictable.
5.	On	floating	underflow,	the	quotient	operand	is
replaced	by	0.
6.	On	floating	divide	by	zero	or	on	floating	overflow	the
quotient	operand	is	replaced	by	an	operand	of	all	bits	0
except	for	a	sign	bit	of	1	(a	reserved	operand).
N	ß	1;	Z	ß	0;	V	ß	1;	and	C	ß	0.

	
	

	

EDIV							EXTENDED	DIVIDE
	
Purpose perform	extended-precision	division

Format opcode	divr.rl,	divd.rq,	quo.wl,	rem.wl

Operation
quo	ß	divd/divr;
rem	ß	REM{dvid,	divr};

Condition	codes

N	ß	quo	LSS	0;
Z	ß	que	EQL	0;
V	ß	{integer	overflow}	OR	{divr	EQL	0};
C	ß	0;

Exceptions
Integer	overflow
Divide	by	zero

Opcodes 7B								EDIV			Extended	Divide

Description
The	dividend	operand	is	divided	by	the	divisor	operand;
the	quotient	operand	is	replaced	by	the	quotient	and	the
remainder	operand	is	replaced	by	the	remainder.

Notes

1.	The	division	is	performed	such	that	the	remainder
operand	(unless	it	is	0)	has	the	same	sign	as	the	dividend
operand.
2.	On	overflow,	or	if	the	divisor	operand	is	0,	then	the
quotient	operand	is	replaced	by	bits	31:0	of	the	dividend
operand,	and	the	remainder	is	replaced	by	0.

	
	

	

EMOD		EXTENDED	MULTIPLY	AND	INTEGERIZE
	

Purpose
perform	accurate	range	reduction	of	math	function
arguments

Format opcode	mulr.rx,	mulrx.rb,	mud.rx,	int.wl,	fract.wx

Operation
int	ß	integer	part	of	muld*	{mulr’mulrx};
frac	ß	fractional	part	of	muld	*	{mulr’mulrx);

Condition	codes

N	ß	fract	LSS	0;
Z	ß	fract	EQL	0;
V	ß	{integer	overflow};
C	ß	0;

Exceptions

Integer	overflow
Floating	underflow
Reserved	operand

Opcodes
54	EMODF					Extended	Multiply	and	Integrate	Floating
74	EMODD					Extended	Multiply	and	Integrate	Double

Description

The	floating	point	multiplier	extension	operand	(second
operand)	is	concatenated	with	the	floating	point
multiplier	(first	operand)	to	gain	eight	additional	low
order	fraction	bits.	The	multiplicand	operand	is
multiplied	by	the	extended	multiplier	operand.	After
multiplication,	the	integer	portion	is	extracted	and	a	32-
bit	(EMODF)	or	64-bit	(EMODD)	floating	point	number
is	formed	from	the	fractional	part	of	the	product	by
truncating	extra	bits.	The	multiplication	is	such	that	the
result	is	equivalent	to	the	exact	product	truncated	(before
normalization)	to	a	fraction	field	of	32	bits	in	floating
and	64	bits	in	double.	Regarding	the	result	as	the	sum	of
an	integer	and	fraction	of	the	same	sign,	the	integer
operand	is	replaced	by	the	integer	part	of	the	result	and
the	fraction	operand	is	replaced	by	the	rounded	fractional

part	of	the	result.

Notes

1.	On	a	reserved	operand	fault,	the	integer	operand	and
the	fraction	operand	are	unaffected.	The	condition	codes
are	unpredictable.
2.	On	floating	underflow,	the	integer	and	fraction
operands	are	replaced	by	zero.
3.	On	integer	overflow,	the	integer	operand	is	replaced
by	the	low	order	bits	of	the	true	result.
4.	Floating	overflow	is	indicated	by	integer	overflow;
how	ever,	integer	overflow	is	possible	in	the	absence	of
floating	overflow.

	
	
	

	

EMUL			EXTENDED	MULTIPLY
	
Purpose perform	extended-precision	multiplication

Format opcode	mulr.rl,	muld.rl,	add.rl,	prod.wq

Operation prod	ß	muld	*	mulr	+	SEXT(add);

Condition	codes

N	ß	prod	LSS	0;
Z	ß	prod	EQL	0;
V	ß	0;
C	ß	0;

Exceptions None

Opcodes 7A							EMUL	Extended	Multiply

Description

The	multiplicand	operand	is	multiplied	by	the	multiplier
operand	giving	a	double	length	result.	The	addend
operand	is	sign	extended	to	double	length	and	added	to
the	result.	The	product	operand	is	replaced	by	the	final
result.

	
	
	

	

HALT
	

Purpose stop	processor	operation

Format opcode

Operation

It	PSL<current_mode>	NEQU	kernel	then
{reserved	to	DIGITAL	opcode	fault}
else	{halt	the	processor};

Condition	codes

N	ß	N;
Z	ß	Z;
V	ß	V;
C	ß	C;

Exceptions none

Opcodes 00								HALT																										Halt

Description
If	the	process	is	running	in	kernel	mode,	the	processor	is
halted.

	

	

INC						INCREMENT
	
Purpose add	1	to	an	integer
Format opcode	sum.mx

Operation sum	ß	sum	+1;

Condition	codes

N	ß	sum	LSS	0;
Z	ß	sum	EQL	0;
V	ß	{integer	overflow};
C	ß	{carry	from	most	significant	bit};

Exceptions Integer	overflow

Opcodes

96								Increment	Byte
66								Increment	Word
D6							Increment	Long

Description
One	is	added	to	the	sum	operand	and	the	sum	operand	is
replaced	by	the	result.

Notes

1.	Arithmetic	overflow	occurs	if	the	largest	positive
integer	is	incremented.	On	overflow,	the	sum	operand	is
replaced	by	the	largest	negative	integer.
2.	INCx	sum	is	equivalent	to	ADDx2	$1,	sum,	but	is
shorter.

	
	
Example	1
	
Simple	use	of	INCL	opcode:
	
.text
main:	.word	0
	
movl	$5,	r1
pushl	r1
pushal	format

calls	$3,	.printf							#	R1	is	5
incl	r1
pushl	r1
pushal	format
calls	$3,	.printf							#	R1	is	6
	
pushl	$0
calls	$1,	.exit
	
.data
format:	.asciz	"R1	is	%d\n"

	
Example	2
	
The	following	example	shows	the	different	flags	rise	while	using	INC	opcodes:
	
	
.text
	
main:	.word	0
	
movb	$0,	r0
incb	r0											#	r0	contains	1,	all	flags	are	0
	
movb	$0xFF,	r0
incb	r0											#	r0	contains	0,	C	=	1,	V	=	0,	Z	=	1
	
movw	$0xFFFF,	r0
incw	r0											#	r0	contains	0,	C	=	1,	V	=	0,	Z	=	1
	
movl	$0xFFFFFFFF,	r0
incl	r0											#	r0	contains	0,	C	=	1,	V	=	0,	Z	=	1
	
movl	$0x7FFFFFFF,	r0
incl	r0											#	r0	contains	0x80000000,	C	=	0,	V	=	1,	N	=	1
	
movw	$0x7FFF,	r0
incw	r0											#	r0	contains	0x8000,	C	=	0,	V	=	1,	N	=	1
	
movb	$0x7F,	r0
incb	r0											#	r0	contains	0x80,	C	=	0,	V	=	1,	N	=	1
	
halt
	
	

	

INDEX		COMPUTE	INDEX
	

Purpose
calculation	of	arrays	of	fixed	length	data,	bit	fields,	and
strings

Format
opcode	subscript.rl,	low.rl,	high.rl,	size.rl,	indexin.rl,
indexout.wl

Operation

indexout	ß	{indexin	+	subscript}	*size;
if	{subscript	LSS	low}	or	{subscript	GTR	high}	then
{subscript	range	trap};

Condition	codes

N	ß	indexout	LSS	0;
Z	ß	indexout	EQL	0;
V	ß	0;
C	ß	0;

Exceptions subscript	range

Opcodes OA						INDEX																								Index

Description

The	indexin	operand	is	added	to	the	subscript	operand
and	the	sum	is	multiplied	by	the	size	operand.	The
indexout	operand	is	replaced	by	the	result.	If	the
subscript	operand	is	less	than	the	low	operand	or	greater
than	the	high	operand,	a	sub	script	range	trap	is	taken.

Notes

1.	No	arithmetic	exception	other	than	subscript	range	can
result	from	this	instruction.	Thus	no	indication	is	given	if
overflow	occurs	in	either	the	add	or	multiply	steps.	If
overflow	occurs	on	the	add	step	the	sum	is	the	low	order
32	bits	of	the	true	result.	It	overflow	occurs	on	the
multiply	step	the	indexout	operand	is	replaced	by	the	low
order	32	bits	of	the	true	product	of	the	sum	and	the
subscript	operand.	In	the	normal	use	of	this	instruction,
overflow	cannot	occur	without	a	subscript	range	trap
occurring.
2.	The	index	instruction	is	useful	in	index	calculations

for	arrays	of	the	fixed	length	data	types	(integer	and
floating)	and	for	index	calculations	for	arrays	of	bit
fields,	character	strings,	and	decimal	strings.	The	indexin
operand	permits	cascading	INDEX	instructions	for
multidimensional	arrays.	For	one-dimensional	bit	field
arrays	it	also	permits	introduction	of	the	constant	portion
of	an	index	calculation	which	is	not	readily	absorbed	by
address	arithmetic.

	
	
	

	

INSQUE		INSERT	ENTRY	IN	QUEUE
	
Purpose add	entry	to	head	or	tail	of	queue

Format opcode	entry.ab,	pred.ab

Operation

If	(all	memory	accesses	can	be	completed)	then
begin
												(entry)	ß	(pred);																						forward	link	of
entry
												(entry+4)	ß	pred;																				backward	link	of
entry
												((pred)+4)	ß	entry;																	backward	link	of
successor
												(pred)	ß	entry;																								forward	link	of
predecessor
end;
else
begin
												{backup	instruction};															
												{initiate	fault}																											
end;

Condition	codes

N	ß	(entry)	LSS	(entry+4);
Z	ß	(entry)	EQL	(entry+4);					first	entry	in	queue
V	ß	0;
C	ß	(entry)	LSSU	(entry+4);

Exceptions None

Opcodes OE							INSQUE																						Insert	Entry	in	Queue
The	entry	specified	by	the	entry	operand	is	inserted	into
the	queue	following	the	entry	specified	by	the
predecessor	operand.	If	the	entry	inserted	was	the	first

Description
one	in	the	queue,	the	condition	code	Z-bit	is	set;
otherwise	it	is	cleared.	The	insertion	is	a	non-
interruptible	operation.	Before	performing	any	part	of	the
operation,	the	processor	validates	that	the	entire
operation	can	be	completed.	This	ensures	that	if	a
memory	management	exception	occurs,	the	queue	is	left
in	a	consistent	state.

Notes

1.Because	the	insertion	is	non-interruptible,	processes
running	in	kernel	mode	can	share	queues	with	interrupt
service	routines.
2.	The	INSQUE	and	REMQUE	instructions	are
implemented	such	that	cooperating	software	processes	in
a	single	processor	may	access	a	shared	list	without
additional	synchronization	if	the	insertions	and	removals
are	only	at	the	head	or	trail	of	the	queue.
3.	During	access	validation,	any	access	which	cannot	be
completed	results	in	a	memory	management	exception
even	though	the	queue	insertion	is	not	started.
4.	The	instruction	is	similar	to	the	interlocked	sequence
												MOVL																									pred,	temp	ref
												MOVAB																						pred,	entry	+	4
												MOVAB																						entry,	4(tmp	reg)
												MOVL																									temp	reg,	entry
												MOVAB																						entry,	pred

	
	
	
Example	1
	
	
.text
main:	.word	0
						remque	head,temp		#removing	an	member	from	empty	queue	works!
						insque	mem1,head
						insque	mem2,head
						insque	mem3,mem2		#	now	the	queue	should	be	mem2,mem3,mem1
						remque	mem3,temp		#	now	queue	should	ne	mem2,mem1

						remque	mem2,temp		#	only	mem1	left
						remque	mem1,temp		#	empty	again
						pushl	$0
						calls	$1,.exit
	
	
.data
#	queue	head.	first	long	is	the	head	pointer,	second	long	is	the	tail	pointer.
#	initialize	to	empty	queue,	i.e.	both	pointers	point	to	the	head.
head:	.long	head,head
#	queue	menebers.	first	long	is	NEXT	pointer,	second	long	is	the	PREV	pointer
mem1:	.long	0,0
mem2:	.long	0,0
mem3:	.long	0,0
	
temp:	.long	0,0
	
	

	

LOCC	SKPC					LOCATE	CHARACTER,	SKIP
CHARACTER

	
Purpose to	find	or	skip	character	in	character	string

Format opcode	char.rb,	len.rw,	addr.ab

Operation
Compare	each	character	until	equal	(LOCC)	or	not	equal
(SKPC).
Z	set	if	condition	not	satisified.

Condition	codes

N	ß	0;
Z	ßR0	EQL	0;
V	ß	0;
C	ß	0;

Exceptions None

Opcodes
3A							LOCC													Locate	Character
3B								SKPC														Skip	Character

Description

The	character	operand	is	compared	with	the	bytes	of	the
string	specified	by	the	length	and	address	operands.
Comparison	continues	until	equality	is	detected	for	the
Locate	Character	instruction	or	inequality	for	the	Skip
Character	instruction	or	until	all	bytes	of	the	string	have
been	compared.	If	equality	is	detected	for	the	Locate
Character	instruction,	the	condition	code	Z	bit	is	cleared;
otherwise	the	Z	bit	is	set.	If	inequality	is	detected	for	the
Skip	Character	instruction,	the	condition	code	Z	bit	is
cleared:	otherwise	the	Z	bit	is	set.

Notes

1.	After	execution:
R0	=	number	of	bytes	remaining	in	the	string	(including
located	one)	if	byte	located;	otherwise	R0	=	0.
R1	=	address	of	the	byte	located	if	byte	located;	other	R1
=	address	of	one	byte	beyond	the	string.

2.	It	the	string	has	zero	length,	condition	code	Z	is	set	just
as	though	each	byte	of	the	entire	string	were	equal
(unequal)	to	the	character.

