
Navigation:		»No	topics	above	this	level«

Overview

OnGuard	is	a	library	of	components,	classes,	and	routines	that	allow	you	to
protect	your	applications	after	they	are	released	to	the	public.	Using	OnGuard,
you	could	release	an	application	that	is	partially	functional	so	that	users	can	try
it.	When	a	user	is	ready	to	purchase	the	fully	functional	application,	you
supply	a	release	code	to	unlock	all	of	the	features	(or	the	subset	that	the	user	is
purchasing).	You	can	make	your	application	readily	available	to	a	large
number	of	potential	users,	but	still	protect	your	investment.	Application
protection	is	accomplished	through	the	use	of	keys	to	lock	or	restrict	one	or
more	features	of	an	application	and	several	types	of	release	codes	(or	access
codes)	to	enable	them.

Contents
OnGuard	is	a	library	of	components,	classes,	and	routines	that	allow	you	to
protect	your	applications	after	they	are	released	to	the	public.	Using	OnGuard,
you	could	release	an	application	that	is	partially	functional	so	that	users	can	try
it.	When	a	user	is	ready	to	purchase	the	fully	functional	application,	you
supply	a	release	code	to	unlock	all	of	the	features	(or	the	subset	that	the	user	is
purchasing).	You	can	make	your	application	readily	available	to	a	large
number	of	potential	users,	but	still	protect	your	investment.	Application
protection	is	accomplished	through	the	use	of	keys	to	lock	or	restrict	one	or
more	features	of	an	application	and	several	types	of	release	codes	(or	access
codes)	to	enable	them.
	
Keys	and	Release	Codes
TOgMakeKeys	Component
TOgMakeCodes	Component
	
Release	Code	Components
TOgCodeBase	Class
TOgDateCode	Component
TOgDaysCode	Component
TOgNetCode	Component
TOgRegistrationCode	Component
TOgSerialNumberCode	Component
TOgSpecialCode	Component
TOgUsageCode	Component
	
Detecting	Changes	to	an	EXE
TOgProtectExe	Component
	
Single	Instance	Applications

OgFirst	Unit
	
Low-Level	Routines
API	Reference
	
License
Mozilla	Public	License	1.1	(MPL	1.1)
	

Version	1.13	is	the	original	source	released	by	TurboPower.
Delphi	7	support	was	added	in	this	release.
This	release	was	ported	to	CLX.
The	CLX	port	was	then	ported	to	FPC/Lazarus.
SongBeamer	added	packages	for	Delphi	2009	and	Delphi	2010	and	made	some
changes	for	Unicode	support.
	
Version	1.14	was	created	by	Roman	Kassebaum.
This	version	only	had	packages	for	Delphi	2009	and	Delphi	2010	with	the	new
version	number.
There	were	newsgroup	postings	saying	it	did	not	compile	where	the
SongBeamer	release	did.
	
Version	1.15	was	created	by	Andrew	Haines.
Packages	for	Delphi	XE	through	XE5	were	added.
Source	version	numbers	were	updated.
A	merge	of	the	1.13,	1.14,	SongBeamer,	CLX,	and	FPC/Lazarus	ports	was
started.
Unit	tests	for	a	number	of	the	API	routines	were	created	using	Delphi	XE5	and
DUnit.
Unit	test	values	were	pulled	from	Delphi	6	running	version	1.13.
The	original	HLP	file	was	imported	into	a	Help	and	Manual	project.
The	H&M	project	was	exported	to	CHM	and	HxS	files	as	well	as	HTML.
The	help	has	been	expanded	to	include	the	various	types,	files,	and	routines.
Screen	shots	have	been	added	to	the	help	file.
The	SourceForge	feature	request	5	has	been	implemented.
The	SourceForge	bug	reports	6,	7,	8,	and	10	have	been	implemented.
	
	
	
	

TurboPower	OnGuard	is	released	under	the	Mozilla	Public	License	1.1	(MPL
1.1).
	

Mozilla	Public	License	Version	1.1
	
1.	Definitions.
	
1.0.1.	"Commercial	Use"
			means	distribution	or	otherwise	making	the	Covered	Code	available	to	a
third	party.
	
1.1.	"Contributor"
			means	each	entity	that	creates	or	contributes	to	the	creation	of	Modifications.
	
1.2.	"Contributor	Version"
			means	the	combination	of	the	Original	Code,	prior	Modifications	used	by	a
Contributor,	and	the	Modifications	made	by	that	particular	Contributor.
	
1.3.	"Covered	Code"
			means	the	Original	Code	or	Modifications	or	the	combination	of	the	Original
Code	and	Modifications,	in	each	case	including	portions	thereof.
	
1.4.	"Electronic	Distribution	Mechanism"
			means	a	mechanism	generally	accepted	in	the	software	development
community	for	the	electronic	transfer	of	data.
	
1.5.	"Executable"
			means	Covered	Code	in	any	form	other	than	Source	Code.
	
1.6.	"Initial	Developer"
			means	the	individual	or	entity	identified	as	the	Initial	Developer	in	the
Source	Code	notice	required	by	Exhibit	A.
	
1.7.	"Larger	Work"
			means	a	work	which	combines	Covered	Code	or	portions	thereof	with	code
not	governed	by	the	terms	of	this	License.
	

1.8.	"License"
			means	this	document.
	
1.8.1.	"Licensable"
			means	having	the	right	to	grant,	to	the	maximum	extent	possible,	whether	at
the	time	of	the	initial	grant	or	subsequently	acquired,	any	and	all	of	the	rights
conveyed	herein.
	
1.9.	"Modifications"
	
			means	any	addition	to	or	deletion	from	the	substance	or	structure	of	either
the	Original	Code	or	any	previous	Modifications.	When	Covered	Code	is
released	as	a	series	of	files,	a	Modification	is:
	
							Any	addition	to	or	deletion	from	the	contents	of	a	file	containing	Original
Code	or	previous	Modifications.
							Any	new	file	that	contains	any	part	of	the	Original	Code	or	previous
Modifications.
	
1.10.	"Original	Code"
			means	Source	Code	of	computer	software	code	which	is	described	in	the
Source	Code	notice	required	by	Exhibit	A	as	Original	Code,	and	which,	at	the
time	of	its	release	under	this	License	is	not	already	Covered	Code	governed	by
this	License.
	
1.10.1.	"Patent	Claims"
			means	any	patent	claim(s),	now	owned	or	hereafter	acquired,	including
without	limitation,	method,	process,	and	apparatus	claims,	in	any	patent
Licensable	by	grantor.
	
1.11.	"Source	Code"
			means	the	preferred	form	of	the	Covered	Code	for	making	modifications	to
it,	including	all	modules	it	contains,	plus	any	associated	interface	definition
files,	scripts	used	to	control	compilation	and	installation	of	an	Executable,	or
source	code	differential	comparisons	against	either	the	Original	Code	or
another	well	known,	available	Covered	Code	of	the	Contributor's	choice.	The
Source	Code	can	be	in	a	compressed	or	archival	form,	provided	the	appropriate

decompression	or	de-archiving	software	is	widely	available	for	no	charge.
	
1.12.	"You"	(or	"Your")
			means	an	individual	or	a	legal	entity	exercising	rights	under,	and	complying
with	all	of	the	terms	of,	this	License	or	a	future	version	of	this	License	issued
under	Section	6.1.	For	legal	entities,	"You"	includes	any	entity	which	controls,
is	controlled	by,	or	is	under	common	control	with	You.	For	purposes	of	this
definition,	"control"	means	(a)	the	power,	direct	or	indirect,	to	cause	the
direction	or	management	of	such	entity,	whether	by	contract	or	otherwise,	or
(b)	ownership	of	more	than	fifty	percent	(50%)	of	the	outstanding	shares	or
beneficial	ownership	of	such	entity.
	
	

2.	Source	Code	License.
	
2.1.	The	Initial	Developer	Grant.
	
The	Initial	Developer	hereby	grants	You	a	world-wide,	royalty-free,	non-
exclusive	license,	subject	to	third	party	intellectual	property	claims:
	
			under	intellectual	property	rights	(other	than	patent	or	trademark)	Licensable
by	Initial	Developer	to	use,	reproduce,	modify,	display,	perform,	sublicense
and	distribute	the	Original	Code	(or	portions	thereof)	with	or	without
Modifications,	and/or	as	part	of	a	Larger	Work;	and
			under	Patents	Claims	infringed	by	the	making,	using	or	selling	of	Original
Code,	to	make,	have	made,	use,	practice,	sell,	and	offer	for	sale,	and/or
otherwise	dispose	of	the	Original	Code	(or	portions	thereof).
			the	licenses	granted	in	this	Section	2.1	(a)	and	(b)	are	effective	on	the	date
Initial	Developer	first	distributes	Original	Code	under	the	terms	of	this
License.
			Notwithstanding	Section	2.1	(b)	above,	no	patent	license	is	granted:	1)	for
code	that	You	delete	from	the	Original	Code;	2)	separate	from	the	Original
Code;	or	3)	for	infringements	caused	by:	i)	the	modification	of	the	Original
Code	or	ii)	the	combination	of	the	Original	Code	with	other	software	or
devices.
	
2.2.	Contributor	Grant.
	
Subject	to	third	party	intellectual	property	claims,	each	Contributor	hereby
grants	You	a	world-wide,	royalty-free,	non-exclusive	license
	
			under	intellectual	property	rights	(other	than	patent	or	trademark)	Licensable
by	Contributor,	to	use,	reproduce,	modify,	display,	perform,	sublicense	and
distribute	the	Modifications	created	by	such	Contributor	(or	portions	thereof)
either	on	an	unmodified	basis,	with	other	Modifications,	as	Covered	Code
and/or	as	part	of	a	Larger	Work;	and
			under	Patent	Claims	infringed	by	the	making,	using,	or	selling	of
Modifications	made	by	that	Contributor	either	alone	and/or	in	combination
with	its	Contributor	Version	(or	portions	of	such	combination),	to	make,	use,
sell,	offer	for	sale,	have	made,	and/or	otherwise	dispose	of:	1)	Modifications

made	by	that	Contributor	(or	portions	thereof);	and	2)	the	combination	of
Modifications	made	by	that	Contributor	with	its	Contributor	Version	(or
portions	of	such	combination).
			the	licenses	granted	in	Sections	2.2	(a)	and	2.2	(b)	are	effective	on	the	date
Contributor	first	makes	Commercial	Use	of	the	Covered	Code.
			Notwithstanding	Section	2.2	(b)	above,	no	patent	license	is	granted:	1)	for
any	code	that	Contributor	has	deleted	from	the	Contributor	Version;	2)	separate
from	the	Contributor	Version;	3)	for	infringements	caused	by:	i)	third	party
modifications	of	Contributor	Version	or	ii)	the	combination	of	Modifications
made	by	that	Contributor	with	other	software	(except	as	part	of	the	Contributor
Version)	or	other	devices;	or	4)	under	Patent	Claims	infringed	by	Covered
Code	in	the	absence	of	Modifications	made	by	that	Contributor.
	

	
3.	Distribution	Obligations.
	
3.1.	Application	of	License.
	
The	Modifications	which	You	create	or	to	which	You	contribute	are	governed
by	the	terms	of	this	License,	including	without	limitation	Section	2.2.	The
Source	Code	version	of	Covered	Code	may	be	distributed	only	under	the	terms
of	this	License	or	a	future	version	of	this	License	released	under	Section	6.1,
and	You	must	include	a	copy	of	this	License	with	every	copy	of	the	Source
Code	You	distribute.	You	may	not	offer	or	impose	any	terms	on	any	Source
Code	version	that	alters	or	restricts	the	applicable	version	of	this	License	or	the
recipients'	rights	hereunder.	However,	You	may	include	an	additional
document	offering	the	additional	rights	described	in	Section	3.5.
	
3.2.	Availability	of	Source	Code.
	
Any	Modification	which	You	create	or	to	which	You	contribute	must	be	made
available	in	Source	Code	form	under	the	terms	of	this	License	either	on	the
same	media	as	an	Executable	version	or	via	an	accepted	Electronic
Distribution	Mechanism	to	anyone	to	whom	you	made	an	Executable	version
available;	and	if	made	available	via	Electronic	Distribution	Mechanism,	must
remain	available	for	at	least	twelve	(12)	months	after	the	date	it	initially
became	available,	or	at	least	six	(6)	months	after	a	subsequent	version	of	that
particular	Modification	has	been	made	available	to	such	recipients.	You	are
responsible	for	ensuring	that	the	Source	Code	version	remains	available	even	if
the	Electronic	Distribution	Mechanism	is	maintained	by	a	third	party.
	
3.3.	Description	of	Modifications.
	
You	must	cause	all	Covered	Code	to	which	You	contribute	to	contain	a	file
documenting	the	changes	You	made	to	create	that	Covered	Code	and	the	date
of	any	change.	You	must	include	a	prominent	statement	that	the	Modification
is	derived,	directly	or	indirectly,	from	Original	Code	provided	by	the	Initial
Developer	and	including	the	name	of	the	Initial	Developer	in	(a)	the	Source
Code,	and	(b)	in	any	notice	in	an	Executable	version	or	related	documentation

in	which	You	describe	the	origin	or	ownership	of	the	Covered	Code.
	
3.4.	Intellectual	Property	Matters
(a)	Third	Party	Claims
	
If	Contributor	has	knowledge	that	a	license	under	a	third	party's	intellectual
property	rights	is	required	to	exercise	the	rights	granted	by	such	Contributor
under	Sections	2.1	or	2.2,	Contributor	must	include	a	text	file	with	the	Source
Code	distribution	titled	"LEGAL"	which	describes	the	claim	and	the	party
making	the	claim	in	sufficient	detail	that	a	recipient	will	know	whom	to
contact.	If	Contributor	obtains	such	knowledge	after	the	Modification	is	made
available	as	described	in	Section	3.2,	Contributor	shall	promptly	modify	the
LEGAL	file	in	all	copies	Contributor	makes	available	thereafter	and	shall	take
other	steps	(such	as	notifying	appropriate	mailing	lists	or	newsgroups)
reasonably	calculated	to	inform	those	who	received	the	Covered	Code	that	new
knowledge	has	been	obtained.
(b)	Contributor	APIs
	
If	Contributor's	Modifications	include	an	application	programming	interface
and	Contributor	has	knowledge	of	patent	licenses	which	are	reasonably
necessary	to	implement	that	API,	Contributor	must	also	include	this
information	in	the	legal	file.
(c)	Representations.
	
Contributor	represents	that,	except	as	disclosed	pursuant	to	Section	3.4	(a)
above,	Contributor	believes	that	Contributor's	Modifications	are	Contributor's
original	creation(s)	and/or	Contributor	has	sufficient	rights	to	grant	the	rights
conveyed	by	this	License.
	
3.5.	Required	Notices.
	
You	must	duplicate	the	notice	in	Exhibit	A	in	each	file	of	the	Source	Code.	If	it
is	not	possible	to	put	such	notice	in	a	particular	Source	Code	file	due	to	its
structure,	then	You	must	include	such	notice	in	a	location	(such	as	a	relevant
directory)	where	a	user	would	be	likely	to	look	for	such	a	notice.	If	You
created	one	or	more	Modification(s)	You	may	add	your	name	as	a	Contributor
to	the	notice	described	in	Exhibit	A.	You	must	also	duplicate	this	License	in
any	documentation	for	the	Source	Code	where	You	describe	recipients'	rights

or	ownership	rights	relating	to	Covered	Code.	You	may	choose	to	offer,	and	to
charge	a	fee	for,	warranty,	support,	indemnity	or	liability	obligations	to	one	or
more	recipients	of	Covered	Code.	However,	You	may	do	so	only	on	Your	own
behalf,	and	not	on	behalf	of	the	Initial	Developer	or	any	Contributor.	You	must
make	it	absolutely	clear	than	any	such	warranty,	support,	indemnity	or	liability
obligation	is	offered	by	You	alone,	and	You	hereby	agree	to	indemnify	the
Initial	Developer	and	every	Contributor	for	any	liability	incurred	by	the	Initial
Developer	or	such	Contributor	as	a	result	of	warranty,	support,	indemnity	or
liability	terms	You	offer.
	
3.6.	Distribution	of	Executable	Versions.
	
You	may	distribute	Covered	Code	in	Executable	form	only	if	the	requirements
of	Sections	3.1,	3.2,	3.3,	3.4	and	3.5	have	been	met	for	that	Covered	Code,	and
if	You	include	a	notice	stating	that	the	Source	Code	version	of	the	Covered
Code	is	available	under	the	terms	of	this	License,	including	a	description	of
how	and	where	You	have	fulfilled	the	obligations	of	Section	3.2.	The	notice
must	be	conspicuously	included	in	any	notice	in	an	Executable	version,	related
documentation	or	collateral	in	which	You	describe	recipients'	rights	relating	to
the	Covered	Code.	You	may	distribute	the	Executable	version	of	Covered
Code	or	ownership	rights	under	a	license	of	Your	choice,	which	may	contain
terms	different	from	this	License,	provided	that	You	are	in	compliance	with	the
terms	of	this	License	and	that	the	license	for	the	Executable	version	does	not
attempt	to	limit	or	alter	the	recipient's	rights	in	the	Source	Code	version	from
the	rights	set	forth	in	this	License.	If	You	distribute	the	Executable	version
under	a	different	license	You	must	make	it	absolutely	clear	that	any	terms
which	differ	from	this	License	are	offered	by	You	alone,	not	by	the	Initial
Developer	or	any	Contributor.	You	hereby	agree	to	indemnify	the	Initial
Developer	and	every	Contributor	for	any	liability	incurred	by	the	Initial
Developer	or	such	Contributor	as	a	result	of	any	such	terms	You	offer.
	
