
TortoiseGitMerge
	 	 	Next



TortoiseGitMerge



A	diff/merge	tool	for	Windows



Version	2.4.0

Stefan	Küng

Lübbe	Onken

Simon	Large

Sven	Strickroth

Table	of	Contents
Preface

1.	TortoiseGitMerge	is	free!
2.	Acknowledgments



1.	Introduction
1.1.	Overview
1.2.	TortoiseGitMerge's	History



2.	Basic	Concepts
2.1.	Viewing	and	Merging	Differences
2.2.	Editing	Conflicts
2.3.	Applying	Patches



3.	Using	TortoiseGitMerge
3.1.	Viewing	Modes

3.1.1.	Viewing	/	Merging
3.1.2.	Applying	Patches

3.2.	Buttons	and	Other	Controls
3.3.	Line	Status	Icons
3.4.	Merging	/	Editing	Conflicts
3.5.	Open	Files

3.5.1.	Viewing	/	Merging
3.5.2.	Applying	Patches

3.6.	Settings
3.6.1.	Main	Settings	Page
3.6.2.	Colour	Settings	Page

A.	keyboard	shortcuts
A.1.	Keyboard	shortcuts

B.	Automating	TortoiseGitMerge
B.1.	TortoiseGitMerge	Command	Line	Switches

Glossary

List	of	Figures

1.1.	File	Conflict
2.1.	File	Conflict
3.1.	One	Pane	View
3.2.	Two	Pane	View
3.3.	Three	Pane	View
3.4.	Patch	File	List
3.5.	The	Open	Dialog
3.6.	The	Settings	Main	Page
3.7.	The	Settings	Color	Page

List	of	Tables

B.1.	List	of	available	command	line	options

	 	 	Next



	 	 	Preface



Preface
Prev	 	 	Next



Preface

Table	of	Contents
1.	TortoiseGitMerge	is	free!
2.	Acknowledgments

When	working	on	a	project,	either	an	open-source	project	where	several
people	review	your	code,	or	a	commercial	project	where	you	sell	a
component	with	your	source	code,	there	will	be	people	and	customers
who	find	bugs	or	want	to	improve	your	project.	To	do	that	they	send	you
patches	which	you	have	to	review	and	decide	if	you	want	to	apply	them.

TortoiseGitMerge	helps	you	with	both	those	tasks:

Reviewing	patches

Applying	the	patches

TortoiseGitMerge	also	helps	you	to	sort	out	conflicted	files	which	can
occur	if	you're	working	with	a	source	control	system	and	others	are
working	on	the	same	files	as	you.



1.	TortoiseGitMerge	is	free!

TortoiseGitMerge	is	free.	You	don't	have	to	pay	for	it,	you	can	use	it	any
way	you	want.	It	is	developed	under	the	GP	license	(GPL).

TortoiseGitMerge	is	an	Open	Source	project.	That	means	you	have	full
read	access	to	the	source	code	of	this	program.	You	can	browse	it	on	this
link	https://tortoisegit.org/sourcecode	.

Donate!

Even	though	TortoiseGit	and	TortoiseGitMerge	are	free,	you	can
support	the	developers	by	sending	in	patches	and	play	an	active	role	in
the	development.	You	can	also	help	to	cheer	us	up	during	the	endless
hours	we	spend	in	front	of	our	computers.

Please	also	have	a	look	at	the	list	of	people	who	contributed	to	the
project	by	sending	in	patches	or	translations.

Prev	 	 	Next
TortoiseGitMerge	 Home 	2.	Acknowledgments

https://tortoisegit.org/sourcecode
https://tortoisegit.org/donate


2.	Acknowledgments
Prev	 Preface 	Next



2.	Acknowledgments

TortoiseGitMerge	is	a	port	of	TortoiseMerge	(from	TortoiseSVN	project).

Stefan	Küng

for	the	hard	work	on	TortoiseMerge

Lübbe	Onken

for	the	beautiful	icons,	logo,	bug	hunting	and	taking	care	of	the
documentation

Frank	Li	and	Sven	Strickroth

for	the	porting	TortoiseMerge	to	TortoiseGitMerge,	the	(Tortoise)Git
version.

The	Tigris	Style	project

for	some	of	the	styles	which	are	reused	in	this	documentation

Our	Contributors

for	the	patches,	bug	reports	and	new	ideas,	and	for	helping	others	by
answering	questions	on	our	mailing	list.

Our	Donators

for	many	hours	of	joy	with	the	music	they	sent	us

Prev	 Up 	Next
Preface	 Home 	Chapter	1.	Introduction



Chapter	1.	Introduction
Prev	 	 	Next



Chapter	1.	Introduction

Table	of	Contents
1.1.	Overview
1.2.	TortoiseGitMerge's	History



1.1.	Overview

TortoiseGitMerge	is	a	free/open-source	application.	It	lets	you	see
differences	in	text	files,	merge	those	changes	and	even	review	and	apply
unified	diff	files,	often	called	patches.

While	working	on	text	files,	e.g.	source	files	in	your	favourite
programming	language,	or	html/xml	files	for	your	documentation	or
website,	you	will	often	have	a	situation	where	you	need	to	compare
different	versions	of	those	files.	Sometimes	you	get	a	different	version
from	someone	else,	sometimes	you	just	want	to	see	the	changes	you've
made.