	
	
Example	1
	
.text
main:	.word	0
						locc	$32,	$len,	str
						pushl	r0
						pushal	format
						calls	$2,	.printf
	
						pushl	$0
						calls	$1,	.exit
.data
.set	len,	11
str:		.asciz	"abc	def	ghi"
format:	.asciz	"Characters	left:	%d\n"

	
	

	

MATCHC	Match	Characters
	
Purpose to	find	substring	(object)	in	character	string

Format opcode	objlen.rw,	objaddr.ab,	srclen.rw,	srcaddr.ab

Operation
search	the	string	located	on	srcaddr	for	full	string	match	of
object

Condition	codes

N	ß	0;
V	ßR0	EQL	0;
V	ß	0;
C	ß	0;

Exceptions None

Opcodes 39								MATCHC																			Match	Characters

Description

The	source	string	specified	by	the	source	length	and
source	address	operands	is	searched	for	a	substring	which
matches	the	object	string	specified	by	the	object	length
and	object	ad	dress	operands.	If	the	substring	is	found,	the
condition	code	Z	bit	is	set;	otherwise,	it	is	cleared.

Notes

1.	After	Execution:
R0	=	if	a	match	occurred	0;	otherwise	the	number	of	bytes
in	the	object	string.
Rl	=	if	a	match	occurred,	the	address	of	one	byte	beyond
the	object	string;	otherwise	the	address	of	the	object	string.
R2	=	if	a	match	occurred,	the	number	of	bytes	remaining
in	the	source	string	after	the	match;	otherwise	0.
R3	=	if	a	match	occurred,	the	address	of	1	byte	beyond
the	last	byte	matched;	otherwise	the	address	of	1	byte
beyond	the	source
2.	If	both	strings	have	zero	length	or	if	the	object	string
has	zero	length,	condition	code	Z	is	set	just	as	though	the
substring	were	found.

3.	If	the	source	string	has	zero	length	and	the	object	string
has	non-zero	length,	condition	code	Z	is	cleared	just	a
though	the	substring	were	not	found.

	
	

	

MCOM		MOVE	COMPLEMENTED
	
Purpose move	the	logical	complement	of	an	integer
Format opcode	src.rx,	dst.wx

Operation dst	ß	NOT	src

Condition	codes

N	ß		dst	LSS	0;
Z	ß	dst	EQL	0;
V	ß	0;
C	ß	C;

Exceptions None

Opcodes

92								MCOMB	Move	Complemented	Byte
B2								MCOMW	Move	Complemented	Word
D2							MCOML	Move	Complemented	Long

Description
The	destination	operand	is	replaced	by	the	ones
complement
of	the	source	operand.

	
	
Example	1
	
.text
main:	.word	0
						mcomb	r1,	r2						#	r2	=	0xFF
						mcomw	r2,	r3						#	r3	=	0xFF00
						mcoml	r3,	r4						#	r4	=	0xFFFF00FF
						halt

	

	

MNEG		MOVE	NEGATED
	
Purpose move	the	arithmetic	negation	of	a	scalar	quantity
Format opcode	src.rx,	dst.wx

Operation dst	ß	-scr;

Condition	codes

N	ß	dst	LSS	0;
Z	ß	dst	EOL	0;
V	ß	overflow	(Integer);
V	ß	0	(floating);
C	ß	dst	NEQ	0	(integer);
C	ß	0	(floating);

Exceptions Integer	overflow;	reserved	operand	(floating)

Opcodes

8E								MNEGB	Move	Negated	Byte
AE							MNEGW	Move	Negated	Word
CE							MNEGL	Move	Negated	Long
52								MNEGF	Move	Negated	Floating
72								MNEGD	Move	Negated	Double

Description
The	destination	operand	is	replaced	by	the	negative	of
the
source	operand.

Notes

1.	Integer	overflow	occurs	if	the	source	Operand	is	the
largest	negative	integer	(which	has	no	positive
counterpart).
On	overflow,	the	destination	operand	is	replaced	by	the
source	operand.
2.	On	floating	reserved	operand	fault,	the	destination
operand	is	unaffected	and	the	condition	codes	are
unpredictable.
3.	If	source	is	positive	zero,	result	is	positive	zero.	If

source	is	reserved	operand	(minus	zero),	a	reserved
operand	fault	occurs.	For	all	other	floating	point	source
values,	bit	15	(sign	bit)	is	complemented.

	
	
Example	1
	
.text
main:	.word	0
						movb	$1,	r1							#	r1	contains	1
						mnegw	r1,	r2						#	r2	contains	0xFFFF
						mnegw	r2,	r3						#	r3	contains	1
						mnegl	r3,	r4						#	r4	contains	0xFFFFFFFF
						halt

	
	
	

	

MOV
	
Purpose move	a	scalar	quantity
Format opcode	src.rx,	dst.wx
Operation dst	ß	src

Condition	codes

N	ß	dst	LSS	0
Z	ß	dst	EQL	0
V	ß	0
C	ß	C

Exceptions None	(integer);	Reserved	operand	(floating	point)

Operation	codes

90								MOVB												Move	Byte
BO							MOVW											Move	Word
DO						MOVL													Move	Long
7D							MOVQ												Mode	Quad
50								MOVF													Move	Floating
70								MOVD												Move	Double

Description The	destination	operand	is	replaced	by	the	source
operand.	The	source	operand	is	unaffected.

Notes

1.									On	a	floating	reserved	operand	fault,	the
destination	operand	is	unaffected	and	the	condition	codes
are
unpredictable.
2.									Unlike	the	POP-11,	but	like	the	other	VAX-11
instructions,	MOVB	and	MOVW	do	not	modify	the	high
order	bytes	of	a	register	destination.	Refer	to	the
MOVZxL	and	CVTxL	instructions	to	update	the	full
register	contents.

	
	
Example	1
	

In	the	following	program	we	put	0	in	r0,	and	then	printing	it,	and	printing	the
PSW.
Then	we	put	-1	in	r0	and	print	the	PSW	again.	PSW	will	be	4	and	then	8	(On	the
beginning	the	third	bit	will	be	1,	and	on	the	end	the	fourth	bit	will	be	set).
	
.text
	
main:	.word	0
						#	put	0	in	r0.	Zero	flag	will	raised
						movl	$0,	r0
						movpsl	r1			#	r1	will	contains	the	PSL
						movw	r1,	r2	#	save	only	the	PSW	to	r2
						pushl	r0
						pushl	r2
						pushal	format
						calls	$3,	.printf
					
						#	put	negative	number	in	r0.	Neg	flag	should	rised
						movl	$-1,	r0
						movpsl	r1			#	r1	will	contains	the	PSL
						movw	r1,	r2	#	save	only	the	PSW	to	r2
						pushl	r0
						pushl	r2
						pushal	format
						calls	$3,	.printf
	
						pushl	$0
						calls	$1,	.exit
	
	
format:	.asciz	"PSW	is	%d.	R0	is	%d\n"

	
	
Example	2
	
The	programs	test	the	different	types	of	mov	commands:	movl,	movw	and	movb.
It	will	print	12345678,	then	5678	and	then	78.
	
.text
	
main:	.word	0
						movl	$0x12345678,	r1
						movw	r1,	r2

						movb	r2,	r3
						pushl	r3
						pushl	r2
						pushl	r1
						pushal	format
						calls	$4,	.printf
	
						pushl	$0
						calls	$1,	.exit
	
	
format:	.asciz	"R1	is	%X,	R2	is	%X,	R3	is	%X\n"

	
	
Example	3
	
The	following	program	demonstrates	the	using	of	the	movq	opcode:
	
.text
main:	.word	0
movl	$1000,	r0
movl	$1004,	r1
movl	$0x12345678,	(r0)
movl	$0x54321234,	(r1)
movq	(r0),	r4					#	R4	contains	0x12345678,	R5	contains	0x54321234
	
halt
	

	

MOVA,	PUSHA	MOVE	ADDRESS,	PUSH	ADDRESS
	
Purpose calculate	address	of	quantity

Format
opcode	src.ax,	dst.wl																																								MOVA
opcode	src.ax																																																			PUSHA

Operation
dst	ß	src;																																																								MOVA
-(SP)	ß	src;																																																				PUSHA

Condition	codes

N	ß	result	LSS	0;
Z	ß	result	EQL	0;
V	ß	0;
C	ß	C;

Exceptions None

Opcodes

9E								MOVAB																						Move	Address	Byte
3E								MOVAW																				Move	Address	Word
DE							MOVAL																						Move	Address	Long
DE							MOVAF																						Move	Address	Floating
7E								MOVAQ																					Move	Address	Quad
7E								MOVAD																					Move	Address	Double
9F								PUSHAB																					Push	Address	Byte
3F								PUSHAW																				Push	Address	Word
DF							PUSHAL																					Push	Address	Long
DF							PUSHAF																					Push	Address	Floating
7F								PUSHAQ																				Push	Address	Quad
7F								PUSHAD																					Push	Address	Double

Description

For	MOVA,	the	destination	operand	is	replaced	by	the
source	operand	which	is	an	address.	For	PUSHA,	the
source	operand	is	pushed	on	the	stack.	The	context	in
which	the	source	operand	is	evaluated	is	given	by	the

data	type	of	the	instruction.	The	operand	whose	address
replaces	the	destination	operand	is	not	referenced.

Notes

1.	The	source	operand	is	of	address	access	type	which
causes	the	address	of	the	specified	operand	to	be	moved.
2.	PUSHAx	is	equivalent	to	MOVAx	src,	-(SP),	but	is
shorter.

	
	
Example	1
	
.text
	
main:	.word	0
						moval	myString,	r0
						pushl	r0
						calls	$1,	.puts
	
						pushl	$0
						calls	$1,	.exit
	
.data
myString:	.asciz	"Hello,	World"

	
	

	

MOVC		MOVE	CHARACTER
	
Purpose to	move	character	string	or	block	of	memory

Format

3	operands:
opcode	len.rw	srcaddr.ab,	dstaddr.ab																					
	
5	operands:
opcode	srclen.rw,	srcaddr.ab,	fill.rb,	dstlen.rw,	dstaddr.ab

Operation

Copy	len	bytes	from	srcaddr	to	dstaddr																							
MOVC3
	
Copy	min(srclen,	dstlen)	bytes	from	srcaddr	to		MOVC5
dstaddr
If		dstlen	>	srclen	then	fill	the	rest	of	dstaddr	with	fill

Condition	codes

N	ß	srclen	LSS	dstlen;
Z	ß	srclen	EQL	dstlen;
V	ß	0;
C		ß	srclen	LSSU	dstlen;

Exceptions None

Opcodes

28								MOVC3																																		Move	Character	3
Operand
2C							MOVC5																																		Move	Character	5
Operand
In	3	operand	format,	the	destination	string	specified	by
the	length	and	destination	address	operands	is	replaced
by	the	source	string	specified	by	the	length	and	source
address	operands.	In	5	operand	format,	the	destination
string	specified	by	the	destination	length	and	destination
address	operands	is	replaced	by	the	source	string
specified	by	the	source	length	and	source	address

Description operands.	If	the	destination	string	is	longer	than	the
source	string,	the	highest	address	bytes	of	the	destination
are	replaced	by	the	fill	operand.	If	the	destination	string
is	shorter	that	the	source	string,	the	highest	addressed
bytes	of	the	source	string	are	not	moved.	The	operation
of	the	instruction	is	such	that	overlap	of	the	source	and
destination	strings	does	not	affect	the	result.

Notes

1.	After	execution	of	MOVC3:
												R0	=	0
												R1	=	address	of	one	byte	beyond	the	source	string
												R2	=	0
												R3	=	address	of	one	byte	beyond	the	destination
string
												R4	=	0
												R5	=	0
2.	After	execution	of	MOVC5:
												R0	=	number	of	unmoved	bytes	remaining	in
source							string.	R0	is	non-zero	only	if	source	string	is
longer	than										destination	string
												R1	address	of	one	byte	beyond	the	last	byte	in
source			string	that	was	moved
												R2	=	0
												R3	=	address	of	one	byte	beyond	the	destination
string
												R4	=	0
												R5	=	0
3.	MOVC3	is	the	preferred	way	to	copy	one	block	of
memory	to	another.
4.	MOVC5	with	a	0	source	length	operand	is	the
preferred	way	to	fill	a	block	of	memory	with	the	fill
character.
5.	On	MOVC3,	or	if	the	MOVC5	and	the	strings	are	of

equal	length,	then	Z	is	set	and	N,	V,	and	C	are	cleared.

