
TortoiseGit
	 	 	Next

TortoiseGit

A	Git	client	for	Windows

Version	2.4.0

Lübbe	Onken	(TortoiseSVN)

Simon	Large	(TortoiseSVN)

Frank	Li

Sven	Strickroth

Table	of	Contents
Preface

1.	Audience
2.	Reading	Guide
3.	TortoiseGit	is	free!
4.	Community
5.	Acknowledgments
6.	Terminology	used	in	this	document

1.	Introduction
1.1.	What	is	TortoiseGit?
1.2.	TortoiseGit's	History
1.3.	TortoiseGit's	Features
1.4.	Installing	TortoiseGit

1.4.1.	System	requirements
1.4.2.	Installation
1.4.3.	Language	Packs
1.4.4.	Spellchecker

2.	TortoiseGit	Daily	Use	Guide
2.1.	Getting	Started

2.1.1.	Icon	Overlays
2.1.2.	Context	Menus
2.1.3.	Drag	and	Drop
2.1.4.	Common	Shortcuts
2.1.5.	Authentication

2.1.5.1.	SSH	(URLs	look	like
git@example.com)
2.1.5.2.	HTTP/HTTPS	(URLs	start	with
https://	or	http://)

2.1.6.	Maximizing	Windows
2.2.	Create	Repository
2.3.	Clone	Repository
2.4.	Checking	Out	A	Working	Tree	(Switch	to	commit)
2.5.	Committing	Your	Changes	To	The	Repository

2.5.1.	The	Commit	Dialog
2.5.2.	Commit	only	parts	of	files
2.5.3.	Commit	Log	Messages
2.5.4.	Commit	Progress

2.6.	Getting	Status	Information
2.6.1.	Icon	Overlays
2.6.2.	Status
2.6.3.	Viewing	Diffs

2.7.	Pull	and	Fetch	change
2.8.	Push

2.8.1.	Branch
2.8.2.	Destination
2.8.3.	Options

2.9.	Sync
2.9.1.	Branch
2.9.2.	Destination
2.9.3.	Options

2.10.	Daemon
2.11.	Browse	All	Refs
2.12.	Submodules

2.13.	Log	Dialog
2.13.1.	Invoking	the	Revision	Log	Dialog
2.13.2.	Revision	Log	Actions
2.13.3.	Getting	Additional	Information
2.13.4.	Filtering	Log	Messages
2.13.5.	Navigation
2.13.6.	Statistical	Information

2.13.6.1.	Statistics	Page
2.13.6.2.	Commits	by	Author	Page
2.13.6.3.	Commits	by	date	Page

2.13.7.	Refreshing	the	View
2.14.	Revision	Graphs

2.14.1.	Revision	Graph	Nodes
2.14.2.	Using	the	Graph
2.14.3.	Refreshing	the	View

2.15.	Reference	Log
2.16.	The	Repository	Browser
2.17.	Viewing	Differences

2.17.1.	File	Differences
2.17.2.	Line-end	and	Whitespace	Options
2.17.3.	Comparing	Version
2.17.4.	Diffing	submodules	using	Submodule	Diff
Dialog
2.17.5.	Diffing	Images	Using	TortoiseGitIDiff
2.17.6.	External	Diff/Merge	Tools

2.18.	Adding	New	Files
2.19.	Copying/Moving/Renaming	Files	and	Folders
2.20.	Ignoring	Files	And	Directories

2.20.1.	Pattern	Matching	in	Ignore	Lists
2.21.	Deleting,	Moving	and	Renaming

2.21.1.	Deleting	files	and	folders
2.21.2.	Moving	files	and	folders
2.21.3.	Changing	case	in	a	filename
2.21.4.	Dealing	with	filename	case	conflicts
2.21.5.	Deleting	Unversioned	Files

2.22.	Undo	Changes
2.23.	Cleanup

2.24.	Reset
2.25.	Stash	Changes
2.26.	Bisect
2.27.	Branching/Tagging

2.27.1.	Creating	a	Branch	or	Tag
2.28.	Merging
2.29.	Cherry	picking
2.30.	Rebase
2.31.	Resolving	Conflicts

2.31.1.	Special	conflict	cases
2.31.1.1.	Delete-modify	conflicts
2.31.1.2.	Submodule	conflicts

2.32.	Creating	and	Applying	Patches	and	Pull
Requests

2.32.1.	Creating	a	Patch	Serial
2.32.2.	Sending	patches	by	mail
2.32.3.	Applying	a	single	Patch	File
2.32.4.	Applying	a	Patch	Serial
2.32.5.	Creating	a	pull	request

2.33.	Who	Changed	Which	Line?
2.33.1.	Blame	for	Files

2.34.	Exporting	a	Git	Working	Tree
2.35.	Integration	with	Bug	Tracking	Systems	/	Issue
Trackers

2.35.1.	Adding	Issue	Numbers	to	Log	Messages
2.35.1.1.	Issue	Number	in	Text	Box
2.35.1.2.	Issue	Numbers	Using	Regular
Expressions
2.35.1.3.	Issue	Tracker	Provider	Settings
based	on	Hierarchical	Git	Configuration

2.35.2.	Getting	Information	from	the	Issue
Tracker

2.36.	TortoiseGit's	Settings
2.36.1.	General	Settings

2.36.1.1.	Context	Menu	Settings
2.36.1.2.	Set	Extend	Menu	Item
2.36.1.3.	TortoiseGit	Dialog	Settings

2.36.1.4.	TortoiseGit	Dialog	Settings	2
2.36.1.5.	TortoiseGit	Dialog	Settings	3
2.36.1.6.	TortoiseGit	Colour	Settings
2.36.1.7.	TortoiseGit	Colour	Settings	2
2.36.1.8.	TortoiseGit	Colour	Settings	3

2.36.2.	Icon	Overlay	Settings
2.36.2.1.	Icon	Set	Selection
2.36.2.2.	Enabled	Overlay	Handlers

2.36.3.	Network	Settings
2.36.3.1.	Email	settings

2.36.4.	External	Program	Settings
2.36.4.1.	Diff	Viewer
2.36.4.2.	Merge	Tool
2.36.4.3.	Diff/Merge	Advanced	Settings
2.36.4.4.	Alternative	editor

2.36.5.	Saved	Data	Settings
2.36.6.	Git

2.36.6.1.	The	hierarchical	git	configuration
2.36.6.2.	Git	Config
2.36.6.3.	Remote
2.36.6.4.	Credential

2.36.7.	Client	Side	Hook	Scripts
2.36.7.1.	Issue	Tracker	Integration
2.36.7.2.	Config

2.36.8.	TortoiseGitBlame	Settings
2.36.9.	TortoiseGitUDiff	Settings
2.36.10.	Advanced	Settings
2.36.11.	Exporting	TortoiseGit	Settings

2.37.	git	svn	dcommit
2.38.	Final	Step

A.	Frequently	Asked	Questions	(FAQ)

3.	The	GitWCRev	Program
3.1.	The	GitWCRev	Command	Line
3.2.	Keyword	Substitution
3.3.	Keyword	Example
3.4.	COM	interface

B.	IBugTraqProvider	interface
B.1.	Naming	conventions
B.2.	The	IBugTraqProvider	interface
B.3.	The	IBugTraqProvider2	interface

C.	Useful	Tips	For	Administrators
C.1.	Deploy	TortoiseGit	via	group	policies
C.2.	Redirect	the	upgrade	check
C.3.	Disable	context	menu	entries

D.	Automating	TortoiseGit
D.1.	TortoiseGit	Commands
D.2.	TortoiseGitIDiff	Commands

E.	Implementation	Details
E.1.	Icon	Overlays

F.	Tips	and	tricks	for	SSH/PuTTY
F.1.	Introduction

F.1.1.	How	to	use	sessions
F.2.	FAQ	and	examples	section

F.2.1.	How	to	use	a	default	key	for	all	SSH
connections
F.2.2.	How	to	connect	to	a	SSH	server	on	a
different	port

F.2.2.1.	All	connections	to	a	server	should
use	the	different	port
F.2.2.2.	One	special	connection	should	use
a	different	port

F.2.3.	How	to	use	two	different	ssh	keys	for	the
same	user	on	the	same	host

G.	Git	Offical	Documentation
G.1.	Git	User	Manual

G.1.1.	Git	User	Manual
G.1.1.1.	Git	Quick	Reference

G.1.1.2.	Notes	and	todo	list	for	this	manual
G.2.	Git	Tutorial

G.2.1.	gittutorial(7)
G.2.2.	gittutorial-2(7)
G.2.3.	gitcore-tutorial(7)
G.2.4.	gitcvs-migration(7)
G.2.5.	giteveryday(7)

G.3.	Git	Command	Reference
G.3.1.	git(1)
G.3.2.	git-add(1)
G.3.3.	git-am(1)
G.3.4.	git-annotate(1)
G.3.5.	git-apply(1)
G.3.6.	git-archimport(1)
G.3.7.	git-archive(1)
G.3.8.	git-bisect(1)
G.3.9.	git-blame(1)
G.3.10.	git-branch(1)
G.3.11.	git-bundle(1)
G.3.12.	git-cat-file(1)
G.3.13.	git-check-attr(1)
G.3.14.	git-check-ignore(1)
G.3.15.	git-check-mailmap(1)
G.3.16.	git-check-ref-format(1)
G.3.17.	git-checkout-index(1)
G.3.18.	git-checkout(1)
G.3.19.	git-cherry-pick(1)
G.3.20.	git-cherry(1)
G.3.21.	git-citool(1)
G.3.22.	git-clean(1)
G.3.23.	git-clone(1)
G.3.24.	git-column(1)
G.3.25.	git-commit-tree(1)
G.3.26.	git-commit(1)
G.3.27.	git-config(1)
G.3.28.	git-count-objects(1)
G.3.29.	git-credential(1)

G.3.30.	git-credential-cache--daemon(1)
G.3.31.	git-credential-cache(1)
G.3.32.	git-credential-store(1)
G.3.33.	git-cvsexportcommit(1)
G.3.34.	git-cvsimport(1)
G.3.35.	git-cvsserver(1)
G.3.36.	git-daemon(1)
G.3.37.	git-describe(1)
G.3.38.	git-diff-files(1)
G.3.39.	git-diff-index(1)
G.3.40.	git-diff-tree(1)
G.3.41.	git-diff(1)
G.3.42.	git-difftool(1)
G.3.43.	git-fast-export(1)
G.3.44.	git-fast-import(1)
G.3.45.	git-fetch-pack(1)
G.3.46.	git-fetch(1)
G.3.47.	git-filter-branch(1)
G.3.48.	git-fmt-merge-msg(1)
G.3.49.	git-for-each-ref(1)
G.3.50.	git-format-patch(1)
G.3.51.	git-fsck-objects(1)
G.3.52.	git-fsck(1)
G.3.53.	git-gc(1)
G.3.54.	git-get-tar-commit-id(1)
G.3.55.	git-grep(1)
G.3.56.	git-gui(1)
G.3.57.	git-hash-object(1)
G.3.58.	git-help(1)
G.3.59.	git-http-backend(1)
G.3.60.	git-http-fetch(1)
G.3.61.	git-http-push(1)
G.3.62.	git-imap-send(1)
G.3.63.	git-index-pack(1)
G.3.64.	git-init-db(1)
G.3.65.	git-init(1)
G.3.66.	git-instaweb(1)

G.3.67.	git-interpret-trailers(1)
G.3.68.	git-log(1)
G.3.69.	git-ls-files(1)
G.3.70.	git-ls-remote(1)
G.3.71.	git-ls-tree(1)
G.3.72.	git-mailinfo(1)
G.3.73.	git-mailsplit(1)
G.3.74.	git-merge-base(1)
G.3.75.	git-merge-file(1)
G.3.76.	git-merge-index(1)
G.3.77.	git-merge-one-file(1)
G.3.78.	git-merge-tree(1)
G.3.79.	git-merge(1)
G.3.80.	git-mergetool--lib(1)
G.3.81.	git-mergetool(1)
G.3.82.	git-mktag(1)
G.3.83.	git-mktree(1)
G.3.84.	git-mv(1)
G.3.85.	git-name-rev(1)
G.3.86.	git-notes(1)
G.3.87.	git-p4(1)
G.3.88.	git-pack-objects(1)
G.3.89.	git-pack-redundant(1)
G.3.90.	git-pack-refs(1)
G.3.91.	git-parse-remote(1)
G.3.92.	git-patch-id(1)
G.3.93.	git-prune-packed(1)
G.3.94.	git-prune(1)
G.3.95.	git-pull(1)
G.3.96.	git-push(1)
G.3.97.	git-quiltimport(1)
G.3.98.	git-read-tree(1)
G.3.99.	git-rebase(1)
G.3.100.	git-receive-pack(1)
G.3.101.	git-reflog(1)
G.3.102.	git-relink(1)
G.3.103.	git-remote-ext(1)

G.3.104.	git-remote-fd(1)
G.3.105.	git-remote-testgit(1)
G.3.106.	git-remote(1)
G.3.107.	git-repack(1)
G.3.108.	git-replace(1)
G.3.109.	git-request-pull(1)
G.3.110.	git-rerere(1)
G.3.111.	git-reset(1)
G.3.112.	git-rev-list(1)
G.3.113.	git-rev-parse(1)
G.3.114.	git-revert(1)
G.3.115.	git-rm(1)
G.3.116.	git-send-email(1)
G.3.117.	git-send-pack(1)
G.3.118.	git-sh-i18n--envsubst(1)
G.3.119.	git-sh-i18n(1)
G.3.120.	git-sh-setup(1)
G.3.121.	git-shell(1)
G.3.122.	git-shortlog(1)
G.3.123.	git-show-branch(1)
G.3.124.	git-show-index(1)
G.3.125.	git-show-ref(1)
G.3.126.	git-show(1)
G.3.127.	git-stage(1)
G.3.128.	git-stash(1)
G.3.129.	git-status(1)
G.3.130.	git-stripspace(1)
G.3.131.	git-submodule(1)
G.3.132.	git-svn(1)
G.3.133.	git-symbolic-ref(1)
G.3.134.	git-tag(1)
G.3.135.	git-unpack-file(1)
G.3.136.	git-unpack-objects(1)
G.3.137.	git-update-index(1)
G.3.138.	git-update-ref(1)
G.3.139.	git-update-server-info(1)
G.3.140.	git-upload-archive(1)

G.3.141.	git-upload-pack(1)
G.3.142.	git-var(1)
G.3.143.	git-verify-commit(1)
G.3.144.	git-verify-pack(1)
G.3.145.	git-verify-tag(1)
G.3.146.	git-web--browse(1)
G.3.147.	git-whatchanged(1)
G.3.148.	git-worktree(1)
G.3.149.	git-write-tree(1)

G.4.	Misc
G.4.1.	gitcli(7)
G.4.2.	gitattributes(5)
G.4.3.	gitcredentials(7)
G.4.4.	gitdiffcore(7)
G.4.5.	gitignore(5)
G.4.6.	githooks(5)
G.4.7.	gitk(1)
G.4.8.	gitmodules(5)
G.4.9.	gitnamespaces(7)
G.4.10.	gitremote-helpers(1)
G.4.11.	gitrepository-layout(5)
G.4.12.	gitrevisions(7)
G.4.13.	gitweb(1)
G.4.14.	gitweb.conf(5)
G.4.15.	gitworkflows(7)
G.4.16.	gitglossary(7)

Glossary
Index

List	of	Figures

2.1.	Explorer	showing	icon	overlays
2.2.	Context	menu	for	a	directory	under	version	control
2.3.	Explorer	file	menu	for	a	shortcut	in	a	versioned	folder
2.4.	Right	drag	menu	for	a	directory	under	version	control
2.5.	Create	repository	dialog
2.6.	Successfull	repository	creation	message

2.7.	Clone	dialog
2.8.	The	Switch/Checkout	dialog
2.9.	The	Commit	dialog
2.10.	The	Commit	Dialog	Spellchecker
2.11.	The	Progress	dialog	showing	a	commit	in	progress
2.12.	Explorer	showing	icon	overlays
2.13.	Check	for	Modifications
2.14.	Pull	dialog
2.15.	Fetch	dialog
2.16.	Push	dialog
2.17.	Sync	dialog
2.18.	A	running	daemon	dialog
2.19.	Browse	References	Dialog	dialog
2.20.	Delete	remote	tags	dialog
2.21.	The	add	submodule	dialog
2.22.	Submodule	context	menu	entries
2.23.	The	update	submodule	dialog
2.24.	Button	for	updating	submodules	in	progress	dialog
2.25.	The	Revision	Log	Dialog
2.26.	The	Revision	Log	Dialog	Top	Pane	with	Context	Menu
2.27.	The	Search	Log	Messages	Dialog
2.28.	Top	Pane	Context	Menu	for	2	Selected	Revisions
2.29.	The	Log	Dialog	Bottom	Pane	with	Context	Menu
2.30.	Commits-by-Author	Histogram
2.31.	Commits-by-Author	Pie	Chart
2.32.	Commits-by-date	Graph
2.33.	A	Revision	Graph
2.34.	RefLog	Dialog
2.35.	The	Repository	Browser
2.36.	The	Compare	Revisions	Dialog
2.37.	The	submodule	difference	dialog
2.38.	The	image	difference	viewer
2.39.	Explorer	context	menu	for	unversioned	files
2.40.	Right	drag	menu	for	a	directory	under	version	control
2.41.	Explorer	context	menu	for	unversioned	files
2.42.	Ignore	dialog
2.43.	Explorer	context	menu	for	versioned	files

2.44.	Revert	dialog
2.45.	Clean	dialog
2.46.	The	Reset	dialog
2.47.	The	Abort	Merge	dialog
2.48.	Stash	save	dialog
2.49.	(un)stash	options
2.50.	Bisect	start
2.51.	Bisect	options
2.52.	The	Branch	Dialog
2.53.	The	Tag	Dialog
2.54.	Merge	dialog
2.55.	Cherry	Pick	dialog
2.56.	Rebase	dialog
2.57.	The	resolve	conflicts	dialog
2.58.	Resolve	delete-modify	conflict	Dialog
2.59.	Resolve	submodule	conflict	Dialog
2.60.	The	Create	Patch	dialog
2.61.	The	Send	Patches	Dialog
2.62.	The	Choose	Repository	Dialog
2.63.	The	Apply	Patch	Dialog
2.64.	The	Request	Pull	Dialog
2.65.	TortoiseGitBlame
2.66.	The	Export	Dialog
2.67.	Example	issue	tracker	query	dialog
2.68.	The	Settings	Dialog,	General	Page
2.69.	The	Settings	Dialog,	Context	Menu	Page
2.70.	The	Settings	Dialog,	Set	Extend	Menu	Item
2.71.	The	Settings	Dialog,	Dialogs	Page
2.72.	Example	of	Symbolize	ref	names
2.73.	The	Settings	Dialog,	Dialogs	Page	2
2.74.	The	Settings	Dialog,	Dialogs	3	Page
2.75.	The	Settings	Dialog,	Colours	Page
2.76.	The	Settings	Dialog,	Colours	Page
2.77.	The	Settings	Dialog,	Colours	Page
2.78.	The	Settings	Dialog,	Icon	Overlays	Page
2.79.	The	Settings	Dialog,	Icon	Set	Page
2.80.	The	Settings	Dialog,	Icon	Handlers	Page

2.81.	The	Settings	Dialog,	Network	Page
2.82.	The	Settings	Dialog,	email	settings
2.83.	The	Settings	Dialog,	Diff	Viewer	Page
2.84.	The	Settings	Dialog,	Merge	Tool	Page
2.85.	The	Settings	Dialog,	Diff/Merge	Advanced	Dialog
2.86.	The	Settings	Dialog,	Alternative	editor	Page
2.87.	The	Settings	Dialog,	Saved	Data	Page
2.88.	The	Settings	Dialog,	Git
2.89.	The	Settings	Dialog,	Git,	Remote
2.90.	The	Settings	Dialog,	Git,	Credential
2.91.	The	Settings	Dialog,	Hook	Scripts	Page
2.92.	The	Settings	Dialog,	Configure	Hook	Scripts
2.93.	The	Settings	Dialog,	Issue	Tracker	Integration	Page
2.94.	The	Settings	Dialog,	Issue	Tracker	Config
2.95.	The	Settings	Dialog,	TortoiseGitBlame	Page
2.96.	The	Settings	Dialog,	TortoiseGitUDiff	Page
2.97.	Taskbar	with	default	grouping
2.98.	Taskbar	with	repository	grouping
2.99.	Taskbar	grouping	with	repository	color	overlays
C.1.	The	upgrade	dialog

List	of	Tables

3.1.	List	of	available	command	line	switches
3.2.	List	of	GitWCRev	error	codes
3.3.	List	of	available	keywords
3.4.	COM/automation	methods	supported
C.1.	Menu	entries	and	their	values
D.1.	List	of	available	commands	and	options
D.2.	List	of	available	options

List	of	Examples

G.1.	Merge	upwards
G.2.	Topic	branches
G.3.	Merge	to	downstream	only	at	well-defined	points
G.4.	Throw-away	integration	branches
G.5.	Verify	master	is	a	superset	of	maint

G.6.	Release	tagging
G.7.	Copy	maint
G.8.	Update	maint	to	new	release
G.9.	Rewind	and	rebuild	next
G.10.	Push/pull:	Publishing	branches/topics
G.11.	Push/pull:	Staying	up	to	date
G.12.	Push/pull:	Merging	remote	topics
G.13.	format-patch/am:	Publishing	branches/topics
G.14.	format-patch/am:	Keeping	topics	up	to	date
G.15.	format-patch/am:	Importing	patches

	 	 	Next
	 	 	Preface

Preface
Prev	 	 	Next

Preface

Table	of	Contents
1.	Audience
2.	Reading	Guide
3.	TortoiseGit	is	free!
4.	Community
5.	Acknowledgments
6.	Terminology	used	in	this	document

Do	you	work	in	a	team?

Has	it	ever	happened	that	you	were	working	on	a	file,	and	someone
else	was	working	on	the	same	file	at	the	same	time?	Did	you	lose
your	changes	to	that	file	because	of	that?

Have	you	ever	saved	a	file,	and	then	wanted	to	revert	the	changes
you	made?	Have	you	ever	wished	you	could	see	what	a	file	looked
like	some	time	ago?

Have	you	ever	found	a	bug	in	your	project	and	wanted	to	know	when
that	bug	got	into	your	files?

If	you	answered	“yes”	to	one	of	these	questions,	then	TortoiseGit	is	for
you!	Just	read	on	to	find	out	how	TortoiseGit	can	help	you	in	your	work.
It's	not	that	difficult.

1.	Audience

This	book	is	written	for	computer	literate	folk	who	want	to	use	Git	to
manage	their	data,	but	are	uncomfortable	using	the	command	line	client
to	do	so.	Since	TortoiseGit	is	a	windows	shell	extension	it's	assumed	that
the	user	is	familiar	with	the	windows	explorer	and	knows	how	to	use	it.

Prev	 	 	Next
TortoiseGit	 Home 	2.	Reading	Guide

2.	Reading	Guide
Prev	 Preface 	Next

2.	Reading	Guide

This	Preface	explains	a	little	about	the	TortoiseGit	project,	the	community
of	people	who	work	on	it,	and	the	licensing	conditions	for	using	it	and
distributing	it.

The	Chapter	1,	Introduction	explains	what	TortoiseGit	is,	what	it	does,
where	it	comes	from	and	the	basics	for	installing	it	on	your	PC.

If	you	need	a	general	introduction	to	version	control	with	Git,	then	we
recommend	two	videos	on	YouTube:	Tech	Talk:	Linus	Torvalds	on	git
(about	design	and	differences	to	other	VCS)	and	Tech	Talk:	Git	(more
technical).	You	can	also	read	Pro	Git	book	(multiple	translations	as	well
as	downloadable	versions	available)	,	Section	G.1.1,	“Git	User	Manual”,
or	Section	G.2,	“Git	Tutorial”	which	are	a	short	introductions	to	the	Git
revision	control	system,	explain	the	different	approaches	to	version
control,	and	how	Git	works	(with	a	bunch	of	examples).

The	Chapter	2,	TortoiseGit	Daily	Use	Guide	is	the	most	important	section
as	it	explains	all	the	main	features	of	TortoiseGit	and	how	to	use	them.	It
takes	the	form	of	a	tutorial,	starting	with	checking	out	a	working	tree,
modifying	it,	committing	your	changes,	etc.	It	then	progresses	to	more
advanced	topics.

The	section	on	Appendix	D,	Automating	TortoiseGit	shows	how	the
TortoiseGit	GUI	dialogs	can	be	called	from	the	command	line.	This	is
useful	for	scripting	where	you	still	need	user	interaction.

The	Section	G.3.1,	“git(1)”	give	git	official	document	about	command	line
client	git.exe.

Prev	 Up 	Next
Preface	 Home 	3.	TortoiseGit	is	free!

https://www.youtube.com/watch?v=4XpnKHJAok8
https://www.youtube.com/watch?v=8dhZ9BXQgc4
http://git-scm.com/book

3.	TortoiseGit	is	free!
Prev	 Preface 	Next

3.	TortoiseGit	is	free!

TortoiseGit	is	free.	You	don't	have	to	pay	to	use	it,	and	you	can	use	it	any
way	you	want.	It	is	developed	under	the	GNU	General	Public	License
(GPL).

TortoiseGit	is	an	Open	Source	project.	That	means	you	have	full	read
access	to	the	source	code	of	this	program.	Project	Home	is
https://tortoisegit.org/

Prev	 Up 	Next
2.	Reading	Guide	 Home 	4.	Community

https://tortoisegit.org/

4.	Community
Prev	 Preface 	Next

4.	Community

Both	TortoiseGit	and	Git	are	developed	by	a	community	of	people	who
are	working	on	those	projects.	They	come	from	different	countries	all
over	the	world	and	joined	together	to	create	wonderful	programs.

Prev	 Up 	Next
3.	TortoiseGit	is	free!	 Home 	5.	Acknowledgments

5.	Acknowledgments
Prev	 Preface 	Next

5.	Acknowledgments

Frank	Li	"lznuaa@gmail.com"

for	founding	the	TortoiseGit	project

Sven	Strickroth	"email@cs-ware.de"

for	the	hard	work	to	get	TortoiseGit	to	what	it	is	now,	and	his
leadership	of	the	project

Sup	Yut	Sum	"ch3cooli@gmail.com"

for	bug	reports	and	lots	of	improvements	(code	and	translations)

Yue	Lin	Ho	"b8732003@student.nsysu.edu.tw"

for	bug	reports,	work	on	the	mailing	list	and	lots	of	improvements
(code	and	translations)

myagi	(Georg	Fischer)	"snowcoder@gmail.com"

For	hard	work	to	get	TortoiseGit	Overlay	work.

Colin	Law

Johan't	Hart

Laszlo	Papp	"djszapi@archlinux"

Tim	Kemp

for	founding	the	TortoiseSVN	project	(TortoiseGit	is	based	on	this
project)

Stefan	Küng

for	the	hard	work	on	TortoiseSVN

Lübbe	Onken

for	the	beautiful	icons,	logo,	bug	hunting	and	translating

Simon	Large

for	helping	with	the	documentation	and	bug	hunting	on	TortoiseSVN

The	Tigris	Style	project

for	some	of	the	styles	which	are	reused	in	this	documentation

Our	Contributors

for	the	patches,	bug	reports	and	new	ideas,	and	for	helping	others	by
answering	questions	on	our	mailing	list.

Our	Donators

Prev	 Up 	Next
4.	Community	 Home 	6.	Terminology	used	in	this

document

6.	Terminology	used	in	this	document
Prev	 Preface 	Next

6.	Terminology	used	in	this	document

To	make	reading	the	docs	easier,	the	names	of	all	the	screens	and
Menus	from	TortoiseGit	are	marked	up	in	a	different	font.	The	Log	Dialog
for	instance.

A	menu	choice	is	indicated	with	an	arrow.	 TortoiseGit 	→	 Show	Log
means:	select	Show	Log	from	the	TortoiseGit	context	menu.

Where	a	local	context	menu	appears	within	one	of	the	TortoiseGit
dialogs,	it	is	shown	like	this:	 Context	Menu 	→	 Save	As	...

User	Interface	Buttons	are	indicated	like	this:	Press	 OK 	to	continue.

User	Actions	are	indicated	using	a	bold	font.	Alt+A:	press	the	Alt-Key	on
your	keyboard	and	while	holding	it	down	press	the	A-Key	as	well.	Right-
drag:	press	the	right	mouse	button	and	while	holding	it	down	drag	the
items	to	the	new	location.

System	output	and	keyboard	input	is	indicated	with	a	different	font	as
well.

Important

Important	notes	are	marked	with	an	icon.

Tip

Tips	that	make	your	life	easier.

Caution

Places	where	you	have	to	be	careful	what	you	are	doing.

Warning

Where	extreme	care	has	to	be	taken,	data	corruption	or	other
nasty	things	may	occur	if	these	warnings	are	ignored.

Prev	 Up 	Next
5.	Acknowledgments	 Home 	Chapter	1.	Introduction

Chapter	1.	Introduction
Prev	 	 	Next

Chapter	1.	Introduction

Table	of	Contents
1.1.	What	is	TortoiseGit?
1.2.	TortoiseGit's	History
1.3.	TortoiseGit's	Features
1.4.	Installing	TortoiseGit

1.4.1.	System	requirements
1.4.2.	Installation
1.4.3.	Language	Packs
1.4.4.	Spellchecker

Version	control	is	the	art	of	managing	changes	to	information.	It	has	long
been	a	critical	tool	for	programmers,	who	typically	spend	their	time
making	small	changes	to	software	and	then	undoing	or	checking	some	of
those	changes	the	next	day.	Imagine	a	team	of	such	developers	working
concurrently	-	and	perhaps	even	simultaneously	on	the	very	same	files!	-
and	you	can	see	why	a	good	system	is	needed	to	manage	the	potential
chaos.

1.1.	What	is	TortoiseGit?

TortoiseGit	is	a	free	open-source	client	for	the	Git	version	control	system.
That	is,	TortoiseGit	manages	files	over	time.	Files	are	stored	in	a	local
repository.	The	repository	is	much	like	an	ordinary	file	server,	except	that
it	remembers	every	change	ever	made	to	your	files	and	directories.	This
allows	you	to	recover	older	versions	of	your	files	and	examine	the	history
of	how	and	when	your	data	changed,	and	who	changed	it.	This	is	why
many	people	think	of	Git	and	version	control	systems	in	general	as	a	sort
of	“time	machine”.

Some	version	control	systems	are	also	software	configuration
management	(SCM)	systems.	These	systems	are	specifically	tailored	to
manage	trees	of	source	code,	and	have	many	features	that	are	specific
to	software	development	-	such	as	natively	understanding	programming
languages,	or	supplying	tools	for	building	software.	Git,	however,	is	not
one	of	these	systems;	it	is	a	general	system	that	can	be	used	to	manage
any	collection	of	files,	including	source	code.

Git	is	an	open	source,	distributed	version	control	system	designed	to
handle	everything	from	small	to	very	large	projects	with	speed	and
efficiency.	Every	Git	clone	is	a	full-fledged	repository	with	complete
history	and	full	revision	tracking	capabilities,	not	dependent	on	network
access	or	a	central	server.	Branching	and	merging	are	fast	and	easy	to
do.

Prev	 	 	Next
6.	Terminology	used	in	this
document	 Home 	1.2.	TortoiseGit's	History

1.2.	TortoiseGit's	History
Prev	 Chapter	1.	Introduction 	Next

1.2.	TortoiseGit's	History

In	2008,	Frank	Li	found	that	Git	was	a	very	good	version	control	system,
but	it	lacked	a	good	GUI	client.	The	idea	for	a	Git	client	as	a	Windows
shell	integration	was	inspired	by	the	similar	client	for	SVN	named
TortoiseSVN.

Frank	studied	the	source	code	of	TortoiseSVN	and	used	it	as	a	base	for
TortoiseGit.	He	then	started	the	project,	registered	the	project	at
code.google.com	and	put	the	source	code	online.

At	the	end	of	2010	Sven	Strickroth	joined	the	TortoiseGit	project.	Then,
he	became	the	current	maintainer	few	years	later.

From	August	2015,	GoogleCode	was	shut	down	and	the	TortoiseGit
project	established	their	website	tortoisegit.org	and	migrated	the	main
repository	and	issue	tracker	to	GitLab.

As	Git	became	more	stable	it	attracted	more	and	more	users	who	also
started	using	TortoiseGit	as	their	Git	client.

For	more	information	what	changed	over	the	releases	check	out	the
latest	release	notes	or	inspect	our	git	commit	history.

Prev	 Up 	Next
Chapter	1.	Introduction	 Home 	1.3.	TortoiseGit's	Features

https://tortoisegit.org/releasenotes
https://tortoisegit.org/sourcecode

1.3.	TortoiseGit's	Features
Prev	 Chapter	1.	Introduction 	Next

1.3.	TortoiseGit's	Features

What	makes	TortoiseGit	such	a	good	Git	client?	Here's	a	short	list	of
features.

Shell	integration

TortoiseGit	integrates	seamlessly	into	the	Windows	shell	(i.e.	the
explorer).	This	means	you	can	keep	working	with	the	tools	you're
already	familiar	with.	And	you	do	not	have	to	change	into	a	different
application	each	time	you	need	functions	of	the	version	control!

And	you	are	not	even	forced	to	use	the	Windows	Explorer.
TortoiseGit's	context	menus	work	in	many	other	file	managers,	and
in	the	File/Open	dialog	which	is	common	to	most	standard	Windows
applications.	You	should,	however,	bear	in	mind	that	TortoiseGit	is
intentionally	developed	as	extension	for	the	Windows	Explorer.	Thus
it	is	possible	that	in	other	applications	the	integration	is	not	as
complete	and	e.g.	the	icon	overlays	may	not	be	shown.

Icon	overlays

The	status	of	every	versioned	file	and	folder	is	indicated	by	small
overlay	icons.	That	way	you	can	see	right	away	what	the	status	of
your	working	tree	is.

The	icon	overlays	are	based	on	TortoiseOverlays
(http://www.tortoisesvn.net)

Easy	access	to	Git	commands

All	Git	commands	are	available	from	the	explorer	context	menu.
TortoiseGit	adds	its	own	submenu	there.

Since	TortoiseGit	is	a	Git	client,	we	would	also	like	to	show	you	some	of
the	features	of	Git	itself:

http://www.tortoisesvn.net/

Distributed	version	control

Like	most	other	modern	version	control	systems,	Git	gives	each
developer	a	local	copy	of	the	entire	development	history,	and
changes	are	copied	from	one	such	repository	to	another.	These
changes	are	imported	as	additional	development	branches,	and	can
be	merged	in	the	same	way	as	a	locally	developed	branch.
Repositories	can	be	easily	accessed	via	the	efficient	Git	protocol
(optionally	wrapped	in	ssh	for	authentication	and	security)	or	simply
using	HTTP	-	you	can	publish	your	repository	anywhere	without	any
special	webserver	configuration	required.

Atomic	commits

A	commit	either	goes	into	the	repository	completely,	or	not	at	all.

Strong	support	for	non-linear	development

Git	supports	rapid	and	convenient	branching	and	merging,	and
includes	powerful	tools	for	visualizing	and	navigating	a	non-linear
development	history.

Efficient	handling	of	large	projects

Git	is	very	fast	and	scales	well	even	when	working	with	large
projects	and	long	histories.	It	is	commonly	an	order	of	magnitude
faster	than	most	other	version	control	systems,	and	several	orders	of
magnitude	faster	on	some	operations.	It	also	uses	an	extremely
efficient	packed	format	for	long-term	revision	storage	that	currently
tops	any	other	open	source	version	control	system.

Cryptographic	authentication	of	history

The	Git	history	is	stored	in	such	a	way	that	the	name	of	a	particular
revision	(a	"commit"	in	Git	terms)	depends	upon	the	complete
development	history	leading	up	to	that	commit.	Once	it	is	published,
it	is	not	possible	to	change	the	old	versions	without	it	being	noticed.
Also,	tags	can	be	cryptographically	signed.

Efficient	branching	and	tagging

The	cost	of	branching	and	tagging	need	not	be	proportional	to	the
project	size.	Branch	is	just	head	of	commits.	Tag	is	friend	name	of
commit	hash.

Toolkit	design

Following	the	Unix	tradition,	Git	is	a	collection	of	many	small	tools
written	in	C,	and	a	number	of	scripts	that	provide	convenient
wrappers.	Git	provides	tools	for	both	easy	human	usage	and	easy
scripting	to	perform	new	clever	operations.

Prev	 Up 	Next
1.2.	TortoiseGit's	History	 Home 	1.4.	Installing	TortoiseGit

1.4.	Installing	TortoiseGit
Prev	 Chapter	1.	Introduction 	Next

1.4.	Installing	TortoiseGit

1.4.1.	System	requirements

TortoiseGit	runs	on	Windows	Vista	or	higher.	Windows	98,	Windows	ME,
Windows	NT4,	Windows	2000	and	Windows	XP	SP3	are	no	longer
supported.	If	you	are	running	such	an	old	system,	you	can	still	use	older,
however	unsupported,	releases	of	TortoiseGit.	Those	can	be	found	on
the	download	server	(TortoiseGit	1.7	dropped	support	for	Windows	2000;
TortoiseGit	1.9	dropped	support	for	Windows	XP).

If	you	encounter	any	problems	during	or	after	installing	TortoiseGit	please
refer	to	Appendix	A,	Frequently	Asked	Questions	(FAQ)	first.

1.4.2.	Installation

TortoiseGit	comes	with	an	easy	to	use	installer.	Double	click	on	the
installer	file	and	follow	the	instructions.	The	installer	will	take	care	of	the
rest.

One	prerequisite	of	TortoiseGit	is	that	it	requires	an	already	installed
(command	line)	Git	client	which	provides	a	git.exe.	Git	for	Windows	is
recommended	(Cygwin	and	Msys2	Git	also	work,	see	Section	2.36.1,
“General	Settings”	for	configuration.	Please	note	that	Cygwin	and	Msys2
Git	are	not	officially	supported	by	TortoiseGit	as	the	developers	only	use
Git	for	Windows.	Bug	reports,	however,	are	welcome).	Installation	of	Git
for	Windows	can	be	done	with	preselected	options,	however,	no	need	to
install	the	"Windows	Explorer	integration".	If	you	know	about	CRLF	and
LF	line	endings	and	you	have	editors	coping	with	that,	you	should	select
"Checkout	as-is,	commit	as-is"	in	order	to	prevent	automatic	translations.

Important

You	need	Administrator	privileges	to	install	TortoiseGit.

https://download.tortoisegit.org/
https://git-for-windows.github.io/

1.4.3.	Language	Packs

The	TortoiseGit	user	interface	has	been	translated	into	many	different
languages,	so	you	may	be	able	to	download	a	language	pack	to	suit	your
needs.	You	can	find	the	language	packs	on	our	translation	status	page	.
And	if	there	is	no	language	pack	available	yet,	why	not	join	the	team	and
submit	your	own	translation	;-)

Each	language	pack	is	packaged	as	a	.msi	installer.	Just	run	the	install
program	after	the	installation	of	the	main	TortoiseGit	package	and	follow
the	instructions.	After	the	installation	finishes,	the	translation	will	be
available	and	can	be	selected	in	settings	dialog	(cf.	Section	2.36.1,
“General	Settings”).

1.4.4.	Spellchecker

TortoiseGit	includes	a	spell	checker	which	allows	you	to	check	your
commit	log	messages.	This	is	especially	useful	if	the	project	language	is
not	your	native	language.	The	spell	checker	uses	the	same	dictionary
files	as	LibreOffice	,	OpenOffice	and	Mozilla	.

The	installer	automatically	adds	the	US	English	dictionary.	If	you	want
other	languages,	the	easiest	option	is	simply	to	install	one	of	TortoiseGit's
language	packs	(see	Section	1.4.3,	“Language	Packs”).	This	will	install
the	appropriate	dictionary	files	as	well	as	the	TortoiseGit	local	user
interface.	After	the	installation	finishes,	the	translation	will	be	available.

Or	you	can	install	the	dictionaries	yourself.	If	you	have	OpenOffice	or
Mozilla	installed,	you	can	copy	those	dictionaries,	which	are	located	in
the	installation	folders	for	those	applications.	Otherwise,	you	need	to
download	the	required	dictionary	files	from
http://cgit.freedesktop.org/libreoffice/dictionaries/	or
http://wiki.services.openoffice.org/wiki/Dictionaries

Once	you	have	got	the	dictionary	files,	you	probably	need	to	rename
them	so	that	the	filenames	only	have	the	locale	chars	in	it.	Example:

en_US.aff

https://tortoisegit.org/download
https://tortoisegit.org/translate
http://libreoffice.org
http://openoffice.org
http://mozilla.org
http://cgit.freedesktop.org/libreoffice/dictionaries/
http://wiki.services.openoffice.org/wiki/Dictionaries

en_US.dic

Then	just	copy	them	into	the	%APPDATA%\TortoiseGit\dic	folder.	If	that
folder	isn't	there,	you	have	to	create	it	first.	TortoiseGit	will	also	search
the	Languages	sub-folder	of	the	TortoiseGit	installation	folder	(normally
this	will	be	C:\Program	Files\TortoiseGit\Languages);	this	is	the	place
where	the	language	packs	put	their	files.	However,	the	%APPDATA%-
folder	doesn't	require	administrator	privileges	and,	thus,	has	higher
priority.	The	next	time	you	start	TortoiseGit,	the	spell	checker	will	be
available.

If	you	install	multiple	dictionaries,	TortoiseGit	uses	these	rules	to	select
which	one	to	use.

1.	 Check	the	tgit.projectlanguage	setting.	This	setting	can	be	set
using	TortoiseGit	Settings	Dialogs	3	page	(Section	2.36.1.5,
“TortoiseGit	Dialog	Settings	3”).	Refer	to	Section	G.3.27,	“git-
config(1)”	for	information	about	setting	properties	(use	the	LCID	Dec
value	as	assigned	by	Microsoft).

2.	 If	no	project	language	is	set,	or	that	language	is	not	installed,	try	the
language	corresponding	to	the	Windows	locale.

3.	 If	the	exact	Windows	locale	doesn't	work,	try	the	“Base”	language,
eg.	de_CH	(Swiss-German)	falls	back	to	de_DE	(German).

4.	 If	none	of	the	above	works,	then	the	default	language	is	English,
which	is	included	with	the	standard	installation.

Prev	 Up 	Next
1.3.	TortoiseGit's	Features	 Home 	Chapter	2.	TortoiseGit	Daily

Use	Guide

http://msdn.microsoft.com/de-de/goglobal/bb964664.aspx

Chapter	2.	TortoiseGit	Daily	Use	Guide
Prev	 	 	Next

Chapter	2.	TortoiseGit	Daily	Use	Guide

Table	of	Contents
2.1.	Getting	Started

2.1.1.	Icon	Overlays
2.1.2.	Context	Menus
2.1.3.	Drag	and	Drop
2.1.4.	Common	Shortcuts
2.1.5.	Authentication

2.1.5.1.	SSH	(URLs	look	like	git@example.com)
2.1.5.2.	HTTP/HTTPS	(URLs	start	with	https://	or
http://)

2.1.6.	Maximizing	Windows
2.2.	Create	Repository
2.3.	Clone	Repository
2.4.	Checking	Out	A	Working	Tree	(Switch	to	commit)
2.5.	Committing	Your	Changes	To	The	Repository

2.5.1.	The	Commit	Dialog
2.5.2.	Commit	only	parts	of	files
2.5.3.	Commit	Log	Messages
2.5.4.	Commit	Progress

2.6.	Getting	Status	Information
2.6.1.	Icon	Overlays
2.6.2.	Status
2.6.3.	Viewing	Diffs

2.7.	Pull	and	Fetch	change
2.8.	Push

2.8.1.	Branch
2.8.2.	Destination
2.8.3.	Options

2.9.	Sync
2.9.1.	Branch
2.9.2.	Destination
2.9.3.	Options

2.10.	Daemon
2.11.	Browse	All	Refs
2.12.	Submodules
2.13.	Log	Dialog

2.13.1.	Invoking	the	Revision	Log	Dialog
2.13.2.	Revision	Log	Actions
2.13.3.	Getting	Additional	Information
2.13.4.	Filtering	Log	Messages
2.13.5.	Navigation
2.13.6.	Statistical	Information

2.13.6.1.	Statistics	Page
2.13.6.2.	Commits	by	Author	Page
2.13.6.3.	Commits	by	date	Page

2.13.7.	Refreshing	the	View
2.14.	Revision	Graphs

2.14.1.	Revision	Graph	Nodes
2.14.2.	Using	the	Graph
2.14.3.	Refreshing	the	View

2.15.	Reference	Log
2.16.	The	Repository	Browser
2.17.	Viewing	Differences

2.17.1.	File	Differences
2.17.2.	Line-end	and	Whitespace	Options
2.17.3.	Comparing	Version
2.17.4.	Diffing	submodules	using	Submodule	Diff
Dialog
2.17.5.	Diffing	Images	Using	TortoiseGitIDiff
2.17.6.	External	Diff/Merge	Tools

2.18.	Adding	New	Files
2.19.	Copying/Moving/Renaming	Files	and	Folders
2.20.	Ignoring	Files	And	Directories

2.20.1.	Pattern	Matching	in	Ignore	Lists
2.21.	Deleting,	Moving	and	Renaming

2.21.1.	Deleting	files	and	folders
2.21.2.	Moving	files	and	folders
2.21.3.	Changing	case	in	a	filename
2.21.4.	Dealing	with	filename	case	conflicts

2.21.5.	Deleting	Unversioned	Files
2.22.	Undo	Changes
2.23.	Cleanup
2.24.	Reset
2.25.	Stash	Changes
2.26.	Bisect
2.27.	Branching/Tagging

2.27.1.	Creating	a	Branch	or	Tag
2.28.	Merging
2.29.	Cherry	picking
2.30.	Rebase
2.31.	Resolving	Conflicts

2.31.1.	Special	conflict	cases
2.31.1.1.	Delete-modify	conflicts
2.31.1.2.	Submodule	conflicts

2.32.	Creating	and	Applying	Patches	and	Pull	Requests
2.32.1.	Creating	a	Patch	Serial
2.32.2.	Sending	patches	by	mail
2.32.3.	Applying	a	single	Patch	File
2.32.4.	Applying	a	Patch	Serial
2.32.5.	Creating	a	pull	request

2.33.	Who	Changed	Which	Line?
2.33.1.	Blame	for	Files

2.34.	Exporting	a	Git	Working	Tree
2.35.	Integration	with	Bug	Tracking	Systems	/	Issue
Trackers

2.35.1.	Adding	Issue	Numbers	to	Log	Messages
2.35.1.1.	Issue	Number	in	Text	Box
2.35.1.2.	Issue	Numbers	Using	Regular
Expressions
2.35.1.3.	Issue	Tracker	Provider	Settings	based
on	Hierarchical	Git	Configuration

2.35.2.	Getting	Information	from	the	Issue	Tracker
2.36.	TortoiseGit's	Settings

2.36.1.	General	Settings
2.36.1.1.	Context	Menu	Settings
2.36.1.2.	Set	Extend	Menu	Item

2.36.1.3.	TortoiseGit	Dialog	Settings
2.36.1.4.	TortoiseGit	Dialog	Settings	2
2.36.1.5.	TortoiseGit	Dialog	Settings	3
2.36.1.6.	TortoiseGit	Colour	Settings
2.36.1.7.	TortoiseGit	Colour	Settings	2
2.36.1.8.	TortoiseGit	Colour	Settings	3

2.36.2.	Icon	Overlay	Settings
2.36.2.1.	Icon	Set	Selection
2.36.2.2.	Enabled	Overlay	Handlers

2.36.3.	Network	Settings
2.36.3.1.	Email	settings

2.36.4.	External	Program	Settings
2.36.4.1.	Diff	Viewer
2.36.4.2.	Merge	Tool
2.36.4.3.	Diff/Merge	Advanced	Settings
2.36.4.4.	Alternative	editor

2.36.5.	Saved	Data	Settings
2.36.6.	Git

2.36.6.1.	The	hierarchical	git	configuration
2.36.6.2.	Git	Config
2.36.6.3.	Remote
2.36.6.4.	Credential

2.36.7.	Client	Side	Hook	Scripts
2.36.7.1.	Issue	Tracker	Integration
2.36.7.2.	Config

2.36.8.	TortoiseGitBlame	Settings
2.36.9.	TortoiseGitUDiff	Settings
2.36.10.	Advanced	Settings
2.36.11.	Exporting	TortoiseGit	Settings

2.37.	git	svn	dcommit
2.38.	Final	Step

This	document	describes	day	to	day	usage	of	the	TortoiseGit	client.	It	is
not	an	introduction	to	version	control	systems,	and	not	an	introduction	to
Git.	It	is	more	like	a	place	you	may	turn	to	when	you	know	approximately
what	you	want	to	do,	but	don't	quite	remember	how	to	do	it.

For	hints	where	to	find	more	information	about	doing	version	control	with
Git	see	Section	2,	“Reading	Guide”.

This	document	is	also	a	work	in	progress,	just	as	TortoiseGit	and	Git	are.
If	you	find	any	mistakes,	please	report	them	to	the	mailing	list	so	we	can
update	the	documentation.	Some	of	the	screenshots	in	the	Daily	Use
Guide	(DUG)	might	not	reflect	the	current	state	of	the	software.	Please
forgive	us.	We're	working	on	TortoiseGit	in	our	free	time.

In	order	to	get	the	most	out	of	the	Daily	Use	Guide:

You	should	have	installed	TortoiseGit	already.

You	should	be	familiar	with	version	control	systems.

You	should	know	the	basics	of	Git.

You	should	have	set	up	a	server	and/or	have	access	to	a	Git
repository.

2.1.	Getting	Started

2.1.1.	Icon	Overlays

Figure	2.1.	Explorer	showing	icon	overlays

One	of	the	most	visible	features	of	TortoiseGit	is	the	icon	overlays	which
appear	on	files	in	your	working	tree.	These	show	you	at	a	glance	which	of
your	files	have	been	modified.	Refer	to	Section	2.6.1,	“Icon	Overlays”	to
find	out	what	the	different	overlays	represent.

2.1.2.	Context	Menus

Figure	2.2.	Context	menu	for	a	directory	under	version	control

All	TortoiseGit	commands	are	invoked	from	the	context	menu	of	the
windows	explorer.	Most	are	directly	visible,	when	you	right	click	on	a	file
or	folder.	The	commands	that	are	available	depend	on	whether	the	file	or
folder	or	its	parent	folder	is	under	version	control	or	not.	You	can	also	see
the	TortoiseGit	menu	as	part	of	the	Explorer	file	menu.

Tip

Some	commands	which	are	very	rarely	used	are	only
available	in	the	extended	context	menu.	To	bring	up	the
extended	context	menu,	hold	down	the	Shift	key	when	you
right-click.

In	some	cases	you	may	see	several	TortoiseGit	entries.	This	is	not	a	bug!

Figure	2.3.	Explorer	file	menu	for	a	shortcut	in	a	versioned	folder

This	example	is	for	an	unversioned	shortcut	within	a	versioned	folder,
and	in	the	Explorer	file	menu	there	are	two	entries	for	TortoiseGit.	One	for
the	shortcut	itself	and	the	second	for	the	object	the	shortcut	is	pointing	to.
To	help	you	distinguish	between	them,	the	icons	have	an	indicator	in	the
lower	right	corner	to	show	whether	the	menu	entry	is	for	a	file,	a	folder,	a
shortcut	or	for	multiple	selected	items.

2.1.3.	Drag	and	Drop

Figure	2.4.	Right	drag	menu	for	a	directory	under	version	control

Other	commands	are	available	as	drag	handlers,	when	you	right	drag
files	or	folders	to	a	new	location	inside	working	trees	or	when	you	right
drag	a	non-versioned	file	or	folder	into	a	directory	which	is	under	version
control.

2.1.4.	Common	Shortcuts

Some	common	operations	have	well-known	Windows	shortcuts,	but	do
not	appear	on	buttons	or	in	menus.	If	you	can't	work	out	how	to	do
something	obvious,	like	refreshing	a	view,	check	here.

F1

Help,	of	course.

F5

Refresh	the	current	view.	This	is	perhaps	the	single	most	useful	one-
key	command.	For	example	...	In	Explorer	this	will	refresh	the	icon
overlays	on	your	working	tree.	In	the	commit	dialog	it	will	re-scan	the
working	tree	to	see	what	may	need	to	be	committed.	In	the	Revision
Log	dialog	it	will	contact	the	repository	again	to	check	for	more
recent	changes.

Ctrl-A

Select	all.	This	can	be	used	if	you	get	an	error	message	and	want	to
copy	and	paste	into	an	email.	Use	Ctrl-A	to	select	the	error	message
and	then	...

Ctrl-C

...	Copy	the	selected	text.

Ctrl-F

Search

2.1.5.	Authentication

2.1.5.1.	SSH	(URLs	look	like	git@example.com)

TortoiseGitPlink	is	recommended	as	SSH	client	because	it	better
integrates	with	Windows.	By	default	TortoiseGitPlink	does	not	store
passwords,	you	can	use	the	PuTTY	authentication	agent	for	caching	the
password	(done	automatically	if	a	PuTTY	key	is	configured	for	a	remote).
For	advanced	tips	&	tricks	see	Appendix	F,	Tips	and	tricks	for
SSH/PuTTY.	Note,	however,	that	TortoiseGitPlink	does	not	respect
~/.ssh/config	which	is	OpenSSH	specific	(see	PuTTY	tips	&	tricks	or
configure	OpenSSH	as	SSH	client,	see	next	paragraph).	If	you	also	want
to	use	TortoiseGitPlink	on	Git	Bash,	create	an	environment	variable
called	GIT_SSH	with	the	path	to	the	PuTTY	plink.exe	or	preferably	to
TortoiseGitPLink.exe.	This	can	be	done	by	re-executing	the	Git	for
WIndows	installer	(there	you	can	choose	which	SSH	client	to	use),	on	the
command	line	by	executing	set	GIT_SSH=PATH_TO_PLINK.EXE"	(C:\Program
Files\TortoiseGit\bin\TortoiseGitPLink.exe	on	default	installations)	or
configure	the	environment	variables	permanently	.

It	is	also	possible	to	use	OpenSSH	(shipped	with	Git	for	Windows,
Cygwin,	and	Msys2).	Just	open	TortoiseGit	settings	and	open	the
Network	page	and	enter	ssh.exe	as	SSH	client,	see	Section	2.36.3,
“Network	Settings”	and	this	answer	on	StackOverflow	.	When	OpenSSH
is	used,	you	can	also	make	use	of	~/.ssh/config	(cf.	this	answer	on
StackOverflow).

http://www.computerhope.com/issues/ch000549.htm
https://stackoverflow.com/a/32115724/3906760
https://stackoverflow.com/q/30320458/3906760

2.1.5.2.	HTTP/HTTPS	(URLs	start	with	https://	or	http://)

By	default	Git	does	not	save/cache	credentials.	However,	you	can
configure	a	credential	helper	(recommended,	also	see	Section	G.4.3,
“gitcredentials(7)”)	or	manually	use	%HOME%/_netrc	.

If	you	have	set	up	a	credential	store	and	you	want	to	clear	some	stored
credentials	see	this	answer	on	StackOverflow	.

2.1.6.	Maximizing	Windows

Many	of	TortoiseGit's	dialogs	have	a	lot	of	information	to	display,	but	it	is
often	useful	to	maximize	only	the	height,	or	only	the	width,	rather	than
maximizing	to	fill	the	screen.	As	a	convenience,	there	are	shortcuts	for
this	on	the	Maximize	button.	Use	the	middle	mouse	button	to	maximize
vertically,	and	right	mouse	to	maximize	horizontally.

Prev	 	 	Next
1.4.	Installing	TortoiseGit	 Home 	2.2.	Create	Repository

https://stackoverflow.com/q/14000173/3906760
https://stackoverflow.com/revisions/6031266/6
https://stackoverflow.com/a/31782500/3906760

2.2.	Create	Repository
Prev	 Chapter	2.	TortoiseGit	Daily	Use	Guide 	Next

2.2.	Create	Repository

This	section	talks	about	how	to	create	a	git	repository.	Creating	an	empty
git	repository	is	very	simple.	At	an	empty	directory,	just	use	the	explorer
context	menu	and	select	 Git	Create	Repository	here	 .

Figure	2.5.	Create	repository	dialog

You	can	choose	here	between	a	bare	and	normal	git	repository.	A	normal
repository	has	a	working	tree	attached	to	which	files	can	be	checkout	out
and	committed	hwreas	a	bare	repository	only	can	be	pushed	to	and
pulled	from.	After	a	(non	bare)	repository	is	created	a	messagebox	will	be
shown:

Figure	2.6.	Successfull	repository	creation	message

You	can	find	more	information	at	Section	G.3.65,	“git-init(1)”.

Prev	 Up 	Next
Chapter	2.	TortoiseGit	Daily
Use	Guide	 Home 	2.3.	Clone	Repository

2.3.	Clone	Repository
Prev	 Chapter	2.	TortoiseGit	Daily	Use	Guide 	Next

2.3.	Clone	Repository

This	section	talks	about	how	to	clone	a	git	repository	from	an	existing
repository.	This	operation	is	used	to	get	a	full	copy	of	a	remote	repository.
Cloning	a	git	repository	is	very	simple.	At	an	empty	directory,	just	use	the
explorer	context	menu	and	select	 Git	Clone...	 .

The	Clone	Dialog	will	show.

Figure	2.7.	Clone	dialog

URL:	Input	repository	URL	address,	which	you	will	clone	from.	You	can
click	 Browse 	to	browse	directory.

Directory:Input	your	local	directory,	which	you	will	clone	to.	You	can	click
Browse 	to	browse	directory.

If	you	check	the	Load	Putty	Key	checkbox,	clone	will	auto	load	putty	key
file	with	Pageant.	You	can	click	 ... 	to	browse	for	a	putty	key	file.

Clone	will	checkout	current	HEAD	to	work	space	automatically.

Git	clone	supports	http,	git	and	ssh	protocol.	Section	2.36.3,	“Network
Settings”	shows	how	to	choose	SSH	client.	OpenSSH,	Plink	or
TortoiseGitPlink.

You	can	find	more	information	at	Section	G.3.23,	“git-clone(1)”

Prev	 Up 	Next
2.2.	Create	Repository	

Home
	2.4.	Checking	Out	A

Working	Tree	(Switch	to
commit)

2.4.	Checking	Out	A	Working	Tree	(Switch	to	commit)
Prev	 Chapter	2.	TortoiseGit	Daily	Use	Guide 	Next

2.4.	Checking	Out	A	Working	Tree	(Switch	to
commit)

The	Switch/Checkout	dialog	can	be	used	to	checkout	a	specific	version
to	the	working	tree	(i.e.,	all	files	are	updated	to	match	their	state	of	the
selected	version).	Normally,	a	specific	version	will	be	represented	by	a
(local)	branch	which	is	set	as	the	current	branch	(cf.	Section	2.27,
“Branching/Tagging”	and	Section	1,	“Repositories	and	Branches”).

Select	a	git	repository	directory	in	windows	explorer	Right	click	to	pop
up	the	context	menu	and	select	the	command	 TortoiseGit 	→
Switch/Checkout... ,	which	brings	up	the	following	dialog	box:

Figure	2.8.	The	Switch/Checkout	dialog

If	you	enter	a	branch	name	at	Create	New	Branch,	a	new	branch	will	be
created.	Also,	the	new	branch	will	be	set	as	the	current	branch	(HEAD).

You	can	click	on	the	 ... 	to	browse	the	references/branches/log	to
choose	a	branch	to	checkout.

Check	Overwrite	working	tree	changes	(force)	will	overwrite	uncommitted

changes	in	the	working	tree	with	the	selected	version.

When	you	selected	a	remote	branch,	you	can	check	Track	in	order	to
track	the	remote	branch.	When	you	open	the	push,	pull	or	sync	dialog,
the	remote	branch	will	be	pre-selected	automatically.

You	can	find	more	information	at	Section	G.3.18,	“git-checkout(1)”

Important

If	you	checkout/switch	to	a	Tag	or	Commit,	you	should	create
a	new	branch.	Otherwise	you	will	work	at	"no	branch"
(detached	HEAD	state;	i.e.,	there	is	no	current	branch,	cf.	the
section	called	“DETACHED	HEAD”).	This	can	be	easily	fixed
by	creating	a	branch	at	this	version	and	switching	to	it.

Exporting

Sometimes	you	may	want	to	create	a	local	copy	without	any
of	those	.git	directories,	e.g.	to	create	a	zipped	tarball	of	your
source.	Read	Section	2.34,	“Exporting	a	Git	Working	Tree”	to
find	out	how	to	do	that.

Prev	 Up 	Next
2.3.	Clone	Repository	 Home 	2.5.	Committing	Your

Changes	To	The	Repository

2.5.	Committing	Your	Changes	To	The	Repository
Prev	 Chapter	2.	TortoiseGit	Daily	Use	Guide 	Next

2.5.	Committing	Your	Changes	To	The
Repository

Storing	the	changes	you	made	to	your	working	tree	is	known	as
committing	the	changes.	you	can	use	 TortoiseGit 	→	 Check	for
Modifications 	first,	to	see	which	files	have	changed	locally.

2.5.1.	The	Commit	Dialog

If	there	are	no	conflicts,	you	are	ready	to	commit	your	changes.	Select
any	file	and/or	folders	you	want	to	commit,	then	 TortoiseGit 	→
Commit... .

Figure	2.9.	The	Commit	dialog

The	commit	dialog	will	show	you	every	changed	file,	including	added,
deleted	and	unversioned	files.	If	you	don't	want	a	changed	file	to	be
committed,	just	uncheck	that	file.	If	you	want	to	include	an	unversioned

file,	just	check	that	file	to	add	it	to	the	commit.

Default	commit	dialog	just	list	select	paths	and	their	child	directory	files.	If
you	want	to	list	all	files	of	project,	you	can	just	click	 Whole	Project .

Many	unversioned	files	in	the	commit	dialog

If	you	think	that	the	commit	dialog	shows	you	too	many
unversioned	(e.g.	compiler	generated	or	editor	backup)	files,
there	are	several	ways	to	handle	this.	You	can:

add	the	file	to	the	.gitignore	list	using	 TortoiseGit 	→
Add	to	ignore	list

Read	Section	2.20,	“Ignoring	Files	And	Directories”	for	more
information.

Double	clicking	on	any	modified	file	in	the	commit	dialog	will	launch	the
external	diff	tool	to	show	your	changes.	The	context	menu	will	give	you
more	options,	as	shown	in	the	screenshot.	You	can	also	drag	files	from
here	into	another	application	such	as	a	text	editor	or	an	IDE.

You	can	select	or	deselect	items	by	clicking	on	the	checkbox	to	the	left	of
the	item.

The	columns	displayed	in	the	bottom	pane	are	customizable.	If	you	right
click	on	any	column	header	you	will	see	a	context	menu	allowing	you	to
select	which	columns	are	displayed.	You	can	also	change	column	width
by	using	the	drag	handle	which	appears	when	you	move	the	mouse	over
a	column	boundary.	These	customizations	are	preserved,	so	you	will	see
the	same	headings	next	time.

Drag	and	Drop

You	can	drag	files	into	the	commit	dialog	from	elsewhere,	as
long	as	the	working	tree	is	the	very	same.	For	example,	you

may	have	a	huge	working	tree	with	several	explorer	windows
open	to	look	at	distant	folders	of	the	hierarchy.	If	you	want	to
avoid	committing	from	the	top	level	folder	(with	a	lengthy
folder	crawl	to	check	for	changes)	you	can	open	the	commit
dialog	for	one	folder	and	drag	in	items	from	the	other
windows	to	include	within	the	same	atomic	commit.

You	can	drag	unversioned	files	which	reside	within	a	working
tree	into	the	commit	dialog,	and	they	will	be	Git	added
automatically.

Commits	are	just	local

Please	note,	that	all	commits	are	just	local	and	only	affect
your	local	working	tree.	In	order	to	share	them	with	others
you	need	to	push	them	to	a	remote	repository.	See
Section	2.8,	“Push”	and	Section	2.9,	“Sync”	for	more
information.

2.5.2.	Commit	only	parts	of	files

Sometimes	you	want	to	only	commit	parts	of	the	changes	you	made	to	a
file.	Such	a	situation	usually	happens	when	you're	working	on	something
but	then	an	urgent	fix	needs	to	be	committed,	and	that	fix	happens	to	be
in	the	same	file	you're	working	on.

right	click	on	the	file	and	use	 Context	Menu 	→	 Restore	after
commit .	This	will	create	a	copy	of	the	file	as	it	is.	Then	you	can	edit	the
file,	e.g.	in	TortoiseGitMerge	and	undo	all	the	changes	you	don't	want	to
commit.	After	saving	those	changes	you	can	commit	the	file.

Using	TortoiseGitMerge

If	you	use	TortoiseGitMerge	to	edit	the	file,	you	can	either	edit

the	changes	as	you're	used	to,	or	mark	all	the	changes	that
you	want	to	include.	right	click	on	a	modified	block	and	use
Context	Menu 	→	 Mark	this	block 	to	include	that
change.	Finally	right	click	and	use	 Context	Menu 	→
Use	left	file	except	marked	blocks 	which	will	invert	your
changes	(unmarked	blocks)	that	you	don't	want	to	them	to
appear	in	current	commit.

After	the	commit	is	done,	the	copy	of	the	file	is	restored	automatically,
and	you	have	the	file	with	all	your	modifications	that	were	not	committed
back.

2.5.3.	Commit	Log	Messages

Be	sure	to	enter	a	log	message	which	describes	the	changes	you	are
committing.	This	will	help	you	to	see	what	happened	and	when,	as	you
browse	through	the	project	log	messages	at	a	later	date.	The	message
can	be	as	long	or	as	brief	as	you	like;	many	projects	have	guidelines	for
what	should	be	included,	the	language	to	use,	and	sometimes	even	a
strict	format.

You	can	apply	simple	formatting	to	your	log	messages	using	a
convention	similar	to	that	used	within	emails.	To	apply	styling	to	text,	use
text	for	bold,	_text_	for	underlining,	and	^text^	for	italics.

Figure	2.10.	The	Commit	Dialog	Spellchecker

TortoiseGit	includes	a	spellchecker	to	help	you	get	your	log	messages
right	(cf.	Section	1.4.4,	“Spellchecker”).	This	will	highlight	any	mis-spelled
words.	Use	the	context	menu	to	access	the	suggested	corrections.	Of
course,	it	doesn't	know	every	technical	term	that	you	do,	so	correctly
spelt	words	will	sometimes	show	up	as	errors.	But	don't	worry.	You	can
just	add	them	to	your	personal	dictionary	using	the	context	menu.

The	log	message	window	also	includes	a	filename	and	function	auto-
completion	facility.	This	uses	regular	expressions	to	extract	class	and
function	names	from	the	(text)	files	you	are	committing,	as	well	as	the
filenames	themselves.	If	a	word	you	are	typing	matches	anything	in	the

list	(after	you	have	typed	at	least	3	characters,	or	pressed	Ctrl+Space),	a
drop-down	appears	allowing	you	to	select	the	full	name.	The	regular
expressions	supplied	with	TortoiseGit	are	held	in	the	TortoiseGit
installation	bin	folder.	You	can	also	define	your	own	regexes	and	store
them	in	%APPDATA%\TortoiseGit\autolist.txt.	Of	course	your	private
autolist	will	not	be	overwritten	when	you	update	your	installation	of
TortoiseGit.	If	you	are	unfamiliar	with	regular	expressions,	take	a	look	at
the	introduction	at	https://en.wikipedia.org/wiki/Regular_expression	,	and
the	online	documentation	and	tutorial	at	http://www.regular-
expressions.info/	.

Getting	the	regex	just	right	can	be	tricky,	so	to	help	you	sort	out	a	suitable
expression	there	is	a	test	dialog	which	allows	you	to	enter	an	expression
and	then	type	in	filenames	to	test	it	against.	Start	it	from	the	command
prompt	using	the	command	TortoiseGitProc.exe	/command:autotexttest.

You	can	re-use	previously	entered	log	messages.	Just	use	the	command
Context	Menu 	→	 Paste	Recent	messages 	to	view	a	list	of	the	last
few	messages	you	entered	for	this	working	tree.	The	number	of	stored
messages	can	be	customized	in	the	TortoiseGit	settings	dialog.

The	log	message	window	also	includes	a	commit	message	snippet
facility.	These	snippets	are	shown	in	the	autocomplete	dropdown	once
you	type	a	snippet	shortcut,	and	selecting	the	snippet	in	the
autocomplete	dropdown	then	inserts	the	full	text	of	the	snippet.	The
snippets	supplied	with	TortoiseGit	are	held	in	the	TortoiseGit	installation
bin	folder.	You	can	also	define	your	own	snippets	and	store	them	in
%APPDATA%\TortoiseGit\snippet.txt.	#	is	the	comment	character.	Use
escape	sequences	\t	\r	\n	\\.

You	can	add	your	name	and	email	address	to	the	end	of	the	log	message
by	clicking	 Add	Signed-off-by .

You	can	clear	all	stored	commit	messages	from	the	Saved	data	page	of
TortoiseGit's	settings,	or	you	can	clear	individual	messages	from	within
the	Recent	messages	dialog	using	the	Delete	key.

If	you	want	to	include	the	checked	paths	in	your	log	message,	you	can

https://en.wikipedia.org/wiki/Regular_expression
http://www.regular-expressions.info/

use	the	command	 Context	Menu 	→	 Paste	filename	list 	in	the	edit
control.

Another	way	to	insert	the	paths	into	the	log	message	is	to	simply	drag	the
files	from	the	file	list	onto	the	edit	control.

Using	keyboard

You	can	access	the	OK	button	from	keyboard	by	pressing
Ctrl+return.

Integration	with	Bug	Tracking	Tools

If	you	have	activated	the	bug	tracking	system,	you	can	set
one	or	more	Issues	in	the	Bug-ID	/	Issue-Nr:	text	box.
Multiple	issues	should	be	comma	separated.	Alternatively,	if
you	are	using	regex-based	bug	tracking	support,	just	add
your	issue	references	as	part	of	the	log	message.	Learn
more	in	Section	2.35,	“Integration	with	Bug	Tracking	Systems
/	Issue	Trackers”.

Adjust	the	size	of	message	text	box

Move	your	mouse	to	the	gap	between	"Message"	group	box
and	"Changes	made"	group	box,	then	drag	the	separator.

Commit	to	a	new	branch

If	you	want	to	commit	to	a	fresh	branch	(based	on	the	current
branch),	you	can	check	the	 new	branch 	checkbox	and	enter
a	branch	name	in	the	displayed	textbox.

Commit	multiple	times	in	a	row	and	directly	pushing
changes

The	main	button	 Commit 	has	a	drop-down	menu.	There	are
the	options	 ReCommit 	and	 Commit	&	push .	The	option
ReCommit 	commits	your	changes	and	leaves	the	Commit
dialog	open,	so	that	you	can	continue	committing.	The	last
option	 Commit	&	push 	will	commit	your	changes	and
immediately	push	your	changes.	If	no	remote	tracking	branch
is	configured	for	the	current	active	branch,	the	push	dialolg
(cf.	Section	2.8,	“Push”)	is	opened.

2.5.4.	Commit	Progress

After	pressing	 Commit ,	a	dialog	appears	displaying	the	progress	of	the
commit.

Figure	2.11.	The	Progress	dialog	showing	a	commit	in	progress

In	the	lower	left,	there	is	a	menu	button	which	provides	shortcuts	to
further	steps,	such	as	 ReCommit 	(resets	the	commit	dialog	and	allows
you	to	continue	committing)	or	 Push 	in	order	to	push	your	commit	to	a
remote	repository.

You	can	find	more	information	at	Section	G.3.26,	“git-commit(1)”.

Prev	 Up 	Next
2.4.	Checking	Out	A
Working	Tree	(Switch	to
commit)	

Home
	2.6.	Getting	Status

Information

2.6.	Getting	Status	Information
Prev	 Chapter	2.	TortoiseGit	Daily	Use	Guide 	Next

2.6.	Getting	Status	Information

While	you	are	working	on	your	working	tree	you	often	need	to	know
which	files	you	have	changed/added/removed	or	renamed,	or	even	which
files	got	changed	and	committed	by	others.

2.6.1.	Icon	Overlays

Figure	2.12.	Explorer	showing	icon	overlays

Now	that	you	have	checked	out	a	working	tree	you	can	see	your	files	in
the	windows	explorer	with	changed	icons.	This	is	one	of	the	reasons	why
TortoiseGit	is	so	popular.	TortoiseGit	adds	a	so	called	overlay	icon	to
each	file	icon	which	overlaps	the	original	file	icon.	Depending	on	the	Git
status	of	the	file	the	overlay	icon	is	different.

A	fresh	checked	out	working	tree	has	a	green	checkmark	as	overlay.	That
means	the	Git	status	is	normal.

As	soon	as	you	start	editing	a	file,	the	status	changes	to	modified	and	the
icon	overlay	then	changes	to	a	red	exclamation	mark.	That	way	you	can
easily	see	which	files	were	changed	since	you	last	updated	your	working
tree	and	need	to	be	committed.

If	during	an	update	a	conflict	occurs	then	the	icon	changes	to	a	yellow
exclamation	mark.

Staged.	If	you	use	"git	update-index"	to	tell	git	this	file	will	be	committed,
Git	makes	that	file	staged.

This	icon	shows	you	that	some	files	or	folders	inside	the	current	folder
have	been	scheduled	to	be	deleted	from	version	control	or	a	file	under
version	control	is	missing	in	a	folder.

The	plus	sign	tells	you	that	a	file	or	folder	has	been	scheduled	to	be
added	to	version	control.

The	bar	sign	tells	you	that	a	file	or	folder	is	ignored	for	version	control
purposes.	This	overlay	is	optional.

This	icon	shows	files	and	folders	which	are	not	under	version	control,	but
have	not	been	ignored.	This	overlay	is	optional.

In	fact,	you	may	find	that	not	all	of	these	icons	are	used	on	your	system.
This	is	because	the	number	of	overlays	allowed	by	Windows	is	very
limited	and	if	you	are	also	using	an	old	version	of	TortoiseCVS	or	tools
with	overlay	handlers	such	as	SkyDrive,	DropBox	or	GoogleDrive,	then
there	are	not	enough	overlay	slots	available.	TortoiseGit	tries	to	be	a
“Good	Citizen	(TM)”	and	limits	its	use	of	overlays	to	give	other	apps	a

chance	too.

If	you	have	problems	with	overlays,	please	see	the	online	FAQ.

For	a	description	of	how	icon	overlays	correspond	to	Git	status	and	other
technical	details,	read	Section	E.1,	“Icon	Overlays”.

2.6.2.	Status

Figure	2.13.	Check	for	Modifications

It's	often	very	useful	to	know	which	files	you	have	changed	and	also
which	files	got	changed	and	committed	by	others.	That's	where	the
command	 TortoiseGit 	→	 Check	For	Modifications... 	comes	in
handy.	This	dialog	will	show	you	every	file	that	has	changed	in	any	way	in
your	working	tree,	as	well	as	any	unversioned	files	you	may	have.

The	dialog	uses	colour	coding	to	highlight	the	status.

https://tortoisegit.org/support/faq/#ovlnotshowing

Blue

Locally	modified	items.

Purple

Added	items.	Items	which	have	been	added	with	history	have	a	+
sign	in	the	Text	status	column,	and	a	tooltip	shows	where	the	item
was	copied	from.

Dark	red

Deleted	or	missing	items.

Green

Items	modified	locally	and	in	the	repository.	The	changes	will	be
merged	on	update.	These	may	produce	conflicts	on	update.

Bright	red

Items	modified	locally	and	deleted	in	repository,	or	modified	in
repository	and	deleted	locally.	These	will	produce	conflicts	on
update.

Black

Unchanged	and	unversioned	items.

This	is	the	default	colour	scheme,	but	you	can	customise	those	colours
using	the	settings	dialog.	Read	Section	2.36.1.6,	“TortoiseGit	Colour
Settings”	for	more	information.

From	the	context	menu	of	the	dialog	you	can	show	a	diff	of	the	changes.
Check	the	local	changes	you	made	using	 Context	Menu 	→	 Compare
with	Base .	Check	the	changes	in	the	repository	made	by	others	using
Context	Menu 	→	 Show	Differences	as	Unified	Diff .

You	can	also	revert	changes	in	individual	files.	If	you	have	deleted	a	file

accidentally,	it	will	show	up	as	Missing	and	you	can	use	Revert	to	recover
it.

Unversioned	and	ignored	files	can	be	sent	to	the	recycle	bin	from	here
using	 Context	Menu 	→	 Delete .	If	you	want	to	delete	files
permanently	(bypassing	the	recycle	bin)	hold	the	Shift	key	while	clicking
on	Delete.

If	you	want	to	examine	a	file	in	detail,	you	can	drag	it	from	here	into
another	application	such	as	a	text	editor	or	IDE.

The	columns	are	customizable.	If	you	right	click	on	any	column	header
you	will	see	a	context	menu	allowing	you	to	select	which	columns	are
displayed.	You	can	also	change	column	width	by	using	the	drag	handle
which	appears	when	you	move	the	mouse	over	a	column	boundary.
These	customizations	are	preserved,	so	you	will	see	the	same	headings
next	time.

At	the	bottom	of	the	dialog	you	have	several	options	to	select	which
entries	to	show	(such	as	ignored	or	untracked/unversioned	files).	It	is
also	possible	to	view	all	files	which	were	marked	as	"Assume	valid"	or
"Skip	worktree"	here	(using	Show	ingore	local	changes	flagged	files).
Resetting	those	flags	(it's	also	possible	to	edit	this	flag	using	file
properties	in	explorer	on	the	Git	tab).

2.6.3.	Viewing	Diffs

Often	you	want	to	look	inside	your	files,	to	have	a	look	at	what	you've
changed.	You	can	accomplish	this	by	selecting	a	file	which	has	changed,
and	selecting	 Diff 	from	TortoiseGit's	context	menu.	This	starts	the
external	diff-viewer,	which	will	then	compare	the	current	file	with	the
pristine	copy	(BASE	revision),	which	was	stored	after	the	last	checkout	or
update.

Tip

Even	when	not	inside	a	working	tree	or	when	you	have

multiple	versions	of	the	file	lying	around,	you	can	still	display
diffs:

Select	the	two	files	you	want	to	compare	in	explorer	(e.g.
using	Ctrl	and	the	mouse)	and	choose	 Diff 	from
TortoiseGit's	context	menu.	The	file	clicked	last	(the	one	with
the	focus,	i.e.	the	dotted	rectangle)	will	be	regarded	as	the
later	one.

Prev	 Up 	Next
2.5.	Committing	Your
Changes	To	The	Repository	 Home 	2.7.	Pull	and	Fetch	change

2.7.	Pull	and	Fetch	change
Prev	 Chapter	2.	TortoiseGit	Daily	Use	Guide 	Next

2.7.	Pull	and	Fetch	change

This	section	talks	about	how	to	fetch	or	pull	(i.e.,	download)	changes
from	another	repository.	The	difference	between	pull	and	fetch	is:

Fetch	just	downloads	the	objects	and	refs	from	a	remote	repository	and
normally	updates	the	remote	tracking	branches.	Pull,	however,	will	not
only	download	the	changes,	but	also	merges	them	-	it	is	the	combination
of	fetch	and	merge	(cf.	Section	2.28,	“Merging”).	The	configured	remote
tracking	branch	is	selected	automatically.

Important

Whenever	you	merge,	it	is	possible	the	a	file	was	changed	in
both	branches	and	that	the	changes	cannot	be	merged
automatically:	This	is	called	a	"conflict"	and	needs	to	be
manually	resolved.	See	Section	2.31,	“Resolving	Conflicts”
for	more	information.

A	pull/fetch	can	be	initiated	by	using	 TortoiseGit	 →	 Pull...	 or
TortoiseGit	 →	 Fetch...	 .	Fetching	and	pulling	changes	is	also
possible	using	the	Sync	dialog	(cf.	Section	2.9,	“Sync”),	however,	there
you	have	less	options,	but	the	sync	dialog	allows	you	to	initiate	other
operations	such	as	pushing	and	to	see	diffs	and	changes.

The	fetch	and	pull	dialog	will	open.

Figure	2.14.	Pull	dialog

Figure	2.15.	Fetch	dialog

Remote	Choose	a	configured	remote	repository	(these	can	be	changes
using	the	Manage	Remotes	label).	Instead	of	the	configured	repositories,
you	can	also	put	the	URL	of	another	repository	into	the	Arbitrary	URL
textbox.

If	the	current	active	branch	has	a	remote	tracked	branch	set,	the	remote
branch	and	remote	repository	are	automatically	selected.	A	remote
tracked	branch	can	be	set	using	the	reference	browser	(cf.	Section	2.11,
“Browse	All	Refs”)	or	using	the	push	dialog	(cf.	Section	2.8,	“Push”).

Other:	Input	Other	URL	or	local	directory.	You	can	click	 ... 	to	browse
directory.

If	you	check	the	Autoload	Putty	Key	checkbox,	a	configured	Putty	key	will
be	automatically	loaded	using	Pageant.

Tags	has	three	states	(git	1.9	and	later):	Checked:	All	tags	as	well	as
branches	are	downloaded	(--tags	is	passed	to	git),	unchecked:	No	tags
are	downloaded	(--no-tags	is	passed	to	git),	and	third	state:	use	default
behavior	(based	on	remote	name.tagopt	setting).	Tags	has	three	states
(prior	to	git	1.9):	Only	all	tags	are	downloaded	but	no	branches	are
downloaded	(--tags	is	passed	to	git),	unchecked:	No	tags	are
downloaded	(--no-tags	is	passed	to	git),	and	third	state:	use	default
behavior	(based	on	remote	name.tagopt	setting).

Prune	has	three	states:	True	to	remove	remote-tracking	branches	which
no	longer	exist	on	the	remote,	false:	not	to	remove,	and	third	state:	use
default	behavior	(based	on	remote	name.prune	or	fetch.prune	setting).

Tip

You	can	find	more	information	about	PuTTY	and	using	ssh-
keys	at	Appendix	F,	Tips	and	tricks	for	SSH/PuTTY.	There	is
also	explained	how	you	can	use	several	accounts	at	the
same	time	for	a	remote.

Conflicts

Although	major	merge	work	is	done	by	git	automatically	while
pulling,	a	conflict	may	happen	during	cherry-picking	(i.e.,	a
file	was	modified	in	your	current	branch	and	also	in	the
branch	you	are	pulling),	please	see	Section	2.31,	“Resolving
Conflicts”	on	how	to	resolve	conflicts.

Please	note,	that	"REMOTE"/"theirs"	in	the	conflict	editor
refers	to	the	to	the	changes	your	on	the	branch	you	selected
for	pulling/merging	and	"LOCAL"/"mine"	to	your	HEAD
version	in	your	working	tree.

You	can	find	more	information	at	Section	G.3.46,	“git-fetch(1)”	and
Section	G.3.95,	“git-pull(1)”.

Prev	 Up 	Next
2.6.	Getting	Status
Information	 Home 	2.8.	Push

2.8.	Push
Prev	 Chapter	2.	TortoiseGit	Daily	Use	Guide 	Next

2.8.	Push

This	section	talks	about	how	to	push	(i.e.,	send)	changes	to	another
repository.

In	order	to	perform	a	push	open	the	push	dialog	using	 TortoiseGit	 →
Push...	 .	Pushing	changes	is	also	possible	using	the	Sync	dialog	(cf.
Section	2.9,	“Sync”),	however,	there	you	have	less	options,	but	the	sync
dialog	allows	you	to	initiate	other	operations	such	as	pulling	and	to	see
diffs	and	changes.

Figure	2.16.	Push	dialog

2.8.1.	Branch

Local:	The	source	branch	which	will	be	pushed	to	the	other	repository.	If
the	current	branch	or	the	selected	local	branch	has	a	remote	tracked
branch	set,	the	remote	branch	and	remote	repository	are	automatically
selected.	A	remote	tracked	branch	can	be	set	using	the	reference
browser	(cf.	Section	2.11,	“Browse	All	Refs”)	or	by	using	Set
upstream/track	remote	branch.	This	can	be	overridden	in	this	dialog	by
using	one	of	the	Always	push	to	the	selected	remote	...	options,	so	that
for	pushing	a	different	branch	is	autoselected	as	for	merging	and	pulling.

Remote:	The	remote	branch	of	the	other	repository.

2.8.2.	Destination

Remote:	Choose	an	already	configured	remote	repository.

Arbitrary	URL:	The	URL	of	a	remote	repository.

You	must	push	change	to	a	bare	repository.	Pushing	changes	to
repository	which	has	a	working	tree	can	lead	to	unexpected	results.

2.8.3.	Options

Force	(May	discard	known	changes)	This	allows	remote	repository	to
accept	a	safer	non-fast-forward	push.	This	can	cause	the	remote
repository	to	lose	commits;	use	it	with	care.	This	can	prevent	from	losing
unknown	changes	from	other	people	on	the	remote.	It	checks	if	the
server	branch	points	to	the	same	commit	as	the	remote-tracking	branch
(known	changes).	If	yes,	a	force	push	will	be	performed.	Otherwise	it	will
be	rejected.	Since	git	does	not	have	remote-tracking	tags,	tags	cannot	be
overwritten	using	this	option.	This	passes	--force-with-lease	option	of
git	push	command.

Force	(May	discard	unknown	changes)	This	allows	remote	repository	to
accept	an	unsafe	non-fast-forward	push.	This	can	cause	the	remote
repository	to	lose	commits;	use	it	with	care.	This	does	not	check	any
server	commits,	so	it	is	possible	to	lose	unknown	changes	on	the	remote.
Use	this	option	with	Include	Tags	to	overwrite	tags.	This	passes	the
traditional	--force	option	of	git	push	command.

Include	Tags	Also	push	tags	to	remote	repository.

Autoload	Putty	Key

Tip

You	can	find	more	information	about	PuTTY	and	using	ssh-
keys	at	Appendix	F,	Tips	and	tricks	for	SSH/PuTTY.	There	is
also	explained	how	you	can	use	several	accounts	at	the
same	time	for	a	remote.

Set	upstream/track	remote	branch:	After	a	successful	push,	the	tracking
relationship	will	be	set	between	the	pushed	local	branch	and	its	remote
tracking	branch.	This	will	autoselect	the	remote	branch	automatically	for
pulling/pushing	and	merging.

Always	push	to	the	selected	remote	archive	for	this	local	branch

Always	push	to	the	selected	remote	branch	for	this	local	branch

Recurse	submodule	None:	No	checking.	Check:	Checks	if	the	bounded
commits	of	all	submodules	are	present	on	the	remote	repositories.	If	any
of	the	submodules	are	not	pushed,	the	superproject	push	will	fail.	On-
demand:	Checks	if	the	bounded	commits	of	all	submodules	are	present
on	the	remote	repositories.	If	the	submodules	are	not	pushed	yet,	it	will
try	to	push	them.

You	can	find	more	information	at	Section	G.3.96,	“git-push(1)”.

Prev	 Up 	Next
2.7.	Pull	and	Fetch	change	 Home 	2.9.	Sync

2.9.	Sync
Prev	 Chapter	2.	TortoiseGit	Daily	Use	Guide 	Next

2.9.	Sync

The	Sync	Dialog	provides	an	interface	for	all	operations	related	with
remote	repositories	in	one	dialog.	This	includes	push,	pull,	fetch,	remote
update,	submodule	update,	send	patch...	However,	the	sync	dialog
provides	less	options	as	the	regarding	dialogs	(cf.	Section	2.7,	“Pull	and
Fetch	change”	and	Section	2.8,	“Push”).

The	sync	dialog	can	be	opened	using	 Sync...	 .

The	Sync	Dialog	will	show.

Figure	2.17.	Sync	dialog

2.9.1.	Branch

Local	Branch:	The	source	branch	which	will	push/pull	to/from	other
repository.	If	the	current	branch	or	the	selected	local	branch	has	a	remote
tracked	branch	set,	the	remote	branch	and	remote	repository	are
automatically	selected.	A	remote	tracked	branch	can	be	set	using	the
reference	browser	(cf.	Section	2.11,	“Browse	All	Refs”)	or	using	the	push
dialog	(cf.	Section	2.8,	“Push”).

Remote	Branch:	The	remote	branch	of	a	remote	repository.

2.9.2.	Destination

Remote	URL:	Choose	remote	repository	or	input	remote	repository	URL.

Manage	Add	new	remote	name.

2.9.3.	Options

Force	Force	Overwrite	Existing	Branch(May	discard	changes)

Autoload	putty	key	Autoload	putty	key	when	push	or	pull

Prev	 Up 	Next
2.8.	Push	 Home 	2.10.	Daemon

2.10.	Daemon
Prev	 Chapter	2.	TortoiseGit	Daily	Use	Guide 	Next

2.10.	Daemon

Sometimes	you	want	to	quickly	share	you	local	repository	to	others
without	pushing	to	a	remote	git	repository.	That's	when	you	need	to	use
TortoiseGit 	→	 Daemon... .

Figure	2.18.	A	running	daemon	dialog

This	command	runs	Git	Daemon	that	serves	Git	protocol	at	port	9418
(git://hostname/).

Caution

The	selected	repository	is	exported	for	read/write	access
without	further	authentication.

Important

Your	host	might	only	be	accessible	within	your	local	network

and	you	might	need	to	adjust	your	firewall.

You	can	find	more	information	at	Section	G.3.36,	“git-daemon(1)”.

Prev	 Up 	Next
2.9.	Sync	 Home 	2.11.	Browse	All	Refs

2.11.	Browse	All	Refs
Prev	 Chapter	2.	TortoiseGit	Daily	Use	Guide 	Next

2.11.	Browse	All	Refs

This	section	talks	about	the	reference	browser,	which	allows	you	to	view
and	work	with	all	refs	(tags,	branches,	remote	branches,	stash	and	so
on).	It	can	be	opened	using	 TortoiseGit 	→	 Browse	Reference... .

Figure	2.19.	Browse	References	Dialog	dialog

The	left	panel	displays	the	ref	"types"	in	a	tree	such	as	tags,	heads	(local
branches)	and	so	on.

Right	panel	shows	all	refs	for	a	selected	type	(recursively	if	not	disabled
using	 Show	nested	refs)	including	the	latest	commit,	description	and	(for
local	branches)	their	remote	tracked	branch.

On	both	panels	there	is	a	powerful	context	menu	which	provides	further
options	such	as	deleting/renaming	refs,	configuring	the	remote	tracked
branch	(for	local	branches)	and	deleting	tags	for	a	remote	(on	the	left
panel	when	a	remote	is	selected).	If	exactly	two	refs	are	selected	it	is
possible	to	compare	them	or	open	the	log	for	all	commits	which	are	on

both	branches	(Show	log	of	branch1...branch2)	or	just	on	one	of	the
two	(Show	log	of	branch1..branch2).

In	order	to	delete	remote	tags,	use	the	context	menu	on	a	remote	on	he
left	and	select	 Delete	remote	tags... .	Then	the	following	dialog	will
come	up.	There	you	can	delete	multiple	remote	tags	at	once.

Figure	2.20.	Delete	remote	tags	dialog

Prev	 Up 	Next
2.10.	Daemon	 Home 	2.12.	Submodules

2.12.	Submodules
Prev	 Chapter	2.	TortoiseGit	Daily	Use	Guide 	Next

2.12.	Submodules

When	you	want	to	embed	foreign	repositories	into	a	working	tree/git
repository,	this	is	called	a	submodule.	Here	using	the	 TortoiseGit 	→
Submodules	Add 	option	a	foreign	repository	can	be	embedded	into	a
dedicated	subdirectory	of	the	source	tree.	When	selecting	this	option,	a
dialog	pops	up:

Figure	2.21.	The	add	submodule	dialog

Here	you	can	enter	the	location/URL	of	the	Repository	you	want	to
embed	into	the	directory	Path.	Path	can	be	entered	as	a	relative	path
within	the	active	source	tree,	but	can	also	be	an	absolute	path	(pointing
to	the	active	source	tree).	The	folder	should	be	empty	or	non	existent.	If
you	don't	want	to	integrate	the	HEAD	of	the	Repository,	you	can	enter	a
different	Branch.	By	pressing	 OK ,	the	entered	Repository	is	cloned	and
integrated	into	the	current	source	tree.

If	a	working	tree	contains	submodules,	two	new	context	menu	entries	are
available:

Figure	2.22.	Submodule	context	menu	entries

Submodule	Update :

Figure	2.23.	The	update	submodule	dialog

Initialize	the	submodules	and/or	update	the	registered	submodules,	i.e.
clone	missing	submodules	and	checkout	the	commit	specified	in	the
index	of	the	containing	repository.

Submodule	Sync :	Synchronizes	submodules'	remote	URL
configuration	setting	to	the	value	specified	in	.gitmodules.	This	is	useful
when	submodule	URLs	change	upstream	and	you	need	to	update	your
local	repositories	accordingly.

Also	if	a	working	tree	contains	submodules,	Section	2.4,	“Checking	Out	A
Working	Tree	(Switch	to	commit)”	and	Section	2.24,	“Reset”	contain	a
button	for	updating	submodules:

Figure	2.24.	Button	for	updating	submodules	in	progress	dialog

You	can	find	more	information	at	Section	G.3.131,	“git-submodule(1)”.

Prev	 Up 	Next
2.11.	Browse	All	Refs	 Home 	2.13.	Log	Dialog

2.13.	Log	Dialog
Prev	 Chapter	2.	TortoiseGit	Daily	Use	Guide 	Next

2.13.	Log	Dialog

For	every	change	you	make	and	commit,	you	should	provide	a	log
message	for	that	change.	That	way	you	can	later	find	out	what	changes
you	made	and	why,	and	you	have	a	detailed	log	for	your	development
process.

The	Log	Dialog	retrieves	all	those	log	messages	and	shows	them	to	you.
The	display	is	divided	into	3	panes.

The	top	pane	shows	a	list	of	revisions	where	changes	to	the
file/folder	have	been	committed.	This	summary	includes	the	date	and
time,	the	person	who	committed	the	revision	and	the	start	of	the	log
message.

The	line	shown	in	bold	indicates	the	HEAD	commit	and	the	entry
"Working	tree	changes"	is	a	virtual	entry	representing	the	current
(uncommitted)	state	of	your	working	tree.

The	middle	pane	shows	the	full	log	message	for	the	selected
revision.

The	bottom	pane	shows	a	list	of	all	files	and	folders	that	were
changed	as	part	of	the	selected	revision.

But	it	does	much	more	than	that	-	it	provides	context	menu	commands
which	you	can	use	to	get	even	more	information	about	the	project	history.

2.13.1.	Invoking	the	Revision	Log	Dialog

Figure	2.25.	The	Revision	Log	Dialog

There	are	several	places	from	where	you	can	show	the	Log	dialog:

From	the	explorer	context	menu	using	 TortoiseGit 	→	 Show
log... .

From	various	TortoiseGit	dialogs	where	you	can	select	a	commit
(oftentimes	using	a	 ... 	button).

From	various	TortoiseGit	dialogs	where	commit	entries	or	files	are
shown	using	the	context	menu.

2.13.2.	Revision	Log	Actions

The	top	pane	has	an	Actions	column	containing	icons	that	summarize
what	has	been	done	in	that	revision.	There	are	four	different	icons,	each
shown	in	its	own	column.

If	a	revision	modified	a	file	or	directory,	the	modified	icon	is	shown	in	the
first	column.

If	a	revision	added	a	file	or	directory,	the	added	icon	is	shown	in	the
second	column.

If	a	revision	deleted	a	file	or	directory,	the	deleted	icon	is	shown	in	the
third	column.

If	a	revision	replaced(rename)	a	file,	the	replaced	icon	is	shown	in	the
fourth	column.

2.13.3.	Getting	Additional	Information

Figure	2.26.	The	Revision	Log	Dialog	Top	Pane	with	Context	Menu

The	top	pane	of	the	Log	dialog	has	a	context	menu	that	allows	you	to
access	much	more	information.	You	can	press	the	Shift	key	to	see	the
extended	menu	with	some	more	options.

Compare	with	working	tree

Compare	the	selected	revision	with	your	working	tree.	The	default
Diff-Tool	is	TortoiseGitMerge	which	is	supplied	with	TortoiseGit.	If	the
log	dialog	is	for	a	folder,	this	will	show	you	a	list	of	changed	files,	and
allow	you	to	review	the	changes	made	to	each	file	individually.

Show	changes	as	unified	diff

View	the	changes	made	in	the	selected	revision	as	a	Unified-Diff	file
(GNU	patch	format).	This	shows	only	the	differences	with	a	few	lines
of	context.	It	is	harder	to	read	than	a	visual	file	compare,	but	will

show	all	file	changes	together	in	a	compact	format.

Compare	with	previous	revision

Compare	the	selected	revision	with	the	previous	revision.	This	works
in	a	similar	manner	to	comparing	with	your	working	tree.	For	folders
this	option	will	first	show	the	changed	files	dialog	allowing	you	to
select	files	to	compare.

Browse	repository

Open	the	repository	browser	to	examine	the	selected	file	or	folder	in
the	repository	as	it	was	at	the	selected	revision	(cf.	Section	2.16,
“The	Repository	Browser”).

Reset	(current	branch)	to	this

Resets	the	HEAD	to	the	selected	commit	(cf.	Section	2.24,	“Reset”).

Switch	/	Checkout	to	revision

Update	your	working	tree	to	the	selected	revision.	Useful	if	you	want
to	have	your	working	tree	reflect	a	time	in	the	past,	or	if	there	have
been	further	commits	to	the	repository	and	you	want	to	update	your
working	tree	one	step	at	a	time.

Create	branch	from	revision

Create	a	branch	based	on	the	selected	revision	(cf.	Section	2.27,
“Branching/Tagging”).

Create	tag	from	revision

Create	a	tag	on	a	selected	revision	(cf.	Section	2.27,
“Branching/Tagging”).

Rebase	(current	branch)	to	this

Rebase	current	branch	on	top	of	the	selected	commit	(cf.

Section	2.30,	“Rebase”).

Export	this	version...

Export	the	selected	revision	to	an	archive	file	such	as	zip.	This
brings	up	a	dialog	for	you	to	confirm	the	revision,	and	select	a
location	for	the	export	(cf.	Section	2.34,	“Exporting	a	Git	Working
Tree”).

Revert	change	by	this	commit

Revert	changes	from	which	were	made	in	the	selected	revision.	All
changes	are	integrated	into	your	working	tree.	You	may	choose	to
commit	immediately	or	edit	and	commit	later.	To	abandon	the
reverted	changes,	perform	a	hard	reset.

Edit	notes

Edit	notes	of	the	selected	commit.

Cherry	Pick	this	commit

Cherry	Pick	this	commit	on	top	of	HEAD	(cf.	Section	2.29,	“Cherry
picking”).

Bisect	start

Start	bisection.	Find	by	binary	search	the	change	that	introduced	a
bug	(cf.	Section	2.26,	“Bisect”).

Format	Patch...

Create	Patches	from	this	commit.

Copy	SHA-1	to	clipboard

Copy	the	commit	hash	of	the	selected	revision	to	the	clipboard.

Copy	to	clipboard

Copy	the	log	details	of	the	selected	revisions	to	the	clipboard.	This
will	copy	the	revision	number,	author,	date,	log	message	and	the	list
of	changed	items	for	each	revision.

Copy	log	message	to	clipboard

Copy	the	log	message	of	the	selected	revision	to	the	clipboard.

Search	log	messages...
Figure	2.27.	The	Search	Log	Messages	Dialog

Search	log	messages	for	the	text	you	enter.	This	searches	the	log
messages	that	you	entered	and	also	the	action	summaries	created
by	Git	(shown	in	the	bottom	pane).	The	search	is	not	case	sensitive.

Tip

This	allows	you	to	easily	search	for	refs	(tags	and
branches).

If	you	press	SHIFT	while	clicking	on	a	ref	or	on	 Find 	you

can	navigate	to	the	commit	w/o	selecting	it.

Shows	branches	this	commit	is	on

Shows	the	branches	that	the	select	commit	belongs	to.	It	shows	both
local	and	remote	branches.

Figure	2.28.	Top	Pane	Context	Menu	for	2	Selected	Revisions

If	you	select	two	revisions	at	once	(using	the	usual	Ctrl-modifier),	the
context	menu	changes	and	gives	you	fewer	options:

Compare	revisions

Compare	the	two	selected	revisions	using	a	visual	difference	tool.
The	default	Diff-Tool	is	TortoiseGitMerge	which	is	supplied	with
TortoiseGit.

Show	differences	as	unified	diff

View	the	differences	between	the	two	selected	revisions	as	a
Unified-Diff	file.	This	works	for	files	and	folders.

Revert	changes	by	these	commits

Revert	changes	from	which	were	made	in	the	selected	revisions.	All

changes	are	integrated	into	your	working	tree.	You	may	choose	to
commit	immediately	or	edit	and	commit	later.	To	abandon	the
reverted	changes,	perform	a	hard	reset.

Combine	to	one	commit

Combine	continuous	commits	to	one	commit.

Cherry	Pick	selected	commits

Cherry	Pick	chosen	Commits	on	top	of	current	HEAD	(cf.
Section	2.29,	“Cherry	picking”).

Format	Patch...

Create	patches	between	two	chosen	commits.

Copy	SHA-1	to	clipboard

Copy	the	commit	hashes	of	the	selected	revisions	to	the	clipboard,
delimited	by	CRLF.

Copy	to	clipboard

Copy	log	messages	to	clipboard	as	described	above.

Copy	log	messages	to	clipboard

Copy	the	log	messages	of	the	selected	revisions	to	the	clipboard.
This	will	copy	the	log	message	for	each	revision.	This	facilitates	the
preparation	of	release	notes.

Search	log	messages...

Search	log	messages	as	described	above.

If	you	select	two	or	more	revisions	(using	the	usual	Ctrl	or	Shift
modifiers),	You	can	combine	select	commits	to	one	commit.	And	cherry
pick	these	commits	to	current	branch.

Figure	2.29.	The	Log	Dialog	Bottom	Pane	with	Context	Menu

The	bottom	pane	of	the	Log	dialog	also	has	a	context	menu	that	allows
you	to

Compare	with	base

Compare	chosen	file	with	base	version.

Show	as	unified	diff

Show	file	changes	in	unified	diff	format.	This	context	menu	is	only
available	for	files	shown	as	modified.

Compare	with	working	tree

Compare	chosen	file	with	working	tree.

Revert	changes	to	this	revision

Revert	chosen	files	to	the	satte	of	this	revision.

Revert	changes	to	parent	revision

Revert	chosen	files	to	the	state	before	this	revision.

Show	log

Show	the	revision	log	for	the	selected	single	file.

Blame...

Opens	the	Blame	dialog,	allowing	you	to	blame	up	to	the	selected
revision	(cf.	Section	2.33,	“Who	Changed	Which	Line?”).

Save	revision	to...

Save	the	selected	revision	to	a	file	so	you	have	an	older	version	of
that	file.

Export	selection	to...

Saves	the	selected	files	to	a	target	directory.	Compared	to	"Save
revision	to..."	this	preserves	the	directory	structure.

View	revision	in	alternative	editor

Show	chosen	file	with	an	alternative	editor	such	as	notepad2	with
chosen	commit.

Open/Open	with...

Open	the	selected	file,	either	with	the	default	viewer	for	that	file	type,
or	with	a	program	you	choose.

Explore	to

Open	directory	of	file	with	Explore.

Copy	paths	to	clipboard

Copy	paths	to	clipboard

Copy	all	information	to	clipboard

Copy	all	information	to	clipboard,	include	version	info.

Tip

You	may	notice	that	sometimes	we	refer	to	changes	and
other	times	to	differences.	What's	the	difference?

2.13.4.	Filtering	Log	Messages

If	you	want	to	restrict	the	log	messages	to	show	only	those	you	are
interested	in	rather	than	scrolling	through	a	list	of	hundreds,	you	can	use
the	filter	controls	at	the	top	of	the	Log	Dialog.

The	first	element	is	the	branch/revision	filter.	Clicking	on	on	opens	the
Reference	Browser	(see	Section	2.11,	“Browse	All	Refs”).	There	you	can
select	single	or	multiple	references.	If	you	select	exactly	two	references,
you	can	choose	how	to	combine	them	(showing	especially	both	A	and	B
"A	B";	showing	differences	"A...B"	or	all	commits	between	A	and	B
"A..B").	This	filter	element	also	contains	a	special	context	menu.	Here
shortcuts	for	"HEAD",	"FETCH_HEAD",	"All"	and	"All	local	branches"	are
available.	Also,	the	last	manual	selected	filters	are	included	there.

The	start	and	end	date	controls	allow	you	to	restrict	the	output	to	a	known
date	range.	The	search	box	allows	you	to	show	only	messages	which
contain	a	particular	phrase.	A	default	limitation	for	From	can	be
configured	in	the	settings	dialog	on	the	Dialogs	1	page	(cf.
Section	2.36.1.3,	“TortoiseGit	Dialog	Settings”).

Click	on	the	search	icon	to	select	which	information	you	want	to	search
in,	and	to	choose	regex	mode.	Normally	you	will	only	need	a	simple	text
search,	but	if	you	need	to	more	flexible	search	terms,	you	can	use
regular	expressions.	If	you	hover	the	mouse	over	the	box,	a	tooltip	will
give	hints	on	how	to	use	the	regex	functions.	You	can	also	find	online
documentation	and	a	tutorial	at	http://www.regular-expressions.info/	.	The
filter	works	by	checking	whether	your	filter	string	matches	the	log	entries,
and	then	only	those	entries	which	match	the	filter	string	are	shown.

http://www.regular-expressions.info/

To	make	the	filter	show	all	log	entries	that	do	not	match	the	filter	string,
start	the	string	with	an	exclamation	mark	('!').	For	example,	a	filter	string
!username	will	only	show	those	entries	which	were	not	committed	by
username.

You	can	also	filter	the	path	names	in	the	bottom	pane	using	the	 View
→	 Hide	unrelated	changed	paths 	Related	paths	are	those	which
contain	the	path	used	to	display	the	log.	If	you	fetch	the	log	for	a	folder,
that	means	anything	in	that	folder	or	below	it.	For	a	file	it	means	just	that
one	file.	If	you	want	to	grey	out	the	unrelated	ones,	check	 View 	→
Gray	unrelated	changed	paths 	Uncheck	both	menu	items	to	hide	the
unrelated	paths	completely.

In	the	lower	left	there	are	the	checkboxes	All	branches	and	Show	whole
project.	Use	these	to	override	the	branch	resp.	a	file/folder	filter	and	show
the	log	for	the	whole	repository.	Please	note	that	these	settings	are
remembered	for	a	repository	-	even	if	you	started	the	log	dialog	on	a
single	file.

You	can	show	whole	project	history,	no	choose	directory	or	file	by	click
Show	Whole	Project

View + Labels 	→	 Tags 	 View + Labels 	→	 Local	branches
View + Labels 	→	 Remote	branches 	You	can	disable	showing
some	reference	types	in	the	log	graph.

View 	→	 Gravatar 	You	can	enable/disable	Gravatar	for	a	specific
repository.

Walk	Behaviour 	→	 First	Parent 	just	follow	up	first	parent	commit.
This	will	help	understand	overwhole	history.

Walk	Behaviour 	→	 No	merges 	Skips	all	merge	points.

Walk	Behaviour 	→	 Follow	renames 	This	is	available	to	a	single	file
only,	which	tracks	renames.	Otherwise,	the	log	list	stops	at	the	commit
that	the	current	filename	introduced.

Walk	Behaviour 	→	 Compressed	Graph 	The	log	graph	is	simplified

to	include	merge	points,	commits	with	references,	and	possibly	other
commits.

Walk	Behaviour 	→	 Show	labelled	commits	only 	The	log	graph	is
simplified	to	include	commits	with	references	only.

2.13.5.	Navigation

You	can	use	the	dropdown	control	on	the	upper	right	to	select	a
navigation	type	(e.g.	Author	Email,	Parent	1,	Selection	history),	then	use
the	 Up 	and	 Down 	green	buttons	to	navigate	through	the	commits	which
match	the	navigation	type	relative	to	the	current	selected	one.

Alternatively	to	the	 Up 	and	 Down 	green	buttons,	hotkeys	ALT+UP	and
ALT+DOWN	are	also	available.

Regarding	the	navigation	type	"Selection	History",	TortoiseGit	memorizes
the	history	of	selected	commits,	so	that	you	can	navigate	through	those
commits	you	selected	in	the	past	easily.	You	can	also	navigate	them	by
pressing	ALT+LEFT,	ALT+RIGHT,	Browse	Back,	and	Browse
Forward.	Back	and	Forward	buttons	on	mouse	are	also	available.

If	you	also	press	SHIFT	you	can	navigate	through	the	selection	history
without	selecting	the	last	commits	(i.e.,	just	scrolling	to	and	highlighting
them).	This	helps	you	to	navigate	through	commits	and	then	select	the
commit(s)	you	really	want	to	select	(e.g.	you	can	compare	the	current
selected	commit	with	the	one	you	selected	before).

If	you	want	to	jump	to	a	commit	with	a	particular	hash,	you	may	do	so	by
pressing	Ctrl+V	or	Shift+Insert	(into	any	log	dialog	element	other	than
the	search	box)	to	paste	the	hash	from	the	clipboard.	If	it	has	the	form	of
a	valid	commit	hash,	the	log	dialog	will	attempt	to	jump	to	it.

2.13.6.	Statistical	Information

The	 Statistics 	button	brings	up	a	box	showing	some	interesting
information	about	the	revisions	shown	in	the	Log	dialog.	This	shows	how
many	authors	have	been	at	work,	how	many	commits	they	have	made,

progress	by	week,	and	much	more.	Now	you	can	see	at	a	glance	who
has	been	working	hardest	and	who	is	slacking	;-)

2.13.6.1.	Statistics	Page

This	page	gives	you	all	the	numbers	you	can	think	of,	in	particular	the
period	and	number	of	revisions	covered,	and	some	min/max/average
values.

2.13.6.2.	Commits	by	Author	Page

Figure	2.30.	Commits-by-Author	Histogram

This	graph	shows	you	which	authors	have	been	active	on	the	project	as	a
simple	histogram,	stacked	histogram	or	pie	chart.

Figure	2.31.	Commits-by-Author	Pie	Chart

Where	there	are	a	few	major	authors	and	many	minor	contributors,	the
number	of	tiny	segments	can	make	the	graph	more	difficult	to	read.	The
slider	at	the	bottom	allows	you	to	set	a	threshold	(as	a	percentage	of	total
commits)	below	which	any	activity	is	grouped	into	an	Others	category.

2.13.6.3.	Commits	by	date	Page

Figure	2.32.	Commits-by-date	Graph

This	page	gives	you	a	graphical	representation	of	project	activity	in	terms
of	number	of	commits	and	author.	This	gives	some	idea	of	when	a	project
is	being	worked	on,	and	who	was	working	at	which	time.

When	there	are	several	authors,	you	will	get	many	lines	on	the	graph.
There	are	two	views	available	here:	normal,	where	each	author's	activity
is	relative	to	the	base	line,	and	stacked,	where	each	author's	activity	is
relative	to	the	line	underneath.	The	latter	option	avoids	the	lines	crossing
over,	which	can	make	the	graph	easier	to	read,	but	less	easy	to	see	one
author's	output.

By	default	the	analysis	is	case-sensitive,	so	users	PeterEgan	and
PeteRegan	are	treated	as	different	authors.	However,	in	many	cases	user
names	are	not	case-sensitive,	and	are	sometimes	entered	inconsistently,
so	you	may	want	DavidMorgan	and	davidmorgan	to	be	treated	as	the	same
person.	Use	the	Authors	case	insensitive	checkbox	to	control	how	this	is
handled.

The	statistics	dialog	also	honours	the	.mailmap	file	(see	the	section
called	“MAPPING	AUTHORS”).

Note	that	the	statistics	cover	the	same	period	as	the	Log	dialog.	If	that	is
only	displaying	one	revision	then	the	statistics	will	not	tell	you	very	much.

2.13.7.	Refreshing	the	View

If	you	want	to	check	the	repository	again	for	newer	log	messages,	you
can	simply	refresh	the	view	using	F5.

Prev	 Up 	Next
2.12.	Submodules	 Home 	2.14.	Revision	Graphs

2.14.	Revision	Graphs
Prev	 Chapter	2.	TortoiseGit	Daily	Use	Guide 	Next

2.14.	Revision	Graphs

Figure	2.33.	A	Revision	Graph

Sometimes	you	need	to	know	where	branches	and	tags	were	taken	from
the	point,	and	the	ideal	way	to	view	this	sort	of	information	is	as	a	graph
or	tree	structure.	That's	when	you	need	to	use	 TortoiseGit 	→
Revision	Graph...

This	command	analyses	the	revision	history	and	attempts	to	create	a
direct	graph	showing	the	points	at	tag,	branch	and	other	reference.

Important

In	order	to	generate	the	graph,	TortoiseGit	must	fetch	all	log
messages	from	the	repository	root.	Just	show	commits	which
have	some	reference	point	to.

2.14.1.	Revision	Graph	Nodes

Each	revision	graph	node	represents	a	revision	in	the	repository	where
something	changed	in	the	tree	you	are	looking	at.	Different	types	of
nodes	can	be	distinguished	by	colour	which	can	be	configured	using
TortoiseGit 	→	 Settings

Note	that	the	graph	only	shows	the	points	at	which	items	were	reference
by	tag,	branch	or	the	other	ref.	Showing	every	revision	of	a	project	will
generate	a	very	large	graph	for	non-trivial	cases.

2.14.2.	Using	the	Graph

To	make	it	easier	to	navigate	a	large	graph,	use	the	overview	window.
This	shows	the	entire	graph	in	a	small	window,	with	the	currently
displayed	portion	highlighted.	You	can	drag	the	highlighted	area	to
change	the	displayed	region.

The	revision	date,	author	and	comments	are	shown	in	a	hint	box
whenever	the	mouse	hovers	over	a	revision	box.

If	you	select	two	revisions	(Use	Ctrl-left	click),	you	can	use	the	context
menu	to	show	the	differences	between	these	revisions.	You	can	choose
to	show	differences	as	at	the	branch	creation	points,	but	usually	you	will
want	to	show	the	differences	at	the	branch	end	points,	i.e.	at	the	HEAD
revision.

You	can	view	the	differences	as	a	Unified-Diff	file,	which	shows	all
differences	in	a	single	file	with	minimal	context.	If	you	opt	to	 Context
Menu 	→	 Compare	Revisions 	you	will	be	presented	with	a	list	of

changed	files.	Double	click	on	a	file	name	to	fetch	both	revisions	of	the
file	and	compare	them	using	the	visual	difference	tool.

If	you	right	click	on	a	revision	you	can	use	 Context	Menu 	→	 Show
Log 	to	view	the	history.

2.14.3.	Refreshing	the	View

If	you	want	to	check	the	server	again	for	newer	information,	you	can
simply	refresh	the	view	using	F5.

Prev	 Up 	Next
2.13.	Log	Dialog	 Home 	2.15.	Reference	Log

2.15.	Reference	Log
Prev	 Chapter	2.	TortoiseGit	Daily	Use	Guide 	Next

2.15.	Reference	Log

The	reference	log	(reflog)	displays	the	history	of	a	reference	(i.e.,	it	is
displayed	to	which	commits	it	pointed	in	the	past).	In	can	be	opened
using	 TortoiseGit 	→	 RefLog ,	howerver,	you	have	to	hold	the	Shift
key	while	right	clicking	on	on	a	folder	in	the	explorer	in	order	to	see	this,
because	it	is	in	the	extended	context	menu	by	default.

Figure	2.34.	RefLog	Dialog

The	RefLog	can	be	used	to	restore	deleted	commits	or	HEAD	positions
(e.g.	when	you	deleted	a	branch	which	was	HEAD	some	time	ago).

You	can	find	more	information	at	Section	G.3.101,	“git-reflog(1)”.

Prev	 Up 	Next
2.14.	Revision	Graphs	 Home 	2.16.	The	Repository

Browser

2.16.	The	Repository	Browser
Prev	 Chapter	2.	TortoiseGit	Daily	Use	Guide 	Next

2.16.	The	Repository	Browser

Sometimes	you	need	to	see	all	contents/files	of	a	repository,	without
having	a	working	tree	(e.g.	a	bare	repository)	or	you	want	to	see	all	files
of	a	revision	without	switching	to	it.	That's	what	the	Repository	Browser	is
for.	You	can	open	it	using	 TortoiseGit 	→	 Repo-browser 	or	from	the
log	dialog	(cf.	Section	2.13,	“Log	Dialog”)	using	the	context	menu	of	a
commit.

Figure	2.35.	The	Repository	Browser

The	repository	browser	looks	very	similar	to	the	Windows	explorer,
except	that	it	is	showing	the	content	of	the	repository	at	a	particular
revision	rather	than	files	on	your	computer.	In	the	left	pane	you	can	see	a
directory	tree,	and	in	the	right	pane	are	the	contents	of	the	selected

directory.	At	the	top	of	the	Repository	Browser	Window	you	can	see	the
path	within	the	repository	and	the	revision	you	want	to	browse.

Just	like	Windows	explorer,	you	can	click	on	the	column	headings	in	the
right	pane	if	you	want	to	set	the	sort	order.	And	as	in	explorer	there	are
context	menus	available	in	both	panes.

In	order	to	get	an	older	version	of	a	file	you	can	click	on	a	file	and	select
Save	revision	to ,	but	it	is	also	possible	to	just	drag	one	or	more	files
into	a	Windows	explorer	window.

The	context	menu	for	a	file	allows	you	to:

Open	the	selected	file,	either	with	the	default	viewer	for	that	file	type,
or	with	a	program	you	choose.

Show	the	revision	log	for	that	file	so	you	can	see	the	history	of	it.

Compare	the	file	at	the	selected	revision	with	the	same	file	in	your
working	tree.

Blame	the	file,	to	see	who	changed	which	line	and	when.

Save	an	unversioned	copy	of	the	file	to	your	hard	drive	or	revert	this
file	in	your	working	copy	(i.e.	saves	the	file	to	it's	old	path	in	the
working	tree).

Copy	the	filename	with	full	path	shown	in	the	address	bar	to	the
clipboard.

The	context	menu	for	a	folder	allows	you	to:

Show	the	revision	log	for	that	folder.

Copy	the	full	path	to	the	clipboard.

You	can	use	F5	to	refresh	the	view	as	usual.	This	will	refresh	everything
which	is	currently	displayed.

Prev	 Up 	Next
2.15.	Reference	Log	 Home 	2.17.	Viewing	Differences

2.17.	Viewing	Differences
Prev	 Chapter	2.	TortoiseGit	Daily	Use	Guide 	Next

2.17.	Viewing	Differences

One	of	the	commonest	requirements	in	project	development	is	to	see
what	has	changed.	You	might	want	to	look	at	the	differences	between	two
revisions	of	the	same	file,	or	the	differences	between	two	separate	files.
TortoiseGit	provides	a	built-in	tool	named	TortoiseGitMerge	for	viewing
differences	of	text	files.	For	viewing	differences	of	image	files,	TortoiseGit
also	has	a	tool	named	TortoiseGitIDiff.	Of	course,	you	can	use	your	own
favourite	diff	program	if	you	like.

2.17.1.	File	Differences

Local	changes

If	you	want	to	see	what	(uncommitted)	changes	you	have	made	in
your	working	tree,	just	use	the	explorer	context	menu	and	select
TortoiseGit 	→	 Diff .

Difference	from	a	previous	revision

If	you	want	to	see	the	difference	between	a	particular	revision	and
your	working	tree,	use	the	Log	dialog,	select	the	revision	of	interest,
then	select	 Compare	with	working	tree 	from	the	context	menu
(cf.	Section	2.13,	“Log	Dialog”).

If	you	want	to	see	the	difference	between	the	last	committed	revision
and	your	working	tree,	assuming	that	the	working	tree	hasn't	been
modified,	just	right	click	on	the	file.	Then	select	 TortoiseGit 	→
Diff	with	previous	version .	This	will	perform	a	diff	between	the
revision	before	the	last-commit-date	(as	recorded	in	your	working
tree)	and	the	working	BASE.	This	shows	you	the	last	change	made
to	that	file	to	bring	it	to	the	state	you	now	see	in	your	working	tree.	It
will	not	show	changes	newer	than	your	working	tree.

Difference	between	two	previous	revisions

If	you	want	to	see	the	difference	between	two	revisions	which	are

already	committed,	use	the	Log	dialog	and	select	the	two	revisions
you	want	to	compare	(using	the	usual	Ctrl-modifier).	Then	select
Compare	revisions 	from	the	context	menu	(cf.	Section	2.13,	“Log
Dialog”).	Then	the	Compare	Revisions	dialog	appears,	showing	a	list
of	changed	files	(maybe	with	a	folder	filder	pre-applied).	Read	more
in	Section	2.17.3,	“Comparing	Version”.

All	changes	made	in	a	commit

If	you	want	to	see	the	changes	made	to	all	files	in	a	particular
revision	in	one	view,	you	can	use	Unified-Diff	output	(GNU	patch
format).	This	shows	only	the	differences	with	a	few	lines	of	context.	It
is	harder	to	read	than	a	visual	file	compare,	but	will	show	all	the
changes	together.	From	the	Revision	Log	dialog	select	the	revision
of	interest,	then	select	 Show	Differences	as	Unified-Diff 	from	the
context	menu.

Difference	between	files

If	you	want	to	see	the	differences	between	two	different	files,	you
can	do	that	directly	in	explorer	by	selecting	both	files	(using	the	usual
Ctrl-modifier).	Then	from	the	explorer	context	menu	select
TortoiseGit 	→	 Diff .

Difference	to	another	branch/tag

If	you	want	to	see	the	changes	of	different	branches	(maybe	the
current	one	to	another	branch	or	two	branches)	you	can	use	the	log
dialog	and	select	the	two	revisions	as	described	above	for
"Difference	between	two	previous	revisions".	An	easier	way	is	to
open	the	reference	browser	(cf.	Section	2.11,	“Browse	All	Refs”).
There	you	can	click	on	one	branch	and	select	 Compare	to
working	tree 	to	see	all	changes	between	that	branch	and	your
current	state	of	the	working	tree.	You	can	also	select	two	branches
and	compare	those	using	the	context	menu	as	described	in
Section	2.11,	“Browse	All	Refs”.

Difference	between	folders

The	built-in	tools	supplied	with	TortoiseGit	do	not	support	viewing
differences	between	directory	hierarchies.

If	you	have	configured	a	third	party	diff	tool,	you	can	use	Shift	when
selecting	the	Diff	command	to	use	the	alternate	tool	resp.	the	build	in
tool.	Read	Section	2.36.4,	“External	Program	Settings”	to	find	out	about
configuring	other	diff	tools.

2.17.2.	Line-end	and	Whitespace	Options

Sometimes	in	the	life	of	a	project	you	might	change	the	line	endings	from
CRLF	to	LF,	or	you	may	change	the	indentation	of	a	section.	Unfortunately
this	will	mark	a	large	number	of	lines	as	changed,	even	though	there	is
no	change	to	the	meaning	of	the	code.	The	options	here	will	help	to
manage	these	changes	when	it	comes	to	comparing	and	applying
differences.	You	will	see	these	settings	in	the	Comparing	Version	dialog
(cf.	Section	2.17.3,	“Comparing	Version”),	as	well	as	in	the	settings	for
TortoiseGitMerge.

Ignore	line	endings	excludes	changes	which	are	due	solely	to	difference
in	line-end	style.

Compare	whitespaces	includes	all	changes	in	indentation	and	inline
whitespace	as	added/removed	lines.

Ignore	whitespace	changes	excludes	changes	which	are	due	solely	to	a
change	in	the	amount	or	type	of	whitespace,	eg.	changing	the	indentation
or	changing	tabs	to	spaces.	Adding	whitespace	where	there	was	none
before,	or	removing	a	whitespace	completely	is	still	shown	as	a	change.

Ignore	all	whitespaces	excludes	all	whitespace-only	changes.

Naturally,	any	line	with	changed	content	is	always	included	in	the	diff.

2.17.3.	Comparing	Version

Figure	2.36.	The	Compare	Revisions	Dialog

In	log	dialog,	when	you	select	two	commits	 Context	menu 	→
Compare	revisions 	,	or	when	you	select	a	commit	 Context	menu
→	 Compare	with	previous	version	/	Compare	with	working	tree 	;
or	in	Windows	Explorer,	when	you	select	no	files	or	a	folder	 TortoiseGit
context	menu 	→	 Diff	with	previous	version 	,	the	Compare
Revisions	Dialog	comes	up.

This	dialog	shows	a	list	of	all	files	which	have	changed	and	allows	you	to
compare	them	individually	using	context	menu.

You	can	Revert	selected	files	to	version	1	or	version	2.	There	are	2	menu
items	for	this	purpose.	 Context	menu 	→	 Revert	to	revision	xxxxxxx
/	Revert	to	revision	yyyyyyy 	where	xxxxxxx	is	revision	1	short	hash

and	yyyyyyy	revision	is	2	short	hash.

You	can	export	a	change	tree,	which	is	useful	if	you	need	to	send
someone	else	your	project	tree	structure,	but	containing	only	the	files
which	have	changed.	This	operation	works	on	the	selected	files	only,	so
you	need	to	select	the	files	of	interest	-	usually	that	means	all	of	them	-
and	then	 Context	menu 	→	 Export	selection	to... .	You	will	be
prompted	for	a	location	to	save	the	change	tree.

You	can	also	export	the	list	of	changed	files	to	a	text	file	using	 Context
menu 	→	 Save	list	of	selected	files	to... .

If	you	want	to	export	the	list	of	files	and	the	actions	(modified,	added,
deleted)	as	well,	you	can	do	that	using	 Context	menu 	→	 Copy
selection	to	clipboard .

The	button	at	the	top	allows	you	to	change	the	direction	of	comparison.
You	can	show	the	changes	need	to	get	from	A	to	B,	or	if	you	prefer,	from
B	to	A.

The	buttons	with	the	revision	numbers	on	can	be	used	to	change	to	a
different	revision	range.	When	you	change	the	range,	the	list	of	items
which	differ	between	the	two	revisions	will	be	updated	automatically.

If	the	list	of	filenames	is	very	long,	you	can	use	the	search	box	to	reduce
the	list	to	filenames	containing	specific	text.	Note	that	a	simple	text
search	is	used,	so	if	you	want	to	restrict	the	list	to	C	source	files	you
should	enter	.c	rather	than	*.c.

2.17.4.	Diffing	submodules	using	Submodule	Diff	Dialog

The	built-in	diff	command	of	git	is	available	for	diffing	submodules,	but	we
often	find	ourselves	wanting	to	see	more	details	how	a	submodule	has
changed	too.	That's	why	we	created	Submodule	Diff	Dialog.	The
Submodule	Diff	Dialog	is	only	accessible	using	the	Section	2.5,
“Committing	Your	Changes	To	The	Repository”	or	Section	2.6,	“Getting
Status	Information”	dialogs	using	the	 COmpare	with	base 	entry	in	the
context	menu	for	a	submodule.

Figure	2.37.	The	submodule	difference	dialog

The	'From'	group	box	on	the	top	displays	the	information	of	the	original
revision.	Below	it,	there	is	a	'To'	group	box,	which	display	the	information
of	the	changed	revision.	For	each	group	box,	the	full	commit	hash	is
displayed,	and	can	be	highlighted	and	copied	to	clipboard;	the	subject
(i.e.	first	line	of	commit	message)	is	displayed	and	also	copyable	to
clipboard;	the	Show	Log	button	brings	you	to	a	new	Log	Dialog	and	jump
to	that	revision.

To	better	draw	the	attention	of	the	change	of	revision	of	submodule
mounted,	we	added	some	indicators.	In	'To'	group	box,	there	is	a	change
type	field.	Here	list	out	the	types:

Fast-forward

Topology-based.	This	is	for	a	fast-forward	change.

Rewind

Topology-based.	This	is	the	reversed	direction	of	a	fast-forward
change.

Newer	commit	time

Time-based.	If	it	is	neither	fast-forward	nor	rewind,	then	we	compare
commit	time.	This	is	for	a	revision	with	newer	commit	time	than	the
original	revision.

Older	commit	time

Time-based.	This	is	the	reversal	of	'Newer	commit	time'.

Same	commit	time

Time-based.	The	commit	time	is	the	same.	This	may	be	produced	by
auto-generating	commits	or	committing	at	the	same	time	by	two
persons.

New	Submodule

This	is	for	newly	added	submodule.

Delete	Submodule

This	is	for	deleted	submodule.

Unknown

This	is	for	submodule	revision	hash	not	changed,	error,	etc..

If	current	workspace	of	the	submodule	is	dirty,	the	commit	hash	will	be
rendered	in	yellow	background	and	red	text.

In	both	group	boxes,	if	the	revision	is	not	fetched,	submodule	not
initialized	or	other	errors,	the	commit	hash	will	be	rendered	in	red
background.

2.17.5.	Diffing	Images	Using	TortoiseGitIDiff

There	are	many	tools	available	for	diffing	text	files,	including	our	own
TortoiseGitMerge,	but	we	often	find	ourselves	wanting	to	see	how	an
image	file	has	changed	too.	That's	why	we	created	TortoiseGitIDiff.

Figure	2.38.	The	image	difference	viewer

TortoiseGit 	→	 Diff 	for	any	of	the	common	image	file	formats	will
start	TortoiseGitIDiff	to	show	image	differences.	By	default	the	images	are
displayed	side-by-side	but	you	can	use	the	View	menu	or	toolbar	to
switch	to	a	top-bottom	view	instead,	or	if	you	prefer,	you	can	overlay	the
images	and	pretend	you	are	using	a	lightbox.

Naturally	you	can	also	zoom	in	and	out	and	pan	around	the	image.	You
can	also	pan	the	image	simply	by	left-dragging	it.	If	you	select	the	Link
images	together	option,	then	the	pan	controls	(scrollbars,	mousewheel)
on	both	images	are	linked.

An	image	info	box	shows	details	about	the	image	file,	such	as	the	size	in

pixels,	resolution	and	colour	depth.	If	this	box	gets	in	the	way,	use
View 	→	 Image	Info 	to	hide	it.	You	can	get	the	same	information	in	a
tooltip	if	you	hover	the	mouse	over	the	image	title	bar.

When	the	images	are	overlaid,	the	relative	intensity	of	the	images	(alpha
blend)	is	controlled	by	a	slider	control	at	the	left	side.	You	can	click
anywhere	in	the	slider	to	set	the	blend	directly,	or	you	can	drag	the	slider
to	change	the	blend	interactively.	Ctrl+Shift-Wheel	to	change	the	blend.

The	button	above	the	slider	toggles	between	two	preset	blends,	indicated
by	the	markers	on	either	side	of	the	blend	slider.	By	default	one	is	at	the
top	and	the	other	at	the	bottom,	so	the	toggle	button	just	switches
between	one	image	and	the	other.	You	can	move	the	markers	to	choose
the	two	blend	values	that	the	toggle	button	will	use.

Sometimes	you	want	to	see	a	difference	rather	than	a	blend.	You	might
have	the	image	files	for	two	revisions	of	a	printed	circuit	board	and	want
to	see	which	tracks	have	changed.	If	you	disable	alpha	blend	mode,	the
difference	will	be	shown	as	an	XOR	of	the	pixel	colour	values.
Unchanged	areas	will	be	plain	white	and	changes	will	be	coloured.

2.17.6.	External	Diff/Merge	Tools

If	the	tools	we	provide	don't	do	what	you	need,	try	one	of	the	many	open-
source	or	commercial	programs	available.	Everyone	has	their	own
favourites,	and	this	list	is	by	no	means	complete,	but	here	are	a	few	that
you	might	consider:

WinMerge

WinMerge	is	a	great	open-source	diff	tool	which	can	also	handle
directories.

Perforce	Merge

Perforce	is	a	commercial	RCS,	but	you	can	download	the	diff/merge
tool	for	free.	Get	more	information	from	Perforce	.

http://winmerge.sourceforge.net/
http://www.perforce.com/perforce/products/merge.html

KDiff3

KDiff3	is	a	free	diff	tool	which	can	also	handle	directories.	You	can
download	it	from	here	.

ExamDiff

ExamDiff	Standard	is	freeware.	It	can	handle	files	but	not	directories.
ExamDiff	Pro	is	shareware	and	adds	a	number	of	goodies	including
directory	diff	and	editing	capability.	In	both	flavours,	version	3.2	and
above	can	handle	unicode.	You	can	download	them	from	PrestoSoft
.

Beyond	Compare

Similar	to	ExamDiff	Pro,	this	is	an	excellent	shareware	diff	tool	which
can	handle	directory	diffs	and	unicode.	Download	it	from	Scooter
Software	.

Araxis	Merge

Araxis	Merge	is	a	useful	commercial	tool	for	diff	and	merging	both
files	and	folders.	It	does	three-way	comparison	in	merges	and	has
synchronization	links	to	use	if	you've	changed	the	order	of	functions.
Download	it	from	Araxis	.

SciTE

This	text	editor	includes	syntax	colouring	for	unified	diffs,	making
them	much	easier	to	read.	Download	it	from	Scintilla	.

Notepad2

Notepad2	is	designed	as	a	replacement	for	the	standard	Windows
Notepad	program,	and	is	based	on	the	Scintilla	open-source	edit
control.	As	well	as	being	good	for	viewing	unified	diffs,	it	is	much
better	than	the	Windows	notepad	for	most	jobs.	Download	it	for	free
here	.

http://kdiff3.sf.net/
http://www.prestosoft.com/
http://www.scootersoftware.com/
http://www.araxis.com/merge/index.html
http://www.scintilla.org/SciTEDownload.html
http://www.flos-freeware.ch/notepad2.html

Notepad2	is	included	in	the	TortoiseGit	Setup	as	an	alternative	editor
which	support	LF	only	line	endings.	An	entry	in	the	start	menu
named	Notepad2	is	created.

Read	Section	2.36.4,	“External	Program	Settings”	for	information	on	how
to	set	up	TortoiseGit	to	use	these	tools.

Prev	 Up 	Next
2.16.	The	Repository
Browser	 Home 	2.18.	Adding	New	Files

2.18.	Adding	New	Files
Prev	 Chapter	2.	TortoiseGit	Daily	Use	Guide 	Next

2.18.	Adding	New	Files

Figure	2.39.	Explorer	context	menu	for	unversioned	files

If	you	created	new	files	during	your	development	process	then	you	need
to	add	them	to	source	control	too.	Select	the	file(s)	and/or	NOT	empty
directory	and	use	 TortoiseGit 	→	 Add .

After	you	added	the	files	to	source	control	the	file	appears	with	a	added
icon	overlay	which	means	you	first	have	to	commit	(and	push)	your
working	tree	to	make	those	files	available	to	other	developers.	Just
adding	a	file	does	not	affect	any	remote	repository!

Many	Adds

You	can	also	use	the	Add	command	on	folders.	In	that	case,
the	add	dialog	will	show	you	all	unversioned	files	inside	that
versioned	folder.	This	helps	if	you	have	many	new	files	and
need	to	add	them	all	at	once.

Empty	directories

Git	only	tracks	content	and,	thus,	cannot	version	(empty)
directories.	If	you	need	a	directory	to	be	automatically
created	on	checkout,	make	sure	at	least	one	versioned	file	is
in	it	(e.g.	a	placeholder	file	such	as	.gitkeep	or	.gitignore).

To	add	files	from	outside	your	working	tree	you	can	use	the	drag-and-
drop	handler:

1.	 select	the	files	you	want	to	add

2.	 right-drag	them	to	the	new	location	inside	the	working	tree

3.	 release	the	right	mouse	button

4.	 select	 Context	Menu 	→	 Git	Add	copy	and	add	files .	The	files
will	then	be	copied	to	the	working	tree	and	added	to	version	control.

You	can	also	add	files	within	a	working	tree	simply	by	(left-)dragging	and
dropping	them	onto	the	commit	dialog.

If	you	add	a	file	by	mistake,	you	can	undo	the	addition	before	you	commit
using	 TortoiseGit 	→	 Delete	(keep	local)... 	or	 Revert .

You	can	find	more	information	at	Section	G.3.2,	“git-add(1)”

Prev	 Up 	Next
2.17.	Viewing
Differences	 Home 	2.19.	Copying/Moving/Renaming

Files	and	Folders

2.19.	Copying/Moving/Renaming	Files	and	Folders
Prev	 Chapter	2.	TortoiseGit	Daily	Use	Guide 	Next

2.19.	Copying/Moving/Renaming	Files	and
Folders

It	often	happens	that	you	already	have	the	files	you	need	in	another
project	in	your	repository,	and	you	simply	want	to	copy	them	across.	One
way	is	to	simply	copy	the	files	and	add	them	as	described	above
manually.

The	easiest	way	to	copy	files	and	folders	from	within	a	working	tree	is	to
use	the	right-drag	menu.	When	you	right-drag	a	file	or	folder	from	one
working	tree	to	another,	or	even	within	the	same	folder,	a	context	menu
appears	when	you	release	the	mouse.

Figure	2.40.	Right	drag	menu	for	a	directory	under	version	control

Now	you	can	copy	existing	versioned	content	to	a	new	location,	possibly
renaming	it	at	the	same	time.

In	order	to	get	older	versions	of	a	file	you	can	use	the	repository	browser
to	locate	content	you	want,	and	copy	it	into	your	working	tree	directly
from	the	repository,	or	copy	between	two	locations	within	the	repository.
Refer	to	Section	2.16,	“The	Repository	Browser”	to	find	out	more.

Cannot	copy	between	repositories

Whilst	you	can	copy	and	files	and	folders	within	a	repository,
you	cannot	copy	or	move	from	one	repository	to	another
while	preserving	history	using	TortoiseGit.	Not	even	if	the

repositories	live	on	the	same	server.	All	you	can	do	is	copy
the	content	in	its	current	state	and	add	it	as	new	content	to
the	second	repository.

Git	only	tracks	content

As	Git	only	tracks	content,	it	is	not	necessary	to	explicitly
record	copies	or	moves	as	in	version	control	systems	like
Subversion.	Git	automatically	detects	copies/renames/moves
based	on	the	file	contents	when	calculating	the	log.

Prev	 Up 	Next
2.18.	Adding	New	Files	 Home 	2.20.	Ignoring	Files	And

Directories

2.20.	Ignoring	Files	And	Directories
Prev	 Chapter	2.	TortoiseGit	Daily	Use	Guide 	Next

2.20.	Ignoring	Files	And	Directories

Figure	2.41.	Explorer	context	menu	for	unversioned	files

In	most	projects	you	will	have	files	and	folders	that	should	not	be	subject
to	version	control.	These	might	include	files	created	by	the	compiler,
*.obj,	*.lst,	maybe	an	output	folder	used	to	store	the	executable,	bin/,	obj/.
More	examples	include	user-specific	workspace	settings	*.suo,	*.user
(Visual	Studio),	backup	files	*.bak,	Backup*/,	Shell	metadata	files
Thumbs.db,	Desktop.ini,	.DS_Store/.	Whenever	you	commit	changes,
TortoiseGit	shows	your	unversioned	files,	which	fills	up	the	file	list	in	the
commit	dialog.	Of	course	you	can	turn	off	this	display,	but	then	you	might
forget	to	add	a	new	source	file.

The	best	way	to	avoid	these	problems	is	to	add	the	derived	files	to	the
project's	ignore	list.	That	way	they	will	never	show	up	in	the	commit
dialog,	but	genuine	unversioned	source	files	will	still	be	flagged	up.

If	you	right	click	on	one	or	more	unversioned	files,	and	select	the
command	 TortoiseGit 	→	 Add	to	Ignore	List 	from	the	context
menu,	a	submenu	appears	allowing	you	to	select	ignore	by	names	or	by
extensions.	Ignore	dialog	shows	that	allows	you	to	select	ignore	type	and

ignore	file.

Figure	2.42.	Ignore	dialog

Ignore	Type

Ignore	item(s)	only	in	containing	folder(s)

Only	ignore	the	selected	pattern(s)	within	that	folder(s).

Ignore	item(s)	recursively

Ignore	items	with	the	selected	pattern(s)	in	that	folder(s)	and	child
folder(s).

Ignore	File

.gitignore	in	the	repository	root

Write	the	ignore	entries	in	.gitignore	in	the	repository	root.	This
allows	you	to	synchronize	the	ignore	list	with	remote	repository.

.gitignore	in	the	containing	directories	of	the	items

Write	the	ignore	entries	in	.gitignore	in	the	containing	directories	of
the	items.	This	allows	you	to	synchronize	the	ignore	list	with	remote

repository.

.git/info/exclude

Write	the	ignore	entries	in	.git/info/exclude	in	repository	metadata.
This	allows	you	to	store	the	ignore	list	locally,	but	cannot	synchronize
with	remote	repository.

If	you	want	to	remove	one	or	more	items	from	the	ignore	list,	in	current
version	of	TortoiseGit,	you	have	to	manually	edit	the	ignore	list	file	using
a	text	editor	that	can	handle	Unix	EOL.	That	allows	you	to	specify	more
general	patterns	using	filename	globbing,	described	in	the	section	below.
Read	Section	G.4.5,	“gitignore(5)”	for	more	information.	Please	be	aware
that	each	ignore	pattern	has	to	be	placed	on	a	separate	line.	Separating
them	by	spaces	does	not	work.

2.20.1.	Pattern	Matching	in	Ignore	Lists

Git's	ignore	patterns	make	use	of	filename	globbing,	a	technique
originally	used	in	Unix	to	specify	files	using	meta-characters	as	wildcards.
The	following	characters	have	special	meaning:

*

Matches	any	string	of	characters,	including	the	empty	string	(no
characters).

?

Matches	any	single	character.

[...]

Matches	any	one	of	the	characters	enclosed	in	the	square	brackets.
Within	the	brackets,	a	pair	of	characters	separated	by	“-”	matches
any	character	lexically	between	the	two.	For	example	[AGm-p]
matches	any	one	of	A,	G,	m,	n,	o	or	p.

Pattern	matching	is	case	sensitive,	which	can	cause	problems	on

Windows.	You	can	force	case	insensitivity	the	hard	way	by	pairing
characters,	eg.	to	ignore	*.tmp	regardless	of	case,	you	could	use	a
pattern	like	*.[Tt][Mm][Pp].

Prev	 Up 	Next
2.19.	Copying/Moving/Renaming
Files	and	Folders	 Home 	2.21.	Deleting,	Moving

and	Renaming

2.21.	Deleting,	Moving	and	Renaming
Prev	 Chapter	2.	TortoiseGit	Daily	Use	Guide 	Next

2.21.	Deleting,	Moving	and	Renaming

Unlike	CVS,	Git	allows	renaming	and	moving	of	files	and	folders.	So
there	are	menu	entries	for	delete	and	rename	in	the	TortoiseGit
submenu.	However,	unlike	SVN	Git	does	not	track	filenames.	Git	only
tracks	the	content	of	files.	So	there	is	in	general	no	need	to	use	the	Git
rename	or	remove	functionality	or	even	to	"repair	renames"	as	in	SVN.
Renames	and	copies	are	automatically	detected	when	showing	the	log.
However,	using	the	Git	delete	and	move	functionality	the	files	are
automatically	removed	from	the	Git	index	(i.e.,	not	shown	as	missing,	but
deleted)	and	in	case	of	move/rename	also	re-added	with	the	new	names
(i.e.,	the	new	names	don't	show	up	as	unversioned).

Figure	2.43.	Explorer	context	menu	for	versioned	files

2.21.1.	Deleting	files	and	folders

Use	 TortoiseGit 	→	 Delete 	to	remove	files	or	folders	from	Git.

When	you	 TortoiseGit 	→	 Delete 	a	file,	it	is	removed	from	your
working	tree	immediately	as	well	as	being	marked	for	deletion	in	the
repository	on	next	commit.	Up	until	you	commit	the	change,	you	can	get
the	file	back	using	 TortoiseGit 	→	 Revert 	on	the	parent	folder	or	on
the	or	Section	2.5,	“Committing	Your	Changes	To	The	Repository”	or
Section	2.6,	“Getting	Status	Information”	dialogs.

If	you	want	to	delete	an	item	from	the	repository,	but	keep	it	locally	as	an
unversioned	file/folder,	use	 Extended	Context	Menu 	→	 Delete	(keep
local) .	You	might	have	to	hold	the	Shift	key	while	right	clicking	on	the
item	in	the	explorer	list	pane	(right	pane)	in	order	to	see	this	in	the
extended	context	menu.

Getting	a	deleted	file	or	folder	back

If	you	have	deleted	a	file	or	a	folder	and	already	committed
that	delete	operation	to	the	repository,	then	a	normal
TortoiseGit 	→	 Revert 	can't	bring	it	back	anymore.	But
the	file	or	folder	is	not	lost	at	all.	If	you	know	the	revision	the
file	or	folder	got	deleted	(if	you	don't,	use	the	log	dialog	to
find	out)	open	the	repository	browser	and	switch	to	that
revision.	Then	select	the	file	or	folder	you	deleted,	right-click
and	select	 Context	Menu 	→	 Revert	to	this	revision .
Refer	to	Section	2.16,	“The	Repository	Browser”	and
Section	2.13,	“Log	Dialog”	to	find	out	more.

2.21.2.	Moving	files	and	folders

If	you	want	to	do	a	simple	in-place	rename	of	a	file	or	folder,	use
Context	Menu 	→	 Rename... 	Enter	the	new	name	for	the	item	and
you're	done.

If	you	want	to	move	files	around	inside	your	working	tree,	perhaps	to	a
different	sub-folder,	you	can	use	the	right-mouse	drag-and-drop	handler:

1.	 select	the	files	or	directories	you	want	to	move

2.	 right-drag	them	to	the	new	location	inside	the	working	tree

3.	 release	the	right	mouse	button

4.	 in	the	popup	menu	select	 Context	Menu 	→	 Git	Move	versioned
files	here

Do	Not	Git	Move	Submodule

You	should	not	use	the	TortoiseGit	Move	or	Rename
commands	on	a	folder	which	has	been	created	using	git
submodule.

2.21.3.	Changing	case	in	a	filename

Making	case-only	changes	to	a	filename	needs	special	attention,
because	Windows	does	not	honor	the	filename	casing	by	default.
Therefore	just	renaming	a	file	using	the	rename	command	of	the	Explorer
is	likely	not	to	work.	It	is	important	to	rename	it	using	Git	in	order	to
update	the	index	to	make	it	use	the	new	filename.	Use	the	 Rename...
command	in	the	TortoiseGit	submenu.

2.21.4.	Dealing	with	filename	case	conflicts

If	the	repository	already	contains	two	files	with	the	same	name	but
differing	only	in	case	(e.g.	TEST.TXT	and	test.txt),	you	will	not	be	able	to
commit,	and	only	one	of	them	can	be	checkout	on	a	Windows	client.
Whilst	Git	(in	general)	supports	case-sensitive	filenames,	Windows	does
not.

This	sometimes	happens	when	files	are	committed	from	a	system	with	a
case-sensitive	file	system,	like	Linux,	or	when	the	setting	core.ignorecase
is	set	to	false	(cf.	Section	G.3.27,	“git-config(1)”).

In	that	case,	you	have	to	decide	which	one	of	them	you	want	to	keep	and
delete	the	other(s)	from	the	repository	(or	rename	the	other(s)).	Easiest
way	is	to	do	that	on	a	case-sensitive	file	system,	followed	by	commiting
and	pushing	the	changes.	Doing	it	on	Windows	requires	several	steps
(and	two	commits):

Solution

1.	 Delete	the	file	in	explorer.

Caution

Do	NOT	use	the	 Delete 	or	the	 Delete	(keep	local)
command	in	the	TortoiseGit	submenu!

2.	 Open	the	Commit	dialog.	(All	the	checked	items	are	of	Deleted
status.)

3.	 Un-check	only	one	item	you	want	to	keep.

4.	 Commit	the	changes.

5.	 Revert	deletion	of	the	wanted	file	in	order	to	get	it	back.	If	you	want
to	keep	both	or	more	files	which	had	the	"same"	name,	but	with	a
different	new	name,	do	this	for	all	files	in	question	and	rename	them
before	proceeding	with	the	next	file.

2.21.5.	Deleting	Unversioned	Files

Usually	you	set	your	ignore	list	such	that	all	generated	files	are	ignored	in
Git.	But	what	if	you	want	to	clear	all	those	ignored	items	to	produce	a
clean	build?	Usually	you	would	set	that	in	your	makefile,	but	if	you	are
debugging	the	makefile,	or	changing	the	build	system	it	is	useful	to	have
a	way	of	clearing	the	decks.

TortoiseGit	provides	just	such	an	option	using	 Extended	Context

Menu 	→	 Clean	up... .	You	may	have	to	hold	the	Shift	while	right
clicking	on	a	folder	in	the	explorer	list	pane	(right	pane)	in	order	to	see
this	in	the	context	menu.	This	will	show	a	dialog	which	lists	all	possible
clean	up	options	(cf.	Section	2.23,	“Cleanup”).

Prev	 Up 	Next
2.20.	Ignoring	Files	And
Directories	 Home 	2.22.	Undo	Changes

2.22.	Undo	Changes
Prev	 Chapter	2.	TortoiseGit	Daily	Use	Guide 	Next

2.22.	Undo	Changes

If	you	want	to	undo	all	changes	you	made	in	a	file	since	your	last	commit
you	need	to	select	the	file,	right	click	to	pop	up	the	context	menu	and
then	select	the	command	 TortoiseGit 	→	 Revert 	A	dialog	will	pop	up
showing	you	the	files	that	you've	changed	and	can	revert.	Select	those
you	want	to	revert	and	click	on	 OK .

Figure	2.44.	Revert	dialog

If	you	want	to	undo	a	deletion	or	a	rename,	you	need	to	use	Revert	on
the	parent	folder	(or	commit	or	repository	status	dialog)	as	the	deleted
item	does	not	exist	for	you	to	right-click	on.

If	you	want	to	undo	the	addition	of	an	item,	this	appears	in	the	context
menu	as	 TortoiseGit 	→	 Delete	(keep	local) .	This	is	really	a	revert
as	well,	but	the	name	has	been	changed	to	make	it	more	obvious.

The	columns	in	this	dialog	can	be	customized	in	the	same	way	as	the

columns	in	the	Check	for	modifications	dialog.	Read	Section	2.6.2,
“Status”	for	further	details.

Undoing	Changes	which	have	been	committed

Revert 	will	only	undo	your	local	changes.	It	does	not	undo
any	changes	which	have	already	been	committed.	If	you
want	to	undo	all	the	changes	which	were	committed	in	a
particular	revision,	read	Section	2.13,	“Log	Dialog”	and
Section	2.16,	“The	Repository	Browser”	for	further
information.

Reverting	a	whole	commit

If	you	want	to	undo	a	whole	commit,	then	you	should	use	the
log	dialog	and	select	 Revert	change	by	this	commit 	on	a
revision/commit	(cf.	Section	2.13,	“Log	Dialog”).	Then	all
changes	of	this	commit	are	undone	and	a	revert	commit	is
created	which	need	to	be	committed	manually	(cf.
Section	G.3.114,	“git-revert(1)”).	It	is	also	possible	to	(hard)
reset	to	a	previous	commit,	then	all	commits	after	that	are
forgotten	(cf.	Section	2.24,	“Reset”)	-	this	might	not	be
recommended	if	the	changes	are	already	pushed	(also	see
https://stackoverflow.com/q/27032850/3906760).

Revert	is	Slow

When	you	revert	changes	you	may	find	that	the	operation
takes	a	lot	longer	than	you	expect.	This	is	because	the
modified	version	of	the	file	is	sent	to	the	recycle	bin,	so	you
can	retrieve	your	changes	if	you	reverted	by	mistake.
However,	if	your	recycle	bin	is	full,	Windows	takes	a	long
time	to	find	a	place	to	put	the	file.	The	solution	is	simple:

https://stackoverflow.com/q/27032850/3906760

either	empty	the	recycle	bin	or	deactivate	the	Use	recycle	bin
when	reverting	box	in	TortoiseGit's	settings.

Revert	!=	"git	revert"	for	files

In	the	TortoiseGit	naming	a	"revert"	on	a	file	is	comparable	to
git	checkout	HEAD	--	filename	(or	git	checkout	REVISION	--
filename)	for	resetting	a	file	to	it's	last	(or	a	specific)
committed	state.	This	has	nothing	to	do	with	Section	G.3.114,
“git-revert(1)”!

Section	G.3.114,	“git-revert(1)”	is	only	referred	to	by	Revert
change	by	this	commit	in	log	dialog	(cf.	Section	2.13,	“Log
Dialog”).

Prev	 Up 	Next
2.21.	Deleting,	Moving	and
Renaming	 Home 	2.23.	Cleanup

2.23.	Cleanup
Prev	 Chapter	2.	TortoiseGit	Daily	Use	Guide 	Next

2.23.	Cleanup

In	order	to	remove	untracked	or	ignored	files	from	the	working	tree	use
TortoiseGit 	→	 Cleanup .	Then	a	dialog	comes	up	which	allows	you
to	clean	up	the	working	tree	by	recursively	removing	files	that	are	not
under	version	control	or	ignored,	starting	from	the	current	directory	or	on
the	whole	working	tree	(depends	on	version	of	installed	git).

Figure	2.45.	Clean	dialog

Clean	all	untracked	files	This	removes	all	untracked	files,	including	those
ignored	by	Git.	This	is	the	cleanest	option.

Clean	only	non-ignore	untracked	files	This	removes	untracked	files,	but
excluding	those	ignored	by	Git.

Clean	only	ignored	files	This	removes	only	files	ignored	by	Git.

Remove	untracked	directories	This	removes	untracked	directories	too.

Do	not	use	recycle	bin	Use	this	option	if	you	want	to	delete	those	files
directly	and	permanently.	Make	sure	you	do	not	regret!

Dry	run	This	just	gives	the	list	of	files	to	be	deleted,	but	it	does	not

perform	any	deletion.

Submodules	This	also	cleans	submodules	recursively.

You	can	find	more	information	at	Section	G.3.22,	“git-clean(1)”.

Prev	 Up 	Next
2.22.	Undo	Changes	 Home 	2.24.	Reset

2.24.	Reset
Prev	 Chapter	2.	TortoiseGit	Daily	Use	Guide 	Next

2.24.	Reset

The	reset	dialog	can	be	used	to	reset	the	current	HEAD	to	the	specified
state	and	optionally	also	the	index	and	the	working	tree.	This	can	also	be
used	to	abort	a	merge.

Figure	2.46.	The	Reset	dialog

Figure	2.47.	The	Abort	Merge	dialog

On	the	Reset	dialog,	you	can	click	 ... 	to	browse	the	log	and	choose	a

specific	version.	In	Abort	merge	dialog,	you	can	only	reset	to	HEAD.

Soft:	Leave	working	tree	and	index	untouched	Does	not	touch	the	index
file	nor	the	working	tree	at	all	(but	resets	the	head	to	the	selected	commit,
just	like	all	modes	do).	This	leaves	all	your	changed	files	"Changes	to	be
committed"	as	before.	This	option	is	not	available	in	Abort	Merge	dialog.

Mixed:	Leave	working	tree	untouched,	reset	index	Resets	the	index	but
not	the	working	tree	(i.e.,	the	changed	files	are	preserved	but	not	marked
for	commit)	and	reports	what	has	not	been	updated.	This	is	the	git	default
action.	This	option	can	abort	a	merge.

Hard:	Reset	working	tree	and	index	(discard	all	local	changes)	Resets
the	index	and	working	tree.	Any	changes	to	tracked	files	in	the	working
tree	since	the	selected	commit	are	discarded.	This	option	can	abort	a
merge,	and	it	is	the	default	action	in	Abort	Merge	dialog.

Git	hard	reset	does	not	use	the	Windows	recycle	bin

Unlike	the	revert	or	clean	functions	of	TortoiseGit,	the	hard
reset	does	not	make	use	of	the	Windows	recycle	bin,	i.e.,
uncommitted	changes	might	get	lost!

You	can	find	more	information	at	Section	G.3.111,	“git-reset(1)”.

Prev	 Up 	Next
2.23.	Cleanup	 Home 	2.25.	Stash	Changes

2.25.	Stash	Changes
Prev	 Chapter	2.	TortoiseGit	Daily	Use	Guide 	Next

2.25.	Stash	Changes

When	you	want	to	record	the	current	state	of	the	working	directory	and
the	index,	but	want	to	go	back	to	a	clean	working	directory,	right	click	on
a	folder	to	pop	up	the	context	menu	and	then	select	the	command
TortoiseGit 	→	 Stash	Save 	A	dialog	will	pop	up	where	you	can
optionally	enter	a	message	for	this	state:

Figure	2.48.	Stash	save	dialog

You	can	also	select	include	untracked,	to	stash	untracked	files	away,	too.
To	stash	all	files	away,	including	ignored	files	in	addition	to	the	untracked
files,	select	--all.

When	TortoiseGit	detects	that	a	stashed	changes	exist,	the	context	menu
will	be	extended:

Figure	2.49.	(un)stash	options

The	stash	is	implemented	as	a	stack.	 Stash	Apply 	will	apply	the
changes	of	the	latest	stash	to	your	working	tree.	 Stash	Pop 	does	the
same,	but	will	remove	the	latest	stash	from	the	stack	after	applying	it.

Stash	Save 	is	still	possible	and	will	stash	the	current	changes	of	the
working	copy	to	the	top	of	the	stack.	 Stash	List 	provides	an	overview
of	all	the	whole	stash	stack.	You	can	also	remove	and	view	the	stashed
changes	there	(similarly	to	the	Section	2.13,	“Log	Dialog”	and
Section	2.15,	“Reference	Log”).

Conflicts

Although	major	merge	work	is	done	by	git	automatically
applying	a	stash,	a	conflict	may	happen	during	cherry-picking
(i.e.,	a	file	was	modified	in	your	current	branch	and	also	in
the	stash),	please	see	Section	2.31,	“Resolving	Conflicts”	on
how	to	resolve	conflicts.

Please	note,	that	"REMOTE"/"theirs"	in	the	conflict	editor
refers	to	the	to	be	merged	stash	and	"LOCAL"/"mine"	to	your
version	in	the	working	tree	before	you	applied	the	stash.

You	can	find	more	information	at	Section	G.3.128,	“git-stash(1)”.

Prev	 Up 	Next
2.24.	Reset	 Home 	2.26.	Bisect

2.26.	Bisect
Prev	 Chapter	2.	TortoiseGit	Daily	Use	Guide 	Next

2.26.	Bisect

If	you	want	to	find	out	which	revision	introduced	a	bug,	you	can	use	the
bisect	functionality.	Right	click	on	a	folder	to	pop	up	the	context	menu
and	then	select	the	command	 TortoiseGit 	→	 Bisect	start .	A	dialog
will	pop	up:

Figure	2.50.	Bisect	start

Enter	the	last	known	good	revision	and	the	first	or	one	known	bad	(this	is
normally	HEAD).

After	hitting	 OK ,	Git	will	perform	a	binary	search	for	the	first	faulty
revision:	Git	switches	to	a	revision	in	the	middle.	Now	you	can	test	this
revision.

TortoiseGit	now	provides	three	new	options	in	the	context	menu:

Figure	2.51.	Bisect	options

If	this	revision	is	OK,	hit	 TortoiseGit 	→	 Bisect	good 	,	otherwise	hit
TortoiseGit 	→	 Bisect	bad 	Git	will	proceed	with	the	binary	search
and	switches	to	the	"next"	revision,	so	that	you	can	test	it.	This	goes	on
until	the	faulty	revision	is	found	or	you	abort	this	operation	by	clicking	on
TortoiseGit 	→	 Bisect	reset 	(this	will	reset	the	bisect	process	and

switch	out	your	previous	branch/HEAD).

Selecting	revisions

If	a	revision	cannot	be	tested,	or	you	want	to	go	on	with	a
different	one,	you	can	easily	go	to	the	log	and	(hard)	reset
the	current	HEAD	to	a	revision	you	like.

Submodules

If	you	use	submodule	you	might	need	to	make	sure	that
those	are	updated	after	each	bisect	step	so	that	all
dependencies	are	up	to	date.

You	can	find	more	information	at	Section	G.3.8,	“git-bisect(1)”

Prev	 Up 	Next
2.25.	Stash	Changes	 Home 	2.27.	Branching/Tagging

2.27.	Branching/Tagging
Prev	 Chapter	2.	TortoiseGit	Daily	Use	Guide 	Next

2.27.	Branching/Tagging

One	of	the	features	of	version	control	systems	is	the	ability	to	isolate
changes	onto	a	separate	line	of	development.	This	line	is	known	as	a
branch.	Branches	are	often	used	to	try	out	new	features	without
disturbing	the	main	line	of	development	with	compiler	errors	and	bugs.	As
soon	as	the	new	feature	is	stable	enough	then	the	development	branch	is
merged	back	into	the	main	branch.

Another	feature	of	version	control	systems	is	the	ability	to	mark	particular
revisions	(e.g.	a	release	version),	so	you	can	at	any	time	recreate	a
certain	build	or	environment.	This	process	is	known	as	tagging.

Git	is	very	powerful	at	branching	and	tagging.	It	is	very	easy	to	create
branches	and	tags.

2.27.1.	Creating	a	Branch	or	Tag

Creating	a	branch	is	very	simple:	 TortoiseGit 	→	 Create	Branch...

Figure	2.52.	The	Branch	Dialog

Branch:	input	your	branch	name.

Creating	a	tag	is	very	simple:	 TortoiseGit 	→	 Create	Tag...

Figure	2.53.	The	Tag	Dialog

Tag:	input	your	tag	name.

You	can	choose	one	commit	that	base	on.

HEAD

Current	commit	checked	out.

Branch

The	latest	commit	of	chosen	branch.

Tag

The	commit	of	chosen	tag.

Commit

Any	commit,	you	click	 ... 	to	launch	log	dialog	to	choose	commit.
You	also	can	input	commit	hash,	or	friendly	commit	name,	such	as

HEAD~4.

If	you	want	your	working	tree	to	be	switched	to	the	newly	created	branch
automatically,	use	the	Switch	to	new	branch/tag	checkbox.	But	if	you	do
that,	first	make	sure	that	your	working	tree	does	not	contain
modifications.	If	it	does,	those	changes	will	be	merged	into	the	branch
working	tree	when	you	switch.

track	is	a	checkbox	with	three	values.	If	it	is	checked	--track	is	passed	to
git	on	OK,	if	it	is	unchecked	--no-track	is	passed	to	git	on	OK.	The	third
state	indicates,	that	neither	--track	nor	--no-track	is	passed	to	git	on	OK
-	see	branch.autosetupmerge	configuration	variable	(Section	G.3.27,	“git-
config(1)”)	and	--track	parameter	documentation	for	Section	G.3.10,	“git-
branch(1)”.

Check	Sign	to	create	a	GPG	signed	tag.	This	requires	GPG	and	also	the
configuration	variable	"user.signingkey"	to	be	set	(see	Section	2.36.6.2,
“Git	Config”	and	Section	G.3.27,	“git-config(1)”).

Tip

When	using	GPG	1.4	(which	is	shipped	with	Git	for	Windows)
this	requires	a	key	without	a	passphrase.	GPG	>=	2	comes
with	an	agent	like	pageant	and,	thus,.also	works	with
passphrase	protected	keys,	however,	you	might	need	to
configure	git	to	use	the	right	gpg.exe.	This	can	be	done	be
setting	the	configuration	variable	"gpg.program"	(e.g.,
"C:/Program	Files	(x86)/GNU/GnuPG/pub/gpg.exe").	We
tested	this	with	Gpg4win	(GPG4win	vanilla	is	sufficient	and
with	version	2.2.x	it	is	also	compatible	to	GPG	1.4	key	files).

Press	 OK 	to	create	branch	or	tag	at	local	repository.

Note	that	unless	you	opted	to	switch	your	working	tree	to	the	newly
created	branch,	creating	a	Branch	or	Tag	does	not	affect	your	working
tree.	Even	if	you	create	the	branch	from	your	working	tree,	those

http://www.gpg4win.de/

changes	are	committed	to	the	original	branch,	not	to	the	new	branch.

On	how	to	switch	working	tree	to	tag/branch,	please	refer	to	Section	2.4,
“Checking	Out	A	Working	Tree	(Switch	to	commit)”.

You	can	find	more	information	at	Section	G.3.10,	“git-branch(1)”	and
Section	G.3.134,	“git-tag(1)”.

Prev	 Up 	Next
2.26.	Bisect	 Home 	2.28.	Merging

2.28.	Merging
Prev	 Chapter	2.	TortoiseGit	Daily	Use	Guide 	Next

2.28.	Merging

Where	branches	are	used	to	maintain	separate	lines	of	development,	at
some	stage	you	will	want	to	merge	the	changes	made	on	one	branch
back	into	the	other	branch,	or	vice	versa.

It	is	important	to	understand	how	branching	and	merging	works	in	Git
before	you	start	using	it,	as	it	can	become	quite	complex.	For	hints	where
to	find	more	information	about	Git	and	merging	see	Section	2,	“Reading
Guide”.

The	next	point	to	note	is	that	merging	always	takes	place	within	a
working	tree.	If	you	want	to	merge	changes	into	a	branch,	you	have	to
have	a	working	tree	for	that	branch	checked	out,	and	invoke	the	merge
wizard	from	that	working	tree	using	 TortoiseGit 	→	 Merge... .

Figure	2.54.	Merge	dialog

In	general	it	is	a	good	idea	to	perform	a	merge	into	an	unmodified
working	tree.	If	you	have	made	other	changes	in	your	working	tree,
commit	those	first.	If	the	merge	does	not	go	as	you	expect,	you	may	want
to	abort	the	merge	using	the	Abort	Merge	command	which	might	discard
all	changes	(depending	on	the	mode,	in	case	of	hard).

You	can	choose	one	commit	that	you	want	to	merge	from.

HEAD

Current	commit	checked	out.

Branch

The	latest	commit	of	chosen	branch.

Tag

The	commit	of	chosen	tag.

Commit

Any	commit,	you	click	 ... 	to	launch	log	dialog	to	choose	commit.
You	also	can	input	commit	hash,	or	friendly	commit	name,	such	as
HEAD~4.

Squash	Just	merge	change	from	the	other	branch.	Can't	recorder	Merge
information.	The	new	commit	will	not	record	merge	branch	as	one	parent
commit.	Log	view	will	not	show	merge	line	between	two	branch.

No	Fast	Forward	Generate	a	merge	commit	even	if	the	merge	resolved
as	a	fast-forward.	See	https://stackoverflow.com/q/41794529/3906760	for
an	example	of	fast-forward	vs.	non-fast-forward	merge.

No	Commit	Do	not	automatically	create	a	commit	after	merge.

Messages	Populate	the	log	message	with	one-line	descriptions	from	the
actual	commits	that	are	being	merged.	Can	specify	the	number	of
commits	to	be	included	in	the	merge	message.

https://stackoverflow.com/q/41794529/3906760

Conflicts

Although	major	merge	work	is	done	by	git	automatically,	a
conflict	may	happen	during	merge	(i.e.,	a	file	is	modified	in
both	branches,	the	current	one	and	the	one	you	want	to
merge),	please	see	Section	2.31,	“Resolving	Conflicts”	on
how	to	resolve	conflicts.

Please	note,	that	"REMOTE"/"theirs"	in	the	conflict	editor
refers	to	the	to	the	changes	your	on	the	branch	you	selected
for	merging	and	"LOCAL"/"mine"	to	your	HEAD	version	in
your	working	tree.

You	can	see	more	information	at	Section	G.3.79,	“git-merge(1)”.

Prev	 Up 	Next
2.27.	Branching/Tagging	 Home 	2.29.	Cherry	picking

2.29.	Cherry	picking
Prev	 Chapter	2.	TortoiseGit	Daily	Use	Guide 	Next

2.29.	Cherry	picking

Cherry-picking	in	TortoiseGit	is	invoked	from	the	Revision	Log	Dialog.
Within	this	dialog,	select	the	commit(s)	to	cherry-pick,	then	right-click	on
one	of	the	selected	commits	to	pop	up	the	context	menu.	Select	Cherry
Pick	this	commit...	(or	Cherry	Pick	select	commits...	if	more	than	one
commit	is	selected).

The	Cherry	Pick	dialog	will	be	shown.

Figure	2.55.	Cherry	Pick	dialog

The	Cherry	Pick	dialog	is	similar	to	the	Rebase	dialog.	The	top	table
displays	one	line	for	each	selected	commit	to	cherry-pick.	Buttons	below
it	control	the	actions	(Pick,	Squash,	Edit,	Skip)	and	the	order	in	which
multiple	commits	are	picked.	Selecting	a	line	shows	the	files	affected	by
the	commit.

Conflicts

Although	major	merge	work	is	done	by	git	automatically	while
cherry-picking,	a	conflict	may	happen	during	cherry-picking
(i.e.,	a	file	was	modified	in	your	current	branch	and	also	in
one	or	more	commits	you	are	cherry-picking),	please	see
Section	2.31,	“Resolving	Conflicts”	on	how	to	resolve
conflicts.

Please	note,	that	"REMOTE"/"theirs"	in	the	conflict	editor
refers	to	the	to	the	changes	your	are	picking	and
"LOCAL"/"mine"	to	your	HEAD	version	in	your	working	tree.

You	can	find	more	information	at	Section	G.3.19,	“git-cherry-pick(1)”.

Prev	 Up 	Next
2.28.	Merging	 Home 	2.30.	Rebase

2.30.	Rebase
Prev	 Chapter	2.	TortoiseGit	Daily	Use	Guide 	Next

2.30.	Rebase

Rebase	is	quite	complex	and	it	alters/rewrites	the	history	of	a	repository.
Please	make	sure	you	understood	its	principles	before	using	it	(for
general	hints	where	to	find	more	information	about	Git	and	rebasing	see
Section	2,	“Reading	Guide”	and	especialy	Section	G.3.99,	“git-
rebase(1)”).

TortoiseGit 	→	 Rebase

The	Rebase	dialog	will	be	shown.

Figure	2.56.	Rebase	dialog

Rebasing	commits	takes	places	from	the	bottom	of	the	list	to	the	top	(in
ascending	order	of	the	ID	column).	For	example,	"squash"	means	that

the	commit	gets	squashed/combined	with	the	previous	commit(s)	which
are	located	below	in	the	list	(with	a	lower	ID).

Tip

Instead	of	setting	"pick",	"skip",	"edit",	"squash"	by	using	the
context-menu,	you	can	also	use	the	following	keys:	space:
shifts	the	state,	s:	skip,	e:	edit,	p:	pick,	q:	squash

Tip

There	is	a	button	that	swaps	branch	and	upstream.	Assume
you	are	currently	working	on	master	branch,	and	wish	to
rebase	feature	branch	onto	master.	Instead	of	switching	to
feature	in	advance,	select	the	commit	of	feature	in	log	list,
Context	Menu 	→	 Rebase 	and	click	this	swap	button.
TortoiseGit's	rebase	moves	feature	to	master	directly,	then
cherry-picks	the	commits.	This	approach	touches	fewer	files
and	runs	faster.

Important

When	preserving	merge	commits,	re-ordering	commits
cannot	be	handled	properly	in	all	cases,	see	in	known	bugs
of	vanilla	git	rebase:	Section	G.3.99,	“git-rebase(1)”.

Conflicts

Although	major	merge	work	is	done	by	git	automatically	while
rebasing,	a	conflict	may	happen	during	rebase	(i.e.,	a	file
was	modified	in	both	branches,	the	one	you	are	rebasing	one

and	the	on	which	you	are	rebasing),	please	see	Section	2.31,
“Resolving	Conflicts”	on	how	to	resolve	conflicts.

Please	note,	that	"REMOTE"/"theirs"	in	the	conflict	editor
refers	to	the	to	the	changes	of	the	branch	you	rebase	onto
and	"LOCAL"/"mine"	to	your	version	on	the	branch	which	you
are	rebasing.

Prev	 Up 	Next
2.29.	Cherry	picking	 Home 	2.31.	Resolving	Conflicts

2.31.	Resolving	Conflicts
Prev	 Chapter	2.	TortoiseGit	Daily	Use	Guide 	Next

2.31.	Resolving	Conflicts

During	a	merge,	the	working	tree	files	are	updated	to	reflect	the	result	of
the	merge.	Once	in	a	while,	you	will	get	a	conflict	when	you	merge
another	branch,	cherry-pick	commits,	rebase	or	apply	a	stash:	Among	the
changes	made	to	the	common	ancestor's	version,	non-overlapping	ones
(that	is,	you	changed	an	area	of	the	file	while	the	other	side	left	that	area
intact,	or	vice	versa)	are	incorporated	in	the	final	result	verbatim.	When
both	sides	made	changes	to	the	same	area,	however,	Git	cannot
randomly	pick	one	side	over	the	other,	and	asks	you	to	resolve	it	by
leaving	what	both	sides	did	to	that	area.	Whenever	a	conflict	is	reported
you	need	to	resolve	it!

The	conflicting	area	is	marked	in	the	file	like	this	(also	cf.	the	section
called	“HOW	CONFLICTS	ARE	PRESENTED”):

<<<<<<<	yours

				your	changes

=======

				changes	from	the	code	merged

>>>>>>>	their

You	can	use	any	editor	to	manually	resolve	the	conflict	or	you	can	launch
an	external	merge	tool/conflict	editor	with	 TortoiseGit 	→	 Edit
Conflicts .	Then	TortoiseGit	will	place	three	additional	files	in	your
directory	for	the	selected	conflicted	file	and	launch	the	configured	conflict
editor:

filename.ext.BASE.ext

This	is	the	common	ancestor's	version	of	the	conflicted	file	(this
version	does	contain	neither	any	of	your	nor	any	of	the	changes	of
the	to	be	merged	branch/revision,	especially	it	does	not	contain	any
conflict	markers).

filename.ext.LOCAL.ext

This	is	your	file	as	it	existed	in	your	working	tree	before	you	started
the	merge	(i.e.,	the	file	conforms	to	the	latest	committed	state	of	the
HEAD	of	your	local	repository)	-	that	is,	without	conflict	markers.
Therefore,	this	state/version	is	often	also	called	"mine".

Just	for	completeness	"mine"	means	for
"stash"/"merge"/"pull"/"cherry-pick"	the	HEAD	version	in	your
working	tree	and	for	"rebase"	the	version	on	the	branch	you	rebase.

filename.ext.REMOTE.ext

This	is	the	version	of	file	of	the	revision	you	want	to	merge	(on	a
normal	merge	this	correspondents	to	MERGE_HEAD).	As	you	want
to	merge	other	changes,	this	state/version	is	often	also	called
"theirs".

Just	for	completeness	"theirs"	means	for
"stash"/"merge"/"pull"/"cherry-pick"	the	version	of	the	to	be	merged
commit/branch	and	for	"rebase"	the	version	of	the	branch	you	rebase
onto.

Afterwards	execute	the	command	 TortoiseGit 	→	 Resolved 	and
commit	your	modifications	to	the	repository	(if	the	conflict	occurred	while
rebasing	or	cherry-picking	make	sure	you	use	the	cherry-pick	resp.
rebase	dialog	for	committing	and	not	the	normal	commit	dialog!).	Please
note	that	the	Resolve	command	does	not	really	resolve	the	conflict.	It
uses	"git	add"	to	mark	file	status	as	resolved	to	allow	you	to	commit	your
changes	and	it	removes	the	filename.ext.BASE.ext,
filename.ext.LOCAL.ext	and	filename.ext.REMOTE.ext	files.

If	you	have	conflicts	with	binary	files,	Git	does	not	attempt	to	merge	the
files	itself.	The	local	file	remains	unchanged	(exactly	as	you	last	changed
it).	In	order	to	resolve	the	conflict	use	 TortoiseGit 	→	 Resolve... 	and
then	right	click	on	the	conflicted	file	and	choose	one	of	 Resolved 	(the
current	version	of	the	file	which	is	in	the	working	tree	will	be	used),
Resolve	conflict	using	'mine' 	(the	version	of	the	file	of	your	HEAD
will	be	used),	and	 Resolve	conflict	using	'theirs' 	(the	version	of	the
file	of	the	merged	revision/branch	will	be	used).	After	that	commit.

You	can	use	the	 Resolved 	command	for	multiple	files	if	you	right	click
on	the	parent	folder	and	select	 TortoiseGit 	→	 Resolve... 	This	will
bring	up	a	dialog	listing	all	conflicted	files	in	that	folder,	and	you	can
select	which	ones	to	mark	as	resolved.

Figure	2.57.	The	resolve	conflicts	dialog

Important

Git	(unlike	SVN)	does	not	automatically	create
filename.ext.BASE.ext,	filename.ext.LOCAL.ext	and
filename.ext.REMOTE.ext	files	for	conflicted	files.	These	are
only	created	on-demand	by	TortoiseGit	when	you	use	the
command	 Edit	Conflicts .

Important

In	Git	(unlike	SVN)	you	have	to	commit	after	resolving
conflicts.	However,	if	the	conflict	occurred	while	rebasing	or
cherry-picking	make	sure	you	use	the	cherry-pick	resp.
rebase	dialog	for	committing	and	not	the	normal	commit
dialog!

2.31.1.	Special	conflict	cases

2.31.1.1.	Delete-modify	conflicts

A	special	conflict	case	is	a	delete-modify	conflict.	Here,	a	file	is	deleted
on	one	branch	and	the	same	file	is	modified	on	another	branch.	In	order
to	resolve	this	conflict	the	user	has	to	decide	whether	to	keep	the
modified	version	or	delete	the	file	from	the	working	tree.

Figure	2.58.	Resolve	delete-modify	conflict	Dialog

2.31.1.2.	Submodule	conflicts

Another	special	conflict	case	is	a	conflict	involving	a	submodule.	Here,	a
submodule	is	changed	in	different	(conflicting)	ways	on	two	branches.

The	resolve	submodule	conflict	dialog	shows	the	base,	the	local	and	the
remote	commit	of	the	conflicting	submodule	as	well	as	the	commit	type
(rewind,	fast-forward,	...).

Figure	2.59.	Resolve	submodule	conflict	Dialog

Uninitialized	submodules

If	the	submodule	is	not	yet	initialized	the	resolve	submodule
conflict	dialog	only	shows	the	commit	IDs	(SHA-1).	Also,	the
conflict	cannot	be	resolved	automatically:	First,	you	have	to
manually	clone	the	submodule	into	the	right	folder.	Then,	you
can	resolve	the	conflict	using	TortoiseGit	or	git	(by	checking
out	the	right	commit	in	the	submodule	and	commiting	the
parent	working	tree).

Prev	 Up 	Next
2.30.	Rebase	 Home 	2.32.	Creating	and	Applying

Patches	and	Pull	Requests

2.32.	Creating	and	Applying	Patches	and	Pull	Requests
Prev	 Chapter	2.	TortoiseGit	Daily	Use	Guide 	Next

2.32.	Creating	and	Applying	Patches	and	Pull
Requests

For	open	source	projects	(like	this	one)	everyone	has	read	access	to	the
(main/public)	repository,	and	anyone	can	make	a	contribution	to	the
project.	So	how	are	those	contributions	controlled?	If	just	anyone	could
commit	changes	this	this	central	repository,	the	project	would	be
permanently	unstable	and	probably	permanently	broken.	In	this	situation
the	change	is	managed	by	submitting	a	patch	file	or	a	pull	request	to	the
development	team,	who	do	have	write	access.	They	can	review	the
changes	first,	and	then	either	submit	it	to	the	main	repository	or	reject	it
back	to	the	author.

Patch	files	are	simply	Unified-Diff	files	showing	the	differences	between
your	working	tree	and	the	base	revision.

A	pull	request	is	an	request	to	another	repository	owner	to	pull	changes
from	your	repository.	I.e.	you	must	have	access	to	a	public	repository
where	you	can	push	your	changes	(normally	a	special	branch).

2.32.1.	Creating	a	Patch	Serial

First	you	need	to	make	and	test	your	changes.	Then	you	commit	your
changes	via	 TortoiseGit 	→	 Commit... 	on	the	parent	folder,	enter	a
good	commit	message.	After	that	select	 TortoiseGit 	→	 Create	Patch
Serial... 	and	choose	the	correct	options	to	include	your
changes/commits.

Figure	2.60.	The	Create	Patch	dialog

Directory	is	output	directory	of	patch.	Patch	file	name	will	be	created	by
commit	subject.

Since	create	patch	from	point.	You	can	click	 ... 	to	launch	refbrowse
dialog	to	choose	branch	or	tag.

Number	Commits	is	limited	how	much	patch	will	created.

Range	is	choose	range	of	from	commit	to	to.	You	can	click	 ... 	to	launch
log	dialog	to	choose	commit.

Send	Mail	after	create	launch	send	mail	dialog	after	patches	created	(see
Section	2.32.2,	“Sending	patches	by	mail”).

You	can	find	more	information	at	Section	G.3.50,	“git-format-patch(1)”.

Important

Here	Git	is	different	to	TortoiseSVN:	In	TortoiseSVN	you
directly	create	a	patch	instead	of	committing	your	changes
and	create	a	patch	of	the	commits	afterwards	(in	git	you	have
a	full	local	copy/fork	of	the	project	you	cloned	-	commits	are
just	local).	To	generate	a	patch	containing	the	uncommitted,

but	staged,	changes	click	on	 Save	unified	diff	since	HEAD .

For	hints	where	to	find	more	information	about	doing	version
control	with	Git	see	Section	2,	“Reading	Guide”.

2.32.2.	Sending	patches	by	mail

In	order	to	send	patches	to	the	upstream	authors,	select	the	patch	files
and	then	right	click	on	them	and	select	 TortoiseGit 	→	 Send	Mail...

Figure	2.61.	The	Send	Patches	Dialog

First	you	need	to	enter	the	recipient(s)	(To	and/or	CC).

Depending	on	the	mail	type	(Patch	as	attachment	or	Combine	One	Mail)
you	have	to	enter	a	Subject	for	the	mail.

Patch	as	attachment	adds	the	patch(es)	as	attachment(s)	to	the	mail(s)
instead	of	inlining	them.

Combine	One	Mail	adds	all	patches	to	one	mail.	You	have	to	enter	a
Subject	for	the	mail	in	this	case.

2.32.3.	Applying	a	single	Patch	File

Patch	files	are	applied	to	your	working	tree.	This	should	be	done	from	the
same	folder	level	as	was	used	to	create	the	patch.	If	you	are	not	sure
what	this	is,	just	look	at	the	first	line	of	the	patch	file.	For	example,	if	the
first	file	being	worked	on	was	doc/source/english/chapter1.xml	and	the
first	line	in	the	patch	file	is	Index:	english/chapter1.xml	then	you	need	to
apply	the	patch	to	the	doc/source/	folder.	However,	provided	you	are	in
the	correct	working	tree,	if	you	pick	the	wrong	folder	level,	TortoiseGit	will
notice	and	suggest	the	correct	level.

From	the	context	menu	for	a	patch	file	(.patch	or	.diff	extension),	click	on
TortoiseGit 	→	 Review/apply	single	patch... 	You	might	be
prompted	to	enter	a	working	tree	location:

Figure	2.62.	The	Choose	Repository	Dialog

If	the	working	tree	is	found,	TortoiseGitMerge	is	launched	to	show	and
apply	differences.

2.32.4.	Applying	a	Patch	Serial

Patch	files	are	applied	to	your	working	tree.	For	this	copy	the	patch	(or
mbox)	files	to	the	root	of	your	working	tree.

From	the	context	menu	for	that	folder	(or	all	marked	patch	files),	click	on
TortoiseGit 	→	 Apply	Patch	Serial...

Figure	2.63.	The	Apply	Patch	Dialog

Add 	Insert	patch

Up 	Move	chosen	patch	up.

Down 	Move	chosen	patch	down.

Remove 	Remove	the	chosen	patch.

Apply 	Start	applying	the	patches	one	by	one.

You	can	find	more	information	at	Section	G.3.3,	“git-am(1)”.

2.32.5.	Creating	a	pull	request

Apart	from	sending	patches	(or	patch	serials)	to	other	developers,	there
are	two	ways	to	ask	other	people	to	integrate	your	changes	into	their
repositories.

First:	After	pushing	your	changes	to	a	(public)	repository,	you	just	provide
other	people	the	URL	of	your	repository	and	the	name	of	the	branch	or
the	revision	id.	E.g.:	git://example.com/repo.git	BRANCHNAME

Second:	After	pushing	your	changes	to	a	(public)	repository,	you	can
create	a	standardized	(quite	formal)	request	for	other	people	to	pull	your
changes	and	integrate	them	into	their	repository.	The	format	pull	request
consists	of	a	list	of	all	commits	and	provides	some	statistics	about
changed	files,	so	that	other	people	can	can	a	quick	overview.

Select	 Request	pull 	on	the	progress	dialog	after	pushing	your	changes.

Figure	2.64.	The	Request	Pull	Dialog

Start

This	should	be	the	revision	on	which	your	changes	are	based	on.

URL

The	public	URL	to	your	repository,	which	can	be	access	by	the
people	who	shall	pull	your	changes.

End

This	should	be	the	branch	name	or	revision	id	of	the	end	of	your
commits.

After	clicking	on	 OK 	the	pull	request	is	created.	Just	copy	it	and	pass	it
to	other	people	who	you	want	to	pull	your	changes.

You	can	find	more	information	at	Section	G.3.109,	“git-request-pull(1)”.

Prev	 Up 	Next
2.31.	Resolving	Conflicts	 Home 	2.33.	Who	Changed	Which

Line?

2.33.	Who	Changed	Which	Line?
Prev	 Chapter	2.	TortoiseGit	Daily	Use	Guide 	Next

2.33.	Who	Changed	Which	Line?

Sometimes	you	need	to	know	not	only	what	lines	have	changed,	but	also
who	exactly	changed	specific	lines	in	a	file.	That's	when	the
TortoiseGit 	→	 Blame... 	command,	sometimes	also	referred	to	as
annotate	command	comes	in	handy.

This	command	lists,	for	every	line	in	a	file,	the	author	and	the	revision	the
line	was	changed.

2.33.1.	Blame	for	Files

By	default	the	blame	file	is	viewed	using	TortoiseGitBlame,	which
highlights	the	different	revisions	to	make	it	easier	to	read.

Figure	2.65.	TortoiseGitBlame

TortoiseGitBlame,	which	is	included	with	TortoiseGit.	When	you	hover	the
mouse	over	a	line	in	the	blame	info	column,	all	lines	with	the	same
revision	are	shown	with	a	darker	background.	Lines	from	other	revisions
which	were	changed	by	the	same	author	are	shown	with	a	light
background.	The	colouring	may	not	work	as	clearly	if	you	have	your
display	set	to	256	colour	mode.

If	you	left	click	on	a	line	(on	the	blame	info	column	on	the	left),	all	lines
with	the	same	revision	are	highlighted,	and	lines	from	other	revisions	by
the	same	author	are	highlighted	in	a	lighter	colour.	This	highlighting	is
sticky,	allowing	you	to	move	the	mouse	without	losing	the	highlights.	Click
on	that	revision	again	to	turn	off	highlighting.

The	revision	comments	(log	message)	are	shown	in	a	hint	box	whenever
the	mouse	hovers	over	the	blame	info	column.	If	you	want	to	copy	the	log

message	for	that	revision,	use	the	context	menu	which	appears	when
you	right	click	on	the	blame	info	column.

If	you	need	a	better	visual	indicator	of	where	the	oldest	and	newest
changes	are,	select	 View 	→	 Colorise	by	age,	continous .	Then	the
background	color	intensity	of	the	lines	is	related	to	its	age.	This	will	use	a
colour	gradient	to	show	newer	lines	in	yellow	and	older	lines	in	white.	The
default	colouring	is	quite	light,	but	you	can	change	it	using	the
TortoiseGitBlame	settings.

Please	also	check	out	the	 View 	menu.	There	you	can	toggle	the
Ignore	whitepace 	and	also	toggle	the	detection	of	moved/copied	lines
from	other	files	and	 Follow	renames .

You	can	search	within	the	Blame	report	using	 Edit 	→	 Find... .	This
allows	you	to	search	for	revision	numbers,	authors	and	the	content	of	the
file	itself.	Log	messages	are	not	included	in	the	search	-	you	should	use
the	Log	Dialog	to	search	those.

You	can	also	jump	to	a	specific	line	number	using	 Edit 	→	 Go	To
Line... .

When	the	mouse	is	over	the	blame	info	columns,	a	context	menu	is
available	which	helps	with	comparing	revisions	and	examining	history,
using	the	commit	of	the	line	under	the	mouse	as	a	reference.	 Context
menu 	→	 Blame	previous	revision 	generates	a	blame	report	for	the
same	file,	but	using	the	previous	revision	as	the	upper	limit.	This	gives
you	the	blame	report	for	the	state	of	the	file	just	before	the	line	you	are
looking	at	was	last	changed.	 Context	menu 	→	 Show	changes
starts	your	diff	viewer,	showing	you	what	changed	in	the	referenced
revision	of	the	file.	Please	note,	however,	that	these	two	options	are	only
available	if	this	line	is	not	there	since	the	initial	comit	of	the	file.	 Context
menu 	→	 Show	log 	displays	the	revision	log	dialog	starting	with	the
referenced	revision.

The	settings	for	TortoiseBlame	can	be	accessed	using	 TortoiseGit 	→
Settings... 	on	the	TortoiseGitBlame	tab.	Refer	to	Section	2.36.8,
“TortoiseGitBlame	Settings”.

You	can	find	more	information	at	Section	G.3.9,	“git-blame(1)”.

Prev	 Up 	Next
2.32.	Creating	and	Applying
Patches	and	Pull	Requests	 Home 	2.34.	Exporting	a	Git

Working	Tree

2.34.	Exporting	a	Git	Working	Tree
Prev	 Chapter	2.	TortoiseGit	Daily	Use	Guide 	Next

2.34.	Exporting	a	Git	Working	Tree

Sometimes	you	may	want	a	snapshot	of	a	specific	revision/commit,	e.g.
to	create	a	zipped	tarball	of	your	source,	or	to	export	to	a	web	server.	for
this	TortoiseGit	offers	the	command	 TortoiseGit 	→	 Export... .

Figure	2.66.	The	Export	Dialog

Zip	File	zip	file	of	export

HEAD

Current	commit	checked	out.

Branch

The	latest	commit	of	chosen	branch.

Tag

The	commit	of	chosen	tag.

Commit

Any	commit,	you	click	 ... 	to	launch	log	dialog	to	choose	commit.
You	also	can	input	commit	hash,	or	friendly	commit	name,	such	as
HEAD~4.

You	can	find	more	information	at	Section	G.3.7,	“git-archive(1)”.

Exporting	single	files

The	export	dialog	does	not	allow	exporting	single	files.

To	export	single	files	with	TortoiseGit,	you	have	to	use	the
repository	browser	(cf.	Section	2.16,	“The	Repository
Browser”)	or	log	dialog	(cf.	Section	2.13,	“Log	Dialog”).
Simply	drag	the	file(s)	you	want	to	export	from	the	repository
browser	to	where	you	want	them	in	the	explorer,	or	use	the
context	menu	in	the	repository	browser	to	export	the	files.

Prev	 Up 	Next
2.33.	Who	Changed	Which
Line?	 Home

	2.35.	Integration	with	Bug
Tracking	Systems	/	Issue

Trackers

2.35.	Integration	with	Bug	Tracking	Systems	/	Issue	Trackers
Prev	 Chapter	2.	TortoiseGit	Daily	Use	Guide 	Next

2.35.	Integration	with	Bug	Tracking	Systems	/
Issue	Trackers

It	is	very	common	in	Software	Development	for	changes	to	be	related	to
a	specific	bug	or	issue	ID.	Users	of	bug	tracking	systems	(issue	trackers)
would	like	to	associate	the	changes	they	make	in	Git	with	a	specific	ID	in
their	issue	tracker.	Most	issue	trackers	therefore	provide	a	pre-commit
hook	script	which	parses	the	log	message	to	find	the	bug	ID	with	which
the	commit	is	associated.	This	is	somewhat	error	prone	since	it	relies	on
the	user	to	write	the	log	message	properly	so	that	the	pre-commit	hook
script	can	parse	it	correctly.

TortoiseGit	can	help	the	user	in	two	ways:

1.	 When	the	user	enters	a	log	message,	a	well	defined	line	including
the	issue	number	associated	with	the	commit	can	be	added
automatically.	This	reduces	the	risk	that	the	user	enters	the	issue
number	in	a	way	the	bug	tracking	tools	can't	parse	correctly.

Or	TortoiseGit	can	highlight	the	part	of	the	entered	log	message
which	is	recognized	by	the	issue	tracker.	That	way	the	user	knows
that	the	log	message	can	be	parsed	correctly.

2.	 When	the	user	browses	the	log	messages,	TortoiseGit	creates	a	link
out	of	each	bug	ID	in	the	log	message	which	fires	up	the	browser	to
the	issue	mentioned.

2.35.1.	Adding	Issue	Numbers	to	Log	Messages

You	can	integrate	a	bug	tracking	tool	of	your	choice	in	TortoiseGit.	To	do
this,	you	have	to	define	some	configuration,	which	start	with	bugtraq..
These	settings	can	be	edited	using	TortoiseGit	settings	dialog:
Section	2.36.7.2,	“Config”

There	are	two	ways	to	integrate	TortoiseGit	with	issue	trackers.	One	is
based	on	simple	strings,	the	other	is	based	on	regular	expressions.	The

configuration	used	by	both	approaches	are:

bugtraq.url

Set	this	configuration	to	the	URL	of	your	bug	tracking	tool.	It	must	be
properly	URI	encoded	and	it	has	to	contain	%BUGID%.	%BUGID%	is
replaced	with	the	Issue	number	you	entered.	This	allows	TortoiseGit
to	display	a	link	in	the	log	dialog,	so	when	you	are	looking	at	the
revision	log	you	can	jump	directly	to	your	bug	tracking	tool.	You	do
not	have	to	provide	this	configuration,	but	then	TortoiseGit	shows
only	the	issue	number	and	not	the	link	to	it.	e.g	the	TortoiseGit
project	is	using	https://tortoisegit.org/issue/%BUGID%

bugtraq.warnifnoissue

Set	this	to	true,	if	you	want	TortoiseGit	to	warn	you	because	of	an
empty	issue-number	text	field.	Valid	values	are	true/false.	If	not
defined,	false	is	assumed.

2.35.1.1.	Issue	Number	in	Text	Box

In	the	simple	approach,	TortoiseGit	shows	the	user	a	separate	input	field
where	a	bug	ID	can	be	entered.	Then	a	separate	line	is
appended/prepended	to	the	log	message	the	user	entered.

bugtraq.message

This	configuration	activates	the	bug	tracking	system	in	Input	field
mode.	If	this	configuration	is	set,	then	TortoiseGit	will	prompt	you	to
enter	an	issue	number	when	you	commit	your	changes.	It's	used	to
add	a	line	at	the	end	of	the	log	message.	It	must	contain	%BUGID%,
which	is	replaced	with	the	issue	number	on	commit.	This	ensures
that	your	commit	log	contains	a	reference	to	the	issue	number	which
is	always	in	a	consistent	format	and	can	be	parsed	by	your	bug
tracking	tool	to	associate	the	issue	number	with	a	particular	commit.
As	an	example	you	might	use	Issue	:	%BUGID%,	but	this	depends	on
your	Tool.

bugtraq.append

This	configuration	defines	if	the	bug-ID	is	appended	(true)	to	the	end
of	the	log	message	or	inserted	(false)	at	the	start	of	the	log	message.
Valid	values	are	true/false.	If	not	defined,	true	is	assumed,	so	that
existing	projects	don't	break.

bugtraq.label

This	text	is	shown	by	TortoiseGit	on	the	commit	dialog	to	label	the
edit	box	where	you	enter	the	issue	number.	If	it's	not	set,	Bug-ID	/
Issue-Nr:	will	be	displayed.	Keep	in	mind	though	that	the	window	will
not	be	resized	to	fit	this	label,	so	keep	the	size	of	the	label	below	20-
25	characters.

bugtraq.number

If	set	to	true	only	numbers	are	allowed	in	the	issue-number	text	field.
An	exception	is	the	comma,	so	you	can	comma	separate	several
numbers.	Valid	values	are	true/false.	If	not	defined,	true	is
assumed.

2.35.1.2.	Issue	Numbers	Using	Regular	Expressions

In	the	approach	with	regular	expressions,	TortoiseGit	doesn't	show	a
separate	input	field	but	marks	the	part	of	the	log	message	the	user	enters
which	is	recognized	by	the	issue	tracker.	This	is	done	while	the	user
writes	the	log	message.	This	also	means	that	the	bug	ID	can	be
anywhere	inside	a	log	message!	This	method	is	much	more	flexible,	and
is	the	one	used	by	the	TortoiseGit	project	itself.

bugtraq.logregex

This	configuration	activates	the	bug	tracking	system	in	Regex	mode.
It	contains	either	a	single	regular	expressions,	or	two	regular
expressions	separated	by	a	newline.

If	two	expressions	are	set,	then	the	first	expression	is	used	as	a	pre-

filter	to	find	expressions	which	contain	bug	IDs.	The	second
expression	then	extracts	the	bare	bug	IDs	from	the	result	of	the	first
regex.	This	allows	you	to	use	a	list	of	bug	IDs	and	natural	language
expressions	if	you	wish.	e.g.	you	might	fix	several	bugs	and	include
a	string	something	like	this:	“This	change	resolves	issues	#23,	#24
and	#25”

If	you	want	to	catch	bug	IDs	as	used	in	the	expression	above	inside
a	log	message,	you	could	use	the	following	regex	strings,	which	are
the	ones	used	by	the	TortoiseGit	project:	[Ii]ssues?:?(\s*(,|and)?
\s*#\d+)+	and	(\d+)

The	first	expression	picks	out	“issues	#23,	#24	and	#25”	from	the
surrounding	log	message.	The	second	regex	extracts	plain	decimal
numbers	from	the	output	of	the	first	regex,	so	it	will	return	“23”,	“24”
and	“25”	to	use	as	bug	IDs.

Breaking	the	first	regex	down	a	little,	it	must	start	with	the	word
“issue”,	possibly	capitalised.	This	is	optionally	followed	by	an	“s”
(more	than	one	issue)	and	optionally	a	colon.	This	is	followed	by	one
or	more	groups	each	having	zero	or	more	leading	whitespace,	an
optional	comma	or	“and”	and	more	optional	space.	Finally	there	is	a
mandatory	“#”	and	a	mandatory	decimal	number.

If	only	one	expression	is	set,	then	the	bare	bug	IDs	must	be	matched
in	the	groups	of	the	regex	string.	Example:	[Ii]ssue(?:s)?	#?(\d+)
This	method	is	required	by	a	few	issue	trackers,	e.g.	trac,	but	it	is
harder	to	construct	the	regex.	We	recommend	that	you	only	use	this
method	if	your	issue	tracker	documentation	tells	you	to.

If	you	are	unfamiliar	with	regular	expressions,	take	a	look	at	the
introduction	at	https://en.wikipedia.org/wiki/Regular_expression	,	and
the	online	documentation	and	tutorial	at	http://www.regular-
expressions.info/	.

If	both	the	bugtraq:message	and	bugtraq:logregex	properties	are	set,
logregex	takes	precedence.

https://en.wikipedia.org/wiki/Regular_expression
http://www.regular-expressions.info/

Tip

Even	if	you	don't	have	an	issue	tracker	with	a	pre-commit
hook	parsing	your	log	messages,	you	still	can	use	this	to	turn
the	issues	mentioned	in	your	log	messages	into	links!

And	even	if	you	don't	need	the	links,	the	issue	numbers	show
up	as	a	separate	column	in	the	log	dialog,	making	it	easier	to
find	the	changes	which	relate	to	a	particular	issue.

2.35.1.3.	Issue	Tracker	Provider	Settings	based	on	Hierarchical	Git
Configuration

This	is	a	hierarchical	git	configuration	to	associate	issue	tracker	plugin
with	your	project,	rather	than	with	to	a	specific	directory	path.	Such
settings	are	more	portable.	To	deploy	the	settings,	set	to	Project	level	and
commit	.tgitconfig.

bugtraq.provideruuid

This	is	the	GUID	of	32-bit	issue	tracker	plugin.

bugtraq.provideruuid64

This	is	the	GUID	of	64-bit	issue	tracker	plugin.

bugtraq.providerparams

This	is	the	parameter	string	for	the	issue	tracker	plugin.

This	issue	tracker	integration	is	not	restricted	to	TortoiseGit;	it	can	be
used	with	other	clients	(e.g.	TortoiseSVN).	For	more	information,	read	the
full	Issue	Tracker	Integration	Specification	in	the	TortoiseGit	source
repository.	(Section	3,	“TortoiseGit	is	free!”	explains	how	to	access	the
repository).

2.35.2.	Getting	Information	from	the	Issue	Tracker

https://gitlab.com/tortoisegit/tortoisegit/blob/master/doc/issuetrackers.txt

The	previous	section	deals	with	adding	issue	information	to	the	log
messages.	But	what	if	you	need	to	get	information	from	the	issue
tracker?	The	commit	dialog	has	a	Windows	COM	interface	which	allows
integration	an	external	program	that	can	talk	to	your	tracker.	Typically	you
might	want	to	query	the	tracker	to	get	a	list	of	open	issues	assigned	to
you,	so	that	you	can	pick	the	issues	that	are	being	addressed	in	this
commit.

Any	such	interface	is	of	course	highly	specific	to	your	system,	so	we
cannot	provide	this	part,	and	describing	how	to	create	such	a	program	is
beyond	the	scope	of	this	manual.	The	interface	definition	and	sample
programs	can	be	obtained	from	the	contrib	folder	in	the	TortoiseGit
repository	.	(Section	3,	“TortoiseGit	is	free!”	explains	how	to	access	the
repository).	A	summary	of	the	API	is	also	given	in	Appendix	B,
IBugTraqProvider	interface	Another	(working)	example	plugin	in	C#	is
Gurtle	which	implements	the	required	COM	interface	to	interact	with	the
Google	Code	issue	tracker.

For	illustration	purposes,	let's	suppose	that	your	system	administrator
has	provided	you	with	an	issue	tracker	plugin	which	you	have	installed,
and	that	you	have	set	up	some	of	your	working	trees	to	use	the	plugin	in
TortoiseGit's	settings	dialog.	When	you	open	the	commit	dialog	from	a
working	tree	to	which	the	plugin	has	been	assigned,	you	will	see	a	new
button	at	the	top	of	the	dialog.

Figure	2.67.	Example	issue	tracker	query	dialog

https://gitlab.com/tortoisegit/tortoisegit/tree/master/contrib/issue-tracker-plugins
https://code.google.com/p/gurtle/
https://code.google.com/hosting/

In	this	example	you	can	select	one	or	more	open	issues.	The	plugin	can
then	generate	specially	formatted	text	which	it	adds	to	your	log	message.

Prev	 Up 	Next
2.34.	Exporting	a	Git
Working	Tree	 Home 	2.36.	TortoiseGit's	Settings

2.36.	TortoiseGit's	Settings
Prev	 Chapter	2.	TortoiseGit	Daily	Use	Guide 	Next

2.36.	TortoiseGit's	Settings

To	find	out	what	the	different	settings	are	for,	just	leave	your	mouse
pointer	a	second	on	the	editbox/checkbox...	and	a	helpful	tooltip	will
popup.

2.36.1.	General	Settings

Figure	2.68.	The	Settings	Dialog,	General	Page

This	dialog	allows	you	to	specify	your	preferred	language,	and	the	Git-
specific	settings.

Language

Selects	your	user	interface	language.	What	else	did	you	expect?
Only	languages	of	installed	LanguagePacks	are	listed.	You	can

download	language	packs	on	the	TortoiseGit	download	page	or	help
translating.

Automatically	check	for	newer	versions	every	week

If	checked,	TortoiseGit	will	contact	its	download	site	once	a	week	to
see	if	there	is	a	newer	version	of	the	program	available.	Use	 Check
now 	if	you	want	an	answer	right	away.	The	new	version	will	not	be
downloaded;	you	simply	receive	an	information	dialog	telling	you	that
the	new	version	is	available.

Create	Library

On	Windows	7	you	can	create	a	Library	in	which	to	group	working
copies	which	are	scattered	in	various	places	on	your	system.

Git.exe	Path

TortoiseGit	needs	to	know	which	git.exe	to	use	for	it's	operations.
Enter	the	full	path	to	git.exe	here.

Caution

git.exe	must	not	be	marked	to	be	run	in	elevated	mode
(i.e.	"Run	as	administrator"	or	run	in	any	compatibility
mode).

Caution

There	is	a	known	issue	in	msysGit/Git	for	Windows:	Git
for	Windows	provides	two	git.exe-files	(one	in	a	folder
named	bin	and	one	in	a	folder	named	cmd).	Make	sure
Git.exe	Path	points	to	the	bin-folder	within	the	Git	for
Windows	installation	folder.

https://tortoisegit.org/download
https://tortoisegit.org/translate
https://github.com/msysgit/msysgit/issues/103

Caution

If	you	don't	use	Git	for	Windows,	please	see	the	sections
for	"Cygwin	git"	and	"Msys2	git"	below	as	special	settings
are	required	here.

As	a	general	note:	There	is	no	official	support	for	Cygwin
or	Msys2	git	in	TortoiseGit.	The	TortoiseGit	developers
only	use	Git	for	Windows.	Bug	reports,	however,	are
welcome.

Tip

In	order	to	debug	problems	you	can	open	TortoiseGit
advanced	settings	and	set	"DebugOutputString"	to	"true"
(Section	2.36.10,	“Advanced	Settings”).	Start	capturing
the	debug	output.	Then	start	TortoiseGit	settings,	click	on
Check	now	and	observe	the	debug	messages.

Extra	PATH

If	your	git	installation	needs	an	extra	entry	in	the	PATH	environment
variable,	you	can	enter	it	here	and	it	will	get	added	to	the	PATH
environment	variable	automatically	when	TortoiseGit	starts.

This	is	especially	needed	if	you	installed	the	developer	version	of
msysGit	("Full	installer	(self-contained)	if	you	want	to	hack	on	Git"
with	the	filename	msysGit-fullinstall-*.exe),	in	this	case	it	is
necessary	that	the	[MSYSGIT-INSTALL-PATH]\mingw\bin-folder	is	on
the	path	(i.e.	entered	in	the	Extra	PATH	textbox)	in	order	to	execute
git.exe.

Often	you	can	see	if	you	need	this	when	you	start	git.exe	in
[MSYSGIT-INSTALL-PATH]\mingw\bin-folder	and	you	get	a	messagebox

saying	that	a	dll	is	missing.

Cygwin	Git

As	noted	above:	There	is	no	official	support	for	Cygwin	git	in
TortoiseGit	(do	not	enable	this	for	the	"Git	for	Windows	package!).
The	TortoiseGit	developers	only	use	Git	for	Windows.	Bug	reports,
however,	are	welcome.	If	you	really	want	to	use	it	here	are	the	steps
you	have	to	perform:

1)	Select	the	[CYGWIN-INSTALL-PATH]\bin-folder	as	git.exe	folder.

2)	Configure	the	HOME	environment	variable	in	Windows,	so	that
Cygwin	and	TortoiseGit	are	using	the	same	home	directory	and
global	git-config.	Use	the	normal	Windows	notation	here	(e.g.,
"C:\Users\USERNAME").	By	default,	TortoiseGit	uses	the	Windows
home	directory	which	is	normally	located	under	c:\Users	and	Cygwin
uses	its	own	home	directories	which	are	located	under	[CYGWIN-
INSTALL-PATH]\home.

3)	Configure	AutoCrLf,	this	is	necessary	as	TortoiseGit	and	Cygwin
Git	have	different	defaults.	The	default	in	Cygwin	Git	is	true.

4)	Go	to	TortoiseGit	Section	2.36.10,	“Advanced	Settings”	and	set
CygwinHack	to	true	in	order	to	activate	cygwin	workarounds.

5)	Reboot.

Msys2	Git

As	noted	above:	There	is	no	official	support	for	Msys2	git	in
TortoiseGit	(do	not	enable	this	for	the	"Git	for	Windows	package!).
The	TortoiseGit	developers	only	use	Git	for	Windows.	Bugreports,
however,	are	welcome.	If	you	really	want	to	use	it	here	are	the	steps
you	have	to	perform:

1)	Select	the	[MSYS2-INSTALL-PATH]\usr\bin-folder	as	git.exe	folder.

2)	Configure	the	HOME	environment	variable	in	Windows,	so	that

Msys2	and	TortoiseGit	are	using	the	same	home	directory	and	global
git-config.	Use	the	normal	Windows	notation	here	(e.g.,
"C:\Users\USERNAME").	By	default,	TortoiseGit	uses	the	Windows
home	directory	which	is	normally	located	under	c:\Users	and	Msys2
uses	its	own	home	directories	which	are	located	under	[MSYS2-
INSTALL-PATH]\home.

3)	Configure	AutoCrLf,	this	is	necessary	as	TortoiseGit	and	Msys2
Git	might	have	different	defaults.

4)	Go	to	TortoiseGit	Section	2.36.10,	“Advanced	Settings”	and	set
Msys2Hack	to	true	in	order	to	activate	Msys2	workarounds.

5)	Reboot.

2.36.1.1.	Context	Menu	Settings

Figure	2.69.	The	Settings	Dialog,	Context	Menu	Page

This	page	allows	you	to	specify	which	of	the	TortoiseGit	context	menu
entries	will	show	up	in	the	main	context	menu,	and	which	will	appear	in
the	TortoiseGit	submenu.	By	default	most	items	are	unchecked	and
appear	in	the	submenu.

Most	of	the	time,	you	won't	need	the	TortoiseGit	context	menu,	apart	for
folders	that	are	under	version	control	by	Git.	For	non-	versioned	folders,
you	only	really	need	the	context	menu	when	you	want	to	do	a	checkout.	If
you	check	the	option	Hide	menus	for	unversioned	paths,	TortoiseGit	will
not	add	its	entries	to	the	context	menu	for	unversioned	folders.	But	the
entries	are	added	for	all	items	and	paths	in	a	versioned	folder.	And	you
can	get	the	entries	back	for	unversioned	folders	by	holding	the	Shift	key
down	while	showing	the	context	menu.

If	there	are	some	paths	on	your	computer	where	you	just	don't	want
TortoiseGit's	context	menu	to	appear	at	all,	you	can	list	them	in	the	box	at
the	bottom.

If	you	right	click	and	drag	folder/file	in	Windows	Explorer,	a	context	menu
will	be	shown	when	you	drop.	It	provides	some	TortoiseGit	actions.	You
can	uncheck	 Enable	drag	context	menu 	to	prevent	from	carelessly	clicking
the	TortoiseGit	actions.

2.36.1.2.	Set	Extend	Menu	Item

Figure	2.70.	The	Settings	Dialog,	Set	Extend	Menu	Item

This	page	allows	you	to	specify	which	of	the	TortoiseGit	context	menu
entries	will	show	up	in	the	extend	context	menu	(press	Shift	key	on	right
click),	and	which	will	appear	in	the	normal	context	menu.	This	config	will
help	reduce	the	context	menu	number	at	normal	usage	case	according	to
your	usage	module.

2.36.1.3.	TortoiseGit	Dialog	Settings

Figure	2.71.	The	Settings	Dialog,	Dialogs	Page

This	dialog	allows	you	to	configure	some	of	TortoiseGit's	dialogs	the	way
you	like	them.

Font	for	log	messages

Selects	the	font	face	and	size	used	to	display	the	log	message	itself
in	the	middle	pane	of	the	Revision	Log	dialog,	and	when	composing
log	messages	in	the	Commit	dialog.

Short	date	/	time	format	in	log	messages

If	the	standard	long	messages	use	up	too	much	space	on	your
screen	use	the	short	format.

Show	asterisk	log	prefix

An	asterisk	is	inserted	as	the	prefix	of	log	message	in	Log	dialog.

apply	--topo-order

Normally	log	entries/commits	are	ordered	in	descending	order	of	the
commit	date.	'--topo-order'	makes	the	commits	appear	in	topological
order	(i.e.	descendant	commits	are	shown	before	their	parents).	Not
using	this	option,	might	break	the	graph	in	the	log	dialog.	However,
this	option	is	slower,	because	all	log	entries	have	to	be	processed
before	displaying	them.

Can	double-click	in	log	list	to	compare	with	previous	revision

If	you	frequently	find	yourself	comparing	revisions	in	the	top	pane	of
the	log	dialog,	you	can	use	this	option	to	allow	that	action	on	double-
click.	It	is	not	enabled	by	default	because	fetching	the	diff	is	often	a
long	process,	and	many	people	prefer	to	avoid	the	wait	after	an
accidental	double-click,	which	is	why	this	option	is	not	enabled	by
default.

Abbreviate	renamings

Normally	renamed	files	are	listed	as	"long/path/for/file.txt	(from
long/path/to/file.txt)".	If	you	check	this	option	renamed	files	will	be
listed	in	a	shorter	format	("long/path/{to	=>	for}/file.txt"),	however,	this
abbreviated	format	might	be	harder	to	understand.

Symbolize	ref	names

Show	symbols	on	ref	labels	to	substitute	part	of	the	ref	names	in
order	to	make	them	smaller.	If	this	option	is	enabled,	the	following
description	and	example	will	apply.	If	there	is	only	a	single	remote,
an	up-arrow	symbol	(↑)	will	substitute	the	remote	name	part	of	each
remote	branch.	If	the	remote	branch	is	the	upstream	of	a	local
branch,	an	equivalent	symbol	(≡)	will	substitute	the	branch	name
part	of	the	remote	branch.

Figure	2.72.	Example	of	Symbolize	ref	names

Enable	log	cache

Load/saves	log	cache	in	.git	folder	(tortoisegit.data,	tortoisegit.index)
to	boost	performance	of	subsequent	use	of	log	list.	If	this	option	is
disabled,	the	cache	files	are	not	read	or	written.	Default	is	enabled.

Enable	Gravatar

Shows	the	Gravatar	image	of	the	author	of	the	commit	in	Log	Dialog.
The	URL	is	customizable	so	you	may	specify	more	options
supported	by	the	server,	or	use	your	own	avatar	server.	The	default
URL	is	http://www.gravatar.com/avatar/%HASH%?d=identicon
Currently,	the	supported	parameter	is	%HASH%,	which	is	the	MD5	email
hash.	To	specify	a	default	image,	add	d=	parameter,	e.g.
http://www.gravatar.com/avatar/%HASH%?d=identicon	See	Gravatar:
Image	Requests	for	a	list	of	parameters.

Draw	tag/branch	labels	on	right	side

Shows	tag/branch	labels	after	the	commit	message.

Display	branch	revision	number

Displays	for	every	selected	commit	a	so	called	"branch	revision
number"	in	the	commit	message	field	of	the	Log	Dialog.	The	branch
revision	number	is	calculated	by	calling	git	rev-list	--count	--
first-parent	[SHA1]	and	represents	the	number	of	commits
between	the	beginning	of	time	and	the	selected	commit.	This
number	is	NOT	guaranteed	to	be	unique,	especially	if	you	alter	the
history	(e.g.,	using	rebase)	or	use	several	branches	at	the	same

http://en.gravatar.com/site/implement/images/

time.	It	can	be	seen	"kinda	unique"	per	branch	in	case	you	don't	alter
its	history	(e.g.	by	rebasing,	resetting)	and	only	commit	or	merge
other	branches	on	it.	This	number	is	only	displayed	for	first-parent
commits	and	not	for	commits	on	non-fast-forward	merges	(here
duplicate	numbers	could	occur).	See
https://gcc.gnu.org/ml/gcc/2015-08/msg00148.html	and
https://gitlab.com/tortoisegit/tortoisegit/merge_requests/1	for	more
details.

Show	describe	in	log

Shows	describe	above	commit	message	in	in	Log	dialog.	For
example,	v0.21.0-589-gdeadc43	refers	to	the	commit	deadc43	that	is
589	commits	ahead	the	tag	v0.21.0.	Note:	Describe	may	take	longer
to	run	if	the	commit	is	far	ahead	away	from	a	tag.

Describe	strategy

Determine	reference	lookup	strategy:	Available	options:	Annotated
tags,	All	tags,	All	refs.	Default	strategy	is	annotated	tags	only.	If	your
repository	uses	lightweight	tags	to	mark	releases,	choose	All	tags.

Describe	Abbreviated	size

Number	of	chars	of	the	abbreviated	commit	id	to	show	in	describe.
Default	is	7.

Describe	Always	show	long	format

Whether	to	use	the	long	format	even	when	a	shorter	name	could	be
used.	For	example,	when	the	commit	g28f087c	has	tag	v0.21.0,	it	still
shows	long	format	v0.21.0-0-g28f087c	instead	of	just	v0.21.0.

2.36.1.4.	TortoiseGit	Dialog	Settings	2

Figure	2.73.	The	Settings	Dialog,	Dialogs	Page	2

https://gcc.gnu.org/ml/gcc/2015-08/msg00148.html
https://gitlab.com/tortoisegit/tortoisegit/merge_requests/1

This	dialog	allows	you	to	configure	some	more	of	TortoiseGit's	dialogs
the	way	you	like	them.

Git.exe	Progress	Dialog

TortoiseGit	can	automatically	close	all	progress	dialogs	when	the
action	is	finished	without	error.	This	setting	allows	you	to	select	the
conditions	for	closing	the	dialogs.	The	default	(recommended)
setting	is	Close	manually	which	allows	you	to	review	all	messages
and	check	what	has	happened.	However,	you	may	decide	that	you
want	to	ignore	some	types	of	message	and	have	the	dialog	close
automatically	if	there	are	no	critical	changes.

Auto-close	if	no	further	options	are	available	will	close	the	dialog	if
git.exe	exited	cleanly	(i.e.	no	error	occurred)	and	no	further	options

are	presented	in	the	progress	dialog.

Auto-close	if	no	errors	always	closes	the	dialog	if	git.exe	exited	with
0	error	code.

Use	recycle	bin	when	reverting

When	you	revert	local	modifications,	your	changes	are	discarded.
TortoiseGit	gives	you	an	extra	safety	net	by	sending	the	modified	file
to	the	recycle	bin	before	bringing	back	the	pristine	copy.	If	you	prefer
to	skip	the	recycle	bin,	uncheck	this	option.

Confirm	to	kill	running	git	process

When	enabled,	if	you	close	Progress	Dialog	or	Sync	Dialog	with	a
running	git	process,	you	will	be	asked	for	confirmation	before	killing
it.	This	avoids	closing	the	dialog	by	accident	that	kills	running	git
process.

Randomize	Sync	Dialog	startup	position

When	enabled,	the	startup	position	of	Sync	Dialog	will	be
randomized.	If	you	open	many	Sync	Dialogs	and	press	pull	button	at
the	same	time,	you	may	easily	press	the	pull	button	in	any	previous
Sync	Dialog	if	it	finishes	and	becomes	foreground.

Hide	unchanged	refs	in	Ref	Compare	List

When	enabled,	unchanged	refs	will	not	be	shown	in	Ref	Compare
List,	so	you	can	focus	on	changed	refs.	Currently,	this	list	is	in	Sync
Dialog	Ref	List	tab.

Show	git.exe	execution	timings	and	timestamp

When	enabled,	git.exe	execution	timings	and	timestamp	will	be
appended	at	the	end	of	progress	message.

Sort	tag	list	in	reversed	order

When	enabled,	tag	list	is	sorted	in	reversed	order.	It	is	because
newer	versions	are	more	useful.	e.g.	Export	Dialog	allows	to	select
the	latest	tag	when	this	option	is	enabled.

Use	auto-completion	of	file	paths	and	keywords

The	commit	dialog	includes	a	facility	to	parse	the	list	of	filenames
being	committed.	When	you	type	the	first	3	letters	of	an	item	in	the
list,	the	auto-completion	box	pops	up,	and	you	can	press	Enter	to
complete	the	filename.	Check	the	box	to	enable	this	feature.

Timeout	in	seconds	to	stop	the	auto-completion	parsing

The	auto-completion	parser	can	be	quite	slow	if	there	are	a	lot	of
large	files	to	check.	This	timeout	stops	the	commit	dialog	being	held
up	for	too	long.	If	you	are	missing	important	auto-completion
information,	you	can	extend	the	timeout.

Max.	items	to	keep	in	the	log	message	history

When	you	type	in	a	log	message	in	the	commit	dialog,	TortoiseGit
stores	it	for	possible	re-use	later.	By	default	it	will	keep	the	last	25
log	messages	for	each	repository,	but	you	can	customize	that
number	here.	If	you	have	many	different	repositories,	you	may	wish
to	reduce	this	to	avoid	filling	your	registry.

Note	that	this	setting	applies	only	to	messages	that	you	type	in	on
this	computer.	It	has	nothing	to	do	with	the	log	cache.

Select	items	automatically

The	normal	behaviour	in	the	commit	dialog	is	for	all	modified
(versioned)	items	to	be	selected	for	commit	automatically.	If	you
prefer	to	start	with	nothing	selected	and	pick	the	items	for	commit
manually,	uncheck	this	box.

2.36.1.5.	TortoiseGit	Dialog	Settings	3

Figure	2.74.	The	Settings	Dialog,	Dialogs	3	Page

This	dialog	allows	you	to	configure	some	of	TortoiseGit's	dialogs	the	way
you	like	them.	This	third	page	mainly	affects	the	Commit	dialog	and	the
settings	which	are	stored	in	git	config	files.

Important

If	you	have	problems	entering/storing	data	please	see
Section	2.36.6.1,	“The	hierarchical	git	configuration”.

Language

TortoiseGit	can	use	spell	checker	modules	which	are	also	used	by
OpenOffice	and	Mozilla.	If	you	have	those	installed	this	property	will
determine	which	spell	checker	to	use,	i.e.	in	which	language	the	log
messages	for	your	project	should	be	written.	The

tgit.projectlanguage	config	key	sets	the	language	module	the	spell
checking	engine	should	use	when	you	enter	a	log	message.	You	can
find	the	values	for	your	language	on	this	page:	MSDN:	Language
Identifiers	.

Enter	this	value	in	decimal.	For	example	English	(US)	can	be
entered	as	1033.

Use	-1	to	disable	the	spell	checker.

Limit

tgit.logminsize	sets	the	minimum	length	of	a	log	message	for	a
commit.	If	you	enter	a	shorter	message	than	specified	here,	the
commit	button	is	disabled.	This	feature	is	very	useful	for	reminding
you	to	supply	a	proper	descriptive	message	for	every	commit.	If	this
property	is	not	set,	or	the	value	is	zero,	empty	log	messages	are
allowed.

Border

tgit.logwidthmarker	is	used	with	projects	which	require	log
messages	to	be	formatted	with	some	maximum	width	(typically	72
characters)	before	a	line	break.	Setting	this	property	to	a	non-zero
will	place	a	marker	to	indicate	the	maximum	width	and	performs	line
wrapping.	Note:	this	feature	will	only	work	correctly	if	you	have	a
fixed-width	font	selected	for	log	messages.

Warn	on	Signed-Off-By	on	commit

tgit.warnnosignedoffby	is	used	with	projects	which	require	Signed-
off-by	line	in	commit	messages.

Overlay	Icon

tgit.icon	is	used	with	projects	which	wish	to	show	the	logo	on	the
taskbar	for	easier	identification	when	multiple	TortoiseGit	application
instances	of	different	projects	are	running	at	the	same	time.

http://msdn2.microsoft.com/en-us/library/ms776260.aspx

If	icon	is	not	16x16	px	in	size,	it	will	be	automatically	scaled.
Supported	formats	are	ico,	png,	jpg,	gif,	bmp.	If	no	icon	is	included
by	that	project,	you	may	find	one	on	you	own,	put	it	in	.git	folder	and
set	the	relative	path	in	local	config.	e.g.	.git/logo.ico	If	you	want	to
disable	it,	you	may	set	tgit.icon	as	an	empty	string	in	local	config.	It
will	fallback	to	a	color	block	when	disabled	or	load	failed.	Note	that
the	advanced	option	GroupTaskbarIconsPerRepo	should	be	3	or	4	in
order	to	use	this	function.

2.36.1.6.	TortoiseGit	Colour	Settings

Figure	2.75.	The	Settings	Dialog,	Colours	Page

This	dialog	allows	you	to	configure	the	text	colours	used	in	TortoiseGit's

dialogs	the	way	you	like	them.

Possible	or	real	conflict	/	obstructed

A	conflict	has	occurred	during	update,	or	may	occur	during	merge.
Update	is	obstructed	by	an	existing	unversioned	file/folder	of	the
same	name	as	a	versioned	one.

This	colour	is	also	used	for	error	messages	in	the	progress	dialogs.

Added	files

Items	added	to	the	repository.

Missing	/	deleted	/	replaced

Items	deleted	from	the	repository,	missing	from	the	working	copy,	or
deleted	from	the	working	tree	and	replaced	with	another	file	of	the
same	name.

Merged

Changes	from	the	repository	successfully	merged	into	the	working
tree	without	creating	any	conflicts.

Modified	/	copied

Add	with	history,	or	paths	copied	in	the	repository.	Also	used	in	the
log	dialog	for	entries	which	include	copied	items.

Note	node

A	reference	which	points	to	git	notes,	under	refs/notes	namespace.

Use	local	branch	color	for	current	branch

In	revision	graph,	use	local	branch	color	for	current	branch.	You	may
not	want	to	emphasize	current	branch	of	a	local	repository	in	revision
graph.

2.36.1.7.	TortoiseGit	Colour	Settings	2

Figure	2.76.	The	Settings	Dialog,	Colours	Page

This	dialog	allows	you	to	configure	the	text	colours	used	in	TortoiseGit's
dialogs	the	way	you	like	them.

2.36.1.8.	TortoiseGit	Colour	Settings	3

Figure	2.77.	The	Settings	Dialog,	Colours	Page

This	dialog	allows	you	to	configure	the	line	colours,	line	width	and	node
size	in	the	graph	column	used	in	TortoiseGit's	log	dialog	the	way	you	like
them.

2.36.2.	Icon	Overlay	Settings

Figure	2.78.	The	Settings	Dialog,	Icon	Overlays	Page

This	page	allows	you	to	choose	the	items	for	which	TortoiseGit	will
display	icon	overlays.

By	default,	overlay	icons	and	context	menus	will	appear	in	all	open/save
dialogs	as	well	as	in	Windows	Explorer.	If	you	want	them	to	appear	only
in	Windows	Explorer,	check	the	Show	overlays	and	context	menu	only	in
explorer	box.

Ignored	items	and	Unversioned	items	are	not	usually	given	an	overlay.	If
you	want	to	show	an	overlay	in	these	cases,	just	check	the	boxes.

You	can	also	choose	to	mark	folders	as	modified	if	they	contain
unversioned	items.	This	could	be	useful	for	reminding	you	that	you	have
created	new	files	which	are	not	yet	versioned.	This	option	is	only
available	when	you	use	the	default	status	cache	option	(see	below).

Since	it	takes	quite	a	while	to	fetch	the	status	of	a	working	tree,
TortoiseGit	uses	a	cache	to	store	the	status	so	the	explorer	doesn't	get

hogged	too	much	when	showing	the	overlays.	You	can	choose	which
type	of	cache	TortoiseGit	should	use	according	to	your	system	and
working	tree	size	here:

Default

Caches	all	status	information	in	a	separate	process
(TGitCache.exe).	That	process	watches	all	drives	for	changes	and
fetches	the	status	again	if	files	inside	a	working	tree	get	modified.
The	process	runs	with	the	least	possible	priority	so	other	programs
don't	get	hogged	because	of	it.	That	also	means	that	the	status
information	is	not	real	time	but	it	can	take	a	few	seconds	for	the
overlays	to	change.

Advantage:	the	overlays	show	the	status	recursively,	i.e.	if	a	file	deep
inside	a	working	tree	is	modified,	all	folders	up	to	the	working	tree
root	will	also	show	the	modified	overlay.	And	since	the	process	can
send	notifications	to	the	shell,	the	overlays	on	the	left	tree	view
usually	change	too.

Disadvantage:	the	process	runs	constantly,	even	if	you're	not
working	on	your	projects.	It	also	uses	around	10-50	MB	of	RAM
depending	on	number	and	size	of	your	working	trees.	From	version
1.7.0	to	1.7.12	TGitCache	did	not	check	the	contents	of	the	files,	it
just	checked	the	last	modification	time	against	the	time	stored	in	the
git	index	file.	Starting	from	1.7.13	TGitCache	now	also	checks	the
contents	of	the	files	by	default.	If	you	want	to	restore	the	old
behavior,	you	can	disable	checking	the	contents	via	the	Settings
dialog	->	Advanced	and	set	TGitCacheCheckContentMaxSize	to	"0".

Shell	Extended

Caching	is	done	directly	inside	the	shell	extension	dll.	Each	time	you
navigate	to	another	folder,	the	status	information	is	fetched	again
(recursively).

Advantage:	can	show	the	status	in	real	time.

Disadvantage:	only	one	folder	is	cached	and	for	big	working	trees,	it
can	take	much	more	time	to	show	a	folder	in	explorer	than	with	the
default	cache	or	with	shell	mode.	The	Shell	variant	only	shows
differences	of	the	filesystem	to	the	git	index	(does	not	include
revision	specific	information,	e.g.	if	you	remove	a	file	from	the	index
the	file	will	show	up	as	unversioned,	but	with	TGitCache	the	file	will
show	up	as	deleted	until	you	commit	this	change).

Shell

Caching	is	done	directly	inside	the	shell	extension	dll,	but	only	for	the
currently	visible	folder.	Each	time	you	navigate	to	another	folder,	the
status	information	is	fetched	again.

Advantage:	needs	only	very	little	memory	(around	1	MB	of	RAM)	and
can	show	the	status	in	real	time.

Disadvantage:	Since	only	one	folder	is	cached,	the	overlays	don't
show	the	status	recursively.	For	big	working	trees,	it	can	take	more
time	to	show	a	folder	in	explorer	than	with	the	default	cache.	The
Shell	variant	only	shows	differences	of	the	filesystem	to	the	git	index
(does	not	include	revision	specific	information,	e.g.	if	you	remove	a
file	from	the	index	the	file	will	show	up	as	unversioned,	but	with
TGitCache	the	file	will	show	up	as	deleted	until	you	commit	this
change).

None

With	this	setting,	the	TortoiseGit	does	not	fetch	the	status	at	all	in
Explorer.	Because	of	that,	files	don't	get	an	overlay	and	folders	only
get	a	'normal'	overlay	if	they're	versioned.	No	other	overlays	are
shown,	and	no	extra	columns	are	available	either.

Advantage:	uses	absolutely	no	additional	memory	and	does	not	slow
down	the	Explorer	at	all	while	browsing.

Disadvantage:	Status	information	of	files	and	folders	is	not	shown	in
Explorer.	To	see	if	your	working	trees	are	modified,	you	have	to	use

the	“Check	for	modifications”	dialog.

By	default,	overlay	icons	and	context	menus	will	appear	in	all	open/save
dialogs	as	well	as	in	Windows	Explorer.	If	you	want	them	to	appear	only
in	Windows	Explorer,	check	the	Show	overlays	and	context	menu	only	in
explorer	box.

You	can	also	choose	to	mark	folders	as	modified	if	they	contain
unversioned	items.	This	could	be	useful	for	reminding	you	that	you	have
created	new	files	which	are	not	yet	versioned.	This	option	is	only
available	when	you	use	the	default	status	cache	option	(see	below).

The	next	group	allows	you	to	select	which	classes	of	storage	should
show	overlays.	By	default,	only	hard	drives	are	selected.	You	can	even
disable	all	icon	overlays,	but	where's	the	fun	in	that?

Network	drives	can	be	very	slow,	so	by	default	icons	are	not	shown	for
working	trees	located	on	network	shares.

USB	Flash	drives	appear	to	be	a	special	case	in	that	the	drive	type	is
identified	by	the	device	itself.	Some	appear	as	fixed	drives,	and	some	as
removable	drives.

The	Exclude	Paths	are	used	to	tell	TortoiseGit	those	paths	for	which	it
should	not	show	icon	overlays	and	status	columns.	This	is	useful	if	you
have	some	very	big	working	trees	containing	only	libraries	which	you
won't	change	at	all	and	therefore	don't	need	the	overlays,	or	if	you	only
want	TortoiseGit	to	look	in	specific	folders.

Any	path	you	specify	here	is	assumed	to	apply	recursively,	so	none	of	the
child	folders	will	show	overlays	either.	If	you	want	to	exclude	only	the
named	folder,	append	?	after	the	path.

The	same	applies	to	the	Include	Paths.	Except	that	for	those	paths	the
overlays	are	shown	even	if	the	overlays	are	disabled	for	that	specific
drive	type,	or	by	an	exclude	path	specified	above.

Users	sometimes	ask	how	these	three	settings	interact.	For	any	given
path	check	the	include	and	exclude	lists,	seeking	upwards	through	the

directory	structure	until	a	match	is	found.	When	the	first	match	is	found,
obey	that	include	or	exclude	rule.	If	there	is	a	conflict,	a	single	directory
spec	takes	precedence	over	a	recursive	spec,	then	inclusion	takes
precedence	over	exclusion.

An	example	will	help	here:

Exclude:

C:

C:\develop\?

C:\develop\tgit\obj

C:\develop\tgit\bin

Include:

C:\develop

	 	

These	settings	disable	icon	overlays	for	the	C:	drive,	except	for
c:\develop.	All	projects	below	that	directory	will	show	overlays,	except
the	c:\develop	folder	itself,	which	is	specifically	ignored.	The	high-churn
binary	folders	are	also	excluded.

TGitCache.exe	also	uses	these	paths	to	restrict	its	scanning.	If	you	want
it	to	look	only	in	particular	folders,	disable	all	drive	types	and	include	only
the	folders	you	specifically	want	to	be	scanned.

Exclude	SUBST	Drives

It	is	often	convenient	to	use	a	SUBST	drive	to	access	your
working	trees,	e.g.	using	the	command

subst	T:	C:\TortoiseGit\doc

However	this	can	cause	the	overlays	not	to	update,	as
TGitCache	will	only	receive	one	notification	when	a	file
changes,	and	that	is	normally	for	the	original	path.	This
means	that	your	overlays	on	the	subst	path	may	never	be
updated.

An	easy	way	to	work	around	this	is	to	exclude	the	original
path	from	showing	overlays,	so	that	the	overlays	show	up	on
the	subst	path	instead.

Sometimes	you	will	exclude	areas	that	contain	working	trees,	which
saves	TGitCache	from	scanning	and	monitoring	for	changes,	but	you	still
want	a	visual	indication	that	a	folder	contains	a	working	tree.	The	Show
excluded	folders	as	'normal'	checkbox	allows	you	to	do	this.	With	this
option,	working	tree	folders	in	any	excluded	area	(drive	type	not	checked,
or	specifically	excluded)	will	show	up	as	normal	and	up-to-date,	with	a
green	check	mark.	This	reminds	you	that	you	are	looking	at	a	working
tree,	even	though	the	folder	overlays	may	not	be	correct.	Files	do	not	get
an	overlay	at	all.	Note	that	the	context	menus	still	work,	even	though	the
overlays	are	not	shown.

As	a	special	exception	to	this,	drives	A:	and	B:	are	never	considered	for
the	Show	excluded	folders	as	'normal'	option.	This	is	because	Windows
is	forced	to	look	on	the	drive,	which	can	result	in	a	delay	of	several
seconds	when	starting	Explorer,	even	if	your	PC	does	have	a	floppy
drive.

2.36.2.1.	Icon	Set	Selection

Figure	2.79.	The	Settings	Dialog,	Icon	Set	Page

You	can	change	the	overlay	icon	set	to	the	one	you	like	best.	Especially
you	can	disable	overlays	which	you	do	not	need	like	assume-valid	and
skip-worktree,	however	other	Tortoise*	tools	use	these	two	for	different
purposes.	Note	that	if	you	change	overlay	set,	you	may	have	to	restart
your	computer	for	the	changes	to	take	effect.

2.36.2.2.	Enabled	Overlay	Handlers

Figure	2.80.	The	Settings	Dialog,	Icon	Handlers	Page

Because	the	number	of	overlays	available	is	severely	restricted,	you	can
choose	to	disable	some	handlers	to	ensure	that	the	ones	you	want	will	be
loaded.	Because	TortoiseGit	uses	the	common	TortoiseOverlays
component	which	is	shared	with	other	Tortoise	clients	(e.g.	TortoiseSVN,
TortoiseCVS,	TortoiseHg)	this	setting	will	affect	those	clients	too.

Windows	explorer	can	just	handle	a	fixed	number	different	overlay
providers	(15)	and	TortoiseGit	is	using	6	of	these	(these	6	are	handled	by
TortoiseOverlays	and,	thus,	shared	with	TortoiseSVN	and	TortoiseCVS).
If	the	TortoiseGit	icons	are	not	correctly	displayed	this	is	likely	caused	by
other	programs	which	provide	overlays	(like	Dropbox,	Owncloud,
BoxSync	and	various	others)	and	register	with	a	higher	priority.	Use	the
Start	registry	editor	button	for	opening	the	registry	editor	at	the	key	where
the	overlay	handlers	are	registered.	Just	delete	or	rename	the	ones	you
don't	need	OR	prepend	the	Tortoise	ones	with	a	double	quote	or	space
characters	so	that	those	come	first	in	the	list.	For	more	information
please	see	TortoiseGit	FAQ.

https://tortoisegit.org/support/faq/#ovlnotshowing

2.36.3.	Network	Settings

Figure	2.81.	The	Settings	Dialog,	Network	Page

Here	you	can	configure	your	proxy	server,	if	you	need	one	to	get	through
your	company's	firewall.

The	proxy	server	settings	here	do	only	affect	Git	for	Windows	(i.e.,	http
and	https	protocols).	If	you	are	using	OpenSSH/PuTTY/Tortoise(Git)Plink
you	have	to	set	up	the	proxy	server	settings	there	separately.	In	order	to
do	this,	you	need	the	main	PuTTY	tool,	which	is	not	shipped	with
TortoiseGit.	Preferably	you	store	the	proxy	settings	to	the	"Default
Settings"	configuration	there,	so	that	it	is	applied	by	default.

If	you	need	to	set	up	per-repository	proxy	settings,	you	will	need	to	use
the	Git	config	file	to	configure	this.	Consult	Section	G.3.27,	“git-config(1)”
for	more	details.

You	can	also	specify	which	program	TortoiseGit	should	use	to	establish	a

secure	connection	to	a	git	repository	which	is	access	using	ssh.	We
recommend	that	you	use	TortoiseGitPlink.exe.	This	is	a	version	of	the
popular	Plink	program,	and	is	included	with	TortoiseGit,	but	it	is	compiled
as	a	Windowless	app,	so	you	don't	get	a	DOS	box	popping	up	every	time
you	authenticate.

You	must	specify	the	full	path	to	the	executable.	For	TortoiseGitPlink.exe
this	is	the	standard	TortoiseGit	bin	directory.	Use	the	 Browse 	button	to
help	locate	it,	e.g.:

"C:\Program	Files\TortoiseGit\bin\TortoiseGitPlink.exe"

Tip

If	you	want	to	use	OpenSSH	shipped	by	Git	for
Windows/msysGit	just	enter	ssh.exe.

One	side-effect	of	not	having	a	window	is	that	there	is	nowhere	for	any
error	messages	to	go,	so	if	authentication	fails	you	will	simply	get	a
message	saying	something	like	“Unable	to	write	to	standard	output”.	For
this	reason	we	recommend	that	you	first	set	up	using	standard	Plink.
When	everything	is	working,	you	can	use	TortoiseGitPlink	with	exactly	the
same	parameters.

TortoiseGitPlink	does	not	have	any	documentation	of	its	own	because	it
is	just	a	minor	variant	of	Plink.	Find	out	about	command	line	parameters
from	the	PuTTY	website

To	avoid	being	prompted	for	a	password	repeatedly,	you	might	also
consider	using	a	password	caching	tool	such	as	Pageant.	This	is	also
available	for	download	from	the	PuTTY	website	or	included	in	the
TortoiseGit	package.	(Also	see	Section	2.1.5,	“Authentication”.)

Finally,	setting	up	SSH	on	clients	is	a	non-trivial	process	which	is	beyond
the	scope	of	this	help	file.	However,	you	can	find	a	guide	in	the
TortoiseGit	FAQ	listed	under	Appendix	F,	Tips	and	tricks	for	SSH/PuTTY.

http://www.chiark.greenend.org.uk/~sgtatham/putty/

2.36.3.1.	Email	settings

Figure	2.82.	The	Settings	Dialog,	email	settings

This	page	allows	you	to	specify	configure	how	mails	should	be	send.

SMTP,	directly	to	destination	server

When	this	option	is	selected,	TortoiseGit	directly	connects	to	the
SMTP	server(s)	(on	port	25)	which	is/are	responsible	for	the	specific
destination	email-address(es).	This	is	the	default	for	TortoiseGit
(unless	some	different	method	is	configured).

Important

This	might	be	problematic	if	your	ISP	blocks	outgoing
SMTP	connections	(port	25)	or	you	have	a	dialup	internet
connection.	In	the	ladder	case	some	destination	MTAs

might	not	accept	your	mails	or	mark	them	as	SPAM.

MAPI

When	this	option	is	selected,	TortoiseGit	uses	the	Microsoft
Messaging	API	(MAPI)	for	sending	mails.	For	this,	you	need	a	MAPI
capable	mail	client	(e.g.	Thunderbird	or	Outlook).

Important

If	you	don't	send	patches	as	attachments,	you	might
need	to	make	sure	that	no	auto	line	wrapping	takes
place.	For	Thunderbird	there	is	an	add-on	(Toggle	Word
Wrap)	available.

use	configured	server

This	is	the	recommended	way	for	sending	mails.	Just	enter	the	same
data	as	in	your	mail	tools	(MUA).

2.36.4.	External	Program	Settings

Here	you	can	define	your	own	programs	that	TortoiseGit	should	use.	The
default	setting	is	to	use	tools	which	are	installed	alongside	TortoiseGit.

Read	Section	2.17.6,	“External	Diff/Merge	Tools”	for	a	list	of	some	of	the
external	diff/merge	programs	that	people	are	using	with	TortoiseGit.

2.36.4.1.	Diff	Viewer

Figure	2.83.	The	Settings	Dialog,	Diff	Viewer	Page

https://addons.mozilla.org/de/thunderbird/addon/toggle-word-wrap/

An	external	diff	program	may	be	used	for	comparing	different	revisions	of
files.	The	external	program	will	need	to	obtain	the	filenames	from	the
command	line,	along	with	any	other	command	line	options.	TortoiseGit
uses	substitution	parameters	prefixed	with	%.	When	it	encounters	one	of
these	it	will	substitute	the	appropriate	value.	The	order	of	the	parameters
will	depend	on	the	Diff	program	you	use.

%base

The	original	file	without	your	changes

%bname

The	window	title	for	the	base	file

%mine

Your	own	file,	with	your	changes

%yname

The	window	title	for	your	file

%bpath

Full	path	to	the	original	file

%ypath

Full	path	to	your	file

%brev

The	revision	of	the	original	file,	if	available

%yrev

The	revision	of	the	second	file,	if	available

The	window	titles	are	not	pure	filenames.	TortoiseGit	treats	that	as	a
name	to	display	and	creates	the	names	accordingly.	So	e.g.	if	you're
doing	a	diff	from	a	file	in	revision	123	with	a	file	in	your	working	tree,	the
names	will	be	filename:	revision	123	and	filename:	working	tree

For	example,	with	ExamDiff	Pro:

C:\Path-To\ExamDiff.exe	%base	%mine	--left_display_name:%bname

				--right_display_name:%yname

or	with	KDiff3:

C:\Path-To\kdiff3.exe	%base	%mine	--L1	%bname	--L2	%yname

or	with	WinMerge:

C:\Path-To\WinMerge.exe	-e	-ub	-dl	%bname	-dr	%yname	%base	%mine

or	with	Araxis:

C:\Path-To\compare.exe	/max	/wait	/title1:%bname	/title2:%yname

				%base	%mine

If	you	have	configured	an	alternate	diff	tool,	you	can	access
TortoiseGitMerge	and	the	third	party	tool	from	the	context	menus.
Context	menu 	→	 Diff 	uses	the	primary	diff	tool,	and	Shift+
Context	menu 	→	 Diff 	uses	the	secondary	diff	tool.

A	viewer	program	for	unified-diff	files	(GNU	diff	or	patch	files).	No
parameters	are	required.	The	Default	option	is	to	check	for	a	file
association	for	.diff	files,	and	then	for	.txt	files.	If	you	don't	have	a	viewer
for	.diff	files,	you	will	most	likely	get	NotePad.

The	original	Windows	NotePad	program	does	not	behave	well	on	files
which	do	not	have	standard	CR-LF	line-endings.	Since	most	unified	diff
files	have	pure	LF	line-endings,	they	do	not	view	well	in	NotePad.
However,	you	can	use	a	free	NotePad	replacement	Notepad2	(this	is	also
shipped	with	TortoiseGit)	which	not	only	displays	the	line-endings
correctly,	but	also	colour	codes	the	added	and	removed	lines.

2.36.4.2.	Merge	Tool

Figure	2.84.	The	Settings	Dialog,	Merge	Tool	Page

http://www.flos-freeware.ch/notepad2.html

An	external	merge	program	used	to	resolve	conflicted	files.	Parameter
substitution	is	used	in	the	same	way	as	with	the	Diff	Program.

%base

the	original	file	without	your	or	the	others	changes

%bname

The	window	title	for	the	base	file

%mine

your	own	file,	with	your	changes

%yname

The	window	title	for	your	file

%theirs

the	file	as	it	is	in	the	repository

%tname

The	window	title	for	the	file	in	the	repository

%merged

the	conflicted	file,	the	result	of	the	merge	operation

%mname

The	window	title	for	the	merged	file

For	example,	with	Perforce	Merge:

C:\Path-To\P4Merge.exe	%base	%theirs	%mine	%merged

or	with	KDiff3:

C:\Path-To\kdiff3.exe	%base	%mine	%theirs	-o	%merged

				--L1	%bname	--L2	%yname	--L3	%tname

or	with	Araxis:

C:\Path-To\compare.exe	/max	/wait	/3	/title1:%tname	/title2:%bname

				/title3:%yname	%theirs	%base	%mine	%merged	/a2

or	with	WinMerge	(2.8	or	later):

C:\Path-To\WinMerge.exe	%merged

2.36.4.3.	Diff/Merge	Advanced	Settings

Figure	2.85.	The	Settings	Dialog,	Diff/Merge	Advanced	Dialog

In	the	advanced	settings,	you	can	define	a	different	diff	and	merge
program	for	every	file	extension.	For	instance	you	could	associate
Photoshop	as	the	“Diff”	Program	for	.jpg	files	:-)

To	associate	using	a	file	extension,	you	need	to	specify	the	extension.
Use	.bmp	to	describe	Windows	bitmap	files.

2.36.4.4.	Alternative	editor

Figure	2.86.	The	Settings	Dialog,	Alternative	editor	Page

The	original	Windows	NotePad	program	does	not	behave	well	on	files
which	do	not	have	standard	CR-LF	line-endings.	However,	a	lot	of	git
configuration	files	do	not	have	a	standard	CR-LF	line-ending.	Because	of
this	TortoiseGit	uses	a	free	(shipped)	NotePad	replacement	Notepad2
which	displays	the	line-endings	correctly	by	default.

2.36.5.	Saved	Data	Settings

Figure	2.87.	The	Settings	Dialog,	Saved	Data	Page

http://www.flos-freeware.ch/notepad2.html

For	your	convenience,	TortoiseGit	saves	many	of	the	settings	you	use,
and	remembers	where	you	have	been	lately.	If	you	want	to	clear	out	that
cache	of	data,	you	can	do	it	here.

URL	history

Whenever	you	checkout	a	working	tree,	merge	changes	or	use	the
repository	browser,	TortoiseGit	keeps	a	record	of	recently	used	URLs
and	offers	them	in	a	combo	box.	Sometimes	that	list	gets	cluttered
with	outdated	URLs	so	it	is	useful	to	flush	it	out	periodically.

If	you	want	to	remove	a	single	item	from	one	of	the	combo	boxes
you	can	do	that	in-place.	Just	click	on	the	arrow	to	drop	the	combo
box	down,	move	the	mouse	over	the	item	you	want	to	remove	and
type	Shift+Del.

Log	messages	(Input	dialog)

TortoiseGit	stores	recent	commit	log	messages	that	you	enter.	These
are	stored	per	repository,	so	if	you	access	many	repositories	this	list
can	grow	quite	large.

Log	messages	(Show	log	dialog)

TortoiseGit	caches	log	messages	fetched	by	the	Show	Log	dialog	to
save	time	when	you	next	show	the	log.	If	someone	else	edits	a	log
message	and	you	already	have	that	message	cached,	you	will	not
see	the	change	until	you	clear	the	cache.	Log	message	caching	is
enabled	on	the	Log	Cache	tab.

Dialog	sizes	and	positions

Many	dialogs	remember	the	size	and	screen	position	that	you	last
used.

Action	log

TortoiseGit	keeps	a	log	of	everything	written	to	its	progress	dialogs.
This	can	be	useful	when,	for	example,	you	want	to	check	what
happened	in	a	recent	update	command.

The	log	file	is	limited	in	length	and	when	it	grows	too	big	the	oldest
content	is	discarded.	By	default	4000	lines	are	kept,	but	you	can
customize	that	number.

From	here	you	can	view	the	log	file	content,	and	also	clear	it.

2.36.6.	Git

2.36.6.1.	The	hierarchical	git	configuration

Git	uses	the	concept	of	a	hierarchical	configuration	(cf.	Section	G.3.27,
“git-config(1)”).	I.e.	there	are	multiple	levels;	settings	in	higher	levels
override	values	in	lower	levels.	The	Effective	tab	shows	you	the	effective
values	for	the	current	scope	(read-only).

Select	any	level	(e.g.	Local	-	the	current	repository	settings	stored	locally
in	.git/config,	Project	-	settings	for	the	current	repository	stored	within	the
repository	in	/.tgitconfig,	Global	-	settings	for	the	current	user,	System	-
settings	for	all	users	of	the	system)	to	see	the	values	stored	there.

In	order	to	change	settings	select	a	level,	enter	the	values,	select	where
to	store	to	and	click	on	 Apply .

Caution

If	you	want	to	inherit	a	value	of	a	higher	level	don't	leave	a
textbox	empty	(this	means	than	an	empty	string	will	be
stored,	which	might	evaluate	to	true),	select	Inherit	instead.

2.36.6.2.	Git	Config

Figure	2.88.	The	Settings	Dialog,	Git

Set	git	basic	configuration

Name	and	Email	are	required	for	git	to	operate	correctly.

AutoCrlf	If	true,	makes	git	convert	CRLF	at	the	end	of	lines	in	text	files	to
LF	when	reading	from	the	filesystem,	and	convert	in	reverse	when	writing
to	the	filesystem.	The	variable	can	be	set	to	input,	in	which	case	the
conversion	happens	only	while	reading	from	the	filesystem	but	files	are
written	out	with	LF	at	the	end	of	lines.	A	file	is	considered	"text"	(i.e.	be
subjected	to	the	autocrlf	mechanism)	based	on	the	file's	crlf	attribute,	or	if
crlf	is	unspecified,	based	on	the	file's	contents.

SafeCrlf	If	true,	makes	git	check	if	converting	CRLF	as	controlled	by
core.autocrlf	is	reversible.	Git	will	verify	if	a	command	modifies	a	file	in
the	work	tree	either	directly	or	indirectly.	For	example,	committing	a	file
followed	by	checking	out	the	same	file	should	yield	the	original	file	in	the
work	tree.	If	this	is	not	the	case	for	the	current	setting	of	core.autocrlf,	git
will	reject	the	file.	The	variable	can	be	set	to	"warn",	in	which	case	git	will
only	warn	about	an	irreversible	conversion	but	continue	the	operation.

QuotePath	Controls	the	core.quotepath	setting	which	might	be	interesting
when	you	have	non	ASCII	filenames:	See	Section	G.3.27,	“git-config(1)”.

Important

If	you	have	problems	entering/storing	data	please	see
Section	2.36.6.1,	“The	hierarchical	git	configuration”.

2.36.6.3.	Remote

Figure	2.89.	The	Settings	Dialog,	Git,	Remote

Set	git	remote	configuration

Remote	The	name	of	the	remote,	usually	the	default	one	is	called	'origin'.

URL	The	URL	of	the	remote.	It	can	be	http	/	https	/	ssh	/	git	protocol	or
local	file	system.	Note	that	for	local	file	system,	the	path	should	use
forward	slash	'/';	and	for	absolute	path,	use	/C/Project1	for	C:\Project1.

Push	URL	The	Push	URL	of	the	remote.	It	is	for	some	cases	you	cannot
use	the	same	url	to	fetch	and	push	(for	example,	fetch	via	passwordless
git	protocol	but	push	via	ssh).	Otherwise,	leave	it	empty.	Note:	This	is	not
designed	for	forking	workflow.	For	forking	workflow,	you	should	have	2
remotes.	The	format	is	the	same	as	URL.

Putty	Key	The	putty	key	file	to	load	when	performing	network	operations.

Tag	This	sets	remote.name.tagopt	config,	which	controls	the	default	tag
fetching	behaviour	of	the	specified	remote.	Reachable:	Download	tags
that	are	reachable	from	remote	branch	heads	(default	behaviour).	None:
No	tags	are	downloaded	(--no-tags).	(git	1.9	and	later)	All:	All	tags	as	well
as	branches	are	downloaded	(--tags).	(prior	to	git	1.9)	All	tags	only:	Only
all	tags	are	downloaded	but	no	branches	are	downloaded	(--tags).	Use
case	of	All:	Always	fetch	tags	from	a	git-svn	mirror.	Subversion	tags
never	exist	on	trunk,	so	such	tags	are	not	reachable	from	branch	heads.

Push	Default	Selecting	this	means	to	always	push	to	this	remote	(cf.
Section	G.3.27,	“git-config(1)”)	Default	is	false.

Prune	This	sets	remote.name.prune	config,	which	controls	the	default
prune	option	of	remote	tracking	branches	of	the	specified	remote.	Default
is	false.

2.36.6.4.	Credential

Figure	2.90.	The	Settings	Dialog,	Git,	Credential

Set	simple	credential	helper	configuration

Advanced	This	is	used	if	the	credential	helper	configuration	does	not
match	any	simple	settings.	If	you	choose	other	than	Advanced,	except
the	corrsponding	credential.helper,	all	other	config	keys	credential.*	or
credential.*.*	are	removed.

None	No	credential	config	keys	are	in	all	config	levels.

wincred	-	this	repository	only	wincred	is	enabled	in	local	config.	This
option	is	visible	only	if	wincred	is	installed.

winstore	-	this	repository	only	winstore	is	enabled	in	local	config.	This
option	is	visible	only	if	winstore	is	installed	for	current	Windows	user.

wincred	-	current	Windows	user	wincred	is	enabled	in	global	config.	This
option	is	visible	only	if	wincred	is	installed.

winstore	-	current	Windows	user	winstore	is	enabled	in	global	config.	This
option	is	visible	only	if	winstore	is	installed	for	current	Windows	user.

wincred	-	all	Windows	users	wincred	is	enabled	in	system	config.	This
option	is	visible	only	if	wincred	is	installed.

Advanced	credential	helper	configuration

Config	type	Either	Local,	Global	or	System	config.

URL	Define	a	context-specific	configuration	based	on	URL	pattern.	By
default,	the	path	component	is	not	considered	as	a	different	context.

Helper	Select	a	credential	helper	program.	wincred	and	winstore	are
predefined	in	TortoiseGit.	It	is	possible	to	use	other	credential	helpers	or
with	extra	options.

Username	A	default	username,	if	one	is	not	provided	in	the	URL.

Use	HTTP	path	component	Also	considers	the	path	component	of	URL	to
match	the	configuration	context.

You	can	find	more	information	at	Section	G.4.3,	“gitcredentials(7)”.

2.36.7.	Client	Side	Hook	Scripts

Figure	2.91.	The	Settings	Dialog,	Hook	Scripts	Page

This	dialog	allows	you	to	set	up	hook	scripts	which	will	be	executed
automatically	when	certain	TortoiseGit	actions	are	performed	on	the	client
side.

For	various	security	and	implementation	reasons,	hook	scripts	are
defined	locally	on	a	machine,	rather	than	as	project	properties.	You
define	what	happens,	no	matter	what	someone	else	commits	to	the
repository.	Of	course	you	can	always	choose	to	call	a	script	which	is	itself
under	version	control.

One	application	for	such	hooks	might	be	to	call	a	program	like
GitWCRev.exe	(Chapter	3,	The	GitWCRev	Program)	to	update	version
numbers	after	a	commit,	and	perhaps	to	trigger	a	rebuild.

Figure	2.92.	The	Settings	Dialog,	Configure	Hook	Scripts

To	add	a	new	hook	script,	simply	click	 Add 	and	fill	in	the	details.

There	are	currently	six	types	of	hook	script	available

Start-commit

Called	before	the	commit	dialog	is	shown.	You	might	want	to	use	this
if	the	hook	modifies	a	versioned	file	and	affects	the	list	of	files	that
need	to	be	committed	and/or	commit	message.	However	you	should
note	that	because	the	hook	is	called	at	an	early	stage,	the	full	list	of
objects	selected	for	commit	is	not	available.

Pre-commit

Called	after	the	user	clicks	 OK 	in	the	commit	dialog,	and	before	the
actual	commit	begins.	This	hook	has	a	list	of	exactly	what	will	be
committed.

Post-commit

Called	after	the	commit	finished	successfully.

Pre-push

Called	before	actual	Git	push	begins.

Post-push

Called	after	pushing	finishes	(whether	successful	or	not).

Pre-rebase

Called	before	rebasing	starts	(after	clicking	on	Start	or	autostart).

A	hook	is	defined	for	a	particular	working	tree	path.	You	only	need	to
specify	the	top	level	path;	if	you	perform	an	operation	in	a	sub-folder,
TortoiseGit	will	automatically	search	upwards	for	a	matching	path.	Use	*
for	matching	all	working	trees.

Next	you	must	specify	the	command	line	to	execute,	starting	with	the
path	to	the	hook	script	or	executable.	This	could	be	a	batch	file,	an
executable	file	or	any	other	file	which	has	a	valid	windows	file
association,	eg.	a	perl	script.

The	command	line	includes	several	parameters	which	get	filled	in	by
TortoiseGit.	The	parameters	passed	depend	upon	which	hook	is	called.
Each	hook	has	its	own	parameters	which	are	passed	in	the	following
order:

Start-commit

PATH	MESSAGEFILE	CWD

Pre-commit

PATH	MESSAGEFILE	CWD

Post-commit

CWD	(commit	was	amend	(true	or	false))

Pre-push

ERROR	CWD

Post-push

ERROR	CWD

Pre-rebase

(upstream	branch)	(rebased	branch)	ERROR	CWD

The	meaning	of	each	of	these	parameters	is	described	here:

PATH

A	path	to	a	temporary	file	which	contains	all	the	paths	for	which	the
operation	was	started.	Each	path	is	on	a	separate	line	in	the	temp
file.

MESSAGEFILE

Path	to	a	file	containing	the	log	message	for	the	commit.	The	file
contains	the	text	in	UTF-8	encoding.	After	successful	execution	of
the	start-commit	and	pre-commit	hooks,	the	log	message	is	read
back,	giving	the	hook	a	chance	to	modify	it.

ERROR

Path	to	a	file	containing	the	error	message.	If	there	was	no	error,	the
file	will	be	empty.

CWD

The	current	working	directory	with	which	the	script	is	run.	This	is	set
to	the	working	tree	root.

Note	that	although	we	have	given	these	parameters	names	for
convenience,	you	do	not	have	to	refer	to	those	names	in	the	hook
settings.	All	parameters	listed	for	a	particular	hook	are	always	passed,
whether	you	want	them	or	not	;-)

If	you	want	the	Git	operation	to	hold	off	until	the	hook	has	completed,
check	Wait	for	the	script	to	finish.

Normally	you	will	want	to	hide	ugly	DOS	boxes	when	the	script	runs,	so

Hide	the	script	while	running	is	checked	by	default.

2.36.7.1.	Issue	Tracker	Integration

TortoiseGit	can	use	a	COM	plugin	to	query	issue	trackers	when	in	the
commit	dialog.	The	use	of	such	plugins	is	described	in	Section	2.35.2,
“Getting	Information	from	the	Issue	Tracker”.	If	your	system	administrator
has	provided	you	with	a	plugin,	which	you	have	already	installed	and
registered,	this	is	the	place	to	specify	how	it	integrates	with	your	working
tree.

Tip
There	is	also	a	hierarchical	git	configuration	to	associate
issue	tracker	plugin	with	your	project,	rather	than	with	to	a
specific	directory	path.	Such	settings	are	more	portable.	See
Section	2.35,	“Integration	with	Bug	Tracking	Systems	/	Issue
Trackers”	to	configure	these	settings.

Figure	2.93.	The	Settings	Dialog,	Issue	Tracker	Integration	Page

Click	on	 Add... 	to	use	the	plugin	with	a	particular	working	tree.	Here	you
can	specify	the	working	tree	path,	choose	which	plugin	to	use	from	a
drop	down	list	of	all	registered	issue	tracker	plugins,	and	any	parameters
to	pass.	The	parameters	will	be	specific	to	the	plugin,	but	might	include
your	user	name	on	the	issue	tracker	so	that	the	plugin	can	query	for
issues	which	are	assigned	to	you.

2.36.7.2.	Config

Figure	2.94.	The	Settings	Dialog,	Issue	Tracker	Config

See	Section	2.35,	“Integration	with	Bug	Tracking	Systems	/	Issue
Trackers”	for	a	descriptions	of	the	different	options.

Important

If	you	have	problems	entering/storing	data	please	see
Section	2.36.6.1,	“The	hierarchical	git	configuration”.

2.36.8.	TortoiseGitBlame	Settings

Figure	2.95.	The	Settings	Dialog,	TortoiseGitBlame	Page

The	settings	used	by	TortoiseGitBlame	are	controlled	from	the	main
context	menu,	not	directly	with	TortoiseGitBlame	itself.	Details	for	the
parameters	for	the	blame	algorithm	are	described	in	Section	G.3.9,	“git-
blame(1)”.

Colors

TortoiseGitBlame	can	use	the	background	colour	to	indicate	the	age
of	lines	in	a	file.	You	set	the	endpoints	by	specifying	the	colours	for
the	newest	and	oldest	revisions,	and	TortoiseGitBlame	uses	a	linear
interpolation	between	these	colours	according	to	the	repository
revision	indicated	for	each	line.

Font

You	can	select	the	font	used	to	display	the	text,	and	the	point	size	to
use.	This	applies	both	to	the	file	content,	and	to	the	author	and
revision	information	shown	in	the	left	pane.

Tab	size

Defines	how	many	spaces	to	use	for	expansion	when	a	tab
character	is	found	in	the	file	content.

Detect	moved	or	copied	lines

Disabled	Traditional	blame	algorithm,	the	search	for	parents	is
limited	to	the	file	and	will	follow	renames.

Within	file	Extra	passes	of	inspection	are	applied	to	detect	moved
and	copied	lines	within	the	file	(git	blame	-M).

From	modified	files	In	addition	to	the	annotated	file	detect	moved	or
copied	lines	from	all	modified	files	within	a	commit	(git	blame	-C).

At	file	creation	In	addition	to	the	annotated	file	and	the	modified	files
within	a	commit	detect	moved	or	copied	lines	from	other	files	in	the
commit	that	creates	the	file	(git	blame	-C	-C).

From	existing	files	In	addition	detect	moved	or	modified	lines	from
other	files	in	any	commit	(git	blame	-C	-C	-C).

Number	of	characters	required	for	moved	or	copied	line	detection

Lower	bound	on	the	number	of	alphanumeric	characters	that	Git
must	detect	as	moving/copying	between	files	for	it	to	associate	those
lines	with	the	parent	commit.

Within	a	file	Number	of	alphanumeric	characters	required	to	detect
moving	lines	within	a	file	(git	blame	-M|<num>|).

Between	files	Number	of	alphanumeric	characters	required	to	detect
moved	or	copied	lines	between	files	(git	blame	-C|<num>|).

Ignore	whitespace

Defines	if	whitespace	is	ignored	when	comparing	the	parent's
version	and	the	child's	version	to	find	where	the	lines	came	from	(git
blame	-w).

Show	complete	log

Defines	if	the	log	should	be	complete,	i.e.	the	log	contains	all
changes	for	a	file,	even	the	changes	have	no	impact	on	the	file
content	of	the	annotated	revision.	If	deactivated	the	log	contains	only
revisions	which	last	modified	a	line	for	the	annotated	revision.

Follow	renames

Defines	if	the	log	should	follow	renames,	i.e.	if	the	log	does	not	stop
when	a	file	was	renamed	in	the	past,	but	include	all	changes	before
the	rename.

2.36.9.	TortoiseGitUDiff	Settings

Figure	2.96.	The	Settings	Dialog,	TortoiseGitUDiff	Page

The	settings	used	by	TortoiseGitUDiff	are	controlled	from	the	main
context	menu,	not	directly	with	TortoiseGitUDiff	itself.

Colors

The	default	colors	used	by	TortoiseGitUDiff	are	usually	ok,	but	you
can	configure	them	here.

Font

You	can	select	the	font	used	to	display	the	text,	and	the	point	size	to
use.

Tabs

Defines	how	many	spaces	to	use	for	expansion	when	a	tab
character	is	found	in	the	file	diff.

2.36.10.	Advanced	Settings

A	few	infrequently	used	settings	are	available	only	in	the	advanced	page
of	the	settings	dialog.	These	settings	modify	the	registry	directly	and	you
have	to	know	what	each	of	these	settings	is	used	for	and	what	it	does.
Do	not	modify	these	settings	unless	you	are	sure	you	need	to	change
them.

AutoCompleteMinChars

The	minimum	amount	of	chars	from	which	the	editor	shows	an	auto-
completion	popup.	The	default	value	is	3.

AutocompleteParseMaxSize

The	auto-completion	list	shown	in	the	commit	message	editor	can
parse	source	code	files	and	displays	methods	and	variable	names.
This	limits	files	to	be	parsed	by	their	size	in	bytes.	The	default	value
is	300000.

AutocompleteParseUnversioned

The	auto-completion	list	shown	in	the	commit	message	editor	can
parse	source	code	files	and	displays	methods	and	variable	names.
By	default	only	versioned	files	are	parsed.	Set	this	value	to	true	in
order	to	also	parse	unversioned	files.

AutocompleteRemovesExtensions

The	auto-completion	list	shown	in	the	commit	message	editor
displays	the	names	of	files	listed	for	commit.	To	also	include	these
names	with	extensions	removed,	set	this	value	to	true.

BlockStatus

If	you	don't	want	the	explorer	to	update	the	status	overlays	while
another	TortoiseGit	command	is	running	(e.g.	Update,	Commit,	...)
then	set	this	value	to	true.

CacheTrayIcon

To	add	a	cache	tray	icon	for	the	TGitCache	program,	set	this	value	to
true.	This	is	really	only	useful	for	developers	as	it	allows	you	to
terminate	the	program	gracefully.

CacheSave

To	disable	loading	and	saving	cache	for	the	TGitCache	program,	set
this	value	to	false.	This	is	useful	if	you	do	not	want	to	write	the
cache	to	disk,	which	can	be	a	large	file.	The	default	is	true.

CygwinHack

This	enables	some	workarounds	which	enables	TortoiseGit	to	be
used	with	Cygwin	Git.	Cygwin	Git,	however,	is	not	officially	supported
by	TortoiseGit.	See	Section	2.36.1,	“General	Settings”	for	more
information.	The	default	is	false.

Debug

Set	this	to	true	if	you	want	a	dialog	to	pop	up	for	every	command
showing	the	command	line	used	to	start	TortoiseGitProc.exe.

DebugOutputString

Set	this	to	true	if	you	want	TortoiseGit	to	print	out	debug	messages
during	execution.	The	messages	can	be	captured	with	special
debugging	tools	only	(like	Debug	View	from	the	SysInternals	Suite).

FullRowSelect

The	status	list	control	which	is	used	in	various	dialogs	(e.g.,	commit,
check-for-modifications,	add,	revert,	...)	uses	full	row	selection	(i.e.,	if
you	select	an	entry,	the	full	row	is	selected,	not	just	the	first	column).
This	is	fine,	but	the	selected	row	then	also	covers	the	background
image	on	the	bottom	right,	which	can	look	ugly.	To	disable	full	row
select,	set	this	value	to	false.

http://technet.microsoft.com/en-us/sysinternals/bb896647.aspx

GroupTaskbarIconsPerRepo

This	option	determines	how	the	Win7	taskbar	icons	of	the	various
TortoiseGit	dialogs	and	windows	are	grouped	together.	This	option
has	no	effect	on	Windows	Vista!

1.	 The	default	value	is	3.	With	this	setting,	the	icons	are	grouped
together	by	application	type	per	working	tree.	All	dialogs	from
TortoiseGit	of	one	working	tree	are	grouped	together,	all
windows	from	TortoiseGitMerge	of	one	working	tree	are	grouped
together,	...	For	example,	if	you	have	a	log	dialog	and	a	push
dialog	open	for	working	tree	C:\A,	and	a	check-for-modifications
dialog	and	a	log	dialog	for	working	tree	C:\B,	then	there	are	two
application	icon	groups	shown	in	the	Win7	taskbar,	one	group
for	each	working	tree.	But	TortoiseGitMerge	windows	are	not
grouped	together	with	TortoiseGit	dialogs.

Figure	2.97.	Taskbar	with	default	grouping

2.	 If	set	to	4,	then	the	grouping	works	as	with	the	setting	set	to	3,
except	that	TortoiseGit,	TortoiseGitMerge,	TortoiseGitBlame,
TortoiseGitIDiff	and	TortoiseGitUDiff	windows	of	one	working
tree	are	all	grouped	together.	For	example,	if	you	have	the	log
dialog	open	and	then	double	click	on	a	modified	file,	the	opened
TortoiseGitMerge	diff	window	will	be	put	in	the	same	icon	group
on	the	taskbar	as	the	log	dialog	icon.

Figure	2.98.	Taskbar	with	repository	grouping

3.	 If	set	to	1,	then	the	grouping	works	as	with	the	setting	set	to	3
(grouping	by	application),	except	that	grouping	takes	place
independently	of	the	working	tree.	This	was	the	default	before
TGit	1.8.1.2.

4.	 If	set	to	2,	then	the	grouping	works	as	with	the	setting	set	to	4,
except	that	grouping	takes	place	independently	of	the	working
tree.	Thus	all	TortoiseGit	icons	are	grouped	to	only	show	one
icon.

GroupTaskbarIconsPerRepoOverlay

This	has	no	effect	if	the	option	GroupTaskbarIconsPerRepo	is	set	to	0
(see	above).

If	this	option	is	set	to	true,	then	every	icon	on	the	Win7	taskbar
shows	a	small	colored	rectangle	overlay,	indicating	the	working	tree
the	dialogs/windows	are	used	for.

Figure	2.99.	Taskbar	grouping	with	repository	color	overlays

LogShowSuperProjectSubmodulePointer

This	option	defines	whether	the	commit	of	a	submodule	to	which	the

super	repository	points	to	is	highlighted	with	a	branch	like	label	(cf.
issue	#2826).	The	default	is	true.

MaxRefHistoryItems

This	options	sets	the	maximum	browse	ref	history	(Right	click	ref
hyperlink	to	find	it).	The	default	is	5.

Msys2Hack

This	enables	some	workarounds	which	enables	TortoiseGit	to	be
used	with	Msys2	Git	(do	not	enable	this	for	the	Git	for	Windows
package!).	Msys2	Git,	however,	is	not	officially	supported	by
TortoiseGit.	See	Section	2.36.1,	“General	Settings”	for	more
information.	The	default	is	false.

NoSortLocalBranchesFirst

This	option	toggles	if	the	branches	are	sorted	fully	by	name	(true)	or
if	local	branches	should	appear	above	remote	ones	(git	default,
false).	The	default	value	is	false.

NumDiffWarning

If	you	want	to	show	the	diff	at	once	for	more	items	than	specified
with	this	settings,	a	warning	dialog	is	shown	first.	The	default	is	10.

ProgressDlgLinesLimit

The	Git	progress	dialog	shows	the	output	of	the	executed	git.exe
commands.	The	number	of	lines	are	limited	for	performance
reasons.	The	default	is	50000,	minimum	is	50.

ReaddUnselectedAddedFilesAfterCommit

This	option	toggles	the	re-adding	of	unselected	added	files	after	a
commit.	Up	to	TortoiseGit	1.7.10	added	files	which	were	not	checked
on	a	commit,	were	removed	from	the	index	and	unversioned	after
the	commit.	Set	this	value	to	false	to	restore	the	old	behavior.	Set

https://tortoisegit.org/issue/2826

this	value	to	true	to	readd	these	files	again	after	the	commit
(default).

RefreshFileListAfterResolvingConflict

This	option	toggles	whether	the	file	lists	of	the	commit	dialog,	resolve
conflicts	and	rebase	dialog	automatically	refresh	when	a	conflict	is
marked	as	resolved.	By	default	this	is	set	to	true,	but	in	certain
cases,	e.g.	when	refreshing	takes	lots	of	time	or	you	want	to	prevent
the	scrolling	to	the	top,	this	can	be	set	to	false.	However,	then	a
manual	refresh	(e.g.	by	pressing	F5)	is	necessary.

RememberFileListPosition

This	option	toggles	whether	the	file	lists	of	the	add,	commit,	revert,
resolve	and	rebase	dialog	remember	the	last	selected	line	on	a
refresh.	The	default	is	true.

SanitizeCommitMsg

This	option	trims	space,	CR,	LF	characters	at	the	end	of	commit
messages	you	enter.	This	covers	commit,	rebase,	notes,	annotated
tag.	This	value	is	true	by	default.	If	such	trimming	breaks	your
scripts/plugins,	you	can	disable	trimming	by	set	it	to	false.

ScintillaDirect2D

This	option	enables	the	use	of	Direct2D	accelerated	drawing	in	the
Scintilla	control	which	is	used	as	the	edit	box	in	e.g.	the	commit
dialog	(also	for	the	attached	patch	window),	the	unified	diff	viewer
and	TortoiseGitBlame.	With	some	graphic	cards,	however,	this
sometimes	doesn't	work	properly	so	that	the	cursor	to	enter	text	isn't
always	visible,	the	redraw	does	not	work	or	the	background	is
flashing.	It's	disabled	by	default.	You	can	turn	this	feature	on	by
setting	this	value	to	true.

ShellMenuAccelerators

TortoiseGit	uses	accelerators	for	its	explorer	context	menu	entries.

Since	this	can	lead	to	doubled	accelerators	(e.g.	the	Git	Commit	has
the	Alt-C	accelerator,	but	so	does	the	Copy	entry	of	explorer).	If	you
don't	want	or	need	the	accelerators	of	the	TortoiseGit	entries,	set	this
value	to	false.

ShowContextMenuIcons

This	can	be	useful	if	you	use	something	other	than	the	windows
explorer	or	if	you	get	problems	with	the	context	menu	displaying
incorrectly.	Set	this	value	to	false	if	you	don't	want	TortoiseGit	to
show	icons	for	the	shell	context	menu	items.	Set	this	value	to	true	to
show	the	icons	again.

ShowAppContextMenuIcons

If	you	don't	want	TortoiseGit	to	show	icons	for	the	context	menus	in
its	own	dialogs,	set	this	value	to	false.

ShowListBackgroundImage

If	you	do	not	want	to	have	a	small	background	image	in	list	controls
(e.g.	Commit	Dialog)	set	this	value	to	false.	Set	this	value	to	true	to
show	the	images	again	(default).

SquashDate

Using	this	setting	you	can	control	which	date	is	used	on	squashing
commits.	Set	this	value	to	1	if	you	want	to	use	the	date	of	the	latest
commit.	Set	this	value	to	2	if	you	want	to	use	the	current	date.	Set
this	value	to	0	to	use	the	date	of	the	first	commit	(into	which	all
others	are	squashed,	default).

StyleCommitMessages

The	commit	and	log	dialog	use	styling	(e.g.	bold,	italic)	in	commit
messages	(see	Section	2.5.3,	“Commit	Log	Messages”	for	details).	If
you	don't	want	to	do	this,	set	the	value	to	false.

TGitCacheCheckContentMaxSize

TGitCache	checks	the	content	of	files	by	hashing	them	and
comparing	the	SHA1	in	order	to	calculate	the	file	statuses	if	the
timestamps	(to	index)	mismatch.	This	option	allows	to	restrict	this
behavior	for	files	which	do	not	exceed	a	specific	size	(in	KiB).	The
default	maximum	file	size	is	10	MiB	(i.e.,	10	*	1024	KiB	=	10240	KiB).
Set	this	to	0	in	order	to	make	TGitCache	only	check	the	timestamps
(as	TortoiseGit	1.7.0	up	to	1.7.12	did;	before	TortoiseGit	1.9.0.0	this
was	controlled	by	TGitCacheCheckContent).	Disabling	checking	the
file	contents	can	lower	disk	access	and	CPU	time	of	the	TGitCache
process,	however,	overlay	accuracy	might	not	be	as	accurate	as	with
checking	of	the	file	contents	enabled.

UseLibgit2

This	makes	TortoiseGit	to	use	libgit2	as	much	as	possible	(e.g.	for
adding	files	to	the	index).	If	you	do	not	want	TortoiseGit	to	use	libgit2
for	file	operations,	set	this	value	to	false.

VersionCheck

TortoiseGit	checks	whether	there's	a	new	version	available	about
once	a	week.	If	you	don't	want	TortoiseGit	to	do	this	check,	set	this
value	to	false.

VersionCheckPreview

Set	this	to	true	to	make	TortoiseGit	also	check	for	new	preview
releases.	The	default	in	all	stable	releases	is	false.

2.36.11.	Exporting	TortoiseGit	Settings

If	you	want	to	export	all	your	client	settings	to	use	on	another	computer
you	can	do	so	using	the	Windows	registry	editor	regedt32.exe.	Go	to	the
registry	key	HKCU\Software\TortoiseGit	and	export	it	to	a	reg	file.	On	the
other	computer,	just	import	that	file	again	(usually,	a	double	click	on	the
reg	file	will	do	that).

Remember	to	save	Git's	general	settings,	which	you	can	find	in	the	Git

configuration	file	.gitconfig	and/or	the	folder	.config/git	which	both	are
located	in	your	userprofile	directory.

Prev	 Up 	Next
2.35.	Integration	with	Bug
Tracking	Systems	/	Issue
Trackers	

Home
	2.37.	git	svn	dcommit

2.37.	git	svn	dcommit
Prev	 Chapter	2.	TortoiseGit	Daily	Use	Guide 	Next

2.37.	git	svn	dcommit

Commit	each	diff	from	a	specified	head	directly	to	the	SVN	repository,
and	then	rebase	or	reset	(depending	on	whether	or	not	there	is	a	diff
between	SVN	and	head).	This	will	create	a	revision	in	SVN	for	each
commit	in	git.	It	is	recommended	that	you	run	git-svn	fetch	and	rebase
(not	pull	or	merge)	your	commits	against	the	latest	changes	in	the	SVN
repository.

If	you	need/want	to	use	--use-log-author	or	--add-author-from,	please	set
those	in	git	config	(cf.	Section	G.3.27,	“git-config(1)”),	also	see	issue
#2824.

Git	Style	Commit(--rmdir):	Remove	directories	from	the	SVN	tree	if	there
are	no	files	left	behind.	SVN	can	version	empty	directories,	and	they	are
not	removed	by	default	if	there	are	no	files	left	in	them.	git	cannot	version
empty	directories.	Enabling	this	flag	will	make	the	commit	to	SVN	act	like
git.

You	can	find	more	information	at	Section	G.3.132,	“git-svn(1)”.

Prev	 Up 	Next
2.36.	TortoiseGit's	Settings	 Home 	2.38.	Final	Step

https://tortoisegit.org/issue/2824

2.38.	Final	Step
Prev	 Chapter	2.	TortoiseGit	Daily	Use	Guide 	Next

2.38.	Final	Step

Donate!

Even	though	TortoiseGit	and	TortoiseGitMerge	are	free,	you	can
support	the	developers	by	sending	in	patches	and	play	an	active	role	in
the	development.	You	can	also	help	to	cheer	us	up	during	the	endless
hours	we	spend	in	front	of	our	computers.

Please	also	have	a	look	at	the	list	of	people	who	contributed	to	the
project	by	sending	in	patches	or	translations.

Prev	 Up 	Next
2.37.	git	svn	dcommit	 Home 	Appendix	A.	Frequently

Asked	Questions	(FAQ)

https://tortoisegit.org/donate

Appendix	A.	Frequently	Asked	Questions	(FAQ)
Prev	 	 	Next

Appendix	A.	Frequently	Asked	Questions	(FAQ)

Because	TortoiseGit	is	being	developed	all	the	time	it	is	sometimes	hard
to	keep	the	documentation	completely	up	to	date.	online	FAQ	which
contains	a	selection	of	the	questions	we	are	asked	the	most	on	the
TortoiseGit	mailing	lists	<tortoisegit-dev@googlegroups.com>	and
<tortoisegit-users@googlegroups.com>.

We	also	maintain	a	project	Issue	Tracker	which	tells	you	about	some	of
the	things	we	have	on	our	To-Do	list,	and	bugs	which	have	already	been
fixed.	If	you	think	you	have	found	a	bug,	or	want	to	request	a	new
feature,	check	here	first	to	see	if	someone	else	got	there	before	you.

If	you	have	a	question	which	is	not	answered	anywhere	else,	the	best
place	to	ask	it	is	on	one	of	the	mailing	lists.	<tortoisegit-
users@googlegroups.com>	is	the	one	to	use	if	you	have	questions	about
using	TortoiseGit.	If	you	want	to	help	out	with	the	development	of
TortoiseGit,	then	you	should	take	part	in	discussions	on	<tortoisegit-
dev@googlegroups.com>.

Prev	 	 	Next
2.38.	Final	Step	 Home 	Chapter	3.	The	GitWCRev

Program

https://tortoisegit.org/faq
mailto:tortoisegit-dev@googlegroups.com
mailto:tortoisegit-users@googlegroups.com
https://tortoisegit.org/issues
mailto:tortoisegit-users@googlegroups.com
mailto:tortoisegit-dev@googlegroups.com

Chapter	3.	The	GitWCRev	Program
Prev	 	 	Next

Chapter	3.	The	GitWCRev	Program

Table	of	Contents
3.1.	The	GitWCRev	Command	Line
3.2.	Keyword	Substitution
3.3.	Keyword	Example
3.4.	COM	interface

GitWCRev	is	Windows	console	program	which	can	be	used	to	read	the
status	of	a	Git	working	tree	and	optionally	perform	keyword	substitution	in
a	template	file	-	another	alternative	could	be	git	filters	(cf.	Section	G.4.2,
“gitattributes(5)”).	This	is	often	used	as	part	of	the	build	process	as	a
means	of	incorporating	working	tree	information	into	the	object	you	are
building.	Typically	it	might	be	used	to	include	the	revision	number	in	an
“About”	box.

3.1.	The	GitWCRev	Command	Line

GitWCRev	reads	the	Git	status	of	all	files	in	a	working	tree	including
submodules.	It	records	the	HEAD	commit	revision	and	the	commit
timestamp,	it	also	records	whether	there	are	local	modifications	in	the
working	tree.	The	status	revision	and	modification	status	are	displayed	on
stdout.

GitWCRev.exe	is	called	from	the	command	line	or	a	script,	and	is
controlled	using	the	command	line	parameters.

GitWCRev	WorkingTreePath	[SrcVersionFile	DstVersionFile]	[-mMuUsdq]

						

WorkingTreePath	is	the	path	to	the	working	tree	being	checked.The	path
may	be	absolute	or	relative	to	the	current	working	directory.

If	you	want	GitWCRev	to	perform	keyword	substitution,	so	that	fields	like
repository	revision	is	saved	to	a	text	file,	you	need	to	supply	a	template
file	SrcVersionFile	and	an	output	file	DstVersionFile	which	contains	the
substituted	version	of	the	template.

You	can	specify	ignore	patterns	for	GitWCRev	to	prevent	specific	files
and	paths	from	being	considered.	The	patterns	are	read	from	a	file
named	.gitwcrevignore.	The	file	is	read	from	the	working	tree	root.	If	the
file	does	not	exist,	no	files	or	paths	are	ignored.	The	.gitwcrevignore	file
can	contain	multiple	patterns,	separated	by	newlines.	The	patterns	are
matched	against	the	paths	relative	to	the	repository	root	.	For	example,	to
ignore	all	files	in	the	/doc	folder	of	the	TortoiseGit	working	tree,	the
.gitwcrevignore	would	contain	the	following	lines:

/doc

/doc/*

To	ignore	all	images,	the	ignore	patterns	could	be	set	like	this:

*.png

*.jpg

*.ico

*.bmp

Important

The	ignore	patterns	are	case-sensitive,	just	like	Git	is.

Tip

To	create	a	file	with	a	starting	dot	in	the	Windows	explorer,
enter	.gitwcrevignore..	Note	the	trailing	dot.

There	are	a	number	of	optional	switches	which	affect	the	way	GitWCRev
works.	If	you	use	more	than	one,	they	must	be	specified	as	a	single
group,	e.g.	-sU,	not	-s	-U.

Table	3.1.	List	of	available	command	line	switches

Switch Description
-m If	this	switch	is	given,	GitWCRev	will	exit	with	ERRORLEVEL	7	if	the	working	tree	contains

local	modifications.	This	may	be	used	to	prevent	building	with	uncommitted	changes
present.

-M Same	as	above,	but	includes	the	status	of	submodules.
-u If	this	switch	is	given,	GitWCRev	will	exit	with	ERRORLEVEL	11	if	the	working	tree	contains

unversioned	items	that	are	not	ignored.
-U Same	as	above,	but	includes	the	status	of	submodules.
-d If	this	switch	is	given,	GitWCRev	will	exit	with	ERRORLEVEL	9	if	the	destination	file

already	exists.
-s If	this	switch	is	given,	GitWCRev	will	exclude	submodules.	The	default	behaviour	is	to

also	check	submodules.
-F If	this	switch	is	given,	GitWCRev	will	ignore	any	.gitwcrevignore	files	and	include	all

files.
-q If	this	switch	is	given,	GitWCRev	will	perform	the	keyword	substitution	without	showing

working	tree	status	on	stdout.

If	there	is	no	error,	GitWCRev	returns	zero.	But	in	case	an	error	occurs,
the	error	message	is	written	to	stderr	and	shown	in	the	console.	And	the
returned	error	codes	are:

Table	3.2.	List	of	GitWCRev	error	codes

Error
Code

Description

1 Syntax	error.	One	or	more	command	line	parameters	are	invalid.
2 The	file	or	folder	specified	on	the	command	line	was	not	found.
3 The	input	file	could	not	be	opened,	or	the	target	file	could	not	be	created.
4 Could	not	allocate	memory.	This	could	happen	if	e.g.	the	source	file	is	too	big.
5 The	source	file	can	not	be	scanned	properly.
6 Git	error:	libgit2	returned	with	an	error	when	GitWCRev	tried	to	find	the	information

from	the	working	tree.
7 The	working	tree	has	local	modifications.	This	requires	the	-m	or	-M	switch.
9 The	output	file	already	exists.	This	requires	the	-d	switch.
10 The	specified	path	is	neither	a	working	tree	nor	part	of	one.
11 The	working	tree	has	unversioned	files	or	folders	in	it.	This	requires	the	-u	or	-U

switch.

Prev	 	 	Next
Appendix	A.	Frequently
Asked	Questions	(FAQ)	 Home 	3.2.	Keyword	Substitution

3.2.	Keyword	Substitution
Prev	 Chapter	3.	The	GitWCRev	Program 	Next

3.2.	Keyword	Substitution

If	a	source	and	destination	files	are	supplied,	GitWCRev	copies	source	to
destination,	performing	keyword	substitution	as	follows:

Table	3.3.	List	of	available	keywords

Keyword Description
$WCREV$ Replaced	with	the	HEAD	commit	revision	in	the	working	tree.
$WCREV=n$ Replaced	with	the	HEAD	commit	revision	in	the	working	tree,

trimmed	to	n	chars.	For	example:	$WCREV=7$
$WCDATE$,	$WCDATEUTC$ Replaced	with	the	commit	date/time	of	the	highest	commit

revision.	By	default,	international	format	is	used:	yyyy-mm-dd
hh:mm:ss.	Alternatively,	you	can	specify	a	custom	format	which
will	be	used	with	strftime(),	for	example:	$WCDATE=%a	%b	%d
%I:%M:%S	%p$.	For	a	list	of	available	formatting	characters,	look
at	the	online	reference	.

$WCNOW$,	$WCNOWUTC$ Replaced	with	the	current	system	date/time.	This	can	be	used
to	indicate	the	build	time.	Time	formatting	can	be	used	as
described	for	$WCDATE$.

$WCMODS$ $WCMODS?TText:FText$	is	replaced	with	TText	if	there	are	local
modifications,	or	FText	if	not.	This	will	also	evaluate	to	true	ff	a
submodule	is	checked	out	at	a	different	commit	(requires
submodules	not	to	be	ignored).

$WCFILEMODS$ $WCFILEMODS?TText:FText$	is	replaced	with	TText	if	there	are
local	modifications,	or	FText	if	not.	This	does	not	check	the
checked	out	commit	of	submodules.

$WCUNVER$ $WCUNVER?TText:FText$	is	replaced	with	TText	if	there	are
unversioned	items	in	the	working	tree,	or	FText	if	not.

$WCISTAGGED$ $WCISTAGGED?TText:FText$	is	replaced	with	TText	if	the	HEAD
commit	is	tagged,	or	FText	if	not.

$WCINGIT$ $WCINGIT?TText:FText$	is	replaced	with	TText	if	the	entry	is
versioned,	or	FText	if	not.

$WCSUBMODULE$ $WCSUBMODULE?TText:FText$	is	replaced	with	TText	if	the	working
tree	has	submodules,	or	FText	if	not.

$WCSUBMODULEUP2DATE$ $WCSUBMODULEUP2DATE?TText:FText$	is	replaced	with	TText	if	all
submodules	are	checked	out	at	the	version	specified	in	the
index	of	the	parent	working	tree,	or	FText	if	not.

$WCMODSINSUBMODULE$ $WCMODSINSUBMODULE?TText:FText$	is	replaced	with	TText	if	a
submodule	contains	uncommitted	changes,	or	FText	if	not.

$WCUNVERINSUBMODULE$ $WCUNVERINSUBMODULE?TText:FText$	is	replaced	with	TText	if	a
submodule	contains	unversioned	items,	or	FText	if	not.

https://msdn.microsoft.com/en-us/library/fe06s4ak.aspx

$WCMODSFULL$ $WCMODSFULL?TText:FText$	combines	is	$WCMODS$	and
$WCMODSINSUBMODULE$	and	can	be	seen	as	a	recursive	check.
replaced	with	TText	if	the	working	tree	or	any	submodule
contains	uncommitted	changes,	or	FText	if	not.

$WCUNVERFULL$ $WCUNVERFULL?TText:FText$	combines	is	$WCUNVER$	and
$WCUNVERINSUBMODULE$	and	can	be	seen	as	a	recursive	check.
replaced	with	TText	if	the	working	tree	or	any	submodule
contains	unversioned	items,	or	FText	if	not.

GitWCRev	does	not	directly	support	nesting	of	expressions,	so	for
example	you	cannot	use	an	expression	like:

#define	SVN_REVISION				"$WCUNVER?$WCNOW$:$WCDATE$$"

						

But	you	can	usually	work	around	it	by	other	means,	for	example:

#define	DATE_NOW							$WCNOW$

#define	DATE_COMMIT				$WCDATE$

#define	DATE											"$WCUNVER?DATE_NOW:DATE_COMMIT$"

						

Tip

Some	of	these	keywords	apply	to	single	files	rather	than	to
an	entire	working	tree,	so	it	only	makes	sense	to	use	these
when	GitWCRev	is	called	to	scan	a	single	file.	This	applies	to
$WCINGIT$.

Prev	 Up 	Next
Chapter	3.	The	GitWCRev
Program	 Home 	3.3.	Keyword	Example

3.3.	Keyword	Example
Prev	 Chapter	3.	The	GitWCRev	Program 	Next

3.3.	Keyword	Example

The	example	below	shows	how	keywords	in	a	template	file	are
substituted	in	the	output	file.

//	Test	file	for	GitWCRev

char*	Revision																				=	"$WCREV$";

char*	RevisionShort															=	"$WCREV=7$";

char*	Modified																				=	"$WCMODS?Modified:Not	modified$";

char*	Unversioned																	=	"$WCUNVER?Unversioned	items	found:no	unversioned	items$";

char*	Date																								=	"$WCDATE$";

char*	DateUTC																					=	"$WCDATEUTC$";

char*	CustDate																				=	"$WCDATE=%a,	%d	%B	%Y$";

char*	CustDateEmpty															=	"$WCDATE=$";

char*	CustDateInval															=	"$WCDATE=%a,	%c	%B	%Y$";

char*	CustDateUTC																	=	"$WCDATEUTC=%a,	%d	%B	%Y$";

char*	TimeNow																					=	"$WCNOW$";

char*	TimeNowUTC																		=	"$WCNOWUTC$";

char*	IsTagged																				=	"$WCISTAGGED?Tagged:Not	tagged$";

char*	IsInGit																					=	"$WCINGIT?versioned:not	versioned$";

char*	ModifiedFiles															=	"$WCFILEMODS?Modified:Not	modified$";

char*	HasSubmodule																=	"$WCSUBMODULE?Working	tree	has	at	least	one	submodule:Working	tree	has	no	submodules$";

char*	SubmodulesUp2Date											=	"$WCSUBMODULEUP2DATE?All	submodules	are	up2date	(checked	out	HEAD):At	least	one	submodule	is	not	up2date	(checked	HEAD	differs)$";

char*	SubmoduleHasModifications			=	"$WCMODSINSUBMODULE?At	least	one	submodule	has	uncommited	items:No	submodule	has	uncommitted	items$";

char*	SubmoduleHasUnversioned					=	"$WCUNVERINSUBMODULE?At	least	one	submodule	has	unversioned	files:No	submodule	with	unversioned	files$";

char*	ModifiedAlsoInSubmodules				=	"$WCMODSFULL?Modified	items	found	(recursively):No	modified	items	found	(also	not	in	submodules)$";

char*	UnversionedAlsoInSubmodules	=	"$WCUNVERFULL?Unversioned	items	found	(recursively):No	unversioned	items	found	(also	not	in	submodules)$";

#if	$WCMODSFULL?1:0$

#error	Source	is	modified

#endif

//	End	of	file

After	running	GitWCRev.exe	path\to\workingcopy	testfile.tmpl
testfile.txt,	the	output	file	testfile.txt	would	looks	like	this:

//	Test	file	for	GitWCRev

char*	Revision																				=	"c16403bd41ba502935dee309fac137df0807f31e";

char*	RevisionShort															=	"c16403b";

char*	Modified																				=	"Modified";

char*	Unversioned																	=	"Unversioned	items	found";

char*	Date																								=	"2017/01/19	15:33:51";

char*	DateUTC																					=	"2017/01/19	14:33:51";

char*	CustDate																				=	"Thu,	19	January	2017";

char*	CustDateEmpty															=	"";

char*	CustDateInval															=	"Thu,	01/19/17	15:33:51	January	2017";

char*	CustDateUTC																	=	"Thu,	19	January	2017";

char*	TimeNow																					=	"2017/01/19	15:35:36";

char*	TimeNowUTC																		=	"2017/01/19	14:35:36";

char*	IsTagged																				=	"Not	tagged";

char*	IsInGit																					=	"versioned";

char*	ModifiedFiles															=	"Not	modified";

char*	HasSubmodule																=	"Working	tree	has	at	least	one	submodule";

char*	SubmodulesUp2Date											=	"At	least	one	submodule	is	not	up2date	(checked	HEAD	differs)";

char*	SubmoduleHasModifications			=	"No	submodule	has	uncommitted	items";

char*	SubmoduleHasUnversioned					=	"At	least	one	submodule	has	unversioned	files";

char*	ModifiedAlsoInSubmodules				=	"Modified	items	found	(recursively)";

char*	UnversionedAlsoInSubmodules	=	"Unversioned	items	found	(recursively)";

#if	1

#error	Source	is	modified

#endif

//	End	of	file

Tip

A	file	like	this	will	be	included	in	the	build	so	you	would
expect	it	to	be	versioned.	Be	sure	to	version	the	template	file,
not	the	generated	file,	otherwise	each	time	you	regenerate
the	version	file	you	need	to	commit	the	change,	which	in	turn
means	the	version	file	needs	to	be	updated.

Prev	 Up 	Next
3.2.	Keyword	Substitution	 Home 	3.4.	COM	interface

3.4.	COM	interface
Prev	 Chapter	3.	The	GitWCRev	Program 	Next

3.4.	COM	interface

If	you	need	to	access	Subversion	revision	information	from	other
programs,	you	can	use	the	COM	interface	of	GitWCRev.	The	object	to
create	is	GitWCRev.object,	and	the	following	methods	are	supported:

Table	3.4.	COM/automation	methods	supported

Method Description
.GetWCInfo This	method	traverses	the	working	tree	gathering	the	status	and

revision	information.	Naturally	you	must	call	this	before	you	can
access	the	information	using	the	remaining	methods.	The	first
parameter	is	the	path.	The	second	parameter	needs	to	be	true	if
you	want	to	exclude	submodules.	Equivalent	to	the	-s	command
line	switch.

.Revision The	highest	commit	revision	in	the	working	tree.	Equivalent	to
$WCREV$.

.Date The	commit	date/time	of	the	highest	commit	revision.	Equivalent
to	$WCDATE$.

.Author The	author	of	the	highest	commit	revision,	that	is,	the	last	person
to	commit	changes	to	the	working	tree.

.HasModifications True	if	there	are	local	modifications

.HasUnversioned True	if	there	are	unversioned	items

.IsGitItem True	if	the	item	is	versioned.

.IsUnborn True	if	the	branch	is	not	yet	born.

.HasSubmodule True	if	working	tree	contains	submodules.

.HasSubmoduleModifications True	if	a	submodule	has	uncommitted	changes.

.HasSubmoduleUnversioned True	if	a	submodule	has	unversioned	items.

.IsSubmoduleUp2Date True	if	all	submodules	are	checked	out	at	the	in	the	parent
repository	specified	version.

The	following	example	shows	how	the	interface	might	be	used.

//	testCOM.js	-	javascript	file

//	test	script	for	the	GitWCRev	COM/Automation-object

filesystem	=	new	ActiveXObject("Scripting.FileSystemObject");

GitWCRevObject1	=	new	ActiveXObject("GitWCRev.object");

GitWCRevObject2	=	new	ActiveXObject("GitWCRev.object");

GitWCRevObject3	=	new	ActiveXObject("GitWCRev.object");

GitWCRevObject4	=	new	ActiveXObject("GitWCRev.object");

GitWCRevObject5	=	new	ActiveXObject("GitWCRev.object");

GitWCRevObject2_1	=	new	ActiveXObject("GitWCRev.object");

GitWCRevObject2_2	=	new	ActiveXObject("GitWCRev.object");

GitWCRevObject2_3	=	new	ActiveXObject("GitWCRev.object");

GitWCRevObject2_4	=	new	ActiveXObject("GitWCRev.object");

GitWCRevObject2_5	=	new	ActiveXObject("GitWCRev.object");

GitWCRevObject1.GetWCInfo(filesystem.GetAbsolutePathName("."),	0);

GitWCRevObject2.GetWCInfo(filesystem.GetAbsolutePathName(".."),	0);

GitWCRevObject3.GetWCInfo(filesystem.GetAbsolutePathName("GitWCRev.cpp"),	0);

GitWCRevObject4.GetWCInfo(filesystem.GetAbsolutePathName("..\\.."),	0);

GitWCRevObject2_1.GetWCInfo(filesystem.GetAbsolutePathName("."),	1);

GitWCRevObject2_2.GetWCInfo(filesystem.GetAbsolutePathName(".."),	1);

GitWCRevObject2_3.GetWCInfo(filesystem.GetAbsolutePathName("GitWCRev.cpp"),	1);

GitWCRevObject2_4.GetWCInfo(filesystem.GetAbsolutePathName("..\\.."),	1);

wcInfoString1	=	"Revision	=	"	+	GitWCRevObject1.Revision	+

																"\nDate	=	"	+	GitWCRevObject1.Date	+

																"\nAuthor	=	"	+	GitWCRevObject1.Author	+

																"\nHasMods	=	"	+	GitWCRevObject1.HasModifications	+

																"\nHasUnversioned	=	"	+	GitWCRevObject1.HasUnversioned	+

																"\nIsTagged	=	"	+	GitWCRevObject1.IsWcTagged	+

																"\nIsGitItem	=	"	+	GitWCRevObject1.IsGitItem	+

																"\nIsUnborn	=	"	+	GitWCRevObject1.IsUnborn	+

																"\nHasSubmodule	=	"	+	GitWCRevObject1.HasSubmodule	+

																"\nHasSubmoduleModifications	=	"	+	GitWCRevObject1.HasSubmoduleModifications	+

																"\nHasSubmoduleUnversioned	=	"	+	GitWCRevObject1.HasSubmoduleUnversioned	+

																"\nIsSubmoduleUp2Date	=	"	+	GitWCRevObject1.IsSubmoduleUp2Date;

wcInfoString2	=	"Revision	=	"	+	GitWCRevObject2.Revision	+

																"\nDate	=	"	+	GitWCRevObject2.Date	+

																"\nAuthor	=	"	+	GitWCRevObject2.Author	+

																"\nHasMods	=	"	+	GitWCRevObject2.HasModifications	+

																"\nHasUnversioned	=	"	+	GitWCRevObject2.HasUnversioned	+

																"\nIsTagged	=	"	+	GitWCRevObject2.IsWcTagged	+

																"\nIsGitItem	=	"	+	GitWCRevObject2.IsGitItem	+

																"\nIsUnborn	=	"	+	GitWCRevObject2.IsUnborn	+

																"\nHasSubmodule	=	"	+	GitWCRevObject2.HasSubmodule	+

																"\nHasSubmoduleModifications	=	"	+	GitWCRevObject2.HasSubmoduleModifications	+

																"\nHasSubmoduleUnversioned	=	"	+	GitWCRevObject2.HasSubmoduleUnversioned	+

																"\nIsSubmoduleUp2Date	=	"	+	GitWCRevObject2.IsSubmoduleUp2Date;

wcInfoString3	=	"Revision	=	"	+	GitWCRevObject3.Revision	+

																"\nDate	=	"	+	GitWCRevObject3.Date	+

																"\nAuthor	=	"	+	GitWCRevObject3.Author	+

																"\nHasMods	=	"	+	GitWCRevObject3.HasModifications	+

																"\nHasUnversioned	=	"	+	GitWCRevObject3.HasUnversioned	+

																"\nIsTagged	=	"	+	GitWCRevObject3.IsWcTagged	+

																"\nIsGitItem	=	"	+	GitWCRevObject3.IsGitItem	+

																"\nIsUnborn	=	"	+	GitWCRevObject3.IsUnborn	+

																"\nHasSubmodule	=	"	+	GitWCRevObject3.HasSubmodule	+

																"\nHasSubmoduleModifications	=	"	+	GitWCRevObject3.HasSubmoduleModifications	+

																"\nHasSubmoduleUnversioned	=	"	+	GitWCRevObject3.HasSubmoduleUnversioned	+

																"\nIsSubmoduleUp2Date	=	"	+	GitWCRevObject3.IsSubmoduleUp2Date;

wcInfoString4	=	"Revision	=	"	+	GitWCRevObject4.Revision	+

																"\nDate	=	"	+	GitWCRevObject4.Date	+

																"\nAuthor	=	"	+	GitWCRevObject4.Author	+

																"\nHasMods	=	"	+	GitWCRevObject4.HasModifications	+

																"\nHasUnversioned	=	"	+	GitWCRevObject4.HasUnversioned	+

																"\nIsTagged	=	"	+	GitWCRevObject4.IsWcTagged	+

																"\nIsGitItem	=	"	+	GitWCRevObject4.IsGitItem	+

																"\nIsUnborn	=	"	+	GitWCRevObject4.IsUnborn	+

																"\nHasSubmodule	=	"	+	GitWCRevObject4.HasSubmodule	+

																"\nHasSubmoduleModifications	=	"	+	GitWCRevObject4.HasSubmoduleModifications	+

																"\nHasSubmoduleUnversioned	=	"	+	GitWCRevObject4.HasSubmoduleUnversioned	+

																"\nIsSubmoduleUp2Date	=	"	+	GitWCRevObject4.IsSubmoduleUp2Date;

WScript.Echo(wcInfoString1	+	"\n");

WScript.Echo(wcInfoString2	+	"\n");

WScript.Echo(wcInfoString3	+	"\n");

WScript.Echo(wcInfoString4	+	"\n");

wcInfoString1	=	"Revision	=	"	+	GitWCRevObject2_1.Revision	+

																"\nDate	=	"	+	GitWCRevObject2_1.Date	+

																"\nAuthor	=	"	+	GitWCRevObject2_1.Author	+

																"\nHasMods	=	"	+	GitWCRevObject2_1.HasModifications	+

																"\nHasUnversioned	=	"	+	GitWCRevObject2_1.HasUnversioned	+

																"\nIsTagged	=	"	+	GitWCRevObject2_1.IsWcTagged	+

																"\nIsGitItem	=	"	+	GitWCRevObject2_1.IsGitItem	+

																"\nIsUnborn	=	"	+	GitWCRevObject2_1.IsUnborn	+

																"\nHasSubmodule	=	"	+	GitWCRevObject2_1.HasSubmodule	+

																"\nHasSubmoduleModifications	=	"	+	GitWCRevObject2_1.HasSubmoduleModifications	+

																"\nHasSubmoduleUnversioned	=	"	+	GitWCRevObject2_1.HasSubmoduleUnversioned	+

																"\nIsSubmoduleUp2Date	=	"	+	GitWCRevObject2_1.IsSubmoduleUp2Date;

wcInfoString2	=	"Revision	=	"	+	GitWCRevObject2_2.Revision	+

																"\nDate	=	"	+	GitWCRevObject2_2.Date	+

																"\nAuthor	=	"	+	GitWCRevObject2_2.Author	+

																"\nHasMods	=	"	+	GitWCRevObject2_2.HasModifications	+

																"\nHasUnversioned	=	"	+	GitWCRevObject2_2.HasUnversioned	+

																"\nIsTagged	=	"	+	GitWCRevObject2_2.IsWcTagged	+

																"\nIsGitItem	=	"	+	GitWCRevObject2_2.IsGitItem	+

																"\nIsUnborn	=	"	+	GitWCRevObject2_2.IsUnborn	+

																"\nHasSubmodule	=	"	+	GitWCRevObject2_2.HasSubmodule	+

																"\nHasSubmoduleModifications	=	"	+	GitWCRevObject2_2.HasSubmoduleModifications	+

																"\nHasSubmoduleUnversioned	=	"	+	GitWCRevObject2_2.HasSubmoduleUnversioned	+

																"\nIsSubmoduleUp2Date	=	"	+	GitWCRevObject2_2.IsSubmoduleUp2Date;

wcInfoString3	=	"Revision	=	"	+	GitWCRevObject2_3.Revision	+

																"\nDate	=	"	+	GitWCRevObject2_3.Date	+

																"\nAuthor	=	"	+	GitWCRevObject2_3.Author	+

																"\nHasMods	=	"	+	GitWCRevObject2_3.HasModifications	+

																"\nHasUnversioned	=	"	+	GitWCRevObject2_3.HasUnversioned	+

																"\nIsTagged	=	"	+	GitWCRevObject2_3.IsWcTagged	+

																"\nIsGitItem	=	"	+	GitWCRevObject2_3.IsGitItem	+

																"\nIsUnborn	=	"	+	GitWCRevObject2_3.IsUnborn	+

																"\nHasSubmodule	=	"	+	GitWCRevObject2_3.HasSubmodule	+

																"\nHasSubmoduleModifications	=	"	+	GitWCRevObject2_3.HasSubmoduleModifications	+

																"\nHasSubmoduleUnversioned	=	"	+	GitWCRevObject2_3.HasSubmoduleUnversioned	+

																"\nIsSubmoduleUp2Date	=	"	+	GitWCRevObject2_3.IsSubmoduleUp2Date;

wcInfoString4	=	"Revision	=	"	+	GitWCRevObject2_4.Revision	+

																"\nDate	=	"	+	GitWCRevObject2_4.Date	+

																"\nAuthor	=	"	+	GitWCRevObject2_4.Author	+

																"\nHasMods	=	"	+	GitWCRevObject2_4.HasModifications	+

																"\nHasUnversioned	=	"	+	GitWCRevObject2_4.HasUnversioned	+

																"\nIsTagged	=	"	+	GitWCRevObject2_4.IsWcTagged	+

																"\nIsGitItem	=	"	+	GitWCRevObject2_4.IsGitItem	+

																"\nIsUnborn	=	"	+	GitWCRevObject2_4.IsUnborn	+

																"\nHasSubmodule	=	"	+	GitWCRevObject2_4.HasSubmodule	+

																"\nHasSubmoduleModifications	=	"	+	GitWCRevObject2_4.HasSubmoduleModifications	+

																"\nHasSubmoduleUnversioned	=	"	+	GitWCRevObject2_4.HasSubmoduleUnversioned	+

																"\nIsSubmoduleUp2Date	=	"	+	GitWCRevObject2_4.IsSubmoduleUp2Date;

WScript.Echo(wcInfoString1	+	"\n");

WScript.Echo(wcInfoString2	+	"\n");

WScript.Echo(wcInfoString3	+	"\n");

WScript.Echo(wcInfoString4	+	"\n");

The	following	listing	is	an	example	on	how	to	use	the	GitWCRev	COM
object	from	C#:

using	LibGitWCRev;

GitWCRev	sub	=	new	GitWCRev();

sub.GetWCInfo("C:\\PathToMyFile\\MyFile.cc",	false);

if	(sub.IsGitItem	==	true)

{

				MessageBox.Show("versioned");

}

else

{

				MessageBox.Show("not	versioned");

}

Prev	 Up 	Next
3.3.	Keyword	Example	 Home 	Appendix	B.	IBugTraqProvider

interface

Appendix	B.	IBugTraqProvider	interface
Prev	 	 	Next

Appendix	B.	IBugTraqProvider	interface

Table	of	Contents
B.1.	Naming	conventions
B.2.	The	IBugTraqProvider	interface
B.3.	The	IBugTraqProvider2	interface

To	get	a	tighter	integration	with	issue	trackers	than	by	simply	using	the
bugtraq.	config	keys,	TortoiseGit	can	make	use	of	COM	plugins.	With
such	plugins	it	is	possible	to	fetch	information	directly	from	the	issue
tracker,	interact	with	the	user	and	provide	information	back	to	TortoiseGit
about	open	issues,	verify	log	messages	entered	by	the	user	and	even	run
actions	after	a	successful	commit	to	e.g,	close	an	issue.

We	can't	provide	information	and	tutorials	on	how	you	have	to	implement
a	COM	object	in	your	preferred	programming	language,	but	we	have
example	plugins	in	C++/ATL	and	C#	in	our	repository	in	the	contrib/issue-
tracker-plugins	folder.	In	that	folder	you	can	also	find	the	required	include
files	you	need	to	build	your	plugin.	(Section	3,	“TortoiseGit	is	free!”
explains	how	to	access	the	repository.)

Important

You	should	provide	both	a	32-bit	and	64-bit	version	of	your
plugin.	Because	the	x64-Version	of	TortoiseGit	cannot	use	a
32-bit	plugin	and	vice-versa.

B.1.	Naming	conventions

If	you	release	an	issue	tracker	plugin	for	Tortoise*-clients,	please	do	not
name	it	Tortoise<Something>.	We'd	like	to	reserve	the	Tortoise	prefix	for
a	version	control	client	integrated	into	the	windows	shell.	For	example:
TortoiseCVS,	TortoiseSVN,	TortoiseHg,	TortoiseGit	and	TortoiseBzr	are
all	version	control	clients.

Please	name	your	plugin	for	a	Tortoise	client	Turtle<Something>,	where
<Something>	refers	to	the	issue	tracker	that	you	are	connecting	to.
Alternatively	choose	a	name	that	sounds	like	Turtle	but	has	a	different
first	letter.	Nice	examples	are:

Gurtle	-	An	issue	tracker	plugin	for	Google	code

TurtleMine	-	An	issue	tracker	plugin	for	Redmine

VurtleOne	-	An	issue	tracker	plugin	for	VersionOne

Prev	 	 	Next
3.4.	COM	interface	 Home 	B.2.	The	IBugTraqProvider

interface

B.2.	The	IBugTraqProvider	interface
Prev	 Appendix	B.	IBugTraqProvider	interface 	Next

B.2.	The	IBugTraqProvider	interface

TortoiseGit	1.2.1	and	later	can	use	plugins	which	implement	the
IBugTraqProvider	interface.	The	interface	provides	a	few	methods	which
plugins	can	use	to	interact	with	the	issue	tracker.

HRESULT	ValidateParameters	(

		//	Parent	window	for	any	UI	that	needs	to	be

		//	displayed	during	validation.

		[in]	HWND	hParentWnd,

		//	The	parameter	string	that	needs	to	be	validated.

		[in]	BSTR	parameters,

		//	Is	the	string	valid?

		[out,	retval]	VARIANT_BOOL	*valid

);

This	method	is	called	from	the	settings	dialog	where	the	user	can	add
and	configure	the	plugin.	The	parameters	string	can	be	used	by	a	plugin
to	get	additional	required	information,	e.g.,	the	URL	to	the	issue	tracker,
login	information,	etc.	The	plugin	should	verify	the	parameters	string	and
show	an	error	dialog	if	the	string	is	not	valid.	The	hParentWnd	parameter
should	be	used	for	any	dialog	the	plugin	shows	as	the	parent	window.
The	plugin	must	return	TRUE	if	the	validation	of	the	parameters	string	is
successful.	If	the	plugin	returns	FALSE,	the	settings	dialog	won't	allow
the	user	to	add	the	plugin	to	a	working	copy	path.

HRESULT	GetLinkText	(

		//	Parent	window	for	any	(error)	UI	that	needs	to	be	displayed.

		[in]	HWND	hParentWnd,

		//	The	parameter	string,	just	in	case	you	need	to	talk	to	your

		//	web	service	(e.g.)	to	find	out	what	the	correct	text	is.

		[in]	BSTR	parameters,

		//	What	text	do	you	want	to	display?

		//	Use	the	current	thread	locale.

		[out,	retval]	BSTR	*linkText

);

The	plugin	can	provide	a	string	here	which	is	used	in	the	TortoiseGit
commit	dialog	for	the	button	which	invokes	the	plugin,	e.g.,	"Choose
issue"	or	"Select	ticket".	Make	sure	the	string	is	not	too	long,	otherwise	it
might	not	fit	into	the	button.	If	the	method	returns	an	error	(e.g.,
E_NOTIMPL),	a	default	text	is	used	for	the	button.

HRESULT	GetCommitMessage	(

		//	Parent	window	for	your	provider's	UI.

		[in]	HWND	hParentWnd,

		//	Parameters	for	your	provider.

		[in]	BSTR	parameters,

		[in]	BSTR	commonRoot,

		[in]	SAFEARRAY(BSTR)	pathList,

		//	The	text	already	present	in	the	commit	message.

		//	Your	provider	should	include	this	text	in	the	new	message,

		//	where	appropriate.

		[in]	BSTR	originalMessage,

		//	The	new	text	for	the	commit	message.

		//	This	replaces	the	original	message.

		[out,	retval]	BSTR	*newMessage

);

This	is	the	main	method	of	the	plugin.	This	method	is	called	from	the
TortoiseGit	commit	dialog	when	the	user	clicks	on	the	plugin	button.

The	parameters	string	is	the	string	the	user	has	to	enter	in	the	settings
dialog	when	he	configures	the	plugin.	Usually	a	plugin	would	use	this	to
find	the	URL	of	the	issue	tracker	and/or	login	information	or	more.

The	commonRoot	string	contains	the	parent	path	of	all	items	selected	to
bring	up	the	commit	dialog.	Note	that	this	is	not	the	root	path	of	all	items
which	the	user	has	selected	in	the	commit	dialog.	For	the	branch/tag
dialog,	this	is	the	path	which	is	to	be	copied.

The	pathList	parameter	contains	an	array	of	paths	(as	strings)	which	the

user	has	selected	for	the	commit.

The	originalMessage	parameter	contains	the	text	entered	in	the	log
message	box	in	the	commit	dialog.	If	the	user	has	not	yet	entered	any
text,	this	string	will	be	empty.

The	newMessage	return	string	is	copied	into	the	log	message	edit	box	in
the	commit	dialog,	replacing	whatever	is	already	there.	If	a	plugin	does
not	modify	the	originalMessage	string,	it	must	return	the	same	string
again	here,	otherwise	any	text	the	user	has	entered	will	be	lost.

Prev	 Up 	Next
Appendix	B.	IBugTraqProvider
interface	 Home

	B.3.	The
IBugTraqProvider2

interface

B.3.	The	IBugTraqProvider2	interface
Prev	 Appendix	B.	IBugTraqProvider	interface 	Next

B.3.	The	IBugTraqProvider2	interface

In	TortoiseSVN	1.6	a	new	interface	was	added	which	provides	more
functionality	for	plugins	(also	available	in	TortoiseGit	since	1.2.1).	This
IBugTraqProvider2	interface	inherits	from	IBugTraqProvider.

HRESULT	GetCommitMessage2	(

		//	Parent	window	for	your	provider's	UI.

		[in]	HWND	hParentWnd,

		//	Parameters	for	your	provider.

		[in]	BSTR	parameters,

		//	The	common	URL	of	the	commit

		[in]	BSTR	commonURL,

		[in]	BSTR	commonRoot,

		[in]	SAFEARRAY(BSTR)	pathList,

		//	The	text	already	present	in	the	commit	message.

		//	Your	provider	should	include	this	text	in	the	new	message,

		//	where	appropriate.

		[in]	BSTR	originalMessage,

		//	You	can	assign	custom	revision	properties	to	a	commit

		//	by	setting	the	next	two	params.

		//	note:	Both	safearrays	must	be	of	the	same	length.

		//							For	every	property	name	there	must	be	a	property	value!

		//	The	content	of	the	bugID	field	(if	shown)

		[in]	BSTR	bugID,

		//	Modified	content	of	the	bugID	field

		[out]	BSTR	*	bugIDOut,

		//	The	list	of	revision	property	names.

		[out]	SAFEARRAY(BSTR)	*	revPropNames,

		//	The	list	of	revision	property	values.

		[out]	SAFEARRAY(BSTR)	*	revPropValues,

		//	The	new	text	for	the	commit	message.

		//	This	replaces	the	original	message

		[out,	retval]	BSTR	*	newMessage

);

This	method	is	called	from	the	TortoiseGit	commit	dialog	when	the	user
clicks	on	the	plugin	button.	This	method	is	called	instead	of
GetCommitMessage().	Please	refer	to	the	documentation	for
GetCommitMessage	for	the	parameters	that	are	also	used	there.

The	parameter	commonURL	is	the	parent	URL	of	all	items	selected	to	bring
up	the	commit	dialog.	This	is	basically	the	URL	of	the	commonRoot	path.

The	parameter	bugID	contains	the	content	of	the	bug-ID	field	(if	it	is
shown,	configured	with	the	property	bugtraq.message).

The	return	parameter	bugIDOut	is	used	to	fill	the	bug-ID	field	when	the
method	returns.

The	revPropNames	and	revPropValues	are	only	honored	by	TortoiseSVN
and	are	ignored	by	TortoiseGit.	If	no	revision	properties	are	to	be	set,	the
plugin	must	return	empty	arrays.

HRESULT	CheckCommit	(

		[in]	HWND	hParentWnd,

		[in]	BSTR	parameters,

		[in]	BSTR	commonURL,

		[in]	BSTR	commonRoot,

		[in]	SAFEARRAY(BSTR)	pathList,

		[in]	BSTR	commitMessage,

		[out,	retval]	BSTR	*	errorMessage

);

This	method	is	called	right	before	the	commit	dialog	is	closed	and	the
commit	begins.	A	plugin	can	use	this	method	to	validate	the	selected
files/folders	for	the	commit	and/or	the	commit	message	entered	by	the
user.	The	parameters	are	the	same	as	for	GetCommitMessage2(),	with	the
difference	that	commonURL	is	now	the	common	URL	of	all	checked	items,
and	commonRoot	the	root	path	of	all	checked	items.

For	the	branch/tag	dialog,	the	commonURL	is	the	source	URL	of	the	copy,
and	commonRoot	is	set	to	the	target	URL	of	the	copy.

The	return	parameter	errorMessage	must	either	contain	an	error	message
which	TortoiseGit	shows	to	the	user	or	be	empty	for	the	commit	to	start.	If
an	error	message	is	returned,	TortoiseGit	shows	the	error	string	in	a
dialog	and	keeps	the	commit	dialog	open	so	the	user	can	correct
whatever	is	wrong.	A	plugin	should	therefore	return	an	error	string	which
informs	the	user	what	is	wrong	and	how	to	correct	it.

HRESULT		OnCommitFinished	(

		//	Parent	window	for	any	(error)	UI	that	needs	to	be	displayed.

		[in]	HWND	hParentWnd,

		//	The	common	root	of	all	paths	that	got	committed.

		[in]	BSTR	commonRoot,

		//	All	the	paths	that	got	committed.

		[in]	SAFEARRAY(BSTR)	pathList,

		//	The	text	already	present	in	the	commit	message.

		[in]	BSTR	logMessage,

		//	The	revision	of	the	commit.

		[in]	ULONG	revision,

		//	An	error	to	show	to	the	user	if	this	function

		//	returns	something	else	than	S_OK

		[out,	retval]	BSTR	*	error

);

This	method	is	called	after	a	successful	commit.	A	plugin	can	use	this
method	to	e.g.,	close	the	selected	issue	or	add	information	about	the
commit	to	the	issue.	The	parameters	are	the	same	as	for
GetCommitMessage2.

HRESULT	HasOptions(

		//	Whether	the	provider	provides	options

		[out,	retval]	VARIANT_BOOL	*ret

);

This	method	is	called	from	the	settings	dialog	where	the	user	can

configure	the	plugins.	If	a	plugin	provides	its	own	configuration	dialog
with	ShowOptionsDialog,	it	must	return	TRUE	here,	otherwise	it	must
return	FALSE.

HRESULT	ShowOptionsDialog(

		//	Parent	window	for	the	options	dialog

		[in]	HWND	hParentWnd,

		//	Parameters	for	your	provider.

		[in]	BSTR	parameters,

		//	The	parameters	string

		[out,	retval]	BSTR	*	newparameters

);

This	method	is	called	from	the	settings	dialog	when	the	user	clicks	on	the
"Options"	button	that	is	shown	if	HasOptions	returns	TRUE.	A	plugin	can
show	an	options	dialog	to	make	it	easier	for	the	user	to	configure	the
plugin.

The	parameters	string	contains	the	plugin	parameters	string	that	is
already	set/entered.

The	newparameters	return	parameter	must	contain	the	parameters	string
which	the	plugin	constructed	from	the	info	it	gathered	in	its	options	dialog.
That	paramameters	string	is	passed	to	all	other	IBugTraqProvider	and
IBugTraqProvider2	methods.

Prev	 Up 	Next
B.2.	The	IBugTraqProvider
interface	 Home 	Appendix	C.	Useful	Tips

For	Administrators

Appendix	C.	Useful	Tips	For	Administrators
Prev	 	 	Next

Appendix	C.	Useful	Tips	For	Administrators

Table	of	Contents
C.1.	Deploy	TortoiseGit	via	group	policies
C.2.	Redirect	the	upgrade	check
C.3.	Disable	context	menu	entries

This	appendix	contains	solutions	to	problems/questions	you	might	have
when	you	are	responsible	for	deploying	TortoiseGit	to	multiple	client
computers.

C.1.	Deploy	TortoiseGit	via	group	policies

The	TortoiseGit	installer	comes	as	an	MSI	file,	which	means	you	should
have	no	problems	adding	that	MSI	file	to	the	group	policies	of	your
domain	controller.

A	good	walk-through	on	how	to	do	that	can	be	found	in	the	knowledge
base	article	314934	from	Microsoft:	http://support.microsoft.com/?
kbid=314934	.

Versions	0.3.0	and	later	of	TortoiseGit	must	be	installed	under	Computer
Configuration	and	not	under	User	Configuration.	This	is	because	those
versions	need	the	new	CRT	and	MFC	DLLs,	which	can	only	be	deployed
per	computer	and	not	per	user.	If	you	really	must	install	TortoiseGit	on	a
per	user	basis,	then	you	must	first	install	the	MFC	and	CRT	package
version	11	from	Microsoft	on	each	computer	you	want	to	install
TortoiseGit	as	per	user.

You	can	provide	a	default	setting	for	the	ssh	client	in
HKLM\TortoiseGit\SSH.

TortoiseGit	automatically	finds	git.exe	if	a	normal	msysGit/Git	for
Windows	installation	is	on	the	computer	or	git.exe	is	on	the	PATH	(and	is
runnable	in	a	normal	cmd.exe	session	-	you	might	need	to	also	put	the
[MSYSGIT	INSTALLDIR]\mingw\bin	on	the	PATH	if	you	use	the	msysgit
development	package).

For	completely	disabling	automatic	update	checking	see	VersionCheck	in
Section	2.36.10,	“Advanced	Settings”.

Prev	 	 	Next
B.3.	The	IBugTraqProvider2
interface	 Home 	C.2.	Redirect	the	upgrade

check

http://support.microsoft.com/?kbid=314934

C.2.	Redirect	the	upgrade	check

Prev	 Appendix	C.	Useful	Tips	For
Administrators 	Next

C.2.	Redirect	the	upgrade	check

TortoiseGit	checks	if	there's	a	new	version	available	every	week	(or	daily
in	a	preview	release).	If	there	is	a	newer	version	available,	a	dialog
shows	up	informing	the	user	about	that	and	allows	to	download/install	a
new	version.

Figure	C.1.	The	upgrade	dialog

If	you're	responsible	for	a	lot	of	users	in	your	domain,	you	might	want
your	users	to	use	only	versions	you	have	approved	and	not	have	them
install	always	the	latest	version	(or	to	save	bandwidth	or	want	to	add
some	further	notes	for	installation).	You	probably	don't	want	that	upgrade
dialog	to	show	up	so	your	users	don't	go	and	upgrade	immediately	(to
disable	update	checking	at	all	(e.g.	because	you	use	group	policies	to
deploy	TortoiseGit,	see	Section	C.1,	“Deploy	TortoiseGit	via	group

policies”	and/or	VersionCheck	in	Section	2.36.10,	“Advanced	Settings”).

TortoiseGit	allow	you	to	redirect	that	upgrade	check	to	your	intranet
server.	You	can	set	the	registry	key
HKCU\Software\TortoiseGit\UpdateCheckURL	OR
HKLM\Software\TortoiseGit\UpdateCheckURL	(string	value,	HKCU
overrides	HKLM)	to	an	URL	pointing	to	a	text	file	in	your	intranet	(default
is	https://versioncheck.tortoisegit.org/version.txt).	When	the	default
version.txt	file	is	used,	it	is	checked	by	verifying	a	digital	signature
(https://versioncheck.tortoisegit.org/version.txt.rsa.asc)	that	it	has	not
been	altered	(since	TortoiseGit	1.8.5).	The	check	for	the	digital	signature
of	the	version.txt	file	is	omitted	if	the	location	is	overridden	in	registry.
That	text	file	must	have	the	following	format:

[TortoiseGit]

version=X.X.X.X

infotext=A	new	version	of	TortoiseGit	is	available	for	you	to	download!

infotexturl=http://192.168.2.1/downloads/TortoiseGit/info.htm

changelogurl=http://192.168.2.1/downloads/TortoiseGit/TortoiseGit-1.4.1.6000-changelog.txt

baseurl=http://192.168.2.1/downloads/TortoiseGit/

langs="1029;cs"

langs="1031;de"

The	version	line	in	that	file	is	the	version	string.	You	must	make	sure	that
it	matches	the	exact	version	string	of	the	TortoiseGit	installation	package.
The	infotext	line	is	a	custom	text,	shown	in	the	upgrade	dialog.	You	can
write	there	whatever	you	want	(can	also	be	left	empty).	Just	note	that	the
space	in	the	upgrade	dialog	is	limited.	Too	long	messages	will	get
truncated!	The	infotexturl	line	is	the	URL	which	is	opened	when	when	the
user	clicks	on	the	(custom)	message	label	in	the	upgrade	dialog.	The
URL	is	opened	with	the	default	web	browser,	so	if	you	specify	a	web
page,	that	page	is	opened	and	shown	to	the	user.	The	changelogurl	line
contains	the	URL	to	the	Changelog	or	release	notes	which	are	displayed
in	the	upgrade	dialog	(if	empty	it	defaults	to
https://versioncheck.tortoisegit.org/changelog.txt,	you	can	use	%1!u!,
%2!u!	and	%3!u!	for	MAJOR,	MINOR	and	MICRO	version	numbers	of	the
running	TortoiseGit	version;	%4!s!	for	Windows	platform,	%5!s!	for
Windows	version,	and	%6!s!	for	servicepack	version),	The	baseurl	line	is

https://versioncheck.tortoisegit.org/version.txt
https://versioncheck.tortoisegit.org/version.txt.rsa.asc
https://versioncheck.tortoisegit.org/changelog.txt

used	to	override	the	base	path	to	the	installation	packages	(if	empty	it
defaults	to	http://updater.download.tortoisegit.org/tgit/X.X.X.X/).	The
filenames	are	generated	as	follows:	TortoiseGit-(version)-(32|64)bit.msi
for	the	main	installer	(if	not	overridden	by	mainfilename=TortoiseGit-
%1!s!-%2!s!bit.msi)	and	TortoiseGit-LanguagePack-(version)-(32|64)bit-
(cs|de|...).msi	for	the	language	packs	(if	not	overridden	by
languagepackfilename=TortoiseGit-LanguagePack-%1!s!-%2!s!bit-
%3!s!.msi;	%4!d!	is	the	four	digit	country	code).	Using	langs	lines,	one
can	advertise	language	packs	(Syntax	of	one	line:	Four	digit	country
code;ISO	Country	code).	Using	a	issuesurl	line,	it	is	possible	to	control
the	URL	to	which	the	issues	are	linked	to	(default	is
https://tortoisegit.org/issue/%BUGID%;	can	also	be	empty	to	disable
linking),

Clicking	on	 Download 	downloads	the	selected	files	as	well	as	their	digital
signature	files	(filename.asc)	to	FOLDERID_Downloads.	After
downloading	the	digital	signature	is	verified	-	the	file	is	only	kept	if	the	file
is	digitally	signed	and	could	be	verified	correctly.