If	you're	working	with	a	version	control	system	(e.g.	Git)	then	you
sometimes	get	conflicts	when	you	update	your	working	copy.	This
happens	if	someone	else	changed	the	same	parts	of	the	file	you're
currently	working	on	as	you	did.	Then	you	have	to	resolve	those	conflicts
manually.	This	is	where	TortoiseGitMerge	can	help	you.

The	following	diagram	shows	you	the	relationships	between	the	files
involved	in	a	conflict:

Figure	1.1.	File	Conflict



A	conflict	can	also	occur	if	you	try	to	apply	an	outdated	patch	file.	In	such
cases,	without	TortoiseGitMerge,	you	would	either	have	to	ask	the	person
you	got	that	patch	file	from	for	a	current	version	or	try	to	apply	that	patch
file	manually.

But	now	with	TortoiseGitMerge	this	isn't	necessary	anymore	-	at	least	not
if	you're	working	with	a	version	control	system	like	Git.	TortoiseGitMerge
parses	the	patch	file	for	the	revision/version	the	patch	was	created	for
and	automatically	tries	to	fetch	that	specific	version	from	your	source-
control.	Then	it	applies	the	patch	and	lets	you	review	both	your	changes
to	the	file,	and	theirs.	Then	you	can	decide	which	changes	you	want	to
keep.

Prev	 	 	Next
2.	Acknowledgments	 Home 	1.2.	TortoiseGitMerge's

History



1.2.	TortoiseGitMerge's	History
Prev	 Chapter	1.	Introduction 	Next



1.2.	TortoiseGitMerge's	History

TortoiseGitMerge	is	based	on	TortoiseMerge	as	TortoiseGit	is	based	on
TortoiseSVN.	TortoiseSVN	ships	TortoiseMerge	so	we	do	with	TortoiseGit
(with	a	Git	enhanced	version).

Prev	 Up 	Next
Chapter	1.	Introduction	 Home 	Chapter	2.	Basic	Concepts



Chapter	2.	Basic	Concepts
Prev	 	 	Next



Chapter	2.	Basic	Concepts

Table	of	Contents
2.1.	Viewing	and	Merging	Differences
2.2.	Editing	Conflicts
2.3.	Applying	Patches

TortoiseGitMerge	has	several	different	uses:

Viewing	the	difference	between	two	files	and	merging	changes	into
one	of	them,	or	removing	unwanted	changes.

Editing	conflicts	between	local	changes	and	changes	in	the	Git
repository	following	an	update.

Applying	patch	files	and	reviewing	them.



2.1.	Viewing	and	Merging	Differences

In	this	mode	you	are	comparing	two	files.	The	file	in	the	left	pane	is
considered	to	be	the	original	file	(sometimes	referred	to	as	Theirs,	and
the	file	in	the	right	pane	is	the	modified	file	(sometimes	referred	to	as
Mine.

You	can	make	simple	line-based	changes	to	the	file	in	the	right	pane
which	include:

Reverting	changed	lines	back	to	the	text	shown	in	the	left	pane.

Using	a	combination	of	both	blocks,	either	Theirs	before	Mine	or
Mine	before	Theirs.

You	can	also	edit	the	file	in	the	right	pane	just	as	you	would	in	a	text
editor.	Such	lines	are	marked	using	a	pencil	icon.	Please	note	that	if	you
want	to	make	any	of	the	line/block-based	changes	described	above,	it	is
better	to	do	those	first	since	once	you	start	editing	the	file	yourself	it
becomes	impossible	for	TortoiseGitMerge	to	keep	track	of	the
relationship	to	the	original	files.

Prev	 	 	Next
1.2.	TortoiseGitMerge's
History	 Home 	2.2.	Editing	Conflicts



2.2.	Editing	Conflicts
Prev	 Chapter	2.	Basic	Concepts 	Next



2.2.	Editing	Conflicts

This	is	sometimes	referred	to	as	a	three-way	merge,	and	is	shown	in
three	panes.	However	there	are	actually	four	files	involved.	The	file	which
is	not	shown	is	the	common	base	file,	the	last	common	ancestor	of	the
two	files	which	are	now	in	conflict.	The	relationships	between	the	three
files	are	explained	in	the	diagram	below:

Figure	2.1.	File	Conflict

The	base	file	represents	the	oldest	version	of	a	file,	from	where	You	and
They	start	making	changes.	Mine	represents	the	base	file	with	all	the
changes	you	made,	and	Theirs	is	the	file	with	all	the	changes	someone
else	made	to	the	file.	The	left	pane	shows	the	changes	in	Theirs	relative
to	the	base	file	and	the	right	pane	shows	the	changes	in	Mine	relative	to
the	base	file.	The	bottom	pane	is	the	output	file	which	is	where	you	are
trying	to	resolve	the	conflicts.

In	conflict	resolution	view,	you	can	choose	to	use	blocks	from	Mine	or



Theirs	or	both.	But	in	this	case,	the	changes	are	shown	in	the	bottom
pane.