3.7.	Larger	Works.
	
You	may	create	a	Larger	Work	by	combining	Covered	Code	with	other	code
not	governed	by	the	terms	of	this	License	and	distribute	the	Larger	Work	as	a
single	product.	In	such	a	case,	You	must	make	sure	the	requirements	of	this
License	are	fulfilled	for	the	Covered	Code.

	
	
4.	Inability	to	Comply	Due	to	Statute	or	Regulation.
	
If	it	is	impossible	for	You	to	comply	with	any	of	the	terms	of	this	License	with
respect	to	some	or	all	of	the	Covered	Code	due	to	statute,	judicial	order,	or
regulation	then	You	must:	(a)	comply	with	the	terms	of	this	License	to	the
maximum	extent	possible;	and	(b)	describe	the	limitations	and	the	code	they
affect.	Such	description	must	be	included	in	the	legal	file	described	in	Section
3.4	and	must	be	included	with	all	distributions	of	the	Source	Code.	Except	to
the	extent	prohibited	by	statute	or	regulation,	such	description	must	be
sufficiently	detailed	for	a	recipient	of	ordinary	skill	to	be	able	to	understand	it.

	
	
5.	Application	of	this	License.
	
This	License	applies	to	code	to	which	the	Initial	Developer	has	attached	the
notice	in	Exhibit	A	and	to	related	Covered	Code.

	
	
6.	Versions	of	the	License.
	
6.1.	New	Versions
	
Netscape	Communications	Corporation	("Netscape")	may	publish	revised
and/or	new	versions	of	the	License	from	time	to	time.	Each	version	will	be
given	a	distinguishing	version	number.
	
6.2.	Effect	of	New	Versions
	
Once	Covered	Code	has	been	published	under	a	particular	version	of	the
License,	You	may	always	continue	to	use	it	under	the	terms	of	that	version.
You	may	also	choose	to	use	such	Covered	Code	under	the	terms	of	any
subsequent	version	of	the	License	published	by	Netscape.	No	one	other	than
Netscape	has	the	right	to	modify	the	terms	applicable	to	Covered	Code	created
under	this	License.
	
6.3.	Derivative	Works
	
If	You	create	or	use	a	modified	version	of	this	License	(which	you	may	only	do
in	order	to	apply	it	to	code	which	is	not	already	Covered	Code	governed	by
this	License),	You	must	(a)	rename	Your	license	so	that	the	phrases	"Mozilla",
"MOZILLAPL",	"MOZPL",	"Netscape",	"MPL",	"NPL"	or	any	confusingly
similar	phrase	do	not	appear	in	your	license	(except	to	note	that	your	license
differs	from	this	License)	and	(b)	otherwise	make	it	clear	that	Your	version	of
the	license	contains	terms	which	differ	from	the	Mozilla	Public	License	and
Netscape	Public	License.	(Filling	in	the	name	of	the	Initial	Developer,	Original
Code	or	Contributor	in	the	notice	described	in	Exhibit	A	shall	not	of
themselves	be	deemed	to	be	modifications	of	this	License.)

	
	
7.	Disclaimer	of	warranty
	
Covered	code	is	provided	under	this	license	on	an	"as	is"	basis,	without
warranty	of	any	kind,	either	expressed	or	implied,	including,	without
limitation,	warranties	that	the	covered	code	is	free	of	defects,	merchantable,	fit
for	a	particular	purpose	or	non-infringing.	The	entire	risk	as	to	the	quality	and
performance	of	the	covered	code	is	with	you.	Should	any	covered	code	prove
defective	in	any	respect,	you	(not	the	initial	developer	or	any	other	contributor)
assume	the	cost	of	any	necessary	servicing,	repair	or	correction.	This
disclaimer	of	warranty	constitutes	an	essential	part	of	this	license.	No	use	of
any	covered	code	is	authorized	hereunder	except	under	this	disclaimer.

	
	
8.	Termination
	
8.1.	This	License	and	the	rights	granted	hereunder	will	terminate
automatically	if	You	fail	to	comply	with	terms	herein	and	fail	to	cure	such
breach	within	30	days	of	becoming	aware	of	the	breach.	All	sublicenses	to	the
Covered	Code	which	are	properly	granted	shall	survive	any	termination	of	this
License.	Provisions	which,	by	their	nature,	must	remain	in	effect	beyond	the
termination	of	this	License	shall	survive.
	
8.2.	If	You	initiate	litigation	by	asserting	a	patent	infringement	claim
(excluding	declatory	judgment	actions)	against	Initial	Developer	or	a
Contributor	(the	Initial	Developer	or	Contributor	against	whom	You	file	such
action	is	referred	to	as	"Participant")	alleging	that:
	
			such	Participant's	Contributor	Version	directly	or	indirectly	infringes	any
patent,	then	any	and	all	rights	granted	by	such	Participant	to	You	under
Sections	2.1	and/or	2.2	of	this	License	shall,	upon	60	days	notice	from
Participant	terminate	prospectively,	unless	if	within	60	days	after	receipt	of
notice	You	either:	(i)	agree	in	writing	to	pay	Participant	a	mutually	agreeable
reasonable	royalty	for	Your	past	and	future	use	of	Modifications	made	by	such
Participant,	or	(ii)	withdraw	Your	litigation	claim	with	respect	to	the
Contributor	Version	against	such	Participant.	If	within	60	days	of	notice,	a
reasonable	royalty	and	payment	arrangement	are	not	mutually	agreed	upon	in
writing	by	the	parties	or	the	litigation	claim	is	not	withdrawn,	the	rights
granted	by	Participant	to	You	under	Sections	2.1	and/or	2.2	automatically
terminate	at	the	expiration	of	the	60	day	notice	period	specified	above.
			any	software,	hardware,	or	device,	other	than	such	Participant's	Contributor
Version,	directly	or	indirectly	infringes	any	patent,	then	any	rights	granted	to
You	by	such	Participant	under	Sections	2.1(b)	and	2.2(b)	are	revoked	effective
as	of	the	date	You	first	made,	used,	sold,	distributed,	or	had	made,
Modifications	made	by	that	Participant.
	
8.3.	If	You	assert	a	patent	infringement	claim	against	Participant	alleging	that
such	Participant's	Contributor	Version	directly	or	indirectly	infringes	any

patent	where	such	claim	is	resolved	(such	as	by	license	or	settlement)	prior	to
the	initiation	of	patent	infringement	litigation,	then	the	reasonable	value	of	the
licenses	granted	by	such	Participant	under	Sections	2.1	or	2.2	shall	be	taken
into	account	in	determining	the	amount	or	value	of	any	payment	or	license.
	
8.4.	In	the	event	of	termination	under	Sections	8.1	or	8.2	above,	all	end	user
license	agreements	(excluding	distributors	and	resellers)	which	have	been
validly	granted	by	You	or	any	distributor	hereunder	prior	to	termination	shall
survive	termination.

	
	
9.	Limitation	of	liability
	
Under	no	circumstances	and	under	no	legal	theory,	whether	tort	(including
negligence),	contract,	or	otherwise,	shall	you,	the	initial	developer,	any	other
contributor,	or	any	distributor	of	covered	code,	or	any	supplier	of	any	of	such
parties,	be	liable	to	any	person	for	any	indirect,	special,	incidental,	or
consequential	damages	of	any	character	including,	without	limitation,	damages
for	loss	of	goodwill,	work	stoppage,	computer	failure	or	malfunction,	or	any
and	all	other	commercial	damages	or	losses,	even	if	such	party	shall	have	been
informed	of	the	possibility	of	such	damages.	This	limitation	of	liability	shall
not	apply	to	liability	for	death	or	personal	injury	resulting	from	such	party's
negligence	to	the	extent	applicable	law	prohibits	such	limitation.	Some
jurisdictions	do	not	allow	the	exclusion	or	limitation	of	incidental	or
consequential	damages,	so	this	exclusion	and	limitation	may	not	apply	to	you.

	
	
10.	U.S.	government	end	users
	
The	Covered	Code	is	a	"commercial	item,"	as	that	term	is	defined	in	48	C.F.R.
2.101	(Oct.	1995),	consisting	of	"commercial	computer	software"	and
"commercial	computer	software	documentation,"	as	such	terms	are	used	in	48
C.F.R.	12.212	(Sept.	1995).	Consistent	with	48	C.F.R.	12.212	and	48	C.F.R.
227.7202-1	through	227.7202-4	(June	1995),	all	U.S.	Government	End	Users
acquire	Covered	Code	with	only	those	rights	set	forth	herein.

	
	
11.	Miscellaneous
	
This	License	represents	the	complete	agreement	concerning	subject	matter
hereof.	If	any	provision	of	this	License	is	held	to	be	unenforceable,	such
provision	shall	be	reformed	only	to	the	extent	necessary	to	make	it
enforceable.	This	License	shall	be	governed	by	California	law	provisions
(except	to	the	extent	applicable	law,	if	any,	provides	otherwise),	excluding	its
conflict-of-law	provisions.	With	respect	to	disputes	in	which	at	least	one	party
is	a	citizen	of,	or	an	entity	chartered	or	registered	to	do	business	in	the	United
States	of	America,	any	litigation	relating	to	this	License	shall	be	subject	to	the
jurisdiction	of	the	Federal	Courts	of	the	Northern	District	of	California,	with
venue	lying	in	Santa	Clara	County,	California,	with	the	losing	party
responsible	for	costs,	including	without	limitation,	court	costs	and	reasonable
attorneys'	fees	and	expenses.	The	application	of	the	United	Nations
Convention	on	Contracts	for	the	International	Sale	of	Goods	is	expressly
excluded.	Any	law	or	regulation	which	provides	that	the	language	of	a	contract
shall	be	construed	against	the	drafter	shall	not	apply	to	this	License.

	
	
12.	Responsibility	for	claims
	
As	between	Initial	Developer	and	the	Contributors,	each	party	is	responsible
for	claims	and	damages	arising,	directly	or	indirectly,	out	of	its	utilization	of
rights	under	this	License	and	You	agree	to	work	with	Initial	Developer	and
Contributors	to	distribute	such	responsibility	on	an	equitable	basis.	Nothing
herein	is	intended	or	shall	be	deemed	to	constitute	any	admission	of	liability.

	
	
13.	Multiple-licensed	code
	
Initial	Developer	may	designate	portions	of	the	Covered	Code	as	"Multiple-
Licensed".	"Multiple-Licensed"	means	that	the	Initial	Developer	permits	you
to	utilize	portions	of	the	Covered	Code	under	Your	choice	of	the	MPL	or	the
alternative	licenses,	if	any,	specified	by	the	Initial	Developer	in	the	file
described	in	Exhibit	A.

	
	
Exhibit	A	-	Mozilla	Public	License.
	
"The	contents	of	this	file	are	subject	to	the	Mozilla	Public	License
Version	1.1	(the	"License");	you	may	not	use	this	file	except	in
compliance	with	the	License.	You	may	obtain	a	copy	of	the	License	at
http://www.mozilla.org/MPL/
	
Software	distributed	under	the	License	is	distributed	on	an	"AS	IS"
basis,	WITHOUT	WARRANTY	OF	ANY	KIND,	either	express	or	implied.
See	the
License	for	the	specific	language	governing	rights	and	limitations
under	the	License.
	
The	Original	Code	is	______________________________________.
	
The	Initial	Developer	of	the	Original	Code	is	________________________.
Portions	created	by	______________________	are	Copyright	(C)	______
_______________________.	All	Rights	Reserved.
	
Contributor(s):	______________________________________.
	
Alternatively,	the	contents	of	this	file	may	be	used	under	the	terms
of	the	_____	license	(the		"[___]	License"),	in	which	case	the
provisions	of	[______]	License	are	applicable	instead	of	those
above.	If	you	wish	to	allow	use	of	your	version	of	this	file	only
under	the	terms	of	the	[____]	License	and	not	to	allow	others	to	use
your	version	of	this	file	under	the	MPL,	indicate	your	decision	by
deleting	the	provisions	above	and	replace	them	with	the	notice	and
other	provisions	required	by	the	[___]	License.	If	you	do	not	delete
the	provisions	above,	a	recipient	may	use	your	version	of	this	file
under	either	the	MPL	or	the	[___]	License."
	
NOTE:	The	text	of	this	Exhibit	A	may	differ	slightly	from	the	text	of	the
notices	in	the	Source	Code	files	of	the	Original	Code.	You	should	use	the	text
of	this	Exhibit	A	rather	than	the	text	found	in	the	Original	Code	Source	Code

for	Your	Modifications.

	
TOgCodeBase
	
	

	
The	TOgCodeBase	class	is	the	ancestor	class	for	the	other	"release	code"
components.	It	implements	several	properties	and	methods	that	are	common
for	all	of	its	descendants.

	
TOgMakeKeys
TOgMakeCodes
	
TOgDateCode
TOgDaysCode
TOgNetCode
TOgRegistrationCode
TOgSerialNumberCode
TOgSpecialCode
TOgUsageCode
TOgNetCode
	
TOgProtectExe
	

	
TOgDateCode	implements	a	Start/End	Date	release	code.	Use	this	release	code
when	you	need	to	limit	the	amount	of	time	that	an	application	(or	specific
features	of	an	application)	can	be	used.	Both	a	start	date	and	an	end	date	are
encoded	into	this	release	code.	This	allows	you	to	detect	a	change	to	the
computers	clock	that	results	in	a	date	outside	of	the	date	range	or	an	attempt	to
alter	the	registry	or	INI	file	entry.

	
TOgDaysCode	implements	a	Number	of	Days	Used	release	code.	This	release
code	limits	the	number	of	days	that	an	application	(or	specific	features)	can	be
used.	The	application	can	be	run	an	unlimited	number	of	times	each	day.

	
TOgMakeCodes	is	a	non-visual	component	that	displays	a	dialog	when	its
Execute	method	is	called.	The	dialog	allows	you	to	create	several	types	of
release	codes.	Each	release	code	consists	of	8	bytes	and	is	viewed	and	entered
as	16	hexadecimal	digits.

	
TOgMakeKeys	is	a	non-visual	component	that	displays	a	dialog	when	its
Execute	method	is	called.	The	dialog	allows	you	to	create	and	maintain	keys.
Keys	are	used	to	encode	and	decode	the	release	codes	that	the	other	OnGuard
components	use.

	
TOgNetCode	implements	a	Network	Metering	release	code.	This	release	code
limits	the	number	of	concurrent	instances	of	an	application	that	are	allowed	to
run	on	a	network.	It	does	this	through	the	use	of	a	network	release	code	and	a
Network	Access	File.	The	use	of	a	network	release	code	is	no	different	than
other	release	codes,	but	there	are	additional	maintenance	issues	related	to	the
network	file	that	your	application	must	handle.

	
The	TOgProtectExe	component	allows	you	to	detect	changes	to	your	EXE	file.
The	size	of	the	EXE	file	and	a	32-bit	CRC	(Cyclical	Redundancy	Check)	value
are	recorded	in	the	EXE	file	and	checked	each	time	the	application	is	run.

	
TOgRegistrationCode	implements	a	Simple	Registration	release	code.	This
release	code	ties	the	users	name,	company	name,	or	some	other	textual	data	to
the	registration	code.

	
TOgSerialNumberCode	implements	a	Serial	Number	Registration	release
code.	This	release	code	ties	a	serial	number	to	the	release	code.	This	release
code	is	very	similar	to	the	Simple	Registration	release	code.	The	only
difference	is	in	the	data	that	is	used	as	part	of	the	code	generation	process.	The
Serial	Number	Registration	release	code	uses	a	number	instead	of	a	text	string.

	
TOgSpecialCode	implements	a	Special	Registration	release	code.	This	release
code	is	based	on	a	special	value	(a	long	integer)	that	can	be	used	to	indicate
anything	you	like.

	
TOgUsageCode	implements	a	Usage	Count	release	code.	This	release	code
limits	the	number	of	times	an	application	can	be	executed.