If	you	want	to	distribute	your	own	modified	TortoiseGit	packages	in	your
network,	you	have	to	put	your	own	GPG	key	into	TortoiseGit	and	sign	the
.msi-files	with	this	key	or	deactivate	the	signature	verification	completely.

Prev	 Up 	Next
Appendix	C.	Useful	Tips	For
Administrators	 Home 	C.3.	Disable	context	menu

entries

http://msdn.microsoft.com/en-us/library/windows/desktop/dd378457%28v=vs.85%29.aspx

C.3.	Disable	context	menu	entries

Prev	 Appendix	C.	Useful	Tips	For
Administrators 	Next

C.3.	Disable	context	menu	entries

TortoiseGit	allows	you	to	disable	(actually,	hide)	context	menu	entries.
Since	this	is	a	feature	which	should	not	be	used	lightly	but	only	if	there	is
a	compelling	reason,	there	is	no	GUI	for	this	and	it	has	to	be	done
directly	in	the	registry.	This	can	be	used	to	disable	certain	commands	for
users	who	should	not	use	them.	But	please	note	that	only	the	context
menu	entries	in	the	explorer	are	hidden,	and	the	commands	are	still
available	through	other	means,	e.g.	the	command	line	or	even	other
dialogs	in	TortoiseGit	itself!

The	registry	keys	which	hold	the	information	on	which	context	menus	to
show	are
HKEY_CURRENT_USER\Software\TortoiseGit\ContextMenuEntriesMaskLow
and
HKEY_CURRENT_USER\Software\TortoiseGit\ContextMenuEntriesMaskHigh

Each	of	these	registry	entries	is	a	DWORD	value,	with	each	bit
corresponding	to	a	specific	menu	entry.	A	set	bit	means	the
corresponding	menu	entry	is	deactivated.

Table	C.1.	Menu	entries	and	their	values

Value Menu	entry
0x0000000000000002 Sync
0x0000000000000004 Commit
0x0000000000000008 Add
0x0000000000000010 Revert
0x0000000000000020 Cleanup
0x0000000000000040 Resolve
0x0000000000000080 Switch/Checkout
0x0000000000000100 Sendmail
0x0000000000000200 Export
0x0000000000000400 Create	Repository	here
0x0000000000000800 Branch/Tag
0x0000000000001000 Merge
0x0000000000002000 Delete

0x0000000000004000 Rename

0x0000000000008000 Submodule	Update
0x0000000000010000 Diff
0x0000000000020000 Show	Log
0x0000000000040000 Edit	Conflicts
0x0000000000080000 Refence	Browse
0x0000000000100000 Check	for	modifications
0x0000000000200000 Ignore
0x0000000000400000 RefLog
0x0000000000800000 Blame
0x0000000001000000 Repository	Browser
0x0000000002000000 Apply	Patch
0x0000000004000000 Delete	(keep	local)
0x0000000008000000 SVN	Rebase
0x0000000010000000 SVN	DCommit
0x0000000040000000 SVN	Ignore
0x0000000100000000 Log	of	Submodule	folder
0x0000000200000000 Rev	Diff
0x0000000800000000 Pull
0x0000001000000000 Push
0x0000002000000000 Clone
0x0000004000000000 Tag
0x0000008000000000 Format	Patch
0x0000010000000000 Import	Patch
0x0000040000000000 Fetch
0x0000080000000000 Rebase
0x0000100000000000 Stash	Save
0x0000200000000000 Stash	Apply
0x0000400000000000 Stash	List
0x0000800000000000 Submodule	Add
0x0001000000000000 Submodule	Sync
0x0002000000000000 Stash	Pop
0x0004000000000000 Diff	two	files
0x0008000000000000 Bisect
0x0080000000000000 SVN	Fetch
0x0100000000000000 Revision	graph
0x0200000000000000 Daemon
0x2000000000000000 Settings
0x4000000000000000 Help

0x8000000000000000 About

Example:	to	disable	the	“Sendmail”	the	“Rebase”	and	the	“Settings”	menu
entries,	add	the	values	assigned	to	the	entries	like	this:

		0x0000000000000100

+	0x0000080000000000

+	0x2000000000000000

=	0x2000080000000100

The	lower	DWORD	value	(0x00000100)	must	then	be	stored	in
HKEY_CURRENT_USER\Software\TortoiseGit\ContextMenuEntriesMaskLow
the	higher	DWORD	value	(0x20000800)	in
HKEY_CURRENT_USER\Software\TortoiseGit\ContextMenuEntriesMaskHigh

To	enable	the	menu	entries	again,	simply	delete	the	two	registry	keys.

Prev	 Up 	Next
C.2.	Redirect	the	upgrade
check	 Home 	Appendix	D.	Automating

TortoiseGit

Appendix	D.	Automating	TortoiseGit
Prev	 	 	Next

Appendix	D.	Automating	TortoiseGit

Table	of	Contents
D.1.	TortoiseGit	Commands
D.2.	TortoiseGitIDiff	Commands

Since	all	commands	for	TortoiseGit	are	controlled	through	command	line
parameters,	you	can	automate	it	with	batch	scripts	or	start	specific
commands	and	dialogs	from	other	programs	(e.g.	your	favourite	text
editor).

Important

Remember	that	TortoiseGit	is	a	GUI	client,	and	this
automation	guide	shows	you	how	to	make	the	TortoiseGit
dialogs	appear	to	collect	user	input.	If	you	want	to	write	a
script	which	requires	no	input,	you	should	use	the	official	Git
command	line	client	instead.

D.1.	TortoiseGit	Commands

The	TortoiseGit	GUI	program	is	called	TortoiseGitProc.exe.	All
commands	are	specified	with	the	parameter	/command:abcd	where	abcd	is
the	required	command	name.	Most	of	these	commands	need	at	least	one
path	argument,	which	is	given	with	/path:"some\path".	In	the	following
table	the	command	refers	to	the	/command:abcd	parameter	and	the	path
refers	to	the	/path:"some\path"	parameter.

Since	some	of	the	commands	can	take	a	list	of	target	paths	(e.g.
committing	several	specific	files)	the	/path	parameter	can	take	several
paths,	separated	by	a	*	character.

TortoiseGit	uses	temporary	files	to	pass	multiple	arguments	between	the
shell	extension	and	the	main	program.	From	TortoiseGit	1.5.0	on	and
later,	/notempfile	parameter	is	obsolete	and	there	is	no	need	to	add	it
anymore.

The	progress	dialog	which	is	used	for	commits,	updates	and	many	more
git.exe	commands	usually	stays	open	after	the	command	has	finished
until	the	user	presses	the	 OK 	button.	This	can	be	changed	in	the
settings	dialog.	You	may	use	/closeonend	parameter	to	override	the	this
setting	from	your	batch	file.

To	close	the	(git.exe)	progress	dialog	at	the	end	of	a	command
automatically	without	using	the	permanent	setting	you	can	pass	the
/closeonend	parameter.

/closeonend:0	Close	manually

/closeonend:1	Auto-close	if	no	further	options	are	available

/closeonend:2	Auto-close	if	no	errors

The	table	below	lists	all	the	commands	which	can	be	accessed	using	the
TortoiseGitProc.exe	command	line.	As	described	above,	these	should	be
used	in	the	form	/command:abcd.	In	the	table,	the	/command	prefix	is

omitted	to	save	space.

Table	D.1.	List	of	available	commands	and	options

Command Description
:about Shows	the	about	dialog.	This	is	also	shown	if	no	command	is	given.
:bisect Allows	to	control	the	bisect	logic	of	TortoiseGit.	Use	the	/start	parameter	to

start	a	bisect	you	can	specify	/good:REF	and	/bad:REF	here).	When	bisect	is
active,	you	can	use	/good,	/bad	and	/reset	to	control	the	bisect	process.

:fetch Opens	the	fetch	dialog.	Use	the	/remote	parameter	to	control	the	remote	which
should	be	pre-selected.

:firststart Shows	the	first	start	wizard.
:log Opens	the	log	dialog.	The	/path	specifies	the	file	or	folder	for	which	the	log

should	be	shown.	Additional	options	can	be	set:	/rev:"SHA1"	highlights	and
automatically	scrolls	to	the	specified	revision,	/endrev:"SHA1/branch",	shows	the
log	of	the	specified	revision,	/startrev:"SHA1/branch"	(only	in	combination	with
endrev),	shows	the	log	of	the	revision	range	startrev..endrev,
/range:"gitrevision",	shows	the	log	of	the	entered	gitrevision	(e.g.
"branch1...branch2"),	/limit:"N	SCALE",	SCALE	could	be	"Commit",	"Year",
"Month",	"Week";	it	shows	last	N	commit(s),	last	N	year(s),	last	N	month(s),	last
N	week(s).	Use	/limit:0	to	disable	any	default	limit.
/findstring:"filterstring"	fills	in	the	filter	text,	/findtext	forces	the	filter	to
use	text,	not	regex,	or	/findregex	forces	the	filter	to	use	regex,	not	simple	text
search,	and	/findtype:X	with	X	being	a	number	between	0	and	127.	The
numbers	are	the	sum	of	the	following	options:

/findtype:0	filter	by	everything

/findtype:1	filter	by	messages

/findtype:2	filter	by	path

/findtype:4	filter	by	authors

/findtype:8	filter	by	revisions

/findtype:16	not	used

/findtype:32	filter	by	bug	ID

/findtype:64	filter	by	subject

If	/outfile:path\to\file	is	specified,	the	selected	revision	is	written	to	that	file
when	the	log	dialog	is	closed.

:clone Opens	the	clone	dialog.	The	/url	specifies	the	URL	to	clone	from.	The	/path
specifies	the	target	directory	to	clone	to.	If	/exactpath	is	not	specfied,	the
repository	name	(without	trailing	.git)	will	be	appended	to	target	directory.	This	is
the	default	behaviour.	If	/exactpath	is	specfied,	the	exact	/path	is	considered

the	target	directory,	without	appending	repository	name	to	it.
:commit Opens	the	commit	dialog.	The	/path	specifies	the	target	directory	or	the	list	of

files	to	commit.	You	can	also	specify	the	/logmsg	switch	to	pass	a	predefined	log
message	to	the	commit	dialog.	Or,	if	you	don't	want	to	pass	the	log	message	on
the	command	line,	use	/logmsgfile:path,	where	path	points	to	a	file	containing
the	log	message.	To	pre-fill	the	bug	ID	box	(in	case	you've	set	up	integration
with	bug	trackers	properly),	you	can	use	the	/bugid:"the	bug	id	here"	to	do
that.

:add Adds	the	files	in	/path	to	version	control.
:revert Reverts	local	modifications	of	a	working	tree.	The	/path	tells	which	items	to

revert.
:cleanup Cleans	up	the	working	tree	in	/path.
:resolve Marks	a	conflicted	file	specified	in	/path	as	resolved.	If	/noquestion	is	given,

then	resolving	is	done	without	asking	the	user	first	if	it	really	should	be	done.
:repocreate Creates	a	repository	in	/path
:switch Opens	the	switch	dialog.	The	/path	specifies	the	target	directory.
:export Exports	a	revision	of	the	repository	in	/path	to	a	zip	file.
:merge Opens	the	merge	dialog.	The	/path	specifies	the	target	directory.
:settings Opens	the	settings	dialog.
:remove Removes	the	file(s)	in	/path	from	version	control.
:rename Renames	the	file	in	/path.	The	new	name	for	the	file	is	asked	with	a	dialog.
:diff Starts	the	external	diff	program	specified	in	the	TortoiseGit	settings.	The	/path

specifies	the	first	file.	If	the	option	/path2	is	set,	then	the	diff	program	is	started
with	those	two	files.	If	/path2	is	omitted,	then	the	diff	is	done	between	the	file	in
/path	and	its	BASE.	To	explicitly	set	the	revision	use	/startrev:xxx	and
/endrev:xxx.	Add	/unified	to	get	a	unified	diff.	Add	/line:NN	to	get	scroll	to	the
mentioned	line.

:showcompare
Depending	on	revisions	to	compare	and	the	path,	this	either	shows	a	unified	diff
(if	the	option	unified	is	set),	a	dialog	with	a	list	of	files	that	have	changed
(filtered	by	a	possibly	entered	subpath)	or	if	the	path	point	to	a	file	starts	the	diff
viewer	for	those	the	file	in	the	different	revisions.	Use	/revision1:xxx	and
/revision2:xxx	to	specify	the	revisions	to	compare,	whereas	/revision1:xxx
indicates	the	base	revision	to	compare	with.

:conflicteditor Starts	the	conflict	editor	specified	in	the	TortoiseGit	settings	with	the	correct	files
for	the	conflicted	file	in	/path.

:help Opens	the	help	file.
:repostatus Opens	the	check-for-modifications	dialog.	The	/path	specifies	the	working	tree

directory.
:repobrowser Starts	the	repository	browser	dialog,	pointing	to	the	working	tree	given	in	/path.

An	additional	option	/rev:xxx	can	be	used	to	specify	the	revision	which	the
repository	browser	should	show.	If	the	/rev:xxx	is	omitted,	it	defaults	to	HEAD.

:ignore Adds	all	targets	in	/path	to	the	ignore	list,	i.e.	adds	file(s)	to	the	.gitignore	file.

:blame Opens	TortoiseGitBlame	for	the	file	specified	in	/path.

If	the	option	/endrev	is	set	TortoiseGitBlame	ends	at	that	revision.

If	the	option	/line:nnn	is	set,	TortoiseGitBlame	will	open	with	the	specified	line
number	showing.

:cat Saves	a	file	from	an	URL	or	working	tree	path	given	in	/path	to	the	location
given	in	/savepath:path.	The	revision	is	given	in	/revision:xxx.	This	can	be
used	to	get	a	file	with	a	specific	revision.

:pull Opens	the	pull	dialog	in	the	working	tree	located	in	/path.
:push Opens	the	push	dialog	in	the	working	tree	located	in	/path.
:rebase Opens	the	rebase	dialog	for	the	working	tree	located	in	/path.
:stashsave Opens	the	stash	save	dialog	for	the	working	tree	located	in	/path.	A	prefilled

mesage	can	be	achieved	by	using	the	/msg	parameter.
:stashapply Applies	to	latest	stash	to	the	working	tree	located	in	/path.
:stashpop Applies	to	latest	stash	to	the	working	tree	located	in	/path	and	drops	the	latest

stash	entry.
:subadd Opens	the	submodule	add	dialog.	/path.
:subupdate Opens	the	submodule	update	dialog	for	and	filters	the	submodules	regarding

the	folder	/path.
:subsync Syncs	the	submodule	information	for	the	working	tree	located	in	/path.
:reflog Opens	the	reflog	dialog	for	the	repository	located	in	/path.
:refbrowse Opens	the	browse	references	dialog	for	the	repository	located	in	/path.
:updatecheck /visible:	Shows	the	dialog	even	if	no	newer	TortoiseGit	version	is	available.

/force:	Shows	file	list	for	download	even	if	the	latest	TortoiseGit	has	been
installed.

:revisiongraph Shows	the	revision	graph	for	the	repository	given	in	/path.

To	create	an	image	file	of	the	revision	graph	for	a	specific	path,	but	without
showing	the	graph	window,	pass	/output:path	with	the	path	to	the	output	file.
The	output	file	must	have	an	extension	that	the	revision	graph	can	actually
export	to.	These	are:	.svg,	.wmf,	.gv,	.png,	.jpg,	.bmp	and	.gif.

:daemon Launches	the	Git	Daemon	for	the	repository	given	in	/path.
:pgpfp Prints	the	TortoiseGit	Release	Signing	Key	fingerprint.	If	you	trust	the	current

TortoiseGit	installation,	this	can	be	used	as	a	trust	anchor	to	future	releases.
:tag Opens	the	Create	Tag	dialog.	The	/path	specifies	the	repository	folder.

Additional	options	can	be	set:	/rev:"ref"	tags	on	the	specified	ref/commit,
/name:"tag_name"	fills	the	Tag	name	in	Create	Tag	dialog.

Examples	(which	should	be	entered	on	one	line):

TortoiseGitProc.exe	/command:commit

																	/path:"d:\git_wc\file1.txt*c:\git_wc\file2.txt"

																	/logmsg:"test	log	message"	/closeonend:2

TortoiseGitProc.exe	/command:log	/path:"c:\git_wc\file1.txt"

																	/startrev:master~100	/endrev:master

Tip

When	calling	TortoiseGit	from	within	the	msys	environment,	you	can	also	use
more	*nix	style	command	line	parameters:

TortoiseGitProc.exe	-command	commit

																				-path	"d:\git_wc\file1.txt*c:\git_wc\file2.txt"

																				-logmsg	"test	log	message"	-closeonend	2

	 	 	 	 	

Prev	 	 	Next
C.3.	Disable	context	menu
entries	 Home 	D.2.	TortoiseGitIDiff

Commands

D.2.	TortoiseGitIDiff	Commands
Prev	 Appendix	D.	Automating	TortoiseGit 	Next

D.2.	TortoiseGitIDiff	Commands

The	image	diff	tool	has	a	few	command	line	options	which	you	can	use	to
control	how	the	tool	is	started.	The	program	is	called
TortoiseGitIDiff.exe.

The	table	below	lists	all	the	options	which	can	be	passed	to	the	image	diff
tool	on	the	command	line.

Table	D.2.	List	of	available	options

Option Description
:left Path	to	the	file	shown	on	the	left.
:lefttitle A	title	string.	This	string	is	used	in	the	image	view	title	instead	of	the	full	path	to	the

image	file.
:right Path	to	the	file	shown	on	the	right.
:righttitle A	title	string.	This	string	is	used	in	the	image	view	title	instead	of	the	full	path	to	the

image	file.
:overlay If	specified,	the	image	diff	tool	switches	to	the	overlay	mode	(alpha	blend).
:fit If	specified,	the	image	diff	tool	fits	both	images	together.
:showinfo Shows	the	image	info	box.

Example	(which	should	be	entered	on	one	line):

TortoiseGitIDiff.exe	/left:"c:\images\img1.jpg"	/lefttitle:"image	1"

																		/right:"c:\images\img2.jpg"	/righttitle:"image	2"

																		/fit	/overlay

Prev	 Up 	Next
Appendix	D.	Automating
TortoiseGit	 Home 	Appendix	E.	Implementation

Details

Appendix	E.	Implementation	Details
Prev	 	 	Next

Appendix	E.	Implementation	Details

Table	of	Contents
E.1.	Icon	Overlays

This	appendix	contains	a	more	detailed	discussion	of	the	implementation
of	some	of	TortoiseGit's	features.

E.1.	Icon	Overlays

Every	file	has	a	Git	status	value	as	reported	by	the	Git	library.	In	the
command	line	client,	these	are	represented	by	single	letter	codes,	but	in
TortoiseGit	they	are	shown	graphically	using	the	icon	overlays.	Because
the	number	of	overlays	is	very	limited,	each	overlay	may	represent	one	of
several	status	values.

The	Conflicted	overlay	is	used	to	represent	the	conflicted	state,	where	a
merge	resulted	in	conflicts	between	the	changes	of	the	current	and
changes	from	another	branch.

The	Modified	overlay	represents	the	modified	state,	where	you	have
made	local	modifications	to	your	working	tree.

The	Deleted	overlay	represents	the	deleted	state,	where	an	item	is
scheduled	for	deletion,	or	the	missing	state,	where	an	item	is	not	present
but	still	in	the	Git	index.	Naturally	an	item	which	is	missing	cannot	have
an	overlay	itself,	but	the	parent	folder	can	be	marked	if	one	of	its	child
items	is	missing.

The	Added	overlay	is	simply	used	to	represent	the	added	status	when	an
item	has	been	added	to	version	control.

The	In	Git	overlay	is	used	to	represent	an	item	which	is	in	the	normal
state.

The	assume-valid	(Needs	Lock	in	TortoiseSVN)	overlay	is	used	to
indicate	if	a	file	has	the	assume-valid	flag	set.

The	skip-worktree	(Locked	in	TortoiseSVN)	overlay	is	used	when	to
indicate	if	a	file	has	the	skip-worktree	flag	set.

The	Ignored	overlay	is	used	to	represent	an	item	which	is	in	the	ignored
state,	either	due	to	a	global	ignore	pattern,	or	due	to	a	.gitignore	file	in
one	of	the	parent	folders.	This	overlay	is	optional.

The	Unversioned	overlay	is	used	to	represent	an	item	which	is	in	the
unversioned	state.	This	is	an	item	in	a	versioned	folder,	but	which	is	not
under	version	control	itself.	This	overlay	is	optional.

If	an	item	has	Git	status	none	(the	item	is	not	within	a	working	tree)	then
no	overlay	is	shown.	If	you	have	chosen	to	disable	the	Ignored	and
Unversioned	overlays	then	no	overlay	will	be	shown	for	those	files	either.

An	item	can	only	have	one	Git	status	value.	For	example	a	file	could	be
locally	modified	and	it	could	be	marked	for	deletion	at	the	same	time.	Git
returns	a	single	status	value	-	in	this	case	deleted.	Those	priorities	are
defined	within	Git	and	TortoiseGit	itself.

When	TortoiseGit	displays	the	status	recursively	(the	default	setting),
each	folder	displays	an	overlay	reflecting	its	own	status	and	the	status	of
all	its	children.	In	order	to	display	a	single	summary	overlay,	we	use	the
priority	order	shown	above	to	determine	which	overlay	to	use,	with	the
Conflicted	overlay	taking	highest	priority.

In	fact,	you	may	find	that	not	all	of	these	icons	are	used	on	your	system.

This	is	because	the	number	of	overlays	allowed	by	Windows	is	limited	to
15.	Windows	uses	4	of	those,	and	the	remaining	11	can	be	used	by	other
applications.	If	there	are	not	enough	overlay	slots	available,	TortoiseGit
tries	to	be	a	Good	Citizen	(TM)	and	limits	its	use	of	overlays	to	give	other
apps	a	chance.

If	you	have	problems	with	overlays,	please	see	the	online	FAQ.

Since	there	are	Tortoise	clients	available	for	other	version	control
systems,	the	TortoiseSVN	developers	created	a	shared	component	which
is	responsible	for	showing	the	overlay	icons.	The	technical	details	are	not
important	here,	all	you	need	to	know	is	that	this	shared	component	allows
all	Tortoise	clients	to	use	the	same	overlays	and	therefore	the	limit	of	11
available	slots	isn't	used	up	by	installing	more	than	one	Tortoise	client.	Of
course	there's	one	small	drawback:	all	Tortoise	clients	use	the	same
overlay	icons,	so	you	can't	figure	out	by	the	overlay	icons	what	version
control	system	a	working	copy	is	using.

Normal,	Modified	and	Conflicted	are	always	loaded	and	visible.

Deleted	is	loaded	if	possible,	but	falls	back	to	Modified	if	there	are
not	enough	slots.

assume-valid	is	loaded	if	possible,	but	falls	back	to	Normal	if	there
are	not	enough	slots.

skip-worktree	is	loaded	if	possible,	but	falls	back	to	Normal	if	there
are	not	enough	slots.

Added	is	loaded	if	possible,	but	falls	back	to	Modified	if	there	are	not
enough	slots.

Prev	 	 	Next
D.2.	TortoiseGitIDiff
Commands	 Home 	Appendix	F.	Tips	and	tricks

for	SSH/PuTTY

https://tortoisegit.org/support/faq/#ovlnotshowing

Appendix	F.	Tips	and	tricks	for	SSH/PuTTY
Prev	 	 	Next

Appendix	F.	Tips	and	tricks	for	SSH/PuTTY

Table	of	Contents
F.1.	Introduction

F.1.1.	How	to	use	sessions
F.2.	FAQ	and	examples	section

F.2.1.	How	to	use	a	default	key	for	all	SSH
connections
F.2.2.	How	to	connect	to	a	SSH	server	on	a	different
port

F.2.2.1.	All	connections	to	a	server	should	use
the	different	port
F.2.2.2.	One	special	connection	should	use	a
different	port

F.2.3.	How	to	use	two	different	ssh	keys	for	the	same
user	on	the	same	host

F.1.	Introduction

PuTTY	comes	with	a	great	session	management,	where	you	can	save
attributes	of	connections	(e.g.	ssh	key,	username,	port).	This	page
describes	how	to	make	use	of	it	-	partly	in	form	of	a	FAQ.	For	this	to
work,	you	need	the	PuTTY.exe-application.

F.1.1.	How	to	use	sessions

One	special	"session"	is	the	Default	Settings	session,	where	you	can
set	default	values	for	all	new	connections	(e.g.	a	key,	a	default	username,
enable	compression,	force	SSH	version	2	or	change	the	default	port	and
so	on).

You	can	also	save	settings	for	(single)	ssh	connections	as	sessions.	Take
one	server	where	the	ssh	server	only	listens	on	a	different	port,	then	you
can	set	up	all	settings	and	save	it	to	e.g.	"SERVERNAME".	Now	you	can
access	this	saved	settings	by	starting	PuTTY	and	double	clicking
"SERVERNAME"	in	the	saved	sessions	list	OR,	when	using	TortoiseGit,
plink	or	other	putty	applications,	the	entered	servername	(e.g.
git@SERVERNAME:/test.git)	will	be	matched	against	the	saved	sessions
list	and	if	found,	the	settings	of	the	saved	session	are	used.

Many	people	like	to	use	Pageant	for	storing	all	their	keys.	Because	a
PuTTY	session	is	capable	of	storing	a	key,	you	don't	always	need
Pageant.	But	imagine	you	want	to	store	different	keys	for	several	different
servers;	in	that	case	you	would	have	to	edit	the	PuTTY	session	over	and
over	again,	depending	on	the	server	you	are	trying	to	connect	with.	In	this
situation	Pageant	makes	perfect	sense,	because	when	PuTTY,	Plink,
TortoiseGitPlink	or	any	other	PuTTY-based	tool	is	trying	to	connect	to	an
SSH	server,	it	checks	all	private	keys	that	Pageant	holds	to	initiate	the
connection.

Prev	 	 	Next
Appendix	E.	Implementation
Details	 Home 	F.2.	FAQ	and	examples

section

http://www.chiark.greenend.org.uk/~sgtatham/putty/download.html

F.2.	FAQ	and	examples	section

Prev	 Appendix	F.	Tips	and	tricks	for
SSH/PuTTY 	Next

F.2.	FAQ	and	examples	section

This	section	is	based	on	the	descriptions	above	and	will	bring	some
examples	for	the	usage	with	TortoiseGit	(and	plink).

The	examples	assume	that	you	want	to	clone
git@example.com:/test.git.

F.2.1.	How	to	use	a	default	key	for	all	SSH	connections

Start	PuTTY,	go	to	Connection->SSH->Auth	and	select	your	key.	Then	go
to	Session,	select	Default	Settings	and	hit	 Save .

Now	PuTTY	(TortoiseGit	and	plink)	will	try	to	use	this	key	for	all	new
connections	(no	need	to	configure	it	in	TortoiseGit).	If	the	PuTTY	agent	is
running,	putty	and	plink	try	to	use	an	already	loaded	key,	but	will	ask	for
the	password	themselves	(as	a	fallback).

F.2.2.	How	to	connect	to	a	SSH	server	on	a	different	port

F.2.2.1.	All	connections	to	a	server	should	use	the	different	port

Start	PuTTY,	fill	in	the	servername	(example.com	here)	in	the	Host
Name-field	and	into	the	Saved	Sessions	field.	Change	the	port	number	to
the	number	you	need	and	click	on	 Save .	Now,	when	TortoiseGit/plink
uses	this	servername	the	port	is	automatically	loaded	from	the	session.

F.2.2.2.	One	special	connection	should	use	a	different	port

Start	PuTTY,	fill	in	the	servername	(example.com	here)	in	the	Host
Name-field	and	put	the	servername	followed	by	e.g.	a	number	into	the
Saved	Sessions	field	(e.g.	example.com1	or	whatever	you	like).	Change
the	port	number	to	the	number	you	need	and	click	on	 Save .

Now,	when	you	want	to	use	this	saved	session	use	example.com1	as	the
servername:	Clone	git@example.com1:/test.git.	Plink	detects	that	this	is

a	saved	session	and	loads	the	correct	servername	and	port	from	the
session.

You	can	create	several	sessions	for	a	server	with	different	session
names,	but	make	sure	you	do	not	use	the	servername	(example.com
here)	as	the	exact	session	name,	otherwise	these	settings	will	be	the
default	ones	if	you	try	to	connect	to	the	server	(example.com).

F.2.3.	How	to	use	two	different	ssh	keys	for	the	same	user
on	the	same	host

Start	PuTTY,	fill	in	the	servername	(example.com	here)	in	the	Host
Name-field	and	put	the	servername	followed	by	e.g.	a	number	into	the
Saved	Sessions	field	(e.g.	example.com1	or	whatever	you	like).	Go	to
Connection->SSH->Auth	and	select	the	key	which	should	be	used	for	this
connection.	Now	go	back	to	Session	and	hit	 Save .

Now,	when	you	want	to	use	this	saved	session	use	example.com1	as	the
servername:	Clone	git@example.com1:/test.git.	Plink	detects	that	this	is
a	saved	session	and	loads	the	correct	servername	and	ssh	key	from	the
session.

Prev	 Up 	Next
Appendix	F.	Tips	and	tricks
for	SSH/PuTTY	 Home 	Appendix	G.	Git	Offical

Documentation

Appendix	G.	Git	Offical	Documentation
Prev	 	 	Next

Appendix	G.	Git	Offical	Documentation

Table	of	Contents
G.1.	Git	User	Manual

G.1.1.	Git	User	Manual
G.1.1.1.	Git	Quick	Reference
G.1.1.2.	Notes	and	todo	list	for	this	manual

G.2.	Git	Tutorial
G.2.1.	gittutorial(7)
G.2.2.	gittutorial-2(7)
G.2.3.	gitcore-tutorial(7)
G.2.4.	gitcvs-migration(7)
G.2.5.	giteveryday(7)

G.3.	Git	Command	Reference
G.3.1.	git(1)
G.3.2.	git-add(1)
G.3.3.	git-am(1)
G.3.4.	git-annotate(1)
G.3.5.	git-apply(1)
G.3.6.	git-archimport(1)
G.3.7.	git-archive(1)
G.3.8.	git-bisect(1)
G.3.9.	git-blame(1)
G.3.10.	git-branch(1)
G.3.11.	git-bundle(1)
G.3.12.	git-cat-file(1)
G.3.13.	git-check-attr(1)
G.3.14.	git-check-ignore(1)
G.3.15.	git-check-mailmap(1)
G.3.16.	git-check-ref-format(1)
G.3.17.	git-checkout-index(1)
G.3.18.	git-checkout(1)
G.3.19.	git-cherry-pick(1)
G.3.20.	git-cherry(1)

G.3.21.	git-citool(1)
G.3.22.	git-clean(1)
G.3.23.	git-clone(1)
G.3.24.	git-column(1)
G.3.25.	git-commit-tree(1)
G.3.26.	git-commit(1)
G.3.27.	git-config(1)
G.3.28.	git-count-objects(1)
G.3.29.	git-credential(1)
G.3.30.	git-credential-cache--daemon(1)
G.3.31.	git-credential-cache(1)
G.3.32.	git-credential-store(1)
G.3.33.	git-cvsexportcommit(1)
G.3.34.	git-cvsimport(1)
G.3.35.	git-cvsserver(1)
G.3.36.	git-daemon(1)
G.3.37.	git-describe(1)
G.3.38.	git-diff-files(1)
G.3.39.	git-diff-index(1)
G.3.40.	git-diff-tree(1)
G.3.41.	git-diff(1)
G.3.42.	git-difftool(1)
G.3.43.	git-fast-export(1)
G.3.44.	git-fast-import(1)
G.3.45.	git-fetch-pack(1)
G.3.46.	git-fetch(1)
G.3.47.	git-filter-branch(1)
G.3.48.	git-fmt-merge-msg(1)
G.3.49.	git-for-each-ref(1)
G.3.50.	git-format-patch(1)
G.3.51.	git-fsck-objects(1)
G.3.52.	git-fsck(1)
G.3.53.	git-gc(1)
G.3.54.	git-get-tar-commit-id(1)
G.3.55.	git-grep(1)
G.3.56.	git-gui(1)
G.3.57.	git-hash-object(1)

G.3.58.	git-help(1)
G.3.59.	git-http-backend(1)
G.3.60.	git-http-fetch(1)
G.3.61.	git-http-push(1)
G.3.62.	git-imap-send(1)
G.3.63.	git-index-pack(1)
G.3.64.	git-init-db(1)
G.3.65.	git-init(1)
G.3.66.	git-instaweb(1)
G.3.67.	git-interpret-trailers(1)
G.3.68.	git-log(1)
G.3.69.	git-ls-files(1)
G.3.70.	git-ls-remote(1)
G.3.71.	git-ls-tree(1)
G.3.72.	git-mailinfo(1)
G.3.73.	git-mailsplit(1)
G.3.74.	git-merge-base(1)
G.3.75.	git-merge-file(1)
G.3.76.	git-merge-index(1)
G.3.77.	git-merge-one-file(1)
G.3.78.	git-merge-tree(1)
G.3.79.	git-merge(1)
G.3.80.	git-mergetool--lib(1)
G.3.81.	git-mergetool(1)
G.3.82.	git-mktag(1)
G.3.83.	git-mktree(1)
G.3.84.	git-mv(1)
G.3.85.	git-name-rev(1)
G.3.86.	git-notes(1)
G.3.87.	git-p4(1)
G.3.88.	git-pack-objects(1)
G.3.89.	git-pack-redundant(1)
G.3.90.	git-pack-refs(1)
G.3.91.	git-parse-remote(1)
G.3.92.	git-patch-id(1)
G.3.93.	git-prune-packed(1)
G.3.94.	git-prune(1)

G.3.95.	git-pull(1)
G.3.96.	git-push(1)
G.3.97.	git-quiltimport(1)
G.3.98.	git-read-tree(1)
G.3.99.	git-rebase(1)
G.3.100.	git-receive-pack(1)
G.3.101.	git-reflog(1)
G.3.102.	git-relink(1)
G.3.103.	git-remote-ext(1)
G.3.104.	git-remote-fd(1)
G.3.105.	git-remote-testgit(1)
G.3.106.	git-remote(1)
G.3.107.	git-repack(1)
G.3.108.	git-replace(1)
G.3.109.	git-request-pull(1)
G.3.110.	git-rerere(1)
G.3.111.	git-reset(1)
G.3.112.	git-rev-list(1)
G.3.113.	git-rev-parse(1)
G.3.114.	git-revert(1)
G.3.115.	git-rm(1)
G.3.116.	git-send-email(1)
G.3.117.	git-send-pack(1)
G.3.118.	git-sh-i18n--envsubst(1)
G.3.119.	git-sh-i18n(1)
G.3.120.	git-sh-setup(1)
G.3.121.	git-shell(1)
G.3.122.	git-shortlog(1)
G.3.123.	git-show-branch(1)
G.3.124.	git-show-index(1)
G.3.125.	git-show-ref(1)
G.3.126.	git-show(1)
G.3.127.	git-stage(1)
G.3.128.	git-stash(1)
G.3.129.	git-status(1)
G.3.130.	git-stripspace(1)
G.3.131.	git-submodule(1)

G.3.132.	git-svn(1)
G.3.133.	git-symbolic-ref(1)
G.3.134.	git-tag(1)
G.3.135.	git-unpack-file(1)
G.3.136.	git-unpack-objects(1)
G.3.137.	git-update-index(1)
G.3.138.	git-update-ref(1)
G.3.139.	git-update-server-info(1)
G.3.140.	git-upload-archive(1)
G.3.141.	git-upload-pack(1)
G.3.142.	git-var(1)
G.3.143.	git-verify-commit(1)
G.3.144.	git-verify-pack(1)
G.3.145.	git-verify-tag(1)
G.3.146.	git-web--browse(1)
G.3.147.	git-whatchanged(1)
G.3.148.	git-worktree(1)
G.3.149.	git-write-tree(1)

G.4.	Misc
G.4.1.	gitcli(7)
G.4.2.	gitattributes(5)
G.4.3.	gitcredentials(7)
G.4.4.	gitdiffcore(7)
G.4.5.	gitignore(5)
G.4.6.	githooks(5)
G.4.7.	gitk(1)
G.4.8.	gitmodules(5)
G.4.9.	gitnamespaces(7)
G.4.10.	gitremote-helpers(1)
G.4.11.	gitrepository-layout(5)
G.4.12.	gitrevisions(7)
G.4.13.	gitweb(1)
G.4.14.	gitweb.conf(5)
G.4.15.	gitworkflows(7)
G.4.16.	gitglossary(7)

G.1.	Git	User	Manual

G.1.1.	Git	User	Manual

Git	is	a	fast	distributed	revision	control	system.

This	manual	is	designed	to	be	readable	by	someone	with	basic	UNIX
command-line	skills,	but	no	previous	knowledge	of	Git.

Section	1,	“Repositories	and	Branches”	and	Section	2,	“Exploring	Git
history”	explain	how	to	fetch	and	study	a	project	using	git--read	these
chapters	to	learn	how	to	build	and	test	a	particular	version	of	a	software
project,	search	for	regressions,	and	so	on.

People	needing	to	do	actual	development	will	also	want	to	read
Section	3,	“Developing	with	Git”	and	Section	4,	“Sharing	development
with	others”.

Further	chapters	cover	more	specialized	topics.

Comprehensive	reference	documentation	is	available	through	the	man
pages,	or	Section	G.3.58,	“git-help(1)”	command.	For	example,	for	the
command	git	clone	<repo>,	you	can	either	use:

$	man	git-clone

or:

$	git	help	clone

With	the	latter,	you	can	use	the	manual	viewer	of	your	choice;	see
Section	G.3.58,	“git-help(1)”	for	more	information.

See	also	Section	G.1.1.1,	“Git	Quick	Reference”	for	a	brief	overview	of
Git	commands,	without	any	explanation.

Finally,	see	Section	G.1.1.2,	“Notes	and	todo	list	for	this	manual”	for	ways
that	you	can	help	make	this	manual	more	complete.

1.	Repositories	and	Branches

1.1.	How	to	get	a	Git	repository

It	will	be	useful	to	have	a	Git	repository	to	experiment	with	as	you	read
this	manual.

The	best	way	to	get	one	is	by	using	the	Section	G.3.23,	“git-clone(1)”
command	to	download	a	copy	of	an	existing	repository.	If	you	don't
already	have	a	project	in	mind,	here	are	some	interesting	examples:

								#	Git	itself	(approx.	40MB	download):

$	git	clone	git://git.kernel.org/pub/scm/git/git.git

								#	the	Linux	kernel	(approx.	640MB	download):

$	git	clone	git://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git

The	initial	clone	may	be	time-consuming	for	a	large	project,	but	you	will
only	need	to	clone	once.

The	clone	command	creates	a	new	directory	named	after	the	project	(git
or	linux	in	the	examples	above).	After	you	cd	into	this	directory,	you	will
see	that	it	contains	a	copy	of	the	project	files,	called	the	working	tree,
together	with	a	special	top-level	directory	named	.git,	which	contains	all
the	information	about	the	history	of	the	project.

1.2.	How	to	check	out	a	different	version	of	a	project

Git	is	best	thought	of	as	a	tool	for	storing	the	history	of	a	collection	of
files.	It	stores	the	history	as	a	compressed	collection	of	interrelated
snapshots	of	the	project's	contents.	In	Git	each	such	version	is	called	a
commit.

Those	snapshots	aren't	necessarily	all	arranged	in	a	single	line	from
oldest	to	newest;	instead,	work	may	simultaneously	proceed	along
parallel	lines	of	development,	called	branches,	which	may	merge	and
diverge.

A	single	Git	repository	can	track	development	on	multiple	branches.	It
does	this	by	keeping	a	list	of	heads	which	reference	the	latest	commit	on
each	branch;	the	Section	G.3.10,	“git-branch(1)”	command	shows	you
the	list	of	branch	heads:

$	git	branch

*	master

A	freshly	cloned	repository	contains	a	single	branch	head,	by	default
named	"master",	with	the	working	directory	initialized	to	the	state	of	the
project	referred	to	by	that	branch	head.

Most	projects	also	use	tags.	Tags,	like	heads,	are	references	into	the
project's	history,	and	can	be	listed	using	the	Section	G.3.134,	“git-tag(1)”
command:

$	git	tag	-l

v2.6.11

v2.6.11-tree

v2.6.12

v2.6.12-rc2

v2.6.12-rc3

v2.6.12-rc4

v2.6.12-rc5

v2.6.12-rc6

v2.6.13

...

Tags	are	expected	to	always	point	at	the	same	version	of	a	project,	while
heads	are	expected	to	advance	as	development	progresses.

Create	a	new	branch	head	pointing	to	one	of	these	versions	and	check	it
out	using	Section	G.3.18,	“git-checkout(1)”:

$	git	checkout	-b	new	v2.6.13

The	working	directory	then	reflects	the	contents	that	the	project	had	when
it	was	tagged	v2.6.13,	and	Section	G.3.10,	“git-branch(1)”	shows	two
branches,	with	an	asterisk	marking	the	currently	checked-out	branch:

$	git	branch

		master

*	new

If	you	decide	that	you'd	rather	see	version	2.6.17,	you	can	modify	the
current	branch	to	point	at	v2.6.17	instead,	with

$	git	reset	--hard	v2.6.17

Note	that	if	the	current	branch	head	was	your	only	reference	to	a
particular	point	in	history,	then	resetting	that	branch	may	leave	you	with
no	way	to	find	the	history	it	used	to	point	to;	so	use	this	command
carefully.

1.3.	Understanding	History:	Commits

Every	change	in	the	history	of	a	project	is	represented	by	a	commit.	The
Section	G.3.126,	“git-show(1)”	command	shows	the	most	recent	commit
on	the	current	branch:

$	git	show

commit	17cf781661e6d38f737f15f53ab552f1e95960d7

Author:	Linus	Torvalds	<torvalds@ppc970.osdl.org.(none)>

Date:			Tue	Apr	19	14:11:06	2005	-0700

				Remove	duplicate	getenv(DB_ENVIRONMENT)	call

				Noted	by	Tony	Luck.

diff	--git	a/init-db.c	b/init-db.c

index	65898fa..b002dc6	100644

---	a/init-db.c

+++	b/init-db.c

@@	-7,7	+7,7	@@

	int	main(int	argc,	char	**argv)

	{

-							char	*sha1_dir	=	getenv(DB_ENVIRONMENT),	*path;

+							char	*sha1_dir,	*path;

								int	len,	i;

								if	(mkdir(".git",	0755)	<	0)	{

As	you	can	see,	a	commit	shows	who	made	the	latest	change,	what	they
did,	and	why.

Every	commit	has	a	40-hexdigit	id,	sometimes	called	the	"object	name"
or	the	"SHA-1	id",	shown	on	the	first	line	of	the	git	show	output.	You	can
usually	refer	to	a	commit	by	a	shorter	name,	such	as	a	tag	or	a	branch
name,	but	this	longer	name	can	also	be	useful.	Most	importantly,	it	is	a
globally	unique	name	for	this	commit:	so	if	you	tell	somebody	else	the
object	name	(for	example	in	email),	then	you	are	guaranteed	that	name
will	refer	to	the	same	commit	in	their	repository	that	it	does	in	yours
(assuming	their	repository	has	that	commit	at	all).	Since	the	object	name
is	computed	as	a	hash	over	the	contents	of	the	commit,	you	are
guaranteed	that	the	commit	can	never	change	without	its	name	also
changing.

In	fact,	in	Section	7,	“Git	concepts”	we	shall	see	that	everything	stored	in
Git	history,	including	file	data	and	directory	contents,	is	stored	in	an
object	with	a	name	that	is	a	hash	of	its	contents.

1.3.1.	Understanding	history:	commits,	parents,	and	reachability

Every	commit	(except	the	very	first	commit	in	a	project)	also	has	a	parent
commit	which	shows	what	happened	before	this	commit.	Following	the
chain	of	parents	will	eventually	take	you	back	to	the	beginning	of	the
project.

However,	the	commits	do	not	form	a	simple	list;	Git	allows	lines	of
development	to	diverge	and	then	reconverge,	and	the	point	where	two
lines	of	development	reconverge	is	called	a	"merge".	The	commit
representing	a	merge	can	therefore	have	more	than	one	parent,	with
each	parent	representing	the	most	recent	commit	on	one	of	the	lines	of
development	leading	to	that	point.

The	best	way	to	see	how	this	works	is	using	the	Section	G.4.7,	“gitk(1)”
command;	running	gitk	now	on	a	Git	repository	and	looking	for	merge

commits	will	help	understand	how	Git	organizes	history.

In	the	following,	we	say	that	commit	X	is	"reachable"	from	commit	Y	if
commit	X	is	an	ancestor	of	commit	Y.	Equivalently,	you	could	say	that	Y	is
a	descendant	of	X,	or	that	there	is	a	chain	of	parents	leading	from	commit
Y	to	commit	X.

1.3.2.	Understanding	history:	History	diagrams

We	will	sometimes	represent	Git	history	using	diagrams	like	the	one
below.	Commits	are	shown	as	"o",	and	the	links	between	them	with	lines
drawn	with	-	/	and	\.	Time	goes	left	to	right:

									o--o--o	<--	Branch	A

								/

	o--o--o	<--	master

								\

									o--o--o	<--	Branch	B

If	we	need	to	talk	about	a	particular	commit,	the	character	"o"	may	be
replaced	with	another	letter	or	number.

1.3.3.	Understanding	history:	What	is	a	branch?

When	we	need	to	be	precise,	we	will	use	the	word	"branch"	to	mean	a
line	of	development,	and	"branch	head"	(or	just	"head")	to	mean	a
reference	to	the	most	recent	commit	on	a	branch.	In	the	example	above,
the	branch	head	named	"A"	is	a	pointer	to	one	particular	commit,	but	we
refer	to	the	line	of	three	commits	leading	up	to	that	point	as	all	being	part
of	"branch	A".

However,	when	no	confusion	will	result,	we	often	just	use	the	term
"branch"	both	for	branches	and	for	branch	heads.

1.4.	Manipulating	branches

Creating,	deleting,	and	modifying	branches	is	quick	and	easy;	here's	a
summary	of	the	commands:

git	branch
list	all	branches.

git	branch	<branch>
create	a	new	branch	named	<branch>,	referencing	the	same	point	in
history	as	the	current	branch.

git	branch	<branch>	<start-point>
create	a	new	branch	named	<branch>,	referencing	<start-point>,
which	may	be	specified	any	way	you	like,	including	using	a	branch
name	or	a	tag	name.

git	branch	-d	<branch>
delete	the	branch	<branch>;	if	the	branch	is	not	fully	merged	in	its
upstream	branch	or	contained	in	the	current	branch,	this	command
will	fail	with	a	warning.

git	branch	-D	<branch>
delete	the	branch	<branch>	irrespective	of	its	merged	status.

git	checkout	<branch>
make	the	current	branch	<branch>,	updating	the	working	directory	to
reflect	the	version	referenced	by	<branch>.

git	checkout	-b	<new>	<start-point>
create	a	new	branch	<new>	referencing	<start-point>,	and	check	it
out.

The	special	symbol	"HEAD"	can	always	be	used	to	refer	to	the	current
branch.	In	fact,	Git	uses	a	file	named	HEAD	in	the	.git	directory	to
remember	which	branch	is	current:

$	cat	.git/HEAD

ref:	refs/heads/master

1.5.	Examining	an	old	version	without	creating	a	new
branch

The	git	checkout	command	normally	expects	a	branch	head,	but	will	also
accept	an	arbitrary	commit;	for	example,	you	can	check	out	the	commit
referenced	by	a	tag:

$	git	checkout	v2.6.17

Note:	checking	out	'v2.6.17'.

You	are	in	'detached	HEAD'	state.	You	can	look	around,	make	experimental

changes	and	commit	them,	and	you	can	discard	any	commits	you	make	in	this

state	without	impacting	any	branches	by	performing	another	checkout.

If	you	want	to	create	a	new	branch	to	retain	commits	you	create,	you	may

do	so	(now	or	later)	by	using	-

b	with	the	checkout	command	again.	Example:

		git	checkout	-b	new_branch_name

HEAD	is	now	at	427abfa...	Linux	v2.6.17

The	HEAD	then	refers	to	the	SHA-1	of	the	commit	instead	of	to	a	branch,
and	git	branch	shows	that	you	are	no	longer	on	a	branch:

$	cat	.git/HEAD

427abfa28afedffadfca9dd8b067eb6d36bac53f

$	git	branch

*	(detached	from	v2.6.17)

		master

In	this	case	we	say	that	the	HEAD	is	"detached".

This	is	an	easy	way	to	check	out	a	particular	version	without	having	to
make	up	a	name	for	the	new	branch.	You	can	still	create	a	new	branch
(or	tag)	for	this	version	later	if	you	decide	to.

1.6.	Examining	branches	from	a	remote	repository

The	"master"	branch	that	was	created	at	the	time	you	cloned	is	a	copy	of
the	HEAD	in	the	repository	that	you	cloned	from.	That	repository	may
also	have	had	other	branches,	though,	and	your	local	repository	keeps
branches	which	track	each	of	those	remote	branches,	called	remote-
tracking	branches,	which	you	can	view	using	the	-r	option	to
Section	G.3.10,	“git-branch(1)”:

$	git	branch	-r

		origin/HEAD

		origin/html

		origin/maint

		origin/man

		origin/master

		origin/next

		origin/pu

		origin/todo

In	this	example,	"origin"	is	called	a	remote	repository,	or	"remote"	for
short.	The	branches	of	this	repository	are	called	"remote	branches"	from
our	point	of	view.	The	remote-tracking	branches	listed	above	were
created	based	on	the	remote	branches	at	clone	time	and	will	be	updated
by	git	fetch	(hence	git	pull)	and	git	push.	See	Section	1.8,	“Updating	a
repository	with	git	fetch”	for	details.

You	might	want	to	build	on	one	of	these	remote-tracking	branches	on	a
branch	of	your	own,	just	as	you	would	for	a	tag:

$	git	checkout	-b	my-todo-copy	origin/todo

You	can	also	check	out	origin/todo	directly	to	examine	it	or	write	a	one-off
patch.	See	detached	head.

Note	that	the	name	"origin"	is	just	the	name	that	Git	uses	by	default	to
refer	to	the	repository	that	you	cloned	from.

1.7.	Naming	branches,	tags,	and	other	references

Branches,	remote-tracking	branches,	and	tags	are	all	references	to
commits.	All	references	are	named	with	a	slash-separated	path	name
starting	with	refs;	the	names	we've	been	using	so	far	are	actually
shorthand:

The	branch	test	is	short	for	refs/heads/test.
The	tag	v2.6.18	is	short	for	refs/tags/v2.6.18.
origin/master	is	short	for	refs/remotes/origin/master.

The	full	name	is	occasionally	useful	if,	for	example,	there	ever	exists	a
tag	and	a	branch	with	the	same	name.

(Newly	created	refs	are	actually	stored	in	the	.git/refs	directory,	under	the
path	given	by	their	name.	However,	for	efficiency	reasons	they	may	also
be	packed	together	in	a	single	file;	see	Section	G.3.90,	“git-pack-refs(1)”).

As	another	useful	shortcut,	the	"HEAD"	of	a	repository	can	be	referred	to
just	using	the	name	of	that	repository.	So,	for	example,	"origin"	is	usually
a	shortcut	for	the	HEAD	branch	in	the	repository	"origin".

For	the	complete	list	of	paths	which	Git	checks	for	references,	and	the
order	it	uses	to	decide	which	to	choose	when	there	are	multiple
references	with	the	same	shorthand	name,	see	the	"SPECIFYING
REVISIONS"	section	of	Section	G.4.12,	“gitrevisions(7)”.

1.8.	Updating	a	repository	with	git	fetch

After	you	clone	a	repository	and	commit	a	few	changes	of	your	own,	you
may	wish	to	check	the	original	repository	for	updates.

The	git-fetch	command,	with	no	arguments,	will	update	all	of	the	remote-
tracking	branches	to	the	latest	version	found	in	the	original	repository.	It
will	not	touch	any	of	your	own	branches--not	even	the	"master"	branch
that	was	created	for	you	on	clone.

1.9.	Fetching	branches	from	other	repositories

You	can	also	track	branches	from	repositories	other	than	the	one	you
cloned	from,	using	Section	G.3.106,	“git-remote(1)”:

$	git	remote	add	staging	git://git.kernel.org/.../gregkh/staging.git

$	git	fetch	staging

...

From	git://git.kernel.org/pub/scm/linux/kernel/git/gregkh/staging

	*	[new	branch]						master					->	staging/master

	*	[new	branch]						staging-linus	->	staging/staging-linus

	*	[new	branch]						staging-next	->	staging/staging-next

New	remote-tracking	branches	will	be	stored	under	the	shorthand	name
that	you	gave	git	remote	add,	in	this	case	staging:

$	git	branch	-r

		origin/HEAD	->	origin/master

		origin/master

		staging/master

		staging/staging-linus

		staging/staging-next

If	you	run	git	fetch	<remote>	later,	the	remote-tracking	branches	for	the
named	<remote>	will	be	updated.

If	you	examine	the	file	.git/config,	you	will	see	that	Git	has	added	a	new
stanza:

$	cat	.git/config

...

[remote	"staging"]

								url	=	git://git.kernel.org/pub/scm/linux/kernel/git/gregkh/staging.git

								fetch	=	+refs/heads/*:refs/remotes/staging/*

...

This	is	what	causes	Git	to	track	the	remote's	branches;	you	may	modify
or	delete	these	configuration	options	by	editing	.git/config	with	a	text
editor.	(See	the	"CONFIGURATION	FILE"	section	of	Section	G.3.27,	“git-
config(1)”	for	details.)

2.	Exploring	Git	history

Git	is	best	thought	of	as	a	tool	for	storing	the	history	of	a	collection	of
files.	It	does	this	by	storing	compressed	snapshots	of	the	contents	of	a
file	hierarchy,	together	with	"commits"	which	show	the	relationships
between	these	snapshots.

Git	provides	extremely	flexible	and	fast	tools	for	exploring	the	history	of	a
project.

We	start	with	one	specialized	tool	that	is	useful	for	finding	the	commit	that
introduced	a	bug	into	a	project.

2.1.	How	to	use	bisect	to	find	a	regression

Suppose	version	2.6.18	of	your	project	worked,	but	the	version	at
"master"	crashes.	Sometimes	the	best	way	to	find	the	cause	of	such	a
regression	is	to	perform	a	brute-force	search	through	the	project's	history
to	find	the	particular	commit	that	caused	the	problem.	The	Section	G.3.8,
“git-bisect(1)”	command	can	help	you	do	this:

$	git	bisect	start

$	git	bisect	good	v2.6.18

$	git	bisect	bad	master

Bisecting:	3537	revisions	left	to	test	after	this

[65934a9a028b88e83e2b0f8b36618fe503349f8e]	BLOCK:	Make	USB	storage	depend	on	SCSI	rather	than	selecting	it	[try	#6]

If	you	run	git	branch	at	this	point,	you'll	see	that	Git	has	temporarily
moved	you	in	"(no	branch)".	HEAD	is	now	detached	from	any	branch	and
points	directly	to	a	commit	(with	commit	id	65934…)	that	is	reachable
from	"master"	but	not	from	v2.6.18.	Compile	and	test	it,	and	see	whether
it	crashes.	Assume	it	does	crash.	Then:

$	git	bisect	bad

Bisecting:	1769	revisions	left	to	test	after	this

[7eff82c8b1511017ae605f0c99ac275a7e21b867]	i2c-

core:	Drop	useless	bitmaskings

checks	out	an	older	version.	Continue	like	this,	telling	Git	at	each	stage
whether	the	version	it	gives	you	is	good	or	bad,	and	notice	that	the
number	of	revisions	left	to	test	is	cut	approximately	in	half	each	time.

After	about	13	tests	(in	this	case),	it	will	output	the	commit	id	of	the	guilty
commit.	You	can	then	examine	the	commit	with	Section	G.3.126,	“git-
show(1)”,	find	out	who	wrote	it,	and	mail	them	your	bug	report	with	the
commit	id.	Finally,	run

$	git	bisect	reset

to	return	you	to	the	branch	you	were	on	before.

Note	that	the	version	which	git	bisect	checks	out	for	you	at	each	point	is
just	a	suggestion,	and	you're	free	to	try	a	different	version	if	you	think	it
would	be	a	good	idea.	For	example,	occasionally	you	may	land	on	a
commit	that	broke	something	unrelated;	run

$	git	bisect	visualize

which	will	run	gitk	and	label	the	commit	it	chose	with	a	marker	that	says
"bisect".	Choose	a	safe-looking	commit	nearby,	note	its	commit	id,	and
check	it	out	with:

$	git	reset	--hard	fb47ddb2db...

then	test,	run	bisect	good	or	bisect	bad	as	appropriate,	and	continue.

Instead	of	git	bisect	visualize	and	then	git	reset	--hard	fb47ddb2db...,	you
might	just	want	to	tell	Git	that	you	want	to	skip	the	current	commit:

$	git	bisect	skip

In	this	case,	though,	Git	may	not	eventually	be	able	to	tell	the	first	bad
one	between	some	first	skipped	commits	and	a	later	bad	commit.

There	are	also	ways	to	automate	the	bisecting	process	if	you	have	a	test

script	that	can	tell	a	good	from	a	bad	commit.	See	Section	G.3.8,	“git-
bisect(1)”	for	more	information	about	this	and	other	git	bisect	features.

2.2.	Naming	commits

We	have	seen	several	ways	of	naming	commits	already:

40-hexdigit	object	name
branch	name:	refers	to	the	commit	at	the	head	of	the	given	branch
tag	name:	refers	to	the	commit	pointed	to	by	the	given	tag	(we've
seen	branches	and	tags	are	special	cases	of	references).
HEAD:	refers	to	the	head	of	the	current	branch

There	are	many	more;	see	the	"SPECIFYING	REVISIONS"	section	of	the
Section	G.4.12,	“gitrevisions(7)”	man	page	for	the	complete	list	of	ways	to
name	revisions.	Some	examples:

$	git	show	fb47ddb2	#	the	first	few	characters	of	the	object	name

																				#	are	usually	enough	to	specify	it	uniquely

$	git	show	HEAD^				#	the	parent	of	the	HEAD	commit

$	git	show	HEAD^^			#	the	grandparent

$	git	show	HEAD~4			#	the	great-great-grandparent

Recall	that	merge	commits	may	have	more	than	one	parent;	by	default,	^
and	~	follow	the	first	parent	listed	in	the	commit,	but	you	can	also	choose:

$	git	show	HEAD^1			#	show	the	first	parent	of	HEAD

$	git	show	HEAD^2			#	show	the	second	parent	of	HEAD

In	addition	to	HEAD,	there	are	several	other	special	names	for	commits:

Merges	(to	be	discussed	later),	as	well	as	operations	such	as	git	reset,
which	change	the	currently	checked-out	commit,	generally	set
ORIG_HEAD	to	the	value	HEAD	had	before	the	current	operation.

The	git	fetch	operation	always	stores	the	head	of	the	last	fetched	branch
in	FETCH_HEAD.	For	example,	if	you	run	git	fetch	without	specifying	a
local	branch	as	the	target	of	the	operation

$	git	fetch	git://example.com/proj.git	theirbranch

the	fetched	commits	will	still	be	available	from	FETCH_HEAD.

When	we	discuss	merges	we'll	also	see	the	special	name
MERGE_HEAD,	which	refers	to	the	other	branch	that	we're	merging	in	to
the	current	branch.

The	Section	G.3.113,	“git-rev-parse(1)”	command	is	a	low-level	command
that	is	occasionally	useful	for	translating	some	name	for	a	commit	to	the
object	name	for	that	commit:

$	git	rev-parse	origin

e05db0fd4f31dde7005f075a84f96b360d05984b

2.3.	Creating	tags

We	can	also	create	a	tag	to	refer	to	a	particular	commit;	after	running

$	git	tag	stable-1	1b2e1d63ff

You	can	use	stable-1	to	refer	to	the	commit	1b2e1d63ff.

This	creates	a	"lightweight"	tag.	If	you	would	also	like	to	include	a
comment	with	the	tag,	and	possibly	sign	it	cryptographically,	then	you
should	create	a	tag	object	instead;	see	the	Section	G.3.134,	“git-tag(1)”
man	page	for	details.

2.4.	Browsing	revisions

The	Section	G.3.68,	“git-log(1)”	command	can	show	lists	of	commits.	On
its	own,	it	shows	all	commits	reachable	from	the	parent	commit;	but	you
can	also	make	more	specific	requests:

$	git	log	v2.5..								#	commits	since	(not	reachable	from)	v2.5

$	git	log	test..master		#	commits	reachable	from	master	but	not	test

$	git	log	master..test		#	...reachable	from	test	but	not	master

$	git	log	master...test	#	...reachable	from	either	test	or	master,

																								#				but	not	both

$	git	log	--since="2	weeks	ago"	#	commits	from	the	last	2	weeks

$	git	log	Makefile						#	commits	which	modify	Makefile

$	git	log	fs/											#	...	which	modify	any	file	under	fs/

$	git	log	-

S'foo()'					#	commits	which	add	or	remove	any	file	data

																								#	matching	the	string	'foo()'

And	of	course	you	can	combine	all	of	these;	the	following	finds	commits
since	v2.5	which	touch	the	Makefile	or	any	file	under	fs:

$	git	log	v2.5..	Makefile	fs/

You	can	also	ask	git	log	to	show	patches:

$	git	log	-p

See	the	--pretty	option	in	the	Section	G.3.68,	“git-log(1)”	man	page	for
more	display	options.

Note	that	git	log	starts	with	the	most	recent	commit	and	works	backwards
through	the	parents;	however,	since	Git	history	can	contain	multiple
independent	lines	of	development,	the	particular	order	that	commits	are
listed	in	may	be	somewhat	arbitrary.

2.5.	Generating	diffs

You	can	generate	diffs	between	any	two	versions	using	Section	G.3.41,
“git-diff(1)”:

$	git	diff	master..test

That	will	produce	the	diff	between	the	tips	of	the	two	branches.	If	you'd
prefer	to	find	the	diff	from	their	common	ancestor	to	test,	you	can	use
three	dots	instead	of	two:

$	git	diff	master...test

Sometimes	what	you	want	instead	is	a	set	of	patches;	for	this	you	can
use	Section	G.3.50,	“git-format-patch(1)”:

$	git	format-patch	master..test

will	generate	a	file	with	a	patch	for	each	commit	reachable	from	test	but
not	from	master.

2.6.	Viewing	old	file	versions

You	can	always	view	an	old	version	of	a	file	by	just	checking	out	the
correct	revision	first.	But	sometimes	it	is	more	convenient	to	be	able	to
view	an	old	version	of	a	single	file	without	checking	anything	out;	this
command	does	that:

$	git	show	v2.5:fs/locks.c

Before	the	colon	may	be	anything	that	names	a	commit,	and	after	it	may
be	any	path	to	a	file	tracked	by	Git.

2.7.	Examples

2.7.1.	Counting	the	number	of	commits	on	a	branch

Suppose	you	want	to	know	how	many	commits	you've	made	on
mybranch	since	it	diverged	from	origin:

$	git	log	--pretty=oneline	origin..mybranch	|	wc	-l

Alternatively,	you	may	often	see	this	sort	of	thing	done	with	the	lower-
level	command	Section	G.3.112,	“git-rev-list(1)”,	which	just	lists	the	SHA-
1's	of	all	the	given	commits:

$	git	rev-list	origin..mybranch	|	wc	-l

2.7.2.	Check	whether	two	branches	point	at	the	same	history

Suppose	you	want	to	check	whether	two	branches	point	at	the	same
point	in	history.

$	git	diff	origin..master

will	tell	you	whether	the	contents	of	the	project	are	the	same	at	the	two
branches;	in	theory,	however,	it's	possible	that	the	same	project	contents
could	have	been	arrived	at	by	two	different	historical	routes.	You	could
compare	the	object	names:

$	git	rev-list	origin

e05db0fd4f31dde7005f075a84f96b360d05984b

$	git	rev-list	master

e05db0fd4f31dde7005f075a84f96b360d05984b

Or	you	could	recall	that	the	...	operator	selects	all	commits	reachable
from	either	one	reference	or	the	other	but	not	both;	so

$	git	log	origin...master

will	return	no	commits	when	the	two	branches	are	equal.

2.7.3.	Find	first	tagged	version	including	a	given	fix

Suppose	you	know	that	the	commit	e05db0fd	fixed	a	certain	problem.
You'd	like	to	find	the	earliest	tagged	release	that	contains	that	fix.

Of	course,	there	may	be	more	than	one	answer--if	the	history	branched
after	commit	e05db0fd,	then	there	could	be	multiple	"earliest"	tagged
releases.

You	could	just	visually	inspect	the	commits	since	e05db0fd:

$	gitk	e05db0fd..

or	you	can	use	Section	G.3.85,	“git-name-rev(1)”,	which	will	give	the
commit	a	name	based	on	any	tag	it	finds	pointing	to	one	of	the	commit's

descendants:

$	git	name-rev	--tags	e05db0fd

e05db0fd	tags/v1.5.0-rc1^0~23

The	Section	G.3.37,	“git-describe(1)”	command	does	the	opposite,
naming	the	revision	using	a	tag	on	which	the	given	commit	is	based:

$	git	describe	e05db0fd

v1.5.0-rc0-260-ge05db0f

but	that	may	sometimes	help	you	guess	which	tags	might	come	after	the
given	commit.

If	you	just	want	to	verify	whether	a	given	tagged	version	contains	a	given
commit,	you	could	use	Section	G.3.74,	“git-merge-base(1)”:

$	git	merge-base	e05db0fd	v1.5.0-rc1

e05db0fd4f31dde7005f075a84f96b360d05984b

The	merge-base	command	finds	a	common	ancestor	of	the	given
commits,	and	always	returns	one	or	the	other	in	the	case	where	one	is	a
descendant	of	the	other;	so	the	above	output	shows	that	e05db0fd
actually	is	an	ancestor	of	v1.5.0-rc1.

Alternatively,	note	that

$	git	log	v1.5.0-rc1..e05db0fd

will	produce	empty	output	if	and	only	if	v1.5.0-rc1	includes	e05db0fd,
because	it	outputs	only	commits	that	are	not	reachable	from	v1.5.0-rc1.

As	yet	another	alternative,	the	Section	G.3.123,	“git-show-branch(1)”
command	lists	the	commits	reachable	from	its	arguments	with	a	display
on	the	left-hand	side	that	indicates	which	arguments	that	commit	is
reachable	from.	So,	if	you	run	something	like

$	git	show-branch	e05db0fd	v1.5.0-rc0	v1.5.0-rc1	v1.5.0-rc2

!	[e05db0fd]	Fix	warnings	in	sha1_file.c	-	use	C99	printf	format	if

available

	!	[v1.5.0-rc0]	GIT	v1.5.0	preview

		!	[v1.5.0-rc1]	GIT	v1.5.0-rc1

			!	[v1.5.0-rc2]	GIT	v1.5.0-rc2

...

then	a	line	like

+	++	[e05db0fd]	Fix	warnings	in	sha1_file.c	-	use	C99	printf	format	if

available

shows	that	e05db0fd	is	reachable	from	itself,	from	v1.5.0-rc1,	and	from
v1.5.0-rc2,	and	not	from	v1.5.0-rc0.

2.7.4.	Showing	commits	unique	to	a	given	branch

Suppose	you	would	like	to	see	all	the	commits	reachable	from	the	branch
head	named	master	but	not	from	any	other	head	in	your	repository.

We	can	list	all	the	heads	in	this	repository	with	Section	G.3.125,	“git-
show-ref(1)”:

$	git	show-ref	--heads

bf62196b5e363d73353a9dcf094c59595f3153b7	refs/heads/core-tutorial

db768d5504c1bb46f63ee9d6e1772bd047e05bf9	refs/heads/maint

a07157ac624b2524a059a3414e99f6f44bebc1e7	refs/heads/master

24dbc180ea14dc1aebe09f14c8ecf32010690627	refs/heads/tutorial-2

1e87486ae06626c2f31eaa63d26fc0fd646c8af2	refs/heads/tutorial-

fixes

We	can	get	just	the	branch-head	names,	and	remove	master,	with	the
help	of	the	standard	utilities	cut	and	grep:

$	git	show-ref	--heads	|	cut	-d'	'	-f2	|	grep	-

v	'^refs/heads/master'

refs/heads/core-tutorial

refs/heads/maint

refs/heads/tutorial-2

refs/heads/tutorial-fixes

And	then	we	can	ask	to	see	all	the	commits	reachable	from	master	but
not	from	these	other	heads:

$	gitk	master	--not	$(git	show-ref	--heads	|	cut	-d'	'	-f2	|

																																grep	-v	'^refs/heads/master')

Obviously,	endless	variations	are	possible;	for	example,	to	see	all
commits	reachable	from	some	head	but	not	from	any	tag	in	the
repository:

$	gitk	$(git	show-ref	--heads)	--not		$(git	show-ref	--tags)

(See	Section	G.4.12,	“gitrevisions(7)”	for	explanations	of	commit-
selecting	syntax	such	as	--not.)

2.7.5.	Creating	a	changelog	and	tarball	for	a	software	release

The	Section	G.3.7,	“git-archive(1)”	command	can	create	a	tar	or	zip
archive	from	any	version	of	a	project;	for	example:

$	git	archive	-o	latest.tar.gz	--prefix=project/	HEAD

will	use	HEAD	to	produce	a	gzipped	tar	archive	in	which	each	filename	is
preceded	by	project/.	The	output	file	format	is	inferred	from	the	output	file
extension	if	possible,	see	Section	G.3.7,	“git-archive(1)”	for	details.

Versions	of	Git	older	than	1.7.7	don't	know	about	the	tar.gz	format,	you'll
need	to	use	gzip	explicitly:

$	git	archive	--format=tar	--

prefix=project/	HEAD	|	gzip	>latest.tar.gz

If	you're	releasing	a	new	version	of	a	software	project,	you	may	want	to
simultaneously	make	a	changelog	to	include	in	the	release
announcement.

Linus	Torvalds,	for	example,	makes	new	kernel	releases	by	tagging	them,
then	running:

$	release-script	2.6.12	2.6.13-rc6	2.6.13-rc7

where	release-script	is	a	shell	script	that	looks	like:

#!/bin/sh

stable="$1"

last="$2"

new="$3"

echo	"#	git	tag	v$new"

echo	"git	archive	--prefix=linux-

$new/	v$new	|	gzip	-9	>	../linux-$new.tar.gz"

echo	"git	diff	v$stable	v$new	|	gzip	-9	>	../patch-$new.gz"

echo	"git	log	--no-merges	v$new	^v$last	>	../ChangeLog-$new"

echo	"git	shortlog	--no-merges	v$new	^v$last	>	../ShortLog"

echo	"git	diff	--stat	--summary	-M	v$last	v$new	>	../diffstat-

$new"

and	then	he	just	cut-and-pastes	the	output	commands	after	verifying	that
they	look	OK.

2.7.6.	Finding	commits	referencing	a	file	with	given	content

Somebody	hands	you	a	copy	of	a	file,	and	asks	which	commits	modified
a	file	such	that	it	contained	the	given	content	either	before	or	after	the
commit.	You	can	find	out	with	this:

$		git	log	--raw	--abbrev=40	--pretty=oneline	|

								grep	-B	1	`git	hash-object	filename`

Figuring	out	why	this	works	is	left	as	an	exercise	to	the	(advanced)
student.	The	Section	G.3.68,	“git-log(1)”,	Section	G.3.40,	“git-diff-tree(1)”,
and	Section	G.3.57,	“git-hash-object(1)”	man	pages	may	prove	helpful.

3.	Developing	with	Git

3.1.	Telling	Git	your	name

Before	creating	any	commits,	you	should	introduce	yourself	to	Git.	The
easiest	way	to	do	so	is	to	use	Section	G.3.27,	“git-config(1)”:

$	git	config	--global	user.name	'Your	Name	Comes	Here'

$	git	config	--global	user.email	'you@yourdomain.example.com'

Which	will	add	the	following	to	a	file	named	.gitconfig	in	your	home
directory:

[user]

								name	=	Your	Name	Comes	Here

								email	=	you@yourdomain.example.com

See	the	"CONFIGURATION	FILE"	section	of	Section	G.3.27,	“git-
config(1)”	for	details	on	the	configuration	file.	The	file	is	plain	text,	so	you
can	also	edit	it	with	your	favorite	editor.

3.2.	Creating	a	new	repository

Creating	a	new	repository	from	scratch	is	very	easy:

$	mkdir	project

$	cd	project

$	git	init

If	you	have	some	initial	content	(say,	a	tarball):

$	tar	xzvf	project.tar.gz

$	cd	project

$	git	init

$	git	add	.	#	include	everything	below	./	in	the	first	commit:

$	git	commit

3.3.	How	to	make	a	commit

Creating	a	new	commit	takes	three	steps:

1.	 Making	some	changes	to	the	working	directory	using	your	favorite
editor.

2.	 Telling	Git	about	your	changes.
3.	 Creating	the	commit	using	the	content	you	told	Git	about	in	step	2.

In	practice,	you	can	interleave	and	repeat	steps	1	and	2	as	many	times
as	you	want:	in	order	to	keep	track	of	what	you	want	committed	at	step	3,
Git	maintains	a	snapshot	of	the	tree's	contents	in	a	special	staging	area
called	"the	index."

At	the	beginning,	the	content	of	the	index	will	be	identical	to	that	of	the
HEAD.	The	command	git	diff	--cached,	which	shows	the	difference
between	the	HEAD	and	the	index,	should	therefore	produce	no	output	at
that	point.

Modifying	the	index	is	easy:

To	update	the	index	with	the	contents	of	a	new	or	modified	file,	use

$	git	add	path/to/file

To	remove	a	file	from	the	index	and	from	the	working	tree,	use

$	git	rm	path/to/file

After	each	step	you	can	verify	that

$	git	diff	--cached

always	shows	the	difference	between	the	HEAD	and	the	index	file--this	is
what	you'd	commit	if	you	created	the	commit	now--and	that

$	git	diff

shows	the	difference	between	the	working	tree	and	the	index	file.

Note	that	git	add	always	adds	just	the	current	contents	of	a	file	to	the
index;	further	changes	to	the	same	file	will	be	ignored	unless	you	run	git
add	on	the	file	again.

When	you're	ready,	just	run

$	git	commit

and	Git	will	prompt	you	for	a	commit	message	and	then	create	the	new
commit.	Check	to	make	sure	it	looks	like	what	you	expected	with

$	git	show

As	a	special	shortcut,

$	git	commit	-a

will	update	the	index	with	any	files	that	you've	modified	or	removed	and
create	a	commit,	all	in	one	step.

A	number	of	commands	are	useful	for	keeping	track	of	what	you're	about
to	commit:

$	git	diff	--cached	#	difference	between	HEAD	and	the	index;	what

																				#	would	be	committed	if	you	ran	"commit"	now.

$	git	diff										#	difference	between	the	index	file	and	your

																				#	working	directory;	changes	that	would	not

																				#	be	included	if	you	ran	"commit"	now.

$	git	diff	HEAD					#	difference	between	HEAD	and	working	tree;	what

																				#	would	be	committed	if	you	ran	"commit	-

a"	now.

$	git	status								#	a	brief	per-file	summary	of	the	above.

You	can	also	use	Section	G.3.56,	“git-gui(1)”	to	create	commits,	view
changes	in	the	index	and	the	working	tree	files,	and	individually	select	diff
hunks	for	inclusion	in	the	index	(by	right-clicking	on	the	diff	hunk	and

choosing	"Stage	Hunk	For	Commit").

3.4.	Creating	good	commit	messages

Though	not	required,	it's	a	good	idea	to	begin	the	commit	message	with	a
single	short	(less	than	50	character)	line	summarizing	the	change,
followed	by	a	blank	line	and	then	a	more	thorough	description.	The	text
up	to	the	first	blank	line	in	a	commit	message	is	treated	as	the	commit
title,	and	that	title	is	used	throughout	Git.	For	example,	Section	G.3.50,
“git-format-patch(1)”	turns	a	commit	into	email,	and	it	uses	the	title	on	the
Subject	line	and	the	rest	of	the	commit	in	the	body.

3.5.	Ignoring	files

A	project	will	often	generate	files	that	you	do	not	want	to	track	with	Git.
This	typically	includes	files	generated	by	a	build	process	or	temporary
backup	files	made	by	your	editor.	Of	course,	not	tracking	files	with	Git	is
just	a	matter	of	not	calling	git	add	on	them.	But	it	quickly	becomes
annoying	to	have	these	untracked	files	lying	around;	e.g.	they	make	git
add	.	practically	useless,	and	they	keep	showing	up	in	the	output	of	git
status.

You	can	tell	Git	to	ignore	certain	files	by	creating	a	file	called	.gitignore	in
the	top	level	of	your	working	directory,	with	contents	such	as:

#	Lines	starting	with	'#'	are	considered	comments.

#	Ignore	any	file	named	foo.txt.

foo.txt

#	Ignore	(generated)	html	files,

*.html

#	except	foo.html	which	is	maintained	by	hand.

!foo.html

#	Ignore	objects	and	archives.

*.[oa]

See	Section	G.4.5,	“gitignore(5)”	for	a	detailed	explanation	of	the	syntax.
You	can	also	place	.gitignore	files	in	other	directories	in	your	working
tree,	and	they	will	apply	to	those	directories	and	their	subdirectories.	The
.gitignore	files	can	be	added	to	your	repository	like	any	other	files	(just

run	git	add	.gitignore	and	git	commit,	as	usual),	which	is	convenient	when
the	exclude	patterns	(such	as	patterns	matching	build	output	files)	would
also	make	sense	for	other	users	who	clone	your	repository.

If	you	wish	the	exclude	patterns	to	affect	only	certain	repositories	(instead
of	every	repository	for	a	given	project),	you	may	instead	put	them	in	a	file
in	your	repository	named	.git/info/exclude,	or	in	any	file	specified	by	the
core.excludesFile	configuration	variable.	Some	Git	commands	can	also
take	exclude	patterns	directly	on	the	command	line.	See	Section	G.4.5,
“gitignore(5)”	for	the	details.

3.6.	How	to	merge

You	can	rejoin	two	diverging	branches	of	development	using
Section	G.3.79,	“git-merge(1)”:

$	git	merge	branchname

merges	the	development	in	the	branch	branchname	into	the	current
branch.

A	merge	is	made	by	combining	the	changes	made	in	branchname	and
the	changes	made	up	to	the	latest	commit	in	your	current	branch	since
their	histories	forked.	The	work	tree	is	overwritten	by	the	result	of	the
merge	when	this	combining	is	done	cleanly,	or	overwritten	by	a	half-
merged	results	when	this	combining	results	in	conflicts.	Therefore,	if	you
have	uncommitted	changes	touching	the	same	files	as	the	ones	impacted
by	the	merge,	Git	will	refuse	to	proceed.	Most	of	the	time,	you	will	want	to
commit	your	changes	before	you	can	merge,	and	if	you	don't,	then
Section	G.3.128,	“git-stash(1)”	can	take	these	changes	away	while	you're
doing	the	merge,	and	reapply	them	afterwards.

If	the	changes	are	independent	enough,	Git	will	automatically	complete
the	merge	and	commit	the	result	(or	reuse	an	existing	commit	in	case	of
fast-forward,	see	below).	On	the	other	hand,	if	there	are	conflicts--for
example,	if	the	same	file	is	modified	in	two	different	ways	in	the	remote
branch	and	the	local	branch--then	you	are	warned;	the	output	may	look

something	like	this:

$	git	merge	next

	100%	(4/4)	done

Auto-merged	file.txt

CONFLICT	(content):	Merge	conflict	in	file.txt

Automatic	merge	failed;	fix	conflicts	and	then	commit	the	result.

Conflict	markers	are	left	in	the	problematic	files,	and	after	you	resolve	the
conflicts	manually,	you	can	update	the	index	with	the	contents	and	run
Git	commit,	as	you	normally	would	when	creating	a	new	file.

If	you	examine	the	resulting	commit	using	gitk,	you	will	see	that	it	has	two
parents,	one	pointing	to	the	top	of	the	current	branch,	and	one	to	the	top
of	the	other	branch.

3.7.	Resolving	a	merge

When	a	merge	isn't	resolved	automatically,	Git	leaves	the	index	and	the
working	tree	in	a	special	state	that	gives	you	all	the	information	you	need
to	help	resolve	the	merge.

Files	with	conflicts	are	marked	specially	in	the	index,	so	until	you	resolve
the	problem	and	update	the	index,	Section	G.3.26,	“git-commit(1)”	will
fail:

$	git	commit

file.txt:	needs	merge

Also,	Section	G.3.129,	“git-status(1)”	will	list	those	files	as	"unmerged",
and	the	files	with	conflicts	will	have	conflict	markers	added,	like	this:

<<<<<<<	HEAD:file.txt

Hello	world

=======

Goodbye

>>>>>>>	77976da35a11db4580b80ae27e8d65caf5208086:file.txt

All	you	need	to	do	is	edit	the	files	to	resolve	the	conflicts,	and	then

$	git	add	file.txt

$	git	commit

Note	that	the	commit	message	will	already	be	filled	in	for	you	with	some
information	about	the	merge.	Normally	you	can	just	use	this	default
message	unchanged,	but	you	may	add	additional	commentary	of	your
own	if	desired.

The	above	is	all	you	need	to	know	to	resolve	a	simple	merge.	But	Git
also	provides	more	information	to	help	resolve	conflicts:

3.7.1.	Getting	conflict-resolution	help	during	a	merge

All	of	the	changes	that	Git	was	able	to	merge	automatically	are	already
added	to	the	index	file,	so	Section	G.3.41,	“git-diff(1)”	shows	only	the
conflicts.	It	uses	an	unusual	syntax:

$	git	diff

diff	--cc	file.txt

index	802992c,2b60207..0000000

---	a/file.txt

+++	b/file.txt

@@@	-1,1	-1,1	+1,5	@@@

++<<<<<<<	HEAD:file.txt

	+Hello	world

++=======

+	Goodbye

++>>>>>>>	77976da35a11db4580b80ae27e8d65caf5208086:file.txt

Recall	that	the	commit	which	will	be	committed	after	we	resolve	this
conflict	will	have	two	parents	instead	of	the	usual	one:	one	parent	will	be
HEAD,	the	tip	of	the	current	branch;	the	other	will	be	the	tip	of	the	other
branch,	which	is	stored	temporarily	in	MERGE_HEAD.

During	the	merge,	the	index	holds	three	versions	of	each	file.	Each	of
these	three	"file	stages"	represents	a	different	version	of	the	file:

$	git	show	:1:file.txt		#	the	file	in	a	common	ancestor	of	both	branches

$	git	show	:2:file.txt		#	the	version	from	HEAD.

$	git	show	:3:file.txt		#	the	version	from	MERGE_HEAD.

When	you	ask	Section	G.3.41,	“git-diff(1)”	to	show	the	conflicts,	it	runs	a
three-way	diff	between	the	conflicted	merge	results	in	the	work	tree	with
stages	2	and	3	to	show	only	hunks	whose	contents	come	from	both
sides,	mixed	(in	other	words,	when	a	hunk's	merge	results	come	only
from	stage	2,	that	part	is	not	conflicting	and	is	not	shown.	Same	for	stage
3).

The	diff	above	shows	the	differences	between	the	working-tree	version	of
file.txt	and	the	stage	2	and	stage	3	versions.	So	instead	of	preceding
each	line	by	a	single	+	or	-,	it	now	uses	two	columns:	the	first	column	is
used	for	differences	between	the	first	parent	and	the	working	directory
copy,	and	the	second	for	differences	between	the	second	parent	and	the
working	directory	copy.	(See	the	"COMBINED	DIFF	FORMAT"	section	of
Section	G.3.38,	“git-diff-files(1)”	for	a	details	of	the	format.)

After	resolving	the	conflict	in	the	obvious	way	(but	before	updating	the
index),	the	diff	will	look	like:

$	git	diff

diff	--cc	file.txt

index	802992c,2b60207..0000000

---	a/file.txt

+++	b/file.txt

@@@	-1,1	-1,1	+1,1	@@@

-	Hello	world

	-Goodbye

++Goodbye	world

This	shows	that	our	resolved	version	deleted	"Hello	world"	from	the	first
parent,	deleted	"Goodbye"	from	the	second	parent,	and	added	"Goodbye
world",	which	was	previously	absent	from	both.

Some	special	diff	options	allow	diffing	the	working	directory	against	any
of	these	stages:

$	git	diff	-1	file.txt										#	diff	against	stage	1

$	git	diff	--base	file.txt						#	same	as	the	above

$	git	diff	-2	file.txt										#	diff	against	stage	2

$	git	diff	--ours	file.txt						#	same	as	the	above

$	git	diff	-3	file.txt										#	diff	against	stage	3

$	git	diff	--theirs	file.txt				#	same	as	the	above.

The	Section	G.3.68,	“git-log(1)”	and	Section	G.4.7,	“gitk(1)”	commands
also	provide	special	help	for	merges:

$	git	log	--merge

$	gitk	--merge

These	will	display	all	commits	which	exist	only	on	HEAD	or	on
MERGE_HEAD,	and	which	touch	an	unmerged	file.

You	may	also	use	Section	G.3.81,	“git-mergetool(1)”,	which	lets	you
merge	the	unmerged	files	using	external	tools	such	as	Emacs	or	kdiff3.

Each	time	you	resolve	the	conflicts	in	a	file	and	update	the	index:

$	git	add	file.txt

the	different	stages	of	that	file	will	be	"collapsed",	after	which	git	diff	will
(by	default)	no	longer	show	diffs	for	that	file.

3.8.	Undoing	a	merge

If	you	get	stuck	and	decide	to	just	give	up	and	throw	the	whole	mess
away,	you	can	always	return	to	the	pre-merge	state	with

$	git	reset	--hard	HEAD

Or,	if	you've	already	committed	the	merge	that	you	want	to	throw	away,

$	git	reset	--hard	ORIG_HEAD

However,	this	last	command	can	be	dangerous	in	some	cases--never
throw	away	a	commit	you	have	already	committed	if	that	commit	may

itself	have	been	merged	into	another	branch,	as	doing	so	may	confuse
further	merges.

3.9.	Fast-forward	merges

There	is	one	special	case	not	mentioned	above,	which	is	treated
differently.	Normally,	a	merge	results	in	a	merge	commit,	with	two
parents,	one	pointing	at	each	of	the	two	lines	of	development	that	were
merged.

However,	if	the	current	branch	is	an	ancestor	of	the	other--so	every
commit	present	in	the	current	branch	is	already	contained	in	the	other
branch--then	Git	just	performs	a	"fast-forward";	the	head	of	the	current
branch	is	moved	forward	to	point	at	the	head	of	the	merged-in	branch,
without	any	new	commits	being	created.

3.10.	Fixing	mistakes

If	you've	messed	up	the	working	tree,	but	haven't	yet	committed	your
mistake,	you	can	return	the	entire	working	tree	to	the	last	committed	state
with

$	git	reset	--hard	HEAD

If	you	make	a	commit	that	you	later	wish	you	hadn't,	there	are	two
fundamentally	different	ways	to	fix	the	problem:

1.	 You	can	create	a	new	commit	that	undoes	whatever	was	done	by	the
old	commit.	This	is	the	correct	thing	if	your	mistake	has	already	been
made	public.

2.	 You	can	go	back	and	modify	the	old	commit.	You	should	never	do
this	if	you	have	already	made	the	history	public;	Git	does	not
normally	expect	the	"history"	of	a	project	to	change,	and	cannot
correctly	perform	repeated	merges	from	a	branch	that	has	had	its
history	changed.

3.10.1.	Fixing	a	mistake	with	a	new	commit

Creating	a	new	commit	that	reverts	an	earlier	change	is	very	easy;	just
pass	the	Section	G.3.114,	“git-revert(1)”	command	a	reference	to	the	bad
commit;	for	example,	to	revert	the	most	recent	commit:

$	git	revert	HEAD

This	will	create	a	new	commit	which	undoes	the	change	in	HEAD.	You
will	be	given	a	chance	to	edit	the	commit	message	for	the	new	commit.

You	can	also	revert	an	earlier	change,	for	example,	the	next-to-last:

$	git	revert	HEAD^

In	this	case	Git	will	attempt	to	undo	the	old	change	while	leaving	intact
any	changes	made	since	then.	If	more	recent	changes	overlap	with	the
changes	to	be	reverted,	then	you	will	be	asked	to	fix	conflicts	manually,
just	as	in	the	case	of	resolving	a	merge.

3.10.2.	Fixing	a	mistake	by	rewriting	history

If	the	problematic	commit	is	the	most	recent	commit,	and	you	have	not
yet	made	that	commit	public,	then	you	may	just	destroy	it	using	git	reset.

Alternatively,	you	can	edit	the	working	directory	and	update	the	index	to
fix	your	mistake,	just	as	if	you	were	going	to	create	a	new	commit,	then
run

$	git	commit	--amend

which	will	replace	the	old	commit	by	a	new	commit	incorporating	your
changes,	giving	you	a	chance	to	edit	the	old	commit	message	first.

Again,	you	should	never	do	this	to	a	commit	that	may	already	have	been
merged	into	another	branch;	use	Section	G.3.114,	“git-revert(1)”	instead
in	that	case.

It	is	also	possible	to	replace	commits	further	back	in	the	history,	but	this	is

an	advanced	topic	to	be	left	for	another	chapter.

3.10.3.	Checking	out	an	old	version	of	a	file

In	the	process	of	undoing	a	previous	bad	change,	you	may	find	it	useful
to	check	out	an	older	version	of	a	particular	file	using	Section	G.3.18,	“git-
checkout(1)”.	We've	used	git	checkout	before	to	switch	branches,	but	it
has	quite	different	behavior	if	it	is	given	a	path	name:	the	command

$	git	checkout	HEAD^	path/to/file

replaces	path/to/file	by	the	contents	it	had	in	the	commit	HEAD^,	and
also	updates	the	index	to	match.	It	does	not	change	branches.

If	you	just	want	to	look	at	an	old	version	of	the	file,	without	modifying	the
working	directory,	you	can	do	that	with	Section	G.3.126,	“git-show(1)”:

$	git	show	HEAD^:path/to/file

which	will	display	the	given	version	of	the	file.

3.10.4.	Temporarily	setting	aside	work	in	progress

While	you	are	in	the	middle	of	working	on	something	complicated,	you
find	an	unrelated	but	obvious	and	trivial	bug.	You	would	like	to	fix	it
before	continuing.	You	can	use	Section	G.3.128,	“git-stash(1)”	to	save
the	current	state	of	your	work,	and	after	fixing	the	bug	(or,	optionally	after
doing	so	on	a	different	branch	and	then	coming	back),	unstash	the	work-
in-progress	changes.

$	git	stash	save	"work	in	progress	for	foo	feature"

This	command	will	save	your	changes	away	to	the	stash,	and	reset	your
working	tree	and	the	index	to	match	the	tip	of	your	current	branch.	Then
you	can	make	your	fix	as	usual.

...	edit	and	test	...

$	git	commit	-a	-m	"blorpl:	typofix"

After	that,	you	can	go	back	to	what	you	were	working	on	with	git	stash
pop:

$	git	stash	pop

3.11.	Ensuring	good	performance

On	large	repositories,	Git	depends	on	compression	to	keep	the	history
information	from	taking	up	too	much	space	on	disk	or	in	memory.	Some
Git	commands	may	automatically	run	Section	G.3.53,	“git-gc(1)”,	so	you
don't	have	to	worry	about	running	it	manually.	However,	compressing	a
large	repository	may	take	a	while,	so	you	may	want	to	call	gc	explicitly	to
avoid	automatic	compression	kicking	in	when	it	is	not	convenient.

3.12.	Ensuring	reliability

3.12.1.	Checking	the	repository	for	corruption

The	Section	G.3.52,	“git-fsck(1)”	command	runs	a	number	of	self-
consistency	checks	on	the	repository,	and	reports	on	any	problems.	This
may	take	some	time.

$	git	fsck

dangling	commit	7281251ddd2a61e38657c827739c57015671a6b3

dangling	commit	2706a059f258c6b245f298dc4ff2ccd30ec21a63

dangling	commit	13472b7c4b80851a1bc551779171dcb03655e9b5

dangling	blob	218761f9d90712d37a9c5e36f406f92202db07eb

dangling	commit	bf093535a34a4d35731aa2bd90fe6b176302f14f

dangling	commit	8e4bec7f2ddaa268bef999853c25755452100f8e

dangling	tree	d50bb86186bf27b681d25af89d3b5b68382e4085

dangling	tree	b24c2473f1fd3d91352a624795be026d64c8841f

...

You	will	see	informational	messages	on	dangling	objects.	They	are
objects	that	still	exist	in	the	repository	but	are	no	longer	referenced	by

any	of	your	branches,	and	can	(and	will)	be	removed	after	a	while	with
gc.	You	can	run	git	fsck	--no-dangling	to	suppress	these	messages,	and
still	view	real	errors.

3.12.2.	Recovering	lost	changes

3.12.2.1.	Reflogs

Say	you	modify	a	branch	with	git	reset	--hard,	and	then	realize	that	the
branch	was	the	only	reference	you	had	to	that	point	in	history.

Fortunately,	Git	also	keeps	a	log,	called	a	"reflog",	of	all	the	previous
values	of	each	branch.	So	in	this	case	you	can	still	find	the	old	history
using,	for	example,

$	git	log	master@{1}

This	lists	the	commits	reachable	from	the	previous	version	of	the	master
branch	head.	This	syntax	can	be	used	with	any	Git	command	that
accepts	a	commit,	not	just	with	git	log.	Some	other	examples:

$	git	show	master@{2}											#	See	where	the	branch	pointed	2,

$	git	show	master@{3}											#	3,	...	changes	ago.

$	gitk	master@{yesterday}							#	See	where	it	pointed	yesterday,

$	gitk	master@{"1	week	ago"}				#	...	or	last	week

$	git	log	--walk-reflogs	master	#	show	reflog	entries	for	master

A	separate	reflog	is	kept	for	the	HEAD,	so

$	git	show	HEAD@{"1	week	ago"}

will	show	what	HEAD	pointed	to	one	week	ago,	not	what	the	current
branch	pointed	to	one	week	ago.	This	allows	you	to	see	the	history	of
what	you've	checked	out.

The	reflogs	are	kept	by	default	for	30	days,	after	which	they	may	be
pruned.	See	Section	G.3.101,	“git-reflog(1)”	and	Section	G.3.53,	“git-
gc(1)”	to	learn	how	to	control	this	pruning,	and	see	the	"SPECIFYING

REVISIONS"	section	of	Section	G.4.12,	“gitrevisions(7)”	for	details.

Note	that	the	reflog	history	is	very	different	from	normal	Git	history.	While
normal	history	is	shared	by	every	repository	that	works	on	the	same
project,	the	reflog	history	is	not	shared:	it	tells	you	only	about	how	the
branches	in	your	local	repository	have	changed	over	time.

3.12.2.2.	Examining	dangling	objects

In	some	situations	the	reflog	may	not	be	able	to	save	you.	For	example,
suppose	you	delete	a	branch,	then	realize	you	need	the	history	it
contained.	The	reflog	is	also	deleted;	however,	if	you	have	not	yet	pruned
the	repository,	then	you	may	still	be	able	to	find	the	lost	commits	in	the
dangling	objects	that	git	fsck	reports.	See	Section	7.1.7,	“Dangling
objects”	for	the	details.

$	git	fsck

dangling	commit	7281251ddd2a61e38657c827739c57015671a6b3

dangling	commit	2706a059f258c6b245f298dc4ff2ccd30ec21a63

dangling	commit	13472b7c4b80851a1bc551779171dcb03655e9b5

...

You	can	examine	one	of	those	dangling	commits	with,	for	example,

$	gitk	7281251ddd	--not	--all

which	does	what	it	sounds	like:	it	says	that	you	want	to	see	the	commit
history	that	is	described	by	the	dangling	commit(s),	but	not	the	history
that	is	described	by	all	your	existing	branches	and	tags.	Thus	you	get
exactly	the	history	reachable	from	that	commit	that	is	lost.	(And	notice
that	it	might	not	be	just	one	commit:	we	only	report	the	"tip	of	the	line"	as
being	dangling,	but	there	might	be	a	whole	deep	and	complex	commit
history	that	was	dropped.)

If	you	decide	you	want	the	history	back,	you	can	always	create	a	new
reference	pointing	to	it,	for	example,	a	new	branch:

$	git	branch	recovered-branch	7281251ddd

Other	types	of	dangling	objects	(blobs	and	trees)	are	also	possible,	and
dangling	objects	can	arise	in	other	situations.

4.	Sharing	development	with	others

4.1.	Getting	updates	with	git	pull

After	you	clone	a	repository	and	commit	a	few	changes	of	your	own,	you
may	wish	to	check	the	original	repository	for	updates	and	merge	them
into	your	own	work.

We	have	already	seen	how	to	keep	remote-tracking	branches	up	to	date
with	Section	G.3.46,	“git-fetch(1)”,	and	how	to	merge	two	branches.	So
you	can	merge	in	changes	from	the	original	repository's	master	branch
with:

$	git	fetch

$	git	merge	origin/master

However,	the	Section	G.3.95,	“git-pull(1)”	command	provides	a	way	to	do
this	in	one	step:

$	git	pull	origin	master

In	fact,	if	you	have	master	checked	out,	then	this	branch	has	been
configured	by	git	clone	to	get	changes	from	the	HEAD	branch	of	the
origin	repository.	So	often	you	can	accomplish	the	above	with	just	a
simple

$	git	pull

This	command	will	fetch	changes	from	the	remote	branches	to	your
remote-tracking	branches	origin/*,	and	merge	the	default	branch	into	the
current	branch.

More	generally,	a	branch	that	is	created	from	a	remote-tracking	branch
will	pull	by	default	from	that	branch.	See	the	descriptions	of	the	branch.
<name>.remote	and	branch.<name>.merge	options	in	Section	G.3.27,
“git-config(1)”,	and	the	discussion	of	the	--track	option	in	Section	G.3.18,

“git-checkout(1)”,	to	learn	how	to	control	these	defaults.

In	addition	to	saving	you	keystrokes,	git	pull	also	helps	you	by	producing
a	default	commit	message	documenting	the	branch	and	repository	that
you	pulled	from.

(But	note	that	no	such	commit	will	be	created	in	the	case	of	a	fast-
forward;	instead,	your	branch	will	just	be	updated	to	point	to	the	latest
commit	from	the	upstream	branch.)

The	git	pull	command	can	also	be	given	.	as	the	"remote"	repository,	in
which	case	it	just	merges	in	a	branch	from	the	current	repository;	so	the
commands

$	git	pull	.	branch

$	git	merge	branch

are	roughly	equivalent.

4.2.	Submitting	patches	to	a	project

If	you	just	have	a	few	changes,	the	simplest	way	to	submit	them	may	just
be	to	send	them	as	patches	in	email:

First,	use	Section	G.3.50,	“git-format-patch(1)”;	for	example:

$	git	format-patch	origin

will	produce	a	numbered	series	of	files	in	the	current	directory,	one	for
each	patch	in	the	current	branch	but	not	in	origin/HEAD.

git	format-patch	can	include	an	initial	"cover	letter".	You	can	insert
commentary	on	individual	patches	after	the	three	dash	line	which	format-
patch	places	after	the	commit	message	but	before	the	patch	itself.	If	you
use	git	notes	to	track	your	cover	letter	material,	git	format-patch	--notes
will	include	the	commit's	notes	in	a	similar	manner.

You	can	then	import	these	into	your	mail	client	and	send	them	by	hand.

However,	if	you	have	a	lot	to	send	at	once,	you	may	prefer	to	use	the
Section	G.3.116,	“git-send-email(1)”	script	to	automate	the	process.
Consult	the	mailing	list	for	your	project	first	to	determine	their
requirements	for	submitting	patches.

4.3.	Importing	patches	to	a	project

Git	also	provides	a	tool	called	Section	G.3.3,	“git-am(1)”	(am	stands	for
"apply	mailbox"),	for	importing	such	an	emailed	series	of	patches.	Just
save	all	of	the	patch-containing	messages,	in	order,	into	a	single	mailbox
file,	say	patches.mbox,	then	run

$	git	am	-3	patches.mbox

Git	will	apply	each	patch	in	order;	if	any	conflicts	are	found,	it	will	stop,
and	you	can	fix	the	conflicts	as	described	in	"Resolving	a	merge".	(The	-3
option	tells	Git	to	perform	a	merge;	if	you	would	prefer	it	just	to	abort	and
leave	your	tree	and	index	untouched,	you	may	omit	that	option.)

Once	the	index	is	updated	with	the	results	of	the	conflict	resolution,
instead	of	creating	a	new	commit,	just	run

$	git	am	--continue

and	Git	will	create	the	commit	for	you	and	continue	applying	the
remaining	patches	from	the	mailbox.

The	final	result	will	be	a	series	of	commits,	one	for	each	patch	in	the
original	mailbox,	with	authorship	and	commit	log	message	each	taken
from	the	message	containing	each	patch.

4.4.	Public	Git	repositories

Another	way	to	submit	changes	to	a	project	is	to	tell	the	maintainer	of	that
project	to	pull	the	changes	from	your	repository	using	Section	G.3.95,
“git-pull(1)”.	In	the	section	"Getting	updates	with	git	pull"	we	described
this	as	a	way	to	get	updates	from	the	"main"	repository,	but	it	works	just

as	well	in	the	other	direction.

If	you	and	the	maintainer	both	have	accounts	on	the	same	machine,	then
you	can	just	pull	changes	from	each	other's	repositories	directly;
commands	that	accept	repository	URLs	as	arguments	will	also	accept	a
local	directory	name:

$	git	clone	/path/to/repository

$	git	pull	/path/to/other/repository

or	an	ssh	URL:

$	git	clone	ssh://yourhost/~you/repository

For	projects	with	few	developers,	or	for	synchronizing	a	few	private
repositories,	this	may	be	all	you	need.

However,	the	more	common	way	to	do	this	is	to	maintain	a	separate
public	repository	(usually	on	a	different	host)	for	others	to	pull	changes
from.	This	is	usually	more	convenient,	and	allows	you	to	cleanly	separate
private	work	in	progress	from	publicly	visible	work.

You	will	continue	to	do	your	day-to-day	work	in	your	personal	repository,
but	periodically	"push"	changes	from	your	personal	repository	into	your
public	repository,	allowing	other	developers	to	pull	from	that	repository.
So	the	flow	of	changes,	in	a	situation	where	there	is	one	other	developer
with	a	public	repository,	looks	like	this:

																						you	push

your	personal	repo	------------------>	your	public	repo

						^																																					|

						|																																					|

						|	you	pull																												|	they	pull

						|																																					|

						|																																					|

						|															they	push													V

their	public	repo	<-------------------	their	repo

We	explain	how	to	do	this	in	the	following	sections.

4.4.1.	Setting	up	a	public	repository

Assume	your	personal	repository	is	in	the	directory	~/proj.	We	first	create
a	new	clone	of	the	repository	and	tell	git	daemon	that	it	is	meant	to	be
public:

$	git	clone	--bare	~/proj	proj.git

$	touch	proj.git/git-daemon-export-ok

The	resulting	directory	proj.git	contains	a	"bare"	git	repository--it	is	just
the	contents	of	the	.git	directory,	without	any	files	checked	out	around	it.

Next,	copy	proj.git	to	the	server	where	you	plan	to	host	the	public
repository.	You	can	use	scp,	rsync,	or	whatever	is	most	convenient.

4.4.2.	Exporting	a	Git	repository	via	the	Git	protocol

This	is	the	preferred	method.

If	someone	else	administers	the	server,	they	should	tell	you	what
directory	to	put	the	repository	in,	and	what	git://	URL	it	will	appear	at.	You
can	then	skip	to	the	section	"Pushing	changes	to	a	public	repository",
below.

Otherwise,	all	you	need	to	do	is	start	Section	G.3.36,	“git-daemon(1)”;	it
will	listen	on	port	9418.	By	default,	it	will	allow	access	to	any	directory
that	looks	like	a	Git	directory	and	contains	the	magic	file	git-daemon-
export-ok.	Passing	some	directory	paths	as	git	daemon	arguments	will
further	restrict	the	exports	to	those	paths.

You	can	also	run	git	daemon	as	an	inetd	service;	see	the	Section	G.3.36,
“git-daemon(1)”	man	page	for	details.	(See	especially	the	examples
section.)

4.4.3.	Exporting	a	git	repository	via	HTTP

The	Git	protocol	gives	better	performance	and	reliability,	but	on	a	host
with	a	web	server	set	up,	HTTP	exports	may	be	simpler	to	set	up.

All	you	need	to	do	is	place	the	newly	created	bare	Git	repository	in	a
directory	that	is	exported	by	the	web	server,	and	make	some	adjustments
to	give	web	clients	some	extra	information	they	need:

$	mv	proj.git	/home/you/public_html/proj.git

$	cd	proj.git

$	git	--bare	update-server-info

$	mv	hooks/post-update.sample	hooks/post-update

(For	an	explanation	of	the	last	two	lines,	see	Section	G.3.139,	“git-
update-server-info(1)”	and	Section	G.4.6,	“githooks(5)”.)

Advertise	the	URL	of	proj.git.	Anybody	else	should	then	be	able	to	clone
or	pull	from	that	URL,	for	example	with	a	command	line	like:

$	git	clone	http://yourserver.com/~you/proj.git

(See	also	link:howto/setup-git-server-over-http.html[setup-git-server-over-
http]	for	a	slightly	more	sophisticated	setup	using	WebDAV	which	also
allows	pushing	over	HTTP.)

4.4.4.	Pushing	changes	to	a	public	repository

Note	that	the	two	techniques	outlined	above	(exporting	via	http	or	git)
allow	other	maintainers	to	fetch	your	latest	changes,	but	they	do	not	allow
write	access,	which	you	will	need	to	update	the	public	repository	with	the
latest	changes	created	in	your	private	repository.

The	simplest	way	to	do	this	is	using	Section	G.3.96,	“git-push(1)”	and
ssh;	to	update	the	remote	branch	named	master	with	the	latest	state	of
your	branch	named	master,	run

$	git	push	ssh://yourserver.com/~you/proj.git	master:master

or	just

$	git	push	ssh://yourserver.com/~you/proj.git	master

As	with	git	fetch,	git	push	will	complain	if	this	does	not	result	in	a	fast-
forward;	see	the	following	section	for	details	on	handling	this	case.

Note	that	the	target	of	a	push	is	normally	a	bare	repository.	You	can	also
push	to	a	repository	that	has	a	checked-out	working	tree,	but	a	push	to
update	the	currently	checked-out	branch	is	denied	by	default	to	prevent
confusion.	See	the	description	of	the	receive.denyCurrentBranch	option
in	Section	G.3.27,	“git-config(1)”	for	details.

As	with	git	fetch,	you	may	also	set	up	configuration	options	to	save
typing;	so,	for	example:

$	git	remote	add	public-repo	ssh://yourserver.com/~you/proj.git

adds	the	following	to	.git/config:

[remote	"public-repo"]

								url	=	yourserver.com:proj.git

								fetch	=	+refs/heads/*:refs/remotes/example/*

which	lets	you	do	the	same	push	with	just

$	git	push	public-repo	master

See	the	explanations	of	the	remote.<name>.url,	branch.<name>.remote,
and	remote.<name>.push	options	in	Section	G.3.27,	“git-config(1)”	for
details.

4.4.5.	What	to	do	when	a	push	fails

If	a	push	would	not	result	in	a	fast-forward	of	the	remote	branch,	then	it
will	fail	with	an	error	like:

error:	remote	'refs/heads/master'	is	not	an	ancestor	of

	local		'refs/heads/master'.

	Maybe	you	are	not	up-to-date	and	need	to	pull	first?

error:	failed	to	push	to	'ssh://yourserver.com/~you/proj.git'

This	can	happen,	for	example,	if	you:

use	git	reset	--hard	to	remove	already-published	commits,	or
use	git	commit	--amend	to	replace	already-published	commits	(as	in
Section	3.10.2,	“Fixing	a	mistake	by	rewriting	history”),	or
use	git	rebase	to	rebase	any	already-published	commits	(as	in
Section	5.2,	“Keeping	a	patch	series	up	to	date	using	git	rebase”).

You	may	force	git	push	to	perform	the	update	anyway	by	preceding	the
branch	name	with	a	plus	sign:

$	git	push	ssh://yourserver.com/~you/proj.git	+master

Note	the	addition	of	the	+	sign.	Alternatively,	you	can	use	the	-f	flag	to
force	the	remote	update,	as	in:

$	git	push	-f	ssh://yourserver.com/~you/proj.git	master

Normally	whenever	a	branch	head	in	a	public	repository	is	modified,	it	is
modified	to	point	to	a	descendant	of	the	commit	that	it	pointed	to	before.
By	forcing	a	push	in	this	situation,	you	break	that	convention.	(See
Section	5.7,	“Problems	with	rewriting	history”.)

Nevertheless,	this	is	a	common	practice	for	people	that	need	a	simple
way	to	publish	a	work-in-progress	patch	series,	and	it	is	an	acceptable
compromise	as	long	as	you	warn	other	developers	that	this	is	how	you
intend	to	manage	the	branch.

It's	also	possible	for	a	push	to	fail	in	this	way	when	other	people	have	the
right	to	push	to	the	same	repository.	In	that	case,	the	correct	solution	is	to
retry	the	push	after	first	updating	your	work:	either	by	a	pull,	or	by	a	fetch
followed	by	a	rebase;	see	the	next	section	and	Section	G.2.4,	“gitcvs-
migration(7)”	for	more.

4.4.6.	Setting	up	a	shared	repository

Another	way	to	collaborate	is	by	using	a	model	similar	to	that	commonly

used	in	CVS,	where	several	developers	with	special	rights	all	push	to	and
pull	from	a	single	shared	repository.	See	Section	G.2.4,	“gitcvs-
migration(7)”	for	instructions	on	how	to	set	this	up.

However,	while	there	is	nothing	wrong	with	Git's	support	for	shared
repositories,	this	mode	of	operation	is	not	generally	recommended,
simply	because	the	mode	of	collaboration	that	Git	supports--by
exchanging	patches	and	pulling	from	public	repositories--has	so	many
advantages	over	the	central	shared	repository:

Git's	ability	to	quickly	import	and	merge	patches	allows	a	single
maintainer	to	process	incoming	changes	even	at	very	high	rates.
And	when	that	becomes	too	much,	git	pull	provides	an	easy	way	for
that	maintainer	to	delegate	this	job	to	other	maintainers	while	still
allowing	optional	review	of	incoming	changes.
Since	every	developer's	repository	has	the	same	complete	copy	of
the	project	history,	no	repository	is	special,	and	it	is	trivial	for	another
developer	to	take	over	maintenance	of	a	project,	either	by	mutual
agreement,	or	because	a	maintainer	becomes	unresponsive	or
difficult	to	work	with.
The	lack	of	a	central	group	of	"committers"	means	there	is	less	need
for	formal	decisions	about	who	is	"in"	and	who	is	"out".

4.4.7.	Allowing	web	browsing	of	a	repository

The	gitweb	cgi	script	provides	users	an	easy	way	to	browse	your
project's	revisions,	file	contents	and	logs	without	having	to	install	Git.
Features	like	RSS/Atom	feeds	and	blame/annotation	details	may
optionally	be	enabled.

The	Section	G.3.66,	“git-instaweb(1)”	command	provides	a	simple	way	to
start	browsing	the	repository	using	gitweb.	The	default	server	when	using
instaweb	is	lighttpd.

See	the	file	gitweb/INSTALL	in	the	Git	source	tree	and	Section	G.4.13,
“gitweb(1)”	for	instructions	on	details	setting	up	a	permanent	installation
with	a	CGI	or	Perl	capable	server.

4.5.	How	to	get	a	Git	repository	with	minimal	history

A	shallow	clone,	with	its	truncated	history,	is	useful	when	one	is
interested	only	in	recent	history	of	a	project	and	getting	full	history	from
the	upstream	is	expensive.

A	shallow	clone	is	created	by	specifying	the	Section	G.3.23,	“git-clone(1)”
--depth	switch.	The	depth	can	later	be	changed	with	the	Section	G.3.46,
“git-fetch(1)”	--depth	switch,	or	full	history	restored	with	--unshallow.

Merging	inside	a	shallow	clone	will	work	as	long	as	a	merge	base	is	in
the	recent	history.	Otherwise,	it	will	be	like	merging	unrelated	histories
and	may	have	to	result	in	huge	conflicts.	This	limitation	may	make	such	a
repository	unsuitable	to	be	used	in	merge	based	workflows.

4.6.	Examples

4.6.1.	Maintaining	topic	branches	for	a	Linux	subsystem	maintainer

This	describes	how	Tony	Luck	uses	Git	in	his	role	as	maintainer	of	the
IA64	architecture	for	the	Linux	kernel.

He	uses	two	public	branches:

A	"test"	tree	into	which	patches	are	initially	placed	so	that	they	can
get	some	exposure	when	integrated	with	other	ongoing
development.	This	tree	is	available	to	Andrew	for	pulling	into	-mm
whenever	he	wants.
A	"release"	tree	into	which	tested	patches	are	moved	for	final	sanity
checking,	and	as	a	vehicle	to	send	them	upstream	to	Linus	(by
sending	him	a	"please	pull"	request.)

He	also	uses	a	set	of	temporary	branches	("topic	branches"),	each
containing	a	logical	grouping	of	patches.

To	set	this	up,	first	create	your	work	tree	by	cloning	Linus's	public	tree:

$	git	clone	git://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git	work

$	cd	work

Linus's	tree	will	be	stored	in	the	remote-tracking	branch	named
origin/master,	and	can	be	updated	using	Section	G.3.46,	“git-fetch(1)”;
you	can	track	other	public	trees	using	Section	G.3.106,	“git-remote(1)”	to
set	up	a	"remote"	and	Section	G.3.46,	“git-fetch(1)”	to	keep	them	up-to-
date;	see	Section	1,	“Repositories	and	Branches”.

Now	create	the	branches	in	which	you	are	going	to	work;	these	start	out
at	the	current	tip	of	origin/master	branch,	and	should	be	set	up	(using	the
--track	option	to	Section	G.3.10,	“git-branch(1)”)	to	merge	changes	in
from	Linus	by	default.

$	git	branch	--track	test	origin/master

$	git	branch	--track	release	origin/master

These	can	be	easily	kept	up	to	date	using	Section	G.3.95,	“git-pull(1)”.

$	git	checkout	test	&&	git	pull

$	git	checkout	release	&&	git	pull

Important	note!	If	you	have	any	local	changes	in	these	branches,	then
this	merge	will	create	a	commit	object	in	the	history	(with	no	local
changes	Git	will	simply	do	a	"fast-forward"	merge).	Many	people	dislike
the	"noise"	that	this	creates	in	the	Linux	history,	so	you	should	avoid
doing	this	capriciously	in	the	release	branch,	as	these	noisy	commits	will
become	part	of	the	permanent	history	when	you	ask	Linus	to	pull	from
the	release	branch.

A	few	configuration	variables	(see	Section	G.3.27,	“git-config(1)”)	can
make	it	easy	to	push	both	branches	to	your	public	tree.	(See
Section	4.4.1,	“Setting	up	a	public	repository”.)

$	cat	>>	.git/config	<<EOF

[remote	"mytree"]

								url	=		master.kernel.org:/pub/scm/linux/kernel/git/aegl/linux.git

								push	=	release

								push	=	test

EOF

Then	you	can	push	both	the	test	and	release	trees	using	Section	G.3.96,
“git-push(1)”:

$	git	push	mytree

or	push	just	one	of	the	test	and	release	branches	using:

$	git	push	mytree	test

or

$	git	push	mytree	release

Now	to	apply	some	patches	from	the	community.	Think	of	a	short	snappy
name	for	a	branch	to	hold	this	patch	(or	related	group	of	patches),	and
create	a	new	branch	from	a	recent	stable	tag	of	Linus's	branch.	Picking	a
stable	base	for	your	branch	will:	1)	help	you:	by	avoiding	inclusion	of
unrelated	and	perhaps	lightly	tested	changes	2)	help	future	bug	hunters
that	use	git	bisect	to	find	problems

$	git	checkout	-b	speed-up-spinlocks	v2.6.35

Now	you	apply	the	patch(es),	run	some	tests,	and	commit	the	change(s).
If	the	patch	is	a	multi-part	series,	then	you	should	apply	each	as	a
separate	commit	to	this	branch.

$...	patch	...	test		...	commit	[...	patch	...	test	...	commit]*

When	you	are	happy	with	the	state	of	this	change,	you	can	merge	it	into
the	"test"	branch	in	preparation	to	make	it	public:

$	git	checkout	test	&&	git	merge	speed-up-spinlocks

It	is	unlikely	that	you	would	have	any	conflicts	here	…	but	you	might	if

you	spent	a	while	on	this	step	and	had	also	pulled	new	versions	from
upstream.

Sometime	later	when	enough	time	has	passed	and	testing	done,	you	can
pull	the	same	branch	into	the	release	tree	ready	to	go	upstream.	This	is
where	you	see	the	value	of	keeping	each	patch	(or	patch	series)	in	its
own	branch.	It	means	that	the	patches	can	be	moved	into	the	release
tree	in	any	order.

$	git	checkout	release	&&	git	merge	speed-up-spinlocks

After	a	while,	you	will	have	a	number	of	branches,	and	despite	the	well
chosen	names	you	picked	for	each	of	them,	you	may	forget	what	they	are
for,	or	what	status	they	are	in.	To	get	a	reminder	of	what	changes	are	in	a
specific	branch,	use:

$	git	log	linux..branchname	|	git	shortlog

To	see	whether	it	has	already	been	merged	into	the	test	or	release
branches,	use:

$	git	log	test..branchname

or

$	git	log	release..branchname

(If	this	branch	has	not	yet	been	merged,	you	will	see	some	log	entries.	If
it	has	been	merged,	then	there	will	be	no	output.)

Once	a	patch	completes	the	great	cycle	(moving	from	test	to	release,
then	pulled	by	Linus,	and	finally	coming	back	into	your	local	origin/master
branch),	the	branch	for	this	change	is	no	longer	needed.	You	detect	this
when	the	output	from:

$	git	log	origin..branchname

is	empty.	At	this	point	the	branch	can	be	deleted:

$	git	branch	-d	branchname

Some	changes	are	so	trivial	that	it	is	not	necessary	to	create	a	separate
branch	and	then	merge	into	each	of	the	test	and	release	branches.	For
these	changes,	just	apply	directly	to	the	release	branch,	and	then	merge
that	into	the	test	branch.

After	pushing	your	work	to	mytree,	you	can	use	Section	G.3.109,	“git-
request-pull(1)”	to	prepare	a	"please	pull"	request	message	to	send	to
Linus:

$	git	push	mytree

$	git	request-pull	origin	mytree	release

Here	are	some	of	the	scripts	that	simplify	all	this	even	further.

====	update	script	====

#	Update	a	branch	in	my	Git	tree.		If	the	branch	to	be	updated

#	is	origin,	then	pull	from	kernel.org.		Otherwise	merge

#	origin/master	branch	into	test|release	branch

case	"$1"	in

test|release)

								git	checkout	$1	&&	git	pull	.	origin

								;;

origin)

								before=$(git	rev-parse	refs/remotes/origin/master)

								git	fetch	origin

								after=$(git	rev-parse	refs/remotes/origin/master)

								if	[$before	!=	$after]

								then

																git	log	$before..$after	|	git	shortlog

								fi

								;;

*)

								echo	"usage:	$0	origin|test|release"	1>&2

								exit	1

								;;

esac

====	merge	script	====

#	Merge	a	branch	into	either	the	test	or	release	branch

pname=$0

usage()

{

								echo	"usage:	$pname	branch	test|release"	1>&2

								exit	1

}

git	show-ref	-q	--verify	--	refs/heads/"$1"	||	{

								echo	"Can't	see	branch	<$1>"	1>&2

								usage

}

case	"$2"	in

test|release)

								if	[$(git	log	$2..$1	|	wc	-c)	-eq	0]

								then

																echo	$1	already	merged	into	$2	1>&2

																exit	1

								fi

								git	checkout	$2	&&	git	pull	.	$1

								;;

*)

								usage

								;;

esac

====	status	script	====

#	report	on	status	of	my	ia64	Git	tree

gb=$(tput	setab	2)

rb=$(tput	setab	1)

restore=$(tput	setab	9)

if	[`git	rev-list	test..release	|	wc	-c`	-gt	0]

then

								echo	$rb	Warning:	commits	in	release	that	are	not	in	test	$restore

								git	log	test..release

fi

for	branch	in	`git	show-ref	--heads	|	sed	's|^.*/||'`

do

								if	[$branch	=	test	-o	$branch	=	release]

								then

																continue

								fi

								echo	-n	$gb	=======	$branch	======	$restore	"	"

								status=

								for	ref	in	test	release	origin/master

								do

																if	[`git	rev-list	$ref..$branch	|	wc	-c`	-gt	0]

																then

																								status=$status${ref:0:1}

																fi

								done

								case	$status	in

								trl)

																echo	$rb	Need	to	pull	into	test	$restore

																;;

								rl)

																echo	"In	test"

																;;

								l)

																echo	"Waiting	for	linus"

																;;

								"")

																echo	$rb	All	done	$restore

																;;

								*)

																echo	$rb	"<$status>"	$restore

																;;

								esac

								git	log	origin/master..$branch	|	git	shortlog

done

5.	Rewriting	history	and	maintaining	patch
series

Normally	commits	are	only	added	to	a	project,	never	taken	away	or
replaced.	Git	is	designed	with	this	assumption,	and	violating	it	will	cause
Git's	merge	machinery	(for	example)	to	do	the	wrong	thing.

However,	there	is	a	situation	in	which	it	can	be	useful	to	violate	this
assumption.

5.1.	Creating	the	perfect	patch	series

Suppose	you	are	a	contributor	to	a	large	project,	and	you	want	to	add	a
complicated	feature,	and	to	present	it	to	the	other	developers	in	a	way
that	makes	it	easy	for	them	to	read	your	changes,	verify	that	they	are
correct,	and	understand	why	you	made	each	change.

If	you	present	all	of	your	changes	as	a	single	patch	(or	commit),	they	may
find	that	it	is	too	much	to	digest	all	at	once.

If	you	present	them	with	the	entire	history	of	your	work,	complete	with
mistakes,	corrections,	and	dead	ends,	they	may	be	overwhelmed.

So	the	ideal	is	usually	to	produce	a	series	of	patches	such	that:

1.	 Each	patch	can	be	applied	in	order.
2.	 Each	patch	includes	a	single	logical	change,	together	with	a

message	explaining	the	change.
3.	 No	patch	introduces	a	regression:	after	applying	any	initial	part	of	the

series,	the	resulting	project	still	compiles	and	works,	and	has	no
bugs	that	it	didn't	have	before.

4.	 The	complete	series	produces	the	same	end	result	as	your	own
(probably	much	messier!)	development	process	did.

We	will	introduce	some	tools	that	can	help	you	do	this,	explain	how	to
use	them,	and	then	explain	some	of	the	problems	that	can	arise	because

you	are	rewriting	history.

5.2.	Keeping	a	patch	series	up	to	date	using	git	rebase

Suppose	that	you	create	a	branch	mywork	on	a	remote-tracking	branch
origin,	and	create	some	commits	on	top	of	it:

$	git	checkout	-b	mywork	origin

$	vi	file.txt

$	git	commit

$	vi	otherfile.txt

$	git	commit

...

You	have	performed	no	merges	into	mywork,	so	it	is	just	a	simple	linear
sequence	of	patches	on	top	of	origin:

	o--o--O	<--	origin

								\

									a--b--c	<--	mywork

Some	more	interesting	work	has	been	done	in	the	upstream	project,	and
origin	has	advanced:

	o--o--O--o--o--o	<--	origin

								\

									a--b--c	<--	mywork

At	this	point,	you	could	use	pull	to	merge	your	changes	back	in;	the	result
would	create	a	new	merge	commit,	like	this:

	o--o--O--o--o--o	<--	origin

								\								\

									a--b--c--m	<--	mywork

However,	if	you	prefer	to	keep	the	history	in	mywork	a	simple	series	of
commits	without	any	merges,	you	may	instead	choose	to	use
Section	G.3.99,	“git-rebase(1)”:

$	git	checkout	mywork

$	git	rebase	origin

This	will	remove	each	of	your	commits	from	mywork,	temporarily	saving

them	as	patches	(in	a	directory	named	.git/rebase-apply),	update	mywork
to	point	at	the	latest	version	of	origin,	then	apply	each	of	the	saved
patches	to	the	new	mywork.	The	result	will	look	like:

	o--o--O--o--o--o	<--	origin

																	\

																		a'--b'--c'	<--	mywork

In	the	process,	it	may	discover	conflicts.	In	that	case	it	will	stop	and	allow
you	to	fix	the	conflicts;	after	fixing	conflicts,	use	git	add	to	update	the
index	with	those	contents,	and	then,	instead	of	running	git	commit,	just
run

$	git	rebase	--continue

and	Git	will	continue	applying	the	rest	of	the	patches.

At	any	point	you	may	use	the	--abort	option	to	abort	this	process	and
return	mywork	to	the	state	it	had	before	you	started	the	rebase:

$	git	rebase	--abort

If	you	need	to	reorder	or	edit	a	number	of	commits	in	a	branch,	it	may	be
easier	to	use	git	rebase	-i,	which	allows	you	to	reorder	and	squash
commits,	as	well	as	marking	them	for	individual	editing	during	the	rebase.
See	Section	5.5,	“Using	interactive	rebases”	for	details,	and	Section	5.4,
“Reordering	or	selecting	from	a	patch	series”	for	alternatives.

5.3.	Rewriting	a	single	commit

We	saw	in	Section	3.10.2,	“Fixing	a	mistake	by	rewriting	history”	that	you
can	replace	the	most	recent	commit	using

$	git	commit	--amend

which	will	replace	the	old	commit	by	a	new	commit	incorporating	your
changes,	giving	you	a	chance	to	edit	the	old	commit	message	first.	This
is	useful	for	fixing	typos	in	your	last	commit,	or	for	adjusting	the	patch

contents	of	a	poorly	staged	commit.

If	you	need	to	amend	commits	from	deeper	in	your	history,	you	can	use
interactive	rebase's	edit	instruction.

5.4.	Reordering	or	selecting	from	a	patch	series

Sometimes	you	want	to	edit	a	commit	deeper	in	your	history.	One
approach	is	to	use	git	format-patch	to	create	a	series	of	patches	and	then
reset	the	state	to	before	the	patches:

$	git	format-patch	origin

$	git	reset	--hard	origin

Then	modify,	reorder,	or	eliminate	patches	as	needed	before	applying
them	again	with	Section	G.3.3,	“git-am(1)”:

$	git	am	*.patch

5.5.	Using	interactive	rebases

You	can	also	edit	a	patch	series	with	an	interactive	rebase.	This	is	the
same	as	reordering	a	patch	series	using	format-patch,	so	use	whichever
interface	you	like	best.

Rebase	your	current	HEAD	on	the	last	commit	you	want	to	retain	as-is.
For	example,	if	you	want	to	reorder	the	last	5	commits,	use:

$	git	rebase	-i	HEAD~5

This	will	open	your	editor	with	a	list	of	steps	to	be	taken	to	perform	your
rebase.

pick	deadbee	The	oneline	of	this	commit

pick	fa1afe1	The	oneline	of	the	next	commit

...

#	Rebase	c0ffeee..deadbee	onto	c0ffeee

#

#	Commands:

#		p,	pick	=	use	commit

#		r,	reword	=	use	commit,	but	edit	the	commit	message

#		e,	edit	=	use	commit,	but	stop	for	amending

#		s,	squash	=	use	commit,	but	meld	into	previous	commit

#		f,	fixup	=	like	"squash",	but	discard	this	commit's	log	message

#		x,	exec	=	run	command	(the	rest	of	the	line)	using	shell

#

#	These	lines	can	be	re-

ordered;	they	are	executed	from	top	to	bottom.

#

#	If	you	remove	a	line	here	THAT	COMMIT	WILL	BE	LOST.

#

#	However,	if	you	remove	everything,	the	rebase	will	be	aborted.

#

#	Note	that	empty	commits	are	commented	out

As	explained	in	the	comments,	you	can	reorder	commits,	squash	them
together,	edit	commit	messages,	etc.	by	editing	the	list.	Once	you	are
satisfied,	save	the	list	and	close	your	editor,	and	the	rebase	will	begin.

The	rebase	will	stop	where	pick	has	been	replaced	with	edit	or	when	a
step	in	the	list	fails	to	mechanically	resolve	conflicts	and	needs	your	help.
When	you	are	done	editing	and/or	resolving	conflicts	you	can	continue
with	git	rebase	--continue.	If	you	decide	that	things	are	getting	too	hairy,
you	can	always	bail	out	with	git	rebase	--abort.	Even	after	the	rebase	is
complete,	you	can	still	recover	the	original	branch	by	using	the	reflog.

For	a	more	detailed	discussion	of	the	procedure	and	additional	tips,	see
the	"INTERACTIVE	MODE"	section	of	Section	G.3.99,	“git-rebase(1)”.

5.6.	Other	tools

There	are	numerous	other	tools,	such	as	StGit,	which	exist	for	the
purpose	of	maintaining	a	patch	series.	These	are	outside	of	the	scope	of
this	manual.

5.7.	Problems	with	rewriting	history

The	primary	problem	with	rewriting	the	history	of	a	branch	has	to	do	with

merging.	Suppose	somebody	fetches	your	branch	and	merges	it	into	their
branch,	with	a	result	something	like	this:

	o--o--O--o--o--o	<--	origin

								\								\

									t--t--t--m	<--	their	branch:

Then	suppose	you	modify	the	last	three	commits:

									o--o--o	<--	new	head	of	origin

								/

	o--o--O--o--o--o	<--	old	head	of	origin

If	we	examined	all	this	history	together	in	one	repository,	it	will	look	like:

									o--o--o	<--	new	head	of	origin

								/

	o--o--O--o--o--o	<--	old	head	of	origin

								\								\

									t--t--t--m	<--	their	branch:

Git	has	no	way	of	knowing	that	the	new	head	is	an	updated	version	of	the
old	head;	it	treats	this	situation	exactly	the	same	as	it	would	if	two
developers	had	independently	done	the	work	on	the	old	and	new	heads
in	parallel.	At	this	point,	if	someone	attempts	to	merge	the	new	head	in	to
their	branch,	Git	will	attempt	to	merge	together	the	two	(old	and	new)
lines	of	development,	instead	of	trying	to	replace	the	old	by	the	new.	The
results	are	likely	to	be	unexpected.

You	may	still	choose	to	publish	branches	whose	history	is	rewritten,	and
it	may	be	useful	for	others	to	be	able	to	fetch	those	branches	in	order	to
examine	or	test	them,	but	they	should	not	attempt	to	pull	such	branches
into	their	own	work.

For	true	distributed	development	that	supports	proper	merging,	published
branches	should	never	be	rewritten.

5.8.	Why	bisecting	merge	commits	can	be	harder	than
bisecting	linear	history

The	Section	G.3.8,	“git-bisect(1)”	command	correctly	handles	history	that
includes	merge	commits.	However,	when	the	commit	that	it	finds	is	a
merge	commit,	the	user	may	need	to	work	harder	than	usual	to	figure	out

why	that	commit	introduced	a	problem.

Imagine	this	history:

						---Z---o---X---...---o---A---C---D

										\																							/

											o---o---Y---...---o---B

Suppose	that	on	the	upper	line	of	development,	the	meaning	of	one	of
the	functions	that	exists	at	Z	is	changed	at	commit	X.	The	commits	from
Z	leading	to	A	change	both	the	function's	implementation	and	all	calling
sites	that	exist	at	Z,	as	well	as	new	calling	sites	they	add,	to	be
consistent.	There	is	no	bug	at	A.

Suppose	that	in	the	meantime	on	the	lower	line	of	development
somebody	adds	a	new	calling	site	for	that	function	at	commit	Y.	The
commits	from	Z	leading	to	B	all	assume	the	old	semantics	of	that	function
and	the	callers	and	the	callee	are	consistent	with	each	other.	There	is	no
bug	at	B,	either.

Suppose	further	that	the	two	development	lines	merge	cleanly	at	C,	so	no
conflict	resolution	is	required.

Nevertheless,	the	code	at	C	is	broken,	because	the	callers	added	on	the
lower	line	of	development	have	not	been	converted	to	the	new	semantics
introduced	on	the	upper	line	of	development.	So	if	all	you	know	is	that	D
is	bad,	that	Z	is	good,	and	that	Section	G.3.8,	“git-bisect(1)”	identifies	C
as	the	culprit,	how	will	you	figure	out	that	the	problem	is	due	to	this
change	in	semantics?

When	the	result	of	a	git	bisect	is	a	non-merge	commit,	you	should
normally	be	able	to	discover	the	problem	by	examining	just	that	commit.
Developers	can	make	this	easy	by	breaking	their	changes	into	small	self-
contained	commits.	That	won't	help	in	the	case	above,	however,	because
the	problem	isn't	obvious	from	examination	of	any	single	commit;	instead,
a	global	view	of	the	development	is	required.	To	make	matters	worse,	the
change	in	semantics	in	the	problematic	function	may	be	just	one	small
part	of	the	changes	in	the	upper	line	of	development.

On	the	other	hand,	if	instead	of	merging	at	C	you	had	rebased	the	history

between	Z	to	B	on	top	of	A,	you	would	have	gotten	this	linear	history:

				---Z---o---X--...---o---A---o---o---Y*--...---o---B*--D*

Bisecting	between	Z	and	D*	would	hit	a	single	culprit	commit	Y*,	and
understanding	why	Y*	was	broken	would	probably	be	easier.

Partly	for	this	reason,	many	experienced	Git	users,	even	when	working
on	an	otherwise	merge-heavy	project,	keep	the	history	linear	by	rebasing
against	the	latest	upstream	version	before	publishing.

6.	Advanced	branch	management

6.1.	Fetching	individual	branches

Instead	of	using	Section	G.3.106,	“git-remote(1)”,	you	can	also	choose
just	to	update	one	branch	at	a	time,	and	to	store	it	locally	under	an
arbitrary	name:

$	git	fetch	origin	todo:my-todo-work

The	first	argument,	origin,	just	tells	Git	to	fetch	from	the	repository	you
originally	cloned	from.	The	second	argument	tells	Git	to	fetch	the	branch
named	todo	from	the	remote	repository,	and	to	store	it	locally	under	the
name	refs/heads/my-todo-work.

You	can	also	fetch	branches	from	other	repositories;	so

$	git	fetch	git://example.com/proj.git	master:example-master

will	create	a	new	branch	named	example-master	and	store	in	it	the
branch	named	master	from	the	repository	at	the	given	URL.	If	you
already	have	a	branch	named	example-master,	it	will	attempt	to	fast-
forward	to	the	commit	given	by	example.com's	master	branch.	In	more
detail:

6.2.	git	fetch	and	fast-forwards

In	the	previous	example,	when	updating	an	existing	branch,	git	fetch
checks	to	make	sure	that	the	most	recent	commit	on	the	remote	branch
is	a	descendant	of	the	most	recent	commit	on	your	copy	of	the	branch
before	updating	your	copy	of	the	branch	to	point	at	the	new	commit.	Git
calls	this	process	a	fast-forward.

A	fast-forward	looks	something	like	this:

	o--o--o--o	<--	old	head	of	the	branch

											\

												o--o--o	<--	new	head	of	the	branch

In	some	cases	it	is	possible	that	the	new	head	will	not	actually	be	a
descendant	of	the	old	head.	For	example,	the	developer	may	have
realized	she	made	a	serious	mistake,	and	decided	to	backtrack,	resulting
in	a	situation	like:

	o--o--o--o--a--b	<--	old	head	of	the	branch

											\

												o--o--o	<--	new	head	of	the	branch

In	this	case,	git	fetch	will	fail,	and	print	out	a	warning.

In	that	case,	you	can	still	force	Git	to	update	to	the	new	head,	as
described	in	the	following	section.	However,	note	that	in	the	situation
above	this	may	mean	losing	the	commits	labeled	a	and	b,	unless	you've
already	created	a	reference	of	your	own	pointing	to	them.

6.3.	Forcing	git	fetch	to	do	non-fast-forward	updates

If	git	fetch	fails	because	the	new	head	of	a	branch	is	not	a	descendant	of
the	old	head,	you	may	force	the	update	with:

$	git	fetch	git://example.com/proj.git	+master:refs/remotes/example/master

Note	the	addition	of	the	+	sign.	Alternatively,	you	can	use	the	-f	flag	to
force	updates	of	all	the	fetched	branches,	as	in:

$	git	fetch	-f	origin

Be	aware	that	commits	that	the	old	version	of	example/master	pointed	at
may	be	lost,	as	we	saw	in	the	previous	section.

6.4.	Configuring	remote-tracking	branches

We	saw	above	that	origin	is	just	a	shortcut	to	refer	to	the	repository	that
you	originally	cloned	from.	This	information	is	stored	in	Git	configuration
variables,	which	you	can	see	using	Section	G.3.27,	“git-config(1)”:

$	git	config	-l

core.repositoryformatversion=0

core.filemode=true

core.logallrefupdates=true

remote.origin.url=git://git.kernel.org/pub/scm/git/git.git

remote.origin.fetch=+refs/heads/*:refs/remotes/origin/*

branch.master.remote=origin

branch.master.merge=refs/heads/master

If	there	are	other	repositories	that	you	also	use	frequently,	you	can	create
similar	configuration	options	to	save	typing;	for	example,

$	git	remote	add	example	git://example.com/proj.git

adds	the	following	to	.git/config:

[remote	"example"]

								url	=	git://example.com/proj.git

								fetch	=	+refs/heads/*:refs/remotes/example/*

Also	note	that	the	above	configuration	can	be	performed	by	directly
editing	the	file	.git/config	instead	of	using	Section	G.3.106,	“git-
remote(1)”.

After	configuring	the	remote,	the	following	three	commands	will	do	the
same	thing:

$	git	fetch	git://example.com/proj.git	+refs/heads/*:refs/remotes/example/*

$	git	fetch	example	+refs/heads/*:refs/remotes/example/*

$	git	fetch	example

See	Section	G.3.27,	“git-config(1)”	for	more	details	on	the	configuration
options	mentioned	above	and	Section	G.3.46,	“git-fetch(1)”	for	more
details	on	the	refspec	syntax.

7.	Git	concepts

Git	is	built	on	a	small	number	of	simple	but	powerful	ideas.	While	it	is
possible	to	get	things	done	without	understanding	them,	you	will	find	Git
much	more	intuitive	if	you	do.

We	start	with	the	most	important,	the	object	database	and	the	index.

7.1.	The	Object	Database

We	already	saw	in	Section	1.3,	“Understanding	History:	Commits”	that	all
commits	are	stored	under	a	40-digit	"object	name".	In	fact,	all	the
information	needed	to	represent	the	history	of	a	project	is	stored	in
objects	with	such	names.	In	each	case	the	name	is	calculated	by	taking
the	SHA-1	hash	of	the	contents	of	the	object.	The	SHA-1	hash	is	a
cryptographic	hash	function.	What	that	means	to	us	is	that	it	is	impossible
to	find	two	different	objects	with	the	same	name.	This	has	a	number	of
advantages;	among	others:

Git	can	quickly	determine	whether	two	objects	are	identical	or	not,
just	by	comparing	names.
Since	object	names	are	computed	the	same	way	in	every	repository,
the	same	content	stored	in	two	repositories	will	always	be	stored
under	the	same	name.
Git	can	detect	errors	when	it	reads	an	object,	by	checking	that	the
object's	name	is	still	the	SHA-1	hash	of	its	contents.

(See	Section	10.1,	“Object	storage	format”	for	the	details	of	the	object
formatting	and	SHA-1	calculation.)

There	are	four	different	types	of	objects:	"blob",	"tree",	"commit",	and
"tag".

A	"blob"	object	is	used	to	store	file	data.
A	"tree"	object	ties	one	or	more	"blob"	objects	into	a	directory
structure.	In	addition,	a	tree	object	can	refer	to	other	tree	objects,

thus	creating	a	directory	hierarchy.
A	"commit"	object	ties	such	directory	hierarchies	together	into	a
directed	acyclic	graph	of	revisions--each	commit	contains	the	object
name	of	exactly	one	tree	designating	the	directory	hierarchy	at	the
time	of	the	commit.	In	addition,	a	commit	refers	to	"parent"	commit
objects	that	describe	the	history	of	how	we	arrived	at	that	directory
hierarchy.
A	"tag"	object	symbolically	identifies	and	can	be	used	to	sign	other
objects.	It	contains	the	object	name	and	type	of	another	object,	a
symbolic	name	(of	course!)	and,	optionally,	a	signature.

The	object	types	in	some	more	detail:

7.1.1.	Commit	Object

The	"commit"	object	links	a	physical	state	of	a	tree	with	a	description	of
how	we	got	there	and	why.	Use	the	--pretty=raw	option	to
Section	G.3.126,	“git-show(1)”	or	Section	G.3.68,	“git-log(1)”	to	examine
your	favorite	commit:

$	git	show	-s	--pretty=raw	2be7fcb476

commit	2be7fcb4764f2dbcee52635b91fedb1b3dcf7ab4

tree	fb3a8bdd0ceddd019615af4d57a53f43d8cee2bf

parent	257a84d9d02e90447b149af58b271c19405edb6a

author	Dave	Watson	<dwatson@mimvista.com>	1187576872	-0400

committer	Junio	C	Hamano	<gitster@pobox.com>	1187591163	-0700

				Fix	misspelling	of	'suppress'	in	docs

				Signed-off-by:	Junio	C	Hamano	<gitster@pobox.com>

As	you	can	see,	a	commit	is	defined	by:

a	tree:	The	SHA-1	name	of	a	tree	object	(as	defined	below),
representing	the	contents	of	a	directory	at	a	certain	point	in	time.
parent(s):	The	SHA-1	name(s)	of	some	number	of	commits	which
represent	the	immediately	previous	step(s)	in	the	history	of	the
project.	The	example	above	has	one	parent;	merge	commits	may
have	more	than	one.	A	commit	with	no	parents	is	called	a	"root"

commit,	and	represents	the	initial	revision	of	a	project.	Each	project
must	have	at	least	one	root.	A	project	can	also	have	multiple	roots,
though	that	isn't	common	(or	necessarily	a	good	idea).
an	author:	The	name	of	the	person	responsible	for	this	change,
together	with	its	date.
a	committer:	The	name	of	the	person	who	actually	created	the
commit,	with	the	date	it	was	done.	This	may	be	different	from	the
author,	for	example,	if	the	author	was	someone	who	wrote	a	patch
and	emailed	it	to	the	person	who	used	it	to	create	the	commit.
a	comment	describing	this	commit.

Note	that	a	commit	does	not	itself	contain	any	information	about	what
actually	changed;	all	changes	are	calculated	by	comparing	the	contents
of	the	tree	referred	to	by	this	commit	with	the	trees	associated	with	its
parents.	In	particular,	Git	does	not	attempt	to	record	file	renames
explicitly,	though	it	can	identify	cases	where	the	existence	of	the	same
file	data	at	changing	paths	suggests	a	rename.	(See,	for	example,	the	-M
option	to	Section	G.3.41,	“git-diff(1)”).

A	commit	is	usually	created	by	Section	G.3.26,	“git-commit(1)”,	which
creates	a	commit	whose	parent	is	normally	the	current	HEAD,	and	whose
tree	is	taken	from	the	content	currently	stored	in	the	index.

7.1.2.	Tree	Object

The	ever-versatile	Section	G.3.126,	“git-show(1)”	command	can	also	be
used	to	examine	tree	objects,	but	Section	G.3.71,	“git-ls-tree(1)”	will	give
you	more	details:

$	git	ls-tree	fb3a8bdd0ce

100644	blob	63c918c667fa005ff12ad89437f2fdc80926e21c				.gitignore

100644	blob	5529b198e8d14decbe4ad99db3f7fb632de0439d				.mailmap

100644	blob	6ff87c4664981e4397625791c8ea3bbb5f2279a3				COPYING

040000	tree	2fb783e477100ce076f6bf57e4a6f026013dc745				Documentation

100755	blob	3c0032cec592a765692234f1cba47dfdcc3a9200				GIT-

VERSION-GEN

100644	blob	289b046a443c0647624607d471289b2c7dcd470b				INSTALL

100644	blob	4eb463797adc693dc168b926b6932ff53f17d0b1				Makefile

100644	blob	548142c327a6790ff8821d67c2ee1eff7a656b52				README

...

As	you	can	see,	a	tree	object	contains	a	list	of	entries,	each	with	a	mode,
object	type,	SHA-1	name,	and	name,	sorted	by	name.	It	represents	the
contents	of	a	single	directory	tree.

The	object	type	may	be	a	blob,	representing	the	contents	of	a	file,	or
another	tree,	representing	the	contents	of	a	subdirectory.	Since	trees	and
blobs,	like	all	other	objects,	are	named	by	the	SHA-1	hash	of	their
contents,	two	trees	have	the	same	SHA-1	name	if	and	only	if	their
contents	(including,	recursively,	the	contents	of	all	subdirectories)	are
identical.	This	allows	Git	to	quickly	determine	the	differences	between
two	related	tree	objects,	since	it	can	ignore	any	entries	with	identical
object	names.

(Note:	in	the	presence	of	submodules,	trees	may	also	have	commits	as
entries.	See	Section	8,	“Submodules”	for	documentation.)

Note	that	the	files	all	have	mode	644	or	755:	Git	actually	only	pays
attention	to	the	executable	bit.

7.1.3.	Blob	Object

You	can	use	Section	G.3.126,	“git-show(1)”	to	examine	the	contents	of	a
blob;	take,	for	example,	the	blob	in	the	entry	for	COPYING	from	the	tree
above:

$	git	show	6ff87c4664

	Note	that	the	only	valid	version	of	the	GPL	as	far	as	this	project

	is	concerned	is	_this_	particular	version	of	the	license	(ie	v2,	not

	v2.2	or	v3.x	or	whatever),	unless	explicitly	otherwise	stated.

...

A	"blob"	object	is	nothing	but	a	binary	blob	of	data.	It	doesn't	refer	to
anything	else	or	have	attributes	of	any	kind.

Since	the	blob	is	entirely	defined	by	its	data,	if	two	files	in	a	directory	tree

(or	in	multiple	different	versions	of	the	repository)	have	the	same
contents,	they	will	share	the	same	blob	object.	The	object	is	totally
independent	of	its	location	in	the	directory	tree,	and	renaming	a	file	does
not	change	the	object	that	file	is	associated	with.

Note	that	any	tree	or	blob	object	can	be	examined	using	Section	G.3.126,
“git-show(1)”	with	the	<revision>:<path>	syntax.	This	can	sometimes	be
useful	for	browsing	the	contents	of	a	tree	that	is	not	currently	checked
out.

7.1.4.	Trust

If	you	receive	the	SHA-1	name	of	a	blob	from	one	source,	and	its
contents	from	another	(possibly	untrusted)	source,	you	can	still	trust	that
those	contents	are	correct	as	long	as	the	SHA-1	name	agrees.	This	is
because	the	SHA-1	is	designed	so	that	it	is	infeasible	to	find	different
contents	that	produce	the	same	hash.

Similarly,	you	need	only	trust	the	SHA-1	name	of	a	top-level	tree	object	to
trust	the	contents	of	the	entire	directory	that	it	refers	to,	and	if	you	receive
the	SHA-1	name	of	a	commit	from	a	trusted	source,	then	you	can	easily
verify	the	entire	history	of	commits	reachable	through	parents	of	that
commit,	and	all	of	those	contents	of	the	trees	referred	to	by	those
commits.

So	to	introduce	some	real	trust	in	the	system,	the	only	thing	you	need	to
do	is	to	digitally	sign	just	one	special	note,	which	includes	the	name	of	a
top-level	commit.	Your	digital	signature	shows	others	that	you	trust	that
commit,	and	the	immutability	of	the	history	of	commits	tells	others	that
they	can	trust	the	whole	history.

In	other	words,	you	can	easily	validate	a	whole	archive	by	just	sending
out	a	single	email	that	tells	the	people	the	name	(SHA-1	hash)	of	the	top
commit,	and	digitally	sign	that	email	using	something	like	GPG/PGP.

To	assist	in	this,	Git	also	provides	the	tag	object…

7.1.5.	Tag	Object

A	tag	object	contains	an	object,	object	type,	tag	name,	the	name	of	the
person	("tagger")	who	created	the	tag,	and	a	message,	which	may
contain	a	signature,	as	can	be	seen	using	Section	G.3.12,	“git-cat-file(1)”:

$	git	cat-file	tag	v1.5.0

object	437b1b20df4b356c9342dac8d38849f24ef44f27

type	commit

tag	v1.5.0

tagger	Junio	C	Hamano	<junkio@cox.net>	1171411200	+0000

GIT	1.5.0

-----BEGIN	PGP	SIGNATURE-----

Version:	GnuPG	v1.4.6	(GNU/Linux)

iD8DBQBF0lGqwMbZpPMRm5oRAuRiAJ9ohBLd7s2kqjkKlq1qqC57SbnmzQCdG4ui

nLE/L9aUXdWeTFPron96DLA=

=2E+0

-----END	PGP	SIGNATURE-----

See	the	Section	G.3.134,	“git-tag(1)”	command	to	learn	how	to	create
and	verify	tag	objects.	(Note	that	Section	G.3.134,	“git-tag(1)”	can	also	be
used	to	create	"lightweight	tags",	which	are	not	tag	objects	at	all,	but	just
simple	references	whose	names	begin	with	refs/tags/).

7.1.6.	How	Git	stores	objects	efficiently:	pack	files

Newly	created	objects	are	initially	created	in	a	file	named	after	the
object's	SHA-1	hash	(stored	in	.git/objects).

Unfortunately	this	system	becomes	inefficient	once	a	project	has	a	lot	of
objects.	Try	this	on	an	old	project:

$	git	count-objects

6930	objects,	47620	kilobytes

The	first	number	is	the	number	of	objects	which	are	kept	in	individual
files.	The	second	is	the	amount	of	space	taken	up	by	those	"loose"
objects.

You	can	save	space	and	make	Git	faster	by	moving	these	loose	objects

in	to	a	"pack	file",	which	stores	a	group	of	objects	in	an	efficient
compressed	format;	the	details	of	how	pack	files	are	formatted	can	be
found	in	link:technical/pack-format.html[pack	format].

To	put	the	loose	objects	into	a	pack,	just	run	git	repack:

$	git	repack

Counting	objects:	6020,	done.

Delta	compression	using	up	to	4	threads.

Compressing	objects:	100%	(6020/6020),	done.

Writing	objects:	100%	(6020/6020),	done.

Total	6020	(delta	4070),	reused	0	(delta	0)

This	creates	a	single	"pack	file"	in	.git/objects/pack/	containing	all
currently	unpacked	objects.	You	can	then	run

$	git	prune

to	remove	any	of	the	"loose"	objects	that	are	now	contained	in	the	pack.
This	will	also	remove	any	unreferenced	objects	(which	may	be	created
when,	for	example,	you	use	git	reset	to	remove	a	commit).	You	can	verify
that	the	loose	objects	are	gone	by	looking	at	the	.git/objects	directory	or
by	running

$	git	count-objects

0	objects,	0	kilobytes

Although	the	object	files	are	gone,	any	commands	that	refer	to	those
objects	will	work	exactly	as	they	did	before.

The	Section	G.3.53,	“git-gc(1)”	command	performs	packing,	pruning,	and
more	for	you,	so	is	normally	the	only	high-level	command	you	need.

7.1.7.	Dangling	objects

The	Section	G.3.52,	“git-fsck(1)”	command	will	sometimes	complain
about	dangling	objects.	They	are	not	a	problem.

The	most	common	cause	of	dangling	objects	is	that	you've	rebased	a
branch,	or	you	have	pulled	from	somebody	else	who	rebased	a	branch--
see	Section	5,	“Rewriting	history	and	maintaining	patch	series”.	In	that
case,	the	old	head	of	the	original	branch	still	exists,	as	does	everything	it
pointed	to.	The	branch	pointer	itself	just	doesn't,	since	you	replaced	it
with	another	one.

There	are	also	other	situations	that	cause	dangling	objects.	For	example,
a	"dangling	blob"	may	arise	because	you	did	a	git	add	of	a	file,	but	then,
before	you	actually	committed	it	and	made	it	part	of	the	bigger	picture,
you	changed	something	else	in	that	file	and	committed	that	updated
thing--the	old	state	that	you	added	originally	ends	up	not	being	pointed	to
by	any	commit	or	tree,	so	it's	now	a	dangling	blob	object.

Similarly,	when	the	"recursive"	merge	strategy	runs,	and	finds	that	there
are	criss-cross	merges	and	thus	more	than	one	merge	base	(which	is
fairly	unusual,	but	it	does	happen),	it	will	generate	one	temporary	midway
tree	(or	possibly	even	more,	if	you	had	lots	of	criss-crossing	merges	and
more	than	two	merge	bases)	as	a	temporary	internal	merge	base,	and
again,	those	are	real	objects,	but	the	end	result	will	not	end	up	pointing	to
them,	so	they	end	up	"dangling"	in	your	repository.

Generally,	dangling	objects	aren't	anything	to	worry	about.	They	can	even
be	very	useful:	if	you	screw	something	up,	the	dangling	objects	can	be
how	you	recover	your	old	tree	(say,	you	did	a	rebase,	and	realized	that
you	really	didn't	want	to--you	can	look	at	what	dangling	objects	you	have,
and	decide	to	reset	your	head	to	some	old	dangling	state).

For	commits,	you	can	just	use:

$	gitk	<dangling-commit-sha-goes-here>	--not	--all

This	asks	for	all	the	history	reachable	from	the	given	commit	but	not	from
any	branch,	tag,	or	other	reference.	If	you	decide	it's	something	you
want,	you	can	always	create	a	new	reference	to	it,	e.g.,

$	git	branch	recovered-branch	<dangling-commit-sha-goes-here>

For	blobs	and	trees,	you	can't	do	the	same,	but	you	can	still	examine
them.	You	can	just	do

$	git	show	<dangling-blob/tree-sha-goes-here>

to	show	what	the	contents	of	the	blob	were	(or,	for	a	tree,	basically	what
the	ls	for	that	directory	was),	and	that	may	give	you	some	idea	of	what
the	operation	was	that	left	that	dangling	object.

Usually,	dangling	blobs	and	trees	aren't	very	interesting.	They're	almost
always	the	result	of	either	being	a	half-way	mergebase	(the	blob	will	often
even	have	the	conflict	markers	from	a	merge	in	it,	if	you	have	had
conflicting	merges	that	you	fixed	up	by	hand),	or	simply	because	you
interrupted	a	git	fetch	with	^C	or	something	like	that,	leaving	some	of	the
new	objects	in	the	object	database,	but	just	dangling	and	useless.

Anyway,	once	you	are	sure	that	you're	not	interested	in	any	dangling
state,	you	can	just	prune	all	unreachable	objects:

$	git	prune

and	they'll	be	gone.	(You	should	only	run	git	prune	on	a	quiescent
repository--it's	kind	of	like	doing	a	filesystem	fsck	recovery:	you	don't
want	to	do	that	while	the	filesystem	is	mounted.	git	prune	is	designed	not
to	cause	any	harm	in	such	cases	of	concurrent	accesses	to	a	repository
but	you	might	receive	confusing	or	scary	messages.)

7.1.8.	Recovering	from	repository	corruption

By	design,	Git	treats	data	trusted	to	it	with	caution.	However,	even	in	the
absence	of	bugs	in	Git	itself,	it	is	still	possible	that	hardware	or	operating
system	errors	could	corrupt	data.

The	first	defense	against	such	problems	is	backups.	You	can	back	up	a
Git	directory	using	clone,	or	just	using	cp,	tar,	or	any	other	backup
mechanism.

As	a	last	resort,	you	can	search	for	the	corrupted	objects	and	attempt	to
replace	them	by	hand.	Back	up	your	repository	before	attempting	this	in
case	you	corrupt	things	even	more	in	the	process.

We'll	assume	that	the	problem	is	a	single	missing	or	corrupted	blob,
which	is	sometimes	a	solvable	problem.	(Recovering	missing	trees	and
especially	commits	is	much	harder).

Before	starting,	verify	that	there	is	corruption,	and	figure	out	where	it	is
with	Section	G.3.52,	“git-fsck(1)”;	this	may	be	time-consuming.

Assume	the	output	looks	like	this:

$	git	fsck	--full	--no-dangling

broken	link	from				tree	2d9263c6d23595e7cb2a21e5ebbb53655278dff8

														to				blob	4b9458b3786228369c63936db65827de3cc06200

missing	blob	4b9458b3786228369c63936db65827de3cc06200

Now	you	know	that	blob	4b9458b3	is	missing,	and	that	the	tree	2d9263c6
points	to	it.	If	you	could	find	just	one	copy	of	that	missing	blob	object,
possibly	in	some	other	repository,	you	could	move	it	into
.git/objects/4b/9458b3...	and	be	done.	Suppose	you	can't.	You	can	still
examine	the	tree	that	pointed	to	it	with	Section	G.3.71,	“git-ls-tree(1)”,
which	might	output	something	like:

$	git	ls-tree	2d9263c6d23595e7cb2a21e5ebbb53655278dff8

100644	blob	8d14531846b95bfa3564b58ccfb7913a034323b8				.gitignore

100644	blob	ebf9bf84da0aab5ed944264a5db2a65fe3a3e883				.mailmap

100644	blob	ca442d313d86dc67e0a2e5d584b465bd382cbf5c				COPYING

...

100644	blob	4b9458b3786228369c63936db65827de3cc06200				myfile

...

So	now	you	know	that	the	missing	blob	was	the	data	for	a	file	named
myfile.	And	chances	are	you	can	also	identify	the	directory--let's	say	it's
in	somedirectory.	If	you're	lucky	the	missing	copy	might	be	the	same	as
the	copy	you	have	checked	out	in	your	working	tree	at
somedirectory/myfile;	you	can	test	whether	that's	right	with
Section	G.3.57,	“git-hash-object(1)”:

$	git	hash-object	-w	somedirectory/myfile

which	will	create	and	store	a	blob	object	with	the	contents	of
somedirectory/myfile,	and	output	the	SHA-1	of	that	object.	if	you're
extremely	lucky	it	might	be
4b9458b3786228369c63936db65827de3cc06200,	in	which	case	you've
guessed	right,	and	the	corruption	is	fixed!

Otherwise,	you	need	more	information.	How	do	you	tell	which	version	of
the	file	has	been	lost?

The	easiest	way	to	do	this	is	with:

$	git	log	--raw	--all	--full-history	--	somedirectory/myfile

Because	you're	asking	for	raw	output,	you'll	now	get	something	like

commit	abc

Author:

Date:

...

:100644	100644	4b9458b...	newsha...	M	somedirectory/myfile

commit	xyz

Author:

Date:

...

:100644	100644	oldsha...	4b9458b...	M	somedirectory/myfile

This	tells	you	that	the	immediately	following	version	of	the	file	was
"newsha",	and	that	the	immediately	preceding	version	was	"oldsha".	You
also	know	the	commit	messages	that	went	with	the	change	from	oldsha
to	4b9458b	and	with	the	change	from	4b9458b	to	newsha.

If	you've	been	committing	small	enough	changes,	you	may	now	have	a
good	shot	at	reconstructing	the	contents	of	the	in-between	state
4b9458b.

If	you	can	do	that,	you	can	now	recreate	the	missing	object	with

$	git	hash-object	-w	<recreated-file>

and	your	repository	is	good	again!

(Btw,	you	could	have	ignored	the	fsck,	and	started	with	doing	a

$	git	log	--raw	--all

and	just	looked	for	the	sha	of	the	missing	object	(4b9458b..)	in	that	whole
thing.	It's	up	to	you--Git	does	have	a	lot	of	information,	it	is	just	missing
one	particular	blob	version.

7.2.	The	index

The	index	is	a	binary	file	(generally	kept	in	.git/index)	containing	a	sorted
list	of	path	names,	each	with	permissions	and	the	SHA-1	of	a	blob	object;
Section	G.3.69,	“git-ls-files(1)”	can	show	you	the	contents	of	the	index:

$	git	ls-files	--stage

100644	63c918c667fa005ff12ad89437f2fdc80926e21c	0							.gitignore

100644	5529b198e8d14decbe4ad99db3f7fb632de0439d	0							.mailmap

100644	6ff87c4664981e4397625791c8ea3bbb5f2279a3	0							COPYING

100644	a37b2152bd26be2c2289e1f57a292534a51a93c7	0							Documentation/.gitignore

100644	fbefe9a45b00a54b58d94d06eca48b03d40a50e0	0							Documentation/Makefile

...

100644	2511aef8d89ab52be5ec6a5e46236b4b6bcd07ea	0							xdiff/xtypes.h

100644	2ade97b2574a9f77e7ae4002a4e07a6a38e46d07	0							xdiff/xutils.c

100644	d5de8292e05e7c36c4b68857c1cf9855e3d2f70a	0							xdiff/xutils.h

Note	that	in	older	documentation	you	may	see	the	index	called	the
"current	directory	cache"	or	just	the	"cache".	It	has	three	important
properties:

1.	 The	index	contains	all	the	information	necessary	to	generate	a	single
(uniquely	determined)	tree	object.

For	example,	running	Section	G.3.26,	“git-commit(1)”	generates	this

tree	object	from	the	index,	stores	it	in	the	object	database,	and	uses
it	as	the	tree	object	associated	with	the	new	commit.

2.	 The	index	enables	fast	comparisons	between	the	tree	object	it
defines	and	the	working	tree.

It	does	this	by	storing	some	additional	data	for	each	entry	(such	as
the	last	modified	time).	This	data	is	not	displayed	above,	and	is	not
stored	in	the	created	tree	object,	but	it	can	be	used	to	determine
quickly	which	files	in	the	working	directory	differ	from	what	was
stored	in	the	index,	and	thus	save	Git	from	having	to	read	all	of	the
data	from	such	files	to	look	for	changes.

3.	 It	can	efficiently	represent	information	about	merge	conflicts	between
different	tree	objects,	allowing	each	pathname	to	be	associated	with
sufficient	information	about	the	trees	involved	that	you	can	create	a
three-way	merge	between	them.

We	saw	in	Section	3.7.1,	“Getting	conflict-resolution	help	during	a
merge”	that	during	a	merge	the	index	can	store	multiple	versions	of	a
single	file	(called	"stages").	The	third	column	in	the	Section	G.3.69,
“git-ls-files(1)”	output	above	is	the	stage	number,	and	will	take	on
values	other	than	0	for	files	with	merge	conflicts.

The	index	is	thus	a	sort	of	temporary	staging	area,	which	is	filled	with	a
tree	which	you	are	in	the	process	of	working	on.

If	you	blow	the	index	away	entirely,	you	generally	haven't	lost	any
information	as	long	as	you	have	the	name	of	the	tree	that	it	described.

8.	Submodules

Large	projects	are	often	composed	of	smaller,	self-contained	modules.
For	example,	an	embedded	Linux	distribution's	source	tree	would	include
every	piece	of	software	in	the	distribution	with	some	local	modifications;	a
movie	player	might	need	to	build	against	a	specific,	known-working
version	of	a	decompression	library;	several	independent	programs	might
all	share	the	same	build	scripts.

With	centralized	revision	control	systems	this	is	often	accomplished	by
including	every	module	in	one	single	repository.	Developers	can	check
out	all	modules	or	only	the	modules	they	need	to	work	with.	They	can
even	modify	files	across	several	modules	in	a	single	commit	while
moving	things	around	or	updating	APIs	and	translations.

Git	does	not	allow	partial	checkouts,	so	duplicating	this	approach	in	Git
would	force	developers	to	keep	a	local	copy	of	modules	they	are	not
interested	in	touching.	Commits	in	an	enormous	checkout	would	be
slower	than	you'd	expect	as	Git	would	have	to	scan	every	directory	for
changes.	If	modules	have	a	lot	of	local	history,	clones	would	take	forever.

On	the	plus	side,	distributed	revision	control	systems	can	much	better
integrate	with	external	sources.	In	a	centralized	model,	a	single	arbitrary
snapshot	of	the	external	project	is	exported	from	its	own	revision	control
and	then	imported	into	the	local	revision	control	on	a	vendor	branch.	All
the	history	is	hidden.	With	distributed	revision	control	you	can	clone	the
entire	external	history	and	much	more	easily	follow	development	and	re-
merge	local	changes.

Git's	submodule	support	allows	a	repository	to	contain,	as	a	subdirectory,
a	checkout	of	an	external	project.	Submodules	maintain	their	own
identity;	the	submodule	support	just	stores	the	submodule	repository
location	and	commit	ID,	so	other	developers	who	clone	the	containing
project	("superproject")	can	easily	clone	all	the	submodules	at	the	same
revision.	Partial	checkouts	of	the	superproject	are	possible:	you	can	tell
Git	to	clone	none,	some	or	all	of	the	submodules.

The	Section	G.3.131,	“git-submodule(1)”	command	is	available	since	Git
1.5.3.	Users	with	Git	1.5.2	can	look	up	the	submodule	commits	in	the
repository	and	manually	check	them	out;	earlier	versions	won't	recognize
the	submodules	at	all.

To	see	how	submodule	support	works,	create	four	example	repositories
that	can	be	used	later	as	a	submodule:

$	mkdir	~/git

$	cd	~/git

$	for	i	in	a	b	c	d

do

								mkdir	$i

								cd	$i

								git	init

								echo	"module	$i"	>	$i.txt

								git	add	$i.txt

								git	commit	-m	"Initial	commit,	submodule	$i"

								cd	..

done

Now	create	the	superproject	and	add	all	the	submodules:

$	mkdir	super

$	cd	super

$	git	init

$	for	i	in	a	b	c	d

do

								git	submodule	add	~/git/$i	$i

done

Note

Do	not	use	local	URLs	here	if	you	plan	to	publish	your
superproject!

See	what	files	git	submodule	created:

$	ls	-a

.		..		.git		.gitmodules		a		b		c		d

The	git	submodule	add	<repo>	<path>	command	does	a	couple	of	things:

It	clones	the	submodule	from	<repo>	to	the	given	<path>	under	the
current	directory	and	by	default	checks	out	the	master	branch.
It	adds	the	submodule's	clone	path	to	the	Section	G.4.8,
“gitmodules(5)”	file	and	adds	this	file	to	the	index,	ready	to	be
committed.
It	adds	the	submodule's	current	commit	ID	to	the	index,	ready	to	be
committed.

Commit	the	superproject:

$	git	commit	-m	"Add	submodules	a,	b,	c	and	d."

Now	clone	the	superproject:

$	cd	..

$	git	clone	super	cloned

$	cd	cloned

The	submodule	directories	are	there,	but	they're	empty:

$	ls	-a	a

.		..

$	git	submodule	status

-d266b9873ad50488163457f025db7cdd9683d88b	a

-e81d457da15309b4fef4249aba9b50187999670d	b

-c1536a972b9affea0f16e0680ba87332dc059146	c

-d96249ff5d57de5de093e6baff9e0aafa5276a74	d

Note

The	commit	object	names	shown	above	would	be	different
for	you,	but	they	should	match	the	HEAD	commit	object
names	of	your	repositories.	You	can	check	it	by	running	git
ls-remote	../a.

Pulling	down	the	submodules	is	a	two-step	process.	First	run	git
submodule	init	to	add	the	submodule	repository	URLs	to	.git/config:

$	git	submodule	init

Now	use	git	submodule	update	to	clone	the	repositories	and	check	out
the	commits	specified	in	the	superproject:

$	git	submodule	update

$	cd	a

$	ls	-a

.		..		.git		a.txt

One	major	difference	between	git	submodule	update	and	git	submodule
add	is	that	git	submodule	update	checks	out	a	specific	commit,	rather
than	the	tip	of	a	branch.	It's	like	checking	out	a	tag:	the	head	is	detached,
so	you're	not	working	on	a	branch.

$	git	branch

*	(detached	from	d266b98)

		master

If	you	want	to	make	a	change	within	a	submodule	and	you	have	a
detached	head,	then	you	should	create	or	checkout	a	branch,	make	your
changes,	publish	the	change	within	the	submodule,	and	then	update	the
superproject	to	reference	the	new	commit:

$	git	checkout	master

or

$	git	checkout	-b	fix-up

then

$	echo	"adding	a	line	again"	>>	a.txt

$	git	commit	-a	-

m	"Updated	the	submodule	from	within	the	superproject."

$	git	push

$	cd	..

$	git	diff

diff	--git	a/a	b/a

index	d266b98..261dfac	160000

---	a/a

+++	b/a

@@	-1	+1	@@

-Subproject	commit	d266b9873ad50488163457f025db7cdd9683d88b

+Subproject	commit	261dfac35cb99d380eb966e102c1197139f7fa24

$	git	add	a

$	git	commit	-m	"Updated	submodule	a."

$	git	push

You	have	to	run	git	submodule	update	after	git	pull	if	you	want	to	update
submodules,	too.

8.1.	Pitfalls	with	submodules

Always	publish	the	submodule	change	before	publishing	the	change	to
the	superproject	that	references	it.	If	you	forget	to	publish	the	submodule
change,	others	won't	be	able	to	clone	the	repository:

$	cd	~/git/super/a

$	echo	i	added	another	line	to	this	file	>>	a.txt

$	git	commit	-a	-m	"doing	it	wrong	this	time"

$	cd	..

$	git	add	a

$	git	commit	-m	"Updated	submodule	a	again."

$	git	push

$	cd	~/git/cloned

$	git	pull

$	git	submodule	update

error:	pathspec	'261dfac35cb99d380eb966e102c1197139f7fa24'	did	not	match	any	file(s)	known	to	git.

Did	you	forget	to	'git	add'?

Unable	to	checkout	'261dfac35cb99d380eb966e102c1197139f7fa24'	in	submodule	path	'a'

In	older	Git	versions	it	could	be	easily	forgotten	to	commit	new	or
modified	files	in	a	submodule,	which	silently	leads	to	similar	problems	as

not	pushing	the	submodule	changes.	Starting	with	Git	1.7.0	both	git
status	and	git	diff	in	the	superproject	show	submodules	as	modified	when
they	contain	new	or	modified	files	to	protect	against	accidentally
committing	such	a	state.	git	diff	will	also	add	a	-dirty	to	the	work	tree	side
when	generating	patch	output	or	used	with	the	--submodule	option:

$	git	diff

diff	--git	a/sub	b/sub

---	a/sub

+++	b/sub

@@	-1	+1	@@

-Subproject	commit	3f356705649b5d566d97ff843cf193359229a453

+Subproject	commit	3f356705649b5d566d97ff843cf193359229a453-dirty

$	git	diff	--submodule

Submodule	sub	3f35670..3f35670-dirty:

You	also	should	not	rewind	branches	in	a	submodule	beyond	commits
that	were	ever	recorded	in	any	superproject.

It's	not	safe	to	run	git	submodule	update	if	you've	made	and	committed
changes	within	a	submodule	without	checking	out	a	branch	first.	They	will
be	silently	overwritten:

$	cat	a.txt

module	a

$	echo	line	added	from	private2	>>	a.txt

$	git	commit	-a	-m	"line	added	inside	private2"

$	cd	..

$	git	submodule	update

Submodule	path	'a':	checked	out	'd266b9873ad50488163457f025db7cdd9683d88b'

$	cd	a

$	cat	a.txt

module	a

Note

The	changes	are	still	visible	in	the	submodule's	reflog.

If	you	have	uncommitted	changes	in	your	submodule	working	tree,	git

submodule	update	will	not	overwrite	them.	Instead,	you	get	the	usual
warning	about	not	being	able	switch	from	a	dirty	branch.

9.	Low-level	Git	operations

Many	of	the	higher-level	commands	were	originally	implemented	as	shell
scripts	using	a	smaller	core	of	low-level	Git	commands.	These	can	still	be
useful	when	doing	unusual	things	with	Git,	or	just	as	a	way	to	understand
its	inner	workings.

9.1.	Object	access	and	manipulation

The	Section	G.3.12,	“git-cat-file(1)”	command	can	show	the	contents	of
any	object,	though	the	higher-level	Section	G.3.126,	“git-show(1)”	is
usually	more	useful.

The	Section	G.3.25,	“git-commit-tree(1)”	command	allows	constructing
commits	with	arbitrary	parents	and	trees.

A	tree	can	be	created	with	Section	G.3.149,	“git-write-tree(1)”	and	its	data
can	be	accessed	by	Section	G.3.71,	“git-ls-tree(1)”.	Two	trees	can	be
compared	with	Section	G.3.40,	“git-diff-tree(1)”.

A	tag	is	created	with	Section	G.3.82,	“git-mktag(1)”,	and	the	signature
can	be	verified	by	Section	G.3.145,	“git-verify-tag(1)”,	though	it	is
normally	simpler	to	use	Section	G.3.134,	“git-tag(1)”	for	both.

9.2.	The	Workflow

High-level	operations	such	as	Section	G.3.26,	“git-commit(1)”,
Section	G.3.18,	“git-checkout(1)”	and	Section	G.3.111,	“git-reset(1)”	work
by	moving	data	between	the	working	tree,	the	index,	and	the	object
database.	Git	provides	low-level	operations	which	perform	each	of	these
steps	individually.

Generally,	all	Git	operations	work	on	the	index	file.	Some	operations	work
purely	on	the	index	file	(showing	the	current	state	of	the	index),	but	most
operations	move	data	between	the	index	file	and	either	the	database	or
the	working	directory.	Thus	there	are	four	main	combinations:

9.2.1.	working	directory	→	index

The	Section	G.3.137,	“git-update-index(1)”	command	updates	the	index
with	information	from	the	working	directory.	You	generally	update	the
index	information	by	just	specifying	the	filename	you	want	to	update,	like
so:

$	git	update-index	filename

but	to	avoid	common	mistakes	with	filename	globbing	etc.,	the	command
will	not	normally	add	totally	new	entries	or	remove	old	entries,	i.e.	it	will
normally	just	update	existing	cache	entries.

To	tell	Git	that	yes,	you	really	do	realize	that	certain	files	no	longer	exist,
or	that	new	files	should	be	added,	you	should	use	the	--remove	and	--add
flags	respectively.

NOTE!	A	--remove	flag	does	not	mean	that	subsequent	filenames	will
necessarily	be	removed:	if	the	files	still	exist	in	your	directory	structure,
the	index	will	be	updated	with	their	new	status,	not	removed.	The	only
thing	--remove	means	is	that	update-index	will	be	considering	a	removed
file	to	be	a	valid	thing,	and	if	the	file	really	does	not	exist	any	more,	it	will
update	the	index	accordingly.

As	a	special	case,	you	can	also	do	git	update-index	--refresh,	which	will
refresh	the	"stat"	information	of	each	index	to	match	the	current	stat
information.	It	will	not	update	the	object	status	itself,	and	it	will	only
update	the	fields	that	are	used	to	quickly	test	whether	an	object	still
matches	its	old	backing	store	object.

The	previously	introduced	Section	G.3.2,	“git-add(1)”	is	just	a	wrapper	for
Section	G.3.137,	“git-update-index(1)”.

9.2.2.	index	→	object	database

You	write	your	current	index	file	to	a	"tree"	object	with	the	program

$	git	write-tree

that	doesn't	come	with	any	options--it	will	just	write	out	the	current	index
into	the	set	of	tree	objects	that	describe	that	state,	and	it	will	return	the
name	of	the	resulting	top-level	tree.	You	can	use	that	tree	to	re-generate
the	index	at	any	time	by	going	in	the	other	direction:

9.2.3.	object	database	→	index

You	read	a	"tree"	file	from	the	object	database,	and	use	that	to	populate
(and	overwrite--don't	do	this	if	your	index	contains	any	unsaved	state	that
you	might	want	to	restore	later!)	your	current	index.	Normal	operation	is
just

$	git	read-tree	<SHA-1	of	tree>

and	your	index	file	will	now	be	equivalent	to	the	tree	that	you	saved
earlier.	However,	that	is	only	your	index	file:	your	working	directory
contents	have	not	been	modified.

9.2.4.	index	→	working	directory

You	update	your	working	directory	from	the	index	by	"checking	out"	files.
This	is	not	a	very	common	operation,	since	normally	you'd	just	keep	your
files	updated,	and	rather	than	write	to	your	working	directory,	you'd	tell
the	index	files	about	the	changes	in	your	working	directory	(i.e.	git
update-index).

However,	if	you	decide	to	jump	to	a	new	version,	or	check	out	somebody
else's	version,	or	just	restore	a	previous	tree,	you'd	populate	your	index
file	with	read-tree,	and	then	you	need	to	check	out	the	result	with

$	git	checkout-index	filename

or,	if	you	want	to	check	out	all	of	the	index,	use	-a.

NOTE!	git	checkout-index	normally	refuses	to	overwrite	old	files,	so	if	you
have	an	old	version	of	the	tree	already	checked	out,	you	will	need	to	use
the	-f	flag	(before	the	-a	flag	or	the	filename)	to	force	the	checkout.

Finally,	there	are	a	few	odds	and	ends	which	are	not	purely	moving	from
one	representation	to	the	other:

9.2.5.	Tying	it	all	together

To	commit	a	tree	you	have	instantiated	with	git	write-tree,	you'd	create	a
"commit"	object	that	refers	to	that	tree	and	the	history	behind	it--most
notably	the	"parent"	commits	that	preceded	it	in	history.

Normally	a	"commit"	has	one	parent:	the	previous	state	of	the	tree	before
a	certain	change	was	made.	However,	sometimes	it	can	have	two	or
more	parent	commits,	in	which	case	we	call	it	a	"merge",	due	to	the	fact
that	such	a	commit	brings	together	("merges")	two	or	more	previous
states	represented	by	other	commits.

In	other	words,	while	a	"tree"	represents	a	particular	directory	state	of	a
working	directory,	a	"commit"	represents	that	state	in	time,	and	explains
how	we	got	there.

You	create	a	commit	object	by	giving	it	the	tree	that	describes	the	state	at
the	time	of	the	commit,	and	a	list	of	parents:

$	git	commit-tree	<tree>	-p	<parent>	[(-p	<parent2>)...]

and	then	giving	the	reason	for	the	commit	on	stdin	(either	through
redirection	from	a	pipe	or	file,	or	by	just	typing	it	at	the	tty).

git	commit-tree	will	return	the	name	of	the	object	that	represents	that
commit,	and	you	should	save	it	away	for	later	use.	Normally,	you'd
commit	a	new	HEAD	state,	and	while	Git	doesn't	care	where	you	save
the	note	about	that	state,	in	practice	we	tend	to	just	write	the	result	to	the
file	pointed	at	by	.git/HEAD,	so	that	we	can	always	see	what	the	last
committed	state	was.

Here	is	a	picture	that	illustrates	how	various	pieces	fit	together:

																					commit-tree

																						commit	obj

																							+----+

																							|				|

																							|				|

																							V				V

																				+-----------+

																				|	Object	DB	|

																				|		Backing		|

																				|			Store			|

																				+-----------+

																							^

											write-tree		|					|

													tree	obj		|					|

																							|					|		read-tree

																							|					|		tree	obj

																													V

																				+-----------+

																				|			Index			|

																				|		"cache"		|

																				+-----------+

									update-index		^

													blob	obj		|					|

																							|					|

				checkout-index	-u		|					|		checkout-index

													stat						|					|		blob	obj

																													V

																				+-----------+

																				|		Working		|

																				|	Directory	|

																				+-----------+

9.3.	Examining	the	data

You	can	examine	the	data	represented	in	the	object	database	and	the
index	with	various	helper	tools.	For	every	object,	you	can	use
Section	G.3.12,	“git-cat-file(1)”	to	examine	details	about	the	object:

$	git	cat-file	-t	<objectname>

shows	the	type	of	the	object,	and	once	you	have	the	type	(which	is

usually	implicit	in	where	you	find	the	object),	you	can	use

$	git	cat-file	blob|tree|commit|tag	<objectname>

to	show	its	contents.	NOTE!	Trees	have	binary	content,	and	as	a	result
there	is	a	special	helper	for	showing	that	content,	called	git	ls-tree,	which
turns	the	binary	content	into	a	more	easily	readable	form.

It's	especially	instructive	to	look	at	"commit"	objects,	since	those	tend	to
be	small	and	fairly	self-explanatory.	In	particular,	if	you	follow	the
convention	of	having	the	top	commit	name	in	.git/HEAD,	you	can	do

$	git	cat-file	commit	HEAD

to	see	what	the	top	commit	was.

9.4.	Merging	multiple	trees

Git	can	help	you	perform	a	three-way	merge,	which	can	in	turn	be	used
for	a	many-way	merge	by	repeating	the	merge	procedure	several	times.
The	usual	situation	is	that	you	only	do	one	three-way	merge	(reconciling
two	lines	of	history)	and	commit	the	result,	but	if	you	like	to,	you	can
merge	several	branches	in	one	go.

To	perform	a	three-way	merge,	you	start	with	the	two	commits	you	want
to	merge,	find	their	closest	common	parent	(a	third	commit),	and
compare	the	trees	corresponding	to	these	three	commits.

To	get	the	"base"	for	the	merge,	look	up	the	common	parent	of	two
commits:

$	git	merge-base	<commit1>	<commit2>

This	prints	the	name	of	a	commit	they	are	both	based	on.	You	should
now	look	up	the	tree	objects	of	those	commits,	which	you	can	easily	do
with

$	git	cat-file	commit	<commitname>	|	head	-1

since	the	tree	object	information	is	always	the	first	line	in	a	commit	object.

Once	you	know	the	three	trees	you	are	going	to	merge	(the	one	"original"
tree,	aka	the	common	tree,	and	the	two	"result"	trees,	aka	the	branches
you	want	to	merge),	you	do	a	"merge"	read	into	the	index.	This	will
complain	if	it	has	to	throw	away	your	old	index	contents,	so	you	should
make	sure	that	you've	committed	those--in	fact	you	would	normally
always	do	a	merge	against	your	last	commit	(which	should	thus	match
what	you	have	in	your	current	index	anyway).

To	do	the	merge,	do

$	git	read-tree	-m	-u	<origtree>	<yourtree>	<targettree>

which	will	do	all	trivial	merge	operations	for	you	directly	in	the	index	file,
and	you	can	just	write	the	result	out	with	git	write-tree.

9.5.	Merging	multiple	trees,	continued

Sadly,	many	merges	aren't	trivial.	If	there	are	files	that	have	been	added,
moved	or	removed,	or	if	both	branches	have	modified	the	same	file,	you
will	be	left	with	an	index	tree	that	contains	"merge	entries"	in	it.	Such	an
index	tree	can	NOT	be	written	out	to	a	tree	object,	and	you	will	have	to
resolve	any	such	merge	clashes	using	other	tools	before	you	can	write
out	the	result.

You	can	examine	such	index	state	with	git	ls-files	--unmerged	command.
An	example:

$	git	read-tree	-m	$orig	HEAD	$target

$	git	ls-files	--unmerged

100644	263414f423d0e4d70dae8fe53fa34614ff3e2860	1							hello.c

100644	06fa6a24256dc7e560efa5687fa84b51f0263c3a	2							hello.c

100644	cc44c73eb783565da5831b4d820c962954019b69	3							hello.c

Each	line	of	the	git	ls-files	--unmerged	output	begins	with	the	blob	mode

bits,	blob	SHA-1,	stage	number,	and	the	filename.	The	stage	number	is
Git's	way	to	say	which	tree	it	came	from:	stage	1	corresponds	to	the	$orig
tree,	stage	2	to	the	HEAD	tree,	and	stage	3	to	the	$target	tree.

Earlier	we	said	that	trivial	merges	are	done	inside	git	read-tree	-m.	For
example,	if	the	file	did	not	change	from	$orig	to	HEAD	or	$target,	or	if	the
file	changed	from	$orig	to	HEAD	and	$orig	to	$target	the	same	way,
obviously	the	final	outcome	is	what	is	in	HEAD.	What	the	above	example
shows	is	that	file	hello.c	was	changed	from	$orig	to	HEAD	and	$orig	to
$target	in	a	different	way.	You	could	resolve	this	by	running	your	favorite
3-way	merge	program,	e.g.	diff3,	merge,	or	Git's	own	merge-file,	on	the
blob	objects	from	these	three	stages	yourself,	like	this:

$	git	cat-file	blob	263414f...	>hello.c~1

$	git	cat-file	blob	06fa6a2...	>hello.c~2

$	git	cat-file	blob	cc44c73...	>hello.c~3

$	git	merge-file	hello.c~2	hello.c~1	hello.c~3

This	would	leave	the	merge	result	in	hello.c~2	file,	along	with	conflict
markers	if	there	are	conflicts.	After	verifying	the	merge	result	makes
sense,	you	can	tell	Git	what	the	final	merge	result	for	this	file	is	by:

$	mv	-f	hello.c~2	hello.c

$	git	update-index	hello.c

When	a	path	is	in	the	"unmerged"	state,	running	git	update-index	for	that
path	tells	Git	to	mark	the	path	resolved.

The	above	is	the	description	of	a	Git	merge	at	the	lowest	level,	to	help
you	understand	what	conceptually	happens	under	the	hood.	In	practice,
nobody,	not	even	Git	itself,	runs	git	cat-file	three	times	for	this.	There	is	a
git	merge-index	program	that	extracts	the	stages	to	temporary	files	and
calls	a	"merge"	script	on	it:

$	git	merge-index	git-merge-one-file	hello.c

and	that	is	what	higher	level	git	merge	-s	resolve	is	implemented	with.

10.	Hacking	Git

This	chapter	covers	internal	details	of	the	Git	implementation	which
probably	only	Git	developers	need	to	understand.

10.1.	Object	storage	format

All	objects	have	a	statically	determined	"type"	which	identifies	the	format
of	the	object	(i.e.	how	it	is	used,	and	how	it	can	refer	to	other	objects).
There	are	currently	four	different	object	types:	"blob",	"tree",	"commit",
and	"tag".

Regardless	of	object	type,	all	objects	share	the	following	characteristics:
they	are	all	deflated	with	zlib,	and	have	a	header	that	not	only	specifies
their	type,	but	also	provides	size	information	about	the	data	in	the	object.
It's	worth	noting	that	the	SHA-1	hash	that	is	used	to	name	the	object	is
the	hash	of	the	original	data	plus	this	header,	so	sha1sum	file	does	not
match	the	object	name	for	file.

As	a	result,	the	general	consistency	of	an	object	can	always	be	tested
independently	of	the	contents	or	the	type	of	the	object:	all	objects	can	be
validated	by	verifying	that	(a)	their	hashes	match	the	content	of	the	file
and	(b)	the	object	successfully	inflates	to	a	stream	of	bytes	that	forms	a
sequence	of	<ascii	type	without	space>	+	<space>	+	<ascii	decimal	size>
+	<byte\0>	+	<binary	object	data>.

The	structured	objects	can	further	have	their	structure	and	connectivity	to
other	objects	verified.	This	is	generally	done	with	the	git	fsck	program,
which	generates	a	full	dependency	graph	of	all	objects,	and	verifies	their
internal	consistency	(in	addition	to	just	verifying	their	superficial
consistency	through	the	hash).

10.2.	A	birds-eye	view	of	Git's	source	code

It	is	not	always	easy	for	new	developers	to	find	their	way	through	Git's
source	code.	This	section	gives	you	a	little	guidance	to	show	where	to

start.

A	good	place	to	start	is	with	the	contents	of	the	initial	commit,	with:

$	git	checkout	e83c5163

The	initial	revision	lays	the	foundation	for	almost	everything	Git	has
today,	but	is	small	enough	to	read	in	one	sitting.

Note	that	terminology	has	changed	since	that	revision.	For	example,	the
README	in	that	revision	uses	the	word	"changeset"	to	describe	what	we
now	call	a	commit.

Also,	we	do	not	call	it	"cache"	any	more,	but	rather	"index";	however,	the
file	is	still	called	cache.h.	Remark:	Not	much	reason	to	change	it	now,
especially	since	there	is	no	good	single	name	for	it	anyway,	because	it	is
basically	the	header	file	which	is	included	by	all	of	Git's	C	sources.

If	you	grasp	the	ideas	in	that	initial	commit,	you	should	check	out	a	more
recent	version	and	skim	cache.h,	object.h	and	commit.h.

In	the	early	days,	Git	(in	the	tradition	of	UNIX)	was	a	bunch	of	programs
which	were	extremely	simple,	and	which	you	used	in	scripts,	piping	the
output	of	one	into	another.	This	turned	out	to	be	good	for	initial
development,	since	it	was	easier	to	test	new	things.	However,	recently
many	of	these	parts	have	become	builtins,	and	some	of	the	core	has
been	"libified",	i.e.	put	into	libgit.a	for	performance,	portability	reasons,
and	to	avoid	code	duplication.

By	now,	you	know	what	the	index	is	(and	find	the	corresponding	data
structures	in	cache.h),	and	that	there	are	just	a	couple	of	object	types
(blobs,	trees,	commits	and	tags)	which	inherit	their	common	structure
from	struct	object,	which	is	their	first	member	(and	thus,	you	can	cast	e.g.
(struct	object	*)commit	to	achieve	the	same	as	&commit->object,	i.e.	get
at	the	object	name	and	flags).

Now	is	a	good	point	to	take	a	break	to	let	this	information	sink	in.

Next	step:	get	familiar	with	the	object	naming.	Read	Section	2.2,	“Naming
commits”.	There	are	quite	a	few	ways	to	name	an	object	(and	not	only
revisions!).	All	of	these	are	handled	in	sha1_name.c.	Just	have	a	quick
look	at	the	function	get_sha1().	A	lot	of	the	special	handling	is	done	by
functions	like	get_sha1_basic()	or	the	likes.

This	is	just	to	get	you	into	the	groove	for	the	most	libified	part	of	Git:	the
revision	walker.

Basically,	the	initial	version	of	git	log	was	a	shell	script:

$	git-rev-list	--pretty	$(git-rev-parse	--default	HEAD	"$@")	|	\

								LESS=-S	${PAGER:-less}

What	does	this	mean?

git	rev-list	is	the	original	version	of	the	revision	walker,	which	always
printed	a	list	of	revisions	to	stdout.	It	is	still	functional,	and	needs	to,	since
most	new	Git	commands	start	out	as	scripts	using	git	rev-list.

git	rev-parse	is	not	as	important	any	more;	it	was	only	used	to	filter	out
options	that	were	relevant	for	the	different	plumbing	commands	that	were
called	by	the	script.

Most	of	what	git	rev-list	did	is	contained	in	revision.c	and	revision.h.	It
wraps	the	options	in	a	struct	named	rev_info,	which	controls	how	and
what	revisions	are	walked,	and	more.

The	original	job	of	git	rev-parse	is	now	taken	by	the	function
setup_revisions(),	which	parses	the	revisions	and	the	common
command-line	options	for	the	revision	walker.	This	information	is	stored	in
the	struct	rev_info	for	later	consumption.	You	can	do	your	own	command-
line	option	parsing	after	calling	setup_revisions().	After	that,	you	have	to
call	prepare_revision_walk()	for	initialization,	and	then	you	can	get	the
commits	one	by	one	with	the	function	get_revision().

If	you	are	interested	in	more	details	of	the	revision	walking	process,	just
have	a	look	at	the	first	implementation	of	cmd_log();	call	git	show

v1.3.0~155^2~4	and	scroll	down	to	that	function	(note	that	you	no	longer
need	to	call	setup_pager()	directly).

Nowadays,	git	log	is	a	builtin,	which	means	that	it	is	contained	in	the
command	git.	The	source	side	of	a	builtin	is

a	function	called	cmd_<bla>,	typically	defined	in	builtin/<bla.c>	(note
that	older	versions	of	Git	used	to	have	it	in	builtin-<bla>.c	instead),
and	declared	in	builtin.h.
an	entry	in	the	commands[]	array	in	git.c,	and
an	entry	in	BUILTIN_OBJECTS	in	the	Makefile.

Sometimes,	more	than	one	builtin	is	contained	in	one	source	file.	For
example,	cmd_whatchanged()	and	cmd_log()	both	reside	in	builtin/log.c,
since	they	share	quite	a	bit	of	code.	In	that	case,	the	commands	which
are	not	named	like	the	.c	file	in	which	they	live	have	to	be	listed	in
BUILT_INS	in	the	Makefile.

git	log	looks	more	complicated	in	C	than	it	does	in	the	original	script,	but
that	allows	for	a	much	greater	flexibility	and	performance.

Here	again	it	is	a	good	point	to	take	a	pause.

Lesson	three	is:	study	the	code.	Really,	it	is	the	best	way	to	learn	about
the	organization	of	Git	(after	you	know	the	basic	concepts).

So,	think	about	something	which	you	are	interested	in,	say,	"how	can	I
access	a	blob	just	knowing	the	object	name	of	it?".	The	first	step	is	to	find
a	Git	command	with	which	you	can	do	it.	In	this	example,	it	is	either	git
show	or	git	cat-file.

For	the	sake	of	clarity,	let's	stay	with	git	cat-file,	because	it

is	plumbing,	and
was	around	even	in	the	initial	commit	(it	literally	went	only	through
some	20	revisions	as	cat-file.c,	was	renamed	to	builtin/cat-file.c
when	made	a	builtin,	and	then	saw	less	than	10	versions).

So,	look	into	builtin/cat-file.c,	search	for	cmd_cat_file()	and	look	what	it

does.

								git_config(git_default_config);

								if	(argc	!=	3)

																usage("git	cat-file	[-t|-s|-e|-p|

<type>]	<sha1>");

								if	(get_sha1(argv[2],	sha1))

																die("Not	a	valid	object	name	%s",	argv[2]);

Let's	skip	over	the	obvious	details;	the	only	really	interesting	part	here	is
the	call	to	get_sha1().	It	tries	to	interpret	argv[2]	as	an	object	name,	and	if
it	refers	to	an	object	which	is	present	in	the	current	repository,	it	writes
the	resulting	SHA-1	into	the	variable	sha1.

Two	things	are	interesting	here:

get_sha1()	returns	0	on	success.	This	might	surprise	some	new	Git
hackers,	but	there	is	a	long	tradition	in	UNIX	to	return	different
negative	numbers	in	case	of	different	errors--and	0	on	success.
the	variable	sha1	in	the	function	signature	of	get_sha1()	is	unsigned
char	*,	but	is	actually	expected	to	be	a	pointer	to	unsigned	char[20].
This	variable	will	contain	the	160-bit	SHA-1	of	the	given	commit.
Note	that	whenever	a	SHA-1	is	passed	as	unsigned	char	*,	it	is	the
binary	representation,	as	opposed	to	the	ASCII	representation	in	hex
characters,	which	is	passed	as	char	*.

You	will	see	both	of	these	things	throughout	the	code.

Now,	for	the	meat:

								case	0:

																buf	=	read_object_with_reference(sha1,	argv[1],	&size,	NULL);

This	is	how	you	read	a	blob	(actually,	not	only	a	blob,	but	any	type	of
object).	To	know	how	the	function	read_object_with_reference()	actually
works,	find	the	source	code	for	it	(something	like	git	grep
read_object_with	|	grep	":[a-z]"	in	the	Git	repository),	and	read	the
source.

To	find	out	how	the	result	can	be	used,	just	read	on	in	cmd_cat_file():

								write_or_die(1,	buf,	size);

Sometimes,	you	do	not	know	where	to	look	for	a	feature.	In	many	such
cases,	it	helps	to	search	through	the	output	of	git	log,	and	then	git	show
the	corresponding	commit.

Example:	If	you	know	that	there	was	some	test	case	for	git	bundle,	but	do
not	remember	where	it	was	(yes,	you	could	git	grep	bundle	t/,	but	that
does	not	illustrate	the	point!):

$	git	log	--no-merges	t/

In	the	pager	(less),	just	search	for	"bundle",	go	a	few	lines	back,	and	see
that	it	is	in	commit	18449ab0…	Now	just	copy	this	object	name,	and
paste	it	into	the	command	line

$	git	show	18449ab0

Voila.

Another	example:	Find	out	what	to	do	in	order	to	make	some	script	a
builtin:

$	git	log	--no-merges	--diff-filter=A	builtin/*.c

You	see,	Git	is	actually	the	best	tool	to	find	out	about	the	source	of	Git
itself!

11.	Git	Glossary

alternate	object	database
Via	the	alternates	mechanism,	a	repository	can	inherit	part	of	its
object	database	from	another	object	database,	which	is	called	an
"alternate".

bare	repository
A	bare	repository	is	normally	an	appropriately	named	directory	with	a
.git	suffix	that	does	not	have	a	locally	checked-out	copy	of	any	of	the
files	under	revision	control.	That	is,	all	of	the	Git	administrative	and
control	files	that	would	normally	be	present	in	the	hidden	.git	sub-
directory	are	directly	present	in	the	repository.git	directory	instead,
and	no	other	files	are	present	and	checked	out.	Usually	publishers	of
public	repositories	make	bare	repositories	available.

blob	object
Untyped	object,	e.g.	the	contents	of	a	file.

branch
A	"branch"	is	an	active	line	of	development.	The	most	recent	commit
on	a	branch	is	referred	to	as	the	tip	of	that	branch.	The	tip	of	the
branch	is	referenced	by	a	branch	head,	which	moves	forward	as
additional	development	is	done	on	the	branch.	A	single	Git	repository
can	track	an	arbitrary	number	of	branches,	but	your	working	tree	is
associated	with	just	one	of	them	(the	"current"	or	"checked	out"
branch),	and	HEAD	points	to	that	branch.

cache
Obsolete	for:	index.

chain
A	list	of	objects,	where	each	object	in	the	list	contains	a	reference	to
its	successor	(for	example,	the	successor	of	a	commit	could	be	one
of	its	parents).

changeset
BitKeeper/cvsps	speak	for	"commit".	Since	Git	does	not	store
changes,	but	states,	it	really	does	not	make	sense	to	use	the	term
"changesets"	with	Git.

checkout
The	action	of	updating	all	or	part	of	the	working	tree	with	a	tree

object	or	blob	from	the	object	database,	and	updating	the	index	and
HEAD	if	the	whole	working	tree	has	been	pointed	at	a	new	branch.

cherry-picking
In	SCM	jargon,	"cherry	pick"	means	to	choose	a	subset	of	changes
out	of	a	series	of	changes	(typically	commits)	and	record	them	as	a
new	series	of	changes	on	top	of	a	different	codebase.	In	Git,	this	is
performed	by	the	"git	cherry-pick"	command	to	extract	the	change
introduced	by	an	existing	commit	and	to	record	it	based	on	the	tip	of
the	current	branch	as	a	new	commit.

clean
A	working	tree	is	clean,	if	it	corresponds	to	the	revision	referenced	by
the	current	head.	Also	see	"dirty".

commit

As	a	noun:	A	single	point	in	the	Git	history;	the	entire	history	of	a
project	is	represented	as	a	set	of	interrelated	commits.	The	word
"commit"	is	often	used	by	Git	in	the	same	places	other	revision
control	systems	use	the	words	"revision"	or	"version".	Also	used	as	a
short	hand	for	commit	object.

As	a	verb:	The	action	of	storing	a	new	snapshot	of	the	project's	state
in	the	Git	history,	by	creating	a	new	commit	representing	the	current
state	of	the	index	and	advancing	HEAD	to	point	at	the	new	commit.

commit	object
An	object	which	contains	the	information	about	a	particular	revision,
such	as	parents,	committer,	author,	date	and	the	tree	object	which
corresponds	to	the	top	directory	of	the	stored	revision.

commit-ish	(also	committish)
A	commit	object	or	an	object	that	can	be	recursively	dereferenced	to
a	commit	object.	The	following	are	all	commit-ishes:	a	commit	object,
a	tag	object	that	points	to	a	commit	object,	a	tag	object	that	points	to
a	tag	object	that	points	to	a	commit	object,	etc.

core	Git
Fundamental	data	structures	and	utilities	of	Git.	Exposes	only	limited
source	code	management	tools.

DAG
Directed	acyclic	graph.	The	commit	objects	form	a	directed	acyclic

graph,	because	they	have	parents	(directed),	and	the	graph	of
commit	objects	is	acyclic	(there	is	no	chain	which	begins	and	ends
with	the	same	object).

dangling	object
An	unreachable	object	which	is	not	reachable	even	from	other
unreachable	objects;	a	dangling	object	has	no	references	to	it	from
any	reference	or	object	in	the	repository.

detached	HEAD

Normally	the	HEAD	stores	the	name	of	a	branch,	and	commands
that	operate	on	the	history	HEAD	represents	operate	on	the	history
leading	to	the	tip	of	the	branch	the	HEAD	points	at.	However,	Git
also	allows	you	to	check	out	an	arbitrary	commit	that	isn't
necessarily	the	tip	of	any	particular	branch.	The	HEAD	in	such	a
state	is	called	"detached".

Note	that	commands	that	operate	on	the	history	of	the	current
branch	(e.g.	git	commit	to	build	a	new	history	on	top	of	it)	still	work
while	the	HEAD	is	detached.	They	update	the	HEAD	to	point	at	the
tip	of	the	updated	history	without	affecting	any	branch.	Commands
that	update	or	inquire	information	about	the	current	branch	(e.g.	git
branch	--set-upstream-to	that	sets	what	remote-tracking	branch	the
current	branch	integrates	with)	obviously	do	not	work,	as	there	is	no
(real)	current	branch	to	ask	about	in	this	state.

directory
The	list	you	get	with	"ls"	:-)

dirty
A	working	tree	is	said	to	be	"dirty"	if	it	contains	modifications	which
have	not	been	committed	to	the	current	branch.

evil	merge
An	evil	merge	is	a	merge	that	introduces	changes	that	do	not	appear
in	any	parent.

fast-forward
A	fast-forward	is	a	special	type	of	merge	where	you	have	a	revision
and	you	are	"merging"	another	branch's	changes	that	happen	to	be	a
descendant	of	what	you	have.	In	such	these	cases,	you	do	not	make
a	new	merge	commit	but	instead	just	update	to	his	revision.	This	will

happen	frequently	on	a	remote-tracking	branch	of	a	remote
repository.

fetch
Fetching	a	branch	means	to	get	the	branch's	head	ref	from	a	remote
repository,	to	find	out	which	objects	are	missing	from	the	local	object
database,	and	to	get	them,	too.	See	also	Section	G.3.46,	“git-
fetch(1)”.

file	system
Linus	Torvalds	originally	designed	Git	to	be	a	user	space	file	system,
i.e.	the	infrastructure	to	hold	files	and	directories.	That	ensured	the
efficiency	and	speed	of	Git.

Git	archive
Synonym	for	repository	(for	arch	people).

gitfile
A	plain	file	.git	at	the	root	of	a	working	tree	that	points	at	the	directory
that	is	the	real	repository.

grafts

Grafts	enables	two	otherwise	different	lines	of	development	to	be
joined	together	by	recording	fake	ancestry	information	for	commits.
This	way	you	can	make	Git	pretend	the	set	of	parents	a	commit	has
is	different	from	what	was	recorded	when	the	commit	was	created.
Configured	via	the	.git/info/grafts	file.

Note	that	the	grafts	mechanism	is	outdated	and	can	lead	to
problems	transferring	objects	between	repositories;	see
Section	G.3.108,	“git-replace(1)”	for	a	more	flexible	and	robust
system	to	do	the	same	thing.

hash
In	Git's	context,	synonym	for	object	name.

head
A	named	reference	to	the	commit	at	the	tip	of	a	branch.	Heads	are
stored	in	a	file	in	$GIT_DIR/refs/heads/	directory,	except	when	using
packed	refs.	(See	Section	G.3.90,	“git-pack-refs(1)”.)

HEAD
The	current	branch.	In	more	detail:	Your	working	tree	is	normally
derived	from	the	state	of	the	tree	referred	to	by	HEAD.	HEAD	is	a

reference	to	one	of	the	heads	in	your	repository,	except	when	using
a	detached	HEAD,	in	which	case	it	directly	references	an	arbitrary
commit.

head	ref
A	synonym	for	head.

hook
During	the	normal	execution	of	several	Git	commands,	call-outs	are
made	to	optional	scripts	that	allow	a	developer	to	add	functionality	or
checking.	Typically,	the	hooks	allow	for	a	command	to	be	pre-verified
and	potentially	aborted,	and	allow	for	a	post-notification	after	the
operation	is	done.	The	hook	scripts	are	found	in	the
$GIT_DIR/hooks/	directory,	and	are	enabled	by	simply	removing	the
.sample	suffix	from	the	filename.	In	earlier	versions	of	Git	you	had	to
make	them	executable.

index
A	collection	of	files	with	stat	information,	whose	contents	are	stored
as	objects.	The	index	is	a	stored	version	of	your	working	tree.	Truth
be	told,	it	can	also	contain	a	second,	and	even	a	third	version	of	a
working	tree,	which	are	used	when	merging.

index	entry
The	information	regarding	a	particular	file,	stored	in	the	index.	An
index	entry	can	be	unmerged,	if	a	merge	was	started,	but	not	yet
finished	(i.e.	if	the	index	contains	multiple	versions	of	that	file).

master
The	default	development	branch.	Whenever	you	create	a	Git
repository,	a	branch	named	"master"	is	created,	and	becomes	the
active	branch.	In	most	cases,	this	contains	the	local	development,
though	that	is	purely	by	convention	and	is	not	required.

merge

As	a	verb:	To	bring	the	contents	of	another	branch	(possibly	from	an
external	repository)	into	the	current	branch.	In	the	case	where	the
merged-in	branch	is	from	a	different	repository,	this	is	done	by	first
fetching	the	remote	branch	and	then	merging	the	result	into	the
current	branch.	This	combination	of	fetch	and	merge	operations	is
called	a	pull.	Merging	is	performed	by	an	automatic	process	that
identifies	changes	made	since	the	branches	diverged,	and	then

applies	all	those	changes	together.	In	cases	where	changes	conflict,
manual	intervention	may	be	required	to	complete	the	merge.

As	a	noun:	unless	it	is	a	fast-forward,	a	successful	merge	results	in
the	creation	of	a	new	commit	representing	the	result	of	the	merge,
and	having	as	parents	the	tips	of	the	merged	branches.	This	commit
is	referred	to	as	a	"merge	commit",	or	sometimes	just	a	"merge".

object
The	unit	of	storage	in	Git.	It	is	uniquely	identified	by	the	SHA-1	of	its
contents.	Consequently,	an	object	can	not	be	changed.

object	database
Stores	a	set	of	"objects",	and	an	individual	object	is	identified	by	its
object	name.	The	objects	usually	live	in	$GIT_DIR/objects/.

object	identifier
Synonym	for	object	name.

object	name
The	unique	identifier	of	an	object.	The	object	name	is	usually
represented	by	a	40	character	hexadecimal	string.	Also	colloquially
called	SHA-1.

object	type
One	of	the	identifiers	"commit",	"tree",	"tag"	or	"blob"	describing	the
type	of	an	object.

octopus
To	merge	more	than	two	branches.

origin
The	default	upstream	repository.	Most	projects	have	at	least	one
upstream	project	which	they	track.	By	default	origin	is	used	for	that
purpose.	New	upstream	updates	will	be	fetched	into	remote-tracking
branches	named	origin/name-of-upstream-branch,	which	you	can
see	using	git	branch	-r.

pack
A	set	of	objects	which	have	been	compressed	into	one	file	(to	save
space	or	to	transmit	them	efficiently).

pack	index
The	list	of	identifiers,	and	other	information,	of	the	objects	in	a	pack,
to	assist	in	efficiently	accessing	the	contents	of	a	pack.

pathspec

Pattern	used	to	limit	paths	in	Git	commands.

Pathspecs	are	used	on	the	command	line	of	"git	ls-files",	"git	ls-tree",
"git	add",	"git	grep",	"git	diff",	"git	checkout",	and	many	other
commands	to	limit	the	scope	of	operations	to	some	subset	of	the
tree	or	worktree.	See	the	documentation	of	each	command	for
whether	paths	are	relative	to	the	current	directory	or	toplevel.	The
pathspec	syntax	is	as	follows:

any	path	matches	itself
the	pathspec	up	to	the	last	slash	represents	a	directory	prefix.
The	scope	of	that	pathspec	is	limited	to	that	subtree.
the	rest	of	the	pathspec	is	a	pattern	for	the	remainder	of	the
pathname.	Paths	relative	to	the	directory	prefix	will	be	matched
against	that	pattern	using	fnmatch(3);	in	particular,	*	and	?	can
match	directory	separators.

For	example,	Documentation/*.jpg	will	match	all	.jpg	files	in	the
Documentation	subtree,	including
Documentation/chapter_1/figure_1.jpg.

A	pathspec	that	begins	with	a	colon	:	has	special	meaning.	In	the
short	form,	the	leading	colon	:	is	followed	by	zero	or	more	"magic
signature"	letters	(which	optionally	is	terminated	by	another	colon	:),
and	the	remainder	is	the	pattern	to	match	against	the	path.	The
"magic	signature"	consists	of	ASCII	symbols	that	are	neither
alphanumeric,	glob,	regex	special	characters	nor	colon.	The	optional
colon	that	terminates	the	"magic	signature"	can	be	omitted	if	the
pattern	begins	with	a	character	that	does	not	belong	to	"magic
signature"	symbol	set	and	is	not	a	colon.

In	the	long	form,	the	leading	colon	:	is	followed	by	a	open
parenthesis	(,	a	comma-separated	list	of	zero	or	more	"magic
words",	and	a	close	parentheses),	and	the	remainder	is	the	pattern
to	match	against	the	path.

A	pathspec	with	only	a	colon	means	"there	is	no	pathspec".	This
form	should	not	be	combined	with	other	pathspec.

top
The	magic	word	top	(magic	signature:	/)	makes	the	pattern
match	from	the	root	of	the	working	tree,	even	when	you	are
running	the	command	from	inside	a	subdirectory.

literal
Wildcards	in	the	pattern	such	as	*	or	?	are	treated	as	literal
characters.

icase
Case	insensitive	match.

glob

Git	treats	the	pattern	as	a	shell	glob	suitable	for	consumption	by
fnmatch(3)	with	the	FNM_PATHNAME	flag:	wildcards	in	the
pattern	will	not	match	a	/	in	the	pathname.	For	example,
"Documentation/*.html"	matches	"Documentation/git.html"	but
not	"Documentation/ppc/ppc.html"	or
"tools/perf/Documentation/perf.html".

Two	consecutive	asterisks	("**")	in	patterns	matched	against	full
pathname	may	have	special	meaning:

A	leading	"**"	followed	by	a	slash	means	match	in	all
directories.	For	example,	"**/foo"	matches	file	or	directory
"foo"	anywhere,	the	same	as	pattern	"foo".	"**/foo/bar"
matches	file	or	directory	"bar"	anywhere	that	is	directly
under	directory	"foo".
A	trailing	"/**"	matches	everything	inside.	For	example,
"abc/**"	matches	all	files	inside	directory	"abc",	relative	to
the	location	of	the	.gitignore	file,	with	infinite	depth.
A	slash	followed	by	two	consecutive	asterisks	then	a	slash
matches	zero	or	more	directories.	For	example,	"a/**/b"
matches	"a/b",	"a/x/b",	"a/x/y/b"	and	so	on.

Other	consecutive	asterisks	are	considered	invalid.

Glob	magic	is	incompatible	with	literal	magic.

exclude
After	a	path	matches	any	non-exclude	pathspec,	it	will	be	run
through	all	exclude	pathspec	(magic	signature:	!).	If	it	matches,
the	path	is	ignored.

parent
A	commit	object	contains	a	(possibly	empty)	list	of	the	logical
predecessor(s)	in	the	line	of	development,	i.e.	its	parents.

pickaxe
The	term	pickaxe	refers	to	an	option	to	the	diffcore	routines	that	help
select	changes	that	add	or	delete	a	given	text	string.	With	the	--
pickaxe-all	option,	it	can	be	used	to	view	the	full	changeset	that
introduced	or	removed,	say,	a	particular	line	of	text.	See
Section	G.3.41,	“git-diff(1)”.

plumbing
Cute	name	for	core	Git.

porcelain
Cute	name	for	programs	and	program	suites	depending	on	core	Git,
presenting	a	high	level	access	to	core	Git.	Porcelains	expose	more
of	a	SCM	interface	than	the	plumbing.

per-worktree	ref
Refs	that	are	per-worktree,	rather	than	global.	This	is	presently	only
HEAD	and	any	refs	that	start	with	refs/bisect/,	but	might	later	include
other	unusual	refs.

pseudoref
Pseudorefs	are	a	class	of	files	under	$GIT_DIR	which	behave	like
refs	for	the	purposes	of	rev-parse,	but	which	are	treated	specially	by
git.	Pseudorefs	both	have	names	that	are	all-caps,	and	always	start
with	a	line	consisting	of	a	SHA-1	followed	by	whitespace.	So,	HEAD
is	not	a	pseudoref,	because	it	is	sometimes	a	symbolic	ref.	They
might	optionally	contain	some	additional	data.	MERGE_HEAD	and
CHERRY_PICK_HEAD	are	examples.	Unlike	per-worktree	refs,
these	files	cannot	be	symbolic	refs,	and	never	have	reflogs.	They
also	cannot	be	updated	through	the	normal	ref	update	machinery.
Instead,	they	are	updated	by	directly	writing	to	the	files.	However,
they	can	be	read	as	if	they	were	refs,	so	git	rev-parse

MERGE_HEAD	will	work.
pull

Pulling	a	branch	means	to	fetch	it	and	merge	it.	See	also
Section	G.3.95,	“git-pull(1)”.

push
Pushing	a	branch	means	to	get	the	branch's	head	ref	from	a	remote
repository,	find	out	if	it	is	a	direct	ancestor	to	the	branch's	local	head
ref,	and	in	that	case,	putting	all	objects,	which	are	reachable	from	the
local	head	ref,	and	which	are	missing	from	the	remote	repository,
into	the	remote	object	database,	and	updating	the	remote	head	ref.	If
the	remote	head	is	not	an	ancestor	to	the	local	head,	the	push	fails.

reachable
All	of	the	ancestors	of	a	given	commit	are	said	to	be	"reachable"
from	that	commit.	More	generally,	one	object	is	reachable	from
another	if	we	can	reach	the	one	from	the	other	by	a	chain	that
follows	tags	to	whatever	they	tag,	commits	to	their	parents	or	trees,
and	trees	to	the	trees	or	blobs	that	they	contain.

rebase
To	reapply	a	series	of	changes	from	a	branch	to	a	different	base,	and
reset	the	head	of	that	branch	to	the	result.

ref

A	name	that	begins	with	refs/	(e.g.	refs/heads/master)	that	points	to
an	object	name	or	another	ref	(the	latter	is	called	a	symbolic	ref).	For
convenience,	a	ref	can	sometimes	be	abbreviated	when	used	as	an
argument	to	a	Git	command;	see	Section	G.4.12,	“gitrevisions(7)”	for
details.	Refs	are	stored	in	the	repository.

The	ref	namespace	is	hierarchical.	Different	subhierarchies	are	used
for	different	purposes	(e.g.	the	refs/heads/	hierarchy	is	used	to
represent	local	branches).

There	are	a	few	special-purpose	refs	that	do	not	begin	with	refs/.
The	most	notable	example	is	HEAD.

reflog
A	reflog	shows	the	local	"history"	of	a	ref.	In	other	words,	it	can	tell
you	what	the	3rd	last	revision	in	this	repository	was,	and	what	was

the	current	state	in	this	repository,	yesterday	9:14pm.	See
Section	G.3.101,	“git-reflog(1)”	for	details.

refspec
A	"refspec"	is	used	by	fetch	and	push	to	describe	the	mapping
between	remote	ref	and	local	ref.

remote	repository
A	repository	which	is	used	to	track	the	same	project	but	resides
somewhere	else.	To	communicate	with	remotes,	see	fetch	or	push.

remote-tracking	branch
A	ref	that	is	used	to	follow	changes	from	another	repository.	It
typically	looks	like	refs/remotes/foo/bar	(indicating	that	it	tracks	a
branch	named	bar	in	a	remote	named	foo),	and	matches	the	right-
hand-side	of	a	configured	fetch	refspec.	A	remote-tracking	branch
should	not	contain	direct	modifications	or	have	local	commits	made
to	it.

repository
A	collection	of	refs	together	with	an	object	database	containing	all
objects	which	are	reachable	from	the	refs,	possibly	accompanied	by
meta	data	from	one	or	more	porcelains.	A	repository	can	share	an
object	database	with	other	repositories	via	alternates	mechanism.

resolve
The	action	of	fixing	up	manually	what	a	failed	automatic	merge	left
behind.

revision
Synonym	for	commit	(the	noun).

rewind
To	throw	away	part	of	the	development,	i.e.	to	assign	the	head	to	an
earlier	revision.

SCM
Source	code	management	(tool).

SHA-1
"Secure	Hash	Algorithm	1";	a	cryptographic	hash	function.	In	the
context	of	Git	used	as	a	synonym	for	object	name.

shallow	clone
Mostly	a	synonym	to	shallow	repository	but	the	phrase	makes	it
more	explicit	that	it	was	created	by	running	git	clone	--depth=...
command.

shallow	repository
A	shallow	repository	has	an	incomplete	history	some	of	whose
commits	have	parents	cauterized	away	(in	other	words,	Git	is	told	to
pretend	that	these	commits	do	not	have	the	parents,	even	though
they	are	recorded	in	the	commit	object).	This	is	sometimes	useful
when	you	are	interested	only	in	the	recent	history	of	a	project	even
though	the	real	history	recorded	in	the	upstream	is	much	larger.	A
shallow	repository	is	created	by	giving	the	--depth	option	to
Section	G.3.23,	“git-clone(1)”,	and	its	history	can	be	later	deepened
with	Section	G.3.46,	“git-fetch(1)”.

submodule
A	repository	that	holds	the	history	of	a	separate	project	inside
another	repository	(the	latter	of	which	is	called	superproject).

superproject
A	repository	that	references	repositories	of	other	projects	in	its
working	tree	as	submodules.	The	superproject	knows	about	the
names	of	(but	does	not	hold	copies	of)	commit	objects	of	the
contained	submodules.

symref
Symbolic	reference:	instead	of	containing	the	SHA-1	id	itself,	it	is	of
the	format	ref:	refs/some/thing	and	when	referenced,	it	recursively
dereferences	to	this	reference.	HEAD	is	a	prime	example	of	a
symref.	Symbolic	references	are	manipulated	with	the
Section	G.3.133,	“git-symbolic-ref(1)”	command.

tag
A	ref	under	refs/tags/	namespace	that	points	to	an	object	of	an
arbitrary	type	(typically	a	tag	points	to	either	a	tag	or	a	commit
object).	In	contrast	to	a	head,	a	tag	is	not	updated	by	the	commit
command.	A	Git	tag	has	nothing	to	do	with	a	Lisp	tag	(which	would
be	called	an	object	type	in	Git's	context).	A	tag	is	most	typically	used
to	mark	a	particular	point	in	the	commit	ancestry	chain.

tag	object
An	object	containing	a	ref	pointing	to	another	object,	which	can
contain	a	message	just	like	a	commit	object.	It	can	also	contain	a
(PGP)	signature,	in	which	case	it	is	called	a	"signed	tag	object".

topic	branch
A	regular	Git	branch	that	is	used	by	a	developer	to	identify	a

conceptual	line	of	development.	Since	branches	are	very	easy	and
inexpensive,	it	is	often	desirable	to	have	several	small	branches	that
each	contain	very	well	defined	concepts	or	small	incremental	yet
related	changes.

tree
Either	a	working	tree,	or	a	tree	object	together	with	the	dependent
blob	and	tree	objects	(i.e.	a	stored	representation	of	a	working	tree).

tree	object
An	object	containing	a	list	of	file	names	and	modes	along	with	refs	to
the	associated	blob	and/or	tree	objects.	A	tree	is	equivalent	to	a
directory.

tree-ish	(also	treeish)
A	tree	object	or	an	object	that	can	be	recursively	dereferenced	to	a
tree	object.	Dereferencing	a	commit	object	yields	the	tree	object
corresponding	to	the	revision's	top	directory.	The	following	are	all
tree-ishes:	a	commit-ish,	a	tree	object,	a	tag	object	that	points	to	a
tree	object,	a	tag	object	that	points	to	a	tag	object	that	points	to	a
tree	object,	etc.

unmerged	index
An	index	which	contains	unmerged	index	entries.

unreachable	object
An	object	which	is	not	reachable	from	a	branch,	tag,	or	any	other
reference.

upstream	branch
The	default	branch	that	is	merged	into	the	branch	in	question	(or	the
branch	in	question	is	rebased	onto).	It	is	configured	via	branch.
<name>.remote	and	branch.<name>.merge.	If	the	upstream	branch
of	A	is	origin/B	sometimes	we	say	"A	is	tracking	origin/B".

working	tree
The	tree	of	actual	checked	out	files.	The	working	tree	normally
contains	the	contents	of	the	HEAD	commit's	tree,	plus	any	local
changes	that	you	have	made	but	not	yet	committed.

G.1.1.1.	Git	Quick	Reference

This	is	a	quick	summary	of	the	major	commands;	the	previous	chapters
explain	how	these	work	in	more	detail.

1.	Creating	a	new	repository

From	a	tarball:

$	tar	xzf	project.tar.gz

$	cd	project

$	git	init

Initialized	empty	Git	repository	in	.git/

$	git	add	.

$	git	commit

From	a	remote	repository:

$	git	clone	git://example.com/pub/project.git

$	cd	project

2.	Managing	branches

$	git	branch									#	list	all	local	branches	in	this	repo

$	git	checkout	test		#	switch	working	directory	to	branch	"test"

$	git	branch	new					#	create	branch	"new"	starting	at	current	HEAD

$	git	branch	-d	new		#	delete	branch	"new"

Instead	of	basing	a	new	branch	on	current	HEAD	(the	default),	use:

$	git	branch	new	test				#	branch	named	"test"

$	git	branch	new	v2.6.15	#	tag	named	v2.6.15

$	git	branch	new	HEAD^			#	commit	before	the	most	recent

$	git	branch	new	HEAD^^		#	commit	before	that

$	git	branch	new	test~10	#	ten	commits	before	tip	of	branch	"test"

Create	and	switch	to	a	new	branch	at	the	same	time:

$	git	checkout	-b	new	v2.6.15

Update	and	examine	branches	from	the	repository	you	cloned	from:

$	git	fetch													#	update

$	git	branch	-r									#	list

		origin/master

		origin/next

		...

$	git	checkout	-b	masterwork	origin/master

Fetch	a	branch	from	a	different	repository,	and	give	it	a	new	name	in	your
repository:

$	git	fetch	git://example.com/project.git	theirbranch:mybranch

$	git	fetch	git://example.com/project.git	v2.6.15:mybranch

Keep	a	list	of	repositories	you	work	with	regularly:

$	git	remote	add	example	git://example.com/project.git

$	git	remote																				#	list	remote	repositories

example

origin

$	git	remote	show	example							#	get	details

*	remote	example

		URL:	git://example.com/project.git

		Tracked	remote	branches

				master

				next

				...

$	git	fetch	example													#	update	branches	from	example

$	git	branch	-r																	#	list	all	remote	branches

3.	Exploring	history

$	gitk																						#	visualize	and	browse	history

$	git	log																			#	list	all	commits

$	git	log	src/														#	...modifying	src/

$	git	log	v2.6.15..v2.6.16		#	...in	v2.6.16,	not	in	v2.6.15

$	git	log	master..test						#	...in	branch	test,	not	in	branch	master

$	git	log	test..master						#	...in	branch	master,	but	not	in	test

$	git	log	test...master					#	...in	one	branch,	not	in	both

$	git	log	-S'foo()'									#	...where	difference	contain	"foo()"

$	git	log	--since="2	weeks	ago"

$	git	log	-p																#	show	patches	as	well

$	git	show																		#	most	recent	commit

$	git	diff	v2.6.15..v2.6.16	#	diff	between	two	tagged	versions

$	git	diff	v2.6.15..HEAD				#	diff	with	current	head

$	git	grep	"foo()"										#	search	working	directory	for	"foo()"

$	git	grep	v2.6.15	"foo()"		#	search	old	tree	for	"foo()"

$	git	show	v2.6.15:a.txt				#	look	at	old	version	of	a.txt

Search	for	regressions:

$	git	bisect	start

$	git	bisect	bad																#	current	version	is	bad

$	git	bisect	good	v2.6.13-rc2			#	last	known	good	revision

Bisecting:	675	revisions	left	to	test	after	this

																																#	test	here,	then:

$	git	bisect	good															#	if	this	revision	is	good,	or

$	git	bisect	bad																#	if	this	revision	is	bad.

																																#	repeat	until	done.

4.	Making	changes

Make	sure	Git	knows	who	to	blame:

$	cat	>>~/.gitconfig	<<\EOF

[user]

								name	=	Your	Name	Comes	Here

								email	=	you@yourdomain.example.com

EOF

Select	file	contents	to	include	in	the	next	commit,	then	make	the	commit:

$	git	add	a.txt				#	updated	file

$	git	add	b.txt				#	new	file

$	git	rm	c.txt					#	old	file

$	git	commit

Or,	prepare	and	create	the	commit	in	one	step:

$	git	commit	d.txt	#	use	latest	content	only	of	d.txt

$	git	commit	-a				#	use	latest	content	of	all	tracked	files

5.	Merging

$	git	merge	test			#	merge	branch	"test"	into	the	current	branch

$	git	pull	git://example.com/project.git	master

																			#	fetch	and	merge	in	remote	branch

$	git	pull	.	test		#	equivalent	to	git	merge	test

6.	Sharing	your	changes

Importing	or	exporting	patches:

$	git	format-patch	origin..HEAD	#	format	a	patch	for	each	commit

																																#	in	HEAD	but	not	in	origin

$	git	am	mbox	#	import	patches	from	the	mailbox	"mbox"

Fetch	a	branch	in	a	different	Git	repository,	then	merge	into	the	current
branch:

$	git	pull	git://example.com/project.git	theirbranch

Store	the	fetched	branch	into	a	local	branch	before	merging	into	the
current	branch:

$	git	pull	git://example.com/project.git	theirbranch:mybranch

After	creating	commits	on	a	local	branch,	update	the	remote	branch	with
your	commits:

$	git	push	ssh://example.com/project.git	mybranch:theirbranch

When	remote	and	local	branch	are	both	named	"test":

$	git	push	ssh://example.com/project.git	test

Shortcut	version	for	a	frequently	used	remote	repository:

$	git	remote	add	example	ssh://example.com/project.git

$	git	push	example	test

7.	Repository	maintenance

Check	for	corruption:

$	git	fsck

Recompress,	remove	unused	cruft:

$	git	gc

G.1.1.2.	Notes	and	todo	list	for	this	manual

This	is	a	work	in	progress.

The	basic	requirements:

It	must	be	readable	in	order,	from	beginning	to	end,	by	someone
intelligent	with	a	basic	grasp	of	the	UNIX	command	line,	but	without
any	special	knowledge	of	Git.	If	necessary,	any	other	prerequisites
should	be	specifically	mentioned	as	they	arise.
Whenever	possible,	section	headings	should	clearly	describe	the
task	they	explain	how	to	do,	in	language	that	requires	no	more
knowledge	than	necessary:	for	example,	"importing	patches	into	a
project"	rather	than	"the	git	am	command"

Think	about	how	to	create	a	clear	chapter	dependency	graph	that	will
allow	people	to	get	to	important	topics	without	necessarily	reading
everything	in	between.

Scan	Documentation/	for	other	stuff	left	out;	in	particular:

howto's
some	of	technical/?
hooks
list	of	commands	in	Section	G.3.1,	“git(1)”

Scan	email	archives	for	other	stuff	left	out

Scan	man	pages	to	see	if	any	assume	more	background	than	this
manual	provides.

Add	more	good	examples.	Entire	sections	of	just	cookbook	examples
might	be	a	good	idea;	maybe	make	an	"advanced	examples"	section	a
standard	end-of-chapter	section?

Include	cross-references	to	the	glossary,	where	appropriate.

Add	a	section	on	working	with	other	version	control	systems,	including
CVS,	Subversion,	and	just	imports	of	series	of	release	tarballs.

Write	a	chapter	on	using	plumbing	and	writing	scripts.

Alternates,	clone	-reference,	etc.

More	on	recovery	from	repository	corruption.	See:	http://marc.info/?
l=git&m=117263864820799&w=2	http://marc.info/?
l=git&m=117147855503798&w=2

Prev	 	 	Next
F.2.	FAQ	and	examples
section	 Home 	2.	Exploring	Git	history

http://marc.info/?l=git&m=117263864820799&w=2
http://marc.info/?l=git&m=117147855503798&w=2

G.2.	Git	Tutorial
Prev	 Appendix	G.	Git	Offical	Documentation 	Next

G.2.	Git	Tutorial

G.2.1.	gittutorial(7)

NAME

gittutorial	-	A	tutorial	introduction	to	Git

SYNOPSIS

git	*

DESCRIPTION

This	tutorial	explains	how	to	import	a	new	project	into	Git,	make	changes
to	it,	and	share	changes	with	other	developers.

If	you	are	instead	primarily	interested	in	using	Git	to	fetch	a	project,	for
example,	to	test	the	latest	version,	you	may	prefer	to	start	with	the	first
two	chapters	of	The	Git	User's	Manual.

First,	note	that	you	can	get	documentation	for	a	command	such	as	git	log
--graph	with:

$	man	git-log

or:

$	git	help	log

With	the	latter,	you	can	use	the	manual	viewer	of	your	choice;	see
Section	G.3.58,	“git-help(1)”	for	more	information.

It	is	a	good	idea	to	introduce	yourself	to	Git	with	your	name	and	public

https://www.kernel.org/pub/software/scm/git/docs/user-manual.html

email	address	before	doing	any	operation.	The	easiest	way	to	do	so	is:

$	git	config	--global	user.name	"Your	Name	Comes	Here"

$	git	config	--global	user.email	you@yourdomain.example.com

Importing	a	new	project

Assume	you	have	a	tarball	project.tar.gz	with	your	initial	work.	You	can
place	it	under	Git	revision	control	as	follows.

$	tar	xzf	project.tar.gz

$	cd	project

$	git	init

Git	will	reply

Initialized	empty	Git	repository	in	.git/

You've	now	initialized	the	working	directory--you	may	notice	a	new
directory	created,	named	".git".

Next,	tell	Git	to	take	a	snapshot	of	the	contents	of	all	files	under	the
current	directory	(note	the	.),	with	git	add:

$	git	add	.

This	snapshot	is	now	stored	in	a	temporary	staging	area	which	Git	calls
the	"index".	You	can	permanently	store	the	contents	of	the	index	in	the
repository	with	git	commit:

$	git	commit

This	will	prompt	you	for	a	commit	message.	You've	now	stored	the	first
version	of	your	project	in	Git.

Making	changes

Modify	some	files,	then	add	their	updated	contents	to	the	index:

$	git	add	file1	file2	file3

You	are	now	ready	to	commit.	You	can	see	what	is	about	to	be	committed
using	git	diff	with	the	--cached	option:

$	git	diff	--cached

(Without	--cached,	git	diff	will	show	you	any	changes	that	you've	made
but	not	yet	added	to	the	index.)	You	can	also	get	a	brief	summary	of	the
situation	with	git	status:

$	git	status

On	branch	master

Changes	to	be	committed:

Your	branch	is	up-to-date	with	'origin/master'.

		(use	"git	reset	HEAD	<file>..."	to	unstage)

								modified:			file1

								modified:			file2

								modified:			file3

If	you	need	to	make	any	further	adjustments,	do	so	now,	and	then	add
any	newly	modified	content	to	the	index.	Finally,	commit	your	changes
with:

$	git	commit

This	will	again	prompt	you	for	a	message	describing	the	change,	and
then	record	a	new	version	of	the	project.

Alternatively,	instead	of	running	git	add	beforehand,	you	can	use

$	git	commit	-a

which	will	automatically	notice	any	modified	(but	not	new)	files,	add	them
to	the	index,	and	commit,	all	in	one	step.

A	note	on	commit	messages:	Though	not	required,	it's	a	good	idea	to
begin	the	commit	message	with	a	single	short	(less	than	50	character)
line	summarizing	the	change,	followed	by	a	blank	line	and	then	a	more
thorough	description.	The	text	up	to	the	first	blank	line	in	a	commit
message	is	treated	as	the	commit	title,	and	that	title	is	used	throughout
Git.	For	example,	Section	G.3.50,	“git-format-patch(1)”	turns	a	commit
into	email,	and	it	uses	the	title	on	the	Subject	line	and	the	rest	of	the
commit	in	the	body.

Git	tracks	content	not	files

Many	revision	control	systems	provide	an	add	command	that	tells	the
system	to	start	tracking	changes	to	a	new	file.	Git's	add	command	does
something	simpler	and	more	powerful:	git	add	is	used	both	for	new	and
newly	modified	files,	and	in	both	cases	it	takes	a	snapshot	of	the	given
files	and	stages	that	content	in	the	index,	ready	for	inclusion	in	the	next
commit.

Viewing	project	history

At	any	point	you	can	view	the	history	of	your	changes	using

$	git	log

If	you	also	want	to	see	complete	diffs	at	each	step,	use

$	git	log	-p

Often	the	overview	of	the	change	is	useful	to	get	a	feel	of	each	step

$	git	log	--stat	--summary

Managing	branches

A	single	Git	repository	can	maintain	multiple	branches	of	development.	To
create	a	new	branch	named	"experimental",	use

$	git	branch	experimental

If	you	now	run

$	git	branch

you'll	get	a	list	of	all	existing	branches:

		experimental

*	master

The	"experimental"	branch	is	the	one	you	just	created,	and	the	"master"
branch	is	a	default	branch	that	was	created	for	you	automatically.	The
asterisk	marks	the	branch	you	are	currently	on;	type

$	git	checkout	experimental

to	switch	to	the	experimental	branch.	Now	edit	a	file,	commit	the	change,
and	switch	back	to	the	master	branch:

(edit	file)

$	git	commit	-a

$	git	checkout	master

Check	that	the	change	you	made	is	no	longer	visible,	since	it	was	made
on	the	experimental	branch	and	you're	back	on	the	master	branch.

You	can	make	a	different	change	on	the	master	branch:

(edit	file)

$	git	commit	-a

at	this	point	the	two	branches	have	diverged,	with	different	changes
made	in	each.	To	merge	the	changes	made	in	experimental	into	master,
run

$	git	merge	experimental

If	the	changes	don't	conflict,	you're	done.	If	there	are	conflicts,	markers
will	be	left	in	the	problematic	files	showing	the	conflict;

$	git	diff

will	show	this.	Once	you've	edited	the	files	to	resolve	the	conflicts,

$	git	commit	-a

will	commit	the	result	of	the	merge.	Finally,

$	gitk

will	show	a	nice	graphical	representation	of	the	resulting	history.

At	this	point	you	could	delete	the	experimental	branch	with

$	git	branch	-d	experimental

This	command	ensures	that	the	changes	in	the	experimental	branch	are
already	in	the	current	branch.

If	you	develop	on	a	branch	crazy-idea,	then	regret	it,	you	can	always
delete	the	branch	with

$	git	branch	-D	crazy-idea

Branches	are	cheap	and	easy,	so	this	is	a	good	way	to	try	something	out.

Using	Git	for	collaboration

Suppose	that	Alice	has	started	a	new	project	with	a	Git	repository	in
/home/alice/project,	and	that	Bob,	who	has	a	home	directory	on	the	same
machine,	wants	to	contribute.

Bob	begins	with:

bob$	git	clone	/home/alice/project	myrepo

This	creates	a	new	directory	"myrepo"	containing	a	clone	of	Alice's
repository.	The	clone	is	on	an	equal	footing	with	the	original	project,
possessing	its	own	copy	of	the	original	project's	history.

Bob	then	makes	some	changes	and	commits	them:

(edit	files)

bob$	git	commit	-a

(repeat	as	necessary)

When	he's	ready,	he	tells	Alice	to	pull	changes	from	the	repository	at
/home/bob/myrepo.	She	does	this	with:

alice$	cd	/home/alice/project

alice$	git	pull	/home/bob/myrepo	master

This	merges	the	changes	from	Bob's	"master"	branch	into	Alice's	current
branch.	If	Alice	has	made	her	own	changes	in	the	meantime,	then	she
may	need	to	manually	fix	any	conflicts.

The	"pull"	command	thus	performs	two	operations:	it	fetches	changes
from	a	remote	branch,	then	merges	them	into	the	current	branch.

Note	that	in	general,	Alice	would	want	her	local	changes	committed
before	initiating	this	"pull".	If	Bob's	work	conflicts	with	what	Alice	did	since
their	histories	forked,	Alice	will	use	her	working	tree	and	the	index	to
resolve	conflicts,	and	existing	local	changes	will	interfere	with	the	conflict

resolution	process	(Git	will	still	perform	the	fetch	but	will	refuse	to	merge	-
--	Alice	will	have	to	get	rid	of	her	local	changes	in	some	way	and	pull
again	when	this	happens).

Alice	can	peek	at	what	Bob	did	without	merging	first,	using	the	"fetch"
command;	this	allows	Alice	to	inspect	what	Bob	did,	using	a	special
symbol	"FETCH_HEAD",	in	order	to	determine	if	he	has	anything	worth
pulling,	like	this:

alice$	git	fetch	/home/bob/myrepo	master

alice$	git	log	-p	HEAD..FETCH_HEAD

This	operation	is	safe	even	if	Alice	has	uncommitted	local	changes.	The
range	notation	"HEAD..FETCH_HEAD"	means	"show	everything	that	is
reachable	from	the	FETCH_HEAD	but	exclude	anything	that	is	reachable
from	HEAD".	Alice	already	knows	everything	that	leads	to	her	current
state	(HEAD),	and	reviews	what	Bob	has	in	his	state	(FETCH_HEAD)
that	she	has	not	seen	with	this	command.

If	Alice	wants	to	visualize	what	Bob	did	since	their	histories	forked	she
can	issue	the	following	command:

$	gitk	HEAD..FETCH_HEAD

This	uses	the	same	two-dot	range	notation	we	saw	earlier	with	git	log.

Alice	may	want	to	view	what	both	of	them	did	since	they	forked.	She	can
use	three-dot	form	instead	of	the	two-dot	form:

$	gitk	HEAD...FETCH_HEAD

This	means	"show	everything	that	is	reachable	from	either	one,	but
exclude	anything	that	is	reachable	from	both	of	them".

Please	note	that	these	range	notation	can	be	used	with	both	gitk	and	"git
log".

After	inspecting	what	Bob	did,	if	there	is	nothing	urgent,	Alice	may	decide
to	continue	working	without	pulling	from	Bob.	If	Bob's	history	does	have
something	Alice	would	immediately	need,	Alice	may	choose	to	stash	her
work-in-progress	first,	do	a	"pull",	and	then	finally	unstash	her	work-in-
progress	on	top	of	the	resulting	history.

When	you	are	working	in	a	small	closely	knit	group,	it	is	not	unusual	to
interact	with	the	same	repository	over	and	over	again.	By	defining	remote
repository	shorthand,	you	can	make	it	easier:

alice$	git	remote	add	bob	/home/bob/myrepo

With	this,	Alice	can	perform	the	first	part	of	the	"pull"	operation	alone
using	the	git	fetch	command	without	merging	them	with	her	own	branch,
using:

alice$	git	fetch	bob

Unlike	the	longhand	form,	when	Alice	fetches	from	Bob	using	a	remote
repository	shorthand	set	up	with	git	remote,	what	was	fetched	is	stored	in
a	remote-tracking	branch,	in	this	case	bob/master.	So	after	this:

alice$	git	log	-p	master..bob/master

shows	a	list	of	all	the	changes	that	Bob	made	since	he	branched	from
Alice's	master	branch.

After	examining	those	changes,	Alice	could	merge	the	changes	into	her
master	branch:

alice$	git	merge	bob/master

This	merge	can	also	be	done	by	pulling	from	her	own	remote-tracking
branch,	like	this:

alice$	git	pull	.	remotes/bob/master

Note	that	git	pull	always	merges	into	the	current	branch,	regardless	of
what	else	is	given	on	the	command	line.

Later,	Bob	can	update	his	repo	with	Alice's	latest	changes	using

bob$	git	pull

Note	that	he	doesn't	need	to	give	the	path	to	Alice's	repository;	when	Bob
cloned	Alice's	repository,	Git	stored	the	location	of	her	repository	in	the
repository	configuration,	and	that	location	is	used	for	pulls:

bob$	git	config	--get	remote.origin.url

/home/alice/project

(The	complete	configuration	created	by	git	clone	is	visible	using	git	config
-l,	and	the	Section	G.3.27,	“git-config(1)”	man	page	explains	the	meaning
of	each	option.)

Git	also	keeps	a	pristine	copy	of	Alice's	master	branch	under	the	name
"origin/master":

bob$	git	branch	-r

		origin/master

If	Bob	later	decides	to	work	from	a	different	host,	he	can	still	perform
clones	and	pulls	using	the	ssh	protocol:

bob$	git	clone	alice.org:/home/alice/project	myrepo

Alternatively,	Git	has	a	native	protocol,	or	can	use	http;	see
Section	G.3.95,	“git-pull(1)”	for	details.

Git	can	also	be	used	in	a	CVS-like	mode,	with	a	central	repository	that
various	users	push	changes	to;	see	Section	G.3.96,	“git-push(1)”	and
Section	G.2.4,	“gitcvs-migration(7)”.

Exploring	history

Git	history	is	represented	as	a	series	of	interrelated	commits.	We	have
already	seen	that	the	git	log	command	can	list	those	commits.	Note	that
first	line	of	each	git	log	entry	also	gives	a	name	for	the	commit:

$	git	log

commit	c82a22c39cbc32576f64f5c6b3f24b99ea8149c7

Author:	Junio	C	Hamano	<junkio@cox.net>

Date:			Tue	May	16	17:18:22	2006	-0700

				merge-base:	Clarify	the	comments	on	post	processing.

We	can	give	this	name	to	git	show	to	see	the	details	about	this	commit.

$	git	show	c82a22c39cbc32576f64f5c6b3f24b99ea8149c7

But	there	are	other	ways	to	refer	to	commits.	You	can	use	any	initial	part
of	the	name	that	is	long	enough	to	uniquely	identify	the	commit:

$	git	show	c82a22c39c			#	the	first	few	characters	of	the	name	are

																								#	usually	enough

$	git	show	HEAD									#	the	tip	of	the	current	branch

$	git	show	experimental	#	the	tip	of	the	"experimental"	branch

Every	commit	usually	has	one	"parent"	commit	which	points	to	the
previous	state	of	the	project:

$	git	show	HEAD^		#	to	see	the	parent	of	HEAD

$	git	show	HEAD^^	#	to	see	the	grandparent	of	HEAD

$	git	show	HEAD~4	#	to	see	the	great-great	grandparent	of	HEAD

Note	that	merge	commits	may	have	more	than	one	parent:

$	git	show	HEAD^1	#	show	the	first	parent	of	HEAD	(same	as	HEAD^)

$	git	show	HEAD^2	#	show	the	second	parent	of	HEAD

You	can	also	give	commits	names	of	your	own;	after	running

$	git	tag	v2.5	1b2e1d63ff

you	can	refer	to	1b2e1d63ff	by	the	name	"v2.5".	If	you	intend	to	share
this	name	with	other	people	(for	example,	to	identify	a	release	version),
you	should	create	a	"tag"	object,	and	perhaps	sign	it;	see
Section	G.3.134,	“git-tag(1)”	for	details.

Any	Git	command	that	needs	to	know	a	commit	can	take	any	of	these
names.	For	example:

$	git	diff	v2.5	HEAD					#	compare	the	current	HEAD	to	v2.5

$	git	branch	stable	v2.5	#	start	a	new	branch	named	"stable"	based

																									#	at	v2.5

$	git	reset	--hard	HEAD^	#	reset	your	current	branch	and	working

																									#	directory	to	its	state	at	HEAD^

Be	careful	with	that	last	command:	in	addition	to	losing	any	changes	in
the	working	directory,	it	will	also	remove	all	later	commits	from	this
branch.	If	this	branch	is	the	only	branch	containing	those	commits,	they
will	be	lost.	Also,	don't	use	git	reset	on	a	publicly-visible	branch	that	other
developers	pull	from,	as	it	will	force	needless	merges	on	other
developers	to	clean	up	the	history.	If	you	need	to	undo	changes	that	you
have	pushed,	use	git	revert	instead.

The	git	grep	command	can	search	for	strings	in	any	version	of	your
project,	so

$	git	grep	"hello"	v2.5

searches	for	all	occurrences	of	"hello"	in	v2.5.

If	you	leave	out	the	commit	name,	git	grep	will	search	any	of	the	files	it
manages	in	your	current	directory.	So

$	git	grep	"hello"

is	a	quick	way	to	search	just	the	files	that	are	tracked	by	Git.

Many	Git	commands	also	take	sets	of	commits,	which	can	be	specified	in
a	number	of	ways.	Here	are	some	examples	with	git	log:

$	git	log	v2.5..v2.6												#	commits	between	v2.5	and	v2.6

$	git	log	v2.5..																#	commits	since	v2.5

$	git	log	--since="2	weeks	ago"	#	commits	from	the	last	2	weeks

$	git	log	v2.5..	Makefile							#	commits	since	v2.5	which	modify

																																#	Makefile

You	can	also	give	git	log	a	"range"	of	commits	where	the	first	is	not
necessarily	an	ancestor	of	the	second;	for	example,	if	the	tips	of	the
branches	"stable"	and	"master"	diverged	from	a	common	commit	some
time	ago,	then

$	git	log	stable..master

will	list	commits	made	in	the	master	branch	but	not	in	the	stable	branch,
while

$	git	log	master..stable

will	show	the	list	of	commits	made	on	the	stable	branch	but	not	the
master	branch.

The	git	log	command	has	a	weakness:	it	must	present	commits	in	a	list.
When	the	history	has	lines	of	development	that	diverged	and	then
merged	back	together,	the	order	in	which	git	log	presents	those	commits
is	meaningless.

Most	projects	with	multiple	contributors	(such	as	the	Linux	kernel,	or	Git
itself)	have	frequent	merges,	and	gitk	does	a	better	job	of	visualizing	their
history.	For	example,

$	gitk	--since="2	weeks	ago"	drivers/

allows	you	to	browse	any	commits	from	the	last	2	weeks	of	commits	that
modified	files	under	the	"drivers"	directory.	(Note:	you	can	adjust	gitk's
fonts	by	holding	down	the	control	key	while	pressing	"-"	or	"+".)

Finally,	most	commands	that	take	filenames	will	optionally	allow	you	to
precede	any	filename	by	a	commit,	to	specify	a	particular	version	of	the
file:

$	git	diff	v2.5:Makefile	HEAD:Makefile.in

You	can	also	use	git	show	to	see	any	such	file:

$	git	show	v2.5:Makefile

Next	Steps

This	tutorial	should	be	enough	to	perform	basic	distributed	revision
control	for	your	projects.	However,	to	fully	understand	the	depth	and
power	of	Git	you	need	to	understand	two	simple	ideas	on	which	it	is
based:

The	object	database	is	the	rather	elegant	system	used	to	store	the
history	of	your	project--files,	directories,	and	commits.
The	index	file	is	a	cache	of	the	state	of	a	directory	tree,	used	to
create	commits,	check	out	working	directories,	and	hold	the	various
trees	involved	in	a	merge.

Part	two	of	this	tutorial	explains	the	object	database,	the	index	file,	and	a
few	other	odds	and	ends	that	you'll	need	to	make	the	most	of	Git.	You
can	find	it	at	Section	G.2.2,	“gittutorial-2(7)”.

If	you	don't	want	to	continue	with	that	right	away,	a	few	other	digressions
that	may	be	interesting	at	this	point	are:

Section	G.3.50,	“git-format-patch(1)”,	Section	G.3.3,	“git-am(1)”:
These	convert	series	of	git	commits	into	emailed	patches,	and	vice
versa,	useful	for	projects	such	as	the	Linux	kernel	which	rely	heavily
on	emailed	patches.
Section	G.3.8,	“git-bisect(1)”:	When	there	is	a	regression	in	your
project,	one	way	to	track	down	the	bug	is	by	searching	through	the
history	to	find	the	exact	commit	that's	to	blame.	Git	bisect	can	help
you	perform	a	binary	search	for	that	commit.	It	is	smart	enough	to
perform	a	close-to-optimal	search	even	in	the	case	of	complex	non-
linear	history	with	lots	of	merged	branches.
Section	G.4.15,	“gitworkflows(7)”:	Gives	an	overview	of
recommended	workflows.
Section	G.2.5,	“giteveryday(7)”:	Everyday	Git	with	20	Commands	Or
So.
Section	G.2.4,	“gitcvs-migration(7)”:	Git	for	CVS	users.

SEE	ALSO

Section	G.2.2,	“gittutorial-2(7)”,	Section	G.2.4,	“gitcvs-migration(7)”,
Section	G.2.3,	“gitcore-tutorial(7)”,	Section	G.4.16,	“gitglossary(7)”,
Section	G.3.58,	“git-help(1)”,	Section	G.4.15,	“gitworkflows(7)”,
Section	G.2.5,	“giteveryday(7)”,	The	Git	User's	Manual

GIT

Part	of	the	Section	G.3.1,	“git(1)”	suite.

G.2.2.	gittutorial-2(7)

NAME

gittutorial-2	-	A	tutorial	introduction	to	Git:	part	two

SYNOPSIS

git	*

https://www.kernel.org/pub/software/scm/git/docs/user-manual.html

DESCRIPTION

You	should	work	through	Section	G.2.1,	“gittutorial(7)”	before	reading	this
tutorial.

The	goal	of	this	tutorial	is	to	introduce	two	fundamental	pieces	of	Git's
architecture--the	object	database	and	the	index	file--and	to	provide	the
reader	with	everything	necessary	to	understand	the	rest	of	the	Git
documentation.

The	Git	object	database

Let's	start	a	new	project	and	create	a	small	amount	of	history:

$	mkdir	test-project

$	cd	test-project

$	git	init

Initialized	empty	Git	repository	in	.git/

$	echo	'hello	world'	>	file.txt

$	git	add	.

$	git	commit	-a	-m	"initial	commit"

[master	(root-commit)	54196cc]	initial	commit

	1	file	changed,	1	insertion(+)

	create	mode	100644	file.txt

$	echo	'hello	world!'	>file.txt

$	git	commit	-a	-m	"add	emphasis"

[master	c4d59f3]	add	emphasis

	1	file	changed,	1	insertion(+),	1	deletion(-)

What	are	the	7	digits	of	hex	that	Git	responded	to	the	commit	with?

We	saw	in	part	one	of	the	tutorial	that	commits	have	names	like	this.	It
turns	out	that	every	object	in	the	Git	history	is	stored	under	a	40-digit	hex
name.	That	name	is	the	SHA-1	hash	of	the	object's	contents;	among
other	things,	this	ensures	that	Git	will	never	store	the	same	data	twice
(since	identical	data	is	given	an	identical	SHA-1	name),	and	that	the
contents	of	a	Git	object	will	never	change	(since	that	would	change	the
object's	name	as	well).	The	7	char	hex	strings	here	are	simply	the
abbreviation	of	such	40	character	long	strings.	Abbreviations	can	be	used

everywhere	where	the	40	character	strings	can	be	used,	so	long	as	they
are	unambiguous.

It	is	expected	that	the	content	of	the	commit	object	you	created	while
following	the	example	above	generates	a	different	SHA-1	hash	than	the
one	shown	above	because	the	commit	object	records	the	time	when	it
was	created	and	the	name	of	the	person	performing	the	commit.

We	can	ask	Git	about	this	particular	object	with	the	cat-file	command.
Don't	copy	the	40	hex	digits	from	this	example	but	use	those	from	your
own	version.	Note	that	you	can	shorten	it	to	only	a	few	characters	to	save
yourself	typing	all	40	hex	digits:

$	git	cat-file	-t	54196cc2

commit

$	git	cat-file	commit	54196cc2

tree	92b8b694ffb1675e5975148e1121810081dbdffe

author	J.	Bruce	Fields	<bfields@puzzle.fieldses.org>	1143414668	-0500

committer	J.	Bruce	Fields	<bfields@puzzle.fieldses.org>	1143414668	-0500

initial	commit

A	tree	can	refer	to	one	or	more	"blob"	objects,	each	corresponding	to	a
file.	In	addition,	a	tree	can	also	refer	to	other	tree	objects,	thus	creating	a
directory	hierarchy.	You	can	examine	the	contents	of	any	tree	using	ls-
tree	(remember	that	a	long	enough	initial	portion	of	the	SHA-1	will	also
work):

$	git	ls-tree	92b8b694

100644	blob	3b18e512dba79e4c8300dd08aeb37f8e728b8dad				file.txt

Thus	we	see	that	this	tree	has	one	file	in	it.	The	SHA-1	hash	is	a
reference	to	that	file's	data:

$	git	cat-file	-t	3b18e512

blob

A	"blob"	is	just	file	data,	which	we	can	also	examine	with	cat-file:

$	git	cat-file	blob	3b18e512

hello	world

Note	that	this	is	the	old	file	data;	so	the	object	that	Git	named	in	its
response	to	the	initial	tree	was	a	tree	with	a	snapshot	of	the	directory
state	that	was	recorded	by	the	first	commit.

All	of	these	objects	are	stored	under	their	SHA-1	names	inside	the	Git
directory:

$	find	.git/objects/

.git/objects/

.git/objects/pack

.git/objects/info

.git/objects/3b

.git/objects/3b/18e512dba79e4c8300dd08aeb37f8e728b8dad

.git/objects/92

.git/objects/92/b8b694ffb1675e5975148e1121810081dbdffe

.git/objects/54

.git/objects/54/196cc2703dc165cbd373a65a4dcf22d50ae7f7

.git/objects/a0

.git/objects/a0/423896973644771497bdc03eb99d5281615b51

.git/objects/d0

.git/objects/d0/492b368b66bdabf2ac1fd8c92b39d3db916e59

.git/objects/c4

.git/objects/c4/d59f390b9cfd4318117afde11d601c1085f241

and	the	contents	of	these	files	is	just	the	compressed	data	plus	a	header
identifying	their	length	and	their	type.	The	type	is	either	a	blob,	a	tree,	a
commit,	or	a	tag.

The	simplest	commit	to	find	is	the	HEAD	commit,	which	we	can	find	from
.git/HEAD:

$	cat	.git/HEAD

ref:	refs/heads/master

As	you	can	see,	this	tells	us	which	branch	we're	currently	on,	and	it	tells

us	this	by	naming	a	file	under	the	.git	directory,	which	itself	contains	a
SHA-1	name	referring	to	a	commit	object,	which	we	can	examine	with
cat-file:

$	cat	.git/refs/heads/master

c4d59f390b9cfd4318117afde11d601c1085f241

$	git	cat-file	-t	c4d59f39

commit

$	git	cat-file	commit	c4d59f39

tree	d0492b368b66bdabf2ac1fd8c92b39d3db916e59

parent	54196cc2703dc165cbd373a65a4dcf22d50ae7f7

author	J.	Bruce	Fields	<bfields@puzzle.fieldses.org>	1143418702	-0500

committer	J.	Bruce	Fields	<bfields@puzzle.fieldses.org>	1143418702	-0500

add	emphasis

The	"tree"	object	here	refers	to	the	new	state	of	the	tree:

$	git	ls-tree	d0492b36

100644	blob	a0423896973644771497bdc03eb99d5281615b51				file.txt

$	git	cat-file	blob	a0423896

hello	world!

and	the	"parent"	object	refers	to	the	previous	commit:

$	git	cat-file	commit	54196cc2

tree	92b8b694ffb1675e5975148e1121810081dbdffe

author	J.	Bruce	Fields	<bfields@puzzle.fieldses.org>	1143414668	-0500

committer	J.	Bruce	Fields	<bfields@puzzle.fieldses.org>	1143414668	-0500

initial	commit

The	tree	object	is	the	tree	we	examined	first,	and	this	commit	is	unusual
in	that	it	lacks	any	parent.

Most	commits	have	only	one	parent,	but	it	is	also	common	for	a	commit
to	have	multiple	parents.	In	that	case	the	commit	represents	a	merge,
with	the	parent	references	pointing	to	the	heads	of	the	merged	branches.

Besides	blobs,	trees,	and	commits,	the	only	remaining	type	of	object	is	a
"tag",	which	we	won't	discuss	here;	refer	to	Section	G.3.134,	“git-tag(1)”
for	details.

So	now	we	know	how	Git	uses	the	object	database	to	represent	a
project's	history:

"commit"	objects	refer	to	"tree"	objects	representing	the	snapshot	of
a	directory	tree	at	a	particular	point	in	the	history,	and	refer	to
"parent"	commits	to	show	how	they're	connected	into	the	project
history.
"tree"	objects	represent	the	state	of	a	single	directory,	associating
directory	names	to	"blob"	objects	containing	file	data	and	"tree"
objects	containing	subdirectory	information.
"blob"	objects	contain	file	data	without	any	other	structure.
References	to	commit	objects	at	the	head	of	each	branch	are	stored
in	files	under	.git/refs/heads/.
The	name	of	the	current	branch	is	stored	in	.git/HEAD.

Note,	by	the	way,	that	lots	of	commands	take	a	tree	as	an	argument.	But
as	we	can	see	above,	a	tree	can	be	referred	to	in	many	different	ways--
by	the	SHA-1	name	for	that	tree,	by	the	name	of	a	commit	that	refers	to
the	tree,	by	the	name	of	a	branch	whose	head	refers	to	that	tree,	etc.--
and	most	such	commands	can	accept	any	of	these	names.

In	command	synopses,	the	word	"tree-ish"	is	sometimes	used	to
designate	such	an	argument.

The	index	file

The	primary	tool	we've	been	using	to	create	commits	is	git-commit	-a,
which	creates	a	commit	including	every	change	you've	made	to	your
working	tree.	But	what	if	you	want	to	commit	changes	only	to	certain
files?	Or	only	certain	changes	to	certain	files?

If	we	look	at	the	way	commits	are	created	under	the	cover,	we'll	see	that
there	are	more	flexible	ways	creating	commits.

Continuing	with	our	test-project,	let's	modify	file.txt	again:

$	echo	"hello	world,	again"	>>file.txt

but	this	time	instead	of	immediately	making	the	commit,	let's	take	an
intermediate	step,	and	ask	for	diffs	along	the	way	to	keep	track	of	what's
happening:

$	git	diff

---	a/file.txt

+++	b/file.txt

@@	-1	+1,2	@@

	hello	world!

+hello	world,	again

$	git	add	file.txt

$	git	diff

The	last	diff	is	empty,	but	no	new	commits	have	been	made,	and	the
head	still	doesn't	contain	the	new	line:

$	git	diff	HEAD

diff	--git	a/file.txt	b/file.txt

index	a042389..513feba	100644

---	a/file.txt

+++	b/file.txt

@@	-1	+1,2	@@

	hello	world!

+hello	world,	again

So	git	diff	is	comparing	against	something	other	than	the	head.	The	thing
that	it's	comparing	against	is	actually	the	index	file,	which	is	stored	in
.git/index	in	a	binary	format,	but	whose	contents	we	can	examine	with	ls-
files:

$	git	ls-files	--stage

100644	513feba2e53ebbd2532419ded848ba19de88ba00	0							file.txt

$	git	cat-file	-t	513feba2

blob

$	git	cat-file	blob	513feba2

hello	world!

hello	world,	again

So	what	our	git	add	did	was	store	a	new	blob	and	then	put	a	reference	to
it	in	the	index	file.	If	we	modify	the	file	again,	we'll	see	that	the	new
modifications	are	reflected	in	the	git	diff	output:

$	echo	'again?'	>>file.txt

$	git	diff

index	513feba..ba3da7b	100644

---	a/file.txt

+++	b/file.txt

@@	-1,2	+1,3	@@

	hello	world!

	hello	world,	again

+again?

With	the	right	arguments,	git	diff	can	also	show	us	the	difference	between
the	working	directory	and	the	last	commit,	or	between	the	index	and	the
last	commit:

$	git	diff	HEAD

diff	--git	a/file.txt	b/file.txt

index	a042389..ba3da7b	100644

---	a/file.txt

+++	b/file.txt

@@	-1	+1,3	@@

	hello	world!

+hello	world,	again

+again?

$	git	diff	--cached

diff	--git	a/file.txt	b/file.txt

index	a042389..513feba	100644

---	a/file.txt

+++	b/file.txt

@@	-1	+1,2	@@

	hello	world!

+hello	world,	again

At	any	time,	we	can	create	a	new	commit	using	git	commit	(without	the	"-
a"	option),	and	verify	that	the	state	committed	only	includes	the	changes
stored	in	the	index	file,	not	the	additional	change	that	is	still	only	in	our

working	tree:

$	git	commit	-m	"repeat"

$	git	diff	HEAD

diff	--git	a/file.txt	b/file.txt

index	513feba..ba3da7b	100644

---	a/file.txt

+++	b/file.txt

@@	-1,2	+1,3	@@

	hello	world!

	hello	world,	again

+again?

So	by	default	git	commit	uses	the	index	to	create	the	commit,	not	the
working	tree;	the	"-a"	option	to	commit	tells	it	to	first	update	the	index	with
all	changes	in	the	working	tree.

Finally,	it's	worth	looking	at	the	effect	of	git	add	on	the	index	file:

$	echo	"goodbye,	world"	>closing.txt

$	git	add	closing.txt

The	effect	of	the	git	add	was	to	add	one	entry	to	the	index	file:

$	git	ls-files	--stage

100644	8b9743b20d4b15be3955fc8d5cd2b09cd2336138	0							closing.txt

100644	513feba2e53ebbd2532419ded848ba19de88ba00	0							file.txt

And,	as	you	can	see	with	cat-file,	this	new	entry	refers	to	the	current
contents	of	the	file:

$	git	cat-file	blob	8b9743b2

goodbye,	world

The	"status"	command	is	a	useful	way	to	get	a	quick	summary	of	the
situation:

$	git	status

On	branch	master

Changes	to	be	committed:

		(use	"git	reset	HEAD	<file>..."	to	unstage)

								new	file:			closing.txt

Changes	not	staged	for	commit:

		(use	"git	add	<file>..."	to	update	what	will	be	committed)

		(use	"git	checkout	--	<file>..."	to	discard	changes	in	working	directory)

								modified:			file.txt

Since	the	current	state	of	closing.txt	is	cached	in	the	index	file,	it	is	listed
as	"Changes	to	be	committed".	Since	file.txt	has	changes	in	the	working
directory	that	aren't	reflected	in	the	index,	it	is	marked	"changed	but	not
updated".	At	this	point,	running	"git	commit"	would	create	a	commit	that
added	closing.txt	(with	its	new	contents),	but	that	didn't	modify	file.txt.

Also,	note	that	a	bare	git	diff	shows	the	changes	to	file.txt,	but	not	the
addition	of	closing.txt,	because	the	version	of	closing.txt	in	the	index	file
is	identical	to	the	one	in	the	working	directory.

In	addition	to	being	the	staging	area	for	new	commits,	the	index	file	is
also	populated	from	the	object	database	when	checking	out	a	branch,
and	is	used	to	hold	the	trees	involved	in	a	merge	operation.	See
Section	G.2.3,	“gitcore-tutorial(7)”	and	the	relevant	man	pages	for	details.

What	next?

At	this	point	you	should	know	everything	necessary	to	read	the	man
pages	for	any	of	the	git	commands;	one	good	place	to	start	would	be	with
the	commands	mentioned	in	Section	G.2.5,	“giteveryday(7)”.	You	should
be	able	to	find	any	unknown	jargon	in	Section	G.4.16,	“gitglossary(7)”.

The	Git	User's	Manual	provides	a	more	comprehensive	introduction	to
Git.

Section	G.2.4,	“gitcvs-migration(7)”	explains	how	to	import	a	CVS
repository	into	Git,	and	shows	how	to	use	Git	in	a	CVS-like	way.

https://www.kernel.org/pub/software/scm/git/docs/user-manual.html

For	some	interesting	examples	of	Git	use,	see	the	howtos.

For	Git	developers,	Section	G.2.3,	“gitcore-tutorial(7)”	goes	into	detail	on
the	lower-level	Git	mechanisms	involved	in,	for	example,	creating	a	new
commit.

SEE	ALSO

Section	G.2.1,	“gittutorial(7)”,	Section	G.2.4,	“gitcvs-migration(7)”,
Section	G.2.3,	“gitcore-tutorial(7)”,	Section	G.4.16,	“gitglossary(7)”,
Section	G.3.58,	“git-help(1)”,	Section	G.2.5,	“giteveryday(7)”,	The	Git
User's	Manual

GIT

Part	of	the	Section	G.3.1,	“git(1)”	suite.

G.2.3.	gitcore-tutorial(7)

NAME

gitcore-tutorial	-	A	Git	core	tutorial	for	developers

SYNOPSIS

git	*

DESCRIPTION

This	tutorial	explains	how	to	use	the	"core"	Git	commands	to	set	up	and
work	with	a	Git	repository.

If	you	just	need	to	use	Git	as	a	revision	control	system	you	may	prefer	to
start	with	"A	Tutorial	Introduction	to	Git"	(Section	G.2.1,	“gittutorial(7)”)	or
the	Git	User	Manual.

https://www.kernel.org/pub/software/scm/git/docs/howto-index.html
https://www.kernel.org/pub/software/scm/git/docs/user-manual.html
https://www.kernel.org/pub/software/scm/git/docs/user-manual.html

However,	an	understanding	of	these	low-level	tools	can	be	helpful	if	you
want	to	understand	Git's	internals.

The	core	Git	is	often	called	"plumbing",	with	the	prettier	user	interfaces
on	top	of	it	called	"porcelain".	You	may	not	want	to	use	the	plumbing
directly	very	often,	but	it	can	be	good	to	know	what	the	plumbing	does	for
when	the	porcelain	isn't	flushing.

Back	when	this	document	was	originally	written,	many	porcelain
commands	were	shell	scripts.	For	simplicity,	it	still	uses	them	as
examples	to	illustrate	how	plumbing	is	fit	together	to	form	the	porcelain
commands.	The	source	tree	includes	some	of	these	scripts	in
contrib/examples/	for	reference.	Although	these	are	not	implemented	as
shell	scripts	anymore,	the	description	of	what	the	plumbing	layer
commands	do	is	still	valid.

Note

Deeper	technical	details	are	often	marked	as	Notes,	which
you	can	skip	on	your	first	reading.

Creating	a	Git	repository

Creating	a	new	Git	repository	couldn't	be	easier:	all	Git	repositories	start
out	empty,	and	the	only	thing	you	need	to	do	is	find	yourself	a
subdirectory	that	you	want	to	use	as	a	working	tree	-	either	an	empty	one
for	a	totally	new	project,	or	an	existing	working	tree	that	you	want	to
import	into	Git.

For	our	first	example,	we're	going	to	start	a	totally	new	repository	from
scratch,	with	no	pre-existing	files,	and	we'll	call	it	git-tutorial.	To	start	up,
create	a	subdirectory	for	it,	change	into	that	subdirectory,	and	initialize
the	Git	infrastructure	with	git	init:

$	mkdir	git-tutorial

$	cd	git-tutorial

$	git	init

to	which	Git	will	reply

Initialized	empty	Git	repository	in	.git/

which	is	just	Git's	way	of	saying	that	you	haven't	been	doing	anything
strange,	and	that	it	will	have	created	a	local	.git	directory	setup	for	your
new	project.	You	will	now	have	a	.git	directory,	and	you	can	inspect	that
with	ls.	For	your	new	empty	project,	it	should	show	you	three	entries,
among	other	things:

a	file	called	HEAD,	that	has	ref:	refs/heads/master	in	it.	This	is
similar	to	a	symbolic	link	and	points	at	refs/heads/master	relative	to
the	HEAD	file.

Don't	worry	about	the	fact	that	the	file	that	the	HEAD	link	points	to
doesn't	even	exist	yet	--	you	haven't	created	the	commit	that	will	start
your	HEAD	development	branch	yet.

a	subdirectory	called	objects,	which	will	contain	all	the	objects	of
your	project.	You	should	never	have	any	real	reason	to	look	at	the
objects	directly,	but	you	might	want	to	know	that	these	objects	are
what	contains	all	the	real	data	in	your	repository.
a	subdirectory	called	refs,	which	contains	references	to	objects.

In	particular,	the	refs	subdirectory	will	contain	two	other	subdirectories,
named	heads	and	tags	respectively.	They	do	exactly	what	their	names
imply:	they	contain	references	to	any	number	of	different	heads	of
development	(aka	branches),	and	to	any	tags	that	you	have	created	to
name	specific	versions	in	your	repository.

One	note:	the	special	master	head	is	the	default	branch,	which	is	why	the
.git/HEAD	file	was	created	points	to	it	even	if	it	doesn't	yet	exist.
Basically,	the	HEAD	link	is	supposed	to	always	point	to	the	branch	you
are	working	on	right	now,	and	you	always	start	out	expecting	to	work	on
the	master	branch.

However,	this	is	only	a	convention,	and	you	can	name	your	branches
anything	you	want,	and	don't	have	to	ever	even	have	a	master	branch.	A
number	of	the	Git	tools	will	assume	that	.git/HEAD	is	valid,	though.

Note

An	object	is	identified	by	its	160-bit	SHA-1	hash,	aka	object
name,	and	a	reference	to	an	object	is	always	the	40-byte	hex
representation	of	that	SHA-1	name.	The	files	in	the	refs
subdirectory	are	expected	to	contain	these	hex	references
(usually	with	a	final	\n	at	the	end),	and	you	should	thus
expect	to	see	a	number	of	41-byte	files	containing	these
references	in	these	refs	subdirectories	when	you	actually
start	populating	your	tree.

Note

An	advanced	user	may	want	to	take	a	look	at	Section	G.4.11,
“gitrepository-layout(5)”	after	finishing	this	tutorial.

You	have	now	created	your	first	Git	repository.	Of	course,	since	it's
empty,	that's	not	very	useful,	so	let's	start	populating	it	with	data.

Populating	a	Git	repository

We'll	keep	this	simple	and	stupid,	so	we'll	start	off	with	populating	a	few
trivial	files	just	to	get	a	feel	for	it.

Start	off	with	just	creating	any	random	files	that	you	want	to	maintain	in
your	Git	repository.	We'll	start	off	with	a	few	bad	examples,	just	to	get	a
feel	for	how	this	works:

$	echo	"Hello	World"	>hello

$	echo	"Silly	example"	>example

you	have	now	created	two	files	in	your	working	tree	(aka	working
directory),	but	to	actually	check	in	your	hard	work,	you	will	have	to	go
through	two	steps:

fill	in	the	index	file	(aka	cache)	with	the	information	about	your
working	tree	state.
commit	that	index	file	as	an	object.

The	first	step	is	trivial:	when	you	want	to	tell	Git	about	any	changes	to
your	working	tree,	you	use	the	git	update-index	program.	That	program
normally	just	takes	a	list	of	filenames	you	want	to	update,	but	to	avoid
trivial	mistakes,	it	refuses	to	add	new	entries	to	the	index	(or	remove
existing	ones)	unless	you	explicitly	tell	it	that	you're	adding	a	new	entry
with	the	--add	flag	(or	removing	an	entry	with	the	--remove)	flag.

So	to	populate	the	index	with	the	two	files	you	just	created,	you	can	do

$	git	update-index	--add	hello	example

and	you	have	now	told	Git	to	track	those	two	files.

In	fact,	as	you	did	that,	if	you	now	look	into	your	object	directory,	you'll
notice	that	Git	will	have	added	two	new	objects	to	the	object	database.	If
you	did	exactly	the	steps	above,	you	should	now	be	able	to	do

$	ls	.git/objects/??/*

and	see	two	files:

.git/objects/55/7db03de997c86a4a028e1ebd3a1ceb225be238

.git/objects/f2/4c74a2e500f5ee1332c86b94199f52b1d1d962

which	correspond	with	the	objects	with	names	of	557db...	and	f24c7...
respectively.

If	you	want	to,	you	can	use	git	cat-file	to	look	at	those	objects,	but	you'll

have	to	use	the	object	name,	not	the	filename	of	the	object:

$	git	cat-file	-t	557db03de997c86a4a028e1ebd3a1ceb225be238

where	the	-t	tells	git	cat-file	to	tell	you	what	the	"type"	of	the	object	is.	Git
will	tell	you	that	you	have	a	"blob"	object	(i.e.,	just	a	regular	file),	and	you
can	see	the	contents	with

$	git	cat-file	blob	557db03

which	will	print	out	"Hello	World".	The	object	557db03	is	nothing	more
than	the	contents	of	your	file	hello.

Note

Don't	confuse	that	object	with	the	file	hello	itself.	The	object
is	literally	just	those	specific	contents	of	the	file,	and
however	much	you	later	change	the	contents	in	file	hello,	the
object	we	just	looked	at	will	never	change.	Objects	are
immutable.

Note

The	second	example	demonstrates	that	you	can	abbreviate
the	object	name	to	only	the	first	several	hexadecimal	digits	in
most	places.

Anyway,	as	we	mentioned	previously,	you	normally	never	actually	take	a
look	at	the	objects	themselves,	and	typing	long	40-character	hex	names
is	not	something	you'd	normally	want	to	do.	The	above	digression	was
just	to	show	that	git	update-index	did	something	magical,	and	actually
saved	away	the	contents	of	your	files	into	the	Git	object	database.

Updating	the	index	did	something	else	too:	it	created	a	.git/index	file.	This
is	the	index	that	describes	your	current	working	tree,	and	something	you
should	be	very	aware	of.	Again,	you	normally	never	worry	about	the
index	file	itself,	but	you	should	be	aware	of	the	fact	that	you	have	not
actually	really	"checked	in"	your	files	into	Git	so	far,	you've	only	told	Git
about	them.

However,	since	Git	knows	about	them,	you	can	now	start	using	some	of
the	most	basic	Git	commands	to	manipulate	the	files	or	look	at	their
status.

In	particular,	let's	not	even	check	in	the	two	files	into	Git	yet,	we'll	start	off
by	adding	another	line	to	hello	first:

$	echo	"It's	a	new	day	for	git"	>>hello

and	you	can	now,	since	you	told	Git	about	the	previous	state	of	hello,	ask
Git	what	has	changed	in	the	tree	compared	to	your	old	index,	using	the
git	diff-files	command:

$	git	diff-files

Oops.	That	wasn't	very	readable.	It	just	spit	out	its	own	internal	version	of
a	diff,	but	that	internal	version	really	just	tells	you	that	it	has	noticed	that
"hello"	has	been	modified,	and	that	the	old	object	contents	it	had	have
been	replaced	with	something	else.

To	make	it	readable,	we	can	tell	git	diff-files	to	output	the	differences	as	a
patch,	using	the	-p	flag:

$	git	diff-files	-p

diff	--git	a/hello	b/hello

index	557db03..263414f	100644

---	a/hello

+++	b/hello

@@	-1	+1,2	@@

	Hello	World

+It's	a	new	day	for	git

i.e.	the	diff	of	the	change	we	caused	by	adding	another	line	to	hello.

In	other	words,	git	diff-files	always	shows	us	the	difference	between	what
is	recorded	in	the	index,	and	what	is	currently	in	the	working	tree.	That's
very	useful.

A	common	shorthand	for	git	diff-files	-p	is	to	just	write	git	diff,	which	will
do	the	same	thing.

$	git	diff

diff	--git	a/hello	b/hello

index	557db03..263414f	100644

---	a/hello

+++	b/hello

@@	-1	+1,2	@@

	Hello	World

+It's	a	new	day	for	git

Committing	Git	state

Now,	we	want	to	go	to	the	next	stage	in	Git,	which	is	to	take	the	files	that
Git	knows	about	in	the	index,	and	commit	them	as	a	real	tree.	We	do	that
in	two	phases:	creating	a	tree	object,	and	committing	that	tree	object	as	a
commit	object	together	with	an	explanation	of	what	the	tree	was	all	about,
along	with	information	of	how	we	came	to	that	state.

Creating	a	tree	object	is	trivial,	and	is	done	with	git	write-tree.	There	are
no	options	or	other	input:	git	write-tree	will	take	the	current	index	state,
and	write	an	object	that	describes	that	whole	index.	In	other	words,	we're
now	tying	together	all	the	different	filenames	with	their	contents	(and	their
permissions),	and	we're	creating	the	equivalent	of	a	Git	"directory"	object:

$	git	write-tree

and	this	will	just	output	the	name	of	the	resulting	tree,	in	this	case	(if	you
have	done	exactly	as	I've	described)	it	should	be

8988da15d077d4829fc51d8544c097def6644dbb

which	is	another	incomprehensible	object	name.	Again,	if	you	want	to,
you	can	use	git	cat-file	-t	8988d...	to	see	that	this	time	the	object	is	not	a
"blob"	object,	but	a	"tree"	object	(you	can	also	use	git	cat-file	to	actually
output	the	raw	object	contents,	but	you'll	see	mainly	a	binary	mess,	so
that's	less	interesting).

However	--	normally	you'd	never	use	git	write-tree	on	its	own,	because
normally	you	always	commit	a	tree	into	a	commit	object	using	the	git
commit-tree	command.	In	fact,	it's	easier	to	not	actually	use	git	write-tree
on	its	own	at	all,	but	to	just	pass	its	result	in	as	an	argument	to	git
commit-tree.

git	commit-tree	normally	takes	several	arguments	--	it	wants	to	know
what	the	parent	of	a	commit	was,	but	since	this	is	the	first	commit	ever	in
this	new	repository,	and	it	has	no	parents,	we	only	need	to	pass	in	the
object	name	of	the	tree.	However,	git	commit-tree	also	wants	to	get	a
commit	message	on	its	standard	input,	and	it	will	write	out	the	resulting
object	name	for	the	commit	to	its	standard	output.

And	this	is	where	we	create	the	.git/refs/heads/master	file	which	is
pointed	at	by	HEAD.	This	file	is	supposed	to	contain	the	reference	to	the
top-of-tree	of	the	master	branch,	and	since	that's	exactly	what	git	commit-
tree	spits	out,	we	can	do	this	all	with	a	sequence	of	simple	shell
commands:

$	tree=$(git	write-tree)

$	commit=$(echo	'Initial	commit'	|	git	commit-tree	$tree)

$	git	update-ref	HEAD	$commit

In	this	case	this	creates	a	totally	new	commit	that	is	not	related	to
anything	else.	Normally	you	do	this	only	once	for	a	project	ever,	and	all
later	commits	will	be	parented	on	top	of	an	earlier	commit.

Again,	normally	you'd	never	actually	do	this	by	hand.	There	is	a	helpful
script	called	git	commit	that	will	do	all	of	this	for	you.	So	you	could	have
just	written	git	commit	instead,	and	it	would	have	done	the	above	magic
scripting	for	you.

Making	a	change

Remember	how	we	did	the	git	update-index	on	file	hello	and	then	we
changed	hello	afterward,	and	could	compare	the	new	state	of	hello	with
the	state	we	saved	in	the	index	file?

Further,	remember	how	I	said	that	git	write-tree	writes	the	contents	of	the
index	file	to	the	tree,	and	thus	what	we	just	committed	was	in	fact	the
original	contents	of	the	file	hello,	not	the	new	ones.	We	did	that	on
purpose,	to	show	the	difference	between	the	index	state,	and	the	state	in
the	working	tree,	and	how	they	don't	have	to	match,	even	when	we
commit	things.

As	before,	if	we	do	git	diff-files	-p	in	our	git-tutorial	project,	we'll	still	see
the	same	difference	we	saw	last	time:	the	index	file	hasn't	changed	by
the	act	of	committing	anything.	However,	now	that	we	have	committed
something,	we	can	also	learn	to	use	a	new	command:	git	diff-index.

Unlike	git	diff-files,	which	showed	the	difference	between	the	index	file
and	the	working	tree,	git	diff-index	shows	the	differences	between	a
committed	tree	and	either	the	index	file	or	the	working	tree.	In	other
words,	git	diff-index	wants	a	tree	to	be	diffed	against,	and	before	we	did
the	commit,	we	couldn't	do	that,	because	we	didn't	have	anything	to	diff
against.

But	now	we	can	do

$	git	diff-index	-p	HEAD

(where	-p	has	the	same	meaning	as	it	did	in	git	diff-files),	and	it	will	show
us	the	same	difference,	but	for	a	totally	different	reason.	Now	we're
comparing	the	working	tree	not	against	the	index	file,	but	against	the	tree
we	just	wrote.	It	just	so	happens	that	those	two	are	obviously	the	same,
so	we	get	the	same	result.

Again,	because	this	is	a	common	operation,	you	can	also	just	shorthand
it	with

$	git	diff	HEAD

which	ends	up	doing	the	above	for	you.

In	other	words,	git	diff-index	normally	compares	a	tree	against	the
working	tree,	but	when	given	the	--cached	flag,	it	is	told	to	instead
compare	against	just	the	index	cache	contents,	and	ignore	the	current
working	tree	state	entirely.	Since	we	just	wrote	the	index	file	to	HEAD,
doing	git	diff-index	--cached	-p	HEAD	should	thus	return	an	empty	set	of
differences,	and	that's	exactly	what	it	does.

Note

git	diff-index	really	always	uses	the	index	for	its	comparisons,
and	saying	that	it	compares	a	tree	against	the	working	tree	is
thus	not	strictly	accurate.	In	particular,	the	list	of	files	to
compare	(the	"meta-data")	always	comes	from	the	index	file,
regardless	of	whether	the	--cached	flag	is	used	or	not.	The	--
cached	flag	really	only	determines	whether	the	file	contents
to	be	compared	come	from	the	working	tree	or	not.

This	is	not	hard	to	understand,	as	soon	as	you	realize	that
Git	simply	never	knows	(or	cares)	about	files	that	it	is	not	told
about	explicitly.	Git	will	never	go	looking	for	files	to	compare,
it	expects	you	to	tell	it	what	the	files	are,	and	that's	what	the
index	is	there	for.

However,	our	next	step	is	to	commit	the	change	we	did,	and	again,	to
understand	what's	going	on,	keep	in	mind	the	difference	between
"working	tree	contents",	"index	file"	and	"committed	tree".	We	have
changes	in	the	working	tree	that	we	want	to	commit,	and	we	always	have
to	work	through	the	index	file,	so	the	first	thing	we	need	to	do	is	to	update
the	index	cache:

$	git	update-index	hello

(note	how	we	didn't	need	the	--add	flag	this	time,	since	Git	knew	about
the	file	already).

Note	what	happens	to	the	different	git	diff-*	versions	here.	After	we've
updated	hello	in	the	index,	git	diff-files	-p	now	shows	no	differences,	but
git	diff-index	-p	HEAD	still	does	show	that	the	current	state	is	different
from	the	state	we	committed.	In	fact,	now	git	diff-index	shows	the	same
difference	whether	we	use	the	--cached	flag	or	not,	since	now	the	index
is	coherent	with	the	working	tree.

Now,	since	we've	updated	hello	in	the	index,	we	can	commit	the	new
version.	We	could	do	it	by	writing	the	tree	by	hand	again,	and	committing
the	tree	(this	time	we'd	have	to	use	the	-p	HEAD	flag	to	tell	commit	that
the	HEAD	was	the	parent	of	the	new	commit,	and	that	this	wasn't	an
initial	commit	any	more),	but	you've	done	that	once	already,	so	let's	just
use	the	helpful	script	this	time:

$	git	commit

which	starts	an	editor	for	you	to	write	the	commit	message	and	tells	you	a
bit	about	what	you	have	done.

Write	whatever	message	you	want,	and	all	the	lines	that	start	with	#	will
be	pruned	out,	and	the	rest	will	be	used	as	the	commit	message	for	the
change.	If	you	decide	you	don't	want	to	commit	anything	after	all	at	this
point	(you	can	continue	to	edit	things	and	update	the	index),	you	can	just
leave	an	empty	message.	Otherwise	git	commit	will	commit	the	change
for	you.

You've	now	made	your	first	real	Git	commit.	And	if	you're	interested	in
looking	at	what	git	commit	really	does,	feel	free	to	investigate:	it's	a	few
very	simple	shell	scripts	to	generate	the	helpful	(?)	commit	message
headers,	and	a	few	one-liners	that	actually	do	the	commit	itself	(git
commit).

Inspecting	Changes

While	creating	changes	is	useful,	it's	even	more	useful	if	you	can	tell	later
what	changed.	The	most	useful	command	for	this	is	another	of	the	diff
family,	namely	git	diff-tree.

git	diff-tree	can	be	given	two	arbitrary	trees,	and	it	will	tell	you	the
differences	between	them.	Perhaps	even	more	commonly,	though,	you
can	give	it	just	a	single	commit	object,	and	it	will	figure	out	the	parent	of
that	commit	itself,	and	show	the	difference	directly.	Thus,	to	get	the	same
diff	that	we've	already	seen	several	times,	we	can	now	do

$	git	diff-tree	-p	HEAD

(again,	-p	means	to	show	the	difference	as	a	human-readable	patch),
and	it	will	show	what	the	last	commit	(in	HEAD)	actually	changed.

Note

Here	is	an	ASCII	art	by	Jon	Loeliger	that	illustrates	how
various	diff-*	commands	compare	things.

												diff-tree

													+----+

													|				|

													|				|

													V				V

										+-----------+

										|	Object	DB	|

										|		Backing		|

										|			Store			|

										+-----------+

												^				^

												|				|

												|				|		diff-index	--cached

												|				|

diff-index		|				V

												|		+-----------+

												|		|			Index			|

												|		|		"cache"		|

												|		+-----------+

												|				^

												|				|

												|				|		diff-files

												|				|

												V				V

										+-----------+

										|		Working		|

										|	Directory	|

										+-----------+

More	interestingly,	you	can	also	give	git	diff-tree	the	--pretty	flag,	which
tells	it	to	also	show	the	commit	message	and	author	and	date	of	the
commit,	and	you	can	tell	it	to	show	a	whole	series	of	diffs.	Alternatively,
you	can	tell	it	to	be	"silent",	and	not	show	the	diffs	at	all,	but	just	show	the
actual	commit	message.

In	fact,	together	with	the	git	rev-list	program	(which	generates	a	list	of
revisions),	git	diff-tree	ends	up	being	a	veritable	fount	of	changes.	You
can	emulate	git	log,	git	log	-p,	etc.	with	a	trivial	script	that	pipes	the	output
of	git	rev-list	to	git	diff-tree	--stdin,	which	was	exactly	how	early	versions
of	git	log	were	implemented.

Tagging	a	version

In	Git,	there	are	two	kinds	of	tags,	a	"light"	one,	and	an	"annotated	tag".

A	"light"	tag	is	technically	nothing	more	than	a	branch,	except	we	put	it	in
the	.git/refs/tags/	subdirectory	instead	of	calling	it	a	head.	So	the	simplest
form	of	tag	involves	nothing	more	than

$	git	tag	my-first-tag

which	just	writes	the	current	HEAD	into	the	.git/refs/tags/my-first-tag	file,
after	which	point	you	can	then	use	this	symbolic	name	for	that	particular
state.	You	can,	for	example,	do

$	git	diff	my-first-tag

to	diff	your	current	state	against	that	tag	which	at	this	point	will	obviously
be	an	empty	diff,	but	if	you	continue	to	develop	and	commit	stuff,	you	can
use	your	tag	as	an	"anchor-point"	to	see	what	has	changed	since	you
tagged	it.

An	"annotated	tag"	is	actually	a	real	Git	object,	and	contains	not	only	a
pointer	to	the	state	you	want	to	tag,	but	also	a	small	tag	name	and

message,	along	with	optionally	a	PGP	signature	that	says	that	yes,	you
really	did	that	tag.	You	create	these	annotated	tags	with	either	the	-a	or	-s
flag	to	git	tag:

$	git	tag	-s	<tagname>

which	will	sign	the	current	HEAD	(but	you	can	also	give	it	another
argument	that	specifies	the	thing	to	tag,	e.g.,	you	could	have	tagged	the
current	mybranch	point	by	using	git	tag	<tagname>	mybranch).

You	normally	only	do	signed	tags	for	major	releases	or	things	like	that,
while	the	light-weight	tags	are	useful	for	any	marking	you	want	to	do	--
any	time	you	decide	that	you	want	to	remember	a	certain	point,	just
create	a	private	tag	for	it,	and	you	have	a	nice	symbolic	name	for	the
state	at	that	point.

Copying	repositories

Git	repositories	are	normally	totally	self-sufficient	and	relocatable.	Unlike
CVS,	for	example,	there	is	no	separate	notion	of	"repository"	and
"working	tree".	A	Git	repository	normally	is	the	working	tree,	with	the	local
Git	information	hidden	in	the	.git	subdirectory.	There	is	nothing	else.	What
you	see	is	what	you	got.

Note

You	can	tell	Git	to	split	the	Git	internal	information	from	the
directory	that	it	tracks,	but	we'll	ignore	that	for	now:	it's	not
how	normal	projects	work,	and	it's	really	only	meant	for
special	uses.	So	the	mental	model	of	"the	Git	information	is
always	tied	directly	to	the	working	tree	that	it	describes"	may
not	be	technically	100%	accurate,	but	it's	a	good	model	for	all
normal	use.

This	has	two	implications:

if	you	grow	bored	with	the	tutorial	repository	you	created	(or	you've
made	a	mistake	and	want	to	start	all	over),	you	can	just	do	simple

$	rm	-rf	git-tutorial

and	it	will	be	gone.	There's	no	external	repository,	and	there's	no
history	outside	the	project	you	created.

if	you	want	to	move	or	duplicate	a	Git	repository,	you	can	do	so.
There	is	git	clone	command,	but	if	all	you	want	to	do	is	just	to	create
a	copy	of	your	repository	(with	all	the	full	history	that	went	along	with
it),	you	can	do	so	with	a	regular	cp	-a	git-tutorial	new-git-tutorial.

Note	that	when	you've	moved	or	copied	a	Git	repository,	your	Git
index	file	(which	caches	various	information,	notably	some	of	the
"stat"	information	for	the	files	involved)	will	likely	need	to	be
refreshed.	So	after	you	do	a	cp	-a	to	create	a	new	copy,	you'll	want
to	do

$	git	update-index	--refresh

in	the	new	repository	to	make	sure	that	the	index	file	is	up-to-date.

Note	that	the	second	point	is	true	even	across	machines.	You	can
duplicate	a	remote	Git	repository	with	any	regular	copy	mechanism,	be	it
scp,	rsync	or	wget.

When	copying	a	remote	repository,	you'll	want	to	at	a	minimum	update
the	index	cache	when	you	do	this,	and	especially	with	other	peoples'
repositories	you	often	want	to	make	sure	that	the	index	cache	is	in	some
known	state	(you	don't	know	what	they've	done	and	not	yet	checked	in),
so	usually	you'll	precede	the	git	update-index	with	a

$	git	read-tree	--reset	HEAD

$	git	update-index	--refresh

which	will	force	a	total	index	re-build	from	the	tree	pointed	to	by	HEAD.	It

resets	the	index	contents	to	HEAD,	and	then	the	git	update-index	makes
sure	to	match	up	all	index	entries	with	the	checked-out	files.	If	the	original
repository	had	uncommitted	changes	in	its	working	tree,	git	update-index
--refresh	notices	them	and	tells	you	they	need	to	be	updated.

The	above	can	also	be	written	as	simply

$	git	reset

and	in	fact	a	lot	of	the	common	Git	command	combinations	can	be
scripted	with	the	git	xyz	interfaces.	You	can	learn	things	by	just	looking	at
what	the	various	git	scripts	do.	For	example,	git	reset	used	to	be	the
above	two	lines	implemented	in	git	reset,	but	some	things	like	git	status
and	git	commit	are	slightly	more	complex	scripts	around	the	basic	Git
commands.

Many	(most?)	public	remote	repositories	will	not	contain	any	of	the
checked	out	files	or	even	an	index	file,	and	will	only	contain	the	actual
core	Git	files.	Such	a	repository	usually	doesn't	even	have	the	.git
subdirectory,	but	has	all	the	Git	files	directly	in	the	repository.

To	create	your	own	local	live	copy	of	such	a	"raw"	Git	repository,	you'd
first	create	your	own	subdirectory	for	the	project,	and	then	copy	the	raw
repository	contents	into	the	.git	directory.	For	example,	to	create	your
own	copy	of	the	Git	repository,	you'd	do	the	following

$	mkdir	my-git

$	cd	my-git

$	rsync	-rL	rsync://rsync.kernel.org/pub/scm/git/git.git/	.git

followed	by

$	git	read-tree	HEAD

to	populate	the	index.	However,	now	you	have	populated	the	index,	and
you	have	all	the	Git	internal	files,	but	you	will	notice	that	you	don't

actually	have	any	of	the	working	tree	files	to	work	on.	To	get	those,	you'd
check	them	out	with

$	git	checkout-index	-u	-a

where	the	-u	flag	means	that	you	want	the	checkout	to	keep	the	index	up-
to-date	(so	that	you	don't	have	to	refresh	it	afterward),	and	the	-a	flag
means	"check	out	all	files"	(if	you	have	a	stale	copy	or	an	older	version	of
a	checked	out	tree	you	may	also	need	to	add	the	-f	flag	first,	to	tell	git
checkout-index	to	force	overwriting	of	any	old	files).

Again,	this	can	all	be	simplified	with

$	git	clone	git://git.kernel.org/pub/scm/git/git.git/	my-git

$	cd	my-git

$	git	checkout

which	will	end	up	doing	all	of	the	above	for	you.

You	have	now	successfully	copied	somebody	else's	(mine)	remote
repository,	and	checked	it	out.

Creating	a	new	branch

Branches	in	Git	are	really	nothing	more	than	pointers	into	the	Git	object
database	from	within	the	.git/refs/	subdirectory,	and	as	we	already
discussed,	the	HEAD	branch	is	nothing	but	a	symlink	to	one	of	these
object	pointers.

You	can	at	any	time	create	a	new	branch	by	just	picking	an	arbitrary	point
in	the	project	history,	and	just	writing	the	SHA-1	name	of	that	object	into	a
file	under	.git/refs/heads/.	You	can	use	any	filename	you	want	(and
indeed,	subdirectories),	but	the	convention	is	that	the	"normal"	branch	is
called	master.	That's	just	a	convention,	though,	and	nothing	enforces	it.

To	show	that	as	an	example,	let's	go	back	to	the	git-tutorial	repository	we

used	earlier,	and	create	a	branch	in	it.	You	do	that	by	simply	just	saying
that	you	want	to	check	out	a	new	branch:

$	git	checkout	-b	mybranch

will	create	a	new	branch	based	at	the	current	HEAD	position,	and	switch
to	it.

Note

If	you	make	the	decision	to	start	your	new	branch	at	some
other	point	in	the	history	than	the	current	HEAD,	you	can	do
so	by	just	telling	git	checkout	what	the	base	of	the	checkout
would	be.	In	other	words,	if	you	have	an	earlier	tag	or
branch,	you'd	just	do

$	git	checkout	-b	mybranch	earlier-commit

and	it	would	create	the	new	branch	mybranch	at	the	earlier
commit,	and	check	out	the	state	at	that	time.

You	can	always	just	jump	back	to	your	original	master	branch	by	doing

$	git	checkout	master

(or	any	other	branch-name,	for	that	matter)	and	if	you	forget	which
branch	you	happen	to	be	on,	a	simple

$	cat	.git/HEAD

will	tell	you	where	it's	pointing.	To	get	the	list	of	branches	you	have,	you
can	say

$	git	branch

which	used	to	be	nothing	more	than	a	simple	script	around	ls
.git/refs/heads.	There	will	be	an	asterisk	in	front	of	the	branch	you	are
currently	on.

Sometimes	you	may	wish	to	create	a	new	branch	without	actually
checking	it	out	and	switching	to	it.	If	so,	just	use	the	command

$	git	branch	<branchname>	[startingpoint]

which	will	simply	create	the	branch,	but	will	not	do	anything	further.	You
can	then	later	--	once	you	decide	that	you	want	to	actually	develop	on
that	branch	--	switch	to	that	branch	with	a	regular	git	checkout	with	the
branchname	as	the	argument.

Merging	two	branches

One	of	the	ideas	of	having	a	branch	is	that	you	do	some	(possibly
experimental)	work	in	it,	and	eventually	merge	it	back	to	the	main	branch.
So	assuming	you	created	the	above	mybranch	that	started	out	being	the
same	as	the	original	master	branch,	let's	make	sure	we're	in	that	branch,
and	do	some	work	there.

$	git	checkout	mybranch

$	echo	"Work,	work,	work"	>>hello

$	git	commit	-m	"Some	work."	-i	hello

Here,	we	just	added	another	line	to	hello,	and	we	used	a	shorthand	for
doing	both	git	update-index	hello	and	git	commit	by	just	giving	the
filename	directly	to	git	commit,	with	an	-i	flag	(it	tells	Git	to	include	that	file
in	addition	to	what	you	have	done	to	the	index	file	so	far	when	making	the
commit).	The	-m	flag	is	to	give	the	commit	log	message	from	the
command	line.

Now,	to	make	it	a	bit	more	interesting,	let's	assume	that	somebody	else
does	some	work	in	the	original	branch,	and	simulate	that	by	going	back
to	the	master	branch,	and	editing	the	same	file	differently	there:

$	git	checkout	master

Here,	take	a	moment	to	look	at	the	contents	of	hello,	and	notice	how	they
don't	contain	the	work	we	just	did	in	mybranch	--	because	that	work
hasn't	happened	in	the	master	branch	at	all.	Then	do

$	echo	"Play,	play,	play"	>>hello

$	echo	"Lots	of	fun"	>>example

$	git	commit	-m	"Some	fun."	-i	hello	example

since	the	master	branch	is	obviously	in	a	much	better	mood.

Now,	you've	got	two	branches,	and	you	decide	that	you	want	to	merge
the	work	done.	Before	we	do	that,	let's	introduce	a	cool	graphical	tool	that
helps	you	view	what's	going	on:

$	gitk	--all

will	show	you	graphically	both	of	your	branches	(that's	what	the	--all
means:	normally	it	will	just	show	you	your	current	HEAD)	and	their
histories.	You	can	also	see	exactly	how	they	came	to	be	from	a	common
source.

Anyway,	let's	exit	gitk	(^Q	or	the	File	menu),	and	decide	that	we	want	to
merge	the	work	we	did	on	the	mybranch	branch	into	the	master	branch
(which	is	currently	our	HEAD	too).	To	do	that,	there's	a	nice	script	called
git	merge,	which	wants	to	know	which	branches	you	want	to	resolve	and
what	the	merge	is	all	about:

$	git	merge	-m	"Merge	work	in	mybranch"	mybranch

where	the	first	argument	is	going	to	be	used	as	the	commit	message	if
the	merge	can	be	resolved	automatically.

Now,	in	this	case	we've	intentionally	created	a	situation	where	the	merge
will	need	to	be	fixed	up	by	hand,	though,	so	Git	will	do	as	much	of	it	as	it

can	automatically	(which	in	this	case	is	just	merge	the	example	file,	which
had	no	differences	in	the	mybranch	branch),	and	say:

								Auto-merging	hello

								CONFLICT	(content):	Merge	conflict	in	hello

								Automatic	merge	failed;	fix	conflicts	and	then	commit	the	result.

It	tells	you	that	it	did	an	"Automatic	merge",	which	failed	due	to	conflicts
in	hello.

Not	to	worry.	It	left	the	(trivial)	conflict	in	hello	in	the	same	form	you
should	already	be	well	used	to	if	you've	ever	used	CVS,	so	let's	just	open
hello	in	our	editor	(whatever	that	may	be),	and	fix	it	up	somehow.	I'd
suggest	just	making	it	so	that	hello	contains	all	four	lines:

Hello	World

It's	a	new	day	for	git

Play,	play,	play

Work,	work,	work

and	once	you're	happy	with	your	manual	merge,	just	do	a

$	git	commit	-i	hello

which	will	very	loudly	warn	you	that	you're	now	committing	a	merge
(which	is	correct,	so	never	mind),	and	you	can	write	a	small	merge
message	about	your	adventures	in	git	merge-land.

After	you're	done,	start	up	gitk	--all	to	see	graphically	what	the	history
looks	like.	Notice	that	mybranch	still	exists,	and	you	can	switch	to	it,	and
continue	to	work	with	it	if	you	want	to.	The	mybranch	branch	will	not
contain	the	merge,	but	next	time	you	merge	it	from	the	master	branch,	Git
will	know	how	you	merged	it,	so	you'll	not	have	to	do	that	merge	again.

Another	useful	tool,	especially	if	you	do	not	always	work	in	X-Window
environment,	is	git	show-branch.

$	git	show-branch	--topo-order	--more=1	master	mybranch

*	[master]	Merge	work	in	mybranch

	!	[mybranch]	Some	work.

--

-		[master]	Merge	work	in	mybranch

*+	[mybranch]	Some	work.

*		[master^]	Some	fun.

The	first	two	lines	indicate	that	it	is	showing	the	two	branches	with	the
titles	of	their	top-of-the-tree	commits,	you	are	currently	on	master	branch
(notice	the	asterisk	*	character),	and	the	first	column	for	the	later	output
lines	is	used	to	show	commits	contained	in	the	master	branch,	and	the
second	column	for	the	mybranch	branch.	Three	commits	are	shown
along	with	their	titles.	All	of	them	have	non	blank	characters	in	the	first
column	(*	shows	an	ordinary	commit	on	the	current	branch,	-	is	a	merge
commit),	which	means	they	are	now	part	of	the	master	branch.	Only	the
"Some	work"	commit	has	the	plus	+	character	in	the	second	column,
because	mybranch	has	not	been	merged	to	incorporate	these	commits
from	the	master	branch.	The	string	inside	brackets	before	the	commit	log
message	is	a	short	name	you	can	use	to	name	the	commit.	In	the	above
example,	master	and	mybranch	are	branch	heads.	master^	is	the	first
parent	of	master	branch	head.	Please	see	Section	G.4.12,
“gitrevisions(7)”	if	you	want	to	see	more	complex	cases.

Note

Without	the	--more=1	option,	git	show-branch	would	not
output	the	[master^]	commit,	as	[mybranch]	commit	is	a
common	ancestor	of	both	master	and	mybranch	tips.	Please
see	Section	G.3.123,	“git-show-branch(1)”	for	details.

Note

If	there	were	more	commits	on	the	master	branch	after	the
merge,	the	merge	commit	itself	would	not	be	shown	by	git
show-branch	by	default.	You	would	need	to	provide	--sparse

option	to	make	the	merge	commit	visible	in	this	case.

Now,	let's	pretend	you	are	the	one	who	did	all	the	work	in	mybranch,	and
the	fruit	of	your	hard	work	has	finally	been	merged	to	the	master	branch.
Let's	go	back	to	mybranch,	and	run	git	merge	to	get	the	"upstream
changes"	back	to	your	branch.

$	git	checkout	mybranch

$	git	merge	-m	"Merge	upstream	changes."	master

This	outputs	something	like	this	(the	actual	commit	object	names	would
be	different)

Updating	from	ae3a2da...	to	a80b4aa....

Fast-forward	(no	commit	created;	-m	option	ignored)

	example	|	1	+

	hello			|	1	+

	2	files	changed,	2	insertions(+)

Because	your	branch	did	not	contain	anything	more	than	what	had
already	been	merged	into	the	master	branch,	the	merge	operation	did	not
actually	do	a	merge.	Instead,	it	just	updated	the	top	of	the	tree	of	your
branch	to	that	of	the	master	branch.	This	is	often	called	fast-forward
merge.

You	can	run	gitk	--all	again	to	see	how	the	commit	ancestry	looks	like,	or
run	show-branch,	which	tells	you	this.

$	git	show-branch	master	mybranch

!	[master]	Merge	work	in	mybranch

	*	[mybranch]	Merge	work	in	mybranch

--

--	[master]	Merge	work	in	mybranch

Merging	external	work

It's	usually	much	more	common	that	you	merge	with	somebody	else	than
merging	with	your	own	branches,	so	it's	worth	pointing	out	that	Git	makes
that	very	easy	too,	and	in	fact,	it's	not	that	different	from	doing	a	git
merge.	In	fact,	a	remote	merge	ends	up	being	nothing	more	than	"fetch
the	work	from	a	remote	repository	into	a	temporary	tag"	followed	by	a	git
merge.

Fetching	from	a	remote	repository	is	done	by,	unsurprisingly,	git	fetch:

$	git	fetch	<remote-repository>

One	of	the	following	transports	can	be	used	to	name	the	repository	to
download	from:

SSH

remote.machine:/path/to/repo.git/	or

ssh://remote.machine/path/to/repo.git/

This	transport	can	be	used	for	both	uploading	and	downloading,	and
requires	you	to	have	a	log-in	privilege	over	ssh	to	the	remote
machine.	It	finds	out	the	set	of	objects	the	other	side	lacks	by
exchanging	the	head	commits	both	ends	have	and	transfers	(close
to)	minimum	set	of	objects.	It	is	by	far	the	most	efficient	way	to
exchange	Git	objects	between	repositories.

Local	directory

/path/to/repo.git/

This	transport	is	the	same	as	SSH	transport	but	uses	sh	to	run	both
ends	on	the	local	machine	instead	of	running	other	end	on	the
remote	machine	via	ssh.

Git	Native

git://remote.machine/path/to/repo.git/

This	transport	was	designed	for	anonymous	downloading.	Like	SSH
transport,	it	finds	out	the	set	of	objects	the	downstream	side	lacks
and	transfers	(close	to)	minimum	set	of	objects.

HTTP(S)

http://remote.machine/path/to/repo.git/

Downloader	from	http	and	https	URL	first	obtains	the	topmost
commit	object	name	from	the	remote	site	by	looking	at	the	specified
refname	under	repo.git/refs/	directory,	and	then	tries	to	obtain	the
commit	object	by	downloading	from	repo.git/objects/xx/xxx...	using
the	object	name	of	that	commit	object.	Then	it	reads	the	commit
object	to	find	out	its	parent	commits	and	the	associate	tree	object;	it
repeats	this	process	until	it	gets	all	the	necessary	objects.	Because
of	this	behavior,	they	are	sometimes	also	called	commit	walkers.

The	commit	walkers	are	sometimes	also	called	dumb	transports,
because	they	do	not	require	any	Git	aware	smart	server	like	Git
Native	transport	does.	Any	stock	HTTP	server	that	does	not	even
support	directory	index	would	suffice.	But	you	must	prepare	your
repository	with	git	update-server-info	to	help	dumb	transport
downloaders.

Once	you	fetch	from	the	remote	repository,	you	merge	that	with	your
current	branch.

However	--	it's	such	a	common	thing	to	fetch	and	then	immediately
merge,	that	it's	called	git	pull,	and	you	can	simply	do

$	git	pull	<remote-repository>

and	optionally	give	a	branch-name	for	the	remote	end	as	a	second
argument.

Note

You	could	do	without	using	any	branches	at	all,	by	keeping
as	many	local	repositories	as	you	would	like	to	have
branches,	and	merging	between	them	with	git	pull,	just	like
you	merge	between	branches.	The	advantage	of	this
approach	is	that	it	lets	you	keep	a	set	of	files	for	each	branch
checked	out	and	you	may	find	it	easier	to	switch	back	and
forth	if	you	juggle	multiple	lines	of	development
simultaneously.	Of	course,	you	will	pay	the	price	of	more	disk
usage	to	hold	multiple	working	trees,	but	disk	space	is	cheap
these	days.

It	is	likely	that	you	will	be	pulling	from	the	same	remote	repository	from
time	to	time.	As	a	short	hand,	you	can	store	the	remote	repository	URL	in
the	local	repository's	config	file	like	this:

$	git	config	remote.linus.url	http://www.kernel.org/pub/scm/git/git.git/

and	use	the	"linus"	keyword	with	git	pull	instead	of	the	full	URL.

Examples.

1.	 git	pull	linus
2.	 git	pull	linus	tag	v0.99.1

the	above	are	equivalent	to:

1.	 git	pull	http://www.kernel.org/pub/scm/git/git.git/	HEAD
2.	 git	pull	http://www.kernel.org/pub/scm/git/git.git/	tag	v0.99.1

How	does	the	merge	work?

We	said	this	tutorial	shows	what	plumbing	does	to	help	you	cope	with	the
porcelain	that	isn't	flushing,	but	we	so	far	did	not	talk	about	how	the
merge	really	works.	If	you	are	following	this	tutorial	the	first	time,	I'd
suggest	to	skip	to	"Publishing	your	work"	section	and	come	back	here

later.

OK,	still	with	me?	To	give	us	an	example	to	look	at,	let's	go	back	to	the
earlier	repository	with	"hello"	and	"example"	file,	and	bring	ourselves
back	to	the	pre-merge	state:

$	git	show-branch	--more=2	master	mybranch

!	[master]	Merge	work	in	mybranch

	*	[mybranch]	Merge	work	in	mybranch

--

--	[master]	Merge	work	in	mybranch

+*	[master^2]	Some	work.

+*	[master^]	Some	fun.

Remember,	before	running	git	merge,	our	master	head	was	at	"Some
fun."	commit,	while	our	mybranch	head	was	at	"Some	work."	commit.

$	git	checkout	mybranch

$	git	reset	--hard	master^2

$	git	checkout	master

$	git	reset	--hard	master^

After	rewinding,	the	commit	structure	should	look	like	this:

$	git	show-branch

*	[master]	Some	fun.

	!	[mybranch]	Some	work.

--

*		[master]	Some	fun.

	+	[mybranch]	Some	work.

*+	[master^]	Initial	commit

Now	we	are	ready	to	experiment	with	the	merge	by	hand.

git	merge	command,	when	merging	two	branches,	uses	3-way	merge
algorithm.	First,	it	finds	the	common	ancestor	between	them.	The
command	it	uses	is	git	merge-base:

$	mb=$(git	merge-base	HEAD	mybranch)

The	command	writes	the	commit	object	name	of	the	common	ancestor	to
the	standard	output,	so	we	captured	its	output	to	a	variable,	because	we
will	be	using	it	in	the	next	step.	By	the	way,	the	common	ancestor	commit
is	the	"Initial	commit"	commit	in	this	case.	You	can	tell	it	by:

$	git	name-rev	--name-only	--tags	$mb

my-first-tag

After	finding	out	a	common	ancestor	commit,	the	second	step	is	this:

$	git	read-tree	-m	-u	$mb	HEAD	mybranch

This	is	the	same	git	read-tree	command	we	have	already	seen,	but	it
takes	three	trees,	unlike	previous	examples.	This	reads	the	contents	of
each	tree	into	different	stage	in	the	index	file	(the	first	tree	goes	to	stage
1,	the	second	to	stage	2,	etc.).	After	reading	three	trees	into	three	stages,
the	paths	that	are	the	same	in	all	three	stages	are	collapsed	into	stage	0.
Also	paths	that	are	the	same	in	two	of	three	stages	are	collapsed	into
stage	0,	taking	the	SHA-1	from	either	stage	2	or	stage	3,	whichever	is
different	from	stage	1	(i.e.	only	one	side	changed	from	the	common
ancestor).

After	collapsing	operation,	paths	that	are	different	in	three	trees	are	left	in
non-zero	stages.	At	this	point,	you	can	inspect	the	index	file	with	this
command:

$	git	ls-files	--stage

100644	7f8b141b65fdcee47321e399a2598a235a032422	0							example

100644	557db03de997c86a4a028e1ebd3a1ceb225be238	1							hello

100644	ba42a2a96e3027f3333e13ede4ccf4498c3ae942	2							hello

100644	cc44c73eb783565da5831b4d820c962954019b69	3							hello

In	our	example	of	only	two	files,	we	did	not	have	unchanged	files	so	only
example	resulted	in	collapsing.	But	in	real-life	large	projects,	when	only	a
small	number	of	files	change	in	one	commit,	this	collapsing	tends	to
trivially	merge	most	of	the	paths	fairly	quickly,	leaving	only	a	handful	of

real	changes	in	non-zero	stages.

To	look	at	only	non-zero	stages,	use	--unmerged	flag:

$	git	ls-files	--unmerged

100644	557db03de997c86a4a028e1ebd3a1ceb225be238	1							hello

100644	ba42a2a96e3027f3333e13ede4ccf4498c3ae942	2							hello

100644	cc44c73eb783565da5831b4d820c962954019b69	3							hello

The	next	step	of	merging	is	to	merge	these	three	versions	of	the	file,
using	3-way	merge.	This	is	done	by	giving	git	merge-one-file	command
as	one	of	the	arguments	to	git	merge-index	command:

$	git	merge-index	git-merge-one-file	hello

Auto-merging	hello

ERROR:	Merge	conflict	in	hello

fatal:	merge	program	failed

git	merge-one-file	script	is	called	with	parameters	to	describe	those	three
versions,	and	is	responsible	to	leave	the	merge	results	in	the	working
tree.	It	is	a	fairly	straightforward	shell	script,	and	eventually	calls	merge
program	from	RCS	suite	to	perform	a	file-level	3-way	merge.	In	this	case,
merge	detects	conflicts,	and	the	merge	result	with	conflict	marks	is	left	in
the	working	tree..	This	can	be	seen	if	you	run	ls-files	--stage	again	at	this
point:

$	git	ls-files	--stage

100644	7f8b141b65fdcee47321e399a2598a235a032422	0							example

100644	557db03de997c86a4a028e1ebd3a1ceb225be238	1							hello

100644	ba42a2a96e3027f3333e13ede4ccf4498c3ae942	2							hello

100644	cc44c73eb783565da5831b4d820c962954019b69	3							hello

This	is	the	state	of	the	index	file	and	the	working	file	after	git	merge
returns	control	back	to	you,	leaving	the	conflicting	merge	for	you	to
resolve.	Notice	that	the	path	hello	is	still	unmerged,	and	what	you	see
with	git	diff	at	this	point	is	differences	since	stage	2	(i.e.	your	version).

Publishing	your	work

So,	we	can	use	somebody	else's	work	from	a	remote	repository,	but	how
can	you	prepare	a	repository	to	let	other	people	pull	from	it?

You	do	your	real	work	in	your	working	tree	that	has	your	primary
repository	hanging	under	it	as	its	.git	subdirectory.	You	could	make	that
repository	accessible	remotely	and	ask	people	to	pull	from	it,	but	in
practice	that	is	not	the	way	things	are	usually	done.	A	recommended	way
is	to	have	a	public	repository,	make	it	reachable	by	other	people,	and
when	the	changes	you	made	in	your	primary	working	tree	are	in	good
shape,	update	the	public	repository	from	it.	This	is	often	called	pushing.

Note

This	public	repository	could	further	be	mirrored,	and	that	is
how	Git	repositories	at	kernel.org	are	managed.

Publishing	the	changes	from	your	local	(private)	repository	to	your	remote
(public)	repository	requires	a	write	privilege	on	the	remote	machine.	You
need	to	have	an	SSH	account	there	to	run	a	single	command,	git-
receive-pack.

First,	you	need	to	create	an	empty	repository	on	the	remote	machine	that
will	house	your	public	repository.	This	empty	repository	will	be	populated
and	be	kept	up-to-date	by	pushing	into	it	later.	Obviously,	this	repository
creation	needs	to	be	done	only	once.

Note

git	push	uses	a	pair	of	commands,	git	send-pack	on	your
local	machine,	and	git-receive-pack	on	the	remote	machine.
The	communication	between	the	two	over	the	network
internally	uses	an	SSH	connection.

Your	private	repository's	Git	directory	is	usually	.git,	but	your	public
repository	is	often	named	after	the	project	name,	i.e.	<project>.git.	Let's
create	such	a	public	repository	for	project	my-git.	After	logging	into	the
remote	machine,	create	an	empty	directory:

$	mkdir	my-git.git

Then,	make	that	directory	into	a	Git	repository	by	running	git	init,	but	this
time,	since	its	name	is	not	the	usual	.git,	we	do	things	slightly	differently:

$	GIT_DIR=my-git.git	git	init

Make	sure	this	directory	is	available	for	others	you	want	your	changes	to
be	pulled	via	the	transport	of	your	choice.	Also	you	need	to	make	sure
that	you	have	the	git-receive-pack	program	on	the	$PATH.

Note

Many	installations	of	sshd	do	not	invoke	your	shell	as	the
login	shell	when	you	directly	run	programs;	what	this	means
is	that	if	your	login	shell	is	bash,	only	.bashrc	is	read	and	not
.bash_profile.	As	a	workaround,	make	sure	.bashrc	sets	up
$PATH	so	that	you	can	run	git-receive-pack	program.

Note

If	you	plan	to	publish	this	repository	to	be	accessed	over	http,
you	should	do	mv	my-git.git/hooks/post-update.sample	my-
git.git/hooks/post-update	at	this	point.	This	makes	sure	that
every	time	you	push	into	this	repository,	git	update-server-
info	is	run.

Your	"public	repository"	is	now	ready	to	accept	your	changes.	Come	back

to	the	machine	you	have	your	private	repository.	From	there,	run	this
command:

$	git	push	<public-host>:/path/to/my-git.git	master

This	synchronizes	your	public	repository	to	match	the	named	branch
head	(i.e.	master	in	this	case)	and	objects	reachable	from	them	in	your
current	repository.

As	a	real	example,	this	is	how	I	update	my	public	Git	repository.
Kernel.org	mirror	network	takes	care	of	the	propagation	to	other	publicly
visible	machines:

$	git	push	master.kernel.org:/pub/scm/git/git.git/

Packing	your	repository

Earlier,	we	saw	that	one	file	under	.git/objects/??/	directory	is	stored	for
each	Git	object	you	create.	This	representation	is	efficient	to	create
atomically	and	safely,	but	not	so	convenient	to	transport	over	the
network.	Since	Git	objects	are	immutable	once	they	are	created,	there	is
a	way	to	optimize	the	storage	by	"packing	them	together".	The	command

$	git	repack

will	do	it	for	you.	If	you	followed	the	tutorial	examples,	you	would	have
accumulated	about	17	objects	in	.git/objects/??/	directories	by	now.	git
repack	tells	you	how	many	objects	it	packed,	and	stores	the	packed	file	in
.git/objects/pack	directory.

Note

You	will	see	two	files,	pack-*.pack	and	pack-*.idx,	in
.git/objects/pack	directory.	They	are	closely	related	to	each
other,	and	if	you	ever	copy	them	by	hand	to	a	different

repository	for	whatever	reason,	you	should	make	sure	you
copy	them	together.	The	former	holds	all	the	data	from	the
objects	in	the	pack,	and	the	latter	holds	the	index	for	random
access.

If	you	are	paranoid,	running	git	verify-pack	command	would	detect	if	you
have	a	corrupt	pack,	but	do	not	worry	too	much.	Our	programs	are
always	perfect	;-).

Once	you	have	packed	objects,	you	do	not	need	to	leave	the	unpacked
objects	that	are	contained	in	the	pack	file	anymore.

$	git	prune-packed

would	remove	them	for	you.

You	can	try	running	find	.git/objects	-type	f	before	and	after	you	run	git
prune-packed	if	you	are	curious.	Also	git	count-objects	would	tell	you	how
many	unpacked	objects	are	in	your	repository	and	how	much	space	they
are	consuming.

Note

git	pull	is	slightly	cumbersome	for	HTTP	transport,	as	a
packed	repository	may	contain	relatively	few	objects	in	a
relatively	large	pack.	If	you	expect	many	HTTP	pulls	from
your	public	repository	you	might	want	to	repack	&	prune
often,	or	never.

If	you	run	git	repack	again	at	this	point,	it	will	say	"Nothing	new	to	pack.".
Once	you	continue	your	development	and	accumulate	the	changes,
running	git	repack	again	will	create	a	new	pack,	that	contains	objects
created	since	you	packed	your	repository	the	last	time.	We	recommend
that	you	pack	your	project	soon	after	the	initial	import	(unless	you	are

starting	your	project	from	scratch),	and	then	run	git	repack	every	once	in
a	while,	depending	on	how	active	your	project	is.

When	a	repository	is	synchronized	via	git	push	and	git	pull	objects
packed	in	the	source	repository	are	usually	stored	unpacked	in	the
destination.	While	this	allows	you	to	use	different	packing	strategies	on
both	ends,	it	also	means	you	may	need	to	repack	both	repositories	every
once	in	a	while.

Working	with	Others

Although	Git	is	a	truly	distributed	system,	it	is	often	convenient	to
organize	your	project	with	an	informal	hierarchy	of	developers.	Linux
kernel	development	is	run	this	way.	There	is	a	nice	illustration	(page	17,
"Merges	to	Mainline")	in	http://www.xenotime.net/linux/mentor/linux-
mentoring-2006.pdf[Randy	Dunlap's	presentation].

It	should	be	stressed	that	this	hierarchy	is	purely	informal.	There	is
nothing	fundamental	in	Git	that	enforces	the	"chain	of	patch	flow"	this
hierarchy	implies.	You	do	not	have	to	pull	from	only	one	remote
repository.

A	recommended	workflow	for	a	"project	lead"	goes	like	this:

1.	 Prepare	your	primary	repository	on	your	local	machine.	Your	work	is
done	there.

2.	 Prepare	a	public	repository	accessible	to	others.

If	other	people	are	pulling	from	your	repository	over	dumb	transport
protocols	(HTTP),	you	need	to	keep	this	repository	dumb	transport
friendly.	After	git	init,	$GIT_DIR/hooks/post-update.sample	copied
from	the	standard	templates	would	contain	a	call	to	git	update-
server-info	but	you	need	to	manually	enable	the	hook	with	mv	post-
update.sample	post-update.	This	makes	sure	git	update-server-info
keeps	the	necessary	files	up-to-date.

3.	 Push	into	the	public	repository	from	your	primary	repository.

http://www.xenotime.net/linux/mentor/linux-mentoring-2006.pdf%5BRandy

4.	 git	repack	the	public	repository.	This	establishes	a	big	pack	that
contains	the	initial	set	of	objects	as	the	baseline,	and	possibly	git
prune	if	the	transport	used	for	pulling	from	your	repository	supports
packed	repositories.

5.	 Keep	working	in	your	primary	repository.	Your	changes	include
modifications	of	your	own,	patches	you	receive	via	e-mails,	and
merges	resulting	from	pulling	the	"public"	repositories	of	your
"subsystem	maintainers".

You	can	repack	this	private	repository	whenever	you	feel	like.

6.	 Push	your	changes	to	the	public	repository,	and	announce	it	to	the
public.

7.	 Every	once	in	a	while,	git	repack	the	public	repository.	Go	back	to
step	5.	and	continue	working.

A	recommended	work	cycle	for	a	"subsystem	maintainer"	who	works	on
that	project	and	has	an	own	"public	repository"	goes	like	this:

1.	 Prepare	your	work	repository,	by	git	clone	the	public	repository	of	the
"project	lead".	The	URL	used	for	the	initial	cloning	is	stored	in	the
remote.origin.url	configuration	variable.

2.	 Prepare	a	public	repository	accessible	to	others,	just	like	the	"project
lead"	person	does.

3.	 Copy	over	the	packed	files	from	"project	lead"	public	repository	to
your	public	repository,	unless	the	"project	lead"	repository	lives	on
the	same	machine	as	yours.	In	the	latter	case,	you	can	use
objects/info/alternates	file	to	point	at	the	repository	you	are
borrowing	from.

4.	 Push	into	the	public	repository	from	your	primary	repository.	Run	git
repack,	and	possibly	git	prune	if	the	transport	used	for	pulling	from
your	repository	supports	packed	repositories.

5.	 Keep	working	in	your	primary	repository.	Your	changes	include
modifications	of	your	own,	patches	you	receive	via	e-mails,	and
merges	resulting	from	pulling	the	"public"	repositories	of	your	"project
lead"	and	possibly	your	"sub-subsystem	maintainers".

You	can	repack	this	private	repository	whenever	you	feel	like.

6.	 Push	your	changes	to	your	public	repository,	and	ask	your	"project
lead"	and	possibly	your	"sub-subsystem	maintainers"	to	pull	from	it.

7.	 Every	once	in	a	while,	git	repack	the	public	repository.	Go	back	to
step	5.	and	continue	working.

A	recommended	work	cycle	for	an	"individual	developer"	who	does	not
have	a	"public"	repository	is	somewhat	different.	It	goes	like	this:

1.	 Prepare	your	work	repository,	by	git	clone	the	public	repository	of	the
"project	lead"	(or	a	"subsystem	maintainer",	if	you	work	on	a
subsystem).	The	URL	used	for	the	initial	cloning	is	stored	in	the
remote.origin.url	configuration	variable.

2.	 Do	your	work	in	your	repository	on	master	branch.
3.	 Run	git	fetch	origin	from	the	public	repository	of	your	upstream	every

once	in	a	while.	This	does	only	the	first	half	of	git	pull	but	does	not
merge.	The	head	of	the	public	repository	is	stored	in
.git/refs/remotes/origin/master.

4.	 Use	git	cherry	origin	to	see	which	ones	of	your	patches	were
accepted,	and/or	use	git	rebase	origin	to	port	your	unmerged
changes	forward	to	the	updated	upstream.

5.	 Use	git	format-patch	origin	to	prepare	patches	for	e-mail	submission
to	your	upstream	and	send	it	out.	Go	back	to	step	2.	and	continue.

Working	with	Others,	Shared	Repository	Style

If	you	are	coming	from	CVS	background,	the	style	of	cooperation
suggested	in	the	previous	section	may	be	new	to	you.	You	do	not	have	to
worry.	Git	supports	"shared	public	repository"	style	of	cooperation	you	are
probably	more	familiar	with	as	well.

See	Section	G.2.4,	“gitcvs-migration(7)”	for	the	details.

Bundling	your	work	together

It	is	likely	that	you	will	be	working	on	more	than	one	thing	at	a	time.	It	is

easy	to	manage	those	more-or-less	independent	tasks	using	branches
with	Git.

We	have	already	seen	how	branches	work	previously,	with	"fun	and
work"	example	using	two	branches.	The	idea	is	the	same	if	there	are
more	than	two	branches.	Let's	say	you	started	out	from	"master"	head,
and	have	some	new	code	in	the	"master"	branch,	and	two	independent
fixes	in	the	"commit-fix"	and	"diff-fix"	branches:

$	git	show-branch

!	[commit-fix]	Fix	commit	message	normalization.

	!	[diff-fix]	Fix	rename	detection.

		*	[master]	Release	candidate	#1

	+		[diff-fix]	Fix	rename	detection.

	+		[diff-fix~1]	Better	common	substring	algorithm.

+			[commit-fix]	Fix	commit	message	normalization.

		*	[master]	Release	candidate	#1

++*	[diff-fix~2]	Pretty-print	messages.

Both	fixes	are	tested	well,	and	at	this	point,	you	want	to	merge	in	both	of
them.	You	could	merge	in	diff-fix	first	and	then	commit-fix	next,	like	this:

$	git	merge	-m	"Merge	fix	in	diff-fix"	diff-fix

$	git	merge	-m	"Merge	fix	in	commit-fix"	commit-fix

Which	would	result	in:

$	git	show-branch

!	[commit-fix]	Fix	commit	message	normalization.

	!	[diff-fix]	Fix	rename	detection.

		*	[master]	Merge	fix	in	commit-fix

		-	[master]	Merge	fix	in	commit-fix

+	*	[commit-fix]	Fix	commit	message	normalization.

		-	[master~1]	Merge	fix	in	diff-fix

	+*	[diff-fix]	Fix	rename	detection.

	+*	[diff-fix~1]	Better	common	substring	algorithm.

		*	[master~2]	Release	candidate	#1

++*	[master~3]	Pretty-print	messages.

However,	there	is	no	particular	reason	to	merge	in	one	branch	first	and
the	other	next,	when	what	you	have	are	a	set	of	truly	independent
changes	(if	the	order	mattered,	then	they	are	not	independent	by
definition).	You	could	instead	merge	those	two	branches	into	the	current
branch	at	once.	First	let's	undo	what	we	just	did	and	start	over.	We	would
want	to	get	the	master	branch	before	these	two	merges	by	resetting	it	to
master~2:

$	git	reset	--hard	master~2

You	can	make	sure	git	show-branch	matches	the	state	before	those	two
git	merge	you	just	did.	Then,	instead	of	running	two	git	merge	commands
in	a	row,	you	would	merge	these	two	branch	heads	(this	is	known	as
making	an	Octopus):

$	git	merge	commit-fix	diff-fix

$	git	show-branch

!	[commit-fix]	Fix	commit	message	normalization.

	!	[diff-fix]	Fix	rename	detection.

		*	[master]	Octopus	merge	of	branches	'diff-fix'	and	'commit-fix'

		-	[master]	Octopus	merge	of	branches	'diff-fix'	and	'commit-fix'

+	*	[commit-fix]	Fix	commit	message	normalization.

	+*	[diff-fix]	Fix	rename	detection.

	+*	[diff-fix~1]	Better	common	substring	algorithm.

		*	[master~1]	Release	candidate	#1

++*	[master~2]	Pretty-print	messages.