Prev	 Up 	Next
Chapter	2.	Basic	Concepts	 Home 	2.3.	Applying	Patches



2.3.	Applying	Patches
Prev	 Chapter	2.	Basic	Concepts 	Next



2.3.	Applying	Patches

A	patch	file	is	a	Git	or	Subversion	unified	diff	file,	which	contains	the
information	required	to	apply	changes	to	a	set	of	files.	The	patch	may
have	been	supplied	by	another	developer	so	that	you	can	see	changes
he	has	made	and	possibly	commit	them	to	the	repository.	Or	it	may	have
been	generated	internally	by	TortoiseGit	when	comparing	two	folders.
This	happens	when	you	compare	a	repository	revision	with	your	working
copy	folder,	or	if	you	compare	two	different	repository	revisions,	or	if	you
compare	two	different	repository	paths.

In	either	case	TortoiseGitMerge	will	show	a	small	window	listing	the	files
included	in	the	patch.	By	double	clicking	on	one	of	these	files	you	fetch
the	relevant	file	and	apply	the	changes.	The	left	pane	shows	the	original
file	content	and	the	right	pane	shows	it	after	the	patch	is	applied.

You	can	edit	the	file	in	the	right	pane	exactly	as	you	would	in
compare/edit	mode.

Prev	 Up 	Next
2.2.	Editing	Conflicts	 Home 	Chapter	3.	Using

TortoiseGitMerge



Chapter	3.	Using	TortoiseGitMerge
Prev	 	 	Next



Chapter	3.	Using	TortoiseGitMerge

Table	of	Contents
3.1.	Viewing	Modes

3.1.1.	Viewing	/	Merging
3.1.2.	Applying	Patches

3.2.	Buttons	and	Other	Controls
3.3.	Line	Status	Icons
3.4.	Merging	/	Editing	Conflicts
3.5.	Open	Files

3.5.1.	Viewing	/	Merging
3.5.2.	Applying	Patches

3.6.	Settings
3.6.1.	Main	Settings	Page
3.6.2.	Colour	Settings	Page



3.1.	Viewing	Modes

TortoiseGitMerge	has	three	main	viewing	modes:	one-pane,	two-pane
and	three-pane	view.	One/two-pane	view	is	used	to	view	changes	and
three-pane	view	is	used	to	resolve	conflicts.

3.1.1.	Viewing	/	Merging

Figure	3.1.	One	Pane	View

Figure	3.2.	Two	Pane	View



The	two	pane	view	has	some	features	which	are	not	available	in	the	one
pane	view:

Changes	inside	the	modified	lines	are	shown	in	different	colors.
Added	string	parts	are	shown	with	a	lighter	color,	but	you	can	of
course	configure	the	colors	used	here.	Removed	parts	are	indicated
with	a	dark	brown	vertical	line	in	the	string.	Check	out	the	screenshot
above	to	see	how	this	works.

Code	reorganization	usually	means	a	lot	of	changes	in	whitespaces
(space,	tab,	newlines)	but	no	actual	code	change.	For	example,	you
split	up	a	very	long	line	into	several	lines,	or	you	sometimes	compact
several	lines	together	into	one.

Such	changes	are	marked	with	a	white	circle	symbol	on	the	left	side



of	the	views.	If	you	see	such	a	white	circle,	you	know	immediately
that	no	real	code	change	is	there	and	you	don't	have	to	check	the
changed	block	further.

Hand	editing	of	the	file	in	the	right	pane	is	possible	in	two-pane	view.
Such	changes	are	marked	with	a	pencil	symbol.	Hand	editing	of	the
file	in	the	left	pane	is	also	possible,	only	when	 Enable	Edit	 is	pressed
when	the	left	pane	is	active.

If	you	want	to	compare/merge	three	files,	TortoiseGitMerge	will	show	you
the	differences	in	a	three	pane	view.	This	view	is	also	used	if	you	need	to
resolve	conflicted	files.

Figure	3.3.	Three	Pane	View

The	left	pane	shows	you	the	differences	between	Their	file	and	the	Base



file,	while	the	right	pane	shows	you	the	differences	between	Mine	file	and
the	Base	file.	The	bottom	pane	shows	you	the	result	of	merging	Base,
Mine	and	Theirs	with	possible	conflicts.

If	you	hover	the	mouse	over	the	pane	title,	a	tooltip	will	show	the
filenames	used	for	the	diff	in	each	pane.

Hand	editing	of	the	file	in	the	left	pane	or	right	pane	is	also	possible,	only
when	 Enable	Edit	 is	pressed	when	that	pane	is	active.

3.1.2.	Applying	Patches

After	TortoiseGitMerge	parses	the	patch	file	it	will	show	you	a	small
window	with	all	the	files	which	have	changes	according	to	the	patch	file.

Figure	3.4.	Patch	File	List

If	the	filename	is	shown	in	black,	then	the	patch	can	be	applied	without
any	problems.	That	means	the	file	is	not	outdated	according	to	the	patch.
However,	if	the	filename	is	shown	in	red,	then	the	patch	can't	get	applied



directly	because	you	already	changed	that	file.

The	patch	file	window	has	a	context	menu	which	allows	you	to	preview
the	effect	of	the	patch	on	the	current	file	(apply	without	saving),	to	apply
and	save	the	changes	for	the	selected	file,	or	to	apply	and	save	changes
to	all	files	in	the	list.	The	double	click	action	is	to	preview.

