TortoiseGit
Next

TortoiseGit

A Git client for Windows

Version 2.4.0

Libbe Onken (TortoiseSVN)
Simon Large (TortoiseSVN)
Frank Li

Sven Strickroth

Table of Contents

Preface
1. Audience
2. Reading Guide
3. TortoiseGit is free!
4. Community
5. Acknowledgments
6. Terminology used in this document

1. Introduction

1.1.
1.2.
1.3.
1.4.

What is TortoiseGit?
TortoiseGit's History
TortoiseGit's Features
Installing TortoiseGit

1.4.1. System requirements
1.4.2. Installation

1.4.3. Language Packs
1.4.4. Spellchecker

2. TortoiseGit Daily Use Guide

2.1.

2.2.
2.3.
2.4.
2.5.

2.6.

2.7.
2.8.

2.9.

Getting Started

2.1.1. Icon Overlays

2.1.2. Context Menus

2.1.3. Drag and Drop

2.1.4. Common Shortcuts

2.1.5. Authentication
2.1.5.1. SSH (URLs look like
git@example.com)
2.1.5.2. HTTP/HTTPS (URLSs start with
https:// or http://)

2.1.6. Maximizing Windows

Create Repository

Clone Repository

Checking Out A Working Tree (Switch to commit)

Committing Your Changes To The Repository

2.5.1. The Commit Dialog

2.5.2. Commit only parts of files

2.5.3. Commit Log Messages

2.5.4. Commit Progress

Getting Status Information

2.6.1. Icon Overlays

2.6.2. Status

2.6.3. Viewing Diffs

Pull and Fetch change

Push

2.8.1. Branch

2.8.2. Destination

2.8.3. Options

Sync

2.9.1. Branch

2.9.2. Destination

2.9.3. Options

2.10. Daemon
2.11. Browse All Refs
2.12. Submodules

2.13. Log Dialog
2.13.1. Invoking the Revision Log Dialog
2.13.2. Revision Log Actions
2.13.3. Getting Additional Information
2.13.4. Filtering Log Messages
2.13.5. Navigation
2.13.6. Statistical Information
2.13.6.1. Statistics Page
2.13.6.2. Commits by Author Page
2.13.6.3. Commits by date Page
2.13.7. Refreshing the View
2.14. Revision Graphs
2.14.1. Revision Graph Nodes
2.14.2. Using the Graph
2.14.3. Refreshing the View
2.15. Reference Log
2.16. The Repository Browser
2.17. Viewing Differences
2.17.1. File Differences
2.17.2. Line-end and Whitespace Options
2.17.3. Comparing Version
2.17.4. Diffing submodules using Submodule Diff
Dialog
2.17.5. Diffing Images Using TortoiseGitIDiff
2.17.6. External Diff/Merge Tools
2.18. Adding New Files
2.19. Copying/Moving/Renaming Files and Folders
2.20. Ignoring Files And Directories
2.20.1. Pattern Matching in Ignore Lists
2.21. Deleting, Moving and Renaming
2.21.1. Deleting files and folders
2.21.2. Moving files and folders
2.21.3. Changing case in a filename
2.21.4. Dealing with filename case conflicts
2.21.5. Deleting Unversioned Files
2.22. Undo Changes
2.23. Cleanup

2.24. Reset
2.25. Stash Changes
2.26. Bisect
2.27. Branching/Tagging
2.27.1. Creating a Branch or Tag
2.28. Merging
2.29. Cherry picking
2.30. Rebase
2.31. Resolving Conflicts
2.31.1. Special conflict cases
2.31.1.1. Delete-modify conflicts
2.31.1.2. Submodule conflicts
2.32. Creating and Applying Patches and Pull
Requests
2.32.1. Creating a Patch Serial
2.32.2. Sending patches by mail
2.32.3. Applying a single Patch File
2.32.4. Applying a Patch Serial
2.32.5. Creating a pull request
2.33. Who Changed Which Line?
2.33.1. Blame for Files
2.34. Exporting a Git Working Tree
2.35. Integration with Bug Tracking Systems / Issue
Trackers
2.35.1. Adding Issue Numbers to Log Messages
2.35.1.1. Issue Number in Text Box
2.35.1.2. Issue Numbers Using Regular
Expressions
2.35.1.3. Issue Tracker Provider Settings
based on Hierarchical Git Configuration
2.35.2. Getting Information from the Issue
Tracker
2.36. TortoiseGit's Settings
2.36.1. General Settings
2.36.1.1. Context Menu Settings
2.36.1.2. Set Extend Menu Item
2.36.1.3. TortoiseGit Dialog Settings

2.36.1.4. TortoiseGit Dialog Settings 2
2.36.1.5. TortoiseGit Dialog Settings 3
2.36.1.6. TortoiseGit Colour Settings
2.36.1.7. TortoiseGit Colour Settings 2
2.36.1.8. TortoiseGit Colour Settings 3

2.36.2. Icon Overlay Settings
2.36.2.1. Icon Set Selection
2.36.2.2. Enabled Overlay Handlers

2.36.3. Network Settings
2.36.3.1. Email settings

2.36.4. External Program Settings
2.36.4.1. Diff Viewer
2.36.4.2. Merge Tool
2.36.4.3. DifffMerge Advanced Settings
2.36.4.4. Alternative editor

2.36.5. Saved Data Settings

2.36.6. Git
2.36.6.1. The hierarchical git configuration
2.36.6.2. Git Config
2.36.6.3. Remote
2.36.6.4. Credential

2.36.7. Client Side Hook Scripts
2.36.7.1. Issue Tracker Integration
2.36.7.2. Config

2.36.8. TortoiseGitBlame Settings

2.36.9. TortoiseGitUDiff Settings

2.36.10. Advanced Settings

2.36.11. Exporting TortoiseGit Settings

2.37. git svn dcommit
2.38. Final Step
A. Frequently Asked Questions (FAQ)

3. The GitWCRev Program
3.1. The GitWCRev Command Line
3.2. Keyword Substitution
3.3. Keyword Example
3.4. COM interface
B. IBugTragProvider interface
B.1. Naming conventions
B.2. The IBugTragProvider interface
B.3. The IBugTragProvider2 interface
C. Useful Tips For Administrators
C.1. Deploy TortoiseGit via group policies
C.2. Redirect the upgrade check
C.3. Disable context menu entries
D. Automating TortoiseGit
D.1. TortoiseGit Commands
D.2. TortoiseGitIDiff Commands
E. Implementation Details
E.1. Icon Overlays
F. Tips and tricks for SSH/PUTTY
F.1. Introduction
F.1.1. How to use sessions
F.2. FAQ and examples section
F.2.1. How to use a default key for all SSH
connections
F.2.2. How to connect to a SSH server on a
different port
F.2.2.1. All connections to a server should
use the different port
F.2.2.2. One special connection should use
a different port
F.2.3. How to use two different ssh keys for the
same user on the same host
G. Git Offical Documentation
G.1. Git User Manual
G.1.1. Git User Manual
G.1.1.1. Git Quick Reference

G.1.1.2. Notes and todo list for this manual

G.2. Git Tutorial
G.2.1. gittutorial(7)
G.2.2. gittutorial-2(7)
G.2.3. gitcore-tutorial(7)
G.2.4. gitcvs-migration(7)
G.2.5. giteveryday(7)

G.3. Git Command Reference
G.3.1. git(2)
G.3.2. git-add(1)
G.3.3. git-am(1)
G.3.4. git-annotate(1)
G.3.5. git-apply(1)
G.3.6. git-archimport(1)
G.3.7. git-archive(1)
G.3.8. git-bisect(1)
G.3.9. git-blame(1)
G.3.10. git-branch(1)
G.3.11. git-bundle(1)
G.3.12. git-cat-file(1)
G.3.13. git-check-attr(1)
G.3.14. git-check-ignore(1)
G.3.15. git-check-mailmap(1)
G.3.16. git-check-ref-format(1)
G.3.17. git-checkout-index(1)
G.3.18. git-checkout(1)
G.3.19. git-cherry-pick(1)
G.3.20. git-cherry(1)
G.3.21. git-citool(1)
G.3.22. git-clean(1)
G.3.23. git-clone(1)
G.3.24. git-column(1)
G.3.25. git-commit-tree(1)
G.3.26. git-commit(1)
G.3.27. git-config(1)
G.3.28. git-count-objects(1)
G.3.29. git-credential(1)

G.3.30.
G.3.31.
G.3.32.
G.3.33.
G.3.34.
G.3.35.
G.3.36.
G.3.37.
G.3.38.
G.3.39.
G.3.40.
G.3.41.
G.3.42.
G.3.43.
G.3.44.
G.3.45.
G.3.46.
G.3.47.
G.3.48.
G.3.49.
G.3.50.
G.3.51.
G.3.52.
G.3.53.
G.3.54.
G.3.55.
G.3.56.
G.3.57.
G.3.58.
G.3.59.
G.3.60.
G.3.61.
G.3.62.
G.3.63.
G.3.64.
G.3.65.
G.3.66.

git-credential-cache--daemon(1)
git-credential-cache(1)
git-credential-store(1)
git-cvsexportcommit(1)
git-cvsimport(1)
git-cvsserver(1)
git-daemon(1)
git-describe(1)
git-diff-files(1)
git-diff-index(1)
git-diff-tree(1)
git-diff(1)

git-difftool(1)
git-fast-export(1)
git-fast-import(1)
git-fetch-pack(1)
git-fetch(1)
git-filter-branch(1)
git-fmt-merge-msg(1)
git-for-each-ref(1)
git-format-patch(1)
git-fsck-objects(1)
git-fsck(1)

git-gc(1)
git-get-tar-commit-id(1)
git-grep(1)

git-gui(1)
git-hash-object(1)
git-help(1)
git-http-backend(1)
git-http-fetch(1)
git-http-push(1)
git-imap-send(1)
git-index-pack(1)
git-init-db(1)

git-init(1)
git-instaweb(1)

G.3.67.
G.3.68.
G.3.69.
G.3.70.
G.3.71.
G.3.72.
G.3.73.
G.3.74.
G.3.75.
G.3.76.
G.3.77.
G.3.78.
G.3.79.
G.3.80.
G.3.81.
G.3.82.
G.3.83.
G.3.84.
G.3.85.
G.3.86.
G.3.87.
G.3.88.
G.3.89.
G.3.90.
G.3.91.
G.3.92.
G.3.93.
G.3.94.
G.3.95.
G.3.96.
G.3.97.
G.3.98.
G.3.99.

git-interpret-trailers(1)
git-log(1)
git-Is-files(1)
git-Is-remote(1)
git-Is-tree(1)
git-mailinfo(1)
git-mailsplit(1)
git-merge-base(1)
git-merge-file(1)
git-merge-index(1)
git-merge-one-file(1)
git-merge-tree(1)
git-merge(1)
git-mergetool--lib(1)
git-mergetool(1)
git-mktag(1)
git-mktree(1)
git-mv(1)
git-name-rev(1)
git-notes(1)
git-p4(1)
git-pack-objects(1)
git-pack-redundant(1)
git-pack-refs(1)
git-parse-remote(1)
git-patch-id(1)
git-prune-packed(1)
git-prune(1)
git-pull(1)
git-push(1)
git-quiltimport(1)
git-read-tree(1)
git-rebase(1)

G.3.100. git-receive-pack(1)
G.3.101. git-reflog(1)
G.3.102. git-relink(1)
G.3.103. git-remote-ext(1)

G.3.104.
G.3.105.
G.3.106.
G.3.107.
G.3.108.
G.3.1009.
G.3.110.
G.3.111.
G.3.112.
G.3.113.
G.3.114.
G.3.115.
G.3.116.
G.3.117.
G.3.118.
G.3.119.
G.3.120.
G.3.121.
G.3.122.
G.3.123.
G.3.124.
G.3.125.
G.3.126.
G.3.127.
G.3.128.
G.3.129.
G.3.130.
G.3.131.
G.3.132.
G.3.133.
G.3.134.
G.3.135.
G.3.136.
G.3.137.
G.3.138.
G.3.139.
G.3.140.

git-remote-fd(1)
git-remote-testgit(1)
git-remote(1)
git-repack(1)
git-replace(1)
git-request-pull(1)
git-rerere(1)
git-reset(1)
git-rev-list(1)
git-rev-parse(1)
git-revert(1)

git-rm(1)
git-send-email(1)
git-send-pack(1)
git-sh-i18n--envsubst(1)
git-sh-i18n(1)
git-sh-setup(1)
git-shell(1)
git-shortlog(1)
git-show-branch(1)
git-show-index(1)
git-show-ref(1)
git-show(1)
git-stage(1)
git-stash(1)
git-status(1)
git-stripspace(1)
git-submodule(1)
git-svn(1)
git-symbolic-ref(1)
git-tag(1)
git-unpack-file(1)
git-unpack-objects(1)
git-update-index(1)
git-update-ref(1)
git-update-server-info(1)
git-upload-archive(1)

G.3.141. git-upload-pack(1)
G.3.142. git-var(1)
G.3.143. git-verify-commit(1)
G.3.144. git-verify-pack(1)
G.3.145. git-verify-tag(1)
G.3.146. git-web--browse(1)
G.3.147. git-whatchanged(1)
G.3.148. git-worktree(1)
G.3.149. git-write-tree(1)
G.4. Misc
G.4.1. gitcli(7)
G.4.2. gitattributes(5)
G.4.3. gitcredentials(7)
G.4.4. gitdiffcore(7)
G.4.5. gitignore(5)
G.4.6. githooks(5)
G.4.7. gitk(1)
G.4.8. gitmodules(5)
G.4.9. githnamespaces(7)
G.4.10. gitremote-helpers(1)
G.4.11. gitrepository-layout(5)
G.4.12. gitrevisions(7)
G.4.13. gitweb(1)
G.4.14. gitweb.conf(5)
G.4.15. gitworkflows(7)
G.4.16. gitglossary(7)
Glossary
Index

List of Figures

2.1. Explorer showing icon overlays

2.2. Context menu for a directory under version control
2.3. Explorer file menu for a shortcut in a versioned folder
2.4. Right drag menu for a directory under version control
2.5. Create repository dialog

2.6. Successfull repository creation message

2.7. Clone dialog

2.8. The Switch/Checkout dialog

2.9. The Commit dialog

2.10. The Commit Dialog Spellchecker

2.11. The Progress dialog showing a commit in progress
2.12. Explorer showing icon overlays

2.13. Check for Modifications

2.14. Pull dialog

2.15. Fetch dialog

2.16. Push dialog

2.17. Sync dialog

2.18. A running daemon dialog

2.19. Browse References Dialog dialog

2.20. Delete remote tags dialog

2.21. The add submodule dialog

2.22. Submodule context menu entries

2.23. The update submodule dialog

2.24. Button for updating submodules in progress dialog
2.25. The Revision Log Dialog

2.26. The Revision Log Dialog Top Pane with Context Menu
2.27. The Search Log Messages Dialog

2.28. Top Pane Context Menu for 2 Selected Revisions
2.29. The Log Dialog Bottom Pane with Context Menu
2.30. Commits-by-Author Histogram

2.31. Commits-by-Author Pie Chart

2.32. Commits-by-date Graph

2.33. A Revision Graph

2.34. RefLog Dialog

2.35. The Repository Browser

2.36. The Compare Revisions Dialog

2.37. The submodule difference dialog

2.38. The image difference viewer

2.39. Explorer context menu for unversioned files

2.40. Right drag menu for a directory under version control
2.41. Explorer context menu for unversioned files

2.42. Ignore dialog

2.43. Explorer context menu for versioned files

2.44.
2.45.
2.46.
2.47.
2.48.
2.49.
2.50.
2.51.
2.52.
2.53.
2.54.
2.55.
2.56.
2.57.
2.58.
2.59.
2.60.
2.61.
2.62.
2.63.
2.64.
2.65.
2.66.
2.67.
2.68.
2.69.
2.70.
2.71.
2.72.
2.73.
2.74.
2.75.
2.76.
2.77.
2.78.
2.79.
2.80.

Revert dialog

Clean dialog

The Reset dialog

The Abort Merge dialog

Stash save dialog

(un)stash options

Bisect start

Bisect options

The Branch Dialog

The Tag Dialog

Merge dialog

Cherry Pick dialog

Rebase dialog

The resolve conflicts dialog

Resolve delete-modify conflict Dialog
Resolve submodule conflict Dialog

The Create Patch dialog

The Send Patches Dialog

The Choose Repository Dialog

The Apply Patch Dialog

The Request Pull Dialog
TortoiseGitBlame

The Export Dialog

Example issue tracker query dialog

The Settings Dialog, General Page

The Settings Dialog, Context Menu Page
The Settings Dialog, Set Extend Menu Item
The Settings Dialog, Dialogs Page
Example of Symbolize ref names

The Settings Dialog, Dialogs Page 2
The Settings Dialog, Dialogs 3 Page
The Settings Dialog, Colours Page

The Settings Dialog, Colours Page

The Settings Dialog, Colours Page

The Settings Dialog, Icon Overlays Page
The Settings Dialog, Icon Set Page

The Settings Dialog, Icon Handlers Page

2.81. The Settings Dialog, Network Page

2.82. The Settings Dialog, email settings

2.83. The Settings Dialog, Diff Viewer Page

2.84. The Settings Dialog, Merge Tool Page

2.85. The Settings Dialog, DifffMerge Advanced Dialog
2.86. The Settings Dialog, Alternative editor Page
2.87. The Settings Dialog, Saved Data Page

2.88. The Settings Dialog, Git

2.89. The Settings Dialog, Git, Remote

2.90. The Settings Dialog, Git, Credential

2.91. The Settings Dialog, Hook Scripts Page

2.92. The Settings Dialog, Configure Hook Scripts
2.93. The Settings Dialog, Issue Tracker Integration Page
2.94. The Settings Dialog, Issue Tracker Config

2.95. The Settings Dialog, TortoiseGitBlame Page
2.96. The Settings Dialog, TortoiseGitUDiff Page

2.97. Taskbar with default grouping

2.98. Taskbar with repository grouping

2.99. Taskbar grouping with repository color overlays
C.1. The upgrade dialog

List of Tables

3.1. List of available command line switches
3.2. List of GitWCRev error codes

3.3. List of available keywords

3.4. COM/automation methods supported
C.1. Menu entries and their values

D.1. List of available commands and options
D.2. List of available options

List of Examples

G.1. Merge upwards

G.2. Topic branches

G.3. Merge to downstream only at well-defined points
G.4. Throw-away integration branches

G.5. Verify master is a superset of maint

G.6. Release tagging

G.7. Copy maint

G.8. Update maint to new release

G.9. Rewind and rebuild next

G.10. Push/pull: Publishing branches/topics

G.11. Push/pull: Staying up to date

G.12. Push/pull: Merging remote topics

G.13. format-patch/am: Publishing branches/topics
G.14. format-patch/am: Keeping topics up to date
G.15. format-patch/am: Importing patches

Next
Preface

Preface
Prev Next

Preface

Table of Contents

1. Audience

2. Reading Guide

3. TortoiseGit is free!

4. Community

5. Acknowledgments

6. Terminology used in this document

e Do you work in a team?

e Has it ever happened that you were working on a file, and someone
else was working on the same file at the same time? Did you lose
your changes to that file because of that?

e Have you ever saved a file, and then wanted to revert the changes
you made? Have you ever wished you could see what a file looked
like some time ago?

e Have you ever found a bug in your project and wanted to know when
that bug got into your files?

If you answered “yes” to one of these questions, then TortoiseGit is for
you! Just read on to find out how TortoiseGit can help you in your work.
It's not that difficult.

1. Audience

This book is written for computer literate folk who want to use Git to
manage their data, but are uncomfortable using the command line client
to do so. Since TortoiseGit is a windows shell extension it's assumed that
the user is familiar with the windows explorer and knows how to use it.

Prev Next
TortoiseGit Home 2. Reading Guide

2. Reading Guide
Prev Preface Next

2. Reading Guide

This Preface explains a little about the TortoiseGit project, the community
of people who work on it, and the licensing conditions for using it and
distributing it.

The Chapter 1, Introduction explains what TortoiseGit is, what it does,
where it comes from and the basics for installing it on your PC.

If you need a general introduction to version control with Git, then we
recommend two videos on YouTube: Tech Talk: Linus Torvalds on git
(about design and differences to other VCS) and Tech Talk: Git (more
technical). You can also read Pro Git book (multiple translations as well
as downloadable versions available) , Section G.1.1, “Git User Manual”,
or Section G.2, “Git Tutorial” which are a short introductions to the Git
revision control system, explain the different approaches to version
control, and how Git works (with a bunch of examples).

The Chapter 2, TortoiseGit Daily Use Guide is the most important section
as it explains all the main features of TortoiseGit and how to use them. It
takes the form of a tutorial, starting with checking out a working tree,
modifying it, committing your changes, etc. It then progresses to more
advanced topics.

The section on Appendix D, Automating TortoiseGit shows how the
TortoiseGit GUI dialogs can be called from the command line. This is
useful for scripting where you still need user interaction.

The Section G.3.1, “git(1)” give git official document about command line
client git.exe.

Prev Up Next
Preface Home 3. TortoiseGit is freel

https://www.youtube.com/watch?v=4XpnKHJAok8
https://www.youtube.com/watch?v=8dhZ9BXQgc4
http://git-scm.com/book

3. TortoiseGit is free!
Prev Preface Next

3. TortoiseGit is free!

TortoiseGit is free. You don't have to pay to use it, and you can use it any
way you want. It is developed under the GNU General Public License
(GPL).

TortoiseGit is an Open Source project. That means you have full read
access to the source code of this program. Project Home is
https://tortoisegit.org/

Prev Up Next
2. Reading Guide Home 4. Community

https://tortoisegit.org/

4. Community
Prev Preface Next

4. Community

Both TortoiseGit and Git are developed by a community of people who
are working on those projects. They come from different countries all
over the world and joined together to create wonderful programs.

Prev Up Next
3. TortoiseGit is free! Home 5. Acknowledgments

5. Acknowledgments
Prev Preface Next

5. Acknowledgments

Frank Li "lznuaa@gmail.com"

for founding the TortoiseGit project

Sven Strickroth "email@cs-ware.de"

for the hard work to get TortoiseGit to what it is now, and his
leadership of the project

Sup Yut Sum "ch3cooli@gmail.com"

for bug reports and lots of improvements (code and translations)

Yue Lin Ho "b8732003@student.nsysu.edu.tw"

for bug reports, work on the mailing list and lots of improvements
(code and translations)

myagi (Georg Fischer) "snowcoder@gmail.com"

For hard work to get TortoiseGit Overlay work.
Colin Law

Johan't Hart

Laszlo Papp "djszapi@archlinux"

Tim Kemp

for founding the TortoiseSVN project (TortoiseGit is based on this
project)

Stefan Kiing

for the hard work on TortoiseSVN

Libbe Onken

for the beautiful icons, logo, bug hunting and translating

Simon Large

for helping with the documentation and bug hunting on TortoiseSVN

The Tigris Style project

for some of the styles which are reused in this documentation

Our Contributors

for the patches, bug reports and new ideas, and for helping others by
answering questions on our mailing list.

Our Donators

Prev Up Next

4. Community 6. Terminology used in this

Home
document

6. Terminology used in this document
Prev Preface Next

6. Terminology used in this document

To make reading the docs easier, the names of all the screens and
Menus from TortoiseGit are marked up in a different font. The Log Dialog
for instance.

A menu choice is indicated with an arrow. TortoiseGit - Show Log
means: select Show Log from the TortoiseGit context menu.

Where a local context menu appears within one of the TortoiseGit
dialogs, it is shown like this: Context Menu - Save As ...

User Interface Buttons are indicated like this: Press | ok | to continue.

User Actions are indicated using a bold font. Alt+A: press the Alt-Key on
your keyboard and while holding it down press the A-Key as well. Right-
drag: press the right mouse button and while holding it down drag the
items to the new location.

System output and keyboard input is indicated with a different font as
well.

A Important

Important notes are marked with an icon.

2 TP

Tips that make your life easier.

3 Caution

Places where you have to be careful what you are doing.

3 Warning

Where extreme care has to be taken, data corruption or other
nasty things may occur if these warnings are ignored.

Prev Up Next
5. Acknowledgments Home Chapter 1. Introduction

Chapter 1. Introduction
Prev Next

Chapter 1. Introduction

Table of Contents

1.1. What is TortoiseGit?

1.2. TortoiseGit's History

1.3. TortoiseGit's Features

1.4. Installing TortoiseGit
1.4.1. System requirements
1.4.2. Installation
1.4.3. Language Packs
1.4.4. Spellchecker

Version control is the art of managing changes to information. It has long
been a critical tool for programmers, who typically spend their time
making small changes to software and then undoing or checking some of
those changes the next day. Imagine a team of such developers working
concurrently - and perhaps even simultaneously on the very same files! -

and you can see why a good system is needed to manage the potential
chaos.

1.1. What is TortoiseGit?

TortoiseGit is a free open-source client for the Git version control system.
That is, TortoiseGit manages files over time. Files are stored in a local
repository. The repository is much like an ordinary file server, except that
it remembers every change ever made to your files and directories. This
allows you to recover older versions of your files and examine the history
of how and when your data changed, and who changed it. This is why
many people think of Git and version control systems in general as a sort
of “time machine”.

Some version control systems are also software configuration
management (SCM) systems. These systems are specifically tailored to
manage trees of source code, and have many features that are specific
to software development - such as natively understanding programming
languages, or supplying tools for building software. Git, however, is not
one of these systems; it is a general system that can be used to manage
any collection of files, including source code.

Git is an open source, distributed version control system designed to
handle everything from small to very large projects with speed and
efficiency. Every Git clone is a full-fledged repository with complete
history and full revision tracking capabilities, not dependent on network
access or a central server. Branching and merging are fast and easy to
do.

Prev Next

6. Terminology used in this 1.2. TortoiseGit's History

Home
document

1.2. TortoiseGit's History
Prev Chapter 1. Introduction Next

1.2. TortoiseGit's History

In 2008, Frank Li found that Git was a very good version control system,
but it lacked a good GUI client. The idea for a Git client as a Windows
shell integration was inspired by the similar client for SVN named
TortoiseSVN.

Frank studied the source code of TortoiseSVN and used it as a base for
TortoiseGit. He then started the project, registered the project at
code.google.com and put the source code online.

At the end of 2010 Sven Strickroth joined the TortoiseGit project. Then,
he became the current maintainer few years later.

From August 2015, GoogleCode was shut down and the TortoiseGit
project established their website tortoisegit.org and migrated the main
repository and issue tracker to GitLab.

As Git became more stable it attracted more and more users who also
started using TortoiseGit as their Git client.

For more information what changed over the releases check out the
latest release notes or inspect our git commit history.

Prev Up Next
Chapter 1. Introduction Home 1.3. TortoiseGit's Features

https://tortoisegit.org/releasenotes
https://tortoisegit.org/sourcecode

1.3. TortoiseGit's Features
Prev Chapter 1. Introduction Next

1.3. TortoiseGit's Features

What makes TortoiseGit such a good Git client? Here's a short list of
features.

Shell integration

TortoiseGit integrates seamlessly into the Windows shell (i.e. the
explorer). This means you can keep working with the tools you're
already familiar with. And you do not have to change into a different
application each time you need functions of the version control!

And you are not even forced to use the Windows Explorer.
TortoiseGit's context menus work in many other file managers, and
in the File/Open dialog which is common to most standard Windows
applications. You should, however, bear in mind that TortoiseGit is
intentionally developed as extension for the Windows Explorer. Thus
it is possible that in other applications the integration is not as
complete and e.g. the icon overlays may not be shown.

Ilcon overlays

The status of every versioned file and folder is indicated by small
overlay icons. That way you can see right away what the status of
your working tree is.

The icon overlays are based on TortoiseOverlays
(http://www.tortoisesvn.net)

Easy access to Git commands

All Git commands are available from the explorer context menu.
TortoiseGit adds its own submenu there.

Since TortoiseGit is a Git client, we would also like to show you some of
the features of Git itself:

http://www.tortoisesvn.net/

Distributed version control

Like most other modern version control systems, Git gives each
developer a local copy of the entire development history, and
changes are copied from one such repository to another. These
changes are imported as additional development branches, and can
be merged in the same way as a locally developed branch.
Repositories can be easily accessed via the efficient Git protocol
(optionally wrapped in ssh for authentication and security) or simply
using HTTP - you can publish your repository anywhere without any
special webserver configuration required.

Atomic commits

A commit either goes into the repository completely, or not at all.

Strong support for non-linear development

Git supports rapid and convenient branching and merging, and
includes powerful tools for visualizing and navigating a non-linear
development history.

Efficient handling of large projects

Git is very fast and scales well even when working with large
projects and long histories. It is commonly an order of magnitude
faster than most other version control systems, and several orders of
magnitude faster on some operations. It also uses an extremely
efficient packed format for long-term revision storage that currently
tops any other open source version control system.

Cryptographic authentication of history

The Git history is stored in such a way that the name of a particular
revision (a "commit” in Git terms) depends upon the complete
development history leading up to that commit. Once it is published,
it is not possible to change the old versions without it being noticed.
Also, tags can be cryptographically signed.

Efficient branching and tagging

The cost of branching and tagging need not be proportional to the
project size. Branch is just head of commits. Tag is friend name of

commit hash.

Toolkit design

Following the Unix tradition, Git is a collection of many small tools

written in C, and a number of scripts that provide convenient
wrappers. Git provides tools for both easy human usage and easy

scripting to perform new clever operations.

Up Next

Prev
1.4. Installing TortoiseGit

1.2. TortoiseGit's History Home

1.4. Installing TortoiseGit
Prev Chapter 1. Introduction Next

1.4. Installing TortoiseGit

1.4.1. System requirements

TortoiseGit runs on Windows Vista or higher. Windows 98, Windows ME,
Windows NT4, Windows 2000 and Windows XP SP3 are no longer
supported. If you are running such an old system, you can still use older,
however unsupported, releases of TortoiseGit. Those can be found on
the download server (TortoiseGit 1.7 dropped support for Windows 2000;
TortoiseGit 1.9 dropped support for Windows XP).