Note	that	you	should	not	do	Octopus	because	you	can.	An	octopus	is	a
valid	thing	to	do	and	often	makes	it	easier	to	view	the	commit	history	if
you	are	merging	more	than	two	independent	changes	at	the	same	time.
However,	if	you	have	merge	conflicts	with	any	of	the	branches	you	are
merging	in	and	need	to	hand	resolve,	that	is	an	indication	that	the
development	happened	in	those	branches	were	not	independent	after	all,
and	you	should	merge	two	at	a	time,	documenting	how	you	resolved	the
conflicts,	and	the	reason	why	you	preferred	changes	made	in	one	side
over	the	other.	Otherwise	it	would	make	the	project	history	harder	to
follow,	not	easier.

SEE	ALSO

Section	G.2.1,	“gittutorial(7)”,	Section	G.2.2,	“gittutorial-2(7)”,
Section	G.2.4,	“gitcvs-migration(7)”,	Section	G.3.58,	“git-help(1)”,
Section	G.2.5,	“giteveryday(7)”,	The	Git	User's	Manual

GIT

Part	of	the	Section	G.3.1,	“git(1)”	suite.

G.2.4.	gitcvs-migration(7)

NAME

gitcvs-migration	-	Git	for	CVS	users

SYNOPSIS

git	cvsimport	*

DESCRIPTION

Git	differs	from	CVS	in	that	every	working	tree	contains	a	repository	with
a	full	copy	of	the	project	history,	and	no	repository	is	inherently	more
important	than	any	other.	However,	you	can	emulate	the	CVS	model	by
designating	a	single	shared	repository	which	people	can	synchronize
with;	this	document	explains	how	to	do	that.

Some	basic	familiarity	with	Git	is	required.	Having	gone	through
Section	G.2.1,	“gittutorial(7)”	and	Section	G.4.16,	“gitglossary(7)”	should
be	sufficient.

Developing	against	a	shared	repository

Suppose	a	shared	repository	is	set	up	in	/pub/repo.git	on	the	host

https://www.kernel.org/pub/software/scm/git/docs/user-manual.html

foo.com.	Then	as	an	individual	committer	you	can	clone	the	shared
repository	over	ssh	with:

$	git	clone	foo.com:/pub/repo.git/	my-project

$	cd	my-project

and	hack	away.	The	equivalent	of	cvs	update	is

$	git	pull	origin

which	merges	in	any	work	that	others	might	have	done	since	the	clone
operation.	If	there	are	uncommitted	changes	in	your	working	tree,	commit
them	first	before	running	git	pull.

Note

The	pull	command	knows	where	to	get	updates	from
because	of	certain	configuration	variables	that	were	set	by
the	first	git	clone	command;	see	git	config	-l	and	the
Section	G.3.27,	“git-config(1)”	man	page	for	details.

You	can	update	the	shared	repository	with	your	changes	by	first
committing	your	changes,	and	then	using	the	git	push	command:

$	git	push	origin	master

to	"push"	those	commits	to	the	shared	repository.	If	someone	else	has
updated	the	repository	more	recently,	git	push,	like	cvs	commit,	will
complain,	in	which	case	you	must	pull	any	changes	before	attempting	the
push	again.

In	the	git	push	command	above	we	specify	the	name	of	the	remote
branch	to	update	(master).	If	we	leave	that	out,	git	push	tries	to	update
any	branches	in	the	remote	repository	that	have	the	same	name	as	a
branch	in	the	local	repository.	So	the	last	push	can	be	done	with	either	of:

$	git	push	origin

$	git	push	foo.com:/pub/project.git/

as	long	as	the	shared	repository	does	not	have	any	branches	other	than
master.

Setting	Up	a	Shared	Repository

We	assume	you	have	already	created	a	Git	repository	for	your	project,
possibly	created	from	scratch	or	from	a	tarball	(see	Section	G.2.1,
“gittutorial(7)”),	or	imported	from	an	already	existing	CVS	repository	(see
the	next	section).

Assume	your	existing	repo	is	at	/home/alice/myproject.	Create	a	new
"bare"	repository	(a	repository	without	a	working	tree)	and	fetch	your
project	into	it:

$	mkdir	/pub/my-repo.git

$	cd	/pub/my-repo.git

$	git	--bare	init	--shared

$	git	--bare	fetch	/home/alice/myproject	master:master

Next,	give	every	team	member	read/write	access	to	this	repository.	One
easy	way	to	do	this	is	to	give	all	the	team	members	ssh	access	to	the
machine	where	the	repository	is	hosted.	If	you	don't	want	to	give	them	a
full	shell	on	the	machine,	there	is	a	restricted	shell	which	only	allows
users	to	do	Git	pushes	and	pulls;	see	Section	G.3.121,	“git-shell(1)”.

Put	all	the	committers	in	the	same	group,	and	make	the	repository
writable	by	that	group:

$	chgrp	-R	$group	/pub/my-repo.git

Make	sure	committers	have	a	umask	of	at	most	027,	so	that	the
directories	they	create	are	writable	and	searchable	by	other	group
members.

Importing	a	CVS	archive

First,	install	version	2.1	or	higher	of	cvsps	from
http://www.cobite.com/cvsps/	and	make	sure	it	is	in	your	path.	Then	cd	to
a	checked	out	CVS	working	directory	of	the	project	you	are	interested	in
and	run	Section	G.3.34,	“git-cvsimport(1)”:

$	git	cvsimport	-C	<destination>	<module>

This	puts	a	Git	archive	of	the	named	CVS	module	in	the	directory
<destination>,	which	will	be	created	if	necessary.

The	import	checks	out	from	CVS	every	revision	of	every	file.	Reportedly
cvsimport	can	average	some	twenty	revisions	per	second,	so	for	a
medium-sized	project	this	should	not	take	more	than	a	couple	of	minutes.
Larger	projects	or	remote	repositories	may	take	longer.

The	main	trunk	is	stored	in	the	Git	branch	named	origin,	and	additional
CVS	branches	are	stored	in	Git	branches	with	the	same	names.	The
most	recent	version	of	the	main	trunk	is	also	left	checked	out	on	the
master	branch,	so	you	can	start	adding	your	own	changes	right	away.

The	import	is	incremental,	so	if	you	call	it	again	next	month	it	will	fetch
any	CVS	updates	that	have	been	made	in	the	meantime.	For	this	to	work,
you	must	not	modify	the	imported	branches;	instead,	create	new
branches	for	your	own	changes,	and	merge	in	the	imported	branches	as
necessary.

If	you	want	a	shared	repository,	you	will	need	to	make	a	bare	clone	of	the
imported	directory,	as	described	above.	Then	treat	the	imported	directory
as	another	development	clone	for	purposes	of	merging	incremental
imports.

Advanced	Shared	Repository	Management

Git	allows	you	to	specify	scripts	called	"hooks"	to	be	run	at	certain	points.
You	can	use	these,	for	example,	to	send	all	commits	to	the	shared

http://www.cobite.com/cvsps/

repository	to	a	mailing	list.	See	Section	G.4.6,	“githooks(5)”.

You	can	enforce	finer	grained	permissions	using	update	hooks.	See
Controlling	access	to	branches	using	update	hooks.

Providing	CVS	Access	to	a	Git	Repository

It	is	also	possible	to	provide	true	CVS	access	to	a	Git	repository,	so	that
developers	can	still	use	CVS;	see	Section	G.3.35,	“git-cvsserver(1)”	for
details.

Alternative	Development	Models

CVS	users	are	accustomed	to	giving	a	group	of	developers	commit
access	to	a	common	repository.	As	we've	seen,	this	is	also	possible	with
Git.	However,	the	distributed	nature	of	Git	allows	other	development
models,	and	you	may	want	to	first	consider	whether	one	of	them	might	be
a	better	fit	for	your	project.

For	example,	you	can	choose	a	single	person	to	maintain	the	project's
primary	public	repository.	Other	developers	then	clone	this	repository	and
each	work	in	their	own	clone.	When	they	have	a	series	of	changes	that
they're	happy	with,	they	ask	the	maintainer	to	pull	from	the	branch
containing	the	changes.	The	maintainer	reviews	their	changes	and	pulls
them	into	the	primary	repository,	which	other	developers	pull	from	as
necessary	to	stay	coordinated.	The	Linux	kernel	and	other	projects	use
variants	of	this	model.

With	a	small	group,	developers	may	just	pull	changes	from	each	other's
repositories	without	the	need	for	a	central	maintainer.

SEE	ALSO

Section	G.2.1,	“gittutorial(7)”,	Section	G.2.2,	“gittutorial-2(7)”,
Section	G.2.3,	“gitcore-tutorial(7)”,	Section	G.4.16,	“gitglossary(7)”,
Section	G.2.5,	“giteveryday(7)”,	The	Git	User's	Manual

https://www.kernel.org/pub/software/scm/git/docs/howto/update-hook-example.html
https://www.kernel.org/pub/software/scm/git/docs/user-manual.html

GIT

Part	of	the	Section	G.3.1,	“git(1)”	suite.

G.2.5.	giteveryday(7)

NAME

giteveryday	-	A	useful	minimum	set	of	commands	for	Everyday	Git

SYNOPSIS

Everyday	Git	With	20	Commands	Or	So

DESCRIPTION

Git	users	can	broadly	be	grouped	into	four	categories	for	the	purposes	of
describing	here	a	small	set	of	useful	command	for	everyday	Git.

Individual	Developer	(Standalone)	commands	are	essential	for
anybody	who	makes	a	commit,	even	for	somebody	who	works	alone.
If	you	work	with	other	people,	you	will	need	commands	listed	in	the
Individual	Developer	(Participant)	section	as	well.
People	who	play	the	Integrator	role	need	to	learn	some	more
commands	in	addition	to	the	above.
Repository	Administration	commands	are	for	system	administrators
who	are	responsible	for	the	care	and	feeding	of	Git	repositories.

Individual	Developer	(Standalone)

A	standalone	individual	developer	does	not	exchange	patches	with	other
people,	and	works	alone	in	a	single	repository,	using	the	following
commands.

Section	G.3.65,	“git-init(1)”	to	create	a	new	repository.
Section	G.3.68,	“git-log(1)”	to	see	what	happened.

Section	G.3.18,	“git-checkout(1)”	and	Section	G.3.10,	“git-branch(1)”
to	switch	branches.
Section	G.3.2,	“git-add(1)”	to	manage	the	index	file.
Section	G.3.41,	“git-diff(1)”	and	Section	G.3.129,	“git-status(1)”	to
see	what	you	are	in	the	middle	of	doing.
Section	G.3.26,	“git-commit(1)”	to	advance	the	current	branch.
Section	G.3.111,	“git-reset(1)”	and	Section	G.3.18,	“git-checkout(1)”
(with	pathname	parameters)	to	undo	changes.
Section	G.3.79,	“git-merge(1)”	to	merge	between	local	branches.
Section	G.3.99,	“git-rebase(1)”	to	maintain	topic	branches.
Section	G.3.134,	“git-tag(1)”	to	mark	a	known	point.

1.	Examples

Use	a	tarball	as	a	starting	point	for	a	new	repository.

$	tar	zxf	frotz.tar.gz

$	cd	frotz

$	git	init

$	git	add	.	

$	git	commit	-m	"import	of	frotz	source	tree."

$	git	tag	v2.43	

add	everything	under	the	current	directory.

make	a	lightweight,	unannotated	tag.

Create	a	topic	branch	and	develop.

$	git	checkout	-b	alsa-audio	

$	edit/compile/test

$	git	checkout	--	curses/ux_audio_oss.c	

$	git	add	curses/ux_audio_alsa.c	

$	edit/compile/test

$	git	diff	HEAD	

$	git	commit	-a	-s	

$	edit/compile/test

$	git	diff	HEAD^	

$	git	commit	-a	--amend	

$	git	checkout	master	

$	git	merge	alsa-audio	

$	git	log	--since='3	days	ago'	

$	git	log	v2.43..	curses/	

create	a	new	topic	branch.

revert	your	botched	changes	in	curses/ux_audio_oss.c.

you	need	to	tell	Git	if	you	added	a	new	file;	removal	and
modification	will	be	caught	if	you	do	git	commit	-a	later.

to	see	what	changes	you	are	committing.

commit	everything,	as	you	have	tested,	with	your	sign-off.

look	at	all	your	changes	including	the	previous	commit.

amend	the	previous	commit,	adding	all	your	new	changes,	using
your	original	message.

switch	to	the	master	branch.

merge	a	topic	branch	into	your	master	branch.

review	commit	logs;	other	forms	to	limit	output	can	be	combined
and	include	-10	(to	show	up	to	10	commits),	--until=2005-12-10,
etc.

view	only	the	changes	that	touch	what's	in	curses/	directory,
since	v2.43	tag.

Individual	Developer	(Participant)

A	developer	working	as	a	participant	in	a	group	project	needs	to	learn
how	to	communicate	with	others,	and	uses	these	commands	in	addition
to	the	ones	needed	by	a	standalone	developer.

Section	G.3.23,	“git-clone(1)”	from	the	upstream	to	prime	your	local
repository.
Section	G.3.95,	“git-pull(1)”	and	Section	G.3.46,	“git-fetch(1)”	from
"origin"	to	keep	up-to-date	with	the	upstream.
Section	G.3.96,	“git-push(1)”	to	shared	repository,	if	you	adopt	CVS
style	shared	repository	workflow.
Section	G.3.50,	“git-format-patch(1)”	to	prepare	e-mail	submission,	if
you	adopt	Linux	kernel-style	public	forum	workflow.
Section	G.3.116,	“git-send-email(1)”	to	send	your	e-mail	submission
without	corruption	by	your	MUA.
Section	G.3.109,	“git-request-pull(1)”	to	create	a	summary	of
changes	for	your	upstream	to	pull.

1.	Examples

Clone	the	upstream	and	work	on	it.	Feed	changes	to	upstream.

$	git	clone	git://git.kernel.org/pub/scm/.../torvalds/linux-2.6	my2.6

$	cd	my2.6

$	git	checkout	-b	mine	master	

$	edit/compile/test;	git	commit	-a	-s	

$	git	format-patch	master	

$	git	send-email	--to="person	<email@example.com>"	00*.patch	

$	git	checkout	master	

$	git	pull	

$	git	log	-p	ORIG_HEAD..	arch/i386	include/asm-i386	

$	git	ls-remote	--heads	http://git.kernel.org/.../jgarzik/libata-dev.git	

$	git	pull	git://git.kernel.org/pub/.../jgarzik/libata-dev.git	ALL	

$	git	reset	--hard	ORIG_HEAD	

$	git	gc	

checkout	a	new	branch	mine	from	master.

repeat	as	needed.

extract	patches	from	your	branch,	relative	to	master,

and	email	them.

return	to	master,	ready	to	see	what's	new

git	pull	fetches	from	origin	by	default	and	merges	into	the	current
branch.

immediately	after	pulling,	look	at	the	changes	done	upstream
since	last	time	we	checked,	only	in	the	area	we	are	interested	in.

check	the	branch	names	in	an	external	repository	(if	not	known).

fetch	from	a	specific	branch	ALL	from	a	specific	repository	and
merge	it.

revert	the	pull.

garbage	collect	leftover	objects	from	reverted	pull.

Push	into	another	repository.

satellite$	git	clone	mothership:frotz	frotz	

satellite$	cd	frotz

satellite$	git	config	--get-regexp	'^(remote|branch)\.'	

remote.origin.url	mothership:frotz

remote.origin.fetch	refs/heads/*:refs/remotes/origin/*

branch.master.remote	origin

branch.master.merge	refs/heads/master

satellite$	git	config	remote.origin.push	\

											+refs/heads/*:refs/remotes/satellite/*	

satellite$	edit/compile/test/commit

satellite$	git	push	origin	

mothership$	cd	frotz

mothership$	git	checkout	master

mothership$	git	merge	satellite/master	

mothership	machine	has	a	frotz	repository	under	your	home
directory;	clone	from	it	to	start	a	repository	on	the	satellite
machine.

clone	sets	these	configuration	variables	by	default.	It	arranges
git	pull	to	fetch	and	store	the	branches	of	mothership	machine	to
local	remotes/origin/*	remote-tracking	branches.

arrange	git	push	to	push	all	local	branches	to	their
corresponding	branch	of	the	mothership	machine.

push	will	stash	all	our	work	away	on	remotes/satellite/*	remote-
tracking	branches	on	the	mothership	machine.	You	could	use
this	as	a	back-up	method.	Likewise,	you	can	pretend	that
mothership	"fetched"	from	you	(useful	when	access	is	one
sided).

on	mothership	machine,	merge	the	work	done	on	the	satellite
machine	into	the	master	branch.

Branch	off	of	a	specific	tag.

$	git	checkout	-b	private2.6.14	v2.6.14	

$	edit/compile/test;	git	commit	-a

$	git	checkout	master

$	git	cherry-pick	v2.6.14..private2.6.14	

create	a	private	branch	based	on	a	well	known	(but	somewhat
behind)	tag.

forward	port	all	changes	in	private2.6.14	branch	to	master
branch	without	a	formal	"merging".	Or	longhand	git	format-patch

-k	-m	--stdout	v2.6.14..private2.6.14	|	git	am	-3	-k

An	alternate	participant	submission	mechanism	is	using	the	git	request-
pull	or	pull-request	mechanisms	(e.g	as	used	on	GitHub
(www.github.com)	to	notify	your	upstream	of	your	contribution.

Integrator

A	fairly	central	person	acting	as	the	integrator	in	a	group	project	receives
changes	made	by	others,	reviews	and	integrates	them	and	publishes	the
result	for	others	to	use,	using	these	commands	in	addition	to	the	ones
needed	by	participants.

This	section	can	also	be	used	by	those	who	respond	to	git	request-pull	or
pull-request	on	GitHub	(www.github.com)	to	integrate	the	work	of	others
into	their	history.	An	sub-area	lieutenant	for	a	repository	will	act	both	as	a
participant	and	as	an	integrator.

Section	G.3.3,	“git-am(1)”	to	apply	patches	e-mailed	in	from	your
contributors.
Section	G.3.95,	“git-pull(1)”	to	merge	from	your	trusted	lieutenants.
Section	G.3.50,	“git-format-patch(1)”	to	prepare	and	send	suggested
alternative	to	contributors.
Section	G.3.114,	“git-revert(1)”	to	undo	botched	commits.
Section	G.3.96,	“git-push(1)”	to	publish	the	bleeding	edge.

1.	Examples

A	typical	integrator's	Git	day.

$	git	status	

$	git	branch	--no-merged	master	

$	mailx	

&	s	2	3	4	5	./+to-apply

&	s	7	8	./+hold-linus

&	q

$	git	checkout	-b	topic/one	master

$	git	am	-3	-i	-s	./+to-apply	

$	compile/test

$	git	checkout	-b	hold/linus	&&	git	am	-3	-i	-s	./+hold-linus	

$	git	checkout	topic/one	&&	git	rebase	master	

$	git	checkout	pu	&&	git	reset	--hard	next	

$	git	merge	topic/one	topic/two	&&	git	merge	hold/linus	

$	git	checkout	maint

$	git	cherry-pick	master~4	

$	compile/test

$	git	tag	-s	-m	"GIT	0.99.9x"	v0.99.9x	

$	git	fetch	ko	&&	for	branch	in	master	maint	next	pu	

				do

								git	show-branch	ko/$branch	$branch	

				done

$	git	push	--follow-tags	ko	

see	what	you	were	in	the	middle	of	doing,	if	anything.

see	which	branches	haven't	been	merged	into	master	yet.
Likewise	for	any	other	integration	branches	e.g.	maint,	next	and
pu	(potential	updates).

read	mails,	save	ones	that	are	applicable,	and	save	others	that
are	not	quite	ready	(other	mail	readers	are	available).

apply	them,	interactively,	with	your	sign-offs.

create	topic	branch	as	needed	and	apply,	again	with	sign-offs.

rebase	internal	topic	branch	that	has	not	been	merged	to	the
master	or	exposed	as	a	part	of	a	stable	branch.

restart	pu	every	time	from	the	next.

and	bundle	topic	branches	still	cooking.

backport	a	critical	fix.

create	a	signed	tag.

make	sure	master	was	not	accidentally	rewound	beyond	that
already	pushed	out.	ko	shorthand	points	at	the	Git	maintainer's
repository	at	kernel.org,	and	looks	like	this:

(in	.git/config)

[remote	"ko"]

								url	=	kernel.org:/pub/scm/git/git.git

								fetch	=	refs/heads/*:refs/remotes/ko/*

								push	=	refs/heads/master

								push	=	refs/heads/next

								push	=	+refs/heads/pu

								push	=	refs/heads/maint

In	the	output	from	git	show-branch,	master	should	have
everything	ko/master	has,	and	next	should	have	everything
ko/next	has,	etc.

push	out	the	bleeding	edge,	together	with	new	tags	that	point
into	the	pushed	history.

Repository	Administration

A	repository	administrator	uses	the	following	tools	to	set	up	and	maintain
access	to	the	repository	by	developers.

Section	G.3.36,	“git-daemon(1)”	to	allow	anonymous	download	from
repository.
Section	G.3.121,	“git-shell(1)”	can	be	used	as	a	restricted	login	shell
for	shared	central	repository	users.
Section	G.3.59,	“git-http-backend(1)”	provides	a	server	side
implementation	of	Git-over-HTTP	("Smart	http")	allowing	both	fetch
and	push	services.
Section	G.4.13,	“gitweb(1)”	provides	a	web	front-end	to	Git
repositories,	which	can	be	set-up	using	the	Section	G.3.66,	“git-
instaweb(1)”	script.

update	hook	howto	has	a	good	example	of	managing	a	shared	central
repository.

In	addition	there	are	a	number	of	other	widely	deployed	hosting,	browsing
and	reviewing	solutions	such	as:

gitolite,	gerrit	code	review,	cgit	and	others.

https://www.kernel.org/pub/software/scm/git/docs/howto/update-hook-example.html

1.	Examples

We	assume	the	following	in	/etc/services

$	grep	9418	/etc/services

git													9418/tcp																#	Git	Version	Control	System

Run	git-daemon	to	serve	/pub/scm	from	inetd.

$	grep	git	/etc/inetd.conf

git					stream		tcp					nowait		nobody	\

		/usr/bin/git-daemon	git-daemon	--inetd	--export-all	/pub/scm

The	actual	configuration	line	should	be	on	one	line.

Run	git-daemon	to	serve	/pub/scm	from	xinetd.

$	cat	/etc/xinetd.d/git-daemon

#	default:	off

#	description:	The	Git	server	offers	access	to	Git	repositories

service	git

{

								disable	=	no

								type												=	UNLISTED

								port												=	9418

								socket_type					=	stream

								wait												=	no

								user												=	nobody

								server										=	/usr/bin/git-daemon

								server_args					=	--inetd	--export-all	--base-path=/pub/scm

								log_on_failure		+=	USERID

}

Check	your	xinetd(8)	documentation	and	setup,	this	is	from	a	Fedora
system.	Others	might	be	different.

Give	push/pull	only	access	to	developers	using	git-over-ssh.

e.g.	those	using:	$	git	push/pull	ssh://host.xz/pub/scm/project

$	grep	git	/etc/passwd	

alice:x:1000:1000::/home/alice:/usr/bin/git-shell

bob:x:1001:1001::/home/bob:/usr/bin/git-shell

cindy:x:1002:1002::/home/cindy:/usr/bin/git-shell

david:x:1003:1003::/home/david:/usr/bin/git-shell

$	grep	git	/etc/shells	

/usr/bin/git-shell

log-in	shell	is	set	to	/usr/bin/git-shell,	which	does	not	allow
anything	but	git	push	and	git	pull.	The	users	require	ssh	access
to	the	machine.

in	many	distributions	/etc/shells	needs	to	list	what	is	used	as	the
login	shell.

CVS-style	shared	repository.

$	grep	git	/etc/group	

git:x:9418:alice,bob,cindy,david

$	cd	/home/devo.git

$	ls	-l	

		lrwxrwxrwx			1	david	git				17	Dec		4	22:40	HEAD	->	refs/heads/master

		drwxrwsr-x			2	david	git		4096	Dec		4	22:40	branches

		-rw-rw-r--			1	david	git				84	Dec		4	22:40	config

		-rw-rw-r--			1	david	git				58	Dec		4	22:40	description

		drwxrwsr-x			2	david	git		4096	Dec		4	22:40	hooks

		-rw-rw-r--			1	david	git	37504	Dec		4	22:40	index

		drwxrwsr-x			2	david	git		4096	Dec		4	22:40	info

		drwxrwsr-x			4	david	git		4096	Dec		4	22:40	objects

		drwxrwsr-x			4	david	git		4096	Nov		7	14:58	refs

		drwxrwsr-x			2	david	git		4096	Dec		4	22:40	remotes

$	ls	-l	hooks/update	

		-r-xr-xr-x			1	david	git		3536	Dec		4	22:40	update

$	cat	info/allowed-users	

refs/heads/master							alice\|cindy

refs/heads/doc-update			bob

refs/tags/v[0-9]*							david

place	the	developers	into	the	same	git	group.

and	make	the	shared	repository	writable	by	the	group.

use	update-hook	example	by	Carl	from	Documentation/howto/
for	branch	policy	control.

alice	and	cindy	can	push	into	master,	only	bob	can	push	into
doc-update.	david	is	the	release	manager	and	is	the	only	person
who	can	create	and	push	version	tags.

GIT

Part	of	the	Section	G.3.1,	“git(1)”	suite

Prev	 Up 	Next
7.	Repository	maintenance	 Home 	G.3.	Git	Command

Reference

G.3.	Git	Command	Reference
Prev	 Appendix	G.	Git	Offical	Documentation 	Next

G.3.	Git	Command	Reference

G.3.1.	git(1)

NAME

git	-	the	stupid	content	tracker

SYNOPSIS

git	[--version]	[--help]	[-C	<path>]	[-c	<name>=<value>]

				[--exec-path[=<path>]]	[--html-path]	[--man-path]	[--

info-path]

				[-p|--paginate|--no-pager]	[--no-replace-objects]	[--

bare]

				[--git-dir=<path>]	[--work-tree=<path>]	[--namespace=

<name>]

				<command>	[<args>]

DESCRIPTION

Git	is	a	fast,	scalable,	distributed	revision	control	system	with	an
unusually	rich	command	set	that	provides	both	high-level	operations	and
full	access	to	internals.

See	Section	G.2.1,	“gittutorial(7)”	to	get	started,	then	see	Section	G.2.5,
“giteveryday(7)”	for	a	useful	minimum	set	of	commands.	The	Git	User's
Manual	has	a	more	in-depth	introduction.

After	you	mastered	the	basic	concepts,	you	can	come	back	to	this	page
to	learn	what	commands	Git	offers.	You	can	learn	more	about	individual
Git	commands	with	"git	help	command".	Section	G.4.1,	“gitcli(7)”	manual
page	gives	you	an	overview	of	the	command-line	command	syntax.

Formatted	and	hyperlinked	version	of	the	latest	Git	documentation	can	be
viewed	at	http://git-htmldocs.googlecode.com/git/git.html.

https://www.kernel.org/pub/software/scm/git/docs/user-manual.html

OPTIONS

--version
Prints	the	Git	suite	version	that	the	git	program	came	from.

--help

Prints	the	synopsis	and	a	list	of	the	most	commonly	used
commands.	If	the	option	--all	or	-a	is	given	then	all	available
commands	are	printed.	If	a	Git	command	is	named	this	option	will
bring	up	the	manual	page	for	that	command.

Other	options	are	available	to	control	how	the	manual	page	is
displayed.	See	Section	G.3.58,	“git-help(1)”	for	more	information,
because	git	--help	...	is	converted	internally	into	git	help

-C	<path>

Run	as	if	git	was	started	in	<path>	instead	of	the	current	working
directory.	When	multiple	-C	options	are	given,	each	subsequent	non-
absolute	-C	<path>	is	interpreted	relative	to	the	preceding	-C	<path>.

This	option	affects	options	that	expect	path	name	like	--git-dir	and	--
work-tree	in	that	their	interpretations	of	the	path	names	would	be
made	relative	to	the	working	directory	caused	by	the	-C	option.	For
example	the	following	invocations	are	equivalent:

git	--git-dir=a.git	--work-tree=b	-C	c	status

git	--git-dir=c/a.git	--work-tree=c/b	status

-c	<name>=<value>

Pass	a	configuration	parameter	to	the	command.	The	value	given
will	override	values	from	configuration	files.	The	<name>	is	expected
in	the	same	format	as	listed	by	git	config	(subkeys	separated	by
dots).

Note	that	omitting	the	=	in	git	-c	foo.bar	...	is	allowed	and	sets	foo.bar
to	the	boolean	true	value	(just	like	[foo]bar	would	in	a	config	file).
Including	the	equals	but	with	an	empty	value	(like	git	-c	foo.bar=	...)
sets	foo.bar	to	the	empty	string.

--exec-path[=<path>]
Path	to	wherever	your	core	Git	programs	are	installed.	This	can	also
be	controlled	by	setting	the	GIT_EXEC_PATH	environment	variable.
If	no	path	is	given,	git	will	print	the	current	setting	and	then	exit.

--html-path
Print	the	path,	without	trailing	slash,	where	Git's	HTML
documentation	is	installed	and	exit.

--man-path
Print	the	manpath	(see	man(1))	for	the	man	pages	for	this	version	of
Git	and	exit.

--info-path
Print	the	path	where	the	Info	files	documenting	this	version	of	Git	are
installed	and	exit.

-p	,	--paginate
Pipe	all	output	into	less	(or	if	set,	$PAGER)	if	standard	output	is	a
terminal.	This	overrides	the	pager.<cmd>	configuration	options	(see
the	"Configuration	Mechanism"	section	below).

--no-pager
Do	not	pipe	Git	output	into	a	pager.

--git-dir=<path>
Set	the	path	to	the	repository.	This	can	also	be	controlled	by	setting
the	GIT_DIR	environment	variable.	It	can	be	an	absolute	path	or
relative	path	to	current	working	directory.

--work-tree=<path>
Set	the	path	to	the	working	tree.	It	can	be	an	absolute	path	or	a	path
relative	to	the	current	working	directory.	This	can	also	be	controlled
by	setting	the	GIT_WORK_TREE	environment	variable	and	the
core.worktree	configuration	variable	(see	core.worktree	in
Section	G.3.27,	“git-config(1)”	for	a	more	detailed	discussion).

--namespace=<path>
Set	the	Git	namespace.	See	Section	G.4.9,	“gitnamespaces(7)”	for
more	details.	Equivalent	to	setting	the	GIT_NAMESPACE
environment	variable.

--bare
Treat	the	repository	as	a	bare	repository.	If	GIT_DIR	environment	is
not	set,	it	is	set	to	the	current	working	directory.

--no-replace-objects

Do	not	use	replacement	refs	to	replace	Git	objects.	See
Section	G.3.108,	“git-replace(1)”	for	more	information.

--literal-pathspecs
Treat	pathspecs	literally	(i.e.	no	globbing,	no	pathspec	magic).	This
is	equivalent	to	setting	the	GIT_LITERAL_PATHSPECS	environment
variable	to	1.

--glob-pathspecs
Add	"glob"	magic	to	all	pathspec.	This	is	equivalent	to	setting	the
GIT_GLOB_PATHSPECS	environment	variable	to	1.	Disabling
globbing	on	individual	pathspecs	can	be	done	using	pathspec	magic
":(literal)"

--noglob-pathspecs
Add	"literal"	magic	to	all	pathspec.	This	is	equivalent	to	setting	the
GIT_NOGLOB_PATHSPECS	environment	variable	to	1.	Enabling
globbing	on	individual	pathspecs	can	be	done	using	pathspec	magic
":(glob)"

--icase-pathspecs
Add	"icase"	magic	to	all	pathspec.	This	is	equivalent	to	setting	the
GIT_ICASE_PATHSPECS	environment	variable	to	1.

GIT	COMMANDS

We	divide	Git	into	high	level	("porcelain")	commands	and	low	level
("plumbing")	commands.

High-level	commands	(porcelain)

We	separate	the	porcelain	commands	into	the	main	commands	and
some	ancillary	user	utilities.

1.	Main	porcelain	commands

Section	G.3.2,	“git-add(1)”
Add	file	contents	to	the	index.

Section	G.3.3,	“git-am(1)”
Apply	a	series	of	patches	from	a	mailbox.

Section	G.3.7,	“git-archive(1)”
Create	an	archive	of	files	from	a	named	tree.

Section	G.3.8,	“git-bisect(1)”
Use	binary	search	to	find	the	commit	that	introduced	a	bug.

Section	G.3.10,	“git-branch(1)”
List,	create,	or	delete	branches.

Section	G.3.11,	“git-bundle(1)”
Move	objects	and	refs	by	archive.

Section	G.3.18,	“git-checkout(1)”
Switch	branches	or	restore	working	tree	files.

Section	G.3.19,	“git-cherry-pick(1)”
Apply	the	changes	introduced	by	some	existing	commits.

Section	G.3.21,	“git-citool(1)”
Graphical	alternative	to	git-commit.

Section	G.3.22,	“git-clean(1)”
Remove	untracked	files	from	the	working	tree.

Section	G.3.23,	“git-clone(1)”
Clone	a	repository	into	a	new	directory.

Section	G.3.26,	“git-commit(1)”
Record	changes	to	the	repository.

Section	G.3.37,	“git-describe(1)”
Describe	a	commit	using	the	most	recent	tag	reachable	from	it.

Section	G.3.41,	“git-diff(1)”
Show	changes	between	commits,	commit	and	working	tree,	etc.

Section	G.3.46,	“git-fetch(1)”
Download	objects	and	refs	from	another	repository.

Section	G.3.50,	“git-format-patch(1)”
Prepare	patches	for	e-mail	submission.

Section	G.3.53,	“git-gc(1)”
Cleanup	unnecessary	files	and	optimize	the	local	repository.

Section	G.3.55,	“git-grep(1)”
Print	lines	matching	a	pattern.

Section	G.3.56,	“git-gui(1)”
A	portable	graphical	interface	to	Git.

Section	G.3.65,	“git-init(1)”
Create	an	empty	Git	repository	or	reinitialize	an	existing	one.

Section	G.3.68,	“git-log(1)”
Show	commit	logs.

Section	G.3.79,	“git-merge(1)”
Join	two	or	more	development	histories	together.

Section	G.3.84,	“git-mv(1)”
Move	or	rename	a	file,	a	directory,	or	a	symlink.

Section	G.3.86,	“git-notes(1)”
Add	or	inspect	object	notes.

Section	G.3.95,	“git-pull(1)”
Fetch	from	and	integrate	with	another	repository	or	a	local	branch.

Section	G.3.96,	“git-push(1)”
Update	remote	refs	along	with	associated	objects.

Section	G.3.99,	“git-rebase(1)”
Reapply	commits	on	top	of	another	base	tip.

Section	G.3.111,	“git-reset(1)”
Reset	current	HEAD	to	the	specified	state.

Section	G.3.114,	“git-revert(1)”
Revert	some	existing	commits.

Section	G.3.115,	“git-rm(1)”
Remove	files	from	the	working	tree	and	from	the	index.

Section	G.3.122,	“git-shortlog(1)”
Summarize	git	log	output.

Section	G.3.126,	“git-show(1)”
Show	various	types	of	objects.

Section	G.3.128,	“git-stash(1)”
Stash	the	changes	in	a	dirty	working	directory	away.

Section	G.3.129,	“git-status(1)”
Show	the	working	tree	status.

Section	G.3.131,	“git-submodule(1)”
Initialize,	update	or	inspect	submodules.

Section	G.3.134,	“git-tag(1)”

Create,	list,	delete	or	verify	a	tag	object	signed	with	GPG.
Section	G.3.148,	“git-worktree(1)”

Manage	multiple	working	trees.
Section	G.4.7,	“gitk(1)”

The	Git	repository	browser.

2.	Ancillary	Commands

Manipulators:

Section	G.3.27,	“git-config(1)”
Get	and	set	repository	or	global	options.

Section	G.3.43,	“git-fast-export(1)”
Git	data	exporter.

Section	G.3.44,	“git-fast-import(1)”
Backend	for	fast	Git	data	importers.

Section	G.3.47,	“git-filter-branch(1)”
Rewrite	branches.

Section	G.3.81,	“git-mergetool(1)”
Run	merge	conflict	resolution	tools	to	resolve	merge	conflicts.

Section	G.3.90,	“git-pack-refs(1)”
Pack	heads	and	tags	for	efficient	repository	access.

Section	G.3.94,	“git-prune(1)”
Prune	all	unreachable	objects	from	the	object	database.

Section	G.3.101,	“git-reflog(1)”
Manage	reflog	information.

Section	G.3.102,	“git-relink(1)”
Hardlink	common	objects	in	local	repositories.

Section	G.3.106,	“git-remote(1)”
Manage	set	of	tracked	repositories.

Section	G.3.107,	“git-repack(1)”
Pack	unpacked	objects	in	a	repository.

Section	G.3.108,	“git-replace(1)”
Create,	list,	delete	refs	to	replace	objects.

Interrogators:

Section	G.3.4,	“git-annotate(1)”
Annotate	file	lines	with	commit	information.

Section	G.3.9,	“git-blame(1)”
Show	what	revision	and	author	last	modified	each	line	of	a	file.

Section	G.3.20,	“git-cherry(1)”

Find	commits	yet	to	be	applied	to	upstream.
Section	G.3.28,	“git-count-objects(1)”

Count	unpacked	number	of	objects	and	their	disk	consumption.
Section	G.3.42,	“git-difftool(1)”

Show	changes	using	common	diff	tools.
Section	G.3.52,	“git-fsck(1)”

Verifies	the	connectivity	and	validity	of	the	objects	in	the	database.
Section	G.3.54,	“git-get-tar-commit-id(1)”

Extract	commit	ID	from	an	archive	created	using	git-archive.
Section	G.3.58,	“git-help(1)”

Display	help	information	about	Git.
Section	G.3.66,	“git-instaweb(1)”

Instantly	browse	your	working	repository	in	gitweb.
Section	G.3.78,	“git-merge-tree(1)”

Show	three-way	merge	without	touching	index.
Section	G.3.110,	“git-rerere(1)”

Reuse	recorded	resolution	of	conflicted	merges.
Section	G.3.113,	“git-rev-parse(1)”

Pick	out	and	massage	parameters.
Section	G.3.123,	“git-show-branch(1)”

Show	branches	and	their	commits.
Section	G.3.143,	“git-verify-commit(1)”

Check	the	GPG	signature	of	commits.
Section	G.3.145,	“git-verify-tag(1)”

Check	the	GPG	signature	of	tags.
Section	G.3.147,	“git-whatchanged(1)”

Show	logs	with	difference	each	commit	introduces.
Section	G.4.13,	“gitweb(1)”

Git	web	interface	(web	frontend	to	Git	repositories).

3.	Interacting	with	Others

These	commands	are	to	interact	with	foreign	SCM	and	with	other	people
via	patch	over	e-mail.

Section	G.3.6,	“git-archimport(1)”
Import	an	Arch	repository	into	Git.

Section	G.3.33,	“git-cvsexportcommit(1)”
Export	a	single	commit	to	a	CVS	checkout.

Section	G.3.34,	“git-cvsimport(1)”
Salvage	your	data	out	of	another	SCM	people	love	to	hate.

Section	G.3.35,	“git-cvsserver(1)”
A	CVS	server	emulator	for	Git.

Section	G.3.62,	“git-imap-send(1)”
Send	a	collection	of	patches	from	stdin	to	an	IMAP	folder.

Section	G.3.87,	“git-p4(1)”
Import	from	and	submit	to	Perforce	repositories.

Section	G.3.97,	“git-quiltimport(1)”
Applies	a	quilt	patchset	onto	the	current	branch.

Section	G.3.109,	“git-request-pull(1)”
Generates	a	summary	of	pending	changes.

Section	G.3.116,	“git-send-email(1)”
Send	a	collection	of	patches	as	emails.

Section	G.3.132,	“git-svn(1)”
Bidirectional	operation	between	a	Subversion	repository	and	Git.

Low-level	commands	(plumbing)

Although	Git	includes	its	own	porcelain	layer,	its	low-level	commands	are
sufficient	to	support	development	of	alternative	porcelains.	Developers	of
such	porcelains	might	start	by	reading	about	Section	G.3.137,	“git-
update-index(1)”	and	Section	G.3.98,	“git-read-tree(1)”.

The	interface	(input,	output,	set	of	options	and	the	semantics)	to	these
low-level	commands	are	meant	to	be	a	lot	more	stable	than	Porcelain
level	commands,	because	these	commands	are	primarily	for	scripted

use.	The	interface	to	Porcelain	commands	on	the	other	hand	are	subject
to	change	in	order	to	improve	the	end	user	experience.

The	following	description	divides	the	low-level	commands	into	commands
that	manipulate	objects	(in	the	repository,	index,	and	working	tree),
commands	that	interrogate	and	compare	objects,	and	commands	that
move	objects	and	references	between	repositories.

1.	Manipulation	commands

Section	G.3.5,	“git-apply(1)”
Apply	a	patch	to	files	and/or	to	the	index.

Section	G.3.17,	“git-checkout-index(1)”
Copy	files	from	the	index	to	the	working	tree.

Section	G.3.25,	“git-commit-tree(1)”
Create	a	new	commit	object.

Section	G.3.57,	“git-hash-object(1)”
Compute	object	ID	and	optionally	creates	a	blob	from	a	file.

Section	G.3.63,	“git-index-pack(1)”
Build	pack	index	file	for	an	existing	packed	archive.

Section	G.3.75,	“git-merge-file(1)”
Run	a	three-way	file	merge.

Section	G.3.76,	“git-merge-index(1)”
Run	a	merge	for	files	needing	merging.

Section	G.3.82,	“git-mktag(1)”
Creates	a	tag	object.

Section	G.3.83,	“git-mktree(1)”
Build	a	tree-object	from	ls-tree	formatted	text.

Section	G.3.88,	“git-pack-objects(1)”
Create	a	packed	archive	of	objects.

Section	G.3.93,	“git-prune-packed(1)”
Remove	extra	objects	that	are	already	in	pack	files.

Section	G.3.98,	“git-read-tree(1)”
Reads	tree	information	into	the	index.

Section	G.3.133,	“git-symbolic-ref(1)”
Read,	modify	and	delete	symbolic	refs.

Section	G.3.136,	“git-unpack-objects(1)”
Unpack	objects	from	a	packed	archive.

Section	G.3.137,	“git-update-index(1)”
Register	file	contents	in	the	working	tree	to	the	index.

Section	G.3.138,	“git-update-ref(1)”
Update	the	object	name	stored	in	a	ref	safely.

Section	G.3.149,	“git-write-tree(1)”
Create	a	tree	object	from	the	current	index.

2.	Interrogation	commands

Section	G.3.12,	“git-cat-file(1)”
Provide	content	or	type	and	size	information	for	repository	objects.

Section	G.3.38,	“git-diff-files(1)”
Compares	files	in	the	working	tree	and	the	index.

Section	G.3.39,	“git-diff-index(1)”
Compare	a	tree	to	the	working	tree	or	index.

Section	G.3.40,	“git-diff-tree(1)”
Compares	the	content	and	mode	of	blobs	found	via	two	tree	objects.

Section	G.3.49,	“git-for-each-ref(1)”
Output	information	on	each	ref.

Section	G.3.69,	“git-ls-files(1)”
Show	information	about	files	in	the	index	and	the	working	tree.

Section	G.3.70,	“git-ls-remote(1)”
List	references	in	a	remote	repository.

Section	G.3.71,	“git-ls-tree(1)”
List	the	contents	of	a	tree	object.

Section	G.3.74,	“git-merge-base(1)”
Find	as	good	common	ancestors	as	possible	for	a	merge.

Section	G.3.85,	“git-name-rev(1)”
Find	symbolic	names	for	given	revs.

Section	G.3.89,	“git-pack-redundant(1)”
Find	redundant	pack	files.

Section	G.3.112,	“git-rev-list(1)”
Lists	commit	objects	in	reverse	chronological	order.

Section	G.3.124,	“git-show-index(1)”
Show	packed	archive	index.

Section	G.3.125,	“git-show-ref(1)”
List	references	in	a	local	repository.

Section	G.3.135,	“git-unpack-file(1)”
Creates	a	temporary	file	with	a	blob's	contents.

Section	G.3.142,	“git-var(1)”
Show	a	Git	logical	variable.

Section	G.3.144,	“git-verify-pack(1)”
Validate	packed	Git	archive	files.

In	general,	the	interrogate	commands	do	not	touch	the	files	in	the
working	tree.

3.	Synching	repositories

Section	G.3.36,	“git-daemon(1)”
A	really	simple	server	for	Git	repositories.

Section	G.3.45,	“git-fetch-pack(1)”
Receive	missing	objects	from	another	repository.

Section	G.3.59,	“git-http-backend(1)”
Server	side	implementation	of	Git	over	HTTP.

Section	G.3.117,	“git-send-pack(1)”
Push	objects	over	Git	protocol	to	another	repository.

Section	G.3.139,	“git-update-server-info(1)”
Update	auxiliary	info	file	to	help	dumb	servers.

The	following	are	helper	commands	used	by	the	above;	end	users
typically	do	not	use	them	directly.

Section	G.3.60,	“git-http-fetch(1)”
Download	from	a	remote	Git	repository	via	HTTP.

Section	G.3.61,	“git-http-push(1)”
Push	objects	over	HTTP/DAV	to	another	repository.

Section	G.3.91,	“git-parse-remote(1)”
Routines	to	help	parsing	remote	repository	access	parameters.

Section	G.3.100,	“git-receive-pack(1)”
Receive	what	is	pushed	into	the	repository.

Section	G.3.121,	“git-shell(1)”
Restricted	login	shell	for	Git-only	SSH	access.

Section	G.3.140,	“git-upload-archive(1)”
Send	archive	back	to	git-archive.

Section	G.3.141,	“git-upload-pack(1)”
Send	objects	packed	back	to	git-fetch-pack.

4.	Internal	helper	commands

These	are	internal	helper	commands	used	by	other	commands;	end
users	typically	do	not	use	them	directly.

Section	G.3.13,	“git-check-attr(1)”
Display	gitattributes	information.

Section	G.3.14,	“git-check-ignore(1)”
Debug	gitignore	/	exclude	files.

Section	G.3.15,	“git-check-mailmap(1)”
Show	canonical	names	and	email	addresses	of	contacts.

Section	G.3.16,	“git-check-ref-format(1)”
Ensures	that	a	reference	name	is	well	formed.

Section	G.3.24,	“git-column(1)”
Display	data	in	columns.

Section	G.3.29,	“git-credential(1)”
Retrieve	and	store	user	credentials.

Section	G.3.31,	“git-credential-cache(1)”
Helper	to	temporarily	store	passwords	in	memory.

Section	G.3.32,	“git-credential-store(1)”
Helper	to	store	credentials	on	disk.

Section	G.3.48,	“git-fmt-merge-msg(1)”
Produce	a	merge	commit	message.

Section	G.3.67,	“git-interpret-trailers(1)”
help	add	structured	information	into	commit	messages.

Section	G.3.72,	“git-mailinfo(1)”
Extracts	patch	and	authorship	from	a	single	e-mail	message.

Section	G.3.73,	“git-mailsplit(1)”
Simple	UNIX	mbox	splitter	program.

Section	G.3.77,	“git-merge-one-file(1)”
The	standard	helper	program	to	use	with	git-merge-index.

Section	G.3.92,	“git-patch-id(1)”
Compute	unique	ID	for	a	patch.

Section	G.3.119,	“git-sh-i18n(1)”
Git's	i18n	setup	code	for	shell	scripts.

Section	G.3.120,	“git-sh-setup(1)”

Common	Git	shell	script	setup	code.
Section	G.3.130,	“git-stripspace(1)”

Remove	unnecessary	whitespace.

Configuration	Mechanism

Git	uses	a	simple	text	format	to	store	customizations	that	are	per
repository	and	are	per	user.	Such	a	configuration	file	may	look	like	this:

#

#	A	'#'	or	';'	character	indicates	a	comment.

#

;	core	variables

[core]

								;	Don't	trust	file	modes

								filemode	=	false

;	user	identity

[user]

								name	=	"Junio	C	Hamano"

								email	=	"gitster@pobox.com"

Various	commands	read	from	the	configuration	file	and	adjust	their
operation	accordingly.	See	Section	G.3.27,	“git-config(1)”	for	a	list	and
more	details	about	the	configuration	mechanism.

Identifier	Terminology

<object>
Indicates	the	object	name	for	any	type	of	object.

<blob>
Indicates	a	blob	object	name.

<tree>
Indicates	a	tree	object	name.

<commit>
Indicates	a	commit	object	name.

<tree-ish>
Indicates	a	tree,	commit	or	tag	object	name.	A	command	that	takes	a

<tree-ish>	argument	ultimately	wants	to	operate	on	a	<tree>	object
but	automatically	dereferences	<commit>	and	<tag>	objects	that
point	at	a	<tree>.

<commit-ish>
Indicates	a	commit	or	tag	object	name.	A	command	that	takes	a
<commit-ish>	argument	ultimately	wants	to	operate	on	a	<commit>
object	but	automatically	dereferences	<tag>	objects	that	point	at	a
<commit>.

<type>
Indicates	that	an	object	type	is	required.	Currently	one	of:	blob,	tree,
commit,	or	tag.

<file>
Indicates	a	filename	-	almost	always	relative	to	the	root	of	the	tree
structure	GIT_INDEX_FILE	describes.

Symbolic	Identifiers

Any	Git	command	accepting	any	<object>	can	also	use	the	following
symbolic	notation:

HEAD
indicates	the	head	of	the	current	branch.

<tag>
a	valid	tag	name	(i.e.	a	refs/tags/<tag>	reference).

<head>
a	valid	head	name	(i.e.	a	refs/heads/<head>	reference).

For	a	more	complete	list	of	ways	to	spell	object	names,	see
"SPECIFYING	REVISIONS"	section	in	Section	G.4.12,	“gitrevisions(7)”.

File/Directory	Structure

Please	see	the	Section	G.4.11,	“gitrepository-layout(5)”	document.

Read	Section	G.4.6,	“githooks(5)”	for	more	details	about	each	hook.

Higher	level	SCMs	may	provide	and	manage	additional	information	in	the

$GIT_DIR.

Terminology

Please	see	Section	G.4.16,	“gitglossary(7)”.

Environment	Variables

Various	Git	commands	use	the	following	environment	variables:

1.	The	Git	Repository

These	environment	variables	apply	to	all	core	Git	commands.	Nb:	it	is
worth	noting	that	they	may	be	used/overridden	by	SCMS	sitting	above	Git
so	take	care	if	using	a	foreign	front-end.

GIT_INDEX_FILE
This	environment	allows	the	specification	of	an	alternate	index	file.	If
not	specified,	the	default	of	$GIT_DIR/index	is	used.

GIT_INDEX_VERSION
This	environment	variable	allows	the	specification	of	an	index
version	for	new	repositories.	It	won't	affect	existing	index	files.	By
default	index	file	version	2	or	3	is	used.	See	Section	G.3.137,	“git-
update-index(1)”	for	more	information.

GIT_OBJECT_DIRECTORY
If	the	object	storage	directory	is	specified	via	this	environment
variable	then	the	sha1	directories	are	created	underneath	-
otherwise	the	default	$GIT_DIR/objects	directory	is	used.

GIT_ALTERNATE_OBJECT_DIRECTORIES
Due	to	the	immutable	nature	of	Git	objects,	old	objects	can	be
archived	into	shared,	read-only	directories.	This	variable	specifies	a
":"	separated	(on	Windows	";"	separated)	list	of	Git	object	directories
which	can	be	used	to	search	for	Git	objects.	New	objects	will	not	be
written	to	these	directories.

GIT_DIR
If	the	GIT_DIR	environment	variable	is	set	then	it	specifies	a	path	to
use	instead	of	the	default	.git	for	the	base	of	the	repository.	The	--git-
dir	command-line	option	also	sets	this	value.

GIT_WORK_TREE
Set	the	path	to	the	root	of	the	working	tree.	This	can	also	be
controlled	by	the	--work-tree	command-line	option	and	the
core.worktree	configuration	variable.

GIT_NAMESPACE
Set	the	Git	namespace;	see	Section	G.4.9,	“gitnamespaces(7)”	for
details.	The	--namespace	command-line	option	also	sets	this	value.

GIT_CEILING_DIRECTORIES

This	should	be	a	colon-separated	list	of	absolute	paths.	If	set,	it	is	a
list	of	directories	that	Git	should	not	chdir	up	into	while	looking	for	a
repository	directory	(useful	for	excluding	slow-loading	network
directories).	It	will	not	exclude	the	current	working	directory	or	a
GIT_DIR	set	on	the	command	line	or	in	the	environment.	Normally,
Git	has	to	read	the	entries	in	this	list	and	resolve	any	symlink	that
might	be	present	in	order	to	compare	them	with	the	current	directory.
However,	if	even	this	access	is	slow,	you	can	add	an	empty	entry	to
the	list	to	tell	Git	that	the	subsequent	entries	are	not	symlinks	and
needn't	be	resolved;	e.g.,
GIT_CEILING_DIRECTORIES=/maybe/symlink::/very/slow/non/symlink

GIT_DISCOVERY_ACROSS_FILESYSTEM
When	run	in	a	directory	that	does	not	have	".git"	repository	directory,
Git	tries	to	find	such	a	directory	in	the	parent	directories	to	find	the
top	of	the	working	tree,	but	by	default	it	does	not	cross	filesystem
boundaries.	This	environment	variable	can	be	set	to	true	to	tell	Git
not	to	stop	at	filesystem	boundaries.	Like
GIT_CEILING_DIRECTORIES,	this	will	not	affect	an	explicit
repository	directory	set	via	GIT_DIR	or	on	the	command	line.

GIT_COMMON_DIR
If	this	variable	is	set	to	a	path,	non-worktree	files	that	are	normally	in
$GIT_DIR	will	be	taken	from	this	path	instead.	Worktree-specific	files
such	as	HEAD	or	index	are	taken	from	$GIT_DIR.	See
Section	G.4.11,	“gitrepository-layout(5)”	and	Section	G.3.148,	“git-
worktree(1)”	for	details.	This	variable	has	lower	precedence	than
other	path	variables	such	as	GIT_INDEX_FILE,
GIT_OBJECT_DIRECTORY…

2.	Git	Commits

GIT_AUTHOR_NAME	,	GIT_AUTHOR_EMAIL	,	GIT_AUTHOR_DATE	,
GIT_COMMITTER_NAME	,	GIT_COMMITTER_EMAIL	,
GIT_COMMITTER_DATE	,	EMAIL

see	Section	G.3.25,	“git-commit-tree(1)”

3.	Git	Diffs

GIT_DIFF_OPTS
Only	valid	setting	is	"--unified=??"	or	"-u??"	to	set	the	number	of
context	lines	shown	when	a	unified	diff	is	created.	This	takes
precedence	over	any	"-U"	or	"--unified"	option	value	passed	on	the
Git	diff	command	line.

GIT_EXTERNAL_DIFF

When	the	environment	variable	GIT_EXTERNAL_DIFF	is	set,	the
program	named	by	it	is	called,	instead	of	the	diff	invocation
described	above.	For	a	path	that	is	added,	removed,	or	modified,
GIT_EXTERNAL_DIFF	is	called	with	7	parameters:

path	old-file	old-hex	old-mode	new-file	new-hex	new-mode

where:

<old|new>-file
are	files	GIT_EXTERNAL_DIFF	can	use	to	read	the	contents	of
<old|new>,

<old|new>-hex
are	the	40-hexdigit	SHA-1	hashes,

<old|new>-mode

are	the	octal	representation	of	the	file	modes.

The	file	parameters	can	point	at	the	user's	working	file	(e.g.	new-file
in	"git-diff-files"),	/dev/null	(e.g.	old-file	when	a	new	file	is	added),	or
a	temporary	file	(e.g.	old-file	in	the	index).	GIT_EXTERNAL_DIFF
should	not	worry	about	unlinking	the	temporary	file	---	it	is	removed
when	GIT_EXTERNAL_DIFF	exits.

For	a	path	that	is	unmerged,	GIT_EXTERNAL_DIFF	is	called	with	1
parameter,	<path>.

For	each	path	GIT_EXTERNAL_DIFF	is	called,	two	environment

variables,	GIT_DIFF_PATH_COUNTER	and
GIT_DIFF_PATH_TOTAL	are	set.

GIT_DIFF_PATH_COUNTER
A	1-based	counter	incremented	by	one	for	every	path.

GIT_DIFF_PATH_TOTAL
The	total	number	of	paths.

4.	other

GIT_MERGE_VERBOSITY
A	number	controlling	the	amount	of	output	shown	by	the	recursive
merge	strategy.	Overrides	merge.verbosity.	See	Section	G.3.79,	“git-
merge(1)”

GIT_PAGER
This	environment	variable	overrides	$PAGER.	If	it	is	set	to	an	empty
string	or	to	the	value	"cat",	Git	will	not	launch	a	pager.	See	also	the
core.pager	option	in	Section	G.3.27,	“git-config(1)”.

GIT_EDITOR
This	environment	variable	overrides	$EDITOR	and	$VISUAL.	It	is
used	by	several	Git	commands	when,	on	interactive	mode,	an	editor
is	to	be	launched.	See	also	Section	G.3.142,	“git-var(1)”	and	the
core.editor	option	in	Section	G.3.27,	“git-config(1)”.

GIT_SSH	,	GIT_SSH_COMMAND

If	either	of	these	environment	variables	is	set	then	git	fetch	and	git
push	will	use	the	specified	command	instead	of	ssh	when	they	need
to	connect	to	a	remote	system.	The	command	will	be	given	exactly
two	or	four	arguments:	the	username@host	(or	just	host)	from	the
URL	and	the	shell	command	to	execute	on	that	remote	system,
optionally	preceded	by	-p	(literally)	and	the	port	from	the	URL	when	it
specifies	something	other	than	the	default	SSH	port.

$GIT_SSH_COMMAND	takes	precedence	over	$GIT_SSH,	and	is
interpreted	by	the	shell,	which	allows	additional	arguments	to	be
included.	$GIT_SSH	on	the	other	hand	must	be	just	the	path	to	a
program	(which	can	be	a	wrapper	shell	script,	if	additional	arguments
are	needed).

Usually	it	is	easier	to	configure	any	desired	options	through	your
personal	.ssh/config	file.	Please	consult	your	ssh	documentation	for
further	details.

GIT_ASKPASS

If	this	environment	variable	is	set,	then	Git	commands	which	need	to
acquire	passwords	or	passphrases	(e.g.	for	HTTP	or	IMAP
authentication)	will	call	this	program	with	a	suitable	prompt	as
command-line	argument	and	read	the	password	from	its	STDOUT.
See	also	the	core.askPass	option	in	Section	G.3.27,	“git-config(1)”.

GIT_TERMINAL_PROMPT
If	this	environment	variable	is	set	to	0,	git	will	not	prompt	on	the
terminal	(e.g.,	when	asking	for	HTTP	authentication).

GIT_CONFIG_NOSYSTEM
Whether	to	skip	reading	settings	from	the	system-wide
$(prefix)/etc/gitconfig	file.	This	environment	variable	can	be	used
along	with	$HOME	and	$XDG_CONFIG_HOME	to	create	a
predictable	environment	for	a	picky	script,	or	you	can	set	it
temporarily	to	avoid	using	a	buggy	/etc/gitconfig	file	while	waiting	for
someone	with	sufficient	permissions	to	fix	it.

GIT_FLUSH
If	this	environment	variable	is	set	to	"1",	then	commands	such	as	git
blame	(in	incremental	mode),	git	rev-list,	git	log,	git	check-attr	and	git
check-ignore	will	force	a	flush	of	the	output	stream	after	each	record
have	been	flushed.	If	this	variable	is	set	to	"0",	the	output	of	these
commands	will	be	done	using	completely	buffered	I/O.	If	this
environment	variable	is	not	set,	Git	will	choose	buffered	or	record-
oriented	flushing	based	on	whether	stdout	appears	to	be	redirected
to	a	file	or	not.

GIT_TRACE

Enables	general	trace	messages,	e.g.	alias	expansion,	built-in
command	execution	and	external	command	execution.

If	this	variable	is	set	to	"1",	"2"	or	"true"	(comparison	is	case
insensitive),	trace	messages	will	be	printed	to	stderr.

If	the	variable	is	set	to	an	integer	value	greater	than	2	and	lower	than
10	(strictly)	then	Git	will	interpret	this	value	as	an	open	file	descriptor
and	will	try	to	write	the	trace	messages	into	this	file	descriptor.

Alternatively,	if	the	variable	is	set	to	an	absolute	path	(starting	with	a
/	character),	Git	will	interpret	this	as	a	file	path	and	will	try	to	write	the

trace	messages	into	it.

Unsetting	the	variable,	or	setting	it	to	empty,	"0"	or	"false"	(case
insensitive)	disables	trace	messages.

GIT_TRACE_PACK_ACCESS
Enables	trace	messages	for	all	accesses	to	any	packs.	For	each
access,	the	pack	file	name	and	an	offset	in	the	pack	is	recorded.
This	may	be	helpful	for	troubleshooting	some	pack-related
performance	problems.	See	GIT_TRACE	for	available	trace	output
options.

GIT_TRACE_PACKET
Enables	trace	messages	for	all	packets	coming	in	or	out	of	a	given
program.	This	can	help	with	debugging	object	negotiation	or	other
protocol	issues.	Tracing	is	turned	off	at	a	packet	starting	with	"PACK"
(but	see	GIT_TRACE_PACKFILE	below).	See	GIT_TRACE	for
available	trace	output	options.

GIT_TRACE_PACKFILE

Enables	tracing	of	packfiles	sent	or	received	by	a	given	program.
Unlike	other	trace	output,	this	trace	is	verbatim:	no	headers,	and	no
quoting	of	binary	data.	You	almost	certainly	want	to	direct	into	a	file
(e.g.,	GIT_TRACE_PACKFILE=/tmp/my.pack)	rather	than	displaying
it	on	the	terminal	or	mixing	it	with	other	trace	output.

Note	that	this	is	currently	only	implemented	for	the	client	side	of
clones	and	fetches.

GIT_TRACE_PERFORMANCE
Enables	performance	related	trace	messages,	e.g.	total	execution
time	of	each	Git	command.	See	GIT_TRACE	for	available	trace
output	options.

GIT_TRACE_SETUP
Enables	trace	messages	printing	the	.git,	working	tree	and	current
working	directory	after	Git	has	completed	its	setup	phase.	See
GIT_TRACE	for	available	trace	output	options.

GIT_TRACE_SHALLOW
Enables	trace	messages	that	can	help	debugging	fetching	/	cloning

of	shallow	repositories.	See	GIT_TRACE	for	available	trace	output
options.

GIT_LITERAL_PATHSPECS
Setting	this	variable	to	1	will	cause	Git	to	treat	all	pathspecs	literally,
rather	than	as	glob	patterns.	For	example,	running
GIT_LITERAL_PATHSPECS=1	git	log	--	'*.c'	will	search	for	commits
that	touch	the	path	*.c,	not	any	paths	that	the	glob	*.c	matches.	You
might	want	this	if	you	are	feeding	literal	paths	to	Git	(e.g.,	paths
previously	given	to	you	by	git	ls-tree,	--raw	diff	output,	etc).

GIT_GLOB_PATHSPECS
Setting	this	variable	to	1	will	cause	Git	to	treat	all	pathspecs	as	glob
patterns	(aka	"glob"	magic).

GIT_NOGLOB_PATHSPECS
Setting	this	variable	to	1	will	cause	Git	to	treat	all	pathspecs	as	literal
(aka	"literal"	magic).

GIT_ICASE_PATHSPECS
Setting	this	variable	to	1	will	cause	Git	to	treat	all	pathspecs	as	case-
insensitive.

GIT_REFLOG_ACTION
When	a	ref	is	updated,	reflog	entries	are	created	to	keep	track	of	the
reason	why	the	ref	was	updated	(which	is	typically	the	name	of	the
high-level	command	that	updated	the	ref),	in	addition	to	the	old	and
new	values	of	the	ref.	A	scripted	Porcelain	command	can	use
set_reflog_action	helper	function	in	git-sh-setup	to	set	its	name	to
this	variable	when	it	is	invoked	as	the	top	level	command	by	the	end
user,	to	be	recorded	in	the	body	of	the	reflog.

GIT_REF_PARANOIA
If	set	to	1,	include	broken	or	badly	named	refs	when	iterating	over
lists	of	refs.	In	a	normal,	non-corrupted	repository,	this	does	nothing.
However,	enabling	it	may	help	git	to	detect	and	abort	some
operations	in	the	presence	of	broken	refs.	Git	sets	this	variable
automatically	when	performing	destructive	operations	like
Section	G.3.94,	“git-prune(1)”.	You	should	not	need	to	set	it	yourself
unless	you	want	to	be	paranoid	about	making	sure	an	operation	has
touched	every	ref	(e.g.,	because	you	are	cloning	a	repository	to
make	a	backup).

GIT_ALLOW_PROTOCOL

If	set,	provide	a	colon-separated	list	of	protocols	which	are	allowed
to	be	used	with	fetch/push/clone.	This	is	useful	to	restrict	recursive
submodule	initialization	from	an	untrusted	repository.	Any	protocol
not	mentioned	will	be	disallowed	(i.e.,	this	is	a	whitelist,	not	a
blacklist).	If	the	variable	is	not	set	at	all,	all	protocols	are	enabled.
The	protocol	names	currently	used	by	git	are:

file:	any	local	file-based	path	(including	file://	URLs,	or	local
paths)
git:	the	anonymous	git	protocol	over	a	direct	TCP	connection	(or
proxy,	if	configured)
ssh:	git	over	ssh	(including	host:path	syntax,	ssh://,	etc).
http:	git	over	http,	both	"smart	http"	and	"dumb	http".	Note	that
this	does	not	include	https;	if	you	want	both,	you	should	specify
both	as	http:https.
any	external	helpers	are	named	by	their	protocol	(e.g.,	use	hg	to
allow	the	git-remote-hg	helper)

Discussion

More	detail	on	the	following	is	available	from	the	Git	concepts	chapter	of
the	user-manual	and	Section	G.2.3,	“gitcore-tutorial(7)”.

A	Git	project	normally	consists	of	a	working	directory	with	a	".git"
subdirectory	at	the	top	level.	The	.git	directory	contains,	among	other
things,	a	compressed	object	database	representing	the	complete	history
of	the	project,	an	"index"	file	which	links	that	history	to	the	current
contents	of	the	working	tree,	and	named	pointers	into	that	history	such	as
tags	and	branch	heads.

The	object	database	contains	objects	of	three	main	types:	blobs,	which
hold	file	data;	trees,	which	point	to	blobs	and	other	trees	to	build	up
directory	hierarchies;	and	commits,	which	each	reference	a	single	tree
and	some	number	of	parent	commits.

The	commit,	equivalent	to	what	other	systems	call	a	"changeset"	or
"version",	represents	a	step	in	the	project's	history,	and	each	parent

https://www.kernel.org/pub/software/scm/git/docs/user-manual.html#git-concepts

represents	an	immediately	preceding	step.	Commits	with	more	than	one
parent	represent	merges	of	independent	lines	of	development.

All	objects	are	named	by	the	SHA-1	hash	of	their	contents,	normally
written	as	a	string	of	40	hex	digits.	Such	names	are	globally	unique.	The
entire	history	leading	up	to	a	commit	can	be	vouched	for	by	signing	just
that	commit.	A	fourth	object	type,	the	tag,	is	provided	for	this	purpose.

When	first	created,	objects	are	stored	in	individual	files,	but	for	efficiency
may	later	be	compressed	together	into	"pack	files".

Named	pointers	called	refs	mark	interesting	points	in	history.	A	ref	may
contain	the	SHA-1	name	of	an	object	or	the	name	of	another	ref.	Refs
with	names	beginning	ref/head/	contain	the	SHA-1	name	of	the	most
recent	commit	(or	"head")	of	a	branch	under	development.	SHA-1	names
of	tags	of	interest	are	stored	under	ref/tags/.	A	special	ref	named	HEAD
contains	the	name	of	the	currently	checked-out	branch.

The	index	file	is	initialized	with	a	list	of	all	paths	and,	for	each	path,	a	blob
object	and	a	set	of	attributes.	The	blob	object	represents	the	contents	of
the	file	as	of	the	head	of	the	current	branch.	The	attributes	(last	modified
time,	size,	etc.)	are	taken	from	the	corresponding	file	in	the	working	tree.
Subsequent	changes	to	the	working	tree	can	be	found	by	comparing
these	attributes.	The	index	may	be	updated	with	new	content,	and	new
commits	may	be	created	from	the	content	stored	in	the	index.

The	index	is	also	capable	of	storing	multiple	entries	(called	"stages")	for	a
given	pathname.	These	stages	are	used	to	hold	the	various	unmerged
version	of	a	file	when	a	merge	is	in	progress.

FURTHER	DOCUMENTATION

See	the	references	in	the	"description"	section	to	get	started	using	Git.
The	following	is	probably	more	detail	than	necessary	for	a	first-time	user.

The	Git	concepts	chapter	of	the	user-manual	and	Section	G.2.3,	“gitcore-
tutorial(7)”	both	provide	introductions	to	the	underlying	Git	architecture.

https://www.kernel.org/pub/software/scm/git/docs/user-manual.html#git-concepts

See	Section	G.4.15,	“gitworkflows(7)”	for	an	overview	of	recommended
workflows.

See	also	the	howto	documents	for	some	useful	examples.

The	internals	are	documented	in	the	Git	API	documentation.

Users	migrating	from	CVS	may	also	want	to	read	Section	G.2.4,	“gitcvs-
migration(7)”.

Authors

Git	was	started	by	Linus	Torvalds,	and	is	currently	maintained	by	Junio	C
Hamano.	Numerous	contributions	have	come	from	the	Git	mailing	list
<git@vger.kernel.org>.
http://www.openhub.net/p/git/contributors/summary	gives	you	a	more
complete	list	of	contributors.

If	you	have	a	clone	of	git.git	itself,	the	output	of	Section	G.3.122,	“git-
shortlog(1)”	and	Section	G.3.9,	“git-blame(1)”	can	show	you	the	authors
for	specific	parts	of	the	project.

Reporting	Bugs

Report	bugs	to	the	Git	mailing	list	<git@vger.kernel.org>	where	the
development	and	maintenance	is	primarily	done.	You	do	not	have	to	be
subscribed	to	the	list	to	send	a	message	there.

SEE	ALSO

Section	G.2.1,	“gittutorial(7)”,	Section	G.2.2,	“gittutorial-2(7)”,
Section	G.2.5,	“giteveryday(7)”,	Section	G.2.4,	“gitcvs-migration(7)”,
Section	G.4.16,	“gitglossary(7)”,	Section	G.2.3,	“gitcore-tutorial(7)”,
Section	G.4.1,	“gitcli(7)”,	The	Git	User's	Manual,	Section	G.4.15,
“gitworkflows(7)”

GIT

https://www.kernel.org/pub/software/scm/git/docs/howto-index.html
https://www.kernel.org/pub/software/scm/git/docs/technical/api-index.html
mailto:git@vger.kernel.org
http://www.openhub.net/p/git/contributors/summary
mailto:git@vger.kernel.org
https://www.kernel.org/pub/software/scm/git/docs/user-manual.html

Part	of	the	Section	G.3.1,	“git(1)”	suite

G.3.2.	git-add(1)

NAME

git-add	-	Add	file	contents	to	the	index

SYNOPSIS

git	add	[--verbose	|	-v]	[--dry-run	|	-n]	[--force	|	-f]	[--

interactive	|	-i]	[--patch	|	-p]

										[--edit	|	-e]	[--[no-]all	|	--[no-]ignore-

removal	|	[--update	|	-u]]

										[--intent-to-add	|	-N]	[--refresh]	[--ignore-

errors]	[--ignore-missing]

										[--]	[<pathspec>…]

DESCRIPTION

This	command	updates	the	index	using	the	current	content	found	in	the
working	tree,	to	prepare	the	content	staged	for	the	next	commit.	It
typically	adds	the	current	content	of	existing	paths	as	a	whole,	but	with
some	options	it	can	also	be	used	to	add	content	with	only	part	of	the
changes	made	to	the	working	tree	files	applied,	or	remove	paths	that	do
not	exist	in	the	working	tree	anymore.

The	"index"	holds	a	snapshot	of	the	content	of	the	working	tree,	and	it	is
this	snapshot	that	is	taken	as	the	contents	of	the	next	commit.	Thus	after
making	any	changes	to	the	working	tree,	and	before	running	the	commit
command,	you	must	use	the	add	command	to	add	any	new	or	modified
files	to	the	index.

This	command	can	be	performed	multiple	times	before	a	commit.	It	only
adds	the	content	of	the	specified	file(s)	at	the	time	the	add	command	is
run;	if	you	want	subsequent	changes	included	in	the	next	commit,	then
you	must	run	git	add	again	to	add	the	new	content	to	the	index.

The	git	status	command	can	be	used	to	obtain	a	summary	of	which	files
have	changes	that	are	staged	for	the	next	commit.

The	git	add	command	will	not	add	ignored	files	by	default.	If	any	ignored
files	were	explicitly	specified	on	the	command	line,	git	add	will	fail	with	a
list	of	ignored	files.	Ignored	files	reached	by	directory	recursion	or
filename	globbing	performed	by	Git	(quote	your	globs	before	the	shell)
will	be	silently	ignored.	The	git	add	command	can	be	used	to	add	ignored
files	with	the	-f	(force)	option.

Please	see	Section	G.3.26,	“git-commit(1)”	for	alternative	ways	to	add
content	to	a	commit.

OPTIONS

<pathspec>…
Files	to	add	content	from.	Fileglobs	(e.g.	*.c)	can	be	given	to	add	all
matching	files.	Also	a	leading	directory	name	(e.g.	dir	to	add	dir/file1
and	dir/file2)	can	be	given	to	update	the	index	to	match	the	current
state	of	the	directory	as	a	whole	(e.g.	specifying	dir	will	record	not
just	a	file	dir/file1	modified	in	the	working	tree,	a	file	dir/file2	added	to
the	working	tree,	but	also	a	file	dir/file3	removed	from	the	working
tree.	Note	that	older	versions	of	Git	used	to	ignore	removed	files;	use
--no-all	option	if	you	want	to	add	modified	or	new	files	but	ignore
removed	ones.

-n	,	--dry-run
Don't	actually	add	the	file(s),	just	show	if	they	exist	and/or	will	be
ignored.

-v	,	--verbose
Be	verbose.

-f	,	--force
Allow	adding	otherwise	ignored	files.

-i	,	--interactive
Add	modified	contents	in	the	working	tree	interactively	to	the	index.
Optional	path	arguments	may	be	supplied	to	limit	operation	to	a
subset	of	the	working	tree.	See	Interactive	mode	for	details.

-p	,	--patch

Interactively	choose	hunks	of	patch	between	the	index	and	the	work
tree	and	add	them	to	the	index.	This	gives	the	user	a	chance	to
review	the	difference	before	adding	modified	contents	to	the	index.

This	effectively	runs	add	--interactive,	but	bypasses	the	initial
command	menu	and	directly	jumps	to	the	patch	subcommand.	See
Interactive	mode	for	details.

-e	,	--edit

Open	the	diff	vs.	the	index	in	an	editor	and	let	the	user	edit	it.	After
the	editor	was	closed,	adjust	the	hunk	headers	and	apply	the	patch
to	the	index.

The	intent	of	this	option	is	to	pick	and	choose	lines	of	the	patch	to
apply,	or	even	to	modify	the	contents	of	lines	to	be	staged.	This	can
be	quicker	and	more	flexible	than	using	the	interactive	hunk	selector.
However,	it	is	easy	to	confuse	oneself	and	create	a	patch	that	does
not	apply	to	the	index.	See	EDITING	PATCHES	below.

-u	,	--update

Update	the	index	just	where	it	already	has	an	entry	matching
<pathspec>.	This	removes	as	well	as	modifies	index	entries	to	match
the	working	tree,	but	adds	no	new	files.

If	no	<pathspec>	is	given	when	-u	option	is	used,	all	tracked	files	in
the	entire	working	tree	are	updated	(old	versions	of	Git	used	to	limit
the	update	to	the	current	directory	and	its	subdirectories).

-A	,	--all	,	--no-ignore-removal

Update	the	index	not	only	where	the	working	tree	has	a	file	matching
<pathspec>	but	also	where	the	index	already	has	an	entry.	This
adds,	modifies,	and	removes	index	entries	to	match	the	working	tree.

If	no	<pathspec>	is	given	when	-A	option	is	used,	all	files	in	the
entire	working	tree	are	updated	(old	versions	of	Git	used	to	limit	the
update	to	the	current	directory	and	its	subdirectories).

--no-all	,	--ignore-removal

Update	the	index	by	adding	new	files	that	are	unknown	to	the	index
and	files	modified	in	the	working	tree,	but	ignore	files	that	have	been
removed	from	the	working	tree.	This	option	is	a	no-op	when	no
<pathspec>	is	used.

This	option	is	primarily	to	help	users	who	are	used	to	older	versions
of	Git,	whose	"git	add	<pathspec>…"	was	a	synonym	for	"git	add	--
no-all	<pathspec>…",	i.e.	ignored	removed	files.

-N	,	--intent-to-add
Record	only	the	fact	that	the	path	will	be	added	later.	An	entry	for	the
path	is	placed	in	the	index	with	no	content.	This	is	useful	for,	among
other	things,	showing	the	unstaged	content	of	such	files	with	git	diff
and	committing	them	with	git	commit	-a.

--refresh
Don't	add	the	file(s),	but	only	refresh	their	stat()	information	in	the
index.

--ignore-errors
If	some	files	could	not	be	added	because	of	errors	indexing	them,	do
not	abort	the	operation,	but	continue	adding	the	others.	The
command	shall	still	exit	with	non-zero	status.	The	configuration
variable	add.ignoreErrors	can	be	set	to	true	to	make	this	the	default
behaviour.

--ignore-missing
This	option	can	only	be	used	together	with	--dry-run.	By	using	this
option	the	user	can	check	if	any	of	the	given	files	would	be	ignored,
no	matter	if	they	are	already	present	in	the	work	tree	or	not.

--
This	option	can	be	used	to	separate	command-line	options	from	the
list	of	files,	(useful	when	filenames	might	be	mistaken	for	command-
line	options).

Configuration

The	optional	configuration	variable	core.excludesFile	indicates	a	path	to

a	file	containing	patterns	of	file	names	to	exclude	from	git-add,	similar	to
$GIT_DIR/info/exclude.	Patterns	in	the	exclude	file	are	used	in	addition	to
those	in	info/exclude.	See	Section	G.4.5,	“gitignore(5)”.

EXAMPLES

Adds	content	from	all	*.txt	files	under	Documentation	directory	and
its	subdirectories:

$	git	add	Documentation/*.txt

Note	that	the	asterisk	*	is	quoted	from	the	shell	in	this	example;	this
lets	the	command	include	the	files	from	subdirectories	of
Documentation/	directory.

Considers	adding	content	from	all	git-*.sh	scripts:

$	git	add	git-*.sh

Because	this	example	lets	the	shell	expand	the	asterisk	(i.e.	you	are
listing	the	files	explicitly),	it	does	not	consider	subdir/git-foo.sh.

Interactive	mode

When	the	command	enters	the	interactive	mode,	it	shows	the	output	of
the	status	subcommand,	and	then	goes	into	its	interactive	command
loop.

The	command	loop	shows	the	list	of	subcommands	available,	and	gives
a	prompt	"What	now>	".	In	general,	when	the	prompt	ends	with	a	single
>,	you	can	pick	only	one	of	the	choices	given	and	type	return,	like	this:

				***	Commands	***

						1:	status							2:	update							3:	revert							4:	add	untracked

						5:	patch								6:	diff									7:	quit									8:	help

				What	now>	1

You	also	could	say	s	or	sta	or	status	above	as	long	as	the	choice	is
unique.

The	main	command	loop	has	6	subcommands	(plus	help	and	quit).

status

This	shows	the	change	between	HEAD	and	index	(i.e.	what	will	be
committed	if	you	say	git	commit),	and	between	index	and	working
tree	files	(i.e.	what	you	could	stage	further	before	git	commit	using	git
add)	for	each	path.	A	sample	output	looks	like	this:

														staged					unstaged	path

					1:							binary						nothing	foo.png

					2:					+403/-35								+1/-1	git-add--interactive.perl

It	shows	that	foo.png	has	differences	from	HEAD	(but	that	is	binary
so	line	count	cannot	be	shown)	and	there	is	no	difference	between
indexed	copy	and	the	working	tree	version	(if	the	working	tree
version	were	also	different,	binary	would	have	been	shown	in	place
of	nothing).	The	other	file,	git-add--interactive.perl,	has	403	lines
added	and	35	lines	deleted	if	you	commit	what	is	in	the	index,	but
working	tree	file	has	further	modifications	(one	addition	and	one
deletion).

update

This	shows	the	status	information	and	issues	an	"Update>>"	prompt.
When	the	prompt	ends	with	double	>>,	you	can	make	more	than	one
selection,	concatenated	with	whitespace	or	comma.	Also	you	can
say	ranges.	E.g.	"2-5	7,9"	to	choose	2,3,4,5,7,9	from	the	list.	If	the
second	number	in	a	range	is	omitted,	all	remaining	patches	are
taken.	E.g.	"7-"	to	choose	7,8,9	from	the	list.	You	can	say	*	to	choose
everything.

What	you	chose	are	then	highlighted	with	*,	like	this:

											staged					unstaged	path

		1:							binary						nothing	foo.png

*	2:					+403/-35								+1/-1	git-add--interactive.perl

To	remove	selection,	prefix	the	input	with	-	like	this:

Update>>	-2

After	making	the	selection,	answer	with	an	empty	line	to	stage	the
contents	of	working	tree	files	for	selected	paths	in	the	index.

revert
This	has	a	very	similar	UI	to	update,	and	the	staged	information	for
selected	paths	are	reverted	to	that	of	the	HEAD	version.	Reverting
new	paths	makes	them	untracked.

add	untracked
This	has	a	very	similar	UI	to	update	and	revert,	and	lets	you	add
untracked	paths	to	the	index.

patch

This	lets	you	choose	one	path	out	of	a	status	like	selection.	After
choosing	the	path,	it	presents	the	diff	between	the	index	and	the
working	tree	file	and	asks	you	if	you	want	to	stage	the	change	of
each	hunk.	You	can	select	one	of	the	following	options	and	type
return:

y	-	stage	this	hunk

n	-	do	not	stage	this	hunk

q	-	quit;	do	not	stage	this	hunk	or	any	of	the	remaining	ones

a	-	stage	this	hunk	and	all	later	hunks	in	the	file

d	-	do	not	stage	this	hunk	or	any	of	the	later	hunks	in	the	file

g	-	select	a	hunk	to	go	to

/	-	search	for	a	hunk	matching	the	given	regex

j	-	leave	this	hunk	undecided,	see	next	undecided	hunk

J	-	leave	this	hunk	undecided,	see	next	hunk

k	-	leave	this	hunk	undecided,	see	previous	undecided	hunk

K	-	leave	this	hunk	undecided,	see	previous	hunk

s	-	split	the	current	hunk	into	smaller	hunks

e	-	manually	edit	the	current	hunk

?	-	print	help

After	deciding	the	fate	for	all	hunks,	if	there	is	any	hunk	that	was

chosen,	the	index	is	updated	with	the	selected	hunks.

You	can	omit	having	to	type	return	here,	by	setting	the	configuration
variable	interactive.singleKey	to	true.

diff
This	lets	you	review	what	will	be	committed	(i.e.	between	HEAD	and
index).

EDITING	PATCHES

Invoking	git	add	-e	or	selecting	e	from	the	interactive	hunk	selector	will
open	a	patch	in	your	editor;	after	the	editor	exits,	the	result	is	applied	to
the	index.	You	are	free	to	make	arbitrary	changes	to	the	patch,	but	note
that	some	changes	may	have	confusing	results,	or	even	result	in	a	patch
that	cannot	be	applied.	If	you	want	to	abort	the	operation	entirely	(i.e.,
stage	nothing	new	in	the	index),	simply	delete	all	lines	of	the	patch.	The
list	below	describes	some	common	things	you	may	see	in	a	patch,	and
which	editing	operations	make	sense	on	them.

added	content
Added	content	is	represented	by	lines	beginning	with	"+".	You	can
prevent	staging	any	addition	lines	by	deleting	them.

removed	content
Removed	content	is	represented	by	lines	beginning	with	"-".	You	can
prevent	staging	their	removal	by	converting	the	"-"	to	a	"	"	(space).

modified	content
Modified	content	is	represented	by	"-"	lines	(removing	the	old
content)	followed	by	"+"	lines	(adding	the	replacement	content).	You
can	prevent	staging	the	modification	by	converting	"-"	lines	to	"	",	and
removing	"+"	lines.	Beware	that	modifying	only	half	of	the	pair	is
likely	to	introduce	confusing	changes	to	the	index.

There	are	also	more	complex	operations	that	can	be	performed.	But
beware	that	because	the	patch	is	applied	only	to	the	index	and	not	the
working	tree,	the	working	tree	will	appear	to	"undo"	the	change	in	the
index.	For	example,	introducing	a	new	line	into	the	index	that	is	in	neither

the	HEAD	nor	the	working	tree	will	stage	the	new	line	for	commit,	but	the
line	will	appear	to	be	reverted	in	the	working	tree.

Avoid	using	these	constructs,	or	do	so	with	extreme	caution.

removing	untouched	content
Content	which	does	not	differ	between	the	index	and	working	tree
may	be	shown	on	context	lines,	beginning	with	a	"	"	(space).	You	can
stage	context	lines	for	removal	by	converting	the	space	to	a	"-".	The
resulting	working	tree	file	will	appear	to	re-add	the	content.

modifying	existing	content
One	can	also	modify	context	lines	by	staging	them	for	removal	(by
converting	"	"	to	"-")	and	adding	a	"+"	line	with	the	new	content.
Similarly,	one	can	modify	"+"	lines	for	existing	additions	or
modifications.	In	all	cases,	the	new	modification	will	appear	reverted
in	the	working	tree.

new	content
You	may	also	add	new	content	that	does	not	exist	in	the	patch;
simply	add	new	lines,	each	starting	with	"+".	The	addition	will	appear
reverted	in	the	working	tree.

There	are	also	several	operations	which	should	be	avoided	entirely,	as
they	will	make	the	patch	impossible	to	apply:

adding	context	("	")	or	removal	("-")	lines
deleting	context	or	removal	lines
modifying	the	contents	of	context	or	removal	lines

SEE	ALSO

Section	G.3.129,	“git-status(1)”	Section	G.3.115,	“git-rm(1)”
Section	G.3.111,	“git-reset(1)”	Section	G.3.84,	“git-mv(1)”	Section	G.3.26,
“git-commit(1)”	Section	G.3.137,	“git-update-index(1)”

GIT

Part	of	the	Section	G.3.1,	“git(1)”	suite

G.3.3.	git-am(1)

NAME

git-am	-	Apply	a	series	of	patches	from	a	mailbox

SYNOPSIS

git	am	[--signoff]	[--keep]	[--[no-]keep-cr]	[--[no-]utf8]

									[--[no-]3way]	[--interactive]	[--committer-date-is-

author-date]

									[--ignore-date]	[--ignore-space-change	|	--ignore-

whitespace]

									[--whitespace=<option>]	[-C<n>]	[-p<n>]	[--

directory=<dir>]

									[--exclude=<path>]	[--include=<path>]	[--reject]	[-

q	|	--quiet]

									[--[no-]scissors]	[-S[<keyid>]]	[--patch-format=

<format>]

									[(<mbox>	|	<Maildir>)…]

git	am	(--continue	|	--skip	|	--abort)

DESCRIPTION

Splits	mail	messages	in	a	mailbox	into	commit	log	message,	authorship
information	and	patches,	and	applies	them	to	the	current	branch.

OPTIONS

(<mbox>|<Maildir>)…
The	list	of	mailbox	files	to	read	patches	from.	If	you	do	not	supply
this	argument,	the	command	reads	from	the	standard	input.	If	you
supply	directories,	they	will	be	treated	as	Maildirs.

-s	,	--signoff
Add	a	Signed-off-by:	line	to	the	commit	message,	using	the
committer	identity	of	yourself.	See	the	signoff	option	in
Section	G.3.26,	“git-commit(1)”	for	more	information.

-k	,	--keep

Pass	-k	flag	to	git	mailinfo	(see	Section	G.3.72,	“git-mailinfo(1)”).
--keep-non-patch

Pass	-b	flag	to	git	mailinfo	(see	Section	G.3.72,	“git-mailinfo(1)”).
--[no-]keep-cr

With	--keep-cr,	call	git	mailsplit	(see	Section	G.3.73,	“git-mailsplit(1)”)
with	the	same	option,	to	prevent	it	from	stripping	CR	at	the	end	of
lines.	am.keepcr	configuration	variable	can	be	used	to	specify	the
default	behaviour.	--no-keep-cr	is	useful	to	override	am.keepcr.

-c	,	--scissors
Remove	everything	in	body	before	a	scissors	line	(see
Section	G.3.72,	“git-mailinfo(1)”).	Can	be	activated	by	default	using
the	mailinfo.scissors	configuration	variable.

--no-scissors
Ignore	scissors	lines	(see	Section	G.3.72,	“git-mailinfo(1)”).

-m	,	--message-id
Pass	the	-m	flag	to	git	mailinfo	(see	Section	G.3.72,	“git-mailinfo(1)”),
so	that	the	Message-ID	header	is	added	to	the	commit	message.
The	am.messageid	configuration	variable	can	be	used	to	specify	the
default	behaviour.

--no-message-id
Do	not	add	the	Message-ID	header	to	the	commit	message.	no-
message-id	is	useful	to	override	am.messageid.

-q	,	--quiet
Be	quiet.	Only	print	error	messages.

-u	,	--utf8

Pass	-u	flag	to	git	mailinfo	(see	Section	G.3.72,	“git-mailinfo(1)”).	The
proposed	commit	log	message	taken	from	the	e-mail	is	re-coded	into
UTF-8	encoding	(configuration	variable	i18n.commitencoding	can	be
used	to	specify	project's	preferred	encoding	if	it	is	not	UTF-8).

This	was	optional	in	prior	versions	of	git,	but	now	it	is	the	default.	You
can	use	--no-utf8	to	override	this.

--no-utf8
Pass	-n	flag	to	git	mailinfo	(see	Section	G.3.72,	“git-mailinfo(1)”).

-3	,	--3way	,	--no-3way
When	the	patch	does	not	apply	cleanly,	fall	back	on	3-way	merge	if

the	patch	records	the	identity	of	blobs	it	is	supposed	to	apply	to	and
we	have	those	blobs	available	locally.	--no-3way	can	be	used	to
override	am.threeWay	configuration	variable.	For	more	information,
see	am.threeWay	in	Section	G.3.27,	“git-config(1)”.

--ignore-space-change	,	--ignore-whitespace	,	--whitespace=<option>	,	-
C<n>	,	-p<n>	,	--directory=<dir>	,	--exclude=<path>	,	--include=<path>	,	-
-reject

These	flags	are	passed	to	the	git	apply	(see	Section	G.3.5,	“git-
apply(1)”)	program	that	applies	the	patch.

--patch-format
By	default	the	command	will	try	to	detect	the	patch	format
automatically.	This	option	allows	the	user	to	bypass	the	automatic
detection	and	specify	the	patch	format	that	the	patch(es)	should	be
interpreted	as.	Valid	formats	are	mbox,	stgit,	stgit-series	and	hg.

-i	,	--interactive
Run	interactively.

--committer-date-is-author-date
By	default	the	command	records	the	date	from	the	e-mail	message
as	the	commit	author	date,	and	uses	the	time	of	commit	creation	as
the	committer	date.	This	allows	the	user	to	lie	about	the	committer
date	by	using	the	same	value	as	the	author	date.

--ignore-date
By	default	the	command	records	the	date	from	the	e-mail	message
as	the	commit	author	date,	and	uses	the	time	of	commit	creation	as
the	committer	date.	This	allows	the	user	to	lie	about	the	author	date
by	using	the	same	value	as	the	committer	date.

--skip
Skip	the	current	patch.	This	is	only	meaningful	when	restarting	an
aborted	patch.

-S[<keyid>]	,	--gpg-sign[=<keyid>]
GPG-sign	commits.	The	keyid	argument	is	optional	and	defaults	to
the	committer	identity;	if	specified,	it	must	be	stuck	to	the	option
without	a	space.

--continue	,	-r	,	--resolved
After	a	patch	failure	(e.g.	attempting	to	apply	conflicting	patch),	the
user	has	applied	it	by	hand	and	the	index	file	stores	the	result	of	the
application.	Make	a	commit	using	the	authorship	and	commit	log

extracted	from	the	e-mail	message	and	the	current	index	file,	and
continue.

--resolvemsg=<msg>
When	a	patch	failure	occurs,	<msg>	will	be	printed	to	the	screen
before	exiting.	This	overrides	the	standard	message	informing	you	to
use	--continue	or	--skip	to	handle	the	failure.	This	is	solely	for
internal	use	between	git	rebase	and	git	am.

--abort
Restore	the	original	branch	and	abort	the	patching	operation.

DISCUSSION

The	commit	author	name	is	taken	from	the	"From:	"	line	of	the	message,
and	commit	author	date	is	taken	from	the	"Date:	"	line	of	the	message.
The	"Subject:	"	line	is	used	as	the	title	of	the	commit,	after	stripping
common	prefix	"[PATCH	<anything>]".	The	"Subject:	"	line	is	supposed	to
concisely	describe	what	the	commit	is	about	in	one	line	of	text.

"From:	"	and	"Subject:	"	lines	starting	the	body	override	the	respective
commit	author	name	and	title	values	taken	from	the	headers.

The	commit	message	is	formed	by	the	title	taken	from	the	"Subject:	",	a
blank	line	and	the	body	of	the	message	up	to	where	the	patch	begins.
Excess	whitespace	at	the	end	of	each	line	is	automatically	stripped.

The	patch	is	expected	to	be	inline,	directly	following	the	message.	Any
line	that	is	of	the	form:

three-dashes	and	end-of-line,	or
a	line	that	begins	with	"diff	-",	or
a	line	that	begins	with	"Index:	"

is	taken	as	the	beginning	of	a	patch,	and	the	commit	log	message	is
terminated	before	the	first	occurrence	of	such	a	line.

When	initially	invoking	git	am,	you	give	it	the	names	of	the	mailboxes	to
process.	Upon	seeing	the	first	patch	that	does	not	apply,	it	aborts	in	the
middle.	You	can	recover	from	this	in	one	of	two	ways:

1.	 skip	the	current	patch	by	re-running	the	command	with	the	--skip
option.

2.	 hand	resolve	the	conflict	in	the	working	directory,	and	update	the
index	file	to	bring	it	into	a	state	that	the	patch	should	have	produced.
Then	run	the	command	with	the	--continue	option.

The	command	refuses	to	process	new	mailboxes	until	the	current
operation	is	finished,	so	if	you	decide	to	start	over	from	scratch,	run	git
am	--abort	before	running	the	command	with	mailbox	names.

Before	any	patches	are	applied,	ORIG_HEAD	is	set	to	the	tip	of	the
current	branch.	This	is	useful	if	you	have	problems	with	multiple	commits,
like	running	git	am	on	the	wrong	branch	or	an	error	in	the	commits	that	is
more	easily	fixed	by	changing	the	mailbox	(e.g.	errors	in	the	"From:"
lines).

HOOKS

This	command	can	run	applypatch-msg,	pre-applypatch,	and	post-
applypatch	hooks.	See	Section	G.4.6,	“githooks(5)”	for	more	information.

SEE	ALSO

Section	G.3.5,	“git-apply(1)”.

GIT

Part	of	the	Section	G.3.1,	“git(1)”	suite

G.3.4.	git-annotate(1)

NAME

git-annotate	-	Annotate	file	lines	with	commit	information

SYNOPSIS

git	annotate	[options]	file	[revision]

DESCRIPTION

Annotates	each	line	in	the	given	file	with	information	from	the	commit
which	introduced	the	line.	Optionally	annotates	from	a	given	revision.

The	only	difference	between	this	command	and	Section	G.3.9,	“git-
blame(1)”	is	that	they	use	slightly	different	output	formats,	and	this
command	exists	only	for	backward	compatibility	to	support	existing
scripts,	and	provide	a	more	familiar	command	name	for	people	coming
from	other	SCM	systems.

OPTIONS

-b
Show	blank	SHA-1	for	boundary	commits.	This	can	also	be
controlled	via	the	blame.blankboundary	config	option.

--root
Do	not	treat	root	commits	as	boundaries.	This	can	also	be	controlled
via	the	blame.showRoot	config	option.

--show-stats
Include	additional	statistics	at	the	end	of	blame	output.

-L	<start>,<end>	,	-L	:<funcname>

Annotate	only	the	given	line	range.	May	be	specified	multiple	times.
Overlapping	ranges	are	allowed.

<start>	and	<end>	are	optional.	-L	<start>	or	-L	<start>,	spans	from
<start>	to	end	of	file.	-L	,<end>	spans	from	start	of	file	to	<end>.

<start>	and	<end>	can	take	one	of	these	forms:

number

If	<start>	or	<end>	is	a	number,	it	specifies	an	absolute	line
number	(lines	count	from	1).

/regex/

This	form	will	use	the	first	line	matching	the	given	POSIX	regex.
If	<start>	is	a	regex,	it	will	search	from	the	end	of	the	previous	-L
range,	if	any,	otherwise	from	the	start	of	file.	If	<start>	is
^/regex/,	it	will	search	from	the	start	of	file.	If	<end>	is	a	regex,	it
will	search	starting	at	the	line	given	by	<start>.

+offset	or	-offset

This	is	only	valid	for	<end>	and	will	specify	a	number	of	lines
before	or	after	the	line	given	by	<start>.

If	:<funcname>	is	given	in	place	of	<start>	and	<end>,	it	is	a	regular
expression	that	denotes	the	range	from	the	first	funcname	line	that
matches	<funcname>,	up	to	the	next	funcname	line.	:<funcname>
searches	from	the	end	of	the	previous	-L	range,	if	any,	otherwise
from	the	start	of	file.	^:<funcname>	searches	from	the	start	of	file.

-l
Show	long	rev	(Default:	off).

-t
Show	raw	timestamp	(Default:	off).

-S	<revs-file>
Use	revisions	from	revs-file	instead	of	calling	Section	G.3.112,	“git-
rev-list(1)”.

--reverse
Walk	history	forward	instead	of	backward.	Instead	of	showing	the
revision	in	which	a	line	appeared,	this	shows	the	last	revision	in
which	a	line	has	existed.	This	requires	a	range	of	revision	like
START..END	where	the	path	to	blame	exists	in	START.

-p	,	--porcelain
Show	in	a	format	designed	for	machine	consumption.

--line-porcelain
Show	the	porcelain	format,	but	output	commit	information	for	each
line,	not	just	the	first	time	a	commit	is	referenced.	Implies	--porcelain.

--incremental
Show	the	result	incrementally	in	a	format	designed	for	machine

consumption.
--encoding=<encoding>

Specifies	the	encoding	used	to	output	author	names	and	commit
summaries.	Setting	it	to	none	makes	blame	output	unconverted	data.
For	more	information	see	the	discussion	about	encoding	in	the
Section	G.3.68,	“git-log(1)”	manual	page.

--contents	<file>
When	<rev>	is	not	specified,	the	command	annotates	the	changes
starting	backwards	from	the	working	tree	copy.	This	flag	makes	the
command	pretend	as	if	the	working	tree	copy	has	the	contents	of	the
named	file	(specify	-	to	make	the	command	read	from	the	standard
input).

--date	<format>
Specifies	the	format	used	to	output	dates.	If	--date	is	not	provided,
the	value	of	the	blame.date	config	variable	is	used.	If	the	blame.date
config	variable	is	also	not	set,	the	iso	format	is	used.	For	supported
values,	see	the	discussion	of	the	--date	option	at	Section	G.3.68,
“git-log(1)”.

--[no-]progress
Progress	status	is	reported	on	the	standard	error	stream	by	default
when	it	is	attached	to	a	terminal.	This	flag	enables	progress
reporting	even	if	not	attached	to	a	terminal.	Can't	use	--progress
together	with	--porcelain	or	--incremental.

-M|<num>|

Detect	moved	or	copied	lines	within	a	file.	When	a	commit	moves	or
copies	a	block	of	lines	(e.g.	the	original	file	has	A	and	then	B,	and
the	commit	changes	it	to	B	and	then	A),	the	traditional	blame
algorithm	notices	only	half	of	the	movement	and	typically	blames	the
lines	that	were	moved	up	(i.e.	B)	to	the	parent	and	assigns	blame	to
the	lines	that	were	moved	down	(i.e.	A)	to	the	child	commit.	With	this
option,	both	groups	of	lines	are	blamed	on	the	parent	by	running
extra	passes	of	inspection.

<num>	is	optional	but	it	is	the	lower	bound	on	the	number	of
alphanumeric	characters	that	Git	must	detect	as	moving/copying
within	a	file	for	it	to	associate	those	lines	with	the	parent	commit.	The

default	value	is	20.

-C|<num>|

In	addition	to	-M,	detect	lines	moved	or	copied	from	other	files	that
were	modified	in	the	same	commit.	This	is	useful	when	you
reorganize	your	program	and	move	code	around	across	files.	When
this	option	is	given	twice,	the	command	additionally	looks	for	copies
from	other	files	in	the	commit	that	creates	the	file.	When	this	option
is	given	three	times,	the	command	additionally	looks	for	copies	from
other	files	in	any	commit.

<num>	is	optional	but	it	is	the	lower	bound	on	the	number	of
alphanumeric	characters	that	Git	must	detect	as	moving/copying
between	files	for	it	to	associate	those	lines	with	the	parent	commit.
And	the	default	value	is	40.	If	there	are	more	than	one	-C	options
given,	the	<num>	argument	of	the	last	-C	will	take	effect.

-h
Show	help	message.

SEE	ALSO

Section	G.3.9,	“git-blame(1)”

GIT

Part	of	the	Section	G.3.1,	“git(1)”	suite

G.3.5.	git-apply(1)

NAME

git-apply	-	Apply	a	patch	to	files	and/or	to	the	index

SYNOPSIS

git	apply	[--stat]	[--numstat]	[--summary]	[--check]	[--

index]	[--3way]

										[--apply]	[--no-add]	[--build-fake-ancestor=

<file>]	[-R	|	--reverse]

										[--allow-binary-replacement	|	--binary]	[--

reject]	[-z]

										[-p<n>]	[-C<n>]	[--inaccurate-eof]	[--recount]	[--

cached]

										[--ignore-space-change	|	--ignore-whitespace]

										[--whitespace=(nowarn|warn|fix|error|error-all)]

										[--exclude=<path>]	[--include=<path>]	[--directory=

<root>]

										[--verbose]	[--unsafe-paths]	[<patch>…]

DESCRIPTION

Reads	the	supplied	diff	output	(i.e.	"a	patch")	and	applies	it	to	files.	When
running	from	a	subdirectory	in	a	repository,	patched	paths	outside	the
directory	are	ignored.	With	the	--index	option	the	patch	is	also	applied	to
the	index,	and	with	the	--cached	option	the	patch	is	only	applied	to	the
index.	Without	these	options,	the	command	applies	the	patch	only	to
files,	and	does	not	require	them	to	be	in	a	Git	repository.

This	command	applies	the	patch	but	does	not	create	a	commit.	Use
Section	G.3.3,	“git-am(1)”	to	create	commits	from	patches	generated	by
Section	G.3.50,	“git-format-patch(1)”	and/or	received	by	email.

OPTIONS

<patch>…
The	files	to	read	the	patch	from.	-	can	be	used	to	read	from	the
standard	input.

--stat
Instead	of	applying	the	patch,	output	diffstat	for	the	input.	Turns	off
"apply".

--numstat
Similar	to	--stat,	but	shows	the	number	of	added	and	deleted	lines	in
decimal	notation	and	the	pathname	without	abbreviation,	to	make	it
more	machine	friendly.	For	binary	files,	outputs	two	-	instead	of

saying	0	0.	Turns	off	"apply".
--summary

Instead	of	applying	the	patch,	output	a	condensed	summary	of
information	obtained	from	git	diff	extended	headers,	such	as
creations,	renames	and	mode	changes.	Turns	off	"apply".

--check
Instead	of	applying	the	patch,	see	if	the	patch	is	applicable	to	the
current	working	tree	and/or	the	index	file	and	detects	errors.	Turns
off	"apply".

--index
When	--check	is	in	effect,	or	when	applying	the	patch	(which	is	the
default	when	none	of	the	options	that	disables	it	is	in	effect),	make
sure	the	patch	is	applicable	to	what	the	current	index	file	records.	If
the	file	to	be	patched	in	the	working	tree	is	not	up-to-date,	it	is
flagged	as	an	error.	This	flag	also	causes	the	index	file	to	be
updated.

--cached
Apply	a	patch	without	touching	the	working	tree.	Instead	take	the
cached	data,	apply	the	patch,	and	store	the	result	in	the	index
without	using	the	working	tree.	This	implies	--index.

-3	,	--3way
When	the	patch	does	not	apply	cleanly,	fall	back	on	3-way	merge	if
the	patch	records	the	identity	of	blobs	it	is	supposed	to	apply	to,	and
we	have	those	blobs	available	locally,	possibly	leaving	the	conflict
markers	in	the	files	in	the	working	tree	for	the	user	to	resolve.	This
option	implies	the	--index	option,	and	is	incompatible	with	the	--reject
and	the	--cached	options.

--build-fake-ancestor=<file>

Newer	git	diff	output	has	embedded	index	information	for	each	blob
to	help	identify	the	original	version	that	the	patch	applies	to.	When
this	flag	is	given,	and	if	the	original	versions	of	the	blobs	are
available	locally,	builds	a	temporary	index	containing	those	blobs.

When	a	pure	mode	change	is	encountered	(which	has	no	index
information),	the	information	is	read	from	the	current	index	instead.

-R	,	--reverse
Apply	the	patch	in	reverse.

--reject
For	atomicity,	git	apply	by	default	fails	the	whole	patch	and	does	not
touch	the	working	tree	when	some	of	the	hunks	do	not	apply.	This
option	makes	it	apply	the	parts	of	the	patch	that	are	applicable,	and
leave	the	rejected	hunks	in	corresponding	*.rej	files.

-z

When	--numstat	has	been	given,	do	not	munge	pathnames,	but	use
a	NUL-terminated	machine-readable	format.

Without	this	option,	each	pathname	output	will	have	TAB,	LF,	double
quotes,	and	backslash	characters	replaced	with	\t,	\n,	\",	and	\\,
respectively,	and	the	pathname	will	be	enclosed	in	double	quotes	if
any	of	those	replacements	occurred.

-p<n>
Remove	<n>	leading	slashes	from	traditional	diff	paths.	The	default
is	1.

-C<n>
Ensure	at	least	<n>	lines	of	surrounding	context	match	before	and
after	each	change.	When	fewer	lines	of	surrounding	context	exist
they	all	must	match.	By	default	no	context	is	ever	ignored.

--unidiff-zero

By	default,	git	apply	expects	that	the	patch	being	applied	is	a	unified
diff	with	at	least	one	line	of	context.	This	provides	good	safety
measures,	but	breaks	down	when	applying	a	diff	generated	with	--
unified=0.	To	bypass	these	checks	use	--unidiff-zero.

Note,	for	the	reasons	stated	above	usage	of	context-free	patches	is
discouraged.

--apply
If	you	use	any	of	the	options	marked	"Turns	off	apply"	above,	git
apply	reads	and	outputs	the	requested	information	without	actually
applying	the	patch.	Give	this	flag	after	those	flags	to	also	apply	the

patch.
--no-add

When	applying	a	patch,	ignore	additions	made	by	the	patch.	This
can	be	used	to	extract	the	common	part	between	two	files	by	first
running	diff	on	them	and	applying	the	result	with	this	option,	which
would	apply	the	deletion	part	but	not	the	addition	part.

--allow-binary-replacement	,	--binary
Historically	we	did	not	allow	binary	patch	applied	without	an	explicit
permission	from	the	user,	and	this	flag	was	the	way	to	do	so.
Currently	we	always	allow	binary	patch	application,	so	this	is	a	no-
op.

--exclude=<path-pattern>
Don't	apply	changes	to	files	matching	the	given	path	pattern.	This
can	be	useful	when	importing	patchsets,	where	you	want	to	exclude
certain	files	or	directories.

--include=<path-pattern>

Apply	changes	to	files	matching	the	given	path	pattern.	This	can	be
useful	when	importing	patchsets,	where	you	want	to	include	certain
files	or	directories.

When	--exclude	and	--include	patterns	are	used,	they	are	examined
in	the	order	they	appear	on	the	command	line,	and	the	first	match
determines	if	a	patch	to	each	path	is	used.	A	patch	to	a	path	that
does	not	match	any	include/exclude	pattern	is	used	by	default	if
there	is	no	include	pattern	on	the	command	line,	and	ignored	if	there
is	any	include	pattern.

--ignore-space-change	,	--ignore-whitespace
When	applying	a	patch,	ignore	changes	in	whitespace	in	context
lines	if	necessary.	Context	lines	will	preserve	their	whitespace,	and
they	will	not	undergo	whitespace	fixing	regardless	of	the	value	of	the
--whitespace	option.	New	lines	will	still	be	fixed,	though.

--whitespace=<action>

When	applying	a	patch,	detect	a	new	or	modified	line	that	has
whitespace	errors.	What	are	considered	whitespace	errors	is
controlled	by	core.whitespace	configuration.	By	default,	trailing

whitespaces	(including	lines	that	solely	consist	of	whitespaces)	and
a	space	character	that	is	immediately	followed	by	a	tab	character
inside	the	initial	indent	of	the	line	are	considered	whitespace	errors.

By	default,	the	command	outputs	warning	messages	but	applies	the
patch.	When	git-apply	is	used	for	statistics	and	not	applying	a	patch,
it	defaults	to	nowarn.

You	can	use	different	<action>	values	to	control	this	behavior:

nowarn	turns	off	the	trailing	whitespace	warning.
warn	outputs	warnings	for	a	few	such	errors,	but	applies	the
patch	as-is	(default).
fix	outputs	warnings	for	a	few	such	errors,	and	applies	the	patch
after	fixing	them	(strip	is	a	synonym	---	the	tool	used	to	consider
only	trailing	whitespace	characters	as	errors,	and	the	fix
involved	stripping	them,	but	modern	Gits	do	more).
error	outputs	warnings	for	a	few	such	errors,	and	refuses	to
apply	the	patch.
error-all	is	similar	to	error	but	shows	all	errors.

--inaccurate-eof
Under	certain	circumstances,	some	versions	of	diff	do	not	correctly
detect	a	missing	new-line	at	the	end	of	the	file.	As	a	result,	patches
created	by	such	diff	programs	do	not	record	incomplete	lines
correctly.	This	option	adds	support	for	applying	such	patches	by
working	around	this	bug.

-v	,	--verbose
Report	progress	to	stderr.	By	default,	only	a	message	about	the
current	patch	being	applied	will	be	printed.	This	option	will	cause
additional	information	to	be	reported.

--recount
Do	not	trust	the	line	counts	in	the	hunk	headers,	but	infer	them	by
inspecting	the	patch	(e.g.	after	editing	the	patch	without	adjusting	the
hunk	headers	appropriately).

--directory=<root>

Prepend	<root>	to	all	filenames.	If	a	"-p"	argument	was	also	passed,
it	is	applied	before	prepending	the	new	root.

For	example,	a	patch	that	talks	about	updating	a/git-gui.sh	to	b/git-
gui.sh	can	be	applied	to	the	file	in	the	working	tree	modules/git-
gui/git-gui.sh	by	running	git	apply	--directory=modules/git-gui.

--unsafe-paths

By	default,	a	patch	that	affects	outside	the	working	area	(either	a	Git
controlled	working	tree,	or	the	current	working	directory	when	"git
apply"	is	used	as	a	replacement	of	GNU	patch)	is	rejected	as	a
mistake	(or	a	mischief).

When	git	apply	is	used	as	a	"better	GNU	patch",	the	user	can	pass
the	--unsafe-paths	option	to	override	this	safety	check.	This	option
has	no	effect	when	--index	or	--cached	is	in	use.

Configuration

apply.ignoreWhitespace
Set	to	change	if	you	want	changes	in	whitespace	to	be	ignored	by
default.	Set	to	one	of:	no,	none,	never,	false	if	you	want	changes	in
whitespace	to	be	significant.

apply.whitespace
When	no	--whitespace	flag	is	given	from	the	command	line,	this
configuration	item	is	used	as	the	default.

Submodules

If	the	patch	contains	any	changes	to	submodules	then	git	apply	treats
these	changes	as	follows.

If	--index	is	specified	(explicitly	or	implicitly),	then	the	submodule	commits
must	match	the	index	exactly	for	the	patch	to	apply.	If	any	of	the
submodules	are	checked-out,	then	these	check-outs	are	completely
ignored,	i.e.,	they	are	not	required	to	be	up-to-date	or	clean	and	they	are
not	updated.

If	--index	is	not	specified,	then	the	submodule	commits	in	the	patch	are

ignored	and	only	the	absence	or	presence	of	the	corresponding
subdirectory	is	checked	and	(if	possible)	updated.

SEE	ALSO

Section	G.3.3,	“git-am(1)”.

GIT

Part	of	the	Section	G.3.1,	“git(1)”	suite

G.3.6.	git-archimport(1)

NAME

git-archimport	-	Import	an	Arch	repository	into	Git

SYNOPSIS

git	archimport	[-h]	[-v]	[-o]	[-a]	[-f]	[-T]	[-D	depth]	[-

t	tempdir]

															<archive/branch>[:<git-branch>]	…

DESCRIPTION

Imports	a	project	from	one	or	more	Arch	repositories.	It	will	follow
branches	and	repositories	within	the	namespaces	defined	by	the
<archive/branch>	parameters	supplied.	If	it	cannot	find	the	remote	branch
a	merge	comes	from	it	will	just	import	it	as	a	regular	commit.	If	it	can	find
it,	it	will	mark	it	as	a	merge	whenever	possible	(see	discussion	below).

The	script	expects	you	to	provide	the	key	roots	where	it	can	start	the
import	from	an	initial	import	or	tag	type	of	Arch	commit.	It	will	follow	and
import	new	branches	within	the	provided	roots.

It	expects	to	be	dealing	with	one	project	only.	If	it	sees	branches	that

have	different	roots,	it	will	refuse	to	run.	In	that	case,	edit	your
<archive/branch>	parameters	to	define	clearly	the	scope	of	the	import.

git	archimport	uses	tla	extensively	in	the	background	to	access	the	Arch
repository.	Make	sure	you	have	a	recent	version	of	tla	available	in	the
path.	tla	must	know	about	the	repositories	you	pass	to	git	archimport.

For	the	initial	import,	git	archimport	expects	to	find	itself	in	an	empty
directory.	To	follow	the	development	of	a	project	that	uses	Arch,	rerun	git
archimport	with	the	same	parameters	as	the	initial	import	to	perform
incremental	imports.

While	git	archimport	will	try	to	create	sensible	branch	names	for	the
archives	that	it	imports,	it	is	also	possible	to	specify	Git	branch	names
manually.	To	do	so,	write	a	Git	branch	name	after	each	<archive/branch>
parameter,	separated	by	a	colon.	This	way,	you	can	shorten	the	Arch
branch	names	and	convert	Arch	jargon	to	Git	jargon,	for	example
mapping	a	"PROJECT--devo--VERSION"	branch	to	"master".

Associating	multiple	Arch	branches	to	one	Git	branch	is	possible;	the
result	will	make	the	most	sense	only	if	no	commits	are	made	to	the	first
branch,	after	the	second	branch	is	created.	Still,	this	is	useful	to	convert
Arch	repositories	that	had	been	rotated	periodically.

MERGES

Patch	merge	data	from	Arch	is	used	to	mark	merges	in	Git	as	well.	Git
does	not	care	much	about	tracking	patches,	and	only	considers	a	merge
when	a	branch	incorporates	all	the	commits	since	the	point	they	forked.
The	end	result	is	that	Git	will	have	a	good	idea	of	how	far	branches	have
diverged.	So	the	import	process	does	lose	some	patch-trading	metadata.

Fortunately,	when	you	try	and	merge	branches	imported	from	Arch,	Git
will	find	a	good	merge	base,	and	it	has	a	good	chance	of	identifying
patches	that	have	been	traded	out-of-sequence	between	the	branches.

OPTIONS

-h
Display	usage.

-v
Verbose	output.

-T
Many	tags.	Will	create	a	tag	for	every	commit,	reflecting	the	commit
name	in	the	Arch	repository.

-f
Use	the	fast	patchset	import	strategy.	This	can	be	significantly	faster
for	large	trees,	but	cannot	handle	directory	renames	or	permissions
changes.	The	default	strategy	is	slow	and	safe.

-o
Use	this	for	compatibility	with	old-style	branch	names	used	by	earlier
versions	of	git	archimport.	Old-style	branch	names	were	category--
branch,	whereas	new-style	branch	names	are	archive,category--
branch--version.	In	both	cases,	names	given	on	the	command-line
will	override	the	automatically-generated	ones.

-D	<depth>
Follow	merge	ancestry	and	attempt	to	import	trees	that	have	been
merged	from.	Specify	a	depth	greater	than	1	if	patch	logs	have	been
pruned.

-a
Attempt	to	auto-register	archives	at	http://mirrors.sourcecontrol.net
This	is	particularly	useful	with	the	-D	option.

-t	<tmpdir>
Override	the	default	tempdir.

<archive/branch>
Archive/branch	identifier	in	a	format	that	tla	log	understands.

GIT

Part	of	the	Section	G.3.1,	“git(1)”	suite

G.3.7.	git-archive(1)

NAME

http://mirrors.sourcecontrol.net

git-archive	-	Create	an	archive	of	files	from	a	named	tree

SYNOPSIS

git	archive	[--format=<fmt>]	[--list]	[--prefix=

<prefix>/]	[<extra>]

														[-o	<file>	|	--output=<file>]	[--worktree-

attributes]

														[--remote=<repo>	[--exec=<git-upload-

archive>]]	<tree-ish>

														[<path>…]

DESCRIPTION

Creates	an	archive	of	the	specified	format	containing	the	tree	structure
for	the	named	tree,	and	writes	it	out	to	the	standard	output.	If	<prefix>	is
specified	it	is	prepended	to	the	filenames	in	the	archive.

git	archive	behaves	differently	when	given	a	tree	ID	versus	when	given	a
commit	ID	or	tag	ID.	In	the	first	case	the	current	time	is	used	as	the
modification	time	of	each	file	in	the	archive.	In	the	latter	case	the	commit
time	as	recorded	in	the	referenced	commit	object	is	used	instead.
Additionally	the	commit	ID	is	stored	in	a	global	extended	pax	header	if
the	tar	format	is	used;	it	can	be	extracted	using	git	get-tar-commit-id.	In
ZIP	files	it	is	stored	as	a	file	comment.

OPTIONS

--format=<fmt>
Format	of	the	resulting	archive:	tar	or	zip.	If	this	option	is	not	given,
and	the	output	file	is	specified,	the	format	is	inferred	from	the
filename	if	possible	(e.g.	writing	to	"foo.zip"	makes	the	output	to	be	in
the	zip	format).	Otherwise	the	output	format	is	tar.

-l	,	--list
Show	all	available	formats.

-v	,	--verbose
Report	progress	to	stderr.

--prefix=<prefix>/
Prepend	<prefix>/	to	each	filename	in	the	archive.

-o	<file>	,	--output=<file>
Write	the	archive	to	<file>	instead	of	stdout.

--worktree-attributes
Look	for	attributes	in	.gitattributes	files	in	the	working	tree	as	well
(see	the	section	called	“ATTRIBUTES”).

<extra>
This	can	be	any	options	that	the	archiver	backend	understands.	See
next	section.

--remote=<repo>
Instead	of	making	a	tar	archive	from	the	local	repository,	retrieve	a
tar	archive	from	a	remote	repository.	Note	that	the	remote	repository
may	place	restrictions	on	which	sha1	expressions	may	be	allowed	in
<tree-ish>.	See	Section	G.3.140,	“git-upload-archive(1)”	for	details.

--exec=<git-upload-archive>
Used	with	--remote	to	specify	the	path	to	the	git-upload-archive	on
the	remote	side.

<tree-ish>
The	tree	or	commit	to	produce	an	archive	for.

<path>
Without	an	optional	path	parameter,	all	files	and	subdirectories	of	the
current	working	directory	are	included	in	the	archive.	If	one	or	more
paths	are	specified,	only	these	are	included.

BACKEND	EXTRA	OPTIONS

1.	zip

-0
Store	the	files	instead	of	deflating	them.

-9
Highest	and	slowest	compression	level.	You	can	specify	any	number
from	1	to	9	to	adjust	compression	speed	and	ratio.

CONFIGURATION

tar.umask
This	variable	can	be	used	to	restrict	the	permission	bits	of	tar	archive
entries.	The	default	is	0002,	which	turns	off	the	world	write	bit.	The
special	value	"user"	indicates	that	the	archiving	user's	umask	will	be
used	instead.	See	umask(2)	for	details.	If	--remote	is	used	then	only
the	configuration	of	the	remote	repository	takes	effect.

tar.<format>.command

This	variable	specifies	a	shell	command	through	which	the	tar	output
generated	by	git	archive	should	be	piped.	The	command	is	executed
using	the	shell	with	the	generated	tar	file	on	its	standard	input,	and
should	produce	the	final	output	on	its	standard	output.	Any
compression-level	options	will	be	passed	to	the	command	(e.g.,
"-9").	An	output	file	with	the	same	extension	as	<format>	will	be	use
this	format	if	no	other	format	is	given.

The	"tar.gz"	and	"tgz"	formats	are	defined	automatically	and	default
to	gzip	-cn.	You	may	override	them	with	custom	commands.

tar.<format>.remote
If	true,	enable	<format>	for	use	by	remote	clients	via
Section	G.3.140,	“git-upload-archive(1)”.	Defaults	to	false	for	user-
defined	formats,	but	true	for	the	"tar.gz"	and	"tgz"	formats.

ATTRIBUTES

export-ignore
Files	and	directories	with	the	attribute	export-ignore	won't	be	added
to	archive	files.	See	Section	G.4.2,	“gitattributes(5)”	for	details.

export-subst
If	the	attribute	export-subst	is	set	for	a	file	then	Git	will	expand
several	placeholders	when	adding	this	file	to	an	archive.	See
Section	G.4.2,	“gitattributes(5)”	for	details.

Note	that	attributes	are	by	default	taken	from	the	.gitattributes	files	in	the
tree	that	is	being	archived.	If	you	want	to	tweak	the	way	the	output	is
generated	after	the	fact	(e.g.	you	committed	without	adding	an
appropriate	export-ignore	in	its	.gitattributes),	adjust	the	checked	out
.gitattributes	file	as	necessary	and	use	--worktree-attributes	option.
Alternatively	you	can	keep	necessary	attributes	that	should	apply	while
archiving	any	tree	in	your	$GIT_DIR/info/attributes	file.

EXAMPLES

git	archive	--format=tar	--prefix=junk/	HEAD	|	(cd	/var/tmp/	&&	tar	xf	-)
Create	a	tar	archive	that	contains	the	contents	of	the	latest	commit
on	the	current	branch,	and	extract	it	in	the	/var/tmp/junk	directory.

git	archive	--format=tar	--prefix=git-1.4.0/	v1.4.0	|	gzip	>git-1.4.0.tar.gz
Create	a	compressed	tarball	for	v1.4.0	release.

git	archive	--format=tar.gz	--prefix=git-1.4.0/	v1.4.0	>git-1.4.0.tar.gz
Same	as	above,	but	using	the	builtin	tar.gz	handling.

git	archive	--prefix=git-1.4.0/	-o	git-1.4.0.tar.gz	v1.4.0
Same	as	above,	but	the	format	is	inferred	from	the	output	file.

git	archive	--format=tar	--prefix=git-1.4.0/	v1.4.0^{tree}	|	gzip	>git-
1.4.0.tar.gz

Create	a	compressed	tarball	for	v1.4.0	release,	but	without	a	global
extended	pax	header.

git	archive	--format=zip	--prefix=git-docs/	HEAD:Documentation/	>	git-
1.4.0-docs.zip

Put	everything	in	the	current	head's	Documentation/	directory	into
git-1.4.0-docs.zip,	with	the	prefix	git-docs/.

git	archive	-o	latest.zip	HEAD
Create	a	Zip	archive	that	contains	the	contents	of	the	latest	commit

on	the	current	branch.	Note	that	the	output	format	is	inferred	by	the
extension	of	the	output	file.

git	config	tar.tar.xz.command	"xz	-c"
Configure	a	"tar.xz"	format	for	making	LZMA-compressed	tarfiles.
You	can	use	it	specifying	--format=tar.xz,	or	by	creating	an	output	file
like	-o	foo.tar.xz.

SEE	ALSO

Section	G.4.2,	“gitattributes(5)”

GIT

Part	of	the	Section	G.3.1,	“git(1)”	suite

G.3.8.	git-bisect(1)

NAME

git-bisect	-	Use	binary	search	to	find	the	commit	that	introduced	a	bug

SYNOPSIS

git	bisect	<subcommand>	<options>

DESCRIPTION

The	command	takes	various	subcommands,	and	different	options
depending	on	the	subcommand:

git	bisect	start	[--term-{old,good}=<term>	--term-{new,bad}=<term>]

																	[--no-checkout]	[<bad>	[<good>...]]	[--]	[<paths>...]

git	bisect	(bad|new)	[<rev>]

git	bisect	(good|old)	[<rev>...]

git	bisect	terms	[--term-good	|	--term-bad]

git	bisect	skip	[(<rev>|<range>)...]

git	bisect	reset	[<commit>]

git	bisect	visualize

git	bisect	replay	<logfile>

git	bisect	log

git	bisect	run	<cmd>...

git	bisect	help

This	command	uses	a	binary	search	algorithm	to	find	which	commit	in
your	project's	history	introduced	a	bug.	You	use	it	by	first	telling	it	a	"bad"
commit	that	is	known	to	contain	the	bug,	and	a	"good"	commit	that	is
known	to	be	before	the	bug	was	introduced.	Then	git	bisect	picks	a
commit	between	those	two	endpoints	and	asks	you	whether	the	selected
commit	is	"good"	or	"bad".	It	continues	narrowing	down	the	range	until	it
finds	the	exact	commit	that	introduced	the	change.

In	fact,	git	bisect	can	be	used	to	find	the	commit	that	changed	any
property	of	your	project;	e.g.,	the	commit	that	fixed	a	bug,	or	the	commit
that	caused	a	benchmark's	performance	to	improve.	To	support	this	more
general	usage,	the	terms	"old"	and	"new"	can	be	used	in	place	of	"good"
and	"bad",	or	you	can	choose	your	own	terms.	See	section	"Alternate
terms"	below	for	more	information.

1.	Basic	bisect	commands:	start,	bad,	good

As	an	example,	suppose	you	are	trying	to	find	the	commit	that	broke	a
feature	that	was	known	to	work	in	version	v2.6.13-rc2	of	your	project.	You
start	a	bisect	session	as	follows:

$	git	bisect	start

$	git	bisect	bad																	#	Current	version	is	bad

$	git	bisect	good	v2.6.13-rc2				#	v2.6.13-rc2	is	known	to	be	good

Once	you	have	specified	at	least	one	bad	and	one	good	commit,	git
bisect	selects	a	commit	in	the	middle	of	that	range	of	history,	checks	it
out,	and	outputs	something	similar	to	the	following:

Bisecting:	675	revisions	left	to	test	after	this	(roughly	10	steps)

You	should	now	compile	the	checked-out	version	and	test	it.	If	that
version	works	correctly,	type

$	git	bisect	good

If	that	version	is	broken,	type

$	git	bisect	bad

Then	git	bisect	will	respond	with	something	like

Bisecting:	337	revisions	left	to	test	after	this	(roughly	9	steps)

Keep	repeating	the	process:	compile	the	tree,	test	it,	and	depending	on
whether	it	is	good	or	bad	run	git	bisect	good	or	git	bisect	bad	to	ask	for
the	next	commit	that	needs	testing.

Eventually	there	will	be	no	more	revisions	left	to	inspect,	and	the
command	will	print	out	a	description	of	the	first	bad	commit.	The
reference	refs/bisect/bad	will	be	left	pointing	at	that	commit.

2.	Bisect	reset

After	a	bisect	session,	to	clean	up	the	bisection	state	and	return	to	the
original	HEAD,	issue	the	following	command:

$	git	bisect	reset

By	default,	this	will	return	your	tree	to	the	commit	that	was	checked	out
before	git	bisect	start.	(A	new	git	bisect	start	will	also	do	that,	as	it	cleans
up	the	old	bisection	state.)

With	an	optional	argument,	you	can	return	to	a	different	commit	instead:

$	git	bisect	reset	<commit>

For	example,	git	bisect	reset	bisect/bad	will	check	out	the	first	bad
revision,	while	git	bisect	reset	HEAD	will	leave	you	on	the	current
bisection	commit	and	avoid	switching	commits	at	all.

3.	Alternate	terms

Sometimes	you	are	not	looking	for	the	commit	that	introduced	a
breakage,	but	rather	for	a	commit	that	caused	a	change	between	some
other	"old"	state	and	"new"	state.	For	example,	you	might	be	looking	for
the	commit	that	introduced	a	particular	fix.	Or	you	might	be	looking	for	the
first	commit	in	which	the	source-code	filenames	were	finally	all	converted
to	your	company's	naming	standard.	Or	whatever.

In	such	cases	it	can	be	very	confusing	to	use	the	terms	"good"	and	"bad"
to	refer	to	"the	state	before	the	change"	and	"the	state	after	the	change".
So	instead,	you	can	use	the	terms	"old"	and	"new",	respectively,	in	place
of	"good"	and	"bad".	(But	note	that	you	cannot	mix	"good"	and	"bad"	with
"old"	and	"new"	in	a	single	session.)

In	this	more	general	usage,	you	provide	git	bisect	with	a	"new"	commit
has	some	property	and	an	"old"	commit	that	doesn't	have	that	property.
Each	time	git	bisect	checks	out	a	commit,	you	test	if	that	commit	has	the
property.	If	it	does,	mark	the	commit	as	"new";	otherwise,	mark	it	as	"old".
When	the	bisection	is	done,	git	bisect	will	report	which	commit	introduced
the	property.

To	use	"old"	and	"new"	instead	of	"good"	and	bad,	you	must	run	git	bisect
start	without	commits	as	argument	and	then	run	the	following	commands
to	add	the	commits:

git	bisect	old	[<rev>]

to	indicate	that	a	commit	was	before	the	sought	change,	or

git	bisect	new	[<rev>...]

to	indicate	that	it	was	after.

To	get	a	reminder	of	the	currently	used	terms,	use

git	bisect	terms

You	can	get	just	the	old	(respectively	new)	term	with	git	bisect	term	--
term-old	or	git	bisect	term	--term-good.

If	you	would	like	to	use	your	own	terms	instead	of	"bad"/"good"	or
"new"/"old",	you	can	choose	any	names	you	like	(except	existing	bisect
subcommands	like	reset,	start,	…)	by	starting	the	bisection	using

git	bisect	start	--term-old	<term-old>	--term-new	<term-new>

For	example,	if	you	are	looking	for	a	commit	that	introduced	a
performance	regression,	you	might	use

git	bisect	start	--term-old	fast	--term-new	slow

Or	if	you	are	looking	for	the	commit	that	fixed	a	bug,	you	might	use

git	bisect	start	--term-new	fixed	--term-old	broken

Then,	use	git	bisect	<term-old>	and	git	bisect	<term-new>	instead	of	git
bisect	good	and	git	bisect	bad	to	mark	commits.

4.	Bisect	visualize

To	see	the	currently	remaining	suspects	in	gitk,	issue	the	following
command	during	the	bisection	process:

$	git	bisect	visualize

view	may	also	be	used	as	a	synonym	for	visualize.

If	the	DISPLAY	environment	variable	is	not	set,	git	log	is	used	instead.
You	can	also	give	command-line	options	such	as	-p	and	--stat.

$	git	bisect	view	--stat

5.	Bisect	log	and	bisect	replay

After	having	marked	revisions	as	good	or	bad,	issue	the	following
command	to	show	what	has	been	done	so	far:

$	git	bisect	log

If	you	discover	that	you	made	a	mistake	in	specifying	the	status	of	a
revision,	you	can	save	the	output	of	this	command	to	a	file,	edit	it	to
remove	the	incorrect	entries,	and	then	issue	the	following	commands	to
return	to	a	corrected	state:

$	git	bisect	reset

$	git	bisect	replay	that-file

6.	Avoiding	testing	a	commit

If,	in	the	middle	of	a	bisect	session,	you	know	that	the	suggested	revision
is	not	a	good	one	to	test	(e.g.	it	fails	to	build	and	you	know	that	the	failure
does	not	have	anything	to	do	with	the	bug	you	are	chasing),	you	can
manually	select	a	nearby	commit	and	test	that	one	instead.

For	example:

$	git	bisect	good/bad																			#	previous	round	was	good	or	bad.

Bisecting:	337	revisions	left	to	test	after	this	(roughly	9	steps)

$	git	bisect	visualize																		#	oops,	that	is	uninteresting.

$	git	reset	--hard	HEAD~3															#	try	3	revisions	before	what

																																								#	was	suggested

Then	compile	and	test	the	chosen	revision,	and	afterwards	mark	the
revision	as	good	or	bad	in	the	usual	manner.

7.	Bisect	skip

Instead	of	choosing	a	nearby	commit	by	yourself,	you	can	ask	Git	to	do	it
for	you	by	issuing	the	command:

$	git	bisect	skip																	#	Current	version	cannot	be	tested

However,	if	you	skip	a	commit	adjacent	to	the	one	you	are	looking	for,	Git
will	be	unable	to	tell	exactly	which	of	those	commits	was	the	first	bad
one.

You	can	also	skip	a	range	of	commits,	instead	of	just	one	commit,	using
range	notation.	For	example:

$	git	bisect	skip	v2.5..v2.6

This	tells	the	bisect	process	that	no	commit	after	v2.5,	up	to	and	including
v2.6,	should	be	tested.

Note	that	if	you	also	want	to	skip	the	first	commit	of	the	range	you	would
issue	the	command:

$	git	bisect	skip	v2.5	v2.5..v2.6

This	tells	the	bisect	process	that	the	commits	between	v2.5	and	v2.6
(inclusive)	should	be	skipped.

8.	Cutting	down	bisection	by	giving	more
parameters	to	bisect	start

You	can	further	cut	down	the	number	of	trials,	if	you	know	what	part	of
the	tree	is	involved	in	the	problem	you	are	tracking	down,	by	specifying
path	parameters	when	issuing	the	bisect	start	command:

$	git	bisect	start	--	arch/i386	include/asm-i386

If	you	know	beforehand	more	than	one	good	commit,	you	can	narrow	the
bisect	space	down	by	specifying	all	of	the	good	commits	immediately
after	the	bad	commit	when	issuing	the	bisect	start	command:

$	git	bisect	start	v2.6.20-rc6	v2.6.20-rc4	v2.6.20-rc1	--

																			#	v2.6.20-rc6	is	bad

																			#	v2.6.20-rc4	and	v2.6.20-rc1	are	good

9.	Bisect	run

If	you	have	a	script	that	can	tell	if	the	current	source	code	is	good	or	bad,
you	can	bisect	by	issuing	the	command:

$	git	bisect	run	my_script	arguments

Note	that	the	script	(my_script	in	the	above	example)	should	exit	with
code	0	if	the	current	source	code	is	good/old,	and	exit	with	a	code
between	1	and	127	(inclusive),	except	125,	if	the	current	source	code	is
bad/new.

Any	other	exit	code	will	abort	the	bisect	process.	It	should	be	noted	that	a
program	that	terminates	via	exit(-1)	leaves	$?	=	255,	(see	the	exit(3)
manual	page),	as	the	value	is	chopped	with	&	0377.

The	special	exit	code	125	should	be	used	when	the	current	source	code
cannot	be	tested.	If	the	script	exits	with	this	code,	the	current	revision	will
be	skipped	(see	git	bisect	skip	above).	125	was	chosen	as	the	highest
sensible	value	to	use	for	this	purpose,	because	126	and	127	are	used	by
POSIX	shells	to	signal	specific	error	status	(127	is	for	command	not
found,	126	is	for	command	found	but	not	executable--these	details	do	not
matter,	as	they	are	normal	errors	in	the	script,	as	far	as	bisect	run	is
concerned).

You	may	often	find	that	during	a	bisect	session	you	want	to	have
temporary	modifications	(e.g.	s/#define	DEBUG	0/#define	DEBUG	1/	in	a
header	file,	or	"revision	that	does	not	have	this	commit	needs	this	patch
applied	to	work	around	another	problem	this	bisection	is	not	interested
in")	applied	to	the	revision	being	tested.

To	cope	with	such	a	situation,	after	the	inner	git	bisect	finds	the	next
revision	to	test,	the	script	can	apply	the	patch	before	compiling,	run	the
real	test,	and	afterwards	decide	if	the	revision	(possibly	with	the	needed
patch)	passed	the	test	and	then	rewind	the	tree	to	the	pristine	state.
Finally	the	script	should	exit	with	the	status	of	the	real	test	to	let	the	git

bisect	run	command	loop	determine	the	eventual	outcome	of	the	bisect
session.

OPTIONS

--no-checkout

Do	not	checkout	the	new	working	tree	at	each	iteration	of	the
bisection	process.	Instead	just	update	a	special	reference	named
BISECT_HEAD	to	make	it	point	to	the	commit	that	should	be	tested.

This	option	may	be	useful	when	the	test	you	would	perform	in	each
step	does	not	require	a	checked	out	tree.

If	the	repository	is	bare,	--no-checkout	is	assumed.

EXAMPLES

Automatically	bisect	a	broken	build	between	v1.2	and	HEAD:

$	git	bisect	start	HEAD	v1.2	--						#	HEAD	is	bad,	v1.2	is	good

$	git	bisect	run	make																#	"make"	builds	the	app

$	git	bisect	reset																			#	quit	the	bisect	session

Automatically	bisect	a	test	failure	between	origin	and	HEAD:

$	git	bisect	start	HEAD	origin	--				#	HEAD	is	bad,	origin	is	good

$	git	bisect	run	make	test											#	"make	test"	builds	and	tests

$	git	bisect	reset																			#	quit	the	bisect	session

Automatically	bisect	a	broken	test	case:

$	cat	~/test.sh

#!/bin/sh

make	||	exit	125																					#	this	skips	broken	builds

~/check_test_case.sh																	#	does	the	test	case	pass?

$	git	bisect	start	HEAD	HEAD~10	--			#	culprit	is	among	the	last	10

$	git	bisect	run	~/test.sh

$	git	bisect	reset																			#	quit	the	bisect	session

Here	we	use	a	test.sh	custom	script.	In	this	script,	if	make	fails,	we
skip	the	current	commit.	check_test_case.sh	should	exit	0	if	the	test
case	passes,	and	exit	1	otherwise.

It	is	safer	if	both	test.sh	and	check_test_case.sh	are	outside	the
repository	to	prevent	interactions	between	the	bisect,	make	and	test
processes	and	the	scripts.

Automatically	bisect	with	temporary	modifications	(hot-fix):

$	cat	~/test.sh

#!/bin/sh

#	tweak	the	working	tree	by	merging	the	hot-fix	branch

#	and	then	attempt	a	build

if						git	merge	--no-commit	hot-fix	&&

								make

then

								#	run	project	specific	test	and	report	its	status

								~/check_test_case.sh

								status=$?

else

								#	tell	the	caller	this	is	untestable

								status=125

fi

#	undo	the	tweak	to	allow	clean	flipping	to	the	next	commit

git	reset	--hard

#	return	control

exit	$status

This	applies	modifications	from	a	hot-fix	branch	before	each	test	run,
e.g.	in	case	your	build	or	test	environment	changed	so	that	older
revisions	may	need	a	fix	which	newer	ones	have	already.	(Make	sure
the	hot-fix	branch	is	based	off	a	commit	which	is	contained	in	all
revisions	which	you	are	bisecting,	so	that	the	merge	does	not	pull	in

too	much,	or	use	git	cherry-pick	instead	of	git	merge.)

Automatically	bisect	a	broken	test	case:

$	git	bisect	start	HEAD	HEAD~10	--			#	culprit	is	among	the	last	10

$	git	bisect	run	sh	-c	"make	||	exit	125;	~/check_test_case.sh"

$	git	bisect	reset																			#	quit	the	bisect	session

This	shows	that	you	can	do	without	a	run	script	if	you	write	the	test
on	a	single	line.

Locate	a	good	region	of	the	object	graph	in	a	damaged	repository

$	git	bisect	start	HEAD	<known-good-commit>	[<boundary-commit>	...]	--no-checkout

$	git	bisect	run	sh	-c	'

								GOOD=$(git	for-each-ref	"--format=%(objectname)"	refs/bisect/good-*)	&&

								git	rev-list	--objects	BISECT_HEAD	--not	$GOOD	>tmp.$$	&&

								git	pack-objects	--stdout	>/dev/null	<tmp.$$

								rc=$?

								rm	-f	tmp.$$

								test	$rc	=	0'

$	git	bisect	reset																			#	quit	the	bisect	session

In	this	case,	when	git	bisect	run	finishes,	bisect/bad	will	refer	to	a
commit	that	has	at	least	one	parent	whose	reachable	graph	is	fully
traversable	in	the	sense	required	by	git	pack	objects.

Look	for	a	fix	instead	of	a	regression	in	the	code

$	git	bisect	start

$	git	bisect	new	HEAD				#	current	commit	is	marked	as	new

$	git	bisect	old	HEAD~10	#	the	tenth	commit	from	now	is	marked	as	old

or:

$	git	bisect	start	--term-old	broken	--term-new	fixed

$	git	bisect	fixed

$	git	bisect	broken	HEAD~10

1.	Getting	help

Use	git	bisect	to	get	a	short	usage	description,	and	git	bisect	help	or	git
bisect	-h	to	get	a	long	usage	description.

SEE	ALSO

Fighting	regressions	with	git	bisect,	Section	G.3.9,	“git-blame(1)”.

GIT

Part	of	the	Section	G.3.1,	“git(1)”	suite

G.3.9.	git-blame(1)

NAME

git-blame	-	Show	what	revision	and	author	last	modified	each	line	of	a	file

SYNOPSIS

git	blame	[-c]	[-b]	[-l]	[--root]	[-t]	[-f]	[-n]	[-s]	[-e]	[-

p]	[-w]	[--incremental]

												[-L	<range>]	[-S	<revs-file>]	[-M]	[-C]	[-C]	[-

C]	[--since=<date>]

												[--progress]	[--abbrev=<n>]	[<rev>	|	--

contents	<file>	|	--reverse	<rev>]

												[--]	<file>

DESCRIPTION

Annotates	each	line	in	the	given	file	with	information	from	the	revision
which	last	modified	the	line.	Optionally,	start	annotating	from	the	given
revision.

https://www.kernel.org/pub/software/scm/git/docs/git-bisect-lk2009.html

When	specified	one	or	more	times,	-L	restricts	annotation	to	the
requested	lines.

The	origin	of	lines	is	automatically	followed	across	whole-file	renames
(currently	there	is	no	option	to	turn	the	rename-following	off).	To	follow
lines	moved	from	one	file	to	another,	or	to	follow	lines	that	were	copied
and	pasted	from	another	file,	etc.,	see	the	-C	and	-M	options.

The	report	does	not	tell	you	anything	about	lines	which	have	been
deleted	or	replaced;	you	need	to	use	a	tool	such	as	git	diff	or	the
"pickaxe"	interface	briefly	mentioned	in	the	following	paragraph.

Apart	from	supporting	file	annotation,	Git	also	supports	searching	the
development	history	for	when	a	code	snippet	occurred	in	a	change.	This
makes	it	possible	to	track	when	a	code	snippet	was	added	to	a	file,
moved	or	copied	between	files,	and	eventually	deleted	or	replaced.	It
works	by	searching	for	a	text	string	in	the	diff.	A	small	example	of	the
pickaxe	interface	that	searches	for	blame_usage:

$	git	log	--pretty=oneline	-S'blame_usage'

5040f17eba15504bad66b14a645bddd9b015ebb7	blame	-S	<ancestry-file>

ea4c7f9bf69e781dd0cd88d2bccb2bf5cc15c9a7	git-blame:	Make	the	output

OPTIONS

-b
Show	blank	SHA-1	for	boundary	commits.	This	can	also	be
controlled	via	the	blame.blankboundary	config	option.

--root
Do	not	treat	root	commits	as	boundaries.	This	can	also	be	controlled
via	the	blame.showRoot	config	option.

--show-stats
Include	additional	statistics	at	the	end	of	blame	output.

-L	<start>,<end>	,	-L	:<funcname>

Annotate	only	the	given	line	range.	May	be	specified	multiple	times.
Overlapping	ranges	are	allowed.

<start>	and	<end>	are	optional.	-L	<start>	or	-L	<start>,	spans	from
<start>	to	end	of	file.	-L	,<end>	spans	from	start	of	file	to	<end>.

<start>	and	<end>	can	take	one	of	these	forms:

number

If	<start>	or	<end>	is	a	number,	it	specifies	an	absolute	line
number	(lines	count	from	1).

/regex/

This	form	will	use	the	first	line	matching	the	given	POSIX	regex.
If	<start>	is	a	regex,	it	will	search	from	the	end	of	the	previous	-L
range,	if	any,	otherwise	from	the	start	of	file.	If	<start>	is
^/regex/,	it	will	search	from	the	start	of	file.	If	<end>	is	a	regex,	it
will	search	starting	at	the	line	given	by	<start>.

+offset	or	-offset

This	is	only	valid	for	<end>	and	will	specify	a	number	of	lines
before	or	after	the	line	given	by	<start>.

If	:<funcname>	is	given	in	place	of	<start>	and	<end>,	it	is	a	regular
expression	that	denotes	the	range	from	the	first	funcname	line	that
matches	<funcname>,	up	to	the	next	funcname	line.	:<funcname>
searches	from	the	end	of	the	previous	-L	range,	if	any,	otherwise
from	the	start	of	file.	^:<funcname>	searches	from	the	start	of	file.

-l
Show	long	rev	(Default:	off).

-t
Show	raw	timestamp	(Default:	off).

-S	<revs-file>
Use	revisions	from	revs-file	instead	of	calling	Section	G.3.112,	“git-
rev-list(1)”.

--reverse
Walk	history	forward	instead	of	backward.	Instead	of	showing	the
revision	in	which	a	line	appeared,	this	shows	the	last	revision	in

which	a	line	has	existed.	This	requires	a	range	of	revision	like
START..END	where	the	path	to	blame	exists	in	START.

-p	,	--porcelain
Show	in	a	format	designed	for	machine	consumption.

--line-porcelain
Show	the	porcelain	format,	but	output	commit	information	for	each
line,	not	just	the	first	time	a	commit	is	referenced.	Implies	--porcelain.

--incremental
Show	the	result	incrementally	in	a	format	designed	for	machine
consumption.

--encoding=<encoding>
Specifies	the	encoding	used	to	output	author	names	and	commit
summaries.	Setting	it	to	none	makes	blame	output	unconverted	data.
For	more	information	see	the	discussion	about	encoding	in	the
Section	G.3.68,	“git-log(1)”	manual	page.

--contents	<file>
When	<rev>	is	not	specified,	the	command	annotates	the	changes
starting	backwards	from	the	working	tree	copy.	This	flag	makes	the
command	pretend	as	if	the	working	tree	copy	has	the	contents	of	the
named	file	(specify	-	to	make	the	command	read	from	the	standard
input).

--date	<format>
Specifies	the	format	used	to	output	dates.	If	--date	is	not	provided,
the	value	of	the	blame.date	config	variable	is	used.	If	the	blame.date
config	variable	is	also	not	set,	the	iso	format	is	used.	For	supported
values,	see	the	discussion	of	the	--date	option	at	Section	G.3.68,
“git-log(1)”.

--[no-]progress
Progress	status	is	reported	on	the	standard	error	stream	by	default
when	it	is	attached	to	a	terminal.	This	flag	enables	progress
reporting	even	if	not	attached	to	a	terminal.	Can't	use	--progress
together	with	--porcelain	or	--incremental.

-M|<num>|

Detect	moved	or	copied	lines	within	a	file.	When	a	commit	moves	or
copies	a	block	of	lines	(e.g.	the	original	file	has	A	and	then	B,	and
the	commit	changes	it	to	B	and	then	A),	the	traditional	blame

algorithm	notices	only	half	of	the	movement	and	typically	blames	the
lines	that	were	moved	up	(i.e.	B)	to	the	parent	and	assigns	blame	to
the	lines	that	were	moved	down	(i.e.	A)	to	the	child	commit.	With	this
option,	both	groups	of	lines	are	blamed	on	the	parent	by	running
extra	passes	of	inspection.

<num>	is	optional	but	it	is	the	lower	bound	on	the	number	of
alphanumeric	characters	that	Git	must	detect	as	moving/copying
within	a	file	for	it	to	associate	those	lines	with	the	parent	commit.	The
default	value	is	20.

-C|<num>|

In	addition	to	-M,	detect	lines	moved	or	copied	from	other	files	that
were	modified	in	the	same	commit.	This	is	useful	when	you
reorganize	your	program	and	move	code	around	across	files.	When
this	option	is	given	twice,	the	command	additionally	looks	for	copies
from	other	files	in	the	commit	that	creates	the	file.	When	this	option
is	given	three	times,	the	command	additionally	looks	for	copies	from
other	files	in	any	commit.

<num>	is	optional	but	it	is	the	lower	bound	on	the	number	of
alphanumeric	characters	that	Git	must	detect	as	moving/copying
between	files	for	it	to	associate	those	lines	with	the	parent	commit.
And	the	default	value	is	40.	If	there	are	more	than	one	-C	options
given,	the	<num>	argument	of	the	last	-C	will	take	effect.

-h
Show	help	message.

-c
Use	the	same	output	mode	as	Section	G.3.4,	“git-annotate(1)”
(Default:	off).

--score-debug
Include	debugging	information	related	to	the	movement	of	lines
between	files	(see	-C)	and	lines	moved	within	a	file	(see	-M).	The
first	number	listed	is	the	score.	This	is	the	number	of	alphanumeric
characters	detected	as	having	been	moved	between	or	within	files.
This	must	be	above	a	certain	threshold	for	git	blame	to	consider

those	lines	of	code	to	have	been	moved.
-f	,	--show-name

Show	the	filename	in	the	original	commit.	By	default	the	filename	is
shown	if	there	is	any	line	that	came	from	a	file	with	a	different	name,
due	to	rename	detection.

-n	,	--show-number
Show	the	line	number	in	the	original	commit	(Default:	off).

-s
Suppress	the	author	name	and	timestamp	from	the	output.

-e	,	--show-email
Show	the	author	email	instead	of	author	name	(Default:	off).	This
can	also	be	controlled	via	the	blame.showEmail	config	option.

-w
Ignore	whitespace	when	comparing	the	parent's	version	and	the
child's	to	find	where	the	lines	came	from.

--abbrev=<n>
Instead	of	using	the	default	7+1	hexadecimal	digits	as	the
abbreviated	object	name,	use	<n>+1	digits.	Note	that	1	column	is
used	for	a	caret	to	mark	the	boundary	commit.

THE	PORCELAIN	FORMAT

In	this	format,	each	line	is	output	after	a	header;	the	header	at	the
minimum	has	the	first	line	which	has:

40-byte	SHA-1	of	the	commit	the	line	is	attributed	to;
the	line	number	of	the	line	in	the	original	file;
the	line	number	of	the	line	in	the	final	file;
on	a	line	that	starts	a	group	of	lines	from	a	different	commit	than	the
previous	one,	the	number	of	lines	in	this	group.	On	subsequent	lines
this	field	is	absent.

This	header	line	is	followed	by	the	following	information	at	least	once	for
each	commit:

the	author	name	("author"),	email	("author-mail"),	time	("author-
time"),	and	time	zone	("author-tz");	similarly	for	committer.

the	filename	in	the	commit	that	the	line	is	attributed	to.
the	first	line	of	the	commit	log	message	("summary").

The	contents	of	the	actual	line	is	output	after	the	above	header,	prefixed
by	a	TAB.	This	is	to	allow	adding	more	header	elements	later.

The	porcelain	format	generally	suppresses	commit	information	that	has
already	been	seen.	For	example,	two	lines	that	are	blamed	to	the	same
commit	will	both	be	shown,	but	the	details	for	that	commit	will	be	shown
only	once.	This	is	more	efficient,	but	may	require	more	state	be	kept	by
the	reader.	The	--line-porcelain	option	can	be	used	to	output	full	commit
information	for	each	line,	allowing	simpler	(but	less	efficient)	usage	like:

#	count	the	number	of	lines	attributed	to	each	author

git	blame	--line-porcelain	file	|

sed	-n	's/^author	//p'	|

sort	|	uniq	-c	|	sort	-rn

SPECIFYING	RANGES

Unlike	git	blame	and	git	annotate	in	older	versions	of	git,	the	extent	of	the
annotation	can	be	limited	to	both	line	ranges	and	revision	ranges.	The	-L
option,	which	limits	annotation	to	a	range	of	lines,	may	be	specified
multiple	times.

When	you	are	interested	in	finding	the	origin	for	lines	40-60	for	file	foo,
you	can	use	the	-L	option	like	so	(they	mean	the	same	thing	--	both	ask
for	21	lines	starting	at	line	40):

git	blame	-L	40,60	foo

git	blame	-L	40,+21	foo

Also	you	can	use	a	regular	expression	to	specify	the	line	range:

git	blame	-L	'/^sub	hello	{/,/^}$/'	foo

which	limits	the	annotation	to	the	body	of	the	hello	subroutine.

When	you	are	not	interested	in	changes	older	than	version	v2.6.18,	or
changes	older	than	3	weeks,	you	can	use	revision	range	specifiers
similar	to	git	rev-list:

git	blame	v2.6.18..	--	foo

git	blame	--since=3.weeks	--	foo

When	revision	range	specifiers	are	used	to	limit	the	annotation,	lines	that
have	not	changed	since	the	range	boundary	(either	the	commit	v2.6.18	or
the	most	recent	commit	that	is	more	than	3	weeks	old	in	the	above
example)	are	blamed	for	that	range	boundary	commit.

A	particularly	useful	way	is	to	see	if	an	added	file	has	lines	created	by
copy-and-paste	from	existing	files.	Sometimes	this	indicates	that	the
developer	was	being	sloppy	and	did	not	refactor	the	code	properly.	You
can	first	find	the	commit	that	introduced	the	file	with:

git	log	--diff-filter=A	--pretty=short	--	foo

and	then	annotate	the	change	between	the	commit	and	its	parents,	using
commit^!	notation:

git	blame	-C	-C	-f	$commit^!	--	foo

INCREMENTAL	OUTPUT

When	called	with	--incremental	option,	the	command	outputs	the	result
as	it	is	built.	The	output	generally	will	talk	about	lines	touched	by	more
recent	commits	first	(i.e.	the	lines	will	be	annotated	out	of	order)	and	is
meant	to	be	used	by	interactive	viewers.

The	output	format	is	similar	to	the	Porcelain	format,	but	it	does	not
contain	the	actual	lines	from	the	file	that	is	being	annotated.

1.	 Each	blame	entry	always	starts	with	a	line	of:

<40-byte	hex	sha1>	<sourceline>	<resultline>	<num_lines>

Line	numbers	count	from	1.

2.	 The	first	time	that	a	commit	shows	up	in	the	stream,	it	has	various
other	information	about	it	printed	out	with	a	one-word	tag	at	the
beginning	of	each	line	describing	the	extra	commit	information
(author,	email,	committer,	dates,	summary,	etc.).

3.	 Unlike	the	Porcelain	format,	the	filename	information	is	always	given
and	terminates	the	entry:

"filename"	<whitespace-quoted-filename-goes-here>

and	thus	it	is	really	quite	easy	to	parse	for	some	line-	and	word-
oriented	parser	(which	should	be	quite	natural	for	most	scripting
languages).

Note

For	people	who	do	parsing:	to	make	it	more	robust,	just
ignore	any	lines	between	the	first	and	last	one	("<sha1>"
and	"filename"	lines)	where	you	do	not	recognize	the	tag
words	(or	care	about	that	particular	one)	at	the	beginning
of	the	"extended	information"	lines.	That	way,	if	there	is
ever	added	information	(like	the	commit	encoding	or
extended	commit	commentary),	a	blame	viewer	will	not
care.

MAPPING	AUTHORS

If	the	file	.mailmap	exists	at	the	toplevel	of	the	repository,	or	at	the
location	pointed	to	by	the	mailmap.file	or	mailmap.blob	configuration
options,	it	is	used	to	map	author	and	committer	names	and	email
addresses	to	canonical	real	names	and	email	addresses.

In	the	simple	form,	each	line	in	the	file	consists	of	the	canonical	real
name	of	an	author,	whitespace,	and	an	email	address	used	in	the	commit
(enclosed	by	<	and	>)	to	map	to	the	name.	For	example:

Proper	Name	<commit@email.xx>

The	more	complex	forms	are:

<proper@email.xx>	<commit@email.xx>

which	allows	mailmap	to	replace	only	the	email	part	of	a	commit,	and:

Proper	Name	<proper@email.xx>	<commit@email.xx>

which	allows	mailmap	to	replace	both	the	name	and	the	email	of	a
commit	matching	the	specified	commit	email	address,	and:

Proper	Name	<proper@email.xx>	Commit	Name	<commit@email.xx>

which	allows	mailmap	to	replace	both	the	name	and	the	email	of	a
commit	matching	both	the	specified	commit	name	and	email	address.

Example	1:	Your	history	contains	commits	by	two	authors,	Jane	and	Joe,
whose	names	appear	in	the	repository	under	several	forms:

Joe	Developer	<joe@example.com>

Joe	R.	Developer	<joe@example.com>

Jane	Doe	<jane@example.com>

Jane	Doe	<jane@laptop.(none)>

Jane	D.	<jane@desktop.(none)>

Now	suppose	that	Joe	wants	his	middle	name	initial	used,	and	Jane
prefers	her	family	name	fully	spelled	out.	A	proper	.mailmap	file	would
look	like:

Jane	Doe									<jane@desktop.(none)>

Joe	R.	Developer	<joe@example.com>

Note	how	there	is	no	need	for	an	entry	for	<jane@laptop.(none)>,
because	the	real	name	of	that	author	is	already	correct.

Example	2:	Your	repository	contains	commits	from	the	following	authors:

nick1	<bugs@company.xx>

nick2	<bugs@company.xx>

nick2	<nick2@company.xx>

santa	<me@company.xx>

claus	<me@company.xx>

CTO	<cto@coompany.xx>

Then	you	might	want	a	.mailmap	file	that	looks	like:

<cto@company.xx>																							<cto@coompany.xx>

Some	Dude	<some@dude.xx>									nick1	<bugs@company.xx>

Other	Author	<other@author.xx>			nick2	<bugs@company.xx>

Other	Author	<other@author.xx>									<nick2@company.xx>

Santa	Claus	<santa.claus@northpole.xx>	<me@company.xx>

Use	hash	#	for	comments	that	are	either	on	their	own	line,	or	after	the
email	address.

SEE	ALSO

Section	G.3.4,	“git-annotate(1)”

GIT

Part	of	the	Section	G.3.1,	“git(1)”	suite

G.3.10.	git-branch(1)

NAME

git-branch	-	List,	create,	or	delete	branches

SYNOPSIS

git	branch	[--color[=<when>]	|	--no-color]	[-r	|	-a]

								[--list]	[-v	[--abbrev=<length>	|	--no-abbrev]]

								[--column[=<options>]	|	--no-column]

								[(--merged	|	--no-merged	|	--contains)	[<commit>]]	[-

-sort=<key>]

								[--points-at	<object>]	[<pattern>…]

git	branch	[--set-upstream	|	--track	|	--no-track]	[-l]	[-

f]	<branchname>	[<start-point>]

git	branch	(--set-upstream-to=<upstream>	|	-

u	<upstream>)	[<branchname>]

git	branch	--unset-upstream	[<branchname>]

git	branch	(-m	|	-M)	[<oldbranch>]	<newbranch>

git	branch	(-d	|	-D)	[-r]	<branchname>…

git	branch	--edit-description	[<branchname>]

DESCRIPTION

If	--list	is	given,	or	if	there	are	no	non-option	arguments,	existing
branches	are	listed;	the	current	branch	will	be	highlighted	with	an
asterisk.	Option	-r	causes	the	remote-tracking	branches	to	be	listed,	and
option	-a	shows	both	local	and	remote	branches.	If	a	<pattern>	is	given,	it
is	used	as	a	shell	wildcard	to	restrict	the	output	to	matching	branches.	If
multiple	patterns	are	given,	a	branch	is	shown	if	it	matches	any	of	the
patterns.	Note	that	when	providing	a	<pattern>,	you	must	use	--list;
otherwise	the	command	is	interpreted	as	branch	creation.

With	--contains,	shows	only	the	branches	that	contain	the	named	commit
(in	other	words,	the	branches	whose	tip	commits	are	descendants	of	the
named	commit).	With	--merged,	only	branches	merged	into	the	named
commit	(i.e.	the	branches	whose	tip	commits	are	reachable	from	the
named	commit)	will	be	listed.	With	--no-merged	only	branches	not
merged	into	the	named	commit	will	be	listed.	If	the	<commit>	argument	is
missing	it	defaults	to	HEAD	(i.e.	the	tip	of	the	current	branch).

The	command's	second	form	creates	a	new	branch	head	named
<branchname>	which	points	to	the	current	HEAD,	or	<start-point>	if
given.

Note	that	this	will	create	the	new	branch,	but	it	will	not	switch	the	working
tree	to	it;	use	"git	checkout	<newbranch>"	to	switch	to	the	new	branch.

When	a	local	branch	is	started	off	a	remote-tracking	branch,	Git	sets	up
the	branch	(specifically	the	branch.<name>.remote	and	branch.
<name>.merge	configuration	entries)	so	that	git	pull	will	appropriately
merge	from	the	remote-tracking	branch.	This	behavior	may	be	changed
via	the	global	branch.autoSetupMerge	configuration	flag.	That	setting	can
be	overridden	by	using	the	--track	and	--no-track	options,	and	changed
later	using	git	branch	--set-upstream-to.

With	a	-m	or	-M	option,	<oldbranch>	will	be	renamed	to	<newbranch>.	If

<oldbranch>	had	a	corresponding	reflog,	it	is	renamed	to	match
<newbranch>,	and	a	reflog	entry	is	created	to	remember	the	branch
renaming.	If	<newbranch>	exists,	-M	must	be	used	to	force	the	rename	to
happen.

With	a	-d	or	-D	option,	<branchname>	will	be	deleted.	You	may	specify
more	than	one	branch	for	deletion.	If	the	branch	currently	has	a	reflog
then	the	reflog	will	also	be	deleted.

Use	-r	together	with	-d	to	delete	remote-tracking	branches.	Note,	that	it
only	makes	sense	to	delete	remote-tracking	branches	if	they	no	longer
exist	in	the	remote	repository	or	if	git	fetch	was	configured	not	to	fetch
them	again.	See	also	the	prune	subcommand	of	Section	G.3.106,	“git-
remote(1)”	for	a	way	to	clean	up	all	obsolete	remote-tracking	branches.

OPTIONS

-d	,	--delete
Delete	a	branch.	The	branch	must	be	fully	merged	in	its	upstream
branch,	or	in	HEAD	if	no	upstream	was	set	with	--track	or	--set-
upstream.

-D
Shortcut	for	--delete	--force.

-l	,	--create-reflog
Create	the	branch's	reflog.	This	activates	recording	of	all	changes
made	to	the	branch	ref,	enabling	use	of	date	based	sha1
expressions	such	as	"<branchname>@{yesterday}".	Note	that	in
non-bare	repositories,	reflogs	are	usually	enabled	by	default	by	the
core.logallrefupdates	config	option.

-f	,	--force
Reset	<branchname>	to	<startpoint>	if	<branchname>	exists
already.	Without	-f	git	branch	refuses	to	change	an	existing	branch.
In	combination	with	-d	(or	--delete),	allow	deleting	the	branch
irrespective	of	its	merged	status.	In	combination	with	-m	(or	--move),
allow	renaming	the	branch	even	if	the	new	branch	name	already
exists.

-m	,	--move

Move/rename	a	branch	and	the	corresponding	reflog.
-M

Shortcut	for	--move	--force.
--color[=<when>]

Color	branches	to	highlight	current,	local,	and	remote-tracking
branches.	The	value	must	be	always	(the	default),	never,	or	auto.

--no-color
Turn	off	branch	colors,	even	when	the	configuration	file	gives	the
default	to	color	output.	Same	as	--color=never.

--column[=<options>]	,	--no-column

Display	branch	listing	in	columns.	See	configuration	variable
column.branch	for	option	syntax.--column	and	--no-column	without
options	are	equivalent	to	always	and	never	respectively.

This	option	is	only	applicable	in	non-verbose	mode.

-r	,	--remotes
List	or	delete	(if	used	with	-d)	the	remote-tracking	branches.

-a	,	--all
List	both	remote-tracking	branches	and	local	branches.

--list
Activate	the	list	mode.	git	branch	<pattern>	would	try	to	create	a
branch,	use	git	branch	--list	<pattern>	to	list	matching	branches.

-v	,	-vv	,	--verbose
When	in	list	mode,	show	sha1	and	commit	subject	line	for	each
head,	along	with	relationship	to	upstream	branch	(if	any).	If	given
twice,	print	the	name	of	the	upstream	branch,	as	well	(see	also	git
remote	show	<remote>).

-q	,	--quiet
Be	more	quiet	when	creating	or	deleting	a	branch,	suppressing	non-
error	messages.

--abbrev=<length>
Alter	the	sha1's	minimum	display	length	in	the	output	listing.	The
default	value	is	7	and	can	be	overridden	by	the	core.abbrev	config
option.

--no-abbrev
Display	the	full	sha1s	in	the	output	listing	rather	than	abbreviating

them.
-t	,	--track

When	creating	a	new	branch,	set	up	branch.<name>.remote	and
branch.<name>.merge	configuration	entries	to	mark	the	start-point
branch	as	"upstream"	from	the	new	branch.	This	configuration	will
tell	git	to	show	the	relationship	between	the	two	branches	in	git
status	and	git	branch	-v.	Furthermore,	it	directs	git	pull	without
arguments	to	pull	from	the	upstream	when	the	new	branch	is
checked	out.

This	behavior	is	the	default	when	the	start	point	is	a	remote-tracking
branch.	Set	the	branch.autoSetupMerge	configuration	variable	to
false	if	you	want	git	checkout	and	git	branch	to	always	behave	as	if	--
no-track	were	given.	Set	it	to	always	if	you	want	this	behavior	when
the	start-point	is	either	a	local	or	remote-tracking	branch.

--no-track
Do	not	set	up	"upstream"	configuration,	even	if	the
branch.autoSetupMerge	configuration	variable	is	true.

--set-upstream
If	specified	branch	does	not	exist	yet	or	if	--force	has	been	given,
acts	exactly	like	--track.	Otherwise	sets	up	configuration	like	--track
would	when	creating	the	branch,	except	that	where	branch	points	to
is	not	changed.

-u	<upstream>	,	--set-upstream-to=<upstream>
Set	up	<branchname>'s	tracking	information	so	<upstream>	is
considered	<branchname>'s	upstream	branch.	If	no	<branchname>
is	specified,	then	it	defaults	to	the	current	branch.

--unset-upstream
Remove	the	upstream	information	for	<branchname>.	If	no	branch	is
specified	it	defaults	to	the	current	branch.

--edit-description
Open	an	editor	and	edit	the	text	to	explain	what	the	branch	is	for,	to
be	used	by	various	other	commands	(e.g.	format-patch,	request-pull,
and	merge	(if	enabled)).	Multi-line	explanations	may	be	used.

--contains	[<commit>]
Only	list	branches	which	contain	the	specified	commit	(HEAD	if	not

specified).	Implies	--list.
--merged	[<commit>]

Only	list	branches	whose	tips	are	reachable	from	the	specified
commit	(HEAD	if	not	specified).	Implies	--list.

--no-merged	[<commit>]
Only	list	branches	whose	tips	are	not	reachable	from	the	specified
commit	(HEAD	if	not	specified).	Implies	--list.

<branchname>
The	name	of	the	branch	to	create	or	delete.	The	new	branch	name
must	pass	all	checks	defined	by	Section	G.3.16,	“git-check-ref-
format(1)”.	Some	of	these	checks	may	restrict	the	characters	allowed
in	a	branch	name.

<start-point>
The	new	branch	head	will	point	to	this	commit.	It	may	be	given	as	a
branch	name,	a	commit-id,	or	a	tag.	If	this	option	is	omitted,	the
current	HEAD	will	be	used	instead.

<oldbranch>
The	name	of	an	existing	branch	to	rename.

<newbranch>
The	new	name	for	an	existing	branch.	The	same	restrictions	as	for
<branchname>	apply.

--sort=<key>
Sort	based	on	the	key	given.	Prefix	-	to	sort	in	descending	order	of
the	value.	You	may	use	the	--sort=<key>	option	multiple	times,	in
which	case	the	last	key	becomes	the	primary	key.	The	keys
supported	are	the	same	as	those	in	git	for-each-ref.	Sort	order
defaults	to	sorting	based	on	the	full	refname	(including	refs/...	prefix).
This	lists	detached	HEAD	(if	present)	first,	then	local	branches	and
finally	remote-tracking	branches.

--points-at	<object>
Only	list	branches	of	the	given	object.

Examples

Start	development	from	a	known	tag

$	git	clone	git://git.kernel.org/pub/scm/.../linux-2.6	my2.6

$	cd	my2.6

$	git	branch	my2.6.14	v2.6.14			

$	git	checkout	my2.6.14

This	step	and	the	next	one	could	be	combined	into	a	single	step
with	"checkout	-b	my2.6.14	v2.6.14".

Delete	an	unneeded	branch

$	git	clone	git://git.kernel.org/.../git.git	my.git

$	cd	my.git

$	git	branch	-d	-r	origin/todo	origin/html	origin/man			

$	git	branch	-D	test																																				

Delete	the	remote-tracking	branches	"todo",	"html"	and	"man".
The	next	fetch	or	pull	will	create	them	again	unless	you
configure	them	not	to.	See	Section	G.3.46,	“git-fetch(1)”.

Delete	the	"test"	branch	even	if	the	"master"	branch	(or
whichever	branch	is	currently	checked	out)	does	not	have	all
commits	from	the	test	branch.

Notes

If	you	are	creating	a	branch	that	you	want	to	checkout	immediately,	it	is
easier	to	use	the	git	checkout	command	with	its	-b	option	to	create	a
branch	and	check	it	out	with	a	single	command.

The	options	--contains,	--merged	and	--no-merged	serve	three	related	but
different	purposes:

--contains	<commit>	is	used	to	find	all	branches	which	will	need

special	attention	if	<commit>	were	to	be	rebased	or	amended,	since
those	branches	contain	the	specified	<commit>.
--merged	is	used	to	find	all	branches	which	can	be	safely	deleted,
since	those	branches	are	fully	contained	by	HEAD.
--no-merged	is	used	to	find	branches	which	are	candidates	for
merging	into	HEAD,	since	those	branches	are	not	fully	contained	by
HEAD.

SEE	ALSO

Section	G.3.16,	“git-check-ref-format(1)”,	Section	G.3.46,	“git-fetch(1)”,
Section	G.3.106,	“git-remote(1)”,	Understanding	history:	What	is	a
branch?	in	the	Git	User's	Manual.

GIT

Part	of	the	Section	G.3.1,	“git(1)”	suite

G.3.11.	git-bundle(1)

NAME

git-bundle	-	Move	objects	and	refs	by	archive

SYNOPSIS

git	bundle	create	<file>	<git-rev-list-args>

git	bundle	verify	<file>

git	bundle	list-heads	<file>	[<refname>…]

git	bundle	unbundle	<file>	[<refname>…]

DESCRIPTION

Some	workflows	require	that	one	or	more	branches	of	development	on
one	machine	be	replicated	on	another	machine,	but	the	two	machines
cannot	be	directly	connected,	and	therefore	the	interactive	Git	protocols

https://www.kernel.org/pub/software/scm/git/docs/user-manual.html#what-is-a-branch

(git,	ssh,	http)	cannot	be	used.	This	command	provides	support	for	git
fetch	and	git	pull	to	operate	by	packaging	objects	and	references	in	an
archive	at	the	originating	machine,	then	importing	those	into	another
repository	using	git	fetch	and	git	pull	after	moving	the	archive	by	some
means	(e.g.,	by	sneakernet).	As	no	direct	connection	between	the
repositories	exists,	the	user	must	specify	a	basis	for	the	bundle	that	is
held	by	the	destination	repository:	the	bundle	assumes	that	all	objects	in
the	basis	are	already	in	the	destination	repository.

OPTIONS

create	<file>
Used	to	create	a	bundle	named	file.	This	requires	the	git-rev-list-args
arguments	to	define	the	bundle	contents.

verify	<file>
Used	to	check	that	a	bundle	file	is	valid	and	will	apply	cleanly	to	the
current	repository.	This	includes	checks	on	the	bundle	format	itself
as	well	as	checking	that	the	prerequisite	commits	exist	and	are	fully
linked	in	the	current	repository.	git	bundle	prints	a	list	of	missing
commits,	if	any,	and	exits	with	a	non-zero	status.

list-heads	<file>
Lists	the	references	defined	in	the	bundle.	If	followed	by	a	list	of
references,	only	references	matching	those	given	are	printed	out.

unbundle	<file>
Passes	the	objects	in	the	bundle	to	git	index-pack	for	storage	in	the
repository,	then	prints	the	names	of	all	defined	references.	If	a	list	of
references	is	given,	only	references	matching	those	in	the	list	are
printed.	This	command	is	really	plumbing,	intended	to	be	called	only
by	git	fetch.

<git-rev-list-args>
A	list	of	arguments,	acceptable	to	git	rev-parse	and	git	rev-list	(and
containing	a	named	ref,	see	SPECIFYING	REFERENCES	below),
that	specifies	the	specific	objects	and	references	to	transport.	For
example,	master~10..master	causes	the	current	master	reference	to
be	packaged	along	with	all	objects	added	since	its	10th	ancestor
commit.	There	is	no	explicit	limit	to	the	number	of	references	and
objects	that	may	be	packaged.

[<refname>…]
A	list	of	references	used	to	limit	the	references	reported	as	available.
This	is	principally	of	use	to	git	fetch,	which	expects	to	receive	only
those	references	asked	for	and	not	necessarily	everything	in	the
pack	(in	this	case,	git	bundle	acts	like	git	fetch-pack).

SPECIFYING	REFERENCES

git	bundle	will	only	package	references	that	are	shown	by	git	show-ref:
this	includes	heads,	tags,	and	remote	heads.	References	such	as
master~1	cannot	be	packaged,	but	are	perfectly	suitable	for	defining	the
basis.	More	than	one	reference	may	be	packaged,	and	more	than	one
basis	can	be	specified.	The	objects	packaged	are	those	not	contained	in
the	union	of	the	given	bases.	Each	basis	can	be	specified	explicitly	(e.g.
^master~10),	or	implicitly	(e.g.	master~10..master,	--since=10.days.ago
master).

It	is	very	important	that	the	basis	used	be	held	by	the	destination.	It	is
okay	to	err	on	the	side	of	caution,	causing	the	bundle	file	to	contain
objects	already	in	the	destination,	as	these	are	ignored	when	unpacking
at	the	destination.

EXAMPLE

Assume	you	want	to	transfer	the	history	from	a	repository	R1	on	machine
A	to	another	repository	R2	on	machine	B.	For	whatever	reason,	direct
connection	between	A	and	B	is	not	allowed,	but	we	can	move	data	from	A
to	B	via	some	mechanism	(CD,	email,	etc.).	We	want	to	update	R2	with
development	made	on	the	branch	master	in	R1.

To	bootstrap	the	process,	you	can	first	create	a	bundle	that	does	not
have	any	basis.	You	can	use	a	tag	to	remember	up	to	what	commit	you
last	processed,	in	order	to	make	it	easy	to	later	update	the	other
repository	with	an	incremental	bundle:

machineA$	cd	R1

machineA$	git	bundle	create	file.bundle	master

machineA$	git	tag	-f	lastR2bundle	master

Then	you	transfer	file.bundle	to	the	target	machine	B.	Because	this
bundle	does	not	require	any	existing	object	to	be	extracted,	you	can
create	a	new	repository	on	machine	B	by	cloning	from	it:

machineB$	git	clone	-b	master	/home/me/tmp/file.bundle	R2

This	will	define	a	remote	called	"origin"	in	the	resulting	repository	that	lets
you	fetch	and	pull	from	the	bundle.	The	$GIT_DIR/config	file	in	R2	will
have	an	entry	like	this:

[remote	"origin"]

				url	=	/home/me/tmp/file.bundle

				fetch	=	refs/heads/*:refs/remotes/origin/*

To	update	the	resulting	mine.git	repository,	you	can	fetch	or	pull	after
replacing	the	bundle	stored	at	/home/me/tmp/file.bundle	with	incremental
updates.

After	working	some	more	in	the	original	repository,	you	can	create	an
incremental	bundle	to	update	the	other	repository:

machineA$	cd	R1

machineA$	git	bundle	create	file.bundle	lastR2bundle..master

machineA$	git	tag	-f	lastR2bundle	master

You	then	transfer	the	bundle	to	the	other	machine	to	replace
/home/me/tmp/file.bundle,	and	pull	from	it.

machineB$	cd	R2

machineB$	git	pull

If	you	know	up	to	what	commit	the	intended	recipient	repository	should
have	the	necessary	objects,	you	can	use	that	knowledge	to	specify	the
basis,	giving	a	cut-off	point	to	limit	the	revisions	and	objects	that	go	in	the

resulting	bundle.	The	previous	example	used	the	lastR2bundle	tag	for
this	purpose,	but	you	can	use	any	other	options	that	you	would	give	to
the	Section	G.3.68,	“git-log(1)”	command.	Here	are	more	examples:

You	can	use	a	tag	that	is	present	in	both:

$	git	bundle	create	mybundle	v1.0.0..master

You	can	use	a	basis	based	on	time:

$	git	bundle	create	mybundle	--since=10.days	master

You	can	use	the	number	of	commits:

$	git	bundle	create	mybundle	-10	master

You	can	run	git-bundle	verify	to	see	if	you	can	extract	from	a	bundle	that
was	created	with	a	basis:

$	git	bundle	verify	mybundle

This	will	list	what	commits	you	must	have	in	order	to	extract	from	the
bundle	and	will	error	out	if	you	do	not	have	them.

A	bundle	from	a	recipient	repository's	point	of	view	is	just	like	a	regular
repository	which	it	fetches	or	pulls	from.	You	can,	for	example,	map
references	when	fetching:

$	git	fetch	mybundle	master:localRef

You	can	also	see	what	references	it	offers:

$	git	ls-remote	mybundle

GIT

Part	of	the	Section	G.3.1,	“git(1)”	suite

G.3.12.	git-cat-file(1)

NAME

git-cat-file	-	Provide	content	or	type	and	size	information	for	repository
objects

SYNOPSIS

git	cat-file	(-t	[--allow-unknown-type]|	-s	[--allow-unknown-

type]|	-e	|	-p	|	<type>	|	--textconv)	<object>

git	cat-file	(--batch	|	--batch-check)	[--follow-symlinks]

DESCRIPTION

In	its	first	form,	the	command	provides	the	content	or	the	type	of	an
object	in	the	repository.	The	type	is	required	unless	-t	or	-p	is	used	to	find
the	object	type,	or	-s	is	used	to	find	the	object	size,	or	--textconv	is	used
(which	implies	type	"blob").

In	the	second	form,	a	list	of	objects	(separated	by	linefeeds)	is	provided
on	stdin,	and	the	SHA-1,	type,	and	size	of	each	object	is	printed	on
stdout.

OPTIONS

<object>
The	name	of	the	object	to	show.	For	a	more	complete	list	of	ways	to
spell	object	names,	see	the	"SPECIFYING	REVISIONS"	section	in
Section	G.4.12,	“gitrevisions(7)”.

-t
Instead	of	the	content,	show	the	object	type	identified	by	<object>.

-s
Instead	of	the	content,	show	the	object	size	identified	by	<object>.

-e
Suppress	all	output;	instead	exit	with	zero	status	if	<object>	exists
and	is	a	valid	object.

-p
Pretty-print	the	contents	of	<object>	based	on	its	type.

<type>
Typically	this	matches	the	real	type	of	<object>	but	asking	for	a	type
that	can	trivially	be	dereferenced	from	the	given	<object>	is	also
permitted.	An	example	is	to	ask	for	a	"tree"	with	<object>	being	a
commit	object	that	contains	it,	or	to	ask	for	a	"blob"	with	<object>
being	a	tag	object	that	points	at	it.

--textconv
Show	the	content	as	transformed	by	a	textconv	filter.	In	this	case,
<object>	has	be	of	the	form	<tree-ish>:<path>,	or	:<path>	in	order	to
apply	the	filter	to	the	content	recorded	in	the	index	at	<path>.

--batch	,	--batch=<format>
Print	object	information	and	contents	for	each	object	provided	on
stdin.	May	not	be	combined	with	any	other	options	or	arguments.
See	the	section	BATCH	OUTPUT	below	for	details.

--batch-check	,	--batch-check=<format>
Print	object	information	for	each	object	provided	on	stdin.	May	not	be
combined	with	any	other	options	or	arguments.	See	the	section
BATCH	OUTPUT	below	for	details.

--batch-all-objects
Instead	of	reading	a	list	of	objects	on	stdin,	perform	the	requested
batch	operation	on	all	objects	in	the	repository	and	any	alternate
object	stores	(not	just	reachable	objects).	Requires	--batch	or	--
batch-check	be	specified.	Note	that	the	objects	are	visited	in	order
sorted	by	their	hashes.

--buffer
Normally	batch	output	is	flushed	after	each	object	is	output,	so	that	a
process	can	interactively	read	and	write	from	cat-file.	With	this
option,	the	output	uses	normal	stdio	buffering;	this	is	much	more
efficient	when	invoking	--batch-check	on	a	large	number	of	objects.

--allow-unknown-type
Allow	-s	or	-t	to	query	broken/corrupt	objects	of	unknown	type.

--follow-symlinks

With	--batch	or	--batch-check,	follow	symlinks	inside	the	repository
when	requesting	objects	with	extended	SHA-1	expressions	of	the
form	tree-ish:path-in-tree.	Instead	of	providing	output	about	the	link
itself,	provide	output	about	the	linked-to	object.	If	a	symlink	points
outside	the	tree-ish	(e.g.	a	link	to	/foo	or	a	root-level	link	to	../foo),	the
portion	of	the	link	which	is	outside	the	tree	will	be	printed.

This	option	does	not	(currently)	work	correctly	when	an	object	in	the
index	is	specified	(e.g.	:link	instead	of	HEAD:link)	rather	than	one	in
the	tree.

This	option	cannot	(currently)	be	used	unless	--batch	or	--batch-
check	is	used.

For	example,	consider	a	git	repository	containing:

f:	a	file	containing	"hello\n"

link:	a	symlink	to	f

dir/link:	a	symlink	to	../f

plink:	a	symlink	to	../f

alink:	a	symlink	to	/etc/passwd

For	a	regular	file	f,	echo	HEAD:f	|	git	cat-file	--batch	would	print

ce013625030ba8dba906f756967f9e9ca394464a	blob	6

And	echo	HEAD:link	|	git	cat-file	--batch	--follow-symlinks	would	print
the	same	thing,	as	would	HEAD:dir/link,	as	they	both	point	at
HEAD:f.

Without	--follow-symlinks,	these	would	print	data	about	the	symlink
itself.	In	the	case	of	HEAD:link,	you	would	see

4d1ae35ba2c8ec712fa2a379db44ad639ca277bd	blob	1

Both	plink	and	alink	point	outside	the	tree,	so	they	would	respectively
print:

symlink	4

../f

symlink	11

/etc/passwd

OUTPUT

If	-t	is	specified,	one	of	the	<type>.

If	-s	is	specified,	the	size	of	the	<object>	in	bytes.

If	-e	is	specified,	no	output.

If	-p	is	specified,	the	contents	of	<object>	are	pretty-printed.

If	<type>	is	specified,	the	raw	(though	uncompressed)	contents	of	the
<object>	will	be	returned.

BATCH	OUTPUT

If	--batch	or	--batch-check	is	given,	cat-file	will	read	objects	from	stdin,
one	per	line,	and	print	information	about	them.	By	default,	the	whole	line
is	considered	as	an	object,	as	if	it	were	fed	to	Section	G.3.113,	“git-rev-
parse(1)”.

You	can	specify	the	information	shown	for	each	object	by	using	a	custom
<format>.	The	<format>	is	copied	literally	to	stdout	for	each	object,	with
placeholders	of	the	form	%(atom)	expanded,	followed	by	a	newline.	The
available	atoms	are:

objectname
The	40-hex	object	name	of	the	object.

objecttype
The	type	of	of	the	object	(the	same	as	cat-file	-t	reports).

objectsize
The	size,	in	bytes,	of	the	object	(the	same	as	cat-file	-s	reports).

objectsize:disk
The	size,	in	bytes,	that	the	object	takes	up	on	disk.	See	the	note
about	on-disk	sizes	in	the	CAVEATS	section	below.

deltabase
If	the	object	is	stored	as	a	delta	on-disk,	this	expands	to	the	40-hex
sha1	of	the	delta	base	object.	Otherwise,	expands	to	the	null	sha1
(40	zeroes).	See	CAVEATS	below.

rest
If	this	atom	is	used	in	the	output	string,	input	lines	are	split	at	the	first
whitespace	boundary.	All	characters	before	that	whitespace	are
considered	to	be	the	object	name;	characters	after	that	first	run	of
whitespace	(i.e.,	the	"rest"	of	the	line)	are	output	in	place	of	the	%
(rest)	atom.

If	no	format	is	specified,	the	default	format	is	%(objectname)	%
(objecttype)	%(objectsize).

If	--batch	is	specified,	the	object	information	is	followed	by	the	object
contents	(consisting	of	%(objectsize)	bytes),	followed	by	a	newline.

For	example,	--batch	without	a	custom	format	would	produce:

<sha1>	SP	<type>	SP	<size>	LF

<contents>	LF

Whereas	--batch-check='%(objectname)	%(objecttype)'	would	produce:

<sha1>	SP	<type>	LF

If	a	name	is	specified	on	stdin	that	cannot	be	resolved	to	an	object	in	the
repository,	then	cat-file	will	ignore	any	custom	format	and	print:

<object>	SP	missing	LF

If	--follow-symlinks	is	used,	and	a	symlink	in	the	repository	points	outside
the	repository,	then	cat-file	will	ignore	any	custom	format	and	print:

symlink	SP	<size>	LF

<symlink>	LF

The	symlink	will	either	be	absolute	(beginning	with	a	/),	or	relative	to	the
tree	root.	For	instance,	if	dir/link	points	to	../../foo,	then	<symlink>	will	be
../foo.	<size>	is	the	size	of	the	symlink	in	bytes.

If	--follow-symlinks	is	used,	the	following	error	messages	will	be
displayed:

<object>	SP	missing	LF

is	printed	when	the	initial	symlink	requested	does	not	exist.

dangling	SP	<size>	LF

<object>	LF

is	printed	when	the	initial	symlink	exists,	but	something	that	it	(transitive-
of)	points	to	does	not.

loop	SP	<size>	LF

<object>	LF

is	printed	for	symlink	loops	(or	any	symlinks	that	require	more	than	40
link	resolutions	to	resolve).

notdir	SP	<size>	LF

<object>	LF

is	printed	when,	during	symlink	resolution,	a	file	is	used	as	a	directory
name.

CAVEATS

Note	that	the	sizes	of	objects	on	disk	are	reported	accurately,	but	care
should	be	taken	in	drawing	conclusions	about	which	refs	or	objects	are
responsible	for	disk	usage.	The	size	of	a	packed	non-delta	object	may	be
much	larger	than	the	size	of	objects	which	delta	against	it,	but	the	choice
of	which	object	is	the	base	and	which	is	the	delta	is	arbitrary	and	is
subject	to	change	during	a	repack.

Note	also	that	multiple	copies	of	an	object	may	be	present	in	the	object
database;	in	this	case,	it	is	undefined	which	copy's	size	or	delta	base	will

be	reported.

GIT

Part	of	the	Section	G.3.1,	“git(1)”	suite

G.3.13.	git-check-attr(1)

NAME

git-check-attr	-	Display	gitattributes	information

SYNOPSIS

git	check-attr	[-a	|	--all	|	attr…]	[--]	pathname…

git	check-attr	--stdin	[-z]	[-a	|	--all	|	attr…]

DESCRIPTION

For	every	pathname,	this	command	will	list	if	each	attribute	is
unspecified,	set,	or	unset	as	a	gitattribute	on	that	pathname.

OPTIONS

-a,	--all
List	all	attributes	that	are	associated	with	the	specified	paths.	If	this
option	is	used,	then	unspecified	attributes	will	not	be	included	in	the
output.

--cached
Consider	.gitattributes	in	the	index	only,	ignoring	the	working	tree.

--stdin
Read	pathnames	from	the	standard	input,	one	per	line,	instead	of
from	the	command-line.

-z
The	output	format	is	modified	to	be	machine-parseable.	If	--stdin	is
also	given,	input	paths	are	separated	with	a	NUL	character	instead

of	a	linefeed	character.
--

Interpret	all	preceding	arguments	as	attributes	and	all	following
arguments	as	path	names.

If	none	of	--stdin,	--all,	or	--	is	used,	the	first	argument	will	be	treated	as
an	attribute	and	the	rest	of	the	arguments	as	pathnames.

OUTPUT

The	output	is	of	the	form:	<path>	COLON	SP	<attribute>	COLON	SP
<info>	LF

unless	-z	is	in	effect,	in	which	case	NUL	is	used	as	delimiter:	<path>	NUL
<attribute>	NUL	<info>	NUL

<path>	is	the	path	of	a	file	being	queried,	<attribute>	is	an	attribute	being
queried	and	<info>	can	be	either:

unspecified
when	the	attribute	is	not	defined	for	the	path.

unset
when	the	attribute	is	defined	as	false.

set
when	the	attribute	is	defined	as	true.

<value>
when	a	value	has	been	assigned	to	the	attribute.

Buffering	happens	as	documented	under	the	GIT_FLUSH	option	in
Section	G.3.1,	“git(1)”.	The	caller	is	responsible	for	avoiding	deadlocks
caused	by	overfilling	an	input	buffer	or	reading	from	an	empty	output
buffer.

EXAMPLES

In	the	examples,	the	following	.gitattributes	file	is	used:

*.java	diff=java	-crlf	myAttr

NoMyAttr.java	!myAttr

README	caveat=unspecified

Listing	a	single	attribute:

$	git	check-attr	diff	org/example/MyClass.java

org/example/MyClass.java:	diff:	java

Listing	multiple	attributes	for	a	file:

$	git	check-attr	crlf	diff	myAttr	--	org/example/MyClass.java

org/example/MyClass.java:	crlf:	unset

org/example/MyClass.java:	diff:	java

org/example/MyClass.java:	myAttr:	set

Listing	all	attributes	for	a	file:

$	git	check-attr	--all	--	org/example/MyClass.java

org/example/MyClass.java:	diff:	java

org/example/MyClass.java:	myAttr:	set

Listing	an	attribute	for	multiple	files:

$	git	check-attr	myAttr	--	org/example/MyClass.java	org/example/NoMyAttr.java

org/example/MyClass.java:	myAttr:	set

org/example/NoMyAttr.java:	myAttr:	unspecified

Not	all	values	are	equally	unambiguous:

$	git	check-attr	caveat	README

README:	caveat:	unspecified

SEE	ALSO

Section	G.4.2,	“gitattributes(5)”.

GIT

Part	of	the	Section	G.3.1,	“git(1)”	suite

G.3.14.	git-check-ignore(1)

NAME

git-check-ignore	-	Debug	gitignore	/	exclude	files

SYNOPSIS

git	check-ignore	[options]	pathname…

git	check-ignore	[options]	--stdin

DESCRIPTION

For	each	pathname	given	via	the	command-line	or	from	a	file	via	--stdin,
check	whether	the	file	is	excluded	by	.gitignore	(or	other	input	files	to	the
exclude	mechanism)	and	output	the	path	if	it	is	excluded.

By	default,	tracked	files	are	not	shown	at	all	since	they	are	not	subject	to
exclude	rules;	but	see	--no-index.

OPTIONS

-q,	--quiet
Don't	output	anything,	just	set	exit	status.	This	is	only	valid	with	a
single	pathname.

-v,	--verbose
Also	output	details	about	the	matching	pattern	(if	any)	for	each	given
pathname.	For	precedence	rules	within	and	between	exclude
sources,	see	Section	G.4.5,	“gitignore(5)”.

--stdin

Read	pathnames	from	the	standard	input,	one	per	line,	instead	of
from	the	command-line.

-z
The	output	format	is	modified	to	be	machine-parseable	(see	below).
If	--stdin	is	also	given,	input	paths	are	separated	with	a	NUL
character	instead	of	a	linefeed	character.

-n,	--non-matching
Show	given	paths	which	don't	match	any	pattern.	This	only	makes
sense	when	--verbose	is	enabled,	otherwise	it	would	not	be	possible
to	distinguish	between	paths	which	match	a	pattern	and	those	which
don't.

--no-index
Don't	look	in	the	index	when	undertaking	the	checks.	This	can	be
used	to	debug	why	a	path	became	tracked	by	e.g.	git	add	.	and	was
not	ignored	by	the	rules	as	expected	by	the	user	or	when	developing
patterns	including	negation	to	match	a	path	previously	added	with	git
add	-f.

OUTPUT

By	default,	any	of	the	given	pathnames	which	match	an	ignore	pattern
will	be	output,	one	per	line.	If	no	pattern	matches	a	given	path,	nothing
will	be	output	for	that	path;	this	means	that	path	will	not	be	ignored.

If	--verbose	is	specified,	the	output	is	a	series	of	lines	of	the	form:

<source>	<COLON>	<linenum>	<COLON>	<pattern>	<HT>	<pathname>

<pathname>	is	the	path	of	a	file	being	queried,	<pattern>	is	the	matching
pattern,	<source>	is	the	pattern's	source	file,	and	<linenum>	is	the	line
number	of	the	pattern	within	that	source.	If	the	pattern	contained	a	!	prefix
or	/	suffix,	it	will	be	preserved	in	the	output.	<source>	will	be	an	absolute
path	when	referring	to	the	file	configured	by	core.excludesFile,	or	relative
to	the	repository	root	when	referring	to	.git/info/exclude	or	a	per-directory
exclude	file.

If	-z	is	specified,	the	pathnames	in	the	output	are	delimited	by	the	null

character;	if	--verbose	is	also	specified	then	null	characters	are	also	used
instead	of	colons	and	hard	tabs:

<source>	<NULL>	<linenum>	<NULL>	<pattern>	<NULL>	<pathname>
<NULL>

If	-n	or	--non-matching	are	specified,	non-matching	pathnames	will	also
be	output,	in	which	case	all	fields	in	each	output	record	except	for
<pathname>	will	be	empty.	This	can	be	useful	when	running	non-
interactively,	so	that	files	can	be	incrementally	streamed	to	STDIN	of	a
long-running	check-ignore	process,	and	for	each	of	these	files,	STDOUT
will	indicate	whether	that	file	matched	a	pattern	or	not.	(Without	this
option,	it	would	be	impossible	to	tell	whether	the	absence	of	output	for	a
given	file	meant	that	it	didn't	match	any	pattern,	or	that	the	output	hadn't
been	generated	yet.)

Buffering	happens	as	documented	under	the	GIT_FLUSH	option	in
Section	G.3.1,	“git(1)”.	The	caller	is	responsible	for	avoiding	deadlocks
caused	by	overfilling	an	input	buffer	or	reading	from	an	empty	output
buffer.

EXIT	STATUS

0
One	or	more	of	the	provided	paths	is	ignored.

1
None	of	the	provided	paths	are	ignored.

128
A	fatal	error	was	encountered.

SEE	ALSO

Section	G.4.5,	“gitignore(5)”	???	Section	G.3.69,	“git-ls-files(1)”

GIT

Part	of	the	Section	G.3.1,	“git(1)”	suite

G.3.15.	git-check-mailmap(1)

NAME

git-check-mailmap	-	Show	canonical	names	and	email	addresses	of
contacts

SYNOPSIS

git	check-mailmap	[options]	<contact>…

DESCRIPTION

For	each	Name	<user@host>	or	<user@host>	from	the	command-line	or
standard	input	(when	using	--stdin),	look	up	the	person's	canonical	name
and	email	address	(see	"Mapping	Authors"	below).	If	found,	print	them;
otherwise	print	the	input	as-is.

OPTIONS

--stdin
Read	contacts,	one	per	line,	from	the	standard	input	after	exhausting
contacts	provided	on	the	command-line.

OUTPUT

For	each	contact,	a	single	line	is	output,	terminated	by	a	newline.	If	the
name	is	provided	or	known	to	the	mailmap,	Name	<user@host>	is
printed;	otherwise	only	<user@host>	is	printed.

MAPPING	AUTHORS

If	the	file	.mailmap	exists	at	the	toplevel	of	the	repository,	or	at	the
location	pointed	to	by	the	mailmap.file	or	mailmap.blob	configuration
options,	it	is	used	to	map	author	and	committer	names	and	email

addresses	to	canonical	real	names	and	email	addresses.

In	the	simple	form,	each	line	in	the	file	consists	of	the	canonical	real
name	of	an	author,	whitespace,	and	an	email	address	used	in	the	commit
(enclosed	by	<	and	>)	to	map	to	the	name.	For	example:

Proper	Name	<commit@email.xx>

The	more	complex	forms	are:

<proper@email.xx>	<commit@email.xx>

which	allows	mailmap	to	replace	only	the	email	part	of	a	commit,	and:

Proper	Name	<proper@email.xx>	<commit@email.xx>

which	allows	mailmap	to	replace	both	the	name	and	the	email	of	a
commit	matching	the	specified	commit	email	address,	and:

Proper	Name	<proper@email.xx>	Commit	Name	<commit@email.xx>

which	allows	mailmap	to	replace	both	the	name	and	the	email	of	a
commit	matching	both	the	specified	commit	name	and	email	address.

Example	1:	Your	history	contains	commits	by	two	authors,	Jane	and	Joe,
whose	names	appear	in	the	repository	under	several	forms:

Joe	Developer	<joe@example.com>

Joe	R.	Developer	<joe@example.com>

Jane	Doe	<jane@example.com>

Jane	Doe	<jane@laptop.(none)>

Jane	D.	<jane@desktop.(none)>

Now	suppose	that	Joe	wants	his	middle	name	initial	used,	and	Jane
prefers	her	family	name	fully	spelled	out.	A	proper	.mailmap	file	would
look	like:

Jane	Doe									<jane@desktop.(none)>

Joe	R.	Developer	<joe@example.com>

Note	how	there	is	no	need	for	an	entry	for	<jane@laptop.(none)>,

because	the	real	name	of	that	author	is	already	correct.

Example	2:	Your	repository	contains	commits	from	the	following	authors:

nick1	<bugs@company.xx>

nick2	<bugs@company.xx>

nick2	<nick2@company.xx>

santa	<me@company.xx>

claus	<me@company.xx>

CTO	<cto@coompany.xx>

Then	you	might	want	a	.mailmap	file	that	looks	like:

<cto@company.xx>																							<cto@coompany.xx>

Some	Dude	<some@dude.xx>									nick1	<bugs@company.xx>

Other	Author	<other@author.xx>			nick2	<bugs@company.xx>

Other	Author	<other@author.xx>									<nick2@company.xx>

Santa	Claus	<santa.claus@northpole.xx>	<me@company.xx>

Use	hash	#	for	comments	that	are	either	on	their	own	line,	or	after	the
email	address.

GIT

Part	of	the	Section	G.3.1,	“git(1)”	suite

G.3.16.	git-check-ref-format(1)

NAME

git-check-ref-format	-	Ensures	that	a	reference	name	is	well	formed

SYNOPSIS

git	check-ref-format	[--normalize]

							[--[no-]allow-onelevel]	[--refspec-pattern]

							<refname>

git	check-ref-format	--branch	<branchname-shorthand>

DESCRIPTION

Checks	if	a	given	refname	is	acceptable,	and	exits	with	a	non-zero	status
if	it	is	not.

A	reference	is	used	in	Git	to	specify	branches	and	tags.	A	branch	head	is
stored	in	the	refs/heads	hierarchy,	while	a	tag	is	stored	in	the	refs/tags
hierarchy	of	the	ref	namespace	(typically	in	$GIT_DIR/refs/heads	and
$GIT_DIR/refs/tags	directories	or,	as	entries	in	file	$GIT_DIR/packed-refs
if	refs	are	packed	by	git	gc).

Git	imposes	the	following	rules	on	how	references	are	named:

1.	 They	can	include	slash	/	for	hierarchical	(directory)	grouping,	but	no
slash-separated	component	can	begin	with	a	dot	.	or	end	with	the
sequence	.lock.

2.	 They	must	contain	at	least	one	/.	This	enforces	the	presence	of	a
category	like	heads/,	tags/	etc.	but	the	actual	names	are	not
restricted.	If	the	--allow-onelevel	option	is	used,	this	rule	is	waived.

3.	 They	cannot	have	two	consecutive	dots	..	anywhere.
4.	 They	cannot	have	ASCII	control	characters	(i.e.	bytes	whose	values

are	lower	than	\040,	or	\177	DEL),	space,	tilde	~,	caret	^,	or	colon	:
anywhere.

5.	 They	cannot	have	question-mark	?,	asterisk	*,	or	open	bracket	[
anywhere.	See	the	--refspec-pattern	option	below	for	an	exception	to
this	rule.

6.	 They	cannot	begin	or	end	with	a	slash	/	or	contain	multiple
consecutive	slashes	(see	the	--normalize	option	below	for	an
exception	to	this	rule)

7.	 They	cannot	end	with	a	dot	..
8.	 They	cannot	contain	a	sequence	@{.
9.	 They	cannot	be	the	single	character	@.
10.	 They	cannot	contain	a	\.

These	rules	make	it	easy	for	shell	script	based	tools	to	parse	reference
names,	pathname	expansion	by	the	shell	when	a	reference	name	is	used
unquoted	(by	mistake),	and	also	avoid	ambiguities	in	certain	reference
name	expressions	(see	Section	G.4.12,	“gitrevisions(7)”):

1.	 A	double-dot	..	is	often	used	as	in	ref1..ref2,	and	in	some	contexts
this	notation	means	^ref1	ref2	(i.e.	not	in	ref1	and	in	ref2).

2.	 A	tilde	~	and	caret	^	are	used	to	introduce	the	postfix	nth	parent	and
peel	onion	operation.

3.	 A	colon	:	is	used	as	in	srcref:dstref	to	mean	"use	srcref's	value	and
store	it	in	dstref"	in	fetch	and	push	operations.	It	may	also	be	used	to
select	a	specific	object	such	as	with	git	cat-file:	"git	cat-file	blob
v1.3.3:refs.c".

4.	 at-open-brace	@{	is	used	as	a	notation	to	access	a	reflog	entry.

With	the	--branch	option,	it	expands	the	previous	branch	syntax	@{-n}.
For	example,	@{-1}	is	a	way	to	refer	the	last	branch	you	were	on.	This
option	should	be	used	by	porcelains	to	accept	this	syntax	anywhere	a
branch	name	is	expected,	so	they	can	act	as	if	you	typed	the	branch
name.

OPTIONS

--[no-]allow-onelevel
Controls	whether	one-level	refnames	are	accepted	(i.e.,	refnames
that	do	not	contain	multiple	/-separated	components).	The	default	is	-
-no-allow-onelevel.

--refspec-pattern
Interpret	<refname>	as	a	reference	name	pattern	for	a	refspec	(as
used	with	remote	repositories).	If	this	option	is	enabled,	<refname>
is	allowed	to	contain	a	single	*	in	the	refspec	(e.g.,	foo/bar*/baz	or
foo/bar*baz/	but	not	foo/bar*/baz*).

--normalize
Normalize	refname	by	removing	any	leading	slash	(/)	characters	and
collapsing	runs	of	adjacent	slashes	between	name	components	into
a	single	slash.	Iff	the	normalized	refname	is	valid	then	print	it	to
standard	output	and	exit	with	a	status	of	0.	(--print	is	a	deprecated
way	to	spell	--normalize.)

EXAMPLES

Print	the	name	of	the	previous	branch:

$	git	check-ref-format	--branch	@{-1}

Determine	the	reference	name	to	use	for	a	new	branch:

$	ref=$(git	check-ref-format	--normalize	"refs/heads/$newbranch")	||

die	"we	do	not	like	'$newbranch'	as	a	branch	name."

GIT

Part	of	the	Section	G.3.1,	“git(1)”	suite

G.3.17.	git-checkout-index(1)

NAME

git-checkout-index	-	Copy	files	from	the	index	to	the	working	tree

SYNOPSIS

git	checkout-index	[-u]	[-q]	[-a]	[-f]	[-n]	[--prefix=

<string>]

																			[--stage=<number>|all]

																			[--temp]

																			[-z]	[--stdin]

																			[--]	[<file>…]

DESCRIPTION

Will	copy	all	files	listed	from	the	index	to	the	working	directory	(not
overwriting	existing	files).

OPTIONS

-u	,	--index
update	stat	information	for	the	checked	out	entries	in	the	index	file.

-q	,	--quiet
be	quiet	if	files	exist	or	are	not	in	the	index

-f	,	--force
forces	overwrite	of	existing	files

-a	,	--all
checks	out	all	files	in	the	index.	Cannot	be	used	together	with	explicit
filenames.

-n	,	--no-create
Don't	checkout	new	files,	only	refresh	files	already	checked	out.

--prefix=<string>
When	creating	files,	prepend	<string>	(usually	a	directory	including	a
trailing	/)

--stage=<number>|all
Instead	of	checking	out	unmerged	entries,	copy	out	the	files	from
named	stage.	<number>	must	be	between	1	and	3.	Note:	--stage=all
automatically	implies	--temp.

--temp
Instead	of	copying	the	files	to	the	working	directory	write	the	content
to	temporary	files.	The	temporary	name	associations	will	be	written
to	stdout.

--stdin
Instead	of	taking	list	of	paths	from	the	command	line,	read	list	of
paths	from	the	standard	input.	Paths	are	separated	by	LF	(i.e.	one
path	per	line)	by	default.

-z
Only	meaningful	with	--stdin;	paths	are	separated	with	NUL
character	instead	of	LF.

--
Do	not	interpret	any	more	arguments	as	options.

The	order	of	the	flags	used	to	matter,	but	not	anymore.

Just	doing	git	checkout-index	does	nothing.	You	probably	meant	git
checkout-index	-a.	And	if	you	want	to	force	it,	you	want	git	checkout-
index	-f	-a.

Intuitiveness	is	not	the	goal	here.	Repeatability	is.	The	reason	for	the	"no
arguments	means	no	work"	behavior	is	that	from	scripts	you	are

supposed	to	be	able	to	do:

$	find	.	-name	'*.h'	-print0	|	xargs	-0	git	checkout-index	-f	--

which	will	force	all	existing	*.h	files	to	be	replaced	with	their	cached
copies.	If	an	empty	command	line	implied	"all",	then	this	would	force-
refresh	everything	in	the	index,	which	was	not	the	point.	But	since	git
checkout-index	accepts	--stdin	it	would	be	faster	to	use:

$	find	.	-name	'*.h'	-print0	|	git	checkout-index	-f	-z	--stdin

The	--	is	just	a	good	idea	when	you	know	the	rest	will	be	filenames;	it	will
prevent	problems	with	a	filename	of,	for	example,	-a.	Using	--	is	probably
a	good	policy	in	scripts.

Using	--temp	or	--stage=all

When	--temp	is	used	(or	implied	by	--stage=all)	git	checkout-index	will
create	a	temporary	file	for	each	index	entry	being	checked	out.	The	index
will	not	be	updated	with	stat	information.	These	options	can	be	useful	if
the	caller	needs	all	stages	of	all	unmerged	entries	so	that	the	unmerged
files	can	be	processed	by	an	external	merge	tool.

A	listing	will	be	written	to	stdout	providing	the	association	of	temporary
file	names	to	tracked	path	names.	The	listing	format	has	two	variations:

1.	 tempname	TAB	path	RS

The	first	format	is	what	gets	used	when	--stage	is	omitted	or	is	not	--
stage=all.	The	field	tempname	is	the	temporary	file	name	holding	the
file	content	and	path	is	the	tracked	path	name	in	the	index.	Only	the
requested	entries	are	output.

2.	 stage1temp	SP	stage2temp	SP	stage3tmp	TAB	path	RS

The	second	format	is	what	gets	used	when	--stage=all.	The	three

stage	temporary	fields	(stage1temp,	stage2temp,	stage3temp)	list
the	name	of	the	temporary	file	if	there	is	a	stage	entry	in	the	index	or
.	if	there	is	no	stage	entry.	Paths	which	only	have	a	stage	0	entry	will
always	be	omitted	from	the	output.

In	both	formats	RS	(the	record	separator)	is	newline	by	default	but	will	be
the	null	byte	if	-z	was	passed	on	the	command	line.	The	temporary	file
names	are	always	safe	strings;	they	will	never	contain	directory
separators	or	whitespace	characters.	The	path	field	is	always	relative	to
the	current	directory	and	the	temporary	file	names	are	always	relative	to
the	top	level	directory.

If	the	object	being	copied	out	to	a	temporary	file	is	a	symbolic	link	the
content	of	the	link	will	be	written	to	a	normal	file.	It	is	up	to	the	end-user
or	the	Porcelain	to	make	use	of	this	information.

EXAMPLES

To	update	and	refresh	only	the	files	already	checked	out

$	git	checkout-index	-n	-f	-a	&&	git	update-index	--ignore-missing	--refresh

Using	git	checkout-index	to	"export	an	entire	tree"

The	prefix	ability	basically	makes	it	trivial	to	use	git	checkout-index
as	an	"export	as	tree"	function.	Just	read	the	desired	tree	into	the
index,	and	do:

$	git	checkout-index	--prefix=git-export-dir/	-a

git	checkout-index	will	"export"	the	index	into	the	specified	directory.

The	final	"/"	is	important.	The	exported	name	is	literally	just	prefixed
with	the	specified	string.	Contrast	this	with	the	following	example.

Export	files	with	a	prefix

$	git	checkout-index	--prefix=.merged-	Makefile

This	will	check	out	the	currently	cached	copy	of	Makefile	into	the	file
.merged-Makefile.

GIT

Part	of	the	Section	G.3.1,	“git(1)”	suite

G.3.18.	git-checkout(1)

NAME

git-checkout	-	Switch	branches	or	restore	working	tree	files

SYNOPSIS

git	checkout	[-q]	[-f]	[-m]	[<branch>]

git	checkout	[-q]	[-f]	[-m]	--detach	[<branch>]

git	checkout	[-q]	[-f]	[-m]	[--detach]	<commit>

git	checkout	[-q]	[-f]	[-m]	[[-b|-B|--

orphan]	<new_branch>]	[<start_point>]

git	checkout	[-f|--ours|--theirs|-m|--conflict=

<style>]	[<tree-ish>]	[--]	<paths>…

git	checkout	[-p|--patch]	[<tree-ish>]	[--]	[<paths>…]

DESCRIPTION

Updates	files	in	the	working	tree	to	match	the	version	in	the	index	or	the
specified	tree.	If	no	paths	are	given,	git	checkout	will	also	update	HEAD
to	set	the	specified	branch	as	the	current	branch.

git	checkout	<branch>

To	prepare	for	working	on	<branch>,	switch	to	it	by	updating	the
index	and	the	files	in	the	working	tree,	and	by	pointing	HEAD	at	the
branch.	Local	modifications	to	the	files	in	the	working	tree	are	kept,
so	that	they	can	be	committed	to	the	<branch>.

If	<branch>	is	not	found	but	there	does	exist	a	tracking	branch	in
exactly	one	remote	(call	it	<remote>)	with	a	matching	name,	treat	as
equivalent	to

$	git	checkout	-b	<branch>	--track	<remote>/<branch>

You	could	omit	<branch>,	in	which	case	the	command	degenerates
to	"check	out	the	current	branch",	which	is	a	glorified	no-op	with	a
rather	expensive	side-effects	to	show	only	the	tracking	information,	if
exists,	for	the	current	branch.

git	checkout	-b|-B	<new_branch>	[<start	point>]

Specifying	-b	causes	a	new	branch	to	be	created	as	if
Section	G.3.10,	“git-branch(1)”	were	called	and	then	checked	out.	In
this	case	you	can	use	the	--track	or	--no-track	options,	which	will	be
passed	to	git	branch.	As	a	convenience,	--track	without	-b	implies
branch	creation;	see	the	description	of	--track	below.

If	-B	is	given,	<new_branch>	is	created	if	it	doesn't	exist;	otherwise,
it	is	reset.	This	is	the	transactional	equivalent	of

$	git	branch	-f	<branch>	[<start	point>]

$	git	checkout	<branch>

that	is	to	say,	the	branch	is	not	reset/created	unless	"git	checkout"	is
successful.

git	checkout	--detach	[<branch>]	,	git	checkout	[--detach]	<commit>

Prepare	to	work	on	top	of	<commit>,	by	detaching	HEAD	at	it	(see
"DETACHED	HEAD"	section),	and	updating	the	index	and	the	files	in
the	working	tree.	Local	modifications	to	the	files	in	the	working	tree
are	kept,	so	that	the	resulting	working	tree	will	be	the	state	recorded
in	the	commit	plus	the	local	modifications.

When	the	<commit>	argument	is	a	branch	name,	the	--detach	option

can	be	used	to	detach	HEAD	at	the	tip	of	the	branch	(git	checkout
<branch>	would	check	out	that	branch	without	detaching	HEAD).

Omitting	<branch>	detaches	HEAD	at	the	tip	of	the	current	branch.

git	checkout	[-p|--patch]	[<tree-ish>]	[--]	<pathspec>…

When	<paths>	or	--patch	are	given,	git	checkout	does	not	switch
branches.	It	updates	the	named	paths	in	the	working	tree	from	the
index	file	or	from	a	named	<tree-ish>	(most	often	a	commit).	In	this
case,	the	-b	and	--track	options	are	meaningless	and	giving	either	of
them	results	in	an	error.	The	<tree-ish>	argument	can	be	used	to
specify	a	specific	tree-ish	(i.e.	commit,	tag	or	tree)	to	update	the
index	for	the	given	paths	before	updating	the	working	tree.

git	checkout	with	<paths>	or	--patch	is	used	to	restore	modified	or
deleted	paths	to	their	original	contents	from	the	index	or	replace
paths	with	the	contents	from	a	named	<tree-ish>	(most	often	a
commit-ish).

The	index	may	contain	unmerged	entries	because	of	a	previous
failed	merge.	By	default,	if	you	try	to	check	out	such	an	entry	from
the	index,	the	checkout	operation	will	fail	and	nothing	will	be	checked
out.	Using	-f	will	ignore	these	unmerged	entries.	The	contents	from	a
specific	side	of	the	merge	can	be	checked	out	of	the	index	by	using	-
-ours	or	--theirs.	With	-m,	changes	made	to	the	working	tree	file	can
be	discarded	to	re-create	the	original	conflicted	merge	result.

OPTIONS

-q	,	--quiet
Quiet,	suppress	feedback	messages.

--[no-]progress
Progress	status	is	reported	on	the	standard	error	stream	by	default
when	it	is	attached	to	a	terminal,	unless	--quiet	is	specified.	This	flag
enables	progress	reporting	even	if	not	attached	to	a	terminal,
regardless	of	--quiet.

-f	,	--force

When	switching	branches,	proceed	even	if	the	index	or	the	working
tree	differs	from	HEAD.	This	is	used	to	throw	away	local	changes.

When	checking	out	paths	from	the	index,	do	not	fail	upon	unmerged
entries;	instead,	unmerged	entries	are	ignored.

--ours	,	--theirs

When	checking	out	paths	from	the	index,	check	out	stage	#2	(ours)
or	#3	(theirs)	for	unmerged	paths.

Note	that	during	git	rebase	and	git	pull	--rebase,	ours	and	theirs	may
appear	swapped;	--ours	gives	the	version	from	the	branch	the
changes	are	rebased	onto,	while	--theirs	gives	the	version	from	the
branch	that	holds	your	work	that	is	being	rebased.

This	is	because	rebase	is	used	in	a	workflow	that	treats	the	history	at
the	remote	as	the	shared	canonical	one,	and	treats	the	work	done	on
the	branch	you	are	rebasing	as	the	third-party	work	to	be	integrated,
and	you	are	temporarily	assuming	the	role	of	the	keeper	of	the
canonical	history	during	the	rebase.	As	the	keeper	of	the	canonical
history,	you	need	to	view	the	history	from	the	remote	as	ours	(i.e.
"our	shared	canonical	history"),	while	what	you	did	on	your	side
branch	as	theirs	(i.e.	"one	contributor's	work	on	top	of	it").

-b	<new_branch>
Create	a	new	branch	named	<new_branch>	and	start	it	at
<start_point>;	see	Section	G.3.10,	“git-branch(1)”	for	details.

-B	<new_branch>
Creates	the	branch	<new_branch>	and	start	it	at	<start_point>;	if	it
already	exists,	then	reset	it	to	<start_point>.	This	is	equivalent	to
running	"git	branch"	with	"-f";	see	Section	G.3.10,	“git-branch(1)”	for
details.

-t	,	--track

When	creating	a	new	branch,	set	up	"upstream"	configuration.	See	"-
-track"	in	Section	G.3.10,	“git-branch(1)”	for	details.

If	no	-b	option	is	given,	the	name	of	the	new	branch	will	be	derived
from	the	remote-tracking	branch,	by	looking	at	the	local	part	of	the
refspec	configured	for	the	corresponding	remote,	and	then	stripping
the	initial	part	up	to	the	"*".	This	would	tell	us	to	use	"hack"	as	the
local	branch	when	branching	off	of	"origin/hack"	(or
"remotes/origin/hack",	or	even	"refs/remotes/origin/hack").	If	the
given	name	has	no	slash,	or	the	above	guessing	results	in	an	empty
name,	the	guessing	is	aborted.	You	can	explicitly	give	a	name	with	-
b	in	such	a	case.

--no-track
Do	not	set	up	"upstream"	configuration,	even	if	the
branch.autoSetupMerge	configuration	variable	is	true.

-l
Create	the	new	branch's	reflog;	see	Section	G.3.10,	“git-branch(1)”
for	details.

--detach
Rather	than	checking	out	a	branch	to	work	on	it,	check	out	a	commit
for	inspection	and	discardable	experiments.	This	is	the	default
behavior	of	"git	checkout	<commit>"	when	<commit>	is	not	a	branch
name.	See	the	"DETACHED	HEAD"	section	below	for	details.

--orphan	<new_branch>

Create	a	new	orphan	branch,	named	<new_branch>,	started	from
<start_point>	and	switch	to	it.	The	first	commit	made	on	this	new
branch	will	have	no	parents	and	it	will	be	the	root	of	a	new	history
totally	disconnected	from	all	the	other	branches	and	commits.

The	index	and	the	working	tree	are	adjusted	as	if	you	had	previously
run	"git	checkout	<start_point>".	This	allows	you	to	start	a	new
history	that	records	a	set	of	paths	similar	to	<start_point>	by	easily
running	"git	commit	-a"	to	make	the	root	commit.

This	can	be	useful	when	you	want	to	publish	the	tree	from	a	commit
without	exposing	its	full	history.	You	might	want	to	do	this	to	publish
an	open	source	branch	of	a	project	whose	current	tree	is	"clean",	but
whose	full	history	contains	proprietary	or	otherwise	encumbered	bits
of	code.

If	you	want	to	start	a	disconnected	history	that	records	a	set	of	paths
that	is	totally	different	from	the	one	of	<start_point>,	then	you	should
clear	the	index	and	the	working	tree	right	after	creating	the	orphan
branch	by	running	"git	rm	-rf	."	from	the	top	level	of	the	working	tree.
Afterwards	you	will	be	ready	to	prepare	your	new	files,	repopulating
the	working	tree,	by	copying	them	from	elsewhere,	extracting	a
tarball,	etc.

--ignore-skip-worktree-bits
In	sparse	checkout	mode,	git	checkout	--	<paths>	would	update	only
entries	matched	by	<paths>	and	sparse	patterns	in
$GIT_DIR/info/sparse-checkout.	This	option	ignores	the	sparse
patterns	and	adds	back	any	files	in	<paths>.

-m	,	--merge

When	switching	branches,	if	you	have	local	modifications	to	one	or
more	files	that	are	different	between	the	current	branch	and	the
branch	to	which	you	are	switching,	the	command	refuses	to	switch
branches	in	order	to	preserve	your	modifications	in	context.
However,	with	this	option,	a	three-way	merge	between	the	current
branch,	your	working	tree	contents,	and	the	new	branch	is	done,	and
you	will	be	on	the	new	branch.

When	a	merge	conflict	happens,	the	index	entries	for	conflicting
paths	are	left	unmerged,	and	you	need	to	resolve	the	conflicts	and
mark	the	resolved	paths	with	git	add	(or	git	rm	if	the	merge	should
result	in	deletion	of	the	path).

When	checking	out	paths	from	the	index,	this	option	lets	you
recreate	the	conflicted	merge	in	the	specified	paths.

--conflict=<style>
The	same	as	--merge	option	above,	but	changes	the	way	the
conflicting	hunks	are	presented,	overriding	the	merge.conflictStyle
configuration	variable.	Possible	values	are	"merge"	(default)	and
"diff3"	(in	addition	to	what	is	shown	by	"merge"	style,	shows	the
original	contents).

-p	,	--patch

Interactively	select	hunks	in	the	difference	between	the	<tree-ish>
(or	the	index,	if	unspecified)	and	the	working	tree.	The	chosen	hunks
are	then	applied	in	reverse	to	the	working	tree	(and	if	a	<tree-ish>
was	specified,	the	index).

This	means	that	you	can	use	git	checkout	-p	to	selectively	discard
edits	from	your	current	working	tree.	See	the	Interactive	Mode
section	of	Section	G.3.2,	“git-add(1)”	to	learn	how	to	operate	the	--
patch	mode.

--ignore-other-worktrees
git	checkout	refuses	when	the	wanted	ref	is	already	checked	out	by
another	worktree.	This	option	makes	it	check	the	ref	out	anyway.	In
other	words,	the	ref	can	be	held	by	more	than	one	worktree.

<branch>

Branch	to	checkout;	if	it	refers	to	a	branch	(i.e.,	a	name	that,	when
prepended	with	"refs/heads/",	is	a	valid	ref),	then	that	branch	is
checked	out.	Otherwise,	if	it	refers	to	a	valid	commit,	your	HEAD
becomes	"detached"	and	you	are	no	longer	on	any	branch	(see
below	for	details).

As	a	special	case,	the	"@{-N}"	syntax	for	the	N-th	last
branch/commit	checks	out	branches	(instead	of	detaching).	You	may
also	specify	-	which	is	synonymous	with	"@{-1}".

As	a	further	special	case,	you	may	use	"A...B"	as	a	shortcut	for	the
merge	base	of	A	and	B	if	there	is	exactly	one	merge	base.	You	can
leave	out	at	most	one	of	A	and	B,	in	which	case	it	defaults	to	HEAD.

<new_branch>
Name	for	the	new	branch.

<start_point>
The	name	of	a	commit	at	which	to	start	the	new	branch;	see
Section	G.3.10,	“git-branch(1)”	for	details.	Defaults	to	HEAD.

<tree-ish>
Tree	to	checkout	from	(when	paths	are	given).	If	not	specified,	the
index	will	be	used.

DETACHED	HEAD

HEAD	normally	refers	to	a	named	branch	(e.g.	master).	Meanwhile,	each
branch	refers	to	a	specific	commit.	Let's	look	at	a	repo	with	three
commits,	one	of	them	tagged,	and	with	branch	master	checked	out:

											HEAD	(refers	to	branch	'master')

												|

												v

a---b---c		branch	'master'	(refers	to	commit	'c')

				^

				|

		tag	'v2.0'	(refers	to	commit	'b')

When	a	commit	is	created	in	this	state,	the	branch	is	updated	to	refer	to
the	new	commit.	Specifically,	git	commit	creates	a	new	commit	d,	whose
parent	is	commit	c,	and	then	updates	branch	master	to	refer	to	new
commit	d.	HEAD	still	refers	to	branch	master	and	so	indirectly	now	refers
to	commit	d:

$	edit;	git	add;	git	commit

															HEAD	(refers	to	branch	'master')

																|

																v

a---b---c---d		branch	'master'	(refers	to	commit	'd')

				^

				|

		tag	'v2.0'	(refers	to	commit	'b')

It	is	sometimes	useful	to	be	able	to	checkout	a	commit	that	is	not	at	the
tip	of	any	named	branch,	or	even	to	create	a	new	commit	that	is	not
referenced	by	a	named	branch.	Let's	look	at	what	happens	when	we
checkout	commit	b	(here	we	show	two	ways	this	may	be	done):

$	git	checkout	v2.0		#	or

$	git	checkout	master^^

			HEAD	(refers	to	commit	'b')

				|

				v

a---b---c---d		branch	'master'	(refers	to	commit	'd')

				^

				|

		tag	'v2.0'	(refers	to	commit	'b')

Notice	that	regardless	of	which	checkout	command	we	use,	HEAD	now
refers	directly	to	commit	b.	This	is	known	as	being	in	detached	HEAD
state.	It	means	simply	that	HEAD	refers	to	a	specific	commit,	as	opposed
to	referring	to	a	named	branch.	Let's	see	what	happens	when	we	create
a	commit:

$	edit;	git	add;	git	commit

					HEAD	(refers	to	commit	'e')

						|

						v

						e

					/

a---b---c---d		branch	'master'	(refers	to	commit	'd')

				^

				|

		tag	'v2.0'	(refers	to	commit	'b')

There	is	now	a	new	commit	e,	but	it	is	referenced	only	by	HEAD.	We	can
of	course	add	yet	another	commit	in	this	state:

$	edit;	git	add;	git	commit

									HEAD	(refers	to	commit	'f')

										|

										v

						e---f

					/

a---b---c---d		branch	'master'	(refers	to	commit	'd')

				^

				|

		tag	'v2.0'	(refers	to	commit	'b')

In	fact,	we	can	perform	all	the	normal	Git	operations.	But,	let's	look	at
what	happens	when	we	then	checkout	master:

$	git	checkout	master

															HEAD	(refers	to	branch	'master')

						e---f					|

					/										v

a---b---c---d		branch	'master'	(refers	to	commit	'd')

				^

				|

		tag	'v2.0'	(refers	to	commit	'b')

It	is	important	to	realize	that	at	this	point	nothing	refers	to	commit	f.
Eventually	commit	f	(and	by	extension	commit	e)	will	be	deleted	by	the
routine	Git	garbage	collection	process,	unless	we	create	a	reference
before	that	happens.	If	we	have	not	yet	moved	away	from	commit	f,	any
of	these	will	create	a	reference	to	it:

$	git	checkout	-b	foo			

$	git	branch	foo								

$	git	tag	foo											

creates	a	new	branch	foo,	which	refers	to	commit	f,	and	then
updates	HEAD	to	refer	to	branch	foo.	In	other	words,	we'll	no	longer
be	in	detached	HEAD	state	after	this	command.

similarly	creates	a	new	branch	foo,	which	refers	to	commit	f,	but
leaves	HEAD	detached.

creates	a	new	tag	foo,	which	refers	to	commit	f,	leaving	HEAD
detached.

If	we	have	moved	away	from	commit	f,	then	we	must	first	recover	its
object	name	(typically	by	using	git	reflog),	and	then	we	can	create	a
reference	to	it.	For	example,	to	see	the	last	two	commits	to	which	HEAD
referred,	we	can	use	either	of	these	commands:

$	git	reflog	-2	HEAD	#	or

$	git	log	-g	-2	HEAD

EXAMPLES

1.	 The	following	sequence	checks	out	the	master	branch,	reverts	the
Makefile	to	two	revisions	back,	deletes	hello.c	by	mistake,	and	gets	it
back	from	the	index.

$	git	checkout	master													

$	git	checkout	master~2	Makefile		

$	rm	-f	hello.c

$	git	checkout	hello.c												

switch	branch

take	a	file	out	of	another	commit

restore	hello.c	from	the	index

If	you	want	to	check	out	all	C	source	files	out	of	the	index,	you
can	say

$	git	checkout	--	'*.c'

Note	the	quotes	around	*.c.	The	file	hello.c	will	also	be	checked
out,	even	though	it	is	no	longer	in	the	working	tree,	because	the
file	globbing	is	used	to	match	entries	in	the	index	(not	in	the
working	tree	by	the	shell).

If	you	have	an	unfortunate	branch	that	is	named	hello.c,	this
step	would	be	confused	as	an	instruction	to	switch	to	that
branch.	You	should	instead	write:

$	git	checkout	--	hello.c

2.	 After	working	in	the	wrong	branch,	switching	to	the	correct	branch
would	be	done	using:

$	git	checkout	mytopic

However,	your	"wrong"	branch	and	correct	"mytopic"	branch	may
differ	in	files	that	you	have	modified	locally,	in	which	case	the	above
checkout	would	fail	like	this:

$	git	checkout	mytopic

error:	You	have	local	changes	to	'frotz';	not	switching	branches.

You	can	give	the	-m	flag	to	the	command,	which	would	try	a	three-
way	merge:

$	git	checkout	-m	mytopic

Auto-merging	frotz

After	this	three-way	merge,	the	local	modifications	are	not	registered
in	your	index	file,	so	git	diff	would	show	you	what	changes	you	made
since	the	tip	of	the	new	branch.

3.	 When	a	merge	conflict	happens	during	switching	branches	with	the	-
m	option,	you	would	see	something	like	this:

$	git	checkout	-m	mytopic

Auto-merging	frotz

ERROR:	Merge	conflict	in	frotz

fatal:	merge	program	failed

At	this	point,	git	diff	shows	the	changes	cleanly	merged	as	in	the
previous	example,	as	well	as	the	changes	in	the	conflicted	files.	Edit
and	resolve	the	conflict	and	mark	it	resolved	with	git	add	as	usual:

$	edit	frotz

$	git	add	frotz

GIT

Part	of	the	Section	G.3.1,	“git(1)”	suite

G.3.19.	git-cherry-pick(1)

NAME

git-cherry-pick	-	Apply	the	changes	introduced	by	some	existing	commits

SYNOPSIS

git	cherry-pick	[--edit]	[-n]	[-m	parent-number]	[-s]	[-x]	[-

-ff]

																		[-S[<keyid>]]	<commit>…

git	cherry-pick	--continue

git	cherry-pick	--quit

git	cherry-pick	--abort

DESCRIPTION

Given	one	or	more	existing	commits,	apply	the	change	each	one
introduces,	recording	a	new	commit	for	each.	This	requires	your	working
tree	to	be	clean	(no	modifications	from	the	HEAD	commit).

When	it	is	not	obvious	how	to	apply	a	change,	the	following	happens:

1.	 The	current	branch	and	HEAD	pointer	stay	at	the	last	commit
successfully	made.

2.	 The	CHERRY_PICK_HEAD	ref	is	set	to	point	at	the	commit	that
introduced	the	change	that	is	difficult	to	apply.

3.	 Paths	in	which	the	change	applied	cleanly	are	updated	both	in	the
index	file	and	in	your	working	tree.

4.	 For	conflicting	paths,	the	index	file	records	up	to	three	versions,	as
described	in	the	"TRUE	MERGE"	section	of	Section	G.3.79,	“git-
merge(1)”.	The	working	tree	files	will	include	a	description	of	the
conflict	bracketed	by	the	usual	conflict	markers	<<<<<<<	and
>>>>>>>.

5.	 No	other	modifications	are	made.

See	Section	G.3.79,	“git-merge(1)”	for	some	hints	on	resolving	such
conflicts.

OPTIONS

<commit>…
Commits	to	cherry-pick.	For	a	more	complete	list	of	ways	to	spell
commits,	see	Section	G.4.12,	“gitrevisions(7)”.	Sets	of	commits	can
be	passed	but	no	traversal	is	done	by	default,	as	if	the	--no-walk
option	was	specified,	see	Section	G.3.112,	“git-rev-list(1)”.	Note	that
specifying	a	range	will	feed	all	<commit>…	arguments	to	a	single
revision	walk	(see	a	later	example	that	uses	maint	master..next).

-e	,	--edit
With	this	option,	git	cherry-pick	will	let	you	edit	the	commit	message
prior	to	committing.

-x
When	recording	the	commit,	append	a	line	that	says	"(cherry	picked
from	commit	…)"	to	the	original	commit	message	in	order	to	indicate
which	commit	this	change	was	cherry-picked	from.	This	is	done	only
for	cherry	picks	without	conflicts.	Do	not	use	this	option	if	you	are
cherry-picking	from	your	private	branch	because	the	information	is
useless	to	the	recipient.	If	on	the	other	hand	you	are	cherry-picking
between	two	publicly	visible	branches	(e.g.	backporting	a	fix	to	a
maintenance	branch	for	an	older	release	from	a	development
branch),	adding	this	information	can	be	useful.

-r
It	used	to	be	that	the	command	defaulted	to	do	-x	described	above,
and	-r	was	to	disable	it.	Now	the	default	is	not	to	do	-x	so	this	option
is	a	no-op.

-m	parent-number	,	--mainline	parent-number

Usually	you	cannot	cherry-pick	a	merge	because	you	do	not	know
which	side	of	the	merge	should	be	considered	the	mainline.	This
option	specifies	the	parent	number	(starting	from	1)	of	the	mainline
and	allows	cherry-pick	to	replay	the	change	relative	to	the	specified
parent.

-n	,	--no-commit

Usually	the	command	automatically	creates	a	sequence	of	commits.
This	flag	applies	the	changes	necessary	to	cherry-pick	each	named
commit	to	your	working	tree	and	the	index,	without	making	any
commit.	In	addition,	when	this	option	is	used,	your	index	does	not
have	to	match	the	HEAD	commit.	The	cherry-pick	is	done	against
the	beginning	state	of	your	index.

This	is	useful	when	cherry-picking	more	than	one	commits'	effect	to
your	index	in	a	row.

-s	,	--signoff
Add	Signed-off-by	line	at	the	end	of	the	commit	message.	See	the
signoff	option	in	Section	G.3.26,	“git-commit(1)”	for	more	information.

-S[<keyid>]	,	--gpg-sign[=<keyid>]
GPG-sign	commits.	The	keyid	argument	is	optional	and	defaults	to
the	committer	identity;	if	specified,	it	must	be	stuck	to	the	option
without	a	space.

--ff
If	the	current	HEAD	is	the	same	as	the	parent	of	the	cherry-pick'ed
commit,	then	a	fast	forward	to	this	commit	will	be	performed.

--allow-empty
By	default,	cherry-picking	an	empty	commit	will	fail,	indicating	that	an
explicit	invocation	of	git	commit	--allow-empty	is	required.	This	option
overrides	that	behavior,	allowing	empty	commits	to	be	preserved
automatically	in	a	cherry-pick.	Note	that	when	"--ff"	is	in	effect,	empty
commits	that	meet	the	"fast-forward"	requirement	will	be	kept	even
without	this	option.	Note	also,	that	use	of	this	option	only	keeps
commits	that	were	initially	empty	(i.e.	the	commit	recorded	the	same
tree	as	its	parent).	Commits	which	are	made	empty	due	to	a
previous	commit	are	dropped.	To	force	the	inclusion	of	those
commits	use	--keep-redundant-commits.

--allow-empty-message
By	default,	cherry-picking	a	commit	with	an	empty	message	will	fail.
This	option	overrides	that	behaviour,	allowing	commits	with	empty
messages	to	be	cherry	picked.

--keep-redundant-commits
If	a	commit	being	cherry	picked	duplicates	a	commit	already	in	the
current	history,	it	will	become	empty.	By	default	these	redundant
commits	cause	cherry-pick	to	stop	so	the	user	can	examine	the
commit.	This	option	overrides	that	behavior	and	creates	an	empty
commit	object.	Implies	--allow-empty.

--strategy=<strategy>
Use	the	given	merge	strategy.	Should	only	be	used	once.	See	the
MERGE	STRATEGIES	section	in	Section	G.3.79,	“git-merge(1)”	for
details.

-X<option>	,	--strategy-option=<option>
Pass	the	merge	strategy-specific	option	through	to	the	merge
strategy.	See	Section	G.3.79,	“git-merge(1)”	for	details.

SEQUENCER	SUBCOMMANDS

--continue
Continue	the	operation	in	progress	using	the	information	in
.git/sequencer.	Can	be	used	to	continue	after	resolving	conflicts	in	a
failed	cherry-pick	or	revert.

--quit
Forget	about	the	current	operation	in	progress.	Can	be	used	to	clear
the	sequencer	state	after	a	failed	cherry-pick	or	revert.

--abort
Cancel	the	operation	and	return	to	the	pre-sequence	state.

EXAMPLES

git	cherry-pick	master
Apply	the	change	introduced	by	the	commit	at	the	tip	of	the	master
branch	and	create	a	new	commit	with	this	change.

git	cherry-pick	..master	,	git	cherry-pick	^HEAD	master
Apply	the	changes	introduced	by	all	commits	that	are	ancestors	of

master	but	not	of	HEAD	to	produce	new	commits.
git	cherry-pick	maint	next	^master	,	git	cherry-pick	maint	master..next

Apply	the	changes	introduced	by	all	commits	that	are	ancestors	of
maint	or	next,	but	not	master	or	any	of	its	ancestors.	Note	that	the
latter	does	not	mean	maint	and	everything	between	master	and	next;
specifically,	maint	will	not	be	used	if	it	is	included	in	master.

git	cherry-pick	master~4	master~2
Apply	the	changes	introduced	by	the	fifth	and	third	last	commits
pointed	to	by	master	and	create	2	new	commits	with	these	changes.

git	cherry-pick	-n	master~1	next
Apply	to	the	working	tree	and	the	index	the	changes	introduced	by
the	second	last	commit	pointed	to	by	master	and	by	the	last	commit
pointed	to	by	next,	but	do	not	create	any	commit	with	these	changes.

git	cherry-pick	--ff	..next
If	history	is	linear	and	HEAD	is	an	ancestor	of	next,	update	the
working	tree	and	advance	the	HEAD	pointer	to	match	next.
Otherwise,	apply	the	changes	introduced	by	those	commits	that	are
in	next	but	not	HEAD	to	the	current	branch,	creating	a	new	commit
for	each	new	change.

git	rev-list	--reverse	master	--	README	|	git	cherry-pick	-n	--stdin
Apply	the	changes	introduced	by	all	commits	on	the	master	branch
that	touched	README	to	the	working	tree	and	index,	so	the	result
can	be	inspected	and	made	into	a	single	new	commit	if	suitable.

The	following	sequence	attempts	to	backport	a	patch,	bails	out	because
the	code	the	patch	applies	to	has	changed	too	much,	and	then	tries
again,	this	time	exercising	more	care	about	matching	up	context	lines.

$	git	cherry-pick	topic^													

$	git	diff																											

$	git	reset	--merge	ORIG_HEAD								

$	git	cherry-pick	-Xpatience	topic^		

apply	the	change	that	would	be	shown	by	git	show	topic^.	In	this
example,	the	patch	does	not	apply	cleanly,	so	information	about	the

conflict	is	written	to	the	index	and	working	tree	and	no	new	commit
results.

summarize	changes	to	be	reconciled

cancel	the	cherry-pick.	In	other	words,	return	to	the	pre-cherry-pick
state,	preserving	any	local	modifications	you	had	in	the	working	tree.

try	to	apply	the	change	introduced	by	topic^	again,	spending	extra
time	to	avoid	mistakes	based	on	incorrectly	matching	context	lines.

SEE	ALSO

Section	G.3.114,	“git-revert(1)”

GIT

Part	of	the	Section	G.3.1,	“git(1)”	suite

G.3.20.	git-cherry(1)

NAME

git-cherry	-	Find	commits	yet	to	be	applied	to	upstream

SYNOPSIS

git	cherry	[-v]	[<upstream>	[<head>	[<limit>]]]

DESCRIPTION

Determine	whether	there	are	commits	in	<head>..<upstream>	that	are

equivalent	to	those	in	the	range	<limit>..<head>.

The	equivalence	test	is	based	on	the	diff,	after	removing	whitespace	and
line	numbers.	git-cherry	therefore	detects	when	commits	have	been
"copied"	by	means	of	Section	G.3.19,	“git-cherry-pick(1)”,	Section	G.3.3,
“git-am(1)”	or	Section	G.3.99,	“git-rebase(1)”.

Outputs	the	SHA1	of	every	commit	in	<limit>..<head>,	prefixed	with	-	for
commits	that	have	an	equivalent	in	<upstream>,	and	+	for	commits	that
do	not.

OPTIONS

-v
Show	the	commit	subjects	next	to	the	SHA1s.

<upstream>
Upstream	branch	to	search	for	equivalent	commits.	Defaults	to	the
upstream	branch	of	HEAD.

<head>
Working	branch;	defaults	to	HEAD.

<limit>
Do	not	report	commits	up	to	(and	including)	limit.

EXAMPLES

1.	Patch	workflows

git-cherry	is	frequently	used	in	patch-based	workflows	(see
Section	G.4.15,	“gitworkflows(7)”)	to	determine	if	a	series	of	patches	has
been	applied	by	the	upstream	maintainer.	In	such	a	workflow	you	might
create	and	send	a	topic	branch	like	this:

$	git	checkout	-b	topic	origin/master

#	work	and	create	some	commits

$	git	format-patch	origin/master

$	git	send-email	...	00*

Later,	you	can	see	whether	your	changes	have	been	applied	by	saying
(still	on	topic):

$	git	fetch		#	update	your	notion	of	origin/master

$	git	cherry	-v

2.	Concrete	example

In	a	situation	where	topic	consisted	of	three	commits,	and	the	maintainer
applied	two	of	them,	the	situation	might	look	like:

$	git	log	--graph	--oneline	--decorate	--boundary	origin/master...topic

*	7654321	(origin/master)	upstream	tip	commit

[...	snip	some	other	commits	...]

*	cccc111	cherry-pick	of	C

*	aaaa111	cherry-pick	of	A

[...	snip	a	lot	more	that	has	happened	...]

|	*	cccc000	(topic)	commit	C

|	*	bbbb000	commit	B

|	*	aaaa000	commit	A

|/

o	1234567	branch	point

In	such	cases,	git-cherry	shows	a	concise	summary	of	what	has	yet	to	be
applied:

$	git	cherry	origin/master	topic

-	cccc000...	commit	C

+	bbbb000...	commit	B

-	aaaa000...	commit	A

Here,	we	see	that	the	commits	A	and	C	(marked	with	-)	can	be	dropped
from	your	topic	branch	when	you	rebase	it	on	top	of	origin/master,	while
the	commit	B	(marked	with	+)	still	needs	to	be	kept	so	that	it	will	be	sent
to	be	applied	to	origin/master.

3.	Using	a	limit

The	optional	<limit>	is	useful	in	cases	where	your	topic	is	based	on	other
work	that	is	not	in	upstream.	Expanding	on	the	previous	example,	this
might	look	like:

$	git	log	--graph	--oneline	--decorate	--boundary	origin/master...topic

*	7654321	(origin/master)	upstream	tip	commit

[...	snip	some	other	commits	...]

*	cccc111	cherry-pick	of	C

*	aaaa111	cherry-pick	of	A

[...	snip	a	lot	more	that	has	happened	...]

|	*	cccc000	(topic)	commit	C

|	*	bbbb000	commit	B

|	*	aaaa000	commit	A

|	*	0000fff	(base)	unpublished	stuff	F

[...	snip	...]

|	*	0000aaa	unpublished	stuff	A

|/

o	1234567	merge-base	between	upstream	and	topic

By	specifying	base	as	the	limit,	you	can	avoid	listing	commits	between
base	and	topic:

$	git	cherry	origin/master	topic	base

-	cccc000...	commit	C

+	bbbb000...	commit	B

-	aaaa000...	commit	A

SEE	ALSO

Section	G.3.92,	“git-patch-id(1)”

GIT

Part	of	the	Section	G.3.1,	“git(1)”	suite

G.3.21.	git-citool(1)

NAME

git-citool	-	Graphical	alternative	to	git-commit

SYNOPSIS

git	citool

DESCRIPTION

A	Tcl/Tk	based	graphical	interface	to	review	modified	files,	stage	them
into	the	index,	enter	a	commit	message	and	record	the	new	commit	onto
the	current	branch.	This	interface	is	an	alternative	to	the	less	interactive
git	commit	program.

git	citool	is	actually	a	standard	alias	for	git	gui	citool.	See	Section	G.3.56,
“git-gui(1)”	for	more	details.

GIT

Part	of	the	Section	G.3.1,	“git(1)”	suite

G.3.22.	git-clean(1)

NAME

git-clean	-	Remove	untracked	files	from	the	working	tree

SYNOPSIS

git	clean	[-d]	[-f]	[-i]	[-n]	[-q]	[-e	<pattern>]	[-x	|	-

X]	[--]	<path>…

DESCRIPTION

Cleans	the	working	tree	by	recursively	removing	files	that	are	not	under
version	control,	starting	from	the	current	directory.

Normally,	only	files	unknown	to	Git	are	removed,	but	if	the	-x	option	is
specified,	ignored	files	are	also	removed.	This	can,	for	example,	be
useful	to	remove	all	build	products.

If	any	optional	<path>...	arguments	are	given,	only	those	paths	are
affected.

OPTIONS

-d
Remove	untracked	directories	in	addition	to	untracked	files.	If	an
untracked	directory	is	managed	by	a	different	Git	repository,	it	is	not
removed	by	default.	Use	-f	option	twice	if	you	really	want	to	remove
such	a	directory.

-f	,	--force
If	the	Git	configuration	variable	clean.requireForce	is	not	set	to	false,
git	clean	will	refuse	to	delete	files	or	directories	unless	given	-f,	-n	or
-i.	Git	will	refuse	to	delete	directories	with	.git	sub	directory	or	file
unless	a	second	-f	is	given.

-i	,	--interactive
Show	what	would	be	done	and	clean	files	interactively.	See
Interactive	mode	for	details.

-n	,	--dry-run
Don't	actually	remove	anything,	just	show	what	would	be	done.

-q	,	--quiet
Be	quiet,	only	report	errors,	but	not	the	files	that	are	successfully
removed.

-e	<pattern>	,	--exclude=<pattern>
In	addition	to	those	found	in	.gitignore	(per	directory)	and
$GIT_DIR/info/exclude,	also	consider	these	patterns	to	be	in	the	set
of	the	ignore	rules	in	effect.

-x

Don't	use	the	standard	ignore	rules	read	from	.gitignore	(per
directory)	and	$GIT_DIR/info/exclude,	but	do	still	use	the	ignore
rules	given	with	-e	options.	This	allows	removing	all	untracked	files,
including	build	products.	This	can	be	used	(possibly	in	conjunction
with	git	reset)	to	create	a	pristine	working	directory	to	test	a	clean
build.

-X
Remove	only	files	ignored	by	Git.	This	may	be	useful	to	rebuild
everything	from	scratch,	but	keep	manually	created	files.

Interactive	mode

When	the	command	enters	the	interactive	mode,	it	shows	the	files	and
directories	to	be	cleaned,	and	goes	into	its	interactive	command	loop.

The	command	loop	shows	the	list	of	subcommands	available,	and	gives
a	prompt	"What	now>	".	In	general,	when	the	prompt	ends	with	a	single
>,	you	can	pick	only	one	of	the	choices	given	and	type	return,	like	this:

				***	Commands	***

								1:	clean																2:	filter	by	pattern				3:	select	by	numbers

								4:	ask	each													5:	quit																	6:	help

				What	now>	1

You	also	could	say	c	or	clean	above	as	long	as	the	choice	is	unique.

The	main	command	loop	has	6	subcommands.

clean
Start	cleaning	files	and	directories,	and	then	quit.

filter	by	pattern
This	shows	the	files	and	directories	to	be	deleted	and	issues	an
"Input	ignore	patterns>>"	prompt.	You	can	input	space-separated
patterns	to	exclude	files	and	directories	from	deletion.	E.g.	"*.c	*.h"
will	excludes	files	end	with	".c"	and	".h"	from	deletion.	When	you	are
satisfied	with	the	filtered	result,	press	ENTER	(empty)	back	to	the
main	menu.

select	by	numbers
This	shows	the	files	and	directories	to	be	deleted	and	issues	an
"Select	items	to	delete>>"	prompt.	When	the	prompt	ends	with
double	>>	like	this,	you	can	make	more	than	one	selection,
concatenated	with	whitespace	or	comma.	Also	you	can	say	ranges.
E.g.	"2-5	7,9"	to	choose	2,3,4,5,7,9	from	the	list.	If	the	second
number	in	a	range	is	omitted,	all	remaining	items	are	selected.	E.g.
"7-"	to	choose	7,8,9	from	the	list.	You	can	say	*	to	choose
everything.	Also	when	you	are	satisfied	with	the	filtered	result,	press
ENTER	(empty)	back	to	the	main	menu.

ask	each
This	will	start	to	clean,	and	you	must	confirm	one	by	one	in	order	to
delete	items.	Please	note	that	this	action	is	not	as	efficient	as	the
above	two	actions.

quit
This	lets	you	quit	without	do	cleaning.

help
Show	brief	usage	of	interactive	git-clean.

SEE	ALSO

Section	G.4.5,	“gitignore(5)”

GIT

Part	of	the	Section	G.3.1,	“git(1)”	suite

G.3.23.	git-clone(1)

NAME

git-clone	-	Clone	a	repository	into	a	new	directory

SYNOPSIS

git	clone	[--template=<template_directory>]

										[-l]	[-s]	[--no-hardlinks]	[-q]	[-n]	[--bare]	[--

mirror]

										[-o	<name>]	[-b	<name>]	[-u	<upload-pack>]	[--

reference	<repository>]

										[--dissociate]	[--separate-git-dir	<git	dir>]

										[--depth	<depth>]	[--[no-]single-branch]

										[--recursive	|	--recurse-submodules]	[--

jobs	<n>]	[--]	<repository>

										[<directory>]

DESCRIPTION

Clones	a	repository	into	a	newly	created	directory,	creates	remote-
tracking	branches	for	each	branch	in	the	cloned	repository	(visible	using
git	branch	-r),	and	creates	and	checks	out	an	initial	branch	that	is	forked
from	the	cloned	repository's	currently	active	branch.

After	the	clone,	a	plain	git	fetch	without	arguments	will	update	all	the
remote-tracking	branches,	and	a	git	pull	without	arguments	will	in	addition
merge	the	remote	master	branch	into	the	current	master	branch,	if	any
(this	is	untrue	when	"--single-branch"	is	given;	see	below).

This	default	configuration	is	achieved	by	creating	references	to	the
remote	branch	heads	under	refs/remotes/origin	and	by	initializing
remote.origin.url	and	remote.origin.fetch	configuration	variables.

OPTIONS

--local	,	-l

When	the	repository	to	clone	from	is	on	a	local	machine,	this	flag
bypasses	the	normal	"Git	aware"	transport	mechanism	and	clones
the	repository	by	making	a	copy	of	HEAD	and	everything	under
objects	and	refs	directories.	The	files	under	.git/objects/	directory	are
hardlinked	to	save	space	when	possible.

If	the	repository	is	specified	as	a	local	path	(e.g.,	/path/to/repo),	this
is	the	default,	and	--local	is	essentially	a	no-op.	If	the	repository	is
specified	as	a	URL,	then	this	flag	is	ignored	(and	we	never	use	the

local	optimizations).	Specifying	--no-local	will	override	the	default
when	/path/to/repo	is	given,	using	the	regular	Git	transport	instead.

--no-hardlinks
Force	the	cloning	process	from	a	repository	on	a	local	filesystem	to
copy	the	files	under	the	.git/objects	directory	instead	of	using
hardlinks.	This	may	be	desirable	if	you	are	trying	to	make	a	back-up
of	your	repository.

--shared	,	-s

When	the	repository	to	clone	is	on	the	local	machine,	instead	of
using	hard	links,	automatically	setup	.git/objects/info/alternates	to
share	the	objects	with	the	source	repository.	The	resulting	repository
starts	out	without	any	object	of	its	own.

NOTE:	this	is	a	possibly	dangerous	operation;	do	not	use	it	unless
you	understand	what	it	does.	If	you	clone	your	repository	using	this
option	and	then	delete	branches	(or	use	any	other	Git	command	that
makes	any	existing	commit	unreferenced)	in	the	source	repository,
some	objects	may	become	unreferenced	(or	dangling).	These
objects	may	be	removed	by	normal	Git	operations	(such	as	git
commit)	which	automatically	call	git	gc	--auto.	(See	Section	G.3.53,
“git-gc(1)”.)	If	these	objects	are	removed	and	were	referenced	by	the
cloned	repository,	then	the	cloned	repository	will	become	corrupt.

Note	that	running	git	repack	without	the	-l	option	in	a	repository
cloned	with	-s	will	copy	objects	from	the	source	repository	into	a
pack	in	the	cloned	repository,	removing	the	disk	space	savings	of
clone	-s.	It	is	safe,	however,	to	run	git	gc,	which	uses	the	-l	option	by
default.

If	you	want	to	break	the	dependency	of	a	repository	cloned	with	-s	on
its	source	repository,	you	can	simply	run	git	repack	-a	to	copy	all
objects	from	the	source	repository	into	a	pack	in	the	cloned
repository.

--reference	<repository>

If	the	reference	repository	is	on	the	local	machine,	automatically
setup	.git/objects/info/alternates	to	obtain	objects	from	the	reference
repository.	Using	an	already	existing	repository	as	an	alternate	will
require	fewer	objects	to	be	copied	from	the	repository	being	cloned,
reducing	network	and	local	storage	costs.

NOTE:	see	the	NOTE	for	the	--shared	option,	and	also	the	--
dissociate	option.

--dissociate
Borrow	the	objects	from	reference	repositories	specified	with	the	--
reference	options	only	to	reduce	network	transfer,	and	stop
borrowing	from	them	after	a	clone	is	made	by	making	necessary
local	copies	of	borrowed	objects.	This	option	can	also	be	used	when
cloning	locally	from	a	repository	that	already	borrows	objects	from
another	repository--the	new	repository	will	borrow	objects	from	the
same	repository,	and	this	option	can	be	used	to	stop	the	borrowing.

--quiet	,	-q
Operate	quietly.	Progress	is	not	reported	to	the	standard	error
stream.

--verbose	,	-v
Run	verbosely.	Does	not	affect	the	reporting	of	progress	status	to	the
standard	error	stream.

--progress
Progress	status	is	reported	on	the	standard	error	stream	by	default
when	it	is	attached	to	a	terminal,	unless	-q	is	specified.	This	flag
forces	progress	status	even	if	the	standard	error	stream	is	not
directed	to	a	terminal.

--no-checkout	,	-n
No	checkout	of	HEAD	is	performed	after	the	clone	is	complete.

--bare
Make	a	bare	Git	repository.	That	is,	instead	of	creating	<directory>
and	placing	the	administrative	files	in	<directory>/.git,	make	the
<directory>	itself	the	$GIT_DIR.	This	obviously	implies	the	-n
because	there	is	nowhere	to	check	out	the	working	tree.	Also	the
branch	heads	at	the	remote	are	copied	directly	to	corresponding
local	branch	heads,	without	mapping	them	to	refs/remotes/origin/.

When	this	option	is	used,	neither	remote-tracking	branches	nor	the
related	configuration	variables	are	created.

--mirror
Set	up	a	mirror	of	the	source	repository.	This	implies	--bare.
Compared	to	--bare,	--mirror	not	only	maps	local	branches	of	the
source	to	local	branches	of	the	target,	it	maps	all	refs	(including
remote-tracking	branches,	notes	etc.)	and	sets	up	a	refspec
configuration	such	that	all	these	refs	are	overwritten	by	a	git	remote
update	in	the	target	repository.

--origin	<name>	,	-o	<name>
Instead	of	using	the	remote	name	origin	to	keep	track	of	the
upstream	repository,	use	<name>.

--branch	<name>	,	-b	<name>
Instead	of	pointing	the	newly	created	HEAD	to	the	branch	pointed	to
by	the	cloned	repository's	HEAD,	point	to	<name>	branch	instead.	In
a	non-bare	repository,	this	is	the	branch	that	will	be	checked	out.	--
branch	can	also	take	tags	and	detaches	the	HEAD	at	that	commit	in
the	resulting	repository.

--upload-pack	<upload-pack>	,	-u	<upload-pack>
When	given,	and	the	repository	to	clone	from	is	accessed	via	ssh,
this	specifies	a	non-default	path	for	the	command	run	on	the	other
end.

--template=<template_directory>
Specify	the	directory	from	which	templates	will	be	used;	(See	the
"TEMPLATE	DIRECTORY"	section	of	Section	G.3.65,	“git-init(1)”.)

--config	<key>=<value>	,	-c	<key>=<value>
Set	a	configuration	variable	in	the	newly-created	repository;	this
takes	effect	immediately	after	the	repository	is	initialized,	but	before
the	remote	history	is	fetched	or	any	files	checked	out.	The	key	is	in
the	same	format	as	expected	by	Section	G.3.27,	“git-config(1)”	(e.g.,
core.eol=true).	If	multiple	values	are	given	for	the	same	key,	each
value	will	be	written	to	the	config	file.	This	makes	it	safe,	for
example,	to	add	additional	fetch	refspecs	to	the	origin	remote.

--depth	<depth>
Create	a	shallow	clone	with	a	history	truncated	to	the	specified
number	of	commits.	Implies	--single-branch	unless	--no-single-
branch	is	given	to	fetch	the	histories	near	the	tips	of	all	branches.

--[no-]single-branch
Clone	only	the	history	leading	to	the	tip	of	a	single	branch,	either
specified	by	the	--branch	option	or	the	primary	branch	remote's
HEAD	points	at.	Further	fetches	into	the	resulting	repository	will	only
update	the	remote-tracking	branch	for	the	branch	this	option	was
used	for	the	initial	cloning.	If	the	HEAD	at	the	remote	did	not	point	at
any	branch	when	--single-branch	clone	was	made,	no	remote-
tracking	branch	is	created.

--recursive	,	--recurse-submodules
After	the	clone	is	created,	initialize	all	submodules	within,	using	their
default	settings.	This	is	equivalent	to	running	git	submodule	update	--
init	--recursive	immediately	after	the	clone	is	finished.	This	option	is
ignored	if	the	cloned	repository	does	not	have	a	worktree/checkout
(i.e.	if	any	of	--no-checkout/-n,	--bare,	or	--mirror	is	given)

--separate-git-dir=<git	dir>
Instead	of	placing	the	cloned	repository	where	it	is	supposed	to	be,
place	the	cloned	repository	at	the	specified	directory,	then	make	a
filesystem-agnostic	Git	symbolic	link	to	there.	The	result	is	Git
repository	can	be	separated	from	working	tree.

-j	<n>	,	--jobs	<n>
The	number	of	submodules	fetched	at	the	same	time.	Defaults	to	the
submodule.fetchJobs	option.

<repository>
The	(possibly	remote)	repository	to	clone	from.	See	the	URLS
section	below	for	more	information	on	specifying	repositories.

<directory>
The	name	of	a	new	directory	to	clone	into.	The	"humanish"	part	of
the	source	repository	is	used	if	no	directory	is	explicitly	given	(repo
for	/path/to/repo.git	and	foo	for	host.xz:foo/.git).	Cloning	into	an
existing	directory	is	only	allowed	if	the	directory	is	empty.

GIT	URLS

In	general,	URLs	contain	information	about	the	transport	protocol,	the
address	of	the	remote	server,	and	the	path	to	the	repository.	Depending
on	the	transport	protocol,	some	of	this	information	may	be	absent.

Git	supports	ssh,	git,	http,	and	https	protocols	(in	addition,	ftp,	and	ftps
can	be	used	for	fetching,	but	this	is	inefficient	and	deprecated;	do	not	use
it).

The	native	transport	(i.e.	git://	URL)	does	no	authentication	and	should	be
used	with	caution	on	unsecured	networks.

The	following	syntaxes	may	be	used	with	them:

ssh://[user@]host.xz[:port]/path/to/repo.git/
git://host.xz[:port]/path/to/repo.git/
http[s]://host.xz[:port]/path/to/repo.git/
ftp[s]://host.xz[:port]/path/to/repo.git/

An	alternative	scp-like	syntax	may	also	be	used	with	the	ssh	protocol:

[user@]host.xz:path/to/repo.git/

This	syntax	is	only	recognized	if	there	are	no	slashes	before	the	first
colon.	This	helps	differentiate	a	local	path	that	contains	a	colon.	For
example	the	local	path	foo:bar	could	be	specified	as	an	absolute	path	or
./foo:bar	to	avoid	being	misinterpreted	as	an	ssh	url.

The	ssh	and	git	protocols	additionally	support	~username	expansion:

ssh://[user@]host.xz[:port]/~[user]/path/to/repo.git/
git://host.xz[:port]/~[user]/path/to/repo.git/
[user@]host.xz:/~[user]/path/to/repo.git/

For	local	repositories,	also	supported	by	Git	natively,	the	following
syntaxes	may	be	used:

/path/to/repo.git/
file:///path/to/repo.git/

These	two	syntaxes	are	mostly	equivalent,	except	the	former	implies	--
local	option.

When	Git	doesn't	know	how	to	handle	a	certain	transport	protocol,	it

attempts	to	use	the	remote-<transport>	remote	helper,	if	one	exists.	To
explicitly	request	a	remote	helper,	the	following	syntax	may	be	used:

<transport>::<address>

where	<address>	may	be	a	path,	a	server	and	path,	or	an	arbitrary	URL-
like	string	recognized	by	the	specific	remote	helper	being	invoked.	See
Section	G.4.10,	“gitremote-helpers(1)”	for	details.

If	there	are	a	large	number	of	similarly-named	remote	repositories	and
you	want	to	use	a	different	format	for	them	(such	that	the	URLs	you	use
will	be	rewritten	into	URLs	that	work),	you	can	create	a	configuration
section	of	the	form:

								[url	"<actual	url	base>"]

																insteadOf	=	<other	url	base>

For	example,	with	this:

								[url	"git://git.host.xz/"]

																insteadOf	=	host.xz:/path/to/

																insteadOf	=	work:

a	URL	like	"work:repo.git"	or	like	"host.xz:/path/to/repo.git"	will	be
rewritten	in	any	context	that	takes	a	URL	to	be	"git://git.host.xz/repo.git".

If	you	want	to	rewrite	URLs	for	push	only,	you	can	create	a	configuration
section	of	the	form:

								[url	"<actual	url	base>"]

																pushInsteadOf	=	<other	url	base>

For	example,	with	this:

								[url	"ssh://example.org/"]

																pushInsteadOf	=	git://example.org/

a	URL	like	"git://example.org/path/to/repo.git"	will	be	rewritten	to
"ssh://example.org/path/to/repo.git"	for	pushes,	but	pulls	will	still	use	the
original	URL.

Examples

Clone	from	upstream:

$	git	clone	git://git.kernel.org/pub/scm/.../linux.git	my-linux

$	cd	my-linux

$	make

Make	a	local	clone	that	borrows	from	the	current	directory,	without
checking	things	out:

$	git	clone	-l	-s	-n	.	../copy

$	cd	../copy

$	git	show-branch

Clone	from	upstream	while	borrowing	from	an	existing	local
directory:

$	git	clone	--reference	/git/linux.git	\

								git://git.kernel.org/pub/scm/.../linux.git	\

								my-linux

$	cd	my-linux

Create	a	bare	repository	to	publish	your	changes	to	the	public:

$	git	clone	--bare	-l	/home/proj/.git	/pub/scm/proj.git

GIT

Part	of	the	Section	G.3.1,	“git(1)”	suite

G.3.24.	git-column(1)

NAME

git-column	-	Display	data	in	columns

SYNOPSIS

git	column	[--command=<name>]	[--[raw-]mode=<mode>]	[--width=

<width>]

													[--indent=<string>]	[--nl=<string>]	[--padding=

<n>]

DESCRIPTION

This	command	formats	its	input	into	multiple	columns.

OPTIONS

--command=<name>
Look	up	layout	mode	using	configuration	variable	column.<name>
and	column.ui.

--mode=<mode>
Specify	layout	mode.	See	configuration	variable	column.ui	for	option
syntax.

--raw-mode=<n>
Same	as	--mode	but	take	mode	encoded	as	a	number.	This	is	mainly
used	by	other	commands	that	have	already	parsed	layout	mode.

--width=<width>
Specify	the	terminal	width.	By	default	git	column	will	detect	the
terminal	width,	or	fall	back	to	80	if	it	is	unable	to	do	so.

--indent=<string>
String	to	be	printed	at	the	beginning	of	each	line.

--nl=<N>
String	to	be	printed	at	the	end	of	each	line,	including	newline
character.

--padding=<N>
The	number	of	spaces	between	columns.	One	space	by	default.

GIT

Part	of	the	Section	G.3.1,	“git(1)”	suite

G.3.25.	git-commit-tree(1)

NAME

git-commit-tree	-	Create	a	new	commit	object

SYNOPSIS

git	commit-tree	<tree>	[(-p	<parent>)…]

git	commit-tree	[(-p	<parent>)…]	[-S[<keyid>]]	[(-

m	<message>)…]

																		[(-F	<file>)…]	<tree>

DESCRIPTION

This	is	usually	not	what	an	end	user	wants	to	run	directly.	See
Section	G.3.26,	“git-commit(1)”	instead.

Creates	a	new	commit	object	based	on	the	provided	tree	object	and
emits	the	new	commit	object	id	on	stdout.	The	log	message	is	read	from
the	standard	input,	unless	-m	or	-F	options	are	given.

A	commit	object	may	have	any	number	of	parents.	With	exactly	one
parent,	it	is	an	ordinary	commit.	Having	more	than	one	parent	makes	the
commit	a	merge	between	several	lines	of	history.	Initial	(root)	commits
have	no	parents.

While	a	tree	represents	a	particular	directory	state	of	a	working	directory,
a	commit	represents	that	state	in	"time",	and	explains	how	to	get	there.

Normally	a	commit	would	identify	a	new	"HEAD"	state,	and	while	Git
doesn't	care	where	you	save	the	note	about	that	state,	in	practice	we
tend	to	just	write	the	result	to	the	file	that	is	pointed	at	by	.git/HEAD,	so
that	we	can	always	see	what	the	last	committed	state	was.

OPTIONS

<tree>
An	existing	tree	object

-p	<parent>
Each	-p	indicates	the	id	of	a	parent	commit	object.

-m	<message>
A	paragraph	in	the	commit	log	message.	This	can	be	given	more
than	once	and	each	<message>	becomes	its	own	paragraph.

-F	<file>
Read	the	commit	log	message	from	the	given	file.	Use	-	to	read	from
the	standard	input.

-S[<keyid>]	,	--gpg-sign[=<keyid>]
GPG-sign	commits.	The	keyid	argument	is	optional	and	defaults	to
the	committer	identity;	if	specified,	it	must	be	stuck	to	the	option
without	a	space.

--no-gpg-sign
Countermand	commit.gpgSign	configuration	variable	that	is	set	to
force	each	and	every	commit	to	be	signed.

Commit	Information

A	commit	encapsulates:

all	parent	object	ids
author	name,	email	and	date
committer	name	and	email	and	the	commit	time.

While	parent	object	ids	are	provided	on	the	command	line,	author	and
committer	information	is	taken	from	the	following	environment	variables,
if	set:

GIT_AUTHOR_NAME

GIT_AUTHOR_EMAIL

GIT_AUTHOR_DATE

GIT_COMMITTER_NAME

GIT_COMMITTER_EMAIL

GIT_COMMITTER_DATE

(nb	"<",	">"	and	"\n"s	are	stripped)

In	case	(some	of)	these	environment	variables	are	not	set,	the
information	is	taken	from	the	configuration	items	user.name	and
user.email,	or,	if	not	present,	the	environment	variable	EMAIL,	or,	if	that	is
not	set,	system	user	name	and	the	hostname	used	for	outgoing	mail
(taken	from	/etc/mailname	and	falling	back	to	the	fully	qualified	hostname
when	that	file	does	not	exist).

A	commit	comment	is	read	from	stdin.	If	a	changelog	entry	is	not
provided	via	"<"	redirection,	git	commit-tree	will	just	wait	for	one	to	be
entered	and	terminated	with	^D.

DATE	FORMATS

The	GIT_AUTHOR_DATE,	GIT_COMMITTER_DATE	environment
variables	support	the	following	date	formats:

Git	internal	format
It	is	<unix	timestamp>	<time	zone	offset>,	where	<unix	timestamp>
is	the	number	of	seconds	since	the	UNIX	epoch.	<time	zone	offset>
is	a	positive	or	negative	offset	from	UTC.	For	example	CET	(which	is
2	hours	ahead	UTC)	is	+0200.

RFC	2822
The	standard	email	format	as	described	by	RFC	2822,	for	example
Thu,	07	Apr	2005	22:13:13	+0200.

ISO	8601

Time	and	date	specified	by	the	ISO	8601	standard,	for	example
2005-04-07T22:13:13.	The	parser	accepts	a	space	instead	of	the	T
character	as	well.

Note

In	addition,	the	date	part	is	accepted	in	the	following
formats:	YYYY.MM.DD,	MM/DD/YYYY	and
DD.MM.YYYY.

Discussion

Git	is	to	some	extent	character	encoding	agnostic.

The	contents	of	the	blob	objects	are	uninterpreted	sequences	of
bytes.	There	is	no	encoding	translation	at	the	core	level.

Path	names	are	encoded	in	UTF-8	normalization	form	C.	This
applies	to	tree	objects,	the	index	file,	ref	names,	as	well	as	path
names	in	command	line	arguments,	environment	variables	and
config	files	(.git/config	(see	Section	G.3.27,	“git-config(1)”),
Section	G.4.5,	“gitignore(5)”,	Section	G.4.2,	“gitattributes(5)”	and
Section	G.4.8,	“gitmodules(5)”).

Note	that	Git	at	the	core	level	treats	path	names	simply	as
sequences	of	non-NUL	bytes,	there	are	no	path	name	encoding
conversions	(except	on	Mac	and	Windows).	Therefore,	using	non-
ASCII	path	names	will	mostly	work	even	on	platforms	and	file
systems	that	use	legacy	extended	ASCII	encodings.	However,
repositories	created	on	such	systems	will	not	work	properly	on	UTF-
8-based	systems	(e.g.	Linux,	Mac,	Windows)	and	vice	versa.
Additionally,	many	Git-based	tools	simply	assume	path	names	to	be
UTF-8	and	will	fail	to	display	other	encodings	correctly.

Commit	log	messages	are	typically	encoded	in	UTF-8,	but	other
extended	ASCII	encodings	are	also	supported.	This	includes	ISO-
8859-x,	CP125x	and	many	others,	but	not	UTF-16/32,	EBCDIC	and
CJK	multi-byte	encodings	(GBK,	Shift-JIS,	Big5,	EUC-x,	CP9xx	etc.).

Although	we	encourage	that	the	commit	log	messages	are	encoded	in
UTF-8,	both	the	core	and	Git	Porcelain	are	designed	not	to	force	UTF-8
on	projects.	If	all	participants	of	a	particular	project	find	it	more

convenient	to	use	legacy	encodings,	Git	does	not	forbid	it.	However,
there	are	a	few	things	to	keep	in	mind.

1.	 git	commit	and	git	commit-tree	issues	a	warning	if	the	commit	log
message	given	to	it	does	not	look	like	a	valid	UTF-8	string,	unless
you	explicitly	say	your	project	uses	a	legacy	encoding.	The	way	to
say	this	is	to	have	i18n.commitencoding	in	.git/config	file,	like	this:

[i18n]

								commitencoding	=	ISO-8859-1

Commit	objects	created	with	the	above	setting	record	the	value	of
i18n.commitencoding	in	its	encoding	header.	This	is	to	help	other
people	who	look	at	them	later.	Lack	of	this	header	implies	that	the
commit	log	message	is	encoded	in	UTF-8.

2.	 git	log,	git	show,	git	blame	and	friends	look	at	the	encoding	header	of
a	commit	object,	and	try	to	re-code	the	log	message	into	UTF-8
unless	otherwise	specified.	You	can	specify	the	desired	output
encoding	with	i18n.logoutputencoding	in	.git/config	file,	like	this:

[i18n]

								logoutputencoding	=	ISO-8859-1

If	you	do	not	have	this	configuration	variable,	the	value	of
i18n.commitencoding	is	used	instead.

Note	that	we	deliberately	chose	not	to	re-code	the	commit	log	message
when	a	commit	is	made	to	force	UTF-8	at	the	commit	object	level,
because	re-coding	to	UTF-8	is	not	necessarily	a	reversible	operation.

FILES

/etc/mailname

SEE	ALSO

Section	G.3.149,	“git-write-tree(1)”

GIT

Part	of	the	Section	G.3.1,	“git(1)”	suite

G.3.26.	git-commit(1)

NAME

git-commit	-	Record	changes	to	the	repository

SYNOPSIS

git	commit	[-a	|	--interactive	|	--patch]	[-s]	[-v]	[-

u<mode>]	[--amend]

											[--dry-run]	[(-c	|	-C	|	--fixup	|	--

squash)	<commit>]

											[-F	<file>	|	-m	<msg>]	[--reset-author]	[--allow-

empty]

											[--allow-empty-message]	[--no-verify]	[-e]	[--

author=<author>]

											[--date=<date>]	[--cleanup=<mode>]	[--[no-]status]

											[-i	|	-o]	[-S[<keyid>]]	[--]	[<file>…]

DESCRIPTION

Stores	the	current	contents	of	the	index	in	a	new	commit	along	with	a	log
message	from	the	user	describing	the	changes.

The	content	to	be	added	can	be	specified	in	several	ways:

1.	 by	using	git	add	to	incrementally	"add"	changes	to	the	index	before
using	the	commit	command	(Note:	even	modified	files	must	be
"added");

2.	 by	using	git	rm	to	remove	files	from	the	working	tree	and	the	index,
again	before	using	the	commit	command;

3.	 by	listing	files	as	arguments	to	the	commit	command,	in	which	case

the	commit	will	ignore	changes	staged	in	the	index,	and	instead
record	the	current	content	of	the	listed	files	(which	must	already	be
known	to	Git);

4.	 by	using	the	-a	switch	with	the	commit	command	to	automatically
"add"	changes	from	all	known	files	(i.e.	all	files	that	are	already	listed
in	the	index)	and	to	automatically	"rm"	files	in	the	index	that	have
been	removed	from	the	working	tree,	and	then	perform	the	actual
commit;

5.	 by	using	the	--interactive	or	--patch	switches	with	the	commit
command	to	decide	one	by	one	which	files	or	hunks	should	be	part
of	the	commit,	before	finalizing	the	operation.	See	the	Interactive
Mode	section	of	Section	G.3.2,	“git-add(1)”	to	learn	how	to	operate
these	modes.

The	--dry-run	option	can	be	used	to	obtain	a	summary	of	what	is	included
by	any	of	the	above	for	the	next	commit	by	giving	the	same	set	of
parameters	(options	and	paths).

If	you	make	a	commit	and	then	find	a	mistake	immediately	after	that,	you
can	recover	from	it	with	git	reset.

OPTIONS

-a	,	--all
Tell	the	command	to	automatically	stage	files	that	have	been
modified	and	deleted,	but	new	files	you	have	not	told	Git	about	are
not	affected.

-p	,	--patch
Use	the	interactive	patch	selection	interface	to	chose	which	changes
to	commit.	See	Section	G.3.2,	“git-add(1)”	for	details.

-C	<commit>	,	--reuse-message=<commit>
Take	an	existing	commit	object,	and	reuse	the	log	message	and	the
authorship	information	(including	the	timestamp)	when	creating	the
commit.

-c	<commit>	,	--reedit-message=<commit>
Like	-C,	but	with	-c	the	editor	is	invoked,	so	that	the	user	can	further
edit	the	commit	message.

--fixup=<commit>
Construct	a	commit	message	for	use	with	rebase	--autosquash.	The
commit	message	will	be	the	subject	line	from	the	specified	commit
with	a	prefix	of	"fixup!	".	See	Section	G.3.99,	“git-rebase(1)”	for
details.

--squash=<commit>
Construct	a	commit	message	for	use	with	rebase	--autosquash.	The
commit	message	subject	line	is	taken	from	the	specified	commit	with
a	prefix	of	"squash!	".	Can	be	used	with	additional	commit	message
options	(-m/-c/-C/-F).	See	Section	G.3.99,	“git-rebase(1)”	for	details.

--reset-author
When	used	with	-C/-c/--amend	options,	or	when	committing	after	a	a
conflicting	cherry-pick,	declare	that	the	authorship	of	the	resulting
commit	now	belongs	to	the	committer.	This	also	renews	the	author
timestamp.

--short
When	doing	a	dry-run,	give	the	output	in	the	short-format.	See
Section	G.3.129,	“git-status(1)”	for	details.	Implies	--dry-run.

--branch
Show	the	branch	and	tracking	info	even	in	short-format.

--porcelain
When	doing	a	dry-run,	give	the	output	in	a	porcelain-ready	format.
See	Section	G.3.129,	“git-status(1)”	for	details.	Implies	--dry-run.

--long
When	doing	a	dry-run,	give	the	output	in	a	the	long-format.	Implies	--
dry-run.

-z	,	--null
When	showing	short	or	porcelain	status	output,	terminate	entries	in
the	status	output	with	NUL,	instead	of	LF.	If	no	format	is	given,
implies	the	--porcelain	output	format.

-F	<file>	,	--file=<file>
Take	the	commit	message	from	the	given	file.	Use	-	to	read	the
message	from	the	standard	input.

--author=<author>
Override	the	commit	author.	Specify	an	explicit	author	using	the
standard	A	U	Thor	<author@example.com>	format.	Otherwise
<author>	is	assumed	to	be	a	pattern	and	is	used	to	search	for	an

existing	commit	by	that	author	(i.e.	rev-list	--all	-i	--author=<author>);
the	commit	author	is	then	copied	from	the	first	such	commit	found.

--date=<date>
Override	the	author	date	used	in	the	commit.

-m	<msg>	,	--message=<msg>
Use	the	given	<msg>	as	the	commit	message.	If	multiple	-m	options
are	given,	their	values	are	concatenated	as	separate	paragraphs.

-t	<file>	,	--template=<file>
When	editing	the	commit	message,	start	the	editor	with	the	contents
in	the	given	file.	The	commit.template	configuration	variable	is	often
used	to	give	this	option	implicitly	to	the	command.	This	mechanism
can	be	used	by	projects	that	want	to	guide	participants	with	some
hints	on	what	to	write	in	the	message	in	what	order.	If	the	user	exits
the	editor	without	editing	the	message,	the	commit	is	aborted.	This
has	no	effect	when	a	message	is	given	by	other	means,	e.g.	with	the
-m	or	-F	options.

-s	,	--signoff
Add	Signed-off-by	line	by	the	committer	at	the	end	of	the	commit	log
message.	The	meaning	of	a	signoff	depends	on	the	project,	but	it
typically	certifies	that	committer	has	the	rights	to	submit	this	work
under	the	same	license	and	agrees	to	a	Developer	Certificate	of
Origin	(see	http://developercertificate.org/	for	more	information).

-n	,	--no-verify
This	option	bypasses	the	pre-commit	and	commit-msg	hooks.	See
also	Section	G.4.6,	“githooks(5)”.

--allow-empty
Usually	recording	a	commit	that	has	the	exact	same	tree	as	its	sole
parent	commit	is	a	mistake,	and	the	command	prevents	you	from
making	such	a	commit.	This	option	bypasses	the	safety,	and	is
primarily	for	use	by	foreign	SCM	interface	scripts.

--allow-empty-message
Like	--allow-empty	this	command	is	primarily	for	use	by	foreign	SCM
interface	scripts.	It	allows	you	to	create	a	commit	with	an	empty
commit	message	without	using	plumbing	commands	like
Section	G.3.25,	“git-commit-tree(1)”.

--cleanup=<mode>

http://developercertificate.org/

This	option	determines	how	the	supplied	commit	message	should	be
cleaned	up	before	committing.	The	<mode>	can	be	strip,
whitespace,	verbatim,	scissors	or	default.

strip
Strip	leading	and	trailing	empty	lines,	trailing	whitespace,
commentary	and	collapse	consecutive	empty	lines.

whitespace
Same	as	strip	except	#commentary	is	not	removed.

verbatim
Do	not	change	the	message	at	all.

scissors
Same	as	whitespace,	except	that	everything	from	(and
including)	the	line	"#	------------------------	>8	------------------------"	is
truncated	if	the	message	is	to	be	edited.	"#"	can	be	customized
with	core.commentChar.

default
Same	as	strip	if	the	message	is	to	be	edited.	Otherwise
whitespace.

The	default	can	be	changed	by	the	commit.cleanup	configuration
variable	(see	Section	G.3.27,	“git-config(1)”).

-e	,	--edit
The	message	taken	from	file	with	-F,	command	line	with	-m,	and
from	commit	object	with	-C	are	usually	used	as	the	commit	log
message	unmodified.	This	option	lets	you	further	edit	the	message
taken	from	these	sources.

--no-edit
Use	the	selected	commit	message	without	launching	an	editor.	For
example,	git	commit	--amend	--no-edit	amends	a	commit	without
changing	its	commit	message.

--amend

Replace	the	tip	of	the	current	branch	by	creating	a	new	commit.	The
recorded	tree	is	prepared	as	usual	(including	the	effect	of	the	-i	and	-
o	options	and	explicit	pathspec),	and	the	message	from	the	original
commit	is	used	as	the	starting	point,	instead	of	an	empty	message,

when	no	other	message	is	specified	from	the	command	line	via
options	such	as	-m,	-F,	-c,	etc.	The	new	commit	has	the	same
parents	and	author	as	the	current	one	(the	--reset-author	option	can
countermand	this).

It	is	a	rough	equivalent	for:

								$	git	reset	--soft	HEAD^

								$...	do	something	else	to	come	up	with	the	right	tree	...

								$	git	commit	-c	ORIG_HEAD

but	can	be	used	to	amend	a	merge	commit.

You	should	understand	the	implications	of	rewriting	history	if	you
amend	a	commit	that	has	already	been	published.	(See	the
"RECOVERING	FROM	UPSTREAM	REBASE"	section	in
Section	G.3.99,	“git-rebase(1)”.)

--no-post-rewrite
Bypass	the	post-rewrite	hook.

-i	,	--include
Before	making	a	commit	out	of	staged	contents	so	far,	stage	the
contents	of	paths	given	on	the	command	line	as	well.	This	is	usually
not	what	you	want	unless	you	are	concluding	a	conflicted	merge.

-o	,	--only
Make	a	commit	by	taking	the	updated	working	tree	contents	of	the
paths	specified	on	the	command	line,	disregarding	any	contents	that
have	been	staged	for	other	paths.	This	is	the	default	mode	of
operation	of	git	commit	if	any	paths	are	given	on	the	command	line,
in	which	case	this	option	can	be	omitted.	If	this	option	is	specified
together	with	--amend,	then	no	paths	need	to	be	specified,	which
can	be	used	to	amend	the	last	commit	without	committing	changes
that	have	already	been	staged.

-u[<mode>]	,	--untracked-files[=<mode>]

Show	untracked	files.

The	mode	parameter	is	optional	(defaults	to	all),	and	is	used	to
specify	the	handling	of	untracked	files;	when	-u	is	not	used,	the
default	is	normal,	i.e.	show	untracked	files	and	directories.

The	possible	options	are:

no	-	Show	no	untracked	files
normal	-	Shows	untracked	files	and	directories

all	-	Also	shows	individual	files	in	untracked	directories.

The	default	can	be	changed	using	the
status.showUntrackedFiles	configuration	variable	documented
in	Section	G.3.27,	“git-config(1)”.

-v	,	--verbose

Show	unified	diff	between	the	HEAD	commit	and	what	would	be
committed	at	the	bottom	of	the	commit	message	template	to	help	the
user	describe	the	commit	by	reminding	what	changes	the	commit
has.	Note	that	this	diff	output	doesn't	have	its	lines	prefixed	with	#.
This	diff	will	not	be	a	part	of	the	commit	message.

If	specified	twice,	show	in	addition	the	unified	diff	between	what
would	be	committed	and	the	worktree	files,	i.e.	the	unstaged
changes	to	tracked	files.

-q	,	--quiet
Suppress	commit	summary	message.

--dry-run
Do	not	create	a	commit,	but	show	a	list	of	paths	that	are	to	be
committed,	paths	with	local	changes	that	will	be	left	uncommitted
and	paths	that	are	untracked.

--status
Include	the	output	of	Section	G.3.129,	“git-status(1)”	in	the	commit
message	template	when	using	an	editor	to	prepare	the	commit
message.	Defaults	to	on,	but	can	be	used	to	override	configuration
variable	commit.status.

--no-status
Do	not	include	the	output	of	Section	G.3.129,	“git-status(1)”	in	the
commit	message	template	when	using	an	editor	to	prepare	the
default	commit	message.

-S[<keyid>]	,	--gpg-sign[=<keyid>]
GPG-sign	commits.	The	keyid	argument	is	optional	and	defaults	to
the	committer	identity;	if	specified,	it	must	be	stuck	to	the	option
without	a	space.

--no-gpg-sign
Countermand	commit.gpgSign	configuration	variable	that	is	set	to
force	each	and	every	commit	to	be	signed.

--
Do	not	interpret	any	more	arguments	as	options.

<file>…
When	files	are	given	on	the	command	line,	the	command	commits
the	contents	of	the	named	files,	without	recording	the	changes
already	staged.	The	contents	of	these	files	are	also	staged	for	the
next	commit	on	top	of	what	have	been	staged	before.

DATE	FORMATS

The	GIT_AUTHOR_DATE,	GIT_COMMITTER_DATE	environment
variables	and	the	--date	option	support	the	following	date	formats:

Git	internal	format
It	is	<unix	timestamp>	<time	zone	offset>,	where	<unix	timestamp>
is	the	number	of	seconds	since	the	UNIX	epoch.	<time	zone	offset>
is	a	positive	or	negative	offset	from	UTC.	For	example	CET	(which	is
2	hours	ahead	UTC)	is	+0200.

RFC	2822
The	standard	email	format	as	described	by	RFC	2822,	for	example
Thu,	07	Apr	2005	22:13:13	+0200.

ISO	8601

Time	and	date	specified	by	the	ISO	8601	standard,	for	example
2005-04-07T22:13:13.	The	parser	accepts	a	space	instead	of	the	T
character	as	well.

Note

In	addition,	the	date	part	is	accepted	in	the	following
formats:	YYYY.MM.DD,	MM/DD/YYYY	and
DD.MM.YYYY.

EXAMPLES

When	recording	your	own	work,	the	contents	of	modified	files	in	your
working	tree	are	temporarily	stored	to	a	staging	area	called	the	"index"
with	git	add.	A	file	can	be	reverted	back,	only	in	the	index	but	not	in	the
working	tree,	to	that	of	the	last	commit	with	git	reset	HEAD	--	<file>,
which	effectively	reverts	git	add	and	prevents	the	changes	to	this	file	from
participating	in	the	next	commit.	After	building	the	state	to	be	committed
incrementally	with	these	commands,	git	commit	(without	any	pathname
parameter)	is	used	to	record	what	has	been	staged	so	far.	This	is	the
most	basic	form	of	the	command.	An	example:

$	edit	hello.c

$	git	rm	goodbye.c

$	git	add	hello.c

$	git	commit

Instead	of	staging	files	after	each	individual	change,	you	can	tell	git
commit	to	notice	the	changes	to	the	files	whose	contents	are	tracked	in
your	working	tree	and	do	corresponding	git	add	and	git	rm	for	you.	That
is,	this	example	does	the	same	as	the	earlier	example	if	there	is	no	other
change	in	your	working	tree:

$	edit	hello.c

$	rm	goodbye.c

$	git	commit	-a

The	command	git	commit	-a	first	looks	at	your	working	tree,	notices	that
you	have	modified	hello.c	and	removed	goodbye.c,	and	performs

necessary	git	add	and	git	rm	for	you.

After	staging	changes	to	many	files,	you	can	alter	the	order	the	changes
are	recorded	in,	by	giving	pathnames	to	git	commit.	When	pathnames	are
given,	the	command	makes	a	commit	that	only	records	the	changes
made	to	the	named	paths:

$	edit	hello.c	hello.h

$	git	add	hello.c	hello.h

$	edit	Makefile

$	git	commit	Makefile

This	makes	a	commit	that	records	the	modification	to	Makefile.	The
changes	staged	for	hello.c	and	hello.h	are	not	included	in	the	resulting
commit.	However,	their	changes	are	not	lost	--	they	are	still	staged	and
merely	held	back.	After	the	above	sequence,	if	you	do:

$	git	commit

this	second	commit	would	record	the	changes	to	hello.c	and	hello.h	as
expected.

After	a	merge	(initiated	by	git	merge	or	git	pull)	stops	because	of
conflicts,	cleanly	merged	paths	are	already	staged	to	be	committed	for
you,	and	paths	that	conflicted	are	left	in	unmerged	state.	You	would	have
to	first	check	which	paths	are	conflicting	with	git	status	and	after	fixing
them	manually	in	your	working	tree,	you	would	stage	the	result	as	usual
with	git	add:

$	git	status	|	grep	unmerged

unmerged:	hello.c

$	edit	hello.c

$	git	add	hello.c

After	resolving	conflicts	and	staging	the	result,	git	ls-files	-u	would	stop
mentioning	the	conflicted	path.	When	you	are	done,	run	git	commit	to
finally	record	the	merge:

$	git	commit

As	with	the	case	to	record	your	own	changes,	you	can	use	-a	option	to
save	typing.	One	difference	is	that	during	a	merge	resolution,	you	cannot
use	git	commit	with	pathnames	to	alter	the	order	the	changes	are
committed,	because	the	merge	should	be	recorded	as	a	single	commit.	In
fact,	the	command	refuses	to	run	when	given	pathnames	(but	see	-i
option).

DISCUSSION

Though	not	required,	it's	a	good	idea	to	begin	the	commit	message	with	a
single	short	(less	than	50	character)	line	summarizing	the	change,
followed	by	a	blank	line	and	then	a	more	thorough	description.	The	text
up	to	the	first	blank	line	in	a	commit	message	is	treated	as	the	commit
title,	and	that	title	is	used	throughout	Git.	For	example,	Section	G.3.50,
“git-format-patch(1)”	turns	a	commit	into	email,	and	it	uses	the	title	on	the
Subject	line	and	the	rest	of	the	commit	in	the	body.

Git	is	to	some	extent	character	encoding	agnostic.

The	contents	of	the	blob	objects	are	uninterpreted	sequences	of
bytes.	There	is	no	encoding	translation	at	the	core	level.

Path	names	are	encoded	in	UTF-8	normalization	form	C.	This
applies	to	tree	objects,	the	index	file,	ref	names,	as	well	as	path
names	in	command	line	arguments,	environment	variables	and
config	files	(.git/config	(see	Section	G.3.27,	“git-config(1)”),
Section	G.4.5,	“gitignore(5)”,	Section	G.4.2,	“gitattributes(5)”	and
Section	G.4.8,	“gitmodules(5)”).

Note	that	Git	at	the	core	level	treats	path	names	simply	as
sequences	of	non-NUL	bytes,	there	are	no	path	name	encoding
conversions	(except	on	Mac	and	Windows).	Therefore,	using	non-
ASCII	path	names	will	mostly	work	even	on	platforms	and	file
systems	that	use	legacy	extended	ASCII	encodings.	However,
repositories	created	on	such	systems	will	not	work	properly	on	UTF-

8-based	systems	(e.g.	Linux,	Mac,	Windows)	and	vice	versa.
Additionally,	many	Git-based	tools	simply	assume	path	names	to	be
UTF-8	and	will	fail	to	display	other	encodings	correctly.

Commit	log	messages	are	typically	encoded	in	UTF-8,	but	other
extended	ASCII	encodings	are	also	supported.	This	includes	ISO-
8859-x,	CP125x	and	many	others,	but	not	UTF-16/32,	EBCDIC	and
CJK	multi-byte	encodings	(GBK,	Shift-JIS,	Big5,	EUC-x,	CP9xx	etc.).

Although	we	encourage	that	the	commit	log	messages	are	encoded	in
UTF-8,	both	the	core	and	Git	Porcelain	are	designed	not	to	force	UTF-8
on	projects.	If	all	participants	of	a	particular	project	find	it	more
convenient	to	use	legacy	encodings,	Git	does	not	forbid	it.	However,
there	are	a	few	things	to	keep	in	mind.

1.	 git	commit	and	git	commit-tree	issues	a	warning	if	the	commit	log
message	given	to	it	does	not	look	like	a	valid	UTF-8	string,	unless
you	explicitly	say	your	project	uses	a	legacy	encoding.	The	way	to
say	this	is	to	have	i18n.commitencoding	in	.git/config	file,	like	this:

[i18n]

								commitencoding	=	ISO-8859-1

Commit	objects	created	with	the	above	setting	record	the	value	of
i18n.commitencoding	in	its	encoding	header.	This	is	to	help	other
people	who	look	at	them	later.	Lack	of	this	header	implies	that	the
commit	log	message	is	encoded	in	UTF-8.

2.	 git	log,	git	show,	git	blame	and	friends	look	at	the	encoding	header	of
a	commit	object,	and	try	to	re-code	the	log	message	into	UTF-8
unless	otherwise	specified.	You	can	specify	the	desired	output
encoding	with	i18n.logoutputencoding	in	.git/config	file,	like	this:

[i18n]

								logoutputencoding	=	ISO-8859-1

If	you	do	not	have	this	configuration	variable,	the	value	of

i18n.commitencoding	is	used	instead.

Note	that	we	deliberately	chose	not	to	re-code	the	commit	log	message
when	a	commit	is	made	to	force	UTF-8	at	the	commit	object	level,
because	re-coding	to	UTF-8	is	not	necessarily	a	reversible	operation.

ENVIRONMENT	AND	CONFIGURATION	VARIABLES

The	editor	used	to	edit	the	commit	log	message	will	be	chosen	from	the
GIT_EDITOR	environment	variable,	the	core.editor	configuration
variable,	the	VISUAL	environment	variable,	or	the	EDITOR	environment
variable	(in	that	order).	See	Section	G.3.142,	“git-var(1)”	for	details.

HOOKS

This	command	can	run	commit-msg,	prepare-commit-msg,	pre-commit,
and	post-commit	hooks.	See	Section	G.4.6,	“githooks(5)”	for	more
information.

FILES

$GIT_DIR/COMMIT_EDITMSG
This	file	contains	the	commit	message	of	a	commit	in	progress.	If	git
commit	exits	due	to	an	error	before	creating	a	commit,	any	commit
message	that	has	been	provided	by	the	user	(e.g.,	in	an	editor
session)	will	be	available	in	this	file,	but	will	be	overwritten	by	the
next	invocation	of	git	commit.

SEE	ALSO

Section	G.3.2,	“git-add(1)”,	Section	G.3.115,	“git-rm(1)”,	Section	G.3.84,
“git-mv(1)”,	Section	G.3.79,	“git-merge(1)”,	Section	G.3.25,	“git-commit-
tree(1)”

GIT

Part	of	the	Section	G.3.1,	“git(1)”	suite

G.3.27.	git-config(1)

NAME

git-config	-	Get	and	set	repository	or	global	options

SYNOPSIS

git	config	[<file-option>]	[type]	[--show-origin]	[-z|--

null]	name	[value	[value_regex]]

git	config	[<file-option>]	[type]	--add	name	value

git	config	[<file-option>]	[type]	--replace-

all	name	value	[value_regex]

git	config	[<file-option>]	[type]	[--show-origin]	[-z|--

null]	--get	name	[value_regex]

git	config	[<file-option>]	[type]	[--show-origin]	[-z|--

null]	--get-all	name	[value_regex]

git	config	[<file-option>]	[type]	[--show-origin]	[-z|--

null]	[--name-only]	--get-regexp	name_regex	[value_regex]

git	config	[<file-option>]	[type]	[-z|--null]	--get-

urlmatch	name	URL

git	config	[<file-option>]	--unset	name	[value_regex]

git	config	[<file-option>]	--unset-all	name	[value_regex]

git	config	[<file-option>]	--rename-section	old_name	new_name

git	config	[<file-option>]	--remove-section	name

git	config	[<file-option>]	[--show-origin]	[-z|--null]	[--

name-only]	-l	|	--list

git	config	[<file-option>]	--get-color	name	[default]

git	config	[<file-option>]	--get-colorbool	name	[stdout-is-

tty]

git	config	[<file-option>]	-e	|	--edit

DESCRIPTION

You	can	query/set/replace/unset	options	with	this	command.	The	name	is
actually	the	section	and	the	key	separated	by	a	dot,	and	the	value	will	be
escaped.

Multiple	lines	can	be	added	to	an	option	by	using	the	--add	option.	If	you
want	to	update	or	unset	an	option	which	can	occur	on	multiple	lines,	a
POSIX	regexp	value_regex	needs	to	be	given.	Only	the	existing	values
that	match	the	regexp	are	updated	or	unset.	If	you	want	to	handle	the
lines	that	do	not	match	the	regex,	just	prepend	a	single	exclamation
mark	in	front	(see	also	the	section	called	“EXAMPLES”).

The	type	specifier	can	be	either	--int	or	--bool,	to	make	git	config	ensure
that	the	variable(s)	are	of	the	given	type	and	convert	the	value	to	the
canonical	form	(simple	decimal	number	for	int,	a	"true"	or	"false"	string	for
bool),	or	--path,	which	does	some	path	expansion	(see	--path	below).	If
no	type	specifier	is	passed,	no	checks	or	transformations	are	performed
on	the	value.

When	reading,	the	values	are	read	from	the	system,	global	and
repository	local	configuration	files	by	default,	and	options	--system,	--
global,	--local	and	--file	<filename>	can	be	used	to	tell	the	command	to
read	from	only	that	location	(see	the	section	called	“FILES”).

When	writing,	the	new	value	is	written	to	the	repository	local	configuration
file	by	default,	and	options	--system,	--global,	--file	<filename>	can	be
used	to	tell	the	command	to	write	to	that	location	(you	can	say	--local	but
that	is	the	default).

This	command	will	fail	with	non-zero	status	upon	error.	Some	exit	codes
are:

The	config	file	is	invalid	(ret=3),
can	not	write	to	the	config	file	(ret=4),
no	section	or	name	was	provided	(ret=2),
the	section	or	key	is	invalid	(ret=1),
you	try	to	unset	an	option	which	does	not	exist	(ret=5),
you	try	to	unset/set	an	option	for	which	multiple	lines	match	(ret=5),
or
you	try	to	use	an	invalid	regexp	(ret=6).

On	success,	the	command	returns	the	exit	code	0.

OPTIONS

--replace-all
Default	behavior	is	to	replace	at	most	one	line.	This	replaces	all	lines
matching	the	key	(and	optionally	the	value_regex).

--add
Adds	a	new	line	to	the	option	without	altering	any	existing	values.
This	is	the	same	as	providing	^$	as	the	value_regex	in	--replace-all.

--get
Get	the	value	for	a	given	key	(optionally	filtered	by	a	regex	matching
the	value).	Returns	error	code	1	if	the	key	was	not	found	and	the	last
value	if	multiple	key	values	were	found.

--get-all
Like	get,	but	returns	all	values	for	a	multi-valued	key.

--get-regexp
Like	--get-all,	but	interprets	the	name	as	a	regular	expression	and
writes	out	the	key	names.	Regular	expression	matching	is	currently
case-sensitive	and	done	against	a	canonicalized	version	of	the	key
in	which	section	and	variable	names	are	lowercased,	but	subsection
names	are	not.

--get-urlmatch	name	URL
When	given	a	two-part	name	section.key,	the	value	for	section.
<url>.key	whose	<url>	part	matches	the	best	to	the	given	URL	is
returned	(if	no	such	key	exists,	the	value	for	section.key	is	used	as	a
fallback).	When	given	just	the	section	as	name,	do	so	for	all	the	keys
in	the	section	and	list	them.	Returns	error	code	1	if	no	value	is	found.

--global

For	writing	options:	write	to	global	~/.gitconfig	file	rather	than	the
repository	.git/config,	write	to	$XDG_CONFIG_HOME/git/config	file	if
this	file	exists	and	the	~/.gitconfig	file	doesn't.

For	reading	options:	read	only	from	global	~/.gitconfig	and	from
$XDG_CONFIG_HOME/git/config	rather	than	from	all	available	files.

See	also	the	section	called	“FILES”.

--system

For	writing	options:	write	to	system-wide	$(prefix)/etc/gitconfig	rather
than	the	repository	.git/config.

For	reading	options:	read	only	from	system-wide
$(prefix)/etc/gitconfig	rather	than	from	all	available	files.

See	also	the	section	called	“FILES”.

--local

For	writing	options:	write	to	the	repository	.git/config	file.	This	is	the
default	behavior.

For	reading	options:	read	only	from	the	repository	.git/config	rather
than	from	all	available	files.

See	also	the	section	called	“FILES”.

-f	config-file	,	--file	config-file
Use	the	given	config	file	instead	of	the	one	specified	by
GIT_CONFIG.

--blob	blob
Similar	to	--file	but	use	the	given	blob	instead	of	a	file.	E.g.	you	can
use	master:.gitmodules	to	read	values	from	the	file	.gitmodules	in	the
master	branch.	See	"SPECIFYING	REVISIONS"	section	in
Section	G.4.12,	“gitrevisions(7)”	for	a	more	complete	list	of	ways	to
spell	blob	names.

--remove-section
Remove	the	given	section	from	the	configuration	file.

--rename-section
Rename	the	given	section	to	a	new	name.

--unset
Remove	the	line	matching	the	key	from	config	file.

--unset-all
Remove	all	lines	matching	the	key	from	config	file.

-l	,	--list
List	all	variables	set	in	config	file,	along	with	their	values.

--bool

git	config	will	ensure	that	the	output	is	"true"	or	"false"
--int

git	config	will	ensure	that	the	output	is	a	simple	decimal	number.	An
optional	value	suffix	of	k,	m,	or	g	in	the	config	file	will	cause	the	value
to	be	multiplied	by	1024,	1048576,	or	1073741824	prior	to	output.

--bool-or-int
git	config	will	ensure	that	the	output	matches	the	format	of	either	--
bool	or	--int,	as	described	above.

--path
git-config	will	expand	leading	~	to	the	value	of	$HOME,	and	~user	to
the	home	directory	for	the	specified	user.	This	option	has	no	effect
when	setting	the	value	(but	you	can	use	git	config	bla	~/	from	the
command	line	to	let	your	shell	do	the	expansion).

-z	,	--null
For	all	options	that	output	values	and/or	keys,	always	end	values
with	the	null	character	(instead	of	a	newline).	Use	newline	instead	as
a	delimiter	between	key	and	value.	This	allows	for	secure	parsing	of
the	output	without	getting	confused	e.g.	by	values	that	contain	line
breaks.

--name-only
Output	only	the	names	of	config	variables	for	--list	or	--get-regexp.

--show-origin
Augment	the	output	of	all	queried	config	options	with	the	origin	type
(file,	standard	input,	blob,	command	line)	and	the	actual	origin
(config	file	path,	ref,	or	blob	id	if	applicable).

--get-colorbool	name	[stdout-is-tty]
Find	the	color	setting	for	name	(e.g.	color.diff)	and	output	"true"	or
"false".	stdout-is-tty	should	be	either	"true"	or	"false",	and	is	taken
into	account	when	configuration	says	"auto".	If	stdout-is-tty	is
missing,	then	checks	the	standard	output	of	the	command	itself,	and
exits	with	status	0	if	color	is	to	be	used,	or	exits	with	status	1
otherwise.	When	the	color	setting	for	name	is	undefined,	the
command	uses	color.ui	as	fallback.

--get-color	name	[default]
Find	the	color	configured	for	name	(e.g.	color.diff.new)	and	output	it
as	the	ANSI	color	escape	sequence	to	the	standard	output.	The
optional	default	parameter	is	used	instead,	if	there	is	no	color

configured	for	name.
-e	,	--edit

Opens	an	editor	to	modify	the	specified	config	file;	either	--system,	--
global,	or	repository	(default).

--[no-]includes
Respect	include.*	directives	in	config	files	when	looking	up	values.
Defaults	to	off	when	a	specific	file	is	given	(e.g.,	using	--file,	--global,
etc)	and	on	when	searching	all	config	files.

FILES

If	not	set	explicitly	with	--file,	there	are	four	files	where	git	config	will
search	for	configuration	options:

$(prefix)/etc/gitconfig
System-wide	configuration	file.

$XDG_CONFIG_HOME/git/config
Second	user-specific	configuration	file.	If	$XDG_CONFIG_HOME	is
not	set	or	empty,	$HOME/.config/git/config	will	be	used.	Any	single-
valued	variable	set	in	this	file	will	be	overwritten	by	whatever	is	in
~/.gitconfig.	It	is	a	good	idea	not	to	create	this	file	if	you	sometimes
use	older	versions	of	Git,	as	support	for	this	file	was	added	fairly
recently.

~/.gitconfig
User-specific	configuration	file.	Also	called	"global"	configuration	file.

$GIT_DIR/config
Repository	specific	configuration	file.

If	no	further	options	are	given,	all	reading	options	will	read	all	of	these
files	that	are	available.	If	the	global	or	the	system-wide	configuration	file
are	not	available	they	will	be	ignored.	If	the	repository	configuration	file	is
not	available	or	readable,	git	config	will	exit	with	a	non-zero	error	code.
However,	in	neither	case	will	an	error	message	be	issued.

The	files	are	read	in	the	order	given	above,	with	last	value	found	taking
precedence	over	values	read	earlier.	When	multiple	values	are	taken
then	all	values	of	a	key	from	all	files	will	be	used.

All	writing	options	will	per	default	write	to	the	repository	specific
configuration	file.	Note	that	this	also	affects	options	like	--replace-all	and	-
-unset.	git	config	will	only	ever	change	one	file	at	a	time.

You	can	override	these	rules	either	by	command-line	options	or	by
environment	variables.	The	--global	and	the	--system	options	will	limit	the
file	used	to	the	global	or	system-wide	file	respectively.	The	GIT_CONFIG
environment	variable	has	a	similar	effect,	but	you	can	specify	any
filename	you	want.

ENVIRONMENT

GIT_CONFIG
Take	the	configuration	from	the	given	file	instead	of	.git/config.	Using
the	"--global"	option	forces	this	to	~/.gitconfig.	Using	the	"--system"
option	forces	this	to	$(prefix)/etc/gitconfig.

GIT_CONFIG_NOSYSTEM
Whether	to	skip	reading	settings	from	the	system-wide
$(prefix)/etc/gitconfig	file.	See	Section	G.3.1,	“git(1)”	for	details.

See	also	the	section	called	“FILES”.

EXAMPLES

Given	a	.git/config	like	this:

#

#	This	is	the	config	file,	and

#	a	'#'	or	';'	character	indicates

#	a	comment

#

;	core	variables

[core]

								;	Don't	trust	file	modes

								filemode	=	false

;	Our	diff	algorithm

[diff]

								external	=	/usr/local/bin/diff-wrapper

								renames	=	true

;	Proxy	settings

[core]

								gitproxy=proxy-command	for	kernel.org

								gitproxy=default-proxy	;	for	all	the	rest

;	HTTP

[http]

								sslVerify

[http	"https://weak.example.com"]

								sslVerify	=	false

								cookieFile	=	/tmp/cookie.txt

you	can	set	the	filemode	to	true	with

%	git	config	core.filemode	true

The	hypothetical	proxy	command	entries	actually	have	a	postfix	to
discern	what	URL	they	apply	to.	Here	is	how	to	change	the	entry	for
kernel.org	to	"ssh".

%	git	config	core.gitproxy	'"ssh"	for	kernel.org'	'for	kernel.org$'

This	makes	sure	that	only	the	key/value	pair	for	kernel.org	is	replaced.

To	delete	the	entry	for	renames,	do

%	git	config	--unset	diff.renames

If	you	want	to	delete	an	entry	for	a	multivar	(like	core.gitproxy	above),	you
have	to	provide	a	regex	matching	the	value	of	exactly	one	line.

To	query	the	value	for	a	given	key,	do

%	git	config	--get	core.filemode

or

%	git	config	core.filemode

or,	to	query	a	multivar:

%	git	config	--get	core.gitproxy	"for	kernel.org$"

If	you	want	to	know	all	the	values	for	a	multivar,	do:

%	git	config	--get-all	core.gitproxy

If	you	like	to	live	dangerously,	you	can	replace	all	core.gitproxy	by	a	new
one	with

%	git	config	--replace-all	core.gitproxy	ssh

However,	if	you	really	only	want	to	replace	the	line	for	the	default	proxy,
i.e.	the	one	without	a	"for	…"	postfix,	do	something	like	this:

%	git	config	core.gitproxy	ssh	'!	for	'

To	actually	match	only	values	with	an	exclamation	mark,	you	have	to

%	git	config	section.key	value	'[!]'

To	add	a	new	proxy,	without	altering	any	of	the	existing	ones,	use

%	git	config	--add	core.gitproxy	'"proxy-command"	for	example.com'

An	example	to	use	customized	color	from	the	configuration	in	your	script:

#!/bin/sh

WS=$(git	config	--get-color	color.diff.whitespace	"blue	reverse")

RESET=$(git	config	--get-color	""	"reset")

echo	"${WS}your	whitespace	color	or	blue	reverse${RESET}"

For	URLs	in	https://weak.example.com,	http.sslVerify	is	set	to	false,	while
it	is	set	to	true	for	all	others:

%	git	config	--bool	--get-urlmatch	http.sslverify	https://good.example.com

true

%	git	config	--bool	--get-urlmatch	http.sslverify	https://weak.example.com

false

%	git	config	--get-urlmatch	http	https://weak.example.com

http.cookieFile	/tmp/cookie.txt

http.sslverify	false

CONFIGURATION	FILE

The	Git	configuration	file	contains	a	number	of	variables	that	affect	the
Git	commands'	behavior.	The	.git/config	file	in	each	repository	is	used	to
store	the	configuration	for	that	repository,	and	$HOME/.gitconfig	is	used
to	store	a	per-user	configuration	as	fallback	values	for	the	.git/config	file.
The	file	/etc/gitconfig	can	be	used	to	store	a	system-wide	default
configuration.

The	configuration	variables	are	used	by	both	the	Git	plumbing	and	the
porcelains.	The	variables	are	divided	into	sections,	wherein	the	fully
qualified	variable	name	of	the	variable	itself	is	the	last	dot-separated
segment	and	the	section	name	is	everything	before	the	last	dot.	The
variable	names	are	case-insensitive,	allow	only	alphanumeric	characters
and	-,	and	must	start	with	an	alphabetic	character.	Some	variables	may
appear	multiple	times;	we	say	then	that	the	variable	is	multivalued.

1.	Syntax

The	syntax	is	fairly	flexible	and	permissive;	whitespaces	are	mostly
ignored.	The	#	and	;	characters	begin	comments	to	the	end	of	line,	blank
lines	are	ignored.

The	file	consists	of	sections	and	variables.	A	section	begins	with	the
name	of	the	section	in	square	brackets	and	continues	until	the	next
section	begins.	Section	names	are	case-insensitive.	Only	alphanumeric
characters,	-	and	.	are	allowed	in	section	names.	Each	variable	must
belong	to	some	section,	which	means	that	there	must	be	a	section
header	before	the	first	setting	of	a	variable.

Sections	can	be	further	divided	into	subsections.	To	begin	a	subsection
put	its	name	in	double	quotes,	separated	by	space	from	the	section
name,	in	the	section	header,	like	in	the	example	below:

								[section	"subsection"]

Subsection	names	are	case	sensitive	and	can	contain	any	characters
except	newline	(doublequote	"	and	backslash	can	be	included	by
escaping	them	as	\"	and	\\,	respectively).	Section	headers	cannot	span
multiple	lines.	Variables	may	belong	directly	to	a	section	or	to	a	given
subsection.	You	can	have	[section]	if	you	have	[section	"subsection"],	but
you	don't	need	to.

There	is	also	a	deprecated	[section.subsection]	syntax.	With	this	syntax,
the	subsection	name	is	converted	to	lower-case	and	is	also	compared
case	sensitively.	These	subsection	names	follow	the	same	restrictions	as
section	names.

All	the	other	lines	(and	the	remainder	of	the	line	after	the	section	header)
are	recognized	as	setting	variables,	in	the	form	name	=	value	(or	just
name,	which	is	a	short-hand	to	say	that	the	variable	is	the	boolean
"true").	The	variable	names	are	case-insensitive,	allow	only	alphanumeric
characters	and	-,	and	must	start	with	an	alphabetic	character.

A	line	that	defines	a	value	can	be	continued	to	the	next	line	by	ending	it
with	a	\;	the	backquote	and	the	end-of-line	are	stripped.	Leading
whitespaces	after	name	=,	the	remainder	of	the	line	after	the	first
comment	character	#	or	;,	and	trailing	whitespaces	of	the	line	are
discarded	unless	they	are	enclosed	in	double	quotes.	Internal
whitespaces	within	the	value	are	retained	verbatim.

Inside	double	quotes,	double	quote	"	and	backslash	\	characters	must	be
escaped:	use	\"	for	"	and	\\	for	\.

The	following	escape	sequences	(beside	\"	and	\\)	are	recognized:	\n	for
newline	character	(NL),	\t	for	horizontal	tabulation	(HT,	TAB)	and	\b	for
backspace	(BS).	Other	char	escape	sequences	(including	octal	escape
sequences)	are	invalid.

2.	Includes

You	can	include	one	config	file	from	another	by	setting	the	special
include.path	variable	to	the	name	of	the	file	to	be	included.	The	included
file	is	expanded	immediately,	as	if	its	contents	had	been	found	at	the
location	of	the	include	directive.	If	the	value	of	the	include.path	variable	is
a	relative	path,	the	path	is	considered	to	be	relative	to	the	configuration
file	in	which	the	include	directive	was	found.	The	value	of	include.path	is
subject	to	tilde	expansion:	~/	is	expanded	to	the	value	of	$HOME,	and
~user/	to	the	specified	user's	home	directory.	See	below	for	examples.

3.	Example
#	Core	variables

[core]

								;	Don't	trust	file	modes

								filemode	=	false

#	Our	diff	algorithm

[diff]

								external	=	/usr/local/bin/diff-wrapper

								renames	=	true

[branch	"devel"]

								remote	=	origin

								merge	=	refs/heads/devel

#	Proxy	settings

[core]

								gitProxy="ssh"	for	"kernel.org"

								gitProxy=default-proxy	;	for	the	rest

[include]

								path	=	/path/to/foo.inc	;	include	by	absolute	path

								path	=	foo	;	expand	"foo"	relative	to	the	current	file

								path	=	~/foo	;	expand	"foo"	in	your	$HOME	directory

4.	Values

Values	of	many	variables	are	treated	as	a	simple	string,	but	there	are
variables	that	take	values	of	specific	types	and	there	are	rules	as	to	how
to	spell	them.

boolean

When	a	variable	is	said	to	take	a	boolean	value,	many	synonyms	are
accepted	for	true	and	false;	these	are	all	case-insensitive.

true
Boolean	true	can	be	spelled	as	yes,	on,	true,	or	1.	Also,	a
variable	defined	without	=	<value>	is	taken	as	true.

false

Boolean	false	can	be	spelled	as	no,	off,	false,	or	0.

When	converting	value	to	the	canonical	form	using	--bool	type
specifier;	git	config	will	ensure	that	the	output	is	"true"	or	"false"
(spelled	in	lowercase).

integer
The	value	for	many	variables	that	specify	various	sizes	can	be
suffixed	with	k,	M,…	to	mean	"scale	the	number	by	1024",	"by
1024x1024",	etc.

color

The	value	for	a	variables	that	takes	a	color	is	a	list	of	colors	(at	most
two)	and	attributes	(at	most	one),	separated	by	spaces.	The	colors
accepted	are	normal,	black,	red,	green,	yellow,	blue,	magenta,	cyan
and	white;	the	attributes	are	bold,	dim,	ul,	blink	and	reverse.	The	first
color	given	is	the	foreground;	the	second	is	the	background.	The
position	of	the	attribute,	if	any,	doesn't	matter.	Attributes	may	be
turned	off	specifically	by	prefixing	them	with	no	(e.g.,	noreverse,
noul,	etc).

Colors	(foreground	and	background)	may	also	be	given	as	numbers
between	0	and	255;	these	use	ANSI	256-color	mode	(but	note	that
not	all	terminals	may	support	this).	If	your	terminal	supports	it,	you
may	also	specify	24-bit	RGB	values	as	hex,	like	#ff0ab3.

The	attributes	are	meant	to	be	reset	at	the	beginning	of	each	item	in
the	colored	output,	so	setting	color.decorate.branch	to	black	will
paint	that	branch	name	in	a	plain	black,	even	if	the	previous	thing	on
the	same	output	line	(e.g.	opening	parenthesis	before	the	list	of
branch	names	in	log	--decorate	output)	is	set	to	be	painted	with	bold
or	some	other	attribute.

5.	Variables

Note	that	this	list	is	non-comprehensive	and	not	necessarily	complete.
For	command-specific	variables,	you	will	find	a	more	detailed	description
in	the	appropriate	manual	page.

Other	git-related	tools	may	and	do	use	their	own	variables.	When
inventing	new	variables	for	use	in	your	own	tool,	make	sure	their	names
do	not	conflict	with	those	that	are	used	by	Git	itself	and	other	popular
tools,	and	describe	them	in	your	documentation.

advice.*

These	variables	control	various	optional	help	messages	designed	to
aid	new	users.	All	advice.*	variables	default	to	true,	and	you	can	tell
Git	that	you	do	not	need	help	by	setting	these	to	false:

pushUpdateRejected
Set	this	variable	to	false	if	you	want	to	disable
pushNonFFCurrent,	pushNonFFMatching,	pushAlreadyExists,
pushFetchFirst,	and	pushNeedsForce	simultaneously.

pushNonFFCurrent
Advice	shown	when	Section	G.3.96,	“git-push(1)”	fails	due	to	a
non-fast-forward	update	to	the	current	branch.

pushNonFFMatching
Advice	shown	when	you	ran	Section	G.3.96,	“git-push(1)”	and
pushed	matching	refs	explicitly	(i.e.	you	used	:,	or	specified	a
refspec	that	isn't	your	current	branch)	and	it	resulted	in	a	non-
fast-forward	error.

pushAlreadyExists
Shown	when	Section	G.3.96,	“git-push(1)”	rejects	an	update	that
does	not	qualify	for	fast-forwarding	(e.g.,	a	tag.)

pushFetchFirst
Shown	when	Section	G.3.96,	“git-push(1)”	rejects	an	update	that
tries	to	overwrite	a	remote	ref	that	points	at	an	object	we	do	not
have.

pushNeedsForce
Shown	when	Section	G.3.96,	“git-push(1)”	rejects	an	update	that
tries	to	overwrite	a	remote	ref	that	points	at	an	object	that	is	not
a	commit-ish,	or	make	the	remote	ref	point	at	an	object	that	is
not	a	commit-ish.

statusHints
Show	directions	on	how	to	proceed	from	the	current	state	in	the
output	of	Section	G.3.129,	“git-status(1)”,	in	the	template	shown
when	writing	commit	messages	in	Section	G.3.26,	“git-
commit(1)”,	and	in	the	help	message	shown	by	Section	G.3.18,
“git-checkout(1)”	when	switching	branch.

statusUoption
Advise	to	consider	using	the	-u	option	to	Section	G.3.129,	“git-
status(1)”	when	the	command	takes	more	than	2	seconds	to
enumerate	untracked	files.

commitBeforeMerge
Advice	shown	when	Section	G.3.79,	“git-merge(1)”	refuses	to
merge	to	avoid	overwriting	local	changes.

resolveConflict
Advice	shown	by	various	commands	when	conflicts	prevent	the
operation	from	being	performed.

implicitIdentity
Advice	on	how	to	set	your	identity	configuration	when	your
information	is	guessed	from	the	system	username	and	domain
name.

detachedHead
Advice	shown	when	you	used	Section	G.3.18,	“git-checkout(1)”
to	move	to	the	detach	HEAD	state,	to	instruct	how	to	create	a
local	branch	after	the	fact.

amWorkDir
Advice	that	shows	the	location	of	the	patch	file	when
Section	G.3.3,	“git-am(1)”	fails	to	apply	it.

rmHints
In	case	of	failure	in	the	output	of	Section	G.3.115,	“git-rm(1)”,
show	directions	on	how	to	proceed	from	the	current	state.

core.fileMode

Tells	Git	if	the	executable	bit	of	files	in	the	working	tree	is	to	be
honored.

Some	filesystems	lose	the	executable	bit	when	a	file	that	is	marked
as	executable	is	checked	out,	or	checks	out	an	non-executable	file
with	executable	bit	on.	Section	G.3.23,	“git-clone(1)”	or
Section	G.3.65,	“git-init(1)”	probe	the	filesystem	to	see	if	it	handles
the	executable	bit	correctly	and	this	variable	is	automatically	set	as
necessary.

A	repository,	however,	may	be	on	a	filesystem	that	handles	the
filemode	correctly,	and	this	variable	is	set	to	true	when	created,	but
later	may	be	made	accessible	from	another	environment	that	loses
the	filemode	(e.g.	exporting	ext4	via	CIFS	mount,	visiting	a	Cygwin
created	repository	with	Git	for	Windows	or	Eclipse).	In	such	a	case	it
may	be	necessary	to	set	this	variable	to	false.	See	Section	G.3.137,
“git-update-index(1)”.

The	default	is	true	(when	core.filemode	is	not	specified	in	the	config
file).

core.ignoreCase

If	true,	this	option	enables	various	workarounds	to	enable	Git	to	work
better	on	filesystems	that	are	not	case	sensitive,	like	FAT.	For
example,	if	a	directory	listing	finds	"makefile"	when	Git	expects
"Makefile",	Git	will	assume	it	is	really	the	same	file,	and	continue	to
remember	it	as	"Makefile".

The	default	is	false,	except	Section	G.3.23,	“git-clone(1)”	or
Section	G.3.65,	“git-init(1)”	will	probe	and	set	core.ignoreCase	true	if
appropriate	when	the	repository	is	created.

core.precomposeUnicode
This	option	is	only	used	by	Mac	OS	implementation	of	Git.	When
core.precomposeUnicode=true,	Git	reverts	the	unicode
decomposition	of	filenames	done	by	Mac	OS.	This	is	useful	when
sharing	a	repository	between	Mac	OS	and	Linux	or	Windows.	(Git	for

Windows	1.7.10	or	higher	is	needed,	or	Git	under	cygwin	1.7).	When
false,	file	names	are	handled	fully	transparent	by	Git,	which	is
backward	compatible	with	older	versions	of	Git.

core.protectHFS
If	set	to	true,	do	not	allow	checkout	of	paths	that	would	be
considered	equivalent	to	.git	on	an	HFS+	filesystem.	Defaults	to	true
on	Mac	OS,	and	false	elsewhere.

core.protectNTFS
If	set	to	true,	do	not	allow	checkout	of	paths	that	would	cause
problems	with	the	NTFS	filesystem,	e.g.	conflict	with	8.3	"short"
names.	Defaults	to	true	on	Windows,	and	false	elsewhere.

core.trustctime
If	false,	the	ctime	differences	between	the	index	and	the	working	tree
are	ignored;	useful	when	the	inode	change	time	is	regularly	modified
by	something	outside	Git	(file	system	crawlers	and	some	backup
systems).	See	Section	G.3.137,	“git-update-index(1)”.	True	by
default.

core.untrackedCache
Determines	what	to	do	about	the	untracked	cache	feature	of	the
index.	It	will	be	kept,	if	this	variable	is	unset	or	set	to	keep.	It	will
automatically	be	added	if	set	to	true.	And	it	will	automatically	be
removed,	if	set	to	false.	Before	setting	it	to	true,	you	should	check
that	mtime	is	working	properly	on	your	system.	See	Section	G.3.137,
“git-update-index(1)”.	keep	by	default.

core.checkStat
Determines	which	stat	fields	to	match	between	the	index	and	work
tree.	The	user	can	set	this	to	default	or	minimal.	Default	(or	explicitly
default),	is	to	check	all	fields,	including	the	sub-second	part	of	mtime
and	ctime.

core.quotePath
The	commands	that	output	paths	(e.g.	ls-files,	diff),	when	not	given
the	-z	option,	will	quote	"unusual"	characters	in	the	pathname	by
enclosing	the	pathname	in	a	double-quote	pair	and	with	backslashes
the	same	way	strings	in	C	source	code	are	quoted.	If	this	variable	is
set	to	false,	the	bytes	higher	than	0x80	are	not	quoted	but	output	as
verbatim.	Note	that	double	quote,	backslash	and	control	characters
are	always	quoted	without	-z	regardless	of	the	setting	of	this

variable.
core.eol

Sets	the	line	ending	type	to	use	in	the	working	directory	for	files	that
have	the	text	property	set.	Alternatives	are	lf,	crlf	and	native,	which
uses	the	platform's	native	line	ending.	The	default	value	is	native.
See	Section	G.4.2,	“gitattributes(5)”	for	more	information	on	end-of-
line	conversion.

core.safecrlf

If	true,	makes	Git	check	if	converting	CRLF	is	reversible	when	end-
of-line	conversion	is	active.	Git	will	verify	if	a	command	modifies	a
file	in	the	work	tree	either	directly	or	indirectly.	For	example,
committing	a	file	followed	by	checking	out	the	same	file	should	yield
the	original	file	in	the	work	tree.	If	this	is	not	the	case	for	the	current
setting	of	core.autocrlf,	Git	will	reject	the	file.	The	variable	can	be	set
to	"warn",	in	which	case	Git	will	only	warn	about	an	irreversible
conversion	but	continue	the	operation.

CRLF	conversion	bears	a	slight	chance	of	corrupting	data.	When	it	is
enabled,	Git	will	convert	CRLF	to	LF	during	commit	and	LF	to	CRLF
during	checkout.	A	file	that	contains	a	mixture	of	LF	and	CRLF
before	the	commit	cannot	be	recreated	by	Git.	For	text	files	this	is
the	right	thing	to	do:	it	corrects	line	endings	such	that	we	have	only
LF	line	endings	in	the	repository.	But	for	binary	files	that	are
accidentally	classified	as	text	the	conversion	can	corrupt	data.

If	you	recognize	such	corruption	early	you	can	easily	fix	it	by	setting
the	conversion	type	explicitly	in	.gitattributes.	Right	after	committing
you	still	have	the	original	file	in	your	work	tree	and	this	file	is	not	yet
corrupted.	You	can	explicitly	tell	Git	that	this	file	is	binary	and	Git	will
handle	the	file	appropriately.

Unfortunately,	the	desired	effect	of	cleaning	up	text	files	with	mixed
line	endings	and	the	undesired	effect	of	corrupting	binary	files	cannot
be	distinguished.	In	both	cases	CRLFs	are	removed	in	an
irreversible	way.	For	text	files	this	is	the	right	thing	to	do	because
CRLFs	are	line	endings,	while	for	binary	files	converting	CRLFs
corrupts	data.

Note,	this	safety	check	does	not	mean	that	a	checkout	will	generate
a	file	identical	to	the	original	file	for	a	different	setting	of	core.eol	and
core.autocrlf,	but	only	for	the	current	one.	For	example,	a	text	file
with	LF	would	be	accepted	with	core.eol=lf	and	could	later	be
checked	out	with	core.eol=crlf,	in	which	case	the	resulting	file	would
contain	CRLF,	although	the	original	file	contained	LF.	However,	in
both	work	trees	the	line	endings	would	be	consistent,	that	is	either	all
LF	or	all	CRLF,	but	never	mixed.	A	file	with	mixed	line	endings	would
be	reported	by	the	core.safecrlf	mechanism.

core.autocrlf
Setting	this	variable	to	"true"	is	almost	the	same	as	setting	the	text
attribute	to	"auto"	on	all	files	except	that	text	files	are	not	guaranteed
to	be	normalized:	files	that	contain	CRLF	in	the	repository	will	not	be
touched.	Use	this	setting	if	you	want	to	have	CRLF	line	endings	in
your	working	directory	even	though	the	repository	does	not	have
normalized	line	endings.	This	variable	can	be	set	to	input,	in	which
case	no	output	conversion	is	performed.

core.symlinks

If	false,	symbolic	links	are	checked	out	as	small	plain	files	that
contain	the	link	text.	Section	G.3.137,	“git-update-index(1)”	and
Section	G.3.2,	“git-add(1)”	will	not	change	the	recorded	type	to
regular	file.	Useful	on	filesystems	like	FAT	that	do	not	support
symbolic	links.

The	default	is	true,	except	Section	G.3.23,	“git-clone(1)”	or
Section	G.3.65,	“git-init(1)”	will	probe	and	set	core.symlinks	false	if
appropriate	when	the	repository	is	created.

core.gitProxy

A	"proxy	command"	to	execute	(as	command	host	port)	instead	of
establishing	direct	connection	to	the	remote	server	when	using	the
Git	protocol	for	fetching.	If	the	variable	value	is	in	the	"COMMAND
for	DOMAIN"	format,	the	command	is	applied	only	on	hostnames
ending	with	the	specified	domain	string.	This	variable	may	be	set
multiple	times	and	is	matched	in	the	given	order;	the	first	match

wins.

Can	be	overridden	by	the	GIT_PROXY_COMMAND	environment
variable	(which	always	applies	universally,	without	the	special	"for"
handling).

