
Toolbar2000
Copyright	©	1998-2004	by	Jordan	Russell.	All	rights	reserved.

web	site:		 http://www.jrsoftware.org/
newsgroups:		 http://www.jrsoftware.org/newsgroups.php
e-mail:		 http://www.jrsoftware.org/contact.php

Toolbar2000	is	a	set	of	components	for
Borland	Delphi	and	C++Builder	(4.0	and
later)	designed	to	mimic	the	Office	2000
look	and	behavior.	It	is	shareware
(register).

Toolbar2000	is	nearly	a	complete	rewrite
of	the	classic	Toolbar97	component	set.
As	such,	I	consider	it	to	be	a	new	and
separate	product,	not	a	mere	upgrade.
(However,	all	currently	registered	users	of
Toolbar97	are	licensed	to	Toolbar2000	as	well,	at	no	extra	charge.)

Some	of	the	features	of	Toolbar2000	include:

Office	2000-style	draggable,	dockable	toolbars
Toolbars	can	smoothly	move	as	they	are	dragged	(no	dragging
rectangle).
Toolbars	that	go	partially	off	the	edge	of	the	form	can	display	a
chevron	button	that	brings	up	a	popup	window	exposing	the	obscured
items.
Toolbar	items	can	optionally	wrap	into	multiple	rows	like	Office's
menu	bar.
Unlike	Toolbar97,	toolbars	are	not	required	to	be	placed	on	a	dock;
they	can	be	placed	anywhere	you	need	them.
Vertical	text	on	vertically-docked	toolbars.

Office	2000-style	menus
There	is	no	clear	distinction	between	menus	and	toolbars,	giving	you	the
utmost	in	flexibility.	Toolbars	can	contain	menus,	menu	bars	can	contain

http://www.jrsoftware.org/
http://www.jrsoftware.org/newsgroups.php
http://www.jrsoftware.org/contact.php
http://www.borland.com/delphi/
http://www.borland.com/bcppbuilder/
http://www.jrsoftware.org/tb97info.php

buttons,	and	they	can	share	the	same	items.
Full	compatibility	with	Windows	95/98/2000/Me/XP	and	NT	4.0	without
requiring	a	recent	version	of	COMCTL32.DLL,	unlike	Delphi's	TToolBar
and	TCoolBar	components.
Slide	&	fade	animation	(when	enabled	in	Windows).
On	Windows	XP,	support	for	shadows	on	menus	and	flat	menus	(when
enabled	in	the	OS).
Microsoft	Active	Accessibility	(MSAA)	support.
Scrolling	menu	support.
Multi-monitor	support.

Documentation	last	revised:	2004-02-28

Internet	Explorer	4	or	later	is	required	to	properly	view	this	help	file.

Toolbar2000	License

All	files	included	in	the	Toolbar2000	archive	are	Copyright	©	1998-2003
Jordan	Russell.	Use	and/or	distribution	of	them	requires	acceptance	of	the
following	License	Agreement.

Toolbar2000	License	Agreement	v3.1

"Author"	herein	refers	to	Jordan	Russell	(the	creator	of	the	Toolbar2000
components).
"Software"	refers	to	all	files	bearing	this	notice,	as	well	as	any	other	files	and
source	code	included	with	Toolbar2000	(typically	extracted	from	a	.zip	archive),
and	all	content	in	them,	regardless	of	whether	any	modifications	have	been
made.

Except	where	otherwise	noted,	all	of	the	documentation	and	Software	included
in	the	Toolbar2000	package	is	copyrighted	by	Jordan	Russell	(the	Author).

Copyright	©	1998-2003	Jordan	Russell.	All	rights	reserved.

Use	and	distribution	of	the	software	is	permitted	provided	that	all	of	the
following	terms	are	accepted:

1.	 The	Software	is	provided	"as-is,"	without	any	express	or	implied	warranty.
In	no	event	shall	the	Author	be	held	liable	for	any	damages	arising	from	the
use	of	the	Software.

2.	 All	redistributions	of	the	Software's	files	must	be	in	their	original,
unmodified	form.	Distributions	of	modified	versions	of	the	files	is	not
permitted	without	express	written	permission	of	the	Author.

3.	 All	redistributions	of	the	Software's	files	must	retain	all	copyright	notices
and	web	site	addresses	that	are	currently	in	place,	and	must	include	this	list
of	conditions	without	modification.

4.	 None	of	the	Software's	files	may	be	redistributed	for	profit	or	as	part	of
another	software	package	without	express	written	permission	of	the	Author.

5.	 You	are	permitted	to	Compile	the	Software	into	any	kind	of	applications.
("Compile"	here	refers	to	the	automatic	process	of	translating	the	Software's
source	code	into	executable	machine	code	by	a	compiler	such	as	the	one
included	with	Borland's	Delphi	or	C++Builder.)
However,	compilation	into	commercial	or	shareware	applications,	or	any

applications	you	are	profiting	from,	requires	registration	(payment)	of	the
software.
For	information	on	registering,	see	the	Toolbar2000	documentation	or	this
web	page:
http://www.jrsoftware.org/tb2kreg.php

6.	 Redistribution	of	any	of	the	Software's	files	in	object	form	(including	but
not	limited	to	.DCU	and	.OBJ	formats)	is	strictly	prohibited	without	express
written	permission	of	the	Author.

7.	 Full	backward	compatibility	in	future	versions	of	the	Software	is	not
guaranteed.	In	no	event	shall	the	Author	be	held	liable	for	any
inconvenience	or	damages	arising	from	lack	of	backward	compatibility.

If	you	do	not	agree	to	all	of	the	above	terms,	you	are	not	permitted	to	use	the
Software	in	any	way,	and	all	copies	of	it	must	be	deleted	from	your	system(s).

http://www.jrsoftware.org/tb2kreg.php

Register

Toolbar2000	is	shareware,	and	is	the	result	of	countless	hours	of	hard	work.	If
you	use	the	components,	please	show	your	support	by	registering	(paying	for	it).

Why	register?

Registration	is	required	if	you	use	Toolbar2000	in	any	applications	that	you
or	your	organization	are	profiting	from	(i.e.	commercial	or	shareware).
Registered	users	receive	higher-priority	support.
Registered	users	are	always	guaranteed	access	to	the	source	code.
Your	support	serves	as	motivation	for	me	to	continue	improving	the
components.

How	do	I	register?

To	register,	please	visit	the	following	web	page:
http://www.jrsoftware.org/tb2kreg.php

The	cost	of	a	single	user	license	is	currently	only	US$35.	This	license	permits
development	using	Toolbar2000	by	a	single	person	only.	A	site	license	costs
US$89,	which	permits	development	using	Toolbar2000	by	any	number	of
persons	at	your	place	of	work.	Both	licenses	allow	distribution	of	Toolbar2000	in
compiled	form	in	any	type	of	application	-	be	it	commericial,	shareware,	or
freeware.

Registration	may	done	using	credit	card,	check,	money	order,	or	cash	(many
foreign	currencies	accepted).

http://www.jrsoftware.org/tb2kreg.php

Installation

The	first	step	in	using	Toolbar2000	is	to	install	it	in	Delphi	or	C++Builder.
However,	before	using	Toolbar2000	be	sure	to	read	over	the	License	Agreement.

Toolbar2000	may	be	used	in	Delphi	4.0-7.0	or	C++Builder	4.0-6.0.	Previous
versions	of	Delphi	and	C++Builder	are	not	supported	(see	FAQ).

IMPORTANT:	When	unzipping	Toolbar2000,	make	sure	your	unzip	program	is
configured	to	recreate	the	directory	structure	(in	WinZip,	check	Use	Folder
Names).

Delphi	4.0	installation	/	upgrade:

1.	 Select	Tools	|	Environment	Options...	on	the	menu	bar.	Go	to	Library	tab
and	add	the	full	path	of	your	Toolbar2000	Source	directory	to	the	Library
Path	if	you	have	not	already	done	so.	The	Library	Path	field	should	then
look	similar	to	this:

$(DELPHI)\Lib;$(DELPHI)\Bin;$(DELPHI)\Imports;c:\tb2k\source

Click	OK.
2.	 Select	File	|	Open...	on	the	menu	bar.	Set	Files	of	type	to	Delphi	package
source,	locate	and	select	the	tb2k_d4	package	source	file	in	your
Toolbar2000	Packages	directory,	and	click	Open.

3.	 A	package	editor	window	will	appear.	Click	Compile,	then	click	Install.
4.	 Close	the	package	editor	window.	If	you	are	asked	if	you	want	to	save

changes	to	the	package,	answer	No.
5.	 Repeat	steps	2	through	4	with	the	tb2kdsgn_d4	package.	

NOTE:	The	order	in	which	you	install	the	two	packages	is	important;	if
you	install	them	in	the	wrong	order,	Delphi	will	probably	complain	about
not	being	able	to	find	tb2k_d4.bpl	the	next	time	it	is	started.	To	fix	this,
select	Component	|	Install	Packages,	remove	the	two	packages,	and
reinstall	them	by	repeating	the	above	steps.

Delphi	5.0	installation	/	upgrade:

1.	 Select	Tools	|	Environment	Options...	on	the	menu	bar.	Go	to	Library	tab
and	add	the	full	path	of	your	Toolbar2000	Source	directory	to	the	Library

Path	if	you	have	not	already	done	so.	The	Library	Path	field	should	then
look	similar	to	this:

$(DELPHI)\Lib;$(DELPHI)\Bin;$(DELPHI)\Imports;c:\tb2k\source

Click	OK.
2.	 Select	File	|	Open...	on	the	menu	bar.	Set	Files	of	type	to	Delphi	package
source,	locate	and	select	the	tb2kdsgn_d5	package	source	file	in	your
Toolbar2000	Packages	directory,	and	click	Open.

3.	 A	package	editor	window	will	appear.	Click	Compile,	then	click	Install.
4.	 Close	the	package	editor	window.	If	you	are	asked	if	you	want	to	save

changes	to	the	package,	answer	No.

Delphi	6.0	installation	/	upgrade:

1.	 Select	Tools	|	Environment	Options...	on	the	menu	bar.	Go	to	Library	tab
and	add	the	full	path	of	your	Toolbar2000	Source	directory	to	the	Library
Path	if	you	have	not	already	done	so.	The	Library	Path	field	should	then
look	similar	to	this:

$(DELPHI)\Lib;$(DELPHI)\Bin;$(DELPHI)\Imports;c:\tb2k\source

Click	OK.
2.	 Select	File	|	Open...	on	the	menu	bar.	Set	Files	of	type	to	Delphi	package
source,	locate	and	select	the	tb2kdsgn_d6	package	source	file	in	your
Toolbar2000	Packages	directory,	and	click	Open.