If you encounter any problems during or after installing TortoiseGit please
refer to Appendix A, Frequently Asked Questions (FAQ) first.

1.4.2. Installation

TortoiseGit comes with an easy to use installer. Double click on the
installer file and follow the instructions. The installer will take care of the
rest.

One prerequisite of TortoiseGit is that it requires an already installed
(command line) Git client which provides a git.exe. Git for Windows is
recommended (Cygwin and Msys2 Git also work, see Section 2.36.1,
“General Settings” for configuration. Please note that Cygwin and Msys2
Git are not officially supported by TortoiseGit as the developers only use
Git for Windows. Bug reports, however, are welcome). Installation of Git
for Windows can be done with preselected options, however, no need to
install the "Windows Explorer integration". If you know about CRLF and
LF line endings and you have editors coping with that, you should select
"Checkout as-is, commit as-is" in order to prevent automatic translations.

A Important

You need Administrator privileges to install TortoiseGit.

https://download.tortoisegit.org/
https://git-for-windows.github.io/

1.4.3. Language Packs

The TortoiseGit user interface has been translated into many different
languages, so you may be able to download a language pack to suit your
needs. You can find the language packs on our translation status page .
And if there is no language pack available yet, why not join the team and
submit your own translation ;-)

Each language pack is packaged as a .msi installer. Just run the install
program after the installation of the main TortoiseGit package and follow
the instructions. After the installation finishes, the translation will be
available and can be selected in settings dialog (cf. Section 2.36.1,
“General Settings”).

1.4.4. Spellchecker

TortoiseGit includes a spell checker which allows you to check your
commit log messages. This is especially useful if the project language is
not your native language. The spell checker uses the same dictionary
files as LibreOffice , OpenOffice and Mozilla .

The installer automatically adds the US English dictionary. If you want
other languages, the easiest option is simply to install one of TortoiseGit's
language packs (see Section 1.4.3, “Language Packs”). This will install
the appropriate dictionary files as well as the TortoiseGit local user
interface. After the installation finishes, the translation will be available.

Or you can install the dictionaries yourself. If you have OpenOffice or
Mozilla installed, you can copy those dictionaries, which are located in
the installation folders for those applications. Otherwise, you need to
download the required dictionary files from
http://cqgit.freedesktop.org/libreoffice/dictionaries/ or
http://wiki.services.openoffice.org/wiki/Dictionaries

Once you have got the dictionary files, you probably need to rename
them so that the filenames only have the locale chars in it. Example:

e en US.aff

https://tortoisegit.org/download
https://tortoisegit.org/translate
http://libreoffice.org
http://openoffice.org
http://mozilla.org
http://cgit.freedesktop.org/libreoffice/dictionaries/
http://wiki.services.openoffice.org/wiki/Dictionaries

e en _US.dic

Then just copy them into the %WAPPDATA%\TortoiseGit\dic folder. If that
folder isn't there, you have to create it first. TortoiseGit will also search
the Languages sub-folder of the TortoiseGit installation folder (normally
this will be C:\Program Files\TortoiseGit\Languages); this is the place
where the language packs put their files. However, the %APPDATA%-
folder doesn't require administrator privileges and, thus, has higher
priority. The next time you start TortoiseGit, the spell checker will be
available.

If you install multiple dictionaries, TortoiseGit uses these rules to select
which one to use.

1. Check the tgit.projectlanguage Setting. This setting can be set
using TortoiseGit Settings Dialogs 3 page (Section 2.36.1.5,
“TortoiseGit Dialog Settings 3”). Refer to Section G.3.27, “git-
config(1)” for information about setting properties (use the LcID Dec
value as assigned by Microsoft).

2. If no project language is set, or that language is not installed, try the
language corresponding to the Windows locale.

3. If the exact Windows locale doesn't work, try the “Base” language,
eg. de_cH (Swiss-German) falls back to de_be (German).

4. If none of the above works, then the default language is English,
which is included with the standard installation.

Prev Up Next

1.3. TortoiseGit's Features Chapter 2. TortoiseGit Daily
Home :
Use Guide

http://msdn.microsoft.com/de-de/goglobal/bb964664.aspx

Chapter 2. TortoiseGit Daily Use Guide
Prev Next

Chapter 2. TortoiseGit Daily Use Guide

Table of Contents

2.1.

2.2.
2.3.
2.4.
2.5.

2.6.

2.7.
2.8.

2.9.

Getting Started

2.1.1. Icon Overlays

2.1.2. Context Menus

2.1.3. Drag and Drop

2.1.4. Common Shortcuts

2.1.5. Authentication
2.1.5.1. SSH (URLs look like git@example.com)
2.1.5.2. HTTP/HTTPS (URLs start with https:// or
http://)

2.1.6. Maximizing Windows

Create Repository

Clone Repository

Checking Out A Working Tree (Switch to commit)

Committing Your Changes To The Repository

2.5.1. The Commit Dialog

2.5.2. Commit only parts of files

2.5.3. Commit Log Messages

2.5.4. Commit Progress

Getting Status Information

2.6.1. Icon Overlays

2.6.2. Status

2.6.3. Viewing Diffs

Pull and Fetch change

Push

2.8.1. Branch

2.8.2. Destination

2.8.3. Options

Sync

2.9.1. Branch

2.9.2. Destination

2.9.3. Options

2.10. Daemon
2.11. Browse All Refs
2.12. Submodules
2.13. Log Dialog
2.13.1. Invoking the Revision Log Dialog
2.13.2. Revision Log Actions
2.13.3. Getting Additional Information
2.13.4. Filtering Log Messages
2.13.5. Navigation
2.13.6. Statistical Information
2.13.6.1. Statistics Page
2.13.6.2. Commits by Author Page
2.13.6.3. Commits by date Page
2.13.7. Refreshing the View
2.14. Revision Graphs
2.14.1. Revision Graph Nodes
2.14.2. Using the Graph
2.14.3. Refreshing the View
2.15. Reference Log
2.16. The Repository Browser
2.17. Viewing Differences
2.17.1. File Differences
2.17.2. Line-end and Whitespace Options
2.17.3. Comparing Version
2.17.4. Diffing submodules using Submodule Diff
Dialog
2.17.5. Diffing Images Using TortoiseGitIDiff
2.17.6. External Diff/Merge Tools
2.18. Adding New Files
2.19. Copying/Moving/Renaming Files and Folders
2.20. Ignoring Files And Directories
2.20.1. Pattern Matching in Ignore Lists
2.21. Deleting, Moving and Renaming
2.21.1. Deleting files and folders
2.21.2. Moving files and folders
2.21.3. Changing case in a filename
2.21.4. Dealing with filename case conflicts

2.21.5. Deleting Unversioned Files
2.22. Undo Changes
2.23. Cleanup
2.24. Reset
2.25. Stash Changes
2.26. Bisect
2.27. Branching/Tagging
2.27.1. Creating a Branch or Tag
2.28. Merging
2.29. Cherry picking
2.30. Rebase
2.31. Resolving Conflicts
2.31.1. Special conflict cases
2.31.1.1. Delete-modify conflicts
2.31.1.2. Submodule conflicts
2.32. Creating and Applying Patches and Pull Requests
2.32.1. Creating a Patch Serial
2.32.2. Sending patches by mail
2.32.3. Applying a single Patch File
2.32.4. Applying a Patch Serial
2.32.5. Creating a pull request
2.33. Who Changed Which Line?
2.33.1. Blame for Files
2.34. Exporting a Git Working Tree
2.35. Integration with Bug Tracking Systems / Issue
Trackers
2.35.1. Adding Issue Numbers to Log Messages
2.35.1.1. Issue Number in Text Box
2.35.1.2. Issue Numbers Using Regular
Expressions
2.35.1.3. Issue Tracker Provider Settings based
on Hierarchical Git Configuration
2.35.2. Getting Information from the Issue Tracker
2.36. TortoiseGit's Settings
2.36.1. General Settings
2.36.1.1. Context Menu Settings
2.36.1.2. Set Extend Menu Item

2.36.1.3. TortoiseGit Dialog Settings
2.36.1.4. TortoiseGit Dialog Settings 2
2.36.1.5. TortoiseGit Dialog Settings 3
2.36.1.6. TortoiseGit Colour Settings
2.36.1.7. TortoiseGit Colour Settings 2
2.36.1.8. TortoiseGit Colour Settings 3

2.36.2. Icon Overlay Settings
2.36.2.1. Icon Set Selection
2.36.2.2. Enabled Overlay Handlers

2.36.3. Network Settings
2.36.3.1. Email settings

2.36.4. External Program Settings
2.36.4.1. Diff Viewer
2.36.4.2. Merge Tool
2.36.4.3. DifffMerge Advanced Settings
2.36.4.4. Alternative editor

2.36.5. Saved Data Settings

2.36.6. Git
2.36.6.1. The hierarchical git configuration
2.36.6.2. Git Config
2.36.6.3. Remote
2.36.6.4. Credential

2.36.7. Client Side Hook Scripts
2.36.7.1. Issue Tracker Integration
2.36.7.2. Config

2.36.8. TortoiseGitBlame Settings

2.36.9. TortoiseGitUDiff Settings

2.36.10. Advanced Settings

2.36.11. Exporting TortoiseGit Settings

2.37. git svn dcommit
2.38. Final Step

This document describes day to day usage of the TortoiseGit client. It is
not an introduction to version control systems, and not an introduction to
Git. It is more like a place you may turn to when you know approximately
what you want to do, but don't quite remember how to do it.

For hints where to find more information about doing version control with
Git see Section 2, “Reading Guide”.

This document is also a work in progress, just as TortoiseGit and Git are.
If you find any mistakes, please report them to the mailing list so we can
update the documentation. Some of the screenshots in the Daily Use
Guide (DUG) might not reflect the current state of the software. Please
forgive us. We're working on TortoiseGit in our free time.

In order to get the most out of the Daily Use Guide:
¢ You should have installed TortoiseGit already.
¢ You should be familiar with version control systems.
¢ You should know the basics of Git.

e You should have set up a server and/or have access to a Git
repository.

2.1. Getting Started

2.1.1. Icon Overlays

Figure 2.1. Explorer showing icon overlays

o o & & & &

normal assume-valid added normal. cpp assume-valid.cpp added.cpp
0 X 6 & &
modified deleted ignored modified. cpp deleted. cpp ignored.cpp

L 4 e @ & @

conflicted skip-worktree non-versioned conflicted.cpp skip-worktree.cpp non-versioned. cpp

One of the most visible features of TortoiseGit is the icon overlays which
appear on files in your working tree. These show you at a glance which of
your files have been modified. Refer to Section 2.6.1, “Icon Overlays” to
find out what the different overlays represent.

2.1.2. Context Menus

Figure 2.2. Context menu for a directory under version control

Open

Share with »
= Git Sync...
@ Git Commit -> "master”...
#* TortoiseGit b | & Pull.
: ; i Fetch..
Restore previous versions
Include in library o A
Send to y | &= S
Lz Show Reflog
Cut 2, Browse Reference
Copy 2, Repo-browser
Create shortcut B= Check for modifications
Delete TE *Rebase..
Rename Bisect start
Properties i | Besolve..
) Revert...
B4 Clean up..
B Switch/Checkout...
},’ Merge...
1 Create Branch...
T Create Tag..
Bfi Export..
& Add.

@ Submodule Add

Create Patch Serial...
Apply Patch Serial...
Settings

Help

About

] ead ;f’ 8

All TortoiseGit commands are invoked from the context menu of the
windows explorer. Most are directly visible, when you right click on a file
or folder. The commands that are available depend on whether the file or
folder or its parent folder is under version control or not. You can also see
the TortoiseGit menu as part of the Explorer file menu.

= TP
Some commands which are very rarely used are only
available in the extended context menu. To bring up the
extended context menu, hold down the Shift key when you

right-click.

In some cases you may see several TortoiseGit entries. This is not a bug!

Figure 2.3. Explorer file menu for a shortcut in a versioned folder
Open

Open file location

W TortoiseGit 3
Open
Edit

A Git Commit...

% TortoiseGit 3

Restore previous versions

Send to *
Cut

Copy

Create shortcut
Delete

Rename

Properties

This example is for an unversioned shortcut within a versioned folder,

and in the Explorer file menu there are two entries for TortoiseGit. One for
the shortcut itself and the second for the object the shortcut is pointing to.
To help you distinguish between them, the icons have an indicator in the
lower right corner to show whether the menu entry is for a file, a folder, a
shortcut or for multiple selected items.

2.1.3. Drag and Drop

Figure 2.4. Right drag menu for a directory under version control
7-Zip 3
Git Mowve versioned itemn(s) here

Git Mowve and rename versioned item here

Copy here
Movwve here

Create shortcuts here

Cancel

Other commands are available as drag handlers, when you right drag
files or folders to a new location inside working trees or when you right
drag a non-versioned file or folder into a directory which is under version
control.

2.1.4. Common Shortcuts

Some common operations have well-known Windows shortcuts, but do
not appear on buttons or in menus. If you can't work out how to do
something obvious, like refreshing a view, check here.

Help, of course.

Refresh the current view. This is perhaps the single most useful one-
key command. For example ... In Explorer this will refresh the icon
overlays on your working tree. In the commit dialog it will re-scan the
working tree to see what may need to be committed. In the Revision
Log dialog it will contact the repository again to check for more
recent changes.

Ctrl-A

Select all. This can be used if you get an error message and want to
copy and paste into an email. Use Ctrl-A to select the error message
and then ...

Ctrl-C

... Copy the selected text.

Ctrl-F

Search

2.1.5. Authentication
2.1.5.1. SSH (URLs look like git@example.com)

TortoiseGitPlink is recommended as SSH client because it better
integrates with Windows. By default TortoiseGitPlink does not store
passwords, you can use the PUTTY authentication agent for caching the
password (done automatically if a PUTTY key is configured for a remote).
For advanced tips & tricks see Appendix F, Tips and tricks for
SSH/PUTTY. Note, however, that TortoiseGitPlink does not respect
~/.ssh/config which is OpenSSH specific (see PUTTY tips & tricks or
configure OpenSSH as SSH client, see next paragraph). If you also want
to use TortoiseGitPlink on Git Bash, create an environment variable
called cIT_ssH with the path to the PUTTY plink.exe or preferably to
TortoiseGitPLink.exe. This can be done by re-executing the Git for
Windows installer (there you can choose which SSH client to use), on the
command line by executing set GIT_SSH=PATH_TO_PLINK.EXE" (C:\Program
Files\TortoiseGit\bin\TortoiseGitPLink.exe on default installations) or
configure the environment variables permanently .

It is also possible to use OpenSSH (shipped with Git for Windows,
Cygwin, and Msys?2). Just open TortoiseGit settings and open the
Network page and enter ssh.exe as SSH client, see Section 2.36.3,
“Network Settings” and this answer on StackOverflow . When OpenSSH
Is used, you can also make use of ~/.ssh/config (cf. this answer on
StackOverflow).

http://www.computerhope.com/issues/ch000549.htm
https://stackoverflow.com/a/32115724/3906760
https://stackoverflow.com/q/30320458/3906760

2.1.5.2. HTTPIHTTPS (URLs start with https:// or http:/l)

By default Git does not save/cache credentials. However, you can
configure a credential helper (recommended, also see Section G.4.3,
“gitcredentials(7)”) or manually use %HOME%/ _netrc .

If you have set up a credential store and you want to clear some stored
credentials see this answer on StackOverflow .

2.1.6. Maximizing Windows

Many of TortoiseGit's dialogs have a lot of information to display, but it is
often useful to maximize only the height, or only the width, rather than
maximizing to fill the screen. As a convenience, there are shortcuts for
this on the Maximize button. Use the middle mouse button to maximize
vertically, and right mouse to maximize horizontally.

Prev Next
1.4. Installing TortoiseGit Home 2.2. Create Repository

https://stackoverflow.com/q/14000173/3906760
https://stackoverflow.com/revisions/6031266/6
https://stackoverflow.com/a/31782500/3906760

2.2. Create Repository
Prev Chapter 2. TortoiseGit Daily Use Guide Next

2.2. Create Repository

This section talks about how to create a git repository. Creating an empty

git repository is very simple. At an empty directory, just use the explorer
context menu and select Git Create Repository here

Figure 2.5. Create repository dialog
" Ditgit\empty - Git Init - TortoiseGit o £ e

-

Make it Bare (Mo working directories);

If you plan to work inside this folder, leave this unchecked. Typically a bare repo
can only have changes 'pushed’ to it. (By convention, a bare repo folder should
have a name that ends with '.git)

[Ok]| Cancel H Help |

You can choose here between a bare and normal git repository. A normal
repository has a working tree attached to which files can be checkout out
and committed hwreas a bare repository only can be pushed to and

pulled from. After a (non bare) repository is created a messagebox will be
shown:

Figure 2.6. Successfull repository creation message
TortoiseGit

'.0.' Initialized empty Git repository in Dftgit/empty/ . git/

You can find more information at Section G.3.65, “git-init(1)”.

Prev Up Next

Chapter 2. TortoiseGit Daily 2.3. Clone Repository
: Home
Use Guide

2.3. Clone Repository
Prev Chapter 2. TortoiseGit Daily Use Guide Next

2.3. Clone Repository

This section talks about how to clone a git repository from an existing
repository. This operation is used to get a full copy of a remote repository.
Cloning a git repository is very simple. At an empty directory, just use the

explorer context menu and select Git Clone...
The Clone Dialog will show.

Figure 2.7. Clone dialog

il |
£ Git clone - TortoiseGit [
Clone Existing Repository
LRL: |€| https://gitlab.com/ftortoisegit/tor toisegit. git - Qpen | -
Directory: D:\tortoisegit Browse. ..
[Depth 1 [] Recursive [7] Clone into Bare Repo [T Mo Chedkout
[Branch [origin Mame
[“ioad Putty Key:
From SVM Repository
| From SVM Repository
Trunk: trunk Tags: tags Branch: branches
From: 0 Username:
[QK] | Cancel | | Help l
L

URL: Input repository URL address, which you will clone from. You can

click | Browse | to browse directory.

Directory:Input your local directory, which you will clone to. You can click

| Browse | to browse directory.

If you check the Load Putty Key checkbox, clone will auto load putty key
file with Pageant. You can click| ... | to browse for a putty key file.

Clone will checkout current HEAD to work space automatically.

Git clone supports http, git and ssh protocol. Section 2.36.3, “Network
Settings” shows how to choose SSH client. OpenSSH, Plink or
TortoiseGitPlink.

You can find more information at Section G.3.23, “git-clone(1)”

Prev Up Next
2.2. Create Repository 2.4. Checking Out A
Home Working Tree (Switch to

commit)

2.4. Checking Out A Working Tree (Switch to commit)
Prev Chapter 2. TortoiseGit Daily Use Guide Next

2.4. Checking Out A Working Tree (Switch to
commit)

The Switch/Checkout dialog can be used to checkout a specific version
to the working tree (i.e., all files are updated to match their state of the
selected version). Normally, a specific version will be represented by a
(local) branch which is set as the current branch (cf. Section 2.27,
“Branching/Tagging” and Section 1, “Repositories and Branches”).

Select a git repository directory in windows explorer Right click to pop
up the context menu and select the command TortoiseGit -
Switch/Checkout... , which brings up the following dialog box:

Figure 2.8. The Switch/Checkout dialog

i N
" DA\TortaiseGit - Switch/Checkout - TortoiseGit e o
Switch To
@ Branch master v| LI
) Tag REL_0.1.0.0_PREVIEW
Commit
Option
[create Mew Branch Branch_master
| Owverwrite working tree changes (force) | Merge
Track
Cwerride branch if exists
[QK] | Cancel] | Help |

If you enter a branch name at Create New Branch, a new branch will be
created. Also, the new branch will be set as the current branch (HEAD).

You can click on the | ... | to browse the references/branches/log to
choose a branch to checkout.

Check Overwrite working tree changes (force) will overwrite uncommitted

changes in the working tree with the selected version.

When you selected a remote branch, you can check Track in order to
track the remote branch. When you open the push, pull or sync dialog,
the remote branch will be pre-selected automatically.

You can find more information at Section G.3.18, “git-checkout(1)”

A Important

If you checkout/switch to a Tag or Commit, you should create
a new branch. Otherwise you will work at "no branch"
(detached HEAD state; i.e., there is no current branch, cf. the
section called “DETACHED HEAD?”). This can be easily fixed
by creating a branch at this version and switching to it.

EY Exporting

Sometimes you may want to create a local copy without any
of those .git directories, e.g. to create a zipped tarball of your
source. Read Section 2.34, “Exporting a Git Working Tree” to
find out how to do that.

Prev Up Next

2.3. Clone Repository 2.5. Committing Your

Home Changes To The Repository

2.5. Committing Your Changes To The Repository
Prev Chapter 2. TortoiseGit Daily Use Guide Next

2.5. Committing Your Changes To The
Repository

Storing the changes you made to your working tree is known as
committing the changes. you can use TortoiseGit — Check for
Modifications first, to see which files have changed locally.

2.5.1. The Commit Dialog

If there are no conflicts, you are ready to commit your changes. Select
any file and/or folders you want to commit, then TortoiseGit -
Commit... .

Figure 2.9. The Commit dialog

-

i DATortoiseGit - Commit - TertoiseGit

Commit to: master

Message:

|Prepare new release

[] new branch

Signed-off-by: Sven Strickroth <email@cs-ware.delr

Show Whole Project

[Message only

41
[7] Amend Last Commit
[set author date
[] set author Add Signed-off-by]
Changes made (double-dick on file for diff):
Ched: All None Unversioned Versioned Added Deleted Modified Files Submodules
Path Extens... *
Modified Files
|_|Languages Tortoise_bg.po pa
¥ | |languages/Tortoise capo PO =
|_|Languages,Tortoise_cs.po Compare with base .po
|__|Languages/Tartoise_da.po Show changes as unified diff -pa
|_|Languages Tortoise_de.po pa P
|_|Languages Tortoise_es.po £} Revert... pa
|_|Languages,Tortoise_fi.po Skip worktree pa
|_|Languages,Tortoise_fr.po Assume Unchanged pa
|_|Languages Tortoise_hu.po - . pa
B = Restore after commit
|__|Languages,Tortoise_id.po pa
|_|Languages,Tortoise_it.po &= Showlog pa
|_|Languages/Tortoise_ja.po &, Blame .po
|_|Languages Tortoise_ko.po S Export selection to... po
] Enumepesj Fortoe, i po View revision in alternative editor po
|_|Languages,Tortoise_pl.po =5 Jpa
|_|Languages Tortoise_pt_BR.po - e . po
|_|Languages,Tortoise_pt_PT.po 7 Open with... .pa
|_|Languages Tortoise_ro.po Explore to pa
|_|Languages,Tortoise_ru.pa pa -
< [£] Copy paths to clipboard -~
C Il inf tion to clipboard
Show Unversioned Files i [{Capy Rintarenetion fa i lected, 56 files total
Do not autoselect submodules Shell 5 View Patch==

[Commit

|v] [Cancel][Help]

The commit dialog will show you every changed file, including added,
deleted and unversioned files. If you don't want a changed file to be
committed, just uncheck that file. If you want to include an unversioned

file, just check that file to add it to the commit.

Default commit dialog just list select paths and their child directory files. If
you want to list all files of project, you can just click | whole Project |.

e

_Mi Many unversioned files in the commit dialog

If you think that the commit dialog shows you too many
unversioned (e.g. compiler generated or editor backup) files,
there are several ways to handle this. You can:

e add the file to the .gitignore list using TortoiseGit -
Add to ignore list

Read Section 2.20, “Ignoring Files And Directories” for more
information.

Double clicking on any modified file in the commit dialog will launch the
external diff tool to show your changes. The context menu will give you
more options, as shown in the screenshot. You can also drag files from
here into another application such as a text editor or an IDE.

You can select or deselect items by clicking on the checkbox to the left of
the item.

The columns displayed in the bottom pane are customizable. If you right
click on any column header you will see a context menu allowing you to
select which columns are displayed. You can also change column width
by using the drag handle which appears when you move the mouse over
a column boundary. These customizations are preserved, so you will see
the same headings next time.

e

= Drag and Drop

You can drag files into the commit dialog from elsewhere, as
long as the working tree is the very same. For example, you

may have a huge working tree with several explorer windows
open to look at distant folders of the hierarchy. If you want to
avoid committing from the top level folder (with a lengthy
folder crawl to check for changes) you can open the commit
dialog for one folder and drag in items from the other
windows to include within the same atomic commit.

You can drag unversioned files which reside within a working
tree into the commit dialog, and they will be Git added
automatically.

_i Commits are just local

Please note, that all commits are just local and only affect
your local working tree. In order to share them with others
you need to push them to a remote repository. See
Section 2.8, “Push” and Section 2.9, “Sync” for more
information.

2.5.2. Commit only parts of files

Sometimes you want to only commit parts of the changes you made to a
file. Such a situation usually happens when you're working on something
but then an urgent fix needs to be committed, and that fix happens to be
in the same file you're working on.

right click on the file and use Context Menu - Restore after
commit . This will create a copy of the file as it is. Then you can edit the
file, e.g. in TortoiseGitMerge and undo all the changes you don't want to
commit. After saving those changes you can commit the file.

E0Y Using TortoiseGitMerge

If you use TortoiseGitMerge to edit the file, you can either edit

the changes as you're used to, or mark all the changes that
you want to include. right click on a modified block and use
Context Menu - Mark this block to include that
change. Finally right click and use Context Menu -
Use left file except marked blocks which will invert your
changes (unmarked blocks) that you don't want to them to
appear in current commit.

After the commit is done, the copy of the file is restored automatically,
and you have the file with all your modifications that were not committed
back.

2.5.3. Commit Log Messages

Be sure to enter a log message which describes the changes you are
committing. This will help you to see what happened and when, as you
browse through the project log messages at a later date. The message
can be as long or as brief as you like; many projects have guidelines for
what should be included, the language to use, and sometimes even a
strict format.

You can apply simple formatting to your log messages using a
convention similar to that used within emails. To apply styling to text, use
text for bold, _text_ for underlining, and ~rtext~ for italics.

Figure 2.10. The Commit Dialog Spellchecker

.]
22* DiTortaiseGit - Commit - TortoiseGit o | E] |t
Commit to: master [new branch
Message:
Update help document abi
ABC
cab
ac
ab
1/24
| *Amend Last Commit arc
[set commit date abs Add Signed-off-by
ab c
Changes made {double-dick on file
Add 'abc’ to dictionary
Path Extension *
Modified File Undo
|| | W) docfimages/fen/add. png [Redo .png
|| || docfimages fen/applyPatd o png
o |‘_I
[+/] M| docfimages fen Branch.pry ! .png E
|| | W] docfimages fenBrowseRe] FalEy Jpng 1
) extfapr Paste
ext/fapr-util
ext/zlib Select All
Mot Versioned Split lines
||| deanup.mac)) JMac
| || docfsubmittingPatches. Paste filename list et -
4 | Paste last commit message [b
[¥] Show Unversioned Files Paste Recent Message... 4 files selected, 10 files total
|H| select/Deselect Al [¥] Do : View Patch=
[Mo thesaurus suggestions
V] whole Project
Keep changelists Ok I | Cancel | | Help

TortoiseGit includes a spellchecker to help you get your log messages
right (cf. Section 1.4.4, “Spellchecker”). This will highlight any mis-spelled
words. Use the context menu to access the suggested corrections. Of
course, it doesn't know every technical term that you do, so correctly
spelt words will sometimes show up as errors. But don't worry. You can
just add them to your personal dictionary using the context menu.

The log message window also includes a filename and function auto-
completion facility. This uses regular expressions to extract class and
function names from the (text) files you are committing, as well as the
filenames themselves. If a word you are typing matches anything in the

list (after you have typed at least 3 characters, or pressed Ctrl+Space), a
drop-down appears allowing you to select the full name. The regular
expressions supplied with TortoiseGit are held in the TortoiseGit
installation bin folder. You can also define your own regexes and store
them in %APPDATA%\TortoiseGit\autolist.txt. Of course your private
autolist will not be overwritten when you update your installation of
TortoiseGit. If you are unfamiliar with regular expressions, take a look at
the introduction at https://en.wikipedia.org/wiki/Regular_expression , and
the online documentation and tutorial at http://www.regular-
expressions.info/ .

Getting the regex just right can be tricky, so to help you sort out a suitable
expression there is a test dialog which allows you to enter an expression
and then type in filenames to test it against. Start it from the command
prompt using the command TortoiseGitProc.exe /command:autotexttest.

You can re-use previously entered log messages. Just use the command
Context Menu - Paste Recent messages to view a list of the last

few messages you entered for this working tree. The number of stored

messages can be customized in the TortoiseGit settings dialog.

The log message window also includes a commit message snippet
facility. These snippets are shown in the autocomplete dropdown once
you type a snippet shortcut, and selecting the snippet in the
autocomplete dropdown then inserts the full text of the snippet. The
snippets supplied with TortoiseGit are held in the TortoiseGit installation
bin folder. You can also define your own snippets and store them in
WAPPDATA%\TortoiseGit\snippet.txt. # is the comment character. Use
escape sequences \t \r \n \\.

You can add your name and email address to the end of the log message
by clicking | Add Signed-off-by |

You can clear all stored commit messages from the Saved data page of
TortoiseGit's settings, or you can clear individual messages from within
the Recent messages dialog using the Delete key.

If you want to include the checked paths in your log message, you can

https://en.wikipedia.org/wiki/Regular_expression
http://www.regular-expressions.info/

use the command Context Menu - Paste filename list in the edit
control.