The	special	string	none	can	be	used	as	the	proxy	command	to
specify	that	no	proxy	be	used	for	a	given	domain	pattern.	This	is
useful	for	excluding	servers	inside	a	firewall	from	proxy	use,	while
defaulting	to	a	common	proxy	for	external	domains.

core.ignoreStat

If	true,	Git	will	avoid	using	lstat()	calls	to	detect	if	files	have	changed
by	setting	the	"assume-unchanged"	bit	for	those	tracked	files	which	it
has	updated	identically	in	both	the	index	and	working	tree.

When	files	are	modified	outside	of	Git,	the	user	will	need	to	stage	the
modified	files	explicitly	(e.g.	see	Examples	section	in
Section	G.3.137,	“git-update-index(1)”).	Git	will	not	normally	detect
changes	to	those	files.

This	is	useful	on	systems	where	lstat()	calls	are	very	slow,	such	as
CIFS/Microsoft	Windows.

False	by	default.

core.preferSymlinkRefs
Instead	of	the	default	"symref"	format	for	HEAD	and	other	symbolic
reference	files,	use	symbolic	links.	This	is	sometimes	needed	to
work	with	old	scripts	that	expect	HEAD	to	be	a	symbolic	link.

core.bare

If	true	this	repository	is	assumed	to	be	bare	and	has	no	working
directory	associated	with	it.	If	this	is	the	case	a	number	of	commands
that	require	a	working	directory	will	be	disabled,	such	as
Section	G.3.2,	“git-add(1)”	or	Section	G.3.79,	“git-merge(1)”.

This	setting	is	automatically	guessed	by	Section	G.3.23,	“git-

clone(1)”	or	Section	G.3.65,	“git-init(1)”	when	the	repository	was
created.	By	default	a	repository	that	ends	in	"/.git"	is	assumed	to	be
not	bare	(bare	=	false),	while	all	other	repositories	are	assumed	to
be	bare	(bare	=	true).

core.worktree

Set	the	path	to	the	root	of	the	working	tree.	If	GIT_COMMON_DIR
environment	variable	is	set,	core.worktree	is	ignored	and	not	used
for	determining	the	root	of	working	tree.	This	can	be	overridden	by
the	GIT_WORK_TREE	environment	variable	and	the	--work-tree
command-line	option.	The	value	can	be	an	absolute	path	or	relative
to	the	path	to	the	.git	directory,	which	is	either	specified	by	--git-dir	or
GIT_DIR,	or	automatically	discovered.	If	--git-dir	or	GIT_DIR	is
specified	but	none	of	--work-tree,	GIT_WORK_TREE	and
core.worktree	is	specified,	the	current	working	directory	is	regarded
as	the	top	level	of	your	working	tree.

Note	that	this	variable	is	honored	even	when	set	in	a	configuration
file	in	a	".git"	subdirectory	of	a	directory	and	its	value	differs	from	the
latter	directory	(e.g.	"/path/to/.git/config"	has	core.worktree	set	to
"/different/path"),	which	is	most	likely	a	misconfiguration.	Running	Git
commands	in	the	"/path/to"	directory	will	still	use	"/different/path"	as
the	root	of	the	work	tree	and	can	cause	confusion	unless	you	know
what	you	are	doing	(e.g.	you	are	creating	a	read-only	snapshot	of
the	same	index	to	a	location	different	from	the	repository's	usual
working	tree).

core.logAllRefUpdates

Enable	the	reflog.	Updates	to	a	ref	<ref>	is	logged	to	the	file
"$GIT_DIR/logs/<ref>",	by	appending	the	new	and	old	SHA-1,	the
date/time	and	the	reason	of	the	update,	but	only	when	the	file	exists.
If	this	configuration	variable	is	set	to	true,	missing
"$GIT_DIR/logs/<ref>"	file	is	automatically	created	for	branch	heads
(i.e.	under	refs/heads/),	remote	refs	(i.e.	under	refs/remotes/),	note
refs	(i.e.	under	refs/notes/),	and	the	symbolic	ref	HEAD.

This	information	can	be	used	to	determine	what	commit	was	the	tip
of	a	branch	"2	days	ago".

This	value	is	true	by	default	in	a	repository	that	has	a	working
directory	associated	with	it,	and	false	by	default	in	a	bare	repository.

core.repositoryFormatVersion
Internal	variable	identifying	the	repository	format	and	layout	version.

core.sharedRepository
When	group	(or	true),	the	repository	is	made	shareable	between
several	users	in	a	group	(making	sure	all	the	files	and	objects	are
group-writable).	When	all	(or	world	or	everybody),	the	repository	will
be	readable	by	all	users,	additionally	to	being	group-shareable.
When	umask	(or	false),	Git	will	use	permissions	reported	by
umask(2).	When	0xxx,	where	0xxx	is	an	octal	number,	files	in	the
repository	will	have	this	mode	value.	0xxx	will	override	user's	umask
value	(whereas	the	other	options	will	only	override	requested	parts	of
the	user's	umask	value).	Examples:	0660	will	make	the	repo
read/write-able	for	the	owner	and	group,	but	inaccessible	to	others
(equivalent	to	group	unless	umask	is	e.g.	0022).	0640	is	a	repository
that	is	group-readable	but	not	group-writable.	See	Section	G.3.65,
“git-init(1)”.	False	by	default.

core.warnAmbiguousRefs
If	true,	Git	will	warn	you	if	the	ref	name	you	passed	it	is	ambiguous
and	might	match	multiple	refs	in	the	repository.	True	by	default.

core.compression
An	integer	-1..9,	indicating	a	default	compression	level.	-1	is	the	zlib
default.	0	means	no	compression,	and	1..9	are	various	speed/size
tradeoffs,	9	being	slowest.	If	set,	this	provides	a	default	to	other
compression	variables,	such	as	core.looseCompression	and
pack.compression.

core.looseCompression
An	integer	-1..9,	indicating	the	compression	level	for	objects	that	are
not	in	a	pack	file.	-1	is	the	zlib	default.	0	means	no	compression,	and
1..9	are	various	speed/size	tradeoffs,	9	being	slowest.	If	not	set,
defaults	to	core.compression.	If	that	is	not	set,	defaults	to	1	(best
speed).

core.packedGitWindowSize

Number	of	bytes	of	a	pack	file	to	map	into	memory	in	a	single
mapping	operation.	Larger	window	sizes	may	allow	your	system	to
process	a	smaller	number	of	large	pack	files	more	quickly.	Smaller
window	sizes	will	negatively	affect	performance	due	to	increased
calls	to	the	operating	system's	memory	manager,	but	may	improve
performance	when	accessing	a	large	number	of	large	pack	files.

Default	is	1	MiB	if	NO_MMAP	was	set	at	compile	time,	otherwise	32
MiB	on	32	bit	platforms	and	1	GiB	on	64	bit	platforms.	This	should	be
reasonable	for	all	users/operating	systems.	You	probably	do	not
need	to	adjust	this	value.

Common	unit	suffixes	of	k,	m,	or	g	are	supported.

core.packedGitLimit

Maximum	number	of	bytes	to	map	simultaneously	into	memory	from
pack	files.	If	Git	needs	to	access	more	than	this	many	bytes	at	once
to	complete	an	operation	it	will	unmap	existing	regions	to	reclaim
virtual	address	space	within	the	process.

Default	is	256	MiB	on	32	bit	platforms	and	8	GiB	on	64	bit	platforms.
This	should	be	reasonable	for	all	users/operating	systems,	except	on
the	largest	projects.	You	probably	do	not	need	to	adjust	this	value.

Common	unit	suffixes	of	k,	m,	or	g	are	supported.

core.deltaBaseCacheLimit

Maximum	number	of	bytes	to	reserve	for	caching	base	objects	that
may	be	referenced	by	multiple	deltified	objects.	By	storing	the	entire
decompressed	base	objects	in	a	cache	Git	is	able	to	avoid
unpacking	and	decompressing	frequently	used	base	objects	multiple
times.

Default	is	96	MiB	on	all	platforms.	This	should	be	reasonable	for	all
users/operating	systems,	except	on	the	largest	projects.	You

probably	do	not	need	to	adjust	this	value.

Common	unit	suffixes	of	k,	m,	or	g	are	supported.

core.bigFileThreshold

Files	larger	than	this	size	are	stored	deflated,	without	attempting
delta	compression.	Storing	large	files	without	delta	compression
avoids	excessive	memory	usage,	at	the	slight	expense	of	increased
disk	usage.	Additionally	files	larger	than	this	size	are	always	treated
as	binary.

Default	is	512	MiB	on	all	platforms.	This	should	be	reasonable	for
most	projects	as	source	code	and	other	text	files	can	still	be	delta
compressed,	but	larger	binary	media	files	won't	be.

Common	unit	suffixes	of	k,	m,	or	g	are	supported.

core.excludesFile
In	addition	to	.gitignore	(per-directory)	and	.git/info/exclude,	Git	looks
into	this	file	for	patterns	of	files	which	are	not	meant	to	be	tracked.
"~/"	is	expanded	to	the	value	of	$HOME	and	"~user/"	to	the	specified
user's	home	directory.	Its	default	value	is
$XDG_CONFIG_HOME/git/ignore.	If	$XDG_CONFIG_HOME	is
either	not	set	or	empty,	$HOME/.config/git/ignore	is	used	instead.
See	Section	G.4.5,	“gitignore(5)”.

core.askPass
Some	commands	(e.g.	svn	and	http	interfaces)	that	interactively	ask
for	a	password	can	be	told	to	use	an	external	program	given	via	the
value	of	this	variable.	Can	be	overridden	by	the	GIT_ASKPASS
environment	variable.	If	not	set,	fall	back	to	the	value	of	the
SSH_ASKPASS	environment	variable	or,	failing	that,	a	simple
password	prompt.	The	external	program	shall	be	given	a	suitable
prompt	as	command-line	argument	and	write	the	password	on	its
STDOUT.

core.attributesFile
In	addition	to	.gitattributes	(per-directory)	and	.git/info/attributes,	Git
looks	into	this	file	for	attributes	(see	Section	G.4.2,	“gitattributes(5)”).

Path	expansions	are	made	the	same	way	as	for	core.excludesFile.
Its	default	value	is	$XDG_CONFIG_HOME/git/attributes.	If
$XDG_CONFIG_HOME	is	either	not	set	or	empty,
$HOME/.config/git/attributes	is	used	instead.

core.editor
Commands	such	as	commit	and	tag	that	lets	you	edit	messages	by
launching	an	editor	uses	the	value	of	this	variable	when	it	is	set,	and
the	environment	variable	GIT_EDITOR	is	not	set.	See
Section	G.3.142,	“git-var(1)”.

core.commentChar

Commands	such	as	commit	and	tag	that	lets	you	edit	messages
consider	a	line	that	begins	with	this	character	commented,	and
removes	them	after	the	editor	returns	(default	#).

If	set	to	"auto",	git-commit	would	select	a	character	that	is	not	the
beginning	character	of	any	line	in	existing	commit	messages.

core.packedRefsTimeout
The	length	of	time,	in	milliseconds,	to	retry	when	trying	to	lock	the
packed-refs	file.	Value	0	means	not	to	retry	at	all;	-1	means	to	try
indefinitely.	Default	is	1000	(i.e.,	retry	for	1	second).

sequence.editor
Text	editor	used	by	git	rebase	-i	for	editing	the	rebase	instruction	file.
The	value	is	meant	to	be	interpreted	by	the	shell	when	it	is	used.	It
can	be	overridden	by	the	GIT_SEQUENCE_EDITOR	environment
variable.	When	not	configured	the	default	commit	message	editor	is
used	instead.

core.pager

Text	viewer	for	use	by	Git	commands	(e.g.,	less).	The	value	is	meant
to	be	interpreted	by	the	shell.	The	order	of	preference	is	the
$GIT_PAGER	environment	variable,	then	core.pager	configuration,
then	$PAGER,	and	then	the	default	chosen	at	compile	time	(usually
less).

When	the	LESS	environment	variable	is	unset,	Git	sets	it	to	FRX	(if
LESS	environment	variable	is	set,	Git	does	not	change	it	at	all).	If

you	want	to	selectively	override	Git's	default	setting	for	LESS,	you
can	set	core.pager	to	e.g.	less	-S.	This	will	be	passed	to	the	shell	by
Git,	which	will	translate	the	final	command	to	LESS=FRX	less	-S.
The	environment	does	not	set	the	S	option	but	the	command	line
does,	instructing	less	to	truncate	long	lines.	Similarly,	setting
core.pager	to	less	-+F	will	deactivate	the	F	option	specified	by	the
environment	from	the	command-line,	deactivating	the	"quit	if	one
screen"	behavior	of	less.	One	can	specifically	activate	some	flags	for
particular	commands:	for	example,	setting	pager.blame	to	less	-S
enables	line	truncation	only	for	git	blame.

Likewise,	when	the	LV	environment	variable	is	unset,	Git	sets	it	to	-c.
You	can	override	this	setting	by	exporting	LV	with	another	value	or
setting	core.pager	to	lv	+c.

core.whitespace

A	comma	separated	list	of	common	whitespace	problems	to	notice.
git	diff	will	use	color.diff.whitespace	to	highlight	them,	and	git	apply	--
whitespace=error	will	consider	them	as	errors.	You	can	prefix	-	to
disable	any	of	them	(e.g.	-trailing-space):

blank-at-eol	treats	trailing	whitespaces	at	the	end	of	the	line	as
an	error	(enabled	by	default).
space-before-tab	treats	a	space	character	that	appears
immediately	before	a	tab	character	in	the	initial	indent	part	of	the
line	as	an	error	(enabled	by	default).
indent-with-non-tab	treats	a	line	that	is	indented	with	space
characters	instead	of	the	equivalent	tabs	as	an	error	(not
enabled	by	default).
tab-in-indent	treats	a	tab	character	in	the	initial	indent	part	of	the
line	as	an	error	(not	enabled	by	default).
blank-at-eof	treats	blank	lines	added	at	the	end	of	file	as	an
error	(enabled	by	default).
trailing-space	is	a	short-hand	to	cover	both	blank-at-eol	and
blank-at-eof.
cr-at-eol	treats	a	carriage-return	at	the	end	of	line	as	part	of	the
line	terminator,	i.e.	with	it,	trailing-space	does	not	trigger	if	the

character	before	such	a	carriage-return	is	not	a	whitespace	(not
enabled	by	default).
tabwidth=<n>	tells	how	many	character	positions	a	tab
occupies;	this	is	relevant	for	indent-with-non-tab	and	when	Git
fixes	tab-in-indent	errors.	The	default	tab	width	is	8.	Allowed
values	are	1	to	63.

core.fsyncObjectFiles

This	boolean	will	enable	fsync()	when	writing	object	files.

This	is	a	total	waste	of	time	and	effort	on	a	filesystem	that	orders
data	writes	properly,	but	can	be	useful	for	filesystems	that	do	not	use
journalling	(traditional	UNIX	filesystems)	or	that	only	journal
metadata	and	not	file	contents	(OS	X's	HFS+,	or	Linux	ext3	with
"data=writeback").

core.preloadIndex

Enable	parallel	index	preload	for	operations	like	git	diff

This	can	speed	up	operations	like	git	diff	and	git	status	especially	on
filesystems	like	NFS	that	have	weak	caching	semantics	and	thus
relatively	high	IO	latencies.	When	enabled,	Git	will	do	the	index
comparison	to	the	filesystem	data	in	parallel,	allowing	overlapping
IO's.	Defaults	to	true.

core.createObject

You	can	set	this	to	link,	in	which	case	a	hardlink	followed	by	a	delete
of	the	source	are	used	to	make	sure	that	object	creation	will	not
overwrite	existing	objects.

On	some	file	system/operating	system	combinations,	this	is
unreliable.	Set	this	config	setting	to	rename	there;	However,	This	will
remove	the	check	that	makes	sure	that	existing	object	files	will	not
get	overwritten.

core.notesRef

When	showing	commit	messages,	also	show	notes	which	are	stored
in	the	given	ref.	The	ref	must	be	fully	qualified.	If	the	given	ref	does
not	exist,	it	is	not	an	error	but	means	that	no	notes	should	be	printed.

This	setting	defaults	to	"refs/notes/commits",	and	it	can	be
overridden	by	the	GIT_NOTES_REF	environment	variable.	See
Section	G.3.86,	“git-notes(1)”.

core.sparseCheckout
Enable	"sparse	checkout"	feature.	See	section	"Sparse	checkout"	in
Section	G.3.98,	“git-read-tree(1)”	for	more	information.

core.abbrev
Set	the	length	object	names	are	abbreviated	to.	If	unspecified,	many
commands	abbreviate	to	7	hexdigits,	which	may	not	be	enough	for
abbreviated	object	names	to	stay	unique	for	sufficiently	long	time.

add.ignoreErrors	,	add.ignore-errors	(deprecated)
Tells	git	add	to	continue	adding	files	when	some	files	cannot	be
added	due	to	indexing	errors.	Equivalent	to	the	--ignore-errors	option
of	Section	G.3.2,	“git-add(1)”.	add.ignore-errors	is	deprecated,	as	it
does	not	follow	the	usual	naming	convention	for	configuration
variables.

alias.*

Command	aliases	for	the	Section	G.3.1,	“git(1)”	command	wrapper	-
e.g.	after	defining	"alias.last	=	cat-file	commit	HEAD",	the	invocation
"git	last"	is	equivalent	to	"git	cat-file	commit	HEAD".	To	avoid
confusion	and	troubles	with	script	usage,	aliases	that	hide	existing
Git	commands	are	ignored.	Arguments	are	split	by	spaces,	the	usual
shell	quoting	and	escaping	is	supported.	A	quote	pair	or	a	backslash
can	be	used	to	quote	them.

If	the	alias	expansion	is	prefixed	with	an	exclamation	point,	it	will	be
treated	as	a	shell	command.	For	example,	defining	"alias.new	=	!gitk
--all	--not	ORIG_HEAD",	the	invocation	"git	new"	is	equivalent	to
running	the	shell	command	"gitk	--all	--not	ORIG_HEAD".	Note	that
shell	commands	will	be	executed	from	the	top-level	directory	of	a
repository,	which	may	not	necessarily	be	the	current	directory.
GIT_PREFIX	is	set	as	returned	by	running	git	rev-parse	--show-

prefix	from	the	original	current	directory.	See	Section	G.3.113,	“git-
rev-parse(1)”.

am.keepcr
If	true,	git-am	will	call	git-mailsplit	for	patches	in	mbox	format	with
parameter	--keep-cr.	In	this	case	git-mailsplit	will	not	remove	\r	from
lines	ending	with	\r\n.	Can	be	overridden	by	giving	--no-keep-cr	from
the	command	line.	See	Section	G.3.3,	“git-am(1)”,	Section	G.3.73,
“git-mailsplit(1)”.

am.threeWay
By	default,	git	am	will	fail	if	the	patch	does	not	apply	cleanly.	When
set	to	true,	this	setting	tells	git	am	to	fall	back	on	3-way	merge	if	the
patch	records	the	identity	of	blobs	it	is	supposed	to	apply	to	and	we
have	those	blobs	available	locally	(equivalent	to	giving	the	--3way
option	from	the	command	line).	Defaults	to	false.	See	Section	G.3.3,
“git-am(1)”.

apply.ignoreWhitespace
When	set	to	change,	tells	git	apply	to	ignore	changes	in	whitespace,
in	the	same	way	as	the	--ignore-space-change	option.	When	set	to
one	of:	no,	none,	never,	false	tells	git	apply	to	respect	all	whitespace
differences.	See	Section	G.3.5,	“git-apply(1)”.

apply.whitespace
Tells	git	apply	how	to	handle	whitespaces,	in	the	same	way	as	the	--
whitespace	option.	See	Section	G.3.5,	“git-apply(1)”.

branch.autoSetupMerge
Tells	git	branch	and	git	checkout	to	set	up	new	branches	so	that
Section	G.3.95,	“git-pull(1)”	will	appropriately	merge	from	the	starting
point	branch.	Note	that	even	if	this	option	is	not	set,	this	behavior
can	be	chosen	per-branch	using	the	--track	and	--no-track	options.
The	valid	settings	are:	false	--	no	automatic	setup	is	done;	true	--
automatic	setup	is	done	when	the	starting	point	is	a	remote-tracking
branch;	always	--	automatic	setup	is	done	when	the	starting	point	is
either	a	local	branch	or	remote-tracking	branch.	This	option	defaults
to	true.

branch.autoSetupRebase
When	a	new	branch	is	created	with	git	branch	or	git	checkout	that
tracks	another	branch,	this	variable	tells	Git	to	set	up	pull	to	rebase

instead	of	merge	(see	"branch.<name>.rebase").	When	never,
rebase	is	never	automatically	set	to	true.	When	local,	rebase	is	set	to
true	for	tracked	branches	of	other	local	branches.	When	remote,
rebase	is	set	to	true	for	tracked	branches	of	remote-tracking
branches.	When	always,	rebase	will	be	set	to	true	for	all	tracking
branches.	See	"branch.autoSetupMerge"	for	details	on	how	to	set	up
a	branch	to	track	another	branch.	This	option	defaults	to	never.

branch.<name>.remote
When	on	branch	<name>,	it	tells	git	fetch	and	git	push	which	remote
to	fetch	from/push	to.	The	remote	to	push	to	may	be	overridden	with
remote.pushDefault	(for	all	branches).	The	remote	to	push	to,	for	the
current	branch,	may	be	further	overridden	by	branch.
<name>.pushRemote.	If	no	remote	is	configured,	or	if	you	are	not	on
any	branch,	it	defaults	to	origin	for	fetching	and	remote.pushDefault
for	pushing.	Additionally,	.	(a	period)	is	the	current	local	repository	(a
dot-repository),	see	branch.<name>.merge's	final	note	below.

branch.<name>.pushRemote
When	on	branch	<name>,	it	overrides	branch.<name>.remote	for
pushing.	It	also	overrides	remote.pushDefault	for	pushing	from
branch	<name>.	When	you	pull	from	one	place	(e.g.	your	upstream)
and	push	to	another	place	(e.g.	your	own	publishing	repository),	you
would	want	to	set	remote.pushDefault	to	specify	the	remote	to	push
to	for	all	branches,	and	use	this	option	to	override	it	for	a	specific
branch.

branch.<name>.merge
Defines,	together	with	branch.<name>.remote,	the	upstream	branch
for	the	given	branch.	It	tells	git	fetch/git	pull/git	rebase	which	branch
to	merge	and	can	also	affect	git	push	(see	push.default).	When	in
branch	<name>,	it	tells	git	fetch	the	default	refspec	to	be	marked	for
merging	in	FETCH_HEAD.	The	value	is	handled	like	the	remote	part
of	a	refspec,	and	must	match	a	ref	which	is	fetched	from	the	remote
given	by	"branch.<name>.remote".	The	merge	information	is	used	by
git	pull	(which	at	first	calls	git	fetch)	to	lookup	the	default	branch	for
merging.	Without	this	option,	git	pull	defaults	to	merge	the	first
refspec	fetched.	Specify	multiple	values	to	get	an	octopus	merge.	If
you	wish	to	setup	git	pull	so	that	it	merges	into	<name>	from	another
branch	in	the	local	repository,	you	can	point	branch.<name>.merge

to	the	desired	branch,	and	use	the	relative	path	setting	.	(a	period)
for	branch.<name>.remote.

branch.<name>.mergeOptions
Sets	default	options	for	merging	into	branch	<name>.	The	syntax
and	supported	options	are	the	same	as	those	of	Section	G.3.79,	“git-
merge(1)”,	but	option	values	containing	whitespace	characters	are
currently	not	supported.

branch.<name>.rebase

When	true,	rebase	the	branch	<name>	on	top	of	the	fetched	branch,
instead	of	merging	the	default	branch	from	the	default	remote	when
"git	pull"	is	run.	See	"pull.rebase"	for	doing	this	in	a	non	branch-
specific	manner.

When	preserve,	also	pass	--preserve-merges	along	to	git	rebase	so
that	locally	committed	merge	commits	will	not	be	flattened	by	running
git	pull.

When	the	value	is	interactive,	the	rebase	is	run	in	interactive	mode.

NOTE:	this	is	a	possibly	dangerous	operation;	do	not	use	it	unless
you	understand	the	implications	(see	Section	G.3.99,	“git-rebase(1)”
for	details).

branch.<name>.description
Branch	description,	can	be	edited	with	git	branch	--edit-description.
Branch	description	is	automatically	added	in	the	format-patch	cover
letter	or	request-pull	summary.

browser.<tool>.cmd
Specify	the	command	to	invoke	the	specified	browser.	The	specified
command	is	evaluated	in	shell	with	the	URLs	passed	as	arguments.
(See	Section	G.3.146,	“git-web--browse(1)”.)

browser.<tool>.path
Override	the	path	for	the	given	tool	that	may	be	used	to	browse
HTML	help	(see	-w	option	in	Section	G.3.58,	“git-help(1)”)	or	a
working	repository	in	gitweb	(see	Section	G.3.66,	“git-instaweb(1)”).

clean.requireForce
A	boolean	to	make	git-clean	do	nothing	unless	given	-f,	-i	or	-n.

Defaults	to	true.
color.branch

A	boolean	to	enable/disable	color	in	the	output	of	Section	G.3.10,
“git-branch(1)”.	May	be	set	to	always,	false	(or	never)	or	auto	(or
true),	in	which	case	colors	are	used	only	when	the	output	is	to	a
terminal.	Defaults	to	false.

color.branch.<slot>
Use	customized	color	for	branch	coloration.	<slot>	is	one	of	current
(the	current	branch),	local	(a	local	branch),	remote	(a	remote-
tracking	branch	in	refs/remotes/),	upstream	(upstream	tracking
branch),	plain	(other	refs).

color.diff

Whether	to	use	ANSI	escape	sequences	to	add	color	to	patches.	If
this	is	set	to	always,	Section	G.3.41,	“git-diff(1)”,	Section	G.3.68,	“git-
log(1)”,	and	Section	G.3.126,	“git-show(1)”	will	use	color	for	all
patches.	If	it	is	set	to	true	or	auto,	those	commands	will	only	use
color	when	output	is	to	the	terminal.	Defaults	to	false.

This	does	not	affect	Section	G.3.50,	“git-format-patch(1)”	or	the	git-
diff-*	plumbing	commands.	Can	be	overridden	on	the	command	line
with	the	--color[=<when>]	option.

color.diff.<slot>
Use	customized	color	for	diff	colorization.	<slot>	specifies	which	part
of	the	patch	to	use	the	specified	color,	and	is	one	of	context	(context
text	-	plain	is	a	historical	synonym),	meta	(metainformation),	frag
(hunk	header),	func	(function	in	hunk	header),	old	(removed	lines),
new	(added	lines),	commit	(commit	headers),	or	whitespace
(highlighting	whitespace	errors).

color.decorate.<slot>
Use	customized	color	for	git	log	--decorate	output.	<slot>	is	one	of
branch,	remoteBranch,	tag,	stash	or	HEAD	for	local	branches,
remote-tracking	branches,	tags,	stash	and	HEAD,	respectively.

color.grep
When	set	to	always,	always	highlight	matches.	When	false	(or
never),	never.	When	set	to	true	or	auto,	use	color	only	when	the
output	is	written	to	the	terminal.	Defaults	to	false.

color.grep.<slot>

Use	customized	color	for	grep	colorization.	<slot>	specifies	which
part	of	the	line	to	use	the	specified	color,	and	is	one	of

context
non-matching	text	in	context	lines	(when	using	-A,	-B,	or	-C)

filename
filename	prefix	(when	not	using	-h)

function
function	name	lines	(when	using	-p)

linenumber
line	number	prefix	(when	using	-n)

match
matching	text	(same	as	setting	matchContext	and
matchSelected)

matchContext
matching	text	in	context	lines

matchSelected
matching	text	in	selected	lines

selected
non-matching	text	in	selected	lines

separator
separators	between	fields	on	a	line	(:,	-,	and	=)	and	between
hunks	(--)

color.interactive
When	set	to	always,	always	use	colors	for	interactive	prompts	and
displays	(such	as	those	used	by	"git-add	--interactive"	and	"git-clean
--interactive").	When	false	(or	never),	never.	When	set	to	true	or
auto,	use	colors	only	when	the	output	is	to	the	terminal.	Defaults	to
false.

color.interactive.<slot>
Use	customized	color	for	git	add	--interactive	and	git	clean	--
interactive	output.	<slot>	may	be	prompt,	header,	help	or	error,	for
four	distinct	types	of	normal	output	from	interactive	commands.

color.pager
A	boolean	to	enable/disable	colored	output	when	the	pager	is	in	use

(default	is	true).
color.showBranch

A	boolean	to	enable/disable	color	in	the	output	of	Section	G.3.123,
“git-show-branch(1)”.	May	be	set	to	always,	false	(or	never)	or	auto
(or	true),	in	which	case	colors	are	used	only	when	the	output	is	to	a
terminal.	Defaults	to	false.

color.status
A	boolean	to	enable/disable	color	in	the	output	of	Section	G.3.129,
“git-status(1)”.	May	be	set	to	always,	false	(or	never)	or	auto	(or
true),	in	which	case	colors	are	used	only	when	the	output	is	to	a
terminal.	Defaults	to	false.

color.status.<slot>
Use	customized	color	for	status	colorization.	<slot>	is	one	of	header
(the	header	text	of	the	status	message),	added	or	updated	(files
which	are	added	but	not	committed),	changed	(files	which	are
changed	but	not	added	in	the	index),	untracked	(files	which	are	not
tracked	by	Git),	branch	(the	current	branch),	nobranch	(the	color	the
no	branch	warning	is	shown	in,	defaulting	to	red),	or	unmerged	(files
which	have	unmerged	changes).

color.ui
This	variable	determines	the	default	value	for	variables	such	as
color.diff	and	color.grep	that	control	the	use	of	color	per	command
family.	Its	scope	will	expand	as	more	commands	learn	configuration
to	set	a	default	for	the	--color	option.	Set	it	to	false	or	never	if	you
prefer	Git	commands	not	to	use	color	unless	enabled	explicitly	with
some	other	configuration	or	the	--color	option.	Set	it	to	always	if	you
want	all	output	not	intended	for	machine	consumption	to	use	color,	to
true	or	auto	(this	is	the	default	since	Git	1.8.4)	if	you	want	such
output	to	use	color	when	written	to	the	terminal.

column.ui

Specify	whether	supported	commands	should	output	in	columns.
This	variable	consists	of	a	list	of	tokens	separated	by	spaces	or
commas:

These	options	control	when	the	feature	should	be	enabled	(defaults
to	never):

always
always	show	in	columns

never
never	show	in	columns

auto
show	in	columns	if	the	output	is	to	the	terminal

These	options	control	layout	(defaults	to	column).	Setting	any	of
these	implies	always	if	none	of	always,	never,	or	auto	are	specified.

column
fill	columns	before	rows

row
fill	rows	before	columns

plain
show	in	one	column

Finally,	these	options	can	be	combined	with	a	layout	option	(defaults
to	nodense):

dense
make	unequal	size	columns	to	utilize	more	space

nodense
make	equal	size	columns

column.branch
Specify	whether	to	output	branch	listing	in	git	branch	in	columns.
See	column.ui	for	details.

column.clean
Specify	the	layout	when	list	items	in	git	clean	-i,	which	always	shows
files	and	directories	in	columns.	See	column.ui	for	details.

column.status
Specify	whether	to	output	untracked	files	in	git	status	in	columns.
See	column.ui	for	details.

column.tag
Specify	whether	to	output	tag	listing	in	git	tag	in	columns.	See
column.ui	for	details.

commit.cleanup
This	setting	overrides	the	default	of	the	--cleanup	option	in	git

commit.	See	Section	G.3.26,	“git-commit(1)”	for	details.	Changing
the	default	can	be	useful	when	you	always	want	to	keep	lines	that
begin	with	comment	character	#	in	your	log	message,	in	which	case
you	would	do	git	config	commit.cleanup	whitespace	(note	that	you
will	have	to	remove	the	help	lines	that	begin	with	#	in	the	commit	log
template	yourself,	if	you	do	this).

commit.gpgSign
A	boolean	to	specify	whether	all	commits	should	be	GPG	signed.
Use	of	this	option	when	doing	operations	such	as	rebase	can	result
in	a	large	number	of	commits	being	signed.	It	may	be	convenient	to
use	an	agent	to	avoid	typing	your	GPG	passphrase	several	times.

commit.status
A	boolean	to	enable/disable	inclusion	of	status	information	in	the
commit	message	template	when	using	an	editor	to	prepare	the
commit	message.	Defaults	to	true.

commit.template
Specify	a	file	to	use	as	the	template	for	new	commit	messages.	"~/"
is	expanded	to	the	value	of	$HOME	and	"~user/"	to	the	specified
user's	home	directory.

credential.helper
Specify	an	external	helper	to	be	called	when	a	username	or
password	credential	is	needed;	the	helper	may	consult	external
storage	to	avoid	prompting	the	user	for	the	credentials.	Note	that
multiple	helpers	may	be	defined.	See	Section	G.4.3,
“gitcredentials(7)”	for	details.

credential.useHttpPath
When	acquiring	credentials,	consider	the	"path"	component	of	an
http	or	https	URL	to	be	important.	Defaults	to	false.	See
Section	G.4.3,	“gitcredentials(7)”	for	more	information.

credential.username
If	no	username	is	set	for	a	network	authentication,	use	this
username	by	default.	See	credential.<context>.*	below,	and
Section	G.4.3,	“gitcredentials(7)”.

credential.<url>.*
Any	of	the	credential.*	options	above	can	be	applied	selectively	to
some	credentials.	For	example
"credential.https://example.com.username"	would	set	the	default

username	only	for	https	connections	to	example.com.	See
Section	G.4.3,	“gitcredentials(7)”	for	details	on	how	URLs	are
matched.

credentialCache.ignoreSIGHUP
Tell	git-credential-cache--daemon	to	ignore	SIGHUP,	instead	of
quitting.

diff.autoRefreshIndex
When	using	git	diff	to	compare	with	work	tree	files,	do	not	consider
stat-only	change	as	changed.	Instead,	silently	run	git	update-index	--
refresh	to	update	the	cached	stat	information	for	paths	whose
contents	in	the	work	tree	match	the	contents	in	the	index.	This	option
defaults	to	true.	Note	that	this	affects	only	git	diff	Porcelain,	and	not
lower	level	diff	commands	such	as	git	diff-files.

diff.dirstat

A	comma	separated	list	of	--dirstat	parameters	specifying	the	default
behavior	of	the	--dirstat	option	to	Section	G.3.41,	“git-diff(1)”`	and
friends.	The	defaults	can	be	overridden	on	the	command	line	(using	-
-dirstat=<param1,param2,...>).	The	fallback	defaults	(when	not
changed	by	diff.dirstat)	are	changes,noncumulative,3.	The	following
parameters	are	available:

changes
Compute	the	dirstat	numbers	by	counting	the	lines	that	have
been	removed	from	the	source,	or	added	to	the	destination.	This
ignores	the	amount	of	pure	code	movements	within	a	file.	In
other	words,	rearranging	lines	in	a	file	is	not	counted	as	much
as	other	changes.	This	is	the	default	behavior	when	no
parameter	is	given.

lines
Compute	the	dirstat	numbers	by	doing	the	regular	line-based	diff
analysis,	and	summing	the	removed/added	line	counts.	(For
binary	files,	count	64-byte	chunks	instead,	since	binary	files
have	no	natural	concept	of	lines).	This	is	a	more	expensive	--
dirstat	behavior	than	the	changes	behavior,	but	it	does	count
rearranged	lines	within	a	file	as	much	as	other	changes.	The
resulting	output	is	consistent	with	what	you	get	from	the	other	--

*stat	options.
files

Compute	the	dirstat	numbers	by	counting	the	number	of	files
changed.	Each	changed	file	counts	equally	in	the	dirstat
analysis.	This	is	the	computationally	cheapest	--dirstat	behavior,
since	it	does	not	have	to	look	at	the	file	contents	at	all.

cumulative
Count	changes	in	a	child	directory	for	the	parent	directory	as
well.	Note	that	when	using	cumulative,	the	sum	of	the
percentages	reported	may	exceed	100%.	The	default	(non-
cumulative)	behavior	can	be	specified	with	the	noncumulative
parameter.

<limit>
An	integer	parameter	specifies	a	cut-off	percent	(3%	by	default).
Directories	contributing	less	than	this	percentage	of	the	changes
are	not	shown	in	the	output.

Example:	The	following	will	count	changed	files,	while	ignoring
directories	with	less	than	10%	of	the	total	amount	of	changed	files,
and	accumulating	child	directory	counts	in	the	parent	directories:
files,10,cumulative.

diff.statGraphWidth
Limit	the	width	of	the	graph	part	in	--stat	output.	If	set,	applies	to	all
commands	generating	--stat	output	except	format-patch.

diff.context
Generate	diffs	with	<n>	lines	of	context	instead	of	the	default	of	3.
This	value	is	overridden	by	the	-U	option.

diff.external
If	this	config	variable	is	set,	diff	generation	is	not	performed	using	the
internal	diff	machinery,	but	using	the	given	command.	Can	be
overridden	with	the	GIT_EXTERNAL_DIFF	environment	variable.
The	command	is	called	with	parameters	as	described	under	"git
Diffs"	in	Section	G.3.1,	“git(1)”.	Note:	if	you	want	to	use	an	external
diff	program	only	on	a	subset	of	your	files,	you	might	want	to	use
Section	G.4.2,	“gitattributes(5)”	instead.

diff.ignoreSubmodules

Sets	the	default	value	of	--ignore-submodules.	Note	that	this	affects
only	git	diff	Porcelain,	and	not	lower	level	diff	commands	such	as	git
diff-files.	git	checkout	also	honors	this	setting	when	reporting
uncommitted	changes.	Setting	it	to	all	disables	the	submodule
summary	normally	shown	by	git	commit	and	git	status	when
status.submoduleSummary	is	set	unless	it	is	overridden	by	using	the
--ignore-submodules	command-line	option.	The	git	submodule
commands	are	not	affected	by	this	setting.

diff.mnemonicPrefix

If	set,	git	diff	uses	a	prefix	pair	that	is	different	from	the	standard	"a/"
and	"b/"	depending	on	what	is	being	compared.	When	this
configuration	is	in	effect,	reverse	diff	output	also	swaps	the	order	of
the	prefixes:

git	diff
compares	the	(i)ndex	and	the	(w)ork	tree;

git	diff	HEAD
compares	a	(c)ommit	and	the	(w)ork	tree;

git	diff	--cached
compares	a	(c)ommit	and	the	(i)ndex;

git	diff	HEAD:file1	file2
compares	an	(o)bject	and	a	(w)ork	tree	entity;

git	diff	--no-index	a	b
compares	two	non-git	things	(1)	and	(2).

diff.noprefix
If	set,	git	diff	does	not	show	any	source	or	destination	prefix.

diff.orderFile
File	indicating	how	to	order	files	within	a	diff,	using	one	shell	glob
pattern	per	line.	Can	be	overridden	by	the	-O	option	to
Section	G.3.41,	“git-diff(1)”.

diff.renameLimit
The	number	of	files	to	consider	when	performing	the	copy/rename
detection;	equivalent	to	the	git	diff	option	-l.

diff.renames
Whether	and	how	Git	detects	renames.	If	set	to	"false",	rename
detection	is	disabled.	If	set	to	"true",	basic	rename	detection	is

enabled.	If	set	to	"copies"	or	"copy",	Git	will	detect	copies,	as	well.
Defaults	to	true.	Note	that	this	affects	only	git	diff	Porcelain	like
Section	G.3.41,	“git-diff(1)”	and	Section	G.3.68,	“git-log(1)”,	and	not
lower	level	commands	such	as	Section	G.3.38,	“git-diff-files(1)”.

diff.suppressBlankEmpty
A	boolean	to	inhibit	the	standard	behavior	of	printing	a	space	before
each	empty	output	line.	Defaults	to	false.

diff.submodule
Specify	the	format	in	which	differences	in	submodules	are	shown.
The	"log"	format	lists	the	commits	in	the	range	like	Section	G.3.131,
“git-submodule(1)”	summary	does.	The	"short"	format	format	just
shows	the	names	of	the	commits	at	the	beginning	and	end	of	the
range.	Defaults	to	short.

diff.wordRegex
A	POSIX	Extended	Regular	Expression	used	to	determine	what	is	a
"word"	when	performing	word-by-word	difference	calculations.
Character	sequences	that	match	the	regular	expression	are	"words",
all	other	characters	are	ignorable	whitespace.

diff.<driver>.command
The	custom	diff	driver	command.	See	Section	G.4.2,
“gitattributes(5)”	for	details.

diff.<driver>.xfuncname
The	regular	expression	that	the	diff	driver	should	use	to	recognize
the	hunk	header.	A	built-in	pattern	may	also	be	used.	See
Section	G.4.2,	“gitattributes(5)”	for	details.

diff.<driver>.binary
Set	this	option	to	true	to	make	the	diff	driver	treat	files	as	binary.	See
Section	G.4.2,	“gitattributes(5)”	for	details.

diff.<driver>.textconv
The	command	that	the	diff	driver	should	call	to	generate	the	text-
converted	version	of	a	file.	The	result	of	the	conversion	is	used	to
generate	a	human-readable	diff.	See	Section	G.4.2,	“gitattributes(5)”
for	details.

diff.<driver>.wordRegex
The	regular	expression	that	the	diff	driver	should	use	to	split	words	in
a	line.	See	Section	G.4.2,	“gitattributes(5)”	for	details.

diff.<driver>.cachetextconv

Set	this	option	to	true	to	make	the	diff	driver	cache	the	text
conversion	outputs.	See	Section	G.4.2,	“gitattributes(5)”	for	details.

diff.tool

Controls	which	diff	tool	is	used	by	Section	G.3.42,	“git-difftool(1)”.
This	variable	overrides	the	value	configured	in	merge.tool.	The	list
below	shows	the	valid	built-in	values.	Any	other	value	is	treated	as	a
custom	diff	tool	and	requires	that	a	corresponding	difftool.<tool>.cmd
variable	is	defined.

araxis
bc
bc3
codecompare
deltawalker
diffmerge
diffuse
ecmerge
emerge
examdiff
gvimdiff
gvimdiff2
gvimdiff3
kdiff3
kompare
meld
opendiff
p4merge
tkdiff
vimdiff
vimdiff2
vimdiff3
winmerge
xxdiff

diff.algorithm

Choose	a	diff	algorithm.	The	variants	are	as	follows:

default,	myers
The	basic	greedy	diff	algorithm.	Currently,	this	is	the	default.

minimal
Spend	extra	time	to	make	sure	the	smallest	possible	diff	is
produced.

patience
Use	"patience	diff"	algorithm	when	generating	patches.

histogram
This	algorithm	extends	the	patience	algorithm	to	"support	low-
occurrence	common	elements".

difftool.<tool>.path
Override	the	path	for	the	given	tool.	This	is	useful	in	case	your	tool	is
not	in	the	PATH.

difftool.<tool>.cmd
Specify	the	command	to	invoke	the	specified	diff	tool.	The	specified
command	is	evaluated	in	shell	with	the	following	variables	available:
LOCAL	is	set	to	the	name	of	the	temporary	file	containing	the
contents	of	the	diff	pre-image	and	REMOTE	is	set	to	the	name	of	the
temporary	file	containing	the	contents	of	the	diff	post-image.

difftool.prompt
Prompt	before	each	invocation	of	the	diff	tool.

fetch.recurseSubmodules
This	option	can	be	either	set	to	a	boolean	value	or	to	on-demand.
Setting	it	to	a	boolean	changes	the	behavior	of	fetch	and	pull	to
unconditionally	recurse	into	submodules	when	set	to	true	or	to	not
recurse	at	all	when	set	to	false.	When	set	to	on-demand	(the	default
value),	fetch	and	pull	will	only	recurse	into	a	populated	submodule
when	its	superproject	retrieves	a	commit	that	updates	the
submodule's	reference.

fetch.fsckObjects
If	it	is	set	to	true,	git-fetch-pack	will	check	all	fetched	objects.	It	will
abort	in	the	case	of	a	malformed	object	or	a	broken	link.	The	result	of
an	abort	are	only	dangling	objects.	Defaults	to	false.	If	not	set,	the
value	of	transfer.fsckObjects	is	used	instead.

fetch.unpackLimit
If	the	number	of	objects	fetched	over	the	Git	native	transfer	is	below
this	limit,	then	the	objects	will	be	unpacked	into	loose	object	files.

However	if	the	number	of	received	objects	equals	or	exceeds	this
limit	then	the	received	pack	will	be	stored	as	a	pack,	after	adding	any
missing	delta	bases.	Storing	the	pack	from	a	push	can	make	the
push	operation	complete	faster,	especially	on	slow	filesystems.	If	not
set,	the	value	of	transfer.unpackLimit	is	used	instead.

fetch.prune
If	true,	fetch	will	automatically	behave	as	if	the	--prune	option	was
given	on	the	command	line.	See	also	remote.<name>.prune.

format.attach
Enable	multipart/mixed	attachments	as	the	default	for	format-patch.
The	value	can	also	be	a	double	quoted	string	which	will	enable
attachments	as	the	default	and	set	the	value	as	the	boundary.	See
the	--attach	option	in	Section	G.3.50,	“git-format-patch(1)”.

format.numbered
A	boolean	which	can	enable	or	disable	sequence	numbers	in	patch
subjects.	It	defaults	to	"auto"	which	enables	it	only	if	there	is	more
than	one	patch.	It	can	be	enabled	or	disabled	for	all	messages	by
setting	it	to	"true"	or	"false".	See	--numbered	option	in
Section	G.3.50,	“git-format-patch(1)”.

format.headers
Additional	email	headers	to	include	in	a	patch	to	be	submitted	by
mail.	See	Section	G.3.50,	“git-format-patch(1)”.

format.to	,	format.cc
Additional	recipients	to	include	in	a	patch	to	be	submitted	by	mail.
See	the	--to	and	--cc	options	in	Section	G.3.50,	“git-format-patch(1)”.

format.subjectPrefix
The	default	for	format-patch	is	to	output	files	with	the	[PATCH]
subject	prefix.	Use	this	variable	to	change	that	prefix.

format.signature
The	default	for	format-patch	is	to	output	a	signature	containing	the
Git	version	number.	Use	this	variable	to	change	that	default.	Set	this
variable	to	the	empty	string	("")	to	suppress	signature	generation.

format.signatureFile
Works	just	like	format.signature	except	the	contents	of	the	file
specified	by	this	variable	will	be	used	as	the	signature.

format.suffix
The	default	for	format-patch	is	to	output	files	with	the	suffix	.patch.

Use	this	variable	to	change	that	suffix	(make	sure	to	include	the	dot
if	you	want	it).

format.pretty
The	default	pretty	format	for	log/show/whatchanged	command,	See
Section	G.3.68,	“git-log(1)”,	Section	G.3.126,	“git-show(1)”,
Section	G.3.147,	“git-whatchanged(1)”.

format.thread
The	default	threading	style	for	git	format-patch.	Can	be	a	boolean
value,	or	shallow	or	deep.	shallow	threading	makes	every	mail	a
reply	to	the	head	of	the	series,	where	the	head	is	chosen	from	the
cover	letter,	the	--in-reply-to,	and	the	first	patch	mail,	in	this	order.
deep	threading	makes	every	mail	a	reply	to	the	previous	one.	A	true
boolean	value	is	the	same	as	shallow,	and	a	false	value	disables
threading.

format.signOff
A	boolean	value	which	lets	you	enable	the	-s/--signoff	option	of
format-patch	by	default.	Note:	Adding	the	Signed-off-by:	line	to	a
patch	should	be	a	conscious	act	and	means	that	you	certify	you
have	the	rights	to	submit	this	work	under	the	same	open	source
license.	Please	see	the	SubmittingPatches	document	for	further
discussion.

format.coverLetter
A	boolean	that	controls	whether	to	generate	a	cover-letter	when
format-patch	is	invoked,	but	in	addition	can	be	set	to	"auto",	to
generate	a	cover-letter	only	when	there's	more	than	one	patch.

format.outputDirectory
Set	a	custom	directory	to	store	the	resulting	files	instead	of	the
current	working	directory.

filter.<driver>.clean
The	command	which	is	used	to	convert	the	content	of	a	worktree	file
to	a	blob	upon	checkin.	See	Section	G.4.2,	“gitattributes(5)”	for
details.

filter.<driver>.smudge
The	command	which	is	used	to	convert	the	content	of	a	blob	object
to	a	worktree	file	upon	checkout.	See	Section	G.4.2,	“gitattributes(5)”
for	details.

fsck.<msg-id>

Allows	overriding	the	message	type	(error,	warn	or	ignore)	of	a
specific	message	ID	such	as	missingEmail.

For	convenience,	fsck	prefixes	the	error/warning	with	the	message
ID,	e.g.	"missingEmail:	invalid	author/committer	line	-	missing	email"
means	that	setting	fsck.missingEmail	=	ignore	will	hide	that	issue.

This	feature	is	intended	to	support	working	with	legacy	repositories
which	cannot	be	repaired	without	disruptive	changes.

fsck.skipList
The	path	to	a	sorted	list	of	object	names	(i.e.	one	SHA-1	per	line)
that	are	known	to	be	broken	in	a	non-fatal	way	and	should	be
ignored.	This	feature	is	useful	when	an	established	project	should	be
accepted	despite	early	commits	containing	errors	that	can	be	safely
ignored	such	as	invalid	committer	email	addresses.	Note:	corrupt
objects	cannot	be	skipped	with	this	setting.

gc.aggressiveDepth
The	depth	parameter	used	in	the	delta	compression	algorithm	used
by	git	gc	--aggressive.	This	defaults	to	250.

gc.aggressiveWindow
The	window	size	parameter	used	in	the	delta	compression	algorithm
used	by	git	gc	--aggressive.	This	defaults	to	250.

gc.auto
When	there	are	approximately	more	than	this	many	loose	objects	in
the	repository,	git	gc	--auto	will	pack	them.	Some	Porcelain
commands	use	this	command	to	perform	a	light-weight	garbage
collection	from	time	to	time.	The	default	value	is	6700.	Setting	this	to
0	disables	it.

gc.autoPackLimit
When	there	are	more	than	this	many	packs	that	are	not	marked	with
*.keep	file	in	the	repository,	git	gc	--auto	consolidates	them	into	one
larger	pack.	The	default	value	is	50.	Setting	this	to	0	disables	it.

gc.autoDetach
Make	git	gc	--auto	return	immediately	and	run	in	background	if	the
system	supports	it.	Default	is	true.

gc.packRefs
Running	git	pack-refs	in	a	repository	renders	it	unclonable	by	Git

versions	prior	to	1.5.1.2	over	dumb	transports	such	as	HTTP.	This
variable	determines	whether	git	gc	runs	git	pack-refs.	This	can	be	set
to	notbare	to	enable	it	within	all	non-bare	repos	or	it	can	be	set	to	a
boolean	value.	The	default	is	true.

gc.pruneExpire
When	git	gc	is	run,	it	will	call	prune	--expire	2.weeks.ago.	Override
the	grace	period	with	this	config	variable.	The	value	"now"	may	be
used	to	disable	this	grace	period	and	always	prune	unreachable
objects	immediately,	or	"never"	may	be	used	to	suppress	pruning.

gc.worktreePruneExpire
When	git	gc	is	run,	it	calls	git	worktree	prune	--expire	3.months.ago.
This	config	variable	can	be	used	to	set	a	different	grace	period.	The
value	"now"	may	be	used	to	disable	the	grace	period	and	prune
$GIT_DIR/worktrees	immediately,	or	"never"	may	be	used	to
suppress	pruning.

gc.reflogExpire	,	gc.<pattern>.reflogExpire
git	reflog	expire	removes	reflog	entries	older	than	this	time;	defaults
to	90	days.	The	value	"now"	expires	all	entries	immediately,	and
"never"	suppresses	expiration	altogether.	With	"<pattern>"	(e.g.
"refs/stash")	in	the	middle	the	setting	applies	only	to	the	refs	that
match	the	<pattern>.

gc.reflogExpireUnreachable	,	gc.<pattern>.reflogExpireUnreachable
git	reflog	expire	removes	reflog	entries	older	than	this	time	and	are
not	reachable	from	the	current	tip;	defaults	to	30	days.	The	value
"now"	expires	all	entries	immediately,	and	"never"	suppresses
expiration	altogether.	With	"<pattern>"	(e.g.	"refs/stash")	in	the
middle,	the	setting	applies	only	to	the	refs	that	match	the	<pattern>.

gc.rerereResolved
Records	of	conflicted	merge	you	resolved	earlier	are	kept	for	this
many	days	when	git	rerere	gc	is	run.	The	default	is	60	days.	See
Section	G.3.110,	“git-rerere(1)”.

gc.rerereUnresolved
Records	of	conflicted	merge	you	have	not	resolved	are	kept	for	this
many	days	when	git	rerere	gc	is	run.	The	default	is	15	days.	See
Section	G.3.110,	“git-rerere(1)”.

gitcvs.commitMsgAnnotation
Append	this	string	to	each	commit	message.	Set	to	empty	string	to

disable	this	feature.	Defaults	to	"via	git-CVS	emulator".
gitcvs.enabled

Whether	the	CVS	server	interface	is	enabled	for	this	repository.	See
Section	G.3.35,	“git-cvsserver(1)”.

gitcvs.logFile
Path	to	a	log	file	where	the	CVS	server	interface	well…	logs	various
stuff.	See	Section	G.3.35,	“git-cvsserver(1)”.

gitcvs.usecrlfattr
If	true,	the	server	will	look	up	the	end-of-line	conversion	attributes	for
files	to	determine	the	-k	modes	to	use.	If	the	attributes	force	Git	to
treat	a	file	as	text,	the	-k	mode	will	be	left	blank	so	CVS	clients	will
treat	it	as	text.	If	they	suppress	text	conversion,	the	file	will	be	set
with	-kb	mode,	which	suppresses	any	newline	munging	the	client
might	otherwise	do.	If	the	attributes	do	not	allow	the	file	type	to	be
determined,	then	gitcvs.allBinary	is	used.	See	Section	G.4.2,
“gitattributes(5)”.

gitcvs.allBinary
This	is	used	if	gitcvs.usecrlfattr	does	not	resolve	the	correct	-kb
mode	to	use.	If	true,	all	unresolved	files	are	sent	to	the	client	in	mode
-kb.	This	causes	the	client	to	treat	them	as	binary	files,	which
suppresses	any	newline	munging	it	otherwise	might	do.	Alternatively,
if	it	is	set	to	"guess",	then	the	contents	of	the	file	are	examined	to
decide	if	it	is	binary,	similar	to	core.autocrlf.

gitcvs.dbName
Database	used	by	git-cvsserver	to	cache	revision	information
derived	from	the	Git	repository.	The	exact	meaning	depends	on	the
used	database	driver,	for	SQLite	(which	is	the	default	driver)	this	is	a
filename.	Supports	variable	substitution	(see	Section	G.3.35,	“git-
cvsserver(1)”	for	details).	May	not	contain	semicolons	(;).	Default:
%Ggitcvs.%m.sqlite

gitcvs.dbDriver
Used	Perl	DBI	driver.	You	can	specify	any	available	driver	for	this
here,	but	it	might	not	work.	git-cvsserver	is	tested	with	DBD::SQLite,
reported	to	work	with	DBD::Pg,	and	reported	not	to	work	with
DBD::mysql.	Experimental	feature.	May	not	contain	double	colons
(:).	Default:	SQLite.	See	Section	G.3.35,	“git-cvsserver(1)”.

gitcvs.dbUser,	gitcvs.dbPass

Database	user	and	password.	Only	useful	if	setting	gitcvs.dbDriver,
since	SQLite	has	no	concept	of	database	users	and/or	passwords.
gitcvs.dbUser	supports	variable	substitution	(see	Section	G.3.35,
“git-cvsserver(1)”	for	details).

gitcvs.dbTableNamePrefix
Database	table	name	prefix.	Prepended	to	the	names	of	any
database	tables	used,	allowing	a	single	database	to	be	used	for
several	repositories.	Supports	variable	substitution	(see
Section	G.3.35,	“git-cvsserver(1)”	for	details).	Any	non-alphabetic
characters	will	be	replaced	with	underscores.

All	gitcvs	variables	except	for	gitcvs.usecrlfattr	and	gitcvs.allBinary	can
also	be	specified	as	gitcvs.<access_method>.<varname>	(where
access_method	is	one	of	"ext"	and	"pserver")	to	make	them	apply	only
for	the	given	access	method.

gitweb.category	,	gitweb.description	,	gitweb.owner	,	gitweb.url
See	Section	G.4.13,	“gitweb(1)”	for	description.

gitweb.avatar	,	gitweb.blame	,	gitweb.grep	,	gitweb.highlight	,
gitweb.patches	,	gitweb.pickaxe	,	gitweb.remote_heads	,
gitweb.showSizes	,	gitweb.snapshot

See	Section	G.4.14,	“gitweb.conf(5)”	for	description.
grep.lineNumber

If	set	to	true,	enable	-n	option	by	default.
grep.patternType

Set	the	default	matching	behavior.	Using	a	value	of	basic,	extended,
fixed,	or	perl	will	enable	the	--basic-regexp,	--extended-regexp,	--
fixed-strings,	or	--perl-regexp	option	accordingly,	while	the	value
default	will	return	to	the	default	matching	behavior.

grep.extendedRegexp
If	set	to	true,	enable	--extended-regexp	option	by	default.	This	option
is	ignored	when	the	grep.patternType	option	is	set	to	a	value	other
than	default.

grep.threads
Number	of	grep	worker	threads	to	use.	See	grep.threads	in
Section	G.3.55,	“git-grep(1)”	for	more	information.

grep.fallbackToNoIndex

If	set	to	true,	fall	back	to	git	grep	--no-index	if	git	grep	is	executed
outside	of	a	git	repository.	Defaults	to	false.

gpg.program
Use	this	custom	program	instead	of	"gpg"	found	on	$PATH	when
making	or	verifying	a	PGP	signature.	The	program	must	support	the
same	command-line	interface	as	GPG,	namely,	to	verify	a	detached
signature,	"gpg	--verify	$file	-	<$signature"	is	run,	and	the	program	is
expected	to	signal	a	good	signature	by	exiting	with	code	0,	and	to
generate	an	ASCII-armored	detached	signature,	the	standard	input
of	"gpg	-bsau	$key"	is	fed	with	the	contents	to	be	signed,	and	the
program	is	expected	to	send	the	result	to	its	standard	output.

gui.commitMsgWidth
Defines	how	wide	the	commit	message	window	is	in	the
Section	G.3.56,	“git-gui(1)”.	"75"	is	the	default.

gui.diffContext
Specifies	how	many	context	lines	should	be	used	in	calls	to	diff
made	by	the	Section	G.3.56,	“git-gui(1)”.	The	default	is	"5".

gui.displayUntracked
Determines	if	???	shows	untracked	files	in	the	file	list.	The	default	is
"true".

gui.encoding
Specifies	the	default	encoding	to	use	for	displaying	of	file	contents	in
Section	G.3.56,	“git-gui(1)”	and	Section	G.4.7,	“gitk(1)”.	It	can	be
overridden	by	setting	the	encoding	attribute	for	relevant	files	(see
Section	G.4.2,	“gitattributes(5)”).	If	this	option	is	not	set,	the	tools
default	to	the	locale	encoding.

gui.matchTrackingBranch
Determines	if	new	branches	created	with	Section	G.3.56,	“git-gui(1)”
should	default	to	tracking	remote	branches	with	matching	names	or
not.	Default:	"false".

gui.newBranchTemplate
Is	used	as	suggested	name	when	creating	new	branches	using	the
Section	G.3.56,	“git-gui(1)”.

gui.pruneDuringFetch
"true"	if	Section	G.3.56,	“git-gui(1)”	should	prune	remote-tracking
branches	when	performing	a	fetch.	The	default	value	is	"false".

gui.trustmtime

Determines	if	Section	G.3.56,	“git-gui(1)”	should	trust	the	file
modification	timestamp	or	not.	By	default	the	timestamps	are	not
trusted.

gui.spellingDictionary
Specifies	the	dictionary	used	for	spell	checking	commit	messages	in
the	Section	G.3.56,	“git-gui(1)”.	When	set	to	"none"	spell	checking	is
turned	off.

gui.fastCopyBlame
If	true,	git	gui	blame	uses	-C	instead	of	-C	-C	for	original	location
detection.	It	makes	blame	significantly	faster	on	huge	repositories	at
the	expense	of	less	thorough	copy	detection.

gui.copyBlameThreshold
Specifies	the	threshold	to	use	in	git	gui	blame	original	location
detection,	measured	in	alphanumeric	characters.	See	the
Section	G.3.9,	“git-blame(1)”	manual	for	more	information	on	copy
detection.

gui.blamehistoryctx
Specifies	the	radius	of	history	context	in	days	to	show	in
Section	G.4.7,	“gitk(1)”	for	the	selected	commit,	when	the	Show
History	Context	menu	item	is	invoked	from	git	gui	blame.	If	this
variable	is	set	to	zero,	the	whole	history	is	shown.

guitool.<name>.cmd
Specifies	the	shell	command	line	to	execute	when	the	corresponding
item	of	the	Section	G.3.56,	“git-gui(1)”	Tools	menu	is	invoked.	This
option	is	mandatory	for	every	tool.	The	command	is	executed	from
the	root	of	the	working	directory,	and	in	the	environment	it	receives
the	name	of	the	tool	as	GIT_GUITOOL,	the	name	of	the	currently
selected	file	as	FILENAME,	and	the	name	of	the	current	branch	as
CUR_BRANCH	(if	the	head	is	detached,	CUR_BRANCH	is	empty).

guitool.<name>.needsFile
Run	the	tool	only	if	a	diff	is	selected	in	the	GUI.	It	guarantees	that
FILENAME	is	not	empty.

guitool.<name>.noConsole
Run	the	command	silently,	without	creating	a	window	to	display	its
output.

guitool.<name>.noRescan
Don't	rescan	the	working	directory	for	changes	after	the	tool	finishes

execution.
guitool.<name>.confirm

Show	a	confirmation	dialog	before	actually	running	the	tool.
guitool.<name>.argPrompt

Request	a	string	argument	from	the	user,	and	pass	it	to	the	tool
through	the	ARGS	environment	variable.	Since	requesting	an
argument	implies	confirmation,	the	confirm	option	has	no	effect	if	this
is	enabled.	If	the	option	is	set	to	true,	yes,	or	1,	the	dialog	uses	a
built-in	generic	prompt;	otherwise	the	exact	value	of	the	variable	is
used.

guitool.<name>.revPrompt
Request	a	single	valid	revision	from	the	user,	and	set	the	REVISION
environment	variable.	In	other	aspects	this	option	is	similar	to
argPrompt,	and	can	be	used	together	with	it.

guitool.<name>.revUnmerged
Show	only	unmerged	branches	in	the	revPrompt	subdialog.	This	is
useful	for	tools	similar	to	merge	or	rebase,	but	not	for	things	like
checkout	or	reset.

guitool.<name>.title
Specifies	the	title	to	use	for	the	prompt	dialog.	The	default	is	the	tool
name.

guitool.<name>.prompt
Specifies	the	general	prompt	string	to	display	at	the	top	of	the	dialog,
before	subsections	for	argPrompt	and	revPrompt.	The	default	value
includes	the	actual	command.

help.browser
Specify	the	browser	that	will	be	used	to	display	help	in	the	web
format.	See	Section	G.3.58,	“git-help(1)”.

help.format
Override	the	default	help	format	used	by	Section	G.3.58,	“git-
help(1)”.	Values	man,	info,	web	and	html	are	supported.	man	is	the
default.	web	and	html	are	the	same.

help.autoCorrect
Automatically	correct	and	execute	mistyped	commands	after	waiting
for	the	given	number	of	deciseconds	(0.1	sec).	If	more	than	one
command	can	be	deduced	from	the	entered	text,	nothing	will	be
executed.	If	the	value	of	this	option	is	negative,	the	corrected

command	will	be	executed	immediately.	If	the	value	is	0	-	the
command	will	be	just	shown	but	not	executed.	This	is	the	default.

help.htmlPath
Specify	the	path	where	the	HTML	documentation	resides.	File
system	paths	and	URLs	are	supported.	HTML	pages	will	be	prefixed
with	this	path	when	help	is	displayed	in	the	web	format.	This	defaults
to	the	documentation	path	of	your	Git	installation.

http.proxy
Override	the	HTTP	proxy,	normally	configured	using	the	http_proxy,
https_proxy,	and	all_proxy	environment	variables	(see	curl(1)).	In
addition	to	the	syntax	understood	by	curl,	it	is	possible	to	specify	a
proxy	string	with	a	user	name	but	no	password,	in	which	case	git	will
attempt	to	acquire	one	in	the	same	way	it	does	for	other	credentials.
See	Section	G.4.3,	“gitcredentials(7)”	for	more	information.	The
syntax	thus	is	[protocol://][user[:password]@]proxyhost[:port].	This
can	be	overridden	on	a	per-remote	basis;	see	remote.<name>.proxy

http.proxyAuthMethod

Set	the	method	with	which	to	authenticate	against	the	HTTP	proxy.
This	only	takes	effect	if	the	configured	proxy	string	contains	a	user
name	part	(i.e.	is	of	the	form	user@host	or	user@host:port).	This
can	be	overridden	on	a	per-remote	basis;	see	remote.
<name>.proxyAuthMethod.	Both	can	be	overridden	by	the
GIT_HTTP_PROXY_AUTHMETHOD	environment	variable.	Possible
values	are:

anyauth	-	Automatically	pick	a	suitable	authentication	method.	It
is	assumed	that	the	proxy	answers	an	unauthenticated	request
with	a	407	status	code	and	one	or	more	Proxy-authenticate
headers	with	supported	authentication	methods.	This	is	the
default.
basic	-	HTTP	Basic	authentication
digest	-	HTTP	Digest	authentication;	this	prevents	the	password
from	being	transmitted	to	the	proxy	in	clear	text
negotiate	-	GSS-Negotiate	authentication	(compare	the	--
negotiate	option	of	curl(1))
ntlm	-	NTLM	authentication	(compare	the	--ntlm	option	of

curl(1))
http.emptyAuth

Attempt	authentication	without	seeking	a	username	or	password.
This	can	be	used	to	attempt	GSS-Negotiate	authentication	without
specifying	a	username	in	the	URL,	as	libcurl	normally	requires	a
username	for	authentication.

http.cookieFile
File	containing	previously	stored	cookie	lines	which	should	be	used
in	the	Git	http	session,	if	they	match	the	server.	The	file	format	of	the
file	to	read	cookies	from	should	be	plain	HTTP	headers	or	the
Netscape/Mozilla	cookie	file	format	(see	???).	NOTE	that	the	file
specified	with	http.cookieFile	is	only	used	as	input	unless
http.saveCookies	is	set.

http.saveCookies
If	set,	store	cookies	received	during	requests	to	the	file	specified	by
http.cookieFile.	Has	no	effect	if	http.cookieFile	is	unset.

http.sslVersion

The	SSL	version	to	use	when	negotiating	an	SSL	connection,	if	you
want	to	force	the	default.	The	available	and	default	version	depend
on	whether	libcurl	was	built	against	NSS	or	OpenSSL	and	the
particular	configuration	of	the	crypto	library	in	use.	Internally	this	sets
the	CURLOPT_SSL_VERSION	option;	see	the	libcurl	documentation
for	more	details	on	the	format	of	this	option	and	for	the	ssl	version
supported.	Actually	the	possible	values	of	this	option	are:

sslv2
sslv3
tlsv1
tlsv1.0
tlsv1.1
tlsv1.2

Can	be	overridden	by	the	GIT_SSL_VERSION	environment	variable.
To	force	git	to	use	libcurl's	default	ssl	version	and	ignore	any	explicit
http.sslversion	option,	set	GIT_SSL_VERSION	to	the	empty	string.

http.sslCipherList

A	list	of	SSL	ciphers	to	use	when	negotiating	an	SSL	connection.
The	available	ciphers	depend	on	whether	libcurl	was	built	against
NSS	or	OpenSSL	and	the	particular	configuration	of	the	crypto
library	in	use.	Internally	this	sets	the	CURLOPT_SSL_CIPHER_LIST
option;	see	the	libcurl	documentation	for	more	details	on	the	format
of	this	list.

Can	be	overridden	by	the	GIT_SSL_CIPHER_LIST	environment
variable.	To	force	git	to	use	libcurl's	default	cipher	list	and	ignore	any
explicit	http.sslCipherList	option,	set	GIT_SSL_CIPHER_LIST	to	the
empty	string.

http.sslVerify
Whether	to	verify	the	SSL	certificate	when	fetching	or	pushing	over
HTTPS.	Can	be	overridden	by	the	GIT_SSL_NO_VERIFY
environment	variable.

http.sslCert
File	containing	the	SSL	certificate	when	fetching	or	pushing	over
HTTPS.	Can	be	overridden	by	the	GIT_SSL_CERT	environment
variable.

http.sslKey
File	containing	the	SSL	private	key	when	fetching	or	pushing	over
HTTPS.	Can	be	overridden	by	the	GIT_SSL_KEY	environment
variable.

http.sslCertPasswordProtected
Enable	Git's	password	prompt	for	the	SSL	certificate.	Otherwise
OpenSSL	will	prompt	the	user,	possibly	many	times,	if	the	certificate
or	private	key	is	encrypted.	Can	be	overridden	by	the
GIT_SSL_CERT_PASSWORD_PROTECTED	environment	variable.

http.sslCAInfo
File	containing	the	certificates	to	verify	the	peer	with	when	fetching
or	pushing	over	HTTPS.	Can	be	overridden	by	the
GIT_SSL_CAINFO	environment	variable.

http.sslCAPath
Path	containing	files	with	the	CA	certificates	to	verify	the	peer	with
when	fetching	or	pushing	over	HTTPS.	Can	be	overridden	by	the
GIT_SSL_CAPATH	environment	variable.

http.pinnedpubkey
Public	key	of	the	https	service.	It	may	either	be	the	filename	of	a
PEM	or	DER	encoded	public	key	file	or	a	string	starting	with
sha256//	followed	by	the	base64	encoded	sha256	hash	of	the	public
key.	See	also	libcurl	CURLOPT_PINNEDPUBLICKEY.	git	will	exit
with	an	error	if	this	option	is	set	but	not	supported	by	cURL.

http.sslTry
Attempt	to	use	AUTH	SSL/TLS	and	encrypted	data	transfers	when
connecting	via	regular	FTP	protocol.	This	might	be	needed	if	the	FTP
server	requires	it	for	security	reasons	or	you	wish	to	connect
securely	whenever	remote	FTP	server	supports	it.	Default	is	false
since	it	might	trigger	certificate	verification	errors	on	misconfigured
servers.

http.maxRequests
How	many	HTTP	requests	to	launch	in	parallel.	Can	be	overridden
by	the	GIT_HTTP_MAX_REQUESTS	environment	variable.	Default
is	5.

http.minSessions
The	number	of	curl	sessions	(counted	across	slots)	to	be	kept	across
requests.	They	will	not	be	ended	with	curl_easy_cleanup()	until
http_cleanup()	is	invoked.	If	USE_CURL_MULTI	is	not	defined,	this
value	will	be	capped	at	1.	Defaults	to	1.

http.postBuffer
Maximum	size	in	bytes	of	the	buffer	used	by	smart	HTTP	transports
when	POSTing	data	to	the	remote	system.	For	requests	larger	than
this	buffer	size,	HTTP/1.1	and	Transfer-Encoding:	chunked	is	used
to	avoid	creating	a	massive	pack	file	locally.	Default	is	1	MiB,	which
is	sufficient	for	most	requests.

http.lowSpeedLimit,	http.lowSpeedTime
If	the	HTTP	transfer	speed	is	less	than	http.lowSpeedLimit	for	longer
than	http.lowSpeedTime	seconds,	the	transfer	is	aborted.	Can	be
overridden	by	the	GIT_HTTP_LOW_SPEED_LIMIT	and
GIT_HTTP_LOW_SPEED_TIME	environment	variables.

http.noEPSV
A	boolean	which	disables	using	of	EPSV	ftp	command	by	curl.	This
can	helpful	with	some	"poor"	ftp	servers	which	don't	support	EPSV
mode.	Can	be	overridden	by	the	GIT_CURL_FTP_NO_EPSV

environment	variable.	Default	is	false	(curl	will	use	EPSV).
http.userAgent

The	HTTP	USER_AGENT	string	presented	to	an	HTTP	server.	The
default	value	represents	the	version	of	the	client	Git	such	as
git/1.7.1.	This	option	allows	you	to	override	this	value	to	a	more
common	value	such	as	Mozilla/4.0.	This	may	be	necessary,	for
instance,	if	connecting	through	a	firewall	that	restricts	HTTP
connections	to	a	set	of	common	USER_AGENT	strings	(but	not
including	those	like	git/1.7.1).	Can	be	overridden	by	the
GIT_HTTP_USER_AGENT	environment	variable.

http.<url>.*

Any	of	the	http.*	options	above	can	be	applied	selectively	to	some
URLs.	For	a	config	key	to	match	a	URL,	each	element	of	the	config
key	is	compared	to	that	of	the	URL,	in	the	following	order:

1.	 Scheme	(e.g.,	https	in	https://example.com/).	This	field	must
match	exactly	between	the	config	key	and	the	URL.

2.	 Host/domain	name	(e.g.,	example.com	in	https://example.com/).
This	field	must	match	exactly	between	the	config	key	and	the
URL.

3.	 Port	number	(e.g.,	8080	in	http://example.com:8080/).	This	field
must	match	exactly	between	the	config	key	and	the	URL.
Omitted	port	numbers	are	automatically	converted	to	the	correct
default	for	the	scheme	before	matching.

4.	 Path	(e.g.,	repo.git	in	https://example.com/repo.git).	The	path
field	of	the	config	key	must	match	the	path	field	of	the	URL
either	exactly	or	as	a	prefix	of	slash-delimited	path	elements.
This	means	a	config	key	with	path	foo/	matches	URL	path
foo/bar.	A	prefix	can	only	match	on	a	slash	(/)	boundary.	Longer
matches	take	precedence	(so	a	config	key	with	path	foo/bar	is	a
better	match	to	URL	path	foo/bar	than	a	config	key	with	just	path
foo/).

5.	 User	name	(e.g.,	user	in	https://user@example.com/repo.git).	If
the	config	key	has	a	user	name	it	must	match	the	user	name	in
the	URL	exactly.	If	the	config	key	does	not	have	a	user	name,
that	config	key	will	match	a	URL	with	any	user	name	(including

none),	but	at	a	lower	precedence	than	a	config	key	with	a	user
name.

The	list	above	is	ordered	by	decreasing	precedence;	a	URL	that
matches	a	config	key's	path	is	preferred	to	one	that	matches	its	user
name.	For	example,	if	the	URL	is	https://user@example.com/foo/bar
a	config	key	match	of	https://example.com/foo	will	be	preferred	over
a	config	key	match	of	https://user@example.com.

All	URLs	are	normalized	before	attempting	any	matching	(the
password	part,	if	embedded	in	the	URL,	is	always	ignored	for
matching	purposes)	so	that	equivalent	URLs	that	are	simply	spelled
differently	will	match	properly.	Environment	variable	settings	always
override	any	matches.	The	URLs	that	are	matched	against	are	those
given	directly	to	Git	commands.	This	means	any	URLs	visited	as	a
result	of	a	redirection	do	not	participate	in	matching.

i18n.commitEncoding
Character	encoding	the	commit	messages	are	stored	in;	Git	itself
does	not	care	per	se,	but	this	information	is	necessary	e.g.	when
importing	commits	from	emails	or	in	the	gitk	graphical	history
browser	(and	possibly	at	other	places	in	the	future	or	in	other
porcelains).	See	e.g.	Section	G.3.72,	“git-mailinfo(1)”.	Defaults	to	utf-
8.

i18n.logOutputEncoding
Character	encoding	the	commit	messages	are	converted	to	when
running	git	log	and	friends.

imap
The	configuration	variables	in	the	imap	section	are	described	in
Section	G.3.62,	“git-imap-send(1)”.

index.version
Specify	the	version	with	which	new	index	files	should	be	initialized.
This	does	not	affect	existing	repositories.

init.templateDir
Specify	the	directory	from	which	templates	will	be	copied.	(See	the
"TEMPLATE	DIRECTORY"	section	of	Section	G.3.65,	“git-init(1)”.)

instaweb.browser
Specify	the	program	that	will	be	used	to	browse	your	working

repository	in	gitweb.	See	Section	G.3.66,	“git-instaweb(1)”.
instaweb.httpd

The	HTTP	daemon	command-line	to	start	gitweb	on	your	working
repository.	See	Section	G.3.66,	“git-instaweb(1)”.

instaweb.local
If	true	the	web	server	started	by	Section	G.3.66,	“git-instaweb(1)”	will
be	bound	to	the	local	IP	(127.0.0.1).

instaweb.modulePath
The	default	module	path	for	Section	G.3.66,	“git-instaweb(1)”	to	use
instead	of	/usr/lib/apache2/modules.	Only	used	if	httpd	is	Apache.

instaweb.port
The	port	number	to	bind	the	gitweb	httpd	to.	See	Section	G.3.66,
“git-instaweb(1)”.

interactive.singleKey
In	interactive	commands,	allow	the	user	to	provide	one-letter	input
with	a	single	key	(i.e.,	without	hitting	enter).	Currently	this	is	used	by
the	--patch	mode	of	Section	G.3.2,	“git-add(1)”,	Section	G.3.18,	“git-
checkout(1)”,	Section	G.3.26,	“git-commit(1)”,	Section	G.3.111,	“git-
reset(1)”,	and	Section	G.3.128,	“git-stash(1)”.	Note	that	this	setting	is
silently	ignored	if	portable	keystroke	input	is	not	available;	requires
the	Perl	module	Term::ReadKey.

interactive.diffFilter
When	an	interactive	command	(such	as	git	add	--patch)	shows	a
colorized	diff,	git	will	pipe	the	diff	through	the	shell	command	defined
by	this	configuration	variable.	The	command	may	mark	up	the	diff
further	for	human	consumption,	provided	that	it	retains	a	one-to-one
correspondence	with	the	lines	in	the	original	diff.	Defaults	to	disabled
(no	filtering).

log.abbrevCommit
If	true,	makes	Section	G.3.68,	“git-log(1)”,	Section	G.3.126,	“git-
show(1)”,	and	Section	G.3.147,	“git-whatchanged(1)”	assume	--
abbrev-commit.	You	may	override	this	option	with	--no-abbrev-
commit.

log.date
Set	the	default	date-time	mode	for	the	log	command.	Setting	a	value
for	log.date	is	similar	to	using	git	log's	--date	option.	See
Section	G.3.68,	“git-log(1)”	for	details.

log.decorate
Print	out	the	ref	names	of	any	commits	that	are	shown	by	the	log
command.	If	short	is	specified,	the	ref	name	prefixes	refs/heads/,
refs/tags/	and	refs/remotes/	will	not	be	printed.	If	full	is	specified,	the
full	ref	name	(including	prefix)	will	be	printed.	This	is	the	same	as	the
log	commands	--decorate	option.

log.follow
If	true,	git	log	will	act	as	if	the	--follow	option	was	used	when	a	single
<path>	is	given.	This	has	the	same	limitations	as	--follow,	i.e.	it
cannot	be	used	to	follow	multiple	files	and	does	not	work	well	on
non-linear	history.

log.showRoot
If	true,	the	initial	commit	will	be	shown	as	a	big	creation	event.	This
is	equivalent	to	a	diff	against	an	empty	tree.	Tools	like
Section	G.3.68,	“git-log(1)”	or	Section	G.3.147,	“git-whatchanged(1)”,
which	normally	hide	the	root	commit	will	now	show	it.	True	by
default.

log.mailmap
If	true,	makes	Section	G.3.68,	“git-log(1)”,	Section	G.3.126,	“git-
show(1)”,	and	Section	G.3.147,	“git-whatchanged(1)”	assume	--use-
mailmap.

mailinfo.scissors
If	true,	makes	Section	G.3.72,	“git-mailinfo(1)”	(and	therefore
Section	G.3.3,	“git-am(1)”)	act	by	default	as	if	the	--scissors	option
was	provided	on	the	command-line.	When	active,	this	features
removes	everything	from	the	message	body	before	a	scissors	line
(i.e.	consisting	mainly	of	">8",	"8<"	and	"-").

mailmap.file
The	location	of	an	augmenting	mailmap	file.	The	default	mailmap,
located	in	the	root	of	the	repository,	is	loaded	first,	then	the	mailmap
file	pointed	to	by	this	variable.	The	location	of	the	mailmap	file	may
be	in	a	repository	subdirectory,	or	somewhere	outside	of	the
repository	itself.	See	Section	G.3.122,	“git-shortlog(1)”	and
Section	G.3.9,	“git-blame(1)”.

mailmap.blob
Like	mailmap.file,	but	consider	the	value	as	a	reference	to	a	blob	in
the	repository.	If	both	mailmap.file	and	mailmap.blob	are	given,	both

are	parsed,	with	entries	from	mailmap.file	taking	precedence.	In	a
bare	repository,	this	defaults	to	HEAD:.mailmap.	In	a	non-bare
repository,	it	defaults	to	empty.

man.viewer
Specify	the	programs	that	may	be	used	to	display	help	in	the	man
format.	See	Section	G.3.58,	“git-help(1)”.

man.<tool>.cmd
Specify	the	command	to	invoke	the	specified	man	viewer.	The
specified	command	is	evaluated	in	shell	with	the	man	page	passed
as	argument.	(See	Section	G.3.58,	“git-help(1)”.)

man.<tool>.path
Override	the	path	for	the	given	tool	that	may	be	used	to	display	help
in	the	man	format.	See	Section	G.3.58,	“git-help(1)”.

merge.conflictStyle
Specify	the	style	in	which	conflicted	hunks	are	written	out	to	working
tree	files	upon	merge.	The	default	is	"merge",	which	shows	a
<<<<<<<	conflict	marker,	changes	made	by	one	side,	a	=======
marker,	changes	made	by	the	other	side,	and	then	a	>>>>>>>
marker.	An	alternate	style,	"diff3",	adds	a	|||||||	marker	and	the
original	text	before	the	=======	marker.

merge.defaultToUpstream
If	merge	is	called	without	any	commit	argument,	merge	the	upstream
branches	configured	for	the	current	branch	by	using	their	last
observed	values	stored	in	their	remote-tracking	branches.	The
values	of	the	branch.<current	branch>.merge	that	name	the
branches	at	the	remote	named	by	branch.<current	branch>.remote
are	consulted,	and	then	they	are	mapped	via	remote.<remote>.fetch
to	their	corresponding	remote-tracking	branches,	and	the	tips	of
these	tracking	branches	are	merged.

merge.ff
By	default,	Git	does	not	create	an	extra	merge	commit	when	merging
a	commit	that	is	a	descendant	of	the	current	commit.	Instead,	the	tip
of	the	current	branch	is	fast-forwarded.	When	set	to	false,	this
variable	tells	Git	to	create	an	extra	merge	commit	in	such	a	case
(equivalent	to	giving	the	--no-ff	option	from	the	command	line).	When
set	to	only,	only	such	fast-forward	merges	are	allowed	(equivalent	to
giving	the	--ff-only	option	from	the	command	line).

merge.branchdesc
In	addition	to	branch	names,	populate	the	log	message	with	the
branch	description	text	associated	with	them.	Defaults	to	false.

merge.log
In	addition	to	branch	names,	populate	the	log	message	with	at	most
the	specified	number	of	one-line	descriptions	from	the	actual
commits	that	are	being	merged.	Defaults	to	false,	and	true	is	a
synonym	for	20.

merge.renameLimit
The	number	of	files	to	consider	when	performing	rename	detection
during	a	merge;	if	not	specified,	defaults	to	the	value	of
diff.renameLimit.

merge.renormalize
Tell	Git	that	canonical	representation	of	files	in	the	repository	has
changed	over	time	(e.g.	earlier	commits	record	text	files	with	CRLF
line	endings,	but	recent	ones	use	LF	line	endings).	In	such	a
repository,	Git	can	convert	the	data	recorded	in	commits	to	a
canonical	form	before	performing	a	merge	to	reduce	unnecessary
conflicts.	For	more	information,	see	section	"Merging	branches	with
differing	checkin/checkout	attributes"	in	Section	G.4.2,
“gitattributes(5)”.

merge.stat
Whether	to	print	the	diffstat	between	ORIG_HEAD	and	the	merge
result	at	the	end	of	the	merge.	True	by	default.

merge.tool

Controls	which	merge	tool	is	used	by	Section	G.3.81,	“git-
mergetool(1)”.	The	list	below	shows	the	valid	built-in	values.	Any
other	value	is	treated	as	a	custom	merge	tool	and	requires	that	a
corresponding	mergetool.<tool>.cmd	variable	is	defined.

araxis
bc
bc3
codecompare
deltawalker
diffmerge

diffuse
ecmerge
emerge
examdiff
gvimdiff
gvimdiff2
gvimdiff3
kdiff3
meld
opendiff
p4merge
tkdiff
tortoisemerge
vimdiff
vimdiff2
vimdiff3
winmerge
xxdiff

merge.verbosity
Controls	the	amount	of	output	shown	by	the	recursive	merge
strategy.	Level	0	outputs	nothing	except	a	final	error	message	if
conflicts	were	detected.	Level	1	outputs	only	conflicts,	2	outputs
conflicts	and	file	changes.	Level	5	and	above	outputs	debugging
information.	The	default	is	level	2.	Can	be	overridden	by	the
GIT_MERGE_VERBOSITY	environment	variable.

merge.<driver>.name
Defines	a	human-readable	name	for	a	custom	low-level	merge
driver.	See	Section	G.4.2,	“gitattributes(5)”	for	details.

merge.<driver>.driver
Defines	the	command	that	implements	a	custom	low-level	merge
driver.	See	Section	G.4.2,	“gitattributes(5)”	for	details.

merge.<driver>.recursive
Names	a	low-level	merge	driver	to	be	used	when	performing	an
internal	merge	between	common	ancestors.	See	Section	G.4.2,
“gitattributes(5)”	for	details.

mergetool.<tool>.path
Override	the	path	for	the	given	tool.	This	is	useful	in	case	your	tool	is

not	in	the	PATH.
mergetool.<tool>.cmd

Specify	the	command	to	invoke	the	specified	merge	tool.	The
specified	command	is	evaluated	in	shell	with	the	following	variables
available:	BASE	is	the	name	of	a	temporary	file	containing	the
common	base	of	the	files	to	be	merged,	if	available;	LOCAL	is	the
name	of	a	temporary	file	containing	the	contents	of	the	file	on	the
current	branch;	REMOTE	is	the	name	of	a	temporary	file	containing
the	contents	of	the	file	from	the	branch	being	merged;	MERGED
contains	the	name	of	the	file	to	which	the	merge	tool	should	write	the
results	of	a	successful	merge.

mergetool.<tool>.trustExitCode
For	a	custom	merge	command,	specify	whether	the	exit	code	of	the
merge	command	can	be	used	to	determine	whether	the	merge	was
successful.	If	this	is	not	set	to	true	then	the	merge	target	file
timestamp	is	checked	and	the	merge	assumed	to	have	been
successful	if	the	file	has	been	updated,	otherwise	the	user	is
prompted	to	indicate	the	success	of	the	merge.

mergetool.meld.hasOutput
Older	versions	of	meld	do	not	support	the	--output	option.	Git	will
attempt	to	detect	whether	meld	supports	--output	by	inspecting	the
output	of	meld	--help.	Configuring	mergetool.meld.hasOutput	will
make	Git	skip	these	checks	and	use	the	configured	value	instead.
Setting	mergetool.meld.hasOutput	to	true	tells	Git	to	unconditionally
use	the	--output	option,	and	false	avoids	using	--output.

mergetool.keepBackup
After	performing	a	merge,	the	original	file	with	conflict	markers	can
be	saved	as	a	file	with	a	.orig	extension.	If	this	variable	is	set	to	false
then	this	file	is	not	preserved.	Defaults	to	true	(i.e.	keep	the	backup
files).

mergetool.keepTemporaries
When	invoking	a	custom	merge	tool,	Git	uses	a	set	of	temporary	files
to	pass	to	the	tool.	If	the	tool	returns	an	error	and	this	variable	is	set
to	true,	then	these	temporary	files	will	be	preserved,	otherwise	they
will	be	removed	after	the	tool	has	exited.	Defaults	to	false.

mergetool.writeToTemp
Git	writes	temporary	BASE,	LOCAL,	and	REMOTE	versions	of

conflicting	files	in	the	worktree	by	default.	Git	will	attempt	to	use	a
temporary	directory	for	these	files	when	set	true.	Defaults	to	false.

mergetool.prompt
Prompt	before	each	invocation	of	the	merge	resolution	program.

notes.mergeStrategy
Which	merge	strategy	to	choose	by	default	when	resolving	notes
conflicts.	Must	be	one	of	manual,	ours,	theirs,	union,	or
cat_sort_uniq.	Defaults	to	manual.	See	"NOTES	MERGE
STRATEGIES"	section	of	Section	G.3.86,	“git-notes(1)”	for	more
information	on	each	strategy.

notes.<name>.mergeStrategy
Which	merge	strategy	to	choose	when	doing	a	notes	merge	into
refs/notes/<name>.	This	overrides	the	more	general
"notes.mergeStrategy".	See	the	"NOTES	MERGE	STRATEGIES"
section	in	Section	G.3.86,	“git-notes(1)”	for	more	information	on	the
available	strategies.

notes.displayRef

The	(fully	qualified)	refname	from	which	to	show	notes	when
showing	commit	messages.	The	value	of	this	variable	can	be	set	to	a
glob,	in	which	case	notes	from	all	matching	refs	will	be	shown.	You
may	also	specify	this	configuration	variable	several	times.	A	warning
will	be	issued	for	refs	that	do	not	exist,	but	a	glob	that	does	not
match	any	refs	is	silently	ignored.

This	setting	can	be	overridden	with	the	GIT_NOTES_DISPLAY_REF
environment	variable,	which	must	be	a	colon	separated	list	of	refs	or
globs.

The	effective	value	of	"core.notesRef"	(possibly	overridden	by
GIT_NOTES_REF)	is	also	implicitly	added	to	the	list	of	refs	to	be
displayed.

notes.rewrite.<command>
When	rewriting	commits	with	<command>	(currently	amend	or
rebase)	and	this	variable	is	set	to	true,	Git	automatically	copies	your
notes	from	the	original	to	the	rewritten	commit.	Defaults	to	true,	but
see	"notes.rewriteRef"	below.

notes.rewriteMode

When	copying	notes	during	a	rewrite	(see	the	"notes.rewrite.
<command>"	option),	determines	what	to	do	if	the	target	commit
already	has	a	note.	Must	be	one	of	overwrite,	concatenate,
cat_sort_uniq,	or	ignore.	Defaults	to	concatenate.

This	setting	can	be	overridden	with	the
GIT_NOTES_REWRITE_MODE	environment	variable.

notes.rewriteRef

When	copying	notes	during	a	rewrite,	specifies	the	(fully	qualified)	ref
whose	notes	should	be	copied.	The	ref	may	be	a	glob,	in	which	case
notes	in	all	matching	refs	will	be	copied.	You	may	also	specify	this
configuration	several	times.

Does	not	have	a	default	value;	you	must	configure	this	variable	to
enable	note	rewriting.	Set	it	to	refs/notes/commits	to	enable	rewriting
for	the	default	commit	notes.

This	setting	can	be	overridden	with	the
GIT_NOTES_REWRITE_REF	environment	variable,	which	must	be
a	colon	separated	list	of	refs	or	globs.

pack.window
The	size	of	the	window	used	by	Section	G.3.88,	“git-pack-objects(1)”
when	no	window	size	is	given	on	the	command	line.	Defaults	to	10.

pack.depth
The	maximum	delta	depth	used	by	Section	G.3.88,	“git-pack-
objects(1)”	when	no	maximum	depth	is	given	on	the	command	line.
Defaults	to	50.

pack.windowMemory
The	maximum	size	of	memory	that	is	consumed	by	each	thread	in
Section	G.3.88,	“git-pack-objects(1)”	for	pack	window	memory	when
no	limit	is	given	on	the	command	line.	The	value	can	be	suffixed	with
"k",	"m",	or	"g".	When	left	unconfigured	(or	set	explicitly	to	0),	there
will	be	no	limit.

pack.compression

An	integer	-1..9,	indicating	the	compression	level	for	objects	in	a
pack	file.	-1	is	the	zlib	default.	0	means	no	compression,	and	1..9	are
various	speed/size	tradeoffs,	9	being	slowest.	If	not	set,	defaults	to
core.compression.	If	that	is	not	set,	defaults	to	-1,	the	zlib	default,
which	is	"a	default	compromise	between	speed	and	compression
(currently	equivalent	to	level	6)."

Note	that	changing	the	compression	level	will	not	automatically
recompress	all	existing	objects.	You	can	force	recompression	by
passing	the	-F	option	to	Section	G.3.107,	“git-repack(1)”.

pack.deltaCacheSize
The	maximum	memory	in	bytes	used	for	caching	deltas	in
Section	G.3.88,	“git-pack-objects(1)”	before	writing	them	out	to	a
pack.	This	cache	is	used	to	speed	up	the	writing	object	phase	by	not
having	to	recompute	the	final	delta	result	once	the	best	match	for	all
objects	is	found.	Repacking	large	repositories	on	machines	which
are	tight	with	memory	might	be	badly	impacted	by	this	though,
especially	if	this	cache	pushes	the	system	into	swapping.	A	value	of
0	means	no	limit.	The	smallest	size	of	1	byte	may	be	used	to	virtually
disable	this	cache.	Defaults	to	256	MiB.

pack.deltaCacheLimit
The	maximum	size	of	a	delta,	that	is	cached	in	Section	G.3.88,	“git-
pack-objects(1)”.	This	cache	is	used	to	speed	up	the	writing	object
phase	by	not	having	to	recompute	the	final	delta	result	once	the	best
match	for	all	objects	is	found.	Defaults	to	1000.

pack.threads
Specifies	the	number	of	threads	to	spawn	when	searching	for	best
delta	matches.	This	requires	that	Section	G.3.88,	“git-pack-
objects(1)”	be	compiled	with	pthreads	otherwise	this	option	is
ignored	with	a	warning.	This	is	meant	to	reduce	packing	time	on
multiprocessor	machines.	The	required	amount	of	memory	for	the
delta	search	window	is	however	multiplied	by	the	number	of	threads.
Specifying	0	will	cause	Git	to	auto-detect	the	number	of	CPU's	and
set	the	number	of	threads	accordingly.

pack.indexVersion

Specify	the	default	pack	index	version.	Valid	values	are	1	for	legacy
pack	index	used	by	Git	versions	prior	to	1.5.2,	and	2	for	the	new
pack	index	with	capabilities	for	packs	larger	than	4	GB	as	well	as
proper	protection	against	the	repacking	of	corrupted	packs.	Version
2	is	the	default.	Note	that	version	2	is	enforced	and	this	config	option
ignored	whenever	the	corresponding	pack	is	larger	than	2	GB.

If	you	have	an	old	Git	that	does	not	understand	the	version	2	*.idx
file,	cloning	or	fetching	over	a	non	native	protocol	(e.g.	"http")	that
will	copy	both	*.pack	file	and	corresponding	*.idx	file	from	the	other
side	may	give	you	a	repository	that	cannot	be	accessed	with	your
older	version	of	Git.	If	the	*.pack	file	is	smaller	than	2	GB,	however,
you	can	use	Section	G.3.63,	“git-index-pack(1)”	on	the	*.pack	file	to
regenerate	the	*.idx	file.

pack.packSizeLimit
The	maximum	size	of	a	pack.	This	setting	only	affects	packing	to	a
file	when	repacking,	i.e.	the	git://	protocol	is	unaffected.	It	can	be
overridden	by	the	--max-pack-size	option	of	Section	G.3.107,	“git-
repack(1)”.	The	minimum	size	allowed	is	limited	to	1	MiB.	The
default	is	unlimited.	Common	unit	suffixes	of	k,	m,	or	g	are
supported.

pack.useBitmaps
When	true,	git	will	use	pack	bitmaps	(if	available)	when	packing	to
stdout	(e.g.,	during	the	server	side	of	a	fetch).	Defaults	to	true.	You
should	not	generally	need	to	turn	this	off	unless	you	are	debugging
pack	bitmaps.

pack.writeBitmaps	(deprecated)
This	is	a	deprecated	synonym	for	repack.writeBitmaps.

pack.writeBitmapHashCache
When	true,	git	will	include	a	"hash	cache"	section	in	the	bitmap	index
(if	one	is	written).	This	cache	can	be	used	to	feed	git's	delta
heuristics,	potentially	leading	to	better	deltas	between	bitmapped
and	non-bitmapped	objects	(e.g.,	when	serving	a	fetch	between	an
older,	bitmapped	pack	and	objects	that	have	been	pushed	since	the
last	gc).	The	downside	is	that	it	consumes	4	bytes	per	object	of	disk

space,	and	that	JGit's	bitmap	implementation	does	not	understand	it,
causing	it	to	complain	if	Git	and	JGit	are	used	on	the	same
repository.	Defaults	to	false.

pager.<cmd>
If	the	value	is	boolean,	turns	on	or	off	pagination	of	the	output	of	a
particular	Git	subcommand	when	writing	to	a	tty.	Otherwise,	turns	on
pagination	for	the	subcommand	using	the	pager	specified	by	the
value	of	pager.<cmd>.	If	--paginate	or	--no-pager	is	specified	on	the
command	line,	it	takes	precedence	over	this	option.	To	disable
pagination	for	all	commands,	set	core.pager	or	GIT_PAGER	to	cat.

pretty.<name>
Alias	for	a	--pretty=	format	string,	as	specified	in	Section	G.3.68,	“git-
log(1)”.	Any	aliases	defined	here	can	be	used	just	as	the	built-in
pretty	formats	could.	For	example,	running	git	config
pretty.changelog	"format:*	%H	%s"	would	cause	the	invocation	git
log	--pretty=changelog	to	be	equivalent	to	running	git	log	"--
pretty=format:*	%H	%s".	Note	that	an	alias	with	the	same	name	as	a
built-in	format	will	be	silently	ignored.

pull.ff
By	default,	Git	does	not	create	an	extra	merge	commit	when	merging
a	commit	that	is	a	descendant	of	the	current	commit.	Instead,	the	tip
of	the	current	branch	is	fast-forwarded.	When	set	to	false,	this
variable	tells	Git	to	create	an	extra	merge	commit	in	such	a	case
(equivalent	to	giving	the	--no-ff	option	from	the	command	line).	When
set	to	only,	only	such	fast-forward	merges	are	allowed	(equivalent	to
giving	the	--ff-only	option	from	the	command	line).	This	setting
overrides	merge.ff	when	pulling.

pull.rebase

When	true,	rebase	branches	on	top	of	the	fetched	branch,	instead	of
merging	the	default	branch	from	the	default	remote	when	"git	pull"	is
run.	See	"branch.<name>.rebase"	for	setting	this	on	a	per-branch
basis.

When	preserve,	also	pass	--preserve-merges	along	to	git	rebase	so
that	locally	committed	merge	commits	will	not	be	flattened	by	running
git	pull.

When	the	value	is	interactive,	the	rebase	is	run	in	interactive	mode.

NOTE:	this	is	a	possibly	dangerous	operation;	do	not	use	it	unless
you	understand	the	implications	(see	Section	G.3.99,	“git-rebase(1)”
for	details).

pull.octopus
The	default	merge	strategy	to	use	when	pulling	multiple	branches	at
once.

pull.twohead
The	default	merge	strategy	to	use	when	pulling	a	single	branch.

push.default

Defines	the	action	git	push	should	take	if	no	refspec	is	explicitly
given.	Different	values	are	well-suited	for	specific	workflows;	for
instance,	in	a	purely	central	workflow	(i.e.	the	fetch	source	is	equal	to
the	push	destination),	upstream	is	probably	what	you	want.	Possible
values	are:

nothing	-	do	not	push	anything	(error	out)	unless	a	refspec	is
explicitly	given.	This	is	primarily	meant	for	people	who	want	to
avoid	mistakes	by	always	being	explicit.
current	-	push	the	current	branch	to	update	a	branch	with	the
same	name	on	the	receiving	end.	Works	in	both	central	and
non-central	workflows.
upstream	-	push	the	current	branch	back	to	the	branch	whose
changes	are	usually	integrated	into	the	current	branch	(which	is
called	@{upstream}).	This	mode	only	makes	sense	if	you	are
pushing	to	the	same	repository	you	would	normally	pull	from
(i.e.	central	workflow).

simple	-	in	centralized	workflow,	work	like	upstream	with	an
added	safety	to	refuse	to	push	if	the	upstream	branch's	name	is
different	from	the	local	one.

When	pushing	to	a	remote	that	is	different	from	the	remote	you
normally	pull	from,	work	as	current.	This	is	the	safest	option	and
is	suited	for	beginners.

This	mode	has	become	the	default	in	Git	2.0.

matching	-	push	all	branches	having	the	same	name	on	both
ends.	This	makes	the	repository	you	are	pushing	to	remember
the	set	of	branches	that	will	be	pushed	out	(e.g.	if	you	always
push	maint	and	master	there	and	no	other	branches,	the
repository	you	push	to	will	have	these	two	branches,	and	your
local	maint	and	master	will	be	pushed	there).

To	use	this	mode	effectively,	you	have	to	make	sure	all	the
branches	you	would	push	out	are	ready	to	be	pushed	out	before
running	git	push,	as	the	whole	point	of	this	mode	is	to	allow	you
to	push	all	of	the	branches	in	one	go.	If	you	usually	finish	work
on	only	one	branch	and	push	out	the	result,	while	other
branches	are	unfinished,	this	mode	is	not	for	you.	Also	this
mode	is	not	suitable	for	pushing	into	a	shared	central	repository,
as	other	people	may	add	new	branches	there,	or	update	the	tip
of	existing	branches	outside	your	control.

This	used	to	be	the	default,	but	not	since	Git	2.0	(simple	is	the
new	default).

push.followTags
If	set	to	true	enable	--follow-tags	option	by	default.	You	may	override
this	configuration	at	time	of	push	by	specifying	--no-follow-tags.

push.gpgSign
May	be	set	to	a	boolean	value,	or	the	string	if-asked.	A	true	value
causes	all	pushes	to	be	GPG	signed,	as	if	--signed	is	passed	to
Section	G.3.96,	“git-push(1)”.	The	string	if-asked	causes	pushes	to
be	signed	if	the	server	supports	it,	as	if	--signed=if-asked	is	passed
to	git	push.	A	false	value	may	override	a	value	from	a	lower-priority
config	file.	An	explicit	command-line	flag	always	overrides	this	config
option.

push.recurseSubmodules
Make	sure	all	submodule	commits	used	by	the	revisions	to	be
pushed	are	available	on	a	remote-tracking	branch.	If	the	value	is
check	then	Git	will	verify	that	all	submodule	commits	that	changed	in
the	revisions	to	be	pushed	are	available	on	at	least	one	remote	of

the	submodule.	If	any	commits	are	missing,	the	push	will	be	aborted
and	exit	with	non-zero	status.	If	the	value	is	on-demand	then	all
submodules	that	changed	in	the	revisions	to	be	pushed	will	be
pushed.	If	on-demand	was	not	able	to	push	all	necessary	revisions	it
will	also	be	aborted	and	exit	with	non-zero	status.	If	the	value	is	no
then	default	behavior	of	ignoring	submodules	when	pushing	is
retained.	You	may	override	this	configuration	at	time	of	push	by
specifying	--recurse-submodules=check|on-demand|no.

rebase.stat
Whether	to	show	a	diffstat	of	what	changed	upstream	since	the	last
rebase.	False	by	default.

rebase.autoSquash
If	set	to	true	enable	--autosquash	option	by	default.

rebase.autoStash
When	set	to	true,	automatically	create	a	temporary	stash	before	the
operation	begins,	and	apply	it	after	the	operation	ends.	This	means
that	you	can	run	rebase	on	a	dirty	worktree.	However,	use	with	care:
the	final	stash	application	after	a	successful	rebase	might	result	in
non-trivial	conflicts.	Defaults	to	false.

rebase.missingCommitsCheck
If	set	to	"warn",	git	rebase	-i	will	print	a	warning	if	some	commits	are
removed	(e.g.	a	line	was	deleted),	however	the	rebase	will	still
proceed.	If	set	to	"error",	it	will	print	the	previous	warning	and	stop
the	rebase,	git	rebase	--edit-todo	can	then	be	used	to	correct	the
error.	If	set	to	"ignore",	no	checking	is	done.	To	drop	a	commit
without	warning	or	error,	use	the	drop	command	in	the	todo-list.
Defaults	to	"ignore".

rebase.instructionFormat	A	format	string,	as	specified	in	Section	G.3.68,
“git-log(1)”,	to	be	used	for	the	instruction	list	during	an	interactive	rebase.
The	format	will	automatically	have	the	long	commit	hash	prepended	to
the	format.

receive.advertiseAtomic
By	default,	git-receive-pack	will	advertise	the	atomic	push	capability
to	its	clients.	If	you	don't	want	to	this	capability	to	be	advertised,	set
this	variable	to	false.

receive.autogc
By	default,	git-receive-pack	will	run	"git-gc	--auto"	after	receiving
data	from	git-push	and	updating	refs.	You	can	stop	it	by	setting	this
variable	to	false.

receive.certNonceSeed
By	setting	this	variable	to	a	string,	git	receive-pack	will	accept	a	git
push	--signed	and	verifies	it	by	using	a	"nonce"	protected	by	HMAC
using	this	string	as	a	secret	key.

receive.certNonceSlop
When	a	git	push	--signed	sent	a	push	certificate	with	a	"nonce"	that
was	issued	by	a	receive-pack	serving	the	same	repository	within	this
many	seconds,	export	the	"nonce"	found	in	the	certificate	to
GIT_PUSH_CERT_NONCE	to	the	hooks	(instead	of	what	the
receive-pack	asked	the	sending	side	to	include).	This	may	allow
writing	checks	in	pre-receive	and	post-receive	a	bit	easier.	Instead	of
checking	GIT_PUSH_CERT_NONCE_SLOP	environment	variable
that	records	by	how	many	seconds	the	nonce	is	stale	to	decide	if
they	want	to	accept	the	certificate,	they	only	can	check
GIT_PUSH_CERT_NONCE_STATUS	is	OK.

receive.fsckObjects
If	it	is	set	to	true,	git-receive-pack	will	check	all	received	objects.	It
will	abort	in	the	case	of	a	malformed	object	or	a	broken	link.	The
result	of	an	abort	are	only	dangling	objects.	Defaults	to	false.	If	not
set,	the	value	of	transfer.fsckObjects	is	used	instead.

receive.fsck.<msg-id>

When	receive.fsckObjects	is	set	to	true,	errors	can	be	switched	to
warnings	and	vice	versa	by	configuring	the	receive.fsck.<msg-id>
setting	where	the	<msg-id>	is	the	fsck	message	ID	and	the	value	is
one	of	error,	warn	or	ignore.	For	convenience,	fsck	prefixes	the
error/warning	with	the	message	ID,	e.g.	"missingEmail:	invalid
author/committer	line	-	missing	email"	means	that	setting
receive.fsck.missingEmail	=	ignore	will	hide	that	issue.

This	feature	is	intended	to	support	working	with	legacy	repositories
which	would	not	pass	pushing	when	receive.fsckObjects	=	true,
allowing	the	host	to	accept	repositories	with	certain	known	issues	but

still	catch	other	issues.

receive.fsck.skipList
The	path	to	a	sorted	list	of	object	names	(i.e.	one	SHA-1	per	line)
that	are	known	to	be	broken	in	a	non-fatal	way	and	should	be
ignored.	This	feature	is	useful	when	an	established	project	should	be
accepted	despite	early	commits	containing	errors	that	can	be	safely
ignored	such	as	invalid	committer	email	addresses.	Note:	corrupt
objects	cannot	be	skipped	with	this	setting.

receive.unpackLimit
If	the	number	of	objects	received	in	a	push	is	below	this	limit	then	the
objects	will	be	unpacked	into	loose	object	files.	However	if	the
number	of	received	objects	equals	or	exceeds	this	limit	then	the
received	pack	will	be	stored	as	a	pack,	after	adding	any	missing
delta	bases.	Storing	the	pack	from	a	push	can	make	the	push
operation	complete	faster,	especially	on	slow	filesystems.	If	not	set,
the	value	of	transfer.unpackLimit	is	used	instead.

receive.denyDeletes
If	set	to	true,	git-receive-pack	will	deny	a	ref	update	that	deletes	the
ref.	Use	this	to	prevent	such	a	ref	deletion	via	a	push.

receive.denyDeleteCurrent
If	set	to	true,	git-receive-pack	will	deny	a	ref	update	that	deletes	the
currently	checked	out	branch	of	a	non-bare	repository.

receive.denyCurrentBranch

If	set	to	true	or	"refuse",	git-receive-pack	will	deny	a	ref	update	to	the
currently	checked	out	branch	of	a	non-bare	repository.	Such	a	push
is	potentially	dangerous	because	it	brings	the	HEAD	out	of	sync	with
the	index	and	working	tree.	If	set	to	"warn",	print	a	warning	of	such	a
push	to	stderr,	but	allow	the	push	to	proceed.	If	set	to	false	or
"ignore",	allow	such	pushes	with	no	message.	Defaults	to	"refuse".

Another	option	is	"updateInstead"	which	will	update	the	working	tree
if	pushing	into	the	current	branch.	This	option	is	intended	for
synchronizing	working	directories	when	one	side	is	not	easily
accessible	via	interactive	ssh	(e.g.	a	live	web	site,	hence	the
requirement	that	the	working	directory	be	clean).	This	mode	also
comes	in	handy	when	developing	inside	a	VM	to	test	and	fix	code	on

different	Operating	Systems.

By	default,	"updateInstead"	will	refuse	the	push	if	the	working	tree	or
the	index	have	any	difference	from	the	HEAD,	but	the	push-to-
checkout	hook	can	be	used	to	customize	this.	See	Section	G.4.6,
“githooks(5)”.

receive.denyNonFastForwards
If	set	to	true,	git-receive-pack	will	deny	a	ref	update	which	is	not	a
fast-forward.	Use	this	to	prevent	such	an	update	via	a	push,	even	if
that	push	is	forced.	This	configuration	variable	is	set	when	initializing
a	shared	repository.

receive.hideRefs
This	variable	is	the	same	as	transfer.hideRefs,	but	applies	only	to
receive-pack	(and	so	affects	pushes,	but	not	fetches).	An	attempt	to
update	or	delete	a	hidden	ref	by	git	push	is	rejected.

receive.updateServerInfo
If	set	to	true,	git-receive-pack	will	run	git-update-server-info	after
receiving	data	from	git-push	and	updating	refs.

receive.shallowUpdate
If	set	to	true,	.git/shallow	can	be	updated	when	new	refs	require	new
shallow	roots.	Otherwise	those	refs	are	rejected.

remote.pushDefault
The	remote	to	push	to	by	default.	Overrides	branch.<name>.remote
for	all	branches,	and	is	overridden	by	branch.<name>.pushRemote
for	specific	branches.

remote.<name>.url
The	URL	of	a	remote	repository.	See	Section	G.3.46,	“git-fetch(1)”	or
Section	G.3.96,	“git-push(1)”.

remote.<name>.pushurl
The	push	URL	of	a	remote	repository.	See	Section	G.3.96,	“git-
push(1)”.

remote.<name>.proxy
For	remotes	that	require	curl	(http,	https	and	ftp),	the	URL	to	the
proxy	to	use	for	that	remote.	Set	to	the	empty	string	to	disable
proxying	for	that	remote.

remote.<name>.proxyAuthMethod

For	remotes	that	require	curl	(http,	https	and	ftp),	the	method	to	use
for	authenticating	against	the	proxy	in	use	(probably	set	in	remote.
<name>.proxy).	See	http.proxyAuthMethod.

remote.<name>.fetch
The	default	set	of	"refspec"	for	Section	G.3.46,	“git-fetch(1)”.	See
Section	G.3.46,	“git-fetch(1)”.

remote.<name>.push
The	default	set	of	"refspec"	for	Section	G.3.96,	“git-push(1)”.	See
Section	G.3.96,	“git-push(1)”.

remote.<name>.mirror
If	true,	pushing	to	this	remote	will	automatically	behave	as	if	the	--
mirror	option	was	given	on	the	command	line.

remote.<name>.skipDefaultUpdate
If	true,	this	remote	will	be	skipped	by	default	when	updating	using
Section	G.3.46,	“git-fetch(1)”	or	the	update	subcommand	of
Section	G.3.106,	“git-remote(1)”.

remote.<name>.skipFetchAll
If	true,	this	remote	will	be	skipped	by	default	when	updating	using
Section	G.3.46,	“git-fetch(1)”	or	the	update	subcommand	of
Section	G.3.106,	“git-remote(1)”.

remote.<name>.receivepack
The	default	program	to	execute	on	the	remote	side	when	pushing.
See	option	--receive-pack	of	Section	G.3.96,	“git-push(1)”.

remote.<name>.uploadpack
The	default	program	to	execute	on	the	remote	side	when	fetching.
See	option	--upload-pack	of	Section	G.3.45,	“git-fetch-pack(1)”.

remote.<name>.tagOpt
Setting	this	value	to	--no-tags	disables	automatic	tag	following	when
fetching	from	remote	<name>.	Setting	it	to	--tags	will	fetch	every	tag
from	remote	<name>,	even	if	they	are	not	reachable	from	remote
branch	heads.	Passing	these	flags	directly	to	Section	G.3.46,	“git-
fetch(1)”	can	override	this	setting.	See	options	--tags	and	--no-tags
of	Section	G.3.46,	“git-fetch(1)”.

remote.<name>.vcs
Setting	this	to	a	value	<vcs>	will	cause	Git	to	interact	with	the	remote
with	the	git-remote-<vcs>	helper.

remote.<name>.prune

When	set	to	true,	fetching	from	this	remote	by	default	will	also
remove	any	remote-tracking	references	that	no	longer	exist	on	the
remote	(as	if	the	--prune	option	was	given	on	the	command	line).
Overrides	fetch.prune	settings,	if	any.

remotes.<group>
The	list	of	remotes	which	are	fetched	by	"git	remote	update
<group>".	See	Section	G.3.106,	“git-remote(1)”.

repack.useDeltaBaseOffset
By	default,	Section	G.3.107,	“git-repack(1)”	creates	packs	that	use
delta-base	offset.	If	you	need	to	share	your	repository	with	Git	older
than	version	1.4.4,	either	directly	or	via	a	dumb	protocol	such	as
http,	then	you	need	to	set	this	option	to	"false"	and	repack.	Access
from	old	Git	versions	over	the	native	protocol	are	unaffected	by	this
option.

repack.packKeptObjects
If	set	to	true,	makes	git	repack	act	as	if	--pack-kept-objects	was
passed.	See	Section	G.3.107,	“git-repack(1)”	for	details.	Defaults	to
false	normally,	but	true	if	a	bitmap	index	is	being	written	(either	via	--
write-bitmap-index	or	repack.writeBitmaps).

repack.writeBitmaps
When	true,	git	will	write	a	bitmap	index	when	packing	all	objects	to
disk	(e.g.,	when	git	repack	-a	is	run).	This	index	can	speed	up	the
"counting	objects"	phase	of	subsequent	packs	created	for	clones
and	fetches,	at	the	cost	of	some	disk	space	and	extra	time	spent	on
the	initial	repack.	Defaults	to	false.

rerere.autoUpdate
When	set	to	true,	git-rerere	updates	the	index	with	the	resulting
contents	after	it	cleanly	resolves	conflicts	using	previously	recorded
resolution.	Defaults	to	false.

rerere.enabled
Activate	recording	of	resolved	conflicts,	so	that	identical	conflict
hunks	can	be	resolved	automatically,	should	they	be	encountered
again.	By	default,	Section	G.3.110,	“git-rerere(1)”	is	enabled	if	there
is	an	rr-cache	directory	under	the	$GIT_DIR,	e.g.	if	"rerere"	was
previously	used	in	the	repository.

sendemail.identity
A	configuration	identity.	When	given,	causes	values	in	the

sendemail.<identity>	subsection	to	take	precedence	over	values	in
the	sendemail	section.	The	default	identity	is	the	value	of
sendemail.identity.

sendemail.smtpEncryption
See	Section	G.3.116,	“git-send-email(1)”	for	description.	Note	that
this	setting	is	not	subject	to	the	identity	mechanism.

sendemail.smtpssl	(deprecated)
Deprecated	alias	for	sendemail.smtpEncryption	=	ssl.

sendemail.smtpsslcertpath
Path	to	ca-certificates	(either	a	directory	or	a	single	file).	Set	it	to	an
empty	string	to	disable	certificate	verification.

sendemail.<identity>.*
Identity-specific	versions	of	the	sendemail.*	parameters	found	below,
taking	precedence	over	those	when	the	this	identity	is	selected,
through	command-line	or	sendemail.identity.

sendemail.aliasesFile	,	sendemail.aliasFileType	,	sendemail.annotate	,
sendemail.bcc	,	sendemail.cc	,	sendemail.ccCmd	,
sendemail.chainReplyTo	,	sendemail.confirm	,
sendemail.envelopeSender	,	sendemail.from	,	sendemail.multiEdit	,
sendemail.signedoffbycc	,	sendemail.smtpPass	,	sendemail.suppresscc	,
sendemail.suppressFrom	,	sendemail.to	,	sendemail.smtpDomain	,
sendemail.smtpServer	,	sendemail.smtpServerPort	,
sendemail.smtpServerOption	,	sendemail.smtpUser	,	sendemail.thread	,
sendemail.transferEncoding	,	sendemail.validate	,	sendemail.xmailer

See	Section	G.3.116,	“git-send-email(1)”	for	description.
sendemail.signedoffcc	(deprecated)

Deprecated	alias	for	sendemail.signedoffbycc.
showbranch.default

The	default	set	of	branches	for	Section	G.3.123,	“git-show-
branch(1)”.	See	Section	G.3.123,	“git-show-branch(1)”.

status.relativePaths
By	default,	Section	G.3.129,	“git-status(1)”	shows	paths	relative	to
the	current	directory.	Setting	this	variable	to	false	shows	paths
relative	to	the	repository	root	(this	was	the	default	for	Git	prior	to
v1.5.4).

status.short
Set	to	true	to	enable	--short	by	default	in	Section	G.3.129,	“git-

status(1)”.	The	option	--no-short	takes	precedence	over	this	variable.
status.branch

Set	to	true	to	enable	--branch	by	default	in	Section	G.3.129,	“git-
status(1)”.	The	option	--no-branch	takes	precedence	over	this
variable.

status.displayCommentPrefix
If	set	to	true,	Section	G.3.129,	“git-status(1)”	will	insert	a	comment
prefix	before	each	output	line	(starting	with	core.commentChar,	i.e.	#
by	default).	This	was	the	behavior	of	Section	G.3.129,	“git-status(1)”
in	Git	1.8.4	and	previous.	Defaults	to	false.

status.showUntrackedFiles

By	default,	Section	G.3.129,	“git-status(1)”	and	Section	G.3.26,	“git-
commit(1)”	show	files	which	are	not	currently	tracked	by	Git.
Directories	which	contain	only	untracked	files,	are	shown	with	the
directory	name	only.	Showing	untracked	files	means	that	Git	needs
to	lstat()	all	the	files	in	the	whole	repository,	which	might	be	slow	on
some	systems.	So,	this	variable	controls	how	the	commands
displays	the	untracked	files.	Possible	values	are:

no	-	Show	no	untracked	files.
normal	-	Show	untracked	files	and	directories.
all	-	Show	also	individual	files	in	untracked	directories.

If	this	variable	is	not	specified,	it	defaults	to	normal.	This	variable	can
be	overridden	with	the	-u|--untracked-files	option	of	Section	G.3.129,
“git-status(1)”	and	Section	G.3.26,	“git-commit(1)”.

status.submoduleSummary
Defaults	to	false.	If	this	is	set	to	a	non	zero	number	or	true	(identical
to	-1	or	an	unlimited	number),	the	submodule	summary	will	be
enabled	and	a	summary	of	commits	for	modified	submodules	will	be
shown	(see	--summary-limit	option	of	Section	G.3.131,	“git-
submodule(1)”).	Please	note	that	the	summary	output	command	will
be	suppressed	for	all	submodules	when	diff.ignoreSubmodules	is	set
to	all	or	only	for	those	submodules	where	submodule.
<name>.ignore=all.	The	only	exception	to	that	rule	is	that	status	and
commit	will	show	staged	submodule	changes.	To	also	view	the

summary	for	ignored	submodules	you	can	either	use	the	--ignore-
submodules=dirty	command-line	option	or	the	git	submodule
summary	command,	which	shows	a	similar	output	but	does	not
honor	these	settings.

stash.showPatch
If	this	is	set	to	true,	the	git	stash	show	command	without	an	option
will	show	the	stash	in	patch	form.	Defaults	to	false.	See	description
of	show	command	in	Section	G.3.128,	“git-stash(1)”.

stash.showStat
If	this	is	set	to	true,	the	git	stash	show	command	without	an	option
will	show	diffstat	of	the	stash.	Defaults	to	true.	See	description	of
show	command	in	Section	G.3.128,	“git-stash(1)”.

submodule.<name>.path	,	submodule.<name>.url
The	path	within	this	project	and	URL	for	a	submodule.	These
variables	are	initially	populated	by	git	submodule	init.	See
Section	G.3.131,	“git-submodule(1)”	and	Section	G.4.8,
“gitmodules(5)”	for	details.

submodule.<name>.update
The	default	update	procedure	for	a	submodule.	This	variable	is
populated	by	git	submodule	init	from	the	Section	G.4.8,
“gitmodules(5)”	file.	See	description	of	update	command	in
Section	G.3.131,	“git-submodule(1)”.

submodule.<name>.branch
The	remote	branch	name	for	a	submodule,	used	by	git	submodule
update	--remote.	Set	this	option	to	override	the	value	found	in	the
.gitmodules	file.	See	Section	G.3.131,	“git-submodule(1)”	and
Section	G.4.8,	“gitmodules(5)”	for	details.

submodule.<name>.fetchRecurseSubmodules
This	option	can	be	used	to	control	recursive	fetching	of	this
submodule.	It	can	be	overridden	by	using	the	--[no-]recurse-
submodules	command-line	option	to	"git	fetch"	and	"git	pull".	This
setting	will	override	that	from	in	the	Section	G.4.8,	“gitmodules(5)”
file.

submodule.<name>.ignore
Defines	under	what	circumstances	"git	status"	and	the	diff	family
show	a	submodule	as	modified.	When	set	to	"all",	it	will	never	be
considered	modified	(but	it	will	nonetheless	show	up	in	the	output	of

status	and	commit	when	it	has	been	staged),	"dirty"	will	ignore	all
changes	to	the	submodules	work	tree	and	takes	only	differences
between	the	HEAD	of	the	submodule	and	the	commit	recorded	in	the
superproject	into	account.	"untracked"	will	additionally	let
submodules	with	modified	tracked	files	in	their	work	tree	show	up.
Using	"none"	(the	default	when	this	option	is	not	set)	also	shows
submodules	that	have	untracked	files	in	their	work	tree	as	changed.
This	setting	overrides	any	setting	made	in	.gitmodules	for	this
submodule,	both	settings	can	be	overridden	on	the	command	line	by
using	the	"--ignore-submodules"	option.	The	git	submodule
commands	are	not	affected	by	this	setting.

submodule.fetchJobs
Specifies	how	many	submodules	are	fetched/cloned	at	the	same
time.	A	positive	integer	allows	up	to	that	number	of	submodules
fetched	in	parallel.	A	value	of	0	will	give	some	reasonable	default.	If
unset,	it	defaults	to	1.

tag.forceSignAnnotated
A	boolean	to	specify	whether	annotated	tags	created	should	be	GPG
signed.	If	--annotate	is	specified	on	the	command	line,	it	takes
precedence	over	this	option.

tag.sort
This	variable	controls	the	sort	ordering	of	tags	when	displayed	by
Section	G.3.134,	“git-tag(1)”.	Without	the	"--sort=<value>"	option
provided,	the	value	of	this	variable	will	be	used	as	the	default.

tar.umask
This	variable	can	be	used	to	restrict	the	permission	bits	of	tar	archive
entries.	The	default	is	0002,	which	turns	off	the	world	write	bit.	The
special	value	"user"	indicates	that	the	archiving	user's	umask	will	be
used	instead.	See	umask(2)	and	Section	G.3.7,	“git-archive(1)”.

transfer.fsckObjects
When	fetch.fsckObjects	or	receive.fsckObjects	are	not	set,	the	value
of	this	variable	is	used	instead.	Defaults	to	false.

transfer.hideRefs

String(s)	receive-pack	and	upload-pack	use	to	decide	which	refs	to
omit	from	their	initial	advertisements.	Use	more	than	one	definition	to
specify	multiple	prefix	strings.	A	ref	that	is	under	the	hierarchies

listed	in	the	value	of	this	variable	is	excluded,	and	is	hidden	when
responding	to	git	push	or	git	fetch.	See	receive.hideRefs	and
uploadpack.hideRefs	for	program-specific	versions	of	this	config.

You	may	also	include	a	!	in	front	of	the	ref	name	to	negate	the	entry,
explicitly	exposing	it,	even	if	an	earlier	entry	marked	it	as	hidden.	If
you	have	multiple	hideRefs	values,	later	entries	override	earlier	ones
(and	entries	in	more-specific	config	files	override	less-specific	ones).

If	a	namespace	is	in	use,	the	namespace	prefix	is	stripped	from	each
reference	before	it	is	matched	against	transfer.hiderefs	patterns.	For
example,	if	refs/heads/master	is	specified	in	transfer.hideRefs	and
the	current	namespace	is	foo,	then
refs/namespaces/foo/refs/heads/master	is	omitted	from	the
advertisements	but	refs/heads/master	and
refs/namespaces/bar/refs/heads/master	are	still	advertised	as	so-
called	"have"	lines.	In	order	to	match	refs	before	stripping,	add	a	^	in
front	of	the	ref	name.	If	you	combine	!	and	^,	!	must	be	specified	first.

transfer.unpackLimit
When	fetch.unpackLimit	or	receive.unpackLimit	are	not	set,	the
value	of	this	variable	is	used	instead.	The	default	value	is	100.

uploadarchive.allowUnreachable
If	true,	allow	clients	to	use	git	archive	--remote	to	request	any	tree,
whether	reachable	from	the	ref	tips	or	not.	See	the	discussion	in	the
SECURITY	section	of	Section	G.3.140,	“git-upload-archive(1)”	for
more	details.	Defaults	to	false.

uploadpack.hideRefs
This	variable	is	the	same	as	transfer.hideRefs,	but	applies	only	to
upload-pack	(and	so	affects	only	fetches,	not	pushes).	An	attempt	to
fetch	a	hidden	ref	by	git	fetch	will	fail.	See	also
uploadpack.allowTipSHA1InWant.

uploadpack.allowTipSHA1InWant
When	uploadpack.hideRefs	is	in	effect,	allow	upload-pack	to	accept
a	fetch	request	that	asks	for	an	object	at	the	tip	of	a	hidden	ref	(by
default,	such	a	request	is	rejected).	see	also	uploadpack.hideRefs.

uploadpack.allowReachableSHA1InWant
Allow	upload-pack	to	accept	a	fetch	request	that	asks	for	an	object

that	is	reachable	from	any	ref	tip.	However,	note	that	calculating
object	reachability	is	computationally	expensive.	Defaults	to	false.

uploadpack.keepAlive
When	upload-pack	has	started	pack-objects,	there	may	be	a	quiet
period	while	pack-objects	prepares	the	pack.	Normally	it	would
output	progress	information,	but	if	--quiet	was	used	for	the	fetch,
pack-objects	will	output	nothing	at	all	until	the	pack	data	begins.
Some	clients	and	networks	may	consider	the	server	to	be	hung	and
give	up.	Setting	this	option	instructs	upload-pack	to	send	an	empty
keepalive	packet	every	uploadpack.keepAlive	seconds.	Setting	this
option	to	0	disables	keepalive	packets	entirely.	The	default	is	5
seconds.

url.<base>.insteadOf
Any	URL	that	starts	with	this	value	will	be	rewritten	to	start,	instead,
with	<base>.	In	cases	where	some	site	serves	a	large	number	of
repositories,	and	serves	them	with	multiple	access	methods,	and
some	users	need	to	use	different	access	methods,	this	feature
allows	people	to	specify	any	of	the	equivalent	URLs	and	have	Git
automatically	rewrite	the	URL	to	the	best	alternative	for	the	particular
user,	even	for	a	never-before-seen	repository	on	the	site.	When
more	than	one	insteadOf	strings	match	a	given	URL,	the	longest
match	is	used.

url.<base>.pushInsteadOf
Any	URL	that	starts	with	this	value	will	not	be	pushed	to;	instead,	it
will	be	rewritten	to	start	with	<base>,	and	the	resulting	URL	will	be
pushed	to.	In	cases	where	some	site	serves	a	large	number	of
repositories,	and	serves	them	with	multiple	access	methods,	some	of
which	do	not	allow	push,	this	feature	allows	people	to	specify	a	pull-
only	URL	and	have	Git	automatically	use	an	appropriate	URL	to
push,	even	for	a	never-before-seen	repository	on	the	site.	When
more	than	one	pushInsteadOf	strings	match	a	given	URL,	the
longest	match	is	used.	If	a	remote	has	an	explicit	pushurl,	Git	will
ignore	this	setting	for	that	remote.

user.email
Your	email	address	to	be	recorded	in	any	newly	created	commits.
Can	be	overridden	by	the	GIT_AUTHOR_EMAIL,
GIT_COMMITTER_EMAIL,	and	EMAIL	environment	variables.	See

Section	G.3.25,	“git-commit-tree(1)”.
user.name

Your	full	name	to	be	recorded	in	any	newly	created	commits.	Can	be
overridden	by	the	GIT_AUTHOR_NAME	and
GIT_COMMITTER_NAME	environment	variables.	See
Section	G.3.25,	“git-commit-tree(1)”.

user.useConfigOnly
Instruct	Git	to	avoid	trying	to	guess	defaults	for	user.email	and
user.name,	and	instead	retrieve	the	values	only	from	the
configuration.	For	example,	if	you	have	multiple	email	addresses	and
would	like	to	use	a	different	one	for	each	repository,	then	with	this
configuration	option	set	to	true	in	the	global	config	along	with	a
name,	Git	will	prompt	you	to	set	up	an	email	before	making	new
commits	in	a	newly	cloned	repository.	Defaults	to	false.

user.signingKey
If	Section	G.3.134,	“git-tag(1)”	or	Section	G.3.26,	“git-commit(1)”	is
not	selecting	the	key	you	want	it	to	automatically	when	creating	a
signed	tag	or	commit,	you	can	override	the	default	selection	with	this
variable.	This	option	is	passed	unchanged	to	gpg's	--local-user
parameter,	so	you	may	specify	a	key	using	any	method	that	gpg
supports.

versionsort.prereleaseSuffix

When	version	sort	is	used	in	Section	G.3.134,	“git-tag(1)”,	prerelease
tags	(e.g.	"1.0-rc1")	may	appear	after	the	main	release	"1.0".	By
specifying	the	suffix	"-rc"	in	this	variable,	"1.0-rc1"	will	appear	before
"1.0".

This	variable	can	be	specified	multiple	times,	once	per	suffix.	The
order	of	suffixes	in	the	config	file	determines	the	sorting	order	(e.g.	if
"-pre"	appears	before	"-rc"	in	the	config	file	then	1.0-preXX	is	sorted
before	1.0-rcXX).	The	sorting	order	between	different	suffixes	is
undefined	if	they	are	in	multiple	config	files.

web.browser
Specify	a	web	browser	that	may	be	used	by	some	commands.
Currently	only	Section	G.3.66,	“git-instaweb(1)”	and	Section	G.3.58,
“git-help(1)”	may	use	it.

GIT

Part	of	the	Section	G.3.1,	“git(1)”	suite

G.3.28.	git-count-objects(1)

NAME

git-count-objects	-	Count	unpacked	number	of	objects	and	their	disk
consumption

SYNOPSIS

git	count-objects	[-v]	[-H	|	--human-readable]

DESCRIPTION

This	counts	the	number	of	unpacked	object	files	and	disk	space
consumed	by	them,	to	help	you	decide	when	it	is	a	good	time	to	repack.

OPTIONS

-v	,	--verbose

Report	in	more	detail:

count:	the	number	of	loose	objects

size:	disk	space	consumed	by	loose	objects,	in	KiB	(unless	-H	is
specified)

in-pack:	the	number	of	in-pack	objects

size-pack:	disk	space	consumed	by	the	packs,	in	KiB	(unless	-H	is
specified)

prune-packable:	the	number	of	loose	objects	that	are	also	present	in
the	packs.	These	objects	could	be	pruned	using	git	prune-packed.

garbage:	the	number	of	files	in	object	database	that	are	neither	valid
loose	objects	nor	valid	packs

size-garbage:	disk	space	consumed	by	garbage	files,	in	KiB	(unless
-H	is	specified)

-H	,	--human-readable
Print	sizes	in	human	readable	format

GIT

Part	of	the	Section	G.3.1,	“git(1)”	suite

G.3.29.	git-credential(1)

NAME

git-credential	-	Retrieve	and	store	user	credentials

SYNOPSIS

git	credential	<fill|approve|reject>

DESCRIPTION

Git	has	an	internal	interface	for	storing	and	retrieving	credentials	from
system-specific	helpers,	as	well	as	prompting	the	user	for	usernames
and	passwords.	The	git-credential	command	exposes	this	interface	to
scripts	which	may	want	to	retrieve,	store,	or	prompt	for	credentials	in	the
same	manner	as	Git.	The	design	of	this	scriptable	interface	models	the
internal	C	API;	see	the	Git	credential	API	for	more	background	on	the
concepts.

https://www.kernel.org/pub/software/scm/git/docs/technical/api-credentials.html

git-credential	takes	an	"action"	option	on	the	command-line	(one	of	fill,
approve,	or	reject)	and	reads	a	credential	description	on	stdin	(see
INPUT/OUTPUT	FORMAT).

If	the	action	is	fill,	git-credential	will	attempt	to	add	"username"	and
"password"	attributes	to	the	description	by	reading	config	files,	by
contacting	any	configured	credential	helpers,	or	by	prompting	the	user.
The	username	and	password	attributes	of	the	credential	description	are
then	printed	to	stdout	together	with	the	attributes	already	provided.

If	the	action	is	approve,	git-credential	will	send	the	description	to	any
configured	credential	helpers,	which	may	store	the	credential	for	later
use.

If	the	action	is	reject,	git-credential	will	send	the	description	to	any
configured	credential	helpers,	which	may	erase	any	stored	credential
matching	the	description.

If	the	action	is	approve	or	reject,	no	output	should	be	emitted.

TYPICAL	USE	OF	GIT	CREDENTIAL

An	application	using	git-credential	will	typically	use	git	credential	following
these	steps:

1.	 Generate	a	credential	description	based	on	the	context.

For	example,	if	we	want	a	password	for	https://example.com/foo.git,
we	might	generate	the	following	credential	description	(don't	forget
the	blank	line	at	the	end;	it	tells	git	credential	that	the	application
finished	feeding	all	the	information	it	has):

protocol=https

host=example.com

path=foo.git

2.	 Ask	git-credential	to	give	us	a	username	and	password	for	this
description.	This	is	done	by	running	git	credential	fill,	feeding	the
description	from	step	(1)	to	its	standard	input.	The	complete

credential	description	(including	the	credential	per	se,	i.e.	the	login
and	password)	will	be	produced	on	standard	output,	like:

protocol=https

host=example.com

username=bob

password=secr3t

In	most	cases,	this	means	the	attributes	given	in	the	input	will	be
repeated	in	the	output,	but	Git	may	also	modify	the	credential
description,	for	example	by	removing	the	path	attribute	when	the
protocol	is	HTTP(s)	and	credential.useHttpPath	is	false.

If	the	git	credential	knew	about	the	password,	this	step	may	not	have
involved	the	user	actually	typing	this	password	(the	user	may	have
typed	a	password	to	unlock	the	keychain	instead,	or	no	user
interaction	was	done	if	the	keychain	was	already	unlocked)	before	it
returned	password=secr3t.

3.	 Use	the	credential	(e.g.,	access	the	URL	with	the	username	and
password	from	step	(2)),	and	see	if	it's	accepted.

4.	 Report	on	the	success	or	failure	of	the	password.	If	the	credential
allowed	the	operation	to	complete	successfully,	then	it	can	be
marked	with	an	"approve"	action	to	tell	git	credential	to	reuse	it	in	its
next	invocation.	If	the	credential	was	rejected	during	the	operation,
use	the	"reject"	action	so	that	git	credential	will	ask	for	a	new
password	in	its	next	invocation.	In	either	case,	git	credential	should
be	fed	with	the	credential	description	obtained	from	step	(2)	(which
also	contain	the	ones	provided	in	step	(1)).

INPUT/OUTPUT	FORMAT

git	credential	reads	and/or	writes	(depending	on	the	action	used)
credential	information	in	its	standard	input/output.	This	information	can
correspond	either	to	keys	for	which	git	credential	will	obtain	the
login/password	information	(e.g.	host,	protocol,	path),	or	to	the	actual
credential	data	to	be	obtained	(login/password).

The	credential	is	split	into	a	set	of	named	attributes,	with	one	attribute	per

line.	Each	attribute	is	specified	by	a	key-value	pair,	separated	by	an	=
(equals)	sign,	followed	by	a	newline.	The	key	may	contain	any	bytes
except	=,	newline,	or	NUL.	The	value	may	contain	any	bytes	except
newline	or	NUL.	In	both	cases,	all	bytes	are	treated	as-is	(i.e.,	there	is	no
quoting,	and	one	cannot	transmit	a	value	with	newline	or	NUL	in	it).	The
list	of	attributes	is	terminated	by	a	blank	line	or	end-of-file.	Git
understands	the	following	attributes:

protocol
The	protocol	over	which	the	credential	will	be	used	(e.g.,	https).

host
The	remote	hostname	for	a	network	credential.

path
The	path	with	which	the	credential	will	be	used.	E.g.,	for	accessing	a
remote	https	repository,	this	will	be	the	repository's	path	on	the
server.

username
The	credential's	username,	if	we	already	have	one	(e.g.,	from	a
URL,	from	the	user,	or	from	a	previously	run	helper).

password
The	credential's	password,	if	we	are	asking	it	to	be	stored.

url
When	this	special	attribute	is	read	by	git	credential,	the	value	is
parsed	as	a	URL	and	treated	as	if	its	constituent	parts	were	read
(e.g.,	url=https://example.com	would	behave	as	if	protocol=https	and
host=example.com	had	been	provided).	This	can	help	callers	avoid
parsing	URLs	themselves.	Note	that	any	components	which	are
missing	from	the	URL	(e.g.,	there	is	no	username	in	the	example
above)	will	be	set	to	empty;	if	you	want	to	provide	a	URL	and
override	some	attributes,	provide	the	URL	attribute	first,	followed	by
any	overrides.

G.3.30.	git-credential-cache--daemon(1)

NAME

git-credential-cache--daemon	-	Temporarily	store	user	credentials	in

memory

SYNOPSIS

git	credential-cache--daemon	[--debug]	<socket>

DESCRIPTION

Note

You	probably	don't	want	to	invoke	this	command	yourself;	it
is	started	automatically	when	you	use	Section	G.3.31,	“git-
credential-cache(1)”.

This	command	listens	on	the	Unix	domain	socket	specified	by	<socket>
for	git-credential-cache	clients.	Clients	may	store	and	retrieve	credentials.
Each	credential	is	held	for	a	timeout	specified	by	the	client;	once	no
credentials	are	held,	the	daemon	exits.

If	the	--debug	option	is	specified,	the	daemon	does	not	close	its	stderr
stream,	and	may	output	extra	diagnostics	to	it	even	after	it	has	begun
listening	for	clients.

GIT

Part	of	the	Section	G.3.1,	“git(1)”	suite

G.3.31.	git-credential-cache(1)

NAME

git-credential-cache	-	Helper	to	temporarily	store	passwords	in	memory

SYNOPSIS

git	config	credential.helper	'cache	[options]'

DESCRIPTION

This	command	caches	credentials	in	memory	for	use	by	future	Git
programs.	The	stored	credentials	never	touch	the	disk,	and	are	forgotten
after	a	configurable	timeout.	The	cache	is	accessible	over	a	Unix	domain
socket,	restricted	to	the	current	user	by	filesystem	permissions.

You	probably	don't	want	to	invoke	this	command	directly;	it	is	meant	to	be
used	as	a	credential	helper	by	other	parts	of	Git.	See	Section	G.4.3,
“gitcredentials(7)”	or	EXAMPLES	below.

OPTIONS

--timeout	<seconds>
Number	of	seconds	to	cache	credentials	(default:	900).

--socket	<path>
Use	<path>	to	contact	a	running	cache	daemon	(or	start	a	new
cache	daemon	if	one	is	not	started).	Defaults	to	~/.git-credential-
cache/socket.	If	your	home	directory	is	on	a	network-mounted
filesystem,	you	may	need	to	change	this	to	a	local	filesystem.	You
must	specify	an	absolute	path.

CONTROLLING	THE	DAEMON

If	you	would	like	the	daemon	to	exit	early,	forgetting	all	cached
credentials	before	their	timeout,	you	can	issue	an	exit	action:

git	credential-cache	exit

EXAMPLES

The	point	of	this	helper	is	to	reduce	the	number	of	times	you	must	type
your	username	or	password.	For	example:

$	git	config	credential.helper	cache

$	git	push	http://example.com/repo.git

Username:	<type	your	username>

Password:	<type	your	password>

[work	for	5	more	minutes]

$	git	push	http://example.com/repo.git

[your	credentials	are	used	automatically]

You	can	provide	options	via	the	credential.helper	configuration	variable
(this	example	drops	the	cache	time	to	5	minutes):

$	git	config	credential.helper	'cache	--timeout=300'

GIT

Part	of	the	Section	G.3.1,	“git(1)”	suite

G.3.32.	git-credential-store(1)

NAME

git-credential-store	-	Helper	to	store	credentials	on	disk

SYNOPSIS

git	config	credential.helper	'store	[options]'

DESCRIPTION

Note

Using	this	helper	will	store	your	passwords	unencrypted	on
disk,	protected	only	by	filesystem	permissions.	If	this	is	not
an	acceptable	security	tradeoff,	try	Section	G.3.31,	“git-

credential-cache(1)”,	or	find	a	helper	that	integrates	with
secure	storage	provided	by	your	operating	system.

This	command	stores	credentials	indefinitely	on	disk	for	use	by	future	Git
programs.

You	probably	don't	want	to	invoke	this	command	directly;	it	is	meant	to	be
used	as	a	credential	helper	by	other	parts	of	git.	See	Section	G.4.3,
“gitcredentials(7)”	or	EXAMPLES	below.

OPTIONS

--file=<path>
Use	<path>	to	lookup	and	store	credentials.	The	file	will	have	its
filesystem	permissions	set	to	prevent	other	users	on	the	system	from
reading	it,	but	will	not	be	encrypted	or	otherwise	protected.	If	not
specified,	credentials	will	be	searched	for	from	~/.git-credentials	and
$XDG_CONFIG_HOME/git/credentials,	and	credentials	will	be
written	to	~/.git-credentials	if	it	exists,	or
$XDG_CONFIG_HOME/git/credentials	if	it	exists	and	the	former
does	not.	See	also	the	section	called	“FILES”.

FILES

If	not	set	explicitly	with	--file,	there	are	two	files	where	git-credential-store
will	search	for	credentials	in	order	of	precedence:

~/.git-credentials
User-specific	credentials	file.

$XDG_CONFIG_HOME/git/credentials
Second	user-specific	credentials	file.	If	$XDG_CONFIG_HOME	is
not	set	or	empty,	$HOME/.config/git/credentials	will	be	used.	Any
credentials	stored	in	this	file	will	not	be	used	if	~/.git-credentials	has
a	matching	credential	as	well.	It	is	a	good	idea	not	to	create	this	file	if
you	sometimes	use	older	versions	of	Git	that	do	not	support	it.

For	credential	lookups,	the	files	are	read	in	the	order	given	above,	with
the	first	matching	credential	found	taking	precedence	over	credentials
found	in	files	further	down	the	list.

Credential	storage	will	by	default	write	to	the	first	existing	file	in	the	list.	If
none	of	these	files	exist,	~/.git-credentials	will	be	created	and	written	to.

When	erasing	credentials,	matching	credentials	will	be	erased	from	all
files.

EXAMPLES

The	point	of	this	helper	is	to	reduce	the	number	of	times	you	must	type
your	username	or	password.	For	example:

$	git	config	credential.helper	store

$	git	push	http://example.com/repo.git

Username:	<type	your	username>

Password:	<type	your	password>

[several	days	later]

$	git	push	http://example.com/repo.git

[your	credentials	are	used	automatically]

STORAGE	FORMAT

The	.git-credentials	file	is	stored	in	plaintext.	Each	credential	is	stored	on
its	own	line	as	a	URL	like:

https://user:pass@example.com

When	Git	needs	authentication	for	a	particular	URL	context,	credential-
store	will	consider	that	context	a	pattern	to	match	against	each	entry	in
the	credentials	file.	If	the	protocol,	hostname,	and	username	(if	we
already	have	one)	match,	then	the	password	is	returned	to	Git.	See	the
discussion	of	configuration	in	Section	G.4.3,	“gitcredentials(7)”	for	more
information.

GIT

Part	of	the	Section	G.3.1,	“git(1)”	suite

G.3.33.	git-cvsexportcommit(1)

NAME

git-cvsexportcommit	-	Export	a	single	commit	to	a	CVS	checkout

SYNOPSIS

git	cvsexportcommit	[-h]	[-u]	[-v]	[-c]	[-P]	[-p]	[-a]	[-

d	cvsroot]

								[-w	cvsworkdir]	[-W]	[-f]	[-

m	msgprefix]	[PARENTCOMMIT]	COMMITID

DESCRIPTION

Exports	a	commit	from	Git	to	a	CVS	checkout,	making	it	easier	to	merge
patches	from	a	Git	repository	into	a	CVS	repository.

Specify	the	name	of	a	CVS	checkout	using	the	-w	switch	or	execute	it
from	the	root	of	the	CVS	working	copy.	In	the	latter	case	GIT_DIR	must
be	defined.	See	examples	below.

It	does	its	best	to	do	the	safe	thing,	it	will	check	that	the	files	are
unchanged	and	up	to	date	in	the	CVS	checkout,	and	it	will	not
autocommit	by	default.

Supports	file	additions,	removals,	and	commits	that	affect	binary	files.

If	the	commit	is	a	merge	commit,	you	must	tell	git	cvsexportcommit	what
parent	the	changeset	should	be	done	against.

OPTIONS

-c
Commit	automatically	if	the	patch	applied	cleanly.	It	will	not	commit	if
any	hunks	fail	to	apply	or	there	were	other	problems.

-p
Be	pedantic	(paranoid)	when	applying	patches.	Invokes	patch	with	--
fuzz=0

-a
Add	authorship	information.	Adds	Author	line,	and	Committer	(if
different	from	Author)	to	the	message.

-d
Set	an	alternative	CVSROOT	to	use.	This	corresponds	to	the	CVS	-d
parameter.	Usually	users	will	not	want	to	set	this,	except	if	using
CVS	in	an	asymmetric	fashion.

-f
Force	the	merge	even	if	the	files	are	not	up	to	date.

-P
Force	the	parent	commit,	even	if	it	is	not	a	direct	parent.

-m
Prepend	the	commit	message	with	the	provided	prefix.	Useful	for
patch	series	and	the	like.

-u
Update	affected	files	from	CVS	repository	before	attempting	export.

-k
Reverse	CVS	keyword	expansion	(e.g.	$Revision:	1.2.3.4$	becomes
$Revision$)	in	working	CVS	checkout	before	applying	patch.

-w
Specify	the	location	of	the	CVS	checkout	to	use	for	the	export.	This
option	does	not	require	GIT_DIR	to	be	set	before	execution	if	the
current	directory	is	within	a	Git	repository.	The	default	is	the	value	of
cvsexportcommit.cvsdir.

-W
Tell	cvsexportcommit	that	the	current	working	directory	is	not	only	a
Git	checkout,	but	also	the	CVS	checkout.	Therefore,	Git	will	reset	the
working	directory	to	the	parent	commit	before	proceeding.

-v
Verbose.

CONFIGURATION

cvsexportcommit.cvsdir
The	default	location	of	the	CVS	checkout	to	use	for	the	export.

EXAMPLES

Merge	one	patch	into	CVS

$	export	GIT_DIR=~/project/.git

$	cd	~/project_cvs_checkout

$	git	cvsexportcommit	-v	<commit-sha1>

$	cvs	commit	-F	.msg	<files>

Merge	one	patch	into	CVS	(-c	and	-w	options).	The	working	directory	is
within	the	Git	Repo

								$	git	cvsexportcommit	-v	-c	-w	~/project_cvs_checkout	<commit-sha1>

Merge	pending	patches	into	CVS	automatically	--	only	if	you	really	know
what	you	are	doing

$	export	GIT_DIR=~/project/.git

$	cd	~/project_cvs_checkout

$	git	cherry	cvshead	myhead	|	sed	-n	's/^+	//p'	|	xargs	-l1	git	cvsexportcommit	-c	-p	-v

GIT

Part	of	the	Section	G.3.1,	“git(1)”	suite

G.3.34.	git-cvsimport(1)

NAME

git-cvsimport	-	Salvage	your	data	out	of	another	SCM	people	love	to	hate

SYNOPSIS

git	cvsimport	[-o	<branch-for-HEAD>]	[-h]	[-v]	[-d	<CVSROOT>]

														[-A	<author-conv-file>]	[-p	<options-for-

cvsps>]	[-P	<file>]

														[-C	<git_repository>]	[-z	<fuzz>]	[-i]	[-k]	[-

u]	[-s	<subst>]

														[-a]	[-m]	[-M	<regex>]	[-S	<regex>]	[-

L	<commitlimit>]

														[-r	<remote>]	[-R]	[<CVS_module>]

DESCRIPTION

WARNING:	git	cvsimport	uses	cvsps	version	2,	which	is	considered
deprecated;	it	does	not	work	with	cvsps	version	3	and	later.	If	you	are
performing	a	one-shot	import	of	a	CVS	repository	consider	using
http://cvs2svn.tigris.org/cvs2git.html[cvs2git]	or
https://github.com/BartMassey/parsecvs[parsecvs].

Imports	a	CVS	repository	into	Git.	It	will	either	create	a	new	repository,	or
incrementally	import	into	an	existing	one.

Splitting	the	CVS	log	into	patch	sets	is	done	by	cvsps.	At	least	version
2.1	is	required.

WARNING:	for	certain	situations	the	import	leads	to	incorrect	results.
Please	see	the	section	ISSUES	for	further	reference.

You	should	never	do	any	work	of	your	own	on	the	branches	that	are
created	by	git	cvsimport.	By	default	initial	import	will	create	and	populate
a	"master"	branch	from	the	CVS	repository's	main	branch	which	you're
free	to	work	with;	after	that,	you	need	to	git	merge	incremental	imports,	or
any	CVS	branches,	yourself.	It	is	advisable	to	specify	a	named	remote
via	-r	to	separate	and	protect	the	incoming	branches.

If	you	intend	to	set	up	a	shared	public	repository	that	all	developers	can
read/write,	or	if	you	want	to	use	Section	G.3.35,	“git-cvsserver(1)”,	then
you	probably	want	to	make	a	bare	clone	of	the	imported	repository,	and
use	the	clone	as	the	shared	repository.	See	Section	G.2.4,	“gitcvs-
migration(7)”.

http://cvs2svn.tigris.org/cvs2git.html%5Bcvs2git
https://github.com/BartMassey/parsecvs%5Bparsecvs

OPTIONS

-v
Verbosity:	let	cvsimport	report	what	it	is	doing.

-d	<CVSROOT>
The	root	of	the	CVS	archive.	May	be	local	(a	simple	path)	or	remote;
currently,	only	the	:local:,	:ext:	and	:pserver:	access	methods	are
supported.	If	not	given,	git	cvsimport	will	try	to	read	it	from
CVS/Root.	If	no	such	file	exists,	it	checks	for	the	CVSROOT
environment	variable.

<CVS_module>
The	CVS	module	you	want	to	import.	Relative	to	<CVSROOT>.	If	not
given,	git	cvsimport	tries	to	read	it	from	CVS/Repository.

-C	<target-dir>
The	Git	repository	to	import	to.	If	the	directory	doesn't	exist,	it	will	be
created.	Default	is	the	current	directory.

-r	<remote>
The	Git	remote	to	import	this	CVS	repository	into.	Moves	all	CVS
branches	into	remotes/<remote>/<branch>	akin	to	the	way	git	clone
uses	origin	by	default.

-o	<branch-for-HEAD>

When	no	remote	is	specified	(via	-r)	the	HEAD	branch	from	CVS	is
imported	to	the	origin	branch	within	the	Git	repository,	as	HEAD
already	has	a	special	meaning	for	Git.	When	a	remote	is	specified
the	HEAD	branch	is	named	remotes/<remote>/master	mirroring	git
clone	behaviour.	Use	this	option	if	you	want	to	import	into	a	different
branch.

Use	-o	master	for	continuing	an	import	that	was	initially	done	by	the
old	cvs2git	tool.

-i
Import-only:	don't	perform	a	checkout	after	importing.	This	option
ensures	the	working	directory	and	index	remain	untouched	and	will
not	create	them	if	they	do	not	exist.

-k

Kill	keywords:	will	extract	files	with	-kk	from	the	CVS	archive	to	avoid
noisy	changesets.	Highly	recommended,	but	off	by	default	to
preserve	compatibility	with	early	imported	trees.

-u
Convert	underscores	in	tag	and	branch	names	to	dots.

-s	<subst>
Substitute	the	character	"/"	in	branch	names	with	<subst>

-p	<options-for-cvsps>

Additional	options	for	cvsps.	The	options	-u	and	-A	are	implicit	and
should	not	be	used	here.

If	you	need	to	pass	multiple	options,	separate	them	with	a	comma.

-z	<fuzz>
Pass	the	timestamp	fuzz	factor	to	cvsps,	in	seconds.	If	unset,	cvsps
defaults	to	300s.

-P	<cvsps-output-file>
Instead	of	calling	cvsps,	read	the	provided	cvsps	output	file.	Useful
for	debugging	or	when	cvsps	is	being	handled	outside	cvsimport.

-m
Attempt	to	detect	merges	based	on	the	commit	message.	This	option
will	enable	default	regexes	that	try	to	capture	the	source	branch
name	from	the	commit	message.

-M	<regex>

Attempt	to	detect	merges	based	on	the	commit	message	with	a
custom	regex.	It	can	be	used	with	-m	to	enable	the	default	regexes
as	well.	You	must	escape	forward	slashes.

The	regex	must	capture	the	source	branch	name	in	$1.

This	option	can	be	used	several	times	to	provide	several	detection
regexes.

-S	<regex>
Skip	paths	matching	the	regex.

-a

Import	all	commits,	including	recent	ones.	cvsimport	by	default	skips
commits	that	have	a	timestamp	less	than	10	minutes	ago.

-L	<limit>
Limit	the	number	of	commits	imported.	Workaround	for	cases	where
cvsimport	leaks	memory.

-A	<author-conv-file>

CVS	by	default	uses	the	Unix	username	when	writing	its	commit
logs.	Using	this	option	and	an	author-conv-file	maps	the	name
recorded	in	CVS	to	author	name,	e-mail	and	optional	time	zone:

								exon=Andreas	Ericsson	<ae@op5.se>

								spawn=Simon	Pawn	<spawn@frog-pond.org>	America/Chicago

git	cvsimport	will	make	it	appear	as	those	authors	had	their
GIT_AUTHOR_NAME	and	GIT_AUTHOR_EMAIL	set	properly	all
along.	If	a	time	zone	is	specified,	GIT_AUTHOR_DATE	will	have	the
corresponding	offset	applied.

For	convenience,	this	data	is	saved	to	$GIT_DIR/cvs-authors	each
time	the	-A	option	is	provided	and	read	from	that	same	file	each	time
git	cvsimport	is	run.

It	is	not	recommended	to	use	this	feature	if	you	intend	to	export
changes	back	to	CVS	again	later	with	git	cvsexportcommit.

-R

Generate	a	$GIT_DIR/cvs-revisions	file	containing	a	mapping	from
CVS	revision	numbers	to	newly-created	Git	commit	IDs.	The
generated	file	will	contain	one	line	for	each	(filename,	revision)	pair
imported;	each	line	will	look	like

src/widget.c	1.1	1d862f173cdc7325b6fa6d2ae1cfd61fd1b512b7

The	revision	data	is	appended	to	the	file	if	it	already	exists,	for	use

when	doing	incremental	imports.

This	option	may	be	useful	if	you	have	CVS	revision	numbers	stored
in	commit	messages,	bug-tracking	systems,	email	archives,	and	the
like.

-h
Print	a	short	usage	message	and	exit.

OUTPUT

If	-v	is	specified,	the	script	reports	what	it	is	doing.

Otherwise,	success	is	indicated	the	Unix	way,	i.e.	by	simply	exiting	with	a
zero	exit	status.

ISSUES

Problems	related	to	timestamps:

If	timestamps	of	commits	in	the	CVS	repository	are	not	stable
enough	to	be	used	for	ordering	commits	changes	may	show	up	in
the	wrong	order.
If	any	files	were	ever	"cvs	import"ed	more	than	once	(e.g.,	import	of
more	than	one	vendor	release)	the	HEAD	contains	the	wrong
content.
If	the	timestamp	order	of	different	files	cross	the	revision	order	within
the	commit	matching	time	window	the	order	of	commits	may	be
wrong.

Problems	related	to	branches:

Branches	on	which	no	commits	have	been	made	are	not	imported.
All	files	from	the	branching	point	are	added	to	a	branch	even	if	never
added	in	CVS.
This	applies	to	files	added	to	the	source	branch	after	a	daughter
branch	was	created:	if	previously	no	commit	was	made	on	the
daughter	branch	they	will	erroneously	be	added	to	the	daughter

branch	in	git.

Problems	related	to	tags:

Multiple	tags	on	the	same	revision	are	not	imported.

If	you	suspect	that	any	of	these	issues	may	apply	to	the	repository	you
want	to	import,	consider	using	cvs2git:

cvs2git	(part	of	cvs2svn),	http://subversion.apache.org/

GIT

Part	of	the	Section	G.3.1,	“git(1)”	suite

G.3.35.	git-cvsserver(1)

NAME

git-cvsserver	-	A	CVS	server	emulator	for	Git

SYNOPSIS

SSH:

export	CVS_SERVER="git	cvsserver"

cvs	-d	:ext:user@server/path/repo.git	co	<HEAD_name>

pserver	(/etc/inetd.conf):

cvspserver	stream	tcp	nowait	nobody	/usr/bin/git-

cvsserver	git-cvsserver	pserver

Usage:

git-cvsserver	[options]	[pserver|server]	[<directory>	…]

OPTIONS

All	these	options	obviously	only	make	sense	if	enforced	by	the	server
side.	They	have	been	implemented	to	resemble	the	Section	G.3.36,	“git-
daemon(1)”	options	as	closely	as	possible.

--base-path	<path>
Prepend	path	to	requested	CVSROOT

--strict-paths
Don't	allow	recursing	into	subdirectories

--export-all
Don't	check	for	gitcvs.enabled	in	config.	You	also	have	to	specify	a
list	of	allowed	directories	(see	below)	if	you	want	to	use	this	option.

-V	,	--version
Print	version	information	and	exit

-h	,	-H	,	--help
Print	usage	information	and	exit

<directory>
You	can	specify	a	list	of	allowed	directories.	If	no	directories	are
given,	all	are	allowed.	This	is	an	additional	restriction,	gitcvs	access
still	needs	to	be	enabled	by	the	gitcvs.enabled	config	option	unless	--
export-all	was	given,	too.

DESCRIPTION

This	application	is	a	CVS	emulation	layer	for	Git.

It	is	highly	functional.	However,	not	all	methods	are	implemented,	and	for
those	methods	that	are	implemented,	not	all	switches	are	implemented.

Testing	has	been	done	using	both	the	CLI	CVS	client,	and	the	Eclipse
CVS	plugin.	Most	functionality	works	fine	with	both	of	these	clients.

LIMITATIONS

CVS	clients	cannot	tag,	branch	or	perform	Git	merges.

git-cvsserver	maps	Git	branches	to	CVS	modules.	This	is	very	different
from	what	most	CVS	users	would	expect	since	in	CVS	modules	usually
represent	one	or	more	directories.

INSTALLATION

1.	 If	you	are	going	to	offer	CVS	access	via	pserver,	add	a	line	in
/etc/inetd.conf	like

			cvspserver	stream	tcp	nowait	nobody	git-cvsserver	pserver

Note:	Some	inetd	servers	let	you	specify	the	name	of	the	executable
independently	of	the	value	of	argv[0]	(i.e.	the	name	the	program
assumes	it	was	executed	with).	In	this	case	the	correct	line	in
/etc/inetd.conf	looks	like

			cvspserver	stream	tcp	nowait	nobody	/usr/bin/git-cvsserver	git-cvsserver	pserver

Only	anonymous	access	is	provided	by	pserve	by	default.	To	commit
you	will	have	to	create	pserver	accounts,	simply	add	a	gitcvs.authdb
setting	in	the	config	file	of	the	repositories	you	want	the	cvsserver	to
allow	writes	to,	for	example:

			[gitcvs]

								authdb	=	/etc/cvsserver/passwd

The	format	of	these	files	is	username	followed	by	the	encrypted
password,	for	example:

			myuser:$1Oyx5r9mdGZ2

			myuser:1BA)@$vbnMJMDym7tA32AamXrm./

You	can	use	the	htpasswd	facility	that	comes	with	Apache	to	make
these	files,	but	Apache's	MD5	crypt	method	differs	from	the	one

used	by	most	C	library's	crypt()	function,	so	don't	use	the	-m	option.

Alternatively	you	can	produce	the	password	with	perl's	crypt()
operator:

			perl	-e	'my	($user,	$pass)	=	@ARGV;	printf	"%s:%s\n",	$user,	crypt($user,	$pass)'	$USER	password

Then	provide	your	password	via	the	pserver	method,	for	example:

			cvs	-d:pserver:someuser:somepassword	<at>	server/path/repo.git	co	<HEAD_name>

No	special	setup	is	needed	for	SSH	access,	other	than	having	Git
tools	in	the	PATH.	If	you	have	clients	that	do	not	accept	the
CVS_SERVER	environment	variable,	you	can	rename	git-cvsserver
to	cvs.

Note:	Newer	CVS	versions	(>=	1.12.11)	also	support	specifying
CVS_SERVER	directly	in	CVSROOT	like

cvs	-d	":ext;CVS_SERVER=git	cvsserver:user@server/path/repo.git"	co	<HEAD_name>

This	has	the	advantage	that	it	will	be	saved	in	your	CVS/Root	files
and	you	don't	need	to	worry	about	always	setting	the	correct
environment	variable.	SSH	users	restricted	to	git-shell	don't	need	to
override	the	default	with	CVS_SERVER	(and	shouldn't)	as	git-shell
understands	cvs	to	mean	git-cvsserver	and	pretends	that	the	other
end	runs	the	real	cvs	better.

2.	 For	each	repo	that	you	want	accessible	from	CVS	you	need	to	edit
config	in	the	repo	and	add	the	following	section.

			[gitcvs]

								enabled=1

								#	optional	for	debugging

								logFile=/path/to/logfile

Note:	you	need	to	ensure	each	user	that	is	going	to	invoke	git-
cvsserver	has	write	access	to	the	log	file	and	to	the	database	(see
Database	Backend.	If	you	want	to	offer	write	access	over	SSH,	the
users	of	course	also	need	write	access	to	the	Git	repository	itself.

You	also	need	to	ensure	that	each	repository	is	"bare"	(without	a	Git
index	file)	for	cvs	commit	to	work.	See	Section	G.2.4,	“gitcvs-
migration(7)”.

All	configuration	variables	can	also	be	overridden	for	a	specific
method	of	access.	Valid	method	names	are	"ext"	(for	SSH	access)
and	"pserver".	The	following	example	configuration	would	disable
pserver	access	while	still	allowing	access	over	SSH.

			[gitcvs]

								enabled=0

			[gitcvs	"ext"]

								enabled=1

3.	 If	you	didn't	specify	the	CVSROOT/CVS_SERVER	directly	in	the
checkout	command,	automatically	saving	it	in	your	CVS/Root	files,
then	you	need	to	set	them	explicitly	in	your	environment.	CVSROOT
should	be	set	as	per	normal,	but	the	directory	should	point	at	the
appropriate	Git	repo.	As	above,	for	SSH	clients	not	restricted	to	git-
shell,	CVS_SERVER	should	be	set	to	git-cvsserver.

					export	CVSROOT=:ext:user@server:/var/git/project.git

					export	CVS_SERVER="git	cvsserver"

4.	 For	SSH	clients	that	will	make	commits,	make	sure	their	server-side
.ssh/environment	files	(or	.bashrc,	etc.,	according	to	their	specific
shell)	export	appropriate	values	for	GIT_AUTHOR_NAME,
GIT_AUTHOR_EMAIL,	GIT_COMMITTER_NAME,	and
GIT_COMMITTER_EMAIL.	For	SSH	clients	whose	login	shell	is
bash,	.bashrc	may	be	a	reasonable	alternative.

5.	 Clients	should	now	be	able	to	check	out	the	project.	Use	the	CVS
module	name	to	indicate	what	Git	head	you	want	to	check	out.	This
also	sets	the	name	of	your	newly	checked-out	directory,	unless	you
tell	it	otherwise	with	-d	<dir_name>.	For	example,	this	checks	out
master	branch	to	the	project-master	directory:

					cvs	co	-d	project-master	master

Database	Backend

git-cvsserver	uses	one	database	per	Git	head	(i.e.	CVS	module)	to	store
information	about	the	repository	to	maintain	consistent	CVS	revision
numbers.	The	database	needs	to	be	updated	(i.e.	written	to)	after	every
commit.

If	the	commit	is	done	directly	by	using	git	(as	opposed	to	using	git-
cvsserver)	the	update	will	need	to	happen	on	the	next	repository	access
by	git-cvsserver,	independent	of	access	method	and	requested
operation.

That	means	that	even	if	you	offer	only	read	access	(e.g.	by	using	the
pserver	method),	git-cvsserver	should	have	write	access	to	the	database
to	work	reliably	(otherwise	you	need	to	make	sure	that	the	database	is
up-to-date	any	time	git-cvsserver	is	executed).

By	default	it	uses	SQLite	databases	in	the	Git	directory,	named	gitcvs.
<module_name>.sqlite.	Note	that	the	SQLite	backend	creates	temporary
files	in	the	same	directory	as	the	database	file	on	write	so	it	might	not	be
enough	to	grant	the	users	using	git-cvsserver	write	access	to	the
database	file	without	granting	them	write	access	to	the	directory,	too.

The	database	can	not	be	reliably	regenerated	in	a	consistent	form	after
the	branch	it	is	tracking	has	changed.	Example:	For	merged	branches,
git-cvsserver	only	tracks	one	branch	of	development,	and	after	a	git
merge	an	incrementally	updated	database	may	track	a	different	branch
than	a	database	regenerated	from	scratch,	causing	inconsistent	CVS
revision	numbers.	git-cvsserver	has	no	way	of	knowing	which	branch	it

would	have	picked	if	it	had	been	run	incrementally	pre-merge.	So	if	you
have	to	fully	or	partially	(from	old	backup)	regenerate	the	database,	you
should	be	suspicious	of	pre-existing	CVS	sandboxes.

You	can	configure	the	database	backend	with	the	following	configuration
variables:

1.	Configuring	database	backend

git-cvsserver	uses	the	Perl	DBI	module.	Please	also	read	its
documentation	if	changing	these	variables,	especially	about	DBI-
>connect().

gitcvs.dbName
Database	name.	The	exact	meaning	depends	on	the	selected
database	driver,	for	SQLite	this	is	a	filename.	Supports	variable
substitution	(see	below).	May	not	contain	semicolons	(;).	Default:
%Ggitcvs.%m.sqlite

gitcvs.dbDriver
Used	DBI	driver.	You	can	specify	any	available	driver	for	this	here,
but	it	might	not	work.	cvsserver	is	tested	with	DBD::SQLite,	reported
to	work	with	DBD::Pg,	and	reported	not	to	work	with	DBD::mysql.
Please	regard	this	as	an	experimental	feature.	May	not	contain
colons	(:).	Default:	SQLite

gitcvs.dbuser
Database	user.	Only	useful	if	setting	dbDriver,	since	SQLite	has	no
concept	of	database	users.	Supports	variable	substitution	(see
below).

gitcvs.dbPass
Database	password.	Only	useful	if	setting	dbDriver,	since	SQLite
has	no	concept	of	database	passwords.

gitcvs.dbTableNamePrefix
Database	table	name	prefix.	Supports	variable	substitution	(see
below).	Any	non-alphabetic	characters	will	be	replaced	with
underscores.

All	variables	can	also	be	set	per	access	method,	see	above.

1.1.	Variable	substitution

In	dbDriver	and	dbUser	you	can	use	the	following	variables:

%G

Git	directory	name
%g

Git	directory	name,	where	all	characters	except	for	alpha-numeric
ones,	.,	and	-	are	replaced	with	_	(this	should	make	it	easier	to	use
the	directory	name	in	a	filename	if	wanted)

%m
CVS	module/Git	head	name

%a
access	method	(one	of	"ext"	or	"pserver")

%u
Name	of	the	user	running	git-cvsserver.	If	no	name	can	be
determined,	the	numeric	uid	is	used.

ENVIRONMENT

These	variables	obviate	the	need	for	command-line	options	in	some
circumstances,	allowing	easier	restricted	usage	through	git-shell.

GIT_CVSSERVER_BASE_PATH	takes	the	place	of	the	argument	to	--
base-path.

GIT_CVSSERVER_ROOT	specifies	a	single-directory	whitelist.	The
repository	must	still	be	configured	to	allow	access	through	git-cvsserver,
as	described	above.

When	these	environment	variables	are	set,	the	corresponding	command-
line	arguments	may	not	be	used.

Eclipse	CVS	Client	Notes

To	get	a	checkout	with	the	Eclipse	CVS	client:

1.	 Select	"Create	a	new	project	→	From	CVS	checkout"
2.	 Create	a	new	location.	See	the	notes	below	for	details	on	how	to

choose	the	right	protocol.
3.	 Browse	the	modules	available.	It	will	give	you	a	list	of	the	heads	in

the	repository.	You	will	not	be	able	to	browse	the	tree	from	there.

Only	the	heads.
4.	 Pick	HEAD	when	it	asks	what	branch/tag	to	check	out.	Untick	the

"launch	commit	wizard"	to	avoid	committing	the	.project	file.

Protocol	notes:	If	you	are	using	anonymous	access	via	pserver,	just
select	that.	Those	using	SSH	access	should	choose	the	ext	protocol,	and
configure	ext	access	on	the	Preferences→Team→CVS→ExtConnection
pane.	Set	CVS_SERVER	to	"git	cvsserver".	Note	that	password	support
is	not	good	when	using	ext,	you	will	definitely	want	to	have	SSH	keys
setup.

Alternatively,	you	can	just	use	the	non-standard	extssh	protocol	that
Eclipse	offer.	In	that	case	CVS_SERVER	is	ignored,	and	you	will	have	to
replace	the	cvs	utility	on	the	server	with	git-cvsserver	or	manipulate	your
.bashrc	so	that	calling	cvs	effectively	calls	git-cvsserver.

Clients	known	to	work

CVS	1.12.9	on	Debian
CVS	1.11.17	on	MacOSX	(from	Fink	package)
Eclipse	3.0,	3.1.2	on	MacOSX	(see	Eclipse	CVS	Client	Notes)
TortoiseCVS

Operations	supported

All	the	operations	required	for	normal	use	are	supported,	including
checkout,	diff,	status,	update,	log,	add,	remove,	commit.

Most	CVS	command	arguments	that	read	CVS	tags	or	revision	numbers
(typically	-r)	work,	and	also	support	any	git	refspec	(tag,	branch,	commit
ID,	etc).	However,	CVS	revision	numbers	for	non-default	branches	are
not	well	emulated,	and	cvs	log	does	not	show	tags	or	branches	at	all.
(Non-main-branch	CVS	revision	numbers	superficially	resemble	CVS
revision	numbers,	but	they	actually	encode	a	git	commit	ID	directly,	rather
than	represent	the	number	of	revisions	since	the	branch	point.)

Note	that	there	are	two	ways	to	checkout	a	particular	branch.	As

described	elsewhere	on	this	page,	the	"module"	parameter	of	cvs
checkout	is	interpreted	as	a	branch	name,	and	it	becomes	the	main
branch.	It	remains	the	main	branch	for	a	given	sandbox	even	if	you
temporarily	make	another	branch	sticky	with	cvs	update	-r.	Alternatively,
the	-r	argument	can	indicate	some	other	branch	to	actually	checkout,
even	though	the	module	is	still	the	"main"	branch.	Tradeoffs	(as	currently
implemented):	Each	new	"module"	creates	a	new	database	on	disk	with	a
history	for	the	given	module,	and	after	the	database	is	created,
operations	against	that	main	branch	are	fast.	Or	alternatively,	-r	doesn't
take	any	extra	disk	space,	but	may	be	significantly	slower	for	many
operations,	like	cvs	update.

If	you	want	to	refer	to	a	git	refspec	that	has	characters	that	are	not
allowed	by	CVS,	you	have	two	options.	First,	it	may	just	work	to	supply
the	git	refspec	directly	to	the	appropriate	CVS	-r	argument;	some	CVS
clients	don't	seem	to	do	much	sanity	checking	of	the	argument.	Second,
if	that	fails,	you	can	use	a	special	character	escape	mechanism	that	only
uses	characters	that	are	valid	in	CVS	tags.	A	sequence	of	4	or	5
characters	of	the	form	(underscore	("_"),	dash	("-"),	one	or	two
characters,	and	dash	("-"))	can	encode	various	characters	based	on	the
one	or	two	letters:	"s"	for	slash	("/"),	"p"	for	period	("."),	"u"	for	underscore
("_"),	or	two	hexadecimal	digits	for	any	byte	value	at	all	(typically	an
ASCII	number,	or	perhaps	a	part	of	a	UTF-8	encoded	character).

Legacy	monitoring	operations	are	not	supported	(edit,	watch	and	related).
Exports	and	tagging	(tags	and	branches)	are	not	supported	at	this	stage.

1.	CRLF	Line	Ending	Conversions

By	default	the	server	leaves	the	-k	mode	blank	for	all	files,	which	causes
the	CVS	client	to	treat	them	as	a	text	files,	subject	to	end-of-line
conversion	on	some	platforms.

You	can	make	the	server	use	the	end-of-line	conversion	attributes	to	set
the	-k	modes	for	files	by	setting	the	gitcvs.usecrlfattr	config	variable.	See
Section	G.4.2,	“gitattributes(5)”	for	more	information	about	end-of-line
conversion.

Alternatively,	if	gitcvs.usecrlfattr	config	is	not	enabled	or	the	attributes	do
not	allow	automatic	detection	for	a	filename,	then	the	server	uses	the
gitcvs.allBinary	config	for	the	default	setting.	If	gitcvs.allBinary	is	set,	then
file	not	otherwise	specified	will	default	to	-kb	mode.	Otherwise	the	-k
mode	is	left	blank.	But	if	gitcvs.allBinary	is	set	to	"guess",	then	the	correct
-k	mode	will	be	guessed	based	on	the	contents	of	the	file.

For	best	consistency	with	cvs,	it	is	probably	best	to	override	the	defaults
by	setting	gitcvs.usecrlfattr	to	true,	and	gitcvs.allBinary	to	"guess".

Dependencies

git-cvsserver	depends	on	DBD::SQLite.

GIT

Part	of	the	Section	G.3.1,	“git(1)”	suite

G.3.36.	git-daemon(1)

NAME

git-daemon	-	A	really	simple	server	for	Git	repositories

SYNOPSIS

git	daemon	[--verbose]	[--syslog]	[--export-all]

													[--timeout=<n>]	[--init-timeout=<n>]	[--max-

connections=<n>]

													[--strict-paths]	[--base-path=<path>]	[--base-

path-relaxed]

													[--user-path	|	--user-path=<path>]

													[--interpolated-path=<pathtemplate>]

													[--reuseaddr]	[--detach]	[--pid-file=<file>]

													[--enable=<service>]	[--disable=<service>]

													[--allow-override=<service>]	[--forbid-override=

<service>]

													[--access-hook=<path>]	[--[no-]informative-

errors]

													[--inetd	|

														[--listen=<host_or_ipaddr>]	[--port=<n>]

														[--user=<user>	[--group=<group>]]]

													[<directory>…]

DESCRIPTION

A	really	simple	TCP	Git	daemon	that	normally	listens	on	port
"DEFAULT_GIT_PORT"	aka	9418.	It	waits	for	a	connection	asking	for	a
service,	and	will	serve	that	service	if	it	is	enabled.

It	verifies	that	the	directory	has	the	magic	file	"git-daemon-export-ok",	and
it	will	refuse	to	export	any	Git	directory	that	hasn't	explicitly	been	marked
for	export	this	way	(unless	the	--export-all	parameter	is	specified).	If	you
pass	some	directory	paths	as	git	daemon	arguments,	you	can	further
restrict	the	offers	to	a	whitelist	comprising	of	those.

By	default,	only	upload-pack	service	is	enabled,	which	serves	git	fetch-
pack	and	git	ls-remote	clients,	which	are	invoked	from	git	fetch,	git	pull,
and	git	clone.

This	is	ideally	suited	for	read-only	updates,	i.e.,	pulling	from	Git
repositories.

An	upload-archive	also	exists	to	serve	git	archive.

OPTIONS

--strict-paths
Match	paths	exactly	(i.e.	don't	allow	"/foo/repo"	when	the	real	path	is
"/foo/repo.git"	or	"/foo/repo/.git")	and	don't	do	user-relative	paths.	git
daemon	will	refuse	to	start	when	this	option	is	enabled	and	no
whitelist	is	specified.

--base-path=<path>
Remap	all	the	path	requests	as	relative	to	the	given	path.	This	is	sort
of	"Git	root"	-	if	you	run	git	daemon	with	--base-path=/srv/git	on
example.com,	then	if	you	later	try	to	pull	git://example.com/hello.git,
git	daemon	will	interpret	the	path	as	/srv/git/hello.git.

--base-path-relaxed
If	--base-path	is	enabled	and	repo	lookup	fails,	with	this	option	git
daemon	will	attempt	to	lookup	without	prefixing	the	base	path.	This	is
useful	for	switching	to	--base-path	usage,	while	still	allowing	the	old
paths.

--interpolated-path=<pathtemplate>
To	support	virtual	hosting,	an	interpolated	path	template	can	be	used
to	dynamically	construct	alternate	paths.	The	template	supports	%H
for	the	target	hostname	as	supplied	by	the	client	but	converted	to	all
lowercase,	%CH	for	the	canonical	hostname,	%IP	for	the	server's	IP
address,	%P	for	the	port	number,	and	%D	for	the	absolute	path	of
the	named	repository.	After	interpolation,	the	path	is	validated
against	the	directory	whitelist.

--export-all
Allow	pulling	from	all	directories	that	look	like	Git	repositories	(have
the	objects	and	refs	subdirectories),	even	if	they	do	not	have	the	git-
daemon-export-ok	file.

--inetd
Have	the	server	run	as	an	inetd	service.	Implies	--syslog.
Incompatible	with	--detach,	--port,	--listen,	--user	and	--group
options.

--listen=<host_or_ipaddr>
Listen	on	a	specific	IP	address	or	hostname.	IP	addresses	can	be
either	an	IPv4	address	or	an	IPv6	address	if	supported.	If	IPv6	is	not
supported,	then	--listen=hostname	is	also	not	supported	and	--listen

must	be	given	an	IPv4	address.	Can	be	given	more	than	once.
Incompatible	with	--inetd	option.

--port=<n>
Listen	on	an	alternative	port.	Incompatible	with	--inetd	option.

--init-timeout=<n>
Timeout	(in	seconds)	between	the	moment	the	connection	is
established	and	the	client	request	is	received	(typically	a	rather	low
value,	since	that	should	be	basically	immediate).

--timeout=<n>
Timeout	(in	seconds)	for	specific	client	sub-requests.	This	includes
the	time	it	takes	for	the	server	to	process	the	sub-request	and	the
time	spent	waiting	for	the	next	client's	request.

--max-connections=<n>
Maximum	number	of	concurrent	clients,	defaults	to	32.	Set	it	to	zero
for	no	limit.

--syslog
Log	to	syslog	instead	of	stderr.	Note	that	this	option	does	not	imply	--
verbose,	thus	by	default	only	error	conditions	will	be	logged.

--user-path	,	--user-path=<path>
Allow	~user	notation	to	be	used	in	requests.	When	specified	with	no
parameter,	requests	to	git://host/~alice/foo	is	taken	as	a	request	to
access	foo	repository	in	the	home	directory	of	user	alice.	If	--user-
path=path	is	specified,	the	same	request	is	taken	as	a	request	to
access	path/foo	repository	in	the	home	directory	of	user	alice.

--verbose
Log	details	about	the	incoming	connections	and	requested	files.

--reuseaddr
Use	SO_REUSEADDR	when	binding	the	listening	socket.	This
allows	the	server	to	restart	without	waiting	for	old	connections	to	time
out.

--detach
Detach	from	the	shell.	Implies	--syslog.

--pid-file=<file>
Save	the	process	id	in	file.	Ignored	when	the	daemon	is	run	under	--
inetd.

--user=<user>	,	--group=<group>

Change	daemon's	uid	and	gid	before	entering	the	service	loop.
When	only	--user	is	given	without	--group,	the	primary	group	ID	for
the	user	is	used.	The	values	of	the	option	are	given	to	getpwnam(3)
and	getgrnam(3)	and	numeric	IDs	are	not	supported.

Giving	these	options	is	an	error	when	used	with	--inetd;	use	the
facility	of	inet	daemon	to	achieve	the	same	before	spawning	git
daemon	if	needed.

Like	many	programs	that	switch	user	id,	the	daemon	does	not	reset
environment	variables	such	as	$HOME	when	it	runs	git	programs,
e.g.	upload-pack	and	receive-pack.	When	using	this	option,	you	may
also	want	to	set	and	export	HOME	to	point	at	the	home	directory	of
<user>	before	starting	the	daemon,	and	make	sure	any	Git
configuration	files	in	that	directory	are	readable	by	<user>.

--enable=<service>	,	--disable=<service>
Enable/disable	the	service	site-wide	per	default.	Note	that	a	service
disabled	site-wide	can	still	be	enabled	per	repository	if	it	is	marked
overridable	and	the	repository	enables	the	service	with	a
configuration	item.

--allow-override=<service>	,	--forbid-override=<service>
Allow/forbid	overriding	the	site-wide	default	with	per	repository
configuration.	By	default,	all	the	services	may	be	overridden.

--[no-]informative-errors
When	informative	errors	are	turned	on,	git-daemon	will	report	more
verbose	errors	to	the	client,	differentiating	conditions	like	"no	such
repository"	from	"repository	not	exported".	This	is	more	convenient
for	clients,	but	may	leak	information	about	the	existence	of
unexported	repositories.	When	informative	errors	are	not	enabled,	all
errors	report	"access	denied"	to	the	client.	The	default	is	--no-
informative-errors.

--access-hook=<path>

Every	time	a	client	connects,	first	run	an	external	command	specified
by	the	<path>	with	service	name	(e.g.	"upload-pack"),	path	to	the
repository,	hostname	(%H),	canonical	hostname	(%CH),	IP	address
(%IP),	and	TCP	port	(%P)	as	its	command-line	arguments.	The

external	command	can	decide	to	decline	the	service	by	exiting	with	a
non-zero	status	(or	to	allow	it	by	exiting	with	a	zero	status).	It	can
also	look	at	the	$REMOTE_ADDR	and	$REMOTE_PORT
environment	variables	to	learn	about	the	requestor	when	making	this
decision.

The	external	command	can	optionally	write	a	single	line	to	its
standard	output	to	be	sent	to	the	requestor	as	an	error	message
when	it	declines	the	service.

<directory>
A	directory	to	add	to	the	whitelist	of	allowed	directories.	Unless	--
strict-paths	is	specified	this	will	also	include	subdirectories	of	each
named	directory.

SERVICES

These	services	can	be	globally	enabled/disabled	using	the	command-line
options	of	this	command.	If	finer-grained	control	is	desired	(e.g.	to	allow
git	archive	to	be	run	against	only	in	a	few	selected	repositories	the
daemon	serves),	the	per-repository	configuration	file	can	be	used	to
enable	or	disable	them.

upload-pack
This	serves	git	fetch-pack	and	git	ls-remote	clients.	It	is	enabled	by
default,	but	a	repository	can	disable	it	by	setting	daemon.uploadpack
configuration	item	to	false.

upload-archive
This	serves	git	archive	--remote.	It	is	disabled	by	default,	but	a
repository	can	enable	it	by	setting	daemon.uploadarch	configuration
item	to	true.

receive-pack
This	serves	git	send-pack	clients,	allowing	anonymous	push.	It	is
disabled	by	default,	as	there	is	no	authentication	in	the	protocol	(in
other	words,	anybody	can	push	anything	into	the	repository,
including	removal	of	refs).	This	is	solely	meant	for	a	closed	LAN
setting	where	everybody	is	friendly.	This	service	can	be	enabled	by

setting	daemon.receivepack	configuration	item	to	true.

EXAMPLES

We	assume	the	following	in	/etc/services

$	grep	9418	/etc/services

git													9418/tcp																#	Git	Version	Control	System

git	daemon	as	inetd	server

To	set	up	git	daemon	as	an	inetd	service	that	handles	any	repository
under	the	whitelisted	set	of	directories,	/pub/foo	and	/pub/bar,	place
an	entry	like	the	following	into	/etc/inetd	all	on	one	line:

								git	stream	tcp	nowait	nobody		/usr/bin/git

																git	daemon	--inetd	--verbose	--export-all

																/pub/foo	/pub/bar

git	daemon	as	inetd	server	for	virtual	hosts

To	set	up	git	daemon	as	an	inetd	service	that	handles	repositories	for
different	virtual	hosts,	www.example.com	and	www.example.org,
place	an	entry	like	the	following	into	/etc/inetd	all	on	one	line:

								git	stream	tcp	nowait	nobody	/usr/bin/git

																git	daemon	--inetd	--verbose	--export-all

																--interpolated-path=/pub/%H%D

																/pub/www.example.org/software

																/pub/www.example.com/software

																/software

In	this	example,	the	root-level	directory	/pub	will	contain	a
subdirectory	for	each	virtual	host	name	supported.	Further,	both
hosts	advertise	repositories	simply	as
git://www.example.com/software/repo.git.	For	pre-1.4.0	clients,	a
symlink	from	/software	into	the	appropriate	default	repository	could

be	made	as	well.

git	daemon	as	regular	daemon	for	virtual	hosts

To	set	up	git	daemon	as	a	regular,	non-inetd	service	that	handles
repositories	for	multiple	virtual	hosts	based	on	their	IP	addresses,
start	the	daemon	like	this:

								git	daemon	--verbose	--export-all

																--interpolated-path=/pub/%IP/%D

																/pub/192.168.1.200/software

																/pub/10.10.220.23/software

In	this	example,	the	root-level	directory	/pub	will	contain	a
subdirectory	for	each	virtual	host	IP	address	supported.	Repositories
can	still	be	accessed	by	hostname	though,	assuming	they
correspond	to	these	IP	addresses.

selectively	enable/disable	services	per	repository

To	enable	git	archive	--remote	and	disable	git	fetch	against	a
repository,	have	the	following	in	the	configuration	file	in	the
repository	(that	is	the	file	config	next	to	HEAD,	refs	and	objects).

								[daemon]

																uploadpack	=	false

																uploadarch	=	true

ENVIRONMENT

git	daemon	will	set	REMOTE_ADDR	to	the	IP	address	of	the	client	that
connected	to	it,	if	the	IP	address	is	available.	REMOTE_ADDR	will	be
available	in	the	environment	of	hooks	called	when	services	are
performed.

GIT

Part	of	the	Section	G.3.1,	“git(1)”	suite

G.3.37.	git-describe(1)

NAME

git-describe	-	Describe	a	commit	using	the	most	recent	tag	reachable
from	it

SYNOPSIS

git	describe	[--all]	[--tags]	[--contains]	[--abbrev=

<n>]	[<commit-ish>…]

git	describe	[--all]	[--tags]	[--contains]	[--abbrev=<n>]	--

dirty[=<mark>]

DESCRIPTION

The	command	finds	the	most	recent	tag	that	is	reachable	from	a	commit.
If	the	tag	points	to	the	commit,	then	only	the	tag	is	shown.	Otherwise,	it
suffixes	the	tag	name	with	the	number	of	additional	commits	on	top	of	the
tagged	object	and	the	abbreviated	object	name	of	the	most	recent
commit.

By	default	(without	--all	or	--tags)	git	describe	only	shows	annotated	tags.
For	more	information	about	creating	annotated	tags	see	the	-a	and	-s
options	to	Section	G.3.134,	“git-tag(1)”.

OPTIONS

<commit-ish>…
Commit-ish	object	names	to	describe.	Defaults	to	HEAD	if	omitted.

--dirty[=<mark>]
Describe	the	working	tree.	It	means	describe	HEAD	and	appends
<mark>	(-dirty	by	default)	if	the	working	tree	is	dirty.

--all

Instead	of	using	only	the	annotated	tags,	use	any	ref	found	in	refs/
namespace.	This	option	enables	matching	any	known	branch,
remote-tracking	branch,	or	lightweight	tag.

--tags
Instead	of	using	only	the	annotated	tags,	use	any	tag	found	in
refs/tags	namespace.	This	option	enables	matching	a	lightweight
(non-annotated)	tag.

--contains
Instead	of	finding	the	tag	that	predates	the	commit,	find	the	tag	that
comes	after	the	commit,	and	thus	contains	it.	Automatically	implies	--
tags.

--abbrev=<n>
Instead	of	using	the	default	7	hexadecimal	digits	as	the	abbreviated
object	name,	use	<n>	digits,	or	as	many	digits	as	needed	to	form	a
unique	object	name.	An	<n>	of	0	will	suppress	long	format,	only
showing	the	closest	tag.

--candidates=<n>
Instead	of	considering	only	the	10	most	recent	tags	as	candidates	to
describe	the	input	commit-ish	consider	up	to	<n>	candidates.
Increasing	<n>	above	10	will	take	slightly	longer	but	may	produce	a
more	accurate	result.	An	<n>	of	0	will	cause	only	exact	matches	to
be	output.

--exact-match
Only	output	exact	matches	(a	tag	directly	references	the	supplied
commit).	This	is	a	synonym	for	--candidates=0.

--debug
Verbosely	display	information	about	the	searching	strategy	being
employed	to	standard	error.	The	tag	name	will	still	be	printed	to
standard	out.

--long
Always	output	the	long	format	(the	tag,	the	number	of	commits	and
the	abbreviated	commit	name)	even	when	it	matches	a	tag.	This	is
useful	when	you	want	to	see	parts	of	the	commit	object	name	in
"describe"	output,	even	when	the	commit	in	question	happens	to	be
a	tagged	version.	Instead	of	just	emitting	the	tag	name,	it	will
describe	such	a	commit	as	v1.2-0-gdeadbee	(0th	commit	since	tag
v1.2	that	points	at	object	deadbee….).

--match	<pattern>
Only	consider	tags	matching	the	given	glob(7)	pattern,	excluding	the
"refs/tags/"	prefix.	This	can	be	used	to	avoid	leaking	private	tags
from	the	repository.

--always
Show	uniquely	abbreviated	commit	object	as	fallback.

--first-parent
Follow	only	the	first	parent	commit	upon	seeing	a	merge	commit.
This	is	useful	when	you	wish	to	not	match	tags	on	branches	merged
in	the	history	of	the	target	commit.

EXAMPLES

With	something	like	git.git	current	tree,	I	get:

[torvalds@g5	git]$	git	describe	parent

v1.0.4-14-g2414721

i.e.	the	current	head	of	my	"parent"	branch	is	based	on	v1.0.4,	but	since	it
has	a	few	commits	on	top	of	that,	describe	has	added	the	number	of
additional	commits	("14")	and	an	abbreviated	object	name	for	the	commit
itself	("2414721")	at	the	end.

The	number	of	additional	commits	is	the	number	of	commits	which	would
be	displayed	by	"git	log	v1.0.4..parent".	The	hash	suffix	is	"-g"	+	7-char
abbreviation	for	the	tip	commit	of	parent	(which	was
2414721b194453f058079d897d13c4e377f92dc6).	The	"g"	prefix	stands
for	"git"	and	is	used	to	allow	describing	the	version	of	a	software
depending	on	the	SCM	the	software	is	managed	with.	This	is	useful	in	an
environment	where	people	may	use	different	SCMs.

Doing	a	git	describe	on	a	tag-name	will	just	show	the	tag	name:

[torvalds@g5	git]$	git	describe	v1.0.4

v1.0.4

With	--all,	the	command	can	use	branch	heads	as	references,	so	the
output	shows	the	reference	path	as	well:

[torvalds@g5	git]$	git	describe	--all	--abbrev=4	v1.0.5^2

tags/v1.0.0-21-g975b

[torvalds@g5	git]$	git	describe	--all	--abbrev=4	HEAD^

heads/lt/describe-7-g975b

With	--abbrev	set	to	0,	the	command	can	be	used	to	find	the	closest
tagname	without	any	suffix:

[torvalds@g5	git]$	git	describe	--abbrev=0	v1.0.5^2

tags/v1.0.0

Note	that	the	suffix	you	get	if	you	type	these	commands	today	may	be
longer	than	what	Linus	saw	above	when	he	ran	these	commands,	as
your	Git	repository	may	have	new	commits	whose	object	names	begin
with	975b	that	did	not	exist	back	then,	and	"-g975b"	suffix	alone	may	not
be	sufficient	to	disambiguate	these	commits.

SEARCH	STRATEGY

For	each	commit-ish	supplied,	git	describe	will	first	look	for	a	tag	which
tags	exactly	that	commit.	Annotated	tags	will	always	be	preferred	over
lightweight	tags,	and	tags	with	newer	dates	will	always	be	preferred	over
tags	with	older	dates.	If	an	exact	match	is	found,	its	name	will	be	output
and	searching	will	stop.

If	an	exact	match	was	not	found,	git	describe	will	walk	back	through	the
commit	history	to	locate	an	ancestor	commit	which	has	been	tagged.	The
ancestor's	tag	will	be	output	along	with	an	abbreviation	of	the	input
commit-ish's	SHA-1.	If	--first-parent	was	specified	then	the	walk	will	only
consider	the	first	parent	of	each	commit.

If	multiple	tags	were	found	during	the	walk	then	the	tag	which	has	the
fewest	commits	different	from	the	input	commit-ish	will	be	selected	and
output.	Here	fewest	commits	different	is	defined	as	the	number	of
commits	which	would	be	shown	by	git	log	tag..input	will	be	the	smallest
number	of	commits	possible.

GIT

Part	of	the	Section	G.3.1,	“git(1)”	suite

G.3.38.	git-diff-files(1)

NAME

git-diff-files	-	Compares	files	in	the	working	tree	and	the	index

SYNOPSIS

git	diff-files	[-q]	[-0|-1|-2|-3|-c|--

cc]	[<common	diff	options>]	[<path>…]

DESCRIPTION

Compares	the	files	in	the	working	tree	and	the	index.	When	paths	are
specified,	compares	only	those	named	paths.	Otherwise	all	entries	in	the
index	are	compared.	The	output	format	is	the	same	as	for	git	diff-index
and	git	diff-tree.

OPTIONS

-p	,	-u	,	--patch
Generate	patch	(see	section	on	generating	patches).

-s	,	--no-patch
Suppress	diff	output.	Useful	for	commands	like	git	show	that	show
the	patch	by	default,	or	to	cancel	the	effect	of	--patch.

-U<n>	,	--unified=<n>
Generate	diffs	with	<n>	lines	of	context	instead	of	the	usual	three.
Implies	-p.

--raw
Generate	the	diff	in	raw	format.	This	is	the	default.

--patch-with-raw
Synonym	for	-p	--raw.

--minimal
Spend	extra	time	to	make	sure	the	smallest	possible	diff	is	produced.

--patience
Generate	a	diff	using	the	"patience	diff"	algorithm.

--histogram
Generate	a	diff	using	the	"histogram	diff"	algorithm.

--diff-algorithm={patience|minimal|histogram|myers}

Choose	a	diff	algorithm.	The	variants	are	as	follows:

default,	myers
The	basic	greedy	diff	algorithm.	Currently,	this	is	the	default.

minimal
Spend	extra	time	to	make	sure	the	smallest	possible	diff	is
produced.

patience
Use	"patience	diff"	algorithm	when	generating	patches.

histogram
This	algorithm	extends	the	patience	algorithm	to	"support	low-
occurrence	common	elements".

For	instance,	if	you	configured	diff.algorithm	variable	to	a	non-default
value	and	want	to	use	the	default	one,	then	you	have	to	use	--diff-
algorithm=default	option.

--stat[=<width>[,<name-width>[,<count>]]]

Generate	a	diffstat.	By	default,	as	much	space	as	necessary	will	be
used	for	the	filename	part,	and	the	rest	for	the	graph	part.	Maximum
width	defaults	to	terminal	width,	or	80	columns	if	not	connected	to	a
terminal,	and	can	be	overridden	by	<width>.	The	width	of	the
filename	part	can	be	limited	by	giving	another	width	<name-width>
after	a	comma.	The	width	of	the	graph	part	can	be	limited	by	using	--
stat-graph-width=<width>	(affects	all	commands	generating	a	stat
graph)	or	by	setting	diff.statGraphWidth=<width>	(does	not	affect	git
format-patch).	By	giving	a	third	parameter	<count>,	you	can	limit	the
output	to	the	first	<count>	lines,	followed	by	...	if	there	are	more.

These	parameters	can	also	be	set	individually	with	--stat-width=
<width>,	--stat-name-width=<name-width>	and	--stat-count=<count>.

--numstat

Similar	to	--stat,	but	shows	number	of	added	and	deleted	lines	in
decimal	notation	and	pathname	without	abbreviation,	to	make	it
more	machine	friendly.	For	binary	files,	outputs	two	-	instead	of
saying	0	0.

--shortstat
Output	only	the	last	line	of	the	--stat	format	containing	total	number
of	modified	files,	as	well	as	number	of	added	and	deleted	lines.

--dirstat[=<param1,param2,…>]

Output	the	distribution	of	relative	amount	of	changes	for	each	sub-
directory.	The	behavior	of	--dirstat	can	be	customized	by	passing	it	a
comma	separated	list	of	parameters.	The	defaults	are	controlled	by
the	diff.dirstat	configuration	variable	(see	Section	G.3.27,	“git-
config(1)”).	The	following	parameters	are	available:

changes
Compute	the	dirstat	numbers	by	counting	the	lines	that	have
been	removed	from	the	source,	or	added	to	the	destination.	This
ignores	the	amount	of	pure	code	movements	within	a	file.	In
other	words,	rearranging	lines	in	a	file	is	not	counted	as	much
as	other	changes.	This	is	the	default	behavior	when	no
parameter	is	given.

lines
Compute	the	dirstat	numbers	by	doing	the	regular	line-based	diff
analysis,	and	summing	the	removed/added	line	counts.	(For
binary	files,	count	64-byte	chunks	instead,	since	binary	files
have	no	natural	concept	of	lines).	This	is	a	more	expensive	--
dirstat	behavior	than	the	changes	behavior,	but	it	does	count
rearranged	lines	within	a	file	as	much	as	other	changes.	The
resulting	output	is	consistent	with	what	you	get	from	the	other	--
*stat	options.

files
Compute	the	dirstat	numbers	by	counting	the	number	of	files
changed.	Each	changed	file	counts	equally	in	the	dirstat
analysis.	This	is	the	computationally	cheapest	--dirstat	behavior,
since	it	does	not	have	to	look	at	the	file	contents	at	all.

cumulative

Count	changes	in	a	child	directory	for	the	parent	directory	as
well.	Note	that	when	using	cumulative,	the	sum	of	the
percentages	reported	may	exceed	100%.	The	default	(non-
cumulative)	behavior	can	be	specified	with	the	noncumulative
parameter.

<limit>
An	integer	parameter	specifies	a	cut-off	percent	(3%	by	default).
Directories	contributing	less	than	this	percentage	of	the	changes
are	not	shown	in	the	output.

Example:	The	following	will	count	changed	files,	while	ignoring
directories	with	less	than	10%	of	the	total	amount	of	changed	files,
and	accumulating	child	directory	counts	in	the	parent	directories:	--
dirstat=files,10,cumulative.

--summary
Output	a	condensed	summary	of	extended	header	information	such
as	creations,	renames	and	mode	changes.

--patch-with-stat
Synonym	for	-p	--stat.

-z

When	--raw,	--numstat,	--name-only	or	--name-status	has	been
given,	do	not	munge	pathnames	and	use	NULs	as	output	field
terminators.

Without	this	option,	each	pathname	output	will	have	TAB,	LF,	double
quotes,	and	backslash	characters	replaced	with	\t,	\n,	\",	and	\\,
respectively,	and	the	pathname	will	be	enclosed	in	double	quotes	if
any	of	those	replacements	occurred.

--name-only
Show	only	names	of	changed	files.

--name-status
Show	only	names	and	status	of	changed	files.	See	the	description	of
the	--diff-filter	option	on	what	the	status	letters	mean.

--submodule[=<format>]
Specify	how	differences	in	submodules	are	shown.	When	--

submodule	or	--submodule=log	is	given,	the	log	format	is	used.	This
format	lists	the	commits	in	the	range	like	Section	G.3.131,	“git-
submodule(1)”	summary	does.	Omitting	the	--submodule	option	or
specifying	--submodule=short,	uses	the	short	format.	This	format	just
shows	the	names	of	the	commits	at	the	beginning	and	end	of	the
range.	Can	be	tweaked	via	the	diff.submodule	configuration	variable.

--color[=<when>]
Show	colored	diff.	--color	(i.e.	without	=<when>)	is	the	same	as	--
color=always.	<when>	can	be	one	of	always,	never,	or	auto.

--no-color
Turn	off	colored	diff.	It	is	the	same	as	--color=never.

--word-diff[=<mode>]

Show	a	word	diff,	using	the	<mode>	to	delimit	changed	words.	By
default,	words	are	delimited	by	whitespace;	see	--word-diff-regex
below.	The	<mode>	defaults	to	plain,	and	must	be	one	of:

color
Highlight	changed	words	using	only	colors.	Implies	--color.

plain
Show	words	as	[-removed-]	and	{+added+}.	Makes	no	attempts
to	escape	the	delimiters	if	they	appear	in	the	input,	so	the	output
may	be	ambiguous.

porcelain
Use	a	special	line-based	format	intended	for	script	consumption.
Added/removed/unchanged	runs	are	printed	in	the	usual	unified
diff	format,	starting	with	a	+/-/`	`	character	at	the	beginning	of	the
line	and	extending	to	the	end	of	the	line.	Newlines	in	the	input
are	represented	by	a	tilde	~	on	a	line	of	its	own.

none
Disable	word	diff	again.

Note	that	despite	the	name	of	the	first	mode,	color	is	used	to
highlight	the	changed	parts	in	all	modes	if	enabled.

--word-diff-regex=<regex>

Use	<regex>	to	decide	what	a	word	is,	instead	of	considering	runs	of

non-whitespace	to	be	a	word.	Also	implies	--word-diff	unless	it	was
already	enabled.

Every	non-overlapping	match	of	the	<regex>	is	considered	a	word.
Anything	between	these	matches	is	considered	whitespace	and
ignored(!)	for	the	purposes	of	finding	differences.	You	may	want	to
append	|[^[:space:]]	to	your	regular	expression	to	make	sure	that	it
matches	all	non-whitespace	characters.	A	match	that	contains	a
newline	is	silently	truncated(!)	at	the	newline.

For	example,	--word-diff-regex=.	will	treat	each	character	as	a	word
and,	correspondingly,	show	differences	character	by	character.

The	regex	can	also	be	set	via	a	diff	driver	or	configuration	option,
see	???	or	Section	G.3.27,	“git-config(1)”.	Giving	it	explicitly
overrides	any	diff	driver	or	configuration	setting.	Diff	drivers	override
configuration	settings.

--color-words[=<regex>]
Equivalent	to	--word-diff=color	plus	(if	a	regex	was	specified)	--word-
diff-regex=<regex>.

--no-renames
Turn	off	rename	detection,	even	when	the	configuration	file	gives	the
default	to	do	so.

--check
Warn	if	changes	introduce	conflict	markers	or	whitespace	errors.
What	are	considered	whitespace	errors	is	controlled	by
core.whitespace	configuration.	By	default,	trailing	whitespaces
(including	lines	that	solely	consist	of	whitespaces)	and	a	space
character	that	is	immediately	followed	by	a	tab	character	inside	the
initial	indent	of	the	line	are	considered	whitespace	errors.	Exits	with
non-zero	status	if	problems	are	found.	Not	compatible	with	--exit-
code.

--ws-error-highlight=<kind>
Highlight	whitespace	errors	on	lines	specified	by	<kind>	in	the	color
specified	by	color.diff.whitespace.	<kind>	is	a	comma	separated	list
of	old,	new,	context.	When	this	option	is	not	given,	only	whitespace
errors	in	new	lines	are	highlighted.	E.g.	--ws-error-highlight=new,old

highlights	whitespace	errors	on	both	deleted	and	added	lines.	all	can
be	used	as	a	short-hand	for	old,new,context.

--full-index
Instead	of	the	first	handful	of	characters,	show	the	full	pre-	and	post-
image	blob	object	names	on	the	"index"	line	when	generating	patch
format	output.

--binary
In	addition	to	--full-index,	output	a	binary	diff	that	can	be	applied	with
git-apply.

--abbrev[=<n>]
Instead	of	showing	the	full	40-byte	hexadecimal	object	name	in	diff-
raw	format	output	and	diff-tree	header	lines,	show	only	a	partial
prefix.	This	is	independent	of	the	--full-index	option	above,	which
controls	the	diff-patch	output	format.	Non	default	number	of	digits
can	be	specified	with	--abbrev=<n>.

-B[<n>][/<m>]	,	--break-rewrites[=[<n>][/<m>]]

Break	complete	rewrite	changes	into	pairs	of	delete	and	create.	This
serves	two	purposes:

It	affects	the	way	a	change	that	amounts	to	a	total	rewrite	of	a	file	not
as	a	series	of	deletion	and	insertion	mixed	together	with	a	very	few
lines	that	happen	to	match	textually	as	the	context,	but	as	a	single
deletion	of	everything	old	followed	by	a	single	insertion	of	everything
new,	and	the	number	m	controls	this	aspect	of	the	-B	option	(defaults
to	60%).	-B/70%	specifies	that	less	than	30%	of	the	original	should
remain	in	the	result	for	Git	to	consider	it	a	total	rewrite	(i.e.	otherwise
the	resulting	patch	will	be	a	series	of	deletion	and	insertion	mixed
together	with	context	lines).

When	used	with	-M,	a	totally-rewritten	file	is	also	considered	as	the
source	of	a	rename	(usually	-M	only	considers	a	file	that
disappeared	as	the	source	of	a	rename),	and	the	number	n	controls
this	aspect	of	the	-B	option	(defaults	to	50%).	-B20%	specifies	that	a
change	with	addition	and	deletion	compared	to	20%	or	more	of	the
file's	size	are	eligible	for	being	picked	up	as	a	possible	source	of	a
rename	to	another	file.

-M[<n>]	,	--find-renames[=<n>]
Detect	renames.	If	n	is	specified,	it	is	a	threshold	on	the	similarity
index	(i.e.	amount	of	addition/deletions	compared	to	the	file's	size).
For	example,	-M90%	means	Git	should	consider	a	delete/add	pair	to
be	a	rename	if	more	than	90%	of	the	file	hasn't	changed.	Without	a
%	sign,	the	number	is	to	be	read	as	a	fraction,	with	a	decimal	point
before	it.	I.e.,	-M5	becomes	0.5,	and	is	thus	the	same	as	-M50%.
Similarly,	-M05	is	the	same	as	-M5%.	To	limit	detection	to	exact
renames,	use	-M100%.	The	default	similarity	index	is	50%.

-C[<n>]	,	--find-copies[=<n>]
Detect	copies	as	well	as	renames.	See	also	--find-copies-harder.	If	n
is	specified,	it	has	the	same	meaning	as	for	-M<n>.

--find-copies-harder
For	performance	reasons,	by	default,	-C	option	finds	copies	only	if
the	original	file	of	the	copy	was	modified	in	the	same	changeset.	This
flag	makes	the	command	inspect	unmodified	files	as	candidates	for
the	source	of	copy.	This	is	a	very	expensive	operation	for	large
projects,	so	use	it	with	caution.	Giving	more	than	one	-C	option	has
the	same	effect.

-D	,	--irreversible-delete

Omit	the	preimage	for	deletes,	i.e.	print	only	the	header	but	not	the
diff	between	the	preimage	and	/dev/null.	The	resulting	patch	is	not
meant	to	be	applied	with	patch	or	git	apply;	this	is	solely	for	people
who	want	to	just	concentrate	on	reviewing	the	text	after	the	change.
In	addition,	the	output	obviously	lack	enough	information	to	apply
such	a	patch	in	reverse,	even	manually,	hence	the	name	of	the
option.

When	used	together	with	-B,	omit	also	the	preimage	in	the	deletion
part	of	a	delete/create	pair.

-l<num>
The	-M	and	-C	options	require	O(n^2)	processing	time	where	n	is	the
number	of	potential	rename/copy	targets.	This	option	prevents
rename/copy	detection	from	running	if	the	number	of	rename/copy
targets	exceeds	the	specified	number.

--diff-filter=[(A|C|D|M|R|T|U|X|B)…[*]]
Select	only	files	that	are	Added	(A),	Copied	(C),	Deleted	(D),
Modified	(M),	Renamed	(R),	have	their	type	(i.e.	regular	file,	symlink,
submodule,	…)	changed	(T),	are	Unmerged	(U),	are	Unknown	(X),
or	have	had	their	pairing	Broken	(B).	Any	combination	of	the	filter
characters	(including	none)	can	be	used.	When	*	(All-or-none)	is
added	to	the	combination,	all	paths	are	selected	if	there	is	any	file
that	matches	other	criteria	in	the	comparison;	if	there	is	no	file	that
matches	other	criteria,	nothing	is	selected.

-S<string>

Look	for	differences	that	change	the	number	of	occurrences	of	the
specified	string	(i.e.	addition/deletion)	in	a	file.	Intended	for	the
scripter's	use.

It	is	useful	when	you're	looking	for	an	exact	block	of	code	(like	a
struct),	and	want	to	know	the	history	of	that	block	since	it	first	came
into	being:	use	the	feature	iteratively	to	feed	the	interesting	block	in
the	preimage	back	into	-S,	and	keep	going	until	you	get	the	very	first
version	of	the	block.

-G<regex>

Look	for	differences	whose	patch	text	contains	added/removed	lines
that	match	<regex>.

To	illustrate	the	difference	between	-S<regex>	--pickaxe-regex	and	-
G<regex>,	consider	a	commit	with	the	following	diff	in	the	same	file:

+				return	!regexec(regexp,	two->ptr,	1,	®match,	0);

...

-				hit	=	!regexec(regexp,	mf2.ptr,	1,	®match,	0);

While	git	log	-G"regexec\(regexp"	will	show	this	commit,	git	log	-
S"regexec\(regexp"	--pickaxe-regex	will	not	(because	the	number	of
occurrences	of	that	string	did	not	change).

See	the	pickaxe	entry	in	Section	G.4.4,	“gitdiffcore(7)”	for	more
information.

--pickaxe-all
When	-S	or	-G	finds	a	change,	show	all	the	changes	in	that
changeset,	not	just	the	files	that	contain	the	change	in	<string>.

--pickaxe-regex
Treat	the	<string>	given	to	-S	as	an	extended	POSIX	regular
expression	to	match.

-O<orderfile>
Output	the	patch	in	the	order	specified	in	the	<orderfile>,	which	has
one	shell	glob	pattern	per	line.	This	overrides	the	diff.orderFile
configuration	variable	(see	Section	G.3.27,	“git-config(1)”).	To	cancel
diff.orderFile,	use	-O/dev/null.

-R
Swap	two	inputs;	that	is,	show	differences	from	index	or	on-disk	file
to	tree	contents.

--relative[=<path>]
When	run	from	a	subdirectory	of	the	project,	it	can	be	told	to	exclude
changes	outside	the	directory	and	show	pathnames	relative	to	it	with
this	option.	When	you	are	not	in	a	subdirectory	(e.g.	in	a	bare
repository),	you	can	name	which	subdirectory	to	make	the	output
relative	to	by	giving	a	<path>	as	an	argument.

-a	,	--text
Treat	all	files	as	text.

--ignore-space-at-eol
Ignore	changes	in	whitespace	at	EOL.

-b	,	--ignore-space-change
Ignore	changes	in	amount	of	whitespace.	This	ignores	whitespace	at
line	end,	and	considers	all	other	sequences	of	one	or	more
whitespace	characters	to	be	equivalent.

-w	,	--ignore-all-space
Ignore	whitespace	when	comparing	lines.	This	ignores	differences
even	if	one	line	has	whitespace	where	the	other	line	has	none.

--ignore-blank-lines
Ignore	changes	whose	lines	are	all	blank.

--inter-hunk-context=<lines>

Show	the	context	between	diff	hunks,	up	to	the	specified	number	of
lines,	thereby	fusing	hunks	that	are	close	to	each	other.

-W	,	--function-context
Show	whole	surrounding	functions	of	changes.

--exit-code
Make	the	program	exit	with	codes	similar	to	diff(1).	That	is,	it	exits
with	1	if	there	were	differences	and	0	means	no	differences.

--quiet
Disable	all	output	of	the	program.	Implies	--exit-code.

--ext-diff
Allow	an	external	diff	helper	to	be	executed.	If	you	set	an	external
diff	driver	with	Section	G.4.2,	“gitattributes(5)”,	you	need	to	use	this
option	with	Section	G.3.68,	“git-log(1)”	and	friends.

--no-ext-diff
Disallow	external	diff	drivers.

--textconv	,	--no-textconv
Allow	(or	disallow)	external	text	conversion	filters	to	be	run	when
comparing	binary	files.	See	Section	G.4.2,	“gitattributes(5)”	for
details.	Because	textconv	filters	are	typically	a	one-way	conversion,
the	resulting	diff	is	suitable	for	human	consumption,	but	cannot	be
applied.	For	this	reason,	textconv	filters	are	enabled	by	default	only
for	Section	G.3.41,	“git-diff(1)”	and	Section	G.3.68,	“git-log(1)”,	but
not	for	Section	G.3.50,	“git-format-patch(1)”	or	diff	plumbing
commands.

--ignore-submodules[=<when>]
Ignore	changes	to	submodules	in	the	diff	generation.	<when>	can	be
either	"none",	"untracked",	"dirty"	or	"all",	which	is	the	default.	Using
"none"	will	consider	the	submodule	modified	when	it	either	contains
untracked	or	modified	files	or	its	HEAD	differs	from	the	commit
recorded	in	the	superproject	and	can	be	used	to	override	any
settings	of	the	ignore	option	in	Section	G.3.27,	“git-config(1)”	or
Section	G.4.8,	“gitmodules(5)”.	When	"untracked"	is	used
submodules	are	not	considered	dirty	when	they	only	contain
untracked	content	(but	they	are	still	scanned	for	modified	content).
Using	"dirty"	ignores	all	changes	to	the	work	tree	of	submodules,
only	changes	to	the	commits	stored	in	the	superproject	are	shown
(this	was	the	behavior	until	1.7.0).	Using	"all"	hides	all	changes	to

submodules.
--src-prefix=<prefix>

Show	the	given	source	prefix	instead	of	"a/".
--dst-prefix=<prefix>

Show	the	given	destination	prefix	instead	of	"b/".
--no-prefix

Do	not	show	any	source	or	destination	prefix.

For	more	detailed	explanation	on	these	common	options,	see	also
Section	G.4.4,	“gitdiffcore(7)”.

-1	--base	,	-2	--ours	,	-3	--theirs	,	-0

Diff	against	the	"base"	version,	"our	branch"	or	"their	branch"
respectively.	With	these	options,	diffs	for	merged	entries	are	not
shown.

The	default	is	to	diff	against	our	branch	(-2)	and	the	cleanly	resolved
paths.	The	option	-0	can	be	given	to	omit	diff	output	for	unmerged
entries	and	just	show	"Unmerged".

-c	,	--cc
This	compares	stage	2	(our	branch),	stage	3	(their	branch)	and	the
working	tree	file	and	outputs	a	combined	diff,	similar	to	the	way	diff-
tree	shows	a	merge	commit	with	these	flags.

-q
Remain	silent	even	on	nonexistent	files

Raw	output	format

The	raw	output	format	from	"git-diff-index",	"git-diff-tree",	"git-diff-files"	and
"git	diff	--raw"	are	very	similar.

These	commands	all	compare	two	sets	of	things;	what	is	compared
differs:

git-diff-index	<tree-ish>
compares	the	<tree-ish>	and	the	files	on	the	filesystem.

git-diff-index	--cached	<tree-ish>
compares	the	<tree-ish>	and	the	index.

git-diff-tree	[-r]	<tree-ish-1>	<tree-ish-2>	[<pattern>…]
compares	the	trees	named	by	the	two	arguments.

git-diff-files	[<pattern>…]
compares	the	index	and	the	files	on	the	filesystem.

The	"git-diff-tree"	command	begins	its	output	by	printing	the	hash	of	what
is	being	compared.	After	that,	all	the	commands	print	one	output	line	per
changed	file.

An	output	line	is	formatted	this	way:

in-place	edit		:100644	100644	bcd1234...	0123456...	M	file0

copy-edit						:100644	100644	abcd123...	1234567...	C68	file1	file2

rename-edit				:100644	100644	abcd123...	1234567...	R86	file1	file3

create									:000000	100644	0000000...	1234567...	A	file4

delete									:100644	000000	1234567...	0000000...	D	file5

unmerged							:000000	000000	0000000...	0000000...	U	file6

That	is,	from	the	left	to	the	right:

1.	 a	colon.
2.	 mode	for	"src";	000000	if	creation	or	unmerged.
3.	 a	space.
4.	 mode	for	"dst";	000000	if	deletion	or	unmerged.
5.	 a	space.
6.	 sha1	for	"src";	0{40}	if	creation	or	unmerged.
7.	 a	space.
8.	 sha1	for	"dst";	0{40}	if	creation,	unmerged	or	"look	at	work	tree".
9.	 a	space.
10.	 status,	followed	by	optional	"score"	number.
11.	 a	tab	or	a	NUL	when	-z	option	is	used.
12.	 path	for	"src"
13.	 a	tab	or	a	NUL	when	-z	option	is	used;	only	exists	for	C	or	R.
14.	 path	for	"dst";	only	exists	for	C	or	R.
15.	 an	LF	or	a	NUL	when	-z	option	is	used,	to	terminate	the	record.

Possible	status	letters	are:

A:	addition	of	a	file
C:	copy	of	a	file	into	a	new	one
D:	deletion	of	a	file
M:	modification	of	the	contents	or	mode	of	a	file
R:	renaming	of	a	file
T:	change	in	the	type	of	the	file
U:	file	is	unmerged	(you	must	complete	the	merge	before	it	can	be
committed)
X:	"unknown"	change	type	(most	probably	a	bug,	please	report	it)

Status	letters	C	and	R	are	always	followed	by	a	score	(denoting	the
percentage	of	similarity	between	the	source	and	target	of	the	move	or
copy).	Status	letter	M	may	be	followed	by	a	score	(denoting	the
percentage	of	dissimilarity)	for	file	rewrites.

<sha1>	is	shown	as	all	0's	if	a	file	is	new	on	the	filesystem	and	it	is	out	of
sync	with	the	index.

Example:

:100644	100644	5be4a4......	000000......	M	file.c

When	-z	option	is	not	used,	TAB,	LF,	and	backslash	characters	in
pathnames	are	represented	as	\t,	\n,	and	\\,	respectively.

diff	format	for	merges

"git-diff-tree",	"git-diff-files"	and	"git-diff	--raw"	can	take	-c	or	--cc	option	to
generate	diff	output	also	for	merge	commits.	The	output	differs	from	the
format	described	above	in	the	following	way:

1.	 there	is	a	colon	for	each	parent
2.	 there	are	more	"src"	modes	and	"src"	sha1
3.	 status	is	concatenated	status	characters	for	each	parent
4.	 no	optional	"score"	number

5.	 single	path,	only	for	"dst"

Example:

::100644	100644	100644	fabadb8...	cc95eb0...	4866510...	MM						describe.c

Note	that	combined	diff	lists	only	files	which	were	modified	from	all
parents.

Generating	patches	with	-p

When	"git-diff-index",	"git-diff-tree",	or	"git-diff-files"	are	run	with	a	-p
option,	"git	diff"	without	the	--raw	option,	or	"git	log"	with	the	"-p"	option,
they	do	not	produce	the	output	described	above;	instead	they	produce	a
patch	file.	You	can	customize	the	creation	of	such	patches	via	the
GIT_EXTERNAL_DIFF	and	the	GIT_DIFF_OPTS	environment	variables.

What	the	-p	option	produces	is	slightly	different	from	the	traditional	diff
format:

1.	 It	is	preceded	with	a	"git	diff"	header	that	looks	like	this:

diff	--git	a/file1	b/file2

The	a/	and	b/	filenames	are	the	same	unless	rename/copy	is
involved.	Especially,	even	for	a	creation	or	a	deletion,	/dev/null	is	not
used	in	place	of	the	a/	or	b/	filenames.

When	rename/copy	is	involved,	file1	and	file2	show	the	name	of	the
source	file	of	the	rename/copy	and	the	name	of	the	file	that
rename/copy	produces,	respectively.

2.	 It	is	followed	by	one	or	more	extended	header	lines:

old	mode	<mode>

new	mode	<mode>

deleted	file	mode	<mode>

new	file	mode	<mode>

copy	from	<path>

copy	to	<path>

rename	from	<path>

rename	to	<path>

similarity	index	<number>

dissimilarity	index	<number>

index	<hash>..<hash>	<mode>

File	modes	are	printed	as	6-digit	octal	numbers	including	the	file	type
and	file	permission	bits.

Path	names	in	extended	headers	do	not	include	the	a/	and	b/
prefixes.

The	similarity	index	is	the	percentage	of	unchanged	lines,	and	the
dissimilarity	index	is	the	percentage	of	changed	lines.	It	is	a	rounded
down	integer,	followed	by	a	percent	sign.	The	similarity	index	value
of	100%	is	thus	reserved	for	two	equal	files,	while	100%	dissimilarity
means	that	no	line	from	the	old	file	made	it	into	the	new	one.

The	index	line	includes	the	SHA-1	checksum	before	and	after	the
change.	The	<mode>	is	included	if	the	file	mode	does	not	change;
otherwise,	separate	lines	indicate	the	old	and	the	new	mode.

3.	 TAB,	LF,	double	quote	and	backslash	characters	in	pathnames	are
represented	as	\t,	\n,	\"	and	\\,	respectively.	If	there	is	need	for	such
substitution	then	the	whole	pathname	is	put	in	double	quotes.

4.	 All	the	file1	files	in	the	output	refer	to	files	before	the	commit,	and	all
the	file2	files	refer	to	files	after	the	commit.	It	is	incorrect	to	apply
each	change	to	each	file	sequentially.	For	example,	this	patch	will
swap	a	and	b:

diff	--git	a/a	b/b

rename	from	a

rename	to	b

diff	--git	a/b	b/a

rename	from	b

rename	to	a

combined	diff	format

Any	diff-generating	command	can	take	the	-c	or	--cc	option	to	produce	a
combined	diff	when	showing	a	merge.	This	is	the	default	format	when
showing	merges	with	Section	G.3.41,	“git-diff(1)”	or	Section	G.3.126,	“git-

show(1)”.	Note	also	that	you	can	give	the	-m	option	to	any	of	these
commands	to	force	generation	of	diffs	with	individual	parents	of	a	merge.

A	combined	diff	format	looks	like	this:

diff	--combined	describe.c

index	fabadb8,cc95eb0..4866510

---	a/describe.c

+++	b/describe.c

@@@	-98,20	-98,12	+98,20	@@@

								return	(a_date	>	b_date)	?	-1	:	(a_date	==	b_date)	?	0	:	1;

		}

-	static	void	describe(char	*arg)

	-static	void	describe(struct	commit	*cmit,	int	last_one)

++static	void	describe(char	*arg,	int	last_one)

		{

	+						unsigned	char	sha1[20];

	+						struct	commit	*cmit;

								struct	commit_list	*list;

								static	int	initialized	=	0;

								struct	commit_name	*n;

	+						if	(get_sha1(arg,	sha1)	<	0)

	+														usage(describe_usage);

	+						cmit	=	lookup_commit_reference(sha1);

	+						if	(!cmit)

	+														usage(describe_usage);

	+

								if	(!initialized)	{

																initialized	=	1;

																for_each_ref(get_name);

1.	 It	is	preceded	with	a	"git	diff"	header,	that	looks	like	this	(when	-c
option	is	used):

diff	--combined	file

or	like	this	(when	--cc	option	is	used):

diff	--cc	file

2.	 It	is	followed	by	one	or	more	extended	header	lines	(this	example

shows	a	merge	with	two	parents):

index	<hash>,<hash>..<hash>

mode	<mode>,<mode>..<mode>

new	file	mode	<mode>

deleted	file	mode	<mode>,<mode>

The	mode	<mode>,<mode>..<mode>	line	appears	only	if	at	least
one	of	the	<mode>	is	different	from	the	rest.	Extended	headers	with
information	about	detected	contents	movement	(renames	and
copying	detection)	are	designed	to	work	with	diff	of	two	<tree-ish>
and	are	not	used	by	combined	diff	format.

3.	 It	is	followed	by	two-line	from-file/to-file	header

---	a/file

+++	b/file

Similar	to	two-line	header	for	traditional	unified	diff	format,	/dev/null
is	used	to	signal	created	or	deleted	files.

4.	 Chunk	header	format	is	modified	to	prevent	people	from	accidentally
feeding	it	to	patch	-p1.	Combined	diff	format	was	created	for	review
of	merge	commit	changes,	and	was	not	meant	for	apply.	The	change
is	similar	to	the	change	in	the	extended	index	header:

@@@	<from-file-range>	<from-file-range>	<to-file-range>	@@@

There	are	(number	of	parents	+	1)	@	characters	in	the	chunk	header
for	combined	diff	format.

Unlike	the	traditional	unified	diff	format,	which	shows	two	files	A	and	B
with	a	single	column	that	has	-	(minus	--	appears	in	A	but	removed	in	B),
+	(plus	--	missing	in	A	but	added	to	B),	or	"	"	(space	--	unchanged)	prefix,
this	format	compares	two	or	more	files	file1,	file2,…	with	one	file	X,	and
shows	how	X	differs	from	each	of	fileN.	One	column	for	each	of	fileN	is
prepended	to	the	output	line	to	note	how	X's	line	is	different	from	it.

A	-	character	in	the	column	N	means	that	the	line	appears	in	fileN	but	it
does	not	appear	in	the	result.	A	+	character	in	the	column	N	means	that
the	line	appears	in	the	result,	and	fileN	does	not	have	that	line	(in	other
words,	the	line	was	added,	from	the	point	of	view	of	that	parent).

In	the	above	example	output,	the	function	signature	was	changed	from
both	files	(hence	two	-	removals	from	both	file1	and	file2,	plus	++	to	mean
one	line	that	was	added	does	not	appear	in	either	file1	or	file2).	Also
eight	other	lines	are	the	same	from	file1	but	do	not	appear	in	file2	(hence
prefixed	with	+).

When	shown	by	git	diff-tree	-c,	it	compares	the	parents	of	a	merge
commit	with	the	merge	result	(i.e.	file1..fileN	are	the	parents).	When
shown	by	git	diff-files	-c,	it	compares	the	two	unresolved	merge	parents
with	the	working	tree	file	(i.e.	file1	is	stage	2	aka	"our	version",	file2	is
stage	3	aka	"their	version").

other	diff	formats

The	--summary	option	describes	newly	added,	deleted,	renamed	and
copied	files.	The	--stat	option	adds	diffstat(1)	graph	to	the	output.	These
options	can	be	combined	with	other	options,	such	as	-p,	and	are	meant
for	human	consumption.

When	showing	a	change	that	involves	a	rename	or	a	copy,	--stat	output
formats	the	pathnames	compactly	by	combining	common	prefix	and
suffix	of	the	pathnames.	For	example,	a	change	that	moves
arch/i386/Makefile	to	arch/x86/Makefile	while	modifying	4	lines	will	be
shown	like	this:

arch/{i386	=>	x86}/Makefile				|			4	+--

The	--numstat	option	gives	the	diffstat(1)	information	but	is	designed	for
easier	machine	consumption.	An	entry	in	--numstat	output	looks	like	this:

1							2							README

3							1							arch/{i386	=>	x86}/Makefile

That	is,	from	left	to	right:

1.	 the	number	of	added	lines;
2.	 a	tab;

3.	 the	number	of	deleted	lines;
4.	 a	tab;
5.	 pathname	(possibly	with	rename/copy	information);
6.	 a	newline.

When	-z	output	option	is	in	effect,	the	output	is	formatted	this	way:

1							2							README	NUL

3							1							NUL	arch/i386/Makefile	NUL	arch/x86/Makefile	NUL

That	is:

1.	 the	number	of	added	lines;
2.	 a	tab;
3.	 the	number	of	deleted	lines;
4.	 a	tab;
5.	 a	NUL	(only	exists	if	renamed/copied);
6.	 pathname	in	preimage;
7.	 a	NUL	(only	exists	if	renamed/copied);
8.	 pathname	in	postimage	(only	exists	if	renamed/copied);
9.	 a	NUL.

The	extra	NUL	before	the	preimage	path	in	renamed	case	is	to	allow
scripts	that	read	the	output	to	tell	if	the	current	record	being	read	is	a
single-path	record	or	a	rename/copy	record	without	reading	ahead.	After
reading	added	and	deleted	lines,	reading	up	to	NUL	would	yield	the
pathname,	but	if	that	is	NUL,	the	record	will	show	two	paths.

GIT

Part	of	the	Section	G.3.1,	“git(1)”	suite

G.3.39.	git-diff-index(1)

NAME

git-diff-index	-	Compare	a	tree	to	the	working	tree	or	index

SYNOPSIS

git	diff-index	[-m]	[--cached]	[<common	diff	options>]	<tree-

ish>	[<path>…]

DESCRIPTION

Compares	the	content	and	mode	of	the	blobs	found	in	a	tree	object	with
the	corresponding	tracked	files	in	the	working	tree,	or	with	the
corresponding	paths	in	the	index.	When	<path>	arguments	are	present,
compares	only	paths	matching	those	patterns.	Otherwise	all	tracked	files
are	compared.

OPTIONS

-p	,	-u	,	--patch
Generate	patch	(see	section	on	generating	patches).

-s	,	--no-patch
Suppress	diff	output.	Useful	for	commands	like	git	show	that	show
the	patch	by	default,	or	to	cancel	the	effect	of	--patch.

-U<n>	,	--unified=<n>
Generate	diffs	with	<n>	lines	of	context	instead	of	the	usual	three.
Implies	-p.

--raw
Generate	the	diff	in	raw	format.	This	is	the	default.

--patch-with-raw
Synonym	for	-p	--raw.

--minimal
Spend	extra	time	to	make	sure	the	smallest	possible	diff	is	produced.

--patience
Generate	a	diff	using	the	"patience	diff"	algorithm.

--histogram
Generate	a	diff	using	the	"histogram	diff"	algorithm.

--diff-algorithm={patience|minimal|histogram|myers}

Choose	a	diff	algorithm.	The	variants	are	as	follows:

default,	myers
The	basic	greedy	diff	algorithm.	Currently,	this	is	the	default.

minimal
Spend	extra	time	to	make	sure	the	smallest	possible	diff	is
produced.

patience
Use	"patience	diff"	algorithm	when	generating	patches.

histogram
This	algorithm	extends	the	patience	algorithm	to	"support	low-
occurrence	common	elements".

For	instance,	if	you	configured	diff.algorithm	variable	to	a	non-default
value	and	want	to	use	the	default	one,	then	you	have	to	use	--diff-
algorithm=default	option.

--stat[=<width>[,<name-width>[,<count>]]]

Generate	a	diffstat.	By	default,	as	much	space	as	necessary	will	be
used	for	the	filename	part,	and	the	rest	for	the	graph	part.	Maximum
width	defaults	to	terminal	width,	or	80	columns	if	not	connected	to	a
terminal,	and	can	be	overridden	by	<width>.	The	width	of	the
filename	part	can	be	limited	by	giving	another	width	<name-width>
after	a	comma.	The	width	of	the	graph	part	can	be	limited	by	using	--
stat-graph-width=<width>	(affects	all	commands	generating	a	stat
graph)	or	by	setting	diff.statGraphWidth=<width>	(does	not	affect	git
format-patch).	By	giving	a	third	parameter	<count>,	you	can	limit	the
output	to	the	first	<count>	lines,	followed	by	...	if	there	are	more.

These	parameters	can	also	be	set	individually	with	--stat-width=
<width>,	--stat-name-width=<name-width>	and	--stat-count=<count>.

--numstat
Similar	to	--stat,	but	shows	number	of	added	and	deleted	lines	in
decimal	notation	and	pathname	without	abbreviation,	to	make	it
more	machine	friendly.	For	binary	files,	outputs	two	-	instead	of
saying	0	0.

--shortstat
Output	only	the	last	line	of	the	--stat	format	containing	total	number
of	modified	files,	as	well	as	number	of	added	and	deleted	lines.

--dirstat[=<param1,param2,…>]

Output	the	distribution	of	relative	amount	of	changes	for	each	sub-
directory.	The	behavior	of	--dirstat	can	be	customized	by	passing	it	a
comma	separated	list	of	parameters.	The	defaults	are	controlled	by
the	diff.dirstat	configuration	variable	(see	Section	G.3.27,	“git-
config(1)”).	The	following	parameters	are	available:

changes
Compute	the	dirstat	numbers	by	counting	the	lines	that	have
been	removed	from	the	source,	or	added	to	the	destination.	This
ignores	the	amount	of	pure	code	movements	within	a	file.	In
other	words,	rearranging	lines	in	a	file	is	not	counted	as	much
as	other	changes.	This	is	the	default	behavior	when	no
parameter	is	given.

lines
Compute	the	dirstat	numbers	by	doing	the	regular	line-based	diff
analysis,	and	summing	the	removed/added	line	counts.	(For
binary	files,	count	64-byte	chunks	instead,	since	binary	files
have	no	natural	concept	of	lines).	This	is	a	more	expensive	--
dirstat	behavior	than	the	changes	behavior,	but	it	does	count
rearranged	lines	within	a	file	as	much	as	other	changes.	The
resulting	output	is	consistent	with	what	you	get	from	the	other	--
*stat	options.

files
Compute	the	dirstat	numbers	by	counting	the	number	of	files
changed.	Each	changed	file	counts	equally	in	the	dirstat
analysis.	This	is	the	computationally	cheapest	--dirstat	behavior,
since	it	does	not	have	to	look	at	the	file	contents	at	all.

cumulative
Count	changes	in	a	child	directory	for	the	parent	directory	as
well.	Note	that	when	using	cumulative,	the	sum	of	the
percentages	reported	may	exceed	100%.	The	default	(non-
cumulative)	behavior	can	be	specified	with	the	noncumulative

parameter.
<limit>

An	integer	parameter	specifies	a	cut-off	percent	(3%	by	default).
Directories	contributing	less	than	this	percentage	of	the	changes
are	not	shown	in	the	output.

Example:	The	following	will	count	changed	files,	while	ignoring
directories	with	less	than	10%	of	the	total	amount	of	changed	files,
and	accumulating	child	directory	counts	in	the	parent	directories:	--
dirstat=files,10,cumulative.

--summary
Output	a	condensed	summary	of	extended	header	information	such
as	creations,	renames	and	mode	changes.

--patch-with-stat
Synonym	for	-p	--stat.

-z

When	--raw,	--numstat,	--name-only	or	--name-status	has	been
given,	do	not	munge	pathnames	and	use	NULs	as	output	field
terminators.

Without	this	option,	each	pathname	output	will	have	TAB,	LF,	double
quotes,	and	backslash	characters	replaced	with	\t,	\n,	\",	and	\\,
respectively,	and	the	pathname	will	be	enclosed	in	double	quotes	if
any	of	those	replacements	occurred.

--name-only
Show	only	names	of	changed	files.

--name-status
Show	only	names	and	status	of	changed	files.	See	the	description	of
the	--diff-filter	option	on	what	the	status	letters	mean.

--submodule[=<format>]
Specify	how	differences	in	submodules	are	shown.	When	--
submodule	or	--submodule=log	is	given,	the	log	format	is	used.	This
format	lists	the	commits	in	the	range	like	Section	G.3.131,	“git-
submodule(1)”	summary	does.	Omitting	the	--submodule	option	or
specifying	--submodule=short,	uses	the	short	format.	This	format	just

shows	the	names	of	the	commits	at	the	beginning	and	end	of	the
range.	Can	be	tweaked	via	the	diff.submodule	configuration	variable.

--color[=<when>]
Show	colored	diff.	--color	(i.e.	without	=<when>)	is	the	same	as	--
color=always.	<when>	can	be	one	of	always,	never,	or	auto.

--no-color
Turn	off	colored	diff.	It	is	the	same	as	--color=never.

--word-diff[=<mode>]

Show	a	word	diff,	using	the	<mode>	to	delimit	changed	words.	By
default,	words	are	delimited	by	whitespace;	see	--word-diff-regex
below.	The	<mode>	defaults	to	plain,	and	must	be	one	of:

color
Highlight	changed	words	using	only	colors.	Implies	--color.

plain
Show	words	as	[-removed-]	and	{+added+}.	Makes	no	attempts
to	escape	the	delimiters	if	they	appear	in	the	input,	so	the	output
may	be	ambiguous.

porcelain
Use	a	special	line-based	format	intended	for	script	consumption.
Added/removed/unchanged	runs	are	printed	in	the	usual	unified
diff	format,	starting	with	a	+/-/`	`	character	at	the	beginning	of	the
line	and	extending	to	the	end	of	the	line.	Newlines	in	the	input
are	represented	by	a	tilde	~	on	a	line	of	its	own.

none
Disable	word	diff	again.

Note	that	despite	the	name	of	the	first	mode,	color	is	used	to
highlight	the	changed	parts	in	all	modes	if	enabled.

--word-diff-regex=<regex>

Use	<regex>	to	decide	what	a	word	is,	instead	of	considering	runs	of
non-whitespace	to	be	a	word.	Also	implies	--word-diff	unless	it	was
already	enabled.

Every	non-overlapping	match	of	the	<regex>	is	considered	a	word.

Anything	between	these	matches	is	considered	whitespace	and
ignored(!)	for	the	purposes	of	finding	differences.	You	may	want	to
append	|[^[:space:]]	to	your	regular	expression	to	make	sure	that	it
matches	all	non-whitespace	characters.	A	match	that	contains	a
newline	is	silently	truncated(!)	at	the	newline.

For	example,	--word-diff-regex=.	will	treat	each	character	as	a	word
and,	correspondingly,	show	differences	character	by	character.

The	regex	can	also	be	set	via	a	diff	driver	or	configuration	option,
see	???	or	Section	G.3.27,	“git-config(1)”.	Giving	it	explicitly
overrides	any	diff	driver	or	configuration	setting.	Diff	drivers	override
configuration	settings.

--color-words[=<regex>]
Equivalent	to	--word-diff=color	plus	(if	a	regex	was	specified)	--word-
diff-regex=<regex>.

--no-renames
Turn	off	rename	detection,	even	when	the	configuration	file	gives	the
default	to	do	so.

--check
Warn	if	changes	introduce	conflict	markers	or	whitespace	errors.
What	are	considered	whitespace	errors	is	controlled	by
core.whitespace	configuration.	By	default,	trailing	whitespaces
(including	lines	that	solely	consist	of	whitespaces)	and	a	space
character	that	is	immediately	followed	by	a	tab	character	inside	the
initial	indent	of	the	line	are	considered	whitespace	errors.	Exits	with
non-zero	status	if	problems	are	found.	Not	compatible	with	--exit-
code.

--ws-error-highlight=<kind>
Highlight	whitespace	errors	on	lines	specified	by	<kind>	in	the	color
specified	by	color.diff.whitespace.	<kind>	is	a	comma	separated	list
of	old,	new,	context.	When	this	option	is	not	given,	only	whitespace
errors	in	new	lines	are	highlighted.	E.g.	--ws-error-highlight=new,old
highlights	whitespace	errors	on	both	deleted	and	added	lines.	all	can
be	used	as	a	short-hand	for	old,new,context.

--full-index
Instead	of	the	first	handful	of	characters,	show	the	full	pre-	and	post-

image	blob	object	names	on	the	"index"	line	when	generating	patch
format	output.

--binary
In	addition	to	--full-index,	output	a	binary	diff	that	can	be	applied	with
git-apply.

--abbrev[=<n>]
Instead	of	showing	the	full	40-byte	hexadecimal	object	name	in	diff-
raw	format	output	and	diff-tree	header	lines,	show	only	a	partial
prefix.	This	is	independent	of	the	--full-index	option	above,	which
controls	the	diff-patch	output	format.	Non	default	number	of	digits
can	be	specified	with	--abbrev=<n>.

-B[<n>][/<m>]	,	--break-rewrites[=[<n>][/<m>]]

Break	complete	rewrite	changes	into	pairs	of	delete	and	create.	This
serves	two	purposes:

It	affects	the	way	a	change	that	amounts	to	a	total	rewrite	of	a	file	not
as	a	series	of	deletion	and	insertion	mixed	together	with	a	very	few
lines	that	happen	to	match	textually	as	the	context,	but	as	a	single
deletion	of	everything	old	followed	by	a	single	insertion	of	everything
new,	and	the	number	m	controls	this	aspect	of	the	-B	option	(defaults
to	60%).	-B/70%	specifies	that	less	than	30%	of	the	original	should
remain	in	the	result	for	Git	to	consider	it	a	total	rewrite	(i.e.	otherwise
the	resulting	patch	will	be	a	series	of	deletion	and	insertion	mixed
together	with	context	lines).

When	used	with	-M,	a	totally-rewritten	file	is	also	considered	as	the
source	of	a	rename	(usually	-M	only	considers	a	file	that
disappeared	as	the	source	of	a	rename),	and	the	number	n	controls
this	aspect	of	the	-B	option	(defaults	to	50%).	-B20%	specifies	that	a
change	with	addition	and	deletion	compared	to	20%	or	more	of	the
file's	size	are	eligible	for	being	picked	up	as	a	possible	source	of	a
rename	to	another	file.

-M[<n>]	,	--find-renames[=<n>]
Detect	renames.	If	n	is	specified,	it	is	a	threshold	on	the	similarity
index	(i.e.	amount	of	addition/deletions	compared	to	the	file's	size).
For	example,	-M90%	means	Git	should	consider	a	delete/add	pair	to

be	a	rename	if	more	than	90%	of	the	file	hasn't	changed.	Without	a
%	sign,	the	number	is	to	be	read	as	a	fraction,	with	a	decimal	point
before	it.	I.e.,	-M5	becomes	0.5,	and	is	thus	the	same	as	-M50%.
Similarly,	-M05	is	the	same	as	-M5%.	To	limit	detection	to	exact
renames,	use	-M100%.	The	default	similarity	index	is	50%.

-C[<n>]	,	--find-copies[=<n>]
Detect	copies	as	well	as	renames.	See	also	--find-copies-harder.	If	n
is	specified,	it	has	the	same	meaning	as	for	-M<n>.

--find-copies-harder
For	performance	reasons,	by	default,	-C	option	finds	copies	only	if
the	original	file	of	the	copy	was	modified	in	the	same	changeset.	This
flag	makes	the	command	inspect	unmodified	files	as	candidates	for
the	source	of	copy.	This	is	a	very	expensive	operation	for	large
projects,	so	use	it	with	caution.	Giving	more	than	one	-C	option	has
the	same	effect.

-D	,	--irreversible-delete

Omit	the	preimage	for	deletes,	i.e.	print	only	the	header	but	not	the
diff	between	the	preimage	and	/dev/null.	The	resulting	patch	is	not
meant	to	be	applied	with	patch	or	git	apply;	this	is	solely	for	people
who	want	to	just	concentrate	on	reviewing	the	text	after	the	change.
In	addition,	the	output	obviously	lack	enough	information	to	apply
such	a	patch	in	reverse,	even	manually,	hence	the	name	of	the
option.

When	used	together	with	-B,	omit	also	the	preimage	in	the	deletion
part	of	a	delete/create	pair.

-l<num>
The	-M	and	-C	options	require	O(n^2)	processing	time	where	n	is	the
number	of	potential	rename/copy	targets.	This	option	prevents
rename/copy	detection	from	running	if	the	number	of	rename/copy
targets	exceeds	the	specified	number.

--diff-filter=[(A|C|D|M|R|T|U|X|B)…[*]]
Select	only	files	that	are	Added	(A),	Copied	(C),	Deleted	(D),
Modified	(M),	Renamed	(R),	have	their	type	(i.e.	regular	file,	symlink,
submodule,	…)	changed	(T),	are	Unmerged	(U),	are	Unknown	(X),
or	have	had	their	pairing	Broken	(B).	Any	combination	of	the	filter

characters	(including	none)	can	be	used.	When	*	(All-or-none)	is
added	to	the	combination,	all	paths	are	selected	if	there	is	any	file
that	matches	other	criteria	in	the	comparison;	if	there	is	no	file	that
matches	other	criteria,	nothing	is	selected.

-S<string>

Look	for	differences	that	change	the	number	of	occurrences	of	the
specified	string	(i.e.	addition/deletion)	in	a	file.	Intended	for	the
scripter's	use.

It	is	useful	when	you're	looking	for	an	exact	block	of	code	(like	a
struct),	and	want	to	know	the	history	of	that	block	since	it	first	came
into	being:	use	the	feature	iteratively	to	feed	the	interesting	block	in
the	preimage	back	into	-S,	and	keep	going	until	you	get	the	very	first
version	of	the	block.

-G<regex>

Look	for	differences	whose	patch	text	contains	added/removed	lines
that	match	<regex>.

To	illustrate	the	difference	between	-S<regex>	--pickaxe-regex	and	-
G<regex>,	consider	a	commit	with	the	following	diff	in	the	same	file:

+				return	!regexec(regexp,	two->ptr,	1,	®match,	0);

...

-				hit	=	!regexec(regexp,	mf2.ptr,	1,	®match,	0);

While	git	log	-G"regexec\(regexp"	will	show	this	commit,	git	log	-
S"regexec\(regexp"	--pickaxe-regex	will	not	(because	the	number	of
occurrences	of	that	string	did	not	change).

See	the	pickaxe	entry	in	Section	G.4.4,	“gitdiffcore(7)”	for	more
information.

--pickaxe-all
When	-S	or	-G	finds	a	change,	show	all	the	changes	in	that
changeset,	not	just	the	files	that	contain	the	change	in	<string>.

--pickaxe-regex
Treat	the	<string>	given	to	-S	as	an	extended	POSIX	regular
expression	to	match.

-O<orderfile>
Output	the	patch	in	the	order	specified	in	the	<orderfile>,	which	has
one	shell	glob	pattern	per	line.	This	overrides	the	diff.orderFile
configuration	variable	(see	Section	G.3.27,	“git-config(1)”).	To	cancel
diff.orderFile,	use	-O/dev/null.

-R
Swap	two	inputs;	that	is,	show	differences	from	index	or	on-disk	file
to	tree	contents.

--relative[=<path>]
When	run	from	a	subdirectory	of	the	project,	it	can	be	told	to	exclude
changes	outside	the	directory	and	show	pathnames	relative	to	it	with
this	option.	When	you	are	not	in	a	subdirectory	(e.g.	in	a	bare
repository),	you	can	name	which	subdirectory	to	make	the	output
relative	to	by	giving	a	<path>	as	an	argument.

-a	,	--text
Treat	all	files	as	text.

--ignore-space-at-eol
Ignore	changes	in	whitespace	at	EOL.

-b	,	--ignore-space-change
Ignore	changes	in	amount	of	whitespace.	This	ignores	whitespace	at
line	end,	and	considers	all	other	sequences	of	one	or	more
whitespace	characters	to	be	equivalent.

-w	,	--ignore-all-space
Ignore	whitespace	when	comparing	lines.	This	ignores	differences
even	if	one	line	has	whitespace	where	the	other	line	has	none.

--ignore-blank-lines
Ignore	changes	whose	lines	are	all	blank.

--inter-hunk-context=<lines>
Show	the	context	between	diff	hunks,	up	to	the	specified	number	of
lines,	thereby	fusing	hunks	that	are	close	to	each	other.

-W	,	--function-context
Show	whole	surrounding	functions	of	changes.

--exit-code
Make	the	program	exit	with	codes	similar	to	diff(1).	That	is,	it	exits

with	1	if	there	were	differences	and	0	means	no	differences.
--quiet

Disable	all	output	of	the	program.	Implies	--exit-code.
--ext-diff

Allow	an	external	diff	helper	to	be	executed.	If	you	set	an	external
diff	driver	with	Section	G.4.2,	“gitattributes(5)”,	you	need	to	use	this
option	with	Section	G.3.68,	“git-log(1)”	and	friends.

--no-ext-diff
Disallow	external	diff	drivers.

--textconv	,	--no-textconv
Allow	(or	disallow)	external	text	conversion	filters	to	be	run	when
comparing	binary	files.	See	Section	G.4.2,	“gitattributes(5)”	for
details.	Because	textconv	filters	are	typically	a	one-way	conversion,
the	resulting	diff	is	suitable	for	human	consumption,	but	cannot	be
applied.	For	this	reason,	textconv	filters	are	enabled	by	default	only
for	Section	G.3.41,	“git-diff(1)”	and	Section	G.3.68,	“git-log(1)”,	but
not	for	Section	G.3.50,	“git-format-patch(1)”	or	diff	plumbing
commands.

--ignore-submodules[=<when>]
Ignore	changes	to	submodules	in	the	diff	generation.	<when>	can	be
either	"none",	"untracked",	"dirty"	or	"all",	which	is	the	default.	Using
"none"	will	consider	the	submodule	modified	when	it	either	contains
untracked	or	modified	files	or	its	HEAD	differs	from	the	commit
recorded	in	the	superproject	and	can	be	used	to	override	any
settings	of	the	ignore	option	in	Section	G.3.27,	“git-config(1)”	or
Section	G.4.8,	“gitmodules(5)”.	When	"untracked"	is	used
submodules	are	not	considered	dirty	when	they	only	contain
untracked	content	(but	they	are	still	scanned	for	modified	content).
Using	"dirty"	ignores	all	changes	to	the	work	tree	of	submodules,
only	changes	to	the	commits	stored	in	the	superproject	are	shown
(this	was	the	behavior	until	1.7.0).	Using	"all"	hides	all	changes	to
submodules.

--src-prefix=<prefix>
Show	the	given	source	prefix	instead	of	"a/".

--dst-prefix=<prefix>
Show	the	given	destination	prefix	instead	of	"b/".

--no-prefix

Do	not	show	any	source	or	destination	prefix.

For	more	detailed	explanation	on	these	common	options,	see	also
Section	G.4.4,	“gitdiffcore(7)”.

<tree-ish>
The	id	of	a	tree	object	to	diff	against.

--cached
do	not	consider	the	on-disk	file	at	all

-m
By	default,	files	recorded	in	the	index	but	not	checked	out	are
reported	as	deleted.	This	flag	makes	git	diff-index	say	that	all	non-
checked-out	files	are	up	to	date.

Raw	output	format

The	raw	output	format	from	"git-diff-index",	"git-diff-tree",	"git-diff-files"	and
"git	diff	--raw"	are	very	similar.

These	commands	all	compare	two	sets	of	things;	what	is	compared
differs:

git-diff-index	<tree-ish>
compares	the	<tree-ish>	and	the	files	on	the	filesystem.

git-diff-index	--cached	<tree-ish>
compares	the	<tree-ish>	and	the	index.

git-diff-tree	[-r]	<tree-ish-1>	<tree-ish-2>	[<pattern>…]
compares	the	trees	named	by	the	two	arguments.

git-diff-files	[<pattern>…]
compares	the	index	and	the	files	on	the	filesystem.

The	"git-diff-tree"	command	begins	its	output	by	printing	the	hash	of	what
is	being	compared.	After	that,	all	the	commands	print	one	output	line	per
changed	file.

An	output	line	is	formatted	this	way:

in-place	edit		:100644	100644	bcd1234...	0123456...	M	file0

copy-edit						:100644	100644	abcd123...	1234567...	C68	file1	file2

rename-edit				:100644	100644	abcd123...	1234567...	R86	file1	file3

create									:000000	100644	0000000...	1234567...	A	file4

delete									:100644	000000	1234567...	0000000...	D	file5

unmerged							:000000	000000	0000000...	0000000...	U	file6

That	is,	from	the	left	to	the	right:

1.	 a	colon.
2.	 mode	for	"src";	000000	if	creation	or	unmerged.
3.	 a	space.
4.	 mode	for	"dst";	000000	if	deletion	or	unmerged.
5.	 a	space.
6.	 sha1	for	"src";	0{40}	if	creation	or	unmerged.
7.	 a	space.
8.	 sha1	for	"dst";	0{40}	if	creation,	unmerged	or	"look	at	work	tree".
9.	 a	space.
10.	 status,	followed	by	optional	"score"	number.
11.	 a	tab	or	a	NUL	when	-z	option	is	used.
12.	 path	for	"src"
13.	 a	tab	or	a	NUL	when	-z	option	is	used;	only	exists	for	C	or	R.
14.	 path	for	"dst";	only	exists	for	C	or	R.
15.	 an	LF	or	a	NUL	when	-z	option	is	used,	to	terminate	the	record.

Possible	status	letters	are:

A:	addition	of	a	file
C:	copy	of	a	file	into	a	new	one
D:	deletion	of	a	file
M:	modification	of	the	contents	or	mode	of	a	file
R:	renaming	of	a	file
T:	change	in	the	type	of	the	file
U:	file	is	unmerged	(you	must	complete	the	merge	before	it	can	be
committed)
X:	"unknown"	change	type	(most	probably	a	bug,	please	report	it)

Status	letters	C	and	R	are	always	followed	by	a	score	(denoting	the
percentage	of	similarity	between	the	source	and	target	of	the	move	or

copy).	Status	letter	M	may	be	followed	by	a	score	(denoting	the
percentage	of	dissimilarity)	for	file	rewrites.

<sha1>	is	shown	as	all	0's	if	a	file	is	new	on	the	filesystem	and	it	is	out	of
sync	with	the	index.

Example:

:100644	100644	5be4a4......	000000......	M	file.c

When	-z	option	is	not	used,	TAB,	LF,	and	backslash	characters	in
pathnames	are	represented	as	\t,	\n,	and	\\,	respectively.

diff	format	for	merges

"git-diff-tree",	"git-diff-files"	and	"git-diff	--raw"	can	take	-c	or	--cc	option	to
generate	diff	output	also	for	merge	commits.	The	output	differs	from	the
format	described	above	in	the	following	way:

1.	 there	is	a	colon	for	each	parent
2.	 there	are	more	"src"	modes	and	"src"	sha1
3.	 status	is	concatenated	status	characters	for	each	parent
4.	 no	optional	"score"	number
5.	 single	path,	only	for	"dst"

Example:

::100644	100644	100644	fabadb8...	cc95eb0...	4866510...	MM						describe.c

Note	that	combined	diff	lists	only	files	which	were	modified	from	all
parents.

Generating	patches	with	-p

When	"git-diff-index",	"git-diff-tree",	or	"git-diff-files"	are	run	with	a	-p
option,	"git	diff"	without	the	--raw	option,	or	"git	log"	with	the	"-p"	option,

they	do	not	produce	the	output	described	above;	instead	they	produce	a
patch	file.	You	can	customize	the	creation	of	such	patches	via	the
GIT_EXTERNAL_DIFF	and	the	GIT_DIFF_OPTS	environment	variables.

What	the	-p	option	produces	is	slightly	different	from	the	traditional	diff
format:

1.	 It	is	preceded	with	a	"git	diff"	header	that	looks	like	this:

diff	--git	a/file1	b/file2

The	a/	and	b/	filenames	are	the	same	unless	rename/copy	is
involved.	Especially,	even	for	a	creation	or	a	deletion,	/dev/null	is	not
used	in	place	of	the	a/	or	b/	filenames.

When	rename/copy	is	involved,	file1	and	file2	show	the	name	of	the
source	file	of	the	rename/copy	and	the	name	of	the	file	that
rename/copy	produces,	respectively.

2.	 It	is	followed	by	one	or	more	extended	header	lines:

old	mode	<mode>

new	mode	<mode>

deleted	file	mode	<mode>

new	file	mode	<mode>

copy	from	<path>

copy	to	<path>

rename	from	<path>

rename	to	<path>

similarity	index	<number>

dissimilarity	index	<number>

index	<hash>..<hash>	<mode>

File	modes	are	printed	as	6-digit	octal	numbers	including	the	file	type
and	file	permission	bits.

Path	names	in	extended	headers	do	not	include	the	a/	and	b/
prefixes.

The	similarity	index	is	the	percentage	of	unchanged	lines,	and	the
dissimilarity	index	is	the	percentage	of	changed	lines.	It	is	a	rounded
down	integer,	followed	by	a	percent	sign.	The	similarity	index	value
of	100%	is	thus	reserved	for	two	equal	files,	while	100%	dissimilarity
means	that	no	line	from	the	old	file	made	it	into	the	new	one.

The	index	line	includes	the	SHA-1	checksum	before	and	after	the
change.	The	<mode>	is	included	if	the	file	mode	does	not	change;
otherwise,	separate	lines	indicate	the	old	and	the	new	mode.

3.	 TAB,	LF,	double	quote	and	backslash	characters	in	pathnames	are
represented	as	\t,	\n,	\"	and	\\,	respectively.	If	there	is	need	for	such
substitution	then	the	whole	pathname	is	put	in	double	quotes.

4.	 All	the	file1	files	in	the	output	refer	to	files	before	the	commit,	and	all
the	file2	files	refer	to	files	after	the	commit.	It	is	incorrect	to	apply
each	change	to	each	file	sequentially.	For	example,	this	patch	will
swap	a	and	b:

diff	--git	a/a	b/b

rename	from	a

rename	to	b

diff	--git	a/b	b/a

rename	from	b

rename	to	a

combined	diff	format

Any	diff-generating	command	can	take	the	-c	or	--cc	option	to	produce	a
combined	diff	when	showing	a	merge.	This	is	the	default	format	when
showing	merges	with	Section	G.3.41,	“git-diff(1)”	or	Section	G.3.126,	“git-
show(1)”.	Note	also	that	you	can	give	the	-m	option	to	any	of	these
commands	to	force	generation	of	diffs	with	individual	parents	of	a	merge.

A	combined	diff	format	looks	like	this:

diff	--combined	describe.c

index	fabadb8,cc95eb0..4866510

---	a/describe.c

+++	b/describe.c

@@@	-98,20	-98,12	+98,20	@@@

								return	(a_date	>	b_date)	?	-1	:	(a_date	==	b_date)	?	0	:	1;

		}

-	static	void	describe(char	*arg)

	-static	void	describe(struct	commit	*cmit,	int	last_one)

++static	void	describe(char	*arg,	int	last_one)

		{

	+						unsigned	char	sha1[20];

	+						struct	commit	*cmit;

								struct	commit_list	*list;

								static	int	initialized	=	0;

								struct	commit_name	*n;

	+						if	(get_sha1(arg,	sha1)	<	0)

	+														usage(describe_usage);

	+						cmit	=	lookup_commit_reference(sha1);

	+						if	(!cmit)

	+														usage(describe_usage);

	+

								if	(!initialized)	{

																initialized	=	1;

																for_each_ref(get_name);

1.	 It	is	preceded	with	a	"git	diff"	header,	that	looks	like	this	(when	-c
option	is	used):

diff	--combined	file

or	like	this	(when	--cc	option	is	used):

diff	--cc	file

2.	 It	is	followed	by	one	or	more	extended	header	lines	(this	example
shows	a	merge	with	two	parents):

index	<hash>,<hash>..<hash>

mode	<mode>,<mode>..<mode>

new	file	mode	<mode>

deleted	file	mode	<mode>,<mode>

The	mode	<mode>,<mode>..<mode>	line	appears	only	if	at	least
one	of	the	<mode>	is	different	from	the	rest.	Extended	headers	with
information	about	detected	contents	movement	(renames	and
copying	detection)	are	designed	to	work	with	diff	of	two	<tree-ish>
and	are	not	used	by	combined	diff	format.

3.	 It	is	followed	by	two-line	from-file/to-file	header

---	a/file

+++	b/file

Similar	to	two-line	header	for	traditional	unified	diff	format,	/dev/null
is	used	to	signal	created	or	deleted	files.

4.	 Chunk	header	format	is	modified	to	prevent	people	from	accidentally
feeding	it	to	patch	-p1.	Combined	diff	format	was	created	for	review
of	merge	commit	changes,	and	was	not	meant	for	apply.	The	change
is	similar	to	the	change	in	the	extended	index	header:

@@@	<from-file-range>	<from-file-range>	<to-file-range>	@@@

There	are	(number	of	parents	+	1)	@	characters	in	the	chunk	header
for	combined	diff	format.

Unlike	the	traditional	unified	diff	format,	which	shows	two	files	A	and	B
with	a	single	column	that	has	-	(minus	--	appears	in	A	but	removed	in	B),
+	(plus	--	missing	in	A	but	added	to	B),	or	"	"	(space	--	unchanged)	prefix,
this	format	compares	two	or	more	files	file1,	file2,…	with	one	file	X,	and
shows	how	X	differs	from	each	of	fileN.	One	column	for	each	of	fileN	is
prepended	to	the	output	line	to	note	how	X's	line	is	different	from	it.

A	-	character	in	the	column	N	means	that	the	line	appears	in	fileN	but	it
does	not	appear	in	the	result.	A	+	character	in	the	column	N	means	that
the	line	appears	in	the	result,	and	fileN	does	not	have	that	line	(in	other
words,	the	line	was	added,	from	the	point	of	view	of	that	parent).

In	the	above	example	output,	the	function	signature	was	changed	from
both	files	(hence	two	-	removals	from	both	file1	and	file2,	plus	++	to	mean
one	line	that	was	added	does	not	appear	in	either	file1	or	file2).	Also
eight	other	lines	are	the	same	from	file1	but	do	not	appear	in	file2	(hence
prefixed	with	+).

When	shown	by	git	diff-tree	-c,	it	compares	the	parents	of	a	merge
commit	with	the	merge	result	(i.e.	file1..fileN	are	the	parents).	When
shown	by	git	diff-files	-c,	it	compares	the	two	unresolved	merge	parents
with	the	working	tree	file	(i.e.	file1	is	stage	2	aka	"our	version",	file2	is
stage	3	aka	"their	version").

other	diff	formats

The	--summary	option	describes	newly	added,	deleted,	renamed	and
copied	files.	The	--stat	option	adds	diffstat(1)	graph	to	the	output.	These
options	can	be	combined	with	other	options,	such	as	-p,	and	are	meant
for	human	consumption.

When	showing	a	change	that	involves	a	rename	or	a	copy,	--stat	output
formats	the	pathnames	compactly	by	combining	common	prefix	and
suffix	of	the	pathnames.	For	example,	a	change	that	moves
arch/i386/Makefile	to	arch/x86/Makefile	while	modifying	4	lines	will	be
shown	like	this:

arch/{i386	=>	x86}/Makefile				|			4	+--

The	--numstat	option	gives	the	diffstat(1)	information	but	is	designed	for
easier	machine	consumption.	An	entry	in	--numstat	output	looks	like	this:

1							2							README

3							1							arch/{i386	=>	x86}/Makefile

That	is,	from	left	to	right:

1.	 the	number	of	added	lines;
2.	 a	tab;
3.	 the	number	of	deleted	lines;
4.	 a	tab;
5.	 pathname	(possibly	with	rename/copy	information);
6.	 a	newline.

When	-z	output	option	is	in	effect,	the	output	is	formatted	this	way:

1							2							README	NUL

3							1							NUL	arch/i386/Makefile	NUL	arch/x86/Makefile	NUL

That	is:

1.	 the	number	of	added	lines;

2.	 a	tab;
3.	 the	number	of	deleted	lines;
4.	 a	tab;
5.	 a	NUL	(only	exists	if	renamed/copied);
6.	 pathname	in	preimage;
7.	 a	NUL	(only	exists	if	renamed/copied);
8.	 pathname	in	postimage	(only	exists	if	renamed/copied);
9.	 a	NUL.

The	extra	NUL	before	the	preimage	path	in	renamed	case	is	to	allow
scripts	that	read	the	output	to	tell	if	the	current	record	being	read	is	a
single-path	record	or	a	rename/copy	record	without	reading	ahead.	After
reading	added	and	deleted	lines,	reading	up	to	NUL	would	yield	the
pathname,	but	if	that	is	NUL,	the	record	will	show	two	paths.

Operating	Modes

You	can	choose	whether	you	want	to	trust	the	index	file	entirely	(using
the	--cached	flag)	or	ask	the	diff	logic	to	show	any	files	that	don't	match
the	stat	state	as	being	"tentatively	changed".	Both	of	these	operations	are
very	useful	indeed.

Cached	Mode

If	--cached	is	specified,	it	allows	you	to	ask:

show	me	the	differences	between	HEAD	and	the	current	index

contents	(the	ones	I'd	write	using	'git	write-tree')

For	example,	let's	say	that	you	have	worked	on	your	working	directory,
updated	some	files	in	the	index	and	are	ready	to	commit.	You	want	to	see
exactly	what	you	are	going	to	commit,	without	having	to	write	a	new	tree
object	and	compare	it	that	way,	and	to	do	that,	you	just	do

git	diff-index	--cached	HEAD

Example:	let's	say	I	had	renamed	commit.c	to	git-commit.c,	and	I	had
done	an	update-index	to	make	that	effective	in	the	index	file.	git	diff-files
wouldn't	show	anything	at	all,	since	the	index	file	matches	my	working

directory.	But	doing	a	git	diff-index	does:

torvalds@ppc970:~/git>	git	diff-index	--cached	HEAD

-100644	blob				4161aecc6700a2eb579e842af0b7f22b98443f74								commit.c

+100644	blob				4161aecc6700a2eb579e842af0b7f22b98443f74								git-commit.c

You	can	see	easily	that	the	above	is	a	rename.

In	fact,	git	diff-index	--cached	should	always	be	entirely	equivalent	to
actually	doing	a	git	write-tree	and	comparing	that.	Except	this	one	is
much	nicer	for	the	case	where	you	just	want	to	check	where	you	are.

So	doing	a	git	diff-index	--cached	is	basically	very	useful	when	you	are
asking	yourself	"what	have	I	already	marked	for	being	committed,	and
what's	the	difference	to	a	previous	tree".

Non-cached	Mode

The	"non-cached"	mode	takes	a	different	approach,	and	is	potentially	the
more	useful	of	the	two	in	that	what	it	does	can't	be	emulated	with	a	git
write-tree	+	git	diff-tree.	Thus	that's	the	default	mode.	The	non-cached
version	asks	the	question:

show	me	the	differences	between	HEAD	and	the	currently	checked	out

tree	-	index	contents	_and_	files	that	aren't	up-to-date

which	is	obviously	a	very	useful	question	too,	since	that	tells	you	what
you	could	commit.	Again,	the	output	matches	the	git	diff-tree	-r	output	to
a	tee,	but	with	a	twist.

The	twist	is	that	if	some	file	doesn't	match	the	index,	we	don't	have	a
backing	store	thing	for	it,	and	we	use	the	magic	"all-zero"	sha1	to	show
that.	So	let's	say	that	you	have	edited	kernel/sched.c,	but	have	not
actually	done	a	git	update-index	on	it	yet	-	there	is	no	"object"	associated
with	the	new	state,	and	you	get:

torvalds@ppc970:~/v2.6/linux>	git	diff-index	--abbrev	HEAD

:100644	100664	7476bb...	000000...						kernel/sched.c

i.e.,	it	shows	that	the	tree	has	changed,	and	that	kernel/sched.c	has	is
not	up-to-date	and	may	contain	new	stuff.	The	all-zero	sha1	means	that

to	get	the	real	diff,	you	need	to	look	at	the	object	in	the	working	directory
directly	rather	than	do	an	object-to-object	diff.

Note

As	with	other	commands	of	this	type,	git	diff-index	does	not
actually	look	at	the	contents	of	the	file	at	all.	So	maybe
kernel/sched.c	hasn't	actually	changed,	and	it's	just	that	you
touched	it.	In	either	case,	it's	a	note	that	you	need	to	git
update-index	it	to	make	the	index	be	in	sync.

Note

You	can	have	a	mixture	of	files	show	up	as	"has	been
updated"	and	"is	still	dirty	in	the	working	directory"	together.
You	can	always	tell	which	file	is	in	which	state,	since	the	"has
been	updated"	ones	show	a	valid	sha1,	and	the	"not	in	sync
with	the	index"	ones	will	always	have	the	special	all-zero
sha1.

GIT

Part	of	the	Section	G.3.1,	“git(1)”	suite

G.3.40.	git-diff-tree(1)

NAME

git-diff-tree	-	Compares	the	content	and	mode	of	blobs	found	via	two	tree
objects

SYNOPSIS

git	diff-tree	[--stdin]	[-m]	[-s]	[-v]	[--no-commit-id]	[--

pretty]

														[-t]	[-r]	[-c	|	--cc]	[--

root]	[<common	diff	options>]

														<tree-ish>	[<tree-ish>]	[<path>…]

DESCRIPTION

Compares	the	content	and	mode	of	the	blobs	found	via	two	tree	objects.

If	there	is	only	one	<tree-ish>	given,	the	commit	is	compared	with	its
parents	(see	--stdin	below).

Note	that	git	diff-tree	can	use	the	tree	encapsulated	in	a	commit	object.

OPTIONS

-p	,	-u	,	--patch
Generate	patch	(see	section	on	generating	patches).

-s	,	--no-patch
Suppress	diff	output.	Useful	for	commands	like	git	show	that	show
the	patch	by	default,	or	to	cancel	the	effect	of	--patch.

-U<n>	,	--unified=<n>
Generate	diffs	with	<n>	lines	of	context	instead	of	the	usual	three.
Implies	-p.

--raw
Generate	the	diff	in	raw	format.	This	is	the	default.

--patch-with-raw
Synonym	for	-p	--raw.

--minimal
Spend	extra	time	to	make	sure	the	smallest	possible	diff	is	produced.

--patience
Generate	a	diff	using	the	"patience	diff"	algorithm.

--histogram
Generate	a	diff	using	the	"histogram	diff"	algorithm.

--diff-algorithm={patience|minimal|histogram|myers}

Choose	a	diff	algorithm.	The	variants	are	as	follows:

default,	myers
The	basic	greedy	diff	algorithm.	Currently,	this	is	the	default.

minimal
Spend	extra	time	to	make	sure	the	smallest	possible	diff	is
produced.

patience
Use	"patience	diff"	algorithm	when	generating	patches.

histogram
This	algorithm	extends	the	patience	algorithm	to	"support	low-
occurrence	common	elements".

For	instance,	if	you	configured	diff.algorithm	variable	to	a	non-default
value	and	want	to	use	the	default	one,	then	you	have	to	use	--diff-
algorithm=default	option.

--stat[=<width>[,<name-width>[,<count>]]]

Generate	a	diffstat.	By	default,	as	much	space	as	necessary	will	be
used	for	the	filename	part,	and	the	rest	for	the	graph	part.	Maximum
width	defaults	to	terminal	width,	or	80	columns	if	not	connected	to	a
terminal,	and	can	be	overridden	by	<width>.	The	width	of	the
filename	part	can	be	limited	by	giving	another	width	<name-width>
after	a	comma.	The	width	of	the	graph	part	can	be	limited	by	using	--
stat-graph-width=<width>	(affects	all	commands	generating	a	stat
graph)	or	by	setting	diff.statGraphWidth=<width>	(does	not	affect	git
format-patch).	By	giving	a	third	parameter	<count>,	you	can	limit	the
output	to	the	first	<count>	lines,	followed	by	...	if	there	are	more.

These	parameters	can	also	be	set	individually	with	--stat-width=
<width>,	--stat-name-width=<name-width>	and	--stat-count=<count>.

--numstat
Similar	to	--stat,	but	shows	number	of	added	and	deleted	lines	in
decimal	notation	and	pathname	without	abbreviation,	to	make	it
more	machine	friendly.	For	binary	files,	outputs	two	-	instead	of
saying	0	0.

--shortstat
Output	only	the	last	line	of	the	--stat	format	containing	total	number

of	modified	files,	as	well	as	number	of	added	and	deleted	lines.
--dirstat[=<param1,param2,…>]

Output	the	distribution	of	relative	amount	of	changes	for	each	sub-
directory.	The	behavior	of	--dirstat	can	be	customized	by	passing	it	a
comma	separated	list	of	parameters.	The	defaults	are	controlled	by
the	diff.dirstat	configuration	variable	(see	Section	G.3.27,	“git-
config(1)”).	The	following	parameters	are	available:

changes
Compute	the	dirstat	numbers	by	counting	the	lines	that	have
been	removed	from	the	source,	or	added	to	the	destination.	This
ignores	the	amount	of	pure	code	movements	within	a	file.	In
other	words,	rearranging	lines	in	a	file	is	not	counted	as	much
as	other	changes.	This	is	the	default	behavior	when	no
parameter	is	given.

lines
Compute	the	dirstat	numbers	by	doing	the	regular	line-based	diff
analysis,	and	summing	the	removed/added	line	counts.	(For
binary	files,	count	64-byte	chunks	instead,	since	binary	files
have	no	natural	concept	of	lines).	This	is	a	more	expensive	--
dirstat	behavior	than	the	changes	behavior,	but	it	does	count
rearranged	lines	within	a	file	as	much	as	other	changes.	The
resulting	output	is	consistent	with	what	you	get	from	the	other	--
*stat	options.

files
Compute	the	dirstat	numbers	by	counting	the	number	of	files
changed.	Each	changed	file	counts	equally	in	the	dirstat
analysis.	This	is	the	computationally	cheapest	--dirstat	behavior,
since	it	does	not	have	to	look	at	the	file	contents	at	all.

cumulative
Count	changes	in	a	child	directory	for	the	parent	directory	as
well.	Note	that	when	using	cumulative,	the	sum	of	the
percentages	reported	may	exceed	100%.	The	default	(non-
cumulative)	behavior	can	be	specified	with	the	noncumulative
parameter.

<limit>

An	integer	parameter	specifies	a	cut-off	percent	(3%	by	default).
Directories	contributing	less	than	this	percentage	of	the	changes
are	not	shown	in	the	output.

Example:	The	following	will	count	changed	files,	while	ignoring
directories	with	less	than	10%	of	the	total	amount	of	changed	files,
and	accumulating	child	directory	counts	in	the	parent	directories:	--
dirstat=files,10,cumulative.

--summary
Output	a	condensed	summary	of	extended	header	information	such
as	creations,	renames	and	mode	changes.

--patch-with-stat
Synonym	for	-p	--stat.

-z

When	--raw,	--numstat,	--name-only	or	--name-status	has	been
given,	do	not	munge	pathnames	and	use	NULs	as	output	field
terminators.

Without	this	option,	each	pathname	output	will	have	TAB,	LF,	double
quotes,	and	backslash	characters	replaced	with	\t,	\n,	\",	and	\\,
respectively,	and	the	pathname	will	be	enclosed	in	double	quotes	if
any	of	those	replacements	occurred.

--name-only
Show	only	names	of	changed	files.

--name-status
Show	only	names	and	status	of	changed	files.	See	the	description	of
the	--diff-filter	option	on	what	the	status	letters	mean.

--submodule[=<format>]
Specify	how	differences	in	submodules	are	shown.	When	--
submodule	or	--submodule=log	is	given,	the	log	format	is	used.	This
format	lists	the	commits	in	the	range	like	Section	G.3.131,	“git-
submodule(1)”	summary	does.	Omitting	the	--submodule	option	or
specifying	--submodule=short,	uses	the	short	format.	This	format	just
shows	the	names	of	the	commits	at	the	beginning	and	end	of	the
range.	Can	be	tweaked	via	the	diff.submodule	configuration	variable.

--color[=<when>]
Show	colored	diff.	--color	(i.e.	without	=<when>)	is	the	same	as	--
color=always.	<when>	can	be	one	of	always,	never,	or	auto.

--no-color
Turn	off	colored	diff.	It	is	the	same	as	--color=never.

--word-diff[=<mode>]

Show	a	word	diff,	using	the	<mode>	to	delimit	changed	words.	By
default,	words	are	delimited	by	whitespace;	see	--word-diff-regex
below.	The	<mode>	defaults	to	plain,	and	must	be	one	of:

color
Highlight	changed	words	using	only	colors.	Implies	--color.

plain
Show	words	as	[-removed-]	and	{+added+}.	Makes	no	attempts
to	escape	the	delimiters	if	they	appear	in	the	input,	so	the	output
may	be	ambiguous.

porcelain
Use	a	special	line-based	format	intended	for	script	consumption.
Added/removed/unchanged	runs	are	printed	in	the	usual	unified
diff	format,	starting	with	a	+/-/`	`	character	at	the	beginning	of	the
line	and	extending	to	the	end	of	the	line.	Newlines	in	the	input
are	represented	by	a	tilde	~	on	a	line	of	its	own.

none
Disable	word	diff	again.

Note	that	despite	the	name	of	the	first	mode,	color	is	used	to
highlight	the	changed	parts	in	all	modes	if	enabled.

--word-diff-regex=<regex>

Use	<regex>	to	decide	what	a	word	is,	instead	of	considering	runs	of
non-whitespace	to	be	a	word.	Also	implies	--word-diff	unless	it	was
already	enabled.

Every	non-overlapping	match	of	the	<regex>	is	considered	a	word.
Anything	between	these	matches	is	considered	whitespace	and
ignored(!)	for	the	purposes	of	finding	differences.	You	may	want	to

append	|[^[:space:]]	to	your	regular	expression	to	make	sure	that	it
matches	all	non-whitespace	characters.	A	match	that	contains	a
newline	is	silently	truncated(!)	at	the	newline.

For	example,	--word-diff-regex=.	will	treat	each	character	as	a	word
and,	correspondingly,	show	differences	character	by	character.

The	regex	can	also	be	set	via	a	diff	driver	or	configuration	option,
see	???	or	Section	G.3.27,	“git-config(1)”.	Giving	it	explicitly
overrides	any	diff	driver	or	configuration	setting.	Diff	drivers	override
configuration	settings.

--color-words[=<regex>]
Equivalent	to	--word-diff=color	plus	(if	a	regex	was	specified)	--word-
diff-regex=<regex>.

--no-renames
Turn	off	rename	detection,	even	when	the	configuration	file	gives	the
default	to	do	so.

--check
Warn	if	changes	introduce	conflict	markers	or	whitespace	errors.
What	are	considered	whitespace	errors	is	controlled	by
core.whitespace	configuration.	By	default,	trailing	whitespaces
(including	lines	that	solely	consist	of	whitespaces)	and	a	space
character	that	is	immediately	followed	by	a	tab	character	inside	the
initial	indent	of	the	line	are	considered	whitespace	errors.	Exits	with
non-zero	status	if	problems	are	found.	Not	compatible	with	--exit-
code.

--ws-error-highlight=<kind>
Highlight	whitespace	errors	on	lines	specified	by	<kind>	in	the	color
specified	by	color.diff.whitespace.	<kind>	is	a	comma	separated	list
of	old,	new,	context.	When	this	option	is	not	given,	only	whitespace
errors	in	new	lines	are	highlighted.	E.g.	--ws-error-highlight=new,old
highlights	whitespace	errors	on	both	deleted	and	added	lines.	all	can
be	used	as	a	short-hand	for	old,new,context.

--full-index
Instead	of	the	first	handful	of	characters,	show	the	full	pre-	and	post-
image	blob	object	names	on	the	"index"	line	when	generating	patch
format	output.

--binary
In	addition	to	--full-index,	output	a	binary	diff	that	can	be	applied	with
git-apply.

--abbrev[=<n>]
Instead	of	showing	the	full	40-byte	hexadecimal	object	name	in	diff-
raw	format	output	and	diff-tree	header	lines,	show	only	a	partial
prefix.	This	is	independent	of	the	--full-index	option	above,	which
controls	the	diff-patch	output	format.	Non	default	number	of	digits
can	be	specified	with	--abbrev=<n>.

-B[<n>][/<m>]	,	--break-rewrites[=[<n>][/<m>]]

Break	complete	rewrite	changes	into	pairs	of	delete	and	create.	This
serves	two	purposes:

It	affects	the	way	a	change	that	amounts	to	a	total	rewrite	of	a	file	not
as	a	series	of	deletion	and	insertion	mixed	together	with	a	very	few
lines	that	happen	to	match	textually	as	the	context,	but	as	a	single
deletion	of	everything	old	followed	by	a	single	insertion	of	everything
new,	and	the	number	m	controls	this	aspect	of	the	-B	option	(defaults
to	60%).	-B/70%	specifies	that	less	than	30%	of	the	original	should
remain	in	the	result	for	Git	to	consider	it	a	total	rewrite	(i.e.	otherwise
the	resulting	patch	will	be	a	series	of	deletion	and	insertion	mixed
together	with	context	lines).

When	used	with	-M,	a	totally-rewritten	file	is	also	considered	as	the
source	of	a	rename	(usually	-M	only	considers	a	file	that
disappeared	as	the	source	of	a	rename),	and	the	number	n	controls
this	aspect	of	the	-B	option	(defaults	to	50%).	-B20%	specifies	that	a
change	with	addition	and	deletion	compared	to	20%	or	more	of	the
file's	size	are	eligible	for	being	picked	up	as	a	possible	source	of	a
rename	to	another	file.

-M[<n>]	,	--find-renames[=<n>]
Detect	renames.	If	n	is	specified,	it	is	a	threshold	on	the	similarity
index	(i.e.	amount	of	addition/deletions	compared	to	the	file's	size).
For	example,	-M90%	means	Git	should	consider	a	delete/add	pair	to
be	a	rename	if	more	than	90%	of	the	file	hasn't	changed.	Without	a
%	sign,	the	number	is	to	be	read	as	a	fraction,	with	a	decimal	point

before	it.	I.e.,	-M5	becomes	0.5,	and	is	thus	the	same	as	-M50%.
Similarly,	-M05	is	the	same	as	-M5%.	To	limit	detection	to	exact
renames,	use	-M100%.	The	default	similarity	index	is	50%.

-C[<n>]	,	--find-copies[=<n>]
Detect	copies	as	well	as	renames.	See	also	--find-copies-harder.	If	n
is	specified,	it	has	the	same	meaning	as	for	-M<n>.

--find-copies-harder
For	performance	reasons,	by	default,	-C	option	finds	copies	only	if
the	original	file	of	the	copy	was	modified	in	the	same	changeset.	This
flag	makes	the	command	inspect	unmodified	files	as	candidates	for
the	source	of	copy.	This	is	a	very	expensive	operation	for	large
projects,	so	use	it	with	caution.	Giving	more	than	one	-C	option	has
the	same	effect.

-D	,	--irreversible-delete

Omit	the	preimage	for	deletes,	i.e.	print	only	the	header	but	not	the
diff	between	the	preimage	and	/dev/null.	The	resulting	patch	is	not
meant	to	be	applied	with	patch	or	git	apply;	this	is	solely	for	people
who	want	to	just	concentrate	on	reviewing	the	text	after	the	change.
In	addition,	the	output	obviously	lack	enough	information	to	apply
such	a	patch	in	reverse,	even	manually,	hence	the	name	of	the
option.

When	used	together	with	-B,	omit	also	the	preimage	in	the	deletion
part	of	a	delete/create	pair.

-l<num>
The	-M	and	-C	options	require	O(n^2)	processing	time	where	n	is	the
number	of	potential	rename/copy	targets.	This	option	prevents
rename/copy	detection	from	running	if	the	number	of	rename/copy
targets	exceeds	the	specified	number.

--diff-filter=[(A|C|D|M|R|T|U|X|B)…[*]]
Select	only	files	that	are	Added	(A),	Copied	(C),	Deleted	(D),
Modified	(M),	Renamed	(R),	have	their	type	(i.e.	regular	file,	symlink,
submodule,	…)	changed	(T),	are	Unmerged	(U),	are	Unknown	(X),
or	have	had	their	pairing	Broken	(B).	Any	combination	of	the	filter
characters	(including	none)	can	be	used.	When	*	(All-or-none)	is
added	to	the	combination,	all	paths	are	selected	if	there	is	any	file

that	matches	other	criteria	in	the	comparison;	if	there	is	no	file	that
matches	other	criteria,	nothing	is	selected.

-S<string>

Look	for	differences	that	change	the	number	of	occurrences	of	the
specified	string	(i.e.	addition/deletion)	in	a	file.	Intended	for	the
scripter's	use.

It	is	useful	when	you're	looking	for	an	exact	block	of	code	(like	a
struct),	and	want	to	know	the	history	of	that	block	since	it	first	came
into	being:	use	the	feature	iteratively	to	feed	the	interesting	block	in
the	preimage	back	into	-S,	and	keep	going	until	you	get	the	very	first
version	of	the	block.

-G<regex>

Look	for	differences	whose	patch	text	contains	added/removed	lines
that	match	<regex>.

To	illustrate	the	difference	between	-S<regex>	--pickaxe-regex	and	-
G<regex>,	consider	a	commit	with	the	following	diff	in	the	same	file:

+				return	!regexec(regexp,	two->ptr,	1,	®match,	0);

...

-				hit	=	!regexec(regexp,	mf2.ptr,	1,	®match,	0);

While	git	log	-G"regexec\(regexp"	will	show	this	commit,	git	log	-
S"regexec\(regexp"	--pickaxe-regex	will	not	(because	the	number	of
occurrences	of	that	string	did	not	change).

See	the	pickaxe	entry	in	Section	G.4.4,	“gitdiffcore(7)”	for	more
information.

--pickaxe-all
When	-S	or	-G	finds	a	change,	show	all	the	changes	in	that
changeset,	not	just	the	files	that	contain	the	change	in	<string>.

--pickaxe-regex
Treat	the	<string>	given	to	-S	as	an	extended	POSIX	regular

expression	to	match.
-O<orderfile>

Output	the	patch	in	the	order	specified	in	the	<orderfile>,	which	has
one	shell	glob	pattern	per	line.	This	overrides	the	diff.orderFile
configuration	variable	(see	Section	G.3.27,	“git-config(1)”).	To	cancel
diff.orderFile,	use	-O/dev/null.

-R
Swap	two	inputs;	that	is,	show	differences	from	index	or	on-disk	file
to	tree	contents.

--relative[=<path>]
When	run	from	a	subdirectory	of	the	project,	it	can	be	told	to	exclude
changes	outside	the	directory	and	show	pathnames	relative	to	it	with
this	option.	When	you	are	not	in	a	subdirectory	(e.g.	in	a	bare
repository),	you	can	name	which	subdirectory	to	make	the	output
relative	to	by	giving	a	<path>	as	an	argument.

-a	,	--text
Treat	all	files	as	text.

--ignore-space-at-eol
Ignore	changes	in	whitespace	at	EOL.

-b	,	--ignore-space-change
Ignore	changes	in	amount	of	whitespace.	This	ignores	whitespace	at
line	end,	and	considers	all	other	sequences	of	one	or	more
whitespace	characters	to	be	equivalent.

-w	,	--ignore-all-space
Ignore	whitespace	when	comparing	lines.	This	ignores	differences
even	if	one	line	has	whitespace	where	the	other	line	has	none.

--ignore-blank-lines
Ignore	changes	whose	lines	are	all	blank.

--inter-hunk-context=<lines>
Show	the	context	between	diff	hunks,	up	to	the	specified	number	of
lines,	thereby	fusing	hunks	that	are	close	to	each	other.

-W	,	--function-context
Show	whole	surrounding	functions	of	changes.

--exit-code
Make	the	program	exit	with	codes	similar	to	diff(1).	That	is,	it	exits
with	1	if	there	were	differences	and	0	means	no	differences.

--quiet

Disable	all	output	of	the	program.	Implies	--exit-code.
--ext-diff

Allow	an	external	diff	helper	to	be	executed.	If	you	set	an	external
diff	driver	with	Section	G.4.2,	“gitattributes(5)”,	you	need	to	use	this
option	with	Section	G.3.68,	“git-log(1)”	and	friends.

--no-ext-diff
Disallow	external	diff	drivers.

--textconv	,	--no-textconv
Allow	(or	disallow)	external	text	conversion	filters	to	be	run	when
comparing	binary	files.	See	Section	G.4.2,	“gitattributes(5)”	for
details.	Because	textconv	filters	are	typically	a	one-way	conversion,
the	resulting	diff	is	suitable	for	human	consumption,	but	cannot	be
applied.	For	this	reason,	textconv	filters	are	enabled	by	default	only
for	Section	G.3.41,	“git-diff(1)”	and	Section	G.3.68,	“git-log(1)”,	but
not	for	Section	G.3.50,	“git-format-patch(1)”	or	diff	plumbing
commands.

--ignore-submodules[=<when>]
Ignore	changes	to	submodules	in	the	diff	generation.	<when>	can	be
either	"none",	"untracked",	"dirty"	or	"all",	which	is	the	default.	Using
"none"	will	consider	the	submodule	modified	when	it	either	contains
untracked	or	modified	files	or	its	HEAD	differs	from	the	commit
recorded	in	the	superproject	and	can	be	used	to	override	any
settings	of	the	ignore	option	in	Section	G.3.27,	“git-config(1)”	or
Section	G.4.8,	“gitmodules(5)”.	When	"untracked"	is	used
submodules	are	not	considered	dirty	when	they	only	contain
untracked	content	(but	they	are	still	scanned	for	modified	content).
Using	"dirty"	ignores	all	changes	to	the	work	tree	of	submodules,
only	changes	to	the	commits	stored	in	the	superproject	are	shown
(this	was	the	behavior	until	1.7.0).	Using	"all"	hides	all	changes	to
submodules.

--src-prefix=<prefix>
Show	the	given	source	prefix	instead	of	"a/".

--dst-prefix=<prefix>
Show	the	given	destination	prefix	instead	of	"b/".

--no-prefix
Do	not	show	any	source	or	destination	prefix.

For	more	detailed	explanation	on	these	common	options,	see	also
Section	G.4.4,	“gitdiffcore(7)”.

<tree-ish>
The	id	of	a	tree	object.

<path>…
If	provided,	the	results	are	limited	to	a	subset	of	files	matching	one	of
these	prefix	strings.	i.e.,	file	matches	/^<pattern1>|<pattern2>|.../
Note	that	this	parameter	does	not	provide	any	wildcard	or	regexp
features.

-r
recurse	into	sub-trees

-t
show	tree	entry	itself	as	well	as	subtrees.	Implies	-r.

--root
When	--root	is	specified	the	initial	commit	will	be	shown	as	a	big
creation	event.	This	is	equivalent	to	a	diff	against	the	NULL	tree.

--stdin

When	--stdin	is	specified,	the	command	does	not	take	<tree-ish>
arguments	from	the	command	line.	Instead,	it	reads	lines	containing
either	two	<tree>,	one	<commit>,	or	a	list	of	<commit>	from	its
standard	input.	(Use	a	single	space	as	separator.)

When	two	trees	are	given,	it	compares	the	first	tree	with	the	second.
When	a	single	commit	is	given,	it	compares	the	commit	with	its
parents.	The	remaining	commits,	when	given,	are	used	as	if	they	are
parents	of	the	first	commit.

When	comparing	two	trees,	the	ID	of	both	trees	(separated	by	a
space	and	terminated	by	a	newline)	is	printed	before	the	difference.
When	comparing	commits,	the	ID	of	the	first	(or	only)	commit,
followed	by	a	newline,	is	printed.

The	following	flags	further	affect	the	behavior	when	comparing
commits	(but	not	trees).

-m

By	default,	git	diff-tree	--stdin	does	not	show	differences	for	merge
commits.	With	this	flag,	it	shows	differences	to	that	commit	from	all
of	its	parents.	See	also	-c.

-s
By	default,	git	diff-tree	--stdin	shows	differences,	either	in	machine-
readable	form	(without	-p)	or	in	patch	form	(with	-p).	This	output	can
be	suppressed.	It	is	only	useful	with	-v	flag.

-v
This	flag	causes	git	diff-tree	--stdin	to	also	show	the	commit
message	before	the	differences.

--pretty[=<format>]	,	--format=<format>

Pretty-print	the	contents	of	the	commit	logs	in	a	given	format,	where
<format>	can	be	one	of	oneline,	short,	medium,	full,	fuller,	email,
raw,	format:<string>	and	tformat:<string>.	When	<format>	is	none	of
the	above,	and	has	%placeholder	in	it,	it	acts	as	if	--pretty=tformat:
<format>	were	given.

See	the	"PRETTY	FORMATS"	section	for	some	additional	details	for
each	format.	When	=<format>	part	is	omitted,	it	defaults	to	medium.

Note:	you	can	specify	the	default	pretty	format	in	the	repository
configuration	(see	Section	G.3.27,	“git-config(1)”).

--abbrev-commit

Instead	of	showing	the	full	40-byte	hexadecimal	commit	object
name,	show	only	a	partial	prefix.	Non	default	number	of	digits	can	be
specified	with	"--abbrev=<n>"	(which	also	modifies	diff	output,	if	it	is
displayed).

This	should	make	"--pretty=oneline"	a	whole	lot	more	readable	for
people	using	80-column	terminals.

--no-abbrev-commit
Show	the	full	40-byte	hexadecimal	commit	object	name.	This
negates	--abbrev-commit	and	those	options	which	imply	it	such	as	"-
-oneline".	It	also	overrides	the	log.abbrevCommit	variable.

--oneline
This	is	a	shorthand	for	"--pretty=oneline	--abbrev-commit"	used
together.

--encoding=<encoding>
The	commit	objects	record	the	encoding	used	for	the	log	message	in
their	encoding	header;	this	option	can	be	used	to	tell	the	command
to	re-code	the	commit	log	message	in	the	encoding	preferred	by	the
user.	For	non	plumbing	commands	this	defaults	to	UTF-8.	Note	that
if	an	object	claims	to	be	encoded	in	X	and	we	are	outputting	in	X,	we
will	output	the	object	verbatim;	this	means	that	invalid	sequences	in
the	original	commit	may	be	copied	to	the	output.

--expand-tabs=<n>	,	--expand-tabs	,	--no-expand-tabs

Perform	a	tab	expansion	(replace	each	tab	with	enough	spaces	to	fill
to	the	next	display	column	that	is	multiple	of	<n>)	in	the	log	message
before	showing	it	in	the	output.	--expand-tabs	is	a	short-hand	for	--
expand-tabs=8,	and	--no-expand-tabs	is	a	short-hand	for	--expand-
tabs=0,	which	disables	tab	expansion.

By	default,	tabs	are	expanded	in	pretty	formats	that	indent	the	log
message	by	4	spaces	(i.e.	medium,	which	is	the	default,	full,	and
fuller).

--notes[=<treeish>]

Show	the	notes	(see	Section	G.3.86,	“git-notes(1)”)	that	annotate	the
commit,	when	showing	the	commit	log	message.	This	is	the	default
for	git	log,	git	show	and	git	whatchanged	commands	when	there	is
no	--pretty,	--format,	or	--oneline	option	given	on	the	command	line.

By	default,	the	notes	shown	are	from	the	notes	refs	listed	in	the
core.notesRef	and	notes.displayRef	variables	(or	corresponding
environment	overrides).	See	Section	G.3.27,	“git-config(1)”	for	more
details.

With	an	optional	<treeish>	argument,	use	the	treeish	to	find	the
notes	to	display.	The	treeish	can	specify	the	full	refname	when	it
begins	with	refs/notes/;	when	it	begins	with	notes/,	refs/	and

otherwise	refs/notes/	is	prefixed	to	form	a	full	name	of	the	ref.

Multiple	--notes	options	can	be	combined	to	control	which	notes	are
being	displayed.	Examples:	"--notes=foo"	will	show	only	notes	from
"refs/notes/foo";	"--notes=foo	--notes"	will	show	both	notes	from
"refs/notes/foo"	and	from	the	default	notes	ref(s).

--no-notes
Do	not	show	notes.	This	negates	the	above	--notes	option,	by
resetting	the	list	of	notes	refs	from	which	notes	are	shown.	Options
are	parsed	in	the	order	given	on	the	command	line,	so	e.g.	"--notes	-
-notes=foo	--no-notes	--notes=bar"	will	only	show	notes	from
"refs/notes/bar".

--show-notes[=<treeish>]	,	--[no-]standard-notes
These	options	are	deprecated.	Use	the	above	--notes/--no-notes
options	instead.

--show-signature
Check	the	validity	of	a	signed	commit	object	by	passing	the
signature	to	gpg	--verify	and	show	the	output.

--no-commit-id
git	diff-tree	outputs	a	line	with	the	commit	ID	when	applicable.	This
flag	suppressed	the	commit	ID	output.

-c
This	flag	changes	the	way	a	merge	commit	is	displayed	(which
means	it	is	useful	only	when	the	command	is	given	one	<tree-ish>,
or	--stdin).	It	shows	the	differences	from	each	of	the	parents	to	the
merge	result	simultaneously	instead	of	showing	pairwise	diff
between	a	parent	and	the	result	one	at	a	time	(which	is	what	the	-m
option	does).	Furthermore,	it	lists	only	files	which	were	modified	from
all	parents.

--cc
This	flag	changes	the	way	a	merge	commit	patch	is	displayed,	in	a
similar	way	to	the	-c	option.	It	implies	the	-c	and	-p	options	and
further	compresses	the	patch	output	by	omitting	uninteresting	hunks
whose	the	contents	in	the	parents	have	only	two	variants	and	the
merge	result	picks	one	of	them	without	modification.	When	all	hunks
are	uninteresting,	the	commit	itself	and	the	commit	log	message	is

not	shown,	just	like	in	any	other	"empty	diff"	case.
--always

Show	the	commit	itself	and	the	commit	log	message	even	if	the	diff
itself	is	empty.

PRETTY	FORMATS

If	the	commit	is	a	merge,	and	if	the	pretty-format	is	not	oneline,	email	or
raw,	an	additional	line	is	inserted	before	the	Author:	line.	This	line	begins
with	"Merge:	"	and	the	sha1s	of	ancestral	commits	are	printed,	separated
by	spaces.	Note	that	the	listed	commits	may	not	necessarily	be	the	list	of
the	direct	parent	commits	if	you	have	limited	your	view	of	history:	for
example,	if	you	are	only	interested	in	changes	related	to	a	certain
directory	or	file.

There	are	several	built-in	formats,	and	you	can	define	additional	formats
by	setting	a	pretty.<name>	config	option	to	either	another	format	name,
or	a	format:	string,	as	described	below	(see	Section	G.3.27,	“git-
config(1)”).	Here	are	the	details	of	the	built-in	formats:

oneline

<sha1>	<title	line>

This	is	designed	to	be	as	compact	as	possible.

short

commit	<sha1>

Author:	<author>

<title	line>

medium

commit	<sha1>

Author:	<author>

Date:			<author	date>

<title	line>

<full	commit	message>

full

commit	<sha1>

Author:	<author>

Commit:	<committer>

<title	line>

<full	commit	message>

fuller

commit	<sha1>

Author:					<author>

AuthorDate:	<author	date>

Commit:					<committer>

CommitDate:	<committer	date>

<title	line>

<full	commit	message>

email

From	<sha1>	<date>

From:	<author>

Date:	<author	date>

Subject:	[PATCH]	<title	line>

<full	commit	message>

raw

The	raw	format	shows	the	entire	commit	exactly	as	stored	in	the
commit	object.	Notably,	the	SHA-1s	are	displayed	in	full,	regardless
of	whether	--abbrev	or	--no-abbrev	are	used,	and	parents	information
show	the	true	parent	commits,	without	taking	grafts	or	history
simplification	into	account.	Note	that	this	format	affects	the	way
commits	are	displayed,	but	not	the	way	the	diff	is	shown	e.g.	with	git
log	--raw.	To	get	full	object	names	in	a	raw	diff	format,	use	--no-
abbrev.

format:<string>

The	format:<string>	format	allows	you	to	specify	which	information
you	want	to	show.	It	works	a	little	bit	like	printf	format,	with	the
notable	exception	that	you	get	a	newline	with	%n	instead	of	\n.

E.g,	format:"The	author	of	%h	was	%an,	%ar%nThe	title	was
>>%s<<%n"	would	show	something	like	this:

The	author	of	fe6e0ee	was	Junio	C	Hamano,	23	hours	ago

The	title	was	>>t4119:	test	autocomputing	-p<n>	for	traditional	diff	input.<<

The	placeholders	are:

%H:	commit	hash
%h:	abbreviated	commit	hash
%T:	tree	hash
%t:	abbreviated	tree	hash
%P:	parent	hashes
%p:	abbreviated	parent	hashes
%an:	author	name
%aN:	author	name	(respecting	.mailmap,	see	Section	G.3.122,
“git-shortlog(1)”	or	Section	G.3.9,	“git-blame(1)”)
%ae:	author	email
%aE:	author	email	(respecting	.mailmap,	see	Section	G.3.122,
“git-shortlog(1)”	or	Section	G.3.9,	“git-blame(1)”)
%ad:	author	date	(format	respects	--date=	option)
%aD:	author	date,	RFC2822	style
%ar:	author	date,	relative
%at:	author	date,	UNIX	timestamp
%ai:	author	date,	ISO	8601-like	format
%aI:	author	date,	strict	ISO	8601	format
%cn:	committer	name
%cN:	committer	name	(respecting	.mailmap,	see
Section	G.3.122,	“git-shortlog(1)”	or	Section	G.3.9,	“git-
blame(1)”)
%ce:	committer	email
%cE:	committer	email	(respecting	.mailmap,	see
Section	G.3.122,	“git-shortlog(1)”	or	Section	G.3.9,	“git-
blame(1)”)
%cd:	committer	date	(format	respects	--date=	option)
%cD:	committer	date,	RFC2822	style
%cr:	committer	date,	relative
%ct:	committer	date,	UNIX	timestamp
%ci:	committer	date,	ISO	8601-like	format

%cI:	committer	date,	strict	ISO	8601	format
%d:	ref	names,	like	the	--decorate	option	of	Section	G.3.68,	“git-
log(1)”
%D:	ref	names	without	the	"	(",	")"	wrapping.
%e:	encoding
%s:	subject
%f:	sanitized	subject	line,	suitable	for	a	filename
%b:	body
%B:	raw	body	(unwrapped	subject	and	body)
%N:	commit	notes
%GG:	raw	verification	message	from	GPG	for	a	signed	commit
%G?:	show	"G"	for	a	Good	signature,	"B"	for	a	Bad	signature,
"U"	for	a	good,	untrusted	signature	and	"N"	for	no	signature
%GS:	show	the	name	of	the	signer	for	a	signed	commit
%GK:	show	the	key	used	to	sign	a	signed	commit
%gD:	reflog	selector,	e.g.,	refs/stash@{1}
%gd:	shortened	reflog	selector,	e.g.,	stash@{1}
%gn:	reflog	identity	name
%gN:	reflog	identity	name	(respecting	.mailmap,	see
Section	G.3.122,	“git-shortlog(1)”	or	Section	G.3.9,	“git-
blame(1)”)
%ge:	reflog	identity	email
%gE:	reflog	identity	email	(respecting	.mailmap,	see
Section	G.3.122,	“git-shortlog(1)”	or	Section	G.3.9,	“git-
blame(1)”)
%gs:	reflog	subject
%Cred:	switch	color	to	red
%Cgreen:	switch	color	to	green
%Cblue:	switch	color	to	blue
%Creset:	reset	color
%C(…):	color	specification,	as	described	in	color.branch.*	config
option;	adding	auto,	at	the	beginning	will	emit	color	only	when
colors	are	enabled	for	log	output	(by	color.diff,	color.ui,	or	--
color,	and	respecting	the	auto	settings	of	the	former	if	we	are
going	to	a	terminal).	auto	alone	(i.e.	%C(auto))	will	turn	on	auto
coloring	on	the	next	placeholders	until	the	color	is	switched
again.

%m:	left,	right	or	boundary	mark
%n:	newline
%%:	a	raw	%
%x00:	print	a	byte	from	a	hex	code
%w([<w>[,<i1>[,<i2>]]]):	switch	line	wrapping,	like	the	-w	option
of	Section	G.3.122,	“git-shortlog(1)”.
%<(<N>[,trunc|ltrunc|mtrunc]):	make	the	next	placeholder	take
at	least	N	columns,	padding	spaces	on	the	right	if	necessary.
Optionally	truncate	at	the	beginning	(ltrunc),	the	middle	(mtrunc)
or	the	end	(trunc)	if	the	output	is	longer	than	N	columns.	Note
that	truncating	only	works	correctly	with	N	>=	2.
%<|(<N>):	make	the	next	placeholder	take	at	least	until	Nth
columns,	padding	spaces	on	the	right	if	necessary
%>(<N>),	%>|(<N>):	similar	to	%<(<N>),	%<|(<N>)	respectively,
but	padding	spaces	on	the	left
%>>(<N>),	%>>|(<N>):	similar	to	%>(<N>),	%>|(<N>)
respectively,	except	that	if	the	next	placeholder	takes	more
spaces	than	given	and	there	are	spaces	on	its	left,	use	those
spaces
%><(<N>),	%><|(<N>):	similar	to	%	<(<N>),	%<|(<N>)
respectively,	but	padding	both	sides	(i.e.	the	text	is	centered)

Note

Some	placeholders	may	depend	on	other	options	given	to
the	revision	traversal	engine.	For	example,	the	%g*	reflog
options	will	insert	an	empty	string	unless	we	are	traversing
reflog	entries	(e.g.,	by	git	log	-g).	The	%d	and	%D
placeholders	will	use	the	"short"	decoration	format	if	--
decorate	was	not	already	provided	on	the	command	line.

If	you	add	a	+	(plus	sign)	after	%	of	a	placeholder,	a	line-feed	is	inserted
immediately	before	the	expansion	if	and	only	if	the	placeholder	expands
to	a	non-empty	string.

If	you	add	a	-	(minus	sign)	after	%	of	a	placeholder,	line-feeds	that

immediately	precede	the	expansion	are	deleted	if	and	only	if	the
placeholder	expands	to	an	empty	string.

If	you	add	a	`	`	(space)	after	%	of	a	placeholder,	a	space	is	inserted
immediately	before	the	expansion	if	and	only	if	the	placeholder	expands
to	a	non-empty	string.

tformat:

The	tformat:	format	works	exactly	like	format:,	except	that	it	provides
"terminator"	semantics	instead	of	"separator"	semantics.	In	other
words,	each	commit	has	the	message	terminator	character	(usually
a	newline)	appended,	rather	than	a	separator	placed	between
entries.	This	means	that	the	final	entry	of	a	single-line	format	will	be
properly	terminated	with	a	new	line,	just	as	the	"oneline"	format
does.	For	example:

$	git	log	-2	--pretty=format:%h	4da45bef	\

		|	perl	-pe	'$_	.=	"	--	NO	NEWLINE\n"	unless	/\n/'

4da45be

7134973	--	NO	NEWLINE

$	git	log	-2	--pretty=tformat:%h	4da45bef	\

		|	perl	-pe	'$_	.=	"	--	NO	NEWLINE\n"	unless	/\n/'

4da45be

7134973

In	addition,	any	unrecognized	string	that	has	a	%	in	it	is	interpreted
as	if	it	has	tformat:	in	front	of	it.	For	example,	these	two	are
equivalent:

$	git	log	-2	--pretty=tformat:%h	4da45bef

$	git	log	-2	--pretty=%h	4da45bef

Limiting	Output

If	you're	only	interested	in	differences	in	a	subset	of	files,	for	example
some	architecture-specific	files,	you	might	do:

git	diff-tree	-r	<tree-ish>	<tree-ish>	arch/ia64	include/asm-ia64

and	it	will	only	show	you	what	changed	in	those	two	directories.

Or	if	you	are	searching	for	what	changed	in	just	kernel/sched.c,	just	do

git	diff-tree	-r	<tree-ish>	<tree-ish>	kernel/sched.c

and	it	will	ignore	all	differences	to	other	files.

The	pattern	is	always	the	prefix,	and	is	matched	exactly.	There	are	no
wildcards.	Even	stricter,	it	has	to	match	a	complete	path	component.	I.e.
"foo"	does	not	pick	up	foobar.h.	"foo"	does	match	foo/bar.h	so	it	can	be
used	to	name	subdirectories.

An	example	of	normal	usage	is:

torvalds@ppc970:~/git>	git	diff-tree	--abbrev	5319e4

:100664	100664	ac348b...	a01513...				git-fsck-objects.c

which	tells	you	that	the	last	commit	changed	just	one	file	(it's	from	this
one:

commit	3c6f7ca19ad4043e9e72fa94106f352897e651a8

tree	5319e4d609cdd282069cc4dce33c1db559539b03

parent	b4e628ea30d5ab3606119d2ea5caeab141d38df7

author	Linus	Torvalds	<torvalds@ppc970.osdl.org>	Sat	Apr	9	12:02:30	2005

committer	Linus	Torvalds	<torvalds@ppc970.osdl.org>	Sat	Apr	9	12:02:30	2005

Make	"git-fsck-objects"	print	out	all	the	root	commits	it	finds.

Once	I	do	the	reference	tracking,	I'll	also	make	it	print	out	all	the

HEAD	commits	it	finds,	which	is	even	more	interesting.

in	case	you	care).

Raw	output	format

The	raw	output	format	from	"git-diff-index",	"git-diff-tree",	"git-diff-files"	and
"git	diff	--raw"	are	very	similar.

These	commands	all	compare	two	sets	of	things;	what	is	compared
differs:

git-diff-index	<tree-ish>
compares	the	<tree-ish>	and	the	files	on	the	filesystem.

git-diff-index	--cached	<tree-ish>
compares	the	<tree-ish>	and	the	index.

git-diff-tree	[-r]	<tree-ish-1>	<tree-ish-2>	[<pattern>…]
compares	the	trees	named	by	the	two	arguments.

git-diff-files	[<pattern>…]
compares	the	index	and	the	files	on	the	filesystem.

The	"git-diff-tree"	command	begins	its	output	by	printing	the	hash	of	what
is	being	compared.	After	that,	all	the	commands	print	one	output	line	per
changed	file.

An	output	line	is	formatted	this	way:

in-place	edit		:100644	100644	bcd1234...	0123456...	M	file0

copy-edit						:100644	100644	abcd123...	1234567...	C68	file1	file2

rename-edit				:100644	100644	abcd123...	1234567...	R86	file1	file3

create									:000000	100644	0000000...	1234567...	A	file4

delete									:100644	000000	1234567...	0000000...	D	file5

unmerged							:000000	000000	0000000...	0000000...	U	file6

That	is,	from	the	left	to	the	right:

1.	 a	colon.
2.	 mode	for	"src";	000000	if	creation	or	unmerged.
3.	 a	space.
4.	 mode	for	"dst";	000000	if	deletion	or	unmerged.
5.	 a	space.
6.	 sha1	for	"src";	0{40}	if	creation	or	unmerged.
7.	 a	space.
8.	 sha1	for	"dst";	0{40}	if	creation,	unmerged	or	"look	at	work	tree".
9.	 a	space.
10.	 status,	followed	by	optional	"score"	number.
11.	 a	tab	or	a	NUL	when	-z	option	is	used.

12.	 path	for	"src"
13.	 a	tab	or	a	NUL	when	-z	option	is	used;	only	exists	for	C	or	R.
14.	 path	for	"dst";	only	exists	for	C	or	R.
15.	 an	LF	or	a	NUL	when	-z	option	is	used,	to	terminate	the	record.

Possible	status	letters	are:

A:	addition	of	a	file
C:	copy	of	a	file	into	a	new	one
D:	deletion	of	a	file
M:	modification	of	the	contents	or	mode	of	a	file
R:	renaming	of	a	file
T:	change	in	the	type	of	the	file
U:	file	is	unmerged	(you	must	complete	the	merge	before	it	can	be
committed)
X:	"unknown"	change	type	(most	probably	a	bug,	please	report	it)

Status	letters	C	and	R	are	always	followed	by	a	score	(denoting	the
percentage	of	similarity	between	the	source	and	target	of	the	move	or
copy).	Status	letter	M	may	be	followed	by	a	score	(denoting	the
percentage	of	dissimilarity)	for	file	rewrites.

<sha1>	is	shown	as	all	0's	if	a	file	is	new	on	the	filesystem	and	it	is	out	of
sync	with	the	index.

Example:

:100644	100644	5be4a4......	000000......	M	file.c

When	-z	option	is	not	used,	TAB,	LF,	and	backslash	characters	in
pathnames	are	represented	as	\t,	\n,	and	\\,	respectively.

diff	format	for	merges

"git-diff-tree",	"git-diff-files"	and	"git-diff	--raw"	can	take	-c	or	--cc	option	to
generate	diff	output	also	for	merge	commits.	The	output	differs	from	the
format	described	above	in	the	following	way:

1.	 there	is	a	colon	for	each	parent
2.	 there	are	more	"src"	modes	and	"src"	sha1
3.	 status	is	concatenated	status	characters	for	each	parent
4.	 no	optional	"score"	number
5.	 single	path,	only	for	"dst"

Example:

::100644	100644	100644	fabadb8...	cc95eb0...	4866510...	MM						describe.c

Note	that	combined	diff	lists	only	files	which	were	modified	from	all
parents.

Generating	patches	with	-p

When	"git-diff-index",	"git-diff-tree",	or	"git-diff-files"	are	run	with	a	-p
option,	"git	diff"	without	the	--raw	option,	or	"git	log"	with	the	"-p"	option,
they	do	not	produce	the	output	described	above;	instead	they	produce	a
patch	file.	You	can	customize	the	creation	of	such	patches	via	the
GIT_EXTERNAL_DIFF	and	the	GIT_DIFF_OPTS	environment	variables.

What	the	-p	option	produces	is	slightly	different	from	the	traditional	diff
format:

1.	 It	is	preceded	with	a	"git	diff"	header	that	looks	like	this:

diff	--git	a/file1	b/file2

The	a/	and	b/	filenames	are	the	same	unless	rename/copy	is
involved.	Especially,	even	for	a	creation	or	a	deletion,	/dev/null	is	not
used	in	place	of	the	a/	or	b/	filenames.

When	rename/copy	is	involved,	file1	and	file2	show	the	name	of	the
source	file	of	the	rename/copy	and	the	name	of	the	file	that
rename/copy	produces,	respectively.

2.	 It	is	followed	by	one	or	more	extended	header	lines:

old	mode	<mode>

new	mode	<mode>

deleted	file	mode	<mode>

new	file	mode	<mode>

copy	from	<path>

copy	to	<path>

rename	from	<path>

rename	to	<path>

similarity	index	<number>

dissimilarity	index	<number>

index	<hash>..<hash>	<mode>

File	modes	are	printed	as	6-digit	octal	numbers	including	the	file	type
and	file	permission	bits.

Path	names	in	extended	headers	do	not	include	the	a/	and	b/
prefixes.

The	similarity	index	is	the	percentage	of	unchanged	lines,	and	the
dissimilarity	index	is	the	percentage	of	changed	lines.	It	is	a	rounded
down	integer,	followed	by	a	percent	sign.	The	similarity	index	value
of	100%	is	thus	reserved	for	two	equal	files,	while	100%	dissimilarity
means	that	no	line	from	the	old	file	made	it	into	the	new	one.

The	index	line	includes	the	SHA-1	checksum	before	and	after	the
change.	The	<mode>	is	included	if	the	file	mode	does	not	change;
otherwise,	separate	lines	indicate	the	old	and	the	new	mode.

3.	 TAB,	LF,	double	quote	and	backslash	characters	in	pathnames	are
represented	as	\t,	\n,	\"	and	\\,	respectively.	If	there	is	need	for	such
substitution	then	the	whole	pathname	is	put	in	double	quotes.

4.	 All	the	file1	files	in	the	output	refer	to	files	before	the	commit,	and	all
the	file2	files	refer	to	files	after	the	commit.	It	is	incorrect	to	apply
each	change	to	each	file	sequentially.	For	example,	this	patch	will
swap	a	and	b:

diff	--git	a/a	b/b

rename	from	a

rename	to	b

diff	--git	a/b	b/a

rename	from	b

rename	to	a

combined	diff	format

Any	diff-generating	command	can	take	the	-c	or	--cc	option	to	produce	a
combined	diff	when	showing	a	merge.	This	is	the	default	format	when
showing	merges	with	Section	G.3.41,	“git-diff(1)”	or	Section	G.3.126,	“git-
show(1)”.	Note	also	that	you	can	give	the	-m	option	to	any	of	these
commands	to	force	generation	of	diffs	with	individual	parents	of	a	merge.

A	combined	diff	format	looks	like	this:

diff	--combined	describe.c

index	fabadb8,cc95eb0..4866510

---	a/describe.c

+++	b/describe.c

@@@	-98,20	-98,12	+98,20	@@@

								return	(a_date	>	b_date)	?	-1	:	(a_date	==	b_date)	?	0	:	1;

		}

-	static	void	describe(char	*arg)

	-static	void	describe(struct	commit	*cmit,	int	last_one)

++static	void	describe(char	*arg,	int	last_one)

		{

	+						unsigned	char	sha1[20];

	+						struct	commit	*cmit;

								struct	commit_list	*list;

								static	int	initialized	=	0;

								struct	commit_name	*n;

	+						if	(get_sha1(arg,	sha1)	<	0)

	+														usage(describe_usage);

	+						cmit	=	lookup_commit_reference(sha1);

	+						if	(!cmit)

	+														usage(describe_usage);

	+

								if	(!initialized)	{

																initialized	=	1;

																for_each_ref(get_name);

1.	 It	is	preceded	with	a	"git	diff"	header,	that	looks	like	this	(when	-c
option	is	used):

diff	--combined	file

or	like	this	(when	--cc	option	is	used):

diff	--cc	file

2.	 It	is	followed	by	one	or	more	extended	header	lines	(this	example
shows	a	merge	with	two	parents):

index	<hash>,<hash>..<hash>

mode	<mode>,<mode>..<mode>

new	file	mode	<mode>

deleted	file	mode	<mode>,<mode>

The	mode	<mode>,<mode>..<mode>	line	appears	only	if	at	least
one	of	the	<mode>	is	different	from	the	rest.	Extended	headers	with
information	about	detected	contents	movement	(renames	and
copying	detection)	are	designed	to	work	with	diff	of	two	<tree-ish>
and	are	not	used	by	combined	diff	format.

3.	 It	is	followed	by	two-line	from-file/to-file	header

---	a/file

+++	b/file

Similar	to	two-line	header	for	traditional	unified	diff	format,	/dev/null
is	used	to	signal	created	or	deleted	files.

4.	 Chunk	header	format	is	modified	to	prevent	people	from	accidentally
feeding	it	to	patch	-p1.	Combined	diff	format	was	created	for	review
of	merge	commit	changes,	and	was	not	meant	for	apply.	The	change
is	similar	to	the	change	in	the	extended	index	header:

@@@	<from-file-range>	<from-file-range>	<to-file-range>	@@@

There	are	(number	of	parents	+	1)	@	characters	in	the	chunk	header
for	combined	diff	format.

Unlike	the	traditional	unified	diff	format,	which	shows	two	files	A	and	B
with	a	single	column	that	has	-	(minus	--	appears	in	A	but	removed	in	B),
+	(plus	--	missing	in	A	but	added	to	B),	or	"	"	(space	--	unchanged)	prefix,
this	format	compares	two	or	more	files	file1,	file2,…	with	one	file	X,	and
shows	how	X	differs	from	each	of	fileN.	One	column	for	each	of	fileN	is
prepended	to	the	output	line	to	note	how	X's	line	is	different	from	it.

A	-	character	in	the	column	N	means	that	the	line	appears	in	fileN	but	it

does	not	appear	in	the	result.	A	+	character	in	the	column	N	means	that
the	line	appears	in	the	result,	and	fileN	does	not	have	that	line	(in	other
words,	the	line	was	added,	from	the	point	of	view	of	that	parent).

In	the	above	example	output,	the	function	signature	was	changed	from
both	files	(hence	two	-	removals	from	both	file1	and	file2,	plus	++	to	mean
one	line	that	was	added	does	not	appear	in	either	file1	or	file2).	Also
eight	other	lines	are	the	same	from	file1	but	do	not	appear	in	file2	(hence
prefixed	with	+).

When	shown	by	git	diff-tree	-c,	it	compares	the	parents	of	a	merge
commit	with	the	merge	result	(i.e.	file1..fileN	are	the	parents).	When
shown	by	git	diff-files	-c,	it	compares	the	two	unresolved	merge	parents
with	the	working	tree	file	(i.e.	file1	is	stage	2	aka	"our	version",	file2	is
stage	3	aka	"their	version").

other	diff	formats

The	--summary	option	describes	newly	added,	deleted,	renamed	and
copied	files.	The	--stat	option	adds	diffstat(1)	graph	to	the	output.	These
options	can	be	combined	with	other	options,	such	as	-p,	and	are	meant
for	human	consumption.

When	showing	a	change	that	involves	a	rename	or	a	copy,	--stat	output
formats	the	pathnames	compactly	by	combining	common	prefix	and
suffix	of	the	pathnames.	For	example,	a	change	that	moves
arch/i386/Makefile	to	arch/x86/Makefile	while	modifying	4	lines	will	be
shown	like	this:

arch/{i386	=>	x86}/Makefile				|			4	+--

The	--numstat	option	gives	the	diffstat(1)	information	but	is	designed	for
easier	machine	consumption.	An	entry	in	--numstat	output	looks	like	this:

1							2							README

3							1							arch/{i386	=>	x86}/Makefile

That	is,	from	left	to	right:

1.	 the	number	of	added	lines;
2.	 a	tab;
3.	 the	number	of	deleted	lines;
4.	 a	tab;
5.	 pathname	(possibly	with	rename/copy	information);
6.	 a	newline.

When	-z	output	option	is	in	effect,	the	output	is	formatted	this	way:

1							2							README	NUL

3							1							NUL	arch/i386/Makefile	NUL	arch/x86/Makefile	NUL

That	is:

1.	 the	number	of	added	lines;
2.	 a	tab;
3.	 the	number	of	deleted	lines;
4.	 a	tab;
5.	 a	NUL	(only	exists	if	renamed/copied);
6.	 pathname	in	preimage;
7.	 a	NUL	(only	exists	if	renamed/copied);
8.	 pathname	in	postimage	(only	exists	if	renamed/copied);
9.	 a	NUL.

The	extra	NUL	before	the	preimage	path	in	renamed	case	is	to	allow
scripts	that	read	the	output	to	tell	if	the	current	record	being	read	is	a
single-path	record	or	a	rename/copy	record	without	reading	ahead.	After
reading	added	and	deleted	lines,	reading	up	to	NUL	would	yield	the
pathname,	but	if	that	is	NUL,	the	record	will	show	two	paths.

GIT

Part	of	the	Section	G.3.1,	“git(1)”	suite

G.3.41.	git-diff(1)

NAME

git-diff	-	Show	changes	between	commits,	commit	and	working	tree,	etc

SYNOPSIS

git	diff	[options]	[<commit>]	[--]	[<path>…]

git	diff	[options]	--cached	[<commit>]	[--]	[<path>…]

git	diff	[options]	<commit>	<commit>	[--]	[<path>…]

git	diff	[options]	<blob>	<blob>

git	diff	[options]	[--no-index]	[--]	<path>	<path>

DESCRIPTION

Show	changes	between	the	working	tree	and	the	index	or	a	tree,
changes	between	the	index	and	a	tree,	changes	between	two	trees,
changes	between	two	blob	objects,	or	changes	between	two	files	on	disk.

git	diff	[--options]	[--]	[<path>…]
This	form	is	to	view	the	changes	you	made	relative	to	the	index
(staging	area	for	the	next	commit).	In	other	words,	the	differences
are	what	you	could	tell	Git	to	further	add	to	the	index	but	you	still
haven't.	You	can	stage	these	changes	by	using	Section	G.3.2,	“git-
add(1)”.

git	diff	--no-index	[--options]	[--]	[<path>…]
This	form	is	to	compare	the	given	two	paths	on	the	filesystem.	You
can	omit	the	--no-index	option	when	running	the	command	in	a
working	tree	controlled	by	Git	and	at	least	one	of	the	paths	points
outside	the	working	tree,	or	when	running	the	command	outside	a
working	tree	controlled	by	Git.

git	diff	[--options]	--cached	[<commit>]	[--]	[<path>…]
This	form	is	to	view	the	changes	you	staged	for	the	next	commit
relative	to	the	named	<commit>.	Typically	you	would	want
comparison	with	the	latest	commit,	so	if	you	do	not	give	<commit>,	it
defaults	to	HEAD.	If	HEAD	does	not	exist	(e.g.	unborn	branches)
and	<commit>	is	not	given,	it	shows	all	staged	changes.	--staged	is	a
synonym	of	--cached.

git	diff	[--options]	<commit>	[--]	[<path>…]
This	form	is	to	view	the	changes	you	have	in	your	working	tree
relative	to	the	named	<commit>.	You	can	use	HEAD	to	compare	it
with	the	latest	commit,	or	a	branch	name	to	compare	with	the	tip	of	a
different	branch.

git	diff	[--options]	<commit>	<commit>	[--]	[<path>…]
This	is	to	view	the	changes	between	two	arbitrary	<commit>.

git	diff	[--options]	<commit>..<commit>	[--]	[<path>…]
This	is	synonymous	to	the	previous	form.	If	<commit>	on	one	side	is
omitted,	it	will	have	the	same	effect	as	using	HEAD	instead.

git	diff	[--options]	<commit>...<commit>	[--]	[<path>…]
This	form	is	to	view	the	changes	on	the	branch	containing	and	up	to
the	second	<commit>,	starting	at	a	common	ancestor	of	both
<commit>.	"git	diff	A...B"	is	equivalent	to	"git	diff	$(git-merge-base	A
B)	B".	You	can	omit	any	one	of	<commit>,	which	has	the	same	effect
as	using	HEAD	instead.

Just	in	case	if	you	are	doing	something	exotic,	it	should	be	noted	that	all
of	the	<commit>	in	the	above	description,	except	in	the	last	two	forms
that	use	".."	notations,	can	be	any	<tree>.

For	a	more	complete	list	of	ways	to	spell	<commit>,	see	"SPECIFYING
REVISIONS"	section	in	Section	G.4.12,	“gitrevisions(7)”.	However,	"diff"
is	about	comparing	two	endpoints,	not	ranges,	and	the	range	notations	("
<commit>..<commit>"	and	"<commit>...<commit>")	do	not	mean	a	range
as	defined	in	the	"SPECIFYING	RANGES"	section	in	Section	G.4.12,
“gitrevisions(7)”.

git	diff	[options]	<blob>	<blob>
This	form	is	to	view	the	differences	between	the	raw	contents	of	two
blob	objects.

OPTIONS

-p	,	-u	,	--patch
Generate	patch	(see	section	on	generating	patches).	This	is	the
default.

-s	,	--no-patch
Suppress	diff	output.	Useful	for	commands	like	git	show	that	show
the	patch	by	default,	or	to	cancel	the	effect	of	--patch.

-U<n>	,	--unified=<n>
Generate	diffs	with	<n>	lines	of	context	instead	of	the	usual	three.
Implies	-p.

--raw
Generate	the	diff	in	raw	format.

--patch-with-raw
Synonym	for	-p	--raw.

--minimal
Spend	extra	time	to	make	sure	the	smallest	possible	diff	is	produced.

--patience
Generate	a	diff	using	the	"patience	diff"	algorithm.

--histogram
Generate	a	diff	using	the	"histogram	diff"	algorithm.

--diff-algorithm={patience|minimal|histogram|myers}

Choose	a	diff	algorithm.	The	variants	are	as	follows:

default,	myers
The	basic	greedy	diff	algorithm.	Currently,	this	is	the	default.

minimal
Spend	extra	time	to	make	sure	the	smallest	possible	diff	is
produced.

patience
Use	"patience	diff"	algorithm	when	generating	patches.

histogram
This	algorithm	extends	the	patience	algorithm	to	"support	low-
occurrence	common	elements".

For	instance,	if	you	configured	diff.algorithm	variable	to	a	non-default
value	and	want	to	use	the	default	one,	then	you	have	to	use	--diff-
algorithm=default	option.

--stat[=<width>[,<name-width>[,<count>]]]

Generate	a	diffstat.	By	default,	as	much	space	as	necessary	will	be

used	for	the	filename	part,	and	the	rest	for	the	graph	part.	Maximum
width	defaults	to	terminal	width,	or	80	columns	if	not	connected	to	a
terminal,	and	can	be	overridden	by	<width>.	The	width	of	the
filename	part	can	be	limited	by	giving	another	width	<name-width>
after	a	comma.	The	width	of	the	graph	part	can	be	limited	by	using	--
stat-graph-width=<width>	(affects	all	commands	generating	a	stat
graph)	or	by	setting	diff.statGraphWidth=<width>	(does	not	affect	git
format-patch).	By	giving	a	third	parameter	<count>,	you	can	limit	the
output	to	the	first	<count>	lines,	followed	by	...	if	there	are	more.