3.	 A	package	editor	window	will	appear.	Click	Compile,	then	click	Install.
4.	 Close	the	package	editor	window.	If	you	are	asked	if	you	want	to	save

changes	to	the	package,	answer	No.

Delphi	7.0	installation	/	upgrade:

1.	 Select	Tools	|	Environment	Options...	on	the	menu	bar.	Go	to	Library	tab
and	add	the	full	path	of	your	Toolbar2000	Source	directory	to	the	Library
Path	if	you	have	not	already	done	so.	The	Library	Path	field	should	then
look	similar	to	this:

$(DELPHI)\Lib;$(DELPHI)\Bin;$(DELPHI)\Imports;c:\tb2k\source

Click	OK.
2.	 Select	File	|	Open...	on	the	menu	bar.	Set	Files	of	type	to	Delphi	package
source,	locate	and	select	the	tb2kdsgn_d7	package	source	file	in	your
Toolbar2000	Packages	directory,	and	click	Open.

3.	 A	package	editor	window	will	appear.	Click	Compile,	then	click	Install.
4.	 Close	the	package	editor	window.	If	you	are	asked	if	you	want	to	save

changes	to	the	package,	answer	No.

C++Builder	4.0	installation	/	upgrade:

1.	 Select	Tools	|	Environment	Options...	on	the	menu	bar.	Go	to	Library	tab
and	add	the	full	path	of	your	Toolbar2000	Source	directory	to	the	Library
Path	field	if	you	have	not	already	done	so.	The	Library	Path	field	should
then	look	similar	to	this:

$(BCB)\LIB;$(BCB)\LIB\OBJ;c:\tb2k\source

Click	OK.
2.	 Select	File	|	Open	Project...	on	the	menu	bar.	Locate	and	select	the
tb2k_cb4	package	source	file	in	your	Toolbar2000	Packages	directory,	and
click	Open.

3.	 A	package	editor	window	will	appear.	Click	Compile,	then	click	Install.
4.	 Close	the	package	editor	window.	If	you	are	asked	if	you	want	to	save

changes	to	the	package,	answer	No.
5.	 Repeat	steps	2	through	4	with	the	tb2kdsgn_cb4	package.

C++Builder	5.0	installation	/	upgrade:

1.	 Select	Tools	|	Environment	Options...	on	the	menu	bar.	Go	to	Library	tab
and	add	the	full	path	of	your	Toolbar2000	Source	directory	to	the	Library
Path	field	if	you	have	not	already	done	so.	The	Library	Path	field	should
then	look	similar	to	this:

$(BCB)\Lib;$(BCB)\Bin;$(BCB)\Imports;$(BCB)\Projects\Bpl;c:\tb2k\source

Click	OK.
2.	 Select	File	|	Open	Project...	on	the	menu	bar.	Locate	and	select	the
tb2k_cb5	package	source	file	in	your	Toolbar2000	Packages	directory,	and
click	Open.

3.	 A	package	editor	window	will	appear.	Click	Compile,	then	click	Install.
4.	 Close	the	package	editor	window.	If	you	are	asked	if	you	want	to	save

changes	to	the	package,	answer	No.
5.	 Repeat	steps	2	through	4	with	the	tb2kdsgn_cb5	package.

C++Builder	6.0	installation	/	upgrade:

1.	 Select	Tools	|	Environment	Options...	on	the	menu	bar.	Go	to	Library	tab
and	add	the	full	path	of	your	Toolbar2000	Source	directory	to	the	Library
Path	field	if	you	have	not	already	done	so.	The	Library	Path	field	should
then	look	similar	to	this:

$(BCB)\Lib;$(BCB)\Bin;$(BCB)\Imports;$(BCB)\Projects\Bpl;c:\tb2k\source

Click	OK.
2.	 Select	File	|	Open	Project...	on	the	menu	bar.	Locate	and	select	the
tb2k_cb6	package	source	file	in	your	Toolbar2000	Packages	directory,	and
click	Open.

3.	 A	package	editor	window	will	appear.	Click	Compile,	then	click	Install.
4.	 Close	the	package	editor	window.	If	you	are	asked	if	you	want	to	save

changes	to	the	package,	answer	No.
5.	 Repeat	steps	2	through	4	with	the	tb2kdsgn_cb6	package.

Getting	Started

Now	that	you	have	installed	Toolbar2000,	how	do	you	go	about	creating
dockable	toolbars	and	menu	bars?	Here	is	a	brief	introduction.

1.	 The	first	step	is	to	create	one	or	more	TTBDock	components.	Docks	will
contain	the	toolbar(s)	you	create.	To	move	a	dock	to	a	different	side	of	the
form,	change	its	Position	property.	

2.	 Next,	select	a	TTBDock	component	you	have	created	(by	clicking	on	it),
then	drop	a	TTBToolbar	component	onto	the	dock	(by	double-clicking
TTBToolbar	on	the	component	palette).	If	the	toolbar	you	created	is	to	be
used	as	a	menu	bar,	set	the	MenuBar	property	to	True.	If	you	have	an	image
list	you	want	to	use	with	the	toolbar,	assign	it	to	the	Images	property.	

3.	 You	will	probably	want	to	add	some	items	to	the	toolbar	you	just	created.
To	do	this,	invoke	the	Toolbar	Editor	by	either	double-clicking	the	toolbar
or	by	clicking	the	"..."	button	next	to	the	Items	property	in	the	Object
Inspector.	

4.	 Once	inside	the	Toolbar	Editor,	use	the	"New"	buttons	on	the	Toolbar
Editor's	toolbar	to	create	new	items.	Then	modify	them	to	your	liking	using
Object	Inspector.	

For	a	ready-to-run	example,	open	the	Demo	project	in	the	DemoProj
subdirectory.	If	you're	using	C++Builder,	open	the	DemoBCB	project	instead,	or
DemoBCB6	if	you're	using	C++Builder	6.

Migrating	from	TMainMenu/TPopupMenu

Toolbar2000	comes	with	a	TMainMenu/TPopupMenu	to	TTBToolbar
conversion	tool,	so	it	is	not	necessary	to	re-create	all	of	your	menus	from	scratch
when	implementing	Toolbar2000	in	an	existing	project.

Here	is	how	to	use	it.	It	is	recommended	that	you	make	a	backup	copy	of	your
form	before	proceeding.

1.	 Open	the	form	containing	the	TMainMenu	or	TTBPopupMenu	component
you	want	to	convert.	

2.	 Create	a	TTBToolbar	component	on	the	form	(if	you	haven't	already	done
so),	and	double-click	it	to	invoke	the	Toolbar	Editor.	

3.	 On	the	Toolbar	Editor's	toolbar,	click	Tools	then	Convert
TMainMenu/TPopupMenu.	

4.	 Follow	the	on-screen	instructions	to	proceed	with	the	conversion.	If	it
encounters	any	properties	or	events	that	it	is	not	able	to	convert,	warning
messages	will	be	displayed.	

5.	 If	you	are	satisfied	with	the	results,	you	may	delete	the	TMainMenu	or
TPopupMenu	component.	

MSAA	Support

Toolbar2000	contains	integrated	support	for	Microsoft	Active	Accessibility
(MSAA),	a	COM-based	technology	which	provides	a	consistent	mechanism	for
accessibility	aids	--	notably,	screen	readers	for	the	visually	impaired	--	to	query
applications	for	information	on	their	user	interface	elements.

Enabling	MSAA	support

When	Toolbar2000	is	compiled	into	an	EXE	or	run-time	package,	MSAA
support	should	work	out	of	the	box,	provided	you	have	not	removed	the
Application.Initialize	call	from	your	project's	.dpr	file.

When	Toolbar2000	is	compiled	into	a	DLL,	the	host	application	must	initialize
the	COM	library	in	order	for	the	MSAA	support	to	function.	If	the	host
application	is	a	Delphi	application,	the	simplest	way	to	ensure	the	COM	library
is	initialized	is	to	add	the	ComObj	unit	to	the	project's	or	main	form's	"uses"
clause.	Alternatively,	the	application	can	manually	call	the	CoInitialize	function
at	startup,	and	CoUninitialize	at	shutdown.

Testing	MSAA	support

Windows	2000	and	XP	come	with	a	basic	MSAA-based	screen	reader	called
Narrator	which	can	be	used	for	cursory	testing	of	the	MSAA	support	on
Toolbar2000's	menus.	On	English	editions	of	Windows,	Narrator	may	be
accessed	by	going	to	Start	>	Programs	>	Accessories	>	Accessibility	>	Narrator.
Non-English	editions	of	Windows	may	not	list	Narrator	on	the	Start	menu,	but	it
should	still	be	possible	to	start	Narrator	by	running	narrator.exe	manually.

After	starting	Narrator,	try	opening	and	navigating	menus	in	Toolbar2000.	You
should	hear	the	captions	of	menu	items	announced	as	you	move	the	mouse	over
them,	the	same	as	with	standard	menus.

For	more	sophisticated	testing,	try	the	Inspect,	AccExplorer,	and	AccEvent	tools
from	the	MSAA	SDK,	available	from	Microsoft's	web	site,	and	also	in	the
Platform	SDK.

Tips	for	MSAA-friendliness

Every	menu	and	toolbar	item	(with	the	exception	of	separators)	should	have
a	caption	assigned.	Toolbar2000	will	make	the	caption	available	to	MSAA
clients	regardless	of	whether	the	item	has	a	visible	text	label.	If	you	do	not
give	your	items	captions,	then	visually	impaired	users	may	be	unable	to
determine	their	purpose.

Compatibility

Toolbar2000's	MSAA	support	has	been	tested	on	the	following	operating	system
and	MSAA	version	combinations:

Windows	95	with	MSAA	1.3
Windows	98	with	MSAA	1.3	and	2.0
Windows	Me	with	MSAA	1.3	and	2.0
Windows	NT	4.0	SP6	with	MSAA	1.3	and	2.0
Windows	2000	with	MSAA	1.3	and	2.0
Windows	XP	with	MSAA	2.0

Global	Functions	and	Variables

TB2Dock	unit

Functions:

procedure	TBIniLoadPositions(const	OwnerComponent:	TComponent;

const	Filename,	SectionNamePrefix:	string);	Loads	the	positions	of
all	toolbars	owned	by	OwnerComponent	from	the	.INI	file	specified	by
Filename.	Normally,	OwnerComponent	will	be	a	form.	This	function	is
provided	for	backwards	compatibility;	32-bit	applications	should	use	the
registry	instead.	This	function	should	be	called	when	your	application	starts
(usually	in	the	OnCreate	handler	of	your	form).	If	the	positions	were	not
previously	saved	in	the	.INI	file,	TBIniLoadPositions	has	no	effect.	Each
toolbar's	data	is	loaded	from	a	section	whose	name	is	the	Name	property	of
the	toolbar	prefixed	by	SectionNamePrefix.	