Another way to insert the paths into the log message is to simply drag the
files from the file list onto the edit control.

EoN Using keyboard

You can access the OK button from keyboard by pressing
Ctrl+return.

@ Integration with Bug Tracking Tools

If you have activated the bug tracking system, you can set
one or more Issues in the Bug-ID / Issue-Nr: text box.
Multiple issues should be comma separated. Alternatively, if
you are using regex-based bug tracking support, just add
your issue references as part of the log message. Learn
more in Section 2.35, “Integration with Bug Tracking Systems
/ Issue Trackers”.

@ Adjust the size of message text box

Move your mouse to the gap between "Message" group box
and "Changes made" group box, then drag the separator.

= Commit to a new branch

If you want to commit to a fresh branch (based on the current
branch), you can check the | new branch | checkbox and enter
a branch name in the displayed textbox.

=", Commit multiple times in a row and directly pushing
changes

The main button | commit | has a drop-down menu. There are
the options ReCommit and Commit & push . The option

ReCommit commits your changes and leaves the Commit
dialog open, so that you can continue committing. The last
option Commit & push will commit your changes and
immediately push your changes. If no remote tracking branch
Is configured for the current active branch, the push dialolg
(cf. Section 2.8, “Push”) is opened.

2.5.4. Commit Progress

After pressing | commit |, a dialog appears displaying the progress of the
commit.

Figure 2.11. The Progress dialog showing a commit in progress

24" D:\TortoiseGit - Git Command Progress - TortoiseGit Elﬂw

W

[master 33b3£7d] Updated doc images

& files changed, 0 insertionsi(+), 0 deletions(-)
rewrite doc/images/en/Commit.png (38%)

rewrite doc/images/en/ContextMenuDirControl png (38%)
rewrite doc/images/en/GitPull _png (5339%)

rewrite doc/images/en/GitPush.png (533%)

rewrite doc/images/en/LogContextMenu._png (59%)
rewrite doc/images/en/LogMessages.png (37%)

Succeasa

Push... |v] Abort

In the lower left, there is a menu button which provides shortcuts to
further steps, such as ReCommit (resets the commit dialog and allows
you to continue committing) or Push in order to push your commit to a
remote repository.

You can find more information at Section G.3.26, “git-commit(1)”.

Prev Up Next
2.4. Checking Out A 2.6. Getting Status
Working Tree (Switch to Home Information

commit)

2.6. Getting Status Information
Prev Chapter 2. TortoiseGit Daily Use Guide Next

2.6. Getting Status Information

While you are working on your working tree you often need to know
which files you have changed/added/removed or renamed, or even which
files got changed and committed by others.

2.6.1. Icon Overlays

Figure 2.12. Explorer showing icon overlays

o o & & & &

normal assume-valid added normal. cpp assume-valid.cpp added.cpp
o X ¢ & &
modified deleted ignored modified. cpp deleted. cpp ignored.cpp

L A4 e & & @l

conflicted skip-worktree non-versioned conflicted.cpp skip-worktree.cpp non-versioned. cpp

Now that you have checked out a working tree you can see your files in
the windows explorer with changed icons. This is one of the reasons why
TortoiseGit is so popular. TortoiseGit adds a so called overlay icon to
each file icon which overlaps the original file icon. Depending on the Git
status of the file the overlay icon is different.

@
A fresh checked out working tree has a green checkmark as overlay. That
means the Git status is normal.

9

As soon as you start editing a file, the status changes to modified and the
icon overlay then changes to a red exclamation mark. That way you can
easily see which files were changed since you last updated your working
tree and need to be committed.

If during an update a conflict occurs then the icon changes to a yellow
exclamation mark.

%
Staged. If you use "git update-index" to tell git this file will be committed,
Git makes that file staged.

This icon shows you that some files or folders inside the current folder
have been scheduled to be deleted from version control or a file under
version control is missing in a folder.

+

The plus sign tells you that a file or folder has been scheduled to be
added to version control.

The bar sign tells you that a file or folder is ignored for version control
purposes. This overlay is optional.

->

This icon shows files and folders which are not under version control, but
have not been ignored. This overlay is optional.

In fact, you may find that not all of these icons are used on your system.
This is because the number of overlays allowed by Windows is very
limited and if you are also using an old version of TortoiseCVS or tools
with overlay handlers such as SkyDrive, DropBox or GoogleDrive, then
there are not enough overlay slots available. TortoiseGit tries to be a
“Good Citizen (TM)” and limits its use of overlays to give other apps a

chance too.
If you have problems with overlays, please see the online FAQ.

For a description of how icon overlays correspond to Git status and other
technical details, read Section E.1, “Icon Overlays”.

2.6.2. Status

Figure 2.13. Check for Modifications

r ~

44" DATortoiseGit - Working Tree - TortoiseGit =

Path Extension Status Linesa... Lines... LastModified

ik docfimages/en/AbortMerge.png ~dified 2014-01-11 17:30:03 §
R|docfimages/en/Authenticate.png Compare with base eted

| docfimages/en/BrowseRef.png Show changes as unified diff dified 201401-11 17:17:58
| docfimages en/Changelist.png : eted

M| docfimages/en/Fetch.png A Commit.. dified 2014-01-11 17:10:36
|R| docfimages/en/GitPull. png 2} Revert... dified 2014-01-11 17:10:31
|| docfimages/en/SettingsGitRemot] Skip worktree dified - - 2014-01-11 17:10:09
] doc/fsource fen/TortoiseGit/toit_d dified 1 1 2014-01-11 17:28: 14

Assurme Unchanged
L= Show log
Zt, Blame
Bl Export selection to..
View revision in alternative editor
Open
Open with...
=2 Exploreto

Copy paths to clipboard

[

[Copy all information te clipboard

line: 1(+) 1(-) files: normal=0, non-versioned=0, modified=6,

7]sh ioned i
i added=0, deleted=2, confiicted =0

|| show ignore local changes flagged files
[] show ignored files
|| show Whole Project

Save unified diff l [Stash

=] |

Commit J [

It's often very useful to know which files you have changed and also
which files got changed and committed by others. That's where the
command TortoiseGit - Check For Modifications... comes in
handy. This dialog will show you every file that has changed in any way in
your working tree, as well as any unversioned files you may have.

The dialog uses colour coding to highlight the status.

https://tortoisegit.org/support/faq/#ovlnotshowing

Blue
Locally modified items.
Purple

Added items. Items which have been added with history have a +
sign in the Text status column, and a tooltip shows where the item
was copied from.

Dark red
Deleted or missing items.

Green

Items modified locally and in the repository. The changes will be
merged on update. These may produce conflicts on update.

Bright red

Items modified locally and deleted in repository, or modified in
repository and deleted locally. These will produce conflicts on
update.

Black

Unchanged and unversioned items.

This is the default colour scheme, but you can customise those colours
using the settings dialog. Read Section 2.36.1.6, “TortoiseGit Colour
Settings” for more information.

From the context menu of the dialog you can show a diff of the changes.

Check the local changes you made using Context Menu - Compare

with Base . Check the changes in the repository made by others using
Context Menu - Show Differences as Unified Diff .

You can also revert changes in individual files. If you have deleted a file

accidentally, it will show up as Missing and you can use Revert to recover
it.

Unversioned and ignored files can be sent to the recycle bin from here
using Context Menu -, Delete . If you want to delete files
permanently (bypassing the recycle bin) hold the Shift key while clicking
on Delete.

If you want to examine a file in detail, you can drag it from here into
another application such as a text editor or IDE.

The columns are customizable. If you right click on any column header
you will see a context menu allowing you to select which columns are
displayed. You can also change column width by using the drag handle
which appears when you move the mouse over a column boundary.
These customizations are preserved, so you will see the same headings
next time.

At the bottom of the dialog you have several options to select which
entries to show (such as ignored or untracked/unversioned files). It is
also possible to view all files which were marked as "Assume valid" or
"Skip worktree" here (using Show ingore local changes flagged files).
Resetting those flags (it's also possible to edit this flag using file
properties in explorer on the Git tab).

2.6.3. Viewing Diffs

Often you want to look inside your files, to have a look at what you've
changed. You can accomplish this by selecting a file which has changed,
and selecting Diff from TortoiseGit's context menu. This starts the
external diff-viewer, which will then compare the current file with the
pristine copy (BASE revision), which was stored after the last checkout or
update.

e

Even when not inside a working tree or when you have

multiple versions of the file lying around, you can still display
diffs:

Select the two files you want to compare in explorer (e.g.
using Ctrl and the mouse) and choose Diff from
TortoiseGit's context menu. The file clicked last (the one with
the focus, i.e. the dotted rectangle) will be regarded as the
later one.

Prev Up Next
2.5. Committing Your Home 2.7. Pull and Fetch change
Changes To The Repository

2.7. Pull and Fetch change
Prev Chapter 2. TortoiseGit Daily Use Guide Next

2.7. Pull and Fetch change

This section talks about how to fetch or pull (i.e., download) changes
from another repository. The difference between pull and fetch is:

Fetch just downloads the objects and refs from a remote repository and
normally updates the remote tracking branches. Pull, however, will not
only download the changes, but also merges them - it is the combination
of fetch and merge (cf. Section 2.28, “Merging”). The configured remote
tracking branch is selected automatically.

A Important

Whenever you merge, it is possible the a file was changed in
both branches and that the changes cannot be merged
automatically: This is called a "conflict" and needs to be
manually resolved. See Section 2.31, “Resolving Conflicts”
for more information.

A pull/fetch can be initiated by using TortoiseGit - Pull... or

TortoiseGit - Fetch... . Fetching and pulling changes is also
possible using the Sync dialog (cf. Section 2.9, “Sync”), however, there
you have less options, but the sync dialog allows you to initiate other
operations such as pushing and to see diffs and changes.

The fetch and pull dialog will open.

Figure 2.14. Pull dialog

-

i DATortoiseGit - Pull - TortoiseGit

Remote

(@ Remote: origin

() Arbitrary URL:

Remote Branch: master

Options
[| squash
[] Mo Fast Forward
Tags
Prune

AutolLoad Putty Key
[] Launch Rebase After Fetch

|:| Mo Commit
["] Fast Forward Cnly

Default: Reachable

Manage Femotes

J |

ok || Ccancel Help

Figure 2.15. Fetch dialog

-

44" DATortoiseGit - Fetch - TortoiseGit

origin

() Arbitrary URL:

Remote Branch: master

Options
Squash
Mo Fast Forward
|E| Tags
Prune

AutoLoad Putty Key
[] Launch Rebase After Fetch

Mo Commit

Fast Forward only

Default: Reachable

Manage Remotes

QK Help

J |

] [Cancel

Remote Choose a configured remote repository (these can be changes
using the Manage Remotes label). Instead of the configured repositories,
you can also put the URL of another repository into the Arbitrary URL
textbox.

If the current active branch has a remote tracked branch set, the remote
branch and remote repository are automatically selected. A remote
tracked branch can be set using the reference browser (cf. Section 2.11,
“Browse All Refs”) or using the push dialog (cf. Section 2.8, “Push”).

Other: Input Other URL or local directory. You can click| ... | to browse
directory.

If you check the Autoload Putty Key checkbox, a configured Putty key will
be automatically loaded using Pageant.

Tags has three states (git 1.9 and later): Checked: All tags as well as
branches are downloaded (--tags is passed to git), unchecked: No tags
are downloaded (--no-tags is passed to git), and third state: use default
behavior (based on remote name.tagopt setting). Tags has three states
(prior to git 1.9): Only all tags are downloaded but no branches are
downloaded (--tags is passed to git), unchecked: No tags are
downloaded (--no-tags is passed to git), and third state: use default
behavior (based on remote name.tagopt setting).

Prune has three states: True to remove remote-tracking branches which
no longer exist on the remote, false: not to remove, and third state: use
default behavior (based on remote name.prune or fetch.prune setting).

= TP
You can find more information about PUuTTY and using ssh-
keys at Appendix F, Tips and tricks for SSH/PuTTY. There is
also explained how you can use several accounts at the
same time for a remote.

—

i Conflicts

Although major merge work is done by git automatically while
pulling, a conflict may happen during cherry-picking (i.e., a
file was modified in your current branch and also in the
branch you are pulling), please see Section 2.31, “Resolving
Conflicts” on how to resolve conflicts.

Please note, that "REMOTE"/"theirs" in the conflict editor
refers to the to the changes your on the branch you selected
for pulling/merging and "LOCAL"/"mine" to your HEAD
version in your working tree.

You can find more information at Section G.3.46, “git-fetch(1)” and
Section G.3.95, “git-pull(1)”.

Prev Up Next

2.6. Getting Status 2.8. Push

) Home
Information

2.8. Push
Prev Chapter 2. TortoiseGit Daily Use Guide Next

2.8. Push

This section talks about how to push (i.e., send) changes to another

repository.

In order to perform a push open the push dialog using TortoiseGit -
Push... . Pushing changes is also possible using the Sync dialog (cf.
Section 2.9, “Sync”), however, there you have less options, but the sync

dialog allows you to initiate
diffs and changes.

other operations such as pulling and to see

Figure 2.16. Push dialog

-

43" DATortoiseGit - Push - TortoiseGit -

Ref

[] use Thin Padk (For slow
[T]tndude Tags
[¥] Autoload Putty Key

Recurse submodule

Local master - |
Remote: master * e
Destination

@ Remote: origin v] I Manage ‘
() Arbitrary URL:
Options

Force: May discard [known changes [unknown changes

[set upstream/track remote branch
[7] Always push to the selected remote archive for this local branch
[7] Always push to the selected remote branch for this local branch

network connections)

INnnE S |

[QK] I Cancel | I Help

2.8.1. Branch

Local: The source branch which will be pushed to the other repository. If
the current branch or the selected local branch has a remote tracked
branch set, the remote branch and remote repository are automatically
selected. A remote tracked branch can be set using the reference
browser (cf. Section 2.11, “Browse All Refs”) or by using Set
upstream/track remote branch. This can be overridden in this dialog by
using one of the Always push to the selected remote ... options, so that
for pushing a different branch is autoselected as for merging and pulling.

Remote: The remote branch of the other repository.

2.8.2. Destination

Remote: Choose an already configured remote repository.
Arbitrary URL: The URL of a remote repository.

You must push change to a bare repository. Pushing changes to
repository which has a working tree can lead to unexpected results.

2.8.3. Options

Force (May discard known changes) This allows remote repository to
accept a safer non-fast-forward push. This can cause the remote
repository to lose commits; use it with care. This can prevent from losing
unknown changes from other people on the remote. It checks if the
server branch points to the same commit as the remote-tracking branch
(known changes). If yes, a force push will be performed. Otherwise it will
be rejected. Since git does not have remote-tracking tags, tags cannot be
overwritten using this option. This passes --force-with-lease option of
git push command.

Force (May discard unknown changes) This allows remote repository to
accept an unsafe non-fast-forward push. This can cause the remote
repository to lose commits; use it with care. This does not check any
server commits, so it is possible to lose unknown changes on the remote.
Use this option with Include Tags to overwrite tags. This passes the
traditional - -force option of git push command.

Include Tags Also push tags to remote repository.

Autoload Putty Key

= TP
You can find more information about PuTTY and using ssh-
keys at Appendix F, Tips and tricks for SSH/PuTTY. There is
also explained how you can use several accounts at the

same time for a remote.

Set upstream/track remote branch: After a successful push, the tracking
relationship will be set between the pushed local branch and its remote
tracking branch. This will autoselect the remote branch automatically for
pulling/pushing and merging.

Always push to the selected remote archive for this local branch
Always push to the selected remote branch for this local branch

Recurse submodule None: No checking. Check: Checks if the bounded
commits of all submodules are present on the remote repositories. If any
of the submodules are not pushed, the superproject push will fail. On-
demand: Checks if the bounded commits of all submodules are present
on the remote repositories. If the submodules are not pushed yet, it will
try to push them.

You can find more information at Section G.3.96, “git-push(1)”.

Prev Up Next
2.7. Pull and Fetch change Home 2.9. Sync

2.9. Sync
Prev Chapter 2. TortoiseGit Daily Use Guide Next

2.9. Sync

The Sync Dialog provides an interface for all operations related with
remote repositories in one dialog. This includes push, pull, fetch, remote
update, submodule update, send patch... However, the sync dialog
provides less options as the regarding dialogs (cf. Section 2.7, “Pull and
Fetch change” and Section 2.8, “Push”).

The sync dialog can be opened using Sync...

The Sync Dialog will show.

Figure 2.17. Sync dialog

%" DA\TortoiseGit - Git Synchronization - TortoiseGit =NEEl X
Local Branch: |master v] [I] Remate Branch: master - [I]
Remaote URL: github -

Autoload Putty Key [CEorce
Graph Actions Message Author Date Bug-ID =

. o B oricin/HEAD | origin/master|REL_1.7 Sven Strickroth 10.08.2012 10:34:08 i

4 & RebaseDlg: Correctly display log tab after reb... Sven Strickroth 10.08.2012 09:09:18

b & correctly initialize variables Sven Strickroth 10.08.2012 08:46:05

p o Prepare release of 1.7.12.0 Sven Strickroth 10.08.2012 08:37:40

b & ¥ x Synced with Transifex Sven Strickroth 10.08.2012 08:34:59 | =

s a Cannot revert renaming if a directory with th... Sven Strickroth 10.08.2012 08:08:14 |

4 & Cleanup: Dropped unused code Sven Strickroth 10.08.2012 07:53:35

b a Fixed issue #830: Renaming file with differen... Sven Strickroth 10.08.2012 07:47:03 830

4 o Fixed reverting of files which filenames only ... Sven Strickroth 10.08.2012 07:46:31

4 & TGitCache: Hopefully fix a race condition Sven Strickroth 09.08.201219:16:27

b & Minor cleanup Sven Strickroth 09.08.2012 16:33:15

p o Added some rmore try-catch Sven Strickroth 09.08.2012 05:26:25

b & Synced with TortoiseSYN Sven Strickroth 09.08.2012 04:21:04

s & Deduplicate code Sven Strickroth 09.08.2012 04:19:58

p o Minor optimization: Use calculated current b... Sven Strickroth 09.08.2012 04:18:51 i
M 4 » b % Llog }In Commits £ Qut Commits A Ref List
[Fetch | -] [Push | -] [Submodule Update | -] [Apply Patch] [Email Patch]
[Show log I [Commit] [Stash Save |+]
20 commits ahead "github/master™ [28 l ’ Help]

2.9.1. Branch

Local Branch: The source branch which will push/pull to/from other
repository. If the current branch or the selected local branch has a remote
tracked branch set, the remote branch and remote repository are
automatically selected. A remote tracked branch can be set using the
reference browser (cf. Section 2.11, “Browse All Refs”) or using the push
dialog (cf. Section 2.8, “Push”).

Remote Branch: The remote branch of a remote repository.

2.9.2. Destination

Remote URL: Choose remote repository or input remote repository URL.
Manage Add new remote name.

2.9.3. Options

Force Force Overwrite Existing Branch(May discard changes)

Autoload putty key Autoload putty key when push or pull

Prev Up Next
2.8. Push Home 2.10. Daemon

2.10. Daemon
Prev Chapter 2. TortoiseGit Daily Use Guide Next

2.10. Daemon

Sometimes you want to quickly share you local repository to others

without pushing to a remote git repository. That's when you need to use

TortoiseGit - Daemon... .

Figure 2.18. A running daemon dialog

i:" D:\TortoiseGit - Git Command Progress - TortoiseGit

.l
¢

git:/fS15%2_16B.1.5/

git.exe daemon —-—-verbose ——export—-all —--base-path="D:\TortoiseGit"

This command runs Git Daemon that serves Git protocol at port 9418

(git://hostname/).

@ Caution

i Important

The selected repository is exported for read/write access
without further authentication.

Your host might only be accessible within your local network

and you might need to adjust your firewall.

You can find more information at Section G.3.36, “git-daemon(1)”.

Prev Up Next
2.9. Sync Home 2.11. Browse All Refs

2.11. Browse All Refs
Prev Chapter 2. TortoiseGit Daily Use Guide Next

2.11. Browse All Refs

This section talks about the reference browser, which allows you to view
and work with all refs (tags, branches, remote branches, stash and so

on). It can be opened using TortoiseGit -

Figure 2.19. Browse References Dialog dialog

Browse Reference... .

.
44" DATortoiseGit - Browse references - TortoiseGit l (|
Filter: _ Filter by Refname, Subject, Authors, SHA-1 IAJI vJ
Branch Mame . Tracked branch Date Last Commit Last Commit =
keep-dialog-open 30.07.2014 14:05:96 Allow to leave
keep-olfdongasting-instance 13.03.2015 02:54:54 Use less locks
keep-repo-instance origin/keep-repo-instance 16.05.2014 18:18:26 RevisionGraph
libgit2-parsing-stuff 25.04,2014 18:18:44 2x geht nicht
libgit2-resalve 29,10,2014 22:53:28 libgit2 conflict)
tags limitdog 15,12,2011 23:28:59 first steps
longdasting-instance githublongasting-instance 20.04.2015 19:41:05 fok
master origin/master 29,01,2017 19;47:45 Prepare releas|=
needed 30.01,2012 23:55:43 correctly exdu
ogdf 26.04.2014 18:05:58 Use offidal OD
orphane 20.05.2012 20:23:59 orphane
parse-as-early-as-possible 13.08,2015 20;14:35 More deanup
putty 04,03,2015 23:58:06 WIP: patch frc
puttykey originfputtykey 08.08.2015 22:43:47 puttykey
remember 29.03.2015 23:35:44 remember2
simpleini-versionched: origin/fsimpleini-versionchedk 15.10.2016 17:16:11 Use SimpleIni f
syncsettings origin/syncsettings 14,11,2016 14:39:48 Update for late ~
F] 1 3
[¥]Show nested refs Showing 46 ref(s), 1 ref(s) selected [Current Branch | [oK] | Cancel I | Help l

The left panel displays the ref "types” in a tree such as tags, heads (local
branches) and so on.

Right panel shows all refs for a selected type (recursively if not disabled
using | show nested refs [) including the latest commit, description and (for
local branches) their remote tracked branch.

On both panels there is a powerful context menu which provides further
options such as deleting/renaming refs, configuring the remote tracked
branch (for local branches) and deleting tags for a remote (on the left
panel when a remote is selected). If exactly two refs are selected it is
possible to compare them or open the log for all commits which are on

both branches (Show log of branchl...branch2) or just on one of the
two (Show log of branchl..branch2).

In order to delete remote tags, use the context menu on a remote on he
left and select Delete remote tags... . Then the following dialog will
come up. There you can delete multiple remote tags at once.

Figure 2.20. Delete remote tags dialog

-

-
i." Delete remote tag - TortoiseGit Iﬁ

REL_0.1.0.0_PREVIEW

REL_0.2.0.0_PREVIEW

REL_0.3.0.0_INTERNAL

REL_0.3.1.0_INTERMNAL

REL_0.3.2.0_INTERNAL -

Select/deselect all Delete] [Close

Prev Up Next
2.10. Daemon Home 2.12. Submodules

2.12. Submodules
Prev Chapter 2. TortoiseGit Daily Use Guide Next

2.12. Submodules

When you want to embed foreign repositories into a working tree/git
repository, this is called a submodule. Here using the TortoiseGit -

Submodules Add option a foreign repository can be embedded into a
dedicated subdirectory of the source tree. When selecting this option, a
dialog pops up:

Figure 2.21. The add submodule dialog

@ DA\TortoiseGit - Submadule Add - TortniseGit |
Submodule of Project: D:\TortoiseGit
Repository: https:/fcode.google. com/fpftor toiseqit/ - l:l
Path: D:\TortoiseGitiext!ait - l:l

| Branch different

|| Force

/| Load Putty Key C:\MyPrivatekey. ppk - | |

[Ok] | Cancel | | Help |

L%

Here you can enter the location/URL of the Repository you want to
embed into the directory Path. Path can be entered as a relative path
within the active source tree, but can also be an absolute path (pointing
to the active source tree). The folder should be empty or non existent. If
you don't want to integrate the HEAD of the Repository, you can enter a
different Branch. By pressing | ok |, the entered Repository is cloned and
integrated into the current source tree.

If a working tree contains submodules, two new context menu entries are
available:

Figure 2.22. Submodule context menu entries

@ Add.
o Git Sync...
@ Subrmodule Add
@ Git Commit -> "master”... HomogLE
TortoiseGit 7 i Subrmodule Update
ortoiseGi
= Submodule Sync

Restore orevious versions

Submodule Update :

Figure 2.23. The update submodule dialog
F N
4" DA\TortoiseGit - Submodule Update - TortoiseGit [

Path:

Submodule Update Options

Initialize submodules (—init) [] Mo fetch
|:| Recursive |:| Merge
[Force [rebase
[] Remote tracking branch
[V] Select/deselect al: [ok | [cancl Help

Show Whole Project

Initialize the submodules and/or update the registered submodules, i.e.
clone missing submodules and checkout the commit specified in the
index of the containing repository.

Submodule Sync : Synchronizes submodules' remote URL
configuration setting to the value specified in .gitmodules. This is useful
when submodule URLs change upstream and you need to update your
local repositories accordingly.

Also if a working tree contains submodules, Section 2.4, “Checking Out A
Working Tree (Switch to commit)” and Section 2.24, “Reset” contain a
button for updating submodules:

Figure 2.24. Button for updating submodules in progress dialog

-
" DA\TortoiseGit - Git Command Progress - TortoiseGit Lo e S
ﬁ”
° ‘:i
git.exe checkout master
M ext/apr
M ext/apr-util
Your branch is shead of "origin/master’' by Z commits.
Switched to branch "'master’
Succeas
lUpdate Submodules Abort
h

You can find more information at Section G.3.131, “git-submodule(1)”.

Prev Up

2.11. Browse All Refs Home

Next
2.13. Log Dialog

2.13. Log Dialog
Prev Chapter 2. TortoiseGit Daily Use Guide Next

2.13. Log Dialog

For every change you make and commit, you should provide a log
message for that change. That way you can later find out what changes
you made and why, and you have a detailed log for your development
process.

The Log Dialog retrieves all those log messages and shows them to you.
The display is divided into 3 panes.

e The top pane shows a list of revisions where changes to the
file/folder have been committed. This summary includes the date and
time, the person who committed the revision and the start of the log
message.

The line shown in bold indicates the HEAD commit and the entry
"Working tree changes" is a virtual entry representing the current
(uncommitted) state of your working tree.

e The middle pane shows the full log message for the selected
revision.

e The bottom pane shows a list of all files and folders that were
changed as part of the selected revision.

But it does much more than that - it provides context menu commands
which you can use to get even more information about the project history.

2.13.1. Invoking the Revision Log Dialog

Figure 2.25. The Revision Log Dialog

[B
%4 DiATortoiseGit - Log Messages - TortoiseGit = @g
master From: 2008-11-05 » To: 2013-10-08 w 15, Authors, |Author Emall v @E]

~

Graph

!

13
k'\
[

SHA-1: c44d358bicfb3l1Z02b3ebifbblabi7adfl138EBE0

Message

Drop "Warn on missing Signed-Off-by™ from Git settings page L

Save all settings not just changed ones

Also rename msysgit to "Git for Windows™ in docs

Make toit protocol handler indude a command

Automatically remove "git pull” and parse branch from dipboard

Add optional support for github-windows and smartait protocol handlers
Rename msysait to "Git for Windows™

Fixed issue #1915: Submodule Update Dialog behaves curious

Add "Show whole project” checkbox in Submodule Update Dialog
Refactor CSubmoduleUpdateDlg to add Refresh method

Enlarge Submodule Update Dialog
1 | |k

RO EEOE®]

* Make tgit protocol handler include a command

Now tgit-links work as follows:
tgit:/fclone/https:/fcode_google.com/pStortoisegit/s

Qi mnad—nfFFf=luar- Srram St i colrath Ccoamzdil fAco—trara Ao

Path Extension Status Lines added Lines removed
= srcfChangelog. bt ot Maodified 1 1

"ﬁ srcTortoiseGitSetup/StructureFragment.wixd . wad Maodified 1 1

f-ﬂ srcTortoiseProc/TortoiseProc. cpp .cpp Maodified 5 1

Showing 6969 revision(s), from revision 60636b3 to revision 61f6d1c - 1 revision(s) selected, 0 file(s) selected

Show Whole Project

[Refresh ” Statistics H Walk Behaviour |v” View |v]

There are several places from where you can show the Log dialog:

e From the explorer context menu using TortoiseGit — Show
log...

e From various TortoiseGit dialogs where you can select a commit
(oftentimes using a| ... | button).

e From various TortoiseGit dialogs where commit entries or files are
shown using the context menu.

2.13.2. Revision Log Actions

The top pane has an Actions column containing icons that summarize
what has been done in that revision. There are four different icons, each
shown in its own column.

ol

If a revision modified a file or directory, the modified icon is shown in the
first column.

¥

If a revision added a file or directory, the added icon is shown in the
second column.

xl

If a revision deleted a file or directory, the deleted icon is shown in the
third column.

2

If a revision replaced(rename) a file, the replaced icon is shown in the
fourth column.

2.13.3. Getting Additional Information

Figure 2.26. The Revision Log Dialog Top Pane with Context Menu

Compare with warking tree
Show changes as unified diff

Compare with previous revision

Browse repository

Merge to "master”...

Reset "master” to this...

Switch/Checkout to this...

Create Branch at this version...

Create Tag at this version...

Rebase "master" onto this...
Export this version...

Revert change by this commit

Edit Motes ’

Cherry Pick this commit...
Format Patch.

#2 v PF " RLISP pLpPp

1| Copy SHA-1 to clipboard

e [l
T |

Copy to clipboard
[£] Copylog messages to clipboard
Search log messages...