These	parameters	can	also	be	set	individually	with	--stat-width=
<width>,	--stat-name-width=<name-width>	and	--stat-count=<count>.

--numstat
Similar	to	--stat,	but	shows	number	of	added	and	deleted	lines	in
decimal	notation	and	pathname	without	abbreviation,	to	make	it
more	machine	friendly.	For	binary	files,	outputs	two	-	instead	of
saying	0	0.

--shortstat
Output	only	the	last	line	of	the	--stat	format	containing	total	number
of	modified	files,	as	well	as	number	of	added	and	deleted	lines.

--dirstat[=<param1,param2,…>]

Output	the	distribution	of	relative	amount	of	changes	for	each	sub-
directory.	The	behavior	of	--dirstat	can	be	customized	by	passing	it	a
comma	separated	list	of	parameters.	The	defaults	are	controlled	by
the	diff.dirstat	configuration	variable	(see	Section	G.3.27,	“git-
config(1)”).	The	following	parameters	are	available:

changes
Compute	the	dirstat	numbers	by	counting	the	lines	that	have
been	removed	from	the	source,	or	added	to	the	destination.	This
ignores	the	amount	of	pure	code	movements	within	a	file.	In
other	words,	rearranging	lines	in	a	file	is	not	counted	as	much
as	other	changes.	This	is	the	default	behavior	when	no
parameter	is	given.

lines
Compute	the	dirstat	numbers	by	doing	the	regular	line-based	diff

analysis,	and	summing	the	removed/added	line	counts.	(For
binary	files,	count	64-byte	chunks	instead,	since	binary	files
have	no	natural	concept	of	lines).	This	is	a	more	expensive	--
dirstat	behavior	than	the	changes	behavior,	but	it	does	count
rearranged	lines	within	a	file	as	much	as	other	changes.	The
resulting	output	is	consistent	with	what	you	get	from	the	other	--
*stat	options.

files
Compute	the	dirstat	numbers	by	counting	the	number	of	files
changed.	Each	changed	file	counts	equally	in	the	dirstat
analysis.	This	is	the	computationally	cheapest	--dirstat	behavior,
since	it	does	not	have	to	look	at	the	file	contents	at	all.

cumulative
Count	changes	in	a	child	directory	for	the	parent	directory	as
well.	Note	that	when	using	cumulative,	the	sum	of	the
percentages	reported	may	exceed	100%.	The	default	(non-
cumulative)	behavior	can	be	specified	with	the	noncumulative
parameter.

<limit>
An	integer	parameter	specifies	a	cut-off	percent	(3%	by	default).
Directories	contributing	less	than	this	percentage	of	the	changes
are	not	shown	in	the	output.

Example:	The	following	will	count	changed	files,	while	ignoring
directories	with	less	than	10%	of	the	total	amount	of	changed	files,
and	accumulating	child	directory	counts	in	the	parent	directories:	--
dirstat=files,10,cumulative.

--summary
Output	a	condensed	summary	of	extended	header	information	such
as	creations,	renames	and	mode	changes.

--patch-with-stat
Synonym	for	-p	--stat.

-z

When	--raw,	--numstat,	--name-only	or	--name-status	has	been
given,	do	not	munge	pathnames	and	use	NULs	as	output	field
terminators.

Without	this	option,	each	pathname	output	will	have	TAB,	LF,	double
quotes,	and	backslash	characters	replaced	with	\t,	\n,	\",	and	\\,
respectively,	and	the	pathname	will	be	enclosed	in	double	quotes	if
any	of	those	replacements	occurred.

--name-only
Show	only	names	of	changed	files.

--name-status
Show	only	names	and	status	of	changed	files.	See	the	description	of
the	--diff-filter	option	on	what	the	status	letters	mean.

--submodule[=<format>]
Specify	how	differences	in	submodules	are	shown.	When	--
submodule	or	--submodule=log	is	given,	the	log	format	is	used.	This
format	lists	the	commits	in	the	range	like	Section	G.3.131,	“git-
submodule(1)”	summary	does.	Omitting	the	--submodule	option	or
specifying	--submodule=short,	uses	the	short	format.	This	format	just
shows	the	names	of	the	commits	at	the	beginning	and	end	of	the
range.	Can	be	tweaked	via	the	diff.submodule	configuration	variable.

--color[=<when>]
Show	colored	diff.	--color	(i.e.	without	=<when>)	is	the	same	as	--
color=always.	<when>	can	be	one	of	always,	never,	or	auto.	It	can
be	changed	by	the	color.ui	and	color.diff	configuration	settings.

--no-color
Turn	off	colored	diff.	This	can	be	used	to	override	configuration
settings.	It	is	the	same	as	--color=never.

--word-diff[=<mode>]

Show	a	word	diff,	using	the	<mode>	to	delimit	changed	words.	By
default,	words	are	delimited	by	whitespace;	see	--word-diff-regex
below.	The	<mode>	defaults	to	plain,	and	must	be	one	of:

color
Highlight	changed	words	using	only	colors.	Implies	--color.

plain
Show	words	as	[-removed-]	and	{+added+}.	Makes	no	attempts
to	escape	the	delimiters	if	they	appear	in	the	input,	so	the	output
may	be	ambiguous.

porcelain
Use	a	special	line-based	format	intended	for	script	consumption.
Added/removed/unchanged	runs	are	printed	in	the	usual	unified
diff	format,	starting	with	a	+/-/`	`	character	at	the	beginning	of	the
line	and	extending	to	the	end	of	the	line.	Newlines	in	the	input
are	represented	by	a	tilde	~	on	a	line	of	its	own.

none
Disable	word	diff	again.

Note	that	despite	the	name	of	the	first	mode,	color	is	used	to
highlight	the	changed	parts	in	all	modes	if	enabled.

--word-diff-regex=<regex>

Use	<regex>	to	decide	what	a	word	is,	instead	of	considering	runs	of
non-whitespace	to	be	a	word.	Also	implies	--word-diff	unless	it	was
already	enabled.

Every	non-overlapping	match	of	the	<regex>	is	considered	a	word.
Anything	between	these	matches	is	considered	whitespace	and
ignored(!)	for	the	purposes	of	finding	differences.	You	may	want	to
append	|[^[:space:]]	to	your	regular	expression	to	make	sure	that	it
matches	all	non-whitespace	characters.	A	match	that	contains	a
newline	is	silently	truncated(!)	at	the	newline.

For	example,	--word-diff-regex=.	will	treat	each	character	as	a	word
and,	correspondingly,	show	differences	character	by	character.

The	regex	can	also	be	set	via	a	diff	driver	or	configuration	option,
see	???	or	Section	G.3.27,	“git-config(1)”.	Giving	it	explicitly
overrides	any	diff	driver	or	configuration	setting.	Diff	drivers	override
configuration	settings.

--color-words[=<regex>]
Equivalent	to	--word-diff=color	plus	(if	a	regex	was	specified)	--word-
diff-regex=<regex>.

--no-renames
Turn	off	rename	detection,	even	when	the	configuration	file	gives	the

default	to	do	so.
--check

Warn	if	changes	introduce	conflict	markers	or	whitespace	errors.
What	are	considered	whitespace	errors	is	controlled	by
core.whitespace	configuration.	By	default,	trailing	whitespaces
(including	lines	that	solely	consist	of	whitespaces)	and	a	space
character	that	is	immediately	followed	by	a	tab	character	inside	the
initial	indent	of	the	line	are	considered	whitespace	errors.	Exits	with
non-zero	status	if	problems	are	found.	Not	compatible	with	--exit-
code.

--ws-error-highlight=<kind>
Highlight	whitespace	errors	on	lines	specified	by	<kind>	in	the	color
specified	by	color.diff.whitespace.	<kind>	is	a	comma	separated	list
of	old,	new,	context.	When	this	option	is	not	given,	only	whitespace
errors	in	new	lines	are	highlighted.	E.g.	--ws-error-highlight=new,old
highlights	whitespace	errors	on	both	deleted	and	added	lines.	all	can
be	used	as	a	short-hand	for	old,new,context.

--full-index
Instead	of	the	first	handful	of	characters,	show	the	full	pre-	and	post-
image	blob	object	names	on	the	"index"	line	when	generating	patch
format	output.

--binary
In	addition	to	--full-index,	output	a	binary	diff	that	can	be	applied	with
git-apply.

--abbrev[=<n>]
Instead	of	showing	the	full	40-byte	hexadecimal	object	name	in	diff-
raw	format	output	and	diff-tree	header	lines,	show	only	a	partial
prefix.	This	is	independent	of	the	--full-index	option	above,	which
controls	the	diff-patch	output	format.	Non	default	number	of	digits
can	be	specified	with	--abbrev=<n>.

-B[<n>][/<m>]	,	--break-rewrites[=[<n>][/<m>]]

Break	complete	rewrite	changes	into	pairs	of	delete	and	create.	This
serves	two	purposes:

It	affects	the	way	a	change	that	amounts	to	a	total	rewrite	of	a	file	not
as	a	series	of	deletion	and	insertion	mixed	together	with	a	very	few

lines	that	happen	to	match	textually	as	the	context,	but	as	a	single
deletion	of	everything	old	followed	by	a	single	insertion	of	everything
new,	and	the	number	m	controls	this	aspect	of	the	-B	option	(defaults
to	60%).	-B/70%	specifies	that	less	than	30%	of	the	original	should
remain	in	the	result	for	Git	to	consider	it	a	total	rewrite	(i.e.	otherwise
the	resulting	patch	will	be	a	series	of	deletion	and	insertion	mixed
together	with	context	lines).

When	used	with	-M,	a	totally-rewritten	file	is	also	considered	as	the
source	of	a	rename	(usually	-M	only	considers	a	file	that
disappeared	as	the	source	of	a	rename),	and	the	number	n	controls
this	aspect	of	the	-B	option	(defaults	to	50%).	-B20%	specifies	that	a
change	with	addition	and	deletion	compared	to	20%	or	more	of	the
file's	size	are	eligible	for	being	picked	up	as	a	possible	source	of	a
rename	to	another	file.

-M[<n>]	,	--find-renames[=<n>]
Detect	renames.	If	n	is	specified,	it	is	a	threshold	on	the	similarity
index	(i.e.	amount	of	addition/deletions	compared	to	the	file's	size).
For	example,	-M90%	means	Git	should	consider	a	delete/add	pair	to
be	a	rename	if	more	than	90%	of	the	file	hasn't	changed.	Without	a
%	sign,	the	number	is	to	be	read	as	a	fraction,	with	a	decimal	point
before	it.	I.e.,	-M5	becomes	0.5,	and	is	thus	the	same	as	-M50%.
Similarly,	-M05	is	the	same	as	-M5%.	To	limit	detection	to	exact
renames,	use	-M100%.	The	default	similarity	index	is	50%.

-C[<n>]	,	--find-copies[=<n>]
Detect	copies	as	well	as	renames.	See	also	--find-copies-harder.	If	n
is	specified,	it	has	the	same	meaning	as	for	-M<n>.

--find-copies-harder
For	performance	reasons,	by	default,	-C	option	finds	copies	only	if
the	original	file	of	the	copy	was	modified	in	the	same	changeset.	This
flag	makes	the	command	inspect	unmodified	files	as	candidates	for
the	source	of	copy.	This	is	a	very	expensive	operation	for	large
projects,	so	use	it	with	caution.	Giving	more	than	one	-C	option	has
the	same	effect.

-D	,	--irreversible-delete

Omit	the	preimage	for	deletes,	i.e.	print	only	the	header	but	not	the

diff	between	the	preimage	and	/dev/null.	The	resulting	patch	is	not
meant	to	be	applied	with	patch	or	git	apply;	this	is	solely	for	people
who	want	to	just	concentrate	on	reviewing	the	text	after	the	change.
In	addition,	the	output	obviously	lack	enough	information	to	apply
such	a	patch	in	reverse,	even	manually,	hence	the	name	of	the
option.

When	used	together	with	-B,	omit	also	the	preimage	in	the	deletion
part	of	a	delete/create	pair.

-l<num>
The	-M	and	-C	options	require	O(n^2)	processing	time	where	n	is	the
number	of	potential	rename/copy	targets.	This	option	prevents
rename/copy	detection	from	running	if	the	number	of	rename/copy
targets	exceeds	the	specified	number.

--diff-filter=[(A|C|D|M|R|T|U|X|B)…[*]]
Select	only	files	that	are	Added	(A),	Copied	(C),	Deleted	(D),
Modified	(M),	Renamed	(R),	have	their	type	(i.e.	regular	file,	symlink,
submodule,	…)	changed	(T),	are	Unmerged	(U),	are	Unknown	(X),
or	have	had	their	pairing	Broken	(B).	Any	combination	of	the	filter
characters	(including	none)	can	be	used.	When	*	(All-or-none)	is
added	to	the	combination,	all	paths	are	selected	if	there	is	any	file
that	matches	other	criteria	in	the	comparison;	if	there	is	no	file	that
matches	other	criteria,	nothing	is	selected.

-S<string>

Look	for	differences	that	change	the	number	of	occurrences	of	the
specified	string	(i.e.	addition/deletion)	in	a	file.	Intended	for	the
scripter's	use.

It	is	useful	when	you're	looking	for	an	exact	block	of	code	(like	a
struct),	and	want	to	know	the	history	of	that	block	since	it	first	came
into	being:	use	the	feature	iteratively	to	feed	the	interesting	block	in
the	preimage	back	into	-S,	and	keep	going	until	you	get	the	very	first
version	of	the	block.

-G<regex>

Look	for	differences	whose	patch	text	contains	added/removed	lines
that	match	<regex>.

To	illustrate	the	difference	between	-S<regex>	--pickaxe-regex	and	-
G<regex>,	consider	a	commit	with	the	following	diff	in	the	same	file:

+				return	!regexec(regexp,	two->ptr,	1,	®match,	0);

...

-				hit	=	!regexec(regexp,	mf2.ptr,	1,	®match,	0);

While	git	log	-G"regexec\(regexp"	will	show	this	commit,	git	log	-
S"regexec\(regexp"	--pickaxe-regex	will	not	(because	the	number	of
occurrences	of	that	string	did	not	change).

See	the	pickaxe	entry	in	Section	G.4.4,	“gitdiffcore(7)”	for	more
information.

--pickaxe-all
When	-S	or	-G	finds	a	change,	show	all	the	changes	in	that
changeset,	not	just	the	files	that	contain	the	change	in	<string>.

--pickaxe-regex
Treat	the	<string>	given	to	-S	as	an	extended	POSIX	regular
expression	to	match.

-O<orderfile>
Output	the	patch	in	the	order	specified	in	the	<orderfile>,	which	has
one	shell	glob	pattern	per	line.	This	overrides	the	diff.orderFile
configuration	variable	(see	Section	G.3.27,	“git-config(1)”).	To	cancel
diff.orderFile,	use	-O/dev/null.

-R
Swap	two	inputs;	that	is,	show	differences	from	index	or	on-disk	file
to	tree	contents.

--relative[=<path>]
When	run	from	a	subdirectory	of	the	project,	it	can	be	told	to	exclude
changes	outside	the	directory	and	show	pathnames	relative	to	it	with
this	option.	When	you	are	not	in	a	subdirectory	(e.g.	in	a	bare
repository),	you	can	name	which	subdirectory	to	make	the	output
relative	to	by	giving	a	<path>	as	an	argument.

-a	,	--text
Treat	all	files	as	text.

--ignore-space-at-eol
Ignore	changes	in	whitespace	at	EOL.

-b	,	--ignore-space-change
Ignore	changes	in	amount	of	whitespace.	This	ignores	whitespace	at
line	end,	and	considers	all	other	sequences	of	one	or	more
whitespace	characters	to	be	equivalent.

-w	,	--ignore-all-space
Ignore	whitespace	when	comparing	lines.	This	ignores	differences
even	if	one	line	has	whitespace	where	the	other	line	has	none.

--ignore-blank-lines
Ignore	changes	whose	lines	are	all	blank.

--inter-hunk-context=<lines>
Show	the	context	between	diff	hunks,	up	to	the	specified	number	of
lines,	thereby	fusing	hunks	that	are	close	to	each	other.

-W	,	--function-context
Show	whole	surrounding	functions	of	changes.

--exit-code
Make	the	program	exit	with	codes	similar	to	diff(1).	That	is,	it	exits
with	1	if	there	were	differences	and	0	means	no	differences.

--quiet
Disable	all	output	of	the	program.	Implies	--exit-code.

--ext-diff
Allow	an	external	diff	helper	to	be	executed.	If	you	set	an	external
diff	driver	with	Section	G.4.2,	“gitattributes(5)”,	you	need	to	use	this
option	with	Section	G.3.68,	“git-log(1)”	and	friends.

--no-ext-diff
Disallow	external	diff	drivers.

--textconv	,	--no-textconv
Allow	(or	disallow)	external	text	conversion	filters	to	be	run	when
comparing	binary	files.	See	Section	G.4.2,	“gitattributes(5)”	for
details.	Because	textconv	filters	are	typically	a	one-way	conversion,
the	resulting	diff	is	suitable	for	human	consumption,	but	cannot	be
applied.	For	this	reason,	textconv	filters	are	enabled	by	default	only
for	Section	G.3.41,	“git-diff(1)”	and	Section	G.3.68,	“git-log(1)”,	but
not	for	Section	G.3.50,	“git-format-patch(1)”	or	diff	plumbing

commands.
--ignore-submodules[=<when>]

Ignore	changes	to	submodules	in	the	diff	generation.	<when>	can	be
either	"none",	"untracked",	"dirty"	or	"all",	which	is	the	default.	Using
"none"	will	consider	the	submodule	modified	when	it	either	contains
untracked	or	modified	files	or	its	HEAD	differs	from	the	commit
recorded	in	the	superproject	and	can	be	used	to	override	any
settings	of	the	ignore	option	in	Section	G.3.27,	“git-config(1)”	or
Section	G.4.8,	“gitmodules(5)”.	When	"untracked"	is	used
submodules	are	not	considered	dirty	when	they	only	contain
untracked	content	(but	they	are	still	scanned	for	modified	content).
Using	"dirty"	ignores	all	changes	to	the	work	tree	of	submodules,
only	changes	to	the	commits	stored	in	the	superproject	are	shown
(this	was	the	behavior	until	1.7.0).	Using	"all"	hides	all	changes	to
submodules.

--src-prefix=<prefix>
Show	the	given	source	prefix	instead	of	"a/".

--dst-prefix=<prefix>
Show	the	given	destination	prefix	instead	of	"b/".

--no-prefix
Do	not	show	any	source	or	destination	prefix.

For	more	detailed	explanation	on	these	common	options,	see	also
Section	G.4.4,	“gitdiffcore(7)”.

<path>…
The	<paths>	parameters,	when	given,	are	used	to	limit	the	diff	to	the
named	paths	(you	can	give	directory	names	and	get	diff	for	all	files
under	them).

Raw	output	format

The	raw	output	format	from	"git-diff-index",	"git-diff-tree",	"git-diff-files"	and
"git	diff	--raw"	are	very	similar.

These	commands	all	compare	two	sets	of	things;	what	is	compared
differs:

git-diff-index	<tree-ish>
compares	the	<tree-ish>	and	the	files	on	the	filesystem.

git-diff-index	--cached	<tree-ish>
compares	the	<tree-ish>	and	the	index.

git-diff-tree	[-r]	<tree-ish-1>	<tree-ish-2>	[<pattern>…]
compares	the	trees	named	by	the	two	arguments.

git-diff-files	[<pattern>…]
compares	the	index	and	the	files	on	the	filesystem.

The	"git-diff-tree"	command	begins	its	output	by	printing	the	hash	of	what
is	being	compared.	After	that,	all	the	commands	print	one	output	line	per
changed	file.

An	output	line	is	formatted	this	way:

in-place	edit		:100644	100644	bcd1234...	0123456...	M	file0

copy-edit						:100644	100644	abcd123...	1234567...	C68	file1	file2

rename-edit				:100644	100644	abcd123...	1234567...	R86	file1	file3

create									:000000	100644	0000000...	1234567...	A	file4

delete									:100644	000000	1234567...	0000000...	D	file5

unmerged							:000000	000000	0000000...	0000000...	U	file6

That	is,	from	the	left	to	the	right:

1.	 a	colon.
2.	 mode	for	"src";	000000	if	creation	or	unmerged.
3.	 a	space.
4.	 mode	for	"dst";	000000	if	deletion	or	unmerged.
5.	 a	space.
6.	 sha1	for	"src";	0{40}	if	creation	or	unmerged.
7.	 a	space.
8.	 sha1	for	"dst";	0{40}	if	creation,	unmerged	or	"look	at	work	tree".
9.	 a	space.
10.	 status,	followed	by	optional	"score"	number.
11.	 a	tab	or	a	NUL	when	-z	option	is	used.
12.	 path	for	"src"
13.	 a	tab	or	a	NUL	when	-z	option	is	used;	only	exists	for	C	or	R.
14.	 path	for	"dst";	only	exists	for	C	or	R.

15.	 an	LF	or	a	NUL	when	-z	option	is	used,	to	terminate	the	record.

Possible	status	letters	are:

A:	addition	of	a	file
C:	copy	of	a	file	into	a	new	one
D:	deletion	of	a	file
M:	modification	of	the	contents	or	mode	of	a	file
R:	renaming	of	a	file
T:	change	in	the	type	of	the	file
U:	file	is	unmerged	(you	must	complete	the	merge	before	it	can	be
committed)
X:	"unknown"	change	type	(most	probably	a	bug,	please	report	it)

Status	letters	C	and	R	are	always	followed	by	a	score	(denoting	the
percentage	of	similarity	between	the	source	and	target	of	the	move	or
copy).	Status	letter	M	may	be	followed	by	a	score	(denoting	the
percentage	of	dissimilarity)	for	file	rewrites.

<sha1>	is	shown	as	all	0's	if	a	file	is	new	on	the	filesystem	and	it	is	out	of
sync	with	the	index.

Example:

:100644	100644	5be4a4......	000000......	M	file.c

When	-z	option	is	not	used,	TAB,	LF,	and	backslash	characters	in
pathnames	are	represented	as	\t,	\n,	and	\\,	respectively.

diff	format	for	merges

"git-diff-tree",	"git-diff-files"	and	"git-diff	--raw"	can	take	-c	or	--cc	option	to
generate	diff	output	also	for	merge	commits.	The	output	differs	from	the
format	described	above	in	the	following	way:

1.	 there	is	a	colon	for	each	parent
2.	 there	are	more	"src"	modes	and	"src"	sha1

3.	 status	is	concatenated	status	characters	for	each	parent
4.	 no	optional	"score"	number
5.	 single	path,	only	for	"dst"

Example:

::100644	100644	100644	fabadb8...	cc95eb0...	4866510...	MM						describe.c

Note	that	combined	diff	lists	only	files	which	were	modified	from	all
parents.

Generating	patches	with	-p

When	"git-diff-index",	"git-diff-tree",	or	"git-diff-files"	are	run	with	a	-p
option,	"git	diff"	without	the	--raw	option,	or	"git	log"	with	the	"-p"	option,
they	do	not	produce	the	output	described	above;	instead	they	produce	a
patch	file.	You	can	customize	the	creation	of	such	patches	via	the
GIT_EXTERNAL_DIFF	and	the	GIT_DIFF_OPTS	environment	variables.

What	the	-p	option	produces	is	slightly	different	from	the	traditional	diff
format:

1.	 It	is	preceded	with	a	"git	diff"	header	that	looks	like	this:

diff	--git	a/file1	b/file2

The	a/	and	b/	filenames	are	the	same	unless	rename/copy	is
involved.	Especially,	even	for	a	creation	or	a	deletion,	/dev/null	is	not
used	in	place	of	the	a/	or	b/	filenames.

When	rename/copy	is	involved,	file1	and	file2	show	the	name	of	the
source	file	of	the	rename/copy	and	the	name	of	the	file	that
rename/copy	produces,	respectively.

2.	 It	is	followed	by	one	or	more	extended	header	lines:

old	mode	<mode>

new	mode	<mode>

deleted	file	mode	<mode>

new	file	mode	<mode>

copy	from	<path>

copy	to	<path>

rename	from	<path>

rename	to	<path>

similarity	index	<number>

dissimilarity	index	<number>

index	<hash>..<hash>	<mode>

File	modes	are	printed	as	6-digit	octal	numbers	including	the	file	type
and	file	permission	bits.

Path	names	in	extended	headers	do	not	include	the	a/	and	b/
prefixes.

The	similarity	index	is	the	percentage	of	unchanged	lines,	and	the
dissimilarity	index	is	the	percentage	of	changed	lines.	It	is	a	rounded
down	integer,	followed	by	a	percent	sign.	The	similarity	index	value
of	100%	is	thus	reserved	for	two	equal	files,	while	100%	dissimilarity
means	that	no	line	from	the	old	file	made	it	into	the	new	one.

The	index	line	includes	the	SHA-1	checksum	before	and	after	the
change.	The	<mode>	is	included	if	the	file	mode	does	not	change;
otherwise,	separate	lines	indicate	the	old	and	the	new	mode.

3.	 TAB,	LF,	double	quote	and	backslash	characters	in	pathnames	are
represented	as	\t,	\n,	\"	and	\\,	respectively.	If	there	is	need	for	such
substitution	then	the	whole	pathname	is	put	in	double	quotes.

4.	 All	the	file1	files	in	the	output	refer	to	files	before	the	commit,	and	all
the	file2	files	refer	to	files	after	the	commit.	It	is	incorrect	to	apply
each	change	to	each	file	sequentially.	For	example,	this	patch	will
swap	a	and	b:

diff	--git	a/a	b/b

rename	from	a

rename	to	b

diff	--git	a/b	b/a

rename	from	b

rename	to	a

combined	diff	format

Any	diff-generating	command	can	take	the	-c	or	--cc	option	to	produce	a

combined	diff	when	showing	a	merge.	This	is	the	default	format	when
showing	merges	with	Section	G.3.41,	“git-diff(1)”	or	Section	G.3.126,	“git-
show(1)”.	Note	also	that	you	can	give	the	-m	option	to	any	of	these
commands	to	force	generation	of	diffs	with	individual	parents	of	a	merge.

A	combined	diff	format	looks	like	this:

diff	--combined	describe.c

index	fabadb8,cc95eb0..4866510

---	a/describe.c

+++	b/describe.c

@@@	-98,20	-98,12	+98,20	@@@

								return	(a_date	>	b_date)	?	-1	:	(a_date	==	b_date)	?	0	:	1;

		}

-	static	void	describe(char	*arg)

	-static	void	describe(struct	commit	*cmit,	int	last_one)

++static	void	describe(char	*arg,	int	last_one)

		{

	+						unsigned	char	sha1[20];

	+						struct	commit	*cmit;

								struct	commit_list	*list;

								static	int	initialized	=	0;

								struct	commit_name	*n;

	+						if	(get_sha1(arg,	sha1)	<	0)

	+														usage(describe_usage);

	+						cmit	=	lookup_commit_reference(sha1);

	+						if	(!cmit)

	+														usage(describe_usage);

	+

								if	(!initialized)	{

																initialized	=	1;

																for_each_ref(get_name);

1.	 It	is	preceded	with	a	"git	diff"	header,	that	looks	like	this	(when	-c
option	is	used):

diff	--combined	file

or	like	this	(when	--cc	option	is	used):

diff	--cc	file

2.	 It	is	followed	by	one	or	more	extended	header	lines	(this	example
shows	a	merge	with	two	parents):

index	<hash>,<hash>..<hash>

mode	<mode>,<mode>..<mode>

new	file	mode	<mode>

deleted	file	mode	<mode>,<mode>

The	mode	<mode>,<mode>..<mode>	line	appears	only	if	at	least
one	of	the	<mode>	is	different	from	the	rest.	Extended	headers	with
information	about	detected	contents	movement	(renames	and
copying	detection)	are	designed	to	work	with	diff	of	two	<tree-ish>
and	are	not	used	by	combined	diff	format.

3.	 It	is	followed	by	two-line	from-file/to-file	header

---	a/file

+++	b/file

Similar	to	two-line	header	for	traditional	unified	diff	format,	/dev/null
is	used	to	signal	created	or	deleted	files.

4.	 Chunk	header	format	is	modified	to	prevent	people	from	accidentally
feeding	it	to	patch	-p1.	Combined	diff	format	was	created	for	review
of	merge	commit	changes,	and	was	not	meant	for	apply.	The	change
is	similar	to	the	change	in	the	extended	index	header:

@@@	<from-file-range>	<from-file-range>	<to-file-range>	@@@

There	are	(number	of	parents	+	1)	@	characters	in	the	chunk	header
for	combined	diff	format.

Unlike	the	traditional	unified	diff	format,	which	shows	two	files	A	and	B
with	a	single	column	that	has	-	(minus	--	appears	in	A	but	removed	in	B),
+	(plus	--	missing	in	A	but	added	to	B),	or	"	"	(space	--	unchanged)	prefix,
this	format	compares	two	or	more	files	file1,	file2,…	with	one	file	X,	and
shows	how	X	differs	from	each	of	fileN.	One	column	for	each	of	fileN	is
prepended	to	the	output	line	to	note	how	X's	line	is	different	from	it.

A	-	character	in	the	column	N	means	that	the	line	appears	in	fileN	but	it
does	not	appear	in	the	result.	A	+	character	in	the	column	N	means	that
the	line	appears	in	the	result,	and	fileN	does	not	have	that	line	(in	other

words,	the	line	was	added,	from	the	point	of	view	of	that	parent).

In	the	above	example	output,	the	function	signature	was	changed	from
both	files	(hence	two	-	removals	from	both	file1	and	file2,	plus	++	to	mean
one	line	that	was	added	does	not	appear	in	either	file1	or	file2).	Also
eight	other	lines	are	the	same	from	file1	but	do	not	appear	in	file2	(hence
prefixed	with	+).

When	shown	by	git	diff-tree	-c,	it	compares	the	parents	of	a	merge
commit	with	the	merge	result	(i.e.	file1..fileN	are	the	parents).	When
shown	by	git	diff-files	-c,	it	compares	the	two	unresolved	merge	parents
with	the	working	tree	file	(i.e.	file1	is	stage	2	aka	"our	version",	file2	is
stage	3	aka	"their	version").

other	diff	formats

The	--summary	option	describes	newly	added,	deleted,	renamed	and
copied	files.	The	--stat	option	adds	diffstat(1)	graph	to	the	output.	These
options	can	be	combined	with	other	options,	such	as	-p,	and	are	meant
for	human	consumption.

When	showing	a	change	that	involves	a	rename	or	a	copy,	--stat	output
formats	the	pathnames	compactly	by	combining	common	prefix	and
suffix	of	the	pathnames.	For	example,	a	change	that	moves
arch/i386/Makefile	to	arch/x86/Makefile	while	modifying	4	lines	will	be
shown	like	this:

arch/{i386	=>	x86}/Makefile				|			4	+--

The	--numstat	option	gives	the	diffstat(1)	information	but	is	designed	for
easier	machine	consumption.	An	entry	in	--numstat	output	looks	like	this:

1							2							README

3							1							arch/{i386	=>	x86}/Makefile

That	is,	from	left	to	right:

1.	 the	number	of	added	lines;
2.	 a	tab;
3.	 the	number	of	deleted	lines;
4.	 a	tab;
5.	 pathname	(possibly	with	rename/copy	information);
6.	 a	newline.

When	-z	output	option	is	in	effect,	the	output	is	formatted	this	way:

1							2							README	NUL

3							1							NUL	arch/i386/Makefile	NUL	arch/x86/Makefile	NUL

That	is:

1.	 the	number	of	added	lines;
2.	 a	tab;
3.	 the	number	of	deleted	lines;
4.	 a	tab;
5.	 a	NUL	(only	exists	if	renamed/copied);
6.	 pathname	in	preimage;
7.	 a	NUL	(only	exists	if	renamed/copied);
8.	 pathname	in	postimage	(only	exists	if	renamed/copied);
9.	 a	NUL.

The	extra	NUL	before	the	preimage	path	in	renamed	case	is	to	allow
scripts	that	read	the	output	to	tell	if	the	current	record	being	read	is	a
single-path	record	or	a	rename/copy	record	without	reading	ahead.	After
reading	added	and	deleted	lines,	reading	up	to	NUL	would	yield	the
pathname,	but	if	that	is	NUL,	the	record	will	show	two	paths.

EXAMPLES

Various	ways	to	check	your	working	tree

$	git	diff												

$	git	diff	--cached			

$	git	diff	HEAD							

Changes	in	the	working	tree	not	yet	staged	for	the	next	commit.

Changes	between	the	index	and	your	last	commit;	what	you
would	be	committing	if	you	run	"git	commit"	without	"-a"	option.

Changes	in	the	working	tree	since	your	last	commit;	what	you
would	be	committing	if	you	run	"git	commit	-a"

Comparing	with	arbitrary	commits

$	git	diff	test												

$	git	diff	HEAD	--	./test		

$	git	diff	HEAD^	HEAD						

Instead	of	using	the	tip	of	the	current	branch,	compare	with	the
tip	of	"test"	branch.

Instead	of	comparing	with	the	tip	of	"test"	branch,	compare	with
the	tip	of	the	current	branch,	but	limit	the	comparison	to	the	file
"test".

Compare	the	version	before	the	last	commit	and	the	last	commit.

Comparing	branches

$	git	diff	topic	master				

$	git	diff	topic..master			

$	git	diff	topic...master		

Changes	between	the	tips	of	the	topic	and	the	master	branches.

Same	as	above.

Changes	that	occurred	on	the	master	branch	since	when	the
topic	branch	was	started	off	it.

Limiting	the	diff	output

$	git	diff	--diff-filter=MRC												

$	git	diff	--name-status																

$	git	diff	arch/i386	include/asm-i386			

Show	only	modification,	rename,	and	copy,	but	not	addition	or
deletion.

Show	only	names	and	the	nature	of	change,	but	not	actual	diff
output.

Limit	diff	output	to	named	subtrees.

Munging	the	diff	output

$	git	diff	--find-copies-harder	-B	-C		

$	git	diff	-R																										

Spend	extra	cycles	to	find	renames,	copies	and	complete
rewrites	(very	expensive).

Output	diff	in	reverse.

SEE	ALSO

diff(1),	Section	G.3.42,	“git-difftool(1)”,	Section	G.3.68,	“git-log(1)”,
Section	G.4.4,	“gitdiffcore(7)”,	Section	G.3.50,	“git-format-patch(1)”,
Section	G.3.5,	“git-apply(1)”

GIT

Part	of	the	Section	G.3.1,	“git(1)”	suite

G.3.42.	git-difftool(1)

NAME

git-difftool	-	Show	changes	using	common	diff	tools

SYNOPSIS

git	difftool	[<options>]	[<commit>	[<commit>]]	[--]	[<path>…]

DESCRIPTION

git	difftool	is	a	Git	command	that	allows	you	to	compare	and	edit	files
between	revisions	using	common	diff	tools.	git	difftool	is	a	frontend	to	git
diff	and	accepts	the	same	options	and	arguments.	See	Section	G.3.41,
“git-diff(1)”.

OPTIONS

-d	,	--dir-diff
Copy	the	modified	files	to	a	temporary	location	and	perform	a
directory	diff	on	them.	This	mode	never	prompts	before	launching
the	diff	tool.

-y	,	--no-prompt

Do	not	prompt	before	launching	a	diff	tool.
--prompt

Prompt	before	each	invocation	of	the	diff	tool.	This	is	the	default
behaviour;	the	option	is	provided	to	override	any	configuration
settings.

-t	<tool>	,	--tool=<tool>

Use	the	diff	tool	specified	by	<tool>.	Valid	values	include	emerge,
kompare,	meld,	and	vimdiff.	Run	git	difftool	--tool-help	for	the	list	of
valid	<tool>	settings.

If	a	diff	tool	is	not	specified,	git	difftool	will	use	the	configuration
variable	diff.tool.	If	the	configuration	variable	diff.tool	is	not	set,	git
difftool	will	pick	a	suitable	default.

You	can	explicitly	provide	a	full	path	to	the	tool	by	setting	the
configuration	variable	difftool.<tool>.path.	For	example,	you	can
configure	the	absolute	path	to	kdiff3	by	setting	difftool.kdiff3.path.
Otherwise,	git	difftool	assumes	the	tool	is	available	in	PATH.

Instead	of	running	one	of	the	known	diff	tools,	git	difftool	can	be
customized	to	run	an	alternative	program	by	specifying	the
command	line	to	invoke	in	a	configuration	variable	difftool.
<tool>.cmd.

When	git	difftool	is	invoked	with	this	tool	(either	through	the	-t	or	--
tool	option	or	the	diff.tool	configuration	variable)	the	configured
command	line	will	be	invoked	with	the	following	variables	available:
$LOCAL	is	set	to	the	name	of	the	temporary	file	containing	the
contents	of	the	diff	pre-image	and	$REMOTE	is	set	to	the	name	of
the	temporary	file	containing	the	contents	of	the	diff	post-image.
$MERGED	is	the	name	of	the	file	which	is	being	compared.	$BASE
is	provided	for	compatibility	with	custom	merge	tool	commands	and
has	the	same	value	as	$MERGED.

--tool-help
Print	a	list	of	diff	tools	that	may	be	used	with	--tool.

--[no-]symlinks

git	difftool's	default	behavior	is	create	symlinks	to	the	working	tree
when	run	in	--dir-diff	mode	and	the	right-hand	side	of	the	comparison
yields	the	same	content	as	the	file	in	the	working	tree.

Specifying	--no-symlinks	instructs	git	difftool	to	create	copies	instead.
--no-symlinks	is	the	default	on	Windows.

-x	<command>	,	--extcmd=<command>
Specify	a	custom	command	for	viewing	diffs.	git-difftool	ignores	the
configured	defaults	and	runs	$command	$LOCAL	$REMOTE	when
this	option	is	specified.	Additionally,	$BASE	is	set	in	the
environment.

-g	,	--gui
When	git-difftool	is	invoked	with	the	-g	or	--gui	option	the	default	diff
tool	will	be	read	from	the	configured	diff.guitool	variable	instead	of
diff.tool.

--[no-]trust-exit-code

git-difftool	invokes	a	diff	tool	individually	on	each	file.	Errors	reported
by	the	diff	tool	are	ignored	by	default.	Use	--trust-exit-code	to	make
git-difftool	exit	when	an	invoked	diff	tool	returns	a	non-zero	exit	code.

git-difftool	will	forward	the	exit	code	of	the	invoked	tool	when	--trust-
exit-code	is	used.

See	Section	G.3.41,	“git-diff(1)”	for	the	full	list	of	supported	options.

CONFIG	VARIABLES

git	difftool	falls	back	to	git	mergetool	config	variables	when	the	difftool
equivalents	have	not	been	defined.

diff.tool
The	default	diff	tool	to	use.

diff.guitool
The	default	diff	tool	to	use	when	--gui	is	specified.

difftool.<tool>.path
Override	the	path	for	the	given	tool.	This	is	useful	in	case	your	tool	is

not	in	the	PATH.
difftool.<tool>.cmd

Specify	the	command	to	invoke	the	specified	diff	tool.

See	the	--tool=<tool>	option	above	for	more	details.

difftool.prompt
Prompt	before	each	invocation	of	the	diff	tool.

difftool.trustExitCode

Exit	difftool	if	the	invoked	diff	tool	returns	a	non-zero	exit	status.

See	the	--trust-exit-code	option	above	for	more	details.

SEE	ALSO

Section	G.3.41,	“git-diff(1)”
Show	changes	between	commits,	commit	and	working	tree,	etc

Section	G.3.81,	“git-mergetool(1)”
Run	merge	conflict	resolution	tools	to	resolve	merge	conflicts

Section	G.3.27,	“git-config(1)”
Get	and	set	repository	or	global	options

GIT

Part	of	the	Section	G.3.1,	“git(1)”	suite

G.3.43.	git-fast-export(1)

NAME

git-fast-export	-	Git	data	exporter

SYNOPSIS

git	fast-export	[options]	|	git	fast-import

DESCRIPTION

This	program	dumps	the	given	revisions	in	a	form	suitable	to	be	piped
into	git	fast-import.

You	can	use	it	as	a	human-readable	bundle	replacement	(see
Section	G.3.11,	“git-bundle(1)”),	or	as	a	kind	of	an	interactive	git	filter-
branch.

OPTIONS

--progress=<n>
Insert	progress	statements	every	<n>	objects,	to	be	shown	by	git
fast-import	during	import.

--signed-tags=(verbatim|warn|warn-strip|strip|abort)

Specify	how	to	handle	signed	tags.	Since	any	transformation	after
the	export	can	change	the	tag	names	(which	can	also	happen	when
excluding	revisions)	the	signatures	will	not	match.

When	asking	to	abort	(which	is	the	default),	this	program	will	die
when	encountering	a	signed	tag.	With	strip,	the	tags	will	silently	be
made	unsigned,	with	warn-strip	they	will	be	made	unsigned	but	a
warning	will	be	displayed,	with	verbatim,	they	will	be	silently	exported
and	with	warn,	they	will	be	exported,	but	you	will	see	a	warning.

--tag-of-filtered-object=(abort|drop|rewrite)

Specify	how	to	handle	tags	whose	tagged	object	is	filtered	out.	Since
revisions	and	files	to	export	can	be	limited	by	path,	tagged	objects
may	be	filtered	completely.

When	asking	to	abort	(which	is	the	default),	this	program	will	die
when	encountering	such	a	tag.	With	drop	it	will	omit	such	tags	from
the	output.	With	rewrite,	if	the	tagged	object	is	a	commit,	it	will
rewrite	the	tag	to	tag	an	ancestor	commit	(via	parent	rewriting;	see

Section	G.3.112,	“git-rev-list(1)”)

-M	,	-C

Perform	move	and/or	copy	detection,	as	described	in	the
Section	G.3.41,	“git-diff(1)”	manual	page,	and	use	it	to	generate
rename	and	copy	commands	in	the	output	dump.

Note	that	earlier	versions	of	this	command	did	not	complain	and
produced	incorrect	results	if	you	gave	these	options.

--export-marks=<file>
Dumps	the	internal	marks	table	to	<file>	when	complete.	Marks	are
written	one	per	line	as	:markid	SHA-1.	Only	marks	for	revisions	are
dumped;	marks	for	blobs	are	ignored.	Backends	can	use	this	file	to
validate	imports	after	they	have	been	completed,	or	to	save	the
marks	table	across	incremental	runs.	As	<file>	is	only	opened	and
truncated	at	completion,	the	same	path	can	also	be	safely	given	to	--
import-marks.	The	file	will	not	be	written	if	no	new	object	has	been
marked/exported.

--import-marks=<file>

Before	processing	any	input,	load	the	marks	specified	in	<file>.	The
input	file	must	exist,	must	be	readable,	and	must	use	the	same
format	as	produced	by	--export-marks.

Any	commits	that	have	already	been	marked	will	not	be	exported
again.	If	the	backend	uses	a	similar	--import-marks	file,	this	allows
for	incremental	bidirectional	exporting	of	the	repository	by	keeping
the	marks	the	same	across	runs.

--fake-missing-tagger
Some	old	repositories	have	tags	without	a	tagger.	The	fast-import
protocol	was	pretty	strict	about	that,	and	did	not	allow	that.	So	fake	a
tagger	to	be	able	to	fast-import	the	output.

--use-done-feature
Start	the	stream	with	a	feature	done	stanza,	and	terminate	it	with	a
done	command.

--no-data
Skip	output	of	blob	objects	and	instead	refer	to	blobs	via	their
original	SHA-1	hash.	This	is	useful	when	rewriting	the	directory
structure	or	history	of	a	repository	without	touching	the	contents	of
individual	files.	Note	that	the	resulting	stream	can	only	be	used	by	a
repository	which	already	contains	the	necessary	objects.

--full-tree
This	option	will	cause	fast-export	to	issue	a	"deleteall"	directive	for
each	commit	followed	by	a	full	list	of	all	files	in	the	commit	(as
opposed	to	just	listing	the	files	which	are	different	from	the	commit's
first	parent).

--anonymize
Anonymize	the	contents	of	the	repository	while	still	retaining	the
shape	of	the	history	and	stored	tree.	See	the	section	on
ANONYMIZING	below.

--refspec
Apply	the	specified	refspec	to	each	ref	exported.	Multiple	of	them
can	be	specified.

[<git-rev-list-args>…]
A	list	of	arguments,	acceptable	to	git	rev-parse	and	git	rev-list,	that
specifies	the	specific	objects	and	references	to	export.	For	example,
master~10..master	causes	the	current	master	reference	to	be
exported	along	with	all	objects	added	since	its	10th	ancestor	commit.

EXAMPLES

$	git	fast-export	--all	|	(cd	/empty/repository	&&	git	fast-import)

This	will	export	the	whole	repository	and	import	it	into	the	existing	empty
repository.	Except	for	reencoding	commits	that	are	not	in	UTF-8,	it	would
be	a	one-to-one	mirror.

$	git	fast-export	master~5..master	|

								sed	"s|refs/heads/master|refs/heads/other|"	|

								git	fast-import

This	makes	a	new	branch	called	other	from	master~5..master	(i.e.	if
master	has	linear	history,	it	will	take	the	last	5	commits).

Note	that	this	assumes	that	none	of	the	blobs	and	commit	messages
referenced	by	that	revision	range	contains	the	string	refs/heads/master.

ANONYMIZING

If	the	--anonymize	option	is	given,	git	will	attempt	to	remove	all	identifying
information	from	the	repository	while	still	retaining	enough	of	the	original
tree	and	history	patterns	to	reproduce	some	bugs.	The	goal	is	that	a	git
bug	which	is	found	on	a	private	repository	will	persist	in	the	anonymized
repository,	and	the	latter	can	be	shared	with	git	developers	to	help	solve
the	bug.

With	this	option,	git	will	replace	all	refnames,	paths,	blob	contents,
commit	and	tag	messages,	names,	and	email	addresses	in	the	output
with	anonymized	data.	Two	instances	of	the	same	string	will	be	replaced
equivalently	(e.g.,	two	commits	with	the	same	author	will	have	the	same
anonymized	author	in	the	output,	but	bear	no	resemblance	to	the	original
author	string).	The	relationship	between	commits,	branches,	and	tags	is
retained,	as	well	as	the	commit	timestamps	(but	the	commit	messages
and	refnames	bear	no	resemblance	to	the	originals).	The	relative	makeup
of	the	tree	is	retained	(e.g.,	if	you	have	a	root	tree	with	10	files	and	3
trees,	so	will	the	output),	but	their	names	and	the	contents	of	the	files	will
be	replaced.

If	you	think	you	have	found	a	git	bug,	you	can	start	by	exporting	an
anonymized	stream	of	the	whole	repository:

$	git	fast-export	--anonymize	--all	>anon-stream

Then	confirm	that	the	bug	persists	in	a	repository	created	from	that
stream	(many	bugs	will	not,	as	they	really	do	depend	on	the	exact
repository	contents):

$	git	init	anon-repo

$	cd	anon-repo

$	git	fast-import	<../anon-stream

$...	test	your	bug	...

If	the	anonymized	repository	shows	the	bug,	it	may	be	worth	sharing
anon-stream	along	with	a	regular	bug	report.	Note	that	the	anonymized
stream	compresses	very	well,	so	gzipping	it	is	encouraged.	If	you	want	to
examine	the	stream	to	see	that	it	does	not	contain	any	private	data,	you
can	peruse	it	directly	before	sending.	You	may	also	want	to	try:

$	perl	-pe	's/\d+/X/g'	<anon-stream	|	sort	-u	|	less

which	shows	all	of	the	unique	lines	(with	numbers	converted	to	"X",	to
collapse	"User	0",	"User	1",	etc	into	"User	X").	This	produces	a	much
smaller	output,	and	it	is	usually	easy	to	quickly	confirm	that	there	is	no
private	data	in	the	stream.

Limitations

Since	git	fast-import	cannot	tag	trees,	you	will	not	be	able	to	export	the
linux.git	repository	completely,	as	it	contains	a	tag	referencing	a	tree
instead	of	a	commit.

SEE	ALSO

Section	G.3.44,	“git-fast-import(1)”

GIT

Part	of	the	Section	G.3.1,	“git(1)”	suite

G.3.44.	git-fast-import(1)

NAME

git-fast-import	-	Backend	for	fast	Git	data	importers

SYNOPSIS

frontend	|	git	fast-import	[options]

DESCRIPTION

This	program	is	usually	not	what	the	end	user	wants	to	run	directly.	Most
end	users	want	to	use	one	of	the	existing	frontend	programs,	which
parses	a	specific	type	of	foreign	source	and	feeds	the	contents	stored
there	to	git	fast-import.

fast-import	reads	a	mixed	command/data	stream	from	standard	input	and
writes	one	or	more	packfiles	directly	into	the	current	repository.	When
EOF	is	received	on	standard	input,	fast	import	writes	out	updated	branch
and	tag	refs,	fully	updating	the	current	repository	with	the	newly	imported
data.

The	fast-import	backend	itself	can	import	into	an	empty	repository	(one
that	has	already	been	initialized	by	git	init)	or	incrementally	update	an
existing	populated	repository.	Whether	or	not	incremental	imports	are
supported	from	a	particular	foreign	source	depends	on	the	frontend
program	in	use.

OPTIONS

--force
Force	updating	modified	existing	branches,	even	if	doing	so	would
cause	commits	to	be	lost	(as	the	new	commit	does	not	contain	the
old	commit).

--quiet
Disable	all	non-fatal	output,	making	fast-import	silent	when	it	is
successful.	This	option	disables	the	output	shown	by	--stats.

--stats
Display	some	basic	statistics	about	the	objects	fast-import	has
created,	the	packfiles	they	were	stored	into,	and	the	memory	used
by	fast-import	during	this	run.	Showing	this	output	is	currently	the

default,	but	can	be	disabled	with	--quiet.

1.	Options	for	Frontends

--cat-blob-fd=<fd>
Write	responses	to	get-mark,	cat-blob,	and	ls	queries	to	the	file
descriptor	<fd>	instead	of	stdout.	Allows	progress	output	intended	for
the	end-user	to	be	separated	from	other	output.

--date-format=<fmt>
Specify	the	type	of	dates	the	frontend	will	supply	to	fast-import	within
author,	committer	and	tagger	commands.	See	Date	Formats	below
for	details	about	which	formats	are	supported,	and	their	syntax.

--done
Terminate	with	error	if	there	is	no	done	command	at	the	end	of	the
stream.	This	option	might	be	useful	for	detecting	errors	that	cause
the	frontend	to	terminate	before	it	has	started	to	write	a	stream.

2.	Locations	of	Marks	Files

--export-marks=<file>
Dumps	the	internal	marks	table	to	<file>	when	complete.	Marks	are
written	one	per	line	as	:markid	SHA-1.	Frontends	can	use	this	file	to
validate	imports	after	they	have	been	completed,	or	to	save	the
marks	table	across	incremental	runs.	As	<file>	is	only	opened	and
truncated	at	checkpoint	(or	completion)	the	same	path	can	also	be
safely	given	to	--import-marks.

--import-marks=<file>
Before	processing	any	input,	load	the	marks	specified	in	<file>.	The
input	file	must	exist,	must	be	readable,	and	must	use	the	same
format	as	produced	by	--export-marks.	Multiple	options	may	be
supplied	to	import	more	than	one	set	of	marks.	If	a	mark	is	defined	to
different	values,	the	last	file	wins.

--import-marks-if-exists=<file>
Like	--import-marks	but	instead	of	erroring	out,	silently	skips	the	file	if
it	does	not	exist.

--[no-]relative-marks

After	specifying	--relative-marks	the	paths	specified	with	--import-
marks=	and	--export-marks=	are	relative	to	an	internal	directory	in
the	current	repository.	In	git-fast-import	this	means	that	the	paths	are
relative	to	the	.git/info/fast-import	directory.	However,	other	importers
may	use	a	different	location.

Relative	and	non-relative	marks	may	be	combined	by	interweaving	--
(no-)-relative-marks	with	the	--(import|export)-marks=	options.

3.	Performance	and	Compression	Tuning

--active-branches=<n>
Maximum	number	of	branches	to	maintain	active	at	once.	See
Memory	Utilization	below	for	details.	Default	is	5.

--big-file-threshold=<n>
Maximum	size	of	a	blob	that	fast-import	will	attempt	to	create	a	delta
for,	expressed	in	bytes.	The	default	is	512m	(512	MiB).	Some
importers	may	wish	to	lower	this	on	systems	with	constrained
memory.

--depth=<n>
Maximum	delta	depth,	for	blob	and	tree	deltification.	Default	is	10.

--export-pack-edges=<file>
After	creating	a	packfile,	print	a	line	of	data	to	<file>	listing	the
filename	of	the	packfile	and	the	last	commit	on	each	branch	that	was
written	to	that	packfile.	This	information	may	be	useful	after	importing
projects	whose	total	object	set	exceeds	the	4	GiB	packfile	limit,	as
these	commits	can	be	used	as	edge	points	during	calls	to	git	pack-
objects.

--max-pack-size=<n>
Maximum	size	of	each	output	packfile.	The	default	is	unlimited.

Performance

The	design	of	fast-import	allows	it	to	import	large	projects	in	a	minimum
amount	of	memory	usage	and	processing	time.	Assuming	the	frontend	is
able	to	keep	up	with	fast-import	and	feed	it	a	constant	stream	of	data,
import	times	for	projects	holding	10+	years	of	history	and	containing
100,000+	individual	commits	are	generally	completed	in	just	1-2	hours	on
quite	modest	(~$2,000	USD)	hardware.

Most	bottlenecks	appear	to	be	in	foreign	source	data	access	(the	source
just	cannot	extract	revisions	fast	enough)	or	disk	IO	(fast-import	writes	as
fast	as	the	disk	will	take	the	data).	Imports	will	run	faster	if	the	source
data	is	stored	on	a	different	drive	than	the	destination	Git	repository	(due
to	less	IO	contention).

Development	Cost

A	typical	frontend	for	fast-import	tends	to	weigh	in	at	approximately	200
lines	of	Perl/Python/Ruby	code.	Most	developers	have	been	able	to
create	working	importers	in	just	a	couple	of	hours,	even	though	it	is	their
first	exposure	to	fast-import,	and	sometimes	even	to	Git.	This	is	an	ideal
situation,	given	that	most	conversion	tools	are	throw-away	(use	once,
and	never	look	back).

Parallel	Operation

Like	git	push	or	git	fetch,	imports	handled	by	fast-import	are	safe	to	run
alongside	parallel	git	repack	-a	-d	or	git	gc	invocations,	or	any	other	Git
operation	(including	git	prune,	as	loose	objects	are	never	used	by	fast-
import).

fast-import	does	not	lock	the	branch	or	tag	refs	it	is	actively	importing.
After	the	import,	during	its	ref	update	phase,	fast-import	tests	each
existing	branch	ref	to	verify	the	update	will	be	a	fast-forward	update	(the
commit	stored	in	the	ref	is	contained	in	the	new	history	of	the	commit	to
be	written).	If	the	update	is	not	a	fast-forward	update,	fast-import	will	skip
updating	that	ref	and	instead	prints	a	warning	message.	fast-import	will
always	attempt	to	update	all	branch	refs,	and	does	not	stop	on	the	first
failure.

Branch	updates	can	be	forced	with	--force,	but	it's	recommended	that	this
only	be	used	on	an	otherwise	quiet	repository.	Using	--force	is	not
necessary	for	an	initial	import	into	an	empty	repository.

Technical	Discussion

fast-import	tracks	a	set	of	branches	in	memory.	Any	branch	can	be
created	or	modified	at	any	point	during	the	import	process	by	sending	a
commit	command	on	the	input	stream.	This	design	allows	a	frontend
program	to	process	an	unlimited	number	of	branches	simultaneously,
generating	commits	in	the	order	they	are	available	from	the	source	data.
It	also	simplifies	the	frontend	programs	considerably.

fast-import	does	not	use	or	alter	the	current	working	directory,	or	any	file
within	it.	(It	does	however	update	the	current	Git	repository,	as	referenced
by	GIT_DIR.)	Therefore	an	import	frontend	may	use	the	working	directory
for	its	own	purposes,	such	as	extracting	file	revisions	from	the	foreign
source.	This	ignorance	of	the	working	directory	also	allows	fast-import	to
run	very	quickly,	as	it	does	not	need	to	perform	any	costly	file	update
operations	when	switching	between	branches.

Input	Format

With	the	exception	of	raw	file	data	(which	Git	does	not	interpret)	the	fast-
import	input	format	is	text	(ASCII)	based.	This	text	based	format
simplifies	development	and	debugging	of	frontend	programs,	especially
when	a	higher	level	language	such	as	Perl,	Python	or	Ruby	is	being
used.

fast-import	is	very	strict	about	its	input.	Where	we	say	SP	below	we	mean
exactly	one	space.	Likewise	LF	means	one	(and	only	one)	linefeed	and
HT	one	(and	only	one)	horizontal	tab.	Supplying	additional	whitespace
characters	will	cause	unexpected	results,	such	as	branch	names	or	file
names	with	leading	or	trailing	spaces	in	their	name,	or	early	termination
of	fast-import	when	it	encounters	unexpected	input.

1.	Stream	Comments

To	aid	in	debugging	frontends	fast-import	ignores	any	line	that	begins
with	#	(ASCII	pound/hash)	up	to	and	including	the	line	ending	LF.	A
comment	line	may	contain	any	sequence	of	bytes	that	does	not	contain
an	LF	and	therefore	may	be	used	to	include	any	detailed	debugging
information	that	might	be	specific	to	the	frontend	and	useful	when
inspecting	a	fast-import	data	stream.

2.	Date	Formats

The	following	date	formats	are	supported.	A	frontend	should	select	the
format	it	will	use	for	this	import	by	passing	the	format	name	in	the	--date-
format=<fmt>	command-line	option.

raw

This	is	the	Git	native	format	and	is	<time>	SP	<offutc>.	It	is	also	fast-
import's	default	format,	if	--date-format	was	not	specified.

The	time	of	the	event	is	specified	by	<time>	as	the	number	of
seconds	since	the	UNIX	epoch	(midnight,	Jan	1,	1970,	UTC)	and	is
written	as	an	ASCII	decimal	integer.

The	local	offset	is	specified	by	<offutc>	as	a	positive	or	negative
offset	from	UTC.	For	example	EST	(which	is	5	hours	behind	UTC)
would	be	expressed	in	<tz>	by	-0500	while	UTC	is	+0000.	The	local
offset	does	not	affect	<time>;	it	is	used	only	as	an	advisement	to
help	formatting	routines	display	the	timestamp.

If	the	local	offset	is	not	available	in	the	source	material,	use	+0000,
or	the	most	common	local	offset.	For	example	many	organizations
have	a	CVS	repository	which	has	only	ever	been	accessed	by	users
who	are	located	in	the	same	location	and	time	zone.	In	this	case	a
reasonable	offset	from	UTC	could	be	assumed.

Unlike	the	rfc2822	format,	this	format	is	very	strict.	Any	variation	in
formatting	will	cause	fast-import	to	reject	the	value.

rfc2822

This	is	the	standard	email	format	as	described	by	RFC	2822.

An	example	value	is	Tue	Feb	6	11:22:18	2007	-0500.	The	Git	parser
is	accurate,	but	a	little	on	the	lenient	side.	It	is	the	same	parser	used
by	git	am	when	applying	patches	received	from	email.

Some	malformed	strings	may	be	accepted	as	valid	dates.	In	some	of
these	cases	Git	will	still	be	able	to	obtain	the	correct	date	from	the
malformed	string.	There	are	also	some	types	of	malformed	strings
which	Git	will	parse	wrong,	and	yet	consider	valid.	Seriously
malformed	strings	will	be	rejected.

Unlike	the	raw	format	above,	the	time	zone/UTC	offset	information
contained	in	an	RFC	2822	date	string	is	used	to	adjust	the	date
value	to	UTC	prior	to	storage.	Therefore	it	is	important	that	this
information	be	as	accurate	as	possible.

If	the	source	material	uses	RFC	2822	style	dates,	the	frontend
should	let	fast-import	handle	the	parsing	and	conversion	(rather	than
attempting	to	do	it	itself)	as	the	Git	parser	has	been	well	tested	in	the
wild.

Frontends	should	prefer	the	raw	format	if	the	source	material	already
uses	UNIX-epoch	format,	can	be	coaxed	to	give	dates	in	that	format,
or	its	format	is	easily	convertible	to	it,	as	there	is	no	ambiguity	in
parsing.

now

Always	use	the	current	time	and	time	zone.	The	literal	now	must
always	be	supplied	for	<when>.

This	is	a	toy	format.	The	current	time	and	time	zone	of	this	system	is
always	copied	into	the	identity	string	at	the	time	it	is	being	created	by
fast-import.	There	is	no	way	to	specify	a	different	time	or	time	zone.

This	particular	format	is	supplied	as	it's	short	to	implement	and	may
be	useful	to	a	process	that	wants	to	create	a	new	commit	right	now,
without	needing	to	use	a	working	directory	or	git	update-index.

If	separate	author	and	committer	commands	are	used	in	a	commit
the	timestamps	may	not	match,	as	the	system	clock	will	be	polled
twice	(once	for	each	command).	The	only	way	to	ensure	that	both
author	and	committer	identity	information	has	the	same	timestamp	is

to	omit	author	(thus	copying	from	committer)	or	to	use	a	date	format
other	than	now.

3.	Commands

fast-import	accepts	several	commands	to	update	the	current	repository
and	control	the	current	import	process.	More	detailed	discussion	(with
examples)	of	each	command	follows	later.

commit
Creates	a	new	branch	or	updates	an	existing	branch	by	creating	a
new	commit	and	updating	the	branch	to	point	at	the	newly	created
commit.

tag
Creates	an	annotated	tag	object	from	an	existing	commit	or	branch.
Lightweight	tags	are	not	supported	by	this	command,	as	they	are	not
recommended	for	recording	meaningful	points	in	time.

reset
Reset	an	existing	branch	(or	a	new	branch)	to	a	specific	revision.
This	command	must	be	used	to	change	a	branch	to	a	specific
revision	without	making	a	commit	on	it.

blob
Convert	raw	file	data	into	a	blob,	for	future	use	in	a	commit
command.	This	command	is	optional	and	is	not	needed	to	perform
an	import.

checkpoint
Forces	fast-import	to	close	the	current	packfile,	generate	its	unique
SHA-1	checksum	and	index,	and	start	a	new	packfile.	This	command
is	optional	and	is	not	needed	to	perform	an	import.

progress
Causes	fast-import	to	echo	the	entire	line	to	its	own	standard	output.
This	command	is	optional	and	is	not	needed	to	perform	an	import.

done
Marks	the	end	of	the	stream.	This	command	is	optional	unless	the
done	feature	was	requested	using	the	--done	command-line	option
or	feature	done	command.

get-mark
Causes	fast-import	to	print	the	SHA-1	corresponding	to	a	mark	to	the
file	descriptor	set	with	--cat-blob-fd,	or	stdout	if	unspecified.

cat-blob
Causes	fast-import	to	print	a	blob	in	cat-file	--batch	format	to	the	file
descriptor	set	with	--cat-blob-fd	or	stdout	if	unspecified.

ls
Causes	fast-import	to	print	a	line	describing	a	directory	entry	in	ls-
tree	format	to	the	file	descriptor	set	with	--cat-blob-fd	or	stdout	if
unspecified.

feature
Enable	the	specified	feature.	This	requires	that	fast-import	supports
the	specified	feature,	and	aborts	if	it	does	not.

option
Specify	any	of	the	options	listed	under	OPTIONS	that	do	not	change
stream	semantic	to	suit	the	frontend's	needs.	This	command	is
optional	and	is	not	needed	to	perform	an	import.

4.	commit

Create	or	update	a	branch	with	a	new	commit,	recording	one	logical
change	to	the	project.

								'commit'	SP	<ref>	LF

								mark?

								('author'	(SP	<name>)?	SP	LT	<email>	GT	SP	<when>	LF)?

								'committer'	(SP	<name>)?	SP	LT	<email>	GT	SP	<when>	LF

								data

								('from'	SP	<commit-ish>	LF)?

								('merge'	SP	<commit-ish>	LF)?

								(filemodify	|	filedelete	|	filecopy	|	filerename	|	filedeleteall	|	notemodify)*

								LF?

where	<ref>	is	the	name	of	the	branch	to	make	the	commit	on.	Typically
branch	names	are	prefixed	with	refs/heads/	in	Git,	so	importing	the	CVS
branch	symbol	RELENG-1_0	would	use	refs/heads/RELENG-1_0	for	the
value	of	<ref>.	The	value	of	<ref>	must	be	a	valid	refname	in	Git.	As	LF	is
not	valid	in	a	Git	refname,	no	quoting	or	escaping	syntax	is	supported
here.

A	mark	command	may	optionally	appear,	requesting	fast-import	to	save	a
reference	to	the	newly	created	commit	for	future	use	by	the	frontend	(see
below	for	format).	It	is	very	common	for	frontends	to	mark	every	commit
they	create,	thereby	allowing	future	branch	creation	from	any	imported
commit.

The	data	command	following	committer	must	supply	the	commit
message	(see	below	for	data	command	syntax).	To	import	an	empty
commit	message	use	a	0	length	data.	Commit	messages	are	free-form
and	are	not	interpreted	by	Git.	Currently	they	must	be	encoded	in	UTF-8,
as	fast-import	does	not	permit	other	encodings	to	be	specified.

Zero	or	more	filemodify,	filedelete,	filecopy,	filerename,	filedeleteall	and
notemodify	commands	may	be	included	to	update	the	contents	of	the
branch	prior	to	creating	the	commit.	These	commands	may	be	supplied
in	any	order.	However	it	is	recommended	that	a	filedeleteall	command
precede	all	filemodify,	filecopy,	filerename	and	notemodify	commands	in
the	same	commit,	as	filedeleteall	wipes	the	branch	clean	(see	below).

The	LF	after	the	command	is	optional	(it	used	to	be	required).

4.1.	author

An	author	command	may	optionally	appear,	if	the	author	information
might	differ	from	the	committer	information.	If	author	is	omitted	then	fast-
import	will	automatically	use	the	committer's	information	for	the	author
portion	of	the	commit.	See	below	for	a	description	of	the	fields	in	author,
as	they	are	identical	to	committer.

4.2.	committer

The	committer	command	indicates	who	made	this	commit,	and	when
they	made	it.

Here	<name>	is	the	person's	display	name	(for	example	Com	M	Itter)
and	<email>	is	the	person's	email	address	(cm@example.com).	LT	and
GT	are	the	literal	less-than	(\x3c)	and	greater-than	(\x3e)	symbols.	These
are	required	to	delimit	the	email	address	from	the	other	fields	in	the	line.
Note	that	<name>	and	<email>	are	free-form	and	may	contain	any
sequence	of	bytes,	except	LT,	GT	and	LF.	<name>	is	typically	UTF-8
encoded.

The	time	of	the	change	is	specified	by	<when>	using	the	date	format	that
was	selected	by	the	--date-format=<fmt>	command-line	option.	See	Date
Formats	above	for	the	set	of	supported	formats,	and	their	syntax.

4.3.	from

The	from	command	is	used	to	specify	the	commit	to	initialize	this	branch
from.	This	revision	will	be	the	first	ancestor	of	the	new	commit.	The	state
of	the	tree	built	at	this	commit	will	begin	with	the	state	at	the	from	commit,
and	be	altered	by	the	content	modifications	in	this	commit.

Omitting	the	from	command	in	the	first	commit	of	a	new	branch	will	cause
fast-import	to	create	that	commit	with	no	ancestor.	This	tends	to	be
desired	only	for	the	initial	commit	of	a	project.	If	the	frontend	creates	all
files	from	scratch	when	making	a	new	branch,	a	merge	command	may	be

used	instead	of	from	to	start	the	commit	with	an	empty	tree.	Omitting	the
from	command	on	existing	branches	is	usually	desired,	as	the	current
commit	on	that	branch	is	automatically	assumed	to	be	the	first	ancestor
of	the	new	commit.

As	LF	is	not	valid	in	a	Git	refname	or	SHA-1	expression,	no	quoting	or
escaping	syntax	is	supported	within	<commit-ish>.

Here	<commit-ish>	is	any	of	the	following:

The	name	of	an	existing	branch	already	in	fast-import's	internal
branch	table.	If	fast-import	doesn't	know	the	name,	it's	treated	as	a
SHA-1	expression.

A	mark	reference,	:<idnum>,	where	<idnum>	is	the	mark	number.

The	reason	fast-import	uses	:	to	denote	a	mark	reference	is	this
character	is	not	legal	in	a	Git	branch	name.	The	leading	:	makes	it
easy	to	distinguish	between	the	mark	42	(:42)	and	the	branch	42	(42
or	refs/heads/42),	or	an	abbreviated	SHA-1	which	happened	to
consist	only	of	base-10	digits.

Marks	must	be	declared	(via	mark)	before	they	can	be	used.

A	complete	40	byte	or	abbreviated	commit	SHA-1	in	hex.
Any	valid	Git	SHA-1	expression	that	resolves	to	a	commit.	See
SPECIFYING	REVISIONS	in	Section	G.4.12,	“gitrevisions(7)”	for
details.
The	special	null	SHA-1	(40	zeros)	specifies	that	the	branch	is	to	be
removed.

The	special	case	of	restarting	an	incremental	import	from	the	current
branch	value	should	be	written	as:

								from	refs/heads/branch^0

The	^0	suffix	is	necessary	as	fast-import	does	not	permit	a	branch	to	start
from	itself,	and	the	branch	is	created	in	memory	before	the	from

command	is	even	read	from	the	input.	Adding	^0	will	force	fast-import	to
resolve	the	commit	through	Git's	revision	parsing	library,	rather	than	its
internal	branch	table,	thereby	loading	in	the	existing	value	of	the	branch.

4.4.	merge

Includes	one	additional	ancestor	commit.	The	additional	ancestry	link
does	not	change	the	way	the	tree	state	is	built	at	this	commit.	If	the	from
command	is	omitted	when	creating	a	new	branch,	the	first	merge	commit
will	be	the	first	ancestor	of	the	current	commit,	and	the	branch	will	start
out	with	no	files.	An	unlimited	number	of	merge	commands	per	commit
are	permitted	by	fast-import,	thereby	establishing	an	n-way	merge.

Here	<commit-ish>	is	any	of	the	commit	specification	expressions	also
accepted	by	from	(see	above).

4.5.	filemodify

Included	in	a	commit	command	to	add	a	new	file	or	change	the	content	of
an	existing	file.	This	command	has	two	different	means	of	specifying	the
content	of	the	file.

External	data	format

The	data	content	for	the	file	was	already	supplied	by	a	prior	blob
command.	The	frontend	just	needs	to	connect	it.

								'M'	SP	<mode>	SP	<dataref>	SP	<path>	LF

Here	usually	<dataref>	must	be	either	a	mark	reference	(:<idnum>)
set	by	a	prior	blob	command,	or	a	full	40-byte	SHA-1	of	an	existing
Git	blob	object.	If	<mode>	is	040000`	then	<dataref>	must	be	the	full
40-byte	SHA-1	of	an	existing	Git	tree	object	or	a	mark	reference	set
with	--import-marks.

Inline	data	format

The	data	content	for	the	file	has	not	been	supplied	yet.	The	frontend
wants	to	supply	it	as	part	of	this	modify	command.

								'M'	SP	<mode>	SP	'inline'	SP	<path>	LF

								data

See	below	for	a	detailed	description	of	the	data	command.

In	both	formats	<mode>	is	the	type	of	file	entry,	specified	in	octal.	Git	only
supports	the	following	modes:

100644	or	644:	A	normal	(not-executable)	file.	The	majority	of	files	in
most	projects	use	this	mode.	If	in	doubt,	this	is	what	you	want.
100755	or	755:	A	normal,	but	executable,	file.
120000:	A	symlink,	the	content	of	the	file	will	be	the	link	target.
160000:	A	gitlink,	SHA-1	of	the	object	refers	to	a	commit	in	another
repository.	Git	links	can	only	be	specified	by	SHA	or	through	a
commit	mark.	They	are	used	to	implement	submodules.
040000:	A	subdirectory.	Subdirectories	can	only	be	specified	by	SHA
or	through	a	tree	mark	set	with	--import-marks.

In	both	formats	<path>	is	the	complete	path	of	the	file	to	be	added	(if	not
already	existing)	or	modified	(if	already	existing).

A	<path>	string	must	use	UNIX-style	directory	separators	(forward	slash
/),	may	contain	any	byte	other	than	LF,	and	must	not	start	with	double
quote	(").

A	path	can	use	C-style	string	quoting;	this	is	accepted	in	all	cases	and
mandatory	if	the	filename	starts	with	double	quote	or	contains	LF.	In	C-
style	quoting,	the	complete	name	should	be	surrounded	with	double
quotes,	and	any	LF,	backslash,	or	double	quote	characters	must	be
escaped	by	preceding	them	with	a	backslash	(e.g.,	"path/with\n,	\\	and	\"
in	it").

The	value	of	<path>	must	be	in	canonical	form.	That	is	it	must	not:

contain	an	empty	directory	component	(e.g.	foo//bar	is	invalid),
end	with	a	directory	separator	(e.g.	foo/	is	invalid),
start	with	a	directory	separator	(e.g.	/foo	is	invalid),
contain	the	special	component	.	or	..	(e.g.	foo/./bar	and	foo/../bar	are
invalid).

The	root	of	the	tree	can	be	represented	by	an	empty	string	as	<path>.

It	is	recommended	that	<path>	always	be	encoded	using	UTF-8.

4.6.	filedelete

Included	in	a	commit	command	to	remove	a	file	or	recursively	delete	an
entire	directory	from	the	branch.	If	the	file	or	directory	removal	makes	its
parent	directory	empty,	the	parent	directory	will	be	automatically	removed
too.	This	cascades	up	the	tree	until	the	first	non-empty	directory	or	the
root	is	reached.

								'D'	SP	<path>	LF

here	<path>	is	the	complete	path	of	the	file	or	subdirectory	to	be	removed
from	the	branch.	See	filemodify	above	for	a	detailed	description	of
<path>.

4.7.	filecopy

Recursively	copies	an	existing	file	or	subdirectory	to	a	different	location
within	the	branch.	The	existing	file	or	directory	must	exist.	If	the
destination	exists	it	will	be	completely	replaced	by	the	content	copied
from	the	source.

								'C'	SP	<path>	SP	<path>	LF

here	the	first	<path>	is	the	source	location	and	the	second	<path>	is	the
destination.	See	filemodify	above	for	a	detailed	description	of	what
<path>	may	look	like.	To	use	a	source	path	that	contains	SP	the	path
must	be	quoted.

A	filecopy	command	takes	effect	immediately.	Once	the	source	location
has	been	copied	to	the	destination	any	future	commands	applied	to	the
source	location	will	not	impact	the	destination	of	the	copy.

4.8.	filerename

Renames	an	existing	file	or	subdirectory	to	a	different	location	within	the

branch.	The	existing	file	or	directory	must	exist.	If	the	destination	exists	it
will	be	replaced	by	the	source	directory.

								'R'	SP	<path>	SP	<path>	LF

here	the	first	<path>	is	the	source	location	and	the	second	<path>	is	the
destination.	See	filemodify	above	for	a	detailed	description	of	what
<path>	may	look	like.	To	use	a	source	path	that	contains	SP	the	path
must	be	quoted.

A	filerename	command	takes	effect	immediately.	Once	the	source
location	has	been	renamed	to	the	destination	any	future	commands
applied	to	the	source	location	will	create	new	files	there	and	not	impact
the	destination	of	the	rename.

Note	that	a	filerename	is	the	same	as	a	filecopy	followed	by	a	filedelete
of	the	source	location.	There	is	a	slight	performance	advantage	to	using
filerename,	but	the	advantage	is	so	small	that	it	is	never	worth	trying	to
convert	a	delete/add	pair	in	source	material	into	a	rename	for	fast-import.
This	filerename	command	is	provided	just	to	simplify	frontends	that
already	have	rename	information	and	don't	want	bother	with
decomposing	it	into	a	filecopy	followed	by	a	filedelete.

4.9.	filedeleteall

Included	in	a	commit	command	to	remove	all	files	(and	also	all
directories)	from	the	branch.	This	command	resets	the	internal	branch
structure	to	have	no	files	in	it,	allowing	the	frontend	to	subsequently	add
all	interesting	files	from	scratch.

								'deleteall'	LF

This	command	is	extremely	useful	if	the	frontend	does	not	know	(or	does
not	care	to	know)	what	files	are	currently	on	the	branch,	and	therefore
cannot	generate	the	proper	filedelete	commands	to	update	the	content.

Issuing	a	filedeleteall	followed	by	the	needed	filemodify	commands	to	set
the	correct	content	will	produce	the	same	results	as	sending	only	the
needed	filemodify	and	filedelete	commands.	The	filedeleteall	approach

may	however	require	fast-import	to	use	slightly	more	memory	per	active
branch	(less	than	1	MiB	for	even	most	large	projects);	so	frontends	that
can	easily	obtain	only	the	affected	paths	for	a	commit	are	encouraged	to
do	so.

4.10.	notemodify

Included	in	a	commit	<notes_ref>	command	to	add	a	new	note
annotating	a	<commit-ish>	or	change	this	annotation	contents.	Internally
it	is	similar	to	filemodify	100644	on	<commit-ish>	path	(maybe	split	into
subdirectories).	It's	not	advised	to	use	any	other	commands	to	write	to
the	<notes_ref>	tree	except	filedeleteall	to	delete	all	existing	notes	in	this
tree.	This	command	has	two	different	means	of	specifying	the	content	of
the	note.

External	data	format

The	data	content	for	the	note	was	already	supplied	by	a	prior	blob
command.	The	frontend	just	needs	to	connect	it	to	the	commit	that	is
to	be	annotated.

								'N'	SP	<dataref>	SP	<commit-ish>	LF

Here	<dataref>	can	be	either	a	mark	reference	(:<idnum>)	set	by	a
prior	blob	command,	or	a	full	40-byte	SHA-1	of	an	existing	Git	blob
object.

Inline	data	format

The	data	content	for	the	note	has	not	been	supplied	yet.	The
frontend	wants	to	supply	it	as	part	of	this	modify	command.

								'N'	SP	'inline'	SP	<commit-ish>	LF

								data

See	below	for	a	detailed	description	of	the	data	command.

In	both	formats	<commit-ish>	is	any	of	the	commit	specification
expressions	also	accepted	by	from	(see	above).

5.	mark

Arranges	for	fast-import	to	save	a	reference	to	the	current	object,
allowing	the	frontend	to	recall	this	object	at	a	future	point	in	time,	without
knowing	its	SHA-1.	Here	the	current	object	is	the	object	creation
command	the	mark	command	appears	within.	This	can	be	commit,	tag,
and	blob,	but	commit	is	the	most	common	usage.

								'mark'	SP	':'	<idnum>	LF

where	<idnum>	is	the	number	assigned	by	the	frontend	to	this	mark.	The
value	of	<idnum>	is	expressed	as	an	ASCII	decimal	integer.	The	value	0
is	reserved	and	cannot	be	used	as	a	mark.	Only	values	greater	than	or
equal	to	1	may	be	used	as	marks.

New	marks	are	created	automatically.	Existing	marks	can	be	moved	to
another	object	simply	by	reusing	the	same	<idnum>	in	another	mark
command.

6.	tag

Creates	an	annotated	tag	referring	to	a	specific	commit.	To	create
lightweight	(non-annotated)	tags	see	the	reset	command	below.

								'tag'	SP	<name>	LF

								'from'	SP	<commit-ish>	LF

								'tagger'	(SP	<name>)?	SP	LT	<email>	GT	SP	<when>	LF

								data

where	<name>	is	the	name	of	the	tag	to	create.

Tag	names	are	automatically	prefixed	with	refs/tags/	when	stored	in	Git,
so	importing	the	CVS	branch	symbol	RELENG-1_0-FINAL	would	use	just
RELENG-1_0-FINAL	for	<name>,	and	fast-import	will	write	the
corresponding	ref	as	refs/tags/RELENG-1_0-FINAL.

The	value	of	<name>	must	be	a	valid	refname	in	Git	and	therefore	may
contain	forward	slashes.	As	LF	is	not	valid	in	a	Git	refname,	no	quoting	or
escaping	syntax	is	supported	here.

The	from	command	is	the	same	as	in	the	commit	command;	see	above
for	details.

The	tagger	command	uses	the	same	format	as	committer	within	commit;
again	see	above	for	details.

The	data	command	following	tagger	must	supply	the	annotated	tag
message	(see	below	for	data	command	syntax).	To	import	an	empty	tag
message	use	a	0	length	data.	Tag	messages	are	free-form	and	are	not
interpreted	by	Git.	Currently	they	must	be	encoded	in	UTF-8,	as	fast-
import	does	not	permit	other	encodings	to	be	specified.

Signing	annotated	tags	during	import	from	within	fast-import	is	not
supported.	Trying	to	include	your	own	PGP/GPG	signature	is	not
recommended,	as	the	frontend	does	not	(easily)	have	access	to	the
complete	set	of	bytes	which	normally	goes	into	such	a	signature.	If
signing	is	required,	create	lightweight	tags	from	within	fast-import	with
reset,	then	create	the	annotated	versions	of	those	tags	offline	with	the

standard	git	tag	process.

7.	reset

Creates	(or	recreates)	the	named	branch,	optionally	starting	from	a
specific	revision.	The	reset	command	allows	a	frontend	to	issue	a	new
from	command	for	an	existing	branch,	or	to	create	a	new	branch	from	an
existing	commit	without	creating	a	new	commit.

								'reset'	SP	<ref>	LF

								('from'	SP	<commit-ish>	LF)?

								LF?

For	a	detailed	description	of	<ref>	and	<commit-ish>	see	above	under
commit	and	from.

The	LF	after	the	command	is	optional	(it	used	to	be	required).

The	reset	command	can	also	be	used	to	create	lightweight	(non-
annotated)	tags.	For	example:

reset	refs/tags/938

from	:938

would	create	the	lightweight	tag	refs/tags/938	referring	to	whatever
commit	mark	:938	references.

8.	blob

Requests	writing	one	file	revision	to	the	packfile.	The	revision	is	not
connected	to	any	commit;	this	connection	must	be	formed	in	a
subsequent	commit	command	by	referencing	the	blob	through	an
assigned	mark.

								'blob'	LF

								mark?

								data

The	mark	command	is	optional	here	as	some	frontends	have	chosen	to
generate	the	Git	SHA-1	for	the	blob	on	their	own,	and	feed	that	directly	to
commit.	This	is	typically	more	work	than	it's	worth	however,	as	marks	are
inexpensive	to	store	and	easy	to	use.

9.	data

Supplies	raw	data	(for	use	as	blob/file	content,	commit	messages,	or
annotated	tag	messages)	to	fast-import.	Data	can	be	supplied	using	an
exact	byte	count	or	delimited	with	a	terminating	line.	Real	frontends
intended	for	production-quality	conversions	should	always	use	the	exact
byte	count	format,	as	it	is	more	robust	and	performs	better.	The	delimited
format	is	intended	primarily	for	testing	fast-import.

Comment	lines	appearing	within	the	<raw>	part	of	data	commands	are
always	taken	to	be	part	of	the	body	of	the	data	and	are	therefore	never
ignored	by	fast-import.	This	makes	it	safe	to	import	any	file/message
content	whose	lines	might	start	with	#.

Exact	byte	count	format

The	frontend	must	specify	the	number	of	bytes	of	data.

								'data'	SP	<count>	LF

								<raw>	LF?

where	<count>	is	the	exact	number	of	bytes	appearing	within	<raw>.
The	value	of	<count>	is	expressed	as	an	ASCII	decimal	integer.	The
LF	on	either	side	of	<raw>	is	not	included	in	<count>	and	will	not	be
included	in	the	imported	data.

The	LF	after	<raw>	is	optional	(it	used	to	be	required)	but
recommended.	Always	including	it	makes	debugging	a	fast-import
stream	easier	as	the	next	command	always	starts	in	column	0	of	the
next	line,	even	if	<raw>	did	not	end	with	an	LF.

Delimited	format

A	delimiter	string	is	used	to	mark	the	end	of	the	data.	fast-import	will
compute	the	length	by	searching	for	the	delimiter.	This	format	is
primarily	useful	for	testing	and	is	not	recommended	for	real	data.

								'data'	SP	'<<'	<delim>	LF

								<raw>	LF

								<delim>	LF

								LF?

where	<delim>	is	the	chosen	delimiter	string.	The	string	<delim>
must	not	appear	on	a	line	by	itself	within	<raw>,	as	otherwise	fast-
import	will	think	the	data	ends	earlier	than	it	really	does.	The	LF
immediately	trailing	<raw>	is	part	of	<raw>.	This	is	one	of	the
limitations	of	the	delimited	format,	it	is	impossible	to	supply	a	data
chunk	which	does	not	have	an	LF	as	its	last	byte.

The	LF	after	<delim>	LF	is	optional	(it	used	to	be	required).

10.	checkpoint

Forces	fast-import	to	close	the	current	packfile,	start	a	new	one,	and	to
save	out	all	current	branch	refs,	tags	and	marks.

								'checkpoint'	LF

								LF?

Note	that	fast-import	automatically	switches	packfiles	when	the	current
packfile	reaches	--max-pack-size,	or	4	GiB,	whichever	limit	is	smaller.
During	an	automatic	packfile	switch	fast-import	does	not	update	the
branch	refs,	tags	or	marks.

As	a	checkpoint	can	require	a	significant	amount	of	CPU	time	and	disk	IO
(to	compute	the	overall	pack	SHA-1	checksum,	generate	the
corresponding	index	file,	and	update	the	refs)	it	can	easily	take	several
minutes	for	a	single	checkpoint	command	to	complete.

Frontends	may	choose	to	issue	checkpoints	during	extremely	large	and
long	running	imports,	or	when	they	need	to	allow	another	Git	process
access	to	a	branch.	However	given	that	a	30	GiB	Subversion	repository
can	be	loaded	into	Git	through	fast-import	in	about	3	hours,	explicit
checkpointing	may	not	be	necessary.

The	LF	after	the	command	is	optional	(it	used	to	be	required).

11.	progress

Causes	fast-import	to	print	the	entire	progress	line	unmodified	to	its
standard	output	channel	(file	descriptor	1)	when	the	command	is
processed	from	the	input	stream.	The	command	otherwise	has	no	impact
on	the	current	import,	or	on	any	of	fast-import's	internal	state.

								'progress'	SP	<any>	LF

								LF?

The	<any>	part	of	the	command	may	contain	any	sequence	of	bytes	that
does	not	contain	LF.	The	LF	after	the	command	is	optional.	Callers	may
wish	to	process	the	output	through	a	tool	such	as	sed	to	remove	the
leading	part	of	the	line,	for	example:

frontend	|	git	fast-import	|	sed	's/^progress	//'

Placing	a	progress	command	immediately	after	a	checkpoint	will	inform
the	reader	when	the	checkpoint	has	been	completed	and	it	can	safely
access	the	refs	that	fast-import	updated.

12.	get-mark

Causes	fast-import	to	print	the	SHA-1	corresponding	to	a	mark	to	stdout
or	to	the	file	descriptor	previously	arranged	with	the	--cat-blob-fd
argument.	The	command	otherwise	has	no	impact	on	the	current	import;
its	purpose	is	to	retrieve	SHA-1s	that	later	commits	might	want	to	refer	to
in	their	commit	messages.

								'get-mark'	SP	':'	<idnum>	LF

This	command	can	be	used	anywhere	in	the	stream	that	comments	are
accepted.	In	particular,	the	get-mark	command	can	be	used	in	the	middle
of	a	commit	but	not	in	the	middle	of	a	data	command.

See	Responses	To	Commands	below	for	details	about	how	to	read	this
output	safely.

13.	cat-blob

Causes	fast-import	to	print	a	blob	to	a	file	descriptor	previously	arranged
with	the	--cat-blob-fd	argument.	The	command	otherwise	has	no	impact
on	the	current	import;	its	main	purpose	is	to	retrieve	blobs	that	may	be	in
fast-import's	memory	but	not	accessible	from	the	target	repository.

								'cat-blob'	SP	<dataref>	LF

The	<dataref>	can	be	either	a	mark	reference	(:<idnum>)	set	previously
or	a	full	40-byte	SHA-1	of	a	Git	blob,	preexisting	or	ready	to	be	written.

Output	uses	the	same	format	as	git	cat-file	--batch:

<sha1>	SP	'blob'	SP	<size>	LF

<contents>	LF

This	command	can	be	used	anywhere	in	the	stream	that	comments	are
accepted.	In	particular,	the	cat-blob	command	can	be	used	in	the	middle
of	a	commit	but	not	in	the	middle	of	a	data	command.

See	Responses	To	Commands	below	for	details	about	how	to	read	this
output	safely.

14.	ls

Prints	information	about	the	object	at	a	path	to	a	file	descriptor	previously
arranged	with	the	--cat-blob-fd	argument.	This	allows	printing	a	blob	from
the	active	commit	(with	cat-blob)	or	copying	a	blob	or	tree	from	a
previous	commit	for	use	in	the	current	one	(with	filemodify).

The	ls	command	can	be	used	anywhere	in	the	stream	that	comments	are
accepted,	including	the	middle	of	a	commit.

Reading	from	the	active	commit

This	form	can	only	be	used	in	the	middle	of	a	commit.	The	path
names	a	directory	entry	within	fast-import's	active	commit.	The	path
must	be	quoted	in	this	case.

								'ls'	SP	<path>	LF

Reading	from	a	named	tree

The	<dataref>	can	be	a	mark	reference	(:<idnum>)	or	the	full	40-byte
SHA-1	of	a	Git	tag,	commit,	or	tree	object,	preexisting	or	waiting	to
be	written.	The	path	is	relative	to	the	top	level	of	the	tree	named	by
<dataref>.

								'ls'	SP	<dataref>	SP	<path>	LF

See	filemodify	above	for	a	detailed	description	of	<path>.

Output	uses	the	same	format	as	git	ls-tree	<tree>	--	<path>:

<mode>	SP	('blob'	|	'tree'	|	'commit')	SP	<dataref>	HT	<path>	LF

The	<dataref>	represents	the	blob,	tree,	or	commit	object	at	<path>	and
can	be	used	in	later	get-mark,	cat-blob,	filemodify,	or	ls	commands.

If	there	is	no	file	or	subtree	at	that	path,	git	fast-import	will	instead	report

missing	SP	<path>	LF

See	Responses	To	Commands	below	for	details	about	how	to	read	this
output	safely.

15.	feature

Require	that	fast-import	supports	the	specified	feature,	or	abort	if	it	does
not.

								'feature'	SP	<feature>	('='	<argument>)?	LF

The	<feature>	part	of	the	command	may	be	any	one	of	the	following:

date-format	,	export-marks	,	relative-marks	,	no-relative-marks	,	force
Act	as	though	the	corresponding	command-line	option	with	a	leading
--	was	passed	on	the	command	line	(see	OPTIONS,	above).

import-marks	,	import-marks-if-exists
Like	--import-marks	except	in	two	respects:	first,	only	one	"feature
import-marks"	or	"feature	import-marks-if-exists"	command	is
allowed	per	stream;	second,	an	--import-marks=	or	--import-marks-if-
exists	command-line	option	overrides	any	of	these	"feature"
commands	in	the	stream;	third,	"feature	import-marks-if-exists"	like	a
corresponding	command-line	option	silently	skips	a	nonexistent	file.

get-mark	,	cat-blob	,	ls
Require	that	the	backend	support	the	get-mark,	cat-blob,	or	ls
command	respectively.	Versions	of	fast-import	not	supporting	the
specified	command	will	exit	with	a	message	indicating	so.	This	lets
the	import	error	out	early	with	a	clear	message,	rather	than	wasting
time	on	the	early	part	of	an	import	before	the	unsupported	command
is	detected.

notes
Require	that	the	backend	support	the	notemodify	(N)	subcommand
to	the	commit	command.	Versions	of	fast-import	not	supporting	notes
will	exit	with	a	message	indicating	so.

done
Error	out	if	the	stream	ends	without	a	done	command.	Without	this
feature,	errors	causing	the	frontend	to	end	abruptly	at	a	convenient
point	in	the	stream	can	go	undetected.	This	may	occur,	for	example,
if	an	import	front	end	dies	in	mid-operation	without	emitting
SIGTERM	or	SIGKILL	at	its	subordinate	git	fast-import	instance.

16.	option

Processes	the	specified	option	so	that	git	fast-import	behaves	in	a	way
that	suits	the	frontend's	needs.	Note	that	options	specified	by	the
frontend	are	overridden	by	any	options	the	user	may	specify	to	git	fast-
import	itself.

				'option'	SP	<option>	LF

The	<option>	part	of	the	command	may	contain	any	of	the	options	listed
in	the	OPTIONS	section	that	do	not	change	import	semantics,	without	the
leading	--	and	is	treated	in	the	same	way.

Option	commands	must	be	the	first	commands	on	the	input	(not	counting
feature	commands),	to	give	an	option	command	after	any	non-option
command	is	an	error.

The	following	command-line	options	change	import	semantics	and	may
therefore	not	be	passed	as	option:

date-format
import-marks
export-marks
cat-blob-fd
force

17.	done

If	the	done	feature	is	not	in	use,	treated	as	if	EOF	was	read.	This	can	be
used	to	tell	fast-import	to	finish	early.

If	the	--done	command-line	option	or	feature	done	command	is	in	use,
the	done	command	is	mandatory	and	marks	the	end	of	the	stream.

Responses	To	Commands

New	objects	written	by	fast-import	are	not	available	immediately.	Most
fast-import	commands	have	no	visible	effect	until	the	next	checkpoint	(or
completion).	The	frontend	can	send	commands	to	fill	fast-import's	input
pipe	without	worrying	about	how	quickly	they	will	take	effect,	which
improves	performance	by	simplifying	scheduling.

For	some	frontends,	though,	it	is	useful	to	be	able	to	read	back	data	from
the	current	repository	as	it	is	being	updated	(for	example	when	the
source	material	describes	objects	in	terms	of	patches	to	be	applied	to
previously	imported	objects).	This	can	be	accomplished	by	connecting
the	frontend	and	fast-import	via	bidirectional	pipes:

mkfifo	fast-import-output

frontend	<fast-import-output	|

git	fast-import	>fast-import-output

A	frontend	set	up	this	way	can	use	progress,	get-mark,	ls,	and	cat-blob
commands	to	read	information	from	the	import	in	progress.

To	avoid	deadlock,	such	frontends	must	completely	consume	any
pending	output	from	progress,	ls,	get-mark,	and	cat-blob	before
performing	writes	to	fast-import	that	might	block.

Crash	Reports

If	fast-import	is	supplied	invalid	input	it	will	terminate	with	a	non-zero	exit
status	and	create	a	crash	report	in	the	top	level	of	the	Git	repository	it

was	importing	into.	Crash	reports	contain	a	snapshot	of	the	internal	fast-
import	state	as	well	as	the	most	recent	commands	that	lead	up	to	the
crash.

All	recent	commands	(including	stream	comments,	file	changes	and
progress	commands)	are	shown	in	the	command	history	within	the	crash
report,	but	raw	file	data	and	commit	messages	are	excluded	from	the
crash	report.	This	exclusion	saves	space	within	the	report	file	and
reduces	the	amount	of	buffering	that	fast-import	must	perform	during
execution.

After	writing	a	crash	report	fast-import	will	close	the	current	packfile	and
export	the	marks	table.	This	allows	the	frontend	developer	to	inspect	the
repository	state	and	resume	the	import	from	the	point	where	it	crashed.
The	modified	branches	and	tags	are	not	updated	during	a	crash,	as	the
import	did	not	complete	successfully.	Branch	and	tag	information	can	be
found	in	the	crash	report	and	must	be	applied	manually	if	the	update	is
needed.

An	example	crash:

$	cat	>in	<<END_OF_INPUT

#	my	very	first	test	commit

commit	refs/heads/master

committer	Shawn	O.	Pearce	<spearce>	19283	-0400

#	who	is	that	guy	anyway?

data	<<EOF

this	is	my	commit

EOF

M	644	inline	.gitignore

data	<<EOF

.gitignore

EOF

M	777	inline	bob

END_OF_INPUT

$	git	fast-import	<in

fatal:	Corrupt	mode:	M	777	inline	bob

fast-import:	dumping	crash	report	to	.git/fast_import_crash_8434

$	cat	.git/fast_import_crash_8434

fast-import	crash	report:

				fast-import	process:	8434

				parent	process					:	1391

				at	Sat	Sep	1	00:58:12	2007

fatal:	Corrupt	mode:	M	777	inline	bob

Most	Recent	Commands	Before	Crash

		#	my	very	first	test	commit

		commit	refs/heads/master

		committer	Shawn	O.	Pearce	<spearce>	19283	-0400

		#	who	is	that	guy	anyway?

		data	<<EOF

		M	644	inline	.gitignore

		data	<<EOF

*	M	777	inline	bob

Active	Branch	LRU

				active_branches	=	1	cur,	5	max

pos		clock	name

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

	1)						0	refs/heads/master

Inactive	Branches

-----------------

refs/heads/master:

		status						:	active	loaded	dirty

		tip	commit		:	0000000000000000000000000000000000000000

		old	tree				:	0000000000000000000000000000000000000000

		cur	tree				:	0000000000000000000000000000000000000000

		commit	clock:	0

		last	pack			:

-------------------

END	OF	CRASH	REPORT

Tips	and	Tricks

The	following	tips	and	tricks	have	been	collected	from	various	users	of
fast-import,	and	are	offered	here	as	suggestions.



1.	Use	One	Mark	Per	Commit

When	doing	a	repository	conversion,	use	a	unique	mark	per	commit
(mark	:<n>)	and	supply	the	--export-marks	option	on	the	command	line.
fast-import	will	dump	a	file	which	lists	every	mark	and	the	Git	object	SHA-
1	that	corresponds	to	it.	If	the	frontend	can	tie	the	marks	back	to	the
source	repository,	it	is	easy	to	verify	the	accuracy	and	completeness	of
the	import	by	comparing	each	Git	commit	to	the	corresponding	source
revision.

Coming	from	a	system	such	as	Perforce	or	Subversion	this	should	be
quite	simple,	as	the	fast-import	mark	can	also	be	the	Perforce	changeset
number	or	the	Subversion	revision	number.



2.	Freely	Skip	Around	Branches

Don't	bother	trying	to	optimize	the	frontend	to	stick	to	one	branch	at	a
time	during	an	import.	Although	doing	so	might	be	slightly	faster	for	fast-
import,	it	tends	to	increase	the	complexity	of	the	frontend	code
considerably.

The	branch	LRU	builtin	to	fast-import	tends	to	behave	very	well,	and	the
cost	of	activating	an	inactive	branch	is	so	low	that	bouncing	around
between	branches	has	virtually	no	impact	on	import	performance.



3.	Handling	Renames

When	importing	a	renamed	file	or	directory,	simply	delete	the	old	name(s)
and	modify	the	new	name(s)	during	the	corresponding	commit.	Git
performs	rename	detection	after-the-fact,	rather	than	explicitly	during	a
commit.



4.	Use	Tag	Fixup	Branches

Some	other	SCM	systems	let	the	user	create	a	tag	from	multiple	files
which	are	not	from	the	same	commit/changeset.	Or	to	create	tags	which
are	a	subset	of	the	files	available	in	the	repository.

Importing	these	tags	as-is	in	Git	is	impossible	without	making	at	least	one
commit	which	fixes	up	the	files	to	match	the	content	of	the	tag.	Use	fast-
import's	reset	command	to	reset	a	dummy	branch	outside	of	your	normal
branch	space	to	the	base	commit	for	the	tag,	then	commit	one	or	more
file	fixup	commits,	and	finally	tag	the	dummy	branch.

For	example	since	all	normal	branches	are	stored	under	refs/heads/
name	the	tag	fixup	branch	TAG_FIXUP.	This	way	it	is	impossible	for	the
fixup	branch	used	by	the	importer	to	have	namespace	conflicts	with	real
branches	imported	from	the	source	(the	name	TAG_FIXUP	is	not
refs/heads/TAG_FIXUP).

When	committing	fixups,	consider	using	merge	to	connect	the	commit(s)
which	are	supplying	file	revisions	to	the	fixup	branch.	Doing	so	will	allow
tools	such	as	git	blame	to	track	through	the	real	commit	history	and
properly	annotate	the	source	files.

After	fast-import	terminates	the	frontend	will	need	to	do	rm
.git/TAG_FIXUP	to	remove	the	dummy	branch.



5.	Import	Now,	Repack	Later

As	soon	as	fast-import	completes	the	Git	repository	is	completely	valid
and	ready	for	use.	Typically	this	takes	only	a	very	short	time,	even	for
considerably	large	projects	(100,000+	commits).

However	repacking	the	repository	is	necessary	to	improve	data	locality
and	access	performance.	It	can	also	take	hours	on	extremely	large
projects	(especially	if	-f	and	a	large	--window	parameter	is	used).	Since
repacking	is	safe	to	run	alongside	readers	and	writers,	run	the	repack	in
the	background	and	let	it	finish	when	it	finishes.	There	is	no	reason	to
wait	to	explore	your	new	Git	project!

If	you	choose	to	wait	for	the	repack,	don't	try	to	run	benchmarks	or
performance	tests	until	repacking	is	completed.	fast-import	outputs
suboptimal	packfiles	that	are	simply	never	seen	in	real	use	situations.



6.	Repacking	Historical	Data

If	you	are	repacking	very	old	imported	data	(e.g.	older	than	the	last	year),
consider	expending	some	extra	CPU	time	and	supplying	--window=50	(or
higher)	when	you	run	git	repack.	This	will	take	longer,	but	will	also
produce	a	smaller	packfile.	You	only	need	to	expend	the	effort	once,	and
everyone	using	your	project	will	benefit	from	the	smaller	repository.



7.	Include	Some	Progress	Messages

Every	once	in	a	while	have	your	frontend	emit	a	progress	message	to
fast-import.	The	contents	of	the	messages	are	entirely	free-form,	so	one
suggestion	would	be	to	output	the	current	month	and	year	each	time	the
current	commit	date	moves	into	the	next	month.	Your	users	will	feel	better
knowing	how	much	of	the	data	stream	has	been	processed.

Packfile	Optimization

When	packing	a	blob	fast-import	always	attempts	to	deltify	against	the
last	blob	written.	Unless	specifically	arranged	for	by	the	frontend,	this	will
probably	not	be	a	prior	version	of	the	same	file,	so	the	generated	delta
will	not	be	the	smallest	possible.	The	resulting	packfile	will	be
compressed,	but	will	not	be	optimal.

Frontends	which	have	efficient	access	to	all	revisions	of	a	single	file	(for
example	reading	an	RCS/CVS	,v	file)	can	choose	to	supply	all	revisions
of	that	file	as	a	sequence	of	consecutive	blob	commands.	This	allows
fast-import	to	deltify	the	different	file	revisions	against	each	other,	saving
space	in	the	final	packfile.	Marks	can	be	used	to	later	identify	individual
file	revisions	during	a	sequence	of	commit	commands.

The	packfile(s)	created	by	fast-import	do	not	encourage	good	disk	access
patterns.	This	is	caused	by	fast-import	writing	the	data	in	the	order	it	is
received	on	standard	input,	while	Git	typically	organizes	data	within
packfiles	to	make	the	most	recent	(current	tip)	data	appear	before
historical	data.	Git	also	clusters	commits	together,	speeding	up	revision
traversal	through	better	cache	locality.

For	this	reason	it	is	strongly	recommended	that	users	repack	the
repository	with	git	repack	-a	-d	after	fast-import	completes,	allowing	Git	to
reorganize	the	packfiles	for	faster	data	access.	If	blob	deltas	are
suboptimal	(see	above)	then	also	adding	the	-f	option	to	force
recomputation	of	all	deltas	can	significantly	reduce	the	final	packfile	size
(30-50%	smaller	can	be	quite	typical).



Memory	Utilization

There	are	a	number	of	factors	which	affect	how	much	memory	fast-import
requires	to	perform	an	import.	Like	critical	sections	of	core	Git,	fast-import
uses	its	own	memory	allocators	to	amortize	any	overheads	associated
with	malloc.	In	practice	fast-import	tends	to	amortize	any	malloc
overheads	to	0,	due	to	its	use	of	large	block	allocations.



1.	per	object

fast-import	maintains	an	in-memory	structure	for	every	object	written	in
this	execution.	On	a	32	bit	system	the	structure	is	32	bytes,	on	a	64	bit
system	the	structure	is	40	bytes	(due	to	the	larger	pointer	sizes).	Objects
in	the	table	are	not	deallocated	until	fast-import	terminates.	Importing	2
million	objects	on	a	32	bit	system	will	require	approximately	64	MiB	of
memory.

The	object	table	is	actually	a	hashtable	keyed	on	the	object	name	(the
unique	SHA-1).	This	storage	configuration	allows	fast-import	to	reuse	an
existing	or	already	written	object	and	avoid	writing	duplicates	to	the
output	packfile.	Duplicate	blobs	are	surprisingly	common	in	an	import,
typically	due	to	branch	merges	in	the	source.



2.	per	mark

Marks	are	stored	in	a	sparse	array,	using	1	pointer	(4	bytes	or	8	bytes,
depending	on	pointer	size)	per	mark.	Although	the	array	is	sparse,
frontends	are	still	strongly	encouraged	to	use	marks	between	1	and	n,
where	n	is	the	total	number	of	marks	required	for	this	import.



3.	per	branch

Branches	are	classified	as	active	and	inactive.	The	memory	usage	of	the
two	classes	is	significantly	different.

Inactive	branches	are	stored	in	a	structure	which	uses	96	or	120	bytes
(32	bit	or	64	bit	systems,	respectively),	plus	the	length	of	the	branch
name	(typically	under	200	bytes),	per	branch.	fast-import	will	easily
handle	as	many	as	10,000	inactive	branches	in	under	2	MiB	of	memory.

Active	branches	have	the	same	overhead	as	inactive	branches,	but	also
contain	copies	of	every	tree	that	has	been	recently	modified	on	that
branch.	If	subtree	include	has	not	been	modified	since	the	branch
became	active,	its	contents	will	not	be	loaded	into	memory,	but	if	subtree
src	has	been	modified	by	a	commit	since	the	branch	became	active,	then
its	contents	will	be	loaded	in	memory.

As	active	branches	store	metadata	about	the	files	contained	on	that
branch,	their	in-memory	storage	size	can	grow	to	a	considerable	size
(see	below).

fast-import	automatically	moves	active	branches	to	inactive	status	based
on	a	simple	least-recently-used	algorithm.	The	LRU	chain	is	updated	on
each	commit	command.	The	maximum	number	of	active	branches	can
be	increased	or	decreased	on	the	command	line	with	--active-branches=.



4.	per	active	tree

Trees	(aka	directories)	use	just	12	bytes	of	memory	on	top	of	the	memory
required	for	their	entries	(see	per	active	file	below).	The	cost	of	a	tree	is
virtually	0,	as	its	overhead	amortizes	out	over	the	individual	file	entries.



5.	per	active	file	entry

Files	(and	pointers	to	subtrees)	within	active	trees	require	52	or	64	bytes
(32/64	bit	platforms)	per	entry.	To	conserve	space,	file	and	tree	names
are	pooled	in	a	common	string	table,	allowing	the	filename	Makefile	to
use	just	16	bytes	(after	including	the	string	header	overhead)	no	matter
how	many	times	it	occurs	within	the	project.

The	active	branch	LRU,	when	coupled	with	the	filename	string	pool	and
lazy	loading	of	subtrees,	allows	fast-import	to	efficiently	import	projects
with	2,000+	branches	and	45,114+	files	in	a	very	limited	memory	footprint
(less	than	2.7	MiB	per	active	branch).

Signals

Sending	SIGUSR1	to	the	git	fast-import	process	ends	the	current	packfile
early,	simulating	a	checkpoint	command.	The	impatient	operator	can	use
this	facility	to	peek	at	the	objects	and	refs	from	an	import	in	progress,	at
the	cost	of	some	added	running	time	and	worse	compression.

SEE	ALSO

Section	G.3.43,	“git-fast-export(1)”

GIT

Part	of	the	Section	G.3.1,	“git(1)”	suite

G.3.45.	git-fetch-pack(1)

NAME

git-fetch-pack	-	Receive	missing	objects	from	another	repository

SYNOPSIS



git	fetch-pack	[--all]	[--quiet|-q]	[--keep|-k]	[--thin]	[--

include-tag]

								[--upload-pack=<git-upload-pack>]

								[--depth=<n>]	[--no-progress]

								[-v]	<repository>	[<refs>…]

DESCRIPTION

Usually	you	would	want	to	use	git	fetch,	which	is	a	higher	level	wrapper
of	this	command,	instead.

Invokes	git-upload-pack	on	a	possibly	remote	repository	and	asks	it	to
send	objects	missing	from	this	repository,	to	update	the	named	heads.
The	list	of	commits	available	locally	is	found	out	by	scanning	the	local
refs/	hierarchy	and	sent	to	git-upload-pack	running	on	the	other	end.

This	command	degenerates	to	download	everything	to	complete	the
asked	refs	from	the	remote	side	when	the	local	side	does	not	have	a
common	ancestor	commit.

OPTIONS

--all
Fetch	all	remote	refs.

--stdin

Take	the	list	of	refs	from	stdin,	one	per	line.	If	there	are	refs	specified
on	the	command	line	in	addition	to	this	option,	then	the	refs	from
stdin	are	processed	after	those	on	the	command	line.

If	--stateless-rpc	is	specified	together	with	this	option	then	the	list	of
refs	must	be	in	packet	format	(pkt-line).	Each	ref	must	be	in	a
separate	packet,	and	the	list	must	end	with	a	flush	packet.

-q	,	--quiet
Pass	-q	flag	to	git	unpack-objects;	this	makes	the	cloning	process
less	verbose.

-k	,	--keep



Do	not	invoke	git	unpack-objects	on	received	data,	but	create	a
single	packfile	out	of	it	instead,	and	store	it	in	the	object	database.	If
provided	twice	then	the	pack	is	locked	against	repacking.

--thin
Fetch	a	"thin"	pack,	which	records	objects	in	deltified	form	based	on
objects	not	included	in	the	pack	to	reduce	network	traffic.

--include-tag
If	the	remote	side	supports	it,	annotated	tags	objects	will	be
downloaded	on	the	same	connection	as	the	other	objects	if	the
object	the	tag	references	is	downloaded.	The	caller	must	otherwise
determine	the	tags	this	option	made	available.

--upload-pack=<git-upload-pack>
Use	this	to	specify	the	path	to	git-upload-pack	on	the	remote	side,	if
is	not	found	on	your	$PATH.	Installations	of	sshd	ignores	the	user's
environment	setup	scripts	for	login	shells	(e.g.	.bash_profile)	and
your	privately	installed	git	may	not	be	found	on	the	system	default
$PATH.	Another	workaround	suggested	is	to	set	up	your	$PATH	in
".bashrc",	but	this	flag	is	for	people	who	do	not	want	to	pay	the
overhead	for	non-interactive	shells	by	having	a	lean	.bashrc	file	(they
set	most	of	the	things	up	in	.bash_profile).

--exec=<git-upload-pack>
Same	as	--upload-pack=<git-upload-pack>.

--depth=<n>
Limit	fetching	to	ancestor-chains	not	longer	than	n.	git-upload-pack
treats	the	special	depth	2147483647	as	infinite	even	if	there	is	an
ancestor-chain	that	long.

--no-progress
Do	not	show	the	progress.

--check-self-contained-and-connected
Output	"connectivity-ok"	if	the	received	pack	is	self-contained	and
connected.

-v
Run	verbosely.

<repository>
The	URL	to	the	remote	repository.

<refs>…



The	remote	heads	to	update	from.	This	is	relative	to	$GIT_DIR	(e.g.
"HEAD",	"refs/heads/master").	When	unspecified,	update	from	all
heads	the	remote	side	has.

If	the	remote	has	enabled	the	options
uploadpack.allowTipSHA1InWant	or
uploadpack.allowReachableSHA1InWant,	they	may	alternatively	be
40-hex	sha1s	present	on	the	remote.

SEE	ALSO

Section	G.3.46,	“git-fetch(1)”

GIT

Part	of	the	Section	G.3.1,	“git(1)”	suite

G.3.46.	git-fetch(1)

NAME

git-fetch	-	Download	objects	and	refs	from	another	repository

SYNOPSIS

git	fetch	[<options>]	[<repository>	[<refspec>…]]

git	fetch	[<options>]	<group>

git	fetch	--multiple	[<options>]	[(<repository>	|	<group>)…]

git	fetch	--all	[<options>]

DESCRIPTION

Fetch	branches	and/or	tags	(collectively,	"refs")	from	one	or	more	other
repositories,	along	with	the	objects	necessary	to	complete	their	histories.
Remote-tracking	branches	are	updated	(see	the	description	of	<refspec>
below	for	ways	to	control	this	behavior).



By	default,	any	tag	that	points	into	the	histories	being	fetched	is	also
fetched;	the	effect	is	to	fetch	tags	that	point	at	branches	that	you	are
interested	in.	This	default	behavior	can	be	changed	by	using	the	--tags	or
--no-tags	options	or	by	configuring	remote.<name>.tagOpt.	By	using	a
refspec	that	fetches	tags	explicitly,	you	can	fetch	tags	that	do	not	point
into	branches	you	are	interested	in	as	well.

git	fetch	can	fetch	from	either	a	single	named	repository	or	URL,	or	from
several	repositories	at	once	if	<group>	is	given	and	there	is	a	remotes.
<group>	entry	in	the	configuration	file.	(See	Section	G.3.27,	“git-
config(1)”).

When	no	remote	is	specified,	by	default	the	origin	remote	will	be	used,
unless	there's	an	upstream	branch	configured	for	the	current	branch.

The	names	of	refs	that	are	fetched,	together	with	the	object	names	they
point	at,	are	written	to	.git/FETCH_HEAD.	This	information	may	be	used
by	scripts	or	other	git	commands,	such	as	Section	G.3.95,	“git-pull(1)”.

OPTIONS

--all
Fetch	all	remotes.

-a	,	--append
Append	ref	names	and	object	names	of	fetched	refs	to	the	existing
contents	of	.git/FETCH_HEAD.	Without	this	option	old	data	in
.git/FETCH_HEAD	will	be	overwritten.

--depth=<depth>
Limit	fetching	to	the	specified	number	of	commits	from	the	tip	of	each
remote	branch	history.	If	fetching	to	a	shallow	repository	created	by
git	clone	with	--depth=<depth>	option	(see	Section	G.3.23,	“git-
clone(1)”),	deepen	or	shorten	the	history	to	the	specified	number	of
commits.	Tags	for	the	deepened	commits	are	not	fetched.

--unshallow

If	the	source	repository	is	complete,	convert	a	shallow	repository	to	a
complete	one,	removing	all	the	limitations	imposed	by	shallow



repositories.

If	the	source	repository	is	shallow,	fetch	as	much	as	possible	so	that
the	current	repository	has	the	same	history	as	the	source	repository.

--update-shallow
By	default	when	fetching	from	a	shallow	repository,	git	fetch	refuses
refs	that	require	updating	.git/shallow.	This	option	updates
.git/shallow	and	accept	such	refs.

--dry-run
Show	what	would	be	done,	without	making	any	changes.

-f	,	--force
When	git	fetch	is	used	with	<rbranch>:<lbranch>	refspec,	it	refuses
to	update	the	local	branch	<lbranch>	unless	the	remote	branch
<rbranch>	it	fetches	is	a	descendant	of	<lbranch>.	This	option
overrides	that	check.

-k	,	--keep
Keep	downloaded	pack.

--multiple
Allow	several	<repository>	and	<group>	arguments	to	be	specified.
No	<refspec>s	may	be	specified.

-p	,	--prune
After	fetching,	remove	any	remote-tracking	references	that	no	longer
exist	on	the	remote.	Tags	are	not	subject	to	pruning	if	they	are
fetched	only	because	of	the	default	tag	auto-following	or	due	to	a	--
tags	option.	However,	if	tags	are	fetched	due	to	an	explicit	refspec
(either	on	the	command	line	or	in	the	remote	configuration,	for
example	if	the	remote	was	cloned	with	the	--mirror	option),	then	they
are	also	subject	to	pruning.

-n	,	--no-tags
By	default,	tags	that	point	at	objects	that	are	downloaded	from	the
remote	repository	are	fetched	and	stored	locally.	This	option	disables
this	automatic	tag	following.	The	default	behavior	for	a	remote	may
be	specified	with	the	remote.<name>.tagOpt	setting.	See
Section	G.3.27,	“git-config(1)”.

--refmap=<refspec>
When	fetching	refs	listed	on	the	command	line,	use	the	specified



refspec	(can	be	given	more	than	once)	to	map	the	refs	to	remote-
tracking	branches,	instead	of	the	values	of	remote.*.fetch
configuration	variables	for	the	remote	repository.	See	section	on
"Configured	Remote-tracking	Branches"	for	details.

-t	,	--tags
Fetch	all	tags	from	the	remote	(i.e.,	fetch	remote	tags	refs/tags/*	into
local	tags	with	the	same	name),	in	addition	to	whatever	else	would
otherwise	be	fetched.	Using	this	option	alone	does	not	subject	tags
to	pruning,	even	if	--prune	is	used	(though	tags	may	be	pruned
anyway	if	they	are	also	the	destination	of	an	explicit	refspec;	see	--
prune).

--recurse-submodules[=yes|on-demand|no]
This	option	controls	if	and	under	what	conditions	new	commits	of
populated	submodules	should	be	fetched	too.	It	can	be	used	as	a
boolean	option	to	completely	disable	recursion	when	set	to	no	or	to
unconditionally	recurse	into	all	populated	submodules	when	set	to
yes,	which	is	the	default	when	this	option	is	used	without	any	value.
Use	on-demand	to	only	recurse	into	a	populated	submodule	when
the	superproject	retrieves	a	commit	that	updates	the	submodule's
reference	to	a	commit	that	isn't	already	in	the	local	submodule	clone.

-j	,	--jobs=<n>
Number	of	parallel	children	to	be	used	for	fetching	submodules.
Each	will	fetch	from	different	submodules,	such	that	fetching	many
submodules	will	be	faster.	By	default	submodules	will	be	fetched	one
at	a	time.

--no-recurse-submodules
Disable	recursive	fetching	of	submodules	(this	has	the	same	effect
as	using	the	--recurse-submodules=no	option).

--submodule-prefix=<path>
Prepend	<path>	to	paths	printed	in	informative	messages	such	as
"Fetching	submodule	foo".	This	option	is	used	internally	when
recursing	over	submodules.

--recurse-submodules-default=[yes|on-demand]
This	option	is	used	internally	to	temporarily	provide	a	non-negative
default	value	for	the	--recurse-submodules	option.	All	other	methods
of	configuring	fetch's	submodule	recursion	(such	as	settings	in
Section	G.4.8,	“gitmodules(5)”	and	Section	G.3.27,	“git-config(1)”)



override	this	option,	as	does	specifying	--[no-]recurse-submodules
directly.

-u	,	--update-head-ok
By	default	git	fetch	refuses	to	update	the	head	which	corresponds	to
the	current	branch.	This	flag	disables	the	check.	This	is	purely	for	the
internal	use	for	git	pull	to	communicate	with	git	fetch,	and	unless	you
are	implementing	your	own	Porcelain	you	are	not	supposed	to	use	it.

--upload-pack	<upload-pack>
When	given,	and	the	repository	to	fetch	from	is	handled	by	git	fetch-
pack,	--exec=<upload-pack>	is	passed	to	the	command	to	specify
non-default	path	for	the	command	run	on	the	other	end.

-q	,	--quiet
Pass	--quiet	to	git-fetch-pack	and	silence	any	other	internally	used
git	commands.	Progress	is	not	reported	to	the	standard	error	stream.

-v	,	--verbose
Be	verbose.

--progress
Progress	status	is	reported	on	the	standard	error	stream	by	default
when	it	is	attached	to	a	terminal,	unless	-q	is	specified.	This	flag
forces	progress	status	even	if	the	standard	error	stream	is	not
directed	to	a	terminal.

-4	,	--ipv4
Use	IPv4	addresses	only,	ignoring	IPv6	addresses.

-6	,	--ipv6
Use	IPv6	addresses	only,	ignoring	IPv4	addresses.

<repository>
The	"remote"	repository	that	is	the	source	of	a	fetch	or	pull	operation.
This	parameter	can	be	either	a	URL	(see	the	section	GIT	URLS
below)	or	the	name	of	a	remote	(see	the	section	REMOTES	below).

<group>
A	name	referring	to	a	list	of	repositories	as	the	value	of	remotes.
<group>	in	the	configuration	file.	(See	Section	G.3.27,	“git-
config(1)”).

<refspec>

Specifies	which	refs	to	fetch	and	which	local	refs	to	update.	When	no
<refspec>s	appear	on	the	command	line,	the	refs	to	fetch	are	read



from	remote.<repository>.fetch	variables	instead	(see
CONFIGURED	REMOTE-TRACKING	BRANCHES	below).

The	format	of	a	<refspec>	parameter	is	an	optional	plus	+,	followed
by	the	source	ref	<src>,	followed	by	a	colon	:,	followed	by	the
destination	ref	<dst>.	The	colon	can	be	omitted	when	<dst>	is	empty.

tag	<tag>	means	the	same	as	refs/tags/<tag>:refs/tags/<tag>;	it
requests	fetching	everything	up	to	the	given	tag.

The	remote	ref	that	matches	<src>	is	fetched,	and	if	<dst>	is	not
empty	string,	the	local	ref	that	matches	it	is	fast-forwarded	using
<src>.	If	the	optional	plus	+	is	used,	the	local	ref	is	updated	even	if	it
does	not	result	in	a	fast-forward	update.

Note

When	the	remote	branch	you	want	to	fetch	is	known	to
be	rewound	and	rebased	regularly,	it	is	expected	that	its
new	tip	will	not	be	descendant	of	its	previous	tip	(as
stored	in	your	remote-tracking	branch	the	last	time	you
fetched).	You	would	want	to	use	the	+	sign	to	indicate
non-fast-forward	updates	will	be	needed	for	such
branches.	There	is	no	way	to	determine	or	declare	that	a
branch	will	be	made	available	in	a	repository	with	this
behavior;	the	pulling	user	simply	must	know	this	is	the
expected	usage	pattern	for	a	branch.

GIT	URLS

In	general,	URLs	contain	information	about	the	transport	protocol,	the
address	of	the	remote	server,	and	the	path	to	the	repository.	Depending
on	the	transport	protocol,	some	of	this	information	may	be	absent.

Git	supports	ssh,	git,	http,	and	https	protocols	(in	addition,	ftp,	and	ftps
can	be	used	for	fetching,	but	this	is	inefficient	and	deprecated;	do	not	use



it).

The	native	transport	(i.e.	git://	URL)	does	no	authentication	and	should	be
used	with	caution	on	unsecured	networks.

The	following	syntaxes	may	be	used	with	them:

ssh://[user@]host.xz[:port]/path/to/repo.git/
git://host.xz[:port]/path/to/repo.git/
http[s]://host.xz[:port]/path/to/repo.git/
ftp[s]://host.xz[:port]/path/to/repo.git/

An	alternative	scp-like	syntax	may	also	be	used	with	the	ssh	protocol:

[user@]host.xz:path/to/repo.git/

This	syntax	is	only	recognized	if	there	are	no	slashes	before	the	first
colon.	This	helps	differentiate	a	local	path	that	contains	a	colon.	For
example	the	local	path	foo:bar	could	be	specified	as	an	absolute	path	or
./foo:bar	to	avoid	being	misinterpreted	as	an	ssh	url.

The	ssh	and	git	protocols	additionally	support	~username	expansion:

ssh://[user@]host.xz[:port]/~[user]/path/to/repo.git/
git://host.xz[:port]/~[user]/path/to/repo.git/
[user@]host.xz:/~[user]/path/to/repo.git/

For	local	repositories,	also	supported	by	Git	natively,	the	following
syntaxes	may	be	used:

/path/to/repo.git/
file:///path/to/repo.git/

These	two	syntaxes	are	mostly	equivalent,	except	when	cloning,	when
the	former	implies	--local	option.	See	Section	G.3.23,	“git-clone(1)”	for
details.

When	Git	doesn't	know	how	to	handle	a	certain	transport	protocol,	it
attempts	to	use	the	remote-<transport>	remote	helper,	if	one	exists.	To



explicitly	request	a	remote	helper,	the	following	syntax	may	be	used:

<transport>::<address>

where	<address>	may	be	a	path,	a	server	and	path,	or	an	arbitrary	URL-
like	string	recognized	by	the	specific	remote	helper	being	invoked.	See
Section	G.4.10,	“gitremote-helpers(1)”	for	details.

If	there	are	a	large	number	of	similarly-named	remote	repositories	and
you	want	to	use	a	different	format	for	them	(such	that	the	URLs	you	use
will	be	rewritten	into	URLs	that	work),	you	can	create	a	configuration
section	of	the	form:

								[url	"<actual	url	base>"]

																insteadOf	=	<other	url	base>

For	example,	with	this:

								[url	"git://git.host.xz/"]

																insteadOf	=	host.xz:/path/to/

																insteadOf	=	work:

a	URL	like	"work:repo.git"	or	like	"host.xz:/path/to/repo.git"	will	be
rewritten	in	any	context	that	takes	a	URL	to	be	"git://git.host.xz/repo.git".

If	you	want	to	rewrite	URLs	for	push	only,	you	can	create	a	configuration
section	of	the	form:

								[url	"<actual	url	base>"]

																pushInsteadOf	=	<other	url	base>

For	example,	with	this:

								[url	"ssh://example.org/"]

																pushInsteadOf	=	git://example.org/

a	URL	like	"git://example.org/path/to/repo.git"	will	be	rewritten	to



"ssh://example.org/path/to/repo.git"	for	pushes,	but	pulls	will	still	use	the
original	URL.

REMOTES

The	name	of	one	of	the	following	can	be	used	instead	of	a	URL	as
<repository>	argument:

a	remote	in	the	Git	configuration	file:	$GIT_DIR/config,
a	file	in	the	$GIT_DIR/remotes	directory,	or
a	file	in	the	$GIT_DIR/branches	directory.

All	of	these	also	allow	you	to	omit	the	refspec	from	the	command	line
because	they	each	contain	a	refspec	which	git	will	use	by	default.



1.	Named	remote	in	configuration	file

You	can	choose	to	provide	the	name	of	a	remote	which	you	had
previously	configured	using	Section	G.3.106,	“git-remote(1)”,
Section	G.3.27,	“git-config(1)”	or	even	by	a	manual	edit	to	the
$GIT_DIR/config	file.	The	URL	of	this	remote	will	be	used	to	access	the
repository.	The	refspec	of	this	remote	will	be	used	by	default	when	you
do	not	provide	a	refspec	on	the	command	line.	The	entry	in	the	config	file
would	appear	like	this:

								[remote	"<name>"]

																url	=	<url>

																pushurl	=	<pushurl>

																push	=	<refspec>

																fetch	=	<refspec>

The	<pushurl>	is	used	for	pushes	only.	It	is	optional	and	defaults	to	<url>.



2.	Named	file	in	$GIT_DIR/remotes

You	can	choose	to	provide	the	name	of	a	file	in	$GIT_DIR/remotes.	The
URL	in	this	file	will	be	used	to	access	the	repository.	The	refspec	in	this
file	will	be	used	as	default	when	you	do	not	provide	a	refspec	on	the
command	line.	This	file	should	have	the	following	format:

								URL:	one	of	the	above	URL	format

								Push:	<refspec>

								Pull:	<refspec>

Push:	lines	are	used	by	git	push	and	Pull:	lines	are	used	by	git	pull	and
git	fetch.	Multiple	Push:	and	Pull:	lines	may	be	specified	for	additional
branch	mappings.



3.	Named	file	in	$GIT_DIR/branches

You	can	choose	to	provide	the	name	of	a	file	in	$GIT_DIR/branches.	The
URL	in	this	file	will	be	used	to	access	the	repository.	This	file	should	have
the	following	format:

								<url>#<head>

<url>	is	required;	#<head>	is	optional.

Depending	on	the	operation,	git	will	use	one	of	the	following	refspecs,	if
you	don't	provide	one	on	the	command	line.	<branch>	is	the	name	of	this
file	in	$GIT_DIR/branches	and	<head>	defaults	to	master.

git	fetch	uses:

								refs/heads/<head>:refs/heads/<branch>

git	push	uses:

								HEAD:refs/heads/<head>

CONFIGURED	REMOTE-TRACKING	BRANCHES

You	often	interact	with	the	same	remote	repository	by	regularly	and
repeatedly	fetching	from	it.	In	order	to	keep	track	of	the	progress	of	such
a	remote	repository,	git	fetch	allows	you	to	configure	remote.
<repository>.fetch	configuration	variables.

Typically	such	a	variable	may	look	like	this:

[remote	"origin"]

								fetch	=	+refs/heads/*:refs/remotes/origin/*



This	configuration	is	used	in	two	ways:

When	git	fetch	is	run	without	specifying	what	branches	and/or	tags	to
fetch	on	the	command	line,	e.g.	git	fetch	origin	or	git	fetch,	remote.
<repository>.fetch	values	are	used	as	the	refspecs--they	specify
which	refs	to	fetch	and	which	local	refs	to	update.	The	example
above	will	fetch	all	branches	that	exist	in	the	origin	(i.e.	any	ref	that
matches	the	left-hand	side	of	the	value,	refs/heads/*)	and	update	the
corresponding	remote-tracking	branches	in	the	refs/remotes/origin/*
hierarchy.
When	git	fetch	is	run	with	explicit	branches	and/or	tags	to	fetch	on
the	command	line,	e.g.	git	fetch	origin	master,	the	<refspec>s	given
on	the	command	line	determine	what	are	to	be	fetched	(e.g.	master
in	the	example,	which	is	a	short-hand	for	master:,	which	in	turn
means	"fetch	the	master	branch	but	I	do	not	explicitly	say	what
remote-tracking	branch	to	update	with	it	from	the	command	line"),
and	the	example	command	will	fetch	only	the	master	branch.	The
remote.<repository>.fetch	values	determine	which	remote-tracking
branch,	if	any,	is	updated.	When	used	in	this	way,	the	remote.
<repository>.fetch	values	do	not	have	any	effect	in	deciding	what
gets	fetched	(i.e.	the	values	are	not	used	as	refspecs	when	the
command-line	lists	refspecs);	they	are	only	used	to	decide	where	the
refs	that	are	fetched	are	stored	by	acting	as	a	mapping.

The	latter	use	of	the	remote.<repository>.fetch	values	can	be	overridden
by	giving	the	--refmap=<refspec>	parameter(s)	on	the	command	line.

EXAMPLES

Update	the	remote-tracking	branches:

$	git	fetch	origin

The	above	command	copies	all	branches	from	the	remote
refs/heads/	namespace	and	stores	them	to	the	local
refs/remotes/origin/	namespace,	unless	the	branch.<name>.fetch
option	is	used	to	specify	a	non-default	refspec.



Using	refspecs	explicitly:

$	git	fetch	origin	+pu:pu	maint:tmp

This	updates	(or	creates,	as	necessary)	branches	pu	and	tmp	in	the
local	repository	by	fetching	from	the	branches	(respectively)	pu	and
maint	from	the	remote	repository.

The	pu	branch	will	be	updated	even	if	it	is	does	not	fast-forward,
because	it	is	prefixed	with	a	plus	sign;	tmp	will	not	be.

Peek	at	a	remote's	branch,	without	configuring	the	remote	in	your
local	repository:

$	git	fetch	git://git.kernel.org/pub/scm/git/git.git	maint

$	git	log	FETCH_HEAD

The	first	command	fetches	the	maint	branch	from	the	repository	at
git://git.kernel.org/pub/scm/git/git.git	and	the	second	command	uses
FETCH_HEAD	to	examine	the	branch	with	Section	G.3.68,	“git-
log(1)”.	The	fetched	objects	will	eventually	be	removed	by	git's	built-
in	housekeeping	(see	Section	G.3.53,	“git-gc(1)”).

BUGS

Using	--recurse-submodules	can	only	fetch	new	commits	in	already
checked	out	submodules	right	now.	When	e.g.	upstream	added	a	new
submodule	in	the	just	fetched	commits	of	the	superproject	the	submodule
itself	can	not	be	fetched,	making	it	impossible	to	check	out	that
submodule	later	without	having	to	do	a	fetch	again.	This	is	expected	to
be	fixed	in	a	future	Git	version.

SEE	ALSO

Section	G.3.95,	“git-pull(1)”



GIT

Part	of	the	Section	G.3.1,	“git(1)”	suite

G.3.47.	git-filter-branch(1)

NAME

git-filter-branch	-	Rewrite	branches

SYNOPSIS

git	filter-branch	[--env-filter	<command>]	[--tree-

filter	<command>]

								[--index-filter	<command>]	[--parent-

filter	<command>]

								[--msg-filter	<command>]	[--commit-filter	<command>]

								[--tag-name-filter	<command>]	[--subdirectory-

filter	<directory>]

								[--prune-empty]

								[--original	<namespace>]	[-d	<directory>]	[-f	|	--

force]

								[--]	[<rev-list	options>…]

DESCRIPTION

Lets	you	rewrite	Git	revision	history	by	rewriting	the	branches	mentioned
in	the	<rev-list	options>,	applying	custom	filters	on	each	revision.	Those
filters	can	modify	each	tree	(e.g.	removing	a	file	or	running	a	perl	rewrite
on	all	files)	or	information	about	each	commit.	Otherwise,	all	information
(including	original	commit	times	or	merge	information)	will	be	preserved.

The	command	will	only	rewrite	the	positive	refs	mentioned	in	the
command	line	(e.g.	if	you	pass	a..b,	only	b	will	be	rewritten).	If	you
specify	no	filters,	the	commits	will	be	recommitted	without	any	changes,
which	would	normally	have	no	effect.	Nevertheless,	this	may	be	useful	in
the	future	for	compensating	for	some	Git	bugs	or	such,	therefore	such	a
usage	is	permitted.



NOTE:	This	command	honors	.git/info/grafts	file	and	refs	in	the
refs/replace/	namespace.	If	you	have	any	grafts	or	replacement	refs
defined,	running	this	command	will	make	them	permanent.

WARNING!	The	rewritten	history	will	have	different	object	names	for	all
the	objects	and	will	not	converge	with	the	original	branch.	You	will	not	be
able	to	easily	push	and	distribute	the	rewritten	branch	on	top	of	the
original	branch.	Please	do	not	use	this	command	if	you	do	not	know	the
full	implications,	and	avoid	using	it	anyway,	if	a	simple	single	commit
would	suffice	to	fix	your	problem.	(See	the	"RECOVERING	FROM
UPSTREAM	REBASE"	section	in	Section	G.3.99,	“git-rebase(1)”	for
further	information	about	rewriting	published	history.)

Always	verify	that	the	rewritten	version	is	correct:	The	original	refs,	if
different	from	the	rewritten	ones,	will	be	stored	in	the	namespace
refs/original/.

Note	that	since	this	operation	is	very	I/O	expensive,	it	might	be	a	good
idea	to	redirect	the	temporary	directory	off-disk	with	the	-d	option,	e.g.	on
tmpfs.	Reportedly	the	speedup	is	very	noticeable.



1.	Filters

The	filters	are	applied	in	the	order	as	listed	below.	The	<command>
argument	is	always	evaluated	in	the	shell	context	using	the	eval
command	(with	the	notable	exception	of	the	commit	filter,	for	technical
reasons).	Prior	to	that,	the	$GIT_COMMIT	environment	variable	will	be
set	to	contain	the	id	of	the	commit	being	rewritten.	Also,
GIT_AUTHOR_NAME,	GIT_AUTHOR_EMAIL,	GIT_AUTHOR_DATE,
GIT_COMMITTER_NAME,	GIT_COMMITTER_EMAIL,	and
GIT_COMMITTER_DATE	are	taken	from	the	current	commit	and
exported	to	the	environment,	in	order	to	affect	the	author	and	committer
identities	of	the	replacement	commit	created	by	Section	G.3.25,	“git-
commit-tree(1)”	after	the	filters	have	run.

If	any	evaluation	of	<command>	returns	a	non-zero	exit	status,	the	whole
operation	will	be	aborted.

A	map	function	is	available	that	takes	an	"original	sha1	id"	argument	and
outputs	a	"rewritten	sha1	id"	if	the	commit	has	been	already	rewritten,
and	"original	sha1	id"	otherwise;	the	map	function	can	return	several	ids
on	separate	lines	if	your	commit	filter	emitted	multiple	commits.

OPTIONS

--env-filter	<command>
This	filter	may	be	used	if	you	only	need	to	modify	the	environment	in
which	the	commit	will	be	performed.	Specifically,	you	might	want	to
rewrite	the	author/committer	name/email/time	environment	variables
(see	Section	G.3.25,	“git-commit-tree(1)”	for	details).	Do	not	forget	to
re-export	the	variables.

--tree-filter	<command>
This	is	the	filter	for	rewriting	the	tree	and	its	contents.	The	argument
is	evaluated	in	shell	with	the	working	directory	set	to	the	root	of	the
checked	out	tree.	The	new	tree	is	then	used	as-is	(new	files	are
auto-added,	disappeared	files	are	auto-removed	-	neither	.gitignore
files	nor	any	other	ignore	rules	HAVE	ANY	EFFECT!).



--index-filter	<command>
This	is	the	filter	for	rewriting	the	index.	It	is	similar	to	the	tree	filter	but
does	not	check	out	the	tree,	which	makes	it	much	faster.	Frequently
used	with	git	rm	--cached	--ignore-unmatch	...,	see	EXAMPLES
below.	For	hairy	cases,	see	Section	G.3.137,	“git-update-index(1)”.

--parent-filter	<command>
This	is	the	filter	for	rewriting	the	commit's	parent	list.	It	will	receive
the	parent	string	on	stdin	and	shall	output	the	new	parent	string	on
stdout.	The	parent	string	is	in	the	format	described	in	Section	G.3.25,
“git-commit-tree(1)”:	empty	for	the	initial	commit,	"-p	parent"	for	a
normal	commit	and	"-p	parent1	-p	parent2	-p	parent3	…"	for	a	merge
commit.

--msg-filter	<command>
This	is	the	filter	for	rewriting	the	commit	messages.	The	argument	is
evaluated	in	the	shell	with	the	original	commit	message	on	standard
input;	its	standard	output	is	used	as	the	new	commit	message.

--commit-filter	<command>

This	is	the	filter	for	performing	the	commit.	If	this	filter	is	specified,	it
will	be	called	instead	of	the	git	commit-tree	command,	with
arguments	of	the	form	"<TREE_ID>	[(-p	<PARENT_COMMIT_ID>)
…]"	and	the	log	message	on	stdin.	The	commit	id	is	expected	on
stdout.

As	a	special	extension,	the	commit	filter	may	emit	multiple	commit
ids;	in	that	case,	the	rewritten	children	of	the	original	commit	will
have	all	of	them	as	parents.

You	can	use	the	map	convenience	function	in	this	filter,	and	other
convenience	functions,	too.	For	example,	calling	skip_commit	"$@"
will	leave	out	the	current	commit	(but	not	its	changes!	If	you	want
that,	use	git	rebase	instead).

You	can	also	use	the	git_commit_non_empty_tree	"$@"	instead	of
git	commit-tree	"$@"	if	you	don't	wish	to	keep	commits	with	a	single
parent	and	that	makes	no	change	to	the	tree.

--tag-name-filter	<command>



This	is	the	filter	for	rewriting	tag	names.	When	passed,	it	will	be
called	for	every	tag	ref	that	points	to	a	rewritten	object	(or	to	a	tag
object	which	points	to	a	rewritten	object).	The	original	tag	name	is
passed	via	standard	input,	and	the	new	tag	name	is	expected	on
standard	output.

The	original	tags	are	not	deleted,	but	can	be	overwritten;	use	"--tag-
name-filter	cat"	to	simply	update	the	tags.	In	this	case,	be	very
careful	and	make	sure	you	have	the	old	tags	backed	up	in	case	the
conversion	has	run	afoul.

Nearly	proper	rewriting	of	tag	objects	is	supported.	If	the	tag	has	a
message	attached,	a	new	tag	object	will	be	created	with	the	same
message,	author,	and	timestamp.	If	the	tag	has	a	signature	attached,
the	signature	will	be	stripped.	It	is	by	definition	impossible	to
preserve	signatures.	The	reason	this	is	"nearly"	proper,	is	because
ideally	if	the	tag	did	not	change	(points	to	the	same	object,	has	the
same	name,	etc.)	it	should	retain	any	signature.	That	is	not	the	case,
signatures	will	always	be	removed,	buyer	beware.	There	is	also	no
support	for	changing	the	author	or	timestamp	(or	the	tag	message
for	that	matter).	Tags	which	point	to	other	tags	will	be	rewritten	to
point	to	the	underlying	commit.

--subdirectory-filter	<directory>
Only	look	at	the	history	which	touches	the	given	subdirectory.	The
result	will	contain	that	directory	(and	only	that)	as	its	project	root.
Implies	Section	1,	“Remap	to	ancestor”.

--prune-empty
Some	kind	of	filters	will	generate	empty	commits,	that	left	the	tree
untouched.	This	switch	allow	git-filter-branch	to	ignore	such	commits.
Though,	this	switch	only	applies	for	commits	that	have	one	and	only
one	parent,	it	will	hence	keep	merges	points.	Also,	this	option	is	not
compatible	with	the	use	of	--commit-filter.	Though	you	just	need	to
use	the	function	git_commit_non_empty_tree	"$@"	instead	of	the	git
commit-tree	"$@"	idiom	in	your	commit	filter	to	make	that	happen.

--original	<namespace>
Use	this	option	to	set	the	namespace	where	the	original	commits	will
be	stored.	The	default	value	is	refs/original.



-d	<directory>
Use	this	option	to	set	the	path	to	the	temporary	directory	used	for
rewriting.	When	applying	a	tree	filter,	the	command	needs	to
temporarily	check	out	the	tree	to	some	directory,	which	may
consume	considerable	space	in	case	of	large	projects.	By	default	it
does	this	in	the	.git-rewrite/	directory	but	you	can	override	that	choice
by	this	parameter.

-f	,	--force
git	filter-branch	refuses	to	start	with	an	existing	temporary	directory
or	when	there	are	already	refs	starting	with	refs/original/,	unless
forced.

<rev-list	options>…
Arguments	for	git	rev-list.	All	positive	refs	included	by	these	options
are	rewritten.	You	may	also	specify	options	such	as	--all,	but	you
must	use	--	to	separate	them	from	the	git	filter-branch	options.
Implies	Section	1,	“Remap	to	ancestor”.



1.	Remap	to	ancestor

By	using	???	arguments,	e.g.,	path	limiters,	you	can	limit	the	set	of
revisions	which	get	rewritten.	However,	positive	refs	on	the	command	line
are	distinguished:	we	don't	let	them	be	excluded	by	such	limiters.	For	this
purpose,	they	are	instead	rewritten	to	point	at	the	nearest	ancestor	that
was	not	excluded.

Examples

Suppose	you	want	to	remove	a	file	(containing	confidential	information	or
copyright	violation)	from	all	commits:

git	filter-branch	--tree-filter	'rm	filename'	HEAD

However,	if	the	file	is	absent	from	the	tree	of	some	commit,	a	simple	rm
filename	will	fail	for	that	tree	and	commit.	Thus	you	may	instead	want	to
use	rm	-f	filename	as	the	script.

Using	--index-filter	with	git	rm	yields	a	significantly	faster	version.	Like
with	using	rm	filename,	git	rm	--cached	filename	will	fail	if	the	file	is
absent	from	the	tree	of	a	commit.	If	you	want	to	"completely	forget"	a	file,
it	does	not	matter	when	it	entered	history,	so	we	also	add	--ignore-
unmatch:

git	filter-branch	--index-filter	'git	rm	--cached	--ignore-unmatch	filename'	HEAD

Now,	you	will	get	the	rewritten	history	saved	in	HEAD.

To	rewrite	the	repository	to	look	as	if	foodir/	had	been	its	project	root,	and
discard	all	other	history:

git	filter-branch	--subdirectory-filter	foodir	--	--all



Thus	you	can,	e.g.,	turn	a	library	subdirectory	into	a	repository	of	its	own.
Note	the	--	that	separates	filter-branch	options	from	revision	options,	and
the	--all	to	rewrite	all	branches	and	tags.

To	set	a	commit	(which	typically	is	at	the	tip	of	another	history)	to	be	the
parent	of	the	current	initial	commit,	in	order	to	paste	the	other	history
behind	the	current	history:

git	filter-branch	--parent-filter	'sed	"s/^\$/-p	<graft-id>/"'	HEAD

(if	the	parent	string	is	empty	-	which	happens	when	we	are	dealing	with
the	initial	commit	-	add	graftcommit	as	a	parent).	Note	that	this	assumes
history	with	a	single	root	(that	is,	no	merge	without	common	ancestors
happened).	If	this	is	not	the	case,	use:

git	filter-branch	--parent-filter	\

								'test	$GIT_COMMIT	=	<commit-id>	&&	echo	"-p	<graft-id>"	||	cat'	HEAD

or	even	simpler:

echo	"$commit-id	$graft-id"	>>	.git/info/grafts

git	filter-branch	$graft-id..HEAD

To	remove	commits	authored	by	"Darl	McBribe"	from	the	history:

git	filter-branch	--commit-filter	'

								if	[	"$GIT_AUTHOR_NAME"	=	"Darl	McBribe"	];

								then

																skip_commit	"$@";

								else

																git	commit-tree	"$@";

								fi'	HEAD

The	function	skip_commit	is	defined	as	follows:

skip_commit()



{

								shift;

								while	[	-n	"$1"	];

								do

																shift;

																map	"$1";

																shift;

								done;

}

The	shift	magic	first	throws	away	the	tree	id	and	then	the	-p	parameters.
Note	that	this	handles	merges	properly!	In	case	Darl	committed	a	merge
between	P1	and	P2,	it	will	be	propagated	properly	and	all	children	of	the
merge	will	become	merge	commits	with	P1,P2	as	their	parents	instead	of
the	merge	commit.

NOTE	the	changes	introduced	by	the	commits,	and	which	are	not
reverted	by	subsequent	commits,	will	still	be	in	the	rewritten	branch.	If
you	want	to	throw	out	changes	together	with	the	commits,	you	should	use
the	interactive	mode	of	git	rebase.

You	can	rewrite	the	commit	log	messages	using	--msg-filter.	For
example,	git	svn-id	strings	in	a	repository	created	by	git	svn	can	be
removed	this	way:

git	filter-branch	--msg-filter	'

								sed	-e	"/^git-svn-id:/d"

'

If	you	need	to	add	Acked-by	lines	to,	say,	the	last	10	commits	(none	of
which	is	a	merge),	use	this	command:

git	filter-branch	--msg-filter	'

								cat	&&

								echo	"Acked-by:	Bugs	Bunny	<bunny@bugzilla.org>"

'	HEAD~10..HEAD

The	--env-filter	option	can	be	used	to	modify	committer	and/or	author
identity.	For	example,	if	you	found	out	that	your	commits	have	the	wrong



identity	due	to	a	misconfigured	user.email,	you	can	make	a	correction,
before	publishing	the	project,	like	this:

git	filter-branch	--env-filter	'

								if	test	"$GIT_AUTHOR_EMAIL"	=	"root@localhost"

								then

																GIT_AUTHOR_EMAIL=john@example.com

																export	GIT_AUTHOR_EMAIL

								fi

								if	test	"$GIT_COMMITTER_EMAIL"	=	"root@localhost"

								then

																GIT_COMMITTER_EMAIL=john@example.com

																export	GIT_COMMITTER_EMAIL

								fi

'	--	--all

To	restrict	rewriting	to	only	part	of	the	history,	specify	a	revision	range	in
addition	to	the	new	branch	name.	The	new	branch	name	will	point	to	the
top-most	revision	that	a	git	rev-list	of	this	range	will	print.

Consider	this	history:

					D--E--F--G--H

				/					/

A--B-----C

To	rewrite	only	commits	D,E,F,G,H,	but	leave	A,	B	and	C	alone,	use:

git	filter-branch	...	C..H

To	rewrite	commits	E,F,G,H,	use	one	of	these:

git	filter-branch	...	C..H	--not	D

git	filter-branch	...	D..H	--not	C

To	move	the	whole	tree	into	a	subdirectory,	or	remove	it	from	there:

git	filter-branch	--index-filter	\

								'git	ls-files	-s	|	sed	"s-\t\"*-&newsubdir/-"	|



																GIT_INDEX_FILE=$GIT_INDEX_FILE.new	\

																								git	update-index	--index-info	&&

									mv	"$GIT_INDEX_FILE.new"	"$GIT_INDEX_FILE"'	HEAD

Checklist	for	Shrinking	a	Repository

git-filter-branch	can	be	used	to	get	rid	of	a	subset	of	files,	usually	with
some	combination	of	--index-filter	and	--subdirectory-filter.	People	expect
the	resulting	repository	to	be	smaller	than	the	original,	but	you	need	a	few
more	steps	to	actually	make	it	smaller,	because	Git	tries	hard	not	to	lose
your	objects	until	you	tell	it	to.	First	make	sure	that:

You	really	removed	all	variants	of	a	filename,	if	a	blob	was	moved
over	its	lifetime.	git	log	--name-only	--follow	--all	--	filename	can	help
you	find	renames.
You	really	filtered	all	refs:	use	--tag-name-filter	cat	--	--all	when
calling	git-filter-branch.

Then	there	are	two	ways	to	get	a	smaller	repository.	A	safer	way	is	to
clone,	that	keeps	your	original	intact.

Clone	it	with	git	clone	file:///path/to/repo.	The	clone	will	not	have	the
removed	objects.	See	Section	G.3.23,	“git-clone(1)”.	(Note	that
cloning	with	a	plain	path	just	hardlinks	everything!)

If	you	really	don't	want	to	clone	it,	for	whatever	reasons,	check	the
following	points	instead	(in	this	order).	This	is	a	very	destructive
approach,	so	make	a	backup	or	go	back	to	cloning	it.	You	have	been
warned.

Remove	the	original	refs	backed	up	by	git-filter-branch:	say	git	for-
each-ref	--format="%(refname)"	refs/original/	|	xargs	-n	1	git	update-
ref	-d.
Expire	all	reflogs	with	git	reflog	expire	--expire=now	--all.
Garbage	collect	all	unreferenced	objects	with	git	gc	--prune=now	(or
if	your	git-gc	is	not	new	enough	to	support	arguments	to	--prune,	use
git	repack	-ad;	git	prune	instead).



Notes

git-filter-branch	allows	you	to	make	complex	shell-scripted	rewrites	of
your	Git	history,	but	you	probably	don't	need	this	flexibility	if	you're	simply
removing	unwanted	data	like	large	files	or	passwords.	For	those
operations	you	may	want	to	consider	http://rtyley.github.io/bfg-repo-
cleaner/[The	BFG	Repo-Cleaner],	a	JVM-based	alternative	to	git-filter-
branch,	typically	at	least	10-50x	faster	for	those	use-cases,	and	with	quite
different	characteristics:

Any	particular	version	of	a	file	is	cleaned	exactly	once.	The	BFG,
unlike	git-filter-branch,	does	not	give	you	the	opportunity	to	handle	a
file	differently	based	on	where	or	when	it	was	committed	within	your
history.	This	constraint	gives	the	core	performance	benefit	of	The
BFG,	and	is	well-suited	to	the	task	of	cleansing	bad	data	-	you	don't
care	where	the	bad	data	is,	you	just	want	it	gone.
By	default	The	BFG	takes	full	advantage	of	multi-core	machines,
cleansing	commit	file-trees	in	parallel.	git-filter-branch	cleans
commits	sequentially	(i.e.	in	a	single-threaded	manner),	though	it	is
possible	to	write	filters	that	include	their	own	parallelism,	in	the
scripts	executed	against	each	commit.
The	http://rtyley.github.io/bfg-repo-cleaner/#examples[command
options]	are	much	more	restrictive	than	git-filter	branch,	and
dedicated	just	to	the	tasks	of	removing	unwanted	data-	e.g:	--strip-
blobs-bigger-than	1M.

GIT

Part	of	the	Section	G.3.1,	“git(1)”	suite

G.3.48.	git-fmt-merge-msg(1)

NAME

git-fmt-merge-msg	-	Produce	a	merge	commit	message

http://rtyley.github.io/bfg-repo-cleaner/%5BThe
http://rtyley.github.io/bfg-repo-cleaner/#examples%5Bcommand


SYNOPSIS

git	fmt-merge-msg	[-m	<message>]	[--log[=<n>]	|	--no-log]

git	fmt-merge-msg	[-m	<message>]	[--log[=<n>]	|	--no-log]	-

F	<file>

DESCRIPTION

Takes	the	list	of	merged	objects	on	stdin	and	produces	a	suitable	commit
message	to	be	used	for	the	merge	commit,	usually	to	be	passed	as	the
<merge-message>	argument	of	git	merge.

This	command	is	intended	mostly	for	internal	use	by	scripts	automatically
invoking	git	merge.

OPTIONS

--log[=<n>]
In	addition	to	branch	names,	populate	the	log	message	with	one-line
descriptions	from	the	actual	commits	that	are	being	merged.	At	most
<n>	commits	from	each	merge	parent	will	be	used	(20	if	<n>	is
omitted).	This	overrides	the	merge.log	configuration	variable.

--no-log
Do	not	list	one-line	descriptions	from	the	actual	commits	being
merged.

--[no-]summary
Synonyms	to	--log	and	--no-log;	these	are	deprecated	and	will	be
removed	in	the	future.

-m	<message>	,	--message	<message>
Use	<message>	instead	of	the	branch	names	for	the	first	line	of	the
log	message.	For	use	with	--log.

-F	<file>	,	--file	<file>
Take	the	list	of	merged	objects	from	<file>	instead	of	stdin.

CONFIGURATION



merge.branchdesc
In	addition	to	branch	names,	populate	the	log	message	with	the
branch	description	text	associated	with	them.	Defaults	to	false.

merge.log
In	addition	to	branch	names,	populate	the	log	message	with	at	most
the	specified	number	of	one-line	descriptions	from	the	actual
commits	that	are	being	merged.	Defaults	to	false,	and	true	is	a
synonym	for	20.

merge.summary
Synonym	to	merge.log;	this	is	deprecated	and	will	be	removed	in	the
future.

EXAMPLE

$	git	fetch	origin	master	$	git	fmt-merge-msg	--log
<$GIT_DIR/FETCH_HEAD

Print	a	log	message	describing	a	merge	of	the	"master"	branch	from	the
"origin"	remote.

SEE	ALSO

Section	G.3.79,	“git-merge(1)”

GIT

Part	of	the	Section	G.3.1,	“git(1)”	suite

G.3.49.	git-for-each-ref(1)

NAME

git-for-each-ref	-	Output	information	on	each	ref

SYNOPSIS



git	for-each-ref	[--count=<count>]	[--shell|--perl|--python|-

-tcl]

																			[(--sort=<key>)…]	[--format=

<format>]	[<pattern>…]

																			[--points-at	<object>]	[(--merged	|	--no-

merged)	[<object>]]

																			[--contains	[<object>]]

DESCRIPTION

Iterate	over	all	refs	that	match	<pattern>	and	show	them	according	to	the
given	<format>,	after	sorting	them	according	to	the	given	set	of	<key>.	If
<count>	is	given,	stop	after	showing	that	many	refs.	The	interpolated
values	in	<format>	can	optionally	be	quoted	as	string	literals	in	the
specified	host	language	allowing	their	direct	evaluation	in	that	language.

OPTIONS

<count>
By	default	the	command	shows	all	refs	that	match	<pattern>.	This
option	makes	it	stop	after	showing	that	many	refs.

<key>
A	field	name	to	sort	on.	Prefix	-	to	sort	in	descending	order	of	the
value.	When	unspecified,	refname	is	used.	You	may	use	the	--sort=
<key>	option	multiple	times,	in	which	case	the	last	key	becomes	the
primary	key.

<format>
A	string	that	interpolates	%(fieldname)	from	the	object	pointed	at	by
a	ref	being	shown.	If	fieldname	is	prefixed	with	an	asterisk	(*)	and
the	ref	points	at	a	tag	object,	the	value	for	the	field	in	the	object	tag
refers	is	used.	When	unspecified,	defaults	to	%(objectname)	SPC	%
(objecttype)	TAB	%(refname).	It	also	interpolates	%%	to	%,	and	%xx
where	xx	are	hex	digits	interpolates	to	character	with	hex	code	xx;
for	example	%00	interpolates	to	\0	(NUL),	%09	to	\t	(TAB)	and	%0a
to	\n	(LF).

<pattern>…
If	one	or	more	patterns	are	given,	only	refs	are	shown	that	match



against	at	least	one	pattern,	either	using	fnmatch(3)	or	literally,	in	the
latter	case	matching	completely	or	from	the	beginning	up	to	a	slash.

--shell	,	--perl	,	--python	,	--tcl
If	given,	strings	that	substitute	%(fieldname)	placeholders	are	quoted
as	string	literals	suitable	for	the	specified	host	language.	This	is
meant	to	produce	a	scriptlet	that	can	directly	be	`eval`ed.

--points-at	<object>
Only	list	refs	which	points	at	the	given	object.

--merged	[<object>]
Only	list	refs	whose	tips	are	reachable	from	the	specified	commit
(HEAD	if	not	specified).

--no-merged	[<object>]
Only	list	refs	whose	tips	are	not	reachable	from	the	specified	commit
(HEAD	if	not	specified).

--contains	[<object>]
Only	list	refs	which	contain	the	specified	commit	(HEAD	if	not
specified).

FIELD	NAMES

Various	values	from	structured	fields	in	referenced	objects	can	be	used	to
interpolate	into	the	resulting	output,	or	as	sort	keys.

For	all	objects,	the	following	names	can	be	used:

refname
The	name	of	the	ref	(the	part	after	$GIT_DIR/).	For	a	non-ambiguous
short	name	of	the	ref	append	:short.	The	option
core.warnAmbiguousRefs	is	used	to	select	the	strict	abbreviation
mode.	If	strip=<N>	is	appended,	strips	<N>	slash-separated	path
components	from	the	front	of	the	refname	(e.g.,	%(refname:strip=2)
turns	refs/tags/foo	into	foo.	<N>	must	be	a	positive	integer.	If	a
displayed	ref	has	fewer	components	than	<N>,	the	command	aborts
with	an	error.

objecttype
The	type	of	the	object	(blob,	tree,	commit,	tag).

objectsize



The	size	of	the	object	(the	same	as	git	cat-file	-s	reports).
objectname

The	object	name	(aka	SHA-1).	For	a	non-ambiguous	abbreviation	of
the	object	name	append	:short.

upstream
The	name	of	a	local	ref	which	can	be	considered	upstream	from	the
displayed	ref.	Respects	:short	in	the	same	way	as	refname	above.
Additionally	respects	:track	to	show	"[ahead	N,	behind	M]"	and
:trackshort	to	show	the	terse	version:	">"	(ahead),	"<"	(behind),	"<>"
(ahead	and	behind),	or	"="	(in	sync).	Has	no	effect	if	the	ref	does	not
have	tracking	information	associated	with	it.

push
The	name	of	a	local	ref	which	represents	the	@{push}	location	for
the	displayed	ref.	Respects	:short,	:track,	and	:trackshort	options	as
upstream	does.	Produces	an	empty	string	if	no	@{push}	ref	is
configured.

HEAD
*	if	HEAD	matches	current	ref	(the	checked	out	branch),	'	'	otherwise.

color
Change	output	color.	Followed	by	:<colorname>,	where	names	are
described	in	color.branch.*.

align
Left-,	middle-,	or	right-align	the	content	between	%(align:…)	and	%
(end).	The	"align:"	is	followed	by	width=<width>	and	position=
<position>	in	any	order	separated	by	a	comma,	where	the	<position>
is	either	left,	right	or	middle,	default	being	left	and	<width>	is	the	total
length	of	the	content	with	alignment.	For	brevity,	the	"width="	and/or
"position="	prefixes	may	be	omitted,	and	bare	<width>	and
<position>	used	instead.	For	instance,	%(align:<width>,<position>).
If	the	contents	length	is	more	than	the	width	then	no	alignment	is
performed.	If	used	with	--quote	everything	in	between	%(align:…)
and	%(end)	is	quoted,	but	if	nested	then	only	the	topmost	level
performs	quoting.

In	addition	to	the	above,	for	commit	and	tag	objects,	the	header	field
names	(tree,	parent,	object,	type,	and	tag)	can	be	used	to	specify	the
value	in	the	header	field.



For	commit	and	tag	objects,	the	special	creatordate	and	creator	fields	will
correspond	to	the	appropriate	date	or	name-email-date	tuple	from	the
committer	or	tagger	fields	depending	on	the	object	type.	These	are
intended	for	working	on	a	mix	of	annotated	and	lightweight	tags.

Fields	that	have	name-email-date	tuple	as	its	value	(author,	committer,
and	tagger)	can	be	suffixed	with	name,	email,	and	date	to	extract	the
named	component.

The	complete	message	in	a	commit	and	tag	object	is	contents.	Its	first
line	is	contents:subject,	where	subject	is	the	concatenation	of	all	lines	of
the	commit	message	up	to	the	first	blank	line.	The	next	line	is
contents:body,	where	body	is	all	of	the	lines	after	the	first	blank	line.	The
optional	GPG	signature	is	contents:signature.	The	first	N	lines	of	the
message	is	obtained	using	contents:lines=N.

For	sorting	purposes,	fields	with	numeric	values	sort	in	numeric	order
(objectsize,	authordate,	committerdate,	creatordate,	taggerdate).	All	other
fields	are	used	to	sort	in	their	byte-value	order.

There	is	also	an	option	to	sort	by	versions,	this	can	be	done	by	using	the
fieldname	version:refname	or	its	alias	v:refname.

In	any	case,	a	field	name	that	refers	to	a	field	inapplicable	to	the	object
referred	by	the	ref	does	not	cause	an	error.	It	returns	an	empty	string
instead.

As	a	special	case	for	the	date-type	fields,	you	may	specify	a	format	for
the	date	by	adding	:	followed	by	date	format	name	(see	the	values	the	--
date	option	to	???	takes).

EXAMPLES

An	example	directly	producing	formatted	text.	Show	the	most	recent	3
tagged	commits:

#!/bin/sh



git	for-each-ref	--count=3	--sort='-*authordate'	\

--format='From:	%(*authorname)	%(*authoremail)

Subject:	%(*subject)

Date:	%(*authordate)

Ref:	%(*refname)

%(*body)

'	'refs/tags'

A	simple	example	showing	the	use	of	shell	eval	on	the	output,
demonstrating	the	use	of	--shell.	List	the	prefixes	of	all	heads:

#!/bin/sh

git	for-each-ref	--shell	--format="ref=%(refname)"	refs/heads	|	\

while	read	entry

do

								eval	"$entry"

								echo	`dirname	$ref`

done

A	bit	more	elaborate	report	on	tags,	demonstrating	that	the	format	may
be	an	entire	script:

#!/bin/sh

fmt='

								r=%(refname)

								t=%(*objecttype)

								T=${r#refs/tags/}

								o=%(*objectname)

								n=%(*authorname)

								e=%(*authoremail)

								s=%(*subject)

								d=%(*authordate)

								b=%(*body)

								kind=Tag

								if	test	"z$t"	=	z

								then

																#	could	be	a	lightweight	tag



																t=%(objecttype)

																kind="Lightweight	tag"

																o=%(objectname)

																n=%(authorname)

																e=%(authoremail)

																s=%(subject)

																d=%(authordate)

																b=%(body)

								fi

								echo	"$kind	$T	points	at	a	$t	object	$o"

								if	test	"z$t"	=	zcommit

								then

																echo	"The	commit	was	authored	by	$n	$e

at	$d,	and	titled

				$s

Its	message	reads	as:

"

																echo	"$b"	|	sed	-e	"s/^/				/"

																echo

								fi

'

eval=`git	for-each-ref	--shell	--format="$fmt"	\

								--sort='*objecttype'	\

								--sort=-taggerdate	\

								refs/tags`

eval	"$eval"

SEE	ALSO

Section	G.3.125,	“git-show-ref(1)”

GIT

Part	of	the	Section	G.3.1,	“git(1)”	suite

G.3.50.	git-format-patch(1)

NAME



git-format-patch	-	Prepare	patches	for	e-mail	submission

SYNOPSIS

git	format-patch	[-k]	[(-o|--output-directory)	<dir>	|	--

stdout]

																			[--no-thread	|	--thread[=<style>]]

																			[(--attach|--inline)[=<boundary>]	|	--no-

attach]

																			[-s	|	--signoff]

																			[--signature=<signature>	|	--no-signature]

																			[--signature-file=<file>]

																			[-n	|	--numbered	|	-N	|	--no-numbered]

																			[--start-number	<n>]	[--numbered-files]

																			[--in-reply-to=Message-Id]	[--suffix=.

<sfx>]

																			[--ignore-if-in-upstream]

																			[--subject-prefix=Subject-Prefix]	[(--

reroll-count|-v)	<n>]

																			[--to=<email>]	[--cc=<email>]

																			[--[no-]cover-letter]	[--quiet]	[--notes[=

<ref>]]

																			[<common	diff	options>]

																			[	<since>	|	<revision	range>	]

DESCRIPTION

Prepare	each	commit	with	its	patch	in	one	file	per	commit,	formatted	to
resemble	UNIX	mailbox	format.	The	output	of	this	command	is
convenient	for	e-mail	submission	or	for	use	with	git	am.

There	are	two	ways	to	specify	which	commits	to	operate	on.

1.	 A	single	commit,	<since>,	specifies	that	the	commits	leading	to	the
tip	of	the	current	branch	that	are	not	in	the	history	that	leads	to	the
<since>	to	be	output.

2.	 Generic	<revision	range>	expression	(see	"SPECIFYING
REVISIONS"	section	in	Section	G.4.12,	“gitrevisions(7)”)	means	the
commits	in	the	specified	range.



The	first	rule	takes	precedence	in	the	case	of	a	single	<commit>.	To
apply	the	second	rule,	i.e.,	format	everything	since	the	beginning	of
history	up	until	<commit>,	use	the	--root	option:	git	format-patch	--root
<commit>.	If	you	want	to	format	only	<commit>	itself,	you	can	do	this	with
git	format-patch	-1	<commit>.

By	default,	each	output	file	is	numbered	sequentially	from	1,	and	uses	the
first	line	of	the	commit	message	(massaged	for	pathname	safety)	as	the
filename.	With	the	--numbered-files	option,	the	output	file	names	will	only
be	numbers,	without	the	first	line	of	the	commit	appended.	The	names	of
the	output	files	are	printed	to	standard	output,	unless	the	--stdout	option
is	specified.

If	-o	is	specified,	output	files	are	created	in	<dir>.	Otherwise	they	are
created	in	the	current	working	directory.	The	default	path	can	be	set	with
the	format.outputDirectory	configuration	option.	The	-o	option	takes
precedence	over	format.outputDirectory.	To	store	patches	in	the	current
working	directory	even	when	format.outputDirectory	points	elsewhere,
use	-o	..

By	default,	the	subject	of	a	single	patch	is	"[PATCH]	"	followed	by	the
concatenation	of	lines	from	the	commit	message	up	to	the	first	blank	line
(see	the	DISCUSSION	section	of	Section	G.3.26,	“git-commit(1)”).

When	multiple	patches	are	output,	the	subject	prefix	will	instead	be	"
[PATCH	n/m]	".	To	force	1/1	to	be	added	for	a	single	patch,	use	-n.	To
omit	patch	numbers	from	the	subject,	use	-N.

If	given	--thread,	git-format-patch	will	generate	In-Reply-To	and
References	headers	to	make	the	second	and	subsequent	patch	mails
appear	as	replies	to	the	first	mail;	this	also	generates	a	Message-Id
header	to	reference.

OPTIONS

-p	,	--no-stat
Generate	plain	patches	without	any	diffstats.

-U<n>	,	--unified=<n>



Generate	diffs	with	<n>	lines	of	context	instead	of	the	usual	three.
--minimal

Spend	extra	time	to	make	sure	the	smallest	possible	diff	is	produced.
--patience

Generate	a	diff	using	the	"patience	diff"	algorithm.
--histogram

Generate	a	diff	using	the	"histogram	diff"	algorithm.
--diff-algorithm={patience|minimal|histogram|myers}

Choose	a	diff	algorithm.	The	variants	are	as	follows:

default,	myers
The	basic	greedy	diff	algorithm.	Currently,	this	is	the	default.

minimal
Spend	extra	time	to	make	sure	the	smallest	possible	diff	is
produced.

patience
Use	"patience	diff"	algorithm	when	generating	patches.

histogram
This	algorithm	extends	the	patience	algorithm	to	"support	low-
occurrence	common	elements".

For	instance,	if	you	configured	diff.algorithm	variable	to	a	non-default
value	and	want	to	use	the	default	one,	then	you	have	to	use	--diff-
algorithm=default	option.

--stat[=<width>[,<name-width>[,<count>]]]

Generate	a	diffstat.	By	default,	as	much	space	as	necessary	will	be
used	for	the	filename	part,	and	the	rest	for	the	graph	part.	Maximum
width	defaults	to	terminal	width,	or	80	columns	if	not	connected	to	a
terminal,	and	can	be	overridden	by	<width>.	The	width	of	the
filename	part	can	be	limited	by	giving	another	width	<name-width>
after	a	comma.	The	width	of	the	graph	part	can	be	limited	by	using	--
stat-graph-width=<width>	(affects	all	commands	generating	a	stat
graph)	or	by	setting	diff.statGraphWidth=<width>	(does	not	affect	git
format-patch).	By	giving	a	third	parameter	<count>,	you	can	limit	the
output	to	the	first	<count>	lines,	followed	by	...	if	there	are	more.



These	parameters	can	also	be	set	individually	with	--stat-width=
<width>,	--stat-name-width=<name-width>	and	--stat-count=<count>.

--numstat
Similar	to	--stat,	but	shows	number	of	added	and	deleted	lines	in
decimal	notation	and	pathname	without	abbreviation,	to	make	it
more	machine	friendly.	For	binary	files,	outputs	two	-	instead	of
saying	0	0.

--shortstat
Output	only	the	last	line	of	the	--stat	format	containing	total	number
of	modified	files,	as	well	as	number	of	added	and	deleted	lines.

--dirstat[=<param1,param2,…>]

Output	the	distribution	of	relative	amount	of	changes	for	each	sub-
directory.	The	behavior	of	--dirstat	can	be	customized	by	passing	it	a
comma	separated	list	of	parameters.	The	defaults	are	controlled	by
the	diff.dirstat	configuration	variable	(see	Section	G.3.27,	“git-
config(1)”).	The	following	parameters	are	available:

changes
Compute	the	dirstat	numbers	by	counting	the	lines	that	have
been	removed	from	the	source,	or	added	to	the	destination.	This
ignores	the	amount	of	pure	code	movements	within	a	file.	In
other	words,	rearranging	lines	in	a	file	is	not	counted	as	much
as	other	changes.	This	is	the	default	behavior	when	no
parameter	is	given.

lines
Compute	the	dirstat	numbers	by	doing	the	regular	line-based	diff
analysis,	and	summing	the	removed/added	line	counts.	(For
binary	files,	count	64-byte	chunks	instead,	since	binary	files
have	no	natural	concept	of	lines).	This	is	a	more	expensive	--
dirstat	behavior	than	the	changes	behavior,	but	it	does	count
rearranged	lines	within	a	file	as	much	as	other	changes.	The
resulting	output	is	consistent	with	what	you	get	from	the	other	--
*stat	options.

files
Compute	the	dirstat	numbers	by	counting	the	number	of	files
changed.	Each	changed	file	counts	equally	in	the	dirstat



analysis.	This	is	the	computationally	cheapest	--dirstat	behavior,
since	it	does	not	have	to	look	at	the	file	contents	at	all.

cumulative
Count	changes	in	a	child	directory	for	the	parent	directory	as
well.	Note	that	when	using	cumulative,	the	sum	of	the
percentages	reported	may	exceed	100%.	The	default	(non-
cumulative)	behavior	can	be	specified	with	the	noncumulative
parameter.

<limit>
An	integer	parameter	specifies	a	cut-off	percent	(3%	by	default).
Directories	contributing	less	than	this	percentage	of	the	changes
are	not	shown	in	the	output.

Example:	The	following	will	count	changed	files,	while	ignoring
directories	with	less	than	10%	of	the	total	amount	of	changed	files,
and	accumulating	child	directory	counts	in	the	parent	directories:	--
dirstat=files,10,cumulative.

--summary
Output	a	condensed	summary	of	extended	header	information	such
as	creations,	renames	and	mode	changes.

--no-renames
Turn	off	rename	detection,	even	when	the	configuration	file	gives	the
default	to	do	so.

--full-index
Instead	of	the	first	handful	of	characters,	show	the	full	pre-	and	post-
image	blob	object	names	on	the	"index"	line	when	generating	patch
format	output.

--binary
In	addition	to	--full-index,	output	a	binary	diff	that	can	be	applied	with
git-apply.

--abbrev[=<n>]
Instead	of	showing	the	full	40-byte	hexadecimal	object	name	in	diff-
raw	format	output	and	diff-tree	header	lines,	show	only	a	partial
prefix.	This	is	independent	of	the	--full-index	option	above,	which
controls	the	diff-patch	output	format.	Non	default	number	of	digits
can	be	specified	with	--abbrev=<n>.



-B[<n>][/<m>]	,	--break-rewrites[=[<n>][/<m>]]

Break	complete	rewrite	changes	into	pairs	of	delete	and	create.	This
serves	two	purposes:

It	affects	the	way	a	change	that	amounts	to	a	total	rewrite	of	a	file	not
as	a	series	of	deletion	and	insertion	mixed	together	with	a	very	few
lines	that	happen	to	match	textually	as	the	context,	but	as	a	single
deletion	of	everything	old	followed	by	a	single	insertion	of	everything
new,	and	the	number	m	controls	this	aspect	of	the	-B	option	(defaults
to	60%).	-B/70%	specifies	that	less	than	30%	of	the	original	should
remain	in	the	result	for	Git	to	consider	it	a	total	rewrite	(i.e.	otherwise
the	resulting	patch	will	be	a	series	of	deletion	and	insertion	mixed
together	with	context	lines).

When	used	with	-M,	a	totally-rewritten	file	is	also	considered	as	the
source	of	a	rename	(usually	-M	only	considers	a	file	that
disappeared	as	the	source	of	a	rename),	and	the	number	n	controls
this	aspect	of	the	-B	option	(defaults	to	50%).	-B20%	specifies	that	a
change	with	addition	and	deletion	compared	to	20%	or	more	of	the
file's	size	are	eligible	for	being	picked	up	as	a	possible	source	of	a
rename	to	another	file.

-M[<n>]	,	--find-renames[=<n>]
Detect	renames.	If	n	is	specified,	it	is	a	threshold	on	the	similarity
index	(i.e.	amount	of	addition/deletions	compared	to	the	file's	size).
For	example,	-M90%	means	Git	should	consider	a	delete/add	pair	to
be	a	rename	if	more	than	90%	of	the	file	hasn't	changed.	Without	a
%	sign,	the	number	is	to	be	read	as	a	fraction,	with	a	decimal	point
before	it.	I.e.,	-M5	becomes	0.5,	and	is	thus	the	same	as	-M50%.
Similarly,	-M05	is	the	same	as	-M5%.	To	limit	detection	to	exact
renames,	use	-M100%.	The	default	similarity	index	is	50%.

-C[<n>]	,	--find-copies[=<n>]
Detect	copies	as	well	as	renames.	See	also	--find-copies-harder.	If	n
is	specified,	it	has	the	same	meaning	as	for	-M<n>.

--find-copies-harder
For	performance	reasons,	by	default,	-C	option	finds	copies	only	if
the	original	file	of	the	copy	was	modified	in	the	same	changeset.	This



flag	makes	the	command	inspect	unmodified	files	as	candidates	for
the	source	of	copy.	This	is	a	very	expensive	operation	for	large
projects,	so	use	it	with	caution.	Giving	more	than	one	-C	option	has
the	same	effect.

-D	,	--irreversible-delete

Omit	the	preimage	for	deletes,	i.e.	print	only	the	header	but	not	the
diff	between	the	preimage	and	/dev/null.	The	resulting	patch	is	not
meant	to	be	applied	with	patch	or	git	apply;	this	is	solely	for	people
who	want	to	just	concentrate	on	reviewing	the	text	after	the	change.
In	addition,	the	output	obviously	lack	enough	information	to	apply
such	a	patch	in	reverse,	even	manually,	hence	the	name	of	the
option.

When	used	together	with	-B,	omit	also	the	preimage	in	the	deletion
part	of	a	delete/create	pair.

-l<num>
The	-M	and	-C	options	require	O(n^2)	processing	time	where	n	is	the
number	of	potential	rename/copy	targets.	This	option	prevents
rename/copy	detection	from	running	if	the	number	of	rename/copy
targets	exceeds	the	specified	number.

-O<orderfile>
Output	the	patch	in	the	order	specified	in	the	<orderfile>,	which	has
one	shell	glob	pattern	per	line.	This	overrides	the	diff.orderFile
configuration	variable	(see	Section	G.3.27,	“git-config(1)”).	To	cancel
diff.orderFile,	use	-O/dev/null.

-a	,	--text
Treat	all	files	as	text.

--ignore-space-at-eol
Ignore	changes	in	whitespace	at	EOL.

-b	,	--ignore-space-change
Ignore	changes	in	amount	of	whitespace.	This	ignores	whitespace	at
line	end,	and	considers	all	other	sequences	of	one	or	more
whitespace	characters	to	be	equivalent.

-w	,	--ignore-all-space
Ignore	whitespace	when	comparing	lines.	This	ignores	differences
even	if	one	line	has	whitespace	where	the	other	line	has	none.



--ignore-blank-lines
Ignore	changes	whose	lines	are	all	blank.

--inter-hunk-context=<lines>
Show	the	context	between	diff	hunks,	up	to	the	specified	number	of
lines,	thereby	fusing	hunks	that	are	close	to	each	other.

-W	,	--function-context
Show	whole	surrounding	functions	of	changes.

--ext-diff
Allow	an	external	diff	helper	to	be	executed.	If	you	set	an	external
diff	driver	with	Section	G.4.2,	“gitattributes(5)”,	you	need	to	use	this
option	with	Section	G.3.68,	“git-log(1)”	and	friends.

--no-ext-diff
Disallow	external	diff	drivers.

--textconv	,	--no-textconv
Allow	(or	disallow)	external	text	conversion	filters	to	be	run	when
comparing	binary	files.	See	Section	G.4.2,	“gitattributes(5)”	for
details.	Because	textconv	filters	are	typically	a	one-way	conversion,
the	resulting	diff	is	suitable	for	human	consumption,	but	cannot	be
applied.	For	this	reason,	textconv	filters	are	enabled	by	default	only
for	Section	G.3.41,	“git-diff(1)”	and	Section	G.3.68,	“git-log(1)”,	but
not	for	Section	G.3.50,	“git-format-patch(1)”	or	diff	plumbing
commands.

--ignore-submodules[=<when>]
Ignore	changes	to	submodules	in	the	diff	generation.	<when>	can	be
either	"none",	"untracked",	"dirty"	or	"all",	which	is	the	default.	Using
"none"	will	consider	the	submodule	modified	when	it	either	contains
untracked	or	modified	files	or	its	HEAD	differs	from	the	commit
recorded	in	the	superproject	and	can	be	used	to	override	any
settings	of	the	ignore	option	in	Section	G.3.27,	“git-config(1)”	or
Section	G.4.8,	“gitmodules(5)”.	When	"untracked"	is	used
submodules	are	not	considered	dirty	when	they	only	contain
untracked	content	(but	they	are	still	scanned	for	modified	content).
Using	"dirty"	ignores	all	changes	to	the	work	tree	of	submodules,
only	changes	to	the	commits	stored	in	the	superproject	are	shown
(this	was	the	behavior	until	1.7.0).	Using	"all"	hides	all	changes	to
submodules.

--src-prefix=<prefix>



Show	the	given	source	prefix	instead	of	"a/".
--dst-prefix=<prefix>

Show	the	given	destination	prefix	instead	of	"b/".
--no-prefix

Do	not	show	any	source	or	destination	prefix.

For	more	detailed	explanation	on	these	common	options,	see	also
Section	G.4.4,	“gitdiffcore(7)”.

-<n>
Prepare	patches	from	the	topmost	<n>	commits.

-o	<dir>	,	--output-directory	<dir>
Use	<dir>	to	store	the	resulting	files,	instead	of	the	current	working
directory.

-n	,	--numbered
Name	output	in	[PATCH	n/m]	format,	even	with	a	single	patch.

-N	,	--no-numbered
Name	output	in	[PATCH]	format.

--start-number	<n>
Start	numbering	the	patches	at	<n>	instead	of	1.

--numbered-files
Output	file	names	will	be	a	simple	number	sequence	without	the
default	first	line	of	the	commit	appended.

-k	,	--keep-subject
Do	not	strip/add	[PATCH]	from	the	first	line	of	the	commit	log
message.

-s	,	--signoff
Add	Signed-off-by:	line	to	the	commit	message,	using	the	committer
identity	of	yourself.	See	the	signoff	option	in	Section	G.3.26,	“git-
commit(1)”	for	more	information.

--stdout
Print	all	commits	to	the	standard	output	in	mbox	format,	instead	of
creating	a	file	for	each	one.

--attach[=<boundary>]
Create	multipart/mixed	attachment,	the	first	part	of	which	is	the
commit	message	and	the	patch	itself	in	the	second	part,	with
Content-Disposition:	attachment.



--no-attach
Disable	the	creation	of	an	attachment,	overriding	the	configuration
setting.

--inline[=<boundary>]
Create	multipart/mixed	attachment,	the	first	part	of	which	is	the
commit	message	and	the	patch	itself	in	the	second	part,	with
Content-Disposition:	inline.

--thread[=<style>]	,	--no-thread

Controls	addition	of	In-Reply-To	and	References	headers	to	make
the	second	and	subsequent	mails	appear	as	replies	to	the	first.	Also
controls	generation	of	the	Message-Id	header	to	reference.

The	optional	<style>	argument	can	be	either	shallow	or	deep.
shallow	threading	makes	every	mail	a	reply	to	the	head	of	the	series,
where	the	head	is	chosen	from	the	cover	letter,	the	--in-reply-to,	and
the	first	patch	mail,	in	this	order.	deep	threading	makes	every	mail	a
reply	to	the	previous	one.

The	default	is	--no-thread,	unless	the	format.thread	configuration	is
set.	If	--thread	is	specified	without	a	style,	it	defaults	to	the	style
specified	by	format.thread	if	any,	or	else	shallow.

Beware	that	the	default	for	git	send-email	is	to	thread	emails	itself.	If
you	want	git	format-patch	to	take	care	of	threading,	you	will	want	to
ensure	that	threading	is	disabled	for	git	send-email.

--in-reply-to=Message-Id
Make	the	first	mail	(or	all	the	mails	with	--no-thread)	appear	as	a
reply	to	the	given	Message-Id,	which	avoids	breaking	threads	to
provide	a	new	patch	series.

--ignore-if-in-upstream
Do	not	include	a	patch	that	matches	a	commit	in	<until>..<since>.
This	will	examine	all	patches	reachable	from	<since>	but	not	from
<until>	and	compare	them	with	the	patches	being	generated,	and
any	patch	that	matches	is	ignored.

--subject-prefix=<Subject-Prefix>
Instead	of	the	standard	[PATCH]	prefix	in	the	subject	line,	instead



use	[<Subject-Prefix>].	This	allows	for	useful	naming	of	a	patch
series,	and	can	be	combined	with	the	--numbered	option.

-v	<n>	,	--reroll-count=<n>
Mark	the	series	as	the	<n>-th	iteration	of	the	topic.	The	output
filenames	have	v<n>	prepended	to	them,	and	the	subject	prefix
("PATCH"	by	default,	but	configurable	via	the	--subject-prefix	option)
has	`	v<n>`	appended	to	it.	E.g.	--reroll-count=4	may	produce	v4-
0001-add-makefile.patch	file	that	has	"Subject:	[PATCH	v4	1/20]	Add
makefile"	in	it.

--to=<email>
Add	a	To:	header	to	the	email	headers.	This	is	in	addition	to	any
configured	headers,	and	may	be	used	multiple	times.	The	negated
form	--no-to	discards	all	To:	headers	added	so	far	(from	config	or
command	line).

--cc=<email>
Add	a	Cc:	header	to	the	email	headers.	This	is	in	addition	to	any
configured	headers,	and	may	be	used	multiple	times.	The	negated
form	--no-cc	discards	all	Cc:	headers	added	so	far	(from	config	or
command	line).

--from	,	--from=<ident>

Use	ident	in	the	From:	header	of	each	commit	email.	If	the	author
ident	of	the	commit	is	not	textually	identical	to	the	provided	ident,
place	a	From:	header	in	the	body	of	the	message	with	the	original
author.	If	no	ident	is	given,	use	the	committer	ident.

Note	that	this	option	is	only	useful	if	you	are	actually	sending	the
emails	and	want	to	identify	yourself	as	the	sender,	but	retain	the
original	author	(and	git	am	will	correctly	pick	up	the	in-body	header).
Note	also	that	git	send-email	already	handles	this	transformation	for
you,	and	this	option	should	not	be	used	if	you	are	feeding	the	result
to	git	send-email.

--add-header=<header>
Add	an	arbitrary	header	to	the	email	headers.	This	is	in	addition	to
any	configured	headers,	and	may	be	used	multiple	times.	For
example,	--add-header="Organization:	git-foo".	The	negated	form	--
no-add-header	discards	all	(To:,	Cc:,	and	custom)	headers	added	so



far	from	config	or	command	line.
--[no-]cover-letter

In	addition	to	the	patches,	generate	a	cover	letter	file	containing	the
branch	description,	shortlog	and	the	overall	diffstat.	You	can	fill	in	a
description	in	the	file	before	sending	it	out.

--notes[=<ref>]

Append	the	notes	(see	Section	G.3.86,	“git-notes(1)”)	for	the	commit
after	the	three-dash	line.

The	expected	use	case	of	this	is	to	write	supporting	explanation	for
the	commit	that	does	not	belong	to	the	commit	log	message	proper,
and	include	it	with	the	patch	submission.	While	one	can	simply	write
these	explanations	after	format-patch	has	run	but	before	sending,
keeping	them	as	Git	notes	allows	them	to	be	maintained	between
versions	of	the	patch	series	(but	see	the	discussion	of	the
notes.rewrite	configuration	options	in	Section	G.3.86,	“git-notes(1)”
to	use	this	workflow).

--[no]-signature=<signature>
Add	a	signature	to	each	message	produced.	Per	RFC	3676	the
signature	is	separated	from	the	body	by	a	line	with	'--	'	on	it.	If	the
signature	option	is	omitted	the	signature	defaults	to	the	Git	version
number.

--signature-file=<file>
Works	just	like	--signature	except	the	signature	is	read	from	a	file.

--suffix=.<sfx>

Instead	of	using	.patch	as	the	suffix	for	generated	filenames,	use
specified	suffix.	A	common	alternative	is	--suffix=.txt.	Leaving	this
empty	will	remove	the	.patch	suffix.

Note	that	the	leading	character	does	not	have	to	be	a	dot;	for
example,	you	can	use	--suffix=-patch	to	get	0001-description-of-my-
change-patch.

-q	,	--quiet
Do	not	print	the	names	of	the	generated	files	to	standard	output.



--no-binary
Do	not	output	contents	of	changes	in	binary	files,	instead	display	a
notice	that	those	files	changed.	Patches	generated	using	this	option
cannot	be	applied	properly,	but	they	are	still	useful	for	code	review.

--zero-commit
Output	an	all-zero	hash	in	each	patch's	From	header	instead	of	the
hash	of	the	commit.

--root
Treat	the	revision	argument	as	a	<revision	range>,	even	if	it	is	just	a
single	commit	(that	would	normally	be	treated	as	a	<since>).	Note
that	root	commits	included	in	the	specified	range	are	always
formatted	as	creation	patches,	independently	of	this	flag.

CONFIGURATION

You	can	specify	extra	mail	header	lines	to	be	added	to	each	message,
defaults	for	the	subject	prefix	and	file	suffix,	number	patches	when
outputting	more	than	one	patch,	add	"To"	or	"Cc:"	headers,	configure
attachments,	and	sign	off	patches	with	configuration	variables.

[format]

								headers	=	"Organization:	git-foo\n"

								subjectPrefix	=	CHANGE

								suffix	=	.txt

								numbered	=	auto

								to	=	<email>

								cc	=	<email>

								attach	[	=	mime-boundary-string	]

								signOff	=	true

								coverletter	=	auto

DISCUSSION

The	patch	produced	by	git	format-patch	is	in	UNIX	mailbox	format,	with	a
fixed	"magic"	time	stamp	to	indicate	that	the	file	is	output	from	format-
patch	rather	than	a	real	mailbox,	like	so:

From	8f72bad1baf19a53459661343e21d6491c3908d3	Mon	Sep	17	00:00:00	2001



From:	Tony	Luck	<tony.luck@intel.com>

Date:	Tue,	13	Jul	2010	11:42:54	-0700

Subject:	[PATCH]	=?UTF-8?q?[IA64]=20Put=20ia64=20config=20files=20on=20the=20?=

	=?UTF-8?q?Uwe=20Kleine-K=C3=B6nig=20diet?=

MIME-Version:	1.0

Content-Type:	text/plain;	charset=UTF-8

Content-Transfer-Encoding:	8bit

arch/arm	config	files	were	slimmed	down	using	a	python	script

(See	commit	c2330e286f68f1c408b4aa6515ba49d57f05beae	comment)

Do	the	same	for	ia64	so	we	can	have	sleek	&	trim	looking

...

Typically	it	will	be	placed	in	a	MUA's	drafts	folder,	edited	to	add	timely
commentary	that	should	not	go	in	the	changelog	after	the	three	dashes,
and	then	sent	as	a	message	whose	body,	in	our	example,	starts	with
"arch/arm	config	files	were…".	On	the	receiving	end,	readers	can	save
interesting	patches	in	a	UNIX	mailbox	and	apply	them	with	Section	G.3.3,
“git-am(1)”.

When	a	patch	is	part	of	an	ongoing	discussion,	the	patch	generated	by
git	format-patch	can	be	tweaked	to	take	advantage	of	the	git	am	--
scissors	feature.	After	your	response	to	the	discussion	comes	a	line	that
consists	solely	of	"--	>8	--"	(scissors	and	perforation),	followed	by	the
patch	with	unnecessary	header	fields	removed:

...

>	So	we	should	do	such-and-such.

Makes	sense	to	me.		How	about	this	patch?

--	>8	--

Subject:	[IA64]	Put	ia64	config	files	on	the	Uwe	Kleine-König	diet

arch/arm	config	files	were	slimmed	down	using	a	python	script

...

When	sending	a	patch	this	way,	most	often	you	are	sending	your	own
patch,	so	in	addition	to	the	"From	$SHA1	$magic_timestamp"	marker	you



should	omit	From:	and	Date:	lines	from	the	patch	file.	The	patch	title	is
likely	to	be	different	from	the	subject	of	the	discussion	the	patch	is	in
response	to,	so	it	is	likely	that	you	would	want	to	keep	the	Subject:	line,
like	the	example	above.



1.	Checking	for	patch	corruption

Many	mailers	if	not	set	up	properly	will	corrupt	whitespace.	Here	are	two
common	types	of	corruption:

Empty	context	lines	that	do	not	have	any	whitespace.
Non-empty	context	lines	that	have	one	extra	whitespace	at	the
beginning.

One	way	to	test	if	your	MUA	is	set	up	correctly	is:

Send	the	patch	to	yourself,	exactly	the	way	you	would,	except	with
To:	and	Cc:	lines	that	do	not	contain	the	list	and	maintainer	address.
Save	that	patch	to	a	file	in	UNIX	mailbox	format.	Call	it	a.patch,	say.

Apply	it:

$	git	fetch	<project>	master:test-apply

$	git	checkout	test-apply

$	git	reset	--hard

$	git	am	a.patch

If	it	does	not	apply	correctly,	there	can	be	various	reasons.

The	patch	itself	does	not	apply	cleanly.	That	is	bad	but	does	not
have	much	to	do	with	your	MUA.	You	might	want	to	rebase	the	patch
with	Section	G.3.99,	“git-rebase(1)”	before	regenerating	it	in	this
case.
The	MUA	corrupted	your	patch;	"am"	would	complain	that	the	patch
does	not	apply.	Look	in	the	.git/rebase-apply/	subdirectory	and	see
what	patch	file	contains	and	check	for	the	common	corruption
patterns	mentioned	above.
While	at	it,	check	the	info	and	final-commit	files	as	well.	If	what	is	in
final-commit	is	not	exactly	what	you	would	want	to	see	in	the	commit
log	message,	it	is	very	likely	that	the	receiver	would	end	up	hand
editing	the	log	message	when	applying	your	patch.	Things	like	"Hi,
this	is	my	first	patch.\n"	in	the	patch	e-mail	should	come	after	the
three-dash	line	that	signals	the	end	of	the	commit	message.



MUA-SPECIFIC	HINTS

Here	are	some	hints	on	how	to	successfully	submit	patches	inline	using
various	mailers.



1.	GMail

GMail	does	not	have	any	way	to	turn	off	line	wrapping	in	the	web
interface,	so	it	will	mangle	any	emails	that	you	send.	You	can	however
use	"git	send-email"	and	send	your	patches	through	the	GMail	SMTP
server,	or	use	any	IMAP	email	client	to	connect	to	the	google	IMAP
server	and	forward	the	emails	through	that.

For	hints	on	using	git	send-email	to	send	your	patches	through	the	GMail
SMTP	server,	see	the	EXAMPLE	section	of	Section	G.3.116,	“git-send-
email(1)”.

For	hints	on	submission	using	the	IMAP	interface,	see	the	EXAMPLE
section	of	Section	G.3.62,	“git-imap-send(1)”.



2.	Thunderbird

By	default,	Thunderbird	will	both	wrap	emails	as	well	as	flag	them	as
being	format=flowed,	both	of	which	will	make	the	resulting	email
unusable	by	Git.

There	are	three	different	approaches:	use	an	add-on	to	turn	off	line
wraps,	configure	Thunderbird	to	not	mangle	patches,	or	use	an	external
editor	to	keep	Thunderbird	from	mangling	the	patches.

2.1.	Approach	#1	(add-on)

Install	the	Toggle	Word	Wrap	add-on	that	is	available	from
https://addons.mozilla.org/thunderbird/addon/toggle-word-wrap/	It	adds	a
menu	entry	"Enable	Word	Wrap"	in	the	composer's	"Options"	menu	that
you	can	tick	off.	Now	you	can	compose	the	message	as	you	otherwise	do
(cut	+	paste,	git	format-patch	|	git	imap-send,	etc),	but	you	have	to	insert
line	breaks	manually	in	any	text	that	you	type.

2.2.	Approach	#2	(configuration)

Three	steps:

1.	 Configure	your	mail	server	composition	as	plain	text:	Edit…Account
Settings…Composition	&	Addressing,	uncheck	"Compose	Messages
in	HTML".

2.	 Configure	your	general	composition	window	to	not	wrap.

In	Thunderbird	2:	Edit..Preferences..Composition,	wrap	plain	text
messages	at	0

In	Thunderbird	3:	Edit..Preferences..Advanced..Config	Editor.
Search	for	"mail.wrap_long_lines".	Toggle	it	to	make	sure	it	is	set	to
false.	Also,	search	for	"mailnews.wraplength"	and	set	the	value	to	0.

3.	 Disable	the	use	of	format=flowed:

https://addons.mozilla.org/thunderbird/addon/toggle-word-wrap/


Edit..Preferences..Advanced..Config	Editor.	Search	for
"mailnews.send_plaintext_flowed".	Toggle	it	to	make	sure	it	is	set	to
false.

After	that	is	done,	you	should	be	able	to	compose	email	as	you	otherwise
would	(cut	+	paste,	git	format-patch	|	git	imap-send,	etc),	and	the	patches
will	not	be	mangled.

2.3.	Approach	#3	(external	editor)

The	following	Thunderbird	extensions	are	needed:	AboutConfig	from
http://aboutconfig.mozdev.org/	and	External	Editor	from
http://globs.org/articles.php?lng=en&pg=8

1.	 Prepare	the	patch	as	a	text	file	using	your	method	of	choice.
2.	 Before	opening	a	compose	window,	use	Edit→Account	Settings	to

uncheck	the	"Compose	messages	in	HTML	format"	setting	in	the
"Composition	&	Addressing"	panel	of	the	account	to	be	used	to	send
the	patch.

3.	 In	the	main	Thunderbird	window,	before	you	open	the	compose
window	for	the	patch,	use	Tools→about:config	to	set	the	following	to
the	indicated	values:

								mailnews.send_plaintext_flowed		=>	false

								mailnews.wraplength													=>	0

4.	 Open	a	compose	window	and	click	the	external	editor	icon.
5.	 In	the	external	editor	window,	read	in	the	patch	file	and	exit	the	editor

normally.

Side	note:	it	may	be	possible	to	do	step	2	with	about:config	and	the
following	settings	but	no	one's	tried	yet.

								mail.html_compose																							=>	false

								mail.identity.default.compose_html						=>	false

								mail.identity.id?.compose_html										=>	false

http://aboutconfig.mozdev.org/
http://globs.org/articles.php?lng=en&pg=8


There	is	a	script	in	contrib/thunderbird-patch-inline	which	can	help	you
include	patches	with	Thunderbird	in	an	easy	way.	To	use	it,	do	the	steps
above	and	then	use	the	script	as	the	external	editor.



3.	KMail

This	should	help	you	to	submit	patches	inline	using	KMail.

1.	 Prepare	the	patch	as	a	text	file.
2.	 Click	on	New	Mail.
3.	 Go	under	"Options"	in	the	Composer	window	and	be	sure	that	"Word

wrap"	is	not	set.
4.	 Use	Message	→	Insert	file…	and	insert	the	patch.
5.	 Back	in	the	compose	window:	add	whatever	other	text	you	wish	to

the	message,	complete	the	addressing	and	subject	fields,	and	press
send.

EXAMPLES

Extract	commits	between	revisions	R1	and	R2,	and	apply	them	on
top	of	the	current	branch	using	git	am	to	cherry-pick	them:

$	git	format-patch	-k	--stdout	R1..R2	|	git	am	-3	-k

Extract	all	commits	which	are	in	the	current	branch	but	not	in	the
origin	branch:

$	git	format-patch	origin

For	each	commit	a	separate	file	is	created	in	the	current	directory.

Extract	all	commits	that	lead	to	origin	since	the	inception	of	the
project:

$	git	format-patch	--root	origin

The	same	as	the	previous	one:

$	git	format-patch	-M	-B	origin



Additionally,	it	detects	and	handles	renames	and	complete	rewrites
intelligently	to	produce	a	renaming	patch.	A	renaming	patch	reduces
the	amount	of	text	output,	and	generally	makes	it	easier	to	review.
Note	that	non-Git	"patch"	programs	won't	understand	renaming
patches,	so	use	it	only	when	you	know	the	recipient	uses	Git	to	apply
your	patch.

Extract	three	topmost	commits	from	the	current	branch	and	format
them	as	e-mailable	patches:

$	git	format-patch	-3

SEE	ALSO

Section	G.3.3,	“git-am(1)”,	Section	G.3.116,	“git-send-email(1)”

GIT

Part	of	the	Section	G.3.1,	“git(1)”	suite

G.3.51.	git-fsck-objects(1)

NAME

git-fsck-objects	-	Verifies	the	connectivity	and	validity	of	the	objects	in	the
database

SYNOPSIS

git	fsck-objects	…

DESCRIPTION

This	is	a	synonym	for	Section	G.3.52,	“git-fsck(1)”.	Please	refer	to	the



documentation	of	that	command.

GIT

Part	of	the	Section	G.3.1,	“git(1)”	suite

G.3.52.	git-fsck(1)

NAME

git-fsck	-	Verifies	the	connectivity	and	validity	of	the	objects	in	the
database

SYNOPSIS

git	fsck	[--tags]	[--root]	[--unreachable]	[--cache]	[--no-

reflogs]

									[--[no-]full]	[--strict]	[--verbose]	[--lost-found]

									[--[no-]dangling]	[--[no-]progress]	[--connectivity-

only]	[<object>*]

DESCRIPTION

Verifies	the	connectivity	and	validity	of	the	objects	in	the	database.

OPTIONS

<object>

An	object	to	treat	as	the	head	of	an	unreachability	trace.

If	no	objects	are	given,	git	fsck	defaults	to	using	the	index	file,	all
SHA-1	references	in	refs	namespace,	and	all	reflogs	(unless	--no-
reflogs	is	given)	as	heads.

--unreachable
Print	out	objects	that	exist	but	that	aren't	reachable	from	any	of	the



reference	nodes.
--[no-]dangling

Print	objects	that	exist	but	that	are	never	directly	used	(default).	--no-
dangling	can	be	used	to	omit	this	information	from	the	output.

--root
Report	root	nodes.

--tags
Report	tags.

--cache
Consider	any	object	recorded	in	the	index	also	as	a	head	node	for
an	unreachability	trace.

--no-reflogs
Do	not	consider	commits	that	are	referenced	only	by	an	entry	in	a
reflog	to	be	reachable.	This	option	is	meant	only	to	search	for
commits	that	used	to	be	in	a	ref,	but	now	aren't,	but	are	still	in	that
corresponding	reflog.

--full
Check	not	just	objects	in	GIT_OBJECT_DIRECTORY
($GIT_DIR/objects),	but	also	the	ones	found	in	alternate	object	pools
listed	in	GIT_ALTERNATE_OBJECT_DIRECTORIES	or
$GIT_DIR/objects/info/alternates,	and	in	packed	Git	archives	found
in	$GIT_DIR/objects/pack	and	corresponding	pack	subdirectories	in
alternate	object	pools.	This	is	now	default;	you	can	turn	it	off	with	--
no-full.

--connectivity-only
Check	only	the	connectivity	of	tags,	commits	and	tree	objects.	By
avoiding	to	unpack	blobs,	this	speeds	up	the	operation,	at	the
expense	of	missing	corrupt	objects	or	other	problematic	issues.

--strict
Enable	more	strict	checking,	namely	to	catch	a	file	mode	recorded
with	g+w	bit	set,	which	was	created	by	older	versions	of	Git.	Existing
repositories,	including	the	Linux	kernel,	Git	itself,	and	sparse
repository	have	old	objects	that	triggers	this	check,	but	it	is
recommended	to	check	new	projects	with	this	flag.

--verbose
Be	chatty.

--lost-found



Write	dangling	objects	into	.git/lost-found/commit/	or	.git/lost-
found/other/,	depending	on	type.	If	the	object	is	a	blob,	the	contents
are	written	into	the	file,	rather	than	its	object	name.

--[no-]progress
Progress	status	is	reported	on	the	standard	error	stream	by	default
when	it	is	attached	to	a	terminal,	unless	--no-progress	or	--verbose	is
specified.	--progress	forces	progress	status	even	if	the	standard
error	stream	is	not	directed	to	a	terminal.

DISCUSSION

git-fsck	tests	SHA-1	and	general	object	sanity,	and	it	does	full	tracking	of
the	resulting	reachability	and	everything	else.	It	prints	out	any	corruption
it	finds	(missing	or	bad	objects),	and	if	you	use	the	--unreachable	flag	it
will	also	print	out	objects	that	exist	but	that	aren't	reachable	from	any	of
the	specified	head	nodes	(or	the	default	set,	as	mentioned	above).

Any	corrupt	objects	you	will	have	to	find	in	backups	or	other	archives
(i.e.,	you	can	just	remove	them	and	do	an	rsync	with	some	other	site	in
the	hopes	that	somebody	else	has	the	object	you	have	corrupted).

Extracted	Diagnostics

expect	dangling	commits	-	potential	heads	-	due	to	lack	of	head
information

You	haven't	specified	any	nodes	as	heads	so	it	won't	be	possible	to
differentiate	between	un-parented	commits	and	root	nodes.

missing	sha1	directory	<dir>
The	directory	holding	the	sha1	objects	is	missing.

unreachable	<type>	<object>
The	<type>	object	<object>,	isn't	actually	referred	to	directly	or
indirectly	in	any	of	the	trees	or	commits	seen.	This	can	mean	that
there's	another	root	node	that	you're	not	specifying	or	that	the	tree	is
corrupt.	If	you	haven't	missed	a	root	node	then	you	might	as	well
delete	unreachable	nodes	since	they	can't	be	used.

missing	<type>	<object>
The	<type>	object	<object>,	is	referred	to	but	isn't	present	in	the



database.
dangling	<type>	<object>

The	<type>	object	<object>,	is	present	in	the	database	but	never
directly	used.	A	dangling	commit	could	be	a	root	node.

sha1	mismatch	<object>
The	database	has	an	object	who's	sha1	doesn't	match	the	database
value.	This	indicates	a	serious	data	integrity	problem.

Environment	Variables

GIT_OBJECT_DIRECTORY
used	to	specify	the	object	database	root	(usually	$GIT_DIR/objects)

GIT_INDEX_FILE
used	to	specify	the	index	file	of	the	index

GIT_ALTERNATE_OBJECT_DIRECTORIES
used	to	specify	additional	object	database	roots	(usually	unset)

GIT

Part	of	the	Section	G.3.1,	“git(1)”	suite

G.3.53.	git-gc(1)

NAME

git-gc	-	Cleanup	unnecessary	files	and	optimize	the	local	repository

SYNOPSIS

git	gc	[--aggressive]	[--auto]	[--quiet]	[--prune=<date>	|	--

no-prune]	[--force]

DESCRIPTION

Runs	a	number	of	housekeeping	tasks	within	the	current	repository,	such
as	compressing	file	revisions	(to	reduce	disk	space	and	increase



performance)	and	removing	unreachable	objects	which	may	have	been
created	from	prior	invocations	of	git	add.

Users	are	encouraged	to	run	this	task	on	a	regular	basis	within	each
repository	to	maintain	good	disk	space	utilization	and	good	operating
performance.

Some	git	commands	may	automatically	run	git	gc;	see	the	--auto	flag
below	for	details.	If	you	know	what	you're	doing	and	all	you	want	is	to
disable	this	behavior	permanently	without	further	considerations,	just	do:

$	git	config	--global	gc.auto	0

OPTIONS

--aggressive
Usually	git	gc	runs	very	quickly	while	providing	good	disk	space
utilization	and	performance.	This	option	will	cause	git	gc	to	more
aggressively	optimize	the	repository	at	the	expense	of	taking	much
more	time.	The	effects	of	this	optimization	are	persistent,	so	this
option	only	needs	to	be	used	occasionally;	every	few	hundred
changesets	or	so.

--auto

With	this	option,	git	gc	checks	whether	any	housekeeping	is
required;	if	not,	it	exits	without	performing	any	work.	Some	git
commands	run	git	gc	--auto	after	performing	operations	that	could
create	many	loose	objects.

Housekeeping	is	required	if	there	are	too	many	loose	objects	or	too
many	packs	in	the	repository.	If	the	number	of	loose	objects	exceeds
the	value	of	the	gc.auto	configuration	variable,	then	all	loose	objects
are	combined	into	a	single	pack	using	git	repack	-d	-l.	Setting	the
value	of	gc.auto	to	0	disables	automatic	packing	of	loose	objects.

If	the	number	of	packs	exceeds	the	value	of	gc.autoPackLimit,	then
existing	packs	(except	those	marked	with	a	.keep	file)	are



consolidated	into	a	single	pack	by	using	the	-A	option	of	git	repack.
Setting	gc.autoPackLimit	to	0	disables	automatic	consolidation	of
packs.

--prune=<date>
Prune	loose	objects	older	than	date	(default	is	2	weeks	ago,
overridable	by	the	config	variable	gc.pruneExpire).	--prune=all
prunes	loose	objects	regardless	of	their	age	(do	not	use	--prune=all
unless	you	know	exactly	what	you	are	doing.	Unless	the	repository	is
quiescent,	you	will	lose	newly	created	objects	that	haven't	been
anchored	with	the	refs	and	end	up	corrupting	your	repository).	--
prune	is	on	by	default.

--no-prune
Do	not	prune	any	loose	objects.

--quiet
Suppress	all	progress	reports.

--force
Force	git	gc	to	run	even	if	there	may	be	another	git	gc	instance
running	on	this	repository.

Configuration

The	optional	configuration	variable	gc.reflogExpire	can	be	set	to	indicate
how	long	historical	entries	within	each	branch's	reflog	should	remain
available	in	this	repository.	The	setting	is	expressed	as	a	length	of	time,
for	example	90	days	or	3	months.	It	defaults	to	90	days.

The	optional	configuration	variable	gc.reflogExpireUnreachable	can	be
set	to	indicate	how	long	historical	reflog	entries	which	are	not	part	of	the
current	branch	should	remain	available	in	this	repository.	These	types	of
entries	are	generally	created	as	a	result	of	using	git	commit	--amend	or
git	rebase	and	are	the	commits	prior	to	the	amend	or	rebase	occurring.
Since	these	changes	are	not	part	of	the	current	project	most	users	will
want	to	expire	them	sooner.	This	option	defaults	to	30	days.

The	above	two	configuration	variables	can	be	given	to	a	pattern.	For
example,	this	sets	non-default	expiry	values	only	to	remote-tracking



branches:

[gc	"refs/remotes/*"]

								reflogExpire	=	never

								reflogExpireUnreachable	=	3	days

The	optional	configuration	variable	gc.rerereResolved	indicates	how	long
records	of	conflicted	merge	you	resolved	earlier	are	kept.	This	defaults	to
60	days.

The	optional	configuration	variable	gc.rerereUnresolved	indicates	how
long	records	of	conflicted	merge	you	have	not	resolved	are	kept.	This
defaults	to	15	days.

The	optional	configuration	variable	gc.packRefs	determines	if	git	gc	runs
git	pack-refs.	This	can	be	set	to	"notbare"	to	enable	it	within	all	non-bare
repos	or	it	can	be	set	to	a	boolean	value.	This	defaults	to	true.

The	optional	configuration	variable	gc.aggressiveWindow	controls	how
much	time	is	spent	optimizing	the	delta	compression	of	the	objects	in	the
repository	when	the	--aggressive	option	is	specified.	The	larger	the	value,
the	more	time	is	spent	optimizing	the	delta	compression.	See	the
documentation	for	the	--window'	option	in	Section	G.3.107,	“git-repack(1)”
for	more	details.	This	defaults	to	250.

Similarly,	the	optional	configuration	variable	gc.aggressiveDepth	controls
--depth	option	in	Section	G.3.107,	“git-repack(1)”.	This	defaults	to	250.

The	optional	configuration	variable	gc.pruneExpire	controls	how	old	the
unreferenced	loose	objects	have	to	be	before	they	are	pruned.	The
default	is	"2	weeks	ago".

Notes

git	gc	tries	very	hard	to	be	safe	about	the	garbage	it	collects.	In	particular,
it	will	keep	not	only	objects	referenced	by	your	current	set	of	branches
and	tags,	but	also	objects	referenced	by	the	index,	remote-tracking
branches,	refs	saved	by	git	filter-branch	in	refs/original/,	or	reflogs	(which



may	reference	commits	in	branches	that	were	later	amended	or
rewound).

If	you	are	expecting	some	objects	to	be	collected	and	they	aren't,	check
all	of	those	locations	and	decide	whether	it	makes	sense	in	your	case	to
remove	those	references.

HOOKS

The	git	gc	--auto	command	will	run	the	pre-auto-gc	hook.	See
Section	G.4.6,	“githooks(5)”	for	more	information.

SEE	ALSO

Section	G.3.94,	“git-prune(1)”	Section	G.3.101,	“git-reflog(1)”
Section	G.3.107,	“git-repack(1)”	Section	G.3.110,	“git-rerere(1)”

GIT

Part	of	the	Section	G.3.1,	“git(1)”	suite

G.3.54.	git-get-tar-commit-id(1)

NAME

git-get-tar-commit-id	-	Extract	commit	ID	from	an	archive	created	using
git-archive

SYNOPSIS

git	get-tar-commit-id

DESCRIPTION

Read	a	tar	archive	created	by	git	archive	from	the	standard	input	and



extract	the	commit	ID	stored	in	it.	It	reads	only	the	first	1024	bytes	of
input,	thus	its	runtime	is	not	influenced	by	the	size	of	the	tar	archive	very
much.

If	no	commit	ID	is	found,	git	get-tar-commit-id	quietly	exists	with	a	return
code	of	1.	This	can	happen	if	the	archive	had	not	been	created	using	git
archive	or	if	the	first	parameter	of	git	archive	had	been	a	tree	ID	instead
of	a	commit	ID	or	tag.

GIT

Part	of	the	Section	G.3.1,	“git(1)”	suite

G.3.55.	git-grep(1)

NAME

git-grep	-	Print	lines	matching	a	pattern

SYNOPSIS

git	grep	[-a	|	--text]	[-I]	[--textconv]	[-i	|	--ignore-

case]	[-w	|	--word-regexp]

											[-v	|	--invert-match]	[-h|-H]	[--full-name]

											[-E	|	--extended-regexp]	[-G	|	--basic-regexp]

											[-P	|	--perl-regexp]

											[-F	|	--fixed-strings]	[-n	|	--line-number]

											[-l	|	--files-with-matches]	[-L	|	--files-without-

match]

											[(-O	|	--open-files-in-pager)	[<pager>]]

											[-z	|	--null]

											[-c	|	--count]	[--all-match]	[-q	|	--quiet]

											[--max-depth	<depth>]

											[--color[=<when>]	|	--no-color]

											[--break]	[--heading]	[-p	|	--show-function]

											[-A	<post-context>]	[-B	<pre-context>]	[-

C	<context>]

											[-W	|	--function-context]

											[--threads	<num>]

											[-f	<file>]	[-e]	<pattern>



											[--and|--or|--not|(|)|-e	<pattern>…]

											[	[--[no-]exclude-standard]	[--cached	|	--no-

index	|	--untracked]	|	<tree>…]

											[--]	[<pathspec>…]

DESCRIPTION

Look	for	specified	patterns	in	the	tracked	files	in	the	work	tree,	blobs
registered	in	the	index	file,	or	blobs	in	given	tree	objects.	Patterns	are
lists	of	one	or	more	search	expressions	separated	by	newline	characters.
An	empty	string	as	search	expression	matches	all	lines.

CONFIGURATION

grep.lineNumber
If	set	to	true,	enable	-n	option	by	default.

grep.patternType
Set	the	default	matching	behavior.	Using	a	value	of	basic,	extended,
fixed,	or	perl	will	enable	the	--basic-regexp,	--extended-regexp,	--
fixed-strings,	or	--perl-regexp	option	accordingly,	while	the	value
default	will	return	to	the	default	matching	behavior.

grep.extendedRegexp
If	set	to	true,	enable	--extended-regexp	option	by	default.	This	option
is	ignored	when	the	grep.patternType	option	is	set	to	a	value	other
than	default.

grep.threads
Number	of	grep	worker	threads	to	use.	If	unset	(or	set	to	0),	8
threads	are	used	by	default	(for	now).

grep.fullName
If	set	to	true,	enable	--full-name	option	by	default.

grep.fallbackToNoIndex
If	set	to	true,	fall	back	to	git	grep	--no-index	if	git	grep	is	executed
outside	of	a	git	repository.	Defaults	to	false.

OPTIONS

--cached



Instead	of	searching	tracked	files	in	the	working	tree,	search	blobs
registered	in	the	index	file.

--no-index
Search	files	in	the	current	directory	that	is	not	managed	by	Git.

--untracked
In	addition	to	searching	in	the	tracked	files	in	the	working	tree,
search	also	in	untracked	files.

--no-exclude-standard
Also	search	in	ignored	files	by	not	honoring	the	.gitignore
mechanism.	Only	useful	with	--untracked.

--exclude-standard
Do	not	pay	attention	to	ignored	files	specified	via	the	.gitignore
mechanism.	Only	useful	when	searching	files	in	the	current	directory
with	--no-index.

-a	,	--text
Process	binary	files	as	if	they	were	text.

--textconv
Honor	textconv	filter	settings.

--no-textconv
Do	not	honor	textconv	filter	settings.	This	is	the	default.

-i	,	--ignore-case
Ignore	case	differences	between	the	patterns	and	the	files.

-I
Don't	match	the	pattern	in	binary	files.

--max-depth	<depth>
For	each	<pathspec>	given	on	command	line,	descend	at	most
<depth>	levels	of	directories.	A	negative	value	means	no	limit.	This
option	is	ignored	if	<pathspec>	contains	active	wildcards.	In	other
words	if	"a*"	matches	a	directory	named	"a*",	"*"	is	matched	literally
so	--max-depth	is	still	effective.

-w	,	--word-regexp
Match	the	pattern	only	at	word	boundary	(either	begin	at	the
beginning	of	a	line,	or	preceded	by	a	non-word	character;	end	at	the
end	of	a	line	or	followed	by	a	non-word	character).

-v	,	--invert-match
Select	non-matching	lines.

-h	,	-H



By	default,	the	command	shows	the	filename	for	each	match.	-h
option	is	used	to	suppress	this	output.	-H	is	there	for	completeness
and	does	not	do	anything	except	it	overrides	-h	given	earlier	on	the
command	line.

--full-name
When	run	from	a	subdirectory,	the	command	usually	outputs	paths
relative	to	the	current	directory.	This	option	forces	paths	to	be	output
relative	to	the	project	top	directory.

-E	,	--extended-regexp	,	-G	,	--basic-regexp
Use	POSIX	extended/basic	regexp	for	patterns.	Default	is	to	use
basic	regexp.

-P	,	--perl-regexp
Use	Perl-compatible	regexp	for	patterns.	Requires	libpcre	to	be
compiled	in.

-F	,	--fixed-strings
Use	fixed	strings	for	patterns	(don't	interpret	pattern	as	a	regex).

-n	,	--line-number
Prefix	the	line	number	to	matching	lines.

-l	,	--files-with-matches	,	--name-only	,	-L	,	--files-without-match
Instead	of	showing	every	matched	line,	show	only	the	names	of	files
that	contain	(or	do	not	contain)	matches.	For	better	compatibility	with
git	diff,	--name-only	is	a	synonym	for	--files-with-matches.

-O[<pager>]	,	--open-files-in-pager[=<pager>]
Open	the	matching	files	in	the	pager	(not	the	output	of	grep).	If	the
pager	happens	to	be	"less"	or	"vi",	and	the	user	specified	only	one
pattern,	the	first	file	is	positioned	at	the	first	match	automatically.	The
pager	argument	is	optional;	if	specified,	it	must	be	stuck	to	the	option
without	a	space.	If	pager	is	unspecified,	the	default	pager	will	be
used	(see	core.pager	in	Section	G.3.27,	“git-config(1)”).

-z	,	--null
Output	\0	instead	of	the	character	that	normally	follows	a	file	name.

-c	,	--count
Instead	of	showing	every	matched	line,	show	the	number	of	lines
that	match.

--color[=<when>]
Show	colored	matches.	The	value	must	be	always	(the	default),
never,	or	auto.



--no-color
Turn	off	match	highlighting,	even	when	the	configuration	file	gives
the	default	to	color	output.	Same	as	--color=never.

--break
Print	an	empty	line	between	matches	from	different	files.

--heading
Show	the	filename	above	the	matches	in	that	file	instead	of	at	the
start	of	each	shown	line.

-p	,	--show-function
Show	the	preceding	line	that	contains	the	function	name	of	the
match,	unless	the	matching	line	is	a	function	name	itself.	The	name
is	determined	in	the	same	way	as	git	diff	works	out	patch	hunk
headers	(see	Defining	a	custom	hunk-header	in	Section	G.4.2,
“gitattributes(5)”).

-<num>	,	-C	<num>	,	--context	<num>
Show	<num>	leading	and	trailing	lines,	and	place	a	line	containing	--
between	contiguous	groups	of	matches.

-A	<num>	,	--after-context	<num>
Show	<num>	trailing	lines,	and	place	a	line	containing	--	between
contiguous	groups	of	matches.

-B	<num>	,	--before-context	<num>
Show	<num>	leading	lines,	and	place	a	line	containing	--	between
contiguous	groups	of	matches.

-W	,	--function-context
Show	the	surrounding	text	from	the	previous	line	containing	a
function	name	up	to	the	one	before	the	next	function	name,
effectively	showing	the	whole	function	in	which	the	match	was	found.

--threads	<num>
Number	of	grep	worker	threads	to	use.	See	grep.threads	in
CONFIGURATION	for	more	information.

-f	<file>
Read	patterns	from	<file>,	one	per	line.

-e
The	next	parameter	is	the	pattern.	This	option	has	to	be	used	for
patterns	starting	with	-	and	should	be	used	in	scripts	passing	user
input	to	grep.	Multiple	patterns	are	combined	by	or.

--and	,	--or	,	--not	,	(	…	)



Specify	how	multiple	patterns	are	combined	using	Boolean
expressions.	--or	is	the	default	operator.	--and	has	higher
precedence	than	--or.	-e	has	to	be	used	for	all	patterns.

--all-match
When	giving	multiple	pattern	expressions	combined	with	--or,	this
flag	is	specified	to	limit	the	match	to	files	that	have	lines	to	match	all
of	them.

-q	,	--quiet
Do	not	output	matched	lines;	instead,	exit	with	status	0	when	there	is
a	match	and	with	non-zero	status	when	there	isn't.

<tree>…
Instead	of	searching	tracked	files	in	the	working	tree,	search	blobs	in
the	given	trees.

--
Signals	the	end	of	options;	the	rest	of	the	parameters	are
<pathspec>	limiters.

<pathspec>…
If	given,	limit	the	search	to	paths	matching	at	least	one	pattern.	Both
leading	paths	match	and	glob(7)	patterns	are	supported.

Examples

git	grep	'time_t'	--	'*.[ch]'
Looks	for	time_t	in	all	tracked	.c	and	.h	files	in	the	working	directory
and	its	subdirectories.

git	grep	-e	'#define'	--and	\(	-e	MAX_PATH	-e	PATH_MAX	\)
Looks	for	a	line	that	has	#define	and	either	MAX_PATH	or
PATH_MAX.

git	grep	--all-match	-e	NODE	-e	Unexpected
Looks	for	a	line	that	has	NODE	or	Unexpected	in	files	that	have	lines
that	match	both.

GIT

Part	of	the	Section	G.3.1,	“git(1)”	suite

G.3.56.	git-gui(1)



NAME

git-gui	-	A	portable	graphical	interface	to	Git

SYNOPSIS

git	gui	[<command>]	[arguments]

DESCRIPTION

A	Tcl/Tk	based	graphical	user	interface	to	Git.	git	gui	focuses	on	allowing
users	to	make	changes	to	their	repository	by	making	new	commits,
amending	existing	ones,	creating	branches,	performing	local	merges,	and
fetching/pushing	to	remote	repositories.

Unlike	gitk,	git	gui	focuses	on	commit	generation	and	single	file
annotation	and	does	not	show	project	history.	It	does	however	supply
menu	actions	to	start	a	gitk	session	from	within	git	gui.

git	gui	is	known	to	work	on	all	popular	UNIX	systems,	Mac	OS	X,	and
Windows	(under	both	Cygwin	and	MSYS).	To	the	extent	possible	OS
specific	user	interface	guidelines	are	followed,	making	git	gui	a	fairly
native	interface	for	users.

COMMANDS

blame
Start	a	blame	viewer	on	the	specified	file	on	the	given	version	(or
working	directory	if	not	specified).

browser
Start	a	tree	browser	showing	all	files	in	the	specified	commit	(or
HEAD	by	default).	Files	selected	through	the	browser	are	opened	in
the	blame	viewer.

citool
Start	git	gui	and	arrange	to	make	exactly	one	commit	before	exiting
and	returning	to	the	shell.	The	interface	is	limited	to	only	commit



actions,	slightly	reducing	the	application's	startup	time	and
simplifying	the	menubar.

version
Display	the	currently	running	version	of	git	gui.

Examples

git	gui	blame	Makefile
Show	the	contents	of	the	file	Makefile	in	the	current	working
directory,	and	provide	annotations	for	both	the	original	author	of	each
line,	and	who	moved	the	line	to	its	current	location.	The	uncommitted
file	is	annotated,	and	uncommitted	changes	(if	any)	are	explicitly
attributed	to	Not	Yet	Committed.

git	gui	blame	v0.99.8	Makefile
Show	the	contents	of	Makefile	in	revision	v0.99.8	and	provide
annotations	for	each	line.	Unlike	the	above	example	the	file	is	read
from	the	object	database	and	not	the	working	directory.

git	gui	blame	--line=100	Makefile
Loads	annotations	as	described	above	and	automatically	scrolls	the
view	to	center	on	line	100.

git	gui	citool
Make	one	commit	and	return	to	the	shell	when	it	is	complete.	This
command	returns	a	non-zero	exit	code	if	the	window	was	closed	in
any	way	other	than	by	making	a	commit.

git	gui	citool	--amend
Automatically	enter	the	Amend	Last	Commit	mode	of	the	interface.

git	gui	citool	--nocommit
Behave	as	normal	citool,	but	instead	of	making	a	commit	simply
terminate	with	a	zero	exit	code.	It	still	checks	that	the	index	does	not
contain	any	unmerged	entries,	so	you	can	use	it	as	a	GUI	version	of
Section	G.3.81,	“git-mergetool(1)”

git	citool
Same	as	git	gui	citool	(above).

git	gui	browser	maint
Show	a	browser	for	the	tree	of	the	maint	branch.	Files	selected	in	the
browser	can	be	viewed	with	the	internal	blame	viewer.



SEE	ALSO

Section	G.4.7,	“gitk(1)”
The	Git	repository	browser.	Shows	branches,	commit	history	and	file
differences.	gitk	is	the	utility	started	by	git	gui's	Repository	Visualize
actions.

Other

git	gui	is	actually	maintained	as	an	independent	project,	but	stable
versions	are	distributed	as	part	of	the	Git	suite	for	the	convenience	of	end
users.

A	git	gui	development	repository	can	be	obtained	from:

git	clone	git://repo.or.cz/git-gui.git

or

git	clone	http://repo.or.cz/r/git-gui.git

or	browsed	online	at	http://repo.or.cz/w/git-gui.git/[].

GIT

Part	of	the	Section	G.3.1,	“git(1)”	suite

G.3.57.	git-hash-object(1)

NAME

git-hash-object	-	Compute	object	ID	and	optionally	creates	a	blob	from	a
file

SYNOPSIS

git	hash-object	[-t	<type>]	[-w]	[--path=<file>|--no-

filters]	[--stdin	[--literally]]	[--]	<file>…

http://repo.or.cz/w/git-gui.git/


git	hash-object	[-t	<type>]	[-w]	--stdin-paths	[--no-filters]

DESCRIPTION

Computes	the	object	ID	value	for	an	object	with	specified	type	with	the
contents	of	the	named	file	(which	can	be	outside	of	the	work	tree),	and
optionally	writes	the	resulting	object	into	the	object	database.	Reports	its
object	ID	to	its	standard	output.	This	is	used	by	git	cvsimport	to	update
the	index	without	modifying	files	in	the	work	tree.	When	<type>	is	not
specified,	it	defaults	to	"blob".

OPTIONS

-t	<type>
Specify	the	type	(default:	"blob").

-w
Actually	write	the	object	into	the	object	database.

--stdin
Read	the	object	from	standard	input	instead	of	from	a	file.

--stdin-paths
Read	file	names	from	the	standard	input,	one	per	line,	instead	of
from	the	command-line.

--path
Hash	object	as	it	were	located	at	the	given	path.	The	location	of	file
does	not	directly	influence	on	the	hash	value,	but	path	is	used	to
determine	what	Git	filters	should	be	applied	to	the	object	before	it
can	be	placed	to	the	object	database,	and,	as	result	of	applying
filters,	the	actual	blob	put	into	the	object	database	may	differ	from
the	given	file.	This	option	is	mainly	useful	for	hashing	temporary	files
located	outside	of	the	working	directory	or	files	read	from	stdin.

--no-filters
Hash	the	contents	as	is,	ignoring	any	input	filter	that	would	have
been	chosen	by	the	attributes	mechanism,	including	the	end-of-line
conversion.	If	the	file	is	read	from	standard	input	then	this	is	always
implied,	unless	the	--path	option	is	given.

--literally



Allow	--stdin	to	hash	any	garbage	into	a	loose	object	which	might	not
otherwise	pass	standard	object	parsing	or	git-fsck	checks.	Useful	for
stress-testing	Git	itself	or	reproducing	characteristics	of	corrupt	or
bogus	objects	encountered	in	the	wild.

GIT

Part	of	the	Section	G.3.1,	“git(1)”	suite

G.3.58.	git-help(1)

NAME

git-help	-	Display	help	information	about	Git

SYNOPSIS

git	help	[-a|--all]	[-g|--guide]

											[-i|--info|-m|--man|-w|--web]	[COMMAND|GUIDE]

DESCRIPTION

With	no	options	and	no	COMMAND	or	GUIDE	given,	the	synopsis	of	the
git	command	and	a	list	of	the	most	commonly	used	Git	commands	are
printed	on	the	standard	output.

If	the	option	--all	or	-a	is	given,	all	available	commands	are	printed	on	the
standard	output.

If	the	option	--guide	or	-g	is	given,	a	list	of	the	useful	Git	guides	is	also
printed	on	the	standard	output.

If	a	command,	or	a	guide,	is	given,	a	manual	page	for	that	command	or
guide	is	brought	up.	The	man	program	is	used	by	default	for	this	purpose,
but	this	can	be	overridden	by	other	options	or	configuration	variables.



Note	that	git	--help	...	is	identical	to	git	help	...	because	the	former	is
internally	converted	into	the	latter.

To	display	the	Section	G.3.1,	“git(1)”	man	page,	use	git	help	git.

This	page	can	be	displayed	with	git	help	help	or	git	help	--help

OPTIONS

-a	,	--all
Prints	all	the	available	commands	on	the	standard	output.	This
option	overrides	any	given	command	or	guide	name.

-g	,	--guides
Prints	a	list	of	useful	guides	on	the	standard	output.	This	option
overrides	any	given	command	or	guide	name.

-i	,	--info
Display	manual	page	for	the	command	in	the	info	format.	The	info
program	will	be	used	for	that	purpose.

-m	,	--man

Display	manual	page	for	the	command	in	the	man	format.	This
option	may	be	used	to	override	a	value	set	in	the	help.format
configuration	variable.

By	default	the	man	program	will	be	used	to	display	the	manual	page,
but	the	man.viewer	configuration	variable	may	be	used	to	choose
other	display	programs	(see	below).

-w	,	--web

Display	manual	page	for	the	command	in	the	web	(HTML)	format.	A
web	browser	will	be	used	for	that	purpose.

The	web	browser	can	be	specified	using	the	configuration	variable
help.browser,	or	web.browser	if	the	former	is	not	set.	If	none	of	these
config	variables	is	set,	the	git	web--browse	helper	script	(called	by	git
help)	will	pick	a	suitable	default.	See	Section	G.3.146,	“git-web--
browse(1)”	for	more	information	about	this.



CONFIGURATION	VARIABLES



1.	help.format

If	no	command-line	option	is	passed,	the	help.format	configuration
variable	will	be	checked.	The	following	values	are	supported	for	this
variable;	they	make	git	help	behave	as	their	corresponding	command-
line	option:

"man"	corresponds	to	-m|--man,
"info"	corresponds	to	-i|--info,
"web"	or	"html"	correspond	to	-w|--web.



2.	help.browser,	web.browser	and	browser.
<tool>.path

The	help.browser,	web.browser	and	browser.<tool>.path	will	also	be
checked	if	the	web	format	is	chosen	(either	by	command-line	option	or
configuration	variable).	See	-w|--web	in	the	OPTIONS	section	above	and
Section	G.3.146,	“git-web--browse(1)”.



3.	man.viewer

The	man.viewer	configuration	variable	will	be	checked	if	the	man	format
is	chosen.	The	following	values	are	currently	supported:

"man":	use	the	man	program	as	usual,
"woman":	use	emacsclient	to	launch	the	"woman"	mode	in	emacs
(this	only	works	starting	with	emacsclient	versions	22),
"konqueror":	use	kfmclient	to	open	the	man	page	in	a	new	konqueror
tab	(see	Note	about	konqueror	below).

Values	for	other	tools	can	be	used	if	there	is	a	corresponding	man.
<tool>.cmd	configuration	entry	(see	below).

Multiple	values	may	be	given	to	the	man.viewer	configuration	variable.
Their	corresponding	programs	will	be	tried	in	the	order	listed	in	the
configuration	file.

For	example,	this	configuration:

								[man]

																viewer	=	konqueror

																viewer	=	woman

will	try	to	use	konqueror	first.	But	this	may	fail	(for	example,	if	DISPLAY	is
not	set)	and	in	that	case	emacs'	woman	mode	will	be	tried.

If	everything	fails,	or	if	no	viewer	is	configured,	the	viewer	specified	in	the
GIT_MAN_VIEWER	environment	variable	will	be	tried.	If	that	fails	too,	the
man	program	will	be	tried	anyway.



4.	man.<tool>.path

You	can	explicitly	provide	a	full	path	to	your	preferred	man	viewer	by
setting	the	configuration	variable	man.<tool>.path.	For	example,	you	can
configure	the	absolute	path	to	konqueror	by	setting	man.konqueror.path.
Otherwise,	git	help	assumes	the	tool	is	available	in	PATH.



5.	man.<tool>.cmd

When	the	man	viewer,	specified	by	the	man.viewer	configuration
variables,	is	not	among	the	supported	ones,	then	the	corresponding	man.
<tool>.cmd	configuration	variable	will	be	looked	up.	If	this	variable	exists
then	the	specified	tool	will	be	treated	as	a	custom	command	and	a	shell
eval	will	be	used	to	run	the	command	with	the	man	page	passed	as
arguments.



6.	Note	about	konqueror

When	konqueror	is	specified	in	the	man.viewer	configuration	variable,	we
launch	kfmclient	to	try	to	open	the	man	page	on	an	already	opened
konqueror	in	a	new	tab	if	possible.

For	consistency,	we	also	try	such	a	trick	if	man.konqueror.path	is	set	to
something	like	A_PATH_TO/konqueror.	That	means	we	will	try	to	launch
A_PATH_TO/kfmclient	instead.

If	you	really	want	to	use	konqueror,	then	you	can	use	something	like	the
following:

								[man]

																viewer	=	konq

								[man	"konq"]

																cmd	=	A_PATH_TO/konqueror



7.	Note	about	git	config	--global

Note	that	all	these	configuration	variables	should	probably	be	set	using
the	--global	flag,	for	example	like	this:

$	git	config	--global	help.format	web

$	git	config	--global	web.browser	firefox

as	they	are	probably	more	user	specific	than	repository	specific.	See
Section	G.3.27,	“git-config(1)”	for	more	information	about	this.

GIT

Part	of	the	Section	G.3.1,	“git(1)”	suite

G.3.59.	git-http-backend(1)

NAME

git-http-backend	-	Server	side	implementation	of	Git	over	HTTP

SYNOPSIS

git	http-backend

DESCRIPTION

A	simple	CGI	program	to	serve	the	contents	of	a	Git	repository	to	Git
clients	accessing	the	repository	over	http://	and	https://	protocols.	The
program	supports	clients	fetching	using	both	the	smart	HTTP	protocol
and	the	backwards-compatible	dumb	HTTP	protocol,	as	well	as	clients
pushing	using	the	smart	HTTP	protocol.

It	verifies	that	the	directory	has	the	magic	file	"git-daemon-export-ok",	and



it	will	refuse	to	export	any	Git	directory	that	hasn't	explicitly	been	marked
for	export	this	way	(unless	the	GIT_HTTP_EXPORT_ALL	environmental
variable	is	set).

By	default,	only	the	upload-pack	service	is	enabled,	which	serves	git
fetch-pack	and	git	ls-remote	clients,	which	are	invoked	from	git	fetch,	git
pull,	and	git	clone.	If	the	client	is	authenticated,	the	receive-pack	service
is	enabled,	which	serves	git	send-pack	clients,	which	is	invoked	from	git
push.

SERVICES

These	services	can	be	enabled/disabled	using	the	per-repository
configuration	file:

http.getanyfile
This	serves	Git	clients	older	than	version	1.6.6	that	are	unable	to	use
the	upload	pack	service.	When	enabled,	clients	are	able	to	read	any
file	within	the	repository,	including	objects	that	are	no	longer
reachable	from	a	branch	but	are	still	present.	It	is	enabled	by	default,
but	a	repository	can	disable	it	by	setting	this	configuration	item	to
false.

http.uploadpack
This	serves	git	fetch-pack	and	git	ls-remote	clients.	It	is	enabled	by
default,	but	a	repository	can	disable	it	by	setting	this	configuration
item	to	false.

http.receivepack
This	serves	git	send-pack	clients,	allowing	push.	It	is	disabled	by
default	for	anonymous	users,	and	enabled	by	default	for	users
authenticated	by	the	web	server.	It	can	be	disabled	by	setting	this
item	to	false,	or	enabled	for	all	users,	including	anonymous	users,	by
setting	it	to	true.

URL	TRANSLATION

To	determine	the	location	of	the	repository	on	disk,	git	http-backend
concatenates	the	environment	variables	PATH_INFO,	which	is	set



automatically	by	the	web	server,	and	GIT_PROJECT_ROOT,	which	must
be	set	manually	in	the	web	server	configuration.	If
GIT_PROJECT_ROOT	is	not	set,	git	http-backend	reads
PATH_TRANSLATED,	which	is	also	set	automatically	by	the	web	server.

EXAMPLES

All	of	the	following	examples	map	http://$hostname/git/foo/bar.git	to
/var/www/git/foo/bar.git.

Apache	2.x

Ensure	mod_cgi,	mod_alias,	and	mod_env	are	enabled,	set
GIT_PROJECT_ROOT	(or	DocumentRoot)	appropriately,	and	create
a	ScriptAlias	to	the	CGI:

SetEnv	GIT_PROJECT_ROOT	/var/www/git

SetEnv	GIT_HTTP_EXPORT_ALL

ScriptAlias	/git/	/usr/libexec/git-core/git-http-backend/

To	enable	anonymous	read	access	but	authenticated	write	access,
require	authorization	for	both	the	initial	ref	advertisement	(which	we
detect	as	a	push	via	the	service	parameter	in	the	query	string),	and
the	receive-pack	invocation	itself:

RewriteCond	%{QUERY_STRING}	service=git-receive-pack	[OR]

RewriteCond	%{REQUEST_URI}	/git-receive-pack$

RewriteRule	^/git/	-	[E=AUTHREQUIRED:yes]

<LocationMatch	"^/git/">

								Order	Deny,Allow

								Deny	from	env=AUTHREQUIRED

								AuthType	Basic

								AuthName	"Git	Access"

								Require	group	committers

								Satisfy	Any

								...

</LocationMatch>



If	you	do	not	have	mod_rewrite	available	to	match	against	the	query
string,	it	is	sufficient	to	just	protect	git-receive-pack	itself,	like:

<LocationMatch	"^/git/.*/git-receive-pack$">

								AuthType	Basic

								AuthName	"Git	Access"

								Require	group	committers

								...

</LocationMatch>

In	this	mode,	the	server	will	not	request	authentication	until	the	client
actually	starts	the	object	negotiation	phase	of	the	push,	rather	than
during	the	initial	contact.	For	this	reason,	you	must	also	enable	the
http.receivepack	config	option	in	any	repositories	that	should	accept
a	push.	The	default	behavior,	if	http.receivepack	is	not	set,	is	to
reject	any	pushes	by	unauthenticated	users;	the	initial	request	will
therefore	report	403	Forbidden	to	the	client,	without	even	giving	an
opportunity	for	authentication.

To	require	authentication	for	both	reads	and	writes,	use	a	Location
directive	around	the	repository,	or	one	of	its	parent	directories:

<Location	/git/private>

								AuthType	Basic

								AuthName	"Private	Git	Access"

								Require	group	committers

								...

</Location>

To	serve	gitweb	at	the	same	url,	use	a	ScriptAliasMatch	to	only	those
URLs	that	git	http-backend	can	handle,	and	forward	the	rest	to
gitweb:

ScriptAliasMatch	\

								"(?x)^/git/(.*/(HEAD	|	\

																								info/refs	|	\

																								objects/(info/[^/]+	|	\

																																	[0-9a-f]{2}/[0-9a-f]{38}	|	\



																																	pack/pack-[0-9a-f]{40}\.(pack|idx))	|	\

																								git-(upload|receive)-pack))$"	\

								/usr/libexec/git-core/git-http-backend/$1

ScriptAlias	/git/	/var/www/cgi-bin/gitweb.cgi/

To	serve	multiple	repositories	from	different	Section	G.4.9,
“gitnamespaces(7)”	in	a	single	repository:

SetEnvIf	Request_URI	"^/git/([^/]*)"	GIT_NAMESPACE=$1

ScriptAliasMatch	^/git/[^/]*(.*)	/usr/libexec/git-core/git-http-backend/storage.git$1

Accelerated	static	Apache	2.x

Similar	to	the	above,	but	Apache	can	be	used	to	return	static	files
that	are	stored	on	disk.	On	many	systems	this	may	be	more	efficient
as	Apache	can	ask	the	kernel	to	copy	the	file	contents	from	the	file
system	directly	to	the	network:

SetEnv	GIT_PROJECT_ROOT	/var/www/git

AliasMatch	^/git/(.*/objects/[0-9a-f]{2}/[0-9a-f]{38})$										/var/www/git/$1

AliasMatch	^/git/(.*/objects/pack/pack-[0-9a-f]{40}.(pack|idx))$	/var/www/git/$1

ScriptAlias	/git/	/usr/libexec/git-core/git-http-backend/

This	can	be	combined	with	the	gitweb	configuration:

SetEnv	GIT_PROJECT_ROOT	/var/www/git

AliasMatch	^/git/(.*/objects/[0-9a-f]{2}/[0-9a-f]{38})$										/var/www/git/$1

AliasMatch	^/git/(.*/objects/pack/pack-[0-9a-f]{40}.(pack|idx))$	/var/www/git/$1

ScriptAliasMatch	\

								"(?x)^/git/(.*/(HEAD	|	\

																								info/refs	|	\

																								objects/info/[^/]+	|	\

																								git-(upload|receive)-pack))$"	\

								/usr/libexec/git-core/git-http-backend/$1

ScriptAlias	/git/	/var/www/cgi-bin/gitweb.cgi/



Lighttpd

Ensure	that	mod_cgi,	mod_alias,	mod_auth,	mod_setenv	are
loaded,	then	set	GIT_PROJECT_ROOT	appropriately	and	redirect
all	requests	to	the	CGI:

alias.url	+=	(	"/git"	=>	"/usr/lib/git-core/git-http-backend"	)

$HTTP["url"]	=~	"^/git"	{

								cgi.assign	=	(""	=>	"")

								setenv.add-environment	=	(

																"GIT_PROJECT_ROOT"	=>	"/var/www/git",

																"GIT_HTTP_EXPORT_ALL"	=>	""

								)

}

To	enable	anonymous	read	access	but	authenticated	write	access:

$HTTP["querystring"]	=~	"service=git-receive-pack"	{

								include	"git-auth.conf"

}

$HTTP["url"]	=~	"^/git/.*/git-receive-pack$"	{

								include	"git-auth.conf"

}

where	git-auth.conf	looks	something	like:

auth.require	=	(

								"/"	=>	(

																"method"	=>	"basic",

																"realm"	=>	"Git	Access",

																"require"	=>	"valid-user"

															)

)

#	...and	set	up	auth.backend	here

To	require	authentication	for	both	reads	and	writes:

$HTTP["url"]	=~	"^/git/private"	{

								include	"git-auth.conf"

}



ENVIRONMENT

git	http-backend	relies	upon	the	CGI	environment	variables	set	by	the
invoking	web	server,	including:

PATH_INFO	(if	GIT_PROJECT_ROOT	is	set,	otherwise
PATH_TRANSLATED)
REMOTE_USER
REMOTE_ADDR
CONTENT_TYPE
QUERY_STRING
REQUEST_METHOD

The	GIT_HTTP_EXPORT_ALL	environmental	variable	may	be	passed	to
git-http-backend	to	bypass	the	check	for	the	"git-daemon-export-ok"	file	in
each	repository	before	allowing	export	of	that	repository.

The	GIT_HTTP_MAX_REQUEST_BUFFER	environment	variable	(or	the
http.maxRequestBuffer	config	variable)	may	be	set	to	change	the	largest
ref	negotiation	request	that	git	will	handle	during	a	fetch;	any	fetch
requiring	a	larger	buffer	will	not	succeed.	This	value	should	not	normally
need	to	be	changed,	but	may	be	helpful	if	you	are	fetching	from	a
repository	with	an	extremely	large	number	of	refs.	The	value	can	be
specified	with	a	unit	(e.g.,	100M	for	100	megabytes).	The	default	is	10
megabytes.

The	backend	process	sets	GIT_COMMITTER_NAME	to
$REMOTE_USER	and	GIT_COMMITTER_EMAIL	to
${REMOTE_USER}@http.${REMOTE_ADDR},	ensuring	that	any	reflogs
created	by	git-receive-pack	contain	some	identifying	information	of	the
remote	user	who	performed	the	push.

All	CGI	environment	variables	are	available	to	each	of	the	hooks	invoked
by	the	git-receive-pack.

GIT



Part	of	the	Section	G.3.1,	“git(1)”	suite

G.3.60.	git-http-fetch(1)

NAME

git-http-fetch	-	Download	from	a	remote	Git	repository	via	HTTP

SYNOPSIS

git	http-fetch	[-c]	[-t]	[-a]	[-d]	[-v]	[-w	filename]	[--

recover]	[--stdin]	<commit>	<url>

DESCRIPTION

Downloads	a	remote	Git	repository	via	HTTP.

NOTE:	use	of	this	command	without	-a	is	deprecated.	The	-a	behaviour
will	become	the	default	in	a	future	release.

OPTIONS

commit-id
Either	the	hash	or	the	filename	under	[URL]/refs/	to	pull.

-c
Get	the	commit	objects.

-t
Get	trees	associated	with	the	commit	objects.

-a
Get	all	the	objects.

-v
Report	what	is	downloaded.

-w	<filename>
Writes	the	commit-id	into	the	filename	under
$GIT_DIR/refs/<filename>	on	the	local	end	after	the	transfer	is
complete.



--stdin

Instead	of	a	commit	id	on	the	command	line	(which	is	not	expected
in	this	case),	git	http-fetch	expects	lines	on	stdin	in	the	format

<commit-id>['\t'<filename-as-in--w>]

--recover
Verify	that	everything	reachable	from	target	is	fetched.	Used	after	an
earlier	fetch	is	interrupted.

GIT

Part	of	the	Section	G.3.1,	“git(1)”	suite

G.3.61.	git-http-push(1)

NAME

git-http-push	-	Push	objects	over	HTTP/DAV	to	another	repository

SYNOPSIS

git	http-push	[--all]	[--dry-run]	[--force]	[--

verbose]	<url>	<ref>	[<ref>…]

DESCRIPTION

Sends	missing	objects	to	remote	repository,	and	updates	the	remote
branch.

NOTE:	This	command	is	temporarily	disabled	if	your	libcurl	is	older	than
7.16,	as	the	combination	has	been	reported	not	to	work	and	sometimes
corrupts	repository.

OPTIONS



--all
Do	not	assume	that	the	remote	repository	is	complete	in	its	current
state,	and	verify	all	objects	in	the	entire	local	ref's	history	exist	in	the
remote	repository.

--force
Usually,	the	command	refuses	to	update	a	remote	ref	that	is	not	an
ancestor	of	the	local	ref	used	to	overwrite	it.	This	flag	disables	the
check.	What	this	means	is	that	the	remote	repository	can	lose
commits;	use	it	with	care.

--dry-run
Do	everything	except	actually	send	the	updates.

--verbose
Report	the	list	of	objects	being	walked	locally	and	the	list	of	objects
successfully	sent	to	the	remote	repository.

-d	,	-D

Remove	<ref>	from	remote	repository.	The	specified	branch	cannot
be	the	remote	HEAD.	If	-d	is	specified	the	following	other	conditions
must	also	be	met:

Remote	HEAD	must	resolve	to	an	object	that	exists	locally
Specified	branch	resolves	to	an	object	that	exists	locally
Specified	branch	is	an	ancestor	of	the	remote	HEAD

<ref>…
The	remote	refs	to	update.

Specifying	the	Refs

A	<ref>	specification	can	be	either	a	single	pattern,	or	a	pair	of	such
patterns	separated	by	a	colon	":"	(this	means	that	a	ref	name	cannot
have	a	colon	in	it).	A	single	pattern	<name>	is	just	a	shorthand	for
<name>:<name>.

Each	pattern	pair	consists	of	the	source	side	(before	the	colon)	and	the
destination	side	(after	the	colon).	The	ref	to	be	pushed	is	determined	by
finding	a	match	that	matches	the	source	side,	and	where	it	is	pushed	is
determined	by	using	the	destination	side.



It	is	an	error	if	<src>	does	not	match	exactly	one	of	the	local	refs.

If	<dst>	does	not	match	any	remote	ref,	either

it	has	to	start	with	"refs/";	<dst>	is	used	as	the	destination
literally	in	this	case.
<src>	==	<dst>	and	the	ref	that	matched	the	<src>	must	not
exist	in	the	set	of	remote	refs;	the	ref	matched	<src>	locally	is
used	as	the	name	of	the	destination.

Without	--force,	the	<src>	ref	is	stored	at	the	remote	only	if	<dst>	does
not	exist,	or	<dst>	is	a	proper	subset	(i.e.	an	ancestor)	of	<src>.	This
check,	known	as	"fast-forward	check",	is	performed	in	order	to	avoid
accidentally	overwriting	the	remote	ref	and	lose	other	peoples'	commits
from	there.

With	--force,	the	fast-forward	check	is	disabled	for	all	refs.

Optionally,	a	<ref>	parameter	can	be	prefixed	with	a	plus	+	sign	to
disable	the	fast-forward	check	only	on	that	ref.

GIT

Part	of	the	Section	G.3.1,	“git(1)”	suite

G.3.62.	git-imap-send(1)

NAME

git-imap-send	-	Send	a	collection	of	patches	from	stdin	to	an	IMAP	folder

SYNOPSIS

git	imap-send	[-v]	[-q]	[--[no-]curl]

DESCRIPTION



This	command	uploads	a	mailbox	generated	with	git	format-patch	into	an
IMAP	drafts	folder.	This	allows	patches	to	be	sent	as	other	email	is	when
using	mail	clients	that	cannot	read	mailbox	files	directly.	The	command
also	works	with	any	general	mailbox	in	which	emails	have	the	fields
"From",	"Date",	and	"Subject"	in	that	order.

Typical	usage	is	something	like:

git	format-patch	--signoff	--stdout	--attach	origin	|	git	imap-send

OPTIONS

-v	,	--verbose
Be	verbose.

-q	,	--quiet
Be	quiet.

--curl
Use	libcurl	to	communicate	with	the	IMAP	server,	unless	tunneling
into	it.	Ignored	if	Git	was	built	without	the
USE_CURL_FOR_IMAP_SEND	option	set.

--no-curl
Talk	to	the	IMAP	server	using	git's	own	IMAP	routines	instead	of
using	libcurl.	Ignored	if	Git	was	built	with	the	NO_OPENSSL	option
set.

CONFIGURATION

To	use	the	tool,	imap.folder	and	either	imap.tunnel	or	imap.host	must	be
set	to	appropriate	values.



1.	Variables

imap.folder
The	folder	to	drop	the	mails	into,	which	is	typically	the	Drafts	folder.
For	example:	"INBOX.Drafts",	"INBOX/Drafts"	or	"[Gmail]/Drafts".
Required.

imap.tunnel
Command	used	to	setup	a	tunnel	to	the	IMAP	server	through	which
commands	will	be	piped	instead	of	using	a	direct	network	connection
to	the	server.	Required	when	imap.host	is	not	set.

imap.host
A	URL	identifying	the	server.	Use	a	imap://	prefix	for	non-secure
connections	and	a	imaps://	prefix	for	secure	connections.	Ignored
when	imap.tunnel	is	set,	but	required	otherwise.

imap.user
The	username	to	use	when	logging	in	to	the	server.

imap.pass
The	password	to	use	when	logging	in	to	the	server.

imap.port
An	integer	port	number	to	connect	to	on	the	server.	Defaults	to	143
for	imap://	hosts	and	993	for	imaps://	hosts.	Ignored	when
imap.tunnel	is	set.

imap.sslverify
A	boolean	to	enable/disable	verification	of	the	server	certificate	used
by	the	SSL/TLS	connection.	Default	is	true.	Ignored	when
imap.tunnel	is	set.

imap.preformattedHTML
A	boolean	to	enable/disable	the	use	of	html	encoding	when	sending
a	patch.	An	html	encoded	patch	will	be	bracketed	with	<pre>	and
have	a	content	type	of	text/html.	Ironically,	enabling	this	option
causes	Thunderbird	to	send	the	patch	as	a	plain/text,	format=fixed
email.	Default	is	false.

imap.authMethod
Specify	authenticate	method	for	authentication	with	IMAP	server.	If
Git	was	built	with	the	NO_CURL	option,	or	if	your	curl	version	is	older
than	7.34.0,	or	if	you're	running	git-imap-send	with	the	--no-curl



option,	the	only	supported	method	is	CRAM-MD5.	If	this	is	not	set
then	git	imap-send	uses	the	basic	IMAP	plaintext	LOGIN	command.



2.	Examples

Using	tunnel	mode:

[imap]

				folder	=	"INBOX.Drafts"

				tunnel	=	"ssh	-q	-C	user@example.com	/usr/bin/imapd	./Maildir	2>	/dev/null"

Using	direct	mode:

[imap]

				folder	=	"INBOX.Drafts"

				host	=	imap://imap.example.com

				user	=	bob

				pass	=	p4ssw0rd

Using	direct	mode	with	SSL:

[imap]

				folder	=	"INBOX.Drafts"

				host	=	imaps://imap.example.com

				user	=	bob

				pass	=	p4ssw0rd

				port	=	123

				sslverify	=	false

EXAMPLE

To	submit	patches	using	GMail's	IMAP	interface,	first,	edit	your
~/.gitconfig	to	specify	your	account	settings:

[imap]

								folder	=	"[Gmail]/Drafts"

								host	=	imaps://imap.gmail.com

								user	=	user@gmail.com

								port	=	993

								sslverify	=	false

You	might	need	to	instead	use:	folder	=	"[Google	Mail]/Drafts"	if	you	get
an	error	that	the	"Folder	doesn't	exist".

Once	the	commits	are	ready	to	be	sent,	run	the	following	command:

$	git	format-patch	--cover-letter	-M	--stdout	origin/master	|	git	imap-send



Just	make	sure	to	disable	line	wrapping	in	the	email	client	(GMail's	web
interface	will	wrap	lines	no	matter	what,	so	you	need	to	use	a	real	IMAP
client).

CAUTION

It	is	still	your	responsibility	to	make	sure	that	the	email	message	sent	by
your	email	program	meets	the	standards	of	your	project.	Many	projects
do	not	like	patches	to	be	attached.	Some	mail	agents	will	transform
patches	(e.g.	wrap	lines,	send	them	as	format=flowed)	in	ways	that	make
them	fail.	You	will	get	angry	flames	ridiculing	you	if	you	don't	check	this.

Thunderbird	in	particular	is	known	to	be	problematic.	Thunderbird	users
may	wish	to	visit	this	web	page	for	more	information:
http://kb.mozillazine.org/Plain_text_e-mail_-
_Thunderbird#Completely_plain_email

SEE	ALSO

Section	G.3.50,	“git-format-patch(1)”,	Section	G.3.116,	“git-send-
email(1)”,	mbox(5)

GIT

Part	of	the	Section	G.3.1,	“git(1)”	suite

G.3.63.	git-index-pack(1)

NAME

git-index-pack	-	Build	pack	index	file	for	an	existing	packed	archive

SYNOPSIS

git	index-pack	[-v]	[-o	<index-file>]	<pack-file>

git	index-pack	--stdin	[--fix-thin]	[--keep]	[-v]	[-o	<index-

http://kb.mozillazine.org/Plain_text_e-mail_-_Thunderbird#Completely_plain_email


file>]

																	[<pack-file>]

DESCRIPTION

Reads	a	packed	archive	(.pack)	from	the	specified	file,	and	builds	a	pack
index	file	(.idx)	for	it.	The	packed	archive	together	with	the	pack	index
can	then	be	placed	in	the	objects/pack/	directory	of	a	Git	repository.

OPTIONS

-v
Be	verbose	about	what	is	going	on,	including	progress	status.

-o	<index-file>
Write	the	generated	pack	index	into	the	specified	file.	Without	this
option	the	name	of	pack	index	file	is	constructed	from	the	name	of
packed	archive	file	by	replacing	.pack	with	.idx	(and	the	program	fails
if	the	name	of	packed	archive	does	not	end	with	.pack).

--stdin
When	this	flag	is	provided,	the	pack	is	read	from	stdin	instead	and	a
copy	is	then	written	to	<pack-file>.	If	<pack-file>	is	not	specified,	the
pack	is	written	to	objects/pack/	directory	of	the	current	Git	repository
with	a	default	name	determined	from	the	pack	content.	If	<pack-file>
is	not	specified	consider	using	--keep	to	prevent	a	race	condition
between	this	process	and	git	repack.

--fix-thin
Fix	a	"thin"	pack	produced	by	git	pack-objects	--thin	(see
Section	G.3.88,	“git-pack-objects(1)”	for	details)	by	adding	the
excluded	objects	the	deltified	objects	are	based	on	to	the	pack.	This
option	only	makes	sense	in	conjunction	with	--stdin.

--keep
Before	moving	the	index	into	its	final	destination	create	an	empty
.keep	file	for	the	associated	pack	file.	This	option	is	usually
necessary	with	--stdin	to	prevent	a	simultaneous	git	repack	process
from	deleting	the	newly	constructed	pack	and	index	before	refs	can
be	updated	to	use	objects	contained	in	the	pack.

--keep=<msg>



Like	--keep	create	a	.keep	file	before	moving	the	index	into	its	final
destination,	but	rather	than	creating	an	empty	file	place	<msg>
followed	by	an	LF	into	the	.keep	file.	The	<msg>	message	can	later
be	searched	for	within	all	.keep	files	to	locate	any	which	have
outlived	their	usefulness.

--index-version=<version>[,<offset>]
This	is	intended	to	be	used	by	the	test	suite	only.	It	allows	to	force
the	version	for	the	generated	pack	index,	and	to	force	64-bit	index
entries	on	objects	located	above	the	given	offset.

--strict
Die,	if	the	pack	contains	broken	objects	or	links.

--check-self-contained-and-connected
Die	if	the	pack	contains	broken	links.	For	internal	use	only.

--threads=<n>
Specifies	the	number	of	threads	to	spawn	when	resolving	deltas.
This	requires	that	index-pack	be	compiled	with	pthreads	otherwise
this	option	is	ignored	with	a	warning.	This	is	meant	to	reduce	packing
time	on	multiprocessor	machines.	The	required	amount	of	memory
for	the	delta	search	window	is	however	multiplied	by	the	number	of
threads.	Specifying	0	will	cause	Git	to	auto-detect	the	number	of
CPU's	and	use	maximum	3	threads.

Note

Once	the	index	has	been	created,	the	list	of	object	names	is	sorted	and
the	SHA-1	hash	of	that	list	is	printed	to	stdout.	If	--stdin	was	also	used
then	this	is	prefixed	by	either	"pack\t",	or	"keep\t"	if	a	new	.keep	file	was
successfully	created.	This	is	useful	to	remove	a	.keep	file	used	as	a	lock
to	prevent	the	race	with	git	repack	mentioned	above.

GIT

Part	of	the	Section	G.3.1,	“git(1)”	suite

G.3.64.	git-init-db(1)



NAME

git-init-db	-	Creates	an	empty	Git	repository

SYNOPSIS

git	init-db	[-q	|	--quiet]	[--bare]	[--template=

<template_directory>]	[--separate-git-dir	<git	dir>]	[--

shared[=<permissions>]]

DESCRIPTION

This	is	a	synonym	for	Section	G.3.65,	“git-init(1)”.	Please	refer	to	the
documentation	of	that	command.

GIT

Part	of	the	Section	G.3.1,	“git(1)”	suite

G.3.65.	git-init(1)

NAME

git-init	-	Create	an	empty	Git	repository	or	reinitialize	an	existing	one

SYNOPSIS

git	init	[-q	|	--quiet]	[--bare]	[--template=

<template_directory>]

										[--separate-git-dir	<git	dir>]

										[--shared[=<permissions>]]	[directory]

DESCRIPTION

This	command	creates	an	empty	Git	repository	-	basically	a	.git	directory



with	subdirectories	for	objects,	refs/heads,	refs/tags,	and	template	files.
An	initial	HEAD	file	that	references	the	HEAD	of	the	master	branch	is
also	created.

If	the	$GIT_DIR	environment	variable	is	set	then	it	specifies	a	path	to	use
instead	of	./.git	for	the	base	of	the	repository.

If	the	object	storage	directory	is	specified	via	the
$GIT_OBJECT_DIRECTORY	environment	variable	then	the	sha1
directories	are	created	underneath	-	otherwise	the	default
$GIT_DIR/objects	directory	is	used.

Running	git	init	in	an	existing	repository	is	safe.	It	will	not	overwrite	things
that	are	already	there.	The	primary	reason	for	rerunning	git	init	is	to	pick
up	newly	added	templates	(or	to	move	the	repository	to	another	place	if	--
separate-git-dir	is	given).

OPTIONS

-q	,	--quiet
Only	print	error	and	warning	messages;	all	other	output	will	be
suppressed.

--bare
Create	a	bare	repository.	If	GIT_DIR	environment	is	not	set,	it	is	set
to	the	current	working	directory.

--template=<template_directory>
Specify	the	directory	from	which	templates	will	be	used.	(See	the
"TEMPLATE	DIRECTORY"	section	below.)

--separate-git-dir=<git	dir>

Instead	of	initializing	the	repository	as	a	directory	to	either	$GIT_DIR
or	./.git/,	create	a	text	file	there	containing	the	path	to	the	actual
repository.	This	file	acts	as	filesystem-agnostic	Git	symbolic	link	to
the	repository.

If	this	is	reinitialization,	the	repository	will	be	moved	to	the	specified
path.



--shared[=(false|true|umask|group|all|world|everybody|0xxx)]

Specify	that	the	Git	repository	is	to	be	shared	amongst	several
users.	This	allows	users	belonging	to	the	same	group	to	push	into
that	repository.	When	specified,	the	config	variable
"core.sharedRepository"	is	set	so	that	files	and	directories	under
$GIT_DIR	are	created	with	the	requested	permissions.	When	not
specified,	Git	will	use	permissions	reported	by	umask(2).

The	option	can	have	the	following	values,	defaulting	to	group	if	no
value	is	given:

umask	(or	false)
Use	permissions	reported	by	umask(2).	The	default,	when	--
shared	is	not	specified.

group	(or	true)
Make	the	repository	group-writable,	(and	g+sx,	since	the	git
group	may	be	not	the	primary	group	of	all	users).	This	is	used	to
loosen	the	permissions	of	an	otherwise	safe	umask(2)	value.
Note	that	the	umask	still	applies	to	the	other	permission	bits
(e.g.	if	umask	is	0022,	using	group	will	not	remove	read
privileges	from	other	(non-group)	users).	See	0xxx	for	how	to
exactly	specify	the	repository	permissions.

all	(or	world	or	everybody)
Same	as	group,	but	make	the	repository	readable	by	all	users.

0xxx
0xxx	is	an	octal	number	and	each	file	will	have	mode	0xxx.	0xxx
will	override	users'	umask(2)	value	(and	not	only	loosen
permissions	as	group	and	all	does).	0640	will	create	a	repository
which	is	group-readable,	but	not	group-writable	or	accessible	to
others.	0660	will	create	a	repo	that	is	readable	and	writable	to
the	current	user	and	group,	but	inaccessible	to	others.

By	default,	the	configuration	flag	receive.denyNonFastForwards	is
enabled	in	shared	repositories,	so	that	you	cannot	force	a	non	fast-
forwarding	push	into	it.

If	you	provide	a	directory,	the	command	is	run	inside	it.	If	this	directory



does	not	exist,	it	will	be	created.

TEMPLATE	DIRECTORY

The	template	directory	contains	files	and	directories	that	will	be	copied	to
the	$GIT_DIR	after	it	is	created.

The	template	directory	will	be	one	of	the	following	(in	order):

the	argument	given	with	the	--template	option;
the	contents	of	the	$GIT_TEMPLATE_DIR	environment	variable;
the	init.templateDir	configuration	variable;	or
the	default	template	directory:	/usr/share/git-core/templates.

The	default	template	directory	includes	some	directory	structure,
suggested	"exclude	patterns"	(see	Section	G.4.5,	“gitignore(5)”),	and
sample	hook	files	(see	Section	G.4.6,	“githooks(5)”).

EXAMPLES

Start	a	new	Git	repository	for	an	existing	code	base

$	cd	/path/to/my/codebase

$	git	init						

$	git	add	.					

$	git	commit				

Create	a	/path/to/my/codebase/.git	directory.

Add	all	existing	files	to	the	index.

Record	the	pristine	state	as	the	first	commit	in	the	history.



GIT

Part	of	the	Section	G.3.1,	“git(1)”	suite

G.3.66.	git-instaweb(1)

NAME

git-instaweb	-	Instantly	browse	your	working	repository	in	gitweb

SYNOPSIS

git	instaweb	[--local]	[--httpd=<httpd>]	[--port=<port>]

															[--browser=<browser>]

git	instaweb	[--start]	[--stop]	[--restart]

DESCRIPTION

A	simple	script	to	set	up	gitweb	and	a	web	server	for	browsing	the	local
repository.

OPTIONS

-l	,	--local
Only	bind	the	web	server	to	the	local	IP	(127.0.0.1).

-d	,	--httpd
The	HTTP	daemon	command-line	that	will	be	executed.	Command-
line	options	may	be	specified	here,	and	the	configuration	file	will	be
added	at	the	end	of	the	command-line.	Currently	apache2,	lighttpd,
mongoose,	plackup	and	webrick	are	supported.	(Default:	lighttpd)

-m	,	--module-path
The	module	path	(only	needed	if	httpd	is	Apache).	(Default:
/usr/lib/apache2/modules)

-p	,	--port
The	port	number	to	bind	the	httpd	to.	(Default:	1234)

-b	,	--browser



The	web	browser	that	should	be	used	to	view	the	gitweb	page.	This
will	be	passed	to	the	git	web--browse	helper	script	along	with	the
URL	of	the	gitweb	instance.	See	Section	G.3.146,	“git-web--
browse(1)”	for	more	information	about	this.	If	the	script	fails,	the	URL
will	be	printed	to	stdout.

start	,	--start
Start	the	httpd	instance	and	exit.	Regenerate	configuration	files	as
necessary	for	spawning	a	new	instance.

stop	,	--stop
Stop	the	httpd	instance	and	exit.	This	does	not	generate	any	of	the
configuration	files	for	spawning	a	new	instance,	nor	does	it	close	the
browser.

restart	,	--restart
Restart	the	httpd	instance	and	exit.	Regenerate	configuration	files	as
necessary	for	spawning	a	new	instance.

CONFIGURATION

You	may	specify	configuration	in	your	.git/config

[instaweb]

								local	=	true

								httpd	=	apache2	-f

								port	=	4321

								browser	=	konqueror

								modulePath	=	/usr/lib/apache2/modules

If	the	configuration	variable	instaweb.browser	is	not	set,	web.browser	will
be	used	instead	if	it	is	defined.	See	Section	G.3.146,	“git-web--browse(1)”
for	more	information	about	this.

SEE	ALSO

Section	G.4.13,	“gitweb(1)”

GIT



Part	of	the	Section	G.3.1,	“git(1)”	suite

G.3.67.	git-interpret-trailers(1)

NAME

git-interpret-trailers	-	help	add	structured	information	into	commit
messages

SYNOPSIS

git	interpret-trailers	[--in-place]	[--trim-empty]	[(--

trailer	<token>[(=|:)<value>])…]	[<file>…]

DESCRIPTION

Help	adding	trailers	lines,	that	look	similar	to	RFC	822	e-mail	headers,	at
the	end	of	the	otherwise	free-form	part	of	a	commit	message.

This	command	reads	some	patches	or	commit	messages	from	either	the
<file>	arguments	or	the	standard	input	if	no	<file>	is	specified.	Then	this
command	applies	the	arguments	passed	using	the	--trailer	option,	if	any,
to	the	commit	message	part	of	each	input	file.	The	result	is	emitted	on	the
standard	output.

Some	configuration	variables	control	the	way	the	--trailer	arguments	are
applied	to	each	commit	message	and	the	way	any	existing	trailer	in	the
commit	message	is	changed.	They	also	make	it	possible	to	automatically
add	some	trailers.

By	default,	a	<token>=<value>	or	<token>:<value>	argument	given	using
--trailer	will	be	appended	after	the	existing	trailers	only	if	the	last	trailer
has	a	different	(<token>,	<value>)	pair	(or	if	there	is	no	existing	trailer).
The	<token>	and	<value>	parts	will	be	trimmed	to	remove	starting	and
trailing	whitespace,	and	the	resulting	trimmed	<token>	and	<value>	will
appear	in	the	message	like	this:



token:	value

This	means	that	the	trimmed	<token>	and	<value>	will	be	separated	by	':
'	(one	colon	followed	by	one	space).

By	default	the	new	trailer	will	appear	at	the	end	of	all	the	existing	trailers.
If	there	is	no	existing	trailer,	the	new	trailer	will	appear	after	the	commit
message	part	of	the	output,	and,	if	there	is	no	line	with	only	spaces	at	the
end	of	the	commit	message	part,	one	blank	line	will	be	added	before	the
new	trailer.

Existing	trailers	are	extracted	from	the	input	message	by	looking	for	a
group	of	one	or	more	lines	that	contain	a	colon	(by	default),	where	the
group	is	preceded	by	one	or	more	empty	(or	whitespace-only)	lines.	The
group	must	either	be	at	the	end	of	the	message	or	be	the	last	non-
whitespace	lines	before	a	line	that	starts	with	---.	Such	three	minus	signs
start	the	patch	part	of	the	message.

When	reading	trailers,	there	can	be	whitespaces	before	and	after	the
token,	the	separator	and	the	value.	There	can	also	be	whitespaces	inside
the	token	and	the	value.

Note	that	trailers	do	not	follow	and	are	not	intended	to	follow	many	rules
for	RFC	822	headers.	For	example	they	do	not	follow	the	line	folding
rules,	the	encoding	rules	and	probably	many	other	rules.

OPTIONS

--in-place
Edit	the	files	in	place.

--trim-empty
If	the	<value>	part	of	any	trailer	contains	only	whitespace,	the	whole
trailer	will	be	removed	from	the	resulting	message.	This	applies	to
existing	trailers	as	well	as	new	trailers.

--trailer	<token>[(=|:)<value>]
Specify	a	(<token>,	<value>)	pair	that	should	be	applied	as	a	trailer
to	the	input	messages.	See	the	description	of	this	command.



CONFIGURATION	VARIABLES

trailer.separators

This	option	tells	which	characters	are	recognized	as	trailer
separators.	By	default	only	:	is	recognized	as	a	trailer	separator,
except	that	=	is	always	accepted	on	the	command	line	for
compatibility	with	other	git	commands.

The	first	character	given	by	this	option	will	be	the	default	character
used	when	another	separator	is	not	specified	in	the	config	for	this
trailer.

For	example,	if	the	value	for	this	option	is	"%=$",	then	only	lines
using	the	format	<token><sep><value>	with	<sep>	containing	%,	=
or	$	and	then	spaces	will	be	considered	trailers.	And	%	will	be	the
default	separator	used,	so	by	default	trailers	will	appear	like:
<token>%	<value>	(one	percent	sign	and	one	space	will	appear
between	the	token	and	the	value).

trailer.where

This	option	tells	where	a	new	trailer	will	be	added.

This	can	be	end,	which	is	the	default,	start,	after	or	before.

If	it	is	end,	then	each	new	trailer	will	appear	at	the	end	of	the	existing
trailers.

If	it	is	start,	then	each	new	trailer	will	appear	at	the	start,	instead	of
the	end,	of	the	existing	trailers.

If	it	is	after,	then	each	new	trailer	will	appear	just	after	the	last	trailer
with	the	same	<token>.

If	it	is	before,	then	each	new	trailer	will	appear	just	before	the	first
trailer	with	the	same	<token>.

trailer.ifexists



This	option	makes	it	possible	to	choose	what	action	will	be
performed	when	there	is	already	at	least	one	trailer	with	the	same
<token>	in	the	message.

The	valid	values	for	this	option	are:	addIfDifferentNeighbor	(this	is
the	default),	addIfDifferent,	add,	overwrite	or	doNothing.

With	addIfDifferentNeighbor,	a	new	trailer	will	be	added	only	if	no
trailer	with	the	same	(<token>,	<value>)	pair	is	above	or	below	the
line	where	the	new	trailer	will	be	added.

With	addIfDifferent,	a	new	trailer	will	be	added	only	if	no	trailer	with
the	same	(<token>,	<value>)	pair	is	already	in	the	message.

With	add,	a	new	trailer	will	be	added,	even	if	some	trailers	with	the
same	(<token>,	<value>)	pair	are	already	in	the	message.

With	replace,	an	existing	trailer	with	the	same	<token>	will	be
deleted	and	the	new	trailer	will	be	added.	The	deleted	trailer	will	be
the	closest	one	(with	the	same	<token>)	to	the	place	where	the	new
one	will	be	added.

With	doNothing,	nothing	will	be	done;	that	is	no	new	trailer	will	be
added	if	there	is	already	one	with	the	same	<token>	in	the	message.

trailer.ifmissing

This	option	makes	it	possible	to	choose	what	action	will	be
performed	when	there	is	not	yet	any	trailer	with	the	same	<token>	in
the	message.

The	valid	values	for	this	option	are:	add	(this	is	the	default)	and
doNothing.

With	add,	a	new	trailer	will	be	added.

With	doNothing,	nothing	will	be	done.

trailer.<token>.key



This	key	will	be	used	instead	of	<token>	in	the	trailer.	At	the	end	of
this	key,	a	separator	can	appear	and	then	some	space	characters.
By	default	the	only	valid	separator	is	:,	but	this	can	be	changed	using
the	trailer.separators	config	variable.

If	there	is	a	separator,	then	the	key	will	be	used	instead	of	both	the
<token>	and	the	default	separator	when	adding	the	trailer.

trailer.<token>.where
This	option	takes	the	same	values	as	the	trailer.where	configuration
variable	and	it	overrides	what	is	specified	by	that	option	for	trailers
with	the	specified	<token>.

trailer.<token>.ifexist
This	option	takes	the	same	values	as	the	trailer.ifexist	configuration
variable	and	it	overrides	what	is	specified	by	that	option	for	trailers
with	the	specified	<token>.

trailer.<token>.ifmissing
This	option	takes	the	same	values	as	the	trailer.ifmissing
configuration	variable	and	it	overrides	what	is	specified	by	that	option
for	trailers	with	the	specified	<token>.

trailer.<token>.command

This	option	can	be	used	to	specify	a	shell	command	that	will	be
called	to	automatically	add	or	modify	a	trailer	with	the	specified
<token>.

When	this	option	is	specified,	the	behavior	is	as	if	a	special
<token>=<value>	argument	were	added	at	the	beginning	of	the
command	line,	where	<value>	is	taken	to	be	the	standard	output	of
the	specified	command	with	any	leading	and	trailing	whitespace
trimmed	off.

If	the	command	contains	the	$ARG	string,	this	string	will	be	replaced
with	the	<value>	part	of	an	existing	trailer	with	the	same	<token>,	if
any,	before	the	command	is	launched.

If	some	<token>=<value>	arguments	are	also	passed	on	the
command	line,	when	a	trailer.<token>.command	is	configured,	the



command	will	also	be	executed	for	each	of	these	arguments.	And
the	<value>	part	of	these	arguments,	if	any,	will	be	used	to	replace
the	$ARG	string	in	the	command.

EXAMPLES

Configure	a	sign	trailer	with	a	Signed-off-by	key,	and	then	add	two	of
these	trailers	to	a	message:

$	git	config	trailer.sign.key	"Signed-off-by"

$	cat	msg.txt

subject

message

$	cat	msg.txt	|	git	interpret-trailers	--trailer	'sign:	Alice	<alice@example.com>'	--trailer	'sign:	Bob	<bob@example.com>'

subject

message

Signed-off-by:	Alice	<alice@example.com>

Signed-off-by:	Bob	<bob@example.com>

Use	the	--in-place	option	to	edit	a	message	file	in	place:

$	cat	msg.txt

subject

message

Signed-off-by:	Bob	<bob@example.com>

$	git	interpret-trailers	--trailer	'Acked-by:	Alice	<alice@example.com>'	--in-place	msg.txt

$	cat	msg.txt

subject

message

Signed-off-by:	Bob	<bob@example.com>

Acked-by:	Alice	<alice@example.com>

Extract	the	last	commit	as	a	patch,	and	add	a	Cc	and	a	Reviewed-by



trailer	to	it:

$	git	format-patch	-1

0001-foo.patch

$	git	interpret-trailers	--trailer	'Cc:	Alice	<alice@example.com>'	--trailer	'Reviewed-by:	Bob	<bob@example.com>'	0001-foo.patch	>0001-bar.patch

Configure	a	sign	trailer	with	a	command	to	automatically	add	a
'Signed-off-by:	'	with	the	author	information	only	if	there	is	no
'Signed-off-by:	'	already,	and	show	how	it	works:

$	git	config	trailer.sign.key	"Signed-off-by:	"

$	git	config	trailer.sign.ifmissing	add

$	git	config	trailer.sign.ifexists	doNothing

$	git	config	trailer.sign.command	'echo	"$(git	config	user.name)	<$(git	config	user.email)>"'

$	git	interpret-trailers	<<EOF

>	EOF

Signed-off-by:	Bob	<bob@example.com>

$	git	interpret-trailers	<<EOF

>	Signed-off-by:	Alice	<alice@example.com>

>	EOF

Signed-off-by:	Alice	<alice@example.com>

Configure	a	fix	trailer	with	a	key	that	contains	a	#	and	no	space	after
this	character,	and	show	how	it	works:

$	git	config	trailer.separators	":#"

$	git	config	trailer.fix.key	"Fix	#"

$	echo	"subject"	|	git	interpret-trailers	--trailer	fix=42

subject

Fix	#42

Configure	a	see	trailer	with	a	command	to	show	the	subject	of	a
commit	that	is	related,	and	show	how	it	works:

$	git	config	trailer.see.key	"See-also:	"



$	git	config	trailer.see.ifExists	"replace"

$	git	config	trailer.see.ifMissing	"doNothing"

$	git	config	trailer.see.command	"git	log	-1	--oneline	--format=\"%h	(%s)\"	--abbrev-commit	--abbrev=14	\$ARG"

$	git	interpret-trailers	<<EOF

>	subject

>

>	message

>

>	see:	HEAD~2

>	EOF

subject

message

See-also:	fe3187489d69c4	(subject	of	related	commit)

Configure	a	commit	template	with	some	trailers	with	empty	values
(using	sed	to	show	and	keep	the	trailing	spaces	at	the	end	of	the
trailers),	then	configure	a	commit-msg	hook	that	uses	git	interpret-
trailers	to	remove	trailers	with	empty	values	and	to	add	a	git-version
trailer:

$	sed	-e	's/	Z$/	/'	>commit_template.txt	<<EOF

>	***subject***

>

>	***message***

>

>	Fixes:	Z

>	Cc:	Z

>	Reviewed-by:	Z

>	Signed-off-by:	Z

>	EOF

$	git	config	commit.template	commit_template.txt

$	cat	>.git/hooks/commit-msg	<<EOF

>	#!/bin/sh

>	git	interpret-trailers	--trim-empty	--trailer	"git-version:	\$(git	describe)"	"\$1"	>	"\$1.new"

>	mv	"\$1.new"	"\$1"

>	EOF

$	chmod	+x	.git/hooks/commit-msg

SEE	ALSO



Section	G.3.26,	“git-commit(1)”,	Section	G.3.50,	“git-format-patch(1)”,
Section	G.3.27,	“git-config(1)”

GIT

Part	of	the	Section	G.3.1,	“git(1)”	suite

G.3.68.	git-log(1)

NAME

git-log	-	Show	commit	logs

SYNOPSIS

git	log	[<options>]	[<revision	range>]	[[--]	<path>…]

DESCRIPTION

Shows	the	commit	logs.

The	command	takes	options	applicable	to	the	git	rev-list	command	to
control	what	is	shown	and	how,	and	options	applicable	to	the	git	diff-*
commands	to	control	how	the	changes	each	commit	introduces	are
shown.

OPTIONS

--follow
Continue	listing	the	history	of	a	file	beyond	renames	(works	only	for
a	single	file).

--no-decorate	,	--decorate[=short|full|no]
Print	out	the	ref	names	of	any	commits	that	are	shown.	If	short	is
specified,	the	ref	name	prefixes	refs/heads/,	refs/tags/	and
refs/remotes/	will	not	be	printed.	If	full	is	specified,	the	full	ref	name



(including	prefix)	will	be	printed.	The	default	option	is	short.
--source

Print	out	the	ref	name	given	on	the	command	line	by	which	each
commit	was	reached.

--use-mailmap
Use	mailmap	file	to	map	author	and	committer	names	and	email
addresses	to	canonical	real	names	and	email	addresses.	See
Section	G.3.122,	“git-shortlog(1)”.

--full-diff

Without	this	flag,	git	log	-p	<path>...	shows	commits	that	touch	the
specified	paths,	and	diffs	about	the	same	specified	paths.	With	this,
the	full	diff	is	shown	for	commits	that	touch	the	specified	paths;	this
means	that	"<path>…"	limits	only	commits,	and	doesn't	limit	diff	for
those	commits.

Note	that	this	affects	all	diff-based	output	types,	e.g.	those	produced
by	--stat,	etc.

--log-size
Include	a	line	log	size	<number>	in	the	output	for	each	commit,
where	<number>	is	the	length	of	that	commit's	message	in	bytes.
Intended	to	speed	up	tools	that	read	log	messages	from	git	log
output	by	allowing	them	to	allocate	space	in	advance.

-L	<start>,<end>:<file>	,	-L	:<funcname>:<file>

Trace	the	evolution	of	the	line	range	given	by	"<start>,<end>"	(or	the
function	name	regex	<funcname>)	within	the	<file>.	You	may	not
give	any	pathspec	limiters.	This	is	currently	limited	to	a	walk	starting
from	a	single	revision,	i.e.,	you	may	only	give	zero	or	one	positive
revision	arguments.	You	can	specify	this	option	more	than	once.

<start>	and	<end>	can	take	one	of	these	forms:

number

If	<start>	or	<end>	is	a	number,	it	specifies	an	absolute	line
number	(lines	count	from	1).



/regex/

This	form	will	use	the	first	line	matching	the	given	POSIX	regex.
If	<start>	is	a	regex,	it	will	search	from	the	end	of	the	previous	-L
range,	if	any,	otherwise	from	the	start	of	file.	If	<start>	is
^/regex/,	it	will	search	from	the	start	of	file.	If	<end>	is	a	regex,	it
will	search	starting	at	the	line	given	by	<start>.

+offset	or	-offset

This	is	only	valid	for	<end>	and	will	specify	a	number	of	lines
before	or	after	the	line	given	by	<start>.

If	:<funcname>	is	given	in	place	of	<start>	and	<end>,	it	is	a	regular
expression	that	denotes	the	range	from	the	first	funcname	line	that
matches	<funcname>,	up	to	the	next	funcname	line.	:<funcname>
searches	from	the	end	of	the	previous	-L	range,	if	any,	otherwise
from	the	start	of	file.	^:<funcname>	searches	from	the	start	of	file.

<revision	range>
Show	only	commits	in	the	specified	revision	range.	When	no
<revision	range>	is	specified,	it	defaults	to	HEAD	(i.e.	the	whole
history	leading	to	the	current	commit).	origin..HEAD	specifies	all	the
commits	reachable	from	the	current	commit	(i.e.	HEAD),	but	not	from
origin.	For	a	complete	list	of	ways	to	spell	<revision	range>,	see	the
Specifying	Ranges	section	of	Section	G.4.12,	“gitrevisions(7)”.

[--]	<path>…

Show	only	commits	that	are	enough	to	explain	how	the	files	that
match	the	specified	paths	came	to	be.	See	History	Simplification
below	for	details	and	other	simplification	modes.

Paths	may	need	to	be	prefixed	with	`--	'	to	separate	them	from
options	or	the	revision	range,	when	confusion	arises.



1.	Commit	Limiting

Besides	specifying	a	range	of	commits	that	should	be	listed	using	the
special	notations	explained	in	the	description,	additional	commit	limiting
may	be	applied.

Using	more	options	generally	further	limits	the	output	(e.g.	--since=
<date1>	limits	to	commits	newer	than	<date1>,	and	using	it	with	--grep=
<pattern>	further	limits	to	commits	whose	log	message	has	a	line	that
matches	<pattern>),	unless	otherwise	noted.

Note	that	these	are	applied	before	commit	ordering	and	formatting
options,	such	as	--reverse.

-<number>	,	-n	<number>	,	--max-count=<number>
Limit	the	number	of	commits	to	output.

--skip=<number>
Skip	number	commits	before	starting	to	show	the	commit	output.

--since=<date>	,	--after=<date>
Show	commits	more	recent	than	a	specific	date.

--until=<date>	,	--before=<date>
Show	commits	older	than	a	specific	date.

--author=<pattern>	,	--committer=<pattern>
Limit	the	commits	output	to	ones	with	author/committer	header	lines
that	match	the	specified	pattern	(regular	expression).	With	more	than
one	--author=<pattern>,	commits	whose	author	matches	any	of	the
given	patterns	are	chosen	(similarly	for	multiple	--committer=
<pattern>).

--grep-reflog=<pattern>
Limit	the	commits	output	to	ones	with	reflog	entries	that	match	the
specified	pattern	(regular	expression).	With	more	than	one	--grep-
reflog,	commits	whose	reflog	message	matches	any	of	the	given
patterns	are	chosen.	It	is	an	error	to	use	this	option	unless	--walk-
reflogs	is	in	use.

--grep=<pattern>



Limit	the	commits	output	to	ones	with	log	message	that	matches	the
specified	pattern	(regular	expression).	With	more	than	one	--grep=
<pattern>,	commits	whose	message	matches	any	of	the	given
patterns	are	chosen	(but	see	--all-match).

When	--show-notes	is	in	effect,	the	message	from	the	notes	is
matched	as	if	it	were	part	of	the	log	message.

--all-match
Limit	the	commits	output	to	ones	that	match	all	given	--grep,	instead
of	ones	that	match	at	least	one.

--invert-grep
Limit	the	commits	output	to	ones	with	log	message	that	do	not	match
the	pattern	specified	with	--grep=<pattern>.

-i	,	--regexp-ignore-case
Match	the	regular	expression	limiting	patterns	without	regard	to	letter
case.

--basic-regexp
Consider	the	limiting	patterns	to	be	basic	regular	expressions;	this	is
the	default.

-E	,	--extended-regexp
Consider	the	limiting	patterns	to	be	extended	regular	expressions
instead	of	the	default	basic	regular	expressions.

-F	,	--fixed-strings
Consider	the	limiting	patterns	to	be	fixed	strings	(don't	interpret
pattern	as	a	regular	expression).

--perl-regexp
Consider	the	limiting	patterns	to	be	Perl-compatible	regular
expressions.	Requires	libpcre	to	be	compiled	in.

--remove-empty
Stop	when	a	given	path	disappears	from	the	tree.

--merges
Print	only	merge	commits.	This	is	exactly	the	same	as	--min-
parents=2.

--no-merges
Do	not	print	commits	with	more	than	one	parent.	This	is	exactly	the
same	as	--max-parents=1.



--min-parents=<number>	,	--max-parents=<number>	,	--no-min-parents	,
--no-max-parents

Show	only	commits	which	have	at	least	(or	at	most)	that	many
parent	commits.	In	particular,	--max-parents=1	is	the	same	as	--no-
merges,	--min-parents=2	is	the	same	as	--merges.	--max-parents=0
gives	all	root	commits	and	--min-parents=3	all	octopus	merges.

--no-min-parents	and	--no-max-parents	reset	these	limits	(to	no	limit)
again.	Equivalent	forms	are	--min-parents=0	(any	commit	has	0	or
more	parents)	and	--max-parents=-1	(negative	numbers	denote	no
upper	limit).

--first-parent
Follow	only	the	first	parent	commit	upon	seeing	a	merge	commit.
This	option	can	give	a	better	overview	when	viewing	the	evolution	of
a	particular	topic	branch,	because	merges	into	a	topic	branch	tend	to
be	only	about	adjusting	to	updated	upstream	from	time	to	time,	and
this	option	allows	you	to	ignore	the	individual	commits	brought	in	to
your	history	by	such	a	merge.	Cannot	be	combined	with	--bisect.

--not
Reverses	the	meaning	of	the	^	prefix	(or	lack	thereof)	for	all	following
revision	specifiers,	up	to	the	next	--not.

--all
Pretend	as	if	all	the	refs	in	refs/	are	listed	on	the	command	line	as
<commit>.

--branches[=<pattern>]
Pretend	as	if	all	the	refs	in	refs/heads	are	listed	on	the	command	line
as	<commit>.	If	<pattern>	is	given,	limit	branches	to	ones	matching
given	shell	glob.	If	pattern	lacks	?,	*,	or	[,	/*	at	the	end	is	implied.

--tags[=<pattern>]
Pretend	as	if	all	the	refs	in	refs/tags	are	listed	on	the	command	line
as	<commit>.	If	<pattern>	is	given,	limit	tags	to	ones	matching	given
shell	glob.	If	pattern	lacks	?,	*,	or	[,	/*	at	the	end	is	implied.

--remotes[=<pattern>]
Pretend	as	if	all	the	refs	in	refs/remotes	are	listed	on	the	command
line	as	<commit>.	If	<pattern>	is	given,	limit	remote-tracking
branches	to	ones	matching	given	shell	glob.	If	pattern	lacks	?,	*,	or	[,



/*	at	the	end	is	implied.
--glob=<glob-pattern>

Pretend	as	if	all	the	refs	matching	shell	glob	<glob-pattern>	are	listed
on	the	command	line	as	<commit>.	Leading	refs/,	is	automatically
prepended	if	missing.	If	pattern	lacks	?,	*,	or	[,	/*	at	the	end	is
implied.

--exclude=<glob-pattern>

Do	not	include	refs	matching	<glob-pattern>	that	the	next	--all,	--
branches,	--tags,	--remotes,	or	--glob	would	otherwise	consider.
Repetitions	of	this	option	accumulate	exclusion	patterns	up	to	the
next	--all,	--branches,	--tags,	--remotes,	or	--glob	option	(other
options	or	arguments	do	not	clear	accumulated	patterns).

The	patterns	given	should	not	begin	with	refs/heads,	refs/tags,	or
refs/remotes	when	applied	to	--branches,	--tags,	or	--remotes,
respectively,	and	they	must	begin	with	refs/	when	applied	to	--glob	or
--all.	If	a	trailing	/*	is	intended,	it	must	be	given	explicitly.

--reflog
Pretend	as	if	all	objects	mentioned	by	reflogs	are	listed	on	the
command	line	as	<commit>.

--ignore-missing
Upon	seeing	an	invalid	object	name	in	the	input,	pretend	as	if	the
bad	input	was	not	given.

--bisect
Pretend	as	if	the	bad	bisection	ref	refs/bisect/bad	was	listed	and	as	if
it	was	followed	by	--not	and	the	good	bisection	refs	refs/bisect/good-*
on	the	command	line.	Cannot	be	combined	with	--first-parent.

--stdin
In	addition	to	the	<commit>	listed	on	the	command	line,	read	them
from	the	standard	input.	If	a	--	separator	is	seen,	stop	reading
commits	and	start	reading	paths	to	limit	the	result.

--cherry-mark
Like	--cherry-pick	(see	below)	but	mark	equivalent	commits	with	=
rather	than	omitting	them,	and	inequivalent	ones	with	+.

--cherry-pick



Omit	any	commit	that	introduces	the	same	change	as	another
commit	on	the	other	side	when	the	set	of	commits	are	limited	with
symmetric	difference.

For	example,	if	you	have	two	branches,	A	and	B,	a	usual	way	to	list
all	commits	on	only	one	side	of	them	is	with	--left-right	(see	the
example	below	in	the	description	of	the	--left-right	option).	However,
it	shows	the	commits	that	were	cherry-picked	from	the	other	branch
(for	example,	3rd	on	b	may	be	cherry-picked	from	branch	A).	With
this	option,	such	pairs	of	commits	are	excluded	from	the	output.

--left-only	,	--right-only

List	only	commits	on	the	respective	side	of	a	symmetric	range,	i.e.
only	those	which	would	be	marked	<	resp.	>	by	--left-right.

For	example,	--cherry-pick	--right-only	A...B	omits	those	commits
from	B	which	are	in	A	or	are	patch-equivalent	to	a	commit	in	A.	In
other	words,	this	lists	the	+	commits	from	git	cherry	A	B.	More
precisely,	--cherry-pick	--right-only	--no-merges	gives	the	exact	list.

--cherry
A	synonym	for	--right-only	--cherry-mark	--no-merges;	useful	to	limit
the	output	to	the	commits	on	our	side	and	mark	those	that	have	been
applied	to	the	other	side	of	a	forked	history	with	git	log	--cherry
upstream...mybranch,	similar	to	git	cherry	upstream	mybranch.

-g	,	--walk-reflogs

Instead	of	walking	the	commit	ancestry	chain,	walk	reflog	entries
from	the	most	recent	one	to	older	ones.	When	this	option	is	used	you
cannot	specify	commits	to	exclude	(that	is,	^commit,
commit1..commit2,	and	commit1...commit2	notations	cannot	be
used).

With	--pretty	format	other	than	oneline	(for	obvious	reasons),	this
causes	the	output	to	have	two	extra	lines	of	information	taken	from
the	reflog.	By	default,	commit@{Nth}	notation	is	used	in	the	output.
When	the	starting	commit	is	specified	as	commit@{now},	output	also



uses	commit@{timestamp}	notation	instead.	Under	--pretty=oneline,
the	commit	message	is	prefixed	with	this	information	on	the	same
line.	This	option	cannot	be	combined	with	--reverse.	See	also
Section	G.3.101,	“git-reflog(1)”.

--merge
After	a	failed	merge,	show	refs	that	touch	files	having	a	conflict	and
don't	exist	on	all	heads	to	merge.

--boundary
Output	excluded	boundary	commits.	Boundary	commits	are	prefixed
with	-.



2.	History	Simplification

Sometimes	you	are	only	interested	in	parts	of	the	history,	for	example	the
commits	modifying	a	particular	<path>.	But	there	are	two	parts	of	History
Simplification,	one	part	is	selecting	the	commits	and	the	other	is	how	to
do	it,	as	there	are	various	strategies	to	simplify	the	history.

The	following	options	select	the	commits	to	be	shown:

<paths>
Commits	modifying	the	given	<paths>	are	selected.

--simplify-by-decoration
Commits	that	are	referred	by	some	branch	or	tag	are	selected.

Note	that	extra	commits	can	be	shown	to	give	a	meaningful	history.

The	following	options	affect	the	way	the	simplification	is	performed:

Default	mode
Simplifies	the	history	to	the	simplest	history	explaining	the	final	state
of	the	tree.	Simplest	because	it	prunes	some	side	branches	if	the
end	result	is	the	same	(i.e.	merging	branches	with	the	same	content)

--full-history
Same	as	the	default	mode,	but	does	not	prune	some	history.

--dense
Only	the	selected	commits	are	shown,	plus	some	to	have	a
meaningful	history.

--sparse
All	commits	in	the	simplified	history	are	shown.

--simplify-merges
Additional	option	to	--full-history	to	remove	some	needless	merges
from	the	resulting	history,	as	there	are	no	selected	commits
contributing	to	this	merge.

--ancestry-path
When	given	a	range	of	commits	to	display	(e.g.	commit1..commit2	or
commit2	^commit1),	only	display	commits	that	exist	directly	on	the



ancestry	chain	between	the	commit1	and	commit2,	i.e.	commits	that
are	both	descendants	of	commit1,	and	ancestors	of	commit2.

A	more	detailed	explanation	follows.

Suppose	you	specified	foo	as	the	<paths>.	We	shall	call	commits	that
modify	foo	!TREESAME,	and	the	rest	TREESAME.	(In	a	diff	filtered	for
foo,	they	look	different	and	equal,	respectively.)

In	the	following,	we	will	always	refer	to	the	same	example	history	to
illustrate	the	differences	between	simplification	settings.	We	assume	that
you	are	filtering	for	a	file	foo	in	this	commit	graph:

										.-A---M---N---O---P---Q

									/					/			/			/			/			/

								I					B			C			D			E			Y

									\			/			/			/			/			/

										`-------------'			X

The	horizontal	line	of	history	A---Q	is	taken	to	be	the	first	parent	of	each
merge.	The	commits	are:

I	is	the	initial	commit,	in	which	foo	exists	with	contents	asdf,	and	a
file	quux	exists	with	contents	quux.	Initial	commits	are	compared	to
an	empty	tree,	so	I	is	!TREESAME.
In	A,	foo	contains	just	foo.
B	contains	the	same	change	as	A.	Its	merge	M	is	trivial	and	hence
TREESAME	to	all	parents.
C	does	not	change	foo,	but	its	merge	N	changes	it	to	foobar,	so	it	is
not	TREESAME	to	any	parent.
D	sets	foo	to	baz.	Its	merge	O	combines	the	strings	from	N	and	D	to
foobarbaz;	i.e.,	it	is	not	TREESAME	to	any	parent.
E	changes	quux	to	xyzzy,	and	its	merge	P	combines	the	strings	to
quux	xyzzy.	P	is	TREESAME	to	O,	but	not	to	E.
X	is	an	independent	root	commit	that	added	a	new	file	side,	and	Y
modified	it.	Y	is	TREESAME	to	X.	Its	merge	Q	added	side	to	P,	and
Q	is	TREESAME	to	P,	but	not	to	Y.



rev-list	walks	backwards	through	history,	including	or	excluding	commits
based	on	whether	--full-history	and/or	parent	rewriting	(via	--parents	or	--
children)	are	used.	The	following	settings	are	available.

Default	mode

Commits	are	included	if	they	are	not	TREESAME	to	any	parent
(though	this	can	be	changed,	see	--sparse	below).	If	the	commit	was
a	merge,	and	it	was	TREESAME	to	one	parent,	follow	only	that
parent.	(Even	if	there	are	several	TREESAME	parents,	follow	only
one	of	them.)	Otherwise,	follow	all	parents.

This	results	in:

										.-A---N---O

									/					/			/

								I---------D

Note	how	the	rule	to	only	follow	the	TREESAME	parent,	if	one	is
available,	removed	B	from	consideration	entirely.	C	was	considered
via	N,	but	is	TREESAME.	Root	commits	are	compared	to	an	empty
tree,	so	I	is	!TREESAME.

Parent/child	relations	are	only	visible	with	--parents,	but	that	does
not	affect	the	commits	selected	in	default	mode,	so	we	have	shown
the	parent	lines.

--full-history	without	parent	rewriting

This	mode	differs	from	the	default	in	one	point:	always	follow	all
parents	of	a	merge,	even	if	it	is	TREESAME	to	one	of	them.	Even	if
more	than	one	side	of	the	merge	has	commits	that	are	included,	this
does	not	imply	that	the	merge	itself	is!	In	the	example,	we	get

								I		A		B		N		D		O		P		Q

M	was	excluded	because	it	is	TREESAME	to	both	parents.	E,	C	and
B	were	all	walked,	but	only	B	was	!TREESAME,	so	the	others	do	not



appear.

Note	that	without	parent	rewriting,	it	is	not	really	possible	to	talk
about	the	parent/child	relationships	between	the	commits,	so	we
show	them	disconnected.

--full-history	with	parent	rewriting

Ordinary	commits	are	only	included	if	they	are	!TREESAME	(though
this	can	be	changed,	see	--sparse	below).

Merges	are	always	included.	However,	their	parent	list	is	rewritten:
Along	each	parent,	prune	away	commits	that	are	not	included
themselves.	This	results	in

										.-A---M---N---O---P---Q

									/					/			/			/			/

								I					B			/			D			/

									\			/			/			/			/

										`-------------'

Compare	to	--full-history	without	rewriting	above.	Note	that	E	was
pruned	away	because	it	is	TREESAME,	but	the	parent	list	of	P	was
rewritten	to	contain	E's	parent	I.	The	same	happened	for	C	and	N,
and	X,	Y	and	Q.

In	addition	to	the	above	settings,	you	can	change	whether	TREESAME
affects	inclusion:

--dense
Commits	that	are	walked	are	included	if	they	are	not	TREESAME	to
any	parent.

--sparse

All	commits	that	are	walked	are	included.

Note	that	without	--full-history,	this	still	simplifies	merges:	if	one	of
the	parents	is	TREESAME,	we	follow	only	that	one,	so	the	other
sides	of	the	merge	are	never	walked.



--simplify-merges

First,	build	a	history	graph	in	the	same	way	that	--full-history	with
parent	rewriting	does	(see	above).

Then	simplify	each	commit	C	to	its	replacement	C'	in	the	final	history
according	to	the	following	rules:

Set	C'	to	C.
Replace	each	parent	P	of	C'	with	its	simplification	P'.	In	the
process,	drop	parents	that	are	ancestors	of	other	parents	or	that
are	root	commits	TREESAME	to	an	empty	tree,	and	remove
duplicates,	but	take	care	to	never	drop	all	parents	that	we	are
TREESAME	to.
If	after	this	parent	rewriting,	C'	is	a	root	or	merge	commit	(has
zero	or	>1	parents),	a	boundary	commit,	or	!TREESAME,	it
remains.	Otherwise,	it	is	replaced	with	its	only	parent.

The	effect	of	this	is	best	shown	by	way	of	comparing	to	--full-history
with	parent	rewriting.	The	example	turns	into:

										.-A---M---N---O

									/					/							/

								I					B							D

									\			/							/

										`---------'

Note	the	major	differences	in	N,	P,	and	Q	over	--full-history:

N's	parent	list	had	I	removed,	because	it	is	an	ancestor	of	the
other	parent	M.	Still,	N	remained	because	it	is	!TREESAME.
P's	parent	list	similarly	had	I	removed.	P	was	then	removed
completely,	because	it	had	one	parent	and	is	TREESAME.
Q's	parent	list	had	Y	simplified	to	X.	X	was	then	removed,
because	it	was	a	TREESAME	root.	Q	was	then	removed
completely,	because	it	had	one	parent	and	is	TREESAME.

Finally,	there	is	a	fifth	simplification	mode	available:



--ancestry-path

Limit	the	displayed	commits	to	those	directly	on	the	ancestry	chain
between	the	from	and	to	commits	in	the	given	commit	range.	I.e.
only	display	commits	that	are	ancestor	of	the	to	commit	and
descendants	of	the	from	commit.

As	an	example	use	case,	consider	the	following	commit	history:

												D---E-------F

											/					\							\

										B---C---G---H---I---J

									/																					\

								A-------K---------------L--M

A	regular	D..M	computes	the	set	of	commits	that	are	ancestors	of	M,
but	excludes	the	ones	that	are	ancestors	of	D.	This	is	useful	to	see
what	happened	to	the	history	leading	to	M	since	D,	in	the	sense	that
what	does	M	have	that	did	not	exist	in	D.	The	result	in	this	example
would	be	all	the	commits,	except	A	and	B	(and	D	itself,	of	course).

When	we	want	to	find	out	what	commits	in	M	are	contaminated	with
the	bug	introduced	by	D	and	need	fixing,	however,	we	might	want	to
view	only	the	subset	of	D..M	that	are	actually	descendants	of	D,	i.e.
excluding	C	and	K.	This	is	exactly	what	the	--ancestry-path	option
does.	Applied	to	the	D..M	range,	it	results	in:

																E-------F

																	\							\

																		G---H---I---J

																															\

																																L--M

The	--simplify-by-decoration	option	allows	you	to	view	only	the	big	picture
of	the	topology	of	the	history,	by	omitting	commits	that	are	not	referenced
by	tags.	Commits	are	marked	as	!TREESAME	(in	other	words,	kept	after
history	simplification	rules	described	above)	if	(1)	they	are	referenced	by
tags,	or	(2)	they	change	the	contents	of	the	paths	given	on	the	command



line.	All	other	commits	are	marked	as	TREESAME	(subject	to	be
simplified	away).



3.	Commit	Ordering

By	default,	the	commits	are	shown	in	reverse	chronological	order.

--date-order
Show	no	parents	before	all	of	its	children	are	shown,	but	otherwise
show	commits	in	the	commit	timestamp	order.

--author-date-order
Show	no	parents	before	all	of	its	children	are	shown,	but	otherwise
show	commits	in	the	author	timestamp	order.

--topo-order

Show	no	parents	before	all	of	its	children	are	shown,	and	avoid
showing	commits	on	multiple	lines	of	history	intermixed.

For	example,	in	a	commit	history	like	this:

				---1----2----4----7

								\														\

									3----5----6----8---

where	the	numbers	denote	the	order	of	commit	timestamps,	git	rev-
list	and	friends	with	--date-order	show	the	commits	in	the	timestamp
order:	8	7	6	5	4	3	2	1.

With	--topo-order,	they	would	show	8	6	5	3	7	4	2	1	(or	8	7	4	2	6	5	3
1);	some	older	commits	are	shown	before	newer	ones	in	order	to
avoid	showing	the	commits	from	two	parallel	development	track
mixed	together.

--reverse
Output	the	commits	in	reverse	order.	Cannot	be	combined	with	--
walk-reflogs.



4.	Object	Traversal

These	options	are	mostly	targeted	for	packing	of	Git	repositories.

--no-walk[=(sorted|unsorted)]
Only	show	the	given	commits,	but	do	not	traverse	their	ancestors.
This	has	no	effect	if	a	range	is	specified.	If	the	argument	unsorted	is
given,	the	commits	are	shown	in	the	order	they	were	given	on	the
command	line.	Otherwise	(if	sorted	or	no	argument	was	given),	the
commits	are	shown	in	reverse	chronological	order	by	commit	time.
Cannot	be	combined	with	--graph.

--do-walk
Overrides	a	previous	--no-walk.



5.	Commit	Formatting

--pretty[=<format>]	,	--format=<format>

Pretty-print	the	contents	of	the	commit	logs	in	a	given	format,	where
<format>	can	be	one	of	oneline,	short,	medium,	full,	fuller,	email,
raw,	format:<string>	and	tformat:<string>.	When	<format>	is	none	of
the	above,	and	has	%placeholder	in	it,	it	acts	as	if	--pretty=tformat:
<format>	were	given.

See	the	"PRETTY	FORMATS"	section	for	some	additional	details	for
each	format.	When	=<format>	part	is	omitted,	it	defaults	to	medium.

Note:	you	can	specify	the	default	pretty	format	in	the	repository
configuration	(see	Section	G.3.27,	“git-config(1)”).

--abbrev-commit

Instead	of	showing	the	full	40-byte	hexadecimal	commit	object
name,	show	only	a	partial	prefix.	Non	default	number	of	digits	can	be
specified	with	"--abbrev=<n>"	(which	also	modifies	diff	output,	if	it	is
displayed).

This	should	make	"--pretty=oneline"	a	whole	lot	more	readable	for
people	using	80-column	terminals.

--no-abbrev-commit
Show	the	full	40-byte	hexadecimal	commit	object	name.	This
negates	--abbrev-commit	and	those	options	which	imply	it	such	as	"-
-oneline".	It	also	overrides	the	log.abbrevCommit	variable.

--oneline
This	is	a	shorthand	for	"--pretty=oneline	--abbrev-commit"	used
together.

--encoding=<encoding>
The	commit	objects	record	the	encoding	used	for	the	log	message	in
their	encoding	header;	this	option	can	be	used	to	tell	the	command
to	re-code	the	commit	log	message	in	the	encoding	preferred	by	the



user.	For	non	plumbing	commands	this	defaults	to	UTF-8.	Note	that
if	an	object	claims	to	be	encoded	in	X	and	we	are	outputting	in	X,	we
will	output	the	object	verbatim;	this	means	that	invalid	sequences	in
the	original	commit	may	be	copied	to	the	output.

--expand-tabs=<n>	,	--expand-tabs	,	--no-expand-tabs

Perform	a	tab	expansion	(replace	each	tab	with	enough	spaces	to	fill
to	the	next	display	column	that	is	multiple	of	<n>)	in	the	log	message
before	showing	it	in	the	output.	--expand-tabs	is	a	short-hand	for	--
expand-tabs=8,	and	--no-expand-tabs	is	a	short-hand	for	--expand-
tabs=0,	which	disables	tab	expansion.

By	default,	tabs	are	expanded	in	pretty	formats	that	indent	the	log
message	by	4	spaces	(i.e.	medium,	which	is	the	default,	full,	and
fuller).

--notes[=<treeish>]

Show	the	notes	(see	Section	G.3.86,	“git-notes(1)”)	that	annotate	the
commit,	when	showing	the	commit	log	message.	This	is	the	default
for	git	log,	git	show	and	git	whatchanged	commands	when	there	is
no	--pretty,	--format,	or	--oneline	option	given	on	the	command	line.

By	default,	the	notes	shown	are	from	the	notes	refs	listed	in	the
core.notesRef	and	notes.displayRef	variables	(or	corresponding
environment	overrides).	See	Section	G.3.27,	“git-config(1)”	for	more
details.

With	an	optional	<treeish>	argument,	use	the	treeish	to	find	the
notes	to	display.	The	treeish	can	specify	the	full	refname	when	it
begins	with	refs/notes/;	when	it	begins	with	notes/,	refs/	and
otherwise	refs/notes/	is	prefixed	to	form	a	full	name	of	the	ref.

Multiple	--notes	options	can	be	combined	to	control	which	notes	are
being	displayed.	Examples:	"--notes=foo"	will	show	only	notes	from
"refs/notes/foo";	"--notes=foo	--notes"	will	show	both	notes	from
"refs/notes/foo"	and	from	the	default	notes	ref(s).



--no-notes
Do	not	show	notes.	This	negates	the	above	--notes	option,	by
resetting	the	list	of	notes	refs	from	which	notes	are	shown.	Options
are	parsed	in	the	order	given	on	the	command	line,	so	e.g.	"--notes	-
-notes=foo	--no-notes	--notes=bar"	will	only	show	notes	from
"refs/notes/bar".

--show-notes[=<treeish>]	,	--[no-]standard-notes
These	options	are	deprecated.	Use	the	above	--notes/--no-notes
options	instead.

--show-signature
Check	the	validity	of	a	signed	commit	object	by	passing	the
signature	to	gpg	--verify	and	show	the	output.

--relative-date
Synonym	for	--date=relative.

--date=<format>

Only	takes	effect	for	dates	shown	in	human-readable	format,	such	as
when	using	--pretty.	log.date	config	variable	sets	a	default	value	for
the	log	command's	--date	option.	By	default,	dates	are	shown	in	the
original	time	zone	(either	committer's	or	author's).	If	-local	is
appended	to	the	format	(e.g.,	iso-local),	the	user's	local	time	zone	is
used	instead.

--date=relative	shows	dates	relative	to	the	current	time,	e.g.	2	hours
ago.	The	-local	option	cannot	be	used	with	--raw	or	--relative.

--date=local	is	an	alias	for	--date=default-local.

--date=iso	(or	--date=iso8601)	shows	timestamps	in	a	ISO	8601-like
format.	The	differences	to	the	strict	ISO	8601	format	are:

a	space	instead	of	the	T	date/time	delimiter
a	space	between	time	and	time	zone
no	colon	between	hours	and	minutes	of	the	time	zone

--date=iso-strict	(or	--date=iso8601-strict)	shows	timestamps	in	strict
ISO	8601	format.



--date=rfc	(or	--date=rfc2822)	shows	timestamps	in	RFC	2822
format,	often	found	in	email	messages.

--date=short	shows	only	the	date,	but	not	the	time,	in	YYYY-MM-DD
format.

--date=raw	shows	the	date	in	the	internal	raw	Git	format	%s	%z
format.

--date=format:...	feeds	the	format	...	to	your	system	strftime.	Use	--
date=format:%c	to	show	the	date	in	your	system	locale's	preferred
format.	See	the	strftime	manual	for	a	complete	list	of	format
placeholders.	When	using	-local,	the	correct	syntax	is	--date=format-
local:....

--date=default	is	the	default	format,	and	is	similar	to	--date=rfc2822,
with	a	few	exceptions:

there	is	no	comma	after	the	day-of-week
the	time	zone	is	omitted	when	the	local	time	zone	is	used

--parents
Print	also	the	parents	of	the	commit	(in	the	form	"commit	parent…").
Also	enables	parent	rewriting,	see	History	Simplification	below.

--children
Print	also	the	children	of	the	commit	(in	the	form	"commit	child…").
Also	enables	parent	rewriting,	see	History	Simplification	below.

--left-right

Mark	which	side	of	a	symmetric	diff	a	commit	is	reachable	from.
Commits	from	the	left	side	are	prefixed	with	<	and	those	from	the
right	with	>.	If	combined	with	--boundary,	those	commits	are	prefixed
with	-.

For	example,	if	you	have	this	topology:

													y---b---b		branch	B

												/	\	/

											/			.

										/			/	\



									o---x---a---a		branch	A

you	would	get	an	output	like	this:

								$	git	rev-list	--left-right	--boundary	--pretty=oneline	A...B

								>bbbbbbb...	3rd	on	b

								>bbbbbbb...	2nd	on	b

								<aaaaaaa...	3rd	on	a

								<aaaaaaa...	2nd	on	a

								-yyyyyyy...	1st	on	b

								-xxxxxxx...	1st	on	a

--graph

Draw	a	text-based	graphical	representation	of	the	commit	history	on
the	left	hand	side	of	the	output.	This	may	cause	extra	lines	to	be
printed	in	between	commits,	in	order	for	the	graph	history	to	be
drawn	properly.	Cannot	be	combined	with	--no-walk.

This	enables	parent	rewriting,	see	History	Simplification	below.

This	implies	the	--topo-order	option	by	default,	but	the	--date-order
option	may	also	be	specified.

--show-linear-break[=<barrier>]
When	--graph	is	not	used,	all	history	branches	are	flattened	which
can	make	it	hard	to	see	that	the	two	consecutive	commits	do	not
belong	to	a	linear	branch.	This	option	puts	a	barrier	in	between	them
in	that	case.	If	<barrier>	is	specified,	it	is	the	string	that	will	be	shown
instead	of	the	default	one.



6.	Diff	Formatting

Listed	below	are	options	that	control	the	formatting	of	diff	output.	Some	of
them	are	specific	to	Section	G.3.112,	“git-rev-list(1)”,	however	other	diff
options	may	be	given.	See	Section	G.3.38,	“git-diff-files(1)”	for	more
options.

-c
With	this	option,	diff	output	for	a	merge	commit	shows	the
differences	from	each	of	the	parents	to	the	merge	result
simultaneously	instead	of	showing	pairwise	diff	between	a	parent
and	the	result	one	at	a	time.	Furthermore,	it	lists	only	files	which
were	modified	from	all	parents.

--cc
This	flag	implies	the	-c	option	and	further	compresses	the	patch
output	by	omitting	uninteresting	hunks	whose	contents	in	the	parents
have	only	two	variants	and	the	merge	result	picks	one	of	them
without	modification.

-m
This	flag	makes	the	merge	commits	show	the	full	diff	like	regular
commits;	for	each	merge	parent,	a	separate	log	entry	and	diff	is
generated.	An	exception	is	that	only	diff	against	the	first	parent	is
shown	when	--first-parent	option	is	given;	in	that	case,	the	output
represents	the	changes	the	merge	brought	into	the	then-current
branch.

-r
Show	recursive	diffs.

-t
Show	the	tree	objects	in	the	diff	output.	This	implies	-r.

PRETTY	FORMATS

If	the	commit	is	a	merge,	and	if	the	pretty-format	is	not	oneline,	email	or
raw,	an	additional	line	is	inserted	before	the	Author:	line.	This	line	begins
with	"Merge:	"	and	the	sha1s	of	ancestral	commits	are	printed,	separated
by	spaces.	Note	that	the	listed	commits	may	not	necessarily	be	the	list	of



the	direct	parent	commits	if	you	have	limited	your	view	of	history:	for
example,	if	you	are	only	interested	in	changes	related	to	a	certain
directory	or	file.

There	are	several	built-in	formats,	and	you	can	define	additional	formats
by	setting	a	pretty.<name>	config	option	to	either	another	format	name,
or	a	format:	string,	as	described	below	(see	Section	G.3.27,	“git-
config(1)”).	Here	are	the	details	of	the	built-in	formats:

oneline

<sha1>	<title	line>

This	is	designed	to	be	as	compact	as	possible.

short

commit	<sha1>

Author:	<author>

<title	line>

medium

commit	<sha1>

Author:	<author>

Date:			<author	date>

<title	line>

<full	commit	message>

full

commit	<sha1>

Author:	<author>

Commit:	<committer>

<title	line>

<full	commit	message>

fuller

commit	<sha1>

Author:					<author>

AuthorDate:	<author	date>

Commit:					<committer>

CommitDate:	<committer	date>



<title	line>

<full	commit	message>

email

From	<sha1>	<date>

From:	<author>

Date:	<author	date>

Subject:	[PATCH]	<title	line>

<full	commit	message>

raw

The	raw	format	shows	the	entire	commit	exactly	as	stored	in	the
commit	object.	Notably,	the	SHA-1s	are	displayed	in	full,	regardless
of	whether	--abbrev	or	--no-abbrev	are	used,	and	parents	information
show	the	true	parent	commits,	without	taking	grafts	or	history
simplification	into	account.	Note	that	this	format	affects	the	way
commits	are	displayed,	but	not	the	way	the	diff	is	shown	e.g.	with	git
log	--raw.	To	get	full	object	names	in	a	raw	diff	format,	use	--no-
abbrev.

format:<string>

The	format:<string>	format	allows	you	to	specify	which	information
you	want	to	show.	It	works	a	little	bit	like	printf	format,	with	the
notable	exception	that	you	get	a	newline	with	%n	instead	of	\n.

E.g,	format:"The	author	of	%h	was	%an,	%ar%nThe	title	was
>>%s<<%n"	would	show	something	like	this:

The	author	of	fe6e0ee	was	Junio	C	Hamano,	23	hours	ago

The	title	was	>>t4119:	test	autocomputing	-p<n>	for	traditional	diff	input.<<

The	placeholders	are:

%H:	commit	hash
%h:	abbreviated	commit	hash
%T:	tree	hash



%t:	abbreviated	tree	hash
%P:	parent	hashes
%p:	abbreviated	parent	hashes
%an:	author	name
%aN:	author	name	(respecting	.mailmap,	see	Section	G.3.122,
“git-shortlog(1)”	or	Section	G.3.9,	“git-blame(1)”)
%ae:	author	email
%aE:	author	email	(respecting	.mailmap,	see	Section	G.3.122,
“git-shortlog(1)”	or	Section	G.3.9,	“git-blame(1)”)
%ad:	author	date	(format	respects	--date=	option)
%aD:	author	date,	RFC2822	style
%ar:	author	date,	relative
%at:	author	date,	UNIX	timestamp
%ai:	author	date,	ISO	8601-like	format
%aI:	author	date,	strict	ISO	8601	format
%cn:	committer	name
%cN:	committer	name	(respecting	.mailmap,	see
Section	G.3.122,	“git-shortlog(1)”	or	Section	G.3.9,	“git-
blame(1)”)
%ce:	committer	email
%cE:	committer	email	(respecting	.mailmap,	see
Section	G.3.122,	“git-shortlog(1)”	or	Section	G.3.9,	“git-
blame(1)”)
%cd:	committer	date	(format	respects	--date=	option)
%cD:	committer	date,	RFC2822	style
%cr:	committer	date,	relative
%ct:	committer	date,	UNIX	timestamp
%ci:	committer	date,	ISO	8601-like	format
%cI:	committer	date,	strict	ISO	8601	format
%d:	ref	names,	like	the	--decorate	option	of	Section	G.3.68,	“git-
log(1)”
%D:	ref	names	without	the	"	(",	")"	wrapping.
%e:	encoding
%s:	subject
%f:	sanitized	subject	line,	suitable	for	a	filename
%b:	body
%B:	raw	body	(unwrapped	subject	and	body)



%N:	commit	notes
%GG:	raw	verification	message	from	GPG	for	a	signed	commit
%G?:	show	"G"	for	a	Good	signature,	"B"	for	a	Bad	signature,
"U"	for	a	good,	untrusted	signature	and	"N"	for	no	signature
%GS:	show	the	name	of	the	signer	for	a	signed	commit
%GK:	show	the	key	used	to	sign	a	signed	commit
%gD:	reflog	selector,	e.g.,	refs/stash@{1}
%gd:	shortened	reflog	selector,	e.g.,	stash@{1}
%gn:	reflog	identity	name
%gN:	reflog	identity	name	(respecting	.mailmap,	see
Section	G.3.122,	“git-shortlog(1)”	or	Section	G.3.9,	“git-
blame(1)”)
%ge:	reflog	identity	email
%gE:	reflog	identity	email	(respecting	.mailmap,	see
Section	G.3.122,	“git-shortlog(1)”	or	Section	G.3.9,	“git-
blame(1)”)
%gs:	reflog	subject
%Cred:	switch	color	to	red
%Cgreen:	switch	color	to	green
%Cblue:	switch	color	to	blue
%Creset:	reset	color
%C(…):	color	specification,	as	described	in	color.branch.*	config
option;	adding	auto,	at	the	beginning	will	emit	color	only	when
colors	are	enabled	for	log	output	(by	color.diff,	color.ui,	or	--
color,	and	respecting	the	auto	settings	of	the	former	if	we	are
going	to	a	terminal).	auto	alone	(i.e.	%C(auto))	will	turn	on	auto
coloring	on	the	next	placeholders	until	the	color	is	switched
again.
%m:	left,	right	or	boundary	mark
%n:	newline
%%:	a	raw	%
%x00:	print	a	byte	from	a	hex	code
%w([<w>[,<i1>[,<i2>]]]):	switch	line	wrapping,	like	the	-w	option
of	Section	G.3.122,	“git-shortlog(1)”.
%<(<N>[,trunc|ltrunc|mtrunc]):	make	the	next	placeholder	take
at	least	N	columns,	padding	spaces	on	the	right	if	necessary.
Optionally	truncate	at	the	beginning	(ltrunc),	the	middle	(mtrunc)



or	the	end	(trunc)	if	the	output	is	longer	than	N	columns.	Note
that	truncating	only	works	correctly	with	N	>=	2.
%<|(<N>):	make	the	next	placeholder	take	at	least	until	Nth
columns,	padding	spaces	on	the	right	if	necessary
%>(<N>),	%>|(<N>):	similar	to	%<(<N>),	%<|(<N>)	respectively,
but	padding	spaces	on	the	left
%>>(<N>),	%>>|(<N>):	similar	to	%>(<N>),	%>|(<N>)
respectively,	except	that	if	the	next	placeholder	takes	more
spaces	than	given	and	there	are	spaces	on	its	left,	use	those
spaces
%><(<N>),	%><|(<N>):	similar	to	%	<(<N>),	%<|(<N>)
respectively,	but	padding	both	sides	(i.e.	the	text	is	centered)

Note

Some	placeholders	may	depend	on	other	options	given	to
the	revision	traversal	engine.	For	example,	the	%g*	reflog
options	will	insert	an	empty	string	unless	we	are	traversing
reflog	entries	(e.g.,	by	git	log	-g).	The	%d	and	%D
placeholders	will	use	the	"short"	decoration	format	if	--
decorate	was	not	already	provided	on	the	command	line.

If	you	add	a	+	(plus	sign)	after	%	of	a	placeholder,	a	line-feed	is	inserted
immediately	before	the	expansion	if	and	only	if	the	placeholder	expands
to	a	non-empty	string.

If	you	add	a	-	(minus	sign)	after	%	of	a	placeholder,	line-feeds	that
immediately	precede	the	expansion	are	deleted	if	and	only	if	the
placeholder	expands	to	an	empty	string.

If	you	add	a	`	`	(space)	after	%	of	a	placeholder,	a	space	is	inserted
immediately	before	the	expansion	if	and	only	if	the	placeholder	expands
to	a	non-empty	string.

tformat:



The	tformat:	format	works	exactly	like	format:,	except	that	it	provides
"terminator"	semantics	instead	of	"separator"	semantics.	In	other
words,	each	commit	has	the	message	terminator	character	(usually
a	newline)	appended,	rather	than	a	separator	placed	between
entries.	This	means	that	the	final	entry	of	a	single-line	format	will	be
properly	terminated	with	a	new	line,	just	as	the	"oneline"	format
does.	For	example:

$	git	log	-2	--pretty=format:%h	4da45bef	\

		|	perl	-pe	'$_	.=	"	--	NO	NEWLINE\n"	unless	/\n/'

4da45be

7134973	--	NO	NEWLINE

$	git	log	-2	--pretty=tformat:%h	4da45bef	\

		|	perl	-pe	'$_	.=	"	--	NO	NEWLINE\n"	unless	/\n/'

4da45be

7134973

In	addition,	any	unrecognized	string	that	has	a	%	in	it	is	interpreted
as	if	it	has	tformat:	in	front	of	it.	For	example,	these	two	are
equivalent:

$	git	log	-2	--pretty=tformat:%h	4da45bef

$	git	log	-2	--pretty=%h	4da45bef

COMMON	DIFF	OPTIONS

-p	,	-u	,	--patch
Generate	patch	(see	section	on	generating	patches).

-s	,	--no-patch
Suppress	diff	output.	Useful	for	commands	like	git	show	that	show
the	patch	by	default,	or	to	cancel	the	effect	of	--patch.

-U<n>	,	--unified=<n>
Generate	diffs	with	<n>	lines	of	context	instead	of	the	usual	three.
Implies	-p.

--raw
For	each	commit,	show	a	summary	of	changes	using	the	raw	diff
format.	See	the	"RAW	OUTPUT	FORMAT"	section	of



Section	G.3.41,	“git-diff(1)”.	This	is	different	from	showing	the	log
itself	in	raw	format,	which	you	can	achieve	with	--format=raw.

--patch-with-raw
Synonym	for	-p	--raw.

--minimal
Spend	extra	time	to	make	sure	the	smallest	possible	diff	is	produced.

--patience
Generate	a	diff	using	the	"patience	diff"	algorithm.

--histogram
Generate	a	diff	using	the	"histogram	diff"	algorithm.

--diff-algorithm={patience|minimal|histogram|myers}

Choose	a	diff	algorithm.	The	variants	are	as	follows:

default,	myers
The	basic	greedy	diff	algorithm.	Currently,	this	is	the	default.

minimal
Spend	extra	time	to	make	sure	the	smallest	possible	diff	is
produced.

patience
Use	"patience	diff"	algorithm	when	generating	patches.

histogram
This	algorithm	extends	the	patience	algorithm	to	"support	low-
occurrence	common	elements".

For	instance,	if	you	configured	diff.algorithm	variable	to	a	non-default
value	and	want	to	use	the	default	one,	then	you	have	to	use	--diff-
algorithm=default	option.

--stat[=<width>[,<name-width>[,<count>]]]

Generate	a	diffstat.	By	default,	as	much	space	as	necessary	will	be
used	for	the	filename	part,	and	the	rest	for	the	graph	part.	Maximum
width	defaults	to	terminal	width,	or	80	columns	if	not	connected	to	a
terminal,	and	can	be	overridden	by	<width>.	The	width	of	the
filename	part	can	be	limited	by	giving	another	width	<name-width>
after	a	comma.	The	width	of	the	graph	part	can	be	limited	by	using	--
stat-graph-width=<width>	(affects	all	commands	generating	a	stat



graph)	or	by	setting	diff.statGraphWidth=<width>	(does	not	affect	git
format-patch).	By	giving	a	third	parameter	<count>,	you	can	limit	the
output	to	the	first	<count>	lines,	followed	by	...	if	there	are	more.

These	parameters	can	also	be	set	individually	with	--stat-width=
<width>,	--stat-name-width=<name-width>	and	--stat-count=<count>.

--numstat
Similar	to	--stat,	but	shows	number	of	added	and	deleted	lines	in
decimal	notation	and	pathname	without	abbreviation,	to	make	it
more	machine	friendly.	For	binary	files,	outputs	two	-	instead	of
saying	0	0.

--shortstat
Output	only	the	last	line	of	the	--stat	format	containing	total	number
of	modified	files,	as	well	as	number	of	added	and	deleted	lines.