Example:

procedure	TForm1.FormCreate(Sender:	TObject);

begin

		TBIniLoadPositions(Self,	'test.ini',	'');

end;

procedure	TBIniSavePositions(const	OwnerComponent:	TComponent;

const	Filename,	SectionNamePrefix:	string);

Saves	the	positions	of	all	toolbars	owned	by	OwnerComponent	to	the	.INI
file	specified	by	Filename.	Normally,	OwnerComponent	will	be	a	form.
This	function	is	provided	for	backwards	compatibility;	32-bit	applications
should	use	the	registry	instead.	This	function	should	be	called	when	your
application	exits	(usually	in	the	OnDestroy	handler	of	your	form).	Each
toolbar's	data	is	saved	to	a	section	whose	name	is	the	Name	property	of	the
toolbar	prefixed	by	SectionNamePrefix.	

Example:

procedure	TForm1.FormDestroy(Sender:	TObject);

begin

		TBIniSavePositions(Self,	'test.ini',	'');

end;

procedure	TBRegLoadPositions(const	OwnerComponent:	TComponent;

const	RootKey:	DWORD;	const	BaseRegistryKey:	string);

Loads	the	positions	of	all	toolbars	owned	by	OwnerComponent	from	the
registry.	Normally,	OwnerComponent	will	be	a	form.	This	function	should
be	called	when	your	application	starts	(usually	in	the	OnCreate	handler	of
your	form).	If	the	positions	were	not	previously	saved	in	the	registry,
TBRegLoadPositions	has	no	effect.

RootKey	and	BaseRegistryKey	specify	the	root	key	and	subkey	that	it	loads
the	data	from.	Normally,	you	should	use	HKEY_CURRENT_USER	as	the
root	key.	TBRegLoadPositions	will	append	the	Name	of	the	toolbars	onto
this.	For	example,	if	BaseRegistryKey	is	Software\My	Company\My
Program\Toolbars	and	the	Name	of	a	toolbar	is	MyToolbar,	it	loads	the	data
from	the	Software\My	Company\My	Program\Toolbars\MyToolbar	key.

Delphi	example:

procedure	TForm1.FormCreate(Sender:	TObject);

begin

		TBRegLoadPositions(Self,	HKEY_CURRENT_USER,

				'Software\My	Company\My	Program\Toolbars');

end;

C++Builder	example:

void	__fastcall	TForm1::FormCreate(TObject	*Sender)

{

		TBRegLoadPositions(this,	(DWORD)HKEY_CURRENT_USER,

				"Software\\My	Company\\My	Program\\Toolbars");

}

procedure	TBRegSavePositions(const	OwnerComponent:	TComponent;

const	RootKey:	DWORD;	const	BaseRegistryKey:	string);

Saves	the	positions	of	all	toolbars	owned	by	OwnerComponent	to	the
registry.	Normally,	OwnerComponent	will	be	a	form.	This	function	should
be	called	when	your	application	exits	(usually	in	the	OnDestroy	handler	of
your	form).

RootKey	and	BaseRegistryKey	specify	the	root	key	and	subkey	that	it	saves
the	data	to.	Normally,	you	should	use	HKEY_CURRENT_USER	as	the
root	key.	TBRegSavePositions	will	append	the	Name	of	the	toolbars	onto
this.	For	example,	if	BaseRegistryKey	is	Software\My	Company\My
Program\Toolbars	and	the	Name	of	a	toolbar	is	MyToolbar,	it	saves	the	data

from	the	Software\My	Company\My	Program\Toolbars\MyToolbar	key.

Delphi	example:

procedure	TForm1.FormDestroy(Sender:	TObject);

begin

		TBRegSavePositions(Self,	HKEY_CURRENT_USER,	'Software\My	Company\My	Program\Toolbars');

end;

C++Builder	example:

void	__fastcall	TForm1::FormDestroy(TObject	*Sender)

{

		TBRegSavePositions(this,	(DWORD)HKEY_CURRENT_USER,

				"Software\\My	Company\\My	Program\\Toolbars");

}

Components

Toolbar2000	provides	these	components	on	the	component	palette:

	TTBDock
	TTBToolbar
	TTBToolWindow
	TTBPopupMenu
	TTBImageList
	TTBItemContainer
	TTBMRUList
	TTBBackground
	TTBMDIHandler

	TTBDock

Properties	|	Events	|	Methods

Description:

Create	TTBDock	controls	at	locations	you	want	toolbars	to	be	able	to	dock	at.
These	automatically	resize	as	toolbars	are	docked	onto	them.	Set	the	Position
property	to	designate	which	side	of	the	form	the	dock	is	to	be	located.

Key	Properties:

property	AllowDrag:	Boolean	default	True;	When	True,	toolbars	on
the	dock	can	be	dragged.	But	when	it	is	False,	there	are	several	noteworthy
differences:	child	toolbars	are	not	draggable,	the	positions	of	child	toolbars
are	neither	loaded	nor	saved,	and	toolbars	from	other	docks	with
AllowDrag	set	to	True	cannot	be	docked	to	it.	Remember	you	are	permitted
to	create	two	docks	with	the	same	Position,	so	you	could	create	one	dock
with	AllowDrag	set	to	False	and	another	dock	with	AllowDrag	set	to	True.
property	Background:	TTBBasicBackground;

Specifies	an	optional	background	bitmap	to	be	displayed	on	the	dock.
TTBBackground	components	are	assigned	to	this	property.
property	BackgroundOnToolbars:	Boolean	default	True;

When	True,	the	Background	"shines	through"	onto	docked	toolbars.
property	BoundLines:	TTBDockBoundLines;

TTBDockBoundLines	=	set	of	(blTop,	blBottom,	blLeft,	blRight);

Use	this	to	add	extra	lines	to	the	sides	of	the	dock.	For	docks	Positioned	at
the	top	of	the	form,	it	looks	best	if	you	set	this	to	[blTop].
property	FixAlign:	Boolean	default	False;

If	at	run-time	you	notice	a	dock	not	appearing	in	the	location	it	should,
enabling	this	should	correct	the	problem.	This	problem	only	occurs	when
you	have	a	TTBDock	and	another	control	with	the	same	Align	setting	(i.e.	a
dock	and	a	list	view	both	set	to	alLeft).	When	True,	this	adds	an	extra	pixel
to	the	width	or	height	so	that	the	VCL	is	able	to	align	it	correctly.
property	LimitToOneRow:	Boolean	default	False;

Set	this	to	True	if	you	want	to	prevent	the	user	from	having	more	than	one
row	of	docked	toolbars.	I	generally	don't	recommend	you	enable	this	(since
Office	doesn't	do	this)	unless	absolutely	necessary.	If	you	have	fixed-size
form	that	would	look	wrong	with	too	many	rows	of	toolbars,	you	should

instead	respond	to	the	OnResize	event	of	TTBDock	to	make	your	form
resize	itself.
property	Position:	TTBDockPosition;

TTBDockPosition	=	(dpTop,	dpBottom,	dpLeft,	dpRight);

Determines	where	the	dock	is	located	on	the	form.
property	ToolbarCount:	Integer;

The	number	of	visible	toolbars	currently	docked.
property	Toolbars[Index:	Integer]:	TTBCustomDockableWindow;

Zero-based	array	of	all	the	visible	toolbars	that	are	currently	docked.

Events:

property	OnInsertRemoveBar:	TTBInsertRemoveEvent;

TTBInsertRemoveEvent	=	procedure(Sender:	TObject;	Inserting:

Boolean;	Bar:	TTBToolbar)	of	object;

Occurs	after	a	toolbar	is	docked	(Inserting	=	True)	or	undocked	(Inserting	=
False).
property	OnRequestDock:	TTBRequestDockEvent;

TTBRequestDockEvent	=	procedure(Sender:	TObject;	Bar:

TTBCustomDockableWindow;	var	Accept:	Boolean)	of	object;

Occurs	whenever	a	toolbar	is	moved	over	the	dock	as	it	is	being	dragged.
By	setting	Accept	to	False	you	can	prevent	a	particular	toolbar	from	being
docked.
property	OnResize:	TNotifyEvent;

Occurs	whenever	the	dock	is	resized.

Key	Methods:

procedure	BeginUpdate;

Disables	toolbar	arrangement.	You	may	call	this	when	moving	multiple
toolbars	on	a	dock	to	reduce	flicker.	Once	the	changes	are	complete,	call
EndUpdate.
procedure	EndUpdate;

Re-enables	toolbar	arrangement	after	a	call	to	BeginUpdate.

	TTBToolbar

Properties	|	Events	|	Methods

Description:

This	is	the	toolbar	component.	To	add/edit/delete	items	on	a	toolbar,	double-
click	it	in	the	form	designer	to	invoke	the	Item	Editor.	(See	the	Getting	Started
page	for	instructions	on	creating	docks	and	toolbars.)

In	addition	to	Toolbar2000's	built-in	"items,"	regular	controls	may	also	be	placed
at	the	top	level	of	a	TTBToolbar.	Simply	drop	them	on	a	toolbar	the	same	way
you	would	any	other	control.	Note,	however,	that	there	are	several	limitations	of
using	controls	instead	of	items	on	a	toolbar.	For	example,	controls	will	not	be
displayed	in	a	chevron	popup	menu.

Remarks:

When	the	CloseButton	property	is	True	(the	default),	the	toolbar	can	hide	itself	if
the	user	clicks	the	close	button	on	a	floating	toolbar.	Because	of	this,	you	should
always	include	an	item	on	a	menu	that	toggles	the	Visible	property	so	the	user
can	get	it	back	if	it	is	closed.	See	the	demo	application	source	code	for	an
example	of	this.

While	toolbars	are	typically	placed	on	docks,	it	is	not	required.	When	placed
outside	of	a	dock,	toolbars	will	not	display	a	drag	handle	or	border.	To	get	an
undocked	toolbar	to	wrap	or	display	a	chevron,	you	must	do	at	least	one	of	the
following:	set	AutoResize	to	False,	set	Align	to	one	of	[alTop,	alBottom,
alClient],	or	add	[akLeft,	akRight]	to	Anchors.

At	run-time,	any	new	items/controls	created	on	a	TTBToolbar	are	initially
positioned	at	the	end	of	the	toolbar.	To	change	positions	of	individual
items/controls	at	run-time,	call	toolbar.Items.Move.