	
	
Example	1
	
.text
main:	.word	0
						movc3	$13,	strHello,	strBuffer
	
						pushal	strBuffer
						calls	$1,	.puts
	
						pushl	$0
						calls	$1,	.exit
	
.data
strHello:			.asciz	"Hello,	World"
strBuffer:	.space	80

	
	
Example	2
	
.text
main:	.word	0
						movc5	$0,	strBuffer,	$'a,	$79,	strBuffer
	
						pushal	strBuffer
						calls	$1,	.puts
	
						pushl	$0
						calls	$1,	.exit
	
.data
strBuffer:	.space	80
	
	

MOVTC			MOVE	TRANSLATED	CHARACTERS
	
Purpose to	move	and	translate	character	string

Format
opcode	srclen.rw,	srcaddr.ab,	fill.rb,	tbladdr.ab,
dstlen.rw,	dstaddr.ab

Operation 	

Condition	codes

N	ß	srclen	LSS	dstlen;
Z	ß	srclen	EQL	dstlen;
V	ß	0;
C	ß	srclen	LSSU	dstlen;

Exceptions None

Opcodes
2E								MOVTC																						Move	Translated
Characters

Description

The	source	string	specified	by	the	source	length	and
source	address	operands	is	translated	and	replaces	the
destination	string	specified	by	the	destination	length	and
destination	address	operands.	Translation	is
accomplished	by	using	each	byte	of	the	source	string	as
an	index	into	a	256-byte	table	whose	zeros	entry	address
is	specified	by	the	table	address	operand.	The	byte
selected	replaces	the	byte	of	the	destination	string.	If	the
destination	string	is	longer	than	the	source	string,	the
highest	addressed	bytes	of	the	destination	string	are
replaced	by	the	fill	operand.	If	the	destination	string
shorter	than	the	source	string,	the	highest	addressed	bytes
of	the	source	string	are	not	translated	and	moved.	The
operation	of	the	instruction	is	such	that	overlap	of	the
source	and	destination	strings	does	not	affect	the	result.	It
the	destination	string	overlaps	the	translation	table,	the
destination	string	is	unpredictable.
1	After	execution:
												R0	=	number	of	translated	bytes	remaining	in
source						string,	R0	is	non-zero	only	if	source	string	is

Notes

longer	than										destination	string.
												R1	=	address	of	one	byte	beyond	the	last	byte	in
Source											string	that	was	translated.
												R2	=	0
												R3	=	address	of	the	translation	table.
												R4	=	0
												R5	=	address	on	one	byte	beyond	the	destination
string

	
	
Example	1
	
	
.text
	
main:	.word	0
	
						movtc	$9,	myString,	$0,	TranslateTable,	$20,	dstString
	
						pushal	dstString
						calls	$1,	.puts
						pushl	$0
						calls	$1,	.exit
	
.data
						myString:	.asciz	"abcd	abcd"
						dstString:	.space	20
	
TranslateTable:
						.space	32
						.byte	32
						.space	97-33
						.byte	'b,	'c,	'd,	'e
	
	

	

MOVTUC	MOVE	TRANSLATED	UNTIL	CHARACTER
	

Purpose to	move	and	translate	character	string,	handling	escape
codes

Format
opcode	srclen.rw,	srcaddr.ab,	esc.rb,	tbladdr.ab,
dstlen.rw,	dstaddr.ab

Operation 	

Condition	codes

N	ß	srclen	LSS	dstlen;
Z	ß	srclen	EQL	dstlen;
V	ß	{terminated	by	escape};
C	ß	srclen	LSSU	dstlen;

Exceptions None

Opcodes
2F								MOVTUC																			Move	Translated	Until
Character

Description

The	source	string	specified	by	the	source	length	and
source	address	operands	is	translated	and	replaces	the
destination/s	specified	by	the	destination	length	and
destination	address	operands.	Translation	is
accomplished	by	using	each	byte	of	the	source	string	as
index	into	a	256-byte	table	Whose	zeros	entry	address	is
specified	by	the	table	address	operand.	The	byte	selected
replaces	the	byte	of	the	destination	string.	Translation
continues	until	a	translated	byte	is	equal	to	the	escape
byte	or	until	the	source	string	or	destination	string	is
exhausted.	if	translation	is	terminated	because	of	escape
the	condition	code	V-bit	is	set;	otherwise,	his	cleared.	if
the	destination	string	overlaps	the	source	string	or	the
table,	destination	string	and	R0	through	R5	are
unpredictable.
1.	After	execution:
R0	=	number	of	bytes	remaining	in	source	string
(including	the	byte	which	caused	the	escape).	R0	is	zero

Notes

only	if	the	entire	source	string	was	translated	and	moved
without	escape.
R1	=	address	of	the	byte	which	resulted	in	destination
string	exhaustion	or	escape;	or	if	no	exhaustion	or
escape,	Rl	=	address	of	one	byte	beyond	the	source
string.
R2	=	0
R3	=	address	of	the	table.
R4	=	number	of	bytes	remaining	in	the	destination	string.
R5	=	address	of	the	byte	in	the	destination	string	which
would	have	received	the	translated	byte	that	caused	the
escape	or	would	have	received	a	translated	byte	if	the
source	string	were	not	exhausted;	or	if	no	exhaustion	or
escape,	R1	=	address	of	one	byte	beyond	the	destination
string.
2.	V	should	be	tested	before	the	V	and	C	condition	codes
to	make	sure	that	an	escape	is	detected	on	the	last
character	of	the	source	string.

	

	

MOVPSL	MOVE	FROM	PSL
	
Purpose obtain	processor	status

Format opcode	dst.wl

Operation dst	ß	PSL;

Condition	codes

N	ß	N;
Z	ß	Z;
V	ß	V;
C	ß	C;

Exceptions none

Opcodes DC							MOVPSL																				Move	from	PSL

Description
The	destination	operand	is	replaced	by	the	processor
status
longword

Notes 	
	
	
Example	1
	
In	the	following	program	we	put	0	in	r0,	and	then	printing	it,	and	printing	the
PSW.
Then	we	put	-1	in	r0	and	print	the	PSW	again.	PSW	will	be	4	and	then	8	(On	the
beginning	the	third	bit	will	be	1,	and	on	the	end	the	fourth	bit	will	be	set).
	
.text
	
main:	.word	0
						#	put	0	in	r0.	Zero	flag	will	raised
						movl	$0,	r0
						movpsl	r1			#	r1	will	contains	the	PSL
						movw	r1,	r2	#	save	only	the	PSW	to	r2
						pushl	r0

						pushl	r2
						pushal	format
						calls	$3,	.printf
					
						#	put	negative	number	in	r0.	Neg	flag	should	rised
						movl	$-1,	r0
						movpsl	r1			#	r1	will	contains	the	PSL
						movw	r1,	r2	#	save	only	the	PSW	to	r2
						pushl	r0
						pushl	r2
						pushal	format
						calls	$3,	.printf
	
						pushl	$0
						calls	$1,	.exit
	
	
format:	.asciz	"PSW	is	%d.	R0	is	%d\n"
	
	
	

	

MOVZ			MOVE	ZERO-EXTENDED
	
Purpose convert	an	unsigned	integer	to	a	wider	unsigned	integer
Format opcode	src.rx,	dst.wy

Operation dst	ß	ZEXT	(src);

Condition	codes

N	ß	0;
Z	ß	dst	EQL	0;
V	ß	0;
C	ß	C;

Exceptions None

Opcodes

9B								MOVZBW						Move	Zero-Extended	Byte	to
Word
9A							MOVZBL								Move	Zero-Extended	Byte	to
Long
3C							MOVZWL							Move	Zero-Extended	Word	to
Long

Description

For	MOVZBW,	bits	7:0	of	the	destination	operand	are
replaced	by	the	source	operand;	bits	15:8	are	replaced	by
zero.	For	MOVZBL,	bits	7:0	of	the	destination	operand
are	replaced	by	the	source	operand;	bits	31:8	are	replaced
by	0.	For	MOVZWL,	bits	15:0	of	the	destination	operand
are	replaced	by	the	source	operand;	bits	31:16	are
replaced	by	0.

	
	
Example	1
	
.text
main:	.word	0
						movb	$255,	r0
						movzbl	r0,	r1
						pushl	r1

						pushal	format
						calls	$2,	.printf
						pushl	$0
						calls	$1,	.exit
	
.data
format:	.asciz	"R1	is	%d"
	

	

MUL					MULTIPLY
	
Purpose perform	arithmetic	multiplication

Format
opcode	mulr.rx,	prod.mx																																		2	operand
opcode	mulr.rx,	muld.rx,	prod.wx																					3	operand

Operation
prod	ß	prod	*	mulr;																																								2	operand
prod	ß	muld	*	mulr;																																								3	operand

Condition	codes

N	ß	prod	LSS	0;
Z	ß	prod	EQL	0;
V	ß	overflow;
C	ß	0;

Exceptions

Integer	overflow
Floating	overflow
Floating	underflow
Reserved	operand

Opcodes

84								MULB2											Multiply	Byte	2	Operand
85								MULB3											Multiply	Byte	3	Operand
A4							MULW2										Multiply	Word	2	Operand
A5							MULW3										Multiply	Word	3	Operand
C4							MULL2											Multiply	Long	2	Operand
C5							MULL3											Multiply	Long	3	Operand
44								MUIF2												Multiply	Floating	2	Operand
45								MULF3											Multiply	Floating	3	Operand
64								MULD2											Multiply	Double	2	Operand
65								MULD3											Multiply	Double	3	Operand
In	2	operand	format,	the	product	operand	is	multiplied	by
the	multiplier	operand	and	the	product	operand	is
replaced	by	the	result.	In	3	operand	format,	the

Description multiplicand	operand	is	multiplied	by	the	multiplier
operand	and	the	product	operand	is	replaced	by	the
result.	In	floating	format,	the	product	operand	result	is
rounded	for	both	2	and	3	operand	format.

Notes

1.	Integer	overflow	occurs	if	the	high	half	of	the	double
length	result	is	not	equal	to	the	sign	extension	of	the	low
half.	On	integer	overflow,	the	product	operand	is
replaced	by	the	low	order	bits	of	the	true	result.
2.	On	a	floating	reserved	operand	fault,	the	product
operand	is	unaffected	and	the	condition	codes	are
unpredictable.
3.	On	floating	underflow,	the	product	operand	is	replaced
by	0.
4.	On	floating	overflow,	the	product	operand	is	replaced
by	an	operand	of	all	bits	0	except	for	a	sign	bit	of	1	(a	re
served	operand).	Nß	1:	Z	ß	0;	V	ß	1;	and	C	ß	0.

	
	
Example	1
	
The	program	multiplies	the	values	stored	in	R1	and	R2	and	put	the	result	in	R3.
	
.text
	
main:	.word	0
						movl	$3,	r1
						movl	$2,	r2
						mull3	r1,	r2,	r3
						pushl	r3
						pushal	format
						calls	$2,	.printf
						pushl	$0
						calls	$1,	.exit
.data
format:	.asciz	"R3	is	%d"

	
	

	

POLY						POLYNOMINAL	EVALUATION
	
Purpose allows	fast	calculation	of	math	functions

Format opcode	arg.rx,	degree.rw,	tbladdr.ab

Operation

result	C		ß	degree;
For	degree	times,	loop
				result	ß	arg	*	result;
												Perform	multiply,	and	retain	an	extended	floating
traction																							of	31	bits	(POLYF)	or	63	bits
(POLYD)
												(the	fraction	is	truncated	before	normalization)
												use	this	result	in	the	following	step
				result	ß	result	+	next	coefficient;
												normalize,	round,	and	check	for	over/underflow
only	after																						the	combined	multiply/add
sequence
		if	overflow	then	trap;
		if	underflow	then	clear	result,	remember	underflow	and
continue	looping;

Condition	codes

N	ß	R0	LSS	0;
Z	ß	R0	EQL	0;
V	ß	{floating	overflow};
C		ß	0;

Exceptions

Floating	overflow
Floating	underflow
Reserved	operand

Opcodes
55								POLYF												Polynomial	Evaluation	Floating
75								POLYD											Polynomial	Evaluation	Double
The	table	address	operand	points	to	a	table	of	polynomial

Description

coefficients.	The	coefficient	of	the	highest	order	term	of
the	polynomial	is	pointed	to	by	the	table	address
operand.	The	table	is	specified	with	lower	order
coefficients	stored	at	in	creasing	addresses.	The	data	type
of	the	coefficients	is	the	same	as	the	data	type	of	the
argument	operand.
The	evaluation	is	carried	out	by	Homer's	method	and	the
contents	of	R0	(R1’R0	for	POLYD)	are	replaced	by	the
result.	The	result	computed	is:
												if	d	=	degree	and	x	=	arg
																								result	=	C[0]	+	x*(C[1]	+	x*(C[2]
+...x*C[d])))
The	unsigned	word	degree	operand	specifies	the	highest
numbered	coefficient	to	participate	in	the	evaluation.
1.	After	execution:
POLYF
R0	=	result
R1	=	0
R2	=	0
R3	=	table	address	+	degree*4	+	4
POLYD
R0	=	high	order	part	of	result
R1	=	low	order	part	of	result
R2	=	0
R3	=	table	address	+	degree	*8	+	8
R4	=	0
R5	=	0
2.	The	multiplication	is	performed	such	that	the	precision
of	the	product	is	equivalent	to	a	floating	point	datum
having	a	31-bit	(63-bit	for	POLYD)	fraction.
3.	If	the	unsigned	word	degree	operand	is	0,	the	result	is
C0.

Notes

4.	If	the	unsigned	word	degree	operand	is	greater	than
31,	a	reserved	operand	exception	occurs.
5.	On	a	reserved	operand	exception:
•	If	PSL<FPD>	=	0,	the	reserved	operand	is	either	the
degree	operand	(greater	than	31),	or	the	argument
operand,	or	some	coefficient.
•	If	PSL<FPD>	=	1,	the	reserved	operand	is	a	coefficient,
and	R3	is	pointing	at	the	value	which	caused	the
exception.
•	The	state	of	the	saved	condition	codes	and	the	other
registers	is	unpredictable.	If	the	reserved	operand	is
changed	and	the	contents	of	the	condition	codes	and	all
registers	are	preserved,	the	fault	is	continuable.
6.	On	floating	underflow	after	the	rounding	operation,
the	temporary	result	is	replaced	by	zero,	and	the
operation	continues.	A	floating	underflow	trap	occurs	at
the	end	of	the	instruction	it	underflow	occurred	during
any	iteration	of	the	computation	loop.	Note	that	the	final
result	may	be	non	zero	if	underflow	occurred	before	the
last	iteration.
7.	On	floating	overflow	after	the	rounding	operation	at
any	iteration	of	the	computation	loop,	the	instruction
terminates	and	causes	a	trap.	On	overflow	the	contents	of
R2	and	R3	(R2	through	R5	for	POLYD)	are
unpredictable.	R0	contains	the	reserved	operand	(minus
0)	and	R1	=	0.
8.	POLY	can	have	both	overflow	and	underflow	in	the
same	instruction.	If	both	occur,	overflow	trap	is	taken;
underflow	is	lost.
9.	If	the	argument	is	zero	and	one	of	the	coefficients	in
the	table	is	the	reserved	operand,	whether	a	reserved
operand	fault	occurs	is	unpredictable.

	

	

POPR					POP	REGISTERS
	
Purpose restore	multiple	registers	from	stack

Format opcode	mask.rw

Operation 	

Condition	codes

N	ß	N;
Z	ß	Z;
V	ß	V;
C	ß	C;

Exceptions None

Opcodes BA							POPR																										Pop	Registers

Description

The	contents	of	registers	whose	number	corresponds	to
set	bits	in	the	mask	operand	are	replaced	by	longwords
popped	from	the	stack.	R[n]	is	replaced	if	mask	<n>	is
set.	The	mask	is	scanned	from	bit	0	to	bit	14.	Bit	15	is
ignored.

Notes

This	instruction	is	similar	to	the	sequence
MOVL	(SP)+,RO
MOVL	(SP)+,R1
…
MOVL	(SP)+,R14
where	only	the	masked	registers	are	popped.