--dirstat[=<param1,param2,…>]

Output	the	distribution	of	relative	amount	of	changes	for	each	sub-
directory.	The	behavior	of	--dirstat	can	be	customized	by	passing	it	a
comma	separated	list	of	parameters.	The	defaults	are	controlled	by
the	diff.dirstat	configuration	variable	(see	Section	G.3.27,	“git-
config(1)”).	The	following	parameters	are	available:

changes
Compute	the	dirstat	numbers	by	counting	the	lines	that	have
been	removed	from	the	source,	or	added	to	the	destination.	This
ignores	the	amount	of	pure	code	movements	within	a	file.	In
other	words,	rearranging	lines	in	a	file	is	not	counted	as	much
as	other	changes.	This	is	the	default	behavior	when	no
parameter	is	given.

lines
Compute	the	dirstat	numbers	by	doing	the	regular	line-based	diff
analysis,	and	summing	the	removed/added	line	counts.	(For
binary	files,	count	64-byte	chunks	instead,	since	binary	files
have	no	natural	concept	of	lines).	This	is	a	more	expensive	--
dirstat	behavior	than	the	changes	behavior,	but	it	does	count
rearranged	lines	within	a	file	as	much	as	other	changes.	The
resulting	output	is	consistent	with	what	you	get	from	the	other	--



*stat	options.
files

Compute	the	dirstat	numbers	by	counting	the	number	of	files
changed.	Each	changed	file	counts	equally	in	the	dirstat
analysis.	This	is	the	computationally	cheapest	--dirstat	behavior,
since	it	does	not	have	to	look	at	the	file	contents	at	all.

cumulative
Count	changes	in	a	child	directory	for	the	parent	directory	as
well.	Note	that	when	using	cumulative,	the	sum	of	the
percentages	reported	may	exceed	100%.	The	default	(non-
cumulative)	behavior	can	be	specified	with	the	noncumulative
parameter.

<limit>
An	integer	parameter	specifies	a	cut-off	percent	(3%	by	default).
Directories	contributing	less	than	this	percentage	of	the	changes
are	not	shown	in	the	output.

Example:	The	following	will	count	changed	files,	while	ignoring
directories	with	less	than	10%	of	the	total	amount	of	changed	files,
and	accumulating	child	directory	counts	in	the	parent	directories:	--
dirstat=files,10,cumulative.

--summary
Output	a	condensed	summary	of	extended	header	information	such
as	creations,	renames	and	mode	changes.

--patch-with-stat
Synonym	for	-p	--stat.

-z

Separate	the	commits	with	NULs	instead	of	with	new	newlines.

Also,	when	--raw	or	--numstat	has	been	given,	do	not	munge
pathnames	and	use	NULs	as	output	field	terminators.

Without	this	option,	each	pathname	output	will	have	TAB,	LF,	double
quotes,	and	backslash	characters	replaced	with	\t,	\n,	\",	and	\\,
respectively,	and	the	pathname	will	be	enclosed	in	double	quotes	if
any	of	those	replacements	occurred.



--name-only
Show	only	names	of	changed	files.

--name-status
Show	only	names	and	status	of	changed	files.	See	the	description	of
the	--diff-filter	option	on	what	the	status	letters	mean.

--submodule[=<format>]
Specify	how	differences	in	submodules	are	shown.	When	--
submodule	or	--submodule=log	is	given,	the	log	format	is	used.	This
format	lists	the	commits	in	the	range	like	Section	G.3.131,	“git-
submodule(1)”	summary	does.	Omitting	the	--submodule	option	or
specifying	--submodule=short,	uses	the	short	format.	This	format	just
shows	the	names	of	the	commits	at	the	beginning	and	end	of	the
range.	Can	be	tweaked	via	the	diff.submodule	configuration	variable.

--color[=<when>]
Show	colored	diff.	--color	(i.e.	without	=<when>)	is	the	same	as	--
color=always.	<when>	can	be	one	of	always,	never,	or	auto.

--no-color
Turn	off	colored	diff.	It	is	the	same	as	--color=never.

--word-diff[=<mode>]

Show	a	word	diff,	using	the	<mode>	to	delimit	changed	words.	By
default,	words	are	delimited	by	whitespace;	see	--word-diff-regex
below.	The	<mode>	defaults	to	plain,	and	must	be	one	of:

color
Highlight	changed	words	using	only	colors.	Implies	--color.

plain
Show	words	as	[-removed-]	and	{+added+}.	Makes	no	attempts
to	escape	the	delimiters	if	they	appear	in	the	input,	so	the	output
may	be	ambiguous.

porcelain
Use	a	special	line-based	format	intended	for	script	consumption.
Added/removed/unchanged	runs	are	printed	in	the	usual	unified
diff	format,	starting	with	a	+/-/`	`	character	at	the	beginning	of	the
line	and	extending	to	the	end	of	the	line.	Newlines	in	the	input
are	represented	by	a	tilde	~	on	a	line	of	its	own.

none



Disable	word	diff	again.

Note	that	despite	the	name	of	the	first	mode,	color	is	used	to
highlight	the	changed	parts	in	all	modes	if	enabled.

--word-diff-regex=<regex>

Use	<regex>	to	decide	what	a	word	is,	instead	of	considering	runs	of
non-whitespace	to	be	a	word.	Also	implies	--word-diff	unless	it	was
already	enabled.

Every	non-overlapping	match	of	the	<regex>	is	considered	a	word.
Anything	between	these	matches	is	considered	whitespace	and
ignored(!)	for	the	purposes	of	finding	differences.	You	may	want	to
append	|[^[:space:]]	to	your	regular	expression	to	make	sure	that	it
matches	all	non-whitespace	characters.	A	match	that	contains	a
newline	is	silently	truncated(!)	at	the	newline.

For	example,	--word-diff-regex=.	will	treat	each	character	as	a	word
and,	correspondingly,	show	differences	character	by	character.

The	regex	can	also	be	set	via	a	diff	driver	or	configuration	option,
see	???	or	Section	G.3.27,	“git-config(1)”.	Giving	it	explicitly
overrides	any	diff	driver	or	configuration	setting.	Diff	drivers	override
configuration	settings.

--color-words[=<regex>]
Equivalent	to	--word-diff=color	plus	(if	a	regex	was	specified)	--word-
diff-regex=<regex>.

--no-renames
Turn	off	rename	detection,	even	when	the	configuration	file	gives	the
default	to	do	so.

--check
Warn	if	changes	introduce	conflict	markers	or	whitespace	errors.
What	are	considered	whitespace	errors	is	controlled	by
core.whitespace	configuration.	By	default,	trailing	whitespaces
(including	lines	that	solely	consist	of	whitespaces)	and	a	space
character	that	is	immediately	followed	by	a	tab	character	inside	the



initial	indent	of	the	line	are	considered	whitespace	errors.	Exits	with
non-zero	status	if	problems	are	found.	Not	compatible	with	--exit-
code.

--ws-error-highlight=<kind>
Highlight	whitespace	errors	on	lines	specified	by	<kind>	in	the	color
specified	by	color.diff.whitespace.	<kind>	is	a	comma	separated	list
of	old,	new,	context.	When	this	option	is	not	given,	only	whitespace
errors	in	new	lines	are	highlighted.	E.g.	--ws-error-highlight=new,old
highlights	whitespace	errors	on	both	deleted	and	added	lines.	all	can
be	used	as	a	short-hand	for	old,new,context.

--full-index
Instead	of	the	first	handful	of	characters,	show	the	full	pre-	and	post-
image	blob	object	names	on	the	"index"	line	when	generating	patch
format	output.

--binary
In	addition	to	--full-index,	output	a	binary	diff	that	can	be	applied	with
git-apply.

--abbrev[=<n>]
Instead	of	showing	the	full	40-byte	hexadecimal	object	name	in	diff-
raw	format	output	and	diff-tree	header	lines,	show	only	a	partial
prefix.	This	is	independent	of	the	--full-index	option	above,	which
controls	the	diff-patch	output	format.	Non	default	number	of	digits
can	be	specified	with	--abbrev=<n>.

-B[<n>][/<m>]	,	--break-rewrites[=[<n>][/<m>]]

Break	complete	rewrite	changes	into	pairs	of	delete	and	create.	This
serves	two	purposes:

It	affects	the	way	a	change	that	amounts	to	a	total	rewrite	of	a	file	not
as	a	series	of	deletion	and	insertion	mixed	together	with	a	very	few
lines	that	happen	to	match	textually	as	the	context,	but	as	a	single
deletion	of	everything	old	followed	by	a	single	insertion	of	everything
new,	and	the	number	m	controls	this	aspect	of	the	-B	option	(defaults
to	60%).	-B/70%	specifies	that	less	than	30%	of	the	original	should
remain	in	the	result	for	Git	to	consider	it	a	total	rewrite	(i.e.	otherwise
the	resulting	patch	will	be	a	series	of	deletion	and	insertion	mixed
together	with	context	lines).



When	used	with	-M,	a	totally-rewritten	file	is	also	considered	as	the
source	of	a	rename	(usually	-M	only	considers	a	file	that
disappeared	as	the	source	of	a	rename),	and	the	number	n	controls
this	aspect	of	the	-B	option	(defaults	to	50%).	-B20%	specifies	that	a
change	with	addition	and	deletion	compared	to	20%	or	more	of	the
file's	size	are	eligible	for	being	picked	up	as	a	possible	source	of	a
rename	to	another	file.

-M[<n>]	,	--find-renames[=<n>]
If	generating	diffs,	detect	and	report	renames	for	each	commit.	For
following	files	across	renames	while	traversing	history,	see	--follow.	If
n	is	specified,	it	is	a	threshold	on	the	similarity	index	(i.e.	amount	of
addition/deletions	compared	to	the	file's	size).	For	example,	-M90%
means	Git	should	consider	a	delete/add	pair	to	be	a	rename	if	more
than	90%	of	the	file	hasn't	changed.	Without	a	%	sign,	the	number	is
to	be	read	as	a	fraction,	with	a	decimal	point	before	it.	I.e.,	-M5
becomes	0.5,	and	is	thus	the	same	as	-M50%.	Similarly,	-M05	is	the
same	as	-M5%.	To	limit	detection	to	exact	renames,	use	-M100%.
The	default	similarity	index	is	50%.

-C[<n>]	,	--find-copies[=<n>]
Detect	copies	as	well	as	renames.	See	also	--find-copies-harder.	If	n
is	specified,	it	has	the	same	meaning	as	for	-M<n>.

--find-copies-harder
For	performance	reasons,	by	default,	-C	option	finds	copies	only	if
the	original	file	of	the	copy	was	modified	in	the	same	changeset.	This
flag	makes	the	command	inspect	unmodified	files	as	candidates	for
the	source	of	copy.	This	is	a	very	expensive	operation	for	large
projects,	so	use	it	with	caution.	Giving	more	than	one	-C	option	has
the	same	effect.

-D	,	--irreversible-delete

Omit	the	preimage	for	deletes,	i.e.	print	only	the	header	but	not	the
diff	between	the	preimage	and	/dev/null.	The	resulting	patch	is	not
meant	to	be	applied	with	patch	or	git	apply;	this	is	solely	for	people
who	want	to	just	concentrate	on	reviewing	the	text	after	the	change.
In	addition,	the	output	obviously	lack	enough	information	to	apply
such	a	patch	in	reverse,	even	manually,	hence	the	name	of	the



option.

When	used	together	with	-B,	omit	also	the	preimage	in	the	deletion
part	of	a	delete/create	pair.

-l<num>
The	-M	and	-C	options	require	O(n^2)	processing	time	where	n	is	the
number	of	potential	rename/copy	targets.	This	option	prevents
rename/copy	detection	from	running	if	the	number	of	rename/copy
targets	exceeds	the	specified	number.

--diff-filter=[(A|C|D|M|R|T|U|X|B)…[*]]
Select	only	files	that	are	Added	(A),	Copied	(C),	Deleted	(D),
Modified	(M),	Renamed	(R),	have	their	type	(i.e.	regular	file,	symlink,
submodule,	…)	changed	(T),	are	Unmerged	(U),	are	Unknown	(X),
or	have	had	their	pairing	Broken	(B).	Any	combination	of	the	filter
characters	(including	none)	can	be	used.	When	*	(All-or-none)	is
added	to	the	combination,	all	paths	are	selected	if	there	is	any	file
that	matches	other	criteria	in	the	comparison;	if	there	is	no	file	that
matches	other	criteria,	nothing	is	selected.

-S<string>

Look	for	differences	that	change	the	number	of	occurrences	of	the
specified	string	(i.e.	addition/deletion)	in	a	file.	Intended	for	the
scripter's	use.

It	is	useful	when	you're	looking	for	an	exact	block	of	code	(like	a
struct),	and	want	to	know	the	history	of	that	block	since	it	first	came
into	being:	use	the	feature	iteratively	to	feed	the	interesting	block	in
the	preimage	back	into	-S,	and	keep	going	until	you	get	the	very	first
version	of	the	block.

-G<regex>

Look	for	differences	whose	patch	text	contains	added/removed	lines
that	match	<regex>.

To	illustrate	the	difference	between	-S<regex>	--pickaxe-regex	and	-
G<regex>,	consider	a	commit	with	the	following	diff	in	the	same	file:



+				return	!regexec(regexp,	two->ptr,	1,	&regmatch,	0);

...

-				hit	=	!regexec(regexp,	mf2.ptr,	1,	&regmatch,	0);

While	git	log	-G"regexec\(regexp"	will	show	this	commit,	git	log	-
S"regexec\(regexp"	--pickaxe-regex	will	not	(because	the	number	of
occurrences	of	that	string	did	not	change).

See	the	pickaxe	entry	in	Section	G.4.4,	“gitdiffcore(7)”	for	more
information.

--pickaxe-all
When	-S	or	-G	finds	a	change,	show	all	the	changes	in	that
changeset,	not	just	the	files	that	contain	the	change	in	<string>.

--pickaxe-regex
Treat	the	<string>	given	to	-S	as	an	extended	POSIX	regular
expression	to	match.

-O<orderfile>
Output	the	patch	in	the	order	specified	in	the	<orderfile>,	which	has
one	shell	glob	pattern	per	line.	This	overrides	the	diff.orderFile
configuration	variable	(see	Section	G.3.27,	“git-config(1)”).	To	cancel
diff.orderFile,	use	-O/dev/null.

-R
Swap	two	inputs;	that	is,	show	differences	from	index	or	on-disk	file
to	tree	contents.

--relative[=<path>]
When	run	from	a	subdirectory	of	the	project,	it	can	be	told	to	exclude
changes	outside	the	directory	and	show	pathnames	relative	to	it	with
this	option.	When	you	are	not	in	a	subdirectory	(e.g.	in	a	bare
repository),	you	can	name	which	subdirectory	to	make	the	output
relative	to	by	giving	a	<path>	as	an	argument.

-a	,	--text
Treat	all	files	as	text.

--ignore-space-at-eol
Ignore	changes	in	whitespace	at	EOL.

-b	,	--ignore-space-change
Ignore	changes	in	amount	of	whitespace.	This	ignores	whitespace	at



line	end,	and	considers	all	other	sequences	of	one	or	more
whitespace	characters	to	be	equivalent.

-w	,	--ignore-all-space
Ignore	whitespace	when	comparing	lines.	This	ignores	differences
even	if	one	line	has	whitespace	where	the	other	line	has	none.

--ignore-blank-lines
Ignore	changes	whose	lines	are	all	blank.

--inter-hunk-context=<lines>
Show	the	context	between	diff	hunks,	up	to	the	specified	number	of
lines,	thereby	fusing	hunks	that	are	close	to	each	other.

-W	,	--function-context
Show	whole	surrounding	functions	of	changes.

--ext-diff
Allow	an	external	diff	helper	to	be	executed.	If	you	set	an	external
diff	driver	with	Section	G.4.2,	“gitattributes(5)”,	you	need	to	use	this
option	with	Section	G.3.68,	“git-log(1)”	and	friends.

--no-ext-diff
Disallow	external	diff	drivers.

--textconv	,	--no-textconv
Allow	(or	disallow)	external	text	conversion	filters	to	be	run	when
comparing	binary	files.	See	Section	G.4.2,	“gitattributes(5)”	for
details.	Because	textconv	filters	are	typically	a	one-way	conversion,
the	resulting	diff	is	suitable	for	human	consumption,	but	cannot	be
applied.	For	this	reason,	textconv	filters	are	enabled	by	default	only
for	Section	G.3.41,	“git-diff(1)”	and	Section	G.3.68,	“git-log(1)”,	but
not	for	Section	G.3.50,	“git-format-patch(1)”	or	diff	plumbing
commands.

--ignore-submodules[=<when>]
Ignore	changes	to	submodules	in	the	diff	generation.	<when>	can	be
either	"none",	"untracked",	"dirty"	or	"all",	which	is	the	default.	Using
"none"	will	consider	the	submodule	modified	when	it	either	contains
untracked	or	modified	files	or	its	HEAD	differs	from	the	commit
recorded	in	the	superproject	and	can	be	used	to	override	any
settings	of	the	ignore	option	in	Section	G.3.27,	“git-config(1)”	or
Section	G.4.8,	“gitmodules(5)”.	When	"untracked"	is	used
submodules	are	not	considered	dirty	when	they	only	contain
untracked	content	(but	they	are	still	scanned	for	modified	content).



Using	"dirty"	ignores	all	changes	to	the	work	tree	of	submodules,
only	changes	to	the	commits	stored	in	the	superproject	are	shown
(this	was	the	behavior	until	1.7.0).	Using	"all"	hides	all	changes	to
submodules.

--src-prefix=<prefix>
Show	the	given	source	prefix	instead	of	"a/".

--dst-prefix=<prefix>
Show	the	given	destination	prefix	instead	of	"b/".

--no-prefix
Do	not	show	any	source	or	destination	prefix.

For	more	detailed	explanation	on	these	common	options,	see	also
Section	G.4.4,	“gitdiffcore(7)”.

Generating	patches	with	-p

When	"git-diff-index",	"git-diff-tree",	or	"git-diff-files"	are	run	with	a	-p
option,	"git	diff"	without	the	--raw	option,	or	"git	log"	with	the	"-p"	option,
they	do	not	produce	the	output	described	above;	instead	they	produce	a
patch	file.	You	can	customize	the	creation	of	such	patches	via	the
GIT_EXTERNAL_DIFF	and	the	GIT_DIFF_OPTS	environment	variables.

What	the	-p	option	produces	is	slightly	different	from	the	traditional	diff
format:

1.	 It	is	preceded	with	a	"git	diff"	header	that	looks	like	this:

diff	--git	a/file1	b/file2

The	a/	and	b/	filenames	are	the	same	unless	rename/copy	is
involved.	Especially,	even	for	a	creation	or	a	deletion,	/dev/null	is	not
used	in	place	of	the	a/	or	b/	filenames.

When	rename/copy	is	involved,	file1	and	file2	show	the	name	of	the
source	file	of	the	rename/copy	and	the	name	of	the	file	that
rename/copy	produces,	respectively.

2.	 It	is	followed	by	one	or	more	extended	header	lines:



old	mode	<mode>

new	mode	<mode>

deleted	file	mode	<mode>

new	file	mode	<mode>

copy	from	<path>

copy	to	<path>

rename	from	<path>

rename	to	<path>

similarity	index	<number>

dissimilarity	index	<number>

index	<hash>..<hash>	<mode>

File	modes	are	printed	as	6-digit	octal	numbers	including	the	file	type
and	file	permission	bits.

Path	names	in	extended	headers	do	not	include	the	a/	and	b/
prefixes.

The	similarity	index	is	the	percentage	of	unchanged	lines,	and	the
dissimilarity	index	is	the	percentage	of	changed	lines.	It	is	a	rounded
down	integer,	followed	by	a	percent	sign.	The	similarity	index	value
of	100%	is	thus	reserved	for	two	equal	files,	while	100%	dissimilarity
means	that	no	line	from	the	old	file	made	it	into	the	new	one.

The	index	line	includes	the	SHA-1	checksum	before	and	after	the
change.	The	<mode>	is	included	if	the	file	mode	does	not	change;
otherwise,	separate	lines	indicate	the	old	and	the	new	mode.

3.	 TAB,	LF,	double	quote	and	backslash	characters	in	pathnames	are
represented	as	\t,	\n,	\"	and	\\,	respectively.	If	there	is	need	for	such
substitution	then	the	whole	pathname	is	put	in	double	quotes.

4.	 All	the	file1	files	in	the	output	refer	to	files	before	the	commit,	and	all
the	file2	files	refer	to	files	after	the	commit.	It	is	incorrect	to	apply
each	change	to	each	file	sequentially.	For	example,	this	patch	will
swap	a	and	b:

diff	--git	a/a	b/b

rename	from	a

rename	to	b

diff	--git	a/b	b/a

rename	from	b

rename	to	a

combined	diff	format



Any	diff-generating	command	can	take	the	-c	or	--cc	option	to	produce	a
combined	diff	when	showing	a	merge.	This	is	the	default	format	when
showing	merges	with	Section	G.3.41,	“git-diff(1)”	or	Section	G.3.126,	“git-
show(1)”.	Note	also	that	you	can	give	the	-m	option	to	any	of	these
commands	to	force	generation	of	diffs	with	individual	parents	of	a	merge.

A	combined	diff	format	looks	like	this:

diff	--combined	describe.c

index	fabadb8,cc95eb0..4866510

---	a/describe.c

+++	b/describe.c

@@@	-98,20	-98,12	+98,20	@@@

								return	(a_date	>	b_date)	?	-1	:	(a_date	==	b_date)	?	0	:	1;

		}

-	static	void	describe(char	*arg)

	-static	void	describe(struct	commit	*cmit,	int	last_one)

++static	void	describe(char	*arg,	int	last_one)

		{

	+						unsigned	char	sha1[20];

	+						struct	commit	*cmit;

								struct	commit_list	*list;

								static	int	initialized	=	0;

								struct	commit_name	*n;

	+						if	(get_sha1(arg,	sha1)	<	0)

	+														usage(describe_usage);

	+						cmit	=	lookup_commit_reference(sha1);

	+						if	(!cmit)

	+														usage(describe_usage);

	+

								if	(!initialized)	{

																initialized	=	1;

																for_each_ref(get_name);

1.	 It	is	preceded	with	a	"git	diff"	header,	that	looks	like	this	(when	-c
option	is	used):

diff	--combined	file

or	like	this	(when	--cc	option	is	used):



diff	--cc	file

2.	 It	is	followed	by	one	or	more	extended	header	lines	(this	example
shows	a	merge	with	two	parents):

index	<hash>,<hash>..<hash>

mode	<mode>,<mode>..<mode>

new	file	mode	<mode>

deleted	file	mode	<mode>,<mode>

The	mode	<mode>,<mode>..<mode>	line	appears	only	if	at	least
one	of	the	<mode>	is	different	from	the	rest.	Extended	headers	with
information	about	detected	contents	movement	(renames	and
copying	detection)	are	designed	to	work	with	diff	of	two	<tree-ish>
and	are	not	used	by	combined	diff	format.

3.	 It	is	followed	by	two-line	from-file/to-file	header

---	a/file

+++	b/file

Similar	to	two-line	header	for	traditional	unified	diff	format,	/dev/null
is	used	to	signal	created	or	deleted	files.

4.	 Chunk	header	format	is	modified	to	prevent	people	from	accidentally
feeding	it	to	patch	-p1.	Combined	diff	format	was	created	for	review
of	merge	commit	changes,	and	was	not	meant	for	apply.	The	change
is	similar	to	the	change	in	the	extended	index	header:

@@@	<from-file-range>	<from-file-range>	<to-file-range>	@@@

There	are	(number	of	parents	+	1)	@	characters	in	the	chunk	header
for	combined	diff	format.

Unlike	the	traditional	unified	diff	format,	which	shows	two	files	A	and	B
with	a	single	column	that	has	-	(minus	--	appears	in	A	but	removed	in	B),
+	(plus	--	missing	in	A	but	added	to	B),	or	"	"	(space	--	unchanged)	prefix,
this	format	compares	two	or	more	files	file1,	file2,…	with	one	file	X,	and
shows	how	X	differs	from	each	of	fileN.	One	column	for	each	of	fileN	is
prepended	to	the	output	line	to	note	how	X's	line	is	different	from	it.

A	-	character	in	the	column	N	means	that	the	line	appears	in	fileN	but	it



does	not	appear	in	the	result.	A	+	character	in	the	column	N	means	that
the	line	appears	in	the	result,	and	fileN	does	not	have	that	line	(in	other
words,	the	line	was	added,	from	the	point	of	view	of	that	parent).

In	the	above	example	output,	the	function	signature	was	changed	from
both	files	(hence	two	-	removals	from	both	file1	and	file2,	plus	++	to	mean
one	line	that	was	added	does	not	appear	in	either	file1	or	file2).	Also
eight	other	lines	are	the	same	from	file1	but	do	not	appear	in	file2	(hence
prefixed	with	+).

When	shown	by	git	diff-tree	-c,	it	compares	the	parents	of	a	merge
commit	with	the	merge	result	(i.e.	file1..fileN	are	the	parents).	When
shown	by	git	diff-files	-c,	it	compares	the	two	unresolved	merge	parents
with	the	working	tree	file	(i.e.	file1	is	stage	2	aka	"our	version",	file2	is
stage	3	aka	"their	version").

EXAMPLES

git	log	--no-merges
Show	the	whole	commit	history,	but	skip	any	merges

git	log	v2.6.12..	include/scsi	drivers/scsi
Show	all	commits	since	version	v2.6.12	that	changed	any	file	in	the
include/scsi	or	drivers/scsi	subdirectories

git	log	--since="2	weeks	ago"	--	gitk
Show	the	changes	during	the	last	two	weeks	to	the	file	gitk.	The	--	is
necessary	to	avoid	confusion	with	the	branch	named	gitk

git	log	--name-status	release..test
Show	the	commits	that	are	in	the	"test"	branch	but	not	yet	in	the
"release"	branch,	along	with	the	list	of	paths	each	commit	modifies.

git	log	--follow	builtin/rev-list.c
Shows	the	commits	that	changed	builtin/rev-list.c,	including	those
commits	that	occurred	before	the	file	was	given	its	present	name.

git	log	--branches	--not	--remotes=origin
Shows	all	commits	that	are	in	any	of	local	branches	but	not	in	any	of
remote-tracking	branches	for	origin	(what	you	have	that	origin
doesn't).

git	log	master	--not	--remotes=*/master



Shows	all	commits	that	are	in	local	master	but	not	in	any	remote
repository	master	branches.

git	log	-p	-m	--first-parent
Shows	the	history	including	change	diffs,	but	only	from	the	main
branch	perspective,	skipping	commits	that	come	from	merged
branches,	and	showing	full	diffs	of	changes	introduced	by	the
merges.	This	makes	sense	only	when	following	a	strict	policy	of
merging	all	topic	branches	when	staying	on	a	single	integration
branch.

git	log	-L	'/int	main/',/^}/:main.c
Shows	how	the	function	main()	in	the	file	main.c	evolved	over	time.

git	log	-3
Limits	the	number	of	commits	to	show	to	3.

DISCUSSION

Git	is	to	some	extent	character	encoding	agnostic.

The	contents	of	the	blob	objects	are	uninterpreted	sequences	of
bytes.	There	is	no	encoding	translation	at	the	core	level.

Path	names	are	encoded	in	UTF-8	normalization	form	C.	This
applies	to	tree	objects,	the	index	file,	ref	names,	as	well	as	path
names	in	command	line	arguments,	environment	variables	and
config	files	(.git/config	(see	Section	G.3.27,	“git-config(1)”),
Section	G.4.5,	“gitignore(5)”,	Section	G.4.2,	“gitattributes(5)”	and
Section	G.4.8,	“gitmodules(5)”).

Note	that	Git	at	the	core	level	treats	path	names	simply	as
sequences	of	non-NUL	bytes,	there	are	no	path	name	encoding
conversions	(except	on	Mac	and	Windows).	Therefore,	using	non-
ASCII	path	names	will	mostly	work	even	on	platforms	and	file
systems	that	use	legacy	extended	ASCII	encodings.	However,
repositories	created	on	such	systems	will	not	work	properly	on	UTF-
8-based	systems	(e.g.	Linux,	Mac,	Windows)	and	vice	versa.
Additionally,	many	Git-based	tools	simply	assume	path	names	to	be
UTF-8	and	will	fail	to	display	other	encodings	correctly.



Commit	log	messages	are	typically	encoded	in	UTF-8,	but	other
extended	ASCII	encodings	are	also	supported.	This	includes	ISO-
8859-x,	CP125x	and	many	others,	but	not	UTF-16/32,	EBCDIC	and
CJK	multi-byte	encodings	(GBK,	Shift-JIS,	Big5,	EUC-x,	CP9xx	etc.).

Although	we	encourage	that	the	commit	log	messages	are	encoded	in
UTF-8,	both	the	core	and	Git	Porcelain	are	designed	not	to	force	UTF-8
on	projects.	If	all	participants	of	a	particular	project	find	it	more
convenient	to	use	legacy	encodings,	Git	does	not	forbid	it.	However,
there	are	a	few	things	to	keep	in	mind.

1.	 git	commit	and	git	commit-tree	issues	a	warning	if	the	commit	log
message	given	to	it	does	not	look	like	a	valid	UTF-8	string,	unless
you	explicitly	say	your	project	uses	a	legacy	encoding.	The	way	to
say	this	is	to	have	i18n.commitencoding	in	.git/config	file,	like	this:

[i18n]

								commitencoding	=	ISO-8859-1

Commit	objects	created	with	the	above	setting	record	the	value	of
i18n.commitencoding	in	its	encoding	header.	This	is	to	help	other
people	who	look	at	them	later.	Lack	of	this	header	implies	that	the
commit	log	message	is	encoded	in	UTF-8.

2.	 git	log,	git	show,	git	blame	and	friends	look	at	the	encoding	header	of
a	commit	object,	and	try	to	re-code	the	log	message	into	UTF-8
unless	otherwise	specified.	You	can	specify	the	desired	output
encoding	with	i18n.logoutputencoding	in	.git/config	file,	like	this:

[i18n]

								logoutputencoding	=	ISO-8859-1

If	you	do	not	have	this	configuration	variable,	the	value	of
i18n.commitencoding	is	used	instead.

Note	that	we	deliberately	chose	not	to	re-code	the	commit	log	message
when	a	commit	is	made	to	force	UTF-8	at	the	commit	object	level,



because	re-coding	to	UTF-8	is	not	necessarily	a	reversible	operation.

CONFIGURATION

See	Section	G.3.27,	“git-config(1)”	for	core	variables	and	Section	G.3.41,
“git-diff(1)”	for	settings	related	to	diff	generation.

format.pretty
Default	for	the	--format	option.	(See	Pretty	Formats	above.)	Defaults
to	medium.

i18n.logOutputEncoding
Encoding	to	use	when	displaying	logs.	(See	Discussion	above.)
Defaults	to	the	value	of	i18n.commitEncoding	if	set,	and	UTF-8
otherwise.

log.date
Default	format	for	human-readable	dates.	(Compare	the	--date
option.)	Defaults	to	"default",	which	means	to	write	dates	like	Sat
May	8	19:35:34	2010	-0500.

log.follow
If	true,	git	log	will	act	as	if	the	--follow	option	was	used	when	a	single
<path>	is	given.	This	has	the	same	limitations	as	--follow,	i.e.	it
cannot	be	used	to	follow	multiple	files	and	does	not	work	well	on
non-linear	history.

log.showRoot
If	false,	git	log	and	related	commands	will	not	treat	the	initial	commit
as	a	big	creation	event.	Any	root	commits	in	git	log	-p	output	would
be	shown	without	a	diff	attached.	The	default	is	true.

mailmap.*
See	Section	G.3.122,	“git-shortlog(1)”.

notes.displayRef

Which	refs,	in	addition	to	the	default	set	by	core.notesRef	or
GIT_NOTES_REF,	to	read	notes	from	when	showing	commit
messages	with	the	log	family	of	commands.	See	Section	G.3.86,
“git-notes(1)”.

May	be	an	unabbreviated	ref	name	or	a	glob	and	may	be	specified



multiple	times.	A	warning	will	be	issued	for	refs	that	do	not	exist,	but
a	glob	that	does	not	match	any	refs	is	silently	ignored.

This	setting	can	be	disabled	by	the	--no-notes	option,	overridden	by
the	GIT_NOTES_DISPLAY_REF	environment	variable,	and
overridden	by	the	--notes=<ref>	option.

GIT

Part	of	the	Section	G.3.1,	“git(1)”	suite

G.3.69.	git-ls-files(1)

NAME

git-ls-files	-	Show	information	about	files	in	the	index	and	the	working	tree

SYNOPSIS

git	ls-files	[-z]	[-t]	[-v]

																(--

[cached|deleted|others|ignored|stage|unmerged|killed|modified])*

																(-[c|d|o|i|s|u|k|m])*

																[--eol]

																[-x	<pattern>|--exclude=<pattern>]

																[-X	<file>|--exclude-from=<file>]

																[--exclude-per-directory=<file>]

																[--exclude-standard]

																[--error-unmatch]	[--with-tree=<tree-ish>]

																[--full-name]	[--abbrev]	[--]	[<file>…]

DESCRIPTION

This	merges	the	file	listing	in	the	directory	cache	index	with	the	actual
working	directory	list,	and	shows	different	combinations	of	the	two.

One	or	more	of	the	options	below	may	be	used	to	determine	the	files
shown:



OPTIONS

-c	,	--cached
Show	cached	files	in	the	output	(default)

-d	,	--deleted
Show	deleted	files	in	the	output

-m	,	--modified
Show	modified	files	in	the	output

-o	,	--others
Show	other	(i.e.	untracked)	files	in	the	output

-i	,	--ignored
Show	only	ignored	files	in	the	output.	When	showing	files	in	the
index,	print	only	those	matched	by	an	exclude	pattern.	When
showing	"other"	files,	show	only	those	matched	by	an	exclude
pattern.

-s	,	--stage
Show	staged	contents'	object	name,	mode	bits	and	stage	number	in
the	output.

--directory
If	a	whole	directory	is	classified	as	"other",	show	just	its	name	(with	a
trailing	slash)	and	not	its	whole	contents.

--no-empty-directory
Do	not	list	empty	directories.	Has	no	effect	without	--directory.

-u	,	--unmerged
Show	unmerged	files	in	the	output	(forces	--stage)

-k	,	--killed
Show	files	on	the	filesystem	that	need	to	be	removed	due	to
file/directory	conflicts	for	checkout-index	to	succeed.

-z
\0	line	termination	on	output.

-x	<pattern>	,	--exclude=<pattern>
Skip	untracked	files	matching	pattern.	Note	that	pattern	is	a	shell
wildcard	pattern.	See	EXCLUDE	PATTERNS	below	for	more
information.

-X	<file>	,	--exclude-from=<file>
Read	exclude	patterns	from	<file>;	1	per	line.

--exclude-per-directory=<file>



Read	additional	exclude	patterns	that	apply	only	to	the	directory	and
its	subdirectories	in	<file>.

--exclude-standard
Add	the	standard	Git	exclusions:	.git/info/exclude,	.gitignore	in	each
directory,	and	the	user's	global	exclusion	file.

--error-unmatch
If	any	<file>	does	not	appear	in	the	index,	treat	this	as	an	error
(return	1).

--with-tree=<tree-ish>
When	using	--error-unmatch	to	expand	the	user	supplied	<file>	(i.e.
path	pattern)	arguments	to	paths,	pretend	that	paths	which	were
removed	in	the	index	since	the	named	<tree-ish>	are	still	present.
Using	this	option	with	-s	or	-u	options	does	not	make	any	sense.

-t

This	feature	is	semi-deprecated.	For	scripting	purpose,
Section	G.3.129,	“git-status(1)”	--porcelain	and	Section	G.3.38,	“git-
diff-files(1)”	--name-status	are	almost	always	superior	alternatives,
and	users	should	look	at	Section	G.3.129,	“git-status(1)”	--short	or
Section	G.3.41,	“git-diff(1)”	--name-status	for	more	user-friendly
alternatives.

This	option	identifies	the	file	status	with	the	following	tags	(followed
by	a	space)	at	the	start	of	each	line:

H
cached

S
skip-worktree

M
unmerged

R
removed/deleted

C
modified/changed

K
to	be	killed



?
other

-v
Similar	to	-t,	but	use	lowercase	letters	for	files	that	are	marked	as
assume	unchanged	(see	Section	G.3.137,	“git-update-index(1)”).

--full-name
When	run	from	a	subdirectory,	the	command	usually	outputs	paths
relative	to	the	current	directory.	This	option	forces	paths	to	be	output
relative	to	the	project	top	directory.

--abbrev[=<n>]
Instead	of	showing	the	full	40-byte	hexadecimal	object	lines,	show
only	a	partial	prefix.	Non	default	number	of	digits	can	be	specified
with	--abbrev=<n>.

--debug
After	each	line	that	describes	a	file,	add	more	data	about	its	cache
entry.	This	is	intended	to	show	as	much	information	as	possible	for
manual	inspection;	the	exact	format	may	change	at	any	time.

--eol

Show	<eolinfo>	and	<eolattr>	of	files.	<eolinfo>	is	the	file	content
identification	used	by	Git	when	the	"text"	attribute	is	"auto"	(or	not	set
and	core.autocrlf	is	not	false).	<eolinfo>	is	either	"-text",	"none",	"lf",
"crlf",	"mixed"	or	"".

""	means	the	file	is	not	a	regular	file,	it	is	not	in	the	index	or	not
accessible	in	the	working	tree.

<eolattr>	is	the	attribute	that	is	used	when	checking	out	or
committing,	it	is	either	"",	"-text",	"text",	"text=auto",	"text	eol=lf",	"text
eol=crlf".	Note:	Currently	Git	does	not	support	"text=auto	eol=lf"	or
"text=auto	eol=crlf",	that	may	change	in	the	future.

Both	the	<eolinfo>	in	the	index	("i/<eolinfo>")	and	in	the	working	tree
("w/<eolinfo>")	are	shown	for	regular	files,	followed	by	the
("attr/<eolattr>").

--
Do	not	interpret	any	more	arguments	as	options.



<file>
Files	to	show.	If	no	files	are	given	all	files	which	match	the	other
specified	criteria	are	shown.

Output

git	ls-files	just	outputs	the	filenames	unless	--stage	is	specified	in	which
case	it	outputs:

[<tag>	]<mode>	<object>	<stage>	<file>

git	ls-files	--eol	will	show	i/<eolinfo><SPACES>w/<eolinfo>
<SPACES>attr/<eolattr><SPACE*><TAB><file>

git	ls-files	--unmerged	and	git	ls-files	--stage	can	be	used	to	examine
detailed	information	on	unmerged	paths.

For	an	unmerged	path,	instead	of	recording	a	single	mode/SHA-1	pair,
the	index	records	up	to	three	such	pairs;	one	from	tree	O	in	stage	1,	A	in
stage	2,	and	B	in	stage	3.	This	information	can	be	used	by	the	user	(or
the	porcelain)	to	see	what	should	eventually	be	recorded	at	the	path.
(see	Section	G.3.98,	“git-read-tree(1)”	for	more	information	on	state)

When	-z	option	is	not	used,	TAB,	LF,	and	backslash	characters	in
pathnames	are	represented	as	\t,	\n,	and	\\,	respectively.

Exclude	Patterns

git	ls-files	can	use	a	list	of	"exclude	patterns"	when	traversing	the
directory	tree	and	finding	files	to	show	when	the	flags	--others	or	--
ignored	are	specified.	Section	G.4.5,	“gitignore(5)”	specifies	the	format	of
exclude	patterns.

These	exclude	patterns	come	from	these	places,	in	order:

1.	 The	command-line	flag	--exclude=<pattern>	specifies	a	single
pattern.	Patterns	are	ordered	in	the	same	order	they	appear	in	the
command	line.



2.	 The	command-line	flag	--exclude-from=<file>	specifies	a	file
containing	a	list	of	patterns.	Patterns	are	ordered	in	the	same	order
they	appear	in	the	file.

3.	 The	command-line	flag	--exclude-per-directory=<name>	specifies	a
name	of	the	file	in	each	directory	git	ls-files	examines,	normally
.gitignore.	Files	in	deeper	directories	take	precedence.	Patterns	are
ordered	in	the	same	order	they	appear	in	the	files.

A	pattern	specified	on	the	command	line	with	--exclude	or	read	from	the
file	specified	with	--exclude-from	is	relative	to	the	top	of	the	directory	tree.
A	pattern	read	from	a	file	specified	by	--exclude-per-directory	is	relative	to
the	directory	that	the	pattern	file	appears	in.

SEE	ALSO

Section	G.3.98,	“git-read-tree(1)”,	Section	G.4.5,	“gitignore(5)”

GIT

Part	of	the	Section	G.3.1,	“git(1)”	suite

G.3.70.	git-ls-remote(1)

NAME

git-ls-remote	-	List	references	in	a	remote	repository

SYNOPSIS

git	ls-remote	[--heads]	[--tags]	[--refs]	[--upload-pack=

<exec>]

														[-q	|	--quiet]	[--exit-code]	[--get-url]

														[--symref]	[<repository>	[<refs>…]]

DESCRIPTION



Displays	references	available	in	a	remote	repository	along	with	the
associated	commit	IDs.

OPTIONS

-h	,	--heads	,	-t	,	--tags
Limit	to	only	refs/heads	and	refs/tags,	respectively.	These	options
are	not	mutually	exclusive;	when	given	both,	references	stored	in
refs/heads	and	refs/tags	are	displayed.

--refs
Do	not	show	peeled	tags	or	pseudorefs	like	HEAD	in	the	output.

-q	,	--quiet
Do	not	print	remote	URL	to	stderr.

--upload-pack=<exec>
Specify	the	full	path	of	git-upload-pack	on	the	remote	host.	This
allows	listing	references	from	repositories	accessed	via	SSH	and
where	the	SSH	daemon	does	not	use	the	PATH	configured	by	the
user.

--exit-code
Exit	with	status	"2"	when	no	matching	refs	are	found	in	the	remote
repository.	Usually	the	command	exits	with	status	"0"	to	indicate	it
successfully	talked	with	the	remote	repository,	whether	it	found	any
matching	refs.

--get-url
Expand	the	URL	of	the	given	remote	repository	taking	into	account
any	"url.<base>.insteadOf"	config	setting	(See	Section	G.3.27,	“git-
config(1)”)	and	exit	without	talking	to	the	remote.

--symref
In	addition	to	the	object	pointed	by	it,	show	the	underlying	ref	pointed
by	it	when	showing	a	symbolic	ref.	Currently,	upload-pack	only
shows	the	symref	HEAD,	so	it	will	be	the	only	one	shown	by	ls-
remote.

<repository>
The	"remote"	repository	to	query.	This	parameter	can	be	either	a
URL	or	the	name	of	a	remote	(see	the	GIT	URLS	and	REMOTES
sections	of	Section	G.3.46,	“git-fetch(1)”).

<refs>…



When	unspecified,	all	references,	after	filtering	done	with	--heads
and	--tags,	are	shown.	When	<refs>…	are	specified,	only	references
matching	the	given	patterns	are	displayed.

EXAMPLES

$	git	ls-remote	--tags	./.

d6602ec5194c87b0fc87103ca4d67251c76f233a								refs/tags/v0.99

f25a265a342aed6041ab0cc484224d9ca54b6f41								refs/tags/v0.99.1

7ceca275d047c90c0c7d5afb13ab97efdf51bd6e								refs/tags/v0.99.3

c5db5456ae3b0873fc659c19fafdde22313cc441								refs/tags/v0.99.2

0918385dbd9656cab0d1d81ba7453d49bbc16250								refs/tags/junio-gpg-pub

$	git	ls-remote	http://www.kernel.org/pub/scm/git/git.git	master	pu	rc

5fe978a5381f1fbad26a80e682ddd2a401966740								refs/heads/master

c781a84b5204fb294c9ccc79f8b3baceeb32c061								refs/heads/pu

$	git	remote	add	korg	http://www.kernel.org/pub/scm/git/git.git

$	git	ls-remote	--tags	korg	v\*

d6602ec5194c87b0fc87103ca4d67251c76f233a								refs/tags/v0.99

f25a265a342aed6041ab0cc484224d9ca54b6f41								refs/tags/v0.99.1

c5db5456ae3b0873fc659c19fafdde22313cc441								refs/tags/v0.99.2

7ceca275d047c90c0c7d5afb13ab97efdf51bd6e								refs/tags/v0.99.3

GIT

Part	of	the	Section	G.3.1,	“git(1)”	suite

G.3.71.	git-ls-tree(1)

NAME

git-ls-tree	-	List	the	contents	of	a	tree	object

SYNOPSIS

git	ls-tree	[-d]	[-r]	[-t]	[-l]	[-z]

												[--name-only]	[--name-status]	[--full-name]	[--

full-tree]	[--abbrev[=<n>]]

												<tree-ish>	[<path>…]

DESCRIPTION

Lists	the	contents	of	a	given	tree	object,	like	what	"/bin/ls	-a"	does	in	the



current	working	directory.	Note	that:

the	behaviour	is	slightly	different	from	that	of	"/bin/ls"	in	that	the
<path>	denotes	just	a	list	of	patterns	to	match,	e.g.	so	specifying
directory	name	(without	-r)	will	behave	differently,	and	order	of	the
arguments	does	not	matter.
the	behaviour	is	similar	to	that	of	"/bin/ls"	in	that	the	<path>	is	taken
as	relative	to	the	current	working	directory.	E.g.	when	you	are	in	a
directory	sub	that	has	a	directory	dir,	you	can	run	git	ls-tree	-r	HEAD
dir	to	list	the	contents	of	the	tree	(that	is	sub/dir	in	HEAD).	You	don't
want	to	give	a	tree	that	is	not	at	the	root	level	(e.g.	git	ls-tree	-r
HEAD:sub	dir)	in	this	case,	as	that	would	result	in	asking	for
sub/sub/dir	in	the	HEAD	commit.	However,	the	current	working
directory	can	be	ignored	by	passing	--full-tree	option.

OPTIONS

<tree-ish>
Id	of	a	tree-ish.

-d
Show	only	the	named	tree	entry	itself,	not	its	children.

-r
Recurse	into	sub-trees.

-t
Show	tree	entries	even	when	going	to	recurse	them.	Has	no	effect	if
-r	was	not	passed.	-d	implies	-t.

-l	,	--long
Show	object	size	of	blob	(file)	entries.

-z
\0	line	termination	on	output.

--name-only	,	--name-status
List	only	filenames	(instead	of	the	"long"	output),	one	per	line.

--abbrev[=<n>]
Instead	of	showing	the	full	40-byte	hexadecimal	object	lines,	show
only	a	partial	prefix.	Non	default	number	of	digits	can	be	specified
with	--abbrev=<n>.

--full-name



Instead	of	showing	the	path	names	relative	to	the	current	working
directory,	show	the	full	path	names.

--full-tree
Do	not	limit	the	listing	to	the	current	working	directory.	Implies	--full-
name.

[<path>…]
When	paths	are	given,	show	them	(note	that	this	isn't	really	raw
pathnames,	but	rather	a	list	of	patterns	to	match).	Otherwise
implicitly	uses	the	root	level	of	the	tree	as	the	sole	path	argument.

Output	Format

<mode>	SP	<type>	SP	<object>	TAB	<file>

Unless	the	-z	option	is	used,	TAB,	LF,	and	backslash	characters	in
pathnames	are	represented	as	\t,	\n,	and	\\,	respectively.	This	output
format	is	compatible	with	what	--index-info	--stdin	of	git	update-index
expects.

When	the	-l	option	is	used,	format	changes	to

<mode>	SP	<type>	SP	<object>	SP	<object	size>	TAB	<file>

Object	size	identified	by	<object>	is	given	in	bytes,	and	right-justified	with
minimum	width	of	7	characters.	Object	size	is	given	only	for	blobs	(file)
entries;	for	other	entries	-	character	is	used	in	place	of	size.

GIT

Part	of	the	Section	G.3.1,	“git(1)”	suite

G.3.72.	git-mailinfo(1)

NAME

git-mailinfo	-	Extracts	patch	and	authorship	from	a	single	e-mail	message

SYNOPSIS



git	mailinfo	[-k|-b]	[-u	|	--encoding=<encoding>	|	-n]	[--

[no-]scissors]	<msg>	<patch>

DESCRIPTION

Reads	a	single	e-mail	message	from	the	standard	input,	and	writes	the
commit	log	message	in	<msg>	file,	and	the	patches	in	<patch>	file.	The
author	name,	e-mail	and	e-mail	subject	are	written	out	to	the	standard
output	to	be	used	by	git	am	to	create	a	commit.	It	is	usually	not
necessary	to	use	this	command	directly.	See	Section	G.3.3,	“git-am(1)”
instead.

OPTIONS

-k

Usually	the	program	removes	email	cruft	from	the	Subject:	header
line	to	extract	the	title	line	for	the	commit	log	message.	This	option
prevents	this	munging,	and	is	most	useful	when	used	to	read	back
git	format-patch	-k	output.

Specifically,	the	following	are	removed	until	none	of	them	remain:

Leading	and	trailing	whitespace.
Leading	Re:,	re:,	and	:.
Leading	bracketed	strings	(between	[	and	],	usually	[PATCH]).

Finally,	runs	of	whitespace	are	normalized	to	a	single	ASCII	space
character.

-b
When	-k	is	not	in	effect,	all	leading	strings	bracketed	with	[	and	]
pairs	are	stripped.	This	option	limits	the	stripping	to	only	the	pairs
whose	bracketed	string	contains	the	word	"PATCH".

-u

The	commit	log	message,	author	name	and	author	email	are	taken



from	the	e-mail,	and	after	minimally	decoding	MIME	transfer
encoding,	re-coded	in	the	charset	specified	by	i18n.commitencoding
(defaulting	to	UTF-8)	by	transliterating	them.	This	used	to	be	optional
but	now	it	is	the	default.

Note	that	the	patch	is	always	used	as-is	without	charset	conversion,
even	with	this	flag.

--encoding=<encoding>
Similar	to	-u.	But	when	re-coding,	the	charset	specified	here	is	used
instead	of	the	one	specified	by	i18n.commitencoding	or	UTF-8.

-n
Disable	all	charset	re-coding	of	the	metadata.

-m	,	--message-id
Copy	the	Message-ID	header	at	the	end	of	the	commit	message.
This	is	useful	in	order	to	associate	commits	with	mailing	list
discussions.

--scissors

Remove	everything	in	body	before	a	scissors	line.	A	line	that	mainly
consists	of	scissors	(either	">8"	or	"8<")	and	perforation	(dash	"-")
marks	is	called	a	scissors	line,	and	is	used	to	request	the	reader	to
cut	the	message	at	that	line.	If	such	a	line	appears	in	the	body	of	the
message	before	the	patch,	everything	before	it	(including	the
scissors	line	itself)	is	ignored	when	this	option	is	used.

This	is	useful	if	you	want	to	begin	your	message	in	a	discussion
thread	with	comments	and	suggestions	on	the	message	you	are
responding	to,	and	to	conclude	it	with	a	patch	submission,
separating	the	discussion	and	the	beginning	of	the	proposed	commit
log	message	with	a	scissors	line.

This	can	enabled	by	default	with	the	configuration	option
mailinfo.scissors.

--no-scissors
Ignore	scissors	lines.	Useful	for	overriding	mailinfo.scissors	settings.

<msg>



The	commit	log	message	extracted	from	e-mail,	usually	except	the
title	line	which	comes	from	e-mail	Subject.

<patch>
The	patch	extracted	from	e-mail.

GIT

Part	of	the	Section	G.3.1,	“git(1)”	suite

G.3.73.	git-mailsplit(1)

NAME

git-mailsplit	-	Simple	UNIX	mbox	splitter	program

SYNOPSIS

git	mailsplit	[-b]	[-f<nn>]	[-d<prec>]	[--keep-cr]	-

o<directory>	[--]	[(<mbox>|<Maildir>)…]

DESCRIPTION

Splits	a	mbox	file	or	a	Maildir	into	a	list	of	files:	"0001"	"0002"	..	in	the
specified	directory	so	you	can	process	them	further	from	there.

Important

Maildir	splitting	relies	upon	filenames	being	sorted	to	output
patches	in	the	correct	order.

OPTIONS

<mbox>
Mbox	file	to	split.	If	not	given,	the	mbox	is	read	from	the	standard



input.
<Maildir>

Root	of	the	Maildir	to	split.	This	directory	should	contain	the	cur,	tmp
and	new	subdirectories.

-o<directory>
Directory	in	which	to	place	the	individual	messages.

-b
If	any	file	doesn't	begin	with	a	From	line,	assume	it	is	a	single	mail
message	instead	of	signaling	error.

-d<prec>
Instead	of	the	default	4	digits	with	leading	zeros,	different	precision
can	be	specified	for	the	generated	filenames.

-f<nn>
Skip	the	first	<nn>	numbers,	for	example	if	-f3	is	specified,	start	the
numbering	with	0004.

--keep-cr
Do	not	remove	\r	from	lines	ending	with	\r\n.

GIT

Part	of	the	Section	G.3.1,	“git(1)”	suite

G.3.74.	git-merge-base(1)

NAME

git-merge-base	-	Find	as	good	common	ancestors	as	possible	for	a
merge

SYNOPSIS

git	merge-base	[-a|--all]	<commit>	<commit>…

git	merge-base	[-a|--all]	--octopus	<commit>…

git	merge-base	--is-ancestor	<commit>	<commit>

git	merge-base	--independent	<commit>…

git	merge-base	--fork-point	<ref>	[<commit>]



DESCRIPTION

git	merge-base	finds	best	common	ancestor(s)	between	two	commits	to
use	in	a	three-way	merge.	One	common	ancestor	is	better	than	another
common	ancestor	if	the	latter	is	an	ancestor	of	the	former.	A	common
ancestor	that	does	not	have	any	better	common	ancestor	is	a	best
common	ancestor,	i.e.	a	merge	base.	Note	that	there	can	be	more	than
one	merge	base	for	a	pair	of	commits.

OPERATION	MODES

As	the	most	common	special	case,	specifying	only	two	commits	on	the
command	line	means	computing	the	merge	base	between	the	given	two
commits.

More	generally,	among	the	two	commits	to	compute	the	merge	base
from,	one	is	specified	by	the	first	commit	argument	on	the	command	line;
the	other	commit	is	a	(possibly	hypothetical)	commit	that	is	a	merge
across	all	the	remaining	commits	on	the	command	line.

As	a	consequence,	the	merge	base	is	not	necessarily	contained	in	each
of	the	commit	arguments	if	more	than	two	commits	are	specified.	This	is
different	from	Section	G.3.123,	“git-show-branch(1)”	when	used	with	the	-
-merge-base	option.

--octopus
Compute	the	best	common	ancestors	of	all	supplied	commits,	in
preparation	for	an	n-way	merge.	This	mimics	the	behavior	of	git
show-branch	--merge-base.

--independent
Instead	of	printing	merge	bases,	print	a	minimal	subset	of	the
supplied	commits	with	the	same	ancestors.	In	other	words,	among
the	commits	given,	list	those	which	cannot	be	reached	from	any
other.	This	mimics	the	behavior	of	git	show-branch	--independent.

--is-ancestor
Check	if	the	first	<commit>	is	an	ancestor	of	the	second	<commit>,
and	exit	with	status	0	if	true,	or	with	status	1	if	not.	Errors	are



signaled	by	a	non-zero	status	that	is	not	1.
--fork-point

Find	the	point	at	which	a	branch	(or	any	history	that	leads	to
<commit>)	forked	from	another	branch	(or	any	reference)	<ref>.	This
does	not	just	look	for	the	common	ancestor	of	the	two	commits,	but
also	takes	into	account	the	reflog	of	<ref>	to	see	if	the	history	leading
to	<commit>	forked	from	an	earlier	incarnation	of	the	branch	<ref>
(see	discussion	on	this	mode	below).

OPTIONS

-a	,	--all
Output	all	merge	bases	for	the	commits,	instead	of	just	one.

DISCUSSION

Given	two	commits	A	and	B,	git	merge-base	A	B	will	output	a	commit
which	is	reachable	from	both	A	and	B	through	the	parent	relationship.

For	example,	with	this	topology:

									o---o---o---B

								/

---o---1---o---o---o---A

the	merge	base	between	A	and	B	is	1.

Given	three	commits	A,	B	and	C,	git	merge-base	A	B	C	will	compute	the
merge	base	between	A	and	a	hypothetical	commit	M,	which	is	a	merge
between	B	and	C.	For	example,	with	this	topology:

							o---o---o---o---C

						/

					/			o---o---o---B

				/			/

---2---1---o---o---o---A

the	result	of	git	merge-base	A	B	C	is	1.	This	is	because	the	equivalent
topology	with	a	merge	commit	M	between	B	and	C	is:

							o---o---o---o---o

						/																	\



					/			o---o---o---o---M

				/			/

---2---1---o---o---o---A

and	the	result	of	git	merge-base	A	M	is	1.	Commit	2	is	also	a	common
ancestor	between	A	and	M,	but	1	is	a	better	common	ancestor,	because
2	is	an	ancestor	of	1.	Hence,	2	is	not	a	merge	base.

The	result	of	git	merge-base	--octopus	A	B	C	is	2,	because	2	is	the	best
common	ancestor	of	all	commits.

When	the	history	involves	criss-cross	merges,	there	can	be	more	than
one	best	common	ancestor	for	two	commits.	For	example,	with	this
topology:

---1---o---A

				\	/

					X

				/	\

---2---o---o---B

both	1	and	2	are	merge-bases	of	A	and	B.	Neither	one	is	better	than	the
other	(both	are	best	merge	bases).	When	the	--all	option	is	not	given,	it	is
unspecified	which	best	one	is	output.

A	common	idiom	to	check	"fast-forward-ness"	between	two	commits	A
and	B	is	(or	at	least	used	to	be)	to	compute	the	merge	base	between	A
and	B,	and	check	if	it	is	the	same	as	A,	in	which	case,	A	is	an	ancestor	of
B.	You	will	see	this	idiom	used	often	in	older	scripts.

A=$(git	rev-parse	--verify	A)

if	test	"$A"	=	"$(git	merge-base	A	B)"

then

								...	A	is	an	ancestor	of	B	...

fi

In	modern	git,	you	can	say	this	in	a	more	direct	way:

if	git	merge-base	--is-ancestor	A	B

then

								...	A	is	an	ancestor	of	B	...

fi

instead.

Discussion	on	fork-point	mode



After	working	on	the	topic	branch	created	with	git	checkout	-b	topic
origin/master,	the	history	of	remote-tracking	branch	origin/master	may
have	been	rewound	and	rebuilt,	leading	to	a	history	of	this	shape:

																	o---B1

																/

---o---o---B2--o---o---o---B	(origin/master)

								\

									B3

										\

											Derived	(topic)

where	origin/master	used	to	point	at	commits	B3,	B2,	B1	and	now	it
points	at	B,	and	your	topic	branch	was	started	on	top	of	it	back	when
origin/master	was	at	B3.	This	mode	uses	the	reflog	of	origin/master	to
find	B3	as	the	fork	point,	so	that	the	topic	can	be	rebased	on	top	of	the
updated	origin/master	by:

$	fork_point=$(git	merge-base	--fork-point	origin/master	topic)

$	git	rebase	--onto	origin/master	$fork_point	topic

See	also

Section	G.3.112,	“git-rev-list(1)”,	Section	G.3.123,	“git-show-branch(1)”,
Section	G.3.79,	“git-merge(1)”

GIT

Part	of	the	Section	G.3.1,	“git(1)”	suite

G.3.75.	git-merge-file(1)

NAME

git-merge-file	-	Run	a	three-way	file	merge

SYNOPSIS

git	merge-file	[-L	<current-name>	[-L	<base-name>	[-L	<other-

name>]]]

								[--ours|--theirs|--union]	[-p|--stdout]	[-q|--



quiet]	[--marker-size=<n>]

								[--[no-]diff3]	<current-file>	<base-file>	<other-

file>

DESCRIPTION

git	merge-file	incorporates	all	changes	that	lead	from	the	<base-file>	to
<other-file>	into	<current-file>.	The	result	ordinarily	goes	into	<current-
file>.	git	merge-file	is	useful	for	combining	separate	changes	to	an
original.	Suppose	<base-file>	is	the	original,	and	both	<current-file>	and
<other-file>	are	modifications	of	<base-file>,	then	git	merge-file	combines
both	changes.

A	conflict	occurs	if	both	<current-file>	and	<other-file>	have	changes	in	a
common	segment	of	lines.	If	a	conflict	is	found,	git	merge-file	normally
outputs	a	warning	and	brackets	the	conflict	with	lines	containing
<<<<<<<	and	>>>>>>>	markers.	A	typical	conflict	will	look	like	this:

<<<<<<<	A

lines	in	file	A

=======

lines	in	file	B

>>>>>>>	B

If	there	are	conflicts,	the	user	should	edit	the	result	and	delete	one	of	the
alternatives.	When	--ours,	--theirs,	or	--union	option	is	in	effect,	however,
these	conflicts	are	resolved	favouring	lines	from	<current-file>,	lines	from
<other-file>,	or	lines	from	both	respectively.	The	length	of	the	conflict
markers	can	be	given	with	the	--marker-size	option.

The	exit	value	of	this	program	is	negative	on	error,	and	the	number	of
conflicts	otherwise	(truncated	to	127	if	there	are	more	than	that	many
conflicts).	If	the	merge	was	clean,	the	exit	value	is	0.

git	merge-file	is	designed	to	be	a	minimal	clone	of	RCS	merge;	that	is,	it
implements	all	of	RCS	merge's	functionality	which	is	needed	by
Section	G.3.1,	“git(1)”.

OPTIONS



-L	<label>
This	option	may	be	given	up	to	three	times,	and	specifies	labels	to
be	used	in	place	of	the	corresponding	file	names	in	conflict	reports.
That	is,	git	merge-file	-L	x	-L	y	-L	z	a	b	c	generates	output	that	looks
like	it	came	from	files	x,	y	and	z	instead	of	from	files	a,	b	and	c.

-p
Send	results	to	standard	output	instead	of	overwriting	<current-file>.

-q
Quiet;	do	not	warn	about	conflicts.

--diff3
Show	conflicts	in	"diff3"	style.

--ours	,	--theirs	,	--union
Instead	of	leaving	conflicts	in	the	file,	resolve	conflicts	favouring	our
(or	their	or	both)	side	of	the	lines.

EXAMPLES

git	merge-file	README.my	README	README.upstream
combines	the	changes	of	README.my	and	README.upstream
since	README,	tries	to	merge	them	and	writes	the	result	into
README.my.

git	merge-file	-L	a	-L	b	-L	c	tmp/a123	tmp/b234	tmp/c345
merges	tmp/a123	and	tmp/c345	with	the	base	tmp/b234,	but	uses
labels	a	and	c	instead	of	tmp/a123	and	tmp/c345.

GIT

Part	of	the	Section	G.3.1,	“git(1)”	suite

G.3.76.	git-merge-index(1)

NAME

git-merge-index	-	Run	a	merge	for	files	needing	merging

SYNOPSIS



git	merge-index	[-o]	[-q]	<merge-program>	(-a	|	[--]	<file>*)

DESCRIPTION

This	looks	up	the	<file>(s)	in	the	index	and,	if	there	are	any	merge
entries,	passes	the	SHA-1	hash	for	those	files	as	arguments	1,	2,	3
(empty	argument	if	no	file),	and	<file>	as	argument	4.	File	modes	for	the
three	files	are	passed	as	arguments	5,	6	and	7.

OPTIONS

--
Do	not	interpret	any	more	arguments	as	options.

-a
Run	merge	against	all	files	in	the	index	that	need	merging.

-o
Instead	of	stopping	at	the	first	failed	merge,	do	all	of	them	in	one
shot	-	continue	with	merging	even	when	previous	merges	returned
errors,	and	only	return	the	error	code	after	all	the	merges.

-q
Do	not	complain	about	a	failed	merge	program	(a	merge	program
failure	usually	indicates	conflicts	during	the	merge).	This	is	for
porcelains	which	might	want	to	emit	custom	messages.

If	git	merge-index	is	called	with	multiple	<file>s	(or	-a)	then	it	processes
them	in	turn	only	stopping	if	merge	returns	a	non-zero	exit	code.

Typically	this	is	run	with	a	script	calling	Git's	imitation	of	the	merge
command	from	the	RCS	package.

A	sample	script	called	git	merge-one-file	is	included	in	the	distribution.

ALERT	ALERT	ALERT!	The	Git	"merge	object	order"	is	different	from	the
RCS	merge	program	merge	object	order.	In	the	above	ordering,	the
original	is	first.	But	the	argument	order	to	the	3-way	merge	program
merge	is	to	have	the	original	in	the	middle.	Don't	ask	me	why.



Examples:

torvalds@ppc970:~/merge-test>	git	merge-index	cat	MM

This	is	MM	from	the	original	tree.																				#	original

This	is	modified	MM	in	the	branch	A.																		#	merge1

This	is	modified	MM	in	the	branch	B.																		#	merge2

This	is	modified	MM	in	the	branch	B.																		#	current	contents

or

torvalds@ppc970:~/merge-test>	git	merge-index	cat	AA	MM

cat:	:	No	such	file	or	directory

This	is	added	AA	in	the	branch	A.

This	is	added	AA	in	the	branch	B.

This	is	added	AA	in	the	branch	B.

fatal:	merge	program	failed

where	the	latter	example	shows	how	git	merge-index	will	stop	trying	to
merge	once	anything	has	returned	an	error	(i.e.,	cat	returned	an	error	for
the	AA	file,	because	it	didn't	exist	in	the	original,	and	thus	git	merge-index
didn't	even	try	to	merge	the	MM	thing).

GIT

Part	of	the	Section	G.3.1,	“git(1)”	suite

G.3.77.	git-merge-one-file(1)

NAME

git-merge-one-file	-	The	standard	helper	program	to	use	with	git-merge-
index

SYNOPSIS

git	merge-one-file

DESCRIPTION

This	is	the	standard	helper	program	to	use	with	git	merge-index	to
resolve	a	merge	after	the	trivial	merge	done	with	git	read-tree	-m.



GIT

Part	of	the	Section	G.3.1,	“git(1)”	suite

G.3.78.	git-merge-tree(1)

NAME

git-merge-tree	-	Show	three-way	merge	without	touching	index

SYNOPSIS

git	merge-tree	<base-tree>	<branch1>	<branch2>

DESCRIPTION

Reads	three	tree-ish,	and	output	trivial	merge	results	and	conflicting
stages	to	the	standard	output.	This	is	similar	to	what	three-way	git	read-
tree	-m	does,	but	instead	of	storing	the	results	in	the	index,	the	command
outputs	the	entries	to	the	standard	output.

This	is	meant	to	be	used	by	higher	level	scripts	to	compute	merge	results
outside	of	the	index,	and	stuff	the	results	back	into	the	index.	For	this
reason,	the	output	from	the	command	omits	entries	that	match	the
<branch1>	tree.

GIT

Part	of	the	Section	G.3.1,	“git(1)”	suite

G.3.79.	git-merge(1)

NAME

git-merge	-	Join	two	or	more	development	histories	together



SYNOPSIS

git	merge	[-n]	[--stat]	[--no-commit]	[--squash]	[--[no-

]edit]

								[-s	<strategy>]	[-X	<strategy-option>]	[-S[<keyid>]]

								[--[no-]allow-unrelated-histories]

								[--[no-]rerere-autoupdate]	[-m	<msg>]	[<commit>…]

git	merge	<msg>	HEAD	<commit>…

git	merge	--abort

DESCRIPTION

Incorporates	changes	from	the	named	commits	(since	the	time	their
histories	diverged	from	the	current	branch)	into	the	current	branch.	This
command	is	used	by	git	pull	to	incorporate	changes	from	another
repository	and	can	be	used	by	hand	to	merge	changes	from	one	branch
into	another.

Assume	the	following	history	exists	and	the	current	branch	is	"master":

										A---B---C	topic

									/

				D---E---F---G	master

Then	"git	merge	topic"	will	replay	the	changes	made	on	the	topic	branch
since	it	diverged	from	master	(i.e.,	E)	until	its	current	commit	(C)	on	top	of
master,	and	record	the	result	in	a	new	commit	along	with	the	names	of
the	two	parent	commits	and	a	log	message	from	the	user	describing	the
changes.

										A---B---C	topic

									/									\

				D---E---F---G---H	master

The	second	syntax	(<msg>	HEAD	<commit>…)	is	supported	for	historical
reasons.	Do	not	use	it	from	the	command	line	or	in	new	scripts.	It	is	the
same	as	git	merge	-m	<msg>	<commit>....



The	third	syntax	("git	merge	--abort")	can	only	be	run	after	the	merge	has
resulted	in	conflicts.	git	merge	--abort	will	abort	the	merge	process	and
try	to	reconstruct	the	pre-merge	state.	However,	if	there	were
uncommitted	changes	when	the	merge	started	(and	especially	if	those
changes	were	further	modified	after	the	merge	was	started),	git	merge	--
abort	will	in	some	cases	be	unable	to	reconstruct	the	original	(pre-merge)
changes.	Therefore:

Warning:	Running	git	merge	with	non-trivial	uncommitted	changes	is
discouraged:	while	possible,	it	may	leave	you	in	a	state	that	is	hard	to
back	out	of	in	the	case	of	a	conflict.

OPTIONS

--commit	,	--no-commit

Perform	the	merge	and	commit	the	result.	This	option	can	be	used	to
override	--no-commit.

With	--no-commit	perform	the	merge	but	pretend	the	merge	failed
and	do	not	autocommit,	to	give	the	user	a	chance	to	inspect	and
further	tweak	the	merge	result	before	committing.

--edit	,	-e	,	--no-edit

Invoke	an	editor	before	committing	successful	mechanical	merge	to
further	edit	the	auto-generated	merge	message,	so	that	the	user	can
explain	and	justify	the	merge.	The	--no-edit	option	can	be	used	to
accept	the	auto-generated	message	(this	is	generally	discouraged).
The	--edit	(or	-e)	option	is	still	useful	if	you	are	giving	a	draft
message	with	the	-m	option	from	the	command	line	and	want	to	edit
it	in	the	editor.

Older	scripts	may	depend	on	the	historical	behaviour	of	not	allowing
the	user	to	edit	the	merge	log	message.	They	will	see	an	editor
opened	when	they	run	git	merge.	To	make	it	easier	to	adjust	such
scripts	to	the	updated	behaviour,	the	environment	variable
GIT_MERGE_AUTOEDIT	can	be	set	to	no	at	the	beginning	of	them.



--ff
When	the	merge	resolves	as	a	fast-forward,	only	update	the	branch
pointer,	without	creating	a	merge	commit.	This	is	the	default
behavior.

--no-ff
Create	a	merge	commit	even	when	the	merge	resolves	as	a	fast-
forward.	This	is	the	default	behaviour	when	merging	an	annotated
(and	possibly	signed)	tag.

--ff-only
Refuse	to	merge	and	exit	with	a	non-zero	status	unless	the	current
HEAD	is	already	up-to-date	or	the	merge	can	be	resolved	as	a	fast-
forward.

--log[=<n>]	,	--no-log

In	addition	to	branch	names,	populate	the	log	message	with	one-line
descriptions	from	at	most	<n>	actual	commits	that	are	being	merged.
See	also	Section	G.3.48,	“git-fmt-merge-msg(1)”.

With	--no-log	do	not	list	one-line	descriptions	from	the	actual
commits	being	merged.

--stat	,	-n	,	--no-stat

Show	a	diffstat	at	the	end	of	the	merge.	The	diffstat	is	also	controlled
by	the	configuration	option	merge.stat.

With	-n	or	--no-stat	do	not	show	a	diffstat	at	the	end	of	the	merge.

--squash	,	--no-squash

Produce	the	working	tree	and	index	state	as	if	a	real	merge
happened	(except	for	the	merge	information),	but	do	not	actually
make	a	commit,	move	the	HEAD,	or	record
$GIT_DIR/MERGE_HEAD	(to	cause	the	next	git	commit	command
to	create	a	merge	commit).	This	allows	you	to	create	a	single	commit
on	top	of	the	current	branch	whose	effect	is	the	same	as	merging
another	branch	(or	more	in	case	of	an	octopus).



With	--no-squash	perform	the	merge	and	commit	the	result.	This
option	can	be	used	to	override	--squash.

-s	<strategy>	,	--strategy=<strategy>
Use	the	given	merge	strategy;	can	be	supplied	more	than	once	to
specify	them	in	the	order	they	should	be	tried.	If	there	is	no	-s	option,
a	built-in	list	of	strategies	is	used	instead	(git	merge-recursive	when
merging	a	single	head,	git	merge-octopus	otherwise).

-X	<option>	,	--strategy-option=<option>
Pass	merge	strategy	specific	option	through	to	the	merge	strategy.

--verify-signatures	,	--no-verify-signatures
Verify	that	the	commits	being	merged	have	good	and	trusted	GPG
signatures	and	abort	the	merge	in	case	they	do	not.

--summary	,	--no-summary
Synonyms	to	--stat	and	--no-stat;	these	are	deprecated	and	will	be
removed	in	the	future.

-q	,	--quiet
Operate	quietly.	Implies	--no-progress.

-v	,	--verbose
Be	verbose.

--progress	,	--no-progress
Turn	progress	on/off	explicitly.	If	neither	is	specified,	progress	is
shown	if	standard	error	is	connected	to	a	terminal.	Note	that	not	all
merge	strategies	may	support	progress	reporting.

--allow-unrelated-histories
By	default,	git	merge	command	refuses	to	merge	histories	that	do
not	share	a	common	ancestor.	This	option	can	be	used	to	override
this	safety	when	merging	histories	of	two	projects	that	started	their
lives	independently.	As	that	is	a	very	rare	occasion,	no	configuration
variable	to	enable	this	by	default	exists	and	will	not	be	added.

-S[<keyid>]	,	--gpg-sign[=<keyid>]
GPG-sign	the	resulting	merge	commit.	The	keyid	argument	is
optional	and	defaults	to	the	committer	identity;	if	specified,	it	must	be
stuck	to	the	option	without	a	space.

-m	<msg>

Set	the	commit	message	to	be	used	for	the	merge	commit	(in	case



one	is	created).

If	--log	is	specified,	a	shortlog	of	the	commits	being	merged	will	be
appended	to	the	specified	message.

The	git	fmt-merge-msg	command	can	be	used	to	give	a	good	default
for	automated	git	merge	invocations.	The	automated	message	can
include	the	branch	description.

--[no-]rerere-autoupdate
Allow	the	rerere	mechanism	to	update	the	index	with	the	result	of
auto-conflict	resolution	if	possible.

--abort

Abort	the	current	conflict	resolution	process,	and	try	to	reconstruct
the	pre-merge	state.

If	there	were	uncommitted	worktree	changes	present	when	the
merge	started,	git	merge	--abort	will	in	some	cases	be	unable	to
reconstruct	these	changes.	It	is	therefore	recommended	to	always
commit	or	stash	your	changes	before	running	git	merge.

git	merge	--abort	is	equivalent	to	git	reset	--merge	when
MERGE_HEAD	is	present.

<commit>…

Commits,	usually	other	branch	heads,	to	merge	into	our	branch.
Specifying	more	than	one	commit	will	create	a	merge	with	more	than
two	parents	(affectionately	called	an	Octopus	merge).

If	no	commit	is	given	from	the	command	line,	merge	the	remote-
tracking	branches	that	the	current	branch	is	configured	to	use	as	its
upstream.	See	also	the	configuration	section	of	this	manual	page.

When	FETCH_HEAD	(and	no	other	commit)	is	specified,	the
branches	recorded	in	the	.git/FETCH_HEAD	file	by	the	previous
invocation	of	git	fetch	for	merging	are	merged	to	the	current	branch.



PRE-MERGE	CHECKS

Before	applying	outside	changes,	you	should	get	your	own	work	in	good
shape	and	committed	locally,	so	it	will	not	be	clobbered	if	there	are
conflicts.	See	also	Section	G.3.128,	“git-stash(1)”.	git	pull	and	git	merge
will	stop	without	doing	anything	when	local	uncommitted	changes	overlap
with	files	that	git	pull/git	merge	may	need	to	update.

To	avoid	recording	unrelated	changes	in	the	merge	commit,	git	pull	and
git	merge	will	also	abort	if	there	are	any	changes	registered	in	the	index
relative	to	the	HEAD	commit.	(One	exception	is	when	the	changed	index
entries	are	in	the	state	that	would	result	from	the	merge	already.)

If	all	named	commits	are	already	ancestors	of	HEAD,	git	merge	will	exit
early	with	the	message	"Already	up-to-date."

FAST-FORWARD	MERGE

Often	the	current	branch	head	is	an	ancestor	of	the	named	commit.	This
is	the	most	common	case	especially	when	invoked	from	git	pull:	you	are
tracking	an	upstream	repository,	you	have	committed	no	local	changes,
and	now	you	want	to	update	to	a	newer	upstream	revision.	In	this	case,	a
new	commit	is	not	needed	to	store	the	combined	history;	instead,	the
HEAD	(along	with	the	index)	is	updated	to	point	at	the	named	commit,
without	creating	an	extra	merge	commit.

This	behavior	can	be	suppressed	with	the	--no-ff	option.

TRUE	MERGE

Except	in	a	fast-forward	merge	(see	above),	the	branches	to	be	merged
must	be	tied	together	by	a	merge	commit	that	has	both	of	them	as	its
parents.

A	merged	version	reconciling	the	changes	from	all	branches	to	be
merged	is	committed,	and	your	HEAD,	index,	and	working	tree	are
updated	to	it.	It	is	possible	to	have	modifications	in	the	working	tree	as



long	as	they	do	not	overlap;	the	update	will	preserve	them.

When	it	is	not	obvious	how	to	reconcile	the	changes,	the	following
happens:

1.	 The	HEAD	pointer	stays	the	same.
2.	 The	MERGE_HEAD	ref	is	set	to	point	to	the	other	branch	head.
3.	 Paths	that	merged	cleanly	are	updated	both	in	the	index	file	and	in

your	working	tree.
4.	 For	conflicting	paths,	the	index	file	records	up	to	three	versions:

stage	1	stores	the	version	from	the	common	ancestor,	stage	2	from
HEAD,	and	stage	3	from	MERGE_HEAD	(you	can	inspect	the
stages	with	git	ls-files	-u).	The	working	tree	files	contain	the	result	of
the	"merge"	program;	i.e.	3-way	merge	results	with	familiar	conflict
markers	<<<	===	>>>.

5.	 No	other	changes	are	made.	In	particular,	the	local	modifications	you
had	before	you	started	merge	will	stay	the	same	and	the	index
entries	for	them	stay	as	they	were,	i.e.	matching	HEAD.

If	you	tried	a	merge	which	resulted	in	complex	conflicts	and	want	to	start
over,	you	can	recover	with	git	merge	--abort.

MERGING	TAG

When	merging	an	annotated	(and	possibly	signed)	tag,	Git	always
creates	a	merge	commit	even	if	a	fast-forward	merge	is	possible,	and	the
commit	message	template	is	prepared	with	the	tag	message.
Additionally,	if	the	tag	is	signed,	the	signature	check	is	reported	as	a
comment	in	the	message	template.	See	also	Section	G.3.134,	“git-
tag(1)”.

When	you	want	to	just	integrate	with	the	work	leading	to	the	commit	that
happens	to	be	tagged,	e.g.	synchronizing	with	an	upstream	release	point,
you	may	not	want	to	make	an	unnecessary	merge	commit.

In	such	a	case,	you	can	"unwrap"	the	tag	yourself	before	feeding	it	to	git
merge,	or	pass	--ff-only	when	you	do	not	have	any	work	on	your	own.
e.g.



git	fetch	origin

git	merge	v1.2.3^0

git	merge	--ff-only	v1.2.3

HOW	CONFLICTS	ARE	PRESENTED

During	a	merge,	the	working	tree	files	are	updated	to	reflect	the	result	of
the	merge.	Among	the	changes	made	to	the	common	ancestor's	version,
non-overlapping	ones	(that	is,	you	changed	an	area	of	the	file	while	the
other	side	left	that	area	intact,	or	vice	versa)	are	incorporated	in	the	final
result	verbatim.	When	both	sides	made	changes	to	the	same	area,
however,	Git	cannot	randomly	pick	one	side	over	the	other,	and	asks	you
to	resolve	it	by	leaving	what	both	sides	did	to	that	area.

By	default,	Git	uses	the	same	style	as	the	one	used	by	the	"merge"
program	from	the	RCS	suite	to	present	such	a	conflicted	hunk,	like	this:

Here	are	lines	that	are	either	unchanged	from	the	common

ancestor,	or	cleanly	resolved	because	only	one	side	changed.

<<<<<<<	yours:sample.txt

Conflict	resolution	is	hard;

let's	go	shopping.

=======

Git	makes	conflict	resolution	easy.

>>>>>>>	theirs:sample.txt

And	here	is	another	line	that	is	cleanly	resolved	or	unmodified.

The	area	where	a	pair	of	conflicting	changes	happened	is	marked	with
markers	<<<<<<<,	=======,	and	>>>>>>>.	The	part	before	the
=======	is	typically	your	side,	and	the	part	afterwards	is	typically	their
side.

The	default	format	does	not	show	what	the	original	said	in	the	conflicting
area.	You	cannot	tell	how	many	lines	are	deleted	and	replaced	with
Barbie's	remark	on	your	side.	The	only	thing	you	can	tell	is	that	your	side
wants	to	say	it	is	hard	and	you'd	prefer	to	go	shopping,	while	the	other
side	wants	to	claim	it	is	easy.



An	alternative	style	can	be	used	by	setting	the	"merge.conflictStyle"
configuration	variable	to	"diff3".	In	"diff3"	style,	the	above	conflict	may
look	like	this:

Here	are	lines	that	are	either	unchanged	from	the	common

ancestor,	or	cleanly	resolved	because	only	one	side	changed.

<<<<<<<	yours:sample.txt

Conflict	resolution	is	hard;

let's	go	shopping.

|||||||

Conflict	resolution	is	hard.

=======

Git	makes	conflict	resolution	easy.

>>>>>>>	theirs:sample.txt

And	here	is	another	line	that	is	cleanly	resolved	or	unmodified.

In	addition	to	the	<<<<<<<,	=======,	and	>>>>>>>	markers,	it	uses
another	|||||||	marker	that	is	followed	by	the	original	text.	You	can	tell	that
the	original	just	stated	a	fact,	and	your	side	simply	gave	in	to	that
statement	and	gave	up,	while	the	other	side	tried	to	have	a	more	positive
attitude.	You	can	sometimes	come	up	with	a	better	resolution	by	viewing
the	original.

HOW	TO	RESOLVE	CONFLICTS

After	seeing	a	conflict,	you	can	do	two	things:

Decide	not	to	merge.	The	only	clean-ups	you	need	are	to	reset	the
index	file	to	the	HEAD	commit	to	reverse	2.	and	to	clean	up	working
tree	changes	made	by	2.	and	3.;	git	merge	--abort	can	be	used	for
this.
Resolve	the	conflicts.	Git	will	mark	the	conflicts	in	the	working	tree.
Edit	the	files	into	shape	and	git	add	them	to	the	index.	Use	git
commit	to	seal	the	deal.

You	can	work	through	the	conflict	with	a	number	of	tools:

Use	a	mergetool.	git	mergetool	to	launch	a	graphical	mergetool



which	will	work	you	through	the	merge.
Look	at	the	diffs.	git	diff	will	show	a	three-way	diff,	highlighting
changes	from	both	the	HEAD	and	MERGE_HEAD	versions.
Look	at	the	diffs	from	each	branch.	git	log	--merge	-p	<path>	will
show	diffs	first	for	the	HEAD	version	and	then	the	MERGE_HEAD
version.
Look	at	the	originals.	git	show	:1:filename	shows	the	common
ancestor,	git	show	:2:filename	shows	the	HEAD	version,	and	git
show	:3:filename	shows	the	MERGE_HEAD	version.

EXAMPLES

Merge	branches	fixes	and	enhancements	on	top	of	the	current
branch,	making	an	octopus	merge:

$	git	merge	fixes	enhancements

Merge	branch	obsolete	into	the	current	branch,	using	ours	merge
strategy:

$	git	merge	-s	ours	obsolete

Merge	branch	maint	into	the	current	branch,	but	do	not	make	a	new
commit	automatically:

$	git	merge	--no-commit	maint

This	can	be	used	when	you	want	to	include	further	changes	to	the
merge,	or	want	to	write	your	own	merge	commit	message.

You	should	refrain	from	abusing	this	option	to	sneak	substantial
changes	into	a	merge	commit.	Small	fixups	like	bumping
release/version	name	would	be	acceptable.

MERGE	STRATEGIES



The	merge	mechanism	(git	merge	and	git	pull	commands)	allows	the
backend	merge	strategies	to	be	chosen	with	-s	option.	Some	strategies
can	also	take	their	own	options,	which	can	be	passed	by	giving	-
X<option>	arguments	to	git	merge	and/or	git	pull.

resolve
This	can	only	resolve	two	heads	(i.e.	the	current	branch	and	another
branch	you	pulled	from)	using	a	3-way	merge	algorithm.	It	tries	to
carefully	detect	criss-cross	merge	ambiguities	and	is	considered
generally	safe	and	fast.

recursive

This	can	only	resolve	two	heads	using	a	3-way	merge	algorithm.
When	there	is	more	than	one	common	ancestor	that	can	be	used	for
3-way	merge,	it	creates	a	merged	tree	of	the	common	ancestors	and
uses	that	as	the	reference	tree	for	the	3-way	merge.	This	has	been
reported	to	result	in	fewer	merge	conflicts	without	causing
mismerges	by	tests	done	on	actual	merge	commits	taken	from	Linux
2.6	kernel	development	history.	Additionally	this	can	detect	and
handle	merges	involving	renames.	This	is	the	default	merge	strategy
when	pulling	or	merging	one	branch.

The	recursive	strategy	can	take	the	following	options:

ours

This	option	forces	conflicting	hunks	to	be	auto-resolved	cleanly
by	favoring	our	version.	Changes	from	the	other	tree	that	do	not
conflict	with	our	side	are	reflected	to	the	merge	result.	For	a
binary	file,	the	entire	contents	are	taken	from	our	side.

This	should	not	be	confused	with	the	ours	merge	strategy,	which
does	not	even	look	at	what	the	other	tree	contains	at	all.	It
discards	everything	the	other	tree	did,	declaring	our	history
contains	all	that	happened	in	it.

theirs
This	is	the	opposite	of	ours.



patience
With	this	option,	merge-recursive	spends	a	little	extra	time	to
avoid	mismerges	that	sometimes	occur	due	to	unimportant
matching	lines	(e.g.,	braces	from	distinct	functions).	Use	this
when	the	branches	to	be	merged	have	diverged	wildly.	See	also
Section	G.3.41,	“git-diff(1)”	--patience.

diff-algorithm=[patience|minimal|histogram|myers]
Tells	merge-recursive	to	use	a	different	diff	algorithm,	which	can
help	avoid	mismerges	that	occur	due	to	unimportant	matching
lines	(such	as	braces	from	distinct	functions).	See	also
Section	G.3.41,	“git-diff(1)”	--diff-algorithm.

ignore-space-change	,	ignore-all-space	,	ignore-space-at-eol

Treats	lines	with	the	indicated	type	of	whitespace	change	as
unchanged	for	the	sake	of	a	three-way	merge.	Whitespace
changes	mixed	with	other	changes	to	a	line	are	not	ignored.	See
also	Section	G.3.41,	“git-diff(1)”	-b,	-w,	and	--ignore-space-at-
eol.

If	their	version	only	introduces	whitespace	changes	to	a
line,	our	version	is	used;
If	our	version	introduces	whitespace	changes	but	their
version	includes	a	substantial	change,	their	version	is	used;
Otherwise,	the	merge	proceeds	in	the	usual	way.

renormalize
This	runs	a	virtual	check-out	and	check-in	of	all	three	stages	of
a	file	when	resolving	a	three-way	merge.	This	option	is	meant	to
be	used	when	merging	branches	with	different	clean	filters	or
end-of-line	normalization	rules.	See	"Merging	branches	with
differing	checkin/checkout	attributes"	in	Section	G.4.2,
“gitattributes(5)”	for	details.

no-renormalize
Disables	the	renormalize	option.	This	overrides	the
merge.renormalize	configuration	variable.

no-renames
Turn	off	rename	detection.	See	also	Section	G.3.41,	“git-diff(1)”	-
-no-renames.



find-renames[=<n>]
Turn	on	rename	detection,	optionally	setting	the	similarity
threshold.	This	is	the	default.	See	also	Section	G.3.41,	“git-
diff(1)”	--find-renames.

rename-threshold=<n>
Deprecated	synonym	for	find-renames=<n>.

subtree[=<path>]
This	option	is	a	more	advanced	form	of	subtree	strategy,	where
the	strategy	makes	a	guess	on	how	two	trees	must	be	shifted	to
match	with	each	other	when	merging.	Instead,	the	specified
path	is	prefixed	(or	stripped	from	the	beginning)	to	make	the
shape	of	two	trees	to	match.

octopus
This	resolves	cases	with	more	than	two	heads,	but	refuses	to	do	a
complex	merge	that	needs	manual	resolution.	It	is	primarily	meant	to
be	used	for	bundling	topic	branch	heads	together.	This	is	the	default
merge	strategy	when	pulling	or	merging	more	than	one	branch.

ours
This	resolves	any	number	of	heads,	but	the	resulting	tree	of	the
merge	is	always	that	of	the	current	branch	head,	effectively	ignoring
all	changes	from	all	other	branches.	It	is	meant	to	be	used	to
supersede	old	development	history	of	side	branches.	Note	that	this
is	different	from	the	-Xours	option	to	the	recursive	merge	strategy.

subtree
This	is	a	modified	recursive	strategy.	When	merging	trees	A	and	B,	if
B	corresponds	to	a	subtree	of	A,	B	is	first	adjusted	to	match	the	tree
structure	of	A,	instead	of	reading	the	trees	at	the	same	level.	This
adjustment	is	also	done	to	the	common	ancestor	tree.

With	the	strategies	that	use	3-way	merge	(including	the	default,
recursive),	if	a	change	is	made	on	both	branches,	but	later	reverted	on
one	of	the	branches,	that	change	will	be	present	in	the	merged	result;
some	people	find	this	behavior	confusing.	It	occurs	because	only	the
heads	and	the	merge	base	are	considered	when	performing	a	merge,	not
the	individual	commits.	The	merge	algorithm	therefore	considers	the
reverted	change	as	no	change	at	all,	and	substitutes	the	changed	version
instead.



CONFIGURATION

merge.conflictStyle
Specify	the	style	in	which	conflicted	hunks	are	written	out	to	working
tree	files	upon	merge.	The	default	is	"merge",	which	shows	a
<<<<<<<	conflict	marker,	changes	made	by	one	side,	a	=======
marker,	changes	made	by	the	other	side,	and	then	a	>>>>>>>
marker.	An	alternate	style,	"diff3",	adds	a	|||||||	marker	and	the
original	text	before	the	=======	marker.

merge.defaultToUpstream
If	merge	is	called	without	any	commit	argument,	merge	the	upstream
branches	configured	for	the	current	branch	by	using	their	last
observed	values	stored	in	their	remote-tracking	branches.	The
values	of	the	branch.<current	branch>.merge	that	name	the
branches	at	the	remote	named	by	branch.<current	branch>.remote
are	consulted,	and	then	they	are	mapped	via	remote.<remote>.fetch
to	their	corresponding	remote-tracking	branches,	and	the	tips	of
these	tracking	branches	are	merged.

merge.ff
By	default,	Git	does	not	create	an	extra	merge	commit	when	merging
a	commit	that	is	a	descendant	of	the	current	commit.	Instead,	the	tip
of	the	current	branch	is	fast-forwarded.	When	set	to	false,	this
variable	tells	Git	to	create	an	extra	merge	commit	in	such	a	case
(equivalent	to	giving	the	--no-ff	option	from	the	command	line).	When
set	to	only,	only	such	fast-forward	merges	are	allowed	(equivalent	to
giving	the	--ff-only	option	from	the	command	line).

merge.branchdesc
In	addition	to	branch	names,	populate	the	log	message	with	the
branch	description	text	associated	with	them.	Defaults	to	false.

merge.log
In	addition	to	branch	names,	populate	the	log	message	with	at	most
the	specified	number	of	one-line	descriptions	from	the	actual
commits	that	are	being	merged.	Defaults	to	false,	and	true	is	a
synonym	for	20.

merge.renameLimit
The	number	of	files	to	consider	when	performing	rename	detection
during	a	merge;	if	not	specified,	defaults	to	the	value	of



diff.renameLimit.
merge.renormalize

Tell	Git	that	canonical	representation	of	files	in	the	repository	has
changed	over	time	(e.g.	earlier	commits	record	text	files	with	CRLF
line	endings,	but	recent	ones	use	LF	line	endings).	In	such	a
repository,	Git	can	convert	the	data	recorded	in	commits	to	a
canonical	form	before	performing	a	merge	to	reduce	unnecessary
conflicts.	For	more	information,	see	section	"Merging	branches	with
differing	checkin/checkout	attributes"	in	Section	G.4.2,
“gitattributes(5)”.

merge.stat
Whether	to	print	the	diffstat	between	ORIG_HEAD	and	the	merge
result	at	the	end	of	the	merge.	True	by	default.

merge.tool

Controls	which	merge	tool	is	used	by	Section	G.3.81,	“git-
mergetool(1)”.	The	list	below	shows	the	valid	built-in	values.	Any
other	value	is	treated	as	a	custom	merge	tool	and	requires	that	a
corresponding	mergetool.<tool>.cmd	variable	is	defined.

araxis
bc
bc3
codecompare
deltawalker
diffmerge
diffuse
ecmerge
emerge
examdiff
gvimdiff
gvimdiff2
gvimdiff3
kdiff3
meld
opendiff
p4merge



tkdiff
tortoisemerge
vimdiff
vimdiff2
vimdiff3
winmerge
xxdiff

merge.verbosity
Controls	the	amount	of	output	shown	by	the	recursive	merge
strategy.	Level	0	outputs	nothing	except	a	final	error	message	if
conflicts	were	detected.	Level	1	outputs	only	conflicts,	2	outputs
conflicts	and	file	changes.	Level	5	and	above	outputs	debugging
information.	The	default	is	level	2.	Can	be	overridden	by	the
GIT_MERGE_VERBOSITY	environment	variable.

merge.<driver>.name
Defines	a	human-readable	name	for	a	custom	low-level	merge
driver.	See	Section	G.4.2,	“gitattributes(5)”	for	details.

merge.<driver>.driver
Defines	the	command	that	implements	a	custom	low-level	merge
driver.	See	Section	G.4.2,	“gitattributes(5)”	for	details.

merge.<driver>.recursive
Names	a	low-level	merge	driver	to	be	used	when	performing	an
internal	merge	between	common	ancestors.	See	Section	G.4.2,
“gitattributes(5)”	for	details.

branch.<name>.mergeOptions
Sets	default	options	for	merging	into	branch	<name>.	The	syntax
and	supported	options	are	the	same	as	those	of	git	merge,	but
option	values	containing	whitespace	characters	are	currently	not
supported.

SEE	ALSO

Section	G.3.48,	“git-fmt-merge-msg(1)”,	Section	G.3.95,	“git-pull(1)”,
Section	G.4.2,	“gitattributes(5)”,	Section	G.3.111,	“git-reset(1)”,
Section	G.3.41,	“git-diff(1)”,	Section	G.3.69,	“git-ls-files(1)”,	Section	G.3.2,
“git-add(1)”,	Section	G.3.115,	“git-rm(1)”,	Section	G.3.81,	“git-
mergetool(1)”



GIT

Part	of	the	Section	G.3.1,	“git(1)”	suite

G.3.80.	git-mergetool--lib(1)

NAME

git-mergetool--lib	-	Common	Git	merge	tool	shell	scriptlets

SYNOPSIS

TOOL_MODE=(diff|merge)	.	"$(git	--exec-path)/git-mergetool--

lib"

DESCRIPTION

This	is	not	a	command	the	end	user	would	want	to	run.	Ever.	This
documentation	is	meant	for	people	who	are	studying	the	Porcelain-ish
scripts	and/or	are	writing	new	ones.

The	git-mergetool--lib	scriptlet	is	designed	to	be	sourced	(using	.)	by
other	shell	scripts	to	set	up	functions	for	working	with	Git	merge	tools.

Before	sourcing	git-mergetool--lib,	your	script	must	set	TOOL_MODE	to
define	the	operation	mode	for	the	functions	listed	below.	diff	and	merge
are	valid	values.

FUNCTIONS

get_merge_tool
returns	a	merge	tool.

get_merge_tool_cmd
returns	the	custom	command	for	a	merge	tool.

get_merge_tool_path
returns	the	custom	path	for	a	merge	tool.



run_merge_tool
launches	a	merge	tool	given	the	tool	name	and	a	true/false	flag	to
indicate	whether	a	merge	base	is	present.	$MERGED,	$LOCAL,
$REMOTE,	and	$BASE	must	be	defined	for	use	by	the	merge	tool.

GIT

Part	of	the	Section	G.3.1,	“git(1)”	suite

G.3.81.	git-mergetool(1)

NAME

git-mergetool	-	Run	merge	conflict	resolution	tools	to	resolve	merge
conflicts

SYNOPSIS

git	mergetool	[--tool=<tool>]	[-y	|	--[no-]prompt]	[<file>…]

DESCRIPTION

Use	git	mergetool	to	run	one	of	several	merge	utilities	to	resolve	merge
conflicts.	It	is	typically	run	after	git	merge.

If	one	or	more	<file>	parameters	are	given,	the	merge	tool	program	will
be	run	to	resolve	differences	on	each	file	(skipping	those	without
conflicts).	Specifying	a	directory	will	include	all	unresolved	files	in	that
path.	If	no	<file>	names	are	specified,	git	mergetool	will	run	the	merge
tool	program	on	every	file	with	merge	conflicts.

OPTIONS

-t	<tool>	,	--tool=<tool>

Use	the	merge	resolution	program	specified	by	<tool>.	Valid	values



include	emerge,	gvimdiff,	kdiff3,	meld,	vimdiff,	and	tortoisemerge.
Run	git	mergetool	--tool-help	for	the	list	of	valid	<tool>	settings.

If	a	merge	resolution	program	is	not	specified,	git	mergetool	will	use
the	configuration	variable	merge.tool.	If	the	configuration	variable
merge.tool	is	not	set,	git	mergetool	will	pick	a	suitable	default.

You	can	explicitly	provide	a	full	path	to	the	tool	by	setting	the
configuration	variable	mergetool.<tool>.path.	For	example,	you	can
configure	the	absolute	path	to	kdiff3	by	setting	mergetool.kdiff3.path.
Otherwise,	git	mergetool	assumes	the	tool	is	available	in	PATH.

Instead	of	running	one	of	the	known	merge	tool	programs,	git
mergetool	can	be	customized	to	run	an	alternative	program	by
specifying	the	command	line	to	invoke	in	a	configuration	variable
mergetool.<tool>.cmd.

When	git	mergetool	is	invoked	with	this	tool	(either	through	the	-t	or	-
-tool	option	or	the	merge.tool	configuration	variable)	the	configured
command	line	will	be	invoked	with	$BASE	set	to	the	name	of	a
temporary	file	containing	the	common	base	for	the	merge,	if
available;	$LOCAL	set	to	the	name	of	a	temporary	file	containing	the
contents	of	the	file	on	the	current	branch;	$REMOTE	set	to	the	name
of	a	temporary	file	containing	the	contents	of	the	file	to	be	merged,
and	$MERGED	set	to	the	name	of	the	file	to	which	the	merge	tool
should	write	the	result	of	the	merge	resolution.

If	the	custom	merge	tool	correctly	indicates	the	success	of	a	merge
resolution	with	its	exit	code,	then	the	configuration	variable
mergetool.<tool>.trustExitCode	can	be	set	to	true.	Otherwise,	git
mergetool	will	prompt	the	user	to	indicate	the	success	of	the
resolution	after	the	custom	tool	has	exited.

--tool-help
Print	a	list	of	merge	tools	that	may	be	used	with	--tool.

-y	,	--no-prompt
Don't	prompt	before	each	invocation	of	the	merge	resolution
program.	This	is	the	default	if	the	merge	resolution	program	is



explicitly	specified	with	the	--tool	option	or	with	the	merge.tool
configuration	variable.

--prompt
Prompt	before	each	invocation	of	the	merge	resolution	program	to
give	the	user	a	chance	to	skip	the	path.

TEMPORARY	FILES

git	mergetool	creates	*.orig	backup	files	while	resolving	merges.	These
are	safe	to	remove	once	a	file	has	been	merged	and	its	git	mergetool
session	has	completed.

Setting	the	mergetool.keepBackup	configuration	variable	to	false	causes
git	mergetool	to	automatically	remove	the	backup	as	files	are
successfully	merged.

GIT

Part	of	the	Section	G.3.1,	“git(1)”	suite

G.3.82.	git-mktag(1)

NAME

git-mktag	-	Creates	a	tag	object

SYNOPSIS

git	mktag

DESCRIPTION

Reads	a	tag	contents	on	standard	input	and	creates	a	tag	object	that	can
also	be	used	to	sign	other	objects.

The	output	is	the	new	tag's	<object>	identifier.



Tag	Format

A	tag	signature	file,	to	be	fed	to	this	command's	standard	input,	has	a
very	simple	fixed	format:	four	lines	of

object	<sha1>

type	<typename>

tag	<tagname>

tagger	<tagger>

followed	by	some	optional	free-form	message	(some	tags	created	by
older	Git	may	not	have	tagger	line).	The	message,	when	exists,	is
separated	by	a	blank	line	from	the	header.	The	message	part	may
contain	a	signature	that	Git	itself	doesn't	care	about,	but	that	can	be
verified	with	gpg.

GIT

Part	of	the	Section	G.3.1,	“git(1)”	suite

G.3.83.	git-mktree(1)

NAME

git-mktree	-	Build	a	tree-object	from	ls-tree	formatted	text

SYNOPSIS

git	mktree	[-z]	[--missing]	[--batch]

DESCRIPTION

Reads	standard	input	in	non-recursive	ls-tree	output	format,	and	creates
a	tree	object.	The	order	of	the	tree	entries	is	normalised	by	mktree	so
pre-sorting	the	input	is	not	required.	The	object	name	of	the	tree	object
built	is	written	to	the	standard	output.



OPTIONS

-z
Read	the	NUL-terminated	ls-tree	-z	output	instead.

--missing
Allow	missing	objects.	The	default	behaviour	(without	this	option)	is
to	verify	that	each	tree	entry's	sha1	identifies	an	existing	object.	This
option	has	no	effect	on	the	treatment	of	gitlink	entries	(aka
"submodules")	which	are	always	allowed	to	be	missing.

--batch
Allow	building	of	more	than	one	tree	object	before	exiting.	Each	tree
is	separated	by	as	single	blank	line.	The	final	new-line	is	optional.
Note	-	if	the	-z	option	is	used,	lines	are	terminated	with	NUL.

GIT

Part	of	the	Section	G.3.1,	“git(1)”	suite

G.3.84.	git-mv(1)

NAME

git-mv	-	Move	or	rename	a	file,	a	directory,	or	a	symlink

SYNOPSIS

git	mv	<options>…	<args>…

DESCRIPTION

Move	or	rename	a	file,	directory	or	symlink.

git	mv	[-v]	[-f]	[-n]	[-k]	<source>	<destination>

git	mv	[-v]	[-f]	[-n]	[-k]	<source>	...	<destination	directory>

In	the	first	form,	it	renames	<source>,	which	must	exist	and	be	either	a
file,	symlink	or	directory,	to	<destination>.	In	the	second	form,	the	last



argument	has	to	be	an	existing	directory;	the	given	sources	will	be	moved
into	this	directory.

The	index	is	updated	after	successful	completion,	but	the	change	must
still	be	committed.

OPTIONS

-f	,	--force
Force	renaming	or	moving	of	a	file	even	if	the	target	exists

-k
Skip	move	or	rename	actions	which	would	lead	to	an	error	condition.
An	error	happens	when	a	source	is	neither	existing	nor	controlled	by
Git,	or	when	it	would	overwrite	an	existing	file	unless	-f	is	given.

-n	,	--dry-run
Do	nothing;	only	show	what	would	happen

-v	,	--verbose
Report	the	names	of	files	as	they	are	moved.

SUBMODULES

Moving	a	submodule	using	a	gitfile	(which	means	they	were	cloned	with	a
Git	version	1.7.8	or	newer)	will	update	the	gitfile	and	core.worktree
setting	to	make	the	submodule	work	in	the	new	location.	It	also	will
attempt	to	update	the	submodule.<name>.path	setting	in	the
Section	G.4.8,	“gitmodules(5)”	file	and	stage	that	file	(unless	-n	is	used).

BUGS

Each	time	a	superproject	update	moves	a	populated	submodule	(e.g.
when	switching	between	commits	before	and	after	the	move)	a	stale
submodule	checkout	will	remain	in	the	old	location	and	an	empty
directory	will	appear	in	the	new	location.	To	populate	the	submodule
again	in	the	new	location	the	user	will	have	to	run	"git	submodule	update"
afterwards.	Removing	the	old	directory	is	only	safe	when	it	uses	a	gitfile,
as	otherwise	the	history	of	the	submodule	will	be	deleted	too.	Both	steps
will	be	obsolete	when	recursive	submodule	update	has	been



implemented.

GIT

Part	of	the	Section	G.3.1,	“git(1)”	suite

G.3.85.	git-name-rev(1)

NAME

git-name-rev	-	Find	symbolic	names	for	given	revs

SYNOPSIS

git	name-rev	[--tags]	[--refs=<pattern>]

															(	--all	|	--stdin	|	<commit-ish>…	)

DESCRIPTION

Finds	symbolic	names	suitable	for	human	digestion	for	revisions	given	in
any	format	parsable	by	git	rev-parse.

OPTIONS

--tags
Do	not	use	branch	names,	but	only	tags	to	name	the	commits

--refs=<pattern>
Only	use	refs	whose	names	match	a	given	shell	pattern.	The	pattern
can	be	one	of	branch	name,	tag	name	or	fully	qualified	ref	name.

--all
List	all	commits	reachable	from	all	refs

--stdin
Transform	stdin	by	substituting	all	the	40-character	SHA-1	hexes
(say	$hex)	with	"$hex	($rev_name)".	When	used	with	--name-only,
substitute	with	"$rev_name",	omitting	$hex	altogether.	Intended	for
the	scripter's	use.



--name-only
Instead	of	printing	both	the	SHA-1	and	the	name,	print	only	the
name.	If	given	with	--tags	the	usual	tag	prefix	of	"tags/"	is	also
omitted	from	the	name,	matching	the	output	of	git-describe	more
closely.

--no-undefined
Die	with	error	code	!=	0	when	a	reference	is	undefined,	instead	of
printing	undefined.

--always
Show	uniquely	abbreviated	commit	object	as	fallback.

EXAMPLE

Given	a	commit,	find	out	where	it	is	relative	to	the	local	refs.	Say
somebody	wrote	you	about	that	fantastic	commit
33db5f4d9027a10e477ccf054b2c1ab94f74c85a.	Of	course,	you	look	into
the	commit,	but	that	only	tells	you	what	happened,	but	not	the	context.

Enter	git	name-rev:

%	git	name-rev	33db5f4d9027a10e477ccf054b2c1ab94f74c85a

33db5f4d9027a10e477ccf054b2c1ab94f74c85a	tags/v0.99~940

Now	you	are	wiser,	because	you	know	that	it	happened	940	revisions
before	v0.99.

Another	nice	thing	you	can	do	is:

%	git	log	|	git	name-rev	--stdin

GIT

Part	of	the	Section	G.3.1,	“git(1)”	suite

G.3.86.	git-notes(1)



NAME

git-notes	-	Add	or	inspect	object	notes

SYNOPSIS

git	notes	[list	[<object>]]

git	notes	add	[-f]	[--allow-empty]	[-F	<file>	|	-m	<msg>	|	(-

c	|	-C)	<object>]	[<object>]

git	notes	copy	[-f]	(	--stdin	|	<from-object>	<to-object>	)

git	notes	append	[--allow-empty]	[-F	<file>	|	-m	<msg>	|	(-

c	|	-C)	<object>]	[<object>]

git	notes	edit	[--allow-empty]	[<object>]

git	notes	show	[<object>]

git	notes	merge	[-v	|	-q]	[-s	<strategy>	]	<notes-ref>

git	notes	merge	--commit	[-v	|	-q]

git	notes	merge	--abort	[-v	|	-q]

git	notes	remove	[--ignore-missing]	[--stdin]	[<object>…]

git	notes	prune	[-n	|	-v]

git	notes	get-ref

DESCRIPTION

Adds,	removes,	or	reads	notes	attached	to	objects,	without	touching	the
objects	themselves.

By	default,	notes	are	saved	to	and	read	from	refs/notes/commits,	but	this
default	can	be	overridden.	See	the	OPTIONS,	CONFIGURATION,	and
ENVIRONMENT	sections	below.	If	this	ref	does	not	exist,	it	will	be	quietly
created	when	it	is	first	needed	to	store	a	note.

A	typical	use	of	notes	is	to	supplement	a	commit	message	without
changing	the	commit	itself.	Notes	can	be	shown	by	git	log	along	with	the
original	commit	message.	To	distinguish	these	notes	from	the	message
stored	in	the	commit	object,	the	notes	are	indented	like	the	message,
after	an	unindented	line	saying	"Notes	(<refname>):"	(or	"Notes:"	for
refs/notes/commits).

Notes	can	also	be	added	to	patches	prepared	with	git	format-patch	by



using	the	--notes	option.	Such	notes	are	added	as	a	patch	commentary
after	a	three	dash	separator	line.

To	change	which	notes	are	shown	by	git	log,	see	the	"notes.displayRef"
configuration	in	Section	G.3.68,	“git-log(1)”.

See	the	"notes.rewrite.<command>"	configuration	for	a	way	to	carry
notes	across	commands	that	rewrite	commits.

SUBCOMMANDS

list
List	the	notes	object	for	a	given	object.	If	no	object	is	given,	show	a
list	of	all	note	objects	and	the	objects	they	annotate	(in	the	format	"
<note	object>	<annotated	object>").	This	is	the	default	subcommand
if	no	subcommand	is	given.

add
Add	notes	for	a	given	object	(defaults	to	HEAD).	Abort	if	the	object
already	has	notes	(use	-f	to	overwrite	existing	notes).	However,	if
you're	using	add	interactively	(using	an	editor	to	supply	the	notes
contents),	then	-	instead	of	aborting	-	the	existing	notes	will	be
opened	in	the	editor	(like	the	edit	subcommand).

copy

Copy	the	notes	for	the	first	object	onto	the	second	object.	Abort	if	the
second	object	already	has	notes,	or	if	the	first	object	has	none	(use	-
f	to	overwrite	existing	notes	to	the	second	object).	This	subcommand
is	equivalent	to:	git	notes	add	[-f]	-C	$(git	notes	list	<from-object>)
<to-object>

In	--stdin	mode,	take	lines	in	the	format

<from-object>	SP	<to-object>	[	SP	<rest>	]	LF

on	standard	input,	and	copy	the	notes	from	each	<from-object>	to	its
corresponding	<to-object>.	(The	optional	<rest>	is	ignored	so	that
the	command	can	read	the	input	given	to	the	post-rewrite	hook.)



append
Append	to	the	notes	of	an	existing	object	(defaults	to	HEAD).
Creates	a	new	notes	object	if	needed.

edit
Edit	the	notes	for	a	given	object	(defaults	to	HEAD).

show
Show	the	notes	for	a	given	object	(defaults	to	HEAD).

merge

Merge	the	given	notes	ref	into	the	current	notes	ref.	This	will	try	to
merge	the	changes	made	by	the	given	notes	ref	(called	"remote")
since	the	merge-base	(if	any)	into	the	current	notes	ref	(called
"local").

If	conflicts	arise	and	a	strategy	for	automatically	resolving	conflicting
notes	(see	the	"NOTES	MERGE	STRATEGIES"	section)	is	not
given,	the	"manual"	resolver	is	used.	This	resolver	checks	out	the
conflicting	notes	in	a	special	worktree
(.git/NOTES_MERGE_WORKTREE),	and	instructs	the	user	to
manually	resolve	the	conflicts	there.	When	done,	the	user	can	either
finalize	the	merge	with	git	notes	merge	--commit,	or	abort	the	merge
with	git	notes	merge	--abort.

remove
Remove	the	notes	for	given	objects	(defaults	to	HEAD).	When	giving
zero	or	one	object	from	the	command	line,	this	is	equivalent	to
specifying	an	empty	note	message	to	the	edit	subcommand.

prune
Remove	all	notes	for	non-existing/unreachable	objects.

get-ref
Print	the	current	notes	ref.	This	provides	an	easy	way	to	retrieve	the
current	notes	ref	(e.g.	from	scripts).

OPTIONS

-f	,	--force
When	adding	notes	to	an	object	that	already	has	notes,	overwrite	the



existing	notes	(instead	of	aborting).
-m	<msg>	,	--message=<msg>

Use	the	given	note	message	(instead	of	prompting).	If	multiple	-m
options	are	given,	their	values	are	concatenated	as	separate
paragraphs.	Lines	starting	with	#	and	empty	lines	other	than	a	single
line	between	paragraphs	will	be	stripped	out.

-F	<file>	,	--file=<file>
Take	the	note	message	from	the	given	file.	Use	-	to	read	the	note
message	from	the	standard	input.	Lines	starting	with	#	and	empty
lines	other	than	a	single	line	between	paragraphs	will	be	stripped
out.

-C	<object>	,	--reuse-message=<object>
Take	the	given	blob	object	(for	example,	another	note)	as	the	note
message.	(Use	git	notes	copy	<object>	instead	to	copy	notes
between	objects.)

-c	<object>	,	--reedit-message=<object>
Like	-C,	but	with	-c	the	editor	is	invoked,	so	that	the	user	can	further
edit	the	note	message.

--allow-empty
Allow	an	empty	note	object	to	be	stored.	The	default	behavior	is	to
automatically	remove	empty	notes.

--ref	<ref>
Manipulate	the	notes	tree	in	<ref>.	This	overrides	GIT_NOTES_REF
and	the	"core.notesRef"	configuration.	The	ref	specifies	the	full
refname	when	it	begins	with	refs/notes/;	when	it	begins	with	notes/,
refs/	and	otherwise	refs/notes/	is	prefixed	to	form	a	full	name	of	the
ref.

--ignore-missing
Do	not	consider	it	an	error	to	request	removing	notes	from	an	object
that	does	not	have	notes	attached	to	it.

--stdin
Also	read	the	object	names	to	remove	notes	from	from	the	standard
input	(there	is	no	reason	you	cannot	combine	this	with	object	names
from	the	command	line).

-n	,	--dry-run
Do	not	remove	anything;	just	report	the	object	names	whose	notes
would	be	removed.



-s	<strategy>	,	--strategy=<strategy>
When	merging	notes,	resolve	notes	conflicts	using	the	given
strategy.	The	following	strategies	are	recognized:	"manual"	(default),
"ours",	"theirs",	"union"	and	"cat_sort_uniq".	This	option	overrides	the
"notes.mergeStrategy"	configuration	setting.	See	the	"NOTES
MERGE	STRATEGIES"	section	below	for	more	information	on	each
notes	merge	strategy.

--commit
Finalize	an	in-progress	git	notes	merge.	Use	this	option	when	you
have	resolved	the	conflicts	that	git	notes	merge	stored	in
.git/NOTES_MERGE_WORKTREE.	This	amends	the	partial	merge
commit	created	by	git	notes	merge	(stored	in
.git/NOTES_MERGE_PARTIAL)	by	adding	the	notes	in
.git/NOTES_MERGE_WORKTREE.	The	notes	ref	stored	in	the
.git/NOTES_MERGE_REF	symref	is	updated	to	the	resulting
commit.

--abort
Abort/reset	a	in-progress	git	notes	merge,	i.e.	a	notes	merge	with
conflicts.	This	simply	removes	all	files	related	to	the	notes	merge.

-q	,	--quiet
When	merging	notes,	operate	quietly.

-v	,	--verbose
When	merging	notes,	be	more	verbose.	When	pruning	notes,	report
all	object	names	whose	notes	are	removed.

DISCUSSION

Commit	notes	are	blobs	containing	extra	information	about	an	object
(usually	information	to	supplement	a	commit's	message).	These	blobs
are	taken	from	notes	refs.	A	notes	ref	is	usually	a	branch	which	contains
"files"	whose	paths	are	the	object	names	for	the	objects	they	describe,
with	some	directory	separators	included	for	performance	reasons	[1].

Every	notes	change	creates	a	new	commit	at	the	specified	notes	ref.	You
can	therefore	inspect	the	history	of	the	notes	by	invoking,	e.g.,	git	log	-p
notes/commits.	Currently	the	commit	message	only	records	which
operation	triggered	the	update,	and	the	commit	authorship	is	determined



according	to	the	usual	rules	(see	Section	G.3.26,	“git-commit(1)”).	These
details	may	change	in	the	future.

It	is	also	permitted	for	a	notes	ref	to	point	directly	to	a	tree	object,	in
which	case	the	history	of	the	notes	can	be	read	with	git	log	-p	-g
<refname>.

NOTES	MERGE	STRATEGIES

The	default	notes	merge	strategy	is	"manual",	which	checks	out
conflicting	notes	in	a	special	work	tree	for	resolving	notes	conflicts
(.git/NOTES_MERGE_WORKTREE),	and	instructs	the	user	to	resolve
the	conflicts	in	that	work	tree.	When	done,	the	user	can	either	finalize	the
merge	with	git	notes	merge	--commit,	or	abort	the	merge	with	git	notes
merge	--abort.

Users	may	select	an	automated	merge	strategy	from	among	the	following
using	either	-s/--strategy	option	or	configuring	notes.mergeStrategy
accordingly:

"ours"	automatically	resolves	conflicting	notes	in	favor	of	the	local	version
(i.e.	the	current	notes	ref).

"theirs"	automatically	resolves	notes	conflicts	in	favor	of	the	remote
version	(i.e.	the	given	notes	ref	being	merged	into	the	current	notes	ref).

"union"	automatically	resolves	notes	conflicts	by	concatenating	the	local
and	remote	versions.

"cat_sort_uniq"	is	similar	to	"union",	but	in	addition	to	concatenating	the
local	and	remote	versions,	this	strategy	also	sorts	the	resulting	lines,	and
removes	duplicate	lines	from	the	result.	This	is	equivalent	to	applying	the
"cat	|	sort	|	uniq"	shell	pipeline	to	the	local	and	remote	versions.	This
strategy	is	useful	if	the	notes	follow	a	line-based	format	where	one	wants
to	avoid	duplicated	lines	in	the	merge	result.	Note	that	if	either	the	local
or	remote	version	contain	duplicate	lines	prior	to	the	merge,	these	will
also	be	removed	by	this	notes	merge	strategy.



EXAMPLES

You	can	use	notes	to	add	annotations	with	information	that	was	not
available	at	the	time	a	commit	was	written.

$	git	notes	add	-m	'Tested-by:	Johannes	Sixt	<j6t@kdbg.org>'	72a144e2

$	git	show	-s	72a144e

[...]

				Signed-off-by:	Junio	C	Hamano	<gitster@pobox.com>

Notes:

				Tested-by:	Johannes	Sixt	<j6t@kdbg.org>

In	principle,	a	note	is	a	regular	Git	blob,	and	any	kind	of	(non-)format	is
accepted.	You	can	binary-safely	create	notes	from	arbitrary	files	using	git
hash-object:

$	cc	*.c

$	blob=$(git	hash-object	-w	a.out)

$	git	notes	--ref=built	add	--allow-empty	-C	"$blob"	HEAD

(You	cannot	simply	use	git	notes	--ref=built	add	-F	a.out	HEAD	because
that	is	not	binary-safe.)	Of	course,	it	doesn't	make	much	sense	to	display
non-text-format	notes	with	git	log,	so	if	you	use	such	notes,	you'll
probably	need	to	write	some	special-purpose	tools	to	do	something
useful	with	them.

CONFIGURATION

core.notesRef
Notes	ref	to	read	and	manipulate	instead	of	refs/notes/commits.
Must	be	an	unabbreviated	ref	name.	This	setting	can	be	overridden
through	the	environment	and	command	line.

notes.mergeStrategy

Which	merge	strategy	to	choose	by	default	when	resolving	notes
conflicts.	Must	be	one	of	manual,	ours,	theirs,	union,	or



cat_sort_uniq.	Defaults	to	manual.	See	"NOTES	MERGE
STRATEGIES"	section	above	for	more	information	on	each	strategy.

This	setting	can	be	overridden	by	passing	the	--strategy	option.

notes.<name>.mergeStrategy
Which	merge	strategy	to	choose	when	doing	a	notes	merge	into
refs/notes/<name>.	This	overrides	the	more	general
"notes.mergeStrategy".	See	the	"NOTES	MERGE	STRATEGIES"
section	above	for	more	information	on	each	available	strategy.

notes.displayRef
Which	ref	(or	refs,	if	a	glob	or	specified	more	than	once),	in	addition
to	the	default	set	by	core.notesRef	or	GIT_NOTES_REF,	to	read
notes	from	when	showing	commit	messages	with	the	git	log	family	of
commands.	This	setting	can	be	overridden	on	the	command	line	or
by	the	GIT_NOTES_DISPLAY_REF	environment	variable.	See
Section	G.3.68,	“git-log(1)”.

notes.rewrite.<command>

When	rewriting	commits	with	<command>	(currently	amend	or
rebase),	if	this	variable	is	false,	git	will	not	copy	notes	from	the
original	to	the	rewritten	commit.	Defaults	to	true.	See	also
"notes.rewriteRef"	below.

This	setting	can	be	overridden	by	the	GIT_NOTES_REWRITE_REF
environment	variable.

notes.rewriteMode

When	copying	notes	during	a	rewrite,	what	to	do	if	the	target	commit
already	has	a	note.	Must	be	one	of	overwrite,	concatenate,
cat_sort_uniq,	or	ignore.	Defaults	to	concatenate.

This	setting	can	be	overridden	with	the
GIT_NOTES_REWRITE_MODE	environment	variable.

notes.rewriteRef

When	copying	notes	during	a	rewrite,	specifies	the	(fully	qualified)	ref



whose	notes	should	be	copied.	May	be	a	glob,	in	which	case	notes
in	all	matching	refs	will	be	copied.	You	may	also	specify	this
configuration	several	times.

Does	not	have	a	default	value;	you	must	configure	this	variable	to
enable	note	rewriting.

Can	be	overridden	with	the	GIT_NOTES_REWRITE_REF
environment	variable.

ENVIRONMENT

GIT_NOTES_REF
Which	ref	to	manipulate	notes	from,	instead	of	refs/notes/commits.
This	overrides	the	core.notesRef	setting.

GIT_NOTES_DISPLAY_REF

Colon-delimited	list	of	refs	or	globs	indicating	which	refs,	in	addition
to	the	default	from	core.notesRef	or	GIT_NOTES_REF,	to	read
notes	from	when	showing	commit	messages.	This	overrides	the
notes.displayRef	setting.

A	warning	will	be	issued	for	refs	that	do	not	exist,	but	a	glob	that
does	not	match	any	refs	is	silently	ignored.

GIT_NOTES_REWRITE_MODE
When	copying	notes	during	a	rewrite,	what	to	do	if	the	target	commit
already	has	a	note.	Must	be	one	of	overwrite,	concatenate,
cat_sort_uniq,	or	ignore.	This	overrides	the	core.rewriteMode	setting.

GIT_NOTES_REWRITE_REF

When	rewriting	commits,	which	notes	to	copy	from	the	original	to	the
rewritten	commit.	Must	be	a	colon-delimited	list	of	refs	or	globs.

If	not	set	in	the	environment,	the	list	of	notes	to	copy	depends	on	the
notes.rewrite.<command>	and	notes.rewriteRef	settings.

GIT



Part	of	the	???	suite

G.3.87.	git-p4(1)

NAME

git-p4	-	Import	from	and	submit	to	Perforce	repositories

SYNOPSIS

git	p4	clone	[<sync	options>]	[<clone	options>]	<p4	depot	path>…

git	p4	sync	[<sync	options>]	[<p4	depot	path>…]

git	p4	rebase

git	p4	submit	[<submit	options>]	[<master	branch	name>]

DESCRIPTION

This	command	provides	a	way	to	interact	with	p4	repositories	using	Git.

Create	a	new	Git	repository	from	an	existing	p4	repository	using	git	p4
clone,	giving	it	one	or	more	p4	depot	paths.	Incorporate	new	commits
from	p4	changes	with	git	p4	sync.	The	sync	command	is	also	used	to
include	new	branches	from	other	p4	depot	paths.	Submit	Git	changes
back	to	p4	using	git	p4	submit.	The	command	git	p4	rebase	does	a	sync
plus	rebases	the	current	branch	onto	the	updated	p4	remote	branch.

EXAMPLE

Clone	a	repository:

$	git	p4	clone	//depot/path/project

Do	some	work	in	the	newly	created	Git	repository:

$	cd	project

$	vi	foo.h



$	git	commit	-a	-m	"edited	foo.h"

Update	the	Git	repository	with	recent	changes	from	p4,	rebasing
your	work	on	top:

$	git	p4	rebase

Submit	your	commits	back	to	p4:

$	git	p4	submit

COMMANDS



1.	Clone

Generally,	git	p4	clone	is	used	to	create	a	new	Git	directory	from	an
existing	p4	repository:

$	git	p4	clone	//depot/path/project

This:

1.	 Creates	an	empty	Git	repository	in	a	subdirectory	called	project.
2.	 Imports	the	full	contents	of	the	head	revision	from	the	given	p4	depot

path	into	a	single	commit	in	the	Git	branch	refs/remotes/p4/master.
3.	 Creates	a	local	branch,	master	from	this	remote	and	checks	it	out.

To	reproduce	the	entire	p4	history	in	Git,	use	the	@all	modifier	on	the
depot	path:

$	git	p4	clone	//depot/path/project@all



2.	Sync

As	development	continues	in	the	p4	repository,	those	changes	can	be
included	in	the	Git	repository	using:

$	git	p4	sync

This	command	finds	new	changes	in	p4	and	imports	them	as	Git
commits.

P4	repositories	can	be	added	to	an	existing	Git	repository	using	git	p4
sync	too:

$	mkdir	repo-git

$	cd	repo-git

$	git	init

$	git	p4	sync	//path/in/your/perforce/depot

This	imports	the	specified	depot	into	refs/remotes/p4/master	in	an
existing	Git	repository.	The	--branch	option	can	be	used	to	specify	a
different	branch	to	be	used	for	the	p4	content.

If	a	Git	repository	includes	branches	refs/remotes/origin/p4,	these	will	be
fetched	and	consulted	first	during	a	git	p4	sync.	Since	importing	directly
from	p4	is	considerably	slower	than	pulling	changes	from	a	Git	remote,
this	can	be	useful	in	a	multi-developer	environment.

If	there	are	multiple	branches,	doing	git	p4	sync	will	automatically	use	the
"BRANCH	DETECTION"	algorithm	to	try	to	partition	new	changes	into
the	right	branch.	This	can	be	overridden	with	the	--branch	option	to
specify	just	a	single	branch	to	update.



3.	Rebase

A	common	working	pattern	is	to	fetch	the	latest	changes	from	the	p4
depot	and	merge	them	with	local	uncommitted	changes.	Often,	the	p4
repository	is	the	ultimate	location	for	all	code,	thus	a	rebase	workflow
makes	sense.	This	command	does	git	p4	sync	followed	by	git	rebase	to
move	local	commits	on	top	of	updated	p4	changes.

$	git	p4	rebase



4.	Submit

Submitting	changes	from	a	Git	repository	back	to	the	p4	repository
requires	a	separate	p4	client	workspace.	This	should	be	specified	using
the	P4CLIENT	environment	variable	or	the	Git	configuration	variable	git-
p4.client.	The	p4	client	must	exist,	but	the	client	root	will	be	created	and
populated	if	it	does	not	already	exist.

To	submit	all	changes	that	are	in	the	current	Git	branch	but	not	in	the
p4/master	branch,	use:

$	git	p4	submit

To	specify	a	branch	other	than	the	current	one,	use:

$	git	p4	submit	topicbranch

The	upstream	reference	is	generally	refs/remotes/p4/master,	but	can	be
overridden	using	the	--origin=	command-line	option.

The	p4	changes	will	be	created	as	the	user	invoking	git	p4	submit.	The	--
preserve-user	option	will	cause	ownership	to	be	modified	according	to
the	author	of	the	Git	commit.	This	option	requires	admin	privileges	in	p4,
which	can	be	granted	using	p4	protect.

OPTIONS



1.	General	options

All	commands	except	clone	accept	these	options.

--git-dir	<dir>
Set	the	GIT_DIR	environment	variable.	See	Section	G.3.1,	“git(1)”.

-v	,	--verbose
Provide	more	progress	information.



2.	Sync	options

These	options	can	be	used	in	the	initial	clone	as	well	as	in	subsequent
sync	operations.

--branch	<ref>

Import	changes	into	<ref>	instead	of	refs/remotes/p4/master.	If	<ref>
starts	with	refs/,	it	is	used	as	is.	Otherwise,	if	it	does	not	start	with
p4/,	that	prefix	is	added.

By	default	a	<ref>	not	starting	with	refs/	is	treated	as	the	name	of	a
remote-tracking	branch	(under	refs/remotes/).	This	behavior	can	be
modified	using	the	--import-local	option.

The	default	<ref>	is	"master".

This	example	imports	a	new	remote	"p4/proj2"	into	an	existing	Git
repository:

				$	git	init

				$	git	p4	sync	--branch=refs/remotes/p4/proj2	//depot/proj2

--detect-branches
Use	the	branch	detection	algorithm	to	find	new	paths	in	p4.	It	is
documented	below	in	"BRANCH	DETECTION".

--changesfile	<file>
Import	exactly	the	p4	change	numbers	listed	in	file,	one	per	line.
Normally,	git	p4	inspects	the	current	p4	repository	state	and	detects
the	changes	it	should	import.

--silent
Do	not	print	any	progress	information.

--detect-labels
Query	p4	for	labels	associated	with	the	depot	paths,	and	add	them
as	tags	in	Git.	Limited	usefulness	as	only	imports	labels	associated
with	new	changelists.	Deprecated.



--import-labels
Import	labels	from	p4	into	Git.

--import-local
By	default,	p4	branches	are	stored	in	refs/remotes/p4/,	where	they
will	be	treated	as	remote-tracking	branches	by	Section	G.3.10,	“git-
branch(1)”	and	other	commands.	This	option	instead	puts	p4
branches	in	refs/heads/p4/.	Note	that	future	sync	operations	must
specify	--import-local	as	well	so	that	they	can	find	the	p4	branches	in
refs/heads.

--max-changes	<n>
Import	at	most	n	changes,	rather	than	the	entire	range	of	changes
included	in	the	given	revision	specifier.	A	typical	usage	would	be	use
@all	as	the	revision	specifier,	but	then	to	use	--max-changes	1000	to
import	only	the	last	1000	revisions	rather	than	the	entire	revision
history.

--changes-block-size	<n>
The	internal	block	size	to	use	when	converting	a	revision	specifier
such	as	@all	into	a	list	of	specific	change	numbers.	Instead	of	using
a	single	call	to	p4	changes	to	find	the	full	list	of	changes	for	the
conversion,	there	are	a	sequence	of	calls	to	p4	changes	-m,	each	of
which	requests	one	block	of	changes	of	the	given	size.	The	default
block	size	is	500,	which	should	usually	be	suitable.

--keep-path
The	mapping	of	file	names	from	the	p4	depot	path	to	Git,	by	default,
involves	removing	the	entire	depot	path.	With	this	option,	the	full	p4
depot	path	is	retained	in	Git.	For	example,	path
//depot/main/foo/bar.c,	when	imported	from	//depot/main/,	becomes
foo/bar.c.	With	--keep-path,	the	Git	path	is	instead
depot/main/foo/bar.c.

--use-client-spec
Use	a	client	spec	to	find	the	list	of	interesting	files	in	p4.	See	the
"CLIENT	SPEC"	section	below.

-/	<path>
Exclude	selected	depot	paths	when	cloning	or	syncing.



3.	Clone	options

These	options	can	be	used	in	an	initial	clone,	along	with	the	sync	options
described	above.

--destination	<directory>
Where	to	create	the	Git	repository.	If	not	provided,	the	last
component	in	the	p4	depot	path	is	used	to	create	a	new	directory.

--bare
Perform	a	bare	clone.	See	Section	G.3.23,	“git-clone(1)”.



4.	Submit	options

These	options	can	be	used	to	modify	git	p4	submit	behavior.

--origin	<commit>
Upstream	location	from	which	commits	are	identified	to	submit	to	p4.
By	default,	this	is	the	most	recent	p4	commit	reachable	from	HEAD.

-M
Detect	renames.	See	Section	G.3.41,	“git-diff(1)”.	Renames	will	be
represented	in	p4	using	explicit	move	operations.	There	is	no
corresponding	option	to	detect	copies,	but	there	are	variables	for
both	moves	and	copies.

--preserve-user
Re-author	p4	changes	before	submitting	to	p4.	This	option	requires
p4	admin	privileges.

--export-labels
Export	tags	from	Git	as	p4	labels.	Tags	found	in	Git	are	applied	to
the	perforce	working	directory.

-n	,	--dry-run
Show	just	what	commits	would	be	submitted	to	p4;	do	not	change
state	in	Git	or	p4.

--prepare-p4-only
Apply	a	commit	to	the	p4	workspace,	opening,	adding	and	deleting
files	in	p4	as	for	a	normal	submit	operation.	Do	not	issue	the	final	"p4
submit",	but	instead	print	a	message	about	how	to	submit	manually
or	revert.	This	option	always	stops	after	the	first	(oldest)	commit.	Git
tags	are	not	exported	to	p4.

--conflict=(ask|skip|quit)
Conflicts	can	occur	when	applying	a	commit	to	p4.	When	this
happens,	the	default	behavior	("ask")	is	to	prompt	whether	to	skip
this	commit	and	continue,	or	quit.	This	option	can	be	used	to	bypass
the	prompt,	causing	conflicting	commits	to	be	automatically	skipped,
or	to	quit	trying	to	apply	commits,	without	prompting.

--branch	<branch>
After	submitting,	sync	this	named	branch	instead	of	the	default
p4/master.	See	the	"Sync	options"	section	above	for	more



information.



5.	Rebase	options

These	options	can	be	used	to	modify	git	p4	rebase	behavior.

--import-labels
Import	p4	labels.

DEPOT	PATH	SYNTAX

The	p4	depot	path	argument	to	git	p4	sync	and	git	p4	clone	can	be	one	or
more	space-separated	p4	depot	paths,	with	an	optional	p4	revision
specifier	on	the	end:

"//depot/my/project"
Import	one	commit	with	all	files	in	the	#head	change	under	that	tree.

"//depot/my/project@all"
Import	one	commit	for	each	change	in	the	history	of	that	depot	path.

"//depot/my/project@1,6"
Import	only	changes	1	through	6.

"//depot/proj1@all	//depot/proj2@all"
Import	all	changes	from	both	named	depot	paths	into	a	single
repository.	Only	files	below	these	directories	are	included.	There	is
not	a	subdirectory	in	Git	for	each	"proj1"	and	"proj2".	You	must	use
the	--destination	option	when	specifying	more	than	one	depot	path.
The	revision	specifier	must	be	specified	identically	on	each	depot
path.	If	there	are	files	in	the	depot	paths	with	the	same	name,	the
path	with	the	most	recently	updated	version	of	the	file	is	the	one	that
appears	in	Git.

See	p4	help	revisions	for	the	full	syntax	of	p4	revision	specifiers.

CLIENT	SPEC

The	p4	client	specification	is	maintained	with	the	p4	client	command	and
contains	among	other	fields,	a	View	that	specifies	how	the	depot	is
mapped	into	the	client	repository.	The	clone	and	sync	commands	can



consult	the	client	spec	when	given	the	--use-client-spec	option	or	when
the	useClientSpec	variable	is	true.	After	git	p4	clone,	the	useClientSpec
variable	is	automatically	set	in	the	repository	configuration	file.	This
allows	future	git	p4	submit	commands	to	work	properly;	the	submit
command	looks	only	at	the	variable	and	does	not	have	a	command-line
option.

The	full	syntax	for	a	p4	view	is	documented	in	p4	help	views.	git	p4
knows	only	a	subset	of	the	view	syntax.	It	understands	multi-line
mappings,	overlays	with	+,	exclusions	with	-	and	double-quotes	around
whitespace.	Of	the	possible	wildcards,	git	p4	only	handles	…,	and	only
when	it	is	at	the	end	of	the	path.	git	p4	will	complain	if	it	encounters	an
unhandled	wildcard.

Bugs	in	the	implementation	of	overlap	mappings	exist.	If	multiple	depot
paths	map	through	overlays	to	the	same	location	in	the	repository,	git	p4
can	choose	the	wrong	one.	This	is	hard	to	solve	without	dedicating	a
client	spec	just	for	git	p4.

The	name	of	the	client	can	be	given	to	git	p4	in	multiple	ways.	The
variable	git-p4.client	takes	precedence	if	it	exists.	Otherwise,	normal	p4
mechanisms	of	determining	the	client	are	used:	environment	variable
P4CLIENT,	a	file	referenced	by	P4CONFIG,	or	the	local	host	name.

BRANCH	DETECTION

P4	does	not	have	the	same	concept	of	a	branch	as	Git.	Instead,	p4
organizes	its	content	as	a	directory	tree,	where	by	convention	different
logical	branches	are	in	different	locations	in	the	tree.	The	p4	branch
command	is	used	to	maintain	mappings	between	different	areas	in	the
tree,	and	indicate	related	content.	git	p4	can	use	these	mappings	to
determine	branch	relationships.

If	you	have	a	repository	where	all	the	branches	of	interest	exist	as
subdirectories	of	a	single	depot	path,	you	can	use	--detect-branches
when	cloning	or	syncing	to	have	git	p4	automatically	find	subdirectories	in
p4,	and	to	generate	these	as	branches	in	Git.



For	example,	if	the	P4	repository	structure	is:

//depot/main/...

//depot/branch1/...

And	"p4	branch	-o	branch1"	shows	a	View	line	that	looks	like:

//depot/main/...	//depot/branch1/...

Then	this	git	p4	clone	command:

git	p4	clone	--detect-branches	//depot@all

produces	a	separate	branch	in	refs/remotes/p4/	for	//depot/main,	called
master,	and	one	for	//depot/branch1	called	depot/branch1.

However,	it	is	not	necessary	to	create	branches	in	p4	to	be	able	to	use
them	like	branches.	Because	it	is	difficult	to	infer	branch	relationships
automatically,	a	Git	configuration	setting	git-p4.branchList	can	be	used	to
explicitly	identify	branch	relationships.	It	is	a	list	of	"source:destination"
pairs,	like	a	simple	p4	branch	specification,	where	the	"source"	and
"destination"	are	the	path	elements	in	the	p4	repository.	The	example
above	relied	on	the	presence	of	the	p4	branch.	Without	p4	branches,	the
same	result	will	occur	with:

git	init	depot

cd	depot

git	config	git-p4.branchList	main:branch1

git	p4	clone	--detect-branches	//depot@all	.

PERFORMANCE

The	fast-import	mechanism	used	by	git	p4	creates	one	pack	file	for	each
invocation	of	git	p4	sync.	Normally,	Git	garbage	compression
(Section	G.3.53,	“git-gc(1)”)	automatically	compresses	these	to	fewer
pack	files,	but	explicit	invocation	of	git	repack	-adf	may	improve



performance.

CONFIGURATION	VARIABLES

The	following	config	settings	can	be	used	to	modify	git	p4	behavior.	They
all	are	in	the	git-p4	section.



1.	General	variables

git-p4.user
User	specified	as	an	option	to	all	p4	commands,	with	-u	<user>.	The
environment	variable	P4USER	can	be	used	instead.

git-p4.password
Password	specified	as	an	option	to	all	p4	commands,	with	-P
<password>.	The	environment	variable	P4PASS	can	be	used
instead.

git-p4.port
Port	specified	as	an	option	to	all	p4	commands,	with	-p	<port>.	The
environment	variable	P4PORT	can	be	used	instead.

git-p4.host
Host	specified	as	an	option	to	all	p4	commands,	with	-h	<host>.	The
environment	variable	P4HOST	can	be	used	instead.

git-p4.client
Client	specified	as	an	option	to	all	p4	commands,	with	-c	<client>,
including	the	client	spec.



2.	Clone	and	sync	variables

git-p4.syncFromOrigin
Because	importing	commits	from	other	Git	repositories	is	much
faster	than	importing	them	from	p4,	a	mechanism	exists	to	find	p4
changes	first	in	Git	remotes.	If	branches	exist	under
refs/remote/origin/p4,	those	will	be	fetched	and	used	when	syncing
from	p4.	This	variable	can	be	set	to	false	to	disable	this	behavior.

git-p4.branchUser
One	phase	in	branch	detection	involves	looking	at	p4	branches	to
find	new	ones	to	import.	By	default,	all	branches	are	inspected.	This
option	limits	the	search	to	just	those	owned	by	the	single	user
named	in	the	variable.

git-p4.branchList

List	of	branches	to	be	imported	when	branch	detection	is	enabled.
Each	entry	should	be	a	pair	of	branch	names	separated	by	a	colon
(:).	This	example	declares	that	both	branchA	and	branchB	were
created	from	main:

git	config							git-p4.branchList	main:branchA

git	config	--add	git-p4.branchList	main:branchB

git-p4.ignoredP4Labels
List	of	p4	labels	to	ignore.	This	is	built	automatically	as	unimportable
labels	are	discovered.

git-p4.importLabels
Import	p4	labels	into	git,	as	per	--import-labels.

git-p4.labelImportRegexp
Only	p4	labels	matching	this	regular	expression	will	be	imported.	The
default	value	is	[a-zA-Z0-9_\-.]+$.

git-p4.useClientSpec
Specify	that	the	p4	client	spec	should	be	used	to	identify	p4	depot
paths	of	interest.	This	is	equivalent	to	specifying	the	option	--use-
client-spec.	See	the	"CLIENT	SPEC"	section	above.	This	variable	is
a	boolean,	not	the	name	of	a	p4	client.



git-p4.pathEncoding
Perforce	keeps	the	encoding	of	a	path	as	given	by	the	originating
OS.	Git	expects	paths	encoded	as	UTF-8.	Use	this	config	to	tell	git-
p4	what	encoding	Perforce	had	used	for	the	paths.	This	encoding	is
used	to	transcode	the	paths	to	UTF-8.	As	an	example,	Perforce	on
Windows	often	uses	"cp1252"	to	encode	path	names.

git-p4.largeFileSystem

Specify	the	system	that	is	used	for	large	(binary)	files.	Please	note
that	large	file	systems	do	not	support	the	git	p4	submit	command.
Only	Git	LFS	is	implemented	right	now	(see	https://git-lfs.github.com/
for	more	information).	Download	and	install	the	Git	LFS	command
line	extension	to	use	this	option	and	configure	it	like	this:

git	config							git-p4.largeFileSystem	GitLFS

git-p4.largeFileExtensions
All	files	matching	a	file	extension	in	the	list	will	be	processed	by	the
large	file	system.	Do	not	prefix	the	extensions	with	..

git-p4.largeFileThreshold
All	files	with	an	uncompressed	size	exceeding	the	threshold	will	be
processed	by	the	large	file	system.	By	default	the	threshold	is
defined	in	bytes.	Add	the	suffix	k,	m,	or	g	to	change	the	unit.

git-p4.largeFileCompressedThreshold
All	files	with	a	compressed	size	exceeding	the	threshold	will	be
processed	by	the	large	file	system.	This	option	might	slow	down	your
clone/sync	process.	By	default	the	threshold	is	defined	in	bytes.	Add
the	suffix	k,	m,	or	g	to	change	the	unit.

git-p4.largeFilePush
Boolean	variable	which	defines	if	large	files	are	automatically	pushed
to	a	server.

git-p4.keepEmptyCommits
A	changelist	that	contains	only	excluded	files	will	be	imported	as	an
empty	commit	if	this	boolean	option	is	set	to	true.

git-p4.mapUser

Map	a	P4	user	to	a	name	and	email	address	in	Git.	Use	a	string	with

https://git-lfs.github.com/


the	following	format	to	create	a	mapping:

git	config	--add	git-p4.mapUser	"p4user	=	First	Last	<mail@address.com>"

A	mapping	will	override	any	user	information	from	P4.	Mappings	for
multiple	P4	user	can	be	defined.



3.	Submit	variables

git-p4.detectRenames
Detect	renames.	See	Section	G.3.41,	“git-diff(1)”.	This	can	be	true,
false,	or	a	score	as	expected	by	git	diff	-M.

git-p4.detectCopies
Detect	copies.	See	Section	G.3.41,	“git-diff(1)”.	This	can	be	true,
false,	or	a	score	as	expected	by	git	diff	-C.

git-p4.detectCopiesHarder
Detect	copies	harder.	See	Section	G.3.41,	“git-diff(1)”.	A	boolean.

git-p4.preserveUser
On	submit,	re-author	changes	to	reflect	the	Git	author,	regardless	of
who	invokes	git	p4	submit.

git-p4.allowMissingP4Users
When	preserveUser	is	true,	git	p4	normally	dies	if	it	cannot	find	an
author	in	the	p4	user	map.	This	setting	submits	the	change
regardless.

git-p4.skipSubmitEdit
The	submit	process	invokes	the	editor	before	each	p4	change	is
submitted.	If	this	setting	is	true,	though,	the	editing	step	is	skipped.

git-p4.skipSubmitEditCheck
After	editing	the	p4	change	message,	git	p4	makes	sure	that	the
description	really	was	changed	by	looking	at	the	file	modification
time.	This	option	disables	that	test.

git-p4.allowSubmit
By	default,	any	branch	can	be	used	as	the	source	for	a	git	p4	submit
operation.	This	configuration	variable,	if	set,	permits	only	the	named
branches	to	be	used	as	submit	sources.	Branch	names	must	be	the
short	names	(no	"refs/heads/"),	and	should	be	separated	by	commas
(","),	with	no	spaces.

git-p4.skipUserNameCheck
If	the	user	running	git	p4	submit	does	not	exist	in	the	p4	user	map,
git	p4	exits.	This	option	can	be	used	to	force	submission	regardless.

git-p4.attemptRCSCleanup
If	enabled,	git	p4	submit	will	attempt	to	cleanup	RCS	keywords
($Header$,	etc).	These	would	otherwise	cause	merge	conflicts	and



prevent	the	submit	going	ahead.	This	option	should	be	considered
experimental	at	present.

git-p4.exportLabels
Export	Git	tags	to	p4	labels,	as	per	--export-labels.

git-p4.labelExportRegexp
Only	p4	labels	matching	this	regular	expression	will	be	exported.	The
default	value	is	[a-zA-Z0-9_\-.]+$.

git-p4.conflict
Specify	submit	behavior	when	a	conflict	with	p4	is	found,	as	per	--
conflict.	The	default	behavior	is	ask.

IMPLEMENTATION	DETAILS

Changesets	from	p4	are	imported	using	Git	fast-import.
Cloning	or	syncing	does	not	require	a	p4	client;	file	contents	are
collected	using	p4	print.
Submitting	requires	a	p4	client,	which	is	not	in	the	same	location	as
the	Git	repository.	Patches	are	applied,	one	at	a	time,	to	this	p4	client
and	submitted	from	there.
Each	commit	imported	by	git	p4	has	a	line	at	the	end	of	the	log
message	indicating	the	p4	depot	location	and	change	number.	This
line	is	used	by	later	git	p4	sync	operations	to	know	which	p4
changes	are	new.

G.3.88.	git-pack-objects(1)

NAME

git-pack-objects	-	Create	a	packed	archive	of	objects

SYNOPSIS

git	pack-objects	[-q	|	--progress	|	--all-progress]	[--all-

progress-implied]

								[--no-reuse-delta]	[--delta-base-offset]	[--non-

empty]

								[--local]	[--incremental]	[--window=<n>]	[--depth=



<n>]

								[--revs	[--unpacked	|	--all]]	[--stdout	|	base-name]

								[--shallow]	[--keep-true-parents]	<	object-list

DESCRIPTION

Reads	list	of	objects	from	the	standard	input,	and	writes	a	packed	archive
with	specified	base-name,	or	to	the	standard	output.

A	packed	archive	is	an	efficient	way	to	transfer	a	set	of	objects	between
two	repositories	as	well	as	an	access	efficient	archival	format.	In	a
packed	archive,	an	object	is	either	stored	as	a	compressed	whole	or	as	a
difference	from	some	other	object.	The	latter	is	often	called	a	delta.

The	packed	archive	format	(.pack)	is	designed	to	be	self-contained	so
that	it	can	be	unpacked	without	any	further	information.	Therefore,	each
object	that	a	delta	depends	upon	must	be	present	within	the	pack.

A	pack	index	file	(.idx)	is	generated	for	fast,	random	access	to	the	objects
in	the	pack.	Placing	both	the	index	file	(.idx)	and	the	packed	archive
(.pack)	in	the	pack/	subdirectory	of	$GIT_OBJECT_DIRECTORY	(or	any
of	the	directories	on	$GIT_ALTERNATE_OBJECT_DIRECTORIES)
enables	Git	to	read	from	the	pack	archive.

The	git	unpack-objects	command	can	read	the	packed	archive	and
expand	the	objects	contained	in	the	pack	into	"one-file	one-object"
format;	this	is	typically	done	by	the	smart-pull	commands	when	a	pack	is
created	on-the-fly	for	efficient	network	transport	by	their	peers.

OPTIONS

base-name
Write	into	a	pair	of	files	(.pack	and	.idx),	using	<base-name>	to
determine	the	name	of	the	created	file.	When	this	option	is	used,	the
two	files	are	written	in	<base-name>-<SHA-1>.{pack,idx}	files.
<SHA-1>	is	a	hash	based	on	the	pack	content	and	is	written	to	the
standard	output	of	the	command.



--stdout
Write	the	pack	contents	(what	would	have	been	written	to	.pack	file)
out	to	the	standard	output.

--revs
Read	the	revision	arguments	from	the	standard	input,	instead	of
individual	object	names.	The	revision	arguments	are	processed	the
same	way	as	git	rev-list	with	the	--objects	flag	uses	its	commit
arguments	to	build	the	list	of	objects	it	outputs.	The	objects	on	the
resulting	list	are	packed.	Besides	revisions,	--not	or	--shallow	<SHA-
1>	lines	are	also	accepted.

--unpacked
This	implies	--revs.	When	processing	the	list	of	revision	arguments
read	from	the	standard	input,	limit	the	objects	packed	to	those	that
are	not	already	packed.

--all
This	implies	--revs.	In	addition	to	the	list	of	revision	arguments	read
from	the	standard	input,	pretend	as	if	all	refs	under	refs/	are
specified	to	be	included.

--include-tag
Include	unasked-for	annotated	tags	if	the	object	they	reference	was
included	in	the	resulting	packfile.	This	can	be	useful	to	send	new
tags	to	native	Git	clients.

--window=<n>	,	--depth=<n>
These	two	options	affect	how	the	objects	contained	in	the	pack	are
stored	using	delta	compression.	The	objects	are	first	internally	sorted
by	type,	size	and	optionally	names	and	compared	against	the	other
objects	within	--window	to	see	if	using	delta	compression	saves
space.	--depth	limits	the	maximum	delta	depth;	making	it	too	deep
affects	the	performance	on	the	unpacker	side,	because	delta	data
needs	to	be	applied	that	many	times	to	get	to	the	necessary	object.
The	default	value	for	--window	is	10	and	--depth	is	50.

--window-memory=<n>
This	option	provides	an	additional	limit	on	top	of	--window;	the
window	size	will	dynamically	scale	down	so	as	to	not	take	up	more
than	<n>	bytes	in	memory.	This	is	useful	in	repositories	with	a	mix	of
large	and	small	objects	to	not	run	out	of	memory	with	a	large
window,	but	still	be	able	to	take	advantage	of	the	large	window	for



the	smaller	objects.	The	size	can	be	suffixed	with	"k",	"m",	or	"g".	--
window-memory=0	makes	memory	usage	unlimited,	which	is	the
default.

--max-pack-size=<n>
Maximum	size	of	each	output	pack	file.	The	size	can	be	suffixed	with
"k",	"m",	or	"g".	The	minimum	size	allowed	is	limited	to	1	MiB.	If
specified,	multiple	packfiles	may	be	created.	The	default	is	unlimited,
unless	the	config	variable	pack.packSizeLimit	is	set.

--honor-pack-keep
This	flag	causes	an	object	already	in	a	local	pack	that	has	a	.keep
file	to	be	ignored,	even	if	it	would	have	otherwise	been	packed.

--incremental
This	flag	causes	an	object	already	in	a	pack	to	be	ignored	even	if	it
would	have	otherwise	been	packed.

--local
This	flag	causes	an	object	that	is	borrowed	from	an	alternate	object
store	to	be	ignored	even	if	it	would	have	otherwise	been	packed.

--non-empty
Only	create	a	packed	archive	if	it	would	contain	at	least	one	object.

--progress
Progress	status	is	reported	on	the	standard	error	stream	by	default
when	it	is	attached	to	a	terminal,	unless	-q	is	specified.	This	flag
forces	progress	status	even	if	the	standard	error	stream	is	not
directed	to	a	terminal.

--all-progress
When	--stdout	is	specified	then	progress	report	is	displayed	during
the	object	count	and	compression	phases	but	inhibited	during	the
write-out	phase.	The	reason	is	that	in	some	cases	the	output	stream
is	directly	linked	to	another	command	which	may	wish	to	display
progress	status	of	its	own	as	it	processes	incoming	pack	data.	This
flag	is	like	--progress	except	that	it	forces	progress	report	for	the
write-out	phase	as	well	even	if	--stdout	is	used.

--all-progress-implied
This	is	used	to	imply	--all-progress	whenever	progress	display	is
activated.	Unlike	--all-progress	this	flag	doesn't	actually	force	any
progress	display	by	itself.

-q



This	flag	makes	the	command	not	to	report	its	progress	on	the
standard	error	stream.

--no-reuse-delta
When	creating	a	packed	archive	in	a	repository	that	has	existing
packs,	the	command	reuses	existing	deltas.	This	sometimes	results
in	a	slightly	suboptimal	pack.	This	flag	tells	the	command	not	to
reuse	existing	deltas	but	compute	them	from	scratch.

--no-reuse-object
This	flag	tells	the	command	not	to	reuse	existing	object	data	at	all,
including	non	deltified	object,	forcing	recompression	of	everything.
This	implies	--no-reuse-delta.	Useful	only	in	the	obscure	case	where
wholesale	enforcement	of	a	different	compression	level	on	the
packed	data	is	desired.

--compression=<n>
Specifies	compression	level	for	newly-compressed	data	in	the
generated	pack.	If	not	specified,	pack	compression	level	is
determined	first	by	pack.compression,	then	by	core.compression,
and	defaults	to	-1,	the	zlib	default,	if	neither	is	set.	Add	--no-reuse-
object	if	you	want	to	force	a	uniform	compression	level	on	all	data	no
matter	the	source.

--thin

Create	a	"thin"	pack	by	omitting	the	common	objects	between	a
sender	and	a	receiver	in	order	to	reduce	network	transfer.	This
option	only	makes	sense	in	conjunction	with	--stdout.

Note:	A	thin	pack	violates	the	packed	archive	format	by	omitting
required	objects	and	is	thus	unusable	by	Git	without	making	it	self-
contained.	Use	git	index-pack	--fix-thin	(see	Section	G.3.63,	“git-
index-pack(1)”)	to	restore	the	self-contained	property.

--shallow
Optimize	a	pack	that	will	be	provided	to	a	client	with	a	shallow
repository.	This	option,	combined	with	--thin,	can	result	in	a	smaller
pack	at	the	cost	of	speed.

--delta-base-offset

A	packed	archive	can	express	the	base	object	of	a	delta	as	either	a



20-byte	object	name	or	as	an	offset	in	the	stream,	but	ancient
versions	of	Git	don't	understand	the	latter.	By	default,	git	pack-
objects	only	uses	the	former	format	for	better	compatibility.	This
option	allows	the	command	to	use	the	latter	format	for	compactness.
Depending	on	the	average	delta	chain	length,	this	option	typically
shrinks	the	resulting	packfile	by	3-5	per-cent.

Note:	Porcelain	commands	such	as	git	gc	(see	Section	G.3.53,	“git-
gc(1)”),	git	repack	(see	Section	G.3.107,	“git-repack(1)”)	pass	this
option	by	default	in	modern	Git	when	they	put	objects	in	your
repository	into	pack	files.	So	does	git	bundle	(see	Section	G.3.11,
“git-bundle(1)”)	when	it	creates	a	bundle.

--threads=<n>
Specifies	the	number	of	threads	to	spawn	when	searching	for	best
delta	matches.	This	requires	that	pack-objects	be	compiled	with
pthreads	otherwise	this	option	is	ignored	with	a	warning.	This	is
meant	to	reduce	packing	time	on	multiprocessor	machines.	The
required	amount	of	memory	for	the	delta	search	window	is	however
multiplied	by	the	number	of	threads.	Specifying	0	will	cause	Git	to
auto-detect	the	number	of	CPU's	and	set	the	number	of	threads
accordingly.

--index-version=<version>[,<offset>]
This	is	intended	to	be	used	by	the	test	suite	only.	It	allows	to	force
the	version	for	the	generated	pack	index,	and	to	force	64-bit	index
entries	on	objects	located	above	the	given	offset.

--keep-true-parents
With	this	option,	parents	that	are	hidden	by	grafts	are	packed
nevertheless.

SEE	ALSO

Section	G.3.112,	“git-rev-list(1)”	Section	G.3.107,	“git-repack(1)”
Section	G.3.93,	“git-prune-packed(1)”

GIT



Part	of	the	Section	G.3.1,	“git(1)”	suite

G.3.89.	git-pack-redundant(1)

NAME

git-pack-redundant	-	Find	redundant	pack	files

SYNOPSIS

git	pack-redundant	[	--verbose	]	[	--alt-odb	]	<	--

all	|	.pack	filename	…	>

DESCRIPTION

This	program	computes	which	packs	in	your	repository	are	redundant.
The	output	is	suitable	for	piping	to	xargs	rm	if	you	are	in	the	root	of	the
repository.

git	pack-redundant	accepts	a	list	of	objects	on	standard	input.	Any
objects	given	will	be	ignored	when	checking	which	packs	are	required.
This	makes	the	following	command	useful	when	wanting	to	remove
packs	which	contain	unreachable	objects.

git	fsck	--full	--unreachable	|	cut	-d	'	'	-f3	|	\	git	pack-redundant	--all	|	xargs
rm

OPTIONS

--all
Processes	all	packs.	Any	filenames	on	the	command	line	are
ignored.

--alt-odb
Don't	require	objects	present	in	packs	from	alternate	object
directories	to	be	present	in	local	packs.

--verbose



Outputs	some	statistics	to	stderr.	Has	a	small	performance	penalty.

SEE	ALSO

Section	G.3.88,	“git-pack-objects(1)”	Section	G.3.107,	“git-repack(1)”
Section	G.3.93,	“git-prune-packed(1)”

GIT

Part	of	the	Section	G.3.1,	“git(1)”	suite

G.3.90.	git-pack-refs(1)

NAME

git-pack-refs	-	Pack	heads	and	tags	for	efficient	repository	access

SYNOPSIS

git	pack-refs	[--all]	[--no-prune]

DESCRIPTION

Traditionally,	tips	of	branches	and	tags	(collectively	known	as	refs)	were
stored	one	file	per	ref	in	a	(sub)directory	under	$GIT_DIR/refs	directory.
While	many	branch	tips	tend	to	be	updated	often,	most	tags	and	some
branch	tips	are	never	updated.	When	a	repository	has	hundreds	or
thousands	of	tags,	this	one-file-per-ref	format	both	wastes	storage	and
hurts	performance.

This	command	is	used	to	solve	the	storage	and	performance	problem	by
storing	the	refs	in	a	single	file,	$GIT_DIR/packed-refs.	When	a	ref	is
missing	from	the	traditional	$GIT_DIR/refs	directory	hierarchy,	it	is	looked
up	in	this	file	and	used	if	found.

Subsequent	updates	to	branches	always	create	new	files	under



$GIT_DIR/refs	directory	hierarchy.

A	recommended	practice	to	deal	with	a	repository	with	too	many	refs	is	to
pack	its	refs	with	--all	once,	and	occasionally	run	git	pack-refs.	Tags	are
by	definition	stationary	and	are	not	expected	to	change.	Branch	heads
will	be	packed	with	the	initial	pack-refs	--all,	but	only	the	currently	active
branch	heads	will	become	unpacked,	and	the	next	pack-refs	(without	--
all)	will	leave	them	unpacked.

OPTIONS

--all
The	command	by	default	packs	all	tags	and	refs	that	are	already
packed,	and	leaves	other	refs	alone.	This	is	because	branches	are
expected	to	be	actively	developed	and	packing	their	tips	does	not
help	performance.	This	option	causes	branch	tips	to	be	packed	as
well.	Useful	for	a	repository	with	many	branches	of	historical
interests.

--no-prune
The	command	usually	removes	loose	refs	under	$GIT_DIR/refs
hierarchy	after	packing	them.	This	option	tells	it	not	to.

BUGS

Older	documentation	written	before	the	packed-refs	mechanism	was
introduced	may	still	say	things	like	".git/refs/heads/<branch>	file	exists"
when	it	means	"branch	<branch>	exists".

GIT

Part	of	the	Section	G.3.1,	“git(1)”	suite

G.3.91.	git-parse-remote(1)

NAME



git-parse-remote	-	Routines	to	help	parsing	remote	repository	access
parameters

SYNOPSIS

.	"$(git	--exec-path)/git-parse-remote"

DESCRIPTION

This	script	is	included	in	various	scripts	to	supply	routines	to	parse	files
under	$GIT_DIR/remotes/	and	$GIT_DIR/branches/	and	configuration
variables	that	are	related	to	fetching,	pulling	and	pushing.

GIT

Part	of	the	Section	G.3.1,	“git(1)”	suite

G.3.92.	git-patch-id(1)

NAME

git-patch-id	-	Compute	unique	ID	for	a	patch

SYNOPSIS

git	patch-id	[--stable	|	--unstable]

DESCRIPTION

Read	a	patch	from	the	standard	input	and	compute	the	patch	ID	for	it.

A	"patch	ID"	is	nothing	but	a	sum	of	SHA-1	of	the	file	diffs	associated	with
a	patch,	with	whitespace	and	line	numbers	ignored.	As	such,	it's
"reasonably	stable",	but	at	the	same	time	also	reasonably	unique,	i.e.,
two	patches	that	have	the	same	"patch	ID"	are	almost	guaranteed	to	be



the	same	thing.

IOW,	you	can	use	this	thing	to	look	for	likely	duplicate	commits.

When	dealing	with	git	diff-tree	output,	it	takes	advantage	of	the	fact	that
the	patch	is	prefixed	with	the	object	name	of	the	commit,	and	outputs	two
40-byte	hexadecimal	strings.	The	first	string	is	the	patch	ID,	and	the
second	string	is	the	commit	ID.	This	can	be	used	to	make	a	mapping
from	patch	ID	to	commit	ID.

OPTIONS

--stable

Use	a	"stable"	sum	of	hashes	as	the	patch	ID.	With	this	option:

Reordering	file	diffs	that	make	up	a	patch	does	not	affect	the	ID.
In	particular,	two	patches	produced	by	comparing	the	same	two
trees	with	two	different	settings	for	"-O<orderfile>"	result	in	the
same	patch	ID	signature,	thereby	allowing	the	computed	result
to	be	used	as	a	key	to	index	some	meta-information	about	the
change	between	the	two	trees;

Result	is	different	from	the	value	produced	by	git	1.9	and	older
or	produced	when	an	"unstable"	hash	(see	--unstable	below)	is
configured	-	even	when	used	on	a	diff	output	taken	without	any
use	of	"-O<orderfile>",	thereby	making	existing	databases
storing	such	"unstable"	or	historical	patch-ids	unusable.

This	is	the	default	if	patchid.stable	is	set	to	true.

--unstable

Use	an	"unstable"	hash	as	the	patch	ID.	With	this	option,	the	result
produced	is	compatible	with	the	patch-id	value	produced	by	git	1.9
and	older.	Users	with	pre-existing	databases	storing	patch-ids
produced	by	git	1.9	and	older	(who	do	not	deal	with	reordered
patches)	may	want	to	use	this	option.



This	is	the	default.

<patch>
The	diff	to	create	the	ID	of.

GIT

Part	of	the	Section	G.3.1,	“git(1)”	suite

G.3.93.	git-prune-packed(1)

NAME

git-prune-packed	-	Remove	extra	objects	that	are	already	in	pack	files

SYNOPSIS

git	prune-packed	[-n|--dry-run]	[-q|--quiet]

DESCRIPTION

This	program	searches	the	$GIT_OBJECT_DIRECTORY	for	all	objects
that	currently	exist	in	a	pack	file	as	well	as	the	independent	object
directories.

All	such	extra	objects	are	removed.

A	pack	is	a	collection	of	objects,	individually	compressed,	with	delta
compression	applied,	stored	in	a	single	file,	with	an	associated	index	file.

Packs	are	used	to	reduce	the	load	on	mirror	systems,	backup	engines,
disk	storage,	etc.

OPTIONS

-n	,	--dry-run
Don't	actually	remove	any	objects,	only	show	those	that	would	have



been	removed.
-q	,	--quiet

Squelch	the	progress	indicator.

SEE	ALSO

Section	G.3.88,	“git-pack-objects(1)”	Section	G.3.107,	“git-repack(1)”

GIT

Part	of	the	Section	G.3.1,	“git(1)”	suite

G.3.94.	git-prune(1)

NAME

git-prune	-	Prune	all	unreachable	objects	from	the	object	database

SYNOPSIS

git	prune	[-n]	[-v]	[--expire	<expire>]	[--]	[<head>…]

DESCRIPTION

Note

In	most	cases,	users	should	run	git	gc,	which	calls	git	prune.
See	the	section	"NOTES",	below.

This	runs	git	fsck	--unreachable	using	all	the	refs	available	in	refs/,
optionally	with	additional	set	of	objects	specified	on	the	command	line,
and	prunes	all	unpacked	objects	unreachable	from	any	of	these	head
objects	from	the	object	database.	In	addition,	it	prunes	the	unpacked
objects	that	are	also	found	in	packs	by	running	git	prune-packed.	It	also



removes	entries	from	.git/shallow	that	are	not	reachable	by	any	ref.

Note	that	unreachable,	packed	objects	will	remain.	If	this	is	not	desired,
see	Section	G.3.107,	“git-repack(1)”.

OPTIONS

-n	,	--dry-run
Do	not	remove	anything;	just	report	what	it	would	remove.

-v	,	--verbose
Report	all	removed	objects.

--
Do	not	interpret	any	more	arguments	as	options.

--expire	<time>
Only	expire	loose	objects	older	than	<time>.

<head>…
In	addition	to	objects	reachable	from	any	of	our	references,	keep
objects	reachable	from	listed	<head>s.

EXAMPLE

To	prune	objects	not	used	by	your	repository	or	another	that	borrows
from	your	repository	via	its	.git/objects/info/alternates:

$	git	prune	$(cd	../another	&&	git	rev-parse	--all)

Notes

In	most	cases,	users	will	not	need	to	call	git	prune	directly,	but	should
instead	call	git	gc,	which	handles	pruning	along	with	many	other
housekeeping	tasks.

For	a	description	of	which	objects	are	considered	for	pruning,	see	git
fsck's	--unreachable	option.

SEE	ALSO



Section	G.3.52,	“git-fsck(1)”,	Section	G.3.53,	“git-gc(1)”,	Section	G.3.101,
“git-reflog(1)”

GIT

Part	of	the	Section	G.3.1,	“git(1)”	suite

G.3.95.	git-pull(1)

NAME

git-pull	-	Fetch	from	and	integrate	with	another	repository	or	a	local
branch

SYNOPSIS

git	pull	[options]	[<repository>	[<refspec>…]]

DESCRIPTION

Incorporates	changes	from	a	remote	repository	into	the	current	branch.	In
its	default	mode,	git	pull	is	shorthand	for	git	fetch	followed	by	git	merge
FETCH_HEAD.

More	precisely,	git	pull	runs	git	fetch	with	the	given	parameters	and	calls
git	merge	to	merge	the	retrieved	branch	heads	into	the	current	branch.
With	--rebase,	it	runs	git	rebase	instead	of	git	merge.

<repository>	should	be	the	name	of	a	remote	repository	as	passed	to
Section	G.3.46,	“git-fetch(1)”.	<refspec>	can	name	an	arbitrary	remote	ref
(for	example,	the	name	of	a	tag)	or	even	a	collection	of	refs	with
corresponding	remote-tracking	branches	(e.g.,
refs/heads/*:refs/remotes/origin/*),	but	usually	it	is	the	name	of	a	branch
in	the	remote	repository.

Default	values	for	<repository>	and	<branch>	are	read	from	the	"remote"



and	"merge"	configuration	for	the	current	branch	as	set	by
Section	G.3.10,	“git-branch(1)”	--track.

Assume	the	following	history	exists	and	the	current	branch	is	"master":

										A---B---C	master	on	origin

									/

				D---E---F---G	master

								^

								origin/master	in	your	repository

Then	"git	pull"	will	fetch	and	replay	the	changes	from	the	remote	master
branch	since	it	diverged	from	the	local	master	(i.e.,	E)	until	its	current
commit	(C)	on	top	of	master	and	record	the	result	in	a	new	commit	along
with	the	names	of	the	two	parent	commits	and	a	log	message	from	the
user	describing	the	changes.

										A---B---C	origin/master

									/									\

				D---E---F---G---H	master

See	Section	G.3.79,	“git-merge(1)”	for	details,	including	how	conflicts	are
presented	and	handled.

In	Git	1.7.0	or	later,	to	cancel	a	conflicting	merge,	use	git	reset	--merge.
Warning:	In	older	versions	of	Git,	running	git	pull	with	uncommitted
changes	is	discouraged:	while	possible,	it	leaves	you	in	a	state	that	may
be	hard	to	back	out	of	in	the	case	of	a	conflict.

If	any	of	the	remote	changes	overlap	with	local	uncommitted	changes,
the	merge	will	be	automatically	cancelled	and	the	work	tree	untouched.	It
is	generally	best	to	get	any	local	changes	in	working	order	before	pulling
or	stash	them	away	with	Section	G.3.128,	“git-stash(1)”.

OPTIONS

-q	,	--quiet
This	is	passed	to	both	underlying	git-fetch	to	squelch	reporting	of



during	transfer,	and	underlying	git-merge	to	squelch	output	during
merging.

-v	,	--verbose
Pass	--verbose	to	git-fetch	and	git-merge.

--[no-]recurse-submodules[=yes|on-demand|no]
This	option	controls	if	new	commits	of	all	populated	submodules
should	be	fetched	too	(see	Section	G.3.27,	“git-config(1)”	and
Section	G.4.8,	“gitmodules(5)”).	That	might	be	necessary	to	get	the
data	needed	for	merging	submodule	commits,	a	feature	Git	learned
in	1.7.3.	Notice	that	the	result	of	a	merge	will	not	be	checked	out	in
the	submodule,	"git	submodule	update"	has	to	be	called	afterwards
to	bring	the	work	tree	up	to	date	with	the	merge	result.



1.	Options	related	to	merging

--commit	,	--no-commit

Perform	the	merge	and	commit	the	result.	This	option	can	be	used	to
override	--no-commit.

With	--no-commit	perform	the	merge	but	pretend	the	merge	failed
and	do	not	autocommit,	to	give	the	user	a	chance	to	inspect	and
further	tweak	the	merge	result	before	committing.

--edit	,	-e	,	--no-edit

Invoke	an	editor	before	committing	successful	mechanical	merge	to
further	edit	the	auto-generated	merge	message,	so	that	the	user	can
explain	and	justify	the	merge.	The	--no-edit	option	can	be	used	to
accept	the	auto-generated	message	(this	is	generally	discouraged).

Older	scripts	may	depend	on	the	historical	behaviour	of	not	allowing
the	user	to	edit	the	merge	log	message.	They	will	see	an	editor
opened	when	they	run	git	merge.	To	make	it	easier	to	adjust	such
scripts	to	the	updated	behaviour,	the	environment	variable
GIT_MERGE_AUTOEDIT	can	be	set	to	no	at	the	beginning	of	them.

--ff
When	the	merge	resolves	as	a	fast-forward,	only	update	the	branch
pointer,	without	creating	a	merge	commit.	This	is	the	default
behavior.

--no-ff
Create	a	merge	commit	even	when	the	merge	resolves	as	a	fast-
forward.	This	is	the	default	behaviour	when	merging	an	annotated
(and	possibly	signed)	tag.

--ff-only
Refuse	to	merge	and	exit	with	a	non-zero	status	unless	the	current
HEAD	is	already	up-to-date	or	the	merge	can	be	resolved	as	a	fast-
forward.

--log[=<n>]	,	--no-log



In	addition	to	branch	names,	populate	the	log	message	with	one-line
descriptions	from	at	most	<n>	actual	commits	that	are	being	merged.
See	also	Section	G.3.48,	“git-fmt-merge-msg(1)”.

With	--no-log	do	not	list	one-line	descriptions	from	the	actual
commits	being	merged.

--stat	,	-n	,	--no-stat

Show	a	diffstat	at	the	end	of	the	merge.	The	diffstat	is	also	controlled
by	the	configuration	option	merge.stat.

With	-n	or	--no-stat	do	not	show	a	diffstat	at	the	end	of	the	merge.

--squash	,	--no-squash

Produce	the	working	tree	and	index	state	as	if	a	real	merge
happened	(except	for	the	merge	information),	but	do	not	actually
make	a	commit,	move	the	HEAD,	or	record
$GIT_DIR/MERGE_HEAD	(to	cause	the	next	git	commit	command
to	create	a	merge	commit).	This	allows	you	to	create	a	single	commit
on	top	of	the	current	branch	whose	effect	is	the	same	as	merging
another	branch	(or	more	in	case	of	an	octopus).

With	--no-squash	perform	the	merge	and	commit	the	result.	This
option	can	be	used	to	override	--squash.

-s	<strategy>	,	--strategy=<strategy>
Use	the	given	merge	strategy;	can	be	supplied	more	than	once	to
specify	them	in	the	order	they	should	be	tried.	If	there	is	no	-s	option,
a	built-in	list	of	strategies	is	used	instead	(git	merge-recursive	when
merging	a	single	head,	git	merge-octopus	otherwise).

-X	<option>	,	--strategy-option=<option>
Pass	merge	strategy	specific	option	through	to	the	merge	strategy.

--verify-signatures	,	--no-verify-signatures
Verify	that	the	commits	being	merged	have	good	and	trusted	GPG
signatures	and	abort	the	merge	in	case	they	do	not.

--summary	,	--no-summary



Synonyms	to	--stat	and	--no-stat;	these	are	deprecated	and	will	be
removed	in	the	future.

--allow-unrelated-histories
By	default,	git	merge	command	refuses	to	merge	histories	that	do
not	share	a	common	ancestor.	This	option	can	be	used	to	override
this	safety	when	merging	histories	of	two	projects	that	started	their
lives	independently.	As	that	is	a	very	rare	occasion,	no	configuration
variable	to	enable	this	by	default	exists	and	will	not	be	added.

-r	,	--rebase[=false|true|preserve|interactive]

When	true,	rebase	the	current	branch	on	top	of	the	upstream	branch
after	fetching.	If	there	is	a	remote-tracking	branch	corresponding	to
the	upstream	branch	and	the	upstream	branch	was	rebased	since
last	fetched,	the	rebase	uses	that	information	to	avoid	rebasing	non-
local	changes.

When	set	to	preserve,	rebase	with	the	--preserve-merges	option
passed	to	git	rebase	so	that	locally	created	merge	commits	will	not
be	flattened.

When	false,	merge	the	current	branch	into	the	upstream	branch.

When	interactive,	enable	the	interactive	mode	of	rebase.

See	pull.rebase,	branch.<name>.rebase	and
branch.autoSetupRebase	in	Section	G.3.27,	“git-config(1)”	if	you
want	to	make	git	pull	always	use	--rebase	instead	of	merging.

Note

This	is	a	potentially	dangerous	mode	of	operation.	It
rewrites	history,	which	does	not	bode	well	when	you
published	that	history	already.	Do	not	use	this	option
unless	you	have	read	Section	G.3.99,	“git-rebase(1)”
carefully.

--no-rebase



Override	earlier	--rebase.
--autostash	,	--no-autostash

Before	starting	rebase,	stash	local	modifications	away	(see
Section	G.3.128,	“git-stash(1)”)	if	needed,	and	apply	the	stash	when
done.	--no-autostash	is	useful	to	override	the	rebase.autoStash
configuration	variable	(see	Section	G.3.27,	“git-config(1)”).

This	option	is	only	valid	when	"--rebase"	is	used.



2.	Options	related	to	fetching

--all
Fetch	all	remotes.

-a	,	--append
Append	ref	names	and	object	names	of	fetched	refs	to	the	existing
contents	of	.git/FETCH_HEAD.	Without	this	option	old	data	in
.git/FETCH_HEAD	will	be	overwritten.

--depth=<depth>
Limit	fetching	to	the	specified	number	of	commits	from	the	tip	of	each
remote	branch	history.	If	fetching	to	a	shallow	repository	created	by
git	clone	with	--depth=<depth>	option	(see	Section	G.3.23,	“git-
clone(1)”),	deepen	or	shorten	the	history	to	the	specified	number	of
commits.	Tags	for	the	deepened	commits	are	not	fetched.

--unshallow

If	the	source	repository	is	complete,	convert	a	shallow	repository	to	a
complete	one,	removing	all	the	limitations	imposed	by	shallow
repositories.

If	the	source	repository	is	shallow,	fetch	as	much	as	possible	so	that
the	current	repository	has	the	same	history	as	the	source	repository.

--update-shallow
By	default	when	fetching	from	a	shallow	repository,	git	fetch	refuses
refs	that	require	updating	.git/shallow.	This	option	updates
.git/shallow	and	accept	such	refs.

-f	,	--force
When	git	fetch	is	used	with	<rbranch>:<lbranch>	refspec,	it	refuses
to	update	the	local	branch	<lbranch>	unless	the	remote	branch
<rbranch>	it	fetches	is	a	descendant	of	<lbranch>.	This	option
overrides	that	check.

-k	,	--keep
Keep	downloaded	pack.

--no-tags
By	default,	tags	that	point	at	objects	that	are	downloaded	from	the



remote	repository	are	fetched	and	stored	locally.	This	option	disables
this	automatic	tag	following.	The	default	behavior	for	a	remote	may
be	specified	with	the	remote.<name>.tagOpt	setting.	See
Section	G.3.27,	“git-config(1)”.

-u	,	--update-head-ok
By	default	git	fetch	refuses	to	update	the	head	which	corresponds	to
the	current	branch.	This	flag	disables	the	check.	This	is	purely	for	the
internal	use	for	git	pull	to	communicate	with	git	fetch,	and	unless	you
are	implementing	your	own	Porcelain	you	are	not	supposed	to	use	it.

--upload-pack	<upload-pack>
When	given,	and	the	repository	to	fetch	from	is	handled	by	git	fetch-
pack,	--exec=<upload-pack>	is	passed	to	the	command	to	specify
non-default	path	for	the	command	run	on	the	other	end.

--progress
Progress	status	is	reported	on	the	standard	error	stream	by	default
when	it	is	attached	to	a	terminal,	unless	-q	is	specified.	This	flag
forces	progress	status	even	if	the	standard	error	stream	is	not
directed	to	a	terminal.

-4	,	--ipv4
Use	IPv4	addresses	only,	ignoring	IPv6	addresses.

-6	,	--ipv6
Use	IPv6	addresses	only,	ignoring	IPv4	addresses.

<repository>
The	"remote"	repository	that	is	the	source	of	a	fetch	or	pull	operation.
This	parameter	can	be	either	a	URL	(see	the	section	GIT	URLS
below)	or	the	name	of	a	remote	(see	the	section	REMOTES	below).

<refspec>

Specifies	which	refs	to	fetch	and	which	local	refs	to	update.	When	no
<refspec>s	appear	on	the	command	line,	the	refs	to	fetch	are	read
from	remote.<repository>.fetch	variables	instead	(see
Section	G.3.46,	“git-fetch(1)”).

The	format	of	a	<refspec>	parameter	is	an	optional	plus	+,	followed
by	the	source	ref	<src>,	followed	by	a	colon	:,	followed	by	the
destination	ref	<dst>.	The	colon	can	be	omitted	when	<dst>	is	empty.

tag	<tag>	means	the	same	as	refs/tags/<tag>:refs/tags/<tag>;	it



requests	fetching	everything	up	to	the	given	tag.

The	remote	ref	that	matches	<src>	is	fetched,	and	if	<dst>	is	not
empty	string,	the	local	ref	that	matches	it	is	fast-forwarded	using
<src>.	If	the	optional	plus	+	is	used,	the	local	ref	is	updated	even	if	it
does	not	result	in	a	fast-forward	update.

Note

When	the	remote	branch	you	want	to	fetch	is	known	to
be	rewound	and	rebased	regularly,	it	is	expected	that	its
new	tip	will	not	be	descendant	of	its	previous	tip	(as
stored	in	your	remote-tracking	branch	the	last	time	you
fetched).	You	would	want	to	use	the	+	sign	to	indicate
non-fast-forward	updates	will	be	needed	for	such
branches.	There	is	no	way	to	determine	or	declare	that	a
branch	will	be	made	available	in	a	repository	with	this
behavior;	the	pulling	user	simply	must	know	this	is	the
expected	usage	pattern	for	a	branch.

Note

There	is	a	difference	between	listing	multiple	<refspec>
directly	on	git	pull	command	line	and	having	multiple
remote.<repository>.fetch	entries	in	your	configuration
for	a	<repository>	and	running	a	git	pull	command
without	any	explicit	<refspec>	parameters.	<refspec>s
listed	explicitly	on	the	command	line	are	always	merged
into	the	current	branch	after	fetching.	In	other	words,	if
you	list	more	than	one	remote	ref,	git	pull	will	create	an
Octopus	merge.	On	the	other	hand,	if	you	do	not	list	any
explicit	<refspec>	parameter	on	the	command	line,	git
pull	will	fetch	all	the	<refspec>s	it	finds	in	the	remote.
<repository>.fetch	configuration	and	merge	only	the	first
<refspec>	found	into	the	current	branch.	This	is	because



making	an	Octopus	from	remote	refs	is	rarely	done,	while
keeping	track	of	multiple	remote	heads	in	one-go	by
fetching	more	than	one	is	often	useful.

GIT	URLS

In	general,	URLs	contain	information	about	the	transport	protocol,	the
address	of	the	remote	server,	and	the	path	to	the	repository.	Depending
on	the	transport	protocol,	some	of	this	information	may	be	absent.

Git	supports	ssh,	git,	http,	and	https	protocols	(in	addition,	ftp,	and	ftps
can	be	used	for	fetching,	but	this	is	inefficient	and	deprecated;	do	not	use
it).

The	native	transport	(i.e.	git://	URL)	does	no	authentication	and	should	be
used	with	caution	on	unsecured	networks.

The	following	syntaxes	may	be	used	with	them:

ssh://[user@]host.xz[:port]/path/to/repo.git/
git://host.xz[:port]/path/to/repo.git/
http[s]://host.xz[:port]/path/to/repo.git/
ftp[s]://host.xz[:port]/path/to/repo.git/

An	alternative	scp-like	syntax	may	also	be	used	with	the	ssh	protocol:

[user@]host.xz:path/to/repo.git/

This	syntax	is	only	recognized	if	there	are	no	slashes	before	the	first
colon.	This	helps	differentiate	a	local	path	that	contains	a	colon.	For
example	the	local	path	foo:bar	could	be	specified	as	an	absolute	path	or
./foo:bar	to	avoid	being	misinterpreted	as	an	ssh	url.

The	ssh	and	git	protocols	additionally	support	~username	expansion:

ssh://[user@]host.xz[:port]/~[user]/path/to/repo.git/
git://host.xz[:port]/~[user]/path/to/repo.git/



[user@]host.xz:/~[user]/path/to/repo.git/

For	local	repositories,	also	supported	by	Git	natively,	the	following
syntaxes	may	be	used:

/path/to/repo.git/
file:///path/to/repo.git/

These	two	syntaxes	are	mostly	equivalent,	except	when	cloning,	when
the	former	implies	--local	option.	See	Section	G.3.23,	“git-clone(1)”	for
details.

When	Git	doesn't	know	how	to	handle	a	certain	transport	protocol,	it
attempts	to	use	the	remote-<transport>	remote	helper,	if	one	exists.	To
explicitly	request	a	remote	helper,	the	following	syntax	may	be	used:

<transport>::<address>

where	<address>	may	be	a	path,	a	server	and	path,	or	an	arbitrary	URL-
like	string	recognized	by	the	specific	remote	helper	being	invoked.	See
Section	G.4.10,	“gitremote-helpers(1)”	for	details.

If	there	are	a	large	number	of	similarly-named	remote	repositories	and
you	want	to	use	a	different	format	for	them	(such	that	the	URLs	you	use
will	be	rewritten	into	URLs	that	work),	you	can	create	a	configuration
section	of	the	form:

								[url	"<actual	url	base>"]

																insteadOf	=	<other	url	base>

For	example,	with	this:

								[url	"git://git.host.xz/"]

																insteadOf	=	host.xz:/path/to/

																insteadOf	=	work:

a	URL	like	"work:repo.git"	or	like	"host.xz:/path/to/repo.git"	will	be
rewritten	in	any	context	that	takes	a	URL	to	be	"git://git.host.xz/repo.git".



If	you	want	to	rewrite	URLs	for	push	only,	you	can	create	a	configuration
section	of	the	form:

								[url	"<actual	url	base>"]

																pushInsteadOf	=	<other	url	base>

For	example,	with	this:

								[url	"ssh://example.org/"]

																pushInsteadOf	=	git://example.org/

a	URL	like	"git://example.org/path/to/repo.git"	will	be	rewritten	to
"ssh://example.org/path/to/repo.git"	for	pushes,	but	pulls	will	still	use	the
original	URL.

REMOTES

The	name	of	one	of	the	following	can	be	used	instead	of	a	URL	as
<repository>	argument:

a	remote	in	the	Git	configuration	file:	$GIT_DIR/config,
a	file	in	the	$GIT_DIR/remotes	directory,	or
a	file	in	the	$GIT_DIR/branches	directory.

All	of	these	also	allow	you	to	omit	the	refspec	from	the	command	line
because	they	each	contain	a	refspec	which	git	will	use	by	default.



1.	Named	remote	in	configuration	file

You	can	choose	to	provide	the	name	of	a	remote	which	you	had
previously	configured	using	Section	G.3.106,	“git-remote(1)”,
Section	G.3.27,	“git-config(1)”	or	even	by	a	manual	edit	to	the
$GIT_DIR/config	file.	The	URL	of	this	remote	will	be	used	to	access	the
repository.	The	refspec	of	this	remote	will	be	used	by	default	when	you
do	not	provide	a	refspec	on	the	command	line.	The	entry	in	the	config	file
would	appear	like	this:

								[remote	"<name>"]

																url	=	<url>

																pushurl	=	<pushurl>

																push	=	<refspec>

																fetch	=	<refspec>

The	<pushurl>	is	used	for	pushes	only.	It	is	optional	and	defaults	to	<url>.



2.	Named	file	in	$GIT_DIR/remotes

You	can	choose	to	provide	the	name	of	a	file	in	$GIT_DIR/remotes.	The
URL	in	this	file	will	be	used	to	access	the	repository.	The	refspec	in	this
file	will	be	used	as	default	when	you	do	not	provide	a	refspec	on	the
command	line.	This	file	should	have	the	following	format:

								URL:	one	of	the	above	URL	format

								Push:	<refspec>

								Pull:	<refspec>

Push:	lines	are	used	by	git	push	and	Pull:	lines	are	used	by	git	pull	and
git	fetch.	Multiple	Push:	and	Pull:	lines	may	be	specified	for	additional
branch	mappings.



3.	Named	file	in	$GIT_DIR/branches

You	can	choose	to	provide	the	name	of	a	file	in	$GIT_DIR/branches.	The
URL	in	this	file	will	be	used	to	access	the	repository.	This	file	should	have
the	following	format:

								<url>#<head>

<url>	is	required;	#<head>	is	optional.

Depending	on	the	operation,	git	will	use	one	of	the	following	refspecs,	if
you	don't	provide	one	on	the	command	line.	<branch>	is	the	name	of	this
file	in	$GIT_DIR/branches	and	<head>	defaults	to	master.

git	fetch	uses:

								refs/heads/<head>:refs/heads/<branch>

git	push	uses:

								HEAD:refs/heads/<head>

MERGE	STRATEGIES

The	merge	mechanism	(git	merge	and	git	pull	commands)	allows	the
backend	merge	strategies	to	be	chosen	with	-s	option.	Some	strategies
can	also	take	their	own	options,	which	can	be	passed	by	giving	-
X<option>	arguments	to	git	merge	and/or	git	pull.

resolve
This	can	only	resolve	two	heads	(i.e.	the	current	branch	and	another
branch	you	pulled	from)	using	a	3-way	merge	algorithm.	It	tries	to
carefully	detect	criss-cross	merge	ambiguities	and	is	considered
generally	safe	and	fast.

recursive



This	can	only	resolve	two	heads	using	a	3-way	merge	algorithm.
When	there	is	more	than	one	common	ancestor	that	can	be	used	for
3-way	merge,	it	creates	a	merged	tree	of	the	common	ancestors	and
uses	that	as	the	reference	tree	for	the	3-way	merge.	This	has	been
reported	to	result	in	fewer	merge	conflicts	without	causing
mismerges	by	tests	done	on	actual	merge	commits	taken	from	Linux
2.6	kernel	development	history.	Additionally	this	can	detect	and
handle	merges	involving	renames.	This	is	the	default	merge	strategy
when	pulling	or	merging	one	branch.

The	recursive	strategy	can	take	the	following	options:

ours

This	option	forces	conflicting	hunks	to	be	auto-resolved	cleanly
by	favoring	our	version.	Changes	from	the	other	tree	that	do	not
conflict	with	our	side	are	reflected	to	the	merge	result.	For	a
binary	file,	the	entire	contents	are	taken	from	our	side.

This	should	not	be	confused	with	the	ours	merge	strategy,	which
does	not	even	look	at	what	the	other	tree	contains	at	all.	It
discards	everything	the	other	tree	did,	declaring	our	history
contains	all	that	happened	in	it.

theirs
This	is	the	opposite	of	ours.

patience
With	this	option,	merge-recursive	spends	a	little	extra	time	to
avoid	mismerges	that	sometimes	occur	due	to	unimportant
matching	lines	(e.g.,	braces	from	distinct	functions).	Use	this
when	the	branches	to	be	merged	have	diverged	wildly.	See	also
Section	G.3.41,	“git-diff(1)”	--patience.

diff-algorithm=[patience|minimal|histogram|myers]
Tells	merge-recursive	to	use	a	different	diff	algorithm,	which	can
help	avoid	mismerges	that	occur	due	to	unimportant	matching
lines	(such	as	braces	from	distinct	functions).	See	also
Section	G.3.41,	“git-diff(1)”	--diff-algorithm.

ignore-space-change	,	ignore-all-space	,	ignore-space-at-eol



Treats	lines	with	the	indicated	type	of	whitespace	change	as
unchanged	for	the	sake	of	a	three-way	merge.	Whitespace
changes	mixed	with	other	changes	to	a	line	are	not	ignored.	See
also	Section	G.3.41,	“git-diff(1)”	-b,	-w,	and	--ignore-space-at-
eol.

If	their	version	only	introduces	whitespace	changes	to	a
line,	our	version	is	used;
If	our	version	introduces	whitespace	changes	but	their
version	includes	a	substantial	change,	their	version	is	used;
Otherwise,	the	merge	proceeds	in	the	usual	way.

renormalize
This	runs	a	virtual	check-out	and	check-in	of	all	three	stages	of
a	file	when	resolving	a	three-way	merge.	This	option	is	meant	to
be	used	when	merging	branches	with	different	clean	filters	or
end-of-line	normalization	rules.	See	"Merging	branches	with
differing	checkin/checkout	attributes"	in	Section	G.4.2,
“gitattributes(5)”	for	details.

no-renormalize
Disables	the	renormalize	option.	This	overrides	the
merge.renormalize	configuration	variable.

no-renames
Turn	off	rename	detection.	See	also	Section	G.3.41,	“git-diff(1)”	-
-no-renames.

find-renames[=<n>]
Turn	on	rename	detection,	optionally	setting	the	similarity
threshold.	This	is	the	default.	See	also	Section	G.3.41,	“git-
diff(1)”	--find-renames.

rename-threshold=<n>
Deprecated	synonym	for	find-renames=<n>.

subtree[=<path>]
This	option	is	a	more	advanced	form	of	subtree	strategy,	where
the	strategy	makes	a	guess	on	how	two	trees	must	be	shifted	to
match	with	each	other	when	merging.	Instead,	the	specified
path	is	prefixed	(or	stripped	from	the	beginning)	to	make	the
shape	of	two	trees	to	match.

octopus



This	resolves	cases	with	more	than	two	heads,	but	refuses	to	do	a
complex	merge	that	needs	manual	resolution.	It	is	primarily	meant	to
be	used	for	bundling	topic	branch	heads	together.	This	is	the	default
merge	strategy	when	pulling	or	merging	more	than	one	branch.

ours
This	resolves	any	number	of	heads,	but	the	resulting	tree	of	the
merge	is	always	that	of	the	current	branch	head,	effectively	ignoring
all	changes	from	all	other	branches.	It	is	meant	to	be	used	to
supersede	old	development	history	of	side	branches.	Note	that	this
is	different	from	the	-Xours	option	to	the	recursive	merge	strategy.

subtree
This	is	a	modified	recursive	strategy.	When	merging	trees	A	and	B,	if
B	corresponds	to	a	subtree	of	A,	B	is	first	adjusted	to	match	the	tree
structure	of	A,	instead	of	reading	the	trees	at	the	same	level.	This
adjustment	is	also	done	to	the	common	ancestor	tree.

With	the	strategies	that	use	3-way	merge	(including	the	default,
recursive),	if	a	change	is	made	on	both	branches,	but	later	reverted	on
one	of	the	branches,	that	change	will	be	present	in	the	merged	result;
some	people	find	this	behavior	confusing.	It	occurs	because	only	the
heads	and	the	merge	base	are	considered	when	performing	a	merge,	not
the	individual	commits.	The	merge	algorithm	therefore	considers	the
reverted	change	as	no	change	at	all,	and	substitutes	the	changed	version
instead.

DEFAULT	BEHAVIOUR

Often	people	use	git	pull	without	giving	any	parameter.	Traditionally,	this
has	been	equivalent	to	saying	git	pull	origin.	However,	when	configuration
branch.<name>.remote	is	present	while	on	branch	<name>,	that	value	is
used	instead	of	origin.

In	order	to	determine	what	URL	to	use	to	fetch	from,	the	value	of	the
configuration	remote.<origin>.url	is	consulted	and	if	there	is	not	any	such
variable,	the	value	on	URL:	`	line	in	`$GIT_DIR/remotes/<origin>	file	is
used.



In	order	to	determine	what	remote	branches	to	fetch	(and	optionally	store
in	the	remote-tracking	branches)	when	the	command	is	run	without	any
refspec	parameters	on	the	command	line,	values	of	the	configuration
variable	remote.<origin>.fetch	are	consulted,	and	if	there	aren't	any,
$GIT_DIR/remotes/<origin>	file	is	consulted	and	its	`Pull:	`	lines	are
used.	In	addition	to	the	refspec	formats	described	in	the	OPTIONS
section,	you	can	have	a	globbing	refspec	that	looks	like	this:

refs/heads/*:refs/remotes/origin/*

A	globbing	refspec	must	have	a	non-empty	RHS	(i.e.	must	store	what
were	fetched	in	remote-tracking	branches),	and	its	LHS	and	RHS	must
end	with	/*.	The	above	specifies	that	all	remote	branches	are	tracked
using	remote-tracking	branches	in	refs/remotes/origin/	hierarchy	under
the	same	name.

The	rule	to	determine	which	remote	branch	to	merge	after	fetching	is	a	bit
involved,	in	order	not	to	break	backward	compatibility.

If	explicit	refspecs	were	given	on	the	command	line	of	git	pull,	they	are	all
merged.

When	no	refspec	was	given	on	the	command	line,	then	git	pull	uses	the
refspec	from	the	configuration	or	$GIT_DIR/remotes/<origin>.	In	such
cases,	the	following	rules	apply:

1.	 If	branch.<name>.merge	configuration	for	the	current	branch
<name>	exists,	that	is	the	name	of	the	branch	at	the	remote	site	that
is	merged.

2.	 If	the	refspec	is	a	globbing	one,	nothing	is	merged.
3.	 Otherwise	the	remote	branch	of	the	first	refspec	is	merged.

EXAMPLES

Update	the	remote-tracking	branches	for	the	repository	you	cloned
from,	then	merge	one	of	them	into	your	current	branch:



$	git	pull,	git	pull	origin

Normally	the	branch	merged	in	is	the	HEAD	of	the	remote	repository,
but	the	choice	is	determined	by	the	branch.<name>.remote	and
branch.<name>.merge	options;	see	Section	G.3.27,	“git-config(1)”
for	details.

Merge	into	the	current	branch	the	remote	branch	next:

$	git	pull	origin	next

This	leaves	a	copy	of	next	temporarily	in	FETCH_HEAD,	but	does
not	update	any	remote-tracking	branches.	Using	remote-tracking
branches,	the	same	can	be	done	by	invoking	fetch	and	merge:

$	git	fetch	origin

$	git	merge	origin/next

If	you	tried	a	pull	which	resulted	in	complex	conflicts	and	would	want	to
start	over,	you	can	recover	with	git	reset.

BUGS

Using	--recurse-submodules	can	only	fetch	new	commits	in	already
checked	out	submodules	right	now.	When	e.g.	upstream	added	a	new
submodule	in	the	just	fetched	commits	of	the	superproject	the	submodule
itself	can	not	be	fetched,	making	it	impossible	to	check	out	that
submodule	later	without	having	to	do	a	fetch	again.	This	is	expected	to
be	fixed	in	a	future	Git	version.

SEE	ALSO

Section	G.3.46,	“git-fetch(1)”,	Section	G.3.79,	“git-merge(1)”,
Section	G.3.27,	“git-config(1)”

GIT



Part	of	the	Section	G.3.1,	“git(1)”	suite

G.3.96.	git-push(1)

NAME

git-push	-	Update	remote	refs	along	with	associated	objects

SYNOPSIS

git	push	[--all	|	--mirror	|	--tags]	[--follow-tags]	[--

atomic]	[-n	|	--dry-run]	[--receive-pack=<git-receive-pack>]

											[--repo=<repository>]	[-f	|	--force]	[-d	|	--

delete]	[--prune]	[-v	|	--verbose]

											[-u	|	--set-upstream]

											[--[no-]signed|--sign=(true|false|if-asked)]

											[--force-with-lease[=<refname>[:<expect>]]]

											[--no-verify]	[<repository>	[<refspec>…]]

DESCRIPTION

Updates	remote	refs	using	local	refs,	while	sending	objects	necessary	to
complete	the	given	refs.

You	can	make	interesting	things	happen	to	a	repository	every	time	you
push	into	it,	by	setting	up	hooks	there.	See	documentation	for
Section	G.3.100,	“git-receive-pack(1)”.

When	the	command	line	does	not	specify	where	to	push	with	the
<repository>	argument,	branch.*.remote	configuration	for	the	current
branch	is	consulted	to	determine	where	to	push.	If	the	configuration	is
missing,	it	defaults	to	origin.

When	the	command	line	does	not	specify	what	to	push	with	<refspec>...
arguments	or	--all,	--mirror,	--tags	options,	the	command	finds	the	default
<refspec>	by	consulting	remote.*.push	configuration,	and	if	it	is	not
found,	honors	push.default	configuration	to	decide	what	to	push	(See
Section	G.3.27,	“git-config(1)”	for	the	meaning	of	push.default).



When	neither	the	command-line	nor	the	configuration	specify	what	to
push,	the	default	behavior	is	used,	which	corresponds	to	the	simple	value
for	push.default:	the	current	branch	is	pushed	to	the	corresponding
upstream	branch,	but	as	a	safety	measure,	the	push	is	aborted	if	the
upstream	branch	does	not	have	the	same	name	as	the	local	one.

OPTIONS

<repository>
The	"remote"	repository	that	is	destination	of	a	push	operation.	This
parameter	can	be	either	a	URL	(see	the	section	GIT	URLS	below)	or
the	name	of	a	remote	(see	the	section	REMOTES	below).

<refspec>…

Specify	what	destination	ref	to	update	with	what	source	object.	The
format	of	a	<refspec>	parameter	is	an	optional	plus	+,	followed	by
the	source	object	<src>,	followed	by	a	colon	:,	followed	by	the
destination	ref	<dst>.

The	<src>	is	often	the	name	of	the	branch	you	would	want	to	push,
but	it	can	be	any	arbitrary	"SHA-1	expression",	such	as	master~4	or
HEAD	(see	Section	G.4.12,	“gitrevisions(7)”).

The	<dst>	tells	which	ref	on	the	remote	side	is	updated	with	this
push.	Arbitrary	expressions	cannot	be	used	here,	an	actual	ref	must
be	named.	If	git	push	[<repository>]	without	any	<refspec>	argument
is	set	to	update	some	ref	at	the	destination	with	<src>	with	remote.
<repository>.push	configuration	variable,	:<dst>	part	can	be	omitted-
-such	a	push	will	update	a	ref	that	<src>	normally	updates	without
any	<refspec>	on	the	command	line.	Otherwise,	missing	:<dst>
means	to	update	the	same	ref	as	the	<src>.

The	object	referenced	by	<src>	is	used	to	update	the	<dst>
reference	on	the	remote	side.	By	default	this	is	only	allowed	if	<dst>
is	not	a	tag	(annotated	or	lightweight),	and	then	only	if	it	can	fast-
forward	<dst>.	By	having	the	optional	leading	+,	you	can	tell	Git	to
update	the	<dst>	ref	even	if	it	is	not	allowed	by	default	(e.g.,	it	is	not



a	fast-forward.)	This	does	not	attempt	to	merge	<src>	into	<dst>.
See	EXAMPLES	below	for	details.

tag	<tag>	means	the	same	as	refs/tags/<tag>:refs/tags/<tag>.

Pushing	an	empty	<src>	allows	you	to	delete	the	<dst>	ref	from	the
remote	repository.

The	special	refspec	:	(or	+:	to	allow	non-fast-forward	updates)	directs
Git	to	push	"matching"	branches:	for	every	branch	that	exists	on	the
local	side,	the	remote	side	is	updated	if	a	branch	of	the	same	name
already	exists	on	the	remote	side.

--all
Push	all	branches	(i.e.	refs	under	refs/heads/);	cannot	be	used	with
other	<refspec>.

--prune
Remove	remote	branches	that	don't	have	a	local	counterpart.	For
example	a	remote	branch	tmp	will	be	removed	if	a	local	branch	with
the	same	name	doesn't	exist	any	more.	This	also	respects	refspecs,
e.g.	git	push	--prune	remote	refs/heads/*:refs/tmp/*	would	make	sure
that	remote	refs/tmp/foo	will	be	removed	if	refs/heads/foo	doesn't
exist.

--mirror
Instead	of	naming	each	ref	to	push,	specifies	that	all	refs	under	refs/
(which	includes	but	is	not	limited	to	refs/heads/,	refs/remotes/,	and
refs/tags/)	be	mirrored	to	the	remote	repository.	Newly	created	local
refs	will	be	pushed	to	the	remote	end,	locally	updated	refs	will	be
force	updated	on	the	remote	end,	and	deleted	refs	will	be	removed
from	the	remote	end.	This	is	the	default	if	the	configuration	option
remote.<remote>.mirror	is	set.

-n	,	--dry-run
Do	everything	except	actually	send	the	updates.

--porcelain
Produce	machine-readable	output.	The	output	status	line	for	each	ref
will	be	tab-separated	and	sent	to	stdout	instead	of	stderr.	The	full
symbolic	names	of	the	refs	will	be	given.

--delete



All	listed	refs	are	deleted	from	the	remote	repository.	This	is	the
same	as	prefixing	all	refs	with	a	colon.

--tags
All	refs	under	refs/tags	are	pushed,	in	addition	to	refspecs	explicitly
listed	on	the	command	line.

--follow-tags
Push	all	the	refs	that	would	be	pushed	without	this	option,	and	also
push	annotated	tags	in	refs/tags	that	are	missing	from	the	remote
but	are	pointing	at	commit-ish	that	are	reachable	from	the	refs	being
pushed.	This	can	also	be	specified	with	configuration	variable
push.followTags.	For	more	information,	see	push.followTags	in
Section	G.3.27,	“git-config(1)”.

--[no-]signed	,	--sign=(true|false|if-asked)
GPG-sign	the	push	request	to	update	refs	on	the	receiving	side,	to
allow	it	to	be	checked	by	the	hooks	and/or	be	logged.	If	false	or	--no-
signed,	no	signing	will	be	attempted.	If	true	or	--signed,	the	push	will
fail	if	the	server	does	not	support	signed	pushes.	If	set	to	if-asked,
sign	if	and	only	if	the	server	supports	signed	pushes.	The	push	will
also	fail	if	the	actual	call	to	gpg	--sign	fails.	See	Section	G.3.100,	“git-
receive-pack(1)”	for	the	details	on	the	receiving	end.

--[no-]atomic
Use	an	atomic	transaction	on	the	remote	side	if	available.	Either	all
refs	are	updated,	or	on	error,	no	refs	are	updated.	If	the	server	does
not	support	atomic	pushes	the	push	will	fail.

--receive-pack=<git-receive-pack>	,	--exec=<git-receive-pack>
Path	to	the	git-receive-pack	program	on	the	remote	end.	Sometimes
useful	when	pushing	to	a	remote	repository	over	ssh,	and	you	do	not
have	the	program	in	a	directory	on	the	default	$PATH.

--[no-]force-with-lease	,	--force-with-lease=<refname>	,	--force-with-
lease=<refname>:<expect>

Usually,	"git	push"	refuses	to	update	a	remote	ref	that	is	not	an
ancestor	of	the	local	ref	used	to	overwrite	it.

This	option	overrides	this	restriction	if	the	current	value	of	the	remote
ref	is	the	expected	value.	"git	push"	fails	otherwise.

Imagine	that	you	have	to	rebase	what	you	have	already	published.



You	will	have	to	bypass	the	"must	fast-forward"	rule	in	order	to
replace	the	history	you	originally	published	with	the	rebased	history.
If	somebody	else	built	on	top	of	your	original	history	while	you	are
rebasing,	the	tip	of	the	branch	at	the	remote	may	advance	with	her
commit,	and	blindly	pushing	with	--force	will	lose	her	work.

This	option	allows	you	to	say	that	you	expect	the	history	you	are
updating	is	what	you	rebased	and	want	to	replace.	If	the	remote	ref
still	points	at	the	commit	you	specified,	you	can	be	sure	that	no	other
people	did	anything	to	the	ref.	It	is	like	taking	a	"lease"	on	the	ref
without	explicitly	locking	it,	and	the	remote	ref	is	updated	only	if	the
"lease"	is	still	valid.

--force-with-lease	alone,	without	specifying	the	details,	will	protect	all
remote	refs	that	are	going	to	be	updated	by	requiring	their	current
value	to	be	the	same	as	the	remote-tracking	branch	we	have	for
them.

--force-with-lease=<refname>,	without	specifying	the	expected
value,	will	protect	the	named	ref	(alone),	if	it	is	going	to	be	updated,
by	requiring	its	current	value	to	be	the	same	as	the	remote-tracking
branch	we	have	for	it.

--force-with-lease=<refname>:<expect>	will	protect	the	named	ref
(alone),	if	it	is	going	to	be	updated,	by	requiring	its	current	value	to
be	the	same	as	the	specified	value	<expect>	(which	is	allowed	to	be
different	from	the	remote-tracking	branch	we	have	for	the	refname,
or	we	do	not	even	have	to	have	such	a	remote-tracking	branch	when
this	form	is	used).

Note	that	all	forms	other	than	--force-with-lease=<refname>:
<expect>	that	specifies	the	expected	current	value	of	the	ref
explicitly	are	still	experimental	and	their	semantics	may	change	as
we	gain	experience	with	this	feature.

"--no-force-with-lease"	will	cancel	all	the	previous	--force-with-lease
on	the	command	line.



-f	,	--force

Usually,	the	command	refuses	to	update	a	remote	ref	that	is	not	an
ancestor	of	the	local	ref	used	to	overwrite	it.	Also,	when	--force-with-
lease	option	is	used,	the	command	refuses	to	update	a	remote	ref
whose	current	value	does	not	match	what	is	expected.

This	flag	disables	these	checks,	and	can	cause	the	remote
repository	to	lose	commits;	use	it	with	care.

Note	that	--force	applies	to	all	the	refs	that	are	pushed,	hence	using
it	with	push.default	set	to	matching	or	with	multiple	push	destinations
configured	with	remote.*.push	may	overwrite	refs	other	than	the
current	branch	(including	local	refs	that	are	strictly	behind	their
remote	counterpart).	To	force	a	push	to	only	one	branch,	use	a	+	in
front	of	the	refspec	to	push	(e.g	git	push	origin	+master	to	force	a
push	to	the	master	branch).	See	the	<refspec>...	section	above	for
details.

--repo=<repository>
This	option	is	equivalent	to	the	<repository>	argument.	If	both	are
specified,	the	command-line	argument	takes	precedence.

-u	,	--set-upstream
For	every	branch	that	is	up	to	date	or	successfully	pushed,	add
upstream	(tracking)	reference,	used	by	argument-less
Section	G.3.95,	“git-pull(1)”	and	other	commands.	For	more
information,	see	branch.<name>.merge	in	Section	G.3.27,	“git-
config(1)”.

--[no-]thin
These	options	are	passed	to	Section	G.3.117,	“git-send-pack(1)”.	A
thin	transfer	significantly	reduces	the	amount	of	sent	data	when	the
sender	and	receiver	share	many	of	the	same	objects	in	common.
The	default	is	--thin.

-q	,	--quiet
Suppress	all	output,	including	the	listing	of	updated	refs,	unless	an
error	occurs.	Progress	is	not	reported	to	the	standard	error	stream.

-v	,	--verbose
Run	verbosely.



--progress
Progress	status	is	reported	on	the	standard	error	stream	by	default
when	it	is	attached	to	a	terminal,	unless	-q	is	specified.	This	flag
forces	progress	status	even	if	the	standard	error	stream	is	not
directed	to	a	terminal.

--no-recurse-submodules	,	--recurse-submodules=check|on-demand|no
May	be	used	to	make	sure	all	submodule	commits	used	by	the
revisions	to	be	pushed	are	available	on	a	remote-tracking	branch.	If
check	is	used	Git	will	verify	that	all	submodule	commits	that	changed
in	the	revisions	to	be	pushed	are	available	on	at	least	one	remote	of
the	submodule.	If	any	commits	are	missing	the	push	will	be	aborted
and	exit	with	non-zero	status.	If	on-demand	is	used	all	submodules
that	changed	in	the	revisions	to	be	pushed	will	be	pushed.	If	on-
demand	was	not	able	to	push	all	necessary	revisions	it	will	also	be
aborted	and	exit	with	non-zero	status.	A	value	of	no	or	using	--no-
recurse-submodules	can	be	used	to	override	the
push.recurseSubmodules	configuration	variable	when	no	submodule
recursion	is	required.

--[no-]verify
Toggle	the	pre-push	hook	(see	Section	G.4.6,	“githooks(5)”).	The
default	is	--verify,	giving	the	hook	a	chance	to	prevent	the	push.	With
--no-verify,	the	hook	is	bypassed	completely.

-4	,	--ipv4
Use	IPv4	addresses	only,	ignoring	IPv6	addresses.

-6	,	--ipv6
Use	IPv6	addresses	only,	ignoring	IPv4	addresses.

GIT	URLS

In	general,	URLs	contain	information	about	the	transport	protocol,	the
address	of	the	remote	server,	and	the	path	to	the	repository.	Depending
on	the	transport	protocol,	some	of	this	information	may	be	absent.

Git	supports	ssh,	git,	http,	and	https	protocols	(in	addition,	ftp,	and	ftps
can	be	used	for	fetching,	but	this	is	inefficient	and	deprecated;	do	not	use
it).



The	native	transport	(i.e.	git://	URL)	does	no	authentication	and	should	be
used	with	caution	on	unsecured	networks.

The	following	syntaxes	may	be	used	with	them:

ssh://[user@]host.xz[:port]/path/to/repo.git/
git://host.xz[:port]/path/to/repo.git/
http[s]://host.xz[:port]/path/to/repo.git/
ftp[s]://host.xz[:port]/path/to/repo.git/

An	alternative	scp-like	syntax	may	also	be	used	with	the	ssh	protocol:

[user@]host.xz:path/to/repo.git/

This	syntax	is	only	recognized	if	there	are	no	slashes	before	the	first
colon.	This	helps	differentiate	a	local	path	that	contains	a	colon.	For
example	the	local	path	foo:bar	could	be	specified	as	an	absolute	path	or
./foo:bar	to	avoid	being	misinterpreted	as	an	ssh	url.

The	ssh	and	git	protocols	additionally	support	~username	expansion:

ssh://[user@]host.xz[:port]/~[user]/path/to/repo.git/
git://host.xz[:port]/~[user]/path/to/repo.git/
[user@]host.xz:/~[user]/path/to/repo.git/

For	local	repositories,	also	supported	by	Git	natively,	the	following
syntaxes	may	be	used:

/path/to/repo.git/
file:///path/to/repo.git/

These	two	syntaxes	are	mostly	equivalent,	except	when	cloning,	when
the	former	implies	--local	option.	See	Section	G.3.23,	“git-clone(1)”	for
details.

When	Git	doesn't	know	how	to	handle	a	certain	transport	protocol,	it
attempts	to	use	the	remote-<transport>	remote	helper,	if	one	exists.	To
explicitly	request	a	remote	helper,	the	following	syntax	may	be	used:



<transport>::<address>

where	<address>	may	be	a	path,	a	server	and	path,	or	an	arbitrary	URL-
like	string	recognized	by	the	specific	remote	helper	being	invoked.	See
Section	G.4.10,	“gitremote-helpers(1)”	for	details.

If	there	are	a	large	number	of	similarly-named	remote	repositories	and
you	want	to	use	a	different	format	for	them	(such	that	the	URLs	you	use
will	be	rewritten	into	URLs	that	work),	you	can	create	a	configuration
section	of	the	form:

								[url	"<actual	url	base>"]

																insteadOf	=	<other	url	base>

For	example,	with	this:

								[url	"git://git.host.xz/"]

																insteadOf	=	host.xz:/path/to/

																insteadOf	=	work:

a	URL	like	"work:repo.git"	or	like	"host.xz:/path/to/repo.git"	will	be
rewritten	in	any	context	that	takes	a	URL	to	be	"git://git.host.xz/repo.git".

If	you	want	to	rewrite	URLs	for	push	only,	you	can	create	a	configuration
section	of	the	form:

								[url	"<actual	url	base>"]

																pushInsteadOf	=	<other	url	base>

For	example,	with	this:

								[url	"ssh://example.org/"]

																pushInsteadOf	=	git://example.org/

a	URL	like	"git://example.org/path/to/repo.git"	will	be	rewritten	to
"ssh://example.org/path/to/repo.git"	for	pushes,	but	pulls	will	still	use	the
original	URL.



REMOTES

The	name	of	one	of	the	following	can	be	used	instead	of	a	URL	as
<repository>	argument:

a	remote	in	the	Git	configuration	file:	$GIT_DIR/config,
a	file	in	the	$GIT_DIR/remotes	directory,	or
a	file	in	the	$GIT_DIR/branches	directory.

All	of	these	also	allow	you	to	omit	the	refspec	from	the	command	line
because	they	each	contain	a	refspec	which	git	will	use	by	default.



1.	Named	remote	in	configuration	file

You	can	choose	to	provide	the	name	of	a	remote	which	you	had
previously	configured	using	Section	G.3.106,	“git-remote(1)”,
Section	G.3.27,	“git-config(1)”	or	even	by	a	manual	edit	to	the
$GIT_DIR/config	file.	The	URL	of	this	remote	will	be	used	to	access	the
repository.	The	refspec	of	this	remote	will	be	used	by	default	when	you
do	not	provide	a	refspec	on	the	command	line.	The	entry	in	the	config	file
would	appear	like	this:

								[remote	"<name>"]

																url	=	<url>

																pushurl	=	<pushurl>

																push	=	<refspec>

																fetch	=	<refspec>

The	<pushurl>	is	used	for	pushes	only.	It	is	optional	and	defaults	to	<url>.



2.	Named	file	in	$GIT_DIR/remotes

You	can	choose	to	provide	the	name	of	a	file	in	$GIT_DIR/remotes.	The
URL	in	this	file	will	be	used	to	access	the	repository.	The	refspec	in	this
file	will	be	used	as	default	when	you	do	not	provide	a	refspec	on	the
command	line.	This	file	should	have	the	following	format:

								URL:	one	of	the	above	URL	format

								Push:	<refspec>

								Pull:	<refspec>

Push:	lines	are	used	by	git	push	and	Pull:	lines	are	used	by	git	pull	and
git	fetch.	Multiple	Push:	and	Pull:	lines	may	be	specified	for	additional
branch	mappings.



3.	Named	file	in	$GIT_DIR/branches

You	can	choose	to	provide	the	name	of	a	file	in	$GIT_DIR/branches.	The
URL	in	this	file	will	be	used	to	access	the	repository.	This	file	should	have
the	following	format:

								<url>#<head>

<url>	is	required;	#<head>	is	optional.

Depending	on	the	operation,	git	will	use	one	of	the	following	refspecs,	if
you	don't	provide	one	on	the	command	line.	<branch>	is	the	name	of	this
file	in	$GIT_DIR/branches	and	<head>	defaults	to	master.

git	fetch	uses:

								refs/heads/<head>:refs/heads/<branch>

git	push	uses:

								HEAD:refs/heads/<head>

OUTPUT

The	output	of	"git	push"	depends	on	the	transport	method	used;	this
section	describes	the	output	when	pushing	over	the	Git	protocol	(either
locally	or	via	ssh).

The	status	of	the	push	is	output	in	tabular	form,	with	each	line
representing	the	status	of	a	single	ref.	Each	line	is	of	the	form:

	<flag>	<summary>	<from>	->	<to>	(<reason>)

If	--porcelain	is	used,	then	each	line	of	the	output	is	of	the	form:



	<flag>	\t	<from>:<to>	\t	<summary>	(<reason>)

The	status	of	up-to-date	refs	is	shown	only	if	--porcelain	or	--verbose
option	is	used.

flag

A	single	character	indicating	the	status	of	the	ref:

(space)
for	a	successfully	pushed	fast-forward;

+
for	a	successful	forced	update;

-
for	a	successfully	deleted	ref;

*
for	a	successfully	pushed	new	ref;

!
for	a	ref	that	was	rejected	or	failed	to	push;	and

=
for	a	ref	that	was	up	to	date	and	did	not	need	pushing.

summary

For	a	successfully	pushed	ref,	the	summary	shows	the	old	and	new
values	of	the	ref	in	a	form	suitable	for	using	as	an	argument	to	git	log
(this	is	<old>..<new>	in	most	cases,	and	<old>...<new>	for	forced
non-fast-forward	updates).

For	a	failed	update,	more	details	are	given:

rejected
Git	did	not	try	to	send	the	ref	at	all,	typically	because	it	is	not	a
fast-forward	and	you	did	not	force	the	update.

remote	rejected
The	remote	end	refused	the	update.	Usually	caused	by	a	hook
on	the	remote	side,	or	because	the	remote	repository	has	one	of
the	following	safety	options	in	effect:	receive.denyCurrentBranch



(for	pushes	to	the	checked	out	branch),
receive.denyNonFastForwards	(for	forced	non-fast-forward
updates),	receive.denyDeletes	or	receive.denyDeleteCurrent.
See	Section	G.3.27,	“git-config(1)”.

remote	failure
The	remote	end	did	not	report	the	successful	update	of	the	ref,
perhaps	because	of	a	temporary	error	on	the	remote	side,	a
break	in	the	network	connection,	or	other	transient	error.

from
The	name	of	the	local	ref	being	pushed,	minus	its	refs/<type>/	prefix.
In	the	case	of	deletion,	the	name	of	the	local	ref	is	omitted.

to
The	name	of	the	remote	ref	being	updated,	minus	its	refs/<type>/
prefix.

reason
A	human-readable	explanation.	In	the	case	of	successfully	pushed
refs,	no	explanation	is	needed.	For	a	failed	ref,	the	reason	for	failure
is	described.

Note	about	fast-forwards

When	an	update	changes	a	branch	(or	more	in	general,	a	ref)	that	used
to	point	at	commit	A	to	point	at	another	commit	B,	it	is	called	a	fast-
forward	update	if	and	only	if	B	is	a	descendant	of	A.

In	a	fast-forward	update	from	A	to	B,	the	set	of	commits	that	the	original
commit	A	built	on	top	of	is	a	subset	of	the	commits	the	new	commit	B
builds	on	top	of.	Hence,	it	does	not	lose	any	history.

In	contrast,	a	non-fast-forward	update	will	lose	history.	For	example,
suppose	you	and	somebody	else	started	at	the	same	commit	X,	and	you
built	a	history	leading	to	commit	B	while	the	other	person	built	a	history
leading	to	commit	A.	The	history	looks	like	this:

						B

					/

	---X---A



Further	suppose	that	the	other	person	already	pushed	changes	leading
to	A	back	to	the	original	repository	from	which	you	two	obtained	the
original	commit	X.

The	push	done	by	the	other	person	updated	the	branch	that	used	to	point
at	commit	X	to	point	at	commit	A.	It	is	a	fast-forward.

But	if	you	try	to	push,	you	will	attempt	to	update	the	branch	(that	now
points	at	A)	with	commit	B.	This	does	not	fast-forward.	If	you	did	so,	the
changes	introduced	by	commit	A	will	be	lost,	because	everybody	will	now
start	building	on	top	of	B.

The	command	by	default	does	not	allow	an	update	that	is	not	a	fast-
forward	to	prevent	such	loss	of	history.

If	you	do	not	want	to	lose	your	work	(history	from	X	to	B)	or	the	work	by
the	other	person	(history	from	X	to	A),	you	would	need	to	first	fetch	the
history	from	the	repository,	create	a	history	that	contains	changes	done
by	both	parties,	and	push	the	result	back.

You	can	perform	"git	pull",	resolve	potential	conflicts,	and	"git	push"	the
result.	A	"git	pull"	will	create	a	merge	commit	C	between	commits	A	and
B.

						B---C

					/			/

	---X---A

Updating	A	with	the	resulting	merge	commit	will	fast-forward	and	your
push	will	be	accepted.

Alternatively,	you	can	rebase	your	change	between	X	and	B	on	top	of	A,
with	"git	pull	--rebase",	and	push	the	result	back.	The	rebase	will	create	a
new	commit	D	that	builds	the	change	between	X	and	B	on	top	of	A.

						B			D

					/			/

	---X---A



Again,	updating	A	with	this	commit	will	fast-forward	and	your	push	will	be
accepted.

There	is	another	common	situation	where	you	may	encounter	non-fast-
forward	rejection	when	you	try	to	push,	and	it	is	possible	even	when	you
are	pushing	into	a	repository	nobody	else	pushes	into.	After	you	push
commit	A	yourself	(in	the	first	picture	in	this	section),	replace	it	with	"git
commit	--amend"	to	produce	commit	B,	and	you	try	to	push	it	out,
because	forgot	that	you	have	pushed	A	out	already.	In	such	a	case,	and
only	if	you	are	certain	that	nobody	in	the	meantime	fetched	your	earlier
commit	A	(and	started	building	on	top	of	it),	you	can	run	"git	push	--force"
to	overwrite	it.	In	other	words,	"git	push	--force"	is	a	method	reserved	for
a	case	where	you	do	mean	to	lose	history.

Examples

git	push
Works	like	git	push	<remote>,	where	<remote>	is	the	current
branch's	remote	(or	origin,	if	no	remote	is	configured	for	the	current
branch).

git	push	origin

Without	additional	configuration,	pushes	the	current	branch	to	the
configured	upstream	(remote.origin.merge	configuration	variable)	if	it
has	the	same	name	as	the	current	branch,	and	errors	out	without
pushing	otherwise.

The	default	behavior	of	this	command	when	no	<refspec>	is	given
can	be	configured	by	setting	the	push	option	of	the	remote,	or	the
push.default	configuration	variable.

For	example,	to	default	to	pushing	only	the	current	branch	to	origin
use	git	config	remote.origin.push	HEAD.	Any	valid	<refspec>	(like
the	ones	in	the	examples	below)	can	be	configured	as	the	default	for
git	push	origin.

git	push	origin	:
Push	"matching"	branches	to	origin.	See	<refspec>	in	the	OPTIONS



section	above	for	a	description	of	"matching"	branches.
git	push	origin	master

Find	a	ref	that	matches	master	in	the	source	repository	(most	likely,	it
would	find	refs/heads/master),	and	update	the	same	ref	(e.g.
refs/heads/master)	in	origin	repository	with	it.	If	master	did	not	exist
remotely,	it	would	be	created.

git	push	origin	HEAD
A	handy	way	to	push	the	current	branch	to	the	same	name	on	the
remote.

git	push	mothership	master:satellite/master	dev:satellite/dev

Use	the	source	ref	that	matches	master	(e.g.	refs/heads/master)	to
update	the	ref	that	matches	satellite/master	(most	probably
refs/remotes/satellite/master)	in	the	mothership	repository;	do	the
same	for	dev	and	satellite/dev.

This	is	to	emulate	git	fetch	run	on	the	mothership	using	git	push	that
is	run	in	the	opposite	direction	in	order	to	integrate	the	work	done	on
satellite,	and	is	often	necessary	when	you	can	only	make	connection
in	one	way	(i.e.	satellite	can	ssh	into	mothership	but	mothership
cannot	initiate	connection	to	satellite	because	the	latter	is	behind	a
firewall	or	does	not	run	sshd).

After	running	this	git	push	on	the	satellite	machine,	you	would	ssh
into	the	mothership	and	run	git	merge	there	to	complete	the
emulation	of	git	pull	that	were	run	on	mothership	to	pull	changes
made	on	satellite.

git	push	origin	HEAD:master
Push	the	current	branch	to	the	remote	ref	matching	master	in	the
origin	repository.	This	form	is	convenient	to	push	the	current	branch
without	thinking	about	its	local	name.

git	push	origin	master:refs/heads/experimental
Create	the	branch	experimental	in	the	origin	repository	by	copying
the	current	master	branch.	This	form	is	only	needed	to	create	a	new
branch	or	tag	in	the	remote	repository	when	the	local	name	and	the
remote	name	are	different;	otherwise,	the	ref	name	on	its	own	will
work.



git	push	origin	:experimental
Find	a	ref	that	matches	experimental	in	the	origin	repository	(e.g.
refs/heads/experimental),	and	delete	it.

git	push	origin	+dev:master

Update	the	origin	repository's	master	branch	with	the	dev	branch,
allowing	non-fast-forward	updates.	This	can	leave	unreferenced
commits	dangling	in	the	origin	repository.	Consider	the	following
situation,	where	a	fast-forward	is	not	possible:

												o---o---o---A---B		origin/master

																					\

																						X---Y---Z		dev

The	above	command	would	change	the	origin	repository	to

																						A---B		(unnamed	branch)

																					/

												o---o---o---X---Y---Z		master

Commits	A	and	B	would	no	longer	belong	to	a	branch	with	a
symbolic	name,	and	so	would	be	unreachable.	As	such,	these
commits	would	be	removed	by	a	git	gc	command	on	the	origin
repository.

GIT

Part	of	the	Section	G.3.1,	“git(1)”	suite

G.3.97.	git-quiltimport(1)

NAME

git-quiltimport	-	Applies	a	quilt	patchset	onto	the	current	branch

SYNOPSIS



git	quiltimport	[--dry-run	|	-n]	[--author	<author>]	[--

patches	<dir>]

																[--series	<file>]

DESCRIPTION

Applies	a	quilt	patchset	onto	the	current	Git	branch,	preserving	the	patch
boundaries,	patch	order,	and	patch	descriptions	present	in	the	quilt
patchset.

For	each	patch	the	code	attempts	to	extract	the	author	from	the	patch
description.	If	that	fails	it	falls	back	to	the	author	specified	with	--author.	If
the	--author	flag	was	not	given	the	patch	description	is	displayed	and	the
user	is	asked	to	interactively	enter	the	author	of	the	patch.

If	a	subject	is	not	found	in	the	patch	description	the	patch	name	is
preserved	as	the	1	line	subject	in	the	Git	description.

OPTIONS

-n	,	--dry-run
Walk	through	the	patches	in	the	series	and	warn	if	we	cannot	find	all
of	the	necessary	information	to	commit	a	patch.	At	the	time	of	this
writing	only	missing	author	information	is	warned	about.

--author	Author	Name	<Author	Email>
The	author	name	and	email	address	to	use	when	no	author
information	can	be	found	in	the	patch	description.

--patches	<dir>

The	directory	to	find	the	quilt	patches.

The	default	for	the	patch	directory	is	patches	or	the	value	of	the
$QUILT_PATCHES	environment	variable.

--series	<file>

The	quilt	series	file.



The	default	for	the	series	file	is	<patches>/series	or	the	value	of	the
$QUILT_SERIES	environment	variable.

GIT

Part	of	the	Section	G.3.1,	“git(1)”	suite

G.3.98.	git-read-tree(1)

NAME

git-read-tree	-	Reads	tree	information	into	the	index

SYNOPSIS

git	read-tree	[[-m	[--trivial]	[--aggressive]	|	--reset	|	--

prefix=<prefix>]

																[-u	[--exclude-per-directory=<gitignore>]	|	-

i]]

																[--index-output=<file>]	[--no-sparse-

checkout]

																(--empty	|	<tree-ish1>	[<tree-ish2>	[<tree-

ish3>]])

DESCRIPTION

Reads	the	tree	information	given	by	<tree-ish>	into	the	index,	but	does
not	actually	update	any	of	the	files	it	"caches".	(see:	Section	G.3.17,	“git-
checkout-index(1)”)

Optionally,	it	can	merge	a	tree	into	the	index,	perform	a	fast-forward	(i.e.
2-way)	merge,	or	a	3-way	merge,	with	the	-m	flag.	When	used	with	-m,
the	-u	flag	causes	it	to	also	update	the	files	in	the	work	tree	with	the	result
of	the	merge.

Trivial	merges	are	done	by	git	read-tree	itself.	Only	conflicting	paths	will
be	in	unmerged	state	when	git	read-tree	returns.



OPTIONS

-m
Perform	a	merge,	not	just	a	read.	The	command	will	refuse	to	run	if
your	index	file	has	unmerged	entries,	indicating	that	you	have	not
finished	previous	merge	you	started.

--reset
Same	as	-m,	except	that	unmerged	entries	are	discarded	instead	of
failing.

-u
After	a	successful	merge,	update	the	files	in	the	work	tree	with	the
result	of	the	merge.

-i
Usually	a	merge	requires	the	index	file	as	well	as	the	files	in	the
working	tree	to	be	up	to	date	with	the	current	head	commit,	in	order
not	to	lose	local	changes.	This	flag	disables	the	check	with	the
working	tree	and	is	meant	to	be	used	when	creating	a	merge	of	trees
that	are	not	directly	related	to	the	current	working	tree	status	into	a
temporary	index	file.

-n	,	--dry-run
Check	if	the	command	would	error	out,	without	updating	the	index	or
the	files	in	the	working	tree	for	real.

-v
Show	the	progress	of	checking	files	out.

--trivial
Restrict	three-way	merge	by	git	read-tree	to	happen	only	if	there	is
no	file-level	merging	required,	instead	of	resolving	merge	for	trivial
cases	and	leaving	conflicting	files	unresolved	in	the	index.

--aggressive

Usually	a	three-way	merge	by	git	read-tree	resolves	the	merge	for
really	trivial	cases	and	leaves	other	cases	unresolved	in	the	index,
so	that	porcelains	can	implement	different	merge	policies.	This	flag
makes	the	command	resolve	a	few	more	cases	internally:

when	one	side	removes	a	path	and	the	other	side	leaves	the
path	unmodified.	The	resolution	is	to	remove	that	path.



when	both	sides	remove	a	path.	The	resolution	is	to	remove	that
path.
when	both	sides	add	a	path	identically.	The	resolution	is	to	add
that	path.

--prefix=<prefix>/
Keep	the	current	index	contents,	and	read	the	contents	of	the	named
tree-ish	under	the	directory	at	<prefix>.	The	command	will	refuse	to
overwrite	entries	that	already	existed	in	the	original	index	file.	Note
that	the	<prefix>/	value	must	end	with	a	slash.

--exclude-per-directory=<gitignore>
When	running	the	command	with	-u	and	-m	options,	the	merge	result
may	need	to	overwrite	paths	that	are	not	tracked	in	the	current
branch.	The	command	usually	refuses	to	proceed	with	the	merge	to
avoid	losing	such	a	path.	However	this	safety	valve	sometimes	gets
in	the	way.	For	example,	it	often	happens	that	the	other	branch
added	a	file	that	used	to	be	a	generated	file	in	your	branch,	and	the
safety	valve	triggers	when	you	try	to	switch	to	that	branch	after	you
ran	make	but	before	running	make	clean	to	remove	the	generated
file.	This	option	tells	the	command	to	read	per-directory	exclude	file
(usually	.gitignore)	and	allows	such	an	untracked	but	explicitly
ignored	file	to	be	overwritten.

--index-output=<file>
Instead	of	writing	the	results	out	to	$GIT_INDEX_FILE,	write	the
resulting	index	in	the	named	file.	While	the	command	is	operating,
the	original	index	file	is	locked	with	the	same	mechanism	as	usual.
The	file	must	allow	to	be	rename(2)ed	into	from	a	temporary	file	that
is	created	next	to	the	usual	index	file;	typically	this	means	it	needs	to
be	on	the	same	filesystem	as	the	index	file	itself,	and	you	need	write
permission	to	the	directories	the	index	file	and	index	output	file	are
located	in.

--no-sparse-checkout
Disable	sparse	checkout	support	even	if	core.sparseCheckout	is
true.

--empty
Instead	of	reading	tree	object(s)	into	the	index,	just	empty	it.

<tree-ish#>
The	id	of	the	tree	object(s)	to	be	read/merged.



Merging

If	-m	is	specified,	git	read-tree	can	perform	3	kinds	of	merge,	a	single	tree
merge	if	only	1	tree	is	given,	a	fast-forward	merge	with	2	trees,	or	a	3-
way	merge	if	3	trees	are	provided.



1.	Single	Tree	Merge

If	only	1	tree	is	specified,	git	read-tree	operates	as	if	the	user	did	not
specify	-m,	except	that	if	the	original	index	has	an	entry	for	a	given
pathname,	and	the	contents	of	the	path	match	with	the	tree	being	read,
the	stat	info	from	the	index	is	used.	(In	other	words,	the	index's	stat()s
take	precedence	over	the	merged	tree's).

That	means	that	if	you	do	a	git	read-tree	-m	<newtree>	followed	by	a	git
checkout-index	-f	-u	-a,	the	git	checkout-index	only	checks	out	the	stuff
that	really	changed.

This	is	used	to	avoid	unnecessary	false	hits	when	git	diff-files	is	run	after
git	read-tree.



2.	Two	Tree	Merge

Typically,	this	is	invoked	as	git	read-tree	-m	$H	$M,	where	$H	is	the	head
commit	of	the	current	repository,	and	$M	is	the	head	of	a	foreign	tree,
which	is	simply	ahead	of	$H	(i.e.	we	are	in	a	fast-forward	situation).

When	two	trees	are	specified,	the	user	is	telling	git	read-tree	the
following:

1.	 The	current	index	and	work	tree	is	derived	from	$H,	but	the	user	may
have	local	changes	in	them	since	$H.

2.	 The	user	wants	to	fast-forward	to	$M.

In	this	case,	the	git	read-tree	-m	$H	$M	command	makes	sure	that	no
local	change	is	lost	as	the	result	of	this	"merge".	Here	are	the	"carry
forward"	rules,	where	"I"	denotes	the	index,	"clean"	means	that	index	and
work	tree	coincide,	and	"exists"/"nothing"	refer	to	the	presence	of	a	path
in	the	specified	commit:

			I																			H								M								Result

		-------------------------------------------------------

0		nothing													nothing		nothing		(does	not	happen)

1		nothing													nothing		exists			use	M

2		nothing													exists			nothing		remove	path	from	index

3		nothing													exists			exists,		use	M	if	"initial	checkout",

																																H	==	M			keep	index	otherwise

																																exists,		fail

																																H	!=	M

			clean	I==H		I==M

		------------------

4		yes			N/A			N/A					nothing		nothing		keep	index

5		no				N/A			N/A					nothing		nothing		keep	index

6		yes			N/A			yes					nothing		exists			keep	index

7		no				N/A			yes					nothing		exists			keep	index

8		yes			N/A			no						nothing		exists			fail

9		no				N/A			no						nothing		exists			fail

10	yes			yes			N/A					exists			nothing		remove	path	from	index

11	no				yes			N/A					exists			nothing		fail

12	yes			no				N/A					exists			nothing		fail

13	no				no				N/A					exists			nothing		fail

			clean	(H==M)

		------

14	yes																	exists			exists			keep	index

15	no																		exists			exists			keep	index

			clean	I==H		I==M	(H!=M)



		------------------

16	yes			no				no						exists			exists			fail

17	no				no				no						exists			exists			fail

18	yes			no				yes					exists			exists			keep	index

19	no				no				yes					exists			exists			keep	index

20	yes			yes			no						exists			exists			use	M

21	no				yes			no						exists			exists			fail

In	all	"keep	index"	cases,	the	index	entry	stays	as	in	the	original	index
file.	If	the	entry	is	not	up	to	date,	git	read-tree	keeps	the	copy	in	the	work
tree	intact	when	operating	under	the	-u	flag.

When	this	form	of	git	read-tree	returns	successfully,	you	can	see	which	of
the	"local	changes"	that	you	made	were	carried	forward	by	running	git
diff-index	--cached	$M.	Note	that	this	does	not	necessarily	match	what	git
diff-index	--cached	$H	would	have	produced	before	such	a	two	tree
merge.	This	is	because	of	cases	18	and	19	---	if	you	already	had	the
changes	in	$M	(e.g.	maybe	you	picked	it	up	via	e-mail	in	a	patch	form),
git	diff-index	--cached	$H	would	have	told	you	about	the	change	before
this	merge,	but	it	would	not	show	in	git	diff-index	--cached	$M	output	after
the	two-tree	merge.

Case	3	is	slightly	tricky	and	needs	explanation.	The	result	from	this	rule
logically	should	be	to	remove	the	path	if	the	user	staged	the	removal	of
the	path	and	then	switching	to	a	new	branch.	That	however	will	prevent
the	initial	checkout	from	happening,	so	the	rule	is	modified	to	use	M	(new
tree)	only	when	the	content	of	the	index	is	empty.	Otherwise	the	removal
of	the	path	is	kept	as	long	as	$H	and	$M	are	the	same.



3.	3-Way	Merge

Each	"index"	entry	has	two	bits	worth	of	"stage"	state.	stage	0	is	the
normal	one,	and	is	the	only	one	you'd	see	in	any	kind	of	normal	use.

However,	when	you	do	git	read-tree	with	three	trees,	the	"stage"	starts
out	at	1.

This	means	that	you	can	do

$	git	read-tree	-m	<tree1>	<tree2>	<tree3>

and	you	will	end	up	with	an	index	with	all	of	the	<tree1>	entries	in
"stage1",	all	of	the	<tree2>	entries	in	"stage2"	and	all	of	the	<tree3>
entries	in	"stage3".	When	performing	a	merge	of	another	branch	into	the
current	branch,	we	use	the	common	ancestor	tree	as	<tree1>,	the	current
branch	head	as	<tree2>,	and	the	other	branch	head	as	<tree3>.

Furthermore,	git	read-tree	has	special-case	logic	that	says:	if	you	see	a
file	that	matches	in	all	respects	in	the	following	states,	it	"collapses"	back
to	"stage0":

stage	2	and	3	are	the	same;	take	one	or	the	other	(it	makes	no
difference	-	the	same	work	has	been	done	on	our	branch	in	stage	2
and	their	branch	in	stage	3)
stage	1	and	stage	2	are	the	same	and	stage	3	is	different;	take	stage
3	(our	branch	in	stage	2	did	not	do	anything	since	the	ancestor	in
stage	1	while	their	branch	in	stage	3	worked	on	it)
stage	1	and	stage	3	are	the	same	and	stage	2	is	different	take	stage
2	(we	did	something	while	they	did	nothing)

The	git	write-tree	command	refuses	to	write	a	nonsensical	tree,	and	it	will
complain	about	unmerged	entries	if	it	sees	a	single	entry	that	is	not	stage
0.

OK,	this	all	sounds	like	a	collection	of	totally	nonsensical	rules,	but	it's



actually	exactly	what	you	want	in	order	to	do	a	fast	merge.	The	different
stages	represent	the	"result	tree"	(stage	0,	aka	"merged"),	the	original
tree	(stage	1,	aka	"orig"),	and	the	two	trees	you	are	trying	to	merge
(stage	2	and	3	respectively).

The	order	of	stages	1,	2	and	3	(hence	the	order	of	three	<tree-ish>
command-line	arguments)	are	significant	when	you	start	a	3-way	merge
with	an	index	file	that	is	already	populated.	Here	is	an	outline	of	how	the
algorithm	works:

if	a	file	exists	in	identical	format	in	all	three	trees,	it	will	automatically
collapse	to	"merged"	state	by	git	read-tree.
a	file	that	has	any	difference	what-so-ever	in	the	three	trees	will	stay
as	separate	entries	in	the	index.	It's	up	to	"porcelain	policy"	to
determine	how	to	remove	the	non-0	stages,	and	insert	a	merged
version.

the	index	file	saves	and	restores	with	all	this	information,	so	you	can
merge	things	incrementally,	but	as	long	as	it	has	entries	in	stages
1/2/3	(i.e.,	"unmerged	entries")	you	can't	write	the	result.	So	now	the
merge	algorithm	ends	up	being	really	simple:

you	walk	the	index	in	order,	and	ignore	all	entries	of	stage	0,
since	they've	already	been	done.
if	you	find	a	"stage1",	but	no	matching	"stage2"	or	"stage3",	you
know	it's	been	removed	from	both	trees	(it	only	existed	in	the
original	tree),	and	you	remove	that	entry.
if	you	find	a	matching	"stage2"	and	"stage3"	tree,	you	remove
one	of	them,	and	turn	the	other	into	a	"stage0"	entry.	Remove
any	matching	"stage1"	entry	if	it	exists	too.	..	all	the	normal	trivial
rules	..

You	would	normally	use	git	merge-index	with	supplied	git	merge-one-file
to	do	this	last	step.	The	script	updates	the	files	in	the	working	tree	as	it
merges	each	path	and	at	the	end	of	a	successful	merge.

When	you	start	a	3-way	merge	with	an	index	file	that	is	already
populated,	it	is	assumed	that	it	represents	the	state	of	the	files	in	your



work	tree,	and	you	can	even	have	files	with	changes	unrecorded	in	the
index	file.	It	is	further	assumed	that	this	state	is	"derived"	from	the	stage
2	tree.	The	3-way	merge	refuses	to	run	if	it	finds	an	entry	in	the	original
index	file	that	does	not	match	stage	2.

This	is	done	to	prevent	you	from	losing	your	work-in-progress	changes,
and	mixing	your	random	changes	in	an	unrelated	merge	commit.	To
illustrate,	suppose	you	start	from	what	has	been	committed	last	to	your
repository:

$	JC=`git	rev-parse	--verify	"HEAD^0"`

$	git	checkout-index	-f	-u	-a	$JC

You	do	random	edits,	without	running	git	update-index.	And	then	you
notice	that	the	tip	of	your	"upstream"	tree	has	advanced	since	you	pulled
from	him:

$	git	fetch	git://....	linus

$	LT=`git	rev-parse	FETCH_HEAD`

Your	work	tree	is	still	based	on	your	HEAD	($JC),	but	you	have	some
edits	since.	Three-way	merge	makes	sure	that	you	have	not	added	or
modified	index	entries	since	$JC,	and	if	you	haven't,	then	does	the	right
thing.	So	with	the	following	sequence:

$	git	read-tree	-m	-u	`git	merge-base	$JC	$LT`	$JC	$LT

$	git	merge-index	git-merge-one-file	-a

$	echo	"Merge	with	Linus"	|	\

		git	commit-tree	`git	write-tree`	-p	$JC	-p	$LT

what	you	would	commit	is	a	pure	merge	between	$JC	and	$LT	without
your	work-in-progress	changes,	and	your	work	tree	would	be	updated	to
the	result	of	the	merge.

However,	if	you	have	local	changes	in	the	working	tree	that	would	be
overwritten	by	this	merge,	git	read-tree	will	refuse	to	run	to	prevent	your
changes	from	being	lost.



In	other	words,	there	is	no	need	to	worry	about	what	exists	only	in	the
working	tree.	When	you	have	local	changes	in	a	part	of	the	project	that	is
not	involved	in	the	merge,	your	changes	do	not	interfere	with	the	merge,
and	are	kept	intact.	When	they	do	interfere,	the	merge	does	not	even
start	(git	read-tree	complains	loudly	and	fails	without	modifying	anything).
In	such	a	case,	you	can	simply	continue	doing	what	you	were	in	the
middle	of	doing,	and	when	your	working	tree	is	ready	(i.e.	you	have
finished	your	work-in-progress),	attempt	the	merge	again.

Sparse	checkout

"Sparse	checkout"	allows	populating	the	working	directory	sparsely.	It
uses	the	skip-worktree	bit	(see	Section	G.3.137,	“git-update-index(1)”)	to
tell	Git	whether	a	file	in	the	working	directory	is	worth	looking	at.

git	read-tree	and	other	merge-based	commands	(git	merge,	git
checkout…)	can	help	maintaining	the	skip-worktree	bitmap	and	working
directory	update.	$GIT_DIR/info/sparse-checkout	is	used	to	define	the
skip-worktree	reference	bitmap.	When	git	read-tree	needs	to	update	the
working	directory,	it	resets	the	skip-worktree	bit	in	the	index	based	on	this
file,	which	uses	the	same	syntax	as	.gitignore	files.	If	an	entry	matches	a
pattern	in	this	file,	skip-worktree	will	not	be	set	on	that	entry.	Otherwise,
skip-worktree	will	be	set.

Then	it	compares	the	new	skip-worktree	value	with	the	previous	one.	If
skip-worktree	turns	from	set	to	unset,	it	will	add	the	corresponding	file
back.	If	it	turns	from	unset	to	set,	that	file	will	be	removed.

While	$GIT_DIR/info/sparse-checkout	is	usually	used	to	specify	what
files	are	in,	you	can	also	specify	what	files	are	not	in,	using	negate
patterns.	For	example,	to	remove	the	file	unwanted:

/*

!unwanted

Another	tricky	thing	is	fully	repopulating	the	working	directory	when	you
no	longer	want	sparse	checkout.	You	cannot	just	disable	"sparse



checkout"	because	skip-worktree	bits	are	still	in	the	index	and	your
working	directory	is	still	sparsely	populated.	You	should	re-populate	the
working	directory	with	the	$GIT_DIR/info/sparse-checkout	file	content	as
follows:

/*

Then	you	can	disable	sparse	checkout.	Sparse	checkout	support	in	git
read-tree	and	similar	commands	is	disabled	by	default.	You	need	to	turn
core.sparseCheckout	on	in	order	to	have	sparse	checkout	support.

SEE	ALSO

Section	G.3.149,	“git-write-tree(1)”;	Section	G.3.69,	“git-ls-files(1)”;
Section	G.4.5,	“gitignore(5)”

GIT

Part	of	the	Section	G.3.1,	“git(1)”	suite

G.3.99.	git-rebase(1)

NAME

git-rebase	-	Reapply	commits	on	top	of	another	base	tip

SYNOPSIS

git	rebase	[-i	|	--interactive]	[options]	[--exec	<cmd>]	[--

onto	<newbase>]

								[<upstream>	[<branch>]]

git	rebase	[-i	|	--interactive]	[options]	[--exec	<cmd>]	[--

onto	<newbase>]

								--root	[<branch>]

git	rebase	--continue	|	--skip	|	--abort	|	--edit-todo



DESCRIPTION

If	<branch>	is	specified,	git	rebase	will	perform	an	automatic	git	checkout
<branch>	before	doing	anything	else.	Otherwise	it	remains	on	the	current
branch.

If	<upstream>	is	not	specified,	the	upstream	configured	in	branch.
<name>.remote	and	branch.<name>.merge	options	will	be	used	(see
Section	G.3.27,	“git-config(1)”	for	details)	and	the	--fork-point	option	is
assumed.	If	you	are	currently	not	on	any	branch	or	if	the	current	branch
does	not	have	a	configured	upstream,	the	rebase	will	abort.

All	changes	made	by	commits	in	the	current	branch	but	that	are	not	in
<upstream>	are	saved	to	a	temporary	area.	This	is	the	same	set	of
commits	that	would	be	shown	by	git	log	<upstream>..HEAD;	or	by	git	log
'fork_point'..HEAD,	if	--fork-point	is	active	(see	the	description	on	--fork-
point	below);	or	by	git	log	HEAD,	if	the	--root	option	is	specified.

The	current	branch	is	reset	to	<upstream>,	or	<newbase>	if	the	--onto
option	was	supplied.	This	has	the	exact	same	effect	as	git	reset	--hard
<upstream>	(or	<newbase>).	ORIG_HEAD	is	set	to	point	at	the	tip	of	the
branch	before	the	reset.

The	commits	that	were	previously	saved	into	the	temporary	area	are	then
reapplied	to	the	current	branch,	one	by	one,	in	order.	Note	that	any
commits	in	HEAD	which	introduce	the	same	textual	changes	as	a	commit
in	HEAD..<upstream>	are	omitted	(i.e.,	a	patch	already	accepted
upstream	with	a	different	commit	message	or	timestamp	will	be	skipped).

It	is	possible	that	a	merge	failure	will	prevent	this	process	from	being
completely	automatic.	You	will	have	to	resolve	any	such	merge	failure
and	run	git	rebase	--continue.	Another	option	is	to	bypass	the	commit	that
caused	the	merge	failure	with	git	rebase	--skip.	To	check	out	the	original
<branch>	and	remove	the	.git/rebase-apply	working	files,	use	the
command	git	rebase	--abort	instead.

Assume	the	following	history	exists	and	the	current	branch	is	"topic":



										A---B---C	topic

									/

				D---E---F---G	master

From	this	point,	the	result	of	either	of	the	following	commands:

git	rebase	master

git	rebase	master	topic

would	be:

																		A'--B'--C'	topic

																	/

				D---E---F---G	master

NOTE:	The	latter	form	is	just	a	short-hand	of	git	checkout	topic	followed
by	git	rebase	master.	When	rebase	exits	topic	will	remain	the	checked-
out	branch.

If	the	upstream	branch	already	contains	a	change	you	have	made	(e.g.,
because	you	mailed	a	patch	which	was	applied	upstream),	then	that
commit	will	be	skipped.	For	example,	running	git	rebase	master	on	the
following	history	(in	which	A'	and	A	introduce	the	same	set	of	changes,
but	have	different	committer	information):

										A---B---C	topic

									/

				D---E---A'---F	master

will	result	in:

																			B'---C'	topic

																		/

				D---E---A'---F	master

Here	is	how	you	would	transplant	a	topic	branch	based	on	one	branch	to
another,	to	pretend	that	you	forked	the	topic	branch	from	the	latter
branch,	using	rebase	--onto.



First	let's	assume	your	topic	is	based	on	branch	next.	For	example,	a
feature	developed	in	topic	depends	on	some	functionality	which	is	found
in	next.

				o---o---o---o---o		master

									\

										o---o---o---o---o		next

																											\

																												o---o---o		topic

We	want	to	make	topic	forked	from	branch	master;	for	example,	because
the	functionality	on	which	topic	depends	was	merged	into	the	more	stable
master	branch.	We	want	our	tree	to	look	like	this:

				o---o---o---o---o		master

								|												\

								|													o'--o'--o'		topic

									\

										o---o---o---o---o		next

We	can	get	this	using	the	following	command:

git	rebase	--onto	master	next	topic

Another	example	of	--onto	option	is	to	rebase	part	of	a	branch.	If	we	have
the	following	situation:

																												H---I---J	topicB

																											/

																		E---F---G		topicA

																	/

				A---B---C---D		master

then	the	command

git	rebase	--onto	master	topicA	topicB

would	result	in:

																	H'--I'--J'		topicB



																/

																|	E---F---G		topicA

																|/

				A---B---C---D		master

This	is	useful	when	topicB	does	not	depend	on	topicA.

A	range	of	commits	could	also	be	removed	with	rebase.	If	we	have	the
following	situation:

				E---F---G---H---I---J		topicA

then	the	command

git	rebase	--onto	topicA~5	topicA~3	topicA

would	result	in	the	removal	of	commits	F	and	G:

				E---H'---I'---J'		topicA

This	is	useful	if	F	and	G	were	flawed	in	some	way,	or	should	not	be	part
of	topicA.	Note	that	the	argument	to	--onto	and	the	<upstream>
parameter	can	be	any	valid	commit-ish.

In	case	of	conflict,	git	rebase	will	stop	at	the	first	problematic	commit	and
leave	conflict	markers	in	the	tree.	You	can	use	git	diff	to	locate	the
markers	(<<<<<<)	and	make	edits	to	resolve	the	conflict.	For	each	file
you	edit,	you	need	to	tell	Git	that	the	conflict	has	been	resolved,	typically
this	would	be	done	with

git	add	<filename>

After	resolving	the	conflict	manually	and	updating	the	index	with	the
desired	resolution,	you	can	continue	the	rebasing	process	with

git	rebase	--continue

Alternatively,	you	can	undo	the	git	rebase	with

git	rebase	--abort



CONFIGURATION

rebase.stat
Whether	to	show	a	diffstat	of	what	changed	upstream	since	the	last
rebase.	False	by	default.

rebase.autoSquash
If	set	to	true	enable	--autosquash	option	by	default.

rebase.autoStash
If	set	to	true	enable	--autostash	option	by	default.

rebase.missingCommitsCheck
If	set	to	"warn",	print	warnings	about	removed	commits	in	interactive
mode.	If	set	to	"error",	print	the	warnings	and	stop	the	rebase.	If	set
to	"ignore",	no	checking	is	done.	"ignore"	by	default.

rebase.instructionFormat
Custom	commit	list	format	to	use	during	an	--interactive	rebase.

OPTIONS

--onto	<newbase>

Starting	point	at	which	to	create	the	new	commits.	If	the	--onto	option
is	not	specified,	the	starting	point	is	<upstream>.	May	be	any	valid
commit,	and	not	just	an	existing	branch	name.

As	a	special	case,	you	may	use	"A...B"	as	a	shortcut	for	the	merge
base	of	A	and	B	if	there	is	exactly	one	merge	base.	You	can	leave
out	at	most	one	of	A	and	B,	in	which	case	it	defaults	to	HEAD.

<upstream>
Upstream	branch	to	compare	against.	May	be	any	valid	commit,	not
just	an	existing	branch	name.	Defaults	to	the	configured	upstream
for	the	current	branch.

<branch>
Working	branch;	defaults	to	HEAD.

--continue
Restart	the	rebasing	process	after	having	resolved	a	merge	conflict.

--abort



Abort	the	rebase	operation	and	reset	HEAD	to	the	original	branch.	If
<branch>	was	provided	when	the	rebase	operation	was	started,	then
HEAD	will	be	reset	to	<branch>.	Otherwise	HEAD	will	be	reset	to
where	it	was	when	the	rebase	operation	was	started.

--keep-empty
Keep	the	commits	that	do	not	change	anything	from	its	parents	in	the
result.

--skip
Restart	the	rebasing	process	by	skipping	the	current	patch.

--edit-todo
Edit	the	todo	list	during	an	interactive	rebase.

-m	,	--merge

Use	merging	strategies	to	rebase.	When	the	recursive	(default)
merge	strategy	is	used,	this	allows	rebase	to	be	aware	of	renames
on	the	upstream	side.

Note	that	a	rebase	merge	works	by	replaying	each	commit	from	the
working	branch	on	top	of	the	<upstream>	branch.	Because	of	this,
when	a	merge	conflict	happens,	the	side	reported	as	ours	is	the	so-
far	rebased	series,	starting	with	<upstream>,	and	theirs	is	the
working	branch.	In	other	words,	the	sides	are	swapped.

-s	<strategy>	,	--strategy=<strategy>

Use	the	given	merge	strategy.	If	there	is	no	-s	option	git	merge-
recursive	is	used	instead.	This	implies	--merge.

Because	git	rebase	replays	each	commit	from	the	working	branch	on
top	of	the	<upstream>	branch	using	the	given	strategy,	using	the
ours	strategy	simply	discards	all	patches	from	the	<branch>,	which
makes	little	sense.

-X	<strategy-option>	,	--strategy-option=<strategy-option>
Pass	the	<strategy-option>	through	to	the	merge	strategy.	This
implies	--merge	and,	if	no	strategy	has	been	specified,	-s	recursive.
Note	the	reversal	of	ours	and	theirs	as	noted	above	for	the	-m
option.



-S[<keyid>]	,	--gpg-sign[=<keyid>]
GPG-sign	commits.	The	keyid	argument	is	optional	and	defaults	to
the	committer	identity;	if	specified,	it	must	be	stuck	to	the	option
without	a	space.

-q	,	--quiet
Be	quiet.	Implies	--no-stat.

-v	,	--verbose
Be	verbose.	Implies	--stat.

--stat
Show	a	diffstat	of	what	changed	upstream	since	the	last	rebase.	The
diffstat	is	also	controlled	by	the	configuration	option	rebase.stat.

-n	,	--no-stat
Do	not	show	a	diffstat	as	part	of	the	rebase	process.

--no-verify
This	option	bypasses	the	pre-rebase	hook.	See	also	Section	G.4.6,
“githooks(5)”.

--verify
Allows	the	pre-rebase	hook	to	run,	which	is	the	default.	This	option
can	be	used	to	override	--no-verify.	See	also	Section	G.4.6,
“githooks(5)”.

-C<n>
Ensure	at	least	<n>	lines	of	surrounding	context	match	before	and
after	each	change.	When	fewer	lines	of	surrounding	context	exist
they	all	must	match.	By	default	no	context	is	ever	ignored.

-f	,	--force-rebase

Force	a	rebase	even	if	the	current	branch	is	up-to-date	and	the
command	without	--force	would	return	without	doing	anything.

You	may	find	this	(or	--no-ff	with	an	interactive	rebase)	helpful	after
reverting	a	topic	branch	merge,	as	this	option	recreates	the	topic
branch	with	fresh	commits	so	it	can	be	remerged	successfully
without	needing	to	"revert	the	reversion"	(see	the	revert-a-faulty-
merge	How-To	for	details).

--fork-point	,	--no-fork-point

Use	reflog	to	find	a	better	common	ancestor	between	<upstream>

https://www.kernel.org/pub/software/scm/git/docs/howto/revert-a-faulty-merge.html


and	<branch>	when	calculating	which	commits	have	been
introduced	by	<branch>.

When	--fork-point	is	active,	fork_point	will	be	used	instead	of
<upstream>	to	calculate	the	set	of	commits	to	rebase,	where
fork_point	is	the	result	of	git	merge-base	--fork-point	<upstream>
<branch>	command	(see	Section	G.3.74,	“git-merge-base(1)”).	If
fork_point	ends	up	being	empty,	the	<upstream>	will	be	used	as	a
fallback.

If	either	<upstream>	or	--root	is	given	on	the	command	line,	then	the
default	is	--no-fork-point,	otherwise	the	default	is	--fork-point.

--ignore-whitespace	,	--whitespace=<option>
These	flag	are	passed	to	the	git	apply	program	(see	Section	G.3.5,
“git-apply(1)”)	that	applies	the	patch.	Incompatible	with	the	--
interactive	option.

--committer-date-is-author-date	,	--ignore-date
These	flags	are	passed	to	git	am	to	easily	change	the	dates	of	the
rebased	commits	(see	Section	G.3.3,	“git-am(1)”).	Incompatible	with
the	--interactive	option.

-i	,	--interactive

Make	a	list	of	the	commits	which	are	about	to	be	rebased.	Let	the
user	edit	that	list	before	rebasing.	This	mode	can	also	be	used	to
split	commits	(see	SPLITTING	COMMITS	below).

The	commit	list	format	can	be	changed	by	setting	the	configuration
option	rebase.instructionFormat.	A	customized	instruction	format	will
automatically	have	the	long	commit	hash	prepended	to	the	format.

-p	,	--preserve-merges

Recreate	merge	commits	instead	of	flattening	the	history	by
replaying	commits	a	merge	commit	introduces.	Merge	conflict
resolutions	or	manual	amendments	to	merge	commits	are	not
preserved.



This	uses	the	--interactive	machinery	internally,	but	combining	it	with
the	--interactive	option	explicitly	is	generally	not	a	good	idea	unless
you	know	what	you	are	doing	(see	BUGS	below).

-x	<cmd>	,	--exec	<cmd>

Append	"exec	<cmd>"	after	each	line	creating	a	commit	in	the	final
history.	<cmd>	will	be	interpreted	as	one	or	more	shell	commands.

You	may	execute	several	commands	by	either	using	one	instance	of
--exec	with	several	commands:

git	rebase	-i	--exec	"cmd1	&&	cmd2	&&	..."

or	by	giving	more	than	one	--exec:

git	rebase	-i	--exec	"cmd1"	--exec	"cmd2"	--exec	...

If	--autosquash	is	used,	"exec"	lines	will	not	be	appended	for	the
intermediate	commits,	and	will	only	appear	at	the	end	of	each
squash/fixup	series.

This	uses	the	--interactive	machinery	internally,	but	it	can	be	run
without	an	explicit	--interactive.

--root
Rebase	all	commits	reachable	from	<branch>,	instead	of	limiting
them	with	an	<upstream>.	This	allows	you	to	rebase	the	root
commit(s)	on	a	branch.	When	used	with	--onto,	it	will	skip	changes
already	contained	in	<newbase>	(instead	of	<upstream>)	whereas
without	--onto	it	will	operate	on	every	change.	When	used	together
with	both	--onto	and	--preserve-merges,	all	root	commits	will	be
rewritten	to	have	<newbase>	as	parent	instead.

--autosquash	,	--no-autosquash

When	the	commit	log	message	begins	with	"squash!	…"	(or	"fixup!
…"),	and	there	is	a	commit	whose	title	begins	with	the	same	…,
automatically	modify	the	todo	list	of	rebase	-i	so	that	the	commit
marked	for	squashing	comes	right	after	the	commit	to	be	modified,
and	change	the	action	of	the	moved	commit	from	pick	to	squash	(or



fixup).	Ignores	subsequent	"fixup!	"	or	"squash!	"	after	the	first,	in
case	you	referred	to	an	earlier	fixup/squash	with	git	commit	--fixup/--
squash.

This	option	is	only	valid	when	the	--interactive	option	is	used.

If	the	--autosquash	option	is	enabled	by	default	using	the
configuration	variable	rebase.autoSquash,	this	option	can	be	used	to
override	and	disable	this	setting.

--autostash	,	--no-autostash
Automatically	create	a	temporary	stash	before	the	operation	begins,
and	apply	it	after	the	operation	ends.	This	means	that	you	can	run
rebase	on	a	dirty	worktree.	However,	use	with	care:	the	final	stash
application	after	a	successful	rebase	might	result	in	non-trivial
conflicts.

--no-ff

With	--interactive,	cherry-pick	all	rebased	commits	instead	of	fast-
forwarding	over	the	unchanged	ones.	This	ensures	that	the	entire
history	of	the	rebased	branch	is	composed	of	new	commits.

Without	--interactive,	this	is	a	synonym	for	--force-rebase.

You	may	find	this	helpful	after	reverting	a	topic	branch	merge,	as	this
option	recreates	the	topic	branch	with	fresh	commits	so	it	can	be
remerged	successfully	without	needing	to	"revert	the	reversion"	(see
the	revert-a-faulty-merge	How-To	for	details).

MERGE	STRATEGIES

The	merge	mechanism	(git	merge	and	git	pull	commands)	allows	the
backend	merge	strategies	to	be	chosen	with	-s	option.	Some	strategies
can	also	take	their	own	options,	which	can	be	passed	by	giving	-
X<option>	arguments	to	git	merge	and/or	git	pull.

resolve
This	can	only	resolve	two	heads	(i.e.	the	current	branch	and	another

https://www.kernel.org/pub/software/scm/git/docs/howto/revert-a-faulty-merge.html


branch	you	pulled	from)	using	a	3-way	merge	algorithm.	It	tries	to
carefully	detect	criss-cross	merge	ambiguities	and	is	considered
generally	safe	and	fast.

recursive

This	can	only	resolve	two	heads	using	a	3-way	merge	algorithm.
When	there	is	more	than	one	common	ancestor	that	can	be	used	for
3-way	merge,	it	creates	a	merged	tree	of	the	common	ancestors	and
uses	that	as	the	reference	tree	for	the	3-way	merge.	This	has	been
reported	to	result	in	fewer	merge	conflicts	without	causing
mismerges	by	tests	done	on	actual	merge	commits	taken	from	Linux
2.6	kernel	development	history.	Additionally	this	can	detect	and
handle	merges	involving	renames.	This	is	the	default	merge	strategy
when	pulling	or	merging	one	branch.

The	recursive	strategy	can	take	the	following	options:

ours

This	option	forces	conflicting	hunks	to	be	auto-resolved	cleanly
by	favoring	our	version.	Changes	from	the	other	tree	that	do	not
conflict	with	our	side	are	reflected	to	the	merge	result.	For	a
binary	file,	the	entire	contents	are	taken	from	our	side.

This	should	not	be	confused	with	the	ours	merge	strategy,	which
does	not	even	look	at	what	the	other	tree	contains	at	all.	It
discards	everything	the	other	tree	did,	declaring	our	history
contains	all	that	happened	in	it.

theirs
This	is	the	opposite	of	ours.

patience
With	this	option,	merge-recursive	spends	a	little	extra	time	to
avoid	mismerges	that	sometimes	occur	due	to	unimportant
matching	lines	(e.g.,	braces	from	distinct	functions).	Use	this
when	the	branches	to	be	merged	have	diverged	wildly.	See	also
Section	G.3.41,	“git-diff(1)”	--patience.

diff-algorithm=[patience|minimal|histogram|myers]



Tells	merge-recursive	to	use	a	different	diff	algorithm,	which	can
help	avoid	mismerges	that	occur	due	to	unimportant	matching
lines	(such	as	braces	from	distinct	functions).	See	also
Section	G.3.41,	“git-diff(1)”	--diff-algorithm.

ignore-space-change	,	ignore-all-space	,	ignore-space-at-eol

Treats	lines	with	the	indicated	type	of	whitespace	change	as
unchanged	for	the	sake	of	a	three-way	merge.	Whitespace
changes	mixed	with	other	changes	to	a	line	are	not	ignored.	See
also	Section	G.3.41,	“git-diff(1)”	-b,	-w,	and	--ignore-space-at-
eol.

If	their	version	only	introduces	whitespace	changes	to	a
line,	our	version	is	used;
If	our	version	introduces	whitespace	changes	but	their
version	includes	a	substantial	change,	their	version	is	used;
Otherwise,	the	merge	proceeds	in	the	usual	way.

renormalize
This	runs	a	virtual	check-out	and	check-in	of	all	three	stages	of
a	file	when	resolving	a	three-way	merge.	This	option	is	meant	to
be	used	when	merging	branches	with	different	clean	filters	or
end-of-line	normalization	rules.	See	"Merging	branches	with
differing	checkin/checkout	attributes"	in	Section	G.4.2,
“gitattributes(5)”	for	details.

no-renormalize
Disables	the	renormalize	option.	This	overrides	the
merge.renormalize	configuration	variable.

no-renames
Turn	off	rename	detection.	See	also	Section	G.3.41,	“git-diff(1)”	-
-no-renames.

find-renames[=<n>]
Turn	on	rename	detection,	optionally	setting	the	similarity
threshold.	This	is	the	default.	See	also	Section	G.3.41,	“git-
diff(1)”	--find-renames.

rename-threshold=<n>
Deprecated	synonym	for	find-renames=<n>.

subtree[=<path>]



This	option	is	a	more	advanced	form	of	subtree	strategy,	where
the	strategy	makes	a	guess	on	how	two	trees	must	be	shifted	to
match	with	each	other	when	merging.	Instead,	the	specified
path	is	prefixed	(or	stripped	from	the	beginning)	to	make	the
shape	of	two	trees	to	match.

octopus
This	resolves	cases	with	more	than	two	heads,	but	refuses	to	do	a
complex	merge	that	needs	manual	resolution.	It	is	primarily	meant	to
be	used	for	bundling	topic	branch	heads	together.	This	is	the	default
merge	strategy	when	pulling	or	merging	more	than	one	branch.

ours
This	resolves	any	number	of	heads,	but	the	resulting	tree	of	the
merge	is	always	that	of	the	current	branch	head,	effectively	ignoring
all	changes	from	all	other	branches.	It	is	meant	to	be	used	to
supersede	old	development	history	of	side	branches.	Note	that	this
is	different	from	the	-Xours	option	to	the	recursive	merge	strategy.

subtree
This	is	a	modified	recursive	strategy.	When	merging	trees	A	and	B,	if
B	corresponds	to	a	subtree	of	A,	B	is	first	adjusted	to	match	the	tree
structure	of	A,	instead	of	reading	the	trees	at	the	same	level.	This
adjustment	is	also	done	to	the	common	ancestor	tree.

With	the	strategies	that	use	3-way	merge	(including	the	default,
recursive),	if	a	change	is	made	on	both	branches,	but	later	reverted	on
one	of	the	branches,	that	change	will	be	present	in	the	merged	result;
some	people	find	this	behavior	confusing.	It	occurs	because	only	the
heads	and	the	merge	base	are	considered	when	performing	a	merge,	not
the	individual	commits.	The	merge	algorithm	therefore	considers	the
reverted	change	as	no	change	at	all,	and	substitutes	the	changed	version
instead.

NOTES

You	should	understand	the	implications	of	using	git	rebase	on	a
repository	that	you	share.	See	also	RECOVERING	FROM	UPSTREAM
REBASE	below.



When	the	git-rebase	command	is	run,	it	will	first	execute	a	"pre-rebase"
hook	if	one	exists.	You	can	use	this	hook	to	do	sanity	checks	and	reject
the	rebase	if	it	isn't	appropriate.	Please	see	the	template	pre-rebase	hook
script	for	an	example.

Upon	completion,	<branch>	will	be	the	current	branch.

INTERACTIVE	MODE

Rebasing	interactively	means	that	you	have	a	chance	to	edit	the	commits
which	are	rebased.	You	can	reorder	the	commits,	and	you	can	remove
them	(weeding	out	bad	or	otherwise	unwanted	patches).

The	interactive	mode	is	meant	for	this	type	of	workflow:

1.	 have	a	wonderful	idea
2.	 hack	on	the	code
3.	 prepare	a	series	for	submission
4.	 submit

where	point	2.	consists	of	several	instances	of

a)	regular	use

1.	 finish	something	worthy	of	a	commit
2.	 commit

b)	independent	fixup

1.	 realize	that	something	does	not	work
2.	 fix	that
3.	 commit	it

Sometimes	the	thing	fixed	in	b.2.	cannot	be	amended	to	the	not-quite
perfect	commit	it	fixes,	because	that	commit	is	buried	deeply	in	a	patch
series.	That	is	exactly	what	interactive	rebase	is	for:	use	it	after	plenty	of
"a"s	and	"b"s,	by	rearranging	and	editing	commits,	and	squashing
multiple	commits	into	one.



Start	it	with	the	last	commit	you	want	to	retain	as-is:

git	rebase	-i	<after-this-commit>

An	editor	will	be	fired	up	with	all	the	commits	in	your	current	branch
(ignoring	merge	commits),	which	come	after	the	given	commit.	You	can
reorder	the	commits	in	this	list	to	your	heart's	content,	and	you	can
remove	them.	The	list	looks	more	or	less	like	this:

pick	deadbee	The	oneline	of	this	commit

pick	fa1afe1	The	oneline	of	the	next	commit

...

The	oneline	descriptions	are	purely	for	your	pleasure;	git	rebase	will	not
look	at	them	but	at	the	commit	names	("deadbee"	and	"fa1afe1"	in	this
example),	so	do	not	delete	or	edit	the	names.

By	replacing	the	command	"pick"	with	the	command	"edit",	you	can	tell
git	rebase	to	stop	after	applying	that	commit,	so	that	you	can	edit	the	files
and/or	the	commit	message,	amend	the	commit,	and	continue	rebasing.

If	you	just	want	to	edit	the	commit	message	for	a	commit,	replace	the
command	"pick"	with	the	command	"reword".

To	drop	a	commit,	replace	the	command	"pick"	with	"drop",	or	just	delete
the	matching	line.

If	you	want	to	fold	two	or	more	commits	into	one,	replace	the	command
"pick"	for	the	second	and	subsequent	commits	with	"squash"	or	"fixup".	If
the	commits	had	different	authors,	the	folded	commit	will	be	attributed	to
the	author	of	the	first	commit.	The	suggested	commit	message	for	the
folded	commit	is	the	concatenation	of	the	commit	messages	of	the	first
commit	and	of	those	with	the	"squash"	command,	but	omits	the	commit
messages	of	commits	with	the	"fixup"	command.

git	rebase	will	stop	when	"pick"	has	been	replaced	with	"edit"	or	when	a
command	fails	due	to	merge	errors.	When	you	are	done	editing	and/or
resolving	conflicts	you	can	continue	with	git	rebase	--continue.



For	example,	if	you	want	to	reorder	the	last	5	commits,	such	that	what
was	HEAD~4	becomes	the	new	HEAD.	To	achieve	that,	you	would	call
git	rebase	like	this:

$	git	rebase	-i	HEAD~5

And	move	the	first	patch	to	the	end	of	the	list.

You	might	want	to	preserve	merges,	if	you	have	a	history	like	this:

											X

												\

									A---M---B

								/

---o---O---P---Q

Suppose	you	want	to	rebase	the	side	branch	starting	at	"A"	to	"Q".	Make
sure	that	the	current	HEAD	is	"B",	and	call

$	git	rebase	-i	-p	--onto	Q	O

Reordering	and	editing	commits	usually	creates	untested	intermediate
steps.	You	may	want	to	check	that	your	history	editing	did	not	break
anything	by	running	a	test,	or	at	least	recompiling	at	intermediate	points
in	history	by	using	the	"exec"	command	(shortcut	"x").	You	may	do	so	by
creating	a	todo	list	like	this	one:

pick	deadbee	Implement	feature	XXX

fixup	f1a5c00	Fix	to	feature	XXX

exec	make

pick	c0ffeee	The	oneline	of	the	next	commit

edit	deadbab	The	oneline	of	the	commit	after

exec	cd	subdir;	make	test

...

The	interactive	rebase	will	stop	when	a	command	fails	(i.e.	exits	with
non-0	status)	to	give	you	an	opportunity	to	fix	the	problem.	You	can
continue	with	git	rebase	--continue.



The	"exec"	command	launches	the	command	in	a	shell	(the	one	specified
in	$SHELL,	or	the	default	shell	if	$SHELL	is	not	set),	so	you	can	use	shell
features	(like	"cd",	">",	";"	…).	The	command	is	run	from	the	root	of	the
working	tree.

$	git	rebase	-i	--exec	"make	test"

This	command	lets	you	check	that	intermediate	commits	are	compilable.
The	todo	list	becomes	like	that:

pick	5928aea	one

exec	make	test

pick	04d0fda	two

exec	make	test

pick	ba46169	three

exec	make	test

pick	f4593f9	four

exec	make	test

SPLITTING	COMMITS

In	interactive	mode,	you	can	mark	commits	with	the	action	"edit".
However,	this	does	not	necessarily	mean	that	git	rebase	expects	the
result	of	this	edit	to	be	exactly	one	commit.	Indeed,	you	can	undo	the
commit,	or	you	can	add	other	commits.	This	can	be	used	to	split	a
commit	into	two:

Start	an	interactive	rebase	with	git	rebase	-i	<commit>^,	where
<commit>	is	the	commit	you	want	to	split.	In	fact,	any	commit	range
will	do,	as	long	as	it	contains	that	commit.
Mark	the	commit	you	want	to	split	with	the	action	"edit".
When	it	comes	to	editing	that	commit,	execute	git	reset	HEAD^.	The
effect	is	that	the	HEAD	is	rewound	by	one,	and	the	index	follows	suit.
However,	the	working	tree	stays	the	same.
Now	add	the	changes	to	the	index	that	you	want	to	have	in	the	first
commit.	You	can	use	git	add	(possibly	interactively)	or	git	gui	(or
both)	to	do	that.



Commit	the	now-current	index	with	whatever	commit	message	is
appropriate	now.
Repeat	the	last	two	steps	until	your	working	tree	is	clean.
Continue	the	rebase	with	git	rebase	--continue.

If	you	are	not	absolutely	sure	that	the	intermediate	revisions	are
consistent	(they	compile,	pass	the	testsuite,	etc.)	you	should	use	git
stash	to	stash	away	the	not-yet-committed	changes	after	each	commit,
test,	and	amend	the	commit	if	fixes	are	necessary.

RECOVERING	FROM	UPSTREAM	REBASE

Rebasing	(or	any	other	form	of	rewriting)	a	branch	that	others	have
based	work	on	is	a	bad	idea:	anyone	downstream	of	it	is	forced	to
manually	fix	their	history.	This	section	explains	how	to	do	the	fix	from	the
downstream's	point	of	view.	The	real	fix,	however,	would	be	to	avoid
rebasing	the	upstream	in	the	first	place.

To	illustrate,	suppose	you	are	in	a	situation	where	someone	develops	a
subsystem	branch,	and	you	are	working	on	a	topic	that	is	dependent	on
this	subsystem.	You	might	end	up	with	a	history	like	the	following:

				o---o---o---o---o---o---o---o---o		master

									\

										o---o---o---o---o		subsystem

																											\

																												*---*---*		topic

If	subsystem	is	rebased	against	master,	the	following	happens:

				o---o---o---o---o---o---o---o		master

									\																							\

										o---o---o---o---o							o'--o'--o'--o'--o'		subsystem

																											\

																												*---*---*		topic

If	you	now	continue	development	as	usual,	and	eventually	merge	topic	to



subsystem,	the	commits	from	subsystem	will	remain	duplicated	forever:

				o---o---o---o---o---o---o---o		master

									\																							\

										o---o---o---o---o							o'--o'--o'--o'--o'--M		subsystem

																											\																									/

																												*---*---*-..........-*--*		topic

Such	duplicates	are	generally	frowned	upon	because	they	clutter	up
history,	making	it	harder	to	follow.	To	clean	things	up,	you	need	to
transplant	the	commits	on	topic	to	the	new	subsystem	tip,	i.e.,	rebase
topic.	This	becomes	a	ripple	effect:	anyone	downstream	from	topic	is
forced	to	rebase	too,	and	so	on!

There	are	two	kinds	of	fixes,	discussed	in	the	following	subsections:

Easy	case:	The	changes	are	literally	the	same.
This	happens	if	the	subsystem	rebase	was	a	simple	rebase	and	had
no	conflicts.

Hard	case:	The	changes	are	not	the	same.
This	happens	if	the	subsystem	rebase	had	conflicts,	or	used	--
interactive	to	omit,	edit,	squash,	or	fixup	commits;	or	if	the	upstream
used	one	of	commit	--amend,	reset,	or	filter-branch.



1.	The	easy	case

Only	works	if	the	changes	(patch	IDs	based	on	the	diff	contents)	on
subsystem	are	literally	the	same	before	and	after	the	rebase	subsystem
did.

In	that	case,	the	fix	is	easy	because	git	rebase	knows	to	skip	changes
that	are	already	present	in	the	new	upstream.	So	if	you	say	(assuming
you're	on	topic)

				$	git	rebase	subsystem

you	will	end	up	with	the	fixed	history

				o---o---o---o---o---o---o---o		master

																																	\

																																		o'--o'--o'--o'--o'		subsystem

																																																			\

																																																				*---*---*		topic



2.	The	hard	case

Things	get	more	complicated	if	the	subsystem	changes	do	not	exactly
correspond	to	the	ones	before	the	rebase.

Note

While	an	"easy	case	recovery"	sometimes	appears	to	be
successful	even	in	the	hard	case,	it	may	have	unintended
consequences.	For	example,	a	commit	that	was	removed	via
git	rebase	--interactive	will	be	resurrected!

The	idea	is	to	manually	tell	git	rebase	"where	the	old	subsystem	ended
and	your	topic	began",	that	is,	what	the	old	merge-base	between	them
was.	You	will	have	to	find	a	way	to	name	the	last	commit	of	the	old
subsystem,	for	example:

With	the	subsystem	reflog:	after	git	fetch,	the	old	tip	of	subsystem	is
at	subsystem@{1}.	Subsequent	fetches	will	increase	the	number.
(See	Section	G.3.101,	“git-reflog(1)”.)
Relative	to	the	tip	of	topic:	knowing	that	your	topic	has	three
commits,	the	old	tip	of	subsystem	must	be	topic~3.

You	can	then	transplant	the	old	subsystem..topic	to	the	new	tip	by	saying
(for	the	reflog	case,	and	assuming	you	are	on	topic	already):

				$	git	rebase	--onto	subsystem	subsystem@{1}

The	ripple	effect	of	a	"hard	case"	recovery	is	especially	bad:	everyone
downstream	from	topic	will	now	have	to	perform	a	"hard	case"	recovery
too!

BUGS



The	todo	list	presented	by	--preserve-merges	--interactive	does	not
represent	the	topology	of	the	revision	graph.	Editing	commits	and
rewording	their	commit	messages	should	work	fine,	but	attempts	to
reorder	commits	tend	to	produce	counterintuitive	results.

For	example,	an	attempt	to	rearrange

1	---	2	---	3	---	4	---	5

to

1	---	2	---	4	---	3	---	5

by	moving	the	"pick	4"	line	will	result	in	the	following	history:

								3

							/

1	---	2	---	4	---	5

GIT

Part	of	the	Section	G.3.1,	“git(1)”	suite

G.3.100.	git-receive-pack(1)

NAME

git-receive-pack	-	Receive	what	is	pushed	into	the	repository

SYNOPSIS

git-receive-pack	<directory>

DESCRIPTION



Invoked	by	git	send-pack	and	updates	the	repository	with	the	information
fed	from	the	remote	end.

This	command	is	usually	not	invoked	directly	by	the	end	user.	The	UI	for
the	protocol	is	on	the	git	send-pack	side,	and	the	program	pair	is	meant
to	be	used	to	push	updates	to	remote	repository.	For	pull	operations,	see
Section	G.3.45,	“git-fetch-pack(1)”.

The	command	allows	for	creation	and	fast-forwarding	of	sha1	refs
(heads/tags)	on	the	remote	end	(strictly	speaking,	it	is	the	local	end	git-
receive-pack	runs,	but	to	the	user	who	is	sitting	at	the	send-pack	end,	it	is
updating	the	remote.	Confused?)

There	are	other	real-world	examples	of	using	update	and	post-update
hooks	found	in	the	Documentation/howto	directory.

git-receive-pack	honours	the	receive.denyNonFastForwards	config
option,	which	tells	it	if	updates	to	a	ref	should	be	denied	if	they	are	not
fast-forwards.

OPTIONS

<directory>
The	repository	to	sync	into.

pre-receive	Hook

Before	any	ref	is	updated,	if	$GIT_DIR/hooks/pre-receive	file	exists	and
is	executable,	it	will	be	invoked	once	with	no	parameters.	The	standard
input	of	the	hook	will	be	one	line	per	ref	to	be	updated:

sha1-old	SP	sha1-new	SP	refname	LF

The	refname	value	is	relative	to	$GIT_DIR;	e.g.	for	the	master	head	this
is	"refs/heads/master".	The	two	sha1	values	before	each	refname	are	the
object	names	for	the	refname	before	and	after	the	update.	Refs	to	be
created	will	have	sha1-old	equal	to	0{40},	while	refs	to	be	deleted	will
have	sha1-new	equal	to	0{40},	otherwise	sha1-old	and	sha1-new	should



be	valid	objects	in	the	repository.

When	accepting	a	signed	push	(see	Section	G.3.96,	“git-push(1)”),	the
signed	push	certificate	is	stored	in	a	blob	and	an	environment	variable
GIT_PUSH_CERT	can	be	consulted	for	its	object	name.	See	the
description	of	post-receive	hook	for	an	example.	In	addition,	the
certificate	is	verified	using	GPG	and	the	result	is	exported	with	the
following	environment	variables:

GIT_PUSH_CERT_SIGNER
The	name	and	the	e-mail	address	of	the	owner	of	the	key	that	signed
the	push	certificate.

GIT_PUSH_CERT_KEY
The	GPG	key	ID	of	the	key	that	signed	the	push	certificate.

GIT_PUSH_CERT_STATUS
The	status	of	GPG	verification	of	the	push	certificate,	using	the	same
mnemonic	as	used	in	%G?	format	of	git	log	family	of	commands	(see
Section	G.3.68,	“git-log(1)”).

GIT_PUSH_CERT_NONCE
The	nonce	string	the	process	asked	the	signer	to	include	in	the	push
certificate.	If	this	does	not	match	the	value	recorded	on	the	"nonce"
header	in	the	push	certificate,	it	may	indicate	that	the	certificate	is	a
valid	one	that	is	being	replayed	from	a	separate	"git	push"	session.

GIT_PUSH_CERT_NONCE_STATUS
UNSOLICITED

"git	push	--signed"	sent	a	nonce	when	we	did	not	ask	it	to	send
one.

MISSING
"git	push	--signed"	did	not	send	any	nonce	header.

BAD
"git	push	--signed"	sent	a	bogus	nonce.

OK
"git	push	--signed"	sent	the	nonce	we	asked	it	to	send.

SLOP
"git	push	--signed"	sent	a	nonce	different	from	what	we	asked	it
to	send	now,	but	in	a	previous	session.	See
GIT_PUSH_CERT_NONCE_SLOP	environment	variable.



GIT_PUSH_CERT_NONCE_SLOP
"git	push	--signed"	sent	a	nonce	different	from	what	we	asked	it	to
send	now,	but	in	a	different	session	whose	starting	time	is	different
by	this	many	seconds	from	the	current	session.	Only	meaningful
when	GIT_PUSH_CERT_NONCE_STATUS	says	SLOP.	Also	read
about	receive.certNonceSlop	variable	in	Section	G.3.27,	“git-
config(1)”.

This	hook	is	called	before	any	refname	is	updated	and	before	any	fast-
forward	checks	are	performed.

If	the	pre-receive	hook	exits	with	a	non-zero	exit	status	no	updates	will	be
performed,	and	the	update,	post-receive	and	post-update	hooks	will	not
be	invoked	either.	This	can	be	useful	to	quickly	bail	out	if	the	update	is
not	to	be	supported.

update	Hook

Before	each	ref	is	updated,	if	$GIT_DIR/hooks/update	file	exists	and	is
executable,	it	is	invoked	once	per	ref,	with	three	parameters:

$GIT_DIR/hooks/update	refname	sha1-old	sha1-new

The	refname	parameter	is	relative	to	$GIT_DIR;	e.g.	for	the	master	head
this	is	"refs/heads/master".	The	two	sha1	arguments	are	the	object
names	for	the	refname	before	and	after	the	update.	Note	that	the	hook	is
called	before	the	refname	is	updated,	so	either	sha1-old	is	0{40}
(meaning	there	is	no	such	ref	yet),	or	it	should	match	what	is	recorded	in
refname.

The	hook	should	exit	with	non-zero	status	if	it	wants	to	disallow	updating
the	named	ref.	Otherwise	it	should	exit	with	zero.

Successful	execution	(a	zero	exit	status)	of	this	hook	does	not	ensure	the
ref	will	actually	be	updated,	it	is	only	a	prerequisite.	As	such	it	is	not	a
good	idea	to	send	notices	(e.g.	email)	from	this	hook.	Consider	using	the
post-receive	hook	instead.



post-receive	Hook

After	all	refs	were	updated	(or	attempted	to	be	updated),	if	any	ref	update
was	successful,	and	if	$GIT_DIR/hooks/post-receive	file	exists	and	is
executable,	it	will	be	invoked	once	with	no	parameters.	The	standard
input	of	the	hook	will	be	one	line	for	each	successfully	updated	ref:

sha1-old	SP	sha1-new	SP	refname	LF

The	refname	value	is	relative	to	$GIT_DIR;	e.g.	for	the	master	head	this
is	"refs/heads/master".	The	two	sha1	values	before	each	refname	are	the
object	names	for	the	refname	before	and	after	the	update.	Refs	that	were
created	will	have	sha1-old	equal	to	0{40},	while	refs	that	were	deleted	will
have	sha1-new	equal	to	0{40},	otherwise	sha1-old	and	sha1-new	should
be	valid	objects	in	the	repository.

The	GIT_PUSH_CERT*	environment	variables	can	be	inspected,	just	as
in	pre-receive	hook,	after	accepting	a	signed	push.

Using	this	hook,	it	is	easy	to	generate	mails	describing	the	updates	to	the
repository.	This	example	script	sends	one	mail	message	per	ref	listing	the
commits	pushed	to	the	repository,	and	logs	the	push	certificates	of	signed
pushes	with	good	signatures	to	a	logger	service:

#!/bin/sh

#	mail	out	commit	update	information.

while	read	oval	nval	ref

do

								if	expr	"$oval"	:	'0*$'	>/dev/null

								then

																echo	"Created	a	new	ref,	with	the	following	commits:"

																git	rev-list	--pretty	"$nval"

								else

																echo	"New	commits:"

																git	rev-list	--pretty	"$nval"	"^$oval"

								fi	|

								mail	-s	"Changes	to	ref	$ref"	commit-list@mydomain

done

#	log	signed	push	certificate,	if	any

if	test	-n	"${GIT_PUSH_CERT-}"	&&	test	${GIT_PUSH_CERT_STATUS}	=	G

then

								(

																echo	expected	nonce	is	${GIT_PUSH_NONCE}

																git	cat-file	blob	${GIT_PUSH_CERT}

								)	|	mail	-s	"push	certificate	from	$GIT_PUSH_CERT_SIGNER"	push-log@mydomain

fi

exit	0



The	exit	code	from	this	hook	invocation	is	ignored,	however	a	non-zero
exit	code	will	generate	an	error	message.

Note	that	it	is	possible	for	refname	to	not	have	sha1-new	when	this	hook
runs.	This	can	easily	occur	if	another	user	modifies	the	ref	after	it	was
updated	by	git-receive-pack,	but	before	the	hook	was	able	to	evaluate	it.
It	is	recommended	that	hooks	rely	on	sha1-new	rather	than	the	current
value	of	refname.

post-update	Hook

After	all	other	processing,	if	at	least	one	ref	was	updated,	and	if
$GIT_DIR/hooks/post-update	file	exists	and	is	executable,	then	post-
update	will	be	called	with	the	list	of	refs	that	have	been	updated.	This	can
be	used	to	implement	any	repository	wide	cleanup	tasks.

The	exit	code	from	this	hook	invocation	is	ignored;	the	only	thing	left	for
git-receive-pack	to	do	at	that	point	is	to	exit	itself	anyway.

This	hook	can	be	used,	for	example,	to	run	git	update-server-info	if	the
repository	is	packed	and	is	served	via	a	dumb	transport.

#!/bin/sh

exec	git	update-server-info

SEE	ALSO

Section	G.3.117,	“git-send-pack(1)”,	Section	G.4.9,	“gitnamespaces(7)”

GIT

Part	of	the	Section	G.3.1,	“git(1)”	suite

G.3.101.	git-reflog(1)

NAME

git-reflog	-	Manage	reflog	information



SYNOPSIS

git	reflog	<subcommand>	<options>

DESCRIPTION

The	command	takes	various	subcommands,	and	different	options
depending	on	the	subcommand:

git	reflog	[show]	[log-options]	[<ref>]

git	reflog	expire	[--expire=<time>]	[--expire-unreachable=

<time>]

								[--rewrite]	[--updateref]	[--stale-fix]

								[--dry-run]	[--verbose]	[--all	|	<refs>…]

git	reflog	delete	[--rewrite]	[--updateref]

								[--dry-run]	[--verbose]	ref@{specifier}…

git	reflog	exists	<ref>

Reference	logs,	or	"reflogs",	record	when	the	tips	of	branches	and	other
references	were	updated	in	the	local	repository.	Reflogs	are	useful	in
various	Git	commands,	to	specify	the	old	value	of	a	reference.	For
example,	HEAD@{2}	means	"where	HEAD	used	to	be	two	moves	ago",
master@{one.week.ago}	means	"where	master	used	to	point	to	one
week	ago	in	this	local	repository",	and	so	on.	See	Section	G.4.12,
“gitrevisions(7)”	for	more	details.

This	command	manages	the	information	recorded	in	the	reflogs.

The	"show"	subcommand	(which	is	also	the	default,	in	the	absence	of
any	subcommands)	shows	the	log	of	the	reference	provided	in	the
command-line	(or	HEAD,	by	default).	The	reflog	covers	all	recent	actions,
and	in	addition	the	HEAD	reflog	records	branch	switching.	git	reflog	show
is	an	alias	for	git	log	-g	--abbrev-commit	--pretty=oneline;	see
Section	G.3.68,	“git-log(1)”	for	more	information.

The	"expire"	subcommand	prunes	older	reflog	entries.	Entries	older	than
expire	time,	or	entries	older	than	expire-unreachable	time	and	not
reachable	from	the	current	tip,	are	removed	from	the	reflog.	This	is



typically	not	used	directly	by	end	users	--	instead,	see	Section	G.3.53,
“git-gc(1)”.

The	"delete"	subcommand	deletes	single	entries	from	the	reflog.	Its
argument	must	be	an	exact	entry	(e.g.	"git	reflog	delete	master@{2}").
This	subcommand	is	also	typically	not	used	directly	by	end	users.

The	"exists"	subcommand	checks	whether	a	ref	has	a	reflog.	It	exits	with
zero	status	if	the	reflog	exists,	and	non-zero	status	if	it	does	not.

OPTIONS



1.	Options	for	show

git	reflog	show	accepts	any	of	the	options	accepted	by	git	log.



2.	Options	for	expire

--all
Process	the	reflogs	of	all	references.

--expire=<time>
Prune	entries	older	than	the	specified	time.	If	this	option	is	not
specified,	the	expiration	time	is	taken	from	the	configuration	setting
gc.reflogExpire,	which	in	turn	defaults	to	90	days.	--expire=all	prunes
entries	regardless	of	their	age;	--expire=never	turns	off	pruning	of
reachable	entries	(but	see	--expire-unreachable).

--expire-unreachable=<time>
Prune	entries	older	than	<time>	that	are	not	reachable	from	the
current	tip	of	the	branch.	If	this	option	is	not	specified,	the	expiration
time	is	taken	from	the	configuration	setting
gc.reflogExpireUnreachable,	which	in	turn	defaults	to	30	days.	--
expire-unreachable=all	prunes	unreachable	entries	regardless	of
their	age;	--expire-unreachable=never	turns	off	early	pruning	of
unreachable	entries	(but	see	--expire).

--updateref
Update	the	reference	to	the	value	of	the	top	reflog	entry	(i.e.
<ref>@{0})	if	the	previous	top	entry	was	pruned.	(This	option	is
ignored	for	symbolic	references.)

--rewrite
If	a	reflog	entry's	predecessor	is	pruned,	adjust	its	"old"	SHA-1	to	be
equal	to	the	"new"	SHA-1	field	of	the	entry	that	now	precedes	it.

--stale-fix

Prune	any	reflog	entries	that	point	to	"broken	commits".	A	broken
commit	is	a	commit	that	is	not	reachable	from	any	of	the	reference
tips	and	that	refers,	directly	or	indirectly,	to	a	missing	commit,	tree,	or
blob	object.

This	computation	involves	traversing	all	the	reachable	objects,	i.e.	it
has	the	same	cost	as	git	prune.	It	is	primarily	intended	to	fix
corruption	caused	by	garbage	collecting	using	older	versions	of	Git,
which	didn't	protect	objects	referred	to	by	reflogs.



-n	,	--dry-run
Do	not	actually	prune	any	entries;	just	show	what	would	have	been
pruned.

--verbose
Print	extra	information	on	screen.



3.	Options	for	delete

git	reflog	delete	accepts	options	--updateref,	--rewrite,	-n,	--dry-run,	and	--
verbose,	with	the	same	meanings	as	when	they	are	used	with	expire.

GIT

Part	of	the	Section	G.3.1,	“git(1)”	suite

G.3.102.	git-relink(1)

NAME

git-relink	-	Hardlink	common	objects	in	local	repositories

SYNOPSIS

git	relink	[--safe]	<dir>…	<master_dir>

DESCRIPTION

This	will	scan	1	or	more	object	repositories	and	look	for	objects	in
common	with	a	master	repository.	Objects	not	already	hardlinked	to	the
master	repository	will	be	replaced	with	a	hardlink	to	the	master
repository.

OPTIONS

--safe
Stops	if	two	objects	with	the	same	hash	exist	but	have	different
sizes.	Default	is	to	warn	and	continue.

<dir>
Directories	containing	a	.git/objects/	subdirectory.



GIT

Part	of	the	Section	G.3.1,	“git(1)”	suite

G.3.103.	git-remote-ext(1)

NAME

git-remote-ext	-	Bridge	smart	transport	to	external	command.

SYNOPSIS

git	remote	add	<nick>	"ext::<command>[	<arguments>…]"

DESCRIPTION

This	remote	helper	uses	the	specified	<command>	to	connect	to	a
remote	Git	server.

Data	written	to	stdin	of	the	specified	<command>	is	assumed	to	be	sent
to	a	git://	server,	git-upload-pack,	git-receive-pack	or	git-upload-archive
(depending	on	situation),	and	data	read	from	stdout	of	<command>	is
assumed	to	be	received	from	the	same	service.

Command	and	arguments	are	separated	by	an	unescaped	space.

The	following	sequences	have	a	special	meaning:

'%	'
Literal	space	in	command	or	argument.

%%
Literal	percent	sign.

%s
Replaced	with	name	(receive-pack,	upload-pack,	or	upload-archive)
of	the	service	Git	wants	to	invoke.

%S



Replaced	with	long	name	(git-receive-pack,	git-upload-pack,	or	git-
upload-archive)	of	the	service	Git	wants	to	invoke.

%G	(must	be	the	first	characters	in	an	argument)

This	argument	will	not	be	passed	to	<command>.	Instead,	it	will
cause	the	helper	to	start	by	sending	git://	service	requests	to	the
remote	side	with	the	service	field	set	to	an	appropriate	value	and	the
repository	field	set	to	rest	of	the	argument.	Default	is	not	to	send
such	a	request.

This	is	useful	if	remote	side	is	git://	server	accessed	over	some
tunnel.

%V	(must	be	first	characters	in	argument)
This	argument	will	not	be	passed	to	<command>.	Instead	it	sets	the
vhost	field	in	the	git://	service	request	(to	rest	of	the	argument).
Default	is	not	to	send	vhost	in	such	request	(if	sent).

ENVIRONMENT	VARIABLES:

GIT_TRANSLOOP_DEBUG
If	set,	prints	debugging	information	about	various	reads/writes.

ENVIRONMENT	VARIABLES	PASSED	TO	COMMAND:

GIT_EXT_SERVICE
Set	to	long	name	(git-upload-pack,	etc…)	of	service	helper	needs	to
invoke.

GIT_EXT_SERVICE_NOPREFIX
Set	to	long	name	(upload-pack,	etc…)	of	service	helper	needs	to
invoke.

EXAMPLES:

This	remote	helper	is	transparently	used	by	Git	when	you	use	commands
such	as	"git	fetch	<URL>",	"git	clone	<URL>",	,	"git	push	<URL>"	or	"git
remote	add	<nick>	<URL>",	where	<URL>	begins	with	ext::.	Examples:



"ext::ssh	-i	/home/foo/.ssh/somekey	user@host.example	%S	foo/repo"
Like	host.example:foo/repo,	but	use	/home/foo/.ssh/somekey	as
keypair	and	user	as	user	on	remote	side.	This	avoids	needing	to	edit
.ssh/config.

"ext::socat	-t3600	-	ABSTRACT-CONNECT:/git-server	%G/somerepo"
Represents	repository	with	path	/somerepo	accessible	over	git
protocol	at	abstract	namespace	address	/git-server.

"ext::git-server-alias	foo	%G/repo"
Represents	a	repository	with	path	/repo	accessed	using	the	helper
program	"git-server-alias	foo".	The	path	to	the	repository	and	type	of
request	are	not	passed	on	the	command	line	but	as	part	of	the
protocol	stream,	as	usual	with	git://	protocol.

"ext::git-server-alias	foo	%G/repo	%Vfoo"
Represents	a	repository	with	path	/repo	accessed	using	the	helper
program	"git-server-alias	foo".	The	hostname	for	the	remote	server
passed	in	the	protocol	stream	will	be	"foo"	(this	allows	multiple	virtual
Git	servers	to	share	a	link-level	address).

"ext::git-server-alias	foo	%G/repo%	with%	spaces	%Vfoo"
Represents	a	repository	with	path	/repo	with	spaces	accessed	using
the	helper	program	"git-server-alias	foo".	The	hostname	for	the
remote	server	passed	in	the	protocol	stream	will	be	"foo"	(this	allows
multiple	virtual	Git	servers	to	share	a	link-level	address).

"ext::git-ssl	foo.example	/bar"
Represents	a	repository	accessed	using	the	helper	program	"git-ssl
foo.example	/bar".	The	type	of	request	can	be	determined	by	the
helper	using	environment	variables	(see	above).

SEE	ALSO

Section	G.4.10,	“gitremote-helpers(1)”

GIT

Part	of	the	Section	G.3.1,	“git(1)”	suite

G.3.104.	git-remote-fd(1)



NAME

git-remote-fd	-	Reflect	smart	transport	stream	back	to	caller

SYNOPSIS

"fd::<infd>[,<outfd>][/<anything>]"	(as	URL)

DESCRIPTION

This	helper	uses	specified	file	descriptors	to	connect	to	a	remote	Git
server.	This	is	not	meant	for	end	users	but	for	programs	and	scripts
calling	git	fetch,	push	or	archive.

If	only	<infd>	is	given,	it	is	assumed	to	be	a	bidirectional	socket
connected	to	remote	Git	server	(git-upload-pack,	git-receive-pack	or	git-
upload-achive).	If	both	<infd>	and	<outfd>	are	given,	they	are	assumed
to	be	pipes	connected	to	a	remote	Git	server	(<infd>	being	the	inbound
pipe	and	<outfd>	being	the	outbound	pipe.

It	is	assumed	that	any	handshaking	procedures	have	already	been
completed	(such	as	sending	service	request	for	git://)	before	this	helper	is
started.

<anything>	can	be	any	string.	It	is	ignored.	It	is	meant	for	providing
information	to	user	in	the	URL	in	case	that	URL	is	displayed	in	some
context.

ENVIRONMENT	VARIABLES

GIT_TRANSLOOP_DEBUG
If	set,	prints	debugging	information	about	various	reads/writes.

EXAMPLES

git	fetch	fd::17	master
Fetch	master,	using	file	descriptor	#17	to	communicate	with	git-



upload-pack.
git	fetch	fd::17/foo	master

Same	as	above.
git	push	fd::7,8	master	(as	URL)

Push	master,	using	file	descriptor	#7	to	read	data	from	git-receive-
pack	and	file	descriptor	#8	to	write	data	to	same	service.

git	push	fd::7,8/bar	master
Same	as	above.

SEE	ALSO

Section	G.4.10,	“gitremote-helpers(1)”

GIT

Part	of	the	Section	G.3.1,	“git(1)”	suite

G.3.105.	git-remote-testgit(1)

NAME

git-remote-testgit	-	Example	remote-helper

SYNOPSIS

git	clone	testgit::<source-repo>	[<destination>]

DESCRIPTION

This	command	is	a	simple	remote-helper,	that	is	used	both	as	a	testcase
for	the	remote-helper	functionality,	and	as	an	example	to	show	remote-
helper	authors	one	possible	implementation.

The	best	way	to	learn	more	is	to	read	the	comments	and	source	code	in
git-remote-testgit.



SEE	ALSO

Section	G.4.10,	“gitremote-helpers(1)”

GIT

Part	of	the	Section	G.3.1,	“git(1)”	suite

G.3.106.	git-remote(1)

NAME

git-remote	-	Manage	set	of	tracked	repositories

SYNOPSIS

git	remote	[-v	|	--verbose]

git	remote	add	[-t	<branch>]	[-m	<master>]	[-f]	[--[no-

]tags]	[--mirror=<fetch|push>]	<name>	<url>

git	remote	rename	<old>	<new>

git	remote	remove	<name>

git	remote	set-head	<name>	(-a	|	--auto	|	-d	|	--

delete	|	<branch>)

git	remote	set-branches	[--add]	<name>	<branch>…

git	remote	get-url	[--push]	[--all]	<name>

git	remote	set-url	[--push]	<name>	<newurl>	[<oldurl>]

git	remote	set-url	--add	[--push]	<name>	<newurl>

git	remote	set-url	--delete	[--push]	<name>	<url>

git	remote	[-v	|	--verbose]	show	[-n]	<name>…

git	remote	prune	[-n	|	--dry-run]	<name>…

git	remote	[-v	|	--verbose]	update	[-p	|	--

prune]	[(<group>	|	<remote>)…]

DESCRIPTION

Manage	the	set	of	repositories	("remotes")	whose	branches	you	track.

OPTIONS



-v	,	--verbose
Be	a	little	more	verbose	and	show	remote	url	after	name.	NOTE:
This	must	be	placed	between	remote	and	subcommand.

COMMANDS

With	no	arguments,	shows	a	list	of	existing	remotes.	Several
subcommands	are	available	to	perform	operations	on	the	remotes.

add

Adds	a	remote	named	<name>	for	the	repository	at	<url>.	The
command	git	fetch	<name>	can	then	be	used	to	create	and	update
remote-tracking	branches	<name>/<branch>.

With	-f	option,	git	fetch	<name>	is	run	immediately	after	the	remote
information	is	set	up.

With	--tags	option,	git	fetch	<name>	imports	every	tag	from	the
remote	repository.

With	--no-tags	option,	git	fetch	<name>	does	not	import	tags	from
the	remote	repository.

By	default,	only	tags	on	fetched	branches	are	imported	(see
Section	G.3.46,	“git-fetch(1)”).

With	-t	<branch>	option,	instead	of	the	default	glob	refspec	for	the
remote	to	track	all	branches	under	the	refs/remotes/<name>/
namespace,	a	refspec	to	track	only	<branch>	is	created.	You	can
give	more	than	one	-t	<branch>	to	track	multiple	branches	without
grabbing	all	branches.

With	-m	<master>	option,	a	symbolic-ref
refs/remotes/<name>/HEAD	is	set	up	to	point	at	remote's	<master>
branch.	See	also	the	set-head	command.

When	a	fetch	mirror	is	created	with	--mirror=fetch,	the	refs	will	not	be



stored	in	the	refs/remotes/	namespace,	but	rather	everything	in	refs/
on	the	remote	will	be	directly	mirrored	into	refs/	in	the	local
repository.	This	option	only	makes	sense	in	bare	repositories,
because	a	fetch	would	overwrite	any	local	commits.

When	a	push	mirror	is	created	with	--mirror=push,	then	git	push	will
always	behave	as	if	--mirror	was	passed.

rename

Rename	the	remote	named	<old>	to	<new>.	All	remote-tracking
branches	and	configuration	settings	for	the	remote	are	updated.

In	case	<old>	and	<new>	are	the	same,	and	<old>	is	a	file	under
$GIT_DIR/remotes	or	$GIT_DIR/branches,	the	remote	is	converted
to	the	configuration	file	format.

remove	,	rm
Remove	the	remote	named	<name>.	All	remote-tracking	branches
and	configuration	settings	for	the	remote	are	removed.

set-head

Sets	or	deletes	the	default	branch	(i.e.	the	target	of	the	symbolic-ref
refs/remotes/<name>/HEAD)	for	the	named	remote.	Having	a	default
branch	for	a	remote	is	not	required,	but	allows	the	name	of	the
remote	to	be	specified	in	lieu	of	a	specific	branch.	For	example,	if	the
default	branch	for	origin	is	set	to	master,	then	origin	may	be
specified	wherever	you	would	normally	specify	origin/master.

With	-d	or	--delete,	the	symbolic	ref	refs/remotes/<name>/HEAD	is
deleted.

With	-a	or	--auto,	the	remote	is	queried	to	determine	its	HEAD,	then
the	symbolic-ref	refs/remotes/<name>/HEAD	is	set	to	the	same
branch.	e.g.,	if	the	remote	HEAD	is	pointed	at	next,	"git	remote	set-
head	origin	-a"	will	set	the	symbolic-ref	refs/remotes/origin/HEAD	to
refs/remotes/origin/next.	This	will	only	work	if
refs/remotes/origin/next	already	exists;	if	not	it	must	be	fetched	first.



Use	<branch>	to	set	the	symbolic-ref	refs/remotes/<name>/HEAD
explicitly.	e.g.,	"git	remote	set-head	origin	master"	will	set	the
symbolic-ref	refs/remotes/origin/HEAD	to	refs/remotes/origin/master.
This	will	only	work	if	refs/remotes/origin/master	already	exists;	if	not
it	must	be	fetched	first.

set-branches

Changes	the	list	of	branches	tracked	by	the	named	remote.	This	can
be	used	to	track	a	subset	of	the	available	remote	branches	after	the
initial	setup	for	a	remote.

The	named	branches	will	be	interpreted	as	if	specified	with	the	-t
option	on	the	git	remote	add	command	line.

With	--add,	instead	of	replacing	the	list	of	currently	tracked	branches,
adds	to	that	list.

get-url

Retrieves	the	URLs	for	a	remote.	Configurations	for	insteadOf	and
pushInsteadOf	are	expanded	here.	By	default,	only	the	first	URL	is
listed.

With	--push,	push	URLs	are	queried	rather	than	fetch	URLs.

With	--all,	all	URLs	for	the	remote	will	be	listed.

set-url

Changes	URLs	for	the	remote.	Sets	first	URL	for	remote	<name>
that	matches	regex	<oldurl>	(first	URL	if	no	<oldurl>	is	given)	to
<newurl>.	If	<oldurl>	doesn't	match	any	URL,	an	error	occurs	and
nothing	is	changed.

With	--push,	push	URLs	are	manipulated	instead	of	fetch	URLs.

With	--add,	instead	of	changing	existing	URLs,	new	URL	is	added.



With	--delete,	instead	of	changing	existing	URLs,	all	URLs	matching
regex	<url>	are	deleted	for	remote	<name>.	Trying	to	delete	all	non-
push	URLs	is	an	error.

Note	that	the	push	URL	and	the	fetch	URL,	even	though	they	can	be
set	differently,	must	still	refer	to	the	same	place.	What	you	pushed	to
the	push	URL	should	be	what	you	would	see	if	you	immediately
fetched	from	the	fetch	URL.	If	you	are	trying	to	fetch	from	one	place
(e.g.	your	upstream)	and	push	to	another	(e.g.	your	publishing
repository),	use	two	separate	remotes.

show

Gives	some	information	about	the	remote	<name>.

With	-n	option,	the	remote	heads	are	not	queried	first	with	git	ls-
remote	<name>;	cached	information	is	used	instead.

prune

Deletes	all	stale	remote-tracking	branches	under	<name>.	These
stale	branches	have	already	been	removed	from	the	remote
repository	referenced	by	<name>,	but	are	still	locally	available	in
"remotes/<name>".

With	--dry-run	option,	report	what	branches	will	be	pruned,	but	do	not
actually	prune	them.

update

Fetch	updates	for	a	named	set	of	remotes	in	the	repository	as
defined	by	remotes.<group>.	If	a	named	group	is	not	specified	on
the	command	line,	the	configuration	parameter	remotes.default	will
be	used;	if	remotes.default	is	not	defined,	all	remotes	which	do	not
have	the	configuration	parameter	remote.<name>.skipDefaultUpdate
set	to	true	will	be	updated.	(See	Section	G.3.27,	“git-config(1)”).

With	--prune	option,	prune	all	the	remotes	that	are	updated.



DISCUSSION

The	remote	configuration	is	achieved	using	the	remote.origin.url	and
remote.origin.fetch	configuration	variables.	(See	Section	G.3.27,	“git-
config(1)”).

Examples

Add	a	new	remote,	fetch,	and	check	out	a	branch	from	it

$	git	remote

origin

$	git	branch	-r

		origin/HEAD	->	origin/master

		origin/master

$	git	remote	add	staging	git://git.kernel.org/.../gregkh/staging.git

$	git	remote

origin

staging

$	git	fetch	staging

...

From	git://git.kernel.org/pub/scm/linux/kernel/git/gregkh/staging

	*	[new	branch]						master					->	staging/master

	*	[new	branch]						staging-linus	->	staging/staging-linus

	*	[new	branch]						staging-next	->	staging/staging-next

$	git	branch	-r

		origin/HEAD	->	origin/master

		origin/master

		staging/master

		staging/staging-linus

		staging/staging-next

$	git	checkout	-b	staging	staging/master

...

Imitate	git	clone	but	track	only	selected	branches

$	mkdir	project.git

$	cd	project.git

$	git	init

$	git	remote	add	-f	-t	master	-m	master	origin	git://example.com/git.git/

$	git	merge	origin



SEE	ALSO

Section	G.3.46,	“git-fetch(1)”	Section	G.3.10,	“git-branch(1)”
Section	G.3.27,	“git-config(1)”

GIT

Part	of	the	Section	G.3.1,	“git(1)”	suite

G.3.107.	git-repack(1)

NAME

git-repack	-	Pack	unpacked	objects	in	a	repository

SYNOPSIS

git	repack	[-a]	[-A]	[-d]	[-f]	[-F]	[-l]	[-n]	[-q]	[-b]	[--

window=<n>]	[--depth=<n>]

DESCRIPTION

This	command	is	used	to	combine	all	objects	that	do	not	currently	reside
in	a	"pack",	into	a	pack.	It	can	also	be	used	to	re-organize	existing	packs
into	a	single,	more	efficient	pack.

A	pack	is	a	collection	of	objects,	individually	compressed,	with	delta
compression	applied,	stored	in	a	single	file,	with	an	associated	index	file.

Packs	are	used	to	reduce	the	load	on	mirror	systems,	backup	engines,
disk	storage,	etc.

OPTIONS



-a

Instead	of	incrementally	packing	the	unpacked	objects,	pack
everything	referenced	into	a	single	pack.	Especially	useful	when
packing	a	repository	that	is	used	for	private	development.	Use	with	-
d.	This	will	clean	up	the	objects	that	git	prune	leaves	behind,	but	git
fsck	--full	--dangling	shows	as	dangling.

Note	that	users	fetching	over	dumb	protocols	will	have	to	fetch	the
whole	new	pack	in	order	to	get	any	contained	object,	no	matter	how
many	other	objects	in	that	pack	they	already	have	locally.

-A
Same	as	-a,	unless	-d	is	used.	Then	any	unreachable	objects	in	a
previous	pack	become	loose,	unpacked	objects,	instead	of	being	left
in	the	old	pack.	Unreachable	objects	are	never	intentionally	added	to
a	pack,	even	when	repacking.	This	option	prevents	unreachable
objects	from	being	immediately	deleted	by	way	of	being	left	in	the	old
pack	and	then	removed.	Instead,	the	loose	unreachable	objects	will
be	pruned	according	to	normal	expiry	rules	with	the	next	git	gc
invocation.	See	Section	G.3.53,	“git-gc(1)”.

-d
After	packing,	if	the	newly	created	packs	make	some	existing	packs
redundant,	remove	the	redundant	packs.	Also	run	git	prune-packed
to	remove	redundant	loose	object	files.

-l
Pass	the	--local	option	to	git	pack-objects.	See	Section	G.3.88,	“git-
pack-objects(1)”.

-f
Pass	the	--no-reuse-delta	option	to	git-pack-objects,	see
Section	G.3.88,	“git-pack-objects(1)”.

-F
Pass	the	--no-reuse-object	option	to	git-pack-objects,	see
Section	G.3.88,	“git-pack-objects(1)”.

-q
Pass	the	-q	option	to	git	pack-objects.	See	Section	G.3.88,	“git-pack-
objects(1)”.



-n
Do	not	update	the	server	information	with	git	update-server-info.	This
option	skips	updating	local	catalog	files	needed	to	publish	this
repository	(or	a	direct	copy	of	it)	over	HTTP	or	FTP.	See
Section	G.3.139,	“git-update-server-info(1)”.

--window=<n>	,	--depth=<n>
These	two	options	affect	how	the	objects	contained	in	the	pack	are
stored	using	delta	compression.	The	objects	are	first	internally	sorted
by	type,	size	and	optionally	names	and	compared	against	the	other
objects	within	--window	to	see	if	using	delta	compression	saves
space.	--depth	limits	the	maximum	delta	depth;	making	it	too	deep
affects	the	performance	on	the	unpacker	side,	because	delta	data
needs	to	be	applied	that	many	times	to	get	to	the	necessary	object.
The	default	value	for	--window	is	10	and	--depth	is	50.

--window-memory=<n>
This	option	provides	an	additional	limit	on	top	of	--window;	the
window	size	will	dynamically	scale	down	so	as	to	not	take	up	more
than	<n>	bytes	in	memory.	This	is	useful	in	repositories	with	a	mix	of
large	and	small	objects	to	not	run	out	of	memory	with	a	large
window,	but	still	be	able	to	take	advantage	of	the	large	window	for
the	smaller	objects.	The	size	can	be	suffixed	with	"k",	"m",	or	"g".	--
window-memory=0	makes	memory	usage	unlimited,	which	is	the
default.

--max-pack-size=<n>
Maximum	size	of	each	output	pack	file.	The	size	can	be	suffixed	with
"k",	"m",	or	"g".	The	minimum	size	allowed	is	limited	to	1	MiB.	If
specified,	multiple	packfiles	may	be	created.	The	default	is	unlimited,
unless	the	config	variable	pack.packSizeLimit	is	set.

-b	,	--write-bitmap-index
Write	a	reachability	bitmap	index	as	part	of	the	repack.	This	only
makes	sense	when	used	with	-a	or	-A,	as	the	bitmaps	must	be	able
to	refer	to	all	reachable	objects.	This	option	overrides	the	setting	of
pack.writeBitmaps.

--pack-kept-objects
Include	objects	in	.keep	files	when	repacking.	Note	that	we	still	do
not	delete	.keep	packs	after	pack-objects	finishes.	This	means	that
we	may	duplicate	objects,	but	this	makes	the	option	safe	to	use



when	there	are	concurrent	pushes	or	fetches.	This	option	is
generally	only	useful	if	you	are	writing	bitmaps	with	-b	or
pack.writeBitmaps,	as	it	ensures	that	the	bitmapped	packfile	has	the
necessary	objects.

Configuration

By	default,	the	command	passes	--delta-base-offset	option	to	git	pack-
objects;	this	typically	results	in	slightly	smaller	packs,	but	the	generated
packs	are	incompatible	with	versions	of	Git	older	than	version	1.4.4.	If
you	need	to	share	your	repository	with	such	ancient	Git	versions,	either
directly	or	via	the	dumb	http	protocol,	then	you	need	to	set	the
configuration	variable	repack.UseDeltaBaseOffset	to	"false"	and	repack.
Access	from	old	Git	versions	over	the	native	protocol	is	unaffected	by	this
option	as	the	conversion	is	performed	on	the	fly	as	needed	in	that	case.

SEE	ALSO

Section	G.3.88,	“git-pack-objects(1)”	Section	G.3.93,	“git-prune-
packed(1)”

GIT

Part	of	the	Section	G.3.1,	“git(1)”	suite

G.3.108.	git-replace(1)

NAME

git-replace	-	Create,	list,	delete	refs	to	replace	objects

SYNOPSIS

git	replace	[-f]	<object>	<replacement>

git	replace	[-f]	--edit	<object>

git	replace	[-f]	--graft	<commit>	[<parent>…]



git	replace	-d	<object>…

git	replace	[--format=<format>]	[-l	[<pattern>]]

DESCRIPTION

Adds	a	replace	reference	in	refs/replace/	namespace.

The	name	of	the	replace	reference	is	the	SHA-1	of	the	object	that	is
replaced.	The	content	of	the	replace	reference	is	the	SHA-1	of	the
replacement	object.

The	replaced	object	and	the	replacement	object	must	be	of	the	same
type.	This	restriction	can	be	bypassed	using	-f.

Unless	-f	is	given,	the	replace	reference	must	not	yet	exist.

There	is	no	other	restriction	on	the	replaced	and	replacement	objects.
Merge	commits	can	be	replaced	by	non-merge	commits	and	vice	versa.

Replacement	references	will	be	used	by	default	by	all	Git	commands
except	those	doing	reachability	traversal	(prune,	pack	transfer	and	fsck).

It	is	possible	to	disable	use	of	replacement	references	for	any	command
using	the	--no-replace-objects	option	just	after	git.

For	example	if	commit	foo	has	been	replaced	by	commit	bar:

$	git	--no-replace-objects	cat-file	commit	foo

shows	information	about	commit	foo,	while:

$	git	cat-file	commit	foo

shows	information	about	commit	bar.

The	GIT_NO_REPLACE_OBJECTS	environment	variable	can	be	set	to
achieve	the	same	effect	as	the	--no-replace-objects	option.



OPTIONS

-f	,	--force
If	an	existing	replace	ref	for	the	same	object	exists,	it	will	be
overwritten	(instead	of	failing).

-d	,	--delete
Delete	existing	replace	refs	for	the	given	objects.

--edit	<object>
Edit	an	object's	content	interactively.	The	existing	content	for
<object>	is	pretty-printed	into	a	temporary	file,	an	editor	is	launched
on	the	file,	and	the	result	is	parsed	to	create	a	new	object	of	the
same	type	as	<object>.	A	replacement	ref	is	then	created	to	replace
<object>	with	the	newly	created	object.	See	Section	G.3.142,	“git-
var(1)”	for	details	about	how	the	editor	will	be	chosen.

--raw
When	editing,	provide	the	raw	object	contents	rather	than	pretty-
printed	ones.	Currently	this	only	affects	trees,	which	will	be	shown	in
their	binary	form.	This	is	harder	to	work	with,	but	can	help	when
repairing	a	tree	that	is	so	corrupted	it	cannot	be	pretty-printed.	Note
that	you	may	need	to	configure	your	editor	to	cleanly	read	and	write
binary	data.

--graft	<commit>	[<parent>…]
Create	a	graft	commit.	A	new	commit	is	created	with	the	same
content	as	<commit>	except	that	its	parents	will	be	[<parent>…]
instead	of	<commit>'s	parents.	A	replacement	ref	is	then	created	to
replace	<commit>	with	the	newly	created	commit.	See
contrib/convert-grafts-to-replace-refs.sh	for	an	example	script	based
on	this	option	that	can	convert	grafts	to	replace	refs.

-l	<pattern>	,	--list	<pattern>
List	replace	refs	for	objects	that	match	the	given	pattern	(or	all	if	no
pattern	is	given).	Typing	"git	replace"	without	arguments,	also	lists	all
replace	refs.

--format=<format>
When	listing,	use	the	specified	<format>,	which	can	be	one	of	short,
medium	and	long.	When	omitted,	the	format	defaults	to	short.

FORMATS



The	following	format	are	available:

short:	<replaced	sha1>
medium:	<replaced	sha1>	→	<replacement	sha1>
long:	<replaced	sha1>	(<replaced	type>)	→	<replacement	sha1>
(<replacement	type>)

CREATING	REPLACEMENT	OBJECTS

Section	G.3.47,	“git-filter-branch(1)”,	Section	G.3.57,	“git-hash-object(1)”
and	Section	G.3.99,	“git-rebase(1)”,	among	other	git	commands,	can	be
used	to	create	replacement	objects	from	existing	objects.	The	--edit
option	can	also	be	used	with	git	replace	to	create	a	replacement	object
by	editing	an	existing	object.

If	you	want	to	replace	many	blobs,	trees	or	commits	that	are	part	of	a
string	of	commits,	you	may	just	want	to	create	a	replacement	string	of
commits	and	then	only	replace	the	commit	at	the	tip	of	the	target	string	of
commits	with	the	commit	at	the	tip	of	the	replacement	string	of	commits.

BUGS

Comparing	blobs	or	trees	that	have	been	replaced	with	those	that	replace
them	will	not	work	properly.	And	using	git	reset	--hard	to	go	back	to	a
replaced	commit	will	move	the	branch	to	the	replacement	commit	instead
of	the	replaced	commit.

There	may	be	other	problems	when	using	git	rev-list	related	to	pending
objects.

SEE	ALSO

Section	G.3.57,	“git-hash-object(1)”	Section	G.3.47,	“git-filter-branch(1)”
Section	G.3.99,	“git-rebase(1)”	Section	G.3.134,	“git-tag(1)”
Section	G.3.10,	“git-branch(1)”	Section	G.3.26,	“git-commit(1)”
Section	G.3.142,	“git-var(1)”	Section	G.3.1,	“git(1)”



GIT

Part	of	the	Section	G.3.1,	“git(1)”	suite

G.3.109.	git-request-pull(1)

NAME

git-request-pull	-	Generates	a	summary	of	pending	changes

SYNOPSIS

git	request-pull	[-p]	<start>	<url>	[<end>]

DESCRIPTION

Generate	a	request	asking	your	upstream	project	to	pull	changes	into
their	tree.	The	request,	printed	to	the	standard	output,	begins	with	the
branch	description,	summarizes	the	changes	and	indicates	from	where
they	can	be	pulled.

The	upstream	project	is	expected	to	have	the	commit	named	by	<start>
and	the	output	asks	it	to	integrate	the	changes	you	made	since	that
commit,	up	to	the	commit	named	by	<end>,	by	visiting	the	repository
named	by	<url>.

OPTIONS

-p
Include	patch	text	in	the	output.

<start>
Commit	to	start	at.	This	names	a	commit	that	is	already	in	the
upstream	history.

<url>
The	repository	URL	to	be	pulled	from.

<end>



Commit	to	end	at	(defaults	to	HEAD).	This	names	the	commit	at	the
tip	of	the	history	you	are	asking	to	be	pulled.

When	the	repository	named	by	<url>	has	the	commit	at	a	tip	of	a	ref
that	is	different	from	the	ref	you	have	locally,	you	can	use	the
<local>:<remote>	syntax,	to	have	its	local	name,	a	colon	:,	and	its
remote	name.

EXAMPLE

Imagine	that	you	built	your	work	on	your	master	branch	on	top	of	the	v1.0
release,	and	want	it	to	be	integrated	to	the	project.	First	you	push	that
change	to	your	public	repository	for	others	to	see:

git	push	https://git.ko.xz/project	master

Then,	you	run	this	command:

git	request-pull	v1.0	https://git.ko.xz/project	master

which	will	produce	a	request	to	the	upstream,	summarizing	the	changes
between	the	v1.0	release	and	your	master,	to	pull	it	from	your	public
repository.

If	you	pushed	your	change	to	a	branch	whose	name	is	different	from	the
one	you	have	locally,	e.g.

git	push	https://git.ko.xz/project	master:for-linus

then	you	can	ask	that	to	be	pulled	with

git	request-pull	v1.0	https://git.ko.xz/project	master:for-linus

GIT

Part	of	the	Section	G.3.1,	“git(1)”	suite

G.3.110.	git-rerere(1)

NAME



git-rerere	-	Reuse	recorded	resolution	of	conflicted	merges

SYNOPSIS

git	rerere	[clear|forget	<pathspec>|diff|remaining|status|gc]

DESCRIPTION

In	a	workflow	employing	relatively	long	lived	topic	branches,	the
developer	sometimes	needs	to	resolve	the	same	conflicts	over	and	over
again	until	the	topic	branches	are	done	(either	merged	to	the	"release"
branch,	or	sent	out	and	accepted	upstream).

This	command	assists	the	developer	in	this	process	by	recording
conflicted	automerge	results	and	corresponding	hand	resolve	results	on
the	initial	manual	merge,	and	applying	previously	recorded	hand
resolutions	to	their	corresponding	automerge	results.

Note

You	need	to	set	the	configuration	variable	rerere.enabled	in
order	to	enable	this	command.

COMMANDS

Normally,	git	rerere	is	run	without	arguments	or	user-intervention.
However,	it	has	several	commands	that	allow	it	to	interact	with	its	working
state.

clear
Reset	the	metadata	used	by	rerere	if	a	merge	resolution	is	to	be
aborted.	Calling	git	am	[--skip|--abort]	or	git	rebase	[--skip|--abort]	will
automatically	invoke	this	command.

forget	<pathspec>



Reset	the	conflict	resolutions	which	rerere	has	recorded	for	the
current	conflict	in	<pathspec>.

diff
Display	diffs	for	the	current	state	of	the	resolution.	It	is	useful	for
tracking	what	has	changed	while	the	user	is	resolving	conflicts.
Additional	arguments	are	passed	directly	to	the	system	diff
command	installed	in	PATH.

status
Print	paths	with	conflicts	whose	merge	resolution	rerere	will	record.

remaining
Print	paths	with	conflicts	that	have	not	been	autoresolved	by	rerere.
This	includes	paths	whose	resolutions	cannot	be	tracked	by	rerere,
such	as	conflicting	submodules.

gc
Prune	records	of	conflicted	merges	that	occurred	a	long	time	ago.	By
default,	unresolved	conflicts	older	than	15	days	and	resolved
conflicts	older	than	60	days	are	pruned.	These	defaults	are
controlled	via	the	gc.rerereUnresolved	and	gc.rerereResolved
configuration	variables	respectively.