Prev	 	 	Next
2.3.	Applying	Patches	

Home
	3.2.	Buttons	and	Other

Controls



3.2.	Buttons	and	Other	Controls
Prev	 Chapter	3.	Using	TortoiseGitMerge 	Next



3.2.	Buttons	and	Other	Controls

Depending	on	your	setting,	you	either	see	a	toolbar	or	a	ribbon	with	many
buttons.	The	buttons	all	show	a	tooltip	explaining	their	function	when	you
hover	the	mouse	pointer	over	them.

On	the	left	side	of	the	window	is	a	locator	bar.	This	provides	a	quick
visual	reference	as	to	where	the	changes	lie	within	the	file.	The	bar	has
three	columns.	The	left	column	refers	to	the	left	pane,	the	right	column	to
the	right	pane,	and	the	centre	column	to	the	bottom	pane	(if	present).	In
one-pane	view	only	the	left	column	is	used.	The	locator	bar	can	also	be
used	as	a	scroll	bar	to	scroll	all	the	windows	simultaneously.

If	you	double	click	on	a	word	then	every	occurrence	of	that	word	will	be
highlighted	throughout	the	document,	both	in	the	main	panes	and	the
locator	bar.	Double	click	on	the	word	again	to	remove	the	highlighting.

If	you	click	in	the	left	margin,	or	if	you	triple	click	within	a	line,	that	whole
line	will	be	selected.

Below	the	bottom	window	is	the	status	bar.	This	shows	the	number	of
lines	added	and	deleted	in	Theirs	and	Mine,	and	the	number	of
unresolved	conflicts	remaining.

The	status	bar	also	contains	combo	box	controls	which	indicate	how	the
files	are	handled	and	treated:

Encoding

The	encoding	specifies	how	the	characters	in	the	views	are
loaded/saved	and	shown.	The	most	common	encoding	in	English	is
ASCII	(which	means	the	local	encoding	of	the	OS	language),	but	you
can	change	this	to	be	UTF8,	UTF16LE,	UTF16BE,	UTF32LE	and
UTF32BE,	both	with	or	without	a	byte	order	mark	(BOM).

Line	Endings



The	most	common	line	endings	on	Windows	is	CRLF,	but	you	can
change	the	line	endings	to	whatever	you	like.	Note	that	if	you	change
the	line	endings,	then	all	line	endings	in	the	whole	file	will	change,
even	if	when	loaded	the	line	endings	were	not	all	the	same.

Tabs

The	option	at	the	top	of	the	combo	box	menu	indicates	whether	tabs
or	spaces	are	inserted	when	you	press	the	tab	key.	The	smart	tab
char	option	if	enabled	uses	an	algorithm	to	determine	whether	one	or
the	other	is	best	used.

The	tab	size	specifies	how	many	space	chars	are	inserted	when
editing	and	pressing	the	tab	char,	or	how	many	chars	the	next	word
is	indented	when	a	tab	char	is	encountered.

Prev	 Up 	Next
Chapter	3.	Using
TortoiseGitMerge	 Home 	3.3.	Line	Status	Icons



3.3.	Line	Status	Icons
Prev	 Chapter	3.	Using	TortoiseGitMerge 	Next



3.3.	Line	Status	Icons

Changed	lines	are	marked	with	an	icon	to	indicate	what	type	of	change
has	occurred.

A	line	has	been	added.

A	line	has	been	removed.

A	change	has	been	undone	by	reverting	to	the	original	content	of	the	line.

This	line	contains	only	whitespace	changes.	Where	several	consecutive
lines	are	marked,	the	paragraph	may	have	been	re-wrapped,	causing
words	to	shuffle	onto	adjacent	lines.

A	line	has	been	edited	by	hand,	using	TortoiseGitMerge	as	a	text	editor.

This	line	is	in	conflict.

This	line	is	conflicted,	but	the	effect	is	hidden	by	whitespace	or	line-
ending	settings.

This	line	is	detected	as	being	moved	from	/	to	another	location.

Prev	 Up 	Next



3.2.	Buttons	and	Other
Controls	

Home 	3.4.	Merging	/	Editing
Conflicts



3.4.	Merging	/	Editing	Conflicts
Prev	 Chapter	3.	Using	TortoiseGitMerge 	Next



3.4.	Merging	/	Editing	Conflicts

TortoiseGitMerge	not	only	shows	you	the	differences	between	files	but
also	lets	you	resolve	conflicts	or	apply	changes.

If	you're	in	two	pane	view,	then	you	can	only	edit	the	file	in	the	right	pane
(Mine).	To	apply	changes	made	in	the	left	file	(Theirs),	right	click	on	the
changed	lines	and	select	 Context	Menu 	→	 Use	text	block	from
'theirs'	 .	Then	the	changes	from	the	left	file	are	added	to	the	right	file.

Sometimes	you	actually	want	both	text	blocks,	and	the	context	menu	also
offers	you	 Context	Menu 	→	 Use	both	text	blocks	(this	one	first)
and	 Context	Menu 	→	 Use	both	text	blocks	(this	one	last) .

You	can	also	edit	the	output	file	just	as	you	would	in	a	text	editor.	Such
lines	are	marked	using	a	pencil	icon.	Please	note	that	if	you	want	to
make	any	of	the	line/block-based	changes	described	above,	it	is	better	to
do	those	first	since	once	you	start	editing	the	file	yourself	it	becomes
impossible	for	TortoiseGitMerge	to	keep	track	of	the	relationship	to	the
original	files.