	
	

	

PUSHL			PUSH	LONG
	
Purpose push	source	operand	onto	stack
Format opcode	src.rl

Operation -(SP)	ß	src;

Condition	codes

N	ß	src	LSS	0;
Z	ß	src	EQL	0;
V	ß	0:
C	ß	C;

Exceptions None

Operation	codes DD							PUSHL												Push	Long

Description The	long	word	source	operand	is	pushed	on	the	stack.

Notes PUSHL	is	equivalent	to	MOVL	src,	-(SP),	but	is	shorter.

	
	
Example	1
	
The	following	program	pushes	the	number	100	to	the	stack,	and	then	reads	it
from	there.	r1	will	contain	100	at	the	end	of	this	program.
	
.text
	
main:	.word	0
						pushl	$100
						movl	(sp),	r1
						pushl	r1
						pushal	format
						calls	$2,	.printf
	
						pushl	$0
						calls	$1,	.exit
	
	
format:	.asciz	"R1	is	%d\n"

	

	

PUSHR			PUSH	REGISTERS
	
Purpose save	multiple	registers	or	stack

Format opcode	mask.rw

Operation 	

Condition	codes

N	ß	N;
Z	ß	Z;
V	ß	V;
C	ß	C;

Exceptions None

Opcodes BB							PUSHR																								Push	Registers

Description

The	contents	of	registers	whose	number	corresponds	to
set	bits	in	the	mask	operand	are	pushed	on	the	stack	as
long	words.	R[n]	is	pushed	if	mask	<n>	is	set.	The	mask
is	scanned	from	bit	14	to	bit	0.	Bit	15	is	ignored.

Notes

1.	The	order	of	pushing	is	specified	so	that	the	contents
of	higher	numbered	registers	are	stored	at	higher	memory
addresses.	This	results	in	a	double	floating	datum	stored
in	adjacent	registers	being	stored	by	PUSHR	in	memory
in	the	correct	order
2.	This	instruction	is	similar	to	the	sequence
PUSHL												R14
PUSHL												R13
...
PUSHL												R0
where	only	the	masked	registers	are	pushed.

	
Example	1:
	

The	following	program	pushes	r0	and	r1	to	the	stack,	and	then	print	it.
	
.text
main:	.word	0
						movl	$1,	r0
						movl	$2,	r1
						pushr	$3
						pushal	format
						calls	$3,	.printf
						pushl	$0
						calls	$1,	.exit
.data
format:	.asciz	"%d	%d\n"

	

	

REMQUE										REMOVE	ENTRY	IN	QUEUE
	
Purpose remove	entry	from	head	or	tail	of	queue

Format opcode	entry.ab,	addr.wl

Operation

If	(all	memory	accesses	can	be	completed)	then
begin
												((entry+4))	ß	(entry);	forward	link	of	predecessor
												((entry)+4)	ß	(entry+4);										backward	link	of
successor
												addr	ß	entry;
end;
else
begin
												{backup	instruction};															
												{initiate	fault}																											
end;

Condition	codes

N	ß	(entry)	LSS	(entry+4);
Z	ß	(entry)	EQL	(entry+4);					removed	last	entry
V	ß	entry	EQL	(entry+4);							no	entry	to	remove
C	ß	(entry)	LSSU	(entry+4);

Exceptions None

Opcodes
OF							REMQUE																				Remove	Entry	from
Queue
The	queue	entry	specified	by	the	entry	operand	is
removed	from	the	queue.	The	address	operand	is
replaced	by	the	ad	dress	of	the	entry	removed.	If	there
was	no	entry	in	the	queue	to	be	removed,	the	condition
code	V	bit	is	set;	otherwise	it	is	cleared,	If	the	queue	is
empty	at	the	end	of	this	instruction,	the	condition	code	Z-

Description bit	is	set;	otherwise	it	is	cleared.	The	removal	is	a	non-
interruptible	operation.	Before	performing	any	part	of	the
operation,	the	processor	validates	that	the	entire
operation	can	be	completed.	This	ensures	that	if	a
memory	management	exception	occurs,	the	queue	is	left
in	a	consistent	state.

Notes

1.	Because	the	removal	is	non-interruptible,	processes
running	in	kernel	mode	can	share	queues	with	interrupt
ser	vice	routines.
2.	The	INSQUE	and	REMQUE	instructions	are
implemented	such	that	cooperating	software	processes	in
a	single	processor	may	access	a	shared	list	without
additional	synchronization	if	insertions	and	removals	are
only	at	the	head	or	tail	of	the	queue.
3.	During	access	validation,	any	access	which	cannot	be
completed	results	in	a	memory	management	exception
even	though	the	queue	removal	is	not	started.

	
	
	
Example	1
	
	
.text
main:	.word	0
						remque	head,temp		#removing	an	member	from	empty	queue	works!
						insque	mem1,head
						insque	mem2,head
						insque	mem3,mem2		#	now	the	queue	should	be	mem2,mem3,mem1
						remque	mem3,temp		#	now	queue	should	ne	mem2,mem1
						remque	mem2,temp		#	only	mem1	left
						remque	mem1,temp		#	empty	again
						pushl	$0
						calls	$1,.exit
	
	
.data
#	queue	head.	first	long	is	the	head	pointer,	second	long	is	the	tail	pointer.
#	initialize	to	empty	queue,	i.e.	both	pointers	point	to	the	head.
head:	.long	head,head
#	queue	menebers.	first	long	is	NEXT	pointer,	second	long	is	the	PREV	pointer
mem1:	.long	0,0

mem2:	.long	0,0
mem3:	.long	0,0
	
temp:	.long	0,0
	

	

REI	-	RETURN	FROM	EXCEPTION	OR	INTERRUPT
	
Purpose exit	from	an	exception	or	interrupt	service	routine

Format opcode

Operation

tmp1ß(SP)+;
tmp2ß(SP)+;
if	{	tmp2	<current_mode>	LSSU	<current_mode>	}	or
{	tmp2<IS>	EQLU	1	and	PSL<IS>	EQLU	0}	or
{	tmp2<IS>	EQLU	1	and	tmp2<current_mode>	NEQU	0
}	or
{	tmp2<IS>	EQLU	1	and	tmp2<IPI>	EQLU	0}	or
{	tmp2<IPL>	GRTU	0	and	tmp2<current_mode>	NEQU
0	}	or
{	tmp2	<prev_mode>	LSSU	<current_mode>	}	or
{	tmp2<IPL>	GRTU	PSL<IPL>	}	or
{	tmp2<PSL_MBZ>	NEQU	0}	then
{reserved	operand	fault};
if	{	tmp2<CM>	EQLU	1}	and	{	tmp2<FPD,	IS,	DV,	FU,
IV>	NEQU	0	}	or	{	tmp2<current_mode>	NEQU	3}}
then
{reserved	operand	fault};
{	disallow	interrupts};
if	PSL<IS>	EQLU	1	then	ISPßSP
else	PSL<current_mode>_SPßSP;
if		PSL<TP>	EQLU	1	then	tmp<TP>ß1
PCßtmp1;
PSLßtmp2;
N	ß	save	PSL<3>;

Condition	codes Z	ß	save	PSL<2>;
V	ß	save	PSL<1>;
C	ß	save	PSL<0>;

Exceptions reserved	operand

Opcodes 02								REI																		Return	from	Exception	or	Interrupt

Description

A	longword	is	popped	from	the	current	stack	and	held	in	a
temporary	PC.	A	second	longword	is	popped	from	the
current	stack	and	held	in	a	temporary	PSL.	Validity	of	the
popped	PSL	is	checked.	The	current	stack	pointer	is	saved
and	a	new	stack	pointer	is	selected	according	to	the	new
PSL	current	mode	and	IS	fields.	The	level	of	the	highest
privilege	AST	is	checked	against	the	current	access	mode
to	see	whether	a	pending	AST	can	be	delivered.
Execution	resumes	with	the	instruction	being	executed	at
the	time	of	the	exception	or	interrupt.	Any	instruction
look	ahead	in	the	processor	is	reinitialized.

Notes

1.	The	exception	or	interrupt	service	routine	is	responsible
for	restoring	any	registers	saved	and	removing	any
parameters	from	the	stack.
	
2.	As	usual	for	faults,	any	access	violation	or	translation
not	valid	conditions	on	the	stack	pops	restore	the	stack
pointer	and	fault.
	
3.	The	non-interrupt	stack	pointers	may	be	fetched	and
stored	by	hardware	either	in	internal	registers	or	in	their
allocated	slots	in	the	Process	Control	Block.	Only
LDPCTX	and	SVPCTX	always	fetch	and	store	in	the
Process	Control	Block.	MFPR	and	MTPR	always	fetch
and	store	the	pointers	whether	in	registers	or	the	Process
Control	Block.

	
	
	

	

RET					RETURN	FROM	PROCEDURE
	

Purpose
transfer	control	from	a	procedure	back	to	calling
program

Format opcode

Operation

{restore	SP	from	FP};
{restore	registers};
{drop	stack	alignment};
{restore	PSW};
{If	CALLS,	remove	arglist};

Condition	codes

N	ß	restored	PSW	<3>;
Z	ß	restored	PSW	<2>;
V	ß	restored	PSW	<1>;
C	ß	restored	PSW	<0>;

Exceptions reserved	operand

Opcodes

SP	is	replaced	by	FP	plus	4.	A	longword	containing
stack	alignment	bits	in	bits	31:30,	a	CALLS/CALLG
flag	in	bit	29,	the	low	12	bits	of	the	procedure	entry
mask	in	bits	27:16,	and	a	saved	in	a	temporary	PC,	FP,
and	AP	are	replaced	by	long-	words	popped	from	the
stack.	A	register	restore	mask	is	formed	from	bits	27:16
of	the	temporary.	Scanning	from	bit	0	to	bit	11	of	the
restore	mask,	the	contents	of	registers	whose	number	is
indicated	by	set	bits	in	the	mask	are	replaced	by
longwords	popped	from	the	stack.	SP	is	replaced	by	the
sum	of	SP	and	bits	31:30	of	the	temporary.	PSW	is
replaced	by	bits	15:0	of	the	temporary.	If	bit	29	in	the
temporary	is	1	(indicating	that	the	procedure	was	called
by	CALLS),	a	longword	containing	the	number	of
arguments	is	popped	from	the	stack.	Four	times	the
unsigned	value	of	the	low	byte	of	this	longword	is	added
to	SP	and	SP	is	replaced	by	the	result.

Description

1.	A	reserved	operand	fault	occurs	if	temporary1	<15:8>
NEG	0.
2.	On	a	reserved	operand	fault,	the	condition	codes	are
Unpredictable.	The	value	of	temporary1	<28>	is
ignored.
3.	The	procedure	calling	standard	and	condition	handling
facility	assume	that	procedures	which	return	a	function
value	or	a	status	code	do	so	in	R0	or	R0	and	R1.

	
	
Example	1
	
The	following	program	demonstrate	3	functions	calls.
	
.text
main:	.word	0
						calls	$0,	func1
						calls	$0,	func1
						calls	$0,	func1
	
						pushl	$0
						calls	$1,	.exit		
	
func1:						.word	0
	
						movl	$99,	r1
						pushl	r1
						pushal	format
						calls	$2,	.printf
						ret
.data
format:	.asciz	"R1	is	%d\n"

	
	

	

ROTL						ROTATE	LONG
	
Purpose rotate	of	integer

Format opcode	cnt.rb,	src.rl,	dst.wl

Operation dst	ß	src	rotated	cnt	bits;

Condition	codes

N	ß	dst	LSS	0;
Z	ß	dst	EQL	0;
V	ß	0;
C	ß	C;

Exceptions None

Opcodes 9C							ROTL														Rotate	Long

Description

The	source	operand	is	rotated	logically	by	the	number	of
bits	specified	by	the	court	operand	and	the	destination
operand	is	replaced	by	the	result.	The	source	operand	is
unaffected.	A	positive	count	operand	rotates	to	the	left.	A
negative	count	operand	rotates	to	the	right.	A	0	count
operand	replaces	the	destination	operand	with	the	source
operand.

Notes 	

	
	
Example	1
	
.text
.word	0
movl	$0xff,	r1
rotl	$8,	r1,	r2									#	r2	is	0xff00
	
movl	$0xff000000,	r1
rotl	$8,	r1,	r2									#	r2	is	0xff
	
movl	$0xff,	r1
rotl	$-8,	r1,	r2								#	r2	is	$0xff000000

	
halt
	
	

	

RSB					RETURN	FROM	SUBROUTINE
	
Purpose return	control	from	subroutine

Format opcode

Operation PC	ß	(SP)	+;

Condition	codes

N	ß	N;
Z	ß	Z;
V	ß	V;
C	ß	C;

Exceptions none

Opcodes 05								RSB																	Return	from	Subroutine

Description PC	is	replaced	by	a	longword	popped	from	the	stack.

Notes

1.	RSB	is	used	to	return	from	subroutines	called	by	the
BSBB,	BSBW	and	JSB	instructions.
2.	RSB	is	equivalent	to	JMP	*(SP)	+,	but	is	one	byte
shorter.

	
	
	

	

SBWC	SUBTRACT	WITH	CARRY
	
Purpose perform	extended-precision	subtraction

Format opcode	sub.rl,	dif.ml

Operation
dif	ß	dif	-	sub	-	C;
	

Condition	codes

N	ß	dif	LSS	0;
Z	ß	dif	EQL	0;
V	ß	{integer	overflow};
C	ß	{borrow	from	most	significant	bit};

Exceptions Integer	overflow

Opcodes D9							SBWC	Subtract	with	Carry

Description
The	subtrahend	operand	and	the	contents	of	the	condition
code	C	bit	are	subtracted	from	the	difference	operand	and
the	difference	operand	is	replaced	by	the	result.

Notes

1.	On	overflow,	the	difference	operand	is	replaced	by	the
low	order	bits	of	the	true	result.
2.	The	two	subtractions	in	the	operation	are	performed
simultaneously.