DISCUSSION

When	your	topic	branch	modifies	an	overlapping	area	that	your	master
branch	(or	upstream)	touched	since	your	topic	branch	forked	from	it,	you
may	want	to	test	it	with	the	latest	master,	even	before	your	topic	branch	is
ready	to	be	pushed	upstream:

														o---*---o	topic

													/

				o---o---o---*---o---o	master

For	such	a	test,	you	need	to	merge	master	and	topic	somehow.	One	way
to	do	it	is	to	pull	master	into	the	topic	branch:

								$	git	checkout	topic

								$	git	merge	master



														o---*---o---+	topic

													/											/

				o---o---o---*---o---o	master

The	commits	marked	with	*	touch	the	same	area	in	the	same	file;	you
need	to	resolve	the	conflicts	when	creating	the	commit	marked	with	+.
Then	you	can	test	the	result	to	make	sure	your	work-in-progress	still
works	with	what	is	in	the	latest	master.

After	this	test	merge,	there	are	two	ways	to	continue	your	work	on	the
topic.	The	easiest	is	to	build	on	top	of	the	test	merge	commit	+,	and	when
your	work	in	the	topic	branch	is	finally	ready,	pull	the	topic	branch	into
master,	and/or	ask	the	upstream	to	pull	from	you.	By	that	time,	however,
the	master	or	the	upstream	might	have	been	advanced	since	the	test
merge	+,	in	which	case	the	final	commit	graph	would	look	like	this:

								$	git	checkout	topic

								$	git	merge	master

								$	...	work	on	both	topic	and	master	branches

								$	git	checkout	master

								$	git	merge	topic

														o---*---o---+---o---o	topic

													/											/									\

				o---o---o---*---o---o---o---o---+	master

When	your	topic	branch	is	long-lived,	however,	your	topic	branch	would
end	up	having	many	such	"Merge	from	master"	commits	on	it,	which
would	unnecessarily	clutter	the	development	history.	Readers	of	the
Linux	kernel	mailing	list	may	remember	that	Linus	complained	about	such
too	frequent	test	merges	when	a	subsystem	maintainer	asked	to	pull	from
a	branch	full	of	"useless	merges".

As	an	alternative,	to	keep	the	topic	branch	clean	of	test	merges,	you
could	blow	away	the	test	merge,	and	keep	building	on	top	of	the	tip
before	the	test	merge:

								$	git	checkout	topic

								$	git	merge	master



								$	git	reset	--hard	HEAD^	;#	rewind	the	test	merge

								$	...	work	on	both	topic	and	master	branches

								$	git	checkout	master

								$	git	merge	topic

														o---*---o-------o---o	topic

													/																					\

				o---o---o---*---o---o---o---o---+	master

This	would	leave	only	one	merge	commit	when	your	topic	branch	is
finally	ready	and	merged	into	the	master	branch.	This	merge	would
require	you	to	resolve	the	conflict,	introduced	by	the	commits	marked
with	*.	However,	this	conflict	is	often	the	same	conflict	you	resolved	when
you	created	the	test	merge	you	blew	away.	git	rerere	helps	you	resolve
this	final	conflicted	merge	using	the	information	from	your	earlier	hand
resolve.

Running	the	git	rerere	command	immediately	after	a	conflicted
automerge	records	the	conflicted	working	tree	files,	with	the	usual	conflict
markers	<<<<<<<,	=======,	and	>>>>>>>	in	them.	Later,	after	you	are
done	resolving	the	conflicts,	running	git	rerere	again	will	record	the
resolved	state	of	these	files.	Suppose	you	did	this	when	you	created	the
test	merge	of	master	into	the	topic	branch.

Next	time,	after	seeing	the	same	conflicted	automerge,	running	git	rerere
will	perform	a	three-way	merge	between	the	earlier	conflicted	automerge,
the	earlier	manual	resolution,	and	the	current	conflicted	automerge.	If	this
three-way	merge	resolves	cleanly,	the	result	is	written	out	to	your	working
tree	file,	so	you	do	not	have	to	manually	resolve	it.	Note	that	git	rerere
leaves	the	index	file	alone,	so	you	still	need	to	do	the	final	sanity	checks
with	git	diff	(or	git	diff	-c)	and	git	add	when	you	are	satisfied.

As	a	convenience	measure,	git	merge	automatically	invokes	git	rerere
upon	exiting	with	a	failed	automerge	and	git	rerere	records	the	hand
resolve	when	it	is	a	new	conflict,	or	reuses	the	earlier	hand	resolve	when
it	is	not.	git	commit	also	invokes	git	rerere	when	committing	a	merge
result.	What	this	means	is	that	you	do	not	have	to	do	anything	special
yourself	(besides	enabling	the	rerere.enabled	config	variable).



In	our	example,	when	you	do	the	test	merge,	the	manual	resolution	is
recorded,	and	it	will	be	reused	when	you	do	the	actual	merge	later	with
the	updated	master	and	topic	branch,	as	long	as	the	recorded	resolution
is	still	applicable.

The	information	git	rerere	records	is	also	used	when	running	git	rebase.
After	blowing	away	the	test	merge	and	continuing	development	on	the
topic	branch:

														o---*---o-------o---o	topic

													/

				o---o---o---*---o---o---o---o			master

								$	git	rebase	master	topic

																																		o---*---o-------o---o	topic

																																	/

				o---o---o---*---o---o---o---o			master

you	could	run	git	rebase	master	topic,	to	bring	yourself	up-to-date	before
your	topic	is	ready	to	be	sent	upstream.	This	would	result	in	falling	back
to	a	three-way	merge,	and	it	would	conflict	the	same	way	as	the	test
merge	you	resolved	earlier.	git	rerere	will	be	run	by	git	rebase	to	help	you
resolve	this	conflict.

GIT

Part	of	the	Section	G.3.1,	“git(1)”	suite

G.3.111.	git-reset(1)

NAME

git-reset	-	Reset	current	HEAD	to	the	specified	state

SYNOPSIS



git	reset	[-q]	[<tree-ish>]	[--]	<paths>…

git	reset	(--patch	|	-p)	[<tree-ish>]	[--]	[<paths>…]

git	reset	[--soft	|	--mixed	[-N]	|	--hard	|	--merge	|	--

keep]	[-q]	[<commit>]

DESCRIPTION

In	the	first	and	second	form,	copy	entries	from	<tree-ish>	to	the	index.	In
the	third	form,	set	the	current	branch	head	(HEAD)	to	<commit>,
optionally	modifying	index	and	working	tree	to	match.	The	<tree-
ish>/<commit>	defaults	to	HEAD	in	all	forms.

git	reset	[-q]	[<tree-ish>]	[--]	<paths>…

This	form	resets	the	index	entries	for	all	<paths>	to	their	state	at
<tree-ish>.	(It	does	not	affect	the	working	tree	or	the	current	branch.)

This	means	that	git	reset	<paths>	is	the	opposite	of	git	add	<paths>.

After	running	git	reset	<paths>	to	update	the	index	entry,	you	can
use	Section	G.3.18,	“git-checkout(1)”	to	check	the	contents	out	of	the
index	to	the	working	tree.	Alternatively,	using	Section	G.3.18,	“git-
checkout(1)”	and	specifying	a	commit,	you	can	copy	the	contents	of
a	path	out	of	a	commit	to	the	index	and	to	the	working	tree	in	one	go.

git	reset	(--patch	|	-p)	[<tree-ish>]	[--]	[<paths>…]

Interactively	select	hunks	in	the	difference	between	the	index	and
<tree-ish>	(defaults	to	HEAD).	The	chosen	hunks	are	applied	in
reverse	to	the	index.

This	means	that	git	reset	-p	is	the	opposite	of	git	add	-p,	i.e.	you	can
use	it	to	selectively	reset	hunks.	See	the	Interactive	Mode	section	of
Section	G.3.2,	“git-add(1)”	to	learn	how	to	operate	the	--patch	mode.

git	reset	[<mode>]	[<commit>]

This	form	resets	the	current	branch	head	to	<commit>	and	possibly



updates	the	index	(resetting	it	to	the	tree	of	<commit>)	and	the
working	tree	depending	on	<mode>.	If	<mode>	is	omitted,	defaults	to
"--mixed".	The	<mode>	must	be	one	of	the	following:

--soft
Does	not	touch	the	index	file	or	the	working	tree	at	all	(but
resets	the	head	to	<commit>,	just	like	all	modes	do).	This	leaves
all	your	changed	files	"Changes	to	be	committed",	as	git	status
would	put	it.

--mixed

Resets	the	index	but	not	the	working	tree	(i.e.,	the	changed	files
are	preserved	but	not	marked	for	commit)	and	reports	what	has
not	been	updated.	This	is	the	default	action.

If	-N	is	specified,	removed	paths	are	marked	as	intent-to-add
(see	Section	G.3.2,	“git-add(1)”).

--hard
Resets	the	index	and	working	tree.	Any	changes	to	tracked	files
in	the	working	tree	since	<commit>	are	discarded.

--merge

Resets	the	index	and	updates	the	files	in	the	working	tree	that
are	different	between	<commit>	and	HEAD,	but	keeps	those
which	are	different	between	the	index	and	working	tree	(i.e.
which	have	changes	which	have	not	been	added).	If	a	file	that	is
different	between	<commit>	and	the	index	has	unstaged
changes,	reset	is	aborted.

In	other	words,	--merge	does	something	like	a	git	read-tree	-u	-
m	<commit>,	but	carries	forward	unmerged	index	entries.

--keep
Resets	index	entries	and	updates	files	in	the	working	tree	that
are	different	between	<commit>	and	HEAD.	If	a	file	that	is
different	between	<commit>	and	HEAD	has	local	changes,	reset
is	aborted.



If	you	want	to	undo	a	commit	other	than	the	latest	on	a	branch,
Section	G.3.114,	“git-revert(1)”	is	your	friend.

OPTIONS

-q	,	--quiet
Be	quiet,	only	report	errors.

EXAMPLES

Undo	add

$	edit																																					

$	git	add	frotz.c	filfre.c

$	mailx																																				

$	git	reset																																

$	git	pull	git://info.example.com/	nitfol		

You	are	happily	working	on	something,	and	find	the	changes	in
these	files	are	in	good	order.	You	do	not	want	to	see	them	when
you	run	"git	diff",	because	you	plan	to	work	on	other	files	and
changes	with	these	files	are	distracting.

Somebody	asks	you	to	pull,	and	the	changes	sounds	worthy	of
merging.

However,	you	already	dirtied	the	index	(i.e.	your	index	does	not
match	the	HEAD	commit).	But	you	know	the	pull	you	are	going
to	make	does	not	affect	frotz.c	or	filfre.c,	so	you	revert	the	index
changes	for	these	two	files.	Your	changes	in	working	tree	remain
there.

Then	you	can	pull	and	merge,	leaving	frotz.c	and	filfre.c	changes



still	in	the	working	tree.

Undo	a	commit	and	redo

$	git	commit	...

$	git	reset	--soft	HEAD^						

$	edit																								

$	git	commit	-a	-c	ORIG_HEAD		

This	is	most	often	done	when	you	remembered	what	you	just
committed	is	incomplete,	or	you	misspelled	your	commit
message,	or	both.	Leaves	working	tree	as	it	was	before	"reset".

Make	corrections	to	working	tree	files.

"reset"	copies	the	old	head	to	.git/ORIG_HEAD;	redo	the	commit
by	starting	with	its	log	message.	If	you	do	not	need	to	edit	the
message	further,	you	can	give	-C	option	instead.

See	also	the	--amend	option	to	Section	G.3.26,	“git-commit(1)”.

Undo	a	commit,	making	it	a	topic	branch

$	git	branch	topic/wip					

$	git	reset	--hard	HEAD~3		

$	git	checkout	topic/wip			

You	have	made	some	commits,	but	realize	they	were	premature
to	be	in	the	"master"	branch.	You	want	to	continue	polishing
them	in	a	topic	branch,	so	create	"topic/wip"	branch	off	of	the
current	HEAD.

Rewind	the	master	branch	to	get	rid	of	those	three	commits.



Switch	to	"topic/wip"	branch	and	keep	working.

Undo	commits	permanently

$	git	commit	...

$	git	reset	--hard	HEAD~3			

The	last	three	commits	(HEAD,	HEAD^,	and	HEAD~2)	were	bad
and	you	do	not	want	to	ever	see	them	again.	Do	not	do	this	if
you	have	already	given	these	commits	to	somebody	else.	(See
the	"RECOVERING	FROM	UPSTREAM	REBASE"	section	in
Section	G.3.99,	“git-rebase(1)”	for	the	implications	of	doing	so.)

Undo	a	merge	or	pull

$	git	pull																									

Auto-merging	nitfol

CONFLICT	(content):	Merge	conflict	in	nitfol

Automatic	merge	failed;	fix	conflicts	and	then	commit	the	result.

$	git	reset	--hard																	

$	git	pull	.	topic/branch										

Updating	from	41223...	to	13134...

Fast-forward

$	git	reset	--hard	ORIG_HEAD							

Try	to	update	from	the	upstream	resulted	in	a	lot	of	conflicts;	you
were	not	ready	to	spend	a	lot	of	time	merging	right	now,	so	you
decide	to	do	that	later.

"pull"	has	not	made	merge	commit,	so	"git	reset	--hard"	which	is
a	synonym	for	"git	reset	--hard	HEAD"	clears	the	mess	from	the
index	file	and	the	working	tree.



Merge	a	topic	branch	into	the	current	branch,	which	resulted	in	a
fast-forward.

But	you	decided	that	the	topic	branch	is	not	ready	for	public
consumption	yet.	"pull"	or	"merge"	always	leaves	the	original	tip
of	the	current	branch	in	ORIG_HEAD,	so	resetting	hard	to	it
brings	your	index	file	and	the	working	tree	back	to	that	state,	and
resets	the	tip	of	the	branch	to	that	commit.

Undo	a	merge	or	pull	inside	a	dirty	working	tree

$	git	pull																									

Auto-merging	nitfol

Merge	made	by	recursive.

	nitfol																|			20	+++++----

	...

$	git	reset	--merge	ORIG_HEAD						

Even	if	you	may	have	local	modifications	in	your	working	tree,
you	can	safely	say	"git	pull"	when	you	know	that	the	change	in
the	other	branch	does	not	overlap	with	them.

After	inspecting	the	result	of	the	merge,	you	may	find	that	the
change	in	the	other	branch	is	unsatisfactory.	Running	"git	reset	-
-hard	ORIG_HEAD"	will	let	you	go	back	to	where	you	were,	but
it	will	discard	your	local	changes,	which	you	do	not	want.	"git
reset	--merge"	keeps	your	local	changes.

Interrupted	workflow

Suppose	you	are	interrupted	by	an	urgent	fix	request	while	you	are
in	the	middle	of	a	large	change.	The	files	in	your	working	tree	are	not
in	any	shape	to	be	committed	yet,	but	you	need	to	get	to	the	other
branch	for	a	quick	bugfix.



$	git	checkout	feature	;#	you	were	working	in	"feature"	branch	and

$	work	work	work							;#	got	interrupted

$	git	commit	-a	-m	"snapshot	WIP"																	

$	git	checkout	master

$	fix	fix	fix

$	git	commit	;#	commit	with	real	log

$	git	checkout	feature

$	git	reset	--soft	HEAD^	;#	go	back	to	WIP	state		

$	git	reset																																							

This	commit	will	get	blown	away	so	a	throw-away	log	message
is	OK.

This	removes	the	WIP	commit	from	the	commit	history,	and	sets
your	working	tree	to	the	state	just	before	you	made	that
snapshot.

At	this	point	the	index	file	still	has	all	the	WIP	changes	you
committed	as	snapshot	WIP.	This	updates	the	index	to	show
your	WIP	files	as	uncommitted.

See	also	Section	G.3.128,	“git-stash(1)”.

Reset	a	single	file	in	the	index

Suppose	you	have	added	a	file	to	your	index,	but	later	decide	you	do
not	want	to	add	it	to	your	commit.	You	can	remove	the	file	from	the
index	while	keeping	your	changes	with	git	reset.

$	git	reset	--	frotz.c																						

$	git	commit	-m	"Commit	files	in	index"					

$	git	add	frotz.c																											



This	removes	the	file	from	the	index	while	keeping	it	in	the
working	directory.

This	commits	all	other	changes	in	the	index.

Adds	the	file	to	the	index	again.

Keep	changes	in	working	tree	while	discarding	some	previous	commits

Suppose	you	are	working	on	something	and	you	commit	it,	and	then
you	continue	working	a	bit	more,	but	now	you	think	that	what	you
have	in	your	working	tree	should	be	in	another	branch	that	has
nothing	to	do	with	what	you	committed	previously.	You	can	start	a
new	branch	and	reset	it	while	keeping	the	changes	in	your	working
tree.

$	git	tag	start

$	git	checkout	-b	branch1

$	edit

$	git	commit	...																												

$	edit

$	git	checkout	-b	branch2																			

$	git	reset	--keep	start																				

This	commits	your	first	edits	in	branch1.

In	the	ideal	world,	you	could	have	realized	that	the	earlier
commit	did	not	belong	to	the	new	topic	when	you	created	and
switched	to	branch2	(i.e.	"git	checkout	-b	branch2	start"),	but
nobody	is	perfect.

But	you	can	use	"reset	--keep"	to	remove	the	unwanted	commit
after	you	switched	to	"branch2".



DISCUSSION

The	tables	below	show	what	happens	when	running:

git	reset	--option	target

to	reset	the	HEAD	to	another	commit	(target)	with	the	different	reset
options	depending	on	the	state	of	the	files.

In	these	tables,	A,	B,	C	and	D	are	some	different	states	of	a	file.	For
example,	the	first	line	of	the	first	table	means	that	if	a	file	is	in	state	A	in
the	working	tree,	in	state	B	in	the	index,	in	state	C	in	HEAD	and	in	state
D	in	the	target,	then	"git	reset	--soft	target"	will	leave	the	file	in	the
working	tree	in	state	A	and	in	the	index	in	state	B.	It	resets	(i.e.	moves)
the	HEAD	(i.e.	the	tip	of	the	current	branch,	if	you	are	on	one)	to	"target"
(which	has	the	file	in	state	D).

working	index	HEAD	target									working	index	HEAD

----------------------------------------------------

	A							B					C				D					--soft			A							B					D

																										--mixed		A							D					D

																										--hard			D							D					D

																										--merge	(disallowed)

																										--keep		(disallowed)

working	index	HEAD	target									working	index	HEAD

----------------------------------------------------

	A							B					C				C					--soft			A							B					C

																										--mixed		A							C					C

																										--hard			C							C					C

																										--merge	(disallowed)

																										--keep			A							C					C

working	index	HEAD	target									working	index	HEAD

----------------------------------------------------

	B							B					C				D					--soft			B							B					D

																										--mixed		B							D					D

																										--hard			D							D					D

																										--merge		D							D					D

																										--keep		(disallowed)

working	index	HEAD	target									working	index	HEAD

----------------------------------------------------

	B							B					C				C					--soft			B							B					C

																										--mixed		B							C					C

																										--hard			C							C					C

																										--merge		C							C					C

																										--keep			B							C					C



working	index	HEAD	target									working	index	HEAD

----------------------------------------------------

	B							C					C				D					--soft			B							C					D

																										--mixed		B							D					D

																										--hard			D							D					D

																										--merge	(disallowed)

																										--keep		(disallowed)

working	index	HEAD	target									working	index	HEAD

----------------------------------------------------

	B							C					C				C					--soft			B							C					C

																										--mixed		B							C					C

																										--hard			C							C					C

																										--merge		B							C					C

																										--keep			B							C					C

"reset	--merge"	is	meant	to	be	used	when	resetting	out	of	a	conflicted
merge.	Any	mergy	operation	guarantees	that	the	working	tree	file	that	is
involved	in	the	merge	does	not	have	local	change	wrt	the	index	before	it
starts,	and	that	it	writes	the	result	out	to	the	working	tree.	So	if	we	see
some	difference	between	the	index	and	the	target	and	also	between	the
index	and	the	working	tree,	then	it	means	that	we	are	not	resetting	out
from	a	state	that	a	mergy	operation	left	after	failing	with	a	conflict.	That	is
why	we	disallow	--merge	option	in	this	case.

"reset	--keep"	is	meant	to	be	used	when	removing	some	of	the	last
commits	in	the	current	branch	while	keeping	changes	in	the	working	tree.
If	there	could	be	conflicts	between	the	changes	in	the	commit	we	want	to
remove	and	the	changes	in	the	working	tree	we	want	to	keep,	the	reset	is
disallowed.	That's	why	it	is	disallowed	if	there	are	both	changes	between
the	working	tree	and	HEAD,	and	between	HEAD	and	the	target.	To	be
safe,	it	is	also	disallowed	when	there	are	unmerged	entries.

The	following	tables	show	what	happens	when	there	are	unmerged
entries:

working	index	HEAD	target									working	index	HEAD

----------------------------------------------------

	X							U					A				B					--soft		(disallowed)

																										--mixed		X							B					B

																										--hard			B							B					B

																										--merge		B							B					B

																										--keep		(disallowed)

working	index	HEAD	target									working	index	HEAD

----------------------------------------------------

	X							U					A				A					--soft		(disallowed)

																										--mixed		X							A					A

																										--hard			A							A					A

																										--merge		A							A					A



																										--keep		(disallowed)

X	means	any	state	and	U	means	an	unmerged	index.

GIT

Part	of	the	Section	G.3.1,	“git(1)”	suite

G.3.112.	git-rev-list(1)

NAME

git-rev-list	-	Lists	commit	objects	in	reverse	chronological	order

SYNOPSIS

git	rev-list	[	--max-count=<number>	]

													[	--skip=<number>	]

													[	--max-age=<timestamp>	]

													[	--min-age=<timestamp>	]

													[	--sparse	]

													[	--merges	]

													[	--no-merges	]

													[	--min-parents=<number>	]

													[	--no-min-parents	]

													[	--max-parents=<number>	]

													[	--no-max-parents	]

													[	--first-parent	]

													[	--remove-empty	]

													[	--full-history	]

													[	--not	]

													[	--all	]

													[	--branches[=<pattern>]	]

													[	--tags[=<pattern>]	]

													[	--remotes[=<pattern>]	]

													[	--glob=<glob-pattern>	]

													[	--ignore-missing	]

													[	--stdin	]

													[	--quiet	]

													[	--topo-order	]

													[	--parents	]

													[	--timestamp	]



													[	--left-right	]

													[	--left-only	]

													[	--right-only	]

													[	--cherry-mark	]

													[	--cherry-pick	]

													[	--encoding=<encoding>	]

													[	--(author|committer|grep)=<pattern>	]

													[	--regexp-ignore-case	|	-i	]

													[	--extended-regexp	|	-E	]

													[	--fixed-strings	|	-F	]

													[	--date=<format>]

													[	[	--objects	|	--objects-edge	|	--objects-edge-

aggressive	]

															[	--unpacked	]	]

													[	--pretty	|	--header	]

													[	--bisect	]

													[	--bisect-vars	]

													[	--bisect-all	]

													[	--merge	]

													[	--reverse	]

													[	--walk-reflogs	]

													[	--no-walk	]	[	--do-walk	]

													[	--count	]

													[	--use-bitmap-index	]

													<commit>…	[	--	<paths>…	]

DESCRIPTION

List	commits	that	are	reachable	by	following	the	parent	links	from	the
given	commit(s),	but	exclude	commits	that	are	reachable	from	the	one(s)
given	with	a	^	in	front	of	them.	The	output	is	given	in	reverse
chronological	order	by	default.

You	can	think	of	this	as	a	set	operation.	Commits	given	on	the	command
line	form	a	set	of	commits	that	are	reachable	from	any	of	them,	and	then
commits	reachable	from	any	of	the	ones	given	with	^	in	front	are
subtracted	from	that	set.	The	remaining	commits	are	what	comes	out	in
the	command's	output.	Various	other	options	and	paths	parameters	can
be	used	to	further	limit	the	result.

Thus,	the	following	command:



								$	git	rev-list	foo	bar	^baz

means	"list	all	the	commits	which	are	reachable	from	foo	or	bar,	but	not
from	baz".

A	special	notation	"<commit1>..<commit2>"	can	be	used	as	a	short-hand
for	"^'<commit1>'	<commit2>".	For	example,	either	of	the	following	may
be	used	interchangeably:

								$	git	rev-list	origin..HEAD

								$	git	rev-list	HEAD	^origin

Another	special	notation	is	"<commit1>…<commit2>"	which	is	useful	for
merges.	The	resulting	set	of	commits	is	the	symmetric	difference
between	the	two	operands.	The	following	two	commands	are	equivalent:

								$	git	rev-list	A	B	--not	$(git	merge-base	--all	A	B)

								$	git	rev-list	A...B

rev-list	is	a	very	essential	Git	command,	since	it	provides	the	ability	to
build	and	traverse	commit	ancestry	graphs.	For	this	reason,	it	has	a	lot	of
different	options	that	enables	it	to	be	used	by	commands	as	different	as
git	bisect	and	git	repack.

OPTIONS



1.	Commit	Limiting

Besides	specifying	a	range	of	commits	that	should	be	listed	using	the
special	notations	explained	in	the	description,	additional	commit	limiting
may	be	applied.

Using	more	options	generally	further	limits	the	output	(e.g.	--since=
<date1>	limits	to	commits	newer	than	<date1>,	and	using	it	with	--grep=
<pattern>	further	limits	to	commits	whose	log	message	has	a	line	that
matches	<pattern>),	unless	otherwise	noted.

Note	that	these	are	applied	before	commit	ordering	and	formatting
options,	such	as	--reverse.

-<number>	,	-n	<number>	,	--max-count=<number>
Limit	the	number	of	commits	to	output.

--skip=<number>
Skip	number	commits	before	starting	to	show	the	commit	output.

--since=<date>	,	--after=<date>
Show	commits	more	recent	than	a	specific	date.

--until=<date>	,	--before=<date>
Show	commits	older	than	a	specific	date.

--max-age=<timestamp>	,	--min-age=<timestamp>
Limit	the	commits	output	to	specified	time	range.

--author=<pattern>	,	--committer=<pattern>
Limit	the	commits	output	to	ones	with	author/committer	header	lines
that	match	the	specified	pattern	(regular	expression).	With	more	than
one	--author=<pattern>,	commits	whose	author	matches	any	of	the
given	patterns	are	chosen	(similarly	for	multiple	--committer=
<pattern>).

--grep-reflog=<pattern>
Limit	the	commits	output	to	ones	with	reflog	entries	that	match	the
specified	pattern	(regular	expression).	With	more	than	one	--grep-
reflog,	commits	whose	reflog	message	matches	any	of	the	given
patterns	are	chosen.	It	is	an	error	to	use	this	option	unless	--walk-
reflogs	is	in	use.



--grep=<pattern>
Limit	the	commits	output	to	ones	with	log	message	that	matches	the
specified	pattern	(regular	expression).	With	more	than	one	--grep=
<pattern>,	commits	whose	message	matches	any	of	the	given
patterns	are	chosen	(but	see	--all-match).

--all-match
Limit	the	commits	output	to	ones	that	match	all	given	--grep,	instead
of	ones	that	match	at	least	one.

--invert-grep
Limit	the	commits	output	to	ones	with	log	message	that	do	not	match
the	pattern	specified	with	--grep=<pattern>.

-i	,	--regexp-ignore-case
Match	the	regular	expression	limiting	patterns	without	regard	to	letter
case.

--basic-regexp
Consider	the	limiting	patterns	to	be	basic	regular	expressions;	this	is
the	default.

-E	,	--extended-regexp
Consider	the	limiting	patterns	to	be	extended	regular	expressions
instead	of	the	default	basic	regular	expressions.

-F	,	--fixed-strings
Consider	the	limiting	patterns	to	be	fixed	strings	(don't	interpret
pattern	as	a	regular	expression).

--perl-regexp
Consider	the	limiting	patterns	to	be	Perl-compatible	regular
expressions.	Requires	libpcre	to	be	compiled	in.

--remove-empty
Stop	when	a	given	path	disappears	from	the	tree.

--merges
Print	only	merge	commits.	This	is	exactly	the	same	as	--min-
parents=2.

--no-merges
Do	not	print	commits	with	more	than	one	parent.	This	is	exactly	the
same	as	--max-parents=1.

--min-parents=<number>	,	--max-parents=<number>	,	--no-min-parents	,
--no-max-parents



Show	only	commits	which	have	at	least	(or	at	most)	that	many
parent	commits.	In	particular,	--max-parents=1	is	the	same	as	--no-
merges,	--min-parents=2	is	the	same	as	--merges.	--max-parents=0
gives	all	root	commits	and	--min-parents=3	all	octopus	merges.

--no-min-parents	and	--no-max-parents	reset	these	limits	(to	no	limit)
again.	Equivalent	forms	are	--min-parents=0	(any	commit	has	0	or
more	parents)	and	--max-parents=-1	(negative	numbers	denote	no
upper	limit).

--first-parent
Follow	only	the	first	parent	commit	upon	seeing	a	merge	commit.
This	option	can	give	a	better	overview	when	viewing	the	evolution	of
a	particular	topic	branch,	because	merges	into	a	topic	branch	tend	to
be	only	about	adjusting	to	updated	upstream	from	time	to	time,	and
this	option	allows	you	to	ignore	the	individual	commits	brought	in	to
your	history	by	such	a	merge.	Cannot	be	combined	with	--bisect.

--not
Reverses	the	meaning	of	the	^	prefix	(or	lack	thereof)	for	all	following
revision	specifiers,	up	to	the	next	--not.

--all
Pretend	as	if	all	the	refs	in	refs/	are	listed	on	the	command	line	as
<commit>.

--branches[=<pattern>]
Pretend	as	if	all	the	refs	in	refs/heads	are	listed	on	the	command	line
as	<commit>.	If	<pattern>	is	given,	limit	branches	to	ones	matching
given	shell	glob.	If	pattern	lacks	?,	*,	or	[,	/*	at	the	end	is	implied.

--tags[=<pattern>]
Pretend	as	if	all	the	refs	in	refs/tags	are	listed	on	the	command	line
as	<commit>.	If	<pattern>	is	given,	limit	tags	to	ones	matching	given
shell	glob.	If	pattern	lacks	?,	*,	or	[,	/*	at	the	end	is	implied.

--remotes[=<pattern>]
Pretend	as	if	all	the	refs	in	refs/remotes	are	listed	on	the	command
line	as	<commit>.	If	<pattern>	is	given,	limit	remote-tracking
branches	to	ones	matching	given	shell	glob.	If	pattern	lacks	?,	*,	or	[,
/*	at	the	end	is	implied.

--glob=<glob-pattern>



Pretend	as	if	all	the	refs	matching	shell	glob	<glob-pattern>	are	listed
on	the	command	line	as	<commit>.	Leading	refs/,	is	automatically
prepended	if	missing.	If	pattern	lacks	?,	*,	or	[,	/*	at	the	end	is
implied.

--exclude=<glob-pattern>

Do	not	include	refs	matching	<glob-pattern>	that	the	next	--all,	--
branches,	--tags,	--remotes,	or	--glob	would	otherwise	consider.
Repetitions	of	this	option	accumulate	exclusion	patterns	up	to	the
next	--all,	--branches,	--tags,	--remotes,	or	--glob	option	(other
options	or	arguments	do	not	clear	accumulated	patterns).

The	patterns	given	should	not	begin	with	refs/heads,	refs/tags,	or
refs/remotes	when	applied	to	--branches,	--tags,	or	--remotes,
respectively,	and	they	must	begin	with	refs/	when	applied	to	--glob	or
--all.	If	a	trailing	/*	is	intended,	it	must	be	given	explicitly.

--reflog
Pretend	as	if	all	objects	mentioned	by	reflogs	are	listed	on	the
command	line	as	<commit>.

--ignore-missing
Upon	seeing	an	invalid	object	name	in	the	input,	pretend	as	if	the
bad	input	was	not	given.

--stdin
In	addition	to	the	<commit>	listed	on	the	command	line,	read	them
from	the	standard	input.	If	a	--	separator	is	seen,	stop	reading
commits	and	start	reading	paths	to	limit	the	result.

--quiet
Don't	print	anything	to	standard	output.	This	form	is	primarily	meant
to	allow	the	caller	to	test	the	exit	status	to	see	if	a	range	of	objects	is
fully	connected	(or	not).	It	is	faster	than	redirecting	stdout	to	/dev/null
as	the	output	does	not	have	to	be	formatted.

--cherry-mark
Like	--cherry-pick	(see	below)	but	mark	equivalent	commits	with	=
rather	than	omitting	them,	and	inequivalent	ones	with	+.

--cherry-pick

Omit	any	commit	that	introduces	the	same	change	as	another



commit	on	the	other	side	when	the	set	of	commits	are	limited	with
symmetric	difference.

For	example,	if	you	have	two	branches,	A	and	B,	a	usual	way	to	list
all	commits	on	only	one	side	of	them	is	with	--left-right	(see	the
example	below	in	the	description	of	the	--left-right	option).	However,
it	shows	the	commits	that	were	cherry-picked	from	the	other	branch
(for	example,	3rd	on	b	may	be	cherry-picked	from	branch	A).	With
this	option,	such	pairs	of	commits	are	excluded	from	the	output.

--left-only	,	--right-only

List	only	commits	on	the	respective	side	of	a	symmetric	range,	i.e.
only	those	which	would	be	marked	<	resp.	>	by	--left-right.

For	example,	--cherry-pick	--right-only	A...B	omits	those	commits
from	B	which	are	in	A	or	are	patch-equivalent	to	a	commit	in	A.	In
other	words,	this	lists	the	+	commits	from	git	cherry	A	B.	More
precisely,	--cherry-pick	--right-only	--no-merges	gives	the	exact	list.

--cherry
A	synonym	for	--right-only	--cherry-mark	--no-merges;	useful	to	limit
the	output	to	the	commits	on	our	side	and	mark	those	that	have	been
applied	to	the	other	side	of	a	forked	history	with	git	log	--cherry
upstream...mybranch,	similar	to	git	cherry	upstream	mybranch.

-g	,	--walk-reflogs

Instead	of	walking	the	commit	ancestry	chain,	walk	reflog	entries
from	the	most	recent	one	to	older	ones.	When	this	option	is	used	you
cannot	specify	commits	to	exclude	(that	is,	^commit,
commit1..commit2,	and	commit1...commit2	notations	cannot	be
used).

With	--pretty	format	other	than	oneline	(for	obvious	reasons),	this
causes	the	output	to	have	two	extra	lines	of	information	taken	from
the	reflog.	By	default,	commit@{Nth}	notation	is	used	in	the	output.
When	the	starting	commit	is	specified	as	commit@{now},	output	also
uses	commit@{timestamp}	notation	instead.	Under	--pretty=oneline,



the	commit	message	is	prefixed	with	this	information	on	the	same
line.	This	option	cannot	be	combined	with	--reverse.	See	also
Section	G.3.101,	“git-reflog(1)”.

--merge
After	a	failed	merge,	show	refs	that	touch	files	having	a	conflict	and
don't	exist	on	all	heads	to	merge.

--boundary
Output	excluded	boundary	commits.	Boundary	commits	are	prefixed
with	-.

--use-bitmap-index
Try	to	speed	up	the	traversal	using	the	pack	bitmap	index	(if	one	is
available).	Note	that	when	traversing	with	--objects,	trees	and	blobs
will	not	have	their	associated	path	printed.



2.	History	Simplification

Sometimes	you	are	only	interested	in	parts	of	the	history,	for	example	the
commits	modifying	a	particular	<path>.	But	there	are	two	parts	of	History
Simplification,	one	part	is	selecting	the	commits	and	the	other	is	how	to
do	it,	as	there	are	various	strategies	to	simplify	the	history.

The	following	options	select	the	commits	to	be	shown:

<paths>
Commits	modifying	the	given	<paths>	are	selected.

--simplify-by-decoration
Commits	that	are	referred	by	some	branch	or	tag	are	selected.

Note	that	extra	commits	can	be	shown	to	give	a	meaningful	history.

The	following	options	affect	the	way	the	simplification	is	performed:

Default	mode
Simplifies	the	history	to	the	simplest	history	explaining	the	final	state
of	the	tree.	Simplest	because	it	prunes	some	side	branches	if	the
end	result	is	the	same	(i.e.	merging	branches	with	the	same	content)

--full-history
Same	as	the	default	mode,	but	does	not	prune	some	history.

--dense
Only	the	selected	commits	are	shown,	plus	some	to	have	a
meaningful	history.

--sparse
All	commits	in	the	simplified	history	are	shown.

--simplify-merges
Additional	option	to	--full-history	to	remove	some	needless	merges
from	the	resulting	history,	as	there	are	no	selected	commits
contributing	to	this	merge.

--ancestry-path
When	given	a	range	of	commits	to	display	(e.g.	commit1..commit2	or
commit2	^commit1),	only	display	commits	that	exist	directly	on	the



ancestry	chain	between	the	commit1	and	commit2,	i.e.	commits	that
are	both	descendants	of	commit1,	and	ancestors	of	commit2.

A	more	detailed	explanation	follows.

Suppose	you	specified	foo	as	the	<paths>.	We	shall	call	commits	that
modify	foo	!TREESAME,	and	the	rest	TREESAME.	(In	a	diff	filtered	for
foo,	they	look	different	and	equal,	respectively.)

In	the	following,	we	will	always	refer	to	the	same	example	history	to
illustrate	the	differences	between	simplification	settings.	We	assume	that
you	are	filtering	for	a	file	foo	in	this	commit	graph:

										.-A---M---N---O---P---Q

									/					/			/			/			/			/

								I					B			C			D			E			Y

									\			/			/			/			/			/

										`-------------'			X

The	horizontal	line	of	history	A---Q	is	taken	to	be	the	first	parent	of	each
merge.	The	commits	are:

I	is	the	initial	commit,	in	which	foo	exists	with	contents	asdf,	and	a
file	quux	exists	with	contents	quux.	Initial	commits	are	compared	to
an	empty	tree,	so	I	is	!TREESAME.
In	A,	foo	contains	just	foo.
B	contains	the	same	change	as	A.	Its	merge	M	is	trivial	and	hence
TREESAME	to	all	parents.
C	does	not	change	foo,	but	its	merge	N	changes	it	to	foobar,	so	it	is
not	TREESAME	to	any	parent.
D	sets	foo	to	baz.	Its	merge	O	combines	the	strings	from	N	and	D	to
foobarbaz;	i.e.,	it	is	not	TREESAME	to	any	parent.
E	changes	quux	to	xyzzy,	and	its	merge	P	combines	the	strings	to
quux	xyzzy.	P	is	TREESAME	to	O,	but	not	to	E.
X	is	an	independent	root	commit	that	added	a	new	file	side,	and	Y
modified	it.	Y	is	TREESAME	to	X.	Its	merge	Q	added	side	to	P,	and
Q	is	TREESAME	to	P,	but	not	to	Y.



rev-list	walks	backwards	through	history,	including	or	excluding	commits
based	on	whether	--full-history	and/or	parent	rewriting	(via	--parents	or	--
children)	are	used.	The	following	settings	are	available.

Default	mode

Commits	are	included	if	they	are	not	TREESAME	to	any	parent
(though	this	can	be	changed,	see	--sparse	below).	If	the	commit	was
a	merge,	and	it	was	TREESAME	to	one	parent,	follow	only	that
parent.	(Even	if	there	are	several	TREESAME	parents,	follow	only
one	of	them.)	Otherwise,	follow	all	parents.

This	results	in:

										.-A---N---O

									/					/			/

								I---------D

Note	how	the	rule	to	only	follow	the	TREESAME	parent,	if	one	is
available,	removed	B	from	consideration	entirely.	C	was	considered
via	N,	but	is	TREESAME.	Root	commits	are	compared	to	an	empty
tree,	so	I	is	!TREESAME.

Parent/child	relations	are	only	visible	with	--parents,	but	that	does
not	affect	the	commits	selected	in	default	mode,	so	we	have	shown
the	parent	lines.

--full-history	without	parent	rewriting

This	mode	differs	from	the	default	in	one	point:	always	follow	all
parents	of	a	merge,	even	if	it	is	TREESAME	to	one	of	them.	Even	if
more	than	one	side	of	the	merge	has	commits	that	are	included,	this
does	not	imply	that	the	merge	itself	is!	In	the	example,	we	get

								I		A		B		N		D		O		P		Q

M	was	excluded	because	it	is	TREESAME	to	both	parents.	E,	C	and
B	were	all	walked,	but	only	B	was	!TREESAME,	so	the	others	do	not



appear.

Note	that	without	parent	rewriting,	it	is	not	really	possible	to	talk
about	the	parent/child	relationships	between	the	commits,	so	we
show	them	disconnected.

--full-history	with	parent	rewriting

Ordinary	commits	are	only	included	if	they	are	!TREESAME	(though
this	can	be	changed,	see	--sparse	below).

Merges	are	always	included.	However,	their	parent	list	is	rewritten:
Along	each	parent,	prune	away	commits	that	are	not	included
themselves.	This	results	in

										.-A---M---N---O---P---Q

									/					/			/			/			/

								I					B			/			D			/

									\			/			/			/			/

										`-------------'

Compare	to	--full-history	without	rewriting	above.	Note	that	E	was
pruned	away	because	it	is	TREESAME,	but	the	parent	list	of	P	was
rewritten	to	contain	E's	parent	I.	The	same	happened	for	C	and	N,
and	X,	Y	and	Q.

In	addition	to	the	above	settings,	you	can	change	whether	TREESAME
affects	inclusion:

--dense
Commits	that	are	walked	are	included	if	they	are	not	TREESAME	to
any	parent.

--sparse

All	commits	that	are	walked	are	included.

Note	that	without	--full-history,	this	still	simplifies	merges:	if	one	of
the	parents	is	TREESAME,	we	follow	only	that	one,	so	the	other
sides	of	the	merge	are	never	walked.



--simplify-merges

First,	build	a	history	graph	in	the	same	way	that	--full-history	with
parent	rewriting	does	(see	above).

Then	simplify	each	commit	C	to	its	replacement	C'	in	the	final	history
according	to	the	following	rules:

Set	C'	to	C.
Replace	each	parent	P	of	C'	with	its	simplification	P'.	In	the
process,	drop	parents	that	are	ancestors	of	other	parents	or	that
are	root	commits	TREESAME	to	an	empty	tree,	and	remove
duplicates,	but	take	care	to	never	drop	all	parents	that	we	are
TREESAME	to.
If	after	this	parent	rewriting,	C'	is	a	root	or	merge	commit	(has
zero	or	>1	parents),	a	boundary	commit,	or	!TREESAME,	it
remains.	Otherwise,	it	is	replaced	with	its	only	parent.

The	effect	of	this	is	best	shown	by	way	of	comparing	to	--full-history
with	parent	rewriting.	The	example	turns	into:

										.-A---M---N---O

									/					/							/

								I					B							D

									\			/							/

										`---------'

Note	the	major	differences	in	N,	P,	and	Q	over	--full-history:

N's	parent	list	had	I	removed,	because	it	is	an	ancestor	of	the
other	parent	M.	Still,	N	remained	because	it	is	!TREESAME.
P's	parent	list	similarly	had	I	removed.	P	was	then	removed
completely,	because	it	had	one	parent	and	is	TREESAME.
Q's	parent	list	had	Y	simplified	to	X.	X	was	then	removed,
because	it	was	a	TREESAME	root.	Q	was	then	removed
completely,	because	it	had	one	parent	and	is	TREESAME.

Finally,	there	is	a	fifth	simplification	mode	available:



--ancestry-path

Limit	the	displayed	commits	to	those	directly	on	the	ancestry	chain
between	the	from	and	to	commits	in	the	given	commit	range.	I.e.
only	display	commits	that	are	ancestor	of	the	to	commit	and
descendants	of	the	from	commit.

As	an	example	use	case,	consider	the	following	commit	history:

												D---E-------F

											/					\							\

										B---C---G---H---I---J

									/																					\

								A-------K---------------L--M

A	regular	D..M	computes	the	set	of	commits	that	are	ancestors	of	M,
but	excludes	the	ones	that	are	ancestors	of	D.	This	is	useful	to	see
what	happened	to	the	history	leading	to	M	since	D,	in	the	sense	that
what	does	M	have	that	did	not	exist	in	D.	The	result	in	this	example
would	be	all	the	commits,	except	A	and	B	(and	D	itself,	of	course).

When	we	want	to	find	out	what	commits	in	M	are	contaminated	with
the	bug	introduced	by	D	and	need	fixing,	however,	we	might	want	to
view	only	the	subset	of	D..M	that	are	actually	descendants	of	D,	i.e.
excluding	C	and	K.	This	is	exactly	what	the	--ancestry-path	option
does.	Applied	to	the	D..M	range,	it	results	in:

																E-------F

																	\							\

																		G---H---I---J

																															\

																																L--M

The	--simplify-by-decoration	option	allows	you	to	view	only	the	big	picture
of	the	topology	of	the	history,	by	omitting	commits	that	are	not	referenced
by	tags.	Commits	are	marked	as	!TREESAME	(in	other	words,	kept	after
history	simplification	rules	described	above)	if	(1)	they	are	referenced	by
tags,	or	(2)	they	change	the	contents	of	the	paths	given	on	the	command



line.	All	other	commits	are	marked	as	TREESAME	(subject	to	be
simplified	away).



3.	Bisection	Helpers

--bisect

Limit	output	to	the	one	commit	object	which	is	roughly	halfway
between	included	and	excluded	commits.	Note	that	the	bad	bisection
ref	refs/bisect/bad	is	added	to	the	included	commits	(if	it	exists)	and
the	good	bisection	refs	refs/bisect/good-*	are	added	to	the	excluded
commits	(if	they	exist).	Thus,	supposing	there	are	no	refs	in
refs/bisect/,	if

								$	git	rev-list	--bisect	foo	^bar	^baz

outputs	midpoint,	the	output	of	the	two	commands

								$	git	rev-list	foo	^midpoint

								$	git	rev-list	midpoint	^bar	^baz

would	be	of	roughly	the	same	length.	Finding	the	change	which
introduces	a	regression	is	thus	reduced	to	a	binary	search:
repeatedly	generate	and	test	new	'midpoint's	until	the	commit	chain
is	of	length	one.	Cannot	be	combined	with	--first-parent.

--bisect-vars
This	calculates	the	same	as	--bisect,	except	that	refs	in	refs/bisect/
are	not	used,	and	except	that	this	outputs	text	ready	to	be	eval'ed	by
the	shell.	These	lines	will	assign	the	name	of	the	midpoint	revision	to
the	variable	bisect_rev,	and	the	expected	number	of	commits	to	be
tested	after	bisect_rev	is	tested	to	bisect_nr,	the	expected	number	of
commits	to	be	tested	if	bisect_rev	turns	out	to	be	good	to
bisect_good,	the	expected	number	of	commits	to	be	tested	if
bisect_rev	turns	out	to	be	bad	to	bisect_bad,	and	the	number	of
commits	we	are	bisecting	right	now	to	bisect_all.

--bisect-all

This	outputs	all	the	commit	objects	between	the	included	and



excluded	commits,	ordered	by	their	distance	to	the	included	and
excluded	commits.	Refs	in	refs/bisect/	are	not	used.	The	farthest
from	them	is	displayed	first.	(This	is	the	only	one	displayed	by	--
bisect.)

This	is	useful	because	it	makes	it	easy	to	choose	a	good	commit	to
test	when	you	want	to	avoid	to	test	some	of	them	for	some	reason
(they	may	not	compile	for	example).

This	option	can	be	used	along	with	--bisect-vars,	in	this	case,	after
all	the	sorted	commit	objects,	there	will	be	the	same	text	as	if	--
bisect-vars	had	been	used	alone.



4.	Commit	Ordering

By	default,	the	commits	are	shown	in	reverse	chronological	order.

--date-order
Show	no	parents	before	all	of	its	children	are	shown,	but	otherwise
show	commits	in	the	commit	timestamp	order.

--author-date-order
Show	no	parents	before	all	of	its	children	are	shown,	but	otherwise
show	commits	in	the	author	timestamp	order.

--topo-order

Show	no	parents	before	all	of	its	children	are	shown,	and	avoid
showing	commits	on	multiple	lines	of	history	intermixed.

For	example,	in	a	commit	history	like	this:

				---1----2----4----7

								\														\

									3----5----6----8---

where	the	numbers	denote	the	order	of	commit	timestamps,	git	rev-
list	and	friends	with	--date-order	show	the	commits	in	the	timestamp
order:	8	7	6	5	4	3	2	1.

With	--topo-order,	they	would	show	8	6	5	3	7	4	2	1	(or	8	7	4	2	6	5	3
1);	some	older	commits	are	shown	before	newer	ones	in	order	to
avoid	showing	the	commits	from	two	parallel	development	track
mixed	together.

--reverse
Output	the	commits	in	reverse	order.	Cannot	be	combined	with	--
walk-reflogs.



5.	Object	Traversal

These	options	are	mostly	targeted	for	packing	of	Git	repositories.

--objects
Print	the	object	IDs	of	any	object	referenced	by	the	listed	commits.	--
objects	foo	^bar	thus	means	send	me	all	object	IDs	which	I	need	to
download	if	I	have	the	commit	object	bar	but	not	foo.

--objects-edge
Similar	to	--objects,	but	also	print	the	IDs	of	excluded	commits
prefixed	with	a	-	character.	This	is	used	by	Section	G.3.88,	“git-pack-
objects(1)”	to	build	a	thin	pack,	which	records	objects	in	deltified
form	based	on	objects	contained	in	these	excluded	commits	to
reduce	network	traffic.

--objects-edge-aggressive
Similar	to	--objects-edge,	but	it	tries	harder	to	find	excluded	commits
at	the	cost	of	increased	time.	This	is	used	instead	of	--objects-edge
to	build	thin	packs	for	shallow	repositories.

--indexed-objects
Pretend	as	if	all	trees	and	blobs	used	by	the	index	are	listed	on	the
command	line.	Note	that	you	probably	want	to	use	--objects,	too.

--unpacked
Only	useful	with	--objects;	print	the	object	IDs	that	are	not	in	packs.

--no-walk[=(sorted|unsorted)]
Only	show	the	given	commits,	but	do	not	traverse	their	ancestors.
This	has	no	effect	if	a	range	is	specified.	If	the	argument	unsorted	is
given,	the	commits	are	shown	in	the	order	they	were	given	on	the
command	line.	Otherwise	(if	sorted	or	no	argument	was	given),	the
commits	are	shown	in	reverse	chronological	order	by	commit	time.
Cannot	be	combined	with	--graph.

--do-walk
Overrides	a	previous	--no-walk.



6.	Commit	Formatting

Using	these	options,	Section	G.3.112,	“git-rev-list(1)”	will	act	similar	to	the
more	specialized	family	of	commit	log	tools:	Section	G.3.68,	“git-log(1)”,
Section	G.3.126,	“git-show(1)”,	and	Section	G.3.147,	“git-
whatchanged(1)”

--pretty[=<format>]	,	--format=<format>

Pretty-print	the	contents	of	the	commit	logs	in	a	given	format,	where
<format>	can	be	one	of	oneline,	short,	medium,	full,	fuller,	email,
raw,	format:<string>	and	tformat:<string>.	When	<format>	is	none	of
the	above,	and	has	%placeholder	in	it,	it	acts	as	if	--pretty=tformat:
<format>	were	given.

See	the	"PRETTY	FORMATS"	section	for	some	additional	details	for
each	format.	When	=<format>	part	is	omitted,	it	defaults	to	medium.

Note:	you	can	specify	the	default	pretty	format	in	the	repository
configuration	(see	Section	G.3.27,	“git-config(1)”).

--abbrev-commit

Instead	of	showing	the	full	40-byte	hexadecimal	commit	object
name,	show	only	a	partial	prefix.	Non	default	number	of	digits	can	be
specified	with	"--abbrev=<n>"	(which	also	modifies	diff	output,	if	it	is
displayed).

This	should	make	"--pretty=oneline"	a	whole	lot	more	readable	for
people	using	80-column	terminals.

--no-abbrev-commit
Show	the	full	40-byte	hexadecimal	commit	object	name.	This
negates	--abbrev-commit	and	those	options	which	imply	it	such	as	"-
-oneline".	It	also	overrides	the	log.abbrevCommit	variable.

--oneline
This	is	a	shorthand	for	"--pretty=oneline	--abbrev-commit"	used



together.
--encoding=<encoding>

The	commit	objects	record	the	encoding	used	for	the	log	message	in
their	encoding	header;	this	option	can	be	used	to	tell	the	command
to	re-code	the	commit	log	message	in	the	encoding	preferred	by	the
user.	For	non	plumbing	commands	this	defaults	to	UTF-8.	Note	that
if	an	object	claims	to	be	encoded	in	X	and	we	are	outputting	in	X,	we
will	output	the	object	verbatim;	this	means	that	invalid	sequences	in
the	original	commit	may	be	copied	to	the	output.

--expand-tabs=<n>	,	--expand-tabs	,	--no-expand-tabs

Perform	a	tab	expansion	(replace	each	tab	with	enough	spaces	to	fill
to	the	next	display	column	that	is	multiple	of	<n>)	in	the	log	message
before	showing	it	in	the	output.	--expand-tabs	is	a	short-hand	for	--
expand-tabs=8,	and	--no-expand-tabs	is	a	short-hand	for	--expand-
tabs=0,	which	disables	tab	expansion.

By	default,	tabs	are	expanded	in	pretty	formats	that	indent	the	log
message	by	4	spaces	(i.e.	medium,	which	is	the	default,	full,	and
fuller).

--show-signature
Check	the	validity	of	a	signed	commit	object	by	passing	the
signature	to	gpg	--verify	and	show	the	output.

--relative-date
Synonym	for	--date=relative.

--date=<format>

Only	takes	effect	for	dates	shown	in	human-readable	format,	such	as
when	using	--pretty.	log.date	config	variable	sets	a	default	value	for
the	log	command's	--date	option.	By	default,	dates	are	shown	in	the
original	time	zone	(either	committer's	or	author's).	If	-local	is
appended	to	the	format	(e.g.,	iso-local),	the	user's	local	time	zone	is
used	instead.

--date=relative	shows	dates	relative	to	the	current	time,	e.g.	2	hours
ago.	The	-local	option	cannot	be	used	with	--raw	or	--relative.



--date=local	is	an	alias	for	--date=default-local.

--date=iso	(or	--date=iso8601)	shows	timestamps	in	a	ISO	8601-like
format.	The	differences	to	the	strict	ISO	8601	format	are:

a	space	instead	of	the	T	date/time	delimiter
a	space	between	time	and	time	zone
no	colon	between	hours	and	minutes	of	the	time	zone

--date=iso-strict	(or	--date=iso8601-strict)	shows	timestamps	in	strict
ISO	8601	format.

--date=rfc	(or	--date=rfc2822)	shows	timestamps	in	RFC	2822
format,	often	found	in	email	messages.

--date=short	shows	only	the	date,	but	not	the	time,	in	YYYY-MM-DD
format.

--date=raw	shows	the	date	in	the	internal	raw	Git	format	%s	%z
format.

--date=format:...	feeds	the	format	...	to	your	system	strftime.	Use	--
date=format:%c	to	show	the	date	in	your	system	locale's	preferred
format.	See	the	strftime	manual	for	a	complete	list	of	format
placeholders.	When	using	-local,	the	correct	syntax	is	--date=format-
local:....

--date=default	is	the	default	format,	and	is	similar	to	--date=rfc2822,
with	a	few	exceptions:

there	is	no	comma	after	the	day-of-week
the	time	zone	is	omitted	when	the	local	time	zone	is	used

--header
Print	the	contents	of	the	commit	in	raw-format;	each	record	is
separated	with	a	NUL	character.

--parents
Print	also	the	parents	of	the	commit	(in	the	form	"commit	parent…").
Also	enables	parent	rewriting,	see	History	Simplification	below.



--children
Print	also	the	children	of	the	commit	(in	the	form	"commit	child…").
Also	enables	parent	rewriting,	see	History	Simplification	below.

--timestamp
Print	the	raw	commit	timestamp.

--left-right

Mark	which	side	of	a	symmetric	diff	a	commit	is	reachable	from.
Commits	from	the	left	side	are	prefixed	with	<	and	those	from	the
right	with	>.	If	combined	with	--boundary,	those	commits	are	prefixed
with	-.

For	example,	if	you	have	this	topology:

													y---b---b		branch	B

												/	\	/

											/			.

										/			/	\

									o---x---a---a		branch	A

you	would	get	an	output	like	this:

								$	git	rev-list	--left-right	--boundary	--pretty=oneline	A...B

								>bbbbbbb...	3rd	on	b

								>bbbbbbb...	2nd	on	b

								<aaaaaaa...	3rd	on	a

								<aaaaaaa...	2nd	on	a

								-yyyyyyy...	1st	on	b

								-xxxxxxx...	1st	on	a

--graph

Draw	a	text-based	graphical	representation	of	the	commit	history	on
the	left	hand	side	of	the	output.	This	may	cause	extra	lines	to	be
printed	in	between	commits,	in	order	for	the	graph	history	to	be
drawn	properly.	Cannot	be	combined	with	--no-walk.

This	enables	parent	rewriting,	see	History	Simplification	below.



This	implies	the	--topo-order	option	by	default,	but	the	--date-order
option	may	also	be	specified.

--show-linear-break[=<barrier>]
When	--graph	is	not	used,	all	history	branches	are	flattened	which
can	make	it	hard	to	see	that	the	two	consecutive	commits	do	not
belong	to	a	linear	branch.	This	option	puts	a	barrier	in	between	them
in	that	case.	If	<barrier>	is	specified,	it	is	the	string	that	will	be	shown
instead	of	the	default	one.

--count
Print	a	number	stating	how	many	commits	would	have	been	listed,
and	suppress	all	other	output.	When	used	together	with	--left-right,
instead	print	the	counts	for	left	and	right	commits,	separated	by	a
tab.	When	used	together	with	--cherry-mark,	omit	patch	equivalent
commits	from	these	counts	and	print	the	count	for	equivalent
commits	separated	by	a	tab.

PRETTY	FORMATS

If	the	commit	is	a	merge,	and	if	the	pretty-format	is	not	oneline,	email	or
raw,	an	additional	line	is	inserted	before	the	Author:	line.	This	line	begins
with	"Merge:	"	and	the	sha1s	of	ancestral	commits	are	printed,	separated
by	spaces.	Note	that	the	listed	commits	may	not	necessarily	be	the	list	of
the	direct	parent	commits	if	you	have	limited	your	view	of	history:	for
example,	if	you	are	only	interested	in	changes	related	to	a	certain
directory	or	file.

There	are	several	built-in	formats,	and	you	can	define	additional	formats
by	setting	a	pretty.<name>	config	option	to	either	another	format	name,
or	a	format:	string,	as	described	below	(see	Section	G.3.27,	“git-
config(1)”).	Here	are	the	details	of	the	built-in	formats:

oneline

<sha1>	<title	line>

This	is	designed	to	be	as	compact	as	possible.



short

commit	<sha1>

Author:	<author>

<title	line>

medium

commit	<sha1>

Author:	<author>

Date:			<author	date>

<title	line>

<full	commit	message>

full

commit	<sha1>

Author:	<author>

Commit:	<committer>

<title	line>

<full	commit	message>

fuller

commit	<sha1>

Author:					<author>

AuthorDate:	<author	date>

Commit:					<committer>

CommitDate:	<committer	date>

<title	line>

<full	commit	message>

email

From	<sha1>	<date>

From:	<author>

Date:	<author	date>

Subject:	[PATCH]	<title	line>

<full	commit	message>

raw

The	raw	format	shows	the	entire	commit	exactly	as	stored	in	the
commit	object.	Notably,	the	SHA-1s	are	displayed	in	full,	regardless
of	whether	--abbrev	or	--no-abbrev	are	used,	and	parents	information



show	the	true	parent	commits,	without	taking	grafts	or	history
simplification	into	account.	Note	that	this	format	affects	the	way
commits	are	displayed,	but	not	the	way	the	diff	is	shown	e.g.	with	git
log	--raw.	To	get	full	object	names	in	a	raw	diff	format,	use	--no-
abbrev.

format:<string>

The	format:<string>	format	allows	you	to	specify	which	information
you	want	to	show.	It	works	a	little	bit	like	printf	format,	with	the
notable	exception	that	you	get	a	newline	with	%n	instead	of	\n.

E.g,	format:"The	author	of	%h	was	%an,	%ar%nThe	title	was
>>%s<<%n"	would	show	something	like	this:

The	author	of	fe6e0ee	was	Junio	C	Hamano,	23	hours	ago

The	title	was	>>t4119:	test	autocomputing	-p<n>	for	traditional	diff	input.<<

The	placeholders	are:

%H:	commit	hash
%h:	abbreviated	commit	hash
%T:	tree	hash
%t:	abbreviated	tree	hash
%P:	parent	hashes
%p:	abbreviated	parent	hashes
%an:	author	name
%aN:	author	name	(respecting	.mailmap,	see	Section	G.3.122,
“git-shortlog(1)”	or	Section	G.3.9,	“git-blame(1)”)
%ae:	author	email
%aE:	author	email	(respecting	.mailmap,	see	Section	G.3.122,
“git-shortlog(1)”	or	Section	G.3.9,	“git-blame(1)”)
%ad:	author	date	(format	respects	--date=	option)
%aD:	author	date,	RFC2822	style
%ar:	author	date,	relative
%at:	author	date,	UNIX	timestamp
%ai:	author	date,	ISO	8601-like	format



%aI:	author	date,	strict	ISO	8601	format
%cn:	committer	name
%cN:	committer	name	(respecting	.mailmap,	see
Section	G.3.122,	“git-shortlog(1)”	or	Section	G.3.9,	“git-
blame(1)”)
%ce:	committer	email
%cE:	committer	email	(respecting	.mailmap,	see
Section	G.3.122,	“git-shortlog(1)”	or	Section	G.3.9,	“git-
blame(1)”)
%cd:	committer	date	(format	respects	--date=	option)
%cD:	committer	date,	RFC2822	style
%cr:	committer	date,	relative
%ct:	committer	date,	UNIX	timestamp
%ci:	committer	date,	ISO	8601-like	format
%cI:	committer	date,	strict	ISO	8601	format
%d:	ref	names,	like	the	--decorate	option	of	Section	G.3.68,	“git-
log(1)”
%D:	ref	names	without	the	"	(",	")"	wrapping.
%e:	encoding
%s:	subject
%f:	sanitized	subject	line,	suitable	for	a	filename
%b:	body
%B:	raw	body	(unwrapped	subject	and	body)
%GG:	raw	verification	message	from	GPG	for	a	signed	commit
%G?:	show	"G"	for	a	Good	signature,	"B"	for	a	Bad	signature,
"U"	for	a	good,	untrusted	signature	and	"N"	for	no	signature
%GS:	show	the	name	of	the	signer	for	a	signed	commit
%GK:	show	the	key	used	to	sign	a	signed	commit
%gD:	reflog	selector,	e.g.,	refs/stash@{1}
%gd:	shortened	reflog	selector,	e.g.,	stash@{1}
%gn:	reflog	identity	name
%gN:	reflog	identity	name	(respecting	.mailmap,	see
Section	G.3.122,	“git-shortlog(1)”	or	Section	G.3.9,	“git-
blame(1)”)
%ge:	reflog	identity	email
%gE:	reflog	identity	email	(respecting	.mailmap,	see
Section	G.3.122,	“git-shortlog(1)”	or	Section	G.3.9,	“git-



blame(1)”)
%gs:	reflog	subject
%Cred:	switch	color	to	red
%Cgreen:	switch	color	to	green
%Cblue:	switch	color	to	blue
%Creset:	reset	color
%C(…):	color	specification,	as	described	in	color.branch.*	config
option;	adding	auto,	at	the	beginning	will	emit	color	only	when
colors	are	enabled	for	log	output	(by	color.diff,	color.ui,	or	--
color,	and	respecting	the	auto	settings	of	the	former	if	we	are
going	to	a	terminal).	auto	alone	(i.e.	%C(auto))	will	turn	on	auto
coloring	on	the	next	placeholders	until	the	color	is	switched
again.
%m:	left,	right	or	boundary	mark
%n:	newline
%%:	a	raw	%
%x00:	print	a	byte	from	a	hex	code
%w([<w>[,<i1>[,<i2>]]]):	switch	line	wrapping,	like	the	-w	option
of	Section	G.3.122,	“git-shortlog(1)”.
%<(<N>[,trunc|ltrunc|mtrunc]):	make	the	next	placeholder	take
at	least	N	columns,	padding	spaces	on	the	right	if	necessary.
Optionally	truncate	at	the	beginning	(ltrunc),	the	middle	(mtrunc)
or	the	end	(trunc)	if	the	output	is	longer	than	N	columns.	Note
that	truncating	only	works	correctly	with	N	>=	2.
%<|(<N>):	make	the	next	placeholder	take	at	least	until	Nth
columns,	padding	spaces	on	the	right	if	necessary
%>(<N>),	%>|(<N>):	similar	to	%<(<N>),	%<|(<N>)	respectively,
but	padding	spaces	on	the	left
%>>(<N>),	%>>|(<N>):	similar	to	%>(<N>),	%>|(<N>)
respectively,	except	that	if	the	next	placeholder	takes	more
spaces	than	given	and	there	are	spaces	on	its	left,	use	those
spaces
%><(<N>),	%><|(<N>):	similar	to	%	<(<N>),	%<|(<N>)
respectively,	but	padding	both	sides	(i.e.	the	text	is	centered)

Note



Some	placeholders	may	depend	on	other	options	given	to
the	revision	traversal	engine.	For	example,	the	%g*	reflog
options	will	insert	an	empty	string	unless	we	are	traversing
reflog	entries	(e.g.,	by	git	log	-g).	The	%d	and	%D
placeholders	will	use	the	"short"	decoration	format	if	--
decorate	was	not	already	provided	on	the	command	line.

If	you	add	a	+	(plus	sign)	after	%	of	a	placeholder,	a	line-feed	is	inserted
immediately	before	the	expansion	if	and	only	if	the	placeholder	expands
to	a	non-empty	string.

If	you	add	a	-	(minus	sign)	after	%	of	a	placeholder,	line-feeds	that
immediately	precede	the	expansion	are	deleted	if	and	only	if	the
placeholder	expands	to	an	empty	string.

If	you	add	a	`	`	(space)	after	%	of	a	placeholder,	a	space	is	inserted
immediately	before	the	expansion	if	and	only	if	the	placeholder	expands
to	a	non-empty	string.

tformat:

The	tformat:	format	works	exactly	like	format:,	except	that	it	provides
"terminator"	semantics	instead	of	"separator"	semantics.	In	other
words,	each	commit	has	the	message	terminator	character	(usually
a	newline)	appended,	rather	than	a	separator	placed	between
entries.	This	means	that	the	final	entry	of	a	single-line	format	will	be
properly	terminated	with	a	new	line,	just	as	the	"oneline"	format
does.	For	example:

$	git	log	-2	--pretty=format:%h	4da45bef	\

		|	perl	-pe	'$_	.=	"	--	NO	NEWLINE\n"	unless	/\n/'

4da45be

7134973	--	NO	NEWLINE

$	git	log	-2	--pretty=tformat:%h	4da45bef	\

		|	perl	-pe	'$_	.=	"	--	NO	NEWLINE\n"	unless	/\n/'

4da45be

7134973



In	addition,	any	unrecognized	string	that	has	a	%	in	it	is	interpreted
as	if	it	has	tformat:	in	front	of	it.	For	example,	these	two	are
equivalent:

$	git	log	-2	--pretty=tformat:%h	4da45bef

$	git	log	-2	--pretty=%h	4da45bef

GIT

Part	of	the	Section	G.3.1,	“git(1)”	suite

G.3.113.	git-rev-parse(1)

NAME

git-rev-parse	-	Pick	out	and	massage	parameters

SYNOPSIS

git	rev-parse	[	--option	]	<args>…

DESCRIPTION

Many	Git	porcelainish	commands	take	mixture	of	flags	(i.e.	parameters
that	begin	with	a	dash	-)	and	parameters	meant	for	the	underlying	git	rev-
list	command	they	use	internally	and	flags	and	parameters	for	the	other
commands	they	use	downstream	of	git	rev-list.	This	command	is	used	to
distinguish	between	them.

OPTIONS



1.	Operation	Modes

Each	of	these	options	must	appear	first	on	the	command	line.

--parseopt
Use	git	rev-parse	in	option	parsing	mode	(see	PARSEOPT	section
below).

--sq-quote
Use	git	rev-parse	in	shell	quoting	mode	(see	SQ-QUOTE	section
below).	In	contrast	to	the	--sq	option	below,	this	mode	does	only
quoting.	Nothing	else	is	done	to	command	input.



2.	Options	for	--parseopt

--keep-dashdash
Only	meaningful	in	--parseopt	mode.	Tells	the	option	parser	to	echo
out	the	first	--	met	instead	of	skipping	it.

--stop-at-non-option
Only	meaningful	in	--parseopt	mode.	Lets	the	option	parser	stop	at
the	first	non-option	argument.	This	can	be	used	to	parse	sub-
commands	that	take	options	themselves.

--stuck-long
Only	meaningful	in	--parseopt	mode.	Output	the	options	in	their	long
form	if	available,	and	with	their	arguments	stuck.



3.	Options	for	Filtering

--revs-only
Do	not	output	flags	and	parameters	not	meant	for	git	rev-list
command.

--no-revs
Do	not	output	flags	and	parameters	meant	for	git	rev-list	command.

--flags
Do	not	output	non-flag	parameters.

--no-flags
Do	not	output	flag	parameters.



4.	Options	for	Output

--default	<arg>
If	there	is	no	parameter	given	by	the	user,	use	<arg>	instead.

--prefix	<arg>

Behave	as	if	git	rev-parse	was	invoked	from	the	<arg>	subdirectory
of	the	working	tree.	Any	relative	filenames	are	resolved	as	if	they	are
prefixed	by	<arg>	and	will	be	printed	in	that	form.

This	can	be	used	to	convert	arguments	to	a	command	run	in	a
subdirectory	so	that	they	can	still	be	used	after	moving	to	the	top-
level	of	the	repository.	For	example:

prefix=$(git	rev-parse	--show-prefix)

cd	"$(git	rev-parse	--show-toplevel)"

eval	"set	--	$(git	rev-parse	--sq	--prefix	"$prefix"	"$@")"

--verify

Verify	that	exactly	one	parameter	is	provided,	and	that	it	can	be
turned	into	a	raw	20-byte	SHA-1	that	can	be	used	to	access	the
object	database.	If	so,	emit	it	to	the	standard	output;	otherwise,	error
out.

If	you	want	to	make	sure	that	the	output	actually	names	an	object	in
your	object	database	and/or	can	be	used	as	a	specific	type	of	object
you	require,	you	can	add	the	^{type}	peeling	operator	to	the
parameter.	For	example,	git	rev-parse	"$VAR^{commit}"	will	make
sure	$VAR	names	an	existing	object	that	is	a	commit-ish	(i.e.	a
commit,	or	an	annotated	tag	that	points	at	a	commit).	To	make	sure
that	$VAR	names	an	existing	object	of	any	type,	git	rev-parse
"$VAR^{object}"	can	be	used.

-q	,	--quiet
Only	meaningful	in	--verify	mode.	Do	not	output	an	error	message	if



the	first	argument	is	not	a	valid	object	name;	instead	exit	with	non-
zero	status	silently.	SHA-1s	for	valid	object	names	are	printed	to
stdout	on	success.

--sq
Usually	the	output	is	made	one	line	per	flag	and	parameter.	This
option	makes	output	a	single	line,	properly	quoted	for	consumption
by	shell.	Useful	when	you	expect	your	parameter	to	contain
whitespaces	and	newlines	(e.g.	when	using	pickaxe	-S	with	git	diff-*).
In	contrast	to	the	--sq-quote	option,	the	command	input	is	still
interpreted	as	usual.

--not
When	showing	object	names,	prefix	them	with	^	and	strip	^	prefix
from	the	object	names	that	already	have	one.

--abbrev-ref[=(strict|loose)]
A	non-ambiguous	short	name	of	the	objects	name.	The	option
core.warnAmbiguousRefs	is	used	to	select	the	strict	abbreviation
mode.

--short	,	--short=number
Instead	of	outputting	the	full	SHA-1	values	of	object	names	try	to
abbreviate	them	to	a	shorter	unique	name.	When	no	length	is
specified	7	is	used.	The	minimum	length	is	4.

--symbolic
Usually	the	object	names	are	output	in	SHA-1	form	(with	possible	^
prefix);	this	option	makes	them	output	in	a	form	as	close	to	the
original	input	as	possible.

--symbolic-full-name
This	is	similar	to	--symbolic,	but	it	omits	input	that	are	not	refs	(i.e.
branch	or	tag	names;	or	more	explicitly	disambiguating
"heads/master"	form,	when	you	want	to	name	the	"master"	branch
when	there	is	an	unfortunately	named	tag	"master"),	and	show	them
as	full	refnames	(e.g.	"refs/heads/master").



5.	Options	for	Objects

--all
Show	all	refs	found	in	refs/.

--branches[=pattern]	,	--tags[=pattern]	,	--remotes[=pattern]

Show	all	branches,	tags,	or	remote-tracking	branches,	respectively
(i.e.,	refs	found	in	refs/heads,	refs/tags,	or	refs/remotes,
respectively).

If	a	pattern	is	given,	only	refs	matching	the	given	shell	glob	are
shown.	If	the	pattern	does	not	contain	a	globbing	character	(?,	*,	or
[),	it	is	turned	into	a	prefix	match	by	appending	/*.

--glob=pattern
Show	all	refs	matching	the	shell	glob	pattern	pattern.	If	the	pattern
does	not	start	with	refs/,	this	is	automatically	prepended.	If	the
pattern	does	not	contain	a	globbing	character	(?,	*,	or	[),	it	is	turned
into	a	prefix	match	by	appending	/*.

--exclude=<glob-pattern>

Do	not	include	refs	matching	<glob-pattern>	that	the	next	--all,	--
branches,	--tags,	--remotes,	or	--glob	would	otherwise	consider.
Repetitions	of	this	option	accumulate	exclusion	patterns	up	to	the
next	--all,	--branches,	--tags,	--remotes,	or	--glob	option	(other
options	or	arguments	do	not	clear	accumulated	patterns).

The	patterns	given	should	not	begin	with	refs/heads,	refs/tags,	or
refs/remotes	when	applied	to	--branches,	--tags,	or	--remotes,
respectively,	and	they	must	begin	with	refs/	when	applied	to	--glob	or
--all.	If	a	trailing	/*	is	intended,	it	must	be	given	explicitly.

--disambiguate=<prefix>
Show	every	object	whose	name	begins	with	the	given	prefix.	The
<prefix>	must	be	at	least	4	hexadecimal	digits	long	to	avoid	listing
each	and	every	object	in	the	repository	by	mistake.



6.	Options	for	Files

--local-env-vars
List	the	GIT_*	environment	variables	that	are	local	to	the	repository
(e.g.	GIT_DIR	or	GIT_WORK_TREE,	but	not	GIT_EDITOR).	Only
the	names	of	the	variables	are	listed,	not	their	value,	even	if	they	are
set.

--git-dir

Show	$GIT_DIR	if	defined.	Otherwise	show	the	path	to	the	.git
directory.	The	path	shown,	when	relative,	is	relative	to	the	current
working	directory.

If	$GIT_DIR	is	not	defined	and	the	current	directory	is	not	detected
to	lie	in	a	Git	repository	or	work	tree	print	a	message	to	stderr	and
exit	with	nonzero	status.

--git-common-dir
Show	$GIT_COMMON_DIR	if	defined,	else	$GIT_DIR.

--is-inside-git-dir
When	the	current	working	directory	is	below	the	repository	directory
print	"true",	otherwise	"false".

--is-inside-work-tree
When	the	current	working	directory	is	inside	the	work	tree	of	the
repository	print	"true",	otherwise	"false".

--is-bare-repository
When	the	repository	is	bare	print	"true",	otherwise	"false".

--resolve-git-dir	<path>
Check	if	<path>	is	a	valid	repository	or	a	gitfile	that	points	at	a	valid
repository,	and	print	the	location	of	the	repository.	If	<path>	is	a	gitfile
then	the	resolved	path	to	the	real	repository	is	printed.

--git-path	<path>
Resolve	"$GIT_DIR/<path>"	and	takes	other	path	relocation
variables	such	as	$GIT_OBJECT_DIRECTORY,
$GIT_INDEX_FILE…	into	account.	For	example,	if
$GIT_OBJECT_DIRECTORY	is	set	to	/foo/bar	then	"git	rev-parse	--



git-path	objects/abc"	returns	/foo/bar/abc.
--show-cdup

When	the	command	is	invoked	from	a	subdirectory,	show	the	path	of
the	top-level	directory	relative	to	the	current	directory	(typically	a
sequence	of	"../",	or	an	empty	string).

--show-prefix
When	the	command	is	invoked	from	a	subdirectory,	show	the	path	of
the	current	directory	relative	to	the	top-level	directory.

--show-toplevel
Show	the	absolute	path	of	the	top-level	directory.

--shared-index-path
Show	the	path	to	the	shared	index	file	in	split	index	mode,	or	empty	if
not	in	split-index	mode.



7.	Other	Options

--since=datestring	,	--after=datestring
Parse	the	date	string,	and	output	the	corresponding	--max-age=
parameter	for	git	rev-list.

--until=datestring	,	--before=datestring
Parse	the	date	string,	and	output	the	corresponding	--min-age=
parameter	for	git	rev-list.

<args>…
Flags	and	parameters	to	be	parsed.

SPECIFYING	REVISIONS

A	revision	parameter	<rev>	typically,	but	not	necessarily,	names	a	commit
object.	It	uses	what	is	called	an	extended	SHA-1	syntax.	Here	are
various	ways	to	spell	object	names.	The	ones	listed	near	the	end	of	this
list	name	trees	and	blobs	contained	in	a	commit.

<sha1>,	e.g.	dae86e1950b1277e545cee180551750029cfe735,	dae86e
The	full	SHA-1	object	name	(40-byte	hexadecimal	string),	or	a
leading	substring	that	is	unique	within	the	repository.	E.g.
dae86e1950b1277e545cee180551750029cfe735	and	dae86e	both
name	the	same	commit	object	if	there	is	no	other	object	in	your
repository	whose	object	name	starts	with	dae86e.

<describeOutput>,	e.g.	v1.7.4.2-679-g3bee7fb
Output	from	git	describe;	i.e.	a	closest	tag,	optionally	followed	by	a
dash	and	a	number	of	commits,	followed	by	a	dash,	a	g,	and	an
abbreviated	object	name.

<refname>,	e.g.	master,	heads/master,	refs/heads/master

A	symbolic	ref	name.	E.g.	master	typically	means	the	commit	object
referenced	by	refs/heads/master.	If	you	happen	to	have	both
heads/master	and	tags/master,	you	can	explicitly	say	heads/master
to	tell	Git	which	one	you	mean.	When	ambiguous,	a	<refname>	is
disambiguated	by	taking	the	first	match	in	the	following	rules:



1.	 If	$GIT_DIR/<refname>	exists,	that	is	what	you	mean	(this	is
usually	useful	only	for	HEAD,	FETCH_HEAD,	ORIG_HEAD,
MERGE_HEAD	and	CHERRY_PICK_HEAD);

2.	 otherwise,	refs/<refname>	if	it	exists;
3.	 otherwise,	refs/tags/<refname>	if	it	exists;
4.	 otherwise,	refs/heads/<refname>	if	it	exists;
5.	 otherwise,	refs/remotes/<refname>	if	it	exists;

6.	 otherwise,	refs/remotes/<refname>/HEAD	if	it	exists.

HEAD	names	the	commit	on	which	you	based	the	changes	in
the	working	tree.	FETCH_HEAD	records	the	branch	which	you
fetched	from	a	remote	repository	with	your	last	git	fetch
invocation.	ORIG_HEAD	is	created	by	commands	that	move
your	HEAD	in	a	drastic	way,	to	record	the	position	of	the	HEAD
before	their	operation,	so	that	you	can	easily	change	the	tip	of
the	branch	back	to	the	state	before	you	ran	them.
MERGE_HEAD	records	the	commit(s)	which	you	are	merging
into	your	branch	when	you	run	git	merge.
CHERRY_PICK_HEAD	records	the	commit	which	you	are
cherry-picking	when	you	run	git	cherry-pick.

Note	that	any	of	the	refs/*	cases	above	may	come	either	from
the	$GIT_DIR/refs	directory	or	from	the	$GIT_DIR/packed-refs
file.	While	the	ref	name	encoding	is	unspecified,	UTF-8	is
preferred	as	some	output	processing	may	assume	ref	names	in
UTF-8.

@
@	alone	is	a	shortcut	for	HEAD.

<refname>@{<date>},	e.g.	master@{yesterday},	HEAD@{5	minutes	ago}
A	ref	followed	by	the	suffix	@	with	a	date	specification	enclosed	in	a
brace	pair	(e.g.	{yesterday},	{1	month	2	weeks	3	days	1	hour	1
second	ago}	or	{1979-02-26	18:30:00})	specifies	the	value	of	the	ref
at	a	prior	point	in	time.	This	suffix	may	only	be	used	immediately
following	a	ref	name	and	the	ref	must	have	an	existing	log
($GIT_DIR/logs/<ref>).	Note	that	this	looks	up	the	state	of	your	local
ref	at	a	given	time;	e.g.,	what	was	in	your	local	master	branch	last



week.	If	you	want	to	look	at	commits	made	during	certain	times,	see
--since	and	--until.

<refname>@{<n>},	e.g.	master@{1}
A	ref	followed	by	the	suffix	@	with	an	ordinal	specification	enclosed
in	a	brace	pair	(e.g.	{1},	{15})	specifies	the	n-th	prior	value	of	that	ref.
For	example	master@{1}	is	the	immediate	prior	value	of	master
while	master@{5}	is	the	5th	prior	value	of	master.	This	suffix	may
only	be	used	immediately	following	a	ref	name	and	the	ref	must	have
an	existing	log	($GIT_DIR/logs/<refname>).

@{<n>},	e.g.	@{1}
You	can	use	the	@	construct	with	an	empty	ref	part	to	get	at	a	reflog
entry	of	the	current	branch.	For	example,	if	you	are	on	branch	blabla
then	@{1}	means	the	same	as	blabla@{1}.

@{-<n>},	e.g.	@{-1}
The	construct	@{-<n>}	means	the	<n>th	branch/commit	checked	out
before	the	current	one.

<branchname>@{upstream},	e.g.	master@{upstream},	@{u}
The	suffix	@{upstream}	to	a	branchname	(short	form
<branchname>@{u})	refers	to	the	branch	that	the	branch	specified
by	branchname	is	set	to	build	on	top	of	(configured	with	branch.
<name>.remote	and	branch.<name>.merge).	A	missing	branchname
defaults	to	the	current	one.

<branchname>@{push},	e.g.	master@{push},	@{push}

The	suffix	@{push}	reports	the	branch	"where	we	would	push	to"	if
git	push	were	run	while	branchname	was	checked	out	(or	the	current
HEAD	if	no	branchname	is	specified).	Since	our	push	destination	is
in	a	remote	repository,	of	course,	we	report	the	local	tracking	branch
that	corresponds	to	that	branch	(i.e.,	something	in	refs/remotes/).

Here's	an	example	to	make	it	more	clear:

$	git	config	push.default	current

$	git	config	remote.pushdefault	myfork

$	git	checkout	-b	mybranch	origin/master

$	git	rev-parse	--symbolic-full-name	@{upstream}

refs/remotes/origin/master



$	git	rev-parse	--symbolic-full-name	@{push}

refs/remotes/myfork/mybranch

Note	in	the	example	that	we	set	up	a	triangular	workflow,	where	we
pull	from	one	location	and	push	to	another.	In	a	non-triangular
workflow,	@{push}	is	the	same	as	@{upstream},	and	there	is	no
need	for	it.

<rev>^,	e.g.	HEAD^,	v1.5.1^0
A	suffix	^	to	a	revision	parameter	means	the	first	parent	of	that
commit	object.	^<n>	means	the	<n>th	parent	(i.e.	<rev>^	is
equivalent	to	<rev>^1).	As	a	special	rule,	<rev>^0	means	the	commit
itself	and	is	used	when	<rev>	is	the	object	name	of	a	tag	object	that
refers	to	a	commit	object.

<rev>~<n>,	e.g.	master~3
A	suffix	~<n>	to	a	revision	parameter	means	the	commit	object	that
is	the	<n>th	generation	ancestor	of	the	named	commit	object,
following	only	the	first	parents.	I.e.	<rev>~3	is	equivalent	to	<rev>^^^
which	is	equivalent	to	<rev>^1^1^1.	See	below	for	an	illustration	of
the	usage	of	this	form.

<rev>^{<type>},	e.g.	v0.99.8^{commit}

A	suffix	^	followed	by	an	object	type	name	enclosed	in	brace	pair
means	dereference	the	object	at	<rev>	recursively	until	an	object	of
type	<type>	is	found	or	the	object	cannot	be	dereferenced	anymore
(in	which	case,	barf).	For	example,	if	<rev>	is	a	commit-ish,
<rev>^{commit}	describes	the	corresponding	commit	object.
Similarly,	if	<rev>	is	a	tree-ish,	<rev>^{tree}	describes	the
corresponding	tree	object.	<rev>^0	is	a	short-hand	for
<rev>^{commit}.

rev^{object}	can	be	used	to	make	sure	rev	names	an	object	that
exists,	without	requiring	rev	to	be	a	tag,	and	without	dereferencing
rev;	because	a	tag	is	already	an	object,	it	does	not	have	to	be
dereferenced	even	once	to	get	to	an	object.

rev^{tag}	can	be	used	to	ensure	that	rev	identifies	an	existing	tag
object.



<rev>^{},	e.g.	v0.99.8^{}
A	suffix	^	followed	by	an	empty	brace	pair	means	the	object	could	be
a	tag,	and	dereference	the	tag	recursively	until	a	non-tag	object	is
found.

<rev>^{/<text>},	e.g.	HEAD^{/fix	nasty	bug}
A	suffix	^	to	a	revision	parameter,	followed	by	a	brace	pair	that
contains	a	text	led	by	a	slash,	is	the	same	as	the	:/fix	nasty	bug
syntax	below	except	that	it	returns	the	youngest	matching	commit
which	is	reachable	from	the	<rev>	before	^.

:/<text>,	e.g.	:/fix	nasty	bug
A	colon,	followed	by	a	slash,	followed	by	a	text,	names	a	commit
whose	commit	message	matches	the	specified	regular	expression.
This	name	returns	the	youngest	matching	commit	which	is	reachable
from	any	ref.	The	regular	expression	can	match	any	part	of	the
commit	message.	To	match	messages	starting	with	a	string,	one	can
use	e.g.	:/^foo.	The	special	sequence	:/!	is	reserved	for	modifiers	to
what	is	matched.	:/!-foo	performs	a	negative	match,	while	:/!!foo
matches	a	literal	!	character,	followed	by	foo.	Any	other	sequence
beginning	with	:/!	is	reserved	for	now.

<rev>:<path>,	e.g.	HEAD:README,	:README,	master:./README
A	suffix	:	followed	by	a	path	names	the	blob	or	tree	at	the	given	path
in	the	tree-ish	object	named	by	the	part	before	the	colon.	:path	(with
an	empty	part	before	the	colon)	is	a	special	case	of	the	syntax
described	next:	content	recorded	in	the	index	at	the	given	path.	A
path	starting	with	./	or	../	is	relative	to	the	current	working	directory.
The	given	path	will	be	converted	to	be	relative	to	the	working	tree's
root	directory.	This	is	most	useful	to	address	a	blob	or	tree	from	a
commit	or	tree	that	has	the	same	tree	structure	as	the	working	tree.

:<n>:<path>,	e.g.	:0:README,	:README
A	colon,	optionally	followed	by	a	stage	number	(0	to	3)	and	a	colon,
followed	by	a	path,	names	a	blob	object	in	the	index	at	the	given
path.	A	missing	stage	number	(and	the	colon	that	follows	it)	names	a
stage	0	entry.	During	a	merge,	stage	1	is	the	common	ancestor,
stage	2	is	the	target	branch's	version	(typically	the	current	branch),
and	stage	3	is	the	version	from	the	branch	which	is	being	merged.

Here	is	an	illustration,	by	Jon	Loeliger.	Both	commit	nodes	B	and	C	are



parents	of	commit	node	A.	Parent	commits	are	ordered	left-to-right.

G			H			I			J

	\	/					\	/

		D			E			F

			\		|		/	\

				\	|	/			|

					\|/				|

						B					C

							\			/

								\	/

									A

A	=						=	A^0

B	=	A^			=	A^1					=	A~1

C	=	A^2		=	A^2

D	=	A^^		=	A^1^1			=	A~2

E	=	B^2		=	A^^2

F	=	B^3		=	A^^3

G	=	A^^^	=	A^1^1^1	=	A~3

H	=	D^2		=	B^^2				=	A^^^2		=	A~2^2

I	=	F^			=	B^3^				=	A^^3^

J	=	F^2		=	B^3^2			=	A^^3^2

SPECIFYING	RANGES

History	traversing	commands	such	as	git	log	operate	on	a	set	of	commits,
not	just	a	single	commit.	To	these	commands,	specifying	a	single	revision
with	the	notation	described	in	the	previous	section	means	the	set	of
commits	reachable	from	that	commit,	following	the	commit	ancestry
chain.

To	exclude	commits	reachable	from	a	commit,	a	prefix	^	notation	is	used.
E.g.	^r1	r2	means	commits	reachable	from	r2	but	exclude	the	ones
reachable	from	r1.

This	set	operation	appears	so	often	that	there	is	a	shorthand	for	it.	When
you	have	two	commits	r1	and	r2	(named	according	to	the	syntax
explained	in	SPECIFYING	REVISIONS	above),	you	can	ask	for	commits
that	are	reachable	from	r2	excluding	those	that	are	reachable	from	r1	by
^r1	r2	and	it	can	be	written	as	r1..r2.

A	similar	notation	r1...r2	is	called	symmetric	difference	of	r1	and	r2	and	is
defined	as	r1	r2	--not	$(git	merge-base	--all	r1	r2).	It	is	the	set	of	commits
that	are	reachable	from	either	one	of	r1	or	r2	but	not	from	both.



In	these	two	shorthands,	you	can	omit	one	end	and	let	it	default	to	HEAD.
For	example,	origin..	is	a	shorthand	for	origin..HEAD	and	asks	"What	did
I	do	since	I	forked	from	the	origin	branch?"	Similarly,	..origin	is	a
shorthand	for	HEAD..origin	and	asks	"What	did	the	origin	do	since	I
forked	from	them?"	Note	that	..	would	mean	HEAD..HEAD	which	is	an
empty	range	that	is	both	reachable	and	unreachable	from	HEAD.

Two	other	shorthands	for	naming	a	set	that	is	formed	by	a	commit	and	its
parent	commits	exist.	The	r1^@	notation	means	all	parents	of	r1.	r1^!
includes	commit	r1	but	excludes	all	of	its	parents.

To	summarize:

<rev>
Include	commits	that	are	reachable	from	(i.e.	ancestors	of)	<rev>.

^<rev>
Exclude	commits	that	are	reachable	from	(i.e.	ancestors	of)	<rev>.

<rev1>..<rev2>
Include	commits	that	are	reachable	from	<rev2>	but	exclude	those
that	are	reachable	from	<rev1>.	When	either	<rev1>	or	<rev2>	is
omitted,	it	defaults	to	HEAD.

<rev1>...<rev2>
Include	commits	that	are	reachable	from	either	<rev1>	or	<rev2>	but
exclude	those	that	are	reachable	from	both.	When	either	<rev1>	or
<rev2>	is	omitted,	it	defaults	to	HEAD.

<rev>^@,	e.g.	HEAD^@
A	suffix	^	followed	by	an	at	sign	is	the	same	as	listing	all	parents	of
<rev>	(meaning,	include	anything	reachable	from	its	parents,	but	not
the	commit	itself).

<rev>^!,	e.g.	HEAD^!
A	suffix	^	followed	by	an	exclamation	mark	is	the	same	as	giving
commit	<rev>	and	then	all	its	parents	prefixed	with	^	to	exclude	them
(and	their	ancestors).

Here	are	a	handful	of	examples:

D																G	H	D

D	F														G	H	I	J	D	F

^G	D													H	D

^D	B													E	I	J	F	B



B..C													C

B...C												G	H	D	E	B	C

^D	B	C											E	I	J	F	B	C

C																I	J	F	C

C^@														I	J	F

C^!														C

F^!	D												G	H	D	F

PARSEOPT

In	--parseopt	mode,	git	rev-parse	helps	massaging	options	to	bring	to
shell	scripts	the	same	facilities	C	builtins	have.	It	works	as	an	option
normalizer	(e.g.	splits	single	switches	aggregate	values),	a	bit	like
getopt(1)	does.

It	takes	on	the	standard	input	the	specification	of	the	options	to	parse	and
understand,	and	echoes	on	the	standard	output	a	string	suitable	for	sh(1)
eval	to	replace	the	arguments	with	normalized	ones.	In	case	of	error,	it
outputs	usage	on	the	standard	error	stream,	and	exits	with	code	129.

Note:	Make	sure	you	quote	the	result	when	passing	it	to	eval.	See	below
for	an	example.



1.	Input	Format

git	rev-parse	--parseopt	input	format	is	fully	text	based.	It	has	two	parts,
separated	by	a	line	that	contains	only	--.	The	lines	before	the	separator
(should	be	one	or	more)	are	used	for	the	usage.	The	lines	after	the
separator	describe	the	options.

Each	line	of	options	has	this	format:

<opt-spec><flags>*<arg-hint>?	SP+	help	LF

<opt-spec>
its	format	is	the	short	option	character,	then	the	long	option	name
separated	by	a	comma.	Both	parts	are	not	required,	though	at	least
one	is	necessary.	May	not	contain	any	of	the	<flags>	characters.
h,help,	dry-run	and	f	are	examples	of	correct	<opt-spec>.

<flags>

<flags>	are	of	*,	=,	?	or	!.

Use	=	if	the	option	takes	an	argument.
Use	?	to	mean	that	the	option	takes	an	optional	argument.	You
probably	want	to	use	the	--stuck-long	mode	to	be	able	to
unambiguously	parse	the	optional	argument.
Use	*	to	mean	that	this	option	should	not	be	listed	in	the	usage
generated	for	the	-h	argument.	It's	shown	for	--help-all	as
documented	in	Section	G.4.1,	“gitcli(7)”.
Use	!	to	not	make	the	corresponding	negated	long	option
available.

<arg-hint>
<arg-hint>,	if	specified,	is	used	as	a	name	of	the	argument	in	the
help	output,	for	options	that	take	arguments.	<arg-hint>	is	terminated
by	the	first	whitespace.	It	is	customary	to	use	a	dash	to	separate
words	in	a	multi-word	argument	hint.

The	remainder	of	the	line,	after	stripping	the	spaces,	is	used	as	the	help



associated	to	the	option.

Blank	lines	are	ignored,	and	lines	that	don't	match	this	specification	are
used	as	option	group	headers	(start	the	line	with	a	space	to	create	such
lines	on	purpose).



2.	Example

OPTS_SPEC="\

some-command	[options]	<args>...

some-command	does	foo	and	bar!

--

h,help				show	the	help

foo							some	nifty	option	--foo

bar=						some	cool	option	--bar	with	an	argument

baz=arg			another	cool	option	--baz	with	a	named	argument

qux?path		qux	may	take	a	path	argument	but	has	meaning	by	itself

		An	option	group	Header

C?								option	C	with	an	optional	argument"

eval	"$(echo	"$OPTS_SPEC"	|	git	rev-parse	--parseopt	--	"$@"	||	echo	exit	$?)"



3.	Usage	text

When	"$@"	is	-h	or	--help	in	the	above	example,	the	following	usage	text
would	be	shown:

usage:	some-command	[options]	<args>...

				some-command	does	foo	and	bar!

				-h,	--help												show	the	help

				--foo																	some	nifty	option	--foo

				--bar	...													some	cool	option	--bar	with	an	argument

				--baz	<arg>											another	cool	option	--baz	with	a	named	argument

				--qux[=<path>]								qux	may	take	a	path	argument	but	has	meaning	by	itself

An	option	group	Header

				-C[...]															option	C	with	an	optional	argument

SQ-QUOTE

In	--sq-quote	mode,	git	rev-parse	echoes	on	the	standard	output	a	single
line	suitable	for	sh(1)	eval.	This	line	is	made	by	normalizing	the
arguments	following	--sq-quote.	Nothing	other	than	quoting	the
arguments	is	done.

If	you	want	command	input	to	still	be	interpreted	as	usual	by	git	rev-parse
before	the	output	is	shell	quoted,	see	the	--sq	option.



1.	Example

$	cat	>your-git-script.sh	<<\EOF

#!/bin/sh

args=$(git	rev-parse	--sq-quote	"$@")			#	quote	user-supplied	arguments

command="git	frotz	-n24	$args"										#	and	use	it	inside	a	handcrafted

																																								#	command	line

eval	"$command"

EOF

$	sh	your-git-script.sh	"a	b'c"

EXAMPLES

Print	the	object	name	of	the	current	commit:

$	git	rev-parse	--verify	HEAD

Print	the	commit	object	name	from	the	revision	in	the	$REV	shell
variable:

$	git	rev-parse	--verify	$REV^{commit}

This	will	error	out	if	$REV	is	empty	or	not	a	valid	revision.

Similar	to	above:

$	git	rev-parse	--default	master	--verify	$REV

but	if	$REV	is	empty,	the	commit	object	name	from	master	will	be
printed.

GIT

Part	of	the	Section	G.3.1,	“git(1)”	suite



G.3.114.	git-revert(1)

NAME

git-revert	-	Revert	some	existing	commits

SYNOPSIS

git	revert	[--[no-]edit]	[-n]	[-m	parent-number]	[-s]	[-

S[<keyid>]]	<commit>…

git	revert	--continue

git	revert	--quit

git	revert	--abort

DESCRIPTION

Given	one	or	more	existing	commits,	revert	the	changes	that	the	related
patches	introduce,	and	record	some	new	commits	that	record	them.	This
requires	your	working	tree	to	be	clean	(no	modifications	from	the	HEAD
commit).

Note:	git	revert	is	used	to	record	some	new	commits	to	reverse	the	effect
of	some	earlier	commits	(often	only	a	faulty	one).	If	you	want	to	throw
away	all	uncommitted	changes	in	your	working	directory,	you	should	see
Section	G.3.111,	“git-reset(1)”,	particularly	the	--hard	option.	If	you	want
to	extract	specific	files	as	they	were	in	another	commit,	you	should	see
Section	G.3.18,	“git-checkout(1)”,	specifically	the	git	checkout	<commit>	-
-	<filename>	syntax.	Take	care	with	these	alternatives	as	both	will	discard
uncommitted	changes	in	your	working	directory.

OPTIONS

<commit>…
Commits	to	revert.	For	a	more	complete	list	of	ways	to	spell	commit
names,	see	Section	G.4.12,	“gitrevisions(7)”.	Sets	of	commits	can
also	be	given	but	no	traversal	is	done	by	default,	see



Section	G.3.112,	“git-rev-list(1)”	and	its	--no-walk	option.
-e	,	--edit

With	this	option,	git	revert	will	let	you	edit	the	commit	message	prior
to	committing	the	revert.	This	is	the	default	if	you	run	the	command
from	a	terminal.

-m	parent-number	,	--mainline	parent-number

Usually	you	cannot	revert	a	merge	because	you	do	not	know	which
side	of	the	merge	should	be	considered	the	mainline.	This	option
specifies	the	parent	number	(starting	from	1)	of	the	mainline	and
allows	revert	to	reverse	the	change	relative	to	the	specified	parent.

Reverting	a	merge	commit	declares	that	you	will	never	want	the	tree
changes	brought	in	by	the	merge.	As	a	result,	later	merges	will	only
bring	in	tree	changes	introduced	by	commits	that	are	not	ancestors
of	the	previously	reverted	merge.	This	may	or	may	not	be	what	you
want.

See	the	revert-a-faulty-merge	How-To	for	more	details.

--no-edit
With	this	option,	git	revert	will	not	start	the	commit	message	editor.

-n	,	--no-commit

Usually	the	command	automatically	creates	some	commits	with
commit	log	messages	stating	which	commits	were	reverted.	This	flag
applies	the	changes	necessary	to	revert	the	named	commits	to	your
working	tree	and	the	index,	but	does	not	make	the	commits.	In
addition,	when	this	option	is	used,	your	index	does	not	have	to
match	the	HEAD	commit.	The	revert	is	done	against	the	beginning
state	of	your	index.

This	is	useful	when	reverting	more	than	one	commits'	effect	to	your
index	in	a	row.

-S[<keyid>]	,	--gpg-sign[=<keyid>]
GPG-sign	commits.	The	keyid	argument	is	optional	and	defaults	to
the	committer	identity;	if	specified,	it	must	be	stuck	to	the	option

https://www.kernel.org/pub/software/scm/git/docs/howto/revert-a-faulty-merge.html


without	a	space.
-s	,	--signoff

Add	Signed-off-by	line	at	the	end	of	the	commit	message.	See	the
signoff	option	in	Section	G.3.26,	“git-commit(1)”	for	more	information.

--strategy=<strategy>
Use	the	given	merge	strategy.	Should	only	be	used	once.	See	the
MERGE	STRATEGIES	section	in	Section	G.3.79,	“git-merge(1)”	for
details.

-X<option>	,	--strategy-option=<option>
Pass	the	merge	strategy-specific	option	through	to	the	merge
strategy.	See	Section	G.3.79,	“git-merge(1)”	for	details.

SEQUENCER	SUBCOMMANDS

--continue
Continue	the	operation	in	progress	using	the	information	in
.git/sequencer.	Can	be	used	to	continue	after	resolving	conflicts	in	a
failed	cherry-pick	or	revert.

--quit
Forget	about	the	current	operation	in	progress.	Can	be	used	to	clear
the	sequencer	state	after	a	failed	cherry-pick	or	revert.

--abort
Cancel	the	operation	and	return	to	the	pre-sequence	state.

EXAMPLES

git	revert	HEAD~3
Revert	the	changes	specified	by	the	fourth	last	commit	in	HEAD	and
create	a	new	commit	with	the	reverted	changes.

git	revert	-n	master~5..master~2
Revert	the	changes	done	by	commits	from	the	fifth	last	commit	in
master	(included)	to	the	third	last	commit	in	master	(included),	but	do
not	create	any	commit	with	the	reverted	changes.	The	revert	only
modifies	the	working	tree	and	the	index.

SEE	ALSO



Section	G.3.19,	“git-cherry-pick(1)”

GIT

Part	of	the	Section	G.3.1,	“git(1)”	suite

G.3.115.	git-rm(1)

NAME

git-rm	-	Remove	files	from	the	working	tree	and	from	the	index

SYNOPSIS

git	rm	[-f	|	--force]	[-n]	[-r]	[--cached]	[--ignore-

unmatch]	[--quiet]	[--]	<file>…

DESCRIPTION

Remove	files	from	the	index,	or	from	the	working	tree	and	the	index.	git
rm	will	not	remove	a	file	from	just	your	working	directory.	(There	is	no
option	to	remove	a	file	only	from	the	working	tree	and	yet	keep	it	in	the
index;	use	/bin/rm	if	you	want	to	do	that.)	The	files	being	removed	have	to
be	identical	to	the	tip	of	the	branch,	and	no	updates	to	their	contents	can
be	staged	in	the	index,	though	that	default	behavior	can	be	overridden
with	the	-f	option.	When	--cached	is	given,	the	staged	content	has	to
match	either	the	tip	of	the	branch	or	the	file	on	disk,	allowing	the	file	to	be
removed	from	just	the	index.

OPTIONS

<file>…
Files	to	remove.	Fileglobs	(e.g.	*.c)	can	be	given	to	remove	all
matching	files.	If	you	want	Git	to	expand	file	glob	characters,	you
may	need	to	shell-escape	them.	A	leading	directory	name	(e.g.	dir	to
remove	dir/file1	and	dir/file2)	can	be	given	to	remove	all	files	in	the



directory,	and	recursively	all	sub-directories,	but	this	requires	the	-r
option	to	be	explicitly	given.

-f	,	--force
Override	the	up-to-date	check.

-n	,	--dry-run
Don't	actually	remove	any	file(s).	Instead,	just	show	if	they	exist	in
the	index	and	would	otherwise	be	removed	by	the	command.

-r
Allow	recursive	removal	when	a	leading	directory	name	is	given.

--
This	option	can	be	used	to	separate	command-line	options	from	the
list	of	files,	(useful	when	filenames	might	be	mistaken	for	command-
line	options).

--cached
Use	this	option	to	unstage	and	remove	paths	only	from	the	index.
Working	tree	files,	whether	modified	or	not,	will	be	left	alone.

--ignore-unmatch
Exit	with	a	zero	status	even	if	no	files	matched.

-q	,	--quiet
git	rm	normally	outputs	one	line	(in	the	form	of	an	rm	command)	for
each	file	removed.	This	option	suppresses	that	output.

DISCUSSION

The	<file>	list	given	to	the	command	can	be	exact	pathnames,	file	glob
patterns,	or	leading	directory	names.	The	command	removes	only	the
paths	that	are	known	to	Git.	Giving	the	name	of	a	file	that	you	have	not
told	Git	about	does	not	remove	that	file.

File	globbing	matches	across	directory	boundaries.	Thus,	given	two
directories	d	and	d2,	there	is	a	difference	between	using	git	rm	'd*'	and	git
rm	'd/*',	as	the	former	will	also	remove	all	of	directory	d2.

REMOVING	FILES	THAT	HAVE	DISAPPEARED	FROM	THE
FILESYSTEM

There	is	no	option	for	git	rm	to	remove	from	the	index	only	the	paths	that



have	disappeared	from	the	filesystem.	However,	depending	on	the	use
case,	there	are	several	ways	that	can	be	done.



1.	Using	git	commit	-a

If	you	intend	that	your	next	commit	should	record	all	modifications	of
tracked	files	in	the	working	tree	and	record	all	removals	of	files	that	have
been	removed	from	the	working	tree	with	rm	(as	opposed	to	git	rm),	use
git	commit	-a,	as	it	will	automatically	notice	and	record	all	removals.	You
can	also	have	a	similar	effect	without	committing	by	using	git	add	-u.



2.	Using	git	add	-A

When	accepting	a	new	code	drop	for	a	vendor	branch,	you	probably	want
to	record	both	the	removal	of	paths	and	additions	of	new	paths	as	well	as
modifications	of	existing	paths.

Typically	you	would	first	remove	all	tracked	files	from	the	working	tree
using	this	command:

git	ls-files	-z	|	xargs	-0	rm	-f

and	then	untar	the	new	code	in	the	working	tree.	Alternately	you	could
rsync	the	changes	into	the	working	tree.

After	that,	the	easiest	way	to	record	all	removals,	additions,	and
modifications	in	the	working	tree	is:

git	add	-A

See	Section	G.3.2,	“git-add(1)”.



3.	Other	ways

If	all	you	really	want	to	do	is	to	remove	from	the	index	the	files	that	are	no
longer	present	in	the	working	tree	(perhaps	because	your	working	tree	is
dirty	so	that	you	cannot	use	git	commit	-a),	use	the	following	command:

git	diff	--name-only	--diff-filter=D	-z	|	xargs	-0	git	rm	--cached

SUBMODULES

Only	submodules	using	a	gitfile	(which	means	they	were	cloned	with	a
Git	version	1.7.8	or	newer)	will	be	removed	from	the	work	tree,	as	their
repository	lives	inside	the	.git	directory	of	the	superproject.	If	a
submodule	(or	one	of	those	nested	inside	it)	still	uses	a	.git	directory,	git
rm	will	fail	-	no	matter	if	forced	or	not	-	to	protect	the	submodule's	history.
If	it	exists	the	submodule.<name>	section	in	the	Section	G.4.8,
“gitmodules(5)”	file	will	also	be	removed	and	that	file	will	be	staged
(unless	--cached	or	-n	are	used).

A	submodule	is	considered	up-to-date	when	the	HEAD	is	the	same	as
recorded	in	the	index,	no	tracked	files	are	modified	and	no	untracked	files
that	aren't	ignored	are	present	in	the	submodules	work	tree.	Ignored	files
are	deemed	expendable	and	won't	stop	a	submodule's	work	tree	from
being	removed.

If	you	only	want	to	remove	the	local	checkout	of	a	submodule	from	your
work	tree	without	committing	the	removal,	use	Section	G.3.131,	“git-
submodule(1)”	deinit	instead.

EXAMPLES

git	rm	Documentation/\*.txt

Removes	all	*.txt	files	from	the	index	that	are	under	the
Documentation	directory	and	any	of	its	subdirectories.



Note	that	the	asterisk	*	is	quoted	from	the	shell	in	this	example;	this
lets	Git,	and	not	the	shell,	expand	the	pathnames	of	files	and
subdirectories	under	the	Documentation/	directory.

git	rm	-f	git-*.sh
Because	this	example	lets	the	shell	expand	the	asterisk	(i.e.	you	are
listing	the	files	explicitly),	it	does	not	remove	subdir/git-foo.sh.

BUGS

Each	time	a	superproject	update	removes	a	populated	submodule	(e.g.
when	switching	between	commits	before	and	after	the	removal)	a	stale
submodule	checkout	will	remain	in	the	old	location.	Removing	the	old
directory	is	only	safe	when	it	uses	a	gitfile,	as	otherwise	the	history	of	the
submodule	will	be	deleted	too.	This	step	will	be	obsolete	when	recursive
submodule	update	has	been	implemented.

SEE	ALSO

Section	G.3.2,	“git-add(1)”

GIT

Part	of	the	Section	G.3.1,	“git(1)”	suite

G.3.116.	git-send-email(1)

NAME

git-send-email	-	Send	a	collection	of	patches	as	emails

SYNOPSIS

git	send-email	[options]	<file|directory|rev-list	options>…

git	send-email	--dump-aliases



DESCRIPTION

Takes	the	patches	given	on	the	command	line	and	emails	them	out.
Patches	can	be	specified	as	files,	directories	(which	will	send	all	files	in
the	directory),	or	directly	as	a	revision	list.	In	the	last	case,	any	format
accepted	by	Section	G.3.50,	“git-format-patch(1)”	can	be	passed	to	git
send-email.

The	header	of	the	email	is	configurable	via	command-line	options.	If	not
specified	on	the	command	line,	the	user	will	be	prompted	with	a
ReadLine	enabled	interface	to	provide	the	necessary	information.

There	are	two	formats	accepted	for	patch	files:

1.	 mbox	format	files

This	is	what	Section	G.3.50,	“git-format-patch(1)”	generates.	Most
headers	and	MIME	formatting	are	ignored.

2.	 The	original	format	used	by	Greg	Kroah-Hartman's
send_lots_of_email.pl	script

This	format	expects	the	first	line	of	the	file	to	contain	the	"Cc:"	value
and	the	"Subject:"	of	the	message	as	the	second	line.

OPTIONS



1.	Composing

--annotate
Review	and	edit	each	patch	you're	about	to	send.	Default	is	the
value	of	sendemail.annotate.	See	the	CONFIGURATION	section	for
sendemail.multiEdit.

--bcc=<address>,…

Specify	a	"Bcc:"	value	for	each	email.	Default	is	the	value	of
sendemail.bcc.

This	option	may	be	specified	multiple	times.

--cc=<address>,…

Specify	a	starting	"Cc:"	value	for	each	email.	Default	is	the	value	of
sendemail.cc.

This	option	may	be	specified	multiple	times.

--compose

Invoke	a	text	editor	(see	GIT_EDITOR	in	Section	G.3.142,	“git-
var(1)”)	to	edit	an	introductory	message	for	the	patch	series.

When	--compose	is	used,	git	send-email	will	use	the	From,	Subject,
and	In-Reply-To	headers	specified	in	the	message.	If	the	body	of	the
message	(what	you	type	after	the	headers	and	a	blank	line)	only
contains	blank	(or	Git:	prefixed)	lines,	the	summary	won't	be	sent,
but	From,	Subject,	and	In-Reply-To	headers	will	be	used	unless	they
are	removed.

Missing	From	or	In-Reply-To	headers	will	be	prompted	for.

See	the	CONFIGURATION	section	for	sendemail.multiEdit.

--from=<address>



Specify	the	sender	of	the	emails.	If	not	specified	on	the	command
line,	the	value	of	the	sendemail.from	configuration	option	is	used.	If
neither	the	command-line	option	nor	sendemail.from	are	set,	then
the	user	will	be	prompted	for	the	value.	The	default	for	the	prompt
will	be	the	value	of	GIT_AUTHOR_IDENT,	or
GIT_COMMITTER_IDENT	if	that	is	not	set,	as	returned	by	"git	var	-
l".

--in-reply-to=<identifier>

Make	the	first	mail	(or	all	the	mails	with	--no-thread)	appear	as	a
reply	to	the	given	Message-Id,	which	avoids	breaking	threads	to
provide	a	new	patch	series.	The	second	and	subsequent	emails	will
be	sent	as	replies	according	to	the	--[no]-chain-reply-to	setting.

So	for	example	when	--thread	and	--no-chain-reply-to	are	specified,
the	second	and	subsequent	patches	will	be	replies	to	the	first	one
like	in	the	illustration	below	where	[PATCH	v2	0/3]	is	in	reply	to
[PATCH	0/2]:

[PATCH	0/2]	Here	is	what	I	did...

		[PATCH	1/2]	Clean	up	and	tests

		[PATCH	2/2]	Implementation

		[PATCH	v2	0/3]	Here	is	a	reroll

				[PATCH	v2	1/3]	Clean	up

				[PATCH	v2	2/3]	New	tests

				[PATCH	v2	3/3]	Implementation

Only	necessary	if	--compose	is	also	set.	If	--compose	is	not	set,	this
will	be	prompted	for.

--subject=<string>
Specify	the	initial	subject	of	the	email	thread.	Only	necessary	if	--
compose	is	also	set.	If	--compose	is	not	set,	this	will	be	prompted	for.

--to=<address>,…

Specify	the	primary	recipient	of	the	emails	generated.	Generally,	this
will	be	the	upstream	maintainer	of	the	project	involved.	Default	is	the
value	of	the	sendemail.to	configuration	value;	if	that	is	unspecified,
and	--to-cmd	is	not	specified,	this	will	be	prompted	for.

This	option	may	be	specified	multiple	times.



--8bit-encoding=<encoding>

When	encountering	a	non-ASCII	message	or	subject	that	does	not
declare	its	encoding,	add	headers/quoting	to	indicate	it	is	encoded	in
<encoding>.	Default	is	the	value	of	the
sendemail.assume8bitEncoding;	if	that	is	unspecified,	this	will	be
prompted	for	if	any	non-ASCII	files	are	encountered.

Note	that	no	attempts	whatsoever	are	made	to	validate	the
encoding.

--compose-encoding=<encoding>
Specify	encoding	of	compose	message.	Default	is	the	value	of	the
sendemail.composeencoding;	if	that	is	unspecified,	UTF-8	is
assumed.

--transfer-encoding=(7bit|8bit|quoted-printable|base64)
Specify	the	transfer	encoding	to	be	used	to	send	the	message	over
SMTP.	7bit	will	fail	upon	encountering	a	non-ASCII	message.
quoted-printable	can	be	useful	when	the	repository	contains	files	that
contain	carriage	returns,	but	makes	the	raw	patch	email	file	(as
saved	from	a	MUA)	much	harder	to	inspect	manually.	base64	is
even	more	fool	proof,	but	also	even	more	opaque.	Default	is	the
value	of	the	sendemail.transferEncoding	configuration	value;	if	that	is
unspecified,	git	will	use	8bit	and	not	add	a	Content-Transfer-
Encoding	header.

--xmailer	,	--no-xmailer
Add	(or	prevent	adding)	the	"X-Mailer:"	header.	By	default,	the
header	is	added,	but	it	can	be	turned	off	by	setting	the
sendemail.xmailer	configuration	variable	to	false.



2.	Sending

--envelope-sender=<address>
Specify	the	envelope	sender	used	to	send	the	emails.	This	is	useful
if	your	default	address	is	not	the	address	that	is	subscribed	to	a	list.
In	order	to	use	the	From	address,	set	the	value	to	"auto".	If	you	use
the	sendmail	binary,	you	must	have	suitable	privileges	for	the	-f
parameter.	Default	is	the	value	of	the	sendemail.envelopeSender
configuration	variable;	if	that	is	unspecified,	choosing	the	envelope
sender	is	left	to	your	MTA.

--smtp-encryption=<encryption>
Specify	the	encryption	to	use,	either	ssl	or	tls.	Any	other	value
reverts	to	plain	SMTP.	Default	is	the	value	of
sendemail.smtpEncryption.

--smtp-domain=<FQDN>
Specifies	the	Fully	Qualified	Domain	Name	(FQDN)	used	in	the
HELO/EHLO	command	to	the	SMTP	server.	Some	servers	require
the	FQDN	to	match	your	IP	address.	If	not	set,	git	send-email
attempts	to	determine	your	FQDN	automatically.	Default	is	the	value
of	sendemail.smtpDomain.

--smtp-auth=<mechanisms>

Whitespace-separated	list	of	allowed	SMTP-AUTH	mechanisms.
This	setting	forces	using	only	the	listed	mechanisms.	Example:

$	git	send-email	--smtp-auth="PLAIN	LOGIN	GSSAPI"	...

If	at	least	one	of	the	specified	mechanisms	matches	the	ones
advertised	by	the	SMTP	server	and	if	it	is	supported	by	the	utilized
SASL	library,	the	mechanism	is	used	for	authentication.	If	neither
sendemail.smtpAuth	nor	--smtp-auth	is	specified,	all	mechanisms
supported	by	the	SASL	library	can	be	used.

--smtp-pass[=<password>]

Password	for	SMTP-AUTH.	The	argument	is	optional:	If	no	argument



is	specified,	then	the	empty	string	is	used	as	the	password.	Default
is	the	value	of	sendemail.smtpPass,	however	--smtp-pass	always
overrides	this	value.

Furthermore,	passwords	need	not	be	specified	in	configuration	files
or	on	the	command	line.	If	a	username	has	been	specified	(with	--
smtp-user	or	a	sendemail.smtpUser),	but	no	password	has	been
specified	(with	--smtp-pass	or	sendemail.smtpPass),	then	a
password	is	obtained	using	git-credential.

--smtp-server=<host>
If	set,	specifies	the	outgoing	SMTP	server	to	use	(e.g.
smtp.example.com	or	a	raw	IP	address).	Alternatively	it	can	specify
a	full	pathname	of	a	sendmail-like	program	instead;	the	program
must	support	the	-i	option.	Default	value	can	be	specified	by	the
sendemail.smtpServer	configuration	option;	the	built-in	default	is
/usr/sbin/sendmail	or	/usr/lib/sendmail	if	such	program	is	available,
or	localhost	otherwise.

--smtp-server-port=<port>
Specifies	a	port	different	from	the	default	port	(SMTP	servers
typically	listen	to	smtp	port	25,	but	may	also	listen	to	submission	port
587,	or	the	common	SSL	smtp	port	465);	symbolic	port	names	(e.g.
"submission"	instead	of	587)	are	also	accepted.	The	port	can	also	be
set	with	the	sendemail.smtpServerPort	configuration	variable.

--smtp-server-option=<option>

If	set,	specifies	the	outgoing	SMTP	server	option	to	use.	Default
value	can	be	specified	by	the	sendemail.smtpServerOption
configuration	option.

The	--smtp-server-option	option	must	be	repeated	for	each	option
you	want	to	pass	to	the	server.	Likewise,	different	lines	in	the
configuration	files	must	be	used	for	each	option.

--smtp-ssl
Legacy	alias	for	--smtp-encryption	ssl.

--smtp-ssl-cert-path
Path	to	a	store	of	trusted	CA	certificates	for	SMTP	SSL/TLS



certificate	validation	(either	a	directory	that	has	been	processed	by
c_rehash,	or	a	single	file	containing	one	or	more	PEM	format
certificates	concatenated	together:	see	verify(1)	-CAfile	and	-CApath
for	more	information	on	these).	Set	it	to	an	empty	string	to	disable
certificate	verification.	Defaults	to	the	value	of	the
sendemail.smtpsslcertpath	configuration	variable,	if	set,	or	the
backing	SSL	library's	compiled-in	default	otherwise	(which	should	be
the	best	choice	on	most	platforms).

--smtp-user=<user>
Username	for	SMTP-AUTH.	Default	is	the	value	of
sendemail.smtpUser;	if	a	username	is	not	specified	(with	--smtp-user
or	sendemail.smtpUser),	then	authentication	is	not	attempted.

--smtp-debug=0|1
Enable	(1)	or	disable	(0)	debug	output.	If	enabled,	SMTP	commands
and	replies	will	be	printed.	Useful	to	debug	TLS	connection	and
authentication	problems.



3.	Automating

--to-cmd=<command>
Specify	a	command	to	execute	once	per	patch	file	which	should
generate	patch	file	specific	"To:"	entries.	Output	of	this	command
must	be	single	email	address	per	line.	Default	is	the	value	of
sendemail.tocmd	configuration	value.

--cc-cmd=<command>
Specify	a	command	to	execute	once	per	patch	file	which	should
generate	patch	file	specific	"Cc:"	entries.	Output	of	this	command
must	be	single	email	address	per	line.	Default	is	the	value	of
sendemail.ccCmd	configuration	value.

--[no-]chain-reply-to
If	this	is	set,	each	email	will	be	sent	as	a	reply	to	the	previous	email
sent.	If	disabled	with	"--no-chain-reply-to",	all	emails	after	the	first	will
be	sent	as	replies	to	the	first	email	sent.	When	using	this,	it	is
recommended	that	the	first	file	given	be	an	overview	of	the	entire
patch	series.	Disabled	by	default,	but	the	sendemail.chainReplyTo
configuration	variable	can	be	used	to	enable	it.

--identity=<identity>
A	configuration	identity.	When	given,	causes	values	in	the
sendemail.<identity>	subsection	to	take	precedence	over	values	in
the	sendemail	section.	The	default	identity	is	the	value	of
sendemail.identity.

--[no-]signed-off-by-cc
If	this	is	set,	add	emails	found	in	Signed-off-by:	or	Cc:	lines	to	the	cc
list.	Default	is	the	value	of	sendemail.signedoffbycc	configuration
value;	if	that	is	unspecified,	default	to	--signed-off-by-cc.

--[no-]cc-cover
If	this	is	set,	emails	found	in	Cc:	headers	in	the	first	patch	of	the
series	(typically	the	cover	letter)	are	added	to	the	cc	list	for	each
email	set.	Default	is	the	value	of	sendemail.cccover	configuration
value;	if	that	is	unspecified,	default	to	--no-cc-cover.

--[no-]to-cover
If	this	is	set,	emails	found	in	To:	headers	in	the	first	patch	of	the
series	(typically	the	cover	letter)	are	added	to	the	to	list	for	each



email	set.	Default	is	the	value	of	sendemail.tocover	configuration
value;	if	that	is	unspecified,	default	to	--no-to-cover.

--suppress-cc=<category>

Specify	an	additional	category	of	recipients	to	suppress	the	auto-cc
of:

author	will	avoid	including	the	patch	author
self	will	avoid	including	the	sender
cc	will	avoid	including	anyone	mentioned	in	Cc	lines	in	the	patch
header	except	for	self	(use	self	for	that).
bodycc	will	avoid	including	anyone	mentioned	in	Cc	lines	in	the
patch	body	(commit	message)	except	for	self	(use	self	for	that).
sob	will	avoid	including	anyone	mentioned	in	Signed-off-by	lines
except	for	self	(use	self	for	that).
cccmd	will	avoid	running	the	--cc-cmd.
body	is	equivalent	to	sob	+	bodycc
all	will	suppress	all	auto	cc	values.

Default	is	the	value	of	sendemail.suppresscc	configuration	value;	if
that	is	unspecified,	default	to	self	if	--suppress-from	is	specified,	as
well	as	body	if	--no-signed-off-cc	is	specified.

--[no-]suppress-from
If	this	is	set,	do	not	add	the	From:	address	to	the	cc:	list.	Default	is
the	value	of	sendemail.suppressFrom	configuration	value;	if	that	is
unspecified,	default	to	--no-suppress-from.

--[no-]thread

If	this	is	set,	the	In-Reply-To	and	References	headers	will	be	added
to	each	email	sent.	Whether	each	mail	refers	to	the	previous	email
(deep	threading	per	git	format-patch	wording)	or	to	the	first	email
(shallow	threading)	is	governed	by	"--[no-]chain-reply-to".

If	disabled	with	"--no-thread",	those	headers	will	not	be	added
(unless	specified	with	--in-reply-to).	Default	is	the	value	of	the
sendemail.thread	configuration	value;	if	that	is	unspecified,	default	to
--thread.



It	is	up	to	the	user	to	ensure	that	no	In-Reply-To	header	already
exists	when	git	send-email	is	asked	to	add	it	(especially	note	that	git
format-patch	can	be	configured	to	do	the	threading	itself).	Failure	to
do	so	may	not	produce	the	expected	result	in	the	recipient's	MUA.



4.	Administering

--confirm=<mode>

Confirm	just	before	sending:

always	will	always	confirm	before	sending
never	will	never	confirm	before	sending
cc	will	confirm	before	sending	when	send-email	has
automatically	added	addresses	from	the	patch	to	the	Cc	list
compose	will	confirm	before	sending	the	first	message	when
using	--compose.
auto	is	equivalent	to	cc	+	compose

Default	is	the	value	of	sendemail.confirm	configuration	value;	if	that
is	unspecified,	default	to	auto	unless	any	of	the	suppress	options
have	been	specified,	in	which	case	default	to	compose.

--dry-run
Do	everything	except	actually	send	the	emails.

--[no-]format-patch
When	an	argument	may	be	understood	either	as	a	reference	or	as	a
file	name,	choose	to	understand	it	as	a	format-patch	argument	(--
format-patch)	or	as	a	file	name	(--no-format-patch).	By	default,	when
such	a	conflict	occurs,	git	send-email	will	fail.

--quiet
Make	git-send-email	less	verbose.	One	line	per	email	should	be	all
that	is	output.

--[no-]validate

Perform	sanity	checks	on	patches.	Currently,	validation	means	the
following:

Warn	of	patches	that	contain	lines	longer	than	998	characters;
this	is	due	to	SMTP	limits	as	described	by
http://www.ietf.org/rfc/rfc2821.txt.

http://www.ietf.org/rfc/rfc2821.txt


Default	is	the	value	of	sendemail.validate;	if	this	is	not	set,	default	to
--validate.

--force
Send	emails	even	if	safety	checks	would	prevent	it.



5.	Information

--dump-aliases
Instead	of	the	normal	operation,	dump	the	shorthand	alias	names
from	the	configured	alias	file(s),	one	per	line	in	alphabetical	order.
Note,	this	only	includes	the	alias	name	and	not	its	expanded	email
addresses.	See	sendemail.aliasesfile	for	more	information	about
aliases.

CONFIGURATION

sendemail.aliasesFile
To	avoid	typing	long	email	addresses,	point	this	to	one	or	more	email
aliases	files.	You	must	also	supply	sendemail.aliasFileType.

sendemail.aliasFileType

Format	of	the	file(s)	specified	in	sendemail.aliasesFile.	Must	be	one
of	mutt,	mailrc,	pine,	elm,	or	gnus,	or	sendmail.

What	an	alias	file	in	each	format	looks	like	can	be	found	in	the
documentation	of	the	email	program	of	the	same	name.	The
differences	and	limitations	from	the	standard	formats	are	described
below:

sendmail
Quoted	aliases	and	quoted	addresses	are	not	supported:
lines	that	contain	a	"	symbol	are	ignored.
Redirection	to	a	file	(/path/name)	or	pipe	(|command)	is	not
supported.
File	inclusion	(:include:	/path/name)	is	not	supported.
Warnings	are	printed	on	the	standard	error	output	for	any
explicitly	unsupported	constructs,	and	any	other	lines	that
are	not	recognized	by	the	parser.

sendemail.multiEdit
If	true	(default),	a	single	editor	instance	will	be	spawned	to	edit	files
you	have	to	edit	(patches	when	--annotate	is	used,	and	the	summary



when	--compose	is	used).	If	false,	files	will	be	edited	one	after	the
other,	spawning	a	new	editor	each	time.

sendemail.confirm
Sets	the	default	for	whether	to	confirm	before	sending.	Must	be	one
of	always,	never,	cc,	compose,	or	auto.	See	--confirm	in	the	previous
section	for	the	meaning	of	these	values.

EXAMPLE



1.	Use	gmail	as	the	smtp	server

To	use	git	send-email	to	send	your	patches	through	the	GMail	SMTP
server,	edit	~/.gitconfig	to	specify	your	account	settings:

[sendemail]

								smtpEncryption	=	tls

								smtpServer	=	smtp.gmail.com

								smtpUser	=	yourname@gmail.com

								smtpServerPort	=	587

Once	your	commits	are	ready	to	be	sent	to	the	mailing	list,	run	the
following	commands:

$	git	format-patch	--cover-letter	-M	origin/master	-o	outgoing/

$	edit	outgoing/0000-*

$	git	send-email	outgoing/*

Note:	the	following	perl	modules	are	required	Net::SMTP::SSL,
MIME::Base64	and	Authen::SASL

SEE	ALSO

Section	G.3.50,	“git-format-patch(1)”,	Section	G.3.62,	“git-imap-send(1)”,
mbox(5)

GIT

Part	of	the	Section	G.3.1,	“git(1)”	suite

G.3.117.	git-send-pack(1)

NAME

git-send-pack	-	Push	objects	over	Git	protocol	to	another	repository

SYNOPSIS

git	send-pack	[--all]	[--dry-run]	[--force]	[--receive-pack=



<git-receive-pack>]

																[--verbose]	[--thin]	[--atomic]

																[--[no-]signed|--sign=(true|false|if-asked)]

																[<host>:]<directory>	[<ref>…]

DESCRIPTION

Usually	you	would	want	to	use	git	push,	which	is	a	higher-level	wrapper
of	this	command,	instead.	See	Section	G.3.96,	“git-push(1)”.

Invokes	git-receive-pack	on	a	possibly	remote	repository,	and	updates	it
from	the	current	repository,	sending	named	refs.

OPTIONS

--receive-pack=<git-receive-pack>
Path	to	the	git-receive-pack	program	on	the	remote	end.	Sometimes
useful	when	pushing	to	a	remote	repository	over	ssh,	and	you	do	not
have	the	program	in	a	directory	on	the	default	$PATH.

--exec=<git-receive-pack>
Same	as	--receive-pack=<git-receive-pack>.

--all
Instead	of	explicitly	specifying	which	refs	to	update,	update	all	heads
that	locally	exist.

--stdin

Take	the	list	of	refs	from	stdin,	one	per	line.	If	there	are	refs	specified
on	the	command	line	in	addition	to	this	option,	then	the	refs	from
stdin	are	processed	after	those	on	the	command	line.

If	--stateless-rpc	is	specified	together	with	this	option	then	the	list	of
refs	must	be	in	packet	format	(pkt-line).	Each	ref	must	be	in	a
separate	packet,	and	the	list	must	end	with	a	flush	packet.

--dry-run
Do	everything	except	actually	send	the	updates.

--force
Usually,	the	command	refuses	to	update	a	remote	ref	that	is	not	an



ancestor	of	the	local	ref	used	to	overwrite	it.	This	flag	disables	the
check.	What	this	means	is	that	the	remote	repository	can	lose
commits;	use	it	with	care.

--verbose
Run	verbosely.

--thin
Send	a	"thin"	pack,	which	records	objects	in	deltified	form	based	on
objects	not	included	in	the	pack	to	reduce	network	traffic.

--atomic
Use	an	atomic	transaction	for	updating	the	refs.	If	any	of	the	refs	fails
to	update	then	the	entire	push	will	fail	without	changing	any	refs.

--[no-]signed	,	--sign=(true|false|if-asked)
GPG-sign	the	push	request	to	update	refs	on	the	receiving	side,	to
allow	it	to	be	checked	by	the	hooks	and/or	be	logged.	If	false	or	--no-
signed,	no	signing	will	be	attempted.	If	true	or	--signed,	the	push	will
fail	if	the	server	does	not	support	signed	pushes.	If	set	to	if-asked,
sign	if	and	only	if	the	server	supports	signed	pushes.	The	push	will
also	fail	if	the	actual	call	to	gpg	--sign	fails.	See	Section	G.3.100,	“git-
receive-pack(1)”	for	the	details	on	the	receiving	end.

<host>
A	remote	host	to	house	the	repository.	When	this	part	is	specified,
git-receive-pack	is	invoked	via	ssh.

<directory>
The	repository	to	update.

<ref>…
The	remote	refs	to	update.

Specifying	the	Refs

There	are	three	ways	to	specify	which	refs	to	update	on	the	remote	end.

With	--all	flag,	all	refs	that	exist	locally	are	transferred	to	the	remote	side.
You	cannot	specify	any	<ref>	if	you	use	this	flag.

Without	--all	and	without	any	<ref>,	the	heads	that	exist	both	on	the	local
side	and	on	the	remote	side	are	updated.



When	one	or	more	<ref>	are	specified	explicitly	(whether	on	the
command	line	or	via	--stdin),	it	can	be	either	a	single	pattern,	or	a	pair	of
such	pattern	separated	by	a	colon	":"	(this	means	that	a	ref	name	cannot
have	a	colon	in	it).	A	single	pattern	<name>	is	just	a	shorthand	for
<name>:<name>.

Each	pattern	pair	consists	of	the	source	side	(before	the	colon)	and	the
destination	side	(after	the	colon).	The	ref	to	be	pushed	is	determined	by
finding	a	match	that	matches	the	source	side,	and	where	it	is	pushed	is
determined	by	using	the	destination	side.	The	rules	used	to	match	a	ref
are	the	same	rules	used	by	git	rev-parse	to	resolve	a	symbolic	ref	name.
See	Section	G.3.113,	“git-rev-parse(1)”.

It	is	an	error	if	<src>	does	not	match	exactly	one	of	the	local	refs.
It	is	an	error	if	<dst>	matches	more	than	one	remote	refs.

If	<dst>	does	not	match	any	remote	ref,	either

it	has	to	start	with	"refs/";	<dst>	is	used	as	the	destination
literally	in	this	case.
<src>	==	<dst>	and	the	ref	that	matched	the	<src>	must	not
exist	in	the	set	of	remote	refs;	the	ref	matched	<src>	locally	is
used	as	the	name	of	the	destination.

Without	--force,	the	<src>	ref	is	stored	at	the	remote	only	if	<dst>	does
not	exist,	or	<dst>	is	a	proper	subset	(i.e.	an	ancestor)	of	<src>.	This
check,	known	as	"fast-forward	check",	is	performed	in	order	to	avoid
accidentally	overwriting	the	remote	ref	and	lose	other	peoples'	commits
from	there.

With	--force,	the	fast-forward	check	is	disabled	for	all	refs.

Optionally,	a	<ref>	parameter	can	be	prefixed	with	a	plus	+	sign	to
disable	the	fast-forward	check	only	on	that	ref.

GIT

Part	of	the	Section	G.3.1,	“git(1)”	suite



G.3.118.	git-sh-i18n--envsubst(1)

NAME

git-sh-i18n--envsubst	-	Git's	own	envsubst(1)	for	i18n	fallbacks

SYNOPSIS

eval_gettext	()	{

								printf	"%s"	"$1"	|	(

																export	PATH	$(git	sh-i18n--envsubst	--

variables	"$1");

																git	sh-i18n--envsubst	"$1"

								)

}

DESCRIPTION

This	is	not	a	command	the	end	user	would	want	to	run.	Ever.	This
documentation	is	meant	for	people	who	are	studying	the	plumbing	scripts
and/or	are	writing	new	ones.

git	sh-i18n--envsubst	is	Git's	stripped-down	copy	of	the	GNU	envsubst(1)
program	that	comes	with	the	GNU	gettext	package.	It's	used	internally	by
Section	G.3.119,	“git-sh-i18n(1)”	to	interpolate	the	variables	passed	to	the
eval_gettext	function.

No	promises	are	made	about	the	interface,	or	that	this	program	won't
disappear	without	warning	in	the	next	version	of	Git.	Don't	use	it.

GIT

Part	of	the	Section	G.3.1,	“git(1)”	suite

G.3.119.	git-sh-i18n(1)

NAME



git-sh-i18n	-	Git's	i18n	setup	code	for	shell	scripts

SYNOPSIS

.	"$(git	--exec-path)/git-sh-i18n"

DESCRIPTION

This	is	not	a	command	the	end	user	would	want	to	run.	Ever.	This
documentation	is	meant	for	people	who	are	studying	the	Porcelain-ish
scripts	and/or	are	writing	new	ones.

The	'git	sh-i18n	scriptlet	is	designed	to	be	sourced	(using	.)	by	Git's
porcelain	programs	implemented	in	shell	script.	It	provides	wrappers	for
the	GNU	gettext	and	eval_gettext	functions	accessible	through	the
gettext.sh	script,	and	provides	pass-through	fallbacks	on	systems	without
GNU	gettext.

FUNCTIONS

gettext
Currently	a	dummy	fall-through	function	implemented	as	a	wrapper
around	printf(1).	Will	be	replaced	by	a	real	gettext	implementation	in
a	later	version.

eval_gettext
Currently	a	dummy	fall-through	function	implemented	as	a	wrapper
around	printf(1)	with	variables	expanded	by	the	Section	G.3.118,	“git-
sh-i18n--envsubst(1)”	helper.	Will	be	replaced	by	a	real	gettext
implementation	in	a	later	version.

GIT

Part	of	the	Section	G.3.1,	“git(1)”	suite

G.3.120.	git-sh-setup(1)



NAME

git-sh-setup	-	Common	Git	shell	script	setup	code

SYNOPSIS

.	"$(git	--exec-path)/git-sh-setup"

DESCRIPTION

This	is	not	a	command	the	end	user	would	want	to	run.	Ever.	This
documentation	is	meant	for	people	who	are	studying	the	Porcelain-ish
scripts	and/or	are	writing	new	ones.

The	git	sh-setup	scriptlet	is	designed	to	be	sourced	(using	.)	by	other
shell	scripts	to	set	up	some	variables	pointing	at	the	normal	Git
directories	and	a	few	helper	shell	functions.

Before	sourcing	it,	your	script	should	set	up	a	few	variables;	USAGE	(and
LONG_USAGE,	if	any)	is	used	to	define	message	given	by	usage()	shell
function.	SUBDIRECTORY_OK	can	be	set	if	the	script	can	run	from	a
subdirectory	of	the	working	tree	(some	commands	do	not).

The	scriptlet	sets	GIT_DIR	and	GIT_OBJECT_DIRECTORY	shell
variables,	but	does	not	export	them	to	the	environment.

FUNCTIONS

die
exit	after	emitting	the	supplied	error	message	to	the	standard	error
stream.

usage
die	with	the	usage	message.

set_reflog_action
Set	GIT_REFLOG_ACTION	environment	to	a	given	string	(typically
the	name	of	the	program)	unless	it	is	already	set.	Whenever	the



script	runs	a	git	command	that	updates	refs,	a	reflog	entry	is	created
using	the	value	of	this	string	to	leave	the	record	of	what	command
updated	the	ref.

git_editor
runs	an	editor	of	user's	choice	(GIT_EDITOR,	core.editor,	VISUAL	or
EDITOR)	on	a	given	file,	but	error	out	if	no	editor	is	specified	and	the
terminal	is	dumb.

is_bare_repository
outputs	true	or	false	to	the	standard	output	stream	to	indicate	if	the
repository	is	a	bare	repository	(i.e.	without	an	associated	working
tree).

cd_to_toplevel
runs	chdir	to	the	toplevel	of	the	working	tree.

require_work_tree
checks	if	the	current	directory	is	within	the	working	tree	of	the
repository,	and	otherwise	dies.

require_work_tree_exists
checks	if	the	working	tree	associated	with	the	repository	exists,	and
otherwise	dies.	Often	done	before	calling	cd_to_toplevel,	which	is
impossible	to	do	if	there	is	no	working	tree.

require_clean_work_tree	<action>	[<hint>]

checks	that	the	working	tree	and	index	associated	with	the	repository
have	no	uncommitted	changes	to	tracked	files.	Otherwise	it	emits	an
error	message	of	the	form	Cannot	<action>:	<reason>.	<hint>,	and
dies.	Example:

require_clean_work_tree	rebase	"Please	commit	or	stash	them."

get_author_ident_from_commit
outputs	code	for	use	with	eval	to	set	the	GIT_AUTHOR_NAME,
GIT_AUTHOR_EMAIL	and	GIT_AUTHOR_DATE	variables	for	a
given	commit.

create_virtual_base
modifies	the	first	file	so	only	lines	in	common	with	the	second	file
remain.	If	there	is	insufficient	common	material,	then	the	first	file	is
left	empty.	The	result	is	suitable	as	a	virtual	base	input	for	a	3-way



merge.

GIT

Part	of	the	Section	G.3.1,	“git(1)”	suite

G.3.121.	git-shell(1)

NAME

git-shell	-	Restricted	login	shell	for	Git-only	SSH	access

SYNOPSIS

chsh	-s	$(command	-v	git-shell)	<user>

git	clone	<user>@localhost:/path/to/repo.git

ssh	<user>@localhost

DESCRIPTION

This	is	a	login	shell	for	SSH	accounts	to	provide	restricted	Git	access.	It
permits	execution	only	of	server-side	Git	commands	implementing	the
pull/push	functionality,	plus	custom	commands	present	in	a	subdirectory
named	git-shell-commands	in	the	user's	home	directory.

COMMANDS

git	shell	accepts	the	following	commands	after	the	-c	option:

git	receive-pack	<argument>	,	git	upload-pack	<argument>	,	git	upload-
archive	<argument>

Call	the	corresponding	server-side	command	to	support	the	client's
git	push,	git	fetch,	or	git	archive	--remote	request.

cvs	server
Imitate	a	CVS	server.	See	Section	G.3.35,	“git-cvsserver(1)”.



If	a	~/git-shell-commands	directory	is	present,	git	shell	will	also	handle
other,	custom	commands	by	running	"git-shell-commands/<command>
<arguments>"	from	the	user's	home	directory.

INTERACTIVE	USE

By	default,	the	commands	above	can	be	executed	only	with	the	-c	option;
the	shell	is	not	interactive.

If	a	~/git-shell-commands	directory	is	present,	git	shell	can	also	be	run
interactively	(with	no	arguments).	If	a	help	command	is	present	in	the	git-
shell-commands	directory,	it	is	run	to	provide	the	user	with	an	overview	of
allowed	actions.	Then	a	"git>	"	prompt	is	presented	at	which	one	can
enter	any	of	the	commands	from	the	git-shell-commands	directory,	or	exit
to	close	the	connection.

Generally	this	mode	is	used	as	an	administrative	interface	to	allow	users
to	list	repositories	they	have	access	to,	create,	delete,	or	rename
repositories,	or	change	repository	descriptions	and	permissions.

If	a	no-interactive-login	command	exists,	then	it	is	run	and	the	interactive
shell	is	aborted.

EXAMPLE

To	disable	interactive	logins,	displaying	a	greeting	instead:

$	chsh	-s	/usr/bin/git-shell

$	mkdir	$HOME/git-shell-commands

$	cat	>$HOME/git-shell-commands/no-interactive-login	<<\EOF

#!/bin/sh

printf	'%s\n'	"Hi	$USER!	You've	successfully	authenticated,	but	I	do	not"

printf	'%s\n'	"provide	interactive	shell	access."

exit	128

EOF

$	chmod	+x	$HOME/git-shell-commands/no-interactive-login



SEE	ALSO

ssh(1),	Section	G.3.36,	“git-daemon(1)”,	contrib/git-shell-
commands/README

GIT

Part	of	the	Section	G.3.1,	“git(1)”	suite

G.3.122.	git-shortlog(1)

NAME

git-shortlog	-	Summarize	git	log	output

SYNOPSIS

git	log	--pretty=short	|	git	shortlog	[<options>]

git	shortlog	[<options>]	[<revision	range>]	[[--]	<path>…]

DESCRIPTION

Summarizes	git	log	output	in	a	format	suitable	for	inclusion	in	release
announcements.	Each	commit	will	be	grouped	by	author	and	title.

Additionally,	"[PATCH]"	will	be	stripped	from	the	commit	description.

If	no	revisions	are	passed	on	the	command	line	and	either	standard	input
is	not	a	terminal	or	there	is	no	current	branch,	git	shortlog	will	output	a
summary	of	the	log	read	from	standard	input,	without	reference	to	the
current	repository.

OPTIONS

-n	,	--numbered
Sort	output	according	to	the	number	of	commits	per	author	instead	of



author	alphabetic	order.
-s	,	--summary

Suppress	commit	description	and	provide	a	commit	count	summary
only.

-e	,	--email
Show	the	email	address	of	each	author.

--format[=<format>]

Instead	of	the	commit	subject,	use	some	other	information	to
describe	each	commit.	<format>	can	be	any	string	accepted	by	the	--
format	option	of	git	log,	such	as	*	[%h]	%s.	(See	the	"PRETTY
FORMATS"	section	of	Section	G.3.68,	“git-log(1)”.)

Each	pretty-printed	commit	will	be	rewrapped	before	it	is	shown.

-w[<width>[,<indent1>[,<indent2>]]]

Linewrap	the	output	by	wrapping	each	line	at	width.	The	first	line	of
each	entry	is	indented	by	indent1	spaces,	and	the	second	and
subsequent	lines	are	indented	by	indent2	spaces.	width,	indent1,
and	indent2	default	to	76,	6	and	9	respectively.

If	width	is	0	(zero)	then	indent	the	lines	of	the	output	without
wrapping	them.

<revision	range>
Show	only	commits	in	the	specified	revision	range.	When	no
<revision	range>	is	specified,	it	defaults	to	HEAD	(i.e.	the	whole
history	leading	to	the	current	commit).	origin..HEAD	specifies	all	the
commits	reachable	from	the	current	commit	(i.e.	HEAD),	but	not	from
origin.	For	a	complete	list	of	ways	to	spell	<revision	range>,	see	the
"Specifying	Ranges"	section	of	Section	G.4.12,	“gitrevisions(7)”.

[--]	<path>…

Consider	only	commits	that	are	enough	to	explain	how	the	files	that
match	the	specified	paths	came	to	be.

Paths	may	need	to	be	prefixed	with	"--	"	to	separate	them	from
options	or	the	revision	range,	when	confusion	arises.



MAPPING	AUTHORS

The	.mailmap	feature	is	used	to	coalesce	together	commits	by	the	same
person	in	the	shortlog,	where	their	name	and/or	email	address	was
spelled	differently.

If	the	file	.mailmap	exists	at	the	toplevel	of	the	repository,	or	at	the
location	pointed	to	by	the	mailmap.file	or	mailmap.blob	configuration
options,	it	is	used	to	map	author	and	committer	names	and	email
addresses	to	canonical	real	names	and	email	addresses.

In	the	simple	form,	each	line	in	the	file	consists	of	the	canonical	real
name	of	an	author,	whitespace,	and	an	email	address	used	in	the	commit
(enclosed	by	<	and	>)	to	map	to	the	name.	For	example:

Proper	Name	<commit@email.xx>

The	more	complex	forms	are:

<proper@email.xx>	<commit@email.xx>

which	allows	mailmap	to	replace	only	the	email	part	of	a	commit,	and:

Proper	Name	<proper@email.xx>	<commit@email.xx>

which	allows	mailmap	to	replace	both	the	name	and	the	email	of	a
commit	matching	the	specified	commit	email	address,	and:

Proper	Name	<proper@email.xx>	Commit	Name	<commit@email.xx>

which	allows	mailmap	to	replace	both	the	name	and	the	email	of	a
commit	matching	both	the	specified	commit	name	and	email	address.

Example	1:	Your	history	contains	commits	by	two	authors,	Jane	and	Joe,
whose	names	appear	in	the	repository	under	several	forms:

Joe	Developer	<joe@example.com>

Joe	R.	Developer	<joe@example.com>

Jane	Doe	<jane@example.com>

Jane	Doe	<jane@laptop.(none)>

Jane	D.	<jane@desktop.(none)>



Now	suppose	that	Joe	wants	his	middle	name	initial	used,	and	Jane
prefers	her	family	name	fully	spelled	out.	A	proper	.mailmap	file	would
look	like:

Jane	Doe									<jane@desktop.(none)>

Joe	R.	Developer	<joe@example.com>

Note	how	there	is	no	need	for	an	entry	for	<jane@laptop.(none)>,
because	the	real	name	of	that	author	is	already	correct.

Example	2:	Your	repository	contains	commits	from	the	following	authors:

nick1	<bugs@company.xx>

nick2	<bugs@company.xx>

nick2	<nick2@company.xx>

santa	<me@company.xx>

claus	<me@company.xx>

CTO	<cto@coompany.xx>

Then	you	might	want	a	.mailmap	file	that	looks	like:

<cto@company.xx>																							<cto@coompany.xx>

Some	Dude	<some@dude.xx>									nick1	<bugs@company.xx>

Other	Author	<other@author.xx>			nick2	<bugs@company.xx>

Other	Author	<other@author.xx>									<nick2@company.xx>

Santa	Claus	<santa.claus@northpole.xx>	<me@company.xx>

Use	hash	#	for	comments	that	are	either	on	their	own	line,	or	after	the
email	address.

GIT

Part	of	the	Section	G.3.1,	“git(1)”	suite

G.3.123.	git-show-branch(1)

NAME



git-show-branch	-	Show	branches	and	their	commits

SYNOPSIS

git	show-branch	[-a|--all]	[-r|--remotes]	[--topo-order	|	--

date-order]

																[--current]	[--color[=<when>]	|	--no-

color]	[--sparse]

																[--more=<n>	|	--list	|	--independent	|	--

merge-base]

																[--no-name	|	--sha1-name]	[--topics]

																[(<rev>	|	<glob>)…]

git	show-branch	(-g|--reflog)[=<n>[,<base>]]	[--list]	[<ref>]

DESCRIPTION

Shows	the	commit	ancestry	graph	starting	from	the	commits	named	with
<rev>s	or	<globs>s	(or	all	refs	under	refs/heads	and/or	refs/tags)	semi-
visually.

It	cannot	show	more	than	29	branches	and	commits	at	a	time.

It	uses	showbranch.default	multi-valued	configuration	items	if	no	<rev>	or
<glob>	is	given	on	the	command	line.

OPTIONS

<rev>
Arbitrary	extended	SHA-1	expression	(see	Section	G.4.12,
“gitrevisions(7)”)	that	typically	names	a	branch	head	or	a	tag.

<glob>
A	glob	pattern	that	matches	branch	or	tag	names	under	refs/.	For
example,	if	you	have	many	topic	branches	under	refs/heads/topic,
giving	topic/*	would	show	all	of	them.

-r	,	--remotes
Show	the	remote-tracking	branches.

-a	,	--all
Show	both	remote-tracking	branches	and	local	branches.



--current
With	this	option,	the	command	includes	the	current	branch	to	the	list
of	revs	to	be	shown	when	it	is	not	given	on	the	command	line.

--topo-order
By	default,	the	branches	and	their	commits	are	shown	in	reverse
chronological	order.	This	option	makes	them	appear	in	topological
order	(i.e.,	descendant	commits	are	shown	before	their	parents).

--date-order
This	option	is	similar	to	--topo-order	in	the	sense	that	no	parent
comes	before	all	of	its	children,	but	otherwise	commits	are	ordered
according	to	their	commit	date.

--sparse
By	default,	the	output	omits	merges	that	are	reachable	from	only	one
tip	being	shown.	This	option	makes	them	visible.

--more=<n>
Usually	the	command	stops	output	upon	showing	the	commit	that	is
the	common	ancestor	of	all	the	branches.	This	flag	tells	the
command	to	go	<n>	more	common	commits	beyond	that.	When	<n>
is	negative,	display	only	the	<reference>s	given,	without	showing	the
commit	ancestry	tree.

--list
Synonym	to	--more=-1

--merge-base
Instead	of	showing	the	commit	list,	determine	possible	merge	bases
for	the	specified	commits.	All	merge	bases	will	be	contained	in	all
specified	commits.	This	is	different	from	how	Section	G.3.74,	“git-
merge-base(1)”	handles	the	case	of	three	or	more	commits.

--independent
Among	the	<reference>s	given,	display	only	the	ones	that	cannot	be
reached	from	any	other	<reference>.

--no-name
Do	not	show	naming	strings	for	each	commit.

--sha1-name
Instead	of	naming	the	commits	using	the	path	to	reach	them	from
heads	(e.g.	"master~2"	to	mean	the	grandparent	of	"master"),	name
them	with	the	unique	prefix	of	their	object	names.

--topics



Shows	only	commits	that	are	NOT	on	the	first	branch	given.	This
helps	track	topic	branches	by	hiding	any	commit	that	is	already	in	the
main	line	of	development.	When	given	"git	show-branch	--topics
master	topic1	topic2",	this	will	show	the	revisions	given	by	"git	rev-list
^master	topic1	topic2"

-g	,	--reflog[=<n>[,<base>]]	[<ref>]
Shows	<n>	most	recent	ref-log	entries	for	the	given	ref.	If	<base>	is
given,	<n>	entries	going	back	from	that	entry.	<base>	can	be
specified	as	count	or	date.	When	no	explicit	<ref>	parameter	is
given,	it	defaults	to	the	current	branch	(or	HEAD	if	it	is	detached).

--color[=<when>]
Color	the	status	sign	(one	of	these:	*	!	+	-)	of	each	commit
corresponding	to	the	branch	it's	in.	The	value	must	be	always	(the
default),	never,	or	auto.

--no-color
Turn	off	colored	output,	even	when	the	configuration	file	gives	the
default	to	color	output.	Same	as	--color=never.

Note	that	--more,	--list,	--independent	and	--merge-base	options	are
mutually	exclusive.

OUTPUT

Given	N	<references>,	the	first	N	lines	are	the	one-line	description	from
their	commit	message.	The	branch	head	that	is	pointed	at	by
$GIT_DIR/HEAD	is	prefixed	with	an	asterisk	*	character	while	other
heads	are	prefixed	with	a	!	character.

Following	these	N	lines,	one-line	log	for	each	commit	is	displayed,
indented	N	places.	If	a	commit	is	on	the	I-th	branch,	the	I-th	indentation
character	shows	a	+	sign;	otherwise	it	shows	a	space.	Merge	commits
are	denoted	by	a	-	sign.	Each	commit	shows	a	short	name	that	can	be
used	as	an	extended	SHA-1	to	name	that	commit.

The	following	example	shows	three	branches,	"master",	"fixes"	and
"mhf":



$	git	show-branch	master	fixes	mhf

*	[master]	Add	'git	show-branch'.

	!	[fixes]	Introduce	"reset	type"	flag	to	"git	reset"

		!	[mhf]	Allow	"+remote:local"	refspec	to	cause	--force	when	fetching.

---

		+	[mhf]	Allow	"+remote:local"	refspec	to	cause	--force	when	fetching.

		+	[mhf~1]	Use	git-octopus	when	pulling	more	than	one	heads.

	+		[fixes]	Introduce	"reset	type"	flag	to	"git	reset"

		+	[mhf~2]	"git	fetch	--force".

		+	[mhf~3]	Use	.git/remote/origin,	not	.git/branches/origin.

		+	[mhf~4]	Make	"git	pull"	and	"git	fetch"	default	to	origin

		+	[mhf~5]	Infamous	'octopus	merge'

		+	[mhf~6]	Retire	git-parse-remote.

		+	[mhf~7]	Multi-head	fetch.

		+	[mhf~8]	Start	adding	the	$GIT_DIR/remotes/	support.

*++	[master]	Add	'git	show-branch'.

These	three	branches	all	forked	from	a	common	commit,	[master],	whose
commit	message	is	"Add	'git	show-branch'".	The	"fixes"	branch	adds	one
commit	"Introduce	"reset	type"	flag	to	"git	reset"".	The	"mhf"	branch	adds
many	other	commits.	The	current	branch	is	"master".

EXAMPLE

If	you	keep	your	primary	branches	immediately	under	refs/heads,	and
topic	branches	in	subdirectories	of	it,	having	the	following	in	the
configuration	file	may	help:

[showbranch]

								default	=	--topo-order

								default	=	heads/*

With	this,	git	show-branch	without	extra	parameters	would	show	only	the
primary	branches.	In	addition,	if	you	happen	to	be	on	your	topic	branch,	it
is	shown	as	well.

$	git	show-branch	--reflog="10,1	hour	ago"	--list	master



shows	10	reflog	entries	going	back	from	the	tip	as	of	1	hour	ago.	Without
--list,	the	output	also	shows	how	these	tips	are	topologically	related	with
each	other.

GIT

Part	of	the	Section	G.3.1,	“git(1)”	suite

G.3.124.	git-show-index(1)

NAME

git-show-index	-	Show	packed	archive	index

SYNOPSIS

git	show-index

DESCRIPTION

Read	the	idx	file	for	a	Git	packfile	created	with	git	pack-objects	command
from	the	standard	input,	and	dump	its	contents.

The	information	it	outputs	is	subset	of	what	you	can	get	from	git	verify-
pack	-v;	this	command	only	shows	the	packfile	offset	and	SHA-1	of	each
object.

GIT

Part	of	the	Section	G.3.1,	“git(1)”	suite

G.3.125.	git-show-ref(1)

NAME



git-show-ref	-	List	references	in	a	local	repository

SYNOPSIS

git	show-ref	[-q|--quiet]	[--verify]	[--head]	[-d|--

dereference]

													[-s|--hash[=<n>]]	[--abbrev[=<n>]]	[--tags]

													[--heads]	[--]	[<pattern>…]

git	show-ref	--exclude-existing[=<pattern>]

DESCRIPTION

Displays	references	available	in	a	local	repository	along	with	the
associated	commit	IDs.	Results	can	be	filtered	using	a	pattern	and	tags
can	be	dereferenced	into	object	IDs.	Additionally,	it	can	be	used	to	test
whether	a	particular	ref	exists.

By	default,	shows	the	tags,	heads,	and	remote	refs.

The	--exclude-existing	form	is	a	filter	that	does	the	inverse.	It	reads	refs
from	stdin,	one	ref	per	line,	and	shows	those	that	don't	exist	in	the	local
repository.

Use	of	this	utility	is	encouraged	in	favor	of	directly	accessing	files	under
the	.git	directory.

OPTIONS

--head
Show	the	HEAD	reference,	even	if	it	would	normally	be	filtered	out.

--tags	,	--heads
Limit	to	"refs/heads"	and	"refs/tags",	respectively.	These	options	are
not	mutually	exclusive;	when	given	both,	references	stored	in
"refs/heads"	and	"refs/tags"	are	displayed.

-d	,	--dereference
Dereference	tags	into	object	IDs	as	well.	They	will	be	shown	with
"^{}"	appended.



-s	,	--hash[=<n>]
Only	show	the	SHA-1	hash,	not	the	reference	name.	When
combined	with	--dereference	the	dereferenced	tag	will	still	be	shown
after	the	SHA-1.

--verify
Enable	stricter	reference	checking	by	requiring	an	exact	ref	path.
Aside	from	returning	an	error	code	of	1,	it	will	also	print	an	error
message	if	--quiet	was	not	specified.

--abbrev[=<n>]
Abbreviate	the	object	name.	When	using	--hash,	you	do	not	have	to
say	--hash	--abbrev;	--hash=n	would	do.

-q	,	--quiet
Do	not	print	any	results	to	stdout.	When	combined	with	--verify	this
can	be	used	to	silently	check	if	a	reference	exists.

--exclude-existing[=<pattern>]
Make	git	show-ref	act	as	a	filter	that	reads	refs	from	stdin	of	the	form
"^(?:<anything>\s)?<refname>(?:\^{})?$"	and	performs	the	following
actions	on	each:	(1)	strip	"^{}"	at	the	end	of	line	if	any;	(2)	ignore	if
pattern	is	provided	and	does	not	head-match	refname;	(3)	warn	if
refname	is	not	a	well-formed	refname	and	skip;	(4)	ignore	if	refname
is	a	ref	that	exists	in	the	local	repository;	(5)	otherwise	output	the
line.

<pattern>…
Show	references	matching	one	or	more	patterns.	Patterns	are
matched	from	the	end	of	the	full	name,	and	only	complete	parts	are
matched,	e.g.	master	matches	refs/heads/master,
refs/remotes/origin/master,	refs/tags/jedi/master	but	not
refs/heads/mymaster	or	refs/remotes/master/jedi.

OUTPUT

The	output	is	in	the	format:	<SHA-1	ID>	<space>	<reference	name>.

$	git	show-ref	--head	--dereference

832e76a9899f560a90ffd62ae2ce83bbeff58f54	HEAD

832e76a9899f560a90ffd62ae2ce83bbeff58f54	refs/heads/master

832e76a9899f560a90ffd62ae2ce83bbeff58f54	refs/heads/origin

3521017556c5de4159da4615a39fa4d5d2c279b5	refs/tags/v0.99.9c



6ddc0964034342519a87fe013781abf31c6db6ad	refs/tags/v0.99.9c^{}

055e4ae3ae6eb344cbabf2a5256a49ea66040131	refs/tags/v1.0rc4

423325a2d24638ddcc82ce47be5e40be550f4507	refs/tags/v1.0rc4^{}

...

When	using	--hash	(and	not	--dereference)	the	output	format	is:	<SHA-1
ID>

$	git	show-ref	--heads	--hash

2e3ba0114a1f52b47df29743d6915d056be13278

185008ae97960c8d551adcd9e23565194651b5d1

03adf42c988195b50e1a1935ba5fcbc39b2b029b

...

EXAMPLE

To	show	all	references	called	"master",	whether	tags	or	heads	or
anything	else,	and	regardless	of	how	deep	in	the	reference	naming
hierarchy	they	are,	use:

								git	show-ref	master

This	will	show	"refs/heads/master"	but	also	"refs/remote/other-
repo/master",	if	such	references	exists.

When	using	the	--verify	flag,	the	command	requires	an	exact	path:

								git	show-ref	--verify	refs/heads/master

will	only	match	the	exact	branch	called	"master".

If	nothing	matches,	git	show-ref	will	return	an	error	code	of	1,	and	in	the
case	of	verification,	it	will	show	an	error	message.

For	scripting,	you	can	ask	it	to	be	quiet	with	the	"--quiet"	flag,	which
allows	you	to	do	things	like



								git	show-ref	--quiet	--verify	--	"refs/heads/$headname"	||

																echo	"$headname	is	not	a	valid	branch"

to	check	whether	a	particular	branch	exists	or	not	(notice	how	we	don't
actually	want	to	show	any	results,	and	we	want	to	use	the	full	refname	for
it	in	order	to	not	trigger	the	problem	with	ambiguous	partial	matches).

To	show	only	tags,	or	only	proper	branch	heads,	use	"--tags"	and/or	"--
heads"	respectively	(using	both	means	that	it	shows	tags	and	heads,	but
not	other	random	references	under	the	refs/	subdirectory).

To	do	automatic	tag	object	dereferencing,	use	the	"-d"	or	"--dereference"
flag,	so	you	can	do

								git	show-ref	--tags	--dereference

to	get	a	listing	of	all	tags	together	with	what	they	dereference.

FILES

.git/refs/*,	.git/packed-refs

SEE	ALSO

Section	G.3.49,	“git-for-each-ref(1)”,	Section	G.3.70,	“git-ls-remote(1)”,
Section	G.3.138,	“git-update-ref(1)”,	Section	G.4.11,	“gitrepository-
layout(5)”

GIT

Part	of	the	Section	G.3.1,	“git(1)”	suite

G.3.126.	git-show(1)

NAME



git-show	-	Show	various	types	of	objects

SYNOPSIS

git	show	[options]	<object>…

DESCRIPTION

Shows	one	or	more	objects	(blobs,	trees,	tags	and	commits).

For	commits	it	shows	the	log	message	and	textual	diff.	It	also	presents
the	merge	commit	in	a	special	format	as	produced	by	git	diff-tree	--cc.

For	tags,	it	shows	the	tag	message	and	the	referenced	objects.

For	trees,	it	shows	the	names	(equivalent	to	git	ls-tree	with	--name-only).

For	plain	blobs,	it	shows	the	plain	contents.

The	command	takes	options	applicable	to	the	git	diff-tree	command	to
control	how	the	changes	the	commit	introduces	are	shown.

This	manual	page	describes	only	the	most	frequently	used	options.

OPTIONS

<object>…
The	names	of	objects	to	show.	For	a	more	complete	list	of	ways	to
spell	object	names,	see	"SPECIFYING	REVISIONS"	section	in
Section	G.4.12,	“gitrevisions(7)”.

--pretty[=<format>]	,	--format=<format>

Pretty-print	the	contents	of	the	commit	logs	in	a	given	format,	where
<format>	can	be	one	of	oneline,	short,	medium,	full,	fuller,	email,
raw,	format:<string>	and	tformat:<string>.	When	<format>	is	none	of
the	above,	and	has	%placeholder	in	it,	it	acts	as	if	--pretty=tformat:
<format>	were	given.



See	the	"PRETTY	FORMATS"	section	for	some	additional	details	for
each	format.	When	=<format>	part	is	omitted,	it	defaults	to	medium.

Note:	you	can	specify	the	default	pretty	format	in	the	repository
configuration	(see	Section	G.3.27,	“git-config(1)”).

--abbrev-commit

Instead	of	showing	the	full	40-byte	hexadecimal	commit	object
name,	show	only	a	partial	prefix.	Non	default	number	of	digits	can	be
specified	with	"--abbrev=<n>"	(which	also	modifies	diff	output,	if	it	is
displayed).

This	should	make	"--pretty=oneline"	a	whole	lot	more	readable	for
people	using	80-column	terminals.

--no-abbrev-commit
Show	the	full	40-byte	hexadecimal	commit	object	name.	This
negates	--abbrev-commit	and	those	options	which	imply	it	such	as	"-
-oneline".	It	also	overrides	the	log.abbrevCommit	variable.

--oneline
This	is	a	shorthand	for	"--pretty=oneline	--abbrev-commit"	used
together.

--encoding=<encoding>
The	commit	objects	record	the	encoding	used	for	the	log	message	in
their	encoding	header;	this	option	can	be	used	to	tell	the	command
to	re-code	the	commit	log	message	in	the	encoding	preferred	by	the
user.	For	non	plumbing	commands	this	defaults	to	UTF-8.	Note	that
if	an	object	claims	to	be	encoded	in	X	and	we	are	outputting	in	X,	we
will	output	the	object	verbatim;	this	means	that	invalid	sequences	in
the	original	commit	may	be	copied	to	the	output.

--expand-tabs=<n>	,	--expand-tabs	,	--no-expand-tabs

Perform	a	tab	expansion	(replace	each	tab	with	enough	spaces	to	fill
to	the	next	display	column	that	is	multiple	of	<n>)	in	the	log	message
before	showing	it	in	the	output.	--expand-tabs	is	a	short-hand	for	--
expand-tabs=8,	and	--no-expand-tabs	is	a	short-hand	for	--expand-
tabs=0,	which	disables	tab	expansion.



By	default,	tabs	are	expanded	in	pretty	formats	that	indent	the	log
message	by	4	spaces	(i.e.	medium,	which	is	the	default,	full,	and
fuller).

--notes[=<treeish>]

Show	the	notes	(see	Section	G.3.86,	“git-notes(1)”)	that	annotate	the
commit,	when	showing	the	commit	log	message.	This	is	the	default
for	git	log,	git	show	and	git	whatchanged	commands	when	there	is
no	--pretty,	--format,	or	--oneline	option	given	on	the	command	line.

By	default,	the	notes	shown	are	from	the	notes	refs	listed	in	the
core.notesRef	and	notes.displayRef	variables	(or	corresponding
environment	overrides).	See	Section	G.3.27,	“git-config(1)”	for	more
details.

With	an	optional	<treeish>	argument,	use	the	treeish	to	find	the
notes	to	display.	The	treeish	can	specify	the	full	refname	when	it
begins	with	refs/notes/;	when	it	begins	with	notes/,	refs/	and
otherwise	refs/notes/	is	prefixed	to	form	a	full	name	of	the	ref.

Multiple	--notes	options	can	be	combined	to	control	which	notes	are
being	displayed.	Examples:	"--notes=foo"	will	show	only	notes	from
"refs/notes/foo";	"--notes=foo	--notes"	will	show	both	notes	from
"refs/notes/foo"	and	from	the	default	notes	ref(s).

--no-notes
Do	not	show	notes.	This	negates	the	above	--notes	option,	by
resetting	the	list	of	notes	refs	from	which	notes	are	shown.	Options
are	parsed	in	the	order	given	on	the	command	line,	so	e.g.	"--notes	-
-notes=foo	--no-notes	--notes=bar"	will	only	show	notes	from
"refs/notes/bar".

--show-notes[=<treeish>]	,	--[no-]standard-notes
These	options	are	deprecated.	Use	the	above	--notes/--no-notes
options	instead.

--show-signature
Check	the	validity	of	a	signed	commit	object	by	passing	the
signature	to	gpg	--verify	and	show	the	output.



PRETTY	FORMATS

If	the	commit	is	a	merge,	and	if	the	pretty-format	is	not	oneline,	email	or
raw,	an	additional	line	is	inserted	before	the	Author:	line.	This	line	begins
with	"Merge:	"	and	the	sha1s	of	ancestral	commits	are	printed,	separated
by	spaces.	Note	that	the	listed	commits	may	not	necessarily	be	the	list	of
the	direct	parent	commits	if	you	have	limited	your	view	of	history:	for
example,	if	you	are	only	interested	in	changes	related	to	a	certain
directory	or	file.

There	are	several	built-in	formats,	and	you	can	define	additional	formats
by	setting	a	pretty.<name>	config	option	to	either	another	format	name,
or	a	format:	string,	as	described	below	(see	Section	G.3.27,	“git-
config(1)”).	Here	are	the	details	of	the	built-in	formats:

oneline

<sha1>	<title	line>

This	is	designed	to	be	as	compact	as	possible.

short

commit	<sha1>

Author:	<author>

<title	line>

medium

commit	<sha1>

Author:	<author>

Date:			<author	date>

<title	line>

<full	commit	message>

full

commit	<sha1>

Author:	<author>

Commit:	<committer>

<title	line>

<full	commit	message>



fuller

commit	<sha1>

Author:					<author>

AuthorDate:	<author	date>

Commit:					<committer>

CommitDate:	<committer	date>

<title	line>

<full	commit	message>

email

From	<sha1>	<date>

From:	<author>

Date:	<author	date>

Subject:	[PATCH]	<title	line>

<full	commit	message>

raw

The	raw	format	shows	the	entire	commit	exactly	as	stored	in	the
commit	object.	Notably,	the	SHA-1s	are	displayed	in	full,	regardless
of	whether	--abbrev	or	--no-abbrev	are	used,	and	parents	information
show	the	true	parent	commits,	without	taking	grafts	or	history
simplification	into	account.	Note	that	this	format	affects	the	way
commits	are	displayed,	but	not	the	way	the	diff	is	shown	e.g.	with	git
log	--raw.	To	get	full	object	names	in	a	raw	diff	format,	use	--no-
abbrev.

format:<string>

The	format:<string>	format	allows	you	to	specify	which	information
you	want	to	show.	It	works	a	little	bit	like	printf	format,	with	the
notable	exception	that	you	get	a	newline	with	%n	instead	of	\n.

E.g,	format:"The	author	of	%h	was	%an,	%ar%nThe	title	was
>>%s<<%n"	would	show	something	like	this:

The	author	of	fe6e0ee	was	Junio	C	Hamano,	23	hours	ago

The	title	was	>>t4119:	test	autocomputing	-p<n>	for	traditional	diff	input.<<



The	placeholders	are:

%H:	commit	hash
%h:	abbreviated	commit	hash
%T:	tree	hash
%t:	abbreviated	tree	hash
%P:	parent	hashes
%p:	abbreviated	parent	hashes
%an:	author	name
%aN:	author	name	(respecting	.mailmap,	see	Section	G.3.122,
“git-shortlog(1)”	or	Section	G.3.9,	“git-blame(1)”)
%ae:	author	email
%aE:	author	email	(respecting	.mailmap,	see	Section	G.3.122,
“git-shortlog(1)”	or	Section	G.3.9,	“git-blame(1)”)
%ad:	author	date	(format	respects	--date=	option)
%aD:	author	date,	RFC2822	style
%ar:	author	date,	relative
%at:	author	date,	UNIX	timestamp
%ai:	author	date,	ISO	8601-like	format
%aI:	author	date,	strict	ISO	8601	format
%cn:	committer	name
%cN:	committer	name	(respecting	.mailmap,	see
Section	G.3.122,	“git-shortlog(1)”	or	Section	G.3.9,	“git-
blame(1)”)
%ce:	committer	email
%cE:	committer	email	(respecting	.mailmap,	see
Section	G.3.122,	“git-shortlog(1)”	or	Section	G.3.9,	“git-
blame(1)”)
%cd:	committer	date	(format	respects	--date=	option)
%cD:	committer	date,	RFC2822	style
%cr:	committer	date,	relative
%ct:	committer	date,	UNIX	timestamp
%ci:	committer	date,	ISO	8601-like	format
%cI:	committer	date,	strict	ISO	8601	format
%d:	ref	names,	like	the	--decorate	option	of	Section	G.3.68,	“git-
log(1)”
%D:	ref	names	without	the	"	(",	")"	wrapping.



%e:	encoding
%s:	subject
%f:	sanitized	subject	line,	suitable	for	a	filename
%b:	body
%B:	raw	body	(unwrapped	subject	and	body)
%N:	commit	notes
%GG:	raw	verification	message	from	GPG	for	a	signed	commit
%G?:	show	"G"	for	a	Good	signature,	"B"	for	a	Bad	signature,
"U"	for	a	good,	untrusted	signature	and	"N"	for	no	signature
%GS:	show	the	name	of	the	signer	for	a	signed	commit
%GK:	show	the	key	used	to	sign	a	signed	commit
%gD:	reflog	selector,	e.g.,	refs/stash@{1}
%gd:	shortened	reflog	selector,	e.g.,	stash@{1}
%gn:	reflog	identity	name
%gN:	reflog	identity	name	(respecting	.mailmap,	see
Section	G.3.122,	“git-shortlog(1)”	or	Section	G.3.9,	“git-
blame(1)”)
%ge:	reflog	identity	email
%gE:	reflog	identity	email	(respecting	.mailmap,	see
Section	G.3.122,	“git-shortlog(1)”	or	Section	G.3.9,	“git-
blame(1)”)
%gs:	reflog	subject
%Cred:	switch	color	to	red
%Cgreen:	switch	color	to	green
%Cblue:	switch	color	to	blue
%Creset:	reset	color
%C(…):	color	specification,	as	described	in	color.branch.*	config
option;	adding	auto,	at	the	beginning	will	emit	color	only	when
colors	are	enabled	for	log	output	(by	color.diff,	color.ui,	or	--
color,	and	respecting	the	auto	settings	of	the	former	if	we	are
going	to	a	terminal).	auto	alone	(i.e.	%C(auto))	will	turn	on	auto
coloring	on	the	next	placeholders	until	the	color	is	switched
again.
%m:	left,	right	or	boundary	mark
%n:	newline
%%:	a	raw	%
%x00:	print	a	byte	from	a	hex	code



%w([<w>[,<i1>[,<i2>]]]):	switch	line	wrapping,	like	the	-w	option
of	Section	G.3.122,	“git-shortlog(1)”.
%<(<N>[,trunc|ltrunc|mtrunc]):	make	the	next	placeholder	take
at	least	N	columns,	padding	spaces	on	the	right	if	necessary.
Optionally	truncate	at	the	beginning	(ltrunc),	the	middle	(mtrunc)
or	the	end	(trunc)	if	the	output	is	longer	than	N	columns.	Note
that	truncating	only	works	correctly	with	N	>=	2.
%<|(<N>):	make	the	next	placeholder	take	at	least	until	Nth
columns,	padding	spaces	on	the	right	if	necessary
%>(<N>),	%>|(<N>):	similar	to	%<(<N>),	%<|(<N>)	respectively,
but	padding	spaces	on	the	left
%>>(<N>),	%>>|(<N>):	similar	to	%>(<N>),	%>|(<N>)
respectively,	except	that	if	the	next	placeholder	takes	more
spaces	than	given	and	there	are	spaces	on	its	left,	use	those
spaces
%><(<N>),	%><|(<N>):	similar	to	%	<(<N>),	%<|(<N>)
respectively,	but	padding	both	sides	(i.e.	the	text	is	centered)

Note

Some	placeholders	may	depend	on	other	options	given	to
the	revision	traversal	engine.	For	example,	the	%g*	reflog
options	will	insert	an	empty	string	unless	we	are	traversing
reflog	entries	(e.g.,	by	git	log	-g).	The	%d	and	%D
placeholders	will	use	the	"short"	decoration	format	if	--
decorate	was	not	already	provided	on	the	command	line.

If	you	add	a	+	(plus	sign)	after	%	of	a	placeholder,	a	line-feed	is	inserted
immediately	before	the	expansion	if	and	only	if	the	placeholder	expands
to	a	non-empty	string.

If	you	add	a	-	(minus	sign)	after	%	of	a	placeholder,	line-feeds	that
immediately	precede	the	expansion	are	deleted	if	and	only	if	the
placeholder	expands	to	an	empty	string.

If	you	add	a	`	`	(space)	after	%	of	a	placeholder,	a	space	is	inserted



immediately	before	the	expansion	if	and	only	if	the	placeholder	expands
to	a	non-empty	string.

tformat:

The	tformat:	format	works	exactly	like	format:,	except	that	it	provides
"terminator"	semantics	instead	of	"separator"	semantics.	In	other
words,	each	commit	has	the	message	terminator	character	(usually
a	newline)	appended,	rather	than	a	separator	placed	between
entries.	This	means	that	the	final	entry	of	a	single-line	format	will	be
properly	terminated	with	a	new	line,	just	as	the	"oneline"	format
does.	For	example:

$	git	log	-2	--pretty=format:%h	4da45bef	\

		|	perl	-pe	'$_	.=	"	--	NO	NEWLINE\n"	unless	/\n/'

4da45be

7134973	--	NO	NEWLINE

$	git	log	-2	--pretty=tformat:%h	4da45bef	\

		|	perl	-pe	'$_	.=	"	--	NO	NEWLINE\n"	unless	/\n/'

4da45be

7134973

In	addition,	any	unrecognized	string	that	has	a	%	in	it	is	interpreted
as	if	it	has	tformat:	in	front	of	it.	For	example,	these	two	are
equivalent:

$	git	log	-2	--pretty=tformat:%h	4da45bef

$	git	log	-2	--pretty=%h	4da45bef

COMMON	DIFF	OPTIONS

-p	,	-u	,	--patch
Generate	patch	(see	section	on	generating	patches).

-s	,	--no-patch
Suppress	diff	output.	Useful	for	commands	like	git	show	that	show
the	patch	by	default,	or	to	cancel	the	effect	of	--patch.

-U<n>	,	--unified=<n>



Generate	diffs	with	<n>	lines	of	context	instead	of	the	usual	three.
Implies	-p.

--raw
For	each	commit,	show	a	summary	of	changes	using	the	raw	diff
format.	See	the	"RAW	OUTPUT	FORMAT"	section	of
Section	G.3.41,	“git-diff(1)”.	This	is	different	from	showing	the	log
itself	in	raw	format,	which	you	can	achieve	with	--format=raw.

--patch-with-raw
Synonym	for	-p	--raw.

--minimal
Spend	extra	time	to	make	sure	the	smallest	possible	diff	is	produced.

--patience
Generate	a	diff	using	the	"patience	diff"	algorithm.

--histogram
Generate	a	diff	using	the	"histogram	diff"	algorithm.

--diff-algorithm={patience|minimal|histogram|myers}

Choose	a	diff	algorithm.	The	variants	are	as	follows:

default,	myers
The	basic	greedy	diff	algorithm.	Currently,	this	is	the	default.

minimal
Spend	extra	time	to	make	sure	the	smallest	possible	diff	is
produced.

patience
Use	"patience	diff"	algorithm	when	generating	patches.

histogram
This	algorithm	extends	the	patience	algorithm	to	"support	low-
occurrence	common	elements".

For	instance,	if	you	configured	diff.algorithm	variable	to	a	non-default
value	and	want	to	use	the	default	one,	then	you	have	to	use	--diff-
algorithm=default	option.

--stat[=<width>[,<name-width>[,<count>]]]

Generate	a	diffstat.	By	default,	as	much	space	as	necessary	will	be
used	for	the	filename	part,	and	the	rest	for	the	graph	part.	Maximum



width	defaults	to	terminal	width,	or	80	columns	if	not	connected	to	a
terminal,	and	can	be	overridden	by	<width>.	The	width	of	the
filename	part	can	be	limited	by	giving	another	width	<name-width>
after	a	comma.	The	width	of	the	graph	part	can	be	limited	by	using	--
stat-graph-width=<width>	(affects	all	commands	generating	a	stat
graph)	or	by	setting	diff.statGraphWidth=<width>	(does	not	affect	git
format-patch).	By	giving	a	third	parameter	<count>,	you	can	limit	the
output	to	the	first	<count>	lines,	followed	by	...	if	there	are	more.

These	parameters	can	also	be	set	individually	with	--stat-width=
<width>,	--stat-name-width=<name-width>	and	--stat-count=<count>.

--numstat
Similar	to	--stat,	but	shows	number	of	added	and	deleted	lines	in
decimal	notation	and	pathname	without	abbreviation,	to	make	it
more	machine	friendly.	For	binary	files,	outputs	two	-	instead	of
saying	0	0.

--shortstat
Output	only	the	last	line	of	the	--stat	format	containing	total	number
of	modified	files,	as	well	as	number	of	added	and	deleted	lines.

--dirstat[=<param1,param2,…>]

Output	the	distribution	of	relative	amount	of	changes	for	each	sub-
directory.	The	behavior	of	--dirstat	can	be	customized	by	passing	it	a
comma	separated	list	of	parameters.	The	defaults	are	controlled	by
the	diff.dirstat	configuration	variable	(see	Section	G.3.27,	“git-
config(1)”).	The	following	parameters	are	available:

changes
Compute	the	dirstat	numbers	by	counting	the	lines	that	have
been	removed	from	the	source,	or	added	to	the	destination.	This
ignores	the	amount	of	pure	code	movements	within	a	file.	In
other	words,	rearranging	lines	in	a	file	is	not	counted	as	much
as	other	changes.	This	is	the	default	behavior	when	no
parameter	is	given.

lines
Compute	the	dirstat	numbers	by	doing	the	regular	line-based	diff
analysis,	and	summing	the	removed/added	line	counts.	(For



binary	files,	count	64-byte	chunks	instead,	since	binary	files
have	no	natural	concept	of	lines).	This	is	a	more	expensive	--
dirstat	behavior	than	the	changes	behavior,	but	it	does	count
rearranged	lines	within	a	file	as	much	as	other	changes.	The
resulting	output	is	consistent	with	what	you	get	from	the	other	--
*stat	options.

files
Compute	the	dirstat	numbers	by	counting	the	number	of	files
changed.	Each	changed	file	counts	equally	in	the	dirstat
analysis.	This	is	the	computationally	cheapest	--dirstat	behavior,
since	it	does	not	have	to	look	at	the	file	contents	at	all.

cumulative
Count	changes	in	a	child	directory	for	the	parent	directory	as
well.	Note	that	when	using	cumulative,	the	sum	of	the
percentages	reported	may	exceed	100%.	The	default	(non-
cumulative)	behavior	can	be	specified	with	the	noncumulative
parameter.

<limit>
An	integer	parameter	specifies	a	cut-off	percent	(3%	by	default).
Directories	contributing	less	than	this	percentage	of	the	changes
are	not	shown	in	the	output.

Example:	The	following	will	count	changed	files,	while	ignoring
directories	with	less	than	10%	of	the	total	amount	of	changed	files,
and	accumulating	child	directory	counts	in	the	parent	directories:	--
dirstat=files,10,cumulative.

--summary
Output	a	condensed	summary	of	extended	header	information	such
as	creations,	renames	and	mode	changes.

--patch-with-stat
Synonym	for	-p	--stat.

-z

Separate	the	commits	with	NULs	instead	of	with	new	newlines.

Also,	when	--raw	or	--numstat	has	been	given,	do	not	munge
pathnames	and	use	NULs	as	output	field	terminators.



Without	this	option,	each	pathname	output	will	have	TAB,	LF,	double
quotes,	and	backslash	characters	replaced	with	\t,	\n,	\",	and	\\,
respectively,	and	the	pathname	will	be	enclosed	in	double	quotes	if
any	of	those	replacements	occurred.

--name-only
Show	only	names	of	changed	files.

--name-status
Show	only	names	and	status	of	changed	files.	See	the	description	of
the	--diff-filter	option	on	what	the	status	letters	mean.

--submodule[=<format>]
Specify	how	differences	in	submodules	are	shown.	When	--
submodule	or	--submodule=log	is	given,	the	log	format	is	used.	This
format	lists	the	commits	in	the	range	like	Section	G.3.131,	“git-
submodule(1)”	summary	does.	Omitting	the	--submodule	option	or
specifying	--submodule=short,	uses	the	short	format.	This	format	just
shows	the	names	of	the	commits	at	the	beginning	and	end	of	the
range.	Can	be	tweaked	via	the	diff.submodule	configuration	variable.

--color[=<when>]
Show	colored	diff.	--color	(i.e.	without	=<when>)	is	the	same	as	--
color=always.	<when>	can	be	one	of	always,	never,	or	auto.

--no-color
Turn	off	colored	diff.	It	is	the	same	as	--color=never.

--word-diff[=<mode>]

Show	a	word	diff,	using	the	<mode>	to	delimit	changed	words.	By
default,	words	are	delimited	by	whitespace;	see	--word-diff-regex
below.	The	<mode>	defaults	to	plain,	and	must	be	one	of:

color
Highlight	changed	words	using	only	colors.	Implies	--color.

plain
Show	words	as	[-removed-]	and	{+added+}.	Makes	no	attempts
to	escape	the	delimiters	if	they	appear	in	the	input,	so	the	output
may	be	ambiguous.

porcelain
Use	a	special	line-based	format	intended	for	script	consumption.
Added/removed/unchanged	runs	are	printed	in	the	usual	unified



diff	format,	starting	with	a	+/-/`	`	character	at	the	beginning	of	the
line	and	extending	to	the	end	of	the	line.	Newlines	in	the	input
are	represented	by	a	tilde	~	on	a	line	of	its	own.

none
Disable	word	diff	again.

Note	that	despite	the	name	of	the	first	mode,	color	is	used	to
highlight	the	changed	parts	in	all	modes	if	enabled.

--word-diff-regex=<regex>

Use	<regex>	to	decide	what	a	word	is,	instead	of	considering	runs	of
non-whitespace	to	be	a	word.	Also	implies	--word-diff	unless	it	was
already	enabled.

Every	non-overlapping	match	of	the	<regex>	is	considered	a	word.
Anything	between	these	matches	is	considered	whitespace	and
ignored(!)	for	the	purposes	of	finding	differences.	You	may	want	to
append	|[^[:space:]]	to	your	regular	expression	to	make	sure	that	it
matches	all	non-whitespace	characters.	A	match	that	contains	a
newline	is	silently	truncated(!)	at	the	newline.

For	example,	--word-diff-regex=.	will	treat	each	character	as	a	word
and,	correspondingly,	show	differences	character	by	character.

The	regex	can	also	be	set	via	a	diff	driver	or	configuration	option,
see	???	or	Section	G.3.27,	“git-config(1)”.	Giving	it	explicitly
overrides	any	diff	driver	or	configuration	setting.	Diff	drivers	override
configuration	settings.

--color-words[=<regex>]
Equivalent	to	--word-diff=color	plus	(if	a	regex	was	specified)	--word-
diff-regex=<regex>.

--no-renames
Turn	off	rename	detection,	even	when	the	configuration	file	gives	the
default	to	do	so.

--check
Warn	if	changes	introduce	conflict	markers	or	whitespace	errors.



What	are	considered	whitespace	errors	is	controlled	by
core.whitespace	configuration.	By	default,	trailing	whitespaces
(including	lines	that	solely	consist	of	whitespaces)	and	a	space
character	that	is	immediately	followed	by	a	tab	character	inside	the
initial	indent	of	the	line	are	considered	whitespace	errors.	Exits	with
non-zero	status	if	problems	are	found.	Not	compatible	with	--exit-
code.

--ws-error-highlight=<kind>
Highlight	whitespace	errors	on	lines	specified	by	<kind>	in	the	color
specified	by	color.diff.whitespace.	<kind>	is	a	comma	separated	list
of	old,	new,	context.	When	this	option	is	not	given,	only	whitespace
errors	in	new	lines	are	highlighted.	E.g.	--ws-error-highlight=new,old
highlights	whitespace	errors	on	both	deleted	and	added	lines.	all	can
be	used	as	a	short-hand	for	old,new,context.

--full-index
Instead	of	the	first	handful	of	characters,	show	the	full	pre-	and	post-
image	blob	object	names	on	the	"index"	line	when	generating	patch
format	output.

--binary
In	addition	to	--full-index,	output	a	binary	diff	that	can	be	applied	with
git-apply.

--abbrev[=<n>]
Instead	of	showing	the	full	40-byte	hexadecimal	object	name	in	diff-
raw	format	output	and	diff-tree	header	lines,	show	only	a	partial
prefix.	This	is	independent	of	the	--full-index	option	above,	which
controls	the	diff-patch	output	format.	Non	default	number	of	digits
can	be	specified	with	--abbrev=<n>.

-B[<n>][/<m>]	,	--break-rewrites[=[<n>][/<m>]]

Break	complete	rewrite	changes	into	pairs	of	delete	and	create.	This
serves	two	purposes:

It	affects	the	way	a	change	that	amounts	to	a	total	rewrite	of	a	file	not
as	a	series	of	deletion	and	insertion	mixed	together	with	a	very	few
lines	that	happen	to	match	textually	as	the	context,	but	as	a	single
deletion	of	everything	old	followed	by	a	single	insertion	of	everything
new,	and	the	number	m	controls	this	aspect	of	the	-B	option	(defaults



to	60%).	-B/70%	specifies	that	less	than	30%	of	the	original	should
remain	in	the	result	for	Git	to	consider	it	a	total	rewrite	(i.e.	otherwise
the	resulting	patch	will	be	a	series	of	deletion	and	insertion	mixed
together	with	context	lines).

When	used	with	-M,	a	totally-rewritten	file	is	also	considered	as	the
source	of	a	rename	(usually	-M	only	considers	a	file	that
disappeared	as	the	source	of	a	rename),	and	the	number	n	controls
this	aspect	of	the	-B	option	(defaults	to	50%).	-B20%	specifies	that	a
change	with	addition	and	deletion	compared	to	20%	or	more	of	the
file's	size	are	eligible	for	being	picked	up	as	a	possible	source	of	a
rename	to	another	file.

-M[<n>]	,	--find-renames[=<n>]
If	generating	diffs,	detect	and	report	renames	for	each	commit.	For
following	files	across	renames	while	traversing	history,	see	--follow.	If
n	is	specified,	it	is	a	threshold	on	the	similarity	index	(i.e.	amount	of
addition/deletions	compared	to	the	file's	size).	For	example,	-M90%
means	Git	should	consider	a	delete/add	pair	to	be	a	rename	if	more
than	90%	of	the	file	hasn't	changed.	Without	a	%	sign,	the	number	is
to	be	read	as	a	fraction,	with	a	decimal	point	before	it.	I.e.,	-M5
becomes	0.5,	and	is	thus	the	same	as	-M50%.	Similarly,	-M05	is	the
same	as	-M5%.	To	limit	detection	to	exact	renames,	use	-M100%.
The	default	similarity	index	is	50%.

-C[<n>]	,	--find-copies[=<n>]
Detect	copies	as	well	as	renames.	See	also	--find-copies-harder.	If	n
is	specified,	it	has	the	same	meaning	as	for	-M<n>.

--find-copies-harder
For	performance	reasons,	by	default,	-C	option	finds	copies	only	if
the	original	file	of	the	copy	was	modified	in	the	same	changeset.	This
flag	makes	the	command	inspect	unmodified	files	as	candidates	for
the	source	of	copy.	This	is	a	very	expensive	operation	for	large
projects,	so	use	it	with	caution.	Giving	more	than	one	-C	option	has
the	same	effect.

-D	,	--irreversible-delete

Omit	the	preimage	for	deletes,	i.e.	print	only	the	header	but	not	the
diff	between	the	preimage	and	/dev/null.	The	resulting	patch	is	not



meant	to	be	applied	with	patch	or	git	apply;	this	is	solely	for	people
who	want	to	just	concentrate	on	reviewing	the	text	after	the	change.
In	addition,	the	output	obviously	lack	enough	information	to	apply
such	a	patch	in	reverse,	even	manually,	hence	the	name	of	the
option.

When	used	together	with	-B,	omit	also	the	preimage	in	the	deletion
part	of	a	delete/create	pair.

-l<num>
The	-M	and	-C	options	require	O(n^2)	processing	time	where	n	is	the
number	of	potential	rename/copy	targets.	This	option	prevents
rename/copy	detection	from	running	if	the	number	of	rename/copy
targets	exceeds	the	specified	number.

--diff-filter=[(A|C|D|M|R|T|U|X|B)…[*]]
Select	only	files	that	are	Added	(A),	Copied	(C),	Deleted	(D),
Modified	(M),	Renamed	(R),	have	their	type	(i.e.	regular	file,	symlink,
submodule,	…)	changed	(T),	are	Unmerged	(U),	are	Unknown	(X),
or	have	had	their	pairing	Broken	(B).	Any	combination	of	the	filter
characters	(including	none)	can	be	used.	When	*	(All-or-none)	is
added	to	the	combination,	all	paths	are	selected	if	there	is	any	file
that	matches	other	criteria	in	the	comparison;	if	there	is	no	file	that
matches	other	criteria,	nothing	is	selected.

-S<string>

Look	for	differences	that	change	the	number	of	occurrences	of	the
specified	string	(i.e.	addition/deletion)	in	a	file.	Intended	for	the
scripter's	use.

It	is	useful	when	you're	looking	for	an	exact	block	of	code	(like	a
struct),	and	want	to	know	the	history	of	that	block	since	it	first	came
into	being:	use	the	feature	iteratively	to	feed	the	interesting	block	in
the	preimage	back	into	-S,	and	keep	going	until	you	get	the	very	first
version	of	the	block.

-G<regex>

Look	for	differences	whose	patch	text	contains	added/removed	lines



that	match	<regex>.

To	illustrate	the	difference	between	-S<regex>	--pickaxe-regex	and	-
G<regex>,	consider	a	commit	with	the	following	diff	in	the	same	file:

+				return	!regexec(regexp,	two->ptr,	1,	&regmatch,	0);

...

-				hit	=	!regexec(regexp,	mf2.ptr,	1,	&regmatch,	0);

While	git	log	-G"regexec\(regexp"	will	show	this	commit,	git	log	-
S"regexec\(regexp"	--pickaxe-regex	will	not	(because	the	number	of
occurrences	of	that	string	did	not	change).

See	the	pickaxe	entry	in	Section	G.4.4,	“gitdiffcore(7)”	for	more
information.

--pickaxe-all
When	-S	or	-G	finds	a	change,	show	all	the	changes	in	that
changeset,	not	just	the	files	that	contain	the	change	in	<string>.

--pickaxe-regex
Treat	the	<string>	given	to	-S	as	an	extended	POSIX	regular
expression	to	match.

-O<orderfile>
Output	the	patch	in	the	order	specified	in	the	<orderfile>,	which	has
one	shell	glob	pattern	per	line.	This	overrides	the	diff.orderFile
configuration	variable	(see	Section	G.3.27,	“git-config(1)”).	To	cancel
diff.orderFile,	use	-O/dev/null.

-R
Swap	two	inputs;	that	is,	show	differences	from	index	or	on-disk	file
to	tree	contents.

--relative[=<path>]
When	run	from	a	subdirectory	of	the	project,	it	can	be	told	to	exclude
changes	outside	the	directory	and	show	pathnames	relative	to	it	with
this	option.	When	you	are	not	in	a	subdirectory	(e.g.	in	a	bare
repository),	you	can	name	which	subdirectory	to	make	the	output
relative	to	by	giving	a	<path>	as	an	argument.

-a	,	--text



Treat	all	files	as	text.
--ignore-space-at-eol

Ignore	changes	in	whitespace	at	EOL.
-b	,	--ignore-space-change

Ignore	changes	in	amount	of	whitespace.	This	ignores	whitespace	at
line	end,	and	considers	all	other	sequences	of	one	or	more
whitespace	characters	to	be	equivalent.

-w	,	--ignore-all-space
Ignore	whitespace	when	comparing	lines.	This	ignores	differences
even	if	one	line	has	whitespace	where	the	other	line	has	none.

--ignore-blank-lines
Ignore	changes	whose	lines	are	all	blank.

--inter-hunk-context=<lines>
Show	the	context	between	diff	hunks,	up	to	the	specified	number	of
lines,	thereby	fusing	hunks	that	are	close	to	each	other.

-W	,	--function-context
Show	whole	surrounding	functions	of	changes.

--ext-diff
Allow	an	external	diff	helper	to	be	executed.	If	you	set	an	external
diff	driver	with	Section	G.4.2,	“gitattributes(5)”,	you	need	to	use	this
option	with	Section	G.3.68,	“git-log(1)”	and	friends.

--no-ext-diff
Disallow	external	diff	drivers.

--textconv	,	--no-textconv
Allow	(or	disallow)	external	text	conversion	filters	to	be	run	when
comparing	binary	files.	See	Section	G.4.2,	“gitattributes(5)”	for
details.	Because	textconv	filters	are	typically	a	one-way	conversion,
the	resulting	diff	is	suitable	for	human	consumption,	but	cannot	be
applied.	For	this	reason,	textconv	filters	are	enabled	by	default	only
for	Section	G.3.41,	“git-diff(1)”	and	Section	G.3.68,	“git-log(1)”,	but
not	for	Section	G.3.50,	“git-format-patch(1)”	or	diff	plumbing
commands.

--ignore-submodules[=<when>]
Ignore	changes	to	submodules	in	the	diff	generation.	<when>	can	be
either	"none",	"untracked",	"dirty"	or	"all",	which	is	the	default.	Using
"none"	will	consider	the	submodule	modified	when	it	either	contains
untracked	or	modified	files	or	its	HEAD	differs	from	the	commit



recorded	in	the	superproject	and	can	be	used	to	override	any
settings	of	the	ignore	option	in	Section	G.3.27,	“git-config(1)”	or
Section	G.4.8,	“gitmodules(5)”.	When	"untracked"	is	used
submodules	are	not	considered	dirty	when	they	only	contain
untracked	content	(but	they	are	still	scanned	for	modified	content).
Using	"dirty"	ignores	all	changes	to	the	work	tree	of	submodules,
only	changes	to	the	commits	stored	in	the	superproject	are	shown
(this	was	the	behavior	until	1.7.0).	Using	"all"	hides	all	changes	to
submodules.

--src-prefix=<prefix>
Show	the	given	source	prefix	instead	of	"a/".

--dst-prefix=<prefix>
Show	the	given	destination	prefix	instead	of	"b/".

--no-prefix
Do	not	show	any	source	or	destination	prefix.

For	more	detailed	explanation	on	these	common	options,	see	also
Section	G.4.4,	“gitdiffcore(7)”.

Generating	patches	with	-p

When	"git-diff-index",	"git-diff-tree",	or	"git-diff-files"	are	run	with	a	-p
option,	"git	diff"	without	the	--raw	option,	or	"git	log"	with	the	"-p"	option,
they	do	not	produce	the	output	described	above;	instead	they	produce	a
patch	file.	You	can	customize	the	creation	of	such	patches	via	the
GIT_EXTERNAL_DIFF	and	the	GIT_DIFF_OPTS	environment	variables.

What	the	-p	option	produces	is	slightly	different	from	the	traditional	diff
format:

1.	 It	is	preceded	with	a	"git	diff"	header	that	looks	like	this:

diff	--git	a/file1	b/file2

The	a/	and	b/	filenames	are	the	same	unless	rename/copy	is
involved.	Especially,	even	for	a	creation	or	a	deletion,	/dev/null	is	not
used	in	place	of	the	a/	or	b/	filenames.



When	rename/copy	is	involved,	file1	and	file2	show	the	name	of	the
source	file	of	the	rename/copy	and	the	name	of	the	file	that
rename/copy	produces,	respectively.

2.	 It	is	followed	by	one	or	more	extended	header	lines:

old	mode	<mode>

new	mode	<mode>

deleted	file	mode	<mode>

new	file	mode	<mode>

copy	from	<path>

copy	to	<path>

rename	from	<path>

rename	to	<path>

similarity	index	<number>

dissimilarity	index	<number>

index	<hash>..<hash>	<mode>

File	modes	are	printed	as	6-digit	octal	numbers	including	the	file	type
and	file	permission	bits.

Path	names	in	extended	headers	do	not	include	the	a/	and	b/
prefixes.

The	similarity	index	is	the	percentage	of	unchanged	lines,	and	the
dissimilarity	index	is	the	percentage	of	changed	lines.	It	is	a	rounded
down	integer,	followed	by	a	percent	sign.	The	similarity	index	value
of	100%	is	thus	reserved	for	two	equal	files,	while	100%	dissimilarity
means	that	no	line	from	the	old	file	made	it	into	the	new	one.

The	index	line	includes	the	SHA-1	checksum	before	and	after	the
change.	The	<mode>	is	included	if	the	file	mode	does	not	change;
otherwise,	separate	lines	indicate	the	old	and	the	new	mode.

3.	 TAB,	LF,	double	quote	and	backslash	characters	in	pathnames	are
represented	as	\t,	\n,	\"	and	\\,	respectively.	If	there	is	need	for	such
substitution	then	the	whole	pathname	is	put	in	double	quotes.

4.	 All	the	file1	files	in	the	output	refer	to	files	before	the	commit,	and	all
the	file2	files	refer	to	files	after	the	commit.	It	is	incorrect	to	apply
each	change	to	each	file	sequentially.	For	example,	this	patch	will
swap	a	and	b:

diff	--git	a/a	b/b



rename	from	a

rename	to	b

diff	--git	a/b	b/a

rename	from	b

rename	to	a

combined	diff	format

Any	diff-generating	command	can	take	the	-c	or	--cc	option	to	produce	a
combined	diff	when	showing	a	merge.	This	is	the	default	format	when
showing	merges	with	Section	G.3.41,	“git-diff(1)”	or	Section	G.3.126,	“git-
show(1)”.	Note	also	that	you	can	give	the	-m	option	to	any	of	these
commands	to	force	generation	of	diffs	with	individual	parents	of	a	merge.

A	combined	diff	format	looks	like	this:

diff	--combined	describe.c

index	fabadb8,cc95eb0..4866510

---	a/describe.c

+++	b/describe.c

@@@	-98,20	-98,12	+98,20	@@@

								return	(a_date	>	b_date)	?	-1	:	(a_date	==	b_date)	?	0	:	1;

		}

-	static	void	describe(char	*arg)

	-static	void	describe(struct	commit	*cmit,	int	last_one)

++static	void	describe(char	*arg,	int	last_one)

		{

	+						unsigned	char	sha1[20];

	+						struct	commit	*cmit;

								struct	commit_list	*list;

								static	int	initialized	=	0;

								struct	commit_name	*n;

	+						if	(get_sha1(arg,	sha1)	<	0)

	+														usage(describe_usage);

	+						cmit	=	lookup_commit_reference(sha1);

	+						if	(!cmit)

	+														usage(describe_usage);

	+

								if	(!initialized)	{

																initialized	=	1;

																for_each_ref(get_name);



1.	 It	is	preceded	with	a	"git	diff"	header,	that	looks	like	this	(when	-c
option	is	used):

diff	--combined	file

or	like	this	(when	--cc	option	is	used):

diff	--cc	file

2.	 It	is	followed	by	one	or	more	extended	header	lines	(this	example
shows	a	merge	with	two	parents):

index	<hash>,<hash>..<hash>

mode	<mode>,<mode>..<mode>

new	file	mode	<mode>

deleted	file	mode	<mode>,<mode>

The	mode	<mode>,<mode>..<mode>	line	appears	only	if	at	least
one	of	the	<mode>	is	different	from	the	rest.	Extended	headers	with
information	about	detected	contents	movement	(renames	and
copying	detection)	are	designed	to	work	with	diff	of	two	<tree-ish>
and	are	not	used	by	combined	diff	format.

3.	 It	is	followed	by	two-line	from-file/to-file	header

---	a/file

+++	b/file

Similar	to	two-line	header	for	traditional	unified	diff	format,	/dev/null
is	used	to	signal	created	or	deleted	files.

4.	 Chunk	header	format	is	modified	to	prevent	people	from	accidentally
feeding	it	to	patch	-p1.	Combined	diff	format	was	created	for	review
of	merge	commit	changes,	and	was	not	meant	for	apply.	The	change
is	similar	to	the	change	in	the	extended	index	header:

@@@	<from-file-range>	<from-file-range>	<to-file-range>	@@@

There	are	(number	of	parents	+	1)	@	characters	in	the	chunk	header
for	combined	diff	format.

Unlike	the	traditional	unified	diff	format,	which	shows	two	files	A	and	B
with	a	single	column	that	has	-	(minus	--	appears	in	A	but	removed	in	B),



+	(plus	--	missing	in	A	but	added	to	B),	or	"	"	(space	--	unchanged)	prefix,
this	format	compares	two	or	more	files	file1,	file2,…	with	one	file	X,	and
shows	how	X	differs	from	each	of	fileN.	One	column	for	each	of	fileN	is
prepended	to	the	output	line	to	note	how	X's	line	is	different	from	it.

A	-	character	in	the	column	N	means	that	the	line	appears	in	fileN	but	it
does	not	appear	in	the	result.	A	+	character	in	the	column	N	means	that
the	line	appears	in	the	result,	and	fileN	does	not	have	that	line	(in	other
words,	the	line	was	added,	from	the	point	of	view	of	that	parent).

In	the	above	example	output,	the	function	signature	was	changed	from
both	files	(hence	two	-	removals	from	both	file1	and	file2,	plus	++	to	mean
one	line	that	was	added	does	not	appear	in	either	file1	or	file2).	Also
eight	other	lines	are	the	same	from	file1	but	do	not	appear	in	file2	(hence
prefixed	with	+).

When	shown	by	git	diff-tree	-c,	it	compares	the	parents	of	a	merge
commit	with	the	merge	result	(i.e.	file1..fileN	are	the	parents).	When
shown	by	git	diff-files	-c,	it	compares	the	two	unresolved	merge	parents
with	the	working	tree	file	(i.e.	file1	is	stage	2	aka	"our	version",	file2	is
stage	3	aka	"their	version").

EXAMPLES

git	show	v1.0.0
Shows	the	tag	v1.0.0,	along	with	the	object	the	tags	points	at.

git	show	v1.0.0^{tree}
Shows	the	tree	pointed	to	by	the	tag	v1.0.0.

git	show	-s	--format=%s	v1.0.0^{commit}
Shows	the	subject	of	the	commit	pointed	to	by	the	tag	v1.0.0.

git	show	next~10:Documentation/README
Shows	the	contents	of	the	file	Documentation/README	as	they
were	current	in	the	10th	last	commit	of	the	branch	next.

git	show	master:Makefile	master:t/Makefile
Concatenates	the	contents	of	said	Makefiles	in	the	head	of	the
branch	master.



Discussion

Git	is	to	some	extent	character	encoding	agnostic.

The	contents	of	the	blob	objects	are	uninterpreted	sequences	of
bytes.	There	is	no	encoding	translation	at	the	core	level.

Path	names	are	encoded	in	UTF-8	normalization	form	C.	This
applies	to	tree	objects,	the	index	file,	ref	names,	as	well	as	path
names	in	command	line	arguments,	environment	variables	and
config	files	(.git/config	(see	Section	G.3.27,	“git-config(1)”),
Section	G.4.5,	“gitignore(5)”,	Section	G.4.2,	“gitattributes(5)”	and
Section	G.4.8,	“gitmodules(5)”).

Note	that	Git	at	the	core	level	treats	path	names	simply	as
sequences	of	non-NUL	bytes,	there	are	no	path	name	encoding
conversions	(except	on	Mac	and	Windows).	Therefore,	using	non-
ASCII	path	names	will	mostly	work	even	on	platforms	and	file
systems	that	use	legacy	extended	ASCII	encodings.	However,
repositories	created	on	such	systems	will	not	work	properly	on	UTF-
8-based	systems	(e.g.	Linux,	Mac,	Windows)	and	vice	versa.
Additionally,	many	Git-based	tools	simply	assume	path	names	to	be
UTF-8	and	will	fail	to	display	other	encodings	correctly.

Commit	log	messages	are	typically	encoded	in	UTF-8,	but	other
extended	ASCII	encodings	are	also	supported.	This	includes	ISO-
8859-x,	CP125x	and	many	others,	but	not	UTF-16/32,	EBCDIC	and
CJK	multi-byte	encodings	(GBK,	Shift-JIS,	Big5,	EUC-x,	CP9xx	etc.).

Although	we	encourage	that	the	commit	log	messages	are	encoded	in
UTF-8,	both	the	core	and	Git	Porcelain	are	designed	not	to	force	UTF-8
on	projects.	If	all	participants	of	a	particular	project	find	it	more
convenient	to	use	legacy	encodings,	Git	does	not	forbid	it.	However,
there	are	a	few	things	to	keep	in	mind.

1.	 git	commit	and	git	commit-tree	issues	a	warning	if	the	commit	log
message	given	to	it	does	not	look	like	a	valid	UTF-8	string,	unless
you	explicitly	say	your	project	uses	a	legacy	encoding.	The	way	to



say	this	is	to	have	i18n.commitencoding	in	.git/config	file,	like	this:

[i18n]

								commitencoding	=	ISO-8859-1

Commit	objects	created	with	the	above	setting	record	the	value	of
i18n.commitencoding	in	its	encoding	header.	This	is	to	help	other
people	who	look	at	them	later.	Lack	of	this	header	implies	that	the
commit	log	message	is	encoded	in	UTF-8.

2.	 git	log,	git	show,	git	blame	and	friends	look	at	the	encoding	header	of
a	commit	object,	and	try	to	re-code	the	log	message	into	UTF-8
unless	otherwise	specified.	You	can	specify	the	desired	output
encoding	with	i18n.logoutputencoding	in	.git/config	file,	like	this:

[i18n]

								logoutputencoding	=	ISO-8859-1

If	you	do	not	have	this	configuration	variable,	the	value	of
i18n.commitencoding	is	used	instead.

Note	that	we	deliberately	chose	not	to	re-code	the	commit	log	message
when	a	commit	is	made	to	force	UTF-8	at	the	commit	object	level,
because	re-coding	to	UTF-8	is	not	necessarily	a	reversible	operation.

GIT

Part	of	the	Section	G.3.1,	“git(1)”	suite

G.3.127.	git-stage(1)

NAME

git-stage	-	Add	file	contents	to	the	staging	area

SYNOPSIS



git	stage	args…

DESCRIPTION

This	is	a	synonym	for	Section	G.3.2,	“git-add(1)”.	Please	refer	to	the
documentation	of	that	command.

GIT

Part	of	the	Section	G.3.1,	“git(1)”	suite

G.3.128.	git-stash(1)

NAME

git-stash	-	Stash	the	changes	in	a	dirty	working	directory	away

SYNOPSIS

git	stash	list	[<options>]

git	stash	show	[<stash>]

git	stash	drop	[-q|--quiet]	[<stash>]

git	stash	(	pop	|	apply	)	[--index]	[-q|--quiet]	[<stash>]

git	stash	branch	<branchname>	[<stash>]

git	stash	[save	[-p|--patch]	[-k|--[no-]keep-index]	[-q|--

quiet]

													[-u|--include-untracked]	[-a|--all]	[<message>]]

git	stash	clear

git	stash	create	[<message>]

git	stash	store	[-m|--message	<message>]	[-q|--

quiet]	<commit>

DESCRIPTION

Use	git	stash	when	you	want	to	record	the	current	state	of	the	working
directory	and	the	index,	but	want	to	go	back	to	a	clean	working	directory.
The	command	saves	your	local	modifications	away	and	reverts	the



working	directory	to	match	the	HEAD	commit.

The	modifications	stashed	away	by	this	command	can	be	listed	with	git
stash	list,	inspected	with	git	stash	show,	and	restored	(potentially	on	top
of	a	different	commit)	with	git	stash	apply.	Calling	git	stash	without	any
arguments	is	equivalent	to	git	stash	save.	A	stash	is	by	default	listed	as
"WIP	on	branchname	…",	but	you	can	give	a	more	descriptive	message
on	the	command	line	when	you	create	one.

The	latest	stash	you	created	is	stored	in	refs/stash;	older	stashes	are
found	in	the	reflog	of	this	reference	and	can	be	named	using	the	usual
reflog	syntax	(e.g.	stash@{0}	is	the	most	recently	created	stash,
stash@{1}	is	the	one	before	it,	stash@{2.hours.ago}	is	also	possible).

OPTIONS

save	[-p|--patch]	[-k|--[no-]keep-index]	[-u|--include-untracked]	[-a|--all]	[-
q|--quiet]	[<message>]

Save	your	local	modifications	to	a	new	stash,	and	run	git	reset	--hard
to	revert	them.	The	<message>	part	is	optional	and	gives	the
description	along	with	the	stashed	state.	For	quickly	making	a
snapshot,	you	can	omit	both	"save"	and	<message>,	but	giving	only
<message>	does	not	trigger	this	action	to	prevent	a	misspelled
subcommand	from	making	an	unwanted	stash.

If	the	--keep-index	option	is	used,	all	changes	already	added	to	the
index	are	left	intact.

If	the	--include-untracked	option	is	used,	all	untracked	files	are	also
stashed	and	then	cleaned	up	with	git	clean,	leaving	the	working
directory	in	a	very	clean	state.	If	the	--all	option	is	used	instead	then
the	ignored	files	are	stashed	and	cleaned	in	addition	to	the
untracked	files.

With	--patch,	you	can	interactively	select	hunks	from	the	diff	between
HEAD	and	the	working	tree	to	be	stashed.	The	stash	entry	is
constructed	such	that	its	index	state	is	the	same	as	the	index	state	of



your	repository,	and	its	worktree	contains	only	the	changes	you
selected	interactively.	The	selected	changes	are	then	rolled	back
from	your	worktree.	See	the	Interactive	Mode	section	of
Section	G.3.2,	“git-add(1)”	to	learn	how	to	operate	the	--patch	mode.

The	--patch	option	implies	--keep-index.	You	can	use	--no-keep-
index	to	override	this.

list	[<options>]

List	the	stashes	that	you	currently	have.	Each	stash	is	listed	with	its
name	(e.g.	stash@{0}	is	the	latest	stash,	stash@{1}	is	the	one
before,	etc.),	the	name	of	the	branch	that	was	current	when	the
stash	was	made,	and	a	short	description	of	the	commit	the	stash
was	based	on.

stash@{0}:	WIP	on	submit:	6ebd0e2...	Update	git-stash	documentation

stash@{1}:	On	master:	9cc0589...	Add	git-stash

The	command	takes	options	applicable	to	the	git	log	command	to
control	what	is	shown	and	how.	See	Section	G.3.68,	“git-log(1)”.

show	[<stash>]
Show	the	changes	recorded	in	the	stash	as	a	diff	between	the
stashed	state	and	its	original	parent.	When	no	<stash>	is	given,
shows	the	latest	one.	By	default,	the	command	shows	the	diffstat,
but	it	will	accept	any	format	known	to	git	diff	(e.g.,	git	stash	show	-p
stash@{1}	to	view	the	second	most	recent	stash	in	patch	form).	You
can	use	stash.showStat	and/or	stash.showPatch	config	variables	to
change	the	default	behavior.

pop	[--index]	[-q|--quiet]	[<stash>]

Remove	a	single	stashed	state	from	the	stash	list	and	apply	it	on	top
of	the	current	working	tree	state,	i.e.,	do	the	inverse	operation	of	git
stash	save.	The	working	directory	must	match	the	index.

Applying	the	state	can	fail	with	conflicts;	in	this	case,	it	is	not



removed	from	the	stash	list.	You	need	to	resolve	the	conflicts	by
hand	and	call	git	stash	drop	manually	afterwards.

If	the	--index	option	is	used,	then	tries	to	reinstate	not	only	the
working	tree's	changes,	but	also	the	index's	ones.	However,	this	can
fail,	when	you	have	conflicts	(which	are	stored	in	the	index,	where
you	therefore	can	no	longer	apply	the	changes	as	they	were
originally).

When	no	<stash>	is	given,	stash@{0}	is	assumed,	otherwise
<stash>	must	be	a	reference	of	the	form	stash@{<revision>}.

apply	[--index]	[-q|--quiet]	[<stash>]
Like	pop,	but	do	not	remove	the	state	from	the	stash	list.	Unlike	pop,
<stash>	may	be	any	commit	that	looks	like	a	commit	created	by
stash	save	or	stash	create.

branch	<branchname>	[<stash>]

Creates	and	checks	out	a	new	branch	named	<branchname>
starting	from	the	commit	at	which	the	<stash>	was	originally	created,
applies	the	changes	recorded	in	<stash>	to	the	new	working	tree
and	index.	If	that	succeeds,	and	<stash>	is	a	reference	of	the	form
stash@{<revision>},	it	then	drops	the	<stash>.	When	no	<stash>	is
given,	applies	the	latest	one.

This	is	useful	if	the	branch	on	which	you	ran	git	stash	save	has
changed	enough	that	git	stash	apply	fails	due	to	conflicts.	Since	the
stash	is	applied	on	top	of	the	commit	that	was	HEAD	at	the	time	git
stash	was	run,	it	restores	the	originally	stashed	state	with	no
conflicts.

clear
Remove	all	the	stashed	states.	Note	that	those	states	will	then	be
subject	to	pruning,	and	may	be	impossible	to	recover	(see	Examples
below	for	a	possible	strategy).

drop	[-q|--quiet]	[<stash>]
Remove	a	single	stashed	state	from	the	stash	list.	When	no	<stash>
is	given,	it	removes	the	latest	one.	i.e.	stash@{0},	otherwise	<stash>



must	be	a	valid	stash	log	reference	of	the	form	stash@{<revision>}.
create

Create	a	stash	(which	is	a	regular	commit	object)	and	return	its
object	name,	without	storing	it	anywhere	in	the	ref	namespace.	This
is	intended	to	be	useful	for	scripts.	It	is	probably	not	the	command
you	want	to	use;	see	"save"	above.

store
Store	a	given	stash	created	via	git	stash	create	(which	is	a	dangling
merge	commit)	in	the	stash	ref,	updating	the	stash	reflog.	This	is
intended	to	be	useful	for	scripts.	It	is	probably	not	the	command	you
want	to	use;	see	"save"	above.

DISCUSSION

A	stash	is	represented	as	a	commit	whose	tree	records	the	state	of	the
working	directory,	and	its	first	parent	is	the	commit	at	HEAD	when	the
stash	was	created.	The	tree	of	the	second	parent	records	the	state	of	the
index	when	the	stash	is	made,	and	it	is	made	a	child	of	the	HEAD
commit.	The	ancestry	graph	looks	like	this:

							.----W

						/				/

-----H----I

where	H	is	the	HEAD	commit,	I	is	a	commit	that	records	the	state	of	the
index,	and	W	is	a	commit	that	records	the	state	of	the	working	tree.

EXAMPLES

Pulling	into	a	dirty	tree

When	you	are	in	the	middle	of	something,	you	learn	that	there	are
upstream	changes	that	are	possibly	relevant	to	what	you	are	doing.
When	your	local	changes	do	not	conflict	with	the	changes	in	the
upstream,	a	simple	git	pull	will	let	you	move	forward.

However,	there	are	cases	in	which	your	local	changes	do	conflict
with	the	upstream	changes,	and	git	pull	refuses	to	overwrite	your



changes.	In	such	a	case,	you	can	stash	your	changes	away,	perform
a	pull,	and	then	unstash,	like	this:

$	git	pull

	...

file	foobar	not	up	to	date,	cannot	merge.

$	git	stash

$	git	pull

$	git	stash	pop

Interrupted	workflow

When	you	are	in	the	middle	of	something,	your	boss	comes	in	and
demands	that	you	fix	something	immediately.	Traditionally,	you
would	make	a	commit	to	a	temporary	branch	to	store	your	changes
away,	and	return	to	your	original	branch	to	make	the	emergency	fix,
like	this:

#	...	hack	hack	hack	...

$	git	checkout	-b	my_wip

$	git	commit	-a	-m	"WIP"

$	git	checkout	master

$	edit	emergency	fix

$	git	commit	-a	-m	"Fix	in	a	hurry"

$	git	checkout	my_wip

$	git	reset	--soft	HEAD^

#	...	continue	hacking	...

You	can	use	git	stash	to	simplify	the	above,	like	this:

#	...	hack	hack	hack	...

$	git	stash

$	edit	emergency	fix

$	git	commit	-a	-m	"Fix	in	a	hurry"

$	git	stash	pop

#	...	continue	hacking	...

Testing	partial	commits

You	can	use	git	stash	save	--keep-index	when	you	want	to	make	two
or	more	commits	out	of	the	changes	in	the	work	tree,	and	you	want



to	test	each	change	before	committing:

#	...	hack	hack	hack	...

$	git	add	--patch	foo												#	add	just	first	part	to	the	index

$	git	stash	save	--keep-index				#	save	all	other	changes	to	the	stash

$	edit/build/test	first	part

$	git	commit	-m	'First	part'					#	commit	fully	tested	change

$	git	stash	pop																		#	prepare	to	work	on	all	other	changes

#	...	repeat	above	five	steps	until	one	commit	remains	...

$	edit/build/test	remaining	parts

$	git	commit	foo	-m	'Remaining	parts'

Recovering	stashes	that	were	cleared/dropped	erroneously

If	you	mistakenly	drop	or	clear	stashes,	they	cannot	be	recovered
through	the	normal	safety	mechanisms.	However,	you	can	try	the
following	incantation	to	get	a	list	of	stashes	that	are	still	in	your
repository,	but	not	reachable	any	more:

git	fsck	--unreachable	|

grep	commit	|	cut	-d\		-f3	|

xargs	git	log	--merges	--no-walk	--grep=WIP

SEE	ALSO

Section	G.3.18,	“git-checkout(1)”,	Section	G.3.26,	“git-commit(1)”,
Section	G.3.101,	“git-reflog(1)”,	Section	G.3.111,	“git-reset(1)”

GIT

Part	of	the	Section	G.3.1,	“git(1)”	suite

G.3.129.	git-status(1)

NAME

git-status	-	Show	the	working	tree	status



SYNOPSIS

git	status	[<options>…]	[--]	[<pathspec>…]

DESCRIPTION

Displays	paths	that	have	differences	between	the	index	file	and	the
current	HEAD	commit,	paths	that	have	differences	between	the	working
tree	and	the	index	file,	and	paths	in	the	working	tree	that	are	not	tracked
by	Git	(and	are	not	ignored	by	Section	G.4.5,	“gitignore(5)”).	The	first	are
what	you	would	commit	by	running	git	commit;	the	second	and	third	are
what	you	could	commit	by	running	git	add	before	running	git	commit.

OPTIONS

-s	,	--short
Give	the	output	in	the	short-format.

-b	,	--branch
Show	the	branch	and	tracking	info	even	in	short-format.

--porcelain
Give	the	output	in	an	easy-to-parse	format	for	scripts.	This	is	similar
to	the	short	output,	but	will	remain	stable	across	Git	versions	and
regardless	of	user	configuration.	See	below	for	details.

--long
Give	the	output	in	the	long-format.	This	is	the	default.

-v	,	--verbose
In	addition	to	the	names	of	files	that	have	been	changed,	also	show
the	textual	changes	that	are	staged	to	be	committed	(i.e.,	like	the
output	of	git	diff	--cached).	If	-v	is	specified	twice,	then	also	show	the
changes	in	the	working	tree	that	have	not	yet	been	staged	(i.e.,	like
the	output	of	git	diff).

-u[<mode>]	,	--untracked-files[=<mode>]

Show	untracked	files.

The	mode	parameter	is	used	to	specify	the	handling	of	untracked



files.	It	is	optional:	it	defaults	to	all,	and	if	specified,	it	must	be	stuck
to	the	option	(e.g.	-uno,	but	not	-u	no).

The	possible	options	are:

no	-	Show	no	untracked	files.
normal	-	Shows	untracked	files	and	directories.

all	-	Also	shows	individual	files	in	untracked	directories.

When	-u	option	is	not	used,	untracked	files	and	directories	are
shown	(i.e.	the	same	as	specifying	normal),	to	help	you	avoid
forgetting	to	add	newly	created	files.	Because	it	takes	extra	work
to	find	untracked	files	in	the	filesystem,	this	mode	may	take
some	time	in	a	large	working	tree.	Consider	enabling	untracked
cache	and	split	index	if	supported	(see	git	update-index	--
untracked-cache	and	git	update-index	--split-index),	Otherwise
you	can	use	no	to	have	git	status	return	more	quickly	without
showing	untracked	files.

The	default	can	be	changed	using	the
status.showUntrackedFiles	configuration	variable	documented
in	Section	G.3.27,	“git-config(1)”.

--ignore-submodules[=<when>]
Ignore	changes	to	submodules	when	looking	for	changes.	<when>
can	be	either	"none",	"untracked",	"dirty"	or	"all",	which	is	the	default.
Using	"none"	will	consider	the	submodule	modified	when	it	either
contains	untracked	or	modified	files	or	its	HEAD	differs	from	the
commit	recorded	in	the	superproject	and	can	be	used	to	override	any
settings	of	the	ignore	option	in	Section	G.3.27,	“git-config(1)”	or
Section	G.4.8,	“gitmodules(5)”.	When	"untracked"	is	used
submodules	are	not	considered	dirty	when	they	only	contain
untracked	content	(but	they	are	still	scanned	for	modified	content).
Using	"dirty"	ignores	all	changes	to	the	work	tree	of	submodules,
only	changes	to	the	commits	stored	in	the	superproject	are	shown
(this	was	the	behavior	before	1.7.0).	Using	"all"	hides	all	changes	to
submodules	(and	suppresses	the	output	of	submodule	summaries



when	the	config	option	status.submoduleSummary	is	set).
--ignored

Show	ignored	files	as	well.
-z

Terminate	entries	with	NUL,	instead	of	LF.	This	implies	the	--
porcelain	output	format	if	no	other	format	is	given.

--column[=<options>]	,	--no-column
Display	untracked	files	in	columns.	See	configuration	variable
column.status	for	option	syntax.--column	and	--no-column	without
options	are	equivalent	to	always	and	never	respectively.

OUTPUT

The	output	from	this	command	is	designed	to	be	used	as	a	commit
template	comment.	The	default,	long	format,	is	designed	to	be	human
readable,	verbose	and	descriptive.	Its	contents	and	format	are	subject	to
change	at	any	time.

The	paths	mentioned	in	the	output,	unlike	many	other	Git	commands,	are
made	relative	to	the	current	directory	if	you	are	working	in	a	subdirectory
(this	is	on	purpose,	to	help	cutting	and	pasting).	See	the
status.relativePaths	config	option	below.



1.	Short	Format

In	the	short-format,	the	status	of	each	path	is	shown	as

XY	PATH1	->	PATH2

where	PATH1	is	the	path	in	the	HEAD,	and	the	"	->	PATH2"	part	is	shown
only	when	PATH1	corresponds	to	a	different	path	in	the	index/worktree
(i.e.	the	file	is	renamed).	The	XY	is	a	two-letter	status	code.

The	fields	(including	the	->)	are	separated	from	each	other	by	a	single
space.	If	a	filename	contains	whitespace	or	other	nonprintable
characters,	that	field	will	be	quoted	in	the	manner	of	a	C	string	literal:
surrounded	by	ASCII	double	quote	(34)	characters,	and	with	interior
special	characters	backslash-escaped.

For	paths	with	merge	conflicts,	X	and	Y	show	the	modification	states	of
each	side	of	the	merge.	For	paths	that	do	not	have	merge	conflicts,	X
shows	the	status	of	the	index,	and	Y	shows	the	status	of	the	work	tree.
For	untracked	paths,	XY	are	??.	Other	status	codes	can	be	interpreted	as
follows:

'	'	=	unmodified
M	=	modified
A	=	added
D	=	deleted
R	=	renamed
C	=	copied
U	=	updated	but	unmerged

Ignored	files	are	not	listed,	unless	--ignored	option	is	in	effect,	in	which
case	XY	are	!!.

X										Y					Meaning

-------------------------------------------------

										[MD]			not	updated

M								[	MD]			updated	in	index

A								[	MD]			added	to	index

D									[	M]			deleted	from	index

R								[	MD]			renamed	in	index

C								[	MD]			copied	in	index



[MARC]											index	and	work	tree	matches

[	MARC]					M				work	tree	changed	since	index

[	MARC]					D				deleted	in	work	tree

-------------------------------------------------

D											D				unmerged,	both	deleted

A											U				unmerged,	added	by	us

U											D				unmerged,	deleted	by	them

U											A				unmerged,	added	by	them

D											U				unmerged,	deleted	by	us

A											A				unmerged,	both	added

U											U				unmerged,	both	modified

-------------------------------------------------

?											?				untracked

!											!				ignored

-------------------------------------------------

If	-b	is	used	the	short-format	status	is	preceded	by	a	line

##	branchname	tracking	info



2.	Porcelain	Format

The	porcelain	format	is	similar	to	the	short	format,	but	is	guaranteed	not
to	change	in	a	backwards-incompatible	way	between	Git	versions	or
based	on	user	configuration.	This	makes	it	ideal	for	parsing	by	scripts.
The	description	of	the	short	format	above	also	describes	the	porcelain
format,	with	a	few	exceptions:

1.	 The	user's	color.status	configuration	is	not	respected;	color	will
always	be	off.

2.	 The	user's	status.relativePaths	configuration	is	not	respected;	paths
shown	will	always	be	relative	to	the	repository	root.

There	is	also	an	alternate	-z	format	recommended	for	machine	parsing.
In	that	format,	the	status	field	is	the	same,	but	some	other	things	change.
First,	the	->	is	omitted	from	rename	entries	and	the	field	order	is	reversed
(e.g	from	->	to	becomes	to	from).	Second,	a	NUL	(ASCII	0)	follows	each
filename,	replacing	space	as	a	field	separator	and	the	terminating
newline	(but	a	space	still	separates	the	status	field	from	the	first
filename).	Third,	filenames	containing	special	characters	are	not	specially
formatted;	no	quoting	or	backslash-escaping	is	performed.

CONFIGURATION

The	command	honors	color.status	(or	status.color	--	they	mean	the	same
thing	and	the	latter	is	kept	for	backward	compatibility)	and	color.status.
<slot>	configuration	variables	to	colorize	its	output.

If	the	config	variable	status.relativePaths	is	set	to	false,	then	all	paths
shown	are	relative	to	the	repository	root,	not	to	the	current	directory.

If	status.submoduleSummary	is	set	to	a	non	zero	number	or	true
(identical	to	-1	or	an	unlimited	number),	the	submodule	summary	will	be
enabled	for	the	long	format	and	a	summary	of	commits	for	modified
submodules	will	be	shown	(see	--summary-limit	option	of
Section	G.3.131,	“git-submodule(1)”).	Please	note	that	the	summary



output	from	the	status	command	will	be	suppressed	for	all	submodules
when	diff.ignoreSubmodules	is	set	to	all	or	only	for	those	submodules
where	submodule.<name>.ignore=all.	To	also	view	the	summary	for
ignored	submodules	you	can	either	use	the	--ignore-submodules=dirty
command	line	option	or	the	git	submodule	summary	command,	which
shows	a	similar	output	but	does	not	honor	these	settings.

SEE	ALSO

Section	G.4.5,	“gitignore(5)”

GIT

Part	of	the	Section	G.3.1,	“git(1)”	suite

G.3.130.	git-stripspace(1)

NAME

git-stripspace	-	Remove	unnecessary	whitespace

SYNOPSIS

git	stripspace	[-s	|	--strip-comments]

git	stripspace	[-c	|	--comment-lines]

DESCRIPTION

Read	text,	such	as	commit	messages,	notes,	tags	and	branch
descriptions,	from	the	standard	input	and	clean	it	in	the	manner	used	by
Git.

With	no	arguments,	this	will:

remove	trailing	whitespace	from	all	lines
collapse	multiple	consecutive	empty	lines	into	one	empty	line



remove	empty	lines	from	the	beginning	and	end	of	the	input
add	a	missing	\n	to	the	last	line	if	necessary.

In	the	case	where	the	input	consists	entirely	of	whitespace	characters,	no
output	will	be	produced.

NOTE:	This	is	intended	for	cleaning	metadata,	prefer	the	--
whitespace=fix	mode	of	Section	G.3.5,	“git-apply(1)”	for	correcting
whitespace	of	patches	or	files	in	the	repository.

OPTIONS

-s	,	--strip-comments
Skip	and	remove	all	lines	starting	with	comment	character	(default
#).

-c	,	--comment-lines
Prepend	comment	character	and	blank	to	each	line.	Lines	will
automatically	be	terminated	with	a	newline.	On	empty	lines,	only	the
comment	character	will	be	prepended.

EXAMPLES

Given	the	following	noisy	input	with	$	indicating	the	end	of	a	line:

|A	brief	introduction			$

|			$

|$

|A	new	paragraph$

|#	with	a	commented-out	line				$

|explaining	lots	of	stuff.$

|$

|#	An	old	paragraph,	also	commented-out.	$

|						$

|The	end.$

|		$

Use	git	stripspace	with	no	arguments	to	obtain:

|A	brief	introduction$



|$

|A	new	paragraph$

|#	with	a	commented-out	line$

|explaining	lots	of	stuff.$

|$

|#	An	old	paragraph,	also	commented-out.$

|$

|The	end.$

Use	git	stripspace	--strip-comments	to	obtain:

|A	brief	introduction$

|$

|A	new	paragraph$

|explaining	lots	of	stuff.$

|$

|The	end.$

GIT

Part	of	the	Section	G.3.1,	“git(1)”	suite

G.3.131.	git-submodule(1)

NAME

git-submodule	-	Initialize,	update	or	inspect	submodules

SYNOPSIS

git	submodule	[--quiet]	add	[-b	<branch>]	[-f|--force]	[--

name	<name>]

														[--reference	<repository>]	[--depth	<depth>]	[-

-]	<repository>	[<path>]

git	submodule	[--quiet]	status	[--cached]	[--recursive]	[--

]	[<path>…]

git	submodule	[--quiet]	init	[--]	[<path>…]

git	submodule	[--quiet]	deinit	[-f|--force]	[--]	<path>…

git	submodule	[--quiet]	update	[--init]	[--remote]	[-N|--no-

fetch]



														[-f|--force]	[--rebase|--merge]	[--

reference	<repository>]

														[--depth	<depth>]	[--recursive]	[--jobs	<n>]	[-

-]	[<path>…]

git	submodule	[--quiet]	summary	[--cached|--files]	[(-n|--

summary-limit)	<n>]

														[commit]	[--]	[<path>…]

git	submodule	[--quiet]	foreach	[--recursive]	<command>

git	submodule	[--quiet]	sync	[--recursive]	[--]	[<path>…]

DESCRIPTION

Inspects,	updates	and	manages	submodules.

A	submodule	allows	you	to	keep	another	Git	repository	in	a	subdirectory
of	your	repository.	The	other	repository	has	its	own	history,	which	does
not	interfere	with	the	history	of	the	current	repository.	This	can	be	used	to
have	external	dependencies	such	as	third	party	libraries	for	example.

When	cloning	or	pulling	a	repository	containing	submodules	however,
these	will	not	be	checked	out	by	default;	the	init	and	update
subcommands	will	maintain	submodules	checked	out	and	at	appropriate
revision	in	your	working	tree.

Submodules	are	composed	from	a	so-called	gitlink	tree	entry	in	the	main
repository	that	refers	to	a	particular	commit	object	within	the	inner
repository	that	is	completely	separate.	A	record	in	the	.gitmodules	(see
Section	G.4.8,	“gitmodules(5)”)	file	at	the	root	of	the	source	tree	assigns
a	logical	name	to	the	submodule	and	describes	the	default	URL	the
submodule	shall	be	cloned	from.	The	logical	name	can	be	used	for
overriding	this	URL	within	your	local	repository	configuration	(see
submodule	init).

Submodules	are	not	to	be	confused	with	remotes,	which	are	other
repositories	of	the	same	project;	submodules	are	meant	for	different
projects	you	would	like	to	make	part	of	your	source	tree,	while	the	history
of	the	two	projects	still	stays	completely	independent	and	you	cannot
modify	the	contents	of	the	submodule	from	within	the	main	project.	If	you
want	to	merge	the	project	histories	and	want	to	treat	the	aggregated



whole	as	a	single	project	from	then	on,	you	may	want	to	add	a	remote	for
the	other	project	and	use	the	subtree	merge	strategy,	instead	of	treating
the	other	project	as	a	submodule.	Directories	that	come	from	both
projects	can	be	cloned	and	checked	out	as	a	whole	if	you	choose	to	go
that	route.

COMMANDS

add

Add	the	given	repository	as	a	submodule	at	the	given	path	to	the
changeset	to	be	committed	next	to	the	current	project:	the	current
project	is	termed	the	"superproject".

This	requires	at	least	one	argument:	<repository>.	The	optional
argument	<path>	is	the	relative	location	for	the	cloned	submodule	to
exist	in	the	superproject.	If	<path>	is	not	given,	the	"humanish"	part
of	the	source	repository	is	used	("repo"	for	"/path/to/repo.git"	and
"foo"	for	"host.xz:foo/.git").	The	<path>	is	also	used	as	the
submodule's	logical	name	in	its	configuration	entries	unless	--name
is	used	to	specify	a	logical	name.

<repository>	is	the	URL	of	the	new	submodule's	origin	repository.
This	may	be	either	an	absolute	URL,	or	(if	it	begins	with	./	or	../),	the
location	relative	to	the	superproject's	origin	repository	(Please	note
that	to	specify	a	repository	foo.git	which	is	located	right	next	to	a
superproject	bar.git,	you'll	have	to	use	../foo.git	instead	of	./foo.git	-
as	one	might	expect	when	following	the	rules	for	relative	URLs	-
because	the	evaluation	of	relative	URLs	in	Git	is	identical	to	that	of
relative	directories).	If	the	superproject	doesn't	have	an	origin
configured	the	superproject	is	its	own	authoritative	upstream	and	the
current	working	directory	is	used	instead.

<path>	is	the	relative	location	for	the	cloned	submodule	to	exist	in
the	superproject.	If	<path>	does	not	exist,	then	the	submodule	is
created	by	cloning	from	the	named	URL.	If	<path>	does	exist	and	is
already	a	valid	Git	repository,	then	this	is	added	to	the	changeset



without	cloning.	This	second	form	is	provided	to	ease	creating	a	new
submodule	from	scratch,	and	presumes	the	user	will	later	push	the
submodule	to	the	given	URL.

In	either	case,	the	given	URL	is	recorded	into	.gitmodules	for	use	by
subsequent	users	cloning	the	superproject.	If	the	URL	is	given
relative	to	the	superproject's	repository,	the	presumption	is	the
superproject	and	submodule	repositories	will	be	kept	together	in	the
same	relative	location,	and	only	the	superproject's	URL	needs	to	be
provided:	git-submodule	will	correctly	locate	the	submodule	using	the
relative	URL	in	.gitmodules.

status

Show	the	status	of	the	submodules.	This	will	print	the	SHA-1	of	the
currently	checked	out	commit	for	each	submodule,	along	with	the
submodule	path	and	the	output	of	git	describe	for	the	SHA-1.	Each
SHA-1	will	be	prefixed	with	-	if	the	submodule	is	not	initialized,	+	if
the	currently	checked	out	submodule	commit	does	not	match	the
SHA-1	found	in	the	index	of	the	containing	repository	and	U	if	the
submodule	has	merge	conflicts.

If	--recursive	is	specified,	this	command	will	recurse	into	nested
submodules,	and	show	their	status	as	well.

If	you	are	only	interested	in	changes	of	the	currently	initialized
submodules	with	respect	to	the	commit	recorded	in	the	index	or	the
HEAD,	Section	G.3.129,	“git-status(1)”	and	Section	G.3.41,	“git-
diff(1)”	will	provide	that	information	too	(and	can	also	report	changes
to	a	submodule's	work	tree).

init
Initialize	the	submodules	recorded	in	the	index	(which	were	added
and	committed	elsewhere)	by	copying	submodule	names	and	urls
from	.gitmodules	to	.git/config.	Optional	<path>	arguments	limit
which	submodules	will	be	initialized.	It	will	also	copy	the	value	of
submodule.$name.update	into	.git/config.	The	key	used	in	.git/config
is	submodule.$name.url.	This	command	does	not	alter	existing



information	in	.git/config.	You	can	then	customize	the	submodule
clone	URLs	in	.git/config	for	your	local	setup	and	proceed	to	git
submodule	update;	you	can	also	just	use	git	submodule	update	--init
without	the	explicit	init	step	if	you	do	not	intend	to	customize	any
submodule	locations.

deinit

Unregister	the	given	submodules,	i.e.	remove	the	whole
submodule.$name	section	from	.git/config	together	with	their	work
tree.	Further	calls	to	git	submodule	update,	git	submodule	foreach
and	git	submodule	sync	will	skip	any	unregistered	submodules	until
they	are	initialized	again,	so	use	this	command	if	you	don't	want	to
have	a	local	checkout	of	the	submodule	in	your	work	tree	anymore.	If
you	really	want	to	remove	a	submodule	from	the	repository	and
commit	that	use	Section	G.3.115,	“git-rm(1)”	instead.

If	--force	is	specified,	the	submodule's	work	tree	will	be	removed
even	if	it	contains	local	modifications.

update

Update	the	registered	submodules	to	match	what	the	superproject
expects	by	cloning	missing	submodules	and	updating	the	working
tree	of	the	submodules.	The	"updating"	can	be	done	in	several	ways
depending	on	command	line	options	and	the	value	of	submodule.
<name>.update	configuration	variable.	Supported	update
procedures	are:

checkout

the	commit	recorded	in	the	superproject	will	be	checked	out	in
the	submodule	on	a	detached	HEAD.	This	is	done	when	--
checkout	option	is	given,	or	no	option	is	given,	and	submodule.
<name>.update	is	unset,	or	if	it	is	set	to	checkout.

If	--force	is	specified,	the	submodule	will	be	checked	out	(using
git	checkout	--force	if	appropriate),	even	if	the	commit	specified
in	the	index	of	the	containing	repository	already	matches	the



commit	checked	out	in	the	submodule.

rebase
the	current	branch	of	the	submodule	will	be	rebased	onto	the
commit	recorded	in	the	superproject.	This	is	done	when	--
rebase	option	is	given,	or	no	option	is	given,	and	submodule.
<name>.update	is	set	to	rebase.

merge
the	commit	recorded	in	the	superproject	will	be	merged	into	the
current	branch	in	the	submodule.	This	is	done	when	--merge
option	is	given,	or	no	option	is	given,	and	submodule.
<name>.update	is	set	to	merge.

custom	command
arbitrary	shell	command	that	takes	a	single	argument	(the	sha1
of	the	commit	recorded	in	the	superproject)	is	executed.	This	is
done	when	no	option	is	given,	and	submodule.<name>.update
has	the	form	of	!command.

When	no	option	is	given	and	submodule.<name>.update	is	set	to
none,	the	submodule	is	not	updated.

If	the	submodule	is	not	yet	initialized,	and	you	just	want	to	use	the
setting	as	stored	in	.gitmodules,	you	can	automatically	initialize	the
submodule	with	the	--init	option.

If	--recursive	is	specified,	this	command	will	recurse	into	the
registered	submodules,	and	update	any	nested	submodules	within.

summary

Show	commit	summary	between	the	given	commit	(defaults	to
HEAD)	and	working	tree/index.	For	a	submodule	in	question,	a
series	of	commits	in	the	submodule	between	the	given	super	project
commit	and	the	index	or	working	tree	(switched	by	--cached)	are
shown.	If	the	option	--files	is	given,	show	the	series	of	commits	in	the
submodule	between	the	index	of	the	super	project	and	the	working
tree	of	the	submodule	(this	option	doesn't	allow	to	use	the	--cached
option	or	to	provide	an	explicit	commit).



Using	the	--submodule=log	option	with	Section	G.3.41,	“git-diff(1)”
will	provide	that	information	too.

foreach

Evaluates	an	arbitrary	shell	command	in	each	checked	out
submodule.	The	command	has	access	to	the	variables	$name,
$path,	$sha1	and	$toplevel:	$name	is	the	name	of	the	relevant
submodule	section	in	.gitmodules,	$path	is	the	name	of	the
submodule	directory	relative	to	the	superproject,	$sha1	is	the	commit
as	recorded	in	the	superproject,	and	$toplevel	is	the	absolute	path	to
the	top-level	of	the	superproject.	Any	submodules	defined	in	the
superproject	but	not	checked	out	are	ignored	by	this	command.
Unless	given	--quiet,	foreach	prints	the	name	of	each	submodule
before	evaluating	the	command.	If	--recursive	is	given,	submodules
are	traversed	recursively	(i.e.	the	given	shell	command	is	evaluated
in	nested	submodules	as	well).	A	non-zero	return	from	the	command
in	any	submodule	causes	the	processing	to	terminate.	This	can	be
overridden	by	adding	||	:	to	the	end	of	the	command.

As	an	example,	git	submodule	foreach	'echo	$path	`git	rev-parse
HEAD`'	will	show	the	path	and	currently	checked	out	commit	for	each
submodule.

sync

Synchronizes	submodules'	remote	URL	configuration	setting	to	the
value	specified	in	.gitmodules.	It	will	only	affect	those	submodules
which	already	have	a	URL	entry	in	.git/config	(that	is	the	case	when
they	are	initialized	or	freshly	added).	This	is	useful	when	submodule
URLs	change	upstream	and	you	need	to	update	your	local
repositories	accordingly.

"git	submodule	sync"	synchronizes	all	submodules	while	"git
submodule	sync	--	A"	synchronizes	submodule	"A"	only.

If	--recursive	is	specified,	this	command	will	recurse	into	the
registered	submodules,	and	sync	any	nested	submodules	within.



OPTIONS

-q	,	--quiet
Only	print	error	messages.

-b	,	--branch
Branch	of	repository	to	add	as	submodule.	The	name	of	the	branch
is	recorded	as	submodule.<name>.branch	in	.gitmodules	for	update
--remote.

-f	,	--force
This	option	is	only	valid	for	add,	deinit	and	update	commands.	When
running	add,	allow	adding	an	otherwise	ignored	submodule	path.
When	running	deinit	the	submodule	work	trees	will	be	removed	even
if	they	contain	local	changes.	When	running	update	(only	effective
with	the	checkout	procedure),	throw	away	local	changes	in
submodules	when	switching	to	a	different	commit;	and	always	run	a
checkout	operation	in	the	submodule,	even	if	the	commit	listed	in	the
index	of	the	containing	repository	matches	the	commit	checked	out
in	the	submodule.

--cached
This	option	is	only	valid	for	status	and	summary	commands.	These
commands	typically	use	the	commit	found	in	the	submodule	HEAD,
but	with	this	option,	the	commit	stored	in	the	index	is	used	instead.

--files
This	option	is	only	valid	for	the	summary	command.	This	command
compares	the	commit	in	the	index	with	that	in	the	submodule	HEAD
when	this	option	is	used.

-n	,	--summary-limit
This	option	is	only	valid	for	the	summary	command.	Limit	the
summary	size	(number	of	commits	shown	in	total).	Giving	0	will
disable	the	summary;	a	negative	number	means	unlimited	(the
default).	This	limit	only	applies	to	modified	submodules.	The	size	is
always	limited	to	1	for	added/deleted/typechanged	submodules.

--remote

This	option	is	only	valid	for	the	update	command.	Instead	of	using
the	superproject's	recorded	SHA-1	to	update	the	submodule,	use	the
status	of	the	submodule's	remote-tracking	branch.	The	remote	used



is	branch's	remote	(branch.<name>.remote),	defaulting	to	origin.	The
remote	branch	used	defaults	to	master,	but	the	branch	name	may	be
overridden	by	setting	the	submodule.<name>.branch	option	in	either
.gitmodules	or	.git/config	(with	.git/config	taking	precedence).

This	works	for	any	of	the	supported	update	procedures	(--checkout,	-
-rebase,	etc.).	The	only	change	is	the	source	of	the	target	SHA-1.
For	example,	submodule	update	--remote	--merge	will	merge
upstream	submodule	changes	into	the	submodules,	while
submodule	update	--merge	will	merge	superproject	gitlink	changes
into	the	submodules.

In	order	to	ensure	a	current	tracking	branch	state,	update	--remote
fetches	the	submodule's	remote	repository	before	calculating	the
SHA-1.	If	you	don't	want	to	fetch,	you	should	use	submodule	update
--remote	--no-fetch.

Use	this	option	to	integrate	changes	from	the	upstream	subproject
with	your	submodule's	current	HEAD.	Alternatively,	you	can	run	git
pull	from	the	submodule,	which	is	equivalent	except	for	the	remote
branch	name:	update	--remote	uses	the	default	upstream	repository
and	submodule.<name>.branch,	while	git	pull	uses	the	submodule's
branch.<name>.merge.	Prefer	submodule.<name>.branch	if	you
want	to	distribute	the	default	upstream	branch	with	the	superproject
and	branch.<name>.merge	if	you	want	a	more	native	feel	while
working	in	the	submodule	itself.

-N	,	--no-fetch
This	option	is	only	valid	for	the	update	command.	Don't	fetch	new
objects	from	the	remote	site.

--checkout
This	option	is	only	valid	for	the	update	command.	Checkout	the
commit	recorded	in	the	superproject	on	a	detached	HEAD	in	the
submodule.	This	is	the	default	behavior,	the	main	use	of	this	option
is	to	override	submodule.$name.update	when	set	to	a	value	other
than	checkout.	If	the	key	submodule.$name.update	is	either	not
explicitly	set	or	set	to	checkout,	this	option	is	implicit.

--merge



This	option	is	only	valid	for	the	update	command.	Merge	the	commit
recorded	in	the	superproject	into	the	current	branch	of	the
submodule.	If	this	option	is	given,	the	submodule's	HEAD	will	not	be
detached.	If	a	merge	failure	prevents	this	process,	you	will	have	to
resolve	the	resulting	conflicts	within	the	submodule	with	the	usual
conflict	resolution	tools.	If	the	key	submodule.$name.update	is	set	to
merge,	this	option	is	implicit.

--rebase
This	option	is	only	valid	for	the	update	command.	Rebase	the	current
branch	onto	the	commit	recorded	in	the	superproject.	If	this	option	is
given,	the	submodule's	HEAD	will	not	be	detached.	If	a	merge	failure
prevents	this	process,	you	will	have	to	resolve	these	failures	with
Section	G.3.99,	“git-rebase(1)”.	If	the	key	submodule.$name.update
is	set	to	rebase,	this	option	is	implicit.

--init
This	option	is	only	valid	for	the	update	command.	Initialize	all
submodules	for	which	"git	submodule	init"	has	not	been	called	so	far
before	updating.

--name
This	option	is	only	valid	for	the	add	command.	It	sets	the
submodule's	name	to	the	given	string	instead	of	defaulting	to	its
path.	The	name	must	be	valid	as	a	directory	name	and	may	not	end
with	a	/.

--reference	<repository>

This	option	is	only	valid	for	add	and	update	commands.	These
commands	sometimes	need	to	clone	a	remote	repository.	In	this
case,	this	option	will	be	passed	to	the	Section	G.3.23,	“git-clone(1)”
command.

NOTE:	Do	not	use	this	option	unless	you	have	read	the	note	for
Section	G.3.23,	“git-clone(1)”'s	--reference	and	--shared	options
carefully.

--recursive
This	option	is	only	valid	for	foreach,	update,	status	and	sync
commands.	Traverse	submodules	recursively.	The	operation	is
performed	not	only	in	the	submodules	of	the	current	repo,	but	also	in



any	nested	submodules	inside	those	submodules	(and	so	on).
--depth

This	option	is	valid	for	add	and	update	commands.	Create	a	shallow
clone	with	a	history	truncated	to	the	specified	number	of	revisions.
See	Section	G.3.23,	“git-clone(1)”

-j	<n>	,	--jobs	<n>
This	option	is	only	valid	for	the	update	command.	Clone	new
submodules	in	parallel	with	as	many	jobs.	Defaults	to	the
submodule.fetchJobs	option.

<path>…
Paths	to	submodule(s).	When	specified	this	will	restrict	the	command
to	only	operate	on	the	submodules	found	at	the	specified	paths.
(This	argument	is	required	with	add).

FILES

When	initializing	submodules,	a	.gitmodules	file	in	the	top-level	directory
of	the	containing	repository	is	used	to	find	the	url	of	each	submodule.
This	file	should	be	formatted	in	the	same	way	as	$GIT_DIR/config.	The
key	to	each	submodule	url	is	"submodule.$name.url".	See	Section	G.4.8,
“gitmodules(5)”	for	details.

GIT

Part	of	the	Section	G.3.1,	“git(1)”	suite

G.3.132.	git-svn(1)

NAME

git-svn	-	Bidirectional	operation	between	a	Subversion	repository	and	Git

SYNOPSIS

git	svn	<command>	[options]	[arguments]



DESCRIPTION

git	svn	is	a	simple	conduit	for	changesets	between	Subversion	and	Git.	It
provides	a	bidirectional	flow	of	changes	between	a	Subversion	and	a	Git
repository.

git	svn	can	track	a	standard	Subversion	repository,	following	the	common
"trunk/branches/tags"	layout,	with	the	--stdlayout	option.	It	can	also	follow
branches	and	tags	in	any	layout	with	the	-T/-t/-b	options	(see	options	to
init	below,	and	also	the	clone	command).

Once	tracking	a	Subversion	repository	(with	any	of	the	above	methods),
the	Git	repository	can	be	updated	from	Subversion	by	the	fetch	command
and	Subversion	updated	from	Git	by	the	dcommit	command.

COMMANDS

init

Initializes	an	empty	Git	repository	with	additional	metadata
directories	for	git	svn.	The	Subversion	URL	may	be	specified	as	a
command-line	argument,	or	as	full	URL	arguments	to	-T/-t/-b.
Optionally,	the	target	directory	to	operate	on	can	be	specified	as	a
second	argument.	Normally	this	command	initializes	the	current
directory.

-T<trunk_subdir>	,	--trunk=<trunk_subdir>	,	-t<tags_subdir>	,	--tags=
<tags_subdir>	,	-b<branches_subdir>	,	--branches=
<branches_subdir>	,	-s	,	--stdlayout

These	are	optional	command-line	options	for	init.	Each	of	these
flags	can	point	to	a	relative	repository	path	(--tags=project/tags)
or	a	full	url	(--tags=https://foo.org/project/tags).	You	can	specify
more	than	one	--tags	and/or	--branches	options,	in	case	your
Subversion	repository	places	tags	or	branches	under	multiple
paths.	The	option	--stdlayout	is	a	shorthand	way	of	setting
trunk,tags,branches	as	the	relative	paths,	which	is	the
Subversion	default.	If	any	of	the	other	options	are	given	as	well,



they	take	precedence.
--no-metadata

Set	the	noMetadata	option	in	the	[svn-remote]	config.	This
option	is	not	recommended,	please	read	the	svn.noMetadata
section	of	this	manpage	before	using	this	option.

--use-svm-props
Set	the	useSvmProps	option	in	the	[svn-remote]	config.

--use-svnsync-props
Set	the	useSvnsyncProps	option	in	the	[svn-remote]	config.

--rewrite-root=<URL>
Set	the	rewriteRoot	option	in	the	[svn-remote]	config.

--rewrite-uuid=<UUID>
Set	the	rewriteUUID	option	in	the	[svn-remote]	config.

--username=<user>
For	transports	that	SVN	handles	authentication	for	(http,	https,
and	plain	svn),	specify	the	username.	For	other	transports	(e.g.
svn+ssh://),	you	must	include	the	username	in	the	URL,	e.g.
svn+ssh://foo@svn.bar.com/project

--prefix=<prefix>

This	allows	one	to	specify	a	prefix	which	is	prepended	to	the
names	of	remotes	if	trunk/branches/tags	are	specified.	The
prefix	does	not	automatically	include	a	trailing	slash,	so	be	sure
you	include	one	in	the	argument	if	that	is	what	you	want.	If	--
branches/-b	is	specified,	the	prefix	must	include	a	trailing	slash.
Setting	a	prefix	(with	a	trailing	slash)	is	strongly	encouraged	in
any	case,	as	your	SVN-tracking	refs	will	then	be	located	at
"refs/remotes/$prefix/",	which	is	compatible	with	Git's	own
remote-tracking	ref	layout	(refs/remotes/$remote/).	Setting	a
prefix	is	also	useful	if	you	wish	to	track	multiple	projects	that
share	a	common	repository.	By	default,	the	prefix	is	set	to
origin/.

Note

Before	Git	v2.0,	the	default	prefix	was	""	(no	prefix).
This	meant	that	SVN-tracking	refs	were	put	at



"refs/remotes/*",	which	is	incompatible	with	how	Git's
own	remote-tracking	refs	are	organized.	If	you	still
want	the	old	default,	you	can	get	it	by	passing	--
prefix	""	on	the	command	line	(--prefix=""	may	not
work	if	your	Perl's	Getopt::Long	is	<	v2.37).

--ignore-paths=<regex>
When	passed	to	init	or	clone	this	regular	expression	will	be
preserved	as	a	config	key.	See	fetch	for	a	description	of	--
ignore-paths.

--include-paths=<regex>
When	passed	to	init	or	clone	this	regular	expression	will	be
preserved	as	a	config	key.	See	fetch	for	a	description	of	--
include-paths.

--no-minimize-url
When	tracking	multiple	directories	(using	--stdlayout,	--
branches,	or	--tags	options),	git	svn	will	attempt	to	connect	to
the	root	(or	highest	allowed	level)	of	the	Subversion	repository.
This	default	allows	better	tracking	of	history	if	entire	projects	are
moved	within	a	repository,	but	may	cause	issues	on	repositories
where	read	access	restrictions	are	in	place.	Passing	--no-
minimize-url	will	allow	git	svn	to	accept	URLs	as-is	without
attempting	to	connect	to	a	higher	level	directory.	This	option	is
off	by	default	when	only	one	URL/branch	is	tracked	(it	would	do
little	good).

fetch

Fetch	unfetched	revisions	from	the	Subversion	remote	we	are
tracking.	The	name	of	the	[svn-remote	"…"]	section	in	the
$GIT_DIR/config	file	may	be	specified	as	an	optional	command-line
argument.

This	automatically	updates	the	rev_map	if	needed	(see
$GIT_DIR/svn/**/.rev_map.*	in	the	FILES	section	below	for	details).

--localtime



Store	Git	commit	times	in	the	local	time	zone	instead	of	UTC.
This	makes	git	log	(even	without	--date=local)	show	the	same
times	that	svn	log	would	in	the	local	time	zone.

This	doesn't	interfere	with	interoperating	with	the	Subversion
repository	you	cloned	from,	but	if	you	wish	for	your	local	Git
repository	to	be	able	to	interoperate	with	someone	else's	local
Git	repository,	either	don't	use	this	option	or	you	should	both	use
it	in	the	same	local	time	zone.

--parent
Fetch	only	from	the	SVN	parent	of	the	current	HEAD.

--ignore-paths=<regex>

This	allows	one	to	specify	a	Perl	regular	expression	that	will
cause	skipping	of	all	matching	paths	from	checkout	from	SVN.
The	--ignore-paths	option	should	match	for	every	fetch
(including	automatic	fetches	due	to	clone,	dcommit,	rebase,	etc)
on	a	given	repository.

config	key:	svn-remote.<name>.ignore-paths

If	the	ignore-paths	configuration	key	is	set,	and	the	command-
line	option	is	also	given,	both	regular	expressions	will	be	used.

Examples:

Skip	"doc*"	directory	for	every	fetch

--ignore-paths="^doc"

Skip	"branches"	and	"tags"	of	first	level	directories

--ignore-paths="^[^/]+/(?:branches|tags)"

--include-paths=<regex>

This	allows	one	to	specify	a	Perl	regular	expression	that	will
cause	the	inclusion	of	only	matching	paths	from	checkout	from



SVN.	The	--include-paths	option	should	match	for	every	fetch
(including	automatic	fetches	due	to	clone,	dcommit,	rebase,	etc)
on	a	given	repository.	--ignore-paths	takes	precedence	over	--
include-paths.

config	key:	svn-remote.<name>.include-paths

--log-window-size=<n>
Fetch	<n>	log	entries	per	request	when	scanning	Subversion
history.	The	default	is	100.	For	very	large	Subversion
repositories,	larger	values	may	be	needed	for	clone/fetch	to
complete	in	reasonable	time.	But	overly	large	values	may	lead
to	higher	memory	usage	and	request	timeouts.

clone

Runs	init	and	fetch.	It	will	automatically	create	a	directory	based	on
the	basename	of	the	URL	passed	to	it;	or	if	a	second	argument	is
passed;	it	will	create	a	directory	and	work	within	that.	It	accepts	all
arguments	that	the	init	and	fetch	commands	accept;	with	the
exception	of	--fetch-all	and	--parent.	After	a	repository	is	cloned,	the
fetch	command	will	be	able	to	update	revisions	without	affecting	the
working	tree;	and	the	rebase	command	will	be	able	to	update	the
working	tree	with	the	latest	changes.

--preserve-empty-dirs
Create	a	placeholder	file	in	the	local	Git	repository	for	each
empty	directory	fetched	from	Subversion.	This	includes
directories	that	become	empty	by	removing	all	entries	in	the
Subversion	repository	(but	not	the	directory	itself).	The
placeholder	files	are	also	tracked	and	removed	when	no	longer
necessary.

--placeholder-filename=<filename>
Set	the	name	of	placeholder	files	created	by	--preserve-empty-
dirs.	Default:	".gitignore"

rebase

This	fetches	revisions	from	the	SVN	parent	of	the	current	HEAD	and



rebases	the	current	(uncommitted	to	SVN)	work	against	it.

This	works	similarly	to	svn	update	or	git	pull	except	that	it	preserves
linear	history	with	git	rebase	instead	of	git	merge	for	ease	of
dcommitting	with	git	svn.

This	accepts	all	options	that	git	svn	fetch	and	git	rebase	accept.
However,	--fetch-all	only	fetches	from	the	current	[svn-remote],	and
not	all	[svn-remote]	definitions.

Like	git	rebase;	this	requires	that	the	working	tree	be	clean	and	have
no	uncommitted	changes.

This	automatically	updates	the	rev_map	if	needed	(see
$GIT_DIR/svn/**/.rev_map.*	in	the	FILES	section	below	for	details).

-l	,	--local
Do	not	fetch	remotely;	only	run	git	rebase	against	the	last
fetched	commit	from	the	upstream	SVN.

dcommit

Commit	each	diff	from	the	current	branch	directly	to	the	SVN
repository,	and	then	rebase	or	reset	(depending	on	whether	or	not
there	is	a	diff	between	SVN	and	head).	This	will	create	a	revision	in
SVN	for	each	commit	in	Git.

When	an	optional	Git	branch	name	(or	a	Git	commit	object	name)	is
specified	as	an	argument,	the	subcommand	works	on	the	specified
branch,	not	on	the	current	branch.

Use	of	dcommit	is	preferred	to	set-tree	(below).

--no-rebase
After	committing,	do	not	rebase	or	reset.

--commit-url	<URL>

Commit	to	this	SVN	URL	(the	full	path).	This	is	intended	to	allow
existing	git	svn	repositories	created	with	one	transport	method
(e.g.	svn://	or	http://	for	anonymous	read)	to	be	reused	if	a	user



is	later	given	access	to	an	alternate	transport	method	(e.g.
svn+ssh://	or	https://)	for	commit.

config	key:	svn-remote.<name>.commiturl

config	key:	svn.commiturl	(overwrites	all	svn-remote.

<name>.commiturl	options)

Note	that	the	SVN	URL	of	the	commiturl	config	key	includes	the
SVN	branch.	If	you	rather	want	to	set	the	commit	URL	for	an
entire	SVN	repository	use	svn-remote.<name>.pushurl	instead.

Using	this	option	for	any	other	purpose	(don't	ask)	is	very
strongly	discouraged.

--mergeinfo=<mergeinfo>

Add	the	given	merge	information	during	the	dcommit	(e.g.	--
mergeinfo="/branches/foo:1-10").	All	svn	server	versions	can
store	this	information	(as	a	property),	and	svn	clients	starting
from	version	1.5	can	make	use	of	it.	To	specify	merge
information	from	multiple	branches,	use	a	single	space
character	between	the	branches	(--mergeinfo="/branches/foo:1-
10	/branches/bar:3,5-6,8")

config	key:	svn.pushmergeinfo

This	option	will	cause	git-svn	to	attempt	to	automatically
populate	the	svn:mergeinfo	property	in	the	SVN	repository	when
possible.	Currently,	this	can	only	be	done	when	dcommitting
non-fast-forward	merges	where	all	parents	but	the	first	have
already	been	pushed	into	SVN.

--interactive

Ask	the	user	to	confirm	that	a	patch	set	should	actually	be	sent
to	SVN.	For	each	patch,	one	may	answer	"yes"	(accept	this
patch),	"no"	(discard	this	patch),	"all"	(accept	all	patches),	or
"quit".



git	svn	dcommit	returns	immediately	if	answer	is	"no"	or	"quit",
without	committing	anything	to	SVN.

branch

Create	a	branch	in	the	SVN	repository.

-m	,	--message
Allows	to	specify	the	commit	message.

-t	,	--tag
Create	a	tag	by	using	the	tags_subdir	instead	of	the
branches_subdir	specified	during	git	svn	init.

-d<path>	,	--destination=<path>

If	more	than	one	--branches	(or	--tags)	option	was	given	to	the
init	or	clone	command,	you	must	provide	the	location	of	the
branch	(or	tag)	you	wish	to	create	in	the	SVN	repository.	<path>
specifies	which	path	to	use	to	create	the	branch	or	tag	and
should	match	the	pattern	on	the	left-hand	side	of	one	of	the
configured	branches	or	tags	refspecs.	You	can	see	these
refspecs	with	the	commands

git	config	--get-all	svn-remote.<name>.branches

git	config	--get-all	svn-remote.<name>.tags

where	<name>	is	the	name	of	the	SVN	repository	as	specified
by	the	-R	option	to	init	(or	"svn"	by	default).

--username
Specify	the	SVN	username	to	perform	the	commit	as.	This
option	overrides	the	username	configuration	property.

--commit-url

Use	the	specified	URL	to	connect	to	the	destination	Subversion
repository.	This	is	useful	in	cases	where	the	source	SVN
repository	is	read-only.	This	option	overrides	configuration
property	commiturl.

git	config	--get-all	svn-remote.<name>.commiturl



--parents
Create	parent	folders.	This	parameter	is	equivalent	to	the
parameter	--parents	on	svn	cp	commands	and	is	useful	for	non-
standard	repository	layouts.

tag
Create	a	tag	in	the	SVN	repository.	This	is	a	shorthand	for	branch	-t.

log

This	should	make	it	easy	to	look	up	svn	log	messages	when	svn
users	refer	to	-r/--revision	numbers.

The	following	features	from	svn	log	are	supported:

-r	<n>[:<n>]	,	--revision=<n>[:<n>]
is	supported,	non-numeric	args	are	not:	HEAD,	NEXT,	BASE,
PREV,	etc	…

-v	,	--verbose
it's	not	completely	compatible	with	the	--verbose	output	in	svn
log,	but	reasonably	close.

--limit=<n>
is	NOT	the	same	as	--max-count,	doesn't	count
merged/excluded	commits

--incremental
supported

New	features:

--show-commit
shows	the	Git	commit	sha1,	as	well

--oneline
our	version	of	--pretty=oneline

Note

SVN	itself	only	stores	times	in	UTC	and	nothing	else.
The	regular	svn	client	converts	the	UTC	time	to	the	local
time	(or	based	on	the	TZ=	environment).	This	command



has	the	same	behaviour.

Any	other	arguments	are	passed	directly	to	git	log

blame

Show	what	revision	and	author	last	modified	each	line	of	a	file.	The
output	of	this	mode	is	format-compatible	with	the	output	of	svn	blame
by	default.	Like	the	SVN	blame	command,	local	uncommitted
changes	in	the	working	tree	are	ignored;	the	version	of	the	file	in	the
HEAD	revision	is	annotated.	Unknown	arguments	are	passed
directly	to	git	blame.

--git-format
Produce	output	in	the	same	format	as	git	blame,	but	with	SVN
revision	numbers	instead	of	Git	commit	hashes.	In	this	mode,
changes	that	haven't	been	committed	to	SVN	(including	local
working-copy	edits)	are	shown	as	revision	0.

find-rev

When	given	an	SVN	revision	number	of	the	form	rN,	returns	the
corresponding	Git	commit	hash	(this	can	optionally	be	followed	by	a
tree-ish	to	specify	which	branch	should	be	searched).	When	given	a
tree-ish,	returns	the	corresponding	SVN	revision	number.

-B	,	--before
Don't	require	an	exact	match	if	given	an	SVN	revision,	instead
find	the	commit	corresponding	to	the	state	of	the	SVN	repository
(on	the	current	branch)	at	the	specified	revision.

-A	,	--after
Don't	require	an	exact	match	if	given	an	SVN	revision;	if	there	is
not	an	exact	match	return	the	closest	match	searching	forward
in	the	history.

set-tree
You	should	consider	using	dcommit	instead	of	this	command.
Commit	specified	commit	or	tree	objects	to	SVN.	This	relies	on	your
imported	fetch	data	being	up-to-date.	This	makes	absolutely	no



attempts	to	do	patching	when	committing	to	SVN,	it	simply
overwrites	files	with	those	specified	in	the	tree	or	commit.	All
merging	is	assumed	to	have	taken	place	independently	of	git	svn
functions.

create-ignore
Recursively	finds	the	svn:ignore	property	on	directories	and	creates
matching	.gitignore	files.	The	resulting	files	are	staged	to	be
committed,	but	are	not	committed.	Use	-r/--revision	to	refer	to	a
specific	revision.

show-ignore
Recursively	finds	and	lists	the	svn:ignore	property	on	directories.
The	output	is	suitable	for	appending	to	the	$GIT_DIR/info/exclude
file.

mkdirs
Attempts	to	recreate	empty	directories	that	core	Git	cannot	track
based	on	information	in	$GIT_DIR/svn/<refname>/unhandled.log
files.	Empty	directories	are	automatically	recreated	when	using	"git
svn	clone"	and	"git	svn	rebase",	so	"mkdirs"	is	intended	for	use	after
commands	like	"git	checkout"	or	"git	reset".	(See	the	svn-remote.
<name>.automkdirs	config	file	option	for	more	information.)

commit-diff
Commits	the	diff	of	two	tree-ish	arguments	from	the	command-line.
This	command	does	not	rely	on	being	inside	an	git	svn	init-ed
repository.	This	command	takes	three	arguments,	(a)	the	original
tree	to	diff	against,	(b)	the	new	tree	result,	(c)	the	URL	of	the	target
Subversion	repository.	The	final	argument	(URL)	may	be	omitted	if
you	are	working	from	a	git	svn-aware	repository	(that	has	been	init-
ed	with	git	svn).	The	-r<revision>	option	is	required	for	this.

info
Shows	information	about	a	file	or	directory	similar	to	what	svn	info
provides.	Does	not	currently	support	a	-r/--revision	argument.	Use
the	--url	option	to	output	only	the	value	of	the	URL:	field.

proplist
Lists	the	properties	stored	in	the	Subversion	repository	about	a	given
file	or	directory.	Use	-r/--revision	to	refer	to	a	specific	Subversion
revision.

propget



Gets	the	Subversion	property	given	as	the	first	argument,	for	a	file.	A
specific	revision	can	be	specified	with	-r/--revision.

show-externals
Shows	the	Subversion	externals.	Use	-r/--revision	to	specify	a
specific	revision.

gc
Compress	$GIT_DIR/svn/<refname>/unhandled.log	files	and	remove
$GIT_DIR/svn/<refname>/index	files.

reset

Undoes	the	effects	of	fetch	back	to	the	specified	revision.	This	allows
you	to	re-fetch	an	SVN	revision.	Normally	the	contents	of	an	SVN
revision	should	never	change	and	reset	should	not	be	necessary.
However,	if	SVN	permissions	change,	or	if	you	alter	your	--ignore-
paths	option,	a	fetch	may	fail	with	"not	found	in	commit"	(file	not
previously	visible)	or	"checksum	mismatch"	(missed	a	modification).
If	the	problem	file	cannot	be	ignored	forever	(with	--ignore-paths)	the
only	way	to	repair	the	repo	is	to	use	reset.

Only	the	rev_map	and	refs/remotes/git-svn	are	changed	(see
$GIT_DIR/svn/**/.rev_map.*	in	the	FILES	section	below	for	details).
Follow	reset	with	a	fetch	and	then	git	reset	or	git	rebase	to	move
local	branches	onto	the	new	tree.

-r	<n>	,	--revision=<n>
Specify	the	most	recent	revision	to	keep.	All	later	revisions	are
discarded.

-p	,	--parent
Discard	the	specified	revision	as	well,	keeping	the	nearest
parent	instead.

Example:

Assume	you	have	local	changes	in	"master",	but	you	need	to
refetch	"r2".

				r1---r2---r3	remotes/git-svn

																\

																	A---B	master



Fix	the	ignore-paths	or	SVN	permissions	problem	that	caused
"r2"	to	be	incomplete	in	the	first	place.	Then:

git	svn	reset	-r2	-p

git	svn	fetch

				r1---r2'--r3'	remotes/git-svn

						\

							r2---r3---A---B	master

Then	fixup	"master"	with	git	rebase.	Do	NOT	use	git	merge	or
your	history	will	not	be	compatible	with	a	future	dcommit!

git	rebase	--onto	remotes/git-svn	A^	master

				r1---r2'--r3'	remotes/git-svn

																\

																	A'--B'	master

OPTIONS

--shared[=(false|true|umask|group|all|world|everybody)]	,	--template=
<template_directory>

Only	used	with	the	init	command.	These	are	passed	directly	to	git
init.

-r	<arg>	,	--revision	<arg>

Used	with	the	fetch	command.

This	allows	revision	ranges	for	partial/cauterized	history	to	be
supported.	$NUMBER,	$NUMBER1:$NUMBER2	(numeric	ranges),
$NUMBER:HEAD,	and	BASE:$NUMBER	are	all	supported.

This	can	allow	you	to	make	partial	mirrors	when	running	fetch;	but	is
generally	not	recommended	because	history	will	be	skipped	and	lost.

-	,	--stdin



Only	used	with	the	set-tree	command.

Read	a	list	of	commits	from	stdin	and	commit	them	in	reverse	order.
Only	the	leading	sha1	is	read	from	each	line,	so	git	rev-list	--
pretty=oneline	output	can	be	used.

--rmdir

Only	used	with	the	dcommit,	set-tree	and	commit-diff	commands.

Remove	directories	from	the	SVN	tree	if	there	are	no	files	left
behind.	SVN	can	version	empty	directories,	and	they	are	not
removed	by	default	if	there	are	no	files	left	in	them.	Git	cannot
version	empty	directories.	Enabling	this	flag	will	make	the	commit	to
SVN	act	like	Git.

config	key:	svn.rmdir

-e	,	--edit

Only	used	with	the	dcommit,	set-tree	and	commit-diff	commands.

Edit	the	commit	message	before	committing	to	SVN.	This	is	off	by
default	for	objects	that	are	commits,	and	forced	on	when	committing
tree	objects.

config	key:	svn.edit

-l<num>	,	--find-copies-harder

Only	used	with	the	dcommit,	set-tree	and	commit-diff	commands.

They	are	both	passed	directly	to	git	diff-tree;	see	Section	G.3.40,
“git-diff-tree(1)”	for	more	information.

config	key:	svn.l

config	key:	svn.findcopiesharder



-A<filename>	,	--authors-file=<filename>

Syntax	is	compatible	with	the	file	used	by	git	cvsimport:

								loginname	=	Joe	User	<user@example.com>

If	this	option	is	specified	and	git	svn	encounters	an	SVN	committer
name	that	does	not	exist	in	the	authors-file,	git	svn	will	abort
operation.	The	user	will	then	have	to	add	the	appropriate	entry.	Re-
running	the	previous	git	svn	command	after	the	authors-file	is
modified	should	continue	operation.

config	key:	svn.authorsfile

--authors-prog=<filename>
If	this	option	is	specified,	for	each	SVN	committer	name	that	does
not	exist	in	the	authors	file,	the	given	file	is	executed	with	the
committer	name	as	the	first	argument.	The	program	is	expected	to
return	a	single	line	of	the	form	"Name	<email>",	which	will	be	treated
as	if	included	in	the	authors	file.

-q	,	--quiet
Make	git	svn	less	verbose.	Specify	a	second	time	to	make	it	even
less	verbose.

-m	,	--merge	,	-s<strategy>	,	--strategy=<strategy>	,	-p	,	--preserve-
merges

These	are	only	used	with	the	dcommit	and	rebase	commands.

Passed	directly	to	git	rebase	when	using	dcommit	if	a	git	reset
cannot	be	used	(see	dcommit).

-n	,	--dry-run

This	can	be	used	with	the	dcommit,	rebase,	branch	and	tag
commands.

For	dcommit,	print	out	the	series	of	Git	arguments	that	would	show



which	diffs	would	be	committed	to	SVN.

For	rebase,	display	the	local	branch	associated	with	the	upstream
svn	repository	associated	with	the	current	branch	and	the	URL	of
svn	repository	that	will	be	fetched	from.

For	branch	and	tag,	display	the	urls	that	will	be	used	for	copying
when	creating	the	branch	or	tag.

--use-log-author
When	retrieving	svn	commits	into	Git	(as	part	of	fetch,	rebase,	or
dcommit	operations),	look	for	the	first	From:	or	Signed-off-by:	line	in
the	log	message	and	use	that	as	the	author	string.

--add-author-from
When	committing	to	svn	from	Git	(as	part	of	commit-diff,	set-tree	or
dcommit	operations),	if	the	existing	log	message	doesn't	already
have	a	From:	or	Signed-off-by:	line,	append	a	From:	line	based	on
the	Git	commit's	author	string.	If	you	use	this,	then	--use-log-author
will	retrieve	a	valid	author	string	for	all	commits.

ADVANCED	OPTIONS

-i<GIT_SVN_ID>	,	--id	<GIT_SVN_ID>
This	sets	GIT_SVN_ID	(instead	of	using	the	environment).	This
allows	the	user	to	override	the	default	refname	to	fetch	from	when
tracking	a	single	URL.	The	log	and	dcommit	commands	no	longer
require	this	switch	as	an	argument.

-R<remote	name>	,	--svn-remote	<remote	name>
Specify	the	[svn-remote	"<remote	name>"]	section	to	use,	this	allows
SVN	multiple	repositories	to	be	tracked.	Default:	"svn"

--follow-parent

This	option	is	only	relevant	if	we	are	tracking	branches	(using	one	of
the	repository	layout	options	--trunk,	--tags,	--branches,	--stdlayout).
For	each	tracked	branch,	try	to	find	out	where	its	revision	was	copied
from,	and	set	a	suitable	parent	in	the	first	Git	commit	for	the	branch.
This	is	especially	helpful	when	we're	tracking	a	directory	that	has



been	moved	around	within	the	repository.	If	this	feature	is	disabled,
the	branches	created	by	git	svn	will	all	be	linear	and	not	share	any
history,	meaning	that	there	will	be	no	information	on	where	branches
were	branched	off	or	merged.	However,	following	long/convoluted
histories	can	take	a	long	time,	so	disabling	this	feature	may	speed
up	the	cloning	process.	This	feature	is	enabled	by	default,	use	--no-
follow-parent	to	disable	it.

config	key:	svn.followparent

CONFIG	FILE-ONLY	OPTIONS

svn.noMetadata	,	svn-remote.<name>.noMetadata

This	gets	rid	of	the	git-svn-id:	lines	at	the	end	of	every	commit.

This	option	can	only	be	used	for	one-shot	imports	as	git	svn	will	not
be	able	to	fetch	again	without	metadata.	Additionally,	if	you	lose	your
$GIT_DIR/svn/**/.rev_map.*	files,	git	svn	will	not	be	able	to	rebuild
them.

The	git	svn	log	command	will	not	work	on	repositories	using	this,
either.	Using	this	conflicts	with	the	useSvmProps	option	for
(hopefully)	obvious	reasons.

This	option	is	NOT	recommended	as	it	makes	it	difficult	to	track
down	old	references	to	SVN	revision	numbers	in	existing
documentation,	bug	reports	and	archives.	If	you	plan	to	eventually
migrate	from	SVN	to	Git	and	are	certain	about	dropping	SVN	history,
consider	Section	G.3.47,	“git-filter-branch(1)”	instead.	filter-branch
also	allows	reformatting	of	metadata	for	ease-of-reading	and
rewriting	authorship	info	for	non-"svn.authorsFile"	users.

svn.useSvmProps	,	svn-remote.<name>.useSvmProps

This	allows	git	svn	to	re-map	repository	URLs	and	UUIDs	from
mirrors	created	using	SVN::Mirror	(or	svk)	for	metadata.



If	an	SVN	revision	has	a	property,	"svm:headrev",	it	is	likely	that	the
revision	was	created	by	SVN::Mirror	(also	used	by	SVK).	The
property	contains	a	repository	UUID	and	a	revision.	We	want	to
make	it	look	like	we	are	mirroring	the	original	URL,	so	introduce	a
helper	function	that	returns	the	original	identity	URL	and	UUID,	and
use	it	when	generating	metadata	in	commit	messages.

svn.useSvnsyncProps	,	svn-remote.<name>.useSvnsyncprops
Similar	to	the	useSvmProps	option;	this	is	for	users	of	the	svnsync(1)
command	distributed	with	SVN	1.4.x	and	later.

svn-remote.<name>.rewriteRoot
This	allows	users	to	create	repositories	from	alternate	URLs.	For
example,	an	administrator	could	run	git	svn	on	the	server	locally
(accessing	via	file://)	but	wish	to	distribute	the	repository	with	a
public	http://	or	svn://	URL	in	the	metadata	so	users	of	it	will	see	the
public	URL.

svn-remote.<name>.rewriteUUID
Similar	to	the	useSvmProps	option;	this	is	for	users	who	need	to
remap	the	UUID	manually.	This	may	be	useful	in	situations	where
the	original	UUID	is	not	available	via	either	useSvmProps	or
useSvnsyncProps.

svn-remote.<name>.pushurl
Similar	to	Git's	remote.<name>.pushurl,	this	key	is	designed	to	be
used	in	cases	where	url	points	to	an	SVN	repository	via	a	read-only
transport,	to	provide	an	alternate	read/write	transport.	It	is	assumed
that	both	keys	point	to	the	same	repository.	Unlike	commiturl,
pushurl	is	a	base	path.	If	either	commiturl	or	pushurl	could	be	used,
commiturl	takes	precedence.

svn.brokenSymlinkWorkaround
This	disables	potentially	expensive	checks	to	workaround	broken
symlinks	checked	into	SVN	by	broken	clients.	Set	this	option	to
"false"	if	you	track	a	SVN	repository	with	many	empty	blobs	that	are
not	symlinks.	This	option	may	be	changed	while	git	svn	is	running
and	take	effect	on	the	next	revision	fetched.	If	unset,	git	svn
assumes	this	option	to	be	"true".

svn.pathnameencoding
This	instructs	git	svn	to	recode	pathnames	to	a	given	encoding.	It



can	be	used	by	windows	users	and	by	those	who	work	in	non-utf8
locales	to	avoid	corrupted	file	names	with	non-ASCII	characters.
Valid	encodings	are	the	ones	supported	by	Perl's	Encode	module.

svn-remote.<name>.automkdirs
Normally,	the	"git	svn	clone"	and	"git	svn	rebase"	commands	attempt
to	recreate	empty	directories	that	are	in	the	Subversion	repository.	If
this	option	is	set	to	"false",	then	empty	directories	will	only	be
created	if	the	"git	svn	mkdirs"	command	is	run	explicitly.	If	unset,	git
svn	assumes	this	option	to	be	"true".

Since	the	noMetadata,	rewriteRoot,	rewriteUUID,	useSvnsyncProps	and
useSvmProps	options	all	affect	the	metadata	generated	and	used	by	git
svn;	they	must	be	set	in	the	configuration	file	before	any	history	is
imported	and	these	settings	should	never	be	changed	once	they	are	set.

Additionally,	only	one	of	these	options	can	be	used	per	svn-remote
section	because	they	affect	the	git-svn-id:	metadata	line,	except	for
rewriteRoot	and	rewriteUUID	which	can	be	used	together.

BASIC	EXAMPLES

Tracking	and	contributing	to	the	trunk	of	a	Subversion-managed	project
(ignoring	tags	and	branches):

#	Clone	a	repo	(like	git	clone):

								git	svn	clone	http://svn.example.com/project/trunk

#	Enter	the	newly	cloned	directory:

								cd	trunk

#	You	should	be	on	master	branch,	double-check	with	'git	branch'

								git	branch

#	Do	some	work	and	commit	locally	to	Git:

								git	commit	...

#	Something	is	committed	to	SVN,	rebase	your	local	changes	against	the

#	latest	changes	in	SVN:

								git	svn	rebase

#	Now	commit	your	changes	(that	were	committed	previously	using	Git)	to	SVN,

#	as	well	as	automatically	updating	your	working	HEAD:

								git	svn	dcommit

#	Append	svn:ignore	settings	to	the	default	Git	exclude	file:

								git	svn	show-ignore	>>	.git/info/exclude



Tracking	and	contributing	to	an	entire	Subversion-managed	project
(complete	with	a	trunk,	tags	and	branches):

#	Clone	a	repo	with	standard	SVN	directory	layout	(like	git	clone):

								git	svn	clone	http://svn.example.com/project	--stdlayout	--prefix	svn/

#	Or,	if	the	repo	uses	a	non-standard	directory	layout:

								git	svn	clone	http://svn.example.com/project	-T	tr	-b	branch	-t	tag	--prefix	svn/

#	View	all	branches	and	tags	you	have	cloned:

								git	branch	-r

#	Create	a	new	branch	in	SVN

								git	svn	branch	waldo

#	Reset	your	master	to	trunk	(or	any	other	branch,	replacing	'trunk'

#	with	the	appropriate	name):

								git	reset	--hard	svn/trunk

#	You	may	only	dcommit	to	one	branch/tag/trunk	at	a	time.		The	usage

#	of	dcommit/rebase/show-ignore	should	be	the	same	as	above.

The	initial	git	svn	clone	can	be	quite	time-consuming	(especially	for	large
Subversion	repositories).	If	multiple	people	(or	one	person	with	multiple
machines)	want	to	use	git	svn	to	interact	with	the	same	Subversion
repository,	you	can	do	the	initial	git	svn	clone	to	a	repository	on	a	server
and	have	each	person	clone	that	repository	with	git	clone:

#	Do	the	initial	import	on	a	server

								ssh	server	"cd	/pub	&&	git	svn	clone	http://svn.example.com/project	[options...]"

#	Clone	locally	-	make	sure	the	refs/remotes/	space	matches	the	server

								mkdir	project

								cd	project

								git	init

								git	remote	add	origin	server:/pub/project

								git	config	--replace-all	remote.origin.fetch	'+refs/remotes/*:refs/remotes/*'

								git	fetch

#	Prevent	fetch/pull	from	remote	Git	server	in	the	future,

#	we	only	want	to	use	git	svn	for	future	updates

								git	config	--remove-section	remote.origin

#	Create	a	local	branch	from	one	of	the	branches	just	fetched

								git	checkout	-b	master	FETCH_HEAD

#	Initialize	'git	svn'	locally	(be	sure	to	use	the	same	URL	and

#	--stdlayout/-T/-b/-t/--prefix	options	as	were	used	on	server)

								git	svn	init	http://svn.example.com/project	[options...]

#	Pull	the	latest	changes	from	Subversion



								git	svn	rebase

REBASE	VS.	PULL/MERGE

Prefer	to	use	git	svn	rebase	or	git	rebase,	rather	than	git	pull	or	git	merge
to	synchronize	unintegrated	commits	with	a	git	svn	branch.	Doing	so	will
keep	the	history	of	unintegrated	commits	linear	with	respect	to	the
upstream	SVN	repository	and	allow	the	use	of	the	preferred	git	svn
dcommit	subcommand	to	push	unintegrated	commits	back	into	SVN.

Originally,	git	svn	recommended	that	developers	pulled	or	merged	from
the	git	svn	branch.	This	was	because	the	author	favored	git	svn	set-tree
B	to	commit	a	single	head	rather	than	the	git	svn	set-tree	A..B	notation	to
commit	multiple	commits.	Use	of	git	pull	or	git	merge	with	git	svn	set-tree
A..B	will	cause	non-linear	history	to	be	flattened	when	committing	into
SVN	and	this	can	lead	to	merge	commits	unexpectedly	reversing
previous	commits	in	SVN.

MERGE	TRACKING

While	git	svn	can	track	copy	history	(including	branches	and	tags)	for
repositories	adopting	a	standard	layout,	it	cannot	yet	represent	merge
history	that	happened	inside	git	back	upstream	to	SVN	users.	Therefore	it
is	advised	that	users	keep	history	as	linear	as	possible	inside	Git	to	ease
compatibility	with	SVN	(see	the	CAVEATS	section	below).

HANDLING	OF	SVN	BRANCHES

If	git	svn	is	configured	to	fetch	branches	(and	--follow-branches	is	in
effect),	it	sometimes	creates	multiple	Git	branches	for	one	SVN	branch,
where	the	additional	branches	have	names	of	the	form
branchname@nnn	(with	nnn	an	SVN	revision	number).	These	additional
branches	are	created	if	git	svn	cannot	find	a	parent	commit	for	the	first
commit	in	an	SVN	branch,	to	connect	the	branch	to	the	history	of	the
other	branches.



Normally,	the	first	commit	in	an	SVN	branch	consists	of	a	copy	operation.
git	svn	will	read	this	commit	to	get	the	SVN	revision	the	branch	was
created	from.	It	will	then	try	to	find	the	Git	commit	that	corresponds	to	this
SVN	revision,	and	use	that	as	the	parent	of	the	branch.	However,	it	is
possible	that	there	is	no	suitable	Git	commit	to	serve	as	parent.	This	will
happen,	among	other	reasons,	if	the	SVN	branch	is	a	copy	of	a	revision
that	was	not	fetched	by	git	svn	(e.g.	because	it	is	an	old	revision	that	was
skipped	with	--revision),	or	if	in	SVN	a	directory	was	copied	that	is	not
tracked	by	git	svn	(such	as	a	branch	that	is	not	tracked	at	all,	or	a
subdirectory	of	a	tracked	branch).	In	these	cases,	git	svn	will	still	create	a
Git	branch,	but	instead	of	using	an	existing	Git	commit	as	the	parent	of
the	branch,	it	will	read	the	SVN	history	of	the	directory	the	branch	was
copied	from	and	create	appropriate	Git	commits.	This	is	indicated	by	the
message	"Initializing	parent:	<branchname>".

Additionally,	it	will	create	a	special	branch	named
<branchname>@<SVN-Revision>,	where	<SVN-Revision>	is	the	SVN
revision	number	the	branch	was	copied	from.	This	branch	will	point	to	the
newly	created	parent	commit	of	the	branch.	If	in	SVN	the	branch	was
deleted	and	later	recreated	from	a	different	version,	there	will	be	multiple
such	branches	with	an	@.

Note	that	this	may	mean	that	multiple	Git	commits	are	created	for	a
single	SVN	revision.

An	example:	in	an	SVN	repository	with	a	standard	trunk/tags/branches
layout,	a	directory	trunk/sub	is	created	in	r.100.	In	r.200,	trunk/sub	is
branched	by	copying	it	to	branches/.	git	svn	clone	-s	will	then	create	a
branch	sub.	It	will	also	create	new	Git	commits	for	r.100	through	r.199
and	use	these	as	the	history	of	branch	sub.	Thus	there	will	be	two	Git
commits	for	each	revision	from	r.100	to	r.199	(one	containing	trunk/,	one
containing	trunk/sub/).	Finally,	it	will	create	a	branch	sub@200	pointing	to
the	new	parent	commit	of	branch	sub	(i.e.	the	commit	for	r.200	and
trunk/sub/).

CAVEATS



For	the	sake	of	simplicity	and	interoperating	with	Subversion,	it	is
recommended	that	all	git	svn	users	clone,	fetch	and	dcommit	directly
from	the	SVN	server,	and	avoid	all	git	clone/pull/merge/push	operations
between	Git	repositories	and	branches.	The	recommended	method	of
exchanging	code	between	Git	branches	and	users	is	git	format-patch	and
git	am,	or	just	'dcommit'ing	to	the	SVN	repository.

Running	git	merge	or	git	pull	is	NOT	recommended	on	a	branch	you	plan
to	dcommit	from	because	Subversion	users	cannot	see	any	merges
you've	made.	Furthermore,	if	you	merge	or	pull	from	a	Git	branch	that	is
a	mirror	of	an	SVN	branch,	dcommit	may	commit	to	the	wrong	branch.

If	you	do	merge,	note	the	following	rule:	git	svn	dcommit	will	attempt	to
commit	on	top	of	the	SVN	commit	named	in

git	log	--grep=^git-svn-id:	--first-parent	-1

You	must	therefore	ensure	that	the	most	recent	commit	of	the	branch	you
want	to	dcommit	to	is	the	first	parent	of	the	merge.	Chaos	will	ensue
otherwise,	especially	if	the	first	parent	is	an	older	commit	on	the	same
SVN	branch.

git	clone	does	not	clone	branches	under	the	refs/remotes/	hierarchy	or
any	git	svn	metadata,	or	config.	So	repositories	created	and	managed
with	using	git	svn	should	use	rsync	for	cloning,	if	cloning	is	to	be	done	at
all.

Since	dcommit	uses	rebase	internally,	any	Git	branches	you	git	push	to
before	dcommit	on	will	require	forcing	an	overwrite	of	the	existing	ref	on
the	remote	repository.	This	is	generally	considered	bad	practice,	see	the
Section	G.3.96,	“git-push(1)”	documentation	for	details.

Do	not	use	the	--amend	option	of	Section	G.3.26,	“git-commit(1)”	on	a
change	you've	already	dcommitted.	It	is	considered	bad	practice	to	--
amend	commits	you've	already	pushed	to	a	remote	repository	for	other
users,	and	dcommit	with	SVN	is	analogous	to	that.

When	cloning	an	SVN	repository,	if	none	of	the	options	for	describing	the



repository	layout	is	used	(--trunk,	--tags,	--branches,	--stdlayout),	git	svn
clone	will	create	a	Git	repository	with	completely	linear	history,	where
branches	and	tags	appear	as	separate	directories	in	the	working	copy.
While	this	is	the	easiest	way	to	get	a	copy	of	a	complete	repository,	for
projects	with	many	branches	it	will	lead	to	a	working	copy	many	times
larger	than	just	the	trunk.	Thus	for	projects	using	the	standard	directory
structure	(trunk/branches/tags),	it	is	recommended	to	clone	with	option	--
stdlayout.	If	the	project	uses	a	non-standard	structure,	and/or	if	branches
and	tags	are	not	required,	it	is	easiest	to	only	clone	one	directory
(typically	trunk),	without	giving	any	repository	layout	options.	If	the	full
history	with	branches	and	tags	is	required,	the	options	--trunk	/	--
branches	/	--tags	must	be	used.

When	using	multiple	--branches	or	--tags,	git	svn	does	not	automatically
handle	name	collisions	(for	example,	if	two	branches	from	different	paths
have	the	same	name,	or	if	a	branch	and	a	tag	have	the	same	name).	In
these	cases,	use	init	to	set	up	your	Git	repository	then,	before	your	first
fetch,	edit	the	$GIT_DIR/config	file	so	that	the	branches	and	tags	are
associated	with	different	name	spaces.	For	example:

branches	=	stable/*:refs/remotes/svn/stable/*

branches	=	debug/*:refs/remotes/svn/debug/*

BUGS

We	ignore	all	SVN	properties	except	svn:executable.	Any	unhandled
properties	are	logged	to	$GIT_DIR/svn/<refname>/unhandled.log

Renamed	and	copied	directories	are	not	detected	by	Git	and	hence	not
tracked	when	committing	to	SVN.	I	do	not	plan	on	adding	support	for	this
as	it's	quite	difficult	and	time-consuming	to	get	working	for	all	the	possible
corner	cases	(Git	doesn't	do	it,	either).	Committing	renamed	and	copied
files	is	fully	supported	if	they're	similar	enough	for	Git	to	detect	them.

In	SVN,	it	is	possible	(though	discouraged)	to	commit	changes	to	a	tag
(because	a	tag	is	just	a	directory	copy,	thus	technically	the	same	as	a
branch).	When	cloning	an	SVN	repository,	git	svn	cannot	know	if	such	a
commit	to	a	tag	will	happen	in	the	future.	Thus	it	acts	conservatively	and



imports	all	SVN	tags	as	branches,	prefixing	the	tag	name	with	tags/.

CONFIGURATION

git	svn	stores	[svn-remote]	configuration	information	in	the	repository
$GIT_DIR/config	file.	It	is	similar	the	core	Git	[remote]	sections	except
fetch	keys	do	not	accept	glob	arguments;	but	they	are	instead	handled	by
the	branches	and	tags	keys.	Since	some	SVN	repositories	are	oddly
configured	with	multiple	projects	glob	expansions	such	those	listed	below
are	allowed:

[svn-remote	"project-a"]

								url	=	http://server.org/svn

								fetch	=	trunk/project-a:refs/remotes/project-a/trunk

								branches	=	branches/*/project-a:refs/remotes/project-a/branches/*

								branches	=	branches/release_*:refs/remotes/project-a/branches/release_*

								branches	=	branches/re*se:refs/remotes/project-a/branches/*

								tags	=	tags/*/project-a:refs/remotes/project-a/tags/*

Keep	in	mind	that	the	*	(asterisk)	wildcard	of	the	local	ref	(right	of	the	:)
must	be	the	farthest	right	path	component;	however	the	remote	wildcard
may	be	anywhere	as	long	as	it's	an	independent	path	component
(surrounded	by	/	or	EOL).	This	type	of	configuration	is	not	automatically
created	by	init	and	should	be	manually	entered	with	a	text-editor	or	using
git	config.

Also	note	that	only	one	asterisk	is	allowed	per	word.	For	example:

branches	=	branches/re*se:refs/remotes/project-a/branches/*

will	match	branches	release,	rese,	re123se,	however

branches	=	branches/re*s*e:refs/remotes/project-a/branches/*

will	produce	an	error.

It	is	also	possible	to	fetch	a	subset	of	branches	or	tags	by	using	a
comma-separated	list	of	names	within	braces.	For	example:



[svn-remote	"huge-project"]

								url	=	http://server.org/svn

								fetch	=	trunk/src:refs/remotes/trunk

								branches	=	branches/{red,green}/src:refs/remotes/project-a/branches/*

								tags	=	tags/{1.0,2.0}/src:refs/remotes/project-a/tags/*

Multiple	fetch,	branches,	and	tags	keys	are	supported:

[svn-remote	"messy-repo"]

								url	=	http://server.org/svn

								fetch	=	trunk/project-a:refs/remotes/project-a/trunk

								fetch	=	branches/demos/june-project-a-demo:refs/remotes/project-a/demos/june-demo

								branches	=	branches/server/*:refs/remotes/project-a/branches/*

								branches	=	branches/demos/2011/*:refs/remotes/project-a/2011-demos/*

								tags	=	tags/server/*:refs/remotes/project-a/tags/*

Creating	a	branch	in	such	a	configuration	requires	disambiguating	which
location	to	use	using	the	-d	or	--destination	flag:

$	git	svn	branch	-d	branches/server	release-2-3-0

Note	that	git-svn	keeps	track	of	the	highest	revision	in	which	a	branch	or
tag	has	appeared.	If	the	subset	of	branches	or	tags	is	changed	after
fetching,	then	$GIT_DIR/svn/.metadata	must	be	manually	edited	to
remove	(or	reset)	branches-maxRev	and/or	tags-maxRev	as	appropriate.

FILES

$GIT_DIR/svn/**/.rev_map.*

Mapping	between	Subversion	revision	numbers	and	Git	commit
names.	In	a	repository	where	the	noMetadata	option	is	not	set,	this
can	be	rebuilt	from	the	git-svn-id:	lines	that	are	at	the	end	of	every
commit	(see	the	svn.noMetadata	section	above	for	details).

git	svn	fetch	and	git	svn	rebase	automatically	update	the	rev_map	if
it	is	missing	or	not	up	to	date.	git	svn	reset	automatically	rewinds	it.



SEE	ALSO

Section	G.3.99,	“git-rebase(1)”

GIT

Part	of	the	Section	G.3.1,	“git(1)”	suite

G.3.133.	git-symbolic-ref(1)

NAME

git-symbolic-ref	-	Read,	modify	and	delete	symbolic	refs

SYNOPSIS

git	symbolic-ref	[-m	<reason>]	<name>	<ref>

git	symbolic-ref	[-q]	[--short]	<name>

git	symbolic-ref	--delete	[-q]	<name>

DESCRIPTION

Given	one	argument,	reads	which	branch	head	the	given	symbolic	ref
refers	to	and	outputs	its	path,	relative	to	the	.git/	directory.	Typically	you
would	give	HEAD	as	the	<name>	argument	to	see	which	branch	your
working	tree	is	on.

Given	two	arguments,	creates	or	updates	a	symbolic	ref	<name>	to	point
at	the	given	branch	<ref>.

Given	--delete	and	an	additional	argument,	deletes	the	given	symbolic
ref.

A	symbolic	ref	is	a	regular	file	that	stores	a	string	that	begins	with	ref:
refs/.	For	example,	your	.git/HEAD	is	a	regular	file	whose	contents	is	ref:
refs/heads/master.



OPTIONS

-d	,	--delete
Delete	the	symbolic	ref	<name>.

-q	,	--quiet
Do	not	issue	an	error	message	if	the	<name>	is	not	a	symbolic	ref
but	a	detached	HEAD;	instead	exit	with	non-zero	status	silently.

--short
When	showing	the	value	of	<name>	as	a	symbolic	ref,	try	to	shorten
the	value,	e.g.	from	refs/heads/master	to	master.

-m
Update	the	reflog	for	<name>	with	<reason>.	This	is	valid	only	when
creating	or	updating	a	symbolic	ref.

NOTES

In	the	past,	.git/HEAD	was	a	symbolic	link	pointing	at	refs/heads/master.
When	we	wanted	to	switch	to	another	branch,	we	did	ln	-sf
refs/heads/newbranch	.git/HEAD,	and	when	we	wanted	to	find	out	which
branch	we	are	on,	we	did	readlink	.git/HEAD.	But	symbolic	links	are	not
entirely	portable,	so	they	are	now	deprecated	and	symbolic	refs	(as
described	above)	are	used	by	default.

git	symbolic-ref	will	exit	with	status	0	if	the	contents	of	the	symbolic	ref
were	printed	correctly,	with	status	1	if	the	requested	name	is	not	a
symbolic	ref,	or	128	if	another	error	occurs.

GIT

Part	of	the	Section	G.3.1,	“git(1)”	suite

G.3.134.	git-tag(1)

NAME

git-tag	-	Create,	list,	delete	or	verify	a	tag	object	signed	with	GPG



SYNOPSIS

git	tag	[-a	|	-s	|	-u	<keyid>]	[-f]	[-m	<msg>	|	-F	<file>]

								<tagname>	[<commit>	|	<object>]

git	tag	-d	<tagname>…

git	tag	[-n[<num>]]	-l	[--contains	<commit>]	[--points-

at	<object>]

								[--column[=<options>]	|	--no-column]	[--create-

reflog]	[--sort=<key>]

								[--format=<format>]	[--[no-

]merged	[<commit>]]	[<pattern>…]

git	tag	-v	<tagname>…

DESCRIPTION

Add	a	tag	reference	in	refs/tags/,	unless	-d/-l/-v	is	given	to	delete,	list	or
verify	tags.

Unless	-f	is	given,	the	named	tag	must	not	yet	exist.

If	one	of	-a,	-s,	or	-u	<keyid>	is	passed,	the	command	creates	a	tag
object,	and	requires	a	tag	message.	Unless	-m	<msg>	or	-F	<file>	is
given,	an	editor	is	started	for	the	user	to	type	in	the	tag	message.

If	-m	<msg>	or	-F	<file>	is	given	and	-a,	-s,	and	-u	<keyid>	are	absent,	-a
is	implied.

Otherwise	just	a	tag	reference	for	the	SHA-1	object	name	of	the	commit
object	is	created	(i.e.	a	lightweight	tag).

A	GnuPG	signed	tag	object	will	be	created	when	-s	or	-u	<keyid>	is	used.
When	-u	<keyid>	is	not	used,	the	committer	identity	for	the	current	user	is
used	to	find	the	GnuPG	key	for	signing.	The	configuration	variable
gpg.program	is	used	to	specify	custom	GnuPG	binary.

Tag	objects	(created	with	-a,	-s,	or	-u)	are	called	"annotated"	tags;	they
contain	a	creation	date,	the	tagger	name	and	e-mail,	a	tagging	message,
and	an	optional	GnuPG	signature.	Whereas	a	"lightweight"	tag	is	simply
a	name	for	an	object	(usually	a	commit	object).



Annotated	tags	are	meant	for	release	while	lightweight	tags	are	meant	for
private	or	temporary	object	labels.	For	this	reason,	some	git	commands
for	naming	objects	(like	git	describe)	will	ignore	lightweight	tags	by
default.

OPTIONS

-a	,	--annotate
Make	an	unsigned,	annotated	tag	object

-s	,	--sign
Make	a	GPG-signed	tag,	using	the	default	e-mail	address's	key.

-u	<keyid>	,	--local-user=<keyid>
Make	a	GPG-signed	tag,	using	the	given	key.

-f	,	--force
Replace	an	existing	tag	with	the	given	name	(instead	of	failing)

-d	,	--delete
Delete	existing	tags	with	the	given	names.

-v	,	--verify
Verify	the	gpg	signature	of	the	given	tag	names.

-n<num>
<num>	specifies	how	many	lines	from	the	annotation,	if	any,	are
printed	when	using	-l.	The	default	is	not	to	print	any	annotation	lines.
If	no	number	is	given	to	-n,	only	the	first	line	is	printed.	If	the	tag	is
not	annotated,	the	commit	message	is	displayed	instead.

-l	<pattern>	,	--list	<pattern>
List	tags	with	names	that	match	the	given	pattern	(or	all	if	no	pattern
is	given).	Running	"git	tag"	without	arguments	also	lists	all	tags.	The
pattern	is	a	shell	wildcard	(i.e.,	matched	using	fnmatch(3)).	Multiple
patterns	may	be	given;	if	any	of	them	matches,	the	tag	is	shown.

--sort=<key>
Sort	based	on	the	key	given.	Prefix	-	to	sort	in	descending	order	of
the	value.	You	may	use	the	--sort=<key>	option	multiple	times,	in
which	case	the	last	key	becomes	the	primary	key.	Also	supports
"version:refname"	or	"v:refname"	(tag	names	are	treated	as
versions).	The	"version:refname"	sort	order	can	also	be	affected	by
the	"versionsort.prereleaseSuffix"	configuration	variable.	The	keys
supported	are	the	same	as	those	in	git	for-each-ref.	Sort	order



defaults	to	the	value	configured	for	the	tag.sort	variable	if	it	exists,	or
lexicographic	order	otherwise.	See	Section	G.3.27,	“git-config(1)”.

--column[=<options>]	,	--no-column

Display	tag	listing	in	columns.	See	configuration	variable	column.tag
for	option	syntax.--column	and	--no-column	without	options	are
equivalent	to	always	and	never	respectively.

This	option	is	only	applicable	when	listing	tags	without	annotation
lines.

--contains	[<commit>]
Only	list	tags	which	contain	the	specified	commit	(HEAD	if	not
specified).

--points-at	<object>
Only	list	tags	of	the	given	object.

-m	<msg>	,	--message=<msg>
Use	the	given	tag	message	(instead	of	prompting).	If	multiple	-m
options	are	given,	their	values	are	concatenated	as	separate
paragraphs.	Implies	-a	if	none	of	-a,	-s,	or	-u	<keyid>	is	given.

-F	<file>	,	--file=<file>
Take	the	tag	message	from	the	given	file.	Use	-	to	read	the	message
from	the	standard	input.	Implies	-a	if	none	of	-a,	-s,	or	-u	<keyid>	is
given.

--cleanup=<mode>
This	option	sets	how	the	tag	message	is	cleaned	up.	The	<mode>
can	be	one	of	verbatim,	whitespace	and	strip.	The	strip	mode	is
default.	The	verbatim	mode	does	not	change	message	at	all,
whitespace	removes	just	leading/trailing	whitespace	lines	and	strip
removes	both	whitespace	and	commentary.

--create-reflog
Create	a	reflog	for	the	tag.

<tagname>
The	name	of	the	tag	to	create,	delete,	or	describe.	The	new	tag
name	must	pass	all	checks	defined	by	Section	G.3.16,	“git-check-ref-
format(1)”.	Some	of	these	checks	may	restrict	the	characters	allowed
in	a	tag	name.



<commit>	,	<object>
The	object	that	the	new	tag	will	refer	to,	usually	a	commit.	Defaults	to
HEAD.

<format>
A	string	that	interpolates	%(fieldname)	from	the	object	pointed	at	by
a	ref	being	shown.	The	format	is	the	same	as	that	of	Section	G.3.49,
“git-for-each-ref(1)”.	When	unspecified,	defaults	to	%
(refname:strip=2).

--[no-]merged	[<commit>]
Only	list	tags	whose	tips	are	reachable,	or	not	reachable	if	--no-
merged	is	used,	from	the	specified	commit	(HEAD	if	not	specified).

CONFIGURATION

By	default,	git	tag	in	sign-with-default	mode	(-s)	will	use	your	committer
identity	(of	the	form	Your	Name	<your@email.address>)	to	find	a	key.	If
you	want	to	use	a	different	default	key,	you	can	specify	it	in	the	repository
configuration	as	follows:

[user]

				signingKey	=	<gpg-keyid>

DISCUSSION



1.	On	Re-tagging

What	should	you	do	when	you	tag	a	wrong	commit	and	you	would	want
to	re-tag?

If	you	never	pushed	anything	out,	just	re-tag	it.	Use	"-f"	to	replace	the	old
one.	And	you're	done.

But	if	you	have	pushed	things	out	(or	others	could	just	read	your
repository	directly),	then	others	will	have	already	seen	the	old	tag.	In	that
case	you	can	do	one	of	two	things:

1.	 The	sane	thing.	Just	admit	you	screwed	up,	and	use	a	different
name.	Others	have	already	seen	one	tag-name,	and	if	you	keep	the
same	name,	you	may	be	in	the	situation	that	two	people	both	have
"version	X",	but	they	actually	have	different	"X"'s.	So	just	call	it	"X.1"
and	be	done	with	it.

2.	 The	insane	thing.	You	really	want	to	call	the	new	version	"X"	too,
even	though	others	have	already	seen	the	old	one.	So	just	use	git
tag	-f	again,	as	if	you	hadn't	already	published	the	old	one.

However,	Git	does	not	(and	it	should	not)	change	tags	behind	users
back.	So	if	somebody	already	got	the	old	tag,	doing	a	git	pull	on	your	tree
shouldn't	just	make	them	overwrite	the	old	one.

If	somebody	got	a	release	tag	from	you,	you	cannot	just	change	the	tag
for	them	by	updating	your	own	one.	This	is	a	big	security	issue,	in	that
people	MUST	be	able	to	trust	their	tag-names.	If	you	really	want	to	do	the
insane	thing,	you	need	to	just	fess	up	to	it,	and	tell	people	that	you
messed	up.	You	can	do	that	by	making	a	very	public	announcement
saying:

Ok,	I	messed	up,	and	I	pushed	out	an	earlier	version	tagged	as	X.	I

then	fixed	something,	and	retagged	the	*fixed*	tree	as	X	again.

If	you	got	the	wrong	tag,	and	want	the	new	one,	please	delete

the	old	one	and	fetch	the	new	one	by	doing:



								git	tag	-d	X

								git	fetch	origin	tag	X

to	get	my	updated	tag.

You	can	test	which	tag	you	have	by	doing

								git	rev-parse	X

which	should	return	0123456789abcdef..	if	you	have	the	new	version.

Sorry	for	the	inconvenience.

Does	this	seem	a	bit	complicated?	It	should	be.	There	is	no	way	that	it
would	be	correct	to	just	"fix"	it	automatically.	People	need	to	know	that
their	tags	might	have	been	changed.



2.	On	Automatic	following

If	you	are	following	somebody	else's	tree,	you	are	most	likely	using
remote-tracking	branches	(refs/heads/origin	in	traditional	layout,	or
refs/remotes/origin/master	in	the	separate-remote	layout).	You	usually
want	the	tags	from	the	other	end.

On	the	other	hand,	if	you	are	fetching	because	you	would	want	a	one-
shot	merge	from	somebody	else,	you	typically	do	not	want	to	get	tags
from	there.	This	happens	more	often	for	people	near	the	toplevel	but	not
limited	to	them.	Mere	mortals	when	pulling	from	each	other	do	not
necessarily	want	to	automatically	get	private	anchor	point	tags	from	the
other	person.

Often,	"please	pull"	messages	on	the	mailing	list	just	provide	two	pieces
of	information:	a	repo	URL	and	a	branch	name;	this	is	designed	to	be
easily	cut&pasted	at	the	end	of	a	git	fetch	command	line:

Linus,	please	pull	from

								git://git..../proj.git	master

to	get	the	following	updates...

becomes:

$	git	pull	git://git..../proj.git	master

In	such	a	case,	you	do	not	want	to	automatically	follow	the	other	person's
tags.

One	important	aspect	of	Git	is	its	distributed	nature,	which	largely	means
there	is	no	inherent	"upstream"	or	"downstream"	in	the	system.	On	the
face	of	it,	the	above	example	might	seem	to	indicate	that	the	tag
namespace	is	owned	by	the	upper	echelon	of	people	and	that	tags	only
flow	downwards,	but	that	is	not	the	case.	It	only	shows	that	the	usage



pattern	determines	who	are	interested	in	whose	tags.

A	one-shot	pull	is	a	sign	that	a	commit	history	is	now	crossing	the
boundary	between	one	circle	of	people	(e.g.	"people	who	are	primarily
interested	in	the	networking	part	of	the	kernel")	who	may	have	their	own
set	of	tags	(e.g.	"this	is	the	third	release	candidate	from	the	networking
group	to	be	proposed	for	general	consumption	with	2.6.21	release")	to
another	circle	of	people	(e.g.	"people	who	integrate	various	subsystem
improvements").	The	latter	are	usually	not	interested	in	the	detailed	tags
used	internally	in	the	former	group	(that	is	what	"internal"	means).	That	is
why	it	is	desirable	not	to	follow	tags	automatically	in	this	case.

It	may	well	be	that	among	networking	people,	they	may	want	to	exchange
the	tags	internal	to	their	group,	but	in	that	workflow	they	are	most	likely
tracking	each	other's	progress	by	having	remote-tracking	branches.
Again,	the	heuristic	to	automatically	follow	such	tags	is	a	good	thing.



3.	On	Backdating	Tags

If	you	have	imported	some	changes	from	another	VCS	and	would	like	to
add	tags	for	major	releases	of	your	work,	it	is	useful	to	be	able	to	specify
the	date	to	embed	inside	of	the	tag	object;	such	data	in	the	tag	object
affects,	for	example,	the	ordering	of	tags	in	the	gitweb	interface.

To	set	the	date	used	in	future	tag	objects,	set	the	environment	variable
GIT_COMMITTER_DATE	(see	the	later	discussion	of	possible	values;
the	most	common	form	is	"YYYY-MM-DD	HH:MM").

For	example:

$	GIT_COMMITTER_DATE="2006-10-02	10:31"	git	tag	-s	v1.0.1

DATE	FORMATS

The	GIT_AUTHOR_DATE,	GIT_COMMITTER_DATE	environment
variables	support	the	following	date	formats:

Git	internal	format
It	is	<unix	timestamp>	<time	zone	offset>,	where	<unix	timestamp>
is	the	number	of	seconds	since	the	UNIX	epoch.	<time	zone	offset>
is	a	positive	or	negative	offset	from	UTC.	For	example	CET	(which	is
2	hours	ahead	UTC)	is	+0200.

RFC	2822
The	standard	email	format	as	described	by	RFC	2822,	for	example
Thu,	07	Apr	2005	22:13:13	+0200.

ISO	8601

Time	and	date	specified	by	the	ISO	8601	standard,	for	example
2005-04-07T22:13:13.	The	parser	accepts	a	space	instead	of	the	T
character	as	well.

Note



In	addition,	the	date	part	is	accepted	in	the	following
formats:	YYYY.MM.DD,	MM/DD/YYYY	and
DD.MM.YYYY.

SEE	ALSO

Section	G.3.16,	“git-check-ref-format(1)”.	Section	G.3.27,	“git-config(1)”.

GIT

Part	of	the	Section	G.3.1,	“git(1)”	suite

G.3.135.	git-unpack-file(1)

NAME

git-unpack-file	-	Creates	a	temporary	file	with	a	blob's	contents

SYNOPSIS

git	unpack-file	<blob>

DESCRIPTION

Creates	a	file	holding	the	contents	of	the	blob	specified	by	sha1.	It
returns	the	name	of	the	temporary	file	in	the	following	format:
.merge_file_XXXXX

OPTIONS

<blob>
Must	be	a	blob	id



GIT

Part	of	the	Section	G.3.1,	“git(1)”	suite

G.3.136.	git-unpack-objects(1)

NAME

git-unpack-objects	-	Unpack	objects	from	a	packed	archive

SYNOPSIS

git	unpack-objects	[-n]	[-q]	[-r]	[--strict]

DESCRIPTION

Read	a	packed	archive	(.pack)	from	the	standard	input,	expanding	the
objects	contained	within	and	writing	them	into	the	repository	in	"loose"
(one	object	per	file)	format.

Objects	that	already	exist	in	the	repository	will	not	be	unpacked	from	the
packfile.	Therefore,	nothing	will	be	unpacked	if	you	use	this	command	on
a	packfile	that	exists	within	the	target	repository.

See	Section	G.3.107,	“git-repack(1)”	for	options	to	generate	new	packs
and	replace	existing	ones.

OPTIONS

-n
Dry	run.	Check	the	pack	file	without	actually	unpacking	the	objects.

-q
The	command	usually	shows	percentage	progress.	This	flag
suppresses	it.

-r
When	unpacking	a	corrupt	packfile,	the	command	dies	at	the	first



corruption.	This	flag	tells	it	to	keep	going	and	make	the	best	effort	to
recover	as	many	objects	as	possible.

--strict
Don't	write	objects	with	broken	content	or	links.

GIT

Part	of	the	Section	G.3.1,	“git(1)”	suite

G.3.137.	git-update-index(1)

NAME

git-update-index	-	Register	file	contents	in	the	working	tree	to	the	index

SYNOPSIS

git	update-index

													[--add]	[--remove	|	--force-remove]	[--replace]

													[--refresh]	[-q]	[--unmerged]	[--ignore-missing]

													[(--cacheinfo	<mode>,<object>,<file>)…]

													[--chmod=(+|-)x]

													[--[no-]assume-unchanged]

													[--[no-]skip-worktree]

													[--ignore-submodules]

													[--[no-]split-index]

													[--[no-|test-|force-]untracked-cache]

													[--really-refresh]	[--unresolve]	[--again	|	-g]

													[--info-only]	[--index-info]

													[-z]	[--stdin]	[--index-version	<n>]

													[--verbose]

													[--]	[<file>…]

DESCRIPTION

Modifies	the	index	or	directory	cache.	Each	file	mentioned	is	updated	into
the	index	and	any	unmerged	or	needs	updating	state	is	cleared.

See	also	Section	G.3.2,	“git-add(1)”	for	a	more	user-friendly	way	to	do



some	of	the	most	common	operations	on	the	index.

The	way	git	update-index	handles	files	it	is	told	about	can	be	modified
using	the	various	options:

OPTIONS

--add
If	a	specified	file	isn't	in	the	index	already	then	it's	added.	Default
behaviour	is	to	ignore	new	files.

--remove
If	a	specified	file	is	in	the	index	but	is	missing	then	it's	removed.
Default	behavior	is	to	ignore	removed	file.

--refresh
Looks	at	the	current	index	and	checks	to	see	if	merges	or	updates
are	needed	by	checking	stat()	information.

-q
Quiet.	If	--refresh	finds	that	the	index	needs	an	update,	the	default
behavior	is	to	error	out.	This	option	makes	git	update-index	continue
anyway.

--ignore-submodules
Do	not	try	to	update	submodules.	This	option	is	only	respected	when
passed	before	--refresh.

--unmerged
If	--refresh	finds	unmerged	changes	in	the	index,	the	default
behavior	is	to	error	out.	This	option	makes	git	update-index	continue
anyway.

--ignore-missing
Ignores	missing	files	during	a	--refresh

--cacheinfo	<mode>,<object>,<path>	,	--cacheinfo	<mode>	<object>
<path>

Directly	insert	the	specified	info	into	the	index.	For	backward
compatibility,	you	can	also	give	these	three	arguments	as	three
separate	parameters,	but	new	users	are	encouraged	to	use	a	single-
parameter	form.

--index-info
Read	index	information	from	stdin.



--chmod=(+|-)x
Set	the	execute	permissions	on	the	updated	files.

--[no-]assume-unchanged

When	this	flag	is	specified,	the	object	names	recorded	for	the	paths
are	not	updated.	Instead,	this	option	sets/unsets	the	"assume
unchanged"	bit	for	the	paths.	When	the	"assume	unchanged"	bit	is
on,	the	user	promises	not	to	change	the	file	and	allows	Git	to
assume	that	the	working	tree	file	matches	what	is	recorded	in	the
index.	If	you	want	to	change	the	working	tree	file,	you	need	to	unset
the	bit	to	tell	Git.	This	is	sometimes	helpful	when	working	with	a	big
project	on	a	filesystem	that	has	very	slow	lstat(2)	system	call	(e.g.
cifs).

Git	will	fail	(gracefully)	in	case	it	needs	to	modify	this	file	in	the	index
e.g.	when	merging	in	a	commit;	thus,	in	case	the	assumed-untracked
file	is	changed	upstream,	you	will	need	to	handle	the	situation
manually.

--really-refresh
Like	--refresh,	but	checks	stat	information	unconditionally,	without
regard	to	the	"assume	unchanged"	setting.

--[no-]skip-worktree
When	one	of	these	flags	is	specified,	the	object	name	recorded	for
the	paths	are	not	updated.	Instead,	these	options	set	and	unset	the
"skip-worktree"	bit	for	the	paths.	See	section	"Skip-worktree	bit"
below	for	more	information.

-g	,	--again
Runs	git	update-index	itself	on	the	paths	whose	index	entries	are
different	from	those	from	the	HEAD	commit.

--unresolve
Restores	the	unmerged	or	needs	updating	state	of	a	file	during	a
merge	if	it	was	cleared	by	accident.

--info-only
Do	not	create	objects	in	the	object	database	for	all	<file>	arguments
that	follow	this	flag;	just	insert	their	object	IDs	into	the	index.

--force-remove
Remove	the	file	from	the	index	even	when	the	working	directory	still



has	such	a	file.	(Implies	--remove.)
--replace

By	default,	when	a	file	path	exists	in	the	index,	git	update-index
refuses	an	attempt	to	add	path/file.	Similarly	if	a	file	path/file	exists,	a
file	path	cannot	be	added.	With	--replace	flag,	existing	entries	that
conflict	with	the	entry	being	added	are	automatically	removed	with
warning	messages.

--stdin
Instead	of	taking	list	of	paths	from	the	command	line,	read	list	of
paths	from	the	standard	input.	Paths	are	separated	by	LF	(i.e.	one
path	per	line)	by	default.

--verbose
Report	what	is	being	added	and	removed	from	index.

--index-version	<n>

Write	the	resulting	index	out	in	the	named	on-disk	format	version.
Supported	versions	are	2,	3	and	4.	The	current	default	version	is	2	or
3,	depending	on	whether	extra	features	are	used,	such	as	git	add	-N.

Version	4	performs	a	simple	pathname	compression	that	reduces
index	size	by	30%-50%	on	large	repositories,	which	results	in	faster
load	time.	Version	4	is	relatively	young	(first	released	in	in	1.8.0	in
October	2012).	Other	Git	implementations	such	as	JGit	and	libgit2
may	not	support	it	yet.

-z
Only	meaningful	with	--stdin	or	--index-info;	paths	are	separated	with
NUL	character	instead	of	LF.

--split-index	,	--no-split-index
Enable	or	disable	split	index	mode.	If	enabled,	the	index	is	split	into
two	files,	$GIT_DIR/index	and	$GIT_DIR/sharedindex.<SHA-1>.
Changes	are	accumulated	in	$GIT_DIR/index	while	the	shared	index
file	contains	all	index	entries	stays	unchanged.	If	split-index	mode	is
already	enabled	and	--split-index	is	given	again,	all	changes	in
$GIT_DIR/index	are	pushed	back	to	the	shared	index	file.	This	mode
is	designed	for	very	large	indexes	that	take	a	significant	amount	of
time	to	read	or	write.



--untracked-cache	,	--no-untracked-cache

Enable	or	disable	untracked	cache	feature.	Please	use	--test-
untracked-cache	before	enabling	it.

These	options	take	effect	whatever	the	value	of	the
core.untrackedCache	configuration	variable	(see	Section	G.3.27,
“git-config(1)”).	But	a	warning	is	emitted	when	the	change	goes
against	the	configured	value,	as	the	configured	value	will	take	effect
next	time	the	index	is	read	and	this	will	remove	the	intended	effect	of
the	option.

--test-untracked-cache
Only	perform	tests	on	the	working	directory	to	make	sure	untracked
cache	can	be	used.	You	have	to	manually	enable	untracked	cache
using	--untracked-cache	or	--force-untracked-cache	or	the
core.untrackedCache	configuration	variable	afterwards	if	you	really
want	to	use	it.	If	a	test	fails	the	exit	code	is	1	and	a	message
explains	what	is	not	working	as	needed,	otherwise	the	exit	code	is	0
and	OK	is	printed.

--force-untracked-cache
Same	as	--untracked-cache.	Provided	for	backwards	compatibility
with	older	versions	of	Git	where	--untracked-cache	used	to	imply	--
test-untracked-cache	but	this	option	would	enable	the	extension
unconditionally.

--
Do	not	interpret	any	more	arguments	as	options.

<file>
Files	to	act	on.	Note	that	files	beginning	with	.	are	discarded.	This
includes	./file	and	dir/./file.	If	you	don't	want	this,	then	use	cleaner
names.	The	same	applies	to	directories	ending	/	and	paths	with	//

Using	--refresh

--refresh	does	not	calculate	a	new	sha1	file	or	bring	the	index	up-to-date
for	mode/content	changes.	But	what	it	does	do	is	to	"re-match"	the	stat
information	of	a	file	with	the	index,	so	that	you	can	refresh	the	index	for	a



file	that	hasn't	been	changed	but	where	the	stat	entry	is	out	of	date.

For	example,	you'd	want	to	do	this	after	doing	a	git	read-tree,	to	link	up
the	stat	index	details	with	the	proper	files.

Using	--cacheinfo	or	--info-only

--cacheinfo	is	used	to	register	a	file	that	is	not	in	the	current	working
directory.	This	is	useful	for	minimum-checkout	merging.

To	pretend	you	have	a	file	with	mode	and	sha1	at	path,	say:

$	git	update-index	--cacheinfo	<mode>,<sha1>,<path>

--info-only	is	used	to	register	files	without	placing	them	in	the	object
database.	This	is	useful	for	status-only	repositories.

Both	--cacheinfo	and	--info-only	behave	similarly:	the	index	is	updated
but	the	object	database	isn't.	--cacheinfo	is	useful	when	the	object	is	in
the	database	but	the	file	isn't	available	locally.	--info-only	is	useful	when
the	file	is	available,	but	you	do	not	wish	to	update	the	object	database.

Using	--index-info

--index-info	is	a	more	powerful	mechanism	that	lets	you	feed	multiple
entry	definitions	from	the	standard	input,	and	designed	specifically	for
scripts.	It	can	take	inputs	of	three	formats:

1.	 mode	SP	sha1	TAB	path

The	first	format	is	what	"git-apply	--index-info"	reports,	and	used	to
reconstruct	a	partial	tree	that	is	used	for	phony	merge	base	tree
when	falling	back	on	3-way	merge.

2.	 mode	SP	type	SP	sha1	TAB	path

The	second	format	is	to	stuff	git	ls-tree	output	into	the	index	file.



3.	 mode	SP	sha1	SP	stage	TAB	path

This	format	is	to	put	higher	order	stages	into	the	index	file	and
matches	git	ls-files	--stage	output.

To	place	a	higher	stage	entry	to	the	index,	the	path	should	first	be
removed	by	feeding	a	mode=0	entry	for	the	path,	and	then	feeding
necessary	input	lines	in	the	third	format.