Key	Properties:

property	ActivateParent:	Boolean	default	True;	Determines	whether
the	parent	form	is	activated	when	a	floating	toolbar	is	clicked.
property	AutoResize:	Boolean	default	True;

Determines	whether	the	toolbar	will	automatically	adjust	its	width	and

height	when	items	are	added/deleted/changed.	However,	if	Anchors
includes	both	akLeft	and	akRight	then	it	will	not	change	the	toolbar's	width,
and	if	Anchors	includes	both	akTop	and	akBottom	it	will	not	change	the
height.	This	property	is	not	applicable	to	docked	or	floating	toolbars.
property	BorderStyle:	TBorderStyle	default	bsSingle;

When	set	to	bsSingle,	the	toolbar	has	a	3-D	border.
property	Caption;

What	appears	in	the	title	bar	of	a	floating	toolbar.
property	ChevronHint:	string;

The	hint	displayed	when	the	mouse	is	moved	over	the	toolbar's	chevron	().
This	defaults	to	the	value	of	STBChevronItemMoreButtonsHint	in
TB2Consts.pas.
property	ChevronMoveItems:	Boolean	default	True;

Normally,	when	an	item	on	the	toolbar's	chevron	popup	menu	()	is
clicked,	the	clicked	item	will	move	into	the	visible	area	of	the	toolbar	in
place	of	the	least	recently	clicked	item.	This	behavior	is	consistent	with
Office	2000	and	XP.	Setting	this	property	to	False	will	disable	it.
property	ChevronPriorityForNewItems:

TTBChevronPriorityForNewItems	default	tbcpHighest;

TTBChevronPriorityForNewItems	=	(tbcpHighest,	tbcpLowest);

If	set	to	tbcpHighest,	items	created	at	run-time	are	given	the	"highest
priority",	meaning	items	that	were	created	previously	are	hidden	first	(as
they	have	lower	priority).	Setting	this	to	tbcpLowest	gives	the	opposite
behavior:	items	created	at	run-time	will	be	hidden	first.
property	CloseButton:	Boolean	default	True;

When	True,	a	close	button	appears	in	the	title	bar	when	the	toolbar	is
floating.
property	CloseButtonWhenDocked:	Boolean	default	False;

When	True,	a	close	button	is	displayed	when	the	toolbar	is	docked.
property	CurrentDock:	TTBDock;

The	TTBDock	control	that	the	toolbar	is	currently	docked	to.	To	move	the
toolbar	to	another	dock,	you	can	assign	to	this	property	any	TTBDock
control	on	the	form.	To	make	a	toolbar	floating	at	run	time,	assign	to	the
Floating	property.
property	DefaultDock:	TTBDock;

(Note:	The	LastDock	property	is	meant	to	supersede	this	property.)
The	default	dock	location.	This	is	used	when	the	user	double-clicks	a
floating	toolbar.	If	neither	this	property	nor	LastDock	are	set,	nothing	will
happen.

property	DockableTo:	TTBDockableTo	default	[dpTop,	dpBottom,

dpLeft,	dpRight];

TTBDockableTo	=	set	of	(dpTop,	dpBottom,	dpLeft,	dpRight);

Specifies	which	positions	the	toolbar	may	be	docked	at.
property	DockMode:	TTBDockMode;

TTBDockMode	=	(dmCanFloat,	dmCannotFloat,

dmCannotFloatOrChangeDocks);

Determines	where	the	user	can	drag	the	toolbar.	If	this	is	dmCanFloat,	the
default,	the	toolbar	can	float	or	dock	to	any	dock	matching	the	criteria	set
by	DockableTo.	If	this	is	dmCannotFloat,	the	toolbar	can	dock	to	the	same
docks	but	it	cannot	float.	If	the	user	moves	the	mouse	outside	a	dock,	the
"Unavailable"	mouse	cursor	is	displayed.	Also,	the	toolbar	does	not	respond
to	double-clicks.	If	this	is	dmCannotFloatOrChangeDocks,	the	user	cannot
drag	the	toolbar	anywhere	outside	its	current	dock.
property	DockPos:	Integer;

This	is	only	valid	if	the	toolbar	is	currently	docked	(CurrentDock	<>	nil).
This	is	its	current	horizontal	(or	vertical,	if	docked	to	a	left	or	right	dock)
position	in	pixels.
property	DockRow:	Integer;

This	is	only	valid	if	the	toolbar	is	currently	docked	(CurrentDock	<>	nil).
This	is	the	row	the	toolbar	is	currently	docked	at.
property	DragHandleStyle:	TTBDragHandleStyle	default	dhDouble;

TTBDragHandleStyle	=	(dhDouble,	dhNone,	dhSingle);

Determines	the	type	of	drag	handle	displayed	on	the	left	(or	top,	when
docked	vertically)	of	the	toolbar.
property	Floating:	Boolean;

Run-time	only.	This	property	is	True	if	the	toolbar	is	currently	in	a	floating
state.	If	it	is	not	True,	setting	it	to	True	will	make	it	floating.
property	FloatingMode:	TTBFloatingMode;

TTBFloatingMode	=	(fmOnTopOfParentForm,	fmOnTopOfAllForms);

By	default,	this	is	set	to	fmOnTopOfParentForm,	meaning	when	floating	the
toolbar	only	stays	on	top	of	its	parent	form.	If	this	is	set	to
fmOnTopOfAllForms,	the	toolbar	will	stay	above	all	other	forms	in	the
project	(except	those	that	are	also	set	to	stay	on	top).
property	FloatingPosition:	TPoint;

Run-time	only.	The	X,Y	coordinates	the	toolbar	appears	at	when	it	is	in	a
floating	state	(Floating	=	True).
property	FloatingWidth:	Integer;

The	desired	X	coordinate	at	which	the	toolbar	wraps	its	items	when	it	is	in	a

floating	state	(Floating	=	True).
property	FullSize:	Boolean	default	False;

When	True,	the	toolbar	always	fills	the	entire	width	(or	height,	if	vertically
docked)	of	the	dock,	much	like	Office's	menu	bar.
property	HideWhenInactive:	Boolean	default	True;

When	True,	the	toolbar	is	hidden	whenever	the	application	is	deactivated	(a
characteristic	of	Office's	toolbars).
property	LastDock:	TTBDock;

The	TTBDock	control	that	the	toolbar	was	last	docked	to,	or	if	the	toolbar
is	currently	docked	and	not	being	dragged,	this	is	equal	to	the	CurrentDock
property.	Double-clicking	a	floating	toolbar	will	restore	it	back	to	the	dock
specified	by	this	property,	and	at	the	same	position	it	previously	was
docked	at.	This	property	overrides	and	is	meant	to	be	a	replacement	for
DefaultDock.	If	you	want	to	disable	the	use	of	this	property,	set
UseLastDock	to	False.
property	MenuBar:	Boolean	default	False;

When	True,	the	toolbar	will	act	like	a	menu	bar.	The	MenuBar	property
itself	is	used	for	determining	how	Alt	keypresses	are	handled,	and	if
accelerator	keys	may	be	hidden.	Also,	for	convenience,	changing	the
MenuBar	property	automatically	sets	the	FullSize	and	ShrinkMode
properties.	When	MenuBar	is	set	to	True,	FullSize	will	be	set	to	True,
ShrinkMode	will	be	set	to	tbsmWrap,	CloseButton	will	be	set	to	False,	and
ProcessShortCuts	will	be	set	to	True.	This	emulates	the	look	and	behavior
of	Office's	menu	bars.
property	ProcessShortCuts:	Boolean	default	False;

When	True,	shortcut	keys	specified	by	the	items'	ShortCut	properties	will
be	processed	when	the	owning	form	is	enabled.
property	ShowCaption:	Boolean	default	True;

When	True,	the	toolbar	displays	a	caption	bar	and	a	close	button	(if
CloseButton	is	True)	when	floating.
property	ShrinkMode:	TTBShrinkMode	default	tbsmChevron;

TTBShrinkMode	=	(tbsmNone,	tbsmWrap,	tbsmChevron);

Determines	how	the	toolbar	will	"shrink"	when	it	is	too	wide	to	fit	on	a
horizontal	dock,	or	too	tall	to	fit	on	a	vertical	dock.	tbsmNone	prevents	the
toolbar	from	being	shrunk.	tbsmWrap	causes	the	toolbar's	items	to	wrap	into
multiple	rows	when	all	items	cannot	fit	on	a	single	row.	tbsmChevron
displays	a	chevron	()	at	the	end	of	the	toolbar	when	all	items	cannot	fit.
Clicking	the	chevron	causes	a	popup	menu	to	be	shown	which	displays	the
invisible	items.

property	SmoothDrag:	Boolean	default	True;

When	True,	the	toolbar's	position	will	be	constantly	updated	while	the
toolbar	is	being	dragged,	like	Office	2000.	When	False,	a	rectangle	will	be
displayed	while	the	toolbar	is	being	dragged,	and	the	actual	toolbar	will
only	move	once	the	mouse	button	released.
property	Stretch:	Boolean	default	False;

When	True,	the	toolbar,	when	docked,	will	stretch	to	fill	any	unused	space
on	the	row.	This	creates	a	TCoolBar-like	effect.
Note:	If	you	wish	to	use	an	aligned	(Align	<>	alNone)	or	anchored	control
inside	a	toolbar,	you	will	need	to	use	TTBToolWindow,	since	TTBToolbar
does	not	support	aligned/anchored	controls.
property	SystemFont:	Boolean	default	True;

When	True,	the	toolbar	will	use	the	menu	font	set	in	Windows'	Display
Properties	for	its	font,	instead	of	the	font	specified	by	the	Font	property.
property	UpdateActions:	Boolean	default	True;

When	True,	Actions	associated	with	the	toolbar's	top-level	items	will	have
their	Update	methods	called	every	time	the	application	becomes	idle.	This
behavior	is	consistent	with	other	VCL	controls,	like	TToolBar.	However,
the	calls	to	Update	can	waste	much	CPU	time	if	you	have	a	lot	of	items
with	associated	Actions,	so	it	may	make	sense	to	change	this	property	to
False	if	that	is	a	concern.
property	UseLastDock:	Boolean	default	True;

When	True,	the	toolbar	saves	the	last	dock	it	was	docked	to	in	the	property
LastDock,	and	internally	preserves	the	position	it	was	docked	at.	See	the
description	of	LastDock	for	more	information.
property	View:	TTBView;

Run-time	only.	The	TTBView	component	that	the	toolbar	uses	to	render
items	on	the	screen.