	
	
Example	1
	
.text
	
main:	.word	0
	
						movl	$10,	r1
						movl	$3,	r2
						sbwc	r2,	r1	#	r1	is	7
	
						movl	$10,	r1
						movl	$3,	r2

						bispsw	$1
						sbwc	r2,	r1	#	r1	is	6
	
						pushl	$0
						calls	$1,	.exit

	
	
Example	2
	
.text
	
main:	.word	0
	
						movl	$0x80000000,	r1
						movl	$1,	r2
						sbwc	r2,	r1							#	V	=	1
	
						movl	$0x80000001,	r1
						movl	$1,	r2
						bispsw	$1
						sbwc	r2,	r1	#	V	=	1
	
						pushl	$0
						calls	$1,	.exit
	
	

	

SOB					SUETRACT	ONE	AND	BRANCH
	
Purpose decrement	integer	loop	count	and	loop

Format opcode	index.ml,	displ.bb

Operation

index	ß	index	-1:																																																								
SOBGEQ
If	index	GEQ	0	then
PC	ß	PC	+	SEXT	(displ);
index	ß	index-1:																																																									
SOBGTR
If	index	GTR	0	then
PC	ß	PC	+	SEXT	(displ);

Condition	codes

N	ß	index	LSS	0;
Z		ß	index	EQL	0;
V	ß	{integer	overflow};
C	ß	C;

Exceptions integer	overflow

Opcodes

F4								SOBGEO																				Subtract	One	and	Branch
Greater																																													Than	or	Equal
F5								SOBGTR																					Subtract	One	and	Branch
Greater																																													Than

Description

One	is	subtracted	from	the	index	operand	and	the	index
operand	is	replaced	by	the	result.	On	SOBGEQ,	If	the
index	operand	is	greater	than	or	equal	to	0,	the	branch	is
taken.	On	SOBGTR,	if	the	index	operand	is	greater	than
0,	the	branch	is	taken,	if	the	branch	is	taken,	the	sign-
extended	branch	displacement	is	added	to	the	PC	and	the
PC	is	replaced	by	the	result.
1.	Integer	overflow	occurs	if	the	index	operand	before
subtraction	is	the	largest	negative	integer.	On	overflow,

Notes the	index	operand	is	replaced	by	the	largest	positive
integer,	and	thus	the	branch	is	taken.
2.	The	C-bit	is	unaffected.

	
	
Example	1
	
The	program	makes	a	loop	that	prints	the	numbers	10	down	to	1	on	the	screen.
	
.text
main:	.word	0
						movl	$10,	r1
	
prnLoop:
						pushl	r1
						pushal	format
						calls	$2,	.printf
						sobgtr	r1,	prnLoop
	
						pushl	$0
						calls	$1,	.exit
	
.data
format:	.asciz	"%d\n"

	
	
Example	2
	
The	example	shows	the	case	when	overflow	occurs	on	SOBGEQ:
	
.text
main:	.word	0
						movl	$0x80000000,	r2
	
prnLoop:
						pushl	r2
						pushal	format
						calls	$2,	.printf
						sobgeq	r2,	prnLoop	#	overflow	on	the	first	time	we	reach	this																								#	line
	
						pushl	$0

						calls	$1,	.exit
	
.data
format:	.asciz	"%ld\n"

	
	

	

SCANC	SPANC										SCAN	CHARACTERS,	SPAN
CHARACTERS

	
Purpose to	find	or	skip	a	set	of	characters	in	character	string

Format opcode	len.rw,	addr.ab,	tbladdr.ab,	mask.rb

Operation
Mask	test	each	character	until	zero	(SPANC)	or	nonzero
(SCANC).

Condition	codes

N	ß	0;
V	ßR0	EQL	0;
V	ß	0;
C	ß	0;

Exceptions None

Opcodes
2A							SCANC											Scan	Characters
2B								SPANC											Span	Characters

Description

The	bytes	of	the	string	specified	by	the	length	and	address
operands	are	successively	used	to	index	into	a	256	byte
table	whose	zeroth	entry	address	is	specified	by	the	table
address	operand.	The	byte	selected	from	the	table	is
ANDed	with	the	mask	operand.	The	operation	continues
until	the	result	of	the	AND	is	non-zero	for	the	SCANC
instruction	or	zero	for	the	SPANC	instruction	or	until	all
the	bytes	of	the	string	have	been	exhausted.	If	a	non-zero
AND	result	for	the	SCANC	or	a	zero	result	for	the	SPANC
is	detected,	the	condition	code	Z-bit	is	cleared;	otherwise,
the	Z-bit	is	set.
1.	After	execution:
R0	=	number	of	bytes	remaining	in	the	string	(include	the
byte	which	produced	the	non-zero	AND	result	for	SCANC
or	zero	result	for	SPANC).
R0	is	zero	only	if	there	was	a	zero	AND	result	for	SCANC

Notes
or	a	non-zero	result	for	SPANC.
R1	=	address	of	the	byte	which	produced	non-zero	AND
result	for	SCANC	or	a	zero	AND	result	for	SPANC;	Or,	if
zero	result.,	R1	=	address	of	one	byte	beyond	the	string.
R2	=	O
R3	=	address	of	the	table
2.	If	the	string	has	zero	length,	condition	code	z	is	set	just
as	though	the	entire	string	were	scanned	(spanned).

	

	

SUB					SUBTRACT
	
Purpose perform	arithmetic	subtraction

Format
opcode	sub.rx,	dif.mx																																							2	operand
opcode	sub.rx,	min.rx,	dif.wx																												3	operand

Operation
dif	ß	dif	-	sub;																																					2	operand
dif	ß	min	-	sub;																																															3	operand

Condition	codes

N	ß	dif	LSS	0;
Z	ß	dif	EQL	0;
V	ß	overflow;
C	ß	{borrow	from	most	significant	bit}(integer);
C	ß	0	(floating);

Exceptions

Integer	overflow
Floating	overflow
Floating	underflow
Reserved	operand

Opcodes

82								SUBB2												Subtract	Byte	2	Operand
83								SUBB3												Subtract	Byte	3	Operand
A2							SUBW2											Subtract	Word	2	Operand
A3							SUBW3											Subtract	Word	3	Operand
C2							SUBL2												Subtract	Long	2	Operand
C3							SUBL3												Subtract	Long	3	Operand
42								SUBF2												Subtract	Floating	2	Operand
43								SUBF3												Subtract	Floating	3	Operand
62								SUBD2												Subtract	Double	2	Operand
63								SUBD3												Subtract	Double	3	Operand
In	2	operand	format,	the	subtrahend	operand	is

Description
subtracted	from	the	difference	operand	and	the	difference
operand	is	replaced	by	the	result.	In	3	operand	format,
the	subtrahend	operand	is	subtracted	from	the	minuend
operand	and	the	difference	operand	is	replaced	by	the
result.	In	floating	format,	the	result	is	rounded.

Notes

1.	Integer	overflow	occurs	if	the	input	operands	to	the
subtract	are	of	different	signs	and	the	sign	of	the	result	is
the	sign	of	the	subtrahend.	On	overflow,	the	difference
operand	is	replaced	by	the	low	order	bits	of	the	true
result.
2.	On	a	floating	reserved	operand	fault,	the	difference
operand	unaffected	and	the	condition	codes	are
unpredictable.
3.	On	floating	underflow,	the	difference	operand	is
replaced	by	0.
4.	On	floating	overflow,	the	difference	is	replaced	by	an
operand	of	all	0	bits	except	for	a	sign	bit	of	1	(a	reserved
operand).	N	ß	1;	Z	ß	0;	V	ß	1;	and	C	ß	0.

	
	
	
Example	1
	
Flags	Example:
	
.text
	
main:	.word	0
movb	$0x82,	r0
subb2	$10,	r0					#	N	=	0,	V	=	1
	
movw	$0x8002,	r0
subw2	$10,	r0					#	N	=	0,	V	=	1
	
movw	$0x8002,	r0
subl2	$10,	r0					#	N	=	0,	V	=	0
	
movl	$0x80000002,	r0
subl2	$10,	r0					#	N	=	0,	V	=	1

	
movb	$0x0,	r0
subb2	$10,	r0					#	N	=	1,	C	=	1
	
movw	$0x0,	r0
subw2	$10,	r0					#	N	=	1,	C	=	1
	
movl	$0x0,	r0
subl2	$10,	r0					#	N	=	1,	C	=	1
	
pushl	$0
calls	$1,	.exit
	

	

TST						TEST
	
Purpose arithmetic	compare	of	a	scalar	to	0.
Format opcode	src.rx

Operation src	ß	0;

Condition	codes

N	ß	src	LSS	0;
Z	ß	src	EQL	0;
V	ß	0;
C	ß	0;

Exceptions None	(integer);	Reserved	operand	(floating	point)

Opcodes

95								TSTB			Test	Byte
B5								TSTW		Test	Word
D5							TSTL			Test	Long
53								TSTF			Test	Floating
73								TSTD			Test	Double

Description
The	condition	codes	are	affected	according	to	the	value
of	the	source	operand.

Notes
1.	TSTx	src	is	equivalent	to	CMPx	src,	$0,	but	is	shorter.
2.	On	a	floating	reserved	operand,	the	condition	codes
are	unpredictable.

	
	
Example	1
	
.text
	
main:
						.word	0
						movl	$0,	r0
						tstl	r0
						movpsl	r1
						pushl	r1
						pushal	format

						calls	$2,	.printf
	
						pushl	$0
						calls	$1,	.exit
	
.data
format:	.asciz	"PSL	is	%d\n"
	
	

	

XOR					EXCLUSIVE	OR
	
Purpose perform	logical	exclusive	OR	of	two	integers

Format
opcode	mask.rx,	dst.mx																								2	operand
opcode	mask.rx,	src.rx,	dst.wx	3	operand

Operation
dst	ß	dst	XOR	mask;																										2	operand
dst	ß	src	XOR	mask;																										3	operand

Condition	codes

N	ß	dst	LSS	0;
Z	ß	dst	EQL	0;
V	ß	0;
C	ß	C;

Exceptions None

Opcodes

8C							XORB2											Exclusive	OR	Byte	2	Operand
8D							XORB3											Exclusive	OR	Byte	3	Operand
AC							XORW2										Exclusive	OR	Word	2	Operand
AD							XORW3										Exclusive	OR	Word	3	Operand
CC							XORL2												Exclusive	OR	Long	2	Operand
CD							XORL3												Exclusive	Or	Long	3	Operand

Description

In	2	operand	format,	the	mask	operand	is	XORed	with
the	destination	operand	and	the	destination	operand	is
replaced	by	the	result.	In	3	operand	format,	the	mask
operand	is	XORed	with	the	source	operand	and	the
destination	operand	is	re	placed	by	the	result.

	
	
	
Example	1
	

Simple	example	of	XORL3:
	
.text
	
main:	.word	0
movl	$0xF0F0F0F0,	r5
xorl3	$0x0A0B0C0D,	r5,	r6
pushl	r6
pushal	format
calls	$2,	.printf
	
pushl	$0
calls	$1,	.exit
	
.data
format:	.asciz	"%lX\n"

	
The	program's	output	is	FAFBFCFD.
	
Example	2
	
XORW3	example:
	
.text
	
main:	.word	0
movw	$0xF0F0,	r5
xorw3	$0x0FF0,	r5,	r6
pushl	r6
pushal	format
calls	$2,	.printf
	
pushl	$0
calls	$1,	.exit
	
.data
format:	.asciz	"%lX\n"

	
Program's	output	is	FF00.
	

	
Example	3
	
Flags	raised	by	XOR	commands:
	
.text
	
main:	.word	0
movw	$0xF0F0,	r5
xorw3	$0x0FF0,	r5,	r6									#	N	=	1
	
movl	$0xF0F00000,	r5
xorl3	$0x0FF00000,	r5,	r6					#	N	=	1
	
movb	$0xF0,	r5
xorb3	$0x0F,	r5,	r6											#	N	=	1
	
movb	$0x00,	r5
xorb3	$0x0F,	r5,	r6											#	N	=	0
	
movb	$0xFF,	r5
xorb3	$0xFF,	r5,	r6											#	N	=	0,	Z	=	1
	
movw	$0xF0F0,	r5
xorw2	$0x0FF0,	r5													#	N	=	1
	
movl	$0xF0F00000,	r5
xorl2	$0x0FF00000,	r5									#	N	=	1
	
movb	$0xF0,	r5
xorb2	$0x0F,	r5															#	N	=	1
	
movb	$0x00,	r5
xorb2	$0x0F,	r5															#	N	=	0
	
movb	$0xFF,	r5
xorb2	$0xFF,	r5															#	N	=	0,	Z	=	1
	
pushl	$0
calls	$1,	.exit
	
.data
format:	.asciz	"%X\n"

	

Assembler's	Directives
	
The	VAX-11	assembler	contains	many	directives.	Directives	are	special
commands	that	not	always	translated	to	code,	that	give	different	instruction	to
the	assembler.

	

.ASCIC	-	String	declaration
	
A	character	array	is	created	by	translating	the	ASCII	string	in	the	instruction:
	
.asciz				"String	inside	brackets"
	
This	instruction	is	identical	to	.ascii	except	for	the	fact	that	the	first	byte	of	the
string	contains	its	size.	Therefore	.ascic	is	limited	to	strings	with	less	than	256
characters
	
backslash	('\')	followed	by	a	character	or	combination	of	characters,	translate	the
sequence	to	special	chars:
	
\n									new-line																							\t		tab
\b									backspace																				\r		carriage	return
\\										backslash																					""		reverse	commas
\ddd					byte	value	in	octal	notation
\xdd					byte	value	in	hex			notation
	

	

.ASCII	-	String	declaration
	
A	character	array	is	created	by	translating	the	ASCII	string	in	the	instruction:
	
.ascii					"String	inside	brackets"
	
	
backslash	('\')	followed	by	a	character	or	combination	of	characters,	translate	the
sequence	to	special	chars:
	
\n									new-line																							\t		tab
\b									backspace																				\r		carriage	return
\\										backslash																					""		reverse	commas
\ddd					byte	value	in	octal	notation
\xdd					byte	value	in	hex			notation
	

	

.ASCIZ	-	String	declaration
	
A	character	array	is	created	by	translating	the	ASCII	string	in	the	instruction:
	
.asciz				"String	inside	brackets"
	
This	instruction	is	identical	to	.ascii	except	for	the	char	#0	added	at	the	end	of
the	string.	(a	single	byte	containing	zero)
	
	
backslash	('\')	followed	by	a	character	or	combination	of	characters,	translate	the
sequence	to	special	chars:
	
\n									new-line																							\t		tab
\b									backspace																				\r		carriage	return
\\										backslash																					""		reverse	commas
\ddd					byte	value	in	octal	notation
\xdd					byte	value	in	hex			notation
	

	

.BYTE	-	Byte	assignment
	
Assign	a	(single)	Byte	to	a	value	of	an	Expression,	by	the	instruction:
	
.byte					Expression	[,Expression...]
	