Generate	Key	Routines
																GenerateRandomKeyPrim
																GenerateMD5KeyPrim
																GenerateTMDKeyPrim

	
Modifier	Routines

																ApplyModifierToKeyPrim
																CreateMachineID
																GenerateDateModifierPrim
																GenerateMachineModifierPrim
																GenerateStringModifierPrim
																GenerateUniqueModifierPrim

	
Hash	Routines

																StringHashElf
	

Mixing	Routines
																MixBlock

	
Utility	Routines

																ExpandDate
																ShrinkDate
																BufferToHex
																BufferToHexBytes
																HexStringIsZero
																HexToBuffer
																GetCodeType
																GetExpirationDate

	
	

Date	Code
																GetDateCodeValue
																InitDateCode
																IsDateCodeExpired
																IsDateCodeValid
																InitDateCodeEx
																GetDateCodeStart

																GetDateCodeEnd
	

Days	Code
																DecDaysCode
																GetDaysCodeValue
																InitDaysCode
																IsDaysCodeExpired
																IsDaysCodeValid

	
Registration	Code

																InitRegCode
																IsRegCodeExpired
																IsRegCodeValid
																IsRegCodeRegisteredTo

	
Serial	Number	Code

																GetSerialNumberCodeValue
																InitSerialNumberCode
																IsSerialNumberCodeExpired
																IsSerialNumberCodeValid
																IsSerialNumberCodeValidFor

	
Special	Code

																GetSpecialCodeValue
																InitSpecialCode
																IsSpecialCodeExpired
																IsSpecialCodeValid
																IsSpecialCodeValidFor

	
Usage	Code

																DecUsageCode
																GetUsageCodeValue
																InitUsageCode
																IsUsageCodeExpired
																IsUsageCodeValid
																InitUsageCodeUnlimited

	
Network	Code

																IsAppOnNetwork
																CheckNetAccessFile
																CreateNetAccessFile
																CreateNetAccessFileEx
																DecodeNAFCountCode
																GetNetAccessFileInfo
																EncodeNAFCountCode
																LockNetAccessFile
																ResetNetAccessFile
																UnlockNetAccessFile

	
Protect	EXE

																IsExeTampered
																ProtectExe
																UnprotectExe
																UpdateChecksum
																FileCRC32
																UpdateCRC32

	
Single	Instance

																IsFirstInstance
																ActivateFirstInstance

	
	
	
	

Enter	topic	text	here.
	
{$IFDEF	Win16}
	DWord						=	LongInt;
	PDWord					=	^DWord;
	TGUID						=	GUID;			{Delphi	1.0	defines	it	as	GUID	-	Delphi	2.0	defines	it	as
TGUID}
	AnsiChar			=	Char;
	PAnsiChar		=	PChar;
	{$ENDIF}
	
	{$IFNDEF	FPC}
	PByte									=	^Byte;
	PByteArray				=	^TByteArray;
	TByteArray				=	array	[0..MaxStructSize	div	SizeOf(Byte)	-	1]	of	Byte;
	PLongInt						=	^LongInt;
	{$ENDIF}
	PLongIntArray	=	^TLongIntArray;
	TLongIntArray	=	array	[0..MaxStructSize	div	SizeOf(LongInt)	-	1]	of
LongInt;
	
TLongIntRec
PCode
TCode
TCodeType
TKey
TKeyType
TTMDContext
TMD5Context
TMD5Digest
T128Bit
T256Bit
TEsMachineInfoSet
TCodeStatus
	
TNetAccess
TNetAccessInfo
TGetFileNameEvent

	
	PSignatureRec	=	^TSignatureRec;
	TSignatureRec	=	packed	record
			Sig1			:	DWord;																																																		{!!.07}
			Sig2			:	DWord;																																																		{!!.07}
			Sig3			:	DWord;																																																		{!!.07}
			Offset	:	DWord;																																																		{!!.07}
			Size			:	DWord;																																																		{!!.07}
			CRC				:	DWord;																																																		{!!.07}
			Sig4			:	DWord;																																																		{!!.07}
			Sig5			:	DWord;																																																		{!!.07}
			Sig6			:	DWord;																																																		{!!.07}
	end;
	
	TExeStatus	=	(
			exeSuccess,													{no	error}
			exeSizeError,											{the	file	size	has	changed}
			exeIntegrityError,						{CRC	does	not	match}
			exeNotStamped,										{the	exe	has	not	been	stamped}
			exeAccessDenied									{share	violation}																										{!!.05}
);
	
	TCheckedExeEvent	=	procedure(Sender	:	TObject;	Status	:	TExeStatus)	of
object;

Enter	topic	text	here.

Enter	topic	text	here.

Enter	topic	text	here.
	

Types
{$IFDEF	Win16}
	DWord						=	LongInt;
	PDWord					=	^DWord;
	TGUID						=	GUID;			{Delphi	1.0	defines	it	as	GUID	-	Delphi	2.0	defines	it	as
TGUID}
	AnsiChar			=	Char;
	PAnsiChar		=	PChar;
	{$ENDIF}
	
	{$IFNDEF	FPC}
	PByte									=	^Byte;
	PByteArray				=	^TByteArray;
	TByteArray				=	array	[0..MaxStructSize	div	SizeOf(Byte)	-	1]	of	Byte;
	PLongInt						=	^LongInt;
	{$ENDIF}
	PLongIntArray	=	^TLongIntArray;
	TLongIntArray	=	array	[0..MaxStructSize	div	SizeOf(LongInt)	-	1]	of
LongInt;
	
TLongIntRec
PCode
TCode
TCodeType
TKey
TKeyType
TTMDContext
TMD5Context
TMD5Digest
T128Bit
T256Bit
TEsMachineInfoSet
TCodeStatus
	
	

Constants
DefAutoCheck						=	True;
	DefAutoDecrease			=	True;
	DefCheckSize						=	True;
	DefStoreCode						=	False;
	DefStoreModifier		=	False;
	DefStoreRegString	=	False;
	
	OgVersionStr						=	'1.15';
	
{magic	values}
	DaysCheckCode				=	Word($649B);
	DateCheckCode				=	Word($A4CB);
	NetCheckCode					=	Word($9341);
	RegCheckCode					=	Word($D9F6);
	SerialCheckCode		=	Word($3C69);
	UsageCheckCode			=	Word($F3D5);
	SpecialCheckCode	=	Word($9C5B);
	
	{$IFDEF	Win32}
	MaxStructSize	=	1024	*	2000000;	{2G}
	{$ELSE}
	MaxStructSize	=	1024	*	64	-	1;		{64K}
	{$ENDIF}
	
	DefCodeType						=	ctDate;
	DefKeyType							=	ktRandom;
	
BaseDate
	

Exceptions
EOnGuardException	=	class(Exception);
	EOnGuardBadDateException	=	class(EOnGuardException);																	{!!.15}
	EOnGuardClockIssueException	=	class(EOnGuardException);
	
	
	

Variables
StrRes	:	TOgStringResource;
	
	

Routines
Generate	Key	Routines

																GenerateRandomKeyPrim
																GenerateMD5KeyPrim
																GenerateTMDKeyPrim

	
Modifier	Routines

																ApplyModifierToKeyPrim
																CreateMachineID
																GenerateDateModifierPrim
																GenerateMachineModifierPrim
																GenerateStringModifierPrim
																GenerateUniqueModifierPrim

	
Hash	Routines

																StringHashElf
	

Mixing	Routines
																MixBlock

	
Utility	Routines

																ExpandDate
																ShrinkDate
																BufferToHex
																BufferToHexBytes
																HexStringIsZero
																HexToBuffer
																GetCodeType
																GetExpirationDate
																OgFormatDate
																Max
																Min
																XorMem

	
																MyHashElf
																GetDiskSerialNumber
																GetDriveType

																HiWord
																CoCreateGuid
																timeGetTime

	
	

Date	Code
																GetDateCodeValue
																InitDateCode
																IsDateCodeExpired
																IsDateCodeValid
																GetDateCodeStart
																GetDateCodeEnd
																InitDateCodeEx

	
	

Days	Code
																DecDaysCode
																GetDaysCodeValue
																InitDaysCode
																IsDaysCodeExpired
																IsDaysCodeValid

	
Registration	Code

																InitRegCode
																IsRegCodeExpired
																IsRegCodeValid
																IsRegCodeRegisteredTo

	
Serial	Number	Code

																GetSerialNumberCodeValue
																InitSerialNumberCode
																IsSerialNumberCodeExpired
																IsSerialNumberCodeValid

	
Special	Code

																GetSpecialCodeValue
																InitSpecialCode
																IsSpecialCodeExpired

																IsSpecialCodeValid
	

Usage	Code
																DecUsageCode
																GetUsageCodeValue
																InitUsageCode
																IsUsageCodeExpired
																IsUsageCodeValid

	
	
{$IFDEF	Win16}
function	GetDiskSerialNumber(Drive	:	AnsiChar)	:	LongInt;
{$ENDIF}
{$IFDEF	LINUX}
function	GetDiskSerialNumber(Drive	:	AnsiChar)	:	LongInt;
function	MyHashElf(const	Buf;		BufSize	:	LongInt)	:	LongInt;
{$ENDIF}
function	Max(A,	B	:	LongInt):	LongInt;
function	Min(A,	B	:	LongInt)	:	LongInt;
procedure	XorMem(var	Mem1;	const	Mem2;	Count	:	Cardinal);
function	OgFormatDate(Value	:	TDateTime)	:	string;																					{!!.09}
	
	
{$IFDEF	KYLIX}
function	GetDriveType(drive:Integer):	Integer;
function	HiWord(I:	DWORD):Word;
function	CoCreateGuid(out	guid:	TGUID):	HResult;
function	timeGetTime:	DWord;
{$ENDIF}
{$IFDEF	FPC}
{$IFDEF	LINUX}
function	GetDriveType(drive:Integer):	Integer;
function	HiWord(I:	DWORD):Word;
function	CoCreateGuid(out	guid:	TGUID):	HResult;
function	timeGetTime:	Cardinal;
{$ENDIF}
{$IFDEF	FREEBSD}
function	GetDriveType(drive:Integer):	Integer;

function	HiWord(I:	DWORD):Word;
function	CoCreateGuid(out	guid:	TGUID):	HResult;
function	timeGetTime:	Cardinal;
{$ENDIF}
{$ENDIF}
	

The	OnGuard	unit	provides	all	of	the	code	components	except	for
TOgNetCode.
	

Classes
TOgCodeBase
	

Components
TOgMakeKeys
TOgMakeCodes
	
TOgDateCode
TOgDaysCode
TOgNetCode
TOgRegistrationCode
TOgSerialNumberCode
TOgSpecialCode
TOgUsageCode
	
	

The	OgFirst	unit	provides	routines	that	allow	you	to	detect	when	a	second
instance	of	an	application	is	being	executed	and	to	force	the	previous	instance
of	the	application	to	become	the	active	application.
	
ActivateFirstInstance
IsFirstInstance

The	OgNetWrk	unit	provides	the	network	access	component,	classes,	types
and	API	routines.
	

Types
TNetAccess
TNetAccessInfo
TGetFileNameEvent
	
	

Components
TOgNetCode
	
	

Routines
CheckNetAccessFile
CreateNetAccessFile
CreateNetAccessFileEx
DecodeNAFCountCode
EncodeNAFCountCode
GetNetAccessFileInfo
IsAppOnNetwork
LockNetAccessFile
ResetNetAccessFile
UnlockNetAccessFile
	

This	unit	contain	file	related	routines	formerly	located	in	ogutil.
	
GetFileSize
LockFile
UnlockFile
FlushFileBuffers
	

Enter	topic	text	here.
	
	

Types
	PSignatureRec	=	^TSignatureRec;
	TSignatureRec	=	packed	record
			Sig1			:	DWord;																																																		{!!.07}
			Sig2			:	DWord;																																																		{!!.07}
			Sig3			:	DWord;																																																		{!!.07}
			Offset	:	DWord;																																																		{!!.07}
			Size			:	DWord;																																																		{!!.07}
			CRC				:	DWord;																																																		{!!.07}
			Sig4			:	DWord;																																																		{!!.07}
			Sig5			:	DWord;																																																		{!!.07}
			Sig6			:	DWord;																																																		{!!.07}
	end;
	
	TExeStatus	=	(
			exeSuccess,													{no	error}
			exeSizeError,											{the	file	size	has	changed}
			exeIntegrityError,						{CRC	does	not	match}
			exeNotStamped,										{the	exe	has	not	been	stamped}
			exeAccessDenied									{share	violation}																										{!!.05}
);
	
	TCheckedExeEvent	=	procedure(Sender	:	TObject;	Status	:	TExeStatus)	of
object;
	

Classes
TOgProtectExe
	

Routines
IsExeTampered
ProtectExe
UnprotectExe
UpdateChecksum
FileCRC32
UpdateCRC32
	
	

This	unit	contains	the	TKeyGenerateFrm	class.
	
The	Key	Type	combo	box	contains	the	options:
Random
Standard	Text
Case-sensitive	Text

These	values	correspond	to	TKeyType.
	
	
VCL	=	OnGuard1.dfm
CLX	=	QOnGuard1.xfm
Lazarus	=	lcl\QOnGuard1
	

VCL

	

This	unit	contains	the	TCodeGenerateFrm	class.
	
The	tabs	across	the	top	represent	the	code	type	and	must	match	the	sequence	in
TCodeType.
	
Clicking	on	the	 	button	will	open	the	key	maintenance	form	in	OnGuard3.
	
	
VCL	=	OnGuard2.dfm
CLX	=	QOnGuard2.xfm
Lazarus	=	lcl\QOnGuard2
	
	

VCL

	

	
	
	

This	unit	contains	the	TKeyMaintFrm	class.
	
	
VCL	=	OnGuard3.dfm
CLX	=	QOnGuard3.xfm
Lazarus	=	lcl\QOnGuard3
	
	

VCL

	
	
	

This	unit	contains	the	TEditProductFrm	class.
	
Clicking	on	the	 	button	will	open	the	key	generation	form	in	OnGuard1.
	
VCL	=	OnGuard4.dfm
CLX	=	QOnGuard4.xfm
Lazarus	=	lcl\QOnGuard4
	
	

VCL

	

The	OnGuard5	unit	contains	the	class	TOgCodeProperty	which	is	used	as	a
Property	Editor	in	the	IDE.
	
The	TOgCodeProperty.Edit	method	uses	the	TCodeGenerateFrm	class	found
in	OnGuard2.
	
CLX	=	QOnGuard5
Lazarus	=	lcl\QOnGuard5
	

The	OnGuard6	unit	contains	the	TModifierFrm	class	and	the
TOgModifierProperty	class	which	is	used	as	a	Property	Editor	in	the	IDE.
	
VCL	=	OnGuard6.dfm
CLX	=	QOnGuard6.xfm
Lazarus	=	lcl\QOnGuard6
	
	

VCL

	
	

The	OnGuard7	unit	contains	the	class	TOgFileNameProperty	which	is	used	as
a	Property	Editor	in	the	IDE.
	
CLX	=	QOnGuard7
Lazarus	=	lcl\QOnGuard7

This	unit	provides	the	About	dialog.
It	also	provides	the	TOgAboutProperty	which	is	used	as	a	Property	Editor	in
the	IDE.
	
VCL	=	OgAbout0.dfm
CLX	=	QOgAbout0.xfm
Lazarus	=	lcl\QOgAbout0
	

VCL

	

The	OgReg	unit	contains	the	TOgCodeGenEditor	class	which	is	used	as	a
Property	Editor	in	the	IDE.
This	unit	also	exposes	the	Register	procedure	used	to	register	the	components
in	Delphi.
	
The	register	procedure	adds	a	component	editor	to	TOgCodeBase	with	two
actions:	Generate	Code	and	Generate	Key.
	
TOgCodeBase	is	also	given	property	editors:
Code	=	TOgCodeProperty
Modifier	=	TOgModifierProperty
About	=	TOgAboutProperty

	
TOgProtectExe,	TOgMakeCodes,	and	TOgMakeKeys	are	given	the
TOgAboutProperty	property	editor.
	
TOgMakeCodes	and	TOgMakeKeys	are	given	the	TOgFileNameProperty
property	editor	on	the	KeyFileName	property.
	