Events:

property	OnClose:	TNotifyEvent;

Occurs	after	the	toolbar	is	hidden	in	response	to	the	user	clicking	the
toolbar's	Close	button,	or	the	application	calling	the	Close	method.
property	OnCloseQuery:	TCloseQueryEvent;

TCloseQueryEvent	=	procedure(Sender:	TObject;	var	CanClose:

Boolean)	of	object;

Same	in	function	as	a	form's	OnCloseQuery	event.	Setting	CanClose	to
False	will	cancel	the	requested	close	operation.

property	OnDockChanged:	TNotifyEvent;

Occurs	after	the	toolbar	has	changed	between	docks,	or	from	a	docked	to
floating	state	or	vice	versa.
property	OnDockChanging:	TTBDockChangingEvent;

TTBDockChangingEvent	=	procedure(Sender:	TObject;	Floating:

Boolean;	DockingTo:	TTBDock)	of	object;

Occurs	immediately	before	the	toolbar	changes	between	docks,	or	from	a
docked	to	floating	state	or	vice	versa.	Floating	specifies	whether	the	toolbar
is	about	to	go	into	a	floating	state.	If	Floating	is	False,	DockingTo	specifies
where	the	toolbar	is	about	to	dock	to.
property	OnDockChangingHidden:	TTBDockChangingEvent;

TTBDockChangingEvent	=	procedure(Sender:	TObject;	Floating:

Boolean;	DockingTo:	TTBDock)	of	object;

Similar	to	the	OnDockChanging	event,	but	this	event	is	called	after	the
toolbar	has	already	been	hidden	from	the	screen	in	preparation	to	be	moved
to	another	dock.	This	can	be	useful	if,	for	example,	you	want	to	make
changes	in	the	ordering	of	the	toolbar's	controls	whenever	it	moves	between
docks,	but	don't	want	any	visible	flickering	during	this	time.
property	OnMove:	TNotifyEvent;

Occurs	each	time	the	toolbar	moves.	Note	that	when	SmoothDrag	is	True,
the	event	is	fired	repeatedly	as	the	toolbar	is	dragged.
property	OnRecreated:	TNotifyEvent;

Occurs	immediately	after	the	toolbar	recreates	itself.	This	usually	happens
when	it	changes	between	a	docked	and	non-docked	state.
property	OnRecreating:	TNotifyEvent;

Occurs	immediately	before	the	toolbar	recreates	itself.	This	usually	happens
when	it	changes	between	a	docked	and	non-docked	state.
property	OnResize:	TNotifyEvent;

Occurs	after	the	toolbar's	size	changes.	Note	that	this	event	is	fired	after	any
size	change,	not	only	when	the	user	resizes	a	floating	toolbar.
property	OnVisibleChanged:	TNotifyEvent;

Occurs	after	the	toolbar's	visibility	changes.	This	event	will	occur	if	the
application	manually	changes	the	visibility	of	the	toolbar	(e.g.,	by	toggling
the	Visible	property),	or	if	the	user	closes	the	toolbar	using	its	Close	button.

Key	Methods:

procedure	AddDockForm	(const	Form:	TCustomForm);

Adds	a	form	to	the	list	of	forms	that	the	toolbar	can	be	docked	to	besides

the	current	parent's	parent	form.	Keep	in	mind	that	moving	a	toolbar	to
another	form	does	not	change	its	Owner	property;	therefore	it	will	still	be
destroyed	when	its	owner	component	is	destroyed.	To	change	a	toolbar's
owner,	use	TComponent's	RemoveComponent	and	InsertComponent
methods.
procedure	BeginMoving	(const	InitX,	InitY:	Integer);

TTBSizeHandle	=	(twshLeft,	twshRight,	twshTop,	twshTopLeft,

twshTopRight,	twshBottom,	twshBottomLeft,	twshBottomRight);

Forces	the	toolbar	to	enter	"move"	mode.	This	is	called	internally	whenever
the	user	clicks	the	drag	handle	of	a	docked	toolbar	or	the	caption	bar	of	a
floating	toolbar,	and	will	only	work	properly	if	it	is	called	while	the	left
mouse	button	is	still	down.	The	InitX	and	InitY	parameters	specify	the	client
coordinates	where	the	mouse	button	went	down	at,	which	determine	where
the	dragging	rectangle	appears	initially.	In	most	cases	(0,	0)	should	be	fine.
procedure	BeginSizing	(const	ASizeHandle:

TToolWindowSizeHandle);

TTBSizeHandle	=	(twshLeft,	twshRight,	twshTop,	twshTopLeft,

twshTopRight,	twshBottom,	twshBottomLeft,	twshBottomRight);

Forces	the	toolbar	to	enter	"size"	mode.	This	is	called	internally	whenever
the	user	clicks	one	of	the	resizing	handles	on	the	border	of	a	floating
toolbar,	and	will	only	work	properly	if	it	is	called	while	the	left	mouse
button	is	still	down.	The	ASizeHandle	parameter	specifies	which	resizing
handle	was	clicked.
procedure	BeginUpdate;

Disables	arrangement	of	items/controls	on	the	toolbar.	You	may	call	this
when	moving	multiple	items/controls	on	the	toolbar	to	reduce	flicker.	Once
the	changes	are	complete,	call	EndUpdate.
procedure	EndUpdate;

Re-enables	item/control	arrangement	after	a	call	to	BeginUpdate.
procedure	RemoveDockForm	(const	Form:	TCustomForm);

Removes	a	form	from	the	list	of	forms	AddDockForm	adds	to.

	TTBToolWindow

Properties

Description:

This	component	is	very	similar	to	TTBToolbar,	but	has	several	key	differences:

Only	controls	are	accepted;	there	is	no	possibility	to	drop	"items"	(unless
you	put	a	TTBToolbar	inside	the	TTBToolWindow).
Contained	controls	are	not	arranged	automatically.
Contained	controls	may	be	aligned	(Align	<>	alNone).
Floating	tool	windows	may	be	resized	freely.

See	the	help	for	the	TTBToolbar	component	for	explanations	of	the	properties
and	events	not	listed	here.

Key	Properties:

property	MaxClientHeight:	Integer	default	32;	The	maximum
height,	in	client	pixels,	that	the	user	can	resize	the	tool	window	to	when
floating.
property	MaxClientWidth:	Integer	default	32;

The	maximum	width,	in	client	pixels,	that	the	user	can	resize	the	tool
window	to	when	floating.
property	MinClientHeight:	Integer	default	32;

The	minimum	height,	in	client	pixels,	that	the	user	can	resize	the	tool
window	to	when	floating.
property	MinClientWidth:	Integer	default	32;

The	minimum	width,	in	client	pixels,	that	the	user	can	resize	the	tool
window	to	when	floating.
property	Resizable:	Boolean	default	True;

When	True,	the	user	may	resize	the	tool	window	when	floating.

	TTBPopupMenu

Description:

This	component	is	the	Toolbar2000	version	of	TPopupMenu.	It	may	be	used
whereever	a	TPopupMenu	would	be	used.	Double-click	it	in	the	form	designer
to	invoke	the	Item	Editor.

Remarks:

Note	that	since	TTBPopupMenu	is	a	descendant	of	TPopupMenu,	it	inherits	all
of	TPopupMenu's	properties.	However,	not	all	of	these	properties	are	applicable
to	Toolbar2000,	and	thus	are	ignored.	Examples	of	ignored	properties	include
AutoHotkeys,	AutoLineReduction,	and	MenuAnimatation.

	TTBImageList

Properties

Description:

This	component	is	an	enhanced	version	of	the	standard	TImageList	component,
designed	for	use	with	the	Toolbar2000	components.

Key	Properties:

property	CheckedImages:	TCustomImageList;	Pointer	to	another	image
list	which	contains	images	that	are	to	be	shown	on	checked	(Checked	=
True)	items.	If	this	property	is	not	set,	it	will	not	use	different	images	on
checked	items.
property	DisabledImages:	TCustomImageList;

Pointer	to	another	image	list	which	contains	images	that	are	to	be	shown	on
disabled	(Enabled	=	False)	items.	If	this	property	is	not	set,	it	will	generate
its	own	"disabled"	images.
property	HotImages:	TCustomImageList;

Pointer	to	another	image	list	which	contains	images	that	are	to	be	shown	on
items	when	they	are	selected.	If	this	property	is	not	set,	it	will	not	use
different	images	on	selected	items.
property	ImagesBitmap:	TBitmap;

ImagesBitmap	lets	you	use	bypass	the	standard	TImageList	streaming
mechanism	which	suffers	from	these	problems:

On	systems	with	older	COMCTL32.DLL	versions	(e.g.	Windows	95)
the	images	don't	show	up.
It	saves	images	in	your	desktop's	color	depth.	Thus,	even	if	your
images	use	only	16	colors,	if	you're	running	in	32-bit	color	mode	the
images	will	be	saved	in	32-bit	color	--	a	big	waste	of	space.

How	does	one	create	a	bitmap	suitable	for	assigning	to	ImagesBitmap?
1.	 The	simplest	way	to	get	started	is	to	double-click	your	existing	image

list	in	the	form	designer	and	click	Export.
2.	 (optional)	Load	the	exported	bitmap	into	an	image	editing	program

(Paint	will	do)	and	save	it	in	the	smallest	color	depth	necessary.	If	your
image	list	uses	Office-style	images,	then	4-bit	color	(i.e.	16	colors)	is
all	you	need.

3.	 Go	to	the	ImagesBitmap	property,	click	the	"..."	button	and	load	in	the

bitmap	file.	Then	save	your	form.	(You	may	want	to	make	a	backup	of
your	form	files	first.)

From	then	on,	the	image	list	will	get	its	images	from	the	ImagesBitmap
property.	Don't	modify	the	image	list	using	Delphi's	Image	List	Editor;	as
long	as	a	bitmap	is	assigned	to	the	ImagesBitmap	property,	the	changes
won't	be	preserved	when	the	form	is	saved.
property	ImagesBitmapMaskColor:	TColor	default	clFuchsia;

The	color	in	ImagesBitmap	which	is	considered	transparent.

	TTBItemContainer

Description:

This	non-visual	component	is	a	container	for	items.	Like	TTBToolbar,	double-
click	it	in	the	form	designer	to	invoke	the	Item	Editor.

By	itself,	TTBItemContainer	is	not	useful.	It	is	intended	to	be	"linked"	to	another
toolbar	item	via	the	LinkSubitems	property.	You	cannot	directly	assign	a
TTBItemContainer	to	a	LinkSubitems	property,	but	you	can	create	a
TTBSubmenuItem-type	item	inside	the	TTBItemContainer,	and	assign	that	to	a
LinkSubitems	property.

	TTBMRUList

Properties	|	Methods

Description:

This	component	holds	items	for	a	Most	Recently	Used	list.	It	is	intended	to	be
linked	to	a	TTBMRUListItem	item	on	a	menu	via	its	MRUList	property.

Key	Properties:

property	AddFullPath:	Boolean	default	True;	When	True,	items
added	to	the	list	via	the	Add	method	will	be	expanded	into	fully	qualified
pathnames.	If	your	MRU	list	doesn't	contain	filenames,	this	property	should
be	changed	to	False.
property	HidePathExtension:	Boolean	default	True;

When	True,	pathnames	will	be	hidden	when	the	items	are	displayed,	as	well
as	file	extensions	if	Explorer	is	configured	to	"hide	file	extensions	for
known	file	types."	If	your	MRU	list	doesn't	contain	filenames,	this	property
should	be	changed	to	False.
property	Items:	TStrings;

The	items	in	the	MRU	list.	You	can	read	and	directly	manipulate	the	MRU
list	items	via	this	property.
property	MaxItems:	Integer	default	4;

The	maximum	number	of	items	that	the	list	may	contain.	When	MaxItems	is
exceeded,	one	or	more	items	are	deleted	from	the	end	of	the	list.
property	Prefix:	string;

The	string	prefixed	to	the	names	of	values	read	and	written	by	the
LoadFrom*	and	SaveTo*	methods.	The	default	is	"MRU",	making	the
name	of	the	first	value	"MRU0".