For	example,	starting	with	this	index:

$	git	ls-files	-s

100644	8a1218a1024a212bb3db30becd860315f9f3ac52	0							frotz

you	can	feed	the	following	input	to	--index-info:

$	git	update-index	--index-info

0	0000000000000000000000000000000000000000						frotz

100644	8a1218a1024a212bb3db30becd860315f9f3ac52	1							frotz

100755	8a1218a1024a212bb3db30becd860315f9f3ac52	2							frotz

The	first	line	of	the	input	feeds	0	as	the	mode	to	remove	the	path;	the
SHA-1	does	not	matter	as	long	as	it	is	well	formatted.	Then	the	second
and	third	line	feeds	stage	1	and	stage	2	entries	for	that	path.	After	the
above,	we	would	end	up	with	this:

$	git	ls-files	-s

100644	8a1218a1024a212bb3db30becd860315f9f3ac52	1							frotz

100755	8a1218a1024a212bb3db30becd860315f9f3ac52	2							frotz

Using	assume	unchanged	bit

Many	operations	in	Git	depend	on	your	filesystem	to	have	an	efficient
lstat(2)	implementation,	so	that	st_mtime	information	for	working	tree	files
can	be	cheaply	checked	to	see	if	the	file	contents	have	changed	from	the



version	recorded	in	the	index	file.	Unfortunately,	some	filesystems	have
inefficient	lstat(2).	If	your	filesystem	is	one	of	them,	you	can	set	"assume
unchanged"	bit	to	paths	you	have	not	changed	to	cause	Git	not	to	do	this
check.	Note	that	setting	this	bit	on	a	path	does	not	mean	Git	will	check
the	contents	of	the	file	to	see	if	it	has	changed	--	it	makes	Git	to	omit	any
checking	and	assume	it	has	not	changed.	When	you	make	changes	to
working	tree	files,	you	have	to	explicitly	tell	Git	about	it	by	dropping
"assume	unchanged"	bit,	either	before	or	after	you	modify	them.

In	order	to	set	"assume	unchanged"	bit,	use	--assume-unchanged	option.
To	unset,	use	--no-assume-unchanged.	To	see	which	files	have	the
"assume	unchanged"	bit	set,	use	git	ls-files	-v	(see	Section	G.3.69,	“git-
ls-files(1)”).

The	command	looks	at	core.ignorestat	configuration	variable.	When	this
is	true,	paths	updated	with	git	update-index	paths...	and	paths	updated
with	other	Git	commands	that	update	both	index	and	working	tree	(e.g.	git
apply	--index,	git	checkout-index	-u,	and	git	read-tree	-u)	are
automatically	marked	as	"assume	unchanged".	Note	that	"assume
unchanged"	bit	is	not	set	if	git	update-index	--refresh	finds	the	working
tree	file	matches	the	index	(use	git	update-index	--really-refresh	if	you
want	to	mark	them	as	"assume	unchanged").

Examples

To	update	and	refresh	only	the	files	already	checked	out:

$	git	checkout-index	-n	-f	-a	&&	git	update-index	--ignore-missing	--refresh

On	an	inefficient	filesystem	with	core.ignorestat	set

$	git	update-index	--really-refresh														

$	git	update-index	--no-assume-unchanged	foo.c			

$	git	diff	--name-only																											

$	edit	foo.c

$	git	diff	--name-only																											



M	foo.c

$	git	update-index	foo.c																									

$	git	diff	--name-only																											

$	edit	foo.c

$	git	diff	--name-only																											

$	git	update-index	--no-assume-unchanged	foo.c			

$	git	diff	--name-only																											

M	foo.c

forces	lstat(2)	to	set	"assume	unchanged"	bits	for	paths	that
match	index.

mark	the	path	to	be	edited.

this	does	lstat(2)	and	finds	index	matches	the	path.

this	does	lstat(2)	and	finds	index	does	not	match	the	path.

registering	the	new	version	to	index	sets	"assume	unchanged"
bit.

and	it	is	assumed	unchanged.

even	after	you	edit	it.

you	can	tell	about	the	change	after	the	fact.

now	it	checks	with	lstat(2)	and	finds	it	has	been	changed.



Skip-worktree	bit

Skip-worktree	bit	can	be	defined	in	one	(long)	sentence:	When	reading
an	entry,	if	it	is	marked	as	skip-worktree,	then	Git	pretends	its	working
directory	version	is	up	to	date	and	read	the	index	version	instead.

To	elaborate,	"reading"	means	checking	for	file	existence,	reading	file
attributes	or	file	content.	The	working	directory	version	may	be	present	or
absent.	If	present,	its	content	may	match	against	the	index	version	or	not.
Writing	is	not	affected	by	this	bit,	content	safety	is	still	first	priority.	Note
that	Git	can	update	working	directory	file,	that	is	marked	skip-worktree,	if
it	is	safe	to	do	so	(i.e.	working	directory	version	matches	index	version)

Although	this	bit	looks	similar	to	assume-unchanged	bit,	its	goal	is
different	from	assume-unchanged	bit's.	Skip-worktree	also	takes
precedence	over	assume-unchanged	bit	when	both	are	set.

Untracked	cache

This	cache	is	meant	to	speed	up	commands	that	involve	determining
untracked	files	such	as	git	status.

This	feature	works	by	recording	the	mtime	of	the	working	tree	directories
and	then	omitting	reading	directories	and	stat	calls	against	files	in	those
directories	whose	mtime	hasn't	changed.	For	this	to	work	the	underlying
operating	system	and	file	system	must	change	the	st_mtime	field	of
directories	if	files	in	the	directory	are	added,	modified	or	deleted.

You	can	test	whether	the	filesystem	supports	that	with	the	--test-
untracked-cache	option.	The	--untracked-cache	option	used	to	implicitly
perform	that	test	in	older	versions	of	Git,	but	that's	no	longer	the	case.

If	you	want	to	enable	(or	disable)	this	feature,	it	is	easier	to	use	the
core.untrackedCache	configuration	variable	(see	Section	G.3.27,	“git-
config(1)”)	than	using	the	--untracked-cache	option	to	git	update-index	in
each	repository,	especially	if	you	want	to	do	so	across	all	repositories	you



use,	because	you	can	set	the	configuration	variable	to	true	(or	false)	in
your	$HOME/.gitconfig	just	once	and	have	it	affect	all	repositories	you
touch.

When	the	core.untrackedCache	configuration	variable	is	changed,	the
untracked	cache	is	added	to	or	removed	from	the	index	the	next	time	a
command	reads	the	index;	while	when	--[no-|force-]untracked-cache	are
used,	the	untracked	cache	is	immediately	added	to	or	removed	from	the
index.

Configuration

The	command	honors	core.filemode	configuration	variable.	If	your
repository	is	on	a	filesystem	whose	executable	bits	are	unreliable,	this
should	be	set	to	false	(see	Section	G.3.27,	“git-config(1)”).	This	causes
the	command	to	ignore	differences	in	file	modes	recorded	in	the	index
and	the	file	mode	on	the	filesystem	if	they	differ	only	on	executable	bit.
On	such	an	unfortunate	filesystem,	you	may	need	to	use	git	update-index
--chmod=.

Quite	similarly,	if	core.symlinks	configuration	variable	is	set	to	false	(see
Section	G.3.27,	“git-config(1)”),	symbolic	links	are	checked	out	as	plain
files,	and	this	command	does	not	modify	a	recorded	file	mode	from
symbolic	link	to	regular	file.

The	command	looks	at	core.ignorestat	configuration	variable.	See	Using
"assume	unchanged"	bit	section	above.

The	command	also	looks	at	core.trustctime	configuration	variable.	It	can
be	useful	when	the	inode	change	time	is	regularly	modified	by	something
outside	Git	(file	system	crawlers	and	backup	systems	use	ctime	for
marking	files	processed)	(see	Section	G.3.27,	“git-config(1)”).

The	untracked	cache	extension	can	be	enabled	by	the
core.untrackedCache	configuration	variable	(see	Section	G.3.27,	“git-
config(1)”).

SEE	ALSO



Section	G.3.27,	“git-config(1)”,	Section	G.3.2,	“git-add(1)”,
Section	G.3.69,	“git-ls-files(1)”

GIT

Part	of	the	Section	G.3.1,	“git(1)”	suite

G.3.138.	git-update-ref(1)

NAME

git-update-ref	-	Update	the	object	name	stored	in	a	ref	safely

SYNOPSIS

git	update-ref	[-m	<reason>]	(-d	<ref>	[<oldvalue>]	|	[--no-

deref]	[--create-reflog]	<ref>	<newvalue>	[<oldvalue>]	|	--

stdin	[-z])

DESCRIPTION

Given	two	arguments,	stores	the	<newvalue>	in	the	<ref>,	possibly
dereferencing	the	symbolic	refs.	E.g.	git	update-ref	HEAD	<newvalue>
updates	the	current	branch	head	to	the	new	object.

Given	three	arguments,	stores	the	<newvalue>	in	the	<ref>,	possibly
dereferencing	the	symbolic	refs,	after	verifying	that	the	current	value	of
the	<ref>	matches	<oldvalue>.	E.g.	git	update-ref	refs/heads/master
<newvalue>	<oldvalue>	updates	the	master	branch	head	to	<newvalue>
only	if	its	current	value	is	<oldvalue>.	You	can	specify	40	"0"	or	an	empty
string	as	<oldvalue>	to	make	sure	that	the	ref	you	are	creating	does	not
exist.

It	also	allows	a	"ref"	file	to	be	a	symbolic	pointer	to	another	ref	file	by
starting	with	the	four-byte	header	sequence	of	"ref:".



More	importantly,	it	allows	the	update	of	a	ref	file	to	follow	these	symbolic
pointers,	whether	they	are	symlinks	or	these	"regular	file	symbolic	refs".	It
follows	real	symlinks	only	if	they	start	with	"refs/":	otherwise	it	will	just	try
to	read	them	and	update	them	as	a	regular	file	(i.e.	it	will	allow	the
filesystem	to	follow	them,	but	will	overwrite	such	a	symlink	to	somewhere
else	with	a	regular	filename).

If	--no-deref	is	given,	<ref>	itself	is	overwritten,	rather	than	the	result	of
following	the	symbolic	pointers.

In	general,	using

git	update-ref	HEAD	"$head"

should	be	a	lot	safer	than	doing

echo	"$head"	>	"$GIT_DIR/HEAD"

both	from	a	symlink	following	standpoint	and	an	error	checking
standpoint.	The	"refs/"	rule	for	symlinks	means	that	symlinks	that	point	to
"outside"	the	tree	are	safe:	they'll	be	followed	for	reading	but	not	for
writing	(so	we'll	never	write	through	a	ref	symlink	to	some	other	tree,	if
you	have	copied	a	whole	archive	by	creating	a	symlink	tree).

With	-d	flag,	it	deletes	the	named	<ref>	after	verifying	it	still	contains
<oldvalue>.

With	--stdin,	update-ref	reads	instructions	from	standard	input	and
performs	all	modifications	together.	Specify	commands	of	the	form:

update	SP	<ref>	SP	<newvalue>	[SP	<oldvalue>]	LF

create	SP	<ref>	SP	<newvalue>	LF

delete	SP	<ref>	[SP	<oldvalue>]	LF

verify	SP	<ref>	[SP	<oldvalue>]	LF

option	SP	<opt>	LF

With	--create-reflog,	update-ref	will	create	a	reflog	for	each	ref	even	if	one
would	not	ordinarily	be	created.

Quote	fields	containing	whitespace	as	if	they	were	strings	in	C	source
code;	i.e.,	surrounded	by	double-quotes	and	with	backslash	escapes.
Use	40	"0"	characters	or	the	empty	string	to	specify	a	zero	value.	To



specify	a	missing	value,	omit	the	value	and	its	preceding	SP	entirely.

Alternatively,	use	-z	to	specify	in	NUL-terminated	format,	without	quoting:

update	SP	<ref>	NUL	<newvalue>	NUL	[<oldvalue>]	NUL

create	SP	<ref>	NUL	<newvalue>	NUL

delete	SP	<ref>	NUL	[<oldvalue>]	NUL

verify	SP	<ref>	NUL	[<oldvalue>]	NUL

option	SP	<opt>	NUL

In	this	format,	use	40	"0"	to	specify	a	zero	value,	and	use	the	empty
string	to	specify	a	missing	value.

In	either	format,	values	can	be	specified	in	any	form	that	Git	recognizes
as	an	object	name.	Commands	in	any	other	format	or	a	repeated	<ref>
produce	an	error.	Command	meanings	are:

update
Set	<ref>	to	<newvalue>	after	verifying	<oldvalue>,	if	given.	Specify
a	zero	<newvalue>	to	ensure	the	ref	does	not	exist	after	the	update
and/or	a	zero	<oldvalue>	to	make	sure	the	ref	does	not	exist	before
the	update.

create
Create	<ref>	with	<newvalue>	after	verifying	it	does	not	exist.	The
given	<newvalue>	may	not	be	zero.

delete
Delete	<ref>	after	verifying	it	exists	with	<oldvalue>,	if	given.	If	given,
<oldvalue>	may	not	be	zero.

verify
Verify	<ref>	against	<oldvalue>	but	do	not	change	it.	If	<oldvalue>
zero	or	missing,	the	ref	must	not	exist.

option
Modify	behavior	of	the	next	command	naming	a	<ref>.	The	only	valid
option	is	no-deref	to	avoid	dereferencing	a	symbolic	ref.

If	all	<ref>s	can	be	locked	with	matching	<oldvalue>s	simultaneously,	all
modifications	are	performed.	Otherwise,	no	modifications	are	performed.
Note	that	while	each	individual	<ref>	is	updated	or	deleted	atomically,	a
concurrent	reader	may	still	see	a	subset	of	the	modifications.



Logging	Updates

If	config	parameter	"core.logAllRefUpdates"	is	true	and	the	ref	is	one
under	"refs/heads/",	"refs/remotes/",	"refs/notes/",	or	the	symbolic	ref
HEAD;	or	the	file	"$GIT_DIR/logs/<ref>"	exists	then	git	update-ref	will
append	a	line	to	the	log	file	"$GIT_DIR/logs/<ref>"	(dereferencing	all
symbolic	refs	before	creating	the	log	name)	describing	the	change	in	ref
value.	Log	lines	are	formatted	as:

1.	 oldsha1	SP	newsha1	SP	committer	LF

Where	"oldsha1"	is	the	40	character	hexadecimal	value	previously
stored	in	<ref>,	"newsha1"	is	the	40	character	hexadecimal	value	of
<newvalue>	and	"committer"	is	the	committer's	name,	email	address
and	date	in	the	standard	Git	committer	ident	format.

Optionally	with	-m:

1.	 oldsha1	SP	newsha1	SP	committer	TAB	message	LF

Where	all	fields	are	as	described	above	and	"message"	is	the	value
supplied	to	the	-m	option.

An	update	will	fail	(without	changing	<ref>)	if	the	current	user	is	unable	to
create	a	new	log	file,	append	to	the	existing	log	file	or	does	not	have
committer	information	available.

GIT

Part	of	the	Section	G.3.1,	“git(1)”	suite

G.3.139.	git-update-server-info(1)

NAME

git-update-server-info	-	Update	auxiliary	info	file	to	help	dumb	servers



SYNOPSIS

git	update-server-info	[--force]

DESCRIPTION

A	dumb	server	that	does	not	do	on-the-fly	pack	generations	must	have
some	auxiliary	information	files	in	$GIT_DIR/info	and
$GIT_OBJECT_DIRECTORY/info	directories	to	help	clients	discover
what	references	and	packs	the	server	has.	This	command	generates
such	auxiliary	files.

OPTIONS

-f	,	--force
Update	the	info	files	from	scratch.

OUTPUT

Currently	the	command	updates	the	following	files.	Please	see
Section	G.4.11,	“gitrepository-layout(5)”	for	description	of	what	they	are
for:

objects/info/packs
info/refs

GIT

Part	of	the	Section	G.3.1,	“git(1)”	suite

G.3.140.	git-upload-archive(1)

NAME

git-upload-archive	-	Send	archive	back	to	git-archive



SYNOPSIS

git	upload-archive	<directory>

DESCRIPTION

Invoked	by	git	archive	--remote	and	sends	a	generated	archive	to	the
other	end	over	the	Git	protocol.

This	command	is	usually	not	invoked	directly	by	the	end	user.	The	UI	for
the	protocol	is	on	the	git	archive	side,	and	the	program	pair	is	meant	to
be	used	to	get	an	archive	from	a	remote	repository.

SECURITY

In	order	to	protect	the	privacy	of	objects	that	have	been	removed	from
history	but	may	not	yet	have	been	pruned,	git-upload-archive	avoids
serving	archives	for	commits	and	trees	that	are	not	reachable	from	the
repository's	refs.	However,	because	calculating	object	reachability	is
computationally	expensive,	git-upload-archive	implements	a	stricter	but
easier-to-check	set	of	rules:

1.	 Clients	may	request	a	commit	or	tree	that	is	pointed	to	directly	by	a
ref.	E.g.,	git	archive	--remote=origin	v1.0.

2.	 Clients	may	request	a	sub-tree	within	a	commit	or	tree	using	the
ref:path	syntax.	E.g.,	git	archive	--remote=origin
v1.0:Documentation.

3.	 Clients	may	not	use	other	sha1	expressions,	even	if	the	end	result	is
reachable.	E.g.,	neither	a	relative	commit	like	master^	nor	a	literal
sha1	like	abcd1234	is	allowed,	even	if	the	result	is	reachable	from
the	refs.

Note	that	rule	3	disallows	many	cases	that	do	not	have	any	privacy
implications.	These	rules	are	subject	to	change	in	future	versions	of	git,
and	the	server	accessed	by	git	archive	--remote	may	or	may	not	follow
these	exact	rules.



If	the	config	option	uploadArchive.allowUnreachable	is	true,	these	rules
are	ignored,	and	clients	may	use	arbitrary	sha1	expressions.	This	is
useful	if	you	do	not	care	about	the	privacy	of	unreachable	objects,	or	if
your	object	database	is	already	publicly	available	for	access	via	non-
smart-http.

OPTIONS

<directory>
The	repository	to	get	a	tar	archive	from.

GIT

Part	of	the	Section	G.3.1,	“git(1)”	suite

G.3.141.	git-upload-pack(1)

NAME

git-upload-pack	-	Send	objects	packed	back	to	git-fetch-pack

SYNOPSIS

git-upload-pack	[--strict]	[--timeout=<n>]	<directory>

DESCRIPTION

Invoked	by	git	fetch-pack,	learns	what	objects	the	other	side	is	missing,
and	sends	them	after	packing.

This	command	is	usually	not	invoked	directly	by	the	end	user.	The	UI	for
the	protocol	is	on	the	git	fetch-pack	side,	and	the	program	pair	is	meant
to	be	used	to	pull	updates	from	a	remote	repository.	For	push	operations,
see	git	send-pack.



OPTIONS

--strict
Do	not	try	<directory>/.git/	if	<directory>	is	no	Git	directory.

--timeout=<n>
Interrupt	transfer	after	<n>	seconds	of	inactivity.

<directory>
The	repository	to	sync	from.

SEE	ALSO

Section	G.4.9,	“gitnamespaces(7)”

GIT

Part	of	the	Section	G.3.1,	“git(1)”	suite

G.3.142.	git-var(1)

NAME

git-var	-	Show	a	Git	logical	variable

SYNOPSIS

git	var	(	-l	|	<variable>	)

DESCRIPTION

Prints	a	Git	logical	variable.

OPTIONS

-l
Cause	the	logical	variables	to	be	listed.	In	addition,	all	the	variables



of	the	Git	configuration	file	.git/config	are	listed	as	well.	(However,
the	configuration	variables	listing	functionality	is	deprecated	in	favor
of	git	config	-l.)

EXAMPLE

$	git	var	GIT_AUTHOR_IDENT

Eric	W.	Biederman	<ebiederm@lnxi.com>	1121223278	-0600

VARIABLES

GIT_AUTHOR_IDENT
The	author	of	a	piece	of	code.

GIT_COMMITTER_IDENT
The	person	who	put	a	piece	of	code	into	Git.

GIT_EDITOR
Text	editor	for	use	by	Git	commands.	The	value	is	meant	to	be
interpreted	by	the	shell	when	it	is	used.	Examples:	~/bin/vi,
$SOME_ENVIRONMENT_VARIABLE,	"C:\Program
Files\Vim\gvim.exe"	--nofork.	The	order	of	preference	is	the
$GIT_EDITOR	environment	variable,	then	core.editor	configuration,
then	$VISUAL,	then	$EDITOR,	and	then	the	default	chosen	at
compile	time,	which	is	usually	vi.

GIT_PAGER
Text	viewer	for	use	by	Git	commands	(e.g.,	less).	The	value	is	meant
to	be	interpreted	by	the	shell.	The	order	of	preference	is	the
$GIT_PAGER	environment	variable,	then	core.pager	configuration,
then	$PAGER,	and	then	the	default	chosen	at	compile	time	(usually
less).

SEE	ALSO

Section	G.3.25,	“git-commit-tree(1)”	Section	G.3.134,	“git-tag(1)”
Section	G.3.27,	“git-config(1)”

GIT



Part	of	the	Section	G.3.1,	“git(1)”	suite

G.3.143.	git-verify-commit(1)

NAME

git-verify-commit	-	Check	the	GPG	signature	of	commits

SYNOPSIS

git	verify-commit	<commit>…

DESCRIPTION

Validates	the	gpg	signature	created	by	git	commit	-S.

OPTIONS

--raw
Print	the	raw	gpg	status	output	to	standard	error	instead	of	the
normal	human-readable	output.

-v	,	--verbose
Print	the	contents	of	the	commit	object	before	validating	it.

<commit>…
SHA-1	identifiers	of	Git	commit	objects.

GIT

Part	of	the	Section	G.3.1,	“git(1)”	suite

G.3.144.	git-verify-pack(1)

NAME

git-verify-pack	-	Validate	packed	Git	archive	files



SYNOPSIS

git	verify-pack	[-v|--verbose]	[-s|--stat-only]	[--

]	<pack>.idx	…

DESCRIPTION

Reads	given	idx	file	for	packed	Git	archive	created	with	the	git	pack-
objects	command	and	verifies	idx	file	and	the	corresponding	pack	file.

OPTIONS

<pack>.idx	…
The	idx	files	to	verify.

-v	,	--verbose
After	verifying	the	pack,	show	list	of	objects	contained	in	the	pack
and	a	histogram	of	delta	chain	length.

-s	,	--stat-only
Do	not	verify	the	pack	contents;	only	show	the	histogram	of	delta
chain	length.	With	--verbose,	list	of	objects	is	also	shown.

--
Do	not	interpret	any	more	arguments	as	options.

OUTPUT	FORMAT

When	specifying	the	-v	option	the	format	used	is:

SHA-1	type	size	size-in-packfile	offset-in-packfile

for	objects	that	are	not	deltified	in	the	pack,	and

SHA-1	type	size	size-in-packfile	offset-in-packfile	depth	base-SHA-1

for	objects	that	are	deltified.

GIT



Part	of	the	Section	G.3.1,	“git(1)”	suite

G.3.145.	git-verify-tag(1)

NAME

git-verify-tag	-	Check	the	GPG	signature	of	tags

SYNOPSIS

git	verify-tag	<tag>…

DESCRIPTION

Validates	the	gpg	signature	created	by	git	tag.

OPTIONS

--raw
Print	the	raw	gpg	status	output	to	standard	error	instead	of	the
normal	human-readable	output.

-v	,	--verbose
Print	the	contents	of	the	tag	object	before	validating	it.

<tag>…
SHA-1	identifiers	of	Git	tag	objects.

GIT

Part	of	the	Section	G.3.1,	“git(1)”	suite

G.3.146.	git-web--browse(1)

NAME

git-web--browse	-	Git	helper	script	to	launch	a	web	browser



SYNOPSIS

git	web--browse	[OPTIONS]	URL/FILE	…

DESCRIPTION

This	script	tries,	as	much	as	possible,	to	display	the	URLs	and	FILEs	that
are	passed	as	arguments,	as	HTML	pages	in	new	tabs	on	an	already
opened	web	browser.

The	following	browsers	(or	commands)	are	currently	supported:

firefox	(this	is	the	default	under	X	Window	when	not	using	KDE)
iceweasel
seamonkey
iceape
chromium	(also	supported	as	chromium-browser)
google-chrome	(also	supported	as	chrome)
konqueror	(this	is	the	default	under	KDE,	see	Note	about	konqueror
below)
opera
w3m	(this	is	the	default	outside	graphical	environments)
elinks
links
lynx
dillo
open	(this	is	the	default	under	Mac	OS	X	GUI)
start	(this	is	the	default	under	MinGW)
cygstart	(this	is	the	default	under	Cygwin)
xdg-open

Custom	commands	may	also	be	specified.

OPTIONS

-b	<browser>	,	--browser=<browser>



Use	the	specified	browser.	It	must	be	in	the	list	of	supported
browsers.

-t	<browser>	,	--tool=<browser>
Same	as	above.

-c	<conf.var>	,	--config=<conf.var>
CONF.VAR	is	looked	up	in	the	Git	config	files.	If	it's	set,	then	its	value
specifies	the	browser	that	should	be	used.

CONFIGURATION	VARIABLES



1.	CONF.VAR	(from	-c	option)	and	web.browser

The	web	browser	can	be	specified	using	a	configuration	variable	passed
with	the	-c	(or	--config)	command-line	option,	or	the	web.browser
configuration	variable	if	the	former	is	not	used.



2.	browser.<tool>.path

You	can	explicitly	provide	a	full	path	to	your	preferred	browser	by	setting
the	configuration	variable	browser.<tool>.path.	For	example,	you	can
configure	the	absolute	path	to	firefox	by	setting	browser.firefox.path.
Otherwise,	git	web--browse	assumes	the	tool	is	available	in	PATH.



3.	browser.<tool>.cmd

When	the	browser,	specified	by	options	or	configuration	variables,	is	not
among	the	supported	ones,	then	the	corresponding	browser.<tool>.cmd
configuration	variable	will	be	looked	up.	If	this	variable	exists	then	git
web--browse	will	treat	the	specified	tool	as	a	custom	command	and	will
use	a	shell	eval	to	run	the	command	with	the	URLs	passed	as
arguments.

Note	about	konqueror

When	konqueror	is	specified	by	a	command-line	option	or	a	configuration
variable,	we	launch	kfmclient	to	try	to	open	the	HTML	man	page	on	an
already	opened	konqueror	in	a	new	tab	if	possible.

For	consistency,	we	also	try	such	a	trick	if	browser.konqueror.path	is	set
to	something	like	A_PATH_TO/konqueror.	That	means	we	will	try	to
launch	A_PATH_TO/kfmclient	instead.

If	you	really	want	to	use	konqueror,	then	you	can	use	something	like	the
following:

								[web]

																browser	=	konq

								[browser	"konq"]

																cmd	=	A_PATH_TO/konqueror



1.	Note	about	git-config	--global

Note	that	these	configuration	variables	should	probably	be	set	using	the	-
-global	flag,	for	example	like	this:

$	git	config	--global	web.browser	firefox

as	they	are	probably	more	user	specific	than	repository	specific.	See
Section	G.3.27,	“git-config(1)”	for	more	information	about	this.

GIT

Part	of	the	Section	G.3.1,	“git(1)”	suite

G.3.147.	git-whatchanged(1)

NAME

git-whatchanged	-	Show	logs	with	difference	each	commit	introduces

SYNOPSIS

git	whatchanged	<option>…

DESCRIPTION

Shows	commit	logs	and	diff	output	each	commit	introduces.

New	users	are	encouraged	to	use	Section	G.3.68,	“git-log(1)”	instead.
The	whatchanged	command	is	essentially	the	same	as	Section	G.3.68,
“git-log(1)”	but	defaults	to	show	the	raw	format	diff	output	and	to	skip
merges.

The	command	is	kept	primarily	for	historical	reasons;	fingers	of	many



people	who	learned	Git	long	before	git	log	was	invented	by	reading	Linux
kernel	mailing	list	are	trained	to	type	it.

Examples

git	whatchanged	-p	v2.6.12..	include/scsi	drivers/scsi
Show	as	patches	the	commits	since	version	v2.6.12	that	changed
any	file	in	the	include/scsi	or	drivers/scsi	subdirectories

git	whatchanged	--since="2	weeks	ago"	--	gitk
Show	the	changes	during	the	last	two	weeks	to	the	file	gitk.	The	"--"
is	necessary	to	avoid	confusion	with	the	branch	named	gitk

GIT

Part	of	the	Section	G.3.1,	“git(1)”	suite

G.3.148.	git-worktree(1)

NAME

git-worktree	-	Manage	multiple	working	trees

SYNOPSIS

git	worktree	add	[-f]	[--detach]	[--checkout]	[-b	<new-

branch>]	<path>	[<branch>]

git	worktree	prune	[-n]	[-v]	[--expire	<expire>]

git	worktree	list	[--porcelain]

DESCRIPTION

Manage	multiple	working	trees	attached	to	the	same	repository.

A	git	repository	can	support	multiple	working	trees,	allowing	you	to	check
out	more	than	one	branch	at	a	time.	With	git	worktree	add	a	new	working
tree	is	associated	with	the	repository.	This	new	working	tree	is	called	a



"linked	working	tree"	as	opposed	to	the	"main	working	tree"	prepared	by
"git	init"	or	"git	clone".	A	repository	has	one	main	working	tree	(if	it's	not	a
bare	repository)	and	zero	or	more	linked	working	trees.

When	you	are	done	with	a	linked	working	tree	you	can	simply	delete	it.
The	working	tree's	administrative	files	in	the	repository	(see	"DETAILS"
below)	will	eventually	be	removed	automatically	(see
gc.worktreePruneExpire	in	Section	G.3.27,	“git-config(1)”),	or	you	can	run
git	worktree	prune	in	the	main	or	any	linked	working	tree	to	clean	up	any
stale	administrative	files.

If	you	move	a	linked	working	tree,	you	need	to	manually	update	the
administrative	files	so	that	they	do	not	get	pruned	automatically.	See
section	"DETAILS"	for	more	information.

If	a	linked	working	tree	is	stored	on	a	portable	device	or	network	share
which	is	not	always	mounted,	you	can	prevent	its	administrative	files	from
being	pruned	by	creating	a	file	named	locked	alongside	the	other
administrative	files,	optionally	containing	a	plain	text	reason	that	pruning
should	be	suppressed.	See	section	"DETAILS"	for	more	information.

COMMANDS

add	<path>	[<branch>]

Create	<path>	and	checkout	<branch>	into	it.	The	new	working
directory	is	linked	to	the	current	repository,	sharing	everything	except
working	directory	specific	files	such	as	HEAD,	index,	etc.

If	<branch>	is	omitted	and	neither	-b	nor	-B	nor	--detached	used,
then,	as	a	convenience,	a	new	branch	based	at	HEAD	is	created
automatically,	as	if	-b	$(basename	<path>)	was	specified.

prune
Prune	working	tree	information	in	$GIT_DIR/worktrees.

list
List	details	of	each	worktree.	The	main	worktree	is	listed	first,
followed	by	each	of	the	linked	worktrees.	The	output	details	include	if



the	worktree	is	bare,	the	revision	currently	checked	out,	and	the
branch	currently	checked	out	(or	detached	HEAD	if	none).

OPTIONS

-f	,	--force
By	default,	add	refuses	to	create	a	new	working	tree	when	<branch>
is	already	checked	out	by	another	working	tree.	This	option	overrides
that	safeguard.

-b	<new-branch>	,	-B	<new-branch>
With	add,	create	a	new	branch	named	<new-branch>	starting	at
<branch>,	and	check	out	<new-branch>	into	the	new	working	tree.	If
<branch>	is	omitted,	it	defaults	to	HEAD.	By	default,	-b	refuses	to
create	a	new	branch	if	it	already	exists.	-B	overrides	this	safeguard,
resetting	<new-branch>	to	<branch>.

--detach
With	add,	detach	HEAD	in	the	new	working	tree.	See	"DETACHED
HEAD"	in	Section	G.3.18,	“git-checkout(1)”.

--[no-]checkout
By	default,	add	checks	out	<branch>,	however,	--no-checkout	can	be
used	to	suppress	checkout	in	order	to	make	customizations,	such	as
configuring	sparse-checkout.	See	"Sparse	checkout"	in
Section	G.3.98,	“git-read-tree(1)”.

-n	,	--dry-run
With	prune,	do	not	remove	anything;	just	report	what	it	would
remove.

--porcelain
With	list,	output	in	an	easy-to-parse	format	for	scripts.	This	format
will	remain	stable	across	Git	versions	and	regardless	of	user
configuration.	See	below	for	details.

-v	,	--verbose
With	prune,	report	all	removals.

--expire	<time>
With	prune,	only	expire	unused	working	trees	older	than	<time>.

DETAILS



Each	linked	working	tree	has	a	private	sub-directory	in	the	repository's
$GIT_DIR/worktrees	directory.	The	private	sub-directory's	name	is
usually	the	base	name	of	the	linked	working	tree's	path,	possibly
appended	with	a	number	to	make	it	unique.	For	example,	when
$GIT_DIR=/path/main/.git	the	command	git	worktree	add	/path/other/test-
next	next	creates	the	linked	working	tree	in	/path/other/test-next	and	also
creates	a	$GIT_DIR/worktrees/test-next	directory	(or
$GIT_DIR/worktrees/test-next1	if	test-next	is	already	taken).

Within	a	linked	working	tree,	$GIT_DIR	is	set	to	point	to	this	private
directory	(e.g.	/path/main/.git/worktrees/test-next	in	the	example)	and
$GIT_COMMON_DIR	is	set	to	point	back	to	the	main	working	tree's
$GIT_DIR	(e.g.	/path/main/.git).	These	settings	are	made	in	a	.git	file
located	at	the	top	directory	of	the	linked	working	tree.

Path	resolution	via	git	rev-parse	--git-path	uses	either	$GIT_DIR	or
$GIT_COMMON_DIR	depending	on	the	path.	For	example,	in	the	linked
working	tree	git	rev-parse	--git-path	HEAD	returns
/path/main/.git/worktrees/test-next/HEAD	(not	/path/other/test-
next/.git/HEAD	or	/path/main/.git/HEAD)	while	git	rev-parse	--git-path
refs/heads/master	uses	$GIT_COMMON_DIR	and	returns
/path/main/.git/refs/heads/master,	since	refs	are	shared	across	all
working	trees.

See	Section	G.4.11,	“gitrepository-layout(5)”	for	more	information.	The
rule	of	thumb	is	do	not	make	any	assumption	about	whether	a	path
belongs	to	$GIT_DIR	or	$GIT_COMMON_DIR	when	you	need	to	directly
access	something	inside	$GIT_DIR.	Use	git	rev-parse	--git-path	to	get
the	final	path.

If	you	move	a	linked	working	tree,	you	need	to	update	the	gitdir	file	in	the
entry's	directory.	For	example,	if	a	linked	working	tree	is	moved	to
/newpath/test-next	and	its	.git	file	points	to	/path/main/.git/worktrees/test-
next,	then	update	/path/main/.git/worktrees/test-next/gitdir	to	reference
/newpath/test-next	instead.

To	prevent	a	$GIT_DIR/worktrees	entry	from	being	pruned	(which	can	be
useful	in	some	situations,	such	as	when	the	entry's	working	tree	is	stored



on	a	portable	device),	add	a	file	named	locked	to	the	entry's	directory.
The	file	contains	the	reason	in	plain	text.	For	example,	if	a	linked	working
tree's	.git	file	points	to	/path/main/.git/worktrees/test-next	then	a	file
named	/path/main/.git/worktrees/test-next/locked	will	prevent	the	test-
next	entry	from	being	pruned.	See	Section	G.4.11,	“gitrepository-
layout(5)”	for	details.

LIST	OUTPUT	FORMAT

The	worktree	list	command	has	two	output	formats.	The	default	format
shows	the	details	on	a	single	line	with	columns.	For	example:

S	git	worktree	list

/path/to/bare-source												(bare)

/path/to/linked-worktree								abcd1234	[master]

/path/to/other-linked-worktree		1234abc		(detached	HEAD)



1.	Porcelain	Format

The	porcelain	format	has	a	line	per	attribute.	Attributes	are	listed	with	a
label	and	value	separated	by	a	single	space.	Boolean	attributes	(like	bare
and	detached)	are	listed	as	a	label	only,	and	are	only	present	if	and	only
if	the	value	is	true.	An	empty	line	indicates	the	end	of	a	worktree.	For
example:

S	git	worktree	list	--porcelain

worktree	/path/to/bare-source

bare

worktree	/path/to/linked-worktree

HEAD	abcd1234abcd1234abcd1234abcd1234abcd1234

branch	refs/heads/master

worktree	/path/to/other-linked-worktree

HEAD	1234abc1234abc1234abc1234abc1234abc1234a

detached

EXAMPLES

You	are	in	the	middle	of	a	refactoring	session	and	your	boss	comes	in
and	demands	that	you	fix	something	immediately.	You	might	typically	use
Section	G.3.128,	“git-stash(1)”	to	store	your	changes	away	temporarily,
however,	your	working	tree	is	in	such	a	state	of	disarray	(with	new,
moved,	and	removed	files,	and	other	bits	and	pieces	strewn	around)	that
you	don't	want	to	risk	disturbing	any	of	it.	Instead,	you	create	a	temporary
linked	working	tree	to	make	the	emergency	fix,	remove	it	when	done,	and
then	resume	your	earlier	refactoring	session.

$	git	worktree	add	-b	emergency-fix	../temp	master

$	pushd	../temp

#	...	hack	hack	hack	...

$	git	commit	-a	-m	'emergency	fix	for	boss'

$	popd

$	rm	-rf	../temp

$	git	worktree	prune



BUGS

Multiple	checkout	in	general	is	still	experimental,	and	the	support	for
submodules	is	incomplete.	It	is	NOT	recommended	to	make	multiple
checkouts	of	a	superproject.

git-worktree	could	provide	more	automation	for	tasks	currently	performed
manually,	such	as:

remove	to	remove	a	linked	working	tree	and	its	administrative	files
(and	warn	if	the	working	tree	is	dirty)
mv	to	move	or	rename	a	working	tree	and	update	its	administrative
files
lock	to	prevent	automatic	pruning	of	administrative	files	(for	instance,
for	a	working	tree	on	a	portable	device)

GIT

Part	of	the	Section	G.3.1,	“git(1)”	suite

G.3.149.	git-write-tree(1)

NAME

git-write-tree	-	Create	a	tree	object	from	the	current	index

SYNOPSIS

git	write-tree	[--missing-ok]	[--prefix=<prefix>/]

DESCRIPTION

Creates	a	tree	object	using	the	current	index.	The	name	of	the	new	tree
object	is	printed	to	standard	output.

The	index	must	be	in	a	fully	merged	state.



Conceptually,	git	write-tree	sync()s	the	current	index	contents	into	a	set	of
tree	files.	In	order	to	have	that	match	what	is	actually	in	your	directory
right	now,	you	need	to	have	done	a	git	update-index	phase	before	you
did	the	git	write-tree.

OPTIONS

--missing-ok
Normally	git	write-tree	ensures	that	the	objects	referenced	by	the
directory	exist	in	the	object	database.	This	option	disables	this
check.

--prefix=<prefix>/
Writes	a	tree	object	that	represents	a	subdirectory	<prefix>.	This	can
be	used	to	write	the	tree	object	for	a	subproject	that	is	in	the	named
subdirectory.

GIT

Part	of	the	Section	G.3.1,	“git(1)”	suite

[1]	Permitted	pathnames	have	the	form	ab/cd/ef/…/abcdef…:	a	sequence
of	directory	names	of	two	hexadecimal	digits	each	followed	by	a	filename
with	the	rest	of	the	object	ID.

Prev	 Up 	Next
G.2.	Git	Tutorial	 Home 	2.	Ancillary	Commands



G.4.	Misc
Prev	 Appendix	G.	Git	Offical	Documentation 	Next



G.4.	Misc

G.4.1.	gitcli(7)

NAME

gitcli	-	Git	command-line	interface	and	conventions

SYNOPSIS

gitcli

DESCRIPTION

This	manual	describes	the	convention	used	throughout	Git	CLI.

Many	commands	take	revisions	(most	often	"commits",	but	sometimes
"tree-ish",	depending	on	the	context	and	command)	and	paths	as	their
arguments.	Here	are	the	rules:

Revisions	come	first	and	then	paths.	E.g.	in	git	diff	v1.0	v2.0
arch/x86	include/asm-x86,	v1.0	and	v2.0	are	revisions	and	arch/x86
and	include/asm-x86	are	paths.
When	an	argument	can	be	misunderstood	as	either	a	revision	or	a
path,	they	can	be	disambiguated	by	placing	--	between	them.	E.g.	git
diff	--	HEAD	is,	"I	have	a	file	called	HEAD	in	my	work	tree.	Please
show	changes	between	the	version	I	staged	in	the	index	and	what	I
have	in	the	work	tree	for	that	file",	not	"show	difference	between	the
HEAD	commit	and	the	work	tree	as	a	whole".	You	can	say	git	diff
HEAD	--	to	ask	for	the	latter.

Without	disambiguating	--,	Git	makes	a	reasonable	guess,	but	errors
out	and	asking	you	to	disambiguate	when	ambiguous.	E.g.	if	you
have	a	file	called	HEAD	in	your	work	tree,	git	diff	HEAD	is
ambiguous,	and	you	have	to	say	either	git	diff	HEAD	--	or	git	diff	--



HEAD	to	disambiguate.

When	writing	a	script	that	is	expected	to	handle	random	user-input,	it
is	a	good	practice	to	make	it	explicit	which	arguments	are	which	by
placing	disambiguating	--	at	appropriate	places.

Many	commands	allow	wildcards	in	paths,	but	you	need	to	protect
them	from	getting	globbed	by	the	shell.	These	two	mean	different
things:

$	git	checkout	--	*.c

$	git	checkout	--	\*.c

The	former	lets	your	shell	expand	the	fileglob,	and	you	are	asking
the	dot-C	files	in	your	working	tree	to	be	overwritten	with	the	version
in	the	index.	The	latter	passes	the	*.c	to	Git,	and	you	are	asking	the
paths	in	the	index	that	match	the	pattern	to	be	checked	out	to	your
working	tree.	After	running	git	add	hello.c;	rm	hello.c,	you	will	not	see
hello.c	in	your	working	tree	with	the	former,	but	with	the	latter	you
will.

Just	as	the	filesystem	.	(period)	refers	to	the	current	directory,	using
a	.	as	a	repository	name	in	Git	(a	dot-repository)	is	a	relative	path
and	means	your	current	repository.

Here	are	the	rules	regarding	the	"flags"	that	you	should	follow	when	you
are	scripting	Git:

it's	preferred	to	use	the	non-dashed	form	of	Git	commands,	which
means	that	you	should	prefer	git	foo	to	git-foo.
splitting	short	options	to	separate	words	(prefer	git	foo	-a	-b	to	git	foo
-ab,	the	latter	may	not	even	work).
when	a	command-line	option	takes	an	argument,	use	the	stuck	form.
In	other	words,	write	git	foo	-oArg	instead	of	git	foo	-o	Arg	for	short
options,	and	git	foo	--long-opt=Arg	instead	of	git	foo	--long-opt	Arg
for	long	options.	An	option	that	takes	optional	option-argument	must
be	written	in	the	stuck	form.
when	you	give	a	revision	parameter	to	a	command,	make	sure	the



parameter	is	not	ambiguous	with	a	name	of	a	file	in	the	work	tree.
E.g.	do	not	write	git	log	-1	HEAD	but	write	git	log	-1	HEAD	--;	the
former	will	not	work	if	you	happen	to	have	a	file	called	HEAD	in	the
work	tree.
many	commands	allow	a	long	option	--option	to	be	abbreviated	only
to	their	unique	prefix	(e.g.	if	there	is	no	other	option	whose	name
begins	with	opt,	you	may	be	able	to	spell	--opt	to	invoke	the	--option
flag),	but	you	should	fully	spell	them	out	when	writing	your	scripts;
later	versions	of	Git	may	introduce	a	new	option	whose	name	shares
the	same	prefix,	e.g.	--optimize,	to	make	a	short	prefix	that	used	to
be	unique	no	longer	unique.

ENHANCED	OPTION	PARSER

From	the	Git	1.5.4	series	and	further,	many	Git	commands	(not	all	of
them	at	the	time	of	the	writing	though)	come	with	an	enhanced	option
parser.

Here	is	a	list	of	the	facilities	provided	by	this	option	parser.



1.	Magic	Options

Commands	which	have	the	enhanced	option	parser	activated	all
understand	a	couple	of	magic	command-line	options:

-h

gives	a	pretty	printed	usage	of	the	command.

$	git	describe	-h

usage:	git	describe	[options]	<commit-ish>*

			or:	git	describe	[options]	--dirty

				--contains												find	the	tag	that	comes	after	the	commit

				--debug															debug	search	strategy	on	stderr

				--all																	use	any	ref

				--tags																use	any	tag,	even	unannotated

				--long																always	use	long	format

				--abbrev[=<n>]								use	<n>	digits	to	display	SHA-1s

--help-all
Some	Git	commands	take	options	that	are	only	used	for	plumbing	or
that	are	deprecated,	and	such	options	are	hidden	from	the	default
usage.	This	option	gives	the	full	list	of	options.



2.	Negating	options

Options	with	long	option	names	can	be	negated	by	prefixing	--no-.	For
example,	git	branch	has	the	option	--track	which	is	on	by	default.	You	can
use	--no-track	to	override	that	behaviour.	The	same	goes	for	--color	and	-
-no-color.



3.	Aggregating	short	options

Commands	that	support	the	enhanced	option	parser	allow	you	to
aggregate	short	options.	This	means	that	you	can	for	example	use	git	rm
-rf	or	git	clean	-fdx.



4.	Abbreviating	long	options

Commands	that	support	the	enhanced	option	parser	accepts	unique
prefix	of	a	long	option	as	if	it	is	fully	spelled	out,	but	use	this	with	a
caution.	For	example,	git	commit	--amen	behaves	as	if	you	typed	git
commit	--amend,	but	that	is	true	only	until	a	later	version	of	Git	introduces
another	option	that	shares	the	same	prefix,	e.g.	git	commit	--amenity
option.



5.	Separating	argument	from	the	option

You	can	write	the	mandatory	option	parameter	to	an	option	as	a	separate
word	on	the	command	line.	That	means	that	all	the	following	uses	work:

$	git	foo	--long-opt=Arg

$	git	foo	--long-opt	Arg

$	git	foo	-oArg

$	git	foo	-o	Arg

However,	this	is	NOT	allowed	for	switches	with	an	optional	value,	where
the	stuck	form	must	be	used:

$	git	describe	--abbrev	HEAD					#	correct

$	git	describe	--abbrev=10	HEAD		#	correct

$	git	describe	--abbrev	10	HEAD		#	NOT	WHAT	YOU	MEANT

NOTES	ON	FREQUENTLY	CONFUSED	OPTIONS

Many	commands	that	can	work	on	files	in	the	working	tree	and/or	in	the
index	can	take	--cached	and/or	--index	options.	Sometimes	people
incorrectly	think	that,	because	the	index	was	originally	called	cache,
these	two	are	synonyms.	They	are	not	--	these	two	options	mean	very
different	things.

The	--cached	option	is	used	to	ask	a	command	that	usually	works	on
files	in	the	working	tree	to	only	work	with	the	index.	For	example,	git
grep,	when	used	without	a	commit	to	specify	from	which	commit	to
look	for	strings	in,	usually	works	on	files	in	the	working	tree,	but	with
the	--cached	option,	it	looks	for	strings	in	the	index.
The	--index	option	is	used	to	ask	a	command	that	usually	works	on
files	in	the	working	tree	to	also	affect	the	index.	For	example,	git
stash	apply	usually	merges	changes	recorded	in	a	stash	to	the
working	tree,	but	with	the	--index	option,	it	also	merges	changes	to
the	index	as	well.



git	apply	command	can	be	used	with	--cached	and	--index	(but	not	at	the
same	time).	Usually	the	command	only	affects	the	files	in	the	working
tree,	but	with	--index,	it	patches	both	the	files	and	their	index	entries,	and
with	--cached,	it	modifies	only	the	index	entries.

See	also	http://marc.info/?l=git&m=116563135620359	and
http://marc.info/?l=git&m=119150393620273	for	further	information.

GIT

Part	of	the	Section	G.3.1,	“git(1)”	suite

G.4.2.	gitattributes(5)

NAME

gitattributes	-	defining	attributes	per	path

SYNOPSIS

$GIT_DIR/info/attributes,	.gitattributes

DESCRIPTION

A	gitattributes	file	is	a	simple	text	file	that	gives	attributes	to	pathnames.

Each	line	in	gitattributes	file	is	of	form:

pattern	attr1	attr2	...

That	is,	a	pattern	followed	by	an	attributes	list,	separated	by	whitespaces.
When	the	pattern	matches	the	path	in	question,	the	attributes	listed	on
the	line	are	given	to	the	path.

Each	attribute	can	be	in	one	of	these	states	for	a	given	path:

Set

http://marc.info/?l=git&m=116563135620359
http://marc.info/?l=git&m=119150393620273


The	path	has	the	attribute	with	special	value	"true";	this	is	specified
by	listing	only	the	name	of	the	attribute	in	the	attribute	list.

Unset
The	path	has	the	attribute	with	special	value	"false";	this	is	specified
by	listing	the	name	of	the	attribute	prefixed	with	a	dash	-	in	the
attribute	list.

Set	to	a	value
The	path	has	the	attribute	with	specified	string	value;	this	is	specified
by	listing	the	name	of	the	attribute	followed	by	an	equal	sign	=	and
its	value	in	the	attribute	list.

Unspecified
No	pattern	matches	the	path,	and	nothing	says	if	the	path	has	or
does	not	have	the	attribute,	the	attribute	for	the	path	is	said	to	be
Unspecified.

When	more	than	one	pattern	matches	the	path,	a	later	line	overrides	an
earlier	line.	This	overriding	is	done	per	attribute.	The	rules	how	the
pattern	matches	paths	are	the	same	as	in	.gitignore	files;	see
Section	G.4.5,	“gitignore(5)”.	Unlike	.gitignore,	negative	patterns	are
forbidden.

When	deciding	what	attributes	are	assigned	to	a	path,	Git	consults
$GIT_DIR/info/attributes	file	(which	has	the	highest	precedence),
.gitattributes	file	in	the	same	directory	as	the	path	in	question,	and	its
parent	directories	up	to	the	toplevel	of	the	work	tree	(the	further	the
directory	that	contains	.gitattributes	is	from	the	path	in	question,	the	lower
its	precedence).	Finally	global	and	system-wide	files	are	considered	(they
have	the	lowest	precedence).

When	the	.gitattributes	file	is	missing	from	the	work	tree,	the	path	in	the
index	is	used	as	a	fall-back.	During	checkout	process,	.gitattributes	in	the
index	is	used	and	then	the	file	in	the	working	tree	is	used	as	a	fall-back.

If	you	wish	to	affect	only	a	single	repository	(i.e.,	to	assign	attributes	to
files	that	are	particular	to	one	user's	workflow	for	that	repository),	then
attributes	should	be	placed	in	the	$GIT_DIR/info/attributes	file.	Attributes
which	should	be	version-controlled	and	distributed	to	other	repositories
(i.e.,	attributes	of	interest	to	all	users)	should	go	into	.gitattributes	files.



Attributes	that	should	affect	all	repositories	for	a	single	user	should	be
placed	in	a	file	specified	by	the	core.attributesFile	configuration	option
(see	Section	G.3.27,	“git-config(1)”).	Its	default	value	is
$XDG_CONFIG_HOME/git/attributes.	If	$XDG_CONFIG_HOME	is	either
not	set	or	empty,	$HOME/.config/git/attributes	is	used	instead.	Attributes
for	all	users	on	a	system	should	be	placed	in	the	$(prefix)/etc/gitattributes
file.

Sometimes	you	would	need	to	override	an	setting	of	an	attribute	for	a
path	to	Unspecified	state.	This	can	be	done	by	listing	the	name	of	the
attribute	prefixed	with	an	exclamation	point	!.

EFFECTS

Certain	operations	by	Git	can	be	influenced	by	assigning	particular
attributes	to	a	path.	Currently,	the	following	operations	are	attributes-
aware.



1.	Checking-out	and	checking-in

These	attributes	affect	how	the	contents	stored	in	the	repository	are
copied	to	the	working	tree	files	when	commands	such	as	git	checkout
and	git	merge	run.	They	also	affect	how	Git	stores	the	contents	you
prepare	in	the	working	tree	in	the	repository	upon	git	add	and	git	commit.

1.1.	text

This	attribute	enables	and	controls	end-of-line	normalization.	When	a	text
file	is	normalized,	its	line	endings	are	converted	to	LF	in	the	repository.	To
control	what	line	ending	style	is	used	in	the	working	directory,	use	the	eol
attribute	for	a	single	file	and	the	core.eol	configuration	variable	for	all	text
files.

Set
Setting	the	text	attribute	on	a	path	enables	end-of-line	normalization
and	marks	the	path	as	a	text	file.	End-of-line	conversion	takes	place
without	guessing	the	content	type.

Unset
Unsetting	the	text	attribute	on	a	path	tells	Git	not	to	attempt	any	end-
of-line	conversion	upon	checkin	or	checkout.

Set	to	string	value	"auto"
When	text	is	set	to	"auto",	the	path	is	marked	for	automatic	end-of-
line	normalization.	If	Git	decides	that	the	content	is	text,	its	line
endings	are	normalized	to	LF	on	checkin.

Unspecified
If	the	text	attribute	is	unspecified,	Git	uses	the	core.autocrlf
configuration	variable	to	determine	if	the	file	should	be	converted.

Any	other	value	causes	Git	to	act	as	if	text	has	been	left	unspecified.

1.2.	eol

This	attribute	sets	a	specific	line-ending	style	to	be	used	in	the	working
directory.	It	enables	end-of-line	normalization	without	any	content	checks,



effectively	setting	the	text	attribute.

Set	to	string	value	"crlf"
This	setting	forces	Git	to	normalize	line	endings	for	this	file	on
checkin	and	convert	them	to	CRLF	when	the	file	is	checked	out.

Set	to	string	value	"lf"
This	setting	forces	Git	to	normalize	line	endings	to	LF	on	checkin
and	prevents	conversion	to	CRLF	when	the	file	is	checked	out.

1.3.	Backwards	compatibility	with	crlf	attribute

For	backwards	compatibility,	the	crlf	attribute	is	interpreted	as	follows:

crlf												text

-crlf											-text

crlf=input						eol=lf

1.4.	End-of-line	conversion

While	Git	normally	leaves	file	contents	alone,	it	can	be	configured	to
normalize	line	endings	to	LF	in	the	repository	and,	optionally,	to	convert
them	to	CRLF	when	files	are	checked	out.

Here	is	an	example	that	will	make	Git	normalize	.txt,	.vcproj	and	.sh	files,
ensure	that	.vcproj	files	have	CRLF	and	.sh	files	have	LF	in	the	working
directory,	and	prevent	.jpg	files	from	being	normalized	regardless	of	their
content.

*.txt											text

*.vcproj								eol=crlf

*.sh												eol=lf

*.jpg											-text

Other	source	code	management	systems	normalize	all	text	files	in	their
repositories,	and	there	are	two	ways	to	enable	similar	automatic
normalization	in	Git.

If	you	simply	want	to	have	CRLF	line	endings	in	your	working	directory



regardless	of	the	repository	you	are	working	with,	you	can	set	the	config
variable	"core.autocrlf"	without	changing	any	attributes.

[core]

								autocrlf	=	true

This	does	not	force	normalization	of	all	text	files,	but	does	ensure	that
text	files	that	you	introduce	to	the	repository	have	their	line	endings
normalized	to	LF	when	they	are	added,	and	that	files	that	are	already
normalized	in	the	repository	stay	normalized.

If	you	want	to	interoperate	with	a	source	code	management	system	that
enforces	end-of-line	normalization,	or	you	simply	want	all	text	files	in	your
repository	to	be	normalized,	you	should	instead	set	the	text	attribute	to
"auto"	for	all	files.

*							text=auto

This	ensures	that	all	files	that	Git	considers	to	be	text	will	have
normalized	(LF)	line	endings	in	the	repository.	The	core.eol	configuration
variable	controls	which	line	endings	Git	will	use	for	normalized	files	in
your	working	directory;	the	default	is	to	use	the	native	line	ending	for	your
platform,	or	CRLF	if	core.autocrlf	is	set.

Note

When	text=auto	normalization	is	enabled	in	an	existing
repository,	any	text	files	containing	CRLFs	should	be
normalized.	If	they	are	not	they	will	be	normalized	the	next
time	someone	tries	to	change	them,	causing	unfortunate
misattribution.	From	a	clean	working	directory:

$	echo	"*	text=auto"	>>.gitattributes

$	rm	.git/index					#	Remove	the	index	to	force	Git	to

$	git	reset									#	re-scan	the	working	directory

$	git	status								#	Show	files	that	will	be	normalized



$	git	add	-u

$	git	add	.gitattributes

$	git	commit	-m	"Introduce	end-of-line	normalization"

If	any	files	that	should	not	be	normalized	show	up	in	git	status,	unset	their
text	attribute	before	running	git	add	-u.

manual.pdf						-text

Conversely,	text	files	that	Git	does	not	detect	can	have	normalization
enabled	manually.

weirdchars.txt		text

If	core.safecrlf	is	set	to	"true"	or	"warn",	Git	verifies	if	the	conversion	is
reversible	for	the	current	setting	of	core.autocrlf.	For	"true",	Git	rejects
irreversible	conversions;	for	"warn",	Git	only	prints	a	warning	but	accepts
an	irreversible	conversion.	The	safety	triggers	to	prevent	such	a
conversion	done	to	the	files	in	the	work	tree,	but	there	are	a	few
exceptions.	Even	though…

git	add	itself	does	not	touch	the	files	in	the	work	tree,	the	next
checkout	would,	so	the	safety	triggers;
git	apply	to	update	a	text	file	with	a	patch	does	touch	the	files	in	the
work	tree,	but	the	operation	is	about	text	files	and	CRLF	conversion
is	about	fixing	the	line	ending	inconsistencies,	so	the	safety	does	not
trigger;
git	diff	itself	does	not	touch	the	files	in	the	work	tree,	it	is	often	run	to
inspect	the	changes	you	intend	to	next	git	add.	To	catch	potential
problems	early,	safety	triggers.

1.5.	ident

When	the	attribute	ident	is	set	for	a	path,	Git	replaces	$Id$	in	the	blob
object	with	$Id:,	followed	by	the	40-character	hexadecimal	blob	object
name,	followed	by	a	dollar	sign	$	upon	checkout.	Any	byte	sequence	that
begins	with	$Id:	and	ends	with	$	in	the	worktree	file	is	replaced	with	$Id$



upon	check-in.

1.6.	filter

A	filter	attribute	can	be	set	to	a	string	value	that	names	a	filter	driver
specified	in	the	configuration.

A	filter	driver	consists	of	a	clean	command	and	a	smudge	command,
either	of	which	can	be	left	unspecified.	Upon	checkout,	when	the	smudge
command	is	specified,	the	command	is	fed	the	blob	object	from	its
standard	input,	and	its	standard	output	is	used	to	update	the	worktree
file.	Similarly,	the	clean	command	is	used	to	convert	the	contents	of
worktree	file	upon	checkin.

One	use	of	the	content	filtering	is	to	massage	the	content	into	a	shape
that	is	more	convenient	for	the	platform,	filesystem,	and	the	user	to	use.
For	this	mode	of	operation,	the	key	phrase	here	is	"more	convenient"	and
not	"turning	something	unusable	into	usable".	In	other	words,	the	intent	is
that	if	someone	unsets	the	filter	driver	definition,	or	does	not	have	the
appropriate	filter	program,	the	project	should	still	be	usable.

Another	use	of	the	content	filtering	is	to	store	the	content	that	cannot	be
directly	used	in	the	repository	(e.g.	a	UUID	that	refers	to	the	true	content
stored	outside	Git,	or	an	encrypted	content)	and	turn	it	into	a	usable	form
upon	checkout	(e.g.	download	the	external	content,	or	decrypt	the
encrypted	content).

These	two	filters	behave	differently,	and	by	default,	a	filter	is	taken	as	the
former,	massaging	the	contents	into	more	convenient	shape.	A	missing
filter	driver	definition	in	the	config,	or	a	filter	driver	that	exits	with	a	non-
zero	status,	is	not	an	error	but	makes	the	filter	a	no-op	passthru.

You	can	declare	that	a	filter	turns	a	content	that	by	itself	is	unusable	into
a	usable	content	by	setting	the	filter.<driver>.required	configuration
variable	to	true.

For	example,	in	.gitattributes,	you	would	assign	the	filter	attribute	for
paths.



*.c					filter=indent

Then	you	would	define	a	"filter.indent.clean"	and	"filter.indent.smudge"
configuration	in	your	.git/config	to	specify	a	pair	of	commands	to	modify
the	contents	of	C	programs	when	the	source	files	are	checked	in	("clean"
is	run)	and	checked	out	(no	change	is	made	because	the	command	is
"cat").

[filter	"indent"]

								clean	=	indent

								smudge	=	cat

For	best	results,	clean	should	not	alter	its	output	further	if	it	is	run	twice
("clean→clean"	should	be	equivalent	to	"clean"),	and	multiple	smudge
commands	should	not	alter	clean's	output	("smudge→smudge→clean"
should	be	equivalent	to	"clean").	See	the	section	on	merging	below.

The	"indent"	filter	is	well-behaved	in	this	regard:	it	will	not	modify	input
that	is	already	correctly	indented.	In	this	case,	the	lack	of	a	smudge	filter
means	that	the	clean	filter	must	accept	its	own	output	without	modifying
it.

If	a	filter	must	succeed	in	order	to	make	the	stored	contents	usable,	you
can	declare	that	the	filter	is	required,	in	the	configuration:

[filter	"crypt"]

								clean	=	openssl	enc	...

								smudge	=	openssl	enc	-d	...

								required

Sequence	"%f"	on	the	filter	command	line	is	replaced	with	the	name	of
the	file	the	filter	is	working	on.	A	filter	might	use	this	in	keyword
substitution.	For	example:

[filter	"p4"]

								clean	=	git-p4-filter	--clean	%f

								smudge	=	git-p4-filter	--smudge	%f



1.7.	Interaction	between	checkin/checkout	attributes

In	the	check-in	codepath,	the	worktree	file	is	first	converted	with	filter
driver	(if	specified	and	corresponding	driver	defined),	then	the	result	is
processed	with	ident	(if	specified),	and	then	finally	with	text	(again,	if
specified	and	applicable).

In	the	check-out	codepath,	the	blob	content	is	first	converted	with	text,
and	then	ident	and	fed	to	filter.

1.8.	Merging	branches	with	differing	checkin/checkout
attributes

If	you	have	added	attributes	to	a	file	that	cause	the	canonical	repository
format	for	that	file	to	change,	such	as	adding	a	clean/smudge	filter	or
text/eol/ident	attributes,	merging	anything	where	the	attribute	is	not	in
place	would	normally	cause	merge	conflicts.

To	prevent	these	unnecessary	merge	conflicts,	Git	can	be	told	to	run	a
virtual	check-out	and	check-in	of	all	three	stages	of	a	file	when	resolving
a	three-way	merge	by	setting	the	merge.renormalize	configuration
variable.	This	prevents	changes	caused	by	check-in	conversion	from
causing	spurious	merge	conflicts	when	a	converted	file	is	merged	with	an
unconverted	file.

As	long	as	a	"smudge→clean"	results	in	the	same	output	as	a	"clean"
even	on	files	that	are	already	smudged,	this	strategy	will	automatically
resolve	all	filter-related	conflicts.	Filters	that	do	not	act	in	this	way	may
cause	additional	merge	conflicts	that	must	be	resolved	manually.



2.	Generating	diff	text

2.1.	diff

The	attribute	diff	affects	how	Git	generates	diffs	for	particular	files.	It	can
tell	Git	whether	to	generate	a	textual	patch	for	the	path	or	to	treat	the
path	as	a	binary	file.	It	can	also	affect	what	line	is	shown	on	the	hunk
header	@@	-k,l	+n,m	@@	line,	tell	Git	to	use	an	external	command	to
generate	the	diff,	or	ask	Git	to	convert	binary	files	to	a	text	format	before
generating	the	diff.

Set
A	path	to	which	the	diff	attribute	is	set	is	treated	as	text,	even	when
they	contain	byte	values	that	normally	never	appear	in	text	files,
such	as	NUL.

Unset
A	path	to	which	the	diff	attribute	is	unset	will	generate	Binary	files
differ	(or	a	binary	patch,	if	binary	patches	are	enabled).

Unspecified
A	path	to	which	the	diff	attribute	is	unspecified	first	gets	its	contents
inspected,	and	if	it	looks	like	text	and	is	smaller	than
core.bigFileThreshold,	it	is	treated	as	text.	Otherwise	it	would
generate	Binary	files	differ.

String
Diff	is	shown	using	the	specified	diff	driver.	Each	driver	may	specify
one	or	more	options,	as	described	in	the	following	section.	The
options	for	the	diff	driver	"foo"	are	defined	by	the	configuration
variables	in	the	"diff.foo"	section	of	the	Git	config	file.

2.2.	Defining	an	external	diff	driver

The	definition	of	a	diff	driver	is	done	in	gitconfig,	not	gitattributes	file,	so
strictly	speaking	this	manual	page	is	a	wrong	place	to	talk	about	it.
However…

To	define	an	external	diff	driver	jcdiff,	add	a	section	to	your



$GIT_DIR/config	file	(or	$HOME/.gitconfig	file)	like	this:

[diff	"jcdiff"]

								command	=	j-c-diff

When	Git	needs	to	show	you	a	diff	for	the	path	with	diff	attribute	set	to
jcdiff,	it	calls	the	command	you	specified	with	the	above	configuration,	i.e.
j-c-diff,	with	7	parameters,	just	like	GIT_EXTERNAL_DIFF	program	is
called.	See	Section	G.3.1,	“git(1)”	for	details.

2.3.	Defining	a	custom	hunk-header

Each	group	of	changes	(called	a	"hunk")	in	the	textual	diff	output	is
prefixed	with	a	line	of	the	form:

@@	-k,l	+n,m	@@	TEXT

This	is	called	a	hunk	header.	The	"TEXT"	portion	is	by	default	a	line	that
begins	with	an	alphabet,	an	underscore	or	a	dollar	sign;	this	matches
what	GNU	diff	-p	output	uses.	This	default	selection	however	is	not	suited
for	some	contents,	and	you	can	use	a	customized	pattern	to	make	a
selection.

First,	in	.gitattributes,	you	would	assign	the	diff	attribute	for	paths.

*.tex			diff=tex

Then,	you	would	define	a	"diff.tex.xfuncname"	configuration	to	specify	a
regular	expression	that	matches	a	line	that	you	would	want	to	appear	as
the	hunk	header	"TEXT".	Add	a	section	to	your	$GIT_DIR/config	file	(or
$HOME/.gitconfig	file)	like	this:

[diff	"tex"]

								xfuncname	=	"^(\\\\(sub)*section\\{.*)$"

Note.	A	single	level	of	backslashes	are	eaten	by	the	configuration	file
parser,	so	you	would	need	to	double	the	backslashes;	the	pattern	above



picks	a	line	that	begins	with	a	backslash,	and	zero	or	more	occurrences
of	sub	followed	by	section	followed	by	open	brace,	to	the	end	of	line.

There	are	a	few	built-in	patterns	to	make	this	easier,	and	tex	is	one	of
them,	so	you	do	not	have	to	write	the	above	in	your	configuration	file	(you
still	need	to	enable	this	with	the	attribute	mechanism,	via	.gitattributes).
The	following	built	in	patterns	are	available:

ada	suitable	for	source	code	in	the	Ada	language.
bibtex	suitable	for	files	with	BibTeX	coded	references.
cpp	suitable	for	source	code	in	the	C	and	C++	languages.
csharp	suitable	for	source	code	in	the	C#	language.
fortran	suitable	for	source	code	in	the	Fortran	language.
fountain	suitable	for	Fountain	documents.
html	suitable	for	HTML/XHTML	documents.
java	suitable	for	source	code	in	the	Java	language.
matlab	suitable	for	source	code	in	the	MATLAB	language.
objc	suitable	for	source	code	in	the	Objective-C	language.
pascal	suitable	for	source	code	in	the	Pascal/Delphi	language.
perl	suitable	for	source	code	in	the	Perl	language.
php	suitable	for	source	code	in	the	PHP	language.
python	suitable	for	source	code	in	the	Python	language.
ruby	suitable	for	source	code	in	the	Ruby	language.
tex	suitable	for	source	code	for	LaTeX	documents.

2.4.	Customizing	word	diff

You	can	customize	the	rules	that	git	diff	--word-diff	uses	to	split	words	in	a
line,	by	specifying	an	appropriate	regular	expression	in	the
"diff.*.wordRegex"	configuration	variable.	For	example,	in	TeX	a
backslash	followed	by	a	sequence	of	letters	forms	a	command,	but
several	such	commands	can	be	run	together	without	intervening
whitespace.	To	separate	them,	use	a	regular	expression	in	your
$GIT_DIR/config	file	(or	$HOME/.gitconfig	file)	like	this:

[diff	"tex"]

								wordRegex	=	"\\\\[a-zA-Z]+|[{}]|\\\\.|[^\\{}[:space:]]+"



A	built-in	pattern	is	provided	for	all	languages	listed	in	the	previous
section.

2.5.	Performing	text	diffs	of	binary	files

Sometimes	it	is	desirable	to	see	the	diff	of	a	text-converted	version	of
some	binary	files.	For	example,	a	word	processor	document	can	be
converted	to	an	ASCII	text	representation,	and	the	diff	of	the	text	shown.
Even	though	this	conversion	loses	some	information,	the	resulting	diff	is
useful	for	human	viewing	(but	cannot	be	applied	directly).

The	textconv	config	option	is	used	to	define	a	program	for	performing
such	a	conversion.	The	program	should	take	a	single	argument,	the
name	of	a	file	to	convert,	and	produce	the	resulting	text	on	stdout.

For	example,	to	show	the	diff	of	the	exif	information	of	a	file	instead	of	the
binary	information	(assuming	you	have	the	exif	tool	installed),	add	the
following	section	to	your	$GIT_DIR/config	file	(or	$HOME/.gitconfig	file):

[diff	"jpg"]

								textconv	=	exif

Note

The	text	conversion	is	generally	a	one-way	conversion;	in
this	example,	we	lose	the	actual	image	contents	and	focus
just	on	the	text	data.	This	means	that	diffs	generated	by
textconv	are	not	suitable	for	applying.	For	this	reason,	only
git	diff	and	the	git	log	family	of	commands	(i.e.,	log,
whatchanged,	show)	will	perform	text	conversion.	git	format-
patch	will	never	generate	this	output.	If	you	want	to	send
somebody	a	text-converted	diff	of	a	binary	file	(e.g.,	because
it	quickly	conveys	the	changes	you	have	made),	you	should
generate	it	separately	and	send	it	as	a	comment	in	addition
to	the	usual	binary	diff	that	you	might	send.



Because	text	conversion	can	be	slow,	especially	when	doing	a	large
number	of	them	with	git	log	-p,	Git	provides	a	mechanism	to	cache	the
output	and	use	it	in	future	diffs.	To	enable	caching,	set	the
"cachetextconv"	variable	in	your	diff	driver's	config.	For	example:

[diff	"jpg"]

								textconv	=	exif

								cachetextconv	=	true

This	will	cache	the	result	of	running	"exif"	on	each	blob	indefinitely.	If	you
change	the	textconv	config	variable	for	a	diff	driver,	Git	will	automatically
invalidate	the	cache	entries	and	re-run	the	textconv	filter.	If	you	want	to
invalidate	the	cache	manually	(e.g.,	because	your	version	of	"exif"	was
updated	and	now	produces	better	output),	you	can	remove	the	cache
manually	with	git	update-ref	-d	refs/notes/textconv/jpg	(where	"jpg"	is	the
name	of	the	diff	driver,	as	in	the	example	above).

2.6.	Choosing	textconv	versus	external	diff

If	you	want	to	show	differences	between	binary	or	specially-formatted
blobs	in	your	repository,	you	can	choose	to	use	either	an	external	diff
command,	or	to	use	textconv	to	convert	them	to	a	diff-able	text	format.
Which	method	you	choose	depends	on	your	exact	situation.

The	advantage	of	using	an	external	diff	command	is	flexibility.	You	are
not	bound	to	find	line-oriented	changes,	nor	is	it	necessary	for	the	output
to	resemble	unified	diff.	You	are	free	to	locate	and	report	changes	in	the
most	appropriate	way	for	your	data	format.

A	textconv,	by	comparison,	is	much	more	limiting.	You	provide	a
transformation	of	the	data	into	a	line-oriented	text	format,	and	Git	uses	its
regular	diff	tools	to	generate	the	output.	There	are	several	advantages	to
choosing	this	method:

1.	 Ease	of	use.	It	is	often	much	simpler	to	write	a	binary	to	text
transformation	than	it	is	to	perform	your	own	diff.	In	many	cases,



existing	programs	can	be	used	as	textconv	filters	(e.g.,	exif,	odt2txt).
2.	 Git	diff	features.	By	performing	only	the	transformation	step	yourself,

you	can	still	utilize	many	of	Git's	diff	features,	including	colorization,
word-diff,	and	combined	diffs	for	merges.

3.	 Caching.	Textconv	caching	can	speed	up	repeated	diffs,	such	as
those	you	might	trigger	by	running	git	log	-p.

2.7.	Marking	files	as	binary

Git	usually	guesses	correctly	whether	a	blob	contains	text	or	binary	data
by	examining	the	beginning	of	the	contents.	However,	sometimes	you
may	want	to	override	its	decision,	either	because	a	blob	contains	binary
data	later	in	the	file,	or	because	the	content,	while	technically	composed
of	text	characters,	is	opaque	to	a	human	reader.	For	example,	many
postscript	files	contain	only	ASCII	characters,	but	produce	noisy	and
meaningless	diffs.

The	simplest	way	to	mark	a	file	as	binary	is	to	unset	the	diff	attribute	in
the	.gitattributes	file:

*.ps	-diff

This	will	cause	Git	to	generate	Binary	files	differ	(or	a	binary	patch,	if
binary	patches	are	enabled)	instead	of	a	regular	diff.

However,	one	may	also	want	to	specify	other	diff	driver	attributes.	For
example,	you	might	want	to	use	textconv	to	convert	postscript	files	to	an
ASCII	representation	for	human	viewing,	but	otherwise	treat	them	as
binary	files.	You	cannot	specify	both	-diff	and	diff=ps	attributes.	The
solution	is	to	use	the	diff.*.binary	config	option:

[diff	"ps"]

		textconv	=	ps2ascii

		binary	=	true



3.	Performing	a	three-way	merge

3.1.	merge

The	attribute	merge	affects	how	three	versions	of	a	file	are	merged	when
a	file-level	merge	is	necessary	during	git	merge,	and	other	commands
such	as	git	revert	and	git	cherry-pick.

Set
Built-in	3-way	merge	driver	is	used	to	merge	the	contents	in	a	way
similar	to	merge	command	of	RCS	suite.	This	is	suitable	for	ordinary
text	files.

Unset
Take	the	version	from	the	current	branch	as	the	tentative	merge
result,	and	declare	that	the	merge	has	conflicts.	This	is	suitable	for
binary	files	that	do	not	have	a	well-defined	merge	semantics.

Unspecified
By	default,	this	uses	the	same	built-in	3-way	merge	driver	as	is	the
case	when	the	merge	attribute	is	set.	However,	the	merge.default
configuration	variable	can	name	different	merge	driver	to	be	used
with	paths	for	which	the	merge	attribute	is	unspecified.

String
3-way	merge	is	performed	using	the	specified	custom	merge	driver.
The	built-in	3-way	merge	driver	can	be	explicitly	specified	by	asking
for	"text"	driver;	the	built-in	"take	the	current	branch"	driver	can	be
requested	with	"binary".

3.2.	Built-in	merge	drivers

There	are	a	few	built-in	low-level	merge	drivers	defined	that	can	be	asked
for	via	the	merge	attribute.

text
Usual	3-way	file	level	merge	for	text	files.	Conflicted	regions	are
marked	with	conflict	markers	<<<<<<<,	=======	and	>>>>>>>.	The
version	from	your	branch	appears	before	the	=======	marker,	and



the	version	from	the	merged	branch	appears	after	the	=======
marker.

binary
Keep	the	version	from	your	branch	in	the	work	tree,	but	leave	the
path	in	the	conflicted	state	for	the	user	to	sort	out.

union
Run	3-way	file	level	merge	for	text	files,	but	take	lines	from	both
versions,	instead	of	leaving	conflict	markers.	This	tends	to	leave	the
added	lines	in	the	resulting	file	in	random	order	and	the	user	should
verify	the	result.	Do	not	use	this	if	you	do	not	understand	the
implications.

3.3.	Defining	a	custom	merge	driver

The	definition	of	a	merge	driver	is	done	in	the	.git/config	file,	not	in	the
gitattributes	file,	so	strictly	speaking	this	manual	page	is	a	wrong	place	to
talk	about	it.	However…

To	define	a	custom	merge	driver	filfre,	add	a	section	to	your
$GIT_DIR/config	file	(or	$HOME/.gitconfig	file)	like	this:

[merge	"filfre"]

								name	=	feel-free	merge	driver

								driver	=	filfre	%O	%A	%B	%L	%P

								recursive	=	binary

The	merge.*.name	variable	gives	the	driver	a	human-readable	name.

The	merge.*.driver`	variable's	value	is	used	to	construct	a	command	to
run	to	merge	ancestor's	version	(%O),	current	version	(%A)	and	the	other
branches	version	(%B).	These	three	tokens	are	replaced	with	the	names
of	temporary	files	that	hold	the	contents	of	these	versions	when	the
command	line	is	built.	Additionally,	%L	will	be	replaced	with	the	conflict
marker	size	(see	below).

The	merge	driver	is	expected	to	leave	the	result	of	the	merge	in	the	file
named	with	%A	by	overwriting	it,	and	exit	with	zero	status	if	it	managed
to	merge	them	cleanly,	or	non-zero	if	there	were	conflicts.



The	merge.*.recursive	variable	specifies	what	other	merge	driver	to	use
when	the	merge	driver	is	called	for	an	internal	merge	between	common
ancestors,	when	there	are	more	than	one.	When	left	unspecified,	the
driver	itself	is	used	for	both	internal	merge	and	the	final	merge.

The	merge	driver	can	learn	the	pathname	in	which	the	merged	result	will
be	stored	via	placeholder	%P.

3.4.	conflict-marker-size

This	attribute	controls	the	length	of	conflict	markers	left	in	the	work	tree
file	during	a	conflicted	merge.	Only	setting	to	the	value	to	a	positive
integer	has	any	meaningful	effect.

For	example,	this	line	in	.gitattributes	can	be	used	to	tell	the	merge
machinery	to	leave	much	longer	(instead	of	the	usual	7-character-long)
conflict	markers	when	merging	the	file	Documentation/git-merge.txt
results	in	a	conflict.

Documentation/git-merge.txt					conflict-marker-size=32



4.	Checking	whitespace	errors

4.1.	whitespace

The	core.whitespace	configuration	variable	allows	you	to	define	what	diff
and	apply	should	consider	whitespace	errors	for	all	paths	in	the	project
(See	Section	G.3.27,	“git-config(1)”).	This	attribute	gives	you	finer	control
per	path.

Set
Notice	all	types	of	potential	whitespace	errors	known	to	Git.	The	tab
width	is	taken	from	the	value	of	the	core.whitespace	configuration
variable.

Unset
Do	not	notice	anything	as	error.

Unspecified
Use	the	value	of	the	core.whitespace	configuration	variable	to	decide
what	to	notice	as	error.

String
Specify	a	comma	separate	list	of	common	whitespace	problems	to
notice	in	the	same	format	as	the	core.whitespace	configuration
variable.



5.	Creating	an	archive

5.1.	export-ignore

Files	and	directories	with	the	attribute	export-ignore	won't	be	added	to
archive	files.

5.2.	export-subst

If	the	attribute	export-subst	is	set	for	a	file	then	Git	will	expand	several
placeholders	when	adding	this	file	to	an	archive.	The	expansion	depends
on	the	availability	of	a	commit	ID,	i.e.,	if	Section	G.3.7,	“git-archive(1)”
has	been	given	a	tree	instead	of	a	commit	or	a	tag	then	no	replacement
will	be	done.	The	placeholders	are	the	same	as	those	for	the	option	--
pretty=format:	of	Section	G.3.68,	“git-log(1)”,	except	that	they	need	to	be
wrapped	like	this:	$Format:PLACEHOLDERS$	in	the	file.	E.g.	the	string
$Format:%H$	will	be	replaced	by	the	commit	hash.



6.	Packing	objects

6.1.	delta

Delta	compression	will	not	be	attempted	for	blobs	for	paths	with	the
attribute	delta	set	to	false.



7.	Viewing	files	in	GUI	tools

7.1.	encoding

The	value	of	this	attribute	specifies	the	character	encoding	that	should	be
used	by	GUI	tools	(e.g.	Section	G.4.7,	“gitk(1)”	and	Section	G.3.56,	“git-
gui(1)”)	to	display	the	contents	of	the	relevant	file.	Note	that	due	to
performance	considerations	Section	G.4.7,	“gitk(1)”	does	not	use	this
attribute	unless	you	manually	enable	per-file	encodings	in	its	options.

If	this	attribute	is	not	set	or	has	an	invalid	value,	the	value	of	the
gui.encoding	configuration	variable	is	used	instead	(See	Section	G.3.27,
“git-config(1)”).

USING	MACRO	ATTRIBUTES

You	do	not	want	any	end-of-line	conversions	applied	to,	nor	textual	diffs
produced	for,	any	binary	file	you	track.	You	would	need	to	specify	e.g.

*.jpg	-text	-diff

but	that	may	become	cumbersome,	when	you	have	many	attributes.
Using	macro	attributes,	you	can	define	an	attribute	that,	when	set,	also
sets	or	unsets	a	number	of	other	attributes	at	the	same	time.	The	system
knows	a	built-in	macro	attribute,	binary:

*.jpg	binary

Setting	the	"binary"	attribute	also	unsets	the	"text"	and	"diff"	attributes	as
above.	Note	that	macro	attributes	can	only	be	"Set",	though	setting	one
might	have	the	effect	of	setting	or	unsetting	other	attributes	or	even
returning	other	attributes	to	the	"Unspecified"	state.

DEFINING	MACRO	ATTRIBUTES



Custom	macro	attributes	can	be	defined	only	in	top-level	gitattributes	files
($GIT_DIR/info/attributes,	the	.gitattributes	file	at	the	top	level	of	the
working	tree,	or	the	global	or	system-wide	gitattributes	files),	not	in
.gitattributes	files	in	working	tree	subdirectories.	The	built-in	macro
attribute	"binary"	is	equivalent	to:

[attr]binary	-diff	-merge	-text

EXAMPLE

If	you	have	these	three	gitattributes	file:

(in	$GIT_DIR/info/attributes)

a*						foo	!bar	-baz

(in	.gitattributes)

abc					foo	bar	baz

(in	t/.gitattributes)

ab*					merge=filfre

abc					-foo	-bar

*.c					frotz

the	attributes	given	to	path	t/abc	are	computed	as	follows:

1.	 By	examining	t/.gitattributes	(which	is	in	the	same	directory	as	the
path	in	question),	Git	finds	that	the	first	line	matches.	merge	attribute
is	set.	It	also	finds	that	the	second	line	matches,	and	attributes	foo
and	bar	are	unset.

2.	 Then	it	examines	.gitattributes	(which	is	in	the	parent	directory),	and
finds	that	the	first	line	matches,	but	t/.gitattributes	file	already
decided	how	merge,	foo	and	bar	attributes	should	be	given	to	this
path,	so	it	leaves	foo	and	bar	unset.	Attribute	baz	is	set.

3.	 Finally	it	examines	$GIT_DIR/info/attributes.	This	file	is	used	to
override	the	in-tree	settings.	The	first	line	is	a	match,	and	foo	is	set,
bar	is	reverted	to	unspecified	state,	and	baz	is	unset.



As	the	result,	the	attributes	assignment	to	t/abc	becomes:

foo					set	to	true

bar					unspecified

baz					set	to	false

merge			set	to	string	value	"filfre"

frotz			unspecified

SEE	ALSO

Section	G.3.13,	“git-check-attr(1)”.

GIT

Part	of	the	Section	G.3.1,	“git(1)”	suite

G.4.3.	gitcredentials(7)

NAME

gitcredentials	-	providing	usernames	and	passwords	to	Git

SYNOPSIS

git	config	credential.https://example.com.username	myusername

git	config	credential.helper	"$helper	$options"

DESCRIPTION

Git	will	sometimes	need	credentials	from	the	user	in	order	to	perform
operations;	for	example,	it	may	need	to	ask	for	a	username	and
password	in	order	to	access	a	remote	repository	over	HTTP.	This	manual
describes	the	mechanisms	Git	uses	to	request	these	credentials,	as	well
as	some	features	to	avoid	inputting	these	credentials	repeatedly.



REQUESTING	CREDENTIALS

Without	any	credential	helpers	defined,	Git	will	try	the	following	strategies
to	ask	the	user	for	usernames	and	passwords:

1.	 If	the	GIT_ASKPASS	environment	variable	is	set,	the	program
specified	by	the	variable	is	invoked.	A	suitable	prompt	is	provided	to
the	program	on	the	command	line,	and	the	user's	input	is	read	from
its	standard	output.

2.	 Otherwise,	if	the	core.askPass	configuration	variable	is	set,	its	value
is	used	as	above.

3.	 Otherwise,	if	the	SSH_ASKPASS	environment	variable	is	set,	its
value	is	used	as	above.

4.	 Otherwise,	the	user	is	prompted	on	the	terminal.

AVOIDING	REPETITION

It	can	be	cumbersome	to	input	the	same	credentials	over	and	over.	Git
provides	two	methods	to	reduce	this	annoyance:

1.	 Static	configuration	of	usernames	for	a	given	authentication	context.
2.	 Credential	helpers	to	cache	or	store	passwords,	or	to	interact	with	a

system	password	wallet	or	keychain.

The	first	is	simple	and	appropriate	if	you	do	not	have	secure	storage
available	for	a	password.	It	is	generally	configured	by	adding	this	to	your
config:

[credential	"https://example.com"]

								username	=	me

Credential	helpers,	on	the	other	hand,	are	external	programs	from	which
Git	can	request	both	usernames	and	passwords;	they	typically	interface
with	secure	storage	provided	by	the	OS	or	other	programs.

To	use	a	helper,	you	must	first	select	one	to	use.	Git	currently	includes
the	following	helpers:



cache
Cache	credentials	in	memory	for	a	short	period	of	time.	See
Section	G.3.31,	“git-credential-cache(1)”	for	details.

store
Store	credentials	indefinitely	on	disk.	See	Section	G.3.32,	“git-
credential-store(1)”	for	details.

You	may	also	have	third-party	helpers	installed;	search	for	credential-*	in
the	output	of	git	help	-a,	and	consult	the	documentation	of	individual
helpers.	Once	you	have	selected	a	helper,	you	can	tell	Git	to	use	it	by
putting	its	name	into	the	credential.helper	variable.

1.	 Find	a	helper.

$	git	help	-a	|	grep	credential-

credential-foo

2.	 Read	its	description.

$	git	help	credential-foo

3.	 Tell	Git	to	use	it.

$	git	config	--global	credential.helper	foo

If	there	are	multiple	instances	of	the	credential.helper	configuration
variable,	each	helper	will	be	tried	in	turn,	and	may	provide	a	username,
password,	or	nothing.	Once	Git	has	acquired	both	a	username	and	a
password,	no	more	helpers	will	be	tried.

If	credential.helper	is	configured	to	the	empty	string,	this	resets	the	helper
list	to	empty	(so	you	may	override	a	helper	set	by	a	lower-priority	config
file	by	configuring	the	empty-string	helper,	followed	by	whatever	set	of
helpers	you	would	like).

CREDENTIAL	CONTEXTS



Git	considers	each	credential	to	have	a	context	defined	by	a	URL.	This
context	is	used	to	look	up	context-specific	configuration,	and	is	passed	to
any	helpers,	which	may	use	it	as	an	index	into	secure	storage.

For	instance,	imagine	we	are	accessing	https://example.com/foo.git.
When	Git	looks	into	a	config	file	to	see	if	a	section	matches	this	context,	it
will	consider	the	two	a	match	if	the	context	is	a	more-specific	subset	of
the	pattern	in	the	config	file.	For	example,	if	you	have	this	in	your	config
file:

[credential	"https://example.com"]

								username	=	foo

then	we	will	match:	both	protocols	are	the	same,	both	hosts	are	the
same,	and	the	"pattern"	URL	does	not	care	about	the	path	component	at
all.	However,	this	context	would	not	match:

[credential	"https://kernel.org"]

								username	=	foo

because	the	hostnames	differ.	Nor	would	it	match	foo.example.com;	Git
compares	hostnames	exactly,	without	considering	whether	two	hosts	are
part	of	the	same	domain.	Likewise,	a	config	entry	for	http://example.com
would	not	match:	Git	compares	the	protocols	exactly.

CONFIGURATION	OPTIONS

Options	for	a	credential	context	can	be	configured	either	in	credential.*
(which	applies	to	all	credentials),	or	credential.<url>.*,	where	<url>
matches	the	context	as	described	above.

The	following	options	are	available	in	either	location:

helper
The	name	of	an	external	credential	helper,	and	any	associated
options.	If	the	helper	name	is	not	an	absolute	path,	then	the	string	git
credential-	is	prepended.	The	resulting	string	is	executed	by	the	shell



(so,	for	example,	setting	this	to	foo	--option=bar	will	execute	git
credential-foo	--option=bar	via	the	shell.	See	the	manual	of	specific
helpers	for	examples	of	their	use.

username
A	default	username,	if	one	is	not	provided	in	the	URL.

useHttpPath
By	default,	Git	does	not	consider	the	"path"	component	of	an	http
URL	to	be	worth	matching	via	external	helpers.	This	means	that	a
credential	stored	for	https://example.com/foo.git	will	also	be	used	for
https://example.com/bar.git.	If	you	do	want	to	distinguish	these
cases,	set	this	option	to	true.

CUSTOM	HELPERS

You	can	write	your	own	custom	helpers	to	interface	with	any	system	in
which	you	keep	credentials.	See	the	documentation	for	Git's	credentials
API	for	details.

GIT

Part	of	the	Section	G.3.1,	“git(1)”	suite

G.4.4.	gitdiffcore(7)

NAME

gitdiffcore	-	Tweaking	diff	output

SYNOPSIS

git	diff	*

DESCRIPTION

The	diff	commands	git	diff-index,	git	diff-files,	and	git	diff-tree	can	be	told

https://www.kernel.org/pub/software/scm/git/docs/technical/api-credentials.html


to	manipulate	differences	they	find	in	unconventional	ways	before
showing	diff	output.	The	manipulation	is	collectively	called	"diffcore
transformation".	This	short	note	describes	what	they	are	and	how	to	use
them	to	produce	diff	output	that	is	easier	to	understand	than	the
conventional	kind.

The	chain	of	operation

The	git	diff-*	family	works	by	first	comparing	two	sets	of	files:

git	diff-index	compares	contents	of	a	"tree"	object	and	the	working
directory	(when	--cached	flag	is	not	used)	or	a	"tree"	object	and	the
index	file	(when	--cached	flag	is	used);
git	diff-files	compares	contents	of	the	index	file	and	the	working
directory;
git	diff-tree	compares	contents	of	two	"tree"	objects;

In	all	of	these	cases,	the	commands	themselves	first	optionally	limit	the
two	sets	of	files	by	any	pathspecs	given	on	their	command-lines,	and
compare	corresponding	paths	in	the	two	resulting	sets	of	files.

The	pathspecs	are	used	to	limit	the	world	diff	operates	in.	They	remove
the	filepairs	outside	the	specified	sets	of	pathnames.	E.g.	If	the	input	set
of	filepairs	included:

:100644	100644	bcd1234...	0123456...	M	junkfile

but	the	command	invocation	was	git	diff-files	myfile,	then	the	junkfile
entry	would	be	removed	from	the	list	because	only	"myfile"	is	under
consideration.

The	result	of	comparison	is	passed	from	these	commands	to	what	is
internally	called	"diffcore",	in	a	format	similar	to	what	is	output	when	the	-
p	option	is	not	used.	E.g.

in-place	edit		:100644	100644	bcd1234...	0123456...	M	file0

create									:000000	100644	0000000...	1234567...	A	file4



delete									:100644	000000	1234567...	0000000...	D	file5

unmerged							:000000	000000	0000000...	0000000...	U	file6

The	diffcore	mechanism	is	fed	a	list	of	such	comparison	results	(each	of
which	is	called	"filepair",	although	at	this	point	each	of	them	talks	about	a
single	file),	and	transforms	such	a	list	into	another	list.	There	are	currently
5	such	transformations:

diffcore-break
diffcore-rename
diffcore-merge-broken
diffcore-pickaxe
diffcore-order

These	are	applied	in	sequence.	The	set	of	filepairs	git	diff-*	commands
find	are	used	as	the	input	to	diffcore-break,	and	the	output	from	diffcore-
break	is	used	as	the	input	to	the	next	transformation.	The	final	result	is
then	passed	to	the	output	routine	and	generates	either	diff-raw	format
(see	Output	format	sections	of	the	manual	for	git	diff-*	commands)	or	diff-
patch	format.

diffcore-break:	For	Splitting	Up	"Complete	Rewrites"

The	second	transformation	in	the	chain	is	diffcore-break,	and	is	controlled
by	the	-B	option	to	the	git	diff-*	commands.	This	is	used	to	detect	a
filepair	that	represents	"complete	rewrite"	and	break	such	filepair	into	two
filepairs	that	represent	delete	and	create.	E.g.	If	the	input	contained	this
filepair:

:100644	100644	bcd1234...	0123456...	M	file0

and	if	it	detects	that	the	file	"file0"	is	completely	rewritten,	it	changes	it	to:

:100644	000000	bcd1234...	0000000...	D	file0

:000000	100644	0000000...	0123456...	A	file0



For	the	purpose	of	breaking	a	filepair,	diffcore-break	examines	the	extent
of	changes	between	the	contents	of	the	files	before	and	after	modification
(i.e.	the	contents	that	have	"bcd1234…"	and	"0123456…"	as	their	SHA-1
content	ID,	in	the	above	example).	The	amount	of	deletion	of	original
contents	and	insertion	of	new	material	are	added	together,	and	if	it
exceeds	the	"break	score",	the	filepair	is	broken	into	two.	The	break
score	defaults	to	50%	of	the	size	of	the	smaller	of	the	original	and	the
result	(i.e.	if	the	edit	shrinks	the	file,	the	size	of	the	result	is	used;	if	the
edit	lengthens	the	file,	the	size	of	the	original	is	used),	and	can	be
customized	by	giving	a	number	after	"-B"	option	(e.g.	"-B75"	to	tell	it	to
use	75%).

diffcore-rename:	For	Detection	Renames	and	Copies

This	transformation	is	used	to	detect	renames	and	copies,	and	is
controlled	by	the	-M	option	(to	detect	renames)	and	the	-C	option	(to
detect	copies	as	well)	to	the	git	diff-*	commands.	If	the	input	contained
these	filepairs:

:100644	000000	0123456...	0000000...	D	fileX

:000000	100644	0000000...	0123456...	A	file0

and	the	contents	of	the	deleted	file	fileX	is	similar	enough	to	the	contents
of	the	created	file	file0,	then	rename	detection	merges	these	filepairs	and
creates:

:100644	100644	0123456...	0123456...	R100	fileX	file0

When	the	"-C"	option	is	used,	the	original	contents	of	modified	files,	and
deleted	files	(and	also	unmodified	files,	if	the	"--find-copies-harder"	option
is	used)	are	considered	as	candidates	of	the	source	files	in	rename/copy
operation.	If	the	input	were	like	these	filepairs,	that	talk	about	a	modified
file	fileY	and	a	newly	created	file	file0:

:100644	100644	0123456...	1234567...	M	fileY

:000000	100644	0000000...	bcd3456...	A	file0



the	original	contents	of	fileY	and	the	resulting	contents	of	file0	are
compared,	and	if	they	are	similar	enough,	they	are	changed	to:

:100644	100644	0123456...	1234567...	M	fileY

:100644	100644	0123456...	bcd3456...	C100	fileY	file0

In	both	rename	and	copy	detection,	the	same	"extent	of	changes"
algorithm	used	in	diffcore-break	is	used	to	determine	if	two	files	are
"similar	enough",	and	can	be	customized	to	use	a	similarity	score
different	from	the	default	of	50%	by	giving	a	number	after	the	"-M"	or	"-C"
option	(e.g.	"-M8"	to	tell	it	to	use	8/10	=	80%).

Note.	When	the	"-C"	option	is	used	with	--find-copies-harder	option,	git
diff-*	commands	feed	unmodified	filepairs	to	diffcore	mechanism	as	well
as	modified	ones.	This	lets	the	copy	detector	consider	unmodified	files	as
copy	source	candidates	at	the	expense	of	making	it	slower.	Without	--
find-copies-harder,	git	diff-*	commands	can	detect	copies	only	if	the	file
that	was	copied	happened	to	have	been	modified	in	the	same	changeset.

diffcore-merge-broken:	For	Putting	"Complete	Rewrites"	Back
Together

This	transformation	is	used	to	merge	filepairs	broken	by	diffcore-break,
and	not	transformed	into	rename/copy	by	diffcore-rename,	back	into	a
single	modification.	This	always	runs	when	diffcore-break	is	used.

For	the	purpose	of	merging	broken	filepairs	back,	it	uses	a	different
"extent	of	changes"	computation	from	the	ones	used	by	diffcore-break
and	diffcore-rename.	It	counts	only	the	deletion	from	the	original,	and
does	not	count	insertion.	If	you	removed	only	10	lines	from	a	100-line
document,	even	if	you	added	910	new	lines	to	make	a	new	1000-line
document,	you	did	not	do	a	complete	rewrite.	diffcore-break	breaks	such
a	case	in	order	to	help	diffcore-rename	to	consider	such	filepairs	as
candidate	of	rename/copy	detection,	but	if	filepairs	broken	that	way	were
not	matched	with	other	filepairs	to	create	rename/copy,	then	this
transformation	merges	them	back	into	the	original	"modification".



The	"extent	of	changes"	parameter	can	be	tweaked	from	the	default	80%
(that	is,	unless	more	than	80%	of	the	original	material	is	deleted,	the
broken	pairs	are	merged	back	into	a	single	modification)	by	giving	a
second	number	to	-B	option,	like	these:

-B50/60	(give	50%	"break	score"	to	diffcore-break,	use	60%	for
diffcore-merge-broken).
-B/60	(the	same	as	above,	since	diffcore-break	defaults	to	50%).

Note	that	earlier	implementation	left	a	broken	pair	as	a	separate	creation
and	deletion	patches.	This	was	an	unnecessary	hack	and	the	latest
implementation	always	merges	all	the	broken	pairs	back	into
modifications,	but	the	resulting	patch	output	is	formatted	differently	for
easier	review	in	case	of	such	a	complete	rewrite	by	showing	the	entire
contents	of	old	version	prefixed	with	-,	followed	by	the	entire	contents	of
new	version	prefixed	with	+.

diffcore-pickaxe:	For	Detecting	Addition/Deletion	of	Specified	String

This	transformation	limits	the	set	of	filepairs	to	those	that	change
specified	strings	between	the	preimage	and	the	postimage	in	a	certain
way.	-S<block	of	text>	and	-G<regular	expression>	options	are	used	to
specify	different	ways	these	strings	are	sought.

"-S<block	of	text>"	detects	filepairs	whose	preimage	and	postimage	have
different	number	of	occurrences	of	the	specified	block	of	text.	By
definition,	it	will	not	detect	in-file	moves.	Also,	when	a	changeset	moves	a
file	wholesale	without	affecting	the	interesting	string,	diffcore-rename
kicks	in	as	usual,	and	-S	omits	the	filepair	(since	the	number	of
occurrences	of	that	string	didn't	change	in	that	rename-detected	filepair).
When	used	with	--pickaxe-regex,	treat	the	<block	of	text>	as	an	extended
POSIX	regular	expression	to	match,	instead	of	a	literal	string.

"-G<regular	expression>"	(mnemonic:	grep)	detects	filepairs	whose
textual	diff	has	an	added	or	a	deleted	line	that	matches	the	given	regular
expression.	This	means	that	it	will	detect	in-file	(or	what	rename-
detection	considers	the	same	file)	moves,	which	is	noise.	The



implementation	runs	diff	twice	and	greps,	and	this	can	be	quite
expensive.

When	-S	or	-G	are	used	without	--pickaxe-all,	only	filepairs	that	match
their	respective	criterion	are	kept	in	the	output.	When	--pickaxe-all	is
used,	if	even	one	filepair	matches	their	respective	criterion	in	a
changeset,	the	entire	changeset	is	kept.	This	behavior	is	designed	to
make	reviewing	changes	in	the	context	of	the	whole	changeset	easier.

diffcore-order:	For	Sorting	the	Output	Based	on	Filenames

This	is	used	to	reorder	the	filepairs	according	to	the	user's	(or	project's)
taste,	and	is	controlled	by	the	-O	option	to	the	git	diff-*	commands.

This	takes	a	text	file	each	of	whose	lines	is	a	shell	glob	pattern.	Filepairs
that	match	a	glob	pattern	on	an	earlier	line	in	the	file	are	output	before
ones	that	match	a	later	line,	and	filepairs	that	do	not	match	any	glob
pattern	are	output	last.

As	an	example,	a	typical	orderfile	for	the	core	Git	probably	would	look	like
this:

README

Makefile

Documentation

*.h

*.c

t

SEE	ALSO

Section	G.3.41,	“git-diff(1)”,	Section	G.3.38,	“git-diff-files(1)”,
Section	G.3.39,	“git-diff-index(1)”,	Section	G.3.40,	“git-diff-tree(1)”,
Section	G.3.50,	“git-format-patch(1)”,	Section	G.3.68,	“git-log(1)”,
Section	G.4.16,	“gitglossary(7)”,	The	Git	User's	Manual

GIT

https://www.kernel.org/pub/software/scm/git/docs/user-manual.html


Part	of	the	Section	G.3.1,	“git(1)”	suite.

G.4.5.	gitignore(5)

NAME

gitignore	-	Specifies	intentionally	untracked	files	to	ignore

SYNOPSIS

$HOME/.config/git/ignore,	$GIT_DIR/info/exclude,	.gitignore

DESCRIPTION

A	gitignore	file	specifies	intentionally	untracked	files	that	Git	should
ignore.	Files	already	tracked	by	Git	are	not	affected;	see	the	NOTES
below	for	details.

Each	line	in	a	gitignore	file	specifies	a	pattern.	When	deciding	whether	to
ignore	a	path,	Git	normally	checks	gitignore	patterns	from	multiple
sources,	with	the	following	order	of	precedence,	from	highest	to	lowest
(within	one	level	of	precedence,	the	last	matching	pattern	decides	the
outcome):

Patterns	read	from	the	command	line	for	those	commands	that
support	them.
Patterns	read	from	a	.gitignore	file	in	the	same	directory	as	the	path,
or	in	any	parent	directory,	with	patterns	in	the	higher	level	files	(up	to
the	toplevel	of	the	work	tree)	being	overridden	by	those	in	lower	level
files	down	to	the	directory	containing	the	file.	These	patterns	match
relative	to	the	location	of	the	.gitignore	file.	A	project	normally
includes	such	.gitignore	files	in	its	repository,	containing	patterns	for
files	generated	as	part	of	the	project	build.
Patterns	read	from	$GIT_DIR/info/exclude.
Patterns	read	from	the	file	specified	by	the	configuration	variable
core.excludesFile.



Which	file	to	place	a	pattern	in	depends	on	how	the	pattern	is	meant	to
be	used.

Patterns	which	should	be	version-controlled	and	distributed	to	other
repositories	via	clone	(i.e.,	files	that	all	developers	will	want	to
ignore)	should	go	into	a	.gitignore	file.
Patterns	which	are	specific	to	a	particular	repository	but	which	do	not
need	to	be	shared	with	other	related	repositories	(e.g.,	auxiliary	files
that	live	inside	the	repository	but	are	specific	to	one	user's	workflow)
should	go	into	the	$GIT_DIR/info/exclude	file.
Patterns	which	a	user	wants	Git	to	ignore	in	all	situations	(e.g.,
backup	or	temporary	files	generated	by	the	user's	editor	of	choice)
generally	go	into	a	file	specified	by	core.excludesFile	in	the	user's
~/.gitconfig.	Its	default	value	is	$XDG_CONFIG_HOME/git/ignore.	If
$XDG_CONFIG_HOME	is	either	not	set	or	empty,
$HOME/.config/git/ignore	is	used	instead.

The	underlying	Git	plumbing	tools,	such	as	git	ls-files	and	git	read-tree,
read	gitignore	patterns	specified	by	command-line	options,	or	from	files
specified	by	command-line	options.	Higher-level	Git	tools,	such	as	git
status	and	git	add,	use	patterns	from	the	sources	specified	above.

PATTERN	FORMAT

A	blank	line	matches	no	files,	so	it	can	serve	as	a	separator	for
readability.
A	line	starting	with	#	serves	as	a	comment.	Put	a	backslash	("\")	in
front	of	the	first	hash	for	patterns	that	begin	with	a	hash.
Trailing	spaces	are	ignored	unless	they	are	quoted	with	backslash
("\").
An	optional	prefix	"!"	which	negates	the	pattern;	any	matching	file
excluded	by	a	previous	pattern	will	become	included	again.	It	is	not
possible	to	re-include	a	file	if	a	parent	directory	of	that	file	is
excluded.	Git	doesn't	list	excluded	directories	for	performance
reasons,	so	any	patterns	on	contained	files	have	no	effect,	no	matter
where	they	are	defined.	Put	a	backslash	("\")	in	front	of	the	first	"!"	for
patterns	that	begin	with	a	literal	"!",	for	example,	"\!important!.txt".



If	the	pattern	ends	with	a	slash,	it	is	removed	for	the	purpose	of	the
following	description,	but	it	would	only	find	a	match	with	a	directory.
In	other	words,	foo/	will	match	a	directory	foo	and	paths	underneath
it,	but	will	not	match	a	regular	file	or	a	symbolic	link	foo	(this	is
consistent	with	the	way	how	pathspec	works	in	general	in	Git).
If	the	pattern	does	not	contain	a	slash	/,	Git	treats	it	as	a	shell	glob
pattern	and	checks	for	a	match	against	the	pathname	relative	to	the
location	of	the	.gitignore	file	(relative	to	the	toplevel	of	the	work	tree	if
not	from	a	.gitignore	file).
Otherwise,	Git	treats	the	pattern	as	a	shell	glob	suitable	for
consumption	by	fnmatch(3)	with	the	FNM_PATHNAME	flag:
wildcards	in	the	pattern	will	not	match	a	/	in	the	pathname.	For
example,	"Documentation/*.html"	matches	"Documentation/git.html"
but	not	"Documentation/ppc/ppc.html"	or
"tools/perf/Documentation/perf.html".
A	leading	slash	matches	the	beginning	of	the	pathname.	For
example,	"/*.c"	matches	"cat-file.c"	but	not	"mozilla-sha1/sha1.c".

Two	consecutive	asterisks	("**")	in	patterns	matched	against	full
pathname	may	have	special	meaning:

A	leading	"**"	followed	by	a	slash	means	match	in	all	directories.	For
example,	"**/foo"	matches	file	or	directory	"foo"	anywhere,	the	same
as	pattern	"foo".	"**/foo/bar"	matches	file	or	directory	"bar"	anywhere
that	is	directly	under	directory	"foo".
A	trailing	"/**"	matches	everything	inside.	For	example,	"abc/**"
matches	all	files	inside	directory	"abc",	relative	to	the	location	of	the
.gitignore	file,	with	infinite	depth.
A	slash	followed	by	two	consecutive	asterisks	then	a	slash	matches
zero	or	more	directories.	For	example,	"a/**/b"	matches	"a/b",	"a/x/b",
"a/x/y/b"	and	so	on.
Other	consecutive	asterisks	are	considered	invalid.

NOTES

The	purpose	of	gitignore	files	is	to	ensure	that	certain	files	not	tracked	by
Git	remain	untracked.



To	stop	tracking	a	file	that	is	currently	tracked,	use	git	rm	--cached.

EXAMPLES

				$	git	status

				[...]

				#	Untracked	files:

				[...]

				#							Documentation/foo.html

				#							Documentation/gitignore.html

				#							file.o

				#							lib.a

				#							src/internal.o

				[...]

				$	cat	.git/info/exclude

				#	ignore	objects	and	archives,	anywhere	in	the	tree.

				*.[oa]

				$	cat	Documentation/.gitignore

				#	ignore	generated	html	files,

				*.html

				#	except	foo.html	which	is	maintained	by	hand

				!foo.html

				$	git	status

				[...]

				#	Untracked	files:

				[...]

				#							Documentation/foo.html

				[...]

Another	example:

				$	cat	.gitignore

				vmlinux*

				$	ls	arch/foo/kernel/vm*

				arch/foo/kernel/vmlinux.lds.S

				$	echo	'!/vmlinux*'	>arch/foo/kernel/.gitignore

The	second	.gitignore	prevents	Git	from	ignoring
arch/foo/kernel/vmlinux.lds.S.

Example	to	exclude	everything	except	a	specific	directory	foo/bar	(note
the	/*	-	without	the	slash,	the	wildcard	would	also	exclude	everything



within	foo/bar):

				$	cat	.gitignore

				#	exclude	everything	except	directory	foo/bar

				/*

				!/foo

				/foo/*

				!/foo/bar

SEE	ALSO

Section	G.3.115,	“git-rm(1)”,	Section	G.4.11,	“gitrepository-layout(5)”,
Section	G.3.14,	“git-check-ignore(1)”

GIT

Part	of	the	Section	G.3.1,	“git(1)”	suite

G.4.6.	githooks(5)

NAME

githooks	-	Hooks	used	by	Git

SYNOPSIS

$GIT_DIR/hooks/*

DESCRIPTION

Hooks	are	little	scripts	you	can	place	in	$GIT_DIR/hooks	directory	to
trigger	action	at	certain	points.	When	git	init	is	run,	a	handful	of	example
hooks	are	copied	into	the	hooks	directory	of	the	new	repository,	but	by
default	they	are	all	disabled.	To	enable	a	hook,	rename	it	by	removing	its
.sample	suffix.



Note

It	is	also	a	requirement	for	a	given	hook	to	be	executable.
However	-	in	a	freshly	initialized	repository	-	the	.sample	files
are	executable	by	default.

This	document	describes	the	currently	defined	hooks.

HOOKS



1.	applypatch-msg

This	hook	is	invoked	by	git	am	script.	It	takes	a	single	parameter,	the
name	of	the	file	that	holds	the	proposed	commit	log	message.	Exiting
with	non-zero	status	causes	git	am	to	abort	before	applying	the	patch.

The	hook	is	allowed	to	edit	the	message	file	in	place,	and	can	be	used	to
normalize	the	message	into	some	project	standard	format	(if	the	project
has	one).	It	can	also	be	used	to	refuse	the	commit	after	inspecting	the
message	file.

The	default	applypatch-msg	hook,	when	enabled,	runs	the	commit-msg
hook,	if	the	latter	is	enabled.



2.	pre-applypatch

This	hook	is	invoked	by	git	am.	It	takes	no	parameter,	and	is	invoked
after	the	patch	is	applied,	but	before	a	commit	is	made.

If	it	exits	with	non-zero	status,	then	the	working	tree	will	not	be	committed
after	applying	the	patch.

It	can	be	used	to	inspect	the	current	working	tree	and	refuse	to	make	a
commit	if	it	does	not	pass	certain	test.

The	default	pre-applypatch	hook,	when	enabled,	runs	the	pre-commit
hook,	if	the	latter	is	enabled.



3.	post-applypatch

This	hook	is	invoked	by	git	am.	It	takes	no	parameter,	and	is	invoked
after	the	patch	is	applied	and	a	commit	is	made.

This	hook	is	meant	primarily	for	notification,	and	cannot	affect	the
outcome	of	git	am.



4.	pre-commit

This	hook	is	invoked	by	git	commit,	and	can	be	bypassed	with	--no-verify
option.	It	takes	no	parameter,	and	is	invoked	before	obtaining	the
proposed	commit	log	message	and	making	a	commit.	Exiting	with	non-
zero	status	from	this	script	causes	the	git	commit	to	abort.

The	default	pre-commit	hook,	when	enabled,	catches	introduction	of	lines
with	trailing	whitespaces	and	aborts	the	commit	when	such	a	line	is
found.

All	the	git	commit	hooks	are	invoked	with	the	environment	variable
GIT_EDITOR=:	if	the	command	will	not	bring	up	an	editor	to	modify	the
commit	message.



5.	prepare-commit-msg

This	hook	is	invoked	by	git	commit	right	after	preparing	the	default	log
message,	and	before	the	editor	is	started.

It	takes	one	to	three	parameters.	The	first	is	the	name	of	the	file	that
contains	the	commit	log	message.	The	second	is	the	source	of	the
commit	message,	and	can	be:	message	(if	a	-m	or	-F	option	was	given);
template	(if	a	-t	option	was	given	or	the	configuration	option
commit.template	is	set);	merge	(if	the	commit	is	a	merge	or	a
.git/MERGE_MSG	file	exists);	squash	(if	a	.git/SQUASH_MSG	file	exists);
or	commit,	followed	by	a	commit	SHA-1	(if	a	-c,	-C	or	--amend	option	was
given).

If	the	exit	status	is	non-zero,	git	commit	will	abort.

The	purpose	of	the	hook	is	to	edit	the	message	file	in	place,	and	it	is	not
suppressed	by	the	--no-verify	option.	A	non-zero	exit	means	a	failure	of
the	hook	and	aborts	the	commit.	It	should	not	be	used	as	replacement	for
pre-commit	hook.

The	sample	prepare-commit-msg	hook	that	comes	with	Git	comments	out
the	Conflicts:	part	of	a	merge's	commit	message.



6.	commit-msg

This	hook	is	invoked	by	git	commit,	and	can	be	bypassed	with	--no-verify
option.	It	takes	a	single	parameter,	the	name	of	the	file	that	holds	the
proposed	commit	log	message.	Exiting	with	non-zero	status	causes	the
git	commit	to	abort.

The	hook	is	allowed	to	edit	the	message	file	in	place,	and	can	be	used	to
normalize	the	message	into	some	project	standard	format	(if	the	project
has	one).	It	can	also	be	used	to	refuse	the	commit	after	inspecting	the
message	file.

The	default	commit-msg	hook,	when	enabled,	detects	duplicate	"Signed-
off-by"	lines,	and	aborts	the	commit	if	one	is	found.



7.	post-commit

This	hook	is	invoked	by	git	commit.	It	takes	no	parameter,	and	is	invoked
after	a	commit	is	made.

This	hook	is	meant	primarily	for	notification,	and	cannot	affect	the
outcome	of	git	commit.



8.	pre-rebase

This	hook	is	called	by	git	rebase	and	can	be	used	to	prevent	a	branch
from	getting	rebased.	The	hook	may	be	called	with	one	or	two
parameters.	The	first	parameter	is	the	upstream	from	which	the	series
was	forked.	The	second	parameter	is	the	branch	being	rebased,	and	is
not	set	when	rebasing	the	current	branch.



9.	post-checkout

This	hook	is	invoked	when	a	git	checkout	is	run	after	having	updated	the
worktree.	The	hook	is	given	three	parameters:	the	ref	of	the	previous
HEAD,	the	ref	of	the	new	HEAD	(which	may	or	may	not	have	changed),
and	a	flag	indicating	whether	the	checkout	was	a	branch	checkout
(changing	branches,	flag=1)	or	a	file	checkout	(retrieving	a	file	from	the
index,	flag=0).	This	hook	cannot	affect	the	outcome	of	git	checkout.

It	is	also	run	after	git	clone,	unless	the	--no-checkout	(-n)	option	is	used.
The	first	parameter	given	to	the	hook	is	the	null-ref,	the	second	the	ref	of
the	new	HEAD	and	the	flag	is	always	1.

This	hook	can	be	used	to	perform	repository	validity	checks,	auto-display
differences	from	the	previous	HEAD	if	different,	or	set	working	dir
metadata	properties.



10.	post-merge

This	hook	is	invoked	by	git	merge,	which	happens	when	a	git	pull	is	done
on	a	local	repository.	The	hook	takes	a	single	parameter,	a	status	flag
specifying	whether	or	not	the	merge	being	done	was	a	squash	merge.
This	hook	cannot	affect	the	outcome	of	git	merge	and	is	not	executed,	if
the	merge	failed	due	to	conflicts.

This	hook	can	be	used	in	conjunction	with	a	corresponding	pre-commit
hook	to	save	and	restore	any	form	of	metadata	associated	with	the
working	tree	(e.g.:	permissions/ownership,	ACLS,	etc).	See
contrib/hooks/setgitperms.perl	for	an	example	of	how	to	do	this.



11.	pre-push

This	hook	is	called	by	git	push	and	can	be	used	to	prevent	a	push	from
taking	place.	The	hook	is	called	with	two	parameters	which	provide	the
name	and	location	of	the	destination	remote,	if	a	named	remote	is	not
being	used	both	values	will	be	the	same.

Information	about	what	is	to	be	pushed	is	provided	on	the	hook's
standard	input	with	lines	of	the	form:

<local	ref>	SP	<local	sha1>	SP	<remote	ref>	SP	<remote	sha1>	LF

For	instance,	if	the	command	git	push	origin	master:foreign	were	run
the	hook	would	receive	a	line	like	the	following:

refs/heads/master	67890	refs/heads/foreign	12345

although	the	full,	40-character	SHA-1s	would	be	supplied.	If	the	foreign
ref	does	not	yet	exist	the	<remote	SHA-1>	will	be	40	0.	If	a	ref	is	to	be
deleted,	the	<local	ref>	will	be	supplied	as	(delete)	and	the	<local	SHA-
1>	will	be	40	0.	If	the	local	commit	was	specified	by	something	other	than
a	name	which	could	be	expanded	(such	as	HEAD~,	or	a	SHA-1)	it	will	be
supplied	as	it	was	originally	given.

If	this	hook	exits	with	a	non-zero	status,	git	push	will	abort	without
pushing	anything.	Information	about	why	the	push	is	rejected	may	be
sent	to	the	user	by	writing	to	standard	error.



12.	pre-receive

This	hook	is	invoked	by	git-receive-pack	on	the	remote	repository,	which
happens	when	a	git	push	is	done	on	a	local	repository.	Just	before
starting	to	update	refs	on	the	remote	repository,	the	pre-receive	hook	is
invoked.	Its	exit	status	determines	the	success	or	failure	of	the	update.

This	hook	executes	once	for	the	receive	operation.	It	takes	no
arguments,	but	for	each	ref	to	be	updated	it	receives	on	standard	input	a
line	of	the	format:

<old-value>	SP	<new-value>	SP	<ref-name>	LF

where	<old-value>	is	the	old	object	name	stored	in	the	ref,	<new-value>
is	the	new	object	name	to	be	stored	in	the	ref	and	<ref-name>	is	the	full
name	of	the	ref.	When	creating	a	new	ref,	<old-value>	is	40	0.

If	the	hook	exits	with	non-zero	status,	none	of	the	refs	will	be	updated.	If
the	hook	exits	with	zero,	updating	of	individual	refs	can	still	be	prevented
by	the	update	hook.

Both	standard	output	and	standard	error	output	are	forwarded	to	git	send-
pack	on	the	other	end,	so	you	can	simply	echo	messages	for	the	user.



13.	update

This	hook	is	invoked	by	git-receive-pack	on	the	remote	repository,	which
happens	when	a	git	push	is	done	on	a	local	repository.	Just	before
updating	the	ref	on	the	remote	repository,	the	update	hook	is	invoked.	Its
exit	status	determines	the	success	or	failure	of	the	ref	update.

The	hook	executes	once	for	each	ref	to	be	updated,	and	takes	three
parameters:

the	name	of	the	ref	being	updated,
the	old	object	name	stored	in	the	ref,
and	the	new	object	name	to	be	stored	in	the	ref.

A	zero	exit	from	the	update	hook	allows	the	ref	to	be	updated.	Exiting
with	a	non-zero	status	prevents	git-receive-pack	from	updating	that	ref.

This	hook	can	be	used	to	prevent	forced	update	on	certain	refs	by
making	sure	that	the	object	name	is	a	commit	object	that	is	a	descendant
of	the	commit	object	named	by	the	old	object	name.	That	is,	to	enforce	a
"fast-forward	only"	policy.

It	could	also	be	used	to	log	the	old..new	status.	However,	it	does	not
know	the	entire	set	of	branches,	so	it	would	end	up	firing	one	e-mail	per
ref	when	used	naively,	though.	The	post-receive	hook	is	more	suited	to
that.

Another	use	suggested	on	the	mailing	list	is	to	use	this	hook	to
implement	access	control	which	is	finer	grained	than	the	one	based	on
filesystem	group.

Both	standard	output	and	standard	error	output	are	forwarded	to	git	send-
pack	on	the	other	end,	so	you	can	simply	echo	messages	for	the	user.

The	default	update	hook,	when	enabled--and	with
hooks.allowunannotated	config	option	unset	or	set	to	false--prevents
unannotated	tags	to	be	pushed.



14.	post-receive

This	hook	is	invoked	by	git-receive-pack	on	the	remote	repository,	which
happens	when	a	git	push	is	done	on	a	local	repository.	It	executes	on	the
remote	repository	once	after	all	the	refs	have	been	updated.

This	hook	executes	once	for	the	receive	operation.	It	takes	no
arguments,	but	gets	the	same	information	as	the	pre-receive	hook	does
on	its	standard	input.

This	hook	does	not	affect	the	outcome	of	git-receive-pack,	as	it	is	called
after	the	real	work	is	done.

This	supersedes	the	post-update	hook	in	that	it	gets	both	old	and	new
values	of	all	the	refs	in	addition	to	their	names.

Both	standard	output	and	standard	error	output	are	forwarded	to	git	send-
pack	on	the	other	end,	so	you	can	simply	echo	messages	for	the	user.

The	default	post-receive	hook	is	empty,	but	there	is	a	sample	script	post-
receive-email	provided	in	the	contrib/hooks	directory	in	Git	distribution,
which	implements	sending	commit	emails.



15.	post-update

This	hook	is	invoked	by	git-receive-pack	on	the	remote	repository,	which
happens	when	a	git	push	is	done	on	a	local	repository.	It	executes	on	the
remote	repository	once	after	all	the	refs	have	been	updated.

It	takes	a	variable	number	of	parameters,	each	of	which	is	the	name	of
ref	that	was	actually	updated.

This	hook	is	meant	primarily	for	notification,	and	cannot	affect	the
outcome	of	git-receive-pack.

The	post-update	hook	can	tell	what	are	the	heads	that	were	pushed,	but
it	does	not	know	what	their	original	and	updated	values	are,	so	it	is	a
poor	place	to	do	log	old..new.	The	post-receive	hook	does	get	both
original	and	updated	values	of	the	refs.	You	might	consider	it	instead	if
you	need	them.

When	enabled,	the	default	post-update	hook	runs	git	update-server-info
to	keep	the	information	used	by	dumb	transports	(e.g.,	HTTP)	up-to-date.
If	you	are	publishing	a	Git	repository	that	is	accessible	via	HTTP,	you
should	probably	enable	this	hook.

Both	standard	output	and	standard	error	output	are	forwarded	to	git	send-
pack	on	the	other	end,	so	you	can	simply	echo	messages	for	the	user.



16.	push-to-checkout

This	hook	is	invoked	by	git-receive-pack	on	the	remote	repository,	which
happens	when	a	git	push	is	done	on	a	local	repository,	when	the	push
tries	to	update	the	branch	that	is	currently	checked	out	and	the
receive.denyCurrentBranch	configuration	variable	is	set	to
updateInstead.	Such	a	push	by	default	is	refused	if	the	working	tree	and
the	index	of	the	remote	repository	has	any	difference	from	the	currently
checked	out	commit;	when	both	the	working	tree	and	the	index	match	the
current	commit,	they	are	updated	to	match	the	newly	pushed	tip	of	the
branch.	This	hook	is	to	be	used	to	override	the	default	behaviour.

The	hook	receives	the	commit	with	which	the	tip	of	the	current	branch	is
going	to	be	updated.	It	can	exit	with	a	non-zero	status	to	refuse	the	push
(when	it	does	so,	it	must	not	modify	the	index	or	the	working	tree).	Or	it
can	make	any	necessary	changes	to	the	working	tree	and	to	the	index	to
bring	them	to	the	desired	state	when	the	tip	of	the	current	branch	is
updated	to	the	new	commit,	and	exit	with	a	zero	status.

For	example,	the	hook	can	simply	run	git	read-tree	-u	-m	HEAD	"$1"	in
order	to	emulate	git	fetch	that	is	run	in	the	reverse	direction	with	git	push,
as	the	two-tree	form	of	read-tree	-u	-m	is	essentially	the	same	as	git
checkout	that	switches	branches	while	keeping	the	local	changes	in	the
working	tree	that	do	not	interfere	with	the	difference	between	the
branches.



17.	pre-auto-gc

This	hook	is	invoked	by	git	gc	--auto.	It	takes	no	parameter,	and	exiting
with	non-zero	status	from	this	script	causes	the	git	gc	--auto	to	abort.



18.	post-rewrite

This	hook	is	invoked	by	commands	that	rewrite	commits	(git	commit	--
amend,	git-rebase;	currently	git-filter-branch	does	not	call	it!).	Its	first
argument	denotes	the	command	it	was	invoked	by:	currently	one	of
amend	or	rebase.	Further	command-dependent	arguments	may	be
passed	in	the	future.

The	hook	receives	a	list	of	the	rewritten	commits	on	stdin,	in	the	format

<old-sha1>	SP	<new-sha1>	[	SP	<extra-info>	]	LF

The	extra-info	is	again	command-dependent.	If	it	is	empty,	the	preceding
SP	is	also	omitted.	Currently,	no	commands	pass	any	extra-info.

The	hook	always	runs	after	the	automatic	note	copying	(see
"notes.rewrite.<command>"	in	Section	G.3.27,	“git-config(1)”)	has
happened,	and	thus	has	access	to	these	notes.

The	following	command-specific	comments	apply:

rebase

For	the	squash	and	fixup	operation,	all	commits	that	were	squashed
are	listed	as	being	rewritten	to	the	squashed	commit.	This	means
that	there	will	be	several	lines	sharing	the	same	new-sha1.

The	commits	are	guaranteed	to	be	listed	in	the	order	that	they	were
processed	by	rebase.

GIT

Part	of	the	Section	G.3.1,	“git(1)”	suite

G.4.7.	gitk(1)

NAME



gitk	-	The	Git	repository	browser

SYNOPSIS

gitk	[<options>]	[<revision	range>]	[--]	[<path>…]

DESCRIPTION

Displays	changes	in	a	repository	or	a	selected	set	of	commits.	This
includes	visualizing	the	commit	graph,	showing	information	related	to
each	commit,	and	the	files	in	the	trees	of	each	revision.

OPTIONS

To	control	which	revisions	to	show,	gitk	supports	most	options	applicable
to	the	git	rev-list	command.	It	also	supports	a	few	options	applicable	to
the	git	diff-*	commands	to	control	how	the	changes	each	commit
introduces	are	shown.	Finally,	it	supports	some	gitk-specific	options.

gitk	generally	only	understands	options	with	arguments	in	the	sticked
form	(see	Section	G.4.1,	“gitcli(7)”)	due	to	limitations	in	the	command-line
parser.



1.	rev-list	options	and	arguments

This	manual	page	describes	only	the	most	frequently	used	options.	See
Section	G.3.112,	“git-rev-list(1)”	for	a	complete	list.

--all
Show	all	refs	(branches,	tags,	etc.).

--branches[=<pattern>]	,	--tags[=<pattern>]	,	--remotes[=<pattern>]
Pretend	as	if	all	the	branches	(tags,	remote	branches,	resp.)	are
listed	on	the	command	line	as	<commit>.	If	<pattern>	is	given,	limit
refs	to	ones	matching	given	shell	glob.	If	pattern	lacks	?,	*,	or	[,	/*	at
the	end	is	implied.

--since=<date>
Show	commits	more	recent	than	a	specific	date.

--until=<date>
Show	commits	older	than	a	specific	date.

--date-order
Sort	commits	by	date	when	possible.

--merge
After	an	attempt	to	merge	stops	with	conflicts,	show	the	commits	on
the	history	between	two	branches	(i.e.	the	HEAD	and	the
MERGE_HEAD)	that	modify	the	conflicted	files	and	do	not	exist	on
all	the	heads	being	merged.

--left-right
Mark	which	side	of	a	symmetric	diff	a	commit	is	reachable	from.
Commits	from	the	left	side	are	prefixed	with	a	<	symbol	and	those
from	the	right	with	a	>	symbol.

--full-history
When	filtering	history	with	<path>…,	does	not	prune	some	history.
(See	"History	simplification"	in	Section	G.3.68,	“git-log(1)”	for	a	more
detailed	explanation.)

--simplify-merges
Additional	option	to	--full-history	to	remove	some	needless	merges
from	the	resulting	history,	as	there	are	no	selected	commits
contributing	to	this	merge.	(See	"History	simplification"	in
Section	G.3.68,	“git-log(1)”	for	a	more	detailed	explanation.)



--ancestry-path
When	given	a	range	of	commits	to	display	(e.g.	commit1..commit2	or
commit2	^commit1),	only	display	commits	that	exist	directly	on	the
ancestry	chain	between	the	commit1	and	commit2,	i.e.	commits	that
are	both	descendants	of	commit1,	and	ancestors	of	commit2.	(See
"History	simplification"	in	Section	G.3.68,	“git-log(1)”	for	a	more
detailed	explanation.)

-L<start>,<end>:<file>	,	-L:<funcname>:<file>

Trace	the	evolution	of	the	line	range	given	by	"<start>,<end>"	(or	the
function	name	regex	<funcname>)	within	the	<file>.	You	may	not
give	any	pathspec	limiters.	This	is	currently	limited	to	a	walk	starting
from	a	single	revision,	i.e.,	you	may	only	give	zero	or	one	positive
revision	arguments.	You	can	specify	this	option	more	than	once.

Note:	gitk	(unlike	Section	G.3.68,	“git-log(1)”)	currently	only
understands	this	option	if	you	specify	it	"glued	together"	with	its
argument.	Do	not	put	a	space	after	-L.

<start>	and	<end>	can	take	one	of	these	forms:

number

If	<start>	or	<end>	is	a	number,	it	specifies	an	absolute	line
number	(lines	count	from	1).

/regex/

This	form	will	use	the	first	line	matching	the	given	POSIX	regex.
If	<start>	is	a	regex,	it	will	search	from	the	end	of	the	previous	-L
range,	if	any,	otherwise	from	the	start	of	file.	If	<start>	is
^/regex/,	it	will	search	from	the	start	of	file.	If	<end>	is	a	regex,	it
will	search	starting	at	the	line	given	by	<start>.

+offset	or	-offset

This	is	only	valid	for	<end>	and	will	specify	a	number	of	lines
before	or	after	the	line	given	by	<start>.



If	:<funcname>	is	given	in	place	of	<start>	and	<end>,	it	is	a	regular
expression	that	denotes	the	range	from	the	first	funcname	line	that
matches	<funcname>,	up	to	the	next	funcname	line.	:<funcname>
searches	from	the	end	of	the	previous	-L	range,	if	any,	otherwise
from	the	start	of	file.	^:<funcname>	searches	from	the	start	of	file.

<revision	range>
Limit	the	revisions	to	show.	This	can	be	either	a	single	revision
meaning	show	from	the	given	revision	and	back,	or	it	can	be	a	range
in	the	form	"<from>..<to>"	to	show	all	revisions	between	<from>	and
back	to	<to>.	Note,	more	advanced	revision	selection	can	be
applied.	For	a	more	complete	list	of	ways	to	spell	object	names,	see
Section	G.4.12,	“gitrevisions(7)”.

<path>…
Limit	commits	to	the	ones	touching	files	in	the	given	paths.	Note,	to
avoid	ambiguity	with	respect	to	revision	names	use	"--"	to	separate
the	paths	from	any	preceding	options.



2.	gitk-specific	options

--argscmd=<command>
Command	to	be	run	each	time	gitk	has	to	determine	the	revision
range	to	show.	The	command	is	expected	to	print	on	its	standard
output	a	list	of	additional	revisions	to	be	shown,	one	per	line.	Use
this	instead	of	explicitly	specifying	a	<revision	range>	if	the	set	of
commits	to	show	may	vary	between	refreshes.

--select-commit=<ref>
Select	the	specified	commit	after	loading	the	graph.	Default	behavior
is	equivalent	to	specifying	--select-commit=HEAD.

Examples

gitk	v2.6.12..	include/scsi	drivers/scsi
Show	the	changes	since	version	v2.6.12	that	changed	any	file	in	the
include/scsi	or	drivers/scsi	subdirectories

gitk	--since="2	weeks	ago"	--	gitk
Show	the	changes	during	the	last	two	weeks	to	the	file	gitk.	The	"--"
is	necessary	to	avoid	confusion	with	the	branch	named	gitk

gitk	--max-count=100	--all	--	Makefile
Show	at	most	100	changes	made	to	the	file	Makefile.	Instead	of	only
looking	for	changes	in	the	current	branch	look	in	all	branches.

Files

User	configuration	and	preferences	are	stored	at:

$XDG_CONFIG_HOME/git/gitk	if	it	exists,	otherwise
$HOME/.gitk	if	it	exists

If	neither	of	the	above	exist	then	$XDG_CONFIG_HOME/git/gitk	is
created	and	used	by	default.	If	$XDG_CONFIG_HOME	is	not	set	it
defaults	to	$HOME/.config	in	all	cases.



History

Gitk	was	the	first	graphical	repository	browser.	It's	written	in	tcl/tk	and
started	off	in	a	separate	repository	but	was	later	merged	into	the	main	Git
repository.

SEE	ALSO

qgit(1)
A	repository	browser	written	in	C++	using	Qt.

gitview(1)
A	repository	browser	written	in	Python	using	Gtk.	It's	based	on
bzrk(1)	and	distributed	in	the	contrib	area	of	the	Git	repository.

tig(1)
A	minimal	repository	browser	and	Git	tool	output	highlighter	written	in
C	using	Ncurses.

GIT

Part	of	the	Section	G.3.1,	“git(1)”	suite

G.4.8.	gitmodules(5)

NAME

gitmodules	-	defining	submodule	properties

SYNOPSIS

$GIT_WORK_DIR/.gitmodules

DESCRIPTION

The	.gitmodules	file,	located	in	the	top-level	directory	of	a	Git	working
tree,	is	a	text	file	with	a	syntax	matching	the	requirements	of
Section	G.3.27,	“git-config(1)”.



The	file	contains	one	subsection	per	submodule,	and	the	subsection
value	is	the	name	of	the	submodule.	The	name	is	set	to	the	path	where
the	submodule	has	been	added	unless	it	was	customized	with	the	--name
option	of	git	submodule	add.	Each	submodule	section	also	contains	the
following	required	keys:

submodule.<name>.path
Defines	the	path,	relative	to	the	top-level	directory	of	the	Git	working
tree,	where	the	submodule	is	expected	to	be	checked	out.	The	path
name	must	not	end	with	a	/.	All	submodule	paths	must	be	unique
within	the	.gitmodules	file.

submodule.<name>.url
Defines	a	URL	from	which	the	submodule	repository	can	be	cloned.
This	may	be	either	an	absolute	URL	ready	to	be	passed	to
Section	G.3.23,	“git-clone(1)”	or	(if	it	begins	with	./	or	../)	a	location
relative	to	the	superproject's	origin	repository.

In	addition,	there	are	a	number	of	optional	keys:

submodule.<name>.update
Defines	the	default	update	procedure	for	the	named	submodule,	i.e.
how	the	submodule	is	updated	by	"git	submodule	update"	command
in	the	superproject.	This	is	only	used	by	git	submodule	init	to
initialize	the	configuration	variable	of	the	same	name.	Allowed	values
here	are	checkout,	rebase,	merge	or	none.	See	description	of
update	command	in	Section	G.3.131,	“git-submodule(1)”	for	their
meaning.	Note	that	the	!command	form	is	intentionally	ignored	here
for	security	reasons.

submodule.<name>.branch
A	remote	branch	name	for	tracking	updates	in	the	upstream
submodule.	If	the	option	is	not	specified,	it	defaults	to	master.	See
the	--remote	documentation	in	Section	G.3.131,	“git-submodule(1)”
for	details.

submodule.<name>.fetchRecurseSubmodules
This	option	can	be	used	to	control	recursive	fetching	of	this
submodule.	If	this	option	is	also	present	in	the	submodules	entry	in
.git/config	of	the	superproject,	the	setting	there	will	override	the	one
found	in	.gitmodules.	Both	settings	can	be	overridden	on	the



command	line	by	using	the	"--[no-]recurse-submodules"	option	to	"git
fetch"	and	"git	pull".

submodule.<name>.ignore
Defines	under	what	circumstances	"git	status"	and	the	diff	family
show	a	submodule	as	modified.	When	set	to	"all",	it	will	never	be
considered	modified	(but	will	nonetheless	show	up	in	the	output	of
status	and	commit	when	it	has	been	staged),	"dirty"	will	ignore	all
changes	to	the	submodules	work	tree	and	takes	only	differences
between	the	HEAD	of	the	submodule	and	the	commit	recorded	in	the
superproject	into	account.	"untracked"	will	additionally	let
submodules	with	modified	tracked	files	in	their	work	tree	show	up.
Using	"none"	(the	default	when	this	option	is	not	set)	also	shows
submodules	that	have	untracked	files	in	their	work	tree	as	changed.
If	this	option	is	also	present	in	the	submodules	entry	in	.git/config	of
the	superproject,	the	setting	there	will	override	the	one	found	in
.gitmodules.	Both	settings	can	be	overridden	on	the	command	line
by	using	the	"--ignore-submodule"	option.	The	git	submodule
commands	are	not	affected	by	this	setting.

EXAMPLES

Consider	the	following	.gitmodules	file:

[submodule	"libfoo"]

								path	=	include/foo

								url	=	git://foo.com/git/lib.git

[submodule	"libbar"]

								path	=	include/bar

								url	=	git://bar.com/git/lib.git

This	defines	two	submodules,	libfoo	and	libbar.	These	are	expected	to	be
checked	out	in	the	paths	include/foo	and	include/bar,	and	for	both
submodules	a	URL	is	specified	which	can	be	used	for	cloning	the
submodules.

SEE	ALSO

Section	G.3.131,	“git-submodule(1)”	Section	G.3.27,	“git-config(1)”



GIT

Part	of	the	Section	G.3.1,	“git(1)”	suite

G.4.9.	gitnamespaces(7)

NAME

gitnamespaces	-	Git	namespaces

SYNOPSIS

GIT_NAMESPACE=<namespace>	git	upload-pack

GIT_NAMESPACE=<namespace>	git	receive-pack

DESCRIPTION

Git	supports	dividing	the	refs	of	a	single	repository	into	multiple
namespaces,	each	of	which	has	its	own	branches,	tags,	and	HEAD.	Git
can	expose	each	namespace	as	an	independent	repository	to	pull	from
and	push	to,	while	sharing	the	object	store,	and	exposing	all	the	refs	to
operations	such	as	Section	G.3.53,	“git-gc(1)”.

Storing	multiple	repositories	as	namespaces	of	a	single	repository	avoids
storing	duplicate	copies	of	the	same	objects,	such	as	when	storing
multiple	branches	of	the	same	source.	The	alternates	mechanism
provides	similar	support	for	avoiding	duplicates,	but	alternates	do	not
prevent	duplication	between	new	objects	added	to	the	repositories
without	ongoing	maintenance,	while	namespaces	do.

To	specify	a	namespace,	set	the	GIT_NAMESPACE	environment
variable	to	the	namespace.	For	each	ref	namespace,	Git	stores	the
corresponding	refs	in	a	directory	under	refs/namespaces/.	For	example,
GIT_NAMESPACE=foo	will	store	refs	under	refs/namespaces/foo/.	You
can	also	specify	namespaces	via	the	--namespace	option	to
Section	G.3.1,	“git(1)”.



Note	that	namespaces	which	include	a	/	will	expand	to	a	hierarchy	of
namespaces;	for	example,	GIT_NAMESPACE=foo/bar	will	store	refs
under	refs/namespaces/foo/refs/namespaces/bar/.	This	makes	paths	in
GIT_NAMESPACE	behave	hierarchically,	so	that	cloning	with
GIT_NAMESPACE=foo/bar	produces	the	same	result	as	cloning	with
GIT_NAMESPACE=foo	and	cloning	from	that	repo	with
GIT_NAMESPACE=bar.	It	also	avoids	ambiguity	with	strange	namespace
paths	such	as	foo/refs/heads/,	which	could	otherwise	generate
directory/file	conflicts	within	the	refs	directory.

Section	G.3.141,	“git-upload-pack(1)”	and	Section	G.3.100,	“git-receive-
pack(1)”	rewrite	the	names	of	refs	as	specified	by	GIT_NAMESPACE.	git-
upload-pack	and	git-receive-pack	will	ignore	all	references	outside	the
specified	namespace.

The	smart	HTTP	server,	Section	G.3.59,	“git-http-backend(1)”,	will	pass
GIT_NAMESPACE	through	to	the	backend	programs;	see
Section	G.3.59,	“git-http-backend(1)”	for	sample	configuration	to	expose
repository	namespaces	as	repositories.

For	a	simple	local	test,	you	can	use	Section	G.3.103,	“git-remote-ext(1)”:

git	clone	ext::'git	--namespace=foo	%s	/tmp/prefixed.git'

SECURITY

Anyone	with	access	to	any	namespace	within	a	repository	can	potentially
access	objects	from	any	other	namespace	stored	in	the	same	repository.
You	can't	directly	say	"give	me	object	ABCD"	if	you	don't	have	a	ref	to	it,
but	you	can	do	some	other	sneaky	things	like:

1.	 Claiming	to	push	ABCD,	at	which	point	the	server	will	optimize	out
the	need	for	you	to	actually	send	it.	Now	you	have	a	ref	to	ABCD	and
can	fetch	it	(claiming	not	to	have	it,	of	course).

2.	 Requesting	other	refs,	claiming	that	you	have	ABCD,	at	which	point
the	server	may	generate	deltas	against	ABCD.



None	of	this	causes	a	problem	if	you	only	host	public	repositories,	or	if
everyone	who	may	read	one	namespace	may	also	read	everything	in
every	other	namespace	(for	instance,	if	everyone	in	an	organization	has
read	permission	to	every	repository).

G.4.10.	gitremote-helpers(1)

NAME

gitremote-helpers	-	Helper	programs	to	interact	with	remote	repositories

SYNOPSIS

git	remote-<transport>	<repository>	[<URL>]

DESCRIPTION

Remote	helper	programs	are	normally	not	used	directly	by	end	users,	but
they	are	invoked	by	Git	when	it	needs	to	interact	with	remote	repositories
Git	does	not	support	natively.	A	given	helper	will	implement	a	subset	of
the	capabilities	documented	here.	When	Git	needs	to	interact	with	a
repository	using	a	remote	helper,	it	spawns	the	helper	as	an	independent
process,	sends	commands	to	the	helper's	standard	input,	and	expects
results	from	the	helper's	standard	output.	Because	a	remote	helper	runs
as	an	independent	process	from	Git,	there	is	no	need	to	re-link	Git	to	add
a	new	helper,	nor	any	need	to	link	the	helper	with	the	implementation	of
Git.

Every	helper	must	support	the	"capabilities"	command,	which	Git	uses	to
determine	what	other	commands	the	helper	will	accept.	Those	other
commands	can	be	used	to	discover	and	update	remote	refs,	transport
objects	between	the	object	database	and	the	remote	repository,	and
update	the	local	object	store.

Git	comes	with	a	"curl"	family	of	remote	helpers,	that	handle	various
transport	protocols,	such	as	git-remote-http,	git-remote-https,	git-remote-



ftp	and	git-remote-ftps.	They	implement	the	capabilities	fetch,	option,	and
push.

INVOCATION

Remote	helper	programs	are	invoked	with	one	or	(optionally)	two
arguments.	The	first	argument	specifies	a	remote	repository	as	in	Git;	it	is
either	the	name	of	a	configured	remote	or	a	URL.	The	second	argument
specifies	a	URL;	it	is	usually	of	the	form	<transport>://<address>,	but	any
arbitrary	string	is	possible.	The	GIT_DIR	environment	variable	is	set	up
for	the	remote	helper	and	can	be	used	to	determine	where	to	store
additional	data	or	from	which	directory	to	invoke	auxiliary	Git	commands.

When	Git	encounters	a	URL	of	the	form	<transport>://<address>,	where
<transport>	is	a	protocol	that	it	cannot	handle	natively,	it	automatically
invokes	git	remote-<transport>	with	the	full	URL	as	the	second	argument.
If	such	a	URL	is	encountered	directly	on	the	command	line,	the	first
argument	is	the	same	as	the	second,	and	if	it	is	encountered	in	a
configured	remote,	the	first	argument	is	the	name	of	that	remote.

A	URL	of	the	form	<transport>::<address>	explicitly	instructs	Git	to	invoke
git	remote-<transport>	with	<address>	as	the	second	argument.	If	such	a
URL	is	encountered	directly	on	the	command	line,	the	first	argument	is
<address>,	and	if	it	is	encountered	in	a	configured	remote,	the	first
argument	is	the	name	of	that	remote.

Additionally,	when	a	configured	remote	has	remote.<name>.vcs	set	to
<transport>,	Git	explicitly	invokes	git	remote-<transport>	with	<name>	as
the	first	argument.	If	set,	the	second	argument	is	remote.<name>.url;
otherwise,	the	second	argument	is	omitted.

INPUT	FORMAT

Git	sends	the	remote	helper	a	list	of	commands	on	standard	input,	one
per	line.	The	first	command	is	always	the	capabilities	command,	in
response	to	which	the	remote	helper	must	print	a	list	of	the	capabilities	it
supports	(see	below)	followed	by	a	blank	line.	The	response	to	the



capabilities	command	determines	what	commands	Git	uses	in	the
remainder	of	the	command	stream.

The	command	stream	is	terminated	by	a	blank	line.	In	some	cases
(indicated	in	the	documentation	of	the	relevant	commands),	this	blank
line	is	followed	by	a	payload	in	some	other	protocol	(e.g.,	the	pack
protocol),	while	in	others	it	indicates	the	end	of	input.



1.	Capabilities

Each	remote	helper	is	expected	to	support	only	a	subset	of	commands.
The	operations	a	helper	supports	are	declared	to	Git	in	the	response	to
the	capabilities	command	(see	COMMANDS,	below).

In	the	following,	we	list	all	defined	capabilities	and	for	each	we	list	which
commands	a	helper	with	that	capability	must	provide.

1.1.	Capabilities	for	Pushing

connect

Can	attempt	to	connect	to	git	receive-pack	(for	pushing),	git	upload-
pack,	etc	for	communication	using	git's	native	packfile	protocol.	This
requires	a	bidirectional,	full-duplex	connection.

Supported	commands:	connect.

push

Can	discover	remote	refs	and	push	local	commits	and	the	history
leading	up	to	them	to	new	or	existing	remote	refs.

Supported	commands:	list	for-push,	push.

export

Can	discover	remote	refs	and	push	specified	objects	from	a	fast-
import	stream	to	remote	refs.

Supported	commands:	list	for-push,	export.

If	a	helper	advertises	connect,	Git	will	use	it	if	possible	and	fall	back	to
another	capability	if	the	helper	requests	so	when	connecting	(see	the
connect	command	under	COMMANDS).	When	choosing	between	push
and	export,	Git	prefers	push.	Other	frontends	may	have	some	other	order



of	preference.

no-private-update
When	using	the	refspec	capability,	git	normally	updates	the	private
ref	on	successful	push.	This	update	is	disabled	when	the	remote-
helper	declares	the	capability	no-private-update.

1.2.	Capabilities	for	Fetching

connect

Can	try	to	connect	to	git	upload-pack	(for	fetching),	git	receive-pack,
etc	for	communication	using	the	Git's	native	packfile	protocol.	This
requires	a	bidirectional,	full-duplex	connection.

Supported	commands:	connect.

fetch

Can	discover	remote	refs	and	transfer	objects	reachable	from	them
to	the	local	object	store.

Supported	commands:	list,	fetch.

import

Can	discover	remote	refs	and	output	objects	reachable	from	them	as
a	stream	in	fast-import	format.

Supported	commands:	list,	import.

check-connectivity
Can	guarantee	that	when	a	clone	is	requested,	the	received	pack	is
self	contained	and	is	connected.

If	a	helper	advertises	connect,	Git	will	use	it	if	possible	and	fall	back	to
another	capability	if	the	helper	requests	so	when	connecting	(see	the
connect	command	under	COMMANDS).	When	choosing	between	fetch
and	import,	Git	prefers	fetch.	Other	frontends	may	have	some	other	order



of	preference.

1.3.	Miscellaneous	capabilities

option
For	specifying	settings	like	verbosity	(how	much	output	to	write	to
stderr)	and	depth	(how	much	history	is	wanted	in	the	case	of	a
shallow	clone)	that	affect	how	other	commands	are	carried	out.

refspec	<refspec>

For	remote	helpers	that	implement	import	or	export,	this	capability
allows	the	refs	to	be	constrained	to	a	private	namespace,	instead	of
writing	to	refs/heads	or	refs/remotes	directly.	It	is	recommended	that
all	importers	providing	the	import	capability	use	this.	It's	mandatory
for	export.

A	helper	advertising	the	capability	refspec
refs/heads/*:refs/svn/origin/branches/*	is	saying	that,	when	it	is
asked	to	import	refs/heads/topic,	the	stream	it	outputs	will	update	the
refs/svn/origin/branches/topic	ref.

This	capability	can	be	advertised	multiple	times.	The	first	applicable
refspec	takes	precedence.	The	left-hand	of	refspecs	advertised	with
this	capability	must	cover	all	refs	reported	by	the	list	command.	If	no
refspec	capability	is	advertised,	there	is	an	implied	refspec	*:*.

When	writing	remote-helpers	for	decentralized	version	control
systems,	it	is	advised	to	keep	a	local	copy	of	the	repository	to
interact	with,	and	to	let	the	private	namespace	refs	point	to	this	local
repository,	while	the	refs/remotes	namespace	is	used	to	track	the
remote	repository.

bidi-import
This	modifies	the	import	capability.	The	fast-import	commands	cat-
blob	and	ls	can	be	used	by	remote-helpers	to	retrieve	information
about	blobs	and	trees	that	already	exist	in	fast-import's	memory.	This
requires	a	channel	from	fast-import	to	the	remote-helper.	If	it	is
advertised	in	addition	to	"import",	Git	establishes	a	pipe	from	fast-



import	to	the	remote-helper's	stdin.	It	follows	that	Git	and	fast-import
are	both	connected	to	the	remote-helper's	stdin.	Because	Git	can
send	multiple	commands	to	the	remote-helper	it	is	required	that
helpers	that	use	bidi-import	buffer	all	import	commands	of	a	batch
before	sending	data	to	fast-import.	This	is	to	prevent	mixing
commands	and	fast-import	responses	on	the	helper's	stdin.

export-marks	<file>
This	modifies	the	export	capability,	instructing	Git	to	dump	the
internal	marks	table	to	<file>	when	complete.	For	details,	read	up	on
--export-marks=<file>	in	Section	G.3.43,	“git-fast-export(1)”.

import-marks	<file>
This	modifies	the	export	capability,	instructing	Git	to	load	the	marks
specified	in	<file>	before	processing	any	input.	For	details,	read	up
on	--import-marks=<file>	in	Section	G.3.43,	“git-fast-export(1)”.

signed-tags
This	modifies	the	export	capability,	instructing	Git	to	pass	--signed-
tags=verbatim	to	Section	G.3.43,	“git-fast-export(1)”.	In	the	absence
of	this	capability,	Git	will	use	--signed-tags=warn-strip.

COMMANDS

Commands	are	given	by	the	caller	on	the	helper's	standard	input,	one
per	line.

capabilities

Lists	the	capabilities	of	the	helper,	one	per	line,	ending	with	a	blank
line.	Each	capability	may	be	preceded	with	*,	which	marks	them
mandatory	for	Git	versions	using	the	remote	helper	to	understand.
Any	unknown	mandatory	capability	is	a	fatal	error.

Support	for	this	command	is	mandatory.

list

Lists	the	refs,	one	per	line,	in	the	format	"<value>	<name>	[<attr>
…]".	The	value	may	be	a	hex	sha1	hash,	"@<dest>"	for	a	symref,	or
"?"	to	indicate	that	the	helper	could	not	get	the	value	of	the	ref.	A



space-separated	list	of	attributes	follows	the	name;	unrecognized
attributes	are	ignored.	The	list	ends	with	a	blank	line.

See	REF	LIST	ATTRIBUTES	for	a	list	of	currently	defined	attributes.

Supported	if	the	helper	has	the	"fetch"	or	"import"	capability.

list	for-push

Similar	to	list,	except	that	it	is	used	if	and	only	if	the	caller	wants	to
the	resulting	ref	list	to	prepare	push	commands.	A	helper	supporting
both	push	and	fetch	can	use	this	to	distinguish	for	which	operation
the	output	of	list	is	going	to	be	used,	possibly	reducing	the	amount	of
work	that	needs	to	be	performed.

Supported	if	the	helper	has	the	"push"	or	"export"	capability.

option	<name>	<value>

Sets	the	transport	helper	option	<name>	to	<value>.	Outputs	a
single	line	containing	one	of	ok	(option	successfully	set),
unsupported	(option	not	recognized)	or	error	<msg>	(option	<name>
is	supported	but	<value>	is	not	valid	for	it).	Options	should	be	set
before	other	commands,	and	may	influence	the	behavior	of	those
commands.

See	OPTIONS	for	a	list	of	currently	defined	options.

Supported	if	the	helper	has	the	"option"	capability.

fetch	<sha1>	<name>

Fetches	the	given	object,	writing	the	necessary	objects	to	the
database.	Fetch	commands	are	sent	in	a	batch,	one	per	line,
terminated	with	a	blank	line.	Outputs	a	single	blank	line	when	all
fetch	commands	in	the	same	batch	are	complete.	Only	objects	which
were	reported	in	the	output	of	list	with	a	sha1	may	be	fetched	this
way.



Optionally	may	output	a	lock	<file>	line	indicating	a	file	under
GIT_DIR/objects/pack	which	is	keeping	a	pack	until	refs	can	be
suitably	updated.

If	option	check-connectivity	is	requested,	the	helper	must	output
connectivity-ok	if	the	clone	is	self-contained	and	connected.

Supported	if	the	helper	has	the	"fetch"	capability.

push	+<src>:<dst>

Pushes	the	given	local	<src>	commit	or	branch	to	the	remote	branch
described	by	<dst>.	A	batch	sequence	of	one	or	more	push
commands	is	terminated	with	a	blank	line	(if	there	is	only	one
reference	to	push,	a	single	push	command	is	followed	by	a	blank
line).	For	example,	the	following	would	be	two	batches	of	push,	the
first	asking	the	remote-helper	to	push	the	local	ref	master	to	the
remote	ref	master	and	the	local	HEAD	to	the	remote	branch,	and	the
second	asking	to	push	ref	foo	to	ref	bar	(forced	update	requested	by
the	+).

push	refs/heads/master:refs/heads/master

push	HEAD:refs/heads/branch

\n

push	+refs/heads/foo:refs/heads/bar

\n

Zero	or	more	protocol	options	may	be	entered	after	the	last	push
command,	before	the	batch's	terminating	blank	line.

When	the	push	is	complete,	outputs	one	or	more	ok	<dst>	or	error
<dst>	<why>?	lines	to	indicate	success	or	failure	of	each	pushed	ref.
The	status	report	output	is	terminated	by	a	blank	line.	The	option
field	<why>	may	be	quoted	in	a	C	style	string	if	it	contains	an	LF.

Supported	if	the	helper	has	the	"push"	capability.

import	<name>



Produces	a	fast-import	stream	which	imports	the	current	value	of	the
named	ref.	It	may	additionally	import	other	refs	as	needed	to
construct	the	history	efficiently.	The	script	writes	to	a	helper-specific
private	namespace.	The	value	of	the	named	ref	should	be	written	to
a	location	in	this	namespace	derived	by	applying	the	refspecs	from
the	"refspec"	capability	to	the	name	of	the	ref.

Especially	useful	for	interoperability	with	a	foreign	versioning	system.

Just	like	push,	a	batch	sequence	of	one	or	more	import	is	terminated
with	a	blank	line.	For	each	batch	of	import,	the	remote	helper	should
produce	a	fast-import	stream	terminated	by	a	done	command.

Note	that	if	the	bidi-import	capability	is	used	the	complete	batch
sequence	has	to	be	buffered	before	starting	to	send	data	to	fast-
import	to	prevent	mixing	of	commands	and	fast-import	responses	on
the	helper's	stdin.

Supported	if	the	helper	has	the	"import"	capability.

export

Instructs	the	remote	helper	that	any	subsequent	input	is	part	of	a
fast-import	stream	(generated	by	git	fast-export)	containing	objects
which	should	be	pushed	to	the	remote.

Especially	useful	for	interoperability	with	a	foreign	versioning	system.

The	export-marks	and	import-marks	capabilities,	if	specified,	affect
this	command	in	so	far	as	they	are	passed	on	to	git	fast-export,
which	then	will	load/store	a	table	of	marks	for	local	objects.	This	can
be	used	to	implement	for	incremental	operations.

Supported	if	the	helper	has	the	"export"	capability.

connect	<service>

Connects	to	given	service.	Standard	input	and	standard	output	of
helper	are	connected	to	specified	service	(git	prefix	is	included	in



service	name	so	e.g.	fetching	uses	git-upload-pack	as	service)	on
remote	side.	Valid	replies	to	this	command	are	empty	line
(connection	established),	fallback	(no	smart	transport	support,	fall
back	to	dumb	transports)	and	just	exiting	with	error	message	printed
(can't	connect,	don't	bother	trying	to	fall	back).	After	line	feed
terminating	the	positive	(empty)	response,	the	output	of	service
starts.	After	the	connection	ends,	the	remote	helper	exits.

Supported	if	the	helper	has	the	"connect"	capability.

If	a	fatal	error	occurs,	the	program	writes	the	error	message	to	stderr	and
exits.	The	caller	should	expect	that	a	suitable	error	message	has	been
printed	if	the	child	closes	the	connection	without	completing	a	valid
response	for	the	current	command.

Additional	commands	may	be	supported,	as	may	be	determined	from
capabilities	reported	by	the	helper.

REF	LIST	ATTRIBUTES

The	list	command	produces	a	list	of	refs	in	which	each	ref	may	be
followed	by	a	list	of	attributes.	The	following	ref	list	attributes	are	defined.

unchanged
This	ref	is	unchanged	since	the	last	import	or	fetch,	although	the
helper	cannot	necessarily	determine	what	value	that	produced.

OPTIONS

The	following	options	are	defined	and	(under	suitable	circumstances)	set
by	Git	if	the	remote	helper	has	the	option	capability.

option	verbosity	<n>
Changes	the	verbosity	of	messages	displayed	by	the	helper.	A	value
of	0	for	<n>	means	that	processes	operate	quietly,	and	the	helper
produces	only	error	output.	1	is	the	default	level	of	verbosity,	and
higher	values	of	<n>	correspond	to	the	number	of	-v	flags	passed	on



the	command	line.
option	progress	{true|false}

Enables	(or	disables)	progress	messages	displayed	by	the	transport
helper	during	a	command.

option	depth	<depth>
Deepens	the	history	of	a	shallow	repository.

option	followtags	{true|false}
If	enabled	the	helper	should	automatically	fetch	annotated	tag
objects	if	the	object	the	tag	points	at	was	transferred	during	the	fetch
command.	If	the	tag	is	not	fetched	by	the	helper	a	second	fetch
command	will	usually	be	sent	to	ask	for	the	tag	specifically.	Some
helpers	may	be	able	to	use	this	option	to	avoid	a	second	network
connection.

option	dry-run	{true|false}:	If	true,	pretend	the	operation	completed
successfully,	but	don't	actually	change	any	repository	data.	For	most
helpers	this	only	applies	to	the	push,	if	supported.

option	servpath	<c-style-quoted-path>
Sets	service	path	(--upload-pack,	--receive-pack	etc.)	for	next
connect.	Remote	helper	may	support	this	option,	but	must	not	rely
on	this	option	being	set	before	connect	request	occurs.

option	check-connectivity	{true|false}
Request	the	helper	to	check	connectivity	of	a	clone.

option	force	{true|false}
Request	the	helper	to	perform	a	force	update.	Defaults	to	false.

option	cloning	{'true|false}
Notify	the	helper	this	is	a	clone	request	(i.e.	the	current	repository	is
guaranteed	empty).

option	update-shallow	{'true|false}
Allow	to	extend	.git/shallow	if	the	new	refs	require	it.

option	pushcert	{'true|false}
GPG	sign	pushes.

SEE	ALSO

Section	G.3.106,	“git-remote(1)”



Section	G.3.103,	“git-remote-ext(1)”

Section	G.3.104,	“git-remote-fd(1)”

Section	G.3.105,	“git-remote-testgit(1)”

Section	G.3.44,	“git-fast-import(1)”

GIT

Part	of	the	Section	G.3.1,	“git(1)”	suite

G.4.11.	gitrepository-layout(5)

NAME

gitrepository-layout	-	Git	Repository	Layout

SYNOPSIS

$GIT_DIR/*

DESCRIPTION

A	Git	repository	comes	in	two	different	flavours:

a	.git	directory	at	the	root	of	the	working	tree;
a	<project>.git	directory	that	is	a	bare	repository	(i.e.	without	its	own
working	tree),	that	is	typically	used	for	exchanging	histories	with
others	by	pushing	into	it	and	fetching	from	it.

Note:	Also	you	can	have	a	plain	text	file	.git	at	the	root	of	your	working
tree,	containing	gitdir:	<path>	to	point	at	the	real	directory	that	has	the
repository.	This	mechanism	is	often	used	for	a	working	tree	of	a
submodule	checkout,	to	allow	you	in	the	containing	superproject	to	git
checkout	a	branch	that	does	not	have	the	submodule.	The	checkout	has
to	remove	the	entire	submodule	working	tree,	without	losing	the



submodule	repository.

These	things	may	exist	in	a	Git	repository.

objects

Object	store	associated	with	this	repository.	Usually	an	object	store
is	self	sufficient	(i.e.	all	the	objects	that	are	referred	to	by	an	object
found	in	it	are	also	found	in	it),	but	there	are	a	few	ways	to	violate	it.

1.	 You	could	have	an	incomplete	but	locally	usable	repository	by
creating	a	shallow	clone.	See	Section	G.3.23,	“git-clone(1)”.

2.	 You	could	be	using	the	objects/info/alternates	or
$GIT_ALTERNATE_OBJECT_DIRECTORIES	mechanisms	to
borrow	objects	from	other	object	stores.	A	repository	with	this
kind	of	incomplete	object	store	is	not	suitable	to	be	published	for
use	with	dumb	transports	but	otherwise	is	OK	as	long	as
objects/info/alternates	points	at	the	object	stores	it	borrows
from.

This	directory	is	ignored	if	$GIT_COMMON_DIR	is	set	and
"$GIT_COMMON_DIR/objects"	will	be	used	instead.

objects/[0-9a-f][0-9a-f]
A	newly	created	object	is	stored	in	its	own	file.	The	objects	are
splayed	over	256	subdirectories	using	the	first	two	characters	of	the
sha1	object	name	to	keep	the	number	of	directory	entries	in	objects
itself	to	a	manageable	number.	Objects	found	here	are	often	called
unpacked	(or	loose)	objects.

objects/pack
Packs	(files	that	store	many	object	in	compressed	form,	along	with
index	files	to	allow	them	to	be	randomly	accessed)	are	found	in	this
directory.

objects/info
Additional	information	about	the	object	store	is	recorded	in	this
directory.

objects/info/packs



This	file	is	to	help	dumb	transports	discover	what	packs	are	available
in	this	object	store.	Whenever	a	pack	is	added	or	removed,	git
update-server-info	should	be	run	to	keep	this	file	up-to-date	if	the
repository	is	published	for	dumb	transports.	git	repack	does	this	by
default.

objects/info/alternates
This	file	records	paths	to	alternate	object	stores	that	this	object	store
borrows	objects	from,	one	pathname	per	line.	Note	that	not	only
native	Git	tools	use	it	locally,	but	the	HTTP	fetcher	also	tries	to	use	it
remotely;	this	will	usually	work	if	you	have	relative	paths	(relative	to
the	object	database,	not	to	the	repository!)	in	your	alternates	file,	but
it	will	not	work	if	you	use	absolute	paths	unless	the	absolute	path	in
filesystem	and	web	URL	is	the	same.	See	also	objects/info/http-
alternates.

objects/info/http-alternates
This	file	records	URLs	to	alternate	object	stores	that	this	object	store
borrows	objects	from,	to	be	used	when	the	repository	is	fetched	over
HTTP.

refs
References	are	stored	in	subdirectories	of	this	directory.	The	git
prune	command	knows	to	preserve	objects	reachable	from	refs
found	in	this	directory	and	its	subdirectories.	This	directory	is	ignored
if	$GIT_COMMON_DIR	is	set	and	"$GIT_COMMON_DIR/refs"	will
be	used	instead.

refs/heads/name
records	tip-of-the-tree	commit	objects	of	branch	name

refs/tags/name
records	any	object	name	(not	necessarily	a	commit	object,	or	a	tag
object	that	points	at	a	commit	object).

refs/remotes/name
records	tip-of-the-tree	commit	objects	of	branches	copied	from	a
remote	repository.

refs/replace/<obj-sha1>
records	the	SHA-1	of	the	object	that	replaces	<obj-sha1>.	This	is
similar	to	info/grafts	and	is	internally	used	and	maintained	by
Section	G.3.108,	“git-replace(1)”.	Such	refs	can	be	exchanged
between	repositories	while	grafts	are	not.



packed-refs
records	the	same	information	as	refs/heads/,	refs/tags/,	and	friends
record	in	a	more	efficient	way.	See	Section	G.3.90,	“git-pack-refs(1)”.
This	file	is	ignored	if	$GIT_COMMON_DIR	is	set	and
"$GIT_COMMON_DIR/packed-refs"	will	be	used	instead.

HEAD

A	symref	(see	glossary)	to	the	refs/heads/	namespace	describing	the
currently	active	branch.	It	does	not	mean	much	if	the	repository	is
not	associated	with	any	working	tree	(i.e.	a	bare	repository),	but	a
valid	Git	repository	must	have	the	HEAD	file;	some	porcelains	may
use	it	to	guess	the	designated	"default"	branch	of	the	repository
(usually	master).	It	is	legal	if	the	named	branch	name	does	not	(yet)
exist.	In	some	legacy	setups,	it	is	a	symbolic	link	instead	of	a	symref
that	points	at	the	current	branch.

HEAD	can	also	record	a	specific	commit	directly,	instead	of	being	a
symref	to	point	at	the	current	branch.	Such	a	state	is	often	called
detached	HEAD.	See	Section	G.3.18,	“git-checkout(1)”	for	details.

config
Repository	specific	configuration	file.	This	file	is	ignored	if
$GIT_COMMON_DIR	is	set	and	"$GIT_COMMON_DIR/config"	will
be	used	instead.

branches
A	slightly	deprecated	way	to	store	shorthands	to	be	used	to	specify	a
URL	to	git	fetch,	git	pull	and	git	push.	A	file	can	be	stored	as
branches/<name>	and	then	name	can	be	given	to	these	commands
in	place	of	repository	argument.	See	the	REMOTES	section	in
Section	G.3.46,	“git-fetch(1)”	for	details.	This	mechanism	is	legacy
and	not	likely	to	be	found	in	modern	repositories.	This	directory	is
ignored	if	$GIT_COMMON_DIR	is	set	and
"$GIT_COMMON_DIR/branches"	will	be	used	instead.

hooks
Hooks	are	customization	scripts	used	by	various	Git	commands.	A
handful	of	sample	hooks	are	installed	when	git	init	is	run,	but	all	of
them	are	disabled	by	default.	To	enable,	the	.sample	suffix	has	to	be
removed	from	the	filename	by	renaming.	Read	Section	G.4.6,



“githooks(5)”	for	more	details	about	each	hook.	This	directory	is
ignored	if	$GIT_COMMON_DIR	is	set	and
"$GIT_COMMON_DIR/hooks"	will	be	used	instead.

index
The	current	index	file	for	the	repository.	It	is	usually	not	found	in	a
bare	repository.

sharedindex.<SHA-1>
The	shared	index	part,	to	be	referenced	by	$GIT_DIR/index	and
other	temporary	index	files.	Only	valid	in	split	index	mode.

info
Additional	information	about	the	repository	is	recorded	in	this
directory.	This	directory	is	ignored	if	$GIT_COMMON_DIR	is	set	and
"$GIT_COMMON_DIR/index"	will	be	used	instead.

info/refs
This	file	helps	dumb	transports	discover	what	refs	are	available	in
this	repository.	If	the	repository	is	published	for	dumb	transports,	this
file	should	be	regenerated	by	git	update-server-info	every	time	a	tag
or	branch	is	created	or	modified.	This	is	normally	done	from	the
hooks/update	hook,	which	is	run	by	the	git-receive-pack	command
when	you	git	push	into	the	repository.

info/grafts

This	file	records	fake	commit	ancestry	information,	to	pretend	the	set
of	parents	a	commit	has	is	different	from	how	the	commit	was
actually	created.	One	record	per	line	describes	a	commit	and	its	fake
parents	by	listing	their	40-byte	hexadecimal	object	names	separated
by	a	space	and	terminated	by	a	newline.

Note	that	the	grafts	mechanism	is	outdated	and	can	lead	to
problems	transferring	objects	between	repositories;	see
Section	G.3.108,	“git-replace(1)”	for	a	more	flexible	and	robust
system	to	do	the	same	thing.

info/exclude
This	file,	by	convention	among	Porcelains,	stores	the	exclude	pattern
list.	.gitignore	is	the	per-directory	ignore	file.	git	status,	git	add,	git	rm
and	git	clean	look	at	it	but	the	core	Git	commands	do	not	look	at	it.
See	also:	Section	G.4.5,	“gitignore(5)”.



info/sparse-checkout
This	file	stores	sparse	checkout	patterns.	See	also:	Section	G.3.98,
“git-read-tree(1)”.

remotes
Stores	shorthands	for	URL	and	default	refnames	for	use	when
interacting	with	remote	repositories	via	git	fetch,	git	pull	and	git	push
commands.	See	the	REMOTES	section	in	Section	G.3.46,	“git-
fetch(1)”	for	details.	This	mechanism	is	legacy	and	not	likely	to	be
found	in	modern	repositories.	This	directory	is	ignored	if
$GIT_COMMON_DIR	is	set	and	"$GIT_COMMON_DIR/remotes"
will	be	used	instead.

logs
Records	of	changes	made	to	refs	are	stored	in	this	directory.	See
Section	G.3.138,	“git-update-ref(1)”	for	more	information.	This
directory	is	ignored	if	$GIT_COMMON_DIR	is	set	and
"$GIT_COMMON_DIR/logs"	will	be	used	instead.

logs/refs/heads/name
Records	all	changes	made	to	the	branch	tip	named	name.

logs/refs/tags/name
Records	all	changes	made	to	the	tag	named	name.

shallow
This	is	similar	to	info/grafts	but	is	internally	used	and	maintained	by
shallow	clone	mechanism.	See	--depth	option	to	Section	G.3.23,	“git-
clone(1)”	and	Section	G.3.46,	“git-fetch(1)”.	This	file	is	ignored	if
$GIT_COMMON_DIR	is	set	and	"$GIT_COMMON_DIR/shallow"	will
be	used	instead.

commondir
If	this	file	exists,	$GIT_COMMON_DIR	(see	Section	G.3.1,	“git(1)”)
will	be	set	to	the	path	specified	in	this	file	if	it	is	not	explicitly	set.	If
the	specified	path	is	relative,	it	is	relative	to	$GIT_DIR.	The
repository	with	commondir	is	incomplete	without	the	repository
pointed	by	"commondir".

modules
Contains	the	git-repositories	of	the	submodules.

worktrees
Contains	administrative	data	for	linked	working	trees.	Each
subdirectory	contains	the	working	tree-related	part	of	a	linked



working	tree.	This	directory	is	ignored	if	$GIT_COMMON_DIR	is	set,
in	which	case	"$GIT_COMMON_DIR/worktrees"	will	be	used
instead.

worktrees/<id>/gitdir
A	text	file	containing	the	absolute	path	back	to	the	.git	file	that	points
to	here.	This	is	used	to	check	if	the	linked	repository	has	been
manually	removed	and	there	is	no	need	to	keep	this	directory	any
more.	The	mtime	of	this	file	should	be	updated	every	time	the	linked
repository	is	accessed.

worktrees/<id>/locked
If	this	file	exists,	the	linked	working	tree	may	be	on	a	portable	device
and	not	available.	The	presence	of	this	file	prevents	worktrees/<id>
from	being	pruned	either	automatically	or	manually	by	git	worktree
prune.	The	file	may	contain	a	string	explaining	why	the	repository	is
locked.

worktrees/<id>/link
If	this	file	exists,	it	is	a	hard	link	to	the	linked	.git	file.	It	is	used	to
detect	if	the	linked	repository	is	manually	removed.

SEE	ALSO

Section	G.3.65,	“git-init(1)”,	Section	G.3.23,	“git-clone(1)”,
Section	G.3.46,	“git-fetch(1)”,	Section	G.3.90,	“git-pack-refs(1)”,
Section	G.3.53,	“git-gc(1)”,	Section	G.3.18,	“git-checkout(1)”,
Section	G.4.16,	“gitglossary(7)”,	The	Git	User's	Manual

GIT

Part	of	the	Section	G.3.1,	“git(1)”	suite.

G.4.12.	gitrevisions(7)

NAME

gitrevisions	-	specifying	revisions	and	ranges	for	Git

https://www.kernel.org/pub/software/scm/git/docs/user-manual.html


SYNOPSIS

gitrevisions

DESCRIPTION

Many	Git	commands	take	revision	parameters	as	arguments.	Depending
on	the	command,	they	denote	a	specific	commit	or,	for	commands	which
walk	the	revision	graph	(such	as	Section	G.3.68,	“git-log(1)”),	all	commits
which	can	be	reached	from	that	commit.	In	the	latter	case	one	can	also
specify	a	range	of	revisions	explicitly.

In	addition,	some	Git	commands	(such	as	Section	G.3.126,	“git-show(1)”)
also	take	revision	parameters	which	denote	other	objects	than	commits,
e.g.	blobs	("files")	or	trees	("directories	of	files").

SPECIFYING	REVISIONS

A	revision	parameter	<rev>	typically,	but	not	necessarily,	names	a	commit
object.	It	uses	what	is	called	an	extended	SHA-1	syntax.	Here	are
various	ways	to	spell	object	names.	The	ones	listed	near	the	end	of	this
list	name	trees	and	blobs	contained	in	a	commit.

<sha1>,	e.g.	dae86e1950b1277e545cee180551750029cfe735,	dae86e
The	full	SHA-1	object	name	(40-byte	hexadecimal	string),	or	a
leading	substring	that	is	unique	within	the	repository.	E.g.
dae86e1950b1277e545cee180551750029cfe735	and	dae86e	both
name	the	same	commit	object	if	there	is	no	other	object	in	your
repository	whose	object	name	starts	with	dae86e.

<describeOutput>,	e.g.	v1.7.4.2-679-g3bee7fb
Output	from	git	describe;	i.e.	a	closest	tag,	optionally	followed	by	a
dash	and	a	number	of	commits,	followed	by	a	dash,	a	g,	and	an
abbreviated	object	name.

<refname>,	e.g.	master,	heads/master,	refs/heads/master

A	symbolic	ref	name.	E.g.	master	typically	means	the	commit	object
referenced	by	refs/heads/master.	If	you	happen	to	have	both



heads/master	and	tags/master,	you	can	explicitly	say	heads/master
to	tell	Git	which	one	you	mean.	When	ambiguous,	a	<refname>	is
disambiguated	by	taking	the	first	match	in	the	following	rules:

1.	 If	$GIT_DIR/<refname>	exists,	that	is	what	you	mean	(this	is
usually	useful	only	for	HEAD,	FETCH_HEAD,	ORIG_HEAD,
MERGE_HEAD	and	CHERRY_PICK_HEAD);

2.	 otherwise,	refs/<refname>	if	it	exists;
3.	 otherwise,	refs/tags/<refname>	if	it	exists;
4.	 otherwise,	refs/heads/<refname>	if	it	exists;
5.	 otherwise,	refs/remotes/<refname>	if	it	exists;

6.	 otherwise,	refs/remotes/<refname>/HEAD	if	it	exists.

HEAD	names	the	commit	on	which	you	based	the	changes	in
the	working	tree.	FETCH_HEAD	records	the	branch	which	you
fetched	from	a	remote	repository	with	your	last	git	fetch
invocation.	ORIG_HEAD	is	created	by	commands	that	move
your	HEAD	in	a	drastic	way,	to	record	the	position	of	the	HEAD
before	their	operation,	so	that	you	can	easily	change	the	tip	of
the	branch	back	to	the	state	before	you	ran	them.
MERGE_HEAD	records	the	commit(s)	which	you	are	merging
into	your	branch	when	you	run	git	merge.
CHERRY_PICK_HEAD	records	the	commit	which	you	are
cherry-picking	when	you	run	git	cherry-pick.

Note	that	any	of	the	refs/*	cases	above	may	come	either	from
the	$GIT_DIR/refs	directory	or	from	the	$GIT_DIR/packed-refs
file.	While	the	ref	name	encoding	is	unspecified,	UTF-8	is
preferred	as	some	output	processing	may	assume	ref	names	in
UTF-8.

@
@	alone	is	a	shortcut	for	HEAD.

<refname>@{<date>},	e.g.	master@{yesterday},	HEAD@{5	minutes	ago}
A	ref	followed	by	the	suffix	@	with	a	date	specification	enclosed	in	a
brace	pair	(e.g.	{yesterday},	{1	month	2	weeks	3	days	1	hour	1
second	ago}	or	{1979-02-26	18:30:00})	specifies	the	value	of	the	ref



at	a	prior	point	in	time.	This	suffix	may	only	be	used	immediately
following	a	ref	name	and	the	ref	must	have	an	existing	log
($GIT_DIR/logs/<ref>).	Note	that	this	looks	up	the	state	of	your	local
ref	at	a	given	time;	e.g.,	what	was	in	your	local	master	branch	last
week.	If	you	want	to	look	at	commits	made	during	certain	times,	see
--since	and	--until.

<refname>@{<n>},	e.g.	master@{1}
A	ref	followed	by	the	suffix	@	with	an	ordinal	specification	enclosed
in	a	brace	pair	(e.g.	{1},	{15})	specifies	the	n-th	prior	value	of	that	ref.
For	example	master@{1}	is	the	immediate	prior	value	of	master
while	master@{5}	is	the	5th	prior	value	of	master.	This	suffix	may
only	be	used	immediately	following	a	ref	name	and	the	ref	must	have
an	existing	log	($GIT_DIR/logs/<refname>).

@{<n>},	e.g.	@{1}
You	can	use	the	@	construct	with	an	empty	ref	part	to	get	at	a	reflog
entry	of	the	current	branch.	For	example,	if	you	are	on	branch	blabla
then	@{1}	means	the	same	as	blabla@{1}.

@{-<n>},	e.g.	@{-1}
The	construct	@{-<n>}	means	the	<n>th	branch/commit	checked	out
before	the	current	one.

<branchname>@{upstream},	e.g.	master@{upstream},	@{u}
The	suffix	@{upstream}	to	a	branchname	(short	form
<branchname>@{u})	refers	to	the	branch	that	the	branch	specified
by	branchname	is	set	to	build	on	top	of	(configured	with	branch.
<name>.remote	and	branch.<name>.merge).	A	missing	branchname
defaults	to	the	current	one.

<branchname>@{push},	e.g.	master@{push},	@{push}

The	suffix	@{push}	reports	the	branch	"where	we	would	push	to"	if
git	push	were	run	while	branchname	was	checked	out	(or	the	current
HEAD	if	no	branchname	is	specified).	Since	our	push	destination	is
in	a	remote	repository,	of	course,	we	report	the	local	tracking	branch
that	corresponds	to	that	branch	(i.e.,	something	in	refs/remotes/).

Here's	an	example	to	make	it	more	clear:

$	git	config	push.default	current



$	git	config	remote.pushdefault	myfork

$	git	checkout	-b	mybranch	origin/master

$	git	rev-parse	--symbolic-full-name	@{upstream}

refs/remotes/origin/master

$	git	rev-parse	--symbolic-full-name	@{push}

refs/remotes/myfork/mybranch

Note	in	the	example	that	we	set	up	a	triangular	workflow,	where	we
pull	from	one	location	and	push	to	another.	In	a	non-triangular
workflow,	@{push}	is	the	same	as	@{upstream},	and	there	is	no
need	for	it.

<rev>^,	e.g.	HEAD^,	v1.5.1^0
A	suffix	^	to	a	revision	parameter	means	the	first	parent	of	that
commit	object.	^<n>	means	the	<n>th	parent	(i.e.	<rev>^	is
equivalent	to	<rev>^1).	As	a	special	rule,	<rev>^0	means	the	commit
itself	and	is	used	when	<rev>	is	the	object	name	of	a	tag	object	that
refers	to	a	commit	object.

<rev>~<n>,	e.g.	master~3
A	suffix	~<n>	to	a	revision	parameter	means	the	commit	object	that
is	the	<n>th	generation	ancestor	of	the	named	commit	object,
following	only	the	first	parents.	I.e.	<rev>~3	is	equivalent	to	<rev>^^^
which	is	equivalent	to	<rev>^1^1^1.	See	below	for	an	illustration	of
the	usage	of	this	form.

<rev>^{<type>},	e.g.	v0.99.8^{commit}

A	suffix	^	followed	by	an	object	type	name	enclosed	in	brace	pair
means	dereference	the	object	at	<rev>	recursively	until	an	object	of
type	<type>	is	found	or	the	object	cannot	be	dereferenced	anymore
(in	which	case,	barf).	For	example,	if	<rev>	is	a	commit-ish,
<rev>^{commit}	describes	the	corresponding	commit	object.
Similarly,	if	<rev>	is	a	tree-ish,	<rev>^{tree}	describes	the
corresponding	tree	object.	<rev>^0	is	a	short-hand	for
<rev>^{commit}.

rev^{object}	can	be	used	to	make	sure	rev	names	an	object	that
exists,	without	requiring	rev	to	be	a	tag,	and	without	dereferencing



rev;	because	a	tag	is	already	an	object,	it	does	not	have	to	be
dereferenced	even	once	to	get	to	an	object.

rev^{tag}	can	be	used	to	ensure	that	rev	identifies	an	existing	tag
object.

<rev>^{},	e.g.	v0.99.8^{}
A	suffix	^	followed	by	an	empty	brace	pair	means	the	object	could	be
a	tag,	and	dereference	the	tag	recursively	until	a	non-tag	object	is
found.

<rev>^{/<text>},	e.g.	HEAD^{/fix	nasty	bug}
A	suffix	^	to	a	revision	parameter,	followed	by	a	brace	pair	that
contains	a	text	led	by	a	slash,	is	the	same	as	the	:/fix	nasty	bug
syntax	below	except	that	it	returns	the	youngest	matching	commit
which	is	reachable	from	the	<rev>	before	^.

:/<text>,	e.g.	:/fix	nasty	bug
A	colon,	followed	by	a	slash,	followed	by	a	text,	names	a	commit
whose	commit	message	matches	the	specified	regular	expression.
This	name	returns	the	youngest	matching	commit	which	is	reachable
from	any	ref.	The	regular	expression	can	match	any	part	of	the
commit	message.	To	match	messages	starting	with	a	string,	one	can
use	e.g.	:/^foo.	The	special	sequence	:/!	is	reserved	for	modifiers	to
what	is	matched.	:/!-foo	performs	a	negative	match,	while	:/!!foo
matches	a	literal	!	character,	followed	by	foo.	Any	other	sequence
beginning	with	:/!	is	reserved	for	now.

<rev>:<path>,	e.g.	HEAD:README,	:README,	master:./README
A	suffix	:	followed	by	a	path	names	the	blob	or	tree	at	the	given	path
in	the	tree-ish	object	named	by	the	part	before	the	colon.	:path	(with
an	empty	part	before	the	colon)	is	a	special	case	of	the	syntax
described	next:	content	recorded	in	the	index	at	the	given	path.	A
path	starting	with	./	or	../	is	relative	to	the	current	working	directory.
The	given	path	will	be	converted	to	be	relative	to	the	working	tree's
root	directory.	This	is	most	useful	to	address	a	blob	or	tree	from	a
commit	or	tree	that	has	the	same	tree	structure	as	the	working	tree.

:<n>:<path>,	e.g.	:0:README,	:README
A	colon,	optionally	followed	by	a	stage	number	(0	to	3)	and	a	colon,
followed	by	a	path,	names	a	blob	object	in	the	index	at	the	given



path.	A	missing	stage	number	(and	the	colon	that	follows	it)	names	a
stage	0	entry.	During	a	merge,	stage	1	is	the	common	ancestor,
stage	2	is	the	target	branch's	version	(typically	the	current	branch),
and	stage	3	is	the	version	from	the	branch	which	is	being	merged.

Here	is	an	illustration,	by	Jon	Loeliger.	Both	commit	nodes	B	and	C	are
parents	of	commit	node	A.	Parent	commits	are	ordered	left-to-right.

G			H			I			J

	\	/					\	/

		D			E			F

			\		|		/	\

				\	|	/			|

					\|/				|

						B					C

							\			/

								\	/

									A

A	=						=	A^0

B	=	A^			=	A^1					=	A~1

C	=	A^2		=	A^2

D	=	A^^		=	A^1^1			=	A~2

E	=	B^2		=	A^^2

F	=	B^3		=	A^^3

G	=	A^^^	=	A^1^1^1	=	A~3

H	=	D^2		=	B^^2				=	A^^^2		=	A~2^2

I	=	F^			=	B^3^				=	A^^3^

J	=	F^2		=	B^3^2			=	A^^3^2

SPECIFYING	RANGES

History	traversing	commands	such	as	git	log	operate	on	a	set	of	commits,
not	just	a	single	commit.	To	these	commands,	specifying	a	single	revision
with	the	notation	described	in	the	previous	section	means	the	set	of
commits	reachable	from	that	commit,	following	the	commit	ancestry
chain.

To	exclude	commits	reachable	from	a	commit,	a	prefix	^	notation	is	used.
E.g.	^r1	r2	means	commits	reachable	from	r2	but	exclude	the	ones
reachable	from	r1.

This	set	operation	appears	so	often	that	there	is	a	shorthand	for	it.	When
you	have	two	commits	r1	and	r2	(named	according	to	the	syntax
explained	in	SPECIFYING	REVISIONS	above),	you	can	ask	for	commits
that	are	reachable	from	r2	excluding	those	that	are	reachable	from	r1	by



^r1	r2	and	it	can	be	written	as	r1..r2.

A	similar	notation	r1...r2	is	called	symmetric	difference	of	r1	and	r2	and	is
defined	as	r1	r2	--not	$(git	merge-base	--all	r1	r2).	It	is	the	set	of	commits
that	are	reachable	from	either	one	of	r1	or	r2	but	not	from	both.

In	these	two	shorthands,	you	can	omit	one	end	and	let	it	default	to	HEAD.
For	example,	origin..	is	a	shorthand	for	origin..HEAD	and	asks	"What	did
I	do	since	I	forked	from	the	origin	branch?"	Similarly,	..origin	is	a
shorthand	for	HEAD..origin	and	asks	"What	did	the	origin	do	since	I
forked	from	them?"	Note	that	..	would	mean	HEAD..HEAD	which	is	an
empty	range	that	is	both	reachable	and	unreachable	from	HEAD.

Two	other	shorthands	for	naming	a	set	that	is	formed	by	a	commit	and	its
parent	commits	exist.	The	r1^@	notation	means	all	parents	of	r1.	r1^!
includes	commit	r1	but	excludes	all	of	its	parents.

To	summarize:

<rev>
Include	commits	that	are	reachable	from	(i.e.	ancestors	of)	<rev>.

^<rev>
Exclude	commits	that	are	reachable	from	(i.e.	ancestors	of)	<rev>.

<rev1>..<rev2>
Include	commits	that	are	reachable	from	<rev2>	but	exclude	those
that	are	reachable	from	<rev1>.	When	either	<rev1>	or	<rev2>	is
omitted,	it	defaults	to	HEAD.

<rev1>...<rev2>
Include	commits	that	are	reachable	from	either	<rev1>	or	<rev2>	but
exclude	those	that	are	reachable	from	both.	When	either	<rev1>	or
<rev2>	is	omitted,	it	defaults	to	HEAD.

<rev>^@,	e.g.	HEAD^@
A	suffix	^	followed	by	an	at	sign	is	the	same	as	listing	all	parents	of
<rev>	(meaning,	include	anything	reachable	from	its	parents,	but	not
the	commit	itself).

<rev>^!,	e.g.	HEAD^!
A	suffix	^	followed	by	an	exclamation	mark	is	the	same	as	giving
commit	<rev>	and	then	all	its	parents	prefixed	with	^	to	exclude	them



(and	their	ancestors).

Here	are	a	handful	of	examples:

D																G	H	D

D	F														G	H	I	J	D	F

^G	D													H	D

^D	B													E	I	J	F	B

B..C													C

B...C												G	H	D	E	B	C

^D	B	C											E	I	J	F	B	C

C																I	J	F	C

C^@														I	J	F

C^!														C

F^!	D												G	H	D	F

SEE	ALSO

Section	G.3.113,	“git-rev-parse(1)”

GIT

Part	of	the	Section	G.3.1,	“git(1)”	suite

G.4.13.	gitweb(1)

NAME

gitweb	-	Git	web	interface	(web	frontend	to	Git	repositories)

SYNOPSIS

To	get	started	with	gitweb,	run	Section	G.3.66,	“git-instaweb(1)”	from	a
Git	repository.	This	would	configure	and	start	your	web	server,	and	run
web	browser	pointing	to	gitweb.

DESCRIPTION

Gitweb	provides	a	web	interface	to	Git	repositories.	Its	features	include:

Viewing	multiple	Git	repositories	with	common	root.



Browsing	every	revision	of	the	repository.
Viewing	the	contents	of	files	in	the	repository	at	any	revision.
Viewing	the	revision	log	of	branches,	history	of	files	and	directories,
see	what	was	changed	when,	by	who.
Viewing	the	blame/annotation	details	of	any	file	(if	enabled).
Generating	RSS	and	Atom	feeds	of	commits,	for	any	branch.	The
feeds	are	auto-discoverable	in	modern	web	browsers.
Viewing	everything	that	was	changed	in	a	revision,	and	step	through
revisions	one	at	a	time,	viewing	the	history	of	the	repository.
Finding	commits	which	commit	messages	matches	given	search
term.

See	http://git.kernel.org/?p=git/git.git;a=tree;f=gitweb[]	or
http://repo.or.cz/w/git.git/tree/HEAD:/gitweb/[]	for	gitweb	source	code,
browsed	using	gitweb	itself.

CONFIGURATION

Various	aspects	of	gitweb's	behavior	can	be	controlled	through	the
configuration	file	gitweb_config.perl	or	/etc/gitweb.conf.	See	the
Section	G.4.14,	“gitweb.conf(5)”	for	details.

http://git.kernel.org/?p=git/git.git;a=tree;f=gitweb
http://repo.or.cz/w/git.git/tree/HEAD:/gitweb/


1.	Repositories

Gitweb	can	show	information	from	one	or	more	Git	repositories.	These
repositories	have	to	be	all	on	local	filesystem,	and	have	to	share	common
repository	root,	i.e.	be	all	under	a	single	parent	repository	(but	see	also
"Advanced	web	server	setup"	section,	"Webserver	configuration	with
multiple	projects'	root"	subsection).

our	$projectroot	=	'/path/to/parent/directory';

The	default	value	for	$projectroot	is	/pub/git.	You	can	change	it	during
building	gitweb	via	GITWEB_PROJECTROOT	build	configuration
variable.

By	default	all	Git	repositories	under	$projectroot	are	visible	and	available
to	gitweb.	The	list	of	projects	is	generated	by	default	by	scanning	the
$projectroot	directory	for	Git	repositories	(for	object	databases	to	be	more
exact;	gitweb	is	not	interested	in	a	working	area,	and	is	best	suited	to
showing	"bare"	repositories).

The	name	of	the	repository	in	gitweb	is	the	path	to	its	$GIT_DIR	(its
object	database)	relative	to	$projectroot.	Therefore	the	repository	$repo
can	be	found	at	"$projectroot/$repo".



2.	Projects	list	file	format

Instead	of	having	gitweb	find	repositories	by	scanning	filesystem	starting
from	$projectroot,	you	can	provide	a	pre-generated	list	of	visible	projects
by	setting	$projects_list	to	point	to	a	plain	text	file	with	a	list	of	projects
(with	some	additional	info).

This	file	uses	the	following	format:

One	record	(for	project	/	repository)	per	line;	does	not	support	line
continuation	(newline	escaping).
Leading	and	trailing	whitespace	are	ignored.
Whitespace	separated	fields;	any	run	of	whitespace	can	be	used	as
field	separator	(rules	for	Perl's	"split("	",	$line)").

Fields	use	modified	URI	encoding,	defined	in	RFC	3986,	section	2.1
(Percent-Encoding),	or	rather	"Query	string	encoding"	(see
http://en.wikipedia.org/wiki/Query_string#URL_encoding[]),	the
difference	being	that	SP	("	")	can	be	encoded	as	"+"	(and	therefore
"+"	has	to	be	also	percent-encoded).

Reserved	characters	are:	"%"	(used	for	encoding),	"+"	(can	be	used
to	encode	SPACE),	all	whitespace	characters	as	defined	in	Perl,
including	SP,	TAB	and	LF,	(used	to	separate	fields	in	a	record).

Currently	recognized	fields	are:

<repository	path>
path	to	repository	GIT_DIR,	relative	to	$projectroot

<repository	owner>
displayed	as	repository	owner,	preferably	full	name,	or	email,	or
both

You	can	generate	the	projects	list	index	file	using	the	project_index	action
(the	TXT	link	on	projects	list	page)	directly	from	gitweb;	see	also
"Generating	projects	list	using	gitweb"	section	below.

http://en.wikipedia.org/wiki/Query_string#URL_encoding


Example	contents:

foo.git							Joe+R+Hacker+<joe@example.com>

foo/bar.git			O+W+Ner+<owner@example.org>

By	default	this	file	controls	only	which	projects	are	visible	on	projects	list
page	(note	that	entries	that	do	not	point	to	correctly	recognized	Git
repositories	won't	be	displayed	by	gitweb).	Even	if	a	project	is	not	visible
on	projects	list	page,	you	can	view	it	nevertheless	by	hand-crafting	a
gitweb	URL.	By	setting	$strict_export	configuration	variable	(see
Section	G.4.14,	“gitweb.conf(5)”)	to	true	value	you	can	allow	viewing	only
of	repositories	also	shown	on	the	overview	page	(i.e.	only	projects
explicitly	listed	in	projects	list	file	will	be	accessible).



3.	Generating	projects	list	using	gitweb

We	assume	that	GITWEB_CONFIG	has	its	default	Makefile	value,
namely	gitweb_config.perl.	Put	the	following	in	gitweb_make_index.perl
file:

read_config_file("gitweb_config.perl");

$projects_list	=	$projectroot;

Then	create	the	following	script	to	get	list	of	project	in	the	format	suitable
for	GITWEB_LIST	build	configuration	variable	(or	$projects_list	variable
in	gitweb	config):

#!/bin/sh

export	GITWEB_CONFIG="gitweb_make_index.perl"

export	GATEWAY_INTERFACE="CGI/1.1"

export	HTTP_ACCEPT="*/*"

export	REQUEST_METHOD="GET"

export	QUERY_STRING="a=project_index"

perl	--	/var/www/cgi-bin/gitweb.cgi

Run	this	script	and	save	its	output	to	a	file.	This	file	could	then	be	used
as	projects	list	file,	which	means	that	you	can	set	$projects_list	to	its
filename.



4.	Controlling	access	to	Git	repositories

By	default	all	Git	repositories	under	$projectroot	are	visible	and	available
to	gitweb.	You	can	however	configure	how	gitweb	controls	access	to
repositories.

As	described	in	"Projects	list	file	format"	section,	you	can	control
which	projects	are	visible	by	selectively	including	repositories	in
projects	list	file,	and	setting	$projects_list	gitweb	configuration
variable	to	point	to	it.	With	$strict_export	set,	projects	list	file	can	be
used	to	control	which	repositories	are	available	as	well.

You	can	configure	gitweb	to	only	list	and	allow	viewing	of	the
explicitly	exported	repositories,	via	$export_ok	variable	in	gitweb
config	file;	see	Section	G.4.14,	“gitweb.conf(5)”	manpage.	If	it
evaluates	to	true,	gitweb	shows	repositories	only	if	this	file	named	by
$export_ok	exists	in	its	object	database	(if	directory	has	the	magic
file	named	$export_ok).

For	example	Section	G.3.36,	“git-daemon(1)”	by	default	(unless	--
export-all	option	is	used)	allows	pulling	only	for	those	repositories
that	have	git-daemon-export-ok	file.	Adding

our	$export_ok	=	"git-daemon-export-ok";

makes	gitweb	show	and	allow	access	only	to	those	repositories	that
can	be	fetched	from	via	git://	protocol.

Finally,	it	is	possible	to	specify	an	arbitrary	perl	subroutine	that	will
be	called	for	each	repository	to	determine	if	it	can	be	exported.	The
subroutine	receives	an	absolute	path	to	the	project	(repository)	as	its
only	parameter	(i.e.	"$projectroot/$project").

For	example,	if	you	use	mod_perl	to	run	the	script,	and	have	dumb
HTTP	protocol	authentication	configured	for	your	repositories,	you
can	use	the	following	hook	to	allow	access	only	if	the	user	is



authorized	to	read	the	files:

$export_auth_hook	=	sub	{

								use	Apache2::SubRequest	();

								use	Apache2::Const	-compile	=>	qw(HTTP_OK);

								my	$path	=	"$_[0]/HEAD";

								my	$r				=	Apache2::RequestUtil->request;

								my	$sub		=	$r->lookup_file($path);

								return	$sub->filename	eq	$path

												&&	$sub->status	==	Apache2::Const::HTTP_OK;

};



5.	Per-repository	gitweb	configuration

You	can	configure	individual	repositories	shown	in	gitweb	by	creating	file
in	the	GIT_DIR	of	Git	repository,	or	by	setting	some	repo	configuration
variable	(in	GIT_DIR/config,	see	Section	G.3.27,	“git-config(1)”).

You	can	use	the	following	files	in	repository:

README.html
A	html	file	(HTML	fragment)	which	is	included	on	the	gitweb	project
"summary"	page	inside	<div>	block	element.	You	can	use	it	for
longer	description	of	a	project,	to	provide	links	(for	example	to
project's	homepage),	etc.	This	is	recognized	only	if	XSS	prevention
is	off	($prevent_xss	is	false,	see	Section	G.4.14,	“gitweb.conf(5)”);	a
way	to	include	a	README	safely	when	XSS	prevention	is	on	may	be
worked	out	in	the	future.

description	(or	gitweb.description)

Short	(shortened	to	$projects_list_description_width	in	the	projects
list	page,	which	is	25	characters	by	default;	see	Section	G.4.14,
“gitweb.conf(5)”)	single	line	description	of	a	project	(of	a	repository).
Plain	text	file;	HTML	will	be	escaped.	By	default	set	to

Unnamed	repository;	edit	this	file	to	name	it	for	gitweb.

from	the	template	during	repository	creation,	usually	installed	in
/usr/share/git-core/templates/.	You	can	use	the	gitweb.description
repo	configuration	variable,	but	the	file	takes	precedence.

category	(or	gitweb.category)

Singe	line	category	of	a	project,	used	to	group	projects	if
$projects_list_group_categories	is	enabled.	By	default	(file	and
configuration	variable	absent),	uncategorized	projects	are	put	in	the
$project_list_default_category	category.	You	can	use	the



gitweb.category	repo	configuration	variable,	but	the	file	takes
precedence.

The	configuration	variables	$projects_list_group_categories	and
$project_list_default_category	are	described	in	Section	G.4.14,
“gitweb.conf(5)”

cloneurl	(or	multiple-valued	gitweb.url)

File	with	repository	URL	(used	for	clone	and	fetch),	one	per	line.
Displayed	in	the	project	summary	page.	You	can	use	multiple-valued
gitweb.url	repository	configuration	variable	for	that,	but	the	file	takes
precedence.

This	is	per-repository	enhancement	/	version	of	global	prefix-based
@git_base_url_list	gitweb	configuration	variable	(see
Section	G.4.14,	“gitweb.conf(5)”).

gitweb.owner

You	can	use	the	gitweb.owner	repository	configuration	variable	to	set
repository's	owner.	It	is	displayed	in	the	project	list	and	summary
page.

If	it's	not	set,	filesystem	directory's	owner	is	used	(via	GECOS	field,
i.e.	real	name	field	from	getpwuid(3))	if	$projects_list	is	unset
(gitweb	scans	$projectroot	for	repositories);	if	$projects_list	points	to
file	with	list	of	repositories,	then	project	owner	defaults	to	value	from
this	file	for	given	repository.

various	gitweb.*	config	variables	(in	config)
Read	description	of	%feature	hash	for	detailed	list,	and	descriptions.
See	also	"Configuring	gitweb	features"	section	in	Section	G.4.14,
“gitweb.conf(5)”

ACTIONS,	AND	URLS

Gitweb	can	use	path_info	(component)	based	URLs,	or	it	can	pass	all



necessary	information	via	query	parameters.	The	typical	gitweb	URLs	are
broken	down	in	to	five	components:

.../gitweb.cgi/<repo>/<action>/<revision>:/<path>?<arguments>

repo

The	repository	the	action	will	be	performed	on.

All	actions	except	for	those	that	list	all	available	projects,	in	whatever
form,	require	this	parameter.

action
The	action	that	will	be	run.	Defaults	to	projects_list	if	repo	is	not	set,
and	to	summary	otherwise.

revision
Revision	shown.	Defaults	to	HEAD.

path
The	path	within	the	<repository>	that	the	action	is	performed	on,	for
those	actions	that	require	it.

arguments
Any	arguments	that	control	the	behaviour	of	the	action.

Some	actions	require	or	allow	to	specify	two	revisions,	and	sometimes
even	two	pathnames.	In	most	general	form	such	path_info	(component)
based	gitweb	URL	looks	like	this:

.../gitweb.cgi/<repo>/<action>/<revision_from>:/<path_from>..<revision_to>:/<path_to>?<arguments>

Each	action	is	implemented	as	a	subroutine,	and	must	be	present	in
%actions	hash.	Some	actions	are	disabled	by	default,	and	must	be
turned	on	via	feature	mechanism.	For	example	to	enable	blame	view	add
the	following	to	gitweb	configuration	file:

$feature{'blame'}{'default'}	=	[1];



1.	Actions:

The	standard	actions	are:

project_list
Lists	the	available	Git	repositories.	This	is	the	default	command	if	no
repository	is	specified	in	the	URL.

summary
Displays	summary	about	given	repository.	This	is	the	default
command	if	no	action	is	specified	in	URL,	and	only	repository	is
specified.

heads	,	remotes

Lists	all	local	or	all	remote-tracking	branches	in	given	repository.

The	latter	is	not	available	by	default,	unless	configured.

tags
List	all	tags	(lightweight	and	annotated)	in	given	repository.

blob	,	tree
Shows	the	files	and	directories	in	a	given	repository	path,	at	given
revision.	This	is	default	command	if	no	action	is	specified	in	the	URL,
and	path	is	given.

blob_plain
Returns	the	raw	data	for	the	file	in	given	repository,	at	given	path	and
revision.	Links	to	this	action	are	marked	raw.

blobdiff
Shows	the	difference	between	two	revisions	of	the	same	file.

blame	,	blame_incremental

Shows	the	blame	(also	called	annotation)	information	for	a	file.	On	a
per	line	basis	it	shows	the	revision	in	which	that	line	was	last
changed	and	the	user	that	committed	the	change.	The	incremental
version	(which	if	configured	is	used	automatically	when	JavaScript	is
enabled)	uses	Ajax	to	incrementally	add	blame	info	to	the	contents
of	given	file.



This	action	is	disabled	by	default	for	performance	reasons.

commit	,	commitdiff
Shows	information	about	a	specific	commit	in	a	repository.	The
commit	view	shows	information	about	commit	in	more	detail,	the
commitdiff	action	shows	changeset	for	given	commit.

patch
Returns	the	commit	in	plain	text	mail	format,	suitable	for	applying
with	Section	G.3.3,	“git-am(1)”.

tag
Display	specific	annotated	tag	(tag	object).

log	,	shortlog

Shows	log	information	(commit	message	or	just	commit	subject)	for
a	given	branch	(starting	from	given	revision).

The	shortlog	view	is	more	compact;	it	shows	one	commit	per	line.

history

Shows	history	of	the	file	or	directory	in	a	given	repository	path,
starting	from	given	revision	(defaults	to	HEAD,	i.e.	default	branch).

This	view	is	similar	to	shortlog	view.

rss	,	atom
Generates	an	RSS	(or	Atom)	feed	of	changes	to	repository.

WEBSERVER	CONFIGURATION

This	section	explains	how	to	configure	some	common	webservers	to	run
gitweb.	In	all	cases,	/path/to/gitweb	in	the	examples	is	the	directory	you
ran	installed	gitweb	in,	and	contains	gitweb_config.perl.

If	you've	configured	a	web	server	that	isn't	listed	here	for	gitweb,	please
send	in	the	instructions	so	they	can	be	included	in	a	future	release.



1.	Apache	as	CGI

Apache	must	be	configured	to	support	CGI	scripts	in	the	directory	in
which	gitweb	is	installed.	Let's	assume	that	it	is	/var/www/cgi-bin
directory.

ScriptAlias	/cgi-bin/	"/var/www/cgi-bin/"

<Directory	"/var/www/cgi-bin">

				Options	Indexes	FollowSymlinks	ExecCGI

				AllowOverride	None

				Order	allow,deny

				Allow	from	all

</Directory>

With	that	configuration	the	full	path	to	browse	repositories	would	be:

http://server/cgi-bin/gitweb.cgi



2.	Apache	with	mod_perl,	via	ModPerl::Registry

You	can	use	mod_perl	with	gitweb.	You	must	install	Apache::Registry	(for
mod_perl	1.x)	or	ModPerl::Registry	(for	mod_perl	2.x)	to	enable	this
support.

Assuming	that	gitweb	is	installed	to	/var/www/perl,	the	following	Apache
configuration	(for	mod_perl	2.x)	is	suitable.

Alias	/perl	"/var/www/perl"

<Directory	"/var/www/perl">

				SetHandler	perl-script

				PerlResponseHandler	ModPerl::Registry

				PerlOptions	+ParseHeaders

				Options	Indexes	FollowSymlinks	+ExecCGI

				AllowOverride	None

				Order	allow,deny

				Allow	from	all

</Directory>

With	that	configuration	the	full	path	to	browse	repositories	would	be:

http://server/perl/gitweb.cgi



3.	Apache	with	FastCGI

Gitweb	works	with	Apache	and	FastCGI.	First	you	need	to	rename,	copy
or	symlink	gitweb.cgi	to	gitweb.fcgi.	Let's	assume	that	gitweb	is	installed
in	/usr/share/gitweb	directory.	The	following	Apache	configuration	is
suitable	(UNTESTED!)

FastCgiServer	/usr/share/gitweb/gitweb.cgi

ScriptAlias	/gitweb	/usr/share/gitweb/gitweb.cgi

Alias	/gitweb/static	/usr/share/gitweb/static

<Directory	/usr/share/gitweb/static>

				SetHandler	default-handler

</Directory>

With	that	configuration	the	full	path	to	browse	repositories	would	be:

http://server/gitweb

ADVANCED	WEB	SERVER	SETUP

All	of	those	examples	use	request	rewriting,	and	need	mod_rewrite	(or
equivalent;	examples	below	are	written	for	Apache).



1.	Single	URL	for	gitweb	and	for	fetching

If	you	want	to	have	one	URL	for	both	gitweb	and	your	http://	repositories,
you	can	configure	Apache	like	this:

<VirtualHost	*:80>

				ServerName				git.example.org

				DocumentRoot		/pub/git

				SetEnv								GITWEB_CONFIG			/etc/gitweb.conf

				#	turning	on	mod	rewrite

				RewriteEngine	on

				#	make	the	front	page	an	internal	rewrite	to	the	gitweb	script

				RewriteRule	^/$		/cgi-bin/gitweb.cgi

				#	make	access	for	"dumb	clients"	work

				RewriteRule	^/(.*\.git/(?!/?(HEAD|info|objects|refs)).*)?$	\

																/cgi-bin/gitweb.cgi%{REQUEST_URI}		[L,PT]

</VirtualHost>

The	above	configuration	expects	your	public	repositories	to	live	under
/pub/git	and	will	serve	them	as	http://git.domain.org/dir-under-pub-git,
both	as	clonable	Git	URL	and	as	browseable	gitweb	interface.	If	you	then
start	your	Section	G.3.36,	“git-daemon(1)”	with	--base-path=/pub/git	--
export-all	then	you	can	even	use	the	git://	URL	with	exactly	the	same
path.

Setting	the	environment	variable	GITWEB_CONFIG	will	tell	gitweb	to	use
the	named	file	(i.e.	in	this	example	/etc/gitweb.conf)	as	a	configuration	for
gitweb.	You	don't	really	need	it	in	above	example;	it	is	required	only	if
your	configuration	file	is	in	different	place	than	built-in	(during	compiling
gitweb)	gitweb_config.perl	or	/etc/gitweb.conf.	See	Section	G.4.14,
“gitweb.conf(5)”	for	details,	especially	information	about	precedence
rules.

If	you	use	the	rewrite	rules	from	the	example	you	might	also	need
something	like	the	following	in	your	gitweb	configuration	file



(/etc/gitweb.conf	following	example):

@stylesheets	=	("/some/absolute/path/gitweb.css");

$my_uri				=	"/";

$home_link	=	"/";

$per_request_config	=	1;

Nowadays	though	gitweb	should	create	HTML	base	tag	when	needed	(to
set	base	URI	for	relative	links),	so	it	should	work	automatically.



2.	Webserver	configuration	with	multiple
projects'	root

If	you	want	to	use	gitweb	with	several	project	roots	you	can	edit	your
Apache	virtual	host	and	gitweb	configuration	files	in	the	following	way.

The	virtual	host	configuration	(in	Apache	configuration	file)	should	look
like	this:

<VirtualHost	*:80>

				ServerName				git.example.org

				DocumentRoot		/pub/git

				SetEnv								GITWEB_CONFIG		/etc/gitweb.conf

				#	turning	on	mod	rewrite

				RewriteEngine	on

				#	make	the	front	page	an	internal	rewrite	to	the	gitweb	script

				RewriteRule	^/$		/cgi-bin/gitweb.cgi		[QSA,L,PT]

				#	look	for	a	public_git	folder	in	unix	users'	home

				#	http://git.example.org/~<user>/

				RewriteRule	^/\~([^\/]+)(/|/gitweb.cgi)?$			/cgi-bin/gitweb.cgi	\

																[QSA,E=GITWEB_PROJECTROOT:/home/$1/public_git/,L,PT]

				#	http://git.example.org/+<user>/

				#RewriteRule	^/\+([^\/]+)(/|/gitweb.cgi)?$		/cgi-bin/gitweb.cgi	\

																	[QSA,E=GITWEB_PROJECTROOT:/home/$1/public_git/,L,PT]

				#	http://git.example.org/user/<user>/

				#RewriteRule	^/user/([^\/]+)/(gitweb.cgi)?$	/cgi-bin/gitweb.cgi	\

																	[QSA,E=GITWEB_PROJECTROOT:/home/$1/public_git/,L,PT]

				#	defined	list	of	project	roots

				RewriteRule	^/scm(/|/gitweb.cgi)?$	/cgi-bin/gitweb.cgi	\

																[QSA,E=GITWEB_PROJECTROOT:/pub/scm/,L,PT]

				RewriteRule	^/var(/|/gitweb.cgi)?$	/cgi-bin/gitweb.cgi	\

																[QSA,E=GITWEB_PROJECTROOT:/var/git/,L,PT]

				#	make	access	for	"dumb	clients"	work

				RewriteRule	^/(.*\.git/(?!/?(HEAD|info|objects|refs)).*)?$	\

																/cgi-bin/gitweb.cgi%{REQUEST_URI}		[L,PT]



</VirtualHost>

Here	actual	project	root	is	passed	to	gitweb	via
GITWEB_PROJECT_ROOT	environment	variable	from	a	web	server,	so
you	need	to	put	the	following	line	in	gitweb	configuration	file
(/etc/gitweb.conf	in	above	example):

$projectroot	=	$ENV{'GITWEB_PROJECTROOT'}	||	"/pub/git";

Note	that	this	requires	to	be	set	for	each	request,	so	either
$per_request_config	must	be	false,	or	the	above	must	be	put	in	code
referenced	by	$per_request_config;

These	configurations	enable	two	things.	First,	each	unix	user	(<user>)	of
the	server	will	be	able	to	browse	through	gitweb	Git	repositories	found	in
~/public_git/	with	the	following	url:

http://git.example.org/~<user>/

If	you	do	not	want	this	feature	on	your	server	just	remove	the	second
rewrite	rule.

If	you	already	use	mod_userdir`	in	your	virtual	host	or	you	don't	want	to
use	the	'~	as	first	character,	just	comment	or	remove	the	second	rewrite
rule,	and	uncomment	one	of	the	following	according	to	what	you	want.

Second,	repositories	found	in	/pub/scm/	and	/var/git/	will	be	accessible
through	http://git.example.org/scm/	and	http://git.example.org/var/.	You
can	add	as	many	project	roots	as	you	want	by	adding	rewrite	rules	like
the	third	and	the	fourth.



3.	PATH_INFO	usage

If	you	enable	PATH_INFO	usage	in	gitweb	by	putting

$feature{'pathinfo'}{'default'}	=	[1];

in	your	gitweb	configuration	file,	it	is	possible	to	set	up	your	server	so	that
it	consumes	and	produces	URLs	in	the	form

http://git.example.com/project.git/shortlog/sometag

i.e.	without	gitweb.cgi	part,	by	using	a	configuration	such	as	the	following.
This	configuration	assumes	that	/var/www/gitweb	is	the	DocumentRoot	of
your	webserver,	contains	the	gitweb.cgi	script	and	complementary	static
files	(stylesheet,	favicon,	JavaScript):

<VirtualHost	*:80>

								ServerAlias	git.example.com

								DocumentRoot	/var/www/gitweb

								<Directory	/var/www/gitweb>

																Options	ExecCGI

																AddHandler	cgi-script	cgi

																DirectoryIndex	gitweb.cgi

																RewriteEngine	On

																RewriteCond	%{REQUEST_FILENAME}	!-f

																RewriteCond	%{REQUEST_FILENAME}	!-d

																RewriteRule	^.*	/gitweb.cgi/$0	[L,PT]

								</Directory>

</VirtualHost>

The	rewrite	rule	guarantees	that	existing	static	files	will	be	properly
served,	whereas	any	other	URL	will	be	passed	to	gitweb	as	PATH_INFO
parameter.

Notice	that	in	this	case	you	don't	need	special	settings	for	@stylesheets,



$my_uri	and	$home_link,	but	you	lose	"dumb	client"	access	to	your
project	.git	dirs	(described	in	"Single	URL	for	gitweb	and	for	fetching"
section).	A	possible	workaround	for	the	latter	is	the	following:	in	your
project	root	dir	(e.g.	/pub/git)	have	the	projects	named	without	a	.git
extension	(e.g.	/pub/git/project	instead	of	/pub/git/project.git)	and
configure	Apache	as	follows:

<VirtualHost	*:80>

								ServerAlias	git.example.com

								DocumentRoot	/var/www/gitweb

								AliasMatch	^(/.*?)(\.git)(/.*)?$	/pub/git$1$3

								<Directory	/var/www/gitweb>

																Options	ExecCGI

																AddHandler	cgi-script	cgi

																DirectoryIndex	gitweb.cgi

																RewriteEngine	On

																RewriteCond	%{REQUEST_FILENAME}	!-f

																RewriteCond	%{REQUEST_FILENAME}	!-d

																RewriteRule	^.*	/gitweb.cgi/$0	[L,PT]

								</Directory>

</VirtualHost>

The	additional	AliasMatch	makes	it	so	that

http://git.example.com/project.git

will	give	raw	access	to	the	project's	Git	dir	(so	that	the	project	can	be
cloned),	while

http://git.example.com/project

will	provide	human-friendly	gitweb	access.

This	solution	is	not	100%	bulletproof,	in	the	sense	that	if	some	project
has	a	named	ref	(branch,	tag)	starting	with	git/,	then	paths	such	as

http://git.example.com/project/command/abranch..git/abranch

will	fail	with	a	404	error.



BUGS

Please	report	any	bugs	or	feature	requests	to	git@vger.kernel.org,
putting	"gitweb"	in	the	subject	of	email.

SEE	ALSO

Section	G.4.14,	“gitweb.conf(5)”,	Section	G.3.66,	“git-instaweb(1)”

gitweb/README,	gitweb/INSTALL

GIT

Part	of	the	Section	G.3.1,	“git(1)”	suite

G.4.14.	gitweb.conf(5)

NAME

gitweb.conf	-	Gitweb	(Git	web	interface)	configuration	file

SYNOPSIS

/etc/gitweb.conf,	/etc/gitweb-common.conf,
$GITWEBDIR/gitweb_config.perl

DESCRIPTION

The	gitweb	CGI	script	for	viewing	Git	repositories	over	the	web	uses	a
perl	script	fragment	as	its	configuration	file.	You	can	set	variables	using
"our	$variable	=	value";	text	from	a	"#"	character	until	the	end	of	a	line	is
ignored.	See	perlsyn(1)	for	details.

An	example:

#	gitweb	configuration	file	for	http://git.example.org

#

mailto:git@vger.kernel.org


our	$projectroot	=	"/srv/git";	#	FHS	recommendation

our	$site_name	=	'Example.org	>>	Repos';

The	configuration	file	is	used	to	override	the	default	settings	that	were
built	into	gitweb	at	the	time	the	gitweb.cgi	script	was	generated.

While	one	could	just	alter	the	configuration	settings	in	the	gitweb	CGI
itself,	those	changes	would	be	lost	upon	upgrade.	Configuration	settings
might	also	be	placed	into	a	file	in	the	same	directory	as	the	CGI	script
with	the	default	name	gitweb_config.perl	--	allowing	one	to	have	multiple
gitweb	instances	with	different	configurations	by	the	use	of	symlinks.

Note	that	some	configuration	can	be	controlled	on	per-repository	rather
than	gitweb-wide	basis:	see	"Per-repository	gitweb	configuration"
subsection	on	Section	G.4.13,	“gitweb(1)”	manpage.

DISCUSSION

Gitweb	reads	configuration	data	from	the	following	sources	in	the
following	order:

built-in	values	(some	set	during	build	stage),
common	system-wide	configuration	file	(defaults	to	/etc/gitweb-
common.conf),
either	per-instance	configuration	file	(defaults	to	gitweb_config.perl	in
the	same	directory	as	the	installed	gitweb),	or	if	it	does	not	exists
then	fallback	system-wide	configuration	file	(defaults	to
/etc/gitweb.conf).

Values	obtained	in	later	configuration	files	override	values	obtained
earlier	in	the	above	sequence.

Locations	of	the	common	system-wide	configuration	file,	the	fallback
system-wide	configuration	file	and	the	per-instance	configuration	file	are
defined	at	compile	time	using	build-time	Makefile	configuration	variables,
respectively	GITWEB_CONFIG_COMMON,
GITWEB_CONFIG_SYSTEM	and	GITWEB_CONFIG.

You	can	also	override	locations	of	gitweb	configuration	files	during



runtime	by	setting	the	following	environment	variables:
GITWEB_CONFIG_COMMON,	GITWEB_CONFIG_SYSTEM	and
GITWEB_CONFIG	to	a	non-empty	value.

The	syntax	of	the	configuration	files	is	that	of	Perl,	since	these	files	are
handled	by	sourcing	them	as	fragments	of	Perl	code	(the	language	that
gitweb	itself	is	written	in).	Variables	are	typically	set	using	the	our	qualifier
(as	in	"our	$variable	=	<value>;")	to	avoid	syntax	errors	if	a	new	version
of	gitweb	no	longer	uses	a	variable	and	therefore	stops	declaring	it.

You	can	include	other	configuration	file	using	read_config_file()
subroutine.	For	example,	one	might	want	to	put	gitweb	configuration
related	to	access	control	for	viewing	repositories	via	Gitolite	(one	of	Git
repository	management	tools)	in	a	separate	file,	e.g.	in	/etc/gitweb-
gitolite.conf.	To	include	it,	put

read_config_file("/etc/gitweb-gitolite.conf");

somewhere	in	gitweb	configuration	file	used,	e.g.	in	per-installation
gitweb	configuration	file.	Note	that	read_config_file()	checks	itself	that	the
file	it	reads	exists,	and	does	nothing	if	it	is	not	found.	It	also	handles
errors	in	included	file.

The	default	configuration	with	no	configuration	file	at	all	may	work
perfectly	well	for	some	installations.	Still,	a	configuration	file	is	useful	for
customizing	or	tweaking	the	behavior	of	gitweb	in	many	ways,	and	some
optional	features	will	not	be	present	unless	explicitly	enabled	using	the
configurable	%features	variable	(see	also	"Configuring	gitweb	features"
section	below).

CONFIGURATION	VARIABLES

Some	configuration	variables	have	their	default	values	(embedded	in	the
CGI	script)	set	during	building	gitweb	--	if	that	is	the	case,	this	fact	is	put
in	their	description.	See	gitweb's	INSTALL	file	for	instructions	on	building
and	installing	gitweb.



1.	Location	of	repositories

The	configuration	variables	described	below	control	how	gitweb	finds	Git
repositories,	and	how	repositories	are	displayed	and	accessed.

See	also	"Repositories"	and	later	subsections	in	Section	G.4.13,
“gitweb(1)”	manpage.

$projectroot

Absolute	filesystem	path	which	will	be	prepended	to	project	path;	the
path	to	repository	is	$projectroot/$project.	Set	to
$GITWEB_PROJECTROOT	during	installation.	This	variable	has	to
be	set	correctly	for	gitweb	to	find	repositories.

For	example,	if	$projectroot	is	set	to	"/srv/git"	by	putting	the	following
in	gitweb	config	file:

our	$projectroot	=	"/srv/git";

then

http://git.example.com/gitweb.cgi?p=foo/bar.git

and	its	path_info	based	equivalent

http://git.example.com/gitweb.cgi/foo/bar.git

will	map	to	the	path	/srv/git/foo/bar.git	on	the	filesystem.

$projects_list

Name	of	a	plain	text	file	listing	projects,	or	a	name	of	directory	to	be
scanned	for	projects.

Project	list	files	should	list	one	project	per	line,	with	each	line	having



the	following	format

<URI-encoded	filesystem	path	to	repository>	SP	<URI-encoded	repository	owner>

The	default	value	of	this	variable	is	determined	by	the
GITWEB_LIST	makefile	variable	at	installation	time.	If	this	variable	is
empty,	gitweb	will	fall	back	to	scanning	the	$projectroot	directory	for
repositories.

$project_maxdepth

If	$projects_list	variable	is	unset,	gitweb	will	recursively	scan
filesystem	for	Git	repositories.	The	$project_maxdepth	is	used	to
limit	traversing	depth,	relative	to	$projectroot	(starting	point);	it
means	that	directories	which	are	further	from	$projectroot	than
$project_maxdepth	will	be	skipped.

It	is	purely	performance	optimization,	originally	intended	for	MacOS
X,	where	recursive	directory	traversal	is	slow.	Gitweb	follows
symbolic	links,	but	it	detects	cycles,	ignoring	any	duplicate	files	and
directories.

The	default	value	of	this	variable	is	determined	by	the	build-time
configuration	variable	GITWEB_PROJECT_MAXDEPTH,	which
defaults	to	2007.

$export_ok
Show	repository	only	if	this	file	exists	(in	repository).	Only	effective	if
this	variable	evaluates	to	true.	Can	be	set	when	building	gitweb	by
setting	GITWEB_EXPORT_OK.	This	path	is	relative	to	GIT_DIR.	git-
daemon[1]	uses	git-daemon-export-ok,	unless	started	with	--export-
all.	By	default	this	variable	is	not	set,	which	means	that	this	feature	is
turned	off.

$export_auth_hook

Function	used	to	determine	which	repositories	should	be	shown.
This	subroutine	should	take	one	parameter,	the	full	path	to	a	project,



and	if	it	returns	true,	that	project	will	be	included	in	the	projects	list
and	can	be	accessed	through	gitweb	as	long	as	it	fulfills	the	other
requirements	described	by	$export_ok,	$projects_list,	and
$projects_maxdepth.	Example:

our	$export_auth_hook	=	sub	{	return	-e	"$_[0]/git-daemon-export-ok";	};

though	the	above	might	be	done	by	using	$export_ok	instead

our	$export_ok	=	"git-daemon-export-ok";

If	not	set	(default),	it	means	that	this	feature	is	disabled.

See	also	more	involved	example	in	"Controlling	access	to	Git
repositories"	subsection	on	Section	G.4.13,	“gitweb(1)”	manpage.

$strict_export
Only	allow	viewing	of	repositories	also	shown	on	the	overview	page.
This	for	example	makes	$gitweb_export_ok	file	decide	if	repository	is
available	and	not	only	if	it	is	shown.	If	$gitweb_list	points	to	file	with
list	of	project,	only	those	repositories	listed	would	be	available	for
gitweb.	Can	be	set	during	building	gitweb	via
GITWEB_STRICT_EXPORT.	By	default	this	variable	is	not	set,
which	means	that	you	can	directly	access	those	repositories	that	are
hidden	from	projects	list	page	(e.g.	the	are	not	listed	in	the
$projects_list	file).



2.	Finding	files

The	following	configuration	variables	tell	gitweb	where	to	find	files.	The
values	of	these	variables	are	paths	on	the	filesystem.

$GIT
Core	git	executable	to	use.	By	default	set	to	$GIT_BINDIR/git,	which
in	turn	is	by	default	set	to	$(bindir)/git.	If	you	use	Git	installed	from	a
binary	package,	you	should	usually	set	this	to	"/usr/bin/git".	This	can
just	be	"git"	if	your	web	server	has	a	sensible	PATH;	from	security
point	of	view	it	is	better	to	use	absolute	path	to	git	binary.	If	you	have
multiple	Git	versions	installed	it	can	be	used	to	choose	which	one	to
use.	Must	be	(correctly)	set	for	gitweb	to	be	able	to	work.

$mimetypes_file
File	to	use	for	(filename	extension	based)	guessing	of	MIME	types
before	trying	/etc/mime.types.	NOTE	that	this	path,	if	relative,	is
taken	as	relative	to	the	current	Git	repository,	not	to	CGI	script.	If
unset,	only	/etc/mime.types	is	used	(if	present	on	filesystem).	If	no
mimetypes	file	is	found,	mimetype	guessing	based	on	extension	of
file	is	disabled.	Unset	by	default.

$highlight_bin

Path	to	the	highlight	executable	to	use	(it	must	be	the	one	from
http://www.andre-simon.de[]	due	to	assumptions	about	parameters
and	output).	By	default	set	to	highlight;	set	it	to	full	path	to	highlight
executable	if	it	is	not	installed	on	your	web	server's	PATH.	Note	that
highlight	feature	must	be	set	for	gitweb	to	actually	use	syntax
highlighting.

NOTE:	if	you	want	to	add	support	for	new	file	type	(supported	by
"highlight"	but	not	used	by	gitweb),	you	need	to	modify
%highlight_ext	or	%highlight_basename,	depending	on	whether	you
detect	type	of	file	based	on	extension	(for	example	"sh")	or	on	its
basename	(for	example	"Makefile").	The	keys	of	these	hashes	are
extension	and	basename,	respectively,	and	value	for	given	key	is
name	of	syntax	to	be	passed	via	--syntax	<syntax>	to	highlighter.

http://www.andre-simon.de


For	example	if	repositories	you	are	hosting	use	"phtml"	extension	for
PHP	files,	and	you	want	to	have	correct	syntax-highlighting	for	those
files,	you	can	add	the	following	to	gitweb	configuration:

our	%highlight_ext;

$highlight_ext{'phtml'}	=	'php';



3.	Links	and	their	targets

The	configuration	variables	described	below	configure	some	of	gitweb
links:	their	target	and	their	look	(text	or	image),	and	where	to	find	page
prerequisites	(stylesheet,	favicon,	images,	scripts).	Usually	they	are	left
at	their	default	values,	with	the	possible	exception	of	@stylesheets
variable.

@stylesheets

List	of	URIs	of	stylesheets	(relative	to	the	base	URI	of	a	page).	You
might	specify	more	than	one	stylesheet,	for	example	to	use
"gitweb.css"	as	base	with	site	specific	modifications	in	a	separate
stylesheet	to	make	it	easier	to	upgrade	gitweb.	For	example,	you	can
add	a	site	stylesheet	by	putting

push	@stylesheets,	"gitweb-site.css";

in	the	gitweb	config	file.	Those	values	that	are	relative	paths	are
relative	to	base	URI	of	gitweb.

This	list	should	contain	the	URI	of	gitweb's	standard	stylesheet.	The
default	URI	of	gitweb	stylesheet	can	be	set	at	build	time	using	the
GITWEB_CSS	makefile	variable.	Its	default	value	is	static/gitweb.css
(or	static/gitweb.min.css	if	the	CSSMIN	variable	is	defined,	i.e.	if
CSS	minifier	is	used	during	build).

Note:	there	is	also	a	legacy	$stylesheet	configuration	variable,	which
was	used	by	older	gitweb.	If	$stylesheet	variable	is	defined,	only
CSS	stylesheet	given	by	this	variable	is	used	by	gitweb.

$logo
Points	to	the	location	where	you	put	git-logo.png	on	your	web	server,
or	to	be	more	the	generic	URI	of	logo,	72x27	size).	This	image	is
displayed	in	the	top	right	corner	of	each	gitweb	page	and	used	as	a
logo	for	the	Atom	feed.	Relative	to	the	base	URI	of	gitweb	(as	a



path).	Can	be	adjusted	when	building	gitweb	using	GITWEB_LOGO
variable	By	default	set	to	static/git-logo.png.

$favicon
Points	to	the	location	where	you	put	git-favicon.png	on	your	web
server,	or	to	be	more	the	generic	URI	of	favicon,	which	will	be	served
as	"image/png"	type.	Web	browsers	that	support	favicons	(website
icons)	may	display	them	in	the	browser's	URL	bar	and	next	to	the
site	name	in	bookmarks.	Relative	to	the	base	URI	of	gitweb.	Can	be
adjusted	at	build	time	using	GITWEB_FAVICON	variable.	By	default
set	to	static/git-favicon.png.

$javascript

Points	to	the	location	where	you	put	gitweb.js	on	your	web	server,	or
to	be	more	generic	the	URI	of	JavaScript	code	used	by	gitweb.
Relative	to	the	base	URI	of	gitweb.	Can	be	set	at	build	time	using	the
GITWEB_JS	build-time	configuration	variable.

The	default	value	is	either	static/gitweb.js,	or	static/gitweb.min.js	if
the	JSMIN	build	variable	was	defined,	i.e.	if	JavaScript	minifier	was
used	at	build	time.	Note	that	this	single	file	is	generated	from
multiple	individual	JavaScript	"modules".

$home_link
Target	of	the	home	link	on	the	top	of	all	pages	(the	first	part	of	view
"breadcrumbs").	By	default	it	is	set	to	the	absolute	URI	of	a	current
page	(to	the	value	of	$my_uri	variable,	or	to	"/"	if	$my_uri	is
undefined	or	is	an	empty	string).

$home_link_str
Label	for	the	"home	link"	at	the	top	of	all	pages,	leading	to
$home_link	(usually	the	main	gitweb	page,	which	contains	the
projects	list).	It	is	used	as	the	first	component	of	gitweb's
"breadcrumb	trail":	<home	link>	/	<project>	/	<action>.	Can	be	set	at
build	time	using	the	GITWEB_HOME_LINK_STR	variable.	By	default
it	is	set	to	"projects",	as	this	link	leads	to	the	list	of	projects.	Another
popular	choice	is	to	set	it	to	the	name	of	site.	Note	that	it	is	treated
as	raw	HTML	so	it	should	not	be	set	from	untrusted	sources.

@extra_breadcrumbs



Additional	links	to	be	added	to	the	start	of	the	breadcrumb	trail
before	the	home	link,	to	pages	that	are	logically	"above"	the	gitweb
projects	list,	such	as	the	organization	and	department	which	host	the
gitweb	server.	Each	element	of	the	list	is	a	reference	to	an	array,	in
which	element	0	is	the	link	text	(equivalent	to	$home_link_str)	and
element	1	is	the	target	URL	(equivalent	to	$home_link).

For	example,	the	following	setting	produces	a	breadcrumb	trail	like
"home	/	dev	/	projects	/	…"	where	"projects"	is	the	home	link.

				our	@extra_breadcrumbs	=	(

						[	'home'	=>	'https://www.example.org/'	],

						[	'dev'		=>	'https://dev.example.org/'	],

				);

$logo_url	,	$logo_label
URI	and	label	(title)	for	the	Git	logo	link	(or	your	site	logo,	if	you
chose	to	use	different	logo	image).	By	default,	these	both	refer	to	Git
homepage,	http://git-scm.com[];	in	the	past,	they	pointed	to	Git
documentation	at	http://www.kernel.org[].

http://git-scm.com
http://www.kernel.org


4.	Changing	gitweb's	look

You	can	adjust	how	pages	generated	by	gitweb	look	using	the	variables
described	below.	You	can	change	the	site	name,	add	common	headers
and	footers	for	all	pages,	and	add	a	description	of	this	gitweb	installation
on	its	main	page	(which	is	the	projects	list	page),	etc.

$site_name

Name	of	your	site	or	organization,	to	appear	in	page	titles.	Set	it	to
something	descriptive	for	clearer	bookmarks	etc.	If	this	variable	is
not	set	or	is,	then	gitweb	uses	the	value	of	the	SERVER_NAME	CGI
environment	variable,	setting	site	name	to	"$SERVER_NAME	Git",
or	"Untitled	Git"	if	this	variable	is	not	set	(e.g.	if	running	gitweb	as
standalone	script).

Can	be	set	using	the	GITWEB_SITENAME	at	build	time.	Unset	by
default.

$site_html_head_string
HTML	snippet	to	be	included	in	the	<head>	section	of	each	page.
Can	be	set	using	GITWEB_SITE_HTML_HEAD_STRING	at	build
time.	No	default	value.

$site_header
Name	of	a	file	with	HTML	to	be	included	at	the	top	of	each	page.
Relative	to	the	directory	containing	the	gitweb.cgi	script.	Can	be	set
using	GITWEB_SITE_HEADER	at	build	time.	No	default	value.

$site_footer
Name	of	a	file	with	HTML	to	be	included	at	the	bottom	of	each	page.
Relative	to	the	directory	containing	the	gitweb.cgi	script.	Can	be	set
using	GITWEB_SITE_FOOTER	at	build	time.	No	default	value.

$home_text
Name	of	a	HTML	file	which,	if	it	exists,	is	included	on	the	gitweb
projects	overview	page	("projects_list"	view).	Relative	to	the	directory
containing	the	gitweb.cgi	script.	Default	value	can	be	adjusted	during
build	time	using	GITWEB_HOMETEXT	variable.	By	default	set	to



indextext.html.
$projects_list_description_width

The	width	(in	characters)	of	the	"Description"	column	of	the	projects
list.	Longer	descriptions	will	be	truncated	(trying	to	cut	at	word
boundary);	the	full	description	is	available	in	the	title	attribute	(usually
shown	on	mouseover).	The	default	is	25,	which	might	be	too	small	if
you	use	long	project	descriptions.

$default_projects_order

Default	value	of	ordering	of	projects	on	projects	list	page,	which
means	the	ordering	used	if	you	don't	explicitly	sort	projects	list	(if
there	is	no	"o"	CGI	query	parameter	in	the	URL).	Valid	values	are
"none"	(unsorted),	"project"	(projects	are	by	project	name,	i.e.	path	to
repository	relative	to	$projectroot),	"descr"	(project	description),
"owner",	and	"age"	(by	date	of	most	current	commit).

Default	value	is	"project".	Unknown	value	means	unsorted.



5.	Changing	gitweb's	behavior

These	configuration	variables	control	internal	gitweb	behavior.

$default_blob_plain_mimetype
Default	mimetype	for	the	blob_plain	(raw)	view,	if	mimetype	checking
doesn't	result	in	some	other	type;	by	default	"text/plain".	Gitweb
guesses	mimetype	of	a	file	to	display	based	on	extension	of	its
filename,	using	$mimetypes_file	(if	set	and	file	exists)	and
/etc/mime.types	files	(see	mime.types(5)	manpage;	only	filename
extension	rules	are	supported	by	gitweb).

$default_text_plain_charset
Default	charset	for	text	files.	If	this	is	not	set,	the	web	server
configuration	will	be	used.	Unset	by	default.

$fallback_encoding
Gitweb	assumes	this	charset	when	a	line	contains	non-UTF-8
characters.	The	fallback	decoding	is	used	without	error	checking,	so
it	can	be	even	"utf-8".	The	value	must	be	a	valid	encoding;	see	the
Encoding::Supported(3pm)	man	page	for	a	list.	The	default	is
"latin1",	aka.	"iso-8859-1".

@diff_opts

Rename	detection	options	for	git-diff	and	git-diff-tree.	The	default	is
('-M');	set	it	to	('-C')	or	('-C',	'-C')	to	also	detect	copies,	or	set	it	to	()
i.e.	empty	list	if	you	don't	want	to	have	renames	detection.

Note	that	rename	and	especially	copy	detection	can	be	quite	CPU-
intensive.	Note	also	that	non	Git	tools	can	have	problems	with
patches	generated	with	options	mentioned	above,	especially	when
they	involve	file	copies	('-C')	or	criss-cross	renames	('-B').



6.	Some	optional	features	and	policies

Most	of	features	are	configured	via	%feature	hash;	however	some	of
extra	gitweb	features	can	be	turned	on	and	configured	using	variables
described	below.	This	list	beside	configuration	variables	that	control	how
gitweb	looks	does	contain	variables	configuring	administrative	side	of
gitweb	(e.g.	cross-site	scripting	prevention;	admittedly	this	as	side	effect
affects	how	"summary"	pages	look	like,	or	load	limiting).

@git_base_url_list

List	of	Git	base	URLs.	These	URLs	are	used	to	generate	URLs
describing	from	where	to	fetch	a	project,	which	are	shown	on	project
summary	page.	The	full	fetch	URL	is	"$git_base_url/$project",	for
each	element	of	this	list.	You	can	set	up	multiple	base	URLs	(for
example	one	for	git://	protocol,	and	one	for	http://	protocol).

Note	that	per	repository	configuration	can	be	set	in
$GIT_DIR/cloneurl	file,	or	as	values	of	multi-value	gitweb.url
configuration	variable	in	project	config.	Per-repository	configuration
takes	precedence	over	value	composed	from	@git_base_url_list
elements	and	project	name.

You	can	setup	one	single	value	(single	entry/item	in	this	list)	at	build
time	by	setting	the	GITWEB_BASE_URL	build-time	configuration
variable.	By	default	it	is	set	to	(),	i.e.	an	empty	list.	This	means	that
gitweb	would	not	try	to	create	project	URL	(to	fetch)	from	project
name.

$projects_list_group_categories
Whether	to	enable	the	grouping	of	projects	by	category	on	the
project	list	page.	The	category	of	a	project	is	determined	by	the
$GIT_DIR/category	file	or	the	gitweb.category	variable	in	each
repository's	configuration.	Disabled	by	default	(set	to	0).

$project_list_default_category
Default	category	for	projects	for	which	none	is	specified.	If	this	is	set



to	the	empty	string,	such	projects	will	remain	uncategorized	and
listed	at	the	top,	above	categorized	projects.	Used	only	if	project
categories	are	enabled,	which	means	if
$projects_list_group_categories	is	true.	By	default	set	to	""	(empty
string).

$prevent_xss
If	true,	some	gitweb	features	are	disabled	to	prevent	content	in
repositories	from	launching	cross-site	scripting	(XSS)	attacks.	Set
this	to	true	if	you	don't	trust	the	content	of	your	repositories.	False	by
default	(set	to	0).

$maxload

Used	to	set	the	maximum	load	that	we	will	still	respond	to	gitweb
queries.	If	the	server	load	exceeds	this	value	then	gitweb	will	return
"503	Service	Unavailable"	error.	The	server	load	is	taken	to	be	0	if
gitweb	cannot	determine	its	value.	Currently	it	works	only	on	Linux,
where	it	uses	/proc/loadavg;	the	load	there	is	the	number	of	active
tasks	on	the	system	--	processes	that	are	actually	running	--
averaged	over	the	last	minute.

Set	$maxload	to	undefined	value	(undef)	to	turn	this	feature	off.	The
default	value	is	300.

$omit_age_column
If	true,	omit	the	column	with	date	of	the	most	current	commit	on	the
projects	list	page.	It	can	save	a	bit	of	I/O	and	a	fork	per	repository.

$omit_owner
If	true	prevents	displaying	information	about	repository	owner.

$per_request_config

If	this	is	set	to	code	reference,	it	will	be	run	once	for	each	request.
You	can	set	parts	of	configuration	that	change	per	session	this	way.
For	example,	one	might	use	the	following	code	in	a	gitweb
configuration	file

our	$per_request_config	=	sub	{

								$ENV{GL_USER}	=	$cgi->remote_user	||	"gitweb";

};



If	$per_request_config	is	not	a	code	reference,	it	is	interpreted	as
boolean	value.	If	it	is	true	gitweb	will	process	config	files	once	per
request,	and	if	it	is	false	gitweb	will	process	config	files	only	once,
each	time	it	is	executed.	True	by	default	(set	to	1).

NOTE:	$my_url,	$my_uri,	and	$base_url	are	overwritten	with	their
default	values	before	every	request,	so	if	you	want	to	change	them,
be	sure	to	set	this	variable	to	true	or	a	code	reference	effecting	the
desired	changes.

This	variable	matters	only	when	using	persistent	web	environments
that	serve	multiple	requests	using	single	gitweb	instance,	like
mod_perl,	FastCGI	or	Plackup.



7.	Other	variables

Usually	you	should	not	need	to	change	(adjust)	any	of	configuration
variables	described	below;	they	should	be	automatically	set	by	gitweb	to
correct	value.

$version

Gitweb	version,	set	automatically	when	creating	gitweb.cgi	from
gitweb.perl.	You	might	want	to	modify	it	if	you	are	running	modified
gitweb,	for	example

our	$version	.=	"	with	caching";

if	you	run	modified	version	of	gitweb	with	caching	support.	This
variable	is	purely	informational,	used	e.g.	in	the	"generator"	meta
header	in	HTML	header.

$my_url	,	$my_uri
Full	URL	and	absolute	URL	of	the	gitweb	script;	in	earlier	versions	of
gitweb	you	might	have	need	to	set	those	variables,	but	now	there
should	be	no	need	to	do	it.	See	$per_request_config	if	you	need	to
set	them	still.

$base_url
Base	URL	for	relative	URLs	in	pages	generated	by	gitweb,	(e.g.
$logo,	$favicon,	@stylesheets	if	they	are	relative	URLs),	needed	and
used	<base	href="$base_url">	only	for	URLs	with	nonempty
PATH_INFO.	Usually	gitweb	sets	its	value	correctly,	and	there	is	no
need	to	set	this	variable,	e.g.	to	$my_uri	or	"/".	See
$per_request_config	if	you	need	to	override	it	anyway.

CONFIGURING	GITWEB	FEATURES

Many	gitweb	features	can	be	enabled	(or	disabled)	and	configured	using
the	%feature	hash.	Names	of	gitweb	features	are	keys	of	this	hash.



Each	%feature	hash	element	is	a	hash	reference	and	has	the	following
structure:

"<feature_name>"	=>	{

								"sub"	=>	<feature-sub	(subroutine)>,

								"override"	=>	<allow-override	(boolean)>,

								"default"	=>	[	<options>...	]

},

Some	features	cannot	be	overridden	per	project.	For	those	features	the
structure	of	appropriate	%feature	hash	element	has	a	simpler	form:

"<feature_name>"	=>	{

								"override"	=>	0,

								"default"	=>	[	<options>...	]

},

As	one	can	see	it	lacks	the	'sub'	element.

The	meaning	of	each	part	of	feature	configuration	is	described	below:

default

List	(array	reference)	of	feature	parameters	(if	there	are	any),	used
also	to	toggle	(enable	or	disable)	given	feature.

Note	that	it	is	currently	always	an	array	reference,	even	if	feature
doesn't	accept	any	configuration	parameters,	and	'default'	is	used
only	to	turn	it	on	or	off.	In	such	case	you	turn	feature	on	by	setting
this	element	to	[1],	and	torn	it	off	by	setting	it	to	[0].	See	also	the
passage	about	the	"blame"	feature	in	the	"Examples"	section.

To	disable	features	that	accept	parameters	(are	configurable),	you
need	to	set	this	element	to	empty	list	i.e.	[].

override

If	this	field	has	a	true	value	then	the	given	feature	is	overridable,
which	means	that	it	can	be	configured	(or	enabled/disabled)	on	a



per-repository	basis.

Usually	given	"<feature>"	is	configurable	via	the	gitweb.<feature>
config	variable	in	the	per-repository	Git	configuration	file.

Note	that	no	feature	is	overridable	by	default.

sub

Internal	detail	of	implementation.	What	is	important	is	that	if	this	field
is	not	present	then	per-repository	override	for	given	feature	is	not
supported.

You	wouldn't	need	to	ever	change	it	in	gitweb	config	file.



1.	Features	in	%feature

The	gitweb	features	that	are	configurable	via	%feature	hash	are	listed
below.	This	should	be	a	complete	list,	but	ultimately	the	authoritative	and
complete	list	is	in	gitweb.cgi	source	code,	with	features	described	in	the
comments.

blame

Enable	the	"blame"	and	"blame_incremental"	blob	views,	showing	for
each	line	the	last	commit	that	modified	it;	see	Section	G.3.9,	“git-
blame(1)”.	This	can	be	very	CPU-intensive	and	is	therefore	disabled
by	default.

This	feature	can	be	configured	on	a	per-repository	basis	via
repository's	gitweb.blame	configuration	variable	(boolean).

snapshot

Enable	and	configure	the	"snapshot"	action,	which	allows	user	to
download	a	compressed	archive	of	any	tree	or	commit,	as	produced
by	Section	G.3.7,	“git-archive(1)”	and	possibly	additionally
compressed.	This	can	potentially	generate	high	traffic	if	you	have
large	project.

The	value	of	'default'	is	a	list	of	names	of	snapshot	formats,	defined
in	%known_snapshot_formats	hash,	that	you	wish	to	offer.
Supported	formats	include	"tgz",	"tbz2",	"txz"	(gzip/bzip2/xz
compressed	tar	archive)	and	"zip";	please	consult	gitweb	sources	for
a	definitive	list.	By	default	only	"tgz"	is	offered.

This	feature	can	be	configured	on	a	per-repository	basis	via
repository's	gitweb.blame	configuration	variable,	which	contains	a
comma	separated	list	of	formats	or	"none"	to	disable	snapshots.
Unknown	values	are	ignored.

grep



Enable	grep	search,	which	lists	the	files	in	currently	selected	tree
(directory)	containing	the	given	string;	see	Section	G.3.55,	“git-
grep(1)”.	This	can	be	potentially	CPU-intensive,	of	course.	Enabled
by	default.

This	feature	can	be	configured	on	a	per-repository	basis	via
repository's	gitweb.grep	configuration	variable	(boolean).

pickaxe

Enable	the	so	called	pickaxe	search,	which	will	list	the	commits	that
introduced	or	removed	a	given	string	in	a	file.	This	can	be	practical
and	quite	faster	alternative	to	"blame"	action,	but	it	is	still	potentially
CPU-intensive.	Enabled	by	default.

The	pickaxe	search	is	described	in	Section	G.3.68,	“git-log(1)”	(the
description	of	-S<string>	option,	which	refers	to	pickaxe	entry	in
Section	G.4.4,	“gitdiffcore(7)”	for	more	details).

This	feature	can	be	configured	on	a	per-repository	basis	by	setting
repository's	gitweb.pickaxe	configuration	variable	(boolean).

show-sizes

Enable	showing	size	of	blobs	(ordinary	files)	in	a	"tree"	view,	in	a
separate	column,	similar	to	what	ls	-l	does;	see	description	of	-l
option	in	Section	G.3.71,	“git-ls-tree(1)”	manpage.	This	costs	a	bit	of
I/O.	Enabled	by	default.

This	feature	can	be	configured	on	a	per-repository	basis	via
repository's	gitweb.showSizes	configuration	variable	(boolean).

patches

Enable	and	configure	"patches"	view,	which	displays	list	of	commits
in	email	(plain	text)	output	format;	see	also	Section	G.3.50,	“git-
format-patch(1)”.	The	value	is	the	maximum	number	of	patches	in	a
patchset	generated	in	"patches"	view.	Set	the	default	field	to	a	list
containing	single	item	of	or	to	an	empty	list	to	disable	patch	view,	or



to	a	list	containing	a	single	negative	number	to	remove	any	limit.
Default	value	is	16.

This	feature	can	be	configured	on	a	per-repository	basis	via
repository's	gitweb.patches	configuration	variable	(integer).

avatar

Avatar	support.	When	this	feature	is	enabled,	views	such	as
"shortlog"	or	"commit"	will	display	an	avatar	associated	with	the
email	of	each	committer	and	author.

Currently	available	providers	are	"gravatar"	and	"picon".	Only	one
provider	at	a	time	can	be	selected	(default	is	one	element	list).	If	an
unknown	provider	is	specified,	the	feature	is	disabled.	Note	that
some	providers	might	require	extra	Perl	packages	to	be	installed;
see	gitweb/INSTALL	for	more	details.

This	feature	can	be	configured	on	a	per-repository	basis	via
repository's	gitweb.avatar	configuration	variable.

See	also	%avatar_size	with	pixel	sizes	for	icons	and	avatars
("default"	is	used	for	one-line	like	"log"	and	"shortlog",	"double"	is
used	for	two-line	like	"commit",	"commitdiff"	or	"tag").	If	the	default
font	sizes	or	lineheights	are	changed	(e.g.	via	adding	extra	CSS
stylesheet	in	@stylesheets),	it	may	be	appropriate	to	change	these
values.

highlight

Server-side	syntax	highlight	support	in	"blob"	view.	It	requires
$highlight_bin	program	to	be	available	(see	the	description	of	this
variable	in	the	"Configuration	variables"	section	above),	and
therefore	is	disabled	by	default.

This	feature	can	be	configured	on	a	per-repository	basis	via
repository's	gitweb.highlight	configuration	variable	(boolean).

remote_heads



Enable	displaying	remote	heads	(remote-tracking	branches)	in	the
"heads"	list.	In	most	cases	the	list	of	remote-tracking	branches	is	an
unnecessary	internal	private	detail,	and	this	feature	is	therefore
disabled	by	default.	Section	G.3.66,	“git-instaweb(1)”,	which	is
usually	used	to	browse	local	repositories,	enables	and	uses	this
feature.

This	feature	can	be	configured	on	a	per-repository	basis	via
repository's	gitweb.remote_heads	configuration	variable	(boolean).

The	remaining	features	cannot	be	overridden	on	a	per	project	basis.

search

Enable	text	search,	which	will	list	the	commits	which	match	author,
committer	or	commit	text	to	a	given	string;	see	the	description	of	--
author,	--committer	and	--grep	options	in	Section	G.3.68,	“git-log(1)”
manpage.	Enabled	by	default.

Project	specific	override	is	not	supported.

forks

If	this	feature	is	enabled,	gitweb	considers	projects	in	subdirectories
of	project	root	(basename)	to	be	forks	of	existing	projects.	For	each
project	$projname.git,	projects	in	the	$projname/	directory	and	its
subdirectories	will	not	be	shown	in	the	main	projects	list.	Instead,	a
'+'	mark	is	shown	next	to	$projname,	which	links	to	a	"forks"	view	that
lists	all	the	forks	(all	projects	in	$projname/	subdirectory).	Additionally
a	"forks"	view	for	a	project	is	linked	from	project	summary	page.

If	the	project	list	is	taken	from	a	file	($projects_list	points	to	a	file),
forks	are	only	recognized	if	they	are	listed	after	the	main	project	in
that	file.

Project	specific	override	is	not	supported.

actions



Insert	custom	links	to	the	action	bar	of	all	project	pages.	This	allows
you	to	link	to	third-party	scripts	integrating	into	gitweb.

The	"default"	value	consists	of	a	list	of	triplets	in	the	form	("<label>",
"<link>",	"<position>")`	where	"position"	is	the	label	after	which	to
insert	the	link,	"link"	is	a	format	string	where	%n	expands	to	the
project	name,	%f	to	the	project	path	within	the	filesystem	(i.e.
"$projectroot/$project"),	%h	to	the	current	hash	('h	gitweb	parameter)
and	%b`	to	the	current	hash	base	('hb	gitweb	parameter);	%%`
expands	to	'%.

For	example,	at	the	time	this	page	was	written,	the	http://repo.or.cz[]
Git	hosting	site	set	it	to	the	following	to	enable	graphical	log	(using
the	third	party	tool	git-browser):

$feature{'actions'}{'default'}	=

								[	('graphiclog',	'/git-browser/by-commit.html?r=%n',	'summary')];

This	adds	a	link	titled	"graphiclog"	after	the	"summary"	link,	leading
to	git-browser	script,	passing	r=<project>	as	a	query	parameter.

Project	specific	override	is	not	supported.

timed

Enable	displaying	how	much	time	and	how	many	Git	commands	it
took	to	generate	and	display	each	page	in	the	page	footer	(at	the
bottom	of	page).	For	example	the	footer	might	contain:	"This	page
took	6.53325	seconds	and	13	Git	commands	to	generate."	Disabled
by	default.

Project	specific	override	is	not	supported.

javascript-timezone

Enable	and	configure	the	ability	to	change	a	common	time	zone	for
dates	in	gitweb	output	via	JavaScript.	Dates	in	gitweb	output	include
authordate	and	committerdate	in	"commit",	"commitdiff"	and	"log"

http://repo.or.cz


views,	and	taggerdate	in	"tag"	view.	Enabled	by	default.

The	value	is	a	list	of	three	values:	a	default	time	zone	(for	if	the	client
hasn't	selected	some	other	time	zone	and	saved	it	in	a	cookie),	a
name	of	cookie	where	to	store	selected	time	zone,	and	a	CSS	class
used	to	mark	up	dates	for	manipulation.	If	you	want	to	turn	this
feature	off,	set	"default"	to	empty	list:	[].

Typical	gitweb	config	files	will	only	change	starting	(default)	time
zone,	and	leave	other	elements	at	their	default	values:

$feature{'javascript-timezone'}{'default'}[0]	=	"utc";

The	example	configuration	presented	here	is	guaranteed	to	be
backwards	and	forward	compatible.

Time	zone	values	can	be	"local"	(for	local	time	zone	that	browser
uses),	"utc"	(what	gitweb	uses	when	JavaScript	or	this	feature	is
disabled),	or	numerical	time	zones	in	the	form	of	"+/-HHMM",	such
as	"+0200".

Project	specific	override	is	not	supported.

extra-branch-refs

List	of	additional	directories	under	"refs"	which	are	going	to	be	used
as	branch	refs.	For	example	if	you	have	a	gerrit	setup	where	all
branches	under	refs/heads/	are	official,	push-after-review	ones	and
branches	under	refs/sandbox/,	refs/wip	and	refs/other	are	user	ones
where	permissions	are	much	wider,	then	you	might	want	to	set	this
variable	as	follows:

$feature{'extra-branch-refs'}{'default'}	=

								['sandbox',	'wip',	'other'];

This	feature	can	be	configured	on	per-repository	basis	after	setting
$feature{extra-branch-refs}{override}	to	true,	via	repository's



gitweb.extraBranchRefs	configuration	variable,	which	contains	a
space	separated	list	of	refs.	An	example:

[gitweb]

								extraBranchRefs	=	sandbox	wip	other

The	gitweb.extraBranchRefs	is	actually	a	multi-valued	configuration
variable,	so	following	example	is	also	correct	and	the	result	is	the
same	as	of	the	snippet	above:

[gitweb]

								extraBranchRefs	=	sandbox

								extraBranchRefs	=	wip	other

It	is	an	error	to	specify	a	ref	that	does	not	pass	"git	check-ref-format"
scrutiny.	Duplicated	values	are	filtered.

EXAMPLES

To	enable	blame,	pickaxe	search,	and	snapshot	support	(allowing	"tar.gz"
and	"zip"	snapshots),	while	allowing	individual	projects	to	turn	them	off,
put	the	following	in	your	GITWEB_CONFIG	file:

$feature{'blame'}{'default'}	=	[1];

$feature{'blame'}{'override'}	=	1;

$feature{'pickaxe'}{'default'}	=	[1];

$feature{'pickaxe'}{'override'}	=	1;

$feature{'snapshot'}{'default'}	=	['zip',	'tgz'];

$feature{'snapshot'}{'override'}	=	1;

If	you	allow	overriding	for	the	snapshot	feature,	you	can	specify	which
snapshot	formats	are	globally	disabled.	You	can	also	add	any	command-
line	options	you	want	(such	as	setting	the	compression	level).	For
instance,	you	can	disable	Zip	compressed	snapshots	and	set	gzip(1)	to
run	at	level	6	by	adding	the	following	lines	to	your	gitweb	configuration
file:

$known_snapshot_formats{'zip'}{'disabled'}	=	1;

$known_snapshot_formats{'tgz'}{'compressor'}	=	['gzip','-6'];



BUGS

Debugging	would	be	easier	if	the	fallback	configuration	file
(/etc/gitweb.conf)	and	environment	variable	to	override	its	location
(GITWEB_CONFIG_SYSTEM)	had	names	reflecting	their	"fallback"	role.
The	current	names	are	kept	to	avoid	breaking	working	setups.

ENVIRONMENT

The	location	of	per-instance	and	system-wide	configuration	files	can	be
overridden	using	the	following	environment	variables:

GITWEB_CONFIG
Sets	location	of	per-instance	configuration	file.

GITWEB_CONFIG_SYSTEM
Sets	location	of	fallback	system-wide	configuration	file.	This	file	is
read	only	if	per-instance	one	does	not	exist.

GITWEB_CONFIG_COMMON
Sets	location	of	common	system-wide	configuration	file.

FILES

gitweb_config.perl
This	is	default	name	of	per-instance	configuration	file.	The	format	of
this	file	is	described	above.

/etc/gitweb.conf
This	is	default	name	of	fallback	system-wide	configuration	file.	This
file	is	used	only	if	per-instance	configuration	variable	is	not	found.

/etc/gitweb-common.conf
This	is	default	name	of	common	system-wide	configuration	file.

SEE	ALSO

Section	G.4.13,	“gitweb(1)”,	Section	G.3.66,	“git-instaweb(1)”

gitweb/README,	gitweb/INSTALL



GIT

Part	of	the	Section	G.3.1,	“git(1)”	suite

G.4.15.	gitworkflows(7)

NAME

gitworkflows	-	An	overview	of	recommended	workflows	with	Git

SYNOPSIS

git	*

DESCRIPTION

This	document	attempts	to	write	down	and	motivate	some	of	the	workflow
elements	used	for	git.git	itself.	Many	ideas	apply	in	general,	though	the
full	workflow	is	rarely	required	for	smaller	projects	with	fewer	people
involved.

We	formulate	a	set	of	rules	for	quick	reference,	while	the	prose	tries	to
motivate	each	of	them.	Do	not	always	take	them	literally;	you	should
value	good	reasons	for	your	actions	higher	than	manpages	such	as	this
one.

SEPARATE	CHANGES

As	a	general	rule,	you	should	try	to	split	your	changes	into	small	logical
steps,	and	commit	each	of	them.	They	should	be	consistent,	working
independently	of	any	later	commits,	pass	the	test	suite,	etc.	This	makes
the	review	process	much	easier,	and	the	history	much	more	useful	for
later	inspection	and	analysis,	for	example	with	Section	G.3.9,	“git-
blame(1)”	and	Section	G.3.8,	“git-bisect(1)”.

To	achieve	this,	try	to	split	your	work	into	small	steps	from	the	very



beginning.	It	is	always	easier	to	squash	a	few	commits	together	than	to
split	one	big	commit	into	several.	Don't	be	afraid	of	making	too	small	or
imperfect	steps	along	the	way.	You	can	always	go	back	later	and	edit	the
commits	with	git	rebase	--interactive	before	you	publish	them.	You	can
use	git	stash	save	--keep-index	to	run	the	test	suite	independent	of	other
uncommitted	changes;	see	the	EXAMPLES	section	of	Section	G.3.128,
“git-stash(1)”.

MANAGING	BRANCHES

There	are	two	main	tools	that	can	be	used	to	include	changes	from	one
branch	on	another:	Section	G.3.79,	“git-merge(1)”	and	Section	G.3.19,
“git-cherry-pick(1)”.

Merges	have	many	advantages,	so	we	try	to	solve	as	many	problems	as
possible	with	merges	alone.	Cherry-picking	is	still	occasionally	useful;
see	"Merging	upwards"	below	for	an	example.

Most	importantly,	merging	works	at	the	branch	level,	while	cherry-picking
works	at	the	commit	level.	This	means	that	a	merge	can	carry	over	the
changes	from	1,	10,	or	1000	commits	with	equal	ease,	which	in	turn
means	the	workflow	scales	much	better	to	a	large	number	of	contributors
(and	contributions).	Merges	are	also	easier	to	understand	because	a
merge	commit	is	a	"promise"	that	all	changes	from	all	its	parents	are	now
included.

There	is	a	tradeoff	of	course:	merges	require	a	more	careful	branch
management.	The	following	subsections	discuss	the	important	points.



1.	Graduation

As	a	given	feature	goes	from	experimental	to	stable,	it	also	"graduates"
between	the	corresponding	branches	of	the	software.	git.git	uses	the
following	integration	branches:

maint	tracks	the	commits	that	should	go	into	the	next	"maintenance
release",	i.e.,	update	of	the	last	released	stable	version;
master	tracks	the	commits	that	should	go	into	the	next	release;
next	is	intended	as	a	testing	branch	for	topics	being	tested	for
stability	for	master.

There	is	a	fourth	official	branch	that	is	used	slightly	differently:

pu	(proposed	updates)	is	an	integration	branch	for	things	that	are	not
quite	ready	for	inclusion	yet	(see	"Integration	Branches"	below).

Each	of	the	four	branches	is	usually	a	direct	descendant	of	the	one
above	it.

Conceptually,	the	feature	enters	at	an	unstable	branch	(usually	next	or
pu),	and	"graduates"	to	master	for	the	next	release	once	it	is	considered
stable	enough.



2.	Merging	upwards

The	"downwards	graduation"	discussed	above	cannot	be	done	by
actually	merging	downwards,	however,	since	that	would	merge	all
changes	on	the	unstable	branch	into	the	stable	one.	Hence	the	following:

Example	G.1.	Merge	upwards

Always	commit	your	fixes	to	the	oldest	supported	branch	that	require
them.	Then	(periodically)	merge	the	integration	branches	upwards	into
each	other.

This	gives	a	very	controlled	flow	of	fixes.	If	you	notice	that	you	have
applied	a	fix	to	e.g.	master	that	is	also	required	in	maint,	you	will	need	to
cherry-pick	it	(using	Section	G.3.19,	“git-cherry-pick(1)”)	downwards.	This
will	happen	a	few	times	and	is	nothing	to	worry	about	unless	you	do	it
very	frequently.



3.	Topic	branches

Any	nontrivial	feature	will	require	several	patches	to	implement,	and	may
get	extra	bugfixes	or	improvements	during	its	lifetime.

Committing	everything	directly	on	the	integration	branches	leads	to	many
problems:	Bad	commits	cannot	be	undone,	so	they	must	be	reverted	one
by	one,	which	creates	confusing	histories	and	further	error	potential	when
you	forget	to	revert	part	of	a	group	of	changes.	Working	in	parallel	mixes
up	the	changes,	creating	further	confusion.

Use	of	"topic	branches"	solves	these	problems.	The	name	is	pretty	self
explanatory,	with	a	caveat	that	comes	from	the	"merge	upwards"	rule
above:

Example	G.2.	Topic	branches

Make	a	side	branch	for	every	topic	(feature,	bugfix,	…).	Fork	it	off	at	the
oldest	integration	branch	that	you	will	eventually	want	to	merge	it	into.

Many	things	can	then	be	done	very	naturally:

To	get	the	feature/bugfix	into	an	integration	branch,	simply	merge	it.
If	the	topic	has	evolved	further	in	the	meantime,	merge	again.	(Note
that	you	do	not	necessarily	have	to	merge	it	to	the	oldest	integration
branch	first.	For	example,	you	can	first	merge	a	bugfix	to	next,	give	it
some	testing	time,	and	merge	to	maint	when	you	know	it	is	stable.)
If	you	find	you	need	new	features	from	the	branch	other	to	continue
working	on	your	topic,	merge	other	to	topic.	(However,	do	not	do	this
"just	habitually",	see	below.)
If	you	find	you	forked	off	the	wrong	branch	and	want	to	move	it	"back
in	time",	use	Section	G.3.99,	“git-rebase(1)”.

Note	that	the	last	point	clashes	with	the	other	two:	a	topic	that	has	been
merged	elsewhere	should	not	be	rebased.	See	the	section	on



RECOVERING	FROM	UPSTREAM	REBASE	in	Section	G.3.99,	“git-
rebase(1)”.

We	should	point	out	that	"habitually"	(regularly	for	no	real	reason)
merging	an	integration	branch	into	your	topics	--	and	by	extension,
merging	anything	upstream	into	anything	downstream	on	a	regular	basis
--	is	frowned	upon:

Example	G.3.	Merge	to	downstream	only	at	well-defined	points

Do	not	merge	to	downstream	except	with	a	good	reason:	upstream	API
changes	affect	your	branch;	your	branch	no	longer	merges	to	upstream
cleanly;	etc.

Otherwise,	the	topic	that	was	merged	to	suddenly	contains	more	than	a
single	(well-separated)	change.	The	many	resulting	small	merges	will
greatly	clutter	up	history.	Anyone	who	later	investigates	the	history	of	a
file	will	have	to	find	out	whether	that	merge	affected	the	topic	in
development.	An	upstream	might	even	inadvertently	be	merged	into	a
"more	stable"	branch.	And	so	on.



4.	Throw-away	integration

If	you	followed	the	last	paragraph,	you	will	now	have	many	small	topic
branches,	and	occasionally	wonder	how	they	interact.	Perhaps	the	result
of	merging	them	does	not	even	work?	But	on	the	other	hand,	we	want	to
avoid	merging	them	anywhere	"stable"	because	such	merges	cannot
easily	be	undone.

The	solution,	of	course,	is	to	make	a	merge	that	we	can	undo:	merge	into
a	throw-away	branch.

Example	G.4.	Throw-away	integration	branches

To	test	the	interaction	of	several	topics,	merge	them	into	a	throw-away
branch.	You	must	never	base	any	work	on	such	a	branch!

If	you	make	it	(very)	clear	that	this	branch	is	going	to	be	deleted	right
after	the	testing,	you	can	even	publish	this	branch,	for	example	to	give
the	testers	a	chance	to	work	with	it,	or	other	developers	a	chance	to	see
if	their	in-progress	work	will	be	compatible.	git.git	has	such	an	official
throw-away	integration	branch	called	pu.



5.	Branch	management	for	a	release

Assuming	you	are	using	the	merge	approach	discussed	above,	when	you
are	releasing	your	project	you	will	need	to	do	some	additional	branch
management	work.

A	feature	release	is	created	from	the	master	branch,	since	master	tracks
the	commits	that	should	go	into	the	next	feature	release.

The	master	branch	is	supposed	to	be	a	superset	of	maint.	If	this	condition
does	not	hold,	then	maint	contains	some	commits	that	are	not	included
on	master.	The	fixes	represented	by	those	commits	will	therefore	not	be
included	in	your	feature	release.

To	verify	that	master	is	indeed	a	superset	of	maint,	use	git	log:

Example	G.5.	Verify	master	is	a	superset	of	maint

git	log	master..maint

This	command	should	not	list	any	commits.	Otherwise,	check	out	master
and	merge	maint	into	it.

Now	you	can	proceed	with	the	creation	of	the	feature	release.	Apply	a	tag
to	the	tip	of	master	indicating	the	release	version:

Example	G.6.	Release	tagging

git	tag	-s	-m	"Git	X.Y.Z"	vX.Y.Z	master

You	need	to	push	the	new	tag	to	a	public	Git	server	(see	"DISTRIBUTED
WORKFLOWS"	below).	This	makes	the	tag	available	to	others	tracking
your	project.	The	push	could	also	trigger	a	post-update	hook	to	perform
release-related	items	such	as	building	release	tarballs	and	preformatted



documentation	pages.

Similarly,	for	a	maintenance	release,	maint	is	tracking	the	commits	to	be
released.	Therefore,	in	the	steps	above	simply	tag	and	push	maint	rather
than	master.



6.	Maintenance	branch	management	after	a
feature	release

After	a	feature	release,	you	need	to	manage	your	maintenance	branches.

First,	if	you	wish	to	continue	to	release	maintenance	fixes	for	the	feature
release	made	before	the	recent	one,	then	you	must	create	another
branch	to	track	commits	for	that	previous	release.

To	do	this,	the	current	maintenance	branch	is	copied	to	another	branch
named	with	the	previous	release	version	number	(e.g.	maint-X.Y.(Z-1)
where	X.Y.Z	is	the	current	release).

Example	G.7.	Copy	maint

git	branch	maint-X.Y.(Z-1)	maint

The	maint	branch	should	now	be	fast-forwarded	to	the	newly	released
code	so	that	maintenance	fixes	can	be	tracked	for	the	current	release:

Example	G.8.	Update	maint	to	new	release

git	checkout	maint
git	merge	--ff-only	master

If	the	merge	fails	because	it	is	not	a	fast-forward,	then	it	is	possible	some
fixes	on	maint	were	missed	in	the	feature	release.	This	will	not	happen	if
the	content	of	the	branches	was	verified	as	described	in	the	previous
section.



7.	Branch	management	for	next	and	pu	after	a
feature	release

After	a	feature	release,	the	integration	branch	next	may	optionally	be
rewound	and	rebuilt	from	the	tip	of	master	using	the	surviving	topics	on
next:

Example	G.9.	Rewind	and	rebuild	next

git	checkout	next
git	reset	--hard	master
git	merge	ai/topic_in_next1
git	merge	ai/topic_in_next2
…

The	advantage	of	doing	this	is	that	the	history	of	next	will	be	clean.	For
example,	some	topics	merged	into	next	may	have	initially	looked
promising,	but	were	later	found	to	be	undesirable	or	premature.	In	such	a
case,	the	topic	is	reverted	out	of	next	but	the	fact	remains	in	the	history
that	it	was	once	merged	and	reverted.	By	recreating	next,	you	give
another	incarnation	of	such	topics	a	clean	slate	to	retry,	and	a	feature
release	is	a	good	point	in	history	to	do	so.

If	you	do	this,	then	you	should	make	a	public	announcement	indicating
that	next	was	rewound	and	rebuilt.

The	same	rewind	and	rebuild	process	may	be	followed	for	pu.	A	public
announcement	is	not	necessary	since	pu	is	a	throw-away	branch,	as
described	above.

DISTRIBUTED	WORKFLOWS

After	the	last	section,	you	should	know	how	to	manage	topics.	In	general,
you	will	not	be	the	only	person	working	on	the	project,	so	you	will	have	to



share	your	work.

Roughly	speaking,	there	are	two	important	workflows:	merge	and	patch.
The	important	difference	is	that	the	merge	workflow	can	propagate	full
history,	including	merges,	while	patches	cannot.	Both	workflows	can	be
used	in	parallel:	in	git.git,	only	subsystem	maintainers	use	the	merge
workflow,	while	everyone	else	sends	patches.

Note	that	the	maintainer(s)	may	impose	restrictions,	such	as	"Signed-off-
by"	requirements,	that	all	commits/patches	submitted	for	inclusion	must
adhere	to.	Consult	your	project's	documentation	for	more	information.



1.	Merge	workflow

The	merge	workflow	works	by	copying	branches	between	upstream	and
downstream.	Upstream	can	merge	contributions	into	the	official	history;
downstream	base	their	work	on	the	official	history.

There	are	three	main	tools	that	can	be	used	for	this:

Section	G.3.96,	“git-push(1)”	copies	your	branches	to	a	remote
repository,	usually	to	one	that	can	be	read	by	all	involved	parties;
Section	G.3.46,	“git-fetch(1)”	that	copies	remote	branches	to	your
repository;	and
Section	G.3.95,	“git-pull(1)”	that	does	fetch	and	merge	in	one	go.

Note	the	last	point.	Do	not	use	git	pull	unless	you	actually	want	to	merge
the	remote	branch.

Getting	changes	out	is	easy:

Example	G.10.	Push/pull:	Publishing	branches/topics

git	push	<remote>	<branch>	and	tell	everyone	where	they	can	fetch	from.

You	will	still	have	to	tell	people	by	other	means,	such	as	mail.	(Git
provides	the	Section	G.3.109,	“git-request-pull(1)”	to	send	preformatted
pull	requests	to	upstream	maintainers	to	simplify	this	task.)

If	you	just	want	to	get	the	newest	copies	of	the	integration	branches,
staying	up	to	date	is	easy	too:

Example	G.11.	Push/pull:	Staying	up	to	date

Use	git	fetch	<remote>	or	git	remote	update	to	stay	up	to	date.



Then	simply	fork	your	topic	branches	from	the	stable	remotes	as
explained	earlier.

If	you	are	a	maintainer	and	would	like	to	merge	other	people's	topic
branches	to	the	integration	branches,	they	will	typically	send	a	request	to
do	so	by	mail.	Such	a	request	looks	like

Please	pull	from

				<url>	<branch>

In	that	case,	git	pull	can	do	the	fetch	and	merge	in	one	go,	as	follows.

Example	G.12.	Push/pull:	Merging	remote	topics

git	pull	<url>	<branch>

Occasionally,	the	maintainer	may	get	merge	conflicts	when	he	tries	to	pull
changes	from	downstream.	In	this	case,	he	can	ask	downstream	to	do
the	merge	and	resolve	the	conflicts	themselves	(perhaps	they	will	know
better	how	to	resolve	them).	It	is	one	of	the	rare	cases	where
downstream	should	merge	from	upstream.



2.	Patch	workflow

If	you	are	a	contributor	that	sends	changes	upstream	in	the	form	of
emails,	you	should	use	topic	branches	as	usual	(see	above).	Then	use
Section	G.3.50,	“git-format-patch(1)”	to	generate	the	corresponding
emails	(highly	recommended	over	manually	formatting	them	because	it
makes	the	maintainer's	life	easier).

Example	G.13.	format-patch/am:	Publishing	branches/topics

git	format-patch	-M	upstream..topic	to	turn	them	into	preformatted
patch	files
git	send-email	--to=<recipient>	<patches>

See	the	Section	G.3.50,	“git-format-patch(1)”	and	Section	G.3.116,	“git-
send-email(1)”	manpages	for	further	usage	notes.

If	the	maintainer	tells	you	that	your	patch	no	longer	applies	to	the	current
upstream,	you	will	have	to	rebase	your	topic	(you	cannot	use	a	merge
because	you	cannot	format-patch	merges):

Example	G.14.	format-patch/am:	Keeping	topics	up	to	date

git	pull	--rebase	<url>	<branch>

You	can	then	fix	the	conflicts	during	the	rebase.	Presumably	you	have
not	published	your	topic	other	than	by	mail,	so	rebasing	it	is	not	a
problem.

If	you	receive	such	a	patch	series	(as	maintainer,	or	perhaps	as	a	reader
of	the	mailing	list	it	was	sent	to),	save	the	mails	to	files,	create	a	new
topic	branch	and	use	git	am	to	import	the	commits:



Example	G.15.	format-patch/am:	Importing	patches

git	am	<	patch

One	feature	worth	pointing	out	is	the	three-way	merge,	which	can	help	if
you	get	conflicts:	git	am	-3	will	use	index	information	contained	in	patches
to	figure	out	the	merge	base.	See	Section	G.3.3,	“git-am(1)”	for	other
options.

SEE	ALSO

Section	G.2.1,	“gittutorial(7)”,	Section	G.3.96,	“git-push(1)”,
Section	G.3.95,	“git-pull(1)”,	Section	G.3.79,	“git-merge(1)”,
Section	G.3.99,	“git-rebase(1)”,	Section	G.3.50,	“git-format-patch(1)”,
Section	G.3.116,	“git-send-email(1)”,	Section	G.3.3,	“git-am(1)”

GIT

Part	of	the	Section	G.3.1,	“git(1)”	suite.

G.4.16.	gitglossary(7)

NAME

gitglossary	-	A	Git	Glossary

SYNOPSIS

*

DESCRIPTION

alternate	object	database
Via	the	alternates	mechanism,	a	repository	can	inherit	part	of	its



object	database	from	another	object	database,	which	is	called	an
"alternate".

bare	repository
A	bare	repository	is	normally	an	appropriately	named	directory	with	a
.git	suffix	that	does	not	have	a	locally	checked-out	copy	of	any	of	the
files	under	revision	control.	That	is,	all	of	the	Git	administrative	and
control	files	that	would	normally	be	present	in	the	hidden	.git	sub-
directory	are	directly	present	in	the	repository.git	directory	instead,
and	no	other	files	are	present	and	checked	out.	Usually	publishers	of
public	repositories	make	bare	repositories	available.

blob	object
Untyped	object,	e.g.	the	contents	of	a	file.

branch
A	"branch"	is	an	active	line	of	development.	The	most	recent	commit
on	a	branch	is	referred	to	as	the	tip	of	that	branch.	The	tip	of	the
branch	is	referenced	by	a	branch	head,	which	moves	forward	as
additional	development	is	done	on	the	branch.	A	single	Git	repository
can	track	an	arbitrary	number	of	branches,	but	your	working	tree	is
associated	with	just	one	of	them	(the	"current"	or	"checked	out"
branch),	and	HEAD	points	to	that	branch.

cache
Obsolete	for:	index.

chain
A	list	of	objects,	where	each	object	in	the	list	contains	a	reference	to
its	successor	(for	example,	the	successor	of	a	commit	could	be	one
of	its	parents).

changeset
BitKeeper/cvsps	speak	for	"commit".	Since	Git	does	not	store
changes,	but	states,	it	really	does	not	make	sense	to	use	the	term
"changesets"	with	Git.

checkout
The	action	of	updating	all	or	part	of	the	working	tree	with	a	tree
object	or	blob	from	the	object	database,	and	updating	the	index	and
HEAD	if	the	whole	working	tree	has	been	pointed	at	a	new	branch.

cherry-picking
In	SCM	jargon,	"cherry	pick"	means	to	choose	a	subset	of	changes
out	of	a	series	of	changes	(typically	commits)	and	record	them	as	a



new	series	of	changes	on	top	of	a	different	codebase.	In	Git,	this	is
performed	by	the	"git	cherry-pick"	command	to	extract	the	change
introduced	by	an	existing	commit	and	to	record	it	based	on	the	tip	of
the	current	branch	as	a	new	commit.

clean
A	working	tree	is	clean,	if	it	corresponds	to	the	revision	referenced	by
the	current	head.	Also	see	"dirty".

commit

As	a	noun:	A	single	point	in	the	Git	history;	the	entire	history	of	a
project	is	represented	as	a	set	of	interrelated	commits.	The	word
"commit"	is	often	used	by	Git	in	the	same	places	other	revision
control	systems	use	the	words	"revision"	or	"version".	Also	used	as	a
short	hand	for	commit	object.

As	a	verb:	The	action	of	storing	a	new	snapshot	of	the	project's	state
in	the	Git	history,	by	creating	a	new	commit	representing	the	current
state	of	the	index	and	advancing	HEAD	to	point	at	the	new	commit.

commit	object
An	object	which	contains	the	information	about	a	particular	revision,
such	as	parents,	committer,	author,	date	and	the	tree	object	which
corresponds	to	the	top	directory	of	the	stored	revision.

commit-ish	(also	committish)
A	commit	object	or	an	object	that	can	be	recursively	dereferenced	to
a	commit	object.	The	following	are	all	commit-ishes:	a	commit	object,
a	tag	object	that	points	to	a	commit	object,	a	tag	object	that	points	to
a	tag	object	that	points	to	a	commit	object,	etc.

core	Git
Fundamental	data	structures	and	utilities	of	Git.	Exposes	only	limited
source	code	management	tools.

DAG
Directed	acyclic	graph.	The	commit	objects	form	a	directed	acyclic
graph,	because	they	have	parents	(directed),	and	the	graph	of
commit	objects	is	acyclic	(there	is	no	chain	which	begins	and	ends
with	the	same	object).

dangling	object
An	unreachable	object	which	is	not	reachable	even	from	other



unreachable	objects;	a	dangling	object	has	no	references	to	it	from
any	reference	or	object	in	the	repository.

detached	HEAD

Normally	the	HEAD	stores	the	name	of	a	branch,	and	commands
that	operate	on	the	history	HEAD	represents	operate	on	the	history
leading	to	the	tip	of	the	branch	the	HEAD	points	at.	However,	Git
also	allows	you	to	check	out	an	arbitrary	commit	that	isn't
necessarily	the	tip	of	any	particular	branch.	The	HEAD	in	such	a
state	is	called	"detached".

Note	that	commands	that	operate	on	the	history	of	the	current
branch	(e.g.	git	commit	to	build	a	new	history	on	top	of	it)	still	work
while	the	HEAD	is	detached.	They	update	the	HEAD	to	point	at	the
tip	of	the	updated	history	without	affecting	any	branch.	Commands
that	update	or	inquire	information	about	the	current	branch	(e.g.	git
branch	--set-upstream-to	that	sets	what	remote-tracking	branch	the
current	branch	integrates	with)	obviously	do	not	work,	as	there	is	no
(real)	current	branch	to	ask	about	in	this	state.

directory
The	list	you	get	with	"ls"	:-)

dirty
A	working	tree	is	said	to	be	"dirty"	if	it	contains	modifications	which
have	not	been	committed	to	the	current	branch.

evil	merge
An	evil	merge	is	a	merge	that	introduces	changes	that	do	not	appear
in	any	parent.

fast-forward
A	fast-forward	is	a	special	type	of	merge	where	you	have	a	revision
and	you	are	"merging"	another	branch's	changes	that	happen	to	be	a
descendant	of	what	you	have.	In	such	these	cases,	you	do	not	make
a	new	merge	commit	but	instead	just	update	to	his	revision.	This	will
happen	frequently	on	a	remote-tracking	branch	of	a	remote
repository.

fetch
Fetching	a	branch	means	to	get	the	branch's	head	ref	from	a	remote
repository,	to	find	out	which	objects	are	missing	from	the	local	object



database,	and	to	get	them,	too.	See	also	Section	G.3.46,	“git-
fetch(1)”.

file	system
Linus	Torvalds	originally	designed	Git	to	be	a	user	space	file	system,
i.e.	the	infrastructure	to	hold	files	and	directories.	That	ensured	the
efficiency	and	speed	of	Git.

Git	archive
Synonym	for	repository	(for	arch	people).

gitfile
A	plain	file	.git	at	the	root	of	a	working	tree	that	points	at	the	directory
that	is	the	real	repository.

grafts

Grafts	enables	two	otherwise	different	lines	of	development	to	be
joined	together	by	recording	fake	ancestry	information	for	commits.
This	way	you	can	make	Git	pretend	the	set	of	parents	a	commit	has
is	different	from	what	was	recorded	when	the	commit	was	created.
Configured	via	the	.git/info/grafts	file.

Note	that	the	grafts	mechanism	is	outdated	and	can	lead	to
problems	transferring	objects	between	repositories;	see
Section	G.3.108,	“git-replace(1)”	for	a	more	flexible	and	robust
system	to	do	the	same	thing.

hash
In	Git's	context,	synonym	for	object	name.

head
A	named	reference	to	the	commit	at	the	tip	of	a	branch.	Heads	are
stored	in	a	file	in	$GIT_DIR/refs/heads/	directory,	except	when	using
packed	refs.	(See	Section	G.3.90,	“git-pack-refs(1)”.)

HEAD
The	current	branch.	In	more	detail:	Your	working	tree	is	normally
derived	from	the	state	of	the	tree	referred	to	by	HEAD.	HEAD	is	a
reference	to	one	of	the	heads	in	your	repository,	except	when	using
a	detached	HEAD,	in	which	case	it	directly	references	an	arbitrary
commit.

head	ref
A	synonym	for	head.



hook
During	the	normal	execution	of	several	Git	commands,	call-outs	are
made	to	optional	scripts	that	allow	a	developer	to	add	functionality	or
checking.	Typically,	the	hooks	allow	for	a	command	to	be	pre-verified
and	potentially	aborted,	and	allow	for	a	post-notification	after	the
operation	is	done.	The	hook	scripts	are	found	in	the
$GIT_DIR/hooks/	directory,	and	are	enabled	by	simply	removing	the
.sample	suffix	from	the	filename.	In	earlier	versions	of	Git	you	had	to
make	them	executable.

index
A	collection	of	files	with	stat	information,	whose	contents	are	stored
as	objects.	The	index	is	a	stored	version	of	your	working	tree.	Truth
be	told,	it	can	also	contain	a	second,	and	even	a	third	version	of	a
working	tree,	which	are	used	when	merging.

index	entry
The	information	regarding	a	particular	file,	stored	in	the	index.	An
index	entry	can	be	unmerged,	if	a	merge	was	started,	but	not	yet
finished	(i.e.	if	the	index	contains	multiple	versions	of	that	file).

master
The	default	development	branch.	Whenever	you	create	a	Git
repository,	a	branch	named	"master"	is	created,	and	becomes	the
active	branch.	In	most	cases,	this	contains	the	local	development,
though	that	is	purely	by	convention	and	is	not	required.

merge

As	a	verb:	To	bring	the	contents	of	another	branch	(possibly	from	an
external	repository)	into	the	current	branch.	In	the	case	where	the
merged-in	branch	is	from	a	different	repository,	this	is	done	by	first
fetching	the	remote	branch	and	then	merging	the	result	into	the
current	branch.	This	combination	of	fetch	and	merge	operations	is
called	a	pull.	Merging	is	performed	by	an	automatic	process	that
identifies	changes	made	since	the	branches	diverged,	and	then
applies	all	those	changes	together.	In	cases	where	changes	conflict,
manual	intervention	may	be	required	to	complete	the	merge.

As	a	noun:	unless	it	is	a	fast-forward,	a	successful	merge	results	in
the	creation	of	a	new	commit	representing	the	result	of	the	merge,



and	having	as	parents	the	tips	of	the	merged	branches.	This	commit
is	referred	to	as	a	"merge	commit",	or	sometimes	just	a	"merge".

object
The	unit	of	storage	in	Git.	It	is	uniquely	identified	by	the	SHA-1	of	its
contents.	Consequently,	an	object	can	not	be	changed.

object	database
Stores	a	set	of	"objects",	and	an	individual	object	is	identified	by	its
object	name.	The	objects	usually	live	in	$GIT_DIR/objects/.

object	identifier
Synonym	for	object	name.

object	name
The	unique	identifier	of	an	object.	The	object	name	is	usually
represented	by	a	40	character	hexadecimal	string.	Also	colloquially
called	SHA-1.

object	type
One	of	the	identifiers	"commit",	"tree",	"tag"	or	"blob"	describing	the
type	of	an	object.

octopus
To	merge	more	than	two	branches.

origin
The	default	upstream	repository.	Most	projects	have	at	least	one
upstream	project	which	they	track.	By	default	origin	is	used	for	that
purpose.	New	upstream	updates	will	be	fetched	into	remote-tracking
branches	named	origin/name-of-upstream-branch,	which	you	can
see	using	git	branch	-r.

pack
A	set	of	objects	which	have	been	compressed	into	one	file	(to	save
space	or	to	transmit	them	efficiently).

pack	index
The	list	of	identifiers,	and	other	information,	of	the	objects	in	a	pack,
to	assist	in	efficiently	accessing	the	contents	of	a	pack.

pathspec

Pattern	used	to	limit	paths	in	Git	commands.

Pathspecs	are	used	on	the	command	line	of	"git	ls-files",	"git	ls-tree",
"git	add",	"git	grep",	"git	diff",	"git	checkout",	and	many	other



commands	to	limit	the	scope	of	operations	to	some	subset	of	the
tree	or	worktree.	See	the	documentation	of	each	command	for
whether	paths	are	relative	to	the	current	directory	or	toplevel.	The
pathspec	syntax	is	as	follows:

any	path	matches	itself
the	pathspec	up	to	the	last	slash	represents	a	directory	prefix.
The	scope	of	that	pathspec	is	limited	to	that	subtree.
the	rest	of	the	pathspec	is	a	pattern	for	the	remainder	of	the
pathname.	Paths	relative	to	the	directory	prefix	will	be	matched
against	that	pattern	using	fnmatch(3);	in	particular,	*	and	?	can
match	directory	separators.

For	example,	Documentation/*.jpg	will	match	all	.jpg	files	in	the
Documentation	subtree,	including
Documentation/chapter_1/figure_1.jpg.

A	pathspec	that	begins	with	a	colon	:	has	special	meaning.	In	the
short	form,	the	leading	colon	:	is	followed	by	zero	or	more	"magic
signature"	letters	(which	optionally	is	terminated	by	another	colon	:),
and	the	remainder	is	the	pattern	to	match	against	the	path.	The
"magic	signature"	consists	of	ASCII	symbols	that	are	neither
alphanumeric,	glob,	regex	special	characters	nor	colon.	The	optional
colon	that	terminates	the	"magic	signature"	can	be	omitted	if	the
pattern	begins	with	a	character	that	does	not	belong	to	"magic
signature"	symbol	set	and	is	not	a	colon.

In	the	long	form,	the	leading	colon	:	is	followed	by	a	open
parenthesis	(,	a	comma-separated	list	of	zero	or	more	"magic
words",	and	a	close	parentheses	),	and	the	remainder	is	the	pattern
to	match	against	the	path.

A	pathspec	with	only	a	colon	means	"there	is	no	pathspec".	This
form	should	not	be	combined	with	other	pathspec.

top
The	magic	word	top	(magic	signature:	/)	makes	the	pattern
match	from	the	root	of	the	working	tree,	even	when	you	are



running	the	command	from	inside	a	subdirectory.
literal

Wildcards	in	the	pattern	such	as	*	or	?	are	treated	as	literal
characters.

icase
Case	insensitive	match.

glob

Git	treats	the	pattern	as	a	shell	glob	suitable	for	consumption	by
fnmatch(3)	with	the	FNM_PATHNAME	flag:	wildcards	in	the
pattern	will	not	match	a	/	in	the	pathname.	For	example,
"Documentation/*.html"	matches	"Documentation/git.html"	but
not	"Documentation/ppc/ppc.html"	or
"tools/perf/Documentation/perf.html".

Two	consecutive	asterisks	("**")	in	patterns	matched	against	full
pathname	may	have	special	meaning:

A	leading	"**"	followed	by	a	slash	means	match	in	all
directories.	For	example,	"**/foo"	matches	file	or	directory
"foo"	anywhere,	the	same	as	pattern	"foo".	"**/foo/bar"
matches	file	or	directory	"bar"	anywhere	that	is	directly
under	directory	"foo".
A	trailing	"/**"	matches	everything	inside.	For	example,
"abc/**"	matches	all	files	inside	directory	"abc",	relative	to
the	location	of	the	.gitignore	file,	with	infinite	depth.
A	slash	followed	by	two	consecutive	asterisks	then	a	slash
matches	zero	or	more	directories.	For	example,	"a/**/b"
matches	"a/b",	"a/x/b",	"a/x/y/b"	and	so	on.

Other	consecutive	asterisks	are	considered	invalid.

Glob	magic	is	incompatible	with	literal	magic.

exclude
After	a	path	matches	any	non-exclude	pathspec,	it	will	be	run
through	all	exclude	pathspec	(magic	signature:	!).	If	it	matches,
the	path	is	ignored.



parent
A	commit	object	contains	a	(possibly	empty)	list	of	the	logical
predecessor(s)	in	the	line	of	development,	i.e.	its	parents.

pickaxe
The	term	pickaxe	refers	to	an	option	to	the	diffcore	routines	that	help
select	changes	that	add	or	delete	a	given	text	string.	With	the	--
pickaxe-all	option,	it	can	be	used	to	view	the	full	changeset	that
introduced	or	removed,	say,	a	particular	line	of	text.	See
Section	G.3.41,	“git-diff(1)”.

plumbing
Cute	name	for	core	Git.

porcelain
Cute	name	for	programs	and	program	suites	depending	on	core	Git,
presenting	a	high	level	access	to	core	Git.	Porcelains	expose	more
of	a	SCM	interface	than	the	plumbing.

per-worktree	ref
Refs	that	are	per-worktree,	rather	than	global.	This	is	presently	only
HEAD	and	any	refs	that	start	with	refs/bisect/,	but	might	later	include
other	unusual	refs.

pseudoref
Pseudorefs	are	a	class	of	files	under	$GIT_DIR	which	behave	like
refs	for	the	purposes	of	rev-parse,	but	which	are	treated	specially	by
git.	Pseudorefs	both	have	names	that	are	all-caps,	and	always	start
with	a	line	consisting	of	a	SHA-1	followed	by	whitespace.	So,	HEAD
is	not	a	pseudoref,	because	it	is	sometimes	a	symbolic	ref.	They
might	optionally	contain	some	additional	data.	MERGE_HEAD	and
CHERRY_PICK_HEAD	are	examples.	Unlike	per-worktree	refs,
these	files	cannot	be	symbolic	refs,	and	never	have	reflogs.	They
also	cannot	be	updated	through	the	normal	ref	update	machinery.
Instead,	they	are	updated	by	directly	writing	to	the	files.	However,
they	can	be	read	as	if	they	were	refs,	so	git	rev-parse
MERGE_HEAD	will	work.

pull
Pulling	a	branch	means	to	fetch	it	and	merge	it.	See	also
Section	G.3.95,	“git-pull(1)”.

push
Pushing	a	branch	means	to	get	the	branch's	head	ref	from	a	remote



repository,	find	out	if	it	is	a	direct	ancestor	to	the	branch's	local	head
ref,	and	in	that	case,	putting	all	objects,	which	are	reachable	from	the
local	head	ref,	and	which	are	missing	from	the	remote	repository,
into	the	remote	object	database,	and	updating	the	remote	head	ref.	If
the	remote	head	is	not	an	ancestor	to	the	local	head,	the	push	fails.

reachable
All	of	the	ancestors	of	a	given	commit	are	said	to	be	"reachable"
from	that	commit.	More	generally,	one	object	is	reachable	from
another	if	we	can	reach	the	one	from	the	other	by	a	chain	that
follows	tags	to	whatever	they	tag,	commits	to	their	parents	or	trees,
and	trees	to	the	trees	or	blobs	that	they	contain.

rebase
To	reapply	a	series	of	changes	from	a	branch	to	a	different	base,	and
reset	the	head	of	that	branch	to	the	result.

ref

A	name	that	begins	with	refs/	(e.g.	refs/heads/master)	that	points	to
an	object	name	or	another	ref	(the	latter	is	called	a	symbolic	ref).	For
convenience,	a	ref	can	sometimes	be	abbreviated	when	used	as	an
argument	to	a	Git	command;	see	Section	G.4.12,	“gitrevisions(7)”	for
details.	Refs	are	stored	in	the	repository.

The	ref	namespace	is	hierarchical.	Different	subhierarchies	are	used
for	different	purposes	(e.g.	the	refs/heads/	hierarchy	is	used	to
represent	local	branches).

There	are	a	few	special-purpose	refs	that	do	not	begin	with	refs/.
The	most	notable	example	is	HEAD.

reflog
A	reflog	shows	the	local	"history"	of	a	ref.	In	other	words,	it	can	tell
you	what	the	3rd	last	revision	in	this	repository	was,	and	what	was
the	current	state	in	this	repository,	yesterday	9:14pm.	See
Section	G.3.101,	“git-reflog(1)”	for	details.

refspec
A	"refspec"	is	used	by	fetch	and	push	to	describe	the	mapping
between	remote	ref	and	local	ref.

remote	repository



A	repository	which	is	used	to	track	the	same	project	but	resides
somewhere	else.	To	communicate	with	remotes,	see	fetch	or	push.

remote-tracking	branch
A	ref	that	is	used	to	follow	changes	from	another	repository.	It
typically	looks	like	refs/remotes/foo/bar	(indicating	that	it	tracks	a
branch	named	bar	in	a	remote	named	foo),	and	matches	the	right-
hand-side	of	a	configured	fetch	refspec.	A	remote-tracking	branch
should	not	contain	direct	modifications	or	have	local	commits	made
to	it.

repository
A	collection	of	refs	together	with	an	object	database	containing	all
objects	which	are	reachable	from	the	refs,	possibly	accompanied	by
meta	data	from	one	or	more	porcelains.	A	repository	can	share	an
object	database	with	other	repositories	via	alternates	mechanism.

resolve
The	action	of	fixing	up	manually	what	a	failed	automatic	merge	left
behind.

revision
Synonym	for	commit	(the	noun).

rewind
To	throw	away	part	of	the	development,	i.e.	to	assign	the	head	to	an
earlier	revision.

SCM
Source	code	management	(tool).

SHA-1
"Secure	Hash	Algorithm	1";	a	cryptographic	hash	function.	In	the
context	of	Git	used	as	a	synonym	for	object	name.

shallow	clone
Mostly	a	synonym	to	shallow	repository	but	the	phrase	makes	it
more	explicit	that	it	was	created	by	running	git	clone	--depth=...
command.

shallow	repository
A	shallow	repository	has	an	incomplete	history	some	of	whose
commits	have	parents	cauterized	away	(in	other	words,	Git	is	told	to
pretend	that	these	commits	do	not	have	the	parents,	even	though
they	are	recorded	in	the	commit	object).	This	is	sometimes	useful
when	you	are	interested	only	in	the	recent	history	of	a	project	even



though	the	real	history	recorded	in	the	upstream	is	much	larger.	A
shallow	repository	is	created	by	giving	the	--depth	option	to
Section	G.3.23,	“git-clone(1)”,	and	its	history	can	be	later	deepened
with	Section	G.3.46,	“git-fetch(1)”.

submodule
A	repository	that	holds	the	history	of	a	separate	project	inside
another	repository	(the	latter	of	which	is	called	superproject).

superproject
A	repository	that	references	repositories	of	other	projects	in	its
working	tree	as	submodules.	The	superproject	knows	about	the
names	of	(but	does	not	hold	copies	of)	commit	objects	of	the
contained	submodules.

symref
Symbolic	reference:	instead	of	containing	the	SHA-1	id	itself,	it	is	of
the	format	ref:	refs/some/thing	and	when	referenced,	it	recursively
dereferences	to	this	reference.	HEAD	is	a	prime	example	of	a
symref.	Symbolic	references	are	manipulated	with	the
Section	G.3.133,	“git-symbolic-ref(1)”	command.

tag
A	ref	under	refs/tags/	namespace	that	points	to	an	object	of	an
arbitrary	type	(typically	a	tag	points	to	either	a	tag	or	a	commit
object).	In	contrast	to	a	head,	a	tag	is	not	updated	by	the	commit
command.	A	Git	tag	has	nothing	to	do	with	a	Lisp	tag	(which	would
be	called	an	object	type	in	Git's	context).	A	tag	is	most	typically	used
to	mark	a	particular	point	in	the	commit	ancestry	chain.

tag	object
An	object	containing	a	ref	pointing	to	another	object,	which	can
contain	a	message	just	like	a	commit	object.	It	can	also	contain	a
(PGP)	signature,	in	which	case	it	is	called	a	"signed	tag	object".

topic	branch
A	regular	Git	branch	that	is	used	by	a	developer	to	identify	a
conceptual	line	of	development.	Since	branches	are	very	easy	and
inexpensive,	it	is	often	desirable	to	have	several	small	branches	that
each	contain	very	well	defined	concepts	or	small	incremental	yet
related	changes.

tree
Either	a	working	tree,	or	a	tree	object	together	with	the	dependent



blob	and	tree	objects	(i.e.	a	stored	representation	of	a	working	tree).
tree	object

An	object	containing	a	list	of	file	names	and	modes	along	with	refs	to
the	associated	blob	and/or	tree	objects.	A	tree	is	equivalent	to	a
directory.

tree-ish	(also	treeish)
A	tree	object	or	an	object	that	can	be	recursively	dereferenced	to	a
tree	object.	Dereferencing	a	commit	object	yields	the	tree	object
corresponding	to	the	revision's	top	directory.	The	following	are	all
tree-ishes:	a	commit-ish,	a	tree	object,	a	tag	object	that	points	to	a
tree	object,	a	tag	object	that	points	to	a	tag	object	that	points	to	a
tree	object,	etc.

unmerged	index
An	index	which	contains	unmerged	index	entries.

unreachable	object
An	object	which	is	not	reachable	from	a	branch,	tag,	or	any	other
reference.

upstream	branch
The	default	branch	that	is	merged	into	the	branch	in	question	(or	the
branch	in	question	is	rebased	onto).	It	is	configured	via	branch.
<name>.remote	and	branch.<name>.merge.	If	the	upstream	branch
of	A	is	origin/B	sometimes	we	say	"A	is	tracking	origin/B".

working	tree
The	tree	of	actual	checked	out	files.	The	working	tree	normally
contains	the	contents	of	the	HEAD	commit's	tree,	plus	any	local
changes	that	you	have	made	but	not	yet	committed.

SEE	ALSO

Section	G.2.1,	“gittutorial(7)”,	Section	G.2.2,	“gittutorial-2(7)”,
Section	G.2.4,	“gitcvs-migration(7)”,	Section	G.2.5,	“giteveryday(7)”,	The
Git	User's	Manual

GIT

Part	of	the	Section	G.3.1,	“git(1)”	suite.

https://www.kernel.org/pub/software/scm/git/docs/user-manual.html


Prev	 Up 	Next
3.	browser.<tool>.cmd	 Home 	2.	Negating	options



Glossary
Prev	 	 	Next



Glossary

Add

A	Git	command	that	is	used	to	add	a	file	to	your	working	tree.	The
new	items	are	added	to	the	repository	when	you	commit.

BASE	revision

This	is	the	common	ancestor's	version	of	a	conflicted	file.

Blame

This	command	is	for	text	files	only,	and	it	annotates	every	line	to
show	the	repository	revision	in	which	it	was	last	changed,	and	the
author	who	made	that	change.	Our	GUI	implementation	is	called
TortoiseGitBlame	and	it	also	shows	the	commit	date/time	and	the	log
message	when	you	hover	the	mouse	of	the	revision	number.

Branch

A	term	frequently	used	in	revision	control	systems	to	describe	what
happens	when	development	forks	at	a	particular	point	and	follows	2
separate	paths.	You	can	create	a	branch	off	the	main	development
line	so	as	to	develop	a	new	feature	without	rendering	the	main	line
unstable.	Or	you	can	branch	a	stable	release	to	which	you	make
only	bug	fixes,	while	new	developments	take	place	on	the	unstable
trunk.	In	Git	a	branch	is	implemented	as	a	“pointer	to	a	revision”.

Cleanup

Remove	untracked	files	from	the	working	tree.

This	is	different	to	TortoiseSVN	cleanup

Clone

A	Git	command	which	creates	a	local	working	tree	in	an	empty



directory	by	downloading	a	remote	repository.

Commit

This	Git	command	is	used	to	pass	the	changes	in	your	local	working
tree	back	into	the	repository,	creating	a	new	repository	revision.

Conflict

When	changes	from	the	repository	are	merged	with	local	changes,
sometimes	those	changes	occur	on	the	same	lines.	In	this	case	Git
cannot	automatically	decide	which	version	to	use	and	the	file	is	said
to	be	in	conflict.	You	have	to	edit	the	file	manually	and	resolve	the
conflict	before	you	can	commit	any	further	changes.

Copy

In	a	Git	repository	you	can	manually	create	a	copy	of	a	single	file	or
an	entire	tree	w/o	problems.

Delete

When	you	delete	a	versioned	item	(and	commit	the	change)	the	item
no	longer	exists	in	the	repository	after	the	committed	revision.	But	of
course	it	still	exists	in	earlier	repository	revisions,	so	you	can	still
access	it.	If	necessary,	you	can	copy	a	deleted	item	and	“resurrect”	it
complete	with	history.

Diff

Shorthand	for	“Show	Differences”.	Very	useful	when	you	want	to	see
exactly	what	changes	have	been	made.

Export

This	command	produces	an	compressed	archive	of	all	versioned
files	(of	a	specific	revision).

GPO



Group	policy	object

HEAD

HEAD	is	a	synonym	for	the	currently	active	branch	(to	be	more
precise	in	Git	HEAD	can	also	be	so-called	"detached"	and	directly
pointing	to	a	commit	instead	of	a	branch).

History

Show	the	revision	history	of	a	file	or	folder.	Also	known	as	“Log”.

Log

Show	the	revision	history	of	a	file	or	folder.	Also	known	as	“History”.

Merge

The	process	by	which	changes	from	the	repository	are	added	to	your
working	tree	without	disrupting	any	changes	you	have	already	made
locally.	Sometimes	these	changes	cannot	be	reconciled
automatically	and	the	working	tree	is	said	to	be	in	conflict.

Merging	happens	automatically	when	you	pull	changes,	cherry-pick,
or	rebase.	You	can	also	merge	specific	changes	from	another
branch	using	TortoiseGit's	Merge	command.

Patch

If	a	working	tree	has	changes	to	text	files	only,	it	is	possible	to	use
Git's	Diff	command	to	generate	a	single	file	summary	of	those
changes	in	Unified	Diff	format.	A	file	of	this	type	is	often	referred	to
as	a	“Patch”,	and	it	can	be	emailed	to	someone	else	(or	to	a	mailing
list)	and	applied	to	another	working	tree.	Someone	without	commit
access	can	make	changes	and	submit	a	patch	file	for	an	authorized
committer	to	apply.	Or	if	you	are	unsure	about	a	change	you	can
submit	a	patch	for	others	to	review.

Pull



This	Git	command	pulls	down	the	latest	changes	from	the	repository
into	your	working	tree,	merging	any	changes	made	by	others	with
local	changes	in	the	working	tree.

Repository

A	repository	is	a	place	where	data	is	stored	and	maintained.	A
repository	can	be	a	place	where	multiple	databases	or	files	are
located	for	distribution	over	a	network,	or	a	repository	can	be	a
location	that	is	directly	accessible	to	the	user	without	having	to	travel
across	a	network.	Git	is	a	distributed	version	control	system	-	each
working	tree	contains	its	own	repository	(in	the	.git	folder).	A	Git
repository	does	not	require	network	to	work	with	most	operations.
Network	is	required	only	when	you	need	to	synchronize	changes
with	remote	repositories.

Resolve

When	files	in	a	working	tree	are	left	in	a	conflicted	state	following	a
merge,	those	conflicts	must	be	sorted	out	by	a	human	using	an
editor	(or	perhaps	TortoiseGitMerge).	This	process	is	referred	to	as
“Resolving	Conflicts”.	When	this	is	complete	you	can	mark	the
conflicted	files	as	being	resolved,	which	allows	them	to	be
committed.

Revert

If	you	have	made	changes	and	decide	you	want	to	undo	them,	you
can	use	the	“revert”	command	to	go	back	to	the	version	from	HEAD.

Revision

Every	time	you	commit	a	set	of	changes,	you	create	one	new
“revision”	in	the	repository.	Each	revision	represents	the	state	of	the
repository	tree	at	a	certain	point	in	its	history.	If	you	want	to	go	back
in	time	you	can	examine	the	repository	as	it	was	at	a	specific
revision.

In	another	sense,	a	revision	can	refer	to	the	set	of	changes	that	were



made	when	that	revision	was	created.

SVN

A	frequently-used	abbreviation	for	Subversion.

TortoiseGit	provides	git-svn	interoperability.	You	can	fetch	partial	or
whole	history	from	an	SVN	remote	and	store	as	a	local	git	repository.
This	allows	you	to	browse	the	history	and	create	commits	locally.
You	can	finally	commit	your	changes	to	an	SVN	remote.

Switch/Checkout

Updates	all	files	in	the	working	tree	to	a	specific	version.	This	is
normally	used	for	switching/checking	out	branches.

Update

The	corresponding	command	for	the	SVN	update	command	is	Pull.

Working	Copy

See	“Working	Tree”.

Working	Tree

This	is	your	local	“sandbox”,	the	area	where	you	work	on	the
versioned	files,	and	it	normally	resides	on	your	local	hard	disk.	You
create	a	working	tree	by	doing	a	“Clone”	of	a	repository,	and	you
feed	your	changes	back	into	the	repository	using	“Commit”.

Prev	 	 	Next
2.	Patch	workflow	 Home 	Index



Index
Prev	 	 	



Index

A

add,	Adding	New	Files
annotate,	Who	Changed	Which	Line?
authentication,	Authentication
automation,	TortoiseGit	Commands,	TortoiseGitIDiff	Commands

B

Bisect,	Bisect
blame,	Who	Changed	Which	Line?
branch,	Branching/Tagging
Browse	All	Refs,	Browse	All	Refs
bug	tracker,	Integration	with	Bug	Tracking	Systems	/	Issue	Trackers
bug	tracking,	Integration	with	Bug	Tracking	Systems	/	Issue	Trackers
bugtracker,	Integration	with	Bug	Tracking	Systems	/	Issue	Trackers

C

case	change,	Changing	case	in	a	filename
check	in,	Committing	Your	Changes	To	The	Repository
check	new	version,	Redirect	the	upgrade	check
checkout,	Checking	Out	A	Working	Tree	(Switch	to	commit)
Cherry	pick,	Cherry	picking
cleanup,	Cleanup
client	hooks,	Client	Side	Hook	Scripts
Clone	Repository,	Clone	Repository
COM,	,
COM	GitWCRev	interface,	COM	interface
command	line,	TortoiseGit	Commands,	TortoiseGitIDiff	Commands
commit,	Committing	Your	Changes	To	The	Repository
commit	messages,	Log	Dialog
compare,	Viewing	Differences
compare	revisions,	Comparing	Version



conflict,	Resolving	Conflicts
context	menu,	Context	Menus
context	menu	entries,	Disable	context	menu	entries
copy	files,	Copying/Moving/Renaming	Files	and	Folders
Create	Repository,	Create	Repository
create	working	tree,	Checking	Out	A	Working	Tree	(Switch	to	commit)
Cygwin	git,	General	Settings

D

daemon,	Daemon
Daemon,	Daemon
dcommit,	git	svn	dcommit
delete,	Deleting	files	and	folders
Delete	remote	tags,	Browse	All	Refs
deploy,	Deploy	TortoiseGit	via	group	policies
dictionary,	Spellchecker
diff,	Viewing	Differences,	Creating	and	Applying	Patches	and	Pull
Requests
diff	tools,	External	Diff/Merge	Tools
diffing,	Viewing	Diffs
disable	functions,	Disable	context	menu	entries
domain	controller,	Deploy	TortoiseGit	via	group	policies
drag	handler,	Drag	and	Drop
drag-n-drop,	Drag	and	Drop

E

explorer,	TortoiseGit's	Features
export,	Exporting	a	Git	Working	Tree
export	changes,	Comparing	Version
Extern	DLL	Path,	General	Settings
Extra	PATH,	General	Settings

F

FAQ,



Fetch,	Pull	and	Fetch	change
filter,	Filtering	Log	Messages

G

git(1),	git(1)
git-add(1),	git-add(1)
git-am(1),	git-am(1)
git-annotate(1),	git-annotate(1)
git-apply(1),	git-apply(1)
git-archimport(1),	git-archimport(1)
git-archive(1),	git-archive(1)
git-bisect(1),	git-bisect(1)
git-blame(1),	git-blame(1)
git-branch(1),	git-branch(1)
git-bundle(1),	git-bundle(1)
git-cat-file(1),	git-cat-file(1)
git-check-attr(1),	git-check-attr(1)
git-check-ignore(1),	git-check-ignore(1)
git-check-mailmap(1),	git-check-mailmap(1)
git-check-ref-format(1),	git-check-ref-format(1)
git-checkout(1),	git-checkout(1)
git-checkout-index(1),	git-checkout-index(1)
git-cherry(1),	git-cherry(1)
git-cherry-pick(1),	git-cherry-pick(1)
git-citool(1),	git-citool(1)
git-clean(1),	git-clean(1)
git-clone(1),	git-clone(1)
git-column(1),	git-column(1)
git-commit(1),	git-commit(1)
git-commit-tree(1),	git-commit-tree(1)
git-config(1),	git-config(1)
git-count-objects(1),	git-count-objects(1)
git-credential(1),	git-credential(1)
git-credential-cache(1),	git-credential-cache(1)
git-credential-cache--daemon(1),	git-credential-cache--daemon(1)
git-credential-store(1),	git-credential-store(1)



git-cvsexportcommit(1),	git-cvsexportcommit(1)
git-cvsimport(1),	git-cvsimport(1)
git-cvsserver(1),	git-cvsserver(1)
git-daemon(1),	git-daemon(1)
git-describe(1),	git-describe(1)
git-diff(1),	git-diff(1)
git-diff-files(1),	git-diff-files(1)
git-diff-index(1),	git-diff-index(1)
git-diff-tree(1),	git-diff-tree(1)
git-difftool(1),	git-difftool(1)
git-fast-export(1),	git-fast-export(1)
git-fast-import(1),	git-fast-import(1)
git-fetch(1),	git-fetch(1)
git-fetch-pack(1),	git-fetch-pack(1)
git-filter-branch(1),	git-filter-branch(1)
git-fmt-merge-msg(1),	git-fmt-merge-msg(1)
git-for-each-ref(1),	git-for-each-ref(1)
git-format-patch(1),	git-format-patch(1)
git-fsck(1),	git-fsck(1)
git-fsck-objects(1),	git-fsck-objects(1)
git-gc(1),	git-gc(1)
git-get-tar-commit-id(1),	git-get-tar-commit-id(1)
git-grep(1),	git-grep(1)
git-gui(1),	git-gui(1)
git-hash-object(1),	git-hash-object(1)
git-help(1),	git-help(1)
git-http-backend(1),	git-http-backend(1)
git-http-fetch(1),	git-http-fetch(1)
git-http-push(1),	git-http-push(1)
git-imap-send(1),	git-imap-send(1)
git-index-pack(1),	git-index-pack(1)
git-init(1),	git-init(1)
git-init-db(1),	git-init-db(1)
git-instaweb(1),	git-instaweb(1)
git-interpret-trailers(1),	git-interpret-trailers(1)
git-log(1),	git-log(1)
git-ls-files(1),	git-ls-files(1)



git-ls-remote(1),	git-ls-remote(1)
git-ls-tree(1),	git-ls-tree(1)
git-mailinfo(1),	git-mailinfo(1)
git-mailsplit(1),	git-mailsplit(1)
git-merge(1),	git-merge(1)
git-merge-base(1),	git-merge-base(1)
git-merge-file(1),	git-merge-file(1)
git-merge-index(1),	git-merge-index(1)
git-merge-one-file(1),	git-merge-one-file(1)
git-merge-tree(1),	git-merge-tree(1)
git-mergetool(1),	git-mergetool(1)
git-mergetool--lib(1),	git-mergetool--lib(1)
git-mktag(1),	git-mktag(1)
git-mktree(1),	git-mktree(1)
git-mv(1),	git-mv(1)
git-name-rev(1),	git-name-rev(1)
git-notes(1),	git-notes(1)
git-p4(1),	git-p4(1)
git-pack-objects(1),	git-pack-objects(1)
git-pack-redundant(1),	git-pack-redundant(1)
git-pack-refs(1),	git-pack-refs(1)
git-parse-remote(1),	git-parse-remote(1)
git-patch-id(1),	git-patch-id(1)
git-prune(1),	git-prune(1)
git-prune-packed(1),	git-prune-packed(1)
git-pull(1),	git-pull(1)
git-push(1),	git-push(1)
git-quiltimport(1),	git-quiltimport(1)
git-read-tree(1),	git-read-tree(1)
git-rebase(1),	git-rebase(1)
git-receive-pack(1),	git-receive-pack(1)
git-reflog(1),	git-reflog(1)
git-relink(1),	git-relink(1)
git-remote(1),	git-remote(1)
git-remote-ext(1),	git-remote-ext(1)
git-remote-fd(1),	git-remote-fd(1)
git-remote-testgit(1),	git-remote-testgit(1)



git-repack(1),	git-repack(1)
git-replace(1),	git-replace(1)
git-request-pull(1),	git-request-pull(1)
git-rerere(1),	git-rerere(1)
git-reset(1),	git-reset(1)
git-rev-list(1),	git-rev-list(1)
git-rev-parse(1),	git-rev-parse(1)
git-revert(1),	git-revert(1)
git-rm(1),	git-rm(1)
git-send-email(1),	git-send-email(1)
git-send-pack(1),	git-send-pack(1)
git-sh-i18n(1),	git-sh-i18n(1)
git-sh-i18n--envsubst(1),	git-sh-i18n--envsubst(1)
git-sh-setup(1),	git-sh-setup(1)
git-shell(1),	git-shell(1)
git-shortlog(1),	git-shortlog(1)
git-show(1),	git-show(1)
git-show-branch(1),	git-show-branch(1)
git-show-index(1),	git-show-index(1)
git-show-ref(1),	git-show-ref(1)
git-stage(1),	git-stage(1)
git-stash(1),	git-stash(1)
git-status(1),	git-status(1)
git-stripspace(1),	git-stripspace(1)
git-submodule(1),	git-submodule(1)
git-svn(1),	git-svn(1)
git-symbolic-ref(1),	git-symbolic-ref(1)
git-tag(1),	git-tag(1)
git-unpack-file(1),	git-unpack-file(1)
git-unpack-objects(1),	git-unpack-objects(1)
git-update-index(1),	git-update-index(1)
git-update-ref(1),	git-update-ref(1)
git-update-server-info(1),	git-update-server-info(1)
git-upload-archive(1),	git-upload-archive(1)
git-upload-pack(1),	git-upload-pack(1)
git-var(1),	git-var(1)
git-verify-commit(1),	git-verify-commit(1)



git-verify-pack(1),	git-verify-pack(1)
git-verify-tag(1),	git-verify-tag(1)
git-web--browse(1),	git-web--browse(1)
git-whatchanged(1),	git-whatchanged(1)
git-worktree(1),	git-worktree(1)
git-write-tree(1),	git-write-tree(1)
git.exe	path,	General	Settings
gitattributes(5),	gitattributes(5)
gitcli(7),	gitcli(7)
gitcore-tutorial(7),	gitcore-tutorial(7)
gitcredentials(7),	gitcredentials(7)
gitcvs-migration(7),	gitcvs-migration(7)
gitdiffcore(7),	gitdiffcore(7)
giteveryday(7),	giteveryday(7)
gitglossary(7),	gitglossary(7)
githooks(5),	githooks(5)
gitignore(5),	gitignore(5)
gitk(1),	gitk(1)
gitmodules(5),	gitmodules(5)
gitnamespaces(7),	gitnamespaces(7)
gitremote-helpers(1),	gitremote-helpers(1)
gitrepository-layout(5),	gitrepository-layout(5)
gitrevisions(7),	gitrevisions(7)
gittutorial(7),	gittutorial(7)
gittutorial-2(7),	gittutorial-2(7)
GitWCRev,
gitweb(1),	gitweb(1)
gitweb.conf(5),	gitweb.conf(5)
gitworkflows(7),	gitworkflows(7)
globbing,	Pattern	Matching	in	Ignore	Lists
GPG	signing,	Branching/Tagging
GPO,	Deploy	TortoiseGit	via	group	policies
graph,	Revision	Graphs
group	policies,	Deploy	TortoiseGit	via	group	policies,	Disable	context
menu	entries

H



history,	Log	Dialog
hook	scripts,	Client	Side	Hook	Scripts

I

IBugTraqProvider,
icons,	Icon	Overlays
ignore,	Ignoring	Files	And	Directories
image	diff,	Diffing	Images	Using	TortoiseGitIDiff
install,	Installation
issue	tracker,	Integration	with	Bug	Tracking	Systems	/	Issue	Trackers,

L

language	packs,	Language	Packs
log,	Log	Dialog
log	messages,	Log	Dialog
log	navigation,	Navigation

M

mark	release,	Branching/Tagging
maximize,	Maximizing	Windows
merge,	Merging
merge	tools,	External	Diff/Merge	Tools
modifications,	Status
move,	Moving	files	and	folders
move	files,	Copying/Moving/Renaming	Files	and	Folders
msi,	Deploy	TortoiseGit	via	group	policies
Msys2	git,	General	Settings

O

overlay	priority,	Icon	Overlays
overlays,	Icon	Overlays,	Icon	Overlays

P



patch,	Creating	and	Applying	Patches	and	Pull	Requests
pattern	matching,	Pattern	Matching	in	Ignore	Lists
plugin,
praise,	Who	Changed	Which	Line?
proxy	server,	Network	Settings
Pull,	Pull	and	Fetch	change
pull	request,	Creating	and	Applying	Patches	and	Pull	Requests
Push,	Push

R

Rebase,	Rebase
RefLog,	Reference	Log
refs,	Browse	All	Refs
registry,	Advanced	Settings
remove,	Deleting	files	and	folders
rename,	Moving	files	and	folders
rename	files,	Copying/Moving/Renaming	Files	and	Folders
repo-browser,	The	Repository	Browser
Repository,	Create	Repository,	Clone	Repository
request	pull,	Creating	and	Applying	Patches	and	Pull	Requests
Reset,	Reset
resolve,	Resolving	Conflicts
revert,	Undo	Changes
revision,	Revision	Graphs
revision	graph,	Revision	Graphs
revision	log	dialog,	Log	Dialog
right	drag,	Drag	and	Drop
right-click,	Context	Menus

S

send	changes,	Committing	Your	Changes	To	The	Repository
settings,	TortoiseGit's	Settings
spellchecker,	Spellchecker
stash,	Stash	Changes
statistics,	Statistical	Information



status,	Getting	Status	Information,	Status
Submodule	Diff	Dialog,	Diffing	submodules	using	Submodule	Diff	Dialog
SUBST	drives,	Icon	Overlay	Settings
SubWCRev,
svn,	git	svn	dcommit
svn	commit,	git	svn	dcommit
Switch,	Checking	Out	A	Working	Tree	(Switch	to	commit)
Sync,	Sync

T

tag,	Branching/Tagging
TortoiseGitIDiff,	Diffing	Images	Using	TortoiseGitIDiff
translations,	Language	Packs

U

undo,	Undo	Changes
unified	diff,	Creating	and	Applying	Patches	and	Pull	Requests
unversioned	'working	tree',	Exporting	a	Git	Working	Tree
unversioned	files/folders,	Ignoring	Files	And	Directories
upgrade	check,	Redirect	the	upgrade	check

V

version,	Redirect	the	upgrade	check
version	control,
version	extraction,
version	new	files,	Adding	New	Files
version	number	in	files,
view	changes,	Getting	Status	Information

W

Windows	shell,	TortoiseGit's	Features
working	tree	status,	Getting	Status	Information



Prev	 	 	
Glossary	 Home 	


	TortoiseGit
	Preface
	Reading Guide
	TortoiseGit is free!
	Community
	Acknowledgments
	Terminology used in this document
	Introduction
	TortoiseGit's History
	TortoiseGit's Features
	Installing TortoiseGit
	TortoiseGit Daily Use Guide
	Create Repository
	Clone Repository
	Checking Out A Working Tree (Switch to commit)
	Committing Your Changes To The Repository
	Getting Status Information
	Pull and Fetch change
	Push
	Sync
	Daemon
	Browse All Refs
	Submodules
	Log Dialog
	Revision Graphs
	Reference Log
	The Repository Browser
	Viewing Differences
	Adding New Files
	Copying/Moving/Renaming Files and Folders
	Ignoring Files And Directories
	Deleting, Moving and Renaming
	Undo Changes
	Cleanup
	Reset
	Stash Changes
	Bisect
	Branching/Tagging
	Merging
	Cherry picking
	Rebase
	Resolving Conflicts
	Creating and Applying Patches and Pull Requests
	Who Changed Which Line?
	Exporting a Git Working Tree
	Integration with Bug Tracking Systems / Issue Trackers
	TortoiseGit's Settings
	git svn dcommit
	Final Step
	Frequently Asked Questions (FAQ)
	The GitWCRev Program
	Keyword Substitution
	Keyword Example
	COM interface
	IBugTraqProvider interface
	The IBugTraqProvider interface
	The IBugTraqProvider2 interface
	Useful Tips For Administrators
	Redirect the upgrade check
	Disable context menu entries
	Automating TortoiseGit
	TortoiseGitIDiff Commands
	Implementation Details
	Tips and tricks for SSH/PuTTY
	FAQ and examples section
	Git Offical Documentation
	Git Quick Reference
	Notes and todo list for this manual
	Git Tutorial
	gittutorial(7)
	gittutorial-2(7)
	gitcore-tutorial(7)
	gitcvs-migration(7)
	giteveryday(7)
	Git Command Reference
	git(1)
	git-add(1)
	git-am(1)
	git-annotate(1)
	git-apply(1)
	git-archimport(1)
	git-archive(1)
	git-bisect(1)
	git-blame(1)
	git-branch(1)
	git-bundle(1)
	git-cat-file(1)
	git-check-attr(1)
	git-check-ignore(1)
	git-check-mailmap(1)
	git-check-ref-format(1)
	git-checkout-index(1)
	git-checkout(1)
	git-cherry-pick(1)
	git-cherry(1)
	git-citool(1)
	git-clean(1)
	git-clone(1)
	git-column(1)
	git-commit-tree(1)
	git-commit(1)
	git-config(1)
	git-count-objects(1)
	git-credential(1)
	git-credential-cache--daemon(1)
	git-credential-cache(1)
	git-credential-store(1)
	git-cvsexportcommit(1)
	git-cvsimport(1)
	git-cvsserver(1)
	git-daemon(1)
	git-describe(1)
	git-diff-files(1)
	git-diff-index(1)
	git-diff-tree(1)
	git-diff(1)
	git-difftool(1)
	git-fast-export(1)
	git-fast-import(1)
	git-fetch-pack(1)
	git-fetch(1)
	git-filter-branch(1)
	git-fmt-merge-msg(1)
	git-for-each-ref(1)
	git-format-patch(1)
	git-fsck-objects(1)
	git-fsck(1)
	git-gc(1)
	git-get-tar-commit-id(1)
	git-grep(1)
	git-gui(1)
	git-hash-object(1)
	git-help(1)
	git-http-backend(1)
	git-http-fetch(1)
	git-http-push(1)
	git-imap-send(1)
	git-index-pack(1)
	git-init-db(1)
	git-init(1)
	git-instaweb(1)
	git-interpret-trailers(1)
	git-log(1)
	git-ls-files(1)
	git-ls-remote(1)
	git-ls-tree(1)
	git-mailinfo(1)
	git-mailsplit(1)
	git-merge-base(1)
	git-merge-file(1)
	git-merge-index(1)
	git-merge-one-file(1)
	git-merge-tree(1)
	git-merge(1)
	git-mergetool--lib(1)
	git-mergetool(1)
	git-mktag(1)
	git-mktree(1)
	git-mv(1)
	git-name-rev(1)
	git-notes(1)
	git-p4(1)
	git-pack-objects(1)
	git-pack-redundant(1)
	git-pack-refs(1)
	git-parse-remote(1)
	git-patch-id(1)
	git-prune-packed(1)
	git-prune(1)
	git-pull(1)
	git-push(1)
	git-quiltimport(1)
	git-read-tree(1)
	git-rebase(1)
	git-receive-pack(1)
	git-reflog(1)
	git-relink(1)
	git-remote-ext(1)
	git-remote-fd(1)
	git-remote-testgit(1)
	git-remote(1)
	git-repack(1)
	git-replace(1)
	git-request-pull(1)
	git-rerere(1)
	git-reset(1)
	git-rev-list(1)
	git-rev-parse(1)
	git-revert(1)
	git-rm(1)
	git-send-email(1)
	git-send-pack(1)
	git-sh-i18n--envsubst(1)
	git-sh-i18n(1)
	git-sh-setup(1)
	git-shell(1)
	git-shortlog(1)
	git-show-branch(1)
	git-show-index(1)
	git-show-ref(1)
	git-show(1)
	git-stage(1)
	git-stash(1)
	git-status(1)
	git-stripspace(1)
	git-submodule(1)
	git-svn(1)
	git-symbolic-ref(1)
	git-tag(1)
	git-unpack-file(1)
	git-unpack-objects(1)
	git-update-index(1)
	git-update-ref(1)
	git-update-server-info(1)
	git-upload-archive(1)
	git-upload-pack(1)
	git-var(1)
	git-verify-commit(1)
	git-verify-pack(1)
	git-verify-tag(1)
	git-web--browse(1)
	git-whatchanged(1)
	git-worktree(1)
	git-write-tree(1)
	Misc
	gitcli(7)
	gitattributes(5)
	gitcredentials(7)
	gitdiffcore(7)
	gitignore(5)
	githooks(5)
	gitk(1)
	gitmodules(5)
	gitnamespaces(7)
	gitremote-helpers(1)
	gitrepository-layout(5)
	gitrevisions(7)
	gitweb(1)
	gitweb.conf(5)
	gitworkflows(7)
	gitglossary(7)
	Glossary