	
	

TOgCodeBase	Properties
																AutoCheck
																Code
																Modifier
																StoreCode
																StoreModifier

TOgCodeBase	Events
																OnChecked
																OnGetKey
																OnGetCode
																OnGetModifier

TOgCodeBase	Methods
																CheckCode
																IsCodeValid

TOgDateCode	Properties
									AutoCheck
									Code
									Modifier
									StoreCode
									StoreModifier

TOgDateCode	Events
									OnChecked
									OnGetKey
									OnGetCode
									OnGetModifier

TOgDateCode	Methods
									CheckCode
																GetValue

									IsCodeValid

TOgDaysCode	Properties
									AutoCheck
																AutoDecrease

									Code
									StoreCode

TOgDaysCode	Events
																OnChangeCode

									OnChecked
									OnGetKey
									OnGetCode
									OnGetModifier

TOgDaysCode	Methods
									CheckCode
																Decrease
																GetValue

									IsCodeValid

TOgMakeCodes	Properties
																Code
																CodeType
																Key
																KeyFileName
																KeyType
																ShowHints

TOgMakeCodes	Methods
																Execute

TOgMakeKeys	Properties
																Key
																KeyFileName
																KeyType
																ShowHints

TOgMakeKeys	Methods
																ApplyModifierToKey
																Execute
																GenerateDateModifier
																GenerateKey
																GenerateMachineModifier
																GenerateRandomKey
																GenerateStringModifier
																GenerateUniqueModifier

TOgNetCode	Properties
																ActiveUsers

									AutoCheck
									Code
																FileName
																InvalidUsers
																MaxUsers

									Modifier
									StoreCode
									StoreModifier

TOgNetCode	Events
									OnChecked
									OnGetKey
									OnGetCode
									OnGetModifier

TOgNetCode	Methods
									CheckCode
									IsCodeValid
																IsRemoteDrive
																ResetAccessFile

TOgProtectExe	Properties
																AutoCheck
																CheckSize

TOgProtectExe	Events
																OnChecked

TOgProtectExe	Methods
																CheckExe
																StampExe
																UnStampExe

TOgRegistrationCode	Properties
									AutoCheck
									Code
									Modifier
																RegString

									StoreCode
									StoreModifier
																StoreRegString

TOgRegistrationCode	Events
									OnChecked
									OnGetKey
									OnGetCode
									OnGetModifier
																OnGetRegString

TOgRegistrationCode	Methods
									CheckCode
									IsCodeValid

TOgSerialNumberCode	Properties
									AutoCheck
									Code
									Modifier
									StoreCode
									StoreModifier

TOgSerialNumberCode	Events
									OnChecked
									OnGetKey
									OnGetCode
									OnGetModifier

TOgSerialNumberCode	Methods
									CheckCode
																GetValue

									IsCodeValid

TOgSpecialCode	Properties
									AutoCheck
									Code
									Modifier
									StoreCode
									StoreModifier

TOgSpecialCode	Events
									OnChecked
									OnGetKey
									OnGetCode
									OnGetModifier

TOgSpecialCode	Methods
									CheckCode
																GetValue

									IsCodeValid

TOgUsageCode	Properties
									AutoCheck
																AutoDecrease

									Modifier
									StoreModifier

TOgUsageCode	Events
																OnChangeCode

									OnChecked
									OnGetKey
									OnGetCode
									OnGetModifier

TOgUsageCode	Methods
									CheckCode
																Decrease
																GetValue

									IsCodeValid

Navigation:		»No	topics	above	this	level«

GenerateRandomKeyPrim
procedure	GenerateRandomKeyPrim	(var	Key;	KeySize	:
Cardinal);

	GenerateRandomKeyPrim	produces	a	Key	using	a	random	numbers.
This	routine	is	defined	in	the	OnGuard	unit.	(as	of	1.15	this	routine	has	been
moved	to	the	OgUtil	unit)

Navigation:		»No	topics	above	this	level«

GenerateMD5KeyPrim
procedure	GenerateMD5KeyPrim	(var	Key:	TKey;	const	Str
:	string);

	GenerateMD5KeyPrim	produces	a	Key	by	applying	the	MD5	hash	to	the
string	passed	as	Str
The	routine	is	case	sensitive.
This	routine	is	defined	in	the	OnGuard	unit.	(as	of	1.15	this	routine	has	been
moved	to	the	OgUtil	unit)

Navigation:		»No	topics	above	this	level«

GenerateTMDKeyPrim
procedure	GenerateTMDKeyPrim	(var	Key;	KeySize	:
Cardinal;	const	Str	:	string);

	GenerateTMDKeyPrim	produces	key	by	applying	a	hash	algorithm	to	the
string	passed	in	Str.
This	routine	is	defined	in	the	OnGuard	unit.	(as	of	1.15	this	routine	has	been
moved	to	the	OgUtil	unit)

Navigation:		»No	topics	above	this	level«

ApplyModifierToKeyPrim
procedure	ApplyModifierToKeyPrim	(Modifier	:	LongInt;
var	Key;	KeySize	:	Cardinal);

	ApplyModifierToKeyPrim	Xor's	the	Modifier	value	with	the	Key	returning
the	modified	key	as	the	Key	parameter.
Use	this	routine	to	sign	a	key.
KeySize	if	the	size	of	the	key	in	bytes
This	routine	is	defined	in	the	OnGuard	unit.	(as	of	1.15	this	routine	has	been
moved	to	the	OgUtil	unit)

Navigation:		»No	topics	above	this	level«

CreateMachineID

This	is	a	private	function	first	added	in	version	1.05.
In	version	1.14	the	Ansi	parameter	was	added	to	the	Win32	version.
	

function	CreateMachineID(MachineInfo	:
TEsMachineInfoSet;	Ansi:	Boolean	=	True)	:
LongInt;
function	CreateMachineID(MachineInfo	:
TEsMachineInfoSet)	:	LongInt;
	
	
Originally	declared	in	OnGuard	it	was	moved	to	OgUtil	in	version	1.15.
	

Summary
Delphi FPC

Win16Win32Win64MacOSiOSAndroidLinuxUNIXWin32Win64
midUser n/a Yes n/a n/a n/a n/a n/a Yes Yes
midSystem Yes Yes n/a n/a n/a n/a n/a Yes Yes
midNetwork Yes Yes n/a n/a n/a n/a n/a Yes Yes
midDrives Yes Yes n/a n/a n/a n/a n/a n/a Yes
Following	added	in	version	1.15

midCPUID n/a Yes n/a n/a n/a n/a n/a n/a ?
midCPUIDJCL n/a ? n/a n/a n/a n/a n/a n/a ?
midBIOS n/a Yes n/a n/a n/a n/a n/a n/a ?
midWinProd n/a Yes n/a n/a n/a n/a n/a n/a ?
midCryptoID n/a Yes n/a n/a n/a n/a n/a n/a ?
midNetMAC n/a n/a n/a n/a n/a n/a n/a n/a n/a
midDomain n/a Yes n/a n/a n/a n/a n/a n/a ?
	
	
	
	
MachineInfo Comments
midUser on	Win32	uses	the	HKEY_LOCAL_MACHINE	registry	hive

to	read	the	values	in
Software\Microsoft\Windows\CurrentVersion	or
Software\Microsoft\Windows	NT\CurrentVersion.		Uses	the
values	of	RegisteredOwner	and	RegisteredOrganization.
	
on	FPC	uses	Environment	variables	USERNAME,	USER,	or
LOGNAME.

midSystem on	Win16	uses	the	Windows	directory,	Windows	System
directory,	GetWinFlags,	and	WinProcs.GetVersion.
on	Win32	uses	GetSystemInfo's	dwOemId	and
dwProcessorType	values.
	
on	FPC	uses	/proc/cpuinfo,	/proc/sys/kernel/version,
/proc/sys/kernel/osrelease,	/proc/sys/kernel/hostname	files.
on	Kylix	uses	/proc/cpuinfo,	/proc/sys/kernel/version,
/proc/sys/kernel/osrelease,	/proc/sys/kernel/hostname	files.

midNetwork on	Win16	compares	the	Data4	field	of	two	GUIDs.		If	the
same	then	uses	the	Data4	field.
on	Win32	compares	the	Data4	field	of	two	GUIDs.		If	the
same	then	uses	the	Data4	field.
	
on	FPC	compares	the	Data4	field	of	two	GUIDs.		If	the	same
then	uses	the	Data4	field.
on	Kylix	compares	the	Data4	field	of	two	GUIDs.		If	the	same
then	uses	the	Data4	field.

midDrives on	Win16	uses	the	GetDiskSerialNumber	for	each	fixed	drive
from	C:	to	Z:.
on	Delphi-Win32	uses	the	GetVolumeInformation	for	each
fixed	drive	from	C:	to	Z:.		Ignores	SUBST	drives.
	
on	Kylix	uses	the	GetDiskSerialNumber	for	each	fixed	drive
from	2	to	26	(C	to	Z).

midCPUID on	Win32	uses	the	HKEY_LOCAL_MACHINE	registry	hive
to	read	the	values	in	Software\Microsoft\Windows
NT\CurrentVersion.		Uses	the	values	of	Identifier,
ProcessorNameString,	and	VendorIdentifier.

midCPUIDJCL
midBIOS on	Win32	uses	the	HKEY_LOCAL_MACHINE	registry	hive

to	read	the	values	in
HARDWARE\DESCRIPTION\System\BIOS.		Uses	the	values
of	BaseBoardManufacturer,	BaseBoardProduct,
BaseBoardVersion,	BIOSReleaseDate,	BIOSVendor,
BIOSVersion,	SystemFamily,	SystemManufacturer,
SystemProductName,	SystemSKU,	and	SystemVersion.

midWinProd on	Win32	uses	the	HKEY_LOCAL_MACHINE	registry	hive
to	read	the	values	in	Software\Microsoft\Windows
NT\CurrentVersion.		Uses	the	values	of	ProductID,
InstallDate,	ProductName,	InstallationType	and	EditionID.

midCryptoID on	Win32	uses	the	HKEY_LOCAL_MACHINE	registry	hive
to	read	the	values	in	Software\Microsoft\Cryptography.		Uses
the	value	of	MachineGUID.

midNetMAC
midDomain on	Win32	uses	the	HKEY_LOCAL_MACHINE	registry	hive

to	read	the	values	in

System\CurrentControlSet\Services\Tcpip\Parameters.		Uses
the	values	of	DhcpDomain,	Domain,	ICSDomain,	and	"NV
Domain".

	

Navigation:		»No	topics	above	this	level«

GenerateDateModifierPrim
function	GenerateDateModifierPrim	(D	:	TDateTime)	:
LongInt;

	GenerateDateModifierPrim	produces	a	key	modifier	based	on	the	date	D.
This	routine	is	defined	in	the	OnGuard	unit.	(as	of	1.15	this	routine	has	been
moved	to	the	OgUtil	unit)
	

Navigation:		»No	topics	above	this	level«

GenerateMachineModifierPrim
function	GenerateMachineModifierPrim:	LongInt;

	GenerateMachineModifierPrim	produces	a	key	modifier	based	on	specific
hardware	information.
Information	about	hard	disk	capacity,	network	card	serial	number,	and	other
items	specific	to	a	particular	computer	are	used	to	create	this	value.
This	function	calls	CreateMachineID	using	midSystem,	midUser,	and
midDrives.
This	routine	is	defined	in	the	OnGuard	unit.	(as	of	1.15	this	routine	has	been
moved	to	the	OgUtil	unit)

Navigation:		»No	topics	above	this	level«

GenerateStringModifierPrim
function	GenerateStringModifierPrim	(const	S	:	string)	:
LongInt;

	GenerateStringModifierPrim	produces	a	key	modifier	by	applying	a	hash
algorithm	to	the	string	passed	in	S.
This	routine	is	case	sensitive.
This	routine	is	defined	in	the	OnGuard	unit.	(as	of	1.15	this	routine	has	been
moved	to	the	OgUtil	unit)

Navigation:		»No	topics	above	this	level«

GenerateUniqueModifierPrim
function	GenerateUniqueModifierPrim:	LongInt;

	GenerateUniqueModifierPrim	produces	a	key	modifier	using	random
numbers.
This	routine	is	defined	in	the	OnGuard	unit.	(as	of	1.15	this	routine	has	been
moved	to	the	OgUtil	unit)

Navigation:		»No	topics	above	this	level«

StringHashElf
function	StringHashElf	(const	Str	:	string)	:	LongInt;

StringHashElf	produces	a	hash	value	based	on	the	text	passed	in	Str.
This	routine	is	defined	in	the	OnGuard	unit.	(as	of	1.15	this	routine	has	been
moved	to	the	OgUtil	unit)

Navigation:		»No	topics	above	this	level«

MixBlock
Enter	topic	text	here.

Navigation:		»No	topics	above	this	level«

ExpandDate
function	ExpandDate	(D	:	Word)	:	TDateTime;

	ExpandDate	translates	an	OnGuard	date	offset	to	an	actual	date.
OnGuard	uses	a	date	offset	to	reduce	the	amount	of	space	necessary	to	store	a
date.	OnGuard	creates	a	date	offset	by	subtracting	the	TDateTime	value	for	1
January	1996	from	the	actual	date.
Exceptions	to	the	conversion	rules	are	that	a	value	of	0	expands	to	1	January
9999	and	date	offsets	larger	than	65535	are	represented	as	0	(anything	after	6
June	2175).
This	routine	is	defined	in	the	OnGuard	unit.	(as	of	1.15	this	routine	has	been
moved	to	the	OgUtil	unit)

Navigation:		»No	topics	above	this	level«

ShrinkDate
function	ShrinkDate	(D	:	TDateTime)	:	Word;

ShrinkDate	translates	a	date	to	an	OnGuard	date	offset.
OnGuard	uses	a	date	offset	to	reduce	the	amount	of	space	necessary	to	store	a
date.	OnGuard	creates	a	date	offset	by	subtracting	the	TDateTime	value	for	1
January	1996	from	the	actual	date.
Exceptions	to	the	conversion	rules	are	that	a	value	of	0	expands	to	1	January
9999	and	date	offsets	larger	than	65535	are	represented	as	0	(anything	after	6
Jun	2175).
This	routine	is	defined	in	the	OnGuard	unit.	(as	of	1.15	this	routine	has	been
moved	to	the	OgUtil	unit)

Navigation:		»No	topics	above	this	level«

BufferToHex
function	BufferToHex	(const	Buf;	BufSize	:	Cardinal)	:
string;

	BufferToHex	converts	one	or	more	bytes	to	hex.
Buf	contains	one	or	more	bytes	and	BufSize	if	the	number	of	bytes	in	Buf.	The
hexadecimal	version	of	Buf	is	returned	as	the	function	result.
This	routine	is	defined	in	the	OgUtil	unit.

Navigation:		»No	topics	above	this	level«

BufferToHexBytes
function	BufferToHexBytes	(const	Buf;	BufSize	:	Cardinal)	:
string;

	BufferToHexBytes	performs	the	same	operation	as	the	BufferToHex	function
except	that	the	function	result	is	formatted	to	represent	an	array	of
hexadecimal	bytes	separated	by	commas.
Example	result:	"$02,	$67,	$FF"
This	routine	is	defined	in	the	OgUtil	unit.

Navigation:		»No	topics	above	this	level«

HexStringIsZero
function	HexStringIsZero	(const	Hex	:	string)	:	Boolean;

	HexStringIsZero	returns	true	if	the	hexadecimal	string	passed	as	Hex
consists	entirely	of	0's,	otherwise	false.
This	routine	is	defined	in	the	OgUtil	unit.

Navigation:		»No	topics	above	this	level«

HexToBuffer
function	HexToBuffer	(const	Hex	:	string;	var	Buf;	BufSize	:
Cardinal)	:	Boolean;

	HexToBuffer	converts	the	hexadecimal	string	in	Hex	to	bytes	that	are	stored
in	Buf.
Punctuation	($,	spaces,	commas,	parentheses,	...)		is	ignored.
BufSize	is	the	number	of	bytes	to	store	in	Buf	and	must	be	the	number	of
hexadecimal	bytes	in	Hex.	If	an	error	occurs,	false	is	returned,	otherwise	true.
This	routine	is	defined	in	the	OgUtil	unit.

Navigation:		»No	topics	above	this	level«

GetCodeType
function	GetCodeType	(const	Key	:	TKey;	const	Code	:
TCode)	:	TCodeType;
TCodeType	=	(ctDate,	ctDays,	ctRegistration,	ctSerialNumber,
ctUsage,	ctNetwork,	ctSpecial,	ctUnknown);

GetCodeType	returns	the	type	of	code	passed	as	the	Code	parameter.
Key	must	be	the	same	key	that	was	used	when	the	code	was	created	or
ctUnknown	is	returned.
This	routine	is	defined	in	the	OnGuard	unit.	(as	of	1.15	this	routine	has	been
moved	to	the	OgUtil	unit)

Navigation:		»No	topics	above	this	level«

GetExpirationDate
function	GetExpirationDate	(const	Key	:	TKey;	const	Code	:
TCode)	:	TDateTime;

	GetExpirationDate	returns	the	date	that	the	code	passed	as	the	Code
parameter	expires.
If	the	code	has	no	expiration	date	or	is	invalid,	1	January	9999	is	returned.Key
must	be	the	same	key	that	was	used	to	create	the	code	or	the	code	is	considered
invalid.
This	routine	is	defined	in	the	OnGuard	unit.	(as	of	1.15	this	routine	has	been
moved	to	the	OgUtil	unit)
	
As	of	version	1.15	this	function	checks	the	expiration	field	for	date	codes.		If
the	expiration	field	is	not	zero	then	return	it	otherwise	return	the	EndDate	field
like	previous	versions	did.
	