If	you're	in	three	pane	view	(sometimes	called	merge	view)	you	can	only
edit	the	file	in	the	bottom	view	(Merged).	As	in	two	pane	view,	you	can
right	click	on	conflicted	lines	and	either	select	 Context	Menu 	→	 Use
text	block	from	'theirs'	 or	 Context	Menu 	→	 Use	text	block	from
'mine'	 .	In	addition,	if	you	want	both	blocks,	you	can	select	 Context
Menu 	→	 Use	text	block	from	'mine'	before	'theirs'	 or	 Context
Menu 	→	 Use	text	block	from	'theirs'	before	'mine'	 .	According	to
the	command	you've	selected,	the	changes	are	used	in	the	resulting
Merged	file.

Sometimes	a	file	will	be	marked	as	conflicted	in	Git,	yet	when	you	view	it
using	TortoiseGitMerge	there	are	no	conflicts	shown.	This	may	be	due	to
the	whitespace	handling	you	have	chosen.	If	you	choose	to	ignore	line-
endings	or	whitespace	changes,	those	lines	will	be	marked	using	the
Conflict-Ignored	icon.	To	resolve	the	conflict	you	still	need	to	pick	which



version	you	want	to	use.

Important

Note	that	if	you	use	TortoiseGitMerge	on	the	same	files
again,	any	changes	to	your	working	copy,	whether	in
TortoiseGitMerge,	or	by	hand-editing,	will	be	discarded	and
the	file	will	appear	as	it	did	when	conflict-editing	first	started.

Prev	 Up 	Next
3.3.	Line	Status	Icons	 Home 	3.5.	Open	Files



3.5.	Open	Files
Prev	 Chapter	3.	Using	TortoiseGitMerge 	Next



3.5.	Open	Files

When	you	start	TortoiseGitMerge	without	any	command	line	switches
then	you	have	to	open	the	files	manually,	using	 File 	→	 Open .

Figure	3.5.	The	Open	Dialog

The	first	thing	you	have	to	do	is	to	decide	whether	you	just	want	to
compare/merge	files,	or	whether	you	want	to	apply	a	patch	file.
Depending	on	what	you	choose,	the	corresponding	edit	boxes	and
browse	buttons	are	activated.

3.5.1.	Viewing	/	Merging

If	you	want	to	compare	/	merge	files	you	have	to	set	at	least	two	of	the
three	possible	paths	for	Base,	Mine	and	Theirs.	If	you	select	only	two	files,
then	TortoiseGitMerge	will	show	you	the	differences	between	those	two
files,	either	in	a	two	pane	view	or	in	a	one	pane	view.

If	you	want	to	merge	three	files,	TortoiseGitMerge	will	show	you	the



differences	in	a	three	pane	view.	This	view	is	generally	used	if	you	need
to	resolve	conflicted	files.	The	output	file	is	not	named	in	this	case	and
you	will	have	to	use	the	 File 	→	 Save	As... .	to	save	the	results.

3.5.2.	Applying	Patches

If	you	want	to	apply	a	patch	file	you	have	to	set	both	the	path	to	the	patch
file	itself	and	the	path	to	the	folder	where	the	patch	file	should	be	applied.

Caution

Currently,	only	patch	files	in	Unified	Diff	Format	are
supported.	And	only	files	which	were	generated	from	a	Git
working	copy.	Other	formats	like	patch	files	generated	by
CVS	are	currently	not	supported!

Prev	 Up 	Next
3.4.	Merging	/	Editing
Conflicts	 Home 	3.6.	Settings



3.6.	Settings
Prev	 Chapter	3.	Using	TortoiseGitMerge 	Next



3.6.	Settings

3.6.1.	Main	Settings	Page

Figure	3.6.	The	Settings	Main	Page

Most	of	the	options	here	are	self-explanatory,	but	a	few	points	need
clarifying.

Backup	original	file	renames	the	original	file	in	the	WC	to	filename.bak
before	saving	the	modified	version.

Default	to	UTF-8	encoding	when	set,	ANSI	files	are	loaded	as	UTF-8
encoded	and	saved	as	such	when	edited.



Use	ribbons	when	set,	ribbons	interface	is	used	(looks	like	Office	2007).
When	unset,	traditional	toolbar	interface	is	used.	Default	is	set.

Use	spaces	when	set,	pressing	tab	key	inserts	spaces.	Default	is	unset
(tab	char	is	used).

Smart	tab	char	when	set,	pressing	tab	key	inserts	tab/spaces	based	on
adjacent	lines/characters.	Default	is	unset.

EditorConfig	when	set,	it	will	detect	.editorconfig	files.	Currently,	it
supports	indent_style(space/tab)	and	indent_size	properties.	See
EditorConfig	website	for	more	details.

Max	line	length	for	inline	diffs	TortoiseGitMerge	can	get	slow	when
showing	inline	diffs	for	very	long	lines.	Because	of	that	only	lines	that	are
shorter	than	3000	chars	are	shown	with	inline	diffs.	You	can	change	this
value	here.

Ignore	line	endings	hides	changes	which	are	due	solely	to	difference	in
line-end	style.

Ignore	case	changes	hides	changes	which	are	due	solely	to	case
changes	within	the	text.	This	can	be	useful	with	apps	such	as	Visual
Basic,	which	changes	case	in	variables	without	warning.