Key	Methods:

procedure	Add(const	Filename:	string);

Adds	a	new	filename	to	the	top	of	the	MRU	list.	If	the	specified	filename
already	exists	in	the	MRU	list,	it	will	be	moved	to	the	top.
The	Add	method	is	the	preferred	way	of	adding	new	items	to	the	MRU	list.
procedure	LoadFromIni(Ini:	TCustomIniFile;	const	Section:

string);

Loads	the	MRU	items	from	a	TIniFile	component	or	other	TCustomIniFile
descendant.	Section	specifies	the	section	name	to	read	from.
Usage	example:

procedure	TForm1.FormCreate(Sender:	TObject);

var

		Ini:	TIniFile;

begin

		Ini	:=	TIniFile.Create('MyProgram.ini');

		try

				MRUList.LoadFromIni(Ini,	'MRUList');

		finally

				Ini.Free;

		end;

end;

procedure	LoadFromRegIni(Ini:	TRegIniFile;	const	Section:

string);

Loads	the	MRU	items	from	a	TRegIniFile	component.	Section	specifies	the
section	name	to	read	from.
Usage	example:

procedure	TForm1.FormCreate(Sender:	TObject);

var

		Ini:	TRegIniFile;

begin

		Ini	:=	TRegIniFile.Create('Software\My	Company\My	Program');

		try

				MRUList.LoadFromRegIni(Ini,	'MRUList');

		finally

				Ini.Free;

		end;

end;

procedure	Remove(const	Filename:	string);

Removes	the	specified	filename	from	the	MRU	list	if	it	exists.
procedure	SaveToIni(Ini:	TCustomIniFile;	const	Section:

string);

Saves	the	MRU	items	to	a	TIniFile	component	or	other	TCustomIniFile
descendant.	Section	specifies	the	section	name	to	save	to.
Usage	example:

procedure	TForm1.FormDestroy(Sender:	TObject);

var

		Ini:	TIniFile;

begin

		Ini	:=	TIniFile.Create('MyProgram.ini');

		try

				MRUList.SaveToIni(Ini,	'MRUList');

		finally

				Ini.Free;

		end;

end;

procedure	SaveToRegIni(Ini:	TRegIniFile;	const	Section:

string);

Saves	the	MRU	items	to	a	TRegIniFile	component.	Section	specifies	the
section	name	to	save	to.
Usage	example:

procedure	TForm1.FormDestroy(Sender:	TObject);

var

		Ini:	TRegIniFile;

begin

		Ini	:=	TRegIniFile.Create('Software\My	Company\My	Program');

		try

				MRUList.SaveToRegIni(Ini,	'MRUList');

		finally

				Ini.Free;

		end;

end;

	TTBBackground

Properties

Description:

This	component	holds	a	background	bitmap	which	may	be	associated	with
TTBDock	components	via	their	Background	properties.

Key	Properties:

property	Bitmap:	TBitmap;	The	bitmap	to	use.	It	is	tiled	across	the	length
of	the	dock.
property	BkColor:	TColor	default	clBtnFace;

See	description	of	Transparent.
property	Transparent:	Boolean	default	False;

When	True,	the	color	of	the	bottom-left	pixel	of	the	bitmap	is	considered
transparent,	and	is	replaced	with	the	color	specified	by	the	BkColor
property.

	TTBMDIHandler

Properties

Description:

This	component	adds	the	MDI	system	menu	and	minimize/restore/close	buttons
to	a	menu	bar	when	an	MDI	child	window	in	the	application	is	maximized.	The
Toolbar	property	specifies	the	menu	bar.

Any	MDI	application	which	uses	Toolbar2000	for	its	menus	should	use	this
component.

Remarks:

Currently	TTBMDIHandler	is	only	designed	to	work	with	wrapped	(ShrinkMode
=	tbsmWrap)	menu	bars.

The	items	on	the	system	menu	are	generated	from	the	actual	MDI	child	form's
system	menu.	Therefore,	the	captions	of	the	items	are	properly	localized.

Key	Properties:

property	Toolbar:	TTBCustomToolbar;	The	menu	bar	that	the	MDI
system	menu	and	buttons	should	be	added	to.	This	menu	bar's	ShrinkMode
property	should	be	set	to	tbsmWrap.

Item	Components

This	section	documents	the	various	"item"	components	that	may	be	placed	on
toolbars.

TTBCustomItem

Properties	|	Methods	|	Events

Description:

This	is	the	base	component	which	all	other	Toolbar2000	items	inherit	from.

Key	Properties:

property	AutoCheck:	Boolean	default	False;	When	True,	the	item's
Checked	state	toggles	automatically	when	it	is	clicked,	before	any	OnClick
event	is	fired.
property	Caption:	string;

The	item's	caption.	Whether	it	is	displayed	or	not	depends	on	the	setting	of
the	DisplayMode	and	Options	properties,	and	whether	the	item	is	on	a	menu
or	a	toolbar.
Regardless	of	whether	the	caption	is	displayed	it	is	always	made	available
to	MSAA	clients,	so	it	is	a	good	idea	to	set	Caption	on	every	item	you
create	(with	the	exception	of	separators).
property	Checked:	Boolean;

When	True,	the	button	or	menu	item	is	drawn	has	a	"down"	or	"checked"
appearance.	This	property	is	similar	to	TMenuItem.Checked	and
TSpeedButton.Down.
property	Count:	Integer;

(Run-time	only)	The	number	of	subitems	the	item	has.
property	DisplayMode:	TTBItemDisplayMode	default	nbdmDefault;

TTBItemDisplayMode	=	(nbdmDefault,	nbdmTextOnly,

nbdmTextOnlyInMenus,	nbdmImageAndText);

Determines	whether	the	item's	image	is	to	be	displayed.	nbdmDefault
means	show	both	the	image	and	text	in	menus,	but	only	an	image	on
toolbars.	nbdmTextOnly	means	never	show	an	image.
nbdmTextOnlyInMenus	means	never	show	an	image	if	the	item	is	on	a
menu.	nbdmImageAndText	means	always	show	the	image.
property	EffectiveOptions:	TTBItemOptions;

(Run-time	only)	The	effective	Options	for	the	item;	that	is,	the	Options	after
having	been	combined	with	inherited	options	and	masked.
property	GroupIndex:	Integer	default	0;

When	GroupIndex	is	non-zero	and	True	is	assigned	to	the	Checked

property,	all	other	items	with	the	same	parent	and	GroupIndex	setting	will
have	their	Checked	properties	set	to	False	automatically.
This	is	similar	to	TSpeedButton's	GroupIndex	property.
property	Hint:	string;

The	popup	text	that	is	to	be	displayed	when	the	user	rests	the	mouse	cursor
over	the	item.	On	toolbars,	you	must	set	the	ShowHint	property	to	True	in
order	to	see	popup	hints	on	top-level	items.	To	see	popup	hints	on	popup
menus,	you	must	add	tboShowHint	to	the	Options	property	of	the	items	or
one	of	their	ancestors.
This	property	works	essentially	the	same	as	the	Hint	property	used
throughout	the	VCL,	but	with	one	Toolbar2000-specific	enhancement:	if
you	don't	assign	a	short	hint	to	the	Hint	property,	Toolbar2000	will	generate
one	itself	by	taking	the	value	of	the	Caption	property	and	stripping	any
accelerator	keys	and	any	trailing	colon	or	ellipsis	from	it.	However,	in	the
case	of	TTBSubmenuItem,	Toolbar2000	will	not	generate	a	hint	unless	the
item	has	the	DropdownCombo	property	set	to	True	or	the	item	has	no
visible	caption.
The	automatic	hint	generation	may	be	disabled	by	setting	tboNoAutoHint
on	the	Options	property.
property	InheritOptions:	Boolean	default	True;

When	True,	the	item	will	automatically	combine	its	parent's	Options	with
its	own	Options.	Use	the	MaskOptions	property	to	prevent	certain	Options
from	being	inherited.
property	ImageIndex:	Integer;

The	image	index	to	use,	or	-1	if	the	item	has	no	image.
By	default,	when	a	toolbar	item	has	an	image,	its	Caption	is	hidden.	Set	the
DisplayMode	property	to	nbdmImageAndText	to	have	it	display	both	the
image	and	caption.
property	Images:	TCustomImageList;

The	image	list	that	holds	the	image	for	the	item.	If	Images	is	nil	(i.e.	left
blank	at	design	time),	it	will	inherit	the	images	from	the	parent	toolbar	or
menu.
property	Items[Index:	Integer]:	TTBCustomItem;	default;

(Run-time	only)	Use	Items	to	access	to	a	subitem	by	its	position	in	the	list
of	subitems.
property	LinkSubitems:	TTBCustomItem;

This	property	allows	you	to	have	the	item	take	its	list	of	subitems	from	a
different	item	instead	of	from	itself.	By	using	this	property,	you	could	have
several	TTBSubmenuItems	sharing	the	same	set	of	subitems.

property	MaskOptions:	TTBItemOptions	default	[];

Determines	which	Options	will	not	be	inherited.	Has	no	effect	if
InheritOptions	is	False.
property	Options:	TTBItemOptions	default	[];

Miscellaneous	options:
tboDefault	-	When	set,	the	item's	Caption	will	be	displayed	in	a	bold
font,	and	the	item	will	be	automatically	executed	when	the	parent	item
is	double-clicked.	Like	TMenuItem's	Default	property.
tboDropdownArrow	-	When	set,	TTBSubmenuItems	on	toolbars	will
display	an	arrow	on	their	right	side.	This	option	does	not	change	the
way	the	item	functions.
tboImageAboveCaption	-	When	set,	the	item's	image	will	be	displayed
above	its	caption,	similar	to	default	look	in	older	versions	of	Internet
Explorer.	This	option	has	no	effect	if	the	item	is	on	a	popup	menu.
tboLongHintInMenuOnly	-	When	set,	the	item's	long	hint	will	only	be
used	when	in	a	modal	menu	loop.
tboNoAutoHint	-	When	set,	automatic	hint	generation	will	be	disabled.
See	the	description	of	the	Hint	property	for	more	information.
tboNoRotation	-	When	set,	the	item's	caption	will	not	be	rotated	90
degrees	when	its	parent	toolbar	is	docked	vertically.
tboSameWidth	-	When	set	along	with	tboImageAboveCaption	on	two
or	more	items	on	the	same	view,	the	items	will	be	stretched	as
necessary	so	that	they	all	have	the	width	in	pixels.
tboToolbarStyle	-	When	set,	the	item	will	be	displayed	in	the	style	of	a
toolbar	button	when	on	a	popup	menu:	it	will	have	a	raised	border,	the
text	will	be	centered,	and	when	Checked	the	filled	pattern	will	extend
across	the	entire	item.
tboToolbarSize	-	When	set,	the	item	will	be	displayed	on	popup	menus
with	the	same	size	as	a	toolbar	button,	and	its	text	will	be	hidden	by
default	like	a	toolbar	button.	Also,	consecutive	items	with
tboToolbarSize	set	will	be	arranged	horizontally	like	a	toolbar.
In	order	to	set	tboToolbarSize,	you	must	first	set	tboToolbarStyle.
tboShowHint	-	When	set,	the	item	can	display	popup	hints	when	on	a
popup	menu	(similar	to	IE5's	Favorites	menu).	(To	enable	popup	hints
on	a	toolbar,	set	the	toolbar's	ShowHint	property	to	True.)