Navigation:		»No	topics	above	this	level«

GetDateCodeValue
function	GetDateCodeValue	(const	Key	:	TKey;	const	Code	:
TCode)	:	TDateTime;

	GetDateCodeValue	returns	the	expiration	date	stored	in	the	Code.
Key	must	be	the	same	key	that	was	used	to	create	the	code	or	the	code	is
considered	invalid.	If	the	code	is	invalid,	1	January	9999	is	returned.
This	routine	is	defined	in	the	OnGuard	unit.	(as	of	1.15	this	routine	has	been
moved	to	the	OgUtil	unit)

Navigation:		»No	topics	above	this	level«

InitDateCode
procedure	InitDateCode	(const	Key	:	TKey;	StartDate,
EndDate	:	TDateTime;	var	Code	:	TCode);

	InitDateCode	creates	and	initializes	a	date	code	using	Key,	StartDate,	and
EndDate.
The	resulting	code	is	valid	for	dates	between	StartDate	and		EndDate	inclusive.
This	routine	is	defined	in	the	OnGuard	unit.	(as	of	1.15	this	routine	has	been
moved	to	the	OgUtil	unit)
	
With	version	1.15	the	StartDate	is	checked.
An	exception	is	generated	if	the	StartDate	is	less	than	or	equal	to	the	BaseDate
or	if	it	is	greater	than	2175-Jun-6.
	

Navigation:		»No	topics	above	this	level«

IsDateCodeExpired
function	IsDateCodeExpired	(const	Key	:	TKey;	const	Code	:
TCode)	:	Boolean;

	IsDateCodeExpired	returns	true	if	the	Code	has	expired,	otherwise	false.
Key	must	be	the	same	key	that	was	used	to	create	the	code	or	the	code	is
considered	invalid.	If	the	code	is	invalid,	this	function	returns	true.
This	routine	is	defined	in	the	OnGuard	unit.	(as	of	1.15	this	routine	has	been
moved	to	the	OgUtil	unit)

Navigation:		»No	topics	above	this	level«

IsDateCodeValid
function	IsDateCodeValid	(const	Key	:	TKey;	const	Code	:
TCode)	:	Boolean;

	IsDateCodeValid	returns	true	if	Code	is	a	valid	date	code,	otherwise	false.
Key	must	be	the	same	key	that	was	used	to	create	the	code	or	the	code	is
considered	invalid.
This	routine	is	defined	in	the	OnGuard	unit.	(as	of	1.15	this	routine	has	been
moved	to	the	OgUtil	unit)

Navigation:		»No	topics	above	this	level«

InitDateCodeEx
procedure	InitDateCodeEx	(const	Key	:	TKey;	StartDate,
EndDate,	Expires	:	TDateTime;	var	Code	:	TCode);

	InitDateCodeEx	creates	and	initializes	a	date	code	using	Key,	StartDate,
EndDate,	and	Expires.
The	resulting	code	is	valid	for	dates	between	StartDate	and		EndDate	inclusive.
The	difference	between	this	function	and	InitDateCode	is	the	addition	of	an
expiration	date.
This	routine	is	defined	in	the	OgUtil	unit.
Added	in	version	1.15.
	
An	exception	is	generated	if	the	StartDate	is	less	than	or	equal	to	the	BaseDate
or	if	it	is	greater	than	2175-Jun-6.
An	exception	is	generated	if	Expires	is	less	than	or	equal	to	the	BaseDate	or	if
it	is	less	than	or	equal	to	the	StartDate.
	

Navigation:		»No	topics	above	this	level«

GetDateCodeStart
function	GetDateCodeStart	(const	Key	:	TKey;	const	Code	:
TCode)	:	TDateTime;

	GetDateCodeStart	returns	the	start	date	stored	in	the	Code.
Key	must	be	the	same	key	that	was	used	to	create	the	code	or	the	code	is
considered	invalid.	If	the	code	is	invalid,	1	January	9999	is	returned.
This	routine	is	defined	in	the	OgUtil	unit.
Added	in	version	1.15.

Navigation:		»No	topics	above	this	level«

GetDateCodeEnd
function	GetDateCodeEnd	(const	Key	:	TKey;	const	Code	:
TCode)	:	TDateTime;

	GetDateCodeEnd	returns	the	end	date	stored	in	the	Code.
Key	must	be	the	same	key	that	was	used	to	create	the	code	or	the	code	is
considered	invalid.	If	the	code	is	invalid,	1	January	9999	is	returned.
This	routine	is	defined	in	the	OgUtil	unit.
Added	in	version	1.15.

Navigation:		»No	topics	above	this	level«

DecDaysCode
procedure	DecDaysCode	(const	Key	:	TKey;	var	Code	:
TCode);

	DecDaysCode	reduces	the	internal	"days	count"	value	by	one	and	returns	the
modified	code	as	the	Code	parameter.
Key	must	be	the	same	key	that	was	used	to	create	the	code	or	the	code	is
considered	invalid.
This	routine	is	defined	in	the	OnGuard	unit.	(as	of	1.15	this	routine	has	been
moved	to	the	OgUtil	unit)

Navigation:		»No	topics	above	this	level«

GetDaysCodeValue
function	GetDaysCodeValue	(const	Key	:	TKey;	const	Code	:
TCode)	:	LongInt;

GetDaysCodeValue	returns	the	expiration	date	stored	in	the	Code.
Key	must	be	the	same	key	that	was	used	to	create	the	code	or	the	code	is
considered	invalid.	If	the	code	is	invalid,	0	is	returned.
This	routine	is	defined	in	the	OnGuard	unit.	(as	of	1.15	this	routine	has	been
moved	to	the	OgUtil	unit)

Navigation:		»No	topics	above	this	level«

InitDaysCode
procedure	InitDaysCode	(const	Key	:	TKey;	Days	:	Word;
Expires	:	TDateTime;	var	Code	:	TCode);

	InitDaysCode	creates	and	initializes	a	days	code	using	Key,	Days,	and
Expires.
Days	is	stored	as	part	of	the	Code.
The	resulting	code	is	valid	for	the	number	of	days	of	use	specified	in	the	Days
parameter	and	until	the	date	stored	in	Expires	is	reached.
This	routine	is	defined	in	the	OnGuard	unit.	(as	of	1.15	this	routine	has	been
moved	to	the	OgUtil	unit)

Navigation:		»No	topics	above	this	level«

IsDaysCodeExpired
function	IsDaysCodeExpired	(const	Key	:	TKey;	const	Code
:	TCode)	:	Boolean;

	IsDaysCodeExpired	returns	true	if	the	Code	has	expired,	otherwise	false.
Key	must	be	the	same	key	that	was	used	to	create	the	code	or	the	code	is
considered	invalid.	If	the	code	is	invalid,	this	function	returns	true.
This	routine	is	defined	in	the	OnGuard	unit.	(as	of	1.15	this	routine	has	been
moved	to	the	OgUtil	unit)

Navigation:		»No	topics	above	this	level«

IsDaysCodeValid
function	IsDaysCodeValid	(const	Key	:	TKey;	const	Code	:
TCode)	:	Boolean;

	IsDaysCodeValid	returns	true	if	Code	is	a	valid	days	code,	otherwise	false.
Key	must	be	the	same	key	that	was	used	to	create	the	code	or	the	code	is
considered	invalid.
This	routine	is	defined	in	the	OnGuard	unit.	(as	of	1.15	this	routine	has	been
moved	to	the	OgUtil	unit)

Navigation:		»No	topics	above	this	level«

InitRegCode
procedure	InitRegCode	(const	Key	:	TKey;	const	RegStr	:
string;	Expires	:	TDateTime;	var	Code	:	TCode);

	InitRegCode	creates	and	initializes	a	registration	code	using	Key,	RegStr,
and	Expires.
The	code	stores	a	hash	value	that	was	derived	from	RegStr.	RegStr	cannot	be
extracted	from	the	code.
The	resulting	code	is	valid	until	the	date	stored	in	Expires	is	reached.
This	routine	is	defined	in	the	OnGuard	unit.	(as	of	1.15	this	routine	has	been
moved	to	the	OgUtil	unit)

Navigation:		»No	topics	above	this	level«

IsRegCodeExpired
function	IsRegCodeExpired	(const	Key	:	TKey;	const	Code	:
TCode)	:	Boolean;

	IsRegCodeExpired	returns	true	if	the	Code	has	expired,	otherwise	false.
Key	must	be	the	same	key	that	was	used	to	create	the	code	or	the	code	is
considered	invalid.	If	the	code	is	invalid,	this	function	returns	true.
This	routine	is	defined	in	the	OnGuard	unit.	(as	of	1.15	this	routine	has	been
moved	to	the	OgUtil	unit)

Navigation:		»No	topics	above	this	level«

IsRegCodeValid
function	IsRegCodeValid	(const	Key	:	TKey;	const	Code	:
TCode)	:	Boolean;

	IsRegCodeValid	returns	true	if	Code	is	a	valid	registration	code,	otherwise
false.
Key	must	be	the	same	key	that	was	used	to	create	the	code	or	the	code	is
considered	invalid.
This	routine	is	defined	in	the	OnGuard	unit.	(as	of	1.15	this	routine	has	been
moved	to	the	OgUtil	unit)

Navigation:		»No	topics	above	this	level«

IsRegCodeRegisteredTo
function	IsRegCodeRegisteredTo(const	Key	:	TKey;	const
Code	:	TCode;	const	RegStr:	AnsiString)	:	Boolean;

	IsRegCodeRegisteredTo	returns	true	if	Code	is	a	valid	registration	code	and
the	registration	sting	matches,	otherwise	false.
Key	must	be	the	same	key	that	was	used	to	create	the	code	or	the	code	is
considered	invalid.
This	routine	is	defined	in	the	OgUtil	unit.
Added	in	version	1.15.
	

Navigation:		»No	topics	above	this	level«

GetSerialNumberCodeValue
function	GetSerialNumberCodeValue	(const	Key	:	TKey;
const	Code	:	TCode)	:	LongInt;

	GetSerialNumberCodeValue	returns	the	serial	number	that	was	used	to	create
the	Code.
Key	must	be	the	same	key	that	was	used	to	create	the	code	or	the	code	is
considered	invalid.	If	the	code	is	invalid,	0	is	returned.
This	routine	is	defined	in	the	OnGuard	unit.	(as	of	1.15	this	routine	has	been
moved	to	the	OgUtil	unit)

Navigation:		»No	topics	above	this	level«

InitSerialNumberCode
procedure	InitSerialNumberCode	(const	Key	:	TKey;		Serial	:
LongInt;	Expires	:	TDateTime;	var	Code	:	TCode);

	InitSerialNumberCode	creates	and	initializes	a	serial	number	code	using
Key,	Serial,	and	Expires.
Serial	is	stored	as	part	of	the	Code.
The	resulting	code	is	valid	until	the	date	stored	in	Expires	is	reached.
This	routine	is	defined	in	the	OnGuard	unit.	(as	of	1.15	this	routine	has	been
moved	to	the	OgUtil	unit)

Navigation:		»No	topics	above	this	level«

IsSerialNumberCodeExpired
function	IsSerialNumberCodeExpired	(const	Key	:	TKey;
const	Code	:	TCode)	:	Boolean;

	IsSerialNumberCodeExpired	returns	true	if	the	Code	has	expired,	otherwise
false.
Key	must	be	the	same	key	that	was	used	to	create	the	code	or	the	code	is
considered	invalid.	If	the	code	is	invalid,	this	function	returns	true.
This	routine	is	defined	in	the	OnGuard	unit.	(as	of	1.15	this	routine	has	been
moved	to	the	OgUtil	unit)

Navigation:		»No	topics	above	this	level«

IsSerialNumberCodeValid
function	IsSerialNumberCodeValid	(const	Key	:	TKey;	const
Code	:	TCode)	:	Boolean;

	IsSerialNumberCodeValid	returns	true	if	Code	is	a	valid	serial	number	code,
otherwise	false.
Key	must	be	the	same	key	that	was	used	to	create	the	code	or	the	code	is
considered	invalid.
This	routine	is	defined	in	the	OnGuard	unit.	(as	of	1.15	this	routine	has	been
moved	to	the	OgUtil	unit)

Navigation:		»No	topics	above	this	level«

IsSerialNumberCodeValidFor
function	IsSerialNumberCodeValid	(const	Key	:	TKey;	const
Code	:	TCode;	const	SerialNumber	:	LongInt)	:	Boolean;

	IsSerialNumberCodeValidFor	returns	true	if	Code	is	a	valid	serial	number
code	and	the	SerialNumber	matches,	otherwise	false.
Key	must	be	the	same	key	that	was	used	to	create	the	code	or	the	code	is
considered	invalid.
This	routine	is	defined	in	the	OgUtil	unit.
Added	in	version	1.15.
	

Navigation:		»No	topics	above	this	level«

GetSpecialCodeValue
function	GetSpecialCodeValue	(const	Key	:	TKey;	const
Code	:	TCode)	:	LongInt;

	GetSpecialCodeValue	returns	the	value	that	was	used	to	create	the	Code.
Key	must	be	the	same	key	that	was	used	to	create	the	code	or	the	code	is
considered	invalid.	If	the	code	is	invalid,	0	is	returned.
This	routine	is	defined	in	the	OnGuard	unit.	(as	of	1.15	this	routine	has	been
moved	to	the	OgUtil	unit)

Navigation:		»No	topics	above	this	level«

InitSpecialCode
procedure	InitSpecialCode	(const	Key	:	TKey;	Value	:
LongInt;	Expires	:	TDateTime;	var	Code	:	TCode);

	InitSpecialCode	creates	and	initializes	a	special	code	using	Key,	Value,	and
Expires.
Value	is	stored	as	part	of	the	Code.
The	resulting	code	is	valid	until	the	date	stored	in	Expires	is	reached.
This	routine	is	defined	in	the	OnGuard	unit.	(as	of	1.15	this	routine	has	been
moved	to	the	OgUtil	unit)

Navigation:		»No	topics	above	this	level«

IsSpecialCodeExpired
function	IsSpecialCodeExpired	(const	Key	:	TKey;	const
Code	:	TCode)	:	Boolean;

	IsSpecialCodeExpired	returns	true	if	the	Code	has	expired,	otherwise	false.
Key	must	be	the	same	key	that	was	used	to	create	the	code	or	the	code	is
considered	invalid.	If	the	code	is	invalid,	this	function	returns	true.
This	routine	is	defined	in	the	OnGuard	unit.	(as	of	1.15	this	routine	has	been
moved	to	the	OgUtil	unit)

Navigation:		»No	topics	above	this	level«

IsSpecialCodeValid
function	IsSpecialCodeValid	(const	Key	:	TKey;	const	Code	:
TCode)	:	Boolean;

	IsSpecialCodeValid	returns	true	if	Code	is	a	valid	special	code,	otherwise
false.
Key	must	be	the	same	key	that	was	used	to	create	the	code	or	the	code	is
considered	invalid.
This	routine	is	defined	in	the	OnGuard	unit.	(as	of	1.15	this	routine	has	been
moved	to	the	OgUtil	unit)

Navigation:		»No	topics	above	this	level«

IsSpecialCodeValidFor
function	IsSpecialCodeValid	(const	Key	:	TKey;	const	Code	:
TCode;	const	Value:	LongInt)	:	Boolean;

	IsSpecialCodeValidFor	returns	true	if	Code	is	a	valid	special	code	and	the
Value	matches,	otherwise	false.
Key	must	be	the	same	key	that	was	used	to	create	the	code	or	the	code	is
considered	invalid.
This	routine	is	defined	in	the	OgUtil	unit.
Added	in	version	1.15.
	

Navigation:		»No	topics	above	this	level«

DecUsageCode
procedure	DecUsageCode	(const	Key	:	TKey;	var	Code	:
TCode);

	DecUsageCode	reduces	the	internal	"usage	count"	value	by	one	and	returns
the	modified	code	as	the	Code	parameter.
Key	must	be	the	same	key	that	was	used	to	create	the	code	or	the	code	is
considered	invalid.
This	routine	is	defined	in	the	OnGuard	unit.	(as	of	1.15	this	routine	has	been
moved	to	the	OgUtil	unit)
	
In	version	1.15:
If	the	conditional	define	OgUsageUnlimited	is	enabled	then	a	check	is	made	to
see	if	the	usage	count	=	65535	and	expiration	=	65535	and	last	change	=	1	is
set.
If	all	three	conditions	are	true	then	the	code	is	treated	as	an	unlimited	usage
code	in	which	case	it	is	not	decremented	nor	is	the	last	updated	date	changed.
	