Context	lines	for	patches	specifies	how	many	context	lines	for	patch	files
generated	from	TortoiseGitMerge.	The	default	value	is	-1,	which	means
context	lines	number	is	controlled	by	git	or	diff.context	config.

3.6.2.	Colour	Settings	Page

Figure	3.7.	The	Settings	Color	Page

http://editorconfig.org/


This	dialog	allows	you	to	select	the	background	color	coding	used	to
highlight	the	different	line	changes.

Normal
All	lines	which	are	unchanged,	or	where	changes	are	hidden.

Added
Lines	which	have	been	added.

Removed
Lines	which	have	been	deleted.

Modified
Lines	which	have	relatively	small	changes,	and	are	shown	using
inline	diff.	This	colour	is	used	for	the	unchanged	portion	of	the	line
content.	Changed	portions	will	be	shown	using	the	inline	added	and



deleted	colours	described	below.	If	Colour	code	in-line	changes	is
not	enabled,	this	colour	will	not	be	used	and	changed	lines	will
always	be	shown	as	replacements.

Conflicted
Where	the	same	line	has	been	changed	in	both	files.

Conflict	resolved
Where	the	same	line	has	been	changed	in	both	files,	and	you	have
now	selected	which	version	should	be	used.

Empty
Where	lines	have	been	added	in	the	opposite	pane,	and	no	such	line
existed	in	this	pane.

Inline	added	text
When	inline	diffs	are	shown,	added	text	is	shown	in	this	colour.

Inline	removed	text
When	inline	diffs	are	shown,	deleted	text	is	shown	in	this	colour.

Misc	whitespaces
Characters	used	to	indicate	Whitespace	are	shown	in	a	different
colour	from	normal	text.

Prev	 Up 	Next
3.5.	Open	Files	 Home 	Appendix	A.	keyboard

shortcuts



Appendix	A.	keyboard	shortcuts
Prev	 	 	Next



Appendix	A.	keyboard	shortcuts

Table	of	Contents
A.1.	Keyboard	shortcuts

List	of	keyboard	shortcuts	and	commands.



A.1.	Keyboard	shortcuts

Ctrl-Q,	Ctrl-W,	Escape

Quit	the	program

Ctrl-C

Copy	the	selected	text	to	the	clipboard

Ctrl-X,	Shift-Del

Cut	the	selected	text	to	the	clipboard

Ctrl-V,	Shift-Insert

Paste	the	selected	text	from	the	clipboard

Ctrl-Z,	Alt-Backspace

Undo	the	last	edits

Ctrl-F

Open	the	Find	dialog	for	text	searches	and	replaces

Ctrl-O

Open	files	to	diff/merge

Ctrl-S

Save	the	changes

Ctrl-Shift-S

Save	as...

F7



Go	to	next	difference

Shift-F7

Go	to	previous	difference

F8

Go	to	next	conflict

Shift-F8

Go	to	previous	conflict

Ctrl-D

Toggle	between	one-pane	diff	and	two-pane	diff

Ctrl-R

Reload	the	files	and	revert	all	changes	made

Ctrl-T

Toggles	between	showing	whitespaces	or	not

Ctrl-L

Toggles	between	collapsing	unchanged	sections	or	not

Ctrl-P

Toggles	between	line	wrapping

Ctrl-G

Go	to	line

Ctrl-A



Select	all	text

Ctrl-P

Toggles	between	line	wrapping

Ctrl-U

Switches	views

Ctrl-mousewheel

Scroll	the	display	left/right

Ctrl-Tab

Switch	between	left/right/bottom	view

Prev	 	 	Next
3.6.	Settings	 Home 	Appendix	B.	Automating

TortoiseGitMerge



Appendix	B.	Automating	TortoiseGitMerge
Prev	 	 	Next



Appendix	B.	Automating	TortoiseGitMerge

Table	of	Contents
B.1.	TortoiseGitMerge	Command	Line	Switches

TortoiseGitMerge	can	be	started	with	command	line	parameters	to	avoid
having	to	go	through	the	Open	dialog	to	select	the	files	yourself.	This	is
useful	also	if	you	want	to	use	TortoiseGitMerge	from	another	application.



B.1.	TortoiseGitMerge	Command	Line	Switches

Most	switches	require	additional	information	like	a	path	or	some	other
string.	In	those	cases,	append	an	':'	to	the	switch	and	put	the	string/path
after	it.	Example:

/base:"c:\folder\my	base	file.txt"

Table	B.1.	List	of	available	command	line	options

Command Description
/? Shows	a	dialog	box	with	the	most	important	command	line	switches.
/help The	same	as	?.
/base Specifies	the	base	file	used	in	three	way	diffs.	This	is	the	common

ancestor	of	the	files	being	diffed,	although	it	is	not	shown	in	a
separate	window.	For	two	way	diffs,	this	is	the	left	file.

/basename The	name	of	the	base	file.	This	is	shown	in	the	view	title	instead	of	the
file	path.	For	three	way	diffs	it	is	shown	in	a	tooltip	for	the	view	title.