Show branches this commit is on

=8

The top pane of the Log dialog has a context menu that allows you to
access much more information. You can press the Shift key to see the
extended menu with some more options.

Compare with working tree

Compare the selected revision with your working tree. The default
Diff-Tool is TortoiseGitMerge which is supplied with TortoiseGit. If the
log dialog is for a folder, this will show you a list of changed files, and
allow you to review the changes made to each file individually.

Show changes as unified diff

View the changes made in the selected revision as a Unified-Diff file
(GNU patch format). This shows only the differences with a few lines
of context. It is harder to read than a visual file compare, but will

show all file changes together in a compact format.

Compare with previous revision

Compare the selected revision with the previous revision. This works
in a similar manner to comparing with your working tree. For folders
this option will first show the changed files dialog allowing you to
select files to compare.

Browse repository

Open the repository browser to examine the selected file or folder in
the repository as it was at the selected revision (cf. Section 2.16,
“The Repository Browser”).

Reset (current branch) to this

Resets the HEAD to the selected commit (cf. Section 2.24, “Reset”).

Switch / Checkout to revision

Update your working tree to the selected revision. Useful if you want
to have your working tree reflect a time in the past, or if there have
been further commits to the repository and you want to update your
working tree one step at a time.

Create branch from revision

Create a branch based on the selected revision (cf. Section 2.27,
“Branching/Tagging”).

Create tag from revision

Create a tag on a selected revision (cf. Section 2.27,
“Branching/Tagging”).

Rebase (current branch) to this

Rebase current branch on top of the selected commit (cf.

Section 2.30, “Rebase”).

Export this version...

Export the selected revision to an archive file such as zip. This
brings up a dialog for you to confirm the revision, and select a
location for the export (cf. Section 2.34, “Exporting a Git Working
Tree”).

Revert change by this commit

Revert changes from which were made in the selected revision. All
changes are integrated into your working tree. You may choose to
commit immediately or edit and commit later. To abandon the
reverted changes, perform a hard reset.

Edit notes
Edit notes of the selected commit.

Cherry Pick this commit

Cherry Pick this commit on top of HEAD (cf. Section 2.29, “Cherry
picking”).

Bisect start

Start bisection. Find by binary search the change that introduced a
bug (cf. Section 2.26, “Bisect”).

Format Patch...

Create Patches from this commit.

Copy SHA-1 to clipboard

Copy the commit hash of the selected revision to the clipboard.

Copy to clipboard

Copy the log details of the selected revisions to the clipboard. This
will copy the revision number, author, date, log message and the list
of changed items for each revision.

Copy log message to clipboard

Copy the log message of the selected revision to the clipboard.

Search log messages...
Figure 2.27. The Search Log Messages Dialog

-

.
Find e e
Full text search
Search for: | - Find
S

[] whale word

Ref (Click it then go to)

‘F" refs fremates forigin/HEAD -
‘F" refsfremotes forigin/master

‘F" refs fremotes foriginfvs2010
refs/stash

refsftags Fix_EMAIL
refs/tags/REL_0.1.0.0_PREVIEW
refs/tags/REL_0.2.0.0_PREVIEW
refs/tags/REL_0.3.0.0_INTERNAL

LM —_ M1 A 4 A TRITTOR

44 4 4

Filter:

Search log messages for the text you enter. This searches the log
messages that you entered and also the action summaries created
by Git (shown in the bottom pane). The search is not case sensitive.

2 TP

This allows you to easily search for refs (tags and
branches).

If you press SHIFT while clicking on a ref or on | Find | you

can navigate to the commit w/o selecting it.

Shows branches this commit is on

Shows the branches that the select commit belongs to. It shows both
local and remote branches.

Figure 2.28. Top Pane Context Menu for 2 Selected Revisions
Compare revisions |
Show changes as unified diff

Revert changes by these commits

Combine to one commit
Cherry Pick selected commits._..
Format Patch...

82Y spp

Bizect start i

]| Copy SHA-1 to clipboard
[Copyto clipboard
[Copylog messages to clipboard

4 Search log messages...

If you select two revisions at once (using the usual Ctrl-modifier), the
context menu changes and gives you fewer options:

Compare revisions

Compare the two selected revisions using a visual difference tool.
The default Diff-Tool is TortoiseGitMerge which is supplied with
TortoiseGit.

Show differences as unified diff

View the differences between the two selected revisions as a
Unified-Diff file. This works for files and folders.

Revert changes by these commits

Revert changes from which were made in the selected revisions. All

changes are integrated into your working tree. You may choose to
commit immediately or edit and commit later. To abandon the
reverted changes, perform a hard reset.

Combine to one commit

Combine continuous commits to one commit.

Cherry Pick selected commits

Cherry Pick chosen Commits on top of current HEAD (cf.
Section 2.29, “Cherry picking”).

Format Patch...

Create patches between two chosen commits.

Copy SHA-1 to clipboard

Copy the commit hashes of the selected revisions to the clipboard,
delimited by CRLF.

Copy to clipboard

Copy log messages to clipboard as described above.

Copy log messages to clipboard

Copy the log messages of the selected revisions to the clipboard.
This will copy the log message for each revision. This facilitates the
preparation of release notes.

Search log messages...

Search log messages as described above.

If you select two or more revisions (using the usual Ctrl or Shift
modifiers), You can combine select commits to one commit. And cherry
pick these commits to current branch.

Figure 2.29. The Log Dialog Bottom Pane with Context Menu
Compare with base
Show changes as unified diff

2PP

Compare with working tree

Revert to this revision
Revert to parent revision
Show log

Blame

Export selection to...

E2%er 558

Save revision to...

Yiew revision in alternative editor
Open

Open with...

Iy Explore to

[] Copy paths to clipboard

[Z] Copy all informaticon to clipboard

The bottom pane of the Log dialog also has a context menu that allows
you to

Compare with base

Compare chosen file with base version.

Show as unified diff

Show file changes in unified diff format. This context menu is only
available for files shown as modified.

Compare with working tree

Compare chosen file with working tree.

Revert changes to this revision

Revert chosen files to the satte of this revision.

Revert changes to parent revision

Revert chosen files to the state before this revision.
Show log

Show the revision log for the selected single file.
Blame...

Opens the Blame dialog, allowing you to blame up to the selected
revision (cf. Section 2.33, “Who Changed Which Line?").

Save revision to...

Save the selected revision to a file so you have an older version of
that file.

Export selection to...

Saves the selected files to a target directory. Compared to "Save
revision to..." this preserves the directory structure.

View revision in alternative editor

Show chosen file with an alternative editor such as notepad2 with
chosen commit.

Open/Open with...

Open the selected file, either with the default viewer for that file type,
or with a program you choose.

Explore to
Open directory of file with Explore.

Copy paths to clipboard

Copy paths to clipboard

Copy all information to clipboard

Copy all information to clipboard, include version info.

= TP
You may notice that sometimes we refer to changes and

other times to differences. What's the difference?

2.13.4. Filtering Log Messages

If you want to restrict the log messages to show only those you are
interested in rather than scrolling through a list of hundreds, you can use
the filter controls at the top of the Log Dialog.

The first element is the branch/revision filter. Clicking on on opens the
Reference Browser (see Section 2.11, “Browse All Refs”). There you can
select single or multiple references. If you select exactly two references,
you can choose how to combine them (showing especially both Aand B
"A B"; showing differences "A...B" or all commits between A and B
"A..B"). This filter element also contains a special context menu. Here
shortcuts for "HEAD", "FETCH_HEAD", "All" and "All local branches" are
available. Also, the last manual selected filters are included there.

The start and end date controls allow you to restrict the output to a known
date range. The search box allows you to show only messages which
contain a particular phrase. A default limitation for From can be
configured in the settings dialog on the Dialogs 1 page (cf.

Section 2.36.1.3, “TortoiseGit Dialog Settings”).

Click on the search icon to select which information you want to search
in, and to choose regex mode. Normally you will only need a simple text
search, but if you need to more flexible search terms, you can use
regular expressions. If you hover the mouse over the box, a tooltip will
give hints on how to use the regex functions. You can also find online
documentation and a tutorial at http.//www.regular-expressions.info/ . The
filter works by checking whether your filter string matches the log entries,
and then only those entries which match the filter string are shown.

http://www.regular-expressions.info/

To make the filter show all log entries that do not match the filter string,
start the string with an exclamation mark ('!"). For example, a filter string
rusername Will only show those entries which were not committed by
username.

You can also filter the path names in the bottom pane using the View

- Hide unrelated changed paths Related paths are those which

contain the path used to display the log. If you fetch the log for a folder,

that means anything in that folder or below it. For a file it means just that

one file. If you want to grey out the unrelated ones, check View -
Gray unrelated changed paths Uncheck both menu items to hide the

unrelated paths completely.

In the lower left there are the checkboxes All branches and Show whole
project. Use these to override the branch resp. a file/folder filter and show
the log for the whole repository. Please note that these settings are
remembered for a repository - even if you started the log dialog on a
single file.

You can show whole project history, no choose directory or file by click
Show Whole Project

View + Labels - Tags View + Labels - Local branches
View + Labels - Remote branches You can disable showing
some reference types in the log graph.

View - Gravatar You can enable/disable Gravatar for a specific
repository.

Walk Behaviour - First Parent just follow up first parent commit.
This will help understand overwhole history.

Walk Behaviour - No merges Skips all merge points.

Walk Behaviour -. Follow renames This is available to a single file
only, which tracks renames. Otherwise, the log list stops at the commit
that the current filename introduced.

Walk Behaviour -. Compressed Graph The log graph is simplified

to include merge points, commits with references, and possibly other
commits.

Walk Behaviour -. Show labelled commits only The log graph is
simplified to include commits with references only.

2.13.5. Navigation

You can use the dropdown control on the upper right to select a
navigation type (e.g. Author Email, Parent 1, Selection history), then use
the | up [and | Down [green buttons to navigate through the commits which
match the navigation type relative to the current selected one.

Alternatively to the | up | and | bown | green buttons, hotkeys ALT+UP and
ALT+DOWN are also available.

Regarding the navigation type "Selection History", TortoiseGit memorizes
the history of selected commits, so that you can navigate through those
commits you selected in the past easily. You can also navigate them by
pressing ALT+LEFT, ALT+RIGHT, Browse Back, and Browse
Forward. Back and Forward buttons on mouse are also available.

If you also press SHIFT you can navigate through the selection history
without selecting the last commits (i.e., just scrolling to and highlighting
them). This helps you to navigate through commits and then select the
commit(s) you really want to select (e.g. you can compare the current
selected commit with the one you selected before).

If you want to jump to a commit with a particular hash, you may do so by
pressing Ctrl+V or Shift+Insert (into any log dialog element other than
the search box) to paste the hash from the clipboard. If it has the form of
a valid commit hash, the log dialog will attempt to jump to it.

2.13.6. Statistical Information
The | statistics | button brings up a box showing some interesting

information about the revisions shown in the Log dialog. This shows how
many authors have been at work, how many commits they have made,

progress by week, and much more. Now you can see at a glance who
has been working hardest and who is slacking ;-)

2.13.6.1. Statistics Page
This page gives you all the numbers you can think of, in particular the
period and number of revisions covered, and some min/max/average

values.

2.13.6.2. Commits by Author Page

Figure 2.30. Commits-by-Author Histogram

2 |
B2 D\ ToutniseGit Shatichees Tritnicebit = | B
Eile
Graph type: Commits by author v]
Commits by author
1323
1058
£ Frank Li [—=
E E.'.'rar Strli_'l.:krc-tl'
E 5 iohan °t Hart
s TE3 Myagi
Caolin Law
,_J{:-I":'_.r t Hart | I
Fog ackiz —
e }l.urkrw.'r | —
ter=ncehill [
Others (12} —1
254
e ——
author
Authors case sensitive B |Be | | [bat
Sort by commit count
authors shown individually: D
L

This graph shows you which authors have been active on the project as a
simple histogram, stacked histogram or pie chart.

Figure 2.31. Commits-by-Author Pie Chart

o DATortoiseGit - Statistics - TortoiseGit [=g ihj

Eile

Graph type: Commits by authaor v]

Commits by author

Frank Li
Swen Strickroth
ij{:-r'ar_ t Hart

¥agl
Caolin Law
Johan t Hart
jackis
nkonorwn
terencehill
Claus Stovgaard - C5T
Jakub Rajman
Stanislav Vinokurow
Stefan Kueng
sideproject
ArrirpE.Jll'-ar{:-r!i
Detlev Penza
Kai-Chigh Hu
Laszlo Papp
Testlzer
Others (2)

LT

author

Authors case sensitive E
Sort by commit count

=

H
£

authors shown individually: D

Where there are a few major authors and many minor contributors, the
number of tiny segments can make the graph more difficult to read. The
slider at the bottom allows you to set a threshold (as a percentage of total
commits) below which any activity is grouped into an Others category.

2.13.6.3. Commits by date Page

Figure 2.32. Commits-by-date Graph

r T =

7 DA\TortaiseGit - Statistics - TortoiseGit =REN X

Eile

Graph type: Commits by date B

Commits by date

354 Frank Li
Swen Strickroth
#:-I‘ar_ t Hart

¥agl
Caolin Law
Johan t Hart
jackis
nkonorwn
terencehill
Claus Stovgaard - C5T
Jakub Rajman
Stanislav Vinokurow
Stefan Kueng
sideproject
ArrirpE.Jll'ar{:-ri
Detlev Penza

: Kai-Chish Ku
’ Testlszar
———————— ——— Crtheers {2}

Laszlo Papp
4/08 1700 209 309 408 110 210 310 410 1711 211 311 411
gquarter of year

commits

|

[¥] Authors case sensitive
[¥] Sort by commit count

0
]
]
E
3

authors shown individually: D

This page gives you a graphical representation of project activity in terms
of number of commits and author. This gives some idea of when a project
is being worked on, and who was working at which time.

When there are several authors, you will get many lines on the graph.
There are two views available here: normal, where each author's activity
is relative to the base line, and stacked, where each author's activity is
relative to the line underneath. The latter option avoids the lines crossing
over, which can make the graph easier to read, but less easy to see one
author's output.

By default the analysis is case-sensitive, so users petergegan and
PeteRegan are treated as different authors. However, in many cases user
names are not case-sensitive, and are sometimes entered inconsistently,
SO you may want pavidMorgan and davidmorgan to be treated as the same
person. Use the Authors case insensitive checkbox to control how this is
handled.

The statistics dialog also honours the .mailmap file (see the section
called “MAPPING AUTHORS").

Note that the statistics cover the same period as the Log dialog. If that is
only displaying one revision then the statistics will not tell you very much.

2.13.7. Refreshing the View

If you want to check the repository again for newer log messages, you
can simply refresh the view using F5.

Prev Up Next
2.12. Submodules Home 2.14. Revision Graphs

2.14. Revision Graphs
Prev Chapter 2. TortoiseGit Daily Use Guide Next

2.14. Revision Graphs

Figure 2.33. A Revision Graph

4. Revision Graph .

File View Git Help

=1 D00 0|07

| sevisicnsran
-\ Dr:i.g:i_nfRe-v:i.a:i.uz
debug problem
github/master T
github/renaming
crigin/HERD merge_ 1 github/RevisionGraph fix ps

crigin/renaming

origin/master

T R}E”

REL 1.7.15.0 EXTERNAL

Y

a4

Sometimes you need to know where branches and tags were taken from

the point, and the ideal way to view this sort of information is as a graph

or tree structure. That's when you need to use TortoiseGit -
Revision Graph...

This command analyses the revision history and attempts to create a
direct graph showing the points at tag, branch and other reference.

—

A Important

In order to generate the graph, TortoiseGit must fetch all log
messages from the repository root. Just show commits which
have some reference point to.

2.14.1. Revision Graph Nodes

Each revision graph node represents a revision in the repository where

something changed in the tree you are looking at. Different types of

nodes can be distinguished by colour which can be configured using
TortoiseGit - Settings

Note that the graph only shows the points at which items were reference
by tag, branch or the other ref. Showing every revision of a project will
generate a very large graph for non-trivial cases.

2.14.2. Using the Graph

To make it easier to navigate a large graph, use the overview window.
This shows the entire graph in a small window, with the currently
displayed portion highlighted. You can drag the highlighted area to
change the displayed region.

The revision date, author and comments are shown in a hint box
whenever the mouse hovers over a revision box.

If you select two revisions (Use Ctrl-left click), you can use the context
menu to show the differences between these revisions. You can choose
to show differences as at the branch creation points, but usually you will
want to show the differences at the branch end points, i.e. at the HEAD
revision.

You can view the differences as a Unified-Diff file, which shows all
differences in a single file with minimal context. If you opt to Context
Menu - Compare Revisions you will be presented with a list of

changed files. Double click on a file name to fetch both revisions of the
file and compare them using the visual difference tool.

If you right click on a revision you can use Context Menu - Show
Log to view the history.

2.14.3. Refreshing the View

If you want to check the server again for newer information, you can
simply refresh the view using F5.

Prev Up Next
2.13. Log Dialog Home 2.15. Reference Log

2.15. Reference Log
Prev Chapter 2. TortoiseGit Daily Use Guide Next

2.15. Reference Log

The reference log (reflog) displays the history of a reference (i.e., it is
displayed to which commits it pointed in the past). In can be opened

using TortoiseGit - RefLog , howerver, you have to hold the Shift
key while right clicking on on a folder in the explorer in order to see this,
because it is in the extended context menu by default.

Figure 2.34. RefLog Dialog

.

" D\TortoiseGit - Reflog - TortoiseGit

Ref HEAD vl
SHA-1 Ref Action Message =
Babae2ae5945f8025572f03c4dd79d7c64912113 HEAD{4} reset moving to Satae2ae5945f8025572f03c4dd 79d7c64912117
495ffe 3e5f4bbc365b46 3ce7ab2d4a4a024b0764 HEAD{S32} reset moving to 429ffe3e5f4bbc369b46 3ceTab2d4ada024b0 764
35bof7d4f3821d30ce0e395a69f841a7a704383a HEAD{2} commit Updated doc images
2389626384633 16 7f4f 715f7bf712cd72063511d HEAD{3} commit fixed evn enarific ahuff
Babae2ae5945f8025572f03c4dd 79d7ca4912113 HEAD{4} reset Compare with working tree 754912117
0ca219388 7b050b7dfed06e0a69a150d5feaa0fd HEAD{S} commit {merge) Show changes as unified diff
dfgece0ccs 1f23f28f023a2d%ea35888a2f5b 3 HEAD{37} checkout T e
cd6770ec8cc27b7 12780 7a0b09757 3dcaacfcd HEAD{S} reset 7 3dcaacfcd
6924e553b7f955036b 1565184497868 17df3a2cf HEAD{16} checkout & | Showlog.. 7573dcaacft
cd6770eclcc27b 7 12786 7a0b097573dcaacfcd HEAD{S} reset i 7 3dcaacfcd
2c31d811a46dc71b3bbfo8bE6852532482 16284 HEAD{10} cherry-pick 8, Browse repository =d files)
c7fSbc799e 2e04cdf2bafde0d20582310a866a66 HEAD{11} commit (amend) %) Reset "master” to this...
9b3c10208fb96157469cd58852a493b579bd44c HEAD{1Z} commit (amend) 1# Create Branch at this version...
5foeddsde59a3d432a74323394b83a2619%c8,.. HEAD{13} cherry-pick - e el i e o
dfgetelccd 1f23f28f023a2d%ea35388a2f5b 3 HEAD{37} checkout
602425530 7fA50086b 156518440868 17df3a2cf HEAD{16} checkout B Export this version... 7573dcaactc
6924e553b7f955086b 156518445368 17df3a2cf HEAD{16} checkout) Revert change by this commit 757 3dcaacfc
e5c11b7dc8c994207cab4978315913219f 76125 HEAD{17} commit B2 Edit Notes =d files)
4360ba299f18664c6bet 2445 1 1dafaffadob07 HEAD{13} commit
dfgetelccd 1f23f26f023a2d%ea35888a2f5b3fh HEAD{37} checkout ® Delete Ref...
898715c436d0c48627242c87820590fcebf29a3b HEAD{24} reset fcebf29a3b
dfeese0cco1f23f26f023a2d9ea35888a2f5b3fb HEAD{37} checkout By Cherry Pick this commit...
B98715c436d0c4a627242cA7320590fcehf29a3 HEAD{24} reset £ Format Patch.. frebf29a3b
45f7205c1e99ceab31443058d%e Ff14da86b75dfh HEAD{35} checkout S0fcebf?9a
898715c436d0c4a627242c87820590fcebf29a3b HEAD{24} reset [2 Copy SHA-1 to clipboard fcebf29a3b
cBefdeb39d953d7355a%cb 5a%a84a2843b756a0b HEAD{25} cherry-pick [5 Copyto clipboard
Tcc04bd5edad 2hatde5Saa13523e37a793M9bb0d HEAD{26} commit {cherry-pick) -
7 = # Search log messages... .

1? Show branches this commit is on
oK l [Cancel] [Help

The RefLog can be used to restore deleted commits or HEAD positions
(e.g. when you deleted a branch which was HEAD some time ago).

You can find more information at Section G.3.101, “git-reflog(1)”.

Prev Up Next

2.14. Revision Graphs 2.16. The Repository

Home
Browser

2.16. The Repository Browser
Prev Chapter 2. TortoiseGit Daily Use Guide Next

2.16. The Repository Browser

Sometimes you need to see all contents/files of a repository, without
having a working tree (e.g. a bare repository) or you want to see all files
of a revision without switching to it. That's what the Repository Browser is
for. You can open it using TortoiseGit - Repo-browser or from the
log dialog (cf. Section 2.13, “Log Dialog”) using the context menu of a
commit.

Figure 2.35. The Repository Browser

. N

i:" DATortoiseGit - Repositery Browser - TortoiseGit o ()
Path: /src/TortoiseProc Revision: | e3927daled05040ee99995f1d393442133314e9 |
4 -~
. contrib * || Filename Extension Size -
) doc
| Commands -
, ext =
% . Settings

| Languages
| arc f-ﬂ.ﬁ.l:ucuuﬁ:)lg.cpp .Ccpp 4,54 KB

TR 1] AboutDlg.h h 1.32 KB

| Git : G| AddDlg. cpp —

| IBugTragProvider] AddDig.h pe .

| Resources ¢+ AddRemoteDlg. Open with...

. ResText 1] AddRemoteDlg.h View revision in alternative editor

) SshAskPass =1 ¢+ AppUtils. cpp

. TGitCache || (] apputils.h Compare with working tree

, TortoiseGitBlame CﬂBisectStarﬂ}Ig.cp

V TDrb:l?SEGit.SEb.Ip h] BisectStartDlg.h | &= Show log

; T':'rb:'!SEID'ﬁ 1] BranchCombax.h &, Blame

] TDrtD!SEN:fErEE f-jBru:uwseRestlg.q -

: ::'FE!SEE ol h] BrowseRefsDig.h Save revision to...

| TortoiseProc I) -

e—— ¢changedDlg.cpp| © Revert to this revision
1 Settings] ChangedDig.h
i banted & ChedkForUpdated =] Copy paths to clipboard
| TortoiseUDiff] CheckForUpdates 5] Copy SHA-1 to clipboard
| touch = || |h] CherryPidc.h a) T —
AddDlg.cpp
seegoake L 0K [Cancd | [Hep |
L

The repository browser looks very similar to the Windows explorer,
except that it is showing the content of the repository at a particular
revision rather than files on your computer. In the left pane you can see a
directory tree, and in the right pane are the contents of the selected

directory. At the top of the Repository Browser Window you can see the
path within the repository and the revision you want to browse.

Just like Windows explorer, you can click on the column headings in the
right pane if you want to set the sort order. And as in explorer there are
context menus available in both panes.

In order to get an older version of a file you can click on a file and select
Save revision to , but it is also possible to just drag one or more files
into a Windows explorer window.

The context menu for a file allows you to:

e Open the selected file, either with the default viewer for that file type,
or with a program you choose.

e Show the revision log for that file so you can see the history of it.

e Compare the file at the selected revision with the same file in your
working tree.

¢ Blame the file, to see who changed which line and when.

e Save an unversioned copy of the file to your hard drive or revert this
file in your working copy (i.e. saves the file to it's old path in the
working tree).

e Copy the filename with full path shown in the address bar to the
clipboard.

The context menu for a folder allows you to:
e Show the revision log for that folder.
e Copy the full path to the clipboard.

You can use Fb5 to refresh the view as usual. This will refresh everything
which is currently displayed.

Prev Up Next
2.15. Reference Log Home 2.17. Viewing Differences

2.17. Viewing Differences
Prev Chapter 2. TortoiseGit Daily Use Guide Next

2.17. Viewing Differences

One of the commonest requirements in project development is to see
what has changed. You might want to look at the differences between two
revisions of the same file, or the differences between two separate files.
TortoiseGit provides a built-in tool named TortoiseGitMerge for viewing
differences of text files. For viewing differences of image files, TortoiseGit
also has a tool named TortoiseGitIDiff. Of course, you can use your own
favourite diff program if you like.

2.17.1. File Differences

Local changes

If you want to see what (uncommitted) changes you have made in
your working tree, just use the explorer context menu and select
TortoiseGit - Diff .

Difference from a previous revision

If you want to see the difference between a particular revision and
your working tree, use the Log dialog, select the revision of interest,
then select Compare with working tree from the context menu
(cf. Section 2.13, “Log Dialog”).

If you want to see the difference between the last committed revision
and your working tree, assuming that the working tree hasn't been
modified, just right click on the file. Then select TortoiseGit -

Diff with previous version . This will perform a diff between the
revision before the last-commit-date (as recorded in your working
tree) and the working BASE. This shows you the last change made
to that file to bring it to the state you now see in your working tree. It
will not show changes newer than your working tree.

Difference between two previous revisions

If you want to see the difference between two revisions which are

already committed, use the Log dialog and select the two revisions
you want to compare (using the usual Ctrl-modifier). Then select

Compare revisions from the context menu (cf. Section 2.13, “Log
Dialog”). Then the Compare Revisions dialog appears, showing a list
of changed files (maybe with a folder filder pre-applied). Read more
in Section 2.17.3, “Comparing Version”.

All changes made in a commit

If you want to see the changes made to all files in a particular
revision in one view, you can use Unified-Diff output (GNU patch
format). This shows only the differences with a few lines of context. It
is harder to read than a visual file compare, but will show all the
changes together. From the Revision Log dialog select the revision
of interest, then select Show Differences as Unified-Diff from the
context menu.

Difference between files

If you want to see the differences between two different files, you

can do that directly in explorer by selecting both files (using the usual

Ctrl-modifier). Then from the explorer context menu select
TortoiseGit - Diff .

Difference to another branch/tag

If you want to see the changes of different branches (maybe the
current one to another branch or two branches) you can use the log
dialog and select the two revisions as described above for
"Difference between two previous revisions". An easier way is to
open the reference browser (cf. Section 2.11, “Browse All Refs”).
There you can click on one branch and select Compare to
working tree to see all changes between that branch and your
current state of the working tree. You can also select two branches
and compare those using the context menu as described in

Section 2.11, “Browse All Refs”.

Difference between folders

The built-in tools supplied with TortoiseGit do not support viewing
differences between directory hierarchies.

If you have configured a third party diff tool, you can use Shift when
selecting the Diff command to use the alternate tool resp. the build in
tool. Read Section 2.36.4, “External Program Settings” to find out about
configuring other diff tools.

2.17.2. Line-end and Whitespace Options

Sometimes in the life of a project you might change the line endings from
CRLF to LF, or you may change the indentation of a section. Unfortunately
this will mark a large number of lines as changed, even though there is
no change to the meaning of the code. The options here will help to
manage these changes when it comes to comparing and applying
differences. You will see these settings in the Comparing Version dialog
(cf. Section 2.17.3, “Comparing Version”), as well as in the settings for
TortoiseGitMerge.

Ignore line endings excludes changes which are due solely to difference
in line-end style.

Compare whitespaces includes all changes in indentation and inline
whitespace as added/removed lines.

Ignore whitespace changes excludes changes which are due solely to a
change in the amount or type of whitespace, eg. changing the indentation
or changing tabs to spaces. Adding whitespace where there was none
before, or removing a whitespace completely is still shown as a change.

Ignore all whitespaces excludes all whitespace-only changes.

Naturally, any line with changed content is always included in the diff.
2.17.3. Comparing Version

Figure 2.36. The Compare Revisions Dialog

-

:* D:\TortoiseGit - Changed Files - TortoiseGit = B e

Difference between Diff Options] [Show log] [z]
Version 1 (Newer commit time)

4745399¢: Add filename extension column in FileDiffDlg to allow to sort by extension

Version 2 (Base)

=

6ed7965f: Update Tortoise.pot

&~ Filter paths
File Extension Action Lines added Lines removed
E src/Resources TortoiseProcENG.rc .rc Modified 1

*++ srcTortoiseProc/FileDiffDlg. cpp

Cormpare revisions
B srcfTortoiseProc/resource.h

Show changes as unified diff

£} Revert to revision 4745389
) Revert to revision bed7968

Show log

Blame revisions

Export selection to...

G

&

=i

E Save list of selected files to...
[Z] Copy paths to clipboard
=

Copy all information to clipboard

In log dialog, when you select two commits Context menu -
Compare revisions , or when you select a commit Context menu

- Compare with previous version | Compare with working tree ;

or in Windows Explorer, when you select no files or a folder TortoiseGit

context menu - Diff with previous version , the Compare

Revisions Dialog comes up.

This dialog shows a list of all files which have changed and allows you to
compare them individually using context menu.

You can Revert selected files to version 1 or version 2. There are 2 menu
items for this purpose. Context menu - Revert to revision XXxXxXxxx
| Revert to revision yyyyyyy where Xxxxxxx is revision 1 short hash

and yyyyyyy revision is 2 short hash.