A	Byte	is	8	contiguous	bits	starting	on	an	addressable	byte	boundary.	The	bit	are
numbered	from	the	right	0	through	7.
	
Range:		unsigned	byte						0	..	255
												signed			byte			-128	..	127

	

.DATA	-	Data	code	segment
	
This	instruction	indicates	that	the	following	text	(source)	should	be	translated
into	numeric	&	char.	Data,	rather	then	Instructions.
No	expression	follows	this	statement.
	

	

.ENTRYPOINT	-	Define	the	starting	address	of	the	program.
	
Every	VAX11	program	starts	at	address	0	or	on	label	'main'	address.
.entrypoint	allows	the	user	to	define	other	label	or	address	for	the	starting	of	the
program.
	
Format:
.entrypoint	Label/Address
	
Example:
	
.text
	
.entrypoint	start
	
.org	100
start:	.word	0
						pushal	hello_str
						calls	$1,	.puts
					
						pushl	$0
						calls	$1,	.exit
	
.data
hello_str:	.asciz	"Hello,	World"

	
Please	note	that	if	we	define	address	as	starting	point,	for	example:
".entrypoint	0x100",	the	actual	running	of	the	program	will	start	on	0x102,	after
the	mask	word.
	

	

.INT	-	Integer	assignment
	
Assign	a	(single)	signed-Word	to	a	value	of	an	Expression,	by	the	instruction:
	
.int		Expression	[,Expression...]
	
An	Integer	is	2	contiguous	bytes	starting	on	an	arbitrary	byte	boundary.
The	bits	are	numbered	from	the	right	0	through	15.
	
Range	:						int		-32,768	..	32,767
	

	

.LONG	-	Long	assignment
	
Assign	a	(single)	Long	Word	to	a	value	of	an	Expression,	by	the	instruction:
	
.long		Expression	[,Expression...]
	
A	Long	Word	is	4	contiguous	bytes	starting	on	an	arbitrary	byte	boundary.
The	bits	are	numbered	from	the	right	0	through	31.
	
Range	:		signed					-2,147,483,648	..
																		..	2,147,483,647
									unsigned		0	..	4,294,967,295
	

	

.ORG	-	Fill	at	address
	
.ORG	tells	the	assembler	to	locate	the	next	machine	code	on	the	position	specific
by	the	.org	instruction.	for	example:	.ORG	100	tells	the	assembler	to	put	the	next
instruction	after	the	.org	directive	at	address	100.
	
Format:
.org	Address
	

	

.QUAD	-	Quadword	storage	directive
	
.QUAD	generates	64	bits	(8	bytes)	of	binary	data.
	
Format:
.quad	Expression	[,Expression...]
	
	

	

.SET	-	Symbol	declaration
	
An	Expression	is	assigned	to	a	symbol	Name	by	the	instruction:
	
.set							Name	,	Expression
	
Normally	the	Expression	is	Constant	-	an	address,	a	value		etc.
	
	

	

.SPACE	-	Byte	Array	of	Nulls
	
An	array	of	the	size	Expression	bytes	is	cleared	(to	zero)	in	the	memory	by	the
instruction:
	
.space		Expression
	
	
This	instruction	usually	defines	an	array	of	bytes,	words	or	characters.
	
	

.TEXT	-	Text	code	segment
	
This	instruction	indicates	that	the	following	text	(source)	should	be	translated
into	opcode	&	operands,	rather	then	Data.
This	instruction	must	appear	at	the	first	line	of	source.	No	expression	follows
this	statement.
	

	

.WORD	-	Word	assignment
	
Assign	a	(single)	Word	to	a	value	of	an	Expression,	by	the	instruction:
	
.Word		Expression	[,Expression...]
	
A	word	is	2	contiguous	bytes	starting	on	an	arbitrary	byte	boundary.
The	bits	are	numbered	from	the	right	0	through	15.
	
Range	:						word					0	..	65,535
	

	

circle
	
circle	draws	a	circle	in	the	current	drawing	color.
	
Gets:			OnStack:										X,	Y																	-	Center	point	of	the	circle
																																				radius															-	Radius	of	the	circle
Returns:										On	r0:	0	on	success,	-1	on	failure
	
	

	

cleardevice	-	clears	the	graphics	screen
	
Clears	the	graphics	screen
	
Gets:															Nothing
Returns:										On	r0:	0,	-1	on	failure
	

	

closegraph	-	Shuts	down	the	graphics	system
	
Shuts	down	the	graphics	system
	
Gets:															Nothing
Returns:										On	r0:	0,	-1	on	failure
Remarks:								closegraph	deallocates	all	memory	allocated	by	the	graphics

system.	It
then	restores	the	screen	to	the	mode	it	was	in	before	you	called
initgraph.

	
	

	

getmaxx,	getmaxy
	
Returns	maximum	x	or	y	screen	coordinate
	
Gets:															Nothing
Returns:										On	r0:	maximum	x	or	y	screen	coordinate
	
	

	

Initgraph	-	Initializes	the	graphics	system
	
Initializes	the	graphics	system
	
Gets:															Nothing
Returns:										On	r0:	0,	-1	on	failure
Remarks:								To	start	the	graphics	system,	you	must	first	call	initgraph.
	
	

	

line	-	draws	line
	
line	draws	a	line	between	two	specified	points.
line	draws	a	line	from	(x1,	y1)	to	(x2,	y2)	using	the	current	color.
	
Gets:															x1,	y1,	x2,	y2	on	stack.
Returns:										On	r0	-	0	on	success,	-1	on	error
	
Example:
	
.text
.word	0
calls	$0,	.initgraph
pushl	$0
pushl	$0
pushl	$720
pushl	$424
calls	$4,	.line

	
	

	

outtextxy
	
outtextxy	displays	a	string	at	the	specified	location	(graphics	mode)
outtextxy	displays	textstring	in	the	viewport	at	the	position	(x,	y)
	
Gets:															Text,	X,	Y
Returns:										On	r0:	0	on	success,	-1	on	failure
	

	

putpixel
	
putpixel	plots	a	pixel	at	a	specified	point.
	
Gets:															X,	Y	on	stack
Returns:										On	r0:	0	on	success,	-1	on	failure
	
	

	

rectangle	-	Draws	a	rectangle
	
Draws	a	rectangle	(graphics	mode)
	
Gets:															Left,	Top,	Right,	Bottom
																								(left,top)	is	the	upper	left	corner	of	the	rectangle,	and
(right,bottom)	is	
																								its	lower	right	corner.
Returns:										On	r0:	0	on	success,	-1	on	failure

	
Example:
	
.text
.word	0
calls	$0,	.initgraph
pushl	$10
pushl	$10
pushl	$490
pushl	$390
calls	$4,	.rectangle

	
	

	

setcolor	-	sets	the	current	drawing	color
	
Description:				setcolor	sets	the	current	drawing	color.	It	gets	color	in	RGB
format	and	sets	the	current	color	to	that	color.
Gets:															On	stack:	Red,	Green,	Blue
Returns:										On	r0:	0	on	success,	-1	on	failure
	
Example:
	
.text
.word	0
calls	$0,	.initgraph
pushl	$100
pushl	$200
pushl	$100
calls	$3,	.setcolor

	
	

	

setfont
	
Sets	the	active	font.
	
Gets:															Font	Name	(String),	Font	Size
Returns:										On	r0:	0	on	success,	-1	on	failure
	

	

Getchar
	
Description:				Read	one	char	from	the	keyboard.
Gets:															Nothing.
Returns:									ASCII	value	of	the	character	in	R0.	-1	if	EOF	reached.
	
Example:
	
.text
	
main:	.word	0
						calls	$0,	.getchar						#	Get	char	from	the	keyboard
						movb	r0,	...

	
	

	

Gets
	
Description:				Read	line	from	the	keyboard	to	a	buffer.	The	function	stop
getting	
																								input	when	it	reaches	NUL(0),	CR(0x0D)	or	LF(0x0A).	The
ending
																								character	is	replaced	with	NUL(0).
Gets:															In	stack:	Buffer's	address	.
Returns:									In	R0:	buffer's	address	for	success,	-1	on	EOF	or	0	if	the	string	
																								contains	ctrl+D	(0x04)	only.
																								In	buffer:	user's	string,	ended	with	ASCII	0
	
Example:
	
.text
	
main:	.word	0
	
						pushal	buffer
						calls	$1,	.gets									#	Get	a	line
	
						pushl	$0
						calls	$1,	.exit
	
	
.data
buffer:	.space	80

	
	

	

printf	-	Write	Formatted	String	to	stdout
	
printf	formats	and	prints	a	series	of	characters	and	values	to	'stdout'.
'Format-string'	determines	what	is	to	be	printed	and	how	it	is	to	be	printed	out.
'Format-string'	consists	of	ordinary	characters,	escape	sequences,	and	format
specifications.
The	'Format-string'	is	read	left	to	right.	When	the	first	format	specification	is
encountered,	the	value	of	the	first	argument	after	the	'Format-string'	is	converted
and	output	according	to	format	specifications.	The	second	format	specification
causes	the	second	argument	to	be	converted	and	output,	and	so	on.
	
Escape	sequences:
Escape	sequences	are	special	character	combinations	that	can	represent
whitespace	and	non-graphic	characters.	They	are	used	to	specify	actions	such	as
carriage	returns	and	tab	movements.	Escape	sequences	consist	of	a	backslash	('\')
followed	by	a		character	or	combination	of	characters:
	
	\n																				new-line
\t																						tab
	\b																				backspace
\r																						carriage	return
\\																						backslash
""																						Reverse-commas
	
	
If	there	are	arguments	following	'Format-string',	then	'Format-string'	must
contain	format	specifications	that	determine	the	output	format	for	these
arguments.

Format	specifications	always	begin	with	a	percent	sign	(%)	and	have	the
following	form:
							%	[width]	type
	
Each	field	of	the	format	specification	is	a	single	character	or	number	signifying	a
particular	format	option.
The	following	describes	each	field.
	
Type:
	The	'Type'	character	determines	whether	the	associated	argument	is	interpreted
as	a	character,	string,	or	number.	The	simplest	format	specification	contains	only
a	percent	sign	and	a	'Type'	character.	(For	example:	%s	prints	a	string.)
The	'Type'	characters	are:
	
							d					Decimal																						Integer
							o					Octal																										Integer
							x					Hex																												Integer
							X					Hex																											Integer	(Capital	Letters	output)
							c																																							Character
							s																																								String
																																																-	Characters	printed	up	to	the	first	null	character
('\0')
						ld																																							Long	Integer
						lx																																								Long	Hex
	
Width:
The	optional	width	specifier	is	a	non-negative	decimal	integer	specifying	the
minimum	number	of	characters	to	print,	padding	with	blanks	and	zeros.
Width	never	causes	a	value	to	be	truncated.
	

	
Returns:
	
R0		=	'0'	if	successful	,	'-1'	on	error.
	
	
Notes:
Arguments	are	:	pointers	to	'String'	variable	Value	of	'Char',numbers	etc.	(push
address	for	%s,	push	values	for		%c	%x	%d	%o	...)
Arguments	are	pushed	in	reversed	order.	(Last	argument	is	printed	first)
Last	Argument	pushed	into	Stack	is	a	pointer	to	the	"Format-string".
If	there	are	more	arguments	than	there	are	format	specifications,	the	extra
arguments	are	ignored.
The	results	are	undefined	if	there	are	not	enough	arguments	for	all	the	format
specifications.
Ordinary	characters	are	simply	copied	in	the	order	of	their	appearance.
If	the	percent	sign	is	followed	by	a	character	that	has	no	meaning	as	a	format
field,	the	character	is	copied	to	'stdout'.
	
Example:
						pushl					x
						pushal				Str
						pushl					y
						pushal				Form1
						calls					$4,.printf
						-
						-
	
.data
x:										.word					1234
y:										.word					5678
Str:								.asciz				"Greater	than"
Form1:						.asciz				"%d	is	%s	%d"

	

	-->			1234	is	Greater	than	5678
	
	

	

Putchar
	
Description:				Put	one	character	on	the	screen.
Gets:															Character	on	the	stack.
Returns:									In	R0:	0	on	success,	-1	on	error.
	
Example:
	
.text
	
main:	.word	0
						calls	$0,	.getchar						#	Get	char	from	the	keyboard
	
						pushl	r0																#	Push	the	char	to	the	stack
						calls	$1,	.putchar
	
						pushl	$0
						calls	$1,	.exit

	
	

	

Puts
	
Description:				Put	a	string	on	the	screen.
Gets:															String's	address	on	the	stack.
Returns:									In	R0:	0	on	success,	-1	on	error.
	
Example:
	
.text
	
main:	.word	0
	
						pushal	szWelcomeMessage
						calls	$1,	.puts								#	Ask	for	the	user's	name
	
						pushal	szUserName
						calls	$1,	.gets									#	Get	a	line
	
						pushal	szWelcome
						calls	$1,	.puts								#	Print	hello	to	the	user
						pushal	szUserName
						calls	$1,	.puts		
	
						pushl	$0
						calls	$1,	.exit
	
.data
szWelcomeMessage:	.asciz	"Please	Enter	your	name:	"
szUserName:	.space	20
szWelcome:	.asciz	"Hello,	"

	
	

	

Scanf	-	Read	Formatted	Data	from	stdin
	
scanf	reads	data,	one	character	at	a	time	from	'stdin'	and	stores	it	in	the	locations
given	by	'arguments'.	'Format-string'	determines	how	the	input	fields	are	to	be
interpreted.
Each	argument	must	be	a	pointer	to	a	variable	with	a	type	that	corresponds	to	a
type	specifier	in	'Format-string'.	'Format-string'	is	a	character	string	that	contains
whitespace	characters,	non-whitespace	characters,	and	format	specifications.
Here	is	a	description	of	the	arguments	of	scanf.
	
	
Format-string:
	
The	format	string	is	read	from	left	to	right	when	the	first	format	specification	is
encountered,	the	value	of	the	first	input	field	is	converted	according	to	the
format	specification,	and	the	converted	value	is	then	stored	in	the	location
specified	by	the	first	argument.	The	value	of	the	second	input	field	is	converted
according	to	the	second	format	specification	and	stored	in	the	second	location,
and	so	on.
Characters	outside	the	format	string-	whitespace	characters	and	non-whitespace
characters,	described	below-should	match	the	sequence	of	characters	being	read
from	the	input	stream.
	