/basereflectedname The	name	to	use	for	editorconfig	templates.
/theirs Specifies	the	theirs	file	used	in	three	way	diffs,	displayed	in	the	left

pane.
/theirsname The	name	of	the	theirs	file.	This	is	shown	in	the	view	title	instead	of

the	file	path.
/theirsreflectedname The	name	to	use	for	editorconfig	templates.
/mine Specifies	the	mine	file	used	in	three	way	diffs,	displayed	in	the	right

pane.	For	two	way	diffs,	this	is	the	right	file.
/minename The	name	of	the	mine	file.	This	is	shown	in	the	view	title	instead	of	the

file	path.
/minereflectedname The	name	to	use	for	editorconfig	templates.
/merged Specifies	the	resulting	merged	file	used	in	three	way	diffs.	This	is	the

file	path	where	the	result	of	the	merge/conflict	resolving	is	saved.	If
this	is	not	set,	then	TortoiseGitMerge	will	ask	the	user	where	to	save
the	result.

/mergedname The	name	of	the	merged	file.	This	is	shown	in	the	view	title	instead	of
the	file	path.

/mergedreflectedname The	name	to	use	for	editorconfig	templates.
/patchpath The	path	where	a	patch	should	be	applied	to.	If	you	don't	set	this	path,

then	TortoiseGitMerge	will	try	to	find	the	path	itself	to	match	the	paths
in	the	patch	file,	but	that	can	take	very	long.



/saverequired If	specified,	forces	TortoiseMerge	to	ask	to	save	the	file	before	exiting,
even	if	the	user	does	not	modify	the	files.

/saverequiredonconflicts If	specified,	forces	TortoiseMerge	to	ask	to	save	the	file	before	exiting
if	there	are	conflicts	found,	even	if	the	user	does	not	modify	the	files.

/patchoriginal The	name	of	the	original	file	to	patch.	Used	for	the	view	title.
/patchpatched The	name	of	the	resulting	patched	file.	Used	for	the	view	title.
/diff The	path	to	the	patch/diff	file	to	apply	to	a	directory.
/oneway Forces	TortoiseGitMerge	to	start	with	the	one-way	view	instead	of	the

view	the	user	specified	in	the	settings.
/reversedpatch Switches	the	left	and	right	view	of	the	specified	two	files	to	diff.
/createunifieddiff Creates	a	unified	diff	file	(patch	file)	of	two	files	specified	with

/origfile:"path_to_original_file"	and
/modifiedfile:"path_to_modified_file".	The	target	path	is	set	with
/outfile:"path_to_resulting_patchfile".	If	/outfile	is	not	set,	a	file
save	dialog	is	shown	so	the	user	can	choose	the	location	to	save	the
patch	file.	Note:	If	/createunifieddiff	is	set,	all	other	parameters	are
ignored.

/line Specifies	a	line	number	to	jump	to	after	loading	the	files.
/readonly Prevents	the	file	from	being	edited.	That	means	the	editing

capabilities	of	TortoiseGitMerge	are	disabled.

You	can	also	supply	simple	filenames	on	the	command	line	for
compatibility	with	other	diff	programs.	In	this	simplified	form	the	command
line	is

TortoiseGitMerge	BaseFilePath	MyFilePath	[	TheirFilePath	]

If	two	files	are	given	they	will	be	compared	with	each	other.	If	three	files
are	given,	the	first	is	taken	as	the	BASE	file,	and	the	other	two	are
compared	with	it	in	a	three-way	diff.

Prev	 	 	Next
Appendix	A.	keyboard
shortcuts	 Home 	Glossary



Glossary
Prev	 	 	



Glossary

Add

A	Git	command	that	is	used	to	add	a	file	to	your	working	tree.	The
new	items	are	added	to	the	repository	when	you	commit.

BASE	revision

This	is	the	common	ancestor's	version	of	a	conflicted	file.

Blame

This	command	is	for	text	files	only,	and	it	annotates	every	line	to
show	the	repository	revision	in	which	it	was	last	changed,	and	the
author	who	made	that	change.	Our	GUI	implementation	is	called
TortoiseGitBlame	and	it	also	shows	the	commit	date/time	and	the	log
message	when	you	hover	the	mouse	of	the	revision	number.

Branch

A	term	frequently	used	in	revision	control	systems	to	describe	what
happens	when	development	forks	at	a	particular	point	and	follows	2
separate	paths.	You	can	create	a	branch	off	the	main	development
line	so	as	to	develop	a	new	feature	without	rendering	the	main	line
unstable.	Or	you	can	branch	a	stable	release	to	which	you	make
only	bug	fixes,	while	new	developments	take	place	on	the	unstable
trunk.	In	Git	a	branch	is	implemented	as	a	“pointer	to	a	revision”.

Cleanup

Remove	untracked	files	from	the	working	tree.

This	is	different	to	TortoiseSVN	cleanup

Clone

A	Git	command	which	creates	a	local	working	tree	in	an	empty



directory	by	downloading	a	remote	repository.

Commit

This	Git	command	is	used	to	pass	the	changes	in	your	local	working
tree	back	into	the	repository,	creating	a	new	repository	revision.

Conflict

When	changes	from	the	repository	are	merged	with	local	changes,
sometimes	those	changes	occur	on	the	same	lines.	In	this	case	Git
cannot	automatically	decide	which	version	to	use	and	the	file	is	said
to	be	in	conflict.	You	have	to	edit	the	file	manually	and	resolve	the
conflict	before	you	can	commit	any	further	changes.

Copy

In	a	Git	repository	you	can	manually	create	a	copy	of	a	single	file	or
an	entire	tree	w/o	problems.