You can export a change tree, which is useful if you need to send
someone else your project tree structure, but containing only the files
which have changed. This operation works on the selected files only, so
you need to select the files of interest - usually that means all of them -
and then Context menu - Export selection to... . You will be
prompted for a location to save the change tree.

You can also export the list of changed files to a text file using Context
menu - Save list of selected files to... .

If you want to export the list of files and the actions (modified, added,
deleted) as well, you can do that using Context menu - Copy
selection to clipboard .

The button at the top allows you to change the direction of comparison.
You can show the changes need to get from A to B, or if you prefer, from
B to A.

The buttons with the revision numbers on can be used to change to a
different revision range. When you change the range, the list of items
which differ between the two revisions will be updated automatically.

If the list of filenames is very long, you can use the search box to reduce
the list to filenames containing specific text. Note that a simple text
search is used, so if you want to restrict the list to C source files you
should enter .c rather than *.c.

2.17.4. Diffing submodules using Submodule Diff Dialog

The built-in diff command of git is available for diffing submodules, but we
often find ourselves wanting to see more details how a submodule has
changed too. That's why we created Submodule Diff Dialog. The
Submodule Diff Dialog is only accessible using the Section 2.5,
“Committing Your Changes To The Repository” or Section 2.6, “Getting
Status Information” dialogs using the COmpare with base entry in the
context menu for a submodule.

Figure 2.37. The submodule difference dialog
3" DATortoiseGit - Submodule Diff - TortoiseGit = et S

Submodule "extlibagit2"

From
Revision: (03452b347ef51f3400e40fb7b33adch4508dched| Show log

Subject: Merge pull request #9387 from pwkelley pthread_cond

To

Type: Fast Forward | Update | | Show diff |
Revision: da820437368aae2088e992e7ce3944253593aa16 Show log

Subject: graph: plug leak

The 'From' group box on the top displays the information of the original
revision. Below it, there is a 'To' group box, which display the information
of the changed revision. For each group box, the full commit hash is
displayed, and can be highlighted and copied to clipboard; the subject
(i.e. first line of commit message) is displayed and also copyable to
clipboard; the Show Log button brings you to a new Log Dialog and jump
to that revision.

To better draw the attention of the change of revision of submodule
mounted, we added some indicators. In 'To' group box, there is a change
type field. Here list out the types:

Fast-forward

Topology-based. This is for a fast-forward change.

Rewind

Topology-based. This is the reversed direction of a fast-forward
change.

Newer commit time

Time-based. If it is neither fast-forward nor rewind, then we compare
commit time. This is for a revision with newer commit time than the
original revision.

Older commit time

Time-based. This is the reversal of 'Newer commit time"'.

Same commit time

Time-based. The commit time is the same. This may be produced by
auto-generating commits or committing at the same time by two
persons.

New Submodule

This is for newly added submodule.

Delete Submodule

This is for deleted submodule.
Unknown
This is for submodule revision hash not changed, error, etc..

If current workspace of the submodule is dirty, the commit hash will be
rendered in yellow background and red text.

In both group boxes, if the revision is not fetched, submodule not
initialized or other errors, the commit hash will be rendered in red
background.

2.17.5. Diffing Images Using TortoiseGitIDiff
There are many tools available for diffing text files, including our own

TortoiseGitMerge, but we often find ourselves wanting to see how an
image file has changed too. That's why we created TortoiseGitIDiff.

Figure 2.38. The image difference viewer

[¥ TortoiseIDiff | B S
File View 7
5 [y in | = =& @& @ S 3
Ny ‘T.‘#‘Q‘ = ew JE-I.@ . W
Branch.png:d2cffe Branch.png : Working Copy
File size: 15,7 KB (16179 Bytes)
Width: 450 pixel
Height: 347 pixel
Horizontal Resolution: 96.0 dpi
Vertical Resolution: 96.0 dpi
Depth: 24 bit
Z 3 100%
=0 7" DA\TortoiseGit - Create Branch - TortoiseGit
=
Create Branch Hame
N Branch
Static
Base On
Branch
@ HEAD (master):
() Branch master
Base On
@ HEAD (master) Tags REL_1.7.5.0_INTERNMAL
{)Branch Ao
O Tags Options
() version Track [|Force | Switch to new branch
Message
Qption
[JForce []5witch to new branch
OK l | Cancel
i« T 1 3

TortoiseGit -

Diff for any of the common image file formats will

start TortoiseGitIDiff to show image differences. By default the images are

displayed side-by-side but you can use the View menu or toolbar to
switch to a top-bottom view instead, or if you prefer, you can overlay the
images and pretend you are using a lightbox.

Naturally you can also zoom in and out and pan around the image. You
can also pan the image simply by left-dragging it. If you select the Link
images together option, then the pan controls (scrollbars, mousewheel)
on both images are linked.

An image info box shows details about the image file, such as the size in

pixels, resolution and colour depth. If this box gets in the way, use
View - Image Info to hide it. You can get the same information in a
tooltip if you hover the mouse over the image title bar.

When the images are overlaid, the relative intensity of the images (alpha
blend) is controlled by a slider control at the left side. You can click

anywhere in the slider to set the blend directly, or you can drag the slider
to change the blend interactively. Ctrl+Shift-Wheel to change the blend.

The button above the slider toggles between two preset blends, indicated
by the markers on either side of the blend slider. By default one is at the
top and the other at the bottom, so the toggle button just switches
between one image and the other. You can move the markers to choose
the two blend values that the toggle button will use.

Sometimes you want to see a difference rather than a blend. You might
have the image files for two revisions of a printed circuit board and want
to see which tracks have changed. If you disable alpha blend mode, the
difference will be shown as an XOR of the pixel colour values.
Unchanged areas will be plain white and changes will be coloured.

2.17.6. External Diff/Merge Tools

If the tools we provide don't do what you need, try one of the many open-
source or commercial programs available. Everyone has their own
favourites, and this list is by no means complete, but here are a few that
you might consider:

WinMerge

WinMerge is a great open-source diff tool which can also handle
directories.

Perforce Merge

Perforce is a commercial RCS, but you can download the difffmerge
tool for free. Get more information from Perforce .

http://winmerge.sourceforge.net/
http://www.perforce.com/perforce/products/merge.html

KDiff3

KDiff3 is a free diff tool which can also handle directories. You can
download it from here .

ExamDiff

ExamDiff Standard is freeware. It can handle files but not directories.
ExamDiff Pro is shareware and adds a number of goodies including
directory diff and editing capability. In both flavours, version 3.2 and
above can handle unicode. You can download them from PrestoSoft

Beyond Compare

Similar to ExamDiff Pro, this is an excellent shareware diff tool which
can handle directory diffs and unicode. Download it from Scooter
Software .

Araxis Merge

Araxis Merge is a useful commercial tool for diff and merging both
files and folders. It does three-way comparison in merges and has
synchronization links to use if you've changed the order of functions.
Download it from Araxis .

SciTE

This text editor includes syntax colouring for unified diffs, making
them much easier to read. Download it from Scintilla .

Notepad2

Notepad? is designed as a replacement for the standard Windows
Notepad program, and is based on the Scintilla open-source edit
control. As well as being good for viewing unified diffs, it is much
better than the Windows notepad for most jobs. Download it for free
here .

http://kdiff3.sf.net/
http://www.prestosoft.com/
http://www.scootersoftware.com/
http://www.araxis.com/merge/index.html
http://www.scintilla.org/SciTEDownload.html
http://www.flos-freeware.ch/notepad2.html

Notepad?2 is included in the TortoiseGit Setup as an alternative editor
which support LF only line endings. An entry in the start menu
named Notepad? is created.

Read Section 2.36.4, “External Program Settings” for information on how
to set up TortoiseGit to use these tools.

Prev Up Next

2.16. The Repository 2.18. Adding New Files

Home
Browser

2.18. Adding New Files
Prev Chapter 2. TortoiseGit Daily Use Guide Next

2.18. Adding New Files

Figure 2.39. Explorer context menu for unversioned files
Open
Print
Edit
Open with [

#¥ TortoiseGit 3

&

Add...

: : Add to ignore list [
Restore previous versions

Send to r SELing
Help

Cut About

B S ¢

Copy

Create shortcut
Delete

Rename

Properties

If you created new files during your development process then you need
to add them to source control too. Select the file(s) and/or NOT empty
directory and use TortoiseGit - Add .

After you added the files to source control the file appears with a added
icon overlay which means you first have to commit (and push) your
working tree to make those files available to other developers. Just
adding a file does not affect any remote repository!

EoN Many Adds

You can also use the Add command on folders. In that case,
the add dialog will show you all unversioned files inside that
versioned folder. This helps if you have many new files and

need to add them all at once.

|

= Empty directories
Git only tracks content and, thus, cannot version (empty)
directories. If you need a directory to be automatically
created on checkout, make sure at least one versioned file is
in it (e.g. a placeholder file such as .gitkeep or .gitignore).

To add files from outside your working tree you can use the drag-and-
drop handler:

1.

2.

3.

4.

select the files you want to add
right-drag them to the new location inside the working tree
release the right mouse button

select Context Menu - Git Add copy and add files . The files
will then be copied to the working tree and added to version control.

You can also add files within a working tree simply by (left-)dragging and
dropping them onto the commit dialog.

If you add a file by mistake, you can undo the addition before you commit
using TortoiseGit - Delete (keep local)... or Revert .

You can find more information at Section G.3.2, “git-add(1)”

Prev Up Next

2.17. Viewing

Home 2.19. Copying/Moving/Renaming

Differences Files and Folders

2.19. Copying/Moving/Renaming Files and Folders
Prev Chapter 2. TortoiseGit Daily Use Guide Next

2.19. Copying/Moving/Renaming Files and
Folders

It often happens that you already have the files you need in another
project in your repository, and you simply want to copy them across. One
way is to simply copy the files and add them as described above
manually.

The easiest way to copy files and folders from within a working tree is to
use the right-drag menu. When you right-drag a file or folder from one
working tree to another, or even within the same folder, a context menu
appears when you release the mouse.

Figure 2.40. Right drag menu for a directory under version control
7-Zip 3
Git Mowve versioned itemn(s) here

Git Mowve and rename versioned item here

Copy here
Movwve here

Create shortcuts here

Cancel

Now you can copy existing versioned content to a new location, possibly
renaming it at the same time.

In order to get older versions of a file you can use the repository browser
to locate content you want, and copy it into your working tree directly
from the repository, or copy between two locations within the repository.
Refer to Section 2.16, “The Repository Browser” to find out more.

L:“ Cannot copy between repositories

Whilst you can copy and files and folders within a repository,
you cannot copy or move from one repository to another
while preserving history using TortoiseGit. Not even if the

repositories live on the same server. All you can do is copy
the content in its current state and add it as new content to
the second repository.

_i Git only tracks content

As Git only tracks content, it is not necessary to explicitly
record copies or moves as in version control systems like
Subversion. Git automatically detects copies/renames/moves
based on the file contents when calculating the log.

Prev Up Next

2.18. Adding New Files 2.20. Ignoring Files And

Home))
Directories

2.20. Ignoring Files And Directories
Prev Chapter 2. TortoiseGit Daily Use Guide Next

2.20. Ignoring Files And Directories

Figure 2.41. Explorer context menu for unversioned files

Open [
Print 1
Edit
Open with [
W TortoiseGit b| @ Add..
Restore previous versions ™ Addtoignore list ’ il
Send to 3 %“ Settings o
% Help
L =] About
Copy [:
Create shortcut '
Delete
Rename
Properties

In most projects you will have files and folders that should not be subject
to version control. These might include files created by the compiler,
*.0bj, *.Ist, maybe an output folder used to store the executable, bin/, obj/.
More examples include user-specific workspace settings *.suo, *.user
(Visual Studio), backup files *.bak, Backup*/, Shell metadata files
Thumbs.db, Desktop.ini, .DS_Store/. Whenever you commit changes,
TortoiseGit shows your unversioned files, which fills up the file list in the
commit dialog. Of course you can turn off this display, but then you might
forget to add a new source file.

The best way to avoid these problems is to add the derived files to the
project's ignore list. That way they will never show up in the commit
dialog, but genuine unversioned source files will still be flagged up.

If you right click on one or more unversioned files, and select the
command TortoiseGit — Add to Ignore List from the context
menu, a submenu appears allowing you to select ignore by names or by
extensions. Ignore dialog shows that allows you to select ignore type and

ignore file.

Figure 2.42. Ignore dialog

[&3" Ignore I,ﬂh,l1

Ignore Type

@ Ignore item(s) only in the containing folder(s)

Ignore item(s) recursively

Ignore File
@) .gitignore in the repository root
.gitignore in the containing directories of the items

.gitfinfo/fexdude

QK] | Cancel | | Help

Ignore Type

Ignore item(s) only in containing folder(s)

Only ignore the selected pattern(s) within that folder(s).

Ignore item(s) recursively

Ignore items with the selected pattern(s) in that folder(s) and child
folder(s).

Ignore File

.gitignore in the repository root

Write the ignore entries in .gitignore in the repository root. This
allows you to synchronize the ignore list with remote repository.

.gitignore in the containing directories of the items

Write the ignore entries in .gitignore in the containing directories of
the items. This allows you to synchronize the ignore list with remote

repository.

.git/info/exclude

Write the ignore entries in .git/info/exclude in repository metadata.
This allows you to store the ignore list locally, but cannot synchronize
with remote repository.

If you want to remove one or more items from the ignore list, in current
version of TortoiseGit, you have to manually edit the ignore list file using
a text editor that can handle Unix EOL. That allows you to specify more
general patterns using filename globbing, described in the section below.
Read Section G.4.5, “gitignore(5)” for more information. Please be aware
that each ignore pattern has to be placed on a separate line. Separating
them by spaces does not work.

2.20.1. Pattern Matching in Ignore Lists

Git's ignore patterns make use of flename globbing, a technique
originally used in Unix to specify files using meta-characters as wildcards.
The following characters have special meaning:

*

Matches any string of characters, including the empty string (no
characters).

Matches any single character.

Matches any one of the characters enclosed in the square brackets.
Within the brackets, a pair of characters separated by “-” matches
any character lexically between the two. For example [AGm-p]
matches any one of A, G, m, n, o Ofr p.

Pattern matching is case sensitive, which can cause problems on

Windows. You can force case insensitivity the hard way by pairing

characters, eg. to ignore *. tmp regardless of case, you could use a
pattern like *.[Tt][Mm][Pp].

Prev Up Next

2.19. Copying/Moving/Renaming 2.21. Deleting, Moving
: Home

Files and Folders

and Renaming

2.21. Deleting, Moving and Renaming
Prev Chapter 2. TortoiseGit Daily Use Guide Next

2.21. Deleting, Moving and Renaming

Unlike CVS, Git allows renaming and moving of files and folders. So
there are menu entries for delete and rename in the TortoiseGit
submenu. However, unlike SVN Git does not track filenames. Git only
tracks the content of files. So there is in general no need to use the Git
rename or remove functionality or even to "repair renames" as in SVN.
Renames and copies are automatically detected when showing the log.
However, using the Git delete and move functionality the files are
automatically removed from the Git index (i.e., not shown as missing, but
deleted) and in case of move/rename also re-added with the new names
(i.e., the new names don't show up as unversioned).

Figure 2.43. Explorer context menu for versioned files

Open |_
Print i
Edit [
Open with [
@ Git Commit -> "master”...
W¥ TortoiseGit 3 Diff
a e : 3
Restore previous versicns Diftats previoes Neson
Send to b | == Shovllg
7, Check for medifications
Cut @ Staszh Save
Copy
&# Rename...
Create shortcut %X Delete
Delete ¥ Delete (keep local)
Rename
&, Blame
e * Delete and add to ignore list] [
ﬁ}:h Settings
% Help
L-_Zfl About

2.21.1. Deleting files and folders

Use TortoiseGit - Delete toremove files or folders from Git.

When you TortoiseGit - Delete a file, it is removed from your
working tree immediately as well as being marked for deletion in the
repository on next commit. Up until you commit the change, you can get
the file back using TortoiseGit - Revert on the parent folder or on
the or Section 2.5, “Committing Your Changes To The Repository” or
Section 2.6, “Getting Status Information” dialogs.

If you want to delete an item from the repository, but keep it locally as an
unversioned file/folder, use Extended Context Menu -. Delete (keep
local) . You might have to hold the Shift key while right clicking on the
item in the explorer list pane (right pane) in order to see this in the
extended context menu.

Q Getting a deleted file or folder back
If you have deleted a file or a folder and already committed
that delete operation to the repository, then a normal
TortoiseGit - Revert can't bring it back anymore. But
the file or folder is not lost at all. If you know the revision the
file or folder got deleted (if you don't, use the log dialog to
find out) open the repository browser and switch to that
revision. Then select the file or folder you deleted, right-click
and select Context Menu - Revert to this revision .
Refer to Section 2.16, “The Repository Browser” and
Section 2.13, “Log Dialog” to find out more.

2.21.2. Moving files and folders

If you want to do a simple in-place rename of a file or folder, use
Context Menu - Rename... Enter the new name for the item and
you're done.

If you want to move files around inside your working tree, perhaps to a
different sub-folder, you can use the right-mouse drag-and-drop handler:

1. select the files or directories you want to move
2. right-drag them to the new location inside the working tree
3. release the right mouse button

4. in the popup menu select Context Menu - Git Move versioned
files here

1Y Do Not Git Move Submodule

You should not use the TortoiseGit Move or Rename
commands on a folder which has been created using git
submodule.

2.21.3. Changing case in a filename

Making case-only changes to a filename needs special attention,
because Windows does not honor the filename casing by default.
Therefore just renaming a file using the rename command of the Explorer
is likely not to work. It is important to rename it using Git in order to
update the index to make it use the new filename. Use the Rename...
command in the TortoiseGit submenu.

2.21.4. Dealing with filename case conflicts

If the repository already contains two files with the same name but
differing only in case (e.g. TEST.TXT and test.txt), you will not be able to
commit, and only one of them can be checkout on a Windows client.
Whilst Git (in general) supports case-sensitive filenames, Windows does
not.

This sometimes happens when files are committed from a system with a
case-sensitive file system, like Linux, or when the setting core.ignorecase
is set to false (cf. Section G.3.27, “git-config(1)”).

In that case, you have to decide which one of them you want to keep and
delete the other(s) from the repository (or rename the other(s)). Easiest
way is to do that on a case-sensitive file system, followed by commiting
and pushing the changes. Doing it on Windows requires several steps
(and two commits):

Solution

1. Delete the file in explorer.

é Caution

Do NOT use the Delete orthe Delete (keep local)
command in the TortoiseGit submenu!

2. Open the Commit dialog. (All the checked items are of beleted
status.)

3. Un-check only one item you want to keep.
4. Commit the changes.

5. Revert deletion of the wanted file in order to get it back. If you want
to keep both or more files which had the "same" name, but with a
different new name, do this for all files in question and rename them
before proceeding with the next file.

2.21.5. Deleting Unversioned Files

Usually you set your ignore list such that all generated files are ignored in
Git. But what if you want to clear all those ignored items to produce a
clean build? Usually you would set that in your makefile, but if you are
debugging the makefile, or changing the build system it is useful to have
a way of clearing the decks.

TortoiseGit provides just such an option using Extended Context

Menu - Clean up... . You may have to hold the Shift while right
clicking on a folder in the explorer list pane (right pane) in order to see
this in the context menu. This will show a dialog which lists all possible
clean up options (cf. Section 2.23, “Cleanup”).

Prev Up Next

2.20. Ignoring Files And 2.22. Undo Changes
: : Home

Directories

2.22. Undo Changes
Prev Chapter 2. TortoiseGit Daily Use Guide Next

2.22. Undo Changes

If you want to undo all changes you made in a file since your last commit
you need to select the file, right click to pop up the context menu and
then select the command TortoiseGit - Revert A dialog will pop up
showing you the files that you've changed and can revert. Select those
you want to revert and click on| ok |

Figure 2.44. Revert dialog

© -

i DATortoiseGit - Revert - TortoiseGit =NREN X

Path o
] [docjfimagesfen/fAdd.png

(] [docfimagesen/ApplyPatch.png

[[docjfimagesfen/Branch.png

(1] [docjfimagesfen/BrowseRef.png

(1] [docjfimages fen/Commit.png

[[docfimagesfen/CommitsSpellched:.png

(1] [docjfimagesfen/CompareRevisions. png

(1] [docjfimagesfen/ContextMenubirControl, png
[[docjfimagesfen/ContextMenubirMoCaontrol.png
] [docjfimages fen/ContextMenuFileContral.png
[[docjfimagesfen/ContextMenuFileIgnore. png
(1] [docjfimagesfen/CreateBranch.png

(1] [docfimagesfen/CreatePatch.png

[[ms docfimages en/CreateTag.png

[] A firn zrae fan AEvrseH 100 nna
i 1 3

m

[selectjdeselect &l

K [Cancel] [Help]

If you want to undo a deletion or a rename, you need to use Revert on
the parent folder (or commit or repository status dialog) as the deleted
item does not exist for you to right-click on.

If you want to undo the addition of an item, this appears in the context
menu as TortoiseGit - Delete (keep local) . This is really a revert
as well, but the name has been changed to make it more obvious.

The columns in this dialog can be customized in the same way as the

columns in the Check for modifications dialog. Read Section 2.6.2,
“Status” for further details.

@ Undoing Changes which have been committed

Revert will only undo your local changes. It does not undo
any changes which have already been committed. If you
want to undo all the changes which were committed in a
particular revision, read Section 2.13, “Log Dialog” and
Section 2.16, “The Repository Browser” for further
information.

EoN Reverting a whole commit

If you want to undo a whole commit, then you should use the
log dialog and select Revert change by this commit on a
revision/commit (cf. Section 2.13, “Log Dialog”). Then all
changes of this commit are undone and a revert commit is
created which need to be committed manually (cf.

Section G.3.114, “git-revert(1)”). It is also possible to (hard)
reset to a previous commit, then all commits after that are
forgotten (cf. Section 2.24, “Reset”) - this might not be
recommended if the changes are already pushed (also see
https://stackoverflow.com/q/27032850/3906760).

EoN Revert is Slow

When you revert changes you may find that the operation
takes a lot longer than you expect. This is because the
modified version of the file is sent to the recycle bin, so you
can retrieve your changes if you reverted by mistake.
However, if your recycle bin is full, Windows takes a long
time to find a place to put the file. The solution is simple:

https://stackoverflow.com/q/27032850/3906760

either empty the recycle bin or deactivate the Use recycle bin
when reverting box in TortoiseGit's settings.

3 Revert I= "git revert" for files

In the TortoiseGit naming a "revert" on a file is comparable to
git checkout HEAD -- filename (or git checkout REVISION --
filename) for resetting a file to it's last (or a specific)
committed state. This has nothing to do with Section G.3.114,
“git-revert(1)”!

Section G.3.114, “git-revert(1)” is only referred to by Revert
change by this commit in log dialog (cf. Section 2.13, “Log
Dialog”).

Prev Up Next

2.21. Deleting, Moving and 2.23. Cleanup

. Home
Renaming

2.23. Cleanup
Prev Chapter 2. TortoiseGit Daily Use Guide Next

2.23. Cleanup

In order to remove untracked or ignored files from the working tree use

TortoiseGit - Cleanup . Then a dialog comes up which allows you
to clean up the working tree by recursively removing files that are not
under version control or ignored, starting from the current directory or on
the whole working tree (depends on version of installed git).

Figure 2.45. Clean dialog
21 DA\TortoiseGit - Clean - TortoiseGit -

Clean Type

@ Remove all untracked files (-fx)i

Remove non-Hgnored untracked files (-f)

Remove ignored files (-fx)

| Remove untracked directaories (-d)
Do not use recyde bin
Dry run

Submodules

Attention: This command affects the whole working tree!

[0K] | Cancel | | Help |

L ”

Clean all untracked files This removes all untracked files, including those
ignored by Git. This is the cleanest option.

Clean only non-ignore untracked files This removes untracked files, but
excluding those ignored by Git.

Clean only ignored files This removes only files ignored by Git.
Remove untracked directories This removes untracked directories too.

Do not use recycle bin Use this option if you want to delete those files
directly and permanently. Make sure you do not regret!

Dry run This just gives the list of files to be deleted, but it does not

perform any deletion.
Submodules This also cleans submodules recursively.

You can find more information at Section G.3.22, “git-clean(1)”.

Prev Up Next
2.22. Undo Changes Home 2.24. Reset

2.24. Reset
Prev Chapter 2. TortoiseGit Daily Use Guide Next

2.24. Reset

The reset dialog can be used to reset the current HEAD to the specified

state and optionally also the index and the working tree. This can also be
used to abort a merge.

Figure 2.46. The Reset dialog
44" Reset Iﬁ

Reset current branch "master” to

(") Branch master
| Tags Fix_EMAIL
@) Commit c164bffae49ae95237a5a57d4f3d9651d050c 19e v E]
Reset Type

(") Soft: Leave working tree and index untouched
(@) Mixed: Leave working tree untouched, reset index

(") Hard: Reset working tree and index (discard all local changes)

Show modified files in working tree]

[QK] [Cancel] I Help]

Figure 2.47. The Abort Merge dialog
2" DA\TortoiseGit- Abort Merge - TortoiseGit [

-

In order to abort a merge progess a reset (to HEAD) is needed.
Reset Type

(") Mixed: Leave working tree untouched, reset index

(@ Hard: Reset working tree and index (discard all local changes);

Show modified files in working tree]

0K] [Cancel] [Help]

On the Reset dialog, you can click| ... | to browse the log and choose a

specific version. In Abort merge dialog, you can only reset to HEAD.

Soft: Leave working tree and index untouched Does not touch the index
file nor the working tree at all (but resets the head to the selected commit,
just like all modes do). This leaves all your changed files "Changes to be
committed" as before. This option is not available in Abort Merge dialog.

Mixed: Leave working tree untouched, reset index Resets the index but
not the working tree (i.e., the changed files are preserved but not marked
for commit) and reports what has not been updated. This is the git default
action. This option can abort a merge.

Hard: Reset working tree and index (discard all local changes) Resets
the index and working tree. Any changes to tracked files in the working
tree since the selected commit are discarded. This option can abort a
merge, and it is the default action in Abort Merge dialog.

Eﬁi Git hard reset does not use the Windows recycle bin

Unlike the revert or clean functions of TortoiseGit, the hard
reset does not make use of the Windows recycle bin, i.e.,
uncommitted changes might get lost!

You can find more information at Section G.3.111, “git-reset(1)".

Prev Up Next
2.23. Cleanup Home 2.25. Stash Changes

2.25. Stash Changes
Prev Chapter 2. TortoiseGit Daily Use Guide Next

2.25. Stash Changes

When you want to record the current state of the working directory and
the index, but want to go back to a clean working directory, right click on
a folder to pop up the context menu and then select the command

TortoiseGit — Stash Save A dialog will pop up where you can
optionally enter a message for this state:

Figure 2.48. Stash save dialog
43" DATortoiseGit - Stash - TortoiseGit o 33 =

Stash Message

Options
indude untracked
| —all

[QK] | Cancel | | Help |

You can also select include untracked, to stash untracked files away, too.
To stash all files away, including ignored files in addition to the untracked
files, select --all.

When TortoiseGit detects that a stashed changes exist, the context menu
will be extended:

Figure 2.49. (un)stash options
@ Staszh Save

SIarS YL

= Git Sync... % Stash Apply
@ Git Commit -> "master"... 7 Stash Pop
W TortoiseGit ¥ | &= Stash List

The stash is implemented as a stack. Stash Apply will apply the
changes of the latest stash to your working tree. Stash Pop does the
same, but will remove the latest stash from the stack after applying it.

Stash Save is still possible and will stash the current changes of the
working copy to the top of the stack. Stash List provides an overview
of all the whole stash stack. You can also remove and view the stashed
changes there (similarly to the Section 2.13, “Log Dialog” and
Section 2.15, “Reference Log").

i Conflicts

Although major merge work is done by git automatically
applying a stash, a conflict may happen during cherry-picking
(i.e., a file was modified in your current branch and also in
the stash), please see Section 2.31, “Resolving Conflicts” on
how to resolve conflicts.

Please note, that "REMOTE"/"theirs" in the conflict editor
refers to the to be merged stash and "LOCAL"/"mine" to your
version in the working tree before you applied the stash.

You can find more information at Section G.3.128, “git-stash(1)”.

Prev Up Next
2.24. Reset Home 2.26. Bisect

2.26. Bisect
Prev Chapter 2. TortoiseGit Daily Use Guide Next

2.26. Bisect

If you want to find out which revision introduced a bug, you can use the
bisect functionality. Right click on a folder to pop up the context menu
and then select the command TortoiseGit - Bisect start . A dialog
will pop up:

Figure 2.50. Bisect start

i |
" DATortoiseGit - Bisect start - TortoiseGit -
Lastknown good: REL 1.7.4.0_INTERMAL ™
First known bad: f2ced2fefaliffe4f4cl 15badbad7chocT1adsa3 - | |

[o4] [Cancel |
L A

Enter the last known good revision and the first or one known bad (this is
normally HEAD).

After hitting | ok |, Git will perform a binary search for the first faulty
revision: Git switches to a revision in the middle. Now you can test this
revision.

TortoiseGit now provides three new options in the context menu:

Figure 2.51. Bisect options

= JILdEM dVE

A Git Commit...

W TortoiseGit 3 (%) Bisect good
@] Bizect bad
Restore previous versions Boect vl

Include in library [

~ =

If this revision is OK, hit TortoiseGit - Bisect good , otherwise hit
TortoiseGit — Bisect bad Git will proceed with the binary search
and switches to the "next" revision, so that you can test it. This goes on
until the faulty revision is found or you abort this operation by clicking on
TortoiseGit - Bisect reset (this will reset the bisect process and

switch out your previous branch/HEAD).