By	default,	options	set	here	are	inherited	by	child	items.	See	also	the
InheritOptions	and	MaskOptions	properties.
property	ShortCut:	TShortCut	default	0;

The	keyboard	shortcut	for	the	item.	Note	that	the	ProcessShortCuts

property	of	the	parent	toolbar	must	be	set	to	True	for	the	shortcut	to	be
functional.
property	SubMenuImages:	TCustomImageList;

The	image	list	that	holds	the	images	for	the	item's	subitems.	If
SubMenuImages	is	nil	(i.e.	left	blank	at	design	time),	it	will	inherit	the
images	from	the	parent	toolbar	or	menu.

Key	Methods:

procedure	Add(AItem:	TTBCustomItem);

Adds	a	new	subitem	to	the	end.
procedure	Clear;

Removes	and	frees	all	of	the	item's	subitems.
function	ContainsItem(AItem:	TTBCustomItem):	Boolean;

Returns	True	if	AItem	is	one	of	the	item's	subitems.	AItem	need	not	be	an
immediate	child	of	the	item.
procedure	Delete(Index:	Integer);

Deletes	the	subitem	at	position	Index.	See	also	Remove.
functions	IndexOf(AItem:	TTBCustomItem):	Integer;

Returns	the	position	of	the	subitem	AItem,	or	-1	if	it	isn't	one	of	the	item's
subitems.
procedure	Insert(NewIndex:	Integer;	AItem:	TTBCustomItem);

Inserts	a	new	subitem	AItem	at	position	NewIndex.
procedure	Move(CurIndex,	NewIndex:	Integer);

Moves	the	item	at	position	CurIndex	to	position	NewIndex.
procedure	Popup(X,	Y:	Integer;	TrackRightButton:	Boolean;

Alignment:	TTBPopupAlignment	=	tbpaLeft);

TTBPopupAlignment	=	(tbpaLeft,	tbpaRight,	tbpaCenter);

Creates	and	displays	a	popup	menu	containing	the	item's	subitems.	If
TrackRightButton	is	True,	items	may	be	selected	with	the	right	mouse
button.	Alignment	determines	how	the	popup	menu	is	aligned	relative	to	the
X,Y	coordinate.
procedure	Remove(Item:	TTBCustomItem);

Removes	the	subitem	Item.	Nothing	happens	if	Item	isn't	one	of	the	item's
subitems.

Events:

property	OnClick:	TNotifyEvent;

Occurs	after	a	button	or	menu	item	is	clicked.

If	the	item	is	a

TTBSubmenuItem	with	the	DropdownCombo	property	set	to	False	(the	default),
this	event	will	also	be	fired	when	the	submenu	is	opened,	after	the	OnPopup
event.
property	OnPopup:	TTBPopupEvent;

TTBPopupEvent	=	procedure(Sender:	TTBCustomItem;	FromLink:	Boolean)

of	object;

Occurs	before	a	submenu	is	opened.	You	could	use	this	event	to	initialize	the
appearance	of	the	submenu	by	writing	code	to	add,	delete,	or	modify	items.

If	the	LinkSubitems	property	is	set,	an	OnPopup	event	will	be	sent	first	to	the
item	referenced	by	LinkSubitems.	The	FromLink	parameter	will	be	True	in	such
events.
property	OnSelect:	TTBSelectEvent;

TTBSelectEvent	=	procedure(Sender:	TTBCustomItem;	Viewer:

TTBItemViewer;	Selecting:	Boolean)	of	object;

Occurs	when	the	item	becomes,	or	ceases	to	be,	the	selected	item.	Selecting	will
be	True	if	the	item	is	the	selected	item,	or	False	if	the	item	is	no	longer	the
selected	item.

TTBItem

Description:

This	is	the	primary	item	component.

It	is	essentially	identical	to	TTBCustomItem;	see	its	help	topic	for	details	on	the
properties	and	methods.

TTBSubmenuItem

Properties

Description:

Use	TTBSubmenuItem	to	create	top-level	menus	or	submenus.

TTBSubmenuItem	inherits	many	properties,	methods,	and	events	from
TTBCustomItem;	see	its	help	topic	for	details	on	the	properties,	methods,	and
events	not	listed	here.

Key	Properties:

property	DropdownCombo:	Boolean	default	False;	When	True,	the
item	will	behave	as	a	both	clickable	button	and	a	dropdown	menu,	similar
to	MS	Office's	Font	Color	button.	Clicking	the	left	side	of	the	button
generates	an	OnClick	event;	clicking	the	right	side	of	the	button	(the	part
with	the	arrow)	generates	an	OnPopup	event,	and	displays	a	dropdown
menu.

TTBSeparatorItem

Properties

Description:

Use	TTBSeparatorItem	to	create	a	separator.

Remarks:

Separators	that	are	at	the	front	or	end	of	a	toolbar/menu	will	be	hidden
automatically,	as	will	consecutive	separators.

Key	Properties:

property	Blank:	Boolean	default	False;	When	True,	the	item	won't
draw	a	line;	it	will	just	be	an	empty	space.

TTBEditItem

Properties	|	Events

Description:

Use	TTBEditItem	to	create	top-level	menus	or	submenus.

TTBEditItem	emulates	the	appearance	and	behavior	of	the	edits	on	MS	Office's
toolbars.

A	key	functional	difference	between	a	TEdit	and	a	TTBEditItem	is	the	Text
property	doesn't	change	in	real	time	as	the	user	modifies	the	text.	Instead,	the
text	is	only	saved	in	the	Text	property	once	the	user	presses	Enter.	(Additionally,
an	OnAcceptText	event	is	fired	when	Enter	is	pressed.)	If	the	user	presses
Escape,	it	discards	the	changes.

Also,	by	default,	TTBEditItem	will	change	into	a	button	when	its	parent	toolbar
is	docked	vertically.	This	behavior	can	be	disabled	by	adjusting	the	EditOptions
property	(see	below).

TTBEditItem	inherits	many	properties,	methods,	and	events	from
TTBCustomItem;	see	its	help	topic	for	details	on	the	properties,	methods,	and
events	not	listed	here.

Key	Properties:

property	CharCase:	TEditCharCase;

TEditCharCase	=	(ecNormal,	ecUpperCase,	ecLowerCase);

Use	CharCase	to	force	the	item's	text	to	assume	a	particular	case.
property	EditCaption:	string;

The	caption	displayed	to	the	left	of	the	Edit	when	the	item	is	on	a	menu.
property	EditOptions:	TTBEditItemOptions	default	[];

Miscellaneous	options:
tboUseEditWhenVertical	-	When	set,	the	item	will	remain	displayed	as
an	edit	instead	of	a	button	when	the	parent	toolbar	is	docked	vertically.

property	EditWidth:	Integer	default	64;

The	width	in	pixels	of	the	Edit.
property	MaxLength:	Integer	default	0;

The	maximum	number	of	characters	the	user	may	enter.	If	this	is	0,	no	limit

is	imposed.
property	Text:	string;

The	text.

Key	Events:

property	OnAcceptText:	TTBAcceptTextEvent;

TTBAcceptTextEvent	=	procedure(Sender:	TObject;	var	NewText:

String;	var	Accept:	Boolean)	of	object;

Occurs	when	the	user	presses	Enter	after	editing	the	text.	NewText	is	the
new	text	that	will	be	assigned	to	the	Text	property,	which	the	event	handler
may	optionally	modify.	Set	Accept	to	False	to	prevent	the	new	text	from
being	assigned	to	the	Text	property.

property	OnBeginEdit:	TTBBeginEditEvent;

TTBBeginEditEvent	=	procedure(Sender:	TTBEditItem;	Viewer:

TTBEditItemViewer;	EditControl:	TEdit)	of	object;

When	you	click	a	TTBEditItem	or	press	Enter	on	it,	a	TEdit	control	is
created	on	the	fly	to	handle	the	input.	This	event	occurs	after	the	TEdit
control	is	created.	The	TEdit	control	is	specified	in	the	EditControl
parameter.	The	code	in	the	event	handler	may	modify	the	properties	of
EditControl	to	customize	its	appearance,	among	other	things.

TTBGroupItem

Description:

TTBGroupItem	allows	you	to	create	your	own	group	item.

TTBGroupItem	inherits	many	properties,	methods,	and	events	from
TTBCustomItem;	see	its	help	topic	for	details	on	the	properties,	methods,	and
events	not	listed	here.

TTBMRUListItem

Properties

Description:

TTBMRUListItem	is	a	group	item	which	displays	a	Most	Recently	Used	list.

To	use	this	item,	you	first	need	to	create	a	TTBMRUList	component.

Key	Properties:

property	MRUList:	TTBMRUList;	The	TTBMRUList	component	to	get	the
MRU	items	from.

TTBMDIWindowItem

Events

Description:

TTBMDIWindowItem	is	a	group	item	which	expands	to	a	list	of	available	MDI
child	windows	at	run-time.	This	is	intended	to	be	placed	at	the	end	of	an	MDI
application's	Window	menu,	following	a	separator.

Remarks:

This	component	modifies	the	main	form's	WindowMenu	property	at	run-time.

The	list	of	windows	comes	from	the	system.	Thus,	the	caption	of	the	"More
Windows"	item	is	properly	localized.

Events:

property	OnUpdate:	TNotifyEvent;	Occurs	after	the	subitems	are	created
and	initialized.

TTBVisibilityToggleItem

Properties

Description:

TTBVisibilityToggleItem	is	a	special	type	of	item	which	toggles	the	Visible
property	of	a	control	(specified	by	the	Control	property)	when	clicked.	It	also	at
run-time	automatically	sets	its	Checked	property	equal	to	control's	Visible
property.