Navigation:		»No	topics	above	this	level«

GetUsageCodeValue
function	GetUsageCodeValue	(const	Key	:	TKey;	const	Code
:	TCode)	:	LongInt;

	GetUsageCodeValue	returns	the	current	usage	count	value	store	in	the	Code.
Key	must	be	the	same	key	that	was	used	to	create	the	code	or	the	code	is
considered	invalid.	If	the	code	is	invalid,	0	is	returned.
This	routine	is	defined	in	the	OnGuard	unit.	(as	of	1.15	this	routine	has	been
moved	to	the	OgUtil	unit)

Navigation:		»No	topics	above	this	level«

InitUsageCode
procedure	InitUsageCode	(const	Key	:	TKey;	Count	:
LongInt;	Expires	:	TDateTime;	var	Code	:	TCode);

	InitUsageCode	creates	and	initializes	a	usage	code	using	Key,	Count,	and
Expires.
Count	is	stored	as	part	of	the	Code.
The	resulting	code	is	valid	until	the	internal	Count	is	0	or	the	date	stored	in
Expires	is	reached.
This	routine	is	defined	in	the	OnGuard	unit.	(as	of	1.15	this	routine	has	been
moved	to	the	OgUtil	unit)

Navigation:		»No	topics	above	this	level«

IsUsageCodeExpired
function	IsUsageCodeExpired	(const	Key	:	TKey;	const
Code:	TCode)	:	Boolean;

	IsUsageCodeExpired	returns	true	if	the	Code	has	expired,	otherwise	false.
Key	must	be	the	same	key	that	was	used	to	create	the	code	or	the	code	is
considered	invalid.	If	the	code	is	invalid,	this	function	returns	true.
This	routine	is	defined	in	the	OnGuard	unit.	(as	of	1.15	this	routine	has	been
moved	to	the	OgUtil	unit)

Navigation:		»No	topics	above	this	level«

IsUsageCodeValid
function	IsUsageCodeValid	(const	Key	:	TKey;	const	Code	:
TCode)	:	Boolean;

	IsUsageCodeValid	returns	true	if	Code	is	a	valid	usage	code,	otherwise	false.
Key	must	be	the	same	key	that	was	used	to	create	the	code	or	the	code	is
considered	invalid.
This	routine	is	defined	in	the	OnGuard	unit.	(as	of	1.15	this	routine	has	been
moved	to	the	OgUtil	unit)

Navigation:		»No	topics	above	this	level«

InitUsageCodeUnlimited
procedure	InitUsageCode	(const	Key	:	TKey;	var	Code	:
TCode);

	InitUsageCodeUnlimited	creates	and	initializes	a	usage	code	using	Key,
Count=65535,	Expires=65535,	and	LastChange=1.
Count	is	stored	as	part	of	the	Code.
The	resulting	code	is	valid	until	the	internal	Count	is	0	or	the	date	stored	in
Expires	is	reached.
This	routine	is	defined	in	the	OgUtil	unit.
Added	in	1.15.
Only	available	if	the	conditional	define	OgUsageUnlimited	is	enabled.

Navigation:		»No	topics	above	this	level«

IsAppOnNetwork
function	IsAppOnNetwork	(const	ExePath	:	string)	:
Boolean;

	IsAppOnNetwork	returns	true	if	the	drive	specified	in	ExePath	is	a	remote
drive,	otherwise	false.
This	routine	is	defined	in	the	OgNetWrk	unit.

Navigation:		»No	topics	above	this	level«

CheckNetAccessFile
function	CheckNetAccessFile	(const	NetAccess	:
TNetAccess)	:	Boolean;
TNetAccess	=	packed	record
	Fh									:	Integer;
	Key								:	TKey;
	CheckValue	:	Word;
	Index						:	Word;
end;

	CheckNetAccessFile	verifies	that	the	net	access	file	referenced	by	NetAccess
has	at	least	one	slot	that	is	not	in	use.
If	there	is	at	least	one	open	slot	in	the	net	access	file,	CheckNetAccessFile
returns	true,	otherwise	false.
This	routine	is	defined	in	the	OgNetWrk	unit.

Navigation:		»No	topics	above	this	level«

CreateNetAccessFile
function	CreateNetAccessFile	(const	FileName	:	string;
const	Key	:	TKey;	Count	:	Word)	:	Boolean;

	CreateNetAccessFile	creates	a	net	access	for	Count	users	file	using
FileName	as	the	name	of	the	file	and	Key	to	encode	the	file.
If	a	file	with	FileName	as	its	name	exists	it	is	overwritten	without	warning.
This	routine	is	defined	in	the	OgNetWrk	unit.

Navigation:		»No	topics	above	this	level«

CreateNetAccessFileEx
function	CreateNetAccessFileEx	(const	FileName	:	string;
const	Key	:	TKey;	const	Code	:	TCode)	:	Boolean;

	CreateNetAccessFileEx	creates	a	net	access	file	using	the	access	count	value
from	a	previously	encoded	net	access	Code.
Key	must	be	the	same	key	that	was	used	to	create	the	code	or	the	code	is
considered	invalid.
This	routine	is	defined	in	the	OgNetWrk	unit.

Navigation:		»No	topics	above	this	level«

DecodeNAFCountCode
function	DecodeNAFCountCode	(const	Key	:	TKey;	const
Code	:	TCode)	:	LongInt;

	DecodeNAFCountCode	uses	Key	to	decode	Code	and	returns	the	number	of
authorized	users	as	the	function	result.
Key	must	be	the	same	key	that	was	used	to	create	the	code	or	the	code	is
considered	invalid.	If	the	code	is	invalid,	0	is	returned.
This	routine	is	defined	in	the	OgNetWrk	unit.

Navigation:		»No	topics	above	this	level«

GetNetAccessFileInfo
function	GetNetAccessFileInfo	(const	FileName	:	string;
const	Key	:	TKey;	var	NetAccessInfo	:	TNetAccessInfo)	:
Boolean;
TNetAccessInfo	=	packed	record
	Total			:	Cardinal;
	Locked		:	Cardinal;
	Invalid	:	Cardinal;
end;

	GetNetAccessFileInfo	obtains	information	about	the	specified	network
access	file.
FileName	is	the	name	of	an	existing	network	access	file	and	Key	is	the	key
that	was	used	to	create	it.	The	network	access	file	information	is	returne	as	the
NetAccessInfo	parameter	and	consists	of	the	total	number	of	access	slots,	the
number	of	locked	slots,	and	the	number	of	invalid	access	slots.	(An	access	slot
becomes	invalid	when	the	application	using	it	is	terminated	in	a	non-standard
way.)
GetNetAccessFileInfo	returns	false	if	there	was	an	error,	otherwise	true.
This	routine	is	defined	in	the	OgNetWrk	unit.

Navigation:		»No	topics	above	this	level«

EncodeNAFCountCode
procedure	EncodeNAFCountCode	(const	Key	:	TKey;	Count
:	Cardinal;	var	Code	:	TCode);

	EncodeNAFCountCode	uses	Key	to	create	and	encode	the	usage	Count
value	creating	a	network	code.
The	resulting	code	is	returned	as	the	Code	parameter.
This	routine	is	defined	in	the	OgNetWrk	unit.

Navigation:		»No	topics	above	this	level«

LockNetAccessFile
function	LockNetAccessFile	(const	FileName	:	string;	const
Key	:	TKey;	var	NetAccess	:	TNetAccess)	:	Boolean;
TNetAccess	=	packed	record
	Fh									:	Integer;
	Key								:	TKey;
	CheckValue	:	Word;
	Index						:	Word;
end;

	LockNetAccessFile	locks	an	access	slot	in	the	network	access	file	specified
by	FileName	and	returns	false	if	an	error	occurs.
This	routine	is	defined	in	the	OgNetWrk	unit.

Navigation:		»No	topics	above	this	level«

ResetNetAccessFile
function	ResetNetAccessFile	(const	FileName	:	string;	const
Key	:	TKey)	:	Boolean;

	ResetNetAccessFile	resets	invalid	access	slots	by	clearing	there	"in-uses"
status.
Access	slots	that	are	currently	"in-use"	are	skipped.
This	routine	is	defined	in	the	OgNetWrk	unit.

Navigation:		»No	topics	above	this	level«

UnlockNetAccessFile
function	UnlockNetAccessFile	(var	NetAccess	:	TNetAccess)
:	Boolean;
TNetAccess	=	packed	record
	Fh									:	Integer;
	Key								:	TKey;
	CheckValue	:	Word;
	Index						:	Word;
end;

	UnlockNetAccessFile	unlocks	an	access	slot	in	the	network	access	file
specified	by	FileName	and	returns	false	if	an	error	occurs.
This	routine	is	defined	in	the	OgNetWrk	unit.

Navigation:		»No	topics	above	this	level«

IsFirstInstance
function	OgFirst.IsFirstInstance	:	Boolean;

	
	IsFirstInstance	determines	whether	this	is	the	first	instance	of	a	program.
This	method	should	be	called	prior	to	creating	any	forms	so	that	the
application	can	be	terminated	if	necessary.	IsFirstInstance	returns	True	if	this	is
the	first	instance	of	the	application.
If	IsFirstInstance	returns	False,	you	can	call	ActivateFirstInstance	to	activate
the	prior	instance	of	the	application.

Navigation:		»No	topics	above	this	level«

ActivateFirstInstance
procedure	OgFirst.ActivateFirstInstance;		{32-bit	version}
procedure	OgFirst.ActivateFirstInstance(const
MainWindowCaption,	MainWindowClass	:	string);		{16-bit
version}

	
ActivateFirstInstance	locates	an	applications	main	window	and	then	makes	it
the	active	window.
ActivateFirstInstance	forces	the	window	with	the	specified	caption	and	class	to
the	top	of	the	z-Order	and	gives	it	the	focus.	This	method	is	normally	called
after	detecting	that	a	second	instance	of	the	application	was	executed	and
subsequently	halted.	Calling	ActivateFirstInstance	gives	the	appearance	that
running	the	application	a	second	time	succeeded.
The	32-bit	version	of	ActivateFirstInstance	does	not	take	any	parameters	and
automatically	locates	the	applications	main	window.	The	16-bit	version	of	this
routine	requires	that	the	class	name	and	caption	of	the	main	form	be	passed	as
arguments.

Navigation:		»No	topics	above	this	level«

TLongIntRec

Enter	topic	text	here.
	
	TLongIntRec	=	record
			case	Byte	of
					1:	(Lo:	Word;
									Hi:	Word);
					2:	(LoLo:	Byte;
									LoHi:	Byte;
									HiLo:	Byte;
									HiHi:	Byte);
	end;
	
Defined	in	ogutil	unit.
	

Navigation:		»No	topics	above	this	level«

PCode

Enter	topic	text	here.
	
PCode	=	^TCode;
	
Defined	in	ogutil	unit.

Navigation:		»No	topics	above	this	level«

TCode

Enter	topic	text	here.
	
	TCode	=	packed	record
			CheckValue	:	Word;															{magic	value}
			Expiration	:	Word;															{expiration	date	or	0,	if	none}
			case	Byte	of
					0	:	(FirstDate				:	Word;						{for	date	code}
										EndDate						:	Word);
					1	:	(Days									:	Word;						{for	days	code}
										LastAccess			:	Word);
					2	:	(RegString				:	LongInt);		{for	reg	code}
					3	:	(SerialNumber	:	LongInt);		{for	serial	number	code}
					4	:	(UsageCount			:	Word;						{for	usage	count	code}												{!!.02}
										LastChange			:	Word);																																							{!!.02}
					5	:	(Value								:	LongInt);		{for	specail	codes}
					6	:	(NetIndex					:	LongInt);		{for	net	codes}
	end;
	
Defined	in	ogutil	unit.
	
Usable	date	range:	1996-Jan-02	through	2175-Jun-06.
A	0	date	will	be	returned	as	9999-Jan-1	via	the	ExpandDate	function.
	
The	CheckValue	field	is	one	of	the	following:
	DaysCheckCode				=	$649B
	DateCheckCode				=	$A4CB
	NetCheckCode					=	$9341
	RegCheckCode					=	$D9F6
	SerialCheckCode		=	$3C69
	UsageCheckCode			=	$F3D5
	SpecialCheckCode	=	$9C5B
	
	

Navigation:		»No	topics	above	this	level«

TCodeType

Enter	topic	text	here.
	
	TCodeType	=	(ctDate,	ctDays,	ctRegistration,	ctSerialNumber,
														ctUsage,	ctNetwork,	ctSpecial,	ctUnknown);
	{order	must	match	tab	order	for	code	generation	notebook}
	
Defined	in	ogutil	unit.

Navigation:		»No	topics	above	this	level«

TKey

Enter	topic	text	here.
	
TKey					=	array	[0..15]	of	Byte;
	
Defined	in	ogutil	unit.

Navigation:		»No	topics	above	this	level«

TKeyType

Enter	topic	text	here.
	
TKeyType	=	(ktRandom,	ktMessageDigest,	ktMessageDigestCS);
	{order	must	match	order	for	key	generation	combobox	string	list}
	
	
ktRandom The	key	is	generated	using	Delphis	random	number	generator.

ktMessageDigest
(Standard	Text)

The	key	is	generated	by	using	the	supplied	text.	Text	case	is
ignored.

KtMessageDigestCS	
(Case-Sensitive	Text)

The	key	is	generated	by	using	the	supplied	text.	Text	case	is
considered.

	
Defined	in	ogutil	unit.

Navigation:		»No	topics	above	this	level«

TTMDContext

Enter	topic	text	here.
	
TTMDContext	=	array	[0..279]	of	Byte;
	
Defined	in	ogutil	unit.

Navigation:		»No	topics	above	this	level«

TMD5Context

Enter	topic	text	here.
	
TMD5Context	=	array	[0..87]	of	Byte;
	
Defined	in	ogutil	unit.

Navigation:		»No	topics	above	this	level«

TMD5Digest

Enter	topic	text	here.
	
TMD5Digest		=	array	[0..15]	of	Byte;
	
Defined	in	ogutil	unit.
	

Navigation:		»No	topics	above	this	level«

T128Bit

Enter	topic	text	here.
	
T128Bit					=	array	[0..3]	of	LongInt;
	
Defined	in	ogutil	unit.

Navigation:		»No	topics	above	this	level«

T256Bit

Enter	topic	text	here.
	
T256Bit					=	array	[0..7]	of	LongInt;
	
Defined	in	ogutil	unit.

Navigation:		»No	topics	above	this	level«

TEsMachineInfoSet

Used	to	determine	what	factors	are	gathered	to	generate	a	machine	identifier.
	
TEsMachineInfoSet	=	set	of	(midUser,	midSystem,	midNetwork,	midDrives,
midCPUID,	midCPUIDJCL,	midBIOS,	midWinProd,	midCryptoID,
midNetMAC,	midDomain);		
	
Defined	in	ogutil	unit.
Added	in	version	1.05.
Added	in	version	1.15:	midCPUID,	midCPUIDJCL,	midBIOS,	midWinProd,
midCryptoID,	midNetMAC,	midDomain
	
Used	by	CreateMachineID	function.
	
To	maintain	compatibility	with	version	1.13,	the	midUser,	midSystem,
midNetwork,	and	midDrives	code	has	not	been	altered.
New	factors	were	added	instead.
Refer	to	the	CreateMachineID	function	for	platform	specific	usage.
	
The	midCPUID	factor	is	intended	for	fetching	basic	CPU	identification.
The	midCPUIDJCL	factor	is	intended	for	fetching	enhanced	CPU
identification	via	the	JCLSysInfo	routines.
The	midBIOS	factor	is	intended	for	fetching	basic	BIOS	identifiers.
The	midWinProd	factor	is	intended	for	fetching	Microsoft	Windows	product
identifiers.
The	midCryptoID	factor	is	intended	for	fetching	machine	specific
cryptography	identifiers.
The	midNetMAC	factor	is	intended	for	fetching	the	MAC	addresses	of	known
network	adapters.
The	midDomain	factor	is	intended	for	fetching	the	machine's	domain
membership.
	

Navigation:		»No	topics	above	this	level«

TCodeStatus

Enter	topic	text	here.
	
TCodeStatus	=	(ogValidCode,				{code	is	valid	but	may	still	be	expired}
																ogInvalidCode,		{code	is	invalid}
																ogPastEndDate,		{end	date	has	been	reached}
																ogDayCountUsed,	{number	of	days	authorized	have	been	used}
																ogRunCountUsed,	{number	of	runs	authorized	have	been	used}
																ogNetCountUsed,	{number	of	authorized	users	has	been	exceeded}
																ogCodeExpired);	{expiration	date	has	been	reached}
	
Defined	in	ogutil	unit.

Navigation:		»No	topics	above	this	level«

BaseDate

BaseDate	:	LongInt	=	0;
	
This	is	the	date	used	as	the	starting	point	for	all	date	fields	in	the	TCode
structure.
It	is	defined	as	a	constant	but	set	to	Trunc(EncodeDate(1996,	1,	1))	in	the
initialization	section	thus	requiring	the	Assignable	Typed	Constants	compiler
option.
	
	
	
Defined	in	ogutil	unit.

Navigation:		»No	topics	above	this	level«

OgFile.GetFileSize

Generic	function	to	get	the	size	of	a	file.
Win32	and	Win64	pass	through	to	the	Windows	API	function	GetFileSize.
	
PlatformDelphiFPC	/	Lazarus
Win16 Yes Yes
Win32 Yes Yes
Win64 Yes Yes
Linux No Yes
MacOS No 	
iOS No 	
Android No 	
Kylix Yes 	

	 	
	
FPC	specific	code	is	for	non-Windows	platforms

Navigation:		»No	topics	above	this	level«

OgFile.LockFile

Support	for	Windows	API	function	LockFile.
	
PlatformDelphiFPC	/	Lazarus
Win16 Yes Yes
Win32 No No
Win64 No No
Linux No Yes
MacOS No 	
iOS No 	
Android No 	
Kylix Yes 	

	 	
	
FPC	specific	code	is	for	non-Windows	platforms
	

Navigation:		»No	topics	above	this	level«

OgFile.UnlockFile

Support	for	Windows	API	function	UnlockFile.
	