=", Selecting revisions
Y 9

If a revision cannot be tested, or you want to go on with a
different one, you can easily go to the log and (hard) reset
the current HEAD to a revision you like.

_iJ Submodules

If you use submodule you might need to make sure that
those are updated after each bisect step so that all
dependencies are up to date.

You can find more information at Section G.3.8, “git-bisect(1)”

Prev Up Next
2.25. Stash Changes Home 2.27. Branching/Tagging

2.27. Branching/Tagging
Prev Chapter 2. TortoiseGit Daily Use Guide Next

2.27. Branching/Tagging

One of the features of version control systems is the ability to isolate
changes onto a separate line of development. This line is known as a
branch. Branches are often used to try out new features without
disturbing the main line of development with compiler errors and bugs. As
soon as the new feature is stable enough then the development branch is
merged back into the main branch.

Another feature of version control systems is the ability to mark particular
revisions (e.g. a release version), so you can at any time recreate a
certain build or environment. This process is known as tagging.

Git is very powerful at branching and tagging. It is very easy to create
branches and tags.

2.27.1. Creating a Branch or Tag

Creating a branch is very simple: TortoiseGit - Create Branch...

Figure 2.52. The Branch Dialog

-

£3* DATortoiseGit - Create Branch - TortoiseGit =)
Mame
Branch test]
Base On
(@) HEAD {master)
(2 Branch master
() Tag REL_1.8.4.0_EXTERNAL
() Commit
Options
[H] Tradk [T Force [] switch to new branch
Message
[oK] [Cancel] [Help
Branch: input your branch name.
Creating a tag is very simple: TortoiseGit - Create Tag...

Figure 2.53. The Tag Dialog

" DATortoiseGit - Create Tag - TortoiseGit [

Mame
Tag 1.8.7.0]

Base On

@) HEAD (master)

 Branch master
@ Tag Fix_EMAIL
() Commit
Options
[H] Track [Force Sign
Message

oK] [Cancel l I Help

Tag: input your tag name.
You can choose one commit that base on.
HEAD

Current commit checked out.
Branch

The latest commit of chosen branch.
Tag

The commit of chosen tag.
Commit

Any commit, you click ... [to launch log dialog to choose commit.
You also can input commit hash, or friendly commit name, such as

HEAD~4.

If you want your working tree to be switched to the newly created branch
automatically, use the Switch to new branch/tag checkbox. But if you do
that, first make sure that your working tree does not contain
modifications. If it does, those changes will be merged into the branch
working tree when you switch.

track is a checkbox with three values. If it is checked --track is passed to
git on OK, if it is unchecked - -no-track is passed to git on OK. The third
state indicates, that neither --track nor --no-track is passed to git on OK
- see branch.autosetupmerge configuration variable (Section G.3.27, “git-
config(1)”) and --track parameter documentation for Section G.3.10, “git-
branch(1)”.

Check Sign to create a GPG signed tag. This requires GPG and also the
configuration variable "user.signingkey" to be set (see Section 2.36.6.2,
“Git Config” and Section G.3.27, “git-config(1)”).

EoN Tip
When using GPG 1.4 (which is shipped with Git for Windows)
this requires a key without a passphrase. GPG >= 2 comes
with an agent like pageant and, thus,.also works with
passphrase protected keys, however, you might need to
configure git to use the right gpg.exe. This can be done be
setting the configuration variable "gpg.program” (e.g.,
"C:/Program Files (x86)/GNU/GnuPG/pub/gpg.exe"). We
tested this with Gpg4win (GPG4win vanilla is sufficient and
with version 2.2.x it is also compatible to GPG 1.4 key files).

Press | ok | to create branch or tag at local repository.

Note that unless you opted to switch your working tree to the newly
created branch, creating a Branch or Tag does not affect your working
tree. Even if you create the branch from your working tree, those

http://www.gpg4win.de/

changes are committed to the original branch, not to the new branch.

On how to switch working tree to tag/branch, please refer to Section 2.4,
“Checking Out A Working Tree (Switch to commit)”.

You can find more information at Section G.3.10, “git-branch(1)” and
Section G.3.134, “git-tag(1)”.

Prev Up Next
2.26. Bisect Home 2.28. Merging

2.28. Merging
Prev Chapter 2. TortoiseGit Daily Use Guide Next

2.28. Merging

Where branches are used to maintain separate lines of development, at
some stage you will want to merge the changes made on one branch
back into the other branch, or vice versa.

It is important to understand how branching and merging works in Git
before you start using it, as it can become quite complex. For hints where
to find more information about Git and merging see Section 2, “Reading
Guide”.

The next point to note is that merging always takes place within a
working tree. If you want to merge changes into a branch, you have to
have a working tree for that branch checked out, and invoke the merge
wizard from that working tree using TortoiseGit - Merge... .

Figure 2.54. Merge dialog
ii" D:\TortoiseGit - Merge - TortoiseGit)

From

@ Branch master - | LI
Tag REL_0.1.0.0_PREVIEW

Commit

Option
[squash [Messages 20

[Mo Fast Forward ["|Fast Forward Only

[Mo Commit

Strategy -

Merge Message

<Auto Generated by Git»

Ok] | Cancel | | Help

In general it is a good idea to perform a merge into an unmodified
working tree. If you have made other changes in your working tree,
commit those first. If the merge does not go as you expect, you may want
to abort the merge using the Abort Merge command which might discard
all changes (depending on the mode, in case of hard).

You can choose one commit that you want to merge from.
HEAD
Current commit checked out.

Branch

The latest commit of chosen branch.
Tag
The commit of chosen tag.

Commit

Any commit, you click | ... | to launch log dialog to choose commit.
You also can input commit hash, or friendly commit name, such as
HEAD~4.

Squash Just merge change from the other branch. Can't recorder Merge
information. The new commit will not record merge branch as one parent
commit. Log view will not show merge line between two branch.

No Fast Forward Generate a merge commit even if the merge resolved
as a fast-forward. See https://stackoverflow.com/q/41794529/3906760 for
an example of fast-forward vs. non-fast-forward merge.

No Commit Do not automatically create a commit after merge.

Messages Populate the log message with one-line descriptions from the
actual commits that are being merged. Can specify the number of
commits to be included in the merge message.

https://stackoverflow.com/q/41794529/3906760

i Conflicts

Although major merge work is done by git automatically, a
conflict may happen during merge (i.e., a file is modified in
both branches, the current one and the one you want to
merge), please see Section 2.31, “Resolving Conflicts” on
how to resolve conflicts.

Please note, that "REMOTE"/"theirs" in the conflict editor
refers to the to the changes your on the branch you selected
for merging and "LOCAL"/"mine" to your HEAD version in
your working tree.

You can see more information at Section G.3.79, “git-merge(1)”.

Prev Up Next
2.27. Branching/Tagging Home 2.29. Cherry picking

2.29. Cherry picking
Prev Chapter 2. TortoiseGit Daily Use Guide Next

2.29. Cherry picking

Cherry-picking in TortoiseGit is invoked from the Revision Log Dialog.
Within this dialog, select the commit(s) to cherry-pick, then right-click on
one of the selected commits to pop up the context menu. Select Cherry
Pick this commit... (or Cherry Pick select commits... if more than one
commit is selected).

The Cherry Pick dialog will be shown.

Figure 2.55. Cherry Pick dialog

.]

2" DA\TortoiseGit - Cherry Pick - TortoiseGit =NR=N X
Branch: Upstream: |HEAD 8]
REBASE D SHA-1 Message Author Date
Pick 3 45633f7... Drop support for too old it versions Sven 5tri... 20.02,
Pick 2 97a491f... Change parameters of pre and post push hooks Sven Stri... 02.01.
Pick 1 c4593ac... Drop TGitCacheChedkContent Swven 5tri... 02.01,
' . . . b
Pick ALL |v] [up | | Down | ™| add "cherry picked from"
Path | PP e 18 B)
|£| doc/source/en/TortoiseGit/tgit_dug/dug_settings_hooks.xml we ML D |2
(=] sre/Changelog.bd e M| 1 (O
*+ sro/Utils/Hooks.cpp e M| D |2
H 4 » M \Rel.rl'sion Filesl,-{' Commit Message f
[Continue] [Abort] [Help I
L ")

The Cherry Pick dialog is similar to the Rebase dialog. The top table
displays one line for each selected commit to cherry-pick. Buttons below
it control the actions (Pick, Squash, Edit, Skip) and the order in which
multiple commits are picked. Selecting a line shows the files affected by
the commit.

T —

i Conflicts

Although major merge work is done by git automatically while
cherry-picking, a conflict may happen during cherry-picking
(i.e., a file was modified in your current branch and also in
one or more commits you are cherry-picking), please see
Section 2.31, “Resolving Conflicts” on how to resolve
conflicts.

Please note, that "REMOTE"/"theirs" in the conflict editor
refers to the to the changes your are picking and
"LOCAL"/"mine" to your HEAD version in your working tree.

You can find more information at Section G.3.19, “git-cherry-pick(1)”.

Prev Up Next
2.28. Merging Home 2.30. Rebase

2.30. Rebase
Prev Chapter 2. TortoiseGit Daily Use Guide Next

2.30. Rebase

Rebase is quite complex and it alters/rewrites the history of a repository.
Please make sure you understood its principles before using it (for
general hints where to find more information about Git and rebasing see
Section 2, “Reading Guide” and especialy Section G.3.99, “git-
rebase(1)”).

TortoiseGit — Rebase
The Rebase dialog will be shown.

Figure 2.56. Rebase dialog

B D Tortoiscoit - Reboe . Tt e A |
Branch: master v] Upstream: [|in‘|it—|og v] B

REBASE ID SHA-1 Message
Pick 21 4d9e910... origin/HEAD | origin/master | Update release. tut i
Pick 20 63b59f0... Make the RTFM command work as help for new users ‘ |
Skip 19 7ab786a... Add missing help command files to project 3
Squash 18 5Se03cle... Minor deanup
Pick 17 0144e26... Disable unsupported commands
Edit 16 Fa7ee7d... Drop properties command
 Pick 15 c2067... Allow to rename added files

Pick 14 cl64ach... Drop some magic numbers
Pick 13 a3d9e36... Do notconstructa temporary CString -
e - .

Pick ALL |] [Up] [Down] [Add] [Preserve merges ["|Force Rebase
Path Extension Status Lines added Lines remowved
*+ sro/TortoiseShell/Menulnfo.cpp .cpp Modified 1 1

M 4 F H \'Rewision F|'I-.=.*5l{,-<'liZu::ummitr'.-h;-ssagvel{,-ra

[Start Rebase] [Abort] [Help]

Rebasing commits takes places from the bottom of the list to the top (in
ascending order of the ID column). For example, "squash" means that

the commit gets squashed/combined with the previous commit(s) which
are located below in the list (with a lower ID).

2 TP

Instead of setting "pick”, "skip", "edit", "squash” by using the
context-menu, you can also use the following keys: space:
shifts the state, s: skip, e: edit, p: pick, g: squash

2 TP

There is a button that swaps branch and upstream. Assume
you are currently working on master branch, and wish to
rebase feature branch onto master. Instead of switching to
feature in advance, select the commit of feature in log list,

Context Menu - Rebase and click this swap button.
TortoiseGit's rebase moves feature to master directly, then
cherry-picks the commits. This approach touches fewer files
and runs faster.

i Important

When preserving merge commits, re-ordering commits
cannot be handled properly in all cases, see in known bugs
of vanilla git rebase: Section G.3.99, “git-rebase(1)”.

_iJ Conflicts

Although major merge work is done by git automatically while
rebasing, a conflict may happen during rebase (i.e., a file
was modified in both branches, the one you are rebasing one

and the on which you are rebasing), please see Section 2.31,
“Resolving Conflicts” on how to resolve conflicts.

Please note, that "REMOTE"/"theirs" in the conflict editor
refers to the to the changes of the branch you rebase onto
and "LOCAL"/"mine" to your version on the branch which you
are rebasing.

Prev Up Next
2.29. Cherry picking Home 2.31. Resolving Conflicts

2.31. Resolving Conflicts
Prev Chapter 2. TortoiseGit Daily Use Guide Next

2.31. Resolving Conflicts

During a merge, the working tree files are updated to reflect the result of
the merge. Once in a while, you will get a conflict when you merge
another branch, cherry-pick commits, rebase or apply a stash: Among the
changes made to the common ancestor's version, non-overlapping ones
(that is, you changed an area of the file while the other side left that area
intact, or vice versa) are incorporated in the final result verbatim. When
both sides made changes to the same area, however, Git cannot
randomly pick one side over the other, and asks you to resolve it by
leaving what both sides did to that area. Whenever a conflict is reported
you need to resolve it!

The conflicting area is marked in the file like this (also cf. the section
called “HOW CONFLICTS ARE PRESENTED?"):

<L L LKL yours
your changes

changes from the code merged
>>>>>>> their

You can use any editor to manually resolve the conflict or you can launch
an external merge tool/conflict editor with TortoiseGit - Edit
Conflicts . Then TortoiseGit will place three additional files in your
directory for the selected conflicted file and launch the configured conflict
editor:

filename.ext. BASE.ext

This is the common ancestor's version of the conflicted file (this
version does contain neither any of your nor any of the changes of
the to be merged branch/revision, especially it does not contain any
conflict markers).

filename.ext. LOCAL.ext

This is your file as it existed in your working tree before you started
the merge (i.e., the file conforms to the latest committed state of the
HEAD of your local repository) - that is, without conflict markers.
Therefore, this state/version is often also called "mine”.

Just for completeness "mine" means for
"stash"/"merge"/"pull"/"cherry-pick" the HEAD version in your
working tree and for "rebase" the version on the branch you rebase.

filename.ext. REMOTE.ext

This is the version of file of the revision you want to merge (on a
normal merge this correspondents to MERGE_HEAD). As you want
to merge other changes, this state/version is often also called
"theirs".

Just for completeness "theirs" means for
"stash"/"merge"/"pull"/"cherry-pick" the version of the to be merged
commit/branch and for "rebase" the version of the branch you rebase
onto.

Afterwards execute the command TortoiseGit - Resolved and
commit your modifications to the repository (if the conflict occurred while
rebasing or cherry-picking make sure you use the cherry-pick resp.
rebase dialog for committing and not the normal commit dialog!). Please
note that the Resolve command does not really resolve the conflict. It
uses "git add" to mark file status as resolved to allow you to commit your
changes and it removes the filename.ext. BASE.ext,

filename.ext. LOCAL.ext and filename.ext REMOTE.ext files.

If you have conflicts with binary files, Git does not attempt to merge the
files itself. The local file remains unchanged (exactly as you last changed
it). In order to resolve the conflict use TortoiseGit - Resolve... and
then right click on the conflicted file and choose one of Resolved (the
current version of the file which is in the working tree will be used),

Resolve conflict using 'mine' (the version of the file of your HEAD
will be used), and Resolve conflict using 'theirs' (the version of the
file of the merged revision/branch will be used). After that commit.

You can use the Resolved command for multiple files if you right click
on the parent folder and select TortoiseGit - Resolve... This will
bring up a dialog listing all conflicted files in that folder, and you can
select which ones to mark as resolved.

Figure 2.57. The resolve conflicts dialog

i DATortoiseGit - Resalve - TortoiseGit I. =g ﬁ]
Path Eie=
= arc/Changelog. txt St
@SFEIE ean irree (TortnissProcE e
Cerc| &, Edit conflicts
] src/| & Resohved
& Resolve conflict using 'theirs'
& Resolve conflict using 'mineg'
Compare with base
Show changes as unified diff
) Revert...
Ly Show log
&t Blame
View revision in alternative editor
Open
Open with...
ICh Exploreto
[Z] Copy paths to clipboard
[£] Copy all information to clipboard
Select/deselect all Reminder: Commit your change after resolve
Ok] [Cancel] [Help

i Important

Git (unlike SVN) does not automatically create

filename.ext. BASE.ext, filename.ext. LOCAL.ext and
filename.ext. REMOTE.ext files for conflicted files. These are
only created on-demand by TortoiseGit when you use the
command Edit Conflicts .

A Important

In Git (unlike SVN) you have to commit after resolving
conflicts. However, if the conflict occurred while rebasing or
cherry-picking make sure you use the cherry-pick resp.
rebase dialog for committing and not the normal commit
dialog!

2.31.1. Special conflict cases
2.31.1.1. Delete-modify conflicts

A special conflict case is a delete-modify conflict. Here, a file is deleted
on one branch and the same file is modified on another branch. In order
to resolve this conflict the user has to decide whether to keep the
modified version or delete the file from the working tree.

Figure 2.58. Resolve delete-modify conflict Dialog
41" Meues Textdokument.txt - Conflict - TortoiseGit Iﬁ

Deleted merge conflict

Meues Textdokument. bt

Local: Deleted
£559127e392c800cs 1c246efba 1becl3e 112770 Show log

Remote: Modified

54d77c4e 1756 1b9db5c07bf37ba0 13dc550a0 144 T

Maodified I | Delete | [Abort] | Help |

2.31.1.2. Submodule conflicts

Another special conflict case is a conflict involving a submodule. Here, a
submodule is changed in different (conflicting) ways on two branches.

The resolve submodule conflict dialog shows the base, the local and the
remote commit of the conflicting submodule as well as the commit type
(rewind, fast-forward, ...).

Figure 2.59. Resolve submodule conflict Dialog

-

T |
22" Ihsubmodule-canflict - Resolve Submodule Conflict - TortoiseGit El_léj
Submaodule Tibgit2® Help
Base
Revision: 46a2b8e855d5fad3ba0ba1500a9f6779cTf63e63 Show log
Subject: Merge pull request #2592 from libgit2/cmn/describe
Mine
Type: Fast Forward Show log
Revision: 533da4eall?03f4ad6d5518e1ce81d2026 104000
Subject: Merge pull request #2473 from arthurschreiber farthur fnew-javascript-test-files
Theirs
Type: Clder commit time Show log
Revision: ab2af775ecd467ebb328a7374653f247920f258f3
Subject: Merge branch 'development’ into gsoc-push
L

i Uninitialized submodules

If the submodule is not yet initialized the resolve submodule
conflict dialog only shows the commit IDs (SHA-1). Also, the
conflict cannot be resolved automatically: First, you have to
manually clone the submodule into the right folder. Then, you
can resolve the conflict using TortoiseGit or git (by checking
out the right commit in the submodule and commiting the
parent working tree).

Prev Up Next

2.30. Rebase Home 2.32. Creating and Applying
Patches and Pull Requests

2.32. Creating and Applying Patches and Pull Requests
Prev Chapter 2. TortoiseGit Daily Use Guide Next

2.32. Creating and Applying Patches and Puli
Requests

For open source projects (like this one) everyone has read access to the
(main/public) repository, and anyone can make a contribution to the
project. So how are those contributions controlled? If just anyone could
commit changes this this central repository, the project would be
permanently unstable and probably permanently broken. In this situation
the change is managed by submitting a patch file or a pull request to the
development team, who do have write access. They can review the
changes first, and then either submit it to the main repository or reject it
back to the author.

Patch files are simply Unified-Diff files showing the differences between
your working tree and the base revision.

A pull request is an request to another repository owner to pull changes
from your repository. l.e. you must have access to a public repository
where you can push your changes (normally a special branch).

2.32.1. Creating a Patch Serial

First you need to make and test your changes. Then you commit your
changes via TortoiseGit - Commit... on the parent folder, enter a
good commit message. After that select TortoiseGit - Create Patch
Serial... and choose the correct options to include your
changes/commits.

Figure 2.60. The Create Patch dialog

+4" DATortoiseGit - Format Patch - TortoiseGit [é]

Output Directory

Directory: | | D:\TortoiseGit - D
Version

(@ Since remotes forigin/master - D
() Mumber Commits 1

(7 Range From: | 50d0158fbba5c4cd04184bb7570f43584c290405~1

To: | 3f3a9701aeb1743a3eaedecd 72 1athat 741996 1c

[7] send Mail after create

I Save unified diff since HEAD l [oK] I Cancel I [Help I

Directory is output directory of patch. Patch file name will be created by
commit subject.

Since create patch from point. You can click] ... | to launch refbrowse
dialog to choose branch or tag.

Number Commits is limited how much patch will created.

Range is choose range of from commit to to. You can click| ... | to launch
log dialog to choose commit.

Send Mail after create launch send mail dialog after patches created (see
Section 2.32.2, “Sending patches by mail”).

You can find more information at Section G.3.50, “git-format-patch(1)”.

i Important

Here Git is different to TortoiseSVN: In TortoiseSVN you
directly create a patch instead of committing your changes
and create a patch of the commits afterwards (in git you have
a full local copy/fork of the project you cloned - commits are
just local). To generate a patch containing the uncommitted,

control with Git see Section 2, “Reading Guide”.

2.32.2. Sending patches by mail

but staged, changes click on | save unified diff since HEAD |.

For hints where to find more information about doing version

In order to send patches to the upstream authors, select the patch files

and then right click on them and select TortoiseGit

[]Patch As Attachment [7] combine Cne Mail [7] use maPI

- Send Mail...
Figure 2.61. The Send Patches Dialog
43" DATortoiseGit - Send Patch - TortoiseGit -
Mail
To: tortoisegit-dev @gooagle. com
CC:
Subject: [PATCH 1/3] drop unreferenced code

E D:\TortoiseGity000 1-drop-unreferenced-code. patch
7| D:\TortoiseGit\0002-drop-unused-tgit, exe.patch
7| D:\TortoiseGit\0003-fixed-possible-concurrent-modifications-of-m_pathsTo.patch

Send] [Cancel] [

Help

First you need to enter the recipient(s) (To and/or CC).

Depending on the mail type (Patch as attachment or Combine One Mail)

you have to enter a Subject for the mail.

Patch as attachment adds the patch(es) as attachment(s) to the mail(s)
instead of inlining them.

Combine One Mail adds all patches to one mail. You have to enter a
Subject for the mail in this case.

2.32.3. Applying a single Patch File

Patch files are applied to your working tree. This should be done from the
same folder level as was used to create the patch. If you are not sure
what this is, just look at the first line of the patch file. For example, if the
first file being worked on was doc/source/english/chapter1.xml and the
first line in the patch file is Index: english/chapterl.xml then you need to
apply the patch to the doc/source/ folder. However, provided you are in
the correct working tree, if you pick the wrong folder level, TortoiseGit will
notice and suggest the correct level.

From the context menu for a patch file (.patch or .diff extension), click on
TortoiseGit - Reviewl/apply single patch... You might be
prompted to enter a working tree location:

Figure 2.62. The Choose Repository Dialog
Browse For Folder [&J

Choose Repository

4 |8 Computer
- == Floppy Disk Drive (4:)
&, Local Disk (C)
4 — Local Disk (D:)
a TortoiseGit
(it
common -

m

Folder: TortoiseGit

Make Mew Folder | [oK]| Cancel

If the working tree is found, TortoiseGitMerge is launched to show and
apply differences.

2.32.4. Applying a Patch Serial

Patch files are applied to your working tree. For this copy the patch (or
mbox) files to the root of your working tree.

From the context menu for that folder (or all marked patch files), click on
TortoiseGit — Apply Patch Serial...

Figure 2.63. The Apply Patch Dialog

P N

21" D:\TortoiseGit - Apply Patches - TortoiseGit

[¥] D:\TortoiseGit\000 1-make-use-of-HorizontalResizableStand AloneDialog. patch
7] D:\TortoiseGit\0002-fixed-possiblenull-pointer-exception. patch
[¥] D:\TortoiseGit\0003-fix-ECL.patch

Up

Down

T

Remove

3 way merge ignore space change [7] add signed-off-by™ Keep CR

4 1) I

M4 4 » w Patch £ Log

[Apply] [Cancel] Help

| Add | Insert patch
| up | Move chosen patch up.

| own | Move chosen patch down.

| Remove [Remove the chosen patch.
| Apply | Start applying the patches one by one.

You can find more information at Section G.3.3, “git-am(1)”.
2.32.5. Creating a pull request

Apart from sending patches (or patch serials) to other developers, there
are two ways to ask other people to integrate your changes into their
repositories.

First: After pushing your changes to a (public) repository, you just provide
other people the URL of your repository and the name of the branch or
the revision id. E.g.: git://example.com/repo.git BRANCHNAME

Second: After pushing your changes to a (public) repository, you can
create a standardized (quite formal) request for other people to pull your
changes and integrate them into their repository. The format pull request
consists of a list of all commits and provides some statistics about
changed files, so that other people can can a quick overview.

Select | Request pull | on the progress dialog after pushing your changes.

Figure 2.64. The Request Pull Dialog

- -
£:" D:\TortoiseGit - Request pull - TortoiseGit LJ&
Start remotes/origin/master - o
Repository URL git://github. com/csware [TortoiseGit. git -
End issue-993
[QK] | Cancel | | Help

Start

This should be the revision on which your changes are based on.

URL

The public URL to your repository, which can be access by the
people who shall pull your changes.

End

This should be the branch name or revision id of the end of your
commits.

After clicking on | ok | the pull request is created. Just copy it and pass it
to other people who you want to pull your changes.

You can find more information at Section G.3.109, “git-request-pull(1)”.

Prev Up Next

2.31. Resolving Conflicts 2.33. Who Changed Which

Home)
Line?

2.33. Who Changed Which Line?
Prev Chapter 2. TortoiseGit Daily Use Guide Next

2.33. Who Changed Which Line?

Sometimes you need to know not only what lines have changed, but also
who exactly changed specific lines in a file. That's when the

TortoiseGit - Blame... command, sometimes also referred to as
annotate command comes in handy.

This command lists, for every line in a file, the author and the revision the
line was changed.

2.33.1. Blame for Files

By default the blame file is viewed using TortoiseGitBlame, which
highlights the different revisions to make it easier to read.

Figure 2.65. TortoiseGitBlame

& D\TortoiseGit\src\TortoiseProc\FileDiffDig.cpp:HEAD - TortoiseGitBlame | = | dhJ
File Edit View Help
DEH Y R 80,
5d130c Frank Li 1031 wvoid CFileDiffDlg: :SetURLLabel: -
T4ead? Frank Li 1032 { ==z Al
Td4ead7 Frank Li 1033 o=
£27a2b Frank Li 1034 // m cReviBtn.SetWindawText (m =l Basic Info =
£27a2b Frank Li 1035 // m cRevZBtn.SetWindowText (m Commit Hash dbb6236c691elalbedd...
9426d8 Frank Li 1036 Author Sven Strickroth
5d130c Frank Li 1037 if (mask &0x1) Author Date 2011-03-18 17:16
el st FE l Author Email email @cs-ware.de
4ffZ266 Frank Li 1038 SecDlglitemText (IDC FIR! z %
1040 e P .AddToal_leDC Committer Name Sven Strickroth
4ff266 Frank Li 1041 CappUtils: :FormatD: Committer Email email@cs-ware.de
1042 Committer Date 2011-02-1817:16
5d130c Frank Li 1043 Subject cleanup
32 6af-Frank L‘? I f Body Signed-off-by: Sven Str...
5d130c Frank Li 1045 if (mask £0x2) 5 Parentis) o
5d130c Frank Li 1046 {
4ff266 Frank Li 1047 SectDlgltemText (IDC SECK
5d130c Frank Li 1048 i -
] 1l }
Graph D HASH Message Author Date £
3 45 ch7134d.. drop revisiondlg Sven Sti... 01.10.2011 04:59:23
b 44 el12ce2¥... some more code cleanup for coding conventions Sven Sti... 30.09.2011 21:06:00 E
b 43 dZ22d3c?.. coding style Sven Sti... 26.03.2011 14:43:13
y 42 719c7d6... userevl as base Sven Sti... 26.03.2011 14:35:49
b 41 F258ef3.. Fiedissue #125: Export files from revision orrange of re... Sven Sti... 26.03.2011 14:27.18
1 40 2056%a... fix copyrght Sven Sti... 25.03.2011 17:57.02
3 i 8b11848. . fixed missing space Sven Sti... 18.03.2011 17:30:11
1 38 Bf624dB. . Fixedissus #754: Allow to show log forfiles in "Changes... Sven Sti.. 18.03.2011 17:28:05
13 37 dbbf38 cleanup Sven G 18032011 17.16:58 ¢
y 36 02zeX7e... fixedtypo Sven Sti... 18.03.2011 17:15:28
y 35 aebbd67... allow to blame Sven Sti... 18.03.2011 17:15:01 v
4 4 » W 4 GitLog
For Help, press F1 CAP NUM SCRL

TortoiseGitBlame, which is included with TortoiseGit. When you hover the
mouse over a line in the blame info column, all lines with the same
revision are shown with a darker background. Lines from other revisions
which were changed by the same author are shown with a light
background. The colouring may not work as clearly if you have your
display set to 256 colour mode.

If you left click on a line (on the blame info column on the left), all lines
with the same revision are highlighted, and lines from other revisions by
the same author are highlighted in a lighter colour. This highlighting is
sticky, allowing you to move the mouse without losing the highlights. Click
on that revision again to turn off highlighting.

The revision comments (log message) are shown in a hint box whenever
the mouse hovers over the blame info column. If you want to copy the log

message for that revision, use the context menu which appears when
you right click on the blame info column.

If you need a better visual indicator of where the oldest and newest
changes are, select View - Colorise by age, continous . Then the
background color intensity of the lines is related to its age. This will use a
colour gradient to show newer lines in yellow and older lines in white. The
default colouring is quite light, but you can change it using the
TortoiseGitBlame settings.

Please also check out the View menu. There you can toggle the
Ignore whitepace and also toggle the detection of moved/copied lines
from other files and Follow renames .

You can search within the Blame report using Edit - Find... . This
allows you to search for revision numbers, authors and the content of the
file itself. Log messages are not included in the search - you should use
the Log Dialog to search those.

You can also jump to a specific line number using Edit - Go To
Line... .