Delete

When	you	delete	a	versioned	item	(and	commit	the	change)	the	item
no	longer	exists	in	the	repository	after	the	committed	revision.	But	of
course	it	still	exists	in	earlier	repository	revisions,	so	you	can	still
access	it.	If	necessary,	you	can	copy	a	deleted	item	and	“resurrect”	it
complete	with	history.

Diff

Shorthand	for	“Show	Differences”.	Very	useful	when	you	want	to	see
exactly	what	changes	have	been	made.

Export

This	command	produces	an	compressed	archive	of	all	versioned
files	(of	a	specific	revision).

GPO



Group	policy	object

HEAD

HEAD	is	a	synonym	for	the	currently	active	branch	(to	be	more
precise	in	Git	HEAD	can	also	be	so-called	"detached"	and	directly
pointing	to	a	commit	instead	of	a	branch).

History

Show	the	revision	history	of	a	file	or	folder.	Also	known	as	“Log”.

Log

Show	the	revision	history	of	a	file	or	folder.	Also	known	as	“History”.

Merge

The	process	by	which	changes	from	the	repository	are	added	to	your
working	tree	without	disrupting	any	changes	you	have	already	made
locally.	Sometimes	these	changes	cannot	be	reconciled
automatically	and	the	working	tree	is	said	to	be	in	conflict.

Merging	happens	automatically	when	you	pull	changes,	cherry-pick,
or	rebase.	You	can	also	merge	specific	changes	from	another
branch	using	TortoiseGit's	Merge	command.

Patch

If	a	working	tree	has	changes	to	text	files	only,	it	is	possible	to	use
Git's	Diff	command	to	generate	a	single	file	summary	of	those
changes	in	Unified	Diff	format.	A	file	of	this	type	is	often	referred	to
as	a	“Patch”,	and	it	can	be	emailed	to	someone	else	(or	to	a	mailing
list)	and	applied	to	another	working	tree.	Someone	without	commit
access	can	make	changes	and	submit	a	patch	file	for	an	authorized
committer	to	apply.	Or	if	you	are	unsure	about	a	change	you	can
submit	a	patch	for	others	to	review.

Pull



This	Git	command	pulls	down	the	latest	changes	from	the	repository
into	your	working	tree,	merging	any	changes	made	by	others	with
local	changes	in	the	working	tree.

Repository

A	repository	is	a	place	where	data	is	stored	and	maintained.	A
repository	can	be	a	place	where	multiple	databases	or	files	are
located	for	distribution	over	a	network,	or	a	repository	can	be	a
location	that	is	directly	accessible	to	the	user	without	having	to	travel
across	a	network.	Git	is	a	distributed	version	control	system	-	each
working	tree	contains	its	own	repository	(in	the	.git	folder).	A	Git
repository	does	not	require	network	to	work	with	most	operations.
Network	is	required	only	when	you	need	to	synchronize	changes
with	remote	repositories.

Resolve

When	files	in	a	working	tree	are	left	in	a	conflicted	state	following	a
merge,	those	conflicts	must	be	sorted	out	by	a	human	using	an
editor	(or	perhaps	TortoiseGitMerge).	This	process	is	referred	to	as
“Resolving	Conflicts”.	When	this	is	complete	you	can	mark	the
conflicted	files	as	being	resolved,	which	allows	them	to	be
committed.

Revert

If	you	have	made	changes	and	decide	you	want	to	undo	them,	you
can	use	the	“revert”	command	to	go	back	to	the	version	from	HEAD.

Revision

Every	time	you	commit	a	set	of	changes,	you	create	one	new
“revision”	in	the	repository.	Each	revision	represents	the	state	of	the
repository	tree	at	a	certain	point	in	its	history.	If	you	want	to	go	back
in	time	you	can	examine	the	repository	as	it	was	at	a	specific
revision.

In	another	sense,	a	revision	can	refer	to	the	set	of	changes	that	were



made	when	that	revision	was	created.

SVN

A	frequently-used	abbreviation	for	Subversion.

TortoiseGit	provides	git-svn	interoperability.	You	can	fetch	partial	or
whole	history	from	an	SVN	remote	and	store	as	a	local	git	repository.
This	allows	you	to	browse	the	history	and	create	commits	locally.
You	can	finally	commit	your	changes	to	an	SVN	remote.

Switch/Checkout

Updates	all	files	in	the	working	tree	to	a	specific	version.	This	is
normally	used	for	switching/checking	out	branches.

Update

The	corresponding	command	for	the	SVN	update	command	is	Pull.

Working	Copy

See	“Working	Tree”.

Working	Tree

This	is	your	local	“sandbox”,	the	area	where	you	work	on	the
versioned	files,	and	it	normally	resides	on	your	local	hard	disk.	You
create	a	working	tree	by	doing	a	“Clone”	of	a	repository,	and	you
feed	your	changes	back	into	the	repository	using	“Commit”.

Prev	 	 	
Appendix	B.	Automating
TortoiseGitMerge	 Home 	


	TortoiseGitMerge
	Preface
	Acknowledgments
	Introduction
	TortoiseGitMerge's History
	Basic Concepts
	Editing Conflicts
	Applying Patches
	Using TortoiseGitMerge
	Buttons and Other Controls
	Line Status Icons
	Merging / Editing Conflicts
	Open Files
	Settings
	keyboard shortcuts
	Automating TortoiseGitMerge
	Glossary