Whitespace	characters:	blank	('	'),	tab	('\t'),	or	newline	('\n').
The	scanf	functions	will	read	but	not	store	all	whitespace	characters	up	to	the
next	non-whitespace	character	in	the	input.	One	whitespace	character	in	the
format-string	matches	any	number	and	combination	of	whitespace	characters	in
the	input.

Non-whitespace	characters:	Are	all	other	ASCII	characters	except	the	percent
character	(%).	The	scanf	functions	will	read	but	not	store	a	matching	non-
whitespace	character.	If	the	next	character	scanned	does	not	match,	the	function
will	terminate.
	
	
Format	specifications:	Are	introduced	by	a	percent	sign	(%).	Format
specifications	cause	the	scanf	functions	to	read	and	convert	characters	from	the
input	field	into	specific	types	of	values.	These	values	are	assigned	to	arguments
in	the	argument	list.
A	format	specification	has	the	following	form:
							%	[*]	[width]	type
	
Type:
The	type	character,	which	appears	after	the	last	optional	format	field,	determines
whether	the	input	field	is	interpreted	as	a	character,	a	string,	or	a	number.
The	simplest	format	specification	contains	only	the	percent	sign	and	a	type
character		(%s,	for	example).
	
The	various	type	specifications	are:
	
							d				decimal	integer
							D				decimal	long	integer
							o				octal			integer
							O				octal			long	integer
							x				hex					integer
							X				Hex					long	integer
							c				character
							s				string		(array	of	char)
	

Asterisk:
The	asterisk	(*)	character	following	the	percent	sign	suppresses	assignment	of
the	next	input	field.	The	suppressed	input	data	is	assumed	to	be	of	the	type
specified	by	the	character	type	that	follows	the	*.	The	field	is	scanned	but	not
stored.
	
Width:
The	width	is	a	positive	decimal	integer	which	controls	the	maximum	number	of
characters	to	be	read	from	the	current	input	field.	No	more	than	'width'
characters	are	converted	and	stored	at	the	corresponding	argument.

	
The	prefix	'l'	indicates	the	'long'	version	is	to	be	used.	The	corresponding
argument	should	point	to	a	'long'	object.	The	'l'	modifier	can	be	used	with	the	d,
i,	o,	and	x	type	characters.
The	prefix	'h'	indicates	the	'short'	version	is	to	be	used.	The	corresponding
argument	should	point	to	a	'short'	object.
The	'h'	modifier	can	be	used	with	the	d,	i,	o	and	x	type	characters.
	
'l'	and	'h'	modifiers	are	ignored	if	used	with	any	other	type.
	
Returns:				R0		=
The	number	of	fields	that	were	successfully	converted	and	assigned.
	A	return	value	of	EOF	(-1)	means	an	attempt	was	made	to	read	at	end-of-file.
	(A	return	value	of	0	means	no	field	was	assigned).
	
	Notes:
Number	of	arguments	is	not	limited.	Arguments	are	pointers	to	data	objects
which	will	be	stored	by	Scanf	according	to	"Format	string".	The	Arguments	are
pushed	in	reversed	order.	(So	first	data	read	will	be	saved	in	last	argument
/pointer	pushed)	Last	Argument	pushed	into	Stack	is	a	pointer	to	the	"Format-
string".
	
scanf	may	stop	reading	a	particular	input	field	before	it	reaches	a	space	character
because:
·								the	specified	width	was	reached
·								the	next	character	cannot	be	converted	as	specified
·								the	next	character	conflicts	with	a	character	in	the	control	string
	
When	any	of	these	situations	occur,	the	next	input	field	is	considered	to	begin	at

the	first	unread	character.
	
	

	

sprintf	-	Write	Formatted	String	to	string
	
	
sprintf	formats	and	prints	a	series	of	characters	and	values	to	a	string	-	a	buffer
that	located	in	the	memory.
'Format-string'	determines	what	is	to	be	printed	and	how	it	is	to	be	printed	out.
'Format-string'	consists	of	ordinary	characters,	escape	sequences,	and	format
specifications.
The	'Format-string'	is	read	left	to	right.	When	the	first	format	specification	is
encountered,	the	value	of	the	first	argument	after	the	'Format-string'	is	converted
and	output	according	to	format	specifications.	The	second	format	specification
causes	the	second	argument	to	be	converted	and	output,	and	so	on.
	
This	function	identical	to	printf	except	it	sends	the	output	to	string	and	not	to
stdout.
	
Escape	sequences:
Escape	sequences	are	special	character	combinations	that	can	represent
whitespace	and	non-graphic	characters.	They	are	used	to	specify	actions	such	as
carriage	returns	and	tab	movements.	Escape	sequences	consist	of	a	backslash	('\')
followed	by	a	character	or	combination	of	characters:
	
	\n																				new-line
\t																						tab
	\b																				backspace
\r																						carriage	return
\\																						backslash
""																						Reverse-commas

	
	
	
If	there	are	arguments	following	'Format-string',	then	'Format-string'	must
contain	format	specifications	that	determine	the	output	format	for	these
arguments.
Format	specifications	always	begin	with	a	percent	sign	(%)	and	have	the
following	form:
							%	[width]	type
	
Each	field	of	the	format	specification	is	a	single	character	or	number	signifying	a
particular	format	option.
The	following	describes	each	field.
	
Type:
	The	'Type'	character	determines	whether	the	associated	argument	is	interpreted
as	a	character,	string,	or	number.	The	simplest	format	specification	contains	only
a	percent	sign	and	a	'Type'	character.	(For	example:	%s	prints	a	string.)
The	'Type'	characters	are:
	
							d					Decimal																						Integer
							o					Octal																										Integer
							x					Hex																												Integer
							X					Hex																											Integer	(Capital	Letters	output)
							c																																							Character
							s																																								String
																																																-	Characters	printed	up	to	the	first	null	character
('\0')
						ld																																							Long	Integer
						lx																																								Long	Hex

	
	
Width:
The	optional	width	specifier	is	a	non-negative	decimal	integer	specifying	the
minimum	number	of	characters	to	print,	padding	with	blanks	and	zeros.
Width	never	causes	a	value	to	be	truncated.
	

	
Returns:
R0		=	'0'	if	successful	,	'-1'	on	error.
	
	
Notes:
Arguments	are:	pointers	to	'String'	variable	Value	of	'Char',	numbers	etc.	(push
address	for	%s,	push	values	for	%c	%x	%d	%o	...)
Arguments	are	pushed	in	reversed	order.	(Last	argument	is	printed	first)
Last	Argument	pushed	into	Stack	is	a	pointer	to	the	"Format-string".
If	there	are	more	arguments	than	there	are	format	specifications,	the	extra
arguments	are	ignored.
The	results	are	undefined	if	there	are	not	enough	arguments	for	all	the	format
specifications.
Ordinary	characters	are	simply	copied	in	the	order	of	their	appearance.
If	the	percent	sign	is	followed	by	a	character	that	has	no	meaning	as	a	format
field,	the	character	is	copied	to	the	buffer.
	
Example:
	
.text
main:	.word	0
						pushl	$10
						pushl	$7
						pushal	format
						pushal	buffer
						calls	$4,	.sprintf
	
						pushal	buffer
						calls	$1,	.puts
	
						halt
	
format:	.asciz	"%d	--	%d\n"
buffer:	.space	10

	

	

Exit
	
Exit	function	is	one	of	the	most	important	system-calls.	The	function	ends	the
user's	program.	Every	user's	program	need	to	be	end	using	it.
	
Description:				The	function	ends	the	user's	program	with	specific	error	code.
Gets:															Error	Code	-	On	the	stack.
																								0	means	the	program	ended	without	error.
																								Any	other	number	indicates	about	error.
Returns:									Nothing.
	
Example:
	
.text
	
#	User	program	here
#	...
pushl	$0
calls	$1,	.exit			#	Exit	with	error	code	0

	
	

	

free	-	Deallocate	Memory	Block
	
free	deallocates	the	previously	allocated	memory	block	pointed	to	by	'Ptr'.
The	block	must	have	been	allocated	by	malloc.
	
Returns:	Nothing.
	
Notes:
One	argument	is	pushed	into	Stack	=	pointer	to	deallocated	area.
free	deallocates	the	number	of	bytes	that	were	allocated	in	the	call	to	malloc.
	
	
Example:
	
	
.text
main:	.word	0
	
						pushl	$0x100
						calls	$1,	.malloc
						pushl	r0
						pushal	format
						calls	$2,	.printf
	
						pushl	$0x100
						calls	$1,	.malloc
						pushl	r0
						pushal	format
						calls	$2,	.printf
	
						pushl	$0x100
						calls	$1,	.malloc
						pushl	r0
						pushal	format
						calls	$2,	.printf
	
						pushl	$0x1119
						calls	$1,	.free

	
						pushl	$0x100
						calls	$1,	.malloc
						pushl	r0
						pushal	format
						calls	$2,	.printf
	
						pushl	$0
						calls	$1,	.exit
	
.org	0x1000
.data
format:	.asciz	"Address:	0x%08X\n"

	
	

	

malloc	-	Allocate	Memory	Block
	
malloc	allocates	a	block	of	'Size'	bytes.
	
	
Returns:	On	R0:	Pointer	to	allocated	space.
																Returns	NULL	if	the	space	cannot	be	allocated.
	
	
Notes:
One	argument	pushed	into	Stack	=	number	of	bytes	to	be	allocated.
Use	free	to	deallocate	block	allocated	with	malloc.
	
	
Example:
	
	
.text
main:	.word	0
	
						pushl	$0x100
						calls	$1,	.malloc
						pushl	r0
						pushal	format
						calls	$2,	.printf
	
						pushl	$0x100
						calls	$1,	.malloc
						pushl	r0
						pushal	format
						calls	$2,	.printf
	
						pushl	$0x100
						calls	$1,	.malloc
						pushl	r0
						pushal	format

						calls	$2,	.printf
	
						pushl	$0x1119
						calls	$1,	.free
	
						pushl	$0x100
						calls	$1,	.malloc
						pushl	r0
						pushal	format
						calls	$2,	.printf
	
						pushl	$0
						calls	$1,	.exit
	
.org	0x1000
.data
format:	.asciz	"Address:	0x%08X\n"

	
	

Interrupts
	

1.					Introduction
	
At	certain	times	during	system	operation,	internal	or	external	events	may	require
the	execution	of	pieces	of	software	outside	of	explicit	flow	of	control.
Some	of	these	events	are	relevant	to	the	currently	executing	process,	and
normally	invoke	software	in	the	context	of	the	current	process.	The	notification
of	these	events	is	termed	an	exception.
Other	events	are	relevant	to	other	processes,	or	to	the	system	as	a	whole,	and	are
serviced	in	a	system-wide	context.	The	notification	process	for	these	events	is
termed	an	interrupt.
Some	interrupts	are	so	urgent	that	they	require	high	priority	service.	To	meet
these	needs,	the	VAX-11	has	priority	logic	that	grants	interrupt	service	to	the
highest	priority	event	at	any	point	in	time.	The	priority	associated	with	an
interrupt	is	termed	its	interrupt	priority	level	(IPL).
The	processor	arbitrates	interrupt	requests	according	to	priority.	Only	when	the
priority	of	an	interrupt	request	is	higher	than	the	current	IPL	(bits<20:16>	of	the
Processor	Status	Longword)	does	the	processor	raise	the	IPL	and	service	the
interrupt	request.	The	interrupt	service	routine	is	entered	at	the	IPL	of	the
interrupt	request	and	does	not	usually	change	the	IPL	set	by	the	processor.
Interrupt	requests	can	come	from	devices,	controllers,	or	the	processor	itself.
Software	executing	in	kernel	mode	can	raise	and	lower	the	priority	of	the
processor	by	executing	"MTPR	src,	IPL"	where	src	contains	the	new	priority
desired.
Most	service	routines	for	software-generated	exceptions	execute	at	IPL	0.
However,	if	a	serious	system	failure	occurs,	the	processor	raises	the	IPL	to	the
highest	level	(1F	to	prevent	interruption	until	the	problem	is	corrected.

Exception	service	routines	are	usually	coded	to	avoid	exceptions;	however,
nested	exceptions	may	rarely	occur	in	the	case	of	an	access	control	violation,
reserved	operand,	or	reserved	addressing	mode	fault.
	

2.					Processor	Interrupt	Priority	Levels	(IPLs)
	
The	processor	has	31	interrupt	priority	levels	(IPLs),	divided	into	15	software
levels	(numbered	1	to	F)	and	16	hardware	levels	(to).	User	applications,
system	calls,	and	system	services	all	run	at	IPL	0,	which	may	be	thought	of	as
process	level.	Higher	numbered	IPLs	have	higher	priority;	that	is	to	say,	any
requests	at	an	interrupt	level	higher	than	the	processor’s	current	IPL	interrupt
immediately,	but	requests	at	a	lower	or	equal	level	are	deferred.
Interrupt	levels	1	through	F	exist	entirely	for	use	by	software.	No	device	can
request	interrupts	on	those	levels,	but	software	can	force	an	interrupt	by
executing	
"MTPR	src,	SIRR"	(Software	Interrupt	Request	Register).	Once	a	software
interrupt	request	is	made,	it	is	cleared	by	hardware	when	the	interrupt	is	taken.
Interrupt	levels	 	to	 	are	for	use	by	devices	and	controllers.
Interrupt	levels	 	to	 	are	used	by	urgent	conditions,	including	the	interval
clock,	serious	errors,	and	power	fail.
	
Some	known	IPLs:

System	Clock:	
Terminal:	

	

3.					Contrast	between	Exceptions	and	Interrupts
	
Generally,	exceptions	and	interrupts	are	very	similar.	When	either	is	initiated,

both	the	Processor	Status	Longword	(PSL)	and	the	Program	Counter	(PC)	are
pushed	onto	a	stack.	However,	there	are	some	differences:
	
1.	 An	exception	condition	is	caused	by	the	execution	of	the	current

instruction,	while	an	interrupt	is	caused	by	some	activity	in	the
computing	system	that	usually	is	independent	of	the	current	in
struction.