When the mouse is over the blame info columns, a context menu is
available which helps with comparing revisions and examining history,
using the commit of the line under the mouse as a reference. Context
menu - Blame previous revision generates a blame report for the
same file, but using the previous revision as the upper limit. This gives
you the blame report for the state of the file just before the line you are
looking at was last changed. Context menu - Show changes
starts your diff viewer, showing you what changed in the referenced
revision of the file. Please note, however, that these two options are only
available if this line is not there since the initial comit of the file. Context
menu - Show log displays the revision log dialog starting with the
referenced revision.

The settings for TortoiseBlame can be accessed using TortoiseGit -
Settings... on the TortoiseGitBlame tab. Refer to Section 2.36.8,
“TortoiseGitBlame Settings”.

You can find more information at Section G.3.9, “git-blame(1)”.

Prev Up Next

2.32. Creating and Applying Home 2.34. Exporting a Git
Patches and Pull Requests Working Tree

2.34. Exporting a Git Working Tree
Prev Chapter 2. TortoiseGit Daily Use Guide Next

2.34. Exporting a Git Working Tree

Sometimes you may want a snapshot of a specific revision/commit, e.g.
to create a zipped tarball of your source, or to export to a web server. for
this TortoiseGit offers the command TortoiseGit - Export... .

Figure 2.66. The Export Dialog
23" DA\TortoiseGit - Export - TortoiseGit [

Expart Zip File
Zip File

=

Revisian
@ HEAD (master)
Branch master

Tag Fix_EMAIL

Commit

Show Whole Project

Ok] | Cancel || Help

Zip File zip file of export
HEAD
Current commit checked out.

Branch

The latest commit of chosen branch.
Tag
The commit of chosen tag.

Commit

Any commit, you click | ... | to launch log dialog to choose commit.
You also can input commit hash, or friendly commit name, such as
HEAD~4.

You can find more information at Section G.3.7, “git-archive(1)”.

= Exporting single files
The export dialog does not allow exporting single files.

To export single files with TortoiseGit, you have to use the
repository browser (cf. Section 2.16, “The Repository
Browser”) or log dialog (cf. Section 2.13, “Log Dialog”).
Simply drag the file(s) you want to export from the repository
browser to where you want them in the explorer, or use the
context menu in the repository browser to export the files.

Prev Up Next
2.33. Who Changed Which 2.35. Integration with Bug
Line? Home Tracking Systems / Issue

Trackers

2.35. Integration with Bug Tracking Systems / Issue Trackers
Prev Chapter 2. TortoiseGit Daily Use Guide Next

2.35. Integration with Bug Tracking Systems /
Issue Trackers

It is very common in Software Development for changes to be related to
a specific bug or issue ID. Users of bug tracking systems (issue trackers)
would like to associate the changes they make in Git with a specific ID in
their issue tracker. Most issue trackers therefore provide a pre-commit
hook script which parses the log message to find the bug ID with which
the commit is associated. This is somewhat error prone since it relies on
the user to write the log message properly so that the pre-commit hook
script can parse it correctly.

TortoiseGit can help the user in two ways:

1. When the user enters a log message, a well defined line including
the issue number associated with the commit can be added
automatically. This reduces the risk that the user enters the issue
number in a way the bug tracking tools can't parse correctly.

Or TortoiseGit can highlight the part of the entered log message
which is recognized by the issue tracker. That way the user knows
that the log message can be parsed correctly.

2. When the user browses the log messages, TortoiseGit creates a link
out of each bug ID in the log message which fires up the browser to
the issue mentioned.

2.35.1. Adding Issue Numbers to Log Messages

You can integrate a bug tracking tool of your choice in TortoiseGit. To do
this, you have to define some configuration, which start with bugtraq..
These settings can be edited using TortoiseGit settings dialog:

Section 2.36.7.2, “Config”

There are two ways to integrate TortoiseGit with issue trackers. One is
based on simple strings, the other is based on regular expressions. The

configuration used by both approaches are:
bugtrag.url

Set this configuration to the URL of your bug tracking tool. It must be
properly URI encoded and it has to contain ¥BUGID%. %BUGID% iS
replaced with the Issue number you entered. This allows TortoiseGit
to display a link in the log dialog, so when you are looking at the
revision log you can jump directly to your bug tracking tool. You do
not have to provide this configuration, but then TortoiseGit shows
only the issue number and not the link to it. e.g the TortoiseGit
project is using https://tortoisegit.org/issue/%BUGID%

bugtrag.warnifnoissue

Set this to true, if you want TortoiseGit to warn you because of an
empty issue-number text field. Valid values are true/false. If not
defined, false is assumed.

2.35.1.1. Issue Number in Text Box

In the simple approach, TortoiseGit shows the user a separate input field
where a bug ID can be entered. Then a separate line is
appended/prepended to the log message the user entered.

bugtrag.message

This configuration activates the bug tracking system in Input field
mode. If this configuration is set, then TortoiseGit will prompt you to
enter an issue number when you commit your changes. It's used to
add a line at the end of the log message. It must contain %BUGID%,
which is replaced with the issue number on commit. This ensures
that your commit log contains a reference to the issue number which
is always in a consistent format and can be parsed by your bug
tracking tool to associate the issue number with a particular commit.
As an example you might use Issue : %BUGID%, but this depends on
your Tool.

bugtrag.append

This configuration defines if the bug-ID is appended (true) to the end
of the log message or inserted (false) at the start of the log message.
Valid values are true/false. If not defined, true is assumed, so that
existing projects don't break.

bugtrag.label

This text is shown by TortoiseGit on the commit dialog to label the
edit box where you enter the issue number. If it's not set, Bug-1D /
Issue-Nr: will be displayed. Keep in mind though that the window will
not be resized to fit this label, so keep the size of the label below 20-
25 characters.

bugtrag.number

If set to true only numbers are allowed in the issue-number text field.
An exception is the comma, So you can comma separate several
numbers. Valid values are true/false. If not defined, true is
assumed.

2.35.1.2. Issue Numbers Using Regular Expressions

In the approach with regular expressions, TortoiseGit doesn't show a
separate input field but marks the part of the log message the user enters
which is recognized by the issue tracker. This is done while the user
writes the log message. This also means that the bug ID can be
anywhere inside a log message! This method is much more flexible, and
is the one used by the TortoiseGit project itself.

bugtrag.logregex

This configuration activates the bug tracking system in Regex mode.
It contains either a single regular expressions, or two regular
expressions separated by a newline.

If two expressions are set, then the first expression is used as a pre-

filter to find expressions which contain bug IDs. The second
expression then extracts the bare bug IDs from the result of the first
regex. This allows you to use a list of bug IDs and natural language
expressions if you wish. e.g. you might fix several bugs and include
a string something like this: “This change resolves issues #23, #24
and #25”

If you want to catch bug IDs as used in the expression above inside
a log message, you could use the following regex strings, which are
the ones used by the TortoiseGit project: [Ii]ssues?:?(\s*(, |and)?
\s*#\d+)+ and (\d+)

The first expression picks out “issues #23, #24 and #25” from the
surrounding log message. The second regex extracts plain decimal
numbers from the output of the first regex, so it will return “23”, “24”
and “25” to use as bug IDs.

Breaking the first regex down a little, it must start with the word
“issue”, possibly capitalised. This is optionally followed by an “s”
(more than one issue) and optionally a colon. This is followed by one
or more groups each having zero or more leading whitespace, an
optional comma or “and” and more optional space. Finally there is a
mandatory “#” and a mandatory decimal number.

If only one expression is set, then the bare bug IDs must be matched
in the groups of the regex string. Example: [Ii]ssue(?:s)? #?(\d+)
This method is required by a few issue trackers, e.g. trac, but it is
harder to construct the regex. We recommend that you only use this
method if your issue tracker documentation tells you to.

If you are unfamiliar with regular expressions, take a look at the
introduction at https://en.wikipedia.org/wiki/Reqular_expression , and
the online documentation and tutorial at http://www.regular-
expressions.info/ .

If both the bugtraq:message and bugtraq:logregex properties are set,
logregex takes precedence.

—

https://en.wikipedia.org/wiki/Regular_expression
http://www.regular-expressions.info/

2P
Even if you don't have an issue tracker with a pre-commit
hook parsing your log messages, you still can use this to turn

the issues mentioned in your log messages into links!

And even if you don't need the links, the issue numbers show
up as a separate column in the log dialog, making it easier to
find the changes which relate to a particular issue.

2.35.1.3. Issue Tracker Provider Settings based on Hierarchical Git
Configuration

This is a hierarchical git configuration to associate issue tracker plugin
with your project, rather than with to a specific directory path. Such
settings are more portable. To deploy the settings, set to Project level and
commit . tgitconfig.

bugtrag.provideruuid

This is the GUID of 32-bit issue tracker plugin.

bugtrag.provideruuid64

This is the GUID of 64-bit issue tracker plugin.

bugtrag.providerparams

This is the parameter string for the issue tracker plugin.

This issue tracker integration is not restricted to TortoiseGit; it can be
used with other clients (e.g. TortoiseSVN). For more information, read the
full Issue Tracker Integration Specification in the TortoiseGit source
repository. (Section 3, “TortoiseGit is free!” explains how to access the
repository).

2.35.2. Getting Information from the Issue Tracker

https://gitlab.com/tortoisegit/tortoisegit/blob/master/doc/issuetrackers.txt

The previous section deals with adding issue information to the log
messages. But what if you need to get information from the issue
tracker? The commit dialog has a Windows COM interface which allows
integration an external program that can talk to your tracker. Typically you
might want to query the tracker to get a list of open issues assigned to
you, so that you can pick the issues that are being addressed in this
commit.

Any such interface is of course highly specific to your system, so we
cannot provide this part, and describing how to create such a program is
beyond the scope of this manual. The interface definition and sample
programs can be obtained from the contrib folder in the TortoiseGit
repository . (Section 3, “TortoiseGit is free!” explains how to access the
repository). A summary of the API is also given in Appendix B,
IBugTraqProvider interface Another (working) example plugin in C# is
Gurtle which implements the required COM interface to interact with the
Google Code issue tracker.

For illustration purposes, let's suppose that your system administrator
has provided you with an issue tracker plugin which you have installed,
and that you have set up some of your working trees to use the plugin in
TortoiseGit's settings dialog. When you open the commit dialog from a
working tree to which the plugin has been assigned, you will see a new
button at the top of the dialog.

Figure 2.67. Example issue tracker query dialog

https://gitlab.com/tortoisegit/tortoisegit/tree/master/contrib/issue-tracker-plugins
https://code.google.com/p/gurtle/
https://code.google.com/hosting/

42" C\TortoiseGit\doc - Commit - TortoiseGit

l=[=] = J]

Commit to: doc-images
Message:

[Inew branch

Select Issue

[] =Amend Last Commit

[set commit date

Changes made {double-dlick on file for diff):

11

Add Signed-off-by

Path Extension Status Add Del
'_E}docfs0urce,."en,ﬂ'ortoiseGitﬂs\-'n_app_aumeaﬁon.xml Ll Mo... 9 30
& Issues for tortoisegit (205) E@Iﬂ
Search: ~ in |Al fields he
D+ Type Status Priority Cwner £
] 195 Defect Hold Medium fatal: The remote end hung up unexpectedly (Cygwin S5H) |]
B 21 Defect Hold Medium After resolving all merge conflicts, it's not obvious the project needs a ¢
nhancemen ol edium support partially committing a file
I:‘ 222 Enh t Hold Medi t partiall it fil
[F] 227 Defect Hold Medium Log window: Unable to see files with "Unknown” status
[230 Defect Hold Medium Git done from my local repo show failed
238 Defect Flaned Medium submodule update should be recursive?
[F] 246 Enhancement Planned Medium Implement custom command support

o+ [pefect osass Medum |]8adhanding of CRLF /LF transiation whik making diff

] 251 Defect Hold Medium Implement more settings modification fadlity as in command line.
E 277 Defect Discuss Medium Add the ability to run the ‘assume-unchanged' command
[306 Defect Hold Low Missing Uninstall option in the startmenu
1 218 Nefart Nisniee Medit i Truina tn Anne a svn rena will fil if celfianed rert ic Heed A
< n b
l Details l l Refresh l [] Include closed issues | oK | l Cancel l

205 issue(s) downloaded

Show Unversioned Files

[Whole Project
| Keep changelists

Select/Deselect All Do not autoselect submodules

1 files selected, 1 files total

View Patch ==

OK | Cancel] [Help]

In this example you can select one or more open issues. The plugin can
then generate specially formatted text which it adds to your log message.

Prev

2.34. Exporting a Git
Working Tree

Up

Home

Next
2.36. TortoiseGit's Settings

2.36. TortoiseGit's Settings
Prev Chapter 2. TortoiseGit Daily Use Guide Next

2.36. TortoiseGit's Settings

To find out what the different settings are for, just leave your mouse
pointer a second on the editbox/checkbox... and a helpful tooltip will

popup.
2.36.1. General Settings

Figure 2.68. The Settings Dialog, General Page

45" Settings - TortoiseGit X
4%, General + | 4 General
@ Context Menu (W Bl
4Gk Set Extend Menu ftem TorteiseGit
..... 42 Dialogs1 Language: English ‘l

----- =2 Dialogs 2

..... 2% Dialogs3 Automatically check for newer versions every week
----- ¥ Colors1

..... .{‘J Colors 2 Create Library

----- ¥ Colors3

m

E Ny I Credential
g 7' Hook Scripts
= @ Issue Tracker Integration Git.exe Path: C:\Program Files (x&&)\Git\bin E]
".&‘j Icon Overlays
: ¥ Icon Set Extern DLL Path:

Git for Windows

..... {#) Overlay Handlers

.:d Q Metwork ‘ersion:
i @ Email
:‘ @y, DIff Viewer Show Environment Variables

----- &, TortoiseGitBlame
o TortoiseGitUDifF -

This dialog allows you to specify your preferred language, and the Git-
specific settings.

Language

Selects your user interface language. What else did you expect?
Only languages of installed LanguagePacks are listed. You can

download language packs on the TortoiseGit download page or help
translating.

Automatically check for newer versions every week

If checked, TortoiseGit will contact its download site once a week to
see if there is a newer version of the program available. Use | check
now | if you want an answer right away. The new version will not be
downloaded; you simply receive an information dialog telling you that
the new version is available.

Create Library

On Windows 7 you can create a Library in which to group working
copies which are scattered in various places on your system.

Git.exe Path

TortoiseGit needs to know which git.exe to use for it's operations.
Enter the full path to git.exe here.

3 Caution

git.exe must not be marked to be run in elevated mode
(i.e. "Run as administrator” or run in any compatibility
mode).

3 Caution

There is a known issue in msysGit/Git for Windows: Git
for Windows provides two git.exe-files (one in a folder
named bin and one in a folder named cmd). Make sure
Git.exe Path points to the bin-folder within the Git for
Windows installation folder.

https://tortoisegit.org/download
https://tortoisegit.org/translate
https://github.com/msysgit/msysgit/issues/103

g Caution

If you don't use Git for Windows, please see the sections
for "Cygwin git" and "Msys2 git" below as special settings
are required here.

As a general note: There is no official support for Cygwin
or Msys2 git in TortoiseGit. The TortoiseGit developers
only use Git for Windows. Bug reports, however, are
welcome.

= TP
In order to debug problems you can open TortoiseGit
advanced settings and set "DebugOutputString"” to "true”
(Section 2.36.10, “Advanced Settings”). Start capturing
the debug output. Then start TortoiseGit settings, click on

Check now and observe the debug messages.

Extra PATH

If your git installation needs an extra entry in the PATH environment
variable, you can enter it here and it will get added to the PATH
environment variable automatically when TortoiseGit starts.

This is especially needed if you installed the developer version of
msysGit ("Full installer (self-contained) if you want to hack on Git"
with the filename msysGit-fullinstall-*.exe), in this case it is
necessary that the [MSYSGIT-INSTALL-PATH]\mingw\bin-folder is on
the path (i.e. entered in the Extra PATH textbox) in order to execute
git.exe.

Often you can see if you need this when you start git.exe in
[MSYSGIT-INSTALL-PATH]\mingw\bin-folder and you get a messagebox

saying that a dll is missing.
Cygwin Git

As noted above: There is no official support for Cygwin git in
TortoiseGit (do not enable this for the "Git for Windows package!).
The TortoiseGit developers only use Git for Windows. Bug reports,
however, are welcome. If you really want to use it here are the steps
you have to perform:

1) Select the [CYGWIN-INSTALL-PATH]\bin-folder as git.exe folder.

2) Configure the HOME environment variable in Windows, so that
Cygwin and TortoiseGit are using the same home directory and
global git-config. Use the normal Windows notation here (e.g.,
"C:\Users\USERNAME"). By default, TortoiseGit uses the Windows
home directory which is normally located under c:\users and Cygwin
uses its own home directories which are located under [CYGWIN-
INSTALL-PATH]\home.

3) Configure AutoCrLf, this is necessary as TortoiseGit and Cygwin
Git have different defaults. The default in Cygwin Git is true.

4) Go to TortoiseGit Section 2.36.10, “Advanced Settings” and set
CygwinHack to true in order to activate cygwin workarounds.

5) Reboot.
Msys2 Git

As noted above: There is no official support for Msys2 git in
TortoiseGit (do not enable this for the "Git for Windows package!).
The TortoiseGit developers only use Git for Windows. Bugreports,
however, are welcome. If you really want to use it here are the steps
you have to perform:

1) Select the [MSYS2-INSTALL-PATH]\usr\bin-folder as git.exe folder.

2) Configure the HoME environment variable in Windows, so that

Msys2 and TortoiseGit are using the same home directory and global
git-config. Use the normal Windows notation here (e.g.,
"C:\Users\USERNAME"). By default, TortoiseGit uses the Windows
home directory which is normally located under c:\users and Msys2
uses its own home directories which are located under [MSYS2-
INSTALL-PATH]\home.

3) Configure AutoCrLf, this is necessary as TortoiseGit and Msys2
Git might have different defaults.

4) Go to TortoiseGit Section 2.36.10, “Advanced Settings” and set
Msys2Hack t0 true in order to activate Msys2 workarounds.

5) Reboot.
2.36.1.1. Context Menu Settings

Figure 2.69. The Settings Dialog, Context Menu Page

4" Settings - TortoiseGit @
4%, General + | 42k Context Menu
gk Context Menu |
’{E’} Set Extend Menu frem Cascaded context menu
----- 22 Dialogs1 [¥] @l ciore. .. -
----- =5 Dialogs2 [C] & pul... El
----- 22 Dialogs3 O & Fetch... =
..... ¥ Colors1 [g Push...
----- ¥ Colors2 [¥] 9 Sync...
..... i‘«; Colors 3 IE @ Commit...
----- Alternative editor [C] A svn DCommit...
4 A Git |= [C] V5 5vM Rebase
L _ SVN Fe
T T O« tch
P Sk [B9 et SN Tamaes Bt
4 - Hook Scripts
P Selectfdeselect all Restore Default

------ W Issue Tracker Integration

AQ Icon Overlays
95 Icon Set

[Hide Menus for unversioned paths
Do not show the context menu for the following paths:

..... {1 Overlay Handlers
-89 Network ;
@ Email
-, Diff Viewer 4 -

J{@ Saved Data Enable drag context menu
wts TrrtniceGitRlame

QK] [Cancel Apply

This page allows you to specify which of the TortoiseGit context menu
entries will show up in the main context menu, and which will appear in
the TortoiseGit submenu. By default most items are unchecked and
appear in the submenu.

Most of the time, you won't need the TortoiseGit context menu, apart for
folders that are under version control by Git. For non- versioned folders,
you only really need the context menu when you want to do a checkout. If
you check the option Hide menus for unversioned paths, TortoiseGit will
not add its entries to the context menu for unversioned folders. But the
entries are added for all items and paths in a versioned folder. And you
can get the entries back for unversioned folders by holding the Shift key
down while showing the context menu.

If there are some paths on your computer where you just don't want
TortoiseGit's context menu to appear at all, you can list them in the box at
the bottom.

If you right click and drag folder/file in Windows Explorer, a context menu
will be shown when you drop. It provides some TortoiseGit actions. You
can uncheck | Enable drag context menu | to prevent from carelessly clicking
the TortoiseGit actions.

2.36.1.2. Set Extend Menu ltem

Figure 2.70. The Settings Dialog, Set Extend Menu Item

-

41" Settings - TortoiseGit

4% General

----- 22 Dialogs
----- ¥ Colors1
----- ¥ Colors2
----- ¥ Colors3

4 -fg7) Icon Overlays

J{Eﬁ Saved Data
4%, Git

- L., Remote
a- 7 Hook Scripts

..... A Advancerd

@ Context Menu
J{ﬁ} Set Extend Menu Item

..... Alternative editor

.. ff lssue Tracker Integration

13

m

%5k Set Extend Menu ltem

Move to extended context menu (press shift key to show it)

O é‘] Clane...

O & eul...

[& Fetch...

] Apush...

|:| {‘:! SYNC...

[™ commit...

[C] & svn DCommit...

1 svnRebase...

[C] & sV Fetch
mlmport SVN Ignore ...
[&, niff

[T 2, Diff with previous version
= L= Show log

L= Show Reflog
QBrowse Reference
] RREpo-browser

& Issue Tracker Config
----- 4+, TortoiseGitBlame

B o _er e

»

m

-

select/deselect all

[

Restore Default]

0K] [Abbrechen]

Upe

rnehmen

This page allows you to specify which of the TortoiseGit context menu

entries will show up in the extend context menu (press Shift key on right
click), and which will appear in the normal context menu. This config will
help reduce the context menu number at normal usage case according to

your usage module.

2.36.1.3. TortoiseGit Dialog Settings

Figure 2.71. The Settings Dialog, Dialogs Page

45" Settings - TortoiseGit 53

4% General + || 2% Dialogs 1
-k Context Menu (W
»{@} Set BExtend Menu Item Log messages
..... 2= Dialogs1 Eont for log messages: T Courier New - & -
----- =2 Dialogs 2
:‘ : 5 Short date/time format in log messages
----- =g Dialogs 3
..... % Colors1 [C] relative Times in log Show asterisk log prefix
..... ﬁf_{ Colors 2 [¥] Use system locale for dateftime
----- ¥ Colors3 ["] can double-dick in log list to compare with previous revision
""" Alternative editor [7] Abbreviate renamings Symbolize ref names
‘ 0 ‘?'t) |= []Enable log cache
. ey Credential
42 Hook Scripts [#]Enable Gravatar http: /v, gravatar .com/avatar /2eHASH Y ?d=identicon +
: L@ Issue Tracker Integration [] Draw tag/branch labels on right side
4) Icon Overlays Describe

-4 Icon Set [#] 5how describe in log

[) Overlay Handlers 3

‘g Nﬁetwurk Describe Strategy all tags =

L..@ Email Abbreviated size 7 [7] Always show long format
4@y, Diff Viewer

L.),/ Merge Tool

----- 4o+, TortoiseGitBlame
o TortoiseGitUDiF -

This dialog allows you to configure some of TortoiseGit's dialogs the way
you like them.

Font for log messages

Selects the font face and size used to display the log message itself
in the middle pane of the Revision Log dialog, and when composing
log messages in the Commit dialog.

Short date / time format in log messages

If the standard long messages use up too much space on your
screen use the short format.

Show asterisk log prefix

An asterisk is inserted as the prefix of log message in Log dialog.

apply --topo-order

Normally log entries/commits are ordered in descending order of the
commit date. '--topo-order' makes the commits appear in topological
order (i.e. descendant commits are shown before their parents). Not
using this option, might break the graph in the log dialog. However,
this option is slower, because all log entries have to be processed
before displaying them.

Can double-click in log list to compare with previous revision

If you frequently find yourself comparing revisions in the top pane of
the log dialog, you can use this option to allow that action on double-
click. It is not enabled by default because fetching the diff is often a
long process, and many people prefer to avoid the wait after an
accidental double-click, which is why this option is not enabled by
default.

Abbreviate renamings

Normally renamed files are listed as "long/path/for/file.txt (from
long/path/to/file.txt)". If you check this option renamed files will be
listed in a shorter format ("long/path/{to => for}/file.txt"), however, this
abbreviated format might be harder to understand.

Symbolize ref names

Show symbols on ref labels to substitute part of the ref names in
order to make them smaller. If this option is enabled, the following
description and example will apply. If there is only a single remote,
an up-arrow symbol (1) will substitute the remote name part of each
remote branch. If the remote branch is the upstream of a local
branch, an equivalent symbol (=) will substitute the branch name
part of the remote branch.

Figure 2.72. Example of Symbolize ref names

ol ILENj_T_ﬂiE_AE_ﬂmaint Istart 1.8.2 cyde
h & ¥ [Merge branch ‘jcAest-portability'

i t9020: use configured Pythan to run the test helper

0 origin/= | github/HEAD | githubmaster | Driginﬂﬂ_E.ﬁQ_EStart 1.8.2 cyde
@ 4 [Merge branch jc/test-portability’

i t9020: use configured Pythaon to run the test helper

Enable log cache

Load/saves log cache in .git folder (tortoisegit.data, tortoisegit.index)
to boost performance of subsequent use of log list. If this option is
disabled, the cache files are not read or written. Default is enabled.

Enable Gravatar

Shows the Gravatar image of the author of the commit in Log Dialog.
The URL is customizable so you may specify more options
supported by the server, or use your own avatar server. The default
URL iS http://www.gravatar.com/avatar/%HASH%?d=identicon
Currently, the supported parameter is ¥HASH%, which is the MD5 email
hash. To specify a default image, add d= parameter, e.g.
http://www.gravatar.com/avatar/%HASH%?d=identicon See Gravatar:
Image Requests for a list of parameters.

Draw tag/branch labels on right side

Shows tag/branch labels after the commit message.

Display branch revision number

Displays for every selected commit a so called "branch revision
number"” in the commit message field of the Log Dialog. The branch
revision number is calculated by calling git rev-list --count --
first-parent [SHA1] and represents the number of commits
between the beginning of time and the selected commit. This
number is NOT guaranteed to be unique, especially if you alter the
history (e.g., using rebase) or use several branches at the same

http://en.gravatar.com/site/implement/images/

time. It can be seen "kinda unique" per branch in case you don't alter
its history (e.g. by rebasing, resetting) and only commit or merge
other branches on it. This number is only displayed for first-parent
commits and not for commits on non-fast-forward merges (here
duplicate numbers could occur). See
https://gcc.gnu.org/ml/gcc/2015-08/msg00148.html and
https://gitlab.com/tortoisegit/tortoisegit/merge_requests/1 for more
detalils.

Show describe in log

Shows describe above commit message in in Log dialog. For
example, vo.21.0-589-gdeadc43 refers to the commit deadc43 that is
589 commits ahead the tag ve.21.0. Note: Describe may take longer
to run if the commit is far ahead away from a tag.

Describe strategy

Determine reference lookup strategy: Available options: Annotated
tags, All tags, All refs. Default strategy is annotated tags only. If your
repository uses lightweight tags to mark releases, choose All tags.

Describe Abbreviated size

Number of chars of the abbreviated commit id to show in describe.
Defaultis 7.

Describe Always show long format

Whether to use the long format even when a shorter name could be
used. For example, when the commit g28fes7c has tag ve.21.o0, it still
shows long format ve.21.0-0-g28fes7c instead of just ve.21.o0.

2.36.1.4. TortoiseGit Dialog Settings 2

Figure 2.73. The Settings Dialog, Dialogs Page 2

https://gcc.gnu.org/ml/gcc/2015-08/msg00148.html
https://gitlab.com/tortoisegit/tortoisegit/merge_requests/1

-

4" Settings - TortoiseGit

4% General

{éﬁ Context Menu

@ Set Extend Menu Item
----- a2 Dialogs1

~Z Dialogs 2

Misc

Autodose Git.exe dialog:

Close manually

""" =2 Dialogs 2 [#] Use recyde bin when reverting

- - £
""" ;-'i Dialogs 3 [] confirm to kill running git process
----- Colors1

= o 2 =
v
_____ w ki D Randomize Sync Dialog startup position
_____ W Colors3 [T Hide unchanged refs in Ref Compare List
----- Alternative editor [¥] Show git.exe execution timings and timestamp
- ‘> Git [¥] sort tag list in reversed order

----- g Remote
----- % Credential Commit

4.7 Hook Scripts [¥] Use auto-completion of file paths and keywords
----- @ Issue Tracker Integration
----- @ Issue Tracker Config

4 g7 Icon Overlays

Timeout in seconds to stop the auto-completion parsing 5

Max. items to keep in the log message history 50

..... T
e [¥] select items automatically
-jg0) Overlay Handlers =e:
4 83 Network [5trip lines starting with %" in commit message
[i@ Email Further options for the commit dialog are on Dialogs 3 page.
4 -G, Diff Viewer
- y Merge Tool

I{% Saved Data

..... & TortoiseGitBlame
e Advanced

This dialog allows you to configure some more of TortoiseGit's dialogs
the way you like them.

Git.exe Progress Dialog

TortoiseGit can automatically close all progress dialogs when the
action is finished without error. This setting allows you to select the
conditions for closing the dialogs. The default (recommended)
setting is Close manually which allows you to review all messages
and check what has happened. However, you may decide that you
want to ignore some types of message and have the dialog close
automatically if there are no critical changes.

Auto-close if no further options are available will close the dialog if
git.exe exited cleanly (i.e. no error occurred) and no further options

are presented in the progress dialog.

Auto-close if no errors always closes the dialog if git.exe exited with
0 error code.

Use recycle bin when reverting

When you revert local modifications, your changes are discarded.
TortoiseGit gives you an extra safety net by sending the modified file
to the recycle bin before bringing back the pristine copy. If you prefer
to skip the recycle bin, uncheck this option.

Confirm to kill running git process

When enabled, if you close Progress Dialog or Sync Dialog with a
running git process, you will be asked for confirmation before killing
it. This avoids closing the dialog by accident that kills running git
process.