PlatformDelphiFPC	/	Lazarus
Win16 Yes Yes
Win32 No No
Win64 No No
Linux No Yes
MacOS No 	
iOS No 	
Android No 	
Kylix Yes 	

	 	
	
FPC	specific	code	is	for	non-Windows	platforms
	

Navigation:		»No	topics	above	this	level«

OgFile.FlushFileBuffers

Support	for	the	Windows	API	function	FlushFileBuffers.
	
PlatformDelphiFPC	/	Lazarus
Win16 Yes Yes
Win32 No No
Win64 No No
Linux No Yes
MacOS No 	
iOS No 	
Android No 	
Kylix Yes 	

	 	
	
FPC	specific	code	is	for	non-Windows	platforms
	

Navigation:		»No	topics	above	this	level«

AutoCheck	property
property	TOgCodeBase.AutoCheck	:	Boolean
																Default:	False

																AutoCheck	determines	whether	CheckCode	is	called	automatically.
If	AutoCheck	is	True,	CheckCode	is	automatically	called	after	the	form
containing	this	component	is	loaded.	If	AutoCheck	is	False,	you	are
responsible	for	calling	CheckCode	to	determine	the	component	status.
See	also:	CheckCode

Navigation:		»No	topics	above	this	level«

Code	property
property	TOgCodeBase.Code	:	string

																Code	is	the	release	code.
Code	is	normally	generated	by	another	program,	encoded	using	the
applications	key,	and	given	to	the	user	to	enter	into	the	application	where	it	is
decoded	and	validated.	The	behavior	of	the	application	when	a	code	is	entered
is	entirely	up	to	you,	the	designer,	and	is	also	determined	to	some	extent	by	the
type	of	code	being	used.
Code	is	published	as	needed	by	descendent	components.
See	also:	OnGetCode,	StoreCode

Navigation:		»No	topics	above	this	level«

Modifier	property
property	TOgCodeBase.Modifier	:	LongInt

																Modifier	is	used	to	sign	the	key.
If	Modifier	is	equal	to	0,	the	key	is	not	altered.	If	Modifier	is	not	equal	to	0,	it
is	used	to	sign	the	key.	Modifier	is	normally	generated	as	needed,	but	can	be
stored	on	the	stream	with	the	form	if	the	StoreModifier	property	is	True.
See	also:	OnGetModifier,	StoreModifier

Navigation:		»No	topics	above	this	level«

StoreCode	property
property	TOgCodeBase.StoreCode	:	Boolean
																Default:	False

																StoreCode	determines	whether	the	release	code	is	stored	in	the
resource	file.
StoreCode	is	published	as	needed	by	descendants.
See	also:	Code,	OnGetCode

Navigation:		»No	topics	above	this	level«

StoreModifier	property
property	TOgCodeBase.StoreModifier	:	Boolean
																Default:	False

																StoreModifier	determines	whether	the	modifier	is	stored	in	the
resource	file.
See	also:	Modifier,	OnGetModifier

Navigation:		»No	topics	above	this	level«

OnChecked	event
property	TOgCodeBase.OnChecked	:	TCheckedCodeEvent
TCheckedCodeEvent	=	procedure(Sender	:	TObject;	Status	:
TCodeStatus)	of	object;

																OnChecked	defines	an	event	handler	that	is	called	after	the	release
code	is	checked.
Sender	is	the	instance	of	the	release	code	component.	Status	is	the	value
returned	by	a	call	to	CheckCode.
See	also:	CheckCode

Navigation:		»No	topics	above	this	level«

OnGetKey	event
property	TOgCodeBase.OnGetKey	:	TGetKeyEvent
TGetKeyEvent	=	procedure(Sender	:	TObject;	var	Key	:
TKey)	of	object;

									OnGetKey	defines	an	event	handler	that	is	called	to	get	the	key.
Sender	is	the	instance	of	the	release	code	component.
The	key	should	always	be	stored	as	a	constant	in	the	application	and	never
stored	in	the	form,	a	file,	or	the	registry.	Putting	the	key	anywhere	except	in	the
application	increases	the	chances	that	someone	will	find	and	be	able	to	use	it	to
decode	the	release	code.

Navigation:		»No	topics	above	this	level«

OnGetCode	event
property	TOgCodeBase.OnGetCode	:	TGetCodeEvent
TGetCodeEvent	=	procedure(Sender	:	TObject;	var	Code	:
TCode)	of	object;

									OnGetCode	defines	an	event	handler	that	is	called	to	get	the	release	code.
Sender	is	the	instance	of	the	release	code	component.	Code	is	the	TCode	value
associated	with	this	component.	Release	codes	are	normally	stored	in	a	file	or
the	registry.	In	some	cases,	the	release	code	can	be	stored	in	the	resource.	To
do	this,	set	the	StoreCode	property	to	True.
See	also:	Code,	StoreCode

Navigation:		»No	topics	above	this	level«

OnGetModifier	event
property	TOgCodeBase.OnGetModifier	:	TGetModifierEvent
TGetModifierEvent	=	procedure(Sender	:	TObject;	var	Value
:	LongInt)	of	object;

																OnGetModifier	defines	an	event	handler	that	is	called	to	get	the
modifier.
Sender	is	the	instance	of	the	release	code	component.	Value	is	the	modifier	that
is	used	to	sign	the	key.	Modifier	is	normally	generated	as	needed,	but	can	be
stored	on	the	stream	with	the	form	if	the	StoreModifier	property	is	True.
See	also:	Modifier,	StoreModifier

Navigation:		»No	topics	above	this	level«

CheckCode	method
function	TOgCodeBase.CheckCode(Report	:	Boolean)	:
TCodeStatus;	virtual;	abstract;
TCodeStatus	=	(ogValidCode,	ogInvalidCode,	ogPastEndDate,
ogDayCountUsed,	ogRunCountUsed,	ogNetCountUsed,
ogCodeExpired);

																CheckCode	checks	for	a	valid	release	code.
CheckCode	is	defined	as	virtual	and	abstract,	which	means	that	each
descendant	component	overrides	it	to	provide	the	necessary	code	to	validate
and	test	the	release	code	obtained	through	the	Code	property.	If	Report	is	True,
the	result	of	the	test	is	reported	by	triggering	the	OnChecked	event.	If	Report	is
False,	you	must	check	the	function	result.
CheckCode	requires	several	pieces	of	information,	which	it	obtains	by
triggering	event	handlers	that	you	define.	The	normal	sequence	of	events
performed	by	CheckCode	is:
1.																Trigger	the	OnGetKey	event	to	get	the	key	used	to	encode	and
decode	the	release	code.	The	key	should	always	be	embedded	in	the
application	as	a	constant.
2.																Trigger	the	OnGetCode	event	to	get	the	release	code.	The	release
code	is	normally	stored	in	the	registry	or	an	INI	file.
3.																Trigger	the	OnGetModifier	event	to	get	the	key	modifier.	The
modifier	can	be	stored	as	a	constant	in	the	application,	stored	in	the	registry	or
INI	file,	or	generated	when	it	is	needed.
4.																Apply	the	modifier	to	the	key.
5.																Test	the	release	code	to	see	if	it	is	valid.
6.																Test	the	release	code	to	see	if	it	has	expired.	The	details	of	this	test
depend	on	the	type	of	release	code.
The	result	of	calling	CheckCode	is	one	of	the	following	values:
ogValidCode 	release	code	is	valid.
ogInvalidCode 	release	code	is	invalid	(the	internal	integrity	check

failed).
ogPastEndDate 	ending	date	has	past.

ogDayCountUsed	authorized	days	have	been	used.
ogRunCountUsed	authorized	runs	have	been	used.
ogNetCountUsed 	number	of	authorized	users	has	been	exceeded.
ogCodeExpired 	The	expiration	date	has	been	reached.

See	also:	AutoCheck,	OnChecked,	OnGetCode,	OnGetKey,	OnGetModifier

Navigation:		»No	topics	above	this	level«

IsCodeValid	method
function	TOgCodeBase.IsCodeValid	:	Boolean;

																IsCodeValid	tests	to	see	if	the	release	code	is	valid.
IsCodeValid	calls	the	CheckCode	method	and	tests	its	result	to	see	if	the
release	code	is	valid.	It	returns	True	if	the	code	is	valid,	otherwise	False.
Descendent	components	decode	the	release	code	and	test	to	see	if	the	signature
value	(the	magic	value	as	defined	in	the	TCode	record)	is	still	valid.
You	might	need	to	perform	additional	tests	to	ensure	that	the	data	used	to
create	the	release	code	was	not	altered.	For	example,	you	could	test	whether
the	text	string	used	to	create	a	Simple	Registration	release	code	was	altered.
Since	the	string	is	not	part	of	the	release	code	(only	a	number	derived	from	the
string	is	embedded	into	the	code),	you	cannot	compare	it	to	what	is	stored	in
the	release	code.	You	must	create	a	temporary	release	code	using	the	text	string
and	the	same	expiration	date	and	then	compare	the	temporary	release	code	to
the	stored	one.	If	they	dont	match,	someone	has	altered	the	text	string.
See	also:	CheckCode

Navigation:		»No	topics	above	this	level«

GetValue	method
function	TOgDateCode.GetValue	:	TDateTime;

																GetValue	returns	the	end	date	embedded	in	the	release	code.
The	returned	value	is	a	Delphi	TDateTime	value.

Navigation:		»No	topics	above	this	level«

AutoDecrease	property
property	TOgDaysCode.AutoDecrease	:	Boolean
																Default:	True

																AutoDecrease	determines	whether	the	day	count	value	is
automatically	decreased	each	day	the	application	is	run.
If	AutoDecrease	is	True,	the	day	count	embedded	in	the	release	code	is
automatically	decreased	by	one	each	day	the	application	is	run.	This	is
accomplished	by	calling	the	Decrease	method.	If	AutoDecrease	is	False,	you
must	call	the	Decrease	method	manually	whenever	necessary.
See	also:	Decrease

Navigation:		»No	topics	above	this	level«

OnChangeCode	event
property	OnChangeCode	:	TChangeCodeEvent
TChangeCodeEvent	=	procedure(Sender	:	TObject;	Code	:
TCode)	of	object;

																OnChangeCode	defines	an	event	handler	that	is	called	when	a
release	code	changes.
This	event	is	fired	after	the	release	code	is	changed	via	a	call	to	Decrease,
either	directly	or	automatically	(if	the	AutoDecrease	property	is	True).
Sender	is	the	instance	of	the	release	code	component.	Code	is	the	new	release
code	value.
The	release	code	should	be	saved	in	an	INI	file	or	the	registry.
See	also:	AutoDecrease,	Decrease

Navigation:		»No	topics	above	this	level«

Decrease	method
procedure	TOgDaysCode.Decrease;

									Decrease	reduces	the	day	count	value	stored	in	the	release	code.
Performing	this	action	requires	several	vital	pieces	of	information,	which	are
normally	obtained	by	triggering	several	event	handlers	that	you	define.	The
normal	sequence	of	events	performed	by	Decrease	is:
1.																Trigger	the	OnGetKey	event	to	get	the	key	used	to	encode	and
decode	the	release	code.	The	key	should	always	be	embedded	in	the
application	as	a	constant.
2.																Trigger	the	OnGetCode	event	to	get	the	release	code.	The	release
code	is	normally	stored	in	the	registry	or	an	INI	file.
3.																Trigger	the	OnGetModifier	event	to	get	the	key	modifier.	The
modifier	can	be	stored	as	a	constant	in	the	application,	stored	in	the	registry	or
INI	file,	or	generated	when	it	is	needed.
4.																Apply	the	modifier	to	the	key.
5.																Test	the	code	to	see	if	it	is	valid.
6.																Decrease	the	day	count	by	one	if	it	has	not	already	been	decreased
today.

7.							Trigger	the	OnChangeCode	event	to	store	the	changed	release
code.

See	also:	OnChangeCode,	OnGetCode,	OnGetKey,	OnGetModifier

Navigation:		»No	topics	above	this	level«

GetValue	method
function	TOgDaysCode.GetValue	:	LongInt;

																GetValue	returns	the	day	count	embedded	in	the	release	code.
The	value	returned	is	the	number	of	days	remaining.

Navigation:		»No	topics	above	this	level«

Code	property
property	TOgMakeCodes.Code	:	TCode

	Code	is	the	generated	release	code.
After	a	successful	call	to	Execute,	Code	contains	the	generated	release	code.
Code	can	represent	any	one	of	several	release	code	types.	Use	the	CodeType
property	to	determine	which	code	type	was	generated.
See	also:	CodeType,	Execute

Navigation:		»No	topics	above	this	level«

CodeType	property
property	TOgMakeCodes.CodeType	:	TCodeType

									CodeType	is	the	type	of	release	code.
If	you	assign	a	value	to	CodeType	prior	to	calling	Execute,	the	corresponding
notebook	page	is	displayed	in	the	Code	Generation	dialog.	After	a	successful
call	to	Execute,	CodeType	contains	the	type	of	code	that	was	generated.	The
ctUnknown	code	type	is	only	used	internally.		The	default	is	ctDate.
See	also:	Execute

Navigation:		»No	topics	above	this	level«

Key	run-time	property
property	TOgMakeCodes.Key	:	TKey

																Key	is	used	to	encode	and	decode	the	release	code.
The	key	used	to	encode	release	codes	should	be	protected	from	unauthorized
use	because	a	release	code	that	was	encoded	without	a	modifier	can	easily	be
decoded	using	the	key.
The	key	should	be	embedded	into	the	application	rather	than	stored	in	a	file	or
resource.
If	no	value	is	assigned	to	this	property,	the	Key	Maintenance	dialog	is
displayed	so	that	a	key	can	be	selected	or	created.
See	also:	Code

Navigation:		»No	topics	above	this	level«

KeyFileName	property
property	TOgMakeCodes.KeyFileName	:	string

																KeyFileName	is	the	name	of	the	INI	file	used	to	store	application
names	and	their	associated	keys.
If	a	valid	file	name	is	assigned	to	this	property,	its	contents	are	displayed	when
the	Key	Maintenance	dialog	is	displayed.

Navigation:		»No	topics	above	this	level«

KeyType	run-time	property
property	TOgMakeCodes.KeyType	:	TKeyType
TKeyType	=	(ktRandom,	ktMessageDigest,
ktMessageDigestCS);
																Default:	ktMessageDigest

																KeyType	determines	the	type	of	key	to	generate.
The	valid	key	types	are:
ktRandom The	key	is	generated	using	Delphis	random	number	generator.

ktMessageDigest	
(Standard	Text)

The	key	is	generated	by	using	the	supplied	text.	Text	case	is
ignored.

KtMessageDigestCS	
(Case-Sensitive	Text)

The	key	is	generated	by	using	the	supplied	text.	Text	case	is
considered.

If	a	value	is	assigned	to	this	property,	it	is	used	to	determine	the	type	of	key	to
generate	when	the	Key	Maintenance	dialog	is	displayed.

Navigation:		»No	topics	above	this	level«

ShowHints	property
property	TOgMakeCodes.ShowHints	:	Boolean
																Default:	False

																ShowHints	determines	whether	hints	are	shown	for	the
TOgMakeCodes	dialogs.

Navigation:		»No	topics	above	this	level«

Execute	method
function	TOgMakeCodes.Execute	:	Boolean;

																Execute	displays	the	Code	Generation	dialog.
Use	this	method	to	display	the	Code	Generation	dialog	so	that	a	release	code
can	be	generated.
If	Execute	returns	True,	the	Code	and	CodeType	properties	contain	valid
values.	Otherwise,	the	contents	of	these	properties	is	unknown.
See	also:	Code,	CodeType
	

	
	

Navigation:		»No	topics	above	this	level«

Key	run-time	property
property	TOgMakeKeys.Key	:	TKey
TKey	=	array	[0..15]	of	Byte;

																Key	is	used	to	encode	and	decode	release	codes.
After	a	successful	call	to	Execute,	Key	contains	the	selected	key	value.
The	key	used	to	encode	release	codes	should	be	protected	from	unauthorized
use	because	a	release	code	that	was	encoded	without	a	modifier	can	easily	be
decoded	using	the	key.
The	key	should	be	embedded	into	the	application	rather	than	stored	in	a	file	or
resource.
See	also:	ApplyModifierToKey,	Execute,	GenerateKey,	GenerateRandomKey

Navigation:		»No	topics	above	this	level«

KeyFileName	property
property	TOgMakeKeys.KeyFileName	:	string

																KeyFileName	is	the	name	of	the	INI	file	used	to	store	application
names	and	their	associated	keys.
If	a	valid	file	name	is	assigned	to	this	property,	its	contents	are	displayed	when
the	Key	Maintenance	dialog	is	displayed.

Navigation:		»No	topics	above	this	level«

KeyType	property
property	TOgMakeKeys.KeyType	:	TKeyType
TKeyType	=	(ktRandom,	ktMessageDigest,
ktMessageDigestCS);
																Default:	ktMessageDigest

																KeyType	determines	the	type	of	key	to	generate.
After	a	successful	call	to	Execute,	KeyType	contains	one	of	these	key	types.
ktRandom 	The	key	is	generated	using	Delphis	random

number	generator.

ktMessageDigest
(Standard	Text)

	The	key	is	generated	by	using	the	supplied	text.
Text	case	is	ignored.

ktMessageDigestCS
(Case-Sensitive	Text)

	The	key	is	generated	by	using	the	supplied	text.
Text	case	is	considered.