This	item	class	is	primarily	useful	for	creating	menu	items	which	toggle	the
visibility	of	toolbars.

TTBVisibilityToggleItem	inherits	many	properties,	methods,	and	events	from
TTBCustomItem;	see	its	help	topic	for	details	on	the	properties,	methods,	and
events	not	listed	here.

Key	Properties:

property	Control:	TControl;	The	associated	control.

TTBControlItem

Properties

Description:

A	TTBControlItem	component	is	automatically	created	when	you	drop	a	control
on	a	TTBToolbar.	It	is	essentially	a	"wrapper"	that	allows	the	control	to	be
managed	by	the	toolbar	in	the	same	way	as	Toolbar2000's	native	items.

Key	Properties:

property	Control:	TControl;	The	control	it	is	managing.	You	should	not
modify	this	property;	it	is	set	automatically.

TTBView

Properties	|	Methods

Description:

Views	arrange	items	for	display	and	create	item	viewers	(TTBItemViewer)	to
render	individual	items.

Each	TTBToolbar	component	has	its	own	TTBView	instance,	accessible	via	the
View	property.	Popup	menus	also	have	views	when	they	are	displayed.

Usage	example:

If	you	have	a	toolbar	named	TBToolbar1	and	an	item	on	the	toolbar	named
TBItem1,	here	is	how	to	get	the	bounding	rectangle	of	TBItem1:

var

		R:	TRect;

begin

		R	:=	TBToolbar1.View.Find(TBItem1).BoundsRect;

end;

Key	Properties:

property	ParentItem:	TTBCustomItem;	(Read-only)	The	item	which	the
view	looks	in	to	find	items	to	display.	The	view	then	creates	item	viewers
for	each	item	it	is	going	to	display.
property	ParentView:	TTBView;

(Read-only)	The	parent	view,	or	nil	if	the	view	is	a	top-level	view.
property	Selected:	TTBItemViewer;

The	currently	selected	item	viewer	in	the	view,	or	nil	if	there	is	no	selected
item	viewer.	An	item	viewer	becomes	"selected"	when	the	mouse	is	moved
over	it,	or	when	it	is	highlighted	with	the	keyboard.
property	Viewers:	PTBItemViewerArray;

(Read-only)	The	zero-based	of	array	of	item	viewers	(TTBItemViewer)	that
the	view	currently	owns.
Note:	Access	to	this	property	is	not	range	checked.
property	ViewerCount:	Integer;

(Read-only)	The	number	of	item	viewers	available	in	the	Viewers	array.
property	Window:	TWinControl;

(Read-only)	Specifies	the	control	associated	with	the	view.	TTBView	will
invalidate	this	control	when	necessary.

Key	Methods:

procedure	BeginUpdate;

Disables	arrangement	of	item	viewers	on	the	view.
(TTBToolbar.BeginUpdate	calls	this.)
function	ContainsView(AView:	TTBView):	Boolean;

Returns	True	if	AView	is	a	child	view	of	the	view.	AView	doesn't	have	to	be
an	immediate	child	for	the	function	to	return	True.
procedure	CloseChildPopups;

Destroys	any	child	views	(typically	popup	menus)	that	the	view	is	currently
displaying.
procedure	DrawSubitems(ACanvas:	TCanvas);

Draws	the	entire	contents	of	the	view	on	a	canvas.	TTBToolbar	calls	this	in
its	Paint	method.
procedure	EndUpdate;

Re-enables	item	viewer	arrangement	after	a	call	to	BeginUpdate.
(TTBToolbar.EndUpdate	calls	this.)
function	Find(Item:	TTBCustomItem):	TTBItemViewer;

Returns	the	item	viewer	associated	with	Item.	If	the	item	does	not	exist	on
the	view,	an	exception	is	raised.	Therefore	it	will	not	return	nil.
function	IndexOf(AViewer:	TTBItemViewer):	Integer;

Returns	the	index	of	the	specified	item	viewer.	If	AViewer	is	nil	or	does	not
exist,	the	function	returns	-1.
function	Invalidate(AViewer:	TTBItemViewer);

Invalidates	the	area	on	Window	occupied	by	the	item	viewer.	There	is
normally	no	need	to	call	this	function	directly.
procedure	InvalidatePositions;

Marks	the	current	item	viewer	positions	as	"invalid,"	causing	them	to	be
recalculated	and	redrawn	later.	There	is	normally	no	need	to	call	this
function	directly.
function	NextSelectable(CurViewer:	TTBItemViewer;	GoForward:

Boolean):	TTBItemViewer;

Returns	the	next	selectable	item	viewer	following	CurViewer	(if
GoForward	is	True)	or	preceding	CurViewer	(if	GoForward	is	False).
CurViewer	can	be	nil,	in	which	case	the	function	will	return	the	first	or	last
selectable	item	viewer.	If	no	selectable	item	viewer	is	found,	the	function

returns	nil.
procedure	ScrollSelectedIntoView;

If	the	view	is	a	scrolling	menu,	this	procedure	adjusts	the	scroll	position	if
necessary	so	that	the	currently	selected	item	viewer	is	visible.
procedure	TryValidatePositions;

Same	as	ValidatePositions,	but	does	not	validate	if	BeginUpdate	was	called
or	if	ParentItem	is	currently	being	loaded.
procedure	ValidatePositions;

Ensures	that	all	item	viewer	positions	are	valid,	recalculating	them	if
necessary.	There	is	normally	no	need	to	call	this	function	directly.
function	ViewerFromPoint(const	P:	TPoint):	TTBItemViewer;

Returns	the	item	viewer	at	the	specified	point,	or	nil	if	no	item	viewer	exists
at	the	specified	point.	The	point	is	in	client	coordinates.

TTBItemViewer

Properties	|	Methods

Description:

An	item	viewer	is	responsible	for	drawing	a	single	item	on	the	screen,	and
handling	mouse	and	keyboard	input	directed	to	the	item.

TTBView	creates	and	manages	item	viewers.

Key	Properties:

property	BoundsRect:	TRect;	(Read-only)	The	bounding	rectangle	of	the
item.	This	is	not	valid	when	Show	is	False.
property	Clipped:	Boolean;

(Read-only)	This	is	True	if	the	item	would	normally	have	been	shown	but
the	parent	menu	has	scrolling	enabled	and	the	item	could	not	fit	in	the
available	space.	Show	will	always	be	False	when	Clipped	is	True.
property	Item:	TTBCustomItem;

(Read-only)	The	item	being	rendered.
property	OffEdge:	Boolean;

(Read-only)	This	is	True	if	the	item	could	not	fit	in	the	available	space	and
is	to	be	displayed	on	the	parent	toolbar's	chevron	popup	menu.	Show	will
always	be	False	when	OffEdge	is	True.
property	Show:	Boolean;

(Read-only)	This	is	True	if	the	item	will	be	shown,	or	False	if	it	is	hidden.
property	View:	TTBView;

(Read-only)	The	owning	TTBView	component.

Key	Methods:

Note:	There	are	a	lot	of	protected	methods	in	TTBItemViewer	which	can	be
overridden	in	descendant	classes	to	change	appearance	or	behavior	of	the	item
viewer.	Documentation	for	them	has	not	been	completed	yet.

function	ScreenToClient(const	P:	TPoint):	TPoint;

Converts	a	screen	coordinate	to	a	coordinate	relative	to	the	top-left	corner
of	the	item	viewer.

Glossary

The	following	are	definitions	of	some	of	the	special	terms	used	in	Toolbar2000.

group	item
A	special	type	of	item.	The	child	items	of	a	group	item	are	rendered	on	the
group	item's	parent	item,	as	if	they	were	actually	children	of	the	parent
item.	
Group	items	may	be	nested	up	to	approximately	9	levels	deep.

item
Item	components	are	used	for	toolbar	and	menu	items.	Items	descend	from
the	TTBCustomItem	class.

item	viewer
Item	viewer	refers	to	a	TTBItemViewer	component	or	a	descendant.
Instances	of	TTBItemViewer	draw	individual	items	on	the	screen	and
process	mouse	and	keyboard	input.

view
A	view	refers	to	a	TTBView	component.	The	TTBView	class	arranges	items
for	display	and	manages	item	viewers.

Frequently	Asked	Questions

Features
Problems

Features

Will	it	have	_____	in	the	future?

Please	check	the	online	Feature	Request	Tracker	for	a	list	of	some	features	I
intend	to	add,	and	features	that	users	have	requested	be	added.

Will	Delphi	2/3	and	C++Builder	1/3	be	supported?

No;	sorry.	There	are	several	reasons	why	supporting	them	would	be
difficult	because	of	key	features	their	VCLs	lack.	If	you	need	a	good
dockable	toolbar	system	now	which	supports	these	older
Delphi/C++Builder	versions,	you	can	always	use	Toolbar97.

Where	is	the	Down	property	on	toolbar	buttons?

It's	there	but	it's	called	Checked.

Can	I	get	the	positions	of	my	toolbars	to	be	preserved	when	my	application
exits,	and	restored	the	next	time	it	is	started?

Yes,	Toolbar2000	provides	functions	to	do	this.	See	Global	Functions	and
Variables.

How	can	I	get	the	bounding	rectangle	of	an	item	on	a	toolbar?

If	you	have	a	toolbar	named	TBToolbar1	and	an	item	on	the	toolbar	named
TBItem1,	here	is	how	to	get	the	bounding	rectangle	of	TBItem1:

var

		R:	TRect;

begin

http://www.jrsoftware.org/tb2kfeature.php
http://www.jrsoftware.org/tb97info.php

		R	:=	TBToolbar1.View.Find(TBItem1).BoundsRect;

end;

Problems

Why	don't	controls	on	toolbars	appear	in	the	chevron	popup	menu?

Toolbar2000's	proprietary	"items"	have	been	designed	from	the	ground	up
to	have	the	ability	to	be	displayed	in	multiple	places	simultaneously.
Controls	do	not	have	this	ability.	It	would	have	to	change	the	Parent
property	of	the	controls	to	move	them	to	the	popup	menu.	However,	it's	not
quite	that	simple.	Because	Toolbar2000	takes	the	mouse	capture	while	a
popup	menu	is	up,	it	would	need	some	mechanism	for	delivering	mouse
and	keyboard	events	to	controls	on	a	popup	menu.	I	think	this	would	be
rather	complicated	to	do,	and	it's	not	something	high	on	the	list	of	my
priorities	at	the	moment.

Why	don't	I	see	Minimize,	Restore,	and	Close	buttons	on	my	menu	bar
when	an	MDI	child	form	is	maximized?

Use	a	TTBMDIHandler	component	to	make	a	menu	bar	MDI-aware.

	Intro
	License
	Register
	Frequently Asked Questions
	Revision History