Randomize Sync Dialog startup position

When enabled, the startup position of Sync Dialog will be
randomized. If you open many Sync Dialogs and press pull button at
the same time, you may easily press the pull button in any previous
Sync Dialog if it finishes and becomes foreground.

Hide unchanged refs in Ref Compare List

When enabled, unchanged refs will not be shown in Ref Compare
List, so you can focus on changed refs. Currently, this list is in Sync
Dialog Ref List tab.

Show git.exe execution timings and timestamp

When enabled, git.exe execution timings and timestamp will be
appended at the end of progress message.

Sort tag list in reversed order

When enabled, tag list is sorted in reversed order. It is because
newer versions are more useful. e.g. Export Dialog allows to select
the latest tag when this option is enabled.

Use auto-completion of file paths and keywords

The commit dialog includes a facility to parse the list of filenames
being committed. When you type the first 3 letters of an item in the
list, the auto-completion box pops up, and you can press Enter to
complete the filename. Check the box to enable this feature.

Timeout in seconds to stop the auto-completion parsing

The auto-completion parser can be quite slow if there are a lot of
large files to check. This timeout stops the commit dialog being held
up for too long. If you are missing important auto-completion
information, you can extend the timeout.

Max. items to keep in the log message history

When you type in a log message in the commit dialog, TortoiseGit
stores it for possible re-use later. By default it will keep the last 25
log messages for each repository, but you can customize that
number here. If you have many different repositories, you may wish
to reduce this to avoid filling your registry.

Note that this setting applies only to messages that you type in on
this computer. It has nothing to do with the log cache.

Select items automatically

The normal behaviour in the commit dialog is for all modified
(versioned) items to be selected for commit automatically. If you
prefer to start with nothing selected and pick the items for commit
manually, uncheck this box.

2.36.1.5. TortoiseGit Dialog Settings 3

Figure 2.74. The Settings Dialog, Dialogs 3 Page

-

2" DA\TortoiseGit - Settings - TortoiseGit |
a -4, General » || Z# Dialogs 3
@} Context Menu (M
x{c} Set BExtend Menu Item C_':'nﬁg bl .) i i
_____ 2= Dialogs1 (@) Effective |) Local << () Project << () Global =< () System
----- a2 Dialogs2 Commit
..... 22 Dialogs 3 Select the language this project is using. This settings affects the spell checker used
_____ W Colors1 for commit messages.
..... YW Colors2 Language: English (United States)
----- S Colors 3
----- Alternative editor E
4 --{b Git Minimum number of chars for a commit message:
..... 53 Remaote Limit: 0 inherit
fa i e Etntlal Char position where to show a border line in commit text boxes:
47 Hook Scripts Harih = =
“ b order: inheri
----- @ Issue Tracker Integration % b
..... @ Issue Tracker Config Warn on missing Signed-OffBy on commit e
4 g7 Icon Overlays Dislogs
----- 4. Icon Set T R Tortoise.i
- : src/ResourcesTortoise.ico
) Overlay Handlers i
253 Network inherit
oW Tvmed Save to: Local
a -2 Diff Viewer -

OK.] [Cancel Apply

This dialog allows you to configure some of TortoiseGit's dialogs the way
you like them. This third page mainly affects the Commit dialog and the
settings which are stored in git config files.

i Important

If you have problems entering/storing data please see
Section 2.36.6.1, “The hierarchical git configuration”.

Language

TortoiseGit can use spell checker modules which are also used by
OpenOffice and Mozilla. If you have those installed this property will
determine which spell checker to use, i.e. in which language the log
messages for your project should be written. The

tgit.projectlanguage config key sets the language module the spell
checking engine should use when you enter a log message. You can
find the values for your language on this page: MSDN: Language
Identifiers .

Enter this value in decimal. For example English (US) can be
entered as 1033.

Use -1 to disable the spell checker.
Limit

tgit.logminsize sets the minimum length of a log message for a
commit. If you enter a shorter message than specified here, the
commit button is disabled. This feature is very useful for reminding
you to supply a proper descriptive message for every commit. If this
property is not set, or the value is zero, empty log messages are
allowed.

Border

tgit.logwidthmarker is used with projects which require log
messages to be formatted with some maximum width (typically 72
characters) before a line break. Setting this property to a non-zero
will place a marker to indicate the maximum width and performs line
wrapping. Note: this feature will only work correctly if you have a
fixed-width font selected for log messages.

Warn on Signed-Off-By on commit

tgit.warnnosignedoffby is used with projects which require Signed-
off-by line in commit messages.

Overlay Icon

tgit.icon is used with projects which wish to show the logo on the
taskbar for easier identification when multiple TortoiseGit application
instances of different projects are running at the same time.

http://msdn2.microsoft.com/en-us/library/ms776260.aspx

TortoiseGit Git SharpDevelop(No icon)

If icon is not 16x16 px in size, it will be automatically scaled.
Supported formats are ico, png, jpg, gif, bmp. If no icon is included
by that project, you may find one on you own, put it in .git folder and
set the relative path in local config. e.g. .git/logo.ico If you want to
disable it, you may set tgit.icon as an empty string in local config. It
will fallback to a color block when disabled or load failed. Note that
the advanced option GroupTaskbarIconsPerRepo should be 3 or 4 in
order to use this function.

2.36.1.6. TortoiseGit Colour Settings

Figure 2.75. The Settings Dialog, Colours Page

" DA\TortoiseGit - Settings - TortoiseGit)

a-% General o % Colors 1
@ Context Menu .
@ Set Extend Menu lem Status and action colors
----- 2+ Dialogs possible or real conflict/obstructed
----- Y«;’ Colors1
_____ Y Colors2 added files
""" "3 Colors 3 missing/deleted/replaced
----- Alternative editor

4 -l Icon Overlays merged 1
-4 Icon Set L modified copied 1
-fg7) Overlay Handlers 3

453 Network renamed

| @ Email

5 -G, Diff Viewer Revision graph
i y MEFQETDD' Mote node

@ SE_VEd Lo Use local branch coler for current branch

W | 4 Q} Git

----- 9 Remote
L)) Credential

P _;1‘ Hook Scripts T [Restore Default]
.. Issue Tracker Integration
L. Issue Tracker Config -

This dialog allows you to configure the text colours used in TortoiseGit's

dialogs the way you like them.

Possible or real conflict / obstructed

A conflict has occurred during update, or may occur during merge.
Update is obstructed by an existing unversioned file/folder of the
same name as a versioned one.

This colour is also used for error messages in the progress dialogs.
Added files
ltems added to the repository.

Missing / deleted / replaced

Items deleted from the repository, missing from the working copy, or
deleted from the working tree and replaced with another file of the
same name.

Merged

Changes from the repository successfully merged into the working
tree without creating any conflicts.

Modified / copied

Add with history, or paths copied in the repository. Also used in the
log dialog for entries which include copied items.

Note node
A reference which points to git notes, under refs/notes namespace.

Use local branch color for current branch

In revision graph, use local branch color for current branch. You may
not want to emphasize current branch of a local repository in revision
graph.

2.36.1.7. TortoiseGit Colour Settings 2

-

Figure 2.76. The Settings Dialog, Colours Page

44" Settings - TortoiseGit

%, General ~ | % Colors 2
@ Context Menu 1
@ Set Extend Menu Itermn bgaraphic
----- 22 Dialogs Current Branch
----- ¥ Colors1
_____ ,é;, Colors 2 Local Branch
----- ¥ Colors3

----- Alternative editor
4 -7 Icon Overlays

@} Saved Data
4R Git

a 7 Hook Scripts

: A Issue Tracker Config
----- &, TortoiseGitBlame
Lot Advanced

.. lssue Tracker Integration

m

Remote Branch

Tags

[Restore Default

QK

] [Abbrechen] [Ut_:emehrnen] [

Hilfe

)

This dialog allows you to configure the text colours used in TortoiseGit's

dialogs the way you like them.

2.36.1.8. TortoiseGit Colour Settings 3

Figure 2.77. The Settings Dialog, Colours Page

r--;}’ Di\TortoiseGit - Settings - TortoiseGit 1
a -, General = ﬁ Colors 3
-4k Context Menu
@ Set EBxtend Menu Item FigE
----- =2 Dialogs LINE1 I:E
..... Y’: Colors1
lllll W Chioe 2 LINE2 I:El
|- % Colors3| LINE3 I:El
Wl i i . Alternative editor
P i LINE4 I:EI
65 Teon Set L1ves [-]
) Overlay Handlers 3
L Yl LINES I -]
. @ Email LINE? I:El
4 .. Diff Viewer
I 7% Merge Todl LINES I:El
@ Saved Data Line width -—v
4 ‘} Git =
_____ a Remote Mode size
L@ Credential
4 ..";1‘;] Hook Scripts T [Restore Default]
----- W Issue Tracker Integration
e W Issue Tracker Config -
—
[
i _ S S — —

This dialog allows you to configure the line colours, line width and node
size in the graph column used in TortoiseGit's log dialog the way you like
them.

2.36.2. Icon Overlay Settings

Figure 2.78. The Settings Dialog, Icon Overlays Page

41" Settings - TortoiseGit 52

-, General * ||l lcon Overlays
x{?} Context Menu
45 Set Extend Menu frem Tcon Owerlays/Status Columns
_____ Z* Dialogs [:] Show overlays and context menu only in explorer
_____ Y Colors1 [T unversioned flles mark parent folder as modified
----- ¥ Colors2
----- ¥ Colors3
----- Alternative editor Status cache
4 &5 Tcon Overlays @ Default () Shell Extended 1 Shell) None
----- {4, Icon Set Drive Types
~{ga) Overlay Handlers 3 [T removable drives [co-rom
""" 9 N_etw.nrlc Floppy drives (A: B:)
4 -- DHff Viewer [[] Network drives [C]RAM drives
i l’ Merge Tool [¥] Fixed drives [unknown drives
;{?_;.} Saved Data
K- i
e o Exclude paths: :
R 1. Remote
a7 Hook Scripts =
. A Issue Tracker Integration Indude paths: -
: t @ Issue Tracker Config [show exduded folders as normal
wofg TortoiseGitBlame
L Achanca A i
0K] [Abbrechen I IUt_:emehmen] I Hilfe

This page allows you to choose the items for which TortoiseGit will
display icon overlays.

By default, overlay icons and context menus will appear in all open/save
dialogs as well as in Windows Explorer. If you want them to appear only
in Windows Explorer, check the Show overlays and context menu only in
explorer box.

Ignored items and Unversioned items are not usually given an overlay. If
you want to show an overlay in these cases, just check the boxes.

You can also choose to mark folders as modified if they contain
unversioned items. This could be useful for reminding you that you have
created new files which are not yet versioned. This option is only
available when you use the default status cache option (see below).

Since it takes quite a while to fetch the status of a working tree,
TortoiseGit uses a cache to store the status so the explorer doesn't get

hogged too much when showing the overlays. You can choose which
type of cache TortoiseGit should use according to your system and
working tree size here:

Default

Caches all status information in a separate process
(TGitCache.exe). That process watches all drives for changes and
fetches the status again if files inside a working tree get modified.
The process runs with the least possible priority so other programs
don't get hogged because of it. That also means that the status
information is not real time but it can take a few seconds for the
overlays to change.

Advantage: the overlays show the status recursively, i.e. if a file deep
inside a working tree is modified, all folders up to the working tree
root will also show the modified overlay. And since the process can
send notifications to the shell, the overlays on the left tree view
usually change too.

Disadvantage: the process runs constantly, even if you're not
working on your projects. It also uses around 10-50 MB of RAM
depending on number and size of your working trees. From version
1.7.0 to 1.7.12 TGitCache did not check the contents of the files, it
just checked the last modification time against the time stored in the
git index file. Starting from 1.7.13 TGitCache now also checks the
contents of the files by default. If you want to restore the old
behavior, you can disable checking the contents via the Settings
dialog -> Advanced and set TGitCacheCheckContentMaxSize to "0".

Shell Extended

Caching is done directly inside the shell extension dll. Each time you
navigate to another folder, the status information is fetched again
(recursively).

Advantage: can show the status in real time.

Disadvantage: only one folder is cached and for big working trees, it
can take much more time to show a folder in explorer than with the
default cache or with shell mode. The Shell variant only shows
differences of the filesystem to the git index (does not include
revision specific information, e.g. if you remove a file from the index
the file will show up as unversioned, but with TGitCache the file will
show up as deleted until you commit this change).

Shell

Caching is done directly inside the shell extension dll, but only for the
currently visible folder. Each time you navigate to another folder, the
status information is fetched again.

Advantage: needs only very little memory (around 1 MB of RAM) and
can show the status in real time.

Disadvantage: Since only one folder is cached, the overlays don't
show the status recursively. For big working trees, it can take more
time to show a folder in explorer than with the default cache. The
Shell variant only shows differences of the filesystem to the git index
(does not include revision specific information, e.g. if you remove a
file from the index the file will show up as unversioned, but with
TGitCache the file will show up as deleted until you commit this
change).

None

With this setting, the TortoiseGit does not fetch the status at all in
Explorer. Because of that, files don't get an overlay and folders only
get a 'normal’ overlay if they're versioned. No other overlays are
shown, and no extra columns are available either.

Advantage: uses absolutely no additional memory and does not slow
down the Explorer at all while browsing.

Disadvantage: Status information of files and folders is not shown in
Explorer. To see if your working trees are modified, you have to use

the “Check for modifications” dialog.

By default, overlay icons and context menus will appear in all open/save
dialogs as well as in Windows Explorer. If you want them to appear only
in Windows Explorer, check the Show overlays and context menu only in
explorer box.

You can also choose to mark folders as modified if they contain
unversioned items. This could be useful for reminding you that you have
created new files which are not yet versioned. This option is only
available when you use the default status cache option (see below).

The next group allows you to select which classes of storage should
show overlays. By default, only hard drives are selected. You can even
disable all icon overlays, but where's the fun in that?

Network drives can be very slow, so by default icons are not shown for
working trees located on network shares.

USB Flash drives appear to be a special case in that the drive type is
identified by the device itself. Some appear as fixed drives, and some as
removable drives.

The Exclude Paths are used to tell TortoiseGit those paths for which it
should not show icon overlays and status columns. This is useful if you
have some very big working trees containing only libraries which you
won't change at all and therefore don't need the overlays, or if you only
want TortoiseGit to look in specific folders.

Any path you specify here is assumed to apply recursively, so none of the
child folders will show overlays either. If you want to exclude only the
named folder, append » after the path.

The same applies to the Include Paths. Except that for those paths the
overlays are shown even if the overlays are disabled for that specific
drive type, or by an exclude path specified above.

Users sometimes ask how these three settings interact. For any given
path check the include and exclude lists, seeking upwards through the

directory structure until a match is found. When the first match is found,
obey that include or exclude rule. If there is a conflict, a single directory
spec takes precedence over a recursive spec, then inclusion takes
precedence over exclusion.

An example will help here:

Exclude:

C:

C:\develop\?
C:\develop\tgit\obj
C:\develop\tgit\bin

Include:
C:\develop

These settings disable icon overlays for the C: drive, except for
c:\develop. All projects below that directory will show overlays, except
the c:\develop folder itself, which is specifically ignored. The high-churn
binary folders are also excluded.

TGitCache.exe also uses these paths to restrict its scanning. If you want
it to look only in particular folders, disable all drive types and include only
the folders you specifically want to be scanned.

=", Exclude suBsT Drives

EN
It is often convenient to use a suBsT drive to access your
working trees, e.g. using the command

subst T: C:\TortoiseGit\doc

However this can cause the overlays not to update, as
TGitcache Will only receive one notification when a file
changes, and that is normally for the original path. This
means that your overlays on the subst path may never be
updated.

An easy way to work around this is to exclude the original
path from showing overlays, so that the overlays show up on
the subst path instead.

Sometimes you will exclude areas that contain working trees, which
saves TGitCache from scanning and monitoring for changes, but you still
want a visual indication that a folder contains a working tree. The Show
excluded folders as 'normal' checkbox allows you to do this. With this
option, working tree folders in any excluded area (drive type not checked,
or specifically excluded) will show up as normal and up-to-date, with a
green check mark. This reminds you that you are looking at a working
tree, even though the folder overlays may not be correct. Files do not get
an overlay at all. Note that the context menus still work, even though the
overlays are not shown.

As a special exception to this, drives A: and B: are never considered for
the Show excluded folders as 'normal’ option. This is because Windows
is forced to look on the drive, which can result in a delay of several
seconds when starting Explorer, even if your PC does have a floppy
drive.

2.36.2.1. Icon Set Selection

Figure 2.79. The Settings Dialog, Icon Set Page

45" Settings - TortoiseGit @
4% General « |55 lcon Set
x{;&} Context Menu I
@ Set Bxtend Menu Item Lron Set: IXPS‘L'H'"E "]
----- 22 Dialogs
_____ ¥ Colors1 5. normal G deleted. cpp €] non-versioned.h o | assL
_____ ’{f Colors 2 @ modified ij skip-worktree.cpp # normal, txt % | dele
_____ W Colors3 i, conflicted &§added. cpp @ modified. txt i1 | skip-
_____ Alemaireadior i) assume-valid "‘jignared.cpp 1| conflicted. txt o | adde
4.5 Icon Overlays . deleted Einon-versioned.cpp 43 | assume-valid. tt = |igno
_____ ¥ Jcon Set £ skip-worktree #3] normal.h % deleted. txt @ non-
@ s il E o added il modified.h it skip-worktree, txt ¥ narn
| ignored -gh] conflicted.h o | added.txt ﬂ_]mnd
"""] N_etw.nrk & non-versioned 4] assume-valid.h - |ignored. txt] cont
4 " S e #inormal. cpp | deleted.h & non-versioned, txt Bl ass.
= l’ Merge Tool ﬂﬂmadiﬁed.cpp ;iﬂ skip-worktree.h #% | normal.java ﬂ]dele
‘{E-:'} Saved Data G| conflicted. cpp .ﬁ] added.h @ | modified.java g@_]skip-
-‘“5* Git Fjjassume-'u'alid.cpp “J ignored.h 1, | confiicted. java maddt
------ 4, Remote
ary ' Hook Scripts 1l k
' ----- @ Issue Tracker Integration @ List View ® Symbol View
& Issue Tracker Config 5
----- 4+, TortoiseGitBlame
et Achranced i
OK.] [Abbrechen Ubernehmen

You can change the overlay icon set to the one you like best. Especially
you can disable overlays which you do not need like assume-valid and
skip-worktree, however other Tortoise* tools use these two for different
purposes. Note that if you change overlay set, you may have to restart
your computer for the changes to take effect.

2.36.2.2. Enabled Overlay Handlers

Figure 2.80. The Settings Dialog, Icon Handlers Page

44" Settings - TortoiseGit _—

a -, General * || g2 Owerlay Handlers
@ Context Menu
b Set Extend Menu frem Enabled Overlay Handlers
e You can disable spedfic Overlay handlers here.
----- =g Dialogs

Disabled handlers won't use up an overlay slot and give other shell extensions a

""" \\'(',’ Colors1 chance to show their overlays.
----- ¥ Colors2
..... ¥ Colors3 Mote: this affects all Tortoise dients, not just Tortoiseit!
----- Alternative editor [#] 1gnored
4401 Overl ool
Il *enniEays || Unversioned
----- 4. lcon Set 5
Ay Overlay Handlers E /] Added
----- 3 Network [] skip worktree (Locked” in TortoiseSVI)
a -G Diff Viewer : :
|| Assume validfunchanged (Meedsdodk”™ in TortoiseSYN)
[¥ Merge Tool
@ Saved Data [+/| Deleted
K i
i Git There are currently 3 overlay handlers installed besides the ones Tortoise uses.
------ 1. Remote

Y v',-" Hook Scripts
: ----- @ Issue Tracker Integration l
. - Issue Tracker Config
----- &, TortoiseGitBlame

Start registry editor I

OK.] [Abbrechen | Ubernehmen Hilfe

Because the number of overlays available is severely restricted, you can
choose to disable some handlers to ensure that the ones you want will be
loaded. Because TortoiseGit uses the common TortoiseOverlays
component which is shared with other Tortoise clients (e.g. TortoiseSVN,
TortoiseCVS, TortoiseHq) this setting will affect those clients too.

Windows explorer can just handle a fixed number different overlay
providers (15) and TortoiseGit is using 6 of these (these 6 are handled by
TortoiseOverlays and, thus, shared with TortoiseSVN and TortoiseCVS).
If the TortoiseGit icons are not correctly displayed this is likely caused by
other programs which provide overlays (like Dropbox, Owncloud,
BoxSync and various others) and register with a higher priority. Use the
Start registry editor button for opening the registry editor at the key where
the overlay handlers are registered. Just delete or rename the ones you
don't need OR prepend the Tortoise ones with a double quote or space
characters so that those come first in the list. For more information
please see TortoiseGit FAQ.

https://tortoisegit.org/support/faq/#ovlnotshowing

2.36.3. Network Settings

Figure 2.81. The Settings Dialog, Network Page

44" Settings - TortoiseGit &J

4 -4, General &
-4k Context Menu

x{c} Set Btend Menu Item

----- 22 Dialogs i e

----- ¥ Colors1 i
..... ¥ Colors2

..... ¥ Colors3

..... Alternative editor
4 g7 Icon Overlays

&
o
L
i
5
e
T
=1}
=3
=3
m
b
mn

J{é Saved Data
4% Git
. L.l Remote SSH

4.7 Hook Scripts S5H dient:
- @ Issue Tracker Integration C:\Program Files\TortoiseGit\pin {Tor toisePLink. exe Browse...
- Issue Tracker Config
----- &+, TortoiseGitBlame

[0K] [Abbrechen] [Ut_:ernehmen] | Hilfe]

Here you can configure your proxy server, if you need one to get through
your company's firewall.

The proxy server settings here do only affect Git for Windows (i.e., http
and https protocols). If you are using OpenSSH/PuTTY/Tortoise(Git)Plink
you have to set up the proxy server settings there separately. In order to
do this, you need the main PuTTY tool, which is not shipped with
TortoiseGit. Preferably you store the proxy settings to the "Default
Settings" configuration there, so that it is applied by default.

If you need to set up per-repository proxy settings, you will need to use
the Git config file to configure this. Consult Section G.3.27, “git-config(1)”
for more details.

You can also specify which program TortoiseGit should use to establish a

secure connection to a git repository which is access using ssh. We
recommend that you use TortoiseGitPlink.exe. This is a version of the
popular Plink program, and is included with TortoiseGit, but it is compiled
as a Windowless app, so you don't get a DOS box popping up every time
you authenticate.

You must specify the full path to the executable. For TortoiseGitPlink.exe
this is the standard TortoiseGit bin directory. Use the | Browse | button to
help locate it, e.g.:

"C:\Program Files\TortoiseGit\bin\TortoiseGitPlink.exe"

B
If you want to use OpenSSH shipped by Git for

Windows/msysGit just enter ssh.exe.

One side-effect of not having a window is that there is nowhere for any
error messages to go, so if authentication fails you will simply get a
message saying something like “Unable to write to standard output”. For
this reason we recommend that you first set up using standard Plink.
When everything is working, you can use TortoiseGitPlink with exactly the
same parameters.

TortoiseGitPlink does not have any documentation of its own because it
Is just a minor variant of Plink. Find out about command line parameters
from the PuTTY website

To avoid being prompted for a password repeatedly, you might also
consider using a password caching tool such as Pageant. This is also
available for download from the PuTTY website or included in the
TortoiseGit package. (Also see Section 2.1.5, “Authentication”.)

Finally, setting up SSH on clients is a non-trivial process which is beyond
the scope of this help file. However, you can find a guide in the
TortoiseGit FAQ listed under Appendix F, Tips and tricks for SSH/PUTTY.

http://www.chiark.greenend.org.uk/~sgtatham/putty/

2.36.3.1. Email settings

Figure 2.82. The Settings Dialog, email settings

44" DATortoiseGit - Settings - TortoizeGit

4-% General E
-4k Context Menu 1
J{c} Set EBxtend Menu Item

..... 22 Dialogs

..... ¥ Colors1

..... "ff Colors 2

..... ¥ Colors3

..... Alternative editor

4 t!::I [con Overlays

m

Q Overlay Handlers
253 Network

- fe Email

4Gy, Diff Viewer

@ Saved Data

a AP Git

----- ﬂ’ Remote
L@ Credential
4 7 Hook Scripts

------ @ Issue Tracker Integration

Ll Issue Tracker Config -

2 Email

Delivery: Use configured server

SMTF Server: example.com

Port:

587

Encryption STARTTLS

SMTP Server reguires authentication
Credentials

Login: someone @example.com

Password: TTITITTIYY

oK] [Abbrechen] [Ut_:ernehrnen] [

Hilfe

This page allows you to specify configure how mails should be send.

SMTP, directly to destination server

When this option is selected, TortoiseGit directly connects to the

SMTP server(s) (on port 25) which is/are responsible for the specific

destination email-address(es). This is the default for TortoiseGit
(unless some different method is configured).

_i Important

This might be problematic if your ISP blocks outgoing
SMTP connections (port 25) or you have a dialup internet
connection. In the ladder case some destination MTAS

might not accept your mails or mark them as SPAM.

MAPI

When this option is selected, TortoiseGit uses the Microsoft
Messaging APl (MAPI) for sending mails. For this, you need a MAPI
capable mail client (e.g. Thunderbird or Outlook).

A Important

If you don't send patches as attachments, you might
need to make sure that no auto line wrapping takes
place. For Thunderbird there is an add-on (Toggle Word
Wrap) available.

use configured server

This is the recommended way for sending mails. Just enter the same
data as in your mail tools (MUA).

2.36.4. External Program Settings

Here you can define your own programs that TortoiseGit should use. The
default setting is to use tools which are installed alongside TortoiseGit.

Read Section 2.17.6, “External DifffMerge Tools” for a list of some of the
external difffmerge programs that people are using with TortoiseGit.

2.36.4.1. Diff Viewer

Figure 2.83. The Settings Dialog, Diff Viewer Page

https://addons.mozilla.org/de/thunderbird/addon/toggle-word-wrap/

-

' Settings - TortoiseGit

4-% General

4@k Context Menu

x{c:& Set Bdend Menu Item
..... 22 Dialogs

..... Y Colorsl

..... ¥ Colors2

..... ¥ Colors 3

..... Alternative editor

4 @ Icon Overlays

;.{é} Saved Data
4% Git

a ;.“ Hook Scripts

- Issue Tracker Integration

& Issue Tracker Config
-k, TortoiseGitBlame
L Achmnced

m

Diff Viewer
Configure the program used for comparing different revisions of files

@ TortoiseMerge) External

Click on "Advanced” to specify alternate diff [
programs based on file extension

Advanced...

Configure viewer program for GMU diff files (patch files)

@) TortoiseUDiff) External

0K] [Abbrechen] [Ut_:ernehmen] [

Hilfe

Ybase

The original file without your changes

%bname

The window title for the base file

%mine

Your own file, with your changes

An external diff program may be used for comparing different revisions of
files. The external program will need to obtain the filenames from the
command line, along with any other command line options. TortoiseGit
uses substitution parameters prefixed with . When it encounters one of
these it will substitute the appropriate value. The order of the parameters
will depend on the Diff program you use.

%yname
The window title for your file
Full path to the original file
Full path to your file

Yobrev

The revision of the original file, if available
Yoyrev
The revision of the second file, if available

The window titles are not pure filenames. TortoiseGit treats that as a
name to display and creates the names accordingly. So e.g. if you're
doing a diff from a file in revision 123 with a file in your working tree, the
names will be filename: revision 123 and filename: working tree

For example, with ExamDiff Pro:

C:\Path-To\ExamDiff.exe %base %mine --left_display_name:%bna
--right_display_name:%yname

(| S—

or with KDiff3:

C:\Path-To\kdiff3.exe %base %mine --L1 %bname --L2 %yname

or with WinMerge:

C:\Path-To\WinMerge.exe -e -ub -dl1 %bname -dr %yname %base %

J = e

J —]

or with Araxis:

C:\Path-To\compare.exe /max /wait /titlel:%bname /title2:%yn
%base %mine

(| = 0

If you have configured an alternate diff tool, you can access
TortoiseGitMerge and the third party tool from the context menus.
Context menu - Diff uses the primary diff tool, and Shift+

Context menu - Diff uses the secondary diff tool.

A viewer program for unified-diff files (GNU diff or patch files). No
parameters are required. The Default option is to check for a file
association for .diff files, and then for .txt files. If you don't have a viewer
for .diff files, you will most likely get NotePad.

The original Windows NotePad program does not behave well on files
which do not have standard CR-LF line-endings. Since most unified diff
files have pure LF line-endings, they do not view well in NotePad.
However, you can use a free NotePad replacement Notepad? (this is also
shipped with TortoiseGit) which not only displays the line-endings
correctly, but also colour codes the added and removed lines.

2.36.4.2. Merge Tool

Figure 2.84. The Settings Dialog, Merge Tool Page

http://www.flos-freeware.ch/notepad2.html

-

41" Settings - TortoiseGit

4 -4, General

4@k Context Menu

J{c\j} Set Bxtend Menu Item
..... 22 Dialogs

..... ¥ Colorsl

..... ¥ Colors2

..... ¥ Colors3

..... Alternative editor

4 {'5‘-_1 Icon Overlays

a -G Diff Viewer
l’ M_erge.TooI [
;{é} Saved Data
a4 Git

.:hj' Hook Scripts

------ @ Issue Tracker Integration

A Issue Tracker Config
----- &+, TortoiseGitBlame
Lot Advanced

m

¥ Merge Tool

Configure the program used to resolve conflicted files,

@ TortoiseMerge () External

Click on "Advanced” to specify alternate merge

programs based on file extension Advanced...

0K] [Abbrechen]