2.	 An	exception	condition	usually	is	serviced	in	the	context	of	the
process	that	produced	the	exception	condition,	while	an	interrupt	is
serviced	independently	from	the	current	process.

3.	 The	IPL	of	the	processor	usually	is	not	changed	when	the	processor
initiates	an	exception,	while	the	IPL	always	is	raised	when	an
interrupt	is	serviced.

4.	 Enabled	exceptions	are	initiated	immediately,	independent	of	the
processor	IPL.	Interrupts,	however,	are	delayed	until	the	processor
IPL	drops	below	the	IPL	of	the	requesting	interrupt.

5.	 Most	exceptions	cannot	be	disabled.	However,	if	an	exception-
causing	event	occurs	while	that	exception	is	disabled,	no	exception	is
initiated	for	that	event,	even	when	enabled	subsequently.	This
includes	overflow,	which	is	the	only	exception	whose	occurrence	is
indicated	by	a	condition	code	(V).	If	an	interrupt	condition	occurs
while	that	interrupt	is	disabled,	or	the	processor	is	at	the	same	or
higher	IPL,	the	condition	eventually	initiates	an	interrupt	when	the
proper	enabling	conditions	are	met	(if	the	condition	is	still	present).

6.	 The	previous	mode	field	in	the	PSL	is	always	set	to	kernel	on	an
interrupt,	but	on	an	exception	it	indicates	the	mode	in	which	the
exception	occurred.

	

4.					Software	Interrupt	Summary	Register

	
The	Software	Interrupt	Summary	Register	(SISR)	is	a	privileged	register	which
records	pending	software	interrupts.	The	SISR	contains	1s	in	the	bit	positions
corresponding	to	levels	on	which	software	interrupts	are	pending.	All	such	levels
must	be	lower	than	the	current	processor	IPL,	or	the	processor	would	have	taken
the	requested	interrupt.
At	bootstrap	time,	the	contents	of	SISR	are	cleared.
The	mechanism	for	accessing	it	is:
"MFPR	SISR,
dst"

Reads	the	Software	Interrupt	Summary	Register.

"MTPR	src,
SISR"

Loads	it,	but	this	is	not	the	normal	way	of	making
software	interrupt	requests.	It	is	useful	for	clearing
the	software	interrupt	system	and	for	reloading	it
after	a	power	failure,	for	example.

	

5.					Software	Interrupt	Request	Register
	
The	Software	Interrupt	Request	Register	(SIRR)	is	a	write-only	4-bit	privileged
register	used	for	making	software	interrupt	requests.
Executing	"MTPR	src,	SIRR"	requests	an	interrupt	at	the	level	specified	by
src<3:0>.	Once	a	software	interrupt	request	is	made,	the	corresponding	bit	in	the
SISR	is	set.	The	hardware	then	clears	the	bit	in	the	SISR	when	the	interrupt	is
taken.	If	src<3:0>	is	greater	than	the	current	IPL,	the	interrupt	occurs	before
execution	of	the	following	instruction,	If	src<3:0>	is	less	than	or	equal	to	the
current	IPL,	the	interrupt	is	deferred	until	the	IPL	is	lowered	to	less	than
src<3:0>,	with	no	higher	interrupt	level	pending.	The	IPL	is	lowered	by	either
REI	or	by	"MTPR	X,	IPL".	If	src<3:0>	is	0,	no	interrupt	will	occur	or	be
requested.
No	indication	is	given	if	there	is	already	a	request	at	the	selected	level,	therefore,

the	service	routine	must	not	assume	a	one-to-one	correspondence	of	interrupts
generated	and	requests	made.
	

6.					Interrupt	Priority	Level	Register
	
Writing	to	the	IPLR	with	the	MTPR	instruction	will	load	the	processor	priority
field	in	the	Processor	Status	Longword	(PSL).	That	is,	bits<20:16>	of	the	PSL
are	loaded	from	IPLR<4:0>.	Reading	from	IPLR	with	the	MFPR	instruction	will
read	the	processor	priority	field	from	the	PSL.	On	writing	IPLR,	bits<31:5>	are
ignored,	and	on	reading	IPLR,	bits	<31:5>	are	returned	zero.
At	boot	time,	the	IPL	is	initialized	to	1F.
Interrupt	service	routines	must	follow	the	discipline	of	not	lowering	the	IPL
below	their	initial	level.	If	they	do,	an	interrupt	at	an	intermediate	level	could
cause	the	stack	nesting	to	be	improper.	This	would	result	in	REI	faulting.
Actually,	a	service	routine	could	lower	the	IPL	if	it	ensured	that	no	intermediate
levels	could	interrupt.	However,	this	would	result	in	unreliable	code.
	

7.					SYSTEM	CONTROL	BLOCK	(SCB)
	
The	System	Control	Block	is	a	page	containing	the	vectors	by	which	exceptions
and	interrupts	are	dispatched	to	the	appropriate	service	routines.
The	interrupt	vectors	that	our	simulator	supports	are	as	follows:
	
Interrupt	vectors:
	
Vector's
Address Interrupt	Type Priority Extra	Registers
SCBB+0x18 Reserved	Operand	Fault 31 None
SCBB+0x28 Trace 31 None
SCBB+0x34 Arithmetic 31 None
SCBB+0x84 Software	1 1 SIRR,	SISR

SCBB+0x88 Software	2 2 SIRR,	SISR
SCBB+0x8C Software	3 3 SIRR,	SISR
SCBB+0x90 Software	4 4 SIRR,	SISR
SCBB+0x94 Software	5 5 SIRR,	SISR
SCBB+0x98 Software	6 6 SIRR,	SISR
SCBB+0x9C Software	7 7 SIRR,	SISR
SCBB+0xA0 Software	8 8 SIRR,	SISR
SCBB+0xA4 Software	9 9 SIRR,	SISR
SCBB+0xA8 Software	10 10 SIRR,	SISR
SCBB+0xAC Software	11 11 SIRR,	SISR
SCBB+0xB0 Software	12 12 SIRR,	SISR
SCBB+0xB4 Software	13 13 SIRR,	SISR
SCBB+0xB8 Software	14 14 SIRR,	SISR
SCBB+0xBC Software	15 15 SIRR,	SISR
SCBB+0xC0 Clock 24 ICCS,	NICR,	ICR
SCBB+0xF8 Terminal	Input 20 RXCS,	RXDB
SCBB+0xFC Terminal	Output 20 TXCS,	TXDB

	
	

8.					System	Control	Block	Base	(SCBB)
	
The	SCBB	is	a	privileged	register	containing	the	physical	address	of	the	System
Control	Block
	
At	boot	time,	the	contents	of	SCBB	are	UNPREDICTABLE.	SCBB	must	specify
a	valid	address	in	physical	memory	or	the	processor	operation	is	UNDEFINED.
	
	

9.					Privileged	Registers
	
VAX-11	contains	several	special	registers.
Below	is	list	of	these	registers,	and	some	information	about	it.
	

Number Register
Name I/O Description

17 SCBB RO System	Control	Block	Base

18 IPL RW Interrupt	Priority	Level	(Default	=	0)
20
21

SIRR
SISR

WO
RW

Software	Interrupt	Request
Software	Interrupt	Summery

24
	
	
	
	
	
25
26

ICCS
	
	
	
	
	
NICR
ICR

RW
	
	
	
	
	
WO
RO

Interval	Clock	Control/Status
	bit0=1	Run	-	Increase	ICR	every	microsecond.
	bit4=1	Xfr	-	Load	the	ICR	Clock	from	NICR
	bit5=1	Sgl	Manual	Incresing	the	clock.	For	use
when	bit0	is	0.
	bit6=1	Ie	-	Interrupt	Enabled
	bit7=1	Int
Next	Interval	Count	Register
Interval	Count	Register

32
	
	
33

RXCS
	
	
RXDB

RW
	
	
RO

Console	Receive	Control/Status
	bit6=1	Ie	-	Interrupt	Enabled
	bit7=1	Rdy	-	There	is	waiting	key	on	the	buffer
Console	Receive	Data	Buffer

34
	
	
35

TXCS
	
	
TXDB

RW
	
	
WO

Console	Transmit	Control/Status
bit6=1	Ie	-	Interrupt	Enabled
	bit7=1	Rdy	-	Ready	for	sending	new	key
Console	Transmit	Data	Buffer

	
	

9.1.Console	Terminal	Registers
	
The	console	terminal	is	accessed	through	four	internal	registers.	Two	are
associated	with	receiving	from	the	terminal	and	two	with	writing	to	the	terminal.
In	each	direction	there	is	a	control/status	register	and	a	data	buffer	register.
	

9.2.Interval	Clock
	
The	interval	clock	provides	an	interrupt	at	IPL	24	at	programmed	intervals.	The
counter	is	incremented	at	1 interval.	The	clock	interface	consists	of	three
registers	in	the	privileged	register	space:	the	read-only	interval	count	register,	the
write-only	next	interval	count	register	and	the	interval	clock	control/status
register.
	
	

9.2.1.						Interval	Count	Register

	
The	interval	register	is	read-only	register	incremented	once	every	microsecond.
It	is	automatically	loaded	from	NICR	upon	a	carry	out	from	bit	31	which	also
interrupts	at	IPL	24	if	the	interrupt	is	enabled.
	

9.2.2.						Next	Interval	Count	Register
	
The	reload	register	is	a	write-only	register	that	holds	the	value	to	be	loaded	into
ICR	when	it	overflows.	The	value	is	retains	when	ICR	is	loaded.	NICR	is
capable	of	begin	loaded	regardless	of	the	current	values	of	ICS	and	ICCS.
	

9.2.3.						Interval	Clock	Control/Status	Register
	
The	ICCS	register	contains	control	and	status	information	for	the	interval	clock.
	
Bit	31	-	ERR
Whenever	ICR	overflows,	if	INT	is	already	set,	then	ERR	set.	Thus.	ERR
indicates	a	missed	clock	tick.	Attempts	to	set	this	bit	via	MTPR	clears	ERR.
	
Bit	30:8
Must	Be	Zero
	
Bit	7	-	INT
Set	by	hardware	every	time	ICR	overflows.	If	IE	is	set,	then	an	interrupt	is	also
generated.	Attempts	to	set	this	bit	via	MTPR	clears	INT,	thereby	re-enabling	the
clock	tick	interrupt	(if	IE	is	set).
	
Bit	6	-	IE
When	set,	an	interrupt	request	at	IPL	24	is	generated	every	time	ICR	overflows.
(INT	is	set).	When	clear,	no	interrupt	is	requested.	Similarly,	if	INT	is	already	set

and	the	software	sets	IE,	an	interrupt	is	generated.
	
Bit	5	-	SGL
A	write-only	bit.	If	RUN	is	clear,	each	time	this	bit	is	set,	ICR	is	incremented	by
one.
	
Bit	4	-	XFR
A	write-only	bit.	Each	time	this	bit	is	set,	NICR	is	transferred	to	ICR.
	
Bit	3:1
Must	be	zero.
	
Bit	0	-	Run
When	set,	ICR	increments	each	microsecond.	When	clear	ICR	doesn't	increment
automatically.	At	boot	time,	RUN	is	clears.
	

	

Arithmetic	Exceptions
	
This	section	describes	exceptions	occurring	as	the	result	of	an	arithmetic	or
conversion	operation.	These	mutually	exclusive	exceptions	all	are	assigned	to
the	same	vector	in	the	System	Control	Block.	Each	of	them	indicates	that	an
exception	occurred	during	the	last	instruction	and	that	the	instruction	has	been
completed	(in	the	case	of	a	trap)	or	backed	up	(fault).	A	code	unique	to	each
exception	type	is	then	pushed	on	the	stack	as	longword.
	
Trap	code Exception	type
1 Integer	overflow
2 Integer	divide	by	zero
7 Subscript	range
	
	

Integer	Overflow	Trap
	
An	integer	overflow	trap	is	an	exception	indicating	that	the	last	instruction
executed	had	an	integer	overflow	which	set	the	V	condition	code.
The	trap	only	occurs	if	the	integer	overflow	enable	bit	(IV)	in	the	PSW	is	set.
The	result	stored	is	the	low	order	part	of	the	correct	result,	and	the	type	code
pushed	on	the	stack	is	a	1.	Not	that	the	instructions	RET,	REI,	REMQUE,
MOVTUC	and	BISPSW,	do	not	cause	overflow	even	if	they	set	V.
	
	

Integer	Divide	By	Zero	Trap
	

An	integer	divide	by	zero	trap	is	an	exception	indicating	that	the	last	instruction
executed	had	an	integer	zero	divisor.	The	result	stored	is	equal	to	the	dividend,
and	the	condition	code	V	is	set.	The	type	code	pushed	on	the	stack	is	2.
	
	
Example:
	
.text
	
.set	ZERO_FAULT,														0x34
	
main:	.word	0
	
						calls	$0,	InitZeroHandler
						movb	$4,	r0
						divl2	$0,	r0
	
						calls	$0,	ClearZeroHandler
						movb	$4,	r0
						divl2	$0,	r0
	
						pushl	$0
						calls	$1,	.exit
	
InitZeroHandler:	.word	2
						mfpr	SCBB,	r1
						moval	handlezero,	ZERO_FAULT(r1)
						ret
	
ClearZeroHandler:	.word	2
						mfpr	SCBB,	r1
						movl	$0,	ZERO_FAULT(r1)
						ret
	
handlezero:
						pushl	0(sp)
						pushal	format
						calls	$2,	.printf
						rei
	
.data
format:	.asciz	"Divide	by	Zero	Handler.	Return	Address:	0x%X\n"

	

Subscript	Range	Trap

	
A	subscript	range	trap	is	an	exception	indicating	that	the	last	instruction	was	an
INDEX	instruction	with	the	subscript	operand	is	lower	than	the	low	operand	or
greater	than	the	high	operand.	The	result	is	stored	in	the	indexout,	and	the
condition	codes	are	set	as	if	the	subscript	were	within	range.	The	type	code
pushed	on	the	stack	is	7.
	

	Welcome
	Introduction
	Get Started
	VAX11 - Basic structure
	Assembler's Directives
	ASCIC
	ASCII
	ASCIZ
	BYTE
	DATA
	ENTRYPOINT
	INT
	LONG
	ORG
	QUAD
	SET
	SPACE
	TEXT
	WORD