If	a	value	is	assigned	to	this	property,	it	is	used	to	determine	the	type	of	key	to
generate	when	the	Key	Maintenance	dialog	is	displayed.
See	also:	Execute

Navigation:		»No	topics	above	this	level«

ShowHints	property
property	TOgMakeKeys.ShowHints	:	Boolean
																Default:	False

																ShowHints	determines	whether	hints	are	shown	for	the
TOgMakeKeys	dialogs.

Navigation:		»No	topics	above	this	level«

ApplyModifierToKey	method
procedure	TOgMakeKeys.ApplyModifierToKey	(Modifier	:
LongInt;	var	Key;	KeySize	:	Cardinal);

																ApplyModifierToKey	alters	the	specified	key.
If	Modifier	is	not	zero,	this	routine	alters	(signs)	the	key	specified	by	Key.
KeySize	is	the	size,	in	bytes,	of	Key	.
This	routine	is	used	automatically	by	the	components	that	generate	a	release
code	when	a	non-zero	value	is	specified	for	the	Modifier	property.
See	also:	GenerateDateModifier,	GenerateMachineModifier,
GenerateStringModifier,	GenerateUniqueModifier,	Key

Navigation:		»No	topics	above	this	level«

Execute	method
function	TOgMakeKeys.Execute:	Boolean;

									Execute	displays	the	Key	Maintenance	dialog.
Use	this	method	to	display	the	Key	Maintenance	dialog	so	that	a	key	can	be
generated.	The	dialog	is	described	in	the	"Creating	and	Maintaining	Keys"
section	of	the	manual.
If	Execute	returns	True,	the	Key,	KeyFileName,	and	KeyType	properties
contain	valid	values.	Otherwise,	the	contents	of	these	properties	is	unknown.
See	also:	Key,	KeyFileName,	KeyType

Navigation:		»No	topics	above	this	level«

GenerateDateModifier	method
function	TOgMakeKeys.GenerateDateModifier:	LongInt;

																GenerateDateModifier	creates	a	key	modifier	based	on	the	current
date.
This	routine	is	also	available	as	a	function	(GenerateDateModifierPrim)	for
use	in	applications	that	need	to	generate	modifiers	dynamically.
See	also:	ApplyModifierToKey,	GenerateMachineModifier,
GenerateStringModifier,	GenerateUniqueModifier

Navigation:		»No	topics	above	this	level«

GenerateKey	method
procedure	TOgMakeKeys.GenerateKey	(var	Key;	KeySize	:
Cardinal;	const	Str	:	string);

																GenerateKey	produces	a	key	based	on	a	supplied	text	string.
To	produce	keys	that	are	not	case	dependent,	convert	the	text	to	upper	case
prior	to	calling	GenerateKey.
See	also:	ApplyModifierToKey,	GenerateRandomKey,	Key

Navigation:		»No	topics	above	this	level«

GenerateMachineModifier	method
function	TOgMakeKeys.GenerateMachineModifier:	LongInt;

																GenerateMachineModifier	creates	a	key	modifier	based	on	the
hardware	information	for	the	current	machine.
GenerateMachineModifier	uses	hard	disk	volume	sizes,	volume	serial
numbers,	registration	name/company	as	reported	by	Windows,	and	the	network
card	ID	(if	available)	to	produce	a	modifier	specific	to	a	single	machine.
Use	this	modifier	to	sign	the	key	used	to	encode	and	decode	release	codes	if
you	want	the	release	code	to	restrict	usage	to	a	single	machine.
Caution:	If	hardware	is	changed	on	the	machine,	the	modifier	changes,
rendering	the	release	code,	and	consequently	the	application,	unusable.
This	routine	is	also	available	as	a	function	(GenerateMachineModifierPrim)
for	use	in	applications	that	need	to	generate	modifiers	dynamically.
See	also:	ApplyModifierToKey,	GenerateDateModifier,
GenerateStringModifier,	GenerateUniqueModifier

Navigation:		»No	topics	above	this	level«

GenerateRandomKey	method
procedure	TOgMakeKeys.GenerateRandomKey(var	Key;
KeySize	:	Cardinal);

																GenerateRandomKey	produces	a	key	based	on	Delphis	internal
random	number	generator.
See	also:	ApplyModifierToKey,	GenerateKey,	Key

Navigation:		»No	topics	above	this	level«

GenerateStringModifier	method
function	TOgMakeKeys.GenerateStringModifier	(const	S	:
string)	:	LongInt;

																GenerateStringModifier	creates	a	key	modifier	based	on	the
supplied	string.
This	routine	is	also	available	as	a	function	(GenerateStringModifierPrim)	for
use	in	applications	that	need	to	generate	modifiers	dynamically.
See	also:	ApplyModifierToKey,	GenerateDateModifier,
GenerateMachineModifier,	GenerateUniqueModifier

Navigation:		»No	topics	above	this	level«

GenerateUniqueModifier	method
function	TOgMakeKeys.GenerateUniqueModifier:	LongInt;

																GenerateUniqueModifier	creates	a	unique	key	modifier.
This	routine	is	also	available	as	a	function	(GenerateUniqueModifierPrim)	for
use	in	applications	that	need	to	generate	modifiers	dynamically.
See	also:	ApplyModifierToKey,	GenerateDateModifier,
GenerateMachineModifier,	GenerateStringModifier

Navigation:		»No	topics	above	this	level«

ActiveUsers	read-only	property
property	TOgNetCode.ActiveUsers	:	LongInt

																ActiveUsers	is	the	current	number	of	users	running	the	application.

Navigation:		»No	topics	above	this	level«

FileName	property
property	TOgNetCode.FileName	:	string

																FileName	is	the	name	of	the	Network	Access	File.
The	Network	Access	File	is	used	to	determine	if	another	instance	of	the
application	is	authorized.	If	the	file	specified	in	FileName	does	not	exist,	it	is
created	and	initialized	during	the	call	to	CheckCode.

Navigation:		»No	topics	above	this	level«

InvalidUsers	read-only	property
property	TOgNetCode.InvalidUsers	:	LongInt

									InvalidUsers	is	the	number	of	invalid	user	access	slots	in	the	Network
Access	File.
Invalid	slots	are	created	when	the	user	does	not	exit	the	application	normally.
Use	ResetAccessFile	to	fix	these	invalid	slots.
See	also:	ResetAccessFile

Navigation:		»No	topics	above	this	level«

MaxUsers	read-only	property
property	TOgNetCode.MaxUsers	:	LongInt

																MaxUsers	is	the	maximum	number	of	concurrent	users	of	the
application.

Navigation:		»No	topics	above	this	level«

IsRemoteDrive	method
function	TOgNetCode.IsRemoteDrive(const	ExePath	:	string)
:	Boolean;

																IsRemoteDrive	determines	whether	ExePath	resides	on	a	remote
disk	drive.
You	can	use	IsRemoteDrive	to	determine	if	your	application	is	being	run	from
a	remote	disk	drive.	Only	the	drive	information	passed	in	ExePath	is	used.

Navigation:		»No	topics	above	this	level«

ResetAccessFile	method
function	TOgNetCode.ResetAccessFile	:	Boolean;

																ResetAccessFile	resets	the	invalid	slots	in	the	Network	Access	File.
If	the	operation	is	successful,	the	return	value	is	True.	If	the	file	could	not	be
opened	for	write	access,	the	return	value	is	False.
Calling	ResetAccessFile	does	not	effect	active	users.	Since	their	access	slots
are	in	use,	they	are	assumed	to	be	valid	and	are	not	reset.

Navigation:		»No	topics	above	this	level«

AutoCheck	property
property	TOgProtectExe.AutoCheck	:	Boolean
																Default:	False

																AutoCheck	determines	whether	CheckExe	is	called	automatically.
If	AutoCheck	is	True,	CheckExe	is	called	after	the	form	containing	this
component	is	loaded.	If	AutoCheck	is	False,	you	are	responsible	for	calling
CheckExe	to	determine	the	status	of	the	executable	file.
See	also:	CheckExe

Navigation:		»No	topics	above	this	level«

CheckSize	property
property	TOgProtectExe.CheckSize	:	Boolean
																Default:	True

																CheckSize	determines	whether	the	size	of	the	executable	is	tested.
If	CheckSize	is	True,	the	size	and	the	CRC	of	the	executable	file	are	tested.	If
CheckSize	is	False,	only	the	CRC	of	the	executable	file	is	tested.

Navigation:		»No	topics	above	this	level«

OnChecked	event
property	TOgProtectExe.OnChecked	:	TCheckedExeEvent
TCheckedExeEvent	=	procedure(Sender	:	TObject;	Status	:
TExeStatus)	of	object;

																OnChecked	defines	an	event	handler	that	is	called	after	the
executable	is	checked.
Sender	is	the	instance	of	the	release	code	component.	Status	is	the	value
returned	by	a	call	to	CheckExe.
See	also:	CheckExe

Navigation:		»No	topics	above	this	level«

CheckExe	method
function	TOgProtectExe.CheckExe(Report	:	Boolean)	:
TExeStatus;
TExeStatus	=	(exeSuccess,	exeSizeError,	exeIntegrityError,
exeNotStamped);

																CheckExe	tests	to	see	if	the	executable	file	was	altered.
If	Report	is	True,	the	result	of	the	test	is	reported	by	triggering	the	OnChecked
event.	If	Report	is	False,	you	must	check	the	function	result.
The	result	of	calling	CheckExe	is	one	of	the	following	values:
exeSuccess 	executable	file	has	not	changed.
exeSizeError 	size	of	the	executable	file	changed.
exeIntegrityError 	or	more	bytes	in	the	executable	changed.
exeNotStamped 	The	executable	is	not	stamped	with	the	CRC	and	size

information.

See	also:	OnChecked

Navigation:		»No	topics	above	this	level«

StampExe	method
function	TOgProtectExe.StampExe	(const	FileName	:	string	;
EraseMarker	:	Boolean)	:	Boolean;

																StampExe	marks	the	executable	program	with	its	size	and	a	CRC
value.
StampExe	searches	for	a	special	marker	that	is	used	to	mark	the	record	where
the	size	and	CRC	value	are	stored,	calculates	the	executables	size	and	CRC,
and	writes	that	information	back	to	the	record.	If	EraseMarker	is	True,	the
special	marker	used	to	locate	the	record	is	erased.
This	method	is	not	used	by	the	TOgProtectExe	component.	It	is	provided	so
that	you	can	use	it	to	stamp	the	application	you	want	to	protect.	You	can	write
a	simple	application	that	uses	StampExe	to	stamp	the	application	you	want	to
protect.	Or	you	can	use	the	STAMPEXE	example	project	(which	uses	the
StampExe	method)	to	stamp	the	application	you	want	to	protect.
See	also:	UnStampExe

Navigation:		»No	topics	above	this	level«

UnStampExe	method
function	TOgProtectExe.UnStampExe	(const	FileName	:
string)	:	Boolean;

																UnStampExe	reverses	the	effect	of	a	call	to	StampExe.
UnStampExe	can	only	be	used	if	the	special	marker	used	to	locate	the	CRC
record	was	not	erased	by	StampExe.
This	method	is	not	used	by	the	TOgProtectExe	component.	It	is	provided	so
that	you	can	use	it	unstamp	an	application.
See	also:	StampExe

Navigation:		»No	topics	above	this	level«

RegString	property
property	TOgRegistrationCode.RegString	:	string

																RegString	is	the	registration	string	used	to	create	the	release	code.
See	also:	OnGetRegString

Navigation:		»No	topics	above	this	level«

StoreRegString	property
property	TOgRegistrationCode.StoreRegString	:	Boolean
																Default:	True

																StoreRegString	determines	whether	the	registration	string	value	is
stored	as	a	resource	at	design	time.
If	StoreRegString	is	True,	the	value	of	RegString	is	stored	in	the	resource	file
along	with	the	form.	If	StoreRegString	is	False,	RegString	is	not	stored	and
you	must	supply	an	OnGetRegString	event	handler	so	that	the	registration
string	can	be	retrieved	when	required.
See	also:	OnGetRegString,	RegString

Navigation:		»No	topics	above	this	level«

OnGetRegString	event
property	TOgRegistrationCode.OnGetRegString	:
TGetRegStringEvent
TGetRegStringEvent	=	procedure(Sender	:	TObject;	var
Value	:	string)	of	object;

																OnGetRegString	defines	an	event	handler	that	is	called	to	get	the
registration	string.
Sender	is	the	instance	of	the	release	code	component.	Value	is	the	registration
string	used	to	create	the	release	code.

Navigation:		»No	topics	above	this	level«

GetValue	method
function	TOgSerialNumberCode.GetValue	:	LongInt;

																GetValue	returns	the	serial	number	embedded	in	the	release	code.
The	value	returned	is	the	serial	number	that	was	used	when	the	release	code
was	created.

Navigation:		»No	topics	above	this	level«

GetValue	method
function	TOgSpecialCode.GetValue	:	LongInt;

																GetValue	returns	the	special	information	embedded	in	the	release
code.
The	returned	value	is	a	LongInt.	The	interpretation	of	the	returned	value	is
determined	entirely	by	you.

Navigation:		»No	topics	above	this	level«

AutoDecrease	property
property	TOgUsageCode.AutoDecrease	:	Boolean
																Default:	True

																AutoDecrease	determines	whether	the	usage	count	value	is
automatically	decreased	each	time	the	application	is	run.
If	AutoDecrease	is	True,	the	usage	count	value	embedded	in	the	release	code	is
automatically	decreased	by	one	each	time	the	application	is	run.	When	the
usage	count	is	reduced	to	zero,	the	release	code	is	expired.	If	AutoDecrease	is
False,	you	must	call	the	Decrease	method	manually	whenever	necessary.
See	also:	Decrease

Navigation:		»No	topics	above	this	level«

OnChangeCode	event
property	TOgUsageCode.OnChangeCode	:
TChangeCodeEvent
TChangeCodeEvent	=	procedure(Sender	:	TObject;	Code	:
TCode)	of	object;

																OnChangeCode	defines	an	event	handler	that	is	called	when	a
release	code	changes.
This	event	is	fired	after	the	release	code	is	changed	via	a	call	to	Decrease,
either	directly	or	automatically	(if	the	AutoDecrease	property	is	True).
Sender	is	the	instance	of	the	release	code	component.	Code	is	the	new	release
code	value.
The	release	code	should	be	saved	in	the	INI	file	or	the	registry.
See	also:	AutoDecrease,	Decrease

Navigation:		»No	topics	above	this	level«

Decrease	method
procedure	TOgUsageCode.Decrease;

									Decrease	reduces	the	usage	count	value	stored	in	the	release	code.
Performing	this	action	requires	several	vital	pieces	of	information,	which	are
normally	obtained	by	triggering	several	event	handlers	that	you	define.	The
normal	sequence	of	events	performed	by	Decrease	is:
1.																Trigger	the	OnGetKey	event	to	get	the	key	used	to	encode	and
decode	the	release	code.	The	key	should	always	be	embedded	in	the
application	as	a	constant.
2.																Trigger	the	OnGetCode	event	to	get	the	release	code.	The	code	is
normally	stored	in	the	registry	or	an	INI	file.
3.																Trigger	the	OnGetModifier	event	to	get	the	key	modifier.	The	key
modifier	can	be	stored	as	a	constant	in	the	application,	stored	in	the	registry	or
INI	file,	or	generated	when	it	is	needed.
4.																Apply	the	modifier	to	the	key.
5.																Test	the	release	code	to	see	if	it	is	valid.
6.																Decrease	the	usage	count	by	one.
7.																Trigger	the	OnChangeCode	event	to	store	the	changed	release
code.
See	also:	OnChangeCode,	OnGetCode,	OnGetKey,	OnGetModifier,

Navigation:		»No	topics	above	this	level«

GetValue	method
function	TOgUsageCode.GetValue	:	LongInt;

																GetValue	returns	the	usage	count	embedded	in	the	release	code.
The	value	returned	is	the	number	of	runs	remaining.

	Overview
	Contents
	History
	License

	Classes
	TOgCodeBase Class

	Components
	TOgDateCode Component
	TOgDaysCode Component
	TOgMakeCodes Component
	TOgMakeKeys Component
	TOgNetCode Component
	TOgProtectExe Component
	TOgRegistrationCode Component
	TOgSerialNumberCode Component
	TOgSpecialCode Component
	TOgUsageCode Component

	Low-Level Routines
	API Reference

	Types
	Files
	OgConst
	OgUtil
	OnGuard
	OgFirst
	OgNetWrk
	OgFile
	OgProExe
	OnGuard1
	OnGuard2
	OnGuard3
	OnGuard4
	OnGuard5
	OnGuard6
	OnGuard7
	OgAbout0
	OgReg

